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Introduction 1
The Freescale DSP56300 family of digital signal processors uses a programmable, 24-bit, 
fixed-point core. This core is a high-performance, single-clock-cycle-per-instruction engine. A 
variety of standard peripherals can be added around the DSP56300 family core (see Figure 1-1), 
such as serial ports, parallel ports, timers, different memory configurations (RAM and/or ROM), 
special-purpose coprocessors, and General-Purpose Input/Output (GPIO) ports. Each peripheral 
interfaces to the DSP56300 core through a standard peripheral bus, allowing easy connection to 
standard or custom peripherals.

Figure 1-1.  DSP56300 Family-Based DSP

The combination of powerful instruction set, multiple internal buses, DMA channels, on-chip 
program and data memories, external buses, standard peripherals, and power management of the 
DSP56300 family make it an excellent solution for wireless or wireline DSP applications from 
individual subscriber to infrastructure, as well as multimedia and high-end audio applications, 
including video conferencing.
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Introduction
1.1 Core Overview
� One Million Instructions Per Second (MIPS) per MHz of operating speed

� Object code compatible with the DSP56000 core

� Highly parallel instruction set

� Data Arithmetic Logic Unit (Data ALU)

� Address Generation Unit (AGU)

� Program Control Unit (PCU)

� On-chip instruction cache controller

� External memory interface (Port A)

� Phase Locked Loop (PLL) 

� Hardware debugging support (JTAG TAP, OnCETM module, and Address Trace Mode)

� Six-channel Direct Memory Access (DMA) controller

� Reduced power dissipation

— Very low power CMOS design
— Wait and Stop low-power standby modes
— Fully-static logic

1.1.1   Data Arithmetic Logic Unit (Data ALU)

The Data ALU performs all the arithmetic and logical operations on data operands in the 
DSP56300 core. The components of the Data ALU are as follows:

� Fully pipelined 24 × 24-bit parallel Multiplier-Accumulator (MAC) unit

� Bit Field Unit, comprising a 56-bit parallel barrel shifter (fast shift and normalization; bit 
stream generation and parsing)

� Conditional ALU instructions

� 24-bit or 16-bit arithmetic support under software control

� Four 24-bit input general purpose registers: X1, X0, Y1, and Y0

� Six Data ALU registers (A2, A1, A0, B2, B1, and B0) that are concatenated into two 
general purpose 56-bit accumulators and accumulator shifters (A and B)

� Two data bus shifter/limiter circuits

The Data ALU registers can be read or written over the X Data Bus (XDB) and the Y Data Bus 
(YDB) as 24- or 48-bit operands. The source operands for the Data ALU, which can be 24, 48, or 
56 bits, always originate from the Data ALU registers. The results of all Data ALU operations are 
stored in an accumulator. All Data ALU operations are performed in two clock cycles in pipeline 
fashion so that a new instruction can be initiated in every clock, yielding an effective execution 
rate of one instruction per clock cycle.
DSP56300 Family Manual, Rev. 5
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Core Overview
The MAC unit comprises the main arithmetic processing unit of the DSP56300 core and 
performs all of the calculations on data operands. For arithmetic instructions, the unit accepts as 
many as three input operands and outputs one 56-bit result of the following form:

Extension:Most Significant Product:Least Significant Product (EXT:MSP:LSP)

The multiplier executes 24-bit × 24-bit, parallel fractional multiplies between two’s complement 
signed, unsigned, or mixed operands. The 48-bit product is right-justified and added to the 56-bit 
contents of either the A or B accumulator. A 56-bit result can be stored as a 24-bit operand by 
truncating or rounding the LSP into the MSP.

1.1.2   Address Generation Unit (AGU)

The Address Generation Unit (AGU) performs the effective address calculations for addressing 
data operands in memory and contains the integer arithmetic and registers used to generate the 
addresses. The AGU operates in parallel with the other core resource, and so minimizes 
address-generation overhead of instruction sequences. It implements four types of address 
arithmetic: 

� Linear

� Modulo

� Multiple wrap-around modulo

� Reverse-carry

These arithmetic types easily allow creation of data structures in memory for FIFOs (queues), 
delay lines, circular buffers, stacks, and bit-reversed FFT buffers. Data is manipulated by 
updating address registers (pointers) rather than moving large blocks of data. The contents of the 
address modifier register, Mn, define the type of arithmetic to be performed for addressing mode 
calculations. For modulo arithmetic, the contents of Mn also specify the modulus. All address 
register indirect modes can be used with any address modifier. Each address register, Rn, has an 
associated modifier register, Mn. The following address modifier types are available.

� Linear addressing—Useful for general-purpose addressing

� Modulo addressing—Useful for creating circular buffers for FIFOs

� Multiple wrap-around modulo addressing—Useful for decimation, interpolation and 
waveform generation since the multiple wrap-around capability can be used for argument 
reduction

� Reverse-carry (bit-reverse) addressing—Useful for 2k-point FFT addressing

The AGU is divided into halves, each with its own Address Arithmetic Logic Unit (Address 
ALU), one to generate 24-bit addresses every cycle for the X space and one for the Y space. Each 
Address ALU can update one address register from its respective address register file during one 
instruction cycle. Each Address ALU has four sets of register triplets; each triplet is composed of 
an address register, an offset register, and a modifier register. The contents of the associated 
DSP56300 Family Manual, Rev. 5
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Introduction
modifier register specify the type of arithmetic to use in the address register update calculation. 
The modifier value is decoded in the Address ALU.

Each Address ALU contains a 24-bit full adder, which is an offset adder. A second full 
adder—which is a modulo adder—adds the summed result of the first full adder to a modulo 
value that is stored in its respective modifier register. A third full adder, which is a reverse-carry 
adder, is also provided. The offset adder and the reverse-carry adder operate in parallel and share 
common inputs. The only difference between them is that the carry propagates in opposite 
directions. The modifier value determines which of the three summed results of the full adders is 
output. For details on the AGU, see Chapter 4, Address Generation Unit.

1.2 Program Control Unit (PCU)

The Program Control Unit (PCU) performs instruction fetch, instruction decoding, hardware DO 
loop control, and exception processing. The PCU implements a seven-stage pipeline and controls 
the different processing states of the DSP56300 core. The PCU consists of three hardware blocks:

� Program Decode Controller (PDC): Decodes the 24-bit instruction loaded into the 
instruction latch and generates all necessary pipeline control signals

� Program Address Generator (PAG): Contains the hardware for program address 
generation, system stack, and loop control

� Program Interrupt Controller (PIC): Arbitrates among all interrupt requests (internal 
interrupts and the five external requests IRQA, IRQB, IRQC, IRQD, and NMI), and generates 
the appropriate interrupt vector address

PCU features include:

� Position independent code (PIC) support

� Addressing modes optimized for DSP applications (including immediate offsets)

� On-chip instruction cache controller

� On-chip memory-expandable hardware stack

� Nested hardware DO loops 

� Fast auto-return interrupts

� Program Address Trace mode support

1.3 Instruction Cache

The instruction cache functions as a buffer memory between external memory and the DSP core 
processor. When code executes, the code words at the locations requested by the instruction set 
are copied into the instruction cache for direct access by the core processor. If the same code is 
used frequently in a set of program instructions, storage of these instructions in the cache yields 
an increase in throughput, because external bus accesses are eliminated. In the DSP56300 
DSP56300 Family Manual, Rev. 5
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Port A External Memory Interface
instruction set are specific cache instructions that permit you to lock sectors of the cache and to 
flush the cache contents under software control. When enabled, the instruction cache has 1024 
24-bit words (1 K words) of instruction cache memory, with the following features:

� Software controlled Cache Enable (CE) bit in the Extended Mode Register (EMR) in the 
Status Register (SR)

� Instruction cache size of 1024 24-bit words

� Eight-way, fully associative instruction cache with sectored placement policy

� 1- to 4-word transfer granularity

� Least recently used (LRU) sector replacement algorithm

� Transparent operation (that is, no user management is required) 

� Individual sector locking/unlocking

� Global cache flush controlled by software

� Cache controller status observable via the JTAG/OnCE port 

For more information, refer to Chapter 8, Instruction Cache.

1.4 Port A External Memory Interface

Port A is an external memory interface for memory expansion or memory-mapped I/O. Its 
programmable nature supports a low part-count connection to fast or slow SRAMs, DRAMs, I/O 
devices, and multiple bus master systems. The Port A data bus is 24 bits wide with a separate 
address bus that is 24 bits wide in some DSP56300 processors and less than 24 bits in others. 
External memory is divided into three possible 16 M × 24-bit spaces: X data, Y data, and 
program memory. Each or all spaces can be accessed to a given external memory under software 
control. See the memory map in Chapter 11, Operating Modes and Memory Spaces for memory 
space that is not accessible over Port A. An internal wait state generator can be programmed to 
statically insert up to 31 wait states for access to slower memory or I/O devices. A Transfer 
Acknowledge (TA) signal allows an external device to dynamically control the number of wait 
states inserted in a bus access operation. Bus arbitration signals allow an external device to use 
the bus while internal operations continue using internal memory. See the memory map in the 
device-specific user’s manual for memory space that is not accessible.

The Address Attribute (AA) lines operate as memory-mapped chip selects or as address lines to 
external devices, depending upon the mode selected. Some DSP56300 chips have eighteen 
address lines. For these DSPs, if all four AA lines are used as address lines, the total addressable 
external memory per space (X data, Y data, and program) is 4 M × 24-bit. If all four AA lines are 
used, the memory must always be selected because no AA lines are available for chip select. As a 
result, an external read or write outside the 4M range could still go to the external memory 
(depending on the settings of the AA registers).
DSP56300 Family Manual, Rev. 5
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Introduction
1.5 Phase Locked Loop (PLL) and Clock Generator 

The clock generator in the DSP56300 core is composed of two main blocks: 

� Phase Locked Loop (PLL): Clock-input division, frequency multiplication, and skew 
elimination

� Clock Generator (CLKGEN): Low-power division and clock pulse generation and change 
of low-power Divide Factor (DF) without loss of lock

The PLL allows the processor to operate at a high internal clock frequency using a low frequency 
clock input, a feature that offers two immediate benefits:

� A lower frequency clock input reduces the overall electromagnetic interference generated 
by a system. 

� The ability to oscillate at different frequencies reduces costs by eliminating the need to 
add additional oscillators to a system.

1.6 Hardware Debugging Support

The DSP56300 core provides a dedicated user-accessible Test Access Port (TAP) based on the 
IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture. Problems associated 
with testing high-density circuit boards have led to development of this standard under the 
sponsorship of the Test Technology Committee of IEEE and the Joint Test Action Group 
(JTAG). The DSP56300 core implementation supports circuit-board test strategies based on this 
standard. The test logic includes a TAP consisting of four dedicated signal pins, a 16-state 
controller, and three test data registers. A Boundary Scan Register (BSR) links all device signal 
pins into a single shift register. The test logic is implemented utilizing static logic design and is 
completely independent of the device system logic. 

An On-chip Emulation (OnCE) port supports hardware and software development on the 
DSP56300 core processor. It allows nonintrusive interaction with the core and its peripherals so 
that developers can examine registers, memory, or on-chip peripherals. This facilitates hardware 
and software development on the DSP56300 core processor. OnCE module functions are 
provided through the JTAG TAP pins. More information on the JTAG/OnCE port is provided in 
Chapter 7, Debugging Support. 

A third debugging feature is the Address Trace mode, which reflects internal Program RAM 
accesses at the external port. This mode is invoked by setting the Address Tracing Enable (ATE), 
which is bit 15 in the Operating Mode Register (OMR)1. Once active, both internal and external 
program memory accesses are valid at the rising edge of CLKOUT. The BR signal distinguishes 
internal from external accesses.

1. For details on the Operating Mode Register (OMR), see Section 5.4.1.1, Operating Mode Register, on page 5-5
DSP56300 Family Manual, Rev. 5
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Direct Memory Access (DMA)
1.7 Direct Memory Access (DMA)

The Direct Memory Access (DMA) block permits data transfers without the interaction of the 
core. It supports any combination of internal memory, internal peripheral I/O and external 
memory as source and destination during accesses. The DMA block has the following features:

� Six DMA channels supporting internal and external accesses

� One-, two-, and three-dimensional transfers (including circular buffering)

� End-of-block-transfer interrupts

� Triggering from interrupt lines and all peripherals

1.8 Introduction to Digital Signal Processing

Figure 1-2 shows an example of analog signal processing. The circuit in the illustration filters a 
signal from a sensor using an operational amplifier and controls an actuator with the result. Since 
the ideal filter is impossible to design, the engineer must design the filter for acceptable response 
considering variations in temperature, component aging, power supply variation, and component 
accuracy. The resulting circuit typically has low noise immunity, requires adjustments, and is 
difficult to modify.

Figure 1-2.  Analog Signal Processing
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Introduction
The equivalent circuit using a DSP is shown in Figure 1-3. This application requires an 
Analog-to-Digital (A/D) converter and Digital-to-Analog (D/A) converter in addition to the DSP. 
Even with these additional parts, the component count can be lower using a DSP due to the high 
integration available with current components. Processing in this circuit begins by band-limiting 
the input signal with an anti-alias filter, eliminating out-of-band signals that can be aliased back 
into the pass band due to the sampling process. The signal is then sampled, digitized with an A/D 
converter and sent to the DSP. The filter implemented by the DSP is strictly a matter of software. 
The DSP can directly employ any filter that can also be implemented using analog techniques. 
Also, adaptive filters are easy to implement using DSP but very difficult to implement using 
analog techniques.

Figure 1-3.  Digital Signal Processing
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Introduction to Digital Signal Processing
The DSP output is processed by a D/A converter and is low-pass filtered to remove the effects of 
digitizing. The advantages of using the DSP include:

� Fewer components

� Stable, deterministic performance

� No filter adjustments

� Wide range of applications

� Filters with much closer tolerances

� High noise immunity

� Easily implemented adaptive filters

� Built-in self-test capability

� Better power supply rejection

The DSP56300 family is not a custom IC designed for a particular application; it is designed as a 
general-purpose DSP architecture to efficiently execute commonly used DSP benchmarks and 
controller code in minimal time.

Figure 1-4 shows the following key attributes of a DSP:

� Multiply/Accumulate (MAC) operation

� Fetching up to two operands per instruction cycle for the MAC

� Program control to provide versatile operation

� Input/output to move data in and out of the DSP

The MAC operation is the fundamental operation used in DSP. The DSP56300 family of 
processors has a modified dual Harvard architecture optimized for MAC operations. Figure 1-3 
shows how the DSP56300 family architecture matches the shape of the MAC operation. The two 
operands, C( ) and X( ), are directed to a multiply operation, and the result is summed. This 
process is built into the chip using two separate memories (X and Y) to feed a single-cycle MAC 
unit. The entire process must occur under program control to direct the correct operands to the 
multiplier and save the accumulator as needed. Since the two memories and the MAC unit are 
independent, the DSP can perform two moves, a multiply and an accumulate, in a single 
operation. As a result, many DSP benchmarks execute very efficiently for a single-multiplier 
architecture.
DSP56300 Family Manual, Rev. 5
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1.9 Summary of Features

The high throughput of the DSP56300 family of processors makes them well-suited for wireless 
and wireline communication, high-speed control, efficient signal processing, numeric processing, 
and computer and audio applications. The main features that contribute to this high throughput 
include the following:

� Speed: The DSP56300 family supports most high-performance DSP applications.

� Precision: The data paths are 24 bits wide, providing 144 dB of dynamic range; 
intermediate results held in the 56-bit accumulators can range over 336 dB.

� Parallelism: Each on-chip execution unit, memory, and peripheral operates independently 
and in parallel with the other units through a sophisticated bus system. The Data ALU, 
AGU, and program controller operate in parallel so that the following can execute in a 
single instruction:

— An instruction pre-fetch
— A 24-bit × 24-bit multiplication
— A 54-bit addition
— Two data moves
— Two address-pointer updates using either linear or modulo arithmetic

� Flexibility: While many other DSPs need external communications circuitry to interface 
with peripheral circuits (such as A/D converters, D/A converters, or host processors), the 
DSP56300 family provides on-chip serial and parallel interfaces that can support various 

Figure 1-4.  Mapping DSP Algorithms Into Hardware

FIR Filter

c k( ) n k–( )×

k 0=

N

∑A/D
x(t) x(n) y(n)

D/A
y(t)

Program

MAC

Memory
X

Memory
Y

X X

∑ ∑
DSP56300 Family Manual, Rev. 5

1-10 Freescale Semiconductor



Manual Organization
configurations of memory and peripheral modules. The peripherals are interfaced to the 
DSP56300 family core through a peripheral interface bus that provides a common 
interface to many different peripherals.

� Sophisticated Debugging: On-Chip Emulation (OnCE) technology allows simple, 
inexpensive, and speed independent access to the internal registers for debugging. With 
the OnCE module, you can determine easily the exact status of the registers and memory 
locations and what instructions were last executed.

� Phase Locked Loop (PLL)-Based Clocking: The PLL allows the chip to use almost any 
available external system clock for full-speed operation, while also supplying an output 
clock synchronized to a synthesized internal core clock. It improves the synchronous 
timing of the external memory port, eliminating the timing skew common on other 
processors.

� Invisible Pipeline: The seven-stage instruction pipeline is essentially invisible to the 
programmer, allowing straightforward program development in either assembly language 
or high-level languages such as C or C++.

� Instruction Set: The instruction mnemonics are similar to those used for microcontroller 
units, making the transition from programming microprocessors to programming the chip 
as easy as possible. New microcontroller instructions, addressing modes, and bit field 
instructions allow for significant decreases in program code size. The orthogonal syntax 
controls the parallel execution units. The hardware DO loop instruction and the repeat 
(REP) instruction make writing straight-line code obsolete.

� Low Power: Designed in CMOS, the DSP56300 family consumes very little power. Two 
additional low-power modes, Stop and Wait, further reduce power requirements. Wait is a 
low-power mode in which the DSP56300 family core is shut down, but the peripherals and 
interrupt controller continue to operate so that an interrupt can bring the chip out of Wait 
mode. In Stop mode, even more of the circuitry is shut down for the lowest power 
consumption. Several different ways exist to bring the chip out of Stop mode: hardware 
RESET, IRQA, and DE.

1.10 Manual Organization

This manual describes the DSP56300 core in detail. Use this manual in conjunction with the 
appropriate DSP56300 family member user’s manual, which describes the memory, operating 
modes, and peripheral modules. The appropriate DSP56300 family technical data sheet describes 
timing, pinout, and packaging. This manual presents practical information to help you:

� Understand the operation and instruction set of the DSP56300 family 

� Write code for DSP algorithms

� Write code for general control tasks

� Write code for communication routines

� Write code for data manipulation algorithms
DSP56300 Family Manual, Rev. 5
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Table 1-1 describes the contents of each chapter and each appendix.

Table 1-1.  DSP Family Manual Chapters 

Chapter/ 
Appendix

Title and Description

2 Core Architecture Overview—The DSP56300 family core architecture consists of an External 
Memory Interface (Port A), Data Arithmetic Logic Unit (Data ALU), Address Generation Unit 
(AGU), Program Control Unit (PCU), Direct Memory Access (DMA) controller, Phase Locked 
Loop (PLL) circuit, and a JTAG/On-Chip Emulation (OnCE) port. Chapter 2 describes each 
subsystem and the buses interconnecting the major components in the DSP56300 family central 
processing module. Chapter 2 also describes five of the six processing states (Normal, 
Exception, Reset, Wait, and Stop). The sixth processing state (Debug) is covered more 
completely in Chapter 7, Debugging Support.

3 Data Arithmetic Logic Unit—Data ALU architecture, its programming model, an introduction to 
fractional and integer arithmetic, and a discussion of other topics such as unsigned and 
multi-precision arithmetic on the DSP56300 family.

4 Address Generation Unit—AGU architecture, its programming model, addressing modes, and 
address modifiers.

5 Program Control Unit—Program controller architecture, its programming model, and hardware 
looping. Note, however, that the different processing states of the DSP56300 family core, 
including interrupt processing, are described in Chapter 2, Core Architecture Overview.

6 PLL and Clock Generator—Details the PLL, its programming model, and its general operation.

7 Debugging Support—Combined JTAG/OnCE port and its functions. These two are integrally 
related, sharing the same pins for I/O.

8 Instruction Cache—Operation of the instruction cache and memory space.

9 External Memory Interface (Port A)—The External Memory Interface, its programming model, 
and guidelines for interfacing SRAM and DRAM.

10 DMA Controller—The six-channel Direct Memory Access (DMA) controller, its programming 
model, and interactions with the core and peripherals.

11 Operating Modes and Memory Spaces—Operating modes and memory spaces in the 
DSP56300 family. 

12 Guide to the Instruction Set — The DSP56300 family instruction format as well as partial 
encodings for use in instruction encoding

13 Instruction Set — Each DSP56300 family instruction, its use, and its effect on the processor.

A Instruction Timing and Restrictions— Various aspects of execution timing analysis for each 
instruction, sequences that may cause timing delays or stalls, and programming restrictions.

B Benchmark Programs—DSP56300 family benchmark example programs and results.

C From CDR Process to HiP Process — General differences between DSP56300 family 
derivatives that use Communication Design Rules (CDR) process technology and derivatives 
that use the Freescale High-Performance (HiP) process technology; software and hardware 
design implications.
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Manual Conventions
The latest electronic version of this document as well as other DSP documentation (including 
user’s manuals, product briefs, technical data sheets, and errata) can be found at the web site 
listed on the back cover of this manual.

1.11 Manual Conventions

This manual uses the following conventions:

� Bits within registers are always listed from most significant bit (MSB) to least significant 
bit (LSB). 

� Bits within a register are indicated by AA[n – m], when more than one bit is involved in a 
description. For purposes of description, the bits are presented as if they are contiguous 
within a register. However, this is not always the case. Refer to the programming model 
diagrams in the device-specific user’s manual to see the exact location of bits within a 
register.

� When a bit is described as “set,” its value is 1. When a bit is described as “cleared,” its 
value is 0.

� The word “assert” means that a high true (active high) signal is pulled high to VCC or that 
a low true (active low) signal is pulled low to ground. The word “deassert” means that a 
high true signal is pulled low to ground or that a low true signal is pulled high to VCC. See 
Table 1-2.

� Signals in a range are indicated by the first and last signals in the range enclosed in square 
brackets, for example A[0 – 23].

 

� Pins or signals that are asserted low (made active when pulled to ground) are indicated like 
this:

— In text, they have an overbar: for example, RESET is asserted low.

Table 1-2.  High True/Low True Signal Conventions

Signal/Symbol Logic State Signal State Voltage

PIN1 True Asserted Ground2

PIN False Deasserted VCC
3

PIN True Asserted VCC

PIN False Deasserted Ground

1. PIN is a generic term for any pin on the device.
2. Ground is an acceptable low voltage level. See the appropriate data sheet for the range of acceptable 

low voltage levels (typically a TTL logic low).
3. VCC is an acceptable high voltage level. See the appropriate data sheet for the range of acceptable 

high voltage levels (typically a TTL logic high).
DSP56300 Family Manual, Rev. 5
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— In code examples, they have a tilde in front of their names. In Example 1-1, line 3 
refers to the SS0 signal (shown as ~SS0).

� Sets of signals are indicated by the last and first signals in the set, for instance HA[8 – 1].

� “Input/Output” indicates a bidirectional signal. “Input or Output” indicates a signal that is 
exclusively one or the other.

� Code examples are displayed in a monospaced font, as shown in Example 1-1.

� Hex values are indicated with a dollar sign ($) preceding the hex value, as follows: 
$FFFFFF is the X memory address for the core interrupt priority register.

� A Kilobyte (KB) is 1024 bytes.

� A Megabyte (MB) is 1024 x 1024 (1,048,576) bytes.

� A word is 24 bits.

� The word “reset” appears in four different contexts in this manual:

— the reset signal, written as RESET

— the reset instruction, written as RESET
— the reset operating state, written as Reset
— the reset function, written as reset

1.12 Revision History for Revisions 4 and 5

Table 1-3 lists the changes made in this manual from Revision 3 to Revision 4 and from Revision 
4 to Revision 5.

Example 1-1.   Sample Code Listing 

BFSET#0x0007,X:PCC; Configure: line 1

 ;  MISO0, MOSI0, SCK0 for SPI master line 2

 ; ~SS0 as PC3 for GPIO line 3

Table 1-3.  Change History, Revision 3 to Revision 4 and From Revsion 4 to Revision 5  

Change Section Number
Revision 3 

Page Number
Revision 4 

Page Number
Revision 5 

Page Number

Change in required instructions to ensure that no 
maskable interrupts occur during a 
non-interruptible code sequence

Section 2.3.2 page 2-17 page 2-15

Modified stack extension description Section 4.3.2 page 4-5 page 4-4 to 
page 4-5

Operating Mode Register (OMR) bit 11 definition Section 5.4.1.1, 
Table 5-2

page 5-9 page 5-8

System stack configuration description Section 5.4.3 page 5-19 page 5-16
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Revision History for Revisions 4 and 5
Added note about the DSP56321 DPLL and 
clock modules

Chapter 6 page 6-1 page 6-1

Updated VCO description Section 6.2.3 page 6-3 page 6-3

Modified design guidelines for ripple and PCAP Section 6.5
Figure 6-3

page 6-11 Figure 6-5, 
page 6-11

Modified Port A descriptions Section 9.1
Table 9-2

page 9-2 page 9-2

Added note about DRAM support Section 9.2.3 page 9-8 page 9-8

Clarified BLH bit description and modified trailing 
wait state definition for DSP56321 only

Section 9.6.2
Table 9-5

page 9-19 page 9-19

Added note for the DRAM control register Section 9.6.3 page 9-21 page 9-21

Redefined DMA end-of-block transfer operation Section 10.4.1.2
Table 10-5

page 10-9 to 
10-10

page 10-9
page 10-16

Modified X0 register description example for the 
INSERT instruction

Chapter 13 page 13-79 page 13-79

Replaced text and added scenarios in which a 
non-interruptable code sequence is desired.

Section 2.3.2.8 page 2-15

Table 1-3.  Change History, Revision 3 to Revision 4 and From Revsion 4 to Revision 5  

Change Section Number
Revision 3 

Page Number
Revision 4 

Page Number
Revision 5 

Page Number
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Core Architecture Overview 2
This chapter describes the DSP56300 family core, a powerful DSP engine that can execute an 
instruction on every clock cycle. The parts of the DSP56300 core are described in the following 
chapters:

� Chapter 3, Data Arithmetic Logic Unit 
� Chapter 4, Address Generation Unit 

� Chapter 5, Program Control Unit 
� Chapter 6, PLL and Clock Generator

� Chapter 7, Debugging Support

� Chapter 8, Instruction Cache

� Chapter 9, External Memory Interface (Port A)

� Chapter 10, DMA Controller

To minimize the total system cost for customer applications, the DSP56300 core external 
memory interface, Port A, is powerful and versatile, providing a glueless interface to DRAMs (in 
some DSPs), SRAMs, and other memories via an on-chip DRAM controller (in some DSPs) as 
well as chip select logic. To assist with data movement over Port A and internally, the concurrent 
six-channel DMA augments the data throughput that characterizes DSP applications. 

The core is designed for low power consumption in Normal and Wait and Stop modes. In Normal 
mode, only the blocks demanded for processing are active. Wait and Stop modes take the power 
savings a step further by closing down large portions of the core during periods of system 
inactivity. The integrated on-chip peripherals and memory (including instruction cache) also 
reduce power consumption by reducing the external bus accesses. As for the core execution units, 
only the memory modules being accessed consume power, so on-chip memory expansion does 
not increase power significantly. Limiting the external bus accesses saves on system power. 
Finally, the Phase Locked Loop (PLL) can scale power consumption down with lower clock 
frequencies under user software control.

Low-power features of the DSP56300 family core include the following:

� Very low-power CMOS design 

� Low-power Wait standby mode 

� Ultra-low power Stop mode
DSP56300 Family Manual, Rev. 5
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Core Architecture Overview
� Power management units for further power reduction 

� Fully static logic, with operation frequency down to DC 

Sixteen-bit Compatibility mode enables full compatibility to object code written for the 
DSP56000 family of DSPs. Sixteen-bit Compatibility mode, which invokes 16-bit addressing 
capability, differs from the Sixteen-bit Arithmetic mode, which invokes 16-bit arithmetic 
operations. These modes are configured by two separate bits (SA and SC) in the Status Register 
(SR), which are described in Chapter 5, Program Control Unit.

2.1 Core Buses

The following 24-bit buses provide data exchange between the main core blocks:

Global Data Bus GBD Between Program Control Unit and other 
core structures

Peripheral I/O Expansion Bus PIO_EB To peripherals

Program Memory Expansion 
Bus

PM_EB To Program ROM

Program Data Bus PDB Carries program data throughout the core

Program Address Bus PAB Carries program memory addresses 
throughout the core

X Memory Expansion Bus XM_EB To X memory

X Memory Data Bus XDB Carries X data throughout the core

X Memory Address Bus XAB Carries X memory addresses throughout the 
core

Y Memory Expansion Bus YM_EB To Y Memory

Y Memory Data Bus YDB Carries Y data throughout the core

Y Memory Address Bus YAB Carries Y memory addresses throughout the 
core

DMA Data Bus DDB Transfers data with DMA channels

DMA Address Bus DAB Transfers address information with DMA 
channels
DSP56300 Family Manual, Rev. 5
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Core Processing
Figure 2-1 is a block diagram of the DSP56303, a member of the DSP56300 family. The 
diagram illustrates the core blocks of the DSP56300 family and shows representative peripherals 
for a DSP56300 family chip implementation. 

Note: The registers in the core are discussed in detail in the chapters on the individual 
functional blocks.

2.2 Core Processing

As for all DSPs, the operation of the DSP56300 core is a combination of software and hardware 
interactions. This processing environment consists of the following components:

� Instruction Set: The instruction set provides the programming language for processing the 
algorithms required by specific applications. Chapter 12, Guide to the Instruction Set, 
presents the DSP56300 instruction format as well as partial encodings for use in 

Figure 2-1.  DSP56303 Block Diagram
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Core Architecture Overview
instruction encoding. Chapter 13, Instruction Set, lists the instructions in alphabetical 
order and describes each instruction in detail.

� Core Modules: These circuits transfer and modify data. They are generally configured 
through internal registers and activated or disabled by a combination of hardware signals 
(interrupts, request signals, and so on) and software. Chapters 3-10 of this document 
describe the structure and function of the various core modules.

� Processing States: Core processing states modify the operation of the core processor and 
the core modules that operate independently and in parallel to the core. These states 
include:

— Normal: The typical operating mode in which code loads into the core processor and 
executes.

— Exception: An event interrupts the normal execution flow. The processor halts normal 
processing and, depending on the event, may store the current operating environment, 
load a special handler program to respond to the exception, execute the handler 
program, and then return to normal execution flow. Typical exception causes can be 
software processing events or hardware service requests, such as peripheral or external 
device interrupts.

— Reset: All execution halts and the processor and its registers in all peripherals are 
restored to a predetermined value that allows reloading of the executing code and 
reinitiation of the execution flow. Typically, if an operation has caused an 
unrecoverable error (that is, the handler cannot compensate for the exception event that 
halted normal processing), invoking the Reset mode, either by software or by asserting 
the physical RESET signal, restores operational functioning.

— Wait: Typically invoked by the WAIT instruction; the application requires only 
minimal processing. To save power, most operations stop until an event occurs that 
requires the processing to restart. Clock signals remain functional, so a quick restart is 
possible.

— Stop: Typically invoked by using the STOP instruction; the application does not 
require immediate processing and a slow restart is acceptable (only if the PLL is 
disabled). All clock functions and operations halt, except for the ability to respond to 
an initiating event (that is, RESET, DE, or IRQA).

— Debug: Application developers can operate the system under the control of the JTAG 
Test Access Port and Boundary Scan function or the OnCE module. In this mode, an 
application can run a single instruction at a time, or sets of instructions at a time, until 
some defined event occurs, typically called a breakpoint. 

2.3 Processing States

The following paragraphs describe the DSP56300 core processing states.
DSP56300 Family Manual, Rev. 5
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2.3.1   Normal Processing State

The Normal processing state is associated with instruction execution. DSP56300 core 
instructions execute in a seven-stage pipeline, typically at a rate of one instruction every clock 
cycle. However, the following instructions require additional time to execute: 

� All double-word instructions

� Instructions with an addressing mode that requires more than one cycle for the address 
calculation

� Instructions causing a change of flow 

Instruction pipelining allows overlapping of instruction execution so that a pipeline stage of a 
given instruction occurs concurrently with pipeline stages of other instructions. Only one word is 
fetched per cycle, so for double-word instructions, the second word of an instruction is fetched 
before the next instruction is fetched. Table 2-1 describes the seven stages of the DSP56300 core 
pipeline. The first and second instructions in Table 2-1 are referred to as n1 and n2. The third 
instruction, n3, which contains an instruction extension word, n3e, takes two clock cycles to 
execute. The extension word is either an absolute address or immediate data. Although it takes 
seven clock cycles for the pipeline to fill and the first instruction to execute, a further instruction 
usually completes on each clock cycle.

Each instruction requires a minimum of seven clock cycles to fetch, decode, and execute. This 
results in a delay of seven clock cycles from power-up to fill the pipeline. A new instruction may 
begin immediately following the previous instruction. Two-word instructions require a minimum 
of eight clock cycles to execute (seven cycles for the first instruction word to move through the 
pipe and execute and one more cycle for the second word to execute). For a complete description 
of the execution timing of the various instructions, see Chapter A, Instruction Timing and 
Restrictions.

Table 2-1.  Instruction Pipeline 

Operation
Instruction Cycle

1 2 3 4 5 6 7 8 9 10 11

Fetch 1 n1 n2 n3 n3e n4 n5 n6 n7 n8 n9 n10

Fetch 2 n1 n2 n3 n3e n4 n5 n6 n7 n8 n9

Decode n1 n2 n3 n3e n4 n5 n6 n7 n8

Address Gen 1 n1 n2 n3 n3e n4 n5 n6 n7

Address Gen 2 n1 n2 n3 n3e n4 n5 n6

Execute 1 n1 n2 n3 n3e n4 n5

Execute 2 n1 n2 n3 n3e n4

n1 = first instruction; n2 = second instruction; and so forth
n3e = instruction extension word 
DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 2-5



Core Architecture Overview
2.3.2   Exception Processing State (Interrupt Processing)

The Exception Processing state is associated with interrupts that are generated by conditions 
inside the DSP or by external sources. There are many sources for interrupts to the DSP56300 
core, some generating more than one interrupt. An interrupt vector scheme with 128 vectors of 
defined priority provides fast interrupt service. Interrupt processing in the DSP56300 core 
proceeds as follows:

1. A hardware interrupt is synchronized with the DSP56300 core clock, and the interrupt 
pending flag for that particular hardware interrupt is set. An interrupt source can have 
only one interrupt pending at any given time.

2. All pending interrupts (external and internal) are arbitrated to select the interrupt to be 
processed. The arbiter automatically ignores any interrupts with an Interrupt Priority 
Level (IPL) lower than the interrupt mask level in the SR and selects the remaining 
interrupt with the highest IPL.

3. The interrupt controller freezes the Program Counter (PC) and fetches two instructions 
at the two interrupt vector addresses associated with the selected interrupt.

4. The interrupt controller inserts the two instructions into the instruction stream and 
releases the PC, which is used for the next instruction fetch. The next interrupt 
arbitration then begins.

When a fast interrupt executes, the state of the machine is not saved on the stack if neither of the 
two instructions is a Jump To Subroutine (JSR) instruction (for example, a JSCLR). A long 
interrupt executes if one of the interrupt instructions fetched is a JSR instruction. The PC is 
immediately released, the SR and the PC are saved in the stack, and the jump instruction controls 
from where the next instruction is fetched.

Note: Any Jump to Subroutine (JSR) instruction makes the interrupt long (for example, JScc, 
BSSET, and so on.).

One of the main uses of interrupts is to transfer data between DSP memory or registers and a 
peripheral device. When such an interrupt occurs, a limited context switch with minimum 
overhead is often desirable. This limited context switch is accomplished by a fast interrupt. The 
long interrupt is used when a more complex task must be accomplished to service the interrupt.

Exceptions can be generated from one of two groups, core and peripherals, and can originate 
from any of the 128 vector locations listed in Table 2-2. The table lists only the sources 
originating from the core. For sources originating from peripherals, see the device-specific user’s 
manual. Table 2-2 shows the corresponding interrupt starting address for each interrupt source. 
These addresses reside in the 256 locations of program memory to which the Vector Base 
Address Register (VBA) in the PCU points. When an interrupt is serviced, the instruction at the 
interrupt starting address is fetched first. Because the program flow is directed to a different 
starting address for each interrupt, the interrupt structure of the DSP56300 core is said to be 
DSP56300 Family Manual, Rev. 5
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vectored. A vectored interrupt structure has low overhead execution. If certain interrupts will 
definitely not be used, their vector locations can be used for program or data storage.

The 128 interrupts are prioritized into four levels. Level 3, the highest priority level, is not 
maskable. Levels 0–2 are maskable. The interrupts within each level are prioritized.

2.3.2.1   Hardware Interrupt Source

Two types of hardware interrupts to the DSP56300 core exist: internal and external. The internal 
interrupts come from on-chip sources:

� Stack Error 

� Illegal Instruction 

Table 2-2.  Interrupt Sources 

Interrupt
Starting Address

Interrupt 
Priority 
Level 
(IPL)

Interrupt Source

VBA:$00 3 Hardware RESET

VBA:$02 3 Stack Error

VBA:$04 3 Illegal Instruction

VBA:$06 3 Debug Request Interrupt

VBA:$08 3 Trap

VBA:$0A 3 Non-Maskable Interrupt (NMI)

VBA:$0C 3 Reserved for Future Level—3 Interrupt Source

VBA:$0E 3 Reserved for Future Level—3 Interrupt Source

VBA:$10 0–2 IRQA

VBA:$12 0–2 IRQB

VBA:$14 0–2 IRQC

VBA:$16 0–2 IRQD

VBA:$18 0–2 DMA Channel 0

VBA:$1A 0–2 DMA Channel 1

VBA:$1C 0–2 DMA Channel 2

VBA:$1E 0–2 DMA Channel 3

VBA:$20 0–2 DMA Channel 4

VBA:$22 0–2 DMA Channel 5

VBA:$24 0–2 Peripheral interrupt request 1

VBA:$26 0–2 Peripheral interrupt request 2

: :

VBA:$FE 0–2 Peripheral interrupt request 110
DSP56300 Family Manual, Rev. 5
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� Debug Request 

� Trap 

� DMA

� Peripherals 

Each internal interrupt source is serviced if it is not masked. When serviced, the interrupt request 
is cleared. Each maskable, internal interrupt source has independent enable control. The external 
hardware interrupts are: NMI, IRQA, IRQB, IRQC, and IRQD. The NMI interrupt is an edge-triggered, 
Non-Maskable Interrupt (NMI) for use in software development, watch-dog, power fail detect, 
and so on. The IRQA, IRQB, IRQC, and IRQD interrupts can be programmed to be level-sensitive or 
edge-triggered. Since the level-sensitive interrupts are not automatically cleared when they are 
serviced, they must be cleared by other means before the end of the interrupt routine because 
multiple interrupts must be prevented. Usually, external hardware detects the interrupt 
acknowledge of the core interrupt and removes the interrupt request source.

The edge-triggered interrupts are latched as pending on the high-to-low transition of the interrupt 
input and are automatically cleared when the interrupt is serviced. IRQA, IRQB, IRQC, and IRQD can 
be programmed to one of three priority levels: 0, 1, or 2, all of which are maskable. Additionally, 
these interrupts have independent enable control.

When the IRQA, IRQB, IRQC, and IRQD interrupts are disabled in the interrupt priority register, the 
pending request is ignored, regardless of whether the interrupt input was defined as 
level-sensitive or edge-triggered. Additionally, as long as an interrupt (edge or level sensitive) is 
disabled, its detection latch remains in the Reset state. If the level-sensitive interrupt is disabled 
while the interrupt is pending, the pending interrupt is cancelled. However, if the interrupt has 
been fetched, it is not cancelled.

Note: On all external, level-sensitive interrupt sources, the interrupt should be serviced (that 
is, the interrupt source cleared) by the instructions at the interrupt vector for a fast 
interrupt, or by a long interrupt routine.

2.3.2.2   Software Interrupt Sources

There are two software interrupt sources:

� Illegal Instruction Interrupt (III): A Non-Maskable Interrupt (IPL 3) that is serviced 
immediately after the illegal instruction executes or attempts to execute (any undefined 
operation code) 

� TRAP: A Non-Maskable Interrupt (IPL 3) that is serviced immediately after the TRAP or 
TRAPcc instruction executes (condition true)
DSP56300 Family Manual, Rev. 5
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2.3.2.3   Interrupt Priority Structure

Four Interrupt Priority Levels (IPLs) exist. IPLs are numbered from 0 (the lowest level) to 3 (the 
highest level). IPLs 0, 1, and 2 are maskable. Level 3 is non-maskable. The IPL 3 interrupts are: 

� Hardware Reset 

� Illegal Instruction Interrupt (III)

� Stack Error 

� TRAP 

� NMI

� Debug

The interrupt mask bits (I1, I0) in the SR reflect the current processor priority level and indicate 
the IPL needed for an interrupt source to interrupt the processor (see Table 2-3). Interrupts are 
inhibited for all priority levels less than the current processor priority level. However, level 3 
interrupts are not maskable and therefore can always interrupt the processor.

The DSP56300 core has two interrupt priority registers: IPRC that is dedicated for DSP56300 
core interrupt sources and IPRP that is dedicated for the peripheral interrupt sources specific to 
the chip. These control registers are mapped on the internal X I/O memory space. The Interrupt 
Priority Level (IPL) for each interrupt source is software programmable. Each on-chip or external 
peripheral device can be programmed to one of the three maskable priority levels (IPL 0, 1, or 2). 
IPLs are set by writing to the interrupt priority registers shown in Figure 2-2 and Figure 2-3. 
These two read/write registers specify the IPL for each of the interrupting devices. In addition, 
the IPRC register specifies the trigger mode of each external interrupt source and enables or 
disables the individual external interrupts. These registers are cleared on hardware reset or by the 
RESET instruction. Table 2-4 defines the IPL bits. Table 2-5 defines the External Interrupt 
Trigger mode bit.

Table 2-3.  Status Register Interrupt Mask Bits 

I1 I0 Interrupts Permitted Interrupts Masked

0 0 IPL 0, 1, 2, 3 None

0 1 IPL 1, 2, 3 IPL 0

1 0 IPL 2, 3 IPL 0, 1

1 1 IPL 3 IPL 0, 1, 2

Note: For details on the Status Register, see Chapter 5, Program 
Control Unit.
DSP56300 Family Manual, Rev. 5
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If more than one exception is pending when an instruction executes, the interrupt with the highest 
priority level is serviced first. When multiple interrupt requests with the same IPL are pending, a 
second fixed-priority structure within that IPL determines which interrupt is serviced. Table 2-6 
shows the interrupt priority for all interrupts.

Table 2-4.  Interrupt Priority Level Bits

IxL1 IxL0 Enabled IPL

0 0 No —

0 1 Yes 0

1 0 Yes 1

1 1 Yes 2

Table 2-5.  External Interrupt Trigger Mode Bit

IxL2 Trigger Mode

0 Level

1 Negative Edge

23 22 21 20 19 18 17 16 15 14 13 12

D5L1 D5L0 D4L1 D4L0 D3L1 D3L0 D2L1 D2L0 D1L1 D1L0 D0L1 D0L0

DxL[1–0] DMA 0/1/2/3/4/5 IPL

11 10 9 8 7 6 5 4 3 2 1 0

IDL2 IDL1 IDL0 ICL2 ICL1 ICL0 IBL2 IBL1 IBL0 IAL2 IAL1 IAL0

IxL2 (See Table 2-5) IRQ A/B/C/D mode

IxL[1–0] (See Table 2-4) IRQ A/B/C/D IPL

Figure 2-2.  Interrupt Priority Register C (IPRC)

23 22 21 20 19 18 17 16 15 14 13 12

PerCL1 PerCL0 PerBL1 PerBL0 PerAL1 PerAL0 Per9L1 Per9L0 Per8L1 Per8L0 Per7L1 Per7L0

11 10 9 8 7 6 5 4 3 2 1 0

Per6L1 Per6L0 Per5L1 Per5L0 Per4L1 Per4L0 Per3L1 Per3L0 Per2L1 Per2L0 Per1L1 Per1L0

Figure 2-3.  Interrupt Priority Register P (IPRP)
DSP56300 Family Manual, Rev. 5
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2.3.2.4   Instructions Preceding the Interrupt Instruction Fetch

The following conditions apply to instructions preceding an interrupt instruction fetch:

� Every instruction requiring more than one cycle to execute is aborted when it is fetched in 
the cycle preceding the fetch of the first interrupt instruction word. 

� Aborted instructions are fetched again when program control returns from the interrupt 
routine. The PC is adjusted appropriately before the end of the decode cycle of the aborted 
instruction.

Table 2-6.  Exception Priorities Within an IPL 

Priority Exception

Level 3 (Nonmaskable)

Highest Stack Error

Illegal Instruction

Debug Request Interrupt

Trap

Non-Maskable Interrupt (NMI)

Lowest Non-Maskable Peripheral Interrupt

Levels 0, 1, 2 (Maskable)

Highest IRQA (External Interrupt)

IRQB (External Interrupt)

IRQC (External Interrupt)

IRQD (External Interrupt)

DMA Channel 0 Interrupt

DMA Channel 1 Interrupt

DMA Channel 2 Interrupt

DMA Channel 3 Interrupt

DMA Channel 4 Interrupt

DMA Channel 5 Interrupt

Lowest Peripheral interrupt sources*

*See device-specific user’s manual
Note: The higher-priority interrupt is at the lower vector address.
DSP56300 Family Manual, Rev. 5
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� If the first interrupt word fetch occurs in the cycle following the fetch of a 
one-word-one-cycle instruction, that instruction completes normally before the start of the 
interrupt routine.

� During an interrupt instruction fetch, two instruction words are fetched — the first from 
the interrupt starting address and the second from the next address.

2.3.2.5   Interrupt Types

Two types of interrupt routines can be used: fast and long. The fast routine consists of the two 
automatically inserted interrupt instruction words. These words can be any unrestricted, single 
two-word instruction or any two unrestricted one-word instructions, except RTI or RTS. Fast 
interrupt routines are not interruptible.

Note: Status is not preserved during a fast interrupt routine; therefore, instructions that 
modify status should not be used at the interrupt starting address or next address.

If one of the instructions in the fast routine is a JSR, then a long interrupt routine is formed. The 
following actions occur during execution of the JSR instruction when it occurs in the interrupt 
starting address or in the next address:

1. The PC (containing the return address) and the SR are stacked.

2. The Loop Flag is cleared.

3. The Scaling mode bits (S[1–0]) in the Status Register (SR) are cleared.

4. The Sixteen-bit Arithmetic (SA) mode bit is cleared.

5. The IPL is raised to disallow further interrupts of the same or lower levels.  
See Table 2-6.

Only the long interrupt routine should be terminated by an RTI. Long interrupt routines are 
interruptible by higher-priority interrupts.

Note: Do not use RTI for fast interrupts.

2.3.2.6   Interrupt Arbitration

External interrupts are internally synchronized with the processor clock before their 
interrupt-pending flags are set. Each external interrupt and internal interrupt has its own flag. 
After each instruction executes, all interrupts are arbitrated (that is, all hardware interrupts that 
have been latched into their respective interrupt-pending flags and all internal interrupts). During 
arbitration, each interrupt’s IPL is compared with the interrupt mask in the SR, and the interrupt 
is either allowed or disallowed. The remaining interrupts are prioritized according to the priority 
shown in Table 2-6, and the highest priority interrupt is chosen. The interrupt vector is then 
calculated so that the program interrupt controller can fetch the first interrupt instruction. The 
interrupt-pending flag for the chosen interrupt is not cleared until the second interrupt vector of 
DSP56300 Family Manual, Rev. 5
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the chosen interrupt is fetched. A new interrupt from the same source is not accepted for the next 
interrupt arbitration until the interrupt-pending flag is cleared.

2.3.2.7   Interrupt Instruction Fetch

The interrupt controller generates an interrupt instruction fetch address, which points to the first 
instruction word of a two-word interrupt routine. This address is used for the next instruction 
fetch, instead of the contents of the PC, and again for the subsequent address after that. While the 
interrupt instructions are being fetched, the PC is not updated. After the two interrupt words have 
been fetched, the PC is used for any subsequent instruction fetches.

2.3.2.8   Interrupt Instruction Execution

Interrupt instruction execution is considered “fast” if neither of the instructions of the interrupt 
service routine cause a change of flow. A JSR within a fast interrupt routine forms a long 
interrupt, which is terminated with an RTI instruction to restore the PC and SR from the stack and 
return to normal program execution. Reset is a special exception that normally contains only a 
JMP instruction at the exception start address. Almost any instruction can be used in a fast 
interrupt routine. A fast interrupt routine may contain either two single-word instructions or one 
double-word instruction. Table 2-7 shows the effect of a fast interrupt routine on the instruction 
pipeline. The fast interrupt executes only two instructions (ii1 and ii2) and then automatically 
resumes execution of the main program. Table 2-8 shows the effect of a long interrupt routine on 
the instruction pipeline. A short JSR (ii1) is used to call the long interrupt routine which includes 
the four instructions sr1, sr2, sr3, and an rti. Instructions ii2, n3, sr5, and sr6 are neither decoded 
nor executed.

Table 2-7.  Fast Interrupt Pipeline 

Operation
Instruction Cycle

1 2 3 4 5 6 7 8 9 10 11 12

Fetch 1 n1 n2 ii1 ii2 n3 n4

Fetch 2 n1 n2 ii1 ii2 n3 n4

Decode n1 n2 ii1 ii2 n3 n4

Address Gen 1 n1 n2 ii1 ii2 n3 n4

Address Gen 2 n1 n2 ii1 ii2 n3 n4

Execute 1 n1 n2 ii1 ii2 n3 n4

Execute 2 n1 n2 ii1 ii2 n3 n4

Notes: 1. n = normal instruction word

2. ii = interrupt instruction word
DSP56300 Family Manual, Rev. 5
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Execution of a fast interrupt routine always conforms to the following rules:

� The processor status is not saved.

� The fast interrupt routine can modify the status of the normal instruction stream (for 
example, use the DO instruction, but such instructions should not be used in order to 
assure proper operation).

� The PC, which contains the address of the next instruction to be executed in normal 
processing, remains unchanged during a fast interrupt routine.

� The fast interrupt returns without an RTI.

� Normal instruction fetching resumes using the PC following the completion of the fast 
interrupt routine.

� A fast interrupt is not interruptible.

� A JSR instruction within the fast interrupt routine forms a long interrupt routine.

Execution of a long interrupt routine always adheres to the following rules:

� A JSR to the starting address of the interrupt service routine is located at one of the two 
interrupt vector addresses.

� During execution of the JSR instruction, the PC and SR are stacked. The interrupt mask 
bits of the SR are updated to mask interrupts of the same or lower priority. The Loop Flag 
and Scaling mode bits in the Status Register are cleared.

� The interrupt service routine can be interrupted (that is, nested interrupts are supported), 
but can only be interrupted by a higher priority interrupt.

� The long interrupt routine, which can be any length, should terminate with an RTI, which 
restores the PC and SR from the stack.

Table 2-8.  Long Interrupt Pipeline 

Operation
Instruction Cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fetch 1 n1 n2 ii1 ii2 n3 sr1 sr2 sr3 sr4 sr5 sr6 n3 n4 n5 n6 n7

Fetch 2 n1 n2 jsr ii2 n3 sr1 sr2 sr3 rti sr5 sr6 n3 n4 n5 n6

Decode n1 n2 jsr — — sr1 sr2 sr3 rti — — n3 n4 n5

Addr. Gen 1 n1 n2 jsr — — sr1 sr2 sr3 rti — — n3 n4

Addr. Gen 2 n1 n2 jsr — — sr1 sr2 sr3 rti — — n3

Execute 1 n1 n2 jsr — — sr1 sr2 sr3 rti — —

Execute 2 n1 n2 jsr — — sr1 sr2 sr3 rti —

Notes: 1. n = normal instruction word

2. ii = interrupt instruction word

3. sr = service routine word
DSP56300 Family Manual, Rev. 5
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Either of the two instructions of the fast interrupt can be the JSR instruction that forms the long 
interrupt. 

Note: A REP instruction is treated as a single two-word instruction, regardless of how many 
times it repeats the second instruction of the pair. Instruction fetches are suspended and 
will be reactivated only after the LC is decremented to one. During the execution of the 
repeated instruction, no interrupts are serviced. When LC finally decrements to one, 
the fetches are reinitiated, and pending interrupts are serviced. 

If a non-interruptible code sequence is desired, change the IPL bits to the desired mask level. Due 
to pipeline latency, the number of cycles required after the IPL is masked in the status register 
depends on the following.

� The number of levels of maskable interrupts for long interrupts only. Fast interrupts are 
not an issue because they execute differently.

� The number of cycles required to execute the first instruction that is fetched in the cycle 
preceding the fetch of the first interrupt instruction word.

In scenarios 1 and 2, the status register (SR) change occurs in the main program flow or within an 
interrupt routine, and then one higher-level interrupt occurs. 

Scenario 1. A 3-cycle ORI instruction using a double-cycle instruction in the protected region 
requires four NOP instructions, as follows:

1. ORI - First cycle.

2. - Second cycle.

3. - Third cycle.

4. NOP.

5. NOP.

6. NOP.

7. NOP.

8. First instruction in protected region - 2 cycles.

In scenario 1, if an interrupt occurs immediately after the first instruction in the protected region 
is fetched and that instruction is a two-cycle instruction, then that instruction is removed from the 
pipeline and not executed until after the interrupt service routine completes. Therefore, the region 
remains protected. 

Scenario 2: A 3-cycle ORI instruction using a single-cycle instruction in the protected region 
requires five NOP instructions:

1. ORI - First cycle.

2. - Second cycle.
DSP56300 Family Manual, Rev. 5
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3. - Third cycle.

4. NOP

5. NOP

6. NOP

7. NOP

8. NOP

9. First instruction in protected region - 1 cycle.

Scenario 2 requires a fifth NOP since a one-cycle instruction executes normally before the start of 
the interrupt service routine. 

Scenarios 3–5 use multiple levels of maskable interrupts. In addition to the requirements from the 
first two scenarios, 5 cycles are required for every level of interrupt change that can occur.

Scenario 3: After a status register change in the main program flow, an IPL0 and IPL1 interrupt 
sequence occurs:

4 –5 NOPs (for IPL0) + 5 NOPs (change from IPL0 to IPL1).

Scenario 4: After a status register change in the main program flow, an IPL0, IPL1, and IPL2 
interrupt sequence occurs:

4–5 NOPs (for IPL0) + 2 × 5 NOPs (change from IPL0 to IPL1 and change from IPL1 to IPL2).

Scenario 5: After a status register change in an IPL0 service routine, an IPL1 and IPL2 interrupt 
sequence occurs:

4–5 NOPs (change from IPL0 to IPL1) + 5 NOPs (change from IPL1 to IPL2)

2.3.3   Reset Processing State

The DSP device enters reset processing state when the external RESET pin is asserted (a hardware 
reset). In the Reset state:

� Internal peripheral devices are reset.

� The modifier registers (M[0–7]) are set to $FFFFFF.

� The interrupt priority registers are cleared.

� The Bus Control Register (BCR), the Address Attribute Registers (AAR[3–0]) and the 
DRAM Control Register (DCR) are set to their initial values as described in Chapter 9, 
External Memory Interface (Port A). The initial value causes a maximum number of wait 
states to be added to every external memory access. 

� The Stack Pointer (SP) and the Stack Counter (SC) are cleared.

� The following bits of the SR are cleared: 
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Processing States
— Rounding mode (RM) bit (bit 21) 
— Arithmetic Saturation mode (SM) bit (bit 20) 
— Cache Enable (CE) bit (bit 19) 
— Sixteen-bit Arithmetic (SA) mode bit (bit 17) 
— DO Forever (FV) flag bit (bit 16) 
— DO Loop Flag (LF) bit (bit 15) 
— Double Precision Multiply (DM) mode bit (bit 14) 
— Sixteen-bit Compatibility (SC) mode bit (bit 13) 
— Scaling (S[1–0]) bits (bit 11 and bit 10)
— Condition Code bits (SR[7–0])

� The following bits of the SR are set:

— Core Priority (CP[1–0]) bits (bit 23 and bit 22)
— Interrupt (I[1–0]) mask bits (bit 9 and bit 8) 

� The Instruction Cache Controller is initialized as described in Chapter 8, Instruction 
Cache.

� The Cache Enable (CE) bit in SR and the Burst mode bit in OMR are cleared.

� The PLL Control register is initialized as described in Chapter 6, PLL and Clock 
Generator.

� The Vector Base Address Register (VBA) is cleared.

The DSP56300 core remai.ns in the Reset state until RESET is deasserted. Upon leaving the Reset 
state, the Chip Operating mode bits of the OMR are loaded from the external mode select pins 
(MOD[A–D]), and program execution begins at the program memory address as described in 
Chapter 11, Operating Modes and Memory Spaces.

2.3.4   Wait Processing State

The Wait processing state is a low-power consumption state that occurs when the WAIT 
instruction executes. In the Wait state, the internal clock is disabled from all internal circuitry 
except the internal peripherals. All internal processing halts until an unmasked interrupt occurs, 
the DSP is reset, or DE is asserted. If the exit from Wait state is caused by asserting DE, the 
processor enters the Debug mode.

2.3.5   Stop Processing State

The Stop processing state is the lowest power consumption mode that occurs when the STOP 
instruction executes. In Stop mode, the clock oscillator activity depends on the PSTP bit in the 
PLL control register. If this bit is cleared, the clock oscillator is turned off. If the bit is set, the 
VCO remains active and the global clock to the entire chip is disabled. All activity in the 
processor halts until one of the following actions occurs:

� A low level is applied to the IRQA pin (IRQA asserted).
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Core Architecture Overview
� A low level is applied to the RESET pin (RESET asserted).

� A low level is applied to the DE pin.

Any of these actions enables the oscillator. After a clock stabilization delay, clocks to the 
processor and peripherals are re-enabled. If re-enabled, one of the following occurs:

� If the exit from Stop state was caused by a low level on the RESET pin, then the processor 
enters the Reset processing state.

� If the exit from Stop state was caused by a low level on the IRQA pin, then the processor 
services the highest-priority pending interrupt. If no interrupt is pending (that is, IRQA was 
negated before interrupts were arbitrated), or if no interrupt is enabled, the processor 
resumes execution at the instruction following the STOP instruction that caused the entry 
into the Stop state. 

� If the exit from Stop state was caused by a low level on the DE pin, then the processor 
enters the Debug mode.

For minimum power consumption during the Stop state at the cost of longer recovery time, clear 
the PSTP bit of the PLL Control Register. To enable rapid recovery when exiting the Stop state, 
at the cost of higher power consumption, set PSTP. PSTP is cleared by hardware reset.

2.3.6   Debug State

Debug state is invoked and used with the JTAG/OnCE port. See Chapter 7, Debugging 
Supportfor a description of the Debug state.
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 Data Arithmetic Logic Unit 3
This chapter describes the architecture and the operation of the data arithmetic logic unit (data 
ALU), the block where all the arithmetic and logical operations on data operands are performed. 

3.1 Data ALU Architecture

The data ALU contains the following components:

� Four 24-bit input registers

� A fully pipelined Multiplier-Accumulator (MAC)

� Two 48-bit accumulator registers

� Two 8-bit accumulator extension registers

� A Bit Field Unit (BFU) with a 56-bit barrel shifter

� An accumulator shifter

� Two data bus shifter/limiter circuits

Figure 3-1 is a block diagram of the data ALU. The data ALU registers can be read or written 
over the X Data Bus (XDB) and the Y Data Bus (YDB) as 24- or 48-bit operands. The source 
operands for the data ALU, which can be 24, 48, or 56 bits, always originate from data ALU 
registers. The results of all data ALU operations are stored in an accumulator. The data ALU runs 
in 16-bit Arithmetic mode when the SA bit in the Status Register (SR) is set. For details on the 
SR, see Chapter 5, Program Control Unit.

All the data ALU operations are performed in two clock cycles in pipeline fashion so that a new 
instruction can be initiated in every clock, yielding an effective execution rate of one instruction 
per clock cycle. 

3.1.1   Data ALU Input Registers (X1, X0, Y1, Y0)

X1, X0, Y1, and Y0 are four 24-bit, general-purpose data registers. They can be treated as four 
independent 24-bit registers or as two 48-bit registers called X and Y, formed by concatenation of 
X1:X0 and Y1:Y0, respectively. X1 is the most significant word in X, and Y1 is the most 
significant word in Y. The registers serve as input buffers between the X Data Bus (XDB) or Y 
Data Bus (YDB) and the MAC unit or barrel shifter. They are used as data ALU source operands, 
allowing new operands to be loaded for the next instruction while the current contents are used 
by the current instruction. The registers can also be read back out to the appropriate data bus.
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Data Arithmetic Logic Unit
3.1.2   Multiplier-Accumulator (MAC) Unit

The multiplier-accumulator (MAC) unit is the main arithmetic processing unit of the DSP56300 
core. It accepts up to three input operands and outputs one 56-bit result of the following form:

Extension:Most Significant Product:Least Significant Product (EXT:MSP:LSP) 

The operation of the MAC unit occurs independently and in parallel with XDB and YDB activity, 
and its registers facilitate buffering for both data ALU inputs and outputs. Latches on the MAC 

Figure 3-1.  Data ALU Block Diagram
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Data ALU Architecture
unit input permit writing new data to an input register while the data ALU processes the current 
data. The input to the multiplier can come only from the X or Y registers. The multiplier executes 
24-bit x 24-bit, parallel fractional multiplies, between two’s-complement signed, unsigned, or 
mixed operands. The 48-bit product is right-justified into 56 bits and added to the 56-bit contents 
of either the A or B accumulator.

The 56-bit sum is stored back in the same accumulator. The multiply/accumulate operation is 
fully pipelined and takes two clock cycles to complete. In the first clock the multiply is 
performed and the product is stored in the pipeline register. In the second clock the accumulator 
is added or subtracted. If a multiply without accumulation (MPY) is specified in the instruction, 
the MAC clears the accumulator and then adds the contents to the product. When a 56-bit result is 
to be stored as a 24-bit operand, the LSP can simply be truncated, or it can be rounded into the 
MSP. Rounding is performed if specified in the DSP instruction, for example, in the signed 
multiply-accumulate and round (MACR) instruction; the rounding is either convergent rounding 
(round-to-nearest-even) or two’s-complement rounding. The type of rounding is specified by the 
rounding bit in the Status Register (SR). The bit in the accumulator that is rounded is specified by 
the scaling mode bits in the SR.

The arithmetic unit’s result going into the accumulator can be saturated so that it fits into 48 bits 
(MSP and LSP). This process is commonly referred to as arithmetic saturation. It is activated by 
the Arithmetic Saturation Mode (SM) bit in the SR. The purpose of this mode is to provide for 
algorithms that do not recognize or cannot take advantage of the extension accumulator (EXT). 
For details, refer to Section 3.2.3, Arithmetic Saturation Mode, on page 3-9.

3.1.3   Data ALU Accumulator Registers (A2, A1, A0, B2, B1, B0)

The six data ALU registers (A2, A1, A0, B2, B1, and B0) form two general-purpose, 56-bit 
accumulators, A and B. Each of these two accumulators consists of three concatenated registers 
(A2:A1:A0 and B2:B1:B0, respectively). The 24-bit MSP is stored in A1 or B1; the 24-bit LSP is 
stored in A0 or B0. The 8-bit EXT is stored in A2 or B2. If an ALU operation results in overflow 
into A2 (or B2), reading the A (or B) accumulator over the XDB or YDB substitutes a limiting 
constant in place of the value in the accumulator. The content of A or B is not affected if limiting 
occurs; only the value transferred over the XDB or YDB is limited. This process is commonly 
referred to as transfer saturation and should not be confused with the Arithmetic Saturation mode. 

The overflow protection is performed after the contents of the accumulator are shifted according 
to the Scaling mode. Shifting and limiting is performed only when the entire 56-bit A or B 
register is specified as the source for a parallel data move over the XDB or YDB. When A2, A1, 
A0, B2, B1, or B0 is the source for a parallel data move, shifting and limiting are not performed. 
When the 8-bit wide accumulator extension register (A2 or B2) is the source for a parallel data 
move, it is sign-extended to produce the full 24-bit wide word. The accumulator registers (A or 
B) serve as buffer registers between the arithmetic unit and the XDB and/or YDB. These registers 
are used as both data ALU source and destination operands.
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Automatic sign extension of the 56-bit accumulators occurs when the A or B register is written 
with a smaller operand. Sign extension can occur when A or B is written from the XDB and/or 
YDB or with the results of certain data ALU operations such as the Transfer Conditionally (Tcc) 
or Transfer Data ALU Register (TFR) instructions. If a word operand is to be written to an 
accumulator register (A or B), the most significant product (MSP)—A1 or B1—of the 
accumulator is written with the word operand, the least significant product (LSP)—A0 or B0—is 
zero-filled, and the extended (EXT) portion —A2 or B2—is sign-extended from MSP. 
Long-word operands are written into the low-order portion, MSP:LSP, of the Accumulator 
Register, and the EXT portion is sign-extended from MSP. No sign extension is performed if an 
individual 24-bit register is written (A1, A0, B1, or B0). Test logic in each accumulator register 
supports operation of the data shifter/limiter circuits. This test logic detects overflows out of the 
data shifter so that the limiter can substitute one of several constants to minimize errors due to the 
overflow. 

3.1.4   Accumulator Shifter

The accumulator shifter is an asynchronous parallel shifter with a 56-bit input and a 56-bit output 
that is implemented immediately before the MAC unit accumulator input. The source 
accumulator shifting operations are as follows:

� No shift (unmodified)

� 24-bit right shift (arithmetic) for DMAC

� 16-bit right shift (arithmetic) for DMAC in Sixteen-bit Arithmetic mode

� Force to zero

3.1.5   Bit Field Unit (BFU)

The BFU contains a 56-bit parallel bidirectional shifter with a 56-bit input and a 56-bit output, 
mask generation unit and logic unit. The BFU is used in the following operations:

� Multi-bit left shift (arithmetic or logical) for ASL, LSL

� Multi-bit right shift (arithmetic or logical) for ASR, LSR

� 1-Bit rotate (right or left) for ROR, ROL

� Bit field merge, insert and extract for MERGE, INSERT, EXTRACT and EXTRACTU

� Count leading bits for CLB

� Fast normalization for NORMF

� Logical operations for AND, OR, EOR, and NOT

3.1.6   Data Shifter/Limiter

The data shifter/limiter circuits provide special post-processing on data read from the ALU 
accumulator registers A and B out to the XDB or YDB. Each of the two independent 
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shifter/limiter circuits (one for XDB and one for the YDB) consists of a shifter followed by a 
limiting circuit.

3.1.6.1   Scaling

The data shifters in the shifters/limiters unit can perform the following data shift operations:

� Scale up—shift data one bit to the left 

� Scale down—shift data one bit to the right 

� No scaling—pass the data unshifted 

Each data shifter has a 24-bit output with overflow indication. These shifters permit dynamic 
scaling of fixed-point data without modifying the program code. For example, this permits block 
floating-point algorithms such as Fast Fourier Transforms (FFTs) to be implemented in a regular 
fashion. The data shifters are controlled by the Scaling Mode bits (S0 and S1, bits 11 and 10) in 
the SR. 

3.1.6.2   Limiting

In the DSP56300 core, the data ALU accumulators A and B have eight extension bits. Limiting 
occurs when the extension bits are in use and either A or B is the source being read over XDB or 
YDB. The limiters in the DSP56300 core place a shifted and limited value on XDB or YDB 
without changing the contents of the A or B registers. Having two limiters allows two-word 
operands to be limited independently in the same instruction cycle. The two data limiters can also 
be combined to form one 48-bit data limiter for long-word operands.

If the contents of the selected source accumulator are represented without overflow in the 
destination operand size (that is, signed integer portion of the accumulator is not in use), the data 
limiter is disabled, and the operand is not modified. If the contents of the selected source 
accumulator are not represented without overflow in the destination operand size, the data limiter 
substitutes a limited data value having maximum magnitude (saturated) and having the same sign 
as the source accumulator contents:

� $7FFFFF for 24-bit positive numbers

� $7FFFFF FFFFFF for 48-bit positive numbers

� $800000 for 24-bit negative numbers

� $800000 000000 for 48-bit negative numbers 

This process is called transfer saturation. The value in the accumulator register is not shifted or 
limited and can be reused within the data ALU. When limiting does occur, a flag is set and 
latched in the SR.
DSP56300 Family Manual, Rev. 5
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3.2 Data ALU Arithmetic and Rounding

The following paragraphs describe the data ALU data representation, rounding modes, and 
arithmetic methods.

3.2.1   Data Representation

The DSP56300 core uses a fractional data representation for all data ALU operations. Figure 3-2 
shows the bit weighting of words, long words, and accumulator operands for this representation. 
The decimal points are all aligned and are left-justified. For words and long words, the most 
negative number that can be represented is –1.0 whose internal representation is $800000 and 
$800000000000, respectively. The most positive word is $7FFFFF or 1–2–23, and the most 
positive long word is $7FFFFFFFFFFF or 1–2–47. These limitations apply to all data stored in 
memory and to data stored in the data ALU input buffer registers. The extension registers 
associated with the accumulators allow word growth so that the most positive number is 
approximately 256, and the most negative number is –256. To maintain alignment of the radix 
point when a word operand is written to accumulator A or B, the operand is written to the most 
significant accumulator register (A1 or B1), and its most significant byte is automatically 
sign-extended through the accumulator extension register (A2 or B2). The least significant 
accumulator register (A0 or B0) is automatically cleared. When a long-word operand is written to 
an accumulator, the least significant word of the operand is written to the least significant 
accumulator register (see Figure 3-2).

Figure 3-2.  Bit Weighting and Alignment of Operands
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The number representation for integers is between ± 2 (N–1); whereas, the fractional 
representation is limited to numbers between ± 1. To convert from an integer to a fractional 
number, the integer must be multiplied by a scaling factor so the result is always between ± 1. 
The representation of integer and fractional numbers is the same if the numbers are added or 
subtracted, but it is different if the numbers are multiplied or divided. An example of two 
numbers multiplied together is given in Figure 3-3.

The key difference is in the alignment of the 2N–1 bit product. In fractional multiplication, the 
2N–1 significant product bits are left-aligned, and a zero is filled in the Least Significant Bit 
(LSB), to maintain fractional representation. In integer multiplication, the 2N–1 significant 
product bits are right-aligned, and the sign bit should be duplicated to maintain integer 
representation. 

Note: Be aware when multiplying integer numbers that since the DSP56300 core 
incorporates a fractional array multiplier, it always aligns the 2N–1 significant product 
bits to the left. 

3.2.2   Rounding Modes

The DSP56300 core data ALU rounds the accumulator register to single precision if requested in 
the instruction. The upper portion of the accumulator is rounded according to the contents of the 
lower portion of the accumulator. The boundary between the lower portion and the upper portion 
is determined by the Scaling Mode bits S0 and S1 in the Status Register (SR). Two types of 
rounding are implemented: convergent rounding and two’s-complement rounding. The type of 
rounding is selected by the Rounding Mode (RM) bit in the EMR portion of the SR. 

3.2.2.1   Convergent Rounding

Convergent rounding (also called round-to-nearest even number) is the default rounding mode. 
The traditional rounding method rounds up any value greater than one-half and rounds down any 
value less than one-half. The question arises as to which way one-half should be rounded. If it is 
always rounded one way, the results are eventually biased in that direction. Convergent rounding 

Figure 3-3.  Integer/Fractional Multiplication
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solves the problem by rounding down if the number is even (LSB = 0) and rounding up if the 
number is odd (LSB = 1). Figure 3-4 shows the four cases for rounding a number in the A1 (or 
B1) register. If scaling is set in the SR, the rounding position is updated to reflect the alignment 
of the result when it is put on the data bus. However, the contents of the register are not scaled.

3.2.2.2   Two’s Complement Rounding

When two’s complement rounding is selected by setting the Rounding Mode (RM) bit in the SR, 
all values greater than or equal to one-half are rounded up, and all values less than one-half are 
rounded down. Therefore, a small positive bias is introduced. Figure 3-5 shows the four cases for 
rounding a number in the A1 (or B1) register. If scaling is set in the SR, the rounding position is 

Figure 3-4.  Convergent Rounding (No Scaling)
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updated to reflect the alignment of the result when it is put on the data bus. However, the contents 
of the register are not scaled.

3.2.3   Arithmetic Saturation Mode

Setting the Arithmetic Saturation Mode (SM) bit in the SR limits the arithmetic unit’s result to 48 
bits (MSP and LSP). The highest dynamic range of the machine is then limited to 48 bits. The 
purpose of the SM bit is to provide a saturation mode for algorithms that do not recognize or 
cannot take advantage of the extension accumulator. The arithmetic saturation logic operates by 
checking 3 bits of the 56-bit result after rounding: two bits of the extension byte (EXT[7] and 

Figure 3-5.  Two’s Complement Rounding (No Scaling) 
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EXT[0]) and one bit on the MSP (MSP[23]). The result obtained in the accumulator when SM = 
1 is shown in Table 3-1.

The two saturation constants $007FFFFFFFFFFF and $FF800000000000 are not affected by the 
Scaling mode. Similarly, rounding of the saturation constant during execution of MPYR, MACR, 
and RND instructions is independent of the scaling mode: $007FFFFFFFFFFF is rounded to 
$007FFFFF000000, and $FF800000000000 is rounded to $FF800000000000.

In Arithmetic Saturation mode, the Overflow bit (V bit) in the SR is set if the data ALU result is 
not representable in the 48-bit accumulator (that is, an arithmetic saturation has occurred). This 
also implies that the Limiting bit (L bit) in the SR is set when an arithmetic saturation occurs.

Note: The Arithmetic Saturation mode is always disabled during execution of the following 
instructions: TFR, Tcc, DMACsu, DMACuu, MACsu, MACuu, MPYsu, MPYuu, 
CMPU, and all BFU operations. If the result of these instructions should be saturated, a 
MOVE A,A (or B,B) instruction must be added after the original instruction if no 
scaling is set. However, the “V” bit of the SR is never set by the arithmetic saturation 
of the accumulator during execution of a MOVE A,A (or B,B) instruction. Only the 
“L” bit is set. 

3.2.4   Multi-Precision Arithmetic Support

A set of data ALU operations facilitate multi-precision multiplications. When these instructions 
are used, the multiplier accepts some combinations of signed two’s-complement format and 
unsigned format. Table 3-2 shows these instructions.

Table 3-1.  Actions of the Arithmetic Saturation Mode (SM = 1)

EXT[7] EXT[0] MSP[23] Result in Accumulator

0 0 0 Unchanged

0 0 1 $00 7FFFFF FFFFFF

0 1 0 $00 7FFFFF FFFFFF

0 1 1 $00 7FFFFF FFFFFF

1 0 0 $FF 800000 000000

1 0 1 $FF 800000 000000

1 1 0 $FF 800000 000000

1 1 1 Unchanged
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Figure 3-6 shows how the DMAC instruction is implemented inside the data ALU.

Figure 3-6.  DMAC Implementation

Figure 3-7 illustrates the use of these instructions for a double-precision multiplication. The 
signed × signed operation multiplies or multiply-accumulates the two upper signed portions of 
two signed double-precision numbers. The unsigned × signed operation multiplies or 
multiply-accumulates the upper signed portion of one double-precision number with the lower 
unsigned portion of the other double-precision number. The unsigned × unsigned operation 
multiplies or multiply-accumulates the lower unsigned portion of one double-precision number 
with the lower unsigned portion of the other double-precision number.

Table 3-2.  Acceptable Signed and Unsigned Two’s-Complement Multiplication  

Instruction Description

MPY/MAC su Multiplication and multiply-accumulate with signed times unsigned operands 

MPY/MAC uu Multiplication and multiply-accumulate with unsigned times unsigned operands

DMACss Multiplication with signed times signed operands and 24-bit arithmetic right shift of the 
accumulator before accumulation

DMACsu Multiplication with signed times unsigned operands and 24-bit arithmetic right shift of 
the accumulator before accumulation

DMACuu Multiplication with unsigned times unsigned operands and 24-bit arithmetic right shift of 
the accumulator before accumulation

Multiply

+

Accumulate

Accumulator Shifter

>> 24
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Data Arithmetic Logic Unit
Figure 3-7.  Double-Precision Multiplication Using the DMAC Instruction

3.2.4.1   Double-Precision Multiply Mode

Double-precision multiply operations can also be performed within a dedicated 
“Double-Precision Multiply” mode using a double-precision algorithm with four multiply 
operations. Select the Double-Precision Multiply mode by setting Bit 14 (DM) of the SR. The 
mode is disabled by clearing the DM bit. The double-precision multiply algorithm is shown in 
Figure 3-8. The ORI instruction sets the DM mode bit, but due to the instruction execution 
pipeline the data ALU enters the Double-Precision Multiply mode after only one cycle. The 
ANDI instruction clears the DM mode bit in the MR, but due to the instruction execution pipeline 
the data ALU leaves the mode after one cycle. To allow for the pipeline delay, do not follow the 
ANDI instruction immediately with a restricted data ALU instruction.

In Double-Precision Multiply mode, the behavior of the four specific operations listed in the 
double-precision algorithm is modified. Therefore, in Double-Precision Multiply mode, do not 
use these operations with the specified register combinations for any purpose other than the 
double-precision multiply algorithm. Also, in this mode, do not use any other data ALU 
operations (or the four listed operations with other register combinations). 

Note: Since the double-precision multiply algorithm uses the Y0 register for all stages, do 
not change Y0 when running the double-precision multiply algorithm. If the data ALU 
is required by an interrupt service routine, save the contents of Y0 with the contents of 
the other data ALU registers before processing the interrupt routine, and restore them 
before leaving the interrupt routine.

48 bits

96 bits

B0B1A0A1A2

X0X1

Y1 Y0

XLXH

YH YL

×

=

S Ext

+

+

+

XL × YL

XH × YL

YH × XL

XH × YH

Signed × Unsigned

Signed × Signed

Unsigned × Unsigned
x0,y0,a
a0,b0

x1,y0,a

y1,x0,a
a0,b1

x1,y1,a

mpyuu
move

dmacsu

macsu
move

dmacss
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Data ALU Programming Model
3.2.5   Block Floating-Point FFT Support

The Block Floating Point FFT operation requires the early detection of data growth between FFT 
butterfly passes. If data growth is detected, suitable down-scaling must be applied to ensure that 
no overflow occurs during the next butterfly calculation pass. The total scaling applied is the 
block exponent of the FFT output. Data growth detection is implemented as a status bit in the SR. 
The FFT scaling bit S, bit 7 of the SR, is set when a result moves from accumulator A or B to the 
XDB or YDB Bus (during an accumulator to memory or accumulator to register move) and 
remains set until explicitly cleared (that is, the “S” bit is a “sticky” bit). 

3.3 Data ALU Programming Model

The data ALU features 24-bit input/output data registers that can be concatenated to 
accommodate 48-bit data and two 56-bit accumulators, which are segmented into three 24-bit 
pieces that can be transferred over the buses. Figure 3-9 illustrates how the registers in the 
programming model are grouped. 

Figure 3-8.  Double-Precision Multiply Algorithm

Y:X:

R5MSP2

LSP2

MSP1

LSP1

R1

DP2

DP0

DP3

DP1
R0R0

DP3_DP2_DP1_DP0 = MSP1_LSP1 x MSP2_LSP2

ori#$40,mr ;enter mode

move x:(r1)+,x0 y:(r5)+,y0;load operands

mpyy0,x0,ax:(r1)+,x1 y:(r5)+,y1;LSP*LSP->a

macx1,y0,a a0,y:(r0);shifted(a)+

;   MSP*LSP->a

macx0,y1,a ;a+LSP*MSP->a

macy1,x1,aa0,x:(r0)+ ;shifted(a)+
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Data Arithmetic Logic Unit
Figure 3-9.  Data ALU Core Programming Model

3.4 Sixteen-Bit Arithmetic Mode

Setting the SA bit in the SR enables the Sixteen-bit Arithmetic operating mode. In this mode, the 
16-bit data is right-aligned in the 24-bit memory word, that is, in the 16 LSBs of the 24-bit word. 
You can use 16-bit wide data memories either by leaving the eight MSBs unconnected or by 
tying these bits to GND. In Sixteen-bit Arithmetic mode, the source operands can be 16-bit, 32-bit, 
or 40-bit. The numerical results have a 40-bit accuracy. These 40 bits consist of a 16-bit LSP, a 
16-bit MSP, and an 8-bit EXT. Figure 3-10 shows the bit positions in the memory and data ALU 
registers in Sixteen-bit Arithmetic mode.

3.4.1   Moves in Sixteen-Bit Arithmetic Mode

In Sixteen-bit Arithmetic mode, the data ALU registers are still read or written as 24- or 48-bit 
operations over the XDB and the YDB. No 16- or 32-bit moves are supported. The mapping of 
the 16-bit data to the 24-bit buses is described in the following paragraphs. Table 3-3 shows the 
result of moving data into registers or accumulators. Table 3-4 shows the result of moving data 
from registers or accumulators.

3.4.1.1   Moves into Registers or Accumulators

When XDB or YDB are moved into a full data ALU accumulator (A or B), the 16 LSBs of the 
bus are placed in bits 32–47 of the accumulator (16 MSBs of A1 or B1). Bits 8–23 of the 
accumulator (16 MSBs of A0 or B0) are cleared and the EXT of the accumulator (A2 or B2) is 
loaded with the sign extension. When XDB and YDB (48 bits) are moved into a full data ALU 
accumulator (A or B), the 16 LSBs from XDB are placed into bits 32–47 of the accumulator (16 
MSBs of A1 or B1). The 16 LSBs from YDB are placed into bits 8–23 of the accumulator (16 
MSBs of A0 or B0). The EXT of the accumulator (A2 or B2) is loaded with the sign extension.

D a t a  A L U  

Data ALU

* A2 A1 A0

Input Registers

Accumulator Registers

*Read as sign extension bits, written as either 0 or 1.

X Y

A B

X1 X0

* B2 B1 B0

Y1 Y0

47

23

0

00 23

47

23

0

00 23

55

23

0

00 230723

55

23

0

00 230723
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Sixteen-Bit Arithmetic Mode
When XDB or YDB is moved into a register (X0, X1, Y0, or Y1) or partial accumulator (A0, A1, 
B0 or B1), the 16 LSBs of the bus are loaded into the 16 MSBs of the destination register. No 
other portion of the accumulator is affected. 

When XDB or YDB is moved into the accumulator extension register (A2 or B2), the eight LSBs 
of the bus are loaded into the eight LSBs of the destination register and the 16 MSBs of the bus 
are not used. The remaining parts of the accumulator are not affected. 

When XDB and YDB are moved into a 48-bit register (X or Y) or partial accumulator (A10 or 
B10), the 16 LSBs of XDB bus are loaded into the 16 MSBs of the MSP (X1, Y1, A1, or B1) and 
the 16 LSBs of YDB bus are loaded into the 16 MSBs of the LSP (X0, Y0, A0, or B0). The EXT 
part of the accumulator (A2 or B2) is not affected. 

Figure 3-10.  Sixteen-Bit Arithmetic Mode Data Organization

Table 3-3.  Moves into Registers or Accumulators  

Data Source Destination Result

XDB or YDB Full data ALU accumulator (A 
or B)

• 16 LSBs of bus into bits 32-47 of accumulator
• Accumulator bits 8–23 cleared
• EXT of accumulator (A2 or B2) loaded with sign extension

Data ALU 

Data ALU

* A2 A1 A0

Input Registers

Accumulator Registers

*  Read as sign extension bits; written as either 0 or 1.

X Y

A B

X1 X0

Undefined

* B2 B1 B0

Y1 Y0

Memory Locations

Memory Word Memory Long Word
and Non-Data-ALU Registers

Notes: 1. When switching to and from Sixteen-bit Arithmetic mode, no arithmetic instruction or a MOVE 
instruction should be performed for two instruction cycles. The programmer must insert two NOP 
instructions. There is no automatic stall insertion for this change.

2. Be cautious about exchanging data between Sixteen-bit Arithmetic mode and 24-bit arithmetic mode 
via write-read operations on data ALU registers and accumulators. Since the write operations in 
Sixteen-bit Arithmetic mode corrupt the information in the least significant bytes of the registers or 
accumulators, do not use these registers or accumulators for 24-bit data without some processing.

Data Data Data
23 15 0 23 15 0 23 15 0

47 0

23 7 0 23 7 0

47 0

23 7 0 23 7 0

55 0

23 7 0 23 7 0 23 7 0

55 0

23 7 0 23 7 0 23 7 0
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Data Arithmetic Logic Unit
3.4.1.2   Moves from Registers or Accumulators

When a partial accumulator (A0, A1, B0, or B1) is moved to the XDB or YDB, the 16 MSBs of 
the source are transferred to the 16 LSBs of the bus with eight zeros in the MSBs. No scaling or 
limiting is performed. When the source is the accumulator extension register (A2 or B2), it 
occupies the eight LSBs of the bus while the next 16 bits are the sign extension of bit 7.

When a partial accumulator (A10 or B10) is moved to XDB and YDB, the 16 MSBs of the MSP 
of the source (A1 or B1) are transferred to the 16 LSBs of XDB with eight zeros in the MSBs, 
while the 16 MSBs of the LSP of the source (A0 or B0) are transferred to the 16 LSBs of YDB 
with eight zeros in the MSBs. No scaling or limiting is performed. 

When a full data ALU accumulator (A or B) is moved to XDB or YDB, scaling and limiting is 
performed, and then the 16-bit scaled and limited word is placed on the 16 LSBs of the bus and 
the sign extension is placed in the eight MSBs on the bus. 

When a full data ALU accumulator (A or B) is moved to XDB and YDB, scaling and limiting is 
performed, and then the 16 MSBs of the 32-bit scaled and limited double word are placed on 
XDB 16 LSBs, and the sign extension is placed in the eight MSBs on the bus. The 16 LSBs of the 
32-bit scaled and limited double word are placed on the 16 LSBs of the YDB with eight zeros on 
the eight MSBs of the bus.

When a register (X0, X1, Y0, or Y1) is moved to XDB or YDB, the 16 MSBs of the source are 
transferred to the 16 LSBs of the bus with eight zeros in the MSBs. 

When a 48-bit register (X or Y) is moved to XDB and YDB, the 16 MSBs of the high register 
(X1 or Y1) are placed on the 16 LSBs of the XDB, and eight zeroes are placed on the eight MSBs 
of the bus. The 16 LSBs of the low register (X0 or Y0) are placed on the 16 LSBs of the YDB 
with eight zeros on the eight MSBs of the bus.

XDB and YDB Full data ALU accumulator (A 
or B)

• 16 LSBs of XDB into bits 32-47 of accumulator
• 16 LSBs of YDB into bits 8–23 of the accumulator
• EXT of accumulator (A2 or B2) loaded with sign extension

XDB or YDB Register (X0, X1, Y0, or Y1) or 
partial accumulator (A0, A1, B0, 
or B1)

• 16 LSBs of bus into 16 MSBs of destination register
• Remaining parts of accumulator not affected

XDB or YDB Accumulator extension register 
(A2 or B2)

• Eight LSBs of bus into eight LSBs of destination register
• 16 MSBs of bus not used
• Remaining parts of accumulator not affected

XDB and YDB 48-bit register (X or Y) or partial 
accumulator (A10 or B10)

• 16 LSBs of XDB into 16 MSBs of MSP 
• 16 LSBs of YDB into 16 MSBs of LSP
• EXT of accumulator (A2 or B2) not affected

Table 3-3.  Moves into Registers or Accumulators  (Continued)

Data Source Destination Result
DSP56300 Family Manual, Rev. 5

3-16 Freescale Semiconductor



Sixteen-Bit Arithmetic Mode
Note: When a read operation of a data ALU register (X, Y, X0, X1, Y0, or Y1) immediately 
follows a write operation to the same register, the value placed on the eight MSBs of 
the XDB or YDB is undefined.

3.4.1.3   Short Immediate moves

When an Immediate Short Data MOVE is performed in Sixteen-bit Arithmetic mode and the 
destination register is A0, A1, B0, or B1, the 8-bit immediate short operand is interpreted as an 
unsigned integer and is therefore stored in bits 15–8 of the register (which correspond to the eight 
LSBs of a 16-bit number). If the destination register is A2 or B2, the 8-bit immediate short 
operand is stored in bits 7–0 of the register.

When the destination register is A, B, X0, X1, Y0, or Y1, the 8-bit immediate short operand is 
interpreted as a signed fraction and is stored in bits 47–40 of the accumulator or bits 23–16 of a 
register (which correspond to the eight MSBs of a 16-bit number).

3.4.1.4   Scaling and Limiting

If scaling is specified, the data shifter virtually concatenates the 16-bit LSP to the 16-bit MSP to 
provide a numerically correct shift.

Table 3-4.  Moves From Registers or Accumulators  

Data Source Destination Result

Partial accumulator (A0, 
A1, B0, or B1)

XDB or YDB • 16 MSBs of source into 16 LSBs of bus with eight zeros in MSBs
• No scaling or limiting

Accumulator extension 
register (A2 or B2)

XDB or YDB • Source occupies eight LSBs of bus
• Next 16 bits are sign extension of bit 7

Partial accumulator (A10 
or B10)

XDB and YDB • 16 MSB of MSP of source (A1 or B1) transferred to 16 LSBs of XDB 
with eight zeros in MSBs

• 16 MSBs of the LSP of source (A0 or B0) transferred to 16 LSBs of 
YDB with eight zeros in the MSBs.

• No scaling or limiting

Full data ALU 
accumulator (A or B)

XDB or YDB • Scaling and limiting performed
• 16-bit scaled word placed on 16 LSBs of bus
• Sign extension placed in eight MSBs of bus

Full data ALU 
accumulator (A or B)

XDB and YDB • Scaling and limiting performed
• 16 MSBs of 32-bit scaled and limited double word placed on XDB 16 

LSBs
• Sign extension placed in eight MSBs on bus
• 16 LSBs of 32-bit scaled and limited double word placed on 16 LSBs of 

YDB with eight zeros on the eight MSBs of bus

Register (X0, X1, Y0 or 
Y1)

XDB or YDB • 16 MSBs transferred to 16 LSBs of bus with eight zeros in MSBs

48-bit register (X or Y) XDB and YDB • 16 MSBs of high register (X1 or Y1) placed on 16 LSBs of XDB with 
eight zeros on eight MSBs of bus

• 16 LSBs of low register (X0 or Y0) placed on 16 LSBs of YDB with eight 
zeros on eight MSBs of bus
DSP56300 Family Manual, Rev. 5
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Data Arithmetic Logic Unit
During the Sixteen-bit Arithmetic mode of operation, the limiting is affected as described below: 

� The maximum positive value is $007FFF ($007FFF00FFFF for double precision). 

� The maximum negative value is $008000 ($008000000000 for double precision).

3.4.2   Sixteen-Bit Arithmetic

When an operand is read from a data ALU register or accumulator to the arithmetic unit, the eight 
LSBs of the 24-bit word are ignored (that is, read as zeros). The arithmetic unit forces these bits 
to zero when generating a result. 

The arithmetic unit virtually concatenates the 16-bit LSP with the 16-bit MSP to form a 
continuous number. Therefore, all arithmetic operations, including shifts, are numerically 
correct. The execution of data ALU instructions in Sixteen-bit Arithmetic mode is not affected, 
except for the following:

� The operand and result widths are 16/32/40 instead of 24/48/56.

� The rounding, if specified by the operation, is performed on the Most Significant Bit of the 
16-bit Least Significant Portion (LSP) of the result, that is on the bit corresponding to bit 
23 of A0/B0 (the Scaling mode affects this position accordingly). For details, see the RND 
instruction in Chapter 13, Instruction Set.

� The arithmetic saturation detection is unchanged, but the saturated values change to 
$007FFF00FFFF00 and $FF800000000000.

� In ADC/SBC instructions, the Carry bit C is added/subtracted to the LSB of the 16-bit 
LSP.

� Logic operations affect only the 16-bit wide word.

� Rotation in rotate instructions is performed on a 16-bit wide word.

� The possible normalization range changes, thus affecting the CLB instruction.

� The DMAC instruction performs a 16-bit arithmetic right shift of the accumulator before 
accumulation.

� The double-precision multiplication algorithm is not supported, even if the 
Double-Precision Multiply mode bit is set.

� The bit parsing instructions (MERGE, EXTRACT, EXTRACTU, and INSERT) are 
modified by the Sixteen-bit Arithmetic mode to perform on the appropriate bit positions of 
the 16-bit data. For the INSERT instruction, you must update the offset by adding a bias 
value of 16. For details on specific instructions, refer to Chapter 13, Instruction Set.

� In the read-modify-write instructions (BCHG, BCLR, BSET and BTST) and in the 
Jump/Branch on bit instructions (BRCLR, BRSET, BSCLR, BSSET, JCLR, JSET, 
JSCLR, and JSSET), the bit numbering in Sixteen-bit Arithmetic mode is relative to 16-bit 
wide words (that is, Bit 0 is the LSB and Bit 15 is the MSB). Do not use bit numbers 
greater than 15.
DSP56300 Family Manual, Rev. 5
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Pipeline Conflicts
3.5 Pipeline Conflicts

No pipeline dependencies exist when the result of the data ALU is used as a source operand for 
the immediately following data ALU instruction. However, data ALU operations can produce 
pipeline conflicts as described in the following paragraphs.

3.5.1   Arithmetic Stall

Since every data ALU instruction completes in two clock cycles, an interlock condition occurs 
during an attempt to read an accumulator (or parts of an accumulator) if the preceding instruction 
is a data ALU instruction that specifies the same accumulator as the destination. This interlock 
condition, arithmetic stall, is detected in hardware, and an idle cycle (no op) is inserted, thereby 
guaranteeing the correctness of the result. You can optimize code by inserting a useful instruction 
before the read instruction. Figure 3-11 describes cases in which the pipelined nature of the data 
ALU generates an arithmetic stall.

3.5.2   Status Stall

A second interlock condition, status stall, occurs during an attempt to read the Status Register 
(SR) if the preceding or the second preceding instruction is a data ALU instruction or an 
accumulator read that updates the Scale (S) and Limit (L) condition codes in the SR. The 

Figure 3-11.  Pipeline Conflicts—Arithmetic Stall

;following example illustrates a one-clock pipeline delay when

;trying to read an accumulator as source for move:

mac x0,y0,a ;data ALU operation

move a1,x:(r0)+ ;one clock delay is added to

;allow mac to complete

;following example illustrates a one-clock pipeline delay when

;trying to read an accumulator as source for bset:

tfr a,b ;data ALU operation

bset #3,b ;one clock delay is added to

;allow tfr to complete

following example illustrates a way to find useful usage of 

;the pipeline delay clock:

mac x0,y0,a ;data ALU operation

mac x1,y1,b ;insert a useful instruction

move a,x:(r0)+ ;read accumulator A without

;any time penalty
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Data Arithmetic Logic Unit
hardware inserts two or one idle cycles (no op) accordingly, thereby guaranteeing the correctness 
of the result. 

Note: Read Status Register implies a MOVE from SR. Bit manipulation instructions (for 
example, BSET) act on an SR bit. Program control instructions (for example, BSCLR) 
test for a bit in the SR.

Figure 3-12 describes the cases in which the pipelining of the data ALU generates a status stall.

3.5.2.1   Transfer Stall

A third interlock condition, transfer stall, occurs when the source data ALU accumulator of the 
move portion of an instruction is identical to the destination data ALU accumulator of the move 
portion of the preceding instruction. Identical accumulators for this matter are any combination 
of portions (including the full width) of the same data ALU accumulator (for example, A1 and A, 
A2 and A0, and so on). The hardware inserts one idle cycle (no op), thereby guaranteeing the 
correctness of the result.

Figure 3-12.  Pipeline Conflicts—Status Stall

;following example illustrates a two-clock pipeline delay when

;trying to read the status register as source for move:

mac x0,y0,a ;data ALU operation

move sr,x:(r0)+ ;TWO clock delay is added to

;allow mac to update SR

;following example illustrates a one-clock pipeline delay when

;trying to read the status register as source for bit

;manipulation instruction:

move a,x:(r0)+ ;read full accumulator 

nop

btst #5,sr ;ONE clock delay is added (and

;not two) due to the previous nop

;following example illustrates a one-clock pipeline delay when

;trying to read the status register as source for program control

;instruction:

insert x0,y1,a ;data ALU operation

bsclr #5,sr,$ff00ff ;ONE clock delay is added (and not 

;two) since bsclr is a two word

;instruction
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Pipeline Conflicts
Note: A special case of interlock occurs when a 24-bit logic instruction is used and a write 
operation occurs concurrently to the EXT or the LSP of the same accumulator. The 
hardware inserts one idle cycle (no op), thereby guaranteeing the correctness of the 
result. An example of this case is: or x1,a y1,a0

Figure 3-13.  Pipeline Conflicts—Transfer Stall

;following example illustrates a one-clock pipeline delay when

;trying to read an accumulator that was written by the preceding

;instruction:

move y:(r1)+,a1 ;write into partial accumulator

move a2,x:(r0)+ ;one clock delay is added

;following example illustrates a way to find useful usage of 

;the pipeline delay clock:

move y:(r1)+,a1 ;write into partial accumulator

mac x1,y1,b ;insert a useful instruction

move a,x:(r0)+ ;no time penalty for this read
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Address Generation Unit 4
The address generation unit (AGU) is one of three execution units on the DSP56300 core. The 
AGU performs the effective address calculations (using integer arithmetic) necessary to address 
data operands in memory and contains the registers used to generate the addresses. To minimize 
address-generation overhead, the AGU operates in parallel with other chip resources. It 
implements four types of arithmetic: 

� Linear 

� Modulo 

� Multiple wrap-around modulo 

� Reverse-carry

4.1 AGU Architecture

The AGU is divided into halves, each with its own address arithmetic logic unit (address ALU). 
Each address ALU has four sets of register triplets, and each register triplet is composed of an 
address register, an offset register, and a modifier register. The two address ALUs are identical. 
Each contains a 24-bit full adder—an offset adder—which can perform the following 
additions/subtractions on an address register:

� Plus one

� Minus one 

� Plus the contents of the respective offset register N

� Minus the contents of the respective offset register N

A second full adder—a modulo adder—adds the summed result of the first full adder to a modulo 
value, M or minus M, where M is stored in the respective modifier register. A third full adder—a 
reverse-carry adder—can perform the following additions, with the carry propagating in the 
reverse direction (that is, from the Most Significant Bit (MSB) to the Least Significant Bit (LSB): 

� Plus one 

� Minus one 

� The offset N (stored in the respective offset register) 

� Minus N to the selected address register 
DSP56300 Family Manual, Rev. 5
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Address Generation Unit
The offset adder and the reverse-carry adder operate in parallel and share common inputs. The 
only difference between them is that the carry propagates in opposite directions. Test logic 
determines which of the three summed results of the full adders is output. Figure 4-1. shows a 
block diagram of the AGU. 

Each address ALU can update one address register from its respective address register file during 
one instruction cycle. The contents of the associated modifier register specify the type of 
arithmetic to be used in the address register update calculation. The modifier value is decoded in 
the address ALU. The two address ALUs can generate up to two addresses every instruction 
cycle:

� One for the PAB, or

� One for the XAB, or

� One for the YAB, or

� One for the XAB and one for the YAB

The AGU can directly address 16,777,216 locations on each of the XAB, YAB, and PAB. Using 
a register triplet to address each operand, the two independent ALUs can work with the two data 
memories to feed two operands to the data ALU in a single cycle. The registers are:

� Address Registers R[0–3] on the Low Address ALU and R[4–7] on the High Address 
ALU

� Offset Registers N[0–3] on the Low Address ALU and N[4–7] on the High Address ALU 

� Modifier Registers M[0–3] on the Low Address ALU and M[4–7] on the High Address 
ALU 

Figure 4-1.  AGU Block Diagram

N0

N1

N2

N3 M3

M2

M1

M0

Address
ALU

Address
ALU

R0

R1

R2

R3 R7

R6

R5

R4 M4

M5

M6

M7 N7

N6

N5

N4

Triple Multiplexer

Low Address ALU High Address ALU

XAB YAB PAB

Program Address Bus

EP

Global Data Bus
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Sixteen-Bit Compatibility Mode
These registers are referred to as Rn for any address register, Nn for any offset register, and Mn 
for any modifier register. The Rn, Nn, and Mn registers are register triplets—that is, the offset 
and modulo registers of one triplet can be used only with an address register that belongs to the 
same triplet. For example, only N2 and M2 can be used with R2. The eight triplets are as follows:

� Low Address ALU register triplets

— R0:N0:M0
— R1:N1:M1 
— R2:N2:M2 
— R3:N3:M3 

� High Address ALU register triplets

— R4:N4:M4 
— R5:N5:M5 
— R6:N6:M6
— R7:N7:M7 

The global data bus (GDB) can read from or write to each register. The address output 
multiplexers select the address for the XAB, YAB, and PAB, where the address originates from 
the R[0–3] or R[4–7] registers.

4.2 Sixteen-Bit Compatibility Mode

When the Sixteen-bit Compatibility (SC) mode bit is set in the SR1, AGU operations are 
modified in the following ways.

� MOVE operations to/from any of the AGU registers (R[0–7], N[0 – 7] and M[0 – 7]) clear 
the eight MSBs of the destination.

� The eight MSBs of any AGU address calculation result are cleared.

� The sign bit of the selected N register is bit 15 instead of bit 23.

� The eight MSBs of the address are ignored in the calculations of memory regions.

In Sixteen-bit Compatibility (SC) mode, proper memory access is not guaranteed for an address 
register in which the eight MSBs are not all zeros. If SC mode is invoked dynamically, take care 
to ensure that the eight MSBs of an address register used to access memory are cleared, since the 
switch to SC mode does not automatically clear these bits. Due to pipelining, a change in the SC 
bit takes effect only after three additional instruction cycles. Therefore, to ensure proper 
operation, insert three NOP instructions after the instruction that sets the SC bit.

1. For details on the Status Register (SR), see Section 5.4.1.2, Status Register (SR), on page 5-10.
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4.3 Programming Model

The programmer views the AGU as eight sets of three registers, as shown in Figure 4-2.. These 
registers can be used as temporary data registers and indirect memory pointers. Automatic 
updating is available when address register indirect addressing is in use. The address registers can 
be programmed for linear addressing, modulo addressing (regular or multiple wrap-around), and 
bit-reverse addressing.

4.3.1   Address Register Files 

The eight 24-bit address registers R[0 – 7] can contain addresses or general-purpose data. The 
24-bit address in a selected address register is used in calculating the effective address of an 
operand. During parallel X and Y data memory moves, the address registers must be programmed 
as two separate files, R[0–3] and R[4–7]. The contents of an address register can point directly to 
data, or they can be offset. 

In addition, an address register (Rn) can be pre-updated or post-updated according to the 
addressing mode selected. If an Rn is updated, the corresponding modifier register (Mn) specifies 
the type of update arithmetic. Offset registers (Nn) are used for the update-by-offset addressing 
modes. 

The address register modification is performed by one of the two modulo arithmetic units. Most 
addressing modes modify the selected address register in a read-modify-write fashion. The 
address register is read, the associated modulo arithmetic unit modifies its contents, and the 
register is written with the appropriate output of the modulo arithmetic unit. The contents of the 
offset and modifier registers control the form of address register modification performed by the 
modulo arithmetic unit. These registers are discussed in Section 4.3.3 and Section 4.3.4.

4.3.2   Stack Extension Pointer 

The stack extension is in an area in internal memory (extending the hardware stack, thus the 
name). The stack extension exists in either the X data memory or the Y data memory, as selected 

Figure 4-2.  AGU Programming Model

R7

R6

R5

R4

R3

R2

R1

R0

N7

N6

N5

N4

N3

N2

N1

N0

Offset Registers Modifier Registers

Upper File

Lower File

Address Registers

M7

M6

M5

M4

M3

M2

M1

M0

EP

23 0 23 0 23 0
DSP56300 Family Manual, Rev. 5

4-4 Freescale Semiconductor



Addressing Modes
by the XYS bit in the Operating Mode Register (OMR) (refer to Section 5, Program Control 
Unit, on page 5-1for a detailed description of the OMR). The stack uses push operations to add 
data to the stack and pull operations to retrieve data from the stack.

The contents of the 24-bit stack Extension Pointer (EP) register point to the stack extension 
whenever the stack extension is enabled and move operations to or from the on-chip hardware 
stack are needed. The EP register points to the next available location to which a push can be 
made (that is, it points just past the last item on the stack). The EP register is a read/write register 
and is referenced implicitly (for example, by the DO, JSR, or RTI instructions) or directly (for 
example, by the MOVEC instruction). The EP register is not initialized during hardware reset, 
and must be set (using a MOVEC instruction) prior to enabling the stack extension. For more 
information on the operation of the stack extension, see Chapter 5, Program Control Unit. 

4.3.3   Offset Register Files 

The eight 24-bit offset registers, N[0–7], contain offset values to increment or decrement address 
registers in address register update calculations. For example, the contents of an offset register 
are used to step through a table at some rate (for example, five locations per step for waveform 
generation), or the contents can specify the offset into a table or the base of the table for indexed 
addressing. Each address register has its own associated offset register. Each offset register can 
also be used for 24-bit general-purpose storage if it is not required as an address register offset.

4.3.4    Modifier Register Files 

The eight 24-bit modifier registers, M[0–7], define the type of address arithmetic performed for 
addressing mode calculations. The Address ALU supports linear, modulo, and reverse-carry 
arithmetic types for all address register indirect addressing modes. For modulo arithmetic, the 
contents of Mn also specify the modulus. Each address register has its own associated modifier 
register. Each modifier register is set to $FFFFFF on processor reset, which specifies linear 
arithmetic as the default type for address register update calculations. Each modifier register can 
also be used for 24-bit general purpose storage if it is not required as an address register modifier.

4.4  Addressing Modes

As listed in Table 4-1, the DSP56300 family core provides four different addressing modes: 

� Register Direct

� Address Register Indirect

� PC-relative

� Special
DSP56300 Family Manual, Rev. 5
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4.4.1   Register Direct Modes

The Register Direct addressing modes specify that the operand is in one or more of the ten Data 
ALU registers, 24 address registers, or seven control registers.

� Data or Control Register Direct. The operand is in one, two, or three Data ALU 
register(s), as specified in a portion of the data bus movement field in the instruction. This 
addressing mode also specifies a control register operand for special instructions. This 
reference is classified as a register reference. 

� Address Register Direct. The operand is in one of the 24 address registers specified by an 
effective address in the instruction. This reference is classified as a register reference.

Table 4-1.   Addressing Modes Summary  

Addressing Modes
Uses Mn 
Modifier

Operand Reference Assembler 
SyntaxS C D A P X Y L XY

Register Direct

Data or Control Register No √ √
Address Register Rn No √

Address Modifier Register Mn No √
Address Offset Register Nn No √

Address Register Indirect

No Update No √ √ √ √ √ (Rn)

Post-increment by 1 Yes √ √ √ √ √ (Rn) +

Post-decrement by 1 Yes √ √ √ √ √ (Rn) –

Post-increment by Offset Nn Yes √ √ √ √ √ (Rn) + Nn

Post-decrement by Offset Nn Yes √ √ √ √ (Rn) – Nn

Indexed by Offset Nn Yes √ √ √ √ (Rn + Nn)

Pre-decrement by 1 Yes √ √ √ √ – (Rn)

Short/Long Displacement Yes √ √ √ (Rn + displ)

PC-relative

Short/Long Displacement
PC-relative

No √ (PC + displ)

Address Register No √ (PC + Rn)

Special

Short/Long Immediate Data No √
Absolute Address No √ √ √ √

Absolute Short Address No √ √ √
Short Jump Address No √

I/O Short Address No √ √
Implicit No √ √ √

Note: Note:Use this key to the Operand Reference columns:

S = System Stack ReferenceX = X Memory reference 
C= Program Control Unit Register Reference Y = Y Memory Reference 
D = Data ALU Register Reference L = L Memory reference 
A = Address ALU Register ReferenceXY = XY Memory Reference 
P = Program Memory Reference
DSP56300 Family Manual, Rev. 5
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4.4.2   Address Register Indirect Modes

The Address Register Indirect modes specify that the address register points to a memory 
location. The term “indirect” signifies that the register contents are not the operand itself, but 
rather the operand address. These addressing modes specify that an operand is in memory and 
give the effective address of that operand. In several of the following calculations, the type of 
arithmetic used to calculate the address is determined by the Mn register.

� No Update (Rn). The operand address is in the address register. The contents of the 
address register are unchanged by executing the instruction. 

Example: MOVE x:(Rn),x0

� Post-Increment By One (Rn) +. The operand address is in the address register. After the 
operand address is used, it is incremented by one and stored in the same address register. 
The Nn register is ignored.

Example: MOVE x:(Rn)+,x0

�  Post-Decrement By One (Rn). The operand address is in the address register. After the 
operand address is used, it is decremented by one and stored in the same address register. 
The Nn register is ignored.

Example: MOVE x:(Rn)-,x0

� Post-Increment By Offset Nn (Rn) + Nn. The operand address is in the address register. 
After the operand address is used, it is incremented by the contents of the Nn register and 
stored in the same address register. The contents of the Nn register are unchanged.

Example: MOVE x:(Rn)+Nn,x0

� Post-Decrement By Offset Nn (Rn) – Nn. The operand address is in the address register. 
After the operand address is used, it is decremented by the contents of the Nn register and 
stored in the same address register. The contents of the Nn register are unchanged. 

Example: MOVE x:(Rn)-Nn,x0

� Indexed By Offset Nn (Rn + Nn). The operand address is the sum of the contents of the 
address register and the contents of the address offset register, Nn. The contents of the Rn 
and Nn registers are unchanged.

Example: MOVE x:(Rn+Nn),x0

� Pre-Decrement By One -(Rn). The operand address is the contents of the address register 
decremented by one. The contents of Rn are decremented by one and stored in the same 
address register before the memory access. The Nn register is ignored.

Example: MOVE x:-(Rn),x0

� Short Displacement (Rn + Short Displacement). The operand address is the sum of the 
contents of the address register Rn and a short signed displacement occupying seven bits 
in the instruction word. The displacement is first sign-extended to 24 bits (16 bits in SC 
mode) and then added to Rn to obtain the operand address. The contents of the Rn register 
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are unchanged. The Nn register is ignored. This reference is classified as a memory 
reference. Example: MOVE x:(Rn+63),x0

� Long Displacement (Rn + Long Displacement). This addressing mode requires one word 
(label) of instruction extension. The operand address is the sum of the contents of the 
address register and the extension word. The contents of the address register are 
unchanged. The Nn register is ignored. This reference is classified as a memory reference.

Example: MOVE x:(Rn+64),x0

4.4.3   PC-Relative Modes

In the PC-relative addressing modes, the operand address is obtained by adding a displacement, 
represented in two’s-complement format, to the value of the Program Counter (PC). The PC 
points to the address of the instruction opcode word. The Nn and Mn registers are ignored, and 
the arithmetic used is always linear.

� Short Displacement PC-Relative. The short displacement occupies nine bits in the 
instruction operation word. The displacement is first sign-extended to 24 bits and then 
added to the PC to obtain the operand address.

� Long Displacement PC-Relative. This addressing mode requires one word of instruction 
extension. The operand address is the sum of the contents of the PC and the extension 
word.

� Address Register PC-Relative. The operand address is the sum of the contents of the PC 
and the address register. The Mn and Nn registers are ignored. The contents of the address 
register are unchanged.

4.4.4   Special Address Modes 

The special address modes do not use an address register in specifying an effective address. 
These modes either specify the operand or the operand address in a field of the instruction, or 
they implicitly reference an operand.

� Immediate Data. This addressing mode requires one word of instruction extension. The 
immediate data is a word operand in the extension word of the instruction. This reference 
is classified as a program reference.

� Immediate Short Data. The 8-bit or 12-bit operand is part of the instruction operation 
word. An 8-bit operand is used for an immediate move to register, ANDI, and ORI 
instructions. It is zero-extended. A 12-bit operand is used for DO and REP instructions. It 
is also zero-extended. This reference is classified as a program reference.

� Absolute Address. This addressing mode requires one word of instruction extension. The 
operand address is in the extension word. This reference is classified as a memory 
reference and a program reference. 
DSP56300 Family Manual, Rev. 5
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� Absolute Short Address. The operand address occupies six bits in the instruction operation 
word, and it is zero-extended. This reference is classified as a memory reference. 

� Short Jump Address. The operand occupies 12 bits in the instruction operation word. The 
address is zero-extended to 24 bits. This reference is classified as a program reference.

� I/O Short Address. The operand address occupies 6 bits in the instruction operation word, 
and it is one-extended. The I/O short addressing mode is used with the bit manipulation 
and move peripheral data instructions. 

� Implicit Reference. Some instructions make implicit reference to the Program Counter 
(PC), System Stack (SSH, SSL), Loop Address (LA) register, Loop Counter (LC), or 
Status Register (SR). These registers are implied by the instruction, and their use is 
defined by the individual instruction descriptions. See Chapter 12, Guide to the 
Instruction Set. 

4.5 Address Modifier Types

The DSP56300 family core Address ALU supports linear, reverse-carry, modulo, and multiple 
wrap-around modulo arithmetic types for all address register indirect modes. These arithmetic 
types easily allow the creation of data structures in memory for First-In, First-Out (FIFO) queues, 
delay lines, circular buffers, stacks, and bit-reversed Fast Fourier Transform (FFT) buffers. Data 
is manipulated by updating address registers (pointers) rather than moving large blocks of data. 
The contents of the address modifier register define the type of arithmetic to be performed for 
addressing mode calculations. For modulo arithmetic, the address modifier register also specifies 
the modulus. Each address register has its own associated modifier register. All address register 
indirect modes can be used with any address modifier type. The following address modifier types 
are available: 

� Linear addressing. Useful for general-purpose addressing

� Reverse-carry addressing. Useful for 2k-point FFT addressing

� Modulo addressing. Useful for creating circular buffers for FIFO queues, delay lines and 
sample buffers

� Multiple wrap-around modulo addressing. Useful for decimation, interpolation, and 
waveform generation, since the multiple wrap-around capability can be used for argument 
reduction

Table 4-2 lists the address modifier types. 
.

Table 4-2.   Address Modifier Type Encoding Summary  

Modifier Mn Address Calculation Arithmetic

$XX0000 Reverse-Carry (Bit-Reverse)

$XX0001 Modulo 2
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4.5.1   Linear Modifier (Mn = $XXFFFF)

Address modification is performed using normal 24-bit linear (modulo 16,777,216) arithmetic. A 
24-bit offset, Nn, and ±1 can be used in the address calculations. The range of values can be 
considered as signed (Nn from –8,388,608 to +8,388,607) or unsigned (Nn from 0 to 
+16,777,216), since there is no arithmetic difference between these two data representations. 

4.5.2    Reverse-Carry Modifier (Mn = $000000)

Reverse carry is selected by setting the modifier register to zero. Address modification is 
performed in hardware by propagating the carry in the reverse direction (that is, from the MSB to 
the LSB). Reverse carry is equivalent to bit reversing the contents of Rn (redefining the MSB as 
the LSB, the next MSB as bit 1, and so on) and the offset value, Nn, adding normally, and then bit 
reversing the result. If the +Nn addressing mode is used with this address modifier and Nn 
contains a value 2(k – 1) (a power of two), this addressing modifier is equivalent to bit reversing 
the k LSBs of Rn, incrementing Rn by one, and bit reversing the k LSBs of Rn again. This 
address modification is useful for addressing the two middle factors in 2k-point FFT addressing 
and unscrambling 2k-point FFT data. The range of values for Nn is 0 to + 8 M (that is, Nn = 223), 
which allows bit-reverse addressing for FFTs up to 16,777,216 points.

4.5.3   Modulo Modifier (Mn = Modulus – 1)

Address modification is performed using modulo M, where M ranges from 2 to +32,768. Modulo 
M arithmetic causes the address register value to remain within an address range of size M, 
defined by a lower and upper address boundary.

$XX0002 Modulo 3

: :

$XX7FFE Modulo 32767 (215-1)

$XX7FFF Modulo 32768 (215)

$XX8001 Multiple Wrap-Around Modulo 2

$XX8003 Multiple Wrap-Around Modulo 4

$XX8007 Multiple Wrap-Around Modulo 8

: :

$XX9FFF Multiple Wrap-Around Modulo 213

$XXBFFF Multiple Wrap-Around Modulo 214

$XXFFFF Linear (Modulo 224)

Notes: 1. Notes:1. All other combinations are reserved.

2. 2. XX can be any value.

Table 4-2.   Address Modifier Type Encoding Summary  (Continued)

Modifier Mn Address Calculation Arithmetic
DSP56300 Family Manual, Rev. 5

4-10 Freescale Semiconductor



Address Modifier Types
The value m = M – 1 is stored in the modifier register. The lower boundary (base address) value 
must have zeros in the k LSBs, where 2k ≥ M, and therefore must be a multiple of 2k. The upper 
boundary is the lower boundary plus the modulo size minus one (base address + M – 1). Since M 
≤ 2k, once M is chosen, a sequential series of memory blocks, each of length 2k, is created where 
these circular buffers can be located. If M < 2k, there is a space between sequential circular 
buffers of (2k) – M. 

The address pointer is not required to start at the lower address boundary or to end on the upper 
address boundary; it can initially point anywhere within the defined modulo address range. 
Neither the lower nor the upper boundary of the modulo region is stored; only the size of the 
modulo region is stored in Mn. The boundaries are determined by the contents of Rn. Assuming 
the Address Register Indirect with post-increment addressing mode, (Rn)+, if the address register 
pointer increments past the upper boundary of the buffer (base address + M – 1), it wraps around 
through the base address (lower boundary). Alternatively, assuming the Address Register Indirect 
with post-decrement addressing mode, (Rn)-, if the address decrements past the lower boundary 
(base address), it wraps around through the base address + M – 1 (upper boundary). 

If an offset, Nn, is used in the address calculations, the 24-bit absolute value, |Nn|, must be less 
than or equal to M for proper modulo addressing. If Nn > M, the result is data dependent and 
unpredictable, except for the special case where Nn = P × 2k, a multiple of the block size where P 
is a positive integer. For this special case, when using the (Rn) + Nn addressing mode, the 
pointer, Rn, jumps linearly to the same relative address in a new buffer, which is P blocks 
forward in memory. Similarly, for (Rn) – Nn, the pointer jumps P blocks backward in memory.

This technique is useful in sequentially processing multiple tables or N-dimensional arrays. The 
range of values for Nn is –8,388,608 to +8,388,607. The modulo arithmetic unit automatically 
wraps around the address pointer by the required amount. This type of address modification is 
useful for creating circular buffers for FIFO queues, delay lines, and sample buffers up to 
8,388,607 words long, and for decimation, interpolation, and waveform generation. The special 
case of (Rn) ± Nn modulo M with Nn = P × 2k is useful for performing the same algorithm on 
multiple blocks of data in memory, for example, when performing parallel Infinite Impulse 
Response (IIR) filtering.

4.5.4    Multiple Wrap-Around Modulo Modifier 

The Multiple Wrap-Around Addressing mode is selected by setting bit 15 of the Mn register to 
one and clearing bit 14 to zero, as shown in Table 4-2 on page 4-9. The address modification is 
performed using modulo M, where M is a power of 2 in the range from 21 to 214. Modulo M 
arithmetic causes the address register value to remain within an address range of size M defined 
by a lower and upper address boundary. The value M – 1 is stored in the Mn register’s 14 Least 
Significant Bits (bits 13–0), while bit 15 is set to one and bit 14 is cleared to zero. The lower 
boundary (base address) value must have zeros in the k LSBs, where 2k = M, and therefore must 
DSP56300 Family Manual, Rev. 5
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be a multiple of 2k. The upper boundary is the lower boundary plus the modulo size minus one 
(base address + M – 1).

The address pointer is not required to start at the lower address boundary and may begin 
anywhere within the defined modulo address range (between the lower and upper boundaries). If 
the address register pointer increments past the upper boundary of the buffer (base address + M – 
1), it wraps around to the base address. If the address decrements past the lower boundary (base 
address), it wraps around to the base address + M – 1. If an offset Nn is used in the address 
calculations, it is not required to be less than or equal to M for proper modulo addressing, since 
multiple wrap around is supported for (Rn) + Nn, (Rn) – Nn, and (Rn + Nn) address updates. 
Multiple wrap around cannot occur with (Rn)+, (Rn)–, and –(Rn) addressing modes.
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Program Control Unit 5
The program control unit (PCU) of the DSP56300 family core coordinates execution of program 
instructions and instructions for processing interrupts and exceptions. The PCU also controls 
which of the five DSP56300 core processing states (Normal, Exception, Reset, Wait, or Stop) is 
currently selected. The PCU functions through a seven-stage instruction pipeline and several 
programmable registers. This chapter describes the PCU hardware, instruction pipeline, and 
programming model. 

5.1 Overview

The PCU coordinates execution of instructions using three hardware blocks: the Program 
Address Generator (PAG), the Program Decode Controller (PDC), and the Program Interrupt 
Controller (PIC). These blocks perform the following functions:

� Fetch instructions

� Decode instructions

� Execute instructions

� Control hardware DO loops and REP

� Process interrupts and exceptions 

Operation of the seven-stage pipeline depends on the current core processing state. The seven 
stages of the pipeline are as follows:

� Fetch-I

� Fetch-II

� Decode

� Address gen-I

� Address gen-II

� Execute-I

� Execute-II

To preserve current operation and status values while processing exceptions and interrupts, the 
PCU provides a System Stack to store current register contents before executing the 
exception/interrupt handler program. These contents are restored when control returns to the 
current program. In addition to these standard program flow-control resources, the PCU provides 
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special support for hardware DO loops and an instruction REPEAT mechanism. To perform its 
functions, the PCU uses a number of programmable registers. The organization of these registers 
forms the programming model for the PCU:

� General configuration and status:

— Operating Mode Register (OMR)—24-bit, read/write
— Status Register (SR)—24-bit, read/write

� System Stack configuration and operation:

— System Stack (SS) register file—hardware stack, 48-bit × 16 locations, read/write
— System Stack High (SSH) Register—24-bit, read/write
— System Stack Low (SSL) Register—24-bit, read/write
— Stack Pointer (SP) Register—24-bit, read/write
— Stack Counter (SC) Register—5-bit, read/write 
— Stack Size (SZ) Register—24-bit, read/write

The stack Extension Pointer (EP) Register is also used with the System Stack, but is physically 
part of the Address Generation Unit. For a description of this register, refer to Appendix 4, 
Address Generation Unit.

� Program/Loop/Exception processing control:

— Program Counter (PC) Register—24-bit, read/write
— Loop Address (LA) Register—24-bit, read/write
— Loop Counter (LC) Register—24-bit, read/write
— Vector Base Address (VBA) Register—24-bit, read/write

5.2 PCU Hardware Architecture

The three PCU hardware blocks are:

� Program Address Generator (PAG)—Contains all the hardware needed for program 
address generation, System Stack, and loop control

� Program Decode Controller (PDC)

— Decodes the 24-bit instruction loaded into the instruction latch 
— Generates all signals for pipeline control
— Performs required data transfers between the Data Arithmetic Logic Unit (Data ALU) 

and memory

� Program Interrupt Controller (PIC)—Arbitrates among all interrupt requests (internal 
interrupts and the five external interrupts: IRQA, IRQB, IRQC, IRQD, and NMI) and 
generates the appropriate interrupt vector address

Figure 5-1 shows a block diagram of the PCU. 
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Instruction Pipeline
5.3 Instruction Pipeline

Within the seven-stage pipelined architecture of the PCU, instructions execute concurrently. 
Execution of a given pipeline stage for one instruction occurs concurrently with execution of 
other pipeline stages for other instructions. Table 5-1 and Figure 5-2 show that these stages 
include two fetch stages, one decode stage, two address generation stages, and two execute 
stages. The pipelined operation is essentially transparent, thus easing programmability. 
Transparency is achieved by means of interlock hardware present in every execution unit of the 
processor so that programs written for the DSP56000 family devices execute correctly on the 
DSP56300 core without any modification. However, code can be optimized to reduce interlocks 
and improve execution speed.

Figure 5-1.  PCU Architecture

Table 5-1.  Seven-Stage Pipeline  

Pipeline Stage Description 

Fetch-I • Address generation for Program Fetch
• Increment PC register 

Fetch-II • Instruction word read from memory

Decode • Instruction Decode

AddressGen-I • Address generation for Data Load/Store operations

AddressGen-II • Address pointer update

Execute-I • Read source operands to Multiplier and Adder
• Read source register for memory store operations
• Multiply
• Write destination register for memory load operations

Execute-II • Read source operands for Adder if written by previous ALU operation
• Add
• Write Adder results to the Adder destination operand
• Write Multiplier results to the Multiplier destination operands
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5.4 PCU Programming Model

The PCU programming model comprises three functional areas:

� Configuration and status registers

� System Stack configuration and operation registers

� Program/Loop/Exception processing control registers

Figure 5-3 shows the PCU programming model with the registers and the system stack. The 
following paragraphs describe each register.

Figure 5-2.  Seven-Stage Pipeline

Figure 5-3.  PCU Programming Model
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5.4.1   Configuration and Status Registers

Bits that are listed as reserved in the following sections can be defined for specific devices within 
the DSP56300 family. Refer to the device-specific user’s manual to determine whether a reserved 
bit is defined for that device. The PCU contains two registers that configure and report the current 
status of the PCU:

� Operating Mode Register (OMR)

� Status Register (SR)

5.4.1.1   Operating Mode Register

The OMR (Figure 6) is a 24-bit register that is partitioned into the following three bytes:

� OMR[23–16], System Stack Control/Status (SCS) Byte. Controls and monitors the stack 
extension in the data memory. The SCS byte is referenced implicitly by some 
instructions—such as DO, JSR, and RTI—or directly by the MOVEC instruction.

� OMR[15–8], Extended Chip Operating Mode (EOM) Byte. Determines the operating 
mode of the chip. This byte is affected only by hardware reset and by instructions directly 
referencing the OMR (that is, ANDI, ORI, and other instructions, such as MOVEC, that 
specify OMR as a destination).

� OMR[7–0], Chip Operating Mode (COM) Byte. Determines the operating mode of the 
chip. This byte is affected only by hardware reset and by instructions directly referencing 
the OMR (that is, ANDI, ORI, and other instructions, such as MOVEC, that specify OMR 
as a destination). During hardware reset, the chip operating mode bits (MD, MC, MB, and 
MA) are loaded from the external mode select pins MODD, MODC, MODB, and MODA, 
respectively.

The following sections describe all defined bit functions; however, not all defined functions are 
implemented on all DSP56300 family devices. Always write non-implemented functions as zeros 
to ensure future compatibility. Refer to the latest device-specific user’s manuals, technical data 
sheets, and technical bulletins for detailed information about implementation and usage for a 
particular device.
DSP56300 Family Manual, Rev. 5
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Figure 5-6.   Operating Mode Register (OMR)

Stack Control/Status (SCS) Extended Operating Mode (EOM) Chip Operating Mode (COM)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PENMSW[1–0
]

SEN WR
P

EOVEUN XYS ATE APDABE BRT TAS BE CDP[1–0
]

MS SD EBD MD MC MB MA

Reset:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 * * * *
*  After reset, these bits reflect the corresponding value of the mode input (that is, MODD, MODC, MODB, or 

MODA, respectively).

  Reserved bit. Read as zero; write to zero for future compatibility

Table 5-2.  Operating Mode Register Bit Definitions  

Bit Number Bit Name Reset Value Description

23 PEN 0 Patch Enable
Enables/Disables the memory patch function, if implemented. Refer to the 
device-specific user’s manual to determine whether and how this function 
is used on a specific device. Hardware reset clears this bit.

22–21 MSW[1–0] 0 Memory Switch Configuration
Determine what portion of the higher locations of internal X and Y data 
memory are switched to internal program memory when Memory Switch 
mode is enabled. Memory Switch mode allows reallocation of portions of X 
and Y data RAM as program RAM. Memory Switch mode is enabled when 
the Memory Switch bit, OMR[7] is set. For details on how much memory is 
switched, see the device-specific user’s manual for a particular DSP56300 
family device. The MSW bits are not available on all members of the 
DSP56300 family.

20 SEN 0 Stack Extension Enable
Enables/ Disables the stack extension in data memory. If SEN is set, the 
extension is enabled. Hardware reset clears this bit, so the default out of 
reset is a disabled stack extension.

19 WRP 0 Stack Extension Wrap
During the debugging phase of the software development, this flag can be 
used to evaluate and increase the speed of software-implemented 
algorithms. WRP is set when copying from the on-chip hardware stack 
(System Stack Register file) to the stack extension memory begins. The 
WRP flag is a sticky bit (that is, cleared only by hardware reset or by an 
explicit MOVE operation to the OMR). Hardware reset clears the WRP 
flag.

18 EOV 0 Stack Extension Overflow
Set when a stack overflow occurs in Stack Extended mode. Extended 
stack overflow is recognized when a push operation is requested while SP 
= SZ (Stack Size register), and the Extended mode is enabled by the SEN 
bit. The EOV flag is a sticky bit (that is, cleared only by hardware reset or 
by an explicit MOVE operation to the OMR). The transition of the EOV flag 
from zero to one causes a Priority Level 3 (Non-maskable) stack error 
exception. Hardware reset clears the EOV flag.
DSP56300 Family Manual, Rev. 5
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PCU Programming Model
17 EUN 0 Stack Extension Underflow
Set when a stack underflow occurs in the Stack Extended mode. Stack 
extended underflow is recognized when a pull operation is requested, SP = 
0, and the Extended mode is enabled by the SEN bit. The EUN flag is a 
sticky bit (that is, cleared only by hardware reset or by an explicit MOVE 
operation to the OMR). Transition of the EUN flag from zero to one causes 
a Priority Level 3 (Non-maskable) stack error exception. Hardware reset 
clears the EUN flag.

NOTE: While the chip is in Extended Stack mode, the UF bit in the SP acts 
like a normal counter bit.

16 XYS 0 Stack Extension XY Select
Determines if the stack extension is mapped onto the X memory space or 
onto the Y memory space. If XYS is clear, then the stack extension is 
mapped onto the X memory space. If XYS is set, the stack extension is 
mapped to the Y memory space. Hardware reset clears the XYS bit.

15 ATE 0 Address Trace Enable
Enables Address Trace mode. The Address Trace mode is a debugging 
tool that reflects internal memory accesses at the external address lines. 
Refer to device-specific user’s manuals and technical data sheets to 
determine if this feature is implemented for a specific device and how to 
use it during debugging. Hardware reset clears the ATE bit.

14 APD 0 Address Attribute Priority Disable
Disables the priority assigned to the Address Attribute signals (AA0-AA3). 
When APD = 0 (default setting), the four Address Attribute signals each 
have a certain priority: AA3 has the highest priority, AA0 has the lowest 
priority. Therefore, only one AA signal can be active at one time. This 
allows continuous partitioning of external memory; however, certain 
functions, such as using the AA signals as additional address lines, require 
additional interface hardware. When APD = 1, the priority mechanism is 
disabled, allowing more than one AA signal to be active simultaneously. 
Therefore, the AA signals can be used as additional address lines without 
the need for additional interface hardware. To determine whether this 
feature is implemented for a particular device, refer to the user’s manual 
and technical data sheets relating to that device. For details on the 
Address Attribute Registers, see Appendix 9, External Memory Interface 
(Port A). Hardware reset clears the APD bit.

13 ABE 0 Asynchronous Bus Arbitration Enable
Eliminates the setup and hold time requirements (with respect to CLKOUT) 

for BB and BG, and substitutes a required non-overlap interval between 
the deassertion of one BG input to a DSP56300 family device and the 
assertion of a second BG input to a second DSP56300 family device on 
the same bus. When the ABE bit is set, the BG and BB inputs are 
synchronized. This synchronization causes a delay between a change in 
BG or BB until the receiving device actually accepts the change. Hardware 
reset clears the ABE bit.

Table 5-2.  Operating Mode Register Bit Definitions  (Continued)

Bit Number Bit Name Reset Value Description
DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 5-7



Program Control Unit
12 BRT 0 Bus Release Timing
Selects between fast or slow bus release. If BRT is cleared, a Fast Bus 
Release mode is selected (that is, no additional cycles are added to the 
access and BB is not guaranteed to be the last Port A pin that is tri-stated 
at the end of the access). If BRT is set, a Slow Bus Release mode is 
selected (that is, an additional cycle is added to the access, and BB is the 
last Port A pin that is tri-stated at the end of the access). Hardware reset 
clears the BRT bit. For details on the bus release modes and their 
applications, refer to Appendix 9, External Memory Interface (Port A).

11 TAS 0 TA Synchronize Select  
Selects the synchronization method for the input Port A pin—TA (Transfer 
Acknowledge). At operating frequencies ≤ 100 MHz, you can use TA with 
external synchronization with respect to CLKOUT or asynchronously 
(which synchronizes the TA signal with the clock internally) depending on 
the setting of the TAS bit in the Operating Mode Register (OMR). If 
external synchronous mode is selected (TAS = 0), you are responsible for 
ensuring that TA transitions occur synchronous to CLKOUT to ensure 
correct operation. External synchronous operation is not supported above 
100 MHz; therefore, when using TA above 100 MHz, the OMR[TAS] bit 
must be set to synchronize the TA signal internally with the system clock.

10 BE 0 Cache Burst Mode Enable
Enables/Disables the Burst mode in the memory expansion port during an 
instruction cache miss. If the bit is cleared, the Burst mode is disabled and 
only one program word is fetched from the external memory when an 
instruction cache miss condition is detected. If the bit is set, the Burst 
mode is enabled, and up to four program words are fetched from the 
external memory when an instruction cache miss is detected. For details 
on the Burst mode, see Appendix 8, Instruction Cache. Hardware reset 
clears the BE bit.

9–8 CDP[1–0] 1 Core-DMA Priority
Specify the priority between core accesses and DMA accesses to the 
external bus. Following are the core-DMA priorities for these bits. The 
CDP[1–0] bits are set during hardware reset.

CDP[1–0] Core-DMA Priority

00 Determined by comparing status register CP[1–0] to 
the active DMA channel priority

01 DMA accesses have higher priority than core accesses

10 DMA accesses have the same priority as the core 
accesses

11 DMA accesses have lower priority than the core 
accesses

Table 5-2.  Operating Mode Register Bit Definitions  (Continued)

Bit Number Bit Name Reset Value Description
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7 MS 0 Memory Switch Mode
Allows some internal memory modules to be switched from Program RAM 
to data RAM (X, Y, or both) or vice versa. The MS bit is cleared during 
hardware reset.
NOTES:

1. For some DSP56300 family devices (for example, the 
DSP56301), the Program RAM reserved for the Instruction 
Cache area changes its physical location in memory after the 
MS bit is set, because the instruction cache always uses the 
highest internal Program RAM addresses in those chips. 
Check your device-specific user’s manual.

1. To ensure proper operation, place six NOP instructions after 
the instruction that changes the MS bit.

2. To ensure proper operation, do not change the MS bit while 
the instruction cache is enabled (CE bit is set in SR).

3. Actual memory configuration is device-specific; refer to the 
device-specific technical data sheets and user’s manuals for 
implementation information.

6 SD 0 Stop Delay Mode
Determines the length of the delay invoked when the core exits the Stop 
state. The STOP instruction suspends core processing indefinitely until a 
defined event occurs to restart it. If the Stop Delay (SD) mode bit is 
cleared, a 128 K words clock cycle delay is invoked before a STOP 
instruction cycle continues. However, if the SD bit is set, the delay before 
the instruction cycle resumes is 16 clock cycles. The long delay allows a 
clock stabilization period for the internal clock to begin oscillating. When a 
stable external clock is used, the shorter delay allows faster start-up of the 
DSP56300 core. The SD bit is cleared during hardware reset.

5 0 Reserved
Write to zero for future compatibility.

4 EBD 0 External Bus Disable
Disables the external bus controller in order to reduce power consumption 
when external memories are not used. When the EBD bit is set, the 
external bus controller is disabled and external memory cannot be 
accessed. When the EBD bit is cleared, the external bus controller is 
enabled and external access can be performed. Hardware reset clears the 
EBD bit.

3–0 M[D–A] * Chip Operating Mode
Indicate the operating mode of the DSP56300 core. On hardware reset, 
these bits are loaded from the external mode select pins, MODD, MODC, 
MODB, and MODA, respectively. After the DSP56300 core leaves the 
Reset state, MD, MC, MB, and MA can be changed under program control.

*After reset, these bits reflect the corresponding value of the mode input 
(that is, MODD, MODC, MODB, or MODA, respectively).

Table 5-2.  Operating Mode Register Bit Definitions  (Continued)

Bit Number Bit Name Reset Value Description
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5.4.1.2   Status Register (SR)

The Status Register (SR) (Figure 5-4) is a 24-bit register that consists of the following three 8-bit 
special-purpose control registers:

� Extended Mode Register (EMR) (SR[23–16]). Defines the current system state of the 
processor. The EMR bits are affected by hardware reset, exception processing, DO 
FOREVER instructions, ENDDO (end current DO loop) instructions, BRKcc instructions, 
RTI (return from interrupt) instructions, TRAP instructions, and instructions that specify 
SR as their destination (for example, MOVEC). During hardware reset, all EMR bits are 
cleared.

� Mode Register (MR) (SR[15–8]). Defines the current system state of the processor. The 
MR bits are affected by hardware reset, exception processing, DO instructions, ENDDO 
(end current DO loop) instructions, RTI (return from interrupt) instructions, TRAP 
instructions, and instructions that directly reference the MR (for example, ANDI, ORI, or 
instructions, such as MOVEC, that specify SR as the destination). During hardware reset, 
the interrupt mask bits are set and all other bits are cleared.

� Condition Code Register (CCR) (SR[7–0]). Defines the results of previous arithmetic 
computations. The CCR bits are affected by Data Arithmetic Logic Unit (Data ALU) 
operations, parallel move operations, instructions that directly reference the CCR (ORI 
and ANDI), and by instructions that specify SR as a destination (for example, MOVEC). 
Parallel move operations affect only the S and L bits of the CCR. During hardware reset, 
all CCR bits are cleared. 

The SR is pushed onto the system stack when:

� Program looping is initialized

� A JSR is performed, including long interrupts

� The three 8-bit registers are defined within the SR primarily for compatibility with other 
Freescale DSPs.

Figure 5-4.  Status Register (SR)

Extended Mode Register (EMR) Mode Register (MR) Condition Code Register (CCR)
23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CP[1–0] RM SM CE SA FV LF DM SC S[1–0] I[1–0] S L E U N Z V C

Reset:
1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

  Reserved bit. Read as zero; write to zero for future compatibility
DSP56300 Family Manual, Rev. 5
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Table 5-1.  Status Register Bit Definitions  

Bit Number Bit Name Reset Value Description

23–22 CP[1–0] 1 Core Priority
Under the control of CDP[1–0] bits in the Operating Mode Register (OMR), the 
Core Priority bits, CP1 and CP0, specify the priority of core accesses to 
external memory. These bits are compared against the priority bits of the 
active DMA channel. If the core priority is greater than the DMA priority, the 
DMA waits for a free time slot on the external bus. If the core priority is less 
than the DMA priority, the core waits for a free time slot on the external bus. If 
the core priority equals the DMA priority, the core and DMA access the 
external bus in a round robin pattern (for example, ... P, X, Y, DMA, P, X, Y, 
...). The core priority bits are set during hardware reset.

Priority 
Mode

Core 
Priority DMA Priority

OMR (CDP
[1–0]) SR (CP[1–0])

Dynamic

0 
(Lowest) Determined 

by DCRn 
(DPR[1–0]) 
for active 

DMA channel

00 00

1 00 01

2 00 10

3 
(Highest)

00 11

Static

core < DMA 01 xx

core = DMA 10 xx

core > DMA 11 xx

21 RM 0 Rounding Mode
Selects the type of rounding performed by the Data ALU during arithmetic 
operations. If the bit is cleared, convergent rounding is selected. If the bit is 
set, two’s-complement rounding is selected. The RM bit is cleared during 
hardware reset.

20 SM 0 Arithmetic Saturation Mode
Selects automatic saturation on 48 bits for the results going to the 
accumulator. A special circuit inside the MAC unit performs the saturation. 
This bit provides an Arithmetic Saturation mode for algorithms that do not 
recognize or cannot take advantage of the extension accumulator. The SM bit 
is cleared during hardware reset.

19 CE 0 Cache Enable
Enables/Disables the operation of the instruction cache controller. If the bit is 
set, the cache is enabled, and instructions are cached into and fetched from 
the internal Program RAM. If the bit is cleared, the cache is disabled and the 
DSP56300 core fetches instructions from external or internal program 
memory, according to the memory space table of the specific DSP56300 
core-based device. The CE bit is cleared during a hardware reset.
Note: To ensure proper operation, do not clear Cache Enable mode (CE bit 

in SR) while Burst mode is enabled (BE bit in OMR is set).

18 0 Reserved
Write to zero for future compatibility.
DSP56300 Family Manual, Rev. 5
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17 SA 0 Sixteen-Bit Arithmetic Mode
Enables the Sixteen-bit Arithmetic mode of operation. When SA is set, the 
core uses 16-bit operations instead of 24-bit operations. In this mode, 16-bit 
data is right-aligned in the 24-bit memory locations, registers, and 24-bit 
register portions. Shifting, limiting, rounding, arithmetic instructions, and 
moves are performed accordingly. For details on the operation of Sixteen-bit 
Arithmetic mode, see Appendix 3, Data Arithmetic Logic Unit. Hardware reset 
clears the SA bit.

16 FV 0 DO FOREVER Flag
Set when a DO FOREVER loop executes. The FV flag, like the LF flag, is 
restored from the stack when a DO FOREVER loop terminates. Stacking and 
restoring the FV flag when initiating and exiting a DO FOREVER loop, 
respectively, allow the nesting of program loops. When returning from the long 
interrupt with an RTI instruction, the System Stack is pulled and the value of 
the FV bit is restored. Hardware reset clears the FV bit.

15 LF 0 DO Loop Flag
Enables the detection of the end of a program loop. The LF is restored from 
stack when a program loop terminates. Stacking and restoring the LF when 
initiating and exiting a program loop, respectively, allow the nesting of program 
loops. When returning from the long interrupt with an RTI instruction, the 
System Stack is pulled and the LF bit value is restored. Hardware reset clears 
the LF bit.

14 DM 0 Double-Precision Multiply Mode
Enables the operation of four multiply/MAC operations to implement a double 
precision algorithm. This algorithm multiplies two 48-bit operands with a 96-bit 
result. Clearing the DM bit disables the mode. 
The Double Precision Multiply mode is supported in order to maintain object 
code compatibility with devices in the DSP56000 family. For a more efficient 
way of executing double-precision multiply, refer to Appendix 3, Data 
Arithmetic Logic Unit.

In Double-Precision Multiply mode, the behavior of the four specific operations 
listed in the double-precision algorithm is modified. Therefore, do not use 
these operations (with those specific register combinations) in Double 
Precision Multiply mode for any purpose other than the double-precision 
multiply algorithm. All other Data ALU operations (or the four listed operations, 
but with other register combinations) can be used. 

The double-precision multiply algorithm uses the Y0 Register at all stages. 
Therefore, do not change Y0 when running the double-precision multiply 
algorithm. If the Data ALU must be used in an interrupt service routine, Y0 
should be saved with other Data ALU registers to be used and restored before 
leaving the interrupt routine. The DM bit is cleared during a hardware reset.

Table 5-1.  Status Register Bit Definitions  (Continued)

Bit Number Bit Name Reset Value Description
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13 SC 0 Sixteen-Bit Compatibility Mode
Enables full compatibility with object code written for the DSP56000 family. 
When the SC bit is set, MOVE operations to/from any of the following PCU 
registers clear the eight MSBs of the destination: LA, LC, SP, SSL, SSH, EP, 
SZ, VBA and SC. If the source is either the SR or OMR, then the eight MSBs 
of the destination are also cleared. If the destination is either the SR or OMR, 
then the eight MSBs of the destination are left unchanged. In order to change 
the value of one of the eight MSBs of the SR or OMR, clear the SC mode bit.
The SC mode bit also affects the contents of the Loop Counter Register. If the 
SC bit is cleared (normal operation), then a loop count value of zero causes 
the loop body to be skipped, and a loop count value of $FFFFFF causes the 

loop to execute the maximum number of 224 – 1 times. If the SC bit is set, a 

loop count value of zero causes the loop to be executed 216 times, and a loop 

count value of $FFFFFF causes the loop to be executed 216 – 1 times. The 
AGU also uses this bit. When SC is set, the 8 MSBs are ignored while 
checking whether the address is internal or external. Refer to the memory 
configuration chapter of the device-specific user’s manual for a full description 
of the memory map when this bit is set. A read to/from the AGU registers 
clears the 8 MSBs.
Note: Due to pipelining, a change in the SC bit takes effect only after three 

instruction cycles. Insert three NOP instructions after the instruction 
that changes the value of this bit to ensure proper operation.

12 0 Reserved
Write to zero for future compatibility.

11–10 S[1–0] 0 Scaling Mode
The following table shows that the Scaling mode bits, S1 and S0, specify the 
scaling to be performed in the Data ALU shifter/limiter and the rounding 
position in the Data ALU MAC unit. The Shifter/limiter Scaling mode affects 
data read from the A or B accumulator registers out to the X-data bus (XDB) 
and Y-data bus (YDB). Different scaling modes can be used with the same 
program code to allow dynamic scaling. One application of dynamic scaling is 
to facilitate block floating-point arithmetic. The scaling mode also affects the 
MAC rounding position to maintain proper rounding when different portions of 
the accumulator registers are read out to the XDB and YDB. Scaling mode bits 
are cleared at the start of a long Interrupt Service Routine and during a 
hardware reset.

S1 S0
Scaling 
Mode

Rounding Bit S Equation

0 0 No scaling 23 S = (A46 XOR A45) 
OR (B46 XOR B45) 
OR S (previous)

0 1 Scale down 24 S = (A47 XOR A46) 
OR (B7 XOR B46) 
OR S (previous)

1 0 Scale up 22 S = (A45 XOR A44) 
OR (B45 XOR B44) 
OR S (previous)

1 1 Reserved — S undefined

Table 5-1.  Status Register Bit Definitions  (Continued)

Bit Number Bit Name Reset Value Description
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9–8 I[1–0] 1 Interrupt Mask
Reflects the current Interrupt Priority Level (IPL) of the processor and indicates 
the IPL needed for an interrupt source to interrupt the processor. The current 
IPL of the processor can be changed under software control. The interrupt 
mask bits are set during hardware reset, but not during software reset. For 
details about how I1 and I0 are automatically altered during a long interrupt, 
see Appendix 2, Core Architecture Overview.

Priority I1 I0
Exceptions 
Permitted

Exceptions 
Masked

Lowest 0 0 IPL 0, 1, 2, 3 None

0 1 IPL 1, 2, 3 IPL 0

1 0 IPL 2, 3 IPL 0, 1

Highest 1 1 IPL 3 IPL 0, 1, 2

7 S 0 Scaling
Set when a result moves from accumulator A or B to the XDB or YDB buses 
(during an accumulator-to-memory or accumulator-to-register move) and 
remains set until explicitly cleared by an instruction or by a hardware rest; that 
is, the Scaling (S) bit is a sticky bit. This bit is computed, according to the 
logical equations shown here when an instruction or a parallel move reads the 
contents of accumulator A or B
to the XDB or YDB bus.

S0 S1
Scaling 
Mode

S Bit Equation

0 0 No scaling S = (A46 XOR A45) OR (B46 XOR 
B45) OR S (previous)

0 1 Scale up S = (A47 XOR A46) OR (B47 XOR 
B46) OR S (previous)

1 0 Scale down S = (A45 XOR A44) OR (B45 XOR 
B44) OR S (previous)

1 1 Reserved S undefined

The S bit detects data growth, which is required in Block Floating-Point FFT 
operation. The S bit is set if the absolute value in the accumulator, before 
scaling, is greater than or equal to 0.25 and smaller than 0.75. Typically, the bit 
is tested after each pass of a radix 2 decimation-in-time FFT and, if it is set, the 
appropriate scaling mode should be activated in the next pass. 

6 L 0 Limit
Set if the Overflow bit (V) is set or if an instruction or a parallel move causes 
the data shifter/limiters to perform a limiting operation while reading the 
contents of accumulator A or B to the XDB or YDB bus. In Arithmetic 
Saturation mode, the Limit bit (L) is also set when an arithmetic saturation 
occurs in the Data ALU result. Otherwise, it is not affected. The L bit is a sticky 
bit and it is cleared only by an instruction that specifically clears it or by a 
hardware reset. This allows
the L bit to be used as a latching overflow bit. The L bit is affected by data 
movement operations that read the A or B accumulator registers.

Table 5-1.  Status Register Bit Definitions  (Continued)

Bit Number Bit Name Reset Value Description
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5 E 0 Extension 
Indicates when the accumulator extension register is in use. This bit is cleared 
if all the bits of the signed integer portion of the Data ALU result are the same 
(that is, the bit patterns are either 00. . . 00 or 11. . . 11). Otherwise, this bit is 
set. The signed integer portion is defined by the scaling mode, as shown here.

S1 S0
Scaling 
Mode

S Bit Equation

0 0 No scaling Bits 55, 54..............48, 47

0 1 Scale down Bits 55, 54..............49, 48

1 0 Scale up Bits 55, 54..............47, 46

The signed integer portion of an accumulator is not necessarily the same as its 
extension register portion. It consists of the most significant 8, 9, or 10 bits of 
that accumulator, depending on the Scaling mode. The extension register 
portion of an accumulator (A2 or B2) is always the eight Most Significant Bits 
(MSBs) of that accumulator. The E bit refers to the signed integer portion of an 
accumulator and not the extension register portion of that accumulator. For 
example, if the current scaling mode is set for no scaling (S1 = S0 = 0), the 
signed integer portion of the A or B accumulator consists of bits 47 through 55. 
If the A accumulator contains the signed 56-bit value $00:800000:000000 as a 
result of a Data ALU operation, the E bit is set (E = 1) since the 9 MSBs of that 
accumulator are not all the same (that is, neither 00...00 nor 11...11). Thus, 
data limiting occurs if that 56-bit value is specified as a source operand in a 
move-type operation. This limiting operation results in either a positive or 
negative 24-bit or 48-bit saturation constant stored in the specified destination. 
The signed integer portion of an accumulator and the extension register 
portion of an accumulator are the same only in the “Scale Down” scaling mode 
(that is, S1 = 0 and S0 = 1).

4 U 0 Unnormalized
Set if the two Most Significant Bits (MSBs) of the Most Significant Portion 
(MSP) of the Data ALU result are identical. Otherwise, this bit is cleared. The 
MSP portion of the A or B accumulators is defined by the Scaling mode. The U 
bit is computed as follows.

S1 S0
Scaling 
Mode

U Bit Computation

0 0 No Scaling U = (Bit 47 xor Bit 46)

0 1 Scale Down U = (Bit 48 xor Bit 47)

1 0 Scale Up U = (Bit 46 xor Bit 45)

The result of calculating the U bit in this fashion is that the definition of a 
positive normalized number p is 0.5 ≤ p < 1.0 and the definition of negative 
normalized number n is –1.0 ≤ n <–0.5.

3 N 0 Negative
Set if the MS bit (bit 55 in arithmetic instructions or bit 47 in logical instructions) 
of the Data ALU result is set. Otherwise, this bit is cleared.

2 Z 0 Zero
Set if the Data ALU result equals zero; otherwise, this bit is cleared.

Table 5-1.  Status Register Bit Definitions  (Continued)

Bit Number Bit Name Reset Value Description
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5.4.2   Stack and Stack Extension

The following registers control the operation of the System Stack:

� System Stack High (SSH) and System Stack Low (SSL) registers

� Stack Pointer (SP)

� Stack Counter (SC)

� Stack Size register (SZ) (used for stack extension)

� Extension Pointer (EP) Register (used for stack extension)

The 24-bit stack Extension Pointer (EP) register points to the stack extension in data memory 
whenever the stack extension is enabled and move operations to/from the on-chip hardware stack 
are needed. The EP register is located in the Address Generation Unit (AGU). For details, refer to 
Appendix 4, Address Generation Unit.

5.4.3   System Stack Configuration and Operation Registers

The PCU hardware System Stack is a 16-level by 48-bit separate internal memory that stores the 
PC and SR contents during subroutine calls and long interrupts. For hardware loops, the System 
Stack also automatically stores the contents of the LC and LA registers. All other data and control 
register contents can be stored in the System Stack via software control. Each location in the 
System Stack is addressable as two 24-bit registers, System Stack High (SSH) and System Stack 
Low (SSL), to which the four LSBs of the SP register collectively point. The main tasks 
performed by the system stack include:

� Storing return address and status for subroutine calls (including long interrupts)

� Storing LA, LC, PC, and SR for the hardware DO loops

When a subroutine is called (for example, using the JSR instruction), the return address (PC) is 
automatically stored in the SSH, and the status register (SR) is automatically stored in the SSL. 

1 V 0 Overflow
Set if an arithmetic overflow occurs in the 56-bit Data ALU result. Otherwise, 
this bit is cleared. This bit indicates that the result cannot be represented in the 
56-bit accumulator, so the accumulator overflows. In Arithmetic Saturation 
mode, an arithmetic overflow occurs if the Data ALU result is not representable 
in the accumulator without the extension part (that is, 48-bit accumulator, or 
32-bit accumulator in Sixteen-bit Arithmetic mode.

0 C 0 Carry
Set if a carry is generated from the MSB of the Data ALU result in an addition 
operation. This bit also is set if a borrow is generated from the MSB of the Data 
ALU result in a subtraction operation. Otherwise, this bit is cleared. The carry 
or borrow is generated from bit 55 of the Data ALU result. The C bit is also 
affected by bit manipulation, rotate, shift, and compare instructions. The C bit 
is not affected by Arithmetic Saturation mode.

Table 5-1.  Status Register Bit Definitions  (Continued)

Bit Number Bit Name Reset Value Description
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When the RTS instruction initiates a return from the subroutine, the contents of the top location 
in the SSH are pulled and loaded into the PC, and the SR is not affected. When the RTI 
instruction initiates a return, the contents of the top location in the System Stack are pulled and 
loaded into the PC and SR (from SSH and SSL, respectively).

The System Stack is also used to implement no-overhead nested hardware DO loops. When a 
hardware DO loop is initiated (for example, by using the DO instruction), the previous contents 
of the LC Register are automatically stored in the SSL, the previous contents of the LA Register 
are automatically stored in the SSH, and the Stack Pointer (SP) is incremented. After the SP is 
incremented, the address of the loop’s first instruction (PC) is also stored in the SSH, and the SR 
is stored in the SSL.

Note: Moving data to or from SSH increments or decrements the SP. The SSL does not affect 
the SP.

The System Stack can be extended into 24-bit wide X or Y data memory via control hardware 
that monitors the accesses to the System Stack. This extension is enabled by the Stack Extension 
Enable (SEN) bit in the chip Operating Mode Register (OMR). If this bit is cleared, the extension 
of the system stack is disabled, and the amount of nesting is determined by the limited size of the 
hardware stack (that is, 15 available locations; one location is unusable when the stack extension 
is disabled). The System Stack can accommodate up to 15 long interrupts, seven DO loops, or 15 
JSRs, (or equivalent combinations of these) when its extension into data memory is disabled. 
When the System Stack limit is exceeded (either in Extended or in the Non-extended mode), a 
nonmaskable stack error interrupt occurs. By enabling the Stack extension, the limits on the level 
of nesting of subroutines or DO loops can be set to any desired value, subject to available 
internal/external memory. The XYS bit in the OMR Register determines whether X or Y data 
memory is used. 

When enabled, a stack extension algorithm is applied to all accesses to the stack:

� If an explicit (for example, MOVE to SSH) or implicit (for example, JSR) push operation 
is performed, then the stack extension control logic examines the stack after that push has 
finished. If the on-chip hardware stack is full, the least recently used word is moved into 
data memory to the location specified by the stack Extension Pointer (EP). The push is 
always made to the System Stack, and the extension memory space always has the least 
recently used words moved into it. This always moves one or two 48-bit items or two or 
four 24-bit words into the next extension memory space to which the stack Extension 
Pointer (EP) points.

� If an explicit (for example, MOVE from SSH) or implicit (for example, RTS) pull 
operation is performed, then the stack extension control logic examines the stack after that 
pull finishes. If the on-chip hardware stack is empty, then the stack is loaded from the 
location (in data memory) specified by the stack Extension Pointer (EP). For information 
on stack extension delays, see Appendix A, Instruction Timing and Restrictions.
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� External memory can be used for stack extension, and wait states affect it in the same way 
as they affect any other external memory access.

5.4.3.1   Stack Pointer (SP) Register

The 24-bit Stack Pointer (SP) register indicates the location of the top of the System Stack. The 
status of the System Stack is also indicated in SP when the Extended mode is disabled 
(underflow, empty, full, and overflow functions). The SP register is referenced implicitly by 
some instructions (for example, DO, JSR, RTI, and so on) or directly by the MOVEC instruction. 
The following paragraphs describe the SP register format, shown in  
Figure 5-5. The SP register is a 24-bit counter that addresses (selects) a 16-location stack with its 
four LSBs. The possible SP values in the Non-extended mode are shown in  
Table 5-2 in the description for the SE bit

Immediately after hardware reset, the SP bits are cleared (SP = 0), so SP points to location 0, 
indicating that the System Stack is empty. Data is pushed onto the System Stack by incrementing 
the SP, then writing data to the location to which the SP points (the first push after reset is to 
location 1). An item is pulled off the stack by copying it from the location to which the SP points 
and then decrementing SP.

Table 5-2.  Stack Pointer (SP) Register Bit Definitions  

Bit Number Bit Name Reset Value Description

23–6 P[23–6] 0 P[23–6]
In extended mode, these bits act as bits 6 through 23 of the Stack Pointer as 
part of a 24-bit up/down counter.

5 UF/PF 0 Underflow Flag / P5
In the Extended mode, UF acts as bit 5 of the Stack Pointer as part of a 24-bit 
up/down counter. In the Non-extended mode, UF is set when a stack underflow 
occurs. The stack UF is a sticky bit (that is, once the Stack Error flag is set, the 
UF does not change state until explicitly written by a MOVE instruction). The 
combination of “underflow = 1” and “stack error = 0” is an illegal combination 
and does not occur unless you force it. Also see the description for the Stack 
Error flag.

23 22 21 20 19 18 17 16 15 14 13 12

P

11 10 9 8 7 6 5 4 3 2 1 0

P UF/P5 SE/P4 P

Figure 5-5.  Stack Pointer (SP) Register Format
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5.4.3.2   Stack Counter (SC) Register 

The 5-bit Stack Counter (SC) register monitors how many entries of the hardware stack are in 
use. The SC is a read/write register and is referenced implicitly by some instructions (for 

4 SE/P4 0 Stack Error/P4
In Extended mode, SE acts as bit 4 of the Stack Pointer as part of a 24-bit 
up/down counter. In the Non-extended mode, it serves as the Stack Error (SE) 
flag that indicates that a stack error has occurred. The transition of the SE flag 
from zero to one in the Non-extended mode causes a Priority Level 3 
(Non-maskable) stack error exception. When the non-extended stack is 
completely full, the SP reads 001111, and any operation that pushes data onto 
the stack causes a stack error exception. The SP reads 010000 (or 010001 if 
an implied double push occurs). Any implied pull operation with SP equal to 
zero causes a stack error exception, and the SP reads $00003F (or $00003E if 
an implied double pull occurs). In extended mode, the SP reads $FFFFFF (or 
$FFFFFE if an implied double pull occurs). During such cases, the stack error 
bit is set as shown here. 

NOTE: The stack error flag is a sticky bit which, once set, remains set until you 
clear it. The overflow/underflow bit remains latched until the first move to SP 
executes.

SP Register Values in Non-extended Mode

UF SE P3 P2 P1 P0 Description

1 1 1 1 1 0 Stack Underflow condition after double 
pull

1 1 1 1 1 1 Stack Underflow condition

0 0 0 0 0 0 Stack Empty (Reset); pull causes 
underflow

0 0 0 0 0 1 Stack Location 1

0 0 * * * * Stack Locations 2-13

0 0 1 1 1 0 Stack Location 14

0 0 1 1 1 1 Stack Location 15; push causes overflow

0 1 0 0 0 0 Stack Overflow condition

0 1 0 0 0 1 Stack Overflow condition after double 
push

*Equal to Stack Locations 2–13

3–0 P[3–0] 0 Stack Pointer
Point to the 48-bit entry in the System Stack into which the last push was 
made. In the Non-extended mode, SP is a physical pointer,  
P[3–0], always having a value less than or equal to the highest physical 
location in the System Stack. In the extended mode, SP becomes a logical 
pointer, possibly having a value greater than the highest physical location in 
the System Stack. However, P[3–0] still point to the top of the stack, which is 
always in the System Stack.

Table 5-2.  Stack Pointer (SP) Register Bit Definitions  (Continued)

Bit Number Bit Name Reset Value Description
DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 5-19



Program Control Unit
example, DO, JSR, and RTI) or directly by the MOVEC instruction. The stack counter register is 
cleared during hardware reset. During normal operation, do not write to the SC register. If a task 
switch is needed, writing a value greater than 14 or smaller than 2 automatically activates the 
stack extension control hardware. For proper operation, the SC should not be written with values 
greater than 16.

5.4.3.3   Stack Size (SZ) Register 

The 24-bit Stack Size (SZ) register determines the number of data words allocated in memory for 
the stack in the Extended mode. The necessary value of the SZ register can be determined by SZ 
= 15 + software_buffer_size / 2, where the buffer size is the number of 24-bit words allocated for 
the stack extension in data memory. (Fifteen is the maximum number of 48-bit entries that can be 
occupied in the 16-entry hardware stack at any given time.) The extended stack overflow flag is 
generated when the value in SP equals the value in SZ and then a push is done.

Note: A stack exception can occur only when the stack is used in Non-extended mode.

The SZ register is not initialized during hardware reset, and must be set, using a MOVEC 
instruction, prior to enabling the stack extension.

5.4.4   Program, Loop, and Exception Processing Control

The code execution flow control is performed using four registers in the PCU:

� Program Counter (PC) Register

� Loop Address (LA) Register 

� Loop Counter (LC) Register 

� Vector Base Address (VBA) Register 

5.4.4.1   Program Counter (PC) Register

The Program Counter (PC) Register is a special-purpose 24-bit address register that contains the 
address of instruction words in the program memory space. The PC can point to instructions, data 
operands, or addresses of operands. References to this register are always inherent and are 
implied by most instructions. The PC is stacked when hardware loops are initialized, when a JSR 
is performed, or when a long interrupt occurs. The PC is the source for the calculation of the real 
address in all position-independent instructions (such as the instruction BRA).

5.4.4.2   Loop Address (LA) Register

The contents of the 24-bit Loop Address (LA) register indicate the location of the last instruction 
word in a hardware loop. This register is stacked into the SSH by a DO instruction and is 
unstacked either by end-of-loop processing or by execution of ENDDO and BRKcc instructions. 
The LA register, a read/write register, is written by a DO instruction and read by the System 
Stack when the register is stacked.
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5.4.4.3   Loop Counter (LC) Register

The Loop Counter (LC) register is a special read/write 24-bit counter that specifies the number of 
times a hardware program loop repeats, in the range of 0 to (224 – 1). This register is stacked into 
the SSL by a DO instruction and unstacked by end-of-loop processing or by execution of 
ENDDO and BRKcc instructions. The LC is also used in the REP instruction to specify how 
many times to repeat the repeated instruction.

5.4.4.4   Vector Base Address (VBA) Register 

The Vector Base Address Register (VBA) is a 24-bit register. Eight of the bits VBA[7–0] are 
read-only and always cleared. The VBA is used as a base address of the interrupt vector table 
(discussed in Chapter 2, Core Architecture Overview). When a fast or long interrupt executes, 
VBA[7– 0] are driven from the program interrupt control unit, and bits 23–8 are driven from the 
VBA. The VBA Register is a read/write register that is referenced implicitly by interrupt 
processing or directly by the MOVEC instruction. The VBA is cleared during hardware reset.
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PLL and Clock Generator 6
Note: The DSP56321 device uses a digital phase-lock loop (DPLL) and a different clock 

module than other members of the DSP56300 family. Refer to Chapter 5 of the 
DSP56321 Reference Manual.

The DSP56300 core features a Phase Locked Loop (PLL) clock generator in its central 
processing module. The PLL allows the processor to operate at a high internal clock frequency 
derived from a low-frequency clock input, a feature that offers two immediate benefits. The 
lower frequency clock input reduces the overall electromagnetic interference generated by a 
system. The ability to oscillate at different frequencies reduces costs by eliminating the need to 
add additional oscillators to a system. Figure 6-1 shows the two main blocks of the clock 
generator in the DSP56300 core:

� Phase Locked Loop (PLL) that performs:

— Clock input division
— Frequency multiplication
— Skew elimination

� Clock Generator (CLKGEN) that performs:

— Low-power division
— Internal and external clock generation

Figure 6-1.  PLL Clock Generator Block Diagram
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PLL and Clock Generator
6.1 PLL and Clock Signals

The PLL and clock pin configuration for each DSP56300 family member is available in the 
device-specific technical data sheet. The following pins are dedicated to the PLL and clock 
operation:

� PCAP. Connects an off-chip capacitor to the PLL filter. One terminal of the capacitor 
connects to PCAP, the other connects to VCCP. The value of this capacitor depends on the 
PLL Multiplication Factor (MF). See the device-specific technical data sheet for the 
correct formula to use for this calculation.

� CLKOUT. Provides a 50 percent duty cycle output clock synchronized to the internal 
processor clock when the PLL is enabled and locked. When the PLL is disabled, the 
output clock at CLKOUT is derived from EXTAL, and has half the frequency of, EXTAL. This 
pin is operational in all device processing states except when the PLL Control (PCTL) 
Register Clock Out Disable (COD) bit is set, and during the Stop state. When the device is 
in the Wait state, the CLKOUT pin continues to provide a signal.

� PINIT. During assertion of hardware reset, the value of the PINIT input pin is written into the 
PCTL PLL Enable (PEN) bit. After hardware reset is deasserted, the PLL ignores the PINIT 
pin, and it can have a different function in the device.

6.2 PLL Block

This section describes the PLL control mechanisms. Figure 6-2 shows the PLL block diagram. 

6.2.1   Frequency Predivider

Clock input frequency division is accomplished by means of a frequency predivider of the input 
frequency. The programmable Division Factor ranges from 1 to 16.

6.2.2   Phase Detector and Charge Pump Loop Filter

The Phase Detector (PD) detects any phase difference between the external clock (EXTAL) and the 
phase of the clock generated by the frequency divider. At the point where there is negligible 
phase difference and the frequency of the two inputs is identical, the PLL is in the Locked state. 

Figure 6-2.  PLL Block Diagram
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The charge pump loop filter receives signals from the PD and either increases or decreases the 
phase based on the PD signals. An external capacitor is connected to the PCAP input to determine 
low pass filter corner frequencies. The value of this capacitor depends on the Multiplication 
Factor (MF) of the PLL. See the Specifications section in the device-specific technical data sheet 
for the formula to determine the proper value for the PLL capacitor. After the PLL locks onto the 
proper phase and frequency, it reverts to the Narrow Bandwidth mode, which is useful for 
tracking small changes due to frequency drift of the EXTAL clock.

6.2.3   Voltage Controlled Oscillator (VCO)

The voltage controlled oscillator (VCO) operates at frequencies from 30 MHz to twice the 
maximum device operating frequency. The minimum frequency is required to ensure VCO 
stability. See Table 2-6 in the device-specific Technical Data sheet for the maximum frequency 
for each device. Also refer to Table 2-5 in the same Technical Data sheet for the external clock 
signal characteristics.

Note: When the PLL is enabled, the maximum device operating frequency is half the VCO 
frequency.

Because the reset value of all clock dividers and multiplier is 1, if EXTAL is less than 30 MHz, 
the VCO cannot operate correctly during reset and the PLL must be disabled. For such cases, the 
hardware design must hold the PINIT input low during reset to disable the PLL. After reset, the 
software can change the pre-divider (PD) and MF to the desired values (ensuring that the input to 
the VCO is not less than 30 MHz) and then set the PCTL[PEN] bit to enable the PLL.

Note: The DSP56321 DPLL clock circuit differs from the circuit used in the rest of the 
DSP56300 family. Its VCO operates differently from this description. Refer to Section 
5.5 in the DSP56321 Reference Manual.

6.2.3.1   Divide by 2

As part of the PLL feedback loop, the output of the VCO is divided by 2. The resulting constant 
multiplication by 2 of the VCO/PLL output allows for the generation of the special internal clock 
phases required by the device.

6.2.3.2   Frequency Divider

The Frequency Divider portion of the PLL feedback loop divides the VCO output by a 
programmable 12-bit value before entering the Phase Detector. The net result is a multiplication 
of the incoming external clock by the programmed value. This is called the Multiplication Factor 
and is programmed using the PCTL[MF] bits. The Multiplication Factor can range from 1 to 
4096. 
DSP56300 Family Manual, Rev. 5
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6.2.3.3   PLL Control Elements

The PLL uses three major control elements in its circuitry:

� Clock input division

� Frequency multiplication

� Skew elimination

6.2.3.3.1   Clock Input Division

The PLL can divide the input frequency by any integer between 1 and 16. The combination of 
input division and output low-power division enables you to generate almost every frequency 
value out of the PLL (see Section 6.2.3.4.3, Operating Frequency, on page 6-6). The Division 
Factor can be modified by changing the value of the PCTL Predivider Factor (PDF) bits 
(PD[3–0]). The output frequency of the predivider is determined using the following formula:

6.2.3.3.2   Frequency Multiplication

The PLL can multiply the input frequency by any integer between 1 and 4096. The Multiplication 
Factor can be modified by changing the value of the PCTL Multiplication Factor (MF[11–0]) 
bits. The output frequency of the PLL (that is, PLL Out as shown in Figure 6-6-1 on page -1) is 
computed using the following formula:

6.2.3.3.3   Skew Elimination

The phase skew of the PLL is defined as the time difference between the falling edges of EXTAL 
and CLKOUT for a given capacitive load on CLKOUT, over the entire process, temperature, and 
voltage ranges. The PLL can eliminate the skew between the external clock (EXTAL), the internal 
clock phases, and the CLKOUT signal, allowing tighter synchronous timings. Skew elimination is 
active only when the PLL is enabled and programmed with a Multiplication Factor less than or 
equal to 4. When the PLL is disabled, or when the Multiplication Factor is greater than 4, clock 
skew can exist. Skew elimination is assured only if EXTAL is greater than the minimum frequency 
specified in the device-specific technical data sheet (typically 15 MHz).

6.2.3.4   Clock Generator

Figure 6-3 shows the Clock Generator block diagram. The components of the Clock Generator 
are described in the following sections.
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6.2.3.4.1   Low-Power Divider (LPD)

The Clock Generator has a divider connected to the output of the PLL. The Low-Power Divider 
(LPD) divides the output frequency of the VCO by any power of 2 from 20 to 27. The Division 
Factor (DF) of the LPD can be modified by changing the value of the PLL Control Register 
(PCTL) Division Factor bits DF[2–0]. Since the LPD is not in the closed loop of the PLL, 
changes in the DF do not cause a loss of lock condition. The result is a significant power savings 
when the LPD operates in low-power consumption modes as the device is not involved in 
intensive calculations. When the device is required to exit a low-power mode, it can immediately 
do so with no time needed for clock recovery or PLL lock.

6.2.3.4.2   Internal and External Clock Pulse Generator

The output stage of the Clock Generator generates the clock signals to the core and the device 
peripherals, and drives the CLKOUT pin. The output stage divides the frequency by two. The input 
source to the output stage is selected between: 

� EXTAL (PEN = 0, PLL disabled), which generates a device frequency defined by the 
following formula:

� Low-Power Divider output (PEN = 1, PLL enabled), which generates a device frequency 
defined by the following formula:

Figure 6-3.  CLKGEN Block Diagram
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6.2.3.4.3   Operating Frequency

When PEN = 1, the operating frequency of the core is governed by the frequency control bits in 
the PCTL Register according to the following formula:

 

� MF is the Multiplication Factor defined by MF[11–0] 

� PDF is the Predivider Factor defined by PD[3–0] 

� DF is the Division Factor defined by DF[2–0] 

� FCORE is the device operating frequency 

� FEXTAL is the external EXTAL input

6.3 PLL Programming Model 

The PLL clock generator uses a single register, the PCTL Register. The PCTL is an X I/O 
mapped 24-bit read/write register used to direct the operation of the on-chip PLL.  
Figure 6-4 shows the PCTL control bits.

Figure 6-4.  PLL Control (PCTL) Register
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The reset value is implementation dependent and is listed in the device-specific user’s manual.
The reset value of the PEN bit is based on the value of the PLL PINIT input.
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Table 6-1.  PLL Control (PCTL) Register Bit Definitions 

Bit Number Bit Name Reset Value Description

23–20 PD[3–0] a Predivider Factor 
Define the PDF value that is applied to the input frequency. PDF can be any integer 

from 1 to 16. The VCO oscillates at a frequency defined by the following formula:

PDF must be chosen to ensure that the resulting VCO output frequency lies in the 
range specified in the device-specific technical data sheet. Any time a new value is 
written into the PD[3–0] bits, the PLL loses the lock condition. After a time delay (zero 
to 1,000 clock cycles), the PLL relocks. The PDF bits (PD[3–0]) are set to a 
predetermined value during hardware reset. The reset value is implementation 
dependent and is listed in the device-specific user’s manual.

PD[3–0] PDF Value

0000 1

0001 2

0010 3

0011 4

0100 5

0101 6

0110 7

0111 8

1000 9

1001 10

1010 11

1011 12

1100 13

1101 14

1110 15

1111 16

19 COD 0 Clock Output Disable 
Controls the output buffer of the clock at the CLKOUT pin. When COD is set, the 
CLKOUT output is pulled high. When COD is cleared, the CLKOUT pin provides a 50 
percent duty cycle clock synchronized to the internal core clock. If CLKOUT is not 
connected to external circuits, set COD (disabling clock output) to minimize RFI noise 
and power dissipation. The CLKOUT pin oscillates during all operating states except 
Stop state and when COD = 1.

Fextal MF× 2×
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18 PEN b PLL Enable 
Enables PLL operation. When PEN is set, the PLL is enabled and the internal clocks 
are derived from the PLL VCO output. When PEN is cleared, the PLL is disabled and 
the internal clocks are derived directly from the EXTAL signal. When the PLL is 
disabled, the VCO stops to minimize power consumption. The PEN bit may be set or 
cleared by software any time during the device operation. During hardware reset, this 
bit is set or cleared based on the value of the PLL PINIT input.

17 PSTP 0 PLL Stop State  
Controls PLL and on-chip crystal oscillator behavior during the Stop processing state. 
When PSTP is set, the PLL and the on-chip crystal oscillator remain operating when 
the chip is in the Stop state. When PSTP is cleared and the device enters the Stop 
state to support minimum power consumption, the PLL and the on-chip crystal 
oscillator are disabled, to further reduce power consumption; this however results in 
longer recovery time upon exit from the Stop state. To enable rapid recovery when 
exiting the Stop state (but at the cost of higher power consumption during the Stop 
state), PSTP should be set.  

NOTE: PSTP and PEN are related. When PSTP is set, and PEN is cleared, the 
on-chip crystal oscillator remains operating in the Stop state, but the PLL is disabled. 
This power saving feature enables rapid recovery from the Stop state when you 
operate the device with an on-chip oscillator and with the PLL disabled.

PSTP PEN
Operation During Stop State Recovery Time

From Stop State

Power 
Consumption
During Stop 

StatePLL Oscillator

0 x Disabled Disabled Long Minimal

1 0 Disabled Enabled Short Lower

1 1 Enabled Enabled Short Higher

16 XTLD a XTAL Disable 
Controls the XTAL output from the crystal oscillator on-chip driver. When XTLD is 
cleared, the XTAL output pin is active, permitting normal operation of the crystal 
oscillator. When XTLD is set, the XTAL output pin is pulled high, disabling the on-chip 
oscillator driver. If the on-chip crystal oscillator driver is not used (that is, EXTAL is 
driven from an external clock source), set XTLD (disabling XTAL) to minimize RFI 
noise and power dissipation.  

NOTE: The XTLD bit is set to a predetermined value during hardware reset. The value 
is implementation dependent and may vary between different DSP56300-based 
devices.

Table 6-1.  PLL Control (PCTL) Register Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description
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15 XTLR a Crystal Range 
Controls the on-chip crystal oscillator transconductance. If the external crystal
frequency is less than 200 kHz (that is, a 32 KHz clock crystal), set this bit to decrease 
the transconductance of the input amplifier. Otherwise, the internal clocks may not be 
stable. If the external crystal frequency is greater than 200 kHz, clear this bit in order 
to have full transconductance. Otherwise, the crystal oscillator may not function at all.  

NOTE: The XTLR bit is set to a predetermined value during hardware reset. The value 
is implementation dependent and may vary between different DSP56300-based 
devices.

14–12 DF[2–0] 0 Division Factor 
Define the DF of the low-power divider. These bits specify the DF as a power of two in 

the range from 20 to 27. Changing the value of the DF[2–0] bits does not cause a loss 
of lock condition. Whenever possible, changes of the operating frequency of the 
device (for example, to enter a low-power mode) should be made by changing the 
value of the DF[2–0] bits rather than changing the  
MF[11–0] bits.
 
For MF ≤ 4, changing DF[2–0] may lengthen the instruction cycle following the PLL 
control register update; this ensures synchronization between EXTAL and the internal 
device clock. For MF > 4 such synchronization is not ensured, and the instruction 
cycle is not lengthened.

DF[2–0] DF Value

000 20

001 21

010 22

011 23

100 24

101 25

110 26

111 27

Table 6-1.  PLL Control (PCTL) Register Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description
DSP56300 Family Manual, Rev. 5
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6.4 Clock Synchronization 

When the PLL is enabled, (the PEN bit in the PCTL register is set), low clock skew between 
EXTAL and CLKOUT is guaranteed if MF < 5. CLKOUT and the internal device clock are fully 
synchronized. See the device-specific technical data sheet for more information.

6.5 Design Guidelines for Ripple and PCAP

The voltage noise on the VCCP pin is critical to the PLL operation, since the PLL loop filter 
capacitor connects to it. The following recommendations for filtering the PLL power supply 
apply to all DSP56300 family devices.

� The PLL power supply should be very well regulated and noise-free. Here are some 
recommendations for a Vcc noise filter for the PLL power supply:

— The Wn (bandwidth) of the PLL is 2 MHz/(Multiplication Factor). The cutoff 
frequency of the Vcc filter should be less than Wn/100.

11–0 MF[11–0] a Multiplication Factor 
Defines the Multiplication Factor (MF) that is applied to the PLL input frequency. The 
MF can be any integer from 1 to 4096. The VCO oscillates at a frequency defined by 
the following formula where PDF is the Predivider Division Factor:

The MF must be chosen to ensure that the resulting VCO output frequency is in the 
range specified in the device-specific technical data sheet. Any time a new value is 
written into the MF[11–0] bits, the PLL loses the lock condition. After a time delay 
(provided in the device-specific technical data sheet), the PLL relocks. The 
Multiplication Factor bits MF[11–0] are set to a predetermined value during hardware 
reset; the value is implementation dependent and is provided in the device-specific 
user’s manual. 

MF[11–0] Multiplication Factor MF

$000 1

$001 2

$002 3

•
•
•

•
•
•

$FFE 4095

$FFF 4096

a
b

The reset value is implementation dependent and is listed in the device-specific user’s manual.
The reset value of the PEN bit is based on the value of the PLL PINIT input

Table 6-1.  PLL Control (PCTL) Register Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description

Fextal MF × 2×
PDF

----------------------------------------
FEXTAL
DSP56300 Family Manual, Rev. 5
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Design Guidelines for Ripple and PCAP
— The maximum allowed accumulated noise at frequencies from Wn/10 to infinity is 6 
mV. The maximum allowed accumulated noise at frequencies from 0 Hz to Wn/10 is 
30 mV.

— The filter should have as low as possible impedance for DC, in order to minimize 
voltage drop to the PLL power supplies.

— Take care to ensure that no more than 0.5 V voltage differential exists between the 
PLL power supply and the DSP power supplies at all times.

� When using a relatively high Multiplication Factor (MF ≥ ~10), you should use a PCAP 
capacitor that is polystyrene, polypropylene, or teflon. Such capacitors have a much lower 
dielectric absorption, which is needed for the PLL with a high MF, than ceramic 
capacitors

In the PLL filter circuit in Figure 6-5:

� Note that the 0.1 µF capacitor should be in parallel with the 22 µF, since the high 
frequency current needs for the PLL cannot be met with a regular 22 µF. If high-frequency 
noise is not attenuated due to the lack of this capacitor, it will come through PCAP and 
cause jitter on the VCO. Beside that, the 12 Ω with 22 µF gives Fc = 1/(2*3.14*12*22µ) ~ 
600 Hz.

�  Wn = 2 MHz / 8 = 125 kHz, so the noise attenuation is expected to be about 50 dB near 
DC, meaning that up to about 1 Vp-p high-frequency noise may occur before the filter. For 
4 mA current consumption of the PLL, it means Vdrop = 12 *4 mA ≈ 50 mV, which is 
also acceptable.

Figure 6-5.  PLL Filter Circuit

VCC

GND

0.1 µF

PCAP 22 µF 0.1 µF

VCCP PCAP GNDPGNDP

FB

Notes: 1. FB = Ferrite Bead with 600 Ω impedance at 100 MHz, 12 Ω at DC.

2. PCAP value calculated according to datasheet.
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Debugging Support 7
The DSP56300 modules and features for debugging applications during system development are 
as follows: 

� JTAG Test Access Port (TAP). Provides the TAP and Boundary Scan functionality based 
on the IEEE Standard Test Access Port and Boundary-Scan Architecture (IEEE 1149.1), 
which can test a circuit board containing a DSP56300 family device including signal 
levels at the chip-to-board interface (that is, the boundary), but not the internal chip 
functions. The TAP also provides external access to the On-Chip Emulation (OnCE) 
module.

� OnCE module. Debugs software used with a DSP56300 family device and tests the 
hardware interface. The OnCE module has one dedicated external pin connection, the 
Debug Event (DE) pin. All other communication with the module occurs through the TAP 
pins. 

� Address Trace Mode. This feature, enabled by the ATE bit in the Operating Mode Register 
(OMR), allows tracing of internal accesses by monitoring the external address lines 
(A[23–0] or A[17–0]).

The debugging interface uses six interface signals. As described in the IEEE 1149.1 standard, the 
JTAG TAP requires a minimum of four pins to support the TDI, TDO, TCK, and TMS signals. The 
DSP56300 family also provides a pin for the optional TRST signal. The OnCE module uses one 
pin for the DE signal. Table 7-1 describes the signals.

Table 7-1.  Debugging Control Signals  

Name Pin Type Module Signal Description

Test Clock TCK Input TAP The external clock that synchronizes the test logic.

Test Mode 
Select

TMS Input TAP Sequences the TAP controller state machine. TMS is sampled on 
the rising edge of TCK and has an internal pull-up resistor.

Test Data 
Input

TDI Input TAP Receives serial test instruction and data, which is sampled on the 
rising edge of TCK and has an internal pull-up resistor. Register 
values are shifted in Least Significant Bit (LSB) first.

Test Data 
Output

TDO Output TAP The serial output for test instructions and data. TDO is tri-stateable 
and is actively driven in the shift-IR and shift-DR controller states. 
TDO changes on the falling edge of TCK. Register values are shifted 
out LSB first.
DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 7-1



Debugging Support
7.1 JTAG Test Access Port

The DSP56300 core provides a dedicated user-accessible Test Access Port (TAP) based on the 
IEEE Standard Test Access Port and Boundary-Scan Architecture (IEEE 1149.1). Problems of 
testing high density circuit boards led to development of this standard under the sponsorship of 
the Test Technology Committee of IEEE and the Joint Test Action Group (JTAG). The 
DSP56300 core implementation supports circuit-board test strategies based on this standard. 

7.1.1   Boundary Scan Architecture Overview

The test logic includes a TAP consisting of four dedicated signal pins, a 16-state controller, and 
three test data registers. A Boundary Scan Register (BSR) links all device signal pins into a single 
shift register. The test logic, implemented with static logic design, is independent of the device 
system logic. The DSP56300 core has the following capabilities initiated by the associated JTAG 
commands (listed in parentheses):

� Perform boundary scan operations to test circuit-board electrical continuity (EXTEST)

� Bypass the DSP56300 core for a given circuit board test by effectively reducing the BSR 
to a single cell (BYPASS)

� Sample the DSP56300 core-based device system pins during operation and transparently 
shift out the result in the BSR; preload values to output pins prior to invoking the 
EXTEST instruction (SAMPLE/PRELOAD)

� Disable the output drive to pins during circuit-board testing (HI-Z)

Test Reset TRST Input TAP Initializes the test controller asynchronously. TRST has an internal 
pull-up resistor. To reset the TAP controller synchronously, use TCK 
to clock five consecutive 1s into TMS. To reset the remaining parts 
of the DSP core and the peripherals (or in some cases, such as the 
HI32, only the internal portion of a peripheral), use the RESET input 
signal.

Debug Event DE Input or 
Output

OnCE An open-drain signal providing, as an input, a means of entering the 
Debug mode of operation from an external command controller, and, 
as an output, a means of acknowledging that the chip has entered 
the Debug mode. This signal, when asserted as an input, causes the 
DSP56300 core to finish executing the current instruction, save the 
instruction pipeline information, enter Debug mode, and wait for 
commands to be entered from the debug serial input line. This signal 
is asserted as an output for three clock cycles when the chip enters 
Debug mode as a result of a debug request or as a result of meeting 
a breakpoint condition. The DE has an internal pull-up resistor.

This is not a standard part of the JTAG Test Access Port (TAP) 
Controller. The signal connects directly to the OnCE module to 
initiate Debug mode directly or to provide a direct external indication 
that the chip has entered Debug mode. All other interaction with the 
OnCE module must occur through the JTAG port.

Table 7-1.  Debugging Control Signals  (Continued)

Name Pin Type Module Signal Description
DSP56300 Family Manual, Rev. 5
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� Access the OnCE controller and circuits to control a target system (ENABLE_ONCE)

� Enter the Debug mode of operation (DEBUG_REQUEST)

� Query identification information on manufacturer, part number, and version from a 
DSP56300 core-based device (IDCODE)

� Force test data onto the outputs of a DSP56300 core-based device while replacing its BSR 
in the serial data path with a single-bit register (CLAMP)

This section discusses aspects of the JTAG implementation that are specific to the DSP56300 
core and is to be used with the supporting IEEE Std. 1149.1™ standards document. The 
discussion covers items the standard requires to be defined and includes additional information 
specific to the DSP56300 core implementation. Figure 7-7-1 shows the block diagram of the 
DSP56300 core implementation of JTAG, which includes a 4-bit Instruction Register and three 
test registers: a 1-bit Bypass Register, a 32-bit Identification Register, and a Boundary Scan 
Register (BSR) whose size is chip-specific. This implementation includes a dedicated TAP and 
five pins.

7.1.2   TAP Controller

The TAP controller interprets the sequence of logical values on the TMS signal. It is a 
synchronous state machine that controls the operation of the JTAG logic. Figure 7-7-2 shows the 
state machine. The value shown adjacent to each change-of-state arrow represents the value of 
the TMS signal sampled on the rising edge of the TCK signal. For a description of the TAP 
controller states, see the IEEE 1149.1 specification.

7.1.3   Boundary Scan Register

The Boundary Scan Register (BSR) in the DSP56300 core JTAG implementation contains bits 
for all device signal and clock pins and associated control signals. All bidirectional pins are 
controlled by an associated control bit in the BSR. The boundary scan bit definitions vary 
according to specific chip implementations. See the device-specific user’s manual for a complete 
description of the BSR contents. 

7.1.4   Instruction Register

The DSP56300 core JTAG implementation includes the three mandatory public instructions 
(EXTEST, SAMPLE/PRELOAD, and BYPASS) and supports the optional CLAMP instruction 
defined by IEEE 1149.1. The HI-Z public instruction can disable all device output drivers. The 
ENABLE_ONCE public instruction enables the JTAG port to communicate with the OnCE 
circuitry. The DEBUG_REQUEST public instruction enables the JTAG port to force the 
DSP56300 core into Debug mode. The DSP56300 core includes a 4-bit instruction register 
without parity consisting of a shift register with four parallel outputs. Data is transferred from the 
shift register to the parallel outputs during the Update-IR controller state. Figure 7-3 shows the 
Instruction Register configuration.
DSP56300 Family Manual, Rev. 5
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Figure 7-1.  Test Access Port With OnCE Module Block Diagram
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Figure 7-2.  TAP Controller State Machine

The four bits decode the eight instructions shown in Table 8. The 0101 code is reserved for 
future enhancements. All other encodings (1000–1110) are decoded as BYPASS.

Figure 7-3.  JTAG Instruction Register Format
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The parallel output of the instruction register is reset to 0010 in the Test-Logic-Reset controller 
state, which is equivalent to the IDCODE instruction. During the Capture-IR controller state, the 
parallel inputs to the instruction shift register are loaded with 01 in the Least Significant Bits 
(LSBs) as required by the standard. The two Most Significant Bits (MSBs) are loaded with the 
values of the core status bits OS1 and OS0 from the OnCE controller. 

7.1.4.1   EXTEST (B[3–0] = 0000)

The external test (EXTEST) instruction selects the BSR. The EXTEST instruction also asserts 
internal reset for the DSP56300 core system logic to force a predictable internal state while 
performing external boundary scan operations. Using the TAP, the BSR can: 

� Scan user-defined values into the output buffers 

� Capture values presented to input pins 

� Control the direction of bidirectional pins 

� Control the output drive of tri-stateable output pins 

For details on the function and use of EXTEST, refer to the IEEE 1149.1 standards document. 

7.1.4.2   SAMPLE/PRELOAD (B[3–0] = 0001)

The SAMPLE/PRELOAD instruction performs two separate functions. First, it obtains a 
snapshot of system data and control signals that occurs on the rising edge of TCK in the 
Capture-DR controller state. The data is observed by shifting it transparently through the BSR.

Table 7-8.   JTAG Instructions  

Code
Instruction

B3 B2 B1 B0

0 0 0 0 EXTEST

0 0 0 1 SAMPLE/PRELOAD 

0 0 1 0 IDCODE 

0 0 1 1 RESERVED

0 1 0 1 CLAMP

0 1 0 0 HI-Z

0 1 1 0 ENABLE_ONCE1

0 1 1 1 DEBUG_REQUEST1

1 x x x BYPASS

Notes: 1. Notes:1.  The ENABLE_ONCE and DEBUG_REQUEST public 
instructions are not part of the IEEE 1149.1 standard.

2. 2. x = either 1 or 0.
DSP56300 Family Manual, Rev. 5
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Since no internal synchronization exists between the JTAG clock (TCK) and the system clock 
(CLK), you must provide some form of external synchronization to achieve meaningful results. 
Secondly, SAMPLE/PRELOAD can initialize the BSR output cells prior to selection of 
EXTEST. This initialization ensures that known data appears on the outputs when the EXTEST 
instruction starts executing.

7.1.4.3   IDCODE (B[3–0] = 0010)

The IDCODE instruction selects the ID register. This public instruction allows identification of 
the manufacturer, part number, and version of a component through the TAP. Figure 7-4 shows 
the ID register configuration.

Figure 7-4.  Identification Register Configuration

One application of the ID register is to distinguish the manufacturer(s) of components on a board 
when multiple sourcing is used. As more components that conform to the IEEE 1149.1 standard 
emerge, it is desirable for a system diagnostic controller unit to blindly interrogate a board design 
in order to determine the type of each component in each location. This information is also 
available for factory process monitoring and for failure mode analysis of assembled boards.

Version Number The major revision or mask set change of the device (for example, 0000 = 
Revision 0; 0001 = Revision A). This information is in the boundary-scan 
description language (BSDL) file for the device. The BSDL file for each 
device in the DSP56300 family is available for download from the web site 
listed on the back cover of this manual. Note that there are no revision 
changes for individual masks of a chip. Revision changes apply to groupings 
of masks (that is, mask sets). For example, for the DSP56301, a mask set of 
0F92R and 1F92R has the revision number of $1. A different mask set 
consisting of 0F48S, 1F48S, and 3F48S comprises Revision $2.

Manufacturer’s Use The Freescale Design Center Number (bits 27–22). The Freescale 
Semiconductor Israel Ltd (FIL) Design Center Number is 000110.

Sequence Number Divided into two parts: Core Number (bits 21–17) and Chip Derivative 
Number (bits 16–12). the DSP56300 core number is 00000.

Manufacturer 
Identity

The Freescale Manufacturer Identity is 00000001110.
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Once the IDCODE instruction is decoded, it selects the ID register, which is a 32-bit data 
register. The Bypass register loads a logic 0 at the start of a scan cycle, whereas the ID register 
loads a logic 1 into its LSB. Examination of the first bit of data shifted out of a component during 
a test data scan sequence immediately following exit from Test-Logic-Reset controller state 
shows whether such a register is included in the design. When the IDCODE instruction is 
selected, the operation of the test logic has no effect on the operation of the on-chip system logic 
as required by the IEEE 1149.1 standard.

7.1.4.4   CLAMP (B[3–0] = 0011)

CLAMP is an optional instruction defined by the IEEE 1149.1 standard. It selects the 1-bit 
Bypass register as the serial path between TDI and TDO, while allowing signals driven from the 
component pins to be determined from the BSR. During testing of ICs on a PCB, it may be 
necessary to place static guarding values on signals that control operation of logic not involved in 
the test. The EXTEST instruction could be used for this purpose, but since it selects the BSR, the 
required guarding signals would be loaded as part of the complete serial data stream shifted in, 
both at the start of the test and each time a new test pattern is entered. Since the CLAMP 
instruction allows guarding values to be applied using the BSR of the appropriate ICs while 
selecting their Bypass registers, it allows much faster testing than EXTEST. Data in the boundary 
scan cell remains unchanged until a new instruction is shifted in or the JTAG state machine is set 
to its reset state. The CLAMP instruction also asserts internal reset for the DSP56300 core system 
logic to force a predictable internal state while performing external boundary scan operations.

7.1.4.5   HI-Z (B[3–0] = 0100)

HI-Z is a manufacturer’s optional public instruction to prevent the need to backdrive the output 
pins during circuit-board testing. When HI-Z is invoked, all output drivers, including the 
two-state drivers, are turned off (that is, high impedance). The instruction selects the Bypass 
register. HI-Z also asserts internal reset for the DSP56300 core system logic to force a predictable 
internal state while performing external boundary scan operations. 

7.1.4.6   ENABLE_ONCE(B[3–0] = 0110)

ENABLE_ONCE is not included in the IEEE 1149.1 standard. It is a public instruction that 
enables you to perform system debug functions. When ENABLE_ONCE is decoded, the TDI and 
TDO pins connect directly to the OnCE registers. The particular OnCE register connected between 
TDI and TDO at a given time is selected by the OnCE controller, depending on the OnCE 
instruction currently executing. All communication with the OnCE controller occurs through the 
Select-DR-Scan path of the JTAG TAP Controller. 

7.1.4.7   DEBUG_REQUEST(B[3–0] = 0111)

DEBUG_REQUEST is not included in the IEEE 1149.1 standard. It is a public instruction that 
enables you to generate a debug request signal to the DSP56300 core. When 
DEBUG_REQUEST is decoded, the TDI and TDO pins connect to the instruction registers. In the 
DSP56300 Family Manual, Rev. 5
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Capture-IR state of the TAP, the OnCE status bits are captured in the Instruction shift register, so 
the external JTAG controller must continue to shift in the DEBUG_REQUEST while polling the 
status bits that are shifted out until the Debug mode of operation is entered (acknowledged by the 
combination 11 on OS[1–0]). After acknowledgment of Debug mode is received, the external 
JTAG controller must issue the ENABLE_ONCE instruction so you can perform system debug 
functions. 

7.1.4.8   BYPASS (B[3–0] = 1111)

BYPASS selects the single-bit Bypass register, as shown in Figure 7-5. This creates a 
shift-register path from TDI to the Bypass register, and finally to TDO, circumventing the BSR. 
This instruction enhances test efficiency when a component other than the DSP56300 core-based 
device becomes the device under test. When the current instruction selects the Bypass register, 
the shift-register stage is set to a logic 0 on the rising edge of TCK in the Capture-DR controller 
state. Therefore, the first bit shifted out after selection of the Bypass register is always a logic 0. 

7.1.5   DSP56300 JTAG Restrictions

The control afforded by the output enable signals using the BSR and the EXTEST instruction 
requires a compatible circuit-board test environment to avoid device-destructive configurations. 
You must avoid situations in which the DSP56300 core output drivers are enabled into actively 
driven networks. In addition, EXTEST can execute only after power-up or regular hardware reset 
while EXTAL is provided. While EXTEST executes, EXTAL can remain inactive.

Two constraints relate to the JTAG interface. First, the TCK input does not include an internal 
pull-up resistor and should not be left unconnected. The second constraint is to ensure that the 
JTAG test logic is kept transparent to the system logic by forcing the TAP into the 
Test-Logic-Reset controller state, using either of two methods. During power-up, TRST must be 
externally asserted to force the TAP controller into this state. After power-up finishes, TMS must 
be sampled as a logic 1 for five consecutive TCK rising edges. If TMS either remains unconnected 
or is connected to VCC, then the TAP controller cannot leave the Test-Logic-Reset state, 
regardless of the state of TCK.The DSP56300 core features a low-power Stop mode, which is 
invoked using the STOP instruction. 

Figure 7-5.  Bypass Register 

1

1
Multiplex

G1

C
D

To TDO
From TDI

0

Shift DR

CLOCKDR
DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 7-9



Debugging Support
The interaction of the JTAG interface with low-power Stop mode is as follows:

1. The TAP controller must be in the Test-Logic-Reset state to either enter or remain in the 
low-power Stop mode. Leaving the TAP controller Test-Logic-Reset state negates the 
ability to achieve low power, but does not otherwise affect device functionality.

2. The TCK input is not blocked in low-power Stop mode. To consume minimal power, the 
TCK input should be externally pulled to VCC or GND.

3. The TMS and TDI pins include on-chip pull-up resistors. In low-power Stop mode, these 
two pins should remain either unconnected or connected to VCC to achieve minimal 
power consumption.

During Stop mode all DSP56300 core clocks are disabled, so the JTAG interface provides the 
means for polling the device status (sampled in the Capture-IR state). For a DSP56300 derivative 
that does not include the DE pin, the JTAG interface provides the DEBUG_REQUEST 
instruction for entering Debug mode.

7.2 OnCE Module 

The DSP56300 core On-Chip Emulation (OnCE) module interacts with the DSP56300 core and 
its peripherals non-intrusively so that you can examine registers, memory, or on-chip peripherals, 
thus facilitating hardware and software development on the DSP56300 core processor. Special 
circuits and dedicated pins on the DSP56300 core are defined to avoid sacrificing any 
user-accessible on-chip resource. 

The OnCE module controller functionality is accessed through the JTAG test access port (TAP). 
In addition to describing OnCE features and functionality, this section gives examples of 
debugging procedures using the OnCE module. The OnCE module resources can be accessed 
only after the JTAG ENABLE_ONCE executes instruction (these resources are accessible even 
when the chip operates in Normal mode). Figure 7-8 shows the block diagram of the OnCE 
module.
DSP56300 Family Manual, Rev. 5
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OnCE Module
Figure 7-8.   OnCE Block Diagram

The OnCE module controller functionality is accessed through the JTAG port. The JTAG TCK, 
TDI, and TDO pins shift data and instructions in and out. 

Figure 7-9.   OnCE Multiprocessor Configuration

7.2.1   OnCE Controller

The OnCE Controller contains the following blocks: OnCE Command Register (OCR), OnCE 
Decoder, and the OnCE Status and Control Register (OSCR). Figure 7-6 shows a block diagram 
of the OnCE controller.
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Figure 7-6.  OnCE Controller

7.2.1.1   OnCE Command Register (OCR)

The OnCE Command Register (OCR) is a shift register that receives its serial data from the TDI 
pin. It holds the 8-bit commands to be used as input for the OnCE Decoder. The OCR is shown in 
Figure 7-7-7. 

7 6 5 4 3 2 1 0

R/W GO EX RS4 RS3 RS2 RS1 RS0

Reset: $00

Figure 7-7.  OnCE Command Register (OCR) 

Table 7-1.  OnCE Command Register (OCR) Bit Definitions 

Bit Number Bit Name Description

7 R/W Read/Write Command
Specifies the direction of the data transfer.

R/W Action

0 Write the data associated with the command into the 
register specified by RS[4–0].

1 Read the data contained in the register specified by 
RS[4–0].

6 GO Go Command
If the GO bit is set, executes the instruction that resides in the OnCE PIL register. To execute 
the instruction, the core leaves Debug mode. The core returns to the Debug mode immediately 
after executing the instruction if the EX bit is cleared. The core continues normal operation if 
the EX bit is set. The GO command executes only if the operation is a write to the OnCE 
Program Data Bus Register (OPDBR) or a read/write to No Register Selected. Otherwise, the 
GO bit is ignored.

5 EX Exit Command
If the EX bit is set, the core exits Debug mode and resumes normal operation. The EXIT 
command executes only if the GO command is issued, and the operation writes to OPDBR or 
reads/writes to No Register Selected. Otherwise, the EX bit is ignored.
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4–0 RS Register Select
Defines which register is the source/destination for the read/write operation. Following is the 
OnCe Register Select Encoding:

RS[4–0] Register Selected

00000 OnCE Status and Control Register (OSCR)

00001 OnCE Memory Breakpoint Counter (OMBC)

00010 OnCE Breakpoint Control Register (OBCR)

00011 Reserved

00100 Reserved

00101 OnCE Memory Limit Register 0 (OMLR0)

00110 OnCE Memory Limit Register 1 (OMLR1)

00111 Reserved

01000 Reserved

01001 OnCE GDB Register (OGDBR)

01010 OnCE PDB Register (OPDBR)

01011 OnCE PIL Register (OPILR)

01100 PDB GO-TO Register (for GO TO command)

01101 OnCE Trace Counter (OTC)

01110 Reserved

01111 OnCE PAB Register for Fetch (OPABFR)

10000 OnCE PAB Register for Decode (OPABDR)

10001 OnCE PAB Register for Execute (OPABEX)

10010 Trace Buffer and Increment Pointer

10011 Reserved

101xx Reserved

11xx0 Reserved

11x0x Reserved

110xx Reserved

11111 No Register Selected

Table 7-1.  OnCE Command Register (OCR) Bit Definitions (Continued)

Bit Number Bit Name Description
DSP56300 Family Manual, Rev. 5
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7.2.1.2   OnCE Decoder (ODEC)

The OnCE Decoder (ODEC) supervises the entire OnCE module activity. It receives as input the 
8-bit command from the OCR, a signal from the JTAG Controller (indicating that 8/24 bits have 
been received and that the selected data register must be updated), and a signal indicating that the 
core halted. The ODEC generates all the strobes required for reading and writing the selected 
OnCE registers.

7.2.1.3   OnCE Status and Control Register (OSCR)

The OnCE Status and Control Register (OSCR) enables the Trace mode of operation and 
indicates the reason for entering Debug mode. The control bits are read/write, and the status bits 
are read-only. The OSCR bits are cleared by hardware reset. The OSCR is shown in Figure 7-8. 
See Table 8 for OSCR bit definitions.

Figure 7-8.  OnCE Status and Control Register (OSCR

Table 7-8.   OnCE Status and Control Register (OSCR) Bit Definitions 

Bit Number Bit Name Reset Value Description

23–8 0 Reserved. Write to zero for future compatibility.

7–6 OS 0 Core Status 
Read-only status bits that provide core status information. Examining the 
status bits, you can determine whether the chip has entered Debug mode. To 
find the reason for entering Debug mode, consult the OSCR SWO, MBO, and 
TO bits. You can also examine these bits to determine why the chip has not 
entered the Debug mode after debug event assertion (DE) or execution of the 
JTAG Debug Request instruction (core waiting for the bus, STOP or WAIT 
instruction, and so on). The OS bits are also reflected in the JTAG instruction 
shift register, which allows the polling of the core status information at the 
JTAG level so that you can read the OSCR after the DSP56300 core 
executes the STOP instruction (and therefore there are no clocks).

OS1 OS0 Description

0 0 DSP56300 core is executing instructions

0 1 DSP56300 core is in Wait or Stop mode

1 0 DSP56300 core is waiting for bus

1 1 DSP56300 core is in Debug mode

23 22 21 20 19 18 17 16 15 14 13 12

11 10 9 8 7 6 5 4 3 2 1 0

OS1 OS0 HIT TO MBO SWO IME TME

Reserved bit. Read as zero; write to zero for future compatibility
DSP56300 Family Manual, Rev. 5
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7.2.2   OnCE Memory Breakpoint Logic

Memory breakpoints can be set on program memory or data memory locations. In addition, the 
breakpoint does not have to be in a specific memory address, but within an approximate address 
range of where the program may be executing. This significantly increases your ability to 
monitor what the program is doing in real-time. The breakpoint logic, shown in Figure 7-9, 
contains a latch for the addresses, registers that store the upper and lower address limit, address 
comparators, and a breakpoint counter. Address comparators are useful in determining where a 
program may be getting lost or when data is written where it should not be written. They are also 
useful in halting a program at a specific point to examine/change registers or memory. Using 
address comparators to set breakpoints enables you to set breakpoints in RAM or ROM in any 
operating mode. Memory accesses are monitored according to the contents of the OBCR depicted 
in Figure 7-9.

5 HIT 0 Cache Hit
A read-only status bit that is set when a cache hit occurs in Cache mode in 
the Debug mode of operation. In PRAM mode, this bit reads as one.

4 TO 0 Trace Occurrence
A read-only status bit that is set when all the following occur:
� Trace Counter = 0

� Trace mode is enabled

� Debug mode of operation is entered

This bit is cleared when the DSP leaves Debug mode.

3 MBO 0 Memory Breakpoint Occurrence
A read-only status bit that is set when the DSP enters Debug mode because 
a memory breakpoint has been encountered. This bit is cleared when the 
DSP leaves Debug mode.

2 SWO 0 Software Debug Occurrence
A read-only status bit that is set when the DSP enters Debug mode because 
of the execution of the DEBUG or DEBUGcc instruction with condition true. 
This bit is cleared when the DSP leaves Debug mode.

1 IME 0 Interrupt Mode Enable
When this control bit is set, the chip executes a vectored interrupt to the 
address VBA:$06 instead of entering Debug mode.

0 TME 0 Trace Mode Enable
When set, this control bit enables Trace mode.

Table 7-8.   OnCE Status and Control Register (OSCR) Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description
DSP56300 Family Manual, Rev. 5
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Figure 7-9.  OnCE Memory Breakpoint Logic 0

See Table 9 for OBCR bit definitions.

� OnCE Memory Address Latch (OMAL). A 24-bit register that latches the PAB, XAB or 
YAB on every instruction cycle according to the MBS[1–0] bits in the OBCR.

� OnCE Memory Limit Register 0 (OMLR0). A 24-bit register that stores the memory 
breakpoint limit. OMLR0 can be read or written through the JTAG port. Before enabling 
breakpoints, OMLR0 must be loaded by the external command controller.

� OnCE Memory Address Comparator 0 (OMAC0). Compares the current memory address 
(stored in OMAL) with the OMLR0 contents.

� OnCE Memory Limit Register 1 (OMLR1). A 24-bit register that stores the memory 
breakpoint limit. OMLR1 can be read or written through the JTAG port. Before enabling 
breakpoints, OMLR1 must be loaded by the external command controller.

� OnCE Memory Address Comparator 1 (OMAC1). Compares the current memory address 
(stored in OMAL) with the OMLR1 contents.

� OnCE Breakpoint Control Register (OBCR). Defines the memory breakpoint events. The 
OBCR can be read or written through the JTAG port. All OBCR bits are cleared on 
hardware reset.

Memory Address Latch 

PAB XAB YAB

Memory Bus Select

Memory Limit Register 1

Address Comparator 1

Memory Limit Register 0

Address Comparator 0

TDITDO

TCK

Breakpoint Counter 

Memory
Breakpoint
Selection

DEC

Breakpoint

Count=0 ISBKPT

Occurred

N,V

N,V

Breakpoint Control 

TDI TDOTCK
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Figure 7-10.  OnCE Breakpoint Control Register (OBCR

Table 7-9.   OnCE Breakpoint Control Register (OBCR) Bit Definitions 

Bit Number Bit Name Reset Value Description

23–12 0 Reserved. Write to zero for future compatibility.

11–10 BT 0 Breakpoint Event Bits  
Define the sequence between breakpoints 0 and 1. If the condition defined by 
BT[1–0] is met, then the Breakpoint Counter (OMBC) is decremented.

BT[1–0] Description

00 Breakpoint 0 and Breakpoint 1

01 Breakpoint 0 or Breakpoint 1 

10 Breakpoint 1 after Breakpoint 0

11 Breakpoint 0 after Breakpoint 1

9–8 CC1 0 Breakpoint 1 Condition Code
Define the condition of the comparison between the current memory address 
(OMAL) and the OnCE Memory Limit Register 1 (OMLR1).

CC1[1–0] Description

00 Breakpoint on not equal

01 Breakpoint on equal

10 Breakpoint on less than

11 Breakpoint on greater than

7–6 RW1 0 Breakpoint 1 Read/Write
Define memory breakpoint 1 to occur when a memory address access is 
performed for read, write or both.

RW1[1–0] Description

00 Breakpoint disabled

01 Breakpoint on write access

10 Breakpoint on read access

11 Breakpoint read or write access

23 22 21 20 19 18 17 16 15 14 13 12

11 10 9 8 7 6 5 4 3 2 1 0

BT1 BT0 CC11 CC10 RW11 RW10 CC01 CC00 RW01 RW00 MBS1 MBS0

Reserved bit. Read as zero; write to zero for future compatibility
DSP56300 Family Manual, Rev. 5
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7.2.2.1   OnCE Memory Breakpoint Counter (OMBC) 

The OnCE Memory Breakpoint Counter is a 24-bit counter that is loaded with a value equal to 
the number of times minus one that a memory access event should occur before a memory 
breakpoint is declared. The memory access event is specified by the OBCR and by the memory 
limit registers. On each occurrence of the memory access event, the breakpoint counter 
decrements. When the counter reaches 0 and a new event occurs, the chip enters Debug mode. 
The OMBC can be read or written through the JTAG port. Each time the limit register changes or 
a different breakpoint event is selected in the OBCR, the breakpoint counter must be written 
afterwards. This ensures that the OnCE breakpoint logic is reset and that no previous events can 
affect the new breakpoint event selected. The breakpoint counter is cleared by hardware reset.

7.2.3   Cache Support

To keep track of the cache contents and status, the eight Tag values, Tag lock/unlock status, and 
LRU status can be read via the OnCE module. Nine 24-bit registers are implemented as a circular 

5–4 CC0 0 Breakpoint 0 Condition Code
Define the condition of the comparison between the current Memory Address 
(OMAL) and the Memory Limit Register 0 (OMLR0). 

CC0[1–0] Description

00 Breakpoint on not equal

01 Breakpoint on equal

10 Breakpoint on less than

11 Breakpoint on greater than

3–2 RW0 0 Breakpoint 0 Read/Write
Define the memory breakpoint 0 to occur when a memory address access is 
performed for read, write, or both. 

RW0[1–0] Description

00 Breakpoint disabled

01 Breakpoint on write access

10 Breakpoint on read access

11 Breakpoint on read or write access

1–0 MBS 0 Memory Breakpoint
Enable memory breakpoints 0 and 1, allowing them to occur when a memory 
access is performed on P, X, or Y memory.

MBS[1–0] Description

00 Reserved

01 Breakpoint on P access

10 Breakpoint on X access

11 Breakpoint on Y access 

Table 7-9.   OnCE Breakpoint Control Register (OBCR) Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description
DSP56300 Family Manual, Rev. 5
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buffer with a 4-bit counter. All registers have the same address, but any access to the Tag buffer 
increments the counter, thus pointing to the next register in the circular buffer. When Debug 
mode is exited, the counter is cleared, so when Debug mode is re-entered, the first read from the 
Tag buffer address always starts from the first register of the nine (Tag number 0) and circles 
continuously among these nine registers. The register mapping in the circular Tag buffer is 
shown in Figure 7-11.

At any time, at least one LRU bit in the LRU/Lock Status Register is set, but multiple LRU bits 
can be set at the same time because locked sectors can be the Least Recently Used sector even 
though they cannot be replaced. Therefore, the next sector to be replaced is the only sector whose 
LRU bit is set and whose lock bit is cleared. The one exception to this rule occurs when all eight 
sectors are locked and LRU, in which case there is no next sector to be replaced, because no 
sector can be replaced until at least one sector is unlocked.

Figure 7-11.  Circular Tags Buffer (TAGB)

TAG number 0

023

msp lsb 0 0

7 6

TAG number 1msb lsb 0 0

TAG number 2msb lsb 0 0

TAG number 3msb lsb 0 0

TAG number 4msb lsb 0 0

TAG number 5msb lsb 0 0

TAG number 6msb lsb 0 0

TAG number 7msb lsb 0 0

lock lock 0 0
0 0 1 7 7
lru lru lru LRU/LOCK status

23 22 21 811 7 0

lock
1

20
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7.2.3.1   OnCE Trace Logic

The 24-bit OnCE Trace Counter (OTC) can be read or written through the JTAG port. If N 
instructions are to be executed before Debug mode is entered, the Trace Counter should be 
loaded with N – 1. The Trace Counter is cleared by hardware reset. When the OnCE Trace Logic 
is used, instructions can execute in single or multiple steps. The OnCE Trace Logic causes the 
chip to enter Debug mode after one or more instructions execute and to wait for OnCE 
commands from the debug serial port. The OnCE Trace Logic block diagram is shown in Figure 
7-12.

Figure 7-12.  OnCE Trace Logic Block Diagram

Trace mode has an associated counter so that more than one instruction can be executed before 
returning to Debug mode. The counter allows you to take multiple real-time instruction steps 
before entering Debug mode. This feature helps you to debug sections of code that do not have a 
normal flow or are hanging up in infinite loops. The Trace Counter also enables you to count the 
number of instructions executed in a code segment.

To enable Trace mode, the counter is loaded with a value, the program counter is set to the start 
location of the instruction(s) to be executed real-time, the TME bit is set in the OSCR and the 
DSP56300 core exits Debug mode by executing the appropriate command issued by the external 
command controller.

When Debug mode is exited, the counter decrements after each execution of an instruction. 
Interrupts are serviceable and all instructions executed—including fast interrupt services and 
repeated instructions—decrement the Trace Counter. When it decrements to 0, the DSP56300 
core re-enters Debug mode, the Trace Occurrence bit (TO) in the OSCR is set, the Core Status 
bits OS[1–0] are set to 11, and the DE pin (if provided) is asserted to indicate that the DSP56300 
core has entered Debug mode and is requesting service.

TDI

TDO

TCK

Trace Counter
DEC

End of Instruction

Count = 0

ISTRACE
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7.2.4   Methods of Entering Debug Mode

The chip acknowledges entering Debug mode by setting the Core Status bits OS1 and OS0 and 
asserting the DE line. This informs the external command controller that the chip is in Debug 
mode and awaiting commands. The DSP56300 core can disable the OnCE module if the ROM 
Security option is implemented. If the ROM Security is implemented, the OnCE module remains 
inactive until the DSP56300 core executes a write operation to the OGDBR. Following is a list of 
ways to enter Debug mode:

� External Debug Request During RESET Assertion. Holding the DE line asserted during the 
assertion of RESET causes the chip to enter the Debug mode. After receiving the 
acknowledge, the external command controller must negate the DE line before sending the 
first command. In this case, the chip does not execute any instruction before entering the 
Debug mode.

� External Debug Request During Normal Activity. Holding the DE line asserted during 
normal chip activity causes the chip to finish executing the current instruction and then 
enter Debug mode. After receiving the acknowledge, the external command controller 
must negate the DE line before sending the first command. This process is the same for any 
newly fetched instruction, including instructions fetched by the interrupt processing or 
instructions that are aborted by the interrupt processing. In this case the chip finishes 
executing the current instruction and stops after the newly fetched instruction enters the 
instruction latch. 

� Executing the JTAG DEBUG_REQUEST Instruction. Executing the JTAG instruction 
DEBUG_REQUEST asserts an internal debug request signal. The chip finishes executing 
the current instruction and stops after the newly fetched instruction enters the instruction 
latch. After entering the Debug mode, the Core Status bits OS1 and OS0 are set and the DE 
line is asserted, thus acknowledging the external command controller that the Debug mode 
of operation has been entered.

� External Debug Request During Stop. Executing the JTAG instruction 
DEBUG_REQUEST (or asserting DE) while the chip is in Stop state (that is, has executed 
a STOP instruction) causes the chip to exit the Stop state and enter Debug mode. After 
receiving the acknowledge, the external command controller must negate DE before 
sending the first command. In this case, the chip finishes executing the STOP instruction 
and halts after the next instruction enters the instruction latch.

� External Debug Request During Wait. Executing the JTAG instruction 
DEBUG_REQUEST (or asserting DE) while the chip is in the Wait state (that is, has 
executed a WAIT instruction) causes the chip to exit the Wait state and enter Debug mode. 
After receiving the acknowledge, the external command controller must negate DE before 
sending the first command. In this case, the chip completes the execution of the WAIT 
instruction and halts after the next instruction enters the instruction latch. 
DSP56300 Family Manual, Rev. 5
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� Software Request During Normal Activity. Upon executing the DSP56300 core instruction 
DEBUG (or DEBUGcc when the specified condition is true), the chip enters Debug mode 
after the instruction following the DEBUG instruction enters the instruction latch.

� Enabling Trace Mode. When the Trace mode mechanism is enabled and the Trace 
Counter is greater than 0, the Trace Counter decrements after each instruction executes. 
Execution of an instruction when the Trace Counter = 0 causes the chip to enter the Debug 
mode after completing the execution of the instruction. Only instructions actually 
executed cause the Trace Counter to decrement. An aborted instruction does not 
decrement the Trace Counter and does not cause the chip to enter Debug mode.

� Enabling Memory Breakpoints. When the memory breakpoint mechanism is enabled with 
a Breakpoint Counter value of 0, the chip enters Debug mode after executing the 
instruction that caused the memory breakpoint to occur. For breakpoints on executed 
Program memory fetches, the breakpoint is acknowledged immediately after the fetched 
instruction executes. For breakpoints on accesses to X, Y or P memory spaces by MOVE 
instructions, the breakpoint is acknowledged after execution of the instruction following 
the instruction that accessed the specified address.

To restore the pipeline and to resume normal chip activity upon returning from the Debug mode, 
a number of on-chip registers store the chip pipeline status. Figure 7-13 shows the block diagram 
of the Pipeline Information Registers with the exception of the PAB registers, which are shown in 
Figure 7-8 on page 7-25. 

Figure 7-13.  OnCE Pipeline Information and GDB Registers

� OnCE PDB Register (OPDBR). A 24-bit latch that stores the value of the Program Data 
Bus generated by the last program memory access of the core before Debug mode is 
entered. The OPDBR is read or written through the JTAG port. This register is affected by 
the operations performed during the Debug mode and must be restored by the external 
command controller when returning to Normal mode.

� OnCE PIL Register (OPILR). A 24-bit latch that stores the value of the Instruction Latch 
before Debug mode is entered. OPILR can only be read through the JTAG port. Since the 

PDB Register (OPDBR)

GDB Register (OGDBR)

TDI

TDO TCK
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PIL

PDB

GDB
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Instruction Latch is affected by the operations performed during Debug mode, it must be 
restored by the external command controller when returning to Normal mode. Since there 
is no direct write access to the Instruction Latch, restoration is accomplished by writing to 
the OPDBR with no-GO and no-EX. The data written on PDB is transferred into the 
Instruction Latch. 

� OnCE GDB Register (OGDBR). A 24-bit latch that can only be read through the JTAG 
port. The OGDBR is not actually required for a pipeline status restore, but is required for 
passing information between the chip and the external command controller. The OGDBR 
is mapped on the X internal I/O space at address $FFFFFC. When the external command 
controller needs the contents of a register or memory location, it forces the chip to execute 
an instruction that brings this information to the OGDBR. Then the contents of the 
OGDBR are delivered serially to the external command controller by the command READ 
GDB REGISTER.

7.2.5   Trace Buffer

To ease debugging activity and keep track of program flow, the DSP56300 core provides a 
number of on-chip dedicated resources. Three read-only PAB registers give pipeline information 
when Debug mode is entered, and a Trace Buffer stores the address of the last instruction 
executed, as well as the addresses of the last eight change of flow instructions.

� OnCE PAB Register for Fetch (OPABFR). A 24-bit register that stores the address of the 
last instruction whose fetch started before Debug mode was entered. The OPABFR can 
only be read through the JTAG port. This register is not affected by the operations 
performed during Debug mode.

� PAB Register for Decode (OPABDR). A 24-bit register that stores the address of the 
instruction currently on the PDB. This is the instruction whose fetch completed before the 
chip entered Debug mode. The OPABDR can only be read through the JTAG port. This 
register is not affected by the operations performed during Debug mode.

� PAB Register for Execute (OPABEX). A 24-bit register that stores the address of the 
instruction currently in the Instruction Latch. This is the instruction that would have 
decoded and executed if the chip had not entered Debug mode. The OPABEX register can 
only be read through the JTAG port. This register is not affected by the operations 
performed during Debug mode.

The Trace Buffer stores the addresses of the last twelve change of flow instructions that executed, 
as well as the address of the last executed instruction. It is implemented as a circular buffer 
containing twelve 25-bit registers and one 4-bit counter. All the registers have the same address, 
but any read access to the Trace Buffer address causes the counter to increment, thus pointing to 
the next Trace Buffer register. The registers are serially available to the external command 
controller through their common Trace Buffer address. Figure 8 shows the block diagram of the 
Trace Buffer. The Trace Buffer is not affected by the operations performed during Debug mode 
DSP56300 Family Manual, Rev. 5
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except for the Trace Buffer pointer increment when reading the Trace Buffer. When Debug mode 
is entered, the Trace Buffer counter points to the Trace Buffer register containing the address of 
the last executed instructions. The first Trace Buffer read obtains the oldest address and the 
following Trace Buffer reads get the other addresses from the oldest to the newest, in order of 
execution.

Note: To ensure Trace Buffer coherence, a complete set of twelve reads of the Trace Buffer 
must be performed because each read increments the Trace Buffer pointer, thus 
pointing to the next location. After twelve reads, the pointer indicates the same 
location as before starting the read procedure.

On any change of flow instruction, the Trace Buffer stores both the address of the change of flow 
instruction, as well as the address of the target of the change of flow instruction. In the case of 
conditional change of flows, the address of the change of flow instruction is always stored 
(regardless of the fact that the change of flow is true or false), but if the conditional change of 
flow is false (that is, not taken) the address of the target is not stored. In order to facilitate the 
program trace reconstruction, every Trace Buffer location has an additional invalid bit (the 25th 
bit). If a conditional change of flow instruction has a condition false, the invalid bit is set, thus 
marking this instruction as not taken. Therefore, it is imperative to read twenty-five bits of data 
when reading the twelve Trace Buffer registers. Since data is read LSB first, the invalid bit is the 
first bit to be read.

7.2.6   OnCE Commands and Serial Protocol 

To permit an efficient means of communication between the external command controller and the 
DSP56300 core chip, the following protocol is adopted. Before starting any debugging activity, 
the external command controller must wait for an acknowledge on the DE line indicating that the 
chip has entered Debug mode (optionally the external command controller can poll the OS1 and 
OS0 bits in the JTAG instruction shift register). The external command controller communicates 
with the chip by sending 8-bit commands that can be accompanied by 24 bits of data. Both 
commands and data are sent or received Least Significant Bit first. After sending a command, the 
external command controller should wait for the DSP56300 core chip to acknowledge execution 
of the command. The external command controller can send a new command only after the chip 
acknowledges execution of the previous command. 
DSP56300 Family Manual, Rev. 5
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Figure 7-8.   OnCE Trace Buffer Block Diagram

The OnCE commands are classified as follows:

� Read commands (when the chip delivers the required data)

� Write commands (when the chip receives data and writes the data in one of the OnCE 
registers)

� Commands that do not have data transfers associated with them

The commands are 8 bits long and have the format shown in Figure 7-7-7, OnCE Command 
Register (OCR), on page 7-12.
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TDI
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7.2.7   OnCE Module Examples

The following examples of debugging procedures using the OnCE module assume that the DSP 
is the only device in the JTAG chain. If more than one device in the chain exists (other DSPs or 
even other devices), the other devices can be forced to execute the JTAG BYPASS instruction so 
that their effect in the serial stream is one bit per additional device. The events select-DR, 
select-IR, update-DR, shift-DR, and so on refer to bringing the JTAG TAP in the corresponding 
state.

7.2.7.1   Checking Whether the Chip Has Entered Debug Mode

There are two methods of verifying that the chip has entered Debug mode:

� Every time the chip enters Debug mode, a pulse is generated on the DE line. A pulse is also 
generated every time the chip acknowledges the execution of an instruction in Debug 
mode. An external command controller can connect the DE line to an interrupt pin to sense 
the acknowledge.

� An external command controller can poll the JTAG instruction shift register for the status 
bits OS[1–0]. When the chip is in Debug mode these bits are set to the value 11.

In the following paragraphs, the ACK notation denotes the operation performed by the command 
controller to check whether the chip has entered Debug mode (either by sensing DE or by polling 
JTAG instruction shift register).

7.2.7.2   Polling the JTAG Instruction Register

To poll the core status bits in the JTAG Instruction Register, the following sequence must be 
performed:

1. Select shift-IR. Passing through capture-IR loads the core status bits into the instruction 
shift register.

2. Shift in ENABLE_ONCE. While shifting-in the new instruction the captured status 
information is shifted out. Pass through update-IR.

3. Return to Run-Test/Idle.

The external command controller can analyze the information shifted out and detect whether the 
chip has entered Debug mode.

7.2.7.3   Saving Pipeline Information

The debugging activity is accomplished by DSP56300 core instructions supplied from the 
external command controller. Therefore the current state of the DSP56300 core pipeline must be 
saved before the debug activity starts and the state must be restored before returning to the 
Normal Mode of operation. The following description of the saving procedure assumes that 
DSP56300 Family Manual, Rev. 5
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ENABLE_ONCE has executed and Debug mode has been entered and verified as described in 
Section 7.2.7.1, Checking Whether the Chip Has Entered Debug Mode, on page 7-26:

1. Select shift-DR. Shift in the Read PDB. Pass through update-DR.

2. Select shift-DR. Shift out the 24-bit OPDB register. Pass through update-DR.

3. Select shift-DR. Shift in the Read PIL. Pass through update-DR.

4. Select shift-DR. Shift out the 24-bit OPILR register. Pass through update-DR.

You do not need to verify acknowledge between Steps 1 and 2 or between Steps 3 and 4, because 
completion is guaranteed by design.

7.2.7.4   Reading the Trace Buffer

An optional step during debugging activity is reading the information associated with the Trace 
Buffer in order to enable an external program to reconstruct the full trace of the executed 
program. In the following description of the read Trace Buffer procedure, assume that all actions 
described in Section 7.2.7.3 have executed:

1. Select shift-DR. Shift in the Read PABFR. Pass through update-DR.

2. Select shift-DR. Shift out the 24-bit OPABFR register. Pass through update-DR.

3. Select shift-DR. Shift in the Read PABDR. Pass through update-DR.

4. Select shift-DR. Shift out the 24-bit OPABDR register. Pass through update-DR.

5. Select shift-DR. Shift in the Read PABEX. Pass through update-DR.

6. Select shift-DR. Shift out the 24-bit OPABEX register. Pass through update-DR.

7. Select shift-DR. Shift in the Read FIFO. Pass through update-DR.

8. Select shift-DR. Shift out the 25 bit FIFO register. Pass through update-DR.

9. Repeat Steps 7 and 8 for the entire FIFO (12 times).

You must read the entire FIFO since each read increments the FIFO pointer thus pointing to the 
next FIFO location. At the end of this procedure the FIFO pointer points back to the beginning of 
the FIFO. The information read by the external command controller contains the address of the 
newly fetched instruction, the address of the instruction currently on the PDB, the address of the 
instruction currently on the instruction latch, and the addresses of the last twelve instructions that 
have been executed. A user program can now reconstruct the flow of a full trace based on this 
information and on the original source code of the currently running program.
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7.2.7.5   Displaying a Specified Register

The DSP56300 must be in Debug mode and all actions described in Section 7.2.7.3 must have 
been executed:

1. Select shift-DR. Shift in the Write PDB with GO no-EX. Pass through update-DR.

2. Select shift-DR. Shift in the 24-bit opcode: MOVE reg, X:OGDB. Pass through 
update-DR to actually write OPDBR and thus begin executing the MOVE instruction.

3. Wait for DSP to reenter Debug mode (wait for DE or poll core status).

4. Select shift-DR and shift in READ GDB REGISTER. Pass through update-DR (this 
selects OGDBR as the data register for read).

5. Select shift-DR. Shift out the OGDBR contents. Pass through update-DR. Wait for next 
command.

7.2.7.6   Displaying X Memory Area Starting at Address $xxxxxx

The DSP56300 must be in Debug mode and all actions described in Section 7.2.7.3 must be 
complete. Since R0 is used as pointer for the memory, R0 is saved first:

1. Select shift-DR. Shift in the Write PDB with GO no-EX. Pass through update-DR.

2. Select shift-DR. Shift in the 24-bit opcode: MOVE R0, X:OGDB. Pass through 
update-DR to actually write OPDBR and thus begin executing the MOVE instruction.

3. Wait for DSP to reenter Debug mode (wait for DE or poll core status).

4. Select shift-DR and shift in READ GDB REGISTER. Pass through update-DR (this 
selects OGDBR as the data register for read).

5. Select shift-DR. Shift out the OGDBR contents. Pass through update-DR. R0 is now 
saved.

6. Select shift-DR. Shift in the Write PDB with no-GO no-EX. Pass through update-DR.

7. Select shift-DR. Shift in the 24-bit opcode: MOVE #$xxxxxx,R0. Pass through 
update-DR to actually write OPDBR.

8. Select shift-DR. Shift in the Write PDB with GO no-EX. Pass through update-DR.

9. Select shift-DR. Shift in the second word of the 24-bit opcode: MOVE #$xxxxxx,R0 
(the $xxxxxx field). Pass through update-DR to actually write OPDBR and execute the 
instruction. R0 is loaded with the base address of the memory block to be read.

10. Wait for DSP to reenter Debug mode (wait for DE or poll core status).

11. Select shift-DR. Shift in the Write PDB with GO no-EX. Pass through update-DR.

12. Select shift-DR. Shift in the 24-bit opcode: MOVE X:(R0)+, X:OGDB. Pass through 
update-DR to actually write OPDBR and thus begin executing the MOVE instruction.
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13. Wait for DSP to reenter Debug mode (wait for DE or poll core status).

14. Select shift-DR and shift in READ GDB REGISTER. Pass through update-DR (this 
selects OGDBR as the data register for read).

15. Select shift-DR. Shift out the OGDBR contents. Pass through update-DR. The memory 
contents of address $xxxxxx has been read.

16. Select shift-DR. Shift in the NO SELECT with GO no-EX. Pass through update-DR. 
This re-executes the same MOVE X:(R0)+, X:OGDB instruction.

17. Repeat from Step 14 to complete the reading of the entire block. When finished, restore 
the original value of R0.

7.2.7.7   Returning From Debug Mode to Normal Mode to Current Program

When you have finished examining the current state of the machine, changed some of the 
registers, and wish to return and continue execution of its program form the point where it 
stopped, you must restore the machine pipeline and enable normal instruction execution, as 
follows:

1. Select shift-DR. Shift in the Write PDB with no-GO no-EX. Pass through update-DR.

2. Select shift-DR. Shift in the 24 bits of saved PIL (instruction latch value). Pass through 
update-DR to actually write the Instruction Latch.

3. Select shift-DR. Shift in the Write PDB with GO and EX. Pass through update-DR.

4. Select shift-DR. Shift in the 24 bits of saved PDB. Pass through update-DR to actually 
write the PDB. At the same time the internally saved value of the PAB is driven back 
from the PABFR register onto the PAB, the ODEC releases the chip from Debug mode 
and the normal flow of execution is continued.

7.2.7.8   Returning from Debug Mode to Normal Mode to a New Program

When you have finished examining the current state of the machine, changed some of the 
registers and wish to start the execution of a new program (the GOTO command), you must force 
a change-of-flow to the starting address of the new program ($xxxxxx), as follows:

1. Select shift-DR. Shift in the Write PDB with no-GO no-EX. Pass through update-DR.

2. Select shift-DR. Shift in the 24 bits of $0AF080 which is the opcode of the JUMP 
instruction. Pass through update-DR to actually write the Instruction Latch.

3. Select shift-DR. Shift in the Write PDB-GO-TO with GO and EX. Pass through 
update-DR.

4. Select shift-DR. Shift in the 24 bits of $xxxxxx. Pass through update-DR to actually 
write the PDB. At this time the ODEC releases the chip from Debug mode and the 
execution is started from the address $xxxxxx.
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If Debug mode entry occurred during a DO LOOP, REP instruction, or other special case (that is, 
interrupt processing, STOP, WAIT, conditional branching, and so on), you must reset the 
DSP56300 before executing the new program.

7.3 Examples of JTAG-OnCE Interaction

This section presents the details of the JTAG-OnCE interaction by describing the TMS 
sequencing required to achieve the communication described in Section 7.2.7. The external 
command controller can force the DSP56300 into Debug mode by executing the JTAG 
DEBUG_REQUEST instruction. To verify that the DSP56300 has entered Debug mode, the 
external command controller must poll the status by reading the OS[1–0] bits in the JTAG 
Instruction Shift Register. The TMS sequencing is listed in Figure 7-7-1. The sequencing for 
enabling the OnCE module is described in Table 7-2. After executing the JTAG instructions 
DEBUG_REQUEST and ENABLE_ONCE and after the core status is polled to verify that the 
chip is in Debug mode, the pipeline saving procedure must occur. The TMS sequencing for this 
procedure is listed in Table 7-3.

Table 7-1.  TMS Sequencing for DEBUG_REQUEST and Poll the Status 

Step TMS JTAG OnCE Note

a 0 Run-Test/Idle Idle

b 1 Select-DR-Scan Idle

c 1 Select-IR-Scan Idle

d 0 Capture-IR Idle status is sampled in shifter

e 0 Shift-IR Idle the 4 bits of the JTAG DEBUG_REQUEST (0111) are 
shifted in while status is shifted out

..................................................................

e 0 Shift-IR Idle

f 1 Exit1-IR Idle

g 1 Update-IR Idle debug req is generated

h 1 Select-DR-Scan Idle

i 1 Select-IR-Scan Idle

j 0 Capture-IR Idle status is sampled in shifter

k 0 Shift-IR Idle the 4 bits of the JTAG DEBUG_REQUEST (0111) are 
shifted in while status is shifted out

..................................................................

k 0 Shift-IR Idle

l 1 Exit1-IR Idle

m 1 Update-IR Idle

n 0 Run-Test/Idle Idle This step is repeated enabling an external command 
controller to poll the status

................................................

n 0 Run-Test/Idle Idle
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In Step n the external command controller verifies that OS[1–0] = 11, indicating that the chip has 
entered the Debug mode. If the chip has not yet entered the Debug mode, the external command 
controller goes to Step b, Step c, and so forth, until the Debug mode is acknowledged.

s 

Table 7-2.  TMS Sequencing for ENABLE_ONCE 

Step TMS JTAG OnCE Note

a 1 Test-Logic-Reset Idle

b 0 Run-Test/Idle Idle

c 1 Select-DR-Scan Idle

d 1 Select-IR-Scan Idle

e 0 Capture-IR Idle Capture core status bits

f 0 Shift-IR Idle the 4 bits of the JTAG ENABLE_ONCE instruction 
(0110) are shifted into the JTAG instruction register 
while status is shifted outg 0 Shift-IR Idle

h 0 Shift-IR Idle

i 0 Shift-IR Idle

j 1 Exit1-IR Idle

k 1 Update-IR Idle OnCE is enabled

l 0 Run-Test/Idle Idle This step can be repeated enabling an external 
command controller to poll the status

................................................

l 0 Run-Test/Idle Idle

Table 7-3.  TMS Sequencing for Reading Pipeline Register  

Step TMS JTAG OnCE Note

a 0 Run-Test/Idle Idle

b 1 Select-DR-Scan Idle

c 0 Capture-DR Idle

d 0 Shift-DR Idle the 8 bits of the OnCE “Read PIL” 
(10001011) are shifted in 

..................................................................

d 0 Shift-DR Idle

e 1 Exit1-DR Idle

f 1 Update-DR Execute “Read PIL” PIL value is loaded in shifter

g 1 Select-DR-Scan Idle

h 0 Capture-DR Idle

i 0 Shift-DR Idle the 24 bits of the PIL are shifted out (24 
steps)

..................................................................

i 0 Shift-DR Idle

j 1 Exit1-DR Idle
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During Step v, the external command controller stores the pipeline information and afterwards it 
can proceed with the debug activities, as requested by the user.

7.3.1   Address Trace Mode

Address Trace mode allows you to determine the address of internal accesses. The mode is 
disabled after reset and enabled by setting the ATE bit in the Operating Mode Register (OMR). 
When the mode is enabled and there is no simultaneous external access, the internal access is 
reflected on the external address lines. Use the status of BR to determine whether the access 
referenced by A[0–23]/A[0–17] is internal or external, when this mode is enabled. BR is 
deasserted for internal accesses and asserted for external accesses.

k 1 Update-DR Idle

l 1 Select-DR-Scan Idle

m 0 Capture-DR Idle

n 0 Shift-DR Idle the 8 bits of the OnCE “Read PDB” 
(10001010) are shifted in 

..................................................................

n 0 Shift-DR Idle

o 1 Exit1-DR Idle

p 1 Update-DR Execute “Read PDB” PDB value is loaded in shifter

q 1 Select-DR-Scan Idle

r 0 Capture-DR Idle

s 0 Shift-DR Idle The 24 bits of the PDB are shifted out 
(24 steps)

..................................................................

s 0 Shift-DR Idle

t 1 Exit1-DR Idle

u 1 Update-DR Idle

v 0 Run-Test/Idle Idle This step can be repeated enabling an 
external command controller to analyze 
the information.................................................

v 0 Run-Test/Idle Idle

Table 7-3.  TMS Sequencing for Reading Pipeline Register  (Continued)

Step TMS JTAG OnCE Note
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Instruction Cache 8
The instruction cache (ICache) acts as a buffer memory between external memory and the DSP 
core processor. When code executes, the code words at the locations requested by the instruction 
set are copied into the ICache for direct access by the core processor. If the same code is used 
frequently in a set of program instructions, storage of these instructions in the cache yields an 
increase in throughput because external bus accesses are eliminated. In the DSP56300 instruction 
set are specific cache instructions that permit you to lock sectors of the cache and to flush the 
cache contents under software control. When enabled, the ICache comprises 1024 24-bit words 
(1 K words) of program memory that is not accessible to the user. The address space used by the 
ICache in internal program memory is reallocated to external program memory when the ICache 
is enabled. The enabled ICache has the following features:

� Software-controlled Cache Enable (CE) bit in the Extended Mode Register (EMR) in the 
Status Register (SR)1

� Eight-way, fully associative ICache with sectored placement policy

� 1- to 4-word transfer granularity

� Least Recently Used (LRU) sector replacement algorithm

� Transparent operation (that is, no user management is required) 

� Individual sector locking/unlocking

� Global cache flush controlled by software

� Cache controller status observable via the JTAG/OnCE port 

Note: Supported ICache size is device-dependent. Refer to the device-specific technical data 
sheet to determine the ICache size for a device.

8.1 Instruction Cache Architecture

The ICache is composed of the following:

� Memory Array. The actual memory space defined for use by the Cache Controller is 1024 
24-bit words and is logically divided into eight 128-word cache sectors. The sector 
placement algorithm is fully associative. Each word has an associated source address to 

1. For details on the Status Register (SR), see Section 5.4.1.2, Status Register (SR), on page 5-10.
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identify the cache contents. Since the Cache Controller treats Program RAM as 128-word 
sectors, the 24-bit address is divided into the following two fields:

— VBIT field: 7 LSBs for the word displacement in the sector
— TAG field: 17 MSBs for the sector base address

� Tag Register File. Contains the TAG fields of the base addresses of the memory sectors 
currently mapped into the cache.

� Valid Bit Array. Contains a set of valid bits for each possible address in a referenced 
memory sector. There are valid bits arranged as eight banks of 128 bits each, one bank for 
every sector. A bit is set if the address location is already in the cache. If the bit is cleared, 
an external memory fetch is required. Notice that you cannot directly access these valid 
bits. Processor hardware reset clears the valid bits to indicate that the Program RAM 
content is not initialized.

� Cache Controller. When the Program Control Unit (PCU) initiates a program fetch 
request, the Cache Controller compares the TAG field of the requested address to tags in 
each of the eight Memory Array sectors. All eight sectors are searched in parallel using the 
eight comparators in the Cache Controller. Then the Cache Controller determines whether 
the request is a cache hit or miss. For cache hits, the address contents are transferred as 
directed by the PCU for execution. For cache misses, the Cache Controller initiates a fetch 
in coordination with the Sector Replacement Unit.

� Sector Replacement Unit (SRU). When a sector miss occurs1, the SRU determines which 
sector is flushed from the cache by monitoring requested addresses and sector usage and 
replacing the least recently used (LRU) sector. The LRU stack status is affected by 
instruction fetch operations and PFLUSH, PLOCK, and PUNLOCK program cache 
instructions. Locked cache sectors continue to move up and down the LRU stack, but 
when the LRU sector is picked, locked sectors are skipped. When initialized by reset, the 
LRU stack default is from sector number 0 (Most Recently Used) to sector number 7 
(LRU).

Figure 8-1 shows a block diagram of the ICache.

1. If there is no match between the tag field and all sector tag registers, meaning that the memory sector containing 
the requested word is not present in the cache, the situation is called a sector miss. A sector miss is another form of 
a cache miss.
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8.2 Cache Programming Model

The ICache is controlled by two control bits:

� Cache Enable (CE) bit in the Extended Mode Register (EMR) part of the Status Register 
(SR Bit 19)

When CE is cleared, the ICache is disabled. When CE is set, the ICache is enabled.

� Burst Enable (BE) bit in the Extended Operating Mode (EOM) part of the Operating Mode 
Register (OMR Bit 10)

When BE is cleared, the ICache transfer on a miss is one word. When BE is set, the 
ICache transfer on a miss increases to a burst block of one to four words.

To ensure proper operation, do not clear the Cache Enable mode (CE bit in SR) while Burst mode 
is enabled (OMR[BE] = 1). Refer to Chapter 5, Program Control Unit, for details on the SR and 
OMR.

� The instruction set supports the ICache via the following instructions: 

— PLOCK
— PLOCKR
— PUNLOCK
— PUNLOCKR
— PFREE
— PFLUSH
— PFLUSHUN

Figure 8-1.  Instruction Cache Block Diagram

24-bit Program Address

Tag Register/Comparator 0

Hit/Miss

Instruction Word 0v0
Instruction Word 1v1

Instruction Word 127/255v127/255

TAG Field  
17 MSBs (for 1 K words 

VBIT Field 
7 LSBs (for 1 K words 
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8.2.1   Cache Operation

When enabled, the cache is involved in every instruction fetch. Its actions depend on several 
conditions, including whether the program address is (cache hit) or is not (cache miss) in the 
ICache and whether Burst mode is enabled or disabled. The following paragraphs describe the 
conditions under which the ICache operates.

8.2.1.1   Program Fetch

When the core generates an address for an instruction fetch, the cache controller compares its 
TAG field to the tag values currently stored in the Tag Register File. 

8.2.1.2   Cache Hit

If a tag match (that is, sector hit) exists, then the valid bit of the corresponding word in that cache 
sector is checked using the VBIT field as an address to the Valid Bit Array. If the valid bit is set, 
meaning the word in the cache is valid, then that word is fetched from the cache location 
corresponding to the desired address. This situation is called a cache hit, meaning that both 
corresponding sector and corresponding instruction word are present and valid in the ICache. The 
Sector Replacement Unit (SRU) flags the sector as the Most Recently Used (MRU).

8.2.1.3   Cache Word Miss When Burst Mode Is Disabled

If a tag match (that is, sector hit) exists, and Burst Mode is disabled, but the desired word is not 
flagged as valid (corresponding valid bit is cleared), then the cache initiates a read access to the 
external program memory, introducing wait states into the pipeline. The number of wait states is 
the number of wait states programmed into the Bus Control registers (BCRs) plus one, reflecting 
the type of memory used. The Sector Replacement Unit (SRU) flags the sector as the Most 
Recently Used (MRU), and the fetched instruction is sent to the core and copied to the relevant 
sector location. Then the valid bit of that word is set.

8.2.1.4   Cache Word Miss When Burst Mode Is Enabled

If a tag match (that is, sector hit) exists, and Burst Mode is enabled, but the desired word is not 
flagged as valid (that is, the corresponding valid bit is cleared), then the cache initiates a burst of 
up to four read accesses to the external program memory. The exact number of fetch requests 
depends on the value of the two LSBs of the address of the initiating fetch that was detected as a 
miss, as indicated in Table 8-1. 

Table 8-1.   Number of Required Fetches in Burst Mode  

Value of the 2 LSBs of 
the Requested Address

Number of Fetch Requests Initiated

00 Four requests are initiated

01 Three requests are initiated
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These external read accesses introduce wait states into the pipeline. The number of wait states for 
each fetch is the number of wait states that are programmed into the bus control registers (BCRs) 
plus one, reflecting the type of memory used. The Sector Replacement Unit (SRU) flags the 
sector as the Most Recently Used (MRU), and each of the fetched instructions is copied to the 
relevant sector location. Then the valid bit of that word is set. 

8.2.1.5   Sector Miss

If there is no match between the TAG field and all sector Tag registers, meaning that the memory 
sector containing the requested word is not in the cache, the situation is called a sector miss, 
which is another form of a cache miss. If a sector miss occurs, the SRU selects the sector to be 
replaced. The cache controller then flushes the selected cache sector by clearing all 
corresponding valid bits, loads the corresponding Tag register with the new TAG field, and 
simultaneously initiates an access to the external Program RAM, as described in Section 8.2.1.3 
and Section 8.2.1.4. The sector is flagged as MRU, the fetched instruction is sent to the core and 
copied to the relevant sector location, and the valid bit of that word is set.

8.2.2   Default Mode After Hardware Reset

After hardware reset, the ICache is disabled. The cache is initialized as follows:

� All valid bits are cleared.

� All Tag Registers are initialized to ‘all ones,’ that is, $1FFFF for a 1 K words cache 
(17-bit Tag Register).

� The LRU stack holds a default descending order of sectors (from seven to zero).

� All cache sectors are in the unlocked state.

8.3 Cache Locking

Cache locking is useful for locking some time-critical code parts in the cache memory. When a 
cache sector is locked, the Sector Replacement Unit (SRU) cannot replace this sector, even if it 
becomes the Least Recently Used (LRU) sector (bottom of LRU stack). A sector can be locked 
by the instructions PLOCK or PLOCKR. The operand for these instructions is an effective 
memory address (absolute or program counter-relative). The cache sector to which this address 
belongs, if one exists, is locked. If the specified effective address does not belong to one of the 
current cache sectors, a memory sector containing this address is allocated into the cache, thereby 

10 Two requests are initiated

11 Only one request is initiated (that is, same as if the Burst mode is disabled)

Table 8-1.   Number of Required Fetches in Burst Mode  (Continued)

Value of the 2 LSBs of 
the Requested Address

Number of Fetch Requests Initiated
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replacing the LRU cache sector. This cache sector is locked, but empty. If all the cache sectors 
are already locked, this memory sector is not allocated into the cache, and the lock operation is 
not executed. The locked cache sector becomes MRU. Locking a cache sector already in the 
cache does not affect its contents, the value of its valid bits, or the corresponding Tag Register 
contents. PLOCK and PLOCKR are detected as illegal opcodes when the ICache is not enabled. 
Issuing these instructions when the cache is disabled initiates the Illegal Interrupt. A distance of 
at least 3 instruction cycles (equivalent to three NOP instructions) should be maintained between 
an instruction that changes the value of the Cache Enable bit (CE) and one of the instructions 
PLOCK and PLOCKR.

8.4 Cache Unlocking

A locked sector can be unlocked to allow sector replacement from that cache sector. Unlocking 
can be performed in three different ways.

� A locked sector is unlocked by the PFREE, PUNLOCK, or PUNLOCKR instructions. The 
operands of the PUNLOCK and PUNLOCKR instructions are effective memory addresses 
(absolute or program counter-relative). The memory sector containing this address is 
allocated into a cache sector, if it is not already in a cache sector, and this cache sector is 
unlocked. If all the cache sectors are already locked, this memory sector is not allocated 
into the cache, and the unlock operation is not executed. The unlocked cache sector 
becomes MRU and is enabled for replacement by the LRU algorithm. Unlocking a locked 
cache sector using these instructions does not affect its contents, its tag, or its valid bits.

� All locked sectors are unlocked simultaneously using the instruction PFREE, which 
allows you to reset the locking mechanism. Unlocking the sectors using PFREE neither 
affects the sector contents (instructions already fetched into the sector storage area), valid 
bits, tags, nor the LRU stack status.

� The locked sectors are unlocked by the PFLUSH instruction. Unlocking the sectors via 
PFLUSH clears all the sectors’ valid bits and sets the LRU stack and Tag registers to their 
default values.

PFREE, PUNLOCK and PUNLOCKR are detected as illegal opcodes when the ICache is not 
enabled. Issuing these instructions when the cache is disabled initiates the Illegal Interrupt. A 
distance of at least three instruction cycles (equivalent to three NOP instructions) should be 
maintained between an instruction that changes the value of the Cache Enable bit (CE) and one of 
the instructions PFREE, PUNLOCK and PUNLOCKR.

8.5 Flushing the Cache

Executing the PFLUSH or PFLUSHUN instructions flushes the cache. Executing PFLUSH 
causes a global cache flush that brings the cache to the following hardware reset initial condition:

� All valid bits are cleared.
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� All Tag Registers are initialized to ‘all ones,’ that is, $1FFFF for a 1 K words cache 
(17-bit Tag Register).

� The LRU stack holds a default descending order of sectors (from 7 to 0).

� All cache sectors are in the unlocked state.

Executing PFLUSHUN causes a flush only to the unlocked sectors and initializes the cache as 
follows:

� All valid bits of the unlocked sectors are cleared.

� All Tag Registers of the unlocked sectors are initialized to ‘all ones,’ that is, $1FFFF for a 
1 K words cache (17-bit Tag Register).

� The LRU stack holds a default descending order of sectors (from 7 to 0).

Coherency between Program RAM mode and Cache mode is not supported by the ICache 
Controller. It is not possible to fill the cache while in Program RAM mode and use the contents 
after switching to Cache mode. The cache is automatically flushed when switching from Cache to 
Program RAM mode.

PFLUSH and PFLUSHUN are detected as illegal opcodes when the ICache is not enabled. 
Issuing these instructions when the cache is disabled initiates the Illegal Interrupt. At least three 
instruction cycles (equivalent to three NOP instructions) should be maintained between an 
instruction that changes the value of the Cache Enable bit (CE) and one of the instructions 
PFLUSH and PFLUSHUN.

8.6 Data Transfers to/from Instruction Cache 

Data transfers to/from the program memory can be accomplished by the DMA or by software, 
using MOVE instructions. Only PMOVE instructions can transfer data to/from the ICache.

8.6.1   DMA Transfers

DMA transfers have no effect on the Tag Register File, Valid Bit Array and LRU Stack, even 
when the cache is enabled. When the cache is disabled, the ICache memory space is considered 
part of the internal program memory space. DMA transfers to/from this space execute without 
any limitation. When the cache is enabled, the ICache memory space is considered part of the 
external program memory space. DMA transfers to/from this space execute through the external 
memory expansion port. Coherency between the external program memory and the contents of 
the ICache is not maintained.

8.6.2   Software-Controlled Transfers

The term “PMOVE” indicates use of a MOVE instruction to transfer data between the program 
memory space and any other source/destination. PMOVE data transfers do not affect the Tag 
Register File and LRU Stack, even if the cache is enabled. The term “PMOVEW” indicates a 
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PMOVE transfer with the program memory space as the destination. The term “PMOVER” 
indicates a PMOVE transfer with the program memory space as the source.

When the cache is disabled, the ICache memory space is considered part of the internal program 
memory space. PMOVER from this space or PMOVEW to this space execute without any 
limitation. When the cache is enabled, the cache controller checks the PMOVER transfers for a 
hit or miss:

� If the cache controller generates a hit on the program memory space address, the data is 
read from the cache memory array. Since PMOVE is not considered an instruction fetch 
operation, the LRU state is not changed by this transfer.

� If the cache controller generates a miss on the program memory space address, the data is 
read from the external program memory. The Cache state is not changed by this transfer. 
In Burst mode, no burst is initiated. Be aware that the core is delayed by the number of 
wait states specified in the BCR.

When the cache is enabled, the cache controller checks the PMOVEW transfers for a hit or miss:

� If the cache controller generates a sector hit on the program memory space address, the 
data is written both to the cache memory array and to the external program memory. The 
valid bit of the word is set. The LRU stack is not changed by this transfer. Be aware that 
the core is delayed by the number of wait states specified in the BCR. 

� If the cache controller generates a sector miss on the program memory space address, the 
data is written only to the external program memory. The Cache state is not changed by 
this transfer. In Burst mode, no burst is initiated. Be aware that the core is delayed by the 
number of wait states specified in the BCR. 

For proper operation, none of the three instructions before a PMOVE transfer should clear or set 
the Status Register CE bit.

8.7 Using the Instruction Cache in Real-Time Applications

The following tips help you to use the ICache in real-time applications:

� Each sector (out of the 8, 128 words) can be individually locked.

� Locking a sector prevents its replacement in case of a miss even if it would have been its 
turn to be replaced.

� It is typical to lock the interrupt vector tables and routines to ensure the fastest response. 
Furthermore, these routines can be loaded beforehand using PMOVEs to ensure a hit on 
the first access.

� The cache can be globally flushed (for example, for task switching) with one instruction.

� The cache can be globally unlocked (that is any sector can be replaced in case of a miss) or 
any individual sector can be unlocked allowing its replacement.
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� The penalty incurred for a cache miss is identical with the one for a regular instruction 
fetch from external memory (1 wait state with 15 ns SRAM at 66 MHz).

� The software simulator permits application tailoring since it provides clock exact 
behavior.

� In general, an algorithm that requires N clocks to execute and is repeated M times, 
requires (WS is a number of wait states):

(N + N x WS)M = N x M(WS + 1) clocks.

� In a cache environment, the same algorithm requires:

N(WS + 1) + N(M - 1) = N(M + WS) clocks.

8.8 Debugging Instruction Cache Operation

While the cache is enabled, full non-intrusive system debug capability in Debug mode includes 
being able to observe:

� What memory sectors are currently mapped into cache

� Which cache sectors are locked

� Which cache sector is the LRU 

� When cache hits occur

Debug mode allows you to read the Tag register contents, lock bits, LRU bits, and hit-status 
serially from the OnCE module via the JTAG port. You can also read the valid bits of specific 
cache locations. To check whether an address with MSBs in a Tag register is in the cache, send 
the opcode of a MOVEM from this address. Bit 5 of the OnCE Status and Control register 
(OSCR) indicates the value of the valid bit. See Chapter 7, Debugging Support, for more 
information.

Note: Each read of the cache status via the OnCE module should occur only when the device 
is in the Debug mode and should access all nine registers, so that reads start with tag #0 
every time.
DSP56300 Family Manual, Rev. 5
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External Memory Interface (Port A) 9
The external memory expansion port, Port A, can be used either for memory expansion or for 
memory-mapped I/O. External memory is easily and quickly retrieved through the use of DMA 
or simple MOVE commands. For more information on Port A programming see application note 
AN1751D, DSP563xx Port A Programming. Several features make Port A versatile and easy to 
use, resulting in a low part-count connection with fast or slow static memories, dynamic 
memories, I/O devices and multiple bus master system. The Port A data bus is 24 bits wide with 
a separate 18-bit or 24-bit address bus. 

External memory is divided into three possible 16 M × 24-bit spaces: X data, Y data, and 
program memory. Each space or all spaces can access a given external memory. Access type and 
attributes are under software control. See the memory map in Chapter 11, Operating Modes and 
Memory Spaces, for memory space that is not accessible through Port A. An internal wait state 
generator can be programmed to statically insert up to 31 wait states for access to slower memory 
or I/O devices. A Transfer Acknowledge (TA) signal allows an external device to dynamically 
control the number of wait states inserted into a bus access operation. The bus arbitration allows 
multiple potential masters of the Port A bus. One DSP56300 processor can use the Port A bus to 
access external devices while other potential masters perform internal operations that do not 
require the Port A bus. See the memory map in the device-specific user’s manual for memory 
space that is not accessible.

9.1 Signal Description

Table 9-1 through Table 9-3 show the signals that the external memory interface uses for 
controlling and transferring data. 

Table 9-1.  External Address Bus Signals

Signal Name Type State During 
Reset

Signal Description

A[0–17]/ 
A[0–23]

Output Tri-stated Address Bus
When the DSP is the bus master, 
A[0–17]/A[0–23] are active-high outputs that specify the address for 
external program and data memory accesses. Otherwise, the 
signals are tri-stated. To minimize power dissipation, 
A[0–17]/A[0–23] do not change state when external memory 
spaces are not being accessed. 

Note: The total number of address lines is device-specific.
DSP56300 Family Manual, Rev. 5
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Table 9-2.  External Data Bus Signals 

Signal Name Type
State During 

Reset1,2 Signal Description

D[0–23] Input/Output Tri-stated Data Bus
When the DSP is the bus master, D[0–23] are active-high, 
bidirectional input/outputs that provide the bidirectional data bus 
for external program and data memory accesses. Otherwise, 
D[0–23] are tri-stated. 

Notes: 1. In the Stop state, the signal maintains the last state as follows:

• If the last state is input, the signal is an ignored input.
• If the last state is output, these lines are tri-stated internally.  
However, some DSP56300 devices have internal keeper circuits that maintain last output level even  
when the internal drivers are tri-stated. Refer to the specific device technical data sheet, user’s  
manual, or reference manual for details.

2. The Wait processing state does not affect the signal state.

Table 9-3.  External Bus Control Signals 

Signal 
Name

Type
State During Reset, 

Stop, or Wait
Signal Description

AA[0–3]

RAS[0–3]

Output

Output

Tri-stated Address Attribute
When defined as AA, these signals can be used as chip selects or 
additional address lines. The default use defines a priority scheme under 
which only one AA signal can be asserted at a time. Setting the AA priority 
disable (APD) bit (Bit 14) of the OMR, the priority mechanism is disabled 
and the lines can be used together as four external lines that can be 
decoded externally into 16 chip select signals. Unlike address lines, these 
lines are deasserted between external accesses. See Section 9.6.1 
Address Attribute Registers (AAR[0–3]) for details.

Row Address Strobe
When defined as RAS, these signals can be used as RAS for the DRAM 
interface. These signals are tri-stateable outputs with programmable 
polarity. 

Note: DRAM access is not supported above 100 MHz. Also, the 
DSP56321 does not support DRAM at any frequency.

RD Output Tri-stated Read Enable
When the DSP is the bus master, RD is an active-low output that is 
asserted to read external memory on the data bus  
(D[0–23]). Otherwise, RD is tri-stated.

WR Output Tri-stated Write Enable
When the DSP is the bus master, WR is an active-low output that is 
asserted to write external memory on the data bus (D[0–23]). Otherwise, 
the signal is tri-stated.
DSP56300 Family Manual, Rev. 5
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Signal Description
BS Output Tri-stated Bus Strobe
When the DSP is the bus master, BS is asserted for half a clock cycle at 
the start of a bus cycle to provide an “early bus start” signal for a bus 
controller. If the external bus is not used during an instruction cycle, BS 
remains deasserted until the next external bus cycle.

Note: This signal is not implemented on all devices in the DSP56300 
family.

TA Input Ignored Input Transfer Acknowledge
If the DSP56300 device is the bus master and there is no external bus 
activity, or the device is not the bus master, the TA input is ignored. The 
TA input is a data transfer acknowledge (DTACK) function that can extend 
an external bus cycle indefinitely. Any number of wait states (1, 
2. . .infinity) can be added to the wait states inserted by the bus control 
register (BCR) by keeping TA deasserted. In typical operation, TA is 
deasserted at the start of a bus cycle, asserted to enable completion of 
the bus cycle, and deasserted before the next bus cycle. The current bus 
cycle completes one clock period after TA is deasserted. The number of 
wait states is determined by the TA input or by the BCR, whichever is 
longer. The BCR sets the minimum number of wait states in external bus 
cycles. In order to use the TA functionality, the BCR must be programmed 
to at least one wait state. A zero wait state access cannot be extended by 
TA deassertion.  
 
At operating frequencies ≤ 100 MHz, TA can operate synchronously (with 
respect to CLKOUT) or asynchronously depending on the setting of the 
TAS bit in the Operating Mode Register (OMR). If synchronous mode is 
selected, the user is responsible for ensuring that TA transitions occur 
synchronous to CLKOUT to ensure correct operation. Synchronous 
operation is not supported above 100 MHz and the OMR[TAS] bit must be 
set to synchronize the TA signal with the internal clock.

Note: Do not use TA while performing DRAM accesses; otherwise, 
improper operation may result. Also, when the DSP56300 device 
is the bus master, but TA is not used for external bus control, TA 
must be pulled down (asserted).

BR Output  Reset: Output 
(deasserted) 

State during Stop/Wait 
depends on BCR[BRH] 
bit setting: 
• BRH = 0: Output, 
  deasserted 
• BRH = 1: Maintains 
  last state (that is, if 
  asserted, remains 
  asserted)

Bus Request
Never tri-stated. BR is asserted when the DSP requests bus mastership. 
BR is deasserted when the DSP no longer needs the bus. BR may be 
asserted or deasserted independent of whether the DSP56300 family 
device is a bus master or not. Bus “parking” allows bus access without 
asserting BR (see the descriptions of bus “parking” in Section 9.5.3.4 and 
Section 9.5.3.6). The Bus Request Hold (BRH) bit in the Bus Control 
Register (BCR) allows BR to be asserted under software control, even 
though the DSP does not need the bus. BR is typically sent to an external 
bus arbiter that controls the priority, parking, and tenure of each master on 
the same external bus. BR is only affected by DSP requests for the 
external bus, never for the internal bus. During hardware reset, BR is 
deasserted; arbitration is reset to the bus slave state. 

Table 9-3.  External Bus Control Signals (Continued)

Signal 
Name

Type
State During Reset, 

Stop, or Wait
Signal Description
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BG Input Ignored Input Bus Grant
Asserted by an external bus arbitration circuit when the DSP56300 family 
device becomes the next bus master. BG must be asserted/deasserted 
synchronous to CLKOUT for proper operation. When BG is asserted, the 
DSP56300 family device must wait until BB is deasserted before taking 
bus mastership. When BG is deasserted, bus mastership is typically given 
up at the end of the current bus cycle. This may occur in the middle of an 
instruction that requires more than one external bus cycle for execution. 

BB Input/ 
Output

Ignored input Bus Busy
Indicates that the bus is active. BB must be asserted and deasserted 
synchronous to CLKOUT. Only after BB is deasserted can a pending bus 
master become the bus master (and assert BB). Some designs allow a 
bus master to keep BB asserted after ceasing bus activity. This is called 
“bus parking” and allows the current bus master to reuse the bus without 
re-arbitration until another device requires the bus (see Section 9.5.3.4 
and Section 9.5.3.6). Deassertion of BB uses an “active pull-up” method 
(that is, BB is driven high and then released and held high by an external 
pull-up resistor). 

Note: BB requires an external pull-up resistor.

BL Output Driven high Bus Lock
Asserted at the start of an external divisible read-modify-write bus cycle, 
remains asserted between the read and write cycles, and is deasserted at 
the end of the write bus cycle. This provides an “early bus start” signal for 
the bus controller. BL may be used to “resource lock” an external 
multi-port memory for secure semaphore updates. Early deassertion 
provides an “early bus end” signal useful for external bus control. If the 
external bus is not used during an instruction cycle, BL remains 
deasserted until the next external indivisible read-modify-write cycle. The 
only instructions that assert BL automatically are BSET, BCLR, and 
BCHG when the access is to external memory. An operation can also 
assert BL by setting the BLH bit in the BCR.

This signal is not implemented on all devices in the DSP56300 family.

CAS Output Tri-stated Column Address Strobe
When the DSP is the bus master, CAS is an active-low output used by 
DRAM to strobe the column address. Otherwise, if the Bus Mastership 
Enable (BME) bit in the DRAM control register is cleared, the signal is 
tri-stated.

Note: DRAM access is not supported above 100 MHz. Also, the 
DSP56321 does not support DRAM at any frequency.

Table 9-3.  External Bus Control Signals (Continued)

Signal 
Name

Type
State During Reset, 

Stop, or Wait
Signal Description
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Port Operation
9.2 Port Operation

External bus timing is defined by the operation of the Address Bus, Data Bus, and Bus Control 
pins as described in the previous sections. The DSP56300 core external ports interface with a 
wide variety of memory and peripheral devices, high speed SRAMs and DRAMs, and slower 
memory devices. The TA control signal and the Bus Control Register (BCR) described in Section 
9.6.2 control the external bus timing. The BCR provides constant bus access timing through the 
insertion of wait states. TA provides dynamic bus access timing. The number of wait states for 
each external access is determined by the TA input or by the BCR, whichever specifies the longest 
time.

9.2.1   External Memory Addressing

The external memory address is defined by the Address Bus (A[0–17]/A[0–23]) and the memory 
Address Attribute signals (AA[0–3]). The AA signals can operate as memory-mapped chip selects 
or address lines to external devices, depending on the mode selected. The AA signals have the 
same timing as the Address Bus signals and can be used as additional address lines. The AA 
signals are also used to generate Chip Select (CS) signals for the appropriate memory chips. 
These CS signals change the memory chips from low power Standby mode to Active mode and 
begin the access time. This allows slower memories to be used since the AA signals are 
address-based rather than read or write enable-based.

BCLK Output Tri-stated Bus Clock
When the DSP is the bus master, BCLK is active when the ATE bit in the 
Operating Mode Register is set. When BCLK is active and synchronized 
to CLKOUT by the internal PLL, BCLK precedes CLKOUT by one-fourth 
of a clock cycle. You can use the rising edge of BCLK to sample the 
address lines to determine where an internal Program memory access is 
occurring.

Note: At operating frequencies above 100 MHz, this signal produces a 
low-amplitude waveform that is not usable externally by other 
devices. Also, the DSP56321 does not support BCLK at any 
frequency.

BCLK Output Tri-stated Bus Clock Not
When the DSP is the bus master, BCLK is the inverse of the BCLK signal. 
Otherwise, the signal is tri-stated. 

Note: At operating frequencies above 100 MHz, this signal produces a 
low-amplitude waveform that is not usable externally by other 
devices. Also, the DSP56321 does not support BCLK at any 
frequency.

Table 9-3.  External Bus Control Signals (Continued)

Signal 
Name

Type
State During Reset, 

Stop, or Wait
Signal Description
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External Memory Interface (Port A)
For DSP56300 parts with 18 address lines, the AA signals can be used to extend memory access, 
if used as upper addressing bits. If all four AA signals are used as address lines, the total 
addressable external memory can be 4 M × 24-bit if the OMR[APD] bit is set. When the APD bit 
is set, it disables the priority assigned to AA[0–3] thereby enabling more than one AA signal to be 
active simultaneously. Additionally, if all four AA signals are used as address lines, then the 
memory must always be selected, because no AA signals are available for chip select. As a result, 
an external read or write outside the 4 M range could still go to the external memory (depending 
on the settings of the AA registers). Be aware that unlike standard address bus lines, AA[0–3] do 
not hold their state after a read or write operation.

9.2.2   SRAM Support

The DSP56300 core can interface easily with SRAMs. Because the address must remain stable 
during the entire bus cycle, however, at least one wait state must be inserted regardless of the 
speed of the SRAM. Figure 9-1 shows an SRAM access timing example (for detailed timing 
information, see the specific technical data sheet for the device used in the design). Figure 9-2 
shows a typical DSP56300 family device-to-SRAM connection. SRAM access consists of the 
following steps:

1. Address Bus (A[0–17]/A[0–23]), Address Attributes (AA[0–3), and Bus Strobe (BS) are 
asserted in the middle of CLKOUT high phase.

2. Write enable (WR) is asserted with the falling edge of CLKOUT (for a single wait state 
access). Read enable (RD) is asserted in the middle of CLKOUT low phase.

3. For a write operation, data is driven in the middle of CLKOUT high phase. For a read 
operation, data is sampled in the middle of CLKOUT last low phase of the external access.

For accessing slower memories, wait states (from the BCR or by the TA signal) postpone the 
disappearance of the external address and increase memory access time. In any case, SRAM 
access requires at least one wait state—that is, above 100 MHz SRAM access requires two wait 
states. 
DSP56300 Family Manual, Rev. 5
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Port Operation
The assertion of WR depends on the number of wait states programmed in the BCR. If one wait 
state is programmed, WR is asserted with the falling edge of CLKOUT. If two or three wait states 
are programmed, WR assertion is delayed by half a clock cycle (half CLKOUT cycle). If four or 
more wait states are programmed, WR assertion is delayed by a full clock cycle. This feature 
enables the connection of slow external devices that require long address setup time before write 
assertion in order to prevent false writes. 

Figure 9-1.  SRAM Access With One Wait State Example

Figure 9-2.  Example SRAM Connection Diagram
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External Memory Interface (Port A)
9.2.3   DRAM Support

Note: DSP56300 devices do not support the DRAM interface above 100 MHz. The 
DSP56321 does not support DRAM at any frequency.

Port A bus control signals are an efficient interface to DRAM devices in both random read/write 
cycles and Fast Access mode (Page mode). An on-chip DRAM controller controls the page hit 
circuit, address multiplexing (row address and column address), control signal generation (CAS 
and RAS), and refresh access generation (CAS before RAS) for a large variety of DRAM module 
sizes and different access times. The DRAM controller operation and programming is described 
in Section 9.6.3, DRAM Control Register, on page 9-21.

External bus timing is controlled by the DRAM Control Register (DCR) described in Section 
9.6.3. The DCR controls insertion of wait states to provide constant bus access timing. The 
external memory address is defined by the Address Bus (A[0–23]/A[0–17]). The “n” low order 
address bits are multiplexed inside the DSP56300 core, and the new 24-bit address is driven to 
the external bus. The address multiplexing enables a glueless interface to DRAMs by simply 
connecting the “n” low order bits to the memory address pins. When the BAT bits in the 
corresponding AAR are programmed, an Address Attribute signal can function as a Row Address 
Strobe (RAS). An in-page access is assumed, and RAS is therefore kept asserted until one of the 
following events occurs: 

� An out-of-page access is detected

� An access to another bank of dynamic memory is attempted

� A refresh access is attempted (CAS before RAS)

� A write to one of the following registers is detected:

— BCR
— DCR
— AAR3
— AAR2
— AAR1
— AAR0

� A loss of bus mastership is detected while the BME bit in the DCR register is cleared

� WAIT or STOP instruction is detected

� Hardware or software reset is detected

Figure 9-3 and Figure 9-4 show DRAM in-page access timing examples. For detailed timing 
information, see the technical data sheet for the device used in the design.  
Figure 9-5 shows a typical DSP56300 family device-to-DRAM connection.
DSP56300 Family Manual, Rev. 5
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Figure 9-3.  DRAM Read Access (In-Page) With Two Wait States

Figure 9-4.  DRAM Write Access (In-Page) With Two Wait States Example
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9.2.3.1   DRAM In-Page Access

A DRAM in-page access consists of the following steps: 

1. Column address (a subset of A[0–23]/A17, as determined by the BPS bits in the DCR) and 
Bus Strobe (BS) are asserted in the middle of CLKOUT high phase.

2. Write (WR) or Read (RD) is asserted with the CLKOUT falling edge.

3. CAS assertion timing depends on the number of in-page wait states selected by the 
DCR[BCW] bits and on the access purpose (read or write). (See Figure 9-3 and Figure 
9-4 for examples of DRAM in-page read and write accesses using two wait states). 

4. CAS is deasserted before the end of the external access in order to meet the CAS 
precharge timing.

Note: In all cases, DRAM access requires at least one wait state.

9.2.3.2   DRAM Out-of-Page Access

An out-of-page access consists of the following steps:

1. Deassertion of RAS

2. Assertion of the control signals (WR/RD)

3. After RAS precharge time, the assertion of RAS. RAS assertion and CAS timing depend on 
the number of out-of-page wait states selected by the BRW bits in the DCR.

9.3 Port A Disable 

In applications sensitive to power consumption, Port A may not be required because the memory 
that is used resides in the processor. A special feature of the Port A controller allows you to 
reduce the power consumption significantly by setting the EBD bit in the Operating Mode 
Register (OMR) to disable the Port A controller. This causes the DSP56300 device to release the 

Figure 9-5.  Typical DRAM Connection Diagram
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Bus Handshake and Arbitration
bus (that is, deassert BR and BL, tri-state BB, and ignore BG). With the controller disabled, no 
external DMA accesses or refresh accesses can be performed. 

Note: To prevent improper operation when OMR[EBD] is set, do not access external 
memory, and always clear Refresh Enable (BREN—DCR[13]) to prevent any external 
DRAM refresh attempts.

9.4 Bus Handshake and Arbitration

Bus transactions are governed by a single bus master. Bus arbitration determines which device 
becomes the bus master. The arbitration logic implementation is system-dependent but must 
result in, at most, one device becoming the bus master (even if multiple devices request bus 
ownership). The arbitration signals permit simple implementation of a variety of bus arbitration 
schemes (for example, fairness, priority, and so on). The system designer must provide the 
external logic to implement the arbitration scheme.

9.5 Bus Arbitration Signals 

There are three bus arbitration signals. Two of them (BR and BG) are local arbitration signals 
between a potential bus master and the arbitration logic; BB is a system arbitration signal:

� Bus Request (BR). Asserted by a device to request use of the bus; it is held asserted until 
the device no longer needs the bus. This includes time when it is the bus master as well as 
when it is not the bus master.

� Bus Grant (BG). Asserted by the bus arbitration controller to signal the requesting device 
that it is the bus master elect, BG is valid only when the bus is not busy (that is, BB is not 
asserted).

� Bus Busy (BB). This signal is driven by the current bus master and controls the hand-over 
of bus ownership by the bus master at the end of bus possession. BB is an active pull-up 
signal (that is, it is driven high before release and then held high by an external pull-up 
resistor).

9.5.1   The Arbitration Protocol 

The bus is arbitrated by a central bus arbiter, using individual request/grant lines to each bus 
master. The arbitration protocol can operate in parallel with bus transfer activity so that the bus 
can be handed over without much performance penalty. The arbitration sequence occurs as 
follows: 

1. Bus Requested by Device. All candidates for bus ownership assert their respective BR 
signals as soon as they need the bus. 

2. Bus Granted by Arbiter. The arbitration logic designates a bus master-elect by asserting 
the BG signal for that device. 
DSP56300 Family Manual, Rev. 5
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3. Bus Released by Current Master. The master-elect tests BB to ensure that the previous 
master has relinquished the bus. If BB is deasserted, then the master-elect asserts BB, 
which designates the device as the new bus master. If a higher priority bus request 
occurs before the BB signal is deasserted, then the arbitration logic may replace the 
current master-elect with the higher priority candidate. However, only one BG signal 
may be asserted at one time.

4. Bus Control Assumed by New Master. The new bus master begins its bus transfers after 
asserting BB.

5. Bus Grant Withdrawn by Arbiter. The arbitration logic signals the new bus master to 
relinquish the bus by deasserting BG at any time. 

6. Bus Released by Current Master. A DSP56300 core bus master releases its ownership 
(drives BB high and then releases the bus) after completing the current external bus 
access (except for the cases described in the following note). If an instruction is 
executing a read-modify-write external access, a DSP56300 core master asserts the BL 
signal and only relinquishes the bus (and deasserts BL) after completing the entire 
read-modify-write sequence. When the current bus master releases BB, it first drives the 
BB signal high and then the BB signal is held by the pull-up resistor. The next bus 
master-elect has received its BG signal and is waiting for BB to be deasserted before 
claiming ownership.

Note: The three packing accesses, the two accesses of a read-modify-write instruction 
(BSET, BCLR, BCHG), and the up-to-four fetch burst accesses are treated as one 
access from an arbitration point of view (that is, the bus mastership is not released 
during the execution of these accesses).

The DSP56300 core has two control bits (BRH and BLH) and one status bit (BBS), in the Bus 
Control Register (BCR), to permit software control of the BR and BL signals and to verify whether 
the device is the bus master. See Section 9.6.2 for more information about the BCR.

� Bus Request Hold (BRH) Bit. If the BCR[BRH] bit is cleared, the DSP56300 core asserts 
its BR signal only as long as requests for bus transfers are pending or being attempted. If 
the BCR[BRH] bit is set, BR remains asserted. 

� Bus Lock Hold (BLH) Bit. If the BCR[BLH] bit is cleared, the DSP56300 core asserts its 
BL signal only during a read-modify-write bus access. If the BCR[BLH] is set, BL remains 
asserted (even when not a bus master). 

� Bus State (BBS) Bit. This read-only bit in the BCR is set when the DSP is the bus master 
and cleared when it is not.

The DSP56300 core uses the OMR[BRT] bit control bit to enable Fast or Slow Bus Release 
mode. In Fast Bus Release mode, all Port A pins are tri-stated in the same cycle. In Slow Bus 
Release mode an extra cycle is added and all Port A pins except BB are released first. Only in the 
next cycle is BB released. Therefore, in Slow Bus Release mode, BB is guaranteed to be the last 
DSP56300 Family Manual, Rev. 5
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Bus Arbitration Signals
pin that is tri-stated. This may be useful in systems where a possibility for contention exists. A 
more detailed explanation (including timing diagrams) is provided in the appropriate technical 
data sheet.

Note: During the execution of WAIT and STOP instructions, the DSP56300 releases the bus 
(that is, deasserts BR and BB), and ignores BG. 

9.5.2   Arbitration Scheme 

Bus arbitration is implementation-dependent. Figure 9-6 illustrates a common bus arbitration 
scheme. The arbitration logic determines device priorities and assigns bus ownership depending 
on those priorities. For example, an implementation may hold BG asserted for the current bus 
owner if none of the other devices are requesting the bus. As a consequence, the current bus 
master may keep BB asserted after ceasing bus activity, regardless of whether BR is asserted or 
deasserted. This situation is called “bus parking” and allows the current bus master to use the bus 
repeatedly without re-arbitration until some other device requests the bus. 

9.5.3   Bus Arbitration Example Cases

The following paragraphs describe various bus arbitration examples.

9.5.3.1   Case 1, Normal

The BB signal is high, indicating that no device is controlling the bus (that is, the bus is not busy). 
A device requests mastership by asserting BR. The arbiter then asserts the BG signal for the 
requesting devices. Since BB is high, indicating that the bus is not busy, the requesting device 
asserts BB and takes control of the bus.

9.5.3.2   Case 2, Bus Busy

The BB signal is asserted indicating that a device is already the bus master. If a second device 
requests mastership by asserting BR, the arbiter responds by asserting the BG signal for the 
requesting device. However, since the bus is busy (that is, BB is already asserted by the current 

Figure 9-6.  Example Bus Arbitration Scheme
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master), the requesting device cannot assert BB until the current master drives BB high to release 
the bus. After the first master drives BB high, the requesting device can then assert BB and take 
control of the bus.

9.5.3.3   Case 3, Low Priority

If multiple devices assert BR at the same time, the arbiter grants the bus to the device with the 
highest priority. The arbiter withholds the assertion of BG for a lower priority device until the BR 
for the higher priority device is deasserted. The lower device cannot take control of the bus until 
the higher priority device deasserts BR, the arbiter asserts BG to the lower priority device, and the 
current master deasserts BB.

9.5.3.4   Case 4, Default

The arbiter design may specify a default bus master. Such a design asserts BG for the default 
device whenever no other device requests the bus. Thus, whenever BB is deasserted (that is, the 
bus is not busy), the default device can take control of the bus by asserting BB without asserting 
BR first. As long as the bus arbiter leaves BG asserted because no other requests are pending, then 
the default device continues to assert BB and maintain its bus mastership. This condition is called 
bus parking and eliminates the need for the default bus master to rearbitrate for the bus during its 
next external access.

9.5.3.5   Case 5, Bus Lock during Read-Modify-Write Instructions

Typically, if a device asserts BR to request bus mastership and the arbiter then asserts BG to the 
requesting device and BB is deasserted (that is, the bus is not busy), then the requesting device 
asserts BB and takes control of the bus. If the master device executes a read-modify-write 
instruction that accesses external memory, then BB remains asserted until the entire 
read-modify-write instruction completes execution, even if the bus arbiter deasserts BG. After the 
execution is complete, the device then drives BB high thereby relinquishing the bus. In DSP56300 
family devices in which it is implemented, the BL signal can be used to ensure that a multi-port 
memory can only be written by one master at a time.

Note: During external read-modify-write instruction execution, BL is asserted. 

9.5.3.6   Case 6, Bus Parking

As described in Section 9.5.3.4, bus parking is a strategy that permits a device to take control of 
the bus without asserting BR. In addition to designs which use a default bus master device, an 
arbiter design may allow the last bus master to retain control of the bus until mastership is 
requested by another device. In such a design, a device asserts BR to request bus mastership and 
the arbiter responds by asserting BG to the requesting device. When BB is deasserted (that is, the 
bus is not busy), the requesting device asserts BB to assume bus mastership. When the requesting 
device no longer requires the bus, it deasserts BR, but if no other requests are pending, the bus 
DSP56300 Family Manual, Rev. 5
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arbiter leaves BG asserted and BB remains asserted for that device (that is, the last device 
maintains its bus mastership). Thus, the last device to control the bus is parked on the bus. This 
eliminates the need for the last bus master to rearbitrate for the bus during its next external 
access.

9.6 Port A Control

Port A control consists of four Address Attribute Registers (AAR[0–3]), the Bus Control Register 
(BCR), and the DRAM Control Register (DCR).

9.6.1   Address Attribute Registers (AAR[0–3]) 

The four Address Attribute Registers (AAR[0–3]) are 24-bit read/write registers that control the 
activity of the AA[0–3]/RAS[0–3] pins. The associated AAn/RASn pin is asserted if the address 
defined by the BAC bits in the associated AAR matches the exact number of external address bits 
defined by BNC bits, and the external address space (X data, Y data, or program) is enabled by 
the AAR. All AARs are disabled (that is, all the AAR bits are cleared) during hardware reset. The 
AAR bits are shown in Figure 9-7 and described in this section. All AAR bits are read/write 
control bits.

A priority mechanism to resolve selection conflicts exists among the four AAR control registers. 
AAR3 has the highest priority and AAR0 has the lowest priority (for example, if the external 
address matches the address and the space that is specified is in both AAR1 and AAR2, the 
external access type is selected according to AAR2). The priority mechanism allows continuous 
partitioning of the external address space.

When a selection conflict occurs, that is the external address matches the address and the space 
that is specified in more than one AAR, the assertion of the lower priority AA/RAS pin(s) is 
programmable. When the OMR[APD] bit is cleared (see Chapter 6, PLL and Clock Generator), 
only one AA/RAS pin of higher priority is asserted. When the OMR[APD] bit is set, the lower 
priority AA/RAS pin(s) are asserted in addition to the highest priority AA/RAS pin. The AAR of 
higher priority defines the external memory access type (memory type, wait states, and so on). 
The lower-priority AA/RAS pin(s) associated with DRAM memory type (BAT[1–0]) = 10) are not 
activated. This allows glueless support of Long Move (move L:) instruction to/from external 
memory as shown in Figure 9-7.

Figure 9-7.  Address Attribute Registers (AAR[0–3])

23 22 21 20 19 18 17 16 15 14 13 12

BAC11 BAC10 BAC9 BAC8 BAC7 BAC6 BAC5 BAC4 BAC3 BAC2 BAC1 BAC0

11 10 9 8 7 6 5 4 3 2 1 0

BNC3 BNC2 BNC1 BNC0 BPAC BAM BYEN BXEN BPEN BAAP BAT1 BAT0
DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 9-15



External Memory Interface (Port A)
Table 9-4.  AAR Bit Definitions 

Bit Number Bit Name Reset Value Description

23–12 BAC[11–0] 0 Bus Address to Compare 
Defines the upper 12 bits of the 24-bit address with which to compare the 
external address to decide whether to assert the corresponding AA/RAS signal. 
This is also true when 16-bit compatibility mode is in use. The BNC[3–0] bits 
define the number of address bits to compare.

11–8 BNC[3–0] 0 Bus Number of Address Bits to Compare
Defines the number of bits (from the BAC bits) that are compared to the 
external address. The BAC bits are always compared to the Most Significant 
Portion of the external address (for example, if BNC[3–0] = 0011, then the 
BAC[11–9] bits are compared to the 3 MSBs of the external address). If no bits 
are specified (that is, BNC[3–0] = 0000), the AA signal is activated for the entire 
16 M words space identified by the space enable bits (BPEN, BXEN, BYEN), 
but only when the address is external to the internal memory map. The 
combinations BNC[3–0] = 1111, 1110, 1101 are reserved.

7 BPAC 0 Bus Packing Enable 
Defines whether the internal packing/unpacking logic is enabled. When the 
BPAC bit is set, packing is enabled. In this mode each DMA external access 
initiates three external accesses to 8-bit wide external memory (the addresses 
for these accesses are DAB, then DAB + 1 and then DAB + 2). Packing to a 
24-bit word (or unpacking from a 24-bit word to three 8-bit words) is done 
automatically by the expansion port control hardware. The external memory 
should reside in the eight Least Significant Bits (LSBs) of the external data bus, 
and the packing (or unpacking for external write accesses) is done in “Little 
Endian” order (that is, the low byte is stored in the lowest of the three memory 
locations and is transferred first; the middle byte is stored/transferred next; and 
the high byte is stored/transferred last). When this bit is cleared, the expansion 
port control logic assumes a 24-bit wide external memory.

NOTE: The BPAC bit is used only for DMA accesses and not core accesses. To 
ensure sequential external accesses, the DMA address should advance three 
steps at a time in two-dimensional mode with a row length of one and an offset 
size of three. For details, see Freescale application note, APR23/D, Using the 
DSP56300 Direct Memory Access Controller.

To prevent improper operation, DMA address + 1 and DMA  
address + 2 should not cross the AAR bank borders.

Arbitration is not allowed during the packing access (that is, the three accesses 
are treated as one access with respect to arbitration, and bus mastership is not 
released during these accesses)
DSP56300 Family Manual, Rev. 5
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6 BAM 0 Bus Address Multiplexing 
Defines whether the eight LSBs of the address appear on address lines A0–A7 
(Least Significant Portion of the external address bus) or on address lines 
A16–A23 (Most Significant Portion of the external address bus). When BAM is 
set, the eight LSBs appear on address lines A16–A23. When BAM is cleared, 
the eight LSBs appear normally on address lines A0–A7. This feature enables 
you to connect an external peripheral to the MSBs of the address, thus 
decreasing the load on the Least Significant Portion of the external address and 
enabling a more efficient interface to external memories. BAM is ignored during 
DRAM access (BAT[1–0] = 10). 

NOTE: The BAM bit has no effect in DSP56300 core devices with only eighteen 
address lines.

5 BYEN 0 Bus Y Data Memory Enable
Defines whether the  AA/RAS pin  and logic should be activated during external 
Y data space accesses. When set, BYEN enables the comparison of the 
external address to the BAC bits during external Y data space accesses. If 
BYEN is cleared, no address comparison is performed during external Y data 
space accesses.

4 BXEN 0 Bus X Data Memory Enable 
Defines whether the  AA/RAS pin  and logic should be activated during external 
X data space accesses. When set, BXEN enables the comparison of the 
external address to the BAC bits during external X data space accesses. If 
BXEN is cleared, no address comparison is performed during external X data 
space accesses.

3 BPEN 0 Bus Program Memory Enable 
Defines whether or not the AA/RAS pin and logic should be activated during 
external program space accesses. When set, BPEN enables the comparison of 
the external address to the BAC bits during external program space accesses. 
If BPEN is cleared, no address comparison is performed during external 
program space accesses.

2 BAAP 0 Bus Address Attribute Polarity 
Defines whether the AA/RAS signal is active low or active high. When BAAP is 
cleared, the AA/RAS signal is active low (useful for enabling memory modules 
or for DRAM Row Address Strobe). If BAAP is set, the appropriate AA/RAS 
signal is active high (useful as an additional address bit).

Table 9-4.  AAR Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description
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1–0 BAT[1–0] 0 Bus Access Type 
Define the type of external memory (DRAM or SRAM) to access for the area 
defined by the BAC[11–0], BYEN, BXEN, and BPEN bits. The encoding of 
BAT[1–0] is:
00 = Reserved
01 = SRAM access
10 = DRAM access
11 = Reserved
When the external access type is defined as DRAM access (BAT[1–0] = 10), 
AA/RAS acts as a Row Address Strobe (RAS) signal. Otherwise, it acts as an 
Address Attribute signal. External accesses to the default area are always 
executed as if BAT[1–0] = 01 (that is, SRAM access).

NOTE: If Port A is used for external accesses, the BAT bits in  
AAR[0–3] must be initialized to the SRAM access type (that is, BAT = 01) or to 
the DRAM access type (that is, BAT = 10). To ensure proper operation of Port 
A, this initialization must occur even for an AAR register that is not used during 
a Port A access. At reset the BAT bits are initialized to 00.

Table 9-4.  AAR Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description
DSP56300 Family Manual, Rev. 5
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9.6.2   Bus Control Register

The Bus Control Register (BCR), depicted in Figure 9-8, is a 24-bit read/write register that 
controls the external bus activity and Bus Interface Unit operation. All BCR bits except bit 21, 
BBS, are read/write bits. The BCR bits are defined in Table 9-5.

Figure 9-8.  Bus Control Register (BCR)

Table 9-5.  Bus Control Register (BCR) Bit Definitions 

Bit Number Bit Name Reset Value Description

23 BRH 0 Bus Request Hold 
Asserts the BR signal, even if no external access is needed. When BRH is set, 
the BR signal is always asserted. If BRH is cleared, the BR is asserted only if 
an external access is attempted or pending.

22 BLH 0 Bus Lock Hold  
Asserts the BL signal, even if no read-modify-write access is occurring. When 
BLH is set, the BL signal is always asserted. If BLH is cleared, the BL signal is 
asserted only if a read-modify-write external access is attempted.

Note: Not all devices in the DSP56300 family support this bit.

21 BBS 0 Bus State 
This read-only bit is set when the DSP is the bus master and is cleared 
otherwise. 

20–16 BDFW[4–0] 11111
(31 wait 
states)

Bus Default Area Wait State Control 
Defines the number of wait states (one through 31) inserted into each external 
access to an area that is not defined by any of the AAR registers. The access 
type for this area is SRAM only. These bits should not be programmed as zero 
since SRAM memory access requires at least one wait state.

When four through seven wait states are selected, one additional wait state is 
inserted at the end of the access. When selecting eight or more wait states, two 
additional wait states are inserted at the end of the access. These trailing wait 
states increase the data hold time and the memory release time and do not 
increase the memory access time.

Note: For the DSP56321 device, when three through seven wait states are 
selected, one additional wait state is inserted at the end of the access.

23 22 21 20 19 18 17 16 15 14 13 12

BRH BLH BBS BDFW4 BDFW3 BDFW2 BDFW1 BDFW0 BA3W2 BA3W1 BA3W0 BA2W2

11 10 9 8 7 6 5 4 3 2 1 0

BA2W1 BA2W0 BA1W4 BA1W3 BA1W2 BA1W1 BA1W0 BA0W4 BA0W3 BA0W2 BA0W1 BA0W0
DSP56300 Family Manual, Rev. 5
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15–13 BA3W[2–0] 1 
(7 wait states)

Bus Area 3 Wait State Control 
Defines the number of wait states (one  through seven) inserted in each 
external SRAM access to Area 3 (DRAM accesses are not affected by these 
bits). Area 3 is the area defined by AAR3.

Note: Do not program the value of these bits as zero since SRAM memory 
access requires at least one wait state.

When four through seven wait states are selected, one additional wait state is 
inserted at the end of the access. This trailing wait state increases the data hold 
time and the memory release time and does not increase the memory access 
time.

Note: For the DSP56321 device, when three through seven wait states are 
selected, one additional wait state is inserted at the end of the access.

12–10 BA2W[2–0] 111 
(7 wait states)

Bus Area 2 Wait State Control
Defines the number of wait states (one  through seven) inserted into each 
external SRAM access to Area 2 (DRAM accesses are not affected by these 
bits). Area 2 is the area defined by AAR2.

Note: Do not program the value of these bits as zero, since SRAM memory 
access requires at least one wait state.

When four through seven wait states are selected, one additional wait state is 
inserted at the end of the access. This trailing wait state increases the data hold 
time and the memory release time and does not increase the memory access 
time.

Note: For the DSP56321 device, when three through seven wait states are 
selected, one additional wait state is inserted at the end of the access.

9–5 BA1W[4–0] 11111 
(31 wait 
states)

Bus Area 1 Wait State Control 
Defines the number of wait states (one  through 31) inserted into each external 
SRAM access to Area 1 (DRAM accesses are not affected by these bits). Area 
1 is the area defined by AAR1.

Note: Do not program the value of these bits as zero, since SRAM memory 
access requires at least one wait state.

When four through seven wait states are selected, one additional wait state is 
inserted at the end of the access. When selecting eight or more wait states, two 
additional wait states are inserted at the end of the access. These trailing wait 
states increase the data hold time and the memory release time and do not 
increase the memory access time.

Note: For the DSP56321 device, when three through seven wait states are 
selected, one additional wait state is inserted at the end of the access.

Table 9-5.  Bus Control Register (BCR) Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description
DSP56300 Family Manual, Rev. 5

9-20 Freescale Semiconductor



Port A Control
9.6.3   DRAM Control Register

Note: DSP56300 devices do not support the DRAM interface above 100 MHz. The 
DSP56321 does not support DRAM at any frequency.

The DRAM controller is an efficient interface to dynamic RAM devices in both random 
read/write cycles and Fast Access mode (Page mode). An on-chip DRAM controller controls the 
page hit circuit, the address multiplexing (row address and column address), the control signal 
generation (CAS and RAS) and the refresh access generation (CAS before RAS) for a variety of 
DRAM module sizes and access times. The on-chip DRAM controller configuration is 
determined by the DRAM Control Register (DCR). The DRAM Control Register (DCR) is a 
24-bit read/write register that controls and configures the external DRAM accesses. The DCR 
bits are shown in Figure 9-9.

Note: To prevent improper device operation, you must guarantee that all the DCR bits except 
BSTR are not changed during a DRAM access.

Figure 9-9.  DRAM Control Register (DCR)

4–0 BA0W[4–0] 11111 
(31 wait 
states)

Bus Area 0 Wait State Control 
Defines the number of wait states (one  through 31) inserted in each external 
SRAM access to Area 0 (DRAM accesses are not affected by these bits). Area 
0 is the area defined by AAR0.  

Note: Do not program the value of these bits as zero, since SRAM memory 
access requires at least one wait state. 

When selecting four through seven wait states, one additional wait state is 
inserted at the end of the access. When selecting eight or more wait states, two 
additional wait states are inserted at the end of the access. These trailing wait 
states increase the data hold time and the memory release time and do not 
increase the memory access time.

Note: For the DSP56321 device, when three through seven wait states are 
selected, one additional wait state is inserted at the end of the access.

Table 9-5.  Bus Control Register (BCR) Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description

23 22 21 20 19 18 17 16 15 14 13 12

BRP BRF7 BRF6 BRF5 BRF4 BRF3 BRF2 BRF1 BRF0 BSTR BREN BME

11 10 9 8 7 6 5 4 3 2 1 0

BPLE BPS1 BPS0 BRW1 BRW0 BCW1 BCW0

Reserved bit. Read as zero; write to zero for future compatibility
DSP56300 Family Manual, Rev. 5
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Table 9-6.  DRAM Control Register (DCR) Bit Definitions 

Bit Number Bit Name Reset Value Description

23 BRP 0 Bus Refresh Prescaler  
Controls a prescaler in series with the refresh clock divider. If BPR is set, a 
divide-by-64 prescaler is connected in series with the refresh clock divider. If 
BPR is cleared, the prescaler is bypassed. The refresh request rate (in clock 
cycles) is the value written to BRF[7–0] bits + 1, multiplied by 64 (if BRP is set) or 
by one (if BRP is cleared).

Note: Refresh requests are not accumulated and, therefore, in a fast refresh 
request rate not all the refresh requests are served (for example, the 
combination BRF[7–0] = $00 and BRP = 0 generates a refresh request 
every clock cycle, but a refresh access takes at least five clock cycles).

When programming the periodic refresh rate, you must consider the RAS 
time-out period. Hardware support for the RAS time-out restriction does not 

exist.

22–15 BRF[7–0] 0 Bus Refresh Rate 
Controls the refresh request rate. The BRF[7–0] bits specify a divide rate of 
1–256 (BRF[7–0] = $00–$FF). A refresh request is generated each time the 
refresh counter reaches zero if the refresh counter is enabled (BRE = 1).

14 BSTR 0 Bus Software Triggered Reset 
Generates a software-triggered refresh request. When BSTR is set, a refresh 
request is generated and a refresh access is executed to all DRAM banks (the 
exact timing of the refresh access depends on the pending external accesses 
and the status of the BME bit). After the refresh access (CAS before RAS) is 
executed, the DRAM controller hardware clears the BSTR bit. The refresh cycle 
length depends on the BRW[1–0] bits (a refresh access is as long as the 
out-of-page access).

13 BREN 0 Bus Refresh Enable 
Enables/disables the internal refresh counter. When BREN is set, the refresh 
counter is enabled and a refresh request (CAS before RAS) is generated each 
time the refresh counter reaches zero. A refresh cycle occurs for all DRAM 
banks together (that is, all pins that are defined as RAS are asserted together). 
When this bit is cleared, the refresh counter is disabled and a refresh request 
may be software triggered by using the BSTR bit. 
 
In a system in which DSPs share the same DRAM, the DRAM controller of more 
than one DSP may be active, but it is recommended that only one DSP have its 
BREN bit set and that bus mastership is requested for a refresh access. 

If BREN is set and a WAIT instruction is executed, periodic refresh is still 
generated each time the refresh counter reaches zero. 

If BREN is set and a STOP instruction is executed, periodic refresh is not 
generated and the refresh counter is disabled. The contents of the DRAM are 
lost.
DSP56300 Family Manual, Rev. 5
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12 BME 0 Bus Mastership Enable 
Enables/disables interface to a local DRAM for the DSP. When BME is cleared, 
the RAS and CAS pins are tri-stated when mastership is lost. Therefore, you 
must connect an external pull-up resistor to these pins. In this case (BME = 0), 
the DSP DRAM controller assumes a page fault each time the mastership is lost. 
A DRAM refresh requires a bus mastership. If the BME bit is set, the RAS and 
CAS pins are always driven from the DSP. Therefore, DRAM refresh can be 
performed, even if the DSP is not the bus master. 

11 BPLE 0 Bus Page Logic Enable 
Enables/disables the in-page identifying logic. When BPLE is set, it enables the 
page logic (the page size is defined by BPS[1–0] bits). Each in-page 
identification causes the DRAM controller to drive only the column address (and 
the associated CAS signal). When BPLE is cleared, the page logic is disabled, 
and the DRAM controller always accesses the external DRAM in out-of-page 
accesses (for example, row address with RAS assertion and then column 
address with CAS assertion). This mode is useful for low power dissipation. Only 
one in-page identifying logic exists. Therefore, during switches from one DRAM 
external bank to another DRAM bank (the DRAM external banks are defined by 
the access type bits in the AARs, different external banks are accessed through 
different AA/RAS pins), a page fault occurs.

10 0 Reserved. Write to zero for future compatibility.

9–8 BPS[1–0] 0 Bus DRAM Page Size 
Defines the size of the external DRAM page and thus the number of the column 
address bits. The internal page mechanism works according to these bits only if 
the page logic is enabled (by the BPLE bit). The four combinations of BPS[1–0] 
enable the use of many DRAM sizes (1 M bit, 4 M bit, 16 M bit, and 64 M bit). 
The encoding of BPS[1–0] is:

00 = 9-bit column width, 512 words
01 = 10-bit column width, 1 K words
10 = 11-bit column width, 2 K words
11 = 12-bit column width, 4 K words 
 
When the row address is driven, all 24 bits of the external address bus are 
driven [for example, if BPS[1–0] = 01, when driving the row address, the 14 
MSBs of the internal address (XAB, YAB, PAB, or DAB) are driven on address 
lines A[0–13], and the address lines A[14–23] are driven with the 10 MSBs of the 
internal address. This method enables the use of different DRAMs with the same 
page size.

7–4 0 Reserved. Write to zero for future compatibility.

3–2 BRW[1–0] 0 Bus Row Out-of-page Wait States 
Defines the number of wait states that should be inserted into each DRAM 
out-of-page access. The encoding of BRW[1–0] is:  

00 = 4 wait states for each out-of-page access
01 = 8 wait states for each out-of-page access
10 = 11 wait states for each out-of-page access
11 = 15 wait states for each out-of-page access

Table 9-6.  DRAM Control Register (DCR) Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description
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1–0 BCW[1–0] 0 Bus Column In-Page Wait State 
Defines the number of wait states to insert for each DRAM in-page access. The 
encoding of BCW[1–0] is: 

00 = 1 wait state for each in-page access
01 = 2 wait states for each in-page access
10 = 3 wait states for each in-page access
11 = 4 wait states for each in-page access

Table 9-6.  DRAM Control Register (DCR) Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description
DSP56300 Family Manual, Rev. 5

9-24 Freescale Semiconductor



DMA Controller 10
Direct memory access (DMA) is one of several methods for coordinating the timing of data 
transfers between an input/output (I/O) device and the core processing unit or memory in a 
computer. DMA is one of the faster types of synchronization mechanisms, generally providing 
significant improvement over interrupts, in terms of both latency and throughput. An I/O device 
often operates at a much slower speed than the core.2 DMA allows the I/O device to access the 
memory directly, without using the core. DMA can lead to a significant improvement in 
performance because data movement is one of the most common operations performed in 
processing applications. There are several advantages of using DMA, rather than the core, in the 
DSP56300 family:

� DMA saves core MIPS because the core can operate in parallel.

� DMA saves power because it requires less circuitry than the core to move data.

� DMA saves pointers because core AGU pointer registers are not needed.

� DMA has no modulo block size restrictions, unlike the core AGU.

Traditionally, DMA uses the same internal address and data buses as the core. Consequently, 
when DMA performs one or more word transfers, it can temporarily cause the core to halt 
activity for one or more cycles while the DMA controller moves the data. The core and the DMA 
controller cannot both perform data moves in the same core clock cycle. To overcome data 
movement restrictions imposed by sharing resources with the core, the DMA system in the 
DSP56300 family contains its own dedicated internal address and data buses. Internal memory is 
partitioned so that the program control unit (PCU) and DMA controller can both perform internal 
memory accesses in the same core clock cycle, as long they access different memory partitions. 
Also, if one of these two controllers accesses internal memory, the other controller can perform 
an external memory access in the same core clock cycle.

In addition to data moves between I/O and internal or external memory, the DMA in the 
DSP56300 can perform memory-to-memory transfers (internal, external, or mixed).  
Table 10-1 summarizes by source/destination type the various types of data transfers that the 
DMA controller can perform.

2. The term “core” has a special meaning when described in the context of DMA. Technically, the DSP56300 core 
contains all circuitry that is common to all devices in the DSP56300 family, including the DMA controller and 
buses. However, in the context of DMA, the core actions referred to are those caused by data movement instruc-
tions executed by the PCU, not data movement performed by the DMA controller.
DSP56300 Family Manual, Rev. 5
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The DMA unit contains the necessary counters, offset registers, and pointers to transparently 
handle one-, two-, and three-dimensional data matrix transfers. These registers can be given 
values that result in special addressing modes, for example, access to circular buffers and linear 
buffers with non-unit stride. The data structure dimensionality can be chosen independently for 
the source access versus the destination access involved in the data move. The DSP56300 
contains six DMA channels that share buses and offset registers but are otherwise independent. 
Each DMA channel can be triggered by interrupt pins, peripheral actions, or other DMA events, 
and assigned a priority relative to other channels and relative to the core. Each of the six DMA 
channels contains its own set of four operational registers, all of which are memory-mapped in 
the internal I/O memory space and all of which are 24-bit registers:

� DMA Source Address Register (DSR). A read/write register that contains the source 
address for the next DMA transfer for its channel. Each DMA channel has one DSR: 
DSR0, DSR1, DSR2, DSR3, DSR4, and DSR5. 

� DMA Destination Address Register (DDR). A read/write register that contains the 
destination address for the next DMA transfer for its channel. Each DMA channel has one 
DDR: DDR0, DDR1, DDR2, DDR3, DDR4, and DDR5.

� DMA Counter (DCO). A read/write register that contains the number of DMA data 
transfers to be performed by its channel. The DCO has five modes of operation 
determined by the DMA channel Address Generation mode defined in the DMA channel’s 
Control Register. Each DMA channel has one DCO: DCO0, DCO1, DCO2, DCO3, 
DCO4, and DCO5.

� DMA Control Register (DCR). A read/write register that controls the operation of a DMA 
channel. Each DMA channel has one DCR: DCR0, DCR1, DCR2, DCR3, DCR4 and 
DCR5.

The DMA Controller also has supporting 24-bit registers available to all the DMA channels:

Table 10-1.  DMA Controller Data Transfers

Type of Transfer Clock Cycles per Single Word Transfer1

Internal Memory → Internal Memory 2

External Memory ↔ Internal Memory 2 + wait states

External Memory → External Memory2 2 + wait states

Internal Memory ↔ Internal I/O 2

External Memory ↔ Internal I/O 2 + wait states

Internal I/O → Internal I/O 2

Notes: 1. Data transfer for one channel takes a minimum of two clock cycles per single word.

2. External memory includes external I/O.
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� DMA Offset Register (DOR). Each DOR is a read/write register that contains the offset 
value to be used in some of the DMA addressing modes. The DMA controller has four 
common offset registers (DOR0, DOR1, DOR2, and DOR3) that can be used by all the 
channels according to their Address Generation mode.

� DMA Status Register (DSTR). This read-only register reflects the overall operating status 
of all channels in the DMA Controller.

In summary, the DSP56300 DMA can perform I/O and memory accesses that are independent of 
and frequently simultaneous with PCU operations. The DMA controller can transfer 
memory-to-memory and handle mixed multi-dimensional and special address mode transfers. 
DMA contains six highly independent channels with separate priorities and multiple trigger 
choices. These capabilities significantly enhance code performance. 

10.1 DMA Operational Overview

The following subsections describe how the DSP56300 DMA operates. These subsections are 
organized by function, rather than by event sequence. The DMA register description section 
contains detailed operational information.

10.1.1   Basic Address Modes

The DSP56300 DMA controller can deal with the following basic types of data structures:

� Constant Addressing. Uses a single address throughout the data transfer. Typically this is 
used by I/O devices that use a single address to transfer information.

� One-dimensional. A matrix consisting of one item or a “line” of items in consecutive 
memory locations.

� Two-dimensional. A matrix or table that is stored in row-column order with equal spacing 
in memory between each row or line.

� Three-dimensional. A matrix or collection of tables that are equally spaced in memory.

The type of data structure is specified in the counter mode for the DMA channel. The counter 
mode divides a given 24-bit counter register into one or more sections, one for each dimension 
used. The appropriate counter fields either decrement or reload each time the DMA transfers a 
data word. A counter field is reloaded with its initial value after that field is decremented to zero. 
For details on counter operation, see Section 10.5.3, DMA Counters (DCO[5–0]), on page 10-9. 
Once all fields in the counter are exhausted, one or more data moves are performed and all words, 
lines, and tables are transferred. The total collection of data moved is called the “block.” 
Exhaustion of the entire counter results in a single “block transfer.” The automatic counter 
register updates are directly performed on the user-visible counter register. In other words, the 
counter register is used for both the count load/reload function and the count decrement function.
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10.1.2   Special Address Modes

The counter and offset registers can be loaded with special values to produce variants of the basic 
addressing modes. Some examples covered in more detail in later sections include:

� Circular buffer. Use a two-dimensional counter and a negative offset that wraps back to 
the buffer start address.

� Linear buffer with non-unit stride. Use a two-dimensional counter with one word per row. 
This method must be used with byte packing, which has a stride of three. 

� A larger-than-normal field width in a two-dimensional counter. Concatenate two fields in 
a three-dimensional counter by specifying an offset value of one between them.

10.1.3   Unmatched Source and Destination Dimensions

The source and destination data structures can have different dimensions. The data structure with 
the largest dimension is read or written once during the block transfer; the data structure with the 
smaller dimension can be written or read repeatedly. For this situation, a single counter register 
handles both sides of the transfer. The high-dimension (three-dimensional or two-dimensional) 
side of the transfer determines the counter mode and thus the number of available counter fields. 
Each “tick” of the counter counts one word transfer; that is, one source read and one destination 
write. The data structure on the low-dimension side of the transfer is fully described by a 
right-justified subset of the counter—the number of counter fields being the same as its 
dimension (two-dimensional or one-dimensional). This data structure access is repeated (using 
the exact same addressing sequence) the number of times specified by the upper field(s) of the 
counter. The pointer wraparound back to the beginning of this data structure is accomplished 
using a negative offset register value, similar to a circular buffer.

10.1.4   DMA Triggers (Request Sources)

Data movement in by a particular DMA channel is initiated by either a hardware or a software 
trigger. Following is an example list of some of the hardware and software DMA triggers, also 
known as DMA request sources. Peripheral triggers are device-dependent. A DMA channel can 
be configured for triggering by only one source at a time.

� Hardware triggers

— External interrupt pins (IRQ[A–D])
— DMA channel block transfer completion (by this or a different DMA channel)
— Peripheral status bits 

• Receiver has new datum to be read by the DMA controller

• Transmitter needs new datum from the DMA controller

• Timer compare event

� Software triggers

— DMA enable bit for this DMA channel
DSP56300 Family Manual, Rev. 5
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A peripheral status bit that triggers an enabled DMA transfer also typically can trigger an enabled 
peripheral interrupt. The DMA transfer is triggered by the status bit change, not by the peripheral 
interrupt event, and the DMA transfer occurs whether or not the peripheral interrupt is enabled. 
Furthermore, avoid triggering a DMA transfer and a peripheral interrupt from the same event; 
this can result in a lack of coordination regarding resources and status bit changes. 

10.1.5   Transfer Mode

When a DMA channel is enabled and receives a trigger from its configured trigger source, it 
begins moving data as soon as the needed resources become available (for example, internal 
DMA buses and memory locations). As a result of the trigger event, the channel transfers either 
all or a subset of the block (this is configurable). The amount of data that is transferred in 
response to each trigger event is determined by the DMA transfer mode. Besides the trigger data 
structure, the transfer mode also selects either a hardware or software trigger, and automatic 
block repeat enable. The available transfer modes are single word, line, and block. Typically, a 
DMA channel used in conjunction with a peripheral operates in a single word transfer mode 
(triggered by a receiver full or transmitter empty condition).

10.2 Timing (Core Clock Cycles)

This section describes the timing of core and DMA data transfers in the context of integral core 
clock cycle counts. When the needed resources are available, each word transfer performed by 
the DMA takes at least two core clock cycles:

� Source read (at least one cycle)

� Destination write (at least one cycle)

Any wait states incurred during external memory accesses are added to the DMA word transfer 
time (for external source and/or destination). Some peripherals (generally those using 
first-in-first-out (FIFO) for data transfer) may act as “fast DMA request sources.” These 
peripherals can trigger a new DMA request as often as every two core clock cycles, thereby using 
the DMA at its maximum throughput rate with zero overhead time.

10.2.1   Non-Overlap Between DMA Channels

Data movement can never be performed by more than one DMA channel within a given core 
clock cycle. For example, it is not possible for Channel 1 to commence its source read before 
Channel 0 completes its destination write. This non-overlap limitation exists for all situations, 
including the following cases:

� One channel needs to read (write) from external memory, and another channel needs to 
write (read) to internal memory.

� One of the DMA channels is waiting on the Bus Interface Unit (BIU) for an external 
access to complete, and the BIU is in turn waiting because of:
DSP56300 Family Manual, Rev. 5
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— Static wait states (determined by Bus Control Register)
— Dynamic wait states (controlled by TA pin)
— Byte packing

This limitation is necessary because there is only one internal DMA address bus and one internal 
DMA data bus. The internal DMA buses are in use by a DMA channel even during the external 
memory access phase of the DMA word transfer. Although channel overlap during DMA channel 
transfers cannot exist, zero overhead between two DMA channel transfers can exist. Once the 
word transfer performed by a DMA channel is completed, another DMA channel can begin data 
movement in the very next core clock cycle—if the second DMA channel has already been 
triggered and is not being delayed by contention or priority issues.

10.2.2   Overlap between DMA Channel and Core

Since the core and DMA use separate address and data buses, both can perform data movement in 
a given core clock cycle. This overlap of data movement can occur for the following cases:

� The core is accessing internal memory while DMA is accessing a different internal 
memory partition:

— RAM: 1/4 K words partition size (this size is device-dependent)
— ROM: 2, 3, or 4 K words device-specific partition size 

If the core and DMA try to access the same internal memory partition, the core has priority 
and DMA is delayed.

� The core is accessing internal (external) memory while DMA is accessing external 
(internal) memory

10.3 Channel Priority

DMA channel priority determines if and when a DMA channel can be interrupted during a block 
transfer. An interruption occurs between word transfers. The current DMA word transfer is 
allowed to complete before the core or another DMA channel can take control of the resource that 
is under contention. The DMA channel priority arbitration occurs for each DMA word transfer; 
only enabled and already triggered channels can take part in this arbitration. 

10.3.1   Priority Between DMA Channels

Each DMA channel can be independently assigned one of four possible priority levels. The 
treatment of priorities is as follows:

� Channels with different priorities:

A higher-priority DMA channel can interrupt a lower-priority DMA channel and complete 
its block transfer before control transfers back to the lower-priority channel.

� Channels with the same priority, one of two different modes can be selected:
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— Continuous mode: A DMA channel cannot interrupt another DMA channel of the same 
priority.

— Non-continuous mode: Control is transferred in a round-robin fashion between each 
channel of the same priority. Each channel transfers one word before control transfers 
to the next channel in this group.

DMA channels cannot interrupt each other in the middle of word transfers, regardless of their 
relative priorities. A word transfer made by one DMA channel must finish before another DMA 
channel can commence a word transfer.

10.3.2   Priority Between a DMA Channel and the Core

If the core and a DMA channel are both contending for the same partition of internal memory, but 
neither has begun the word transfer, the core always takes precedence. The DMA channel must 
wait until the core is not accessing this memory partition for at least one core clock cycle before it 
can begin to access the partition.

If the DMA channel and the core are each attempting to access a different internal memory 
partition in RAM or ROM, no contention exists. In this case, the accesses can be made 
simultaneously (data movement can occur in both of these data paths in a given core clock cycle). 
If the core and a DMA channel are both contending to make an external memory access, the 
prioritizing between that channel and the core is performed according to one of two selectable 
modes:

� Static DMA/Core Prioritizing mode—The core priority is configured to have a constant 
fixed relationship with the DMA priority, regardless of which DMA channel is 
considered. The core priority is set to be either lower, equal, or greater than that of the 
DMA. The individual DMA channels have equal priority when compared to the core, 
although they may still have unequal priorities when compared to each other. This mode is 
set using bits CDP[1–0] of the Operating Mode Register.

� Dynamic DMA/Core Prioritizing mode—The priority of each DMA channel is 
individually compared with that of the core. The DMA channel priority setting used for 
comparison with other DMA channels is also used for comparison with the core. This 
mode is set using bits CP[1–0] of the Status Register.

Note: Even though DMA and the core have separate address and data buses, there is only one 
external address and data bus.

The core cannot interrupt a DMA channel in the middle of a word transfer to or from a contended 
resource (an internal memory partition, or external memory), regardless of the core/DMA relative 
priority. If the DMA channel is already performing an access to the resource, the core must wait 
until the current DMA word transfer finishes accessing the resource before the core can access 
that resource. The core may have to wait for the entire DMA word transfer to complete, or it may 
have to wait only for the DMA source read to complete. This depends on the destination address 
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of the DMA channel. If the destination of the DMA word transfer is not in the contended 
resource, then the core can proceed with its access to the resource while the DMA performs its 
destination write somewhere else.

10.4 Special Uses of DMA With the Bus Interface Unit

The following subsections describe Bus Interface Unit (BIU) operations that can only be 
performed using DMA.

10.4.1   Byte Packing

Byte packing is used when the 24-bit data width DSP core interfaces with an 8-bit wide external 
memory device. Byte packing can be performed only in conjunction with a DMA data move.3 
When the DMA channel attempts to read a word from the external memory, it expects a 24-bit 
value. In accordance with the DMA read, the BIU reads three consecutive bytes from the 
memory, packs them into one 24-bit word, and then passes this word to the DMA. A reverse 
sequence occurs for a DMA write to the external memory. The BIU takes the 24-bit word from 
the DMA channel, unpacks it, and writes it as three consecutive bytes, to the external memory. 
For both read and write, the DMA views each 24-bit word transfer as a single external access. 
However, the byte packing operation is not completely transparent to the DMA. To read or write 
several 24-bit words to or from consecutive locations in the 8-bit memory, the DMA must be 
programmed to either increase or decrease its external memory address pointer by three for each 
24-bit transfer.

10.4.1.1   DRAM In-Page Accesses using DMA

When a DMA channel handles several consecutive in-page DRAM word accesses, a special 
situation can occur if an in-page access is interrupted by an external memory access initiated 
either by the core or a different DMA channel. The interrupting operation could be a 
higher-priority access to external SRAM. After the interrupting operation uses the BIU, the 
original DMA channel can resume reading or writing the DRAM without losing in-page access. 
This can occur as long as all in-page access conditions (described in Chapter 9, External 
Memory Interface (Port A)) remain satisfied.

10.4.1.2   End-of-Block-Transfer Interrupt

Upon completion of a block transfer by a DMA channel, an optional end-of-block-transfer DMA 
interrupt can be generated. The interrupt service routine (ISR) called by such an interrupt can 
perform any functions needed at this time. For example, the ISR could reconfigure the DMA 
channel for the next data block transfer or restart the DMA channel (if it is used in a transfer 
mode for which no automatic restart is available). Do not confuse an end-of-block-transfer DMA 

3. See the Port A Address Attribute Register description in Chapter 9, External Memory Interface (Port A), and the 
Freescale application report, APR23/D, Using the DSP56300 Direct Memory Access Controller.
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interrupt, also known as a “DMA interrupt,” with a peripheral interrupt. A peripheral interrupt 
can be generated by the same event that triggers the DMA channel to move part or all of the 
block. When DE is not cleared at the end of the block transfer (that is, if DTM = 100 or 101), the 
DMA end-of-block transfer interrupt may not be latched when the bus grant (BG) signal is 
asserted by the external bus arbiter. This causes the end-of-block interrupt to be lost.

10.5 DMA Controller Programming Model 

Figure 10-1 shows the DMA Controller programming model. The following paragraphs describe 
the registers and how they are used. Since the six channels share identical sets of registers, each 
of the four registers in each set is described once.

10.5.1   DMA Source Address Registers (DSR[0–5]) 

The DSR stores the initial source address specified by and loaded from the DMA requesting 
device. During the DMA transfer, the DSR contents increment as defined by the D3D and DAM 
bit settings (except in No Update mode). In two-dimensional mode, the specified DOR updates 
the DSR after the first set of data transfers completes. In three-dimensional mode, the specified 
DORs update the DSR twice during the transfer. 

10.5.2   DMA Destination Address Registers (DDR[5–0]) 

The DDR stores the initial destination address specified by and loaded from the DMA requesting 
device. During the DMA transfer, the DDR contents increment as defined by the D3D and DAM 
bit settings (except in No Update mode). In two-dimensional mode, the specified DOR updates 
the DDR after the first set of data transfers completes. In three-dimensional mode, the specified 
DORs update the DDR twice during the transfer.

10.5.3   DMA Counters (DCO[5–0]) 

During DMA operation, a Source Address Register (DSR) is associated with one of the counter 
modes, and the Destination Address Register (DDR) can be associated with another counter 
mode. The following examples use DSR as an example of the address register used, but the same 
example is valid for the DDR.
DSP56300 Family Manual, Rev. 5
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Figure 10-1.  DMA Controller Programming Model

10.5.3.1   DMA Counter Mode A—Single Counter

Figure 10-2 shows that in DMA Counter Mode A, the DCO operates as a single counter.

Figure 10-2.  DMA Counter Mode A Layout
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The number of transfers is equal to the value loaded into DCO plus one (DCO + 1). Before each 
DMA transfer, the DCO is tested for zero, and the following actions occur based on the test 
result:

� DCO > 0. A transfer is initiated with an address equal to the address register. Then DCO is 
decremented by one and the address register is updated according to the address 
generation mode.

� DCO = 0. The last transfer is initiated with an address equal to the address register, the 
address register is updated according to the address generation mode, and DCO is loaded 
with its preloaded value.

For example, if the DCO is preloaded with the value 5, the DSR is loaded with the value S, and 
the address generation mode is postincrement-by-1. Table 10-2 indicates the changes in the DSR 
and the DCO during the DMA transfer.

10.5.3.2   DMA Counter Mode B—Dual Counter

Figure 10-3 shows that in DMA Counter Mode B, which is useful for two-dimensional block 
transfers, the DCO is separated into two sections: DCOH[23 –12] and  
DCOL[11– 0] bits. 

Table 10-2.  Interaction Between the DSR and DCO in Mode A

Before the Transfer After the Transfer

DSR DCO DSR DCO

S 5 S + 1 4

S + 1 4 S + 2 3

S + 2 3 S + 3 2

S + 3 2 S + 4 1

S + 4 1 S + 5 0

S + 5 0 S + 6 5

Figure 10-3.  DMA Counter Mode B Layout

23 12 11 0

DCOH DCOL
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Before each DMA transfer, DCOH and DCOL are tested for zero, and the following actions 
occur based on the test results:

� DCOH > 0 and DCOL > 0. A transfer is initiated with an address equal to the address 
register. Then DCOL is decremented by one and the address register is incremented by 
one.

� DCOH > 0 and DCOL = 0. A transfer is initiated with an address equal to the address 
register. The address register is incremented with the specified offset register, DCOH is 
decremented by one, and DCOL is loaded with its preloaded value.

� DCOH = 0 and DCOL = 0. The last transfer is initiated with an address equal to the 
address register. The address register is incremented with the specified offset register, and 
both DCOH and DCOL are loaded with their preloaded values.

The number of transfers in this mode is equal to (DCOL + 1) × (DCOH + 1). For example, 
assume DCOH is preloaded with the value 1, DCOL is preloaded with the value 2, DOR is 
preloaded with the value T, and DSR is loaded with the value S. Table 10-3 indicates the changes 
in the DSR and the DCO during the DMA transfer.

10.5.3.3   Circular Buffer (Length Less Than or Equal to 4096 Words)

In Dual Counter mode, a DMA channel can function as a circular buffer. A negative offset causes 
the buffer pointer to wrap back to the start of the buffer. Since the buffer pointer does not 
auto-increment after the last word in the buffer is transferred (that is, just after DCOL decrements 
past zero), the distance for it to jump backwards is one less than the buffer size. Therefore, the 
offset register (DOR) value is (BUFFER_SIZE – 1). The 12-bit DCOL field is set to 
(BUFFER_SIZE – 1), providing a maximum buffer length of 4096 words. DCOH determines the 
number of buffer wraparounds during a single block transfer (a block transfer is complete when 
both DCOH and DCOL decrement past zero). To allow for continuous circular operation of the 
buffer, after the block transfer completes in DMA channel n, the DCRn (DE) bit either remains 
set (according to DCRn(DTM2–0)), or it is set again (by an end-of-block-transfer DMA 
interrupt). A circular buffer longer than 4096 words can be implemented using Counter Mode E. 

Table 10-3.  Interaction Between the DSR and DCO in Mode B

Before the Transfer After the Transfer

DSR DCOH DCOL DSR DCOH DCOL

S 1 2 S + 1 1 1

S + 1 1 1 S + 2 1 0

S + 2 1 0 S + T + 2 0 2

S + T + 2 0 2 S + T + 3 0 1

S + T + 3 0 1 S + T + 4 0 0

S + T + 4 0 0 S + 2T + 4 1 2
DSP56300 Family Manual, Rev. 5
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10.5.3.3.1   DMA Counter Modes C, D and E—Triple Counter

In DMA Counter Modes C, D, and E, which are useful for three-dimensional block transfers, the 
DCO is separated into three sections: DCOH, DCOM and DCOL.  
Figure 10-4 shows that the size of each section varies depending on the selected mode. The total 
transfers in this mode are equal to (DCOL + 1) × (DCOM + 1) × (DCOH + 1).

Figure 10-4.  DMA Counter Modes C, D, and E Layouts

Before each DMA transfer, DCOH, DCOM, and DCOL are tested for zero, and the following 
actions occur based on the test results:

� DCOH > 0, DCOM > 0, and DCOL > 0. A transfer is initiated with an address equal to the 
address register. Then DCOL decrements by one and the address register increments by 
one.

� DCOH > 0, DCOM > 0, and DCOL = 0. A transfer is initiated with an address equal to the 
address register. Then the address register increments with the first specified offset 
register, DCOM decrements by one, and DCOL is loaded with its preloaded value.

� DCOH > 0, DCOM = 0, and DCOL = 0. A transfer is initiated with an address equal to the 
address register. The address register then increments with the second specified offset 
register, DCOH decrements by one, and both DCOM and DCOL are loaded with their 
preloaded value.

� DCOH = 0, DCOM = 0, and DCOL = 0. The last transfer is initiated with an address equal 
to the address register. The address register then increments with the second specified 
offset register and DCOH, DCOM, and DCOL are loaded with their preloaded values.

Assume that DCOH is preloaded with the value 1, DCOM is also preloaded with the value 1, 
DCOL is preloaded with the value 2, DOR0 is preloaded with the value T0, DOR1 is preloaded 
with the value T1, and the DSR is loaded with the value S. Table 10-4 indicates the changes in 
the DSR and the DCO during the DMA transfer.

Mode C—DCOH (DCO[23–12]), DCOM (DCO[11–6]), and DCOL (DCO[5–0])

Mode D—DCOH (DCO[23–18]), DCOM (DCO[17–6]), and DCOL (DCO[5–0])
.

Mode E—DCOH (DCO[23–18]), DCOM (DCO[17–12]), and DCOL (DCO[11–0])

23 12 11 6 5 0

DCOH DCOM DCOL

23 18 17 6 5 0

DCOH DCOM DCOL

23 18 17 12 11 0

DCOH DCOM DCOL
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10.5.3.4   Circular Buffer (Length Greater Than 4096 Words)

A circular buffer of length greater than 4096 words can be implemented using a DMA channel in 
Counter Mode E. The 12-bit DCOL and 6-bit DCOM fields are concatenated into one 18-bit 
counter field, allowing a buffer length of up to approximately 256 K words (218 words). The 
counter field is concatenated using a primary offset of one (that is,  
DORi = 0). The remainder of the setup is done the same way as for a circular buffer 
implementation using Dual Counter mode (see Section 10.5.3.2)—that is, 
DCOM:DCOL = (BUFFER_SIZE - 1), and the secondary offset DORj = -(BUFFER_SIZE - 1). 
For an even longer circular buffer (up to 224 words), it is necessary to use an 
end-of-block-transfer DMA interrupt to perform the buffer pointer wraparound. The interrupt 
service routine must explicitly modify the DMA source and/or destination address registers. For 
this case, Single-Counter mode is used.

10.5.3.5   DMA Control Registers (DCR[5–0]) 

The DMA Control Registers (DCR[5–0]) are read/write registers that control the DMA operation 
for each of their respective channels. All DCR bits are cleared during processor reset.

Table 10-4.  Interaction Between the DSR and DCO in Mode C, D, or E

Before the Transfer After the Transfer

DSR

D
C
O
H

D
C
O
M

D
C
O
L

DSR

D
C
O
H

D
C
O
M

D
C
O
L

S 1 1 2 S + 1 1 1 1

S + 1 1 1 1 S + 2 1 1 0

S + 2 1 1 0 S + T0 + 2 1 0 2

S + T0 + 2 1 0 2 S + T0 + 3 1 0 1

S + T0 + 3 1 0 1 S + T0 + 4 1 0 0

S + T0 + 4 1 0 0 S + T0 + T1 + 4 0 1 2

S + T0 + T1 + 4 0 1 2 S + T0 + T1 + 5 0 1 1

S + T0 + T1 + 5 0 1 1 S + T0 + T1 + 6 0 1 0

S + T0 + T1 + 6 0 1 0 S + 2T0 + T1 + 6 0 0 2

S + 2T0 + T1 + 6 0 0 2 S + 2T0 + T1 + 7 0 0 1

S + 2T0 + T1 + 7 0 0 1 S + 2T0 + T1 + 8 0 0 0

S + 2T0 + T1 + 8 0 0 0 S + 2T0 + 2T1 + 8 1 1 2
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Figure 10-5.  DMA Control Register (DCR)

Table 10-5.   DMA Control Register (DCR) Bit Definitions 

Bit Number Bit Name Reset Value Description

23 DE 0 DMA Channel Enable 
Enables the channel operation. Setting DE either triggers a single block DMA transfer 
in the DMA transfer mode that uses DE as a trigger or enables a single-block, 
single-line, or single-word DMA transfer in the transfer modes that use a requesting 
device as a trigger. DE is cleared by the end of DMA transfer in some of the transfer 
modes defined by the DTM bits. If software explicitly clears DE during a DMA 
operation, the channel operation stops only after the current DMA transfer completes 
(that is, the current word is stored into the destination).

22 DIE 0 DMA Interrupt Enable 
Generates a DMA interrupt at the end of a DMA block transfer after the counter is 
loaded with its preloaded value. A DMA interrupt is also generated when software 
explicitly clears DE during a DMA operation. Once asserted, a DMA interrupt request 
can be cleared only by the service of a DMA interrupt routine. To ensure that a new 
interrupt request is not generated, clear DIE while the DMA interrupt is serviced and 
before a new DMA request is generated at the end of a DMA block transfer—that is, at 
the beginning of the DMA channel interrupt service routine. When DIE is cleared, the 
DMA interrupt is disabled.

23 22 21 20 19 18 17 16 15 14 13 12

DE DIE DTM2 DTM1 DTM0 DPR1 DPR0 DCON DRS4 DRS3 DRS2 DRS1

11 10 9 8 7 6 5 4 3 2 1 0

DRS0 D3D DAM5 DAM4 DAM3 DAM2 DAM1 DAM0 DDS1 DDS0 DSS1 DSS0
DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 10-15



DMA Controller
21–19 DTM[2–0] 0 DMA Transfer Mode  
Specify the operating modes of the DMA channel, as follows:

DTM[2 –0] Trigger
DE Cleared

After
Transfer Mode

000 request Yes Block Transfer 
DE enabled and DMA request initiated. The 
transfer is complete when the counter 
decrements to zero and the DMA controller 
reloads the counter with the original value.

001 request Yes Word Transfer 
A word-by-word block transfer (length set by 
the counter) that is DE enabled. The transfer is 
complete when the counter decrements to zero 
and the DMA controller reloads the counter 
with the original value.

010 request Yes Line Transfer 
A line by line block transfer (length set by the 
counter) that is DE enabled. The transfer is 
complete when the counter decrements to zero 
and the DMA controller reloads the counter 
with the original value.

011 DE Yes Block Transfer 
The DE-initiated transfer is complete when the 
counter decrements to zero and the DMA 
controller reloads the counter with the original 
value.

100 request No Block Transfer 
The transfer is enabled by DE and initiated by 
the first DMA request. The transfer is 
completed when the counter decrements to 
zero and reloads itself with the original value. 
The DE bit is not cleared at the end of the 
block, so the DMA channel waits for a new 
request.

101 request No Word Transfer 
The transfer is enabled by DE and initiated by 
every DMA request. When the counter 
decrements to zero, it is reloaded with its 
original value. The DE bit is not automatically 
cleared, so the DMA channel waits for a new 
request.

110 Reserved

Table 10-5.   DMA Control Register (DCR) Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description
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21–19
cont.

DTM[2–0] DMA Transfer Mode (Continued)

DTM[2 –0] Trigger
DE Cleared

After
Transfer Mode

111 Reserved

NOTE: When DTM[2–0] = 001 or 101, some peripherals can generate a second DMA 
request while the DMA controller is still processing the first request (see the 
description of the DRS bits).

18–17 DPR[1–0] 0 DMA Channel Priority 
Define the DMA channel priority relative to the other DMA channels and to the core 
priority if an external bus access is required. For pending DMA transfers, the DMA 
controller compares channel priority levels to determine which channel can activate 
the next word transfer. This decision is required because all channels use common 
resources, such as the DMA address generation logic, buses, and so forth.

DPR[1–0] Channel Priority

00 Priority level 0 (lowest)

01 Priority level 1

10 Priority level 2

11 Priority level 3 (highest)

• If all or some channels have the same priority, then channels are activated in a 
round-robin fashion—that is, channel 0 is activated to transfer one word, followed by 
channel 1, then channel 2, and so on. 

• If channels have different priorities, the highest priority channel executes DMA 
transfers and continues for its pending DMA transfers. 

• If a lower-priority channel is executing DMA transfers when a higher priority channel 
receives a transfer request, the lower-priority channel finishes the current word 
transfer and arbitration starts again. 

• If some channels with the same priority are active in a round-robin fashion and a 
new higher-priority channel receives a transfer request, the higher-priority channel 
is granted transfer access after the current word transfer is complete. After the 
higher-priority channel transfers are complete, the round-robin transfers continue. 
The order of transfers in the round-robin mode may change, but the algorithm 
remains the same.

• The DPR bits also determine the DMA priority relative to the core priority for 
external bus access. Arbitration uses the current active DMA priority, the core 
priority defined by the SR bits CP[1–0], and the core-DMA priority defined by the 
OMR bits CDP[1–0]. Priority of core accesses to external memory is as follows:

Table 10-5.   DMA Control Register (DCR) Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description
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18–17 cont. DPR[1–0] OMR - CDP[1–0] CP[1–0] Core Priority

00 00 0 (lowest)

00 01 1

00 10 2

00 11 3 (highest)

01 xx DMA accesses have higher priority 
than core accesses

10 xx DMA accesses have the same priority 
as core accesses

11 xx DMA accesses have lower priority 
than core accesses

• If DMA priority > core priority (for example, if CDP = 01, or CDP = 00 and  
DPR > CP), the DMA performs the external bus access first and the core waits for 
the DMA channel to complete the current transfer.

• If DMA priority = core priority (for example, if CDP = 10, or CDP = 00 and  
DPR = CP), the core performs all its external accesses first and then the DMA 
channel performs its access.

• If DMA priority < core priority (for example, if CDP=11, or CDP = 00 and  
DPR < CP), the core performs its external accesses and the DMA waits for a free 
slot in which the core does not require the external bus.

• In Dynamic Priority mode (CDP = 00), the DMA channel can be halted before 
executing both the source and destination accesses if the core has higher priority. If 
another higher-priority DMA channel requests access, the halted channel finishes 
its previous access with a new higher priority before the new requesting DMA 
channel is serviced.

16 DCON 0 DMA Continuous Mode Enable 
Enables/disables DMA Continuous mode. When DCON is set, the channel enters the 
Continuous Transfer mode and cannot be interrupted during a transfer by any other 
DMA channel of equal priority. DMA transfers in the continuous mode of operation can 
be interrupted if a DMA channel of higher priority is enabled after the continuous mode 

transfer starts. If the priority of the DMA transfer in continuous mode (that is, DCON = 
1) is higher than the core priority (CDP = 01, or CDP = 00 and DPR > CP), and if the 
DMA requires an external access, the DMA gets the external bus and the core is not 
able to use the external bus in the next cycle after the DMA access even if the DMA 
does not need the bus in this cycle. However, if a refresh cycle from the DRAM 
controller is requested, the refresh cycle interrupts the DMA transfer. When DCON is 
cleared, the priority algorithm operates as for the DPR bits.

Table 10-5.   DMA Control Register (DCR) Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description
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15–11 DRS[4–0] 0 DMA Request Source
Encodes the source of DMA requests that trigger the DMA transfers. The DMA 
request sources may be external devices requesting service through the IRQA, IRQB, 
IRQC and IRQD pins, triggering by transfers done from a DMA channel, or transfers 
from the internal peripherals. All the request sources behave as edge-triggered 
synchronous inputs.

DRS[4–0] Requesting Device

00000 External (IRQA pin)

00001 External (IRQB pin)

00010 External (IRQC pin)

00011 External (IRQD pin)

00100 Transfer done from channel 0

00101 Transfer done from channel 1

00110 Transfer done from channel 2

00111 Transfer done from channel 3

01000 Transfer done from channel 4

01001 Transfer done from channel 5

01010 Peripheral request MDRQ0

... ...

11111 Peripheral request MDRQ21

Peripheral requests 18–21 (DRS[4–0] = 111xx) can serve as fast request sources. 
Unlike a regular peripheral request in which the peripheral can not generate a second 
request until the first one is served, a fast peripheral has a full duplex handshake to 
the DMA, enabling a maximum throughput of a trigger every two clock cycles. This 
mode is functional only in the Word Transfer mode (that is, DTM = 001 or 101). In the 
Fast Request mode, the DMA sets an enable line to the peripheral. If required, the 
peripheral can send the DMA a one cycle triggering pulse. This pulse resets the 
enable line. If the DMA decides by the priority algorithm that this trigger will be served 
in the next cycle, the enable line is set again, even before the corresponding register 
in the peripheral is accessed.

This is a default list of encodings. For a detailed listing of encodings for a specific 
device, refer to the Core Configuration section in the device-specific user’s manual.

10 D3D 0 Three-Dimensional Mode 
Indicates whether a DMA channel is currently using three-dimensional (D3D = 1) or 
non-three-dimensional (D3D = 0) addressing modes. The addressing modes are 
specified by the DAM bits.

9–4 DAM[5–0] 0 DMA Address Mode 
Defines the address generation mode for the DMA transfer. These bits are encoded in 
two different ways according to the D3D bit. 

Table 10-5.   DMA Control Register (DCR) Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description
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10.5.3.5.1   Non-3D Addressing Modes (D3D = 0)

If D3D = 0, the DAM bits are separated into two groups as described in Table 10-6: 

� DAM[5–3]. Defines the destination address generation mode

� DAM[2–0]. Defines the source address generation mode

The destination and source address modes can be chosen independently, but they always use the 
same counter and, depending on the selected modes, they can also use the same offset register.

3–2 DDS[1–0] 0 DMA Destination Space 
Specify the memory space referenced as a destination by the DMA. 

NOTE: In Cache mode, a DMA to Program memory space has some limitations (as 
described in Chapter 8, Instruction Cache, and Chapter 11, Operating Modes and 
Memory Spaces).

DDS1 DDS0 DMA Destination Memory Space

0 0 X Memory Space

0 1 Y Memory Space

1 0 P Memory Space

1 1 Reserved

1–0 DSS[1–0] 0 DMA Source Space 
Specify the memory space referenced as a source by the DMA. 

NOTE: In Cache mode, a DMA to Program memory space has some limitations (as 
described in Chapter 8, Instruction Cache, and Chapter 11, Operating Modes and 
Memory Spaces).

DSS1 DSS0 DMA Source Memory Space

0 0 X Memory Space

0 1 Y Memory Space

1 0 P Memory Space

1 1 Reserved

Table 10-5.   DMA Control Register (DCR) Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description
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The address generation mode can be one of the following: 

� No Update mode. The DMA controller accesses a constant address for the entire transfer. 
This addressing mode is useful when accessing peripheral devices as well as other single 
address devices such as FIFOs.

� Postincrement-by-1 mode. The DMA controller accesses consecutive addresses. This 
addressing mode is useful when accessing data structures in memories in which the data 
elements are placed in successive memory locations.

� Two-dimensional mode. The DMA controller accesses data at consecutive addresses for a 
given number of times (DCOL) and adds the contents of an offset register to the generated 
address and repeats the entire process for another given number of times (DCOH). DCOL 
and DCOH are the two sections of the DCO counter. See Section 10.5.3 for details on 
DCO operation. This addressing mode is useful when for two-dimensional arrays of data.

10.5.3.5.2   3D Modes (D3D = 1)

When D3D = 1 (three-dimensional mode), the source addressing mode, the destination 
addressing mode, or both are three-dimensional. In three-dimensional mode, a pair of offset 
registers (either DOR0/DOR1 or DOR2/DOR3) are used for a three-dimensional source (or 
destination) access. The other side of the access—destination (or source)—can use the same or 
different offset registers. Specifically, the offset register pair in a corresponding 
three-dimensional destination (or source) access can be the same register pair or a different 
register pair. Similarly, the offset register in a corresponding two-dimensional destination (or 
source) access can be any one of the four offset registers. These offset register choices are 

Table 10-6.   Address Generation Mode (D3D = 0)

Destination 
DAM[5–3]

Source 
DAM[2–0]

Addressing Mode
Counter 

Mode2
Offset Register 

Selection

000 000 2D B DOR0

001 001 2D B DOR1

010 010 2D B DOR2

011 011 2D B DOR3

100 100 No Update A None

101 101 Postincrement-by –1 A None

110 110 Reserved

111 111 Reserved

Notes: 1. If the destination address generation mode specifies a different counter mode than the source address 
generation mode, then the counter mode is B.

2. In Mode A, the counter is a single 24-bit register (DCO). In Mode B, the counter is two 12-bit registers (DCOH 
and DCOL, the upper and lower halves of DCO, respectively).
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indicated in Table 10-7 and in Table 10-8. In three-dimensional mode, the address and counter 
modes are controlled by the DAM[5–0] bits, which are separated into three groups:

� DAM[5–3]. Defines the address generation mode (See Table 10-7)

� DAM[2]. Defines the address mode select (See Table 10-8)

� DAM[1–0]. Defines the DMA counter mode (See Table 10-9)

In Three-dimensional Address Generation mode, the DMA controller accesses data at 
consecutive addresses for a given number of times (DCOL) and then adds the contents of an 
offset register to the generated address. This process repeats for another given number of times 
(DCOM) after which another offset is added to the generated address. The entire process repeats 
for a given number of times (DCOH). DCOL, DCOM, and DCOH are the three sections of the 
DCO counter. See Section 10.5.3, DMA Counters (DCO[5–0]), on page 10-9 for details on the 

Table 10-7.  Address Generation Mode (D3D = 1)

DAM[5–3] Addressing Mode Offset Select

000 Two-dimensional DOR0

001 Two-dimensional DOR1

010 Two-dimensional DOR2

011 Two-dimensional DOR3

100 No Update None

101 Postincrement-by-1 None

110 Three-dimensional DOR[0–1]

111 Three-dimensional DOR[2–3]

Table 10-8.  Address Mode Select (D3D = 1)

DAM[2] Addressing Mode Offset Select

0 Source: Three-dimensional Source: DOR[0–1]

Destination: Defined by DAM[5–3] Destination: Defined by DAM[5–3]

1 Source: Defined by DAM[5–3] Source: Defined by DAM[5–3]

Destination: 3D Destination: DOR[2–3]

Table 10-9.  Counter Mode (D3D = 1)

DAM[1–0] Counter Mode DCO Layout

00 Mode C DCOH[23–12] DCOM[11–6] DCOL[5–0]

01 Mode D DCOH[23–18] DCOM[17–6] DCOL[5–0]

10 Mode E DCOH[23–18] DCOM [17–12] DCOL[11–0]

11 — Reserved
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DCO operation. This addressing mode is useful when a number of two-dimensional arrays of 
data are accessed. The Offset Select entries in Table 10-7 and Table 10-8 define the offset 
registers that are selected to increment the address register. If one side of the transfer uses 
two-dimensional mode, only one offset register is needed to increment the address register for 
that side of the transfer. In three-dimensional mode, two offset registers are needed.

10.5.3.6   DMA Offset Registers (DOR[3–0])

The DMA Offset Registers (DOR[3–0]) are four 24-bit read/write registers that store the offset 
values required by some DMA addressing modes. All two-dimensional transfers use one offset 
register. All three-dimensional transfers use two offset registers. For details on how DORs are 
assigned and used, refer to Section 10.5.3.5.1, Non-3D Addressing Modes (D3D = 0), on page 
10-20 and Section 10.5.3.5.2, 3D Modes (D3D = 1), on page 10-21. 

10.5.3.7   DMA Status Register (DSTR) 

The DMA Status Register (DSTR) is a 24-bit read only register that reflects the status of the 
DMA operation.

Figure 10-6.  DMA Status Register (DSTR)

23 22 21 20 19 18 17 16 15 14 13 12

11 10 9 8 7 6 5 4 3 2 1 0

DCH2 DCH1 DCH0 DACT DTD5 DTD4 DTD3 DTD2 DTD1 DTD0

Reserved bit. Read as zero.
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Table 10-10.   DMA Status Register (DSTR) Bit Definitions 

Bit Number Bit Name Reset Value Description

23–12 0 Reserved. The value is always zero.

11–9 DCH[2–0] 0 DMA Active Channel 
Indicate the currently active channel. The value of the DCH bits is 
valid only if bit 8 DACT = 1. 

DCH(2–0) Active Channel

000 DMA Channel 0

001 DMA Channel 1

010 DMA Channel 2

011 DMA Channel 3

100 DMA Channel 4

101 DMA Channel 5

110 Reserved

111 Reserved

Note: When activity passes from one DMA channel to another and 
the DMA interface accesses external memory (which 
requires one or more wait states), the DACT and DCH status 
bits in the DSTR may indicate improper activity status for 
DMA Channel 0 (DACT = 1 and  
DCH[2–0] = 000). There is no workaround for this problem.

8 DACT 0 DMA Active  
Set if the DMA is in the middle of a transfer. This bit is cleared if all the 
DMA channels are disabled or are awaiting DMA requests. This bit 
should be polled and tested for zero before entering a low power 
mode by executing a STOP instruction.

Note: When activity passes from one DMA channel to another and 
the DMA interface accesses external memory (which 
requires one or more wait states), the DACT and DCH status 
bits in the DSTR may indicate improper activity status for 
DMA Channel 0 (DACT = 1 and  
DCH[2–0] = 000). There is no workaround for this problem.
DSP56300 Family Manual, Rev. 5

10-24 Freescale Semiconductor



DMA Restrictions
10.6 DMA Restrictions 

The following restrictions apply to the DMA operation: 

1. Before executing the STOP instruction, poll the DACT status bit until it is read as zero. 
When the chip enters the Stop state, all previously latched DMA triggers are cleared.

2. The core exits the Wait state when a DMA channel accepts a trigger that is programmed 
as the selected source trigger. The DMA prevents the core from entering the Wait state 
if the DMA is active. 

3. The DMA Controller can access only the Transmit/Receive Data registers of peripheral 
interfaces when a source or destination is specified in internal I/O space. 

4. If a DMA channel access to external memory is delayed due to bus arbitration or 
memory wait, the other DMA channels also stop, since the DMA mechanism does not 
distinguish between the different channels.

5. Depending on the DSP563xx derivative, the internal RAM is divided into banks of 
either 256 or 1024 words. If the core and the DMA access different banks, they do not 
interfere with one another; each continues operations at its maximum speed. If both the 
core and the DMA access the same bank, then the core has priority and the DMA is 

7–6 0 Reserved. Write to zero for future compatibility.

5–0 DTD[5–0] 1 DMA Transfer Done 
Each DTD bit is assigned for its specific DMA channel (for example, 
DTD[5] = DMA Channel 5). A DTD bit is set when the last word of a 
single block transfer is stored in the destination, stopping channel 
operation. At the same time, the DE bit in the related DCR register 
may be cleared according to the transfer mode as defined by 
DTM[2–0]. The last transfer is defined as the one in which the DMA 
counter reloads its initial value or when software explicitly clears DE. If 
the related DCR[DIE] bit is set, then the assertion of the DTD bit 
causes a DMA interrupt request. When the DMA Interrupt is disabled, 
the core may verify the channel status by polling this bit. The DTD bit 
for a channel is reset when software sets the DE bit in the 
corresponding DCR.

NOTES:

• Because of pipeline dependencies, after the DCR[DE] bit is set, the 
corresponding DTDx bit is cleared only after an additional three 
instruction cycles.

• If the DMA channel is in a word transfer mode, clearing DE sets the 
corresponding DTD bit only after a trigger previously captured by 
the DMA is handled.

• When any DMA channel is set in the infinitive transfer mode (DE is 
not cleared at end of block) the DTD bit may never be set due to 
continuous triggering of this channel. However, a DMA interrupt is 
generated, as defined above, regardless of the DTD bit value.

Table 10-10.   DMA Status Register (DSTR) Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description
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delayed until a free slot is available. If the DSP563xx derivative contains an EFCOP, the 
DMA cannot access the derivative’s lower banks—that is, the DMA cannot access the 
lower 16 banks (4 K) of the DSP56307 X and Y memory or the lower 10 banks (10 K) 
of the DSP56311 X and Y memory. These lower banks are shared between the core and 
the EFCOP.

6. Write to the DMA Address Registers and the DMA Counter only when the channel that 
uses them is disabled (DE = 0 and DTD = 1). The operation of the DMA Controller 
cannot be guaranteed if one of these registers is written while the DMA channel that 
uses it is busy.

7. A change in the request source should be initiated only when the corresponding DMA 
channel is idle. If the channel is forced to enter the idle state by clearing the DMA 
Enable (DE) control bit, the corresponding DMA Transfer Done (DTD) status bit should 
be polled until it is read as ‘1’. 

8. If a DMA channel is programmed to perform accesses in the word transfer mode, the 
corresponding DTD status bit is set only after the current captured request is serviced by 
an appropriate transfer. This ensures that the last captured request is not lost. 

If the channel priority is low, the DTD is set only when it receives the priority to 
perform its accesses. In order to shorten this time, the channel priority may be raised 
before DE is cleared.

9. While a DMA channel is enabled (DE = 1), do not modify any of the channel DCR bits, 
except for the DE bit itself.

10. Due to pipelining, after the DE bit in DCRx is set, the corresponding DTDx bit in DSTR 
is not cleared until after three more instruction cycles.

The DMA Controller cannot access GPIO pins.
DSP56300 Family Manual, Rev. 5
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Operating Modes and Memory Spaces 11
The DSP56300 family core mode pins (MODA, MODB, MODC, and MODD) determine the 
reset vector address that points to the start-up procedure when the device leaves the Reset state. 
The mode pins are sampled as the device exits from Reset. The sampled state of these pins is 
subject to a mask-programmed look-up table that can be used as a filter to disable the user from 
entering some of the operating modes. This filtered state is written to the MD, MC, MB, and MA 
bits in the Operating Mode Register (OMR). When the Reset state is exited, the mode pins 
become general-purpose interrupt pins, IRQA, IRQB, IRQC, and IRQD. When the device is not in the 
Reset state, software can change the OMR mode bits (MA, MB, MC, and MD). Table 11-1 lists 
the mode assignments in the DSP56300 family core. The reset vector is chosen from 
device-specific addresses: RESET1, RESET2, and RESET3. Each reset vector in a specific 
DSP56300 family device is assigned one of two different values. Table 11-2 shows typical 
values. These reset vectors are implementation-specific.

In Expanded Modes 0 and 8, a hardware reset causes the DSP56300 family core to jump to the 
mask-programmed external program memory location RESET1 or RESET2, respectively, and 
execute the code fetched from this location. These locations are implementation specific. See the 
appropriate user’s manual for more information.

In the System Configuration Modes 1–7 and 9–F, a hardware reset causes the DSP56300 family 
core to jump to the mask-programmed internal program memory (usually ROM) location 

Table 11-1.  DSP Core Operating Modes 

MOD[D–A] Mode Description Reset Vector

0000 0 Expanded Mode 0 RESET1

0001–0111 1–7 System Configuration Mode 1–7 RESET3

1000 8 Expanded Mode 8 RESET2

1001–1111 9–F System Configuration Mode 9–F RESET3

Table 11-2.  DSP Core Reset Vectors, Possible Values 

RESET1 RESET2 RESET3 

$000000 $004000 $000000

$C00000 $008000 $FF0000
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RESET3, and execute the code fetched from this location. These routines are typically 
implementation-specific, and can be contained in the bootstrap code. 

11.1 DSP56300 Family Core Memory Map

The memory space of the DSP56300 family core is partitioned into program memory space (P), 
X data memory space, and Y data memory space. The data memory space is divided into X data 
memory and Y data memory in order to work with the two Address Arithmetic Logic Units 
(Address ALUs) and to feed two operands simultaneously to the Data ALU. Each memory space 
may include internal RAM, and/or internal ROM and can be expanded off-chip under software 
control. Figure 11-1 shows the three independent memory spaces of the DSP56300 family core: 
X data, Y data, and program.

Figure 11-1.  DSP56300 Core Memory Map

Individual members of the DSP56300 family can have different amounts of X data, Y data, and 
program memory. Consult the appropriate user’s manual and technical data sheet for more 
information.

Bootstrap ROM

Program

$FFFFFF

$000000

Internal

External

X Data

$FFFFFF

$000000

External

Internal I/O

Y Data

$FFFFFF

$000000

External

Internal I/O 

$FFFF80 $FFFF80

Internal Internal

or External
Internal I/O

External I/O

$FF0000

Internal
Reserved

Memory
or External
Internal I/O

Memory
$FFF000 $FFF000

Internal
Reserved

Internal
Reserved

$FF0000 $FF0000

 

NOTE 1: The size of the Bootstrap ROM is device-specific.

NOTE 2: External program memory begins immediately after the internal program memory. When the 
I-Cache is enabled, the address range that defines cache location (which is device-dependent) in internal P 
memory is redirected to address external memory at that range. When enabled, the cache memory space is 
inaccessible to the user.
DSP56300 Family Manual, Rev. 5

11-2 Freescale Semiconductor



DSP56300 Family Core Memory Map
11.1.1   X Data Memory Space

The X data memory space is divided into five parts:

� Internal X I/O space

� Switchable internal or external X I/O memory space

� Reserved space for X ROM or RAM

� External X data memory

� Internal X data RAM

11.1.2   Internal X I/O Space 

The on-chip X I/O peripheral registers occupy the top 128 locations of the X data memory space 
($FFFF80–$FFFFFF) and can be accessed by the MOVE and MOVEP instructions, as well as by 
bit-oriented instructions, such as the BCHG, BCLR, BSET, BTST, BRCLR, BRSET, BSCLR, 
BSSET, JCLR, JSET, JSCLR, and JSSET. Some of the DSP56300 family core registers are 
mapped to the internal X I/O space as well, as Table 11-3 shows.

Table 11-3.  Internal X I/O Space Map 

Register Block Address Register Name and Description

IPRC PIC $FFFFFF Interrupt Priority Register Core

IPRP $FFFFFE Interrupt Priority Register Peripheral

PCTL PLL $FFFFFD PLL Control Register 

OGDB OnCE $FFFFFC OnCE GDB Register 

BCR PORT A $FFFFFB Bus Control Register

DCR $FFFFFA DRAM Control Register

AAR0 $FFFFF9 Address Attribute Register 0

AAR1 $FFFFF8 Address Attribute Register 1

AAR2 $FFFFF7 Address Attribute Register 2

AAR3 $FFFFF6 Address Attribute Register 3

IDR $FFFFF5 ID Register

DSTR DMA $FFFFF4 DMA Status Register

DOR0 $FFFFF3 DMA Offset Register 0

DOR1 $FFFFF2 DMA Offset Register 1

DOR2 $FFFFF1 DMA Offset Register 2

DOR3 $FFFFF0 DMA Offset Register 3

DSR0 DMA Channel 
0

$FFFFEF DMA Source Address Register

DDR0 $FFFFEE DMA Destination Address Register

DCO0 $FFFFED DMA Counter

DCR0 $FFFFEC DMA Control Register
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11.1.3   Switchable Internal or External X I/O Memory

The X memory space $FFF000–$FFFF7F is device-specific and is either external X data memory 
or internal X I/O space for on-chip memory-mapped peripheral registers.

11.1.3.1   Reserved Space for X ROM or RAM

The X memory space $FF0000–$FFEFFF is reserved for inclusion of X data ROM or RAM 
modules (2048 locations each). The importance of modular organization of the X ROM/RAM 
becomes apparent in the case of a DMA access to the internal X memory simultaneous with a 
core access to the same space. DMA and core accesses to different banks can be completed at full 
speed, while accesses to the same bank halt the DMA until a program memory slot is available.

DSR1 DMA Channel 
1

$FFFFEB DMA Source Address Register

DDR1 $FFFFEA DMA Destination Address Register

DCO1 $FFFFE9 DMA Counter

DCR1 $FFFFE8 DMA Control Register

DSR2 DMA Channel 
2

$FFFFE7 DMA Source Address Register 

DDR2 $FFFFE6 DMA Destination Address Register

DCO2 $FFFFE5 DMA Counter

DCR2 $FFFFE4 DMA Control Register

DSR3 DMA Channel 
3

$FFFFE3 DMA Source Address Register 

DDR3 $FFFFE2 DMA Destination Address Register

DCO3 $FFFFE1 DMA Counter

DCR3 $FFFFE0 DMA Control Register 

DSR4 DMA Channel 
4

$FFFFDF DMA Source Address Register

DDR4 $FFFFDE DMA Destination Address Register

DCO4 $FFFFDD DMA Counter 

DCR4 $FFFFDC DMA Control Register

DSR5 DMA Channel 
5

$FFFFDB DMA Source Address Register

DDR5 $FFFFDA DMA Destination Address Register 

DCO5 $FFFFD9 DMA Counter 

DCR5 $FFFFD8 DMA Control Register

Reserved On-Chip 
X-I/O mapped 

Registers

$FFFFD7 Reserved for On-Chip X-I/O mapped Register

.. Reserved for On-Chip X-I/O mapped Register

.. Reserved for On-Chip X-I/O mapped Register

.. Reserved for On-Chip X-I/O mapped Register

$FFFF80 Reserved for On-Chip X- I/O mapped Register

Table 11-3.  Internal X I/O Space Map (Continued)

Register Block Address Register Name and Description
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DSP56300 Family Core Memory Map
11.1.3.2   External X Data Memory

The external X memory space is for expanding available X memory. The starting address of the 
external X data memory space is device-dependent. Refer to the appropriate user’s manual to 
determine the actual address used in that device.

11.1.3.3   Internal X Memory

The X memory space $000000–$00FFFF is for internal X RAM modules.4 The last address of 
the internal X memory is device-dependent. Refer to the appropriate user’s manual to determine 
the actual address used in that device. The importance of modular organization of the X RAM 
becomes apparent during a DMA access to the internal X memory simultaneous with a core 
access to the same space. DMA and core accesses to different banks can be completed at full 
speed, while accesses to the same bank halt the DMA until a program memory slot is available.

11.1.4   Y Data Memory Space

The Y data memory space is divided into five parts:

� Internal/External Y I/O space

� Switchable internal or external Y I/O memory space

� Reserved space for Y ROM or RAM

� External Y data memory

� Internal Y data RAM

11.1.4.1   Internal/External Y I/O Space 

The off-chip or on-chip Y I/O peripheral registers occupy the top 128 locations of the Y data 
memory space ($FFFF80–$FFFFFF) and can be accessed by MOVE and MOVEP instructions 
and by bit-oriented instructions (BCHG, BCLR, BSET, BTST, BRCLR, BRSET, BSCLR, 
BSSET, JCLR, JSET, JSCLR and JSSET). This space is partitioned into eight equal parts (16 
locations each). Each part is device-specific and is either external  
Y I/O or internal Y I/O space.

11.1.4.2   Switchable Internal or External Y I/O Memory

The Y memory space $FFF000–$FFFF7F is device-specific and is either external Y data memory 
or internal Y I/O space for on-chip memory-mapped peripheral registers.

11.1.4.3   Reserved Space for Y ROM or RAM

The Y memory space $FF0000–$FFEFFF is reserved for inclusion of Y data ROM or RAM 
modules (2048 locations each). The importance of modular organization of the Y ROM/RAM 

4. The size of modules is device dependent. See the device user’s manual.
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becomes apparent in the case of a DMA access to the internal Y memory simultaneous with a 
core access to the same space. DMA and core accesses to different banks can be completed at full 
speed, while accesses to the same bank halt the DMA until a program memory slot is available.

11.1.4.4   External Y Data Memory

The external Y data memory space is for expanding available Y data memory. The starting 
address of the external Y data memory space is device-dependent. Refer to the appropriate user’s 
manual to determine the actual address used in that device.

11.1.4.5   Internal Y Memory 

The Y memory space $000000–$00FFFF is for internal Y RAM modules.5 The last address of 
the internal Y memory is device-dependent. Refer to the appropriate user’s manual to determine 
the actual address used in that device. The importance of modular organization of the Y RAM 
becomes apparent in the case of a DMA access to the internal Y memory simultaneous with a 
core access to the same space. DMA and core accesses to different banks can be completed at full 
speed, while accesses to the same bank halt the DMA until a program memory slot is available.

11.1.5   Program Memory

The program memory space is divided into five parts:

� Bootstrap ROM

� Reserved space for Program ROM

� External program memory 

� Internal program memory 

� Internal instruction cache memory

11.1.5.1   Bootstrap ROM Space

The bootstrap ROM space contains factory programming that allows the DSP to initialize when 
power is applied. Some DSPs use a 192-word space ($FF0000–$FF00BF) and some use a 3 K 
words space ($FF0000–$FF0C00). The bootstrap ROM space cannot be accessed by the DMA.

11.1.5.2   Reserved Space for Program ROM

The program memory space $FF00C0–$FFFFFF is reserved for inclusion of Program ROM 
modules (2048 locations each). Program ROM may be used to contain some operating system 
program or other application-specific pre-defined user programs. The importance of modular 
organization of the Program ROM space is apparent in the case of DMA access to the internal 
program memory simultaneous with core access to the same space. DMA and core accesses to 

5. The size of modules is device dependent. See the device user’s manual.
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Sixteen-Bit Compatibility Mode
different banks can be completed at full speed, while accesses to the same bank halt the DMA 
until a program memory slot is available.

11.1.5.3   External Program Memory 

The external program memory space is for expanding internal program memory. The starting 
address of the external program memory space is device-dependent and also depends on the 
amount of on-chip Program RAM and the instruction cache size. Refer to the appropriate user’s 
manual to determine the actual address used in that device. 

11.1.5.4   Internal Program Memory 

The program memory space $000000–$00FFFF is for internal Program RAM modules.6 The last 
address of the internal program memory is device-dependent. Refer to the appropriate user’s 
manual to determine the actual address used in that device. The importance of modular 
organization of the program memory becomes apparent in the case of a DMA access to the 
internal program memory simultaneous with a core access to the same space. DMA and core 
accesses to different banks can be completed at full speed, while accesses to the same bank halt 
the DMA until a program memory slot is available. The Program RAM provides a method of 
changing the program dynamically, allowing efficient overlaying of DSP software algorithms. 

11.1.5.5   Internal Instruction Cache RAM

The size of the instruction cache is 1024 24-bit words if it is enabled. The starting address of the 
instruction cache space is device-dependent. The instruction cache can be disabled by clearing 
the Cache Enable (CE) bit in the Status Register (SR). If the CE bit is cleared, the instruction 
cache RAM becomes part of the internal Program RAM. The instruction cache is used to 
minimize access time for accesses to external program memory space. If the CE bit is set, the 
instruction is enabled and no longer accessible to the user and its address space is assigned to 
external memory. A complete description of the instruction cache is provided in Chapter 8, 
Instruction Cache.

11.2 Sixteen-Bit Compatibility Mode

When the Sixteen Bit Compatibility (SC) mode bit is set, the memory map is changed to allow 
easy access to memory mapped I/O, as described in Figure 11-2.

6. The size of modules is device dependent. See the device user’s manual.
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Figure 11-2.  DSP56300 Core Memory Map (SC = 1)

For details on this mode, how it affects AGU operations, and functional restrictions, see Chapter 
4, Address Generation Unit.

11.3 Memory Switch Mode

Each device has from four to eight memory switch modes, which are set by bits in the Operating 
Mode Register (OMR). Refer to the individual device user’s manual for specific information.

Program
$FFFF

Internal
RAM

External

X Data
$FFFF

External

RAM

Internal I/O

Y Data
$FFFF

External

Internal I/O

$FF80 $FF80

Memory

Memory Memory

Internal
RAM

Internal

or External
Internal I/O

or External I/O

I/O Memory
or External
Internal I/O

I/O Memory
$F000 $F000

$0000 $0000 $0000

NOTE 1: External program memory begins immediately after the internal program memory. 
When the SR[CE] bit is enabled, the cache memory space is inaccessible to the user.
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Guide to the Instruction Set 12
This chapter presents the DSP56300 instruction format as well as partial encodings for use in 
instruction encoding. The alphabetical instruction descriptions are presented in Chapter 13, 
Instruction Set. The complete range of instruction capabilities combined with the flexible 
DSP56300 addressing modes provide a very powerful assembly language for implementing DSP 
algorithms. The instruction set allows efficient coding for DSP high-level language compilers, 
such as the C Compiler. Hardware looping capabilities, an instruction pipeline, and parallel 
moves minimize execution time.

12.1 Instruction Formats and Syntax

The DSP56300 core instructions consist of one or two 24-bit words—an operation word and an 
optional extension word. This extension word can be either an effective address extension word 
or an immediate data extension word. While the extension word occupies the full 24-bit width of 
the program memory, only the sixteen Least Significant Bits (LSBs) are relevant for effective 
address extension or for immediate data. Therefore, the extension word is effectively sixteen bits 
wide. Figure 12-1 shows the general formats of the instruction word. Most instructions specify 
data movement on the X Data Bus (XDB), Y Data Bus (YDB), and Data ALU operations in the 
same operation word. The DSP56300 core performs each of these operations in parallel.

Figure 12-1.  General Formats of an Instruction Word

Optional Effective Address Extension
X X X X X X X X

23 8 7 0

Data Bus Movement
OPCODE

Optional Immediate Data Extension
X X X X X X X X

23 8 7 0

Data Bus Movement
OPCODE

Optional Effective Address Extension

23 0

Non-parallel Operation Code
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The Data Bus Movement field provides the operand reference type, which selects the type of 
memory or register reference to be made, the direction of transfer, and the effective address(es) 
for data movement on the XDB and/or YDB. This field may require additional information to 
fully specify the operand for certain addressing modes. An extension word following the 
operation word is used to provide immediate data, absolute address or address displacement, if 
required. Examples of operations that may include the extension word include move operation 
such as MOVE X:$100,X0.

The Opcode field of the operation word specifies the Data ALU operation or the Program Control 
Unit (PCU) operation to be performed.

The instruction syntax has two formats—parallel and non-parallel, as Table 12-1 and Table 12-2 
show. A parallel instruction is organized into five columns: opcode, operands, two optional 
parallel-move fields, and an optional condition field. The condition field disables the execution of 
the opcode if the condition is not true, and it cannot be used in conjunction with the parallel move 
fields. 

Assembly-language source codes for some typical one-word instructions are shown in Table 
12-1. Because of the multiple bus structure and the parallelism of the DSP56300 core, as many as 
three data transfers can be specified in the instruction word—one on the XDB, one on the YDB, 
and one within the Data ALU. These transfers are explicitly specified. A fourth data transfer is 
implied and occurs in the PCU (instruction word prefetch, program looping control, and so on). 
The opcode column indicates the Data ALU operation to be performed, but may be excluded if 
only a MOVE operation is needed. The operands column specifies the operands to be used by the 
opcode. The XDB and YDB columns specify optional data transfers over the XDB and YDB and 
the associated addressing modes. The address space qualifiers (X:, Y:, and L:) indicate which 
address space is being referenced.

A non-parallel instruction is organized into two columns: opcode and operands. 
Assembly-language source codes for some typical one-word instructions are shown in Table 
12-2. Non-parallel instructions include all the program control, looping, and peripherals 
read/write instructions. They also include some Data ALU instructions that are impossible to 
encode in the Opcode field of the parallel format.

Table 12-1.  Parallel Instruction Format

Example Opcode Operands XDB YDB Condition

Example 1: MAC X0,Y0,A X:(R0)+,X0 Y:(R4)+,Y0

Example 2: MOVE X:-(R1),X1

Example 3: MAC X1,Y1,B

Example 4: MPY X0,Y0,A IFeq
DSP56300 Family Manual, Rev. 5
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12.2 Operand Lengths

Operand lengths are defined as follows: a byte is 8 bits, a word is 24 bits, a long word is 48 bits, 
and an accumulator is 56 bits, as shown in Figure 12-2. The operand size for each instruction is 
either explicitly encoded in the instruction or implicitly defined by the instruction operation.

Figure 12-2.  Operand Lengths

In Sixteen-bit Arithmetic mode the operand lengths are as follows: a byte is 8 bits, a word is 16 
bits, a long word is 32 bits, and an accumulator is 40 bits.

Figure 12-3.  Operand Lengths in Sixteen-Bit Mode

Table 12-3 shows the operand lengths supported by the registers of the DSP56300 core.

Table 12-2.  Non-Parallel Instruction Format

Example Opcode Operands

Example 1: JEQ (R5)

Example 2: MOVEP #data,X:ipr

Example 3: RTS

7
Byte

Word

Long Word

Accumulator

0

023

048

056

Byte

Word

Long Word

Accumulator

7 0

23 0

0

0

47

55
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12.2.1   Data ALU Registers

The eight main data registers are 24 bits wide. Word operands occupy one register; long-word 
operands occupy two concatenated registers. The Least Significant Bit (LSB) is the right-most bit 
(bit 0) and the Most Significant Bit (MSB) is the left-most bit (bit 23 for word operands and bit 
47 for long-word operands). In Sixteen-Bit mode, the LSB is bit 8 and bits 24 to 31 are ignored 
for long-word operands. The MSB is the leftmost bit.

The two accumulator extension registers are 8 bits wide. When an accumulator extension register 
is a source operand, it occupies the low-order portion (bits 0–7) of the word; the high-order 
portion (bits 8–23) is sign-extended (see Figure 12-5). As a destination operand, this register 
receives the low-order portion of the word, and the high-order portion is not used. Accumulator 
operands occupy an entire group of three registers (for example, A2:A1:A0 or B2:B1:B0). The 
LSB is the right-most bit (bit 0 in 24-bit mode and bit 8 for 16-bit mode), and the MSB is the 
leftmost bit (bit 55).

When a 56-bit accumulator (A or B) is specified as a source operand S, the accumulator value is 
optionally shifted according to the Scaling mode bits S0 and S1 in the Mode Register (MR). If the 
data out of the shifter indicates that the accumulator extension register is in use and the data is to 
be moved into a 24-bit destination, the value stored in the destination is limited to a maximum 
positive or negative saturation constant to minimize truncation error. Limiting does not occur if 
an individual 24-bit accumulator register (A1, A0, B1, or B0) is specified as a source operand 
instead of the full 56-bit accumulator (A or B). This limiting feature allows block floating-point 
operations to be performed with error detection since the L bit in the Condition Code Register 
(CCR) is latched. 

Table 12-3.  Register Operand Lengths

Registers
Number of 
Registers

Operand Lengths Supported Sixteen-Bit Mode

ALU 10 8- or 24-bit data
With concatenation: 48- or 56-bit data

16-bit data
With concatenation: 32- or 
40-bit data

AGU address registers 8 24-bit address or data No

AGU offset registers 8 24-bit offsets or 24-bit address or data No

AGU modifier registers 8 24-bit modifiers or 24-bit address or data No

Program Counter (PC) 1 24-bit address No

Status Register (SR) 1 8- or 24-bit data 16-bit data

Operating Mode 
Register (OMR)

1 8- or 24-bit data 16-bit data

Loop Counter (LC) 1 24-bit address No

Loop Address (LA) 1 24-bit address No
DSP56300 Family Manual, Rev. 5

12-4 Freescale Semiconductor



Operand Lengths
Figure 12-4.  Reading and Writing ALU Extension Registers

When a 56-bit accumulator (A or B) is specified as a destination operand D, any 24-bit source 
data to be moved into that accumulator is automatically extended to 56 bits by sign-extending the 
MSB of the source operand (bit 23) and appending the source operand with 24 zeros in the LSBs. 
For 24-bit source operands, both the automatic sign extension and zeroing features can be 
disabled by specifying the destination register to be one of the individual 24-bit accumulator 
registers (A1 or B1).

12.2.2   AGU Registers

The twenty-four 24-bit AGU registers can be accessed as word operands for address, address 
offset, address modifier, and data storage. The Rn notation designates one of the eight address 
registers, R[0–7]. The Nn notation designates one of the eight address offset registers, N[0–7]. 
The Mn notation designates one of the eight address modifier registers, M[0––7].

12.2.3   Program Control Registers

Within the 24-bit Operating Mode Register (OMR), the Chip Operating Mode (COM) register 
occupies the low-order 8 bits, the Extended chip Operating Mode (EOM) register occupies the 
middle-order 8 bits, and the System Stack Control Status (SCS) register occupies the high-order 8 
bits. The OMR and the Vector Base Address (VBA) are accessed as word operands; however, not 
all of their bits are defined. Reserved bits are read as zero and should be written with zero for 
future compatibility. 

Within the 24-bit SR, the user Condition Code Register (CCR) occupies the low-order 8 bits, the 
system Mode Register (MR) occupies the middle-order 8 bits, and the Extended Mode Register 
(EMR) occupies the high-order 8 bits. The SR can be accessed as a word operand. The MR and 
CCR can be accessed individually as word operands (see  
Figure 12-5). The Loop Counter (LC), Loop Address (LA), stack Size (SZ), System Stack High 
(SSH), and System Stack Low (SSL) registers are 24 bits wide and are accessed as word 

Bus

Not Used
LSB of
Word

A2/B2

15

Register A2 and B2 
Used as a Destination

Register A2 and B2
Used as a Source

Sign Extension
of A2/B2

Contents
of A2/B2

Not Used

78 0

15 78 0

Register A2, B2

Bus

15 78 0
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operands. The system Stack Pointer (SP) is a 24-bit register that is accessed as a word operand. 
The PC, a special 24-bit-wide Program Counter register, is generally referenced implicitly as a 
word operand, but it can also be referenced explicitly (by all PC-relative operation codes) as a 
word operand (see Figure 12-5). 

Figure 12-5.  Reading and Writing Control Registers

12.2.4   Data Organization in Memory

The 24-bit program memory can store both 24-bit instruction words and instruction extension 
words. The 48-bit System Stack (SS) can store the concatenated PC and SR registers (PC:SR) for 
subroutine calls, interrupts, and program looping. The SS also supports the concatenated LA and 
LC registers (LA:LC) for program looping. The 16-bit-wide X and Y memories can store word 
and byte operands. Byte operands, which usually occupy the low-order portion of the X or Y 
memory word, are either zero extended or sign-extended on the XDB or YDB.

12.3 Instruction Groups

The instruction set is divided into the following groups:

� Arithmetic

� Logical

� Bit Manipulation

� Loop

� Move

� Program Control

� Instruction Cache Control

Each instruction group is described in the following paragraphs. See Chapter 13, Instruction Set, 
for a description of each instruction.

MR, CCR, and COM
Used as a Destination

 Used as a Source
MR, CCR, and COM

Bus

Not Used LSB

23 78 0

23 78 0

Bus

MR, CCR, COM

Zero Fill
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12.3.1   Arithmetic Instructions

The arithmetic instructions perform all of the arithmetic operations within the Data ALU. These 
instructions may affect all of the CCR bits. Arithmetic instructions are register-based (register 
direct addressing modes used for operands), so that the Data ALU operation indicated by the 
instruction does not use the XDB, the YDB, or the Global Data Bus (GDB). Optional data 
transfers may be specified with most arithmetic instructions, which allows for parallel data 
movement over the XDB and YDB or over the GDB during a Data ALU operation. This parallel 
movement allows new data to be prefetched for use in subsequent instructions and results 
calculated in previous instructions to be stored. The move operation that can be specified in 
parallel to the instruction marked is one of the parallel instructions listed in  Table 12-8, Move 
Instructions, on page 12-11. Arithmetic instructions can be executed conditionally, based on the 
condition codes generated by the previous instructions. Conditional arithmetic instructions do not 
allow parallel data movement over the various data buses. Table 12-4 lists the arithmetic 
instructions. 

Table 12-4.  Arithmetic Instructions  

Mnemonic Description
Parallel 

Instruction*

* A √ in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell 
indicates that the instruction is not a parallel instruction.

ABS Absolute Value √

ADC Add Long With Carry √

ADD Add √

ADD (imm.) Add (immediate operand) 

ADDL Shift Left and Add √

ADDR Shift Right and Add √

ASL Arithmetic Shift Left √

ASL (mb.) Arithmetic Shift Left (multi-bit)

ASL (mb., imm.) Arithmetic Shift Left (multi-bit, immediate operand)

ASR Arithmetic Shift Right √

ASR (mb.) Arithmetic Shift Right (multi-bit)

ASR (mb., imm.) Arithmetic Shift Right (multi-bit, immediate operand)

CLR Clear Accumulator √

CMP Compare √

CMP (imm.) Compare (immediate operand)

CMPM Compare Magnitude √

CMPU Compare Unsigned 

DEC Decrement by One

DIV Divide Iteration
DSP56300 Family Manual, Rev. 5
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12.3.2   Logical Instructions

The logical instructions execute in one instruction cycle and perform all logical operations within 
the Data ALU (except ANDI and ORI). They can affect all of the CCR bits and, like the 
arithmetic instructions, are register-based. Optional data transfers can be specified with most 
logical instructions, allowing parallel data movement over the XDB and YDB or over the GDB 
during a Data ALU operation. This parallel movement allows new data to be prefetched for use in 
subsequent instructions and results calculated in previous instructions to be stored.The move 

DMAC Double Precision Multiply-Accumulate With Right Shift

INC Increment by One

MAC Signed Multiply-Accumulate √

MAC (su,uu) Mixed Multiply-Accumulate

MACI Signed Multiply-Accumulate With Immediate Operand

MACR Signed Multiply-Accumulate and Round √

MACRI Signed Multiply-Accumulate and Round With Immediate Operand 

MAX Transfer by Signed Value √

MAXM Transfer by Magnitude √

MPY Signed Multiply √

MPY (su,uu) Mixed Multiply

MPYI Signed Multiply With Immediate Operand

MPYR Signed Multiply and Round √

MPYRI Signed Multiply and Round With Immediate Operand

NEG Negate Accumulator √

NORM Norm Accumulator Iteration

NORMF Fast Accumulator Normalization

RND Round Accumulator √

SBC Subtract Long With Carry √

SUB Subtract √

SUB (imm.) Subtract (immediate operand)

SUBL Shift Left and Subtract Accumulators √

SUBR Shift Right and Subtract Accumulators √

Tcc Transfer Conditionally

TFR Transfer Data ALU Register √

TST Test Accumulator √

Table 12-4.  Arithmetic Instructions  (Continued)

Mnemonic Description
Parallel 

Instruction*

* A √ in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell 
indicates that the instruction is not a parallel instruction.
DSP56300 Family Manual, Rev. 5
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operation that can be specified in parallel to the instruction marked is one of the parallel 
instructions listed in  Table 12-8, Move Instructions, on page 12-11. Table 12-5 lists the logical 
instructions. 

 

12.3.3   Bit Manipulation Instructions

The bit manipulation instructions test the state of any single bit in a memory location and then 
optionally set, clear, or invert the bit. The carry bit of the CCR contains the result of the bit test. 
Table 12-6 lists the bit manipulation instructions. 

Table 12-5.  Logical Instructions 

Mnemonic Description
Parallel 

Instruction*

* A √ in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell 
indicates that the instruction is not a parallel instruction.

AND Logical AND √

AND (imm.) Logical AND (immediate operand) 

ANDI AND Immediate to Control Register

CLB Count Leading Bits

EOR Logical Exclusive OR √

EOR (imm.) Logical Exclusive OR (immediate operand) 

EXTRACT Extract Bit Field

EXTRACT (imm.) Extract Bit Field (immediate operand)

EXTRACTU Extract Unsigned Bit Field

EXTRACTU (imm.) Extract Unsigned Bit Field (immediate operand)

INSERT INSERT Bit Field

INSERT (imm.) INSERT Bit Field  (immediate operand)

LSL Logical Shift Left √

LSL (mb.) Logical Shift Left (multi-bit )

LSL (mb., imm.) Logical Shift Left (multi-bit, immediate operand)

LSR Logical Shift Right √

LSR (mb.) Logical Shift Right (multi-bit)

LSR (mb.,imm.) Logical Shift Right (multi-bit, immediate operand)

MERGE Merge Two Half Words

NOT Logical Complement √

OR Logical Inclusive OR √

OR (imm.) Logical Inclusive OR (immediate operand)

ORI OR Immediate With Control Register

ROL Rotate Left √

ROR Rotate Right √
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12.3.4   Loop Instructions

The hardware DO loop executes with no overhead cycles—that is, it runs as fast as straight-line 
code. Replacing straight-line code with DO loops can significantly reduce program memory 
usage. The loop instructions control hardware looping either by initiating a program loop and 
establishing looping parameters or by restoring the registers by pulling the SS when terminating a 
loop. Initialization includes saving registers used by a program loop (LA and LC) on the SS so 
that program loops can nest The address of the first instruction in a program loop is also saved to 
allow no-overhead looping. The ENDDO instruction is not used for normal termination of a DO 
loop; it terminates a DO loop before the LC is decremented to 1. Table 12-7 lists the loop 
instructions. 

12.3.5   Move Instructions

The move instructions perform data movement over the XDB and YDB or over the GDB. Move 
instructions, most of which allow Data ALU opcode in parallel, do not affect the CCR, except the 
limit bit L, if limiting is performed when reading a Data ALU accumulator register. Table 12-8 
lists the move instructions. 

Table 12-6.  Bit Manipulation Instructions  

Mnemonic Description Parallel Instruction* 

* A √ in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell 
indicates that the instruction is not a parallel instruction.

BCHG Bit Test and Change

BCLR Bit Test and Clear

BSET Bit Test and Set

BTST Bit Test

Table 12-7.  Loop Instructions  

Mnemonic Description
Parallel 

Instruction* 

* A √ in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell 
indicates that the instruction is not a parallel instruction.

BRKcc Conditionally Break the current Hardware Loop

DO Start Hardware Loop

DO FOREVER Start Infinite Loop

DOR Start PC-Relative Hardware Loop

DOR FOREVER Start PC-Relative Infinite Loop

ENDDO End Current DO Loop
DSP56300 Family Manual, Rev. 5
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12.3.6   Program Control Instructions

The program control instructions include jumps, conditional jumps, and other instructions 
affecting the PC and SS. Program control instructions may affect the CCR bits as specified in the 
instruction. Optional data transfers over the XDB and YDB may be specified in some of the 
program control instructions. Table 12-9 lists the program control instructions. 

Table 12-8.  Move Instructions  

Mnemonic Description Parallel Instruction

* A √ in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell 
indicates that the instruction is not a parallel instruction.

LUA Load Updated Address

LRA Load PC-Relative Address

MOVE Move Data Register √

No Parallel Data Move

I Immediate Short Data Move √

R Register-to-Register Data Move √

U Address Register Update √

X: X Memory Data Move √

X:R X Memory and Register Data Move √

Y Y Memory Data Move √

R:Y Register and Y Memory Data Move √

L: Long Memory Data Move √

X:Y: X Y Memory Data Move √

MOVEC Move Control Register

MOVEM Move Program Memory

MOVEP Move Peripheral Data

VSL Viterbi Shift Left

Table 12-9.  Program Control Instructions  

Mnemonic Description Parallel Instruction*

* A √ in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell 
indicates that the instruction is not a parallel instruction.

Bcc Branch Conditionally

BRA Branch Always

BRCLR Branch if Bit Clear

BRSET Branch if Bit Set

BScc Branch to Subroutine Conditionally

BSCLR Branch to Subroutine if Bit Clear
DSP56300 Family Manual, Rev. 5
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12.3.7   Instruction Cache Control Instructions

The instruction cache control instructions include flushes and locks. They enable the programmer 
to lock/unlock sectors of the cache and to flush the cache contents under software control. Table 
12-10 lists the instruction cache control instructions. 

BSR Branch to Subroutine

BSSET Branch to Subroutine if Bit Set

DEBUG Enter Debug Mode

DEBUGcc Enter Debug Mode Conditionally

IFcc Execute Conditionally Without CCR Update

IFcc.U Execute Conditionally and Update CCR

ILLEGAL Illegal Instruction Interrupt

Jcc Jump Conditionally

JCLR Jump if Bit Clear

JMP Jump

JScc Jump to Subroutine Conditionally

JSCLR Jump to Subroutine if Bit Clear

JSET Jump if Bit Set

JSR Jump to Subroutine

JSSET Jump to Subroutine if Bit Set

NOP No Operation

REP Repeat Next Instruction

RESET Reset On-Chip Peripheral Devices

RTI Return From Interrupt

RTS Return From Subroutine

STOP Stop Instruction Processing

TRAP Software Interrupt

TRAPcc Conditional Software Interrupt

WAIT Wait for Interrupt or DMA Request

Table 12-9.  Program Control Instructions  (Continued)

Mnemonic Description Parallel Instruction*

* A √ in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell 
indicates that the instruction is not a parallel instruction.
DSP56300 Family Manual, Rev. 5
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12.4 Guide to Instruction Descriptions 

The following information is included in each instruction description:

� Name and Mnemonic: Highlighted in bold type for easy reference.

� Assembler Syntax and Operation: The syntax line for each instruction symbolically 
describes the corresponding operation. If several operations are indicated on a single line 
in the operation field, those operations may not occur in the order shown, but are generally 
assumed to occur in parallel. Any parallel data move is indicated in parentheses in both the 
assembler syntax and operation fields. An optional letter in the mnemonic appears in 
parentheses in the assembler syntax field.

� Description: Includes any special cases and/or condition code anomalies.

� Condition Codes: The Status Register (SR) is depicted with the condition code bits that 
can be affected by the instruction. Not all bits in the SR are used. Reserved bits are 
indicated with gray boxes.

� Instruction Format: The instruction fields, the instruction opcode, and the instruction 
extension word are specified in the instruction syntax. Optional extension words are so 
indicated. The values that can be assumed by each of the variables in the various 
instruction fields are shown under the instruction field heading.

12.4.1   Notation

Each instruction description contains symbols to abbreviate certain operands and operations. 
Table 12-11 lists the symbols and their respective meanings. Depending on the context, registers 
refer either to the register itself or to the contents of the register.

Table 12-10.  Instruction Cache Control Instructions  

Mnemonic Description Parallel Instruction*

* A √ in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell 
indicates that the instruction is not a parallel instruction.

PFLUSH Program Cache Flush

PFLUSHUN Program Cache Flush Unlocked Sectors

PFREE Program Cache Global Unlock

PLOCK Lock Instruction Cache Sector

PLOCKR Lock Instruction Cache Relative Sector

PUNLOCK Unlock Instruction Cache Sector

PUNLOCKR Unlock Instruction Cache Relative Sector
DSP56300 Family Manual, Rev. 5
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Table 12-11.  Instruction Description Notation  

Symbol Meaning

Data ALU Registers Operands

Xn Input Register X1 or X0 (24 bits)

Yn Input Register Y1 or Y0 (24 bits)

An Accumulator Registers A2, A1, A0 (A2—8 bits, A1 and A0—24 bits)

Bn Accumulator Registers B2, B1, B0 (B2—8 bits, B1 and B0—24 bits)

X Input Register X = X1: X0 (48 bits)

Y Input Register Y = Y1: Y0 48 bits)

A Accumulator A = A2: A1: A0 (56 bits)

B Accumulator B = B2: B1: B0 (56 bits)

AB Accumulators A and B = A1: B1 (48 bits)

BA Accumulators B and A = B1: A1 (48 bits)

A10 Accumulator A = A1: A0 (48 bits)

B10 Accumulator B = B1:B0 (48 bits)

Program Control Unit Registers Operands

PC Program Counter Register (24 bits)

MR Mode Register (8 bits)

CCR Condition Code Register (8 bits)

SR Status Register = EMR:MR:CCR (24 bits)

EOM Extended Chip Operating Mode Register (8 bits)

COM Chip Operating Mode Register (8 bits)

OMR Operating Mode Register = EOM:COM (24 bits)

SZ System Stack Size Register (24 bits)

SC System Stack Counter Register (5 bits)

VBA Vector Base Address (24 bits, eight set to 0)

LA Hardware Loop Address Register (24 bits)

LC Hardware Loop Counter Register (24 bits)

SP System Stack Pointer Register (24 bits)

SSH Upper Portion of the Current Top of the Stack (24 bits)

SSL Lower Portion of the Current Top of the Stack (24 bits)

SS System Stack RAM = SSH: SSL (16 locations by 32 bits)

Address Operands

ea Effective Address

eax Effective Address for X Bus

eay Effective Address for Y Bus

xxxxxx Absolute or Long Displacement Address (24 bits)
DSP56300 Family Manual, Rev. 5
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xxx Short or Short Displacement Jump Address (12 bits)

xxx Short Displacement Jump Address (9 bits)

aaa Short Displacement Address (7 bits, sign-extended)

aa Absolute Short Address (6 bits, zero-extended)

pp High I/O Short Address (6 bits, ones-extended)

qq Low I/O Short Address (6 bits) 

<. . .> Specifies the Contents of the Specified Address

X: X Memory Reference

Y: Y Memory Reference

L: Long Memory Reference = X Concatenated with Y

P: Program Memory Reference

Miscellaneous Operands

S, Sn Source Operand Register

D, Dn Destination Operand Register

D [n] Bit n of D Destination Operand Register

#n Immediate Short Data (5 bits)

#xx Immediate Short Data (8 bits)

#xxx Immediate Short Data (12 bits)

#xxxxxx Immediate Data (24 bits)

r Rounding Constant

#bbbbb Operand Bit Select (5 bits)

Unary Operands

– Negation Operator

— Logical NOT Operator (Overbar)

PUSH Push Specified Value Onto the System Stack (SS) Operator

PULL Pull Specified Value From the SS Operator

READ Read the Top of the SS Operator

PURGE Delete the Top Value on the SS Operator

|| Absolute Value Operator

Binary Operands

+ Addition Operator

– Subtraction Operator

* Multiplication Operator

÷, / Division Operator

+ Logical Inclusive OR Operator

• Logical AND Operator

Table 12-11.  Instruction Description Notation  (Continued)

Symbol Meaning
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⊕ Logical Exclusive OR Operator 

? “Is Transferred To” Operator

: Concatenation Operator

Addressing Mode Operators

<< I/O Short Addressing Mode Force Operator

< Short Addressing Mode Force Operator

> Long Addressing Mode Force Operator

# Immediate Addressing Mode Operator

#> Immediate Long Addressing Mode Force Operator

#< Immediate Short Addressing Mode Force Operator

Mode Register Symbols

LF Loop Flag Bit Indicating When a DO Loop Is in Progress

DM Double-Precision Multiply Bit Indicating if the Chip Is in Double-Precision Multiply Mode

SB Sixteen-Bit Arithmetic Mode

RM Rounding Mode

S1, S0 Scaling Mode Bits Indicating the Current Scaling Mode

I1, I0 Interrupt Mask Bits Indicating the Current Interrupt Priority Level

Condition Code Register (CCR) Symbols

S Block Floating Point Scaling Bit Indicating Data Growth Detection

L Limit Bit Indicating Arithmetic Overflow and/or Data Shifting/Limiting

E Extension Bit Indicating if the Integer Portion of Data ALU Result Is in Use

U Unnormalized Bit Indicating if the Data ALU Result Is Unnormalized

N Negative Bit Indicating if bit 55 of the Data ALU Result Is Set

Z Zero Bit Indicating if the Data ALU  Result Equals Zero

V Overflow Bit Indicating if Arithmetic Overflow Occurred in Data ALU 

C Carry Bit Indicating if a Carry or Borrow Occurred in Data ALU  Result

( ) Optional Letter, Operand, or Operation

(…) Any Arithmetic or Logical Instruction That Allows Parallel Moves

EXT Extension Register Portion of an Accumulator (A2 or B2)

LS Least Significant

LSP Least Significant Portion of an Accumulator (A0 or B0)

MS Most Significant

MSP Most Significant Portion of an Accumulator (A1 or B1)

S/L Shifting and/or Limiting on a Data ALU Register

Sign Ext Sign Extension of a Data ALU Register

Zero Zeroing of a Data ALU Register

Table 12-11.  Instruction Description Notation  (Continued)

Symbol Meaning
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12.4.2   Condition Code Computation

The Condition Code Register (CCR) portion of the Status Register (SR[7-0]) consists of eight 
bits depicted in Figure 12-6. For a complete description of the CCR bits, refer to Section 5.4.1.2, 
Status Register (SR), on page 5-10. The E, U, N, Z, V, and C bits are true condition code bits that 
reflect the condition of the result of a Data ALU operation. These condition code bits are not 
sticky and are not affected by Address ALU calculations or by data transfers over the XDB, YDB, 
or GDB. The L bit is a sticky overflow bit that indicates an overflow in the Data ALU or data 
limiting when the contents of the A and/or B accumulators are moved. The S bit is a sticky bit 
used in block floating-point operations to indicate the need to scale the number in A or B.

Figure 12-6.  Condition Code Register (CCR)

Every instruction contains an illustration showing how the instruction affects the various 
condition codes. An instruction can affect a condition code according to three different rules, as 
described in Table 12-12.

Address ALU Registers Operands

Rn Address Registers R[0–7] (24 bits)

Nn Address Offset Registers N[0–7] (24 bits)

Mn Address Modifier Registers M[0–7] (24 bits)

Table 12-12.  Instruction Effect on Condition Code

Standard Mark Effect on the Condition Code

— This bit is unchanged by the instruction. 

√ This bit is changed by the instruction, according to the standard definition of the condition code.

* This bit is changed by the instruction, according to a special definition of the condition code depicted 
as part of the instruction description.

Table 12-11.  Instruction Description Notation  (Continued)

Symbol Meaning

CCR

S — Scaling bit
L — Limit bit
E — Extension bit
U — Unnormalized bit

N — Negative bit
Z — Zero bit
V — Overflow bit
C — Carry bit

CS L E U N VZ 

07 6 5 4 3 12 
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12.5 Instruction Partial Encoding

This section gives the encodings for the following:

� Various groupings of registers used in the instruction encodings 

� Condition Code combinations 

� Addressing 

� Addressing modes 

The symbols used in decoding the various fields of an instruction are identical to those used in 
the Opcode section of the individual instruction descriptions.

12.5.1   Partial Encodings for Use in Instruction Encoding

Table 12-13.  Partial Encodings for Use in Instruction Encoding 

Destination/Source Accumulator 
Encoding

Data ALU Operands Encoding 1
Data ALU Source Operands 

Encoding

D/S d/S/D S J S JJ

A 0 X 0 X0 00

B 1 Y 1 Y0 01

X1 10

Y1 11

Program Control Unit Register 
Encoding

Data ALU Operands Encoding 2
Effective Addressing Mode 

Encoding 1

Register EE S JJJ Mode MMMRRR

MR 00 B/A* 0 0 1 (Rn)–Nn 0 0 0 r r r

CCR 01 X 0 1 0 (Rn)+Nn 0 0 1 r r r

COM 10 Y 0 1 1 (Rn)– 0 1 0 r r r

EOM 11 X0 1 0 0 (Rn)+ 0 1 1 r r r

Y0 1 0 1 (Rn) 1 0 0 r r r

X1 1 1 0 (Rn+Nn) 1 0 1 r r r

Y1 1 1 1 –(Rn) 1 1 1 r r r

* The source accumulator is B if the 
destination accumulator (selected by 
the d bit in the opcode) is A, or A if the 
destination accumulator is B.

Absolute address 1 1 0 0 0 0

Immediate data 1 1 0 1 0 0 

“r r r” refers to an address register 
R[0–7]

Data ALU Operands Encoding 3

SSS/sss S,D qqq S,D ggg S,D

000 Reserved 000 Reserved 000 B/A*

001 Reserved 001 Reserved 001 Reserved
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010 A1 010 A0 010 Reserved

011 B1 011 B0 011 Reserved

100 X0 100 X0 100 X0

101 Y0 101 Y0 101 Y0

110 X1 110 X1 110 X1

111 Y1 111 Y1 111 Y1

* The selected accumulator is B if the source two accumulator (selected by the d bit in the opcode) is A, or A if the source 
two accumulator is B.

Memory/Peripheral Space
Effective Addressing Mode 

Encoding 2
Effective Addressing Mode 

Encoding 3

Space S Mode MMMRRR Mode MMMRRR

X Memory 0 (Rn)–Nn 0 0 0 r r r (Rn)–Nn 0 0 0 r r r 

Y Memory 1 (Rn)+Nn 0 0 1 r r r (Rn)+Nn 0 0 1 r r r

(Rn)– 0 1 0 r r r (Rn)– 0 1 0 r r r

(Rn)+ 0 1 1 r r r (Rn)+ 0 1 1 r r r

(Rn) 1 0 0 r r r (Rn) 1 0 0 r r r

(Rn+Nn) 1 0 1 r r r (Rn+Nn) 1 0 1 r r r

–(Rn) 1 1 1 r r r –(Rn) 1 1 1 r r r

Absolute address 1 10 0 0 0 

“r r r” refers to an address register R[0–7]

Effective Addressing Mode 
Encoding 4

Six-Bit Encoding for All On-Chip Registers

Mode MMRRR Destination Register
D D D D D D /

d d d d d d

(Rn)–Nn 0 0 r r r 4 registers in Data ALU 0 0 0 1 D D 

(Rn)+Nn 0 1 r r r 8 accumulators in Data ALU 0 0 1 D D D 

(Rn)– 1 0 r r r 8 address registers in AGU 0 1 0 T T T 

(Rn)+ 1 1 r r r 8 address offset registers in AGU 0 1 1 N N N 

“r r r” refers to an address register 
R[0–7]

8 address modifier registers in AGU 1 0 0 F F F 

1 address register in AGU 1 0 1 E E E 

2 program controller registers 1 1 0 V V V 

8 program controller registers 1 1 1 G G G 

See Table 12-14 for the specific encodings.

Table 12-13.  Partial Encodings for Use in Instruction Encoding (Continued)
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Table 12-14.  Triple-Bit Register Encoding  

Code 1DD DDD TTT NNN FFF EEE VVV GGG

000 — A0 R0 N0 M0 — VBA SZ

001 — B0 R1 N1 M1 — SC SR

010 — A2 R2 N2 M2 EP — OMR

011 — B2 R3 N3 M3 — — SP

100 X0 A1 R4 N4 M4 — — SSH

101 X1 B1 R5 N5 M5 — — SSL

110 Y0 A R6 N6 M6 — — LA

111 Y1 B R7 N7 M7 — — LC

Table 12-15.  Long Move Register Encoding  

S S1 S2
S 

S/L D D1 D2
D

Sign Ext
D

Zero LLL

A10 A1 A0 no A10 A1 A0 no no 0 0 0

B10 B1 B0 no B10 B1 B0 no no 0 0 1

X X1 X0 no X X1 X0 no no 0 1 0

Y Y1 Y0 no Y Y1 Y0 no no 0 1 1

A A1 A0 yes A A1 A0 A2 no 1 0 0

B B1 B0 yes B B1 B0 B2 no 1 0 1

AB A B yes AB A B A2,B2 A0,B0 1 1 0 

BA B A yes BA B A B2,A2 B0,A0 1 1 1 

Table 12-16.  Partial Encodings for Use in Instructions Encoding, 2 

Data ALU Source Registers 
Encoding

AGU Address and Offset Registers Encoding

S JJJ Destination Address Register D dddd

B/A* 000 R[0–7] onnn

X0 100 N[0–7] 1nnn

Y0 101

X1 110

Y1 111
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Data ALU Multiply Operands Encoding 1
Data ALU Multiply Operands 

Encoding 2

S1 * S2 Q Q Q S1 * S2 Q Q Q S Q Q

X0,X0 0 0 0 X0,Y1 1 0 0 Y1 0 0 

Y0,Y0 0 0 1 Y0,X0 1 0 1 X0 0 1 

X1,X0 0 1 0 X1,Y0 1 1 0 Y0 1 0 

Y1,Y0 0 1 1 Y1,X1 1 1 1 X1 1 1 

Only the indicated S1 * S2 combinations are valid. X1 * X1 and Y1 * Y1 are 
not valid.

Data ALU Multiply Operands 
Encoding 3 Data ALU Multiply Operands Encoding 4

S qq S1*S2 Q Q Q Q S1*S2 Q Q Q Q

X0 0 0 X0,X0 0 0 0 0 X0,Y1 0 1 0 0 

Y0 0 1 Y0,Y0 0 0 0 1 Y0,X0 0 1 0 1 

X1 1 0 X1,X0 0 0 1 0 X1,Y0 0 1 1 0 

Y1 1 1 Y1,Y0 0 0 1 1 Y1,X1 0 1 1 1 

Data ALU Multiply Sign Encoding X1,X1 1 0 0 0 Y1,X0 1 1 0 0 

Sign k Y1,Y1 1 0 0 1 X0,Y0 1 1 0 1 

+ 0 X0,X1 1 0 1 0 Y0,X1 1 1 1 0 

– 1 Y0,Y1 1 0 1 1 X1,Y1 1 1 1 1 

Five-Bit Register Encoding 1 Write Control Encoding

D/S ddddd / eeeee D/S ddddd / eeeee Operation W

X0 0 0 1 0 0 B2 0 1 0 1 1 Read Register or 
Peripheral

0

X1 0 0 1 0 1 A1 0 1 1 0 0 Write Register or 
Peripheral

1

Y0 0 0 1 1 0 B1 0 1 1 0 1 ALU Registers Encoding

Y1 0 0 1 1 1 A 0 1 1 1 0 Destination 
Register

D D D D 

A0 0 1 0 0 0 B 0 1 1 1 1 4 registers in 
Data ALU

0 1 D D 

B0 0 1 0 0 1 R0-R7 1 0 r r r 8 accumulators 
in Data ALU

1 D D D 

A2 0 1 0 1 0 N0-N7 1 1 n n n See  Table 12-14, Triple-Bit Register 

Encoding, on page 12-20 for the 
specific encodings.

“r r r” = Rn number, “n n n” = Nn number

Table 12-16.  Partial Encodings for Use in Instructions Encoding, 2 (Continued)
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Immediate Data ALU Operand Encoding Write Control Encoding

n ssss constant Operation W

1 00001 010000000000000000000000 Read Register or 
Peripheral

0

2 00010 001000000000000000000000 Write Register or 
Peripheral

1

3 00011 000100000000000000000000 ALU Registers Encoding

4 00100 000010000000000000000000 Destination 
Register D D D D 

5 00101 000001000000000000000000 4 registers in 
Data ALU

0 1 D D 

6 00110 000000100000000000000000 8 accumulators 
in Data ALU

1 D D D 

7 00111 000000010000000000000000 See Table 12-14 on page -20 for the 
specific encodings.

8 01000 000000001000000000000000 X:Y: Move Operands Encoding

9 01001 000000000100000000000000 X Effective 
Addressing 

Mode
MMRRR

10 01010 000000000010000000000000 (Rn)+Nn 0 1 s s s 

11 01011 000000000001000000000000 (Rn)– 1 0 s s s 

12 01100 000000000000100000000000 (Rn)+ 1 1 s s s 

13 01101 000000000000010000000000 (Rn) 0 0 s s s 

14 01110 000000000000001000000000

Y Effective 
Addressing 

Mode
mmrr

15 01111 00000000000000010000000000 (Rn)+Nn 0 1 t t 

16 10000 00000000000000001000000000 (Rn)– 1 0 t t 

17 10001 000000000000000001000000 (Rn)+ 1 1 t t 

18 10010 000000000000000000100000 (Rn) 0 0 t t 

19 10011 000000000000000000010000 where the following apply: 
“s s s” refers to an address register 
R[0–7] and “t t” refers to an address 
register R[4–7] or R[0–3] in the 
opposite address register bank from 
that used in the X effective address

20 10100 000000000000000000001000

21 10101 000000000000000000000100

22 10110 000000000000000000000010

X:R Operand Registers Encoding
Signed/Unsigned Partial 

Encoding 1

Table 12-16.  Partial Encodings for Use in Instructions Encoding, 2 (Continued)
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S1,D1 f f D2 F ss/su/uu ss

X0 0 0 Y0 0 ss 00

X1 0 1 Y1 1 su 10

A 1 0 uu 11

B 1 1 (Reserved) 01

R:Y Operand Registers Encoding
Signed/Unsigned Partial 

Encoding 2

D1 e S2,D2 f f su/uu s

X0 0 Y0 0 0 su 0

X1 1 Y1 0 1 uu 1

A 1 0

B 1 1

Single-Bit Special Register Encoding Five-Bit Register Encoding 2

d
X:R Class II 

Opcode
R:Y Class II 

Opcode
S1,D1 ddddd

0 A → X:<ea> , X0 
→ A

Y0 → A , A → 
Y:<ea>

M0-M7 00nnn

1 B → X:<ea> , X0 
→ B

Y0 → B , B → 
Y:<ea>

EP 01010

Move Operand Encoding VBA 10000

S1,D1 e e S2,D2 f f SC 10001

X0 0 0 Y0 0 0 SZ 11000

X1 0 1 Y1 0 1 SR 11001

A 1 0 A 1 0 OMR 11010

B 1 1 B 1 1 SP 11011

SSH 11100

SSL 11101

LA 11110

LC 11111

where “n n n” = Mn number 
(M[0 – 7])

Table 12-17.  Condition Code Computation Equation 

Mnemonic “cc” Mnemonic Condition

CC(HS) Carry Clear (higher or same) C = 0

CS(LO) Carry Set (lower) C = 1

Table 12-16.  Partial Encodings for Use in Instructions Encoding, 2 (Continued)
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1.

EC Extension Clear E = 0

EQ Equal Z = 1

ES Extension Set E=1

GE Greater than or Equal N ⊕ V=0

GT Greater Than Z+(N ⊕ V)=0

LC Limit Clear L=0

LE Less than or Equal Z+(N ⊕ V)=1

LS Limit Set L=1

LT Less Than N ⊕ V=1

MI Minus N=1

NE Not Equal Z=0

NR Normalized Z+(U•E)=1

PL Plus N=0

NN Not Normalized Z+(U•E)=0

NOTES: 
U denotes the logical complement of U.

+ denotes the logical OR operator.

• denotes the logical AND operator. 

⊕ denotes the logical Exclusive OR operator.

Table 12-18.  Condition Codes Encoding 

Mnemonic   C C C C Mnemonic C C C C

CC(HS) 0 0 0 0 CS(LO) 1 0 0 0

GE 0 0 0 1 LT 1 0 0 1

NE 0 0 1 0 EQ 1 0 1 0

PL 0 0 1 1 MI 1 0 1 1

NN 0 1 0 0 NR 1 1 0 0

EC 0 1 0 1 ES 1 1 0 1

LC 0 1 1 0 LS 1 1 1 0

GT 0 1 1 1 LE 1 1 1 1

The condition code computation equations are listed in Table 12-17.

Table 12-17.  Condition Code Computation Equation (Continued)

Mnemonic “cc” Mnemonic Condition
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12.5.2   Parallel Instruction Encoding of the Operation Code

The operation code encoding for the instructions that allow parallel moves is divided into the 
multiply and non-multiply instruction encodings shown in the following subsections.

12.5.2.1   Multiply Instruction Encoding

The 8-bit operation code for multiply instructions allowing parallel moves has different fields 
than the non-multiply instruction operation code. The 8-bit operation code = 1QQQ dkkk where 

� QQQ = selects the inputs to the multiplier (see Table 12-17)

� kkk = three unencoded bits k2, k1, k0

� d = destination accumulator 
d = 0 → A 
d = 1 → B

12.5.2.2   Non-Multiply Instruction Encoding

The 8-bit operation code for instructions allowing parallel moves contains two 3-bit fields 
defining which instruction the operation code represents and one bit defining the destination 
accumulator register. The 8-bit operation code = 0 J J J D k k k where 

� J J J = 1/2 instruction number

� k k k = 1/2 instruction number

� D = 0 → A 
D = 1 → B

Table 12-19.  Operation Code K[0–2] Decode  

Code k2 k1 k0

0 positive mpy only don’t round

1 negative mpy and acc round

Table 12-20.  Non-Multiply Instruction Encoding  

J J J 
D = 0
Src

Oper

D = 1
Src

Oper

k k k

0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

0 0 0 B A
MOVE1 TFR ADDR TST * CMP SUBR CMPM

0 0 1 B A ADD RND ADDL CLR SUB * SUBL NOT

0 1 0 B A — — ASR LSR — — ABS ROR

0 1 1 B A — — ASL LSL — — NEG ROL

0 1 0 X1 X0 X1 X0 ADD ADC — — SUB SBC — —

0 1 1 Y1 Y0 Y1 Y0 ADD ADC — — SUB SBC — —
DSP56300 Family Manual, Rev. 5
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1 0 0 X0_0 X0_0 ADD TFR OR EOR SUB CMP AND CMPM

1 0 1 Y0_0 Y0_0 ADD TFR OR EOR SUB CMP AND CMPM

1 1 0 X1_0 X1_0 ADD TFR OR EOR SUB CMP AND CMPM

1 1 1 Y1_0 Y1_0 ADD TFR OR EOR SUB CMP AND CMPM

NOTES:
1. Special case 1.
2. * = Reserved

Table 12-21.  Special Case1

 O P C O D E Operation

 0 0 0 0 0 0 0 0 MOVE

 0 0 0 0 1 0 0 0 Reserved

Table 12-20.  Non-Multiply Instruction Encoding  (Continued)

J J J 
D = 0
Src

Oper

D = 1
Src

Oper

k k k

0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1
DSP56300 Family Manual, Rev. 5
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Instruction Set 13
This chapter describes each instruction in the DSP56300 (family) core instruction set. If an 
instruction allows parallel moves, this is noted in both the Operation and the Assembler Syntax 
fields. The MOVE instruction is equivalent to a NOP with parallel moves, so a description of 
each parallel move accompanies the MOVE instruction details. When an instruction uses an 
accumulator as both a destination operand for data ALU operation and a source for a parallel 
move operation, the parallel move operation uses the value in the accumulator before any data 
ALU operation executes. Table 13-1 gives the page number of each instruction. See Chapter 12 
for details on instruction formats, syntax, descriptions, groups, operand lengths, and encoding.

Table 13-1.  DSP56300 Instruction Summary 

Instruction Page Instruction Page

ABS 
Absolute Value

page 13-5 BRA 
Branch Always

page 13-25

ADC 
Add Long With Carry

page 13-6 BRCLR 
Branch if Bit Clear

page 13-26

ADD 
Add

page 13-7 BRKcc 
Exit Current DO Loop Conditionally

page 13-28

ADDL 
Shift Left and Add Accumulators

page 13-9 BRSET 
Branch if Bit Set

page 13-29

ADDR 
Shift Right and Add Accumulators

page 13-10 BScc 
Branch to Subroutine Conditionally

page 13-31

AND 
Logical AND

page 13-11 BSCLR 
Branch to Subroutine if Bit Clear

page 13-32

ANDI 
AND Immediate With Control Register

page 13-13 BSET 
Bit Set and Test

page 13-34

ASL 
Arithmetic Shift Accumulator Left

page 13-14 BSR 
Branch to Subroutine

page 13-37

ASR 
Arithmetic Shift Accumulator Right

page 13-16 BSSET 
Branch to Subroutine if Bit Set

page 13-38

Bcc 
Branch Conditionally

page 13-18 BTST 
Bit Test

page 13-40

BCHG 
Bit Test and Change

page 13-19 CLB 
Count Leading Bits

page 13-42

BCLR 
Bit Test and Clear

page 13-22 CLR 
Clear Accumulator

page 13-44

CMP 
Compare

page 13-45 INC 
Increment by One

page 13-77

CMPM 
Compare Magnitude

page 13-47 INSERT 
Insert Bit Field

page 13-78
DSP56300 Family Manual, Rev. 5
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Instruction Set
CMPU 
Compare Unsigned

page 13-48 Jcc 
Jump Conditionally

page 13-80

DEBUG 
Enter Debug Mode

page 13-49 JCLR 
Jump if Bit Clear

page 13-81

DEBUGcc 
Enter Debug Mode Conditionally

page 13-50 JMP 
Jump

page 13-83

DEC 
Decrement by One

page 13-51 JScc 
Jump to Subroutine Conditionally

page 13-84

DIV
Divide Iteration

page 13-51 JSCLR 
Jump to Subroutine if Bit Clear

page 13-85

DMAC 
Double-Precision Multiply-Accumulate 
With Right Shift

page 13-55 JSET 
Jump if Bit Set

page 13-87

DO 
Start Hardware Loop

page 13-56 JSR 
Jump to Subroutine

page 13-89

DO FOREVER 
Start Infinite Loop

page 13-59 JSSET 
Jump to Subroutine if Bit Set

page 13-90

DOR 
Start PC-Relative Hardware Loop

page 13-61 L: 
Long Memory Data Move

DOR FOREVER 
Start PC-Relative Infinite Loop

page 13-65 LRA 
Load PC-Relative Address

page 13-92

ENDDO 
End Current DO Loop

page 13-67 LSL 
Logical Shift Left

page 13-93

EOR 
Logical Exclusive OR

page 13-68 LSR 
Logical Shift Right

page 13-96

EXTRACT 
Extract Bit Field

page 13-70 LUA 
Load Updated Address

page 13-98

EXTRACTU 
Extract Unsigned Bit Field

page 13-72 MAC 
Signed Multiply Accumulate

page 13-99

I 
Immediate Short Data Move

page 13-113 MAC(su,uu) 
Mixed Multiply Accumulate

page 13-102

IFcc 
Execute Conditionally Without CCR 
Update

page 13-74 MACI 
Signed Multiply Accumulate With 
Immediate Operand

page 13-101

IFcc.U 
Execute Conditionally With CCR Update

page 13-75 MACR 
Signed Multiply Accumulate and 
Round

page 13-103

ILLEGAL 
Illegal Instruction Interrupt

page 13-76 MACRI 
Signed Multiply Accumulate and 
Round With Immediate Operand

page 13-105

MAX 
Transfer by Signed Value

page 13-106 MPYRI 
Signed Multiply and Round With 
Immediate Operand

page 13-143

MAXM 
Transfer by Magnitude

page 13-107 NEG 
Negate Accumulator

page 13-144

Table 13-1.  DSP56300 Instruction Summary (Continued)

Instruction Page Instruction Page
DSP56300 Family Manual, Rev. 5
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MERGE 
Merge Two Half Words

page 13-108 No Parallel Data Move page 13-112

MOVE 
Move Data

page 13-110 NOP 
No Operation

page 13-145

 No Parallel Data Move page 13-112 NORM 
Norm Accumulator Iteration

page 13-147

 I 
 Immediate Short Data Move

page 13-113 NORMF 
Fast Accumulator Normalization

page 13-147

 R 
 Register-to-Register Data Move

page 13-115 NOT 
Logical Complement

page 13-149

 U 
 Address Register Update

page 13-117 OR 
Logical Inclusive OR

page 13-150

 X: 
 X Memory Data Move

page 13-118 ORI 
OR Immediate With Control Register

page 13-152

 X:R 
 X Memory and Register Data 
Move

page 13-120 PFLUSH 
Program Cache Flush

page 13-153

 Y: 
 Y Memory Data Move

page 13-122 PFLUSHUN 
Program cache Flush Unlocked Sectors

page 13-154

 R:Y 
 Register and Y Memory Data Move

page 13-124 PFREE 
Program Cache Global Unlock

page 13-155

 L: 
 Long Memory Data Move

page 13-126 PLOCK 
Lock Instruction Cache Sector

page 13-156

 X:Y: 
 XY Memory Data Move

page 13-123 PLOCKR 
Lock Instruction Cache Relative Sector

page 13-157

MOVEC 
Move Control Register

page 13-130 PUNLOCK 
Unlock Instruction Cache Sector

page 13-158

MOVEM 
Move Program Memory

page 13-132 PUNLOCKR 
Unlock Instruction Cache Relative Sector

page 13-159

MOVEP 
Move Peripheral Data

page 13-134 R 
Register-to-Register Data Move

page 13-115

MPY 
Signed Multiply

page 13-137 REP 
Repeat Next Instruction

page 13-160

MPY(su,uu) 
Mixed Multiply

page 13-139 RESET 
Reset On-Chip Peripheral Devices

page 13-162

MPYI 
Signed Multiply With Immediate Operand

page 13-140 RND 
Round Accumulator

page 13-163

MPYR 
Signed Multiply and Round

page 13-141 ROL 
Rotate Left

page 13-165

ROR 
Rotate Right

page 13-166 TRAP 
Software Interrupt

page 13-179

RTI 
Return From Interrupt

page 13-168 TRAPcc 
Conditional Software Interrupt

page 13-180

RTS 
Return From Subroutine

page 13-168 TST 
Test Accumulator

page 13-181

R:Y 
Register and Y Memory Data Move

page 13-124 U 
Address Register Update

page 13-117

Table 13-1.  DSP56300 Instruction Summary (Continued)

Instruction Page Instruction Page
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Instruction Set
SBC 
Subtract Long With Carry

page 13-169 VSL 
Viterbi Shift Left

page 13-182

STOP 
Stop Instruction Processing

page 13-170 WAIT 
Wait for Interrupt or DMA Request

page 13-183

SUB 
Subtract

page 13-172 X: 
X Memory Data Move

page 13-118

SUBL 
Shift Left and Subtract Accumulators

page 13-174 X:R 
X Memory and Register Data Move

page 13-120

SUBR 
Shift Right and Subtract Accumulators

page 13-175 X:Y: 
XY Memory Data Move

page 13-123

Tcc 
Transfer Conditionally

page 13-176 Y: 
Y Memory Data Move

page 13-122

TFR 
Transfer Data ALU Register

page 13-178

Table 13-1.  DSP56300 Instruction Summary (Continued)

Instruction Page Instruction Page
DSP56300 Family Manual, Rev. 5
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ABS  Absolute Value ABS

Instruction Fields

Description Take the absolute value of the destination operand D and store the result in the 
destination accumulator.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

| D | → D (parallel move) ABS D (parallel move)

{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition. 
— Unchanged by the instruction.

23 16 15 8 7 0

ABS D Data Bus Move Field 0 0 1 0 d 1 1 0

Optional Effective Address Extension
DSP56300 Family Manual, Rev. 5
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Instruction Set
ADC  Add Long With Carry ADC

Instruction Fields

Description Add the source operand S and the Carry bit (C) of the Condition Code Register 
(CCR) to the destination operand D and store the result in the destination accumulator. Long 
words (48 bits) can be added to the 56-bit destination accumulator. Note that the Carry bit is set 
correctly for multiple-precision arithmetic using long-word operands if the extension register of 
the destination accumulator (A2 or B2) is the sign extension of bit 47 of the destination 
accumulator (A or B).

Condition Codes 

Instruction Formats and Opcodes

Operation Assembler Syntax 

S + C + D → D  (parallel move) ADC S,D  (parallel move)

{S} J Source register [X,Y] (see Table 12-13 on page 12-18)
{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)

7 6 5 4 3 2 1 0
S L E U N Z V C
√ √ √ √ √ √ √ √
CCR

√ Changed according to the standard definition. 

23 16 15 8 7 0
ADC S,D Data Bus Move Field 0 0 1 J d 0 0 1

Optional Effective Address Extension
DSP56300 Family Manual, Rev. 5

13-6 Freescale Semiconductor



ADD   Add ADD

Instruction Fields 

Description Add the source operand S to the destination operand D and store the result in the 
destination accumulator. The source can be a register (24-bit word, 48-bit long word, or 56-bit 
accumulator), 6-bit short immediate, or 24-bit long immediate. When 6-bit immediate data is 
used, the data is interpreted as an unsigned integer. That is, the six bits are right-aligned and the 
remaining bits are zeroed to form a 24-bit source operand. Note that the Carry bit (C) is set 
correctly using word or long-word source operands if the extension register of the destination 
accumulator (A2 or B2) is the sign extension of bit 47 of the destination accumulator (A or B). 
Thus, the C bit is always set correctly using accumulator source operands, but it can be set 
incorrectly if A1, B1, A10, B10 or immediate operand are used as source operands and A2 and 
B2 are not replicas of bit 47.

Condition Codes

Operation Assembler Syntax 

S + D → D (parallel move) ADD S,D (parallel move)

#xx + D → D ADD #xx,D 

#xxxx + D → D ADD #xxxx,D 

{S} JJJ Source register [B/A,X,Y,X0,Y0,X1,Y1] (see Table 12-13 on page 
12-18)

{D} d Destination accumulator [A/B] (see Table 12-13 on page 12-18)
{#xx} iiiiii 6-bit Immediate Short Data 
{#xxxx} 24-bit Immediate Long Data extension word 

7 6 5 4 3 2 1 0
S L E U N Z V C
√ √ √ √ √ √ √ √

CCR

√ Changed according to the standard definition. 
DSP56300 Family Manual, Rev. 5
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Instruction Set
ADD Add ADD
Instruction Formats and Opcodes

23 16 15 8 7 0
ADD S,D Data Bus Move Field 0 J J J d 0 0 0

Optional Effective Address Extension

23 16 15 8 7 0
ADD #xx,D 0 0 0 0 0 0 0 1 0 1 i i i i i i 1 0 0 0 d 0 0 0

23 16 15 8 7 0
ADD #xxxx,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 d 0 0 0

Immediate Data Extension
DSP56300 Family Manual, Rev. 5
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ADDL  Shift Left and Add Accumulators ADDL

Instruction Fields

Description Add the source operand S to two times the destination operand D and store the result 
in the destination accumulator. The destination operand D is arithmetically shifted one bit to the 
left, and a 0 is shifted into the LSB of D prior to the addition operation. The Carry bit (C) is set 
correctly if the source operand does not overflow as a result of the left shift operation. The 
Overflow bit (V) may be set as a result of either the shifting or addition operation (or both). This 
instruction is useful for efficient divide and Decimation-In-Time (DIT) FFT algorithms. 

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

S + 2 ∗ D → D (parallel move) ADDL S,D (parallel move)

{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{S} The source accumulator is B if the destination accumulator (selected by the d 

bit in the opcode) is A, or A if the destination accumulator is B.

7 6 5 4 3 2 1 0
S L E U N Z V C
÷ ÷ ÷ ÷ ÷ ÷ * ÷
CCR

* V Set if overflow has occurred in the A or B result or the MSB of the destination 
operand is changed as a result of the instruction’s left shift. 

√ Changed according to the standard definition. 

23 16 15 8 7 0
ADDL S,D Data Bus Move Field 0 0 0 1 d 0 1 0

Optional Effective Address Extension
DSP56300 Family Manual, Rev. 5
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Instruction Set
ADDR  Shift Right and Add Accumulators ADDR

Instruction Fields

Description Add the source operand S to one-half the destination operand D and store the result 
in the destination accumulator. The destination operand D is arithmetically shifted one bit to the 
right while the MS bit of D is held constant prior to the addition operation. In contrast to the 
ADDL instruction, the Carry bit (C) is always set correctly, and the Overflow bit (V) can only be 
set by the addition operation and not by an overflow due to the initial shifting operation. This 
instruction is useful for efficient divide and Decimation-In-Time (DIT) FFT algorithms.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

S + D / 2 → D (parallel move) ADDR S,D (parallel move)

{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{S} The source accumulator is B if the destination accumulator (selected by the d 

bit in the opcode) is A, or A if the destination accumulator is B. 

7 6 5 4 3 2 1 0
S L E U N Z V C
√ √ √ √ √ √ √ √
CCR

√ Changed according to the standard definition. 

23 16 15 8 7 0
ADDR S,D Data Bus Move Field 0 0 0 0 d 0 1 0

Optional Effective Address Extension
DSP56300 Family Manual, Rev. 5
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AND   Logical AND AND

where • denotes the logical AND operator

Instruction Fields

Description Logically AND the source operand S with bits 47–24 of the destination operand D 
and store the result in bits 47–24 of the destination accumulator. The source can be a 24-bit 
register, 6-bit short immediate, or 24-bit long immediate. This instruction is a 24-bit operation. 
The remaining bits of the destination operand D are not affected. When 6-bit immediate data is 
used, the data is interpreted as an unsigned integer. That is, the six bits are right aligned and the 
remaining bits are zeroed to form a 24-bit source operand.

Condition Codes

Operation Assembler Syntax 

S • D[47–24] → D[47–24] (parallel move) AND S,D (parallel move)

#xx • D[47–24] → D[47–24] AND #xx,D 

#xxxx • D[47–24] → D[47–24] AND #xxxx,D 

{S} JJ Source input register [X0,X1,Y0,Y1] (see Table 12-13 on page 12-18)
{D} d Destination accumulator [A/B] (see Table 12-13 on page 12-18)
{#xx} iiiiii 6-bit Immediate Short Data 
{#xxxx} 24-bit Immediate Long Data extension word 

7 6 5 4 3 2 1 0
S L E U N Z V C
√ — — — * * * —
CCR

* N Set if bit 47 of the result is set.
* Z Set if bits 47–24 of the result are 0. 
* V Always cleared.
√ Changed according to the standard definition.
— Unchanged by the instruction.
DSP56300 Family Manual, Rev. 5
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Instruction Set
AND Logical AND AND
Instruction Formats and Opcodes

23 16 15 8 7 0
AND S,D Data Bus Move Field 0 1 J J d 1 1 0

Optional Effective Address Extension

23 16 15 8 7 0
AND #xx,D 0 0 0 0 0 0 0 1 0 1 i i i i i i 1 0 0 0 d 1 1 0

23 16 15 8 7 0
AND #xxxx,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 d 1 1 0

Immediate Data Extension
DSP56300 Family Manual, Rev. 5
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ANDI  AND Immediate With Control Register ANDI

Instruction Fields

Description Logically AND the 8-bit immediate operand (#xx) with the contents of the 
destination control register D and store the result in the destination control register. The condition 
codes are affected only when the Condition Code Register (CCR) is specified as the destination 
operand.

Condition Codes

Instruction Formats and Opcodes 

Operation Assembler Syntax 
#xx • D → D AND(I) #xx,D

where • denotes the logical AND operator

{D} EE Program Controller register [MR,CCR,COM,EOM] (see Table 12-13 on 
page 12-18)

{#xx} iiiiiiii Immediate Short Data

7 6 5 4 3 2 1 0
S L E U N Z V C
* * * * * * * *
CCR

For CCR Operand

* S Cleared if bit 7 of the immediate operand is cleared.
* L Cleared if bit 6 of the immediate operand is cleared.
* E Cleared if bit 5 of the immediate operand is cleared.
* U Cleared if bit 4 of the immediate operand is cleared.
* N Cleared if bit 3 of the immediate operand is cleared.
* Z Cleared if bit 2 of the immediate operand is cleared.
* V Cleared if bit 1 of the immediate operand is cleared.
* C Cleared if bit 0 of the immediate operand is cleared.

For MR and OMR Operands 

The condition codes are not affected using these operands.

23 16 15 8 7 0
AND(I) #xx,D 0 0 0 0 0 0 0 0 i i i i i i i i 1 0 1 1 1 0 E E
DSP56300 Family Manual, Rev. 5
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Instruction Set
ASL Arithmetic Shift Accumulator Left ASL
Operation 

Assembler Syntax 

ASL D (parallel move) 
ASL #ii,S2,D 
ASL S1,S2,D

Instruction Fields

In the control register S1: bits 5–0 (LSB) are used as the #ii field, and the rest of the register is 
ignored.

Description 

� Single bit shift: Arithmetically shift the destination accumulator D one bit to the left and 
store the result in the destination accumulator. The MSB of D prior to instruction 
execution is shifted into the Carry bit (C) and a 0 is shifted into the LSB of the destination 
accumulator D. 

� Multi-bit shift: The contents of the source accumulator S2 are shifted left #ii bits. Bits 
shifted out of position 55 are lost except for the last bit, which is latched in the C bit. The 
vacated positions on the right are zero-filled. The result is placed into destination 
accumulator D. The number of bits to shift is determined by the 6-bit immediate field in 
the instruction, or by the 6-bit unsigned integer located in the six LSBs of the control 
register S1. If a zero shift count is specified, the C bit is cleared. The difference between 
ASL and LSL is that ASL operates on the entire 56 bits of the accumulator, and therefore, 
sets the Overflow bit (V) if the number overflows.

This is a 56-bit operation. 

{S2} S Source accumulator [A,B] (see Table 12-13 on page 12-18)
{D} D Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{S1} sss Control register [X0,X1,Y0,Y1,A1,B1] 
{#ii} iiiiii 6-bit unsigned integer [0–40] denoting the shift amount 

C 0

55 47 23 048 24
DSP56300 Family Manual, Rev. 5
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ASL  Arithmetic Shift Accumulator Left ASL
Condition Codes

Example  

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0
S L E U N Z V C
÷ ÷ ÷ ÷ ÷ ÷ * *
CCR

* V Set if bit 55 is changed any time during the shift operation, cleared otherwise. 
* C Set if the last bit shifted out of the operand is set, cleared for a shift count of 0, and 

cleared otherwise.
√ Changed according to the standard definition.

23 8 7 0

ASL D Data Bus Move Field 0 0 1 1 d 0 1 0

Optional Effective Address Extension

23 16 15 8 7 0

ASL #ii,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 1 S i i i i i i D

23 16 15 8 7 0

ASL S1,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 0 S s s s D

6
3
1

1

Shift left 7

0

0

C

1 0 1 0 1 0 0 0A

B

1 0 1 0 1 0 0 1 0 1 1 1 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 0 0 1

6
3
1

1
0

0 1 0 1 0 1 0 0 1 0 1 1 1 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0

ASL #7,A, B
DSP56300 Family Manual, Rev. 5
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Instruction Set
ASR  Arithmetic Shift Accumulator Right ASR

Assembler Syntax 

ASR D (parallel move) 
ASR #ii, S2,D 
ASR S1,S2,D

Instruction Fields

In the control register S1: bits 5–0 (LSB) are used as the #ii field, and the rest of the register is 
ignored.

Description 

� Single bit shift: Arithmetically shift the destination operand D one bit to the right and store 
the result in the destination accumulator. The LSB of D prior to instruction execution is 
shifted into the Carry bit (C), and the MSB of D is held constant.

� Multi-bit shift: The contents of the source accumulator S2 are shifted right #ii bits. Bits 
shifted out of position 0 are lost except for the last bit, which is latched in the C bit. Copies 
of the MSB are supplied to the vacated positions on the left. The result is placed into 
destination accumulator D. The number of bits to shift is determined by the 6-bit 
immediate field in the instruction, or by the 6-bit unsigned integer located in the six LSBs 
of the control register S1. If a zero shift count is specified, the C bit is cleared. 

This is a 56- or 40-bit operation, depending on the SA bit value in the SR.

Note: If the number of shifts indicated by the six LSBs of the control register or by the 
immediate field exceeds the value of 55 (40 in Sixteen-bit Arithmetic mode), then the 
result is undefined.

{S2} S Source accumulator [A,B] 
{D} D Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{S1} sss Control register [X0,X1,Y0,Y1,A1,B1] 
{#ii} iiiiii 6-bit unsigned integer [0–40] denoting the 

shift amount 

COperation:

55 47 23 048 24
DSP56300 Family Manual, Rev. 5
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ASR Arithmetic Shift Accumulator Right ASR
Condition Codes

Example 

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0
S L E U N Z V C
÷ ÷ ÷ ÷ ÷ ÷ * *
CCR

* V This bit is always cleared.
* C This bit is set if the last bit shifted out of the operand is set, cleared for a shift count of 

0, and cleared otherwise. 
√ Changed according to the standard definition.

23 8 7 0

ASR D Data Bus Move Field 0 0 1 0 d 0 1 0

Optional Effective Address Extension

23 16 15 8 7 0

ASR #ii,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 S i i i i i i D

23 16 15 8 7 0

ASR S1,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 S s s s D

ASR X0,A,B

1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

4
4
7

2

1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1

4
4
7

2

shift = 3

X0

1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 0 1 1

0

1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1

0

Shift right 3 Shift right 3

A

B 0

c

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

5
5

5
5

x x x x x x x x x x x x x x x x x x 0 0 0 0 1 1

0
2
3

DSP56300 Family Manual, Rev. 5
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Instruction Set
Bcc  Branch Conditionally Bcc 

Instruction Fields

Description If the specified condition is true, program execution continues at location PC + 
displacement. If the specified condition is false, the PC is incremented and program execution 
continues sequentially. The displacement is a two’s-complement 24-bit integer that represents the 
relative distance from the current PC to the destination PC. Short Displacement and Address 
Register PC Relative addressing modes can be used. The Short Displacement 9-bit data is 
sign-extended to form the PC relative displacement. The conditions that the term “cc” can specify 
are listed on Table 12-17 on page 12-23.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

If cc, then PC + xxxx → PC
else PC + 1 → PC

Bcc xxxx

If cc, then PC + xxx → PC Bcc xxx

else PC + 1 → PC

If cc, then PC + Rn → PC Bcc  Rn

else PC + 1 → PC

{cc} CCCC Condition code (see Table 12-13 on page 12-18)
(xxxx) 24-bit PC Relative Long Displacement
{xxx} aaaaaaaaa Signed PC Relative Short Displacement
{Rn} RRR Address register [R[0–7]]

7 6 5 4 3 2 1 0
S L E U N Z V C
— — — — — — — —
CCR

— Unchanged by the instruction.

23 16 15 8 7 0
Bcc xxxx 0 0 0 0 0 1 0 1 C C C C 0 1 a a a a 0 a a a a a

PC Relative Placement
23 16 15 8 7 0

Bcc xxx 0 0 0 0 0 1 0 1 C C C C 0 1 a a a a 0 a a a a a
23 16 15 8 7 0

Bcc Rn 0 0 0 0 1 1 0 1 0 0 0 1 1 R R R 0 1 0 0 C C C C
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BCHG  Bit Test and Change BCHG

Instruction Fields

Description Test the nth bit of the destination operand D, complement it, and store the result in 
the destination location. The state of the nth bit is stored in the Carry bit (C) of the CCR. The bit 
to be tested is selected by an immediate bit number from 0–23. This instruction performs a 
read-modify-write operation on the destination location using two destination accesses before 
releasing the bus. This instruction provides a test-and-change capability, which is useful for 
synchronizing multiple processors using a shared memory. This instruction can use all memory 
alterable addressing modes.

Condition Codes

Operation Assembler Syntax 

D[n] → C D[n] → D[n] BCHG #n,[X or Y]:ea

D[n] → C D[n] → D[n] BCHG #n,[X or Y]:aa

D[n] → C D[n] → D[n] BCHG #n,[X or Y]:pp

D[n] → C D[n] → D[n] BCHG #n,[X or Y]:qq

D[n] → C D[n] → D[n] BCHG #n,D

{#n} bbbb Bit number [0–23]
{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)
{X /Y} S Memory Space [X,Y] (see Table 12-13 on page 12-18) 
{aa} aaaaaa Absolute Address [0–63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0–$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80–$FFFFBF]
{D} DDDDDD Destination register [all on-chip registers] (see Table 12-13 

on page 12-18)

7 6 5 4 3 2 1 0
S L E U N Z V C
* * * * * * * *
CCR

For destination operand SR: 

* C Complemented if bit 0 is specified, unaffected otherwise.
* V Complemented if bit 1 is specified, unaffected otherwise.
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Instruction Set
* Z Complemented if bit 2 is specified, unaffected otherwise.
* N Complemented if bit 3 is specified, unaffected otherwise.
* U Complemented if bit 4 is specified, unaffected otherwise.
* E Complemented if bit 5 is specified, unaffected otherwise.
* L Complemented if bit 6 is specified, unaffected otherwise.
* S Complemented if bit 7 is specified, unaffected otherwise.

For other destination operands:
* C Set if bit tested is set, and cleared otherwise.
* V Not affected.
* Z Not affected.
* N Not affected.
* U Not affected.
* E Not affected.
* L Set according to the standard definition.
* S Set according to the standard definition.

MR Status Bits

For destination operand SR: 
* I0 Changed if bit 8 is specified, unaffected otherwise.
* I1 Changed if bit 9 is specified, unaffected otherwise.
* S0 Changed if bit 10 is specified, unaffected otherwise.
* S1 Changed if bit 11 is specified, unaffected otherwise.
* FV Changed if bit 12 is specified, unaffected otherwise.
* SM Changed if bit 13 is specified, unaffected otherwise.
* RM Changed if bit 14 is specified, unaffected otherwise.
* LF Changed if bit 15 is specified, unaffected otherwise. 

For other destination operands: MR status bits are not affected.
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BCHG Bit Test and Change BCHG
Instruction Formats and Opcodes

23 16 15 8 7 0

BCHG #n,[X or Y]:ea 0 0 0 0 1 0 1 1 0 1 M M M R R R O S 0 0 b b b b

Optional Effective Address Extension

23 16 15 8 7 0

BCHG #n,[X or Y]:aa 0 0 0 0 1 0 1 1 0 0 a a a a a a 0 S 0 0 b b b b

23 16 15 8 7 0

BCHG #n,[X or Y]:pp 0 0 0 0 1 0 1 1 1 0 p p p p p p 0 S 0 0 b b b b

23 16 15 8 7 0

BCHG #n,[X or Y]:qq 0 0 0 0 0 0 0 1 0 1 q q q q q q 0 S 0 b b b b b

23 16 15 8 7 0

BCHG #n,D 0 0 0 0 1 0 1 1 1 1 D D D D D D 0 1 0 b b b b b
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Instruction Set
BCLR Bit Test and Clear BCLR

Instruction Fields

Description Test the nth bit of the destination operand D, clear it and store the result in the 
destination location. The state of the nth bit is stored in the Carry bit (C) of the CCR. The bit to be 
tested is selected by an immediate bit number from 0–23. This instruction performs a 
read-modify-write operation on the destination location using two destination accesses before 
releasing the bus. This instruction provides a test-and-clear capability, which is useful for 
synchronizing multiple processors using a shared memory. This instruction can use all memory 
alterable addressing modes.

Condition Codes

Operation Assembler Syntax 

D[n] → C 0 → D[n] BCLR #n,[X or Y]:ea

D[n] → C 0 → D[n] BCLR #n,[X or Y]:aa

D[n] → C 0 → D[n] BCLR #n,[X or Y]:pp

D[n] → C 0 → D[n] BCLR #n,[X or Y]:qq

D[n] → C 0 → D[n] BCLR #n,D

{#n} bbbb Bit number [0–23]
{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)
{X/Y} S Memory Space [X,Y] (see Table 12-13 on page 12-18)
{aa} aaaaaa Absolute Address [0–63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0–$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80–$FFFFBF]
{D} DDDDDD Destination register [all on chip registers, except A and B; however, you 

can use A0, A1,A2, B0, B1, and B2] (see Table 12-13 on page 12-18)

7 6 5 4 3 2 1 0
S L E U N Z V C
* * * * * * * *
CCR

For destination operand SR: 
* C Cleared if bit 0 is specified, unaffected otherwise.
* V Cleared if bit 1 is specified, unaffected otherwise.
* Z Cleared if bit 2 is specified, unaffected otherwise.
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* N Cleared if bit 3 is specified, unaffected otherwise.
* U Cleared if bit 4 is specified, unaffected otherwise.
* E Cleared if bit 5 is specified, unaffected otherwise.
* L Cleared if bit 6 is specified, unaffected otherwise.
* S Cleared if bit 7 is specified, unaffected otherwise. 

For other destination operands:
* C This bit is set if bit tested is set, and cleared otherwise.
* V Unaffected.
* Z Unaffected.
* N Unaffected.
* U Unaffected.
* E Unaffected.
* L This bit is set according to the standard definition.
* S This bit is set according to the standard definition.

MR Status Bits

For destination operand SR: 
* I0 Changed if bit 8 is specified, unaffected otherwise.
* I1 Changed if bit 9 is specified, unaffected otherwise.
* S0 Changed if bit 10 is specified, unaffected otherwise.
* S1 Changed if bit 11 is specified, unaffected otherwise.
* FV Changed if bit 12 is specified, unaffected otherwise.
* SM Changed if bit 13 is specified, unaffected otherwise.
* RM Changed if bit 14 is specified, unaffected otherwise.
* LF Changed if bit 15 is specified, unaffected otherwise.
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Instruction Set
BCLR Bit Test and Clear BCLR
Instruction Formats and Opcodes

23 16 15 8 7 0

BCLR #n,[X or Y]:ea 0 0 0 0 1 0 1 0 0 1 M M M R R R 0 S 0 0 b b b b

Optional Effective Address Extension

23 16 15 8 7 0

BCLR #n,[X or Y]:aa 0 0 0 0 1 0 1 0 0 0 a a a a a a 0 S 0 0 b b b b

23 16 15 8 7 0

BCLR #n,[X or Y]:pp 0 0 0 0 1 0 1 0 1 0 p p p p p p 0 S 0 0 b b b b

23 16 15 8 7 0

BCLR #n,[X or Y]:qq 0 0 0 0 0 0 0 1 0 0 q q q q q q 0 S 0 0 b b b b

23 16 15 8 7 0

BCLR #n,D 0 0 0 0 1 0 1 0 1 1 D D D D D D 0 1 0 0 b b b b
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BRA Branch Always BRA

Instruction Fields

Description Program execution continues at location PC + displacement. The displacement is a 
two’s-complement 24-bit integer that represents the relative distance from the current PC to the 
destination PC. Short Displacement and Address Register PC Relative addressing modes may be 
used. The Short Displacement 9-bit data is sign-extended to form the PC relative displacement. 

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

PC + xxxx → Pc BRA xxxx

PC + xxx → Pc BRA xxx

PC + Rn → Pc BRA Rn

{xxxx} 24-bit PC-Relative Long Displacement
{xxx} aaaaaaaaa Signed PC-Relative Short Displacement
{Rn} RRR Address register [R[0–7]]

7 6 5 4 3 2 1 0
S L E U N Z V C
— — — — — — — —
CCR

— Unchanged by the instruction. 

23 16 15 8 7 0

BRA xxxx 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0

PC-Relative Displacement

23 16 15 8 7 0

BRA xxx 0 0 0 0 0 1 0 1 0 0 0 0 1 1 a a a a 0 a a a a a

23 16 15 8 7 0

BRA Rn 0 0 0 0 1 1 0 1 0 0 0 1 1 R R R 1 1 0 0 0 0 0 0
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Instruction Set
BRCLR Branch if Bit Clear BRCLR

Instruction Fields

Description The nth bit in the source operand is tested. If the tested bit is cleared, program 
execution continues at location PC+displacement. If the tested bit is set, the PC is incremented 
and program execution continues sequentially. However, the address register specified in the 
effective address field is always updated independently of the condition. The displacement is a 
two’s complement 24-bit integer that represents the relative distance from the current PC to the 
destination PC. The 24-bit displacement is contained in the extension word of the instruction. All 
memory alterable addressing modes may be used to reference the source operand. Absolute 
Short, I/O Short and Register Direct addressing modes may also be used. Note that if the 
specified source operand S is the SSH, the stack pointer register will be decremented by one. The 
bit to be tested is selected by an immediate bit number 0–23.

Operation Assembler Syntax

If S{n}=0 then PC + xxxx  → PC BRCLR #n,[X or Y]:ea,xxxx

else PC + 1  → PC

If S{n}=0 then PC + xxxx  → PC BRCLR #n,[X or Y],aa,xxxx

else PC + 1  → PC

If S{n}=0 then PC + xxxx  → PC BRCLR #n,[X or Y]:pp,xxxx

else PC + 1  → PC

If S{n}=0 then PC + xxxx  → PC BRCLR #n,[X or Y]:qq,xxxx

else PC + 1  → PC

If S{n}=0 then PC + xxxx  → PC BRCLR #n,S,xxxx

else PC + 1  → PC

{#n} bbbbb Bit number [0-23]
{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)
{X/Y} S Memory Space [X,Y] (see Table 12-13 on page 12-18)
{xxxx} 24-bit PC relative displacement
{aa} aaaaaa Absolute Address [0–63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0–$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80–$FFFFBF]
{S} DDDDDD Source register [all on-chip registers] (see Table 12-13 on page 12-18)
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BRCLR Branch if Bit Clear BRCLR
Condition Codes

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0
S L E U N Z V C
÷ ÷ — — — — — —
CCR

√ Changed according to the standard definition
— Unchanged by the instruction

23 16 15 8 7 0

BRCLR #n,[X or Y]:ea,xxxx 0 0 0 0 1 1 0 0 1 0 M M M R R R 0 S 0 b b b b b

PC-Relative Displacement

23 16 15 8 7 0

BRCLR #n,[X or Y]:aa,xxxx 0 0 0 0 1 1 0 0 1 0 a a a a a a 1 S 0 b b b b b

PC-Relative Displacement

23 16 15 8 7 0

BRCLR #n,[X or Y]:pp,xxxx 0 0 0 0 1 1 0 0 1 1 p p p p p p 0 S 0 b b b b b

PC-Relative Displacement

23 16 15 8 7 0

BRCLR #n,[X or Y]:qq,xxxx 0 0 0 0 0 1 0 0 1 0 q q q q q q 0 S 0 b b b b b

PC-Relative Displacement

23 16 15 8 7 0

BRCLR #n,S,xxxx 0 0 0 0 1 1 0 0 1 1 D D D D D D 1 0 0 b b b b b

PC-Relative Displacement
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Instruction Set
BRKcc Exit Current DO Loop Conditionally BRKcc

Instruction Fields

Description Exits conditionally the current hardware DO loop before the current Loop Counter 
(LC) equals 1. It also terminates the DO FOREVER loop. If the value of the current DO LC is 
needed, it must be read before the execution of the BRKcc instruction. Initially, the PC is updated 
from the LA, the Loop Flag (LF) and the DO Forever flag (FV) are restored and the remaining 
portion of the Status Register (SR) is purged from the system stack. The Loop Address (LA) and 
the LC registers are then restored from the system stack. The conditions that the term “cc” can 
specify are listed in Table 12-18 on page 12-24.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

If cc LA + 1→ PC; SSL(LF,FV) → SR; SP – 1 → SP BRKcc

SSH → LA; SSL → LC; SP – 1 → SP

else PC + 1 → PC

{cc} CCCC Condition code (see Table 12-18 on page 12-24)

7 6 5 4 3 2 1 0
S L E U N Z V C
— — — — — — — —
CCR

— Unchanged by the instruction. 

23 16 15 8 7 0

BRKcc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 C C C C
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BRSET Branch if Bit Set BRSET

Instruction Fields

Description The nth bit in the source operand is tested. If the tested bit is set, program execution 
continues at location PC+displacement. If the tested bit is cleared, the PC is incremented and 
program execution continues sequentially. However, the address register specified in the 
effective address field is always updated independently of the condition. The displacement is a 
two’s complement 24-bit integer that represents the relative distance from the current PC to the 
destination PC. The 24-bit displacement is contained in the extension word of the instruction. All 
memory alterable addressing modes may be used to reference the source operand. Absolute 
Short, I/O Short and Register Direct addressing modes may also be used. Notice that if the 
specified source operand S is the SSH, the stack pointer register will be decremented by one. The 
bit to be tested is selected by an immediate bit number 0–23. 

Operation Assembler Syntax

If S{n}=1 then PC + xxxx  → PC BRSET #n,[X or Y]:ea,xxxx

else PC + 1  → PC

If S{n}=1 then PC + xxxx  → PC BRSET #n,[X or Y],aa,xxxx

else PC + 1  → PC

If S{n}=1 then PC + xxxx  → PC BRSET #n,[X or Y]:pp,xxxx

else PC + 1  → PC

If S{n}=1 then PC + xxxx  → PC BRSET #n,[X or Y]:qq,xxxx

else PC + 1  → PC

If S{n}=1 then PC + xxxx  → PC BRSET #n,S,xxxx

else PC + 1  → PC

{#n} bbbbb Bit number [0–23]
{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)
{X/Y} S Memory Space [X,Y] (see Table 12-13 on page 12-18)
{xxxx} 24-bit PC relative displacement
{aa} aaaaaa Absolute Address [0–63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0–$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80–$FFFFBF]
{S} DDDDDD Source register [all on-chip registers] (see Table 12-13 on page 12-18)
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Instruction Set
BRSET Branch if Bit Set BRSET
Condition Codes

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0
S L E U N Z V C
÷ ÷ — — — — — —
CCR

√ Changed according to the standard definition
— Unchanged by the instruction

23 16 15 8 7 0

BRSET #n,[X or Y]:ea,xxxx 0 0 0 0 1 1 0 0 1 0 M M M R R R 0 S 1 b b b b b

PC-Relative Displacement

23 16 15 8 7 0

BRSET #n,[X or Y]:aa,xxxx 0 0 0 0 1 1 0 0 1 0 a a a a a a 1 S 1 b b b b b

PC-Relative Displacement

23 16 15 8 7 0

BRSET #n,[X or Y]:pp,xxxx 0 0 0 0 1 1 0 0 1 1 p p p p p p 0 S 1 b b b b b

PC-Relative Displacement

23 16 15 8 7 0

BRSET #n,[X or Y]:qq,xxxx 0 0 0 0 0 1 0 0 1 0 q q q q q q 0 S 1 b b b b b

PC-Relative Displacement

23 16 15 8 7 0

BRSET #n,S,xxxx 0 0 0 0 1 1 0 0 1 1 D D D D D D 1 0 1 b b b b b

PC-Relative Displacement
DSP56300 Family Manual, Rev. 5

13-30 Freescale Semiconductor



BScc Branch to Subroutine Conditionally BScc

Instruction Fields

Description If the specified condition is true, the address of the instruction immediately 
following the BScc instruction and the SR are pushed onto the stack. Program execution then 
continues at location PC + displacement. If the specified condition is false, the PC is incremented 
and program execution continues sequentially. The displacement is a two’s complement 24-bit 
integer that represents the relative distance from the current PC to the destination PC. Short 
Displacement and Address Register PC Relative addressing modes can be used. The Short 
Displacement 9-bit data is sign extended to form the PC relative displacement. The conditions 
that the term “cc” can specify are listed on Table 12-18 on page 12-24.

Condition Codes

Operation Assembler Syntax 

If cc, then PC → SSH;SR → SSL;PC + xxxx → PC BScc xxxx

else PC + 1 → PC

If cc, then PC → SSH;SR → SSL;PC + xxx → PC BScc xxx

else PC + 1 → PC

If cc, then PC → SSH;SR → SSL;PC + Rn → PC BScc Rn

else PC + 1 → PC

{cc} CCCC Condition code (see Table 12-13 on page 12-18)
{xxxx} 24-bit PC-Relative Long Displacement
{xxx} aaaaaaaaa Signed PC-Relative Short Displacement
{Rn} RRR Address register [R[0–7]]

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction. 

23 16 15 8 7 0

BScc xxxx 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 C C C C

PC-Relative Displacement

23 16 15 8 7 0

BScc xxx 0 0 0 0 0 1 0 1 C C C C 0 0 a a a a 0 a a a a a

23 16 15 8 7 0

BScc Rn 0 0 0 0 1 1 0 1 0 0 0 1 1 R R R 0 0 0 0 C C C C
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Instruction Set
BSCLR Branch to Subroutine if Bit Clear BSCLR

Instruction Fields

Description The nth bit in the source operand is tested. If the tested bit is cleared, the address of 
the instruction immediately following the BSCLR instruction and the status register are pushed 
onto the stack. Program execution then continues at location PC+displacement. If the tested bit is 
set, the PC is incremented and program execution continues sequentially. However, the address 
register specified in the effective address field is always updated independently of the condition. 
The displacement is a two’s complement 24-bit integer that represents the relative distance from 
the current PC to the destination PC. The 24-bit displacement is contained in the extension word 
of the instruction. All memory alterable addressing modes can reference the source operand. 
Absolute Short, I/O Short and Register Direct addressing modes can also be used. Note that if the 
specified source operand S is the SSH, the stack pointer register decrements by 

Operation Assembler Syntax

If S{n}=0 then PC → SSH;SR → SSL;PC+xxxx → PC BSCLR #n,[X or Y]:ea,xxxx

else PC+1 → PC

If S{n}=0 then PC → SSH;SR → SSL;PC+xxxx  → PC BSCLR #n,[X or Y],aa,xxxx

else PC+1 → PC

If S{n}=0 then PC  → SSH;SR → SSL;PC+xxxx → PC BSCLR #n,[X or Y]:pp,xxxx

else PC+1 → PC

If S{n}=0 then PC → SSH;SR → SSL;PC+xxxx → PC BSCLR #n,[X or Y]:qq,xxxx

else PC+1 → PC

If S{n}=0 then PC → SSH;SR → SSL;PC+xxxx → PC BSCLR #n,S,xxxx

else PC+1 → PC

{#n} bbbbb Bit number [0–23]
{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)
{X/Y} S Memory Space [X,Y] (see Table 12-13 on page 12-18)
{xxxx} 24-bit Relative Long Displacement
{aa} aaaaaa Absolute Address [0-63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0–$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80–$FFFFBF]
{S} DDDDDD Source register [all on-chip registers] (see Table 12-13 on page 12-18)
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BSCLR Branch to Subroutine if Bit Clear BSCLR

one; if the condition is true, the push operation writes over the stack level where the SSH value is 
taken. The bit to be tested is selected by an immediate bit number 0–23. 

Condition Codes

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

÷ ÷ — — — — — —

CCR

√ Changed according to the standard definition
— Unchanged by the instruction

23 16 15 8 7 0

BSCLR #n,[X or Y]:ea,xxxx 0 0 0 0 1 1 0 1 1 0 M M M R R R 0 S 0 b b b b b

PC-Relative Displacement

23 16 15 8 7 0

BSCLR #n,[X or Y]:aa,xxxx 0 0 0 0 1 1 0 1 1 0 a a a a a a 1 S 0 b b b b b

PC-Relative Displacement

23 16 15 8 7 0

BSCLR #n,[X or Y]:qq,xxxx 0 0 0 0 0 1 0 0 1 0 q q q q q q 1 S 0 b b b b b

PC-Relative Displacement

23 16 15 8 7 0

BSCLR #n,[X or Y]:pp,xxxx 0 0 0 0 1 1 0 1 1 1 p p p p p p 0 S 0 b b b b b

PC-Relative Displacement

23 16 15 8 7 0

BSCLR #n,S,xxxx 0 0 0 0 1 1 0 1 1 1 D D D D D D 1 0 0 b b b b b

PC-Relative Displacement
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Instruction Set
BSET  Bit Set and Test BSET

Instruction Fields

Description Test the nth bit of the destination operand D, set it, and store the result in the 
destination location. The state of the nth bit is stored in the Carry bit (C) of the CCR. The bit to be 
tested is selected by an immediate bit number from 0–23. This instruction performs a 
read-modify-write operation on the destination location using two destination accesses before 
releasing the bus. This instruction provides a test-and-set capability that is useful for 
synchronizing multiple processors using a shared memory. This instruction can use all memory 
alterable addressing modes. When this instruction performs a bit manipulation/test on either the 
A or B 56-bit accumulator, it optionally shifts the accumulator value according to scaling mode 
bits S0 and S1 in the system Status Register (SR). If the data out of the shifter indicates that the 
accumulator extension

register is in use, the instruction acts on the limited value (limited on the maximum positive or 
negative saturation constant). The “L” flag in the SR is set accordingly.

Operation Assembler Syntax 

D[n] → C 1 → D[n] BSET #n,[X or Y]:ea

D[n] → C 1 → D[n] BSET #n,[X or Y]:aa

D[n] → C 1 → D[n] BSET #n,[X or Y]:pp

D[n] → C 1 → D[n] BSET #n,[X or Y]:qq

D[n] → C 1 → D[n] BSET #n,D

{#n} bbbb Bit number [0–23] 
{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)
{X/Y} S Memory Space [X,Y] (see Table 12-13 on page 12-18)
{aa} aaaaaa Absolute Address [0–63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0–$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80–$FFFFBF]
{D} DDDDDD Destination register [all on chip registers, except A and B; however, you 

can use A0, A1, A2, B0, B1, and B2] (see Table 12-13 on page 12-18)
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BSET Bit Set and Test BSET
Condition Codes

7 6 5 4 3 2 1 0

S L E U N Z V C

* * * * * * * *

CCR

CCR Condition Codes

For destination operand SR: 
* C Set if bit 0 is specified, unaffected otherwise.
* V Set if bit 1 is specified, unaffected otherwise.
* Z Set if bit 2 is specified, unaffected otherwise.
* N Set if bit 3 is specified, unaffected otherwise.
* U Set if bit 4 is specified, unaffected otherwise.
* E Set if bit 5 is specified, unaffected otherwise.
* L Set if bit 6 is specified, unaffected otherwise.
* S Set if bit 7 is specified, unaffected otherwise. 

For other destination operands:
* C Set if bit tested is set, and cleared otherwise.
* V Unaffected.
* Z Unaffected.
* N Unaffected.
* U Unaffected.
* E Unaffected.
* L Set according to the standard definition.
* S Set according to the standard definition.
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Instruction Set
BSET Bit Set and Test BSET

MR Status Bits 

For destination operand SR: 
* I0 Changed if bit 8 is specified, unaffected otherwise. 
* I1 Changed if bit 9 is specified, unaffected otherwise. 
* S0 Changed if bit 10 is specified, unaffected otherwise. 
* S1 Changed if bit 11 is specified, unaffected otherwise. 
* FV Changed if bit 12 is specified, unaffected otherwise. 
* SM Changed if bit 13 is specified, unaffected otherwise. 
* RM Changed if bit 14 is specified, unaffected otherwise.
* LF Changed if bit 15 is specified, unaffected otherwise. 

For other destination operands: MR status bits are not affected.

Instruction Formats and Opcodes

23 16 15 8 7 0

BSET #n,[X or Y]:ea 0 0 0 0 1 0 1 0 0 1 M M M R R R 0 S 1 0 b b b b

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

BSET #n,[X or Y]:aa 0 0 0 0 1 0 1 0 0 0 a a a a a a 0 S 1 0 b b b b

23 16 15 8 7 0

BSET #n,[X or Y]:pp 0 0 0 0 1 0 1 0 1 0 p p p p p p 0 S 1 0 b b b b

23 16 15 8 7 0

BSET #n,[X or Y]:qq 0 0 0 0 0 0 0 1 0 0 q q q q q q 0 S 1 0 b b b b

23 16 15 8 7 0

BSET #n,D 0 0 0 0 1 0 1 0 1 1 D D D D D D 0 1 1 0 b b b b
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BSR   Branch to Subroutine BSR

Instruction Fields

Description  The address of the instruction immediately following the BSR instruction and the 
SR are pushed onto the stack. Program execution then continues at location PC + displacement. 
The displacement is a two’s-complement 24-bit integer that represents the relative distance from 
the current PC to the destination PC. Short Displacement and Address Register PC-Relative 
addressing modes can be used. The Short Displacement 9-bit data is sign-extended to form the 
PC-Relative displacement. 

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

PC → SSH;SR → SSL;PC + xxxx → PC BSR xxxx

PC → SSH;SR → SSL;PC + xxx → PC BSR xxx

PC → SSH;SR → SSL;PC + Rn → PC BSR Rn

{xxxx} 24-bit PC-Relative Long Displacement
{xxx} aaaaaaaaa Signed PC-Relative Short Displacement
{Rn} RRR Address register [R[0–7]]

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0

BSR xxxx 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0

PC-Relative Displacement

23 16 15 8 7 0

BSR xxx 0 0 0 0 0 1 0 1 0 0 0 0 1 0 a a a a 0 a a a a a

23 16 15 8 7 0

BSR Rn 0 0 0 0 1 1 0 1 0 0 0 1 1 R R R 1 0 0 0 0 0 0 0
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Instruction Set
BSSET Branch to Subroutine if Bit Set BSSET

Instruction Fields

Description  The nth bit in the source operand is tested. If the tested bit is set, the address of the 
instruction immediately following the BSSET instruction and the status register is pushed onto 
the stack. Program execution then continues at location PC+displacement. If the tested bit is 
cleared, the PC is incremented and program execution continues sequentially. However, the 
address register specified in the effective address field is always updated independently of the 
condition. The displacement is a two’s complement 24-bit integer that represents the relative 
distance from the current PC to the destination PC. The 24-bit displacement is contained in the 
extension word of the instruction. All memory alterable addressing modes can reference the 
source operand. Absolute Short, I/O Short and Register Direct addressing modes can also be 
used. Note that if the specified source operand S is the SSH, the stack pointer register is 
decremented by one; if the condition is true, the push operation writes over the stack level where 
the SSH value is taken. The bit to be tested is selected by an immediate bit number 0––23. 

Operation Assembler Syntax

If S{n}=1 then PC → SSH;SR → SSL;PC + xxxx → PC BSSET #n,[X or Y]:ea,xxxx

else PC + 1 → PC

If S{n}=1 then PC → SSH;SR → SSL;PC + xxxx → PC BSSET #n,[X or Y],aa,xxxx

else PC + 1 → PC

If S{n}=1 then PC → SSH;SR → SSL;PC + xxxx → PC BSSET #n,[X or Y]:pp,xxxx

else PC + 1 → PC

If S{n}=1 then PC → SSH;SR → SSL;PC + xxxx → PC BSSET #n,[X or Y]:qq,xxxx

else PC + 1 → PC

If S{n}=1 then PC → SSH;SR → SSL;PC + xxxx → PC BSSET #n,S,xxxx

else PC + 1 → PC

{#n} bbbbb Bit number [0–23]
{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)
{X/Y} S Memory Space [X,Y] (see Table 12-13 on page 12-18)
{xxxx} 24-bit Relative Long Displacement
{aa} aaaaaa Absolute Address [0–63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0–$FFFFFF
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80–$FFFFBF]
{S} DDDDDD Source register [all on-chip registers] (see Table 12-13 on page 12-18)
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BSSET Branch to Subroutine if Bit Set BSSET
Condition Codes

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

÷ ÷ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0

BSSET #n,[X or Y]:ea,xxxx 0 0 0 0 1 1 0 1 1 0 M M M R R R 0 S 1 b b b b b

PC-Relative Displacement

23 16 15 8 7 0

BSSET #n,[X or Y]:aa,xxxx 0 0 0 0 1 1 0 1 1 0 a a a a a a 1 S 1 b b b b b

PC-Relative Displacement

23 16 15 8 7 0

BSSET #n,[X or Y]:pp,xxxx 0 0 0 0 1 1 0 1 1 1 p p p p p p 0 S 1 b b b b b

PC-Relative Displacement

23 16 15 8 7 0

BSSET #n,[X or Y]:qq,xxxx 0 0 0 0 0 1 0 0 1 0 q q q q q q 1 S 1 b b b b b

PC-Relative Displacement

23 16 15 8 7 0

BSSET #n,S,xxxx 0 0 0 0 1 1 0 1 1 1 D D D D D D 1 0 1 b b b b b

PC-Relative Displacement
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Instruction Set
BTST  Bit Test BTST

Instruction Fields

Description  Test the nth bit of the destination operand D. The state of the nth bit is stored in the 
Carry bit (C) of the CCR. The bit to test is selected by an immediate bit number from 0–23. 
BTST is useful for performing serial-to-parallel conversion with appropriate rotate instructions. 
This instruction can use all memory alterable addressing modes.

Condition Codes

Operation Assembler Syntax 

D[n] → C BTST #n,[X or Y]:ea

D[n] → C BTST #n,[X or Y]:aa

D[n] → C BTST #n,[X or Y]:pp

D[n] → C BTST #n,[X or Y]:qq

D[n] → C BTST #n,D

{#n} bbbb Bit number [0–23]
{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)
{X/Y} S Memory Space [X,Y] (see Table 12-13 on page 12-18)
{aa} aaaaaa Absolute Address [0–63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0–$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80–$FFFFBF]
{D} DDDDDD Destination register [all on-chip registers] (see Table 12-13 

on page 12-18)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — *

CCR

* C Set if bit tested is set, and cleared otherwise.
√ Changed according to the standard definition.
— Unchanged by the instruction. 

SP—Stack Pointer 

For destination operand SSH:SP, decrement the SP by 1.
For other destination operands, the SPis not affected.
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BTST  Bit Test BTST
Instruction Formats and Opcodes

23 16 15 8 7 0

BTST #n,[X or Y]:ea 0 0 0 0 1 0 1 1 0 1 M M M R R R O S 1 0 b b b b

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0

BTST #n,[X or Y]:aa 0 0 0 0 1 0 1 1 0 0 a a a a a a 0 S 1 0 b b b b

23 16 15 8 7 0

BTST #n,[X or Y]:pp 0 0 0 0 1 0 1 1 1 0 p p p p p p 0 S 1 0 b b b b

23 16 15 8 7 0

BTST #n,[X or Y]:qq 0 0 0 0 0 0 0 1 0 1 q q q q q q 0 S 1 0 b b b b

23 16 15 8 7 0

BTST #n,D 0 0 0 0 1 0 1 1 1 1 D D D D D D 0 1 1 0 b b b b
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Instruction Set
CLB Count Leading Bits CLB

Instruction Fields

Description  Count leading zeros or ones according to bit 55 of the source accumulator. Scan bits 
55–0 of the source accumulator starting from bit 55. The MSP of the destination accumulator is 
loaded with nine minus the number of consecutive leading 1s or 0s found. The result is a signed 
integer in MSP whose range of possible values is from +8 to –47. This is a 56-bit operation. The 
LSP of the destination accumulator D is filled with 0s. The EXP of the destination accumulator D 
is sign-extended.

Note:

1. If the source accumulator is all zeros, the result is 0.

2. In Sixteen-bit Arithmetic mode, the count ignores the unused 8 Least Significant Bits of 
the MSP and LSP of the source accumulator. Therefore, the result is a signed integer 
whose range of possible values is from +8 to –31.

3. CLB can be used in conjunction with NORMF instruction to specify the shift direction 
and amount needed for normalization.

Condition Codes

Operation Assembler Syntax 

If S[39] = 0 then 
9 – (Number of consecutive leading zeros in S[55–0]) → D[47–24]

CLB S,D

else
 9 – (Number of consecutive leading ones in S[55–0]) → D[47–24]

{D} D Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{S} S Source accumulator [A,B] (see Table 12-13 on page 12-18)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — * * * —

CCR

* N Set if bit 47 of the result is set, and cleared otherwise.
* Z Set if bits 47–24 of the result are all 0.
* V Always cleared.
— Unchanged by the instruction.
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CLB Count Leading Bits CLB
Example 

Instruction Formats and Opcodes

23 16 15 8 7 0

CLB S,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 S D

CLB B,A

5 Leading ones

Result in A is 9 - 5 = 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

4
4
7

2

1 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1

4
4
7

2

1 0 0 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1

0

B

A

1 1 1 1 1 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0
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Instruction Set
CLR Clear Accumulator CLR

Instruction Fields

Description Clear the destination accumulator. This is a 56-bit clear instruction.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

0 → D (parallel move) CLR D (parallel move)

{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ * * * * * —

CCR

* E Always cleared.
* U Always set.
* N Always cleared.
* Z Always set.
* V Always cleared.
√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0

CLR D Data Bus Move Field 0 0 0 1 d 0 1 1

Optional Effective Address Extension
DSP56300 Family Manual, Rev. 5
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CMP Compare CMP

Instruction Fields

Description Subtract the source one operand from the source two accumulator, S2, and update 
the CCR. The result of the subtraction operation is not stored. The source one operand can be a 
register (24-bit word or 56-bit accumulator), 6-bit short immediate, or 24-bit long immediate. 
When using 6-bit immediate data, the data is interpreted as an unsigned integer. That is, the six 
bits will be right-aligned and the remaining bits will be zeroed to form a 24-bit source operand.

This instruction subtracts 56-bit operands. When a word is specified as the source one operand, it 
is sign-extended and zero-filled to form a valid 56-bit operand. For the carry to be set correctly as 
a result of the subtraction, S2 must be properly sign-extended. S2 can be improperly 
sign-extended by writing A1 or B1 explicitly prior to executing the compare so that A2 or B2, 
respectively, may not represent the correct sign extension. This particularly applies to the case 
where it is extended to compare 24-bit operands, such as X0 with A1.

Condition Codes

Operation Assembler Syntax 

S2–S1 (parallel move) CMP S1, S2 (parallel move)

S2–#xx CMP #xx, S2

S2–#xxxxxx CMP #xxxxxx, S2

{S1} JJJ Source register [B/A,X0,Y0,X1,Y1] (see Table 12-16 on page 12-20)
{S2} d Source accumulator [A/B] (see Table 12-13 on page 12-18)
{#xx} iiiiii 6-bit Immediate Short Data 
{#xxxxxx} 24-bit Immediate Long Data extension word 

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ √
CCR

√ Changed according to the standard definition. 
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Instruction Set
CMP  Compare CMP
Instruction Formats and Opcodes

23 16 15 8 7 0

CMP S1, S2 Data Bus Move Field 0 J J J d 1 0 1

Optional Effective Address Extension

23 16 15 8 7 0

CMP #xx, S2 0 0 0 0 0 0 0 1 0 1 i i i i i i 1 0 0 0 d 1 0 1

23 16 15 8 7 0

CMP #xxxx,S2 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 d 1 0 1

Immediate Data Extension
DSP56300 Family Manual, Rev. 5
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CMPM Compare Magnitude CMPM

Instruction Fields

Description Subtract the absolute value (magnitude) of the source one operand, S1, from the 
absolute value of the source two accumulator, S2, and update the CCR. The result of the 
subtraction operation is not stored. Note that this instruction subtracts 56-bit operands. When a 
word is specified as S1, it is sign-extended and zero-filled to form a valid 56-bit operand. For the 
carry to be set correctly as a result of the subtraction, S2 must be properly sign-extended. S2 can 
be improperly sign-extended by writing A1 or B1 explicitly prior to executing the compare so 
that A2 or B2, respectively, may not represent the correct sign extension. This applies especially 
when it is extended to compare 24-bit operands, such as X0 with A1.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

|S2|–|S1| (parallel move) CMPM S1, S2 (parallel move)

{S1} JJJ Source register [B/A,X0,Y0,X1,Y1] (see Table 12-16 on page 12-20)
{S2} d Source accumulator [A,B] (see Table 12-13 on page 12-18)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ √
CCR

√ Changed according to the standard definition.

23 16 15 8 7 0

CMPM S1, S2 Data Bus Move Field 0 J J J d 1 1 1

Optional Effective Address Extension
DSP56300 Family Manual, Rev. 5
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Instruction Set
CMPU Compare Unsigned CMPU

Instruction Fields

Description Subtract the source one operand, S1, from the source two accumulator, S2, and 
update the CCR. The result of the subtraction operation is not stored. Note that this instruction 
subtracts a 24- or 48-bit unsigned operand from a 48-bit unsigned operand. When a 24-bit word is 
specified as S1, it is aligned to the left and zero-filled to form a valid 48-bit operand. If an 
accumulator is specified as an operand, the value in the EXP does not affect the operation.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

S2–S1 CMPU S1, S2

{S1} ggg Source register [A,B,X0,Y0,X1,Y1] (see Table 12-13 on page 12-18)
{S2} d Source accumulator [A,B] (see Table 12-13 on page 12-18)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — √ * * √
CCR

* V Always cleared.
* Z Set if bits 47–0 of the result are 0.
— Unchanged by the instruction.
√ Changed according to the standard definition.

23 16 15 8 7 0

CMPU S1, S2 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 g g g d
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DEBUG Enter Debug Mode DEBUG

Instruction Fields None

Description Enter the Debug mode and wait for OnCE commands.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

Enter the Debug mode DEBUG

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction. 

23 16 15 8 7 0

DEBUG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
DSP56300 Family Manual, Rev. 5
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Instruction Set
DEBUGcc DEBUGcc 
Enter Debug Mode Conditionally

Instruction Fields

Description If the specified condition is true, enter the Debug mode and wait for OnCE 
commands. If the specified condition is false, continue with the next instruction. The conditions 
that the term “cc” can specify are listed on Table 12-18 on page 12-24.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

If cc, then enter the Debug mode DEBUGcc

{cc} CCCC Condition code (see Table 12-18 on page 12-24)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction. 

23 16 15 8 7 0

DEBUGcc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 C C C C
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DEC Decrement by One DEC

Instruction Fields

Description Decrement by one the specified operand and store the result in the destination 
accumulator. One is subtracted from the LSB of D.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

D – 1 → D DEC D

{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ √ √
CCR

√ Changed according to the standard definition.
— Unchanged by the instruction. 

23 16 15 8 7 0

DEC D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 d
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Instruction Set
DIV  Divide Iteration DIV

Instruction Fields

Description Divide the destination operand D by the source operand S and store the result in the 
destination accumulator D. The 48-bit dividend must be a positive fraction that is sign-extended 
to 56 bits and stored in the full 56-bit destination accumulator D. The 24-bit divisor is a signed 
fraction stored in the source operand S. Each DIV iteration calculates one quotient bit using a 
nonrestoring fractional division algorithm. After the first DIV instruction executes, the 
destination operand holds both the partial remainder and the formed quotient. The partial 
remainder occupies the high-order portion of the destination accumulator D and is a signed 
fraction. The formed quotient occupies the low-order portion of the destination accumulator D 
(A0 or B0) and is a positive fraction. One bit of the formed quotient is shifted into the LSB of the 
destination accumulator at the start of each DIV iteration. The formed quotient is the true 
quotient if the true quotient is positive. If the true quotient is negative, the formed quotient must 
be negated. Valid results are obtained only when |D| < |S| and the operands are interpreted as 
fractions. This condition ensures that the magnitude of the quotient is less than 1 (that is, a 
fractional quotient) and precludes division by 0.

DIV calculates one quotient bit based on the divisor and the previous partial remainder. To 
produce an N-bit quotient, the DIV instruction executes N times, where N is the number of bits of 
precision desired in the quotient, 1 ≤ N ≤ 24. Thus, for a full-precision (24-bit) quotient, sixteen 
DIV iterations are required. In general, executing the DIV instruction N times produces an N-bit 
quotient and a 48-bit remainder that has (48 – N) bits of precision and whose N MSBs are zeros. 
The partial remainder is not a true remainder and must be corrected due to the nonrestoring nature 
of the division algorithm before it can be used. Therefore, once the divide is complete, it is 
necessary to reverse the last DIV operation and restore the remainder to obtain the true 
remainder.

Operation Assembler Syntax 

IF D[39]⊕S[15] = 1 DIV S,D 

then 2 ∗ D + C + S → D

else 2 ∗ D + C – S → D

where ⊕ denotes the logical exclusive OR operator.

{S} JJ Source input register [X0,X1,Y0,Y1] (see Table 12-13 on page 12-18)
{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)
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DIV  Divide Iteration DIV

DIV uses a nonrestoring fractional division algorithm that consists of the following operations:

1. Compare the source and destination operand sign bits. An exclusive OR operation is 
performed on bit 55 of the destination operand D and Bit 23 of the source operand S. 

2. Shift the partial remainder and the quotient. The 39-bit destination accumulator D is 
shifted one bit to the left. The Carry bit (C) is moved into the LSB (bit 0) of the 
accumulator. 

3. Calculate the next quotient bit and the new partial remainder. The 24-bit source 
operand S (signed divisor) is either added to or subtracted from the Most Significant 
Portion (MSP) of the destination accumulator (A1 or B1), and the result is stored back 
into the MSP of that destination accumulator. If the result of the exclusive OR operation 
previously described was 1 (that is, the sign bits were different), the source operand S is 
added to the accumulator. If the result of the exclusive OR operation was 0 (that is, the 
sign bits were the same), the source operand S is subtracted from the accumulator. 
Because of the automatic sign extension of the 24-bit signed divisor, the addition or 
subtraction operation correctly sets the C bit with the next quotient bit.

For extended precision division (for example., N-bit quotients where N > 24), the DIV instruction 
is no longer applicable, and a user-defined N-bit division routine is required. For more 
information on division algorithms, see pages 524–530 of Theory and Application of Digital 
Signal Processing by Rabiner and Gold (Prentice-Hall, 1975), pages 190–199 of Computer 
Architecture and Organization by John Hayes (McGraw-Hill, 1978), pages 213–223 of 
Computer Arithmetic: Principles, Architecture, and Design by Kai Hwang (John Wiley and 
Sons, 1979), or other references as required.
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Instruction Set
DIV  Divide Iteration DIV
Condition Codes

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

— * — — — — * *

CCR

* L Set if the Overflow bit (V) is set.
* V Set if the MSB of the destination operand is changed as a result of the instruction’s 

left shift operation.
* C Set if bit 55 of the result is cleared.
— Unchanged by the instruction.

23 16 15 8 7 0

DIV S,D 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 J J d 0 0 0
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DMAC  DMAC 
Double-Precision Multiply-Accumulate With Right Shift

Instruction Fields

Description Multiply the two 24-bit source operands S1 and S2 and add/subtract the product 
to/from the specified 56-bit destination accumulator D, which has been previously shifted 24 bits 
to the right. The multiplication can be performed on signed numbers (ss), unsigned numbers (uu), 
or mixed (unsigned ∗ signed, (su)). The “–” sign option is used to negate the specified product 
prior to accumulation. The default sign option is “+”. This instruction is optimized for 
multi-precision multiplication support. 

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

[D → 16] ± S1 ∗ S2 → D 
(S1 signed, S2 signed)

DMACss (±)S1,S2,D (no parallel move)

[D → 16] ± S1 ∗ S2 → D 
(S1 signed, S2 unsigned)

DMACsu (±)S1,S2,D (no parallel move)

[D → 16] ± S1 ∗ S2 → D 
(S1 unsigned, S2 unsigned)

DMACuu (±)S1,S2,D (no parallel move)

{S1,S2} QQQQ Source registers S1,S2 [all combinations of X0,X1,Y0, and Y1] (see 
Table 12-16 on page 12-20)

{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{±±} k Sign [+,–] (see Table 12-16 on page 12-20)
{ss,su,uu} ss [ss,su,uu] (see Table 12-16 on page 12-20)

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0

DMAC (±)S1,S2,D 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 s 1 s d k Q Q Q Q
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Instruction Set
DO Start Hardware Loop DO

Instruction Fields

For the DO SP, expr instruction, the actual value that is loaded into the Loop Counter (LC) is the 
value of the Stack Pointer (SP) before the DO instruction executes, incremented by one. Thus, if 
SP = 3, the execution of the DO SP,expr instruction loads the LC with the value LC = 4. For the 
DO SSL, expr instruction, the LC is loaded with its previous value, which was saved on the stack 
by the DO instruction itself.

Description Begin a hardware DO loop that is to be repeated the number of times specified in the 
instruction’s source operand and whose range of execution is terminated by the destination 
operand (previously shown as “expr”). No overhead other than the execution of this DO 
instruction is required to set up this loop. DO loops can be nested and the loop count can be 
passed as a parameter.

Operation Assembler Syntax 

SP + 1 → SP;LA → SSH;LC → SSL;[X or Y]:ea → LC DO [X or Y]:ea,expr

SP + 1 → SP;PC → SSH;SR → SSL;expr – 1 → LA

1 → LF

SP + 1 → SP;LA → SSH;LC → SSL;[X or Y]:aa → LC DO [X or Y]:aa,expr

SP +1 → SP;PC → SSH;SR → SSL;expr – 1 → LA

1 → LF

SP + 1 → SP;LA → SSH;LC → SSL;#xxx → LC DO #xxx,expr

SP+1 → SP;PC → SSH;SR → SSL;expr – 1 → LA

1 → LF

SP + 1 → SP;LA → SSH;LC → SSL;S → LC DO S,expr

SP + 1 → SP;PC → SSH;SR → SSL;expr – 1 → LA

1 → LF

End of Loop:

SSL(LF) → SR;SP – 1 → SP

SSH → LA;SSL → LC;SP – 1 → SP

{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)
{X/Y} S Memory Space [X,Y] (see Table 12-13 on page 12-18)
{expr} 24-bit Absolute Address in 16-bit extension word
{aa} aaaaaa Absolute Address [0–63]
{#xxx} hhhhiiiiiiii Immediate Short Data [0–4095]
{S} DDDDDD Source register [all on-chip registers, except SSH] (see Table 12-13 

on page 12-18)
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DO Start Hardware Loop DO

During the first instruction cycle, the current contents of the Loop Address (LA) and the Loop 
Counter (LC) registers are pushed onto the System Stack. The DO source operand then loads into 
the LC register, which contains the remaining number of times the DO loop is to execute and can 
be accessed from inside the DO loop under certain restrictions. If the initial value of LC is 0 and 
the Sixteen-bit Compatibility mode bit (bit 13, SC, in the Chip Status Register) is cleared, the DO 
loop does not execute.If LC initial value is zero but SC is set, the DO loop executes 65,536 times. 
All address register indirect addressing modes can be used to generate the effective address of the 
source operand. If immediate short data is specified, the twelve LSBs of the LC register are 
loaded with the 12-bit immediate value, and the twelve MSBs of the LC register are cleared.

During the second instruction cycle, the current contents of the Program Counter (PC) register 
and the Status Register (SR) are pushed onto the System Stack. The stacking of the LA, LC, PC, 
and SR registers is the mechanism that permits the nesting of DO loops. The DO destination 
operand (shown as “expr”) is then loaded into the LA register. This 24-bit operand is located in 
the instruction’s 24-bit absolute address extension word, as shown in the opcode section. The 
value in the PC register pushed onto the system stack is the address of the first instruction 
following the DO instruction (that is, the first actual instruction in the DO loop). This value is 
read (copied but not pulled) from the top of the system stack to return to the top of the loop for 
another pass through the loop.

During the third instruction cycle, the Loop Flag (LF) is set, resulting in a repeated comparison of 
PC with LA to determine whether the last instruction in the loop has been fetched. If LA equals 
PC, the last instruction in the loop has been fetched and the LC is tested. If the LC is not equal to 
1, it is decremented by one and SSH is loaded into the PC to fetch the first instruction in the loop 
again. When LC = 1, the “end-of-loop” processing begins.

When a DO loop executes, the instructions are actually fetched each time through the loop. 
Therefore, a DO loop can be interrupted. DO loops can also be nested. When DO loops are 
nested, the end-of-loop addresses must also be nested and are not allowed to be equal. The 
assembler generates an error message when DO loops are improperly nested.

During the “end-of-loop” processing, the Loop Flag (LF) from the lower portion (SSL) of the 
Stack Pointer is written into the SR, the contents of the LA register are restored from the upper 
portion (SSH) of (SP – 1), the contents of LC are restored from the lower portion (SSL) of (SP – 
1), and the Stack Pointer is decremented by two. Instruction fetches continue at the address of the 
instruction following the last instruction in the DO loop. Note that LF is the only bit in the SR 
that is restored after a hardware DO loop is exited.
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Instruction Set
DO Start Hardware Loop DO

Note:

1. The assembler calculates the end-of-loop address to be loaded into LA (the absolute 
address extension word) by evaluating the end-of-loop expression “expr” and 
subtracting 1. This is done to accommodate the case where the last word in the DO loop 
is a two-word instruction. Thus, the end-of-loop expression “expr” in the source code 
must represent the address of the instruction AFTER the last instruction in the loop.

2. The Loop Flag (LF) is cleared by a hardware reset.

Condition Codes

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

* * — — — — — —

CCR

* S Set if the instruction sends A/B accumulator contents to XDB or YDB.
* L Set if data limiting occurred [see Note above].
— Unchanged by the instruction.

23 16 15 8 7 0

DO [X or Y]:ea, expr 0 0 0 0 0 1 1 0 0 1 M M M R R R 0 S 0 0 0 0 0 0

Absolute Address Extension Word

23 16 15 8 7 0

DO [X or Y]:aa, expr 0 0 0 0 0 1 1 0 0 0 a a a a a a 0 S 0 0 0 0 0 0

Absolute Address Extension Word

23 16 15 8 7 0

DO #xxx, expr 0 0 0 0 0 1 1 0 i i i i i i i i 1 0 0 0 h h h h

Absolute Address Extension Word

23 16 15 8 7 0

DO S, expr 0 0 0 0 0 1 1 0 1 1 D D D D D D 0 0 0 0 0 0 0 0

Absolute Address Extension Word
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DO FOREVER  DO FOREVER 
Start Infinite Loop

Instruction Fields None

Description Begin a hardware DO loop that is to repeat forever with a range of execution 
terminated by the destination operand (“expr”). No overhead other than the execution of this DO 
FOREVER instruction is required to set up this loop. DO FOREVER loops can nest with other 
types of instructions. During the first instruction cycle, the contents of the Loop Address (LA) 
and the Loop Counter (LC) registers are pushed onto the system stack. The LC register is pushed 
onto the stack but is not updated by this instruction.

During the second instruction cycle, the contents of the Program Counter (PC) register and the 
Status Register (SR) are pushed onto the system stack. Stacking the LA, LC, PC, and SR registers 
permits nesting DO FOREVER loops. The DO FOREVER destination operand (shown as 
“expr”) is then loaded into the LA register. This 24-bit operand resides in the instruction’s 24-bit 
absolute address extension word, as shown in the opcode section. The value in the PC register 
pushed onto the system stack is the address of the first instruction following the DO FOREVER 
instruction (that is, the first actual instruction in the DO FOREVER loop). This value is read 
(copied, but not pulled) from the top of the system stack to return to the top of the loop for 
another pass through the loop.

During the third instruction cycle, the Loop Flag (LF) and the Forever flag are set. Thus, the PC 
is repeatedly compared with LA to determine whether the last instruction in the loop has been 
fetched. When LA equals PC, the last instruction in the loop has been fetched and SSH is loaded 
into the PC to fetch the first instruction in the loop again. The LC register is then decremented by 
one without being tested. You can use this register to count the number of loops already 
executed. 

Because the instructions are fetched each time through the DO FOREVER loop, the loop can be 
interrupted. DO FOREVER loops can also be nested. When DO FOREVER loops are nested, the 
end of loop addresses must also be nested and are not allowed to be equal. The assembler 
generates an error message when DO FOREVER loops are improperly nested. 

Operation Assembler Syntax 

SP + 1 → SP;LA → SSH;LC → SSL DO FOREVER,expr

SP + 1 → SP;PC → SSH;SR → SSL;expr – 1 → LA

1 → LF; 1 → FV
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Instruction Set
DO FOREVER  DO FOREVER 
Start Infinite Loop

Note:

1. The assembler calculates the end-of-loop address to be loaded into LA (the absolute 
address extension word) by evaluating the end-of-loop expression “expr” and 
subtracting one. This is done to accommodate the case where the last word in the DO 
loop is a two-word instruction. Thus, the end-of-loop expression “expr” in the source 
code must represent the address of the instruction AFTER the last instruction in the 
loop.

2. The LC register is never tested by the DO FOREVER instruction, and the only way of 
terminating the loop process is to use either the ENDDO or BRKcc instructions. LC is 
decremented every time PC = LA so that it can be used by the programmer to keep track 
of the number of times the DO FOREVER loop has been executed. If the programer 
wants to initialize LC to a particular value before the DO FOREVER, care should be 
taken to save it before if the DO loop is nested. If so, LC should also be restored 
immediately after exiting the nested DO FOREVER loop.

Condition Codes

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction. 

23 16 15 8 7 0

DO FOREVER 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1

Absolute Address Extension Word
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DOR Start PC-Relative Hardware Loop DOR

Instruction Fields

Description Initiates the beginning of a PC-relative hardware program loop. The Loop Address 
(LA) and Loop Counter (LC) values are pushed onto the system stack. With proper system stack 
management, this allows unlimited nested hardware DO loops. The PC and SR are pushed onto 
the system stack. The PC is added to the 24-bit address displacement extension word and the 
resulting address is loaded into the Loop Address (LA) register. The effective address specifies 
the address of the loop count that is loaded into the LC. The DO loop executes LC times. If the 
LC initial value is zero and the 16-bit Compatibility mode bit (bit 13, SC, in the Status Register) 
is cleared, the DO loop is not executed. If LC initial value is zero but SC is set, the DO loop 
executes 65,536 times. All address register indirect addressing modes (less Long Displacement) 
can be used. Register Direct addressing mode can also be used. If immediate short data is 
specified, the LC is loaded with the zero extended 12-bit immediate data. During hardware loop 
operation, each instruction is fetched each time through the program loop. Therefore, instructions 

Operation Assembler Syntax

SP+1 → SP;LA → SSH;LC → SSL;[X or Y]:ea → LC DOR [X or Y]:ea,label

SP+1 → SP;PC → SSH;SR → SSL;PC + xxxx → LA

1 → LF

SP+1 → SP;LA → SSH;LC → SSL;[X or Y]:ea → LC DOR [X or Y]:aa,label

SP+1 → SP;PC → SSH;SR → SSL;PC + xxxx → LA

1 → LF

SP+1 → SP;LA → SSH;LC → SSL;#xxx → LC DOR #xxx,label

SP+1 → SP;PC → SSH;SR → SSL;PC + xxxx → LA

1 → LF

SP+1 → SP;LA → SSH;LC → SSL;S → LC DOR S,label

SP+1 → SP;PC → SSH;SR → SSL;PC + xxxx → LA

1 → LF

{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)
{X/Y} S Memory Space [X,Y] (see Table 12-13 on page 12-18)
{label} 24-bit Address Displacement in 24-bit extension word
{aa} aaaaaa Absolute Address [0–63]
{#xxx} hhhhiiiiiiii Immediate Short Data [0–4095]
{S} DDDDDD Source register [all on-chip registers except SSH] (see Table 12-13 

on page 12-18)
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Instruction Set
executing in a hardware loop are interruptible and can be nested. The value of the PC pushed onto 
the system stack is the location of the first 
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DOR Start PC-Relative Hardware Loop DOR

instruction after the DOR instruction. This value is read from the top of the system stack to return 
to the start of the program loop. When DOR instructions are nested, the end of loop addresses 
must also be nested and are not allowed to be equal.

The assembler calculates the end of LA (PC-relative address extension word xxxx) by evaluating 
the end of loop expression and subtracting one. Thus, the end of the loop expression in the source 
code represents the “next address” after the end of the loop. If a simple end of loop address label 
is used, it should be placed after the last instruction in the loop. 

Since the end of loop comparison occurs at fetch time ahead of the end of loop execution, 
instructions that change program flow or the system stack cannot be used near the end of the loop 
without some restrictions. Proper hardware loop operation is guaranteed if no instruction starting 
at address LA-2, LA-1 or LA specifies the program controller registers SR, SP, SSL, LA, LC or 
(implicitly) PC as a destination register; or specifies SSH as a source or destination register. Also, 
SSH cannot be specified as a source register in the DOR instruction itself. The assembler 
generates a warning if the restricted instructions are found within their restricted boundaries. 

Implementation Notes 

DOR SP,xxxx The actual value to be loaded into the LC is the value of the SP before the DOR 
instruction incremented by one. 

DOR SSL,xxxx The LC is loaded with its previous value saved in the stack by the DOR 
instruction itself. 

Condition Codes

7 6 5 4 3 2 1 0

S L E U N Z V C

* * — — — — — —

CCR

* S Set if the instruction sends A/B accumulator contents to XDB or YDB.
* L Set if data limiting occurred 
— Unchanged by the instruction
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Instruction Set
DOR Start PC-Relative Hardware Loop DOR
Instruction Formats and Opcodes

23 16 15 8 7 0

DOR [X or Y]:ea,label 0 0 0 0 0 1 1 0 0 1 M M M R R R 0 S 0 1 0 0 0 0

PC-Relative Displacement

23 16 15 8 7 0

DOR [X or Y]:aa,label 0 0 0 0 0 1 1 0 0 0 a a a a a a 0 S 0 1 0 0 0 0

PC-Relative Displacement

23 16 15 8 7 0

DOR #xxx, label 0 0 0 0 0 1 1 0 i i i i i i i i 1 0 0 1 h h h h

PC-Relative Displacement

23 16 15 8 7 0

DOR S, label 0 0 0 0 0 1 1 0 1 1 D D D D D D 0 0 0 1 0 0 0 0

PC-Relative Displacement
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DOR FOREVER DOR FOREVER 
Start PC-Relative Infinite Loop

Instruction Fields None

Description Begin a hardware DO loop that is to repeat forever with a range of execution 
terminated by the destination operand (“label”). No overhead other than the execution of this 
DOR FOREVER instruction is required to set up this loop. DOR FOREVER loops can be nested. 
During the first instruction cycle, the contents of the Loop Address (LA) and the Loop Counter 
(LC) registers are pushed onto the system stack. The LC register is pushed onto the stack but is 
not updated.

During the second instruction cycle, the contents of the Program Counter (PC) register and the 
Status Register (SR) are pushed onto the system stack. Stacking the LA, LC, PC, and SR registers 
permits nesting DOR FOREVER loops. The DOR FOREVER destination operand (shown as 
label) is then loaded into the LA register after it is added to the PC. This 24-bit operand resides in 
the instruction’s 24-bit relative address extension word as shown in the opcode section. The value 
in the PC register pushed onto the system stack is the address of the first instruction following the 
DOR FOREVER instruction (that is, the first actual instruction in the DOR FOREVER loop). 
This value is read (that is, copied but not pulled) from the top of the system stack to return to the 
top of the loop for another pass through the loop.

During the third instruction cycle, the Loop Flag (LF) and the ForeVer flag are set. As a result, 
the PC is repeatedly compared with LA to determine whether the last instruction in the loop has 
been fetched. If LA equals PC, the last instruction in the loop has been fetched and SSH is read 
(that is, copied but not pulled) into the PC to fetch the first instruction in the loop again. The LC 
register is then decremented by one without being tested. You can use this register to count the 
number of loops already executed. 

When a DOR FOREVER loop executes, the instructions are fetched each time through the loop. 
Therefore, a DOR FOREVER loop can be interrupted. DOR FOREVER loops can also be nested. 
When DOR FOREVER loops are nested, the end of loop addresses must also be nested and 
cannot be equal. The assembler generates an error message when DOR FOREVER loops are 
improperly nested. 

Operation Assembler Syntax

SP+1 → SP;LA → SSH;LC → SSL DOR FOREVER,label
SP+1 → SP;PC → SSH;SR → SSL;PC + xxxx → LA
1 → LF; 1 → FV
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Instruction Set
DOR FOREVER DOR FOREVER 
Start PC-Relative Infinite Loops

Note: The assembler calculates the end of LA (PC-relative address extension word xxxx) by 
evaluating the end of loop expression and subtracting one. Thus the end of loop 
expression in the source code represents the “next address” after the end of the loop. If 
a simple end of loop address label is used, it should be placed after the last instruction 
in the loop. 

The DOR FOREVER instruction never tests the LC register. The only way to terminate the loop 
process is to use either the ENDDO or BRKcc instruction. LC is decremented every time PC = 
LA, so you can use it to keep track of the number of times the DOR FOREVER loop has 
executed. If you want to initialize LC to a particular value before the DOR FOREVER, take care 
to save it before if the DO loop is nested. If so, LC should also be restored immediately after 
exiting the nested DOR FOREVER loop.

Condition Codes

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction

23 16 15 8 7 0

DOR FOREVER 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

PC-Relative Displacement
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ENDDO End Current DO Loop ENDDO

Instruction Fields None

Description Terminate the current hardware DO loop before the current Loop Counter (LC) 
equals one. If the value of the current DO LC is needed, it must be read before the execution of 
the ENDDO instruction. Initially, the Loop Flag (LF) is restored from the system stack and the 
remaining portion of the Status Register (SR) and the Program Counter (PC) are purged from the 
system stack. The Loop Address (LA) and the LC registers are then restored from the system 
stack.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

SSL(LF) → SR;SP – 1 → SP ENDDO

SSH → LA; SSL → LC;SP – 1 → SP

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0

ENDDO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0
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Instruction Set
EOR Logical Exclusive OR EOR

Instruction Fields

Description Logically exclusive OR the source operand S with bits 47–24 of the destination 
operand D and store the result in bits 47–24 of the destination accumulator. The source can be a 
24-bit register, 6-bit short immediate or 24-bit long immediate. This instruction is a 24-bit 
operation. The remaining bits of the destination operand D are not affected. When 6-bit 
immediate data is used, the data is interpreted as an unsigned integer. That is, the 6 bits are 
right-aligned, and the remaining bits are zeroed to form a 24-bit source operand.

Condition Codes

Operation Assembler Syntax 

S ⊕ D[47–24] → D[47–24] (parallel move) EOR S,D (parallel move)

#xx ⊕ D[47–24] → D[47–24] EOR #xx,D 

#xxxx ⊕ D[47–24] → D[47–24] EOR #xxxx,D 

where ⊕ denotes the logical XOR operator.

{S} JJ Source register [X0,X1,Y0,Y1] (see Table 12-13 on page 12-18)
{D} d Destination accumulator [A/B] (see Table 12-13 on page 12-18)
{#xx} iiiiii 6-bit Immediate Short Data 
{#xxxx} 24-bit Immediate Long Data extension word 

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — * * * —

CCR

* N Set if bit 47 of the result is set.
* Z Set if bits 47–24 of the result are 0.
* V Always cleared.
√ Changed according to the standard definition.
— Unchanged by the instruction.
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EOR Logical Exclusive OR EOR
Instruction Formats and Opcodes

23 16 15 8 7 0

EOR S,D Data Bus Move Field 0 1 J J d 0 1 1

Optional Effective Address Extension

23 16 15 8 7 0

EOR #xx,D 0 0 0 0 0 0 0 1 0 1 i i i i i i 1 0 0 0 d 0 1 1

23 16 15 8 7 0
EOR #xxxx,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 d 0 1 1

Immediate Data Extension
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Instruction Set
EXTRACT Extract Bit Field EXTRACT

Instruction Fields

Description Extract a bit-field from source accumulator S2. The bit-field width is specified by 
bits 17–12 in the S1 register or in the immediate control word #CO. The offset from the Least 
Significant Bit is specified by bits 5–0 in the S1 register or in the immediate control word #CO. 
The extracted field is placed into destination accumulator D, aligned to the right. The control 
register can be constructed by the MERGE instruction. EXTRACT is a 56-bit operation. Bits 
outside the field are filled with sign extension according to the Most Significant Bit of the 
extracted bit field. 

Note:

1. In Sixteen-bit Arithmetic mode, the offset field is located in bits 13–8 of the control 
register and the width field is located in bits 21–16 of the control register. These fields 
corresponds to the definition of the fields in the MERGE instruction.

2. In Sixteen-bit Arithmetic mode, when the width value is zero, then the result will be 
undefined.

3. If offset + width exceeds the value of 56, the result is undefined.

Operation Assembler Syntax 

Offset = S1[5–0] EXTRACT S1,S2,D

Width = S1[17–12] 

S2[(offset + width – 1):offset] → D[(width – 1):0]

S2[offset + width – 1] → D[39:width] (sign extension)

Offset = #CO[5–0] 
Width = #CO[17–12] 

EXTRACT #CO,S2,D

S2[(offset + width – 1):offset] → D[(width – 1):0]

S2[offset + width – 1] → D[39:width] (sign extension)

{S2} s Source accumulator [A,B] (see Table 12-13 on page 12-18)
{D} D Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{S1} SSS Control register [X0,X1,Y0,Y1,A1,B1] (see Table 12-13 on page 12-18)
{#CO} Control word extension. 
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EXTRACT Extract Bit Field EXTRACT
Condition Codes

Example

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

— — √ √ √ √ * *

CCR

* V Always cleared.
* C Always cleared.
— Unchanged by the instruction.
√ Changed according to the standard definition.

23 16 15 8 7 0
EXTRACT S1,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 0 0 0 s S S S D

23 16 15 8 7 0

EXTRACT #CO,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 s 0 0 0 D

Control Word Extension

 EXTRACT B1,A,A

B1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 1

4
7

2
4

Offset =11Width = 5 

x x x x x x x x 1 0 1 0 1 x x x x x x x x x x xx x x x x x x x x x x x x x x x x x x x x x x x

4
7 0

A1 A0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4
7 0

A1 A0

11 1 1 1 1 1 1 1

x x x x x x x x

5
5

5
5

5
1

1
1
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Instruction Set
EXTRACTU EXTRACTU 
Extract Unsigned Bit Field

Instruction Fields

Description Extract an unsigned bit-field from source accumulator S2. The bit-field width is 
specified by bits 17–12 in the S1 register or in the immediate control word #CO. The offset from 
the LSB is specified by bits 5–0 in the S1 register or in the immediate control word #CO. The 
extracted field is placed into destination accumulator D, aligned to the right. The control register 
can be constructed using the MERGE instruction. EXTRACTU is a 56-bit operation. Bits outside 
the field are filled with zeros. 

Note:

1. In Sixteen-bit Arithmetic mode, the offset field is located in bits 13–8 of the control 
register and the width field is located in bits 21–16 of the control register. These fields 
correspond to the definition of the fields in the MERGE instruction.

2. If offset + width exceeds the value of 56, the result is undefined.

Operation Assembler Syntax 

Offset = S1[5–0] EXTRACTU S1,S2,D

Width = S1[17–12] 

S2[(offset + width – 1):offset] → D[(width – 1):0]

zero → D[55:width] 

Offset = #CO[5–0] EXTRACTU #CO,S2,D

Width = #CO[17–12] 

S2[(offset + width – 1):offset] → D[(width–1):0]

zero → D[39:width] 

{S2} s Source accumulator [A,B] (see Table 12-13 on page 12-18)
{D} D Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{S1} SSS Control register [X0,X1,Y0,Y1,A1,B1] (see Table 12-13 on page 12-18)
{#CO} Control word extension 
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EXTRACTU EXTRACTU 
Extract Unsigned Bit Field

Condition Codes

Example 

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

— — √ √ √ √ * *

CCR

* V Always cleared.
* C Always cleared.
— Unchanged by the instruction.
√ Changed according to the standard definition.

23 16 15 8 7 0

EXTRACTU S1,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 1 0 0 s S S S D

23 16 15 8 7 0

EXTRACTU #CO,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 1 0 0 s 0 0 0 D

Control Word Extension

EXTRACTU B1,A,A

B1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1

4
7

2
4

Offset =11width = 7

x x x x x x 1 1 1 0 1 0 1 x x x x x x x x x x xx x x x x x x x x x x x x x x x x x x x x x x x

4
7 0

A

A1 A0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4
7 0

A

A1 A0

00 0 0 0 0 0 0 0

x x x x x x x x

5
5

5
5
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Instruction Set
IFcc Execute Conditionally Without CCR Update IFcc

Instruction Fields

Description If the specified condition is true, execute and store result of the specified Data ALU 
operation. If the specified condition is false, no destination is altered. The CCR is never updated 
with the condition codes generated by the Data ALU operation. The instructions that can 
conditionally be executed using IFcc are the parallel arithmetic and logical instructions. See 
Table 12-4 on page 12-7and Table 12-5 on page 12-9for a list of those instructions. The 
conditions specified by “cc” are listed in Table 12-18 on page 12-24. 

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

If cc, then opcode operation opcode-Operands IFcc

{cc} CCCC Condition code (see Table 12-18 on page 12-24)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction. 

23 16 15 8 7 0

IFcc 0 0 1 0 0 0 0 0 0 0 1 0 C C C C Instruction opcode
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IFcc.U Execute Conditionally With CCR Update IFcc.U

Instruction Fields

Description If the specified condition is true, execute and store result of the specified Data ALU 
operation and update the CCR with the status information generated by the Data ALU operation. 
If the specified condition is false, no destination is altered and the CCR is not affected. The 
instructions that can conditionally be executed using IFcc.U are the parallel arithmetic and 
logical instructions. See Table 12-4 on page 12-7and Table 12-5 on page 12-9 for a list of these 
instructions. The conditions specified by “cc” are listed on Table 12-18 on page 12-24.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

If cc, then opcode operation opcode-Operands IFcc

{cc} CCCC Condition code (see Table 12-18 on page 12-24)

7 6 5 4 3 2 1 0

S L E U N Z V C

* * * * * * * *

CCR

* If the specified condition is true, changes are made according to the instruction. 
Otherwise, it is not changed.

23 16 15 8 7 0

IFcc.U 0 0 1 0 0 0 0 0 0 0 1 1 C C C C Instruction opcode
DSP56300 Family Manual, Rev. 5
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Instruction Set
ILLEGAL Illegal Instruction Interrupt ILLEGAL

Instruction Fields None

Description The ILLEGAL instruction executes as if it were a NOP instruction. Normal 
instruction execution is suspended and illegal instruction exception processing is initiated. The 
interrupt vector address is located at address P:$3E. The Interrupt Priority Level (I1, I0) is set to 3 
in the Status Register if a long interrupt service routine is used. The purpose of the ILLEGAL 
instruction is to force the DSP into an illegal instruction exception for test purposes. Exiting an 
illegal instruction is a fatal error. A long exception routine should be used to indicate this 
condition and cause the system to be restarted.

If the ILLEGAL instruction is in a DO loop at LA and the instruction at LA – 1 is being 
interrupted, then LC is decremented twice due to the same mechanism that causes LC to be 
decremented twice if JSR, REP, and so on are located at LA. This is why JSR, REP, and other 
instructions at LA are restricted. Restrictions cannot be imposed on illegal instructions. Since 
REP is uninterruptable, repeating an ILLEGAL instruction results in the interrupt not being 
initiated until after the REP completes. After the interrupt is serviced, program control returns to 
the address of the second word following the ILLEGAL instruction. Of course, the ILLEGAL 
interrupt service routine should abort further processing, and the processor should be 
reinitialized.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

Begin Illegal Instruction exception processing ILLEGAL

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0

ILLEGAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
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INC Increment by One INC

Instruction Fields

Description Increment by one the specified operand and store the result in the destination 
accumulator. One is added from the LSB of D.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

D + 1 → D INC D

{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ √ √
CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0

INC D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 d
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Instruction Set
INSERT Insert Bit Field INSERT

Instruction Fields

Description Insert a bit-field into the destination accumulator D. The bit-field whose width is 
specified by bits 17–12 in S1 register begins at the LSB of the S2 register. This bit-field is 
inserted in the destination accumulator D, with an offset according to bits 5–0 in the S1 register. 
The S1 operand can be an immediate control word #CO. The width specified by S1 should not 
exceed a value of 24. The construction of the control register can be done by using the MERGE 
instruction. This is a 56-bit operation. Any bits outside the field remain unchanged. 

Note:

1. In Sixteen-bit Arithmetic mode, the offset field is located in bits 13–8 of the control 
register and the width field is located in bits 21–16 of the control register. These fields 
corresponds to the definition of the fields in the MERGE instruction. Width specified by 
S1 should not exceed a value of 16. 

2. In Sixteen-bit Arithmetic mode, the offset value, located in the offset field, should be the 
needed offset you pre-incremented by a bias of 16.

3. If offset + width > 56, the result is undefined.

Operation Assembler Syntax 

Offset = S1[5–0] 
Width = S1[17–12]

INSERT S1,S2,D

S2[(width – 1):0] → D[(offset + width – 1):offset]

Offset = #CO[5–0] 
Width = #CO[17–12]

INSERT #CO,S2,D

S2[(width-1):0] → D[(offset + width – 1):offset]

{D} D Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{S1} SSS Control register [X0,X1,Y0,Y1,A1,B1] (see Table 12-13 on page 12-18)
{S2} qqq Source register [X0,X1,Y0,Y1,A0,B0] (see Table 12-13 on page 12-18)
{#CO} Control word extension
DSP56300 Family Manual, Rev. 5
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INSERT Insert Bit Field INSERT
Condition Codes

Example 

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

— — √ √ √ √ * *

CCR

* V Always cleared.
* C Always cleared.
— Unchanged by the instruction.
√ Changed according to the standard definition.

23 16 15 8 7 0

INSERT S1,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 1 0 q q q S S S D

23 16 15 8 7 0

INSERT #CO,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 q q q 0 0 0 D

Control Word Extension

 INSERT B1,X0,A

B1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0

4
7

2
3

Offset =10width = 5 

x x x x x x x x x x x x x x x x x x x 1 0 0 1 0

2
3

X0

0

x x x x x x x x x 1 0 0 1 0 x x x x x x x x x xx x x x x x x x x x x x x x x x x x x x x x x x

4
7 0

A

A1 A0

x x x x x x x x
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Instruction Set
Jcc Jump Conditionally Jcc

Instruction Fields

Description Jump to the location in program memory given by the instruction’s effective address 
if the specified condition is true. If the specified condition is false, the Program Counter (PC) is 
incremented and the effective address is ignored. However, the address register specified in the 
effective address field is always updated independently of the specified condition. All 
memory-alterable addressing modes can be used for the effective address. A Fast Short Jump 
addressing mode can also be used. The 12-bit data is zero-extended to form the effective address. 
The conditions specified by “cc” are listed on Table 12-18 on page 12-24.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

If cc, then 0xxx → PC Jcc xxx
else PC + 1 → PC

If cc, then ea → PC Jcc ea
else PC + 1 → PC

{cc} CCCC Condition code (see Table 12-18 on page 12-24)
{xxx} aaaaaaaaaaaa Short Jump Address
{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction. 

23 16 15 8 7 0

Jcc xxx 0 0 0 0 1 1 1 0 C C C C a a a a a a a a a a a a

23 16 15 8 7 0

Jcc ea 0 0 0 0 1 0 1 0 1 1 M M M R R R 1 0 1 0 C C C C

Optional Effective Address Extension
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JCLR Jump if Bit Clear JCLR

Instruction Fields

Description Jump to the 24-bit absolute address in program memory specified in the 
instruction’s 24-bit extension word if the nth bit of the source operand S is clear. The bit to be 
tested is selected by an immediate bit number from 0–23. If the specified memory bit is not clear, 
the Program Counter (PC) is incremented and the absolute address in the extension word is 
ignored. However, the address register specified in the effective address field is always updated 
independently of the state of the nth bit. All address register indirect addressing modes can 
reference the source operand S. Absolute Short and I/O Short addressing modes can also be used. 

Operation Assembler Syntax 

If S{n} = 0 then xxxx → PC JCLR #n,[X or Y]:ea,xxxx
else PC + 1 → PC

If S{n} = 0 then xxxx → PC JCLR #n,[X or Y],aa,xxxx
else PC + 1 → PC

If S{n} = 0 then xxxx → PC JCLR #n,[X or Y]:pp,xxxx
else PC + 1 → PC

If S{n} = 0 then xxxx → PC JCLR #n,[X or Y]:qq,xxxx
else PC + 1 → PC

If S{n} = 0 then xxxx → PC JCLR #n,S,xxxx
else PC + 1 → PC

{#n} bbbb Bit number [0–23]
{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)
{X/Y} S Memory Space [X,Y] (see Table 12-13 on page 12-18)
{xxxx} 24-bit absolute Address extension word
{aa} aaaaaa Absolute Address [0–63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0–$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80–$FFFFBF]
{S} DDDDDD Source register [all on-chip registers] (see Table 12-13 on page 12-18)
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Instruction Set
JCLR Jump if Bit Clear JCLR
Condition Codes

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition. 
— Unchanged by the instruction. 

23 16 15 8 7 0

JCLR #n,[X or Y]:ea,xxxx 0 0 0 0 1 0 1 0 0 1 M M M R R R 1 S 0 0 b b b b

Absolute Address Extension

23 16 15 8 7 0

JCLR #n,[X or Y]:aa,xxxx 0 0 0 0 1 0 1 0 0 0 a a a a a a 1 S 0 0 b b b b

Absolute Address Extension

23 16 15 8 7 0

JCLR #n,[X or Y]:pp,xxxx 0 0 0 0 1 0 1 0 1 0 p p p p p p 1 S 0 0 b b b b

Absolute Address Extension

23 16 15 8 7 0

JCLR #n,[X or Y]:qq,xxxx 0 0 0 0 0 0 0 1 1 0 q q q q q q 1 S 0 0 b b b b

Absolute Address Extension

23 16 15 8 7 0

JCLR #n,S,xxxx 0 0 0 0 1 0 1 0 1 1 D D D D D D 0 0 0 0 b b b b

Absolute Address Extension
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JMP Jump JMP

Instruction Fields

Description Jump to the location in program memory given by the instruction’s effective 
address. All memory-alterable addressing modes can be used for the effective address. A Fast 
Short Jump addressing mode can also be used. The 12-bit data is zero-extended to form the 
effective address.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

0xxx → Pc JMP xxx

ea → Pc JMP ea

{xxx} aaaaaaaaaaaa Short Jump Address
{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction. 

23 16 15 8 7 0

JMP ea 0 0 0 0 1 0 1 0 1 1 M M M R R R 1 0 0 0 0 0 0 0

Optional Effective Address Extension

23 16 15 8 7 0

JMP xxx 0 0 0 0 1 1 0 0 0 0 0 0 a a a a a a a a a a a a
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Instruction Set
JScc Jump to Subroutine Conditionally JScc

Instruction Fields

Description Jump to the subroutine whose location in program memory is given by the 
instruction’s effective address if the specified condition is true. If the specified condition is true, 
the address of the instruction immediately following the JScc instruction (PC) and the SR are 
pushed onto the system stack. Program execution then continues at the specified effective address 
in program memory. If the specified condition is false, the PC is incremented, and any extension 
word is ignored. However, the address register specified in the effective address field is always 
updated independently of the specified condition. All memory-alterable addressing modes can be 
used for the effective address. A fast short jump addressing mode can also be used. The 12-bit 
data is zero-extended to form the effective address. The conditions specified by “cc” are listed on 
Table 12-18 on page 12-24.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

If cc, then SP + 1 → SP; PC → SSH;SR → SSL;0xxx → PC JScc xxx
else PC + 1 → PC

If cc, then SP + 1 → SP; PC → SSH;SR → SSL;ea → PC JScc ea
else PC + 1 → PC

{cc} CCCC Condition code (see Table 12-18 on page 12-24)
{xxx} aaaaaaaaaaaa Short Jump Address
{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction. 

23 16 15 8 7 0

JScc xxx 0 0 0 0 1 1 1 1 C C C C a a a a a a a a a a a a

23 16 15 8 7 0

JScc ea 0 0 0 0 1 0 1 1 1 1 M M M R R R 1 0 1 0 C C C C

Optional Effective Address Extension
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JSCLR Jump to Subroutine if Bit Clear JSCLR

Instruction Fields

Description Jump to the subroutine at the 24-bit absolute address in program memory specified 
in the instruction’s 24-bit extension word if the nth bit of the source operand S is clear. The bit to 
be tested is selected by an immediate bit number from 0–23. If the nth bit of source operand S is 
clear, the address of the instruction immediately following the JSCLR instruction (PC) and the 
SR are pushed onto the system stack. Program execution then continues at the specified absolute 
address in the instruction’s 24-bit extension word. If the specified memory bit is not clear, the PC 
is incremented and the extension word is ignored. However, the address register specified in the 
effective address field is always updated independently of the state of the nth bit. All address 
register indirect addressing modes can reference the source operand S. Absolute short and I/O 
short addressing modes can also be used.

Operation Assembler Syntax 

If S{n} = 0 then SP + 1 → SP;PC → SSH;SR → SSL;
;xxxx → PC

JSCLR #n,[X or Y]:ea,xxxx

else PC + 1 → PC

If S{n} = 0 then SP + 1 → SP;PC → SSH;SR → SSL;
;xxxx → PC

JSCLR #n,[X or Y],aa,xxxx

else PC + 1 → PC

If S{n} = 0 then SP + 1 → SP;PC → SSH;SR → SSL;
;xxxx → PC

JSCLR #n,[X or Y]:pp,xxxx

else PC + 1 → PC

If S{n} = 0 then SP + 1 → SP;PC → SSH;SR → SSL;
;xxxx → PC

JSCLR #n,[X or Y]:qq,xxxx

else PC + 1 → PC

If S{n} = 0 then SP + 1 → SP;PC → SSH;SR → SSL;
;xxxx → PC

JSCLR #n,S,xxxx

else PC + 1 → PC

{#n} bbbb Bit number [0–23]
{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)
{X/Y} S Memory Space [X,Y] (see Table 12-13 on page 12-18)
{xxxx} 24-bit absolute Address extension word
{aa} aaaaaa Absolute Address [0–63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0–$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80–$FFFFBF]
{S} DDDDDD Source register [all on-chip registers] (see Table 12-13 on page 12-18)
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Instruction Set
JSCLR Jump to Subroutine if Bit Clear JSCLR
Condition Codes

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0

JSCLR #n,[X or Y]:ea,xxxx 0 0 0 0 1 0 1 1 0 1 M M M R R R 1 S 0 0 b b b b

Absolute Address Extension

23 16 15 8 7 0

JSCLR #n,[X or Y]:aa,xxxx 0 0 0 0 1 0 1 1 0 0 a a a a a a 1 S 0 0 b b b b

Absolute Address Extension

23 16 15 8 7 0

JSCLR #n,[X or Y]:pp,xxxx 0 0 0 0 1 0 1 1 1 0 p p p p p p 1 S 0 0 b b b b

Absolute Address Extension

23 16 15 8 7 0

JSCLR #n,[X or Y]:qq,xxxx 0 0 0 0 0 0 0 1 1 1 q q q q q q 1 S 0 0 b b b b

Absolute Address Extension

23 16 15 8 7 0

JSCLR #n,S,xxxx 0 0 0 0 1 0 1 1 1 1 D D D D D D 0 0 0 0 b b b b

Absolute Address Extension
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JSET Jump if Bit Set JSET

Instruction Fields

Description Jump to the 24-bit absolute address in program memory specified in the 
instruction’s 24-bit extension word if the nth bit of the source operand S is set. The bit to be tested 
is selected by an immediate bit number from 0–23. If the specified memory bit is not set, the 
Program Counter (PC) is incremented, and the absolute address in the extension word is ignored. 
However, the address register specified in the effective address field is always updated 
independently of the state of the nth bit. All address register indirect addressing modes can be 
used to reference the source operand S. Absolute short and I/O short addressing modes can also 
be used.

Operation Assembler Syntax 

If S{n} = 1 then xxxx → PC JSET #n,[X or Y]:ea,xxxx
else PC  +  1 → PC

If S{n} = 1 then xxxx → PC JSET #n,[X or Y],aa,xxxx
else PC  +  1 → PC

If S{n} = 1 then xxxx → PC JSET #n,[X or Y]:pp,xxxx
else PC  +  1 → PC

If S{n} = 1 then xxxx → PC JSET #n,[X or Y]:qq,xxxx
else PC  +  1 → PC

If S{n} = 1 then xxxx → PC JSET #n,S,xxxx
else PC  +  1 → PC

{#n} bbbb Bit number [0–23]
{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)
{X/Y} S Memory Space [X,Y] (see Table 12-13 on page 12-18)
{xxxx} 24-bit Absolute Address in extension word
{aa} aaaaaa Absolute Address [0–63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0–$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80–$FFFFBF]
{S} DDDDDD Source register [all on-chip registers] (see Table 12-13 on page 12-18)
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Instruction Set
JSET Jump if Bit Set JSET
Condition Codes

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0

JSET #n,[X or Y]:ea,xxxx 0 0 0 0 1 0 1 0 0 1 M M M R R R 1 S 1 0 b b b b

Absolute Address Extension

23 16 15 8 7 0

JSET #n,[X or Y]:aa,xxxx 0 0 0 0 1 0 1 0 0 0 a a a a a a 1 S 1 0 b b b b

Absolute Address Extension

23 16 15 8 7 0

JSET #n,[X or Y]:pp,xxxx 0 0 0 0 1 0 1 0 1 0 p p p p p p 1 S 1 0 b b b b

Absolute Address Extension

23 16 15 8 7 0

JSET #n,[X or Y]:qq,xxxx 0 0 0 0 0 0 0 1 1 0 q q q q q q 1 S 1 0 b b b b

Absolute Address Extension

23 16 15 8 7 0

JSET #n,S,xxxx 0 0 0 0 1 0 1 0 1 1 D D D D D D 0 0 1 0 b b b b

Absolute Address Extension
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JSR Jump to Subroutine JSR

Instruction Fields

Description Jump to the subroutine whose location in program memory is given by the 
instruction’s effective address. The address of the instruction immediately following the JSR 
instruction (PC) and the system Status Register (SR) is pushed onto the system stack. Program 
execution then continues at the specified effective address in program memory. All 
memory-alterable addressing modes can be used for the effective address. A fast short jump 
addressing mode can also be used. The 12-bit data is zero-extended to form the effective address.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

SP  +  1 → SP; PC → SSH; SR → SSL; 0xxx → PC JSR xxx

SP  +  1 → SP; PC → SSH; SR → SSL; ea → PC JSR ea

{xxx} aaaaaaaaaaaa Short Jump Address
{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction. 

23 16 15 8 7 0

JSR ea 0 0 0 0 1 0 1 1 1 1 M M M R R R 1 0 0 0 0 0 0 0

Optional Effective Address Extension

23 16 15 8 7 0

JSR xxx 0 0 0 0 1 1 0 1 0 0 0 0 a a a a a a a a a a a a
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Instruction Set
JSSET Jump to Subroutine if Bit Set JSSET

Instruction Fields

Description Jump to the subroutine at the 24-bit absolute address in program memory specified 
in the instruction’s 24-bit extension word if the nth bit of the source operand S is set. The bit to be 
tested is selected by an immediate bit number from 0–23. If the nth bit of the source operand S is 
set, the address of the instruction immediately following the JSSET instruction (PC) and the 
system Status Register (SR) are pushed onto the system stack. Program execution then continues 
at the specified absolute address in the instruction’s 24-bit extension word. If the specified 
memory bit is not set, the Program Counter (PC) is incremented, and the extension word is 
ignored. However, the address register specified in the effective address field is always updated 
independently of the 

Operation Assembler Syntax 

If S{n} = 1 then SP  +  1 → SP;PC → SSH;SR → SSL;
;xxxx → PC

JSSET #n,[X or Y]:ea,xxxx

else PC + 1 → PC

If S{n} = 1 then SP + 1 → SP;PC → SSH;SR → SSL;
;xxxx → PC

JSSET #n,[X or Y],aa,xxxx

else PC + 1 → PC

If S{n} = 1 then SP + 1 → SP;PC → SSH;SR → SSL;
;xxxx → PC

JSSET #n,[X or Y]:pp,xxxx

else PC + 1 → PC

If S{n} = 1 then SP + 1 → SP;PC → SSH;SR → SSL;
;xxxx → PC

JSSET #n,[X or Y]:qq,xxxx

else PC  +  1 → PC

If S{n} = 1 then SP  +  1 → SP;PC → SSH;SR → SSL;
;xxxx → PC

JSSET #n,S,xxxx

else PC  +  1 → PC

{#n} bbbb Bit number [0–23]
{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)
{X/Y} S Memory Space [X,Y] (see Table 12-13 on page 12-18)
{xxxx} 24-bit PC absolute Address extension word
{aa} aaaaaa Absolute Address [0–63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0–$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80–$FFFFBF]
{S} DDDDDD Source register [all on-chip registers] (see Table 12-13 on page 12-18)
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JSSET Jump to Subroutine if Bit Set JSSET

state of the nth bit. All address register indirect addressing modes can be used to reference the 
source operand S. Absolute short and I/O short addressing modes can also be used.

Condition Codes

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0

JSSET #n,[X or Y]:ea,xxxx 0 0 0 0 1 0 1 1 0 1 M M M R R R 1 S 1 0 b b b b

Absolute Address Extension

23 16 15 8 7 0

JSSET #n,[X or Y]:aa,xxxx 0 0 0 0 1 0 1 1 0 0 a a a a a a 1 S 1 0 b b b b

Absolute Address Extension

23 16 15 8 7 0

JSSET #n,[X or Y]:pp,xxxx 0 0 0 0 1 0 1 1 1 0 p p p p p p 1 S 1 0 b b b b

Absolute Address Extension

23 16 15 8 7 0

JSSET #n,[X or Y]:qq,xxxx 0 0 0 0 0 0 0 1 1 1 q q q q q q 1 S 1 0 b b b b

Absolute Address Extension

23 16 15 8 7 0

JSSET #n,S,xxxx 0 0 0 0 1 0 1 1 1 1 D D D D D D 0 0 1 0 b b b b

Absolute Address Extension
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Instruction Set
LRA Load PC-Relative Address LRA

Instruction Fields

Description The PC is added to the specified displacement and the result is stored in destination 
D. The displacement is a two’s-complement 24-bit integer that represents the relative distance 
from the current PC to the destination PC. Long Displacement and Address Register PC-Relative 
addressing modes can be used. Note that if D is SSH, the SP is pre-incremented by one.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

PC + Rn → D LRA Rn,D

PC + xxxx → D LRA xxxx,D

{Rn} RRR Address register [R[0–7]]
{D} ddddd Destination address register 

[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R[0–7],N[0–7]] (see Table 
12-16 on page 12-20)

{xxxx} 24-bit PC Long Displacement 

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0

LRA Rn,D 0 0 0 0 0 1 0 0 1 1 0 0 0 R R R 0 0 0 d d d d d

23 16 15 8 7 0

LRA xxxx,D 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 d d d d d

Long Displacement
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LSL Logical Shift Left LSL
Operation

Assembler Syntax 

LSL D (parallel move) 
LSL #ii,D 
LSL S,D

Instruction Fields 

Description 

� Single-bit shift: Logically shift bits 47–24 of the destination operand D one bit to the left 
and store the result in the destination accumulator. Prior to instruction execution, bit 47 of 
D is shifted into the Carry bit (C), and a 0 is shifted into bit 24 of the destination 
accumulator D. 

� Multi-bit shift: The contents of bits 47–24 of the destination accumulator D are shifted left 
#ii bits. Bits shifted out of position 47 are lost, except for the last bit that is latched in the 
Carry bit. Zeros are supplied to the vacated positions on the right. The result is placed into 
bits 47–24 of the destination accumulator D. The number of bits to shift is determined by 
the 5-bit immediate field in the instruction, or by the unsigned integer located in the 
control register S. If a zero shift count is specified, the carry bit is cleared.

This is a 24-bit operation. The remaining bits of the destination accumulator are not affected. The 
number of shifts should not exceed the value of 24.

{D} D Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{S} sss Control register [X0,X1,Y0,Y1,A1,B1] (see Table 12-13 on page 12-18)
{#ii} iiiii 5-bit unsigned integer [0–16] denoting the shift amount 

0 

2447

C
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Instruction Set
LSL Logical Shift Left LSL
Condition Codes

Example

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — * * * *
CCR

* N Set if bit 47 of the result is set. 
* Z Set if bits 47–24 of the result are 0.
* V Always cleared.
* C Set if the last bit shifted out of the operand is set, cleared for a shift count of 0, and 

cleared otherwise. 
√ Changed according to the standard definition.
— Unchanged by the instruction. 

23 8 7 0

LSL D Data Bus Move Field 0 0 1 1 D 0 1 1

Optional Effective Address Extension

23 16 15 8 7 0

LSL #ii,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 1 0 i i i i i D

23 16 15 8 7 0

LSL S,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 s s s D

 LSL #7, A

A1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1

4
4
7

2

A1 0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0

4
4
7

2
Shift left 7

0
C
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LSR Logical Shift Right LSR
Operation

Assembler Syntax 

LSR D (parallel move) 
LSR #ii,D 
LSR S,D

Instruction Fields

Description 

� Single-bit shift: Logically shift bits 47–24 of the destination operand D one bit to the right 
and store the result in the destination accumulator. Prior to instruction execution, bit 24 of 
D is shifted into the Carry bit (C), and a 0 is shifted into bit 47 of the destination 
accumulator D.

� Multi-bit shift: The contents of bits 47–24 of the destination accumulator D are shifted 
right #ii bits. Bits shifted out of position 16 are lost except for the last bit that is latched in 
the C bit. Zeros are supplied to the vacated positions on the left. The result is placed into 
bits 47–24 of the destination accumulator D. The number of bits to shift is determined by 
the 5-bit immediate field in the instruction, or by the unsigned integer located in the 
control register S. If a zero shift count is specified, the C bit is cleared. 

This is a 24-bit operation. The remaining bits of the destination register are not affected. The 
number of shifts should not exceed the value of 24.

{D} D Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{S} sss Control register [X0,X1,Y0,Y1,A1,B1] (see Table 12-13 on page 12-18)
{#ii} iiiii 5-bit unsigned integer [0–23] denoting the shift amount 

0
 

24

C

47
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Instruction Set
LSR Logical Shift Right LSR
Condition Codes

Example

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — * * * *

CCR

* N Set if bit 47 of the result is set. 
* Z Set if bits 47–24 of the result are 0. 
* V Always cleared. 
* C Set if the last bit shifted out of the operand is set, cleared for a shift count of zero, and 

cleared otherwise.
√ Changed according to the standard definition.
— Unchanged by the instruction. 

23 8 7 0

LSR D Data Bus Move Field 0 0 1 0 D 0 1 1

Optional Effective Address Extension

23 16 15 8 7 0

LSR #ii,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 1 1 i i i i i D

23 16 15 8 7 0

LSR S,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 1 s s s D

LSR X0,B

B1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

4
4
7

2

B1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1

4
4
7

2

x x x x x x x x x x x x x x x x x x x 0 0 0 1 1

0
2
3

SH field

X0

1

c

Shift right 3
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LUA Load Updated Address LUA

Instruction Fields

Note: RRR refers to a source address register (R[0–7]), while dddd/ddddd refers to a 
destination address register (R[0–7] or N[0–7]).

Description Load the updated address into the destination address register D. The source address 
register and the update mode used to compute the updated address are specified by the effective 
address (ea). Only the following addressing modes can be used: Post + N, Post – N, Post + 1, Post 
– 1. Note that the source address register specified in the effective address is not updated. This is 
the only case where an address register is not updated, although stated otherwise in the effective 
address mode bits. 

Condition Codes

Operation Assembler Syntax 

ea → D (No update performed) LUA ea,D

Rn + aa → D LUA (Rn + aa),D

ea → D (No update performed) LEA ea,D

Rn + aa → D LEA (Rn + aa),D

{ea} MMRRR Effective address (see Table 12-13 on page 12-18)
{D} ddddd Destination address register 

[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R[0–7],N[0–7]] (see Table 
12-16 on page 12-20)

{D} dddd Destination address register [R[0–7],N[0–7]] (see Table 12-16 
on page 12-20)

{aa} aaaaaaa 7-bit sign extended short displacement address
{Rn} RRR Source address register [R[0–7]]

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction. 
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Instruction Set
LUA Load Updated Address LUA
Instruction Formats and Opcodes

Note: LEA is a synonym for LUA. The simulator on-line disassembly translates the opcodes 
into LUA.

23 16 15 8 7 0

LUA/LEA ea,D 0 0 0 0 0 1 0 0 0 1 0 M M R R R 0 0 0 d d d d d

23 16 15 8 7 0

LUA/LEA (Rn + aa),D 0 0 0 0 0 1 0 0 0 0 a a a R R R a a a a d d d d
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MAC Signed Multiply Accumulate MAC

Instruction Formats and Opcodes 1

Instruction Fields

Instruction Formats and Opcodes 2

Instruction Fields

Description Multiply the two signed 24-bit source operands S1 and S2 (or the signed 24-bit 
source operand S by the positive 24-bit immediate operand 2-n) and add/subtract the product 
to/from the specified 56-bit destination accumulator D. The “–” sign option is used to negate the 
specified product prior to accumulation. The default sign option is “+”. 

Operation Assembler Syntax 

D ± S1 ∗ S2 → D (parallel move) MAC (±)S1,S2,D (parallel move)

D ± S1 ∗ S2 → D (parallel move) MAC (±)S2,S1,D (parallel move)

D ± (S1 ∗ 2-n) → D (no parallel move) MAC (±)S,#n,D (no parallel move)

23 16 15 8 7 0

MAC (±)S1,S2,D Data Bus Move Field 1 Q Q Q d k 1 0

MAC (±)S2,S1,D Optional Effective Address Extension

{S1,S2} QQQ Source registers S1,S2 
[X0*X0,Y0*Y0,X1*X0,Y1*Y0,X0*Y1,Y0*X0,X1*Y0,Y1*X1] (see Table 
12-16 on page 12-20)

{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{±} k Sign [+,–] (see Table 12-16 on page 12-20)

23 16 15 8 7 0

MAC  (±)S,#n,D 0 0 0 0 0 0 0 1 0 0 0 0 s s s s 1 1 Q Q d k 1 0

{S} QQ Source register [Y1,X0,Y0,X1] (see Table 12-16 on page 12-20)
{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{±} k Sign [+,–] (see Table 12-16 on page 12-20)
{#n} ssss Immediate operand (see Table 12-16 on page 12-20)
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Instruction Set
MAC Signed Multiply Accumulate MAC

Note that when the processor is in the Double Precision Multiply mode, the following 
instructions do not execute in the normal way and should only be used as part of the double 
precision multiply algorithm:

MAC X1,Y0,AMAC X1,Y0,B

MAC X0,Y1,AMAC X0,Y1,B

MAC Y1,X1,AMAC Y1,X1,B

Condition Codes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition. 
— Unchanged by the instruction. 
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MACI MACI 
 Signed Multiply Accumulate With Immediate Operand

Instruction Fields

Description Multiply the two signed 24-bit source operands #xxxx and S and add/subtract the 
product to/from the specified 56-bit destination accumulator D. The “–” sign option is used to 
negate the specified product prior to accumulation. The default sign option is “+”.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

D ±#xxxx∗S → D MACI (±)#xxxx,S,D

{S} qq Source register [X0,Y0,X1,Y1] (see Table 12-16 on page 12-20)
{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{±} k Sign [+,–] (see Table 12-16 on page 12-20)
#xxxxxx 24-bit Immediate Long Data extension word

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0

MACI (±)#xxxx,S,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 q q d k 1 0

Immediate Data Extension
DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-101



Instruction Set
MAC(su,uu) MAC(su,uu) 
Mixed Multiply Accumulate

Instruction Fields

Description Multiply the two 24-bit source operands S1 and S2 and add/subtract the product 
to/from the specified 56-bit destination accumulator D. One or two of the source operands can be 
unsigned. The “–” sign option is used to negate the specified product prior to accumulation. The 
default sign option is “+”.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

D ± S1 ∗ S2 → D (S1 unsigned, S2 unsigned) MACuu (±)S1,S2,D (no parallel move)

D ± S1 ∗ S2 → D (S1 signed, S2 unsigned) MACsu (±)S2,S1,D (no parallel move)

{S1,S2} QQQQ Source registers S1,S2 [all combinations of X0,X1,Y0 and Y1] 
(see Table 12-16 on page 12-20)

{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{±} k Sign [+,–] (see Table 12-16 on page 12-20)
{s} [ss,us] (see Table 12-16 on page 12-20)

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition. 
— Unchanged by the instruction. 

MACsu (±)S1,S2,D 23 16 15 8 7 0

MACuu (±)S1,S2,D 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 s d k Q Q Q Q
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MACR Signed Multiply Accumulate and Round MACR

Instruction Formats and Opcodes 1

Instruction Fields

Instruction Formats and Opcodes 2

Instruction Fields

Description Multiply the two signed 24-bit source operands S1 and S2 (or the signed 24-bit 
source operand S by the positive 24-bit immediate operand 2-n), add/subtract the product to/from 
the specified 56-bit destination accumulator D, and round the result using either convergent or 
two’s-complement rounding. The rounded result is stored in destination accumulator D. The “–” 
sign option negates the specified product prior to accumulation. The default sign option is “+.” 
The LSB of the result is rounded into the upper portion of the destination accumulator. Once 
rounding is complete, the LSBs of 

Operation Assembler Syntax 

D ± S1 ∗ S2 + r → D (parallel move) MACR (±)S1,S2,D (parallel move)

D ± S1 ∗ S2 + r → D (parallel move) MACR (±)S2,S1,D (parallel move)

D ± (S1 ∗ 2-n) + r → D (no parallel move) MACR (±)S,#n,D (no parallel move)

23 16 15 8 7 0

MACR (±)S1,S2,D Data Bus Move Field 1 Q Q Q d k 1 1

MACR (±)S2,S1,D Optional Effective Address Extension

{S1,S2} QQQ Source registers S1,S2 
[X0*X0,Y0*Y0,X1*X0,Y1*Y0,X0*Y1,Y0*X0,X1*Y0,Y1*X1] (see Table 
12-16 on page 12-20)

{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{±} k Sign [+,–] (see Table 12-16 on page 12-20)

23 16 15 8 7 0

MACR  (±)S,#n,D 0 0 0 0 0 0 0 1 0 0 0 0 3 s s s 1 1 Q Q d k 1 1

{S} QQ Source register [Y1,X0,Y0,X1] (see Table 12-16 on page 12-20)
{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{±} k Sign [+,–] (see Table 12-16 on page 12-20)
{#n} ssss Immediate operand (see Table 12-16 on page 12-20)
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Instruction Set
MACR Signed Multiply Accumulate and Round MACR

destination accumulator D are loaded with zeros to maintain an unbiased accumulator value that 
the next instruction can reuse. The upper portion of the accumulator contains the rounded result 
that can be read out to the data buses. Refer to the RND instruction for details on the rounding 
process.

Condition Codes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.
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MACRI MACRI 
Signed MAC and Round With Immediate Operand

Instruction Fields

Description Multiply the two signed 24-bit source operands #xxxx and S, add/subtract the 
product to/from the specified 56-bit destination accumulator D, and then round the result using 
either convergent or two’s-complement rounding. The rounded result is stored in the destination 
accumulator D. The “–” sign option negates the specified product prior to accumulation. The 
default sign option is “+”. The contribution of the LSBs of the result is rounded into the upper 
portion of the destination accumulator. Once rounding is complete, the LSBs of the destination 
accumulator D are loaded with 0s to maintain an unbiased accumulator value that the next 
instruction can reuse. The upper portion of the accumulator contains the rounded result that can 
be read out to the data buses. Refer to the RND instruction for details on the rounding process.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

D ± #xxxxxx ∗ S → D MACRI (±)#xxxxxx,S,D

{S} qq Source register [X0,Y0,X1,Y1] (see Table 12-16 on page 12-20)
{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{±} k Sign [+,-] (see Table 12-16 on page 12-20)
#xxxx 24-bit Immediate Long Data extension word

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0

MACRI (±)#xxxx,S,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 q q d k 1 1

Immediate Data Extension
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Instruction Set
MAX  Transfer by Signed Value MAX

Description Subtract the signed value of the source accumulator from the signed value of the 
destination accumulator. If the difference is negative or 0, (A ≥ B) then transfer the source 
accumulator to destination accumulator. Otherwise, do not change the destination accumulator. 
This is a 56-bit operation. Notice that the Carry (C) bit signifies a transfer has been performed.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

If B – A ≤ 0 then A → B MAX  A,B (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — *

CCR

* C Cleared if the conditional transfer is performed, and set otherwise.
√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0

MAX A, B Data Bus Move Field 0 0 0 1 1 1 0 1

Optional Effective Address Extension
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MAXM  Transfer by Magnitude MAXM

Description Subtract the absolute value (magnitude) of the source accumulator from the absolute 
value of the destination accumulator. If the difference is negative or 0  
(|A| ≥ |B|), then transfer the source accumulator to the destination accumulator. Otherwise, do not 
change the destination accumulator. This is a 56-bit operation. Notice that the Carry bit (C) 
signifies a transfer has been performed.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

If |B| – |A| ≤ 0 then A → B MAXM  A,B (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — *
CCR

* C Cleared if the conditional transfer is performed, and set otherwise.
√ Changed according to the standard definition. 
— Unchanged by the instruction. 

23 16 15 8 7 0

MAXM A, B Data Bus Move Field 0 0 0 1 0 1 0 1

Optional Effective Address Extension
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Instruction Set
MERGE  Merge Two Half Words MERGE

Instruction Fields

Description The contents of bits 11–0 of the source register are concatenated to the contents of 
bits 35–24 of the destination accumulator. The result is stored in the destination accumulator. 
This instruction is a 24-bit operation. The remaining bits of the destination accumulator D are not 
affected.

Note:

1. MERGE can be used in conjunction with EXTRACT or INSERT instructions to 
concatenate width and offset fields into a control word.

2. In Sixteen-bit Arithmetic mode, the contents of bits 15–8 of the source register are 
concatenated with the contents of bits 39–32 of the destination accumulator. The result 
is placed in bits 47–32 of the destination accumulator.

Condition Codes

Operation Assembler Syntax 

{S[7–0],D[35–24]} → D[47–24] MERGE S,D

{D} D Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{S} SSS Source register [X0,X1,Y0,Y1,A1,B1] (see Table 12-16 on page 12-20)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — * * * —

CCR

* N Set if bit 47 of the result is set. 
* Z Set if bits 47–24 of the result are 0. 
* V Always cleared. 
— Unchanged by the instruction. 
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MERGE  Merge Two Half Words MERGE
Example

Instruction Formats and Opcodes

23 16 15 8 7 0

MERGE S,D 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 1 1 0 0 0 S S S D

 MERGE X0,B

X0 x x x x x x x x x x x x 1 0 1 0 1 0 1 0 0 0 1 0

0
2
3

B1 x x x x x x x x x x x x 1 0 0 0 1 0 0 0 0 0 1 1

4
4
7

2

B1 1 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 1

4
4
7

2
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Instruction Set
MOVE  Move Data MOVE

The DSP56300 (family) core provides a set of MOVE instructions. Table 2 lists these 
instructions, which are fully described in the following pages.

Table 13-2.   Move Instructions 

Instruction Description Page

MOVE Move Data page 13-111

No Parallel Data Move page 13-112

I Immediate Short Data Move page 13-113

R Register-to-Register Data Move page 13-115

U Address Register Update page 13-117

X: X Memory Data Move page 13-118

X:R X Memory and Register Data Move page 13-120

Y Y Memory Data Move page 13-122

R:Y Register and Y Memory Data Move page 13-124

L: Long Memory Data Move page 13-126

X:Y: X Y Memory Data Move page 13-128
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MOVE   Move Data MOVE

Description Move the contents of the specified data source S to the specified destination D. This 
instruction is equivalent to a Data ALU NOP with a parallel data move.

Condition Codes

Instruction Formats and Opcodes

Instruction Fields None 
 
Parallel Move Description Thirty of the sixty-two instructions allow an optional parallel data bus 
movement over the X and/or Y data bus. This allows a Data ALU operation to be executed in 
parallel with up to two data bus moves during the instruction cycle. Ten types of parallel moves 
are permitted, including register-to-register moves, register-to-memory moves, and 
memory-to-register moves. However, not all addressing modes are allowed for each type of 
memory reference. The following section contains detailed descriptions about each type of 
parallel move operation.

Operation Assembler Syntax 

S → D MOVE S,D

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition. 
— Unchanged by the instruction. 

23 16 15 8 7 0

MOVE S,D Data Bus Move Field 0 0 0 0 0 0 0 0

Optional Effective Address Extension
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Instruction Set
 No Parallel Data Move  

where ( . . . ) refers to any arithmetic or logical instruction that allows parallel moves

Description Many instructions in the instruction set allow parallel moves. The parallel moves 
have been divided into ten opcode categories. This category is a parallel move NOP and does not 
involve data bus move activity.

Condition Codes

Instruction Formats and Opcodes

Instruction Format  (defined by instruction)

Operation Assembler Syntax 

(. . .) (. . .)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0

(. . .) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Instruction opcode
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I  Immediate Short Data Move I

where ( . . . ) refers to any arithmetic or logical instruction that allows parallel moves

Instruction Fields

Description Move the 8-bit immediate data value (#xx) into the destination operand D. If the 
destination register D is A0, A1, A2, B0, B1, B2, R[0–7], or N]0–7], the 8-bit immediate short 
operand is interpreted as an unsigned integer and is stored in the specified destination register. 
That is, the 8-bit data is stored in the eight LSBs of the destination operand and the remaining bits 
of the destination operand D are zeroed. If the destination register D is X0, X1, Y0, Y1, A, or B, 
the 8-bit immediate short operand is interpreted as a signed fraction and is stored in the specified 
destination register. That is, the 8-bit data is stored in the eight MSBs of the destination operand 
and the remaining bits of the destination operand D are zeroed.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given destination 
accumulator, that same accumulator or portion of that accumulator cannot be specified as a 
destination D in the parallel data bus move operation. Thus, if the opcode-operand portion of the 
instruction specifies the 56-bit A accumulator as its destination, the parallel data bus move 
portion of the instruction cannot specify A0, A1, A2, or A as its destination D. Similarly, if the 
opcode-operand portion of the instruction specifies the 56-bit B accumulator as its destination, 
the parallel data bus move portion of the instruction cannot specify B0, B1, B2, or B as its 
destination D. That is, duplicate destinations are not allowed within the same instruction.

Condition Codes

Operation Assembler Syntax 

( . . . ), #xx → D ( . . . ) #xx,D

{#xx} iiiiiiii 8-bit Immediate Short Data
{D} ddddd Destination register 

[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R[0 – 7],N[0–7]] (see Table 12-13 
on page 12-18)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.
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Instruction Set
I  Immediate Short Data Move I
Instruction Formats and Opcodes

23 16 15 8 7 0

( . . . ) #xx,D 0 0 1 d d d d d i i i i i i i i Instruction opcode
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R   Register-to-Register Data Move R

where ( . . . ) refers to any arithmetic or logical instruction that allows parallel moves.

Instruction Fields

Description Move the source register S to the destination register D. If the arithmetic or logical 
opcode-operand portion of the instruction specifies a given destination accumulator, that same 
accumulator or portion of that accumulator cannot be specified as a destination D in the parallel 
data bus move operation. Thus, if the opcode-operand portion of the instruction specifies the 
56-bit A accumulator as its destination, the parallel data bus move portion of the instruction 
cannot specify A0, A1, A2, or A as its destination D. Similarly, if the opcode-operand portion of 
the instruction specifies the 56-bit B accumulator as its destination, the parallel data bus move 
portion of the instruction cannot specify B0, B1, B2, or B as its destination D. That is, duplicate 
destinations are not allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or destination register, 
that same register or portion of that register can be used as a source S in the parallel data bus 
move operation. This allows data to be moved in the same instruction in which a Data ALU 
operation is using it as a source operand. That is, duplicate sources are allowed within the same 
instruction. Note that the MOVE A,B operation results in a 24-bit positive or negative saturation 
constant being stored in the B1 portion of the B accumulator if the signed integer portion of the A 
accumulator is in use.

Operation Assembler Syntax 

( . . . ); S → D ( . . . ) S,D

{S} eeeee Source register [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R[0–7], 
N[0 – 7] (see Table 12-16 on page 12-20)

{D} ddddd Destination register [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B, 
R[0 – 7],N[0–7]] (see Table 12-13 on page 12-18)
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Instruction Set
R  Register-to-Register Data Move R
Condition Codes

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition. 
— Unchanged by the instruction. 

23 16 15 8 7 0

( . . . ) S,D 0 0 1 0 0 0 e e e e e d d d d d Instruction opcode
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U  Address Register Update U

where ( . . . ) refers to any arithmetic or logical instruction that allows parallel moves

Instruction Fields

Description Update the specified address register according to the specified effective addressing 
mode. All update addressing modes can be used.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

( . . . ); ea → Rn ( . . . ) ea

{ea} MMRRR Effective Address (see Table 12-13 on page 12-18)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction. 

23 16 15 8 7 0

( . . . ) ea 0 0 1 0 0 0 0 0 0 1 0 M M R R R Instruction opcode
DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-117



Instruction Set
X:  X Memory Data Move X:

where ( . . . ) refers to any arithmetic or logical instruction that allows parallel moves.

Instruction Formats and Opcodes 1

Instruction Fields

Instruction Formats and Opcodes 2

Operation Assembler Syntax 

( . . . ); X:ea → D ( . . . ) X:ea,D

( . . . ); X:aa → D ( . . . ) X:aa,D

( . . . ); S → X:ea ( . . . ) S,X:ea

( . . . ); S → X:aa ( . . . ) S,X:aa

X:(Rn + xxx) → D MOVE X:(Rn + xxx),D

X:(Rn + xxxx) → D MOVE X:(Rn + xxxx),D

D → X:(Rn + xxx) MOVE D,X:(Rn + xxx)

D → X:(Rn + xxxx) MOVE D,X:(Rn + xxxx) 

( . . . ) X:ea,D 23 16 15 8 7 0

( . . . ) S,X:ea 0 1 d d 0 d d d W 1 M M M R R R Instruction opcode

( . . . ) #xxxxxx,D Optional Effective Address Extension

( . . . ) X:aa,D 23 16 15 8 7 0

( . . . ) S,X:aa 0 1 d d 0 d d d W 0 a a a a a a Instruction opcode

{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)
W Read S / Write D bit (see Table 12-16 on page 12-20)

{S,D} ddddd Source/Destination registers 
[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R[0–7],N[0 – 7]] (see Table 
12-13 on page 12-18)

{aa} aaaaaa 6-bit Absolute Short Address

23 16 15 8 7 0

MOVE X:(Rn + xxxx),D 0 0 0 0 1 0 1 0 0 1 1 1 0 R R R 1 W D D D D D D

MOVE S,X:(Rn + xxxx) Rn Relative Displacement

MOVE X:(Rn + xxx),D 23 16 15 8 7 0

MOVE S,X:(Rn + xxx) 0 0 0 0 0 0 1 a a a a a a R R R 1 a 0 W D D D D
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X:  X Memory Data Move X:
Instruction Fields

Description Move the specified word operand from/to X memory. All memory addressing modes 
can be used, including absolute addressing and 24-bit immediate data. Absolute short addressing 
can also be used. If the arithmetic or logical opcode-operand portion of the instruction specifies a 
given destination accumulator, that same accumulator or portion of that accumulator cannot be 
specified as a destination D in the parallel data bus move operation. Thus, if the opcode-operand 
portion of the instruction specifies the 56-bit A accumulator as its destination, the parallel data 
bus move portion of the instruction cannot specify A0, A1, A2, or A as its destination D. 
Similarly, if the opcode-operand portion of the instruction specifies the 56-bit B accumulator as 
its destination, the parallel data bus move portion of the instruction cannot specify B0, B1, B2, or 
B as its destination D. That is, duplicate destinations are not allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or destination register, 
that same register or portion of that register can be used as a source S in the parallel data bus 
move operation. This allows data to be moved in the same instruction in which it is being used as 
a source operand by a Data ALU operation. That is, duplicate sources are allowed within the 
same instruction. As a result of the MOVE A,X:ea operation, a 24-bit positive or negative 
saturation constant is stored in the specified 24-bit X memory location if the signed integer 
portion of the A accumulator is in use.

Condition Codes

W Read S / Write D bit (see Table 12-16 on page 12-20)
{xxx} aaaaaaa 7-bit sign extended Short Displacement Address
{Rn} RRR Address register (R[0–7])
{D} DDDD Source/Destination registers [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B] 

(see Table 12-16 on page 12-20)
{S,D} DDDDDD Source/Destination registers [all on-chip registers] (see Table 12-13 

on page 12-18)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition. 
— Unchanged by the instruction. 
DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-119



Instruction Set
X:R   X Memory and Register Data Move X:R

where ( . . . ) refers to any arithmetic or logical instruction that allows parallel moves 

Class I Instruction Formats and Opcodes

Instruction Fields

Class II Instruction Formats and Opcodes

Instruction Fields

Operation Assembler Syntax 

Class I
( . . . ); X:ea → D1; S2 → D2 ( . . . ) X:ea,D1 S2,D2

( . . . ); S1 → X:ea; S2 → D2 ( . . . ) S1,X:ea S2,D2

( . . . ); #xxxxxx → D1; S2 → D2 ( . . . ) #xxxxxx,D1 S2,D2

Class II
( . . . ); A → X:ea; X0 → A ( . . . ) A,X:ea X0,A

( . . . ); B → X:ea; X0 → B ( . . . ) B,X:ea X0,B

( . . . ) X:ea,D1 S2,D2 23 16 15 8 7 0

( . . . ) S1,X:ea S2, D2 0 0 0 1 f f d F W 0 M M M R R R Instruction opcode

( . . . ) #xxxx,D1 S2,D2 Optional Effective Address Extension

{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)
W Read S1/Write D1 bit (see Table 12-16 on page 12-20)

{S1,D1} ff S1/D1 register [X0,X1,A,B] (see Table 12-16 on page 12-20)
{S2} d S2 accumulator [A,B] (see Table 12-13 on page 12-18)
{D2} F D2 input register [Y0,Y1] (see Table 12-16 on page 12-20)

23 16 15 8 7 0

( . . . ) A → X:ea X0 → A 0 0 0 0 1 0 0 d 0 0 M M M R R R Instruction opcode

( . . . ) B → X:ea X0 → B Optional Effective Address Extension

{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)
d Move opcode (see Table 12-16 on page 12-20)
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X:R  X Memory and Register Data Move X:R
Description 

� Class I: Move a one-word operand from/to X memory and move another word operand 
from an accumulator (S2) to an input register (D2). All memory addressing modes, 
including absolute addressing and 24-bit immediate data, can be used. The 
register-to-register move (S2,D2) allows a Data ALU accumulator to be moved to a Data 
ALU input register for use as a Data ALU operand in the following instruction.

� Class II: Move one-word operand from a Data ALU accumulator to X memory and 
one-word operand from Data ALU register X0 to a Data ALU accumulator. One effective 
address is specified. All memory addressing modes except long absolute addressing and 
long immediate data can be used.

For both Class I and Class II X:R parallel data moves, if the arithmetic or logical opcode-operand 
portion of the instruction specifies a given destination accumulator, that same accumulator or 
portion of that accumulator cannot be specified as a destination D1 in the parallel data bus move 
operation. Thus, if the opcode-operand portion of the instruction specifies the 40-bit A 
accumulator as its destination, the parallel data bus move portion of the instruction cannot specify 
A0, A1, A2, or A as its destination D1. Similarly, if the opcode-operand portion of the instruction 
specifies the 56-bit B accumulator as its destination, the parallel data bus move portion of the 
instruction cannot specify B0, B1, B2, or B as its destination D1. That is, duplicate destinations 
are not allowed within the same instruction. If the opcode-operand portion of the instruction 
specifies a given source or destination register, that same register or portion of that register can be 
used as a source S1 and/or S2 in the parallel data bus move operation. This allows data to be 
moved in the same instruction in which a Data ALU operation is using it as a source operand. 
That is, duplicate sources are allowed within the same instruction—S1 and S2 can specify the 
same register.

Condition Codes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.
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Instruction Set
Y Y Memory Data Move Y

where ( . . . ) refers to any arithmetic or logical instruction that allows parallel moves 

Instruction Formats and Opcodes 1

Instruction Fields

Instruction Formats and Opcodes 2 

Operation Assembler Syntax 

( . . . ); Y:ea → D ( . . . ) Y:ea,D

( . . . ); Y:aa → D ( . . . ) Y:aa,D

( . . . ); S → Y:ea ( . . . ) S,Y:ea

( . . . ); S → Y:aa ( . . . ) S,Y:aa

Y:(Rn + xxx) → D MOVE Y:(Rn + xxx),D

Y:(Rn + xxxx) → D MOVE Y:(Rn + xxxx),D

D → Y:(Rn + xxx) MOVE D,Y:(Rn + xxx)

D → Y:(Rn + xxxx) MOVE D,Y:(Rn + xxxx) 

( . . . ) Y:ea,D 23 16 15 8 7 0

( . . . ) S,Y:ea 0 1 d d 1 d d d W 1 M M M R R R Instruction opcode

( . . . ) #xxxx,D Optional Effective Address Extension

( . . . ) Y:aa,D 23 16 15 8 7 0

( . . . ) S,Y:aa 0 1 d d 1 d d d W 0 a a a a a a Instruction opcode

{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)
W Read S/Write D bit (see Table 12-16 on page 12-20)

{S,D} ddddd Source/Destination registers 
[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R[0–7],N[0 – 7]] (see Table 
12-13 on page 12-18)

{aa} aaaaaa Absolute Short Address

23 16 15 8 7 0

MOVE Y:(Rn + xxxx),D 0 0 0 0 1 0 1 1 0 1 1 1 0 R R R 1 W D D D D D D

MOVE D,Y:(Rn + xxxx) Rn Relative Displacement

MOVE Y:(Rn + xxx),D 23 16 15 8 7 0

MOVE D,Y:(Rn + xxx) 0 0 0 0 0 0 1 a a a a a a R R R 1 a 1 W D D D D
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Y  Y Memory Data Move Y
Instruction Fields

Description Move the specified word operand from/to Y memory. All memory addressing 
modes can be used, including absolute addressing, absolute short addressing, and 24-bit 
immediate data. If the arithmetic or logical opcode-operand portion of the instruction specifies a 
given destination accumulator, that same accumulator or portion of that accumulator cannot be 
specified as a destination D in the parallel data bus move operation. Thus, if the opcode-operand 
portion of the instruction specifies the 56-bit A accumulator as its destination, the parallel data 
bus move portion of the instruction cannot specify A0, A1, A2, or A as its destination D. 
Similarly, if the opcode-operand portion of the instruction specifies the 56-bit B accumulator as 
its destination, the parallel data bus move portion of the instruction cannot specify B0, B1, B2, or 
B as its destination D. That is, duplicate destinations are not allowed within the same instruction. 
If the opcode-operand portion of the instruction specifies a given source or destination register, 
that same register or portion of that register can be used as a source S in the parallel data bus 
move operation. This allows data to be moved in the same instruction in which a Data ALU 
operation is using it as a source operand. That is, duplicate sources are allowed within the same 
instruction. As a result of the MOVE A,Y:ea operation, a 24-bit positive or negative saturation 
constant is stored in the specified 24-bit Y memory location if the signed integer portion of the A 
accumulator is in use.

Condition Codes

W Read S/Write D bit (see Table 12-16 on page 12-20)
{xxx} aaaaaaa 7-bit sign extended Short Displacement Address
{Rn} RRR Address register (R[0–7])
{D} DDDD Source/Destination registers [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B] 

(see Table 12-16 on page 12-20)
{S,D} DDDDDD Source/Destination registers [all on-chip registers] (see Table 12-13 

on page 12-18)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition. 
— Unchanged by the instruction. 
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Instruction Set
R:Y  Register and Y Memory Data Move R:Y

where ( . . . ) refers to any arithmetic or logical instruction that allows parallel moves 

Class I Instruction Formats and Opcodes

Instruction Fields 

Class II Instruction Formats and Opcodes 

Instruction Fields

Operation Assembler Syntax 

Class I
( . . . ); S1 → D1; Y:ea → D2 ( . . . ) S1,D1 Y:ea,D2

( . . . ); S1 → D1; S2 → Y:ea ( . . . ) S1,D1 S2,Y:ea

( . . . ); S1 → D1; #xxxxxx → D2 ( . . . ) S1,D1 #xxxxxx,D2

Class II
( . . . ); Y0 → A; A → Y:ea ( . . . ) Y0,A A,Y:ea

( . . . ); Y0 → B; B → Y:ea ( . . . ) Y0,B B,Y:ea

( . . . ) S1,D1 Y:ea,D2 23 16 15 8 7 0

( . . . ) S1,D1 S2,Y:ea 0 0 0 1 d e f f W 1 M M M R R R Instruction opcode

( . . . ) S1,D1 #xxxx,D2 Optional Effective Address Extension

{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)
W Read S2/Write D2 bit (see Table 12-16 on page 12-20)

{S1} d S1 accumulator [A,B] (see Table 12-16 on page 12-20)
{D1} e D1 input register [X0,X1] (see Table 12-16 on page 12-20)
{S2,D2} ff S2/D2 register [Y0,Y1,A,B] (see Table 12-16 on page 12-20)

23 16 15 8 7 0

( . . . ) Y0 → A A → Y:ea 0 0 0 0 1 0 0 d 1 0 M M M R R R Instruction opcode

( . . . ) Y0 → B B → Y:ea Optional Effective Address Extension

MMMRRR ea = 6-bit Effective Address (see Table 12-13 on page 12-18)
d Move opcode (see Table 12-16 on page 12-20)
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R:Y  Register and Y Memory Data Move R:Y

Description 

� Class I: Move a one-word operand from an accumulator (S1) to an input register (D1) and 
move another word operand from/to Y memory. All memory addressing modes, including 
absolute addressing and 16-bit immediate data, can be used. The register to register move 
(S1,D1) allows a Data ALU accumulator to be moved to a Data ALU input register for use 
as a Data ALU operand in the following instruction.

� Class II: Move a one-word operand from a Data ALU accumulator to Y memory and a 
one-word operand from Data ALU register Y0 to a Data ALU accumulator. One effective 
address is specified. All memory addressing modes, excluding long absolute addressing 
and long immediate data, can be used.

For both Class I and Class II R:Y parallel data moves, if the arithmetic or logical opcode-operand 
portion of the instruction specifies a given destination accumulator, that same accumulator or 
portion of that accumulator cannot be specified as a destination D2 in the parallel data bus move 
operation. Thus, if the opcode-operand portion of the instruction specifies the 56-bit A 
accumulator as its destination, the parallel data bus move portion of the instruction cannot specify 
A0, A1, A2, or A as its destination D2. Similarly, if the opcode-operand portion of the instruction 
specifies the 56-bit B accumulator as its destination, the parallel data bus move portion of the 
instruction cannot specify B0, B1, B2, or B as its destination D2. That is, duplicate destinations 
are not allowed within the same instruction. If the opcode-operand portion of the instruction 
specifies a given source or destination register, that same register or portion of that register can be 
used as a source S1 and/or S2 in the parallel data bus move operation. This allows data to be 
moved in the same instruction in which it is being used as a source operand by a Data ALU 
operation. That is, duplicate sources are allowed within the same instruction. Note that S1 and S2 
can specify the same register.

Condition Codes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.
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Instruction Set
L:   Long Memory Data Move L:

where ( . . . ) refers to any arithmetic or logical instruction that allows parallel moves 

Instruction Fields

Description Move one 48-bit long-word operand from/to X and Y memory. Two Data ALU 
registers are concatenated to form the 48-bit long-word operand. This allows efficient moving of 
both double-precision (high:low) and complex (real:imaginary) data from/to one effective 
address in L (X:Y) memory. The same effective address is used for both the X and Y memory 
spaces; thus, only one effective address is required. Note that the A, B, A10, and B10 operands 
reference a single 48-bit signed (double-precision) quantity while the X, Y, AB, and BA 
operands reference two separate (that is, real and imaginary) 24-bit signed quantities. All 
memory alterable addressing modes can be used. Absolute short addressing can also be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given destination 
accumulator, that same accumulator or portion of that accumulator cannot be specified as a 
destination D in the parallel data bus move operation. Thus, if the opcode-operand portion of the 
instruction specifies the 56-bit A accumulator as its destination, the parallel data bus move 
portion of the instruction cannot specify A, A10, AB, or BA as destination D. Similarly, if the 
opcode-operand portion of the instruction specifies the 56-bit B accumulator as its destination, 
the parallel data bus move portion of the instruction cannot specify B, B10, AB, or BA as its 
destination D. That is, duplicate destinations are not allowed within the same instruction. If the 
opcode-operand portion of the instruction specifies a given source or destination register, that 
same register or portion of that register can be used as a source S in the parallel data bus move 
operation. This allows data to be moved in the same instruction in which it is being used as a 
source operand by a Data ALU operation. That is, duplicate sources are allowed within the same 

Operation Assembler Syntax 

( . . . ); X:ea → D1; Y:ea → D2 ( . . . ) L:ea,D

( . . . ); X:aa → D1; Y:aa → D2 ( . . . ) L:aa,D

( . . . ); S1 → X:ea; S2 → Y:ea ( . . . ) S,L:ea

( . . . ); S1 → X:aa; S2 → Y:aa ( . . . ) S,L:aa

{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)
W Read S/Write D bit (see Table 12-16 on page 12-20)

{L} LLL Two Data ALU registers (see Table 12-16 on page 12-20)
{aa} aaaaaa Absolute Short Address (see Table 12-16 on page 12-20)
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L:  Long Memory Data Move L:

instruction. Note that the operands A10, B10, X, Y, AB, and BA can be used only for a 32-bit 
long memory move as previously described. These operands cannot be used in any other type of 
instruction or parallel move.

Condition Codes

As a result of the MOVE A,L:ea operation, a 48-bit positive or negative saturation constant is 
stored in the specified 24-bit X and Y memory locations if the signed integer portion of the A 
accumulator is in use. As a result of the MOVE AB,L:ea operation, either one or two 24-bit 
positive and/or negative saturation constant(s) are stored in the specified 24-bit X and/or Y 
memory location(s) if the signed integer portion of the A and/or B accumulator(s) is in use.

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0

( . . . ) L:ea,D 0 1 0 0 L 0 L L W 1 M M M R R R Instruction opcode

( . . . ) S,L:ea Optional Effective Address Extension

( . . . ) L:aa,D 23 16 15 8 7 0

( . . . ) S,L:aa 0 1 0 0 L 0 L L W 0 a a a a a a Instruction opcode
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Instruction Set
X:Y:  XY Memory Data Move X:Y: 

where ( . . . ) refers to any arithmetic or logical instruction that allows parallel moves 

Instruction Fields

Description Move a one-word operand from/to X memory and move another word operand 
from/to Y memory. Note that two independent effective addresses are specified (<eax> and 
<eay>) where one of the effective addresses uses the lower bank of address registers (R[0–3]) 
while the other effective address uses the upper bank of address registers (R[4–7]). All parallel 
addressing modes can be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given destination 
accumulator, that same accumulator or portion of that accumulator cannot be specified as a 
destination D1 or D2 in the parallel data bus move operation. Thus, if the opcode-operand portion 
of the instruction specifies the 56-bit A accumulator as its destination, the parallel data bus move 
portion of the instruction cannot specify A as its destination D1 or D2. Similarly, if the 
opcode-operand portion of the instruction specifies the 56-bit B accumulator as its destination, 
the parallel data bus move portion of the instruction cannot specify B as its destination D1 or D2. 
That is, duplicate destinations are not allowed within the same instruction. D1 and D2 cannot 
specify the same register.

Operation Assembler Syntax 

( . . . ); X:<eax> → D1; Y:<eay> → D2 ( . . . ) X:<eax>,D1 Y:<eay>,D2

( . . . ); X:<eax> → D1; S2 → Y:<eay> ( . . . ) X:<eax>,D1 S2,Y:<eay>

( . . . ); S1 → X:<eax>; Y:<eay> → D2 ( . . . ) S1,X:<eax> Y:<eay>,D2

( . . . ); S1 → X:<eax>; S2 → Y:<eay> ( . . . ) S1,X:<eax> S2,Y:<eay>

{<eax>} MMRRR 5-bit X Effective Address (R[0–3] or R[4–7])
{<eay>} mmrr 4-bit Y Effective Address (R[4–7] or R[0–3])
{S1,D1} ee S1/D1 register [X0,X1,A,B]
{S2,D2} ff S2/D2 register [Y0,Y1,A,B]

MMRRR,mmrr,ee,ff (see Table 12-16 on page 12-20)
W X move Operation Control (see Table 12-16 on page 12-20)
w Y move Operation Control (see Table 12-16 on page 12-20)
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X:Y:  XY Memory Data Move X:Y: 

If the instruction specifies an access to an internal X I/O and internal Y I/O modules (reflected by 
the address of the X memory and the Y memory), only the access to the internal X I/O module is 
executed. The access to the Y I/O module is discarded.

If the opcode-operand portion of the instruction specifies a given source or destination register, 
that same register or portion of that register can be used as a source S1 and/or S2 in the parallel 
data bus move operation. This allows data to be moved in the same instruction in which it is 
being used as a source operand by a Data ALU operation. That is, duplicate sources are allowed 
within the same instruction. Note that S1 and S2 can specify the same register.

Condition Codes

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

( . . . ) X:<eax>,D1 Y:<eay>,D2

( . . . ) X:<eax>,D1 S2,Y:<eay>

( . . . ) S1,X:<eax> Y:<eay>,D2 23 16 15 8 7 0

( . . . ) S1,X:<eax> S2,Y:<eay> 1 w m m e e f f W r r M M R R R Instruction opcode
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Instruction Set
MOVEC   Move Control Register MOVEC

Instruction Fields

Description Move the contents of the specified source control register S1 or S2 to the specified 
destination, or move the specified source to the specified destination control register D1 or D2. 
The control registers S1 and D1 are a subset of the S2 and D2 register set and consist of the 
Address ALU modifier registers and the program controller registers. These registers can be 
moved to or from any other register or memory space. All memory addressing modes, as well as 
an Immediate Short Addressing mode, can be used.

If the System Stack register SSH is specified as a source operand, the Stack Pointer (SP) is 
post-decremented by 1 after SSH has been read. If SSH is specified as a destination operand, the 
SP is preincremented by 1 before SSH is written. This allows the system stack to be efficiently 
extended using software stack pointer operations. 

Operation Assembler Syntax 

[X or Y]:ea → D1 MOVE(C) [X or Y]:ea,D1

[X or Y]:aa → D1 MOVE(C) [X or Y]:aa,D1

S1 → [X or Y]:ea MOVE(C) S1,[X or Y]:ea

S1 → [X or Y]:aa MOVE(C) S1,[X or Y]:aa

S1 → D2 MOVE(C) S1,D2

S2 → D1 MOVE(C) S2,D1

#xxxx → D1 MOVE(C) #xxxx,D1

#xx → D1 MOVE(C) #xx,D1

{ea} MMMRR Effective Address (see Table 12-13 on page 12-18)
W Read S/Write D bit (see Table 12-16 on page 12-20)

{X/Y} S Memory Space [X,Y] (see Table 12-13 on page 12-18)
{S1,D1} ddddd Program Controller register [M[0–7], VBA, SR, OMR, SP, 

SSH,SSL,LA,LC] (see Table 12-16 on page 12-20)
{aa} aaaaaa aa = 6-bit Absolute Short Address
{S2,D2} eeeeee S2/D2 register [all on-chip registers] (see Table 12-16 on page 12-20)
{#xx} iiiiiiii #xx = 8-bit Immediate Short Data
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MOVEC  Move Control Register MOVEC
Condition Codes

 

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

* * * * * * * *
CCR

For D1 or D2 = SR operand:
* S Set according to bit 7 of the source operand.
* L Set according to bit 6 of the source operand.
* E Set according to bit 5 of the source operand.
* U Set according to bit 4 of the source operand.
* N Set according to bit 3 of the source operand.
* Z Set according to bit 2 of the source operand.
* V Set according to bit 1 of the source operand.
* C Set according to bit 0 of the source operand. 
For D1 and D2 ≠ SR operand:
* S Set if data growth is detected. 
* L Set if data limiting occurred during the move. 

MOVE(C) [X or Y]:ea,D1 23 16 15 8 7 0

MOVE(C) S1,[X or Y]:ea 0 0 0 0 0 1 0 1 W 1 M M M R R R O S 1 d d d d d

MOVE(C) #xxxx,D1 Optional Effective Address Extension

MOVE(C) [X or Y]:aa,D1 23 16 15 8 7 0

MOVE(C) S1,[X or Y]:aa 0 0 0 0 0 1 0 1 W 0 a a a a a a 0 S 1 d d d d d

MOVE(C) S1,D2 23 16 15 8 7 0

MOVE(C) S2,D1 0 0 0 0 0 1 0 0 W 1 e e e e e e 1 0 1 d d d d d

23 16 15 8 7 0

MOVE(C) #xx,D1 0 0 0 0 0 1 0 1 i i i i i i i i 1 0 1 d d d d d
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Instruction Set
MOVEM  Move Program Memory MOVEM

Instruction Fields

Description Move the specified operand from/to the specified Program (P) memory location. 
This is a powerful move instruction in that the source and destination registers S and D can be 
any register. All memory-alterable addressing modes can be used, as well as the Absolute Short 
Addressing mode. If the system stack register SSH is specified as a source operand, the system 
Stack Pointer (SP) is post-decremented by 1 after SSH has been read. If the system stack register 
SSH is specified as a destination operand, the SP is pre-incremented by 1 before SSH is written. 
This allows the system stack to be efficiently extended using software stack pointer operations.

Condition Codes

Operation Assembler Syntax 

S → P:ea MOVE(M) S,P:ea

S → P:aa MOVE(M) S,P:aa

P:ea → D MOVE(M) P:ea,D

P:aa → D MOVE(M) P:aa,D

{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)
W Read S/Write D bit (see Table 12-16 on page 12-20)

{ S,D} dddddd Source/Destination register [all on-chip registers] (see  
Table 12-13 on page 12-18)

{aa} aaaaaa Absolute Short Address

7 6 5 4 3 2 1 0

S L E U N Z V C

* * * * * * * *

CCR
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 MOVEM  Move Program Memory MOVEM

Instruction Formats and Opcodes

For D1 or D2 = SR operand: 
* S Set according to bit 7 of the source operand.
* L Set according to bit 6 of the source operand.
* E Set according to bit 5 of the source operand.
* U Set according to bit 4 of the source operand.
* N Set according to bit 3 of the source operand.
* Z Set according to bit 2 of the source operand.
* V Set according to bit 1 of the source operand.
* C Set according to bit 0 of the source operand. 
For D1 and D2 ≠ SR operand:
* S Set if data growth is detected. 
* L Set if data limiting occurred during the move. 

Operation Assembler Syntax 

S → P:ea MOVE(M) S,P:ea

S → P:aa MOVE(M) S,P:aa

P:ea → D MOVE(M) P:ea,D

P:aa → D MOVE(M) P:aa,D

23 16 15 8 7 0

MOVE(M) S,P:ea 0 0 0 0 0 1 1 1 W 1 M M M R R R 1 0 d d d d d d

MOVE(M) P:ea,D Optional Effective Address Extension

MOVE(M) S,P:aa 23 16 15 8 7 0

MOVE(M) P:aa,D 0 0 0 0 0 1 1 1 W 0 a a a a a a 0 0 d d d d d d
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Instruction Set
MOVEP  Move Peripheral Data MOVEP

Instruction Fields

Description Move the specified operand to or from the specified X or Y I/O peripheral. The I/O 
Short Addressing mode is used for the I/O peripheral address. All memory addressing modes can 
be used for the X or Y memory effective address; all memory-alterable addressing modes can be 
used for the P memory effective address. All the I/O space ($FFFF80–$FFFFFF) can be 
accessed, except for the P: reference opcode.If the System Stack register SSH is specified as a 
source operand, the system Stack Pointer (SP) is post-decremented by 1 after SSH has been read. 
If SSH is specified as a destination operand, the SP is pre-incremented by 1 before SSH is 
written. This allows the system stack to be efficiently extended using software stack pointer 
operations.

Operation Assembler Syntax 

[X or Y]:pp → D MOVEP [X or Y]:pp,D

[X or Y]:qq → D MOVEP [X or Y]:qq,D

[X or Y]:pp → [X or Y]:ea MOVEP [X or Y]:pp,[X or Y]:ea

[X or Y]:qq → [X or Y]:ea MOVEP [X or Y]:qq,[X or Y]:ea

[X or Y]:pp → P:ea MOVEP [X or Y]:pp,P:ea

[X or Y]:qq → P:ea MOVEP [X or Y]:qq,P:ea

S → [X or Y]:pp MOVEP S,[X or Y]:pp

S → [X or Y]:qq MOVEP S,[X or Y]:qq

[X or Y]:ea → [X or Y]:pp MOVEP [X or Y]:ea,[X or Y]:pp

[X or Y]:ea → [X or Y]:qq MOVEP [X or Y]:ea,[X or Y]:qq

P:ea → [X or Y]:pp MOVEP P:ea,[X or Y]:pp

P:ea → [X or Y]:qq MOVEP P:ea,[X or Y]:qq

{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0–$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80–$FFFFBF]
{X/Y} S Memory space [X,Y] (see Table 12-13 on page 12-18)
{X/Y} s Peripheral space [X,Y] (see Table 12-13 on page 12-18)

W Read/write-peripheral (see Table 12-13 on page 12-18)
{S,D} dddddd Source/Destination register [all on-chip registers] (see Table 12-13 

on page 12-18) 
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MOVEP  Move Peripheral Data MOVEP
Condition Codes

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

* * * * * * * *

CCR

For D1 or D2 = SR operand: 
* S Set according to bit 7 of the source operand.
* L Set according to bit 6 of the source operand.
* E Set according to bit 5 of the source operand.
* U Set according to bit 4 of the source operand.
* N Set according to bit 3 of the source operand.
* Z Set according to bit 2 of the source operand.
* V Set according to bit 1 of the source operand.
* C Set according to bit 0 of the source operand. 
For D1 and D2 ≠ SR operand:
* S Set if data growth has been detected. 
* L Set if data limiting has occurred during the move. 

X: or Y: Reference (high I/O address)

23 16 15 8 7 0

MOVEP [X or Y]:pp,[X or Y]:ea 0 0 0 0 1 0 0 s W 1 M M M R R R 1 S p p p p p p

MOVEP [X or Y]:ea,[X or Y]:pp Optional Effective Address Extension

X: or Y: Reference (low I/O address)

23 16 15 8 7 0

MOVEP X:qq,[X or Y]:ea 0 0 0 0 0 1 1 1 W 1 M M M R R R 0 S q q q q q q

MOVEP [X or Y]:ea,X:qq Optional Effective Address Extension

X: or Y: Reference (low I/O address)

23 16 15 8 7 0

MOVEP Y:qq,[X or Y]:ea 0 0 0 0 0 1 1 1 W 0 M M M R R R 1 S q q q q q q

MOVEP [X or Y]:ea,Y:qq Optional Effective Address Extension
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Instruction Set
 MOVEP  Move Peripheral Data MOVEP
P: Reference (high I/O address)

MOVEP P:ea,[X or Y]:pp 16 15 8 7 0

MOVEP [X or Y]:pp,P:ea 0 0 0 0 1 0 0 s W 1 M M M R R R 0 1 p p p p p p

P: Reference (low I/O address)

MOVEP P:ea,[X or Y]:qq 16 15 8 7 0

MOVEP [X or Y]:qq,P:ea 0 0 0 0 0 0 0 0 1 W M M M R R R 0 S q q q q q q

Register Reference (high I/O address)

MOVEP S,[X or Y]:pp 23 16 15 8 7 0

MOVEP [X or Y]:pp,D 0 0 0 0 1 0 0 s W 1 d d d d d d 0 0 p p p p p p

Register Reference: (low I/O address)

MOVEP S,X:qq 23 16 15 8 7 0

MOVEP X:qq,D 0 0 0 0 0 1 0 0 W 1 d d d d d d 1 q 0 q q q q q

Register Reference: (low I/O address)

MOVEP S,Y:qq 23 16 15 8 7 0

MOVEP Y:qq,D 0 0 0 0 0 1 0 0 W 1 d d d d d d 0 q 1 q q q q q
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MPY   Signed Multiply MPY

Instruction Fields 1

Instruction Fields 2

Description Multiply the two signed 24-bit source operands S1 and S2 and store the resulting 
product in the specified 56-bit destination accumulator D. Or, multiply the signed 24-bit source 
operand S by the positive 24-bit immediate operand 2-n and store the resulting product in the 
specified 56-bit destination accumulator D. The “–” sign option is used to negate the specified 
product prior to accumulation. The default sign option is “+”. When the processor is in the 
Double-Precision Multiply mode, the following instructions do not execute in the normal way 
and should be used only as part of the double-precision multiply algorithm:

MPY Y0,X0,A MPY Y0,X0,B

Operation Assembler Syntax 

±S1 ∗ S2 → D  (parallel move) MPY (±)S1,S2,D (parallel move)

±S1 ∗ S2 → D (parallel move) MPY (±)S2,S1,D (parallel move)

±(S1 ∗ 2-n) → D (no parallel move) MPY (±)S,#n,D (no parallel move)

{S1,S2} QQQ Source registers S1,S2 [X0*X0, Y0*Y0, X1*X0, Y1*Y0, X0*Y1, Y0*X0, 
X1*Y0, Y1*X1] (see Table 12-16 on page 12-20)

{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{±} k Sign [+,–] (see Table 12-16 on page 12-20)

{S} QQ Source register [Y1,X0,Y0,X1] (see Table 12-16 on page 12-20)
{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{±} k Sign [+,–] (see Table 12-16 on page 12-20)
{#n} sssss Immediate operand (see Table 12-16 on page 12-20)
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Instruction Set
MPY  Signed Multiply MPY
Condition Codes

Instruction Formats and Opcodes 1

Instruction Formats and Opcodes 2

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0

MPY (±)S1,S2,D Data Bus Move Field 1 Q Q Q d k 0 0

MPY (±)S2,S1,D Optional Effective Address Extension

23 16 15 8 7 0

MPY  (±)S,#n,D 0 0 0 0 0 0 0 1 0 0 0 0 s s s s 1 1 Q Q d k 0 0
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MPY(su,uu)  Mixed Multiply MPY(su,uu)

Instruction Fields

Description Multiply the two 24-bit source operands S1 and S2 and store the resulting product in 
the specified 56-bit destination accumulator D. One or two of the source operands can be 
unsigned. The “–” sign option is used to negate the specified product prior to accumulation. The 
default sign option is “+”.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

±S1 ∗ S2 → D (S1 unsigned, S2 unsigned) MPYuu (±)S1,S2,D (no parallel move)

±S1 ∗ S2 → D (S1 signed, S2 unsigned) MPYsu (±)S2,S1,D (no parallel move)

{S1,S2} QQQQ Source registers S1,S2 [all combinations of X0,X1,Y0, and Y1] (see Table 
12-16 on page 12-20)

{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{±} k Sign [+,–] (see Table 12-16 on page 12-20)
{s} [ss,us] (see Table 12-16 on page 12-20)

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition. 
— Unchanged by the instruction. 

MPY su (±)S1,S2,D 23 16 15 8 7 0

MPY uu (±)S1,S2,D 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 1 s d k Q Q Q Q
DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-139



Instruction Set
MPYI  Signed Multiply With Immediate Operand MPYI

Instruction Fields

Description Multiply the immediate 24-bit source operand #xxxx with the 24-bit register source 
operand S and store the resulting product in the specified 56-bit destination accumulator D. The 
“–” sign option is used to negate the specified product prior to accumulation. The default sign 
option is “+”.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

±#xxxxxx∗S → D MPYI (±)#xxxxxx,S,D

{S} qq Source register [X0,Y0,X1,Y1] (see Table 12-16 on page 12-20)
{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{±} k Sign [+,–] (see Table 12-16 on page 12-20)
#xxxx 16-bit Immediate Long Data extension word

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition. 
— Unchanged by the instruction. 

23 16 15 8 7 0

MPYI (±)#xxxx,S,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 q q d k 0 0

Immediate Data Extension 
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MPYR  Signed Multiply and Round MPYR

Instruction Fields 1

Instruction Fields 2

Description Multiply the two signed 24-bit source operands S1 and S2 (or the signed 16-bit 
source operand S by the positive 24-bit immediate operand 2-n), round the result using either 
convergent or two’s-complement rounding, and store it in the specified 56-bit destination 
accumulator D. The “–” sign option negates the product prior to rounding. The default sign 
option is “+”. The contribution of the LS bits of the result is rounded into the upper portion of the 
destination accumulator. Once the rounding has been completed, the LSBs of the destination 
accumulator D are loaded with 0s to maintain an unbiased accumulator value that can be reused 
by the next instruction. The upper portion of the accumulator contains the rounded result that can 
be read out to the data buses. Refer to the RND instruction for more complete information on the 
rounding process.

Operation Assembler Syntax 

±S1 ∗ S2 + r → D  (parallel move) MPYR (±)S1,S2,D  (parallel move)

±S1 ∗ S2 + r → D  (parallel move) MPYR (±)S2,S1,D  (parallel move)

±(S1 ∗ 2-n) + r → D  (no parallel move) MPYR (±)S,#n,D  (no parallel move)

{S1,S2} QQQ Source registers S1,S2 [X0*X0, Y0*Y0, X1*X0, Y1*Y0, X0*Y1, Y0*X0, 
X1*Y0, Y1*X1] (see Table 12-16 on page 12-20)

{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{±} k Sign [+,–] (see Table 12-16 on page 12-20)

{S} QQ Source register [Y1,X0,Y0,X1] (see Table 12-16 on page 12-20) 
{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{±} k Sign [+,–] (see Table 12-16 on page 12-20)
{#n} sssss Immediate operand (see Table 12-16 on page 12-20)
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Instruction Set
MPYR  Signed Multiply and Round MPYR
Condition Codes

Instruction Formats and Opcodes 1

Instruction Formats and Opcodes 2

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction. 

23 16 15 8 7 0

MPYR (±)S1,S2,D Data Bus Move Field 1 Q Q Q d k 0 1

MPYR (±)S2,S1,D Optional Effective Address Extension

23 16 15 8 7 0

MPYR  (±)S,#n,D 0 0 0 0 0 0 0 1 0 0 0 s s s s s 1 1 Q Q d k 0 1
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MPYRI  MPYRI 
 Signed Multiply and Round With Immediate Operand

Instruction Fields

Description Multiply the two signed 24-bit source operands #xxxx and S, round the result using 
either convergent or two’s-complement rounding, and store it in the specified 56-bit destination 
accumulator D. The “–” sign option is used to negate the product before rounding. The default 
sign option is “+”. The contribution of the LS bits of the result is rounded into the upper portion 
of the destination accumulator. Once the rounding has been completed, the LS bits of the 
destination accumulator D are loaded with 0s to maintain an unbiased accumulator value that can 
be reused by the next instruction. The upper portion of the accumulator contains the rounded 
result that can be read out to the data buses. Refer to the RND instruction for more complete 
information on the rounding process.

Condition Codes

Instruction Formats and Opcodes 

Operation Assembler Syntax 

±#xxxx ∗ S + r → D MPYRI (±)#xxxx,S,D

{S} qq Source register [X0,Y0,X1,Y1] (see Table 12-16 on page 12-20)
{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{±} k Sign [+,–] (see Table 12-16 on page 12-20)
#xxxx 24-bit Immediate Long Data extension word

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition. 
— Unchanged by the instruction. 

23 16 15 8 7 0

MPYRI (±)#xxxx,S,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 q q d k 0 1

Immediate Data Extension 
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Instruction Set
NEG  Negate Accumulator NEG

Instruction Fields

Description Negate the destination operand D and store the result in the destination accumulator. 
This is a 56-bit, two’s-complement operation.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

0 – D → D (parallel move) NEG D (parallel move)

{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition. 
— Unchanged by the instruction. 

23 16 15 8 7 0

NEG D Data Bus Move Field 0 0 1 1 d 1 1 0

Optional Effective Address Extension
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NOP  No Operation NOP

Instruction Fields None

Description Increment the Program Counter (PC). Pending pipeline actions, if any, are 
completed. Execution continues with the instruction following the NOP.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

PC + 1 → PC NOP

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction. 

23 16 15 8 7 0

NOP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Instruction Set
NORM Norm Accumulator Iteration NORM

where E denotes the logical complement of E and • denotes the logical AND operator

Instruction Fields

Description Perform one normalization iteration on the specified destination operand D, update 
the specified address register Rn based upon the results of that iteration, and store the result back 
in the destination accumulator. This is a 56-bit operation. If the accumulator extension is not in 
use, the accumulator is unnormalized, and the accumulator is not zero, the destination operand is 
arithmetically shifted one bit to the left, and the specified address register is decremented by 1. If 
the accumulator extension register is in use, the destination operand is arithmetically shifted one 
bit to the right, and the specified address register is incremented by 1. If the accumulator is 
normalized or zero, a NOP is executed and the specified address register is not affected. Since the 
operation of the NORM instruction depends on the E, U, and Z condition code register bits, these 
bits must correctly reflect the current state of the destination accumulator prior to executing the 
NORM instruction.

Condition Codes 

Instruction Formats and Opcodes

Operation Assembler Syntax

If E • U • Z= 1, then ASL D and Rn–1 → Rn
else if E=1, then ASR D and Rn+1 → R
else NOP 

NORM Rn,D

{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{Rn} RRR Address register [R[0–7]]

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ * —

CCR

* V Set if bit 55 is changed as a result of a left shift.
√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0

NORM Rn,D 0 0 0 0 0 0 0 1 1 1 0 1 1 R R R 0 0 0 1 d 1 0 1
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NORMF  Fast Accumulator Normalization NORMF

Instruction Fields

Description Arithmetically shift the destination accumulator either left or right as specified by 
the source operand sign and value. If the source operand is negative then the accumulator is left 
shifted, and if the source operand is positive then it is right shifted. The source accumulator value 
should be between +56 to -55 (or +40 to -39 in sixteen bit mode). This instruction can be used to 
normalize the specified accumulator D, by arithmetically shifting it either left or right so as to 
bring the leading one or zero to bit location 46. The number of needed shifts is specified by the 
source operand. This number could be calculated by a previous CLB instruction. For 
normalization the source accumulator value should be between +8 to -47 (or +8 to -31 in 
Sixteen-bit Arithmetic mode). NORMF is a 56 bit operation. 

Condition Codes

Example 

CLB A,B ;Count leading bits 
NORMF B1,A ;Normalize A.

If the base exponent is stored in R1 it can be updated by the following commands:

MOVE B1,N1 ;Update N1 with shift amount 
MOVE (R1)+N1 ;Increment or decrement exponent

Operation Assembler Syntax 

If S[23] = 0 then ASR S,D
else ASL -S,D

NORMF S,D

{S} sss Source register [X0,X1,Y0,Y1,A1,B1] (see Table 12-13 on page 12-18)
{D} D Destination accumulator [A,B] (see Table 12-13 on page 12-18)

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ * —

CCR

* V Set if bit 39 is changed any time during the shift operation, and cleared otherwise. 
√ Changed according to the standard definition. 
— Unchanged by the instruction. 
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Instruction Set
NORMF  Fast Accumulator Normalization NORMF

Prior to execution, the 56-bit A accumulator contains the value $20:0000:0000. The CLB 
instruction updates the B accumulator to the number of needed shifts, seven in this example. The 
NORMF instruction performs seven shifts to the right on A accumulator, and normalization of A 
is achieved. The exponent register is updated according to the number of shifts.

Instruction Formats and Opcodes

23 16 15 8 7 0

NORMF S,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 s s s D

$20:0000:0000

B: $00:0007:0000

A: 

Before execution

$20:0000:0000

After execution

A: $00:4000:0000

A:CLB A,B

NORMF B1,A
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NOT Logical Complement NOT

where “—” denotes the logical NOT operator.

Instruction Fields

Description Take the one’s complement of bits 47–24 of the destination operand D and store the 
result back in bits 47–24 of the destination accumulator. This is a 24-bit operation. The remaining 
bits of D are not affected.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

D[31–16] → D[31–16] (parallel move) NOT D (parallel move)

{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — * * * —

CCR

* N Set if bit 47 of the result is set.
* Z Set if bits 47–24 of the result are 0.
* V Always cleared. 
√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0

NOT D Data Bus Move Field 0 0 0 1 d 1 1 1

Optional Effective Address Extension
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Instruction Set
OR  Logical Inclusive OR OR

where ⊕ denotes the logical inclusive OR operator.

Instruction Fields

Description Logically inclusive OR the source operand S with bits 47–24 of the destination 
operand D and store the result in bits 47–24 of the destination accumulator. The source can be a 
24-bit register, 6-bit short immediate, or 24-bit long immediate. This instruction is a 24-bit 
operation. The remaining bits of the destination operand D are not affected. When using 6-bit 
immediate data, the data is interpreted as an unsigned integer. That is, the six bits are right 
aligned, and the remaining bits are zeroed to form a 16-bit source operand.

Condition Codes

Operation Assembler Syntax 

S ⊕ D[47–24] → D[47–24] (parallel move) OR S,D (parallel move)

#xx ⊕ D[47–24] → D[47–24] OR #xx,D 

#xxxx ⊕ D[47–24] → D[47–24] OR #xxxx,D 

{S} JJ Source input register [X0,X1,Y0,Y1] (see Table 12-13 on page 12-18)
{D} d Destination accumulator [A/B] (see Table 12-13 on page 12-18)
{#xx} iiiiii 6-bit Immediate Short Data 
{#xxxx} 24-bit Immediate Long Data extension word 

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — * * * —

CCR

* N Set if bit 47 of the result is set.
* Z Set if bits 47–24 of the result are 0.
* V Always cleared.
√ Changed according to the standard definition.
— Unchanged by the instruction.
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OR  Logical Inclusive OR OR
Instruction Formats and Opcodes

23 16 15 8 7 0

OR S,D Data Bus Move Field 0 1 J J d 0 1 0

Optional Effective Address Extension

23 16 15 8 7 0

OR #xx,D 0 0 0 0 0 0 0 1 0 1 i i i i i i 1 0 0 0 d 0 1 0

23 16 15 8 7 0

OR #xxxx,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 d 0 1 0

Immediate Data Extension 
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Instruction Set
ORI  OR Immediate With Control Register ORI

where + denotes the logical inclusive OR operator.

Instruction Fields

Description Logically OR the 8-bit immediate operand (#xx) with the contents of the destination 
control register D and store the result in the destination control register. The condition codes are 
affected only when the Condition Code Register (CCR) is specified as the destination operand.

Condition Codes

Instruction Formats and Opcodes 

Operation Assembler Syntax 

#xx + D → D OR(I)  #xx,D

{D} EE Program Controller register [MR,CCR,COM,EOM] (see Table 12-13 
on page 12-18)

{#xx} iiiiiiii Immediate Short Data

7 6 5 4 3 2 1 0

S L E U N Z V C

* * * * * * * *

CCR

For CCR Operand:
* S Set if bit 7 of the immediate operand is set.
* L Set if bit 6 of the immediate operand is set.
* E Set if bit 5 of the immediate operand is set.
* U Set if bit 4 of the immediate operand is set.
* N Set if bit 3 of the immediate operand is set.
* Z Set if bit 2 of the immediate operand is set.
* V Set if bit 1 of the immediate operand is set.
* C Set if bit 0 of the immediate operand is set.
For MR and OMR Operands:  
The condition codes are not affected using these operands.

23 16 15 8 7 0

OR(I) #xx,D 0 0 0 0 0 0 0 0 i i i i i i i i 1 1 1 1 1 0 E E
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PFLUSH Program Cache Flush PFLUSH

Instruction Fields None

Description Flush the whole instruction cache, unlock all cache sectors, set the LRU stack and 
tag registers to their default values. The PFLUSH instruction is enabled only in Cache mode. 
When the cache is disabled, execution of this instruction causes an illegal instruction trap. 

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

Flush instruction cache PFLUSH

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0

PFLUSH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
DSP56300 Family Manual, Rev. 5

Freescale Semiconductor 13-153



Instruction Set
PFLUSHUN PFLUSHUN 
Program Cache Flush Unlocked Sectors

Instruction Fields None

Description Flush the instruction cache sectors that are unlocked, set the LRU stack to its default 
value and set the unlocked tag registers to their default values. The PFLUSHUN instruction is 
enabled only in Cache mode. When the cache is disabled, execution of this instruction causes an 
illegal instruction trap. 

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

Flush Unlocked instruction cache sectors PFLUSHUN

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0

PFLUSHUN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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PFREE Program Cache Global Unlock PFREE

Instruction Fields None

Description Unlock all the locked cache sectors in the instruction cache. The PFREE instruction 
is enabled only in Cache mode. When the cache is disabled, execution of this instruction causes 
an illegal instruction trap. 

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

Unlock all locked sectors PFREE

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0

PFREE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
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Instruction Set
PLOCK PLOCK 
Lock Instruction Cache Sector

Instruction Fields

Description Lock the cache sector to which the specified effective address belongs. If the 
specified effective address does not belong to any cache sector and is therefore definitely locked, 
nevertheless, load the least recently used cache sector tag with the17 most significant bits of the 
specified address. Update the LRU stack accordingly. All memory alterable addressing modes 
can be used for the effective address, but not a short absolute address. The PLOCK instruction is 
enabled only in Cache mode. In PRAM mode it causes an illegal instruction trap. 

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

Lock sector by effective address PLOCK ea

{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0

PUNLOCK ea 0 0 0 0 1 0 1 1 1 1 M M M R R R 1 0 0 0 0 0 0 1

Address Extension Word
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PLOCKR PLOCKR 
Lock Instruction Cache Relative Sector

Instruction Fields None

Description Lock the cache sector to which the sum PC + specified displacement belongs. If the 
sum does not belong to any cache sector, then load the 17 most significant bits of the sum into the 
least recently used cache sector tag, and then lock that cache sector. Update the LRU stack 
accordingly. The displacement is a two’s-complement 24-bit integer that represents the relative 
distance from the current PC to the address to be locked. The PLOCKR instruction is enabled 
only in Cache mode. When the cache is disabled, execution of this instruction causes an illegal 
instruction trap. 

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

Lock sector by PC + xxxx PLOCKR xxxx

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0

PLOCKR xxxx 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Address Extension Word
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Instruction Set
PUNLOCK PUNLOCK 
Unlock Instruction Cache Sector

Instruction Fields

Description Unlock the cache sector to which the specified effective address belongs. If the 
specified effective address does not belong to any cache sector, and is therefore definitely 
unlocked, nevertheless, load the least recently used cache sector tag with the 17 most significant 
bits of the specified address. Update the LRU stack accordingly. All memory alterable addressing 
modes may be used for the effective address, but not a short absolute address. The PUNLOCK 
instruction is enabled only in Cache mode. In PRAM mode it causes an illegal instruction trap. 

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

Unlock sector by effective address PUNLOCK ea

{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0

PUNLOCK ea 0 0 0 0 1 0 1 0 1 1 M M M R R R 1 0 0 0 0 0 0 1

Address Extension Word
DSP56300 Family Manual, Rev. 5

13-158 Freescale Semiconductor



PUNLOCKR PUNLOCKR 
Unlock Instruction Cache Relative Sector

Instruction Fields None

Description Unlock the cache sector to which the sum PC + specified displacement belongs. If 
the sum does not belong to any cache sector, and is therefore definitely unlocked, nevertheless, 
load the least recently used cache sector tag with the 17 most significant bits of the sum. Update 
the LRU stack accordingly. The displacement is a two’s-complement 24-bit integer that 
represents the relative distance from the current PC to the address to be locked. The PUNLOCKR 
instruction is enabled only in Cache mode. In PRAM mode it causes an illegal instruction trap. 

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

Unlock sector by PC+xxxx PUNLOCKR xxxx

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0

PUNLOCKR xxxx 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0

Address Extension Word
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Instruction Set
REP  Repeat Next Instruction REP

Instruction Fields

Description Repeat the single-word instruction immediately following the REP instruction the 
specified number of times. The value specifying the number of times the given instruction is to be 
repeated is loaded into the 24-bit loop counter (LC) register. The single-word instruction is then 
executed the specified number of times, decrementing the loop counter (LC) after each execution 
until LC = 1. When the REP instruction is in effect, the repeated instruction is fetched only one 
time, and it remains in the instruction register for the duration of the loop count. Thus, the REP 
instruction is not interruptible (sequential repeats are also not interruptible). The current LC value 
is stored in an internal temporary register. If LC is set equal to zero, the instruction is repeated 
65,536 times. The instruction’s effective address specifies the address of the value which is to be 
loaded into the LC. All address register indirect addressing modes can be used. The absolute 
short and the immediate short addressing modes may also be used. The four MS bits of the 12-bit 
immediate value are zeroed to form the 24-bit value that is to be loaded into the LC.

If the System Stack register SSH is specified as a source operand, the system Stack Pointer (SP) 
is post-decremented by 1 after SSH has been read.

Operation Assembler Syntax 

LC → TEMP; [X or Y]:ea → LC REP [X or Y]:ea
Repeat next instruction until LC = 1
TEMP → LC

LC → TEMP; [X or Y]:aa → LC REP [X or Y]:aa
Repeat next instruction until LC = 1
TEMP → LC

LC → TEMP;S → LC REP S
Repeat next instruction until LC = 1
TEMP → LC

LC → TEMP;#xxx → LC REP #xxx
Repeat next instruction until LC = 1
TEMP → LC

{ea} MMMRRR Effective Address (see Table 12-13 on page 12-18)
{X/Y} S Memory Space [X,Y] (see Table 12-13 on page 12-18)
{aa} aaaaaa Absolute Short Address
{#xxx} hhhhiiiiiiii Immediate Short Data
{S} dddddd Source register [all on-chip registers] (see Table 12-13 on page 12-18)
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REP  Repeat Next Instruction REP
Condition Codes

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0

REP [X or Y]:ea 0 0 0 0 0 1 1 0 0 1 M M M R R R 0 S 1 0 0 0 0 0

23 16 15 8 7 0

REP [X or Y]:aa 0 0 0 0 0 1 1 0 0 0 a a a a a a 0 S 1 0 0 0 0 0

23 16 15 8 7 0

REP #xxx 0 0 0 0 0 1 1 0 i i i i i i i i 1 0 1 0 h h h h

23 16 15 8 7 0

REP S 0 0 0 0 0 1 1 0 1 1 d d d d d d 0 0 1 0 0 0 0 0
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Instruction Set
RESET  Reset On-Chip Peripheral Devices RESET

Instruction Fields None

Description Reset the interrupt priority register and all on-chip peripherals. This is a software 
reset, which is not equivalent to a hardware RESET since only on-chip peripherals and the 
interrupt structure are affected. The processor state is not affected, and execution continues with 
the next instruction. All interrupt sources are disabled except for the stack error, NMI, illegal 
instruction, Trap, Debug request, and hardware reset interrupts.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

Reset the interrupt priority register and all 
on-chip peripherals

RESET

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction. 

23 16 15 8 7 0

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
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RND  Round Accumulator RND

Instruction Fields 

Description Round the 56-bit value in the specified destination operand D and store the result in 
the destination accumulator (A or B). The contribution of the LSBs of the operand is rounded into 
the upper portion of the operand by adding a rounding constant to the LSBs of the operand. The 
upper portion of the destination accumulator contains the rounded result. The boundary between 
the lower portion and the upper portion is determined by the scaling mode bits S0 and S1 in the 
Status Register (SR).

Two types of rounding can be used: convergent rounding (also called round to nearest (even)) or 
two’s-complement rounding. The type of rounding is selected by the Rounding Mode bit (RM) in 
the MR portion of the SR. In both rounding modes a rounding constant is first added to the 
unrounded result. The value of the rounding constant added is determined by the scaling mode 
bits S0 and S1 in the SR. A 1 is positioned in the rounding constant aligned with the MSB of the 
current LS portion, that is, the rounding constant weight is actually equal to half the weight of the 
upper portion’s LSB. The following table shows the rounding position and rounding constant as 
determined by the scaling mode bits:

If convergent rounding is used, the result of this addition is tested and if all the bits of the result to 
the right of, and including, the rounding position are cleared, then the bit to the left of the 
rounding position is cleared in the result. This ensures that the result is not biased. In both 
rounding modes, the Least Significant Bits (LSBs) of the result are cleared. The number of LSBs 
cleared is determined by the Scaling Mode bits in the Status Register (SR). All bits to the right of 
and including the rounding position are cleared in the result.

In Sixteen-bit Arithmetic mode the 40-bit value (in the 56-bit destination operand D) is rounded 
and stored in the destination accumulator (A or B). This implies that the 

Operation Assembler Syntax 

D + r → D (parallel move) RND D (parallel move)

{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)

Rounding Rounding Constant

S1 S0 Scaling Mode Position 55–25 24 23 22 21–0

0 0 No Scaling 23 0. . . .0 0 1 0 0. . . .0

0 1 Scale Down 24 0. . . .0 1 0 0 0. . . .0

1 0 Scale Up 22 0. . . .0 0 0 1 0. . . .0
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Instruction Set
RND  Round Accumulator RND

boundary between the lower portion and upper portion is in a different position then in 24 bit 
mode. The following table shows the rounding position and rounding constant in Sixteen-bit 
Arithmetic mode, as determined by the scaling mode bits:

Condition Codes

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition. 
— Unchanged by the instruction. 

23 16 15 8 7 0

RND D Data Bus Move Field 0 0 0 1 d 0 0 1

Optional Effective Address Extension

Rounding Rounding Constant

S1 S0 Scaling Mode Position 55–33 32 23 22 21–8

0 0 No Scaling 31 0. . . .0 0 1 0 0. . . .0

0 1 Scale Down 32 0. . . .0 1 0 0 0. . . .0

1 0 Scale Up 30 0. . . .0 0 0 1 0. . . .0
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ROL  Rotate Left ROL
Operation

Assembler Syntax

ROL D (parallel move)

Instruction Fields

Description Rotate bits 47–24 of the destination operand D one bit to the left and store the result 
in the destination accumulator. The Carry bit (C) receives the previous value of bit 47 of the 
operand. The previous value of the C bit is shifted into bit 24 of the operand. This instruction is a 
24-bit operation. The remaining bits of destination operand D are not affected.

Condition Codes

Instruction Formats and Opcodes

{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — * * * *

CCR

* N Set if bit 47 of the result is set. 
* Z Set if bits 47–24 of the result are 0. 
* V This bit is always cleared. 
* C Set if bit 47 of the destination operand is set, and cleared otherwise.
√ Changed according to the standard definition. 
— Unchanged by the instruction. 

23 16 15 8 7 0

ROL D Data Bus Move Field 0 0 1 1 d 1 1 1

Optional Effective Address Extension

C

47 24
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Instruction Set
ROR  Rotate Right ROR
Operation 

Assembler Syntax

ROR D (parallel move)

Instruction Fields

Description Rotate bits 47–24 of the destination operand D one bit to the right and store the 
result in the destination accumulator. The Carry bit (C) receives the previous value of bit 24 of 
the operand.The previous value of the C bit is shifted into bit 47 of the operand. This instruction 
is a 24-bit operation. The remaining bits of destination operand D are not affected.

Condition Codes

Instruction Formats and Opcodes

{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — * * * *

CCR

* N Set if bit 47 of the result is set. 
* Z Set if bits 47–24 of the result are 0. 
* V Always cleared. 
* C Set if bit 47 of the destination operand is set, and cleared otherwise.
√ Changed according to the standard definition. 
— Unchanged by the instruction. 

23 16 15 8 7 0

ROR D Data Bus Move Field 0 0 1 0 d 1 1 1

Optional Effective Address Extension

C

47

(parallel move)

24
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RTI  Return From Interrupt RTI

Instruction Fields None

Description Pull the Program Counter (PC) and the Status Register (SR) from the system stack. 
The previous PC and SR values are lost.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

SSH → PC; SSL → SR; SP – 1 → SP RTI

7 6 5 4 3 2 1 0

S L E U N Z V C

* * * * * * * *
CCR

* S Set according to the value pulled from the stack. 
* L Set according to the value pulled from the stack. 
* E Set according to the value pulled from the stack. 
* U Set according to the value pulled from the stack. 
* N Set according to the value pulled from the stack. 
* Z Set according to the value pulled from the stack. 
* V Set according to the value pulled from the stack. 
* C Set according to the value pulled from the stack. 

23 16 15 8 7 0

RTI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
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Instruction Set
RTS  Return From Subroutine RTS

Instruction Fields None

Description Pull the Program Counter (PC) from the system stack. The previous PC value is lost. 
The Status Register (SR) is not affected.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

SSH → PC; SP – 1 → SP RTS

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0

RTS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
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SBC   Subtract Long With Carry SBC

Instruction Fields

Description Subtract the source operand S and the Carry bit (C) from the destination operand D 
and store the result in the destination accumulator. Long words (48-bit words) are subtracted 
from the 56-bit destination accumulator. Note that the C bit is set correctly for multiple-precision 
arithmetic using long-word operands if the extension register of the destination accumulator (A2 
or B2) is the sign extension of bit 47 of the destination accumulator (A or B).

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

D – S – C → D (parallel move) SBC S,D (parallel move)

{S} J Source register [X,Y] (see Table 12-13 on page 12-18)
{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ √
CCR

√ Changed according to the standard definition.

23 16 15 8 7 0

SBC S,D Data Bus Move Field 0 0 1 J d 1 0 1

Optional Effective Address Extension
DSP56300 Family Manual, Rev. 5
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Instruction Set
STOP  Stop Instruction Processing STOP

Instruction Fields None 

Description Enter the Stop processing state. All activity in the processor is suspended until the 
RESET or IRQA pin is asserted or the Debug Request JTAG command is detected. The clock 
oscillator is gated off internally. The Stop processing state is a low-power standby state. During 
the Stop state, the destination port is in an idle state with the control signals held inactive, the data 
pins are high impedance, and the address pins are unchanged from the previous instruction. If the 
exit from the Stop state is caused by a low level on the RESET pin, then the processor enters the 
reset processing state. If the exit from the Stop state was caused by a low level on the IRQA pin, 
then the processor will service the highest priority pending interrupt and will not service the IRQA 
interrupt unless it is highest priority. If no interrupt is pending, the processor will resume 
program execution at the instruction following the STOP instruction that caused the entry into the 
Stop state. Program execution (interrupt or normal flow) resumes after an internal delay counter 
counts:

� If the Stop Delay (SD, OMR[6]) bit is cleared—131,070 clock cycles

� If the Stop Delay (SD, OMR[6]) bit is set—24 clock cycles

� If the Stop Processing State (PSTP, PCTL[5]) is set—8.5 clock cycles

During the clock stabilization count delay, all peripherals and external interrupts are cleared and 
re-enabled/arbitrated at the end of the count interval. If the IRQA pin is asserted when the STOP 
instruction is executed, the clock is not gated off, and only the internal delay counter is started.

Condition Codes

Operation Assembler Syntax 

Enter the stop processing state and stop the 
clock oscillator

STOP

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction. 
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STOP  Stop Instruction Processing STOP
Instruction Formats and Opcodes

23 16 15 8 7 0

STOP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1
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Instruction Set
SUB  Subtract SUB

Instruction Fields

Description Subtract the source operand from the destination operand D and store the result in 
the destination operand D. The source can be a register (24-bit word, 48-bit long word, or 56-bit 
accumulator), 6-bit short immediate, or 24-bit long immediate. When using 6-bit immediate data, 
the data is interpreted as an unsigned integer. That is, the six bits are right-aligned and the 
remaining bits are zeroed to form a 16-bit source operand. Note that the Carry bit (C) is set 
correctly using word or long-word source operands if the extension register of the destination 
accumulator (A2 or B2) is the sign extension of bit 47 of the destination accumulator (A or B). 
The C bit is always set correctly using accumulator source operands.

Condition Codes

Operation Assembler Syntax 

D–S → D (parallel move) SUB S, D (parallel move)

D – #xx → D SUB #xx, D 

D – #xxxx → D SUB #xxxx,D

{S} JJJ Source register [B/A,X,Y,X0,Y0,X1,Y1] (see Table 12-13 on page 12-18)
{D} d Destination accumulator [A/B] (see Table 12-13 on page 12-18)
{#xx} iiiiii 6-bit Immediate Short Data 
{#xxxx} 24-bit Immediate Long Data extension word 

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ √
CCR

√ Changed according to the standard definition.
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SUB  Subtract SUB
Instruction Formats and Opcodes

23 16 15 8 7 0

SUB S,D Data Bus Move Field 0 J J J d 1 0 0

Optional Effective Address Extension

23 16 15 8 7 0

SUB #xx,D
0 0 0 0 0 0 0 1 0 1 i i i i i i 1 0 0 0 d 1 0 0

23 16 15 8 7 0

SUB #xxxx,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 d 1 0 0

Immediate Data Extension 
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Instruction Set
SUBL  Shift Left and Subtract Accumulators SUBL

Instruction Fields

Description Subtract the source operand S from two times the destination operand D and store 
the result in the destination accumulator. The destination operand D is arithmetically shifted one 
bit to the left, and a 0 is shifted into the LSB of D prior to the subtraction operation. The Carry bit 
(C) is set correctly if the source operand does not overflow as a result of the left shift operation. 
The Overflow bit (V) may be set as a result of either the shifting or subtraction operation (or 
both). This instruction is useful for efficient divide and Decimation-In-Time (DIT) FFT 
algorithms.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

2 ∗ D – S → D (parallel move) SUBL S,D (parallel move)

{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{S} The source accumulator is B if the destination accumulator (selected by the d bit 

in the opcode) is A, or A if the destination accumulator is B

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ * √
CCR

* V Set if overflow has occurred in the result or if the MS bit of the destination operand is 
changed as a result of the instruction’s left shift.

√ Changed according to the standard definition.

23 16 15 8 7 0

SUBL S,D Data Bus Move Field 0 0 0 1 d 1 1 0

Optional Effective Address Extension
DSP56300 Family Manual, Rev. 5
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SUBR  Shift Right and Subtract Accumulators SUBR

Instruction Fields

Description Subtract the source operand S from one-half the destination operand D and store the 
result in the destination accumulator. The destination operand D is arithmetically shifted one bit 
to the right while the MS bit of D is held constant prior to the subtraction operation. In contrast to 
the SUBL instruction, the Carry bit (C) is always set correctly, and the Overflow bit (V) can only 
be set by the subtraction operation, and not by an overflow due to the initial shifting operation. 
This instruction is useful for efficient divide and Decimation-In-Time (DIT) FFT algorithms.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

D / 2 – S → D (parallel move) SUBR S,D parallel move)

{D} d Destination accumulator [A,B] (see Table 12-13 on page 12-18)
{S} The source accumulator is B if the destination accumulator (selected by the d bit 

in the opcode) is A, or A if the destination accumulator is B

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ √
CCR

√ Changed according to the standard definition.

23 16 15 8 7 0

SUBR S,D Data Bus Move Field 0 0 0 0 d 1 1 0

Optional Effective Address Extension
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Instruction Set
Tcc  Transfer Conditionally Tcc

Instruction Fields

Description Transfer data from the specified source register S1 to the specified destination 
accumulator D1 if the specified condition is true. If a second source register S2 and a second 
destination register D2 are also specified, transfer data from address register S2 to address 
register D2 if the specified condition is true. If the specified condition is false, a NOP is executed. 
The conditions that “cc” can specify are listed on Table 12-16 on page 12-20. When used after 
the CMP or CMPM instructions, the Tcc instruction can perform many useful functions, such as 
a “maximum value,” “minimum value,” “maximum absolute value,” or “minimum absolute 
value” function. The desired value is stored in the destination accumulator D1. If address register 
S2 is used as an address pointer into an array of data, the address of the desired value is stored in 
the address register D2. The Tcc instruction may be used after any instruction and allows 
efficient searching and sorting algorithms. The Tcc instruction uses the internal Data ALU paths 
and internal Address ALU paths. It does not affect the condition code bits.

Condition Codes

Operation Assembler Syntax 

If cc, then S1 → D1 Tcc S1,D1

If cc, then S1 → D1 and S2 → D2 Tcc S1,D1 S2,D2

If cc, then S2 → D2 Tcc S2,D2

{cc} CCCC Condition code (see Table 12-13 on page 12-18)
{S1} JJJ Source register [B/A,X0,Y0,X1,Y1] (see Table 12-16 on page 12-20)
{D1} d Destination accumulator [A/B] (see Table 12-13 on page 12-18)
{S2} ttt Source address register [R[0–7]]
{D2} TTT Destination Address register [R[0–7]]

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.
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Tcc  Transfer Conditionally Tcc
Instruction Formats and Opcodes 

23 16 15 8 7 0

Tcc S1,D1 0 0 0 0 0 0 1 0 C C C C 0 0 0 0 0 J J J d 0 0 0

23 16 15 8 7 0

Tcc S1,D1 S2,D2 0 0 0 0 0 0 1 1 C C C C 0 t t t 0 J J J d T T T

23 16 15 8 7 0

Tcc S2,D2 0 0 0 0 0 0 1 0 C C C C 1 t t t 0 0 0 0 0 T T T
DSP56300 Family Manual, Rev. 5
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Instruction Set
TFR  Transfer Data ALU Register TFR

Instruction Fields

Description Transfer data from the specified source Data ALU register S to the specified 
destination Data ALU accumulator D. TFR uses the internal Data ALU data paths; thus, data 
does not pass through the data shifter/limiters. This allows the full 56-bit contents of one of the 
accumulators to be transferred into the other accumulator without data shifting and/or limiting. 
Moreover, since TFR uses the internal Data ALU data paths, parallel moves are possible. 

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

S → D (parallel move) TFR S,D (parallel move)

{S} JJJ Source register [B/A,X0,Y0,X1,Y1] (see Table 12-16 on page 12-20)
{D} d Destination accumulator [A/B] (see Table 12-13 on page 12-18)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition. 
— Unchanged by the instruction. 

23 16 15 8 7 0

TFR S,D Data Bus Move Field 0 J J J d 0 0 1

Optional Effective Address Extension
DSP56300 Family Manual, Rev. 5
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TRAP  Software Interrupt TRAP

Instruction Fields None

Description Suspend normal instruction execution and begin TRAP exception processing. The 
Interrupt Priority Level (I1,I0) is set to 3 in the Status Register (SR) if a long interrupt service 
routine is used.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

Begin trap exception process TRAP

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction. 

23 16 15 8 7 0

TRAP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
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Instruction Set
TRAPcc   Conditional Software Interrupt TRAPcc

Instruction Fields

Description If the specified condition is true, normal instruction execution is suspended and 
software exception processing is initiated. The Interrupt Priority Level (I1,I0) is set to 3 in the 
Status Register (SR) if a long interrupt service routine is used. If the specified condition is false, 
instruction execution continues with the next instruction. The conditions that the term “cc” can 
specify are listed in Table 12-18 on page 12-24.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

If cc then begin software exception processing TRAPcc 

{cc} CCCC Condition code (see Table 12-18 on page 12-24)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction. 

23 16 15 8 7 0

TRAPcc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 C C C C
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TST  Test Accumulator TST

Instruction Fields 

Description Compare the specified source accumulator S with 0 and set the condition codes 
accordingly. No result is stored although the condition codes are updated.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

S – 0 (parallel move) TST S (parallel move)

{S} d Source accumulator [A,B] (see Table 12-13 on page 12-18)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ * —

CCR

* V Always cleared. 
√ Changed according to the standard definition. 
— Unchanged by the instruction. 

23 16 15 8 7 0

TST S Data Bus Move Field 0 0 0 0 d 0 1 1

Optional Effective Address Extension
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Instruction Set
VSL  Viterbi Shift Left VSL

Instruction Fields

Description  Store the most significant part (24 bits) of the source accumulator at X memory (at 
effective address location), while for the least significant part (24 bits) of the source accumulator 
shift one bit to the left and insert 0 or 1 at the Least Significant Bit, according to operand i, and 
store the result at Y memory at the same address. This instruction enhances Viterbi algorithm 
performance. 

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

S[47–24] → X:ea; {S[23–0],i} → Y:ea VSL S,i,L:ea

{S} S Source register A,B (see Table 12-13 on page 12-18)
{i} i Bit value, 0 or 1 to be placed in the least significant bit of Y:<ea>
{ea} MMMRRR Effective address (see Table 12-13 on page 12-18)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction. 

23 16 15 8 7 0

VSL S,i,L:ea 0 0 0 0 1 0 1 S 1 1 M M M R R R 1 1 0 i 0 0 0 0

Optional Effective Address Extension
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WAIT Wait for Interrupt or DMA Request WAIT

Instruction Fields None

Description Enter the low-power standby Wait processing state. The internal clocks to the 
processor core and memories are gated off, and all activity in the processor is suspended until an 
unmasked interrupt occurs. The clock oscillator and the internal I/O peripheral clocks remain 
active. If the WAIT instruction is executed when an interrupt is pending, the interrupt is 
processed. The effect is the same as if the processor never entered the Wait state. When an 
unmasked interrupt or external (hardware) processor reset occurs, the processor leaves the Wait 
state and begins exception processing of the unmasked interrupt or reset condition. The processor 
also exits from the Wait state when the Debug Request (DE) pin is asserted or when a Debug 
Request JTAG command is detected.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax 

Disable clocks to the processor core and
enter the Wait processing state

WAIT

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction

23 16 15 8 7 0

WAIT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0
DSP56300 Family Manual, Rev. 5
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Instruction Timing and Restrictions A
This appendix describes the various aspects of execution timing analysis for each instruction 
mnemonic and for various instruction sequences. The section consists of the following tables and 
information:

� How to calculate DSP56300 core instruction timing for each instruction mnemonic 
(instruction timing).

� The number of instruction program words for each instruction mnemonic (instruction 
program words).

� Sequences that cause timing delays and stalls in the execution (instruction sequence 
delays).

� Instruction sequences that are forbidden and cause undefined operation (instruction 
sequence restrictions).

A.1 Overview

The number of oscillator clock cycles per instruction depends on many factors, including the 
number of words per instruction, the addressing mode, whether the instruction fetch pipeline is 
full, the number of external bus accesses, cache hit/miss/burst, and the number of wait states 
inserted into each external access.

Table A-1 lists instruction timing and is based on the assumption that all instruction cycles are 
counted in clock cycles and the instruction fetch pipeline is full. The following terms are used 
inside the table:

� T. clock cycles for the normal case:

— All instructions fetched from the internal program memory
— No interlocks with previous instructions 
— Addressing mode is the Post-Update mode (post-increment, post-decrement and post 

offset by N) or the No-Update mode

� + pru. Pre-update specifies clock cycles added for using the pre-update addressing modes 
(pre-decrement and offset by N addressing modes)

� + lab. Long absolute specifies clock cycles added for using the Long Absolute Address 
mode
DSP56300 Family Manual, Rev. 5
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Instruction Timing and Restrictions
� + lim. Long immediate specifies clock cycles added for using the long immediate data 
addressing mode

A dash under one or more of the columns pru, lab, or lim indicates that this column is not 
applicable to the corresponding instruction.

Table A-1.  Instruction Timing, Word Count, and Encoding  

Instruction
Mnemonic

Instruction Format T + pru + lab + lim

ADD ADD #xxxxxx,D 2 — — —

ADD   #xx,D 1 — — —

AND AND   #xxxxxx,D 2 — — —

AND   #xx,D 1 — — —

ANDI ANDI   D 3 — — —

ASL ASL   #ii,S2,D 1 — — —

ASL S1, S2,D 1 — — —

ASR ASR   S1, S2, D 1 — — —

ASR   #ii,S2,D 1 — — —

Bcc Bcc Rn 4 — — —

Bcc   xxxx 5 — — —

Bcc   xxx 4 — — —

BCHG BCHG   #n, [x or y]:aa 2 — — —

BCHG   #n, [x or y]:ea 2 1 1 —

BCHG   ##n, [x or y]:pp 2 — — —

BCHG   ##n, [x or y]:qq 2 — — —

BCHG   #n, D 2 — — —

BCLR BCLR   #n, [x or y]:pp 2 — — —

BCLR   #n, [x or y]:ea 2 1 1 —

BCLR   #n, [x or y]:aa 2 — — —

BCLR #n, [x or y]: qq 2 — — —

BCLR #n, D 2 — — —

BRA BRA   (PC + Rn) 4 — — —

BRA   (PC + aa) 4 — — —

BRA (PC+aa) 4 — — —

BRKcc BRKcc 5 — — —
DSP56300 Family Manual, Rev. 5
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Overview
BRSET BRSET #bbbbb, S:pp, (PC+aaaa) 5 — — —

BRSET #bbbbb, S:qq, (PC+aaaa) 5 1 — —

BRSET #bbbbb, S:ea, (PC+aaaa) 5 — — —

BRSET #bbbbb, S:aa, (PC+aaaa) 5 — — —

BRSET #bbbbb, DDDDDD, (PC+aaaa) 5 — — —

BScc BScc   (PC + Rn) 4 — — —

BScc   (PC + aa) 4 — — —

BSCLR BSCLR #bbbbb,S:ea,(PC+aaaa) 5 1 — —

BSCLR #bbbbb,S:aa,(PC+aaaa) 5 — — —

BSCLR #bbbbb,S:pp,(PC+aaaa) 5 — — —

BSCLR #bbbbb,S:DDDDDD,(PC+aaaa) 5 — — —

BSCLR #bbbbb,S:qq,(PC+aaaa) 5 — — —

BSET BSET   #n,[x or y]:pp 2 — — —

BSET   ##n,[x or y]:ea 2 1 1 —

BSET   ##n,[x or y]:aa 2 — — —

BSET   ##n,D 2 — — —

BSET   ##n,[x or y]:qq 2 — — —

BSR BSR   (PC + Rn) 4 — — —

BSR (PC+aaaa) 5 — — —

BSR   (PC + aa) 4 — — —

BSSET BSSET #bbbbb,S:pp,(PC+aaaa) 5 — — —

BSSET #bbbbb,S:ea,(PC+aaaa) 5 1 — —

BSSET #bbbbb,S:aa,(PC+aaaa) 5 — — —

BSSET #bbbbb,S:DDDDDD,(PC+aaaa) 5 — — —

BSSET #bbbbb,S:qq,(PC+aaaa) 5 — — —

BTST BTST   #n,[x or y]:pp 2 — — —

BTST #n,[x or y]:ea 2 1 1 —

BTST #n,[x or y]:aa 2 — — —

BTST #n,D 2 — — —

BTST #n,[x or y]:qq 2 — — —

CLB CLB   S,D 1 — — —

CMP CMP   #iiiiii,D 2 — — —

CMP   #iii,D 1 — — —

CMPU CMPU   S1, S2 1 — — —

DEBUG/ 
DEBUGcc

DEBUG 1 — — —

DEBUGcc 5 — — —

Table A-1.  Instruction Timing, Word Count, and Encoding  (Continued)

Instruction
Mnemonic

Instruction Format T + pru + lab + lim
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Instruction Timing and Restrictions
DEC DEC D 1 — — —

DIV DIV S, D 1 — — —

DMAC DMAC   S1,S2,D (ss,su,uu) 1 — — —

DO DO   #xxx,aaaa 5 — — —

DO   DDDDDD,aaaa 5 — — —

DO   S:<ea>,aaaa 5 1 — —

DO   S:<aa>,aaaa 5 — — —

DO FOREVER DO FOREVER  ,(aaaa) 4 — — —

DOR DOR #xxx,(PX+aaaa) 5 — — —

DOR DDDDDD,(PC+aaaa) 5 — — —

DOR S:ea,(PC+aaaa) 5 1 — —

DOR S:aa,(PC+aaaa) 5 — — —

DOR FOREVER DOR FOREVER,(PC+aaaa)

ENDDO ENDDO 1 — — —

EOR EOR   #xx,D 2 — — —

EOR   #iii,D 1 — — —

EXTRACT EXTRACT   S1,S2,D 1 — — —

EXTRACT   #iiii,s,D 2 — — —

EXTRACTU EXTRACTU   S1,S2,D 1 — — —

EXTRACTU   #iiii,s,D 2 — — —

IFcc IFcc 1 — — —

ILLEGAL ILLEGAL 5 — — —

INC INC D 1 — — —

INSERT INSERT   S1,S2,D 1 — — —

INSERT   #iiii,qqq,D 2 — — —

Jcc Jcc   xxx 4 — — —

Jcc   ea 4 0 0 —

JCLR JCLR   #n,[x or y]:ea,xxxx 4 1 — —

JCLR   #n,[x or y]:pp,xxxx 4 — — —

JCLR   #n,[x or y]:aa,xxxx 4 — — —

JCLR   #n,S,xxxx 4 — — —

JCLR #n,[x or y]:qq,xxxx 4 — — —

JMP JMP   aa 3 — — —

JMP   ea 3 1 1 —

JScc JScc   aa 4 — — —

JScc   ea 4 0 0 —

Table A-1.  Instruction Timing, Word Count, and Encoding  (Continued)

Instruction
Mnemonic

Instruction Format T + pru + lab + lim
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Overview
JSCLR JSCLR   #n,[x or y]:pp,xxxx 4 — — —

JSCLR #n,[x or y]:ea,xxxx 4 1 — —

JSCLR #n,[x or y]:aa,xxxx 4 — — —

JSCLR #n,S,xxxx 4 — — —

JSCLR #n,[x or y]:qq,xxxx 4 — — —

JSET JSET #n,[x or y]:pp,xxxx 4 — — —

JSET #n,[x or y]:ea,xxxx 4 1 — —

JSET #n,[x or y]:aa,xxxx 4 — — —

JSET #n,S,xxxx 4 — — —

JSET #n,[x or y]:qq,xxxx 4 — — —

JSR JSR   aa 3 — — —

JSR   ea 3 1 1 —

JSSET JSSET #n,[x or y]:pp,xxxx 4 — — —

JSSET #n,[x or y]:ea,xxxx 4 1 — —

JSSET #n,[x or y]:aa,xxxx 4 — — —

JSSET #n,S,xxxx 4 — — —

JSSET #n,[x or y]:qq,xxxx 4 — — —

LSL LSL   S,D 1 — — —

LSL   #ii,D 1 — — —

LSR LSR   #ii,D 1 — — —

LSR   S,D 1 — — —

LRA LRA   (PC + Rn) → 0DDDDD 3 — — —

LRA   (PC + aaaa) → 0DDDDD 3 — — —

LUA, LEA LUA   ea → 0DDDDD 3 — — —

LUA   (Rn + aa) → 01DDDD 3 — — —

MACI MACI   ± #xxxxxx,S,D 2 — — —

MAC MAC   ± 2**s,QQ,d 1 — — —

MAC   S1,S2,D (su,uu) 1 — — —

MACRI MACRI   ± #iiiiii,QQ,D 2 — — —

MACR MACR   ±2**s,QQ,d 1 — — —

MAX MAX A,B 1 — — —

MAXM MAXM A,B 1 — — —

MERGE MERGE   S,D 1 — — —

Table A-1.  Instruction Timing, Word Count, and Encoding  (Continued)

Instruction
Mnemonic

Instruction Format T + pru + lab + lim
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Instruction Timing and Restrictions
MOVE No   parallel data Move (DALU) 1 — — —

MOVE #xx,D 1 — — —

MOVE S,D 1 — — —

MOVE ea (U   move, address register update) 1 — — —

MOVE [x or y]:ea,D 1 1 1 1

MOVE S,[x or y]:ea 1 1 1 1

MOVE #xxxxxx,D 1 1 1 1

MOVE [x or y]:aa,D 1 — — —

MOVE [x or y]aa 2 — — —

MOVE   [x or y]:(Rn+xxx),D 2 — — —

MOVE S,[x or y]:(Rn+xxx) 2 — — —

MOVE [x or y]:(Rn+xxxx),D 3 — — —

MOVE S,[x or y]:(Rn+xxxx) 3 — — —

MOVE X:ea,D1,S2,D2 1 1 1 1

MOVE S1,S:ea S2,D2 1 1 1 1

MOVE #xxxxxx,D1 S2,D2 1 1 1 1

MOVE S1,D1 Y:ea,D2 1 1 1 1

MOVE S1,D1 S2,Y:ea 1 1 1 1

MOVE S1,D1 #xxxxxx,D2 1 1 1 1

MOVE A,X:ea X0,A 1 1 — —

MOVE B,X:ea X0,B 1 1 — —

MOVE   Y0 A,A,Y:ea 1 1 — —

MOVE cont. MOVE   Y0 B,B,Y:ea 1 1 — —

MOVE   L:ea,D 
MOVE S,L:ea

1 1 1 —

MOVE X:eax,D1 Y:eay,D2 1 — — —

MOVE X:eax,D1 S2,Y:eay 1 — — —

MOVE S1,X:eax Y:eay,D2 1 — — —

MOVE S1,X:eax S2,Y:eay 1 — — —

Table A-1.  Instruction Timing, Word Count, and Encoding  (Continued)

Instruction
Mnemonic

Instruction Format T + pru + lab + lim
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Overview
MOVEC MOVEC #xx,D1 1 — — —

MOVEC [x or y]:ea,D1 1 1 1 1

MOVEC S1,[x or y]:ea 1 1 1 1

MOVEC #xxxxxx,D1 1 1 1 1

MOVEC   [x or y]:aa,D1 1 — — —

MOVEC   S1,[x or y]:aa 1 — — —

MOVEC S1,D2 1 — — —

MOVEC S2,D1 1 — — —

MOVEM MOVEM S,P:ea 6 1 1 —

MOVEM P:ea,D 6 1 1 —

MOVEM S,P:aa 6 — — —

MOVEM P:aa,D 6 — — —

MOVEP MOVEP [x or y]:pp,[x or y]:ea 2 1 1 0

MOVEP [x or y]:ea,[x or y]:pp 2 1 1 0

MOVEP [x or y]:qq,[x or y]:ea 2 1 1 0

MOVEP [x or y]:ea,[x or y]:qq 2 1 1 0

MOVEP [x or y]:pp,P:ea 6 1 1 —

MOVEP P:ea,[x or y]:pp 6 1 1 —

MOVEP [x or y]:qq,P:ea 6 1 1 —

MOVEP P:ea,[x or y]:qq 6 1 1 —

MOVEP [x or y]:pp,D 1 — — —

MOVEP cont. MOVEP S,[x or y]:pp 1 — — —

MOVEP [x or y]:qq,D 1 — — —

MOVEP S,[x or y]:qq 1 — — —

MPY MPY   S1,S2,D (su,uu) 1 — — —

MPY   ± 2**s,QQ,d 1 — — —

MPYI MPYI (I)#xxxxxx,S,D 2 — — —

MPYR MPYR ± 2**s,QQ,d 1 — — —

MPYRI MPYRI ± #iiiiii,QQ,D 2 — — —

NOP NOP 1 — — —

NORM NORM 5 — — —

NORMF NORMF S,D 1 — — —

OR OR   #xx,D 2 — — —

OR   #iii,D 1 — — —

ORI OR(I) D 3 — — —

PFLUSH PFLUSH 1 — — —

Table A-1.  Instruction Timing, Word Count, and Encoding  (Continued)

Instruction
Mnemonic

Instruction Format T + pru + lab + lim
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Instruction Timing and Restrictions
A.2 Instruction Sequence Delays

Because of pipelining in the DSP56300 core, certain instruction sequences can cause a delay in 
the execution of instructions. Most of these sequences are caused by a source-destination conflict 
or by the need to access the external bus. There are six types of sequence delays:

� External bus wait states

� Instruction fetch delays

� Data ALU interlocks 

� Address register interlocks 

� Stack extension delays

� Program flow control delays

PFLUSHUN PFLUSHUN 1 — — —

PFREE PFREE 1 — — —

PLOCK PLOCK ea 2 1 1 —

PLOCKR PLOCKR (PC+aaaa) 4 — — —

PUNLOCK PUNLOCK ea 2 1 1 —

PUNLOCKR PUNLOCKR (PC+aaaa) 4 — — —

REP REP   #xxx 5 — — —

REP   S 5 — — —

REP [x or y]:ea 5 1 — —

REP   [x or y]:aa 5 — — —

RESET RESET 7 — — —

RTI/RTS RTI 3 — — —

RTS 3 — — —

STOP STOP 10 — — —

SUB SUB #xx,D 2 — — —

SUB   #iii,D 1 — — —

Tcc Tcc  S1,D1,S2,D2 1 — — —

Tcc   S1,D1 1 — — —

Tcc  S2,D2 1 — — —

TRAP/
TRAPcc

TRAP 9 — — —

TRAPcc 9 — — —

VSL VSL S,i,L:ea 1 1 1 —

WAIT WAIT 10 — — —

Table A-1.  Instruction Timing, Word Count, and Encoding  (Continued)

Instruction
Mnemonic

Instruction Format T + pru + lab + lim
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Instruction Sequence Delays
A.2.1   External Bus Wait States

An external bus wait state is caused by an instruction accessing the external bus for data read or 
write. The execution time of the instruction is increased by the number of clock cycles equal to 
the number of wait states programmed for that external data access. The exact number of wait 
states depends on the type of memory accessed. 

A.2.2   Instruction Fetch Delays

At an external instruction fetch, the effective number of stall states in the pipeline is the number 
specified in the Bus Control Register (BCR). 

A.2.3   Data ALU Interlock

A data ALU interlock is caused by one of the following sequences:

� Arithmetic stall. Occurs when an instruction uses one of the Data ALU registers (A0, A1, 
A2, B0, B1, or B2) or accumulators (A or B) as a source register for the move portion of 
the instruction when the preceding instruction is an arithmetic instruction1 that uses the 
same accumulator as its destination. Delays execution of the initiating instruction by one 
clock cycle.

� Transfer stall. Occurs when an instruction uses one of the Data ALU registers (A0, A1, 
A2, B0, B1, or B2) or accumulators (A or B) as a source register for the move portion of 
the instruction when the preceding instruction uses the corresponding accumulator or one 
of the Data ALU registers that comprise the accumulator as its destination register in the 
move portion of that instruction. Delays execution of the initiating instruction by one 
instruction cycle.

� Status stall. Occurs when an instruction reads the contents of the Status Register (SR) for 
either a move operation or bit testing and the preceding or the second preceding 
instruction is an arithmetic instruction. Delays execution of the initiating instruction by 
two instruction cycles for a move operation or one instruction cycle for bit testing.

A.2.4   Address Register Interlocks

An address register interlock is caused by one of the following sequences:

� Conditional Transfer Interlock. Occurs when a Transfer On-Condition (Tcc) instruction is 
followed by an instruction that explicitly specifies one of the address generation registers 
(R[0–7]) as its source operand. Delays execution of the second instruction by one 
instruction cycle.

� Address Generation Interlock. Occurs when the move portion of an instruction uses one of 
the AGU registers (R[0–7]) for address generation or for address calculation, while one of 

1. An arithmetic instruction uses the internal Data ALU data paths.
DSP56300 Family Manual, Rev. 5
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the three preceding instruction cycles uses one of the register set (Ri, Ni or Mi) members 
as a destination register in its move portion. Consider Example A-1.

In this example, instruction I6 causes an address generation interlock because it uses R0 as the 
source for address generation on the X Address Bus while the preceding instruction, I5, uses N0 
as its destination. Three types of address generation interlock exist: Type0, Type1, and Type2. 
These types depend on the clock cycle distance between the instruction causing the interlock and 
the preceding instruction that uses the AGU register as a destination. Figure A-1 gives an 
example of each interlock type:

When a Type0 address generation interlock is detected (during the decoding of I2 in the 
example), three NOP clock cycles are automatically inserted before execution of the instruction 
starts. When a Type1 interlock is detected (during the decoding of I3 in the example), two NOP 
clock cycles are automatically inserted before the execution of the instruction starts. When a 
Type2 interlock is detected (during the decoding of I4 in the example), one NOP clock cycle is 
inserted before execution of the instruction starts.

Note: Only clock cycles are counted to determine when interlock cycles should be inserted.

Example A-1.    Address Generation Interlock

I1 MOVE #$addr,R0

I2 NOP

I3 NOP

I4 NOP

I5 MOVE #$offset,N0

I6 MOVE X:(R0)+,Y1

Figure A-1.  Types of Address Generation Interlock

 Type0 Interlock

 I1 MOVE #$addr,R0

 I2 MOVE X:(R0)+,Y1

 Type1 Interlock

 I1 MOVE #$addr,R0

 I2 CLR A

 I3 MOVE X:(R0)+,Y1

 Type2 Interlock

 I1 MOVE #$addr,R0

 I2 CLR A

 I3 INC B

 I4 MOVE X:(R0)+,Y1

Three NOP instructions
are inserted

Two NOP instructions
are inserted

One NOP instruction 
is inserted
DSP56300 Family Manual, Rev. 5
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When an instruction using one of the AGU registers as an address generation enters the decoding 
stage of the DSP56300 core, the distance from that instruction to the preceding instruction using 
the register as destination is measured in clock cycles to determine the existence and type of 
address generation interlock. Once an address generation interlock is detected, the appropriate 
number of NOP clock cycles is inserted. The following instructions take these additional cycles 
into account for detecting a possible new address generation interlock. Example A-2 
demonstrates this feature.

In this example, a Type1 interlock is detected during the decoding phase of I 3 and two NOP 
cycles are inserted before that instruction executes. During the decoding of I4, no address 
generation interlock is detected, so no NOP cycles are inserted. However, if I3 were an 
instruction that did not use R0, a Type2 address generation interlock would be detected during 
the decoding phase of I4, and one NOP cycle would be inserted before the instruction executes.

A.2.5   Stack Extension Delays

Some instructions access the System Stack (SS) as part of their normal activity. When the SS is 
either completely full or empty, the special stack extension mechanism is engaged and the access 
completes only after an access to data memory is automatically performed. This delays the 
decoding and the execution phases of that instruction. A stack-full or a stack-empty state is 
defined by the contents of the Stack Counter (SC) register. When the stack counter equals 14, the 
on-chip hardware stack contains fourteen words (a stack word is a 48-bit long word combined 
from the low and the high portions of the stack). The stack is declared as stack-full, and any 
additional push operation activates the stack extension mechanism. When the stack counter 
equals 2, the on-chip hardware stack contains only two words. The stack is declared as 
stack-empty, and any additional pop operations activate the stack extension mechanism. The 
instructions/cases listed in Table A-2 cause an access to the system stack and may engage the 
stack extension mechanism. 

:

Example A-2.    Detection of Address Generation Interlock

I1 MOVE #$addr,R0

I2 CLR A

I3 MOVE X:(R0)+,Y1

I4 MOVE X:(R0)+,Y0

Table A-2.  Instructions That Access the System Stack  

Instruction Description

JSR, Jcc All the conditional and unconditional Jump to Subroutine instructions (e.g., JSR, JSSET, and so on). 
These instructions perform a stack PUSH operation that stores the PC and the SR on top of the stack for 
the use of the ‘Return from Subroutine’ instruction that terminates the subroutine execution.
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Table A-3 shows how many clock cycles are added in the various instructions/cases described. 
:

A.2.6   Program Flow Control Delays

When flow-control instructions execute, some boundary cases exist and introduce pipeline 
interlocks into the program flow. These interlocks lengthen the decoding phase of the 
instructions, thus delaying execution. The following sequences represent unusual operations that 
will probably never be used. The detection of these cases and the generation of interlocks is done 
to maintain object code compatibility between the DSP56300 core and the 56000 family of DSPs. 
The following terms are used in this discussion:

RET The two Return from Subroutine instructions, RTS and RTI. These instructions perform a stack POP 
operations that pulls the PC and (optionally) the SR out from the top of stack in order to return to the 
calling procedure and restore the status bits and loop flag state.

END-OF-DO A condition of the hardware inside the Program Control Unit. This hardware detects a fetch from the last 
address of a loop initiated when the Loop Counter equals 1. This condition defines the end of the loop, 
thus performing a stack POP operation. This POP operation restores the loop flag, purges the top of 
stack (PC:SR), and pulls LA and LC from the new top of stack.

LOOP All the hardware-loop initiating instructions (e.g., DO) with all their options. These instructions perform a 
stack double-PUSH operation that first stores the previous values of LA and LC on top of the stack. Then 
the DO instruction stores the contents of SR and PC on the new top of stack. This PC value is used every 
loop iteration to return to the top of loop location and start fetch from there. DO performs two accesses to 
the stack instead of the normal single access done by most stack operations.

ENDDO A special instruction that forces an end-of-do condition during a hardware loop. Like END-OF-DO, 
ENDDO performs two accesses to the stack instead of the normal single access done by most stack 
operations.

SSHWR All the explicit stack PUSH instructions that use SSH as their destination (e.g., the MOVE R0,SSH 
instruction).

SSHRD All the explicit stack POP instructions that use SSH as their source (e.g., the MOVE SSH,Y1 instruction).

Table A-3.  Stack Extension Delays  

CASE
Stack Full Condition

( + clock cycles )
Stack Empty Condition

( + clock cycles )

JSR, Jcc 2 —

RET — 3

END-OF-DO — 5

DO 4 —

ENDDO — 5

SSHWR 2 —

SSHRD — 3

Table A-2.  Instructions That Access the System Stack  (Continued)

Instruction Description
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� I1: An address of an instruction, where I2, I3, and I4 indicate the next instructions in the 
program flow 

� MOVE: any type of MOVE, MOVEM, MOVEP, MOVEC, BSET, BCHG, BCLR, and 
BTST 

� LA: the last address of a DO LOOP 

� (LA – 1): the address of an instruction word located at LA – 1 

� CR: Control Register, every one of the registers LA, LC, SR, SP, SSH, SSL, and OMR 

A.2.6.1   JMP to LA or to LA – 1

When I1 is any type of JMP with its target address equal to LA, the decoding phase of the 
instruction following the instruction at LA is delayed by 2 clock cycles. When I1 is any type of 
JMP with its target address equal to LA – 1, the decoding phase of the instruction following the 
instruction at LA is delayed by one clock cycle.

A.2.6.2   RTI to LA or to LA – 1

When I1 is an RTI instruction whose return address is LA, the decoding phase of the instruction 
following the instruction at LA is delayed by two clock cycles. When I1 is an RTI instruction 
whose return address is LA – 1, the decoding phase of the instruction following the instruction at 
LA is delayed by one clock cycle.

A.2.6.3   Conditional Instructions

When I1 is a conditional change of flow instruction (such as Jcc) and the condition is false, the 
decoding phase of I2 is delayed by one clock cycle.

A.2.6.4   Interrupt Abort

When I1 is an instruction with a decoding phase that is longer than one cycle, it may be aborted 
by the Interrupt Control Unit. In this case, a one clock cycle “hole” is inserted into the pipeline, 
after which the instruction at the interrupt vector is decoded.

A.2.6.5   Degenerated DO loop

When I1 is a DO loop but the loop contains only one instruction, the decoding phase of I1 is 
lengthened by one clock cycle.

A.2.6.6   Annulled REP and DO

If the repeat count of a REP instruction is zero, the decoding phase of the REP instruction is 
lengthened by one clock cycle. If the repeat count of a DO instruction is zero, the decoding phase 
of the DO instruction is lengthened by three clock cycles.
DSP56300 Family Manual, Rev. 5
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A.3 Instruction Sequence Restrictions

Because of the pipelining in the DSP56300 core central processor, certain instruction sequences 
are forbidden. Use of these sequences causes undefined operation. Most of these restricted 
sequences cause contention for an internal resource, such as the Stack Register. The DSP 
Assembler flags these as assembly errors. The following terms are used in this discussion:

� MOVE: any type of MOVE, MOVEM, MOVEP, MOVEC 

� MOVEM: any type of MOVE to/from the Program space 

� LA: the last address of a DO LOOP

� Two-words <inst>: a double-word instruction in which the second word is used as an 
immediate data or absolute address

� Single-word <inst>: an instruction with an addressing mode that does not need a second 
word extension

A.3.1   Restrictions Near the End of DO Loops

Proper DO loop operation is not guaranteed for an instruction sequence similar to one of the 
following sequences.

� At LA – 5: The following instructions should not start at address LA – 5:

— Single-word or two-word MOVE to {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}
— BCHG, BSET, BCLR on {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}

� At LA – 4: The following instructions should not start at address LA – 4:

— Single-word or two-word MOVE to {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}
— BCHG, BSET, BCLR on {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}

� At LA – 3: The following instructions should not start at address LA – 3:

— BCHG, BSET, BCLR on {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}
— MOVE to {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}
— MOVE from SSH, SSL
— Two-word JMP, Jcc, JSR, JScc
— JSET, JCLR, JSSET, JSCLR
— Two-word MOVEM

� At LA – 2: The following instructions should not start at address LA – 2:

— DO, DOR, DO FOREVER
— MOVE to/from {LA, LC, SP,SC, SSH, SSL,SZ, VBA, OMR}
— BCHG, BSET, BCLR, BTST on {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}
— JMP, Jcc, JSR, JScc, JSET, JCLR, JSSET, JSCLR, BRA, Bcc, BSR, BScc
— MOVEM
— ANDI, ORI on MR
— BRKcc, ENDDO, REP
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— STOP, WAIT, DEBUG, DEBUGcc, TRAP, TRAPcc, ILLEGAL

� At LA – 1: The following instructions should not start at address LA – 1:

— DO, DOR, DO FOREVER
— MOVE to/from {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}
— BCHG, BSET, BCLR, BTST on {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}
— JMP, Jcc, JSR, JScc, JSET, JCLR, JSSET, JSCLR, BRA, Bcc, BSR, BScc
— MOVEM
— ANDI, ORI on MR
— BRKcc, ENDDO, REP
— STOP, WAIT, DEBUG, DEBUGcc, TRAP, TRAPcc, ILLEGAL

A one-word conditional branch instruction at LA-1 is not allowed.

When two consecutive LAs have a conditional branch instruction at LA-1 of the internal 
loop, the device does not operate properly. For example, the following sequence may 
generate incorrect results:

DO #5, LABEL1 
NOP 
DO #4, LABEL2 
NOP  
MOVE (R0) + 
BSCC _DEST ; conditional branch at LA-1 of internal loop 
NOP ; internal LA 

LABEL2 
NOP ; external LA 

LABEL1 
NOP  
NOP  

_DEST NOP 
NOP  
RTS 

Workaround: Put an additional NOP between LABEL2 and LABEL1.

� At LA: The following instructions should not start at address LA:

— Any two-word instruction
— MOVE to {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}
— MOVE from SSH, SSL
— BCHG, BSET, BCLR on {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}
— BTST on SSH
— JMP, JSR, BRA, BSR, Jcc, JScc, Bcc, BScc
— MOVE to/from Program space {MOVEM, MOVEP (only the P space options).
— RESET
— RTI, RTS
— ANDI, ORI on MR
— BRKcc, ENDDO, REP
— STOP, WAIT, DEBUG, DEBUGcc, TRAP, TRAPcc, ILLEGAL
DSP56300 Family Manual, Rev. 5

Freescale Semiconductor A-15



Instruction Timing and Restrictions
A.3.2   General DO Restrictions

The general restrictions on DO instructions are as follows: 

� A DO loop should be initialized and aborted using only the following instructions: DO, 
DOR, DO FOREVER, ENDDO, and BRKcc. 

� The LF and the FV bits in the Status Register (SR) should not be explicitly changed using 
the MOVE, BCHG, BSET, BCLR, ANDI, or ORI instructions.

� Proper DO loop operation is not guaranteed if an instruction sequence similar to one of the 
following sequences is used.

— SSH cannot be used as the source for the Loop-Count for a DO, DOR, or a DO 
FOREVER instruction.

— The following instructions should not appear within four words before a DO, DOR, or 
DO FOREVER:

• BCHG, BCLR, BSET, MOVE on/to SSH,SSL

• BCHG, BCLR, BSET, MOVE on/to SP, SC

— The following instructions should not appear immediately before a DO, DOR, or DO 
FOREVER:

• MOVE from SSH

• BTST on SSH

• BCHG, BCLR, BSET, MOVE to/on {LA, LC, SP, SC, SSH, SSL}

• JSR, JScc, JSSET, JSCLR to LA whenever LF is set

• BSR, BScc, to LA whenever LF is set

When Stack Extension mode is enabled, use of the BRKcc or ENDDO instructions inside DO 
loops may cause an improper operation. If the loop is not nested and has no nested loop inside it, 
this restriction is relevant only if LA or LC values are in use outside the loop. If Stack Extension 
is used, emulate the BRKcc or ENDDO as shown in the following examples in which there is a 
split between two cases, finite DO loops and DO FOREVER loops.

Example A-3.   Finite DO Loops
BRKcc

Original code:

do #N,label1 
..... 
..... 

do #M,label2 
..... 
..... 
BRKcc 
..... 
..... 

label2 
..... 
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..... 
label1

Will be replaced by:

do #N, label1 
..... 
..... 

do #M, label2 
..... 
..... 
Jcc     fix_brk_routine 
..... 
.....

nop_before_label2 
nop     ; This instruction must be NOP. 

label2 
..... 
..... 

label1 
.... 
....

fix_brk_routine 
move #1,lc 
jmp  nop_before_label2

ENDDO 
------ 
Original code:

do #M,label1 
..... 
..... 

do #N,label2 
..... 
..... 
ENDDO 
..... 
..... 

label2 
..... 
..... 

label1

Will be replaced by:

do #M, label1 
..... 
..... 

do #N, label2 
..... 
..... 
JMP     fix_enddo_routine

nop_after_jmp 
NOP  ; This instruction must be NOP. 
..... 
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..... 
label2 

..... 

..... 
label1 
.... 
....

fix_enddo_routine 
move #1,lc 
move #nop_after_jmp,la 
jmp  nop_after_jmp

Example A-4.   DO FOREVER Loops
BRKcc 
----- 
Original code:

do #M,label1 
..... 
..... 

do forever,label2 
..... 
..... 
BRKcc 
..... 
..... 

label2 
..... 
..... 

label1

Will be replaced by:

do #M,label1 
..... 
..... 

do forever,label2 
..... 
..... 
JScc    fix_brk_forever_routine; <---  

note: JScc and not Jcc 
..... 
.....

nop_before_label2 
nop     ; This instruction must be NOP. 

label2 
..... 
..... 

label1 
.... 
....

fix_brk_forever_routine 
move ssh,x:<..>  ; <..> is some reserved not used 

address (for temporary data) 
move #nop_before_label2,ssh 
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bclr #16,ssl     ; 
move #1,lc 
rti              ; <---- note: "rti" and not "rts"!

ENDDO 
------ 
Original code:

do #M,label1 
..... 
.....

do forever,label2 
..... 
..... 
ENDDO 
..... 
..... 

label2 
..... 
..... 

label1

Will be replaced by:

do #M,label1 
..... 
..... 

do forever,label2 
..... 
..... 
JSR     fix_enddo_routine ; <--- note:  

JSR and not JMP 
nop_after_jmp 

NOP ; This instruction should be NOP 
..... 
..... 

label2 
..... 
..... 

label1 
.... 
....

fix_enddo_routine 
nop 
move #1,lc 
bclr #16,ssl 
move #nop_after_jmp,la 
rti ; <--- note: "rti" and not "rts"
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A.3.3   ENDDO Restrictions

The instructions in the following list should not appear within four words before an ENDDO 
instruction:

� BCHG, BCLR, BSET, MOVE on/to SSH,SSL

� BCHG, BCLR, BSET, MOVE on/to SP, SC

The instructions in the following list should not appear immediately before an ENDDO 
instruction:

� ANDI, ORI on MR

� MOVE from SSH

� BTST on SSH

� BCHG, BCLR, BSET, MOVE on/to {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}

A.3.4   BRKcc Restrictions

The instructions in the following list should not appear immediately before a BRKcc instruction:

� Every arithmetic instruction

� IFcc, Tcc

� BCHG, BCLR, BSET, MOVE on/to {LA, LC, SP, SC, SSH, SSL, SZ, VBA, OMR}

A.3.5   RTI and RTS Restrictions

The instructions in the following list should not appear immediately before an RTI instruction:

� MOVE, BCHG, BCLR, BSET on {SSH, SSL, SP, SC}

� MOVE, BTST from/on SSH

� ANDI, ORI on {MR, CCR}

� ENDDO

The instructions in the following list should not appear immediately before an RTS instruction:

� MOVE, BCHG, BCLR, BSET on {SSH, SSL, SP, SC}

� MOVE, BTST from/on SSH

� ENDDO

A.3.6   SP/SC and SSH/SSL Manipulation Restrictions

The instructions in List A should not be executed within four instructions before executing any of 
the instructions in List B.
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List A

� MOVE to (SP, SC)

� BCHG, BSET, BCLR on (SP, SC)

List B 

� MOVE to/from {SSH,SSL}

� BTST, BCHG, BSET, BCLR on {SSH,SSL}

� JSET, JCLR, JSSET, JSCLR on {SSH,SSL}

A.3.7   Fast Interrupt Routines

The following instructions cannot be used in a fast interrupt routine:

� DO, DO FOREVER, REP

� ENDDO, BRKcc 

� RTI, RTS

� STOP, WAIT

� TRAP, TRAPcc

� ANDI, ORI on {MR, CCR}

� MOVE from SSH

� BTST on SSH

� MOVE to {LA, LC, SP, SC, SSH, SSL}

� BCHG, BSET, BCLR on {LA, LC, SP, SC, SSH, SSL}

A.3.8   REP Restrictions

The REP instruction can repeat any single-word instruction except the REP instruction itself and 
any instruction that changes program flow. The following instructions are not allowed to follow a 
REP instruction (cannot be repeated):

� REP, DO, DO FOREVER

� ENDDO, BRKcc

� JMP, Jcc, JCLR, JSET

� JSR, JScc, JSCLR, JSSET

� BRA, Bcc

� BSR, BScc

� RTS, RTI

� TRAP, TRAPcc

� WAIT, STOP
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When an instruction with all the following conditions follows a repeat instruction, then the last 
move will be corrupted:

� The repeated instruction is from external memory.

� The repeated instruction is a DALU instruction that includes two DALU registers, one as a 
source, and one as destination (for example, tfr, add).

� The repeated instruction has a double move in parallel to the DALU instruction: one 
move’s source is the destination of the DALU instruction (causing a DALU interlock); the 
other move’s destination is the source of the DALU instruction. 

Example: 

In this example, the second iteration before the last, the "x(r0)+,x0" does not happen. On the first 
iteration before the last, the X0 register is fixed with the "x(r0)+,x0", but the "tfr  x0,a" gets the 
wrong value from the previous iteration’s X0. Thus, at the last iteration the A register is fixed 
with "tfr  x0,a", but the "a,y0" transfers the wrong value from the previous iteration’s A register to 
Y0. 

Workaround: 

1. Use the DO instruction instead; mask any necessary interrupts before the DO. 

2. Run the REP instructions from internal memory. 

3. Do not make DALU interlocks in the repeated instruction. After the repeat make the 
move. In the example above, all the "move a,y0" are redundant so it can be done in the 
next instruction: 

rep #number 
tfr x0,a    x:(r0)+,x0  
move a,y0 

If you must have no interrupts before the move, mask the interrupts before the REP instruction.

A.3.9   Stack Extension Restrictions

The following instructions, related to the operation of the on-chip hardware stack extension, 
cannot be used whenever the stack extension is enabled:

� MOVE to EP

� BCHG, BSET, BCLR on EP

� MOVE to SC with a value greater than 15

rep #number

tfr x0,a x:(r0)+,x0 a,y0 ;This instruction is from external memory

This is condition 3, second part

This is condition 3, first part-DALU interlock
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The following instructions, related to the operation of the on-chip hardware stack extension, 
cannot be placed in the stack error vector locations whenever the stack extension is enabled:

� JSR, JScc, JSCLR, JSSET

� BSR, BScc

A.3.10   Stack Extension Enable Restrictions

When stack extension is enabled, the  read result from stack may be improper if two previous 
executed instructions cause sequential read and write operations with SSH. Two cases are 
possible: 

� Case 1: 

— For the first executed instruction: move from SSH or bit manipulation on SSH (that is, 
JCLR, BRCLR, JSET, BRSET, BTST, BSSET, JSSET, BSCLR, JSCLR). 

— For the second executed instruction: move to SSH or bit manipulation on SSH (that is, 
JSR, BSR, JScc, BScc).

— For the third executed instruction: an SSL or SSH read from the stack result may be 
improper. Move from SSH or SSL or bit manipulation on SSH or  SSL (that is, BSET, 
BCLR, BCHG, JCLR, BRCLR, JSET, BRSET, BTST, BSSET, JSSET, BSCLR, 
JSCLR).

Workaround: Add two NOP instructions before the third executed instruction.

� Case 2: 

— For the first executed instruction: bit manipulation on SSH (that is, BSET, BCLR, 
BCJG).

— For the second executed instruction: an SSL or SSH read from the stack result may be 
improper. Move from SSH or SSL or bit manipulation on SSH or  SSL (that is, BSET, 
BCLR, BCHG, JCLR, BRCLR, JSET, BRSET, BTST, BSSET, JSSET, BSCLR, 
JSCLR).

Workaround: Add two NOP instructions before the second executed instruction.

A.4 Peripheral Pipeline Restrictions

The DSP56300 core is based on a highly optimized pipeline engine. Despite the relatively deep 
pipeline (seven stages), the latency effects normally associated with long pipelines are minimal 
because most of these effects are transparent to the user. Such design techniques as forwarding 
and interlocking alleviate the need for a thorough knowledge of the machine’s pipeline in order to 
avoid data dependencies. This knowledge becomes necessary only when you are further 
optimizing the code. The assembler detects when transparency does not exist (for example, 
pointer restrictions) and generates an appropriate warning message. However, the pipeline is 
exposed to the user during peripheral activity. This section describes the cases in which you must 
take precautions in order to achieve the desired functionality.
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Instruction Timing and Restrictions
A.4.1   Polling a Peripheral Device for Write

When data is written to a peripheral device, there is a two-cycle pipeline delay until any status 
bits affected by this operation are updated. For example, you operate a peripheral port using the 
polling technique. You look for the Data Empty flag to be set, and when it is set, you write new 
data to the Transmit Data Register. If you try to read the status bit within the next two cycles, the 
flag is mistakenly read as set due to the pipeline delays associated with the peripheral operations. 
Therefore, if you assume that the Transmit Data Register is empty and write a new data word, 
this data word overwrites the previously written data. To achieve the correct functionality, you 
must wait at least two cycles before attempting to read the Status Register after a write to the 
Transmit Data register. Example A-5 shows the correct sequence for transmit operations.

A.4.2   Writing to a Read-Only Register

Writing to a read-only register is an operation that normally has no effect, but if a read operation 
from the same register is attempted within the following two cycles, the value of the read data is 
the value of the data that was written instead of the unchanged data of the read-only register. To 
ensure that the correct data is read after the write operation, you must wait at least two cycles 
before performing the read. 

A.4.3   XY Memory Data Move

An XY memory data move does not work properly in either of the following situations:

� The X-memory move destination is internal I/O and the Y-memory move source is a 
register used as destination in the previous adjacent move from non Y-memory.

� The Y-memory move destination is a register used as source in the next adjacent move to 
non Y-memory.

Following are examples cases (where x:(r1) is a peripheral):

Example 1:

move #$12,y0  
move x0,x:(r7) y0,y:(r3) (while x:(r7) is a peripheral).

Example A-5.    Providing a Wait for Proper Data Writes  

send
movep x:(r0)+,x:STX ; send new data
nop ; pipeline delay
nop ; pipeline delay

poll
jclr #TDE,x:SCSR,poll ; wait for data empty
jmp send ; go to send data
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Sixteen-Bit Compatibility Mode Restrictions
Example 2:

mac     x1,y0,a x1,x:(r1)+      y:(r6)+,y0 
move    y0,y1

To address this problem, use one of the following alternatives:

� Separate these two consecutive moves by any other instruction.

� Split the XY Data Move to two moves.

A.5 Sixteen-Bit Compatibility Mode Restrictions

When there is a return from a long interrupt (by the RTI instruction), and the first instruction after 
the RTI is a move to a DALU register (A, B, X, Y), the move may not be correct if the 16-bit 
arithmetic mode bit (SR[17] bit) is changed due to restoring SR after RTI. To address this 
problem, replace the RTI with the following sequence:

movec   ssl,sr 
nop 
rti
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Benchmark Programs B
The following benchmarks illustrate the source code syntax and programming techniques for the 
DSP56300 core. Initialization cycles are not taken into account. Table B-1 lists the DSP 
benchmark programs provided in this appendix.

Table B-1.  List of Benchmark Programs  

Benchmark Page
Number
of Words

Clock
Cycles

Sample Rate or Execution 
Time for 

60 MHz Clock Cycle

Real Multiply page B-2 3 4 67  ns

N Real Multiplies page B-3 7 2N + 6 33.3N + 99.9 ns

Real Update page B-4 4 5 83  ns

N Real Updates page B-4 9 2N + 8 33.3N + 133.6 ns

Real Correlation or Convolution (FIR Filter) page B-5 6 N + 10 60/(N + 10) MHz

Real * Complex Correlation or Convolution 
(FIR Filter)

page B-6 11 2N + 11 30/(N + 5) MHz

Complex Multiply page B-7 6 7 117 ns

N Complex Multiplies page B-8 9 4N + 9 66.7N + 150.3 ns

Complex Update page B-9 7 8 133 ns

N Complex Updates page B-10 9/11 5N + 9 66.7N + 150.3 ns

Complex Correlation or Convolution (FIR 
Filter)

page B-12 16 4N + 13 30/(2N + 5.5) MHz

Nth Order Power Series (Real) page B-13 10 2N + 11 33.3N + 183.7 ns

Second Order Real Biquad IIR Filter page B-14 7 9 150.3 ns

N Cascaded Real Biquad IIR Filter page B-15 10 5N + 10 12/(N + 2) MHz

N Radix-2 FFT Butterflies (DIT, In-Place 
Algorithm)

page B-16 12 8N + 9 133.6N + 150.3 ns

True (Exact) LMS Adaptive Filter page B-18 15 3N + 16 60/(3N + 17) MHz

Delayed LMS Adaptive Filter page B-20 13 3N + 12 60/(3N + 12) MHz

FIR Lattice Filter page B-22 10 3N + 10 60/(3N + 10) MHz

All Pole IIR Lattice Filter page B-23 12 4N + 8 30/(2N + 4) MHz

General Lattice Filter page B-25 14 5N + 19 60/(5N + 19) MHz

Normalized Lattice Filter page B-27 15 5N + 19 60/(5N + 19) MHz

[1 × 3][3 × 3] Matrix Multiplication page B-29 13 14 233.3 ns
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Benchmark Programs
The following benchmarks illustrate the source code syntax and programming techniques for the 
DSP56300 core. The assembly language source is organized into six columns, as shown in Table 
B-2. 

B.1 Real Multiply
 Equation 1

N Point 3 × 3 2-D FIR Convolution page B-30 19 11N2 + 9N + 6 60/(11N2 + 9N + 6) MHz

Viterbi Add-Compare Select (ACS) page B-32 14 10N + 9 60/(10N + 9) MHz

Parsing a Data Stream page B-36 12 13 216.67 ns

Creating a Data Stream page B-38 12 14 233.3 ns

Parsing a Hoffman Code Data Stream page B-40 22 22 366.3 ns

Table B-2.  Example of Assembly Language Source

Label Opcode Operands X Bus Data Y Bus Data Comment P T

FIR MAC X0,Y0,A X:(R0)+,X0 Y:(R4)+,Y0 ;Do each tap 1 1

Column Legend:

Label For program entry points and end of loop indication

Opcode Indicates the Data ALU, Address ALU, or Program Controller operation to be performed; 
Opcode column must always be included in the source code

Operands Specifies the operands used by the opcode

X Bus Data Specifies an optional data transfer over the X Bus and the addressing mode to be used

Y Bus Data Specifies an optional data transfer over the Y Bus and the addressing mode to be used

Comment For documentation purposes; does not affect the assembled code

P Provides the number of Program words used by the operation; should not be included in 
the source code

T Provides the number of clock cycles used by the operation; should not be included in the 
source code

Table B-3.  Real Multiply

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move x:(r0),x0 y:(r4),y0 ; 1 1

Table B-1.  List of Benchmark Programs  (Continued)

Benchmark Page
Number
of Words

Clock
Cycles

Sample Rate or Execution 
Time for 

60 MHz Clock Cycle

c a b×=
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N Real Multiplies
B.2 N Real Multiplies
 Equation 2

mpyr x0,y0,a ; 1 1

move a,x:(r1) ; 1 2 i’lock

Totals 3 4

Table B-4.  N Real Multiplies Memory Map

Pointer X memory Y memory

r0 a(i)

r4 b(i)

r1 c(i)

Example B-1.   N Real Multiplies  

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0 ;

move #BADDR,r4 ;

move #CADDR,r1 ;

move x:(r0)+,x0 y:(r4)+,y0 ; 1 1

mpyr x0,y0,a x:(r0)+,x0 y:(r4)+,y0 ; 1 1

do #N-1,end ; 2 5

mpyr x0,y0,a a,x:(r1)+ y:(r4)+,y0 ; 1 1

move x:(r0)+,x0 ; 1 1

end ;

move a,x:(r1)+ ; 1 1

Totals 7 2N + 6

Table B-3.  Real Multiply

Label Opcode Operands X Bus Data Y Bus Data Comment P T

c i( ) a i( ) b i( )× i 1 2 … N, , ,==
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Benchmark Programs
B.3 Real Update
 Equation 3

B.4 N Real Updates
 Equation 4

Example B-2.   Real Update  

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0

move #BADDR,r4

move #CADDR,r1

move #DADDR,r2

move x:(r0),x0 y:(r4),y0 ; 1 1

move x:(r1),a ; 1 1

macr x0,y0,a ; 1 1

move a,x:(r2) ; 1 2 i’lock

Totals 4 5

Table B-5.  N Real Updates Memory Map

Pointer X memory Y memory

r0 a(i)

r4 b(i)

r1 c(i)

r5 d(i)

Example B-3.   N Real Updates  

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0 ;

move #BADDR,r4 ;

d c a b×+=

d i( ) c i( ) a i( ) b i( )×+= i 1 2 … N, , ,=
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Real Correlation or Convolution (FIR Filter)
B.5 Real Correlation or Convolution (FIR Filter)
 Equation 5

move #CADDR,r1 ;

move #DADDR,r5 ;

move x:(r0)+,x0 y:(r4)+,y0 ; 1 1

move x:(r1)+,a ; 1 1

move x:(r1)+,b ; 1 1

do #N/2,end ; 2 5

macr x0,y0,a x:(r0)+,x1 y:(r4)+,y1 ; 1 1

macr x1,y1,b x:(r0)+,x0 y:(r4)+,y0 ; 1 1

move x:(r1)+,a a,y:(r5)+ ; 1 1

move x:(r1)+,b b,y:(r5)+ ; 1 1

end

Totals 9 2N + 8

Table B-6.  Real Correlation or Convolution (FIR Filter) Memory Map

Pointer X memory Y memory

r0 a(i)

r4 b(i)

Example B-4.   Real Correlation or Convolution (FIR Filter)  

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0

move #BADDR,r4 ;

move #N-1,m4 ;

move m4,m0 ;

Example B-3.   N Real Updates  (Continued)

c n( ) a i( ) b n i–( )×[ ]

i 0=

N 1–

∑=
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Benchmark Programs
B.6 Real * Complex Correlation or Convolution (FIR Filter)
 Equation 6

 

movep y:input,y:(r4) ; 1 2

clr a x:(r0)+,x0 y:(r4)-,y0 ; 1 1

rep #N-1 ; 1 5

mac x0,y0,a x:(r0)+,x0 y:(r4)-,y0 ; 1 1

macr x0,y0,a (r4)+ ; 1 1

movep a,y:output ; 1 2 i’lock

Totals 6 N + 10

Table B-7.  Real * Complex Correlation or Convolution (FIR Filter) Memory Map

Pointer X memory Y memory

r0 ar(i) ai(i)

r4 b(i)

r1 cr(n) ci(n)

Example B-5.   Real * Complex Correlation or Convolution (FIR Filter)  

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0 ;

Example B-4.   Real Correlation or Convolution (FIR Filter)  (Continued)

cr n( ) jci n( ) ar i( ) jai i( )+( ) b n i–( )×[ ]

i 0=

N 1–

∑= =

cr n( ) ar i( ) b n i–( )×

i 0=

N 1–

∑= ci n( ) ai i( ) b n i–( )×

i 0=

N 1–

∑=
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Complex Multiply
B.7 Complex Multiply
 Equation 7

 

move #BADDR,r4 ;

move #CADDR,r1 ;

move #N-1,m4 ;

move m4,m0 ;

movep y:input,x:(r4) ; 1 2

clr a x:(r0),x0 ; 1 1

clr b x:(r4)-,x1 y:(r0)+,y0 ; 1 1

do #N-1,end ; 2 5

mac x0,x1,a x:(r0),x0 ; 1 1

mac y0,x1,b x:(r4)-,x1 y:(r0)+,y0 ; 1 1

end

Label Opcode Operands X Bus Data Y Bus Data Comment P T

macr x0,x1,a ; 1 1

macr y0,x1,b (r4)+ ; 1 1

move a,x:(r1) ; 1 1

move b,y:(r1) ; 1 1

Totals 11 2N + 11

Table B-8.  Complex Multiply Memory Map

Pointer X memory Y memory

r0 ar ai

r4 br bi

r1 cr ci

Example B-5.   Real * Complex Correlation or Convolution (FIR Filter)  (Continued)

cr jci+ ar jai+( ) br jbi+( )×=

cr ar br ai bi×–×= ci ar bi ai br×+×=
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Benchmark Programs
B.8 N Complex Multiplies
 Equation 8

 

Example B-6.   Complex Multiply  

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0

move #BADDR,r4

move #CADDR,r1

move x:(r0),x1 y:(r4),y0 ; 1 1

mpy y0,x1,b x:(r4),x0 y:(r0),y1 ; 1 1

macr x0,y1,b ; 1 1

mpy x0,x1,a ; 1 1

macr -y0,y1,a b,y:(r1) ; 1 1

move a,x:(r1) ; 1 2 i’lock

Totals 6 7

Table B-9.  N Complex Multiplies Memory Map

Pointer X memory Y memory

r0 ar(i) ai(i)

r4 br(i) bi(i)

r5 cr(i) ci(i)

Example B-7.   N Complex Multiplies  

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0 ;

move #BADDR,r4 ;

move #CADDR-1,r5 ;

move x:(r0),x1 y:(r4),y0 ; 1 1

move x:(r5),a ; 1 1

cr i( ) jci i( )+ ar i( ) jai i( )+( ) br i( ) jbi i( )+( )×= i 1 2 … N, , ,=

cr i( ) ar i( ) br i( ) ai i( ) bi× i( )–×=

ci i( ) ar i( ) bi i( ) ai i( ) br×+× i( )=
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Complex Update
B.9 Complex Update
 Equation 9

  

do #N,end ; 2 5

mpy y0,x1,b x:(r4)+,x0 y:(r0)+,y1 ; 1 1

macr x0,y1,b a,x:(r5)+ ; 1 1

mpy -y0,y1,a y:(r4),y0 ; 1 1

macr x0,x1,a x:(r0),x1 b,y:(r5) ; 1 1

end

move a,x:(r5) ; 1 2 i’lock

Totals 9 4N + 9

Table B-10.  Complex Update Memory Map

Pointer X memory Y memory

r0 ar ai

r4 br bi

r1 cr ci

r2 dr di

Example B-8.   Complex Update 

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0

move #BADDR,r4

move #CADDR,r1

move #DADDR,r2

move y:(r1),b ; 1 1

move x:(r0),x1 y:(r4),y0 ; 1 1

mac y0,x1,b x:(r4),x0 y:(r0),y1 ; 1 1

macr x0,y1,b x:(r1),a ; 1 1

Example B-7.   N Complex Multiplies  (Continued)

dr jdi+ cr jci+( ) ar jai+( ) br jbi+( )×+=

dr cr ar br ai bi×–×+= di ci ar bi ai br×+×+=
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Benchmark Programs
B.10 N Complex Updates
 Equation 10

mac x0,x1,a ; 1 1

macr -y0,y1,a b,y:(r2) ; 1 1

move a,x:(r2) ; 1 2 i’lock

Totals 7 8

Table B-11.  N Complex Updates Memory Map

Pointer X memory Y memory

r0 ar(i) ; ai(i)

r4 br(i) ; bi(i)

r1 cr(i) ; ci(i)

r5 dr(i) ; di(i)

Example B-9.   N Complex Updates  

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0 ;

move #BADDR,r4 ;

move #CADDR,r1 ;

move #DADDR-1,r5 ;

move x:(r0)+,x1 y:(r4)+,y0 ; 1 1

move x:(r1)+,b y:(r5),a ; 1 1

do #N,end ;2 5 ; 2 5

mac y0,x1,b x:(r0)+,x0 y:(r4)+,y1 ; 1 1

macr -x0,y1,b x:(r1)+,a a,y:(r5)+ ; 1 1

mac x0,y0,a x:(r1)+,b b,y:(r5)+ ; 1 2 i’lock

Example B-8.   Complex Update (Continued)

dr i( ) jdi i( )+ cr i( ) jci i( )+( ) ar i( ) jai i( )+( ) br i( ) jbi i( )+( )×+=

dr i( ) cr i( ) ar i( ) br i( ) ai i( ) bi× i( )–×+=

di i( ) ci i( ) ar i( ) bi i( ) ai i( ) br× i( )+×+=

i 1 2 … N, , ,=
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N Complex Updates
macr x1,y1,a x:(r0)+,x1 y:(r4)+,y0 ; 1 1

end

move a,y:(r5)+ ; 1 2 i’lock

Totals 9 5N + 9

Table B-12.  N Complex Updates Memory Map

Pointer X memory Y memory

r0 ar(i) ai(i)

r4 br(i) bi(i)

r1 cr(i) ci(i)

r5 dr(i) di(i)

Example B-10.   N Complex Updates

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0 ;

move #BADDR,r4 ;

move #CADDR,r1 ;

move #DADDR-1,r5 ;

move x:(r5),a ; 1 1

move x:(r0),x1 y:(r4),y0 ; 1 1

move x:(r4)+,x0 y:(r1),b ; 1 1

do #N,end ; 2 5

mac y0,x1,b a,x:(r5)+ y:(r0)+,y1 ; 1 1

macr x0,y1,b x:(r1)+,a ; 1 1

mac -y0,y1,a y:(r4),y0 ; 1 1

macr x0,x1,a x:(r0),x1 b,y:(r5) ; 1 1

move x:(r4)+,x0 y:(r1),b ; 1 1

end

move a,x:(r5) ; 1 1

Totals 11 5N + 9

Example B-9.   N Complex Updates  (Continued)
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Benchmark Programs
B.11 Complex Correlation or Convolution (FIR Filter)
 Equation 11

 

Table B-13.  Complex Correlation or Convolution (FIR Filter) Memory Map

Pointer X memory Y memory

r0 ar(i) ai(i)

r4 br(i) bi(i)

r1 cr(i) ci(i)

Example B-11.   Complex Correlation or Convolution (FIR Filter)  

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0 ;

move #BADDR,r4 ;

move #CADDR,r1

move #N-1,m4

move #m4,m0

movep y:input,x:(r4) 1 2

movep y:input,y:(r4) 1 2

clr a ; 1 1

clr b x:(r0),x1 y:(r4),y0 ; 1 1

do #N-1,end ; 2 5

Label Opcode Operands X Bus Data Y Bus Data Comment P T

cr n( ) jci n( )+ ar i( ) jai i( )+( ) br n i–( ) jbi n i–( )+( )×[ ]

i 0=

N 1–

∑=

cr n( ) ar i( ) br n i–( ) ai i( ) bi n i–( )×–×[ ]

i 0=

N 1–

∑=

ci n( ) ar i( ) bi n i–( ) ai i( ) br n i–( )×+×[ ]

i 0=

N 1–

∑=
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Nth Order Power Series (Real)
B.12 Nth Order Power Series (Real)
 Equation 12

 

mac y0,x1,b x:(r4)-,x0 y:(r0)+,y1 ; 1 1

mac x0,y1,b ; 1 1

mac x0,x1,a ; 1 1

mac -y0,y1,a x:(r0),x1 y:(r4),y0 ; 1 1

end

mac y0,x1,b x:(r4),x0 y:(r0)+,y1 ; 1 1

macr x0,y1,b ; 1 1

mac x0,x1,a ; 1 1

macr -y0,y1,a ; 1 1

move b,y:(r1) ; 1 1

move a,x:(r1) ; 1 1

Totals 16 4N + 13

Table B-14.  Nth Order Power Series (Real) Memory Map 

Pointer X memory Y memory

r0 a(i)

r4 b

r1 c

Example B-12.   Nth Order Power Series (Real)  

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0 ;

move #BADDR,r4

move #CADDR,r1

move x:(r0)+,a ; 1 1

Example B-11.   Complex Correlation or Convolution (FIR Filter)  (Continued)

c a i( ) bi×[ ]

i 0=

N 1–

∑=
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Benchmark Programs
B.13 Second Order Real Biquad IIR Filter
 Equation 13

 

move y:(r4),x0 1 1

mpyr x0,x0,b x:(r0)+,y0 ; 1 1

move b,y1 ; 1 2 i’lock

do #N-1,end ; 2 5

mac y0,x0,a x:(r0)+,y0 ; 1 1

mpyr x0,y1,b b,x0 ; 1 1

end

macr y0,x0,a ; 1 1

move a,x:(r1) ; 1 2 i’lock

Totals 10 2N + 11

Table B-15.  Second Order Real Biquad IIR Filter Memory Map

Pointer X memory Y memory

r0 w(n-2), w(n-1)

r4 a2/2, a1/2, b2/2, b1/2

Example B-13.   Second Order Real Biquad IIR Filter  

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0 ;

move #BADDR,r4 ;

move #1,m0

move #3,m4

Example B-12.   Nth Order Power Series (Real)  (Continued)

w n( ) 2⁄ x n( ) 2⁄ a1( ) 2⁄ w n 1–( ) a2( ) 2⁄–× w n 2–( )×–=

y n( ) 2⁄ w n( ) 2⁄ b1( ) 2⁄ w n 1–( ) b2( ) 2⁄+× w n 2–( )×+=
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N Cascaded Real Biquad IIR Filter
B.14 N Cascaded Real Biquad IIR Filter
 Equation 14

movep y:input,a ; 1 1

rnd a x:(r0)+,x0 y:(r4)+,y0 ; 1 1

mac -y0,x0,a x:(r0)-,x1 y:(r4)+,y0 ; 1 1

mac -y0,x1,a x1,x:(r0)+ y:(r4)+,y0 ; 1 1

mac y0,x0,a a,x:(r0) y:(r4),y0 ; 1 2 i’lock

macr y0,x1,a ; 1 1

movep a,y:output ; 1 2 i’lock

Totals 7 9

Table B-16.  N Cascaded Real Biquad IIR Filter Memory Map

Pointer X memory Y memory

r0 w(n-2)1, w(n-1)1, w(n-2)2, ...

r4 (a2/2)1, (a1/2)1, (b2/2)1, (b1/2)1, (a2/2)2, ...

Table B-17.  N Cascaded Real Biquad IIR Filter  

Label Opcode Operands X Bus Data Y Bus Data Comment P T

ori #$08,mr ;

move #AADDR,r0 ;

move #BADDR,r4 ;

move #(2N-1),m0 ;

move #(4N-1),m4 ;

move x:(r0)+,x0 y:(r4)+,y0 ; 1 1

movep y:input,a ; 1 1

Example B-13.   Second Order Real Biquad IIR Filter  (Continued)

w n( ) 2⁄ x n( ) 2⁄ a1( ) 2⁄ w n 1–( ) a2( ) 2⁄–× w n 2–( )×–=

y n( ) 2⁄ w n( ) 2⁄ b1( ) 2⁄ w n 1–( ) b2( ) 2⁄+× w n 2–( )×+=
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Benchmark Programs
B.15 N Radix-2 FFT Butterflies (DIT, In-Place Algorithm)
 Equation 15

do #N,end ; 2 5

mac -y0,x0,a x:(r0)-,x1 y:(r4)+,y0 ; 1 1

mac -y0,x1,a x1,x:(r0)+ y:(r4)+,y0 ; 1 1

mac y0,x0,a a,x:(r0)+ y:(r4)+,y0 ; 1 2 i’lock

mac y0,x1,a x:(r0)+,x0 y:(r4)+,y0 ; 1 1

end

rnd a ; 1 1

movep a,y:output ; 1 2 i'lock

Totals 10 5N + 10 

Table B-18.  N Radix-2 FFT Butterflies (DIT, In-Place Algorithm) Memory Map

Pointer X memory Y memory

r0 ar(i) ai(i)

r1 br(i) bi(i)

r6 cr(i) ci(i)

r4 ar’(i) ai’(i)

r5 br’(i) bi’(i)

Example B-14.   N Radix-2 FFT Butterflies (DIT, In-Place Algorithm)  

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #AADDR,r0 ;

move #BADDR,r1 ;

move #CADDR,r6 ;

move #ATADDR,r4 ;

move #BTADDR-1,r5 ;

move x:(r1),x1 y:(r6),y0 ; 1 1

Table B-17.  N Cascaded Real Biquad IIR Filter  (Continued)

ar’ ar cr br ci bi×–×+= br' ar cr br ci bi×+×– 2 ar a–× r'= =

ai' ai ci br cr bi×+×+= bi' ai ci br cr bi×–×– 2 ai a–× i'= =
DSP56300 Family Manual, Rev. 5
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N Radix-2 FFT Butterflies (DIT, In-Place Algorithm)
move x:(r5),a y:(r0),b 1 1

do #N,end ; 2 5

mac y0,x1,b x:(r6)+n,x0 y:(r1)+,y1 ; 1 1

macr x0,y1,b a,x:(r5)+ y:(r0),a ; 1 1

subl b,a ; 1 1

move x:(r0),b b,y:(r4) ; 1 1

mac x0,x1,b x:(r0)+,a a,y:(r5) ; 1 1

macr -y0,y1,b x:(r1),x1 y:(r6),y0 ; 1 1

subl b,a b,x:(r4)+ y:(r0),b ; 1 2 i’lock

end

move a,x:(r5)+ ; 1 2 i’lock

Totals 12 8N + 9

Example B-14.   N Radix-2 FFT Butterflies (DIT, In-Place Algorithm)  (Continued)
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B.16 True (Exact) LMS Adaptive Filter

Figure B-1.  True (Exact) LMS Adaptive Filter

Table B-19.  System Equations

True LMS Algorithm Delayed LMS Algorithm

e(n) = d(n) – H(n) × (n) e(n) = d(n) – H(n) × (n)

H(n + 1) = H(n) + uX(n)e(n) H(n + 1) = H(n) + uX(n – 1)e(n – 1)

Table B-20.  LMS Algorithms  

True LMS Algorithm Delayed LMS Algorithm

Get input sample  Get input sample  

Save input sample Save input sample

Do FIR Do FIR

Get d(n), find e(n) Update coefficients 

Update coefficients Get d(n), find e(n)

x(n) x(n-1) x(n-2) x(n-3)

z-1 z-1 z-1

d(n)

f(n)

e(n)

h(1) h(2)
h(3)h(0)

-

+

x(n) Input sample at time n

d(n) Desired signal at time n

f(n) FIR filter output at time n

H(n) Filter coefficient vector at time n. H = {h0,h1,h2,h3}

X(n) Filter state variable vector at time N, X = {x(n),x(n – 1),x(n – 2),x(n – 3)}

u Adaptation Gain

NTAPS Number of coefficient taps in the filter. For this example, NTAPS = 4
DSP56300 Family Manual, Rev. 5
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True (Exact) LMS Adaptive Filter
Output f(n) Output f(n)

Shift vector X Shift vector X 

Table B-21.  True (Exact) LMS Adaptive Filter Memory Map

Pointer X memory Y memory

r0 x(n), x(n – 1), x(n – 2), x(n – 3)

r4, r5 h(0), h(1), h(2), h(3)

Example B-15.   True (Exact) LMS Adaptive Filter  

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #-2,n0 ;

move n0,n4

move #NTAPS-1,m0 ;

move m0,m4 ;

move m0,m5 ;

move #AADDR+NTAPS-1,r0 ;

move #BADDR,r4 ;

move r4,r5 ;

_getsmp

movep y:input,x0 ; input sample 1 1

clr a x0,x:(r0)+ y:(r4)+,y0 ; save 1 1

;X(n), get h0

rep #NTAPS-1 ; do fir 1 5

Label Opcode Operands X Bus Data Y Bus Data Comment P T

; do taps

mac x0,y0,b x:(r0)+,x0 y:(r4)+,y0 ; 1 1

; last tap

macr x0,y0,b ; 1 1

; Get d(n), subtract fir output, multiply by "u",

; put the result in y1.

Table B-20.  LMS Algorithms  (Continued)

True LMS Algorithm Delayed LMS Algorithm
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B.17 Delayed LMS Adaptive Filter
� Error signal is in y1

� FIR sum in a = a + h(k)old * x(n – k)

� h(k)new in b = h(k)old + error * x(n – k – 1)

; This section is application dependent.

move x:(r0)+,x0 y:(r4)+,a 1 1

movep b,y:output ; output fir if desired 1 1

move y:(r4)+,b 1 1

do #NTAPS/2, 
cup

; 2 5

macr x0,x1,a x:(r0)+,x0 y:(r4)+,y0 ; 1 1

macr x0,x1,b x:(r0)+,x0 y:(r4)+,y1 ; 1 1

tfr y0,a a,y:(r5)+ 1 1

tfr y0,b b,y:(r5)+ 1 1

cup

move x:(r0)+n0,
x0

y:(r4)+n4, 
y0

; 1 1

; continue looping (jmp _getsmp)

Totals 15 3N + 16

Table B-22.  Delayed LMS Adaptive Filter Memory Map

Pointer X memory Y memory

r0 x(n), x(n – 1), x(n – 2), x(n – 3), x(n – 4)

r5, r4 dummy, h(0), h(1), h(2), h(3)

Example B-16.   Delayed LMS Adaptive Filter  

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #STATE,r0 ; start of X

move #2,n0 ; used for pointer update

move #NTAPS,m0 ; number of filter taps

Example B-15.   True (Exact) LMS Adaptive Filter  (Continued)
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Delayed LMS Adaptive Filter
move #COEF+1,r4 ; start of H

move m0,m4 ; number of filter taps

move #COEF,r5 ; start of H-1

move m4,m5 ; number of filter taps

movep y:input,a ; get input sample 1 1

move a,x:(r0) ; save input sample 1 1

clr a x:(r0)+,x0 ; x0<-x(n) 1 1

move x:(r0)+,x1 y:(r4)+,y0 1 1

; x1<-x(n-1); y0<-h(0)

do #TAPS/2,lms ; 2 5

;a<-h(0)*x(n) b<-h(0) Y<-dummy

mac x0,y0,a y0,b b,y:(r5)+ 1 2 i’lock

;b<-H(0)=h(0)+e*x(n-1), x0<-x(n-2), y0<-h(1)

macr x1,y1,b x:(r0)+,x0 y:(r4)+,y0 ; 1 1

Label Opcode Operands X Bus Data Y Bus Data Comment P T

;a<-a+h(1)*x(n-1); b<-h(1); Y(0)<-H(0)

mac x1,y0,a y0,b b,y:(r5)+ ; 1 2 i’lock

;b<-H(1)=h(1)+e*x(n-2); x1<-x(n-3); y0<-h(2)

macr x0,y1,b x:(r0)+,x1 y:(r4)+,y0 ; 1 1

lms

movep a,y:output 1 1

move b,y:(r5)+ ; Y<-last coef 1 1

move (r0)-n0 ; update pointer 1 1

Totals 13 3N + 12

Example B-16.   Delayed LMS Adaptive Filter  (Continued)
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B.18 FIR Lattice Filter

Figure B-2.  FIR Lattice Filter

Table B-23.  FIR Lattice Filter Memory Map

Pointer X memory Y memory

r0 s1, s2, s3, sx

r4 k1, k2, k3

Example B-17.   FIR Lattice Filter  

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #S,r0 ; point to s

move #N,m0 ; N = number of k coefficients

move #K,r4 ; point to k coefficients

move #N-1,m4 ; mod for k’s

movep y:datin,b ; get input 1 1

move b,a ; save first state 1 1

Label Opcode Operands X Bus Data Y Bus Data Comment P T

Input

z-1 z-1 z-1
s2s1 s3 sx

Output

k1

k1

k2

k2

k3

k3

+ + +

+ + +

B (in)

t’t

Single Section:   t’ = s*k + t,  t’ → t
s’ = t*k + s

z-1 z-1 z-1
s2 s

k1

k1

k2

k2

+ + +

+ + +
s1 s’

k

k

DSP56300 Family Manual, Rev. 5

B-22 Freescale Semiconductor



All Pole IIR Lattice Filter
B.19 All Pole IIR Lattice Filter

move x:(r0),x0 y:(r4)+,y0 ; get s, get k 1 1

do #N,_elat ; 2 5

macr x0,y0,b b,y1 ; s*k+t,copy t  
; for mul

1 1

tfr x0,a a,x:(r0)+ ; save s’,  
; copy next s

1 1

macr y1,y0,a x:(r0),x0 y:(r4)+,y0 ; t*k+s, get s, 

; get k

1 1

_elat

move a,x:(r0)+ y:(r4)-,y0 ; adj r4, 
; dummy load

1 1

movep b,y:datout ; output sample 1 1

Totals 10 3N + 10

Figure B-3.  All Pole IIR Lattice Filter

Example B-17.   FIR Lattice Filter  (Continued)

t t’

s’

Single Section: t' = t – k*s
s' = s + k*t'
t'→ t

Input Output

z-1 z-1
s2 s1

– k3
k2

k2

+ + +

+ +
s3

k1

– k1

z-1

s

+

+

k

– k

z-1
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Table B-24.  All Pole IIR Lattice Filter Memory Map 

Pointer X memory Y memory

r0 k3, k2, k1

r4 s3, s2, s1

Example B-18.   All Pole IIR Lattice Filter  

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #k+N-1,r0 ;point to k

move #N-1,m0 ;number of k’s-1

move #STATE,r4 ;point to filter states

move m0,m4 ;mod for states

move #1,n4 ;

movep y:datin,a y:(r4)+,b ;get input 1 1

move x:(r0)-,x0 y:(r4)+,y0 ;get s, get k 1 1

macr -x0,y0,a x:(r0)-,x0 y:(r4),y0 ;s*k+t 1 1

Label Opcode Operands X Bus Data Y Bus Data Comment P T

do #N-1,_endl
at

;do sections 2 5

macr -x0,y0,a y:(r4)+,y1 ; 1 1

tfr y1,b a,x1 b,y:(r4) ; 1 2 i’lock

macr x1,x0,b x:(r0)-,x0 y:(r4),y0 1 1

_endlat

movep a,y:datout 1 1

move x:(r0)+,x0 y:(r4)+,r0 ;output sample 1 1

move b,y:(r4)+ ;save s’ 1 1

;save last s’, update r4

move a,y:(r4) 1 1

Totals 12 4N + 8
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General Lattice Filter
B.20 General Lattice Filter

Figure B-4.  General Lattice Filter

Table B-25.  General Lattice Filter Memory Map

Pointer X memory Y memory

r0 k3, k2, k1, w3, w2, w1, w0

r4 s4, s3, s2, s1

Example B-19.   General Lattice Filter  

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #K,r0 ;point to coefficients

move #2*N,m0 ;mod 2*(# of k’s)+1

move #STATE,r4 ;point to filter states

move #-2,n4

Label Opcode Operands X Bus Data Y Bus Data Comment P T

t t’

s’

Input

w0 Output

z-1 z-1

+

+

w2

k1

– k1

z-1

s

+

+

k

– k

z-1

+

+

k2

– k2

+

+

k3

– k3

+
w3

w1

w

Single Section: t' = t – k*s
s' = s + k*t'
t' → t
Output = ∑(w*s')
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Benchmark Programs
move #N,m4 ;mod on filter states

movep y:datin,a ;get input 1 1

move x:(r0)+,x0 y:(r4)-,y0 1 1

do #N,_endlat 2 5

macr -x0,y0,a ; 1 1 

tfr y0,b a,x1 b,y:(r4)+n4 ; 1 2 i’lock

macr x1,x0,b x:(r0)+,x0 y:(r4)-,y0 ; 1 1

_endlat

move b,y:(r4)+ ;save s’ 1 2 i’lock

clr a a,y:(r4)+ ;save last s’,  
; update r4

1 1

move y:(r4)+,y0 1 1

rep #N ; 1 5

mac x0,y0,a x:(r0)+,x0 y:(r4)+,y0 ;s*w+out,  
; get s, get w

1 1

macr x0,y0,a ;last mac 1 1

movep a,y:datout ;output sample 1 2 i’lock

Totals 14 5N + 19

Example B-19.   General Lattice Filter  (Continued)
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Normalized Lattice Filter
B.21 Normalized Lattice Filter

 

Figure B-3.   Normalized Lattice Filter

Table B-26.  Normalized Lattice Filter Memory Map

Pointer X memory Y memory

r0 q2, k2, q1, k1, q0, k0, w3, w2, w1, w0

r4 sx, s2, s1, s0

t t’

Input

Output

w2

+

+

k – k

z-1

+
w3

w1

w

q

u' u
q

Single Section: t' = t*q - k*s
u' = t*k + s*q
t' → t

Output = ∑(w*u')

+

+

k2 – k2

z-1

q2

q2

+

+

k1 – k1

z-1

q1

q1

+

+

k0 – k0

z-1

q0

q0

w0
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Example B-20.   Normalized Lattice Filter  

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #COEF,r0 ; point to 
; coefficients

move #3*N,m0 ; mod on  
; coefficients

move #STATE+1,r4 ; point to  
; state variables

move #N,m4 ; mod on filter 
; states

movep y:datin,y0 ; get input sample 1 1

move x:(r0)+,x1 ; get q in the 
; table

1 1

do #N,_elat 2 5

mpy x1,y0,a x:(r0)+,x0 y:(r4),y1 ; q * t,get k,get s 1 1

macr -x0,y1,a b,y:(r4)+ ; q * t - k * s, 
; save new s 

1 1

mpy x0,y0,b ; k * t 1 1

macr x1,y1,b x:(r0)+,x1 a,y0 ; k * t + q * s 
; get next q,set t’

1 1

_elat

move b,y:(r4)+ ; save second  
; last state

1 2 i’lock

move a,y:(r4)+ ; save last state 1 1

clr a y:(r4)+,y0 ; clear a, get  
; first state

1 1

rep #N 1 5

mac x1,y0,a x:(r0)+,x1 y:(r4)+,y0 ; fir taps 1 1

macr x1,y0,a (r4)+ ; round,  
; adj pointer

1 1

movep a,y:datout ; output sample 1 2 i’lock

Totals 15 5N + 19
DSP56300 Family Manual, Rev. 5

B-28 Freescale Semiconductor



[1 × 3][3 × 3] Matrix Multiplication
B.22 [1 × 3][3 × 3] Matrix Multiplication

Example B-21.   [1 × 3][3 × 3] Matrix Multiplication  

Label Opcode Operands X Bus Data Y Bus Data Comment P T

_init

move #MAT_A,r0 ;point to A matrix

move #MAT_B,r4 ;point to B matrix

move #MAT_X,r1 ;output X matrix

move #2,m0 ;mod 3

move #8,m4 ;mod 9

move m0,m1 ;mod 3

_start

move x:(r0)+,x0 y:(r4)+,y0 1 1

mpy x0,y0,a x:(r0)+,x0 y:(r4)+,y0 1 1

mac x0,y0,a x:(r0)+,x0 y:(r4)+,y0 1 1

macr x0,y0,a x:(r0)+,x0 y:(r4)+,y0 1 1

mpy x0,y0,b x:(r0)+,x0 y:(r4)+,y0 1 1

move a,y:(r1)+ 1 1

mac x0,y0,b x:(r0)+,x0 y:(r4)+,y0 1 1

macr x0,y0,b x:(r0)+,x0 y:(r4)+,y0 1 1

mpy x0,y0,a x:(r0)+,x0 y:(r4)+,y0 1 1

move b,y:(r1)+ 1 1

mac x0,y0,a x:(r0)+,x0 y:(r4)+,y0 1 1

macr x0,y0,a 1 1

move a,y:(r1)+ 1 2 i’lock

_end

Totals 13 14
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B.23 N Point 3 × 3 2-D FIR Convolution

The two-dimensional FIR uses a [3 × 3] coefficient mask:

      c(1,1) c(1,2) c(1,3)

      c(2,1) c(2,2) c(2,3)

      c(3,1) c(3,2) c(3,3)

The coefficient mask is stored in Y memory in the following order: 

c(1,1), c(1,2), c(1,3), c(2,1), c(2,2), c(2,3), c(3,1), c(3,2), c(3,3).

The image is an array of 512 × 512 pixels.  To provide boundary conditions for the FIR filtering, 
the image is surrounded by a set of zeros such that the image is actually stored as a 514 × 514 
array. 

The image (with boundary) is stored in row major storage.  The first element of the array image(,) 
is image(1,1) followed by image(1,2). The last element of the first row is image(1,514) followed 
by the beginning of the next column image(2,1).  These are stored sequentially in the array “im” 
in X memory:

� Image(1,1) maps to index 0, image(1,514) maps to index 513;

� Image(2,1) maps to index 514 (row major storage).

Although many other implementations are possible, this is a realistic type of image environment 
in which the actual size of the image may not be an exact power of 2.  Other possibilities include 
storing a 512 × 512 image but computing only a 511 × 511 result, computing a 512 × 512 result 
without boundary conditions but throwing away the pixels on the border, and so on.

Figure B-1.  FIR Filtering

Image Area
[512x512] 51

4

 Area of zeros

514
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N Point 3 × 3 2-D FIR Convolution
Table B-27.  N Point 3 × 3 2-D FIR Convolution Memory Map

Pointer X memory Y memory

r0 image(n,m) 
image(n,m+1) 
image(n,m+2)

r1 image(n+514,m) 
image(n+514,m+1) 
image(n+514,m+2)

r2 image(n+2*514,m) 
image(n+2*514,m+2) 
image(n+2*514,m+3)

r4 FIR coefficients

r5 output image

Example B-22.   N Point 3 × 3 2-D FIR Convolution  

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #MASK,r4 ;point to coefficients

move #8,m4 ;mod 9

move #IMAGE,r0 ;top boundary

move #IMAGE+514,r1 ;left of first pixel

;left of first pixel 2nd row

move #IMAGE+2*514,r2 ;

;adjust. for end of row

move #2,n1 ;

move n1,n2 ;

move #IMAGEOUT,r5 ;output image

;first element, c(1,1)

move x:(r0)+,x0 y:(r4)+,y0 ; 1 1

do #512,row ; 2 5

do #512,col ; 2 5

mpy x0,y0,a x:(r0)+,x0 y:(r4)+,y0 ;c(1,2) 1 1

mac x0,y0,a x:(r0)-,x0 y:(r4)+,y0 ;c(1,3) 1 1

Label Opcode Operands X Bus Data Y Bus Data Comment P T

mac x0,y0,a x:(r1)+,x0 y:(r4)+,y0 ;c(2,1) 1 1
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B.24 Viterbi Add-Compare-Select (ACS)

This routine implements the Viterbi algorithm kernel. The algorithm is parametric and fits any 
valid values of Trellis states number and any branch metrics. 

mac x0,y0,a x:(r1)+,x0 y:(r4)+,y0 ;c(2,2) 1 1

mac x0,y0,a x:(r1)-,x0 y:(r4)+,y0 ;c(2,3) 1 1

mac x0,y0,a x:(r2)+,x0 y:(r4)+,y0 ;c(3,1) 1 1

mac x0,y0,a x:(r2)+,x0 y:(r4)+,y0 ;c(3,2) 1 1

mac x0,y0,a x:(r2)-,x0 y:(r4)+,y0 ;c(3,3) 1 1

; preload, get c(1,1)

macr x0,y0,a x:(r0)+,x0 y:(r4)+,y0 ; 1 1

;output image sample

move a,y:(r5)+ ; 1 2 i’lock

col

; adjust pointers for frame boundary, adj r0,r5 w/dummy loads

move x:(r0)+,x0 y:(r5)+,y1 ; 1 1

; adj r1,r5 w/dummy loads 

move x:(r1)+n1,

x0

y:(r5)+,y1 ; 1 1

; adj r2 (dummy load y1), preload x0 for next pass

move x:(r0)+,x0 ; 1 1

move y:(r2)+n2,y1 1 1

row

Totals
P = 19

T = 11N2 + 9N + 6

Example B-22.   N Point 3 × 3 2-D FIR Convolution  (Continued)
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Viterbi Add-Compare-Select (ACS)
Given Branch Metric value (BrM), ACS should perform as follows:

� Fetch path metric of state(i) – Si.

� Fetch path metric of state(j) – Sj.

� Add BrM to Si.

� Subtract BrM from Sj.

� Compare and select the greater of the two: 
Next Sk = Max (Si + BrM, S – BrM).

� Store the result in next-state path-metric memory location.

� Update the state’s Trellis history with the selection bit.

� Perform the similar task for:  
Next Sk+1 = Max (Si – BrM, Sj + BrM).

Figure B-2.  Viterbi Butterfly

Example of Viterbi Butterfly:

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

000

111

000

111

State

Note: Branch metric of XXX = – (Branch metric of bit inverse of XXX)  
For example, Branch metric (001) = – (Branch metric (110)).

16-State R=1/3 Trellis Structure - Butterfly Pairs

i

j

k

k + 1
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Figure B-3.  ACS Butterfly—First Half

Figure B-4.  ACS Butterfly—Second Half

Path Metric
RAM

MetricA TrellisA

Trellis
RAM

b1: MetricB b0: TrellisB

move l:(r5) + n5,a :

add y1,a l:(r5) – n5,b :
MetricA + y1 TrellisA

sub y1,b :
MetricB– y1 TrellisB

max a,b l:(r5) + n5,a :
b: max(a,b)

 Survivor Metric
a1: MetricA a0: TrellisA

asl b b1,x:(r4)
move b0,y:(r4) + Survivor Metric Trellis << 1 + 0

b0b1

b0b1

b0b1

a0a1

a0a1

r5

Path Metric
RAM

Trellis
RAM

r4

= VSL b,#0,l:(r4) +

Fetch from RAM

Fetch from RAM

Branch Metric

b0b1

a0a1

A

A

B

B A

B

Y1
$0

$f

X-space Y-space

X-space Y-space$10

$1f

B

Survivor Trellis

Survivor Metric Trellis << 1 + 1
b0b1

Path Metric
RAM

Trellis
RAM

r4

= VSL b,#1,l:(r4) +

move #1,a0
addl a,b b1,x:(r4)
move b0,y:(r4) +

X-space Y-space$10

$1f

B

b1: MetricB b0: TrellisB
sub y1,a l:(r5) – n5,b :

MetricA – y1 TrellisA

add y1,b :
MetricB + y1 TrellisB

max a,b :
b: max(a,b)

Survivor Metric

b0b1

b0b1

a0a1

Fetch from RAM

b0b1

A

B

B

B

Survivor Trellis
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Viterbi Add-Compare-Select (ACS)
Example B-23.   Viterbi Add-Compare-Select (ACS)  

Label Opcode Operands X Bus Data Y Bus Data Comment P T

; r0—R/W pointer to branch-metric table.

; r4—write pointer - path metric Present State tables.

; r5—read pointer - path metric tables Previous State.

; n5—bit-count value, used for decode loop.

; y1—given Brm for ACS loop

; x0—tmp register

ComputeBrMtrc: ;

; for the general case, assuming that the branch metrics are

; calculated and prepared as table at y:(r0) location

move y:(r0)+,y1 1 1

; load first branch metric.

move l:(r5)+n5,a 1 1

; a0 <- trellis, a1 <- PathMetr

; main ACS loop

do #NoOfAcsButt,NextStage ; 2 5

add y1,a l:(r5)-n5,b 1 1

; a=a+y1, b0 <- trellis, b1 <- PthMt

sub y1,b ; b=b-y1 1 1

max a,b l:(r5)+n5,a 1 2

; b=max(a,b) | refetch a

vsl b,#0,l:(r4)+ 1 1

; store survivor path metric & trellis

sub y1,a l:(r5)-n5,b 1 1

; a=a-y1 | refetch b

add y1,b x:(r5)+,x0 y:(r0)+,y1 1 1

; b=b+y1 | increment r5 | load next brm.

max a,b l:(r5)+n5,a 1 2

; b=max(a,b) | fetch next a

vsl b,#1,l:(r4)+ 1 1
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B.25 Parsing a Data Stream

This routine implements parsing of a data stream for MPEG audio. The data stream, composed 
by concatenated words of variable length, is allocated in consecutive memory words. The word 
lengths reside in another memory buffer. The routine extracts words from the data stream 
according to their length. Two consecutive words are read from the stream buffer and are 
concatenated in the accumulator. Using bit offset and the specified length, a field of variable 
length can be extracted. The decision whether to load a new memory word into the accumulator 
from the stream is determined when bit offset overflow to the LSP of the accumulator. The 
following describes the pointers and registers used by the routine:

� r0—pointer to the buffer in X memory containing the variable length stream 

� r5—pointer to buffer in Y memory where the length of each field is stored 

Label Opcode Operands X Bus Data Y Bus Data Comment P T

; store survivor path metric & trellis

NextStage

move #branch_tbl,r0 2 2

; set r0 to start of br. metric table.

Totals 14 10N + 9

Example B-24.   Parsing Data Stream  

Label Opcode Operands X Bus Data Y Bus Data Comment P T

init_ ; this is the initialization code

move #stream_buffer,r0

move #length_buffer,r5

move #bits_offset,r4 

move #boundary,r3 

move #>48,b

move #>24,x0

move x0,x:(r3) b,y:(r4)

Example B-23.   Viterbi Add-Compare-Select (ACS)  (Continued)
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Parsing a Data Stream
Get_bits

Label Opcode Operands X Bus Data Y Bus Data Comment P T

; bring length of next field and ‘24‘

move x:(r3),x0 y:(r5)+,y1 1 1

; bring word for parsing and "bits offset"

move x:(r0)+,a y:(r4),b 1 1

; bring next word for parsing, point back to first word

move x:(r0)-,a0 1 1

; calculate new "bits offset", r1 points to current 
; word 

sub y1,b r0,r1 1 1

; save "bits offset" in x1

move b,x1 1 2

; merge width and offset

merge y1,b 1 1

; extract the field according to b, place it in a

extract b1,a,a 1 1

; restore "bits offset", r0 points to next word 

tfr x1,b (r0)+ 1 1

; compare "bits offset" to 24, extracted word to a1 

cmp x0,b a0,a 1 1

; if "bits offset" is less than or equal to 24, another 
; word is needed to update "bits offset" and point to  
; next word

add x0,b ifle 1 1

tgt r1,r0 1 1

; save "bits field" in memory

move b1,y:(r4) 1 1

Totals 12 13

Example B-24.   Parsing Data Stream  (Continued)
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Benchmark Programs
B.26 Creating a Data Stream

The routine discussed in this section creates a data stream for MPEG audio. Words of variable 
length are concatenated and stored in consecutive memory words. The words for generating the 
stream are allocated in a memory buffer and are right-aligned. The word lengths reside in another 
memory buffer. The word and its length are loaded for insertion. A word is read from the stream 
buffer into the accumulator. Using a bit offset and the specified length, a field of variable length 
is inserted into the accumulator. The accumulator is stored containing the new concatenated field. 
The decision whether to read a new word from the stream is made when bit offset overflow to the 
LSP of the accumulator. Following are the pointers and registers used by the routine: 

� r0—pointer to a buffer in X memory, containing the variable length codes—the code is 
right-aligned at each location

� r2—pointer to a buffer in X memory containing the stream generated 

� r4—pointer to a buffer in Y memory where the actual length of each field is stored 

� r3—pointer to a location that stores the “bits offset,” the number of bits left to be 
consumed, 48 initially 

� r5—pointer to a location storing the constant 24 

� r1—used as temporary storage (no need to initialize) 

� x0—stores the current word to be inserted 

� y1—stores the length of the code brought in x0 

� y0—stores 24 

Table B-28.  Creating Data Stream Memory Map

Pointer X memory Y memory

r0 data buffer 

r2 stream buffer 

r4 length buffer

r3 “bits offset”

r5 24
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Creating a Data Stream
Example B-25.   Creating Data Stream  

Label Opcode Operands X Bus Data Y Bus Data Comment P T

init_ ;this is the initialization code

move #data_buffer,r0

move #stream_buffer,r2

move #length_buffer,r4

move #bits_offset,r3 

move #boundary,r5 

move #>48,b

move #>24,y0

move b,x:(r3) y0,y:(r5)

Put_bits

; bring code and its length 

move x:(r0)+,x0 y:(r4)+,y1 1 1

; bring "bits offset" and ‘24‘

move x:(r3),b y:(r5),y0 1 1

; calculate new "bits offset", bring current word  
; from stream buffer 

sub y1,b x:(r2),a 1 1

; save "bits offset" in x1

move b,x1 1 2

; merge width and offset

merge y1,b 1 1

; insert the field according to b, place it in a

insert b1,x0,a 1 1

; restore "bits offset", r1 points to current word

tfr x1,b r2,r1 1 1

; compare "bits offset" to 24, send new word to stream 
; buffer 

cmp y0,b a1,x:(r2)+ 1 1
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B.27 Parsing a Hoffman Code Data Stream

The routine discussed in this section parses a Hoffman code data stream. It extracts a bit field 
from the stream and brings two consecutive words to the accumulator from the stream buffer. An 
address word is extracted using a bit offset and a field length. The field length is determined by 
the number of bits needed by the address of the two Hoffman code lookup tables. A word is 
loaded from the first lookup table. If the "Hit" bit in the word is not set, then a field of variable 
length is extracted. The length of the extracted field is specified in the length field in the word. 
The bit offset is updated according to the length of the extracted word. If the "Hit" bit in the word 
is set, a new address word is read from the stream. A word is brought from the second lookup 
table. The bit field is extracted according to the same guidelines. 

Label Opcode Operands X Bus Data Y Bus Data Comment P T

; send a0 to next location in stream buffer in case of  
; crossing boundary 

move a0,x:(r2) 1 2

; if "bits offset" is less than or equal to 24, then  
; update "bits offset" and point to the next word  
; in stream buffer

add y0,b ifle 1 1

tgt r1,r2 1 1

; save "bits offset" in memory

move b1,y:(r4) 1 1

Totals 12 14

Example B-25.   Creating Data Stream  (Continued)
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Parsing a Hoffman Code Data Stream
The flow chart in Figure B-5 demonstrates the parsing process:

Following are the pointers and registers used by the routine:

� r0—pointer to the buffer in X memory containing the stream 

� r1—used as temporary storage (no need to initialize) 

� r3—pointer to buffer in Y memory where the extracted fields are stored 

� r5—pointer to a location that stores the “bits offset”, number of bits left to be consumed, 
48 initially 

� r2—pointer to the right table 

� r6—pointer to the first lookup table 

� r7—pointer to the second lookup table 

� r4—pointer to constants 

Figure B-5.  Parsing Process 

Table B-29.  Parsing Hoffman Code Data Stream Memory Map 

Pointer X memory Y memory

r0 stream buffer 

r3 extracted data buffer

r5 “bits offset”

r4 #no.1 address bus length

#no.2 mask word for length field

#no.3 merged width and offset 

‘24‘

r6 first lookup table

r7 second lookup table

Concatenated Two Consecutive Words From Stream Buffer

First
Lookup
Table

Second
Lookup
Table

Address Word

Bit Offset

Symbol Field Length Field"Hit" Bit

Symbol Field Length Field

Extracted
Field

Read Word From First Table
If "Hit" Was Not Set In Previous 
Reading

Read Word From Second Table
If "Hit" Was Set In Previous 
Reading
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Example B-26.   Parsing Hoffman Code Data Stream  

Label Opcode Operands X Bus Data Y Bus Data Comment P T

init_ ;this is the initialization code

move #stream_buffer,r0

move #data_buffer,r3

move #bits_offset,r5 

move #constants,r4 

move #first_table,r2

move #first_table,r6 

move #second_table,r7 

;move constants to memory

move #>48,b

move b,y:(r5)

move #>3,n4

move #n0_1,y1

move y1,y:(r4)+

move #n0_2,y1

move y1,y:(r4)+

Label Opcode Operands X Bus Data Y Bus Data Comment P T

move #n0_3,y1

move y1,y:(r4)+

move #>24,y1

move y1,y:(r4)-n4

Get_bits

;bring word from stream, and "bits offset"

move x:(r0)+,a y:(r5)+,b 1 1

;bring next word from stream, and address length

move y:(r4)+,y0 1 1

move x:(r0)-,a0 1 1

;calculate new "bits offset", and save old one in x1
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Parsing a Hoffman Code Data Stream
sub y0,b b,x1 1 1

;merge width and offset

merge y0,b 1 1

;extract the field according to b, place it in a

extract b1,a,a 1 1

;move address to n2

move a0,n2 1 1

;bring mask for length field in lookup table words

move y:(r4)+,y1 1 1

;bring the merged offset and length for extraction

move y:(r4)+,x0 1 1

;r1 points to current address for extracted field

move r3,r1 1 1

;bring word from lookup table

move x:(r2+n2),a 1 1

Label Opcode Operands X Bus Data Y Bus Data Comment P T

;extract the field according to x0, place it in b

extract x0,a,b 1 1

;test if "Hit" bit is set, r2 points s first lookup 
;table

tst a r6,r2 1 1

; if "Hit" bit is set, r2 points second lookup table, 
;a holds address length

tmi y0,a r7,r2 1 1

;restore "bit offset" , send extracted field to 
;memory

tfr x1,b b0,x:(r3)+ 1 1

; if "Hit" bit is set, restore r3 

tmi r1,r3 1 1

Example B-26.   Parsing Hoffman Code Data Stream  (Continued)
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;mask length field , save pointer to current stream 
;word

and y1,a r0,r1 1 1

;calculate new "bits offset", y1 holds ’24’

sub a,b y:(r4)-n4,y1 1 1

;compare "bits offset" to 24, update steam pointer

cmp y1,b (r0)+ 1 1

;if "bits offset" is less than or equal to 24, 
;another word is needed to update "bits offset" and 
;point to next word

add y1,b ifle 1 1

tgt r1,r0 1 1

;save "bits field" in memory

move b1,y:(r5) 1 1

Totals 22 22

Example B-26.   Parsing Hoffman Code Data Stream  (Continued)
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From CDR Process to HiP Process C
Competitive designs for wireless infrastructure applications require faster digital signal 
processors (DSPs) with reduced power requirements. To meet this industry demand, the 
Freescale roadmap for future DSP56300 family derivatives includes the application of 
continuously evolving, cutting-edge fabrication process technologies. This appendix describes 
the general differences between DSP56300 family derivatives that use the Freescale 
Communication Design Rules (CDR) process technology and derivatives that use the Freescale 
High-Performance (HiP) process technology. It presents the hardware and software design 
implications for DSP56300 family derivatives. Migration of DSP56300 family members from the 
CDR to the HiP4 process affects internal memory block size, voltage, operating frequency, and 
Port A timings. Table C-1 summarizes the process-related differences for DSP56300 family 
derivatives using the CDR and HiP4 process technologies and identifies related trends for future 
process technologies. The remainder of this appendix discusses the differences summarized here.

Table C-1.  CDR-to-HiP Process Differences Summary 

Feature CDR HiP4 Future

Voltage 2.5 and 3.3 V (core and 
internal PLL)

1.8 V (core and internal 
PLL)

< 1.8 V

Operating Frequency 100 MHz (maximum 
frequency)

Operating frequencies  
> 100 MHz

Operating frequencies  
>> 100 MHz

Port A Timings:

DRAM Access Support

SRAM Timings

Synchronous Timings

Arbitration Timings

Address Trace Mode

Supported up to 100 MHz

Supported up to 100 MHz

Referenced to CLKOUT

Referenced to CLKOUT

Supported 

Supported up to 100 MHz

Supported, but with 
additional wait states

CLKOUT not supported

CLKOUT not supported; 
alternatives exist

Not supported due to 
BCLK not functioning

Supported up to 100 MHz

Accesses may require 
additional wait states

CLKOUT not supported

CLKOUT not supported; 
alternatives may continue 
to exist

Not supported due to 
BCLK not functioning

Memory Block Size 256 x 24-bit words 1024 x 24-bit words 1024 x 24-bit words
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From CDR Process to HiP Process
C.1 Voltage

DSP56300 family members are dual-voltage devices. The core and internal PLL of derivatives 
migrating to the HiP4 process technology operate from a 1.8 V supply compared to the core and 
internal Phase Locked Loop (PLL) of derivatives using CDR process technology, which operate 
from a 2.5 V and 3.3 V supply. The input/output pins on each device operate from an independent 
3.3 V supply. DSPs with split power supplies afford designers greater flexibility in migrating 
board designs to devices with new process technologies. The Freescale HiP process technologies 
will continue to take advantage of this feature.

C.2 Operating Frequency

DSP56300 family derivatives that use the CDR process technology operate at a maximum 
frequency of 100 MHz. HiP4 derivatives operate at frequencies greater than 100 MHz. As 
process technologies evolve, even greater speeds are anticipated.

C.3 Port A Timings

Speed increases resulting from the application of new process technologies affect all Port A 
timings as follows:

� DRAM Access Support. DRAM accesses are supported at speeds up to 100 MHz.

� SRAM Timings. SRAM accesses are supported with DSP56300 family derivatives that use 
the CDR process technology at speeds up to 100 MHz. The application of the HiP4 
process technology to the DSP56300 family results in additional wait states for SRAM 
timings. Future changes in process technology may continue to result in additional wait 
states.

� Synchronous Timings and Arbitration Timings. DSP56300 family members that use the 
CDR process technology rely on CLKOUT as a reference signal for synchronous timings 
and arbitration timings. The CLKOUT output pin provides a 50 percent duty cycle output 
clock synchronized to the internal processor clock when the PLL is enabled and locked. At 
speeds made possible by HiP4 process technology, CLKOUT produces a low-amplitude 
waveform that is not usable externally by other devices. 

Alternatives to using CLKOUT exist. One example is the use of the Asynchronous Bus 
Arbitration Enable Bit (ABE) in the Operating Mode register. When set, the OMR[ABE] 
bit eliminates the setup and hold time requirements with respect to CLKOUT for BB and BG. 
Future changes in process technology may continue to produce alternatives to CLKOUT.

� Address Trace Mode. Address Trace mode, when available and enabled by setting the 
ATE bit in the Operating Mode Register of DSP56300 family derivatives that use the 
CDR process technology, allows users to determine the address of internal memory 
accesses. Specifically, when the OMR[ATE] bit is set, BCLK serves as a sampling signal 
and results in output of the memory access address on the address lines. With the 
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Memory Block Size
application of HiP4 process technology, BCLK does not function. Without BCLK 
functioning, no signal exists to initiate the sampling process, and the DSP does not output 
any addresses. Therefore, Address Trace mode is not supported under the HiP4 process. 

C.4 Memory Block Size

The internal memory block size of DSP56300 derivatives using the HiP4 process technology is 
1024 x 24-bit words compared to 256 x 24-bit words in CDR derivatives. This change in size 
affects DMA/core contention (and EFCOP/core contention for derivatives, such as the 
DSP56307, that have an enhanced filter coprocessor).

In CDR derivatives, the internal RAM is divided into 256-word blocks. A situation of contention 
exists if the core and DMA access the same block of 256 words. If both the core and DMA access 
the same block, then the core always has priority, and the DMA is delayed until a free slot is 
available. If the core and DMA access different blocks, they do not interfere with one another; 
each continues to operate at its maximum speed. Memory block boundaries are located at 256 
word addresses.

This same situation applies to HiP4 derivatives, except that contention exists if the core and 
DMA access the same block of 1024 words. Memory block boundaries are located at 1 K words 
addresses. To avoid DMA/core contention, DMA and core accesses must address different 
1024-word blocks. Figure C-1 shows two examples of core and DMA accesses to different 
256-word blocks in the DSP56307 (no contention) and the resulting effect of these same accesses 
in a hypothetical HiP4 derivative. 

256 1024

256

256

256

256 1024

256

Example 1: 256 Example 1:

No 
contention

Core Access → 256 No 
contention

Core Access →

DMA Access → 256 DMA Access → 1024

Example 2: 256 Example 2:

No 
contention

DMA Access → 256
Contention

DMA Access →

Core Access → 256 Core Access →

CDR Derivatives HiP4 Derivatives

Figure C-1.  CDR/HiP DMA and Core Access Comparisons
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From CDR Process to HiP Process
The same change in block size applies to EFCOP/core contention in derivatives that contain an 
EFCOP. Unlike Core/DMA contention, EFCOP/core contention may result in faulty data output 
in the Filter Data Output Register. For example, in the DSP56307, contention occurs if the 
EFCOP and core attempt to access the same 256 word block. In HiP4 derivatives, contention 
occurs if the EFCOP and core attempt to access the same 1 K words block. Both the DSP56307 
and future HiP4 derivatives include the Data/Coefficient Transfer Contention (FCONT) bit in the 
EFCOP Control Status Register. The FCONT bit allows programmers to detect when 
EFCOP/core contention occurs.
DSP56300 Family Manual, Rev. 5
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Index
A

AAR. See Address Attribute Registers (AARs)
ABS instruction 12-7, 13-5
accumulator extension register 3-15
accumulator registers (A or B) 3-3
accumulator shifter 3-4
ADC instruction 12-7, 13-6
ADD instruction 12-7, 13-8
adder

modulo 1-4
offset 1-4
reverse-carry 1-4

ADDL instruction 12-7, 13-9
ADDR instruction 12-7, 13-10
Address Attribute Registers (AARs) 9-15

Bit Definitions 9-16
Bus Access Type (BAT) bit 9-18
Bus Address Attribute Polarity (BAAP) bit 9-17
Bus Address Multiplexing (BAM) bit 9-17
Bus Address to Compare (BAC) bit 9-16
Bus Number of Address Bits to Compare (BNC) bit 

9-16
Bus Packing Enable (BPAC) bit 9-16
Bus Program Memory Enable (BPEN) bit 9-17
Bus X Data Memory Enable (BXEN) bit 9-17
Bus Y Data Memory Enable (BYEN) bit 9-17

Address Generation Unit (AGU) 1-3, 4-1
addressing modes 4-5

PC-Relative mode 4-5, 4-8
Register Direct mode 4-6
Register Indirect mode 4-5, 4-7
Special Address mode 4-8
special address modes 4-5

Address modification 4-10
address modifier types

Linear addressing 4-9
Modulo addressing 4-9
Multiple wrap-around modulo addressing 4-9
Reverse-carry addressing 4-9

address register interlock A-9
address registers 4-4

increment or decrement 4-5
Address Trace Mode 5-7, 7-1
addressing modes 4-5

PC Relative mode 4-8
Register Direct mode 4-6
Register Indirect mode 4-7
Special Address mode 4-8

AGU. See Address Generation Unit
algorithms, evaluating and increasing their speed 5-6
analog signal processing 1-7
analog-to-digital 1-8
AND instruction 12-9, 13-11
ANDI instruction 3-12, 5-10, 12-9, 13-13
arithmetic computations 5-10
arithmetic instructions 12-7

Absolute Value (ABS) 12-7, 13-5
Add (ADD) 12-7, 13-8
Add Long With Carry (ADC) 12-7, 13-6
Arithmetic Shift Left (ASL) 12-7, 13-14
Arithmetic Shift Right (ASR) 12-7, 13-16
Clear an Operand (CLR) 12-7, 13-44
Compare (CMP) 12-7, 13-45
Compare Magnitude (CMPM) 12-7, 13-47
Compare Unsigned (CMPU) 12-7, 13-48
Decrement Accumulator (DEC) 12-7, 13-51
Divide Iteration (DIV) 12-7, 13-52
Double Precision Multiply-Accumulate (DMAC) 12-8, 

13-55
Fast Accumulator Normalize (NORMF) 12-8, 

13-147–13-148
Increment Accumulator (INC) 12-8, 13-77
Mixed Multiply (MPY(su,uu)) 12-8, 13-139
Mixed Multiply-Accumulate (MAC(su,uu)) 12-8, 

13-102
Negate Accumulator (NEG) 12-8, 13-144
Round (RND) 12-8, 13-163–13-164
Shift Left and ADD (ADDL) 12-7, 13-9
Shift Left and Subtract (SUBL) 12-8, 13-174
Shift Right and Add (ADDR) 12-7, 13-10
Shift Right and Subtract (SUBR) 12-8, 13-175
Signed MAC and Round With Immediate Operand 

(MACRI) 13-105
Signed Multiply (MPY) 12-8, 13-137–13-138
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Index
Signed Multiply Accumulate (MAC) 12-8, 13-99, 
13-100

Signed Multiply Accumulate and Round (MACR) 12-8, 
13-103, 13-104

Signed Multiply Accumulate and Round With Immedi-
ate Operand) (MACRI) 12-8

Signed Multiply Accumulate With Immediate Operand 
(MACI) 12-8, 13-101

Signed Multiply and Round (MPYR) 12-8, 
13-141–13-142

Signed Multiply and Round With Immediate Operand 
(MPYRI) 12-8, 13-143

Signed Multiply With Immediate Operand (MPYI) 
12-8, 13-140

Subtract (SUB) 12-8, 13-172–13-173
Subtract Long With Carry (SBC) 12-8, 13-169
Test Accumulator (TST) 13-181
Test an Operand (TST) 12-8
Transfer by Magnitude (MAXM) 12-8, 13-107
Transfer by Signed Value (MAX) 12-8, 13-106
Transfer Conditionally (Tcc) 12-8, 13-176–13-177
Transfer Data ALU Register (TFR) 12-8, 13-178

arithmetic overflow 5-16
arithmetic saturation 3-3, 3-10
Arithmetic Saturation Mode (SM). See PCU configuration 
and status registers, Status Register (SR)
arithmetic stall 3-19
arithmetic unit 3-18
ASL instruction 12-7, 13-14
ASR instruction 12-7, 13-16
ATE (Address Trace Enable) bit of the OMR 5-7

B

barrel shifter 1-2, 3-1
Bcc instruction 12-11, 13-18
BCHG instruction 3-18, 9-12, 12-10
BCLR instruction 3-18, 9-12, 12-10
BCR. See Bus Control Register (BCR)
benchmark programs B-1
bit manipulation instructions 3-20, 12-9

Bit Test (BTST) 12-10, 13-40
Bit Test and Change (BCHG) 12-10
Bit Test and Clear (BCLR) 12-10
Bit Test and Set (BSET) 9-12, 12-10

bit parsing instructions 3-18
block diagram

Address Generation Unit (AGU) 4-2
Clock Generator 6-4
Data ALU 3-2
DSP56300 family core blocks 2-3
OnCE module 7-10
OnCE Trace Logic 7-20
Phase Locked Loop (PLL) 6-2
PLL clock generator 6-1

Test Access Port (TAP) With OnCE 7-4
Block Floating Point FFT support 3-13
Boundary Scan Register (BSR) 7-2, 7-3
BRA instruction 12-11, 13-25
BRCLR instruction 3-18, 13-27
BRKcc inside DO loops A-16
BRKcc instruction 5-21, 12-10, 13-28
BRSET instruction 3-18, 13-29
BScc instruction 12-11
BSCLR instruction 3-18, 3-20, 13-32
BSET instruction 3-18, 3-20, 9-12, 12-10, 13-34
BSR instruction 12-12, 13-37
BSR. See Boundary Scan Register
BSSET instruction 3-18, 13-38
BTST instruction 3-18, 12-10, 13-40
Burst Enable (BE) bit 8-3
bus arbitration examples

Bus Busy 9-13
bus lock 9-14
bus parking 9-14
default 9-14
low priority 9-14
Normal 9-13

bus arbitration protocol 9-11
bus arbitration scheme 9-13
bus arbitration signals

Bus Busy (BB) 9-11
Bus Grant (BG) 9-11
Bus Request (BR 9-11

Bus Control Register (BCR) 9-12, 9-15, 9-19
Bit Definitions 9-19
Bus Area 0 Wait State Control (BA0W) bit 9-21
Bus Area 1 Wait State Control (BA1W) bit 9-20
Bus Area 2 Wait State Control (BA2W) bit 9-20
Bus Area 3 Wait State Control (BA3W) bit 9-20
Bus Default Area Wait State Control (BDFW) bit 9-19
Bus Lock Hold (BLH) bit 9-12, 9-19
Bus Request Hold (BRH) bit 9-12, 9-19
Bus State (BBS) bit 9-12, 9-19

Bus Interface Unit (BIU) 10-8
bus parking 9-13, 9-14
bus signals, external 9-2
BYPASS (JTAG) instruction 7-9

C

Cache Enable (CE) bit 5-10, 5-11, 8-1, 8-3
cache support 7-18
Carry (C) bit in the SR 5-16
CCR (Condition Code Register). See PCU configuration and 
status registers
CDR to the HiP4 process C-1
CE (Cache Enable) bit. See Cache Enable (CE) bit
charge pump loop filter 6-3
Chip Select (CS) signals 9-5
DSP56300 Family Manual, Rev. 5
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circular buffer 4-9, 10-4, 10-12, 10-14
CLAMP instruction 7-8
CLB instruction 12-9, 13-42
CLKGEN. See Clock Generator
CLKOUT 6-2, 6-4, 6-5, 9-7
Clock Generator (CLKGEN) 1-6, 6-1, 6-4
clock input frequency division 6-2, 6-4
Clock Out Disable (COD) 6-7
Clock Output Disable (COD) bit in the PCTL register 6-2
clock synchronization 6-10
CLR 13-22
CLR instruction 12-7, 13-44
CMP instruction 12-7, 13-45
CMPM instruction 12-7, 13-47
CMPU instruction 12-7, 13-48
COD (Clock Ouput Disable) bit in the PCTL 6-7
COM (Chip Operating Mode) byte of the OMR 5-5
Communication Design Rules (CDR) process C-1
condition code computation 12-17
Condition Code Register (CCR). See PCU configuration and 
status registers
Condition Codes 12-13
conditional branch instruction A-15
Control hardware DO loops and REP 5-1
convergent rounding (round-to-nearest-even number). See 
rounding
Core. See DSP56300 family core
counter modes, DMA channel. See DMA counter modes

D

DALU register A-25
Data ALU 3-1, 5-10

input registers 3-1
interlock A-9
operations 3-6, 5-10
programming model 3-13
rounding 5-11
scaling 3-5
source operands 3-1

Data Arithmetic Logic Unit. See Data ALU
data limiters 3-5
data representation 3-6
data shifter/limiter circuits 3-4
data transfer 8-7, 10-5
DCR. See DMA Control Registers (DCRs)
DCR. See DRAM Control Register
Debug Event 7-1
DEBUG instruction 12-12, 13-49
Debug mode in OnCE module 7-21
DEBUG_REQUEST instruction 7-8

executing in OnCE module 7-21
DEBUGcc instruction 12-12, 13-50
debugging interface signals 7-1

Debug Event (DE) 7-2

Test Clock (TCK) 7-1
Test Data Input (TDI) 7-1
Test Data Output (TDO) 7-1
Test Mode Select (TMS) 7-1
Test Reset (TRST) 7-2

debugging procedures, OnCE examples 7-26
debugging tool 5-7
debugging, Instruction Cache operation 8-9
DEC instruction 12-7, 13-51
Decode instructions 5-1
dedicated TAP 7-3
digital signal processing 1-8
digital-to-analog 1-8
Direct Memory Access (DMA). See DMA
DIV instruction 12-7, 13-52
Divide Factor (DF) 1-6
DMA 1-7

3D modes (D3D = 1) 10-21
address generation mode 10-21
advantages of using 10-1
Bus Interface Unit (BIU) operations 10-8
byte packing 10-8
channel priority levels 10-6
channels 10-2
circular buffer 10-4, 10-12
Control Registers (DCRs) 10-14

Bit Definitions 10-15
DMA Address Mode (DAM) bit 10-19, 

10-20
DMA Channel Enable (DE) bit 10-15
DMA Channel Priority (DPR) bit 10-17
DMA Continuous Mode Enable (DCON) 

bit 10-18
DMA Destination Space (DDS) bit 10-20
DMA Interrupt Enable (DIE) bit 10-15
DMA Request Source (DRS) bit 10-19
DMA Source Space (DSS) bit 10-20
DMA Transfer Mode (DTM) bit 10-16
Three-Dimensional Mode (D3D) bit 10-19

counter modes
Counter (DCO) register 10-2
Counter Mode A 10-10
Counter Mode B 10-11
Counter Modes C, D and E 10-13
Counters (DCO) 10-9
data structure specification 10-3
Dual Counter mode 10-12
Single-Counter mode 10-14

DCR. See DMA Control Registers (DCRs)
Destination Address Registers (DDRs) 10-2, 10-9
DMA Channel Enable (DE) bit 10-15
DOR (DMA Offset Register) 10-23
DSP56300 Family Manual, Rev. 5
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DRAM In-Page accesses 10-8
DSTR. See DMA Status Register (DSTR)
Dynamic DMA/Core Prioritizing mode 10-7
end-of-block transfer interrupt 10-8
fast DMA request sources 10-5
hardware and software triggers 10-4
Linear buffer with non-unit stride 10-4
non-3D addressing modes (D3D = 0) 10-20
Offset Registers (DORs) 10-23
overlap of data movement with core 10-6
priority between DMA channel and core 10-7
programming model 10-9
restrictions 10-25
Source Address Registers (DSRs) 10-2, 10-9
source and destination data structures 10-4
special address modes 10-4
Static DMA/Core Prioritizing mode 10-7
Status Register (DSTR) 10-23

Bit Definitions 10-24
DMA Active (DACT) bit 10-24
DMA Active Channel (DCH) bit 10-24
DMA Transfer Done (DTD) bit 10-25

transfer dimensions 10-4
transfer mode 10-5
types of data structures

Constant Addressing 10-3
One-dimensional 10-3
Three-dimensional 10-3
Two-dimensional 10-3

DMA and Instruction Cache 8-7
DMAC instruction 3-11, 12-8, 13-55
DO FOREVER flag 5-12
DO FOREVER instruction 12-10, 13-59
DO instruction 4-5, 5-17, 5-18, 5-21, 12-10, 13-58
DOR (DMA Offset Register) 10-23
DOR FOREVER instruction 13-65
DOR instruction 13-61
Double-Precision Multiply mode 3-12, 3-18, 5-12
DRAM Control Register (DCR) 9-8, 9-15, 9-21

Bit Definitions 9-22
Bus Column In-Page Wait State (BCW) bit 9-24
Bus DRAM Page Size (BPS) bit 9-23
Bus Mastership Enable (BME) bit 9-23
Bus Page Logic Enable (BPLE) bit 9-23
Bus Refresh Enable (BREN) bit 9-22
Bus Refresh Prescaler (BRP) bit 9-22
Bus Refresh Rate (BRF) bit 9-22
Bus Row Out-of-page Wait States (BRW) bit 9-23
Bus Software Triggered Reset (BSTR) bit 9-22

DSP56300 family core
benchmark programs B-1
block diagram 2-3
buses 2-2
interrupt sources 2-7

JTAG implementation 7-3
overview 1-2, 2-1
processing

instruction set 2-3
states (normal, exception, reset, wait, stop, 

debug) 2-4, 5-1
DSP56300 family derivatives differences C-1
DSTR. See DMA Status Register (DSTR)
dynamic scaling of fixed-point data 3-5

E

EBD (External Bus Disable) bit of the OMR 5-9
EMR (Extended Mode Register). See PCU configuration and 
status registers, Status Register (SR)
ENABLE_ONCE instruction 7-8, 7-27
ENDDO inside DO loops A-16
ENDDO instruction 5-21, 12-10, 13-67
end-of-block-transfer DMA interrupt 10-8
EOR instruction 12-9, 13-68, 13-69
EP (Extension Pointer) register 4-5
Expanded mode 11-1
EXTAL 6-2, 6-4, 7-9
Extended Mode Register (EMR). See PCU configuration and 
status registers, Status Register (SR)
Extended Operating Mode (EOM) byte of the OMR 5-5
Extension Pointer (EP) register 4-5
external address bus signals 9-1
external bus control signals 9-2

Bus Busy 9-4, 9-11
Bus Grant 9-4
Bus Lock 9-4
Bus Request 9-3
Bus Strobe 9-3
Read Enable 9-2
Transfer Acknowledge 9-1
Write Enable 9-2

External Bus Disable 5-9
external data bus signals 9-2
External Memory Interface (Port A)

accessing slower memories 9-6
Address Bus, Data Bus, and Bus Control pins 9-5
Bus Access Type bit of the AAR 9-18
Bus Address Attribute Polarity (BAAP) bit in the AAR 

9-17
Bus Address Multiplexing (BAM) bit in the AAR 9-17
Bus Address to Compare (BAC) bit in the AAR 9-16
bus arbitration 9-1, 9-11
bus arbitration signals 9-11
Bus Number of Address Bits to Compare (BNC) bit in 

the AAR 9-16
Bus Packing Enable (BPAC) bit in the AAR 9-16
Bus Program Memory Enable (BPEN) bit in AAR 9-17
bus timing 9-5
Bus X Data Memory Enable (BXEN) bit in the AAR 
DSP56300 Family Manual, Rev. 5
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9-17
Bus Y Data Memory Enable (BYEN) bit in the AAR 

9-17
external address bus signals 9-1
external bus control signals 9-2
external data bus signals 9-2
external memory address defined 9-5
Fast or Slow Bus Release mode 9-12
internal wait state generator 9-1
size 9-1
SRAM support 9-6
steps in bus arbitration sequence 9-11
steps in DRAM in-page access 9-10
steps in out-of-page access 9-10
steps in SRAM access 9-6

EXTEST instruction 7-6, 7-8
EXTRACT instruction 3-18, 12-9, 13-70, 13-71
EXTRACTU instruction 3-18, 12-9, 13-72, 13-73

F

Fast Fourier Transforms (FFTs) 3-5
Fast normalization for NORMF 3-4
Fast or Slow Bus Release mode 9-12
Fetch instructions 5-1
FFT butterfly passes 3-13
FFT scaling bit 3-13
filtering the PLL power supply 6-10
finite loops and do forever loops A-16
First-In, First-Out (FIFO) queues 4-9
Frequency Divider 6-3
frequency multiplication 6-4
frequency predivider 6-2

H

hardware DO loops 5-2, 5-16, 13-56
hardware stack 1-4

monitor how many entries are used 5-19
stack is full 5-17

hardware stack. See also stack
HI-Z instruction 7-8

I

IDCODE instruction 7-7
IEEE Standard Test Access Port and Boundary-Scan Archi-
tecture (IEEE 1149.1) 7-2
IFcc instruction 12-12, 13-74
IFcc.U instruction 12-12, 13-75
ILLEGAL instruction 13-76
Illegal Interrupt 8-7
Immediate Short Data MOVE 3-17
INC instruction 12-8, 13-77
Infinite Impulse Response (IIR) filtering 4-11
INSERT instruction 3-18, 12-9, 13-78, 13-79

instruction
bit manipulation instructions 12-9
fetch delays A-9
format 12-13
guide 12-13
logical instructions 12-8
loop instructions 12-10
peripheral pipeline restrictions A-23

polling a peripheral device for write A-24
writing to a read-only register A-24
XY memory data move A-24

program control instructions 12-11
sequence restrictions A-14

ENDDO restrictions A-20
General DO restrictions A-16
REP restrictions A-21
restriction near the end of DO loops A-14
RTI restrictions A-20
RTS restrictions A-20
SP/SC manipulation restrictions A-20
SSH/SSL manipulation restrictions A-20
stack extension restrictions A-22

Sixteen-bit Compatibility mode restrictions A-25
Instruction Cache 8-1

Burst Enable (BE) bit in the Extended Operating Mode 
(EOM) 8-3

Burst mode 8-4
Cache Controller 8-2
Cache Enable (CE) bit in the Extended Mode Register 

(EMR) of the Status Register (SR) 5-10, 5-11, 
8-1, 8-3

cache hit 8-4
cache locking 8-5
cache miss 8-5
cache unlocking 8-6
cache word miss, Burst mode disabled 8-4
cache word miss, Burst mode enabled 8-4
coherency between Program RAM mode and Cache 

mode 8-7
controlling 8-3
debugging 8-9
DMA transfers 8-7
enable/disable operation of the Instruction Cache 5-11
features 8-1
flushing 8-6
hardware reset disables cache 8-5
Illegal Interrupt 8-7
instruction fetch 8-4
Memory Array 8-1
Operating Mode Register (OMR) bit 8-3
operation 8-4
PFLUSH 8-3, 8-6
PFLUSHUN 8-3, 8-7
DSP56300 Family Manual, Rev. 5
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PFREE 8-3
PLOCK 8-3, 8-5
PLOCKR 8-3, 8-5
PMOVE instruction 8-7
PUNLOCK 8-3
PUNLOCKR 8-3
read of the cache status via the OnCE module 8-9
sector miss 8-5
Sector Replacement Unit (SRU) 8-2, 8-4, 8-5
size 8-1
switching from Cache to Program RAM mode 8-7
Tag Register File 8-2
transferring data 8-7
unlocking sectors

PFLUSH instruction 8-6
PFREE, PUNLOCK, and PUNLOCKR in-

structions 8-6
simultaneously by PFREE instruction 8-6

use in real-time applications 8-8
Valid Bit Array 8-2
VBIT field as an address to the Valid Bit Array 8-4
wait states in the pipeline 8-5

instruction cache control instructions 12-13
Lock Instruction Cache Relative Sector (PLOCKR) 

13-157
Lock Instruction Cache Sector (PLOCK) 13-156
Program Cache Flush (PFLUSH) 13-153
Program Cache Flush Unlocked Sectors (PFLUSHUN) 

13-154
Program Cache Global Unlock (PFREE) 13-155
Unlock Instruction Cache Relative Sector (PUN-

LOCKR) 13-159
Unlock Instruction Cache Sector (PUNLOCK) 13-158

instruction pipeline, seven-stage 5-1
instruction set 2-3

ABS 12-7, 13-5
ADC 12-7, 13-6
ADD 12-7, 13-8
ADDL 12-7, 13-9
ADDR 12-7, 13-10
AND 12-9, 13-11
ANDI 3-12, 12-9, 13-13
ASL 12-7, 13-14
ASR 12-7, 13-16
Bcc 12-11, 13-18
BCHG 3-18, 9-12, 12-10
BCLR 3-18, 9-12, 12-10
BRA 12-11, 13-25
BRCLR 3-18, 13-27
BRKcc 5-21, 12-10, 13-28
BRSET 3-18, 13-29
BScc 12-11
BSCLR 3-18, 3-20, 13-32
BSET 3-18, 3-20, 9-12, 12-10, 13-34
BSR 12-12, 13-37

BSSET 3-18, 13-38
BTST 3-18, 12-10, 13-40
CLB 12-9, 13-42
CLR 12-7, 13-44
CMP 12-7, 13-45
CMPM 12-7, 13-47
CMPU 12-7, 13-48
DEBUG 12-12, 13-49
DEBUGcc 12-12, 13-50
DEC 12-7, 13-51
DIV 12-7, 13-52
DMAC 12-8, 13-55
DO 5-21, 12-10, 13-58
DO FOREVER 12-10, 13-59
DOR 13-61
DOR FOREVER 13-65
ENDDO 5-21, 12-10, 13-67
EOR 12-9, 13-68, 13-69
EXTRACT 3-18, 12-9, 13-70, 13-71
EXTRACTU 3-18, 12-9, 13-72, 13-73
IFcc 12-12, 13-74
IFcc.U 12-12, 13-75
ILLEGAL 13-76
INC 12-8, 13-77
INSERT 3-18, 12-9, 13-78, 13-79
Jcc 12-12, 13-80
JCLR 3-18, 12-12, 13-81, 13-82
JMP 12-12, 13-83
JScc 12-12, 13-84
JSCLR 3-18, 12-12, 13-85, 13-86
JSET 3-18, 12-12, 13-87, 13-88
JSR 12-12, 13-89
JSSET 3-18, 12-12, 13-90, 13-91
LRA 12-11, 13-92
LSL 12-9, 13-93, 13-94
LSR 12-9, 13-95, 13-96
LUA 12-11, 13-97, 13-98
MAC 12-8, 13-99, 13-100
MAC(su,uu) 12-8, 13-102
MACI 12-8, 13-101
MACR 12-8, 13-103, 13-104
MACRI 12-8, 13-105
MAX 12-8, 13-106
MAXM 12-8, 13-107
MERGE 3-18, 12-9, 13-108, 13-109
MOVE 12-10, 12-11, 13-111

I 13-113, 13-114
L: 13-126–13-127
No Parallel Data Move 13-112
R 13-115, 13-116
R:Y 13-124–13-125
U 13-117
X: 13-118–13-119
X:R 13-120–13-121
DSP56300 Family Manual, Rev. 5
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X:Y: 13-128–13-129
Y 13-122–13-123

MOVEC 4-5, 5-10, 12-11, 13-130–13-131
MOVEM 8-9, 12-11, 13-132–13-133
MOVEP 12-11, 13-134–13-136
MPY 12-8, 13-137–13-138
MPY(su,uu) 12-8, 13-139
MPYI 12-8, 13-140
MPYR 12-8, 13-141–13-142
MPYRI 12-8, 13-143
NEG 12-8, 13-144
NOP 12-12, 13-145
NORM 13-146
NORMF 12-8, 13-147–13-148
NOT 12-9, 13-149
OR 12-9, 13-150–13-151
ORI 3-12, 12-9, 13-152
PFLUSH 12-13, 13-153
PFLUSHUN 12-13, 13-154
PFREE 12-13, 13-155

cache unlocking 8-6
PLOCK 12-13, 13-156
PLOCKR 12-13, 13-157
PUNLOCK 12-13, 13-158

cache unlocking 8-6
PUNLOCKR 12-13, 13-159

cache unlocking 8-6
REP 5-21, 12-12, 13-160–13-161
RESET 12-12, 13-162
RND 12-8, 13-163–13-164
ROL 12-9, 13-165
ROR 12-9, 13-166
RTI 12-12, 13-167, A-25
RTS 12-12, 13-168
SBC 12-8, 13-169
STOP 2-4, 7-9, 12-12, 13-170–13-171
SUB 12-8, 13-172–13-173
SUBL 12-8, 13-174
SUBR 12-8, 13-175
Tcc 12-8, 13-176–13-177
TFR 12-8, 13-178
TRAP 12-12, 13-179
TRAPcc 12-12, 13-180
TST 12-8, 13-181
VSL 12-11, 13-182
WAIT 2-4, 12-12, 13-183

instruction timing A-1
instructions. See instruction
interlock condition 3-21, A-12
interlock hardware 5-3
Internal X I/O space 11-3, 11-5
interrupt priority level 2-9, 5-14
interrupt processing 2-6
interrupt requests 1-4, 2-4, 2-6, 5-2

interrupt sources 2-7
interrupt, long A-25
interrupts and exceptions 5-1
IPL. See interrupt priority level
IRQ. See interrupt requests

J

Jcc instruction 12-12, 13-80
JCLR instruction 3-18, 12-12, 13-81, 13-82
JMP instruction 12-12, 13-83
Joint Test Action Group. See JTAG
JScc instruction 12-12, 13-84
JSCLR instruction 3-18, 12-12, 13-85, 13-86
JSET instruction 3-18, 12-12, 13-87, 13-88
JSR instruction 4-5, 5-16, 5-17, 5-18, 12-12, 13-89
JSSET instruction 3-18, 12-12, 13-90, 13-91
JTAG 1-6, 7-2

Bypass register 7-8
ID register 7-7
instruction register 7-3
Instruction Register Format 7-5
instruction shift register 7-24
instructions 7-6

BYPASS 7-2, 7-9
CLAMP 7-3, 7-8
DEBUG_REQUEST 7-3, 7-8, 7-10, 7-30

enter Debug mode 7-3
TMS sequencing 7-30

ENABLE_ONCE 7-3, 7-8, 7-9, 7-10, 7-30
EXTEST 7-2, 7-6, 7-9
HI-Z 7-2, 7-3, 7-8
IDCODE 7-3, 7-7, 7-8
SAMPLE/PRELOAD 7-2, 7-6

JTAG-OnCE interaction examples 7-30
mandatory public instructions 7-3
restrictions 7-9
Stop mode 7-10
TAP controller 7-3

Test-Logic-Reset state 7-10
Test Access Port (TAP) 7-1, 7-2
Test-Logic-Reset controller state 7-6

Jump/Branch on bit instructions 3-18

L

LA (Loop Address) register 5-16, 5-20
LA values used outside the DO loop A-16
LA-1, one-word conditional branch instruction A-15
LAs, consecutive A-15
LC (Loop Counter) register 5-16, 5-21
LC values used outside DO loop A-16
limiters in the DSP56300 core 3-5
Limiting (L) bit in the SR 3-10
DSP56300 Family Manual, Rev. 5
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Locked state, PLL 6-2
logical instructions 12-8

AND Immediate With Control Register (ANDI) 12-9, 
13-13

Count Leading Bits (CLB) 12-9, 13-42
Extract Bit Field (EXTRACT) 12-9, 13-70, 13-71
Extract Unsigned Bit Field (EXTRACTU) 12-9, 

13-72, 13-73
Insert Bit Field (INSERT) 12-9, 13-78, 13-79
Logical AND (AND) 12-9, 13-11
Logical Complement (NOT) 12-9, 13-149
Logical Exclusive OR (EOR) 12-9, 13-68, 13-69
Logical Inclusive OR (OR) 12-9, 13-150–13-151
Logical Shift Left (LSL) 12-9, 13-93, 13-94
Logical Shift Right (LSR) 12-9, 13-95, 13-96
Merge Two Half Words (MERGE) 12-9, 13-108, 

13-109
OR Immediate With Control Register (ORI) 12-9, 

13-152
Rotate Left (ROL) 12-9, 13-165
Rotate Right (ROR) 12-9, 13-166

Logical operations for AND, OR, EOR, and NOT 3-4
long interrupt 5-17, 5-21, A-25
Loop Address (LA) register 5-16, 5-20
Loop Counter (LC) register 5-16, 5-21
loop instructions 12-10

Abort and Exit from Hardware Loop (ENDDO) instruc-
tion 12-10

Conditionally Break the Current Hardware Loop 
(BRKcc) instruction 12-10

Start Forever Hardware Loop (DO FOREVER) instruc-
tion 12-10

Start Hardware Loop (DO) instruction 12-10
loops, finite DO and DO FOREVER A-16
Low-Power Divider (LPD) 6-5
LRA instruction 12-11, 13-92
LRU/Lock Status Register 7-19
LSL instruction 12-9, 13-93, 13-94
LSR instruction 12-9, 13-95, 13-96
LUA instruction 12-11, 13-97, 13-98

M

MAC instruction 12-8, 13-99, 13-100
MAC unit. See Multiplier-Accumulator unit
MAC(su,uu) instruction 12-8, 13-102
MACI instruction 12-8, 13-101
MACR instruction 3-3, 12-8, 13-103, 13-104
MACRI instruction 12-8, 13-105
MAX instruction 12-8, 13-106
MAXM instruction 12-8, 13-107
memory breakpoint logic

OnCE Breakpoint Control Register (OBCR) 7-16
OnCE Memory Address Comparator (OMACx) 7-16
OnCE Memory Address Latch (OMAL) 7-16

OnCE Memory Limit Register (OMLRx) 7-16
memory breakpoints 7-15

enabling 7-22
Memory Breakpoint Occurrence (MBO) bit in the OSCR 

7-15
memory map 11-3
memory module switch mode 5-9
MERGE instruction 3-18, 12-9, 13-108, 13-109
MF (Multiplication Factor) 6-3, 6-10
Mode Register (MR). See PCU configuration and status reg-
isters, Status Register (SR)
modifier registers 4-5
modulo adder 1-4, 4-1
modulo addressing 4-11
modulo arithmetic types 4-9
modulo arithmetic units 4-4
modulo M 4-10, 4-11
MOVE A,A (or B,B) instruction 3-10
MOVE from SSH 5-17
MOVE instruction 8-7, 13-111
move instructions 12-10

Address Register Update (U) 13-117
Immediate Short Data Move (I) 13-113
Load PC-Relative Address (LRA) 12-11, 13-92
Load Updated Address (LUA) 12-11, 13-97, 13-98
Long Memory Data Move (L:) 13-126–13-127
Move Control Register (MOVEC) 12-11, 

13-130–13-131
Move Data (MOVE) 12-11, 13-111
Move Peripheral Data (MOVEP) 12-11, 

13-134–13-136
Move Program Memory (MOVEM) 12-11, 

13-132–13-133
No Parallel Data Move 13-112
Register and Y Memory Data Move (R:Y) 13-124
Register-to-Register Data Move (R) 13-115, 13-116
Viterbi Shift Left (VSL) 12-11, 13-182
X Memory and Register Data Move (X:R) 

13-120–13-121
X Memory Data Move (X:) 13-118–13-119
XY Memory Data Move (X:Y:) 13-128–13-129
Y Memory Data Move (Y) 13-122–13-123

MOVEC 5-20, 5-21
MOVEC instruction 4-5, 5-10, 5-18, 12-11, 
13-130–13-131
MOVEM instruction 8-9, 12-11, 13-132–13-133
MOVEP instruction 12-11, 13-134–13-136
moves from/to registers or accumulators 3-14–3-16
moves in Sixteen-bit Arithmetic mode 3-14
MPY instruction 12-8, 13-137–13-138
MPY(su,uu) instruction 12-8, 13-139
MPYI instruction 12-8, 13-140
MPYR instruction 12-8, 13-141–13-142
MPYRI instruction 12-8, 13-143
MR (Mode Register). See PCU configuration and status reg-
DSP56300 Family Manual, Rev. 5
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isters, Status Register (SR)
Multibit left shift 3-4
Multibit right shift 3-4
multi-dimensional and special address mode transfers 10-3
Multiple Wrap-Around Addressing mode 4-11
Multiplication Factor 6-3, 6-10
Multiplier-Accumulator (MAC) unit 1-2, 1-3, 3-2
multiply/accumulate operation 3-3
multiplying integer number 3-7
multiprecision multiplications 3-10

N

Narrow Bandwidth mode 6-3
NEG instruction 12-8, 13-144
nested hardware DO loops 5-17
NOP instruction 12-12, 13-145
NORM instruction 13-146
Normal mode 7-10
NORMF instruction 12-8, 13-147–13-148
NOT instruction 12-9, 13-149

O

OBCR. See OnCE Breakpoint Control Register
OCR. See OnCE Command Register (OCR)
ODEC. See OnCE Decoder (ODEC)
offset adder 1-4, 4-1, 4-2
offset registers 4-5
OMACx comparator 7-16
OMAL register 7-16
OMBC counter 7-18
OMLRx register 7-16
OMR. See PCU configuration and status registers
OnCE

Address Trace mode 7-32
block diagram of the OnCE controller 7-11
Breakpoint Control Register (OBCR)

Bit Definitions 7-17
Breakpoint 0 Condition Code (CC0) bit

7-18
Breakpoint 0 Read/Write (RW0) bit 7-18
Breakpoint 1 Condition Code (CC1) bit

7-17
Breakpoint 1 Read/Write (RW1) bit 7-17
Breakpoint Event Bits (BT) bit 7-17
Memory Breakpoint (MBS) bit 7-18

cache support 7-18
OnCE Trace Counter (OTC) 7-20
OnCE trace logic 7-20

change of flow instruction 7-24
Command Register (OCR) 7-11, 7-12

Bit Definitions 7-12
Exit Command (EX) bit 7-12

Go Command (Go) bit 7-12
Read/Write Command (R/W) bit 7-12
Register Select (RS) bit 7-13

commands 7-25
Debug mode 7-21

returning to Normal mode 7-29
verifying chip entered Debug mode 7-26
ways to enter 7-21

Decoder (ODEC) 7-11, 7-14
displaying a specified register 7-28
displaying X memory area 7-28
enable Trace mode 7-20
ensure Trace Buffer coherence 7-24
examples of debugging procedures 7-26
examples of OnCE-JTAG interaction 7-30
GDB Register (OGDBR) 7-23
JTAG-OnCE interaction examples 7-30
Memory Breakpoint Counter (OMBC) 7-18
memory breakpoint logic 7-15

OnCE Memory Address Comparator 
(OMACx) 7-16

OnCE Memory Address Latch Register 
(OMAL) 7-16

OnCE Memory Limit Register (OMLRx)
7-16

See also OnCE Breakpoint Control Regis-
ter (OBCR)

module 7-1, 7-10
PAB Register for Decode (OPABDR) 7-23
PAB Register for Execute (OPABEX) 7-23
PAB Register for Fetch (OPABFR) 7-23
polling the JTAG Instruction Register 7-26
reading the Trace buffer 7-27
Status and Control Register (OSCR) 7-11, 7-14

Bit Definitions 7-14
Cache Hit (HIT) bit 7-15, 8-9
Core Status (OS) bit 7-14
Interrupt Mode Enable (IME) bit 7-15
Memory Breakpoint Occurrence (MBO) bit

7-15
Software Debug Occurrence (SWO) bit

7-15
Trace Mode Enable (TME) bit 7-15
Trace Occurrence (TO) bit 7-15

On-Chip Emulation (OnCE) module. See OnCE module
OPABDR (OnCE PAB Decode) Register 7-23
OPABEX (OnCE PAB Execute) Register 7-23
OPABFR (OnCE PAB Fetch) Register 7-23
Operating Mode Register (OMR)

TA Synchronize Select (TAS) 5-8
Operating Mode Register (OMR). See PCU configuration 
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and status registers
operating mode, determining 5-5
OR instruction 12-9, 13-150–13-151
ORI instruction 3-12, 5-10, 12-9, 13-152
OSCR. See OnCE Status and Control Register
OTC counter 7-20
out-of-page access 9-8
Overflow bit (V bit) in the SR 3-10
overflow in the destination operand size 3-5
overflow protection 3-3

P

PAG. See Program Address Generator (PAG)
Parallel Move Descriptions 13-111

immediate short data move 13-113
long memory data move 13-126
X memory and register data move 13-120, 13-124
X memory data move 13-118, 13-122
XY memory data move 13-128

parallel move operations 5-10
PCAP 6-2, 6-3
PCU 1-4, 10-1

hardware System Stack. See also PCU System Stack 
5-16

processing control registers 5-4
Loop Address (LA) register 4-9, 5-2
Loop Counter (LC) register 4-9, 5-2
Program Counter (PC) register 4-9
Vector Base Address (VBA) register 5-2

Program/Loop/Exception processing control registers
Loop Address (LA) register 5-2
Loop Counter (LC) register 5-2
Program Counter (PC) register 5-2
Vector Base Address (VBA) register 5-2

programming model 5-4
System Stack 5-4, 5-16
System Stack. See also PCU System Stack configuration 

and operation registers
PCU configuration and status registers 5-4, 5-5

Condition Code Register (CCR)
Bit Definitions 5-10
Carry (C) bit 5-16
Extension (E) bit 5-15
Limit (L) bit 5-14
Negative (N) bit 5-15
Overflow (V) bit 5-16
Scaling (S) bit 5-14
Unnormalized (U) bit 5-15
Zero (Z) bit 5-15

Operating Mode Register (OMR) 5-5, 5-17
Address Attribute Priority Disable (APD) 

bit 5-7
Address Trace Enable (ATE) bit 5-7, 7-32
Asynchronous Bus Arbitration Enable 

(ABE) bit 5-7
Bit definitions 5-6
Bus Release Timing (BRT) bit 5-8, 9-12
Cache Burst Mode Enable (BE) bit 5-8, 8-3
Chip Operating Mode (COM) Byte 5-5
Chip Operating Mode (MD-MA) bit 5-9
Core-DMA Priority (CDP) bit 5-8
Extended Chip Operating Mode (EOM) 

Byte 5-5
External Bus Disable (EBD) bit 5-9, 9-10
Memory Switch Configuration (MSW) bit

5-6
Memory Switch Mode (MS) bit 5-9
Patch Enable (PEN) bit 5-6
Stack Extension Enable (SEN) bit 5-6, 5-17
Stack Extension Overflow (EOV) bit 5-6
Stack Extension Underflow (EUN) bit 5-7
Stack Extension Wrap (WRP) bit 5-6
Stack Extension XY Select (XYS) bit 5-7
Stop Delay Mode (SD) bit 5-9
System Stack Control/Status (SCS) Byte

5-5
Status Register (SR) 4-9, 5-2, 5-5, 5-10

Arithmetic Saturation Mode (SM) bit 3-3, 

3-9, 5-11
Bit Definitions 5-11
Cache Enable (CE) bit 5-11, 8-3, 8-8
Carry (C) bit 5-16
Condition Code Register (CCR). See PCU 

configuration and status registers
Core Priority (CP) bit 5-11
DO FOREVER flag (FV) bit 5-12
DO Loop Flag (LF) bit 5-12
Double-Precision Multiply Mode (DM) bit

5-12
Extended Mode Register (EMR) 5-10
Extension (E) bit 5-15
Interrupt Mask (I) bit 5-14
Limit (L) bit 3-5, 3-19, 5-14
Mode Register (MR) 5-10
Negative (N) bit 5-15
Overflow (V) bit 5-16
Rounding Mode (RM) bit 3-8, 5-11
Scaling (S) bit 3-19, 5-14
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Scaling Mode (S) bit 3-3, 5-13
Sixteen-Bit Arithmetic Mode (SA) bit 3-1, 

5-12
Sixteen-Bit Compatibility Mode (SC) bit

5-13
Unnormalized (U) bit 5-15
Zero (Z) bit 5-15

PCU processing control registers
Loop Address (LA) register 5-16, 5-20
Loop Counter (LC) register 5-16, 5-21
Program Counter (PC) register 5-20
Vector Base Address (VBA) register 5-21

PCU System Stack configuration and operation registers 5-4, 
5-16

Extension Pointer (EP) register 5-16
Stack Counter (SC) register 5-19
stack extension bits. See PCU configuration and status 

registers, Operating Mode Register (OMR)
Stack Extension Enable bit of the OMR 5-6, 5-17
Stack Pointer (SP) register 5-18

Bit Definitions 5-18
P bits 5-18
SP Register Values in Non-extended mode

5-19
Stack Error/P4 (SE/P4) bit 5-19
Stack Pointer (P) bit 5-19
Underflow Flag/P5 (UP/PF) bit 5-18

Stack Size (SZ) Register 5-16, 5-20
System Stack High (SSH) Register 5-16
System Stack Low (SSL) Register 5-2, 5-16

PDC. See Program Decode Controller (PDC)
PFLUSH instruction 8-6, 8-7, 12-13, 13-153
PFLUSHUN instruction 8-7, 12-13, 13-154
PFREE instruction 8-6, 12-13, 13-155
Phase Detector (PD) 6-2
Phase Locked Loop (PLL). See PLL
PIC (position independent code) support 1-4
PIC. See Program Interrupt Controller (PIC)
PINIT 6-2
pipeline conflicts 3-19, A-12
pipeline dependencies 3-19
pipeline interlocks A-12
PLL 1-6

clock generator 6-1
clock synchronization 6-10
Control (PCTL) register 6-2, 6-6

Bit Definitions 6-7
Clock Output Disable (COD) bit 6-7
Crystal Range (XTLR) bit 6-9
Division Factor (DF) bit 6-9
Multiplication Factor (MF) bits 6-10
PLL Enable (PEN) bit 6-8

PLL Stop State (PSTP) bit 6-8
Predivider Factor (PD) bit 6-7
XTAL Disable (XTLD) bit 6-8

Control Elements in its circuitry
clock input division 6-4
frequency multiplication 6-4
skew elimination 6-4

control mechanisms 6-2
charge pump loop filter 6-3
frequency predivider 6-2
phase detector 6-2

Division Factor 6-4
operating frequency 6-6
PCTL Multiplication Factor 6-4
PCTL Predivider Factor (PDF) bits 6-4
phase skew 6-4
power supply 6-10
recommendations for filtering PLL power supply 6-10
skew elimination 6-4

PLL Control (PCTL) register. See PLL
PLOCK instruction 8-6, 12-13, 13-156
PLOCKR instruction 8-6, 12-13, 13-157
PMOVE instruction 8-7
PMOVER 8-8
PMOVEW 8-7, 8-8
Port A control 9-15

AAR. See Address Attribute Registers (AARs)
BCR. See Bus Control Register (BCR)
DCR. See DRAM Control Register (DCR)

Program Address Generator (PAG) 1-4, 5-1, 5-2
program control instructions 3-20, 12-11

Branch Always (BRA) 12-11, 13-25
Branch Conditionally (Bcc) 12-11, 13-18
Branch to Subroutine Always (BSR) 12-12, 13-37
Branch to Subroutine Conditionally (BScc) 12-11
Enter into the Debug Mode Always (DEBUG) 12-12, 

13-49
Enter into the Debug Mode Conditionally (DEBUGcc) 

12-12, 13-50
Execute Conditionally (IFcc) 12-12, 13-74
Execute Conditionally and Update CCR (IFcc.U) 

12-12, 13-75
Jump Always (JMP) 12-12, 13-83
Jump Conditionally (Jcc) 12-12, 13-80
Jump if Bit Clear (JCLR) 12-12, 13-81, 13-82
Jump if Bit Set (JSET) 12-12, 13-87, 13-88
Jump to Subroutine Always (JSR) 12-12, 13-89
Jump to Subroutine Conditionally (JScc) 12-12, 13-84
Jump to Subroutine if Bit Clear (JSCLR) 12-12, 13-85, 

13-86
Jump to Subroutine if Bit Set (JSSET) 12-12, 13-90, 

13-91
No Operation (NOP) 12-12
Repeat Next Instruction (REP) 12-12, 
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13-160–13-161
Reset On-Chip Peripheral Devices (RESET) 12-12, 

13-162
Return From Interrupt (RTI) 12-12, 13-167
Return From Subroutine (RTS) 12-12, 13-168
Stop Processing (Low-Power Standby) (STOP) 12-12, 

13-170–13-171
Trap Always (TRAP) 12-12, 13-179
Trap Conditionally (TRAPcc) 12-12, 13-180
Wait for Interrupt (Low-Power Standby) (WAIT) 

12-12, 13-183
Program Control Unit. See PCU
Program Counter (PC) register. See PCU processing control 
registers
Program Decode Controller (PDC) 1-4, 5-1, 5-2
Program Interrupt Controller (PIC) 1-4, 5-1, 5-2
program loop 5-12
program memory

external 11-7
internal 11-7

PUNLOCK instruction 8-2, 8-6, 12-13, 13-158
PUNLOCKR instruction 8-6, 12-13, 13-159

R

read-modify-write instructions 3-18
REP instruction 5-21, 12-12, 13-160–13-161
REPEAT mechanism 5-2
representation of integer and fractional numbers 3-7
RESET instruction 12-12, 13-162
reverse-carry adder 1-4, 4-1, 4-2
reverse-carry modifier 4-10
RND instruction 12-8, 13-163–13-164
ROL instruction 12-9, 13-165
ROR instruction 12-9, 13-166
rounding

convergent rounding (round-to-nearest-even number) 
3-3, 3-7

Rounding Mode (RM) bit in the SR 3-7, 3-8
selecting the type of rounding performed by the Data 

ALU during arithmetic operations 5-11
signed multiply-accumulate and round (MACR) instruc-

tion. See also MACR instruction 3-3
specifying 3-3
two’s-complement rounding 3-3, 3-7, 3-8
types of rounding (modes) 3-7

RTI instruction 4-5, 5-18, 12-12, 13-167
RTS 5-17
RTS instruction 12-12, 13-168

S

SAMPLE/PRELOAD instruction 7-6
saturation mode. See SM bit of the Status Register (SR)
SBC instruction 12-8, 13-169
SC (Stack Counter) register. See PCU System Stack configu-

ration and operation registers
scaling 3-8

in Data ALU 3-5
scaling and limiting 3-17
Scaling mode 3-3
Scaling Mode bits 3-5
SCS byte of the OMR 5-5

See also PCU configuration and status registers, Operat-
ing Mode Register (OMR)

SEN (Stack Extension Enable) bit of the OMR 5-17
seven-stage instruction pipeline 5-1
shifting and limiting 3-3
signal processing

analog 1-7
digital 1-7

signed multiply-accumulate and round (MACR) instruction. 
See also MACR instruction 3-3
Sixteen-bit Arithmetic mode 3-4, 3-14, 3-17, 3-18, A-25

enable/disable SA bit in the SR 5-12
Short Data MOVE 3-17

Sixteen-bit Compatibility (SC) mode 4-3, A-25
skew elimination 6-4
SM (Arithmetic Saturation Mode) bit. See PCU configuration 
and status registers, Status Register (SR)
source code syntax illustrated in benchmarks B-1
SP (Stack Pointer) register. See PCU System Stack configu-
ration and operation registers
SS. See System Stack (SS)
Stack Counter (SC) 5-16
Stack Counter (SC) register. See PCU System Stack configu-
ration and operation registers
stack exception 5-20
stack extension 4-5, 5-16

control logic 5-17
delay A-11
enable

restrictions A-23
SEN bit of the OMR 5-6
SEN bit of the OMR. See also PCU config-

uration and status registers, Operat-
ing Mode Register (OMR) 5-17

mapping 5-7
overflow 5-6
underflow 5-7

stack Extension Pointer (EP) Register 5-2, 5-17
Stack Pointer (SP) register. See PCU System Stack configu-
ration and operation registers
Stack Size (SZ) register. See PCU System Stack configura-
tion and operation registers
stack underflow occurs in Stack Extended mode 5-7
Status Register (SR). See PCU configuration and status reg-
isters
STOP instruction 2-4, 7-9, 12-12, 13-170–13-171
Stop state 1-11, 2-4, 2-16, 6-2
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SUB instruction 12-8, 13-172–13-173
SUBL instruction 12-8, 13-174
SUBR instruction 12-8, 13-175
System Configuration modes 11-1
System Stack (SS) 5-2, 5-17
System Stack (SSH, SSL) 4-9, A-23
System Stack configuration and operation registers. See PCU 
System Stack configuration and operation registers
System Stack Control/Status (SCS) byte of the OMR 5-5
System Stack High (SSH) Register 5-2, 5-16
System Stack Low (SSL) Register 5-2, 5-16
System Stack, extending into 24-bit wide X or Y data memo-
ry 5-17
SZ (Stack Size) register. See PCU System Stack configura-
tion and operation registers

T

TA Synchronize Select (TAS) bit 5-8
TAP. See JTAG TAP
Tcc instruction 3-4, 12-8, 13-176–13-177
Test Access Port (TAP). See JTAG
test clock (TCK) 7-1
Test Technology Committee of IEEE 7-2
TFR instruction 12-8, 13-178
TMS (test mode select) pin 7-1
TMS Sequencing for Reading Pipeline Register 7-31
Trace Buffer 7-23
Trace mode 7-20

enabling 7-22
transfer saturation 3-3, 3-5
transfer stall 3-20
TRAP instruction 12-12, 13-179
TRAPcc instruction 12-12, 13-180
TST instruction 12-8, 13-181
two’s-complement rounding. See rounding

U

unlocking the Instruction Cache 8-6
update-by-offset addressing modes 4-4

V

VBA register. See PCU processing control registers
VCO

divide by 2 6-3
frequency divider 6-3

Vector Base Address (VBA) register. See PCU processing 
control registers
Voltage Controlled Oscillator. See VCO
VSL instruction 12-11, 13-182

W

WAIT instruction 2-4, 12-12, 13-183

Wait state 1-11, 2-4, 2-16
wait states, external memory 5-18

X

X Data Bus (XDB) 3-1
X I/O space 11-3, 11-5
X memory area, displaying 7-28

Y

Y Data Bus (YDB) 3-1
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