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About This Book

This manual describes the centralgassing unit of the DSP56800 Famiilydetail. It is intended to be
used with the appropriate DSP56800 Familymher user's manual, which describes the central
processing unit, programming models, and detdithe instruction set. The appropriate DSP56800
Family member technical data sheet proviti@éng, pinout, and packaging descriptions.

This manual provides practical informatitmhelp the user aomplish the following:
* Understand the operation and instruction set of the DSP56800 Family
»  Write code for DSC algorithms
* Write code for general control tasks
» Write code for communication routines
* Write code for data manipulation algorithms

Audience

The information in this maual is intended to assist design anftware engineers with integrating a
DSP56800 Family device into a design and with developing application software.

Organization

Information in this manual is organized into chaptsrsopic. The contents of the chapters are as follows:

Chapter 1, “Introduction.” This section introduces tfiESP56800 core architectumad its application. It
also provides the novice with a brieferview of digital signal processing.

Chapter 2, “Core Architecture Overview.” The DSP56800 core architaot consists of the data
arithmetic logic unit (ALU), address generation yANGU), program controller, bus and bit-manipulation
unit, and a JTAG/On-Chip Emulation (OnCE™) portisl$ection describes each subsystem and the buses
interconnecting the major ogonents in the DSP568@@ntral processing module.

Chapter 3, “Data Arithmetic Logic Unit.” This section describes the data ALU architecture, its
programming model, an introductiém fractional and integer arithmetand a discussion of other topics
such as unsigned and multi-precisamthmetic on the DSP56800 Family.

Chapter 4, “Address Generation Unit.” This section specifically describes the AGU architecture and its
programming model, addressingpdes, and address modifiers.

Chapter 5, “Program Controller.” This section describes in detail the program controller architecture, its
programming model, and hardware looping. Note, howeliat the different processing states of the
DSP56800 core, including interrupt processing, asedbed in Chapter 7, “Interrupts and the Processing
States.”
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Chapter 6, “Instruction Set Introduction.” This section presents an indluction to parallel moves and a
brief description of the syntax, instruction formatperand and memory references, data organization,
addressing modes, and instruction set. It alsludes a summary of the instruction set, showing the
registers and addressing modes available to eachatistruA detailed description of each instruction is
given in Appendix A, “Instruction Set Details.”

Chapter 7, “Interrupts and the Processing States.This section describes five of the six processing
states (normal, exception, reset, wait, and stopg.sbtth processing state (debug) is covered more
completely in Chapter 9, “JTA@nd On-Chip Emulation (OnCE™).”

Chapter 8, “Software Technigues."This section teaches the advancsdruechniques for more efficient
programming of the DSP56800 Family. It inclu@edescription of useful instruction sequences and
macros, optimal loop and interrupt programming,dspelated to the stack of the DSP56800, and other
useful software topics.

Chapter 9, “JTAG and On-Chip Emulation (OnCE™).” This section desitres the combined
JTAG/ONnCE port and its functions. These two are intgralated, sharing the s& pins for I/0O, and are
presented togethar this section.

Appendix A, “Instruction Set Details.” This section presents a detailekcription of each DSP56800
Family instruction, its usegnd its effect on the processor.

Appendix B, “DSP Benchmarks.”DSP56800 Family benchmark example programs and results are listed
in this appendix.

Suggested Reading

A list of DSC-related books is incled here as an aid for the enginedio is new to the field of DSC:
Advanced Topics in Signal Processidge S. Lim and Alan V. Oppenheim (Prentice-Hall: 1988).
Applications of DigithSignal Processindi. V. Oppenheim (Prentice-Hall: 1978)

Digital Processing of Signals: Theory and Practidgurice Bellanger (John Wiley and Sons: 1984).
Digital Signal Processingdlan V. Oppenheim and Ronalll. Schafer (Prentice-Hall: 1975)

Digital Signal Processing: A System Design Appro&avid J. DeFatta, Josefh Lucas, and William S.
Hodgkiss (John Wiley and Sons: 1988)

Discrete-Time Signal Processimg, V. Oppenheim and R.W. Schafer (Prentice-Hall: 1989).
Foundations of Digital Signal Processing and Data Analysigy,. Cadzow (Macmillan: 1987).

Handbook of Digital Signal ProcessinD. F. Elliott (Aca@mic Press: 1987).

Introduction to Digital Signal Processingohn G. Proakis and Dimitris G. Manolakis (Macmillan: 1988).
Multirate Digital Signal ProcessindR. E. Crochiere and L. R. Rabiner (Prentice-Hall: 1983).

Signal Processing Algorithm$. Stearns and R. Davis (Prentice-Hall: 1988).

Signal Processing Handbook. H. Chen (Marcel Dekker: 1988).

Signal Processing: The Modern Approadames V. Candy (McGraw-Hill: 1988).

Theory and Application ddigital Signal Processing.awrence R. Rabimeind Bernard Gold
(Prentice-Hall: 1975).
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Conventions

This document uses the following notational conventions:

Bitswithin registersare always|isted from most significant bit (M SB) to least significant bit (L SB).

Bitswithin aregister are formatted AA[n:0] when more than one bit isinvolved in a description.
For purposes of description, the bits are presented asif they are contiguous within aregister.
However, thisis not aways the case. Refer to the programming model diagrams or to the
programmer’s sheets to see the exact location of bits within aregister.

When abit isdescribed as “ set,” itsvalueis set to 1. When abit is described as “cleared,” its value
issetto 0.

Memory addresses in the separate program and data memory spaces are differentiated by a
one-letter prefix. Data memory addresses are preceded by “X:” while program memory addresses
have a“P:” prefix. For example, “P:$0200" indicates alocation in program memory.

Hex values are indicated with adollar sign ($) preceding the hex value, asfollows: $FFFB isthe X
memory address for the Interrupt Priority Register (IPR).

Code examples are displayed in a monospaced font, as follows:

BFSET #$0007,X:PCC ; Configure: line 1
; MISO0, MOSIO, SCKO for SPI master line 2
; =SSO as PC3 for GPIO line 3

Definitions, Acronyms, and Abbreviations

The following terms appear frequently in this manual:

DSC digital signal controller
JTAG Joint Test Action Group
OnCE™ On-Chip Emulation
ALU arithmetic logic unit
AGU address generation unit

A complete list of relevant termsisincluded in the Glossary at the end of this manual.
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Chapter 1
| ntroduction

The DSP56800 Digital Signal Controllers provide low cost, low power, mid-performance computing,
combining DSC power and parallelism with M CU-like programming simplicity. The DSP56800 coreis a
general-purpose central processing unit, designed for both efficient digital signal processing and a variety

of controller operations.

1.1 DSP56800 Family Architecture

The DSP56800 Family uses the DSP56800 16-bit DSC core. This core is a general-purpose central
processing unit (CPU), designed for both efficient DSC and controller operations. Its instruction-set
efficiency asa DSC is superior to other low-cost DSC architectures and has been designed for efficient,
straightforward coding of controller-type tasks.

Memory

Peripherals

GPIO

.

|:|| PLL

16-Bit DSC

CPU Core

External
Bus

Interface

> 1/0 Pins

G

Debug
Port

G

> Address
> Data

> JTAGI/O

Figure1-1. DSP56800-Based DSC Microcontroller Chip

AA0012

The genera-purpose MCU-style instruction set, with its powerful addressing modes and bit-manipulation
instructions, enables a user to begin writing code immediately, without having to worry about the
complexities previously associated with DSCs. A software stack allows for unlimited interrupt and
subroutine nesting, as well as support for structured programming techniques such as parameter passing
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and the use of local variables. The veteran DSC programmer sees a powerful DSC instruction set with
many different arithmetic operations and flexible single- and dual-memory movesthat can occur in parallel
with an arithmetic operation. The general -purpose nature of the instruction set also allows for an efficient
compiler implementation.

A variety of standard peripherals can be added around the DSP56800 core (see Figure 1-1 on page 1-1)
such as serial ports, general-purpose timers, real-time and watchdog timers, different memory
configurations (RAM, FLASH, or both), and general-purpose 1/0 (GPIO) ports.

On-Chip Emulation (OnCE™) capability is provided through a debug port conforming to the Joint Test
Action Group (JTAG) standard. This provides rea -time, embedded system debugging with on-chip
emulation capability through the five-pin JTAG interface. A user can set hardware and software
breakpoints, display and change registers and memory locations, and single step or step through multiple
instructions in an application.

The DSP56800’ s efficient instruction set, multiple internal buses, on-chip program and data memories,
external bus interface, standard peripherals, and industry-standard debug support make the DSP56800
Family an excellent solution for real-time embedded control tasks. It isan excellent fit for wireless or
wireline DSC applications, digital control, and controller applications in need of more processing power.

1.1.1 CoreOverview

The DSP56800 core is a programmable 16-bit CMOS digital signal controller that consists of a 16-bit data
arithmetic logic unit (ALU), a 16-bit address generation unit (AGU), a program decoder, On-Chip
Emulation (OnCE), associated buses, and an instruction set. Figure 1-2 on page 1-3 shows ablock diagram
of the DSP56800 core. The main features of the DSP56800 core include the following:

*  Processing capability of up to 35 million instructions per second (MIPS) at 70 MHz
* Requiresonly 2.7-3.6 V of power

» Single-instruction cycle 16-bit x 16-bit parallel multiply-accumulator

»  Two 36-bit accumulators including extension bits

» Single-instruction 16-bit barrel shifter

» Pardllel instruction set with unique DSC addressing modes

* Hardware DO and REP loops

» Two externa interrupt request pins

» Four 16-bit internal core data buses

* Three 16-bit internal address buses

* Instruction set that supports both DSC and controller functions

»  Controller-style addressing modes and instructions for smaller code size

» Efficient C compiler and local variable support

»  Software subroutine and interrupt stack with unlimited depth

*  On-Chip Emulation for unobtrusive, processor-speed-independent debugging
* Low-power wait and stop modes

*  Operating frequency downto DC

» Single power supply
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DSP56800 Family Architecture

Program AGU
Controller vor] [~ ]
L SR |[OMR] [instr. Decoder +- '\A(EB
T X
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< Clock & Control v__»
Program |l PAB >
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< 252 Bus
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»| MAC
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» ALU
AAD006

Figure 1-2. DSP56800 Core Block Diagram

1.1.2 Peripheral Blocks

The following peripheral blocks are available for members of the DSP56800 16-bit Family:
* Program FLASH and RAM modules
* Bootstrap FLASH for program RAM parts
o Data FLASH and RAM modules
» Phase-locked loop (PLL) module
* General purpose Quad Timers
» Computer operating properly (COP) module
e Serial Communication Interfaces (SCIs)
e Synchronous serial interface module (SSI)
e Serial peripheral interface (SPI)
e Quadrature Decoders
* Controller Area Network (CAN) Modules
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Multiple channeldPulse Width Modulation (PWM) Modules
External Memory Interface (EMI)

Multiple channels AnalogetDigital Converters (ADC)
Programmable general-pugmI/O (dedicated & shared)
JTAG/ONnCE port for debugging

More blocks will be defined in ¢hfuture to meet customer needs.

1-4
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Introduction to Digital Signal Processing

1.1.3 Family Members

The DSP56800 core processor is designed as a amessor for a family of Freescale DSCs. An example
of a chip (56F807) built with this core is shown in Figure 1-3.

Figure 1-3. Example of ChipBuilt Around the DSP56800 Core

1.2 Introduction to Digital Signal Processing

DSC is the arithmetic processing of real-time sigeatepled at regular intervals and digitized. Examples
of DSC processing include the following:

» Filtering

e Convolution (mixing two signals)

» Correlation (comparing two signals)

* Rectification, amplificion, and transformation

Figure 1-4 on page 1-6 shows an exaamgfl analog signal processing. Tdigcuit in the illustration filters

a signal from a sensor usiag operational amplifier and controls artuator with the result. Since the
ideal filter is impossible to design, the engineestuesign the filter for acceptable response by
considering variations in temperature, componeimgggower-supply variation, and component accuracy.
The resulting circuit typically haswonoise immunity, requires adjustnts, and is difficult to modify.
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Figure 1-4. Analog Signal Processing

AA0003

The equivalent circuit using a DSC is shown in Figure 1-5 on page 1-7. This application requires an
analog-to-digital (A/D) converter ardigital-to-analog (D/A) converter iaddition to the DSC. Even with
these additional parts, the component count canvieer losing a DSC due to the high integration available

with current components.
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Figure 1-5. Digital Signal Processing

Processing in this circuit begiby band limiting the input signal withn anti-alias filter, eliminating
out-of-band signals that can be aliabadk into the pass band dudlie sampling process. The signal is
then sampled, digitized with a&kiD converter, and sent to the DSC.

The filter implemented by the DSCdgictly a matter of software. The DSC can directly employ any filter
that can also be implemented usinglag techniques. Also, adaptive filkecan be easily put into practice
using DSC, whereas these filters aréremely difficult to implement usgnanalog techniges. (Similarly,
compression can also maplemented on a DSC.)
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The DSC output is processed by a D/A convertdriamow-pass filtered to remove the effects of
digitizing. In summary, thadvantages of using ti¥SC include the following:

Fewer components

Stable, determistic performance
No filter adjustments

Wide range of applications

Filters with muchcloser tolerances
High noise immunity

Adaptive filters easily implemented
Self-test can be built in

Better power-supply rejection

The DSP56800 Family is not a custom IC desidgoec particular application; it is designed as a
general-purpose DSC architectureefticiently execute commonlysed DSC benchmarks and controller
code in minimal time.

As shown in Figure 1-6, the key attributes of a DSC are as follows:

Multiply/accumulate (MAC) operation

Fetching up to two operands per instruction cycle for the MAC
Program control to pragte versatile operation

Input/output to move data in and out of the DSC

x(t)

1-8

FIR Filter
N-1
3 » I c(k) X (n—K) —>
I~ :l/,\ y()
x(n) k‘y / y(n)

Program

AAQ0005

Figure 1-6. Mapping DSCAIlgorithms into Hardware
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Summary of Features

The multiply-accumulgon (MAC) operation is théundamental operation us@dDSC. The DSP56800
Family of processors has a dual Harvard architecture optimized for MAC operations. Figure 1-6 on
page 1-8 shows how the DSP56800 architecturetmaatthe shape of the MAC operation. The two
operands, c() and x( ), are directech multiply operation, and thesult is summed. This process is built
into the chip by allowing two separate data-meyraccesses to feed a single-cycle MAC. The entire
process must occur under programteol to direct the correct opemdsto the multiplier and save the
accumulated result as needed. Since the memortharMdAC are independent, the DSC can perform two
memory moves, a multiply and ancamulate, and two address updatea gingle operation. As a result,
many DSC benchmarks execute very effitdiefor a single-multiplier architecture.

1.3 Summary of Features

The high throughput of the DSP56800 Family processsakes them well-suited for wireless and wireline
communication, high-speed contrlmy-cost voice processing, nuniteprocessing, and computer and
audio applications. The main features that conteitbotthis high throughput include the following:

» Speed—The DSP56800 supports mostdagerformance DSC applications.

» Precision—The data paths are 16 bits wide, providinglBef dynamic rangentermediate results
held in the 36-bit accumuiars can range over 216 dB.

» Parallelism—Each on-chip execution unit, memory, andpigeral operates independently and in
parallel with the other units through a sophidedabus system. The data ALU, AGU, and program
controller operate in parallel so that thédwing can be executed in a single instruction:

— An instruction pre-fetch

— A 16-bit x 16-bit multiplication

— A 36-bit addition

— Two data moves

— Two address-pointer updates using onenaf types of arithmetic (linear or modulo)
— Sending and receiving full-duplex data by the serial ports

— Timers continuing to count in parallel

* Flexibility —While many other DSCs need externaintounications circuitry to interface with
peripheral circuits (such as A/D convertersAB@bnverters, or host processors), the DSP56800
Family provides on-chip serial and parallel inteda that can support various configurations of
memory and peripheral modul@he peripherals are interfacedttee DSP56800 core through a
peripheral interface bus, designed to providermmon interface to many different peripherals.

* Sophisticated debugging— Freescale’s On-Chip Emulation technology (OnCE) allows simple,
inexpensive, and speed-independent access totdmeal registers for debugging. OnCE tells
application programmers exactly what the statusttsin the registers, rmory locations, and even
the last instructions that were executed.

* Phase-locked loop (PLL)-based clocking-The PLL allows the chip tase almost any available
external system clock for full-sed operation while also supplgian output clock synchronized
to a synthesized internal core clock. It improthesssynchronous timing of the processors’ external
memory port, eliminating the timingkew common on other processors.

» Invisible pipeline—The three-stage instruction pipelinesentially invisible to the programmer,
allowing straightforward program development in either assembly language or high-level
languages such as C or C++.
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* Instruction set—The instruction mnemonics are Mdlke, making the transition from
programming microprocessors to programmingdig as easy as possible. New microcontroller
instructions, addressing modesgdnt-field instructions allow fosignificant decreases in program
code size. The orthogonal syntax controlsgheallel execution unitd.he hardware DO loop
instruction and the repeat (REP) instructioake writing straighline code obsolete.

* Low power—Designed in CMOS, the DSB800 Family inherently consumes very low power.
Two additional low powemodes, stop and wait, further regupower requirements. Wait is a
low-power mode where the DSP56800 core is dbwuin but the peripherals and interrupt controller
continue to operate so that ateimupt can bring the chip out of ivenode. In stop mode, even more
of the circuitry is shut dowfor the lowest power-consumptionode. There are also several
different ways to bring # chip out of stop mode.

1.4 For the Latest Information

For the latest electronic version of this document, as well as other DSC documentation (including user’s
manuals, product briefs, data sheets, and errata) peasalt the inside front cover of this manual for
contact information fothe following services:

» Freescale DSC World Wide Web site
* Freescale DSC Helpline
The DSC Web site maintainghmost current specificationdocuments, and drawings.
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Chapter 2
Core Architecture Overview

The DSP56800 core architecture is a 16-bit multiplegsasessor designed faffieient real-time digital
signal processing and general purpose comgutihe architecture idesigned as a standard
programmable corfom which various DSC integrated ciittamily members can be designed with
different on-chip and off-chip memosjzes and on-chip peripheral réguments. This chapter presents
the overall core architeaterand the general programming modiébre detailed information on the data
ALU, AGU, program controller, and JTAG/OnCE bkscwithin the architecture are found in later
chapters.

2.1 Core Block Diagram

The DSP56800 core is composed of functional unésdaperate in parallel to increase the throughput of
the machine. The program controll&GU, and data ALU each contain their own register set and control
logic, so each may operate independently and iflplanath the other two. Liewise, each functional unit
interfaces with other units, with mmry, and with memory-mapped panerals over the core’s internal
address and data buses. The aechiire is pipelined to take aditage of the parallel units and

significantly decrease the exeicun time of each instruction.

For example, it is possible for tlhata ALU to perform a multiplicatiom a first instruction, for the AGU
to generate up to two addresses for a second instruyatid for the program controller to be fetching a
third instruction. In a similar mannét is possible for the bit-manipuian unit to perform an operation of
the third instruction described above iag# of the multiplication in the data ALU.

The major components ofdtcore are the following:
» Data ALU
e AGU
* Program controller and hardware looping unit
* Bus and bit-manipulation unit
* OnCE debug port
* Address buses
» Data buses
Figure 2-1 on page 2-2 shows a block diagram of the CPU architecture.
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Figure 2-1. DSP56800 Core Block Diagram

Note that Figure 2-1 illustrates two methods for @mtimg peripherals to tHeSP56800 core: using the
Freescale-standard IP-BUS interface or via a dedideegheral Global Data Bus (PGDB). The interface
method used to connect to peripherals is depdrmiethe specific DSP568diased device being used.
The latest products have chosen the IP-BUS interface. Consult your device user’s manual for more
information on peripheral interfacing.
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2.1.1 Data Arithmetic Logic Unit (ALU)

The data arithmetic logic unit (ALU) performs allthie arithmetic and logical operations on data
operands. It consists of the following:

» Three 16-bit input registers (X0, YO, and Y1)
» Two 36-bit accumulator registers (A and B)
— 16-bit registers (A0 and BO)
— 16-bit registers (A1 and B1)
— 4-bit extension registers (A2 and B2)
* An accumulator shifter (AS)
* One data limiter
* One 16-bit barrel shifter
* One parallel (single cycle, non-plped) multiply-accumulator (MAC) unit

The data ALU is capable of multiplication, ftiply-accumulation (withpositive or negative

accumulation), addition, suaction, shifting, and logical operatiomsone instruction cycle. Arithmetic
operations are done using two’s-complement fractional or integer arithmetic. Support is also provided for
unsigned and multi-precision arithmetic.

Data ALU source operands may be 16, 32, or 36abitsmay individually originate from input registers,
memory locations, immediate data, or accumulators. Adgults are stored in oé the accumulators. In
addition, some arithmetic instructions store their it@dsults either in one of the three data ALU input
registers or directly in memory. Arithmetic operagcand shifts can have a 16-bit or a 36-bit result.
Logical operations are performed on 16-bit operands and always yield 16-bit results.

Data ALU register values can be transferred (read or write) across the core global data bus (CGDB) as
16-bit operands. The X0 register value can also be written by X memory data bus two (XDB2) as a 16-bit
operand. Refer to Chapter 3, “Data Arithmetic laogiit,” for a detailed desigtion of the data ALU.

2.1.2 Address Generation Unit (AGU)

The address generation unit (AGU) performs all ofetffiective address calculations and address storage
necessary to address data operands in memory. Theofs@ldtes in parallel with other chip resources to
minimize address-generation overhead. It containsfiids, allowing the generation of up to two 16-bit
addresses every instruction cyadee for either X memory address bus one (XAB1) or program address
bus (PAB) and one for X memory address bus(®&B2). The ALU can directly address 65,536

locations on the XAB1 aKAB2 and 65,536 locations on the PAB, totaling 131,072 sixteen-bit data words.
It supports a complete set of addressing modearithmetic unit can perforimoth linear and modulo
arithmetic.

The AGU contains the following registers:
* Four address registers (R0-R3)
» A stack pointer register (SP)
» An offset register (N)
» A modifier register (M0O1)
* A modulo arithmetic unit
* An incrementer/decrementer unit
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The address registers are 16-bit registers that maginar address or data. Each address register can
provide an address for the XAB1 and PAB address bEse#structions that read/o values from X data
memory, R3 provides an address for the XAB2, RAdr R1 provides an address for the XAB1. The
modifier and offset registers are 16-bit registersdbatrol updating of the address registers. The offset
register can also be used to store 16-bit data. A@ldtezs may be read or written by the CGDB as 16-bit
operands. Refer to Chapter 4, “Address Genera&fity” for a detailed description of the AGU.

2.1.3 Program Controller and Hardware Looping Unit

The program controllgperforms the following:
* Instruction prefetch
* Instruction decoding
» Hardware loop control
* Interrupt (exception) processing

Instruction execution is carried aatother core units such as tiiata ALU, AGU, or bit-manipulation
unit. The program controlleronsists of the following:

* A program counter unit
* Instruction latch and decoder
» Hardware looping control logic
e Interrupt control logic
» Status and control registers
Located within the programontroller are the following:
» Four user-accessible registers:
— Loop address register (LA)
— Loop count register (LC)
— Status register (SR)
— Operating mode register (OMR)
* A program counter (PC)
* A hardware stack (HWS)

In addition to the tasks listed above, the prograntrotier also controls the memory map and operating
mode. The operating mode and memory map areaamugable via the OMR, and are established after
reset by external interface pins.

The HWS is a separate internal last-in-first-out Q)Muffer of two 16-bit words that stores the address of
the first instruction in a hardwaf2O loop. When a new hardware loop is begun by executing the DO
instruction, the address of the first instruction inldap is stored (pushed) on the “top” location of the
HWS, and the LF bit in the SR is s&he previous value of the loop flélgF) bit is copied to the OMR’s

NL bit. When an ENDDO istruction is encountered or a hardwl@p terminates naturally, the 16-bit
address in the “top” location of the HWS is discarded] the LF bit is updated with the value in the
OMR'’s nested looping (NL) bit.

The program controller is describeddetail in Chapter 5, “Progra@ontroller.” For more details on
program looping, refer to Sectior3; “Program Looping,” on page 5-14 and Section 8.6, “Loops,” on
page 8-20. For information on reset and interrugtfer to Chapter 7, “Interrupts and the Processing
States.”
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Core Block Diagram

2.1.4 Bus and Bit-Manipulation Unit

Transfers between internal buses are accomplishibe@ ibus unit. The bus s similar to a switch

matrix and can connect any two oéttinree internal data buses togethé&hout introducing delays. This
allows data to be moved from program to data menforyexample. The bus unit is also used to transfer
data to the IP-Bus (or PGDB) on those devices that use it to connect to on-chip peripherals.

The bit-manipulation unit performs bit-field maniptites on X (data) memory words, peripheral
registers, and all registers withiretbSP56800 core. It is capable e$ting, setting, clearing, or inverting
any bits specified in a 16-bit mask.rfwanch-on-bit-field instictions, this unit testbits on the upper or
lower byte of a 16-bit word (that is, the skacan only test up to 8 bits at a time).

Note that when the IP-BUS (or PGPBiterface is used, peripheral refgirs may be memory mapped into
any data (X) memory address range and are accedtbestandard X-memory reads and writes. If the
peripheral registers are mapped to the last 64 lotaiioX memory, these can be accessed with a special
memory addressing mode (see Section 4.2.4.3,8H0rt Address (Direct Addressing): <pp>,” on

page 4-23).

2.1.5 On-Chip Emulation (OnCE) Unit

The On-Chip Emulation (OnCE) uratlows the user to interact amdebug environment with the

DSP56800 core and its pehierals non-intrusively. Its capabilitiseclude examining registers, on-chip
peripheral registers or memoryttigg breakpoints on program or datemory, and stepping or tracing
instructions. It provides simple, ingensive, and speed-independent asteshe internal DSP56800 core

by interacting with a user-interfapeogram running on a host workstation for sophisticated debugging and
economical system development.

Dedicated pins through the JTAG port allow the @seess to the DSC in a target system, retaining debug
control without sacrificing other es-accessible on-chip resources. Tteishnique eliminates the costly
cabling and the access to processns required by traditional emutaitsystems. Refer to Chapter 9,
“JTAG and On-Chip Emulation (OnCE™),” for a di&ta description of the JTAG/OnCE port. Consult
your development system’s documentation féorimation on debugging using the JTAG/OnCE port
interface.

2.1.6 Address Buses

Addresses are provided to the internal X data nmgrao two unidirectional 16-bit buses, X memory
address bus one (XAB1) and X memory addesstwo (XABZ2). Program memory addresses are
provided on the 16-bit program address bus (PABJe that XAB1 can provide addresses for accessing
both internal and external memory, whereas XABA only provide addresses for accessing internal
memory.

2.1.7 Data Buses

Inside the chip, data is transferred using the following:
» Bidirectional 16-bit buses:
— Core global data bus (CGDB)
— Program data bus (PDB)
— |IB-BUS or Peripheral Global data bus (PGDB) — dependent on chip implementation
* One unidirectional 16-bit buX memory data bus two (XDB2)
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Data transfer between the data ALU and the X demory uses the CGDB wh one memory access is
performed. When two simultaneous memory readgarformed, the transfers use the CGDB and the
XDB2. All other data transfers occur using the[@&; except transfers to and from peripherals on
DSP56800-based devices that implement the IP-BUBEB peripheral data bus. Instruction word
fetches occur simultaneously over the PDB. The bustatieisupports general register-to-register moves,
register-to-memory moves, and memdaoyregister moves, and can transiprto three 16-bit words in the
same instruction cycle. Transfers between busesaogrglished in the bus and bit-manipulation unit. As
a general rule, when any register less than 16 bits iwidead, the unused bi#se read as zeros. Reserved
and unused bits should alygbe written with zeros tasure future compatibility.

2.2 Memory Architecture

The DSP56800 has a dual Harvard memory architecivith separate program and data memory spaces.
Each address space supports uplﬁda5,536) memory words. Dedicated address and data buses for each
address space allow for simultaneous accesses t@togitam memory and data memory. There is also a
support for a second read-only data path to data memmoDSP56800 Family devices that implement this
second bus, it is possible to initiate two simultaneots id&d operations, allomg for a total of three

parallel memory accesses.

$FFFF 64K or 28 $FFFF 64K or 216
Optimized for
$FFco|  herpherals (64K - 64)
Program
Memory
Space X Data
Memory
Space
$7F 127
Interrupt
$0 Vectors 0 $0 0

NOTE: The placement of thgeripheral space is dependentthe specific system
implementation for the DSP56800 core. 8dtthe IP-BUS interface is used,
peripheral registers may be memmapped into any data (f)emory address
range and are accessed witmdird X-memory reads and writes.

Figure 2-2. DSP56800 Memory Spaces

Locations $0 through $007F in tbeogram memory space are availafolereset and interrupt vectors.
Peripheral registers are located in the data melddyess space as memory-mapped registers. This
peripheral space can be located anywheredr#ta address space, although the address range
$FFCO-$FFFF provides faster access when usingamesging mode optimized for this region; however,
the location of the peripheral space is dependetti@specific peripheral bus implementation of the
DSP56800 core. See Section 4.2.4.3, “I/O ShodrAss (Direct Addressing): <pp>,” on page 4-23 for
more information.
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Blocks Outside the DSP56800 Core

2.3 Blocks Outside the DSP56800 Core

The following blocks are optionally found on DSP56800-based DSC chips and are considered peripheral
and memory blocks, not part of the DSP56800 cores&land other blocks are described in greater detail

in the appropriate chip-specific user's man&ajure 2-3 shows an example DSP56800-based device.

Note that this device uses the Freescale IP-BU&aakto connect to peripherals. Other chips may use

the PGDB peripheral bus.

Program Data On-Chip
<4“T—» PLL RAM/FLASH RAM/ELASH Expansion
Expansion Expansion Area
AAA
Clock
Generator o~
”D:‘ Peripheral
< Modules
XAB1
Address XAB2
Generation
. PAB
Unit DSC T
4 A .
16-Bit v
Core
Internal PDB IP-BUS
DataBus [€ ——Pp .
; CGDB Bridge
Switch < >
\ 4 l A 4 ‘ l A 4
Data ALU
Program 16x16 +36 36-Bit MAC ITAG/ ¢ S
Controller Three 16-Bit Input Registers OnCEM
Two 36-Bit Accumulators
A A f
_IRQB —— 16-Bit Data Bus
IRQA
RESET

Figure 2-3. Sample DSP568BFamily Chip Block Diagram

2.3.1 External Data Memory

External data memory (data RAM, data FLASHpoth) can be added around the core on a chip.
Addresses are received from the XAB1 and XAB2. Dtasfers occur on the CGDB and XDB2. One
read, one write, or two reads can be performedduwine instruction cycle using the internal data
memory. Depending upon the particular on-chip penigls found on a device, some portion of the data
address space may be reserved for peripheral regestersi0t be accessible as external data memory. A
total of 65,536 memory locations can be addressed.
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2.3.2 Program Memory

Program memory (program RAM, program FLASHpoth) can be added around the core on a chip.
Addresses are received from the PAB and data transéeur on the PDB. The first 128 locations of the
program memory are available for impt vectors, although it is not necessary to use all 128 locations for
interrupt vectors. Some can be u$edthe user program if desired. @ humber of locatios required for

an application depends on what peri@leeon the chip are used by aplgation and the leations of their
corresponding interrupt vectors. The program mgmuaay be expanded off chip, and up to 65,536
locations can be addressed.

2.3.3 Bootstrap Memory

A program bootstrap FLASH is usually found on @hipat have on-chip program RAM. The bootstrap
FLASH is used for initially loadig application code intthe on-chip program RAM so it can be run from
there. Refer to Section 5.1.9.1,g€rating Mode Bits (MB and MA) — Bits 1-0,” on page 5-10 and to the
user’'s manual of the particular DSC chip for a description of the different bootstrapping modes.

2.3.4 IP-BUS Bridge

Some devices based on the DSP56800 archreeconnect to on-chip peripherals using the
Freescale-standard IP-BUS interface. These devargaio an IP-BUS bridge unit, which allows
peripherals to be accessed using the CGDB datahd XAB1 address buBeripheral registers are
memory-mapped into the @aaddress space. Consult the appad@DSP56800-based device User’'s
Manual for more information on peripfaé interfacing for a particular chip.

2.3.5 Phase Lock Loop (PLL)

The phase lock loop (PLL)laws the DSC chip to use an externktck different from the internal system
clock, while optionally supplying anutput clock synchroned to a synthesized internal clock. This PLL
allows full-speed operation using an externatklrunning at a different speed. The PLL performs
frequency multiplication, skew elimation, and reduces evall system power by reducing the frequency
on the input reference clock.

2.4 DSP56800 Core Programming Model

The registers in the DSP56800 ctirat are considered part of th&P56800 core programming model are
shown in Figure 2-4 on page 2-9. There may also be other important registers that are not included in the
DSP56800 core, but mapped into the data address.spaese include registers for peripheral devices and
other functions that are not bound into the core.
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Data Arithmetic Logic Unit
Data ALU Input Registers
31 16 15 0

X0 Y Y1 YO

15 0 15 0 15 0

Accumulator Registers

35 3231 16 15 0
A A2 Al A0

3 0 15 015 0

35 3231 16 15 0
B B2 B1 BO

3 0 15 0 15 0

Address Generation Unit

15 0
RO
R1
R2
R3 15 0 15 0
SP N MO1
Pointer Offset Modifier
Registers Register Register
Program Controller Unit
15 0 15 8 7 0 15 0
PC MR CCR OMR
Program Status Operating Mode
Counter Register (SR) Register
15 0 12 0 15 0
LC LA
Hardware Stack (HWS) Loop Counter Loop Address

AA0007

Figure 2-4. DSP56800 Core Programming Model
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Chapter 3
Data Arithmetic Logic Unit

This chapter describes the architecture and the opeicdtibe data arithmetiogic unit (ALU), the block
where the multiplication, logical operations, and aniic operations are perfoed. (Addition can also
be performed in the address generatiait, and the bit-manipulation umi&n perform logical operations.)
The data ALU contains the following:

» Three 16-bit input registers (X0, YO, and Y1)
» Two 36-bit accumulator registers (A and B)
— 16-bit registers (A0 and BO0)
— 16-bit registers (Al and B1)
— 4-bit extension registers (A2 and B2)
» An accumulator shifter (AS)
* One data limiter
* One 16-bit barrel shifter
* One parallel (single cycle, non-plpeed) multiply-accumulator (MAC) unit

Multiple buses in the dataLU perform complex arithnt& operations (such asmultiply-accumulate
operations) in parallel with up to two memory s#ars. A discussion of fractional and integer data
representations; signed, unsigned, and multi-precasiimmetic; condition code generation; and the
rounding modes used in the data Ahtke also described in this section.

The data ALU can perform the following eqations in a single instruction cycle:
* Multiplication (with orwithout rounding)
* Multiplication with negated pragtt (with or without rounding)
* Multiplication and accumulatiofwith or without rounding)
* Multiplication and accumulation with nega product (with owithout rounding)
* Addition and subtraction
» Compares
* Increments and decrements
» Logical operations (AND, OR, and EOR)
* One’s-complement
« Two’s-complement (negation)
» Arithmetic and logical shifts
* Rotates
*  Multi-bit shifts on 16-bit values
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Rounding

Absolute value

Division iteration

Normalization iteration
Conditional register moves (Tcc)
Saturation (limiting)

3.1 Overview and Architecture

The major components of tidata ALU are the following:

Three 16-bit input registers (X0, YO, and Y1)
Two 36-bit accumulator registers (A and B)
— 16-bit registers (A0 and BO0)

— 16-bit registers (Al and B1)

— 4-bit extension registers (A2 and B2)

An accumulator shifter (AS)

One data limiter

One 16-bit barrel shifter

One parallel (single cycle, non-plpeed) multiply-accumulator (MAC) unit

A block diagram of the data ALU unit is shown in Figure 3-1 on page 3-3, and its corresponding
programming model is shown in Figure 3-2 on page 3-4. In the programming model, accumulator “A”
refers to the entire 36-bit accumidaregister, whereas “A2,” “Al,” and “AQ” refer to the directly
accessible extension, most significant portions,laast significant portions of the 36-bit accumulator,
respectively. Instructions can access the registarvasole or by these individual portions (see

Section 3.1.2, “Data ALU Accumulator Registérsn page 3-4 and Section 3.2, “Accessing the
Accumulator Registers,” on page 3-7). The blocksragdsters within the data ALU are explained in the
following sections.

3-2
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Figure 3-2. Data ALU Programming Model

3.1.1 Data ALU Input Registers (X0, Y1, and YO)

The data ALU registers (X0, Y1, and YO0) are 16-bit segyis that serve as inputs for the data ALU. Each
register may be read or written by the CGDB as edwperand. They may be treated as three independent
16-bit registers, or as one 16-bit register and oneit32gister. Y1 and YO can be concatenated to form
the 32-bit register Y, witly 1 being the most significant word@iY0 being the least significant word.
Figure 3-2 shows this arrangement.

These data ALU input registers are used as soumai@s for most data ALU operations and allow new
operands to be loaded from the memianythe next instruction while thegister contents are used by the
current instruction. X0 may also be written bg thDB2 during the dual read instruction. Certain
arithmetic operations also allow these stgjis to be specified as destinations.

3.1.2 Data ALU Accumulator Registers

The two 36-bit data ALU accumulator registers can be aedeasther as a 36-bit register (A or B) or as the
following, individual portions of the register:

* 4-bit extension register (A2 or B2)
« 16-bit MSP (Al or B1)
» 16-bit LSP (AO or B0)
The three individual portion®ake up the entire accumulator register, as shown in Figure 3-2.

These two techniques for accessing dlacumulator registers providegortant flexibility for both DSC
algorithms and general-purpose cottipgi tasks. Accessing these registas entire accumulators (A or B)
is particularly useful for DSC taskbecause this preserves the fudicision of multification and other
ALU operations. Data limiting and saturation are also iptessising the full registers, in cases where the
final result of a computation that has overflowethisved (see Section 3.4.1, “Data Limiter,” on page
3-26).
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Accessing an accumulator throughiftdividual portions (A2, A1, A0, B2B1, or BO) is useful for systems
and control programming. Whetcumulators are manipulatedngstheir constituent components,
saturation and limiting are disablethis allows for microcontrollelike 16-bit integer processing for
non-DSC purposes.

Section 3.2, “Accessing the Accumulator Registers,” plew a complete discussion of the ways in which
the accumulators can be employAdiescription of the data limiting ars&turation features of the data
ALU is provided in Section 3.4Saturation and Data Limiting.”

3.1.3 Multiply-Accumulator (MAC) and Logic Unit

The multiply-accumulator (MALand logic unit is the main arithmepeocessing unit of 8nDSC. This is
the block that performs all multiplidan, addition, subtraction, logitand other arithmetic operations
except shifting. It accepts up to three inpuer@mds and outputs one 36-bit result of the form
EXT:MSP:LSP (extension : most significant produletast significant product). Arithmetic operations in
the MAC unit occur independently and in parall@hamemory accesses on the CGDB, XDB2, and PDB.
The data ALU registers provide pipelining for both datdy inputs and output#n input register may be
written by memory in the same instruction where iiged as the source for a data ALU operation. The
inputs of the MAC and logic unit bacome from the X and Y registgp$0, Y1, Y0), the accumulators

(A1, B1, A, B), and also directly from memdigr common instructions such as ADD and SUB.

The multiplier executes 16-bit x 4t parallel signed/unsigned figanal and 16-bit x 16-bit parallel
signed integer multiplications. The 32-bit producadsied to the 36-bit contents of either the A or B
accumulator or to the 16-bit contents of the X0, YOy brregisters and then stored in the same register.
This multiply-accumulate is a singgcle operation (no pipeline). Fimteger multiplication, the 16 LSBs
of the product are stored in the MSP of the accumultdterextension register is filled with sign extension
and the LSP of the accumulator remains unchanged.

If a multiply without accumulation ispecified by a MPY or MPY hstruction, the unit clears the
accumulator and then add€tbontents to the product. The resoltall arithmetic instructions are valid
(sign extended) 36-bit operdsin the form EXT:MSP:LSP (A2:A1:A0 or B2:B1:B0).

When a 36-bit result is to beoséd as a 16-bit operand, the LSP senply be truncated, or it can be
rounded into the MSP. The rounding performedtisee the convergent rounding (round to the nearest
even) or two’'s-complement rounding. The type of rounding is specified by the rounding bit in the
operating mode register. See Section 3.5, “Rounding,” for a more detailed discussion of rounding.

The logic unit performs the logical emtions AND, OR, EOR, and NOT on data ALU registers. It is 16
bits wide and operates on data in the MSP of themaglaior. The least signifamt and EXT portions of
the accumulator are not affected. Logical operat@amsalso be performed ihe bit-manipulation unit.
The bit-manipulation unit is used when performing éagjoperations with immediate values and can be
performed on any regist or memory location.

3.1.4 Barrel Shifter

The 16-bit barrel shifter penfims single-cycle, 0- to 15#tarithmetic or logical shifts of 16-bit data. Since
both the amount to be shifted as wadlthe value to shift come from regis, it is possible to shift data by
a variable amount. See Figure 3-3 on page 3-6. It ipalssible to use this uri right shift 32-bit values
using the ASRAC and LSRAC instiimns, as demonstrated in $ea 8.2, “16- and 32-Bit Shift
Operations,” on page 8-8.
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$SAAAA $4 SAAAA $4
Multi-Bit Multi-Bit
Shifting Unit Shifting Unit
EXT MSP LSP EXT MSP LSP
A|F|FAAA|OOOO| A|F|AAAO|0000
35 32 31 16 15 0 35 32 31 16 15 0
Example: Right Shifting (ASRR) Example: Left Shifting (ASLL) AA0039

Figure 3-3. Right and Left ShiftsThrough the Multi-Bit Shifting Unit

The barrel shifter performs all mubit shifts operations: arithmetsghifts (ASLL, ASRR), and logical
shift (LSRR). When the destination is a 36-bit accumaujdhe extension registey always loaded with
sign extension from bit 31 for arithmetic shifts (a@to extended for logical t). The LSP is always set
to zero for these operatis. Note that the LSLL is iplemented as an ASLL instruction but only accepts
16-bit registers as destinations. For informatio.8LL, refer to Section 6.5.2, “LSLL Alias,” on page
6-12 and Appendix A.

3.1.5 Accumulator Shifter
The accumulator shifter is an asyimonous parallel shifter with a 36-hput and a 36-bit output. The
operations performed His unit are as follows:
* No shift performed — ADD, SUB, MAC, and so on
» 1-bit left shift — ASL, LSL, ROL
» 1-bit right shift — ASR, LSR, ROR
e Force to zero — MPY, IMPY 16
The output of the shifter goes ditly to the MAC unit as an input.

3.1.6 Data Limiter and MAC Output Limiter

The data ALU contains two units that implementiapal saturation of matheatical results, the Data
Limiter and the MAC Output Limiter. The Data Limitsaturates values when data is moved out of an
accumulator with a move instruction or parallel moMee MAC Output Limiter saturates the output of the
data ALU’s MAC unit.

Section 3.4, “Saturation and Datamiting,” provides an in-depth discuesi of saturation and limiting, as
well as a description of the operation of the two limiter units.
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3.2 Accessing the Accumulator Registers

An accumulator register can be accessed in two different ways:
* as an entire register, F (representing accumulator A or B)
* by the individual register portion: F2, F1, or FO (representing A2 or B2, Al or B1 and A0 or BO)

The ability to access the accumulategisters in both ways providasportant flexibility, allowing for
powerful DSC algorithms as well general-purpose computing tasks.

Accessing an entire accumulator register (A or Bigicularly useful for DSC tasks, since it preserves
the complete 36-bit registerand thus the entire precision of altiplication or other ALU operation. It
also provides limiting (or saturationgpability in cases when storingesult of a computation that would
overflow the destination size. See $@t.4, “Saturation and Data Limiting.”

Accessing an accumulator through its individual podif2, F1, or FO) is useful for systems and control
programming. For example, if a DS@orithm is in progress and artarrupt is received, it is usually
necessary to save every accumulator usethe interrupt service routin8ince an interrupt can occur at
any step of the DSC task (that is, right in the middla DSC algorithm), it is iportant that no saturation
takes place. Thus, an interrupt service routine cae #terindividual accumulator portions on the stack,
effectively saving the entire 36-bit value without dinyiting. Upon completion othe interrupt routine,

the contents of the accumulator can be exactly restored from the stack.

The DSP56800 instruction set traasgntly supports both methodsamfcess. An entire accumulator may
be accessed simply through the specification of thedgister name (A or B), while portions are accessed
through the use of their respige names (A0, B1, and so on).

Table 3-1 provides a summary okthiarious access methods. Thesedmscribed in more detail in
Section 3.2.1, “Accessing an Accumtaiaby Its Individual Portions,”and Section 3.2.2, “Accessing an
Entire Accumulator.”

Table 3-1. Accessing the Accumulator Registers

Register Read of an Accmulator Register Write to an Accumulator Register
A For a MOVE instruction: For a MOVE instruction:
B If the extension bits are not use for the accumu4 The 16 bits of the CGDB bus are written into the
lator to be read, then the 16-bit contents of the [F116-bit F1 portion of the register.
portion of the accumulator are read onto the The extension portion of the same accumulator
CGDB bus. F2, is filled with sign extension. The FO portion is

If the extension bits are imse, then a 16-bit “lim- | set to zero.
ited” value is instead read onto the CGDB. See
Section 3.4.1, “Data Limiter.”

When used in aarithmetic operation:
All 36 bits are sent to the MAC unit without limit

ing.

A2 For a MOVE instruction: For a MOVE instruction:

B2 The 4-bit register is read onto the 4 LSBs of the| The 4 LSBs of the CGDB are written into the 4-hit
CGDB bus. register; the upper 12 bits are ignored.
The upper 12 bits of the bus are sign extended.| The corresponding F1 and FO portions are not
See Figure 3-5 on page 3-9. modified.

See Figure 3-4 on page 3-8.
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Table 3-1. Accessing the Accumulator Registers (Continued)

Register Read of an Accmulator Register Write to an Accumulator Register
Al For a MOVE instruction: For a MOVE instruction:
B1 The 16-bit F1 portion is read onto the CGDB bus.The contents of the CGDB bus are written into the
16-hit F1 register.
When used in aarithmetic operation: The corresponding F2 and FO portions are not

The F1 register is used as a 16-bit source operanchodified.
for an arithmetic operation.

F1 can be used in the following:
MOVE

Parallel Move

Several different arithmetic

A0 For a MOVE instruction: For a MOVE instruction:
BO The 16-bit FO register is read onto the CGDB buysThe contents of the CGDB bus are written into the
16-bit FO register.

The corresponding F2 and F1 portions are not
modified.

In all cases in Table 3-1 where a MOVE operatiospscified, it is understood that the function is
identical for parallel mowveand bit-field operations.

3.2.1 Accessing an Accumulator byits Individual Portions

The instruction set provides instructions for loadamgl storing one of the pgons of an accumulator
register without affecting the otheravportions. When an instructions uses F1 or FO notation instead of
F, the instruction only operates tire 16-bit portion spéfted without modifying the other two portions.
When an instruction specifies F2eththe instruction operates omy the 4-bit accumulator extension
register without modifying the F1 &0 portions of the accumulat&®efer to Table 3-1 for a summary of
accessing the accumulator registers.

Data limiting, as outlined in Sectid.4, “Saturation and Data Limitirigs enabled only when an entire
accumulator is being stored to memory. When only a portion of an accumulator is being stored (by using
an instruction which specifigs2, F1, or F0), limiting througthe data limitedoes not occur.

When F2 is written, the registexaeives the low-order portion of thwrd; the high-order portion is not
used. See Figure 3-4.

15 4 3 0

CGDB Bus Contents

N~——"] 4LSBof

Not Used \J Word \
15 43 0

Register F2 Used No Bits P e _
as a Destination o Bits Present Register F2

Figure 3-4. Writing the Accumulator Extension Registers (F2)

When F2 is read, the register contents occupy theolaler portion (bits 3—0) dhe word; the high-order
portion (bits 15—4) is sign extended. See Figure 3-5.
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15 43 0
Register F2 ] _
Used as a Source No Bits Present F2 Register F2
4 LSB of
Y word Y
15 43 0
Sign Extension | Contents
of E2 of E2 CGDB Bus Contents

Figure 3-5. Readimg the Accumulator Extension Registers (F2)

Figure 3-6 shows the result of writing values to eadtigoof the accumulator. Note that only the portion
specified in the instruction is modifiethe other two portions remain unchanged.

Writing the F2 Portion Example : MOVE #$ABCD,A2

Before Execution After Execution
A2 Al A0 A2 Al A0
Al XX x X X|x X X X| AlD]X X X X|X X X X
35 32 31 16 15 0 35 32 31 16 15 0

Writing the F1 Portion Example : MOVE #$1234,A1

Before Execution After Execution
A2 Al A0 A2 Al A0
Al X [x x X X[x x X X| Al Xx]1 2 3 4[x x x X
35 32 31 16 15 0 35 32 31 16 15 0

Writing the FO Portion Example : MOVE #$A987,A0

Before Execution After Execution
A2 Al A0 A2 Al A0
Al X [x x x X[x X X X Al X[x x x X[A 9 8 7
35 32 31 16 15 0 35 32 31 16 15 0

Figure 3-6. Writing the Accumulator by Portions

See Section 3.2, “Accessing the Accumulator Regiétinsa discussion of when it is appropriate to
access an accumulator by its individual portionswahen it is appropriate to access it as an entire
accumulator.
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3.2.2 Accessing an Entire Accumulator

3.2.2.1 Accessing for DataALU Operations

The complete accumulator is accessed to proviatmiece, a destination, or both for an ALU or
multiplication operation in #data ALU. In this case, the accuatar is written as an entire 36-bit
accumulator (F), not as an individual register (FR, or FO). The accumulator registers receive the
EXT:MSP:LSP of the multiply-accumulator unit outputten used as a destirta and supply a source
accumulator of the same form. Most data ALU opiers specify the 36-bitc@umulator registers as
source operands, desiion operands, or both.

3.2.2.2 Writing an Accumulator with a Small Operand

Automatic sign extension of the &t accumulators is provided whéime accumulator is written with a
smaller size operand. This can occur when wrikrfgom the CGDB (MOVE instruction) or with the
results of certain data ALU operati® (for example, ADD, SUB, or TFRRom a 16-bit register to a 36-bit
accumulator). If a word opand is to be written to an accumulategister (F), the F1 portion of the
accumulator is written with the word operand, s is zeroed, and the EXpbrtion receives sign
extension. This is also the case for a MOVE instractimt moves one accumulator to another, but is not
the case for a TFR instruction thrabves one entire accumulatoraiother. No sign extension is
performed if an individual 16-bit register is written (F1 or FO).

NOTE:

Aread of the F1 register in a MOVEstnuction is identical to a read of the
F accumulator for the case where théeazgion bits of that accumulator
only contain sign-extension informatiolm. this case there is no need for
saturation or limiting, so readingegh= accumulator produces the same
result as reading the F1 register.

3.2.2.3 Extension Registers as Ratection Against Overflow

The F2 extension registers offer protection agaé@shit overflow. When the result of an accumulation
crosses the MSB of MSP (bit 31 of F), the extension bh@fktatus register (E) is set. Up to 15 overflows
or underflows are possible using thestension bits, after which the sigrlost beyond the MSB of the
extension register. When thascurs, the overflow bit (V) in the status register is set. Having an extension
register allows overflow during int@mediate calculations without losifigportant information. This is
particularly useful during execution of DSC algorithméien intermediate calations (but not the final
result that is written to memory or éoperipheral) magometimes overflow.

The logic detection of “extension register in use” goalsed to determine whendaturate the value of an
accumulator when it is being read onto the CGDBamsferred to any data ALU register. If saturation
occurs, the content of the origiredcumulator is not affected (excéjpthe same accumulator is specified
as both source and destination); othig value transferred over the CGBBimited to a full-scale positive
or negative 16-bit value ($7FFF or $8000).

When limiting occurs, a flag is setctatched in the status registel).(Che limiting block is explained in
more detail in Section 3.4.1, “Data Limiter.”

NOTE:

Limiting will be performed only wan the entire 36-bit accumulator
register (F) is specified as the source for a parallel data move or a register
transfer. It is not performed wh F2, F1 or FO is specified.
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3.2.2.4 Examples of Writing the Entire Accumulator

Figure 3-7 shows the result of writing a 16-bit signelde#o an entire accumutat Note that all three
portions of the accumulator are modified. The LSP ([{B@&gt to zero, and the extension portion (B2) is
appropriately sign extended.

Writing a Positive Value into  36-Bit Accumulator Example : MOVE #$1234,B

Before Execution After Execution
B2 B1 BO B2 B1 BO
B X [x x x x[x x x X B{o]|]1 2 3 4/o 0 0 0
35 32 31 16 15 0 35 32 31 16 15 0

Writing a Negative Value into 36-Bit Accumulator Example  : MOVE #$A987,B

Before Execution After Execution
B2 Bl BO B2 B1 BO
B X [x x x Xx[x x X X B{F|[A 9 8 7][0 0 0 0
35 32 31 16 15 0 35 32 31 16 15 0

Figure 3-7. Writing the Accumulator as a Whole

Successfully using the DSP56800 Ragmequires a full understanding tife methods and implications of
the various accumulator-register accawethods. The architecture oéthccumulator registers offers a
great deal of flexibility and power, but it is necagsto completely undetand the access mechanisms
involved to fullyexploit this power.

3.2.3 General Integer Processing

General integer and control procesggtypically involvegnanipulating 16- and 3Bit integer quantities.
Rarely will such code use a full 38t accumulator such as that irepiented by the DSP56800 Family.
The architecture of the DSP56880pports the manipulation of -bit integer quantities using the
accumulators, but care must be takdren performing such manipulation.

3.2.3.1 Writing Integer Data to an Accumulator

When loading an accumulator, it is st@lesirable for the 36 bits of taecumulator to correctly reflect the
16-bit data. To thignd, it is recommended that all accunteridoads of 16-bit data clear the least
significant portion of the accumulator and alggnsextend the extension portion. This can be
accomplished through specifgiithe full accumulator register aettlestination of the move, as shown in
Example 3-1.

Example 3-1. Loading an Accumulator with a Word for Integer Processing

MOVE X:(R0O),A ; A2 receives sign extension
; Al receives the 16-bit data
; AO receives the value $0000
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Loading a 16-bit integer value inthe Al portion of the register geenerally discouraged. In almost all
cases, it is preferable to follow Example 3-1page 3-11. One notable exception is when 36-bit
accumulator values must be stored temporarily.S&etion 3.2.5, “Saving and Restoring Accumulators,”
for more details.

3.2.3.2 Reading Integer Datafrom an Accumulator

Integer and control processing aligloms typically involve the mapulation of 16-bit quantities that
would be adversely affected by saturation or limitMtnhen such integer calctians are performed, it is
often desirable not to have overflow protection whesults are stored to memoiiyo ensure that the data
ALU’s data limiter is not active when an accumulagobeing read, it is necessary to store not the full
accumulator, but just the MSP (Al portion). See Example 3-2.

Example 3-2. Reading a Word from an Accumulator for Integer Processing
MOVE Al XVariable 1 ; Saturation is disabled

Note that with the use of the Al retdr instead of the A register, sationa is disabled. The value in Al is
written “as is” to memory.

3.2.4 Using 16-Bit Results of DSC Algorithms

A DSC algorithm may use the full 36-bit precisiginan accumulator while performing DSC calculations
such as digital filtering or maxrmultiplications. Upon copletion of the algorithm, however, sometimes
the result of the calculation must be saved in aiil¥emory location or must be written to a 16-bit D/A

converter. Since DSC algorithms process digital $gymias important that when the 36-bit accumulator
value is converted to a 16-bit valaturation is enabled so signals tharflow 16 bits are appropriately

clipped to the maximum positive negative value. See Example 3-3.

Example 3-3. Correctly Reading a Wo rd from an Accumulator to a D/A
MOVE AXD to A data ; Saturation is enabled

Note the use of the A accumulatnstead of the Al register. Usitige A accumulatoenables saturation.

3.2.5 Saving and Restoring Accumulators

Interrupt service routines offer oegample of a time when it is criticilat an accumulator be saved and
restored without being altered in any way. Since &riiapt can occur at any time, the exact usage of an
accumulator at that instant is unknown, so it catweadltered by the interrupt service routine without
adversely affecting any calculation that may have beprogress. In order for aaccumulator to be saved
and restored correctly, it must dene with limiting disabled. This sccomplished tlough sequentially
saving and restoring the individual parts of thgister, and not the whole register at once. See

Example 3-4 on page 3-13.
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Example 3-4. Correct Saving and Restoring of an Accumulator — Word Accesses

; Saving the A Accumulator to the Stack

LEA (sP)+ ; Paint to first empty location
MOVE A2X:(SP)+ ;Save extension register
MOVE ALX:(SP)+ ;Save MSP register

MOVE  A0,X:(SP) ; Save LSP register

; Restoring the A Accumulator from the Stack

MOVE X:(SP)-, A0 ;Restore LSP register
MOVE X:(SP)-,Al ;Restore MSP register
MOVE X:(SP)-,A2 ;Restore extension register

It is important that inteupt service routines dwot use the MOVE A, X:(SP)+ instruction when saving to
the stack. This instruction opegatwith saturation enabled, andyniimadvertently store the value $7FFF
or $8000 onto the stack, accordinghe rules employed by the Data lifer. This could have catastrophic
effects on any DSC calculation that was in progress.

3.2.6 Bit-Field Operations on Integers in Accumulators

When bit-manipulation operatioms accumulator registers arerjpemed, as is done for integer
processing, care must be taken. The bit-manipulatistructions operate as a “Read-Modify-Write”
sequence, and thus maydféected by limiting during the “Read” pion of this sequence. In order for
bit-manipulation operations @enerate the expected risplimiting must be disabte To ensure that this
is the case, the MSP (A1 portion)ar accumulator should be usedtastarget operand for the ANDC,
EORC, ORC, NOTC, BFCLR, BFCHG, and BFSHEStructions, not the full accumulator. See
Example 3-5.

Example 3-5. Bit Manipulation on an Accumulator

; BFSET using the Al register
BFSET #$0F00,A1 ; Reads Al with saturation disabled
; Sets bits 11 through 8 and stores back to A1
; Note: A2 and AO unmodified

; BFSET using the A register
BFSET #$0F00,A ; Reads Al with saturation enabled - may limit
; Sets bits 11 through 8 and stores back to A1
; A2 is sign extended and AQ is cleared

Since the BFTSTH, BFTSTL, BRCLR, and BRSET instiuts only test the acowlator value and do
not modify it, it is recommended tto these operations on the Aelyister where no limiting can occur
when integer processing is performed.

3.2.7 Converting from 36-Bit Accumulator to 16-Bit Portion

There are two types of instructions that are usefutdoverting the 36-bit content$ an accumulator to a
16-bit value, which can then be stdrto memory or used for furtheoemputations. This is useful for
processing word-sized operands (16 bits), sincesitantees that an accumiglacontains correct sign
extension and that the least significant 16 bitsalireeros. The two techniques are shown in Example 3-6
on page 3-14.
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Example 3-6. Converting a 36-Bit Accumulator to a 16-Bit Value

;Converting with No Limiting
MOVE Al1A ;Sign Extend A2, AO set to $0000
MOVE A1B ;Sign Extend B2, BO set to $0000
;Converting with Limiting Enabled
MOVE AA ;Sign Extend A2, Limit if Required
MOVE AB ;Sign Extend B2, Limit if Required

Where limiting is eabled, as in the second example irmfple 3-6, limiting on} occurs when the
extension register is in use. Yoan determine if the extension reigir is in use by examining the
extension bit (E) of the status register. Refeé8eation 5.1.8, “Status Rister,” on page 5-6.

3.3 Fractional and Integer Data ALU Arithmetic

The ability to perform botinteger and fractional arithmetic is ookthe strengths of the DSP56800
architecture; there is a need for both types of arithmetic.

Fractional arithmetic is typically gaiired for computatiotmtensive algorithms such as digital filters,
speech coders, vector and array processing, digital ¢aaticbother signal-procesgj tasks. In this mode
the data is interpreted as fractibmalues, and the computations aexformed interpreting the data as
fractional. Often, saturation is used when perfogr@alculations in this mod®e prevent the severe
distortion that occurs in an output signal getertdrom a result where a computation overflows without
saturation (see Figure 3-14 on page 3-28). Satura#iorbe selectively enabled or disabled so that
intermediate calculations can be penfied without limiting, ad limiting is only done on final results (see
Example 3-7).

Example 3-7. Fractional Arithmetic Examples

0.5x0.25=0.125
0.625 + 0.25=0.875
0.125/0.5=0.25
05>>1=0.25

Integer arithmetic, on the otherrtdh is invaluable for controller de, for array indexing and address
computations, compilers, peripheral setup and handdihgpanipulation, bit-exct algorithms, and other
general-purpose tasks. Typically, sation is not used in this mode,thsi available if desired. (See
Example 3-8.)

Example 3-8. Integer Arithmetic Examples

4x3=12
1201 + 79 =1280
63/9=7

100 << 1 =200

The main difference between fracted and integer representationshie location of the decimal (or
binary) point. For fractional arithmetithe decimal (or binary) point &ways located immediately to the
right of the MSP’s most significant bit; for integer vedulit is always located immediately to the right of
the value’s LSB. Figure 3-8 on page 3-15 showddhbation of the decimal pat (binary point), bit
weights and operands alignment éifferent fractional and integerpeesentations supported on the
DSP56800 architecture.
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16-Bit Word Operand 20 15
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16-Bit Memory

1 -
32-Bit Long Word Operand 20 215 | 716 31
Y = Y1:Y0 . |
! |
! |
-2 :20 >15 :2-16 531

36-Bit Accumulator
A,B . |

Fractional Two’s-Complement Representations

16-Bit Word Operand 215 14 20
X0,Y0,Y1,Al1,B1,
16-Bit Memory .
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1 1
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32-Bit Long Word Operand 2% 216 15 20
in Al1,B1
1 "
1 1
1 1
! 1
36-Bit Accumulator 2% 2% 216 1215 20!
]
Integer Two’s-Complement Representations AAQOAL

Figure 3-8. Bit Weightings and Operand Alignments

The representation of numbers allowedloen DSP56800 architecture are as follows:
« Two’s-complement values
» Fractional or integer values
» Signed or unsigned values
*  Word (16-bit), long word (32-bit), or accumulator (36-bit)

The different representations not only affee #nithmetic operations, but also the condition code
generation. These numbers can be represented as decimal, hexadecimal, or binary numbers.

To maintain alignments dhe binary point when a word operandmstten to an accumulator A or B, the
operand is written to the most sigo&dnt accumulator register (Al and)Bdnd its most significant bit is
automatically sign extended thrduthe accumulator extension registEne least significant accumulator
register is automatically cleared.

Some of the advantages of fractional data representation are as follows:
 The MSP (left half) has the same format as the input data.
» The LSP (right half) can be rounded into M8P without shifting or updating the exponent.
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Conversion to floating-point representation isieabecause the industsyandard floating-point
formats use fractional mantissas.

Coefficients for most digital filters are derived fractions by DSC digital-filter design software
packages. The results from the DSC design toolbearsed without the extensive data conversions
that other formats require.

A significant bit is not Ist through sign extension.

3.3.1 Interpreting Data

Data in a memory location or regist&mn be interpreted as fractionaimteger, depending on the needs of
a user’s program. Table 3-2 shows how a 16-bit valuédeanterpreted as eitharfractional or integer
value, depending on thedation of the binary point.

Table 3-2. Interpretation of 16-Bit Data Values
Hexadecimal Integer Fractional
Representation Binary Decimal Binary Decimal

$7FFF 011111111111 11112, 32767 0.111 1111111110122 0.99997
$7000 0111 0000 0000 0000, 28672 0.111 0000 0000 0PO0O 0.876
$4000 0100 0000 0000 0000 16384 0.100 0000 0000 0P00 0.5
$2000 0010 0000 0000 0000, 8,192 0.010 0000 0000 0P00O 0.2
$1000 0001 0000 0000 0000, 4,096 0.001 0000 0000 0P0O 0.125
$0000 0000 0000 0000 0000, 0 0.000 0000 0000 0000 0.0
$F000 1111 0000 0000 0000 - 4096 1.111 0000 0000 0POO -0.125
$E000 1110 0000 0000 0000, - 8192 1.110 0000 0000 0p00 -0.25
$C000 1100 0000 0000 0000 - 16384 1.100 0000 0000 0P00 -0.5
$9000 1001 0000 0000 0000 - 28672 1.001 0000 0000 0p0o0 -0.875
$8000 1000 0000 0000 0000 - 32768 1.000 0000 0000 0P00 - 1.(])

The following equation showsétrelationship between a 16-biteger and a fractional value:

Fractional Value = Integer Value /'Q

There is a similar equation relating-B& integers and fractional values:

Fractional Value = Integer Value /33

Table 3-3 shows how a 36-bit value daninterpreted as either an intege a fractional value, depending
on the location of the binary point.

3-16

Table 3-3. Interpretation of 36-bit Data Values
Hexadecimal Er?g;fig;fgi:;?or 16-Bit Integer in MSP Frs/(;t:sgal
Representatiort (decimal) (decimal) (decimal)

$7 FFFF FFFF 34,359,738,367 (Overflows) ~16.0
$1 4000 0000 5,368,709,120 (Overflows) 2.5
$0 4000 0000 1,073,741,824 16,384 0.5
$0 2000 0000 536,870,912 8,192 0.25
$0 0000 0000 0 0 0.0

$F C000 0000 -1,073,741,824 - 16,384 -05

DSP56800 Family Manual
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Table 3-3. Interpretation of 36-bit Data Va lues (Continued)

Hexadecimal 36'8“ Integer in 16-Bit Integer in MSP Fractional
R ot Entire Accumulator decimal Value
epresentatio (decimal) (decimal) (decimal)
$F EO00 0000 - 536,870,912 - 8,192 -0.25
$E C000 0000 - 5,368,709,120 (Overflows) -2.5
$8 0000 0001 -34,359,738,367 (Overflows) -16.0

1. When the accumulator extension registersratse, the data contained in the accu-
mulators cannot be storedagtly in memory or other registers. In these cases the data
must be limited to the mopbsitive or most negative nio@r consistent with the size

of the destination.

3.3.2 Data Formats

Four types of two’s-complement data f@ts are supported by the 16-bit DSC core:

» Signed fractional

* Unsigned fractional

» Signed integer

* Unsigned integer
The ranges for each of these formaiscussed in the following subsect#) apply to all data stored in
memory and to data stored in the data ALU registThe extension registers associated with the
accumulators allow word growth so that the most pasgigned fractional number that can be represented
in an accumulator is approximatelg.0 and the most negative sigrieattional number is -16.0 as shown
in Table 3-3. An importantactor to consider is that when the aoelator extension registers are in use,
the data contained in the accumulators cannot be staeadly in memory or other registers. In these cases

the data must be limited tbe most positive or mosegative number consisitewith the size of the
destination and the sign of the accumuiathe MSB of the extension register.

3.3.2.1 Signed Fractional

In this format the N bit operand is represented utiedl.[N-1] format (1 sighbit, N-1 fractional bits).
Signed fractional numbers lie the following range:

-1.0 SF +1.0-2MNl

For words and long-word signed fractions, the mogatiee number that can be represented is -1.0, whose
internal representation is $8000da8000_0000, respectively. The mpssitive word is $7FFF or 1.0 -
215 and the most positive long word is $7FFF_FFFF or 1.8 2

3.3.2.2 Unsigned Fractional

Unsigned fractional numbers maytheught of as positive only. The signed numbers have nearly twice
the magnitude of a signed numbdthathe same number of bits. Unseghfractional numbs lie in the
following range:

0.0 UF 2.0-2MN1

Examples of unsigned fractional numbers are 0.25%, and 1.999. The binary word is interpreted as
having a binary point after the MSB. The mpssitive 16-bit unsigned numbis $FFFF formulated
as {1.0 + (1.0 - 2[N-1} = 1.99997. The smallest unsigned number is zero ($0000).
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3.3.2.3 Signed Integer

This format is used when data is being processéutegers. Using this format, the N-bit operand is
represented using the N.O format (N integer b8&)ned integer numbers lie the following range:
2N g 2Nl

For words and long-word signed igrs the most negative word that can be represented is -32768
($8000), and the most negative lomgrd is -21474836488000_0000). The mopbsitive word is 32767
($7FFF), and the most positive longrd is 2147483647 ($7FFF_FFFF).

3.3.2.4 Unsigned Integer

Unsigned integer numbers may be thought of agipe®nly. The unsigned nurebs have nearly twice
the magnitude of a signed number of the same leklgthigned integer numbelis in the following range:
0 ur [2MN-1]

Examples of unsigned integer numbers are 25, 125, and 1999. The binary word is interpreted as having a
binary point immediately to the right of the LSB.e€Timost positive, 16-bit, signed integer is 65535
($FFFF). The smallest unsigned number is zero ($0000).

3.3.3 Addition and Subtraction

For fractional and integer arithmettbe operations are perfoet identically for addion, subtraction, or
comparing two values. This means that any addracthor compare instruction can be used for both
fractional and integer values.

To perform fractional or integer aritietic operations with word-sizedtdathe data is loaded into the
MSP (Al or B1) of the accumulator as shown in Figure 3-9.

Before Execution After Execution
$0 $0020 $0000 $0 $0060 $0000
A2 Al A0 A2 Al A0
X0 $0040 X0 $0040
MOVE #64,X0 ; Load integer value 64 ($40) into X0
MOVE #32A ; Load integer value 32 ($20) into A Accumulator
; (correctly sign extends into A2 and zeros AO)
ADD X0,A ; Perform Integer Word Addition

MOVE AL1X:RESULT ;Save Result (without saturating) to Memory

AA0045

Figure 3-9. Word-Sizedinteger Addition Example
Fractional word-sized arithmetic would be performed similar manner. For arithmetic operations where

the destination is a 16-bit registarmemory location, the fractionaf integer operation is correctly
calculated and stored in its 16-bit destination.
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3.3.4 Logical Operations

For fractional and integer arithing the logical operations (ANBDR, EOR, and bit-manipulation
instructions) are performeddentically. This means thany DSP56800 logical or bit-field instruction can
be used for both fractional andeger values. Typically, logical opéi@ns are only performed on integer
values, but there is no inhergetaison why they cannot be performed on fractional values as well.

Likewise, shifting can be done on both integer andifsaat data values. For boti these, an arithmetic

left shift of 1 bit corresponds tomaultiplication by two. An arithmetic giht shift of 1 bit corresponds to a
division of a signed value by two, and a logical right shift of 1 bit corresponds to a division of an unsigned
value by two.

3.3.5 Multiplication

The multiplication operation is not the same for inteayel fractional arithmetic. The result of a fractional
multiplication differs in a simple manner from the rdésdi an integer multiplication. This difference
amounts to a 1-bit shift of the final result, assthated in Figure 3-10. Any binary multiplication of two
N-bit signed numbers gives a signed result that is 2Mslin length. This 2N-bit result must then be
correctly placed into a field of 2hits to correctly fit into the onkip registers. For correct fractional
multiplication, an extra 0 bit is placed the LSB to give a 2N bit relsuFor correct integer multiplication,
an extra sign bit is placed aetMSB to give a 2N bit result.

Signed Multiplication: N X N A& 2N - 1 Bits

Integer Fractional
s | [s e | [s
Signed Multiplier Signed Multiplier
[s MSP LSP s MSP LSP |
<«— 2N—1 Product —» <«— 2N—1 Product —»
Sign Extension Zero Fill
- 2N Bits > - 2N Bits >

Figure 3-10. Comparison of Intger and Fractional Multiplication

The MPY, MAC, MPYR, and MACR instructions gferm fractional multiplication and fractional
multiply-accumulation. The IMPY 16 struction performs integer multiplitan. Section 3.3.5.2, “Integer
Multiplication,” explains how tgerform integer multiplication.

3.3.5.1 Fractional Multiplication

Figure 3-11 on page 3-20 shows the multiply-accatioh implementation for fractional arithmetic. The
multiplication of two 16-bit, signedractional operands gives an intexdiate 32-bit, signed, fractional
result with the LSB always set to zero. This intermiediasult is added to one of the 36-bit accumulators.
If rounding is specified in the MPY or MAC instiimn (MACR or MPYR), the intermediate results will
be rounded to 16 bits before bgistored back to the destinatiorcamulator, and theSP will be set to
zero.
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Input Operand 1 ! Input Operand 2 '
Signed Fractional
S S
Input Operands
| €———— 16Bits o B 16 Bits ————>
1 ,I [}
1 1 i
Signed ! 16 ! 16 I
Intermediate sls 0
Multiplier Result e .
A 32 Bits 1
L7 1 1
. 1 1
’ 1 I
7
. ) , 1 1
Signed Fractional
MPY Result EXP MSP LSP 0
:< 36 Bits ::
AA0043

Figure 3-11. MPY Operation — Fractional Arithmetic

3.3.5.2 Integer Multiplication

Two techniques for performing integer multgaition on the DSC core are as follows:
» Using the IMPY16 instruction to generate 6-bit result in the MSP of an accumulator
* Using the MPY and MAC instructions generate a 36-bit full precision result

Each technique has its advantageditierent types of computations.

An examination of the ingiction set shows that for execution aigle precision operations, most often
the instructions operate on the MSP (bits 31-16)@fattcumulator instead of th&P (bits 15-0). This is
true for the LSL, LSR, ROL, ROR, NOT, INCW, aBdECW instructions and others. Likewise, for the
parallel MOVE instructions, it is poite to move data to and from tMSP of an accumulator, but this is
not true for the LSP. Thus, an integer multiplicafiostruction that places its result in the MSP of an
accumulator allows for more efficient computing. Tigithe reason why the IMPY16 instruction places its
results in bits 31-16 of an accuratdr. The limitation with the IMPY 16 8truction is that the result must
fit within 16 bits or there is an overflow.

Figure 3-12 on page 3-21 shows the multiply openafor integer arithmeticThe multiplication of two
16-bit signed integer operds using the IMPY 16 instruction givasl6-bit signed integer result that is
placed in the MSP (Al or B1) of the accumulatore Thrresponding extension reggir (A2 or B2) is filled
with sign extension and the LSP (AO or BO) remains unchanged.
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AAD044
Figure 3-12. Intege Multiplication (IMPY)

At other times it is necessary to miim the full 32-bit precision of ainteger multiplication. To obtain
integer results, an MPY instruction is used, immedjafollowed by an ASR instiction. The 32-bit long
integer result is then correctly loedtinto the MSP and LSP of an agwulator with correct sign extension
in the extension register of tsame accumulator (see Example 3-9).

Example 3-9. Multiplying Two Signed Integer Values with Full Precision

MPY X0,YO,A ; Generates correct answer shifted
; 1 bit to the left
ASR A ; Leaves Caorrect 32-bit Integer

; Result in the A Accumulator
; and the A2 register contains
; correct sign extension

When a multiply-accumulate is performed a set of integer numberseth is a faster way for generating
the result than perfming an ASR instruction after each mulipThe technique is to use fractional
multiply-accumulates for the bulk oféglcomputation and to¢m convert the final sult back to integer.
See Example 3-10.

Example 3-10. Fast Integer MACs using Fractional Arithmetic

MOVE X:(ROy+YO  X:(R3)+X0
DO #Count,LABEL ; Count defined as number of repetitions
MAC X0,Y0,A X:(RO+YO  X:(R3)+X0
LABEL:
ASR A ; Convert to Integer only after MACs are
;  completed
3.3.6 Division

Fractional and integer division of both positive arghsed values is supporteding the DIV instruction.
The dividend (numerator) is a 32-bit fractional or 3lidieger value, and thewdsor (denominator) is a
16-bit fractional or integeralue, respectively. See&ion 8.4, “Division,” on pge 8-13 for a complete
discussion of division.
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3.3.7 Unsigned Arithmetic

Unsigned arithmetic can be perfathon the DSP56800 architectufée addition, subtraction, and
compare instructions work for botiigned and unsigned values, thé condition code computation is
different. Likewise, there is a diffence for unsigned multiplication.

3.3.7.1 Conditional Branch Instructio ns for Unsigned Operations

Unsigned arithmetic is supported operations such as addition, galotion, comparison, and logical
operations using the same ADD, SUBVIP, and other instructionsex for signed computations. The
operations are performed the sameloth representations. The diffecerlies both in which status bits
are used in comparing sigth and unsigned numbers and in hoevdata is interpreted, for which see
Section 3.3.2, “Data Formats.”

Four additional Bcc instruction variants are pre@ddor branching based ¢ime comparison of two
unsigned numbers. These variants are:

* HS (High or same) — unsignepieater than or equal to
* LS (Low or same) — unsigned less than or equal to
* HI (High) — unsigned greater than

* LO (Low) — unsigned less than

The variants used for comparing unsigned numbers|.B3HI, and LO, are used in place of GE, LE, GT,
and LT respectively, which are used for comparingesignumbers. Note thatdiHS condition is exactly
the same as the carry clear (CC), and ltlats exactly the same as carry set (CS).

Unsigned comparisons are enabled when the CC thiei®MR register is séivhen this bit is set, the
value in the extension registerig;mored when generagirthe C, V, N, and Z condition codes, and the
condition codes are set using only the 32 LSBs ofdhkalt. Typically, this mode is very useful for
controller and compiled code.

NOTE:

The unsigned branch condition variants (HS, LS, HI, and LO) may only be
used when the CC bit is set iretprogram controller's OMR register. If
this bit is not set, thethese condition codes shouldt be used.

In cases where it is necessary to maintain all 3@bitse result and the extension register is required, any
unsigned numbers must first be converted to sigvtesh loaded into the accuator using the technique

in Section 8.1.6, “Unsigned Load of an Accumulatan’page 8-7. In these cases, the extension register
will contain the correct value, arsihce values are now signed, it is possible to use the signed branch
conditions: GE, LE, GT, or LT. Typically, shmode is more useful for DSC code.

3.3.7.2 Unsigned Multiplication

Unsigned multiplications are supported with the MAC&d MPYSU instructions. If only one operand is
unsigned, then these instructions can be dgedtly. If both operands are unsigned, an
unsigned-times-unsigned multiplicaties performed using the techn&idemonstrated in Example 3-11
on page 3-23.
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Example 3-11. Multiplying Two Unsigned Fractional Values

MOVE XFIRST,X0 ;Getfirst operand from memory
ANDC  #$7FFF,X0 ; Force first operand to be positive
MOVE X:SECOND,YO ; Getsecond operand from memory
MPYSU XO,YO,A

TSTW  XFIRST ; Perform final addition if MSB of first operand was a one
BGE OVER ; If first operand is less that one, jump to OVER
MOVE  #$0,B
MOVE Y0,B1 ; Move YO to B without sign extension
ADD B,A
OVER:
; (ASR A ; Optionally convert to integer result

3.3.8 Multi-Precision Operations

The DSP56800 instruction set conaseveral instructions whichngplify extended- ath multi-precision
mathematical operations. By usitiggse instructions, 64-bit and 96-bitlculations can be performed, and
calculations involving different-sizeaperands are greatly simplified.

3.3.8.1 Multi-Precision Additi on and Subtraction

Two instructions, ADC and SBC, assist in penfiing multi-precision adton (Example 3-12) and
subtraction (Example 3-13), suabk 64-bit or 96-bit operations.

Example 3-12. 64-Bit Addition

X:$1:X:$0:Y1:YO + A2:A1:A0B1:B0O = A2:A1:A0:B1:BO
(B2 must contain only sign extsion before addition begins;
that is, bits 35-31 are all 1s or 0s)

MOVE X:$21,B ; Correct sign extension

MOVE X:$20,B0

ADD Y,B ; First 32-bit addition

MOVE X:$0,YO ; Get second 32-bit operand from memory
MOVE X$1Y1

ADC YA ; Second 32-bit addition

Example 3-13. 64-Bit Subtraction

A2:A1:A0:B1:BO - X:$1:X$0:Y1:Y0 = A2:A1:A0:B1:BO
(B2 must contain only sign extsion before addition begins;
that is, bits 3531 are all 1s or 0s)

MOVE X:$21,B ; Correct sign extension

MOVE  X:$20,B0

SuUB Y,B ; First 32-bit subtraction

MOVE X:$0,YO ; Get second 32-bit operand from memory
MOVE X$1,Y1

SBC YA ; Second 32-bit subtraction

3.3.8.2 Multi-Precision Multiplication

Two instructions are provided to assist with multi-s&n multiplication. Whenhese instructions are
used, the multiplier accepts one sigaed one unsigned two’s-complemepierand. The instructions are:

MPYSU — multiplication with oneigned and one unsigned operand
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e  MACSU — multiply-accumulate with ongigned and one unsigned operand

The use of these instructions in multi-precisiontiplication is demonstrateth Figure 3-13, with
corresponding examples shown in Example 3-14, Example 3-15 on page 3-24, and Example 3-16 on
page 3-25.

~€— 16 Bits —p»

X0

~¢— 32 Bits —»

Y1 YO
X
Signed x Unsigned
X0 x YO
Signed x Signed
X0 x Y1
+
Sign Ext.
A2 Al A0 B1
- 48 Bits > AA0046

Figure 3-13. Single-Preaion Times Double-Precisin Signed Multiplication

Example 3-14. Fractional Single-Precision  Times Double-Precision Value — Both Signed

(5 leyc, 5 Instruction Words)

MPYSU XO0,YO,A ; Single Precision times Lower Portion
MOVE AO0B

MOVE A1,A0 ; 16-bit Arithmetic Right Shift

MOVE A2A1l ; (note that A2 contains only sign extension)
MAC X0,YLA ; Single Precision times Upper Portion

; and added to Previous

Example 3-15. Integer Single-Precision  Times Double-Precision Value — Both Signed

(7 lcye, 7 Instruction Words)

MPYSU X0,YO,A ; Single Precision times Lower Portion
MOVE A0,B
MOVE A1,A0 ; 16-bit Arithmetic Right Shift
MOVE A2A1 ; (note that A2 contains only sign
; extension)
MAC X0,YLA ; Single Precision x Upper Portion and add to Previous
ASR A ; Convert result to integer, A2 contains sign extension
ROR B ; (52-bit shift of A2:A1:A0:B1)
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Example 3-16. Multiplying Two Fractional Double-Precision Values

; Signed 32x32 => 64 Multiplication Subroutine

; Parameters:

R1 = ptr to lowest word of one operand
R2 = ptr to lowest word of one operand
R3 = ptr to where results are stored

MULT_S32_X_S32:

CLR B ; Clears B2 portion

; Multiply lwrl * lwr2 and save lowest 16-bits of result

; Operation ;X0 YL YO A

MOVE X:(R1YO ;- — hrl -

ANDC #CLRMSB,YO ; - - Iwrl -
MOVE X:(R2)+Y1 ; - wr2 lwrl' -

MPYSU YO,YLA ; -—- r2 Iwrl' wrl.s*wr2.u

TSTW X:(R1)+ ; checkif MSB setin original lwrl value
BGE CORRECT_RES1; perform correction if this was true
MOVE Y1Bl1 ; — w2 Iwrl' -

ADD BA ;- wr2 wrl' lwrl.u* lwr2.u

CORRECT_RES1:

MOVE AO0X:(R3)+ ; — wr2 Iwrl' lwrl.u*wr2.u

; Multiply two cross products and save next lowest 16-bits of result

; Operation ;X0 YL YO A

MOVE X:(R1)-X0 ; uprl Mr2 Iwrl" A=productl >>16
MACSU XO,YLA ; uprl wr2 Iwrl" A+uprl.stiwr2.u

MOVE X:(R1),Y1 ; uprl hwrl Iwrl A+uprl.s*wr2.u

MOVE X:(R2),YO ; uprl lwrl upr2 A+uprl.sqwr2.u

MACSU YO,YLA ; uprl lwrl upr2 A+uprl.s*wr2.u+upr2.s*wrl.u
MOVE AO0X:(R3)+ ; uprl lrl upr2 A =resultw/ cross prods

; Multiply uprl * upr2 and save highest 32-bits of result

; The corresponding algorithm for integer multiplication of 32-bit values
; would be the same as for fractional with the addition of a final arithmetic

; Operation ;X0 YL YO A

MOVE Al,),(:TMP ; (arithmetic 16-bit right shift of 36-bit accum)
MOVE A2A ;uprl wrl upr2 -

MOVE XTMP,AO0 ; uprl Wwrl upr2 A=result>>16

MAC XOYOA ; uprl lwrl upr2 A+uprls*upr2s
MOVE AOX:(R3)+ ; - — - -—-
MOVE ALX(R3)+ & — — - -

RTS

; right shift of the 64-bit result.
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3.4 Saturation and Data Limiting

DSC algorithms are sometimes capable of calculatitges larger than the data precision of the machine
when processing real data streams. Normally, egssor would allow the value overflow when this
occurred, but this creates problems when processadgime signals. The solution is saturation, a
technigue whereby values that exceed the machiaepdecision are “clipped,” or converted to the
maximum value of the same sign thigg fvithin the given data precision.

Saturation is especially important aidata is running through a déa filter whose output goes to a
digital-to-analog converter (DAC3jnce it “clips” the output data irestd of allowing athmetic overflow.
Without saturation, the output datey incorrectly switch from a large giive number to a large negative
value, which can cause problems for ©Autputs in embedded applications.

The DSP56800 architecture supports optional saturafioesults through twlmiters found within the
data ALU:

e the Data Limiter
» the MAC Output Limiter

The Data Limiter saturates values when data is mougdf an accumulator with a MOVE instruction or
parallel move. The MA®utput Limiter saturates the outpof the data ALU’s MAC unit.

3.4.1 Data Limiter

The data limiter protects againstesflow by selectively limiting wheneading an accumulator register as
a source operand in a MOVE insttion. When a MOVE instructiospecifies an accumulator (F) as a
source, and if the contents of the selected sourcemadator can be represent&dhe destination operand
size without overflow (that is, the @mmulator extension register is notuse), the data limiter is enabled
but does not saturate, and the register contgatplaced onto the CGDB unmodified. If a MOVE
instruction is used and the contents of the setesource accumulator cannot be represented without
overflow in the destination operadusize, the data limiter will substtua “limited” dda value onto the
CGDB that has maximum magnitudedahe same sign as the source awglator, as shown in Table 3-4
on page 3-27.

The FO portion of an accumulatis ignored by the data limiter.
Consider a simple exanglshown in Example 3-17.

Example 3-17. Demonstrating the Data Limiter — Positive Saturation
MOVE  #$1000,RO ; Store results starting in address $1000

MOVE  #$7FFCA ; Initialize A =$0_7FFC_0000

INC A ; A=$0_7FFD_0000

MOVE AX:(RO)+ ; Write $7FFD to memory (limiter enabled)
INC A ; A=%$0_7FFE_0000

MOVE AX:(RO)+ ; Write $7FFE to memory (limiter enabled)
INC A ; A=$0_7FFF_0000
MOVE AX:(RO)+ ; Write $7FFF to memory (limiter enabled)

INC A ; A=%$0_8000_0000 <=== Overflows 16-bits
MOVE AX:(RO)+ ; Write $7FFF to memory (limiter saturates)
INC A ; A=%$0_8001_0000

MOVE AX:(RO)+ ; Write $7FFF to memory (limiter saturates)
INC A ; A=%$0_8002_0000

MOVE AX:(RO)+ ; Write $7FFF to memory (limiter saturates)
MOVE ALX:(RO+ ;Write $8002 to memory (limiter disabled)
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Once the accumulator increments t@®8 in Example 3-17, the positivestdt can no longer be written to
a 16-bit memory location without overflow. So, eatl of writing an overfloed value to memory, the
value of the most positive 16-bit mioer, $7FFF, is written instead byetHata limiter block. Note that the
data limiter block does not affectetlaccumulator; it onlyféects the value written to memory. In the last
instruction, the limiter is disabled t&use the register is specified as Al.

Consider a second example, shown in Example 3-18 on page 3-27.

Example 3-18. Demonstrating the Data Limiter — Negative Saturation
MOVE  #$1008,R0O ; Store results starting in address $1008

MOVE  #$8003.A ; Initialize A = $F_8003_0000

DEC A ; A=$F_8002_0000

MOVE AX:(RO)+ ; Write $8002 to memory (limiter enabled)

DEC A ; A=$F_8001_0000

MOVE AX:(RO)+ ; Write $8001 to memory (limiter enabled)

DEC A ; A=$F_8000_0000

MOVE AX:(RO)+ ; Write $8000 to memory (limiter enabled)

DEC A ;A=$F 7FFF 0000 <=== Overflows 16-hits
MOVE AX:(RO)+ ; Write $3000 to memory (limiter saturates)
DEC A ; A=$F_7FFE_0000

MOVE AX:(RO)+ ; Write $8000 to memory (limiter saturates)
DEC A ; A=$F_7FFD_0000

MOVE AX:(RO)+ ; Write $8000 to memory (limiter saturates)
MOVE ALX:(RO+ ;Write $7FFD to memory (limiter disabled)

Once the accumulator decrement$T&FF in Example 3-18, ¢hnegative result can no longer fit into a
16-bit memory location withdwverflow. So, instead of writing an exflowed value to memory, the value
of the most negative 16-bit number, $800Qyigten instead by the data limiter block.

Test logic exists in the extension portion of eacbumulator register to suppthe operation of the
limiter circuit; the logic detects ovflows so that the limiter can sufiate one of two constants to
minimize errors due to overflow. This processafied “saturation arithmetic¥When limiting does occur,
a flag is set and latched in the status registhe value of the accumulator is not changed.

Table 3-4. Saturation by the Limiter Using the MOVE Instruction

Extensiogctéi;sn]izlstsoer;n selected MSB of F2 Output of Limiter onto the CGDB Bus
No n/a Same as Input — Unmodified MSP
Yes 0 $7FFF — Maximmn Positive Value
Yes 1 $8000 — Maximum Negative Value

It is possible to bypass this litimg feature when reading an accuatar by reading it out through its
individual portions.

Figure 3-14 on page 3-28 demonstrates the importance of limiting. Consider the A accumulator with the
following 36-bit value to beead to a 16-bit destination:

0000 1.000 0000 0000 0000 0000 0000 0000 0000 (in binary)
(+ 1.0 in fractional decimal, $0_8000_0000 in hexadecimal)

If this accumulator is read withbthe limiting enabled by a MOVE1,X0 instruction, the 16-bit X0
register after the MOVE instruction would cont#ne following, assuming gned fractional arithmetic:

1.000 0000 0000 0000 (- 1.0 fractional decimal, $8000 in hexadecimal)
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This is clearly in error because thdue-1.0 in the X0 register greathjffers from the value of +1.0 in the
source accumulator. In this casgerflow has occurred. To minimizke error due to overflow, it is
preferable to write the maximum (“limited”) value thestination can assume. Ingtexample, the limited
value would be:

0.111 111111111111 (+ 0.999969 fractional decimal, $7FFF in hexadecimal)

This is clearly closer to the originehlue, +1.0, than -1.0 is, and thingoduces less error. Saturation is
equally applicable to bothtieger and fractional arithmetic.

Thus, saturation arithmetic can have a large eifectoving from register Al to register X0. The
instruction MOVE A1,X0 pgorms a move without limiting, andehinstruction MOVE A, X0 performs a
move of the same 16 bits with litimg enabled. The magnitude of teeor without limiting is 2.0; with
limiting it is 0.000031.

Without Limiting — MOVE A1,X0 With Limiting — MOVE A, X0
35 0 35 0
0...0/100.......... 00[00........... 00|A=+10 [0...0]100.......... 00[{00........... 00|A=+1.0
3 015 @ 015 0 3 015 @ 015 0
100.......... 00| X0=-1.0 011.......... 11| X0 =+0.999969
Y \
15 0 IERRORI = 2.0 15 0 IERRORI =.000031

*Limiting automatically occurs when the 36-bit operands A and B are read with a MOVE instruction. Note that the
contents of the original accumulator are not changed.

Figure 3-14. Example ofSaturation Arithmetic

3.4.2 MAC Output Limiter

The MAC output limiter optiony saturates or limits results calculdty data ALU arithmetic operations
such as multiply, add, inement, round, and so on.

The MAC Output Limiter can be enlad by setting the SA bit in tfeMR register. See Section 5.1.9.3,
“Saturation (SA) — Bit 4,” on page 5-11.

Consider a simple exanglshown in Example 3-19.

Example 3-19. Demonstrating the MAC Output Limiter
BFSET #$0010,0OMR ; Set SA bit— enables MAC Output Limiter

MOVE #$7FFC,A ; Initialize A=$0_7FFC_0000

NOP

INC A ; A=%$0_7FFD_0000

INC A : A=$0_7FFE_0000

INC A ;A=3%0_7FFF_0000

INC A ;A=%0 7FFF FFFF <=== Saturates to 16-bits!
INC A :A=$0_7FFF _FFFF <=== Saturates to 16-bits!
ADD #9,A :A=$0 7FFF FFFF <=== Saturates to 16-bits!
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Once the accumulator incrementssit-FF in Example 3-19, the sadtion logic in the MAC Output
limiter prevents it from growig larger because it can no longeirito a 16-bit memory location without
overflow. So instead of writing anverflowed value to back to theaccumulator, the \ae of the most
positive 32-bit number, $7FFF_FFFFwstten instead as the arithmetic result.

The saturation logic operates by ckiag 3 bits of the 36-bit resutiut of the MAC unit: EXT[3], EXT[O0],
and MSP[15]. When the SA bit is set, these 3dt®rmine if saturation igerformed on the MAC unit’s
output and whether to saturatethe maximum positive value{B6FF_FFFF) or the maximum negative
value ($8000_0000), as shown in Table 3-5.

Table 3-5. MAC Unit Outputs with Saturation Enabled

EXTI[3] EXTI[O] MSP[15] Result Stored in Accumulator

0 0 0 Result out of MAC Array with no limiting
occurring

0 0 1 $0_7FFF_FFFF

0 1 0 $0_7FFF_FFFF

0 1 1 $0_7FFF_FFFF

1 0 0 $F_8000_0000

1 0 1 $F_8000_0000

1 1 0 $F_8000_0000

1 1 1 Result out of MAC Array with no limiting
occurring

The MAC Output Limiter not only affes the results calculated by tinstruction, but can also affect
condition code computation as well. See Appendix\.Z=ffects of the Operating Mode Register's SA
Bit,” on page A-11 for more information.

3.4.3 Instructions Not Affected by the MAC Output Limiter
The MAC Output Limiter is always disabled (even if 8 bit is set) when thillowing instructions are
being executed:

e ASLL, ASRR, LSRR

e ASRAC, LSRAC

« IMPY

« MPYSU, MACSU

« AND, OR, EOR

e LSL, LSR, ROL, ROR, NOT

e TST

The CMP is not affected by the OMR’s SA bit excleptthe case when the firgperand is not a register
(that is, it is a memory location or an immediatligaand the second opedhis the X0, YO, or Y1
register. In this particular case, the U bit calculaticaffiscted by the SA bit. Nother bits are affected by
the SA bit for the CMP instruction.
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Also, the MAC Output Limiter onlaffects operationperformed in the data ALU. It has no effect on
instructions executed in other bloaksthe core, such as the following:

» Bit Manipulation Instructions (Table 6-30 and Table 6-31 on page 6-26)
* Move instructions (Table 6-18 through Table 6-21)

* Looping instructions (Table 6-33 on page 6-27)

* Change of flow instructions (Table 6-32 on page 6-27)

» Control instructions (Table 6-34 on page 6-28)

NOTE:

The SA bit affects the TFR instrimt when it is set, optionally limiting
data as it is transferred froome accumulator to another.

3.5 Rounding

The DSP56800 provides three instructions that can perform rounding — RND, MACR, and MPYR. The
RND instruction simply rounds a valun the accumulator register sgad by the instruction, whereas

the MPYR or MACR instructions tmd the result calculated by thesiruction in the MAC array. Each
rounding instruction rounds the restdta single-precision value so thalue can be stored in memory or

in a 16-bit register. In addition, fanstructions where the destinati@one of the two accumulators, the
LSP of the destination accumulat{@0 or BO) is set to $0000.

The DSC core implements two types of rounding: convergent rounding and two’s-complement rounding.
For the DSP56800, the rounding poinbé&tween bits 16 and 15 of a 3Bamlue; for the A accumulator, it

is between the Al register’s LSB and the AO registéSB. The usual rounding method rounds up any
value above one-half (that is, LSP > $8000) anddsidown any value beloane-half (that is, LSP <

$8000). The question arises as tdakhwvay the number one-half (LSP =08®) should be rounded. If it is
always rounded one wathe results will eventually be biasedtrat direction. Convergent rounding

solves the problem by rounding dovfthe number is even (bit 16 edsaero) and rounding up if the

number is odd (bit 16 equals one), whereas tworsgtement rounding always rounds this number up.

The type of rounding is selected by the roundi@m) of the operating mode register (OMR) in the
program controller.

3.5.1 Convergent Rounding

This is the default rounding mode.i$mounding is also called “rourtid nearest even number.” For most
values, this mode roundentically to two’s-complement roundini only differs for the case where the
least significant 16 bits is exactly $8000. For tlase; convergent rounding pess any introduction of a

bias by rounding down if the number is even (bit 16 equals zero) and rounding up if the rounding is odd
(bit 16 equals one). Figure 3-15 on page 3-31 showthgossible cases for rounding a number in the A
or B accumulator.
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Case |: If A0 < $8000 (1/2), then round down (add nothing)

Before Rounding After Rounding
0
A2 Al AO A2 Al AO*
XX . XXX XX, .. XXX0100[011XXX....XxXX| [XX. . XX]XXX...xXX0100[000......... 000
35 32 31 16 15 0 35 32 31 16 15 0

Case ll: If A0 > $8000 (1/2), then round up (add 1 to A1)

Before Rounding After Rounding
1
A2 Al A0 A2 Al AO*
XX..XXXXX...XXXOlOOllllOXX....XXX| |XX..XXXXX...XXX0101000 ......... 000
35 3231 16 15 0 35 3231 16 15 0

Case lll: If A0 = $8000 (1/2), and the LSB of A1 = 0 (even), then round down (add nothing)

Before Rounding After Rounding
0
A2 Al A0 A2 Al AO*
XX . XX[XXX...xXxx0100[1000........ 000]| [Xx .. xx|xxx...xxx0100[000......... 000
35 3231 16 15 0 35 3231 16 15 0

Case IV: If A0 = $8000 (1/2), and the LSB = 1 (odd), then round up (add 1 to A1)

Before Rounding After Rounding
1
A2 Al AO A2 Al AO*
[XX. . XX|XXX...xXxX0101[1000........ 000] [XX. . XX]XXX...xXX0110[000......... 000
35 3231 16 15 0 35 3231 16 15 0

*A0 is always clear; performed during RND, MPYR, and MACR
AA0048

Figure 3-15. Convergent Rounding

3.5.2 Two’s-Complement Rounding

When this type of rounding is seledtby setting the rounding bit in tVMR, one is added to the bit to the
right of the rounding point (bit 15 of A0) before the bit truncation during a rounding operation. Figure 3-16
shows the two possible cases.

Freescale Semiconductor Data Arithmetic Logic Unit 3-31



Data Arithmetic Logic Unit

Case |: A0 < 0.5 ($8000), then round down (add nothing)

Before Rounding

N7 w

After Rounding

A2 Al A2 Al AO*
XX XX[XXX...XXX0100[0110X....... X X [XX. . XX|XXX...XXX0100[000......... 000
35 3231 16 15 0 35 3231 16 15 0
Case ll: A0 >= 0.5 ($8000), then round up (add 1 to A1)

Before Rounding After Rounding
1

A2 Al ‘ AO A2 Al AO*

XX . XX[XXX...XXX0101[1110X...... X X X| [XX. . XX|XXX...xXX0101[000......... 000
35 32 31 16 15 0 35 32 31 16 15 0

*A0 is always clear; performed during RND, MPYR, MACR

AA0050

Figure 3-16. Two's-Complement Rounding

Once the rounding bit has been programmed in the @dRter, there is a delay of one instruction cycle
before the new roundingode becomes active.
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3.6 Condition Code Generation

The DSC core supports many diffet@rithmetic instructions for llo word and long-word operations.
The flexible nature of the instrtion set means that condition codes nalst be generated correctly for
the different combinations alloweThere are three questionsctmsider when condition codes are
generated for an instruction:

* Is the arithmetic operation’s desation an accumulator, or a 1@-tegister or memory location?
* Does the instruction operate on the whateumulator or only on the upper portion?
* Isthe CC bit set in the program controller's OMR register?

The CC bit in the OMR registell@wvs condition codes to be genergtgithout an examination of the
contents of the extension regist€his sets up a computing enviroant where there is effectively no
extension register because its contents are ignoredc@llypithe extension register is most useful in DSC
operations. For the case of general-purpose comptiiad;C bit is often set when the program is not
performing DSC task However, it is possibl® execute any instruction with the CC bit set or cleared,
except for instructions that use one of timsigned condition codes (HS, LS, HI, or LO).

This section covers different aspects of conditiodecgeneration for the different instructions and
configurations on the DSC core. Nal&t the L, E, and U bits areroputed the same regardless of the size
of the destination or the value of the CC bit:

» L is setif overflow occurs dimiting occurs in a parallel move.
» E s setif the extension resér is in use (that is, if bits 35—31 are not all the same).
» U is set according to theastdard definition of the U bit.

3.6.1 36-Bit Destinations— CC Bit Cleared

Most arithmetic instructions genéeaa result for a 36-bit accumulatdVhen condition codes are being
generated for this case ati CC bit is cleared, condition codes generated using all 36 bits of the
accumulator. Examples of instruat®in this category are ADC, AQ) ASL, CMP, MAC, MACR, MPY,
MPYR, NEG, NORM, and RND.

The condition codes for 36-bit desdiions are computed as follows:

* Nis set if bit 35 of the corresponding accuatar is set except during saturation. During a
saturation condition, the V (overflow)this set and the N bit is not set.

» Zis set if bits 35-0 of the o@®sponding accumulator are all cleared.
* Vs set if overflow has occurred in the 36-bit result.
» Cissetifa carry (borrow) hagcurred out of bit 35 of the result.
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3.6.2 36-Bit Destinations — CC Bit Set

Most arithmetic instructions genéeaa result for a 36-bit accumulatdVhen condition codes are being
generated for this case and the GQgset, condition codes are genedatising only the 32 bits of the
accumulator located in the MSP and LSP. The contdritse extension register are ignored. It is
effectively the same as if there is no extension regiBtexmples of instructions in this category are ADC,
ADD, ASL, CMP, MAC, MACR, MFY, MPYR, NEG, NORM, and RND.

The condition codes for 32-ldestinations (CC equals grexe computed as follows:
* Nis setif bit 31 of the corresponding accumulator is set.
» Zis set if bits 31-0 of the o@®sponding accumulator are all cleared.
* Vs set if overflow has occurred in the 32-bit result.
» Cissetifa carry (borrow) hagcurred out of bit 31 of the result.

3.6.3 20-Bit Destinations — CC Bit Cleared

Two arithmetic instructions generate a result ferdpper two portions of aaccumulator, the MSP and
the extension register, leaving the LSP of the exgator unchanged. Wheawondition codes are being
generated for this case atm® CC bit is cleared, condition codes generated using&t®0 bits in the
upper two portions of the accumulator. The tworindions in this category are DECW and INCW.

The condition codes for DECW and INCWE equals zero) are computed as follows:

* Nis setif bit 35 of the corresponding accuatat is set except during saturation. During a
saturation condition, the V (overflow)tlis set and the N bit is not set.

» Zis set if bits 35-16 of the casponding accumulator are all cleared.
* Vs set if overflow has occurred in the 20-bit result.
 Cissetif acarry (borrow) hagcurred out of bit 35 of the result.

3.6.4 20-Bit Destinations — CC Bit Set

Two arithmetic instructions generate a result ferdpper two portions of aaccumulator, the MSP and
the extension register, leaving the LSP of the exgator unchanged. Wheaondition codes are being
generated for this case and the CC bit is set,ithénbthe extension register and the LSP of the
accumulator are not used to calcalabndition codes. The two instruct®in this category are DECW and
INCW.

The condition codes for 16-ldestinations (CC equals grere computed as follows:
* Nis setif bit 31 of the corresponding accumulator is set.
e Zis set if bits 31-16 of the casponding accumulator are all cleared.
* Vs set if overflow has occurred in the 16-bit result.
» Cissetifa carry (borrow) hagcurred out of bit 31 of the result.
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3.6.5 16-Bit Destinations

Some arithmetic instructions can geate a result for a 36-bit accumulatwra 16-bit destination such as a
register or memory location. When condition codesaf@6-bit destination are being generated, the CC bit
is ignored and condition codes are getextaising the 16 bits of the resuittstructions in this category are
ADD, CMP, SUB, DECW, INCW, MAC, MACR, MPY, MPYR, ASR, and ASL.

The condition codes for 16-bit desttions are computed as follows:
* Nis setif bit 15 of the result is set.
» Zis set if bits 15-0 of the result are all cleared.
* Vs setif overflow has occurred in the 16-bit result.
» Cissetifa carry (borrow) hagcurred out of bit 15 of the result.

Other instructions only generatesults for a 16-bit destination suah the logical istructions. When
condition codes are being generatedtiits case, the CC bit is ignarand condition codes are generated
using the 16 bits of the result. Instructionsghis category are AND, EOR, LSL, LSR, NOT, OR, ROL,
and ROR. The rules for conditionae generation are presented for the cases where the destination is a
16-bit register or 16 bits of a 36-bit accumulator.

The condition codes for logical insttions with 16-bit registers assteations are computed as follows:
* Nis setif bit 15 of the corresponding register is set.
» Zis setif bits 15-0 of the o@sponding register are all cleared.
* Vis always cleared.
e« C — Computation depelent on instruction.

The condition codes for logical institions with 36-bit accumulatoes destinations are computed as
follows:

* Nis setif bit 31 of the corresponding accumulator is set.

e Zis set if bits 31-16 of the casponding accumulator are all cleared.
* Vs always cleared.

 C — Computation depelent on instruction.

3.6.6 Special Instruction Types

Some instructions do nédllow the preceding rules for condition cogeneration, and must be considered
separately. Examples of instructidnghis category are the logicand bit-field instructions (ANDC,
EORC, NOTC, ORC, BFCHG, BFCLR, BFSET, BFTSTL, BFTSTH, BRCLR, and BRSET), the CLR
instruction, the IMPY16 instation, the multi-bit shifting instictions (ASLL, ASRR, LSLL, LSRR,
ASRAC, and LSRAC), and the DIV instruction.

The bit-field instructions only affect the C and thbits. The CLR instruction only generates condition
codes when clearing accumulator. The condition codes aré modified when clearing any other
register. Some of the conditiondms are not defined after executthg IMPY16 and multi-bit shifting
instructions. The DIV instruction dnaffects a subset of all therdition codes. See Appendix A.4,
“Condition Code Computation,” on page A-6 for distan the condition codeomputation for each of
these instructions.
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3.6.7 TST and TSTW Instructions
There are two instructions, TST and TSTéhat are useful for checkingdlvalue in a register or memory
location.

The condition codes for the TST ingttion (on a 36-bit accumulator) wiC equal to zero are computed
as follows:

L is set if limiting occurs in a parallel move.

E is set if the extension regér is in use — that is, if bits 35—31 are not all the same.
U is set according to theastdard definition of the U bit.

N is set if bit 35 of the correspondiagcumulator is set except during saturation.

Z is set if bits 35—0 of the a@sponding accumulator are all cleared.

V is always cleared.

C is always cleared.

The condition codes for the TST insttion (on a 36-bit accumulator)itw CC equal to one are computed
as follows:

L is set if limiting occurs in a parallel move.

E is set if the extension rexjér is in use, that is, if bits 35—-31 are not all the same.
U is set according to theastdard definition of the U bit.

N is set if bit 31 of the corresponding accumulator is set.

Z is set if bits 31-0 of the o@sponding accumulator are all cleared.

V is always cleared.

C is always cleared.

The condition codes for the TSTWstruction (on a 16-bit value) are computed as follows:

L is set if limiting occuravhile reading an accumulator.
N is set if the MSB of the 16-bit value is set.

Zis set if all 16 bits ofthe 16-bit value are cleared.

V is always cleared.

C is always cleared.

3.6.8 Unsigned Arithmetic

When arithmetic on unsigal operands is beingbermed, the condition codaused to compare two
values differ from those used for signed arithmediee Section 3.3.7, “Unsigned Arithmetic,” for a
discussion of condition codesage for unsigned arithmetic.
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Chapter 4
Address Generation Unit

This chapter describes the architee and the operation of the address generation unit (AGU). The
address generation unit is the block where all@skicalculations are performed. It contains two
arithmetic units — a modulo iiimetic unit for complex@dress calculations and an
incrementer/decrementer for siml@culations. The modularithmetic unit can be used to calculate
addresses in a modulo fashion, autboadly wrapping around when nessary. A set of pointer registers,
special-purpose registers, and mudtipuses within the unit allow up towo address updates or a memory
transfer to or from the AGU in a single cycle.

The capabilities of the address generatioit include the follaving operations:
* Provide one address to X data memory on the XAB1 bus
» Post-update an address after providimgoriginal address value on XAB1 bus
» Calculate an effective address whistihen providean the XAB1 bus

» Provide two addresses to X data memoryrenXAB1 and XAB2 buses and post-update both
addresses

» Provide one address to program memory fogpm memory data accesses and post-update the
address

* Increment or decrement a counter during normalization operations
* Provide a conditional regist move (Tcc instruction)

Note that in the cases where the address genetatibis generating one or two addresses to access X data
memory, the program controller gentesaa second or third address usedoncurrently fetch the next
instruction.

The AGU provides many different addressing modes, which include the following:

* Indirect addressing with no update « Immediate data
Immediate short data

* Indirect addressing with post-increment

* Indirect addressing with post-decrement Absolute addressing

» Indirect addressing with post-update by a Absolute short addressing

register + Peripheral short addressing

* Indirect addressing with index by a 16-bit

* Register direct
offset g

. . s . Implicit
* Indirect addressing with index by a 6-bit mphct
offset

» Indirect addressing with index by a register
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This chapter covers the architecture and programmiodel of the address generation unit, its addressing
modes, and a discussi of the linear and modulo arithmetic chitiies of this unit. It concludes with a
discussion of pipeline dependencies related to the address generation unit.

4.1 Architecture and Programming Model

The major components of the adsgs generation unit are as follows:
» Four address registers (R0-R3)
» A stack pointer register (SP)
» An offset register (N)
* A modifier register (MO1)
* A modulo arithmetic unit
* An incrementer/decrementer unit

The AGU uses integer arithmetic to perform the effecaddress calculations necessary to address data
operands in memory. The AGU also contains the reigistsed to generate thédresses. It implements
linear and modulo arithmetic and operates irajbel with other chip resources to minimize
address-generation overhead.

Two ALUs are present within the AGU: the moduld@lanetic unit and the inementer/decrementer unit.
The two arithmetic units can generafeto two 16-bit addresses and t&ddress updates @y instruction
cycle: one for XAB1 and one for XAB2 for instruati® performing two parallel memory reads. The AGU
can directly address 65,536 locations on XAB1 @B¢h36 locations on the BA The AGU can directly
address up to 65,536 locations on XAB2, but@aly generate addresses to on-chip memory. The two
ALUs work with the data memory tccess up to two locations and pdevtwo operands to the data ALU
in a single cycle. The primary operand is addresgddthe XAB1, and the second operand is addressed
with the XAB2. The data memory, in turn, placedliésa on the core global data bus (CGDB) and the
second external data bus (XDB2), respectively Esgere 4-1 on page 4-3). See Section 6.1, “Introduction
to Moves and Parallel Moves,” on page 6-1 for more discussion on parallel memory moves.
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CGDB(15:0)
v SP
MO1 N RO
Modulo R1
Arithmetic

Unit R2

R3 ) ]

| Inc./Dec.
R3 Onl
| Leow 77
PAB(15:0) XAB1(15:0) XAB2(15:0)

AA0014

Figure 4-1. Address Gearation Unit Block Diagram

All four address pointer registers and the SP are usgenerating addresses in the register indirect
addressing modes. The offset register can be usell foyir address pointer registers and the SP, whereas
the modulo register can be used by theoRBy both the RO and R1 pointer registers.

Whereas all the address pointer registers and the Sfeassed in many addressing modes, there are some
instructions that only work with specific address pointer registBnese cases are presented in Table 4-5
on page 4-9.

The address generation unit is ceated to four major buses: CGDB, XAB1, XAB2, and PAB. The
CGDB is used to read or writeyaof the address generation unit itgirs. The XAB1 and XAB2 provide
a primary and secondary address, respectivelyetX tliata memory, and the PAB provides the address
when accessing the program memory.

A block diagram of the address generation unit is shioviFigure 4-1, and its corresponding programming
model is shown in Figure 4-2. The blocks and registers are explained in the following subsections.

15 0

RO

R1

R2

R3 15 0 15 0

SP N MO01

Pointer Offset Modifier

Registers Register Register AA0O15

Figure 4-2. Address Generdon Unit Programming Model
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4.1.1 Address Registers (R0O-R3)

The address register file consists of four 1&4dufisters RO-R3 (denoted as Rj) which usually contain
addresses used as pointersnemory. Each register may be remdvritten by the CGDB. High speed
access to the XAB1, XAB2, and PAB buses is requioaallow minimum access time for the internal and
external X data memory and program memory. Eadnesd register may be usaslinput for the modulo
arithmetic unit for a register updatelculation. Each register may Weitten by the output of the modulo
arithmetic unit.

The R3 register may be used as input to a separetementer/decrementamit for an independent
register update calculation. Thisiuis used in the case of any ingttion that performswo data memory
reads in its parallel move fiel&or instructions where two readegrerformed from the X data memory,
the second read using the R3 paimteist always access on-chip memory.

NOTE:

Due to pipelining, if an address re@is{R]j, SP, or M01) is changed with
a MOVE or bit-field instruction, the new contemigl not be available for
use as a pointer until the second follogvinstruction. If the SP is changed,
no LEA or POP instructions angermitted until the second following
instruction.

4.1.2 Stack Pointer Register (SP)

The stack pointer register (SP) isiagle 16-bit register that is usadplicitly in all PUSH instruction
macros and POP instructions. The SP is uselicgkpfor memory referenes when used with the
address-register-indirect modes. It is post-decréadeon all POPs from the software stack. The SP
register may be read or written by the CGDB.

NOTE:

This register must be initialized diqitly by the programmer after coming
out of reset.

Due to pipelining, if an address re@is{R]j, SP, or M01) is changed with
a MOVE or bit-field instruction, the new contemigl not be available for
use as a pointer until the second follogvinstruction. If the SP is changed,
no LEA or POP instructions angermitted until the second following
instruction.

4.1.3 Offset Register (N)

The offset register (N) usually contains offset valussduto update address pomsteThis single register

can be used to update or index with any of the address registers (R0-R3, SP). This offset register may be

read or written by the CGDB. The offgegister is used aspnt to the modulo arithmetic unit. It is often
used for array indexing or indexing into a table, as discussed in Section 8.7, “Array Indexes,” on page
8-26.
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NOTE:

If the N address register is chadgwith a MOVE instruction, this
register’s contentwill be available for use on the immediately following
instruction. In this case the insttion that writes the N address register
will be stretched one additional insttion cycle. This is true for the case
when the N register is used by themediately following instruction; if N

is not used, then the imgttion is not stretched an additional cycle. If the
N address register is changed withitafield instruction, the new contents
will not be available for use until tremcond following instruction.

4.1.4 Modifier Register (M01)

The modifier register (M01) specifies whether lineammdulo arithmetic is used when calculating a new
address and may be read or written by the CGDB. Thisfrapregister is autontgally read when the RO
address register is used in an address calculatioceemnoptionally be used alschen R1 is used. This
register has no effect on address daltons done with the R2, R3, or SRjisters. It is used as input to the
modulo arithmetic unit. This modifier registemgeset during a processor reset to $FFFF (linear
arithmetic).

NOTE:

Due to pipelining, if an address regis{Rn, SP, or M01) is changed with
a MOVE or bit-field instruction, the new contemil not be available for
use as a pointer until the second follogvinstruction. If the SP is changed,
no LEA or POP instructions arernpatted until the following instruction.

4.1.5 Modulo Arithmetic Unit

The modulo arithmetic unit carpdate one address register or thel8fhg one instruction cycle. It is
capable of performing linear and modulo arithiceas described in Section 4.3, “AGU Address
Arithmetic.” The contents of the modifier register sfiesithe type of arithmetito be performed in an
address register update calculation. The moditswe is decoded in thmodulo arithmetic unit and
affects the unit’s operation. The modulo arithmeiiit's operation is data-dependent and requires
execution cycle decoding ofdlselected modifier register conteiste that the modulo capability is only
allowed for RO or R1 updates; it is not allowed for R2, R3, or SP updates.

The modulo arithmetic unitrt calculates the result of linear antétic (for example, Rn+1, Rn-1, Rn+N)
which is selected as the moduldtlametic unit’s output for linear @ghmetic. For modulo arithmetic, the
modulo arithmetic unit will perform #hfunction (Rn+N) modulo (MO1+1yyhere N can be 1, -1, or the
contents of the offset register N. If the modulegion requires “wraparounddr modulo arithmetic, the
summed output of the modulo adaeH give the correct, updated addresegister value; otherwise, if
wraparound is not necessary, the linedéharetic calculation gives the correct result.

4.1.6 Incrementer/Decrementer Unit

The incrementer/decrementer unitied for address-update calculations during dual data-memory read
instructions. It is used either tacrement or decrement the R3 stgi. This adder performs only linear
arithmetic; it performsio modulo arithmetic.
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4.2 Addressing Modes

The DSP56800 instruction set contains a fullfeperand addressing modes, optimized for
high-performance signarocessing as well as efficient controlt®de. All address calculations are
performed in the address generatimit to minimize execution time.

Addressing modes specify where tierand or operands for an instion can be found — whether an
immediate value, located in a register, or in memerand provide the exact address of the operand(s).

The addressing modes are grouped into four categories:
» Register direct — directly references the processor registers as operands

» Address register indirect — uses an addresstergas a pointer to referee a location in memory
as an operand

* Immediate — the operand is containega&lue within the instruction itself

» Absolute — uses an address contained withinrtsieuction to reference a location in memory as
an operand

An effective address in a@nstruction will specify an addressing deo(that is, where the operands can be
found), and for some addrésg modes the effective address will het specify an address register that
points to a location in memory, how the addresslsulated, and how the register is updated.

These addressing modes are referred to extensively in Section 6.6.4, “Instruction Summary Tables,” on
page 6-17.

Several of the examples in the following sectionsolestrate the use of assembler forcing operators.
These can be used in an instruction to fordesired addressing modes shown in Table 4-1.

Table 4-1. Addressing Mode Forcing Operators

Desired Action Forcing Operator Syntax Example

Force immediate short data #<XX #<$07
Force 16-bit immediate data H#>XXXX #>$07
Force absolute short address X:<xx X:<$02
Force I/O short address X:<<xx X:<<$FFE3
Force 16-bit absolute address XI>XXXX X:>$02
Force short offset XSP-<xx) X:(SP-<$02)
Force 16-bit offset X:(RN+>XXXX) X:(RO+>$03)

Other assembler forcing operators are available for jantpbranch instructionas shown in Table 4-2.

Table 4-2. Jump and Branch Forcing Operators

Desired Action Forcing Operator Syntax Example
Force 7-bit relative branch offset <XX <LABEL1
Force 16-bit absolute jump address SXXXX >LABEL5
Force 16-bit absolute loop address SXXXX >LABEL4
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4.2.1 Register-Direct Modes

The register-direct addressing modes specify thadpkeand is in one (or more) of the nine data ALU

registers, seven address registers, or four congy@tess. The various options are shown in Table 4-3 on

Addressing Modes

page 4-7.
Table 4-3. Addressing Mode — Register Direct
Addressing Mode: Notation for Register Direct in the
: - ) Examples
Register Direct Instruction Set Summary!
Any register DD A, A2, Al, A0
DDDDD B, B2, B1, BO
HHH Y, Y1, YO
HHHH X0
F RO, R1, R2, R3
F1 SP
N
F1DD MO1
FDD
PC
R OMR, SR
Rn LA, LC
HWS

1. The register field notations found in theddie column are explained in more detail in
Table 6-16 on page 6-15 and Table 6-15 on page 6-14.

4.2.1.1 Data or Control Register Direct

The operand is in one, two, or ¢lerdata ALU register(s) as specifiedhie operands or in a portion of the
data bus movement field in the ingttion. This addressing mode is alssed to specify a control register
operand. This reference is classified as a register reference.

4.2.1.2 Address Register Direct

The operand is in one of the seven address reg(&6fR3, N, M01, or SP) specified by an effective
address in the instruction. This refece is classified as a register reference.

NOTE:

Due to pipelining, if any addressgister is changed with a MOVE or
bit-field instruction, the new contentgill not be available for use as a
pointer until the second following insttion. If the SP is changed, no
LEA or POP instructions are peitted until the second following

instruction.

4.2.2 Address-Register-Indirect Modes

When an address register is usegoint to a memory location,@haddressing mode is called address

register indirect. The termdirectis used because the operand is ndhéaddress register itself, but the
contents of the memory location pointed to by the eskiregister. The effective address in the instruction
specifies the address register Rj or SP an@dileess calculation to lperformed. These addressing
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modes specify that the operand is (or operands amegimory and provide the specific address(es) of the
operand(s). A portion of the data bus movement fiettie instruction specifiethe memory reference to
be performed. The type of address arithmetic isssgdecified by the address modifier register.

Table 4-4. Addressing Mde — Address Register Indirect

Addressing Mode:

Notation in the Instruction Set

Address Register Indirect Summaryl Examples
Accessing Program (P) Memory
Post-increment P:(Rj)+ P:(RO)+
Post-update by offset N P:(Rj)+N P:(R3)+N

Instructions that access P memory are not allowed wWieKP bit in the OMR is set (that is, when the
instructions are exedagy from data memory).

h

Accessing Data (X) Memory

No update X:(Rn) X:(R3)
X:(SP)
Post-increment X:(Rn)+ X:(R1)+
X:(SP)+
Post-decrement X:(Rn)- X:(R3)-
X:(SP)-
Post-update by offset N X:(Rn)+N X:(R1)+N
available for word accesses only
Indexed by offset N X:(Rn+N) X:(R2+N)
X:(SP+N)
Indexed by 6-bit displacement X:(R2+xx) X:(R2+15)
R2 and SP registers only X:(SP-xx) X:(SP-$1E)
Indexed by 16-bit disptzement X:(RN+XxxX) X:(R0-97)

X:(SP+$03F7)

1. Rjrepresents one tie four pointer rgisters R0O-R3; Rn is any of the AGU address registers

RO-R3 or SP.

Address-register-indirect modes may require asedfand a modifier register for use in address
calculations. The address register (Rj or SP) is used addiness register, the shared offset register is used
to specify an optional offset from thminter, and the modifier registisrused to specify the type of

arithmetic performed.

Some addressing modes are only available witlaicesiddress registers (Rn). For example, although all
address registers support the “indeby long displacement” addseng mode, only the R2 address
register supports the “indexed blgort displacement” adessing mode. For instructions where two reads
are performed from the X data memgaitye second read using the R3 peinmust always be from on-chip

memory. The addressed register sets are summarized in Table 4-5.

4-8
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Table 4-5. Address-Register-Indiect AddressingModes Available

Register Set |  Arithmetic Types Addressing Modes Allowed Notes

RO/MO1/N Linear or modulo (RO) RO alwaysuses the MOL1 register to
(RO)+ specify modulo or linear arithmetic
(RO)- RO can optionally be used as a
(RO)+N source register for the Tcc instruc-
(RO+N) tion. RO is the only register allowed
(RO+xxxX) as a counter for the NORM instruc

tion.

R1/MO1/N Linear or modulo (R1) R1 optionallyuses the M01 registe
(R1)+ to specify modulo or linear arith-
(R1)- metic. R1 can optinally be used as
(R1)+N a destination register for the Tcc
(R1+N) instruction.
(R1+xxxx)

R2/N Linear (R2) R2 supports a one-word indexed
(R2)+ addressing mode. R2 is not allowef
(R2)- as either pointer fanstructions that
(R2)+N perform two reads from X data
(R2+N) memory. No modulo arithmetic is
(R2+xx) allowed.
(R2+xxxX)

R3/N Linear (R3) R3 provides a second address for
(R3)+ instructions with two reads from
(R3)- data memory. This second address$
(R3)+N can only access internal memory. It
(R3+N) can also be usedrfinstructions that
(R3+xxxx) perform one access to data memotry.

No modulo arithmic is allowed.

SP/N Linear (SP) The SP supports a one-word indexed
(SP)- addressing mode, which is useful for
(SP)+ accessing local variables and passed
(SP)+N parameters. No adulo arithmetic is
(SP+N) allowed.
(SP-xx)
(SP+xxxx)

The type of arithmetic to be performed is not encdddbe instruction, but iis specified by the address
modifier register (MO1 for the DSP56800 core)ntlicates whether linear or modulo arithmetic is

performed when doing address calculations. Irctse where there is not a modifier register for a

particular register set (R2 or R3), linear addressing is always performed. For address calculations using RO,
the modifier register is always used; for calculatiosimg R1, the modifier gister is optionally used.

Each address-register-indirect addressing nmdkistrated in the following subsections.

4.2.2.1 No Update: (R)), (SP)

The address of the operand is in the address re§ipterSP. The contents of the Rn register are
unchanged. The MO1 and N registare ignored. This reference is classified as a memory reference. See
Figure 4-3.
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No Update Example : MOVE AL1,X:(R0)

Before Execution After Execution
A2 Al A0 A2 Al A0
Alo |1 2 3 af[s 6 7 8 Alo |1 2 3 afs 6 7 8
35 32 31 16 15 0 35 32 31 16 15 0
X Memory X Memory
15 0 15 0
/\/ /\/
$1000 | X X X X [ $1000 | 1 2 3 4 [
/\_/ /\_/
RO | $1000 — RO | $1000 —
15 0 15 0
N | (n/a) | N | (n/a) |
15 0 15 0
Moz | (n/a) | Moz | (n/a) |
15 0 15 0

Assembler syntax: X:(Rj), X:(SP)
Additional instruction execution cycles: 0
Additional effective addrss program words: 0

Figure 4-3. Address Rgister Indirect: No Update
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4.2.2.2 Post-Increment by1:

Addressing Modes

(Ri)+, (SP)+

The address of the operand is in the address register Rj or SP. After the operand address is used, it is
incremented by one and stored in the same addresteredihe type of arithmet{tinear or modulo) used

to increment Rn is determined M01 for RO and R1 and is always linear for R2, R3, and SP. The N
register is ignored. This reference is cifisd as a memory refence. See Figure 4-4.

Post-Increment Example:

Before Execution

MOVE BO,X:(R1)+

After Execution

B2 B1 BO B2 B1 BO
B|Aal|s 5 4 3|]F E D C B|Al6 5 4 3|F E D C
35 32 31 16 15 0 35 32 31 16 15 0
X Memory X Memory
15 0 15 0
/\—/ /\—/
$2501 $2501 | X X X |-
$2500 | X X X X |~ $2500 | F E D C
— —
RL|  $2500 — RL[  s2s01 —
15 0 15 0
N | (n/a) | N | (n/a) |
15 0 15 0
MOl | SFFFF | Mol [ SFFFF |
15 0 15 0
Assembler syntax: X:(Rj)+, X:(SP)+, P:(Rj)+
Additional instruction execution cycles: 0
Additional effective addess program words: 0
AA0017

Figure 4-4. Address Register Indirect: Post-Increment
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4.2.2.3 Post-Decrement by 1: (Rn)-, (SP)-

The address of the operand is in the address register Rj or SP. After the operand address is used, it is
decremented by one and stored im $hme address register. The typarithmetic (linear or modulo) used

to decrement Rn is determined @1 for RO and R1 and is alwalisear for R2, R3, and SP. The N
register is ignored. This reference is cifisd as a memory refence. See Figure 4-5.

Post-Decrement Example : MOVE B,X:(R1)-

Before Execution After Execution
B2 B1 BO B2 B1 BO
B[o|e6 5 4 3|F E D C Blo|e6 5 4 3|F E D C
35 32 31 16 15 0 35 32 31 16 15 0
X Memory X Memory
$4735 | X X X X |-g— $4735 | 6 5 4 3
$4734 [ X X X X $4734 | X X X X |-
RL | $4735 — R1 | $4734 —
15 0 15 0
N | (n/a) | N | (n/a) |
15 0 15 0
MOl | SFFFF | Mol [ SFFFF |
15 0 15 0

Assembler syntax: X:(Rj)-, X:(SP)-
Additional instruction execution cycles: 0
Additional effective addess program words: 0
AA0018

Figure 4-5. Address Rgister Indirect: Post-Decrement
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4.2.2.4 Post-Update by OffsetN: (Rj)+N, (SP)+N

The address of the operand is in the address regipterSP. After the operand address is used, the
contents of the N register are adde Rn and stored in the sanddeess register. The content of N is
treated as a two's-complement signed number. The dsraéthe N register are unchanged. The type of
arithmetic (linear or modula)sed to update Rn is determined by M01 for RO and R1 and is always linear
for R2, R3, and SP. This reference is clesdias a memory refence. See Figure 4-6.

Post-Update by Offset N Example : MOVE Y1,X:(R2)+N

Before Execution After Execution
Y1 YO Y1 YO
Y 5 5 5 51]A A A A Y 5 5 5 51]A A A A
31 16 15 0 31 16 15 0
X Memory X Memory
15 0 15 0
/‘\/ /_\—/
$3204 X X X X $3204 X X X X [
$3200 | X X X X $3200 ( 5 5 5 5
— —
R2|  $3200 R2 [ $3204 —
15 0 15 0
N | $0004 | N | $0004 |
15 0 15 0
MOl [ SFFFF | MOl | SFFFF |
15 0 15 0

Assembler syntax: X:(Rj)+N, X:(SP)+N, P:(Rj)+N
Additional instruction execution cycles: 0

Additional effective addess program words: 0
AA0019

Figure 4-6. Address Register Idirect: Post-Update by Offset N
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4.2.2.5 Index by OffsetN: (Rj+N), (SP+N)

The address of the operand is the sum of the contettte afldress register Rj or SP and the contents of
the address offset register N. This addition ocbefere the operand can hecessed and, therefore,
inserts an extra instruction cycle. The content id Neated as a two’'s-complement signed number. The
contents of the Rn and N registers anchanged by this addressing mdidee type of arithmetic (linear or
modulo) used to add N to Rn istdenined by M01 for R@nd R1 and is always linear for R2, R3, and SP.
This reference is classified asnemory reference. See Figure 4-7.

Indexed by Offset N Example : MOVE A1, X:(RO+N)

Before Execution After Execution

A2 Al A0 A2 Al A0
Al F|eE b c B|la 9 8 7 AlF|eE b c B|la 9 8 7
35 32 31 16 15 0 35 32 31 16 15 0
X Memory X Memory
15 0 15 0
/-\/ /—\_/
$7003 X X X X —» $7003 E D C B
$7000 | X X X X $7000 | X X X X
/\/ /\/
RO|  $7000 RO [ $7000 |
15 0 15 0
N | $0003 N | $0003 |
15 0 15 0
MOl [ SFFFF MOl | SFFFF |
15 0 15 0
Assembler syntax: X:(Rj+N), X:(SP+N)
Additional instruction execution cycles: 1
Additional effective addess program words: 0
AA0020

Figure 4-7. Address Registeindirect:
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4.2.2.6 Index by Short Displacement: (SP-xx), (R2+xXx)

This addressing mode contains thkeitshort immediate index within ¢hinstruction word. This field is
always one-extended to form a negative offset wherSth register is used aiscalways zero-extended to
form a positive offset when the R&gister is used. The type afithmetic used to add the short
displacement to R2 or SP is always linear; moduithmetic is not allowe This addressing mode
requires an extra instruction cycle. This referenagassified as an X memorgference. See Figure 4-8.

Indexed by Short Displacement Example : MOVE A1, X:(R2+3)

Before Execution After Execution
A2 Al AO A2 Al AO
Al F|]eE p c B|la 9 &8 7 Al F|]eE p c B]la 9 8 7
35 32 31 16 15 0 35 32 31 16 15 0
X Memory X Memory
$7003 | X X X X — % $7003| E D C B
$7000 | X X X X $7000 | X X X X
R2 | $7000 R2 | $7000 |
15 0 15 0
N | $4567 | N $4567 |
15 0 15 0
MOL | SFFFF | Mol | SFFFF |
5 0 15 0

Short Immediate Value
from the Instruction Word

Assembler syntax: X:(R2+xx), X:(SP-xx)
Additional instruction execution cycles: 1

Additional effecti r rogram words:
dditional effective address program words: 0 AA0021

Figure 4-8. Address Register Indiect: Indexed by Short Displacement
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4.2.2.7 Index by Long Displacemat: (Rj+xxxX), (SP+xXxX)

This addressing mode contains fi&bit long immediate ihex within the instruction word. This second
word is treated as a signed two’s-complement value tfire of arithmetic (linear or modulo) used to add
the long displacement to Rn is deténed by MO1 for RO athR1 and is always linear for R2, R3, and SP.
This addressing mode requires twaraxnstruction cycles. This addressing mode is available for MOVEC
instructions. This reference is classifeeglan X memory reference. See Figure 4-9.

Indexed by Long Displacement Example : MOVE A1, X:(R0O+$10CF)

Before Execution After Execution

A2 Al AO A2 Al AO
Al F|]eE p c B|la 9 &8 7 Al F|]eE p c B]la 9 8 7
35 32 3l 16 15 0 35 32 31 16 15 0
X Memory X Memory
15 0 15 0
/_\/ /\/
$80CF | X X X X —— 3 $80CF| E D C B
— — ]
—— P —
$7000 [ X X X X $7000 [ X X X X
— —
RO | $7000 RO | $7000
15 0 15
N | $4567 | N $4567
15 0 15
MOl | SFFFF | Mol | SFFFF
15 0 15

Long Immediate Value
from the Instruction Word

Assembler syntax: X:(Rj+Xxxxx), X:(SP+xxxx)
Additional instruction execution cycles: 2
Additional effective address program words: 1

Figure 4-9. Address Register Idirect: Indexed by Long Displacement
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4.2.3 Immediate Data Modes

The immediate data modes specify the operand direc#yfield of the instruction. That is, the operand
value to be used is contained viththe instruction word itself (awords themselves). There are two types
of immediate data modes: immediate data, which ases<tension word toontain the operand, and
immediate short data, where the operand is contaititadh the instruction wal. Table 4-6 summarizes
these two modes.

Table 4-6. Addressing Mode — Immediate

Addressing Mode: Notation in the Instruction Set
- Examples
Immediate Summary
Immediate short data- 5, 6, 7-bit H#xX #14
(unsigned and signed) #<3
Immediate data — 16-bit HXXXX #$369C
(unsigned and signed) #>1234
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4.2.3.1 Immediate Data: #xxxx

This addressing mode requires oneavof instruction extension. Thalditional word contains the 16-bit
immediate data used by the instruction. This refesds classified as a program reference. Examples of
the use and effects of immediate-data mode are shown in Figure 4-10 on page 4-18.

Immediate into 16-Bit Register Example

Before Execution

: MOVE #3$A987,B1

After Execution

B2 B1 BO B2 B1 BO
B[ x [x x x x[x x x x B x [A 9 8 7[x x x x
35 32 31 16 15 0 35 32 31 16 15 0
Positive Immediate into 36 -Bit Accumulator Example : MOVE #$1234,B
Before Execution After Execution
B2 B1 BO B2 B1 BO
B[ x [x x x x[|x x x x B{o |1 2 3 4]0 0o o o
35 32 31 16 15 0 35 32 31 16 15 0
Negative Immediate into 36-Bit Accumulator Example  : MOVE #$A987,B
Before Execution After Execution
B2 B1 BO B2 B1 BO
B[ x [x x x x[|x x x x BF|[A 9 8 7]0 0o o0 o
35 32 31 16 15 0 35 32 31 16 15 0
Assembler syntax: #xxxx
Additional instruction execution cycles: 1
Additional effective address program words: 1
AA0023

Figure 4-10. Special Adressing: Immediate Data
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Immediate Short into 16-Bit Address Register Example  : MOVE #$0027,N

Before Execution After Execution

N XXXX N | $0027
15 0 15 0

Immediate Short into 16-Bit Data Register Example  : MOVE #$FFC6,X0

Before Execution After Execution

X0 XXXX xo | sFrce
15 0 15 0

Immediate Short into 16-Bit Accumulator Register Example : MOVE #$001C,B1

Before Execution After Execution
B2 B1 BO B2 B1 BO
B[ x [x x x x[x x x x B[ x]o o 1 c|[x x x x
35 32 31 16 15 0 35 32 31 16 15 0

Positive Immediate Short into 36-Bit Accumulator Example : MOVE #$001C,B

Before Execution After Execution
B2 B1 BO B2 Bl BO
B[ x [x x x x[x x x x B{o]o o 1 clo o o o
35 32 31 16 15 0 35 32 31 16 15 0
Negative Immediate Shortinto  36-Bit Accumulator Example : MOVE #$FFC6,B
Before Execution After Execution
B2 B1 BO B2 B1 BO
B[ x [x x x x[x x x x B[ F|]F F c 6]o o 0o o
35 32 31 16 15 0 35 32 31 16 15 0
Assembler syntax: #xx
Additional instruction execution cycles: 0
Additional effective address program words: 0
AA0024

Figure 4-11. Special Addessing: Immediate Short Data
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4.2.3.2 Immediate Short Data: #xx

The immediate-short-data operandoisated within the instructiooperation word. A 6-bit unsigned
positive operand is used for DO anBmRinstructions, and a 7-bit signederand is used for an immediate
move to an on-core register ingttion. This referereis classified as a program reference. See

Figure 4-11 on page 4-19.

4.2.4 Absolute Addressing Modes

Similar to the direct addressing modes, the absalideessing modes specifietbperand value within the
instruction or instruction-extensiovords. Unlike the direct modebese values are not used as the
operands themselves, but are intetgd as absolute data memory addresses for the operand values. The
different absolute addressing modes are shown in Table 4-7.

Table 4-7. Addressing Mode — Absolute

Addressing Mode: Notation in the Instruction Set
Examples
Absolute Summary

Absolute short address — 6 bit X:aa X:$0002
(direct addressing) X:<$02
1/0 short address— 6 bit X:<<pp X:<<$FFE3
(direct addressing)
Absolute address — 16-bit XiXXXX X:$C002
(extended addressing)

1. /O short addressing mode is used when thipiperal registers are mapgpto the last 64 lo-
cations in X memory. When IP-BUS (or PGDBilterface maps these registers outside the
X:$FFCO-X:$FFFF range, theyathen accessed with other abie standard addressing mode.
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4.2.4.1 Absolute Address (Exended Addressing): XXxx

This addressing mode requires av@rd of instruction extension, Wwth contains the 16-bit absolute
address of the operand. No registare used to forthe address of the operand. Absolute address
instructions are used with th&manipulation and movimstructions. This reference is classified as a
memory reference and a progragfierence. See Figure 4-12.

Absolute Address Example : MOVE X:$5079,X0

Before Execution After Execution

X0 XXXX X0 $1234
15 0 15 0

X Memory X Memory
15 0 15 0
/\/ /\/
$5079 | 1 2 3 4 $5079 | 1 2 3 4
/\/ /—\/

Assembler syntax: X:Xxxx
Additional instructim execution cycles: 1
Additional effective addess program words: 1
AA0025

Figure 4-12. Special Addessing: Absolue Address
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4.2.4.2 Absolute Short Address(Direct Addressing): <aa>

For the absolute shioaddressing mode, the address of theamkoccupies 6 biia the instruction
operation word and is zero-extended. This allowsatliaccess to the first 64 locations in X memory. No
registers are used to form the addref the operand. Absolute short fastions are used with the bit-field
manipulation and move insictions. See Figure 4-13.

Absolute Short Address Example : MOVE R2,X:<$0003

R2

$0003

$0000

Before Execution

After Execution

$ABCD R2 $ABCD
15 0 15 0
X Memory X Memory
15 0 15 0
/—\/ /‘\/
X X X X $0003 | A B C D
$0000

Assembler syntax: X:<aa>
Additional instruction execution cycles: 0
Additional effective address program words: 0

4-22
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Figure 4-13. Special Addrssing: Absolute Short Address
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4.2.4.3 1/0 Short Address (Direct Addressing): <pp>

When the peripheral registers arepped to the last 64 locationsXnmemory, these can be accessed with
short addressing mode. For the I/@dladdressing mode, the address of the operand occupies 6 bits in the
instruction operation word and is one-extended. &hisvs direct access togHast 64 locations in X

memory, which may contain the on-chip peripheral registdo registers are used to form the address of
the operand. See Figure 4-14 for examples of using@hshort direct addressing mode. Note that when
peripherals are connected to the DSP56800 usirg) the Freescale-standard IP-BUS (or PGDB)

interface, peripheral registers may be mapped impoother data (X) memory range. Note that if the
peripheral registers are mapped to an area afoneoutside the range X#$C0-X:$FFFF, this address

mode will not be available and the registers aea liccessed with other suitable standard addressing
mode.

I/O Short Address Example : MOVE X:<<$FFFB,R3

Before Execution After Execution
R3 XXXX R3 $5678
15 0 15 0
Memory Mapped Registers Memory Mapped Registers
15 0 15 0
$FFFF $FFFF
$FFFB 5 6 7 8 $FFFB | 5 6 7 8

Assembler syntax: X:<pp>
Additional instructim execution cycles: 0
Additional effective addrss program words: 0
AA0027

Figure 4-14. Special Addessing: I/0 Short Address

4.2.5 Implicit Reference

Some instructions make impliciference to the progracounter (PC), software stack, hardware stack
(HWS), loop address register (LA), loop counter (L&)status register (SR). The implied registers and
their use are defined by the indivalunstruction descriptions. See Apyalx A, “Instruction Set Details,*
for more information.

4.2.6 Addressing Modes Summary

Table 4-8 on page 4-24 contains a summary of the addressing modes discussed in the preceding
subsections of Section 4.2.
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Table 4-8. Addressing Mode Summary

Operand Reference

. Uses
Addressing Mode Mo1L Assembler Syntax
| cd|Dp*| AS | PO | X7 | xx8
Register Direct
Data or control register No X X
Address register (Rj, SP) No X Rn
Address modifier register (M01) No X MO1
Address offset register (N) No X N
Hardware stack (HWS) No X HWS
Software stack No X
Address Register Indirect
No update No X (Rn)
Post-increment by 1 Yes X X X (Rn)+
Post-decrement by 1 Yes (Rn)-
Post-update by offset N Yes X X (Rn)+N
Index by offset N Yes X (Rn+N)
Index by short displacement No (R2+xx) or (SP-xx)
Index by long displacement Yes (RN+xxxx)
Immediate, Absolute, and Implicit

Immediate data No X FXXXX
Immediate short data No X #xx
Absolute address No X X XXXX
Absolute short address No <aa>
I/O short address No X <pp>
Implicit No X X X X

1. The M01 modifier can only be usedthie RO/N/MO1 or R1/N/MO01 register sets

2. Hardware stack reference

3. Program controlleregister reference

4. Data ALU register reference

5. Address Generation Uniggister reference

6. Program memory reference

7. X memory reference

8. Dual X memory read
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4.3 AGU Address Arithmetic

When an arithmetic operatias performed in the address generatioit, it can be performed using either
linear or modulo arithmetic. Linear arithmetic is usadgeneral-purpose address computation, as found in
all microprocessors. Modulo arithmetiaised to create data structuiresnemory such as circular buffers,
first-in-first-out queues (FIBs), delay lines, and fixed-size stacksinggshese structures allows data to be
manipulated simply by upting address register pointers, ratherthy moving large blocks of data.

Linear versus modulo arithmeticsslected using the modifier register, MO1. Arithmetic on the RO and R1
AGU registers may be performed using either lineanodulo arithmetic. The R2, R3, and SP registers
can be modified using linear arithmetic only.

4.3.1 Linear Arithmetic

Linear arithmetic is “normal” address arithmeticf@snd on general-purposeicroprocessors. It is
performed using 16-bit two’s-compmleent addition and subtraction. &6-bit offset register N, or
immediate data (+1, -1, or a displacement valiga)sed in the address calculations. Addresses are
normally considered unsigneaffsets are considered signed.

Linear arithmetic is enabled for tiRD and R1 registers by setting thedifier register (M01) to $FFFF.
The MO1 register is set to $FFFF on reset.

NOTE:

To ensure compatibility with futurgenerations of DSP56800-compatible
DSC devices, care should be takemtoid address arithmetic operations
that can cause address register values to overflow. On DSP56800 Family
chips, register values can be expecto “wrap” appropriately. Future
generations may support address ranges > 64K, however, causing potential
address-calculation errors.

4.3.2 Modulo Arithmetic

Many DSC and standard cooltalgorithms require the use of specialized data structures, such as circular
buffers, FIFOs, and stacks. The DSP56800 achite provides support for these algorithms by
implementing modulo arithmetio the address generation unit.

4.3.2.1 Modulo Arithmetic Overview

To understand modulo addsegrithmetic, consider the example of aiar buffer. A circular buffer is a
block of sequential memory locationsth a special property: a poimtieto the buffer is limited to the
buffer's address range. When a buffer pointer is inerged such that it would point past the end of the
buffer, the pointer is “wrapped” batk the beginning of the buffer. Similarly, decrementing a pointer that
is located at the beginning of thaffer will wrap the pointer to the dnThis behavior is achieved by
performing modulo arithmetic whéncrementing or decrementing theffem pointers. Se€igure 4-15 on
page 4-26.
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Upper Boundary: Lower Boundary + M01

Address___ o Circular
Pointer Buffer MO1 = Size of Modulo Region Minus One

Lower Boundary: “K” LSBs Are All “0s”

Addressof Lower Boundary
15 kkil -~ 10
| Base Address [o]o]o]o]o]

Figure 4-15. Circular Buffer

The modulo arithmetianit in the AGU simplifies the use ofcarcular buffer by handling the address
pointer wrapping for you. After ediishing a buffer in memory, the Rthd R1 address pointers can be
made to wrap in the buffer area by programming the M01 register.

Modulo arithmetic is enabled by pregnming the MO1 register with a valthat is one less than the size
of the circular buffer. See Section 4.3.2.2, “Ggufing Modulo Arithmetic,” for exact details on
programming the MO1 register. Once enabled, ugdatéhe RO or R1 registers using one of the
post-increment or post-decrement addressing madegerformed with modularithmetic, and will wrap
correctly in the circular buffer.

The address range within which thelseks pointers will wrap is deteimad by the vale placed in the

MO1 register and the address contained within one of the pointer registers. Due to the design of the modulo
arithmetic unit, the address range is not arbitrary/|iimited based on the valygaced in MO1. The lower

bound of the range is calculated by taking the size of the buffer, rounding it up to the next highest power of
two, and then rounding the addresatained in the RO or R1 pointerswio to the nearest multiple of that

value.

For example: for a buffer size of M, a valuei® calculated such thaf 2 M. This is the buffer size
rounded up to the next highest power of two. For a value M of‘37pald be 64. The lower boundary of
the range in which the pointer registevill wrap is the value in the RO or R1 register with the low-order k
bits all set to zero, effectively rounditige value down to the nearest multiple 6(&4 in this case). This

is shown in Figure 4-16 on page 4-27.
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Memory
$00BO
(Unavailable
Addresses)
Upper Boundary: $00A4 -4 Lower Bound + Size - 1 = Upper Bound
$009F -« Initial RO Pointer Value
Circular
Buffer
Lower Boundary: $0080 <€— Lower Bound Relative to RO

Figure 4-16. Circular Buffer with Size M=37

When modulo arithmetic is performed on the buffeinter register, only the low-order k bits are
modified; the upper 16 - k bits are held constantn§ihe address range of taffer. The algorithm used
to update the pointer regist@O0 in this case) is as follows:

RO[15:K] = RO[15:K]
RO[k-1:0] = (RO[k-1:0] + offset) MOD (M01 + 1)

Note that this algorithm can resiritsome memory addresses being @ilable. If the size of the buffer is
not an even power of two, there will be a range of addresses between KAh(Ei?mnd 63 in our
example) that are not addressable. Section.Z.3,2’Memory Locations Not Available for Modulo
Buffers,” addresses this issue in greater detail.

4.3.2.2 Configuring Modulo Arithmetic

As noted in Section 4.3.2.1, “Modulo Arithmetverview,” modulo aritmetic is enabled by
programming the address modifier register, MO1. Ehigle register enablesadulo arithmetic for both
the RO and R1 registers, althougloider for modulo arithnt to be enabled for thR1 register it must
be enabled for the RO register adlw&/hen both pointers use modwdathmetic, the sizes of both buffers
are the same. They can refer to shene or different buffers as desired.

The possible configurations of the MO1 register are given in Table 4-9.

Table 4-9. ProgrammingMO01 for Modulo Arithmetic

16-Bit MO1 Address Arithmetic Pointer Registers
Register Contents Performed Affected
$0000 (Reserved) —
$0001 Modulo 2 RO pointer only
$0002 Modulo 3 RO pointer only
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Table 4-9. Programming M01 fe& Modulo Arithmetic (Continued)

16-Bit MO1 Address Arithmetic Pointer Registers
Register Contents Performed Affected
$3FFE Modulo 16383 RO pointer only
$3FFF Modulo 16384 RO pointer only
$4000 (Reserved) —
$7FFF (Reserved) —
$8000 (Reserved) —
$8001 Modulo 2 RO and R1 pointers
$8002 Modulo 3 RO and R1 pointers
$BFFE Modulo 16383 RO and R1 pointers
$BFFF Modulo 16384 RO and R1 pointers
$CO000 (Reserved) —
$FFFE (Reserved) —
$FFFF Linear Arithmetic Rand R1 pointers both se
up for linear arithmetic

t

The high-order two bits of the MO1 register deterrtime arithmetic mode for Rihd R1. A value of 00
for MO1[15:14] selects modulo dninetic for RO. A value of 10 for MO1[15:14] selects modulo arithmetic
for both RO and R1. A value of 11 disables moduitharetic. The remaining 14 bits of MO1 hold the size

of the buffer minus one.

NOTE:

The reserved values ($0000, $4000-$8000, and $C000-$FFFE) should not
be used. The behavior of the modatithmetic unit is undefined for these
values, and may result arratic program execution.
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4.3.2.3 Supported Memory Access Instructions

The address generation unit suppantsdulo arithmetic for the followingddress-register-indirect modes:

(Rn) (Rn)+
(Rn)- (Rn)+N
(Rn+N) (RN+xxxx)

As noted in the preceding discumsi modulo arithmetic is only supged for the RO and R1 address
registers.

4.3.2.4 Simple Circular Buffer Example

Suppose a five-location circular buffie needed for an application. @ application locates this buffer at
X:$800 in memory. (This location is arbitrary — dogation in an allowable da memory would suffice.)
In order to configure the AGU correctly to manalgis circular buffer, the following two pieces of
information are needed:

The size of the buffer: five words
The location of the buffer: X:$0800 — X:804 (assume allowable memory locations)

Modulo addressing is enabled foetRO pointer by writing the size miswne ($0004) to M01[13:0], and
00 to M0O1[15:14]. See Figure 4-17.

$0804
Circular . . _ _
Buffer MO1 Register = Size - 1 =5 - 1 = $0004
RO ——\—>» $!8OO

Figure 4-17. Simple Fve-Location Circular Buffer

The location of the buffer in memorydetermined by the value of the ROinter when it is used to access
memory. The size of the memory buf{éive in this case) is roundedgb to the nearest power of two (eight
in this case). The valure RO is then roundedownto the nearest multiple ofgit. For the base address to
be X:$0800, the initial value of R@lust be in the range X:$0800 — X&1%4. Note that th initial value of
RO does not have to be X:$0800 to establish thisemd as the lower boundtbe buffer. However, it is
often convenient to set RO toetheginning of the buffer. The source code in Example 4-1 shows the
initialization of the example buffer.

Example 4-1. Initializing the Circular Buffer

MOVE #5-1)M01 ; Initialize the buffer for five locations
MOVE  #$0800,R0 ; RO can be initialized to any location
; within the buffer. For simplicity, RO
; Is initialized to the value of the lower
; boundary
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The buffer is used simply by accessing it WHDVE instructions. The effect of modulo address
arithmetic becomes apparent whba buffer is accessed ftiple times, as in Exaple 4-2 on page 4-30.

Example 4-2. Accessinghe Circular Buffer

MOVE

MOVE
MOVE
MOVE
MOVE

MOVE
MOVE
MOVE

X:(RO)+,X0

X:(R0O)+,X0
X:(R0O)+,X0
X:(RO)+,X0
X:(R0O)+,X0

X:(R0)+,X0
X:(R0)+,X0
X:(R0)+,X0

: First time accesses location $0800
; and bumps the pointer to location $0801
; Second accesses at location $0801
: Third accesses at location $0802
: Fourth accesses at location $0803
; Fifth accesses at location $0804
;and  bumps the pointer to location $0800

; Sixth accesses at location $0800 <=== NOTE
: Seventh accesses at location $0801
; and so forth...

For the first several memory accesses, the buffer pasmitecremented as expedt, from $0800 to $0801,
$0802, and so forth. When the peinreaches the top of the buffer, etthan incrementing from $0804 to
$0805, the pointer value “wraps” back to $0800.

The behavior is similar when the buffer pointer ségji is incremented bywvalue greater than one.

Consider the source code in Example 4-3, where ROstsincremented by three rather than one. The
pointer register correctly “wraps” from $0803 to $0801 — the pointer does not have to land exactly on the
upper and lower bound of thefler for the modulo arithmetic to wrap the value properly.

Example 4-3. Accessing the CirculaBuffer with Post-Update by Three

MOVE
MOVE
MOVE
NOP
NOP
MOVE

MOVE

MOVE
MOVE

#(5-1),M01
#$0800,R0
#3N
X:(RO)+N,XO0

X:(RO)+N, X0

X:(RO)+N,X0
X:(RO}+N, X0

; Initialize the buffer for five locations
; Initialize the pointer to $0800
; Initialize “bump value” to 3

; First time accesses location $0800
; and bumps the pointer to location $0803
; Second accesses at location $0803
;and  wraps the pointer around to $0801

: Third accesses at location $0801
; and bumps the pointer to location $0804
; Fourth accesses at ...

In addition, the pointer register does not neeldetincremented; it couloe decremented instead.
Instructions that post-decremehge buffer pointer also work o@ctly. Executing the instructionOVE
X:(R0)-,X0  when the value of RO is $08vill correctly setR0 to $0804.

4.3.2.5 Setting Up a Modulo Buffer

The following steps detail the proceasfssetting up and using the 3Fehtion circular buffer shown in
Figure 4-16 on page 4-27.

1. Determine the value for the MO1 register.

— Select the size of the desired buffer; it cambédarger than 16&! locations. If modulo
arithmetic is to be enabled lgrfor the RO address reggst this gives the following:
MO1 = # locations - 1 = 37 - 1 = 36 = $0024

— If modulo arithmetic is to be enabled for both Rtand R1 address registers, be sure to set the
high-order bit of MO1.:
MO1 = # locations - 1 + $8000 = 37 - 1 + 32768 = 32804 = $8024
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2. Find the nearest power of two greater thaadural to the circular buffer size. In this
example, the value would b& 2 37, which gives us a value oH®G.

3. Fromk, derive the characteristics of the lower boundary of the circular buffer. Since the “k”
least-significant bits of the address of thedo boundary must all be 0s, then the buffer

base address must eme multiple of B In this case, k = 6, so the base address is some
multiple of 2 = 64.

4. Locate the circular buffer in memory.

— The location of the circular buffer in memadsydetermined by the upper 16 - k bits of the
address pointer register used in a modulo asticoperation. If there is an open area of
memory from locations 111 to 189 ($006F t®BO), for example, then the addresses of the
lower and upper boundaries of the circular euffill fit in this open area for J = 2:

Lower boundary = (J x 64) = (2 x 64) = 128 = $0080
Upper boundary = (J x 64) + 36 = (2 x 64) + 36 = 164 = $00A4

— The exact area of memory in which a circulaiféris prepared is specified by picking a value
for the address pointer register, RO or R1, sehwalue is inclusively iween the desired lower
and upper boundaries of the circular bufferughselecting a value of 139 ($008B) for RO
would locate the circular buffer between locations 128 and 164 ($0080 to $00A4) in memory
since the upper 10 (16 - k) bits of the addiedgate that the lower boundary is 128 ($0080).

— In summary, the size and exact location of theutarcbuffer is defined once a value is assigned
to the MO1 register and to the address pointesteg(RO or R1) that will be used in a modulo
arithmetic calculation.

5. Determine the upper boundary of the circular buffer, which is the lower boundary + #
locations - 1.

6. Select a value for the offset regisfet is used in modulo operations.

— If the offset register is used in a moduldlanetic calculation, it must be selected as follows:
IN] MO1 + 1 [where |N| refers the absolute value of the contents of the offset register]

— The special case where N is a multiple of the block s|‘zé$ Pliscussed in Section 4.3.2.6,
“Wrapping to a Different Bank.”

7. Perform the modularithmetic calculation.

— Once the appropriate registers are set upmibeulo arithmetic operation occurs when an
instruction with any of the following addressingaes using the RO (or R1, if enabled) register
is executed:

(Rn)
(Rn)+
(Rn)-
(Rn)+N
(Rn+N)
(RN+xxxX)

— Ifthe result of the arithmetic calculation woelkiceed the upper or lower bound, then wrapping
around is correctly performed.

4.3.2.6 Wrapping to a Different Bank

For the normal case where |N| is less than naledg M01, the primary address arithmetic unit will
automatically wrap the address poirdeound by the required amount. This type of address modification is
useful in creating circular buffers for FIFOs, delay lireesd sample buffers up to 16,384 words long. It is
also used for decimation, intedgtion, and waveform generation.
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If IN] is greater than MO1, the result is data depahdnd unpredictable excdpt the special case where
N = L*(2%), a multiple of the block sizeKpwhere L is a positive integd¥or this special case when using
the (Rn)+N addressing modege pointer Rn will be updated usingdiar arithmetic téthe same relative
address that is L blocks forward in memory (see Figut8)4Note that this case requires that the offset N
must be a positive two’s-complement integer.

M
\ / (Rn)+ N MOD M01
( thereN=§(L=l)

N7 M

Figure 4-18. Linear Addressing with a Madulo Modifier

This technique is useful in sequiatly processing multiple tables di-dimensional arrays. The special
modulo case of (Rn)+N with N = L*@ is useful for performing the same algorithm on multiple blocks of
data in memory (e.g., implemengim bank of parallel IIR filters).

4.3.2.7 Side Effects of Modulo Arithmetic

Due to the way modulo arithmetic is implemented ley$P56800 Family, there are some side effects of
using modulo arithmetic thatust be kept in mind. Specificallyince the base address of a buffer must be
a power of two, and sindbe modulo arithmetic unit can only detecsingle wraparound, there are some
restrictions and limitationthat must be considered.

4.3.2.7.1 When a Pointer Lies Outside a Modulo Buffer

If a pointer is outside the valid moaubuffer range and an operation occurs that causes RO or R1 to be
updated, the contents of the pomagll be updated accordinto modulo arithmeticules. For example, a
MOVE B,X:(R0O)+N instruction, where RO = 6, MO1 =5, and N = 0, would apparently leave RO unchanged
since N = 0. However, since RO is above thpanpoundary, the AGU calculates RO + N - (MO1 + 1) for
the new contents of RO and sets RO = 0.

4.3.2.7.2 Restrictions on the Offset Register

The modulo arithmetic unit ithe AGU is only capable of detecting a single wraparound of an address
pointer. As a result, if the post-update addressing m@&i9+N, is used, care must be taken in selecting
the value of N. The 16-bé@bsolute value |N| must be less than or equal to MO1 + 1 for proper modulo
addressing. Values of |[N]| larger than the sizé@buffer may result in the Rn address value wrapping
twice, which the AGU cannot detect.
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4.3.2.7.3 Memory Locations Not Available for Modulo Buffers

For cases where the size of a buffer is not a powevafthere will be a range of memory locations
immediately after the buffer that are not accessible mitdulo addressing. Lower boundaries for modulo
buffers always begin on an address where the lowaist re zeros — that is, a power of two. This means
that for buffers that are not anaet power of two, there are locatiomisove the upper boundary that are
not accessible through modulo addressing.

In Figure 4-16 on page 4-27, for example, the buffer size is 37, which is not a power of two. The smallest
power of two greater than 37 is 64. Thus, therédre37 = 27 memory lotians which are not accessible

with modulo addressing. These 27 locations are between the upper boundary + 1 = $00A5 and the next
power of two boundary address - 1 = $00CO - 1 = $00BF.

These locations are still accessibleawmo modulo arithmetic is perfoetl. Using lineaaddressing (with
the R2 or R3 pointers), absolute addressethieono-update addressing deomakes these locations
available.

4.4 Pipeline Dependencies

There are some cases within the address generatiowhere the pipelined nature of the DSC core can
affect the execution of a sequence of instructions.fipeline dependencies are caused by a write to an
AGU register immediately followed by an instruction tbaes that same register in an address arithmetic
calculation. When there is a dependency caused biteatathe N register, the DSC automatically stalls
the pipeline one cycle. If a dependency is causemsite to the RO-R3, SP, or M01 registers, however,
there is no pipeline stall. This is also true if aflgitd operation is performed dhe N register. Instead, the
user must take care to avoid this case by rearratiginistructions or by inséing a NOP instruction to
break the instruction sequence.

Several instruction sequences are presented iioltbeving examples to examine cases where their
pipeline dependency occurs, how this affects the machnd how to correctlgrogram to avoid these
dependencies.

In Example 4-4 there is no pipeline dependency sinedlthegister is not used in the second instruction.
Since there is no dependency, nar&nstruction cycles are inserted.
Example 4-4. No Dependencwith the Offset Register

MOVE  #$7N ; Write to the N register
MOVE X:(R2)+X0 ; N not used in this instruction

In Example 4-5 there is no pipeline dependenngesihe R2 and N registers, used in the address
calculation, are not written in the pieus instruction. Since there is dependency, no extra instruction
cycles are inserted.

Example 4-5. No Dependency i an Address Pointer Register

MOVE #$7,R1 ; Write to R1 register
MOVE  X:(R2)+N,X0 ; R1 not used in this instruction

In Example 4-6 there is no pipeline dependencyesthere is no address calculation performed in the
second instruction. Instead, the Riister is used as the source opdrema MOVE instruction, for which
there is no pipeline dependency. Since there dependency, no extra instruction cycles are inserted.
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Example 4-6. No Dependency withlo Address Arithmetic Calculation

MOVE #$7,R1 ; Write to R1 register
MOVE R1,X:$0004 ; No address arithmetic calculation
; performed

Example 4-7 represents a special case. For tfmtxxxx) addressing mogdhere is no pipeline
dependency even if ghsame Rn register is written tre previous cycle. This is true for RO-R3 as well as
the SP register. Since there is no depengaerx extra instruon cycles are inserted.

Example 4-7. No Dependency with (Rn+xxxx)

MOVE #$7,R1 ; Write to R1 register
MOVE  X:(R1+$3456),X0 ; X:(Rn+xxxx) addressing mode using R1

In Example 4-8 there is a pipeline dependency since tegilster is used in the second instruction. This is
true for using N to update R0-R3 as well as the SRtexgiFor the case where a dependency is caused by
a write to the N register, the DSC core automaticadlilssthe pipeline by ingéng one extra instruction
cycle. Thus, this sequence is allowed. This depeayl also exists for the (Rn+N) addressing mode.

Example 4-8. Dependency witla Write to the Offset Register

MOVE #$7,N ; Write to the N register
MOVE  X:(R2)+N,X0 ; N register used in address arithmetic calculation

In Example 4-9 there is a pipeline dependency since tegilster is used in the second instruction. This is
true for using N to update R0-R3 as well as the SRtexgiFor the case where a dependency is caused by
a bit-field operation on the N register, this sequaesc®t allowed and is flagged by the assembler. This
seguence may be fixed by rearranging the instructiomsserting a NOP betwaédhe two instructions.

This dependency only applies to the BFSET, BFGuRBFCHG instructions. Theris no dependency for

the BFTSTH, BFTSTL, BRCLR, or BRSET instructionsisTiependency also exists for the (Rn+N)
addressing mode.

Example 4-9. Dependency with a Bit-Feld Operation on the Offset Register

BFSET #$7,N ; Bit-field operation on the N register
MOVE  X:(R2)+N,X0 ; N register used in address arithmetic calculation

In Example 4-10 there is a pipelidependency sindke address pointeegister written in the first
instruction is used in an address calculation in tkhersinstruction. For thease where a dependency is
caused by a write to one of these registers, tljgesee is not allowed and is flagged by the assembler.
This sequence may be fixed by rearranging th&utions or insentig a NOP between the two
instructions.

Example 4-10. Dependency with ®Vrite to an Address Pointer Register

MOVE #$7,R2 ; Write to the R2 register
MOVE  X:(R2)+,X0 ; R2 register used in address
; arithmetic calculation

In Example 4-11 there is a pipeline dependency siredMbil register written in the first instruction is

used in an address calculation in the second irigtrud-or the case where apdadency is caused by a

write to the MO1 register, this segpuce is not allowed and is flagged by the assembler. This sequence may
be fixed by rearranging the instructionsimserting a NOP betwedhe two instructions.

Example 4-11. Dependency witla Write to the Modifier Register

MOVE  #$7,M01 ; Write to the MO1 register
MOVE X:(R0)+X0 ; MO1 register used in address arithmetic calculation
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In Example 4-12 there is a pipelinepgmdency since the SP register writbe the first instruction is used
by the immediately following JSRstruction to store the subroutingua address. The stack pointer will
not be updated with the immediate value in daise. This sequence may be fixed by inserting a NOP
between the two instructions.

Example 4-12. Dependency with a Write to the Stack Pointer Register

MOVE  #$3800,SP ; Write to the SP register
JSR LABEL ; SP implicitly used to save the return address
;  of the subroutine call

In Example 4-13 there is a pipeline dependency dgeritention in the LF bit of the SR register. During
the first execution cycle of the BFSET instruction, the 8Rose LF bit is zero, is read. At the same time,
the first operand of the DO instition is fetched. During theesond execution cycle of the BFSET
instruction, the SR’s content is modified and writteeito the SR. This is al$be DO instruction decode
cycle, when the LF bit is set. In this case, theblths first set by the DO decode, then cleared by the
BFSET SR modification. A cleared Uit signals the end of a DO loggm the DO loop is executed only
once. This sequence can be fixed by inserdiNOP instruction between these two instructions.

Example 4-13. Dependency with a Bit-Field Operation and DO Loop

BFSET #$0200,SR ; Write to the SR register

DO #38,ENDLOOP ; Repeat 8 times body of loop
; (instructions)
ENDLOORP:
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Chapter 5
Program Controller

The program controller unit is one of the three@iion units in the cenifrprocessing module. The
program controller pesfms the following:

* Instruction fetching
* Instruction decoding
» Hardware DO and REP loop control
» Exception (interrupt) processing
This section covers the following:
» The architecture and programming model of the program controller
» The operation of the software stack
» Adiscussion of program looping

Details of the instruction pipeline and the differerdqassing states of the DSC chip, including reset and
interrupt processing, are covered in Chaptéinterrupts and the Processing States.”

5.1 Architecture and Programming Model

A block diagram of the program controller is shown in Figure 5-1 on page 5-2, and its corresponding
programming model is shown in Figure 5-2 on page 5-3. The programmer views the program controller as
consisting of five registers and a hardware stack (H\MSaddition to the standard program flow-control
resources such as a program counter (PC) and stgisteréSR), the program controller features registers
dedicated to supporting the hardwB@ loop instruction — loop addre$LA), loop counter (LC), and the
hardware stack — and an operating modesteg{OMR) defining the DSC operating modes.

The blocks and registers within the program oaltdr are explained in thfollowing subsections.
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Figure 5-1. ProgramController Block Diagram
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Program Controller

15 0 15 8 7 0 15 0
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AA0009

Figure 5-2. Program Catroller Programming Model

5.1.1 Program Counter

The program counter (PC) is a 16-bit register thataios the address of the next location to be fetched
from program memory space. The PCyrpaint to instructions, data operands, or addresses of operands.
Reference to this register is alygaimplicit and is implied by moststructions. This special-purpose
address register is stacked when hardware DO loopingi&éed (on the hardwargack), when a jump to

a subroutine is performed (on the software staahkg, when interrupts occ(wn the software stack).

5.1.2 Instruction Latch and Instruction Decoder

The instruction latch is a 16-bit imteal register used to hold all instruction opcodes fetched from memory.
The instruction decoder, rn, uses the contents of the instructiatch to generate all control signals
necessary for pipeline control — for normal instruetietches, jumps, branes, and hardware looping.

5.1.3 Interrupt Control Unit

The interrupt control uniteceives all interrupt guiests, arbitrates among them, and then checks the
highest-priority interrupt request agat the interrupt mask bits for tlxSC core (11 and 10 in the SR). If
the requesting interrupt has higheiopity than the current priority iel of the DSC core, then exception
processing begins. When exception processing bagmaterrupt control unit prvides the address of the
interrupt vector for interrupts generated on the @8f@, whereas the peripherals generate the vector
address for interrupts generated by an on-chip peripheral.

Interrupts have a simple priority stture with levels zero or one. Lev@ls the lowest interrupt priority
level (IPL) and is maskable. Level 1tige highest level and is not maslal@Iwo interrupt mask bits in the
SR reflect the current IPL ofie DSC core and indicatiee level needed for an imtapt source to interrupt
the processor.

The DSP56800 core provides supgortinternal (on-chip) peripheralterrupts and two external interrupt
sources,RQA and RQB. The interrupt control unit arbitrateetween interrupt requests generated
externally and by thon-chip peripherals.

Asserting the reset pin causes the DSC core to entegdeprocessing state. This has higher priority and
overrides any activity in the interrupt cooitunit and the exception processing state.
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Details of interrupt arbitration and the exceptioagarssing state are discusse&ection 7.3, “Exception
Processing State,” on page 7-5. The reset processitais discussed in Section 7.1, “Reset Processing
State,” on page 7-1.

5.1.4 Looping Control Unit

The looping control unit provides hardware dedicatesbfaport loops, which are frequent constructs in
DSC algorithms.

The repeat instruction (REP) loads tt3-bit LC register with a value representing the number of times the
next instruction is to be repeatdthe instruction to be repeated idyofetched once per loop, so power
consumption is reduced, and thghput is increased when runnifigm external program memory by
decreasing the number of external fetches required.

The DO instruction loads ¢h13-bit LC register with a value regzenting the numbef times the loop
should be executed, loads the LA stgi with the address of the lasttiction word in the loop (fetched
only once per loop), and sets the loop flag (LiE)rbthe SR. The top-of-loop address is stacked on the
HWS so the loop can be repeatedwio overhead. When the LF iretBR is asserted, the loop state
machine will compare the PCrents to the contents of the LA tatelenine if the last instruction word in
the loop was fetchedf. the last word was fetchethe LC contents are tested for one. If LC is not equal to
one, then it is decremented, and the contents di¥8 (the address of the first instruction in the loop)
are read into the PC, effectively executing an autonbagioch to the top of the loop. If the LC is equal to
one, then the LF in the SR is restored with theteats of the OMR’s nestddoping (NL) bit, the
top-of-loop address is removed from the HWS, astrirction fetches continus the incremented PC
value (LA + 1).

Nested loops are supported by stacking the addrdhke €ifst instruction in théoop (top of loop) in the
HWS and copying the LF bit into the OMR’s NL bit priw the execution of thiérst instruction in the
loop. The user, however, must &gjtly stack the LA and LC regiets as described in Section 8.6.4,
“Nested Loops,” on page 8-22.

Looping is described in more detail in Section 5.3, “Program Looping,” and Section 8.6, “Loops,” on page
8-20.

5.1.5 Loop Counter

The loop counter (LC) is a specle#-bit down counter used to spedifie number of times to repeat a
hardware program loop (DO and RE®Bps). When the end of a hardware program loop is reached, the
contents of the loop counter register are testedrfer If the loop counter ne, the program loop is
terminated. If the loop countern®t one, it is decremented by one and the program loop is repeated.

The loop counter may be read and written underraragsontrol. This gives $wvare programs access to
the value of the current loop iteratidt also allows for saving andstoring the LC to and from the
software stack when nesting DO loops in softwardeNtaat since the LC is only a 13-bit counter, it is
zero-extended when read; when writtée top three bits of the sounverd are ignored. This is shown in
Figure 5-3 on page 5-5.
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Figure 5-3. Accessing the Loop Count Register (LC)

This register is not stacked byp® instruction and not unstacked éxyd-of-loop processing, as is done on
other Freescale DSCs. Section 5.3, “Program Looping¢ldises what occurs when the loop count is zero.
See Section 8.6.4, “Nested Loops,” on page 822 discussion of nesting loops in software.

The upper three bits of this regiswill read as zero during DSC read operations and should be written as
zero to ensure future compatibility.

5.1.6 Loop Address

The loop address (LA) register idies the location of the last insttion word in a hardware program
loop (DO loop only). When the insttion word at the address containedhiis register is fetched, the LC
is checked. If it is not equal to one, the LC is demented, and the next insttion is taken from the
address at the top of the system stathkerwise the PC is incrementeck ttF is restored with the value in
the OMR’s NL bit, one lod#on from the Hardware Stack is purgeahd instruction execution continues
with the instruction irmediately after the loop.

The LA register is a read/write register written intothg DO instruction. The LA register can be directly
accessed by the MOVE instructions as well. This alkavs for saving and restoring the LA to and from
the stack during the nesting of loops. This registapisstacked by a DO instruction and is not unstacked
by end-of-loop processing. See Section 8.6.4, “Ndstegps,” on page 8-22 fa discussion of nesting
loops in software.
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5.1.7 Hardware Stack

The hardware stack (HWS) is a 2-deep, 16-bit wide;jitaBtst-out (LIFO) stacklt is used for supporting
hardware DO looping; the softwaresk is used for storing returng@ésses and the SR for subroutines
and interrupts.

When a DO instruction is executed, the 16-bit addre#fsedirst instruction in the DO loop is pushed onto
the hardware stack, the value of the LF bit is copigmlthe NL bit, and the LF bit is set. Each ENDDO
instruction or natural end-of-loapill pop and discard the 16-bit addrestered in the top location of the
hardware stack, copy the NL bit irttee LF bit, and clear the NL bit. @hardware stack location is used
for each nested DO loop, and the REP instructie@sdwt use the hardware stack. Thus, a two-deep
hardware stack allows for a maximum of two nef2€lloops and a nested RE#®p within a program.
Note that this includes any lomg that may occur due to a DO lopan interrupservice routine.

When a write to the hardware stack would causetidek limit to be exceeded, the write does not take
place, and a nhon-maskable hardware-stack-overflaarimpt occurs. There is noterrupt on hardware
stack underflow.

5.1.8 Status Register

The status register (SR) is a 16-bit register consisfilag 8-bit mode register (MR) and an 8-bit condition
code register (CCR). The MR registetthe high-order 8 bits of the Ste CCR register is the low-order
8 bits.

The mode register is a special-purpose registedtifates the operating state of the DSC core. It is
conveniently located within the SR so that is it staact@dectly on an interrupThis allows an interrupt
service routine to set up the opergtstate of the DSC core differently.

The mode register bits are affected by processmt, exception processing, DO, ENDDO, any type of
jump or branch, RTI, RTS, and SWI instructions, argirirctions that directlyeference the MR register.
During processor reset, the interrapask bits of the mode registsill be set, and the LF bit will be
cleared.

The condition code register is a spg@urpose control regier that defines the current status of the
processor at any given time. Its bits are set as # msiatus detected after certain instructions are
executed. The CCR bits are affected by data AL&rafons, bit-field manidation instructions, the
TSTW instruction, parallel move oions, and instructiortbat directly reference the CCR register. In
addition, the computation dfie C, V, N, and Z condition codé@édare affected by the OMR’s CC bit,
which specifies whether condition codes are generaiad thge information in th extension register. The
CCR bits are not affected by datartsfers over the CGD@nless data limiting occurs when reading the A
or B accumulators. Duringrocessor reset, all CCR bits are cleafEne standard definitions of the CCR
bits are given in the following subsections, and niofermation aboticondition code bits is found in
Section 3.6, “Condition Code Generation,” on padi83Refer to Appendix A, “Instruction Set Details,"
for computation rules.

The SR register is stacked on the software stack @lISR is executed or when an interrupt occurs. The
SR register is restored from the stack upon detigm of an interrupt service routine by the
return-from-interrupt instruction (R). The program extensiobits in the SR are restored from the stack
by the return-from-subroutine (RTS) insttioot — all other SR bits are unaffected.

The SR format is shown in Figure 5-4 on page 5-7 and is also described in the following subsections.
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<—— Mode Register (MR) ———3»1<— Condition Code Register (CCR) —»]

SR 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Status Register

Reset = $0300 LE]l « | « | « | « | «|nn]w]|sz{L|E|lU]|N|]Z]|]V]C
Read/Write

LF — Loop Flag

11,10 — Interrupt Mask
SZ — Size

L — Limit

E — Extension

U — Unnormalized

N — Negative

Z — Zero

V — Overflow

C — Carry

* Indicates reserved bits thataread as zero and shaie written with zerdor future compatibility AA0011

Figure 5-4. Status Register Format

5.1.8.1 Carry (C) —BIit0

The carry (C) bit (SR bit 0) is set if a carry is genetatat of the MSB of the result for an addition. It also
is set if a borrow is generated in a subtraction. If3febit in the OMR register is zero, the carry or borrow
is generated out of bit 35 of thesult. If the CC bit in the OMR register is one, the carry or borrow is
generated out of bit 31 of thestdt. The carry bit imlso modified by bit manipulation and shift
instructions. Otherwise, this bit is cleared.

5.1.8.2 Overflow (V) — Bit 1

If the CC bit in the OMR register is zero and ifarithmetic overflow occurs the 36-bit result, the
overflow (V) bit (SR bit 1) is set. If the CC bit ihe OMR register is one and an arithmetic overflow
occurs in the 32-bit result, the overfldt is set. This indicates that the result is not representable in the
accumulator register and the accumulator regissroverflowed. Otherwise, this bit is cleared.

5.1.8.3 Zero (Z) — Bit 2

The zero (Z) bit (SR bit 2) is set if the result equale z&therwise, this bit is cleared. The number of bits
checked for the zero test depends on the OMR’s i€&nk which instruction isxecuted, as documented
in Section 3.6, “Condition Code Generation,” on page 3-33.

5.1.8.4 Negative (N) — Bit 3

If the CC bit in the OMR register is zero and if bit 33w result is set, the gative (N) bit (SR bit 3) is
set. If the CC bit in the OMR registisrone and if bit 31 of the resustset, the negative bit is set.
Otherwise, this bit is cleared.

Freescale Semiconductor Program Controller 5-7



Program Controller

5.1.8.5 Unnormalized (U) — Bit 4

The unnormalized (U) bit (SR bit 4) s&t if the two most significanitb of the most significant product
portion of the result are the same, and is clearedwite The U bit is computed as follows: U = (Bit 31
XOR Bit 30)

If the U bit is cleared, then a positive fractionamber, p, satisfies the following relation: 0.p< 1.0. A
negative fractional number, n, it satisfies the following equation;_-h.&<0.5.

This bit is not affected by the OMR’s CC bit.

5.1.8.6 Extension (E) — Bit5

The extension (E) bit (SR bit 5) isedred if all the bits of the integportion (bits 35—8) of the 36-bit
result are the same (the upper foits of the value are 00000 or 11111). Otherwise, this bit is set.

If E is cleared, then the MS and LSrpons of an accumulator contait #he bits with information — the
extension register only contains sign extensiomhisicase, the accumulator extension register can be
ignored. If E is set, then the extensregister in the accumulator is in use.

This bit is not affected by the OMR’s CC bit.

5.1.8.7 Limit (L) — Bit 6

The limit (L) bit (SR bit 6) is set if the overflohit is set or if the data limiters perform a limiting
operation; it is not affected otherwise. The L bit sacked only by a processor reset or an instruction that
specifically clears it. This allows thebit to be used as a latching overfldit. Note that L is affected by
data movement operationsatiread the A or B accumulator registers onto the CGDB.

This bit is not affected by the OMR’s CC bit.

5.1.8.8 Size (SZ) — Bit 7

The size (SZ) bit (SR bit 7) is set when moving a B&&cumulator to data memory if bits 30 and 29 of
the source accumulator are not the samiinat-is, if they are not both oneszeros. This bit is latched, so
it will remain set until the processor iset or an instruction explicitly clears it.

By monitoring the SZ bit, it is sible to determine whether a valugiswing to the point where it will
be saturated or limited when movieddata memory. It is designed fose in the fast Fourier transform
(FFT) algorithm, indicating that th@ext pass in the algorithm should sc#b results before computation.
This allows FFT data to be scaledly on passes where it is necessasyaad of on each pass, which in
turn helps guarantee maximuncacacy in an FFT calculation.

5.1.8.9 Interrupt Mask (I1 and 10) — Bits 8-9

The interrupt mask (11 and)l®@its (SR bits 9 and 8) reflect the curtrgriority level of the DSC core and
indicate the interrupt priority leV€lPL) needed for an interrupbarce to interrupt the processor. The
current priority level of the processor may be changeter software control. terrupt mask bit 10 must
always be written with a one to®mre future compatibilitand compatibility witrother family members.
The interrupt mask bits are set during processsatré&ee Table 5-1 on page 5-9 for interrupt mask bit
definitions.

When disabling interruptsl in the SR register is set to ‘1hterrupts will be disabled on the second cycle
after update as shown in Example 5-1.
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Example 5-1. Disablig Maskable Interrupts

; Disabling Maskable Interrupts

BFSET #$0200,SR ; request to disable, 16-bit mask to set I1
; interrupts can still occur here

NOP ; 1 cycle is required to disable interrupts

NOP ; interrupts will not occur here

Table 5-1. Interrupt Mask Bit Definition

11 10 Exceptions Permitted Exceptions Masked
0 0 (Reserved) (Reserved)

0 1 IPLO, 1 None

1 0 (Reserved) (Reserved)

1 1 IPL1 IPLO

5.1.8.10 Reserved SR Bits— Bits 10-14

The reserved SR bits 10-14 arsawed for future expansion andlwead as zero during DSC read
operations. These bits should be writteith zero for future compatibility.

5.1.8.11 Loop Flag (LF) — Bit 15

The loop flag (LF) bit (SR bit 15) is set when a progtaop is in progress arahables the detection of the
end of a program loop. The LF bit is the only SRilidtt is restored when terminating a program loop.
Stacking and restoring the LF whigitiating and exiting a program loogespectively, allows the nesting
of program loops; see Section 5.1.9.7, “Nested Lappiih (NL) — Bit 15.” REP looping does not affect
this bit. The LF is cleared during processor reset.

NOTE:

The LF isnotcleared at the start of an intgutigervice routine. This differs
from the DSP56100 Family, where tHg is cleared upon entering an
interrupt service routine. Thisilvnot cause a problem as long as the
interrupt service routine code doeg faich the instruction whose address
is stored in the LA register. This typically the case because usually the
interrupt service routine is located a separate portion of program
memory.

This bit should never be explicitigleared by a MOVE or bit-field
instruction when the NL bit in the OMR register is set to a one.

The LF bit is also affected by any accesses to thenaaedstack register. Any move instruction that writes
this register copies the old contenfghe LF bit into the NL bit and thesets the LF bit. Any reads of this

register, such as from a MOVE or TSTW instructiomgycthe NL bit into the LF bit and then clear the NL
bit.
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5.1.9 Operating Mode Register

The operating mode register (OMR) is a 16-bit regitat defines the current chip operating mode of the
processor. The OMR bits are affectadprocessor reset, operationstbe HWS, and instructions that
directly reference the OMR. A DO loop willsal affect the OMR, specifically the NL bit.

During processor reset, the chip opgieg@mode bits will béoaded from the external mode select pins. The
operating mode register formatssown in Figure 5-5 on page 5-10 and is described in the subsequent
discussion.

NOTE:

When a bit of the OMR is changed by an instruction, a delay of one
instruction cycle is necessary befohe new mode comes into effect.

<€ OMR '
OMR 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Operating Mode
Register NL | « * x * x « [cC| « |SD| R |SA|[EX] « | MB|MA
Reset = $0000
Read/Write | | |

NL — Nested Looping

CC — Condition Codes

SD — Stop Delay

R — Rounding

SA — Saturation

EX — External X Memory

MA,MB — Operating Mode

* Indicates reserved bits thataread as zero and shaibe written with zerdor future compatibility AA0013

Figure 5-5. OperatingMode Register (OMR) Format

5.1.9.1 Operating Mode Bits (MB and MA) — Bits 1-0

The chip operating mode (MB and MA) bits (OMR Hitand 0) indicate the operating mode and memory
maps of a DSC chip that has an external bus.rTiiéial values are typicallgstablished after reset by
external mode select pins. After ttigip leaves the reset state, MBIaWiA can be changed under program
control. Consult the specific DSE800 Family device manual for more detailed information about how
these bits are established on resetaralit their specific effect on operation.

Possible operating modes for a program RAM part are shown in Table 5-2.

Table 5-2. Program RAM Operating Modes

Program Memory

. . Configuration
MB MA Chip Operating Mode Reset Vector (consult specific 56800
Family device manual)
0 0 Bootstrap 0 BOOTROM P:$0000 Internal P-RAM is write only

(Boot from External Bus)

0 1 Bootstrap 1 BOOTROM P:$0000 Internal P-RAM is write only
(Boot from Peripheral)
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Table 5-2. Program RAM Operating Modes (Continued)

Program Memory
MB MA Chip Operating Mode Reset Vector (consfj:l?gggléirf?éiggsoo
Family device manual)
1 0 Normal Expanded External Pmem P:$E000 Internal Pmem enabled
1 1 Development External Pmem P:$0000 Internal Pmem disabled

The bootstrap modes are used itidaity load an on-chip program R upon exiting reset from external
memory or through a peripheral. Operating modes 0 and 1 typically would be different for a program
FLASH part because no bootstrapping operatiordsiired for a FLASH part. An example of possible
operating modes for a program FLASH part are shown in Table 5-3 on page 5-11.

Table 5-3. Program FLASH Operating Modes

MB MA Chip Operating Mode Reset Vector Prgg:}?gu'\rﬁaetgsry
0 0 Single Chip Internal PROM P:$0000 Internal Pmem enabled
0 1 (Reserved) (Reserved) (Reserved)
1 0 Normal Expanded External Pmem P:$E000 Internal Pmem enabled
1 1 Development External Pmem P:$0000 Internal Pmem disabled

The MB and MA bit values are typically establishedeset from an external inpiOnce the chip leaves
reset, they can be changed undéivgare control. For more informaticabout how they are configured on
reset, consult the appropriate device’'s user's manual.

5.1.9.2 External X Memory Bit (EX) — Bit 3

The external X memory (EX) bit (OMR bit 3), wheat, forces all primary data memory accesses to be
external. The only exception to thide is that if a MOVE or bit-fiel instruction is executed using the 1/O
short addressing mode, then the EX bit is ignored tla@ access is performed to the on-chip location. The
EX bit allows access to internal X memory with all aging modes when this bit is cleared. This bit is
cleared by processor reset.

The EX bit is ignored by the second read of a deatiinstruction, which uses the XAB2 and XDB2 buses
and always accesses on-chip X data memory. For itisingovith two parallel reads, the second read is
always performed to internal omip memory. Refer to Section 6.1nttoduction to Moves and Parallel
Moves,” on page 6-1 for a description of the dual-read instructions.

5.1.9.3 Saturation (SA) — Bit 4

The Saturation (SA) bit enablestamnatic saturation on 32-bit arithmetiesults, providing a user-enabled
Saturation mode for DSC algorithms that do not gatxe or cannot take advantage of the extension
accumulator. When the SA bit is set, automatic saturaccurs at the output of the MAC unit for basic
arithmetic operations sh as multiplication, additiorand so on. The SA bit ®deared by processor reset.
Automatic limiting as outlined in Section431, “Data Limiter,” on page 3-26 not affected by the state of
the SA bit.
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Saturation is performed by a dedied circuit inside the MAC unithe saturation lgic operates by
checking 3 bits of the 36-bit result out of the MA@t — EXT[3], EXT[0], and MSP[15]. When the SA
bit is set, these 3 bits determine if saturatigmeidormed on the MAC un# output and whether to
saturate to the maximum positive or negative value, as shown in Table 5-4.

Table 5-4. MAC Unit Outputs With Saturation Mode Enabled (SA = 1)

EXTI[3] EXTI[0] MSP[15] Result Stored in Accumulator

0 0 0 (Unchanged)

0 0 1 $0 7FFF FFFF
0 1 0 $0 7FFF FFFF
0 1 1 $0 7FFF FFFF
1 0 0 $F 8000 0000
1 0 1 $F 8000 0000
1 1 0 $F 8000 0000
1 1 1 (Unchanged)

NOTE:

Saturation mode ialwaysdisabled during the execution of the following
instructions: ASLL, ASRR, LSLL, LSRR, ASRAC, LSRAC, IMPY16,
MPYSU, MACSU, AND, OR, EOR, NOT, LSL, LSR, ROL, and ROR.
For these instructions, no saturatiopésformed at the output of the MAC
unit.

5.1.9.4 Rounding Bit (R) — Bit 5

The rounding (R) bit (OMR bit 5) selects betweemvergent rounding and two’s-complement rounding.
When set, two’s-complement roundi(always round up) is used.&two rounding modes are discussed
in Section 3.5, “Rounding,” on page 3-3is bit is cleared by processor reset.

5.1.9.5 Stop Delay Bit (SD) — Bit 6

The stop delay (SD) bit (OMR bit 6) is used to setbe delay that the DSC needs to exit the stop mode.
When set, the processor exits quickly from stapde. This bit is clead by processor reset.

5.1.9.6 Condition Code Bit (CC) — Bit 8

The condition code (CC) bit (OMR bit 8) seleatsether condition codes agenerated using a 36-bit
result from the MAC array or a 32-bit result. When thitss set, the C, N, V, and Z condition codes are
generated based on bit 31 of théad&LU result. When this bit is eared, the C, N, V, and Z condition
codes are generated based on bibfhe data ALU result. The geragion of the LE, and U condition
codes are not affected by the CC bit. This bit is cleared by processor reset.

NOTE:

The unsigned condition tests usedewrbranching or jumping (HI, HS,
LO, and LS) can only be used when the condition codes are generated with
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this bit set to one. Otherwise,ettchip will not generate the unsigned
conditions correctly.

The effects of the CC bit on the condition codesegated by data ALU arithmetic operations are
discussed in more ¢l in Section 3.6, “Condition Qe Generation,” on page 3-33.

5.1.9.7 Nested Looping Bit (NL) — Bit 15

The nested looping (NL) bit (OMR bit 15) is used to display the status of program DO looping and the
hardware stack. If this bit is set, thi@ program is currently in a nedtDO loop (that is, two DO loops
are active). If this bit is cleared, then there may bmgle or no DO loop active his bit is necessary for
saving and restoring the contents of the hardwakk stvhich is described further in Section 8.13,
“Multitasking and the Hardware &tk,” on page 8-34. REP loimgg does not affect this bit.

It is important that the user nevaut the processor in the illegal comdition specified in Table 5-5. This
can be avoided by ensuring that the LRditever cleared when the NL bit is set.

The NL bit is cleared on processor reset. AlsoSection 5.1.8.11, “Loop Flag (LF) — Bit 15,” which
discusses the LF bit in the SR.

Table 5-5. Looping Status

NL LF DO Loop Status
0 0 No DO loops active
0 1 Single DO loop active
1 0 (lllegal combination)
1 1 Two DO loops active

If both the NL and LF bits are set (that is, two @Ops are active) and a DO instruction is executed, a
hardware-stack-overflow inteipt occurs because there is no nmgpace on the hardware stack to support
a third DO loop.

The NL bit is also affected by any accesses to théwere stack register. Any MOVE instruction that
writes this register copies the old contents of thditinto the NL bit and thesets the LF bit. Any reads
of this register, such as from a MOVE or TSTW indliarg, copy the NL bit intdhe LF bit and then clear
the NL bit.

5.1.9.8 Reserved OMR Bits — Bits 2, 7 and 9-14

The OMR bits 2, 7, and 9-14 areseeved. They will read as zero chgiDSC read operations and should
be written as zero to sare future compatibility.

5.2 Software Stack Operation

The software stack is a last-in-first-out (LIFQack of arbitrary depth implemented using memory
locations in the X datmemory. It is accessed through the H@?ruction and the PUSH instruction
macro (see Section 8.5, “Multiple ValBeaishes,” on page 8-19) and wilhceor write the location in the X
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data memory pointed to by the stagmbinter (SP) register. The PUShtruction macro (two instruction
cycles) pre-increments the SP register, and the P&dtion (one instructiooycle) will post-decrement
the SP register.

The program counter and the SR are pushed ostdi& for subroutine calls and interrupts. These
registers are pulled from the stack feturns from subroutines using tR&S instruction (which pulls and
discards the original SR). For returns from intersgtwice routines that use the RTI instruction (the entire
SR is restored from the stack).

The software stack is also used for nesting hard@&rdoops in software othe DSP56800 architecture.
On the DSP56800 architectithe user must push and pop thedr LC registers explicitly if DO loops
are nested. In this case, the software staclpisdity used for this pyrose, as demonstrated in

Section 8.6.4, “Nested Loops,” on page 8-22. Thellware stack is used, however, for stacking the
address of the first instruction inethoop. Because this stack is impkmed using locatiorig the X data
memory, there is no limit to the nuebof interrupts or jump-to subrougéis or combinations of these that
can be accommodatdy this stack.

NOTE:

Care must be taken to allocate enosphce in the X data memory so that
stack operations do not overlap other areas of data used by the program.
Similarly, it may be desirable todate the stack in on-chip memory to
avoid delays due to wait states or bus arbitration.

See Section 8.5, “Multiple Value Pushes,” on p8¢E9 and Section 8.8, “Parameters and Local
Variables,” on page 8-28 for recommended techniques for using the software stack.

5.3 Program Looping

The DSC core supports looping on a singleriregion (REP looping) and looping on a block of
instructions (DO looping). Hardwai2O looping allows fast looping aablock of instructions and is
interruptible. Once the loop is agb with the DO instruction, theris no additional execution time to
perform the looping tasks. REP looping repeats a are-mstruction for the sggified number of times
and can be efficiently nested within a hardware ID@p. It allows for excdéent code density because
blocks of in-line code of a single instruction carrgelaced with a one-word REP instruction followed by
the instruction to be repeated. The correct programgof loops is discussed in detail in Section 8.6,
“Loops,” on page 8-20.

5.3.1 Repeat (REP) Looping

The REP instruction is a one-wartstruction that performs singlestruction repeating on one-word
instructions. It repeats the execution of a singleuetibn for the amount of ties specified either with a
6-bit unsigned value or with the 13 least significatg bf a DSC core register. When a repeat loop is
begun, the instruction to be repeated is onlyhiediconce from the program memory; it is not fetched each
time the repeated instruction is extxli Repeat looping does not usg leations on the hardware stack.

It also has no effect on the LFML bits in the SR and OR, respectively. Repeat looping cannot be used
on an instruction that accesses the program meritaésynecessary to use DO looping in this case.
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NOTE:

REP loops ar@ot interruptible since thegre fetched only once. A DO
loop with a single instruction can biged in place of a REP instruction if
it is necessary to be able to imtet while the loop is in progress.

For the case of REP looping with a register value, when the register
contains the value zero, then thstruction to be repeatednst executed

(as is desired in an application),daimstruction flow continues with the
next sequential instructio This is also true when an immediate value of
zero is specified.

5.3.2 DO Looping

The DO instruction is a two-word imgttion that performs hardware loagion a block of instructions. It
executes this block of instructions for the amourtiroés specified either with 6-bit unsigned value or
using the 13 least significant bits of a DSC coggster. DO looping is interptible and uses one location
on the hardware stack for each DO loop. For cases windramediate value larger than 63 is desired for
the loop count, it is possible teeithe technique presented in Secti@hl8 “Large Loops (Count Greater
Than 63),” on page 8-20.

The program controller register’s-b# loop count and 16-bit loop adels register are used to implement
no-overhead hardware program lsohen a program loop isitiated with the execution of a DO
instruction, the follaving events occur:

1. The LC and LA registers are loaded witdues specified ithe DO instruction.
2. The SR’s LF bit is set, and its old value is placed in the NL bit.
3. The address of the first instruction in thegram loop is pushed onto the hardware stack.

A program loop begins execution after the DO irettain and continues until the program address fetched
equals the loop address register contents (the ldstsalof program loop). The contents of the loop
counter are then tested for one. If the loop countertisaumal to one, the loop counter is decremented and
the top location in thBO Loop Stack is read (but not pulled) itb@ PC to return tthe top of the loop. If

the loop counter is equal to ortlee program loop is terminated mcrementing the PC, purging the stack
(pulling the top locatin and discarding the contents), andtoanng with the instruction immediately

after the last instruction in the loop.

NOTE:
For the case of DO looping with a registatue, when the register contains

the value zero, then thedp code is repeateéf fimes, where k = 13 is the
number of bits in the LC registdf.there is a possibility that a register
value may be less than or equalz&ro, then the tdnique outlined in
Section 8.6.2, “Variable Count Loops,” on page 8-21 should be used. A
DO loop with an immediate Wz of zero is not allowed.

5.3.3 Nested Hardware DO and REP Looping

It is possible to nest up to two hardware DO loapd to nest a hardwardeR loop within the two DO
loops. It is recommended when nesting loops, howévatrhardware DO loops hbe nested within code.
Instead, a software loop shouldumed for an outer loop insteadao$econd DO loop (see Section 8.6.4,
“Nested Loops,” on page 8-22).
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The reason that nesting of hardware DO loops isatggbis to provide for faster interrupt servicing.
When hardware DO loops are not nested, a secondaardtack location is left available for immediate
use by an interrupt service routine.

5.3.4 Terminating a DO Loop

A DO loop normally terminates whenhtis completed the last instructioina loop for the last iteration of
the loop (LC equals one). Two techniques for ettynination of the DO loops are presented in
Section 8.6.6, “Early Termination of a DO Loop,” on page 8-25.
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Chapter 6
Instruction Set Introduction

As indicated by the programming model in Figure 6-3 on page 6-5, the DSC architecture can be viewed as
several functional unitsperating in parallel:

 Data ALU

« AGU

» Program controller

e Bit-manipulation unit

The goal of the instruction set is to keep eacthe$e units busy each insttiot cycle. This achieves
maximum speed, minimum power consumpfiand minimum use of program memory.

The complete range of instruction eddities combined with the flexibleddressing modes provide a very
powerful assembly language for digital-signal-promegsalgorithms and genal-purpose computing.

(The addressing modes are presented in detaildtioBet.2, “Addressing Modes,” on page 4-6.) The
instruction set has also been desgto allow for the efficient codingf DSC algorithms, control code,
and high-level language compilers. Execution timenisanced by the hardware looping capabilities.

This section introduces the MOVEsinuctions available on the DSCrepthe concept of parallel moves,

the DSC instruction formats, the DSC core prograngmiiodel, instruction set groups, a summary of the
instruction set in tabular form, amh introduction to the instructiongaline. The instruction summary is
particularly useful because it shows not only every instruction but also the operands and addressing modes
allowed for each instruction.

6.1 Introduction to Moves and Parallel Moves

To simplify programming, a powerful set of MOVE ingttions is found on thBSP56800 core. This not
only eases the task of programmihg DSC, but also decreases thegpam code size and improves the
efficiency, which in turn decreasti®e power consumption and MIPgjuéred to perform a given task.
Some examples of MOVE instriens are listed in Example 6-1.

Example 6-1. MOVE Instruction Types

MOVE <any DSCcore_register>,<any DSCcore_register>

MOVE <any DSCcore_register>,<X_ Data_Memory>
MOVE <any DSCcore_register>,<On_chip_peripheral_register>
MOVE <X Data_Memory><any DSCcore_register>
MOVE <On_chip_peripheral_register>,<any DSCcore_register>

MOVE <immediate_value>,<any DSCcore_register>
MOVE <immediate_value> <X Data_Memory>
MOVE <immediate value>,<On_chip_peripheral _register>
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For any MOVE instruction accessing X data menmran on-chip memory-mapped peripheral register,
seven different addressimgodes are supporteddditional addressing modese available on the subset
of DSC core registers that are most frequently accessgdding the registers in the data ALU, and all
pointers in the address generation unit.

For all moves on the DSP56800, the syntalets the source and destination as follo3®C,DST. The
source of the data to be moved dinel destination are separated by ang@, with no spaces either before
or after the comma.

The assembler syntax also specifies which memdbgiisg accessed (program or data memory) on any
memory move. Table 6-1 shows the syntax for gpieag the correct memorgpace for any memory
access; an example of a program memory access is sttwava the address is contained in the register R2
and the address register is post-incremented thiéeaccess. The two examples for X data memory
accesses show an address-register-indirect addressingmibddirst example and an absolute address in
the second.

Table 6-1. Memory Space Symbols

Symbol Examples Description
P: P:(R2)+ Program memory access
X: X:(RO) X data memory access
X:$C000

The DSP56800 instruction set supgdwo additional typesf moves — the single parallel move and the
dual parallel read. Both of these are consid&padallel moves” and are extremely powerful for DSC
algorithms and numeric computation.

The single parallel move allows arithmetic operation and one memaongve to be completed with one
instruction in one instruction cycle. For examjiés possible to add twoumbers while reading or
writing a value from memorin the same instruction.

Figure 6-1 illustrates a single paraieove, which uses oneggram word and executes in one instruction
cycle.

ADD XO0,A Y0,X:(R1)+N ;' One DSP56800 Instruction
I_I_I I |
I
Opcode And Operands Single Parallel Move

(Uses XAB1 and CGDB)

Figure 6-1. Sinde Parallel Move

In the single parallel me, the following occurs:
1. Register X0 is added to the registeard the result is stored in the A accumulator.

2. The contents of the YO register are moved the X data memory at the location contained
in the R1 register.

3. After completing the memory movée R1 register is post-upddtwith the contents of the
N register.

The dual parallel read allows an arithmetic openatinoccur and two valuds be read from X data
memory with one instruction in onmestruction cycle. For example,i#t possible to execute in the same
instruction a multiplication of two mabers, with or without roundingf the result, while reading two
values from X data memory two of the data ALU registers.
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Figure 6-2 illustrates a double parateove, which uses one program wairttd executes in one instruction
cycle.

MACR X0,Y0,A X:(RO)+N,Y0 X:(R3)-,X0
I | | |
I |
Opcode and Operands Primary Read Secondary Read
(Uses XAB1 and CGDB) (Uses XAB2 and XDB2)

Figure 6-2. Dual Parallel Move

In the dual parallel movyehe following occurs.

1. The contents of the X0 and YO registars multiplied, this resuis added to the A
accumulator, and the final result is stored in the A accumulator.

2. The contents of the X data mery location pointed to with &hRO0 register are moved into
the YO register.

3. The contents of the X data mery location pointed to with &hR3 register are moved into
the XO register.

4. After completing the memory mes, the RO register is pogpdated with the contents of
the N register, and the R3 register is decremented by one.

Both types of parallel moves uaesubset of available DSP56800 addressing modes, and the registers
available for the move portion of tivestruction are also a subset o¢ ttotal set of DSC core registers.
These subsets include the registers and addrassidgs most frequently fodrin high-performance
numeric computation and DSC algonth. Also, the parallel moves allamove to occur only with an
arithmetic operation in the data ALU. A parallel més@ot permitted, for example, with a IMP, LEA, or
BFSET instruction.

6.2 Instruction Formats

Instructions are one, two, or thr@erds in length. The instruction specified by the first word of the
instruction. The additional wordsay contain information about thesiruction itself or may contain an
operand for the instruction. Samples of assembly laggysaurce code for several instructions are shown
in Table 6-2.

From the instruction formats listed in Table 6-2, ih ¢ seen that the DSC offers parallel processing
using the data ALU, AGU, program controller, andrb@nipulation unit. In the parallel move example,
the DSC can perform a designated ALU operation (datd) and up to two data transfers specified with
address register updates (AGU), avill also decode the next instrimn and fetch an instruction from
program memory (program controllea)| in one instruction cycle. Wheamn instruction is more than one
word in length, an additional instrtion-execution cycle is required. Masstructions involving the data
ALU are register based (that is, operands areti ABU registers) and allow the programmer to keep
each parallel processing unit busy. fastions that are memory orientéfdr example, a bit-manipulation
instruction), all logical instructions, or instructiotigt cause a control floshange (such as a jump)
prevent the use of all parallel processing resources during their execution.
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Table 6-2. Instruction Formats
CGDB XDB2 PDB
Opcode! Operands’ Transfer3 Transfer? Transfer® Comments
ADD #$1234,Y1 No parallel move
ANDC #$7C X:$E27 No parallel move
ENDDO No parallel move
TSTW X:(SP-9) No parallel move
MAC Al1,Y0,B No parallel move
LEA (R2)- No parallel move
MOVE RO,YO No parallel move
CMP X0,B Y0,X:(R2)+ Sngle parallel move
NEG A X:(R1)+N,X0 Single parallel move
SUB Y1,A X:(R0O)+,YO X:(R3)+,X0 Dual parallel read
MPY X1,Y0,B X:(R1)+N,Y1 X:(R3+,X0 Dual parallel read
MACR X0,Y0,A X:(R1)+N,Y0 X:(R3)-,X0 Dual parallel read
MOVE X0,P:(R1)+ Program memory move
JMP $3C10 16-bit jump address
1. Indicates data ALU, AGU, pgram controller, or bit-manipation operation to be performed.
2. Specifies the operands used by the opcode.
3. Specifies optional data transfers over the CGDB bus.
4. Specifies optional data transfers over the XDB2 bus.
5. Specifies optional dateansfers over the PDB bus.
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6.3 Programming Model

The registers in the DSP56800 core programming model are shown in Figure 6-3.

Data Arithmetic Logic Unit
Data ALU Input Registers
31 16 15 0

X0 Y Y1 YO

15 0 15 0 15 0

Accumulator Registers

35 3231 16 15 0
A A2 Al AO

3 0 15 0 15 0

35 3231 16 15 0
B B2 B1 BO

3 0 15 0 15 0

Address Generation Unit

15 0
RO
R1
R2
R3 15 0 15 0
SP N MO1
Pointer Offset Modifier
Registers Register Register
Program Controller Unit
15 0 15 8 7 0 15 0
PC MR CCR OMR
Program Status Operating Mode
Counter Register (SR) Register
15 0 12 0 15 0
LC LA
Hardware Stack (HWS) Loop Counter Loop Address

AAQ007

Figure 6-3. DSP56800 Core Programming Model
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6.4 Instruction Groups

The instruction set is dividkinto the following groups:
* Arithmetic
* Logical
* Bit manipulation
» Looping
* Move
e Program control

Each instruction group is describi@the following subsections. In dition, Section 6.6.4, “Instruction
Summary Tables,” includes a useful summary foreurestruction and the adelssing modes and operand
registers allowed for each instructiddetailed information on eachstruction is given in Appendix A,
“Instruction Set Details.”

6.4.1 Arithmetic Instructions

The arithmetic instructionserform all of the arithmetioperations within the da ALU. They may affect

a subset or all of the condition code register Bitkhmetic instructions are typically register based
(register-direct addressing modes ased for operands) so that the data ALU operation indicated by the
instruction does not use the CGDB or the XDH&haugh some instructions can also operate on
immediate data or operands in memory.

Optional data transfers (parallel moves) may be fipdaivith many arithmetiinstructions. This allows

for parallel data movement overetGDB and over the XDB2 during a data ALU operation. This allows
new data to be pre-fetched for use in following ingtams and results calculatég previous instructions

to be stored. Arithmetic structions typically execute in one ingttion cycle, although some of the
operations may take additial cycles with different operand addressing modks.arithmetic

instructions are the only class ofinuctions that how parallel moves.

In addition to the arithmetic shifts presented here,rayipes of shifts are also available in the logical
instruction group. See Section 6.4.2, “Logical Indfiares.” Table 6-3 lists the arithmetic instructions.

Table 6-3. Arithmetic Instructions List

Instruction Description
ABS Absolute value
ADC Add long with carry
ADD Add
ASL Arithmetic shift left (36-bit)
ASLL Arithmetic multi-bit shift left
ASR Arithmetic shift right (36-bit)
ASRAC Arithmetic multi-bit shift right with accumulate
ASRR Arithmetic multi-bit shift right
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Table 6-3. Arithmetic Instructions List (Continued)
Instruction Description
CLR Clear
CMP Compare
DEC (or DECW) Decrement upper word of accumulator
DIV Divide iteratiort
IMPY  (or IMPY16) Integer multiply
INC (or INCW) Increment uppeword of accumulator
MAC Signed multiply-accumulate
MACR Signed multiply-accumulate and round
MACSU Signed/unsigned miiply-accumulaté
MPY Signed multiply
MPYR Signed multiply and round
MPYSU Signed/unsigned multiply
NEG Negate
NORM Normalizé
RND Round
SBC Subtractdng with carry
SuB Subtract
Tcc Transfer conditionally
TFR Transfer data ALU register to an accumulator
TST Test a 36-bit accumulator
TSTW Test a 16-bit register or memory location

1. These instructions do nallow parallel data moves.

6.4.2 Logical Instructions

The logical instructions perform all of the logical oggons within the data All. They also affect the
condition code register bits. Logidaktructions are register based.&e the arithmetimstructions in
Table 6-3, and, again, some can also operate erangs in memory. Optional data transfers are not

permitted with logical instriuons. These instructions exeeuh one instruction cycle.

Table 6-4 lists the logical instructions.
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Table 6-4. Logical Instructions List

Instruction Description

AND Logical AND
EOR Logical exclusive OR
LSL Logical shift left

LSLL Multi-bit logical shift left

LSRAC Logical right shift with accumulate
LSR Logical shift right

LSRR Multi-bit logical shift right

NOT Logical complement
OR Logical inclusive OR
ROL Rotate left

ROR Rotate right

6.4.3 Bit-Manipulation Instructions

The bit-manipulation instructiorgerform one of three tasks:
» Testing a field of bits within a word
» Testing and modifying a field of bits in a word
» Conditionally branching based on a test ¢ k¥ithin the upper or lower byte of a word

Bit-field instructions can operate on any X memlagation, peripheral, or DSC core register. BFTSTH
and BFTSTL can test any field of the bits withihGxbit word. BFSET, BFCLR, and BFCHG can test any
field of the bits within a 16-bit word and then segaz| or invert bits in fls word, respectively. BRSET
and BRCLR can only test an 8-bit field in the uppelower byte of the word, and then conditionally
branch based on the result of the.t&ske carry bit of the condition codegister contains the result of the
bit test for each instruction. Theisstructions are operations ofthead-modify-write type. The BFTSTH,
BFTSTL, BFSET, BFCLR, and BFCHG instructionsente in two or three instruction cycles. The
BRCLR and BRSET instructions executeaur to six instruction cycles.

Table 6-5 lists the bit-mmpulation instructions.

Table 6-5. Bit-Field Instruction List

Instruction Description
ANDC Logical AND withimmediate data
BFCLR Bit-field test and clear
BFSET Bit-field test and set
BFCHG Bit-field test and change
BFTSTL Bit-field test low
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Table 6-5. Bit-Field Instruction List (Continued)

Instruction Description

BFTSTH Bit-field test high

BRSET Branch if selected bits are set

BRCLR Branch if seleed bits are clear
EORC Logical exclusive OR with immediate data
NOTC Logical complement on memyolocation and registers
ORC Logical inclusive OR with immediate data

NOTE:

Due to instruction pipelining, if an AGU register (R}, N, SP, or M01) is
directly changed with a bit-field insiction, the new contents may not be
available for use until the second follimg instruction (see the restrictions
discussed in Section 4.4, “Pipadibbependencies,” on page 4-33).

See Section 8.1.1, “Jumps and Branches,” on pag®mBe2her instructions that can be synthesized.

6.4.4 Looping Instructions

The looping instructionsstablish looping parameseand initiate zero-overhd program looping. They
allow looping on a single instruciqd REP) or a block of instructioffO). For DO looping, the address of
the first instruction in the program loop is savedtmhardware stack to allono-overhead looping. The
last address of the DO loop is specified as a 1&Hsiblute address. No locations in the hardware stack are
required for the REP instruction. The ENDDO instimttis used only whehreaking out of the loop;
otherwise, it is better to us¢OVE #1,LC. This is discussed in modetail in Section 8.6.6, “Early

Termination of a DO Loop,” on page 8-25.
Table 6-6 lists the loop instructions.
Table 6-6. Loop Instruction List

Instruction Description
DO Start hardware loop
ENDDO Disable current loop and unstack parameters
REP Repeat next instruction

6.4.5 Move Instructions

The move instructions nve data over the various data buses: CGDB, IP-BUS (or PGDB), XDB2, and
PDB. Move instructions do not &fft the condition code register, egtéor the limit bit if limiting is
performed when reading a data Alaccumulator register. These instrans do not allow optional data
transfers. In addition to the folldng move instructions, there gparallel moves that can be used
simultaneously with many of the arithmetic instioos. The parallel moves are shown in Table 6-35 on
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page 6-29 and Table 6-36 on page 6-30 and are discussed in detail in Section 6.1, “Introduction to Moves

and Parallel Moves,” and Appdix A, “Instruction Set Details.” The LEMstruction is also included in

this instruction group.

NOTE:

There is a PUSH instruction macmbgscribed in Section 8.5, “Multiple
Value Pushes,” on page 8-19, that t@nused with the POP instruction
alias presented in Section 6.5.5, “POP Alias,” on page 6-13.

Table 6-7 lists the move instructions.

Table 6-7. Move Instruction List

Instruction Description
LEA Load effective address
POP Pop a register from the software stack
MOVE Move data

MOVE (or MOVEC)

Movecontrol register

MOVE (or MOVEI)

Move immediate data

MOVE (or MOVEM)

Move data to/from program memory

MOVE (or MOVEP)

Move data uisg peripheral short addressing

MOVE (or MOVES)

Move data usg absolute short addressing

NOTE:

Due to instruction pipelining, if a\GU register (Rj, SP, or M01) is
directly changed with a move instruction, the new contents may not be
available for use until the second fallimg instruction. See the restrictions
discussed in Section 4.4, “Pipailbbependencies,” on page 4-33.

6.4.6 Program Control Instructions

The program control instations include branches, jumps, cagimhal branches, conditional jumps, and
other instructions that affect the program counter software stack. Prograocontrol instructions may
affect the status register bits as specified in theuagon. Also included in tis instruction group are the
STOP and WAIT instructions that can place the DSI@ itha low-power state&See Section 8.1.1, “Jumps
and Branches,” on page 8-2 and Section 8.11, “Jam@sISRs Using a Register Value,” on page 8-33 for
additional jump and branch insttians that can be synthesizedrfr@xisting DSP56800 instructions.

Table 6-8 lists the program control instructions.

Table 6-8. Program Catrol Instruction List

Instruction

Description

Bcc

Branch conditionally
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Table 6-8. Progran Control Instructio n List (Continued)

Instruction Description
BRA Branch
DEBUG Enter debug mode
Jcc Jump conditionally where ecepresents condition mnemonic
JMP Jump
JSR Jump to subroutine
NOP No operation
RTI Return from interrupt
RTS Return from subroutine
STOP Stop processing{est power standby)
S Software interrupt
WAIT Wait for interrupt (low power standby)

6.5 Instruction Aliases

The DSP56800 assembler provides a nemab additional useful instrtion mnemonics thadre actually
aliases to other instructions. Each of these instnug is mapped to one tfe core instructions and
disassembles as such.

6.5.1 ANDC, EORC, ORC, and NOTC Aliases

The DSP56800 instruction set does not supportébgiperations using 16-bit immediate data. It is
possible to achieve the same result, howevergubim bit-manipulation instructions. To simplify
implementing these operatiotie DSP56800 assembler praagdthe following operations:

* ANDC — logically AND a 16-bit immdiate value with a destination

» EORC — logically exclusive OR a 16-bihmediate value with a destination
* ORC — logically OR a 16-bit immedie value with a destination

* NOTC — logical one’s-complenmt of a 16-bit destination

These operations are not new instrons, but aliases to existing litanipulation instructions. They are
mapped as shown in Table 6-9.

Table 6-9. Aliases for Logicalnstructions with Immediate Data

Deswgd Operands Remapped Operands
Instruction Instruction
ANDC #xxxx,DST BFCLR #XXXXDST
ORC #xxxx,DST BFSET #xxxx,DST
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Table 6-9. Aliases for Logicalnstructions with Immediate Data

Deswgd Operands Remapped Operands
Instruction Instruction

EORC #xxxx,DST BFCHG #xxxx,DST

NOTC DST BFCHG #$FFFF,DST

Note that for the ANDC instruction, a one’s-complemeafrthe mask value is ad when remapping to the
BFCLR instruction. For the NOTC instructical] bits in the 16-bitnask are set to one.

In Example 6-2, an immediate value igilcally ORed with a location in memory.

Example 6-2. Logical OR with a Data Memory Location
ORC  #$00FF,X:$0400 ; Set all bits of lower byte in X:$0400

The assembler translates this instruction BRESET #$00FF,X:$400 , which performs the same
operation. If the assembled caddater disassembled, ilhappear as a BFSET instruction.

6.5.2 LSLL Alias

Because the LSLL instruction operates identically to @hraetic left shift, thisnstruction is actually
assembled as an ASLL instrugtioVhen the assemblencounters the LSLImnemonic, an ASLL
instruction is assembled. See Table 6-10.

Table 6-10. LSLL Instruction Alias

Operation Operands Comments
LSLL Y1,X0,DD Multi-bit logical left shift.
Y0,X0,DD

Y1,YO,DD First register is the value to kaifted, secondegister is the
YO0,Y0,DD shift amount (uses 4 LSBs).

Al1,Y0,DD
B1,Y1,DD Use ASLL when left shifting islesired on one of the two
accumulators.

6.5.3 ASL Alias

Because the ASL instruction operates similarly to a logical left shift when executed on the Y1, YO, and X0
registers, this instruction is aetlly assembled as an LSLsimnuction. Note that while the result in the
destination register will be thersa as if an arithmetic shift hdeen performed, condition codes are
calculated based on a logic shift and migffiedifrom the expected result. See Table 6-11.

The ASL instruction is not aliased &L when the register specifiedase of the accumulator registers.

Table 6-11. ASL Instruction Remapping

Operation Operands Comments

ASL DD Arithmetic left shift (assembled as LSL DD)
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6.5.4 CLR Alias

Because CLR operates identicdllya MOVE instruction with armmediate value of zero, a MOVE
instruction is used to implement Blwhen the specified register is a 16-bit register. When the assembler
encounters the CLRinemonic in a program, it assembled@VE #0,<register>  instruction in its

place. See Table 6-12.

NOTE:

This operation does not apply t@tELR instruction wan it is performed
on the A or B accumulators.

Table 6-12. Clear Instruction Alias

Operation Destination Comments
CLR X0, Y1, YO, Identical toMOVE #0,<register> ; doesnotset condition
Al, B1, codes
RO-R3, N
6.5.5 POP Alias

The POP instruction operates ideatig to a move from the staekith post-decrement. When the
assembler encounters the POP irgdtom in a program, it assembleM@®VE X:(SP)-,<register>
instruction in its place. If POP does not sfyea destination register, it is assembled. 88 (SP)- .

Table 6-13. Move Word Instruction Alias — Data Memory

Operation Source Destination Comments

POP DDDDD Pop a single stack location
(None specified) Simply decrements the SP; LEA (SP)-

6.6 DSP56800 Instruction Set Summary

This section presents the entire DSP56800 instnuskt in tabular form. The tables provide a quick
reference to the entire instructiort because they show not only thetiictions themselves, but also the
registers, addressing modes, cycle counts, and pnogads required for eaghstruction. From these
tables, it is very easy to determine if a particolaeration can be performed with a desired register or
addressing mode.

The summary, found in Section 616“Instruction Summary Tables,” is based on logical groupings of
instructions, listing the instructiormdphabetically within each groupin@his summary also contains the
number of program words required by the instarcas well as the numbef cycles required for
execution.

This section contains é¢hfollowing information:
» Usage of the instruction summary tables
» Addressing mode notation
* Register field notation
e The instruction summary tables
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6.6.1 Register Field Notation

There are many different registeglfis used within the instructionramary tables. These will be grouped
into sets that are more easily understood.

Table 6-14 shows the register agtilable for the most importantove instructionsSometimes the

register field is broken into two different fields — omkere the register is used as a source (src), and the
other where it is used as a destinaf@st). This is important becauselifferent notation is used when an
accumulator is being stored without saturation. Al the register fields in Table 6-15, which are also
used in move instructions as soes and destinations within the AGU.

In some cases, the notation usdten specifying an accumulator deténes whether or not saturation is
enabled when the accumulator is being used as a sauxgaove or parallel moviastruction. Refer to
Section 3.4.1, “Data Limiter,” on page 3-26 aret®n 3.2, “Accessing thedsumulator Registers,” on
page 3-7 for information.

Table 6-14. Register Fields foGeneral-Purpose Writes and Reads

Register Field Registers in This Field Comments

HHH A, B, Al, Bl Seven data ALU registers — tvaccumulators, two 16-bit MSP
X0, YO, Y1 portions of the accumulatorand three 16-bit data registers

HHHH A, B, Al, Bl Seven data ALU anfive AGU registers
X0, YO, Y1
RO-R3, N

DDDDD A, A2, Al, AO All CPU registers
B, B2, B1, BO

Y1, YO, X0

RO, R1, R2, R3
N, SP
M01

OMR, SR
LA, LC
HWS

Table 6-15 shows the register seaiable for use as pointers indrdss-register-indirect addressing
modes. This table also shows the notation tsedGU registers in AGUarithmetic operations.

Table 6-15. Address Generation Unit (AGU) Registers

Register Field Registers in This Field Comments
Rn RO-R3 Five AGU registers available as ptars for addressing and as sources
SP and destinations fanove instructions
Rj RO, R1, R2, R3 Four pointer regisgevailable as pointers for addressing
N N One index register available lgrfor indexed addressing modes
MO01 MO1 One modifier register
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Table 6-16 shows the register seaitable for use in data ALU arithetic operations. The most common
field used in this table is FDD.

Table 6-16. Data ALU Registers

Register Field Registers in This Field Comments
FDD A B Five data ALU registers — two 36-tdtcumulators and three 16-bit datdg
X0, YO, Y1 registers accessible ding data ALU operations

Contains the contents ofdlr and DD register fields

F1DD Al, Bl Five data ALU registers — tw16-bit MSP portions of the
X0, YO, Y1 accumulators and three 16-bit deggisters accessibduring data ALU
operations
DD X0, YO, Y1 Three 16-bit data registers
F A B Two 36-bit accumulators accessible during parallel move instructions jand

some data ALU operations

~F,F ~F,F refers to any of two valédcumulator combinations: A,B or B,A

F1 Al, Bl The 16-bit MSP portion of two acculaors accessible as source operands
in parallel move instructions

6.6.2 Immediate Value Notation

Immediate values, including absolatred offset addresses, are utilizedhe instruction set summary
using the notation defined in Table 6-17. The <MASKotation is used in BManipulation Instructions
in Table 6-30 and Table 6-31. The <OFFSET7> and <ABSidations are used in change of flow and
loop intructions in Table 6-32 and Table 6-33.

Table 6-17. Immediate Value Notation

Immediate Value Field Description
<MASK8> 8-bit mask value
<MASK16> 16-bit mask value
<OFFSET7> 7-bit signed PC-relative offset
<ABS16> 16-bit absolute address

6.6.3 Using the Instruction Summary Tables

This section contains helpful infmation on using the summary tabliésontains some notation used
within the tables.

The register field notation is found 8ection 6.6.1, “Register Field Notation.”
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Some additional notation to bergidered is found in the instrition summary tables when allowed
registers for multiplications are speeffi (Table 6-23 on page 6-20).these tables, the following entry is
found:

(+)Y0,X0,FDD

The notation _(¥in this entry indicates that aptional + or - sign can be specified before the input register
combination. If a - is specified, @imultiplication result is negated@his allows each of the following
examples to be valid DSP56800 instructions:

MAC  XO,YOA - A+ X0*Y0 > A
MAC  +X0,YO,A - A+ X0*Y0 > A
MAC  -XO,YOA “A- (X0*Y0) > A

As an example, Table 6-36 on page 6-30 shows gibters and addressing modes that are allowed when
performing a dual read instructiomme of the DSP56800’s parallel mowmstructions. Th instructions
shown in Example 6-3 are allowed.

Example 6-3. Valid Instructions

MOVE X:(RO)+YO  X:(R3)+X0
MACR  XO,YLA X(RL+NYL  X:(R3)-X0
ADD  YOB X:(RL+N,YO  X:(R3)+X0

The instruction in Example 6-4 imtallowed:

Example 6-4. Invalid Instruction
ADD  XO,Y1,A X(R2)-X0  X:(R3)+N,YO

Consulting the information ifiable 6-36 on page 6-30 shows that this instructioriwalid for each of
the following reasons:

» The only operands accepted for ADD or SUB areRFX¥1,F, YO,F, A,B, or B,A, where F is either
the A or B accumulator register. Tho&),Y1,A is an invalid entry.

» The pointer R2 is not allowdefor the first memory read.
» The post-decrement addressing modwoisavailable for théirst memory read.

* The XO register may not be a destination forfite# memory read becaa it is not listed in the
Destination 1 column.

» The post-update by N addressing mode isafiotved for the second memory read. The second
memory read is always identifleas the memory move that ug&3 in instructions with two
memory moves. For the secomgmory read, only the postdrement and post-decrement
addressing modes are allowed.

* The YO register may not be astination for the second memory rémtause it is not listed in the
Destination 2 column.
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6.6.4 Instruction Summary Tables

A summary of the entire DSP56800 msttion set is presented in tlgsction in tabular form. In these
tables, Table 6-18 on page 6-18 through Table 6-36 on page 6-30, the instructions are broken into several
different categories andeh listed alphabetically.

The tables specify the operation, operands, andedeyant comments. There are separate fields for
sources and destinations of move indinns. There are also two additional fields:

« C — Time required to execute the instruction
* W — Number of program words occupied by the instruction

Instruction execution times are mea=iiin oscillator cloclcycles. This should not be confused with
instruction cycles, which comprigke timing granularity of thBSP56800 execution units. Each
instruction cycle is equivalent to two oscillatoock cycles. The mabers given for instruction times
assume that internal memory — or externatmgy that requires no wait states — is used.

All parallel move instructions are locatidthe last two tables in this section:
» Table 6-35 on page 6-29
» Table 6-36 on page 6-30
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Table 6-18. Move Word Instructions

fer

Operation Source Desination Comments
MOVE DDDDD X:(Rn) Move signed 16-bit integer word from
or X:(Rn)+ memory with opibnal post-update
MOVEC X:(Rn)-
DDDDD X:(Rn+N) Address = Rir N. Rn does not change.
DDDDD X:(Rn)+N Post-upda of Rn register
HHHH X:(R2+xx) xx: offset ranging from 0 to 63
DDDDD X:(RN+xxxX) Signed 16-bit offset
HHHH X:(SP-xx) Unsigned 6-bit offset
DDDDD XIXXXX Unsigned 16-bit address
X:(Rn) DDDDD Move signed 16-bit teger word to memory
X:(Rn)+ with optional post-update
X:(Rn)-
X:(Rn+N) DDDDD Address = Rar N. Rn does not change.
X:(Rn)+N DDDDD Post-update of Rn register
X:(R2+xx) HHHH xx: offsetranging from 0 to 63
X:(RN+XxxX) DDDDD Signed 16-bit offset
X:(SP-xx) HHHH Unsigned 6-bit offset
XIXXXX DDDDD Unsigned 16-bit address
POP DDDDD ALIAS , refer to Section 6.5.5, “POP Alias.”
Implemented as: MOVK:(SP)-,<register>
(None specified) ALIAS, refer to Section 6.5.5, “POP Alias.”
Implemented as: LEA (SP)-
MOVE X:pp HHHH X:<<pp represents a 6-bit absolute I/O addres
or or Refer tol/O Short Address (Direct Address-
MOVEP X:<<pp ing): <pp> on page 4-23
HHHH X:pp
or
X:<<pp
MOVE X:aa HHHH X:aa represents a 6-bit absolute address. Re|
or or to Absolute Short Address (Direct Address-
MOVES X:<aa ing): <aa>on page 4-22
HHHH X:aa
or
X:<aa
MOVE (parallel) Refer to Table 6-36 on page 6-30.
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Table 6-19. Immediate Move Instructions
Operation Source Destination C| W Comments
MOVE #<-64,63> HHHH 2| 1| Signed 7-bibhteger data (data is pirt the lowest 7 bits
or of the word portion of any accumulator, upper 8 bits and
MOVEI extension reg are sign extedd&SP portion is set to
HOH)
FXXXX DDDDD 4 | 2 | Signed 16-bit immediattata. When LC is the destina-
tion, use 13-bit values only.
X:(R2+xx) 6 | 2 | Signed 16-bitmmediate data move.
X:(SP-xx) 6| 2
XIXXXX 6 | 3
MOVE HXXXX X:pp 4 | 2 | Move 16-bitimmedite data to the last 64 locations of X
or or data memory-peripheral registers.
MOVEP X:<<pp X:<<pp represents a 6-bit absolute I/O address.
MOVE HXXXX X:aa 4 | 2 | Move 16-bitimmediate date to a location within the fi
or or 64 words of X data memory.
MOVES X:<aa X:aa represents a 6tlabsolute address.
Table 6-20. Register-to-Rgister Move Instructions
Operation Source Destination C W Comments
MOVE DDDDD DDDDD 2 1 Move signed word to register
or
MOVEC
Table 6-21. Move Word Instructions — Program Memory
Operationl Source Destination C| W Comments
MOVE P:(Rj)+ HHHH 8 | 1 | Read signed word from program memory
or P:(Rj)+N
MOVEM
HHHH P:(Rj)+ Write word to program memory
P:(Rj)+N

1. These instructions are not allowed when the XP biterGMR is set (that is, when the instructions are executing
from data memory).
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Table 6-22. ConditionalRegister Transfer Instructions

Data ALU Transfer AGU Transfer

Operation C | W Comments
Source Destination Source Destination
Tce DD F (No transfer) 2 1| Conditionally transfer one register
A B (No transfer)
B A (No transfer)
DD F RO R1 Conditionally transfer one data
ALU register ancdbne AGU register
A B RO R1
B A RO R1
Note: The Tcc instruction does not allow the felimg condition codes: HI, LS, NN, and NR.
Table 6-23. Data ALU Multiply Instructions
Operation Operands C | W Comments
IMPY Y1,X0,FDD 2 1 | Integer 16x16 multiply with 16-bit result
or Y0,X0,FDD
IMPY16 Y1,YO,FDD When the destination is an accumulator F, the FQ
Y0,Y0,FDD portion is unchangelbly the instruction.
Al1,YO,FDD
B1,Y1,FDD Note: Assembler also acpts first two operands
when they are specified in opposite order.
MAC (£)Y1,X0,FDD 2 1 | Fractional multiply accumulate; multiplication
(¥)YO0,X0,FDD result optionally negated before accumulation.
(#)Y1,Y0,FDD
(#)YO,YO,FDD
(¥)Al1,YO,FDD Note: Assembler also acpés first two operands
(x)B1,Y1,FDD when they are specified in opposite order.
(parallel) Refer to Table 6-35 & Table 6-36.
MACR (¥)Y1,X0,FDD 2 1 Fractional MAC with roundnultiplication result
(x)YO0,X0,FDD optionally negatetbefore addition.
(#)Y1,YO,FDD
(#)YO,YO,FDD
(x)A1,YO,FDD Note: Assembler also acpes first two operands
(x)B1,Y1,FDD when they are specified in opposite order.
(parallel) Refer to Table 6-35 & Table 6-36.
MPY (¥)Y1,X0,FDD 2 1 | Fractional multiply where one operand is optionally
(¥)YO0,X0,FDD negated before multiplication.
(#)Y1,YO,FDD
(#)YO,YO,FDD
(+)A1,YO,FDD Note: Assembler also acpes first two operands
(x)B1,Y1,FDD when they are specified in opposite order.
(parallel) Refer to Table 6-35 & Table 6-36.
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Table 6-23. Data ALU Multiply Instructions (Continued)

o

Operation Operands C W Comments
MPYR (#¥)Y1,X0,FDD 2 1 | Fractional multiply where one operand is optionally
(x)YO0,X0,FDD negated before multiplitian. Result is rounded.
(x)Y1,YO,FDD
(x)YO0,YO,FDD Note: Assembler also acpes first two operands
(x)A1,YO,FDD when they are specified in opposite order.
(x)B1,Y1,FDD
(parallel) Refer to Table 6-35 & Table 6-36.
Table 6-24. Data ALU Extended Recision Multiplication Instructions
Operation Operands C W Comments
MACSU X0,Y1,FDD 2 1 | Signed or unsigned 16xfactional MAC with
X0,Y0,FDD 32-bit result.
Y0,Y1,FDD
Y0,Y0,FDD The first operand is treates signed and the second
Y0,A1,FDD as unsigned.
Y1,B1,FDD
MPYSU X0,Y1,FDD 2 1 | Signed or unsigned 16x16 étenal multiply with
X0,Y0,FDD 32-bit result.
Y0,Y1,FDD
YO0,Y0,FDD The first operand is treateas signed and the secor
Y0,A1,FDD as unsigned.
Y1,B1,FDD
Table 6-25. Data ALUArithmetic Instructions
Operation Operands C w Comments
ABS F 2 1 | Absolute value.
(parallel) Refer to Table 6-35 on page 6-29.
ADC Y.F Add with carry (sets C bit also).
ADD DD,FDD 36-bit addion of two registers.
F1,DD
~F.F ~F,F refers to any of two {id combinations: A,B or B,A
Y,F
X:(SP-xx),FDD 6 1 | Add memorword to register.
X:aa,FDD 4 1 .
X:aa represents a 6-bit absolute address. Refgolute
X:xxxx,FDD 6 2 | short Address (Direct Addressing): <aa>on page 4-22
FDD,X:(SP-xx) 8 2 | Add registeio memory word, storing the result back to
FDD,X:XXXX g | 2 |memory.
FDD,X:aa 6 2
#<0-31>,FDD 4 1 | Add an imediate integer 0-31.
H#XXXX 6 2 | Add a signed 16-bimmediate integer.
(parallel) 2 1 | Referto Table 6-35 & Table 6-36.
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Table 6-25. Data ALU Arithmetic Instructions (Continued)

=

g

fo

Operation Operands C w Comments
CLR F 2 1 | Clear 36-bit accumulator and set condition codes.
F1DD ALIAS , refer to Section 6.5.4, “CLR Alias.”
Rj Implemented as: MOVE #0,<register>
N (doesnot set condition codes)
(parallel) Refer to Table 6-35 on page 6-29.
CMP DD,FDD 2 1 | 36-bit compare of twaxcumulators odata registers.
F1,DD
~F.F ~F,F refers to any of two iid combinations: A,B or B,A
X:(SP-xx),FDD 6 Compare memowyord with 36-bit accumulator.
X:aa,FDD .
X:aa represents a 6-bit absolute address. Refgogolute
X:xxxx,FDD 6 2| Short Address (Direct Addressing): <aa>on page 4-22
Note: Condition codes set based on 36-bit result
#<0-31>,FDD 4 1 | Compare accumulateith an immediate integer 0—31.
#xxxx,FDD 6 2 | Compare accumulator wisigned 16-bit immediate integer.
(parallel) 2 1 | Referto Table 6-35 on page 6-29,
DEC FDD 2 1 | Decrement word.
DEOCr:W X:(SP-xx) 8 1 | Decrement word in memyousing appropriate addressing
X:aa 6 1 mode.
XIXXXX 8 2
(parallel) 2 1 | Referto Table 6-35 on page 6-29.
DIV DD,F 2 1 | Divide iteration.
INC FDD 2 1 | Increment word.
INCC):rW X:(SP-xx) 8 1 | Increment word in memory using appropriate addressi
X:aa 6 1 mode.
XIXXXX 8 2
(parallel) 2 1 | Referto Table 6-35 on page 6-29.
NEG F 2 1 | Two’s-complement negation.
(parallel) Refer to Table 6-35 on page 6-29.
RND F 2 1 | Round.
(parallel) Refer to Table 6-35 on page 6-29.
SBC Y,F Subtract with carry (set C bit also).
SUB DD,FDD 1 | 36-bit subtract of twogesters. 16-bit soae registers are
F1.DD fi_rst sign extended_internallgmd concatenated with 16 ze
bits to form a 36-bit operand.
~F,F
Y,F ~F,F refers to any of two iid combinations: A,B or B,A
X:(SP-xx),FDD 6 1 | Subtract mempword from register.
X:aa,EDD 4 X:aa represents a 6-bit absolute address. Refbgolute
Short Address (Direct Addressing): <aa>on page 4-22
X:xxxx,FDD 6 2
#<0-31>,FDD 4 1 | Subtract an immediate value 0-31.
#xxxx,FDD 6 2 | Subtract a signdd-bit immediate integer.
(parallel) 2 Refer to Table 6-35 & Table 6-36.
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Table 6-25. Data ALU Arithmetic Instructions (Continued)

Operation Operands C w Comments
TFR DD,F 2 1 | Transfer regier to register.
~F,F Transfer one accumulator to another (36-bits).
~F,F refers to any of two iid combinations: A,B or B,A
(parallel) Refer to Table 6-35 on page 6-29.
TST F 2 1 | Test 36-bit accumulator.
(parallel) Refer to Table 6-35 on page 6-29.
TSTW DDDDD 2 1 | Test 16-bit word in registeAll registers allowed except
(except HWS) HWS. Limiting can occur if an accumulator specified an
the extension register is in use.
X:(Rn) 2 1 | Test a word in memonsing appropriate addressing mod
X:(Rn)+ 2 1 .
X:aa represents a 6-bit absolute address. Refbgolute
X:(Rn)- 2 1 | short Address (Direct Addressing): <aason page 4-22.
X:(Rn+N) 4 1
X:(Rn)+N 2 1
X:(Rn+xxxx) 6 2
X:(R2+xx) 4 1
X:(SP-xx) 4 1
X:aa 2 1
X:<<pp 2 1 | Refer to Table 6-29 for anothfarm of TSTW that tests an
decrements an AGU register; (executed in the AGU uni
XIXXXX 4 2
Table 6-26. Data ALUMiscellaneous Instructions
Operation Operands C W Comments
NORM RO,F 2 1 Normalization iteration instruction for normalizing the|
accumulator
Table 6-27. Data ALU Logical Instructions
Operation Operands C W Comments
AND DD,FDD 2 1 | 16-bitlogical AND
F1,DD
EOR DD,FDD 1 | 16-bit exclusive OR (XOR)
F1,DD
NOT FDD 2 1 One’s-complement (bit-wise negation)
OR DD,FDD 2 1 16-bit logical OR
F1,DD

F

ALIAS : the ANDC, EORC, ORC, and NOTC can also be usquerform logical operations on registers

and data memory locations. ANDC, EORC, and ORC ditgical operations with 16-bit immediate data.

See Section 6.5.1, “ANDC, EORC, ORC, ad@TC Aliases,” for additional information.
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Table 6-28. Data ALU Shifting Instructions

4%

nu-

Operation Operands cC | W Comments
ASL F 1 | Arithmetic shift lefientire register by 1 bit
DD ALIAS , refer to Section 6.5.3, “ASL Alias.”
Implemented as: LSL DD
(parallel) Refer to Table 6-35.
ASLL Y1,X0,FDD 2 1 | Arithmetic shift left of the first operand by value
YO0,X0,FDD specified in four LSBs of the second operand;
Y1,YO,FDD places result in FDD
Y0,YO,FDD
A1,Y0,FDD
B1,Y1,FDD
ASR FDD 2 1 | Arithmetic shift righentire register by 1 bit
(parallel) Refer to Table 6-35.
ASRR Y1,X0,FDD 2 1 | Arithmetic shift right of the first operand by valu
Y0,X0,FDD specified in four LSBs of the second operand;
Y1,YO,FDD places result in FDD
Y0,Y0,FDD
A1,Y0,FDD
B1,Y1,FDD
ASRAC Y1,X0,F 2 1 | Arithmetic word shifting with accumulation
YO0,X0,F
Y1,YO,F
YO0,YO,F
A1,YO,F
B1,Y1,F
LSL FDD 1 | 1-bit logical shift left of word
LSLL Y1,X0,FDD 2 1 |ALIAS, refer to Section 6.5.2, “LSLL Alias.”
Y0,X0,FDD Implemented as: ASLL <operands>
Y1,Y0,FDD
Y0,Y0,FDD
A1,Y0,FDD
B1,Y1,FDD
LSR FDD 1 | 1-bit logical shift right of word
LSRR Y1,X0,FDD 2 1 | Logical shift right of tk first operand by value
Y0,X0,FDD specified in four LSBs of the second operand;
Y1,YO,FDD places result in FDD (when result is to an accun
Y0,YO,FDD lator F, zero extends into F2)
A1,Y0,FDD
B1,Y1,FDD
LSRAC Y1,X0,F 2 1 | Logical word shifting with accumulation
YO0,X0,F
Y1,YO,F
YO0,YO,F
A1,YO,F
B1,Y1,F
ROL FDD 2 1 | Rotate 16-bit registéeft by 1 bit through the carry
bit
ROR FDD 2 1 | Rotate 16-bit register right by 1 bit through the

carry bit
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Table 6-29. AGU Aithmetic Instructions

Operation Operands cC | W Comments
LEA (Rn)+ 2 1 | Increment th Rn pointer register
(Rn)- 2 1 | Decrement the Rn pointer register
(Rn)+N 2 1 | Add N index register to the Register and store the result in
the Rn register
(R2+xx) 2 1 | Add a 6-bit unsigned immediate value to R2 and store in|the
R2 pointer
(SP-xx) 2 1 | Subtract a 6-bit unsignmdmediate value from SP and store
in the SP register
(RN+xxxX) 4 2 | Add a 16-bit signed immediatelue to the specified source
register
TSTW (Rn)- 2 1 | Test and decrement AGlgister. Refer to Table 6-25 for
other forms of TSTW that arexecuted in the Data ALU.
Table 6-30. Bit-Manipulation Instructions
Operation Operands C W Comments
BFTSTH #<MASK16>,DDDDD 4 2 BFTSTH testdl bits selectedby the 16-bit
immediate mask. If all selected bits are set, then
#<MASK16>,X:(R2+xx) 6 2 | the C bit is set. Otherwise it is cleared.
#<MASK16>,X:(SP-xx) 6 2 | All registers in DDDDD ae permitted except
HWS.
#<MASK16>,X:aa 4 2 | X:aa represents a 6-bit absolute address. Refef to
Absolute Short Address (Direct Addressing):
#<MASK16>,X:<<pp 4 2 <aa>on page 4-22
<< -bi .
H<MASK16>. X 500K 6 3 X:<<pp represents a 6-hit absolute /O address
BFTSTL #<MASK16>,DDDDD 4 2 BFTSTL testsldiits selectedby the 16-bit imme-
diate mask. If all selected bits are clear, then the C
#<MASK16>,X:(R2+xx) 6 2 | bitis set. Otherwise it is cleared.
#<MASK16>,X:(SP-xx) 6 2 | All registers in DDDDD ae permitted except
HWS.
#<MASK16>,X:aa 4 2 | X:aa represents a 6-bit absolute address. Refef to
Absolute Short Address (Direct Addressing):
#<MASK16>,X:<<pp 4 2 <aa>on page 4-22
<< -bi .
H<MASK16>. X 500K 6 3 X:<<pp represents a 6-hit absolute /O address
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Table 6-30. BitManipulation Instru ctions (Continued)

<MASKS8> specifies a 16-bit immediate value whe
either the upper or lower 8 bits contains all zeros.

<OFFSET7> specifies a 7-bit PC relative offset.
X:aa represents a 6-bit absolute address.

C

C

and

Operation Operands C W Comments
BFCHG #<MASK16>,DDDDD 4 2 BFCHG tests dlits selected by the 16-bit imme
diate mask. If all selected bits are set, then the
#<MASK16>,X:(R2+xXx) 6 2 | bitis set. Otherwise it is cleared. Then it inverts gll
selected bits.
#<MASK16>,X:(SP-xx) 6 2
All registers in DDDDD ae permitted except
#<MASK16>,X:aa 4 2 | HWS.
] X:aa represents a 6-bit absolute address. Refer
#<MASK16>,X:<<pp 4 2 | Absolute Short Address (Direct Addressing):
] <aa>on page 4-22
H<MASK16>, X:xxxx 6 3 X:<<pp represents a 6-bit absolute I/O address|
BFCLR #<MASK16>,DDDDD 4 2 BFCLR tests diits selected by the 16-bit immet
diate mask. If all selected bits are set, then the
#<MASK16>,X:(R2+xXx) 6 2 | bitis set. Otherwise it is cleared. Then it clears fall
selected bits.
#<MASK16>,X:(SP-xx) 6 2
All registers in DDDDD ae permitted except
#<MASK16>,X:aa 4 2 | HWS.
) X:aa represents a 6-bit absolute address. Refe
#<MASK16>,X:<<pp 4 2 | Absolute Short Address (Direct Addressing):
] <aa>on page 4-22
H<MASK16>, X:xxxx 6 3 X:<<pp represents a 6-bit absolute 1/O address|.
BFSET #<MASK16>,DDDDD 4 2 BFSET tests #lits selected by the 16-bit imme
diate mask. If all selected bits are clear, then the C
#<MASK16>,X:(R2+xXx) 6 2 | bitis set. Otherwise it is cleared. Then it sets all
selected bits.
#<MASK16>,X:(SP-xx) 6 2
All registers in DDDDD ae permitted except
#<MASK16>,X:aa 4 2 HWS.
] X:aa represents a 6-bit absolute address. Refe
#<MASK16> X:<<pp 4 2 Absolute Short Address (Direct Addressing):
. <aa>on page 4-22
H#<MASK16>, X300 6 3 X:<<pp represents a 6-bit absolute 1/O address|.
Table 6-31. Branch on Bi-Manipulation Instructions
Operation Operands ct W Comments
BRCLR #<MASK8>,DDDDD,<OFFSET7> 10/8 2| BRCLR test$kits selected by the immediate mag
#<MASK8>,X:(R2+xx),<OFFSET7>| 12/10 2 If all selec_ted bits are clear, then Fhe _cz_;lrry bit is set
a PC relative branch occufBtherwise it iscleared and
#<MASK8> X:(SP-xx)<OFFSET7> | 12/10 2|0 branch occurs.
#<MASK8>,X:aa,<OFFSET7> 10/8 2
#<MASK8> X.<<pp,<OFFSET7> 10/8 5 All registers in DDDDD are permitted except HWS
#<MASK8>,X:xxxx,<OFFSET7> 12/1( 3

X:<<pp represents a 6iAbsolute /O address.
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Table 6-31. Branch on Bit-Manpulation Instructions (Continued)

Operation Operands cl W Comments
BRSET #<MASK8>,DDDDD,<OFFSET7> 10/8 2| BRSET teaslihits selected by the immediate mag
#<MASK8> X:(R2+xx),<OFFSET7>| 12/10 2 If all sele_cted bits are set, then the _car_ry_blt is set 4
PC relative branch occurs. Otherwise it is cleared
#<MASK8> X:(SP-xX)<OFFSET7> | 12/10 2|0 pranch occurs.
#<MASK8>,X:aa,<OFFSET7> 10/8 2

#<MASK8>,X.<<pp,<OFFSET7> 10/8 5 All registers in DDDDD are permitted except HWS
#<MASK8> X:xxxx,<OFFSET7> | 12/10  3|<MASK8> specifies a 16-bit immediate value whel

either the upper or lower 8 bits contains all zeros.

<OFFSET7> specifies a 7-bit PC relative offset.
X:aa represents a 6-bit absolute address.

nd a
and

X:<<pp represents a 6ttabsolute I/0 address.

1. First cycle count is if branch is taken (corwtitis true); second is Branch is not taken.

Table 6-32. Change of Flow Instructions

Operation Operands cl | w Comments
Bcc <OFFSET7> 6/4 1| 7-bit signed PC relative offset
BRA <OFFSET7> 6 1| 7-bit signed PC relative offset
Jecc <ABS16> 6/4| 2| 16-bit absolute address
JMP <ABS16> 6 2 | 16-bit absolute address
JSR <ABS16> 8 2| Push 16-bit return addr@nd jump to 16-bit target address
RTI 10 1 | Return from interrupt, restad 16-bit PC and SR from the stack
RTS 10 1 | Return from subroutine stering 16-bit PC from the stack

1. First cycle count is if brandl taken (condition is true); send is if branch is not taken.

Table 6-33. Looping Instructions

Operation

Operands

Cc

w

Comments

DO

#<1-63>,<ABS16>

DDDDD,<ABS16>

Load LC register withsigned value and start hardware DO lo
with 6-bit immediate loop count. Ehast address is 16-bit abso
lute. Loop count = 0 natllowed by assembler.

Load LC register with unsigt@alue. If LC is not equal to zero
start hardware DO loop with 16-B@op count irregister. Other-
wise, skip body of loop (addsrée additional cycles). The last

address is 16-bit absolute.

Any register allowed excep&P, M01, SR, OMR, and HWS.

ENDDO

Remove one value from thedhaare stack and update the NL
and LF bits appropriately.
Note: Does not branch to the end of the loop.
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Table 6-33. Looping Irstructions (Continued)

Operation Operands C | W Comments
REP #<0-63> 6 1 Hardware repeat of a ev@d instruction with immediate loop
count.
DDDDD Hardware repeat of a one-word instruction with loop count speci-
fied in register.
Any register allowed excep&P, M01, SR, OMR, and HWS.
Table 6-34. Catrol Instructions
Operation Operands C w Comments
DEBUG 4 1 | Generate a debug event.
ILLEGAL 4 1 | Execute the illegal instruction exception. This instruction is made avail-
able so that code may be written to test and verify interrupt
handlers for illegal instructions.
NOP 2 1 | No operation.
STOP n/a 1| Enter STOP low-power mode.
SWi 8 1 | Execute the trap exception at thghleist interrupt prioty level, level 1
(non-maskable).
WAIT n/a 1 | Enter WAIT low-power mode.
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Table 6-35. Data ALU Instructions — Single Parallel Move

Data ALU Operation Parallel Memory Move
Operation® Operands Source Destinatior?
MAC Y1,X0,F X:(Rj)+ X0
MPY YO0,X0,F X:(Rj)+N Y1
MACR Y1,YO,F YO
MPYR YO0,YO,F
A
A1,YO,F B
B1,Y1F Al
B1
X0 X:(Rj)+
ADD XO0,F Yl X(R)+N
SUB Y1,F Y0
CMP YO,F
A
TFR AB B
B,A Al
B1
ABS F
ASL
ASR
CLR
RND
TST
INC or INCW
DEC or DECW _
NEG (F=A or B) (Rj = RO-R3)

1. These instructions occupy only 1 program word @xetcutes in 1 instruction cycle for every addressing
mode.

2. The destination of the data ALU op#on is not allowed to be the samagister as the destination of the
parallel read operation. Memory writes are allowed in this case.

Each instruction in Table 6-35 requires one program waarlexecutes in one instruction cycle. The data
type accessed by the single memory move in @dflsiparallel move instructions is signed word.

The solid double line running dovihe center of the table indicates that the data ALU operation is
independent from the parallel memangve. As a result, any valid opgion can be combined with any
valid memory move. Example 6-5 lists exampésalid single parallemove instructions.

Example 6-5. Examples of Single Parallel Moves

MAC  YLXOA X:(R0)+X0
MAC  YLXOA X0, X:(RO)+
ASL B X:(RO)+,Y1
ASL B Y1,X:(RO)+

It is not permitted to perforrAC A,B X:(R0)+,X0 because the MAC instruction requires three
operands, as shown in Table 6-35. The operandsctiiadependent of the operation performed. This is
why a single line is used toys@rate the operation from the operands instead of a double line.
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For the MAC, MPY, MACR, and MPYR instructions etassembler accepts the two source operands in
any order.

Table 6-36. Data ALU Instructions — Dual Parallel Read

Data ALU Operationl First Memory Read Second Memory Read
Operation? Operands Source 1 Destination 1 Source 2 Destination 2
MAC Y1,X0,F X:(RO)+ YO X:(R3)+ X0
MPY Y1,YO,F X:(RO)+N Y1 X:(R3)-
MACR Y0,X0,F
MPYR X:(R1)+
(F=Aor B) X:(R1)+N
ADD XO0,F
SuUB Y1,F
YO,F
(F=Aor B)
MOVE

1. These parallel instructiorse not allowed when the XP bit in the OMRs&t (that is, when the instructions are ex-
ecuting from data memory).

2. These instructions occupy only 1 program word andut®edn 1 instruction cycle for every addressing mode.

NOTE:

The data types accessed by the two memory moves in all dual parallel read
instructions are signed words.

6.7 The Instruction Pipeline

Instruction execution is pipekd to allow most instructions to execute at a rate of one instruction every
two clock cycles. However, certain instructions reg@idditional time to execoeitincluding instructions
with the following properties:

» Exceed length of one word
* Use an addressing mode that requires more than one cycle
» Access the program memory
» Cause a control flow change
In the case of a control flow changegy&le is needed to clear the pipeline.

6.7.1 Instruction Processing

Pipelining allows the fetch-decodxecute operations of arsinuction to ocur during the
fetch-decode-execute operations of other instructididle an instruction is exeted, the next instruction
to be executed is decoded, and itiistruction to follow the instrtion being decoded is fetched from
program memory. If an instructiontiwo words in length, the additionmalord will be fetched before the
next instruction is fetched.
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Figure 6-4 demonstrates pipelining; F1, D1, and BEdrte the fetch, decode, and execute operations,
respectively, of the first instructiohlote that the third instruction ca@ins an instruction extension word
and takes two cycles to execute.

Fetch F1 F2 F3| F3g F4 F5 F
Decode D1| D2 D3| D3¢ D4 D5
Execute El E2 E3| E3¢ E4
Instruction Cycle 1 2 3 4 5 6 7

Figure 6-4. Pipelining

Each instruction requires a minimum of three indian cycles (six machine cycles) to be fetched,
decoded, and executed. A new instruction may beestafter two machine cyclesmaking the throughput
rate to be one instruction exeedtevery instruction cycle for silegcycle instructions. Two-word
instructions require a mimum of eight machine cycles to exegwtad a new instruction may start after
four machine cycles.

6.7.2 Memory Access Processing

One or more of the DSC memasgurces (X data memory and pragr memory) may be accessed during
the execution of an instruction. Three addimasses (XAB1, XAB2, and PAB) and three data buses
(CGDB, XDB2, and PDB) are available for intermamory accesses during anstruction cycle, but

only one address bus and one data bus are availaleletéonal memory accesses (when the external bus is
available). If all memory sources are internal tol8C, one or more of the two memory sources may be
accessed in one instruction cycle (that is, programong access, or program memory access plus an X
memory reference, or program memangcess with two X memory references).

NOTE:

For instructions that contain two X mery references, the second transfer
using XAB2 and XDB2 may not access external memory. All accesses
across these buses must acaetesnal memory only.

See Section 7.2.2, “Instruction Pipeline with Off-CMpmory Accesses,” on page3 for a discussion of
off-chip memory accesses.
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Chapter 7
Interrupts and the Processing States

The DSP56800 Family processors have six processatgs and are always in one of these states (see
Table 7-1). Each processing state is describel@iail in the following sctions except the debug
processing state, which is discusse&ection 9.3, “OnCE Port,” on page 9-4. In addition, special cases of
interrupt pipelines are discussed at the end o$élcgon. Section 8.10, “Interrupts,” on page 8-30
discusses software techniques for interrupt processing.

Table 7-1. Processing States

State Description

Reset The state where the DSC core is fonoda known reset stat€ypically, the first
program instruction is feb@d upon exiting this state.

Normal The state of the DSC core where instructions are normally executed.

Exception The state of interrupt pessing, where the DSC core transfprogram control from its curren
location to an interrupt service ring using the inteupt vector table.

D

Wait A low-power state where the DSC core is stawn but the peripherals and interrupt maching
remain active.

0
T

Stop A low-power state where the DSC core, the inpgnmachine, and most (if not all) of the perip
erals are shut down.

Debug The state where the DSC cisrbalted and all regiers in the On-Chip Emulation (OnCE) port
of the processor are @&ssible for program debug.

7.1 Reset Processing State

The processor enters the reset proogssiate when the external RES@ih is asserted and a hardware
reset occurs. On devices with a computer operatingepsoCOP) timer, it is also possible to enter the
reset processing state when this timer reaches zeed 3B is typically held imeset during the power-up
process through assertion of the RESHT, making this the first processing state entered by the DSC. The
reset state performs the following:

Resets internal peripheral devices

2. Sets the M01 modifier register to $FFFF
3. Clears the interrupt priority register (IPR)
4. Sets the wait state fields in the bus coniglister (BCR) to their maximum value, thereby

inserting the maximum number of wait states for all external memory accesses
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5. Clears the status register’s (SR) loop #iag condition code bits and sets the interrupt
mask bits

6. Clears the following bits in the operating eearegister: nested looping, condition codes,
stop delay, rounding, and external X memory

The DSC remains in the reset state until the RESIRTs deasserted. When hardware deasserts the
RESETpin, the following occur:

1. The chip operating mode bitsthe OMR are loadeflom an external source, typically mode
select pins; see the appropriate device manual for details.

2. A delay of 16 instruction cycles (NOPs) orto sync the local clock generator and state
machine.

3. The chip begins program execution at thegpm memory address defined by the state of
the MA and MB bits in the OMR and the typereset (hardware or COP time-out). The
first instruction must be feted and then decoded beforeextion. Therefore, the first
instruction execution is two instructionags after the first instruction fetch.

After this last step, the DSC enters thormal processing staipon exiting reset. It ialso possible for the
DSC to enter the debug processing state @pding reset when system debug is underway.

7.2 Normal Processing State

The normal processing state is the typical statbeprocessor where it executes instructions in a
three-stage pipeline. This includeg #xecution of simple instructiossach as moves or ALU operations
as well as jumps, hardware loopitt-field instructions, instructionwith parallel moves, and so on.
Details about the execution of tmalividual instructions can be found in Appendix A, “Instruction Set
Details.” The chip must be reset before it can enter the normal processing state.

7.2.1 Instruction Pipeline Description

The instruction-execution pipeline iglaee-stage pipeline, whiallows most instructions to execute at a
rate of one instruction per insttian cycle. For the case where thare no off-chip memory accesses, or
for the case of a single off-chip access with no watest one instruction cyels equivalent to two
machine cycles. A machine cycledsfined as one cycle of the clogkovided to the DSC core. Certain
instructions, however, require mdrean one instruction cycle to exeeutThese instructions include the
following:

* Instructions longer than one word
* Instructions using an addressing mali&t requires more than one cycle
* Instructions that cause a control-flow change

Pipelining allows instruction execatis to overlap so that the fetchede-execute operations of a given
instruction occur concurrentlyith the fetch-decode-execute operas@f other instructions. Specifically,
while the processor is executing anstruction, it is decodig the next instructivand fetching a third
instruction from program memory. The processor fetcimg one instruction word per instruction cycle;
if an instruction is two words ilength, it fetches the additional wondth an additional cycle before it
fetches the next instruction.
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Table 7-2. Instruction Pipelining

Instruction Cycle
Operation
1 2 3 4 5 6 7 . . .
Fetch F1 F2 F3 F3e F4 F5 F6 . . .
Decode D1 D2 D3| D3e| D4 D5 . . .
Execute E1l E2 E3 E3e E4 . . .

Table 7-2 demonstrates pipelining. “F1,” “D1,” and “E&fer to the fetch, dede, and execute operations
of the first instruction, respectively. The third instian, which contains aimstruction extension word,
takes two instruction cycles to exeeuf\lthough it takes three instruaticycles (six machine cycles) for
the pipeline to fill and the first ingtction to execute, an instructionuadly executes oeach instruction
cycle thereafter (two machine cycles).

7.2.2 Instruction Pipeline with Off-Chip Memory Accesses

The three sets of internal on-chip address atal lases (XAB1/CGDB, XAB2/XDB2, PAB/PDB) allow

for fast memory access when memories are baiegssed on-chip. The BRan perform memory
accesses on all three bus pairs in a single in&irucycle, permitting the feh of an instruction

concurrently with up to two accesses to the X dag¢anory. Thus, for applications where all program and
data is located in on-chip memory, there is no dpamalty when performing up to three memory accesses
in a single instruction.

Similarly, the external address athata bus also allows for fastggram execution. For the case where
only program memory is external tiee chip or only X data memoiy external (XAB1/CDGB bus pair),
the DSC chip will still execute programs at full spefethere are no wait states programmed on the
external bus by the user. For the case wherastinuction requires an external program fedall an
external X data memory access sitaneously, the instruction will stibperate correctly. The instruction
is automatically stretched anditional instruction cycle so th#te two external accesses may be
performed correctly, and wait states are inserted acadydiill this occurs tragparently to the user to
allow for easier ppgram development.

This information is summarized ifable 7-3, which shows how the cldptomatically inserts instruction
cycles and wait states for an instruction thatrisufianeously accessing program and data memory. For
dual parallel read instructions, the second X mgmaccess that uses XAB2/XDB2 must always be done
to on-chip memory. Thisecond access may never acadernal off-chip memory.
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Table 7-3. Additional Cyclesfor Off-Chip Memory Accesses

Memory Space
Number of
o Comments
Program X Memory X Memory Additional Cycles
Fetch First Access Second Access
On-chip On-chip On-chip 0 All accesses internal
External On-chip On-chip 0 + mvm One external access
On-chip External On-chip 0+ mv One external access
External External On-chip 1+ mv+ mvm Two external accesses
Note: The ‘mv’ and ‘mvm’ cycle time values reflect the additional time required for all MOVE instructions and for
MOVEM instructions, respectively.

7.2.3 Instruction Pipeline Dependencies and Interlocks

The pipeline is normally tranapent to the user. However, teare certain instruction-sequence
combinations where the pipeline will affect the pragrexecution. Such situatioase best described by
case studies. Most of these ragerd sequences occur because edliexddresses are formed during
instruction decode or they are the result of entibn for an internal resource such as the SR.

If the execution of an instructiaepends on the relative locationtbé instruction in a sequence of
instructions, there is a pipeline effect.

It is possible to see if there is a pipeline dependehoyest for a suspect@ipeline effect, compare the
execution of the suspect instruction when it directliofes the previous instreion and when four NOPs
are inserted between the two. If there is a differeihc@caused by a pipeline effect. The assembler flags
instruction sequences with potential pipeline effectthabthe user can determine if the operation will
execute as expected.

Example 7-1. Pipeline Dependencies in Similar Code Sequences

No Pipeline Effect

ORC #$0001,SR ; Changes carry bit at the end of execution time slot
JCS LABEL ; Reads condition codes in SR in its
; execution time slot

The JCS instruction will test the caipit modified by the ORC without anypeline effect irthis code segment.
Pipeline Effect

ORC #$0008,0MR ; Sets EX bit at execution time slot
MOVE X:$17,A ; Reads internal memory instead of external
; memory

A pipeline effect occurs because the adsliifshe MOVE is formed at its decotime before the ORC changes the EX bit
(which changes the memory map) in tHe@s execution time slot. THellowing code produces the expected results of reading
the external FLASH:

ORC #$0008,0MR ; Sets EX bit at execution time slot
NOP ; Delays the MOVE so it will read the updated memory map
MOVE X:$17,A ; Reads external memory
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Example 7-2. Common Pipeline Dependency Code Sequence

MOVE X0,R2 ; Move a value into register R2

MOVE X:(R2),A ; Uses the OLD contents of R2 to address memory.
In this case, before the first MOVE insttion has written R2 during its executioycle, the second MOVEas accessed the old
R2, using the old contents of R2. Thidberause the address for indirect movesriméa during the decodwycle. This overlp-
ping instruction execution in the pipe causes thpipeline effect.
After an address register has been writig a MOVE instruction, oniastruction cycle should ballowed before the new con-
tents are available for use as an asslregister by another MOMBstruction. The proper struction sequence follows:

MOVE X0,R2 ; Moves a number into register R2

NOP ; Executes any instruction or instruction sequence not
; using the R2 register written in the previous
; instruction

MOVE X:(R2),A ; Uses the new contents of R2

Section 4.4, “Pipeline Dependencies,” on page 48ains more details on interlocks caused during
address generation.

7.3 EXxception Processing State

The exception processing state is the state whef23Kkecore recognizes and processes interrupts that can
be generated by conditions insithe DSC or from external sourcéfpon the occurrerecof an event,
interrupt processing transfers control from the curresglycuting program to anterrupt service routine,
with the ability to later return to the current pragrapon completion of the inteipt service routine. In
digital signal processing, sometbe main uses of interrupts arettansfer data between DSC memory

and a peripheral device or to begin execution of a DSC algorithm upon reception of a new sample. An
interrupt can also be used to exit the DSC'’s low-power wait processing state.

An interrupt will cause the procesdorenter the exception@ressing state. Upon eritgy this state, the
current instruction in decode executes normallye féxt fetch address is supplied by the interrupt
controller and points into the interrupt vector tablal{lE 7-4 on page 7-7). During this fetch the PC is not
updated. The instruction located at these two addréssies interrupt vector table must always be a
two-word, unconditional jump-to-suttine instruction (JSR). Noteahthe interrupt controller only
fetches the second word of the JSRtinction. This results in the pn@gm changing flowo an interrupt
routine, and a context switch is performed.

There are many sources for intersiph the DSP56800 Family of chips, and some of these sources can
generate more than one interrdpterrupt requests can be generdted conditions within the DSC core,
from the DSC peripherals, or from external pins. DI%&C core features a pritzed interrupt vector
scheme with up to 64 vectors tmpide faster interrupt servicing. &hinterrupt priority structure is
discussed in Section 7.3.3, “&rtupt Priority Structure.”

7.3.1 Sequence of Events in th&xception Processing State

The following steps occun exception processing:

1. Arequest for an interrupt is generated eithrea pin, from the DSC core, from a peripheral
on the DSC chip, or from anstruction executed by the DSC core. Any hardware interrupt
request from a pin is first synchronized with the DSC clock.
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2. The request for an interrupt Byparticular source is latched in an interrupt-pending flag if
it is an edge or non-maskalitgerrupt (all other interrupts @amnot latched and must remain
asserted in order to be servigddor peripherals that can geate more than one interrupt
request and have more than one interruptorettie interrupt arbiter only sees one request
from the peripheral active at a time.

3. All pending interrupt requests are arbitrategetect which interrupt will be processed. The
arbiter automatically ignores aimterrupts with an interrupt farity level (IPL) lower than
the interrupt mask level specified in the $Rhere are any remaining requests, the arbiter
selects the remaining interrupt with the heghlPL, and the chipenters the exception
processing state (see Figure 7-1).

4. The interrupt controller #n freezes the program counter (PC) and fetches the JSR
instruction located at the two interrugctor addresses associated with the selected
interrupt. It is required thake instruction located at the interrupt vector address must be a
two-word JSR instruction. Note that only gecond word of the JSR instruction is fetched;
the first word of the JSR is provided by the interrupt controller.

5. The interrupt controller places this JSRriastion into the instrction stream and then
releases the PC, which is used for the mestruction fetch. Arbitration among the
remaining interrupt requests is allowed teume. The next interrupt arbitration then
begins.

6. The execution of the JSR ingttion stacks the PC and the SR as it transfers control to the
first instruction in the interrupt service tine. These two stacked registers contain the
16-bit return address that will later be usedetinirn to the interrupd code, as well as the
condition code state. In additipthe IPL is raised to Vel 1 to disallow any level O
interrupts. Note that the OnCE trap, stacfor, illegal instruction, and SWI can still
generate interrupts because these asd [einterrupts and are non-maskable.

The exception processing state ispbeted when the processor exectitesJSR instruction located in the
interrupt vector table and the chip enters the nopr@dessing state. As it enters the normal processing
state, it begins executing the first instruction inititerrupt service routine. Eh interrupt service routine

should return to the main progneby executing an RTI instruction.

Interrupt routines for level O interrugoaire interruptible by higher prity interrupts. Figure 7-1 shows an
example of processing an interrupt.

Interrupt Service Routine

SSI Receive Data
with Exception Status

|

$001E | ISR
$001F | $0300
$03¥)0 ADD
$0301 | ASL
$0302 | MOVE
$0303 RTI

Figure 7-1. Interrupt Processing

Main
Program

$0100 — Interrupt

$0101 | MACR Recognized

$0102 | MOVE |

$0103 MAC

$0104 | REP

$0105 | MAC

$0106 — N
Explicit Return
from Interrupt

Recognized
7-6
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JSR Instruction
in Vector Table to
Interrupt Service
Routine
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Exception Processing State

Steps 1 through 3 listed on paggead-5 require two additi@l instruction cyclesffectively making the
interrupt pipeline five levels deep.

7.3.2 Reset and Interrupt Vector Table

The interrupt vector table specifies the addresseshairocessor accesses once it recognizes an interrupt
and begins exception processing.cgiperipherals can also generaterirupts, the interrupt vector map

for a given chip is specified by all sources on th&€€@Bre as well as all peripherals that can generate an
interrupt. Table 7-4 lists the rasand interrupt vectors availalbde DSP56800-based DSC chips. The
interrupt vectors used by on-chip peripherals, oadigitional device-specifimterrupts will be listed in

the user’s manual for that chip.

Table 7-4. DSP56800 Core Retsand Interrupt Vector Table

Interrgpt Interrupt

Starting Priority Level Interrupt Source

Address
$0000 - Hardware Reset
$0002 - COP Watchdog Reset
$0004 - (Reserved)
$0006 1 lllegal Instruction Trap
$0008 1 SWwi
$000A 1 Hardware Stack Overflow
$000C 1 ONCE Trap
$000E 1 (Reserved)
$0010 0 TRQA
$0012 0 ‘IRQB
$0014 0 (Vector Available for On-Chip Peripherals)
$0016 0 (Vector Available for On-Chip Peripherals)
$0018 0 (Vector Available for On-Chip Peripherals)
$001A 0 (Vector Available foOn-Chip Peripherals)
$001C 0 (Vector Available foOn-Chip Peripherals)
$001E 0 (Vector Availabléor On-Chip Peripherals)
$0020 0 (Vector Available for On-Chip Peripherals)
$007C 0 (Vector Available foOn-Chip Peripherals)
$007E 0 (Vector Availabléor On-Chip Peripherals)
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It is required that a two-word JIBRstruction is present in any interrugctor location that may be fetched
during exception processing. If artérrupt vector location is unusetien the JSR instruction is not
required.

The hardware reset and COP reset are special casesddoay are reset vectors, not interrupt vectors.
There is no IPL specified for thesgo because these conditions resetdhip and reset takes precedence
over any interrupt. Typically a two-wd JIMP instruction is used in tiheset vectors. The hardware reset
vector will either be at address $0000 or $E000 aedC@P reset vector will eigh be at $0002 or $E002
depending on the operating mode of the chipe different operating modes are discussed in

Section 5.1.9.1, “Operating Mode Bits (MB and MA) — Bits 1-0,” on page 5-10.

7.3.3 Interrupt Priority Structure

Interrupts are organized in a simpléority structure. Each interrupburce has an associated IPL: Level O
or Level 1. Level O, the lowest level, is maskalled Level 1 is non-maskable. Table 7-5 summarizes the
priority levels and their associated interrupt sources.

Table 7-5. Interrupt Priority Level Summary

IPL Description Interrupt Sources
0 Maskable On-chip peripherals,
IRQA and IRQB
1 Non-maskable lllegal instruction, OnCE trap,
HWS overflow, SWI

The interrupt mask bits (11, 10) the SR reflect the current priorikgvel and indicate the IPL needed for
an interrupt source to interrupt theocessor (see Table 7-6). Interrupts imhibited for allpriority levels
below the current processor priorigvel. Level 1 interrupts, howeveate not maskable and, therefore,
can always interrupt the processor.

Table 7-6. Interrupt Mask Bit Definition in the Status Register

11 10 Exceptions Permitted Exceptions Masked
0 0 (Reserved) (Reserved)

0 1 IPLO, 1 None

1 0 (Reserved) (Reserved)

1 1 IPL 1 IPLO

7.3.4 Configuring Interrupt Sources

The interrupt unit in the DSP56800recsupports seven interrupt chalsrfer use by on-chip peripherals,
in addition to the IRQnterrupts and interrupts generated by@®C core. Each maskable interrupt source
can individually be enabled or disabled as requinethe application. The examethod for doing so is
dependent on the particular DSP56800-based device, as some of the interrupt handling logic is
implemented as an on-chip peripheral.

One example of how interrupts candrebled and disabled, and their ptiotevel established, is with an
interrupt priority register (IPR).
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cho |chi|ch2| chal chd cnd chg 4 A HBE| BE] < |IAL[IAL ] .

IRQA Mode

IRQB Mode

(Reserved)

Channel 6 IPL
Channel 5 IPL
Channel 4 IPL
Channel 3 IPL
Channel 2 IPL
Channel 1 IPL
Channel 0 IPL

* Indicates reserved bits, read as zero amaishbe written with zer for future compatibility
AA0057

Figure 7-2. Example Irterrupt Priority Register

In the example interrupt priority register (IPRhown in Figure 7-2, the interrupt for each on-chip
peripheral device (channels 0-6) dadeach externdhterrupt source (IRQAIRQB), can be enabled or
disabled under software control. The IPR also spadifie trigger mode of the external interrupt sources.
Figure 7-3 shows how it might be programmed for different interrupts.

Chx Enabled? IPL
0 No —
1 Yes 0
IBL1 .
:/E:'Eg Enabled? IPL IALL Trigger Mode
0 Level sensitive
0 No o 1 Edge sensitive
1 Yes 0
AA0058

Figure 7-3. Example On-Chip Perpheral and IRQ Interrupt Programming

7.3.5 Interrupt Sources

An interrupt request is a requestt@ak out of currently executingd®to enter an interrupt service
routine. Interrupt requests the DSC are generated from one oéthsources: external hardware, internal
hardware, and internal software.€eTimternal hardware interruptwees include all of the on-chip
peripheral devices.

Each interrupt source has at leasé associated interrupt vector, and some sources may have several
interrupt vectors. The interrupt vectaddresses for each interrupt sowlisted in the interrupt vector
table (Table 7-4). These addresses are usually locatther the first 64 or 128 locations of program
memory. For further information on a device’s ongcperipheral interrupt sources, see the device’s
individual user’'s manual.
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