
16-Bit Digital Signal
Controllers

freescale.com

DSP56800

Family Manual

DSP56800FM
Rev. 3.1
11/2005

9

5
5

7

Contents
Chapter 1
Introduction

1.1 DSP56800 Family Architecture .1-1
1.1.1 Core Overview .1-2
1.1.2 Peripheral Blocks .1-3
1.1.3 Family Members .1-5
1.2 Introduction to Digital Signal Processing. .1-5
1.3 Summary of Features .1-
1.4 For the Latest Information .1-10

Chapter 2
Core Architecture Overview

2.1 Core Block Diagram .2-1
2.1.1 Data Arithmetic Logic Unit (ALU) .2-3
2.1.2 Address Generation Unit (AGU) .2-3
2.1.3 Program Controller and Hardware Looping Unit .2-4
2.1.4 Bus and Bit-Manipulation Unit. .2-5
2.1.5 On-Chip Emulation (OnCE) Unit .2-5
2.1.6 Address Buses. .2-
2.1.7 Data Buses .2-
2.2 Memory Architecture .2-6
2.3 Blocks Outside the DSP56800 Core. .2-
2.3.1 External Data Memory .2-7
2.3.2 Program Memory .2-8
2.3.3 Bootstrap Memory .2-8
2.3.4 IP-BUS Bridge .2-8
2.3.5 Phase Lock Loop (PLL) .2-8
2.4 DSP56800 Core Programming Model .2-8

Chapter 3
Data Arithmetic Logic Unit

3.1 Overview and Architecture. .3-2
3.1.1 Data ALU Input Registers (X0, Y1, and Y0) .3-4
3.1.2 Data ALU Accumulator Registers .3-4
3.1.3 Multiply-Accumulator (MAC) and Logic Unit .3-5
3.1.4 Barrel Shifter. .3-5
3.1.5 Accumulator Shifter .3-6
3.1.6 Data Limiter and MAC Output Limiter .3-6
Freescale Semiconductor iii

7

1

7

8

0
0

3

3.2 Accessing the Accumulator Registers .3-
3.2.1 Accessing an Accumulator by Its Individual Portions3-8
3.2.2 Accessing an Entire Accumulator. .3-10
3.2.2.1 Accessing for Data ALU Operations .3-10
3.2.2.2 Writing an Accumulator with a Small Operand .3-10
3.2.2.3 Extension Registers as Protection Against Overflow3-10
3.2.2.4 Examples of Writing the Entire Accumulator .3-11
3.2.3 General Integer Processing .3-1
3.2.3.1 Writing Integer Data to an Accumulator .3-11
3.2.3.2 Reading Integer Data from an Accumulator. .3-12
3.2.4 Using 16-Bit Results of DSC Algorithms. .3-12
3.2.5 Saving and Restoring Accumulators. .3-12
3.2.6 Bit-Field Operations on Integers in Accumulators .3-13
3.2.7 Converting from 36-Bit Accumulator to 16-Bit Portion 3-13
3.3 Fractional and Integer Data ALU Arithmetic .3-14
3.3.1 Interpreting Data .3-16
3.3.2 Data Formats. .3-1
3.3.2.1 Signed Fractional .3-17
3.3.2.2 Unsigned Fractional .3-17
3.3.2.3 Signed Integer .3-1
3.3.2.4 Unsigned Integer. .3-18
3.3.3 Addition and Subtraction .3-18
3.3.4 Logical Operations .3-19
3.3.5 Multiplication .3-19
3.3.5.1 Fractional Multiplication .3-19
3.3.5.2 Integer Multiplication .3-20
3.3.6 Division. .3-21
3.3.7 Unsigned Arithmetic. .3-22
3.3.7.1 Conditional Branch Instructions for Unsigned Operations.3-22
3.3.7.2 Unsigned Multiplication .3-22
3.3.8 Multi-Precision Operations. .3-23
3.3.8.1 Multi-Precision Addition and Subtraction .3-23
3.3.8.2 Multi-Precision Multiplication .3-23
3.4 Saturation and Data Limiting .3-26
3.4.1 Data Limiter .3-26
3.4.2 MAC Output Limiter .3-28
3.4.3 Instructions Not Affected by the MAC Output Limiter3-29
3.5 Rounding. .3-3
3.5.1 Convergent Rounding .3-3
3.5.2 Two’s-Complement Rounding .3-31
3.6 Condition Code Generation .3-3
3.6.1 36-Bit Destinations — CC Bit Cleared. .3-33
3.6.2 36-Bit Destinations — CC Bit Set .3-34
3.6.3 20-Bit Destinations — CC Bit Cleared. .3-34
3.6.4 20-Bit Destinations — CC Bit Set .3-34
3.6.5 16-Bit Destinations .3-35
3.6.6 Special Instruction Types .3-35
iv DSP56800 Family Manual Freescale Semiconductor

4
4

6

7

3

3

3.6.7 TST and TSTW Instructions. .3-36
3.6.8 Unsigned Arithmetic. .3-36

Chapter 4
Address Generation Unit

4.1 Architecture and Programming Model .4-2
4.1.1 Address Registers (R0-R3) .4-
4.1.2 Stack Pointer Register (SP). .4-
4.1.3 Offset Register (N) .4-4
4.1.4 Modifier Register (M01). .4-5
4.1.5 Modulo Arithmetic Unit .4-5
4.1.6 Incrementer/Decrementer Unit .4-5
4.2 Addressing Modes .4-
4.2.1 Register-Direct Modes .4-7
4.2.1.1 Data or Control Register Direct .4-7
4.2.1.2 Address Register Direct .4-7
4.2.2 Address-Register-Indirect Modes .4-7
4.2.2.1 No Update: (Rj), (SP) .4-9
4.2.2.2 Post-Increment by 1: (Rj)+, (SP)+ .4-11
4.2.2.3 Post-Decrement by 1: (Rn)-, (SP)- .4-12
4.2.2.4 Post-Update by Offset N: (Rj)+N, (SP)+N. .4-13
4.2.2.5 Index by Offset N: (Rj+N), (SP+N) .4-14
4.2.2.6 Index by Short Displacement: (SP-xx), (R2+xx)4-15
4.2.2.7 Index by Long Displacement: (Rj+xxxx), (SP+xxxx)4-16
4.2.3 Immediate Data Modes. .4-1
4.2.3.1 Immediate Data: #xxxx. .4-18
4.2.3.2 Immediate Short Data: #xx .4-20
4.2.4 Absolute Addressing Modes. .4-20
4.2.4.1 Absolute Address (Extended Addressing): xxxx4-21
4.2.4.2 Absolute Short Address (Direct Addressing): <aa>4-22
4.2.4.3 I/O Short Address (Direct Addressing): <pp> .4-23
4.2.5 Implicit Reference. .4-23
4.2.6 Addressing Modes Summary .4-2
4.3 AGU Address Arithmetic .4-25
4.3.1 Linear Arithmetic .4-25
4.3.2 Modulo Arithmetic .4-25
4.3.2.1 Modulo Arithmetic Overview. .4-25
4.3.2.2 Configuring Modulo Arithmetic. .4-27
4.3.2.3 Supported Memory Access Instructions .4-29
4.3.2.4 Simple Circular Buffer Example .4-29
4.3.2.5 Setting Up a Modulo Buffer .4-30
4.3.2.6 Wrapping to a Different Bank .4-31
4.3.2.7 Side Effects of Modulo Arithmetic. .4-32
4.3.2.7.1 When a Pointer Lies Outside a Modulo Buffer 4-32
4.3.2.7.2 Restrictions on the Offset Register .4-32
4.3.2.7.3 Memory Locations Not Available for Modulo Buffers 4-33
4.4 Pipeline Dependencies .4-3
Freescale Semiconductor v

3

5
6
6

0

3
4
4

3

6

Chapter 5
Program Controller

5.1 Architecture and Programming Model .5-1
5.1.1 Program Counter. .5-
5.1.2 Instruction Latch and Instruction Decoder .5-3
5.1.3 Interrupt Control Unit .5-3
5.1.4 Looping Control Unit .5-4
5.1.5 Loop Counter .5-4
5.1.6 Loop Address .5-
5.1.7 Hardware Stack. .5-
5.1.8 Status Register .5-
5.1.8.1 Carry (C) — Bit 0 .5-7
5.1.8.2 Overflow (V) — Bit 1. .5-7
5.1.8.3 Zero (Z) — Bit 2. .5-7
5.1.8.4 Negative (N) — Bit 3 .5-7
5.1.8.5 Unnormalized (U) — Bit 4 .5-8
5.1.8.6 Extension (E) — Bit 5 .5-8
5.1.8.7 Limit (L) — Bit 6 .5-8
5.1.8.8 Size (SZ) — Bit 7 .5-8
5.1.8.9 Interrupt Mask (I1 and I0) — Bits 8–9 .5-8
5.1.8.10 Reserved SR Bits — Bits 10–14. .5-9
5.1.8.11 Loop Flag (LF) — Bit 15 .5-9
5.1.9 Operating Mode Register .5-1
5.1.9.1 Operating Mode Bits (MB and MA) — Bits 1–05-10
5.1.9.2 External X Memory Bit (EX) — Bit 3 .5-11
5.1.9.3 Saturation (SA) — Bit 4 .5-11
5.1.9.4 Rounding Bit (R) — Bit 5. .5-12
5.1.9.5 Stop Delay Bit (SD) — Bit 6 .5-12
5.1.9.6 Condition Code Bit (CC) — Bit 8 .5-12
5.1.9.7 Nested Looping Bit (NL) — Bit 15 .5-13
5.1.9.8 Reserved OMR Bits — Bits 2, 7 and 9–14. .5-13
5.2 Software Stack Operation .5-1
5.3 Program Looping .5-1
5.3.1 Repeat (REP) Looping .5-1
5.3.2 DO Looping .5-15
5.3.3 Nested Hardware DO and REP Looping .5-15
5.3.4 Terminating a DO Loop .5-16

Chapter 6
Instruction Set Introduction

6.1 Introduction to Moves and Parallel Moves. .6-1
6.2 Instruction Formats .6-
6.3 Programming Model .6-5
6.4 Instruction Groups .6-
6.4.1 Arithmetic Instructions .6-6
6.4.2 Logical Instructions .6-7
vi DSP56800 Family Manual Freescale Semiconductor

3
3

0
1

-1

-5

9

9
2

-2
6.4.3 Bit-Manipulation Instructions. .6-8
6.4.4 Looping Instructions .6-9
6.4.5 Move Instructions .6-9
6.4.6 Program Control Instructions .6-10
6.5 Instruction Aliases .6-11
6.5.1 ANDC, EORC, ORC, and NOTC Aliases .6-11
6.5.2 LSLL Alias .6-12
6.5.3 ASL Alias .6-12
6.5.4 CLR Alias .6-13
6.5.5 POP Alias .6-1
6.6 DSP56800 Instruction Set Summary .6-1
6.6.1 Register Field Notation. .6-14
6.6.2 Immediate Value Notation .6-15
6.6.3 Using the Instruction Summary Tables .6-15
6.6.4 Instruction Summary Tables. .6-17
6.7 The Instruction Pipeline .6-30
6.7.1 Instruction Processing. .6-3
6.7.2 Memory Access Processing .6-3

Chapter 7
Interrupts and the Processing States

7.1 Reset Processing State .7
7.2 Normal Processing State. .7-2
7.2.1 Instruction Pipeline Description .7-2
7.2.2 Instruction Pipeline with Off-Chip Memory Accesses.7-3
7.2.3 Instruction Pipeline Dependencies and Interlocks .7-4
7.3 Exception Processing State. .7-5
7.3.1 Sequence of Events in the Exception Processing State 7
7.3.2 Reset and Interrupt Vector Table .7-7
7.3.3 Interrupt Priority Structure .7-8
7.3.4 Configuring Interrupt Sources .7-8
7.3.5 Interrupt Sources. .7-
7.3.5.1 External Hardware Interrupt Sources .7-10
7.3.5.2 DSC Core Hardware Interrupt Sources .7-11
7.3.5.3 DSC Core Software Interrupt Sources .7-11
7.3.6 Interrupt Arbitration .7-12
7.3.7 The Interrupt Pipeline .7-14
7.3.8 Interrupt Latency. .7-16
7.4 Wait Processing State .7-17
7.5 Stop Processing State .7-1
7.6 Debug Processing State .7-2

Chapter 8
Software Techniques

8.1 Useful Instruction Operations. .8-1
8.1.1 Jumps and Branches .8
Freescale Semiconductor vii

2

3

4

6

3

9

1
2
2
3

6

8.1.1.1 JRSET and JRCLR Operations. .8-
8.1.1.2 BR1SET and BR1CLR Operations. .8-3
8.1.1.3 JR1SET and JR1CLR Operations. .8-
8.1.1.4 JVS, JVC, BVS, and BVC Operations .8-4
8.1.1.5 Other Jumps and Branches on Condition Codes .8-4
8.1.2 Negation Operations .8-
8.1.2.1 NEGW Operation .8-4
8.1.2.2 Negating the X0, Y0, or Y1 Data ALU registers .8-5
8.1.2.3 Negating an AGU register .8-5
8.1.2.4 Negating a Memory Location .8-5
8.1.3 Register Exchanges. .8-
8.1.4 Minimum and Maximum Values .8-6
8.1.4.1 MAX Operation .8-6
8.1.4.2 MIN Operation .8-7
8.1.5 Accumulator Sign Extend. .8-7
8.1.6 Unsigned Load of an Accumulator .8-7
8.2 16- and 32-Bit Shift Operations .8-8
8.2.1 Small Immediate 16- or 32-Bit Shifts. .8-8
8.2.2 General 16-Bit Shifts .8-8
8.2.3 General 32-Bit Arithmetic Right Shifts .8-9
8.2.4 General 32-Bit Logical Right Shifts .8-9
8.2.5 Arithmetic Shifts by a Fixed Amount. .8-10
8.2.5.1 Right Shifts (ASR12–ASR20) .8-10
8.2.5.2 Left Shifts (ASL16–ASL19). .8-12
8.3 Incrementing and Decrementing Operations .8-1
8.4 Division. .8-13
8.4.1 Positive Dividend and Divisor with Remainder .8-14
8.4.2 Signed Dividend and Divisor with No Remainder .8-15
8.4.3 Signed Dividend and Divisor with Remainder .8-16
8.4.4 Algorithm Examples .8-18
8.4.5 Overflow Cases. .8-1
8.5 Multiple Value Pushes .8-19
8.6 Loops .8-20
8.6.1 Large Loops (Count Greater Than 63) .8-20
8.6.2 Variable Count Loops. .8-21
8.6.3 Software Loops .8-2
8.6.4 Nested Loops .8-2
8.6.4.1 Recommendations. .8-2
8.6.4.2 Nested Hardware DO and REP Loops .8-2
8.6.4.3 Comparison of Outer Looping Techniques .8-24
8.6.5 Hardware DO Looping in Interrupt Service Routines 8-25
8.6.6 Early Termination of a DO Loop .8-25
8.7 Array Indexes .8-2
8.7.1 Global or Fixed Array with a Constant. .8-26
8.7.2 Global or Fixed Array with a Variable .8-27
8.7.3 Local Array with a Constant .8-27
8.7.4 Local Array with a Variable .8-27
viii DSP56800 Family Manual Freescale Semiconductor

8

5
5

2

4

7

8.7.5 Array with an Incrementing Pointer .8-27
8.8 Parameters and Local Variables .8-2
8.9 Time-Critical DO Loops. .8-29
8.10 Interrupts. .8-30
8.10.1 Setting Interrupt Priorities in Software. .8-30
8.10.1.1 High Priority or a Small Number of Instructions8-31
8.10.1.2 Many Instructions of Equal Priority .8-31
8.10.1.3 Many Instructions and Programmable Priorities 8-32
8.10.2 Hardware Looping in Interrupt Routines .8-32
8.10.3 Identifying System Calls by a Number. .8-32
8.11 Jumps and JSRs Using a Register Value .8-33
8.12 Freeing One Hardware Stack Location. .8-34
8.13 Multitasking and the Hardware Stack. .8-34
8.13.1 Saving the Hardware Stack. .8-3
8.13.2 Restoring the Hardware Stack .8-3

Chapter 9
JTAG and On-Chip Emulation (OnCE™)

9.1 Combined JTAG and OnCE Interface .9-1
9.2 JTAG Port .9-
9.2.1 JTAG Capabilities. .9-3
9.2.2 JTAG Port Architecture .9-3
9.3 OnCE Port. .9-
9.3.1 OnCE Port Capabilities. .9-5
9.3.2 OnCE Port Architecture .9-5
9.3.2.1 Command, Status, and Control .9-
9.3.2.2 Breakpoint and Trace .9-7
9.3.2.3 Pipeline Save and Restore. .9-7
9.3.2.4 FIFO History Buffer .9-7

Appendix A
Instruction Set Details

A.1 Notation . A-1
A.2 Programming Model . A-5
A.3 Addressing Modes . A-6
A.4 Condition Code Computation . A-6
A.4.1 The Condition Code Bits . A-7
A.4.1.1 Size (SZ) — Bit 7 . A-7
A.4.1.2 Limit (L) — Bit 6 . A-8
A.4.1.3 Extension in Use (E) — Bit 5 . A-8
A.4.1.4 Unnormalized (U) — Bit 4 . A-9
A.4.1.5 Negative (N) — Bit 3 . A-9
A.4.1.6 Zero (Z) — Bit 2. A-10
A.4.1.7 Overflow (V) — Bit 1. A-10
A.4.1.8 Carry (C) — Bit 0 . A-10
A.4.2 Effects of the Operating Mode Register’s SA Bit . A-11
Freescale Semiconductor ix

2

8

A.4.3 Effects of the OMR’s CC Bit . A-11
A.4.4 Condition Code Summary by Instruction . A-12
A.5 Instruction Timing . A-16
A.6 Instruction Set Restrictions. A-26
A.7 Instruction Descriptions . A-27

Appendix B
DSC Benchmarks

B.1 Benchmark Code. B-
B.1.1 Real Correlation or Convolution (FIR Filter) . B-5
B.1.2 N Complex Multiplication . B-5
B.1.3 Complex Correlation Or Convolution (Complex FIR). B-6
B.1.4 Nth Order Power Series (Real, Fractional Data) . B-7
B.1.5 N Cascaded Real Biquad IIR Filters (Direct Form II) B-8
B.1.6 N Radix 2 FFT Butterflies . B-10
B.1.7 LMS Adaptive Filter . B-12
B.1.7.1 Single Precision . B-14
B.1.7.2 Double Precision. B-16
B.1.7.3 Double Precision Delayed . B-18
B.1.8 Vector Multiply-Accumulate . B-20
B.1.9 Energy in a Signal. B-21
B.1.10 [3x3][3x1] Matrix Multiply . B-22
B.1.11 [NxN][NxN] Matrix Multiply (for fractional elements). B-23
B.1.12 N Point 3x3 2-D FIR Convolution . B-26
B.1.13 Sine-Wave Generation . B-2
B.1.13.1 Double Integration Technique . B-28
B.1.13.2 Second Order Oscillator . B-29
B.1.14 Array Search . B-30
B.1.14.1 Index of the Highest Signed Value . B-30
B.1.14.2 Index of the Highest Positive Value . B-30
B.1.15 Proportional Integrator Differentiator (PID) Algorithm. B-31
B.1.15.1 PID (Version 1). B-31
B.1.15.2 PID (Version 2). B-32
B.1.16 Autocorrelation Algorithm . B-33
x DSP56800 Family Manual Freescale Semiconductor

7
-16

27
9
6
6
7

7
0
4
7
-9
0
1
-12
3
2
-4
-6
-8
-8
-9
0
0
11
2
2
3

3

List of Tables
Table 3-1 Accessing the Accumulator Registers . 3-
Table 3-2 Interpretation of 16-Bit Data Values . 3
Table 3-3 Interpretation of 36-bit Data Values . 3-16
Table 3-4 Saturation by the Limiter Using the MOVE Instruction. 3-
Table 3-5 MAC Unit Outputs with Saturation Enabled . 3-2
Table 4-1 Addressing Mode Forcing Operators . 4-
Table 4-2 Jump and Branch Forcing Operators . 4-
Table 4-3 Addressing Mode — Register Direct . 4-
Table 4-4 Addressing Mode — Address Register Indirect . 4-8
Table 4-5 Address-Register-Indirect Addressing Modes Available 4-9
Table 4-6 Addressing Mode — Immediate. 4-1
Table 4-7 Addressing Mode — Absolute . 4-2
Table 4-8 Addressing Mode Summary . 4-2
Table 4-9 Programming M01 for Modulo Arithmetic . 4-2
Table 5-1 Interrupt Mask Bit Definition . 5
Table 5-2 Program RAM Operating Modes . 5-1
Table 5-3 Program FLASH Operating Modes . 5-1
Table 5-4 MAC Unit Outputs With Saturation Mode Enabled (SA = 1) 5
Table 5-5 Looping Status . 5-1
Table 6-1 Memory Space Symbols . 6-
Table 6-2 Instruction Formats . 6
Table 6-3 Arithmetic Instructions List . 6
Table 6-4 Logical Instructions List . 6
Table 6-5 Bit-Field Instruction List . 6
Table 6-6 Loop Instruction List . 6
Table 6-7 Move Instruction List . 6-1
Table 6-8 Program Control Instruction List . 6-1
Table 6-9 Aliases for Logical Instructions with Immediate Data 6-
Table 6-10 LSLL Instruction Alias . 6-1
Table 6-11 ASL Instruction Remapping . 6-1
Table 6-12 Clear Instruction Alias . 6-1
Table 6-13 Move Word Instruction Alias — Data Memory. 6-1
Table 6-14 Register Fields for General-Purpose Writes and Reads 6-14
Table 6-15 Address Generation Unit (AGU) Registers . 6-14
Freescale Semiconductor xi

5
5
8
9

9
20
0
1
1

-23
3

5

7
7
8
9
0
-1
-3
7-4
-7
-8
7-8
3
1
1

2

-12

 . A-1
Table 6-16 Data ALU Registers . 6-1
Table 6-17 Immediate Value Notation . 6-1
Table 6-18 Move Word Instructions . 6-1
Table 6-19 Immediate Move Instructions . 6-1
Table 6-20 Register-to-Register Move Instructions . 6-19
Table 6-21 Move Word Instructions — Program Memory. 6-1
Table 6-22 Conditional Register Transfer Instructions. 6-
Table 6-23 Data ALU Multiply Instructions. 6-2
Table 6-24 Data ALU Extended Precision Multiplication Instructions 6-2
Table 6-25 Data ALU Arithmetic Instructions . 6-2
Table 6-26 Data ALU Miscellaneous Instructions . 6
Table 6-27 Data ALU Logical Instructions. 6-2
Table 6-28 Data ALU Shifting Instructions . 6-24
Table 6-29 AGU Arithmetic Instructions . 6-2
Table 6-30 Bit-Manipulation Instructions. 6-25
Table 6-31 Branch on Bit-Manipulation Instructions . 6-26
Table 6-32 Change of Flow Instructions. 6-2
Table 6-33 Looping Instructions . 6-2
Table 6-34 Control Instructions . 6-2
Table 6-35 Data ALU Instructions — Single Parallel Move . 6-2
Table 6-36 Data ALU Instructions — Dual Parallel Read . 6-3
Table 7-1 Processing States. 7
Table 7-2 Instruction Pipelining . 7
Table 7-3 Additional Cycles for Off-Chip Memory Accesses .
Table 7-4 DSP56800 Core Reset and Interrupt Vector Table. 7
Table 7-5 Interrupt Priority Level Summary. 7
Table 7-6 Interrupt Mask Bit Definition in the Status Register .
Table 7-7 Fixed Priority Structure Within an IPL. 7-1
Table 8-1 Operations Synthesized Using DSP56800 Instructions 8-
Table A-1 Register Fields for General-Purpose Writes and Reads . A-

Table A-2 Address Generation Unit (AGU) Registers . A-

Table A-3 Data ALU Registers . A-2

Table A-4 Address Operands. A-3

Table A-5 Addressing Mode Operators. A-3

Table A-6 Miscellaneous Operands. A-3

Table A-7 Other Symbols . A-4

Table A-8 Notation Used for the Condition Code Summary Table . A

Table A-9 Condition Code Summary .3

Table A-10 Instruction Timing Symbols . A-17
xii DSP56800 Family Manual Freescale Semiconductor

 A-20

 A-20

A-20

. A-20

. A

. A-2

. A-21

. A-22

 . .
Table A-11 Instruction Timing Summary . A-18

Table A-12 Parallel Move Timing. A-19

Table A-13 MOVEC Timing Summary .

Table A-14 MOVEM Timing Summary .

Table A-15 Bit-Field Manipulation Timing Summary .

Table A-16 Branch/Jump Instruction Timing Summary .

Table A-17 RTS Timing Summary . -21

Table A-18 TSTW Timing Summary . 1

Table A-19 Addressing Mode Timing Summary .

Table A-20 Memory Access Timing Summary.

Table B-1 Benchmark Summary . B-1

Table B-2 Variable Descriptions . B-26
Freescale Semiconductor xiii

xiv DSP56800 Family Manual Freescale Semiconductor

1
3
5
-6
-7
8
2
6
-7
9
-3
4
6
8
9
9
1
5
8
9
20
1

-28
1
2
3
3
0
-11
-12
-13

-15

List of Figures
Figure 1-1 DSP56800-Based DSC Microcontroller Chip . 1-
Figure 1-2 DSP56800 Core Block Diagram. 1-
Figure 1-3 Example of Chip Built Around the DSP56800 Core . 1-
Figure 1-4 Analog Signal Processing . 1
Figure 1-5 Digital Signal Processing . 1
Figure 1-6 Mapping DSC Algorithms into Hardware . 1-
Figure 2-1 DSP56800 Core Block Diagram. 2-
Figure 2-2 DSP56800 Memory Spaces . 2-
Figure 2-3 Sample DSP56800-Family Chip Block Diagram . 2
Figure 2-4 DSP56800 Core Programming Model . 2-
Figure 3-1 Data ALU Block Diagram . 3
Figure 3-2 Data ALU Programming Model . 3-
Figure 3-3 Right and Left Shifts Through the Multi-Bit Shifting Unit 3-
Figure 3-4 Writing the Accumulator Extension Registers (F2) . 3-
Figure 3-5 Reading the Accumulator Extension Registers (F2). 3-
Figure 3-6 Writing the Accumulator by Portions. 3-
Figure 3-7 Writing the Accumulator as a Whole . 3-1
Figure 3-8 Bit Weightings and Operand Alignments. 3-1
Figure 3-9 Word-Sized Integer Addition Example . 3-1
Figure 3-10 Comparison of Integer and Fractional Multiplication 3-1
Figure 3-11 MPY Operation — Fractional Arithmetic . 3-
Figure 3-12 Integer Multiplication (IMPY) . 3-2
Figure 3-13 Single-Precision Times Double-Precision Signed Multiplication 3-24
Figure 3-14 Example of Saturation Arithmetic . 3
Figure 3-15 Convergent Rounding . 3-3
Figure 3-16 Two’s-Complement Rounding . 3-3
Figure 4-1 Address Generation Unit Block Diagram. 4-
Figure 4-2 Address Generation Unit Programming Model . 4-
Figure 4-3 Address Register Indirect: No Update . 4-1
Figure 4-4 Address Register Indirect: Post-Increment . 4
Figure 4-5 Address Register Indirect: Post-Decrement . 4
Figure 4-6 Address Register Indirect: Post-Update by Offset N . 4
Figure 4-7 Address Register Indirect: Indexed by Offset N. 4-14
Figure 4-8 Address Register Indirect: Indexed by Short Displacement 4
Freescale Semiconductor xv

-16
-18
-19
1
-22

. 4-
7
29

2
-3
5
-7
0
-2
-3
5
.
-6
-9
9
2
5
6
7
8
8
9
0

9
2
. . 9-4
. . 9-6
-5

 B-10

2

Figure 4-9 Address Register Indirect: Indexed by Long Displacement 4
Figure 4-10 Special Addressing: Immediate Data . 4
Figure 4-11 Special Addressing: Immediate Short Data . 4
Figure 4-12 Special Addressing: Absolute Address. 4-2
Figure 4-13 Special Addressing: Absolute Short Address . 4
Figure 4-14 Special Addressing: I/O Short Address . 4-23
Figure 4-15 Circular Buffer . 26
Figure 4-16 Circular Buffer with Size M=37 . 4-2
Figure 4-17 Simple Five-Location Circular Buffer . 4-
Figure 4-18 Linear Addressing with a Modulo Modifier . 4-32
Figure 5-1 Program Controller Block Diagram . 5-
Figure 5-2 Program Controller Programming Model. 5
Figure 5-3 Accessing the Loop Count Register (LC). 5-
Figure 5-4 Status Register Format . 5
Figure 5-5 Operating Mode Register (OMR) Format . 5-1
Figure 6-1 Single Parallel Move. 6
Figure 6-2 Dual Parallel Move . 6
Figure 6-3 DSP56800 Core Programming Model . 6-
Figure 6-4 Pipelining . 6-31
Figure 7-1 Interrupt Processing . 7
Figure 7-2 Example Interrupt Priority Register . 7
Figure 7-3 Example On-Chip Peripheral and IRQ Interrupt Programming 7-
Figure 7-4 Illegal Instruction Interrupt Servicing. 7-1
Figure 7-5 Interrupt Service Routine . 7-1
Figure 7-6 Repeated Illegal Instruction . 7-1
Figure 7-7 Interrupting a REP Instruction . 7-1
Figure 7-8 Wait Instruction Timing . 7-1
Figure 7-9 Simultaneous Wait Instruction and Interrupt . 7-1
Figure 7-10 STOP Instruction Sequence . 7-1
Figure 7-11 STOP Instruction Sequence . 7-2
Figure 7-12 STOP Instruction Sequence Recovering with RESET 7-21
Figure 8-1 Example of a DSP56800 Stack Frame . 8-2
Figure 9-1 JTAG/OnCE Interface Block Diagram. 9-
Figure 9-2 JTAG Block Diagram .
Figure 9-3 OnCE Block Diagram.
Figure A-1 DSP56800 Core Programming Model . A

Figure A-2 Status Register (SR) . A-7

Figure B-1 N Radix 2 FFT Butterflies Memory Map. .

Figure B-2 LMS Adaptive Filter Graphic Representation . B-1
xvi DSP56800 Family Manual Freescale Semiconductor

4

B-16

8

 B-

-23

-2

8

-29

B-31
Figure B-3 LMS Adaptive Filter — Single Precision Memory Map . B-1

Figure B-4 LMS Adaptive Filter — Double Precision Memory Map .

Figure B-5 LMS Adaptive Filter — Double Precision Delayed Memory Map B-1

Figure B-6 Vector Multiply-Accumulate .20

Figure B-7 [3x3][1x3] Matrix Multiply . B-22

Figure B-8 [NxN][NxN] Matrix Multiply . B

Figure B-9 3x3 Coefficient Mask . B-26

Figure B-10 Image Stored as 130x130 Array . B6

Figure B-11 Sine Wave Generator — Double Integration Technique . B-2

Figure B-12 Sine Wave Generator — Second Order Oscillator. B

Figure B-13 Proportional Integrator Differentiator Algorithm.
Freescale Semiconductor xvii

xviii DSP56800 Family Manual Freescale Semiconductor

1

12

3

4

4

4

1

3

. 3-

-24

-25

6

27

8

9

0

0

3

3

. 4-34

4

4

4

5

-35

List of Examples
Example 3-1 Loading an Accumulator with a Word for Integer Processing 3-1

Example 3-2 Reading a Word from an Accumulator for Integer Processing 3-12

Example 3-3 Correctly Reading a Word from an Accumulator to a D/A 3-

Example 3-4 Correct Saving and Restoring of an Accumulator — Word Accesses 3-13

Example 3-5 Bit Manipulation on an Accumulator . 3-1

Example 3-6 Converting a 36-Bit Accumulator to a 16-Bit Value . 3-1

Example 3-7 Fractional Arithmetic Examples . 3-1

Example 3-8 Integer Arithmetic Examples . 3-1

Example 3-9 Multiplying Two Signed Integer Values with Full Precision 3-2

Example 3-10 Fast Integer MACs using Fractional Arithmetic. 3-21

Example 3-11 Multiplying Two Unsigned Fractional Values . 3-2

Example 3-12 64-Bit Addition . 23

Example 3-13 64-Bit Subtraction. 3-23

Example 3-14 Fractional Single-Precision Times Double-Precision Value — Both Signed . 3

Example 3-15 Integer Single-Precision Times Double-Precision Value — Both Signed 3-24

Example 3-16 Multiplying Two Fractional Double-Precision Values. 3

Example 3-17 Demonstrating the Data Limiter — Positive Saturation. 3-2

Example 3-18 Demonstrating the Data Limiter — Negative Saturation 3-

Example 3-19 Demonstrating the MAC Output Limiter . 3-2

Example 4-1 Initializing the Circular Buffer . 4-2

Example 4-2 Accessing the Circular Buffer. 4-3

Example 4-3 Accessing the Circular Buffer with Post-Update by Three 4-3

Example 4-4 No Dependency with the Offset Register . 4-3

Example 4-5 No Dependency with an Address Pointer Register. 4-3

Example 4-6 No Dependency with No Address Arithmetic Calculation. 4-34

Example 4-7 No Dependency with (Rn+xxxx) .

Example 4-8 Dependency with a Write to the Offset Register . 4-3

Example 4-9 Dependency with a Bit-Field Operation on the Offset Register 4-34

Example 4-10 Dependency with a Write to an Address Pointer Register 4-3

Example 4-11 Dependency with a Write to the Modifier Register . 4-3

Example 4-12 Dependency with a Write to the Stack Pointer Register. 4-3

Example 4-13 Dependency with a Bit-Field Operation and DO Loop 4
Freescale Semiconductor xix

-9

-1

2

9

7-4

7-5

-2

-3

. . . 8-3

-4

. . . 8

8

8

8

8

-22

3

5

-1
Example 5-1 Disabling Maskable Interrupts . 5

Example 6-1 MOVE Instruction Types . 6

Example 6-2 Logical OR with a Data Memory Location . 6-1

Example 6-3 Valid Instructions . 6-16

Example 6-4 Invalid Instruction. 6-16

Example 6-5 Examples of Single Parallel Moves . 6-2

Example 7-1 Pipeline Dependencies in Similar Code Sequences .

Example 7-2 Common Pipeline Dependency Code Sequence.

Example 8-1 JRSET and JRCLR . 8

Example 8-2 BR1SET and BR1CLR . 8

Example 8-3 JR1SET and JR1CLR .

Example 8-4 JVS, JVC, BVS and BVC. 8

Example 8-5 JPL and BES . -4

Example 8-6 Simple Fractional Division . 8-1

Example 8-7 Signed Fractional Division . 8-1

Example 8-8 Simple Integer Division . 8-1

Example 8-9 Signed Integer Division . 8-1

Example A-1 Arithmetic Instruction with Two Parallel Reads . A

Example A-2 Jump Instruction . A-2

Example A-3 RTS Instruction . A-2

Example B-1 Source Code Layout . B
xx DSP56800 Family Manual Freescale Semiconductor

s:

ses

 its

, its

ng
About This Book
This manual describes the central processing unit of the DSP56800 Family in detail. It is intended to be
used with the appropriate DSP56800 Family member user’s manual, which describes the central
processing unit, programming models, and details of the instruction set. The appropriate DSP56800
Family member technical data sheet provides timing, pinout, and packaging descriptions.

This manual provides practical information to help the user accomplish the following:

• Understand the operation and instruction set of the DSP56800 Family

• Write code for DSC algorithms

• Write code for general control tasks

• Write code for communication routines

• Write code for data manipulation algorithms

Audience
The information in this manual is intended to assist design and software engineers with integrating a
DSP56800 Family device into a design and with developing application software.

Organization
Information in this manual is organized into chapters by topic. The contents of the chapters are as follow

Chapter 1, “Introduction.” This section introduces the DSP56800 core architecture and its application. It
also provides the novice with a brief overview of digital signal processing.

Chapter 2, “Core Architecture Overview.” The DSP56800 core architecture consists of the data
arithmetic logic unit (ALU), address generation unit (AGU), program controller, bus and bit-manipulation
unit, and a JTAG/On-Chip Emulation (OnCE™) port. This section describes each subsystem and the bu
interconnecting the major components in the DSP56800 central processing module.

Chapter 3, “Data Arithmetic Logic Unit.” This section describes the data ALU architecture, its
programming model, an introduction to fractional and integer arithmetic, and a discussion of other topics
such as unsigned and multi-precision arithmetic on the DSP56800 Family.

Chapter 4, “Address Generation Unit.” This section specifically describes the AGU architecture and
programming model, addressing modes, and address modifiers.

Chapter 5, “Program Controller.” This section describes in detail the program controller architecture
programming model, and hardware looping. Note, however, that the different processing states of the
DSP56800 core, including interrupt processing, are described in Chapter 7, “Interrupts and the Processi
States.”
Freescale Semiconductor xxi

r

sted

).
Chapter 6, “Instruction Set Introduction.” This section presents an introduction to parallel moves and a
brief description of the syntax, instruction formats, operand and memory references, data organization,
addressing modes, and instruction set. It also includes a summary of the instruction set, showing the
registers and addressing modes available to each instruction. A detailed description of each instruction is
given in Appendix A, “Instruction Set Details.”

Chapter 7, “Interrupts and the Processing States.” This section describes five of the six processing
states (normal, exception, reset, wait, and stop). The sixth processing state (debug) is covered more
completely in Chapter 9, “JTAG and On-Chip Emulation (OnCE™).”

Chapter 8, “Software Techniques.” This section teaches the advanced user techniques for more efficient
programming of the DSP56800 Family. It includes a description of useful instruction sequences and
macros, optimal loop and interrupt programming, topics related to the stack of the DSP56800, and othe
useful software topics.

Chapter 9, “JTAG and On-Chip Emulation (OnCE™).” This section describes the combined
JTAG/OnCE port and its functions. These two are integrally related, sharing the same pins for I/O, and are
presented together in this section.

Appendix A, “Instruction Set Details.” This section presents a detailed description of each DSP56800
Family instruction, its use, and its effect on the processor.

Appendix B, “DSP Benchmarks.” DSP56800 Family benchmark example programs and results are li
in this appendix.

Suggested Reading
A list of DSC-related books is included here as an aid for the engineer who is new to the field of DSC:

Advanced Topics in Signal Processing, Jae S. Lim and Alan V. Oppenheim (Prentice-Hall: 1988).

Applications of Digital Signal Processing, A. V. Oppenheim (Prentice-Hall: 1978).

Digital Processing of Signals: Theory and Practice, Maurice Bellanger (John Wiley and Sons: 1984).

Digital Signal Processing, Alan V. Oppenheim and Ronald W. Schafer (Prentice-Hall: 1975).

Digital Signal Processing: A System Design Approach, David J. DeFatta, Joseph G. Lucas, and William S.
Hodgkiss (John Wiley and Sons: 1988).

Discrete-Time Signal Processing, A. V. Oppenheim and R.W. Schafer (Prentice-Hall: 1989).

Foundations of Digital Signal Processing and Data Analysis, J. A. Cadzow (Macmillan: 1987).

Handbook of Digital Signal Processing, D. F. Elliott (Academic Press: 1987).

Introduction to Digital Signal Processing, John G. Proakis and Dimitris G. Manolakis (Macmillan: 1988

Multirate Digital Signal Processing, R. E. Crochiere and L. R. Rabiner (Prentice-Hall: 1983).

Signal Processing Algorithms, S. Stearns and R. Davis (Prentice-Hall: 1988).

Signal Processing Handbook, C. H. Chen (Marcel Dekker: 1988).

Signal Processing: The Modern Approach, James V. Candy (McGraw-Hill: 1988).

Theory and Application of Digital Signal Processing, Lawrence R. Rabiner and Bernard Gold
(Prentice-Hall: 1975).
xxii DSP56800 Family Manual Freescale Semiconductor

Conventions
This document uses the following notational conventions:

• Bits within registers are always listed from most significant bit (MSB) to least significant bit (LSB).

• Bits within a register are formatted AA[n:0] when more than one bit is involved in a description.
For purposes of description, the bits are presented as if they are contiguous within a register.
However, this is not always the case. Refer to the programming model diagrams or to the
programmer’s sheets to see the exact location of bits within a register.

• When a bit is described as “set,” its value is set to 1. When a bit is described as “cleared,” its value
is set to 0.

• Memory addresses in the separate program and data memory spaces are differentiated by a
one-letter prefix. Data memory addresses are preceded by “X:” while program memory addresses
have a “P:” prefix. For example, “P:$0200” indicates a location in program memory.

• Hex values are indicated with a dollar sign ($) preceding the hex value, as follows: $FFFB is the X
memory address for the Interrupt Priority Register (IPR).

• Code examples are displayed in a monospaced font, as follows:

Definitions, Acronyms, and Abbreviations
The following terms appear frequently in this manual:

DSC digital signal controller

JTAG Joint Test Action Group

OnCE™ On-Chip Emulation

ALU arithmetic logic unit

AGU address generation unit

A complete list of relevant terms is included in the Glossary at the end of this manual.

BFSET #$0007,X:PCC ; Configure: line 1

; MISO0, MOSI0, SCK0 for SPI master line 2

; ~SS0 as PC3 for GPIO line 3
Freescale Semiconductor xxiii

xxiv DSP56800 Family Manual Freescale Semiconductor

Chapter 1
Introduction
The DSP56800 Digital Signal Controllers provide low cost, low power, mid-performance computing,
combining DSC power and parallelism with MCU-like programming simplicity. The DSP56800 core is a
general-purpose central processing unit, designed for both efficient digital signal processing and a variety
of controller operations.

1.1 DSP56800 Family Architecture
The DSP56800 Family uses the DSP56800 16-bit DSC core. This core is a general-purpose central
processing unit (CPU), designed for both efficient DSC and controller operations. Its instruction-set
efficiency as a DSC is superior to other low-cost DSC architectures and has been designed for efficient,
straightforward coding of controller-type tasks.

Figure 1-1. DSP56800-Based DSC Microcontroller Chip

The general-purpose MCU-style instruction set, with its powerful addressing modes and bit-manipulation
instructions, enables a user to begin writing code immediately, without having to worry about the
complexities previously associated with DSCs. A software stack allows for unlimited interrupt and
subroutine nesting, as well as support for structured programming techniques such as parameter passing

Address

Data

JTAG I/O

GPIO
PeripheralsMemory

16-Bit DSC

CPU Core

Debug

Port

PLL

I/O Pins

External

Bus

Interface

AA0012
Freescale Semiconductor Introduction 1-1

Introduction
and the use of local variables. The veteran DSC programmer sees a powerful DSC instruction set with
many different arithmetic operations and flexible single- and dual-memory moves that can occur in parallel
with an arithmetic operation. The general-purpose nature of the instruction set also allows for an efficient
compiler implementation.

A variety of standard peripherals can be added around the DSP56800 core (see Figure 1-1 on page 1-1)
such as serial ports, general-purpose timers, real-time and watchdog timers, different memory
configurations (RAM, FLASH, or both), and general-purpose I/O (GPIO) ports.

On-Chip Emulation (OnCE™) capability is provided through a debug port conforming to the Joint Test
Action Group (JTAG) standard. This provides real-time, embedded system debugging with on-chip
emulation capability through the five-pin JTAG interface. A user can set hardware and software
breakpoints, display and change registers and memory locations, and single step or step through multiple
instructions in an application.

The DSP56800’s efficient instruction set, multiple internal buses, on-chip program and data memories,
external bus interface, standard peripherals, and industry-standard debug support make the DSP56800
Family an excellent solution for real-time embedded control tasks. It is an excellent fit for wireless or
wireline DSC applications, digital control, and controller applications in need of more processing power.

1.1.1 Core Overview
The DSP56800 core is a programmable 16-bit CMOS digital signal controller that consists of a 16-bit data
arithmetic logic unit (ALU), a 16-bit address generation unit (AGU), a program decoder, On-Chip
Emulation (OnCE), associated buses, and an instruction set. Figure 1-2 on page 1-3 shows a block diagram
of the DSP56800 core. The main features of the DSP56800 core include the following:

• Processing capability of up to 35 million instructions per second (MIPS) at 70 MHz

• Requires only 2.7–3.6 V of power

• Single-instruction cycle 16-bit x 16-bit parallel multiply-accumulator

• Two 36-bit accumulators including extension bits

• Single-instruction 16-bit barrel shifter

• Parallel instruction set with unique DSC addressing modes

• Hardware DO and REP loops

• Two external interrupt request pins

• Four 16-bit internal core data buses

• Three 16-bit internal address buses

• Instruction set that supports both DSC and controller functions

• Controller-style addressing modes and instructions for smaller code size

• Efficient C compiler and local variable support

• Software subroutine and interrupt stack with unlimited depth

• On-Chip Emulation for unobtrusive, processor-speed-independent debugging

• Low-power wait and stop modes

• Operating frequency down to DC

• Single power supply
1-2 DSP56800 Family Manual Freescale Semiconductor

DSP56800 Family Architecture
Figure 1-2. DSP56800 Core Block Diagram

1.1.2 Peripheral Blocks
The following peripheral blocks are available for members of the DSP56800 16-bit Family:

• Program FLASH and RAM modules

• Bootstrap FLASH for program RAM parts

• Data FLASH and RAM modules

• Phase-locked loop (PLL) module

• General purpose Quad Timers

• Computer operating properly (COP) module

• Serial Communication Interfaces (SCIs)

• Synchronous serial interface module (SSI)

• Serial peripheral interface (SPI)

• Quadrature Decoders

• Controller Area Network (CAN) Modules

Y1 Y0

Limiter

X0 A2 A1 A0 B2 B1 B0

MAC
and
ALU

Bus And Bit
Manipulation

Unit

OnCE

SP
R0
R1
R2

MOD.
ALU+/-Instr. Decoder

And

Interrupt Unit

Clock Gen.

IP-BUS (or PDGB)

CGDB

PDB

XAB2

XAB1
PAB

Clock & Control

Data
ALU

Program
Controller

AGU

Program
 Memory

Data Memory

Peripherals
XDB2

R3

OMR

External
Bus

Interface

PC

LA LC

SR

HWS

M01 N

AA0006
Freescale Semiconductor Introduction 1-3

Introduction
• Multiple channels Pulse Width Modulation (PWM) Modules

• External Memory Interface (EMI)

• Multiple channels Analog-to-Digital Converters (ADC)

• Programmable general-purpose I/O (dedicated & shared)

• JTAG/OnCE port for debugging

More blocks will be defined in the future to meet customer needs.
1-4 DSP56800 Family Manual Freescale Semiconductor

Introduction to Digital Signal Processing

le

es

y.
1.1.3 Family Members
The DSP56800 core processor is designed as a core processor for a family of Freescale DSCs. An examp
of a chip (56F807) built with this core is shown in Figure 1-3.

Figure 1-3. Example of Chip Built Around the DSP56800 Core

1.2 Introduction to Digital Signal Processing
DSC is the arithmetic processing of real-time signals sampled at regular intervals and digitized. Exampl
of DSC processing include the following:

• Filtering

• Convolution (mixing two signals)

• Correlation (comparing two signals)

• Rectification, amplification, and transformation

Figure 1-4 on page 1-6 shows an example of analog signal processing. The circuit in the illustration filters
a signal from a sensor using an operational amplifier and controls an actuator with the result. Since the
ideal filter is impossible to design, the engineer must design the filter for acceptable response by
considering variations in temperature, component aging, power-supply variation, and component accurac
The resulting circuit typically has low noise immunity, requires adjustments, and is difficult to modify.
Freescale Semiconductor Introduction 1-5

Introduction

le
The equivalent circuit using a DSC is shown in Figure 1-5 on page 1-7. This application requires an
analog-to-digital (A/D) converter and digital-to-analog (D/A) converter in addition to the DSC. Even with
these additional parts, the component count can be lower using a DSC due to the high integration availab
with current components.

Figure 1-4. Analog Signal Processing

x(t)
Input
From

Sensor

y t()
x t()

Rf
Ri
------ 1

1 jwRfCf+
----------------------------–=

y(t)
Output

To
Actuator

t

x(t)

Ri

Rf

Cf

Analog Filter

Frequency Characteristics

Ideal
Filter

f
fcFrequency

G
ai

n
y(t)+

–

AA0003

Actual
Filter
1-6 DSP56800 Family Manual Freescale Semiconductor

Introduction to Digital Signal Processing

er

Processing in this circuit begins by band limiting the input signal with an anti-alias filter, eliminating
out-of-band signals that can be aliased back into the pass band due to the sampling process. The signal is
then sampled, digitized with an A/D converter, and sent to the DSC.

The filter implemented by the DSC is strictly a matter of software. The DSC can directly employ any filt
that can also be implemented using analog techniques. Also, adaptive filters can be easily put into practice
using DSC, whereas these filters are extremely difficult to implement using analog techniques. (Similarly,
compression can also be implemented on a DSC.)

Figure 1-5. Digital Signal Processing

A

DSC Operation

Ideal
Filter

f
fc

Frequency

G
ai

n

FIR Filter

Finite Impulse
Response

c k() n k–()×
k 0=

N 1–

�¦A/D D/A

x(n) y(n)
y(t)x(t)

Analog
Filter

f
fc

Frequency

G
ai

n

Digital
Filter

f
fc

Frequency

G
ai

n

Low-Pass
Anti-Aliasing

Filter

Digital-to-Analog
Converter

Reconstruction
Low-Pass

A

A

Analog In Analog Out

Sampler and
Analog-to-Digital

Converter

AA0004
Freescale Semiconductor Introduction 1-7

Introduction

The DSC output is processed by a D/A converter and is low-pass filtered to remove the effects of
digitizing. In summary, the advantages of using the DSC include the following:

• Fewer components

• Stable, deterministic performance

• No filter adjustments

• Wide range of applications

• Filters with much closer tolerances

• High noise immunity

• Adaptive filters easily implemented

• Self-test can be built in

• Better power-supply rejection

The DSP56800 Family is not a custom IC designed for a particular application; it is designed as a
general-purpose DSC architecture to efficiently execute commonly used DSC benchmarks and controller
code in minimal time.

As shown in Figure 1-6, the key attributes of a DSC are as follows:

• Multiply/accumulate (MAC) operation

• Fetching up to two operands per instruction cycle for the MAC

• Program control to provide versatile operation

• Input/output to move data in and out of the DSC

Figure 1-6. Mapping DSC Algorithms into Hardware

X

�

MAC

X
Memory

Program

AA0005

FIR Filter

c k() n k–()×
k 0=

N 1–

�¦A/D D/A

x(n) y(n)
y(t)x(t)
1-8 DSP56800 Family Manual Freescale Semiconductor

Summary of Features

lt

o

e

n
m

,

al

,
The multiply-accumulation (MAC) operation is the fundamental operation used in DSC. The DSP56800
Family of processors has a dual Harvard architecture optimized for MAC operations. Figure 1-6 on
page 1-8 shows how the DSP56800 architecture matches the shape of the MAC operation. The two
operands, c() and x(), are directed to a multiply operation, and the result is summed. This process is bui
into the chip by allowing two separate data-memory accesses to feed a single-cycle MAC. The entire
process must occur under program control to direct the correct operands to the multiplier and save the
accumulated result as needed. Since the memory and the MAC are independent, the DSC can perform tw
memory moves, a multiply and an accumulate, and two address updates in a single operation. As a result,
many DSC benchmarks execute very efficiently for a single-multiplier architecture.

1.3 Summary of Features
The high throughput of the DSP56800 Family processors makes them well-suited for wireless and wirelin
communication, high-speed control, low-cost voice processing, numeric processing, and computer and
audio applications. The main features that contribute to this high throughput include the following:

• Speed—The DSP56800 supports most mid-performance DSC applications.

• Precision—The data paths are 16 bits wide, providing 96 dB of dynamic range; intermediate results
held in the 36-bit accumulators can range over 216 dB.

• Parallelism—Each on-chip execution unit, memory, and peripheral operates independently and i
parallel with the other units through a sophisticated bus system. The data ALU, AGU, and progra
controller operate in parallel so that the following can be executed in a single instruction:

— An instruction pre-fetch

— A 16-bit x 16-bit multiplication

— A 36-bit addition

— Two data moves

— Two address-pointer updates using one of two types of arithmetic (linear or modulo)

— Sending and receiving full-duplex data by the serial ports

— Timers continuing to count in parallel

• Flexibility —While many other DSCs need external communications circuitry to interface with
peripheral circuits (such as A/D converters, D/A converters, or host processors), the DSP56800
Family provides on-chip serial and parallel interfaces that can support various configurations of
memory and peripheral modules. The peripherals are interfaced to the DSP56800 core through a
peripheral interface bus, designed to provide a common interface to many different peripherals.

• Sophisticated debugging— Freescale’s On-Chip Emulation technology (OnCE) allows simple
inexpensive, and speed-independent access to the internal registers for debugging. OnCE tells
application programmers exactly what the status is within the registers, memory locations, and even
the last instructions that were executed.

• Phase-locked loop (PLL)–based clocking—The PLL allows the chip to use almost any available
external system clock for full-speed operation while also supplying an output clock synchronized
to a synthesized internal core clock. It improves the synchronous timing of the processors’ extern
memory port, eliminating the timing skew common on other processors.

• Invisible pipeline—The three-stage instruction pipeline is essentially invisible to the programmer
allowing straightforward program development in either assembly language or high-level
languages such as C or C++.
Freescale Semiconductor Introduction 1-9

Introduction

r

r

ser’s
• Instruction set—The instruction mnemonics are MCU-like, making the transition from
programming microprocessors to programming the chip as easy as possible. New microcontrolle
instructions, addressing modes, and bit-field instructions allow for significant decreases in program
code size. The orthogonal syntax controls the parallel execution units. The hardware DO loop
instruction and the repeat (REP) instruction make writing straight-line code obsolete.

• Low power—Designed in CMOS, the DSP56800 Family inherently consumes very low power.
Two additional low power modes, stop and wait, further reduce power requirements. Wait is a
low-power mode where the DSP56800 core is shut down but the peripherals and interrupt controlle
continue to operate so that an interrupt can bring the chip out of wait mode. In stop mode, even more
of the circuitry is shut down for the lowest power-consumption mode. There are also several
different ways to bring the chip out of stop mode.

1.4 For the Latest Information
For the latest electronic version of this document, as well as other DSC documentation (including u
manuals, product briefs, data sheets, and errata) please consult the inside front cover of this manual for
contact information for the following services:

• Freescale DSC World Wide Web site

• Freescale DSC Helpline

The DSC Web site maintain the most current specifications, documents, and drawings.
1-10 DSP56800 Family Manual Freescale Semiconductor

f
rol

Chapter 2
Core Architecture Overview
The DSP56800 core architecture is a 16-bit multiple-bus processor designed for efficient real-time digital
signal processing and general purpose computing. The architecture is designed as a standard
programmable core from which various DSC integrated circuit family members can be designed with
different on-chip and off-chip memory sizes and on-chip peripheral requirements. This chapter presents
the overall core architecture and the general programming model. More detailed information on the data
ALU, AGU, program controller, and JTAG/OnCE blocks within the architecture are found in later
chapters.

2.1 Core Block Diagram
The DSP56800 core is composed of functional units that operate in parallel to increase the throughput o
the machine. The program controller, AGU, and data ALU each contain their own register set and cont
logic, so each may operate independently and in parallel with the other two. Likewise, each functional unit
interfaces with other units, with memory, and with memory-mapped peripherals over the core’s internal
address and data buses. The architecture is pipelined to take advantage of the parallel units and
significantly decrease the execution time of each instruction.

For example, it is possible for the data ALU to perform a multiplication in a first instruction, for the AGU
to generate up to two addresses for a second instruction, and for the program controller to be fetching a
third instruction. In a similar manner, it is possible for the bit-manipulation unit to perform an operation of
the third instruction described above in place of the multiplication in the data ALU.

The major components of the core are the following:

• Data ALU

• AGU

• Program controller and hardware looping unit

• Bus and bit-manipulation unit

• OnCE debug port

• Address buses

• Data buses

Figure 2-1 on page 2-2 shows a block diagram of the CPU architecture.
Freescale Semiconductor Core Architecture Overview 2-1

Core Architecture Overview

e

Figure 2-1. DSP56800 Core Block Diagram

Note that Figure 2-1 illustrates two methods for connecting peripherals to the DSP56800 core: using the
Freescale-standard IP-BUS interface or via a dedicated Peripheral Global Data Bus (PGDB). The interfac
method used to connect to peripherals is dependent on the specific DSP56800-based device being used.
The latest products have chosen the IP-BUS interface. Consult your device user’s manual for more
information on peripheral interfacing.

CGDB
PDB

PAB
XAB2
XAB1

XDB2

PGDB (or IP-Bus)

Program
Memory

Data
Memory

IP-BUS
Interface

External
Bus

Interface

Instr. Decoder
and

Interrupt Unit

Program
Controller

OMR

PC

LA LC

SR

HWS

SP
R0
R1
R2

MOD.
ALU+/-

AGU

R3

M01 N

Bus and Bit
Manipulation

Unit

OnCE

Y1 Y0

Limiter

X0 A2 A1 A0 B2 B1 B0

Data
ALU

MAC
and
ALU
2-2 DSP56800 Family Manual Freescale Semiconductor

Core Block Diagram

ed for

) as
 16-bit

e
o
t
ss

rds.
2.1.1 Data Arithmetic Logic Unit (ALU)
The data arithmetic logic unit (ALU) performs all of the arithmetic and logical operations on data
operands. It consists of the following:

• Three 16-bit input registers (X0, Y0, and Y1)

• Two 36-bit accumulator registers (A and B)

— 16-bit registers (A0 and B0)

— 16-bit registers (A1 and B1)

— 4-bit extension registers (A2 and B2)

• An accumulator shifter (AS)

• One data limiter

• One 16-bit barrel shifter

• One parallel (single cycle, non-pipelined) multiply-accumulator (MAC) unit

The data ALU is capable of multiplication, multiply-accumulation (with positive or negative
accumulation), addition, subtraction, shifting, and logical operations in one instruction cycle. Arithmetic
operations are done using two’s-complement fractional or integer arithmetic. Support is also provid
unsigned and multi-precision arithmetic.

Data ALU source operands may be 16, 32, or 36 bits and may individually originate from input registers,
memory locations, immediate data, or accumulators. ALU results are stored in one of the accumulators. In
addition, some arithmetic instructions store their 16-bit results either in one of the three data ALU input
registers or directly in memory. Arithmetic operations and shifts can have a 16-bit or a 36-bit result.
Logical operations are performed on 16-bit operands and always yield 16-bit results.

Data ALU register values can be transferred (read or write) across the core global data bus (CGDB
16-bit operands. The X0 register value can also be written by X memory data bus two (XDB2) as a
operand. Refer to Chapter 3, “Data Arithmetic Logic Unit,” for a detailed description of the data ALU.

2.1.2 Address Generation Unit (AGU)
The address generation unit (AGU) performs all of the effective address calculations and address storag
necessary to address data operands in memory. The AGU operates in parallel with other chip resources t
minimize address-generation overhead. It contains two ALUs, allowing the generation of up to two 16-bi
addresses every instruction cycle: one for either X memory address bus one (XAB1) or program addre
bus (PAB) and one for X memory address bus two (XAB2). The ALU can directly address 65,536
locations on the XAB1 or XAB2 and 65,536 locations on the PAB, totaling 131,072 sixteen-bit data wo
It supports a complete set of addressing modes. Its arithmetic unit can perform both linear and modulo
arithmetic.

The AGU contains the following registers:

• Four address registers (R0-R3)

• A stack pointer register (SP)

• An offset register (N)

• A modifier register (M01)

• A modulo arithmetic unit

• An incrementer/decrementer unit
Freescale Semiconductor Core Architecture Overview 2-3

Core Architecture Overview

n

t
it

 of
The address registers are 16-bit registers that may contain an address or data. Each address register ca
provide an address for the XAB1 and PAB address buses. For instructions that read two values from X data
memory, R3 provides an address for the XAB2, and R0 or R1 provides an address for the XAB1. The
modifier and offset registers are 16-bit registers that control updating of the address registers. The offse
register can also be used to store 16-bit data. AGU registers may be read or written by the CGDB as 16-b
operands. Refer to Chapter 4, “Address Generation Unit,” for a detailed description of the AGU.

2.1.3 Program Controller and Hardware Looping Unit
The program controller performs the following:

• Instruction prefetch

• Instruction decoding

• Hardware loop control

• Interrupt (exception) processing

Instruction execution is carried out in other core units such as the data ALU, AGU, or bit-manipulation
unit. The program controller consists of the following:

• A program counter unit

• Instruction latch and decoder

• Hardware looping control logic

• Interrupt control logic

• Status and control registers

Located within the program controller are the following:

• Four user-accessible registers:

— Loop address register (LA)

— Loop count register (LC)

— Status register (SR)

— Operating mode register (OMR)

• A program counter (PC)

• A hardware stack (HWS)

In addition to the tasks listed above, the program controller also controls the memory map and operating
mode. The operating mode and memory map are programmable via the OMR, and are established after
reset by external interface pins.

The HWS is a separate internal last-in-first-out (LIFO) buffer of two 16-bit words that stores the address
the first instruction in a hardware DO loop. When a new hardware loop is begun by executing the DO
instruction, the address of the first instruction in the loop is stored (pushed) on the “top” location of the
HWS, and the LF bit in the SR is set. The previous value of the loop flag (LF) bit is copied to the OMR’s
NL bit. When an ENDDO instruction is encountered or a hardware loop terminates naturally, the 16-bit
address in the “top” location of the HWS is discarded, and the LF bit is updated with the value in the
OMR’s nested looping (NL) bit.

The program controller is described in detail in Chapter 5, “Program Controller.” For more details on
program looping, refer to Section 5.3, “Program Looping,” on page 5-14 and Section 8.6, “Loops,” on
page 8-20. For information on reset and interrupts, refer to Chapter 7, “Interrupts and the Processing
States.”
2-4 DSP56800 Family Manual Freescale Semiconductor

Core Block Diagram

r

cial

and

ug

g
2.1.4 Bus and Bit-Manipulation Unit
Transfers between internal buses are accomplished in the bus unit. The bus unit is similar to a switch
matrix and can connect any two of the three internal data buses together without introducing delays. This
allows data to be moved from program to data memory, for example. The bus unit is also used to transfe
data to the IP-Bus (or PGDB) on those devices that use it to connect to on-chip peripherals.

The bit-manipulation unit performs bit-field manipulations on X (data) memory words, peripheral
registers, and all registers within the DSP56800 core. It is capable of testing, setting, clearing, or inverting
any bits specified in a 16-bit mask. For branch-on-bit-field instructions, this unit tests bits on the upper or
lower byte of a 16-bit word (that is, the mask can only test up to 8 bits at a time).

Note that when the IP-BUS (or PGDB) interface is used, peripheral registers may be memory mapped into
any data (X) memory address range and are accessed with standard X-memory reads and writes. If the
peripheral registers are mapped to the last 64 locations in X memory, these can be accessed with a spe
memory addressing mode (see Section 4.2.4.3, “I/O Short Address (Direct Addressing): <pp>,” on
page 4-23).

2.1.5 On-Chip Emulation (OnCE) Unit
The On-Chip Emulation (OnCE) unit allows the user to interact in a debug environment with the
DSP56800 core and its peripherals non-intrusively. Its capabilities include examining registers, on-chip
peripheral registers or memory, setting breakpoints on program or data memory, and stepping or tracing
instructions. It provides simple, inexpensive, and speed-independent access to the internal DSP56800 core
by interacting with a user-interface program running on a host workstation for sophisticated debugging
economical system development.

Dedicated pins through the JTAG port allow the user access to the DSC in a target system, retaining deb
control without sacrificing other user-accessible on-chip resources. This technique eliminates the costly
cabling and the access to processor pins required by traditional emulator systems. Refer to Chapter 9,
“JTAG and On-Chip Emulation (OnCE™),” for a detailed description of the JTAG/OnCE port. Consult
your development system’s documentation for information on debugging using the JTAG/OnCE port
interface.

2.1.6 Address Buses
Addresses are provided to the internal X data memory on two unidirectional 16-bit buses, X memory
address bus one (XAB1) and X memory address bus two (XAB2). Program memory addresses are
provided on the 16-bit program address bus (PAB). Note that XAB1 can provide addresses for accessin
both internal and external memory, whereas XAB2 can only provide addresses for accessing internal
memory.

2.1.7 Data Buses
Inside the chip, data is transferred using the following:

• Bidirectional 16-bit buses:

— Core global data bus (CGDB)

— Program data bus (PDB)

— IB-BUS or Peripheral Global data bus (PGDB) — dependent on chip implementation

• One unidirectional 16-bit bus: X memory data bus two (XDB2)
Freescale Semiconductor Core Architecture Overview 2-5

Core Architecture Overview

s,

s
d

es.
each
 a

is

r,
Data transfer between the data ALU and the X data memory uses the CGDB when one memory access is
performed. When two simultaneous memory reads are performed, the transfers use the CGDB and the
XDB2. All other data transfers occur using the CGDB, except transfers to and from peripherals on
DSP56800-based devices that implement the IP-BUS or PGDB peripheral data bus. Instruction word
fetches occur simultaneously over the PDB. The bus structure supports general register-to-register move
register-to-memory moves, and memory-to-register moves, and can transfer up to three 16-bit words in the
same instruction cycle. Transfers between buses are accomplished in the bus and bit-manipulation unit. A
a general rule, when any register less than 16 bits wide is read, the unused bits are read as zeros. Reserve
and unused bits should always be written with zeros to insure future compatibility.

2.2 Memory Architecture
The DSP56800 has a dual Harvard memory architecture, with separate program and data memory spac
Each address space supports up to 216 (65,536) memory words. Dedicated address and data buses for
address space allow for simultaneous accesses to both program memory and data memory. There is also
support for a second read-only data path to data memory. In DSP56800 Family devices that implement th
second bus, it is possible to initiate two simultaneous data read operations, allowing for a total of three
parallel memory accesses.

Figure 2-2. DSP56800 Memory Spaces

Locations $0 through $007F in the program memory space are available for reset and interrupt vectors.
Peripheral registers are located in the data memory address space as memory-mapped registers. This
peripheral space can be located anywhere in the data address space, although the address range
$FFC0–$FFFF provides faster access when using an addressing mode optimized for this region; howeve
the location of the peripheral space is dependent on the specific peripheral bus implementation of the
DSP56800 core. See Section 4.2.4.3, “I/O Short Address (Direct Addressing): <pp>,” on page 4-23 for
more information.

$0

$FFFF

0

64K or 216

$FFC0 (64K - 64)

Optimized for
Peripherals

X Data

Memory
Space

$0

$FFFF

0

64K or 216

Program

Memory
Space

Interrupt
Vectors

$7F 127

 NOTE: The placement of the peripheral space is dependent on the specific system
implementation for the DSP56800 core. When the IP-BUS interface is used,

 peripheral registers may be memory mapped into any data (X) memory address
range and are accessed with standard X-memory reads and writes.
2-6 DSP56800 Family Manual Freescale Semiconductor

Blocks Outside the DSP56800 Core

heral
tail

e

A
2.3 Blocks Outside the DSP56800 Core
The following blocks are optionally found on DSP56800-based DSC chips and are considered perip
and memory blocks, not part of the DSP56800 core. These and other blocks are described in greater de
in the appropriate chip-specific user’s manual. Figure 2-3 shows an example DSP56800-based device.
Note that this device uses the Freescale IP-BUS interface to connect to peripherals. Other chips may us
the PGDB peripheral bus.

Figure 2-3. Sample DSP56800-Family Chip Block Diagram

2.3.1 External Data Memory
External data memory (data RAM, data FLASH, or both) can be added around the core on a chip.
Addresses are received from the XAB1 and XAB2. Data transfers occur on the CGDB and XDB2. One
read, one write, or two reads can be performed during one instruction cycle using the internal data
memory. Depending upon the particular on-chip peripherals found on a device, some portion of the data
address space may be reserved for peripheral registers, and not be accessible as external data memory.
total of 65,536 memory locations can be addressed.

Program
RAM/FLASH

Expansion

XAB1

XAB2

PAB

PDB

CGDB

IRQB

RESET

16-Bit Data Bus
IRQA

Peripheral
Modules

Expansion
Area

DSC
16-Bit
Core

Program

Data ALU

16 x 16 + 36 � 36-Bit MAC

Three 16-Bit Input Registers

Two 36-Bit Accumulators

JTAG/

On-Chip

Address
Generation

Unit

Internal
Data Bus

Switch

PLL

X
D

B
2

Data
RAM/FLASH

Expansion

Clock
Generator

Controller

IP-BUS

Bridge

OnCETM
Freescale Semiconductor Core Architecture Overview 2-7

Core Architecture Overview

 for

he

e
 in the
nd
2.3.2 Program Memory
Program memory (program RAM, program FLASH, or both) can be added around the core on a chip.
Addresses are received from the PAB and data transfers occur on the PDB. The first 128 locations of the
program memory are available for interrupt vectors, although it is not necessary to use all 128 locations
interrupt vectors. Some can be used for the user program if desired. The number of locations required for
an application depends on what peripherals on the chip are used by an application and the locations of their
corresponding interrupt vectors. The program memory may be expanded off chip, and up to 65,536
locations can be addressed.

2.3.3 Bootstrap Memory
A program bootstrap FLASH is usually found on chips that have on-chip program RAM. The bootstrap
FLASH is used for initially loading application code into the on-chip program RAM so it can be run from
there. Refer to Section 5.1.9.1, “Operating Mode Bits (MB and MA) — Bits 1–0,” on page 5-10 and to t
user’s manual of the particular DSC chip for a description of the different bootstrapping modes.

2.3.4 IP-BUS Bridge
Some devices based on the DSP56800 architecture connect to on-chip peripherals using the
Freescale-standard IP-BUS interface. These devices contain an IP-BUS bridge unit, which allows
peripherals to be accessed using the CGDB data bus and XAB1 address bus. Peripheral registers are
memory-mapped into the data address space. Consult the appropriate DSP56800-based device User’s
Manual for more information on peripheral interfacing for a particular chip.

2.3.5 Phase Lock Loop (PLL)
The phase lock loop (PLL) allows the DSC chip to use an external clock different from the internal system
clock, while optionally supplying an output clock synchronized to a synthesized internal clock. This PLL
allows full-speed operation using an external clock running at a different speed. The PLL performs
frequency multiplication, skew elimination, and reduces overall system power by reducing the frequency
on the input reference clock.

2.4 DSP56800 Core Programming Model
The registers in the DSP56800 core that are considered part of the DSP56800 core programming model ar
shown in Figure 2-4 on page 2-9. There may also be other important registers that are not included
DSP56800 core, but mapped into the data address space. These include registers for peripheral devices a
other functions that are not bound into the core.
2-8 DSP56800 Family Manual Freescale Semiconductor

DSP56800 Core Programming Model
Figure 2-4. DSP56800 Core Programming Model

N M01

Program Controller Unit

Hardware Stack (HWS)

Data ALU Input Registers

Accumulator Registers

Data Arithmetic Logic Unit

SP

R3

R2

R1

R0

MR CCR OMR

Pointer

Registers

Offset

Register

Modifier

Register

Program

Counter

Status

Register (SR)

Operating Mode

Register

LALC

Loop AddressLoop Counter

Y

A

B

X0 Y0Y1

A0A1A2

B0B1B2

PC

31 16 15 0

15 0 15 015 0

31 16 15 035 32

15 015 03

31 16 15 035 32

15 015 0

15 0

15 0 15 0

15 0 15 0 15 08 7

15 015 0

Address Generation Unit

AA0007

12 0

0

3 0
Freescale Semiconductor Core Architecture Overview 2-9

Core Architecture Overview
2-10 DSP56800 Family Manual Freescale Semiconductor

Chapter 3
Data Arithmetic Logic Unit
This chapter describes the architecture and the operation of the data arithmetic logic unit (ALU), the block
where the multiplication, logical operations, and arithmetic operations are performed. (Addition can also
be performed in the address generation unit, and the bit-manipulation unit can perform logical operations.)
The data ALU contains the following:

• Three 16-bit input registers (X0, Y0, and Y1)

• Two 36-bit accumulator registers (A and B)

— 16-bit registers (A0 and B0)

— 16-bit registers (A1 and B1)

— 4-bit extension registers (A2 and B2)

• An accumulator shifter (AS)

• One data limiter

• One 16-bit barrel shifter

• One parallel (single cycle, non-pipelined) multiply-accumulator (MAC) unit

Multiple buses in the data ALU perform complex arithmetic operations (such as a multiply-accumulate
operations) in parallel with up to two memory transfers. A discussion of fractional and integer data
representations; signed, unsigned, and multi-precision arithmetic; condition code generation; and the
rounding modes used in the data ALU are also described in this section.

The data ALU can perform the following operations in a single instruction cycle:

• Multiplication (with or without rounding)

• Multiplication with negated product (with or without rounding)

• Multiplication and accumulation (with or without rounding)

• Multiplication and accumulation with negated product (with or without rounding)

• Addition and subtraction

• Compares

• Increments and decrements

• Logical operations (AND, OR, and EOR)

• One’s-complement

• Two’s-complement (negation)

• Arithmetic and logical shifts

• Rotates

• Multi-bit shifts on 16-bit values
Freescale Semiconductor Data Arithmetic Logic Unit 3-1

Data Arithmetic Logic Unit

”

• Rounding

• Absolute value

• Division iteration

• Normalization iteration

• Conditional register moves (Tcc)

• Saturation (limiting)

3.1 Overview and Architecture
The major components of the data ALU are the following:

• Three 16-bit input registers (X0, Y0, and Y1)

• Two 36-bit accumulator registers (A and B)

— 16-bit registers (A0 and B0)

— 16-bit registers (A1 and B1)

— 4-bit extension registers (A2 and B2)

• An accumulator shifter (AS)

• One data limiter

• One 16-bit barrel shifter

• One parallel (single cycle, non-pipelined) multiply-accumulator (MAC) unit

A block diagram of the data ALU unit is shown in Figure 3-1 on page 3-3, and its corresponding
programming model is shown in Figure 3-2 on page 3-4. In the programming model, accumulator “A
refers to the entire 36-bit accumulator register, whereas “A2,” “A1,” and “A0” refer to the directly
accessible extension, most significant portions, and least significant portions of the 36-bit accumulator,
respectively. Instructions can access the register as a whole or by these individual portions (see
Section 3.1.2, “Data ALU Accumulator Registers,” on page 3-4 and Section 3.2, “Accessing the
Accumulator Registers,” on page 3-7). The blocks and registers within the data ALU are explained in the
following sections.
3-2 DSP56800 Family Manual Freescale Semiconductor

Overview and Architecture
Figure 3-1. Data ALU Block Diagram

XDB2

Condition Codes
to Status Register

Arith/Logical
Shifterx

Optional
Inverter

SHIFTER/MUX

A0A2 A1

+

B0B2 B1

Condition Code
Generation

CGDB

36-bit Accumulator Shifter

Rounding
Constant

Y1

Y0

X0

MAC Output Limiter

EXT:MSP:LSP

LI
M

IT
E

R

OMR’s SA Bit

OMR’s CC Bit
Freescale Semiconductor Data Arithmetic Logic Unit 3-3

Data Arithmetic Logic Unit

h
ent

w
e

e

3.1.1 Data ALU Input Registers (X0, Y1, and Y0)
The data ALU registers (X0, Y1, and Y0) are 16-bit registers that serve as inputs for the data ALU. Eac
register may be read or written by the CGDB as a word operand. They may be treated as three independ
16-bit registers, or as one 16-bit register and one 32-bit register. Y1 and Y0 can be concatenated to form
the 32-bit register Y, with Y1 being the most significant word and Y0 being the least significant word.
Figure 3-2 shows this arrangement.

These data ALU input registers are used as source operands for most data ALU operations and allow ne
operands to be loaded from the memory for the next instruction while the register contents are used by th
current instruction. X0 may also be written by the XDB2 during the dual read instruction. Certain
arithmetic operations also allow these registers to be specified as destinations.

3.1.2 Data ALU Accumulator Registers
The two 36-bit data ALU accumulator registers can be accessed either as a 36-bit register (A or B) or as th
following, individual portions of the register:

• 4-bit extension register (A2 or B2)

• 16-bit MSP (A1 or B1)

• 16-bit LSP (A0 or B0)

The three individual portions make up the entire accumulator register, as shown in Figure 3-2.

These two techniques for accessing the accumulator registers provide important flexibility for both DSC
algorithms and general-purpose computing tasks. Accessing these registers as entire accumulators (A or B)
is particularly useful for DSC tasks, because this preserves the full precision of multiplication and other
ALU operations. Data limiting and saturation are also possible using the full registers, in cases where the
final result of a computation that has overflowed is moved (see Section 3.4.1, “Data Limiter,” on page
3-26).

Figure 3-2. Data ALU Programming Model

X0

Data ALU Input Registers

Accumulator Registers

Data Arithmetic Logic Unit

Y

A

B

Y0Y1

A0A1A2

B0B1B2

AA0035

15 0

15 0

31 16 15 0

15 0

31 16 15 035 32

15 0 15 03 0

31 16 15 035 32

15 0 15 03 0
3-4 DSP56800 Family Manual Freescale Semiconductor

Overview and Architecture

h

B.

.

n

Accessing an accumulator through its individual portions (A2, A1, A0, B2, B1, or B0) is useful for systems
and control programming. When accumulators are manipulated using their constituent components,
saturation and limiting are disabled. This allows for microcontroller-like 16-bit integer processing for
non-DSC purposes.

Section 3.2, “Accessing the Accumulator Registers,” provides a complete discussion of the ways in whic
the accumulators can be employed. A description of the data limiting and saturation features of the data
ALU is provided in Section 3.4, “Saturation and Data Limiting.”

3.1.3 Multiply-Accumulator (MAC) and Logic Unit
The multiply-accumulator (MAC) and logic unit is the main arithmetic processing unit of the DSC. This is
the block that performs all multiplication, addition, subtraction, logical, and other arithmetic operations
except shifting. It accepts up to three input operands and outputs one 36-bit result of the form
EXT:MSP:LSP (extension : most significant product : least significant product). Arithmetic operations in
the MAC unit occur independently and in parallel with memory accesses on the CGDB, XDB2, and PD
The data ALU registers provide pipelining for both data ALU inputs and outputs. An input register may be
written by memory in the same instruction where it is used as the source for a data ALU operation. The
inputs of the MAC and logic unit can come from the X and Y registers (X0, Y1, Y0), the accumulators
(A1, B1, A, B), and also directly from memory for common instructions such as ADD and SUB.

The multiplier executes 16-bit x 16-bit parallel signed/unsigned fractional and 16-bit x 16-bit parallel
signed integer multiplications. The 32-bit product is added to the 36-bit contents of either the A or B
accumulator or to the 16-bit contents of the X0, Y0, or Y1 registers and then stored in the same register
This multiply-accumulate is a single cycle operation (no pipeline). For integer multiplication, the 16 LSBs
of the product are stored in the MSP of the accumulator; the extension register is filled with sign extensio
and the LSP of the accumulator remains unchanged.

If a multiply without accumulation is specified by a MPY or MPYR instruction, the unit clears the
accumulator and then adds the contents to the product. The results of all arithmetic instructions are valid
(sign extended) 36-bit operands in the form EXT:MSP:LSP (A2:A1:A0 or B2:B1:B0).

When a 36-bit result is to be stored as a 16-bit operand, the LSP can simply be truncated, or it can be
rounded into the MSP. The rounding performed is either the convergent rounding (round to the nearest
even) or two’s-complement rounding. The type of rounding is specified by the rounding bit in the
operating mode register. See Section 3.5, “Rounding,” for a more detailed discussion of rounding.

The logic unit performs the logical operations AND, OR, EOR, and NOT on data ALU registers. It is 16
bits wide and operates on data in the MSP of the accumulator. The least significant and EXT portions of
the accumulator are not affected. Logical operations can also be performed in the bit-manipulation unit.
The bit-manipulation unit is used when performing logical operations with immediate values and can be
performed on any register or memory location.

3.1.4 Barrel Shifter
The 16-bit barrel shifter performs single-cycle, 0- to 15-bit arithmetic or logical shifts of 16-bit data. Since
both the amount to be shifted as well as the value to shift come from registers, it is possible to shift data by
a variable amount. See Figure 3-3 on page 3-6. It is also possible to use this unit to right shift 32-bit values
using the ASRAC and LSRAC instructions, as demonstrated in Section 8.2, “16- and 32-Bit Shift
Operations,” on page 8-8.
Freescale Semiconductor Data Arithmetic Logic Unit 3-5

Data Arithmetic Logic Unit

e

Figure 3-3. Right and Left Shifts Through the Multi-Bit Shifting Unit

The barrel shifter performs all multi-bit shifts operations: arithmetic shifts (ASLL, ASRR), and logical
shift (LSRR). When the destination is a 36-bit accumulator, the extension register is always loaded with
sign extension from bit 31 for arithmetic shifts (and zero extended for logical shift). The LSP is always set
to zero for these operations. Note that the LSLL is implemented as an ASLL instruction but only accepts
16-bit registers as destinations. For information on LSLL, refer to Section 6.5.2, “LSLL Alias,” on page
6-12 and Appendix A.

3.1.5 Accumulator Shifter
The accumulator shifter is an asynchronous parallel shifter with a 36-bit input and a 36-bit output. The
operations performed by this unit are as follows:

• No shift performed — ADD, SUB, MAC, and so on

• 1-bit left shift — ASL, LSL, ROL

• 1-bit right shift — ASR, LSR, ROR

• Force to zero — MPY, IMPY16

The output of the shifter goes directly to the MAC unit as an input.

3.1.6 Data Limiter and MAC Output Limiter
The data ALU contains two units that implement optional saturation of mathematical results, the Data
Limiter and the MAC Output Limiter. The Data Limiter saturates values when data is moved out of an
accumulator with a move instruction or parallel move. The MAC Output Limiter saturates the output of th
data ALU’s MAC unit.

Section 3.4, “Saturation and Data Limiting,” provides an in-depth discussion of saturation and limiting, as
well as a description of the operation of the two limiter units.

F A A AF

EXT MSP

0 0 0 0

LSP

A

Multi-Bit

Shifting Unit

16 4

A A A 0F

EXT MSP

0 0 0 0

LSP

A

Multi-Bit

Shifting Unit

16 4

$AAAA $4 $AAAA $4

Example: Right Shifting (ASRR) Example: Left Shifting (ASLL)

35 32 31 16 15 0 35 32 31 16 15 0

AA0039
3-6 DSP56800 Family Manual Freescale Semiconductor

Accessing the Accumulator Registers

0)

ol

,

d
3.2 Accessing the Accumulator Registers
An accumulator register can be accessed in two different ways:

• as an entire register, F (representing accumulator A or B)

• by the individual register portion: F2, F1, or F0 (representing A2 or B2, A1 or B1 and A0 or B

The ability to access the accumulator registers in both ways provides important flexibility, allowing for
powerful DSC algorithms as well as general-purpose computing tasks.

Accessing an entire accumulator register (A or B) is particularly useful for DSC tasks, since it preserves
the complete 36-bit register—and thus the entire precision of a multiplication or other ALU operation. It
also provides limiting (or saturation) capability in cases when storing a result of a computation that would
overflow the destination size. See Section 3.4, “Saturation and Data Limiting.”

Accessing an accumulator through its individual portions (F2, F1, or F0) is useful for systems and contr
programming. For example, if a DSC algorithm is in progress and an interrupt is received, it is usually
necessary to save every accumulator used by the interrupt service routine. Since an interrupt can occur at
any step of the DSC task (that is, right in the middle of a DSC algorithm), it is important that no saturation
takes place. Thus, an interrupt service routine can store the individual accumulator portions on the stack
effectively saving the entire 36-bit value without any limiting. Upon completion of the interrupt routine,
the contents of the accumulator can be exactly restored from the stack.

The DSP56800 instruction set transparently supports both methods of access. An entire accumulator may
be accessed simply through the specification of the full-register name (A or B), while portions are accesse
through the use of their respective names (A0, B1, and so on).

Table 3-1 provides a summary of the various access methods. These are described in more detail in
Section 3.2.1, “Accessing an Accumulator by Its Individual Portions,” and Section 3.2.2, “Accessing an
Entire Accumulator.”

Table 3-1. Accessing the Accumulator Registers

Register Read of an Accumulator Register Write to an Accumulator Register

A
B

For a MOVE instruction:
If the extension bits are not in use for the accumu-
lator to be read, then the 16-bit contents of the F1
portion of the accumulator are read onto the
CGDB bus.
If the extension bits are in use, then a 16-bit “lim-
ited” value is instead read onto the CGDB. See
Section 3.4.1, “Data Limiter.”

When used in an arithmetic operation:
All 36 bits are sent to the MAC unit without limit-
ing.

For a MOVE instruction:
The 16 bits of the CGDB bus are written into the
16-bit F1 portion of the register.
The extension portion of the same accumulator,
F2, is filled with sign extension. The F0 portion is
set to zero.

A2
B2

For a MOVE instruction:
The 4-bit register is read onto the 4 LSBs of the
CGDB bus.
The upper 12 bits of the bus are sign extended.
See Figure 3-5 on page 3-9.

For a MOVE instruction:
The 4 LSBs of the CGDB are written into the 4-bit
register; the upper 12 bits are ignored.
The corresponding F1 and F0 portions are not
modified.
See Figure 3-4 on page 3-8.
Freescale Semiconductor Data Arithmetic Logic Unit 3-7

Data Arithmetic Logic Unit

using
In all cases in Table 3-1 where a MOVE operation is specified, it is understood that the function is
identical for parallel moves and bit-field operations.

3.2.1 Accessing an Accumulator by Its Individual Portions
The instruction set provides instructions for loading and storing one of the portions of an accumulator
register without affecting the other two portions. When an instructions uses the F1 or F0 notation instead of
F, the instruction only operates on the 16-bit portion specified without modifying the other two portions.
When an instruction specifies F2, then the instruction operates only on the 4-bit accumulator extension
register without modifying the F1 or F0 portions of the accumulator. Refer to Table 3-1 for a summary of
accessing the accumulator registers.

Data limiting, as outlined in Section 3.4, “Saturation and Data Limiting,” is enabled only when an entire
accumulator is being stored to memory. When only a portion of an accumulator is being stored (by
an instruction which specifies F2, F1, or F0), limiting through the data limiter does not occur.

When F2 is written, the register receives the low-order portion of the word; the high-order portion is not
used. See Figure 3-4.

Figure 3-4. Writing the Accumulator Extension Registers (F2)

When F2 is read, the register contents occupy the low-order portion (bits 3–0) of the word; the high-order
portion (bits 15–4) is sign extended. See Figure 3-5.

A1
B1

For a MOVE instruction:
The 16-bit F1 portion is read onto the CGDB bus.

When used in an arithmetic operation:
The F1 register is used as a 16-bit source operand
for an arithmetic operation.

F1 can be used in the following:
MOVE
Parallel Move
Several different arithmetic

For a MOVE instruction:
The contents of the CGDB bus are written into the
16-bit F1 register.
The corresponding F2 and F0 portions are not
modified.

A0
B0

For a MOVE instruction:
The 16-bit F0 register is read onto the CGDB bus.

For a MOVE instruction:
The contents of the CGDB bus are written into the
16-bit F0 register.
The corresponding F2 and F1 portions are not
modified.

Table 3-1. Accessing the Accumulator Registers (Continued)

Register Read of an Accumulator Register Write to an Accumulator Register

CGDB Bus Contents

Not Used
4 LSB of

Word

Register F2 Used
as a Destination

15 4 3 0

F2No Bits Present Register F2

15 4 3 0
3-8 DSP56800 Family Manual Freescale Semiconductor

Accessing the Accumulator Registers

n
Figure 3-6 shows the result of writing values to each portion of the accumulator. Note that only the portio
specified in the instruction is modified; the other two portions remain unchanged.

See Section 3.2, “Accessing the Accumulator Registers,” for a discussion of when it is appropriate to
access an accumulator by its individual portions and when it is appropriate to access it as an entire
accumulator.

Figure 3-5. Reading the Accumulator Extension Registers (F2)

Figure 3-6. Writing the Accumulator by Portions

F2

CGDB Bus Contents

Register F2
Used as a Source

Sign Extension
of F2

Contents
of F2

No Bits Present Register F2

4 LSB of
Word

15 4 3 0

15 4 3 0

Before Execution

X X X XX
A2 A1

X X X X
A0

A

After Execution

X X X XD
A2 A1

X X X X
A0

A
35 32 31 16 15 0 35 32 31 16 15 0

Writing the F2 Portion Example : MOVE #$ABCD,A2

Before Execution

X X X XX
A2 A1

X X X X
A0

A

After Execution

1 2 3 4X
A2 A1

X X X X
A0

A
35 32 31 16 15 0 35 32 31 16 15 0

Writing the F1 Portion Example : MOVE #$1234,A1

Before Execution

X X X XX
A2 A1

X X X X
A0

A

After Execution

X X X XX
A2 A1

A 9 8 7
A0

A
35 32 31 16 15 0 35 32 31 16 15 0

Writing the F0 Portion Example : MOVE #$A987,A0
Freescale Semiconductor Data Arithmetic Logic Unit 3-9

Data Arithmetic Logic Unit

ot

s

sion

3.2.2 Accessing an Entire Accumulator

3.2.2.1 Accessing for Data ALU Operations

The complete accumulator is accessed to provide a source, a destination, or both for an ALU or
multiplication operation in the data ALU. In this case, the accumulator is written as an entire 36-bit
accumulator (F), not as an individual register (F2, F1, or F0). The accumulator registers receive the
EXT:MSP:LSP of the multiply-accumulator unit output when used as a destination and supply a source
accumulator of the same form. Most data ALU operations specify the 36-bit accumulator registers as
source operands, destination operands, or both.

3.2.2.2 Writing an Accumulator with a Small Operand

Automatic sign extension of the 36-bit accumulators is provided when the accumulator is written with a
smaller size operand. This can occur when writing F from the CGDB (MOVE instruction) or with the
results of certain data ALU operations (for example, ADD, SUB, or TFR from a 16-bit register to a 36-bit
accumulator). If a word operand is to be written to an accumulator register (F), the F1 portion of the
accumulator is written with the word operand, the LSP is zeroed, and the EXT portion receives sign
extension. This is also the case for a MOVE instruction that moves one accumulator to another, but is n
the case for a TFR instruction that moves one entire accumulator to another. No sign extension is
performed if an individual 16-bit register is written (F1 or F0).

NOTE:

A read of the F1 register in a MOVE instruction is identical to a read of the
F accumulator for the case where the extension bits of that accumulator
only contain sign-extension information. In this case there is no need for
saturation or limiting, so reading the F accumulator produces the same
result as reading the F1 register.

3.2.2.3 Extension Registers as Protection Against Overflow

The F2 extension registers offer protection against 32-bit overflow. When the result of an accumulation
crosses the MSB of MSP (bit 31 of F), the extension bit of the status register (E) is set. Up to 15 overflow
or underflows are possible using these extension bits, after which the sign is lost beyond the MSB of the
extension register. When this occurs, the overflow bit (V) in the status register is set. Having an exten
register allows overflow during intermediate calculations without losing important information. This is
particularly useful during execution of DSC algorithms, when intermediate calculations (but not the final
result that is written to memory or to a peripheral) may sometimes overflow.

The logic detection of “extension register in use” is also used to determine when to saturate the value of an
accumulator when it is being read onto the CGDB or transferred to any data ALU register. If saturation
occurs, the content of the original accumulator is not affected (except if the same accumulator is specified
as both source and destination); only the value transferred over the CGDB is limited to a full-scale positive
or negative 16-bit value ($7FFF or $8000).

When limiting occurs, a flag is set and latched in the status register (L). The limiting block is explained in
more detail in Section 3.4.1, “Data Limiter.”

NOTE:

Limiting will be performed only when the entire 36-bit accumulator
register (F) is specified as the source for a parallel data move or a register
transfer. It is not performed when F2, F1 or F0 is specified.
3-10 DSP56800 Family Manual Freescale Semiconductor

Accessing the Accumulator Registers

3.2.2.4 Examples of Writing the Entire Accumulator

Figure 3-7 shows the result of writing a 16-bit signed value to an entire accumulator. Note that all three
portions of the accumulator are modified. The LSP (B0) is set to zero, and the extension portion (B2) is
appropriately sign extended.

Figure 3-7. Writing the Accumulator as a Whole

Successfully using the DSP56800 Family requires a full understanding of the methods and implications of
the various accumulator-register access methods. The architecture of the accumulator registers offers a
great deal of flexibility and power, but it is necessary to completely understand the access mechanisms
involved to fully exploit this power.

3.2.3 General Integer Processing
General integer and control processing typically involves manipulating 16- and 32-bit integer quantities.
Rarely will such code use a full 36-bit accumulator such as that implemented by the DSP56800 Family.
The architecture of the DSP56800 supports the manipulation of 16-bit integer quantities using the
accumulators, but care must be taken when performing such manipulation.

3.2.3.1 Writing Integer Data to an Accumulator

When loading an accumulator, it is most desirable for the 36 bits of the accumulator to correctly reflect the
16-bit data. To this end, it is recommended that all accumulator loads of 16-bit data clear the least
significant portion of the accumulator and also sign extend the extension portion. This can be
accomplished through specifying the full accumulator register as the destination of the move, as shown in
Example 3-1.

Example 3-1. Loading an Accumulator with a Word for Integer Processing

MOVE X:(R0),A ; A2 receives sign extension
; A1 receives the 16-bit data
; A0 receives the value $0000

Before Execution

X X X XX
B2 B1

X X X X
B0

B

After Execution

1 2 3 40
B2 B1

0 0 0 0
B0

B
35 32 31 16 15 0 35 32 31 16 15 0

Writing a Positive Value into 36-Bit Accumulator Example : MOVE #$1234,B

Before Execution

X X X XX
B2 B1

X X X X
B0

B

After Execution

A 9 8 7F
B2 B1

0 0 0 0
B0

B
35 32 31 16 15 0 35 32 31 16 15 0

Writing a Negative Value into 36-Bit Accumulator Example : MOVE #$A987,B
Freescale Semiconductor Data Arithmetic Logic Unit 3-11

Data Arithmetic Logic Unit

”

s
s

n

Loading a 16-bit integer value into the A1 portion of the register is generally discouraged. In almost all
cases, it is preferable to follow Example 3-1 on page 3-11. One notable exception is when 36-bit
accumulator values must be stored temporarily. See Section 3.2.5, “Saving and Restoring Accumulators,
for more details.

3.2.3.2 Reading Integer Data from an Accumulator

Integer and control processing algorithms typically involve the manipulation of 16-bit quantities that
would be adversely affected by saturation or limiting. When such integer calculations are performed, it is
often desirable not to have overflow protection when results are stored to memory. To ensure that the data
ALU’s data limiter is not active when an accumulator is being read, it is necessary to store not the full
accumulator, but just the MSP (A1 portion). See Example 3-2.

Example 3-2. Reading a Word from an Accumulator for Integer Processing

MOVE A1,X:Variable_1 ; Saturation is disabled

Note that with the use of the A1 register instead of the A register, saturation is disabled. The value in A1 is
written “as is” to memory.

3.2.4 Using 16-Bit Results of DSC Algorithms
A DSC algorithm may use the full 36-bit precision of an accumulator while performing DSC calculation
such as digital filtering or matrix multiplications. Upon completion of the algorithm, however, sometime
the result of the calculation must be saved in a 16-bit memory location or must be written to a 16-bit D/A
converter. Since DSC algorithms process digital signals, it is important that when the 36-bit accumulator
value is converted to a 16-bit value, saturation is enabled so signals that overflow 16 bits are appropriately
clipped to the maximum positive or negative value. See Example 3-3.

Example 3-3. Correctly Reading a Wo rd from an Accumulator to a D/A

MOVE A,X:D_to_A_data ; Saturation is enabled

Note the use of the A accumulator instead of the A1 register. Using the A accumulator enables saturation.

3.2.5 Saving and Restoring Accumulators
Interrupt service routines offer one example of a time when it is critical that an accumulator be saved and
restored without being altered in any way. Since an interrupt can occur at any time, the exact usage of a
accumulator at that instant is unknown, so it cannot be altered by the interrupt service routine without
adversely affecting any calculation that may have been in progress. In order for an accumulator to be saved
and restored correctly, it must be done with limiting disabled. This is accomplished through sequentially
saving and restoring the individual parts of the register, and not the whole register at once. See
Example 3-4 on page 3-13.
3-12 DSP56800 Family Manual Freescale Semiconductor

Accessing the Accumulator Registers

-6
Example 3-4. Correct Saving and Restoring of an Accumulator — Word Accesses

; Saving the A Accumulator to the Stack
LEA (SP)+ ; Point to first empty location
MOVE A2,X:(SP)+ ; Save extension register
MOVE A1,X:(SP)+ ; Save MSP register
MOVE A0,X:(SP) ; Save LSP register

; Restoring the A Accumulator from the Stack
MOVE X:(SP)-,A0 ; Restore LSP register
MOVE X:(SP)-,A1 ; Restore MSP register
MOVE X:(SP)-,A2 ; Restore extension register

It is important that interrupt service routines do not use the MOVE A,X:(SP)+ instruction when saving to
the stack. This instruction operates with saturation enabled, and may inadvertently store the value $7FFF
or $8000 onto the stack, according to the rules employed by the Data Limiter. This could have catastrophic
effects on any DSC calculation that was in progress.

3.2.6 Bit-Field Operations on Integers in Accumulators
When bit-manipulation operations on accumulator registers are performed, as is done for integer
processing, care must be taken. The bit-manipulation instructions operate as a “Read-Modify-Write”
sequence, and thus may be affected by limiting during the “Read” portion of this sequence. In order for
bit-manipulation operations to generate the expected results, limiting must be disabled. To ensure that this
is the case, the MSP (A1 portion) of an accumulator should be used as the target operand for the ANDC,
EORC, ORC, NOTC, BFCLR, BFCHG, and BFSET instructions, not the full accumulator. See
Example 3-5.

Example 3-5. Bit Manipulation on an Accumulator

; BFSET using the A1 register
BFSET #$0F00,A1 ; Reads A1 with saturation disabled

; Sets bits 11 through 8 and stores back to A1
; Note: A2 and A0 unmodified

; BFSET using the A register
BFSET #$0F00,A ; Reads A1 with saturation enabled - may limit

; Sets bits 11 through 8 and stores back to A1
; A2 is sign extended and A0 is cleared

Since the BFTSTH, BFTSTL, BRCLR, and BRSET instructions only test the accumulator value and do
not modify it, it is recommended to do these operations on the A1 register where no limiting can occur
when integer processing is performed.

3.2.7 Converting from 36-Bit Accumulator to 16-Bit Portion
There are two types of instructions that are useful for converting the 36-bit contents of an accumulator to a
16-bit value, which can then be stored to memory or used for further computations. This is useful for
processing word-sized operands (16 bits), since it guarantees that an accumulator contains correct sign
extension and that the least significant 16 bits are all zeros. The two techniques are shown in Example 3
on page 3-14.
Freescale Semiconductor Data Arithmetic Logic Unit 3-13

Data Arithmetic Logic Unit

t

f
Example 3-6. Converting a 36-Bit Accumulator to a 16-Bit Value

;Converting with No Limiting
MOVE A1,A ;Sign Extend A2, A0 set to $0000
MOVE A1,B ;Sign Extend B2, B0 set to $0000

;Converting with Limiting Enabled
MOVE A,A ;Sign Extend A2, Limit if Required
MOVE A,B ;Sign Extend B2, Limit if Required

Where limiting is enabled, as in the second example in Example 3-6, limiting only occurs when the
extension register is in use. You can determine if the extension register is in use by examining the
extension bit (E) of the status register. Refer to Section 5.1.8, “Status Register,” on page 5-6.

3.3 Fractional and Integer Data ALU Arithmetic
The ability to perform both integer and fractional arithmetic is one of the strengths of the DSP56800
architecture; there is a need for both types of arithmetic.

Fractional arithmetic is typically required for computation-intensive algorithms such as digital filters,
speech coders, vector and array processing, digital control, and other signal-processing tasks. In this mode
the data is interpreted as fractional values, and the computations are performed interpreting the data as
fractional. Often, saturation is used when performing calculations in this mode to prevent the severe
distortion that occurs in an output signal generated from a result where a computation overflows withou
saturation (see Figure 3-14 on page 3-28). Saturation can be selectively enabled or disabled so that
intermediate calculations can be performed without limiting, and limiting is only done on final results (see
Example 3-7).

Integer arithmetic, on the other hand, is invaluable for controller code, for array indexing and address
computations, compilers, peripheral setup and handling, bit manipulation, bit-exact algorithms, and other
general-purpose tasks. Typically, saturation is not used in this mode, but is available if desired. (See
Example 3-8.)

The main difference between fractional and integer representations is the location of the decimal (or
binary) point. For fractional arithmetic, the decimal (or binary) point is always located immediately to the
right of the MSP’s most significant bit; for integer values, it is always located immediately to the right o
the value’s LSB. Figure 3-8 on page 3-15 shows the location of the decimal point (binary point), bit
weights and operands alignment for different fractional and integer representations supported on the
DSP56800 architecture.

Example 3-7. Fractional Arithmetic Examples

0.5 x 0.25 = 0.125
0.625 + 0.25 = 0.875
0.125 / 0.5 = 0.25
0.5 >> 1 = 0.25

Example 3-8. Integer Arithmetic Examples

4 x 3 = 12
1201 + 79 = 1280
63 / 9 = 7
100 << 1 = 200
3-14 DSP56800 Family Manual Freescale Semiconductor

Fractional and Integer Data ALU Arithmetic

The representation of numbers allowed on the DSP56800 architecture are as follows:

• Two’s-complement values

• Fractional or integer values

• Signed or unsigned values

• Word (16-bit), long word (32-bit), or accumulator (36-bit)

The different representations not only affect the arithmetic operations, but also the condition code
generation. These numbers can be represented as decimal, hexadecimal, or binary numbers.

To maintain alignments of the binary point when a word operand is written to an accumulator A or B, the
operand is written to the most significant accumulator register (A1 and B1) and its most significant bit is
automatically sign extended through the accumulator extension register. The least significant accumulator
register is automatically cleared.

Some of the advantages of fractional data representation are as follows:

• The MSP (left half) has the same format as the input data.

• The LSP (right half) can be rounded into the MSP without shifting or updating the exponent.

Figure 3-8. Bit Weightings and Operand Alignments

16-Bit Word Operand
 X0,Y0,Y1,A1,B1,

16-Bit Memory

32-Bit Long Word Operand
 Y = Y1:Y0

36-Bit Accumulator
 A,B

16-Bit Word Operand
 X0,Y0,Y1,A1,B1,

16-Bit Memory

32-Bit Long Word Operand
in A1,B1

36-Bit Accumulator
 A,B

Fractional Two’s-Complement Representations

Integer Two’s-Complement Representations

.

-20 2-15

-20 2-15

2-16 2-31

20 2-15 2-16 2-31-24

-215 20214

-231 216 215 20

231 216 215 20-235

AA0041
Freescale Semiconductor Data Arithmetic Logic Unit 3-15

Data Arithmetic Logic Unit

ns

f

• Conversion to floating-point representation is easier because the industry-standard floating-point
formats use fractional mantissas.

• Coefficients for most digital filters are derived as fractions by DSC digital-filter design software
packages. The results from the DSC design tools can be used without the extensive data conversio
that other formats require.

• A significant bit is not lost through sign extension.

3.3.1 Interpreting Data
Data in a memory location or register can be interpreted as fractional or integer, depending on the needs o
a user’s program. Table 3-2 shows how a 16-bit value can be interpreted as either a fractional or integer
value, depending on the location of the binary point.

The following equation shows the relationship between a 16-bit integer and a fractional value:

Fractional Value = Integer Value / (215)

There is a similar equation relating 36-bit integers and fractional values:

Fractional Value = Integer Value / (231)

Table 3-3 shows how a 36-bit value can be interpreted as either an integer or a fractional value, depending
on the location of the binary point.

Table 3-2. Interpretation of 16-Bit Data Values

Hexadecimal
Representation

Integer Fractional

Binary Decimal Binary Decimal

$7FFF 0111 1111 1111 1111. 32767 0.111 1111 1111 1111 0.99997

$7000 0111 0000 0000 0000. 28672 0.111 0000 0000 0000 0.875

$4000 0100 0000 0000 0000. 16384 0.100 0000 0000 0000 0.5

$2000 0010 0000 0000 0000. 8,192 0.010 0000 0000 0000 0.25

$1000 0001 0000 0000 0000. 4,096 0.001 0000 0000 0000 0.125

$0000 0000 0000 0000 0000. 0 0.000 0000 0000 0000 0.0

$F000 1111 0000 0000 0000. - 4096 1.111 0000 0000 0000 - 0.125

$E000 1110 0000 0000 0000. - 8192 1.110 0000 0000 0000 - 0.25

$C000 1100 0000 0000 0000. - 16384 1.100 0000 0000 0000 - 0.5

$9000 1001 0000 0000 0000. - 28672 1.001 0000 0000 0000 - 0.875

$8000 1000 0000 0000 0000. - 32768 1.000 0000 0000 0000 - 1.0

Table 3-3. Interpretation of 36-bit Data Values

Hexadecimal

Representation1

36-Bit Integer in
Entire Accumulator

(decimal)

16-Bit Integer in MSP

(decimal)

Fractional
Value

(decimal)

$7 FFFF FFFF 34,359,738,367 (Overflows) ~ 16.0

$1 4000 0000 5,368,709,120 (Overflows) 2.5

$0 4000 0000 1,073,741,824 16,384 0.5

$0 2000 0000 536,870,912 8,192 0.25

$0 0000 0000 0 0 0.0

$F C000 0000 - 1,073,741,824 - 16,384 - 0.5
3-16 DSP56800 Family Manual Freescale Semiconductor

Fractional and Integer Data ALU Arithmetic

ted

es

se

3.3.2 Data Formats
Four types of two’s-complement data formats are supported by the 16-bit DSC core:

• Signed fractional

• Unsigned fractional

• Signed integer

• Unsigned integer

The ranges for each of these formats, discussed in the following subsections, apply to all data stored in
memory and to data stored in the data ALU registers. The extension registers associated with the
accumulators allow word growth so that the most positive signed fractional number that can be represen
in an accumulator is approximately 16.0 and the most negative signed fractional number is -16.0 as shown
in Table 3-3. An important factor to consider is that when the accumulator extension registers are in use,
the data contained in the accumulators cannot be stored exactly in memory or other registers. In these cas
the data must be limited to the most positive or most negative number consistent with the size of the
destination and the sign of the accumulator, the MSB of the extension register.

3.3.2.1 Signed Fractional

In this format the N bit operand is represented using the 1.[N-1] format (1 sign bit, N-1 fractional bits).
Signed fractional numbers lie in the following range:

-1.0 � SF � +1.0 - 2-[N-1]

For words and long-word signed fractions, the most negative number that can be represented is -1.0, who
internal representation is $8000 and $8000_0000, respectively. The most positive word is $7FFF or 1.0 -
2-15, and the most positive long word is $7FFF_FFFF or 1.0 - 2-31.

3.3.2.2 Unsigned Fractional

Unsigned fractional numbers may be thought of as positive only. The unsigned numbers have nearly twice
the magnitude of a signed number with the same number of bits. Unsigned fractional numbers lie in the
following range:

0.0 � UF � 2.0 - 2-[N-1]

Examples of unsigned fractional numbers are 0.25, 1.25, and 1.999. The binary word is interpreted as
having a binary point after the MSB. The most positive 16-bit unsigned number is $FFFF formulated
as {1.0 + (1.0 - 2 -[N-1])} = 1.99997. The smallest unsigned number is zero ($0000).

$F E000 0000 - 536,870,912 - 8,192 - 0.25

$E C000 0000 - 5,368,709,120 (Overflows) -2.5

$8 0000 0001 -34,359,738,367 (Overflows) -16.0

1. When the accumulator extension registers are in use, the data contained in the accu-
mulators cannot be stored exactly in memory or other registers. In these cases the data
must be limited to the most positive or most negative number consistent with the size
of the destination.

Table 3-3. Interpretation of 36-bit Data Va lues (Continued)

Hexadecimal

Representation1

36-Bit Integer in
Entire Accumulator

(decimal)

16-Bit Integer in MSP

(decimal)

Fractional
Value

(decimal)
Freescale Semiconductor Data Arithmetic Logic Unit 3-17

Data Arithmetic Logic Unit

ving a

re
3.3.2.3 Signed Integer

This format is used when data is being processed as integers. Using this format, the N-bit operand is
represented using the N.0 format (N integer bits). Signed integer numbers lie in the following range:

-2[N-1]
 � SI � [2[N-1]-1]

For words and long-word signed integers the most negative word that can be represented is -32768
($8000), and the most negative long word is -2147483648 ($8000_0000). The most positive word is 32767
($7FFF), and the most positive long word is 2147483647 ($7FFF_FFFF).

3.3.2.4 Unsigned Integer

Unsigned integer numbers may be thought of as positive only. The unsigned numbers have nearly twice
the magnitude of a signed number of the same length. Unsigned integer numbers lie in the following range:

0 � UI � [2N-1]

Examples of unsigned integer numbers are 25, 125, and 1999. The binary word is interpreted as ha
binary point immediately to the right of the LSB. The most positive, 16-bit, unsigned integer is 65535
($FFFF). The smallest unsigned number is zero ($0000).

3.3.3 Addition and Subtraction
For fractional and integer arithmetic, the operations are performed identically for addition, subtraction, or
comparing two values. This means that any add, subtract, or compare instruction can be used for both
fractional and integer values.

To perform fractional or integer arithmetic operations with word-sized data, the data is loaded into the
MSP (A1 or B1) of the accumulator as shown in Figure 3-9.

Figure 3-9. Word-Sized Integer Addition Example

Fractional word-sized arithmetic would be performed in a similar manner. For arithmetic operations whe
the destination is a 16-bit register or memory location, the fractional or integer operation is correctly
calculated and stored in its 16-bit destination.

Before Execution

$0000$0020$0

A2 A1 A0

$0040X0

After Execution

$0000$0060$0

A2 A1 A0

$0040X0

MOVE #64,X0 ; Load integer value 64 ($40) into X0
MOVE #32,A ; Load integer value 32 ($20) into A Accumulator

; (correctly sign extends into A2 and zeros A0)
ADD X0,A ; Perform Integer Word Addition
MOVE A1,X:RESULT ; Save Result (without saturating) to Memory

AA0045
3-18 DSP56800 Family Manual Freescale Semiconductor

Fractional and Integer Data ALU Arithmetic

igned

l

rs.
3.3.4 Logical Operations
For fractional and integer arithmetic, the logical operations (AND, OR, EOR, and bit-manipulation
instructions) are performed identically. This means that any DSP56800 logical or bit-field instruction can
be used for both fractional and integer values. Typically, logical operations are only performed on integer
values, but there is no inherent reason why they cannot be performed on fractional values as well.

Likewise, shifting can be done on both integer and fractional data values. For both of these, an arithmetic
left shift of 1 bit corresponds to a multiplication by two. An arithmetic right shift of 1 bit corresponds to a
division of a signed value by two, and a logical right shift of 1 bit corresponds to a division of an uns
value by two.

3.3.5 Multiplication
The multiplication operation is not the same for integer and fractional arithmetic. The result of a fractiona
multiplication differs in a simple manner from the result of an integer multiplication. This difference
amounts to a 1-bit shift of the final result, as illustrated in Figure 3-10. Any binary multiplication of two
N-bit signed numbers gives a signed result that is 2N-1 bits in length. This 2N-1 bit result must then be
correctly placed into a field of 2N bits to correctly fit into the on-chip registers. For correct fractional
multiplication, an extra 0 bit is placed at the LSB to give a 2N bit result. For correct integer multiplication,
an extra sign bit is placed at the MSB to give a 2N bit result.

The MPY, MAC, MPYR, and MACR instructions perform fractional multiplication and fractional
multiply-accumulation. The IMPY16 instruction performs integer multiplication. Section 3.3.5.2, “Integer
Multiplication,” explains how to perform integer multiplication.

3.3.5.1 Fractional Multiplication

Figure 3-11 on page 3-20 shows the multiply-accumulation implementation for fractional arithmetic. The
multiplication of two 16-bit, signed, fractional operands gives an intermediate 32-bit, signed, fractional
result with the LSB always set to zero. This intermediate result is added to one of the 36-bit accumulato
If rounding is specified in the MPY or MAC instruction (MACR or MPYR), the intermediate results will
be rounded to 16 bits before being stored back to the destination accumulator, and the LSP will be set to
zero.

Figure 3-10. Comparison of Integer and Fractional Multiplication

S S

S

2N—1 Product

2N Bits

S S

0

2N—1 Product

2N Bits

Integer Fractional

Signed Multiplication: N X N Æ 2N - 1 Bits

X

Sign Extension Zero Fill

X
Signed Multiplier Signed Multiplier

S MSP LSP S MSP LSP

AA0042
Freescale Semiconductor Data Arithmetic Logic Unit 3-19

Data Arithmetic Logic Unit

ts

3.3.5.2 Integer Multiplication

Two techniques for performing integer multiplication on the DSC core are as follows:

• Using the IMPY16 instruction to generate a 16-bit result in the MSP of an accumulator

• Using the MPY and MAC instructions to generate a 36-bit full precision result

Each technique has its advantages for different types of computations.

An examination of the instruction set shows that for execution of single precision operations, most often
the instructions operate on the MSP (bits 31–16) of the accumulator instead of the LSP (bits 15–0). This is
true for the LSL, LSR, ROL, ROR, NOT, INCW, and DECW instructions and others. Likewise, for the
parallel MOVE instructions, it is possible to move data to and from the MSP of an accumulator, but this is
not true for the LSP. Thus, an integer multiplication instruction that places its result in the MSP of an
accumulator allows for more efficient computing. This is the reason why the IMPY16 instruction places i
results in bits 31–16 of an accumulator. The limitation with the IMPY16 instruction is that the result must
fit within 16 bits or there is an overflow.

Figure 3-12 on page 3-21 shows the multiply operation for integer arithmetic. The multiplication of two
16-bit signed integer operands using the IMPY16 instruction gives a 16-bit signed integer result that is
placed in the MSP (A1 or B1) of the accumulator. The corresponding extension register (A2 or B2) is filled
with sign extension and the LSP (A0 or B0) remains unchanged.

Figure 3-11. MPY Operation — Fractional Arithmetic

ss

0ss

EXP MSP LSP

Signed Fractional
Input Operands

Signed
Intermediate

Multiplier Result

Signed Fractional
MPY Result

Input Operand 1 Input Operand 2

32 Bits

36 Bits

16 Bits 16 Bits

AA0043

16 16

0

3-20 DSP56800 Family Manual Freescale Semiconductor

Fractional and Integer Data ALU Arithmetic

At other times it is necessary to maintain the full 32-bit precision of an integer multiplication. To obtain
integer results, an MPY instruction is used, immediately followed by an ASR instruction. The 32-bit long
integer result is then correctly located into the MSP and LSP of an accumulator with correct sign extension
in the extension register of the same accumulator (see Example 3-9).

Example 3-9. Multiplying Two Signed Integer Values with Full Precision

MPY X0,Y0,A ; Generates correct answer shifted
; 1 bit to the left

ASR A ; Leaves Correct 32-bit Integer
; Result in the A Accumulator
; and the A2 register contains
; correct sign extension

When a multiply-accumulate is performed on a set of integer numbers, there is a faster way for generating
the result than performing an ASR instruction after each multiply. The technique is to use fractional
multiply-accumulates for the bulk of the computation and to then convert the final result back to integer.
See Example 3-10.

Example 3-10. Fast Integer MACs using Fractional Arithmetic

MOVE X:(R0)+,Y0 X:(R3)+,X0
DO #Count,LABEL ; Count defined as number of repetitions
MAC X0,Y0,A X:(R0)+,Y0 X:(R3)+,X0

LABEL:
ASR A ; Convert to Integer only after MACs are

; completed

3.3.6 Division
Fractional and integer division of both positive and signed values is supported using the DIV instruction.
The dividend (numerator) is a 32-bit fractional or 31-bit integer value, and the divisor (denominator) is a
16-bit fractional or integer value, respectively. See Section 8.4, “Division,” on page 8-13 for a complete
discussion of division.

Figure 3-12. Integer Multiplication (IMPY)

16 Bits

Signed Integer
 Output

ss

Unchanged EXP MSP

Signed Integer
Input Operands

Signed
Intermediate

Multiplier Result
0s

S Ext.

Input Operand 1 Input Operand 2

31 Bits

16 Bits 16 Bits

16 Bits
AA0044
Freescale Semiconductor Data Arithmetic Logic Unit 3-21

Data Arithmetic Logic Unit

,

ny

er

s
3.3.7 Unsigned Arithmetic
Unsigned arithmetic can be performed on the DSP56800 architecture. The addition, subtraction, and
compare instructions work for both signed and unsigned values, but the condition code computation is
different. Likewise, there is a difference for unsigned multiplication.

3.3.7.1 Conditional Branch Instructio ns for Unsigned Operations

Unsigned arithmetic is supported on operations such as addition, subtraction, comparison, and logical
operations using the same ADD, SUB, CMP, and other instructions used for signed computations. The
operations are performed the same for both representations. The difference lies both in which status bits
are used in comparing signed and unsigned numbers and in how the data is interpreted, for which see
Section 3.3.2, “Data Formats.”

Four additional Bcc instruction variants are provided for branching based on the comparison of two
unsigned numbers. These variants are:

• HS (High or same) — unsigned greater than or equal to

• LS (Low or same) — unsigned less than or equal to

• HI (High) — unsigned greater than

• LO (Low) — unsigned less than

The variants used for comparing unsigned numbers, HS, LS, HI, and LO, are used in place of GE, LE, GT
and LT respectively, which are used for comparing signed numbers. Note that the HS condition is exactly
the same as the carry clear (CC), and that LO is exactly the same as carry set (CS).

Unsigned comparisons are enabled when the CC bit in the OMR register is set. When this bit is set, the
value in the extension register is ignored when generating the C, V, N, and Z condition codes, and the
condition codes are set using only the 32 LSBs of the result. Typically, this mode is very useful for
controller and compiled code.

NOTE:

The unsigned branch condition variants (HS, LS, HI, and LO) may only be
used when the CC bit is set in the program controller’s OMR register. If
this bit is not set, then these condition codes should not be used.

In cases where it is necessary to maintain all 36 bits of the result and the extension register is required, a
unsigned numbers must first be converted to signed when loaded into the accumulator using the technique
in Section 8.1.6, “Unsigned Load of an Accumulator,” on page 8-7. In these cases, the extension regist
will contain the correct value, and since values are now signed, it is possible to use the signed branch
conditions: GE, LE, GT, or LT. Typically, this mode is more useful for DSC code.

3.3.7.2 Unsigned Multiplication

Unsigned multiplications are supported with the MACSU and MPYSU instructions. If only one operand i
unsigned, then these instructions can be used directly. If both operands are unsigned, an
unsigned-times-unsigned multiplication is performed using the technique demonstrated in Example 3-11
on page 3-23.
3-22 DSP56800 Family Manual Freescale Semiconductor

Fractional and Integer Data ALU Arithmetic

:

Example 3-11. Multiplying Two Unsigned Fractional Values

MOVE X:FIRST,X0 ; Get first operand from memory
ANDC #$7FFF,X0 ; Force first operand to be positive
MOVE X:SECOND,Y0 ; Get second operand from memory
MPYSU X0,Y0,A
TSTW X:FIRST ; Perform final addition if MSB of first operand was a one
BGE OVER ; If first operand is less that one, jump to OVER
MOVE #$0,B
MOVE Y0,B1 ; Move Y0 to B without sign extension
ADD B,A

OVER:
; (ASR A) ; Optionally convert to integer result

3.3.8 Multi-Precision Operations
The DSP56800 instruction set contains several instructions which simplify extended- and multi-precision
mathematical operations. By using these instructions, 64-bit and 96-bit calculations can be performed, and
calculations involving different-sized operands are greatly simplified.

3.3.8.1 Multi-Precision Additi on and Subtraction

Two instructions, ADC and SBC, assist in performing multi-precision addition (Example 3-12) and
subtraction (Example 3-13), such as 64-bit or 96-bit operations.

3.3.8.2 Multi-Precision Multiplication

Two instructions are provided to assist with multi-precision multiplication. When these instructions are
used, the multiplier accepts one signed and one unsigned two’s-complement operand. The instructions are

• MPYSU — multiplication with one signed and one unsigned operand

Example 3-12. 64-Bit Addition

X:$1:X:$0:Y1:Y0 + A2:A1:A0:B1:B0 = A2:A1:A0:B1:B0
(B2 must contain only sign extension before addition begins;
that is, bits 35–31 are all 1s or 0s)

MOVE X:$21,B ; Correct sign extension
MOVE X:$20,B0
ADD Y,B ; First 32-bit addition
MOVE X:$0,Y0 ; Get second 32-bit operand from memory
MOVE X:$1,Y1
ADC Y,A ; Second 32-bit addition

Example 3-13. 64-Bit Subtraction

A2:A1:A0:B1:B0 - X:$1:X:$0:Y1:Y0 = A2:A1:A0:B1:B0
(B2 must contain only sign extension before addition begins;
that is, bits 35–31 are all 1s or 0s)

MOVE X:$21,B ; Correct sign extension
MOVE X:$20,B0
SUB Y,B ; First 32-bit subtraction
MOVE X:$0,Y0 ; Get second 32-bit operand from memory
MOVE X:$1,Y1
SBC Y,A ; Second 32-bit subtraction
Freescale Semiconductor Data Arithmetic Logic Unit 3-23

Data Arithmetic Logic Unit

n
• MACSU — multiply-accumulate with one signed and one unsigned operand

The use of these instructions in multi-precision multiplication is demonstrated in Figure 3-13, with
corresponding examples shown in Example 3-14, Example 3-15 on page 3-24, and Example 3-16 o
page 3-25.

Figure 3-13. Single-Precision Times Double-Precision Signed Multiplication

Example 3-14. Fractional Single-Precision Times Double-Precision Value — Both Signed

 (5 Icyc, 5 Instruction Words)

MPYSU X0,Y0,A ; Single Precision times Lower Portion
MOVE A0,B

MOVE A1,A0 ; 16-bit Arithmetic Right Shift
MOVE A2,A1 ; (note that A2 contains only sign extension)

MAC X0,Y1,A ; Single Precision times Upper Portion
; and added to Previous

Example 3-15. Integer Single-Precision Times Double-Precision Value — Both Signed

 (7 Icyc, 7 Instruction Words)

MPYSU X0,Y0,A ; Single Precision times Lower Portion
MOVE A0,B

MOVE A1,A0 ; 16-bit Arithmetic Right Shift
MOVE A2,A1 ; (note that A2 contains only sign

; extension)

MAC X0,Y1,A ; Single Precision x Upper Portion and add to Previous
ASR A ; Convert result to integer, A2 contains sign extension
ROR B ; (52-bit shift of A2:A1:A0:B1)

32 Bits

X0

x

Sign Ext.

Signed x Unsigned

Y1 Y0

B1A0A1A2

X0 x Y0

Signed x Signed

AA0046

 +

16 Bits

48 Bits

X0 x Y1
3-24 DSP56800 Family Manual Freescale Semiconductor

Fractional and Integer Data ALU Arithmetic
Example 3-16. Multiplying Two Fractional Double-Precision Values

;
; Signed 32x32 => 64 Multiplication Subroutine
;
; Parameters:
; R1 = ptr to lowest word of one operand
; R2 = ptr to lowest word of one operand
; R3 = ptr to where results are stored

MULT_S32_X_S32:
 CLR B ; clears B2 portion

; Multiply lwr1 * lwr2 and save lowest 16-bits of result

 ; Operation ; X0 Y1 Y0 A
 ; --------- ; ----- ----- ----- -------------------
 MOVE X:(R1),Y0 ; --- --- lwr1 -----
 ANDC #CLRMSB,Y0 ; --- --- lwr1' -----
 MOVE X:(R2)+,Y1 ; --- lwr2 lwr1' -----
 MPYSU Y0,Y1,A ; --- lwr2 lwr1' lwr1'.s * lwr2.u
 TSTW X:(R1)+ ; check if MSB set in original lwr1 value
 BGE CORRECT_RES1 ; perform correction if this was true
 MOVE Y1,B1 ; --- lwr2 lwr1' -----
 ADD B,A ; --- lwr2 lwr1' lwr1.u * lwr2.u
CORRECT_RES1:
 MOVE A0,X:(R3)+ ; --- lwr2 lwr1' lwr1.u * lwr2.u

; Multiply two cross products and save next lowest 16-bits of result
 ; Operation ; X0 Y1 Y0 A
 ; --------- ; ----- ----- ----- -------------------
 MOVE A1,X:TMP ; (arithmetic 16-bit right shift of 36-bit accum)
 MOVE A2,A ; ---- ---- ---- -----
 MOVE X:TMP,A0 ; ---- ---- ---- A = product1 >> 16

 MOVE X:(R1)-,X0 ; upr1 lwr2 lwr1' A = product1 >> 16
 MACSU X0,Y1,A ; upr1 lwr2 lwr1' A+upr1.s*lwr2.u

 MOVE X:(R1),Y1 ; upr1 lwr1 lwr1' A+upr1.s*lwr2.u
 MOVE X:(R2),Y0 ; upr1 lwr1 upr2 A+upr1.s*lwr2.u
 MACSU Y0,Y1,A ; upr1 lwr1 upr2 A+upr1.s*lwr2.u+upr2.s*lwr1.u
 MOVE A0,X:(R3)+ ; upr1 lwr1 upr2 A = result w/ cross prods

; Multiply upr1 * upr2 and save highest 32-bits of result
 ; Operation ; X0 Y1 Y0 A
 ; --------- ; ----- ----- ----- -------------------
 MOVE A1,X:TMP ; (arithmetic 16-bit right shift of 36-bit accum)
 MOVE A2,A ; upr1 lwr1 upr2 -----
 MOVE X:TMP,A0 ; upr1 lwr1 upr2 A = result >> 16

 MAC X0,Y0,A ; upr1 lwr1 upr2 A + upr1.s * upr2.s
 MOVE A0,X:(R3)+ ; --- --- --- -----
 MOVE A1,X:(R3)+ ; --- --- --- -----

 RTS

; The corresponding algorithm for integer multiplication of 32-bit values
; would be the same as for fractional with the addition of a final arithmetic
; right shift of the 64-bit result.
Freescale Semiconductor Data Arithmetic Logic Unit 3-25

Data Arithmetic Logic Unit

ne

s

3.4 Saturation and Data Limiting
DSC algorithms are sometimes capable of calculating values larger than the data precision of the machi
when processing real data streams. Normally, a processor would allow the value to overflow when this
occurred, but this creates problems when processing real-time signals. The solution is saturation, a
technique whereby values that exceed the machine data precision are “clipped,” or converted to the
maximum value of the same sign that fits within the given data precision.

Saturation is especially important when data is running through a digital filter whose output goes to a
digital-to-analog converter (DAC), since it “clips” the output data instead of allowing arithmetic overflow.
Without saturation, the output data may incorrectly switch from a large positive number to a large negative
value, which can cause problems for DAC outputs in embedded applications.

The DSP56800 architecture supports optional saturation of results through two limiters found within the
data ALU:

• the Data Limiter

• the MAC Output Limiter

The Data Limiter saturates values when data is moved out of an accumulator with a MOVE instruction or
parallel move. The MAC Output Limiter saturates the output of the data ALU’s MAC unit.

3.4.1 Data Limiter
The data limiter protects against overflow by selectively limiting when reading an accumulator register a
a source operand in a MOVE instruction. When a MOVE instruction specifies an accumulator (F) as a
source, and if the contents of the selected source accumulator can be represented in the destination operand
size without overflow (that is, the accumulator extension register is not in use), the data limiter is enabled
but does not saturate, and the register contents are placed onto the CGDB unmodified. If a MOVE
instruction is used and the contents of the selected source accumulator cannot be represented without
overflow in the destination operand size, the data limiter will substitute a “limited” data value onto the
CGDB that has maximum magnitude and the same sign as the source accumulator, as shown in Table 3-4
on page 3-27.

The F0 portion of an accumulator is ignored by the data limiter.

Consider a simple example, shown in Example 3-17.

Example 3-17. Demonstrating the Data Limiter — Positive Saturation

MOVE #$1000,R0 ; Store results starting in address $1000
MOVE #$7FFC,A ; Initialize A = $0_7FFC_0000

INC A ; A = $0_7FFD_0000
MOVE A,X:(R0)+ ; Write $7FFD to memory (limiter enabled)
INC A ; A = $0_7FFE_0000
MOVE A,X:(R0)+ ; Write $7FFE to memory (limiter enabled)
INC A ; A = $0_7FFF_0000
MOVE A,X:(R0)+ ; Write $7FFF to memory (limiter enabled)

INC A ; A = $0_8000_0000 <=== Overflows 16-bits
MOVE A,X:(R0)+ ; Write $7FFF to memory (limiter saturates)
INC A ; A = $0_8001_0000
MOVE A,X:(R0)+ ; Write $7FFF to memory (limiter saturates)
INC A ; A = $0_8002_0000
MOVE A,X:(R0)+ ; Write $7FFF to memory (limiter saturates)

MOVE A1,X:(R0)+ ; Write $8002 to memory (limiter disabled)
3-26 DSP56800 Family Manual Freescale Semiconductor

Saturation and Data Limiting

 the
Once the accumulator increments to $8000 in Example 3-17, the positive result can no longer be written to
a 16-bit memory location without overflow. So, instead of writing an overflowed value to memory, the
value of the most positive 16-bit number, $7FFF, is written instead by the data limiter block. Note that the
data limiter block does not affect the accumulator; it only affects the value written to memory. In the last
instruction, the limiter is disabled because the register is specified as A1.

Consider a second example, shown in Example 3-18 on page 3-27.

Example 3-18. Demonstrating the Data Limiter — Negative Saturation

MOVE #$1008,R0 ; Store results starting in address $1008
MOVE #$8003,A ; Initialize A = $F_8003_0000

DEC A ; A = $F_8002_0000
MOVE A,X:(R0)+ ; Write $8002 to memory (limiter enabled)
DEC A ; A = $F_8001_0000
MOVE A,X:(R0)+ ; Write $8001 to memory (limiter enabled)
DEC A ; A = $F_8000_0000
MOVE A,X:(R0)+ ; Write $8000 to memory (limiter enabled)

DEC A ; A = $F_7FFF_0000 <=== Overflows 16-bits
MOVE A,X:(R0)+ ; Write $8000 to memory (limiter saturates)
DEC A ; A = $F_7FFE_0000
MOVE A,X:(R0)+ ; Write $8000 to memory (limiter saturates)
DEC A ; A = $F_7FFD_0000
MOVE A,X:(R0)+ ; Write $8000 to memory (limiter saturates)

MOVE A1,X:(R0)+ ; Write $7FFD to memory (limiter disabled)

Once the accumulator decrements to $7FFF in Example 3-18, the negative result can no longer fit into a
16-bit memory location without overflow. So, instead of writing an overflowed value to memory, the value
of the most negative 16-bit number, $8000, is written instead by the data limiter block.

Test logic exists in the extension portion of each accumulator register to support the operation of the
limiter circuit; the logic detects overflows so that the limiter can substitute one of two constants to
minimize errors due to overflow. This process is called “saturation arithmetic.” When limiting does occur,
a flag is set and latched in the status register. The value of the accumulator is not changed.

It is possible to bypass this limiting feature when reading an accumulator by reading it out through its
individual portions.

Figure 3-14 on page 3-28 demonstrates the importance of limiting. Consider the A accumulator with
following 36-bit value to be read to a 16-bit destination:

0000 1.000 0000 0000 0000 0000 0000 0000 0000 (in binary)
(+ 1.0 in fractional decimal, $0_8000_0000 in hexadecimal)

If this accumulator is read without the limiting enabled by a MOVE A1,X0 instruction, the 16-bit X0
register after the MOVE instruction would contain the following, assuming signed fractional arithmetic:

1.000 0000 0000 0000 (- 1.0 fractional decimal, $8000 in hexadecimal)

Table 3-4. Saturation by the Limiter Using the MOVE Instruction

Extension bits in use in selected
accumulator?

MSB of F2 Output of Limiter onto the CGDB Bus

No n/a Same as Input — Unmodified MSP

Yes 0 $7FFF — Maximum Positive Value

Yes 1 $8000 — Maximum Negative Value
Freescale Semiconductor Data Arithmetic Logic Unit 3-27

Data Arithmetic Logic Unit

This is clearly in error because the value -1.0 in the X0 register greatly differs from the value of +1.0 in the
source accumulator. In this case, overflow has occurred. To minimize the error due to overflow, it is
preferable to write the maximum (“limited”) value the destination can assume. In this example, the limited
value would be:

0.111 1111 1111 1111 (+ 0.999969 fractional decimal, $7FFF in hexadecimal)

This is clearly closer to the original value, +1.0, than -1.0 is, and thus introduces less error. Saturation is
equally applicable to both integer and fractional arithmetic.

Thus, saturation arithmetic can have a large effect in moving from register A1 to register X0. The
instruction MOVE A1,X0 performs a move without limiting, and the instruction MOVE A,X0 performs a
move of the same 16 bits with limiting enabled. The magnitude of the error without limiting is 2.0; with
limiting it is 0.000031.

3.4.2 MAC Output Limiter
The MAC output limiter optionally saturates or limits results calculated by data ALU arithmetic operations
such as multiply, add, increment, round, and so on.

The MAC Output Limiter can be enabled by setting the SA bit in the OMR register. See Section 5.1.9.3,
“Saturation (SA) — Bit 4,” on page 5-11.

Consider a simple example, shown in Example 3-19.

Example 3-19. Demonstrating the MAC Output Limiter

BFSET #$0010,OMR ; Set SA bit —- enables MAC Output Limiter
MOVE #$7FFC,A ; Initialize A = $0_7FFC_0000
NOP

INC A ; A = $0_7FFD_0000
INC A ; A = $0_7FFE_0000
INC A ; A = $0_7FFF_0000

INC A ; A = $0_7FFF_FFFF <=== Saturates to 16-bits!
INC A ; A = $0_7FFF_FFFF <=== Saturates to 16-bits!
ADD #9,A ; A = $0_7FFF_FFFF <=== Saturates to 16-bits!

Figure 3-14. Example of Saturation Arithmetic

*Limiting automatically occurs when the 36-bit operands A and B are read with a MOVE instruction. Note that the
contents of the original accumulator are not changed.

Without Limiting — MOVE A1,X0 With Limiting — MOVE A,X0

A = +1.00 . . . 0 1 0 0 0 0 0 0 0 0

3 0 15 0 15 0

35 0

X0 = +0.9999690 1 1 1 1

IERRORI =.000031

A = +1.00 . . . 0 1 0 0 0 0 0 0 0 0

3 0 15 0 15 0

35 0

X0 = -1.01 0 0 0 0

IERRORI = 2.015 0 15 0
3-28 DSP56800 Family Manual Freescale Semiconductor

Saturation and Data Limiting

Once the accumulator increments to $7FFF in Example 3-19, the saturation logic in the MAC Output
limiter prevents it from growing larger because it can no longer fit into a 16-bit memory location without
overflow. So instead of writing an overflowed value to back to the A accumulator, the value of the most
positive 32-bit number, $7FFF_FFFF, is written instead as the arithmetic result.

The saturation logic operates by checking 3 bits of the 36-bit result out of the MAC unit: EXT[3], EXT[0],
and MSP[15]. When the SA bit is set, these 3 bits determine if saturation is performed on the MAC unit’s
output and whether to saturate to the maximum positive value ($7FFF_FFFF) or the maximum negative
value ($8000_0000), as shown in Table 3-5.

The MAC Output Limiter not only affects the results calculated by the instruction, but can also affect
condition code computation as well. See Appendix A.4.2, “Effects of the Operating Mode Register’s SA
Bit,” on page A-11 for more information.

3.4.3 Instructions Not Affected by the MAC Output Limiter
The MAC Output Limiter is always disabled (even if the SA bit is set) when the following instructions are
being executed:

• ASLL, ASRR, LSRR

• ASRAC, LSRAC

• IMPY

• MPYSU, MACSU

• AND, OR, EOR

• LSL, LSR, ROL, ROR, NOT

• TST

The CMP is not affected by the OMR’s SA bit except for the case when the first operand is not a register
(that is, it is a memory location or an immediate value) and the second operand is the X0, Y0, or Y1
register. In this particular case, the U bit calculation is affected by the SA bit. No other bits are affected by
the SA bit for the CMP instruction.

Table 3-5. MAC Unit Outputs with Saturation Enabled

EXT[3] EXT[0] MSP[15] Result Stored in Accumulator

0 0 0 Result out of MAC Array with no limiting
occurring

0 0 1 $0_7FFF_FFFF

0 1 0 $0_7FFF_FFFF

0 1 1 $0_7FFF_FFFF

1 0 0 $F_8000_0000

1 0 1 $F_8000_0000

1 1 0 $F_8000_0000

1 1 1 Result out of MAC Array with no limiting
occurring
Freescale Semiconductor Data Arithmetic Logic Unit 3-29

Data Arithmetic Logic Unit

The

ding.

t

 odd
 A
Also, the MAC Output Limiter only affects operations performed in the data ALU. It has no effect on
instructions executed in other blocks of the core, such as the following:

• Bit Manipulation Instructions (Table 6-30 and Table 6-31 on page 6-26)

• Move instructions (Table 6-18 through Table 6-21)

• Looping instructions (Table 6-33 on page 6-27)

• Change of flow instructions (Table 6-32 on page 6-27)

• Control instructions (Table 6-34 on page 6-28)

NOTE:

The SA bit affects the TFR instruction when it is set, optionally limiting
data as it is transferred from one accumulator to another.

3.5 Rounding
The DSP56800 provides three instructions that can perform rounding — RND, MACR, and MPYR.
RND instruction simply rounds a value in the accumulator register specified by the instruction, whereas
the MPYR or MACR instructions round the result calculated by the instruction in the MAC array. Each
rounding instruction rounds the result to a single-precision value so the value can be stored in memory or
in a 16-bit register. In addition, for instructions where the destination is one of the two accumulators, the
LSP of the destination accumulator (A0 or B0) is set to $0000.

The DSC core implements two types of rounding: convergent rounding and two’s-complement roun
For the DSP56800, the rounding point is between bits 16 and 15 of a 36-bit value; for the A accumulator, it
is between the A1 register’s LSB and the A0 register’s MSB. The usual rounding method rounds up any
value above one-half (that is, LSP > $8000) and rounds down any value below one-half (that is, LSP <
$8000). The question arises as to which way the number one-half (LSP = $8000) should be rounded. If it is
always rounded one way, the results will eventually be biased in that direction. Convergent rounding
solves the problem by rounding down if the number is even (bit 16 equals zero) and rounding up if the
number is odd (bit 16 equals one), whereas two’s-complement rounding always rounds this number up.
The type of rounding is selected by the rounding bit (R) of the operating mode register (OMR) in the
program controller.

3.5.1 Convergent Rounding
This is the default rounding mode. This rounding is also called “round to nearest even number.” For mos
values, this mode rounds identically to two’s-complement rounding; it only differs for the case where the
least significant 16 bits is exactly $8000. For this case, convergent rounding prevents any introduction of a
bias by rounding down if the number is even (bit 16 equals zero) and rounding up if the rounding is
(bit 16 equals one). Figure 3-15 on page 3-31 shows the four possible cases for rounding a number in the
or B accumulator.
3-30 DSP56800 Family Manual Freescale Semiconductor

Rounding

3-16
3.5.2 Two’s-Complement Rounding
When this type of rounding is selected by setting the rounding bit in the OMR, one is added to the bit to the
right of the rounding point (bit 15 of A0) before the bit truncation during a rounding operation. Figure
shows the two possible cases.

Figure 3-15. Convergent Rounding

Case I: If A0 < $8000 (1/2), then round down (add nothing)

Before Rounding After Rounding

Case II: If A0 > $8000 (1/2), then round up (add 1 to A1)

Case III: If A0 = $8000 (1/2), and the LSB of A1 = 0 (even), then round down (add nothing)

Case IV: If A0 = $8000 (1/2), and the LSB = 1 (odd), then round up (add 1 to A1)

*A0 is always clear; performed during RND, MPYR, and MACR

X X . . X X X X X . . . X X X 0 1 0 0 0 1 1 X X X X X X
35 32 31 16 15 0

A2 A1 A0
0

X X . . X X X X X . . . X X X 0 1 0 0 0 0 0 0 0 0
35 32 31 16 15 0

A2 A1 A0*

Before Rounding After Rounding

X X . . X X X X X . . . X X X 0 1 0 0 1 1 1 0 X X X X X
35 32 31 16 15 0

A2 A1 A0
1

X X . . X X X X X . . . X X X 0 1 0 1 0 0 0 0 0 0
35 32 31 16 15 0

A2 A1 A0*

Before Rounding After Rounding

X X . . X X X X X . . . X X X 0 1 0 0 1 0 0 0 0 0 0
35 32 31 16 15 0

A2 A1 A0
0

X X . . X X X X X . . . X X X 0 1 0 0 0 0 0 0 0 0
35 32 31 16 15 0

A2 A1 A0*

Before Rounding After Rounding

X X . . X X X X X . . . X X X 0 1 0 1 1 0 0 0 0 0 0
35 32 31 16 15 0

A2 A1 A0
1

X X . . X X X X X . . . X X X 0 1 1 0 0 0 0 0 0 0
35 32 31 16 15 0

A2 A1 A0*

AA0048
Freescale Semiconductor Data Arithmetic Logic Unit 3-31

Data Arithmetic Logic Unit

le
Once the rounding bit has been programmed in the OMR register, there is a delay of one instruction cyc
before the new rounding mode becomes active.

Figure 3-16. Two’s-Complement Rounding

Case I: A0 < 0.5 ($8000), then round down (add nothing)

Case II: A0 >= 0.5 ($8000), then round up (add 1 to A1)

AA0050*A0 is always clear; performed during RND, MPYR, MACR

Before Rounding After Rounding

X X . . X X X X X . . . X X X 0 1 0 0 0 1 1 0 X. X X X
35 32 31 16 15 0

A2 A1 A0
0

X X . . X X X X X . . . X X X 0 1 0 0 0 0 0 0 0 0
35 32 31 16 15 0

A2 A1 A0*

Before Rounding After Rounding

X X . . X X X X X . . . X X X 0 1 0 1 1 1 1 0 X X X X
35 32 31 16 15 0

A2 A1 A0
1

X X . . X X X X X . . . X X X 0 1 0 1 0 0 0 0 0 0
35 32 31 16 15 0

A2 A1 A0*
3-32 DSP56800 Family Manual Freescale Semiconductor

Condition Code Generation

C

e
3.6 Condition Code Generation
The DSC core supports many different arithmetic instructions for both word and long-word operations.
The flexible nature of the instruction set means that condition codes must also be generated correctly for
the different combinations allowed. There are three questions to consider when condition codes are
generated for an instruction:

• Is the arithmetic operation’s destination an accumulator, or a 16-bit register or memory location?

• Does the instruction operate on the whole accumulator or only on the upper portion?

• Is the CC bit set in the program controller’s OMR register?

The CC bit in the OMR register allows condition codes to be generated without an examination of the
contents of the extension register. This sets up a computing environment where there is effectively no
extension register because its contents are ignored. Typically, the extension register is most useful in DS
operations. For the case of general-purpose computing, the CC bit is often set when the program is not
performing DSC tasks. However, it is possible to execute any instruction with the CC bit set or cleared,
except for instructions that use one of the unsigned condition codes (HS, LS, HI, or LO).

This section covers different aspects of condition code generation for the different instructions and
configurations on the DSC core. Note that the L, E, and U bits are computed the same regardless of the siz
of the destination or the value of the CC bit:

• L is set if overflow occurs or limiting occurs in a parallel move.

• E is set if the extension register is in use (that is, if bits 35–31 are not all the same).

• U is set according to the standard definition of the U bit.

3.6.1 36-Bit Destinations — CC Bit Cleared
Most arithmetic instructions generate a result for a 36-bit accumulator. When condition codes are being
generated for this case and the CC bit is cleared, condition codes are generated using all 36 bits of the
accumulator. Examples of instructions in this category are ADC, ADD, ASL, CMP, MAC, MACR, MPY,
MPYR, NEG, NORM, and RND.

The condition codes for 36-bit destinations are computed as follows:

• N is set if bit 35 of the corresponding accumulator is set except during saturation. During a
saturation condition, the V (overflow) bit is set and the N bit is not set.

• Z is set if bits 35–0 of the corresponding accumulator are all cleared.

• V is set if overflow has occurred in the 36-bit result.

• C is set if a carry (borrow) has occurred out of bit 35 of the result.
Freescale Semiconductor Data Arithmetic Logic Unit 3-33

Data Arithmetic Logic Unit

,

3.6.2 36-Bit Destinations — CC Bit Set
Most arithmetic instructions generate a result for a 36-bit accumulator. When condition codes are being
generated for this case and the CC bit is set, condition codes are generated using only the 32 bits of the
accumulator located in the MSP and LSP. The contents of the extension register are ignored. It is
effectively the same as if there is no extension register. Examples of instructions in this category are ADC
ADD, ASL, CMP, MAC, MACR, MPY, MPYR, NEG, NORM, and RND.

The condition codes for 32-bit destinations (CC equals one) are computed as follows:

• N is set if bit 31 of the corresponding accumulator is set.

• Z is set if bits 31–0 of the corresponding accumulator are all cleared.

• V is set if overflow has occurred in the 32-bit result.

• C is set if a carry (borrow) has occurred out of bit 31 of the result.

3.6.3 20-Bit Destinations — CC Bit Cleared
Two arithmetic instructions generate a result for the upper two portions of an accumulator, the MSP and
the extension register, leaving the LSP of the accumulator unchanged. When condition codes are being
generated for this case and the CC bit is cleared, condition codes are generated using the 20 bits in the
upper two portions of the accumulator. The two instructions in this category are DECW and INCW.

The condition codes for DECW and INCW (CC equals zero) are computed as follows:

• N is set if bit 35 of the corresponding accumulator is set except during saturation. During a
saturation condition, the V (overflow) bit is set and the N bit is not set.

• Z is set if bits 35–16 of the corresponding accumulator are all cleared.

• V is set if overflow has occurred in the 20-bit result.

• C is set if a carry (borrow) has occurred out of bit 35 of the result.

3.6.4 20-Bit Destinations — CC Bit Set
Two arithmetic instructions generate a result for the upper two portions of an accumulator, the MSP and
the extension register, leaving the LSP of the accumulator unchanged. When condition codes are being
generated for this case and the CC bit is set, the bits in the extension register and the LSP of the
accumulator are not used to calculate condition codes. The two instructions in this category are DECW and
INCW.

The condition codes for 16-bit destinations (CC equals one) are computed as follows:

• N is set if bit 31 of the corresponding accumulator is set.

• Z is set if bits 31–16 of the corresponding accumulator are all cleared.

• V is set if overflow has occurred in the 16-bit result.

• C is set if a carry (borrow) has occurred out of bit 31 of the result.
3-34 DSP56800 Family Manual Freescale Semiconductor

Condition Code Generation

bit

d

s a

d

3.6.5 16-Bit Destinations
Some arithmetic instructions can generate a result for a 36-bit accumulator or a 16-bit destination such as a
register or memory location. When condition codes for a 16-bit destination are being generated, the CC
is ignored and condition codes are generated using the 16 bits of the result. Instructions in this category are
ADD, CMP, SUB, DECW, INCW, MAC, MACR, MPY, MPYR, ASR, and ASL.

The condition codes for 16-bit destinations are computed as follows:

• N is set if bit 15 of the result is set.

• Z is set if bits 15–0 of the result are all cleared.

• V is set if overflow has occurred in the 16-bit result.

• C is set if a carry (borrow) has occurred out of bit 15 of the result.

Other instructions only generate results for a 16-bit destination such as the logical instructions. When
condition codes are being generated for this case, the CC bit is ignored and condition codes are generate
using the 16 bits of the result. Instructions in this category are AND, EOR, LSL, LSR, NOT, OR, ROL,
and ROR. The rules for condition code generation are presented for the cases where the destination i
16-bit register or 16 bits of a 36-bit accumulator.

The condition codes for logical instructions with 16-bit registers as destinations are computed as follows:

• N is set if bit 15 of the corresponding register is set.

• Z is set if bits 15–0 of the corresponding register are all cleared.

• V is always cleared.

• C — Computation dependent on instruction.

The condition codes for logical instructions with 36-bit accumulators as destinations are computed as
follows:

• N is set if bit 31 of the corresponding accumulator is set.

• Z is set if bits 31–16 of the corresponding accumulator are all cleared.

• V is always cleared.

• C — Computation dependent on instruction.

3.6.6 Special Instruction Types
Some instructions do not follow the preceding rules for condition code generation, and must be considere
separately. Examples of instructions in this category are the logical and bit-field instructions (ANDC,
EORC, NOTC, ORC, BFCHG, BFCLR, BFSET, BFTSTL, BFTSTH, BRCLR, and BRSET), the CLR
instruction, the IMPY16 instruction, the multi-bit shifting instructions (ASLL, ASRR, LSLL, LSRR,
ASRAC, and LSRAC), and the DIV instruction.

The bit-field instructions only affect the C and the L bits. The CLR instruction only generates condition
codes when clearing an accumulator. The condition codes are not modified when clearing any other
register. Some of the condition codes are not defined after executing the IMPY16 and multi-bit shifting
instructions. The DIV instruction only affects a subset of all the condition codes. See Appendix A.4,
“Condition Code Computation,” on page A-6 for details on the condition code computation for each of
these instructions.
Freescale Semiconductor Data Arithmetic Logic Unit 3-35

Data Arithmetic Logic Unit

3.6.7 TST and TSTW Instructions
There are two instructions, TST and TSTW, that are useful for checking the value in a register or memory
location.

The condition codes for the TST instruction (on a 36-bit accumulator) with CC equal to zero are computed
as follows:

• L is set if limiting occurs in a parallel move.

• E is set if the extension register is in use — that is, if bits 35–31 are not all the same.

• U is set according to the standard definition of the U bit.

• N is set if bit 35 of the corresponding accumulator is set except during saturation.

• Z is set if bits 35–0 of the corresponding accumulator are all cleared.

• V is always cleared.

• C is always cleared.

The condition codes for the TST instruction (on a 36-bit accumulator) with CC equal to one are computed
as follows:

• L is set if limiting occurs in a parallel move.

• E is set if the extension register is in use, that is, if bits 35–31 are not all the same.

• U is set according to the standard definition of the U bit.

• N is set if bit 31 of the corresponding accumulator is set.

• Z is set if bits 31–0 of the corresponding accumulator are all cleared.

• V is always cleared.

• C is always cleared.

The condition codes for the TSTW instruction (on a 16-bit value) are computed as follows:

• L is set if limiting occurs while reading an accumulator.

• N is set if the MSB of the 16-bit value is set.

• Z is set if all 16 bits of the 16-bit value are cleared.

• V is always cleared.

• C is always cleared.

3.6.8 Unsigned Arithmetic
When arithmetic on unsigned operands is being performed, the condition codes used to compare two
values differ from those used for signed arithmetic. See Section 3.3.7, “Unsigned Arithmetic,” for a
discussion of condition code usage for unsigned arithmetic.
3-36 DSP56800 Family Manual Freescale Semiconductor

y

he

ata
Chapter 4
Address Generation Unit
This chapter describes the architecture and the operation of the address generation unit (AGU). The
address generation unit is the block where all address calculations are performed. It contains two
arithmetic units — a modulo arithmetic unit for complex address calculations and an
incrementer/decrementer for simple calculations. The modulo arithmetic unit can be used to calculate
addresses in a modulo fashion, automatically wrapping around when necessary. A set of pointer registers,
special-purpose registers, and multiple buses within the unit allow up to two address updates or a memor
transfer to or from the AGU in a single cycle.

The capabilities of the address generation unit include the following operations:

• Provide one address to X data memory on the XAB1 bus

• Post-update an address after providing the original address value on XAB1 bus

• Calculate an effective address which is then provided on the XAB1 bus

• Provide two addresses to X data memory on the XAB1 and XAB2 buses and post-update both
addresses

• Provide one address to program memory for program memory data accesses and post-update t
address

• Increment or decrement a counter during normalization operations

• Provide a conditional register move (Tcc instruction)

Note that in the cases where the address generation unit is generating one or two addresses to access X d
memory, the program controller generates a second or third address used to concurrently fetch the next
instruction.

The AGU provides many different addressing modes, which include the following:

• Indirect addressing with no update

• Indirect addressing with post-increment

• Indirect addressing with post-decrement

• Indirect addressing with post-update by a
register

• Indirect addressing with index by a 16-bit
offset

• Indirect addressing with index by a 6-bit
offset

• Indirect addressing with index by a register

• Immediate data

• Immediate short data

• Absolute addressing

• Absolute short addressing

• Peripheral short addressing

• Register direct

• Implicit
Freescale Semiconductor Address Generation Unit 4-1

Address Generation Unit

ing

ta

U

d

n
This chapter covers the architecture and programming model of the address generation unit, its address
modes, and a discussion of the linear and modulo arithmetic capabilities of this unit. It concludes with a
discussion of pipeline dependencies related to the address generation unit.

4.1 Architecture and Programming Model
The major components of the address generation unit are as follows:

• Four address registers (R0-R3)

• A stack pointer register (SP)

• An offset register (N)

• A modifier register (M01)

• A modulo arithmetic unit

• An incrementer/decrementer unit

The AGU uses integer arithmetic to perform the effective address calculations necessary to address da
operands in memory. The AGU also contains the registers used to generate the addresses. It implements
linear and modulo arithmetic and operates in parallel with other chip resources to minimize
address-generation overhead.

Two ALUs are present within the AGU: the modulo arithmetic unit and the incrementer/decrementer unit.
The two arithmetic units can generate up to two 16-bit addresses and two address updates every instruction
cycle: one for XAB1 and one for XAB2 for instructions performing two parallel memory reads. The AG
can directly address 65,536 locations on XAB1 and 65,536 locations on the PAB. The AGU can directly
address up to 65,536 locations on XAB2, but can only generate addresses to on-chip memory. The two
ALUs work with the data memory to access up to two locations and provide two operands to the data ALU
in a single cycle. The primary operand is addressed with the XAB1, and the second operand is addresse
with the XAB2. The data memory, in turn, places its data on the core global data bus (CGDB) and the
second external data bus (XDB2), respectively (see Figure 4-1 on page 4-3). See Section 6.1, “Introductio
to Moves and Parallel Moves,” on page 6-1 for more discussion on parallel memory moves.
4-2 DSP56800 Family Manual Freescale Semiconductor

Architecture and Programming Model

eas

me
-5

s

g
All four address pointer registers and the SP are used in generating addresses in the register indirect
addressing modes. The offset register can be used by all four address pointer registers and the SP, wher
the modulo register can be used by the R0 or by both the R0 and R1 pointer registers.

Whereas all the address pointer registers and the SP can be used in many addressing modes, there are so
instructions that only work with a specific address pointer register. These cases are presented in Table 4
on page 4-9.

The address generation unit is connected to four major buses: CGDB, XAB1, XAB2, and PAB. The
CGDB is used to read or write any of the address generation unit registers. The XAB1 and XAB2 provide
a primary and secondary address, respectively, to the X data memory, and the PAB provides the addres
when accessing the program memory.

A block diagram of the address generation unit is shown in Figure 4-1, and its corresponding programmin
model is shown in Figure 4-2. The blocks and registers are explained in the following subsections.

Figure 4-1. Address Generation Unit Block Diagram

Figure 4-2. Address Generation Unit Programming Model

R0

R2

R3

N

XAB2(15:0)PAB(15:0) XAB1(15:0)

R3 Only

Inc./Dec.

R1

SP

Modulo

Arithmetic

Unit

M01

CGDB(15:0)

AA0014

N M01SP

R3

R2

R1

R0

Pointer
Registers

Offset
Register

Modifier
Register

AA0015

15 0

15 0 15 0
Freescale Semiconductor Address Generation Unit 4-3

Address Generation Unit

d

ay be

ge
4.1.1 Address Registers (R0-R3)
The address register file consists of four 16-bit registers R0-R3 (denoted as Rj) which usually contain
addresses used as pointers to memory. Each register may be read or written by the CGDB. High speed
access to the XAB1, XAB2, and PAB buses is required to allow minimum access time for the internal an
external X data memory and program memory. Each address register may be used as input for the modulo
arithmetic unit for a register update calculation. Each register may be written by the output of the modulo
arithmetic unit.

The R3 register may be used as input to a separate incrementer/decrementer unit for an independent
register update calculation. This unit is used in the case of any instruction that performs two data memory
reads in its parallel move field. For instructions where two reads are performed from the X data memory,
the second read using the R3 pointer must always access on-chip memory.

NOTE:

Due to pipelining, if an address register (Rj, SP, or M01) is changed with
a MOVE or bit-field instruction, the new contents will not be available for
use as a pointer until the second following instruction. If the SP is changed,
no LEA or POP instructions are permitted until the second following
instruction.

4.1.2 Stack Pointer Register (SP)
The stack pointer register (SP) is a single 16-bit register that is used implicitly in all PUSH instruction
macros and POP instructions. The SP is used explicitly for memory references when used with the
address-register-indirect modes. It is post-decremented on all POPs from the software stack. The SP
register may be read or written by the CGDB.

NOTE:

This register must be initialized explicitly by the programmer after coming
out of reset.

Due to pipelining, if an address register (Rj, SP, or M01) is changed with
a MOVE or bit-field instruction, the new contents will not be available for
use as a pointer until the second following instruction. If the SP is changed,
no LEA or POP instructions are permitted until the second following
instruction.

4.1.3 Offset Register (N)
The offset register (N) usually contains offset values used to update address pointers. This single register
can be used to update or index with any of the address registers (R0-R3, SP). This offset register m
read or written by the CGDB. The offset register is used as input to the modulo arithmetic unit. It is often
used for array indexing or indexing into a table, as discussed in Section 8.7, “Array Indexes,” on pa
8-26.
4-4 DSP56800 Family Manual Freescale Semiconductor

Architecture and Programming Model

w

ad
NOTE:

If the N address register is changed with a MOVE instruction, this
register’s contents will be available for use on the immediately following
instruction. In this case the instruction that writes the N address register
will be stretched one additional instruction cycle. This is true for the case
when the N register is used by the immediately following instruction; if N
is not used, then the instruction is not stretched an additional cycle. If the
N address register is changed with a bit-field instruction, the new contents
will not be available for use until the second following instruction.

4.1.4 Modifier Register (M01)
The modifier register (M01) specifies whether linear or modulo arithmetic is used when calculating a ne
address and may be read or written by the CGDB. This modifier register is automatically read when the R0
address register is used in an address calculation and can optionally be used also when R1 is used. This
register has no effect on address calculations done with the R2, R3, or SP registers. It is used as input to the
modulo arithmetic unit. This modifier register is preset during a processor reset to $FFFF (linear
arithmetic).

NOTE:

Due to pipelining, if an address register (Rn, SP, or M01) is changed with
a MOVE or bit-field instruction, the new contents will not be available for
use as a pointer until the second following instruction. If the SP is changed,
no LEA or POP instructions are permitted until the following instruction.

4.1.5 Modulo Arithmetic Unit
The modulo arithmetic unit can update one address register or the SP during one instruction cycle. It is
capable of performing linear and modulo arithmetic, as described in Section 4.3, “AGU Address
Arithmetic.” The contents of the modifier register specifies the type of arithmetic to be performed in an
address register update calculation. The modifier value is decoded in the modulo arithmetic unit and
affects the unit’s operation. The modulo arithmetic unit’s operation is data-dependent and requires
execution cycle decoding of the selected modifier register contents. Note that the modulo capability is only
allowed for R0 or R1 updates; it is not allowed for R2, R3, or SP updates.

The modulo arithmetic unit first calculates the result of linear arithmetic (for example, Rn+1, Rn-1, Rn+N)
which is selected as the modulo arithmetic unit’s output for linear arithmetic. For modulo arithmetic, the
modulo arithmetic unit will perform the function (Rn+N) modulo (M01+1), where N can be 1, -1, or the
contents of the offset register N. If the modulo operation requires “wraparound” for modulo arithmetic, the
summed output of the modulo adder will give the correct, updated address register value; otherwise, if
wraparound is not necessary, the linear arithmetic calculation gives the correct result.

4.1.6 Incrementer/Decrementer Unit
The incrementer/decrementer unit is used for address-update calculations during dual data-memory re
instructions. It is used either to increment or decrement the R3 register. This adder performs only linear
arithmetic; it performs no modulo arithmetic.
Freescale Semiconductor Address Generation Unit 4-5

Address Generation Unit

).

s

e

,” on
4.2 Addressing Modes
The DSP56800 instruction set contains a full set of operand addressing modes, optimized for
high-performance signal processing as well as efficient controller code. All address calculations are
performed in the address generation unit to minimize execution time.

Addressing modes specify where the operand or operands for an instruction can be found — whether an
immediate value, located in a register, or in memory — and provide the exact address of the operand(s

The addressing modes are grouped into four categories:

• Register direct — directly references the processor registers as operands

• Address register indirect — uses an address register as a pointer to reference a location in memory
as an operand

• Immediate — the operand is contained as a value within the instruction itself

• Absolute — uses an address contained within the instruction to reference a location in memory a
an operand

An effective address in an instruction will specify an addressing mode (that is, where the operands can b
found), and for some addressing modes the effective address will further specify an address register that
points to a location in memory, how the address is calculated, and how the register is updated.

These addressing modes are referred to extensively in Section 6.6.4, “Instruction Summary Tables
page 6-17.

Several of the examples in the following sections demonstrate the use of assembler forcing operators.
These can be used in an instruction to force a desired addressing mode, as shown in Table 4-1.

Other assembler forcing operators are available for jump and branch instructions, as shown in Table 4-2.

Table 4-1. Addressing Mode Forcing Operators

Desired Action Forcing Operator Syntax Example

Force immediate short data #<xx #<$07

Force 16-bit immediate data #>xxxx #>$07

Force absolute short address X:<xx X:<$02

Force I/O short address X:<<xx X:<<$FFE3

Force 16-bit absolute address X:>xxxx X:>$02

Force short offset X:(SP-<xx) X:(SP-<$02)

Force 16-bit offset X:(Rn+>xxxx) X:(R0+>$03)

Table 4-2. Jump and Branch Forcing Operators

Desired Action Forcing Operator Syntax Example

Force 7-bit relative branch offset <xx <LABEL1

Force 16-bit absolute jump address >xxxx >LABEL5

Force 16-bit absolute loop address >xxxx >LABEL4
4-6 DSP56800 Family Manual Freescale Semiconductor

Addressing Modes

n

on
4.2.1 Register-Direct Modes
The register-direct addressing modes specify that the operand is in one (or more) of the nine data ALU
registers, seven address registers, or four control registers. The various options are shown in Table 4-3 o
page 4-7.

4.2.1.1 Data or Control Register Direct

The operand is in one, two, or three data ALU register(s) as specified in the operands or in a portion of the
data bus movement field in the instruction. This addressing mode is also used to specify a control register
operand. This reference is classified as a register reference.

4.2.1.2 Address Register Direct

The operand is in one of the seven address registers (R0-R3, N, M01, or SP) specified by an effective
address in the instruction. This reference is classified as a register reference.

NOTE:

Due to pipelining, if any address register is changed with a MOVE or
bit-field instruction, the new contents will not be available for use as a
pointer until the second following instruction. If the SP is changed, no
LEA or POP instructions are permitted until the second following
instruction.

4.2.2 Address-Register-Indirect Modes
When an address register is used to point to a memory location, the addressing mode is called address
register indirect. The term indirect is used because the operand is not in the address register itself, but the
contents of the memory location pointed to by the address register. The effective address in the instructi
specifies the address register Rj or SP and the address calculation to be performed. These addressing

Table 4-3. Addressing Mode — Register Direct

Addressing Mode:
Register Direct

Notation for Register Direct in the

Instruction Set Summary1

1. The register field notations found in the middle column are explained in more detail in
Table 6-16 on page 6-15 and Table 6-15 on page 6-14.

Examples

Any register DD
DDDDD

HHH
HHHH

F
F1

F1DD
FDD

Rj
Rn

A, A2, A1, A0
B, B2, B1, B0

Y, Y1, Y0
X0

R0, R1, R2, R3
SP
N

M01

PC
OMR, SR
LA, LC
HWS
Freescale Semiconductor Address Generation Unit 4-7

Address Generation Unit

e

ed

ll

s

modes specify that the operand is (or operands are) in memory and provide the specific address(es) of th
operand(s). A portion of the data bus movement field in the instruction specifies the memory reference to
be performed. The type of address arithmetic used is specified by the address modifier register.

Address-register-indirect modes may require an offset and a modifier register for use in address
calculations. The address register (Rj or SP) is used as the address register, the shared offset register is us
to specify an optional offset from this pointer, and the modifier register is used to specify the type of
arithmetic performed.

Some addressing modes are only available with certain address registers (Rn). For example, although a
address registers support the “indexed by long displacement” addressing mode, only the R2 address
register supports the “indexed by short displacement” addressing mode. For instructions where two read
are performed from the X data memory, the second read using the R3 pointer must always be from on-chip
memory. The addressed register sets are summarized in Table 4-5.

Table 4-4. Addressing Mode — Address Register Indirect

Addressing Mode:
Address Register Indirect

Notation in the Instruction Set

Summary1

1. Rj represents one of the four pointer registers R0-R3; Rn is any of the AGU address registers
R0-R3 or SP.

Examples

Accessing Program (P) Memory

Post-increment P:(Rj)+ P:(R0)+

Post-update by offset N P:(Rj)+N P:(R3)+N

Instructions that access P memory are not allowed when the XP bit in the OMR is set (that is, when the
instructions are executing from data memory).

Accessing Data (X) Memory

No update X:(Rn) X:(R3)
X:(SP)

Post-increment X:(Rn)+ X:(R1)+
X:(SP)+

Post-decrement X:(Rn)- X:(R3)-
X:(SP)-

Post-update by offset N
available for word accesses only

X:(Rn)+N X:(R1)+N

Indexed by offset N X:(Rn+N) X:(R2+N)
X:(SP+N)

Indexed by 6-bit displacement
R2 and SP registers only

X:(R2+xx)
X:(SP-xx)

X:(R2+15)
X:(SP-$1E)

Indexed by 16-bit displacement X:(Rn+xxxx) X:(R0-97)
X:(SP+$03F7)
4-8 DSP56800 Family Manual Freescale Semiconductor

Addressing Modes

ing R0,

See
The type of arithmetic to be performed is not encoded in the instruction, but it is specified by the address
modifier register (M01 for the DSP56800 core). It indicates whether linear or modulo arithmetic is
performed when doing address calculations. In the case where there is not a modifier register for a
particular register set (R2 or R3), linear addressing is always performed. For address calculations us
the modifier register is always used; for calculations using R1, the modifier register is optionally used.

Each address-register-indirect addressing mode is illustrated in the following subsections.

4.2.2.1 No Update: (Rj), (SP)

The address of the operand is in the address register Rj or SP. The contents of the Rn register are
unchanged. The M01 and N registers are ignored. This reference is classified as a memory reference.
Figure 4-3.

Table 4-5. Address-Register-Indirect Addressing Modes Available

Register Set Arithmetic Types Addressing Modes Allowed Notes

R0/M01/N Linear or modulo (R0)
(R0)+
(R0)-
(R0)+N
(R0+N)
(R0+xxxx)

R0 always uses the M01 register to
specify modulo or linear arithmetic.
R0 can optionally be used as a
source register for the Tcc instruc-
tion. R0 is the only register allowed
as a counter for the NORM instruc-
tion.

R1/M01/N Linear or modulo (R1)
(R1)+
(R1)-
(R1)+N
(R1+N)
(R1+xxxx)

R1 optionally uses the M01 register
to specify modulo or linear arith-
metic. R1 can optionally be used as
a destination register for the Tcc
instruction.

R2/N Linear (R2)
(R2)+
(R2)-
(R2)+N
(R2+N)
(R2+xx)
(R2+xxxx)

R2 supports a one-word indexed
addressing mode. R2 is not allowed
as either pointer for instructions that
perform two reads from X data
memory. No modulo arithmetic is
allowed.

R3/N Linear (R3)
(R3)+
(R3)-
(R3)+N
(R3+N)
(R3+xxxx)

R3 provides a second address for
instructions with two reads from
data memory. This second address
can only access internal memory. It
can also be used for instructions that
perform one access to data memory.
No modulo arithmetic is allowed.

SP/N Linear (SP)
(SP)-
(SP)+
(SP)+N
(SP+N)
(SP-xx)
(SP+xxxx)

The SP supports a one-word indexed
addressing mode, which is useful for
accessing local variables and passed
parameters. No modulo arithmetic is
allowed.
Freescale Semiconductor Address Generation Unit 4-9

Address Generation Unit
Figure 4-3. Address Register Indirect: No Update

$1000

Before Execution

X Memory

X X X X

$1000R0

(n/a)N

(n/a)M01

1 2 3 40

A2 A1

5 6 7 8

A0

A

After Execution

$1000R0

(n/a)N

(n/a)M01

1 2 3 40

A2 A1

5 6 7 8

A0

A

Assembler syntax: X:(Rj), X:(SP)
Additional instruction execution cycles: 0
Additional effective address program words: 0

35 32 31 16 15 0

15 0

35 32 31 16 15 0

15 0 15 0

15 0 15 0

15 0 15 0

AA0016

No Update Example : MOVE A1,X:(R0)

$1000

X Memory

1 2 3 4

15 0
4-10 DSP56800 Family Manual Freescale Semiconductor

Addressing Modes

it is
4.2.2.2 Post-Increment by 1: (Rj)+, (SP)+

The address of the operand is in the address register Rj or SP. After the operand address is used,
incremented by one and stored in the same address register. The type of arithmetic (linear or modulo) used
to increment Rn is determined by M01 for R0 and R1 and is always linear for R2, R3, and SP. The N
register is ignored. This reference is classified as a memory reference. See Figure 4-4.

Figure 4-4. Address Register Indirect: Post-Increment

$2500

Before Execution

X Memory

X X X X

$2500R1

(n/a)N

$FFFFM01

6 5 4 3A

B2 B1

F E D C

B0

B

After Execution

$2501R1

(n/a)N

$FFFFM01

6 5 4 3A

B2 B1

F E D C

B0

B

Assembler syntax: X:(Rj)+, X:(SP)+, P:(Rj)+
Additional instruction execution cycles: 0
Additional effective address program words: 0

35 32 31 16 15 0

15 0

35 32 31 16 15 0

15 0 15 0

15 0 15 0

15 0 15 0

AA0017

Post-Increment Example: MOVE B0,X:(R1)+

$2500

X Memory

F E D C

15 0

$2501 X X X X $2501 X X X X
Freescale Semiconductor Address Generation Unit 4-11

Address Generation Unit

it is

4.2.2.3 Post-Decrement by 1: (Rn)-, (SP)-

The address of the operand is in the address register Rj or SP. After the operand address is used,
decremented by one and stored in the same address register. The type of arithmetic (linear or modulo) used
to decrement Rn is determined by M01 for R0 and R1 and is always linear for R2, R3, and SP. The N
register is ignored. This reference is classified as a memory reference. See Figure 4-5.

Figure 4-5. Address Register Indirect: Post-Decrement

$4734

Before Execution

X Memory

X X X X

$4735R1

(n/a)N

$FFFFM01

6 5 4 30

B2 B1

F E D C

B0

B

After Execution

$4734R1

(n/a)N

$FFFFM01

6 5 4 30

B2 B1

F E D C

B0

B

Assembler syntax: X:(Rj)-, X:(SP)-
Additional instruction execution cycles: 0
Additional effective address program words: 0

35 32 31 16 15 0

15 0

35 32 31 16 15 0

15 0 15 0

15 0 15 0

15 0 15 0

AA0018

Post-Decrement Example : MOVE B,X:(R1)-

$4734

X Memory

X X X X

15 0

$4735 X X X X $4735 6 5 4 3
4-12 DSP56800 Family Manual Freescale Semiconductor

Addressing Modes

f
ear
4.2.2.4 Post-Update by Offset N: (Rj)+N, (SP)+N

The address of the operand is in the address register Rj or SP. After the operand address is used, the
contents of the N register are added to Rn and stored in the same address register. The content of N is
treated as a two’s-complement signed number. The contents of the N register are unchanged. The type o
arithmetic (linear or modulo) used to update Rn is determined by M01 for R0 and R1 and is always lin
for R2, R3, and SP. This reference is classified as a memory reference. See Figure 4-6.

Figure 4-6. Address Register Indirect: Post-Update by Offset N

$3200

Before Execution

X Memory

X X X X

$3200R2

$0004N

$FFFFM01

5 5 5 5

Y1

A A A A

Y0

Y

After Execution

$3204R2

$0004N

$FFFFM01

5 5 5 5

Y1

A A A A

Y0

Y

Assembler syntax: X:(Rj)+N, X:(SP)+N, P:(Rj)+N
Additional instruction execution cycles: 0
Additional effective address program words: 0

31 16 15 0

15 0

31 16 15 0

15 0 15 0

15 0 15 0

15 0 15 0

AA0019

Post-Update by Offset N Example : MOVE Y1,X:(R2)+N

$3200

X Memory

5 5 5 5

15 0

$3204 X X X X $3204 X X X X
Freescale Semiconductor Address Generation Unit 4-13

Address Generation Unit

of

e

P.
4.2.2.5 Index by Offset N: (Rj+N), (SP+N)

The address of the operand is the sum of the contents of the address register Rj or SP and the contents
the address offset register N. This addition occurs before the operand can be accessed and, therefore,
inserts an extra instruction cycle. The content of N is treated as a two’s-complement signed number. Th
contents of the Rn and N registers are unchanged by this addressing mode. The type of arithmetic (linear or
modulo) used to add N to Rn is determined by M01 for R0 and R1 and is always linear for R2, R3, and S
This reference is classified as a memory reference. See Figure 4-7.

Figure 4-7. Address Register Indirect: Indexed by Offset N

$7000

Before Execution

X Memory

X X X X

$7000R0

$0003N

$FFFFM01

E D C BF

A2 A1

A 9 8 7

A0

A

After Execution

$7000R0

$0003N

$FFFFM01

E D C BF

A2 A1

A 9 8 7

A0

A

Assembler syntax: X:(Rj+N), X:(SP+N)
Additional instruction execution cycles: 1
Additional effective address program words: 0

35 32 31 16 15 0

15 0

35 32 31 16 15 0

15 0 15 0

15 0 15 0

15 0 15 0

AA0020

Indexed by Offset N Example : MOVE A1,X:(R0+N)

$7000

X Memory

X X X X

15 0

$7003 X X X X $7003 E D C B

+

4-14 DSP56800 Family Manual Freescale Semiconductor

Addressing Modes

4.2.2.6 Index by Short Displacement: (SP-xx), (R2+xx)

This addressing mode contains the 6-bit short immediate index within the instruction word. This field is
always one-extended to form a negative offset when the SP register is used and is always zero-extended to
form a positive offset when the R2 register is used. The type of arithmetic used to add the short
displacement to R2 or SP is always linear; modulo arithmetic is not allowed. This addressing mode
requires an extra instruction cycle. This reference is classified as an X memory reference. See Figure 4-8.

Figure 4-8. Address Register Indirect: Indexed by Short Displacement

$7000

Before Execution

X Memory

X X X X

$7000R2

$4567N

$FFFFM01

E D C BF

A2 A1

A 9 8 7

A0

A

After Execution

$7000R2

$4567N

$FFFFM01

E D C BF

A2 A1

A 9 8 7

A0

A

Assembler syntax: X:(R2+xx), X:(SP-xx)
Additional instruction execution cycles: 1
Additional effective address program words: 0

35 32 31 16 15 0

15 0

35 32 31 16 15 0

15 0 15 0

15 0 15 0

15 0 15 0

AA0021

Indexed by Short Displacement Example : MOVE A1,X:(R2+3)

$7000

X Memory

X X X X

15 0

$7003 X X X X $7003 E D C B

+

Short Immediate Value
from the Instruction Word
Freescale Semiconductor Address Generation Unit 4-15

Address Generation Unit

d
.
C
4.2.2.7 Index by Long Displacement: (Rj+xxxx), (SP+xxxx)

This addressing mode contains the 16-bit long immediate index within the instruction word. This second
word is treated as a signed two’s-complement value. The type of arithmetic (linear or modulo) used to ad
the long displacement to Rn is determined by M01 for R0 and R1 and is always linear for R2, R3, and SP
This addressing mode requires two extra instruction cycles. This addressing mode is available for MOVE
instructions. This reference is classified as an X memory reference. See Figure 4-9.

Figure 4-9. Address Register Indirect: Indexed by Long Displacement

Before Execution

X Memory

$7000R0

$4567N

$FFFFM01

E D C BF

A2 A1

A 9 8 7

A0

A

After Execution

$7000R0

$4567N

$FFFFM01

E D C BF

A2 A1

A 9 8 7

A0

A

Assembler syntax: X:(Rj+xxxx), X:(SP+xxxx)
Additional instruction execution cycles: 2
Additional effective address program words: 1

35 32 31 16 15 0

15 0

35 32 31 16 15 0

15 0 15 0

15 0 15 0

15 0 15 0

AA0022

Indexed by Long Displacement Example : MOVE A1,X:(R0+$10CF)

X Memory

+

Long Immediate Value
from the Instruction Word

15 0

$80CF X X X X $80CF E D C B

$7000 X X X X $7000 X X X X
4-16 DSP56800 Family Manual Freescale Semiconductor

Addressing Modes

s
4.2.3 Immediate Data Modes
The immediate data modes specify the operand directly in a field of the instruction. That is, the operand
value to be used is contained within the instruction word itself (or words themselves). There are two type
of immediate data modes: immediate data, which uses an extension word to contain the operand, and
immediate short data, where the operand is contained within the instruction word. Table 4-6 summarizes
these two modes.

Table 4-6. Addressing Mode — Immediate

Addressing Mode:
Immediate

Notation in the Instruction Set
Summary

Examples

Immediate short data — 5, 6, 7-bit
(unsigned and signed)

#xx #14
#<3

Immediate data — 16-bit
(unsigned and signed)

#xxxx #$369C
#>1234
Freescale Semiconductor Address Generation Unit 4-17

Address Generation Unit

f
4.2.3.1 Immediate Data: #xxxx

This addressing mode requires one word of instruction extension. This additional word contains the 16-bit
immediate data used by the instruction. This reference is classified as a program reference. Examples o
the use and effects of immediate-data mode are shown in Figure 4-10 on page 4-18.

Figure 4-10. Special Addressing: Immediate Data

Assembler syntax: #xxxx
Additional instruction execution cycles: 1
Additional effective address program words: 1

Before Execution

X X X XX

B2 B1

X X X X

B0

B

After Execution

A 9 8 7X

B2 B1

X X X X

B0

B

35 32 31 16 15 0 35 32 31 16 15 0

Immediate into 16-Bit Register Example : MOVE #$A987,B1

Before Execution

X X X XX

B2 B1

X X X X

B0

B

After Execution

1 2 3 40

B2 B1

0 0 0 0

B0

B

35 32 31 16 15 0 35 32 31 16 15 0

Positive Immediate into 36 -Bit Accumulator Example : MOVE #$1234,B

Before Execution

X X X XX

B2 B1

X X X X

B0

B

After Execution

A 9 8 7F

B2 B1

0 0 0 0

B0

B

35 32 31 16 15 0 35 32 31 16 15 0

Negative Immediate into 36-Bit Accumulator Example : MOVE #$A987,B

AA0023
4-18 DSP56800 Family Manual Freescale Semiconductor

Addressing Modes
Figure 4-11. Special Addressing: Immediate Short Data

Assembler syntax: #xx
Additional instruction execution cycles: 0
Additional effective address program words: 0

Before Execution

XXXXN

After Execution

15 0

Immediate Short into 16-Bit Address Register Example : MOVE #$0027,N

Before Execution

X X X XX

B2 B1

X X X X

B0

B

After Execution

0 0 1 CX

B2 B1

X X X X

B0

B

35 32 31 16 15 0 35 32 31 16 15 0

Immediate Short into 16-Bit Accumulator Register Example : MOVE #$001C,B1

AA0024

$0027N

15 0

Before Execution

XXXXX0

After Execution

15 0

Immediate Short into 16-Bit Data Register Example : MOVE #$FFC6,X0

$FFC6X0

15 0

Before Execution

X X X XX

B2 B1

X X X X

B0

B

After Execution

0 0 1 C0

B2 B1

0 0 0 0

B0

B

35 32 31 16 15 0 35 32 31 16 15 0

Positive Immediate Short into 36-Bit Accumulator Example : MOVE #$001C,B

Before Execution

X X X XX

B2 B1

X X X X

B0

B

After Execution

F F C 6F

B2 B1

0 0 0 0

B0

B

35 32 31 16 15 0 35 32 31 16 15 0

Negative Immediate Short into 36-Bit Accumulator Example : MOVE #$FFC6,B
Freescale Semiconductor Address Generation Unit 4-19

Address Generation Unit

The
4.2.3.2 Immediate Short Data: #xx

The immediate-short-data operand is located within the instruction operation word. A 6-bit unsigned
positive operand is used for DO and REP instructions, and a 7-bit signed operand is used for an immediate
move to an on-core register instruction. This reference is classified as a program reference. See
Figure 4-11 on page 4-19.

4.2.4 Absolute Addressing Modes
Similar to the direct addressing modes, the absolute addressing modes specify the operand value within the
instruction or instruction-extension words. Unlike the direct modes, these values are not used as the
operands themselves, but are interpreted as absolute data memory addresses for the operand values.
different absolute addressing modes are shown in Table 4-7.

Table 4-7. Addressing Mode — Absolute

Addressing Mode:
Absolute

Notation in the Instruction Set
Summary

Examples

Absolute short address — 6 bit
(direct addressing)

X:aa X:$0002
X:<$02

I/O short address1 — 6 bit
(direct addressing)

1. I/O short addressing mode is used when the peripheral registers are mapped to the last 64 lo-
cations in X memory. When IP-BUS (or PGDB) interface maps these registers outside the
X:$FFC0-X:$FFFF range, they are then accessed with other suitable standard addressing mode.

X:<<pp X:<<$FFE3

Absolute address — 16-bit
(extended addressing)

X:xxxx X:$C002
4-20 DSP56800 Family Manual Freescale Semiconductor

Addressing Modes
4.2.4.1 Absolute Address (Extended Addressing): xxxx

This addressing mode requires one word of instruction extension, which contains the 16-bit absolute
address of the operand. No registers are used to form the address of the operand. Absolute address
instructions are used with the bit-manipulation and move instructions. This reference is classified as a
memory reference and a program reference. See Figure 4-12.

Figure 4-12. Special Addressing: Absolute Address

Assembler syntax: X:xxxx
Additional instruction execution cycles: 1
Additional effective address program words: 1

$5079

X Memory

1 2 3 4

15 0

$5079

X Memory

1 2 3 4

15 0

Before Execution

XXXXX0

After Execution

15 0

$1234X0

15 0

Absolute Address Example : MOVE X:$5079,X0

AA0025
Freescale Semiconductor Address Generation Unit 4-21

Address Generation Unit

4.2.4.2 Absolute Short Address (Direct Addressing): <aa>

For the absolute short addressing mode, the address of the operand occupies 6 bits in the instruction
operation word and is zero-extended. This allows direct access to the first 64 locations in X memory. No
registers are used to form the address of the operand. Absolute short instructions are used with the bit-field
manipulation and move instructions. See Figure 4-13.

Figure 4-13. Special Addressing: Absolute Short Address

Assembler syntax: X:<aa>
Additional instruction execution cycles: 0
Additional effective address program words: 0

$0003

X Memory

X X X X

15 0

$0003

X Memory

A B C D

15 0

Before Execution

$ABCDR2

After Execution

15 0

$ABCDR2

15 0

Absolute Short Address Example : MOVE R2,X:<$0003

AA0026

$0000 $0000
4-22 DSP56800 Family Manual Freescale Semiconductor

Addressing Modes

th
n the

of
n

4.2.4.3 I/O Short Address (Direct Addressing): <pp>

When the peripheral registers are mapped to the last 64 locations in X memory, these can be accessed wi
short addressing mode. For the I/O short addressing mode, the address of the operand occupies 6 bits i
instruction operation word and is one-extended. This allows direct access to the last 64 locations in X
memory, which may contain the on-chip peripheral registers. No registers are used to form the address
the operand. See Figure 4-14 for examples of using the I/O short direct addressing mode. Note that whe
peripherals are connected to the DSP56800 core using the Freescale-standard IP-BUS (or PGDB)
interface, peripheral registers may be mapped into any other data (X) memory range. Note that if the
peripheral registers are mapped to an area of memory outside the range X:$FFC0-X:$FFFF, this address
mode will not be available and the registers are then accessed with other suitable standard addressing
mode.

4.2.5 Implicit Reference
Some instructions make implicit reference to the program counter (PC), software stack, hardware stack
(HWS), loop address register (LA), loop counter (LC), or status register (SR). The implied registers and
their use are defined by the individual instruction descriptions. See Appendix A, “Instruction Set Details,“
for more information.

4.2.6 Addressing Modes Summary
Table 4-8 on page 4-24 contains a summary of the addressing modes discussed in the preceding
subsections of Section 4.2.

Figure 4-14. Special Addressing: I/O Short Address

Assembler syntax: X:<pp>
Additional instruction execution cycles: 0
Additional effective address program words: 0

$FFFF

Memory Mapped Registers

5 6 7 8

15 0

$FFFF

Memory Mapped Registers

5 6 7 8

15 0

Before Execution

XXXXR3

After Execution

15 0

$5678R3

15 0

I/O Short Address Example : MOVE X:<<$FFFB,R3

AA0027

$FFFB $FFFB
Freescale Semiconductor Address Generation Unit 4-23

Address Generation Unit
Table 4-8. Addressing Mode Summary

Addressing Mode
Uses

M011

1. The M01 modifier can only be used on the R0/N/M01 or R1/N/M01 register sets

Operand Reference

Assembler Syntax

S2

2. Hardware stack reference

C3

3. Program controller register reference

D4

4. Data ALU register reference

A5

5. Address Generation Unit register reference

P6

6. Program memory reference

X7

7. X memory reference

XX8

8. Dual X memory read

Register Direct

Data or control register No X X

Address register (Rj, SP) No X Rn

Address modifier register (M01) No X M01

Address offset register (N) No X N

Hardware stack (HWS) No X HWS

Software stack No X

Address Register Indirect

No update No X (Rn)

Post-increment by 1 Yes X X X (Rn)+

Post-decrement by 1 Yes X (Rn)-

Post-update by offset N Yes X X X (Rn)+N

Index by offset N Yes X (Rn+N)

Index by short displacement No X (R2+xx) or (SP-xx)

Index by long displacement Yes X (Rn+xxxx)

Immediate, Absolute, and Implicit

Immediate data No X #xxxx

Immediate short data No X #xx

Absolute address No X X xxxx

Absolute short address No X <aa>

I/O short address No X <pp>

Implicit No X X X X
4-24 DSP56800 Family Manual Freescale Semiconductor

AGU Address Arithmetic

r
 in

,
e

 R1

ular

at
4.3 AGU Address Arithmetic
When an arithmetic operation is performed in the address generation unit, it can be performed using eithe
linear or modulo arithmetic. Linear arithmetic is used for general-purpose address computation, as found
all microprocessors. Modulo arithmetic is used to create data structures in memory such as circular buffers
first-in-first-out queues (FIFOs), delay lines, and fixed-size stacks. Using these structures allows data to b
manipulated simply by updating address register pointers, rather than by moving large blocks of data.

Linear versus modulo arithmetic is selected using the modifier register, M01. Arithmetic on the R0 and
AGU registers may be performed using either linear or modulo arithmetic. The R2, R3, and SP registers
can be modified using linear arithmetic only.

4.3.1 Linear Arithmetic
Linear arithmetic is “normal” address arithmetic, as found on general-purpose microprocessors. It is
performed using 16-bit two’s-complement addition and subtraction. The 16-bit offset register N, or
immediate data (+1, -1, or a displacement value), is used in the address calculations. Addresses are
normally considered unsigned; offsets are considered signed.

Linear arithmetic is enabled for the R0 and R1 registers by setting the modifier register (M01) to $FFFF.
The M01 register is set to $FFFF on reset.

NOTE:

To ensure compatibility with future generations of DSP56800-compatible
DSC devices, care should be taken to avoid address arithmetic operations
that can cause address register values to overflow. On DSP56800 Family
chips, register values can be expected to “wrap” appropriately. Future
generations may support address ranges > 64K, however, causing potential
address-calculation errors.

4.3.2 Modulo Arithmetic
Many DSC and standard control algorithms require the use of specialized data structures, such as circ
buffers, FIFOs, and stacks. The DSP56800 architecture provides support for these algorithms by
implementing modulo arithmetic in the address generation unit.

4.3.2.1 Modulo Arithmetic Overview

To understand modulo address arithmetic, consider the example of a circular buffer. A circular buffer is a
block of sequential memory locations with a special property: a pointer into the buffer is limited to the
buffer’s address range. When a buffer pointer is incremented such that it would point past the end of the
buffer, the pointer is “wrapped” back to the beginning of the buffer. Similarly, decrementing a pointer th
is located at the beginning of the buffer will wrap the pointer to the end. This behavior is achieved by
performing modulo arithmetic when incrementing or decrementing the buffer pointers. See Figure 4-15 on
page 4-26.
Freescale Semiconductor Address Generation Unit 4-25

Address Generation Unit

modulo

wer of

 k
Figure 4-15. Circular Buffer

The modulo arithmetic unit in the AGU simplifies the use of a circular buffer by handling the address
pointer wrapping for you. After establishing a buffer in memory, the R0 and R1 address pointers can be
made to wrap in the buffer area by programming the M01 register.

Modulo arithmetic is enabled by programming the M01 register with a value that is one less than the size
of the circular buffer. See Section 4.3.2.2, “Configuring Modulo Arithmetic,” for exact details on
programming the M01 register. Once enabled, updates to the R0 or R1 registers using one of the
post-increment or post-decrement addressing modes are performed with modulo arithmetic, and will wrap
correctly in the circular buffer.

The address range within which the address pointers will wrap is determined by the value placed in the
M01 register and the address contained within one of the pointer registers. Due to the design of the
arithmetic unit, the address range is not arbitrary, but limited based on the value placed in M01. The lower
bound of the range is calculated by taking the size of the buffer, rounding it up to the next highest po
two, and then rounding the address contained in the R0 or R1 pointers down to the nearest multiple of that
value.

For example: for a buffer size of M, a value 2k is calculated such that 2k > M. This is the buffer size
rounded up to the next highest power of two. For a value M of 37, 2k would be 64. The lower boundary of
the range in which the pointer registers will wrap is the value in the R0 or R1 register with the low-order
bits all set to zero, effectively rounding the value down to the nearest multiple of 2k (64 in this case). This
is shown in Figure 4-16 on page 4-27.

Circular
Buffer

Address
Pointer

Lower Boundary: “K” LSBs Are All “0s”

M01 = Size of Modulo Region Minus One

Upper Boundary: Lower Boundary + M01

Address of Lower Boundary:

Base Address
01k-1 ...k15

0 0 0 0 0
4-26 DSP56800 Family Manual Freescale Semiconductor

AGU Address Arithmetic

Figure 4-16. Circular Buffer with Size M=37

When modulo arithmetic is performed on the buffer pointer register, only the low-order k bits are
modified; the upper 16 - k bits are held constant, fixing the address range of the buffer. The algorithm used
to update the pointer register (R0 in this case) is as follows:

R0[15:k] = R0[15:k]
R0[k-1:0] = (R0[k-1:0] + offset) MOD (M01 + 1)

Note that this algorithm can result in some memory addresses being unavailable. If the size of the buffer is
not an even power of two, there will be a range of addresses between M and 2k-1 (37 and 63 in our
example) that are not addressable. Section 4.3.2.7.3, “Memory Locations Not Available for Modulo
Buffers,” addresses this issue in greater detail.

4.3.2.2 Configuring Modulo Arithmetic

As noted in Section 4.3.2.1, “Modulo Arithmetic Overview,” modulo arithmetic is enabled by
programming the address modifier register, M01. This single register enables modulo arithmetic for both
the R0 and R1 registers, although in order for modulo arithmetic to be enabled for the R1 register it must
be enabled for the R0 register as well. When both pointers use modulo arithmetic, the sizes of both buffers
are the same. They can refer to the same or different buffers as desired.

The possible configurations of the M01 register are given in Table 4-9.

Table 4-9. Programming M01 for Modulo Arithmetic

16-Bit M01
Register Contents

Address Arithmetic
Performed

Pointer Registers
Affected

$0000 (Reserved) —

$0001 Modulo 2 R0 pointer only

$0002 Modulo 3 R0 pointer only

Upper Boundary: $00A4

$009F

$00B0

Lower Bound Relative to R0

Initial R0 Pointer Value

Memory

Circular
Buffer

Lower Boundary: $0080

Lower Bound + Size - 1 = Upper Bound

(Unavailable
Addresses)
Freescale Semiconductor Address Generation Unit 4-27

Address Generation Unit

tic
e
The high-order two bits of the M01 register determine the arithmetic mode for R0 and R1. A value of 00
for M01[15:14] selects modulo arithmetic for R0. A value of 10 for M01[15:14] selects modulo arithme
for both R0 and R1. A value of 11 disables modulo arithmetic. The remaining 14 bits of M01 hold the siz
of the buffer minus one.

NOTE:

The reserved values ($0000, $4000-$8000, and $C000-$FFFE) should not
be used. The behavior of the modulo arithmetic unit is undefined for these
values, and may result in erratic program execution.

...

$3FFE Modulo 16383 R0 pointer only

$3FFF Modulo 16384 R0 pointer only

$4000 (Reserved) —

...

$7FFF (Reserved) —

$8000 (Reserved) —

$8001 Modulo 2 R0 and R1 pointers

$8002 Modulo 3 R0 and R1 pointers

...

$BFFE Modulo 16383 R0 and R1 pointers

$BFFF Modulo 16384 R0 and R1 pointers

$C000 (Reserved) —

...

$FFFE (Reserved) —

$FFFF Linear Arithmetic R0 and R1 pointers both set
up for linear arithmetic

Table 4-9. Programming M01 for Modulo Arithmetic (Continued)

16-Bit M01
Register Contents

Address Arithmetic
Performed

Pointer Registers
Affected
4-28 DSP56800 Family Manual Freescale Semiconductor

AGU Address Arithmetic

:

s
t

4.3.2.3 Supported Memory Access Instructions

The address generation unit supports modulo arithmetic for the following address-register-indirect modes

As noted in the preceding discussion, modulo arithmetic is only supported for the R0 and R1 address
registers.

4.3.2.4 Simple Circular Buffer Example

Suppose a five-location circular buffer is needed for an application. The application locates this buffer at
X:$800 in memory. (This location is arbitrary — any location in an allowable data memory would suffice.)
In order to configure the AGU correctly to manage this circular buffer, the following two pieces of
information are needed:

The size of the buffer: five words
The location of the buffer: X:$0800 – X:$0804 (assume allowable memory locations)

Modulo addressing is enabled for the R0 pointer by writing the size minus one ($0004) to M01[13:0], and
00 to M01[15:14]. See Figure 4-17.

Figure 4-17. Simple Five-Location Circular Buffer

The location of the buffer in memory is determined by the value of the R0 pointer when it is used to acces
memory. The size of the memory buffer (five in this case) is rounded up to the nearest power of two (eigh
in this case). The value in R0 is then rounded down to the nearest multiple of eight. For the base address to
be X:$0800, the initial value of R0 must be in the range X:$0800 – X:$0804. Note that the initial value of
R0 does not have to be X:$0800 to establish this address as the lower bound of the buffer. However, it is
often convenient to set R0 to the beginning of the buffer. The source code in Example 4-1 shows the
initialization of the example buffer.

Example 4-1. Initializing the Circular Buffer

MOVE #(5-1),M01 ; Initialize the buffer for five locations
MOVE #$0800,R0 ; R0 can be initialized to any location

; within the buffer. For simplicity, R0
; is initialized to the value of the lower
; boundary

(Rn) (Rn)+

(Rn)- (Rn)+N

(Rn+N) (Rn+xxxx)

Circular
Buffer

$0800

M01 Register = Size - 1 = 5 - 1 = $0004

$0804

R0
Freescale Semiconductor Address Generation Unit 4-29

Address Generation Unit

on the

the
The buffer is used simply by accessing it with MOVE instructions. The effect of modulo address
arithmetic becomes apparent when the buffer is accessed multiple times, as in Example 4-2 on page 4-30.

Example 4-2. Accessing the Circular Buffer

MOVE X:(R0)+,X0 ; First time accesses location $0800
; and bumps the pointer to location $0801

MOVE X:(R0)+,X0 ; Second accesses at location $0801
MOVE X:(R0)+,X0 ; Third accesses at location $0802
MOVE X:(R0)+,X0 ; Fourth accesses at location $0803
MOVE X:(R0)+,X0 ; Fifth accesses at location $0804

; and bumps the pointer to location $0800

MOVE X:(R0)+,X0 ; Sixth accesses at location $0800 <=== NOTE
MOVE X:(R0)+,X0 ; Seventh accesses at location $0801
MOVE X:(R0)+,X0 ; and so forth...

For the first several memory accesses, the buffer pointer is incremented as expected, from $0800 to $0801,
$0802, and so forth. When the pointer reaches the top of the buffer, rather than incrementing from $0804 to
$0805, the pointer value “wraps” back to $0800.

The behavior is similar when the buffer pointer register is incremented by a value greater than one.
Consider the source code in Example 4-3, where R0 is post-incremented by three rather than one. The
pointer register correctly “wraps” from $0803 to $0801 — the pointer does not have to land exactly
upper and lower bound of the buffer for the modulo arithmetic to wrap the value properly.

Example 4-3. Accessing the Circular Buffer with Post-Update by Three

MOVE #(5-1),M01 ; Initialize the buffer for five locations
MOVE #$0800,R0 ; Initialize the pointer to $0800
MOVE #3,N ; Initialize “bump value” to 3
NOP
NOP
MOVE X:(R0)+N,X0 ; First time accesses location $0800

; and bumps the pointer to location $0803
MOVE X:(R0)+N,X0 ; Second accesses at location $0803

; and wraps the pointer around to $0801

MOVE X:(R0)+N,X0 ; Third accesses at location $0801
; and bumps the pointer to location $0804

MOVE X:(R0)+N,X0 ; Fourth accesses at ...

In addition, the pointer register does not need to be incremented; it could be decremented instead.
Instructions that post-decrement the buffer pointer also work correctly. Executing the instruction MOVE
X:(R0)-,X0 when the value of R0 is $0800 will correctly set R0 to $0804.

4.3.2.5 Setting Up a Modulo Buffer

The following steps detail the process of setting up and using the 37-location circular buffer shown in
Figure 4-16 on page 4-27.

1. Determine the value for the M01 register.

— Select the size of the desired buffer; it can be no larger than 16,384 locations. If modulo
arithmetic is to be enabled only for the R0 address register, this gives the following:
M01 = # locations - 1 = 37 - 1 = 36 = $0024

— If modulo arithmetic is to be enabled for both the R0 and R1 address registers, be sure to set
high-order bit of M01:
M01 = # locations - 1 + $8000 = 37 - 1 + 32768 = 32804 = $8024
4-30 DSP56800 Family Manual Freescale Semiconductor

AGU Address Arithmetic

e

e

ory
).

d
o

:

r

g

n is
is
2. Find the nearest power of two greater than or equal to the circular buffer size. In this
example, the value would be 2k � 37, which gives us a value of k = 6.

3. From k, derive the characteristics of the lower boundary of the circular buffer. Since the “k”
least-significant bits of the address of the lower boundary must all be 0s, then the buffer
base address must be some multiple of 2k. In this case, k = 6, so the base address is some
multiple of 26 = 64.

4. Locate the circular buffer in memory.

— The location of the circular buffer in memory is determined by the upper 16 - k bits of the
address pointer register used in a modulo arithmetic operation. If there is an open area of
memory from locations 111 to 189 ($006F to $00BD), for example, then the addresses of th
lower and upper boundaries of the circular buffer will fit in this open area for J = 2:
Lower boundary = (J x 64) = (2 x 64) = 128 = $0080
Upper boundary = (J x 64) + 36 = (2 x 64) + 36 = 164 = $00A4

— The exact area of memory in which a circular buffer is prepared is specified by picking a valu
for the address pointer register, R0 or R1, whose value is inclusively between the desired lower
and upper boundaries of the circular buffer. Thus, selecting a value of 139 ($008B) for R0
would locate the circular buffer between locations 128 and 164 ($0080 to $00A4) in mem
since the upper 10 (16 - k) bits of the address indicate that the lower boundary is 128 ($0080

— In summary, the size and exact location of the circular buffer is defined once a value is assigne
to the M01 register and to the address pointer register (R0 or R1) that will be used in a modul
arithmetic calculation.

5. Determine the upper boundary of the circular buffer, which is the lower boundary + #
locations - 1.

6. Select a value for the offset register if it is used in modulo operations.

— If the offset register is used in a modulo arithmetic calculation, it must be selected as follows
|N| � M01 + 1 [where |N| refers to the absolute value of the contents of the offset register]

— The special case where N is a multiple of the block size, 2k, is discussed in Section 4.3.2.6,
“Wrapping to a Different Bank.”

7. Perform the modulo arithmetic calculation.

— Once the appropriate registers are set up, the modulo arithmetic operation occurs when an
instruction with any of the following addressing modes using the R0 (or R1, if enabled) registe
is executed:
(Rn)
(Rn)+
(Rn)-
(Rn)+N
(Rn+N)
(Rn+xxxx)

— If the result of the arithmetic calculation would exceed the upper or lower bound, then wrappin
around is correctly performed.

4.3.2.6 Wrapping to a Different Bank

For the normal case where |N| is less than or equal to M01, the primary address arithmetic unit will
automatically wrap the address pointer around by the required amount. This type of address modificatio
useful in creating circular buffers for FIFOs, delay lines, and sample buffers up to 16,384 words long. It
also used for decimation, interpolation, and waveform generation.
Freescale Semiconductor Address Generation Unit 4-31

Address Generation Unit

 N

of

 of
be
e

e

nged
r

s
g

If |N| is greater than M01, the result is data dependent and unpredictable except for the special case where
N = L*(2k), a multiple of the block size, 2k, where L is a positive integer. For this special case when using
the (Rn)+N addressing mode, the pointer Rn will be updated using linear arithmetic to the same relative
address that is L blocks forward in memory (see Figure 4-18). Note that this case requires that the offset
must be a positive two’s-complement integer.

Figure 4-18. Linear Addressing with a Modulo Modifier

This technique is useful in sequentially processing multiple tables or N-dimensional arrays. The special
modulo case of (Rn)+N with N = L*(2k) is useful for performing the same algorithm on multiple blocks
data in memory (e.g., implementing a bank of parallel IIR filters).

4.3.2.7 Side Effects of Modulo Arithmetic

Due to the way modulo arithmetic is implemented by the DSP56800 Family, there are some side effects
using modulo arithmetic that must be kept in mind. Specifically, since the base address of a buffer must
a power of two, and since the modulo arithmetic unit can only detect a single wraparound, there are som
restrictions and limitations that must be considered.

4.3.2.7.1 When a Pointer Lies Outside a Modulo Buffer

If a pointer is outside the valid modulo buffer range and an operation occurs that causes R0 or R1 to b
updated, the contents of the pointer will be updated according to modulo arithmetic rules. For example, a
MOVE B,X:(R0)+N instruction, where R0 = 6, M01 = 5, and N = 0, would apparently leave R0 uncha
since N = 0. However, since R0 is above the upper boundary, the AGU calculates R0 + N - (M01 + 1) fo
the new contents of R0 and sets R0 = 0.

4.3.2.7.2 Restrictions on the Offset Register

The modulo arithmetic unit in the AGU is only capable of detecting a single wraparound of an addres
pointer. As a result, if the post-update addressing mode, (Rn)+N, is used, care must be taken in selectin
the value of N. The 16-bit absolute value |N| must be less than or equal to M01 + 1 for proper modulo
addressing. Values of |N| larger than the size of the buffer may result in the Rn address value wrapping
twice, which the AGU cannot detect.

(Rn) + N MOD M01
where N = 2k (L = 1)

M

M

2k

2k
4-32 DSP56800 Family Manual Freescale Semiconductor

Pipeline Dependencies

lo
ns

allest

 next

n
tic

r,

.
4.3.2.7.3 Memory Locations Not Available for Modulo Buffers

For cases where the size of a buffer is not a power of two, there will be a range of memory locations
immediately after the buffer that are not accessible with modulo addressing. Lower boundaries for modu
buffers always begin on an address where the lowest k bits are zeros — that is, a power of two. This mea
that for buffers that are not an exact power of two, there are locations above the upper boundary that are
not accessible through modulo addressing.

In Figure 4-16 on page 4-27, for example, the buffer size is 37, which is not a power of two. The sm
power of two greater than 37 is 64. Thus, there are 64 - 37 = 27 memory locations which are not accessible
with modulo addressing. These 27 locations are between the upper boundary + 1 = $00A5 and the
power of two boundary address - 1 = $00C0 - 1 = $00BF.

These locations are still accessible when no modulo arithmetic is performed. Using linear addressing (with
the R2 or R3 pointers), absolute addresses, or the no-update addressing mode makes these locations
available.

4.4 Pipeline Dependencies
There are some cases within the address generation unit where the pipelined nature of the DSC core can
affect the execution of a sequence of instructions. The pipeline dependencies are caused by a write to a
AGU register immediately followed by an instruction that uses that same register in an address arithme
calculation. When there is a dependency caused by a write to the N register, the DSC automatically stalls
the pipeline one cycle. If a dependency is caused by a write to the R0-R3, SP, or M01 registers, howeve
there is no pipeline stall. This is also true if a bit-field operation is performed on the N register. Instead, the
user must take care to avoid this case by rearranging the instructions or by inserting a NOP instruction to
break the instruction sequence.

Several instruction sequences are presented in the following examples to examine cases where their
pipeline dependency occurs, how this affects the machine, and how to correctly program to avoid these
dependencies.

In Example 4-4 there is no pipeline dependency since the N register is not used in the second instruction
Since there is no dependency, no extra instruction cycles are inserted.

Example 4-4. No Dependency with the Offset Register

MOVE #$7,N ; Write to the N register
MOVE X:(R2)+,X0 ; N not used in this instruction

In Example 4-5 there is no pipeline dependency since the R2 and N registers, used in the address
calculation, are not written in the previous instruction. Since there is no dependency, no extra instruction
cycles are inserted.

Example 4-5. No Dependency with an Address Pointer Register

MOVE #$7,R1 ; Write to R1 register
MOVE X:(R2)+N,X0 ; R1 not used in this instruction

In Example 4-6 there is no pipeline dependency since there is no address calculation performed in the
second instruction. Instead, the R1 register is used as the source operand in a MOVE instruction, for which
there is no pipeline dependency. Since there is no dependency, no extra instruction cycles are inserted.
Freescale Semiconductor Address Generation Unit 4-33

Address Generation Unit

s

 is
 by

 is
 by

r.

 may
Example 4-6. No Dependency with No Address Arithmetic Calculation

MOVE #$7,R1 ; Write to R1 register
MOVE R1,X:$0004 ; No address arithmetic calculation

; performed

Example 4-7 represents a special case. For the X:(Rn+xxxx) addressing mode, there is no pipeline
dependency even if the same Rn register is written on the previous cycle. This is true for R0-R3 as well a
the SP register. Since there is no dependency, no extra instruction cycles are inserted.

Example 4-7. No Dependency with (Rn+xxxx)

MOVE #$7,R1 ; Write to R1 register
MOVE X:(R1+$3456),X0 ; X:(Rn+xxxx) addressing mode using R1

In Example 4-8 there is a pipeline dependency since the N register is used in the second instruction. This
true for using N to update R0-R3 as well as the SP register. For the case where a dependency is caused
a write to the N register, the DSC core automatically stalls the pipeline by inserting one extra instruction
cycle. Thus, this sequence is allowed. This dependency also exists for the (Rn+N) addressing mode.

Example 4-8. Dependency with a Write to the Offset Register

MOVE #$7,N ; Write to the N register
MOVE X:(R2)+N,X0 ; N register used in address arithmetic calculation

In Example 4-9 there is a pipeline dependency since the N register is used in the second instruction. This
true for using N to update R0-R3 as well as the SP register. For the case where a dependency is caused
a bit-field operation on the N register, this sequence is not allowed and is flagged by the assembler. This
sequence may be fixed by rearranging the instructions or inserting a NOP between the two instructions.
This dependency only applies to the BFSET, BFCLR, or BFCHG instructions. There is no dependency for
the BFTSTH, BFTSTL, BRCLR, or BRSET instructions. This dependency also exists for the (Rn+N)
addressing mode.

Example 4-9. Dependency with a Bit-Field Operation on the Offset Register

BFSET #$7,N ; Bit-field operation on the N register
MOVE X:(R2)+N,X0 ; N register used in address arithmetic calculation

In Example 4-10 there is a pipeline dependency since the address pointer register written in the first
instruction is used in an address calculation in the second instruction. For the case where a dependency is
caused by a write to one of these registers, this sequence is not allowed and is flagged by the assemble
This sequence may be fixed by rearranging the instructions or inserting a NOP between the two
instructions.

Example 4-10. Dependency with a Write to an Address Pointer Register

MOVE #$7,R2 ; Write to the R2 register
MOVE X:(R2)+,X0 ; R2 register used in address

; arithmetic calculation

In Example 4-11 there is a pipeline dependency since the M01 register written in the first instruction is
used in an address calculation in the second instruction. For the case where a dependency is caused by a
write to the M01 register, this sequence is not allowed and is flagged by the assembler. This sequence
be fixed by rearranging the instructions or inserting a NOP between the two instructions.

Example 4-11. Dependency with a Write to the Modifier Register

MOVE #$7,M01 ; Write to the M01 register
MOVE X:(R0)+,X0 ; M01 register used in address arithmetic calculation
4-34 DSP56800 Family Manual Freescale Semiconductor

Pipeline Dependencies

l

e,

In Example 4-12 there is a pipeline dependency since the SP register written in the first instruction is used
by the immediately following JSR instruction to store the subroutine return address. The stack pointer wil
not be updated with the immediate value in this case. This sequence may be fixed by inserting a NOP
between the two instructions.

Example 4-12. Dependency with a Write to the Stack Pointer Register

MOVE #$3800,SP ; Write to the SP register
JSR LABEL ; SP implicitly used to save the return address

; of the subroutine call

In Example 4-13 there is a pipeline dependency due to contention in the LF bit of the SR register. During
the first execution cycle of the BFSET instruction, the SR, whose LF bit is zero, is read. At the same tim
the first operand of the DO instruction is fetched. During the second execution cycle of the BFSET
instruction, the SR’s content is modified and written back to the SR. This is also the DO instruction decode
cycle, when the LF bit is set. In this case, the LF bit is first set by the DO decode, then cleared by the
BFSET SR modification. A cleared LF bit signals the end of a DO loop, so the DO loop is executed only
once. This sequence can be fixed by inserting a NOP instruction between these two instructions.

Example 4-13. Dependency with a Bit-Field Operation and DO Loop

BFSET #$0200,SR ; Write to the SR register
DO #8,ENDLOOP ; Repeat 8 times body of loop

; (instructions)
ENDLOOP:
Freescale Semiconductor Address Generation Unit 4-35

Address Generation Unit
4-36 DSP56800 Family Manual Freescale Semiconductor

d

g
ller as
l
rs

Chapter 5
Program Controller
The program controller unit is one of the three execution units in the central processing module. The
program controller performs the following:

• Instruction fetching

• Instruction decoding

• Hardware DO and REP loop control

• Exception (interrupt) processing

This section covers the following:

• The architecture and programming model of the program controller

• The operation of the software stack

• A discussion of program looping

Details of the instruction pipeline and the different processing states of the DSC chip, including reset an
interrupt processing, are covered in Chapter 7, “Interrupts and the Processing States.”

5.1 Architecture and Programming Model
A block diagram of the program controller is shown in Figure 5-1 on page 5-2, and its correspondin
programming model is shown in Figure 5-2 on page 5-3. The programmer views the program contro
consisting of five registers and a hardware stack (HWS). In addition to the standard program flow-contro
resources such as a program counter (PC) and status register (SR), the program controller features registe
dedicated to supporting the hardware DO loop instruction — loop address (LA), loop counter (LC), and the
hardware stack — and an operating mode register (OMR) defining the DSC operating modes.

The blocks and registers within the program controller are explained in the following subsections.
Freescale Semiconductor Program Controller 5-1

Program Controller
Figure 5-1. Program Controller Block Diagram

CGDB

HWS0

HWS1

SR

Condition Codes

Status and Control

LF

NL

from Data ALU

Bits to DSC Core

LA

LC

PAB

Program Counter

IPR

Interrupt Request

Looping Control

Interrupt Control

OMR

External Mode

Control Bits

Select Pin(s)

to DSC Core

Instruction Latch

Instruction Decoder

PDB

Control Signals

AA0008

16-Bit Incrementer
5-2 DSP56800 Family Manual Freescale Semiconductor

Architecture and Programming Model

ds.

ory.

nd
5.1.1 Program Counter
The program counter (PC) is a 16-bit register that contains the address of the next location to be fetched
from program memory space. The PC may point to instructions, data operands, or addresses of operan
Reference to this register is always implicit and is implied by most instructions. This special-purpose
address register is stacked when hardware DO looping is initiated (on the hardware stack), when a jump to
a subroutine is performed (on the software stack), and when interrupts occur (on the software stack).

5.1.2 Instruction Latch and Instruction Decoder
The instruction latch is a 16-bit internal register used to hold all instruction opcodes fetched from mem
The instruction decoder, in turn, uses the contents of the instruction latch to generate all control signals
necessary for pipeline control — for normal instruction fetches, jumps, branches, and hardware looping.

5.1.3 Interrupt Control Unit
The interrupt control unit receives all interrupt requests, arbitrates among them, and then checks the
highest-priority interrupt request against the interrupt mask bits for the DSC core (I1 and I0 in the SR). If
the requesting interrupt has higher priority than the current priority level of the DSC core, then exception
processing begins. When exception processing begins, the interrupt control unit provides the address of the
interrupt vector for interrupts generated on the DSC core, whereas the peripherals generate the vector
address for interrupts generated by an on-chip peripheral.

Interrupts have a simple priority structure with levels zero or one. Level 0 is the lowest interrupt priority
level (IPL) and is maskable. Level 1 is the highest level and is not maskable. Two interrupt mask bits in the
SR reflect the current IPL of the DSC core and indicate the level needed for an interrupt source to interrupt
the processor.

The DSP56800 core provides support for internal (on-chip) peripheral interrupts and two external interrupt
sources, IRQA and IRQB. The interrupt control unit arbitrates between interrupt requests generated
externally and by the on-chip peripherals.

Asserting the reset pin causes the DSC core to enter the reset processing state. This has higher priority a
overrides any activity in the interrupt control unit and the exception processing state.

Figure 5-2. Program Controller Programming Model

Program Controller

DO Loop Stack (HWS)

MR CCR OMR

Program
Counter

Operating Mode
Register

LALC

Loop AddressLoop Counter

PC

15 0 15 08 7 15 0

15 0 15 0

AA0009

Status Register (SR)

12 0
Freescale Semiconductor Program Controller 5-3

Program Controller

g

 the

 to

o

 page

e

Details of interrupt arbitration and the exception processing state are discussed in Section 7.3, “Exception
Processing State,” on page 7-5. The reset processing state is discussed in Section 7.1, “Reset Processin
State,” on page 7-1.

5.1.4 Looping Control Unit
The looping control unit provides hardware dedicated to support loops, which are frequent constructs in
DSC algorithms.

The repeat instruction (REP) loads the 13-bit LC register with a value representing the number of times
next instruction is to be repeated. The instruction to be repeated is only fetched once per loop, so power
consumption is reduced, and throughput is increased when running from external program memory by
decreasing the number of external fetches required.

The DO instruction loads the 13-bit LC register with a value representing the number of times the loop
should be executed, loads the LA register with the address of the last instruction word in the loop (fetched
only once per loop), and sets the loop flag (LF) bit in the SR. The top-of-loop address is stacked on the
HWS so the loop can be repeated with no overhead. When the LF in the SR is asserted, the loop state
machine will compare the PC contents to the contents of the LA to determine if the last instruction word in
the loop was fetched. If the last word was fetched, the LC contents are tested for one. If LC is not equal
one, then it is decremented, and the contents of the HWS (the address of the first instruction in the loop)
are read into the PC, effectively executing an automatic branch to the top of the loop. If the LC is equal t
one, then the LF in the SR is restored with the contents of the OMR’s nested looping (NL) bit, the
top-of-loop address is removed from the HWS, and instruction fetches continue at the incremented PC
value (LA + 1).

Nested loops are supported by stacking the address of the first instruction in the loop (top of loop) in the
HWS and copying the LF bit into the OMR’s NL bit prior to the execution of the first instruction in the
loop. The user, however, must explicitly stack the LA and LC registers as described in Section 8.6.4,
“Nested Loops,” on page 8-22.

Looping is described in more detail in Section 5.3, “Program Looping,” and Section 8.6, “Loops,” on
8-20.

5.1.5 Loop Counter
The loop counter (LC) is a special 13-bit down counter used to specify the number of times to repeat a
hardware program loop (DO and REP loops). When the end of a hardware program loop is reached, th
contents of the loop counter register are tested for one. If the loop counter is one, the program loop is
terminated. If the loop counter is not one, it is decremented by one and the program loop is repeated.

The loop counter may be read and written under program control. This gives software programs access to
the value of the current loop iteration. It also allows for saving and restoring the LC to and from the
software stack when nesting DO loops in software. Note that since the LC is only a 13-bit counter, it is
zero-extended when read; when written, the top three bits of the source word are ignored. This is shown in
Figure 5-3 on page 5-5.
5-4 DSP56800 Family Manual Freescale Semiconductor

Architecture and Programming Model

n
ro.

n as

y

ed
Figure 5-3. Accessing the Loop Count Register (LC)

This register is not stacked by a DO instruction and not unstacked by end-of-loop processing, as is done o
other Freescale DSCs. Section 5.3, “Program Looping,” discusses what occurs when the loop count is ze
See Section 8.6.4, “Nested Loops,” on page 8-22 for a discussion of nesting loops in software.

The upper three bits of this register will read as zero during DSC read operations and should be writte
zero to ensure future compatibility.

5.1.6 Loop Address
The loop address (LA) register indicates the location of the last instruction word in a hardware program
loop (DO loop only). When the instruction word at the address contained in this register is fetched, the LC
is checked. If it is not equal to one, the LC is decremented, and the next instruction is taken from the
address at the top of the system stack; otherwise the PC is incremented, the LF is restored with the value in
the OMR’s NL bit, one location from the Hardware Stack is purged, and instruction execution continues
with the instruction immediately after the loop.

The LA register is a read/write register written into by the DO instruction. The LA register can be directl
accessed by the MOVE instructions as well. This also allows for saving and restoring the LA to and from
the stack during the nesting of loops. This register is not stacked by a DO instruction and is not unstack
by end-of-loop processing. See Section 8.6.4, “Nested Loops,” on page 8-22 for a discussion of nesting
loops in software.

LC

CGDB Bus Contents

Register LC

Used as a Source

Zero Extension
of LC

Contents
of LC

No Bits Present Register LC

13 LSB of
Word

Reading the Loop Count Register

CGDB Bus Contents

Not Used

13 LSB of
Word

LC
Register LC Used

as a Destination
No Bits Present Register LC

Writing the Loop Count Register

15 013 12

15 013 12

15 013 12

15 013 12

AA0010
Freescale Semiconductor Program Controller 5-5

Program Controller

o

n

A

he

s.
5.1.7 Hardware Stack
The hardware stack (HWS) is a 2-deep, 16-bit wide, last-in-first-out (LIFO) stack. It is used for supporting
hardware DO looping; the software stack is used for storing return addresses and the SR for subroutines
and interrupts.

When a DO instruction is executed, the 16-bit address of the first instruction in the DO loop is pushed ont
the hardware stack, the value of the LF bit is copied into the NL bit, and the LF bit is set. Each ENDDO
instruction or natural end-of-loop will pop and discard the 16-bit address stored in the top location of the
hardware stack, copy the NL bit into the LF bit, and clear the NL bit. One hardware stack location is used
for each nested DO loop, and the REP instruction does not use the hardware stack. Thus, a two-deep
hardware stack allows for a maximum of two nested DO loops and a nested REP loop within a program.
Note that this includes any looping that may occur due to a DO loop in an interrupt service routine.

When a write to the hardware stack would cause the stack limit to be exceeded, the write does not take
place, and a non-maskable hardware-stack-overflow interrupt occurs. There is no interrupt on hardware
stack underflow.

5.1.8 Status Register
The status register (SR) is a 16-bit register consisting of an 8-bit mode register (MR) and an 8-bit conditio
code register (CCR). The MR register is the high-order 8 bits of the SR; the CCR register is the low-order
8 bits.

The mode register is a special-purpose register that defines the operating state of the DSC core. It is
conveniently located within the SR so that is it stacked correctly on an interrupt. This allows an interrupt
service routine to set up the operating state of the DSC core differently.

The mode register bits are affected by processor reset, exception processing, DO, ENDDO, any type of
jump or branch, RTI, RTS, and SWI instructions, and instructions that directly reference the MR register.
During processor reset, the interrupt mask bits of the mode register will be set, and the LF bit will be
cleared.

The condition code register is a special-purpose control register that defines the current status of the
processor at any given time. Its bits are set as a result of status detected after certain instructions are
executed. The CCR bits are affected by data ALU operations, bit-field manipulation instructions, the
TSTW instruction, parallel move operations, and instructions that directly reference the CCR register. In
addition, the computation of the C, V, N, and Z condition code bits are affected by the OMR’s CC bit,
which specifies whether condition codes are generated using the information in the extension register. The
CCR bits are not affected by data transfers over the CGDB unless data limiting occurs when reading the
or B accumulators. During processor reset, all CCR bits are cleared. The standard definitions of the CCR
bits are given in the following subsections, and more information about condition code bits is found in
Section 3.6, “Condition Code Generation,” on page 3-33. Refer to Appendix A, “Instruction Set Details,“
for computation rules.

The SR register is stacked on the software stack when a JSR is executed or when an interrupt occurs. T
SR register is restored from the stack upon completion of an interrupt service routine by the
return-from-interrupt instruction (RTI). The program extension bits in the SR are restored from the stack
by the return-from-subroutine (RTS) instruction — all other SR bits are unaffected.

The SR format is shown in Figure 5-4 on page 5-7 and is also described in the following subsection
5-6 DSP56800 Family Manual Freescale Semiconductor

Architecture and Programming Model

o
w

he

ts

Figure 5-4. Status Register Format

5.1.8.1 Carry (C) — Bit 0

The carry (C) bit (SR bit 0) is set if a carry is generated out of the MSB of the result for an addition. It als
is set if a borrow is generated in a subtraction. If the CC bit in the OMR register is zero, the carry or borro
is generated out of bit 35 of the result. If the CC bit in the OMR register is one, the carry or borrow is
generated out of bit 31 of the result. The carry bit is also modified by bit manipulation and shift
instructions. Otherwise, this bit is cleared.

5.1.8.2 Overflow (V) — Bit 1

If the CC bit in the OMR register is zero and if an arithmetic overflow occurs in the 36-bit result, the
overflow (V) bit (SR bit 1) is set. If the CC bit in the OMR register is one and an arithmetic overflow
occurs in the 32-bit result, the overflow bit is set. This indicates that the result is not representable in t
accumulator register and the accumulator register has overflowed. Otherwise, this bit is cleared.

5.1.8.3 Zero (Z) — Bit 2

The zero (Z) bit (SR bit 2) is set if the result equals zero. Otherwise, this bit is cleared. The number of bi
checked for the zero test depends on the OMR’s CC bit and which instruction is executed, as documented
in Section 3.6, “Condition Code Generation,” on page 3-33.

5.1.8.4 Negative (N) — Bit 3

If the CC bit in the OMR register is zero and if bit 35 of the result is set, the negative (N) bit (SR bit 3) is
set. If the CC bit in the OMR register is one and if bit 31 of the result is set, the negative bit is set.
Otherwise, this bit is cleared.

* Indicates reserved bits that are read as zero and should be written with zero for future compatibility

SR
Status Register
Reset = $0300
Read/Write

* * I1 I0 SZ L E U N Z V CLF * * *

11 10 9 8 7 6 5 4 3 2 1 015 14 13 12

LF — Loop Flag
I1,I0 — Interrupt Mask
SZ — Size
L — Limit
E — Extension
U — Unnormalized
N — Negative
Z — Zero
V — Overflow
C — Carry

Mode Register (MR) Condition Code Register (CCR)

AA0011
Freescale Semiconductor Program Controller 5-7

Program Controller

at

.

e
5.1.8.5 Unnormalized (U) — Bit 4

The unnormalized (U) bit (SR bit 4) is set if the two most significant bits of the most significant product
portion of the result are the same, and is cleared otherwise. The U bit is computed as follows: U = (Bit 31
XOR Bit 30).

If the U bit is cleared, then a positive fractional number, p, satisfies the following relation: 0.5 < p < 1.0. A
negative fractional number, n, it satisfies the following equation: -1.0 < n < -0.5.

This bit is not affected by the OMR’s CC bit.

5.1.8.6 Extension (E) — Bit 5

The extension (E) bit (SR bit 5) is cleared if all the bits of the integer portion (bits 35–31) of the 36-bit
result are the same (the upper five bits of the value are 00000 or 11111). Otherwise, this bit is set.

If E is cleared, then the MS and LS portions of an accumulator contain all the bits with information — the
extension register only contains sign extension. In this case, the accumulator extension register can be
ignored. If E is set, then the extension register in the accumulator is in use.

This bit is not affected by the OMR’s CC bit.

5.1.8.7 Limit (L) — Bit 6

The limit (L) bit (SR bit 6) is set if the overflow bit is set or if the data limiters perform a limiting
operation; it is not affected otherwise. The L bit is cleared only by a processor reset or an instruction th
specifically clears it. This allows the L bit to be used as a latching overflow bit. Note that L is affected by
data movement operations that read the A or B accumulator registers onto the CGDB.

This bit is not affected by the OMR’s CC bit.

5.1.8.8 Size (SZ) — Bit 7

The size (SZ) bit (SR bit 7) is set when moving a 36-bit accumulator to data memory if bits 30 and 29 of
the source accumulator are not the same — that is, if they are not both ones or zeros. This bit is latched, so
it will remain set until the processor is reset or an instruction explicitly clears it.

By monitoring the SZ bit, it is possible to determine whether a value is growing to the point where it will
be saturated or limited when moved to data memory. It is designed for use in the fast Fourier transform
(FFT) algorithm, indicating that the next pass in the algorithm should scale its results before computation
This allows FFT data to be scaled only on passes where it is necessary instead of on each pass, which in
turn helps guarantee maximum accuracy in an FFT calculation.

5.1.8.9 Interrupt Mask (I1 and I0) — Bits 8–9

The interrupt mask (I1 and I0) bits (SR bits 9 and 8) reflect the current priority level of the DSC core and
indicate the interrupt priority level (IPL) needed for an interrupt source to interrupt the processor. The
current priority level of the processor may be changed under software control. Interrupt mask bit I0 must
always be written with a one to ensure future compatibility and compatibility with other family members.
The interrupt mask bits are set during processor reset. See Table 5-1 on page 5-9 for interrupt mask bit
definitions.

When disabling interrupts, I1 in the SR register is set to ‘1’. Interrupts will be disabled on the second cycl
after update as shown in Example 5-1.
5-8 DSP56800 Family Manual Freescale Semiconductor

Architecture and Programming Model

s

Example 5-1. Disabling Maskable Interrupts

; Disabling Maskable Interrupts
BFSET #$0200,SR ; request to disable, 16-bit mask to set I1

; interrupts can still occur here
NOP ; 1 cycle is required to disable interrupts
NOP ; interrupts will not occur here

5.1.8.10 Reserved SR Bits — Bits 10–14

The reserved SR bits 10–14 are reserved for future expansion and will read as zero during DSC read
operations. These bits should be written with zero for future compatibility.

5.1.8.11 Loop Flag (LF) — Bit 15

The loop flag (LF) bit (SR bit 15) is set when a program loop is in progress and enables the detection of the
end of a program loop. The LF bit is the only SR bit that is restored when terminating a program loop.
Stacking and restoring the LF when initiating and exiting a program loop, respectively, allows the nesting
of program loops; see Section 5.1.9.7, “Nested Looping Bit (NL) — Bit 15.” REP looping does not affect
this bit. The LF is cleared during processor reset.

NOTE:

The LF is not cleared at the start of an interrupt service routine. This differs
from the DSP56100 Family, where this bit is cleared upon entering an
interrupt service routine. This will not cause a problem as long as the
interrupt service routine code does not fetch the instruction whose address
is stored in the LA register. This is typically the case because usually the
interrupt service routine is located in a separate portion of program
memory.

This bit should never be explicitly cleared by a MOVE or bit-field
instruction when the NL bit in the OMR register is set to a one.

The LF bit is also affected by any accesses to the hardware stack register. Any move instruction that write
this register copies the old contents of the LF bit into the NL bit and then sets the LF bit. Any reads of this
register, such as from a MOVE or TSTW instruction, copy the NL bit into the LF bit and then clear the NL
bit.

Table 5-1. Interrupt Mask Bit Definition

I1 I0 Exceptions Permitted Exceptions Masked

0 0 (Reserved) (Reserved)

0 1 IPL 0, 1 None

1 0 (Reserved) (Reserved)

1 1 IPL 1 IPL 0
Freescale Semiconductor Program Controller 5-9

Program Controller

e

e
t

ry

5.1.9 Operating Mode Register
The operating mode register (OMR) is a 16-bit register that defines the current chip operating mode of th
processor. The OMR bits are affected by processor reset, operations on the HWS, and instructions that
directly reference the OMR. A DO loop will also affect the OMR, specifically the NL bit.

During processor reset, the chip operating mode bits will be loaded from the external mode select pins. Th
operating mode register format is shown in Figure 5-5 on page 5-10 and is described in the subsequen
discussion.

NOTE:

When a bit of the OMR is changed by an instruction, a delay of one
instruction cycle is necessary before the new mode comes into effect.

Figure 5-5. Operating Mode Register (OMR) Format

5.1.9.1 Operating Mode Bits (MB and MA) — Bits 1–0

The chip operating mode (MB and MA) bits (OMR bits 1 and 0) indicate the operating mode and memo
maps of a DSC chip that has an external bus. Their initial values are typically established after reset by
external mode select pins. After the chip leaves the reset state, MB and MA can be changed under program
control. Consult the specific DSP56800 Family device manual for more detailed information about how
these bits are established on reset and about their specific effect on operation.

Possible operating modes for a program RAM part are shown in Table 5-2.

Table 5-2. Program RAM Operating Modes

MB MA Chip Operating Mode Reset Vector

Program Memory
Configuration

(consult specific 56800
Family device manual)

0 0 Bootstrap 0 BOOTROM P:$0000
(Boot from External Bus)

Internal P-RAM is write only

0 1 Bootstrap 1 BOOTROM P:$0000
(Boot from Peripheral)

Internal P-RAM is write only

* Indicates reserved bits that are read as zero and should be written with zero for future compatibility

OMR
Operating Mode
Register
Reset = $0000
Read/Write

* * * CC * SD R EX * MB MANL * * *

11 10 9 8 7 6 5 4 3 2 1 015 14 13 12

NL — Nested Looping
CC — Condition Codes
SD — Stop Delay
R — Rounding
SA — Saturation
EX — External X Memory
MA,MB — Operating Mode

OMR

AA0013

SA
5-10 DSP56800 Family Manual Freescale Semiconductor

Architecture and Programming Model

he

es

.

The bootstrap modes are used to initially load an on-chip program RAM upon exiting reset from external
memory or through a peripheral. Operating modes 0 and 1 typically would be different for a program
FLASH part because no bootstrapping operation is required for a FLASH part. An example of possible
operating modes for a program FLASH part are shown in Table 5-3 on page 5-11.

The MB and MA bit values are typically established on reset from an external input. Once the chip leaves
reset, they can be changed under software control. For more information about how they are configured on
reset, consult the appropriate device’s user’s manual.

5.1.9.2 External X Memory Bit (EX) — Bit 3

The external X memory (EX) bit (OMR bit 3), when set, forces all primary data memory accesses to be
external. The only exception to this rule is that if a MOVE or bit-field instruction is executed using the I/O
short addressing mode, then the EX bit is ignored, and the access is performed to the on-chip location. T
EX bit allows access to internal X memory with all addressing modes when this bit is cleared. This bit is
cleared by processor reset.

The EX bit is ignored by the second read of a dual-read instruction, which uses the XAB2 and XDB2 bus
and always accesses on-chip X data memory. For instructions with two parallel reads, the second read is
always performed to internal on-chip memory. Refer to Section 6.1, “Introduction to Moves and Parallel
Moves,” on page 6-1 for a description of the dual-read instructions.

5.1.9.3 Saturation (SA) — Bit 4

The Saturation (SA) bit enables automatic saturation on 32-bit arithmetic results, providing a user-enabled
Saturation mode for DSC algorithms that do not recognize or cannot take advantage of the extension
accumulator. When the SA bit is set, automatic saturation occurs at the output of the MAC unit for basic
arithmetic operations such as multiplication, addition, and so on. The SA bit is cleared by processor reset
Automatic limiting as outlined in Section 3.4.1, “Data Limiter,” on page 3-26 is not affected by the state of
the SA bit.

1 0 Normal Expanded External Pmem P:$E000 Internal Pmem enabled

1 1 Development External Pmem P:$0000 Internal Pmem disabled

Table 5-3. Program FLASH Operating Modes

MB MA Chip Operating Mode Reset Vector
Program Memory

Configuration

0 0 Single Chip Internal PROM P:$0000 Internal Pmem enabled

0 1 (Reserved) (Reserved) (Reserved)

1 0 Normal Expanded External Pmem P:$E000 Internal Pmem enabled

1 1 Development External Pmem P:$0000 Internal Pmem disabled

Table 5-2. Program RAM Operating Modes (Continued)

MB MA Chip Operating Mode Reset Vector

Program Memory
Configuration

(consult specific 56800
Family device manual)
Freescale Semiconductor Program Controller 5-11

Program Controller

.
d

e.

Saturation is performed by a dedicated circuit inside the MAC unit. The saturation logic operates by
checking 3 bits of the 36-bit result out of the MAC unit — EXT[3], EXT[0], and MSP[15]. When the SA
bit is set, these 3 bits determine if saturation is performed on the MAC unit’s output and whether to
saturate to the maximum positive or negative value, as shown in Table 5-4.

NOTE:

Saturation mode is always disabled during the execution of the following
instructions: ASLL, ASRR, LSLL, LSRR, ASRAC, LSRAC, IMPY16,
MPYSU, MACSU, AND, OR, EOR, NOT, LSL, LSR, ROL, and ROR.
For these instructions, no saturation is performed at the output of the MAC
unit.

5.1.9.4 Rounding Bit (R) — Bit 5

The rounding (R) bit (OMR bit 5) selects between convergent rounding and two’s-complement rounding
When set, two’s-complement rounding (always round up) is used. The two rounding modes are discusse
in Section 3.5, “Rounding,” on page 3-30. This bit is cleared by processor reset.

5.1.9.5 Stop Delay Bit (SD) — Bit 6

The stop delay (SD) bit (OMR bit 6) is used to select the delay that the DSC needs to exit the stop mod
When set, the processor exits quickly from stop mode. This bit is cleared by processor reset.

5.1.9.6 Condition Code Bit (CC) — Bit 8

The condition code (CC) bit (OMR bit 8) selects whether condition codes are generated using a 36-bit
result from the MAC array or a 32-bit result. When this bit is set, the C, N, V, and Z condition codes are
generated based on bit 31 of the data ALU result. When this bit is cleared, the C, N, V, and Z condition
codes are generated based on bit 35 of the data ALU result. The generation of the L, E, and U condition
codes are not affected by the CC bit. This bit is cleared by processor reset.

NOTE:

The unsigned condition tests used when branching or jumping (HI, HS,
LO, and LS) can only be used when the condition codes are generated with

Table 5-4. MAC Unit Outputs With Saturation Mode Enabled (SA = 1)

EXT[3] EXT[0] MSP[15] Result Stored in Accumulator

0 0 0 (Unchanged)

0 0 1 $0 7FFF FFFF

0 1 0 $0 7FFF FFFF

0 1 1 $0 7FFF FFFF

1 0 0 $F 8000 0000

1 0 1 $F 8000 0000

1 1 0 $F 8000 0000

1 1 1 (Unchanged)
5-12 DSP56800 Family Manual Freescale Semiconductor

Software Stack Operation

he

rt

d
this bit set to one. Otherwise, the chip will not generate the unsigned
conditions correctly.

The effects of the CC bit on the condition codes generated by data ALU arithmetic operations are
discussed in more detail in Section 3.6, “Condition Code Generation,” on page 3-33.

5.1.9.7 Nested Looping Bit (NL) — Bit 15

The nested looping (NL) bit (OMR bit 15) is used to display the status of program DO looping and t
hardware stack. If this bit is set, then the program is currently in a nested DO loop (that is, two DO loops
are active). If this bit is cleared, then there may be a single or no DO loop active. This bit is necessary for
saving and restoring the contents of the hardware stack, which is described further in Section 8.13,
“Multitasking and the Hardware Stack,” on page 8-34. REP looping does not affect this bit.

It is important that the user never put the processor in the illegal combination specified in Table 5-5. This
can be avoided by ensuring that the LF bit is never cleared when the NL bit is set.

The NL bit is cleared on processor reset. Also see Section 5.1.8.11, “Loop Flag (LF) — Bit 15,” which
discusses the LF bit in the SR.

If both the NL and LF bits are set (that is, two DO loops are active) and a DO instruction is executed, a
hardware-stack-overflow interrupt occurs because there is no more space on the hardware stack to suppo
a third DO loop.

The NL bit is also affected by any accesses to the hardware stack register. Any MOVE instruction that
writes this register copies the old contents of the LF bit into the NL bit and then sets the LF bit. Any reads
of this register, such as from a MOVE or TSTW instruction, copy the NL bit into the LF bit and then clear
the NL bit.

5.1.9.8 Reserved OMR Bits — Bits 2, 7 and 9–14

The OMR bits 2, 7, and 9–14 are reserved. They will read as zero during DSC read operations and shoul
be written as zero to ensure future compatibility.

5.2 Software Stack Operation
The software stack is a last-in-first-out (LIFO) stack of arbitrary depth implemented using memory
locations in the X data memory. It is accessed through the POP instruction and the PUSH instruction
macro (see Section 8.5, “Multiple Value Pushes,” on page 8-19) and will read or write the location in the X

Table 5-5. Looping Status

NL LF DO Loop Status

0 0 No DO loops active

0 1 Single DO loop active

1 0 (Illegal combination)

1 1 Two DO loops active
Freescale Semiconductor Program Controller 5-13

Program Controller

ire

t

y

ch
.
ed
data memory pointed to by the stack pointer (SP) register. The PUSH instruction macro (two instruction
cycles) pre-increments the SP register, and the POP instruction (one instruction cycle) will post-decrement
the SP register.

The program counter and the SR are pushed on this stack for subroutine calls and interrupts. These
registers are pulled from the stack for returns from subroutines using the RTS instruction (which pulls and
discards the original SR). For returns from interrupt service routines that use the RTI instruction (the ent
SR is restored from the stack).

The software stack is also used for nesting hardware DO loops in software on the DSP56800 architecture.
On the DSP56800 architecture, the user must push and pop the LA and LC registers explicitly if DO loops
are nested. In this case, the software stack is typically used for this purpose, as demonstrated in
Section 8.6.4, “Nested Loops,” on page 8-22. The hardware stack is used, however, for stacking the
address of the first instruction in the loop. Because this stack is implemented using locations in the X data
memory, there is no limit to the number of interrupts or jump-to subroutines or combinations of these tha
can be accommodated by this stack.

NOTE:

Care must be taken to allocate enough space in the X data memory so that
stack operations do not overlap other areas of data used by the program.
Similarly, it may be desirable to locate the stack in on-chip memory to
avoid delays due to wait states or bus arbitration.

See Section 8.5, “Multiple Value Pushes,” on page 8-19 and Section 8.8, “Parameters and Local
Variables,” on page 8-28 for recommended techniques for using the software stack.

5.3 Program Looping
The DSC core supports looping on a single instruction (REP looping) and looping on a block of
instructions (DO looping). Hardware DO looping allows fast looping on a block of instructions and is
interruptible. Once the loop is set up with the DO instruction, there is no additional execution time to
perform the looping tasks. REP looping repeats a one-word instruction for the specified number of times
and can be efficiently nested within a hardware DO loop. It allows for excellent code density because
blocks of in-line code of a single instruction can be replaced with a one-word REP instruction followed b
the instruction to be repeated. The correct programming of loops is discussed in detail in Section 8.6,
“Loops,” on page 8-20.

5.3.1 Repeat (REP) Looping
The REP instruction is a one-word instruction that performs single-instruction repeating on one-word
instructions. It repeats the execution of a single instruction for the amount of times specified either with a
6-bit unsigned value or with the 13 least significant bits of a DSC core register. When a repeat loop is
begun, the instruction to be repeated is only fetched once from the program memory; it is not fetched ea
time the repeated instruction is executed. Repeat looping does not use any locations on the hardware stack
It also has no effect on the LF or NL bits in the SR and OMR, respectively. Repeat looping cannot be us
on an instruction that accesses the program memory; it is necessary to use DO looping in this case.
5-14 DSP56800 Family Manual Freescale Semiconductor

Program Looping

r

t

ed

nd

k

,
NOTE:

REP loops are not interruptible since they are fetched only once. A DO
loop with a single instruction can be used in place of a REP instruction if
it is necessary to be able to interrupt while the loop is in progress.

For the case of REP looping with a register value, when the register
contains the value zero, then the instruction to be repeated is not executed
(as is desired in an application), and instruction flow continues with the
next sequential instruction. This is also true when an immediate value of
zero is specified.

5.3.2 DO Looping
The DO instruction is a two-word instruction that performs hardware looping on a block of instructions. It
executes this block of instructions for the amount of times specified either with a 6-bit unsigned value or
using the 13 least significant bits of a DSC core register. DO looping is interruptible and uses one location
on the hardware stack for each DO loop. For cases where an immediate value larger than 63 is desired fo
the loop count, it is possible to use the technique presented in Section 8.6.1, “Large Loops (Count Greater
Than 63),” on page 8-20.

The program controller register’s 13-bit loop count and 16-bit loop address register are used to implemen
no-overhead hardware program loops. When a program loop is initiated with the execution of a DO
instruction, the following events occur:

1. The LC and LA registers are loaded with values specified in the DO instruction.

2. The SR’s LF bit is set, and its old value is placed in the NL bit.

3. The address of the first instruction in the program loop is pushed onto the hardware stack.

A program loop begins execution after the DO instruction and continues until the program address fetch
equals the loop address register contents (the last address of program loop). The contents of the loop
counter are then tested for one. If the loop counter is not equal to one, the loop counter is decremented a
the top location in the DO Loop Stack is read (but not pulled) into the PC to return to the top of the loop. If
the loop counter is equal to one, the program loop is terminated by incrementing the PC, purging the stac
(pulling the top location and discarding the contents), and continuing with the instruction immediately
after the last instruction in the loop.

NOTE:

For the case of DO looping with a register value, when the register contains

the value zero, then the loop code is repeated 2k times, where k = 13 is the
number of bits in the LC register. If there is a possibility that a register
value may be less than or equal to zero, then the technique outlined in
Section 8.6.2, “Variable Count Loops,” on page 8-21 should be used. A
DO loop with an immediate value of zero is not allowed.

5.3.3 Nested Hardware DO and REP Looping
It is possible to nest up to two hardware DO loops and to nest a hardware REP loop within the two DO
loops. It is recommended when nesting loops, however, that hardware DO loops not be nested within code.
Instead, a software loop should be used for an outer loop instead of a second DO loop (see Section 8.6.4
“Nested Loops,” on page 8-22).
Freescale Semiconductor Program Controller 5-15

Program Controller

The reason that nesting of hardware DO loops is supported is to provide for faster interrupt servicing.
When hardware DO loops are not nested, a second hardware stack location is left available for immediate
use by an interrupt service routine.

5.3.4 Terminating a DO Loop
A DO loop normally terminates when it has completed the last instruction of a loop for the last iteration of
the loop (LC equals one). Two techniques for early termination of the DO loops are presented in
Section 8.6.6, “Early Termination of a DO Loop,” on page 8-25.
5-16 DSP56800 Family Manual Freescale Semiconductor

wed as

y

e

 modes

Chapter 6
Instruction Set Introduction
As indicated by the programming model in Figure 6-3 on page 6-5, the DSC architecture can be vie
several functional units operating in parallel:

• Data ALU

• AGU

• Program controller

• Bit-manipulation unit

The goal of the instruction set is to keep each of these units busy each instruction cycle. This achieves
maximum speed, minimum power consumption, and minimum use of program memory.

The complete range of instruction capabilities combined with the flexible addressing modes provide a ver
powerful assembly language for digital-signal-processing algorithms and general-purpose computing.
(The addressing modes are presented in detail in Section 4.2, “Addressing Modes,” on page 4-6.) The
instruction set has also been designed to allow for the efficient coding of DSC algorithms, control code,
and high-level language compilers. Execution time is enhanced by the hardware looping capabilities.

This section introduces the MOVE instructions available on the DSC core, the concept of parallel moves,
the DSC instruction formats, the DSC core programming model, instruction set groups, a summary of th
instruction set in tabular form, and an introduction to the instruction pipeline. The instruction summary is
particularly useful because it shows not only every instruction but also the operands and addressing
allowed for each instruction.

6.1 Introduction to Moves and Parallel Moves
To simplify programming, a powerful set of MOVE instructions is found on the DSP56800 core. This not
only eases the task of programming the DSC, but also decreases the program code size and improves the
efficiency, which in turn decreases the power consumption and MIPs required to perform a given task.
Some examples of MOVE instructions are listed in Example 6-1.

Example 6-1. MOVE Instruction Types

MOVE <any_DSCcore_register>,<any_DSCcore_register>

MOVE <any_DSCcore_register>,<X_Data_Memory>
MOVE <any_DSCcore_register>,<On_chip_peripheral_register>
MOVE <X_Data_Memory>,<any_DSCcore_register>
MOVE <On_chip_peripheral_register>,<any_DSCcore_register>

MOVE <immediate_value>,<any_DSCcore_register>
MOVE <immediate_value>,<X_Data_Memory>
MOVE <immediate_value>,<On_chip_peripheral_register>
Freescale Semiconductor Instruction Set Introduction 6-1

Instruction Set Introduction

,

y

R2

 in

e

n
For any MOVE instruction accessing X data memory or an on-chip memory-mapped peripheral register
seven different addressing modes are supported. Additional addressing modes are available on the subset
of DSC core registers that are most frequently accessed, including the registers in the data ALU, and all
pointers in the address generation unit.

For all moves on the DSP56800, the syntax orders the source and destination as follows: SRC,DST. The
source of the data to be moved and the destination are separated by a comma, with no spaces either before
or after the comma.

The assembler syntax also specifies which memory is being accessed (program or data memory) on an
memory move. Table 6-1 shows the syntax for specifying the correct memory space for any memory
access; an example of a program memory access is shown where the address is contained in the register
and the address register is post-incremented after the access. The two examples for X data memory
accesses show an address-register-indirect addressing mode in the first example and an absolute address
the second.

The DSP56800 instruction set supports two additional types of moves — the single parallel move and th
dual parallel read. Both of these are considered “parallel moves” and are extremely powerful for DSC
algorithms and numeric computation.

The single parallel move allows an arithmetic operation and one memory move to be completed with one
instruction in one instruction cycle. For example, it is possible to add two numbers while reading or
writing a value from memory in the same instruction.

Figure 6-1 illustrates a single parallel move, which uses one program word and executes in one instructio
cycle.

In the single parallel move, the following occurs:

1. Register X0 is added to the register A and the result is stored in the A accumulator.

2. The contents of the Y0 register are moved into the X data memory at the location contained
in the R1 register.

3. After completing the memory move, the R1 register is post-updated with the contents of the
N register.

The dual parallel read allows an arithmetic operation to occur and two values to be read from X data
memory with one instruction in one instruction cycle. For example, it is possible to execute in the same
instruction a multiplication of two numbers, with or without rounding of the result, while reading two
values from X data memory to two of the data ALU registers.

Table 6-1. Memory Space Symbols

Symbol Examples Description

P: P:(R2)+ Program memory access

X: X:(R0)
X:$C000

X data memory access

Figure 6-1. Single Parallel Move

Opcode And Operands Single Parallel Move

ADD X0,A Y0,X:(R1)+N ; One DSP56800 Instruction

(Uses XAB1 and CGDB)
6-2 DSP56800 Family Manual Freescale Semiconductor

Instruction Formats

s

r

n

Figure 6-2 illustrates a double parallel move, which uses one program word and executes in one instruction
cycle.

Figure 6-2. Dual Parallel Move

In the dual parallel move, the following occurs.

1. The contents of the X0 and Y0 registers are multiplied, this result is added to the A
accumulator, and the final result is stored in the A accumulator.

2. The contents of the X data memory location pointed to with the R0 register are moved into
the Y0 register.

3. The contents of the X data memory location pointed to with the R3 register are moved into
the X0 register.

4. After completing the memory moves, the R0 register is post-updated with the contents of
the N register, and the R3 register is decremented by one.

Both types of parallel moves use a subset of available DSP56800 addressing modes, and the register
available for the move portion of the instruction are also a subset of the total set of DSC core registers.
These subsets include the registers and addressing modes most frequently found in high-performance
numeric computation and DSC algorithms. Also, the parallel moves allow a move to occur only with an
arithmetic operation in the data ALU. A parallel move is not permitted, for example, with a JMP, LEA, o
BFSET instruction.

6.2 Instruction Formats
Instructions are one, two, or three words in length. The instruction is specified by the first word of the
instruction. The additional words may contain information about the instruction itself or may contain an
operand for the instruction. Samples of assembly language source code for several instructions are show
in Table 6-2.

From the instruction formats listed in Table 6-2, it can be seen that the DSC offers parallel processing
using the data ALU, AGU, program controller, and bit-manipulation unit. In the parallel move example,
the DSC can perform a designated ALU operation (data ALU) and up to two data transfers specified with
address register updates (AGU), and will also decode the next instruction and fetch an instruction from
program memory (program controller), all in one instruction cycle. When an instruction is more than one
word in length, an additional instruction-execution cycle is required. Most instructions involving the data
ALU are register based (that is, operands are in data ALU registers) and allow the programmer to keep
each parallel processing unit busy. Instructions that are memory oriented (for example, a bit-manipulation
instruction), all logical instructions, or instructions that cause a control flow change (such as a jump)
prevent the use of all parallel processing resources during their execution.

Opcode and Operands Primary Read

MACR X0,Y0,A X:(R0)+N,Y0 X:(R3)-,X0

(Uses XAB1 and CGDB)
Secondary Read

(Uses XAB2 and XDB2)
Freescale Semiconductor Instruction Set Introduction 6-3

Instruction Set Introduction
Table 6-2. Instruction Formats

Opcode1

1. Indicates data ALU, AGU, program controller, or bit-manipulation operation to be performed.

Operands2

2. Specifies the operands used by the opcode.

CGDB

Transfer3

3. Specifies optional data transfers over the CGDB bus.

XDB2

Transfer4

4. Specifies optional data transfers over the XDB2 bus.

PDB

Transfer5

5. Specifies optional data transfers over the PDB bus.

Comments

ADD #$1234,Y1 No parallel move

ANDC #$7C,X:$E27 No parallel move

ENDDO No parallel move

TSTW X:(SP-9) No parallel move

MAC A1,Y0,B No parallel move

LEA (R2)- No parallel move

MOVE R0,Y0 No parallel move

CMP X0,B Y0,X:(R2)+ Single parallel move

NEG A X:(R1)+N,X0 Single parallel move

SUB Y1,A X:(R0)+,Y0 X:(R3)+,X0 Dual parallel read

MPY X1,Y0,B X:(R1)+N,Y1 X:(R3)+,X0 Dual parallel read

MACR X0,Y0,A X:(R1)+N,Y0 X:(R3)-,X0 Dual parallel read

MOVE X0,P:(R1)+ Program memory move

JMP $3C10 16-bit jump address
6-4 DSP56800 Family Manual Freescale Semiconductor

Programming Model
6.3 Programming Model
The registers in the DSP56800 core programming model are shown in Figure 6-3.

Figure 6-3. DSP56800 Core Programming Model

N M01

Program Controller Unit

Hardware Stack (HWS)

Data ALU Input Registers

Accumulator Registers

Data Arithmetic Logic Unit

SP

R3

R2

R1

R0

MR CCR OMR

Pointer

Registers

Offset

Register

Modifier

Register

Program

Counter

Status

Register (SR)

Operating Mode

Register

LALC

Loop AddressLoop Counter

Y

A

B

X0 Y0Y1

A0A1A2

B0B1B2

PC

31 16 15 0

15 0 15 015 0

31 16 15 035 32

15 015 03

31 16 15 035 32

15 015 0

15 0

15 0 15 0

15 0 15 0 15 08 7

15 015 0

Address Generation Unit

AA0007

12 0

0

3 0
Freescale Semiconductor Instruction Set Introduction 6-5

Instruction Set Introduction

he

s
6.4 Instruction Groups
The instruction set is divided into the following groups:

• Arithmetic

• Logical

• Bit manipulation

• Looping

• Move

• Program control

Each instruction group is described in the following subsections. In addition, Section 6.6.4, “Instruction
Summary Tables,” includes a useful summary for every instruction and the addressing modes and operand
registers allowed for each instruction. Detailed information on each instruction is given in Appendix A,
“Instruction Set Details.”

6.4.1 Arithmetic Instructions
The arithmetic instructions perform all of the arithmetic operations within the data ALU. They may affect
a subset or all of the condition code register bits. Arithmetic instructions are typically register based
(register-direct addressing modes are used for operands) so that the data ALU operation indicated by t
instruction does not use the CGDB or the XDB2, although some instructions can also operate on
immediate data or operands in memory.

Optional data transfers (parallel moves) may be specified with many arithmetic instructions. This allows
for parallel data movement over the CGDB and over the XDB2 during a data ALU operation. This allow
new data to be pre-fetched for use in following instructions and results calculated by previous instructions
to be stored. Arithmetic instructions typically execute in one instruction cycle, although some of the
operations may take additional cycles with different operand addressing modes. The arithmetic
instructions are the only class of instructions that allow parallel moves.

In addition to the arithmetic shifts presented here, other types of shifts are also available in the logical
instruction group. See Section 6.4.2, “Logical Instructions.” Table 6-3 lists the arithmetic instructions.

Table 6-3. Arithmetic Instructions List

Instruction Description

ABS Absolute value

ADC Add long with carry1

ADD Add

ASL Arithmetic shift left (36-bit)

ASLL Arithmetic multi-bit shift left1

ASR Arithmetic shift right (36-bit)

ASRAC Arithmetic multi-bit shift right with accumulate1

ASRR Arithmetic multi-bit shift right1
6-6 DSP56800 Family Manual Freescale Semiconductor

Instruction Groups
6.4.2 Logical Instructions
The logical instructions perform all of the logical operations within the data ALU. They also affect the
condition code register bits. Logical instructions are register based. So are the arithmetic instructions in
Table 6-3, and, again, some can also operate on operands in memory. Optional data transfers are not
permitted with logical instructions. These instructions execute in one instruction cycle.

Table 6-4 lists the logical instructions.

CLR Clear

CMP Compare

DEC (or DECW) Decrement upper word of accumulator

DIV Divide iteration1

IMPY (or IMPY16) Integer multiply1

INC (or INCW) Increment upper word of accumulator

MAC Signed multiply-accumulate

MACR Signed multiply-accumulate and round

MACSU Signed/unsigned multiply-accumulate1

MPY Signed multiply

MPYR Signed multiply and round

MPYSU Signed/unsigned multiply1

NEG Negate

NORM Normalize1

RND Round

SBC Subtract long with carry1

SUB Subtract

Tcc Transfer conditionally1

TFR Transfer data ALU register to an accumulator

TST Test a 36-bit accumulator

TSTW Test a 16-bit register or memory location1

1. These instructions do not allow parallel data moves.

Table 6-3. Arithmetic Instructions List (Continued)

Instruction Description
Freescale Semiconductor Instruction Set Introduction 6-7

Instruction Set Introduction

y

6.4.3 Bit-Manipulation Instructions
The bit-manipulation instructions perform one of three tasks:

• Testing a field of bits within a word

• Testing and modifying a field of bits in a word

• Conditionally branching based on a test of bits within the upper or lower byte of a word

Bit-field instructions can operate on any X memory location, peripheral, or DSC core register. BFTSTH
and BFTSTL can test any field of the bits within a 16-bit word. BFSET, BFCLR, and BFCHG can test an
field of the bits within a 16-bit word and then set, clear, or invert bits in this word, respectively. BRSET
and BRCLR can only test an 8-bit field in the upper or lower byte of the word, and then conditionally
branch based on the result of the test. The carry bit of the condition code register contains the result of the
bit test for each instruction. These instructions are operations of the read-modify-write type. The BFTSTH,
BFTSTL, BFSET, BFCLR, and BFCHG instructions execute in two or three instruction cycles. The
BRCLR and BRSET instructions execute in four to six instruction cycles.

Table 6-5 lists the bit-manipulation instructions.

Table 6-4. Logical Instructions List

Instruction Description

AND Logical AND

EOR Logical exclusive OR

LSL Logical shift left

LSLL Multi-bit logical shift left

LSRAC Logical right shift with accumulate

LSR Logical shift right

LSRR Multi-bit logical shift right

NOT Logical complement

OR Logical inclusive OR

ROL Rotate left

ROR Rotate right

Table 6-5. Bit-Field Instruction List

Instruction Description

ANDC Logical AND with immediate data

BFCLR Bit-field test and clear

BFSET Bit-field test and set

BFCHG Bit-field test and change

BFTSTL Bit-field test low
6-8 DSP56800 Family Manual Freescale Semiconductor

Instruction Groups

f

 are

d

NOTE:

Due to instruction pipelining, if an AGU register (Rj, N, SP, or M01) is
directly changed with a bit-field instruction, the new contents may not be
available for use until the second following instruction (see the restrictions
discussed in Section 4.4, “Pipeline Dependencies,” on page 4-33).

See Section 8.1.1, “Jumps and Branches,” on page 8-2 for other instructions that can be synthesized.

6.4.4 Looping Instructions
The looping instructions establish looping parameters and initiate zero-overhead program looping. They
allow looping on a single instruction (REP) or a block of instructions (DO). For DO looping, the address o
the first instruction in the program loop is saved on the hardware stack to allow no-overhead looping. The
last address of the DO loop is specified as a 16-bit absolute address. No locations in the hardware stack
required for the REP instruction. The ENDDO instruction is used only when breaking out of the loop;
otherwise, it is better to use MOVE #1,LC. This is discussed in more detail in Section 8.6.6, “Early
Termination of a DO Loop,” on page 8-25.

Table 6-6 lists the loop instructions.

6.4.5 Move Instructions
The move instructions move data over the various data buses: CGDB, IP-BUS (or PGDB), XDB2, an
PDB. Move instructions do not affect the condition code register, except for the limit bit if limiting is
performed when reading a data ALU accumulator register. These instructions do not allow optional data
transfers. In addition to the following move instructions, there are parallel moves that can be used
simultaneously with many of the arithmetic instructions. The parallel moves are shown in Table 6-35 on

BFTSTH Bit-field test high

BRSET Branch if selected bits are set

BRCLR Branch if selected bits are clear

EORC Logical exclusive OR with immediate data

NOTC Logical complement on memory location and registers

ORC Logical inclusive OR with immediate data

Table 6-6. Loop Instruction List

Instruction Description

DO Start hardware loop

ENDDO Disable current loop and unstack parameters

REP Repeat next instruction

Table 6-5. Bit-Field Instruction List (Continued)

Instruction Description
Freescale Semiconductor Instruction Set Introduction 6-9

Instruction Set Introduction

Moves

for
page 6-29 and Table 6-36 on page 6-30 and are discussed in detail in Section 6.1, “Introduction to
and Parallel Moves,” and Appendix A, “Instruction Set Details.” The LEA instruction is also included in
this instruction group.

NOTE:

There is a PUSH instruction macro, described in Section 8.5, “Multiple
Value Pushes,” on page 8-19, that can be used with the POP instruction
alias presented in Section 6.5.5, “POP Alias,” on page 6-13.

Table 6-7 lists the move instructions.

NOTE:

Due to instruction pipelining, if an AGU register (Rj, SP, or M01) is
directly changed with a move instruction, the new contents may not be
available for use until the second following instruction. See the restrictions
discussed in Section 4.4, “Pipeline Dependencies,” on page 4-33.

6.4.6 Program Control Instructions
The program control instructions include branches, jumps, conditional branches, conditional jumps, and
other instructions that affect the program counter and software stack. Program control instructions may
affect the status register bits as specified in the instruction. Also included in this instruction group are the
STOP and WAIT instructions that can place the DSC chip in a low-power state. See Section 8.1.1, “Jumps
and Branches,” on page 8-2 and Section 8.11, “Jumps and JSRs Using a Register Value,” on page 8-33
additional jump and branch instructions that can be synthesized from existing DSP56800 instructions.

Table 6-8 lists the program control instructions.

Table 6-7. Move Instruction List

Instruction Description

LEA Load effective address

POP Pop a register from the software stack

MOVE Move data

MOVE (or MOVEC) Move control register

MOVE (or MOVEI) Move immediate data

MOVE (or MOVEM) Move data to/from program memory

MOVE (or MOVEP) Move data using peripheral short addressing

MOVE (or MOVES) Move data using absolute short addressing

Table 6-8. Program Control Instruction List

Instruction Description

Bcc Branch conditionally
6-10 DSP56800 Family Manual Freescale Semiconductor

Instruction Aliases
6.5 Instruction Aliases
The DSP56800 assembler provides a number of additional useful instruction mnemonics that are actually
aliases to other instructions. Each of these instructions is mapped to one of the core instructions and
disassembles as such.

6.5.1 ANDC, EORC, ORC, and NOTC Aliases
The DSP56800 instruction set does not support logical operations using 16-bit immediate data. It is
possible to achieve the same result, however, using the bit-manipulation instructions. To simplify
implementing these operations, the DSP56800 assembler provides the following operations:

• ANDC — logically AND a 16-bit immediate value with a destination

• EORC — logically exclusive OR a 16-bit immediate value with a destination

• ORC — logically OR a 16-bit immediate value with a destination

• NOTC — logical one’s-complement of a 16-bit destination

These operations are not new instructions, but aliases to existing bit-manipulation instructions. They are
mapped as shown in Table 6-9.

BRA Branch

DEBUG Enter debug mode

Jcc Jump conditionally where cc represents condition mnemonic

JMP Jump

JSR Jump to subroutine

NOP No operation

RTI Return from interrupt

RTS Return from subroutine

STOP Stop processing (lowest power standby)

SWI Software interrupt

WAIT Wait for interrupt (low power standby)

Table 6-9. Aliases for Logical Instructions with Immediate Data

Desired
Instruction

Operands
Remapped
Instruction

Operands

ANDC #xxxx,DST BFCLR #xxxx,DST

ORC #xxxx,DST BFSET #xxxx,DST

Table 6-8. Program Control Instructio n List (Continued)

Instruction Description
Freescale Semiconductor Instruction Set Introduction 6-11

Instruction Set Introduction

nd X0
Note that for the ANDC instruction, a one’s-complement of the mask value is used when remapping to the
BFCLR instruction. For the NOTC instruction, all bits in the 16-bit mask are set to one.

In Example 6-2, an immediate value is logically ORed with a location in memory.

Example 6-2. Logical OR with a Data Memory Location

ORC #$00FF,X:$0400 ; Set all bits of lower byte in X:$0400

The assembler translates this instruction into BFSET #$00FF,X:$400 , which performs the same
operation. If the assembled code is later disassembled, it will appear as a BFSET instruction.

6.5.2 LSLL Alias
Because the LSLL instruction operates identically to an arithmetic left shift, this instruction is actually
assembled as an ASLL instruction. When the assembler encounters the LSLL mnemonic, an ASLL
instruction is assembled. See Table 6-10.

6.5.3 ASL Alias
Because the ASL instruction operates similarly to a logical left shift when executed on the Y1, Y0, a
registers, this instruction is actually assembled as an LSL instruction. Note that while the result in the
destination register will be the same as if an arithmetic shift had been performed, condition codes are
calculated based on a logic shift and might differ from the expected result. See Table 6-11.

The ASL instruction is not aliased to LSL when the register specified is one of the accumulator registers.

EORC #xxxx,DST BFCHG #xxxx,DST

NOTC DST BFCHG #$FFFF,DST

Table 6-10. LSLL Instruction Alias

Operation Operands Comments

LSLL Y1,X0,DD
Y0,X0,DD
Y1,Y0,DD
Y0,Y0,DD
A1,Y0,DD
B1,Y1,DD

Multi-bit logical left shift.

First register is the value to be shifted, second register is the
shift amount (uses 4 LSBs).

Use ASLL when left shifting is desired on one of the two
accumulators.

Table 6-11. ASL Instruction Remapping

Operation Operands Comments

ASL DD Arithmetic left shift (assembled as LSL DD)

Table 6-9. Aliases for Logical Instructions with Immediate Data

Desired
Instruction

Operands
Remapped
Instruction

Operands
6-12 DSP56800 Family Manual Freescale Semiconductor

DSP56800 Instruction Set Summary

bler

6.5.4 CLR Alias
Because CLR operates identically to a MOVE instruction with an immediate value of zero, a MOVE
instruction is used to implement CLR when the specified register is a 16-bit register. When the assem
encounters the CLR mnemonic in a program, it assembles a MOVE #0,<register> instruction in its
place. See Table 6-12.

NOTE:

This operation does not apply to the CLR instruction when it is performed
on the A or B accumulators.

6.5.5 POP Alias
The POP instruction operates identically to a move from the stack with post-decrement. When the
assembler encounters the POP instruction in a program, it assembles a MOVE X:(SP)-,<register>
instruction in its place. If POP does not specify a destination register, it is assembled as LEA (SP)- .

6.6 DSP56800 Instruction Set Summary
This section presents the entire DSP56800 instruction set in tabular form. The tables provide a quick
reference to the entire instruction set because they show not only the instructions themselves, but also the
registers, addressing modes, cycle counts, and program words required for each instruction. From these
tables, it is very easy to determine if a particular operation can be performed with a desired register or
addressing mode.

The summary, found in Section 6.6.4, “Instruction Summary Tables,” is based on logical groupings of
instructions, listing the instructions alphabetically within each grouping. This summary also contains the
number of program words required by the instruction as well as the number of cycles required for
execution.

This section contains the following information:

• Usage of the instruction summary tables

• Addressing mode notation

• Register field notation

• The instruction summary tables

Table 6-12. Clear Instruction Alias

Operation Destination Comments

CLR X0, Y1, Y0,
A1, B1,

R0–R3, N

Identical to MOVE #0,<register> ; does not set condition
codes

Table 6-13. Move Word Instruction Alias — Data Memory

Operation Source Destination Comments

POP DDDDD Pop a single stack location

(None specified) Simply decrements the SP; LEA (SP)-
Freescale Semiconductor Instruction Set Introduction 6-13

Instruction Set Introduction

the

6.6.1 Register Field Notation
There are many different register fields used within the instruction summary tables. These will be grouped
into sets that are more easily understood.

Table 6-14 shows the register set available for the most important move instructions. Sometimes the
register field is broken into two different fields — one where the register is used as a source (src), and
other where it is used as a destination (dst). This is important because a different notation is used when an
accumulator is being stored without saturation. Also see the register fields in Table 6-15, which are also
used in move instructions as sources and destinations within the AGU.

In some cases, the notation used when specifying an accumulator determines whether or not saturation is
enabled when the accumulator is being used as a source in a move or parallel move instruction. Refer to
Section 3.4.1, “Data Limiter,” on page 3-26 and Section 3.2, “Accessing the Accumulator Registers,” on
page 3-7 for information.

Table 6-15 shows the register set available for use as pointers in address-register-indirect addressing
modes. This table also shows the notation used for AGU registers in AGU arithmetic operations.

Table 6-14. Register Fields for General-Purpose Writes and Reads

Register Field Registers in This Field Comments

HHH A, B, A1, B1
X0, Y0, Y1

Seven data ALU registers — two accumulators, two 16-bit MSP
portions of the accumulators, and three 16-bit data registers

HHHH A, B, A1, B1
X0, Y0, Y1
R0-R3, N

Seven data ALU and five AGU registers

DDDDD A, A2, A1, A0
B, B2, B1, B0

Y1, Y0, X0

R0, R1, R2, R3
N, SP
M01

OMR, SR
LA, LC
HWS

All CPU registers

Table 6-15. Address Generation Unit (AGU) Registers

Register Field Registers in This Field Comments

Rn R0–R3
SP

Five AGU registers available as pointers for addressing and as sources
and destinations for move instructions

Rj R0, R1, R2, R3 Four pointer registers available as pointers for addressing

N N One index register available only for indexed addressing modes

M01 M01 One modifier register
6-14 DSP56800 Family Manual Freescale Semiconductor

DSP56800 Instruction Set Summary

d

Table 6-16 shows the register set available for use in data ALU arithmetic operations. The most common
field used in this table is FDD.

6.6.2 Immediate Value Notation
Immediate values, including absolute and offset addresses, are utilized in the instruction set summary
using the notation defined in Table 6-17. The <MASKx> notation is used in Bit Manipulation Instructions
in Table 6-30 and Table 6-31. The <OFFSET7> and <ABS16> notations are used in change of flow and
loop intructions in Table 6-32 and Table 6-33.

6.6.3 Using the Instruction Summary Tables

This section contains helpful information on using the summary tables. It contains some notation used
within the tables.

The register field notation is found in Section 6.6.1, “Register Field Notation.”

Table 6-16. Data ALU Registers

Register Field Registers in This Field Comments

FDD A, B
X0, Y0, Y1

Five data ALU registers — two 36-bit accumulators and three 16-bit data
registers accessible during data ALU operations

Contains the contents of the F and DD register fields

F1DD A1, B1
X0, Y0, Y1

Five data ALU registers — two 16-bit MSP portions of the
accumulators and three 16-bit data registers accessible during data ALU
operations

DD X0, Y0, Y1 Three 16-bit data registers

F A, B Two 36-bit accumulators accessible during parallel move instructions an
some data ALU operations

~F,F ~F,F refers to any of two valid accumulator combinations: A,B or B,A

F1 A1, B1 The 16-bit MSP portion of two accumulators accessible as source operands
in parallel move instructions

Table 6-17. Immediate Value Notation

Immediate Value Field Description

<MASK8> 8-bit mask value

<MASK16> 16-bit mask value

<OFFSET7> 7-bit signed PC-relative offset

<ABS16> 16-bit absolute address
Freescale Semiconductor Instruction Set Introduction 6-15

Instruction Set Introduction

ter

en

Some additional notation to be considered is found in the instruction summary tables when allowed
registers for multiplications are specified (Table 6-23 on page 6-20). In these tables, the following entry is
found:

(+)Y0,X0,FDD

The notation (+) in this entry indicates that an optional + or - sign can be specified before the input regis
combination. If a - is specified, the multiplication result is negated. This allows each of the following
examples to be valid DSP56800 instructions:

MAC X0,Y0,A ; A + X0*Y0 -> A
MAC +X0,Y0,A ; A + X0*Y0 -> A
MAC -X0,Y0,A ; A - (X0*Y0) -> A

As an example, Table 6-36 on page 6-30 shows all registers and addressing modes that are allowed wh
performing a dual read instruction, one of the DSP56800’s parallel move instructions. The instructions
shown in Example 6-3 are allowed.

Example 6-3. Valid Instructions

MOVE X:(R0)+,Y0 X:(R3)+,X0
MACR X0,Y1,A X:(R1)+N,Y1 X:(R3)-,X0
ADD Y0,B X:(R1)+N,Y0 X:(R3)+,X0

The instruction in Example 6-4 is not allowed:

Example 6-4. Invalid Instruction

ADD X0,Y1,A X:(R2)-,X0 X:(R3)+N,Y0

Consulting the information in Table 6-36 on page 6-30 shows that this instruction is not valid for each of
the following reasons:

• The only operands accepted for ADD or SUB are X0,F, Y1,F, Y0,F, A,B, or B,A, where F is either
the A or B accumulator register. Thus, X0,Y1,A is an invalid entry.

• The pointer R2 is not allowed for the first memory read.

• The post-decrement addressing mode is not available for the first memory read.

• The X0 register may not be a destination for the first memory read because it is not listed in the
Destination 1 column.

• The post-update by N addressing mode is not allowed for the second memory read. The second
memory read is always identified as the memory move that uses R3 in instructions with two
memory moves. For the second memory read, only the post-increment and post-decrement
addressing modes are allowed.

• The Y0 register may not be a destination for the second memory read because it is not listed in the
Destination 2 column.
6-16 DSP56800 Family Manual Freescale Semiconductor

DSP56800 Instruction Set Summary

several
6.6.4 Instruction Summary Tables
A summary of the entire DSP56800 instruction set is presented in this section in tabular form. In these
tables, Table 6-18 on page 6-18 through Table 6-36 on page 6-30, the instructions are broken into
different categories and then listed alphabetically.

The tables specify the operation, operands, and any relevant comments. There are separate fields for
sources and destinations of move instructions. There are also two additional fields:

• C — Time required to execute the instruction

• W — Number of program words occupied by the instruction

Instruction execution times are measured in oscillator clock cycles. This should not be confused with
instruction cycles, which comprise the timing granularity of the DSP56800 execution units. Each
instruction cycle is equivalent to two oscillator clock cycles. The numbers given for instruction times
assume that internal memory — or external memory that requires no wait states — is used.

All parallel move instructions are located in the last two tables in this section:

• Table 6-35 on page 6-29

• Table 6-36 on page 6-30
Freescale Semiconductor Instruction Set Introduction 6-17

Instruction Set Introduction

vb

Table 6-18. Move Word Instructions

Operation Source Destination C W Comments

MOVE
or

MOVEC

DDDDD X:(Rn)
X:(Rn)+
X:(Rn)-

2 1 Move signed 16-bit integer word from
memory with optional post-update

DDDDD X:(Rn+N) 4 1 Address = Rn + N. Rn does not change.

DDDDD X:(Rn)+N 2 1 Post-update of Rn register

HHHH X:(R2+xx) 4 1 xx: offset ranging from 0 to 63

DDDDD X:(Rn+xxxx) 6 2 Signed 16-bit offset

HHHH X:(SP-xx) 4 1 Unsigned 6-bit offset

DDDDD X:xxxx 4 2 Unsigned 16-bit address

X:(Rn)
X:(Rn)+
X:(Rn)-

DDDDD 2 1 Move signed 16-bit integer word to memory
with optional post-update

X:(Rn+N) DDDDD 4 1 Address = Rn + N. Rn does not change.

X:(Rn)+N DDDDD 2 1 Post-update of Rn register

X:(R2+xx) HHHH 4 1 xx: offset ranging from 0 to 63

X:(Rn+xxxx) DDDDD 6 2 Signed 16-bit offset

X:(SP-xx) HHHH 4 1 Unsigned 6-bit offset

X:xxxx DDDDD 4 2 Unsigned 16-bit address

POP DDDDD 2 1 ALIAS , refer to Section 6.5.5, “POP Alias.”
Implemented as: MOVE X:(SP)-,<register>

(None specified) ALIAS , refer to Section 6.5.5, “POP Alias.”
Implemented as: LEA (SP)-

MOVE
or

MOVEP

X:pp
or

X:<<pp

HHHH 2 1 X:<<pp represents a 6-bit absolute I/O address.
Refer to I/O Short Address (Direct Address-
ing): <pp> on page 4-23

HHHH X:pp
or

X:<<pp

MOVE
or

MOVES

X:aa
or

X:<aa

HHHH 2 1 X:aa represents a 6-bit absolute address. Refer
to Absolute Short Address (Direct Address-
ing): <aa> on page 4-22

HHHH X:aa
or

X:<aa

MOVE (parallel) 2 1 Refer to Table 6-36 on page 6-30.
6-18 DSP56800 Family Manual Freescale Semiconductor

DSP56800 Instruction Set Summary
Table 6-19. Immediate Move Instructions

Operation Source Destination C W Comments

MOVE
or

MOVEI

#<-64,63> HHHH 2 1 Signed 7-bit integer data (data is put in the lowest 7 bits
of the word portion of any accumulator, upper 8 bits and
extension reg are sign extended, LSP portion is set to
“0”)

#xxxx DDDDD 4 2 Signed 16-bit immediate data. When LC is the destina-
tion, use 13-bit values only.

X:(R2+xx) 6 2 Signed 16-bit immediate data move.

X:(SP-xx) 6 2

X:xxxx 6 3

MOVE
or

MOVEP

#xxxx X:pp
or

X:<<pp

4 2 Move 16-bit immediate data to the last 64 locations of X
data memory-peripheral registers.
X:<<pp represents a 6-bit absolute I/O address.

MOVE
or

MOVES

#xxxx X:aa
or

X:<aa

4 2 Move 16-bit immediate date to a location within the first
64 words of X data memory.
X:aa represents a 6-bit absolute address.

Table 6-20. Register-to-Register Move Instructions

Operation Source Destination C W Comments

MOVE
or

MOVEC

DDDDD DDDDD 2 1 Move signed word to register

Table 6-21. Move Word Instructions — Program Memory

Operation1

1. These instructions are not allowed when the XP bit in the OMR is set (that is, when the instructions are executing
from data memory).

Source Destination C W Comments

MOVE
or

MOVEM

P:(Rj)+
P:(Rj)+N

HHHH 8 1 Read signed word from program memory

HHHH P:(Rj)+
P:(Rj)+N

Write word to program memory
Freescale Semiconductor Instruction Set Introduction 6-19

Instruction Set Introduction

Table 6-22. Conditional Register Transfer Instructions

Operation
Data ALU Transfer AGU Transfer

C W Comments
Source Destination Source Destination

Tcc DD F (No transfer) 2 1 Conditionally transfer one register

A B (No transfer)

B A (No transfer)

DD F R0 R1 Conditionally transfer one data
ALU register and one AGU register

A B R0 R1

B A R0 R1

Note: The Tcc instruction does not allow the following condition codes: HI, LS, NN, and NR.

Table 6-23. Data ALU Multiply Instructions

Operation Operands C W Comments

IMPY
or

IMPY16

Y1,X0,FDD
Y0,X0,FDD
Y1,Y0,FDD
Y0,Y0,FDD
A1,Y0,FDD
B1,Y1,FDD

2 1 Integer 16x16 multiply with 16-bit result

When the destination is an accumulator F, the F0
portion is unchanged by the instruction.

Note: Assembler also accepts first two operands
when they are specified in opposite order.

MAC (±)Y1,X0,FDD
(±)Y0,X0,FDD
(±)Y1,Y0,FDD
(±)Y0,Y0,FDD
(±)A1,Y0,FDD
(±)B1,Y1,FDD

2 1 Fractional multiply accumulate; multiplication
result optionally negated before accumulation.

Note: Assembler also accepts first two operands
when they are specified in opposite order.

(parallel) Refer to Table 6-35 & Table 6-36.

MACR (±)Y1,X0,FDD
(±)Y0,X0,FDD
(±)Y1,Y0,FDD
(±)Y0,Y0,FDD
(±)A1,Y0,FDD
(±)B1,Y1,FDD

2 1 Fractional MAC with round, multiplication result
optionally negated before addition.

Note: Assembler also accepts first two operands
when they are specified in opposite order.

(parallel) Refer to Table 6-35 & Table 6-36.

MPY (±)Y1,X0,FDD
(±)Y0,X0,FDD
(±)Y1,Y0,FDD
(±)Y0,Y0,FDD
(±)A1,Y0,FDD
(±)B1,Y1,FDD

2 1 Fractional multiply where one operand is optionally
negated before multiplication.

Note: Assembler also accepts first two operands
when they are specified in opposite order.

(parallel) Refer to Table 6-35 & Table 6-36.
6-20 DSP56800 Family Manual Freescale Semiconductor

DSP56800 Instruction Set Summary

MPYR (±)Y1,X0,FDD
(±)Y0,X0,FDD
(±)Y1,Y0,FDD
(±)Y0,Y0,FDD
(±)A1,Y0,FDD
(±)B1,Y1,FDD

2 1 Fractional multiply where one operand is optionally
negated before multiplication. Result is rounded.

Note: Assembler also accepts first two operands
when they are specified in opposite order.

(parallel) Refer to Table 6-35 & Table 6-36.

Table 6-24. Data ALU Extended Precision Multiplica tion Instructions

Operation Operands C W Comments

MACSU X0,Y1,FDD
X0,Y0,FDD
Y0,Y1,FDD
Y0,Y0,FDD
Y0,A1,FDD
Y1,B1,FDD

2 1 Signed or unsigned 16x16 fractional MAC with
32-bit result.

The first operand is treated as signed and the second
as unsigned.

MPYSU X0,Y1,FDD
X0,Y0,FDD
Y0,Y1,FDD
Y0,Y0,FDD
Y0,A1,FDD
Y1,B1,FDD

2 1 Signed or unsigned 16x16 fractional multiply with
32-bit result.

The first operand is treated as signed and the second
as unsigned.

Table 6-25. Data ALU Arithmetic Instructions

Operation Operands C W Comments

ABS F 2 1 Absolute value.

(parallel) Refer to Table 6-35 on page 6-29.

ADC Y,F 2 1 Add with carry (sets C bit also).

ADD DD,FDD 2 1 36-bit addition of two registers.

~F,F refers to any of two valid combinations: A,B or B,A

F1,DD

~F,F

Y,F

X:(SP-xx),FDD 6 1 Add memory word to register.

X:aa represents a 6-bit absolute address. Refer to Absolute
Short Address (Direct Addressing): <aa> on page 4-22

X:aa,FDD 4 1

X:xxxx,FDD 6 2

FDD,X:(SP-xx) 8 2 Add register to memory word, storing the result back to
memory.FDD,X:xxxx 8 2

FDD,X:aa 6 2

#<0-31>,FDD 4 1 Add an immediate integer 0–31.

#xxxx 6 2 Add a signed 16-bit immediate integer.

(parallel) 2 1 Refer to Table 6-35 & Table 6-36.

Table 6-23. Data ALU Multiply Instructions (Continued)

Operation Operands C W Comments
Freescale Semiconductor Instruction Set Introduction 6-21

Instruction Set Introduction

CLR F 2 1 Clear 36-bit accumulator and set condition codes.

F1DD
Rj
N

ALIAS , refer to Section 6.5.4, “CLR Alias.”
Implemented as: MOVE #0,<register>
(does not set condition codes)

(parallel) Refer to Table 6-35 on page 6-29.

CMP DD,FDD 2 1 36-bit compare of two accumulators or data registers.

~F,F refers to any of two valid combinations: A,B or B,A

F1,DD

~F,F

X:(SP-xx),FDD 6 1 Compare memory word with 36-bit accumulator.

X:aa represents a 6-bit absolute address. Refer to Absolute
Short Address (Direct Addressing): <aa> on page 4-22

Note: Condition codes set based on 36-bit result

X:aa,FDD 4 1

X:xxxx,FDD 6 2

#<0-31>,FDD 4 1 Compare accumulator with an immediate integer 0–31.

#xxxx,FDD 6 2 Compare accumulator with signed 16-bit immediate integer.

(parallel) 2 1 Refer to Table 6-35 on page 6-29,

DEC
or

DECW

FDD 2 1 Decrement word.

X:(SP-xx) 8 1 Decrement word in memory using appropriate addressing
mode.X:aa 6 1

X:xxxx 8 2

(parallel) 2 1 Refer to Table 6-35 on page 6-29.

DIV DD,F 2 1 Divide iteration.

INC
or

INCW

FDD 2 1 Increment word.

X:(SP-xx) 8 1 Increment word in memory using appropriate addressing
mode.X:aa 6 1

X:xxxx 8 2

(parallel) 2 1 Refer to Table 6-35 on page 6-29.

NEG F 2 1 Two’s-complement negation.

(parallel) Refer to Table 6-35 on page 6-29.

RND F 2 1 Round.

(parallel) Refer to Table 6-35 on page 6-29.

SBC Y,F 2 1 Subtract with carry (set C bit also).

SUB DD,FDD 2 1 36-bit subtract of two registers. 16-bit source registers are
first sign extended internally and concatenated with 16 zero
bits to form a 36-bit operand.

~F,F refers to any of two valid combinations: A,B or B,A

F1,DD

~F,F

Y,F

X:(SP-xx),FDD 6 1 Subtract memory word from register.
X:aa represents a 6-bit absolute address. Refer to Absolute
Short Address (Direct Addressing): <aa> on page 4-22

X:aa,FDD 4 1

X:xxxx,FDD 6 2

#<0-31>,FDD 4 1 Subtract an immediate value 0–31.

#xxxx,FDD 6 2 Subtract a signed 16-bit immediate integer.

(parallel) 2 1 Refer to Table 6-35 & Table 6-36.

Table 6-25. Data ALU Arithmetic Instructions (Continued)

Operation Operands C W Comments
6-22 DSP56800 Family Manual Freescale Semiconductor

DSP56800 Instruction Set Summary

.

ALIAS : the ANDC, EORC, ORC, and NOTC can also be used to perform logical operations on registers
and data memory locations. ANDC, EORC, and ORC allow logical operations with 16-bit immediate data
See Section 6.5.1, “ANDC, EORC, ORC, and NOTC Aliases,” for additional information.

TFR DD,F 2 1 Transfer register to register.

~F,F Transfer one accumulator to another (36-bits).
~F,F refers to any of two valid combinations: A,B or B,A

(parallel) Refer to Table 6-35 on page 6-29.

TST F 2 1 Test 36-bit accumulator.

(parallel) Refer to Table 6-35 on page 6-29.

TSTW DDDDD
(except HWS)

2 1 Test 16-bit word in register. All registers allowed except
HWS. Limiting can occur if an accumulator specified and
the extension register is in use.

X:(Rn) 2 1 Test a word in memory using appropriate addressing mode.

X:aa represents a 6-bit absolute address. Refer to Absolute
Short Address (Direct Addressing): <aa> on page 4-22.

Refer to Table 6-29 for another form of TSTW that tests and
decrements an AGU register; (executed in the AGU unit).

X:(Rn)+ 2 1

X:(Rn)- 2 1

X:(Rn+N) 4 1

X:(Rn)+N 2 1

X:(Rn+xxxx) 6 2

X:(R2+xx) 4 1

X:(SP-xx) 4 1

X:aa 2 1

X:<<pp 2 1

X:xxxx 4 2

Table 6-26. Data ALU Miscellaneous Instructions

Operation Operands C W Comments

NORM R0,F 2 1 Normalization iteration instruction for normalizing the F
accumulator

Table 6-27. Data ALU Logical Instructions

Operation Operands C W Comments

AND DD,FDD 2 1 16-bit logical AND

F1,DD

EOR DD,FDD 2 1 16-bit exclusive OR (XOR)

F1,DD

NOT FDD 2 1 One’s-complement (bit-wise negation)

OR DD,FDD 2 1 16-bit logical OR

F1,DD

Table 6-25. Data ALU Arithmetic Instructions (Continued)

Operation Operands C W Comments
Freescale Semiconductor Instruction Set Introduction 6-23

Instruction Set Introduction
Table 6-28. Data ALU Shifting Instructions

Operation Operands C W Comments

ASL F 2 1 Arithmetic shift left entire register by 1 bit

DD ALIAS , refer to Section 6.5.3, “ASL Alias.”
Implemented as: LSL DD

(parallel) Refer to Table 6-35.

ASLL Y1,X0,FDD
Y0,X0,FDD
Y1,Y0,FDD
Y0,Y0,FDD
A1,Y0,FDD
B1,Y1,FDD

2 1 Arithmetic shift left of the first operand by value
specified in four LSBs of the second operand;
places result in FDD

ASR FDD 2 1 Arithmetic shift right entire register by 1 bit

(parallel) Refer to Table 6-35.

ASRR Y1,X0,FDD
Y0,X0,FDD
Y1,Y0,FDD
Y0,Y0,FDD
A1,Y0,FDD
B1,Y1,FDD

2 1 Arithmetic shift right of the first operand by value
specified in four LSBs of the second operand;
places result in FDD

ASRAC Y1,X0,F
Y0,X0,F
Y1,Y0,F
Y0,Y0,F
A1,Y0,F
B1,Y1,F

2 1 Arithmetic word shifting with accumulation

LSL FDD 2 1 1-bit logical shift left of word

LSLL Y1,X0,FDD
Y0,X0,FDD
Y1,Y0,FDD
Y0,Y0,FDD
A1,Y0,FDD
B1,Y1,FDD

2 1 ALIAS , refer to Section 6.5.2, “LSLL Alias.”
Implemented as: ASLL <operands>

LSR FDD 2 1 1-bit logical shift right of word

LSRR Y1,X0,FDD
Y0,X0,FDD
Y1,Y0,FDD
Y0,Y0,FDD
A1,Y0,FDD
B1,Y1,FDD

2 1 Logical shift right of the first operand by value
specified in four LSBs of the second operand;
places result in FDD (when result is to an accumu-
lator F, zero extends into F2)

LSRAC Y1,X0,F
Y0,X0,F
Y1,Y0,F
Y0,Y0,F
A1,Y0,F
B1,Y1,F

2 1 Logical word shifting with accumulation

ROL FDD 2 1 Rotate 16-bit register left by 1 bit through the carry
bit

ROR FDD 2 1 Rotate 16-bit register right by 1 bit through the
carry bit
6-24 DSP56800 Family Manual Freescale Semiconductor

DSP56800 Instruction Set Summary

Table 6-29. AGU Arithmetic Instructions

Operation Operands C W Comments

LEA (Rn)+ 2 1 Increment the Rn pointer register

(Rn)- 2 1 Decrement the Rn pointer register

(Rn)+N 2 1 Add N index register to the Rn register and store the result in
the Rn register

(R2+xx) 2 1 Add a 6-bit unsigned immediate value to R2 and store in the
R2 pointer

(SP-xx) 2 1 Subtract a 6-bit unsigned immediate value from SP and store
in the SP register

(Rn+xxxx) 4 2 Add a 16-bit signed immediate value to the specified source
register

TSTW (Rn)- 2 1 Test and decrement AGU register. Refer to Table 6-25 for
other forms of TSTW that are executed in the Data ALU.

Table 6-30. Bit-Manipulation Instructions

Operation Operands C W Comments

BFTSTH #<MASK16>,DDDDD 4 2 BFTSTH tests all bits selected by the 16-bit
immediate mask. If all selected bits are set, then
the C bit is set. Otherwise it is cleared.

All registers in DDDDD are permitted except
HWS.
X:aa represents a 6-bit absolute address. Refer to
Absolute Short Address (Direct Addressing):
<aa> on page 4-22
X:<<pp represents a 6-bit absolute I/O address.

#<MASK16>,X:(R2+xx) 6 2

#<MASK16>,X:(SP-xx) 6 2

#<MASK16>,X:aa 4 2

#<MASK16>,X:<<pp 4 2

#<MASK16>,X:xxxx 6 3

BFTSTL #<MASK16>,DDDDD 4 2 BFTSTL tests all bits selected by the 16-bit imme-
diate mask. If all selected bits are clear, then the C
bit is set. Otherwise it is cleared.

All registers in DDDDD are permitted except
HWS.
X:aa represents a 6-bit absolute address. Refer to
Absolute Short Address (Direct Addressing):
<aa> on page 4-22
X:<<pp represents a 6-bit absolute I/O address.

#<MASK16>,X:(R2+xx) 6 2

#<MASK16>,X:(SP-xx) 6 2

#<MASK16>,X:aa 4 2

#<MASK16>,X:<<pp 4 2

#<MASK16>,X:xxxx 6 3
Freescale Semiconductor Instruction Set Introduction 6-25

Instruction Set Introduction

d
BFCHG #<MASK16>,DDDDD 4 2 BFCHG tests all bits selected by the 16-bit imme-
diate mask. If all selected bits are set, then the C
bit is set. Otherwise it is cleared. Then it inverts all
selected bits.

All registers in DDDDD are permitted except
HWS.
X:aa represents a 6-bit absolute address. Refer to
Absolute Short Address (Direct Addressing):
<aa> on page 4-22
X:<<pp represents a 6-bit absolute I/O address.

#<MASK16>,X:(R2+xx) 6 2

#<MASK16>,X:(SP-xx) 6 2

#<MASK16>,X:aa 4 2

#<MASK16>,X:<<pp 4 2

#<MASK16>,X:xxxx 6 3

BFCLR #<MASK16>,DDDDD 4 2 BFCLR tests all bits selected by the 16-bit imme-
diate mask. If all selected bits are set, then the C
bit is set. Otherwise it is cleared. Then it clears all
selected bits.

All registers in DDDDD are permitted except
HWS.
X:aa represents a 6-bit absolute address. Refer to
Absolute Short Address (Direct Addressing):
<aa> on page 4-22
X:<<pp represents a 6-bit absolute I/O address.

#<MASK16>,X:(R2+xx) 6 2

#<MASK16>,X:(SP-xx) 6 2

#<MASK16>,X:aa 4 2

#<MASK16>,X:<<pp 4 2

#<MASK16>,X:xxxx 6 3

BFSET #<MASK16>,DDDDD 4 2 BFSET tests all bits selected by the 16-bit imme-
diate mask. If all selected bits are clear, then the C
bit is set. Otherwise it is cleared. Then it sets all
selected bits.

All registers in DDDDD are permitted except
HWS.
X:aa represents a 6-bit absolute address. Refer to
Absolute Short Address (Direct Addressing):
<aa> on page 4-22
X:<<pp represents a 6-bit absolute I/O address.

#<MASK16>,X:(R2+xx) 6 2

#<MASK16>,X:(SP-xx) 6 2

#<MASK16>,X:aa 4 2

#<MASK16>,X:<<pp 4 2

#<MASK16>,X:xxxx 6 3

Table 6-31. Branch on Bit-Manipulation Instructions

Operation Operands C1 W Comments

BRCLR #<MASK8>,DDDDD,<OFFSET7> 10/8 2 BRCLR tests all bits selected by the immediate mask.
If all selected bits are clear, then the carry bit is set an
a PC relative branch occurs. Otherwise it is cleared and
no branch occurs.

All registers in DDDDD are permitted except HWS.

<MASK8> specifies a 16-bit immediate value where
either the upper or lower 8 bits contains all zeros.

<OFFSET7> specifies a 7-bit PC relative offset.
X:aa represents a 6-bit absolute address.
X:<<pp represents a 6-bit absolute I/O address.

#<MASK8>,X:(R2+xx),<OFFSET7> 12/10 2

#<MASK8>,X:(SP-xx),<OFFSET7> 12/10 2

#<MASK8>,X:aa,<OFFSET7> 10/8 2

#<MASK8>,X:<<pp,<OFFSET7> 10/8 2

#<MASK8>,X:xxxx,<OFFSET7> 12/10 3

Table 6-30. Bit-Manipulation Instru ctions (Continued)

Operation Operands C W Comments
6-26 DSP56800 Family Manual Freescale Semiconductor

DSP56800 Instruction Set Summary

 a

BRSET #<MASK8>,DDDDD,<OFFSET7> 10/8 2 BRSET tests all bits selected by the immediate mask.
If all selected bits are set, then the carry bit is set and
PC relative branch occurs. Otherwise it is cleared and
no branch occurs.

All registers in DDDDD are permitted except HWS.

<MASK8> specifies a 16-bit immediate value where
either the upper or lower 8 bits contains all zeros.

<OFFSET7> specifies a 7-bit PC relative offset.
X:aa represents a 6-bit absolute address.
X:<<pp represents a 6-bit absolute I/O address.

#<MASK8>,X:(R2+xx),<OFFSET7> 12/10 2

#<MASK8>,X:(SP-xx),<OFFSET7> 12/10 2

#<MASK8>,X:aa,<OFFSET7> 10/8 2

#<MASK8>,X:<<pp,<OFFSET7> 10/8 2

#<MASK8>,X:xxxx,<OFFSET7> 12/10 3

1. First cycle count is if branch is taken (condition is true); second is if branch is not taken.

Table 6-32. Change of Flow Instructions

Operation Operands C1

1. First cycle count is if branch is taken (condition is true); second is if branch is not taken.

W Comments

Bcc <OFFSET7> 6/4 1 7-bit signed PC relative offset

BRA <OFFSET7> 6 1 7-bit signed PC relative offset

Jcc <ABS16> 6/4 2 16-bit absolute address

JMP <ABS16> 6 2 16-bit absolute address

JSR <ABS16> 8 2 Push 16-bit return address and jump to 16-bit target address

RTI 10 1 Return from interrupt, restoring 16-bit PC and SR from the stack

RTS 10 1 Return from subroutine, restoring 16-bit PC from the stack

Table 6-33. Looping Instructions

Operation Operands C W Comments

DO #<1-63>,<ABS16> 6 2 Load LC register with unsigned value and start hardware DO loop
with 6-bit immediate loop count. The last address is 16-bit abso-
lute. Loop count = 0 not allowed by assembler.

DDDDD,<ABS16> Load LC register with unsigned value. If LC is not equal to zero,
start hardware DO loop with 16-bit loop count in register. Other-
wise, skip body of loop (adds three additional cycles). The last
address is 16-bit absolute.

Any register allowed except: SP, M01, SR, OMR, and HWS.

ENDDO 2 1 Remove one value from the hardware stack and update the NL
and LF bits appropriately.
Note: Does not branch to the end of the loop.

Table 6-31. Branch on Bit-Manipulation Instructions (Continued)

Operation Operands C1 W Comments
Freescale Semiconductor Instruction Set Introduction 6-27

Instruction Set Introduction

-

REP #<0-63> 6 1 Hardware repeat of a one-word instruction with immediate loop
count.

DDDDD Hardware repeat of a one-word instruction with loop count speci
fied in register.

Any register allowed except: SP, M01, SR, OMR, and HWS.

Table 6-34. Control Instructions

Operation Operands C W Comments

DEBUG 4 1 Generate a debug event.

ILLEGAL 4 1 Execute the illegal instruction exception. This instruction is made avail-
able so that code may be written to test and verify interrupt
handlers for illegal instructions.

NOP 2 1 No operation.

STOP n/a 1 Enter STOP low-power mode.

SWI 8 1 Execute the trap exception at the highest interrupt priority level, level 1
(non-maskable).

WAIT n/a 1 Enter WAIT low-power mode.

Table 6-33. Looping Instructions (Continued)

Operation Operands C W Comments
6-28 DSP56800 Family Manual Freescale Semiconductor

DSP56800 Instruction Set Summary

ta

Each instruction in Table 6-35 requires one program word and executes in one instruction cycle. The da
type accessed by the single memory move in all single parallel move instructions is signed word.

The solid double line running down the center of the table indicates that the data ALU operation is
independent from the parallel memory move. As a result, any valid operation can be combined with any
valid memory move. Example 6-5 lists examples of valid single parallel move instructions.

Example 6-5. Examples of Single Parallel Moves

MAC Y1,X0,A X:(R0)+,X0
MAC Y1,X0,A X0,X:(R0)+
ASL B X:(R0)+,Y1
ASL B Y1,X:(R0)+

It is not permitted to perform MAC A,B X:(R0)+,X0 because the MAC instruction requires three
operands, as shown in Table 6-35. The operands are not independent of the operation performed. This is
why a single line is used to separate the operation from the operands instead of a double line.

Table 6-35. Data ALU Instructions — Single Parallel Move

Data ALU Operation Parallel Memory Move

Operation1

1. These instructions occupy only 1 program word and executes in 1 instruction cycle for every addressing
mode.

Operands Source Destination2

2. The destination of the data ALU operation is not allowed to be the same register as the destination of the
parallel read operation. Memory writes are allowed in this case.

MAC
MPY

MACR
MPYR

Y1,X0,F
Y0,X0,F
Y1,Y0,F
Y0,Y0,F

A1,Y0,F
B1,Y1,F

X:(Rj)+
X:(Rj)+N

X0
Y1
Y0

A
B
A1
B1

X0
Y1
Y0

A
B
A1
B1

(Rj = R0-R3)

X:(Rj)+
X:(Rj)+NADD

SUB
CMP

TFR

X0,F
Y1,F
Y0,F

A,B
B,A

ABS
ASL
ASR
CLR
RND
TST

INC or INCW
DEC or DECW

NEG

F

(F = A or B)
Freescale Semiconductor Instruction Set Introduction 6-29

Instruction Set Introduction

n

ry
For the MAC, MPY, MACR, and MPYR instructions, the assembler accepts the two source operands i
any order.

NOTE:

The data types accessed by the two memory moves in all dual parallel read
instructions are signed words.

6.7 The Instruction Pipeline
Instruction execution is pipelined to allow most instructions to execute at a rate of one instruction eve
two clock cycles. However, certain instructions require additional time to execute, including instructions
with the following properties:

• Exceed length of one word

• Use an addressing mode that requires more than one cycle

• Access the program memory

• Cause a control flow change

In the case of a control flow change, a cycle is needed to clear the pipeline.

6.7.1 Instruction Processing
Pipelining allows the fetch-decode-execute operations of an instruction to occur during the
fetch-decode-execute operations of other instructions. While an instruction is executed, the next instruction
to be executed is decoded, and the instruction to follow the instruction being decoded is fetched from
program memory. If an instruction is two words in length, the additional word will be fetched before the
next instruction is fetched.

Table 6-36. Data ALU Instructions — Dual Parallel Read

Data ALU Operation1

1. These parallel instructions are not allowed when the XP bit in the OMR is set (that is, when the instructions are ex-
ecuting from data memory).

First Memory Read Second Memory Read

Operation2

2. These instructions occupy only 1 program word and executes in 1 instruction cycle for every addressing mode.

Operands Source 1 Destination 1 Source 2 Destination 2

MAC
MPY

MACR
MPYR

Y1,X0,F
Y1,Y0,F
Y0,X0,F

(F = A or B)

X:(R0)+
X:(R0)+N

X:(R1)+
X:(R1)+N

Y0
Y1

X:(R3)+
X:(R3)-

X0

ADD
SUB

X0,F
Y1,F
Y0,F

(F = A or B)

MOVE
6-30 DSP56800 Family Manual Freescale Semiconductor

The Instruction Pipeline

g

s is
be
X
Figure 6-4 demonstrates pipelining; F1, D1, and E1 refer to the fetch, decode, and execute operations,
respectively, of the first instruction. Note that the third instruction contains an instruction extension word
and takes two cycles to execute.

Figure 6-4. Pipelining

Each instruction requires a minimum of three instruction cycles (six machine cycles) to be fetched,
decoded, and executed. A new instruction may be started after two machine cycles, making the throughput
rate to be one instruction executed every instruction cycle for single-cycle instructions. Two-word
instructions require a minimum of eight machine cycles to execute, and a new instruction may start after
four machine cycles.

6.7.2 Memory Access Processing
One or more of the DSC memory sources (X data memory and program memory) may be accessed durin
the execution of an instruction. Three address buses (XAB1, XAB2, and PAB) and three data buses
(CGDB, XDB2, and PDB) are available for internal memory accesses during one instruction cycle, but
only one address bus and one data bus are available for external memory accesses (when the external bu
available). If all memory sources are internal to the DSC, one or more of the two memory sources may
accessed in one instruction cycle (that is, program memory access, or program memory access plus an
memory reference, or program memory access with two X memory references).

NOTE:

For instructions that contain two X memory references, the second transfer
using XAB2 and XDB2 may not access external memory. All accesses
across these buses must access internal memory only.

See Section 7.2.2, “Instruction Pipeline with Off-Chip Memory Accesses,” on page 7-3 for a discussion of
off-chip memory accesses.

Fetch F1 F2 F3 F3e F4 F5 F6 ...

Decode D1 D2 D3 D3e D4 D5 ...

Execute E1 E2 E3 E3e E4 ...

Instruction Cycle 1 2 3 4 5 6 7 ...
Freescale Semiconductor Instruction Set Introduction 6-31

Instruction Set Introduction
6-32 DSP56800 Family Manual Freescale Semiconductor

s of

The
Chapter 7
Interrupts and the Processing States
The DSP56800 Family processors have six processing states and are always in one of these states (see
Table 7-1). Each processing state is described in detail in the following sections except the debug
processing state, which is discussed in Section 9.3, “OnCE Port,” on page 9-4. In addition, special case
interrupt pipelines are discussed at the end of the section. Section 8.10, “Interrupts,” on page 8-30
discusses software techniques for interrupt processing.

7.1 Reset Processing State
The processor enters the reset processing state when the external RESET pin is asserted and a hardware
reset occurs. On devices with a computer operating properly (COP) timer, it is also possible to enter the
reset processing state when this timer reaches zero. The DSC is typically held in reset during the power-up
process through assertion of the RESET pin, making this the first processing state entered by the DSC.
reset state performs the following:

1. Resets internal peripheral devices

2. Sets the M01 modifier register to $FFFF

3. Clears the interrupt priority register (IPR)

4. Sets the wait state fields in the bus control register (BCR) to their maximum value, thereby
inserting the maximum number of wait states for all external memory accesses

Table 7-1. Processing States

State Description

Reset The state where the DSC core is forced into a known reset state. Typically, the first
program instruction is fetched upon exiting this state.

Normal The state of the DSC core where instructions are normally executed.

Exception The state of interrupt processing, where the DSC core transfers program control from its current
location to an interrupt service routine using the interrupt vector table.

Wait A low-power state where the DSC core is shut down but the peripherals and interrupt machine
remain active.

Stop A low-power state where the DSC core, the interrupt machine, and most (if not all) of the periph-
erals are shut down.

Debug The state where the DSC core is halted and all registers in the On-Chip Emulation (OnCE) port
of the processor are accessible for program debug.
Freescale Semiconductor Interrupts and the Processing States 7-1

Interrupts and the Processing States

a
r

5. Clears the status register’s (SR) loop flag and condition code bits and sets the interrupt
mask bits

6. Clears the following bits in the operating mode register: nested looping, condition codes,
stop delay, rounding, and external X memory

The DSC remains in the reset state until the RESET pin is deasserted. When hardware deasserts the
RESET pin, the following occur:

1. The chip operating mode bits in the OMR are loaded from an external source, typically mode
select pins; see the appropriate device manual for details.

2. A delay of 16 instruction cycles (NOPs) occurs to sync the local clock generator and state
machine.

3. The chip begins program execution at the program memory address defined by the state of
the MA and MB bits in the OMR and the type of reset (hardware or COP time-out). The
first instruction must be fetched and then decoded before execution. Therefore, the first
instruction execution is two instruction cycles after the first instruction fetch.

After this last step, the DSC enters the normal processing state upon exiting reset. It is also possible for the
DSC to enter the debug processing state upon exiting reset when system debug is underway.

7.2 Normal Processing State
The normal processing state is the typical state of the processor where it executes instructions in a
three-stage pipeline. This includes the execution of simple instructions such as moves or ALU operations
as well as jumps, hardware looping, bit-field instructions, instructions with parallel moves, and so on.
Details about the execution of the individual instructions can be found in Appendix A, “Instruction Set
Details.” The chip must be reset before it can enter the normal processing state.

7.2.1 Instruction Pipeline Description
The instruction-execution pipeline is a three-stage pipeline, which allows most instructions to execute at
rate of one instruction per instruction cycle. For the case where there are no off-chip memory accesses, o
for the case of a single off-chip access with no wait states, one instruction cycle is equivalent to two
machine cycles. A machine cycle is defined as one cycle of the clock provided to the DSC core. Certain
instructions, however, require more than one instruction cycle to execute. These instructions include the
following:

• Instructions longer than one word

• Instructions using an addressing mode that requires more than one cycle

• Instructions that cause a control-flow change

Pipelining allows instruction executions to overlap so that the fetch-decode-execute operations of a given
instruction occur concurrently with the fetch-decode-execute operations of other instructions. Specifically,
while the processor is executing one instruction, it is decoding the next instruction and fetching a third
instruction from program memory. The processor fetches only one instruction word per instruction cycle;
if an instruction is two words in length, it fetches the additional word with an additional cycle before it
fetches the next instruction.
7-2 DSP56800 Family Manual Freescale Semiconductor

Normal Processing State

d
es

r
e
Table 7-2 demonstrates pipelining. “F1,” “D1,” and “E1” refer to the fetch, decode, and execute operations
of the first instruction, respectively. The third instruction, which contains an instruction extension word,
takes two instruction cycles to execute. Although it takes three instruction cycles (six machine cycles) for
the pipeline to fill and the first instruction to execute, an instruction usually executes on each instruction
cycle thereafter (two machine cycles).

7.2.2 Instruction Pipeline with Off-Chip Memory Accesses
The three sets of internal on-chip address and data buses (XAB1/CGDB, XAB2/XDB2, PAB/PDB) allow
for fast memory access when memories are being accessed on-chip. The DSC can perform memory
accesses on all three bus pairs in a single instruction cycle, permitting the fetch of an instruction
concurrently with up to two accesses to the X data memory. Thus, for applications where all program an
data is located in on-chip memory, there is no speed penalty when performing up to three memory access
in a single instruction.

Similarly, the external address and data bus also allows for fast program execution. For the case where
only program memory is external to the chip or only X data memory is external (XAB1/CDGB bus pair),
the DSC chip will still execute programs at full speed if there are no wait states programmed on the
external bus by the user. For the case where an instruction requires an external program fetch and an
external X data memory access simultaneously, the instruction will still operate correctly. The instruction
is automatically stretched an additional instruction cycle so that the two external accesses may be
performed correctly, and wait states are inserted accordingly. All this occurs transparently to the user to
allow for easier program development.

This information is summarized in Table 7-3, which shows how the chip automatically inserts instruction
cycles and wait states for an instruction that is simultaneously accessing program and data memory. Fo
dual parallel read instructions, the second X memory access that uses XAB2/XDB2 must always be don
to on-chip memory. This second access may never access external off-chip memory.

Table 7-2. Instruction Pipelining

Operation
Instruction Cycle

1 2 3 4 5 6 7 • • •

Fetch F1 F2 F3 F3e F4 F5 F6 • • •

Decode D1 D2 D3 D3e D4 D5 • • •

Execute E1 E2 E3 E3e E4 • • •
Freescale Semiconductor Interrupts and the Processing States 7-3

Interrupts and the Processing States

s

g
7.2.3 Instruction Pipeline Dependencies and Interlocks
The pipeline is normally transparent to the user. However, there are certain instruction-sequence
combinations where the pipeline will affect the program execution. Such situations are best described by
case studies. Most of these restricted sequences occur because either all addresses are formed during
instruction decode or they are the result of contention for an internal resource such as the SR.

If the execution of an instruction depends on the relative location of the instruction in a sequence of
instructions, there is a pipeline effect.

It is possible to see if there is a pipeline dependency. To test for a suspected pipeline effect, compare the
execution of the suspect instruction when it directly follows the previous instruction and when four NOPs
are inserted between the two. If there is a difference, it is caused by a pipeline effect. The assembler flag
instruction sequences with potential pipeline effects so that the user can determine if the operation will
execute as expected.

Table 7-3. Additional Cycles for Off-Chip Memory Accesses

Memory Space
Number of

Additional Cycles
Comments

Program
Fetch

X Memory
First Access

X Memory
Second Access

On-chip On-chip On-chip 0 All accesses internal

External On-chip On-chip 0 + mvm One external access

On-chip External On-chip 0 + mv One external access

External External On-chip 1 + mv + mvm Two external accesses

Note: The ‘mv’ and ‘mvm’ cycle time values reflect the additional time required for all MOVE instructions and for
MOVEM instructions, respectively.

Example 7-1. Pipeline Dependencies in Similar Code Sequences

No Pipeline Effect

ORC #$0001,SR ; Changes carry bit at the end of execution time slot
JCS LABEL ; Reads condition codes in SR in its

; execution time slot
The JCS instruction will test the carry bit modified by the ORC without any pipeline effect in this code segment.

Pipeline Effect

ORC #$0008,OMR ; Sets EX bit at execution time slot
MOVE X:$17,A ; Reads internal memory instead of external

; memory
A pipeline effect occurs because the address of the MOVE is formed at its decode time before the ORC changes the EX bit
(which changes the memory map) in the ORC’s execution time slot. The following code produces the expected results of readin
the external FLASH:

ORC #$0008,OMR ; Sets EX bit at execution time slot
NOP ; Delays the MOVE so it will read the updated memory map
MOVE X:$17,A ; Reads external memory
7-4 DSP56800 Family Manual Freescale Semiconductor

Exception Processing State

can

 An

ot

an

Section 4.4, “Pipeline Dependencies,” on page 4-33 contains more details on interlocks caused during
address generation.

7.3 Exception Processing State
The exception processing state is the state where the DSC core recognizes and processes interrupts that
be generated by conditions inside the DSC or from external sources. Upon the occurrence of an event,
interrupt processing transfers control from the currently executing program to an interrupt service routine,
with the ability to later return to the current program upon completion of the interrupt service routine. In
digital signal processing, some of the main uses of interrupts are to transfer data between DSC memory
and a peripheral device or to begin execution of a DSC algorithm upon reception of a new sample.
interrupt can also be used to exit the DSC’s low-power wait processing state.

An interrupt will cause the processor to enter the exception processing state. Upon entering this state, the
current instruction in decode executes normally. The next fetch address is supplied by the interrupt
controller and points into the interrupt vector table (Table 7-4 on page 7-7). During this fetch the PC is n
updated. The instruction located at these two addresses in the interrupt vector table must always be a
two-word, unconditional jump-to-subroutine instruction (JSR). Note that the interrupt controller only
fetches the second word of the JSR instruction. This results in the program changing flow to an interrupt
routine, and a context switch is performed.

There are many sources for interrupts on the DSP56800 Family of chips, and some of these sources c
generate more than one interrupt. Interrupt requests can be generated from conditions within the DSC core,
from the DSC peripherals, or from external pins. The DSC core features a prioritized interrupt vector
scheme with up to 64 vectors to provide faster interrupt servicing. The interrupt priority structure is
discussed in Section 7.3.3, “Interrupt Priority Structure.”

7.3.1 Sequence of Events in the Exception Processing State
The following steps occur in exception processing:

1. A request for an interrupt is generated either on a pin, from the DSC core, from a peripheral
on the DSC chip, or from an instruction executed by the DSC core. Any hardware interrupt
request from a pin is first synchronized with the DSC clock.

Example 7-2. Common Pipeline Dependency Code Sequence

MOVE X0,R2 ; Move a value into register R2
MOVE X:(R2),A ; Uses the OLD contents of R2 to address memory.

In this case, before the first MOVE instruction has written R2 during its execution cycle, the second MOVE has accessed the old
R2, using the old contents of R2. This is because the address for indirect moves is formed during the decode cycle. This overlap-
ping instruction execution in the pipeline causes the pipeline effect.
After an address register has been written by a MOVE instruction, one instruction cycle should be allowed before the new con-
tents are available for use as an address register by another MOVE instruction. The proper instruction sequence follows:

MOVE X0,R2 ; Moves a number into register R2
NOP ; Executes any instruction or instruction sequence not

; using the R2 register written in the previous
; instruction

MOVE X:(R2),A ; Uses the new contents of R2
Freescale Semiconductor Interrupts and the Processing States 7-5

Interrupts and the Processing States

2. The request for an interrupt by a particular source is latched in an interrupt-pending flag if
it is an edge or non-maskable interrupt (all other interrupts are not latched and must remain
asserted in order to be serviced). For peripherals that can generate more than one interrupt
request and have more than one interrupt vector, the interrupt arbiter only sees one request
from the peripheral active at a time.

3. All pending interrupt requests are arbitrated to select which interrupt will be processed. The
arbiter automatically ignores any interrupts with an interrupt priority level (IPL) lower than
the interrupt mask level specified in the SR. If there are any remaining requests, the arbiter
selects the remaining interrupt with the highest IPL, and the chip enters the exception
processing state (see Figure 7-1).

4. The interrupt controller then freezes the program counter (PC) and fetches the JSR
instruction located at the two interrupt vector addresses associated with the selected
interrupt. It is required that the instruction located at the interrupt vector address must be a
two-word JSR instruction. Note that only the second word of the JSR instruction is fetched;
the first word of the JSR is provided by the interrupt controller.

5. The interrupt controller places this JSR instruction into the instruction stream and then
releases the PC, which is used for the next instruction fetch. Arbitration among the
remaining interrupt requests is allowed to resume. The next interrupt arbitration then
begins.

6. The execution of the JSR instruction stacks the PC and the SR as it transfers control to the
first instruction in the interrupt service routine. These two stacked registers contain the
16-bit return address that will later be used to return to the interrupted code, as well as the
condition code state. In addition, the IPL is raised to level 1 to disallow any level 0
interrupts. Note that the OnCE trap, stack error, illegal instruction, and SWI can still
generate interrupts because these are level 1 interrupts and are non-maskable.

The exception processing state is completed when the processor executes the JSR instruction located in the
interrupt vector table and the chip enters the normal processing state. As it enters the normal processing
state, it begins executing the first instruction in the interrupt service routine. Each interrupt service routine
should return to the main program by executing an RTI instruction.

Interrupt routines for level 0 interrupts are interruptible by higher priority interrupts. Figure 7-1 shows an
example of processing an interrupt.

Figure 7-1. Interrupt Processing

Explicit Return
from Interrupt
Recognized

Main
Program

JSR Instruction
in Vector Table to
Interrupt Service
Routine

$0100 —

$0101

$001E
$001F

$0104

$0105

$0106

MACR

JSR

$0300

REP

MAC

—

$0102

$0103

MOVE

MAC

SSI Receive Data
with Exception Status

Interrupt Service Routine

$0300

$0301

ADD

ASL

$0302

$0303

MOVE

RTI

Interrupt
Recognized

AA0056
7-6 DSP56800 Family Manual Freescale Semiconductor

Exception Processing State

rupt

an
Steps 1 through 3 listed on page page 7-5 require two additional instruction cycles, effectively making the
interrupt pipeline five levels deep.

7.3.2 Reset and Interrupt Vector Table
The interrupt vector table specifies the addresses that the processor accesses once it recognizes an inter
and begins exception processing. Since peripherals can also generate interrupts, the interrupt vector map
for a given chip is specified by all sources on the DSC core as well as all peripherals that can generate
interrupt. Table 7-4 lists the reset and interrupt vectors available on DSP56800-based DSC chips. The
interrupt vectors used by on-chip peripherals, or by additional device-specific interrupts will be listed in
the user’s manual for that chip.

Table 7-4. DSP56800 Core Reset and Interrupt Vector Table

Interrupt
Starting
Address

Interrupt
Priority Level

Interrupt Source

$0000 - Hardware Reset

$0002 - COP Watchdog Reset

$0004 - (Reserved)

$0006 1 Illegal Instruction Trap

$0008 1 SWI

$000A 1 Hardware Stack Overflow

$000C 1 OnCE Trap

$000E 1 (Reserved)

$0010 0 IRQA

$0012 0 IRQB

$0014 0 (Vector Available for On-Chip Peripherals)

$0016 0 (Vector Available for On-Chip Peripherals)

$0018 0 (Vector Available for On-Chip Peripherals)

$001A 0 (Vector Available for On-Chip Peripherals)

$001C 0 (Vector Available for On-Chip Peripherals)

$001E 0 (Vector Available for On-Chip Peripherals)

$0020 0 (Vector Available for On-Chip Peripherals)

...

$007C 0 (Vector Available for On-Chip Peripherals)

$007E 0 (Vector Available for On-Chip Peripherals)
Freescale Semiconductor Interrupts and the Processing States 7-7

Interrupts and the Processing States

.
e

0
the

e
It is required that a two-word JSR instruction is present in any interrupt vector location that may be fetched
during exception processing. If an interrupt vector location is unused, then the JSR instruction is not
required.

The hardware reset and COP reset are special cases because they are reset vectors, not interrupt vectors
There is no IPL specified for these two because these conditions reset the chip and reset takes precedenc
over any interrupt. Typically a two-word JMP instruction is used in the reset vectors. The hardware reset
vector will either be at address $0000 or $E000 and the COP reset vector will either be at $0002 or $E002
depending on the operating mode of the chip. The different operating modes are discussed in
Section 5.1.9.1, “Operating Mode Bits (MB and MA) — Bits 1–0,” on page 5-10.

7.3.3 Interrupt Priority Structure
Interrupts are organized in a simple priority structure. Each interrupt source has an associated IPL: Level
or Level 1. Level 0, the lowest level, is maskable, and Level 1 is non-maskable. Table 7-5 summarizes
priority levels and their associated interrupt sources.

The interrupt mask bits (I1, I0) in the SR reflect the current priority level and indicate the IPL needed for
an interrupt source to interrupt the processor (see Table 7-6). Interrupts are inhibited for all priority levels
below the current processor priority level. Level 1 interrupts, however, are not maskable and, therefore,
can always interrupt the processor.

7.3.4 Configuring Interrupt Sources
The interrupt unit in the DSP56800 core supports seven interrupt channels for use by on-chip peripherals,
in addition to the IRQ interrupts and interrupts generated by the DSC core. Each maskable interrupt sourc
can individually be enabled or disabled as required by the application. The exact method for doing so is
dependent on the particular DSP56800-based device, as some of the interrupt handling logic is
implemented as an on-chip peripheral.

One example of how interrupts can be enabled and disabled, and their priority level established, is with an
interrupt priority register (IPR).

Table 7-5. Interrupt Priority Level Summary

IPL Description Interrupt Sources

0 Maskable On-chip peripherals,
IRQA and IRQB

1 Non-maskable Illegal instruction, OnCE trap,
HWS overflow, SWI

Table 7-6. Interrupt Mask Bit Definition in the Status Register

I1 I0 Exceptions Permitted Exceptions Masked

0 0 (Reserved) (Reserved)

0 1 IPL 0, 1 None

1 0 (Reserved) (Reserved)

1 1 IPL 1 IPL 0
7-8 DSP56800 Family Manual Freescale Semiconductor

Exception Processing State

s.

al

l
Figure 7-2. Example Interrupt Priority Register

In the example interrupt priority register (IPR), shown in Figure 7-2, the interrupt for each on-chip
peripheral device (channels 0–6) and for each external interrupt source (IRQA, IRQB), can be enabled or
disabled under software control. The IPR also specifies the trigger mode of the external interrupt source
Figure 7-3 shows how it might be programmed for different interrupts.

Figure 7-3. Example On-Chip Peripheral and IRQ Interrupt Programming

7.3.5 Interrupt Sources
An interrupt request is a request to break out of currently executing code to enter an interrupt service
routine. Interrupt requests in the DSC are generated from one of three sources: external hardware, intern
hardware, and internal software. The internal hardware interrupt sources include all of the on-chip
peripheral devices.

Each interrupt source has at least one associated interrupt vector, and some sources may have severa
interrupt vectors. The interrupt vector addresses for each interrupt source are listed in the interrupt vector
table (Table 7-4). These addresses are usually located in either the first 64 or 128 locations of program
memory. For further information on a device’s on-chip peripheral interrupt sources, see the device’s
individual user’s manual.

* Indicates reserved bits, read as zero and should be written with zero for future compatibility

IRQA Mode

IRQB Mode

Channel 6 IPL

Channel 5 IPL

Channel 4 IPL

Channel 3 IPL

Channel 2 IPL

Channel 1 IPL

Channel 0 IPL

(Reserved)

Ch0 Ch1 Ch2 Ch3 Ch4 Ch5 Ch6 * * *
IBL IBL

*
IAL IAL

*
1 0 1 0

AA0057

Chx Enabled? IPL

0 No —

1 Yes 0

IBL0
IAL0

Enabled? IPL

0 No —

1 Yes 0

IBL1
IAL1

Trigger Mode

0 Level sensitive

1 Edge sensitive

AA0058
Freescale Semiconductor Interrupts and the Processing States 7-9

	Contents
	List of Tables
	List of Figures

