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About This Book
This document includes the register model, instruction model, MMU, memory subsystem, debug and 
performance monitor facilities of the e5500. The primary objective of this core reference manual is to 
describe the functionality of the e500mc embedded microprocessor core for software and hardware 
developers. This book is intended as a companion to the EREF: A Programmer’s Reference Manual for 
Freescale Power Architecture® Processors: A Programmer’s Reference Manual for Freescale Embedded 
Processors and Power ISA™ Version 2.06. Features defined by the Power instruction set architecture (ISA) 
are described in the EREF: A Programmer’s Reference Manual for Freescale Power Architecture® 
Processors; this manual focuses on features that are specific to the e500mc microprocessor.

Locate errata or updates for this document at http://www.freescale.com. Information in this book is subject 
to change without notice, as described in the disclaimers on the title page of this book. As with any 
technical documentation, it is the readers’ responsibility to be sure they are using the most recent version 
of the documentation. 

Audience
It is assumed that the reader understands operating systems, microprocessor system design, and the basic 
principles of RISC processing and has access to the EREF: A Programmer’s Reference Manual for 
Freescale Power Architecture® Processors and Power ISA™ Version 2.06.

Suggested Reading
This section lists additional reading that provides background for the information in this manual as well as 
general information about the architecture. 

General Information

The following documentation is available from Power.org from their website http://www.power.org:
• Power ISA™ Version 2.06B, July 2010

The following documentation, published by Morgan-Kaufmann Publishers, 340 Pine Street, Sixth Floor, 
San Francisco, CA, provides useful information about computer architecture in general:

• Computer Architecture: A Quantitative Approach, Third Edition, by John L. Hennessy and David 
A. Patterson 

• Computer Organization and Design: The Hardware/Software Interface, Second Edition, David A. 
Patterson and John L. Hennessy 

Related Documentation

Freescale documentation is available from the sources listed on the back cover of this manual. The 
document order numbers are included in parentheses for ease in ordering:

• EREF: A Programmer’s Reference Manual for Freescale Power Architecture® Processors: A 
Programmer’s Reference Manual for Freescale Embedded Processors
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This book provides a higher-level view of the programming model as it is defined by the Power 
ISA and Freescale implementation standards. 

• Integrated device reference manuals
These books provide details about individual implementations of embedded devices that 
incorporate embedded cores, such as the e500mc. 

• Addenda/errata to reference manuals
Because some processors have follow-on parts, an addendum is provided that describes the 
additional features and functionality changes. These addenda are intended for use with the 
corresponding user’s manuals. 

• Hardware specifications
Hardware specifications provide specific data regarding bus timing, signal behavior, and AC, DC, 
and thermal characteristics, as well as other design considerations. 

• Technical summaries
Each device has a technical summary that provides an overview of its features. This document is 
roughly the equivalent to the overview (Chapter 1) of an implementation’s user’s manual. 

• Application notes
These short documents address specific design issues useful to programmers and engineers 
working with Freescale processors. 

Additional literature is published as new processors become available. For a current list of documentation, 
refer to http://www.freescale.com.

Conventions
This document uses the following notational conventions:

cleared/set When a bit takes the value zero, it is said to be cleared; when it takes a value of 
one, it is said to be set.

mnemonics Instruction mnemonics are shown in lowercase bold. 
italics Italics indicate variable command parameters, for example, bcctrx.

Book titles in text are set in italics
Internal signals are set in italics, for example, qual BG

0x0 Prefix to denote hexadecimal number
0b0 Prefix to denote binary number
rA, rB, rS Instruction syntax used to identify a source GPR
rD Instruction syntax used to identify a destination GPR
frA, frB, frC Instruction syntax used to identify a source FPR
frD Instruction syntax used to identify a destination FPR
REG[FIELD] Abbreviations for registers are shown in uppercase text. Specific bits, fields, or 

ranges appear in brackets. For example, MSR[PR] refers to the privilege mode bit 
in the machine state register.

x:y A bit range from bit x to bit y inclusive.
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x-y A bit range from bit x to bit y inclusive.
x In some contexts, such as signal encodings, an unitalicized x indicates a don’t 

care. 
x An italicized x indicates an alphanumeric variable. 
n An italicized n indicates an numeric variable.
¬ NOT logical operator
& AND logical operator
| OR logical operator

Indicates reserved bits or bit fields in a register. Although these bits can be written 
to as ones or zeros, they are always read as zeros. 

Terminology Conventions
Table i lists certain terms used in this manual that differ from the architecture terminology conventions.

Table i. Terminology Conventions

Architecture Specification This Manual

Extended mnemonics Simplified mnemonics

Privileged mode (or privileged state) Supervisor level 

Hypervisor mode (or hypervisor state) Hypervisor level 

Problem mode (or problem state) User level 

Out-of-order memory accesses Speculative memory accesses

Storage (locations) Memory

Storage (the act of) Access 

—
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Chapter 1  
e500mc Overview
This chapter provides a general overview of the e500mc microprocessor core. It includes the following:

• An overview of architecture features as implemented on the e500mc and a summary of the core 
feature set

• A summary of the instruction pipeline and flow
• An overview of the programming model
• An overview of interrupts and exceptions handling
• A description of the memory management architecture
• High-level details of the e500mc core memory and coherency model
• A brief description of the CoreNet interface
• A list of differences between different versions of the e500 core from e500v2

The e500mc core provides features that an integrated device may not implement or may implement in a 
more specific way. Differences are summarized in the documentation for the integrated device.

1.1 Overview
The e500mc core is a low-power implementation of the resources for embedded processors defined by the 
Power ISA™. The core is a 32-bit implementation and implements 32 32-bit general-purpose registers; 
however it supports accesses to 36-bit physical addresses. The block diagram in Figure 1-1 shows how the 
e500mc functional units operate independently and in parallel. Note that this conceptual diagram does not 
attempt to show how these features are implemented physically. 

The e500mc is a superscalar processor that can issue two instructions and complete two instructions per 
clock cycle. Instructions complete in order, but can execute out of order. Execution results are available to 
subsequent instructions through the rename buffers, but those results are recorded into architected registers 
in program order, maintaining a precise exception model. 

The processor core integrates two simple instruction units (SFX0, SFX1), a multiple-cycle instruction unit 
(MU), a branch unit (BU), a floating-point unit (FPU), and a load/store unit (LSU).

The LSU supports 32-bit integer and 64-bit floating-point operands.  

The ability to execute six instructions in parallel and the use of simple instructions with short execution 
times yield high efficiency and throughput. Most integer instructions execute in one clock cycle. 

The core includes on-chip first-level instruction and data memory management units (MMUs) and an 
on-chip second-level unified MMU. 

• The first-level MMUs for both instruction and data translation are each composed of two 
subarrays: an 8-entry fully-associative array of translation look-aside buffer (TLB) entries for 
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variable-sized pages, and a 64-entry 4-way set-associative array of TLB entries for fixed sized 
pages that provide virtual to physical memory address translation for variable-sized pages and 
demand-paged fixed pages respectively. These arrays are maintained entirely by the hardware with 
a true least-recently-used (LRU) algorithm, and are a cache of the second level MMU.

• The second-level MMU contains a 64-entry, fully-associative unified (instruction and data) TLB 
array that provides support for variable-sized pages. It also contains a 512-entry, 4-way 
set-associative unified TLB for 4-Kbyte page size support. These second-level TLBs are 
maintained completely by the software.

The e500mc includes independent on-chip, 32-Kbyte, eight-way set-associative, physically addressed L1 
caches for instructions and data and a unified 128-KB, eight-way set-associative, physically addressed, 
backside L2 cache. 
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Figure 1-1. e500mc Block Diagram
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Cache lines on the e500mc are 16 words (64 bytes) wide. The core allows cache-line-based user-mode 
locks on cache contents. This provides embedded applications with the capability for locking interrupt 
routines or other important (time-sensitive) instruction sequences into the instruction cache. It also allows 
data to be locked into the data cache, which supports deterministic execution time. 

The e500mc shown as “Core” in Figure 1-2, is designed to be implemented in multicore integrated 
devices, and many of the features are defined to support multicore implementations, in particular to 
partition the cores in such a way that multiple operating systems can be run with the integrated device. 

Figure 1-2. Example Partitioning Scenario of a Multicore Integrated Device 

The architecture defines the resources required to allow orderly and secure interactions between the cores, 
memory, peripheral devices, and virtual machines. These include a hypervisor and guest supervisor 
privilege levels, that determine whether certain activities, such as memory accesses and management, 
cache management, and interrupt handling, are to be carried on at a system-wide level (hypervisor level) 
or by the operating system within a partition (guest supervisor level). 

In particular, e500mc implements the following categories as defined by PowerISA 2.06:
• Base
• Embedded
• Alternate Time Base
• Cache Specification
• Decorated Storage
• Embedded.Enhanced Debug
• Embedded.External PID
• Embedded.Hypervisor
• Embedded.Little-Endian
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• Embedded.Performance Monitor
• Embedded.Processor Control
• Embedded.Cache Locking
• External Proxy
• Floating Point and Floating Point.Record
• Memory Coherence
• Store Conditional Page Mobility
• Wait

The above categories define instructions, registers, and processor behavior associated with a given 
category. For a more complete and canonical definition of the e500mc register and instruction set, see 
Chapter 2, “Register Model,” and Chapter 3, “Instruction Model,” respectively.

The CoreNet interface provides the primary on-chip interface between the cores and the rest of the SoC. 
CoreNet is a tag-based interface fabric that provides interconnections among the cores, peripheral devices, 
and system memory in a multicore implementation. 

1.2 Feature Summary 
Key features of the e500mc are summarized as follows: 

• Implements 32-bit architecture, with 36-bit physical addressing
• 32 32-bit General Purpose Registers (GPR)
• 32 64-bit Floating Point Registers (FPR)
• FPR-based floating-point, binary compatible with e300 and e600 cores
• Multicore architecture support 

— Hypervisor programming model (category Embedded.Hypervisor in PowerISA 2.06). Many 
resources are hypervisor privileged, allowing the hypervisor to completely partition the system. 
Performance sensitive resources used by the guest supervisor are manipulated directly by 
hardware while less performance sensitive resources require hypervisor software to intervene 
to provide partitioning and isolation.

— A set of topology independent interprocessor doorbell interrupts implemented through the 
Message Send and Message Clear instructions (category Embedded.Processor Control in 
PowerISA 2.06). 

• CoreNet interface fabric. Provides interconnections among the cores, peripheral devices, and 
system memory in a multicore implementation.

• Decorated Storage, when used with specifically enabled SoC devices, allowing for high 
performance atomic “fire and forget” operations on memory locations performed directly by the 
targeted device

• Cache features 
— Separate 32-Kbyte, eight-way set associative level 1 (L1) instruction and data caches. The L1 

cache contains sixty-four 8-way sets of 16 words. See Section 5.4, “L1 Cache Structure.”
— Enhanced Error Detection and Correction
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– Parity checking on L1 tags and data 
– One-bit-per-word instruction parity checking
– One-bit-per-byte L1 data parity checking
– L2 cache ECC single-bit correction, double-bit detection. L2 cache tags parity detection 

only.
– Write shadow mode. This allows all modified data in the L1 cache to be written through to 

the L2 cache. This also allows for automatic invalidations to correct cache tag and data 
errors since modified data is written through and protected with ECC at another level of the 
memory hierarchy. 

– Non-maskable Interrupt for soft-reset type capability
— Two-cycle L1 cache array access, three cycle load-to-use latency
— Pseudo-LRU (PLRU) replacement algorithm
— Cache coherency. CoreNet supports four-state cache coherency: modified-exclusive, 

exclusive, shared, and invalid (MESI). 
– Provides snooping 
– Modified and exclusive data intervention allowing cache contents can be shared without 

requiring memory to be updated
— Integrated 128-KB, eight-way set-associative backside L2 cache 

– Supports data- and instruction-only cache operation 
The L2 cache can be programmed as instruction, data, or unified, which control whether a 
cache line is allocated on a instruction or data miss (or both or neither). 
The L2 Cache supports way partitioning effectively assigning a certain number of ways to 
allocate on instruction misses and a certain number of ways to allocate on data misses.

— 64-byte (16-word) cache-line, coherency-granule size
— Cache locking. Allows instructions and data to be locked into their respective caches on a cache 

block basis. Locking is performed by a set of touch and lock set instructions. This functionality 
can be separately enabled for user mode or supervisor mode.

• Interrupt model. Supports base, critical, debug, and machine-check interrupt levels with separate 
interrupt resources (save/restore registers and interrupt return instructions).
— Interrupts have an implicit priority by how their enable bits are masked when an interrupt is 

taken. Unless software enables or disables the appropriate interrupt enables while in the 
interrupt handler, the priority (from highest to lowest) is:
– Machine Check
– Debug
– Critical
– Base class

— Standard embedded category interrupts
– Less than 10-cycle interrupt latency
– Interrupt vectors formed by concatenation of interrupt vector prefix register (IVPR) and 

interrupt vector offset register (IVORn) 
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– Exception syndrome register (ESR)
— Extended multicore interrupt model to support hypervisor and guest mode privilege levels

– System Call instruction to generate a system call or a hypervisor-level system call 
(hypercall) interrupt. Executing sc or sc 0 generates a system call and sc 1 generates 
hypercall interrupt. 

– Doorbell interrupts defined to allow one processor to signal an interrupt to another core 
(doorbell, doorbell critical, guest doorbell, guest doorbell critical, and guest doorbell 
machine check)

– Ability to configure whether certain interrupts are delivered directly to the guest supervisor 
state, or by default to the hypervisor state

– Embedded Hypervisor Privilege interrupt to capture guest supervisor attempts to access 
hypervisor resources

– TLBs can be programmed to always force a data storage interrupt (DSI) to generate a 
virtualization fault to hypervisor state

— External interrupt proxy provides automatic hardware acknowledgement of external interrupts 
signaled by the programmable interrupt controller (PIC) on the integrated device, (replacing 
the “read IACK” step) increasing responsiveness to external interrupts from peripheral devices 
and reducing interrupt latency. See Section 4.9.6.3, “External Proxy.”

• Memory management unit (MMU)
— 32-bit effective address to 36-bit physical address translation
— Virtual address fields in TLB entries

– GS field indicates whether the access is guest or supervisor privilege level.
– AS field indicates one of the two address spaces (from IS or DS in the MSR)
– LPID field identifies the logical partition with which the memory access is associated
– PID field identifies the process ID with which the memory access is associated

— Extended PID translation mechanism provides an alternative set of load, store, and cache 
operations for efficiently transferring large blocks of memory or performing cache operations 
across disjunct address spaces, such as an operating system copying a buffer into a 
non-privileged area.

— TLB entries for variable- (4 Kbytes to 4 Gbytes) and fixed-size (4-Kbyte) pages
— Data L1 MMU

– 8-entry, fully-associative TLB array for variable-sized pages
– 64-entry, 4-way set-associative TLB for 4-Kbyte pages

— Instruction L1 MMU
– 8-entry, fully-associative TLB array for variable-sized pages
– 64-entry, 4-way set-associative TLB for 4-Kbyte pages

— Unified L2 MMU
– 64-entry, fully-associative TLB array (TLB1) for variable-sized pages
– A 512-entry, 4-way set-associative unified (for instruction and data accesses) TLB array 

(TLB0) supports only 4-Kbyte pages
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— Software reload for TLBs
— Real memory support for as much as 64 Gbytes (236) 
— Support for big-endian and true little-endian memory on a per-page basis

• Performance monitor
— Provides the ability to monitor and count dozens of predefined events, such as processor clocks, 

misses in the instruction cache or data cache, types of instructions decoded, or mispredicted 
branches. 

— Can be configured to trigger either a performance monitor interrupt or an event to the Nexus 
facility when configured conditions are met. 

— Performance Monitor Registers (PMRs) are used to configure and track performance monitor 
operations. These registers are accessed with the Move to PMR and Move from PMR 
instructions (mtpmr and mfpmr). 

• Power management
— Low-power design
— Power-saving modes: core-halted and core-stopped 
— Asynchronous bus
— Dynamic power management 
— wait instruction, places the core in a Doze-like, low-power mode until an interrupt occurs

• Testability 
— Nexus debug support
— Debug Notify Halt (dnh) instruction. When enabled through an external debug facility, 

executing dnh causes the core to enter the halted state. Normal instruction execution is frozen, 
instructions are not fetched, interrupts are not taken, and the core does not execute instructions 
from the architectural instruction stream, and control of the processor is managed by the 
external debug facility.

1.3 Instruction Flow
The e500mc core is a pipelined, superscalar processor with parallel execution units that allow instructions 
to execute out of order but record their results in order. Pipelining breaks instruction processing into 
discrete stages, so multiple instructions in an instruction sequence can occupy the successive stages: as an 
instruction completes one stage, it passes to the next, leaving the previous stage available to a subsequent 
instruction. So, even though it may take multiple cycles for an instruction to pass through all of the pipeline 
stages, once a pipeline is full, instruction throughput is much shorter than the latency. 

A superscalar processor is one that, in a single cycle, issues multiple independent instructions into separate 
execution units, allowing parallel execution. The core has six execution units, one each for branch (BU), 
load/store (LSU), floating-point (FPU), and complex integer operations (CFX), and two for simple 
arithmetic operations (SFX0 and SFX1). 

The parallel execution units allow multiple instructions to execute in parallel and out of order. For 
example, a low-latency addition instruction that is issued to an SFX after an integer divide is issued to the 
CFX should finish executing before the higher latency divide instruction. Most instructions can make 
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results available to a subsequent instruction, but cannot update the architected GPR specified as its target 
operand ahead of the multiple-cycle divide instruction. 

The common pipeline stages are as follows:
• Instruction fetch—Includes the clock cycles necessary to request an instruction and the time the 

memory system takes to respond to the request. Instructions retrieved are latched into the 
instruction queue (IQ) for subsequent consideration by the dispatcher. 
Instruction fetch timing depends on many variables, such as whether an instruction is in the on-chip 
instruction cache or the L2 cache. Those factors increase when it is necessary to fetch instructions 
from system memory and include the processor-to-bus clock ratio, the amount of bus traffic, and 
whether any cache coherency operations are required. 
Because there are so many variables, unless otherwise specified, the instruction timing examples 
in this chapter assume optimal performance and show the portion of the fetch stage in which the 
instruction is in the instruction queue. The fetch1 and fetch2 stages are primarily involved in 
retrieving instructions. 

• The decode/dispatch stage fully decodes each instruction; most instructions are dispatched to the 
issue queues (however, isync, rfi, sc, nops, and some other instructions do not go to issue queues). 

• The issue queues, BIQ, GIQ, and FIQ, can accept as many as one, two, and two instructions, 
respectively, in a cycle. The following simplification covers most cases: 
— Instructions dispatch only from the two lowest IQ entries—IQ0 and IQ1. 
— A total of two instructions can be dispatched to the issue queues per clock cycle.
Dispatch is treated as an event at the end of the decode stage. The issue stage reads source operands 
from rename registers and register files and determines when instructions are latched into the 
execution unit reservation stations. Note that the e500mc has 14 rename registers, one for each 
completion queue entry, so instructions cannot stall because of a shortage of rename registers. 
— Space must be available in the CQ for an instruction to decode and dispatch (this includes 

instructions that are assigned a space in the CQ but not in an issue queue).
The general behavior of the issue queues is described as follows: 
— The GIQ accepts as many as two instructions from the dispatch unit per cycle. SFX0, SFX1, 

CFX, and all LSU instructions (including 64-bit loads and stores) are dispatched to the GIQ, 
shown in Figure 1-3. 

Figure 1-3. GPR Issue Queue (GIQ)

— Instructions can be issued out-of-order from the bottom two GIQ entries (GIQ1–GIQ0). GIQ0 
can issue to SFX0, CFX, and LSU. GIQ1 can issue to SFX1, CFX, and LSU. 
Note that SFX1 executes a subset of the instructions that can be executed in SFX0. The ability 
to identify and dispatch instructions to SFX1 increases the availability of SFX0 to execute more 
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GIQ3
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GIQ2
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computational-intensive instructions.
An instruction in GIQ1 destined for SFX1 or the LSU need not wait for an CFX instruction in 
GIQ0 that is stalled behind a long-latency divide.

— FIQ and BIQ only issue one instruction per cycle each to their respective reservation stations.
• The execute stage accepts instructions from its issue queue when the appropriate reservation 

stations are not busy. In this stage, the operands assigned to the execution stage from the issue stage 
are latched.
The execution unit executes the instruction (perhaps over multiple cycles), writes results on its 
result bus, and notifies the CQ when the instruction finishes. The execution unit reports any 
exceptions to the completion stage. Instruction-generated exceptions are not taken until the 
excepting instruction is next to retire.
— Branch unit—The branch unit (BU) executes (resolves) all branch and CR logical instructions. 

Branches resolve in execution stage. If a branch is mispredicted, it takes five cycles for the next 
instruction to reach the execute stage.

— Integer units. Two simple units (SFX0 and SFX1) handle add, subtract, shift, rotate and logical 
operations. The complex integer unit (CFX) executes multiplication and divide instructions
Most integer instructions have a one-cycle latency, so results of these instructions are available 
one clock cycle after an instruction enters the execution unit. 
Integer multiply and divide instructions have longer latency, and the multiply and divide can 
overlap execution in most cases. Multiply operations are also pipelined.

— The load/store unit (LSU), shown in Figure 1-4, has the following features:
– Three-cycle load latency
– Fully pipelined
– Load miss queue
– Load hits can continue to be serviced when the load miss queue is full.
– As many as nine load misses to five distinct cache lines can be pipelined in parallel while 

L1 cache hits continue to be serviced.
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Figure 1-4. Three-Stage Load/Store Unit

• The complete and write-back stages maintain the correct architectural machine state and commit 
results to the architecture-defined registers in order. If completion logic detects a mispredicted 
branch or an instruction containing an exception status, subsequent instructions are cancelled, their 
execution results in rename registers are discarded, and the correct instruction stream is fetched.
The complete stage ends when the instruction is retired. Two instructions can be retired per clock 
cycle. If no dependencies exist, as many as two instructions are retired in program order. 
Section 10.3.2, “Dispatch, Issue, and Completion Considerations,” describes completion 
dependencies.
The write-back stage occurs in the clock cycle after the instruction is retired.

1.4 Programming Model Overview
In general, the e500mc implements the registers and instructions as defined by the architecture (the Power 
ISA and Freescale implementation standards) and are fully described in the EREF: A Programmer’s 
Reference Manual for Freescale Power Architecture Processors. The following sections provide a high 
level description and a listing of those resources that are implemented on the e500mc. 

1.4.1 Register Model Overview

In general, registers on the e500mc are implemented as defined by the architecture. Any e500mc-specific 
differences from or extensions to the architecture are described in Chapter 2, “Register Model,” of this 
manual. 

The e500mc implements the following types of registers:
• Registers that contain values that are specified by using operands that are part of the instruction 

syntax defined by the Power ISA. These are as follows:
— Thirty-two, 32-bit general purpose registers (GPRs), specified as follows:
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– rD indicates a GPR that is used as the destination or target of an integer computational, 
logical or load instruction. 

– rS indicates a GPR that is used as the source of an integer computational, logical, or store 
instruction. 

– rA, rB, or rC indicate GPRs that are used to hold values that are operated upon for 
computational or logical instructions, or that are used for an effective address (EA) or a 
decoration. 

— Thirty-two, 64-bit floating-point registers (FPRs), specified as follows:
– frD indicates an FPR that is used as the destination or target of a floating-point instruction. 
– frS indicates an FPR that is used as the source of a floating-point instruction. 
– frA, frB, or frC indicate FPRs are used to hold values that are operated upon for 

floating-point instructions. 
• Registers that are updated automatically to record a condition that occurs as a by-product of a 

computation:
— The condition register, CR consists of eight 4-bit fields that record the results of certain 

operations which are typically used for testing and branching. The CR is implemented as 
defined in PowerISA. In addition, the CR can be accessed with special move to/move from 
instructions.

— The integer exception register, XER, records conditions such as carries and overflows. The 
XER is an SPR and can be accessed with move to/move from SPR instructions (mtspr and 
mfspr).

— The floating-point status and control register, FPSCR, records and controls exception 
conditions, such as overflows, controls the rounding mode, and indicates the type of result for 
certain floating-point operations. 

— The machine state register, MSR, is a supervisor-level register, although some fields can be 
written only by hypervisor-level software. It is used to configure operational behavior, such as 
setting the privilege level and enabling asynchronous interrupts. When an interrupt is taken, the 
MSR is stored into the appropriate save and restore register 1 (xSRR1) as determined by the 
interrupt type. The value in the xSRR1 is restored in the MSR when the appropriate return from 
interrupt is executed. The MSR, which is not an SPR, is accessed by the move to/move from 
MSR instructions (mtmsr and mfmsr). The external interrupt enable bit can be written 
separately with a Write MSR External Enable instruction (wrtee and wrteei).

• Most registers are defined as special-purpose registers (SPRs). All SPRs can be accessed by move 
to/move from SPR instructions (mtspr and mfspr), executed by software running at the 
appropriate privilege level, as indicated by the SPR summary in Table 2-2. Note that some SPRs 
are also updated by other mechanisms, such as the save and restore registers, which record the 
machine state when an exception is taken, and configuration and status registers, which are affected 
by internal signals. SPRs are listed in Section 2.2.1, “Special-Purpose Registers (SPRs).” 

• Performance monitor registers (PMRs) are architecture-defined registers provided for configuring 
and programming the core-specific performance monitor. PMRs are similar to SPRs in that they 
are accessed by move to/from PMR instructions (mtpmr and mfpmr).
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1.4.2 Instruction Model Overview

In general, instructions on the e500mc are implemented as defined by the architecture. Any 
e500mc-specific differences from or extensions to the architecture are described in Chapter 3, “Instruction 
Model,” of this manual. 

Table 3-47 lists the instructions implemented in the e500mc.

1.5 Core Revisions
This manual differentiates between different revisions of the e500mc in a few places, where it may be 
relevant. The revision of the core can be obtained by performing a mfspr to the PVR register. The 
following names are used in this manual to distinguish between the revisions of the core:

Rev 1.x  Revision 1 of the core. PVR = 0x8023_xx1x.

Rev 2.x  Revision 2 of the core. PVR = 0x8023_xx2x.

Rev 3.x  Revision 3 of the core. PVR = 0x8023_xx3x.

1.6 Summary of Differences Between Previous e500 Cores
This section contains a series of differences outlining the changes from previous e500 cores. The changes 
described here are at a high level to help understand the programming model changes.

1.6.1 Changes from e500v2 to e500mc

e500mc contains several differences from the e500v2 core. Significant programming model changes occur 
from the removal of Signal Processing Engine (SPE) and the embedded floating point functionality and 
the addition of FPR based floating point as well as hypervisor partitioning support. User mode software 
can be recompiled if the software does not use explicit SPE or embedded floating point intrinsics. User 
level software that used any floating point software must also be re-linked since the manner in which 
floating point arguments to functions are passed is different. The floating point model of the e500mc is 
compatible with the e300 and e600 cores and should provide a seamless transition when migrating 
software from the e300 or the e600 to the e500mc.

A summary of the changes to the core is show in Table 1-1. This table is intended to be a general summary 
and not an explicit list of differences. Users should use this list to understand what major areas may require 
changes to their software when porting from the e500v2.
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Table 1-1. Summary of e500mc and e500v2 Differences

Feature e500v2 e500mc Notes

Backside L2 cache not present present An integrated backside L2 cache is present in e500mc. 
The backside L2 cache is described throughout this 
document.

SPE and embedded 
floating point

present not present SPE and embedded floating point (floating point done in 
the GPRs) is not present in e500mc. This makes the 
GPRs 32 bits in size as opposed to 64 bits.

FPR based floating-point not present present FPR based floating-point (category Floating-Point) is 
present in e500mc. The floating point is binary compatible 
with e300 and e600. See Section 3.4.4.1, “Floating-Point 
Instructions.”

Embedded hypervisor not present present A new privilege level and associated instructions and 
registers are provided in e500mc to support partitioning 
and virtualization. Changes appear throughout the 
document. 

Power management uses 
MSR[WE] and 
HID0[DOZE,N
AP,SLEEP] to 
enter power 

management 
states

uses SoC 
programming model to 

control power 
management and 

removes MSR[WE], 
HID0[DOZE,NAP,SLE

EP]. Also adds the wait 
instruction.

How power management functions are invoked is now 
mostly controlled by writing SoC registers. See 
Chapter 8, “Power Management.”

External proxy not present present External proxy is a mechanism which allows the core to 
acknowledge an external input interrupt from the PIC 
when the interrupt is taken and provide the interrupt 
vector in a core register. See Section 4.9.6.3, “External 
Proxy.”

Additional interrupt level for 
Debug interrupts

not present present A separate interrupt level for debug interrupts is provided 
and the associated save /restore registers 
DSRR0/DSRR1. See Section 4.9.16, “Debug 
Interrupt—IVOR15.”

Processor signaling not present present The msgsnd and msgclr instructions are provided to 
perform topology independent core to core doorbell 
interrupts. See Section 3.4.11.4, “Message Clear and 
Message Send Instructions.”

External PID load/store not present present Instructions are provided for supervisor/hypervisor level 
software to perform load and store operations using a 
different address space context. See Section 3.4.11.2, 
“External PID Load Store Instructions.”

Decorated storage not present present Instructions are provided for performing load and store 
operations to devices that include meta data that is 
interpreted by the target address. Devices in some SoCs 
utilize this facility for performing atomic memory updates 
like increments and decrements. See Section 3.4.3.2.8, 
“Decorated Load and Store Instructions.” 
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Lightweight 
synchronization

not present Adds the lwsync 
instruction.

The lwsync instruction is provided for a faster form of 
memory barrier for load/store ordering to memory that is 
cached and coherent. See Section 3.4.10.1, “User-Level 
Cache Instructions” and Section 5.5.5, “Load/Store 
Operation Ordering.”

CoreNet uses Core 
Complex Bus 

(CCB) as 
interconnect

uses CoreNet as an 
interconnect

CoreNet is a scalable non-retry based fabric used as an 
interconnect between cores and other devices in the SoC.

Cache stashing not present present The capability to have certain SoC devices “stash” or 
pre-load data into a designated core L1 or L2 data cache 
is provided. The core is a passive recipient of such 
requests. See Section 5.2.2, “Cache Stashing.”

Machine check provides 
machine 

check 
interrupt and 
HID0[RFXE] 

to control how 
the core treats 

machine 
check 

interrupts

provides error report, 
asynchronous machine 

check, and NMI 
interrupts. HID0[RFXE] 

is removed.

Machine check interrupts are divided into synchronous 
error reports, asynchronous machine checks, and NMI. 
How errors are reported are more conducive to a 
multi-core environment. See Section 4.9.3, “Machine 
Check Interrupt—IVOR1.”

Write shadow not present present The capability to have all data written to the L1 data cache 
be “written through” to the L2 cache (or to memory) is 
provided. This provides a method of ensuring that any L1 
cache error can be recovered from without loss of data. 
See Section 5.4.2, “Write Shadow Mode.”

Cache block size 32 bytes 64 bytes e500mc contains a larger cache block/line/coherence 
granule size.

Number of variable size 
TLB entries

16 64 e500mc contains a larger number of variable size TLB 
entries and larger number of available page sizes. See 
Section 6.3.2, “L2 TLB Arrays.”

Table 1-1. Summary of e500mc and e500v2 Differences (continued)

Feature e500v2 e500mc Notes
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Chapter 2  
Register Model
This chapter describes implementation-specific details of the register model as it is implemented on the 
e500mc core processors. It identifies all registers that are implemented on the e500mc core, but, with a few 
exceptions, does not include full descriptions of those registers and register fields that are implemented 
exactly as they are defined by the architecture (the Power ISA™ and the Freescale implementation 
standards). The EREF: A Programmer’s Reference Manual for Freescale Power Architecture® Processors 
describes these registers.

It is important to note that a device that integrates the e500mc core may not implement all of the fields and 
registers that are defined here, and may interpret some fields more specifically than can be defined here. 
For specific details, refer to the e500mc Core Integration chapter in the reference manual for the device 
that incorporates the e500mc core. 

Only registers associated with the programming model of the core are described in this chapter. Note that 
debug registers that are associated with external debug mode (EDM) are described in Chapter 9, “Debug 
and Performance Monitor Facilities.”

2.1 Register Model Overview
Although this chapter organizes registers according to their functionality, they can be differentiated 
according to how they are accessed, as follows: 

• General-purpose registers (GPRs)
Used as source and destination operands for integer computation operations and for specifying the 
effective address. See Section 2.4.1, “General-Purpose Registers (GPRs).” 

• Floating-point registers (FPRs)
Used as source and destination operands for floating-point computation operations. See 
Section 2.5.1, “Floating-Point Registers (FPRs).” 

• Special-purpose registers (SPRs)
Accessed with the Move to Special-Purpose Register (mtspr) and Move from Special-Purpose 
Register (mfspr) instructions. Section 2.2.1, “Special-Purpose Registers (SPRs),” lists SPRs. 

• System-level registers that are not SPRs. These are as follows:
— Machine state register (MSR). Accessed with the Move to Machine State Register (mtmsr) and 

Move from Machine State Register (mfmsr) instructions. See Section 2.7.1, “Machine State 
Register (MSR).”

— Condition register (CR) bits are grouped into eight 4-bit fields, CR0–CR7, which are set as 
follows:
– Specified CR fields can be set by a move to the CR from a GPR (mtcrf).
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– A specified CR field can be set by a move to the CR from another CR field (mcrf), or from 
the XER (mcrxr).

– CR0 can be set as the implicit result of an integer instruction.
– CR1 can be set as the implicit result of a floating-point instruction.
– A specified CR field can be set as the result of an integer or floating-point compare 

instruction.
See Section 2.6.1, “Condition Register (CR).”

• Performance monitor registers (PMRs). Similar to SPRs, PMRs are accessed by using dedicated 
move to/move from instructions (mtpmr and mfpmr). See Section 2.18, “Performance Monitor 
Registers (PMRs).”

2.2 e500mc Register Model
The following sections describe the e500mc core register model as defined by the architecture and the 
additional implementation-specific registers unique to the e500mc. 

Freescale processors implement the following types of software-accessible registers:
• Registers used for integer operations such as general purpose registers (GPRs) and the integer 

exception register (XER). These registers are described in Section 2.4, “Registers for Integer 
Operations.”

• Condition register (CR)—Used to record conditions such as overflows and carries that occur as a 
result of executing arithmetic instructions. CR is described in Section 2.6, “Registers for Branch 
Operations.”

• Machine state register (MSR)—Used by the operating system to configure parameters such as 
user/supervisor mode, address space, and enabling of asynchronous interrupts. MSR is described 
in Section 2.7.1, “Machine State Register (MSR).” 

• Special-purpose registers (SPRs). Accessed explicitly using mtspr and mfspr instructions and 
listed in Table 2-2 in Section 2.2.1, “Special-Purpose Registers (SPRs).”

• Performance monitor registers (PMRs). Accessed with move to and move from PMR instructions 
(mtpmr and mfpmr). PMRs are described in Section 2.18, “Performance Monitor Registers 
(PMRs)”.

SPRs are grouped by function, as follows:
• Section 2.6, “Registers for Branch Operations” 
• Section 2.7, “Processor Control Registers”
• Section 2.8, “Timer Registers”
• Section 2.9, “Interrupt Registers”
• Section 2.10, “Software-Use SPRs (SPRGs, GSPRGs, and USPRG0)”
• Section 2.11, “Branch Unit Control and Status Register (BUCSR)”
• Section 2.12, “Hardware Implementation-Dependent Register 0 (HID0)” 
• Section 2.14, “L1 Cache Registers” 
• Section 2.15, “L2 Cache Registers”
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• Section 2.16, “MMU Registers”
• Section 2.17, “Internal Debug Registers”
• Section 2.18, “Performance Monitor Registers (PMRs)”

2.2.1 Special-Purpose Registers (SPRs)

SPRs are on-chip registers that control the use of the debug facilities, timers, interrupts, memory 
management unit, and other architected processor resources and are accessed with the mtspr and mfspr 
instructions. 

Table 2-2 summarizes SPRs. Access is given by the lowest level of privilege required to access the SPR. 
The access methods listed in Table 2-1 appear in the access column of Table 2-2.

An mtspr or mfspr instruction that specifies an unsupported SPR number is considered an invalid 
instruction. The e500mc takes an illegal-operation program exception on all accesses to undefined SPRs 
(or read accesses to SPRs that are write-only and write accesses to SPRs that are read-only), regardless of 
MSR[GS,PR] and SPRN[5]values. For supported SPR numbers which are privileged, an mfspr or mtspr 
while in user mode (MSR[PR] = 1) causes a privilege operation program exception.

NOTE
The behavior of e500mc in user mode when attempting to access an 
unsupported privileged SPR number causes an illegal-operation program 
exception, not a privilege operation program exception as specified by the 
architecture.

Table 2-1. SPR Access Methods

Access Method Denotes access is available for...

User Both mfspr and mtspr regardless of privilege level

User RO Only mfspr regardless of privilege level

Guest supervisor Both mfspr and mtspr when operating in supervisor mode (MSR[PR] = 0), regardless of the state of the 
MSR[GS] bit (that is, it is available in hypervisor state as well). 
For details, see Section 2.7.1, “Machine State Register (MSR).

Guest supervisor RO Only mfspr when operating in supervisor mode (MSR[PR] = 0), regardless of the state of the MSR[GS] 
bit (that is, it is available in hypervisor state as well)

Hypervisor Both mfspr and mtspr when operating in hypervisor mode (MSR[GS,PR] = 00)

Hypervisor RO Only mfspr when operating in hypervisor mode (MSR[GS,PR] = 00)

Hypervisor WO Only mtspr when operating in hypervisor mode (MSR[GS,PR] = 00)

Hypervisor R/Clear Both mfspr and mtspr when operating in hypervisor mode (MSR[GS,PR] = 00); however, an mtspr only 
clears bit positions in the SPR that correspond to the bits set in the source GPR.
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Attempted access to a supported SPR while in guest supervisor state, which 
is Hypervisor-privileged, causes an embedded Hypervisor privilege 
exception. For example, attempting to read an SPR, which has “Hypervisor 
RO” privilege, while in guest supervisor state causes an embedded 
hypervisor privilege exception and subsequent interrupt. See 
Section 4.9.19, “Hypervisor Privilege Interrupt—IVOR41” for a complete 
list of actions that cause embedded hypervisor privilege exceptions.

This table summarizes SPRs. 
Table 2-2. Special-Purpose Registers (SPRs)

SPR
Abbreviation

Name
Defined 

SPR 
Number

Access Section/Page

ATBL Alternate time base register lower 526 User RO 2.8.6/2-16

ATBU Alternate time base register upper 527 User RO 2.8.6/2-16

BUCSR Branch unit control and status register1 1013 Hypervisor 2.11/2-27

CDCSR0 Core device control and status register 696 Hypervisor 2.13/2-28

CSRR0 Critical save/restore register 0 58 Hypervisor 2.9.1/2-16

CSRR1 Critical save/restore register 1 59 Hypervisor 2.9.1/2-16

CTR Count register 9 User 2.6.3/2-11

DAC1 Data address compare 11 316 Hypervisor 2.17.8/2-72

DAC2 Data address compare 21 317 Hypervisor 2.17.8/2-72

DBCR0 Debug control register 0 1 308 Hypervisor 2.17.2/2-63

DBCR1 Debug control register 11 309 Hypervisor 2.17.3/2-65

DBCR2 Debug control register 21 310 Hypervisor 2.17.4/2-67

DBCR4 Debug control register 41 563 Hypervisor 2.17.5/2-68

DBSR Debug status register1 304 Hypervisor 
R/Clear

2.17.6/2-69

DBSRWR Debug status register write1 306 Hypervisor 2.17.6/2-69

DDAM Debug data acquisition message. 576 User 2.17.11/2-75

DEAR Data exception address register 61 Guest 
supervisor2

2.8.5/2-16

DEC Decrementer 22 Hypervisor 2.8.4/2-15

DECAR Decrementer auto-reload 54 Hypervisor3 2.8.4/2-15

DEVENT Debug event 975 User 2.17.10/2-74

DSRR0 Debug save/restore register 0 574 Hypervisor 2.9.1/2-16

DSRR1 Debug save/restore register 1 575 Hypervisor 2.9.1/2-16

EPCR Embedded processor control register 307 Hypervisor 2.7.3/2-12

EPLC External PID load context1 947 Guest 
supervisor4

2.16.7.1/2-61



Register Model

e500mc Core Reference Manual, Rev. 3

Freescale Semiconductor 2-5
 

EPR External proxy register 702 Guest supervisor 
RO2 

2.9.5/2-19

EPSC External PID store context1 948 Guest 
supervisor4

2.16.7.2/2-61

ESR Exception syndrome register 62 Guest 
supervisor2

2.9.6/2-19

GDEAR Guest data exception address register 381 Guest supervisor 2.8.5/2-16

GEPR Guest external proxy register 380 Guest supervisor 2.9.5/2-19

GESR Guest exception syndrome register 383 Guest supervisor 2.9.6/2-19

GIVOR2 Guest data storage interrupt offset 440 Hypervisor 2.9.3/2-18

GIVOR3 Guest instruction storage interrupt offset 441 Hypervisor 2.9.3/2-18

GIVOR4 Guest external input interrupt offset 442 Hypervisor 2.9.3/2-18

GIVOR8 Guest system call interrupt offset 443 Hypervisor 2.9.3/2-18

GIVOR13 Guest data TLB error interrupt offset 444 Hypervisor 2.9.3/2-18

GIVOR14 Guest instruction TLB error interrupt offset 445 Hypervisor 2.9.3/2-18

GIVPR Guest interrupt vector prefix 447 Hypervisor 2.9.3/2-18

GPIR Guest processor ID register 382 Guest 
supervisor5

2.9.7/2-21

GSPRG0 Guest SPR general 0 368 Guest supervisor 2.10/2-25

GSPRG1 Guest SPR general 1 369 Guest supervisor 2.10/2-25

GSPRG2 Guest SPR general 2 370 Guest supervisor 2.10/2-25

GSPRG3 Guest SPR general 3 371 Guest supervisor 2.10/2-25

GSRR0 Guest save/restore register 0 378 Guest supervisor 2.9.1/2-16

GSRR1 Guest save/restore register 1 379 Guest supervisor 2.9.1/2-16

HID0 Hardware implementation dependent register 01 1008 Hypervisor 2.12/2-27

IAC1 Instruction address compare 11 312 Hypervisor 2.17.7/2-72

IAC2 Instruction address compare 21 313 Hypervisor 2.17.7/2-72

IVOR0 Critical input interrupt offset 400 Hypervisor 2.9.4/2-18

IVOR1 Machine check interrupt offset 401 Hypervisor 2.9.4/2-18

IVOR2 Data storage interrupt offset 402 Hypervisor 2.9.4/2-18

IVOR3 Instruction storage interrupt offset 403 Hypervisor 2.9.4/2-18

IVOR4 External input interrupt offset 404 Hypervisor 2.9.4/2-18

IVOR5 Alignment interrupt offset 405 Hypervisor 2.14.5/2-35

IVOR6 Program interrupt offset 406 Hypervisor 2.9.4/2-18

IVOR7 Floating-point unavailable interrupt offset. 407 Hypervisor 2.9.4/2-18

Table 2-2. Special-Purpose Registers (SPRs) (continued)

SPR
Abbreviation

Name
Defined 

SPR 
Number

Access Section/Page
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IVOR8 System call interrupt offset 408 Hypervisor 2.9.4/2-18

IVOR9 APU unavailable interrupt offset 409 Hypervisor 2.9.4/2-18

IVOR10 Decrementer interrupt offset 410 Hypervisor 2.9.4/2-18

IVOR11 Fixed-interval timer interrupt offset 411 Hypervisor 2.9.4/2-18

IVOR12 Watchdog timer interrupt offset 412 Hypervisor 2.9.4/2-18

IVOR13 Data TLB error interrupt offset 413 Hypervisor 2.9.4/2-18

IVOR14 Instruction TLB error interrupt offset 414 Hypervisor 2.9.4/2-18

IVOR15 Debug interrupt offset 415 Hypervisor 2.9.4/2-18

IVOR35 Performance monitor interrupt offset 531 Hypervisor 2.9.4/2-18

IVOR36 Processor doorbell interrupt offset 532 Hypervisor 2.9.4/2-18

IVOR37 Processor doorbell critical interrupt offset 533 Hypervisor 2.9.3/2-18

IVOR38 Guest processor doorbell interrupt offset 432 Hypervisor 2.9.4/2-18

IVOR39 Guest processor doorbell critical and machine check 
interrupt offset

433 Hypervisor 2.9.4/2-18

IVOR40 Hypervisor system call interrupt offset 434 Hypervisor 2.9.4/2-18

IVOR41 Hypervisor privilege interrupt offset 435 Hypervisor 2.9.4/2-18

IVPR Interrupt vector prefix 63 Hypervisor 2.9.3/2-18

L1CFG0 L1 cache configuration register 0 515 User RO 2.14.4/2-34

L1CFG1 L1 cache configuration register 1 516 User RO 2.14.5/2-35

L1CSR0 L1 cache control and status register 01 1010 Hypervisor 2.14.1/2-29

L1CSR1 L1 cache control and status register 11 1011 Hypervisor 2.14.2/2-32

L1CSR2 L1 cache control and status register 21 606 Hypervisor 2.14.3/2-33

L2CAPTDATAHI6 L2 cache error capture data high 988 Hypervisor 2.15.4/2-42

L2CAPTDATALO6 L2 cache error capture data low 989 Hypervisor 2.15.4/2-42

L2CAPTECC6 L2 cache error capture ECC syndrome 990 Hypervisor 2.15.4/2-42

L2CFG06 L2 cache configuration register 0 519 User RO 2.15/2-36

L2CSR06 L2 cache control and status register 01 1017 Hypervisor 2.15.2/2-37

L2CSR16 L2 cache control and status register 11 1018 Hypervisor 2.15/2-36

L2ERRADDR6 L2 cache error address 722 Hypervisor 2.15.4/2-42

L2ERRATTR6 L2 cache error attribute 721 Hypervisor 2.15.4/2-42

L2ERRCTL6 L2 cache error control 724 Hypervisor 2.15.4/2-42

L2ERRDET6 L2 cache error detect 991 Hypervisor 2.15.4/2-42

L2ERRDIS6 L2 cache error disable 725 Hypervisor 2.15.4/2-42

L2ERREADDR6 L2 cache error extended address 723 Hypervisor 2.15.4/2-42

Table 2-2. Special-Purpose Registers (SPRs) (continued)

SPR
Abbreviation

Name
Defined 

SPR 
Number

Access Section/Page
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L2ERRINJCTL6 L2 cache error injection control 987 Hypervisor 2.15.4/2-42

L2ERRINJHI6 L2 cache error injection mask high 985 Hypervisor 2.15.4/2-42

L2ERRINJLO6 L2 cache error injection mask low 986 Hypervisor 2.15.4/2-42

L2ERRINTEN6 L2 cache error interrupt enable 720 Hypervisor 2.15.4/2-42

LPIDR Logical PID register1 338 Hypervisor 2.16.1/2-49

LR Link register 8 User 2.6.2/2-11

MAS0 MMU assist register 01 624 Guest supervisor 2.16.6.1/2-53

MAS1 MMU assist register 11 625 Guest supervisor 2.16.6.2/2-54

MAS2 MMU assist register 21 626 Guest supervisor 2.16.6.3/2-55

MAS3 MMU assist register 31 627 Guest supervisor 2.16.6.4/2-56

MAS4 MMU assist register 41 628 Guest supervisor 2.16.6.5/2-57

MAS5 MMU assist register 51 339 Hypervisor 2.16.6.6/2-58

MAS6 MMU assist register 61 630 Guest supervisor 2.16.6.7/2-58

MAS7 MMU assist register 71 944 Guest supervisor 2.16.6.8/2-59

MAS8 MMU assist register 81 341 Hypervisor 2.16.6.9/2-60

MCAR Machine check address register 573 Hypervisor RO 2.9.8/2-21

MCARU Machine check address register upper 569 Hypervisor RO 2.9.8/2-21

MCSR Machine check syndrome register 572 Hypervisor 2.9.9/2-22

MCSRR0 Machine-check save/restore register 0 570 Hypervisor 2.9.1/2-16

MCSRR1 Machine-check save/restore register 1 571 Hypervisor 2.9.1/2-16

MMUCFG MMU configuration register 1015 Hypervisor RO 2.16.4/2-51

MMUCSR0 MMU control and status register 01 1012 Hypervisor 2.16.3/2-50

MSRP MSR protect1 311 Hypervisor 2.7.2/2-12

NPIDR7 Nexus processor ID register 517 User 2.17.12/2-75

NSPC Nexus SPR access configuration 984 Hypervisor 2.17.9/2-73

NSPD Nexus SPR access data 983 Hypervisor 2.17.9/2-73

PID Process ID register1 48 Guest supervisor 2.16.2/2-50

PIR Processor ID register 286 Guest 
supervisor2

2.9.7/2-21

PVR Processor version register 287 Guest supervisor 
RO

2.7.4/2-13

SPRG0 SPR general 0 272 Guest 
supervisor2

2.10/2-25

SPRG1 SPR general 1 273 Guest 
supervisor2

2.10/2-25

Table 2-2. Special-Purpose Registers (SPRs) (continued)

SPR
Abbreviation

Name
Defined 

SPR 
Number

Access Section/Page
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SPRG2 SPR general 2 274 Guest 
supervisor2

2.10/2-25

SPRG3 SPR general 3 259 User RO2 2.10/2-25

SPRG3 SPR general 3 275 Guest 
supervisor2

2.10/2-25

SPRG4 SPR general 4 260 User RO 2.10/2-25

SPRG4 SPR general 4 276 Guest supervisor 2.10/2-25

SPRG5 SPR general 5 261 User RO 2.10/2-25

SPRG5 SPR general 5 277 Guest supervisor 2.10/2-25

SPRG6 SPR general 6 262 User RO 2.10/2-25

SPRG6 SPR general 6 278 Guest supervisor 2.10/2-25

SPRG7 SPR general 7 263 User RO 2.10/2-25

SPRG7 SPR general 7 279 Guest supervisor 2.10/2-25

SPRG8 SPRG8 604 Hypervisor 2.10/2-25

SPRG9 SPRG9 605 Guest supervisor 2.10/2-25

SRR0 Save/restore register 0 26 Guest 
supervisor2

2.9.1/2-16

SRR1 Save/restore register 1 27 Guest 
supervisor2

2.9.1/2-16

SVR System version register 1023 Guest supervisor 
RO

2.7.5/2-13

TBL(R) Time base lower 268 User RO 2.8.3/2-15

TBL(W) Time base lower 284 Hypervisor 2.8.3/2-15

TBU(R) Time base upper 269 User RO 2.8.3/2-15

TBU(W) Time base upper 285 Hypervisor 2.8.3/2-15

TCR Timer control register 340 Hypervisor 2.8.1/2-14

TLB0CFG TLB configuration register 0 688 Hypervisor RO 2.16.5/2-51

TLB1CFG TLB configuration register 1 689 Hypervisor RO 2.16.5/2-51

TSR Timer status register 336 Hypervisor 
R/Clear

2.8.2/2-15

USPRG0
(VRSAVE)

User SPR general 08 256 User 2.10/2-25

XER Integer exception register 1 User 2.4.2/2-10

1 Writing to these registers requires synchronization, as described in Section 3.3.3, “Synchronization Requirements.”
2 When these registers are accessed in guest supervisor state, the accesses are mapped to their analogous guest SPRs (for 

example, DEAR is mapped to GDEAR). See Section 2.3, “Register Mapping in Guest–Supervisor State.”
3 DECAR is defined by the architecture to be write-only, however the e500mc allows it to be read.

Table 2-2. Special-Purpose Registers (SPRs) (continued)

SPR
Abbreviation

Name
Defined 

SPR 
Number

Access Section/Page
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2.3 Register Mapping in Guest–Supervisor State
Accesses to certain hypervisor state registers are automatically redirected to the appropriate guest state 
registers when in the guest–supervisor state. This helps to improve emulation efficiency and provides a 
common programming model for operating systems that may want to run either under control of a 
hypervisor or directly on the hardware without a hypervisor. This also removes the requirement for the 
hypervisor state software to handle hypervisor privilege interrupts for these registers and to make the 
required emulated changes to the guest state for these high-use registers.

Accesses to the registers listed in “Register Accessed” column in Section Table 2-3., “Register Mapping 
in Guest–Supervisor State are changed by the processor to the registers listed in “Register mapped to” 
column in the table when MSR[PR] = 0 and MSR[GS] = 1. Access to these registers are not mapped when 
in hypervisor state (MSR[PR] = 0 and MSR[GS] = 0) or when operating unprivileged (MSR[PR] = 1), 
except that an unprivileged access to SPRG3 (SPR 259) is also mapped to GSPRG3.

2.4 Registers for Integer Operations
The following sections describe registers defined for integer computational instructions. 

4 Certain fields in the register are only writeable when in hypervisor state.
5 This register is only writeable in hypervisor state, but can be read in guest supervisor state.
6 On Cores that do not provide an L2 cache, these registers still exist, but always read as zero.
7 NPIDR contents are transferred to the Nexus port whenever it is written.
8 USPRG0 is a separate physical register from SPRG0.

Table 2-3. Register Mapping in Guest–Supervisor State

Register Accessed Register Mapped to Notes

SRR0 GSRR0 Access mapped during mtspr, mfspr.

SRR1 GSRR1 Access mapped during mtspr, mfspr.

EPR GEPR Access mapped during mfspr.

ESR GESR Access mapped during mtspr, mfspr.

DEAR GDEAR Access mapped during mtspr, mfspr.

PIR GPIR Access mapped during mfspr.

SPRG0 GSPRG0 Access mapped during mtspr, mfspr.

SPRG1 GSPRG1 Access mapped during mtspr, mfspr.

SPRG2 GSPRG2 Access mapped during mtspr, mfspr

SPRG3 GSPRG3 Access mapped during mtspr, mfspr

SPRG3 (259) GSPRG3 Access mapped during mfspr
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2.4.1 General-Purpose Registers (GPRs)

GPR0–GPR31 provide operand space for supporting integer operations. The instruction formats provide 
5-bit fields for specifying the GPRs to be used in the execution of the instruction. Each GPR is a 32-bit 
register and can be used to contain effective address and integer data.

The GPRs are implemented as defined by the Power ISA and as described in the EREF: A Programmer’s 
Reference Manual for Freescale Power Architecture® Processors. 

2.4.2 Integer Exception Register (XER)

NOTE
XER is an SPR. The e500mc implements the XER as it is defined by the 
architecture. 

XER bits are set based on the operation of an instruction considered as a whole, not on intermediate results. 
For example, the Subtract from Carrying instruction (subfc) specifies the result as the sum of three values, 
but it sets bits in the XER based on the entire operation, not on an intermediate sum.

2.5 Registers for Floating-Point Operations 
The following sections describe registers defined for floating-point computational instructions.

2.5.1 Floating-Point Registers (FPRs)

FPR0–FPR31 provide operand space for supporting floating-point operations. The instruction formats 
provide 5-bit fields for specifying the FPRs to be used in the execution of the instruction. Each FPR is a 
64-bit register and can be used to contain single-precision or double-precision floating-point data.

The FPRs are implemented as defined by the Power ISA and as described in the EREF: A Programmer’s 
Reference Manual for Freescale Power Architecture® Processors. 

2.5.2 Floating-Point Status and Control Register (FPSCR)

The FPSCR contains all floating-point exception signal bits, exception summary bits, exception enable 
bits, and rounding control bits needed for compliance with the IEEE 754 standard. The FPSCR is 
implemented as defined by the Power ISA and described in the EREF: A Programmer’s Reference Manual 
for Freescale Power Architecture® Processors.

For e500mc, if FPSCR[NI] is set, denormalized values are treated as appropriately signed 0 values. That 
is, if a denormalized number is an input to a floating point operation, that denormalized number is treated 
as 0 with the same sign as the denormalized number. If the result of a floating point operation produces a 
denormalized number, the result produced and written to the destination register is an appropriately signed 
0.

2.6 Registers for Branch Operations
This section describes registers used by branch and condition register operations.
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2.6.1 Condition Register (CR)

The e500mc implements the condition register as it is defined by the architecture for integer instructions.

2.6.2 Link Register (LR)

The e500mc implements the link register as it is defined by the architecture. 

The link register can be used to provide the branch target address for a Branch Conditional to LR 
instruction, and it holds the return address after branch and link instructions.

Note that the link register is an SPR.

2.6.3 Count Register (CTR)

The e500mc implements the count register as it is defined by the architecture. The count register can be 
used to hold a loop count that can be decremented and tested during execution of branch instructions that 
contain an appropriately encoded BO field. If the count register value is 0 before being decremented, it is 
–1 afterward. The count register can be used to hold the branch target address for a Branch Conditional to 
CTR (bcctrx) instruction.

Note that the count register is an SPR.

2.7 Processor Control Registers
This section addresses machine state, processor ID, processor version registers.

2.7.1 Machine State Register (MSR)

The machine state register (MSR), shown in Figure 2-1, is used to define the processor state, that is, 
enabling and disabling of interrupts and debugging exceptions, address translation for instruction and data 
memory accesses, enabling and disabling some functionality, and specifying whether the processor is in 
supervisor or user mode.

When the core runs in guest–supervisor state (MSR[GS] = 1, MSR[PR] = 0), some MSR bits are not 
writable. If the MSR is written in guest–supervisor state in any manner, including a mtmsr, rfgi, or rfi, or 
as the result of taking an interrupt serviced in guest state, MSR[GS] is not changed.

Certain MSR bits may be changed in guest–supervisor state if permission to do so is enabled by the 
hypervisor program. MSR[UCLE,DE,PMM] are writable if the corresponding MSRP-defined bits are 
cleared. See Section 2.7.2, “Machine State Register Protect Register (MSRP).” MSRP is writable only in 
hypervisor state. When MSR is written in guest state, bits protected by MSRP bits that are set, are not 
written and remain unmodified. All other MSR bits are written with the updated values. An attempt to 
write the MSRP in guest–supervisor state results in a hypervisor privilege exception.

Changing PR, GS, IS, or DS using the mtmsr instruction requires a context-synchronizing operation 
before the effects of the change are guaranteed to be visible. Prior to the context synchronization, these 
bits can change at any time and with any combination. Changes in DS, or IS can cause an implicit branch 
since these bits are used to compute the virtual address for instruction translation and instructions may be 
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fetched and executed from any context from any permutation of these bits. Software should guarantee that 
a translation exists for each of the permutations of these address space bits and that translation has the same 
characteristics, including permissions and RPN fields. For this reason, it is unwise to use mtmsr to change 
these bits and such changes should only be done through return from interrupt type instructions, which 
provide the context synchronization atomically with instruction execution.

When an interrupt occurs, MSR contents of the interrupted process are automatically saved to the 
save/restore register 1 (xSRR1) appropriate to the interrupt, and the MSR is altered to values 
predetermined for the interrupt taken. At the end of the interrupt handler, the appropriate return from 
interrupt instruction restores the values in the save/restore register 1 (xSRR1) to the MSR. 

MSR contents are read into a GPR using mfmsr. The contents of a GPR can be written to MSR using 
mtmsr. The write MSR external enable instructions (wrtee and wrteei) can be used to set or clear 
MSR[EE] without affecting other MSR bits.

The e500mc does not implement the WE bit found in some previous e500 cores. Power management 
operations on SoCs using the e500mc are handled through an SoC programming model. Refer to the 
reference manual for the integrated device.

2.7.2 Machine State Register Protect Register (MSRP)

The e500mc implements the MSRP as defined by the architecture and described in the EREF: A 
Programmer’s Reference Manual for Freescale Power Architecture® Processors. It provides the ability to 
write MSR[UCLE,DE,PMM] when the machine is in the guest–supervisor state (MSR[PR] = 0 and 
MSR[GS] = 1) by any operation that modifies the MSR (mtmsr, rfi, rfgi, and MSR change on an interrupt 
directed to the guest state). An attempt to read or write MSRP when not in the hypervisor state results in 
a hypervisor privilege exception when MSR[PR] = 0 and a privilege exception when MSR[PR] = 1.

MSRP settings also affect the execution of Cache Locking instructions and mtpmr/mfpmr instructions.

A change to MSRP requires a context synchronizing operation to be performed before the effects of the 
change are guaranteed to be visible in the current context.

2.7.3 Embedded Processor Control Register (EPCR)

The EPCR controls whether certain interrupts are directed to the hypervisor state or to the 
guest–supervisor state and suppresses debug events when in hypervisor state. The e500mc implements the 
EPCR as it is defined by the architecture and described in the EREF: A Programmer’s Reference Manual 
for Freescale Power Architecture® Processors. 

Guest supervisor

32 34 35 36 37 38 39 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

R
— GS — UCLE — CE — EE PR FP ME FE0 — DE FE1 — IS DS — PMM RI —

W

Reset All zeros

Figure 2-1. Machine State Register (MSR)
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2.7.4 Processor Version Register (PVR)

The e500mc implements the PVR, shown in Figure 2-2, as defined by the architecture. The read-only 
value identifies the core’s version and revision level of the processor, distinguishing between processors 
that differ in attributes that may affect software. 

This table describes the PVR fields.

2.7.5 System Version Register (SVR)

SVR, shown in this figure, contains a read-only SoC-dependent value; consult the documentation for the 
integrated device.

2.8 Timer Registers
The time base (TB), decrementer (DEC), fixed-interval timer (FIT), and watchdog timer provide timing 
functions for the system. The e500mc provides the ability to select any of the TB bits to trigger watchdog 
and fixed-interval timer events, as shown in this figure.

 SPR 287 Guest supervisor RO

32 47 48 63

R Version Revision

W

Reset 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 x x x x x x x x x x x x x x x x1

1 xxxx may represent different revisions or manufacturing information for the core. Normally software uses the upper 16 bits of 
PVR to identify the core.

Figure 2-2. Processor Version Register (PVR) 

Table 2-4. PVR Field Descriptions

Bits Name Description

32–47 Version A 16-bit number that identifies the version of the processor. Different version numbers indicate major 
differences between processors, such as which optional facilities and instructions are supported.

48–63 Revision A 16-bit number that distinguishes between implementations of the version. Different revision numbers 
indicate minor differences between processors having the same version number, such as clock rate and 
engineering change level. 

 SPR 1023 Guest supervisor read only

32 63

R System version

W

Reset SoC-dependent value 

Figure 2-3. System Version Register (SVR)
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Figure 2-4. Relationship of Timer Facilities to the Time Base

Note the following characteristics of the e500mc time base implementation:
• e500mc time base is clocked only by the SoC (TBCLK)
• The only enable/disable control over the time base is the TBEN core signal, controlled by the SoC 

through a memory-mapped register, allowing control of stopping and starting the time base on any 
core. Refer to the reference manual for the integrated device.

• mftb works as it did in the original PowerPC architecture

The e500mc registers involved in timing are described as follows:
• The TB is a long-period counter driven at an implementation-dependent frequency.
• The DEC provides a way to signal an exception after a specified period of time base tics.
• Software can select from one of 64 TB bits to signal a fixed-interval interrupt whenever the bit 

transitions from 0 to 1. It is typically used to trigger periodic system maintenance functions. .
• The watchdog timer, also a selected TB bit, provides a way to signal a critical exception when the 

selected bit transitions from 0 to 1. It is typically used for system error recovery. If software does 
not respond in time to the initial interrupt by clearing the associated status bits in the TSR before 
the next expiration of the watchdog timer interval, a watchdog timer-generated processor reset may 
result, if so enabled. 

All timer facilities must be initialized during start-up.

2.8.1 Timer Control Register (TCR)

The e500mc implements the timer control register as defined by EREF: A Programmer’s Reference 
Manual for Freescale Power Architecture® Processors. The implementation of the integrated device 
determines the behavior of the TCR[WRC]. Consult the “Register Summary” chapter in the core section 
of the integrated device reference manual. 

Timer Clock

Time Base (incrementer)

Decrementer event = 1/0 detect
63

DECAR

32

Auto-reload

6332

TBL

6332

TBU

Watchdog timer events based on one of the TB bits 
selected by concatenating TCR[WPEXT] with TCR[WP] 
(WPEXT || WP).

Fixed-interval timer events based on one of TB bits 
selected by concatenating TCR[FPEXT] with TCR[FP] 
(FPEXT || FP).

DEC

(Time Base Clock)
tbclk
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The architecture definition for timer control register fields is described in the EREF: A Programmer’s 
Reference Manual for Freescale Power Architecture® Processors.

2.8.2 Timer Status Register (TSR)

Except as described in this section, the e500mc implements the timer status register as it is defined by the 
architecture. The 32-bit TSR contains status on timer events and the most recent watchdog timer-initiated 
processor reset. All TSR bits function as write-1-to-clear, except TSR[WRS] which is nonwriteable 
(nonclearable).

As a write-1-to-clear register, TSR can be changed only by software by writing a mask of 1 bits indicating 
which bit positions are to be cleared. When the TSR is written by an mtspr, WRS bits are not cleared, 
regardless of the mask bits supplied with the GPR used for writing. Logically, the instruction mttsr rA 
becomes the following: 

mask = RA & 0xcfffffff; 

TSR = TSR & ~mask; 

This change prevents software from clearing a watchdog time-out that should result in the action defined 
in TCR[WRC], in which these bits are reflected into the TSR[WRS] when the watchdog times out. Without 
this change, it is theoretically possible that these bits could be cleared prior to the SoC seeing the bits 
change, causing the watchdog action to fail. 

2.8.3 Time Base (TBU and TBL)

The e500mc implements the time base registers as they are defined by the architecture. The time base (TB) 
is a 64-bit register, but the architecture provides SPRs to access the upper 32 bits and lower 32 bits. 
Reading the lower 32 bits of the time base (TBL, SPR 268), places the lower 32 bits of the time base into 
the destination GPR. Reading the upper 32 bits of the time base (TBU, SPR 269) places the upper 32 bits 
of the time base into the lower 32 bits of the destination GPR. Writing the time base is done only through 
writing the upper 32 (SPR 285) and lower 32 (SPR 284) time base bits through two separate mtspr 
instructions. The time base register provides timing functions for the system. The time base register is a 
volatile resource and must be initialized during start-up. 

For e500mc, the time base can be read in hypervisor state through the SPRs used for writing (284 and 285), 
although the architecture defines it as a write-only register. 

NOTE
Software should not read the time base through these registers as future 
processors may not allow such behavior.

2.8.4 Decrementer Register (DEC) 

The e500mc implements the decrementer register as it is defined by the architecture. The decrementer 
register is a 32-bit decrementing counter that is decremented at the same rate as the time base is 
incremented. It provides a way to signal a decrementer interrupt after a specified number of time base tics 
have occurred. It can be configured to signal an interrupt when DEC is decremented from 1 to 0. The DEC 
can be configured through the TCR to perform different actions when it is decremented from 1 to 0:
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• It can stop decrementing;
• It can be auto-reloaded from DECAR (see Section 2.8.5, “Decrementer Auto-Reload Register 

(DECAR).”);
• It can signal a decrementer exception and take an asynchronous interrupt when External Interrupts 

are enabled or when the processor is in guest state (MSR[GS]=1).

The decrementer register is typically used as a general-purpose software timer. Note that writing DEC with 
zeros by using an mtspr[DEC] does not automatically generate a decrementer exception.

2.8.5 Decrementer Auto-Reload Register (DECAR) 

The e500mc implements the DECAR as it is defined by the architecture. If the auto-reload function is 
enabled (TCR[ARE] = 1), the auto-reload value in DECAR is written to the decrementer register when it 
decrements from 1 to 0. 

For e500mc, the DECAR can be read in hypervisor state, although the architecture defines it as a 
write-only register. 

NOTE
Software should not read the DECAR as future processors may not allow 
such behavior.

2.8.6 Alternate Time Base Registers (ATBL and ATBU) 

The alternate time base counter (ATB) register is implemented as defined by the architecture and described 
in the EREF: A Programmer’s Reference Manual for Freescale Power Architecture® Processors. The 
ATB is a 64-bit counter that increments at an implementation dependent frequency. The ATB is a 64-bit 
register, but the architecture provides SPRs to access the upper 32 bits and lower 32-bits. Reading the 
lower 32 bits of the time base (ATBL), places the lower 32 bits of the time base into the destination GPR. 
Reading the upper 32 bits of the time base (ATBU) places the upper 32 bits of the time base into the lower 
32 bits of the destination GPR.

On the e500mc, the frequency of the ATB increment is the core frequency. ATB is read-only accessible in 
user and supervisor mode. 

The ATBL register is a 64-bit register

2.9 Interrupt Registers
This section describes the following register bits and their fields:

2.9.1 Save/Restore Registers (xSRR0/xSRR1)

The e500mc implements the following sets of save restore registers, which support the different types of 
interrupts implemented on the e500mc.

• Standard save/restore registers (SRR0 and SRR1)
• Critical save/restore registers (CSRR0 and CSRR1)
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• Debug save/restore registers (DSRR0 and DSRR1)
• Machine check save/restore registers (MCSRR0 and MCSRR1)
• Guest save/restore registers (GSRR0 and GSRR1). Note that when executing in guest state 

(MSR[GS] = 1), accesses to SRR0/SRR1 are mapped to GSRR0/GSRR1 when any mfspr or 
mtspr instruction is executed. See Section 2.3, “Register Mapping in Guest–Supervisor State.” 

These registers are implemented as they are defined by the architecture and described in the EREF: A 
Programmer’s Reference Manual for Freescale Power Architecture® Processors. On an interrupt, xSRR0 
holds the address of the instruction where the interrupted process should resume, typically either the 
current or subsequent instruction. The instruction is interrupt-specific, although for instruction-caused 
exceptions, it is typically the address of the instruction that caused the interrupt. When the appropriate 
Return from Interrupt instruction (rfi, rfci, rfdi, rfmci, or rfgi) executes, instruction execution continues 
at the address in xSRR0. 

When rfi is executed from guest supervisor state, the instruction is mapped to rfgi and uses GSRR0 and 
GSRR1.

xSRR1 is provided to save machine state when an interrupt is taken and to restore it when control is passed 
back, typically to the interrupted process. When an interrupt is taken, certain MSR settings, specific to the 
interrupt, are placed in xSRR1. When the appropriate Return from Interrupt instruction executes, xSRR1 
contents are placed into MSR. xSRR1 bits that correspond to reserved MSR bits are also reserved.

Note that a pair of save/restore registers is affected only by the corresponding interrupt or an mtspr that 
explicitly targets one of the registers. Reserved MSR bits may be altered by Return from Interrupt 
instructions if set in the xSRR1 register.

For specific information about how the save/restore registers are set, see the individual interrupt 
descriptions in Chapter 4, “Interrupts and Exceptions.”

2.9.2 (Guest) Data Exception Address Register (DEAR/GDEAR)

The e500mc implements DEAR/GDEAR as it is defined by the architecture. DEAR is loaded with the 
effective address of a data access (caused by a load, store, or cache management instruction) that results 
in an alignment, data TLB miss, or DSI exception. 

GDEAR is the same as the DEAR. When a DSI or a data TLB error interrupt is taken in the guest state, 
GDEAR is set to the EA of the data access causing the exception instead of DEAR. 

GDEAR is supervisor privileged (MSR[PR] = 0) and is read/write. Accesses to DEAR in guest–supervisor 
state (MSR[GS]=10, MSR[PR] = 10) are mapped to GDEAR for mtspr and mfspr instructions, in the 
same manner as other guest registers. 

Note that even when DSI interrupts are directed to the guest state by means of EPCR[DSIGS], the DSI 
may be directed to the hypervisor if a virtualization fault is set on the TLB entry that caused the DSI. See 
Section 2.7.3, “Embedded Processor Control Register (EPCR). Therefore, the DEAR is set instead of 
GDEAR.
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2.9.3 (Guest) Interrupt Vector Prefix Register (IVPR/GIVPR)

The e500mc implements IVPR and guest IVPR (GIVPR) as they are defined by the architecture. They are 
used with IVORs and GIVORs, respectively, to determine the vector address. (G)IVPR[32–47] provides 
the high-order 16 bits of the address of the exception processing routines. The 16-bit vector offsets 
(IVORs) are concatenated to the right of (G)IVPR to form the address of the exception processing routine. 

When an interrupt is directed to the hypervisor state, IVPR and IVORn are used to form the address of the 
exception processing routine. When an interrupt is directed to the guest–supervisor state, GIVPR and 
GIVORn are used to form the address of the exception processing routine.

IVPR and GIVPR are 32 bit registers on e500mc.

2.9.4 (Guest) Interrupt Vector Offset Registers (IVORs/GIVORs)

The e500mc implements the IVORs and guest IVORs (GIVORs) as defined by the architecture, but use 
only (G)IVORn[48–59], as shown in Figure 2-5, to hold the quad-word index from the base address 
provided by the IVPR for each interrupt type. 

This table shows the (G)IVORs implemented on the e500mc. 

SPR (See Table 2-5.) Hypervisor

32 47 48 59 60 63

R
— Interrupt vector offset —

W

Reset All zeros

Figure 2-5. (Guest) Interrupt Vector Offset Registers ((G)IVORs)

Table 2-5. IVOR Assignments

IVOR Number Interrupt Type

IVOR0 Critical input

IVOR1 Machine check

IVOR2 Data storage

IVOR3 Instruction storage

IVOR4 External input

IVOR5 Alignment

IVOR6 Program

IVOR7 Floating-point unavailable

IVOR8 System call

IVOR9 APU unavailable

IVOR10 Decrementer

IVOR11 Fixed-interval timer interrupt

IVOR12 Watchdog timer interrupt

IVOR13 Data TLB error
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2.9.5 (Guest) External Proxy Register (EPR/GEPR)

The external proxy register (EPR/GEPR) is implemented as it is defined by the architecture and described 
in the EREF: A Programmer’s Reference Manual for Freescale Power Architecture® Processors. It is used 
to convey the peripheral-specific interrupt vector associated with the external input interrupt triggered by 
the programmable interrupt controller (PIC) in the integrated device. The external proxy facility is 
described in Section 4.9.6.3, “External Proxy.”

When executing in the guest supervisor state, any read accesses to the EPR are mapped to GEPR upon 
executing mfspr. See Section 2.3, “Register Mapping in Guest–Supervisor State,” for more details.

EPR is not writable, however GEPR is writeable.

2.9.6 (Guest) Exception Syndrome Register (ESR/GESR)

The (ESR/GESR) are defined by the architecture and described in the EREF: A Programmer’s Reference 
Manual for Freescale Power Architecture® Processors. Figure 2-6 shows the ESR/GESR as it is 
implemented on the e500mc. GESR is used to post–exception syndrome status when an interrupt is taken 
that is directed to the guest state. ESR is used to post–exception syndrome status when an interrupt is taken 
that is directed to the hypervisor state. GESR fields are identical to those in the ESR.

When executing in the guest supervisor state any accesses to the ESR are mapped to GESR upon executing 
mtspr or mfspr. See Section 2.3, “Register Mapping in Guest–Supervisor State,” for more details.

IVOR14 Instruction TLB error

IVOR15 Debug

IVOR35 Performance monitor

IVOR36 Processor doorbell interrupt

IVOR37 Processor doorbell critical interrupt

IVOR38 Guest processor doorbell 

IVOR39 Guest processor doorbell critical and machine check 

IVOR40 Hypervisor system call 

IVOR41 Hypervisor privilege 

Guest-Type IVORs

GIVOR2 Guest data storage interrupt

GIVOR3 Guest instruction storage interrupt

GIVOR4 Guest external input

GIVOR8 Guest system call

GIVOR13 Guest data TLB error

GIVOR14 Guest instruction TLB error

Table 2-5. IVOR Assignments (continued)

IVOR Number Interrupt Type
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The (G)ESR provides a way to differentiate among exceptions that can generate an interrupt type. When 
an interrupt is generated, bits corresponding to the specific exception that generated the interrupt are set 
and all other (G)ESR bits are cleared. Other interrupt types do not affect (G)ESR contents. The (G)ESR 
does not need to be cleared by software. Table 2-6 shows (G)ESR bit definitions. For machine check 
exceptions, the e500mc uses the MCSR, described in Section 2.9.9, “Machine Check Syndrome Register 
(MCSR).” 

The (G)ESR implementation differs from the architecture in the following respects:
• The e500mc does not implement AP, PUO, SPV, VLEMI, MIF, or XTE
• The e500mc implements the EPID field.

This table describes (G)ESR fields and shows associated interrupts. 

NOTE
(G)ESR information is incomplete, so system software may need to identify 
the type of instruction that caused the interrupt, examine the TLB entry, and 
examine the (G)ESR to identify the exception or exceptions fully. For 
example, a data storage interrupt may be caused both by a protection 
violation exception and by a byte-ordering exception. System software 
would have to look beyond (G)ESR[BO], such as the state of MSR[PR] in 
(G)SRR1 and the TLB entry page protection bits, to determine whether a 
protection violation also occurred.

SPR 62 (ESR); 383 (GESR)  Guest supervisor

32 35 36 37 38 39 40 41 42 43 44 45 46 47 48 56 57 58 63

R
— PIL PPR PTR FP ST — DLK ILK — BO PIE — EPID —

W

Reset All zeros

Figure 2-6. (Guest) Exception Syndrome Register (ESR/GESR)

Table 2-6. ESR/GESR Field Descriptions

Bits Name Syndrome Interrupt Types

32–35 — Reserved —

36 PIL Illegal instruction exception Program

37 PPR Privileged instruction exception Program

38 PTR Trap exception Program

39 FP  Floating-point operations Alignment, data 
storage, data TLB, 
program

40 ST Store operation Alignment, DSI, 
DTLB error

41 — Reserved —

42 DLK Data cache locking. Set when a DSI occurs because dcbtls, dcbtstls, or dcblc is 
executed in user mode while MSR[UCLE] = 0. 

DSI
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2.9.7 (Guest) Processor ID Register (PIR/GPIR)

The e500mc implements the PIR/GPIR as defined by the Power ISA and the processor control architecture 
as described in the EREF: A Programmer’s Reference Manual for Freescale Power Architecture® 
Processors. The processor sets the initial value of PIR at reset, after which it is writeable by hypervisor 
software. The initial value of the PIR is a processor-unique value within the coherence domain and is 
described in the EREF: A Programmer’s Reference Manual for Freescale Power Architecture® 
Processors. The initial value of GPIR at reset is 0. Hypervisor software is expected to initialize GPIR to a 
reasonable value when a partition is initialized.

When executing in the guest supervisor state any mfspr accesses to the PIR are mapped to GPIR. The 
mtspr accesses are not mapped, and guest supervisor attempts to change PIR or GPIR cause an embedded 
hypervisor privilege interrupt. See Section 2.3, “Register Mapping in Guest–Supervisor State,” for more 
details.

2.9.8 Machine Check Address Register (MCAR/MCARU)

When the core takes a machine check interrupt, MCAR indicates the address of the data associated with 
the machine check exception. MCAR is a 64-bit address and may contain a physical address or an effective 
address. The MCARU is a 32-bit alias to the upper 32 bits of MCAR. Not all machine check (or error 
report) interrupts that occur have addresses associated with them. Errors that cause MCAR contents to be 
updated are implementation-dependent.

MCAR is implemented as defined in the architecture, except as follows: For a certain subset of 
asynchronous machine check exception causes, MCAR indicates the address of the data or instruction 
access associated with the machine check. The MCSR[MAV] and MCSR[MEA] status bits indicate 
whether hardware has updated the MCAR and whether the MCAR contains an effective address or a real 
address. MCAR is not modified if a machine check occurs and at the time of the interrupt, MCSR[MAV] 
is already set.

43 ILK Instruction cache locking. Set when a DSI occurs because icbtls or icblc is executed in 
user mode while MSR[UCLE] = 0.

DSI

44 — Not supported on the e500mc. Defined by the architecture as AP (auxiliary processor 
operation). 

—

45 — Not supported on the e500mc. Unimplemented operation exception. On the e500mc, 
unimplemented instructions are handled as illegal instructions. 

Program

46 BO Byte-ordering exception DSI, ISI

47 PIE Imprecise exception. Program

48–56 — Reserved —

57 EPID Indicates whether translation was performed using context from EPLC or EPSC. Set when 
a DSI, DTLB, or Alignment error occurs during execution of an external PID instruction. 

Data storage,
Data TLB error
Alignment

58–63 — Reserved —

Table 2-6. ESR/GESR Field Descriptions (continued)

Bits Name Syndrome Interrupt Types
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This table shows the MCAR address and MCSR[MAV,MEA] at error time.

2.9.9 Machine Check Syndrome Register (MCSR)

In addition to the MCSR fields defined by the architecture, the e500mc implements a number of other 
implementation-specific fields, as shown in Table 2-8. When the core takes a machine check interrupt, it 
updates MCSR to differentiate between machine check conditions. The MCSR indicates the type of error 
detected and software can use this information to determine whether the error is recoverable and what steps 
may be necessary to correct the error. 

MCSR bits are divided into the following categories: 
• Async bits. Set asynchronously whenever an error event occurs. Any unit that detects an error 

automatically posts the error by setting one of these bits. If machine check interrupts are enabled 
(MSR[ME] = 1 or MSR[GS] = 1), a machine check interrupt occurs when any of these bits in the 
MCSR is non-zero.

• Error report bits. Set when a synchronous error report type of machine check occurs.
• MCAR status bits (MAV, MEA). These give information about the MCAR.

Table 2-7. MCAR Address and MCSR[MAV,MEA] at Error Time

MCSR[MAV] State
MCSR[MEA]:

Next State 
MCAR/MCARU Comment

Current Next

1 x x Unaltered MCAR unmodified if currently valid (hold value if already valid)

0 1 0 MCAR[28–63] Updated with a real address.

0 1 1 MCAR[0–63] Updated with the EA associated with the error. If the detected error is a 
multiway hit in the L2MMU (MCSR[L2MMU_MHIT]), the lower 12 bits of 
the EA are cleared providing an EPN for the translation.
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MCSR is shown in this figure.

This table describes the MCSR fields.

SPR 572 Hypervisor, Write 1 to Clear

 32 33 34 35 36 37

R
MCP

ICERR
(ICPERR)

DCERR
(ICPERR)

TLBPERR L2MMU_MHIT
—

W w1c w1c w1c w1c w1c

Reset All zeros

 40 42 43 44 45 46 47

R
—

NMI MAV MEA
—

IF

W w1c w1c w1c w1c

Reset All zeros

48 49 50 51 55

R LD ST LDG
—

W w1c w1c w1c

Reset All zeros

56 61 62 63

R
—

TLBSYNC BSL2_ERR

W w1c w1c

Reset All zeros

Figure 2-7. Machine Check Syndrome Register (MCSR)

Table 2-8. Machine Check Syndrome Register (MCSR)

Bit Name Description
Exception

Type1
Additional Gating

Condition2

32 MCP Machine check input signal asserted. Set immediately on 
recognition of assertion of the MCP input. This input comes 
from the SoC and is a level sensitive signal. This usually 
occurs as the result of an error detected by the SoC. 

Async HID0[EMCP]

33 ICERR
(ICPERR)

Instruction cache tag or data array parity error Async L1CSR1[ICECE] and
L1CSR1[ICE]

34 DCERR
(DCPERR)

Uncorrectable L1 data cache data or tag error. Async L1CSR0[CECE] and 
L1CSR0[CE]

35 — Reserved — —

36 L2MMU_MHIT L2 MMU simultaneous hit. Async HID0[EN_L2MMU_MHD]

37–42 — Reserved — —

43 NMI Nonmaskable interrupt. NMI None
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44 MAV MCAR address valid. The address contained in the MCAR 
was updated by the processor and corresponds to the first 
detected error condition that contained an associated 
address. Subsequent machine check errors that have 
associated addresses are not placed in MCAR unless MAV 
is 0 at the time the error is logged.
0 The address contained in MCAR is not valid.
1 The address contained in MCAR is valid.
Note: Software should first read MCAR before clearing 

MAV. MAV should be cleared before MSR[ME] is set.

Status —

45 MEA MCAR effective address. Meaningful only if MAV=1. 
0 The MCAR contains a physical (real) address.
1 The MCAR contains an EA. 

Status —

46 — Reserved — —

47 IF Instruction fetch error report. An error occurred during the 
attempt to fetch the instruction corresponding to the 
address in MCSRR0 or during an attempted fetch of a 
younger instruction than that pointed by MCSRR0.

Error 
report

None

48 LD Load instruction error report. An error occurred during the 
attempt to execute the load instruction at the address 
contained in MCSRR0.

Error 
report

None

49 ST Store instruction error report. An error occurred during an 
attempt to translate the address of the store type instruction 
(or instruction that is processed by the store queue) located 
at the address in MCSRR0.

Error 
report

None

50 LDG Guarded load instruction error report. Set along with LD if 
the load encountering the error was a guarded load 
(WIMGE = xxx1x) and that guarded load did not encounter 
one of the data cache errors. Set only if the error 
encountered by the load was an L2 or CoreNet error.

Error 
report

None

51 — Reserved — —

52–61 — Reserved — —

62 TLBSYNC Simultaneous tlbsync operations detected. The system 
should never have two outstanding tlbsync operations on 
CoreNet. 

Async None

63 BSL2_ERR L2 cache error Async L2CSR0[L2E] and 
L2ERRDIS 3

Table 2-8. Machine Check Syndrome Register (MCSR) (continued)

Bit Name Description
Exception

Type1
Additional Gating

Condition2
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The setting of MCSR[LD] and MCSR[ST] identifying the type of instruction is implementation 
dependent. For e500mc, LD is set by instructions that load data into a register and complete when the load 
data is committed to the architected register. ST is set by instructions that perform store operations and 
instructions that are processed through the store queue in the LSU. The treatment of an instruction as a 
load or store for the purposes of permission checking and debug events may differ from whether the LD 
or ST bit is set for an error report.

The following instructions set MCSR[LD] if an error report occurs:
dcbt, dcbtst, icbt, lbz, lbzu, lbzx, lbzux, lha, lhau, lhax, lhaux, lhz, lhzu, lhzx, lhzux, lhbrx, 
lmw, lwarx, lwz, lwzu, lwzx, lwzux, lwbrx, lbepx, lhepx, lwepx, dcbtep, dcbtstep, lbdx, lhdx, 
lwdx, lfddx, lfd, lfdu, lfdux, lfdx, lfdepx, lfs, lfsu, lfsux, lfsx

The following instructions set MCSR[ST] if an error report occurs:
dcba, dcbal, dcbf, dcbi, dcblc, dcbst, dcbtls, dcbtstls, dcbz, dcbzl, dsn, icbi, icblc, icbtls, stb, 
stbu, stbx, stbux, sth, sthu, sthx, sthux, sthbrx, stmw, stw, stwu, stwx, stwux, stwbrx, stwcx., 
stbepx, sthepx, stwepx, dcbfep, dcbstep, icbiep, dcbzep, dcbzlep, stbdx, sthdx, stwdx, stfddx, 
stfd, stfdu, stfdux, stfdx, stfdepx, stfiwx, stfs, stfsu, stfsux, stfs

2.10 Software-Use SPRs (SPRGs, GSPRGs, and USPRG0)
The e500mc implements the software-use SPRs (SPRG0–SPRG7, SPRG8, SPRG9, GSPRG0-GSPRG3, 
USPRG0) as defined by the architecture. Their functionality is defined by the user and they are accessed 
as shown in this table. 

1 “Exception Type” indicates which exception type caused the update of a given MCSR bit:
— Error report. Indicates that this bit is set only for error report exceptions that cause machine check interrupts. These bits are 

only updated when the machine check interrupt is taken. Error report exceptions are not gated by MSR[ME]. These are 
synchronous exceptions.

— NMI. Indicates that this bit is only set for the nonmaskable interrupt type exceptions which cause machine check interrupts. 
This bit is only updated when the machine check interrupt is taken. NMI exceptions are not gated by MSR[ME]. This is an 
asynchronous exception.

— Async. Indicates that this bit is set for an asynchronous machine check exception. These bits are set immediately upon 
detection of the error in the MCSR. Once bit is set in the MCSR, a machine check interrupt occurs if MSR[ME]=1. If 
MSR[ME]=0, the MCSR bits remain set unless cleared by software, and a machine check occurs when MSR[ME] is set.

— “Status” indicates that this bit provides additional status about the logging of an asynchronous machine check exception.
2 “Additional Gating Condition” indicates any other state that, if not enabled, inhibits the recognition this particular error condition.
3 For description of L2ERRDIS, see Section 2.15.4, “L2 Error Registers.”

Table 2-9. SPRGs, GSPRGs, and USPRG0

Abbreviation Name SPR Number Access

GSPRG0 Guest SPR general 0 368 Guest supervisor

GSPRG1 Guest SPR general 1 369 Guest supervisor

GSPRG2 Guest SPR general 2 370 Guest supervisor

GSPRG3 Guest SPR general 3 371 Guest supervisor

SPRG0 SPR general 0 272 Guest supervisor1

SPRG1 SPR general 1 273 Guest supervisor1
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NOTE
Operating system software should always use SPRG0, SPRG1, SPRG2, 
SPRG3 when accessing GSPRG0, GSPRG1, GSPRG2, and GSPRG3 
because in guest–supervisor state, these accesses are mapped to their 
equivalent guest registers. This allows the programming model for the 
operating system software to be the same regardless of whether the 
operating system is operating in guest state under a hypervisor or is 
executing directly on the bare metal.
SPRGs and GSPRGs are 32 bits for 32-bit implementations and 64 bits for 
64-bit implementations. For e500mc, these registers are 32 bits. USPRG0 
(VRSAVE) is a 32-bit register regardless of whether the processor is a 32-bit 
or 64-bit implementation.

SPRG2 SPR general 2 274 Guest supervisor1

SPRG3 SPR general 3 259 User RO

SPRG3 SPR general 3 275 Guest supervisor1

SPRG4 SPR general 4 260 User RO

SPRG4 SPR general 4 276 Guest supervisor

SPRG5 SPR general 5 261 User RO

SPRG5 SPR general 5 277 Guest supervisor

SPRG6 SPR general 6 262 User RO

SPRG6 SPR general 6 278 Guest supervisor

SPRG7 SPR general 7 263 User RO

SPRG7 SPR general 7 279 Guest supervisor

SPRG8 SPRG8 604 Hypervisor

SPRG9 SPRG9 605 Guest supervisor

USPRG0
(VRSAVE)

User SPR general 02 256 User

1 When these registers are accessed in guest supervisor state, the access are mapped to their analogous guest SPRs (for 
example, SPRG0 is mapped to GSPRG0). See Section 2.3, “Register Mapping in Guest–Supervisor State.”

2 USPRG0 is a separate physical register from SPRG0.

Table 2-9. SPRGs, GSPRGs, and USPRG0 (continued)

Abbreviation Name SPR Number Access
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2.11 Branch Unit Control and Status Register (BUCSR)
The BUCSR, shown in Figure 2-8, is an e500mc-specific register used for general control and status of the 
branch prediction mechanisms which include the branch target buffer (BTB). Writing to BUCSR requires 
synchronization, as described in Section 3.3.3, “Synchronization Requirements.”

This table describes the BUCSR fields.
 

2.12 Hardware Implementation-Dependent Register 0 (HID0)
This section describes HID0, shown in Figure 2-9, as it is implemented on the e500mc core. 

NOTE
Some HID fields may not be implemented in a device that incorporates the 
e500mc core and some fields may be defined more specifically by the 
incorporating device. For specific details it is important to refer to the 
“Register Summary” chapter in the device’s reference manual. 

HID0 is used for configuration and control. Writing to HID0 requires synchronization, as described in 
Section 3.3.3, “Synchronization Requirements.”

SPR 1013 Hypervisor

32 53 54 55 62 63

R
— BBFI — BPEN

W

Reset All zeros

Figure 2-8. Branch Unit Control and Status Register (BUCSR)

Table 2-10. BUCSR Field Descriptions

Bits Name Description

32–53 — Reserved

54 BBFI Branch buffer flash invalidate. Setting BBFI flash clears the valid bit of all entries in the branch prediction 
mechanisms; clearing occurs independently from the value of the enable bit (BPEN). BBFI is cleared by 
hardware and always reads as 0.

55–62 — Reserved

63 BPEN Branch prediction enable
0 Branch prediction disabled
1 Branch prediction enabled (enables BTB to predict branches)

SPR 1008  Hypervisor

32 33 34 55 56 57 58 59 60 62 63

R
EMCP EN_L2MMU _MHD — EN_MAS7_UPDATE DCFA — CIGLSO — NOPTI

W

Reset All zeros

Figure 2-9. Hardware Implementation-Dependent Register 0 (HID0)
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This table describes the HID0 fields.
 

2.13 Core Device Control and Status Register (CDCSR0)
The core device control and status register is implemented as described in EREF: A Programmer’s 
Reference Manual for Freescale Power Architecture® Processors. The e500mc core is aware of the 
following device programming models:

• the Floating Point Device. The device is present and ready.

Table 2-11. HID0 Field Descriptions

Bits Name Description

32 EMCP Enable machine check signal. Used to mask out further machine check exceptions caused by 
asserting the internal machine check signal from the integrated device. 
0 Machine check signalling is disabled.
1 Machine check signalling is enabled. If HID0[EMCP] = 1, asserting the machine check signal 

from the integrated device causes MCSR[MCP] to be set to 1. If MSR[ME] = 1 or 
MSR[GS] = 1, a machine check exception and subsequent interrupt occurs.

33 EN_L2MMU_MHD Enable L2MMU multiple-hit detection. An L2MMU multiple hit occurs when more than one entry 
matches a given translation. This most likely occurs when software mistakenly loads the TLB with 
more than one entry that matches the same translation, but can also occur if a soft error occurs in 
a TLB entry.
0 Machine check signalling is disabled. 
1 A multiple L2 MMU hit sets MCSR[L2MMU_MHIT] to 1. If MSR[ME] = 1 or MSR[GS] = 1, a 

machine check exception and subsequent interrupt occurs.

34–55 — Reserved

56 EN_MAS7_UPDAT
E

Enable MAS7 update. Enables updating MAS7 by tlbre and tlbsx.
0 MAS7 is not updated by a tlbre or tlbsx.
1 MAS7 is updated by a tlbre or tlbsx.

57 DCFA Data cache flush assist. Force data cache to ignore invalid sets on miss replacement selection.
0 The data cache flush assist facility is disabled
1 The miss replacement algorithm ignores invalid entries and follows the replacement sequence 

defined by the PLRU bits. This reduces the series of uniquely addressed load or dcbz 
instructions to eight per set. The bit should be set just before beginning a cache flush routine 
and should be cleared when the series of instructions is complete. 

58 — Reserved

59 CIGLSO Cache-inhibited guarded load/store ordering.
0 Loads and stores to storage that are marked as cache inhibited and guarded have no ordering 

implied except what is defined in the rest of the architecture.
1 Loads and stores to storage that are marked as cache inhibited and guarded are ordered.

60–62 — Reserved

63 NOPTI NOP the data and instruction cache touch instructions. Note that “cache and lock set” and “cache 
and lock clear” instructions are not affected by the setting of this bit.
0 dcbt, dcbtep, dcbtst, dcbtstep, and icbt are enabled, and operate as defined by the 

architecture and the rest of this document. 
1 dcbt, dcbtep, dcbtst, dcbtstep, and icbt are treated as NOPs.
When touch instructions are treated as NOPs because HID0[NOPTI] is set, they do not cause 
DAC debug events. That is, if a DAC comparison would have caused a debug event, the debug 
event is also NOPed and does not occur.
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For e500mc, writes to CDCSR0 are ignored.

This figure shows the core device control and status register 0 format.

2.14 L1 Cache Registers
The L1 cache registers provide control and configuration and status information for the L1 cache 
implementation.

2.14.1 L1 Cache Control and Status Register 0 (L1CSR0)

L1CSR0 is used for general control and status of the L1 data cache. The e500mc implements the L1CSR0 
fields shown in Figure 2-11 as they are defined by the architecture and described in the EREF: A 
Programmer’s Reference Manual for Freescale Power Architecture® Processors. It does not implement 
the following:

• Cache way partitioning bits (L1CSR0[32–42]).
• Data cache lock overflow allocate bit, CLOA, (L1CSR0[56]).
• Cache operation aborted bit, CABT (L1CSR0[61]). Cache operations are never aborted on 

e500mc.

For L1CSR0[CEA], e500mc only supports the value 0b00 and always invalidates the entire contents (tags 
and data arrays) and generates a machine check or error report on the occurrence of an error detection when 
L1CSR0[CECE] is set. Writing any other value to this field is ignored.

For L1CSR0[CEDT], e500mc only supports the value 0b00 and detects single-bit tag and single-bit data 
errors. Writing any other value to this field is ignored.

Note that on the e500mc, setting L1CSR2[DCWS] automatically sets L1CSR0[CFI]. Also, when setting 
L1CSR0[CEI], it is required that L1CSR0[CECE] also be set in the same mtspr instruction.

Writing to L1CSR0 requires synchronization, as described in Section 3.3.3, “Synchronization 
Requirements.” 

 SPR 696 Hypervisor

32 39 40 47 48 55 56 63

R Floating Point Device AltiVec Device Multithread Device SPE Device

W

Reset 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 2-10. Core Device Control and Status Register 0 (CDCSR0) Format
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SPR 1010 Hypervisor

32 35 36 39 40 41 42 43 44 45 46 47

R
— — — — — — CEA — CECE

W

Reset All zeros

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

R
CEI — CEDT CSLC CUL CLO CLFC — CEIT — DCBZ32 — CFI CE

W

Reset All zeros

Figure 2-11. L1 Cache Control and Status Register 0 (L1CSR0) Fields Implemented on e500mc

Table 2-12. L1CSR0 Field Descriptions

Bits Name Description

32–43 — Reserved

44–45 CEA Data cache error action
00 Error detection causes a machine check interrupt (and possibly error report interrupts). For e500mc, if the 

core is in write shadow mode (L1CSR2[DCWS] = 1), the entire data cache is invalidated.
01 Reserved for e500mc.
10 Reserved for e500mc.
11 Reserved

The setting of CEA has no effect if L1CSR0[CECE] = 0. Reading CEA is not guaranteed to reflect the last 
written value in some implementations, however, it returns either the last written value or 0. 
e500mc only supports the value 0b00 for ICEA

46 — Reserved 

47 CECE
CPE

DCPE

(Data) Cache error checking enable.
0 Error detection of the cache disabled
1 Error detection of the cache enabled

48 CEI
CPI

DCPI

(Data) Cache error injection enable. See Section 5.4.5, “Cache Error Injection.”
0 Error error injection disabled
1 Error injection enabled. 

Cache error checking must also be enabled (CECE = 1) when this bit is set.
Note that if the programmer attempts to set L1CSR0[CEI] (using mtspr) without setting L1CSR0[CECE], 
L1CSR0[CEI] is not set (enforced by hardware).

49–51 — Reserved

50–51 CEDT Data cache error detection/correction type
00 Detect tag parity errors and data parity errors
01 reserved for e500mc
10 reserved
11 reserved
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52 CSLC
DCSLC

(Data) Cache snoop lock clear. 
Sticky bit set by hardware if a cache line lock was cleared by a snoop operation which caused an invalidation. 
Note that the lock for that line is cleared whenever the line is invalidated. This bit can be cleared only by 
software.
0 The cache has not encountered a snoop that invalidated a locked line.
1 The cache has encountered a snoop that invalidated a locked line.

53 CUL
DCUL

(Data) Cache unable to lock. 
Sticky bit set by hardware. This bit can be cleared only by software.
0 Indicates a lock set instruction was effective in the cache
1 Indicates a lock set instruction was not effective in the cache

54 CLO
DCLO

(Data) Cache lock overflow. <E.CL>
Sticky bit set by hardware. This bit can be cleared only by software.
0 Indicates a lock overflow condition was not encountered in the cache
1 Indicates a lock overflow condition was encountered in the cache

55 CLFC
DCLFC

(Data) Cache lock bits flash clear. <E.CL>
Clearing occurs regardless of the enable (L1CSR0[CE]) value.
0 Default. 
1 Hardware initiates a cache lock bits flash clear operation. Cleared when the operation is complete.
Note: During a flash clear operation, writing a 1 causes undefined results; writing a 0 has no effect

56 — Reserved

57–58 CEIT Cache error injection type. Controls the type of error injection to be performed.
00 Inject single-bit data error and inject single bit tag error
01 reserved
10 reserved
11 reserved

60 DCBZ32 Data cache operation length. 
0 dcba and dcbz (dcbzep) instruction number of bytes operated on is all bytes in cache line
1 dcba and dcbz (dcbzep) number of bytes operated on is 32

61 — Reserved

62 CFI
DCFI

(Data) Cache flash invalidate. Invalidation occurs regardless of the enable (L1CSR0[CE]) value.
0 No cache invalidate.
1 Cache flash invalidate operation. A cache invalidation operation is initiated by hardware. Once complete, 

this bit is cleared.

Note: During an invalidation operation, writing a 1 causes undefined results; writing a 0 has no effect.

63 CE
DCE

(Data) Cache enable.
0 The cache is not enabled. (not accessed or updated)
1 Enables cache operation.

Note: CE should not be set when the cache is disabled until after the cache has been properly initialized by 
flash invalidating the cache . This applies both to the first time the cache is enabled as well as 
sequences that want to re-enable the cache after software has disabled it.

Note: If the cache is enabled and software wishes to disable it by writing a 0 to CE, software should first flush 
the cache to ensure that any modified data resident in the cache is pushed to memory. If the cache is 
not flushed, coherency is lost and any lines in the cache may provide stale data when the cache is 
re-enabled.

Table 2-12. L1CSR0 Field Descriptions (continued)

Bits Name Description
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2.14.2 L1 Cache Control and Status Register 1 (L1CSR1)

L1CSR1 is used for general control and status of the L1 instruction cache. The e500mc implements the 
L1CSR1 fields shown in Figure 2-12 as they are defined by the architecture and described in the EREF: A 
Programmer’s Reference Manual for Freescale Power Architecture® Processors. It does not implement 
L1CSR1[ICLOA,ICABT] (bits 56 and 61). 

For L1CSR1[ICEA], e500mc only supports the value 0b00 and always invalidates the entire contents (tags 
and data arrays) and generates a machine check or error report on the occurrence of a parity error when 
L1CSR1[ICECE] is set. Writing any other value to this field is ignored.

For L1CSR1[ICEDT], e500mc only supports the value 0b00 for parity detection. Writing any other value 
to this field is ignored.

When setting L1CSR1[ICEI], it is required that L1CSR1[ICECE] also be set in the same mtspr 
instruction.

Writing to L1CSR1 requires synchronization, as described in Section 3.3.3, “Synchronization 
Requirements.”

This table describes L1CSR1 fields implemented on the e500mc.
 

SPR 1011 Hypervisor

32 43 44 45 46 47 48 49 50 51 52 53 54 55 56 61 62 63

R
— ICEA ICECE ICEI — ICEDT ICSLC ICUL ICLO ICLFC — ICFI ICE

W

Reset All zeros

Figure 2-12. L1 Cache Control and Status Register 1 (L1CSR1) Fields Implemented on the e500mc 

Table 2-13. L1CSR1 Field Descriptions

Bits Name Description

32–43 — Reserved

44–45 ICEA Instruction cache error action
00 Error detection causes a machine check (and possibly an error report). The location in the instruction 

cache which caused the error is invalidated (other instruction cache locations may also be 
invalidated).e500mc

01 Reserved for e500mc
10 Reserved for e500mc
11 Reserved
The setting of ICEA has no effect if L1CSR1[ICECE] = 0. Reading ICEA is not guaranteed to reflect the last 
written value in some implementations, however, it returns either the last written value or 0.
Note: e500mc only supports the value 0b00 for ICEA.

47 ICECE Instruction error checking enable.
0 Error checking of the cache disabled
1 Error checking of the cache enabled

48 ICEI Instruction cache error injection enable. 
0 Error injection disabled
1 Error injection enabled. Note that cache error checking must also be enabled (L1CSR1[ICECE] = 1) when 

this bit is set, otherwise, results are undefined and erratic behavior may occur. If L1CSR0[ICECE] = 0, ICEI 
cannot be set (i.e,). L1CSR0[ICEI] = L1CSR0[ICECE] & L1CSR0[ICEI]).
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2.14.3 L1 Cache Control and Status Register 2 (L1CSR2)

L1CSR2, shown in Figure 2-13, provides additional control and status for the primary L1 data cache of the 
processor. The e500mc implements L1CSR2 as it is defined by the architecture and described in the EREF: 
A Programmer’s Reference Manual for Freescale Power Architecture® Processors, with the following 
exceptions:

49 — Reserved

50–51 ICEDT Instruction cache error detection type. 
00 Parity detection.
01 Reserved for e500mc
10 Reserved
11 Reserved
The setting of ICEDT has no effect if L1CSR1[ICECE] = 0. Reading ICEDT is not guaranteed to reflect the last 
written value in some implementations, however, it returns either the last written value or 0.
Note: e500mc only supports the value 0b00 for ICEDT.

52 ICSLC Instruction cache snoop lock clear. Sticky bit set by hardware if a cache line lock was cleared by a snoop 
operation which caused an invalidation. Note that the lock for that line is cleared whenever the line is 
invalidated. This bit can be cleared only by software.
0 The cache has not encountered a snoop that invalidated a locked line.
1 The cache has encountered a snoop that invalidated a locked line.

53 ICUL Instruction cache unable to lock. Sticky bit set by hardware. This bit can be cleared only by software.
0 Indicates a lock set instruction was effective in the cache
1 Indicates a lock set instruction was not effective in the cache

54 ICLO Instruction cache lock overflow. Sticky bit set by hardware. This bit can be cleared only by software.
0 Indicates a lock overflow condition was not encountered in the cache
1 Indicates a lock overflow condition was encountered in the cache

55 ICLFC Instruction cache lock bits flash clear. Clearing occurs regardless of the enable (L1CSR1[ICE]) value.
0 Default. 
1 Hardware initiates a cache lock bits flash clear operation. This bit is cleared when the operation is complete.
Note: Writing a 1 while a flash clear operation is in progress causes undefined results. Writing a 0 during a 

flash clear operation is ignored

56–61 — Reserved for implementation dependent use.

62 ICFI Instruction cache flash invalidate. Invalidation occurs regardless of the enable (L1CSR1ICE) value.
0 No cache invalidate.
1 Cache flash invalidate operation. A cache invalidation operation is initiated by hardware. Once complete, 

this bit is cleared.
Note: Writing a 1 during an invalidation operation causes undefined results. Writing a 0 during an invalidation 

operation is ignored.

63 ICE Instruction cache enable.
0 The cache is not enabled. (not accessed or updated)
1 Enables cache operation.
Note: ICE should not be set when the cache is disabled until after the cache has been properly initialized by 

flash invalidating the cache . This applies both to the first time the cache is enabled as well as 
sequences that want to re-enable the cache after software has disabled it.

Table 2-13. L1CSR1 Field Descriptions (continued)

Bits Name Description
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• Setting L1CSR2[DCWS] automatically sets L1CSR0[CFI] to flash invalidate the data cache when 
turning on write shadow mode to purge the cache of any modified data. Software should perform 
a flush operation on the data cache prior to setting L1CSR2[DCWS].

• While write shadow mode is active (L1CSR2[DCWS] = 1), the L2 cache is required to be enabled 
and in general be able to allocate lines when store or store type operations are performed. See 
Table 5-1 for supported write shadow configurations.

• Although the architecture defines DCSTASHID as L1CSR2[54–63], the e500mc implements only 
8 bits (L1CSR2[56–63]) and supports only stash ID values of 8 to 255. 

Writing to L1CSR2 requires synchronization, as described in Section 3.3.3, “Synchronization 
Requirements.”

This table describes how L1CSR2 fields are implemented on the e500mc.
 

2.14.4 L1 Cache Configuration Register 0 (L1CFG0)

L1CFG0, shown in this figure, provides configuration information for the L1 data cache. 

SPR 606 Hypervisor

 32 33 34 55 56 63

R
— DCWS — DCSTASHID

W

Reset All zeros

Figure 2-13. L1 Cache Control and Status Register 2 (L1CSR2) Fields Implemented on the e500mc

Table 2-14. L1CSR2 Field Descriptions

Bits Name Description

32 — Implementation dependent.

33 DCWS Data cache write shadow. Note that on the e500mc, changing L1CSR2[DCWS] automatically sets 
L1CSR0[CFI].

Set by software to place the primary data cache into write shadow mode. When write shadow mode is 
enabled, data that is written to the primary data cache is also written through to the backside L2 (or other 
parts of the memory hierarchy) so that any subsequent failures in the primary data cache can be recovered 
from by invalidating the data cache.
0 The primary data cache is not in write shadow mode.
1 The primary data cache is in write shadow mode.
Note: Software should flush and invalidate the primary data cache before setting DCWS to ensure that no 

modified data exists in the primary data cache.
Note: Only certain cache configurations are supported when write shadow mode is enabled. See 

Table 5-1.

34–55 — Reserved

56–63 DCSTASHID Data cache stash ID. Contains the cache target identifier for external stash operations directed to this 
processor’s data cache. Clearing DCSTASHID prevents the primary cache from accepting external stash 
operations. Note that the e500mc supports only stash ID values of 8 and larger (that is values between 8 
and 255); values from 1 to 7 are illegal.
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The EREF: A Programmer’s Reference Manual for Freescale Power Architecture® Processors describes 
these fields as they are defined in the Power ISA. This table describes how they are implemented on the 
e500mc.

 

2.14.5 L1 Cache Configuration Register 1 (L1CFG1)

L1CFG1, shown in this figure, provides configuration information for the L1 instruction cache. 

SPR 515 User read-only

32 33 34 35 36 37 38 39 40 41 42 43 44 45 52 53 63

R CARCH CWPA CFAHA CFISWA
—

CBSIZE CREPL CLA CPA CNWAY CSIZE

W

Reset 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0

Figure 2-14. L1 Cache Configuration Register 0 (L1CFG0) Fields Implemented on the e500mc

Table 2-15. L1CFG0 Field Descriptions

Bits Name Description

32–33 CARCH Cache architecture. 0 indicates harvard (split instruction and data)

34 CWPA Cache way partitioning available. 0 indicates unavailable

35 CFAHA Cache flush all by hardware available 0 indicates unavailable

36 CFISWA Direct cache flush available. 0 indicates unavailable

37–38 — Reserved

39–40 CBSIZE Cache block size. 1 indicates 64 bytes

41–42 CREPL Cache replacement policy 1 indicates psuedo-LRU policy

43 CLA Cache locking available 1 indicates available

44 CPA Cache parity available. 1 indicates available

45–52 CNWAY Cache number of ways. 7 indicates 8 ways

53–63 CSIZE Cache size. 32 indicates 32 Kbytes.

SPR 516 User read-only

32 35 36 37 38 39 40 41 42 43 44 45 52 53 63

R
—

ICFISWA
—

ICBSIZE ICREPL ICLA ICPA ICNWAY ICSIZE

W

Reset 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0

Figure 2-15. L1 Cache Configuration Register 1 (L1CFG1)
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This table describes the L1CFG1 fields.
 

2.15 L2 Cache Registers
L2 cache status, control, and error handling is accomplished through SPRs. 

2.15.1 L2 Configuration Register (L2CFG0)

L2CFG0 is provided for software to determine the organization and capabilities of the secondary cache 
The e500mc implements L2CFG0 as it is defined by the architecture and described in the EREF: A 
Programmer’s Reference Manual for Freescale Power Architecture® Processors.

L2CFG0, shown in Figure 2-15, provides configuration information for the L2 instruction cache. 

This table describes the L2CFG0 settings for the e500mc.

Table 2-16. L1CFG1 Field Descriptions

Bits Name Description

32–35 — Reserved

36 ICFISWA Direct cache flush available. 0 indicates unavailable

37–38 — Reserved

39–40 ICBSIZE Instruction cache block size. 1 indicates 64 bytes

41–42 ICREPL Instruction cache replacement policy. 1 indicates pseudo-LRU policy

43 ICLA Instruction cache locking available. 1 indicates available

44 ICPA Instruction cache parity available. 1 indicates available

45–52 ICNWAY Instruction cache number of ways. 7 indicates eight ways

53–63 ICSIZE Instruction cache size. 32 indicates 32 Kbytes

SPR 519 User RO

32 33 34 35 36 37 38 40 41 42 43 44 45 49 50 63

R
—

L2CTEHA L2CDEHA L2CIDPA L2CBSIZE L2CREPL L2CLA
—

L2CNWAY L2CSIZE

W

Reset 0 0 1 1 1 1 0 0 1 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Figure 2-16. L2 Cache Configuration Register 0 (L2CFG0)

Table 2-17. L2CFG0 Field Descriptions

Bits Name Description

32 — Reserved

33–34 L2CTEHA L2 cache tags error handling available. 1 indicates parity detection. 

35–36 L2CDEHA L2 cache data error handling available. 0b11 indicates both parity and ECC correction available.

37 L2CIDPA Cache instruction and data partitioning available. 1 indicates available.

38–40 L2CBSIZE Cache line size. 1 indicates 64 bytes
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2.15.2 L2 Cache Control and Status Register (L2CSR0)

L2CSR0, shown in this figure, provides general control and status for the processor’s L2 cache. 

 

41–42 L2CREPL Cache default replacement policy. This is the default line replacement policy at power-on-reset. If an 
implementation allows software to change the replacement policy it is not reflected here.1 indicates 
pseudo-LRU.

43 L2CLA Cache line locking available. 1 indicates available.

44 — Reserved

45–49 L2CNWAY Number of cache ways. 7 indicates 8 ways.

50–63 L2CSIZE Cache size as a multiple of 64 Kbytes. 2 indicates 128-Kbyte cache.

SPR 1017 Hypervisor

32 33 34 35 37 38 41 42 43 44 46 47

R
L2E L2PE --- L2WP — L2FI L2IO — L2DO

W

Reset All zeros

48 49 50 51 52 53 54 55 56 57 58 59 63

R
— L2REP L2FL L2LFC — L2LOA — L2LO —

W

Reset All zeros

Figure 2-17. L2 Cache Control and Status Register (L2CSR0)

Table 2-17. L2CFG0 Field Descriptions (continued)

Bits Name Description
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This table describes the L2CSR0 fields. 
Table 2-18. L2CSR0 Field Descriptions

Bits Name Description

32 L2E L2 cache enable. Implemented as defined in EREF: A Programmer’s Reference Manual for Freescale 
Power Architecture® Processors. The e500mc requires software to continue to read this bit after setting it 
to ensure the desired value has been set before continuing on.
Note: L2E should not be set when the L2 cache is disabled until after the L2 cache has been properly 

initialized by flash invalidating the cache and locks. This applies both to the first time the L2 cache is 
enabled as well as sequences that want to re-enable the cache after software has disabled it.

Note: If the L2 cache is enabled and software wishes to disable it by writing a 0 to L2E, software should 
first flush the L2 cache to ensure that any modified data resident in the L2 cache is pushed to 
memory. If the L2 cache is not flushed, coherency is lost and any lines in the cache may provide stale 
data when the L2 cache is re-enabled.

33 L2PE L2 cache parity/ECC error checking enable. Implemented as defined in EREF: A Programmer’s Reference 
Manual for Freescale Power Architecture® Processors.
Note: L2PE should not bet set until after the L2 cache has been properly initialized out of reset by flash 

invalidation. Doing so can cause erroneous detection of errors because the state of the error 
detection bits are random out of reset. See Section 11.5, “L1 Cache State,” for more details on L1 
cache initialization.

Note: When error injection is being performed, the value of L2PE and individual error disables are ignored 
and errors are always detected. Software should ensure that L2PE is set when performing error 
injection.

34 — Reserved
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35-37 L2WP L2 Instruction/Data Way Partitioning
If L2IO and L2DO are both 0, the ways of the cache are partitioned to allocate new lines in ways based on 
whether the allocation is for instructions or data. A value of 0 allows all ways to be used for either 
instructions or data. A non-zero value specifies the number of ways to be used for allocating instructions. 
The number of ways specified for data references is the total number of ways minus the 
value in the L2WP field.
000 All ways are available for instruction allocation and data allocation 
001 1 way available for instruction allocation, 7 ways available for data allocation
010 2 ways available for instruction allocation, 6 ways available for data allocation 
011 3 ways available for instruction allocation, 5 ways available for data allocation 
100 4 ways available for instruction allocation, 4 ways available for data allocation 
101 5 ways available for instruction allocation, 3 ways available for data allocation 
110 6 ways available for instruction allocation, 2 ways available for data allocation 
111 7 ways available for instruction allocation, 1 ways available for data allocation

Performance note: If the number of ways available for instruction or data allocation is not a power of two, 
the statistical percentage of total allocations across those available ways over a very long period of time 
are not evenly distributed. For instance, if 3-ways (say way A, way B, and way C) are available for data 
allocation, the long term percentage of allocations for A, B, and C are not 33%, 33%, 33%, respectively. 
Instead, the number of allocations for one of the three ways are closer to 50%, with the other two ways 
being closer to 25% (50%, 25%, 25%).

Instruction and Data way partitioning has no effect on cache locking. Cache lines which are locked due to 
cache locking instructions are still honored in the presence of way partitioning. If locked lines exist in the 
L2 cache prior to enabling L2 way partitioning, those locked lines can exist in the “opposite” partition. For 
instance, a line locked by an icbtls instruction can exist in a way which is part of the data partition. To avoid 
this condition, locks must be flash invalidated prior to enabling way partitioning.

Because L2WP only controls how new lines are allocated, L2WP can be changed at any time without 
affecting the functionality of the L2 Cache.

38–39 (L2CM) L2 cache coherency mode. This field is not implemented in e500mc, and always reads as 0.

40–41 — Reserved

42 L2FI L2 cache flash invalidate. Implemented as defined in EREF: A Programmer’s Reference Manual for 
Freescale Power Architecture® Processors. Note that Lock bits are not cleared by a L2 cache flash 
invalidate. Lock bits should be cleared by software at boot time to ensure that random states of the lock 
bits for each line do not limit allocation of those lines. See L2CSR0[L2LFC].
Note: When a flash invalidation operation is being performed (i.e. L2FI has been set to 1 by software), 

software should not attempt to write 1 to this field again until after hardware has reset this bit to 0 to 
indicate that the invalidate operation is complete. Writing a 1 during an invalidation operation causes 
undefined results. Writing a 0 during an invalidation operation is ignored.

Table 2-18. L2CSR0 Field Descriptions (continued)

Bits Name Description
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43 L2IO L2 cache instruction only. Implemented as defined in EREF: A Programmer’s Reference Manual for 
Freescale Power Architecture® Processors except that if L2IO is set and L2DO is not set, storage accesses 
which are data references (i.e. from load/store instructions) are not serviced from the L2 cache even if the 
cache had previously allocated and still contains lines from data references that were allocated prior to 
setting L2IO. In addition, when L2IO is set, the L2 cache does not participate in the coherence protocol 
(that is, it does not respond to snoops) except that it processes instruction cache invalidations (icbi) from 
any processor. When L2IO is set and the L2 cache contains modified data, that data becomes incoherent. 
To avoid this situation, if software wishes to set L2IO (and not L2DO), it should first set both L2IO and L2DO 
to prevent further allocations, then flush any modified data from the L2 cache, then clear L2DO.

The e500mc requires software to continue to read this bit after setting it to ensure the desired value has 
been set before continuing on.

44–46 — Reserved

47 L2DO L2 cache data only. Implemented as defined in EREF: A Programmer’s Reference Manual for Freescale 
Power Architecture® Processors. The e500mc requires software to continue to read this bit after setting it 
to ensure the desired value has been set before continuing on.

48–49 — Reserved

50-51 L2REP L2 line replacement algorithm.
The Streaming PLRU modes perform a partial update of the PLRU bits when an L2 line is allocated, and 
a full update on L2 cache hits. Depending on the access pattern, irregularly-accessed transient data is 
likely to be evicted before regularly-accessed data. 
00 SPLRUA (Streaming Pseudo Least Recently Used with Aging). With this algorithm, the pseudo LRU 

state for a given index is updated to mark a given way most recently used on each L2 cache hit. On L2 
cache allocations, the pseudo LRU state is partially updated on most L2 cache allocations and fully 
updated on every third L2 cache allocations .

01 Invalid
10 SPLRU (Streaming Pseudo Least Recently Used). With this algorithm, the pseudo LRU state for a given 

index is updated to mark a given way most recently used on each L2 cache hit. On L2 cache allocations, 
the pseudo LRU state is partially updated to a state between least recently used and most recently used 
on all L2 cache allocations. 

11 PLRU (Pseudo Least Recently Used).With this algorithm, the pseudo LRU state for a given index is 
updated to mark a given way most recently used on each L2 cache hit and all L2 cache allocations.

Locks for cache lines locked with cache locking instructions are never selected for line replacement unless 
they are explicitly unlocked, regardless of the replacement algorithm.

52 L2FL L2 cache flush. Implemented as defined in EREF: A Programmer’s Reference Manual for Freescale Power 
Architecture® Processors. On e500mc, L2FL should not be set when the L2 cache is not currently enabled 
(L2E should already be 1). If L2FL is set and the L2 cache is not enabled, the flush does not occur and the 
L2FL bit remains set.

53 L2LFC L2 cache lock flash clear. On boot, the processor should set this bit to clear any lock state bits which may 
be randomly set out of reset, prior to enabling the L2 cache. 

54–55 — Reserved

56 L2LOA L2 cache lock overflow allocate. Implemented as defined in EREF: A Programmer’s Reference Manual for 
Freescale Power Architecture® Processors. Note that cache line locking in e500mc L2 is persistent.

57 — Reserved

Table 2-18. L2CSR0 Field Descriptions (continued)

Bits Name Description
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2.15.3 L2 Cache Control and Status Register 1 (L2CSR1)

L2CSR1, shown in Figure 2-18, provides general control and status for the L2 cache of the processor. The 
e500mc implements L2CSR1 as defined by the architecture and described in the EREF: A Programmer’s 
Reference Manual for Freescale Power Architecture® Processors, with the following exceptions:

• It implements only the 8 lsbs of the L2STASHID (L2CSR1[L2STASHID] 
• It does not support stash ID values of less than 8. 

In addition it implements the implementation specific fields L2INSTLOSSLIMITDIS, 
L2INSTLOSSLIMIT, L2SNPWINLIMITDIS, and L2SNPWINLIMIT.

This table describes the L2CSR1 fields. 
 

58 L2LO L2 cache lock overflow. Implemented as defined in EREF: A Programmer’s Reference Manual for 
Freescale Power Architecture® Processors.

59–63 — Reserved

SPR 1018 Hypervisor

32 33 34 35 36 37 39 40 47

R
L2INSTLOSSLIMITDIS L2INSTLOSSLIMIT L2SNPWINLIMITDIS L2SNPWINLIMIT —

W

Reset All zeros

 48 55 56 63

R
— L2STASHID

W

Reset All zeros

Figure 2-18. L2 Cache Control and Status Register 1 (L2CSR1)

Table 2-19. L2CSR1 e500mc-Specific Field Descriptions

Bits Name Description

32 L2INSTLOSSLIMITDIS L2 Instruction Loss Limit Disable
0 L2 Instruction Loss Limiting is enabled. 
1 L2 Instruction Loss Limiting is disabled.

33 — Reserved

34–35 L2INSTLOSSLIMIT Some units of the core can lose arbitration for the backside L2 for multiple cycles. This field 
specifies how many consecutive cycles instruction fetches can lose backside L2 arbitration 
before raising its priority. 
00 Raise priority after 8 losses (default)
01 Raise priority after 4 losses
10 Raise priority after 8 losses
11 Raise priority after 16 losses

Table 2-18. L2CSR0 Field Descriptions (continued)

Bits Name Description
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2.15.4 L2 Error Registers

L2 cache error detection, reporting, and injection allow flexible handling of ECC and parity errors in the 
L2 data and tag arrays. The e500mc implements the L2 error detection registers as they are defined by the 
architecture and described in the EREF: A Programmer’s Reference Manual for Freescale Power 
Architecture® Processors. Deviations from the architecture are described here. 

2.15.4.1 L2 Cache Error Disable Register (L2ERRDIS)

L2ERRDIS, shown in this figure, provides general control for disabling error detection in the L2 cache of 
the processor. The e500mc implements L2ERRDIS as defined by the architecture and described in the 
EREF: A Programmer’s Reference Manual for Freescale Power Architecture® Processors except that it 
does not implement the TMBECCDIS and TSBECCDIS fields, and implements the implementation 
specific field TMHITDIS.

36 L2SNPWINLIMITDIS L2 Snoop Win Limit Disable
0 L2 Snoop Win Limiting is enabled. 
1 L2 Snoop Win Limiting is disabled

37–39 L2SNPWINLIMIT Snoops receive the highest priority when arbitrating for the backside L2. In a system with very 
active snooping, this can starve other units from winning access to the backside L2. This field 
specifies how many consecutive snoops can win arbitration before allowing another unit to 
win.
000 Limit to 8 consecutive snoops (default)
001 Limit to 2 consecutive snoops
010 Limit to 4 consecutive snoops
011 Limit to 8 consecutive snoops
100 Limit to 16 consecutive snoops
101 Limit to 32 consecutive snoops
110 Limit to 64 consecutive snoops
111 Limit to 128 consecutive snoops

40–55 — Reserved

56–63 L2STASHID L2 cache stash ID. Contains the cache target identifier to be used for external stash 
operations directed to this processor’s L2 cache. A value of 0 for L2STASHID prevents the L2 
cache from accepting external stash operations. Note that the e500mc supports only stash 
ID values of 8 and larger (that is values between 8 and 255); values from 1 to 7 are illegal.

SPR 725 Hypervisor

32 55 56 57 58 59 60 61 62 63

R
— TMHITDIS — TPARDIS MBECCDIS SBECCDIS PARDIS —

W

Reset All Zeros

Figure 2-19. L2 Cache Error Disable Register (L2ERRDIS)

Table 2-19. L2CSR1 e500mc-Specific Field Descriptions (continued)

Bits Name Description
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This table describes the L2ERRDIS fields. 

2.15.4.2 L2 Cache Error Detect Register (L2ERRDET)

L2ERRDET, shown in Figure 2-20, provides general status and information for errors detected in the L2 
cache of the processor. The e500mc implements L2ERRDET as defined by the architecture and described 
in the EREF: A Programmer’s Reference Manual for Freescale Power Architecture® Processors except 

Table 2-20. L2ERRDIS Field Descriptions

Bits Name Description

32–56 — Reserved

56 TMHITDIS Tag multi-way hit error disable.
0 Tag multi-way hit detection enabled if L2CSR0[L2PE] = 1.
1 Tag multi-way hit error detection disabled.
Note: This field is not part of the EREF: A Programmer’s Reference Manual for Freescale Power 

Architecture® Processors.

Note: When error injection is being performed, the value of TMHITDIS and L2CSR0[L2PE] are 
ignored and errors are always detected. Software should ensure that L2PE is set and 
TMHITDIS is clear when performing error injection to the tags.

57-58 — Reserved

59 TPARDIS Tag parity error disable. 
0 Tag parity error detection enabled.
1 Tag parity error detection disabled.
Note: When error injection is being performed, the value of TPARDIS and L2CSR0[L2PE] are 

ignored and errors are always detected. Software should ensure that L2PE is set and 
TPARDIS is clear when performing error injection to the tags.

60 MBECCDIS Data Multiple-bit ECC error disable.
0 Data Multiple-bit ECC error detection enabled.
1 Data Multiple-bit ECC error detection disabled.
Note: When error injection is being performed, the value of MBECCDIS and L2CSR0[L2PE] are 

ignored and errors are always detected. Software should ensure that L2PE is set and 
MBECCDIS is clear when performing error injection to the data.

61 SBECCDIS Data ECC error disable. 
0 Data Single-bit ECC error detection enabled.
1 Data Single-bit ECC error detection disabled.
Note: When error injection is being performed, the value of SBECCDIS and L2CSR0[L2PE] are 

ignored and errors are always detected. Software should ensure that L2PE is set and 
SBECCDIS is clear when performing error injection to the data.

62 PARDIS Data parity error disable. 
0 Data parity error detection enabled if L2CSR0[L2PE] = 1, MBECCDIS = 1, and SBECCDIS = 1
1 Data parity error detection disabled.
Note: When error injection is being performed, the value of PARDIS and L2CSR0[L2PE] are 

ignored and errors are always detected. Software should ensure that L2PE is set and 
PARDIS is clear when performing error injection to the data.

63 — Reserved
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that it does not implement the TMBECCERR, TSBECCERR, and L2CFGERR fields, and implements the 
implementation specific fields MULL2ERR and TMHIT.

This table describes the L2ERRDET fields.

2.15.4.3 L2 Cache Error Interrupt Enable Register (L2ERRINTEN)

L2ERRINTEN, shown in Figure 2-21, provides general status and information for errors detected in the 
L2 cache of the processor. The e500mc implements L2ERRINTEN as defined by the architecture and 

SPR 991 Hypervisor

32 55 56 57 58 59 61 62 63

R MULL2ERR TMHIT
—

TPARERR MBECCERR SBECCERR PARERR
—

W w1c w1c w1c w1c w1c w1c

Reset All Zeros

Figure 2-20. L2 Cache Error Detect Register (L2ERRDET)

Table 2-21. L2ERRDET Field Descriptions

Bits Name Description

32 MULL2ERR Multiple L2 errors. Writing a 1 to this bit location resets the bit. 
0 Multiple L2 errors of the same type were not detected.
1 Multiple L2 errors of the same type were detected.
Note: This field is not part of EREF: A Programmer’s Reference Manual for Freescale Power 

Architecture® Processors.

33–55 — Reserved

56 TMHIT Tag multi-way hit detected. Writing a 1 to this bit location resets the bit. 
0 Tag multi-way hit not detected.
1 Tag multi-way hit detected.
Note: This field is not part of EREF: A Programmer’s Reference Manual for Freescale Power 

Architecture® Processors.

57–58 — Reserved

59 TPARERR Tag parity error detected. Writing a 1 to this bit location resets the bit. 
0 Tag parity error not detected.
1 Tag parity error detected.

60 MBECCERR Data Multiple-bit ECC error detected. Writing a 1 to this bit location resets the bit. 
0 Tag Multiple-bit ECC error not detected.
1 Tag Multiple-bit ECC error detected.

61 SBECCERR Data ECC error detected. Writing a 1 to this bit location resets the bit. 
0 Tag Single-bit ECC error not detected.
1 Tag Single-bit ECC error detected.

62 PARERR Data parity error detected. Writing a 1 to this bit location resets the bit. 
0 Tag parity error not detected.
1 Tag parity error detected.

63 — Reserved
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described in the EREF: A Programmer’s Reference Manual for Freescale Power Architecture® 
Processors with the following exception:

• It does not implement the TMBECCINTEN, TSBECCINTEN, and L2CFGINTEN fields
• It does implement the implementation specific fields TMHITINTEN.

This table describes the L2ERRINTEN fields.

2.15.4.4 L2 Cache Error Control Register (L2ERRCTL)

L2ERRCTL, shown in Figure 2-21, provides thresholds and counts for errors detected in the L2 cache of 
the processor. The e500mc implements L2ERRCTL as defined by the architecture and described in the 

SPR 720 Hypervisor

32 55 56 57 58 59 60 61 62 63

R
— TMHITINTEN — TPARINTEN MBECCINTEN SBECCINTEN PARINTEN —

W

Reset All Zeros

Figure 2-21. L2 Cache Error Interrupt Enable Register (L2ERRINTEN)

Table 2-22. L2ERRINTEN Field Descriptions

Bits Name Description

32–55 — Reserved

56 TMHITINTEN Tag multi-way hit interrupt reporting enable.
0 Tag multi-way hit interrupt reporting disabled.
1 Tag multi-way hit interrupt reporting enabled through a machine check exception.
Note: This field is not part of EREF: A Programmer’s Reference Manual for Freescale Power 

Architecture® Processors.

57–58 — Reserved

59 TPARINTEN Tag parity error interrupt reporting enable. 
0 Tag parity error interrupt reporting disabled.
1 Tag parity error interrupt reporting enabled through a machine check exception.

60 MBECCINTEN Data Multiple-bit ECC error interrupt reporting enable. 
0 Data Multiple-bit ECC error interrupt reporting disabled.
1 Data Multiple-bit ECC error interrupt reporting enabled through a machine check exception.

61 SBECCINTEN Data ECC error interrupt reporting enable. 
0 Data Single-bit ECC error interrupt reporting disabled.
1 Data Single-bit ECC error interrupt reporting enabled through a machine check exception.

62 PARINTEN Data parity error interrupt reporting enable. 
0 Data parity error interrupt reporting disabled.
1 Data parity error interrupt reporting enabled through a machine check exception.

63 — Reserved



Register Model

e500mc Core Reference Manual, Rev. 3

2-46 Freescale Semiconductor
 

EREF: A Programmer’s Reference Manual for Freescale Power Architecture® Processors with the 
following exception: it does not implement the L2TCCOUNT field.

This table describes the L2ERRCTL fields.

2.15.4.5 L2 Cache Error Address Capture Registers (L2ERRADDR and 
L2ERREADDR)

L2ERRADDR and L2ERREADDR provides the real address of a captured error detected in the L2 cache 
of the processor. The e500mc implements these registers as defined by the architecture and described in 
the EREF: A Programmer’s Reference Manual for Freescale Power Architecture® Processors.

2.15.4.6 L2 Cache Error Capture Data Registers (L2CAPTDATALO and 
L2CAPTDATAHI)

L2CAPTDATALO and L2CAPTDATAHI provides the array data of a captured error detected in the L2 
cache of the processor. L2CAPTDATALO captures the lower 32 bits of the doubleword and 
L2CAPTDATAHI captures the upper 32 bits of the doubleword. The e500mc implements these registers 
as defined by the architecture and described in the EREF: A Programmer’s Reference Manual for 
Freescale Power Architecture® Processors.

2.15.4.7 L2 Cache Capture ECC Syndrome Register (L2CAPTECC)

L2CAPTECC provides both the calculated and stored ECC syndrome of a captured error detected in the 
L2 cache of the processor. The e500mc implements this register as defined by the architecture and 
described in the EREF: A Programmer’s Reference Manual for Freescale Power Architecture® 
Processors.

SPR 724 Hypervisor

32 39 40 47 48 55 56 63

R
— L2CTHRESH — L2CCOUNT

W

Reset All Zeros

Figure 2-22. L2 Cache Error Control Register (L2ERRCTL)

Table 2-23. L2ERRCTL Field Descriptions

Bits Name Description

32–39 — Reserved

40–47 L2CTHRESH L2 cache threshold. Threshold value for the number of ECC single-bit errors that are detected 
before reporting an error condition. L2CTHRESH is compared to L2CCOUNT each time a single-bit 
ECC error is detected.

48–55 — Reserved

56–63 L2CCOUNT L2 data ECC single-bit error count. Counts ECC single-bit errors in the L2 data detected. If 
L2CCOUNT equals the ECC single-bit error trigger threshold (L2CTHRESH), an error is reported 
if single-bit error reporting for data is enabled. Software should clear this value when such an error 
is reported to reset the count.



Register Model

e500mc Core Reference Manual, Rev. 3

Freescale Semiconductor 2-47
 

2.15.4.8 L2 Cache Error Attribute Register (L2ERRATTR)

L2ERRATTR, shown in Figure 2-23, provides extended information for errors detected in the L2 cache of 
the processor. The e500mc implements L2ERRATTR as defined by the architecture and described in the 
EREF: A Programmer’s Reference Manual for Freescale Power Architecture® Processors, and 
implements the implementation specific fields DWNUM, TRANSSRC, and TRANSTYPE.

This table describes the L2ERRATTR fields.

SPR 721 Hypervisor
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Figure 2-23. L2 Cache Error Attribute Register (L2ERRATTR)

Table 2-24. L2ERRATTR Field Descriptions

Bits Name Description

32 — Reserved

33-35 DWNUM Doubleword number of the detected error (data ECC errors only).
Note: This field is not part of EREF: A Programmer’s Reference Manual for Freescale Power 

Architecture® Processors.

36–42 — Reserved

43-47 TRANSSRC Transaction source for detected error
00000 External (snoop)
10000 Internal (instruction)
10001 Internal (data)
00001–01111 Not Implemented
10010–11111 Not Implemented
Note: This field is not part of EREF: A Programmer’s Reference Manual for Freescale Power 

Architecture® Processors.

48–49 — Reserved

50-51 TRANSTYPE Transaction type for detected error
00 Snoop
01 Write
10 Read
11 Not Implemented
Note: This field is not part of EREF: A Programmer’s Reference Manual for Freescale Power Architecture® 

Processors.

52–62 — Reserved

63 VALINFO L2 capture registers valid.
0 L2 capture registers contain no valid information or no enabled errors were detected.
1 L2 capture registers contain information of the first detected error which has reporting enabled. 

Software must clear this bit to unfreeze error capture so error detection hardware can overwrite the 
capture address/data/attributes for a newly detected error.
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2.15.4.9 L2 Cache Error Injection Control Register (L2ERRINJCTL)

L2ERRINJCTL, shown in Figure 2-24, provides control for injecting errors into both the tags and data 
array for the L2 cache of the processor. The contents of L2ERRINJCTL as defined by the architecture and 
described in the EREF: A Programmer’s Reference Manual for Freescale Power Architecture® 
Processors is implementation dependent, and all fields of this register are e500mc 
implementation-specific.

NOTE
When error injection is being performed, the value of specific error disables 
in L2ERRDIS and L2CSR0[L2PE] are ignored and errors are always 
detected. Software must ensure that L2PE is set and individual disables in 
L2ERRDIS are clear when performing error injection to the data or tags.

This table describes the L2ERRINJCTL fields.

SPR 987 Hypervisor
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Figure 2-24. L2 Cache Error Injection Control Register (L2ERRINJCTL)

Table 2-25. L2ERRINJCTL Field Descriptions

Bits Name Description

32–46 — Reserved, should be 0.

47 TERRIEN L2 tag array error injection.
0 No tag errors are injected.
1 All subsequent entries written to the L2 tag array have the parity inverted.
Note: This field is not part of EREF: A Programmer’s Reference Manual for Freescale Power 

Architecture® Processors.

48–53 — Reserved, should be 0.

54 ECCMB ECC/Parity mirror byte enable.
0 ECC byte mirroring is disabled.
1 Each doubleword’s most significant byte is mirrored onto the corresponding ECC/parity byte if 

DERRIEN = 1.
Note: This field is not part of EREF: A Programmer’s Reference Manual for Freescale Power 

Architecture® Processors.
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2.15.4.10 L2 Cache Error Injection Mask Registers (L2ERRINJLO and 
L2ERRINJHI)

L2ERRINJLO and L2ERRINJHI provide the injection mask describing how errors are to be injected into 
the data path doubleword in the L2 cache of the processor. L2ERRINJLO provides the mask for the lower 
32 bits of the doubleword and L2ERRINJHI provides the mask for the upper 32 bits of the doubleword. A 
set bit in the injection mask causes the corresponding data path bit to be inverted on data array writes when 
L2ERRINJCTL[DERRIEN] = 1. The contents of L2ERRINJLO and L2ERRINJHI, as defined by the 
architecture and described in the EREF: A Programmer’s Reference Manual for Freescale Power 
Architecture® Processors, is implementation-dependent, and all fields of this register are e500mc 
implementation-specific.

2.16 MMU Registers
This section describes the following MMU registers and their fields:

• Logical Partition ID Register (LPIDR)
• Process ID Register (PID)
• MMU Control and Status Register 0 (MMUCSR0)
• MMU Configuration Register (MMUCFG)
• TLB Configuration Registers (TLBnCFG)
• MMU Assist Registers (MAS0–MAS8)

2.16.1 Logical Partition ID Register (LPIDR)

LPIDR contains the logical partition ID in use for the processor. LPIDR is part of the virtual address and 
is used during address translation comparing LPID to the Translation Logical Partition ID (TLPID) field 
in the TLB entry to determine a matching TLB entry. LPIDR is accessible by software only in hypervisor 
state (MSR[PR] = 0, MSR[GS] = 0). An attempt to read or write to LPIDR when the core is not in the 

55 DERRIEN L2 data array error injection.
0 No data errors are injected.
1 Subsequent entries written to the L2 data array have data or ECC/parity bits inverted as specified 

in the data and ECC error injection masks and/or data path byte mirrored onto the ECC as specified 
by the ECC mirror bit enable.

Note: If both ECC mirror byte and data error injection are enabled, ECC mask error injection is 
performed on the mirrored ECC.

Note: This field is not part of EREF: A Programmer’s Reference Manual for Freescale Power 
Architecture® Processors.

56-63 ECCERRIM Error injection mask for the ECC/parity bits. A set bit causes the corresponding ECC/parity bit
to be inverted on writes if DERRIEN = 1.
Note: This field is not part of EREF: A Programmer’s Reference Manual for Freescale Power 

Architecture® Processors.

Table 2-25. L2ERRINJCTL Field Descriptions (continued)

Bits Name Description
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hypervisor state results in a hypervisor privilege exception when MSR[PR] = 0 and a privilege exception 
when MSR[PR] = 1.

Only the low-order 6 bits of LPIDR are implemented on e500mc.

When LPIDR is written the results of the change to LPIDR are not guaranteed to be seen until a context 
synchronizing event occurs.

2.16.2 Process ID Register (PID)

The architecture specifies that a process ID (PID) value be associated with each effective address 
(instruction or data) generated by the processor. PID values, defined by the PID register, are used to 
construct virtual addresses for accessing memory. The e500mc implements only the low-order 8 bits for 
the process ID. Writing to PIDs requires synchronization, as described in Section 3.3.3, “Synchronization 
Requirements.”

2.16.3 MMU Control and Status Register 0 (MMUCSR0) 

MMUCSR0 shown in Figure 2-25, is used to control the L2 MMUs. The e500mc implements the 
L2TLB0_FI and L2TLB1_FI TLB flash invalidate bits, which are implemented as they are defined by the 
architecture and described in the EREF: A Programmer’s Reference Manual for Freescale Power 
Architecture® Processors. 

MMUCSR0 synchronization is described in Section 3.3.3, “Synchronization Requirements.”

This table describes the MMUCSR0 fields.
 

SPR 1012 Hypervisor

3

2

60 61 62 63

R
— L2TLB0_FI L2TLB1_FI —

W

Reset All zeros

Figure 2-25. MMU Control and Status Register 0 (MMUCSR0)

Table 2-26. MMUCSR0 Field Descriptions

Bits Name Description

32–60 — Reserved

61 L2TLB0_FI TLB0 flash invalidate (write 1 to invalidate)
0 No flash invalidate. Writing a 0 to this bit during an invalidation operation is ignored. 
1 TLB1 invalidation operation. Hardware initiates a TLB1 invalidation operation. When this operation is 
complete, this bit is cleared. Writing a 1 during an invalidation operation causes an undefined operation. 
This invalidation typically takes 1 cycle.
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2.16.4 MMU Configuration Register (MMUCFG)

MMUCFG, shown in this figure, is implemented as defined by the architecture. It provides configuration 
information about the e500mc MMU. 

This table describes MMUCFG fields.
 

2.16.5 TLB Configuration Registers (TLBnCFG) 

TLBnCFG, shown in this figure, provides configuration information for TLB0 and TLB1 of the L2 MMU.

62 L2TLB1_FI TLB1 flash invalidate (write 1 to invalidate)
0 No flash invalidate. Writing a 0 to this bit during an invalidation operation is ignored. 
1 TLB1 invalidation operation. Hardware initiates a TLB1 invalidation operation. When this operation is 

complete, this bit is cleared. Writing a 1 during an invalidation operation causes an undefined operation. 
This invalidation typically takes 1 cycle.

63 — Reserved

SPR 1015 Hypervisor RO

32 35 36 39 40 46 47 48 49 52 53 57 58 59 61 62 63

R
—

LPIDSIZE RASIZE
—

NPIDS PIDSIZE
—

NTLBS MAVN

W

Reset 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 1 0 0

Figure 2-26. MMU Configuration Register (MMUCFG)

Table 2-27. MMUCFG Field Descriptions

Bits Name Description

32–35 — Reserved

36–39 LPIDSIZ
E

LPID size. The number of LPID bits implemented. The processor implements only the least significant 
LPIDR bits. (0b0110 indicates LPIDR is 6 bits, LPIDR[58–63])

40–46 RASIZE Real address size supported by the implementation. (0b0100100 indicates 36 physical address bits)

47–48 — Reserved

49–52 NPIDS Number of PID registers. Indicates the number of PID registers provided by the processor. (0b0001 
indicates one PID register implemented)

53–57 PIDSIZE PID register size. PIDSIZE is one less than the number of bits in each of the PID registers implemented by 
the processor. The processor implements only the least significant PIDSIZE+1 bits in the PID. (0b00111 
indicates PID is 8 bits. PID[56–63])

58–59 — Reserved

60–61 NTLBS Number of TLBs. The value of NTLBS is one less than the number of software-accessible TLB structures 
that are implemented by the processor. NTLBS is set to one less than the number of TLB structures so that 
its value matches the maximum value of MAS0[TLBSEL]. (0b01 indicates two TLBs.)

62–63 MAVN MMU architecture version number. Indicates the version number of the architecture of the MMU 
implemented by the processor. (0b00 indicates Version 1.0.)

Table 2-26. MMUCSR0 Field Descriptions (continued)

Bits Name Description
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This table describes the TLBnCFG fields and shows the values for the e500mc. 
 

2.16.6 MMU Assist Registers (MAS0–MAS8)

MAS registers are used to manage pages and TLBs. Contents are written to the TLBs when a TLB Write 
Entry instruction (tlbwe) executes and are read from the TLBs when a TLB Read Entry instruction (tlbre) 
or a TLB Search (tlbsx) executes.

Writing to any MAS register requires synchronization prior to executing a TLB manipulation instruction 
(tlbwe, tlbre, tlbilx) which uses values in the MAS register to perform TLB operations. However, multiple 
MAS register updates can be performed and a single context synchronization instruction prior to the 
execution of the TLB manipulation instruction is sufficient to synchronize all the MAS register changes. 
Synchronization is described in Section 3.3.3, “Synchronization Requirements.”

SPR 688 (TLB0CFG); 689 (TLB1CFG) Hypervisor RO

32 39 40 43 44 47 48 49 50 51 52 63

R ASSOC MINSIZE MAXSIZE IPROT AVAIL
—

NENTRY

W

Reset: TLB0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

TLB1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Figure 2-27. TLB Configuration Registers 0 and 1 (TLB0CFG, TLB1CFG)

Table 2-28. TLBnCFG Field Descriptions

Bits Name Description

32–39 ASSOC Associativity of TLBn
TLB0: 0x04 Indicates associativity is 4-way set associative
TLB1: 0x40 Indicates associativity is 64 (fully associative since ASSOC = NENTRY)

40–43 MINSIZE Minimum page size of TLBn
TLB0: 0x1 Indicates smallest page size is 4 Kbytes
TLB1: 0x1 Indicates smallest page size is 4 Kbytes

44–47 MAXSIZE Maximum page size of TLBn
TLB0: 0x1 Indicates maximum page size is 4 Kbytes
TLB1: 0xB Indicates maximum page size is 4 Gbytes

48 IPROT Invalidate protect capability of TLBn
TLB0: 0 Indicates invalidate protection capability not supported
TLB1: 1 Indicates that TLB1 supports invalidate protection capability 

49 AVAIL Page size availability of TLBn
TLB0: 0 No variable-sized pages available (MINSIZE = MAXSIZE) 
TLB1: 1 Indicates all page sizes between MINSIZE and MAXSIZE supported

50–51 — Reserved

52–63 NENTRY Number of entries in TLBn
TLB0: 0x200 TLB0 contains 512 entries.
TLB1: 0x040 TLB1 contains 64 entries
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TLB read (tlbre) and TLB write (tlbwe) instructions use MAS0[TLBSEL], MAS0[ESEL], and 
MAS2[EPN] to select which TLB entry to read from or write to. On e500mc, these fields are used as 
described by this table.

2.16.6.1 MAS Register 0 (MAS0)

MAS0, shown in Figure 2-28, is implemented as defined by the architecture. Only the low-order bit of 
TLBSEL, the low-order 6 bits of ESEL, and the low-order 2 bits of NV are implemented.

Writing to MAS0 requires synchronization, as described in Section 3.3.3, “Synchronization 
Requirements.”

The MAS0 fields are described in this table. 
 

Table 2-29. TLB Selection Fields

TLB Array
MAS0[TLBSEL]

MAS0[ESEL] MAS2[EPN] MAS0[NV]

0 MAS0[46:47] selects way
(low order 2 bits of ESEL)

MAS2[45:51] selects set
(low order 7 bits of EPN)

MAS0[62:63] indicates Next 
Victim value for ESEL

1 MAS0[42:47] selects entry
(low order 6 bits of ESEL)

Not used, as TLB1 is fully associative NV field not defined for this TLB 
Array

SPR 624 Guest supervisor

32 34 35 36 41 42 47 48 61 62 63

R
— TLBSEL — ESEL — NV

W

Reset All zeros

Figure 2-28. MAS Register 0 (MAS0)

Table 2-30. MAS0 Field Descriptions—MMU Read/Write and Replacement Control

Bit Name Description

32–34 — Reserved

35 TLBSE
L

Selects TLB for access.
0 TLB0
1 TLB1

36–41 — Reserved 

42–47 ESEL Entry select. Number of the entry in the selected array to be used for tlbwe. Updated on TLB error exceptions 
(misses) and tlbsx hit and miss cases. Only certain bits are valid, depending on the array selected in TLBSEL. 
Other bits should be 0. 
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2.16.6.2 MAS Register 1 (MAS1)

MAS1, shown in Figure 2-29, is implemented as defined by the architecture. Only the low-order 8 bits of 
TID are implemented and page sizes 4KB through 4GB are supported for TSIZE (when using TLB1).

Writing to MAS1 requires synchronization, as described in Section 3.3.3, “Synchronization 
Requirements.”

The MAS1 fields are described in this table.

48–61 — Reserved

62–63 NV Next victim. Can be used to identify the next victim to be targeted for a TLB miss replacement operation for 
those TLBs that support the NV field.
For the e500mc, NV is the next victim value to be written to TLB0[NV] on execution of tlbwe. This field is also 
updated on TLB error exceptions (misses), tlbsx hit and miss cases, and on execution of tlbre.
This field is updated based on the calculated next victim value for TLB0 (based on the round-robin replacement 
algorithm, described in Section 6.3.2.2, “Replacement Algorithms for L2 MMU Entries”). Note that this field is 
not defined for operations that specify TLB1 (when TLBSEL = 1).

SPR 625 Guest supervisor

32 33 34 39 40 47 48 50 51 52 55 56 63

R
V IPROT — TID — TS TSIZE —

W

Reset All zeros

Figure 2-29. MAS Register 1 (MAS1)

Table 2-31. MAS1 Field Descriptions—Descriptor Context and Configuration Control

Bits Name Descriptions

32 V TLB valid bit. 
0 This TLB entry is invalid.
1 This TLB entry is valid.

33 IPRO
T

Invalidate protect. Set to protect this TLB entry from invalidate operations from tlbivax, tlbilx, or MMUCSR0 TLB 
flash invalidates. Note that not all TLB arrays are necessarily protected from invalidation with IPROT. Arrays that 
support invalidate protection are denoted as such in the TLB configuration registers.
0 Entry is not protected from invalidation.
1 Entry is protected from invalidation. 

34–39 — Reserved

40–47 TID Translation identity. Defines the process ID for this TLB entry. TID is compared to the process ID in the PID 
register during translation. A TID value of 0 defines an entry as global and matches with all process IDs.

48–50 — Reserved

51 TS Translation space. Compared with MSR[IS] (instruction fetch) or MSR[DS] (memory reference) to determine if 
this TLB entry may be used for translation.

Table 2-30. MAS0 Field Descriptions—MMU Read/Write and Replacement Control (continued)

Bit Name Description
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2.16.6.3 MAS Register 2 (MAS2)

MAS2, shown in this figure, is implemented as defined by the architecture. MAS2 is a 32-bit register. The 
ACM and VLE fields are not implemented.

Writing to MAS2 requires synchronization, as described in Section 3.3.3, “Synchronization 
Requirements.”

The MAS2 fields are described in this table.

52–55 TSIZE Translation size. Defines the page size of the TLB entry. For TLB arrays with fixed-size TLB entries, TSIZE is 
ignored. For variable-size arrays, the page size is 4TSIZE Kbytes. The e500mc supports the following sizes:
0001 4 Kbyte
0010 16 Kbyte
0011 64 Kbyte
0100 256 Kbyte
0101 1 Mbyte
0110 4 Mbyte

0111 16 Mbyte
1000 64 Mbyte 
1001 256 Mbyte
1010 1 Gbyte
1011 4 Gbyte

56–63 — Reserved

SPR 626 Guest supervisor

32 51 52 56 57 58 59 60 61 62 63

R
EPN — X0 X1 W I M G E

W

Reset All zeros

Figure 2-30. MAS Register 2 (MAS2)

Table 2-32. MAS2 Field Descriptions—EPN and Page Attributes

Bits
Nam

e
Description

32–51 EPN Effective page number. Depending on page size, only the bits associated with a page boundary are valid. Bits 
that represent offsets within a page are ignored and should be zero. 

52–56 — Reserved

57 X0 Implementation-dependent page attribute. Implemented as storage.

58 X1 Implementation-dependent page attribute. Implemented as storage.

59 W Write-through
0 This page is considered write-back with respect to the caches in the system.
1 All stores performed to this page are written through the caches to main memory.

Table 2-31. MAS1 Field Descriptions—Descriptor Context and Configuration Control (continued)

Bits Name Descriptions
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2.16.6.4 MAS Register 3 (MAS3)

MAS3, shown in Figure 2-31, is implemented as defined by the architecture.

NOTE
When an operating system executing as a guest on a hypervisor uses the 
RPN fields of MAS3 and MAS7, the RPN should be interpreted by the 
hypervisor as a logical address or a guest physical address. The hypervisor 
re-writes the RPN field with a real physical address obtained from 
translating the logical address to a real physical address when emulating 
tlbwe instructions.

Writing to MAS3 requires synchronization, as described in Section 3.3.3, “Synchronization 
Requirements.”

60 I Caching-inhibited
0 Accesses to this page are considered cacheable.
1 The page is considered caching-inhibited. All loads and stores to the page bypass the caches and are 

performed directly to main memory. A read or write to a caching-inhibited page affects only the memory 
element specified by the operation.

Note: Cache-inhibited loads may hit in the L1 or L2 cache, but the transaction is always performed over CoreNet, 
ignoring the hit (although the hit may have other unarchitected side effects). Cache-inhibited loads that hit 
in the Data Line Fill Buffer (DLFB) are serviced out of the DLFB and are not performed over CoreNet.

Note: Cache-inhibited (non-decorated, and non-guarded) loads execute speculatively on e500mc.

61 M Memory coherency required
0 Memory coherency is not required.
1 Memory coherency is required. This allows loads and stores to this page to be coherent with loads and stores 

from other processors (and devices) in the system, assuming all such devices are participating in the 
coherency protocol.

62 G Guarded
0 Accesses to this page are not guarded and can be performed before it is known if they are required by the 

sequential execution model.
1 All loads and stores to this page are performed without speculation (that is, they are known to be required).
Guarded loads (that are not cache inhibited) execute speculatively out of the core caches, but executes 
non-speculatively if required to go off core to execute.

63 E Endianness. Determines endianness for the corresponding page. Little-endian operation is true little endian, 
which differs from the modified little-endian byte ordering model available in some previous devices. 
0 The page is accessed in big-endian byte order.
1 The page is accessed in true little-endian byte order. 

SPR 627 Guest supervisor

32 51 52 53 54 57 58 59 60 61 62 63

R
RPN — U0–U3 UX SX UW SW UR SR

W

Reset All zeros

Figure 2-31. MAS Register 3 (MAS3)

Table 2-32. MAS2 Field Descriptions—EPN and Page Attributes (continued)

Bits
Nam

e
Description
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The MAS3 fields are described in this table.

2.16.6.5 MAS Register 4 (MAS4)

MAS4, shown in Figure 2-32, is implemented as defined by the architecture. Only the low-order bit of 
TLBSELD is implemented and page sizes 4KB through 4GB are supported for TSIZED (when using 
TLB1). The ACMD and VLED fields are not implemented

Writing to MAS4 requires synchronization, as described in Section 3.3.3, “Synchronization 
Requirements.” 

The MAS4 fields are described in this table.

Table 2-33. MAS3 Field Descriptions—RPN and Access Control

Bits Name Description

32–51 RPN Real page number. Depending on page size, only the bits associated with a page boundary are valid. Bits that 
represent offsets within a page are ignored and should be zero. MAS3[RPN] contains only the low-order bits 
of the real page number. The high order bits of the real page number are located in MAS7. See 
Section 2.16.6.8, “MAS Register 7 (MAS7),” for more information.

52–53 — Reserved

54–57 U0–U3 User attribute bits. These bits are associated with a TLB entry and can be used by system software. For 
example, these bits may be used to hold information useful to a page scanning algorithm or be used to mark 
more abstract page attributes.

58–63 UX,SX
UW,SW

,
UR,SR

Permission bits (UX, SX, UW, SW, UR, SR). User and supervisor read, write, and execute permission bits. 
See the EREF: A Programmer’s Reference Manual for Freescale Power Architecture® Processors for more 
information on the page permission bits as they are defined by the architecture. 

SPR 628 Guest supervisor

32 34 35 36 51 52 55 56 57 58 59 60 61 62 63

R
— TLBSELD — TSIZED — X0D X1D WD ID MD GD ED

W

Reset All zeros

Figure 2-32. MAS Register 4 (MAS4)

Table 2-34. MAS4 Field Descriptions—Hardware Replacement Assist Configuration 

Bits Name Description

32–34 — Reserved

35 TLBSEL
D

TLBSEL default value. Specifies the default value to be loaded in MAS0[TLBSEL] on a TLB miss exception. 

36–51 — Reserved

52–55 TSIZED Default TSIZE value. Specifies the default value to be loaded into MAS1[TSIZE] on a TLB miss exception.

56 — Reserved

57 X0D Default X0 value. Specifies the default value to be loaded into MAS2[X0] on a TLB miss exception.

58 X1D Default X1 value. Specifies the default value to be loaded into MAS2[X1] on a TLB miss exception.
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2.16.6.6 MAS Register 5 (MAS5)

MAS5, shown in Figure 2-33, is implemented as defined by the architecture. MAS5 contains hypervisor 
fields for specifying LPID and GS values to be used to search TLB entries with a tlbsx instruction and for 
specifying LPID values to invalidate TLB entries with a tlbilx instruction. Only the low-order 6 bits of 
SLPID are implemented.

Writing to MAS5 requires synchronization, as described in Section 3.3.3, “Synchronization 
Requirements.”

The MAS5 fields are described in this table.

2.16.6.7 MAS Register 6 (MAS6)

MAS6, shown in Figure 2-34, is implemented as defined by the architecture. Only the low-order 8 bits of 
the SPID field are implemented.

Note the SPID field was previously named SPID0. Both names refer to the same field.

Writing to MAS6 requires synchronization, as described in Section 3.3.3, “Synchronization 
Requirements.”

59 WD Default W value. Specifies the default value to be loaded into MAS2[W] on a TLB miss exception.

60 ID Default I value. Specifies the default value to be loaded into MAS2[I] on a TLB miss exception.

61 MD Default M value. Specifies the default value to be loaded into MAS2[M] on a TLB miss exception.

62 GD Default G value. Specifies the default value to be loaded into MAS2[G] on a TLB miss exception.

63 ED Default E value. Specifies the default value to be loaded into MAS2[E] on a TLB miss exception.

SPR 339 Hypervisor

 32 33 57 58 63

R
SGS — SLPID

W

Reset All zeros

Figure 2-33. MAS Register 5 (MAS5)

Table 2-35. MMU Assist Register 5 (MAS5) Register Fields

Bits Name Architecture Note

32 SGS Search GS. Specifies the GS value used when searching the TLB during execution of tlbsx. The SGS field is 
compared with the Translated (TGS) field of each TLB entry to find a matching entry.

33–57 — Reserved

58–63 SLPID Search LPID. Specifies the LPID value used when searching the TLB during execution of tlbsx. The SLPID 
field is compared with the TLPID field of each TLB entry to find a matching entry.

Table 2-34. MAS4 Field Descriptions—Hardware Replacement Assist Configuration  (continued)

Bits Name Description
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The MAS6 fields are described in this table.

2.16.6.8 MAS Register 7 (MAS7)

MAS7, shown in Figure 2-35, is implemented as defined by the architecture. MAS7 contains the 
high-order 32-bits of the real (physical) page number. Since e500mc supports 36 bits of physical address, 
only the low-order 4 bits of the high-order 32-bits of the real address (RPN) are implemented.

NOTE
When an operating system executing as a guest on a hypervisor uses the 
RPN fields of MAS3 and MAS7, the RPN should be interpreted by the 
hypervisor as a logical address or a guest physical address. The hypervisor 
re-writes the RPN field with a real physical address obtained from 
translating the logical address to a real physical address when emulating 
tlbwe instructions.

Writing to MAS7 requires synchronization, as described in Section 3.3.3, “Synchronization 
Requirements.”

SPR 630 Guest supervisor

32 39 40 47 48 62 63

R
— SPID — SAS

W

Reset All zeros

Figure 2-34. MAS Register 6 (MAS6)

Table 2-36. MAS6 Field Descriptions

Bits Name Description

32–39 — Reserved

40–47 SPID Search PID. Specifies the value of PID used when searching the TLB during execution of tlbsx. For the e500mc, 
SPID contains the search PID value used when searching the TLB during execution of tlbsx. 

48–62 — Reserved 

63 SAS Address space (AS) value for searches. Specifies the value of AS used when searching the TLB during 
execution of tlbsx. 

SPR 944 Guest supervisor

32 59 60 63

R
— RPN

W

Reset All zeros

Figure 2-35. MAS Register 7 (MAS7)



Register Model

e500mc Core Reference Manual, Rev. 3

2-60 Freescale Semiconductor
 

The MAS7 fields are described in this table.

2.16.6.9 MAS Register 8 (MAS8)

MAS8, shown in Figure 2-36, is implemented as defined by the architecture. MAS8 contains hypervisor 
state fields used for selecting a TLB entry during translation. Only the low-order 6 bits of TLPID are 
implemented.

Writing to MAS8 requires synchronization, as described in Section 3.3.3, “Synchronization 
Requirements.”

MAS8 fields are described in this table.

2.16.7 External PID Registers

The e500mc implements the external PID load and store context registers (EPLC and EPSC) as they are 
defined by the architecture and described in the EREF: A Programmer’s Reference Manual for Freescale 
Power Architecture® Processors.

Table 2-37. MAS7 Field Descriptions—High-Order RPN

Bits
Nam

e
Description

32–59 — Reserved 

60–63 RPN Real page number, 4 high-order bits. MAS3 holds the remainder of the RPN. The byte offset within the page is 
provided by the EA and is not present in MAS3 or MAS7.

SPR 341 Hypervisor

 32 33 34 57 58 63

R
TGS VF — TLPID

W

Reset All zeros

Figure 2-36. MAS Register 8 (MAS8) Format

Table 2-38. MMU Assist Register 8 (MAS8) Register Fields

Bits
Nam

e
Description

32 TGS Translation guest space. During translation, TGS is compared with MSR[GS] to select a TLB entry.

33 VF Virtualization fault. Controls whether a DSI occurs on data accesses to the page, regardless of permission bit 
settings.
0 Data accesses translated by this TLB entry occur normally.
1 Data accesses translated by this TLB entry always cause a data storage interrupt directed to the hypervisor.

34–57 — Reserved

58–63 TLPI
D

Translation logical partition ID. During translation, TLPID is compared with the LPIDR to select a TLB entry. A 
TLPID value of 0 defines an entry as global and matches all values of LPIDR.
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2.16.7.1 External PID Load Context Register (EPLC)

The EPLC register contains fields to provide the context for external PID load instructions. Figure 2-37 
shows the format of the EPLC register. Only the low-order 6 bits of the ELPID field and the low-order 8 
bits of the EPID field are implemented.

Writing to EPLC requires synchronization, as described in Section 3.3.3, “Synchronization 
Requirements.”

The EPLC fields are described in this table.

2.16.7.2 External PID Store Context (EPSC) Register

EPSC, shown in Figure 2-38, contains fields to provide the context for external PID store instructions. The 
field encoding is the same as EPLC. Only the low-order 6 bits of the ELPID field and the low-order 8 bits 
of the EPID field are implemented.

SPR 947 Guest supervisor

 32 33 34 35 41 42 47 48 55 56 63

R
EPR EAS EGS — ELPID — EPID

W

Reset All zeros

Figure 2-37. External PID Load Context (EPLC) Format

Table 2-39. EPLC Fields—External PID Load Context

Bits Name Descriptions

0–31 — Reserved

32 EPR External load context PR bit. Used in place of MSR[PR] for load permission checking when an external PID 
load instruction is executed.
0 Supervisor mode.
1 User mode.

33 EAS External load context AS bit. Used in place of MSR[DS] for load translation when an External PID Load 
instruction is executed. Compared with TLB[TS] during translation.
0 Address space 0.
1 Address space 1.

34 EGS External load context GS bit. Used in place of MSR[GS] for load translation when an External PID Load 
instruction is executed. Compared with TLB[TGS] during translation.This field is only writable in hypervisor 
state (MSR[PR] = 0 and MSR[GS] = 0).
0 Hypervisor address space.
1 Guest address space.

35–41 — Reserved

42–47 ELPID External load context LPID value. Used in place of LPIDR value for load translation when an external PID Load 
instruction is executed. Compared with TLB[TLPID] during translation. This field is only writable in hypervisor 
state (MSR[PR] = 0 and MSR[GS] = 0).

48–55 — Reserved

56–63 EPID External load context PID value. Used in place of all PID register values for load translation when an external 
PID Load instruction is executed. Compared with TLB[TID] during translation.
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Writing to EPSC requires synchronization, as described in Section 3.3.3, “Synchronization 
Requirements.”

The EPSC fields are described in this table.

2.17 Internal Debug Registers
This section describes debug-related registers that are accessible to software running on the processor. 
These registers are intended for use by special debug tools and debug software, and not by general 
application or operating system code.

The e500mc implements the category Embedded.Enhanced Debug from Power ISA 2.06 which provides 
a separate set of save/restore registers for debug interrupts (DSRR0/DSRR1, see Section 2.9.1, 
“Save/Restore Registers (xSRR0/xSRR1)”), an rfdi instruction to return from debug interrupts, and 
additional debug events for Critical Interrupt Taken and Critical Interrupt Return.

SPR 948 Guest supervisor

 32 33 34 35 41 42 47 48 55 56 63

R
EPR EAS EGS — ELPID — EPID

W

Reset All zeros

Figure 2-38. External PID Store Context (EPSC) Format

Table 2-40. EPSC Fields—External PID Store Context

Bits Name Descriptions

0–31 — Reserved

32 EPR External store context PR bit. Used in place of MSR[PR] for store permission checking when an External PID 
Store instruction is executed.
0 Supervisor mode
1 User mode.

33 EAS External store context AS bit. Used in place of MSR[DS] for store translation when an External PID Store 
instruction is executed. Compared with TLB[TS] during translation.
0 Address space 0
1 Address space 1

34 EGS External store context GS bit. Used in place of MSR[GS] for store translation when an External PID Store 
instruction is executed. Compared with TLB[TGS] during translation.This field is only writable in hypervisor 
state (MSR[PR] = 0 and MSR[GS] = 0).
0 Hypervisor address space.
1 Guest address space.

35–41 — Reserved

42–47 ELPID External store context LPID value. Used in place of LPIDR value for store translation when an external PID 
Store instruction is executed. Compared with TLB[TLPID] during translation. This field is only writable in 
hypervisor state (MSR[PR] = 0 and MSR[GS] = 0).

48–55 — Reserved

56–63 EPID External store context PID value. Used in place of all PID register values for store translation when an external 
PID Store instruction is executed. Compared with TLB[TID] during translation.
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The debug registers listed here generally only describe the registers and facilities that are used by software 
in the internal debug mode (when DBCR0[IDM] = 1). More detailed description of the debug facilities is 
described in Chapter 9, “Debug and Performance Monitor Facilities.”

2.17.1 Unimplemented Internal Debug Registers

The e500mc does not implement the following internal debug registers defined by Power ISA 2.06 and 
EREF: A Programmer’s Reference Manual for Freescale Power Architecture® Processors:

• DBCR3
• IAC3, IAC4
• DVC1, DVC2

2.17.2 Debug Control Register 0 (DBCR0)

DBCR0 is used to enable debug conditions, reset the processor, and control timer operation during debug 
events. DBCR0 is implemented on e500mc as defined by the architecture and described in the EREF: A 
Programmer’s Reference Manual for Freescale Power Architecture® Processors, except for the following 
differences:

• IAC3 and IAC4 are not implemented
• DBCR0[RST] encodings are more explicitly defined for the e500mc implementation
• When in external debug mode (EDM) (DBCR0[EDM] = 1), software writes to this register while 

e500mc is not halted are ignored

DBCR0, shown in Figure 2-39, contains bits for enabling debug conditions.

SPR 308 Hypervisor

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 56 57 58 59 62 63

R1

1 All reserved bits read as zero

EDM
IDM RST ICMP BRT IRPT TRAP IAC1 IAC2 — DAC1 DAC2 RET — CIRPT CRET — FT

W2

2 When in EDM (DBCR0[EDM] = 1) software writes to this register are ignored while e500mc is not halted.

Reset All zeros

Figure 2-39. Debug Control Register 0 (DBCR0)
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This table provides the bit definitions for DBCR0.
Table 2-41. DBCR0 Field Descriptions

Bits Name Description

32 EDM

External Debug Mode. This bit is read only by software. It reflects the status of EDBCR0[EDM].
0 Indicates the processor is not in external debug mode. External debug events are disabled.
1 Indicates the processor is in external debug mode. A qualified debug condition generates an external 

debug event by updating the corresponding bit in EDBSR0 and causing the processor to halt.

33 IDM

Internal Debug Mode
0 Internal debug events are disabled.
1 Internal debug events are enabled if DBCR0[EDM] = 0. A qualified debug condition generates an internal 

debug event by updating the corresponding bit in the DBSR. If MSR[DE] = 1 and DBCR0[EDM] = 0, the 
occurrence of a debug event, or the recording of an earlier debug event in the DBSR when MSR[DE] was 
cleared, causes a debug interrupt.

34–35 RST

Reset. The architecture defines this field such that 00 is always no action and all other settings are 
implementation specific. e500mc implements these bits as follows:
0x Default (No action)
1x Core reset. Requests a core hard reset if MSR[DE] and DBCR0[IDM] are set. Always cleared on 

subsequent cycle. 

36 ICMP
Instruction Complete Debug Condition Enable
0 ICMP debug conditions are disabled
1 ICMP debug conditions are enabled

37 BRT
Branch Taken Debug Condition Enable
0 BRT debug conditions are disabled
1 BRT debug conditions are enabled

38 IRPT

Interrupt Taken Debug Condition Enable. This bit affects only non-critical, non-debug, and non-machine 
check interrupts.
0 IRPT debug conditions are disabled
1 IRPT debug conditions are enabled

39 TRAP
Trap Debug Condition Enable
0 TRAP debug conditions are disabled
1 TRAP debug conditions are enabled

40 IAC1
Instruction Address Compare 1 Debug Condition Enable
0 IAC1 debug conditions are disabled
1 IAC1 debug conditions are enabled

41 IAC2
Instruction Address Compare 2 Debug Condition Enable
0 IAC2 debug conditions are disabled
1 IAC2 debug conditions are enabled

42–43 — Reserved

44–45 DAC1

Data Address Compare 1 Debug Condition Enable
00 DAC1 debug conditions are disabled
01 DAC1 debug conditions are enabled only for store-type data storage accesses
10 DAC1 debug conditions are enabled only for load-type data storage accesses
11 DAC1 debug conditions are enabled for load-type or store-type data storage accesses
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2.17.3 Debug Control Register 1 (DBCR1)

DBCR1 is implemented as defined by the architecture and described in the EREF: A Programmer’s 
Reference Manual for Freescale Power Architecture® Processors, with the following exceptions:

• When in EDM, software writes to this register while e500mc is not halted are ignored
• IAC1 and IAC2 comparisons must be based on effective addresses. Comparisons based on real 

addresses are not supported
• IAC3 and IAC4 debug conditions are not implemented
• When IAC12M != 00, IAC2US and IAC2ER settings must match IAC1US and IAC1ER or results 

are boundedly undefined

46–47 DAC2

Data Address Compare 2 Debug Condition Enable
00 DAC2 debug conditions are disabled
01 DAC2 debug conditions are enabled only for store-type data storage accesses
10 DAC2 debug conditions are enabled only for load-type data storage accesses
11 DAC2 debug conditions are enabled for load-type or store-type data storage accesses

48 RET

Return Debug Condition Enable
This bit affects only non-critical, non-debug, and non-machine check interrupts.
0 RET debug conditions are disabled
1 RET debug conditions are enabled

49–56 — Reserved

57 CIRPT
Critical Interrupt Taken Debug Condition Enable
0 CIRPT debug conditions are disabled.
1 CIRPT debug conditions are enabled.

58 CRET
Return From Critical Interrupt Debug Condition Enable
0 CRET debug conditions are disabled.
1 CRET debug conditions are enabled.

59–62 — Reserved

63 FT
Freeze Timers on Debug Event
0 Timebase counters are unaffected by DBSR bits
1 Disable clocking of TimeBase counters whenever a DBSR bit is set (excluding DBSR[MRR])

SPR 309 Hypervisor

32 33 34 35 36 37 38 39 40 41 42 63

R
IAC1US IAC1ER IAC2US IAC2ER IAC12M —

W1

1 When in EDM (DBCR0[EDM] = 1) software writes to this register are ignored while the e500mc is not halted.

Reset All zeros

Figure 2-40. Debug Control Register 1 (DBCR1)

Table 2-41. DBCR0 Field Descriptions (continued)

Bits Name Description
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This table provides the bit definitions for DBCR1.
Table 2-42. DBCR1 Field Descriptions

Bits Name Description

32–33 IAC1US Instruction Address Compare 1 User/Supervisor Mode
00 IAC1 debug conditions unaffected by MSR[PR],MSR[GS]
01 Reserved on e500mc
10 IAC1 debug conditions can only occur if MSR[PR] = 0 (supervisor mode)
11 IAC1 debug conditions can only occur if MSR[PR] = 1 (user mode)

34–35 IAC1ER Instruction Address Compare 1 Effective/Real Mode
00 IAC1 debug conditions are based on effective addresses
01 Reserved on e500mc
10 IAC1 debug conditions are based on effective addresses and can occur only if MSR[IS] = 0
11 IAC1 debug conditions are based on effective addresses and can occur only if MSR[IS] = 1

36–37 IAC2US Instruction Address Compare 2 User/Supervisor Mode
00 IAC2 debug conditions unaffected by MSR[PR],MSR[GS]
01 Reserved on e500mc
10 IAC2 debug conditions can only occur if MSR[PR]=0 (supervisor mode)
11 IAC2 debug conditions can only occur if MSR[PR]=1 (user mode)

38–39 IAC2ER Instruction Address Compare 2 Effective/Real Mode
00 IAC2 debug conditions are based on effective addresses
01 Reserved on e500mc
10 IAC2 debug conditions are based on effective addresses and can occur only if MSR[IS] = 0
11 IAC2 debug conditions are based on effective addresses and can occur only if MSR[IS] = 1

40–41 IAC12M Instruction Address Compare 1/2 Mode. 
00 Exact address compare. IAC1 debug conditions can only occur if the address of the instruction fetch is 

equal to the value specified in IAC1. IAC2 debug conditions can only occur if the address of the 
instruction fetch is equal to the value specified in IAC2. IAC1US, IAC1ER, and DBCR0[IAC1] are used 
for IAC1 conditions. IAC2US, IAC2ER, and DBCR0[IAC2] are used for IAC2 conditions. 

01 Address bit match. IAC1 debug conditions can occur only if the address of the instruction fetch, ANDed 
with the contents of IAC2 is equal to the contents of IAC1, also ANDed with the contents of IAC2. IAC2 
debug conditions do not occur. The DBCR0[IAC1] setting is used. The value of DBCR0[IAC2] is ignored. 
If IAC1US and IAC1ER do not match IAC2US and IAC2ER values, results are boundedly undefined.

10 Inclusive address range compare. IAC1 debug conditions can occur only if the address of the instruction 
fetch is greater than or equal to the value specified in IAC1 and less than the value specified in IAC21. 
IAC2 debug conditions do not occur. The DBCR0[IAC1] setting is used. The value of DBCR0[IAC2] is 
ignored. If IAC1US and IAC1ER do not match IAC2US and IAC2ER values, results are boundedly 
undefined.

11 Exclusive address range compare. IAC1 debug conditions can occur only if the address of the 
instruction fetch is less than the value specified in IAC1 or is greater than or equal to the value specified 
in IAC22. IAC2 debug conditions do not occur. The DBCR0[IAC1] setting is used. The value of 
DBCR0[IAC2] is ignored. If IAC1US and IAC1ER do not match IAC2US and IAC2ER values, results are 
boundedly undefined.

e500mc sets both DBSR[IAC1] and DBSR[IAC2] bits if IAC12M is set to anything other than 0b00 and an 
instruction address compare 1 or 2 event occurs.

1 If IAC1 > IAC2 or IAC1 = IAC2 a valid condition never occurs.
2 If IAC1 > IAC2 or IAC1 = IAC2 a valid condition may occur on every instruction fetch.

42–63 — Reserved
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2.17.4 Debug Control Register 2 (DBCR2)

DBCR2 is implemented as defined by the architecture and described in the EREF: A Programmer’s 
Reference Manual for Freescale Power Architecture® Processors, except for the following differences:

• When in EDM, software writes to this register are ignored while the e500mc is not halted. 
• DAC comparisons are based on effective addresses only.
• Data Value Compare is not implemented.
• DACLINK1 and DACLINK2 are implemented.

This figure shows the debug control register 2.

This table provides the bit definitions for DBCR2.

SPR 310 Hypervisor

32 33 34 35 36 37 38 39 40 41 42 43 44 63

R
DAC1US DAC1ER DAC2US DAC2ER DAC12M DACLINK1 DACLINK2 —

W1

1When in EDM (DBCR0[EDM]=1) software writes to this register are ignored while the e500mc is not halted. 

Reset All zeros

Figure 2-41. Debug Control Register 2 (DBCR2)

Table 2-43. DBCR2 Field Descriptions

Bits Name Description

32–33 DAC1US

Data Address Compare 1 User/Supervisor Mode
00 DAC1 debug conditions unaffected by MSR[PR]
01 Reserved on e500mc
10 DAC1 debug conditions can only occur if MSR[PR] = 0 (supervisor mode)
11 DAC1 debug conditions can only occur if MSR[PR] = 1 (user mode)

34–35 DAC1ER

Data Address Compare 1 Effective/Real mode
00 DAC1 debug conditions are based on effective addresses
01 Reserved on e500mc
10 DAC1 debug conditions are based on effective addresses and can occur only if MSR[DS] = 0
11 DAC1 debug conditions are based on effective addresses and can occur only if MSR[DS] = 1

36–37 DAC2US

Data Address Compare 2 User/Supervisor Mode
00 DAC2 debug conditions unaffected by MSR[PR], MSR[GS]
01 Reserved on e500mc
10 DAC2 debug conditions can only occur if MSR[PR] = 0 (supervisor mode)
11 DAC2 debug conditions can only occur if MSR[PR] = 1 (user mode)

38–39 DAC2ER

Data Address Compare 2 Effective/Real mode
00 DAC2 debug conditions are based on effective addresses
01 Reserved on 
10 DAC2 debug conditions are based on effective addresses and can occur only if MSR[DS] = 0
11 DAC2 debug conditions are based on effective addresses and can occur only if MSR[DS] = 1
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2.17.5 Debug Control Register 4 (DBCR4)

DBCR4 is used to enable debug modes and provide additional debug controls. The e500mc adds some 
implementation specific bits to this register, as described in this figure.

40–41 DAC12M Data Address Compare 1/2 Mode
00 Exact address compare. DAC1 debug conditions can only occur if the data storage address is equal 

to the value specified in DAC1. DAC2 debug conditions can only occur if the data storage address is 
equal to the value specified in DAC2. DAC1US, DAC1ER, and DBCR0[DAC1] are used for DAC1 
conditions. DAC2US, DAC2ER, and DBCR0[DAC2] are used for DAC2 conditions 1

01 Address bit match. DAC1 debug conditions can occur only if the data storage address ANDed with 
the contents of DAC2 is equal to the contents of DAC1 also ANDed with the contents of DAC2. DAC2 
debug conditions do not occur. The DBCR0[DAC1] setting is used. The value of DBCR0[DAC2] is 
ignored. DAC1US and DAC1ER values are used and DAC2US and DAC2ER values are ignored.

10 Inclusive address range compare. DAC1 debug conditions can occur only if the data storage address 
is greater than or equal to the value specified in DAC1 and less than the value specified in DAC22. 
DAC2 debug conditions do not occur. The DBCR0[DAC1] setting is used. The value of DBCR0[DAC2] 
is ignored. DAC1US and DAC1ER values are used and DAC2US and DAC2ER values are ignored.

11 Exclusive address range compare. DAC1 debug conditions can occur only if the data storage 
address is less than the value specified in DAC1 or is greater than or equal to the value specified in 
DAC23. DAC2 debug conditions do not occur. The DBCR0[DAC1] setting is used. The value of 
DBCR0[DAC2] is ignored. DAC1US and DAC1ER values are used and DAC2US and DAC2ER 
values are ignored.

e500mc sets both DBSR[DAC1] and DBSR[DAC2] bits if DAC12M is set to anything other than 0b00 and 
a data address compare 1 or 2 event occurs

42 DACLINK1 Data Address Compare 1 Link to Instruction Address Compare 1
0 No effect
1 DAC1 debug events are linked to IAC1 debug conditions. IAC1 debug conditions do not affect DBSR 

or EDBSR0. When linked to IAC1, the DAC1 debug event is qualified based on whether the instruction 
also generated an IAC1 debug condition.

43 DACLINK2 Data Address Compare 2 Link to Instruction Address Compare 2
0 No effect
1 DAC2 debug events are linked to IAC2 debug conditions. IAC2 debug conditions do not affect DBSR 

or EDBSR0. When linked to IAC2, the DAC2 debug event is qualified based on whether the instruction 
also generated an IAC2 debug condition.

44–63 — Reserved

1 See DBCR4 for extensions to the exact address match (range defined)
2 If DAC1 > DAC2 or DAC1=DAC2 a valid condition never occurs.
3 If DAC1 > DAC2 or DAC1=DAC2 a valid condition may occur on every data storage address.

SPR 563 Hypervisor

32 47 48 51 52 55 56 63

R
— DAC1XM DAC2XM —

W1

Reset All zeros

Figure 2-42. Debug Control Register 4 (DBCR4)

Table 2-43. DBCR2 Field Descriptions (continued)

Bits Name Description



Register Model

e500mc Core Reference Manual, Rev. 3

Freescale Semiconductor 2-69
 

This table provides the bit definitions for DBCR0.

2.17.6 Debug Status Register (DBSR/DBSRWR)

DBSR provides status information for debug events when DBCR0[IDM] = 1 and DBCR0[EDM] = 0, and 
for the most recent processor reset. 

DBSR is implemented as defined by the architecture and described in the EREF: A Programmer’s 
Reference Manual for Freescale Power Architecture® Processors, with the following exceptions:

• When in EDM, software writes to this register are ignored while the e500mc is not halted
• When in EDM, debug events update EDBSR0 instead of DBSR
• Two additional debug events are possible: CIRPT and CRET

DBSRWR is implemented as defined by the architecture and described in the EREF: A Programmer’s 
Reference Manual for Freescale Power Architecture® Processors, and is used to write the value of the 
DBSR to a specific value. DBSRWR is a write-only register.

DBSR is a write-one-to-clear register. Software should normally write DBSR with a mask specifying 
which bits of DBSR to clear. DBSRWR should only be used to restore a DBSR value in the case of a 
hypervisor partition switch.

Writing DBSRWR changes the value of the DBSR which, if nonzero, may cause later imprecise debug 
interrupts.

1 When in EDM (DBCR0[EDM]=1) software writes to this register are ignored while the e500mc is not halted.

Table 2-44. DBCR4 Field Descriptions 

Bits Name Description

32–47 — Reserved

48-51 DAC1XM

Data Address Compare 1—Extended Mask Control
0000 No additional masking when DBCR2[DAC12M] = 00
0001–1100

Exact Match Bit Mask. Number of low order bits masked in DAC1 when comparing the storage 
address with the value in DAC1 for exact address compare (DBRCR2[DAC12M] = 00). The 
e500mc supports ranges up to 4KB.

1101–1111
Reserved

52-55 DAC2XM

Data Address Compare 2—Extended Mask Control
0000 No additional masking when DBCR2[DAC12M] = 00
0001–1100

Exact Match Bit Mask. Number of low order bits masked in DAC2 when comparing the storage 
address with the value in DAC2 for exact address compare (DBRCR2[DAC12M] = 00). The 
e500mc supports ranges up to 4KB

1101–1111
Reserved

56–63 — Reserved
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This figure shows the debug status register write register.

This figure shows the debug status register.

This table provides the bit definitions for DBSR and DBSRWR.

SPR 306 (DBSRWR) Hypervisor WO

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 56 57 58 59 63

R
— — —

W1

1 When in EDM (DBCR0[EDM] = 1) software writes to this register are ignored while e500mc is not halted.

IDE UDE MRR ICMP BRT IRPT TRAP IAC1 IAC2 DAC1R DAC1W DAC2R DAC2W RET CIRPT CRET

Reset Contents can be read through DBSR only

Figure 2-43. Debug Status Register Write Register (DBSRWR)

SPR 304 (DBSR) Hypervisor

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 56 57 58 59 63

R1/W2

1 All reserved bits read as zero
2 Writing to DBSR clears any bits that set to 1 in the corresponding value being written from the source register 

(write-one-to-clear). When in EDM (DBCR0[EDM] = 1), software writes to this register are ignored while e500mc is not halted.

IDE UDE MRR ICMP BRT IRPT TRAP IAC1 IAC2 — DAC1R DAC1W DAC2R DAC2W RET — CIRPT CRET —

Reset 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0..0

Figure 2-44. Debug Status Register (DBSR)

Table 2-45. DBSR/DBSRWR Field Descriptions

Bits Name Description

32 IDE
Imprecise Debug Event
0 No imprecise debug events have occurred
1 An imprecise debug event has occurred while MSR[DE] = 0 and DBCR0[IDM] = 1 and DBCR0[EDM] = 0

33 UDE

Unconditional Debug Event
0 No unconditional debug events have occurred
1 An unconditional debug event has occurred while DBCR0[IDM] = 1 and DBCR0[EDM] = 0. Note that 

unconditional debug events are not affected by EPCR[DUVD] on the e500mc.
An unconditional debug event can occur when the UDE signal (level sensitive, active low) is asserted to 
the core. When UDE is asserted, DBSR[UDE] is set to 1 if DBCR0[IDM] = 1 and DBCR0[EDM] = 0. When 
DBSR[UDE] is set, DBSR[IDE] is also set.

34–35 MRR

Most Recent Reset. The e500mc implements MRR as follows:
00 No hard reset occurred since this bit was last cleared by software.
01 Reserved
10 The previous reset was a hard reset (default value on power-up).
11 Reserved

36 ICMP

Instruction Complete Debug Event
0 No instruction complete debug event has occurred
1 An instruction complete debug event has occurred while DBCR0[ICMP] = 1, DBCR0[IDM] = 1, 

DBCR0[EDM] = 0, and MSR[DE] = 1. See Section 9.8.9, “Instruction Complete Debug Event,” for more 
details.
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37 BRT

Branch Taken Debug Event
0 No branch taken debug event has occurred
1 A branch taken debug event has occurred while DBCR0[BRT] = 1, DBCR0[IDM] = 1, DBCR0[EDM] = 0, 

and MSR[DE] = 1. See Section 9.8.8, “Branch Taken Debug Event,” for more details.

38 IRPT

Interrupt Taken Debug Event
0 No interrupt taken debug event has occurred
1 An interrupt taken debug event has occurred while DBCR0[IRPT] = 1, DBCR0[IDM] = 1, and 

DBCR0[EDM] = 0. See Section 9.8.10, “Interrupt Taken Debug Event,” for more details.

39 TRAP

Trap Instruction Debug Event
0 No trap instruction debug event has occurred
1 A trap instruction debug event has occurred while DBCR0[TRAP] = 1, DBCR0[IDM] = 1, and 

DBCR0[EDM] = 0. See Section 9.8.11, “Interrupt Return Debug Event,” for more details.

40 IAC1

Instruction Address Compare 1 Debug Event
0 No instruction address compare 1 debug event has occurred
1 An instruction address compare 1 debug event has occurred while DBCR0[IAC1] = 1, 

DBCR0[IDM] = 1and DBCR0[EDM] = 0. See Section 9.8.5, “Instruction Address Compare Debug 
Events,” for more details.

41 IAC2

Instruction Address Compare 2 Debug Event
0 No instruction address compare 2 debug event has occurred
1 An instruction address compare 2 debug event has occurred while DBCR0[IAC2] = 1, 

DBCR0[IDM] = 1and DBCR0[EDM] = 0. See Section 9.8.5, “Instruction Address Compare Debug 
Events,” for more details.

42–43 — Reserved

44 DAC1R

Data Address Compare 1 Read Debug Event
0 No data address compare 1 debug event has occurred
1 A data address compare 1 debug event has occurred while DBCR0[DAC1] = 10 or 11, 

DBCR0[IDM] = 1and DBCR0[EDM] = 0. See Section 9.8.6, “Data Address Compare Debug Events,” for 
more details.

45 DAC1W

Data Address Compare 1 Write Debug Event
0 No data address compare 1 debug event has occurred
1 A data address compare 1 debug event has occurred while DBCR0[DAC1] = 01 or 11, 

DBCR0[IDM] = 1and DBCR0[EDM] = 0. See Section 9.8.6, “Data Address Compare Debug Events,” for 
more details.

46 DAC2R

Data Address Compare 2 Read Debug Event
0 No data address compare 2 debug event has occurred
1 A data address compare 2 debug event has occurred while DBCR0[DAC2] = 10 or 11, 

DBCR0[IDM] = 1and DBCR0[EDM] = 0. See Section 9.8.6, “Data Address Compare Debug Events,” for 
more details.

47 DAC2W

Data Address Compare 2 Write Debug Event
0 No data address compare 2 debug event has occurred
1 A data address compare 2 debug event has occurred while DBCR0[DAC2] = 01 or 11, DBCR0[IDM] = 1 

and DBCR0[EDM] = 0. See Section 9.8.6, “Data Address Compare Debug Events,” for more details.

48 RET

Return Debug Event
0 No return debug event has occurred
1 A return debug event has occurred while DBCR0[RET] = 1, DBCR0[IDM] = 1and DBCR0[EDM] = 0. 

See Section 9.8.11, “Interrupt Return Debug Event,” for more details.

Table 2-45. DBSR/DBSRWR Field Descriptions (continued)

Bits Name Description
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2.17.7 Instruction Address Compare Registers (IAC1–IAC2)

IAC1–IAC2 are implemented as defined by the architecture and described in the EREF: A Programmer’s 
Reference Manual for Freescale Power Architecture® Processors with one exception: when in EDM, 
software writes to this register are ignored while the e500mc is not halted.

IAC1 and IAC2 are 32-bit registers on e500mc.

The instruction address compare registers (IAC1–IAC2) are described in Figure 2-45.

2.17.8 Data Address Compare Registers (DAC1–DAC2)

DAC1–DAC2 are implemented as defined by the architecture and described in the EREF: A Programmer’s 
Reference Manual for Freescale Power Architecture® Processors with one exception: when in EDM, 
software writes to this register are ignored while the e500mc is not halted.

DAC1 and DAC2 are 32-bit registers on e500mc.

The data address compare registers (DAC1 and DAC2) are shown in Figure 2-46.

49–56 — Reserved 

57 CIRPT

Critical Interrupt Taken Debug Event. 
0 No critical interrupt taken debug event has occurred
1 A critical interrupt taken debug event has occurred while DBCR0[CIRPT] = 1, DBCR0[IDM] = 1, and 

DBCR0[EDM] = 0.See Section 9.8.13, “Critical Interrupt Taken Debug Event,” for more details.

58 CRET

Critical Return Debug Event.
0 No critical return debug event has occurred
1 A critical return debug event has occurred while DBCR0[CRET] = 1, DBCR0[IDM] = 1, and 

DBCR0[EDM] = 0. See Section 9.8.14, “Critical Return Debug Event,” for more details.

59–63 — Reserved 

SPR 312 (IAC1), SPR 313 (IAC2) Hypervisor

32 61 62 63

R
Instruction Address —

W1

1 When in EDM (DBCR0[EDM] = 1) software writes to this register are ignored while the e500mc is not halted. 

Reset All zeros

Figure 2-45. Instruction Address Compare Registers (IAC1-IAC2)

SPR 316 (IDAC1), SPR 317 (DAC2) Hypervisor

32 63

R
Data Address

W1

Reset All zeros

Figure 2-46. Data Address Compare Registers (DAC1–DAC2)

Table 2-45. DBSR/DBSRWR Field Descriptions (continued)

Bits Name Description
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2.17.9 Nexus SPR Access Registers

The architecture defines the Nexus SPR access registers to provide access to the memory-mapped registers 
implemented as part of the core and described in Section 9.4, “Nexus Registers.” The index offset for these 
registers can be specified in the Nexus SPR configuration register (NSPC) after which access to these 
registers can be made by using mtspr and mfspr instructions to read and write the Nexus SPR data register 
(NSPD).

2.17.9.1 Nexus SPR Configuration Register (NSPC)

The NSPC provides a mechanism for software to access Nexus debug resources (through SPR 
instructions). Refer to Section 9.9.4.2, “Special-Purpose Register Access (Nexus Only),” for details on 
accessing Nexus resources through the NSPC register.

This figure shows the Nexus SPR configuration register.

This table provides the bit definitions for NSPC. See Table 9-23 for the list of the Nexus registers that can 
be accessed.

2.17.9.2 Nexus SPR Data Register (NSPD)

The NSPD provides a mechanism to transfer data to and from SPR resources. The Nexus resource to be 
accessed is determined by the programming of the NSPC. For write operations, the write data should be 
loaded into the NSPD. For read operations, the read data may be acquired from the NSPD.

Writing to the NSPD register requires an isync instruction immediately following the mtspr to NSPD to 
ensure that the write is completed.

1 When in EDM (DBCR0[EDM] = 1), software writes to this register are ignored while the e500mc is not halted.

SPR 984 Hypervisor

32 51 52 63

R
— INDX

W1

Reset All zeros

1. When in external debug mode (DBCR0[EDM] = 1) software writes to this register are ignored.

Figure 2-47. Nexus SPR Configuration Register (NSPC)

Table 2-46. NSPC Field Descriptions

Bits Name Description

32–51 — Reserved

52–63 INDX Register index1

1 Refer to Table 9-23 for appropriate index values for accessing Nexus registers
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This figure shows the Nexus SPR data register.

2.17.10  Debug Event Select Register (DEVENT)

DEVENT allows instrumented software to internally generate signals when an mtspr instruction is 
executed and this register is accessed. The value written to this register determines which processor output 
signals fire upon access. These signals are used for internal core debug resources, such as the performance 
monitor, as well as for SoC-level cross-triggering. See the SoC reference manual for more information on 
use cases.

The upper 8 DEVENT bits also provide the IDTAG used to identify channels within Data Acquisition 
Messages. See Section 9.10.15, “Data Acquisition,” for more detail on the IDTAG.

This figure shows the debug event register.

This table provides the bit definitions for DEVENT.

SPR 983 Hypervisor

32 63

R
Nexus SPR Read/Write Data

W1

Reset All zeros

1. When in External Debug Mode (DBCR0[EDM] = 1) software writes to this register are ignored.

Figure 2-48. Nexus SPR Data Register (NSPD)

SPR 975 User

32 39 40 55 56 63

R
DQTAG — DEVNT

W

Reset All zeros

Figure 2-49. Debug Event Register (DEVENT)

Table 2-47. DEVENT Field Descriptions

Bits Name Description

32–39 DQTAG IDTAG channel identifier used in Data Acquisition Messages

40–55 — Reserved

56–63 DEVNT

Debug Event Signals
00000000 = No signal is asserted
xxxxxxx1 = DVT0 is asserted
xxxxxx1x = DVT1 is asserted
xxxxx1xx = DVT2 is asserted
xxxx1xxx = DVT3 is asserted
xxx1xxxx = DVT4 is asserted
xx1xxxxx = DVT5 is asserted
x1xxxxxx = DVT6 is asserted
1xxxxxxx = DVT7 is asserted



Register Model

e500mc Core Reference Manual, Rev. 3

Freescale Semiconductor 2-75
 

2.17.11 Debug Data Acquisition Message Register (DDAM)

DDAM allows instrumented software to generate real-time data acquisition messages (as defined by 
Nexus) when an mtspr instruction is executed and this register is written. See Section 9.10.15, “Data 
Acquisition,” for details.

This figure shows the debug data acquisition message register.

This table describes the DDAM bit fields.

2.17.12 Nexus Process ID Register (NPIDR)

NPIDR allows the full process ID utilized by the OS to be transmitted within Nexus Ownership Trace 
Messages.

Figure 2-51 shows the Nexus process ID register.

NOTE
OS accesses to NPIDR must be performed in addition to writes to the PID 
register used to create translated addresses in the MMU for Nexus 
messaging.

2.18 Performance Monitor Registers (PMRs)
The performance monitor provides a set of performance monitor registers (PMRs) for defining, enabling, 
and counting conditions that trigger the performance monitor interrupt. PMRs are defined by the 
architecture and described in the EREF: A Programmer’s Reference Manual for Freescale Power 

SPR 576 User WO

32 63

R

W DDAM

Reset All zeros

Figure 2-50. Debug Data Acquisition Message Register (DDAM)

Table 2-48. DDAM Field Description

Bits Name Description

32–63 DDAM Data value to be transmitted in a Data Acquisition Message (DQM)

SPR 517 User

32 63

R
Full OS Process ID 

W

Reset All zeros

Figure 2-51. Nexus Process ID Register
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Architecture® Processors. The performance monitor also defines IVOR35 (see Section 2.9.4, “(Guest) 
Interrupt Vector Offset Registers (IVORs/GIVORs)”) for providing the address of the performance 
monitor interrupt vector. IVOR35 is described in the interrupt model chapter of the EREF: A 
Programmer’s Reference Manual for Freescale Power Architecture® Processors.

PMRs are similar to the SPRs and are accessed by mtpmr and mfpmr. As shown in Table 2-49, the 
contents of the PMRs are reflected to a read-only user-level equivalent. 

Attempting to access a supervisor PMR from user mode (MSR[PR] = 1), results in a privileged instruction 
exception. Attempting to access a non-existent PMR in any privilege mode results in an illegal instruction 
exception.

If MSRP[PMMP] = 1, access to PMRs can cause embedded hypervisor privilege exceptions, or return a 
value of 0 in the target register. The behavior is described in EREF: A Programmer’s Reference Manual 
for Freescale Power Architecture® Processors.

2.18.1 Global Control Register 0 (PMGC0/UPMGC0) 

PMGC0, shown in Figure 2-52, controls all performance monitor counters. PMGC0 contents are reflected 
to UPMGC0, which is readable by user-level software. The e500mc implements these registers as they are 
defined by the architecture and as they are described in the EREF: A Programmer’s Reference Manual for 

Table 2-49. Performance Monitor Registers

Name
Supervisor User

Section/Page
Abbreviation PMRn Abbreviation PMRn

Performance monitor counter 0 PMC0 16 UPMC0 0 2.18.4/2-82

Performance monitor counter 1 PMC1 17 UPMC1 1

Performance monitor counter 2 PMC2 18 UPMC2 2

Performance monitor counter 3 PMC3 19 UPMC3 3

Performance monitor local control a0 PMLCa0 144 UPMLCa0 128 2.18.2/2-77

Performance monitor local control a1 PMLCa1 145 UPMLCa1 129

Performance monitor local control a2 PMLCa2 146 UPMLCa2 130

Performance monitor local control a3 PMLCa3 147 UPMLCa3 131

Performance monitor local control b0 PMLCb0 272 UPMLCb0 256 2.18.3/2-79

Performance monitor local control b1 PMLCb1 273 UPMLCb1 257

Performance monitor local control b2 PMLCb2 274 UPMLCb2 258

Performance monitor local control b3 PMLCb3 275 UPMLCb3 259

Performance monitor global control 0 PMGC0 400 UPMGC0 384 2.18.1/2-76
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Freescale Power Architecture® Processors, except for implementation of the following 
implementation-specific fields: 

• Time base selector (TBSEL), bits 51–52. Selects the time base bit that can cause a time base 
transition event (the event occurs when the selected bit changes from 0 to 1). 

• Time base transition event exception enable (TBEE), bit 55. 

PMGC0 is cleared by a hard reset. Reading this register does not change its contents. This table describes 
the e500mc specific PMGC0 fields.

2.18.2 Local Control A Registers (PMLCa0–PMLCa3/UPMLCa0–UPMLCa3)

PMLCa0–PMLCa3 function as event selectors and give local control for the corresponding performance 
monitor counters. PMLCan works with the corresponding PMLCbn register. PMLCan contents are 
reflected to UPMLCan. The e500mc implements these registers as they are defined by the architecture and 
described in the EREF: A Programmer’s Reference Manual for Freescale Power Architecture® 
Processors except for the following fields:

PMR PMGC0 (PMR400)UPMGC0 (PMR384) PMGC0: Guest supervisor
UPMGC0: User RO

32 33 34 35 50 51 52 53 54 55 56 63

R
FAC PMIE FCECE — TBSEL — TBEE —

W

Reset All zeros

Figure 2-52. Performance Monitor Global Control Register 0 (PMGC0)/
User Performance Monitor Global Control Register 0 (UPMGC0) 

Table 2-50. PMGC0/UPMGC0 Implementation-Specific Field Descriptions

Bits Name Description

51–52 TBSEL Time base selector. Selects the time base bit that can cause a time base transition event (the event occurs when 
the selected bit changes from 0 to 1). 
00 TB[63] (TBL[63])
01 TB[55] (TBL[55])
10 TB[51] (TBL[51])
11 TB[47] (TBL[47])
Time base transition events can be used to periodically collect information about processor activity. In 
multiprocessor systems in which TB registers are synchronized among processors, time base transition events 
can be used to correlate the performance monitor data obtained by the several processors. For this use, 
software must specify the same TBSEL value for all processors in the system. Because the time-base frequency 
is implementation-dependent, software should invoke a system service program to obtain the frequency before 
choosing a value for TBSEL. 

55 TBEE Time base transition event exception enable. 
0 Exceptions from time base transition events are disabled.
1 Exceptions from time base transition events are enabled. A time base transition is signaled to the 

performance monitor if the TB bit specified in PMGC0[TBSEL] changes from 0 to 1. Time base transition 
events can be used to freeze the counters (PMGC0[FCECE]) or signal an exception (PMGC0[PMIE]).
Changing PMGC0[TBSEL] while PMGC0[TBEE] is enabled may cause a false 0 to 1 transition that signals 
the specified action (freeze, exception) to occur immediately. Although the interrupt signal condition may 
occur with MSR[EE] = 0, the interrupt cannot be taken until MSR[EE] = 1 or MSR[GS] = 1.
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• The EVENT field only implements the low order 8 bits of the EREF: A Programmer’s Reference 
Manual for Freescale Power Architecture® Processors defined field.

• The FCGS0 and FCGS1 fields are not implemented on e500mc Rev 1.x or Rev 2.x.

This table describes the PMLCa fields.

PMLCa0 (PMR144)
PMLCa1 (PMR145)
PMLCa2 (PMR146)
PMLCa3 (PMR147)

UPMLCa0 (PMR128)
UPMLCa1 (PMR129)
UPMLCa2 (PMR130)
UPMLCa3 (PMR131)

 PMLCa0–PMLCa3: Guest supervisor
UPMLCa0–UPMLCa3: User RO

32 33 34 35 36 37 38 39 40 47 48 61 62 63

R
FC FCS FCU FCM1 FCM0 CE — EVENT — FCGS1 FCGS0

W

Reset All zeros

Figure 2-53. Local Control A Registers (PMLCa0–PMLCa3)/
User Local Control A Registers (UPMLCa0–UPMLCa3) 

Table 2-51. PMLCa0–PMLCa3 Field Descriptions

Bits Name Description

32 FC Freeze counter
0 The PMC is incremented (if permitted by other PM control bits).
1 The PMC is not incremented.

33 FCS Freeze counter in supervisor state
0 The PMC is incremented (if permitted by other PM control bits).
1 The PMC is not incremented if MSR[PR] = 0.

34 FCU Freeze counter in user state 
0 The PMC is incremented (if permitted by other PM control bits).
1 The PMC is not incremented if MSR[PR] = 1.

35 FCM1 Freeze counter while mark = 1
0 The PMC is incremented (if permitted by other PM control bits).
1 The PMC is not incremented if MSR[PMM] = 1.

36 FCM0 Freeze counter while mark = 0
0 The PMC is incremented (if permitted by other PM control bits).
1 The PMC is not incremented if MSR[PMM] = 0.

37 CE Condition enable
0 PMCx overflow conditions cannot occur. (PMCx cannot cause interrupts, cannot freeze counters.)
1 Overflow conditions occur when the most-significant-bit of PMCx is equal to one.
It is recommended that CE be cleared when counter PMCx is selected for chaining.

38–39 — Reserved

40–47 EVEN
T

Event selector. Up to 256 events selectable. 

48–61 — Reserved
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2.18.3 Local Control B Registers (PMLCb0–PMLCb3)

Local control B registers (PMLCb0–PMLCb3), shown in Figure 2-54, specify a threshold value and a 
multiple to apply to a threshold event selected for the corresponding performance monitor counter. For the 
e500mc, thresholding is supported only for PMC0 and PMC1. PMLCb works with the corresponding 
PMLCa. PMLCbn contents are reflected to UPMLCan. The e500mc implements these registers as they are 
defined by the architecture and described in the EREF: A Programmer’s Reference Manual for Freescale 
Power Architecture® Processors except for the following e500mc-specific fields:

• TRIGONCTL and TRIGOFFCTL are available for triggering control
• PMCC and PMP are available for triggering status

Table 2-52 describes the PMLCb fields.

The implementation specific fields TRIGONCTL and TRIGOFFCTL, provide a method for certain 
conditions in the processor from the debug facility or the performance monitor facility to start and stop 
performance monitor counting when a certain programmed condition occurs and the counter is not frozen 
(for the purposes of this section “frozen” means the counter is frozen by means of either PMLCan[FC] or 
PMGC0[FAC]). The trigger state is either set to ON or OFF depending on how the controls are 
programmed and when the programmed conditions occur in the processor. When the trigger state is ON, 
events are enabled for counting in PMCn if counting is enabled by all other performance monitor controls. 
If the trigger state is OFF, counting is disabled for PMCn. For both controls, the following applies to how 
the trigger state is determined:

• When the counter is frozen by means of either PMLCan[FC] or PMGC0[FAC] being set to 1, the 
trigger state is set to OFF. The trigger state remains off until the counter is unfrozen and a 
subsequent condition sets the trigger state to ON.

62 FCGS
1

Freeze counters in guest state.
0 The PMC is incremented (if permitted by other PM control bits).
1 The PMC is not incremented if MSR[GS] = 1.

63 FCGS
0

Freeze counters in hypervisor state.
0 The PMC is incremented (if permitted by other PM control bits).
1 The PMC is not incremented if MSR[GS] = 0.

PMLCb0 (PMR272)
PMLCb1 (PMR273)
PMLCb2 (PMR274)
PMLCb3 (PMR275)

UPMLCb0 (PMR256)
UPMLCb1 (PMR257)
UPMLCb2 (PMR258)
UPMLCb3 (PMR259)

PMLCb0–PMLCb3: Guest supervisor
UPMLCb0–UPMLCb3: User RO

32 35 36 39 40 41 47 48 50 51 52 53 55 56 57 58 63

R
TRIGONCTL TRIGOFFCTL

PMCC
— PMP — THRESHMUL — THRESHOLD

W

Reset All zeros

Figure 2-54. Local Control B Registers (PMLCb0–PMLCb3)/
User Local Control B Registers (UPMLCb0–UPMLCb3) 

Table 2-51. PMLCa0–PMLCa3 Field Descriptions (continued)

Bits Name Description
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• If TRIGONCTL = 0b0000, the trigger state is always set to ON when the counter is not frozen. 
This setting is used to essentially make triggers inactive and all other performance monitor controls 
determine whether events are counted.

• If a condition occurs that is programmed via TRIGONCTL and the counter is not frozen, the trigger 
state is set to ON.

• If a condition occurs that is programmed via TRIGOFFCTL and the counter is not frozen, the 
trigger state is set to OFF.

• Other methods of freezing the PMCn from counter other than PMLCan[FC] or PMGC0[FAC] have 
no effect on the trigger state, although such methods can prevent the counter from counting. That 
is, the trigger state may be ON, but the PMCn is not counting events because it is frozen from some 
other method.
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Table 2-52. PMLCb0–PMLCb3 Field Descriptions

Bits Name Description

32–35 TRIGONCTL

Counter Trigger ON control.
0000 No ON triggering active. This means that the counter is always considered to be triggered ON 

when it is not frozen.
0001 Trigger ON when rise of PMCn Qual Pin detected 
0010 Trigger ON when previous Performance Monitor Counter overflow condition (bit 32 only)
0011 Trigger ON when IAC1 match (only requires the debug condition, not the event)
0100 Trigger ON when IAC2 match (only requires the debug condition, not the event)
0101 Trigger ON when DAC1 match (only requires the debug condition, not the event)
0110 Trigger ON when DAC2 match (only requires the debug condition, not the event)
0111–1110

Trigger ON when DVTn asserted
1111 Reserved
Note: DVTn (DVT0, DVT1, .. DVT7) are asserted by writing the DEVENT register. See Section 2.17.10, 

“Debug Event Select Register (DEVENT).”

The counter trigger ON control uses certain conditions in the processor as a signal to start counting 
when those conditions occur. Triggers associated with debug events require only the debug condition 
to be present, and does not require that the debug event occurs. For example, an IAC1 match occurs 
which does not result in a debug event because DBCR0[IDM] is not set, still causes counting to begin 
if the appropriate trigger ON control is set. For a graphic representation of performance monitor counter 
controls see Figure 9-24.

36–39 TRIGOFFCTL

Counter Trigger OFF control
0000 Never trigger OFF due to a condition.
0001 Trigger OFF when fall of PMCn Qual Pin 
0010 Trigger OFF when previous Performance Monitor Counter overflow condition (bit 32 only)
0011 Trigger OFF when IAC1 match (only requires the debug condition, not the event)
0100 Trigger OFF when IAC2 match (only requires the debug condition, not the event)
0101 Trigger OFF when DAC1 match (only requires the debug condition, not the event)
0110 Trigger OFF when DAC2 match (only requires the debug condition, not the event)
0111–1110

Trigger OFF when DVTn asserted
1111 Reserved
Note: DVTn (DVT0, DVT1, .. DVT7) are asserted by writing the DEVENT register. See Section 2.17.10, 

“Debug Event Select Register (DEVENT).”
The counter trigger OFF control uses certain conditions in the processor as a signal to stop counting 
when those conditions occur. Triggers associated with debug events require only the debug condition 
to be present, and does not require that the debug event occurs. For example, an IAC1 match occurs 
which does not result in a debug event because DBCR0[IDM] is not set, still causes counting to stop if 
the appropriate trigger OFF control is set. For a graphic representation of performance monitor counter 
controls see Figure 9-24.

40 PMCC

PMCn trigger state. 
0 PMCn trigger state is OFF.
1 PMCn trigger state is ON.
Note: This is a status bit which shows the trigger state controlled by TRIGONCTL and TRIGOFFCTL. 

When PMCC = 1, a PMCn may still not be counting if it is frozen by means other than 
PMLCan[FC] or PMGC0[FAC].

41–47 — Reserved
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2.18.4 Performance Monitor Counter Registers 
(PMC0–PMC3/UPMC0–UPMC3)

The PMCs, shown in Figure 2-55, are 32-bit counters that can be programmed to generate interrupt signals 
when they overflow. Each counter is enabled to count 128 events. The e500mc implements these registers 
as they are defined by the architecture and described in the EREF: A Programmer’s Reference Manual for 
Freescale Power Architecture® Processors. 

48–50 PMP

Performance Monitor Overflow Periodicity Select 1

000 Performance Monitor Watchpoint (PMWn) triggers on any change to counter bit 32 (period = 231)
001 Performance Monitor Watchpoint (PMWn) triggers on any change to counter bit 43 (period = 220)
010 Performance Monitor Watchpoint (PMWn) triggers on any change to counter bit 49 (period = 214)
011 Performance Monitor Watchpoint (PMWn) triggers on any change to counter bit 55 (period = 28)
100 Performance Monitor Watchpoint (PMWn) triggers on any change to counter bit 59 (period = 24)
101 Performance Monitor Watchpoint (PMWn) triggers on any change to counter bit 61 (period = 22)
110 Performance Monitor Watchpoint (PMWn) triggers on any change to counter bit 62 (period = 21)
111 Performance Monitor Watchpoint (PMWn) triggers on any change to counter bit 63 (period = 20)

51–52 — Reserved

53–55 THRESHMUL Threshold multiple
000 Threshold field is multiplied by 1 (PMLCbn[THRESHOLD] × 1)
001 Threshold field is multiplied by 2 (PMLCbn[THRESHOLD] × 2)
010 Threshold field is multiplied by 4 (PMLCbn[THRESHOLD] × 4)
011 Threshold field is multiplied by 8 (PMLCbn[THRESHOLD] × 8)
100 Threshold field is multiplied by 16 (PMLCbn[THRESHOLD] × 16)
101 Threshold field is multiplied by 32 (PMLCbn[THRESHOLD] × 32)
110 Threshold field is multiplied by 64 (PMLCbn[THRESHOLD] × 64)
111 Threshold field is multiplied by 128 (PMLCbn[THRESHOLD] × 128)

56–57 — Reserved

58–63 THRESHOLD Threshold. Only events that exceed this value are counted. Events to which a threshold value applies 
are implementation-dependent as are the dimension (for example duration in cycles) and the 
granularity with which the threshold value is interpreted. 
By varying the threshold value, software can profile event characteristics. For example, if PMC1 is 
configured to count cache misses that last longer than the threshold value, software can obtain the 
distribution of cache miss durations for a given program by monitoring the program repeatedly using a 
different threshold value each time. 

1 Performance Monitor Counter overflow generates a watchpoint (PMWn) that can be used for triggering or to generate 
Watchpoint Messages (if enabled).

Table 2-52. PMLCb0–PMLCb3 Field Descriptions (continued)

Bits Name Description
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This table describes the PMC register fields.

The minimum counter value is 0x0000_0000; 4,294,967,295 (0xFFFF_FFFF) is the maximum. A counter 
can increment by 0, 1, 2, 3, or 4 up to the maximum value and then wrap to the minimum value. 

A counter enters overflow state when the high-order bit is set by entering the overflow state at the halfway 
point between the minimum and maximum values. A performance monitor interrupt handler can easily 
identify overflowed counters, even if the interrupt is masked for many cycles (during which the counters 
may continue incrementing). A high-order bit is set normally only when the counter increments from a 
value below 2,147,483,648 (0x8000_0000) to a value greater than or equal to 2,147,483,648 
(0x8000_0000). 

NOTE
Initializing PMCs to overflowed values is strongly discouraged. If an 
overflowed value is loaded into a PMCn that held a non-overflowed value 
(and PMGC0[PMIE], PMLCan[CE], and (MSR[EE] or MSR[GS]) are set), 
an interrupt is generated before any events are counted.

The response to an overflow depends on the configuration, as follows:
• If PMLCan[CE] is clear, no special actions occur on overflow: the counter continues incrementing, 

and no exception is signaled.
• If PMLCan[CE] and PMGC0[FCECE] are set, all counters are frozen when PMCn overflows.
• If PMLCan[CE] and PMGC0[PMIE] are set, an exception is signaled when PMCn reaches 

overflow. Interrupts are masked by when MSR[EE] and MSR[GS] are both 0. An exception may 
be signaled while the interrupt is masked by MSR[EE] and MSR[GS], but the interrupt is not taken 
until it is fully enabled and only if the overflow condition is still present and the configuration has 
not been changed in the meantime to disable the exception. 

PMC0 (PMR16)
PMC1 (PMR17)
PMC2 (PMR18)
PMC3 (PMR19)

UPMC0 (PMR0)
UPMC1 (PMR1)
UPMC2 (PMR2)
UPMC3 (PMR3)

PMC0–PMC3: Guest supervisor
UPMC0–UPMC3: User RO

32 33 63

R
OV Counter value

W

Reset All zeros

Figure 2-55. Performance Monitor Counter Registers (PMC0–PMC3)/
User Performance Monitor Counter Registers (UPMC0–UPMC3) 

Table 2-53. PMC0–PMC3 Field Descriptions

Bits Name Description

32 OV Overflow. When this bit is set, it indicates this counter reaches its maximum value.

33–63 Counter Value Indicates the number of occurrences of the specified event. 
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However, if MSR[EE] and MSR[GS] remain 0 until after the counter leaves the overflow state 
(msb becomes 0), or if MSR[EE] and MSR[GS] remain 0 until after PMLCan[CE] or 
PMGC0[PMIE] are cleared, the exception is not signaled.

The following sequence is recommended for setting counter values and configurations:
1. Set PMGC0[FAC] to freeze the counters. 
2. Using mtpmr instructions, initialize counters and configure control registers.
3. Release the counters by clearing PMGC0[FAC] with a final mtpmr.

Software is expected to use mtpmr to explicitly set PMCs to non-overflowed values. Setting an 
overflowed value may cause an erroneous exception. For example, if both PMGC0[PMIE] and 
PMLCan[CE] are set and the mtpmr loads an overflowed value into PMCn, an interrupt may be generated 
without an event counting having taken place.
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Chapter 3  
Instruction Model
This chapter provides a listing and general description of instructions implemented on the e500mc 
processor cores grouping the instructions by general functionality. It provides the syntax and briefly 
describes the functionality as defined by the architecture. Full descriptions of these instructions are 
provided in the EREF: A Programmer’s Reference Manual for Freescale Power Architecture® 
Processors. 

3.1 Instruction Model Overview
This chapter provides information about the instruction set as implemented on the e500mc, which is an 
implementation of the 32-bit Power ISA.The e500mc implements extensions that define additional 
instructions, registers, and interrupts. The architecture defines several instructions in a general way, 
leaving some details of the execution up to the implementation. Any such details are described in this 
chapter. 

3.1.1 Supported Power ISA Categories and Unsupported Instructions

The e500mc implements the following categories as defined by Power ISA 2.06:
• Base
• Embedded
• Alternate Time Base
• Cache Specification
• Decorated Storage
• Embedded.Enhanced Debug
• Embedded.External PID
• Embedded.Hypervisor
• Embedded.Little-Endian
• Embedded.Performance Monitor
• Embedded.Processor Control
• Embedded.Cache Locking
• External Proxy
• Floating Point and Floating Point.Record
• Memory Coherence
• Store Conditional Page Mobility
• Wait
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Table 3-1 lists Power ISA 2.06 instructions defined in the above categories which are not supported on the 
e500mc. Attempting to execute unsupported instructions results in an illegal instruction exception-type 
program exception. 

Table 3-1. Unsupported Power ISA 2.06 Instructions (by category)

Category Mnemonic Name Notes

Base cmpb Compare Bytes —

Base divwe[o][.] Divide Word Extended —

Base divweu[o][.] Divide Word Extended Unsigned —

Base lbarx Load Byte and Reserve Indexed —

Base lharx Load Halfword and Reserve Indexed —

Base popcntb Population Count Byte —

Base popcntd Population Count Doubleword —

Base popcntw Population Count Word —

Base prtyw Parity Word —

Base stbcx. Store Byte Conditional Indexed —

Base sthcx. Store Halfword Conditional Indexed —

Embedded.External PID evlddepx Vector Load Doubleword into Doubleword by 
External Process ID Indexed

Category SPE not 
supported

Embedded.External PID evstddepx Vector Store Doubleword into Doubleword by 
External Process ID Indexed

Category SPE not 
supported

Embedded.External PID lvepx Load Vector by External Process ID Indexed Category Vector not 
supported

Embedded.External PID lvepxl Load Vector by External Process ID Indexed LRU Category Vector not 
supported

Embedded.External PID stvepx Store Vector by External Process ID Indexed Category Vector not 
supported

Embedded.External PID stvepxl Store Vector by External Process ID Indexed LRU Category Vector not 
supported

Embedded.External PID ldepx Load Doubleword by External Process ID Indexed Category 64-bit not 
supported

Embedded.External PID stdepx Store Doubleword by External Process ID Indexed Category 64-bit not 
supported

Floating Point fcfid[.] Floating Convert From Integer Doubleword —

Floating Point fcfids[.] Floating Convert From Integer Doubleword Single —

Floating Point fcfidu[.] Floating Convert From Integer Doubleword 
Unsigned

—

Floating Point fcfidus[.] Floating Convert From Integer Doubleword 
Unsigned Single

—

Floating Point fcpsgn[.] Floating Copy Sign —

Floating Point fctid[.] Floating Convert To Integer Doubleword —

Floating Point fctidu[.] Floating Convert To Integer Doubleword Unsigned —

Floating Point fctiduz[.] Floating Convert To Integer Doubleword Unsigned 
with round toward Zero

—

Floating Point fctidz[.] Floating Convert To Integer Doubleword with round 
toward Zero

—
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3.2 Computation Mode
The e500mc is a 32-bit implementation of Power ISA 2.06 and supports only 32-bit GPRs and 32-bit mode 
of execution. 

3.3 Instruction Set Summary
The e500mc instructions are presented in the following functional categories: 

• Integer instructions
These include arithmetic and logical instructions. For more information, see Section 3.4.3.1, 
“Integer Instructions.”

• Floating-point instructions
These include floating-point arithmetic and other floating-point instructions.

• Load and store instructions
See Section 3.4.3.2, “Load and Store Instructions.”

• Flow control instructions
These include branching instructions, CR logical instructions, trap instructions, and other 

Floating Point fctiwu[.] Floating Convert To Integer Word Unsigned —

Floating Point fctiwuz[.] Floating Convert To Integer Word Unsigned with 
round towards Zero

—

Floating Point fre Floating Reciprocal Estimate —

Floating Point frim[.] Floating Round to Integer Minus —

Floating Point frin[.] Floating Round to Integer Nearest —

Floating Point frip[.] Floating Round to Integer Plus —

Floating Point friz[.] Floating Round to Integer Toward Zero —

Floating Point frsqrtes[.] Floating Reciprocal Square Root Estimate Single —

Floating Point fsqrt[s][.] Floating Square Root [Single] —

Floating Point ftdiv[.] Floating Test for software Divide —

Floating Point ftsqrt[.] Floating Test for software Square Root —

Floating Point lfiwax Load Floating-Point as Integer Word Algebraic 
Indexed

—

Floating Point lfiwzx Load Floating-Point as Integer Word and Zero 
Indexed

—

Floating Point mtfsfi[.]
(W field)

Move to FPSCR Immediate W field is not 
implemented. Always 
behaves as if W = 0.

Floating Point mtfsf[.]
(W and L fields)

Move to FPSCR W and L fields are not 
implemented. Always 
behaves as if W = L = 0.

Wait wait 
(WC field)

Wait WC field is not 
implemented. Always 
behaves as Wait 0.

Table 3-1. Unsupported Power ISA 2.06 Instructions (by category) (continued)

Category Mnemonic Name Notes
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instructions that affect the instruction flow. See Section 3.4.5, “Branch and Flow Control 
Instructions.”

• Processor control instructions
These instructions are used for performing various tasks associated with moving data to and from 
special registers, system linkage instructions, etc. See Section 3.4.6, “Processor Control 
Instructions.”

• Memory synchronization instructions
These instructions are used for memory synchronizing. See Section 3.4.8, “Memory 
Synchronization Instructions.” 

• Memory control instructions
These instructions provide control of caches and TLBs. See Section 3.4.10, “Memory Control 
Instructions,” and Section 3.4.11.3, “Supervisor-Level Memory Control Instructions.”

Note that instruction groupings used here do not indicate the execution unit that processes a particular 
instruction or group of instructions. This information, which is useful for scheduling instructions most 
effectively, is provided in Chapter 10, “Execution Timing.”

Instructions are four bytes long and are word-aligned. Byte, halfword, word loads and stores occur 
between memory and a set of thirty-two 32-bit general-purpose registers (GPRs).

Integer instructions operate on word operands that specify GPRs as source and destination registers. 
Floating-point instructions operate on doubleword operands, which may contain single- or 
double-precision values, and use thirty-two 64-bit floating-point registers (FPRs) as source and destination 
registers.

Arithmetic and logical instructions do not read or modify memory. To use the contents of a memory 
location in a computation and then modify the same or another location, the memory contents must be 
loaded into a register, modified, and then written to the target location using load and store instructions.

The description of each instruction includes the mnemonic and a formatted list of operands. To simplify 
assembly language programming, a set of simplified mnemonics and symbols is provided for some of the 
frequently used instructions (see Appendix B, “Simplified Mnemonics,” for a complete list). Programs 
written to be portable across the various assemblers for the Power ISA should not assume the existence of 
mnemonics not described in that document.

3.3.1 Instruction Decoding

Reserved fields in instructions are ignored by e500mc. If an instruction contains a defined field for which 
some values of that field are reserved, and that instruction is coded with those reserve values, that 
instruction form is considered an invalid form. Execution of an invalid form instruction is boundedly 
undefined.

3.3.2 Definition of Boundedly Undefined

When a boundedly undefined execution of an instruction takes place, the resulting undefined results are 
bounded in that a spurious change in privilege state is not allowed, and the level of privilege exercised by 
the program in relation to memory access and other system resources cannot be exceeded. Boundedly 
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undefined results for a given instruction can vary between implementations and between execution 
attempts in the same implementation.

3.3.3 Synchronization Requirements

This section discusses synchronization requirements for special registers, certain instructions, and TLBs. 
The synchronization described in this section refers to the state of the processor that is performing the 
synchronization.

Changing a value in certain system registers and invalidating TLB entries can have the side effect of 
altering the context in which data addresses and instruction addresses are interpreted, and in which 
instructions are executed. For example, changing MSR[IS] from 0 to 1 has the side effect of changing 
address space. These effects need not occur in program order (that is, the strict order in which they occur 
in the program) and may require explicit synchronization by software. When multiple changes are made 
that affect context to different values, even within the same register, those changes are not guaranteed to 
occur at the same time unless the instruction itself is context synchronizing. For example, changing both 
MSR[IS] and MSR[GS] with the same mtmsr instruction causes multiple changes to how fetched 
instructions are translated. The change to MSR[IS] may occur in a different cycle than MSR[GS], but both 
are guaranteed to be complete when a context synchronizing event occurs.

An instruction that alters the context in which data addresses or instruction addresses are interpreted, or in 
which instructions are executed, is called a context-altering instruction. This section covers all of the 
context-altering instructions. The software synchronization required for each is shown in Table 3-2 and 
Table 3-3. Instructions that are not listed do not require explicit synchronization.

The notation “CSI” in the tables means any context-synchronizing instruction (sc, isync, rfi, rfgi, rfci, 
rfdi, or rfmci). Any interrupt can be used instead of a context-synchronizing instruction to synchronize 
instructions. If it is, references in this section to the synchronizing instruction should be interpreted as 
meaning the instruction at which the interrupt occurs. If no software synchronization is required either 
before or after a context-altering instruction, the phrase ‘the synchronizing instruction before (or after) the 
context-altering instruction’ should be interpreted as meaning the context-altering instruction itself.

The synchronizing instruction before the context-altering instruction ensures that all instructions up to and 
including that synchronizing instruction are fetched and executed in the context that existed before the 
alteration. The synchronizing instruction after the context-altering instruction ensures that all instructions 
after that synchronizing instruction are fetched and executed in the context established by the alteration. 
Instructions after the first synchronizing instruction, up to and including the second synchronizing 
instruction, may be fetched or executed in either context.

Care must be taken when altering context associated with instruction fetch and instruction address 
translation. Altering MSR[IS], MSR[GS], LPIDR, and PID can cause an implicit branch, where the change 
in translation or how instructions are fetched causes the processor to fetch instructions from a different real 
address than what would have resulted if the context was not changed. Implicit branches are not supported 
by the architecture and it is recommended that MSR[IS] and MSR[GS] context changes be performed 
through a return from interrupt instruction (rfi, rfgi, rfci, rfdi, or rfmci) which changes all the MSR 
context atomically and is completely context synchronizing.
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If a sequence of instructions contains context-altering instructions and contains no instructions that are 
affected by any of the context alterations, no software synchronization is required within the sequence.

Sometimes advantage can be taken of the fact that certain instructions that occur naturally in the program, 
such as the rfi at the end of an interrupt handler, provide the required synchronization.

No software synchronization is required before altering the MSR because mtmsr is execution 
synchronizing. No software synchronization is required before most other alterations shown in Table 3-2, 
because all instructions before the context-altering instruction are fetched and decoded before the 
context-altering instruction is executed. (The processor must determine whether any of the preceding 
instructions are context-synchronizing.)

Table 3-2 identifies the software synchronization requirements for data access for context-altering 
instructions that require synchronization.

Table 3-2. Data Access Synchronization Requirements

Context Altering Instruction or Event Required Before Required After Notes

mfspr (L1CSR0, L1CSR1) sync None 1

1 A sync prior to reading L1CSR0 or L1CSR1 is required to examine any cache locking status from prior cache locking 
operations. The sync ensures that any previous cache locking operations have completed prior to reading the status.

mtmsr (DE) None CSI —

mtmsr (DS) None CSI —

mtmsr (GS) None CSI —

mtmsr (ME) None CSI 2

2 A context-synchronizing instruction is required after altering MSR[ME] to ensure that the alteration takes effect for subsequent 
machine check interrupts, which may not be recoverable and therefore may not be context-synchronizing.

mtmsr (PR) None CSI —

mtpmr (all) None CSI —

mtspr (EPLC) None CSI —

mtspr (EPSC) None CSI —

mtspr (L1CSR0, L1CSR1) sync followed by isync isync —

mtspr (L1CSR2) sync followed by isync isync followed by sync3

3 The additional sync after the mtspr is done is required if software is turning off stashing by setting the stash ID field of the 
register to zero. The sync ensures that any pending stash operations have finished.

—

mtspr (L2CSR0) sync followed by isync isync —

mtspr (L2CSR1) sync followed by isync isync followed by sync3 —

mtspr (LPIDR) CSI CSI —

mtspr (PID) CSI CSI —

tlbivax CSI sync followed by CSI 4,5,6

4 For data accesses, the context-synchronizing instruction before tlbwe, tlbilx, or tlbivax ensures that all memory accesses 
due to preceding instructions have completed to a point at which they have reported all exceptions they cause.

tlbilx CSI CSI 4,5

tlbwe CSI CSI 4,5



Instruction Model

e500mc Core Reference Manual, Rev. 3

Freescale Semiconductor 3-7
 

Table 3-3 identifies the software synchronization requirements for instruction fetch and/or execution for 
context-altering instructions which require synchronization.

5 The context-synchronizing instruction after tlbwe, tlbilx, or tlbivax ensures that subsequent accesses (data and instruction) 
use the updated value in any TLB entries affected. It does not ensure that all accesses previously translated by TLB entries 
being updated have completed with respect to memory; if these completions must be ensured, tlbwe, tlbilx, or tlbivax must 
be followed by an sync and by a context-synchronizing instruction.

6 To insure that all TLB invalidations are completed and seen in all processors in the coherence domain, the global invalidation 
requires that a tlbsync be executed after the tlbivax as follows: tlbivax; sync; tlbsync; sync; isync. For the e500mc, this 
code should be protected by a mutual exclusion lock such that only one processor at a time is executing this sequence as 
multiple tlbsync operations on the CoreNet interface may cause the integrated device to hang.

Table 3-3. Instruction Fetch and/or Execution Synchronization Requirements

Context Altering Instruction or Event Required Before Required After Notes

mtmsr (DE) None CSI —

mtmsr (FE0) None CSI —

mtmsr (FE1) None CSI —

mtmsr (FP) None CSI —

mtmsr (IS) None CSI —

mtmsr (GS) None CSI —

mtmsr (PR) None CSI —

mtpmr (all) None CSI —

mtspr (L1CSR0, L1CSR1, L1CSR2) sync followed by isync isync —

mtspr (L2CSR0, L2CSR1) sync followed by isync isync —

mtspr (LPIDR) None CSI —

mtspr (MASn) None isync 1

1 Architecturally, MAS registers changes require an isync before subsequent instructions that use those updated values such 
as a tlbwe, tlbre, tlbilx, tlbsx, and tlbivax. Typically software does several MAS updates and then performs a single isync 
prior to executing the TLB management instruction. Currently, e500mc does not require such synchronization because the 
mtspr and the TLB management instructions both internally use the same synchronization method. If software choses not to 
execute the isync it should be aware that the internal synchronization may change in future cores or even in a future revision 
of e500mc.

mtspr (PID) None CSI —

tlbivax None CSI 2,3

2 The context-synchronizing instruction after tlbwe, tlbilx, or tlbivax ensures that subsequent accesses (data and instruction) 
use the updated value in any TLB entries affected. It does not ensure that all accesses previously translated by TLB entries 
being updated have completed with respect to memory; if these completions must be ensured, tlbwe, tlbilx, or tlbivax must 
be followed by an sync and by a context-synchronizing instruction.

3 To insure that all TLB invalidations are completed and seen in all processors in the coherence domain, the global invalidation 
requires that a tlbsync be executed after the tlbivax as follows: tlbivax; sync; tlbsync; sync; isync. For the e500mc, this 
code should be protected by a mutual exclusion lock such that only one processor at a time is executing this sequence as 
multiple tlbsync operations on the CoreNet interface may cause the integrated device to hang.

tlbilx None CSI 2

tlbwe None CSI 2
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Table 3-4 identifies the software synchronization requirements for non context-altering instructions that 
require synchronization.

3.3.3.1 Synchronization with tlbwe, tlbivax, and tlbilx Instructions 

The following sequence shows why, for data accesses, all memory accesses due to instructions before the 
tlbwe or tlbivax must complete to a point at which they have reported any exceptions. Assume valid TLB 
entries exist for the target memory location when the sequence starts. 

1. A program issues a load or store to a page. 
2. The same program executes tlbwe, tlbilx, or tlbivax that invalidates the corresponding TLB entry. 
3. The load or store instruction finally executes, and gets a TLB miss exception. 

The TLB miss exception is semantically incorrect. To prevent it, a context-synchronizing instruction must 
be executed between steps 1 and 2. 

The tlbilx instruction requires the same local-processor synchronization as tlbivax, but not the 
cross-processor synchronization (that is, it does not require a tlbsync).

Table 3-4. Special Synchronization Requirements

Context Altering Instruction or Event Required Before Required Immediately After Notes

mtspr (BUCSR) None isync —

mtspr (DACn) None isync followed by changing 
MSR[DE] from 0 to 1

1

1 Synchronization requirements for changing any debug facility registers require that the changes be followed by an isync and a 
transition of MSR[DE] from 0 to 1 before the results of the changes are guaranteed to be seen. Normally changes to the debug 
registers occurs in the debug interrupt routine when MSR[DE] is 0 and the subsequent return from the debug routine is likely to 
set MSR[DE] back to 1 which accomplishes the required synchronization. Software should only make changes to the debug 
facility registers when MSR[DE] = 0.

mtspr (DBCRn) None isync followed by changing 
MSR[DE] from 0 to 1

1

mtspr (DBSR) None isync followed by changing 
MSR[DE] from 0 to 1

1

mtspr (DBSRWR) None isync followed by changing 
MSR[DE] from 0 to 1

1

mtspr (EPCR[DUVD]) None isync followed by changing 
MSR[DE] from 0 to 1

1,2

2 Note that the special synchronization requirement applies only to changes to EPCR[DUVD]. If this bit is not changed, the 
synchronization requirements for EPCR is as described in the data or instruction execution tables above.

mtspr (HIDn) msync followed by isync isync —

mtspr (IACn) None isync followed by changing 
MSR[DE] from 0 to 1

1

mtspr (L2ERR*) msync followed by isync isync —

mtspr (MMUCSR0) None isync —

mtspr (NSPD) None isync —
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3.3.3.2 Context Synchronization

An instruction or event is context synchronizing if it satisfies the requirements listed below. 
Context-synchronizing operations include instructions isync, sc, rfi, rfci, rfmci, rfdi, rfgi, ehpriv, and 
most interrupts. The EREF: A Programmer’s Reference Manual for Freescale Power Architecture® 
Processors describes context synchronization in detail. 

1. The operation is not initiated or, in the case of isync, does not complete until all executing 
instructions complete to a point at which they have reported all exceptions they cause.

2. Instructions that precede the operation execute in the context (including such parameters as 
privilege level, address space, and memory protection) in which they were initiated.

3. If the operation directly causes an interrupt (for example, sc directly causes a system call interrupt) 
or is an interrupt, the operation is not initiated until no interrupt-causing exception exists having 
higher priority than the exception associated with the interrupt.See Section 4.12, “Exception 
Priorities.”

4. Instructions that follow the operation are fetched and executed in the context established by the 
operation as required by the sequential execution model. (This requirement dictates that any 
prefetched instructions be discarded and that any effects and side effects of executing them 
speculatively may also be discarded, except as described in the EREF: A Programmer’s Reference 
Manual for Freescale Power Architecture® Processors.)

As described in Section 3.3.3.3, “Execution Synchronization,” a context-synchronizing operation is 
necessarily execution synchronizing. Unlike sync (msync) and mbar, such operations do not affect the 
order of memory accesses with respect to other mechanisms.

3.3.3.3 Execution Synchronization

An instruction is execution synchronizing if it satisfies items 1 and 2 of the definition of context 
synchronization (see Section 3.3.3.2, “Context Synchronization”). sync (msync) is treated like isync with 
respect to item 1 (that is, the conditions described in item 1 apply to completion of sync). Execution 
synchronizing instructions include sync, mtmsr, wrtee, and wrteei. All context-synchronizing 
instructions are execution synchronizing.

Unlike a context-synchronizing operation, an execution synchronizing instruction need not ensure that 
instructions following it execute in the context established by that execution synchronizing instruction. 
This new context becomes effective sometime after the execution synchronizing instruction completes and 
before or at a subsequent context-synchronizing operation.

3.3.3.4 Instruction-Related Interrupts

Interrupts are caused either directly by the execution of an instruction or by an asynchronous event. In 
either case, an exception may cause one of several types of interrupts to be invoked. For example, an 
attempt by an application program to execute a privileged instruction causes a privileged instruction 
exception-type program interrupt. Such exceptions and interrupts for the e500mc instructions are 
described in Section 4.6, “Exceptions.” 
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3.4 Instruction Set Overview
This section provides an overview of the instructions implemented in the e500mc and highlights any 
special information with respect to how the e500mc implements a particular instruction. 

3.4.1 Record and Overflow Forms

Note that some instructions have record and/or overflow forms that have the following features:
• CR update for integer instructions

The dot (.) suffix on the mnemonic for integer computation instructions enables the update of the 
CR0 field. CR0 is updated based on the signed comparison of the result to 0. 

• Integer overflow option
The o suffix indicates that the overflow bit in the XER is enabled. In 32-bit mode, overflow 
(XER[OV]) is set if the carryout of bit 32 is not equal to the carryout of bit 33 in the final result of 
the operation. Summary overflow (XER[SOV]) is a sticky bit that is set when XER[OV] is set.

• CR update for floating-point instructions
The dot (.) suffix on the mnemonic for floating-point computation instructions enables the update 
of the CR1 field. CR1 is updated with the exception status copied from bits FPSCR[32:35].

• CR update for store conditional instructions 
Store conditional instructions always include the dot (.) suffix and update CR0 based on whether 
the store was performed.

3.4.2 Effective Address Computation

Load and store operations (as well as tlbivax, tlbilx, cache locking, and cache management instructions) 
generate effective addresses used to determine the address where a storage operation is to be performed. 
There are several different forms of effective address generation and some instructions such as integer load 
and store instructions provide all such forms. The effective address calculation modes are as follows:

• Register indirect with immediate index addressing. The EA is generated by adding the 
sign-extended 16-bit immediate index (d operand) to the contents of the GPR specified by rA. If 
rA specifies r0, a value of zero is added to the index. Instruction descriptions show this option as 
(rA|0). 

• Register indirect with index addressing. The EA is formed by adding the contents of two GPRs 
specified as operands rA and rB. A zero in place of the rA operand causes a zero to be added to 
the contents of the GPR specified in operand rB

Register indirect addressing. The GPR specified by the rB operand contains the EA. 

For more information, see EREF: A Programmer’s Reference Manual for Freescale Power Architecture® 
Processors.
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3.4.3 User-Level Instructions

This section discusses the user-level instructions.

3.4.3.1 Integer Instructions

This section describes the integer instructions. These consist of the following:
• Integer Arithmetic Instructions
• Integer Compare Instructions
• Integer Logical Instructions
• Integer Rotate and Shift Instructions

Integer instructions use the content of the GPRs as source operands and place results into GPRs and the 
XER and CR fields. 

3.4.3.1.1 Integer Arithmetic Instructions 

This table lists the Power ISA integer arithmetic instructions implemented on the e500mc.
Table 3-5. Integer Arithmetic Instructions

Name Mnemonic Syntax 

Add add (add. addo addo.) rD,rA,rB

Add Carrying addc (addc. addco addco.) rD,rA,rB

Add Extended adde (adde. addeo addeo.) rD,rA,rB

Add Immediate addi rD,rA,SIMM

Add Immediate Carrying addic rD,rA,SIMM

Add Immediate Carrying and Record addic. rD,rA,SIMM

Add Immediate Shifted addis rD,rA,SIMM

Add to Minus One Extended addme (addme. addmeo addmeo.) rD,rA

Add to Zero Extended addze (addze. addzeo addzeo.) rD,rA

Divide Word divw (divw. divwo divwo.) rD,rA,rB

Divide Word Unsigned divwu divwu. divwuo divwuo. rD,rA,rB

Multiply High Word mulhw (mulhw.) rD,rA,rB

Multiply High Word Unsigned mulhwu (mulhwu.) rD,rA,rB

Multiply Low Immediate mulli rD,rA,SIMM

Multiply Low Word mullw (mullw. mullwo mullwo.) rD,rA,rB

Negate neg (neg. nego nego.) rD,rA

Subtract From subf (subf. subfo subfo.) rD,rA,rB

Subtract from Carrying subfc (subfc. subfco subfco.) rD,rA,rB

Subtract from Extended subfe (subfe. subfeo subfeo.) rD,rA,rB

Subtract from Immediate Carrying subfic rD,rA,SIMM
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Although there is no subtract immediate instruction, its effect is achieved by negating the immediate 
operand of an addi instruction. Simplified mnemonics include this negation. Subtract instructions subtract 
the second operand (rA) from the third (rB). Simplified mnemonics are provided in which the third is 
subtracted from the second. See Appendix B, “Simplified Mnemonics.” 

An implementation that executes instructions with the overflow exception enable bit (OE) set or that sets 
the carry bit (CA) can either execute these instructions slowly or prevent execution of the next instruction 
until the operation completes. Chapter 10, “Execution Timing,” describes how the e500mc handles such 
CR dependencies. The summary overflow and overflow bits XER[SO,OV] are set to reflect an overflow 
condition of a 32-bit result only if the instruction’s OE bit is set.

3.4.3.1.2 Integer Compare Instructions 

Integer compare instructions algebraically or logically compare the contents of rA with either the 
zero-extended value of the UIMM operand, the sign-extended value of the SIMM operand, or the contents 
of rB. The comparison is signed for cmpi and cmp and unsigned for cmpli and cmpl. Table 3-6 lists 
integer compare instructions. The L bit should always be 0. 

The crD operand can be omitted if the result of the comparison is to be placed in CR0. Otherwise the target 
CR field must be specified in crD by using an explicit field number.

For information on simplified mnemonics, see Appendix B, “Simplified Mnemonics.”

3.4.3.1.3 Integer Logical Instructions 

The logical instructions, shown in Table 3-7, perform bit-parallel operations. Logical instructions do not 
affect XER[SO,OV,CA]. See Appendix B, “Simplified Mnemonics,” for simplified mnemonic examples 
for integer logical operations.

Subtract from Minus One Extended subfme (subfme. subfmeo subfmeo.) rD,rA

Subtract from Zero Extended subfze (subfze. subfzeo subfzeo.) rD,rA

Table 3-6. Integer Compare Instructions

Name Mnemonic Syntax

Compare cmp crD,L,rA,rB

Compare Immediate cmpi crD,L,rA,SIMM

Compare Logical cmpl crD,L,rA,rB

Compare Logical Immediate cmpli crD,L,rA,UIMM

Table 3-7. Integer Logical Instructions

Name Mnemonic Syntax Implementation Notes

AND and (and.) rA,rS,rB —

AND Immediate andi. rA,rS,UIMM —

Table 3-5. Integer Arithmetic Instructions (continued)

Name Mnemonic Syntax 
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3.4.3.1.4 Integer Rotate and Shift Instructions 

Rotation operations are performed on data from a GPR, and the result, or a portion of the result, is returned 
to a GPR. Integer rotate instructions, summarized in Table 3-8, rotate the contents of a register. The result 
is either inserted into the target register under control of a mask (if a mask bit is set the associated bit of 
the rotated data is placed into the target register, and if the mask bit is cleared the associated bit in the target 
register is unchanged) or ANDed with a mask before being placed into the target register. Appendix B, 
“Simplified Mnemonics,” lists simplified mnemonics that allow simpler coding of often-used functions 
such as clearing the left- or right-most bits of a register, left or right justifying an arbitrary field, and simple 
rotates and shifts. 

Integer shift instructions, listed in Table 3-9, perform left and right shifts. Immediate-form logical 
(unsigned) shift operations are obtained by specifying masks and shift values for certain rotate 
instructions. Appendix B, “Simplified Mnemonics,” shows how to simplify coding of such shifts. 
Multiple-precision shifts can be programmed as described in the EREF: A Programmer’s Reference 
Manual for Freescale Power Architecture® Processors.

AND Immediate Shifted andis. rA,rS,UIMM —

AND with Complement andc (andc.) rA,rS,rB —

Count Leading Zeros Word cntlzw (cntlzw.) rA,rS —

Equivalent eqv (eqv.) rA,rS,rB —

Extend Sign Byte extsb (extsb.) rA,rS —

Extend Sign Halfword extsh (extsh.) rA,rS —

NAND nand (nand.) rA,rS,rB —

NOR nor (nor.) rA,rS,rB —

OR or (or.) rA,rS,rB —

OR Immediate ori rA,rS,UIMM ori r0,r0,0 is the preferred form for a NOP. At 
dispatch it may enter the completion queue but 
not to an execution unit.

OR Immediate Shifted oris rA,rS,UIMM —

OR with Complement orc (orc.) rA,rS,rB —

XOR xor (xor.) rA,rS,rB —

XOR Immediate xori rA,rS,UIMM —

XOR Immediate Shifted xoris rA,rS,UIMM —

Table 3-8. Integer Rotate Instructions

Name Mnemonic Syntax 

Rotate Left Word then AND with Mask rlwnm (rlwnm.) rA,rS,rB,MB,ME

Rotate Left Word Immediate then Mask Insert rlwimi (rlwimi.) rA,rS,SH,MB,ME

Rotate Left Word Immediate then AND with Mask rlwinm (rlwinm.) rA,rS,SH,MB,ME

Table 3-7. Integer Logical Instructions (continued)

Name Mnemonic Syntax Implementation Notes
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3.4.3.2 Load and Store Instructions

Although load and store instructions are issued and translated in program order, accesses can occur out of 
order. Memory synchronizing (barrier) instructions are provided to enforce strict ordering. e500mc load 
and store instructions are grouped as follows:

• Integer load instructions
• Integer store instructions
• Integer load and store with byte-reverse instructions
• Integer load and store multiple instructions
• Floating-point load instructions
• Floating-point store instructions
• Memory synchronization instructions
• External PID load and store instructions are described in Section 3.4.11.2, “External PID Load 

Store Instructions”
• Decorated storage load and store instructions are described in Section 3.4.3.2.8, “Decorated Load 

and Store Instructions

Implementation Notes:

The following describes how the e500mc handles misalignment: The e500mc provides hardware support 
for misaligned memory accesses, but at the cost of performance degradation. For loads that hit in the cache, 
the LSU’s throughput degrades to one misaligned load every 3 cycles. Similarly, stores can be translated 
at a rate of one misaligned store every 3 cycles. Additionally, after translation, each misaligned store is 
treated as two distinct entries in the store queue, each requiring a cache access.

A word or halfword memory access requires multiple accesses if it crosses a doubleword boundary but not 
if it crosses a natural boundary. 

Frequent use of misaligned memory accesses can greatly degrade performance.

Any load doubleword, word, or load halfword that crosses a doubleword boundary is interruptible, and 
therefore can restart. If the first access has been performed when the interrupt occurs, it is performed again 
when the instruction is restarted, even if it is to a page marked as guarded. Any load word or load halfword 
that crosses a translation boundary may take a translation exception on the second access. In this case, the 
first access may have already occurred.

Accesses that cross a translation boundary where the endianness differs cause a byte-ordering data storage 
interrupt.

Table 3-9. Integer Shift Instructions

Name Mnemonic Syntax 

Shift Left Word slw (slw.) rA,rS,rB

Shift Right Word srw (srw.) rA,rS,rB

Shift Right Algebraic Word Immediate srawi (srawi.) rA,rS,SH

Shift Right Algebraic Word sraw (sraw.) rA,rS,rB
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3.4.3.2.1 Update Forms of Load and Store Instructions

Some integer load and store as well as floating-point load and store instructions contain update forms 
which update rA with the calculated EA. These instructions are specified with a ‘u’ in the mnemonic.

Update forms where rA = 0 are considered invalid.

Update forms for loads when rA = rD are considered invalid. 

3.4.3.2.2 General Integer Load Instructions

This table lists the integer load instructions.

Some implementations execute the load algebraic (lha, lhax, lhau, lhaux) instructions with greater latency 
than other types of load instructions. The e500mc executes these instructions with the same latency as 
other load instructions. 

The e500mc also contains load and store instructions for atomic memory accesses. These are described in 
Section 3.4.8, “Memory Synchronization Instructions.”

Table 3-10. Integer Load Instructions

Name Mnemonic Syntax 

Load Byte and Zero lbz rD,d(rA)

Load Byte and Zero Indexed lbzx rD,rA,rB

Load Byte and Zero with Update lbzu rD,d(rA)

Load Byte and Zero with Update Indexed lbzux rD,rA,rB

Load Halfword and Zero lhz rD,d(rA)

Load Halfword and Zero Indexed lhzx rD,rA,rB

Load Halfword and Zero with Update lhzu rD,d(rA)

Load Halfword and Zero with Update Indexed lhzux rD,rA,rB

Load Halfword Algebraic lha rD,d(rA)

Load Halfword Algebraic Indexed lhax rD,rA,rB

Load Halfword Algebraic with Update lhau rD,d(rA)

Load Halfword Algebraic with Update Indexed lhaux rD,rA,rB

Load Word and Zero lwz rD,d(rA)

Load Word and Zero Indexed lwzx rD,rA,rB

Load Word and Zero with Update lwzu rD,d(rA)

Load Word and Zero with Update Indexed lwzux rD,rA,rB
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3.4.3.2.3 Integer Store Instructions 

For integer store instructions, the rS contents are stored into the byte, halfword, word, or doubleword in 
memory addressed by the EA. This table summarizes integer store instructions.

3.4.3.2.4 Integer Load and Store with Byte-Reverse Instructions 

This table describes integer load and store with byte-reverse instructions. The Power ISA supports true 
little endian on a per-page basis. 

Some implementations run the load/store byte-reverse instructions with greater latency than other types of 
load/store instructions. The e500mc executes these instructions with the same latency as other load/store 
instructions.

3.4.3.2.5 Integer Load and Store Multiple Instructions 

The load/store multiple instructions, listed in Table 3-13, move blocks of data to and from GPRs. If their 
operands require memory accesses crossing a page boundary, these instructions may require a data storage 
interrupt to translate the second page. Also, if one of these instructions is interrupted, it is restarted, 
requiring multiple memory accesses. 

The architecture defines Load Multiple Word (lmw) with rA in the range of GPRs to be loaded as an 
invalid form. Load and store multiple accesses not word aligned cause an alignment exception.

Table 3-11. Integer Store Instructions

Name Mnemonic Syntax 

Store Byte stb rS,d(rA)

Store Byte Indexed stbx rS,rA,rB

Store Byte with Update stbu rS,d(rA)

Store Byte with Update Indexed stbux rS,rA,rB

Store Halfword sth rS,d(rA)

Store Halfword Indexed sthx rS,rA,rB

Store Halfword with Update sthu rS,d(rA)

Store Halfword with Update Indexed sthux rS,rA,rB

Store Word stw rS,d(rA)

Store Word Indexed stwx rS,rA,rB

Store Word with Update stwu rS,d(rA)

Store Word with Update Indexed stwux rS,rA,rB

Table 3-12. Integer Load and Store with Byte-Reverse Instructions

Name Mnemonic Syntax 

Load Halfword Byte-Reverse Indexed lhbrx rD,rA,rB

Load Word Byte-Reverse Indexed lwbrx rD,rA,rB

Store Halfword Byte-Reverse Indexed sthbrx rS,rA,rB

Store Word Byte-Reverse Indexed stwbrx rS,rA,rB
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If rA is in the range of registers to be loaded, what gets loaded into any register depends on whether an 
interrupt occurs (and at what point the interrupt occurs) requiring the instruction to be restarted. If rA is 
loaded with a new value from memory and an interrupt and subsequent return to re-execute the lmw 
instruction occurs, rA has a different value and forms a completely different EA, which causes the registers 
to be reloaded from a storage location not intended by the program.

If an interrupt does not occur, the register to be loaded starting at rA + 1 (for example, if rA is r10, then 
r11 is rA + 1) then is loaded from the new address calculated from the updated value of rA and the current 
running displacement.

3.4.3.2.6 Floating-Point Load Instructions

Separate floating-point load instructions are used for single-precision and double-precision operands. 
Because FPRs support only double-precision format, the FPU converts single-precision data to 
double-precision format before loading the operands into the target FPR. This conversion is described fully 
in the “Floating-Point Models” appendix in the EREF: A Programmer’s Reference Manual for Freescale 
Power Architecture® Processors. 

This table provides a list of the floating-point load instructions.

3.4.3.2.7 Floating-Point Store Instructions

There are three basic forms of the store instruction—single-precision, double-precision, and integer. The 
integer form is supported by the optional stfiwx instruction. Because the FPRs support only 
double-precision format for floating-point data, the FPU converts double-precision data to 
single-precision format before storing the operands. The conversion steps are described in “Floating-Point 
Store Instructions” in Appendix D, “Floating-Point Models,” in the EREF: A Programmer’s Reference 
Manual for Freescale Power Architecture® Processors. 

Table 3-13. Integer Load and Store Multiple Instructions

Name Mnemonic Syntax 

Load Multiple Word lmw rD,d(rA)

Store Multiple Word stmw rS,d(rA)

Table 3-14. Floating-Point Load Instructions

Name Mnemonic Operand Syntax

Load Floating-Point Double lfd frD,d(rA)

Load Floating-Point Double Indexed lfdx frD,rA,rB

Load Floating-Point Double with Update lfdu frD,d(rA)

Load Floating-Point Double with Update Indexed lfdux frD,rA,rB

Load Floating-Point Single lfs frD,d(rA)

Load Floating-Point Single Indexed lfsx frD,rA,rB

Load Floating-Point Single with Update lfsu frD,d(rA)

Load Floating-Point Single with Update Indexed lfsux frD,rA,rB



Instruction Model

e500mc Core Reference Manual, Rev. 3

3-18 Freescale Semiconductor
 

This table lists the floating-point store instructions.

3.4.3.2.8 Decorated Load and Store Instructions 

Decorated load and store instructions allow efficient, SoC-specific operations targeted by storage address, 
such as packet-counting statistics. The SoC defines specific semantics understood by a SoC-customized 
resource that requires them. To determine the full semantic of a decorated storage operation, consult 
reference manual for the integrated device.

The architecture defines the decorated instructions listed in Table 3-16, which provide the EA in rB and 
the decoration in rA.

Decorated load and store instructions are treated as normal cacheable loads and stores when they are to 
addresses that are not cache inhibited. dsn is treated as a 0 byte store. Decorated load and store instructions 
to addresses that are caching inhibited are always treated as guarded, regardless of the setting of the G bit 

Table 3-15. Floating-Point Store Instructions

Name Mnemonic Operand Syntax

Store Floating-Point as Integer Word Indexed stfiwx frS,rA,rB

Store Floating-Point Double stfd frS,d(rA)

Store Floating-Point Double Indexed stfdx frS,rA,rB

Store Floating-Point Double with Update stfdu frS,d(rA)

Store Floating-Point Double with Update Indexed stfdux frS,rA,rB

Store Floating-Point Single stfs frS,d(rA)

Store Floating-Point Single Indexed stfsx frS,rA,rB

Store Floating-Point Single with Update stfsu frS,d(rA)

Store Floating-Point Single with Update Indexed stfsux frS,rA,rB

Table 3-16. Decorated Load and Store Instructions

Instruction Mnemonic Syntax Description

Load Byte with Decoration Indexed lbdx rD,rA,rB The byte, halfword, word, or floating-point doubleword 
addressed by EA (in rB) using the decoration supplied by 
rA is loaded into target GPR rD. Load Halfword with Decoration Indexed lhdx rD,rA,rB

Load Word with Decoration Indexed lwdx rD,rA,rB

Load Floating-Point Doubleword with 
Decoration Indexed

lfddx frD,rA,rB

Store Byte with Decoration Indexed stbdx rS,rA,rB The contents of rS and the decoration supplied by 
GPR(rA) are stored into byte, halfword, word, or 
floating-point doubleword in storage addressed by EA 
(rB).

Store Halfword with Decoration Indexed sthdx rS,rA,rB

Store Word with Decoration Indexed stwdx rS,rA,rB

Store Floating-Point Doubleword with 
Decoration Indexed

stfddx frS,rA,rB

Decorated Storage Notify dsn rA,rB Address-only operation that sends a decoration without 
any associated load or store semantics. 
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in the associated TLB entry. This prevents speculative decorated loads from executing, which potentially 
produces side effects other than the normal load semantics.

Implementation Notes:

The number of bits of decoration that are delivered along with the address for decorated load, store and 
notify operations is implementation dependent based on how many bits of decoration the interconnect 
supports. For e500mc, only the low-order 4 bits of the decoration in rA are implemented.

3.4.4 Floating-Point Execution Model

The core provides hardware support for all single- and double-precision floating-point operations for most 
value representations and all rounding modes. The PowerPC architecture provides for hardware 
implementation of a floating-point system as defined in ANSI/IEEE Standard 754-1985, IEEE Standard 
for Binary Floating Point Arithmetic. For detailed information about the floating-point execution model, 
refer to the “Operand Conventions” chapter in the EREF: A Programmer’s Reference Manual for 
Freescale Power Architecture® Processors. 

The IEEE 754 standard includes 64- and 32-bit arithmetic. The standard requires that single-precision 
arithmetic be provided for single-precision operands. The standard permits double-precision arithmetic 
instructions to have either (or both) single-precision or double-precision operands, but states that 
single-precision arithmetic instructions should not accept double-precision operands. 

The UISA follows these guidelines: 
• Double-precision arithmetic instructions may have single-precision operands but always produce 

double-precision results.
• Single-precision arithmetic instructions require all operands to be single-precision and always 

produce single-precision results.

For arithmetic instructions, conversions from double- to single-precision must be done explicitly by 
software, while conversions from single- to double-precision are done implicitly.

All Power ISA implementations provide the equivalent of the execution models described in this chapter 
to ensure that identical results are obtained. The definition of the arithmetic instructions for infinities, 
denormalized numbers, and NaNs follow conventions described in the following sections.

Although the double-precision format specifies an 11-bit exponent, exponent arithmetic uses two 
additional bit positions to avoid potential transient overflow conditions. An extra bit is required when 
denormalized double-precision numbers are prenormalized. A second bit is required to permit 
computation of the adjusted exponent value in the following examples when the corresponding exception 
enable bit is one:

• Underflow during multiplication using a denormalized factor
• Overflow during division using a denormalized divisor

3.4.4.1 Floating-Point Instructions

This section describes the floating-point instructions, which include the following:
• Floating-Point Arithmetic Instructions



Instruction Model

e500mc Core Reference Manual, Rev. 3

3-20 Freescale Semiconductor
 

• Floating-Point Multiply-Add Instructions
• Floating-Point Rounding and Conversion Instructions 
• Floating-Point Compare Instructions
• Floating-Point Status and Control Register Instructions
• Floating-Point Move Instructions

See Section 3.4.3.2, “Load and Store Instructions,” for information about floating-point loads and stores.

The Power ISA architecture supports a floating-point system as defined in the IEEE 754 standard. All 
floating-point operations conform to the IEEE 754 standard, except if software sets the non-IEEE mode 
bit (NI) in the FPSCR. The core is in the nondenormalized mode when the NI bit is set in the FPSCR. If 
set the following behavioral changes occur:

• If a denormalized result is produced, a default result of zero is generated. The generated zero has 
the same sign as the denormalized number. 

• If a denormalized value occurs on input, a zero value of the same sign as the input is used in the 
calculation in place of the denormalized number.

The core performs single- and double-precision floating-point operations compliant with the IEEE 754 
floating-point standard.

Implementation Notes

Single-precision denormalized results require two additional processor clock cycles to round. When 
loading or storing a single-precision denormalized number, the load/store unit may take up to 24 processor 
clock cycles to convert between the internal double-precision format and the external single-precision 
format.

3.4.4.1.1 Floating-Point Arithmetic Instructions

The floating-point arithmetic instructions are listed in this table.
Table 3-17. Floating-Point Arithmetic Instructions

Name Mnemonic Operand Syntax

Floating Add (Double-Precision) fadd (fadd.) frD,frA,frB

Floating Add Single fadds (fadds.) frD,frA,frB

Floating Divide (Double-Precision) fdiv (fdiv.) frD,frA,frB

Floating Divide Single fdivs (fdivs.) frD,frA,frB

Floating Multiply (Double-Precision) fmul (fmul.) frD,frA,frC

Floating Multiply Single fmuls (fmuls.) frD,frA,frC

Floating Reciprocal Estimate Single fres (fres.) frD,frB

Floating Reciprocal Square Root Estimate frsqrte (frsqrte.) frD,frB

Floating Select fsel (fsel.) frD,frA,frC,frB

Floating Subtract (Double-Precision) fsub (fsub.) frD,frA,frB

Floating Subtract Single fsubs (fsubs.) frD,frA,frB
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3.4.4.1.2 Floating-Point Multiply-Add Instructions

These instructions combine multiply and add operations without an intermediate rounding operation. The 
fractional part of the intermediate product is 106 bits wide, and all 106 bits take part in the add/subtract 
portion of the instruction.

The floating-point multiply-add instructions are listed in this table.

Implementation Notes

Single-precision multiply-type instructions operate faster than their double-precision equivalents. See 
Chapter 10, “Execution Timing,” for more information.

3.4.4.1.3 Floating-Point Rounding and Conversion Instructions

The Floating Round to Single-Precision (frsp) instruction is used to truncate a 64-bit double-precision 
number to a 32-bit single-precision floating-point number. The floating-point conversion instructions 
convert a 64-bit double-precision floating-point number to signed integer numbers.

Examples of uses of these instructions to perform various conversions can be found in Appendix D, 
“Floating-Point Models,” in the EREF: A Programmer’s Reference Manual for Freescale Power 
Architecture® Processors. The floating-point rounding instructions are shown in this table.

Table 3-18. Floating-Point Multiply-Add Instructions

Name Mnemonic Operand Syntax

Floating Multiply-Add (Double-Precision) fmadd (fmadd.) frD,frA,frC,frB

Floating Multiply-Add Single fmadds (fmadds.) frD,frA,frC,frB

Floating Multiply-Subtract (Double-Precision) fmsub (fmsub.) frD,frA,frC,frB

Floating Multiply-Subtract Single fmsubs (fmsubs.) frD,frA,frC,frB

Floating Negative Multiply-Add (Double-Precision) fnmadd (fnmadd.) frD,frA,frC,frB

Floating Negative Multiply-Add Single fnmadds (fnmadds.) frD,frA,frC,frB

Floating Negative Multiply-Subtract (Double-Precision) fnmsub (fnmsub.) frD,frA,frC,frB

Floating Negative Multiply-Subtract Single fnmsubs (fnmsubs.) frD,frA,frC,frB

Table 3-19. Floating-Point Rounding and Conversion Instructions

Name Mnemonic Operand Syntax

Floating Convert to Integer Word fctiw (fctiw.) frD,frB

Floating Convert to Integer Word with Round Toward Zero fctiwz (fctiwz.) frD,frB

Floating Round to Single-Precision frsp (frsp.) frD,frB
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3.4.4.1.4 Floating-Point Compare Instructions

Floating-point compare instructions compare the contents of two floating-point registers. The comparison 
ignores the sign of zero (that is +0 = –0). The floating-point compare instructions are listed in this table.

3.4.4.1.5 Floating-Point Status and Control Register Instructions

Every FPSCR instruction synchronizes the effects of all floating-point instructions executed by a given 
processor. Executing an FPSCR instruction ensures that all floating-point instructions previously initiated 
by the given processor have completed before the FPSCR instruction is initiated and that no subsequent 
floating-point instructions are initiated by the given processor until the FPSCR instruction has completed. 
The FPSCR instructions are listed in this table.

NOTE
The architecture notes that, in some implementations, the Move to FPSCR 
Fields (mtfsfx) instruction may perform more slowly when only a portion 
of the fields are updated as opposed to all of the fields. This is not the case 
in the e500mc. 

Table 3-20. Floating-Point Compare Instructions

Name Mnemonic Operand Syntax

Floating Compare Ordered fcmpo crfD,frA,frB

Floating Compare Unordered fcmpu crfD,frA,frB

Table 3-21. Floating-Point Status and Control Register Instructions

Name Mnemonic Operand Syntax

Move from FPSCR mffs (mffs.) frD

Move to Condition Register from FPSCR mcrfs crfD,crfS

Move to FPSCR Bit 0 mtfsb0 (mtfsb0.) crbD

Move to FPSCR Bit 1 mtfsb1 (mtfsb1.) crbD

Move to FPSCR Field Immediate mtfsfi (mtfsfi.) crfD,IMM

Move to FPSCR Fields mtfsf (mtfsf.) FM,frB
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3.4.4.1.6 Floating-Point Move Instructions

Floating-point move instructions copy data from one floating-point register to another. The floating-point 
move instructions do not modify the FPSCR. The CR update option in these instructions controls the 
placing of result status into CR1. Floating-point move instructions are listed in this table.

3.4.5 Branch and Flow Control Instructions 

Some branch instructions can redirect instruction execution conditionally based on the value of bits in the 
CR. Information about branch instruction address calculation is provided in the EREF: A Programmer’s 
Reference Manual for Freescale Power Architecture® Processors. 

3.4.5.1 Conditional Branch Control

For branch conditional instructions, the BO operand specifies the conditions under which the branch is 
taken. The first four bits of the BO operand specify how the branch is affected by or affects the condition 
and count registers. The fifth bit, shown in Table 3-24 as having the value t, is used by some 
implementations for branch prediction; this is not used on the e500mc. 

NOTE
The e500mc ignores the BO operand for branch prediction and the BH field 
in the branch conditional to count register and branch conditional to link 
register instructions. Instead it implements dynamic branch prediction as 
part of the branch table buffer (BTB), described in Section 10.4.1, “Branch 
Unit Execution.”

Table 3-22. Floating-Point Move Instructions

Name Mnemonic Operand Syntax

Floating Absolute Value fabs (fabs.) frD,frB

Floating Move Register fmr (fmr.) frD,frB

Floating Negate fneg (fneg.) frD,frB

Floating Negative Absolute Value fnabs (fnabs.) frD,frB

Table 3-23. BO Bit Descriptions

BO Bits Description

0 Setting this bit causes the CR bit to be ignored.

1 Bit value to test against

2 Setting this causes the decrement to not be decremented.

3 Setting this bit reverses the sense of the CTR test.

4 The e500mc does not use static branch prediction and ignores this bit. 
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The encodings for the BO operands are shown in Table 3-24.

The 5-bit BI operand in branch conditional instructions specifies which CR bit represents the condition to 
test. The CR bit selected is BI +32.

If branch instructions use immediate addressing operands, target addresses can be computed ahead of the 
branch instruction so instructions can be fetched along the target path. If the branch instructions use LR or 
CTR, instructions along the path can be fetched if the LR or CTR is loaded sufficiently ahead of the branch 
instruction.

Branching can be conditional or unconditional, and optionally a branch return address is created by storing 
the EA of the instruction following the branch instruction in the LR after the branch target address has been 
computed. This is done regardless of whether the branch is taken. 

3.4.5.2 Branch Instructions 

Table 3-25 lists branch instructions. Appendix B, “Simplified Mnemonics,” lists simplified mnemonics 
and symbols provided for the most frequently used forms of branch conditional, compare, trap, rotate and 
shift, and certain other instructions. The e500mc does not use the BO operand for static branch prediction. 

Table 3-24. BO Operand Encodings

BO Description

0000z Decrement the CTR, then branch if the decremented CTR ≠ 0 and the condition is FALSE.

0001z Decrement the CTR, then branch if the decremented CTR = 0 and the condition is FALSE.

001at Branch if the condition is FALSE.

0100z Decrement the CTR, then branch if the decremented CTR ≠ 0 and the condition is TRUE.

0101z Decrement the CTR, then branch if the decremented CTR = 0 and the condition is TRUE.

011at Branch if the condition is TRUE.

1a00t Decrement the CTR, then branch if the decremented CTR ≠ 0.

1a01t Decrement the CTR, then branch if the decremented CTR = 0.

1z1zz Branch always.

Note:
1. In this table, z indicates a bit that is ignored. Note that the z bits should be cleared, as they may be assigned a meaning in 

some future version of the architecture.

2. The a and t bits provides a hint about whether a conditional branch is likely to be taken and may be used by some 
implementations to improve performance. e500mc always uses dynamic prediction and ignores these bits.

Table 3-25. Branch Instructions

Name Mnemonic Syntax 

Branch b (ba bl bla) target_addr 

Branch Conditional bc (bca bcl bcla) BO,BI,target_addr 

Branch Conditional to Link Register bclr (bclrl) BO,BI 

Branch Conditional to Count Register bcctr (bcctrl) BO,BI 
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3.4.5.3 Integer Select (isel)

Integer Select (isel), shown in Table 3-26, is a conditional register move instruction that helps eliminate 
branches. Programming guidelines for isel are given in the EREF: A Programmer’s Reference Manual for 
Freescale Power Architecture® Processors.

3.4.5.4 Condition Register Logical Instructions

Table 3-27 shows the condition register logical instructions. Both these instructions and the Move 
Condition Register Field (mcrf) instruction are also defined as flow control instructions. 

Any of these instructions for which the LR update option is enabled are considered invalid. 

3.4.5.5 Trap Instructions 

Trap instructions, shown in Table 3-28, test for a specified set of conditions. If a condition is met, a system 
trap program interrupt is taken. If no conditions are met, execution continues normally. See Section 4.9.8, 
“Program Interrupt—IVOR6 and Appendix B, “Simplified Mnemonics,” for more information.

Table 3-26. Integer Select Instruction

Name Mnemonic Syntax

Integer Select isel rD,rA,rB,crB

Table 3-27. Condition Register Logical Instructions

Name Mnemonic Syntax 

Condition Register AND crand crbD,crbA,crbB

Condition Register OR cror crbD,crbA,crbB

Condition Register XOR crxor crbD,crbA,crbB

Condition Register NAND crnand crbD,crbA,crbB

Condition Register NOR crnor crbD,crbA,crbB

Condition Register Equivalent creqv crbD,crbA,crbB

Condition Register AND with Complement crandc crbD,crbA,crbB

Condition Register OR with Complement crorc crbD,crbA,crbB

Move Condition Register Field mcrf crfD,crfS

Table 3-28. Trap Instructions

Name Mnemonic Syntax 

Trap Word Immediate twi TO,rA,SIMM 

Trap Word tw TO,rA,rB 



Instruction Model

e500mc Core Reference Manual, Rev. 3

3-26 Freescale Semiconductor
 

3.4.5.6 System Linkage Instruction 

The System Call (sc) instruction permits a program to call on the system to perform a service or an 
operating system to call on the hypervisor to perform a service; see Table 3-29 and Section 3.4.11.1, 
“System Linkage and MSR Access Instructions.”

Executing sc invokes the system call interrupt handler or the hypervisor system call interrupt handler 
depending on the value of the LEV field, see Section 4.9.10, “System Call/Hypervisor System Call 
Interrupt—IVOR8/GIVOR8/IVOR40.”

An sc instruction without the level field is treated by the assembler as an sc with LEV = 0.

3.4.5.7 Hypervisor Privilege Instruction

The hypervisor facility defines the Generate Embedded Hypervisor Privilege Exception instruction, 
ehpriv, which generates a hypervisor privilege exception. See Section 4.9.19, “Hypervisor Privilege 
Interrupt—IVOR41.” ehpriv is fully described in EREF: A Programmer’s Reference Manual for 
Freescale Power Architecture® Processors. Note that the OC field is not interpreted by hardware but is 
for the use of the hypervisor to provide specific emulation.

Table 3-30 shows the hypervisor privilege instruction.

3.4.6 Processor Control Instructions

Processor control instructions read from and write to the CR, MSR, and SPRs as well as the wait 
instruction. 

3.4.6.1 Move to/from Condition Register Instructions 

Table 3-31 summarizes the instructions for reading from or writing to the CR.

Table 3-29. System Linkage Instruction

Name Mnemonic Syntax 

System Call sc LEV

Table 3-30. Hypervisor Privilege Instruction

Name Mnemonic Syntax 

Hypervisor Privilege ehpriv OC

Table 3-31. Move to/from Condition Register Instructions

Name Mnemonic Syntax Implementation Note

Move to Condition Register Fields mtcrf CRM,rS On some implementations, mtcrf may perform more slowly if 
only a portion of the fields are updated. This is not so for the 
e500mc.

Move to Condition Register from XER mcrxr crD —

Move from Condition Register mfcr rD —
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Implementation Notes

e500mc implements mfocrf the same as mfcr and all the contents of the CR are moved to the destination 
register.

e500mc implements mtocrf the same as mtcrf and all the fields of the CR specified by FXM are moved 
to the CR fields specified by FXM.

3.4.6.2 Move to/from Special Purpose Register Instructions

Table 3-32 lists the mtspr and mfspr instructions. 

3.4.6.3 Wait for Interrupt Instruction

wait stops synchronous processor activity. Execution ensures that all instructions complete before wait 
completes, and that no subsequent instructions initiate until an asynchronous interrupt or a debug 
post-completion (for example, ICMP) event and subsequent interrupt occurs. On the e500mc, wait also 
causes any prefetched instructions to be discarded and processor instruction fetching ceases until an 
interrupt occurs.

Executing a wait instruction is a hint to the processor that no further synchronous processor activity occurs 
until the next asynchronous interrupt occurs. The processor may use this to reduce power consumption. 
The wait instruction completes and then waits for an interrupt. When an interrupt occurs while the 
processor is waiting, its associated save/restore register 0 points to the instruction following the wait.

Move from One Condition Register Field mfocrf rD,FXM See the EREF: A Programmer’s Reference Manual for 
Freescale Power Architecture® Processors for a full 
description of this instruction.

Move to One Condition Register Field mtocrf FXM,rS See the EREF: A Programmer’s Reference Manual for 
Freescale Power Architecture® Processors for a full 
description of this instruction.

Table 3-32. Move to/from Special-Purpose Register Instructions

Name Mnemonic Syntax Comments

Move to Special-Purpose Register mtspr SPR,rS —

Move from Special-Purpose Register mfspr rD,SPR —

Move from Time Base mftb rD,TBR mftb behaves as if it were an mfspr. Although mftb is supported, 
mfspr is prefered, because mftb can only be used to read from 
TBL and TBU; mfspr can be used to read TBL, TBU, and ATB 
SPRs. 

Table 3-33. Wait for Interrupt Instruction

Name Mnemonic Syntax 

Wait for Interrupt wait —

Table 3-31. Move to/from Condition Register Instructions (continued)

Name Mnemonic Syntax Implementation Note
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The e500mc does not implement the WC field of the wait instruction as defined in Power ISA 2.06. The 
WC field is ignored.

3.4.7 Performance Monitor Instructions (User Level)

The performance monitor provides read-only, application-level access to some performance monitor 
resources. Instructions are listed in Table 3-34.

The user-level PMRs listed in Section Table 2-49., “Performance Monitor Registers are accessed with 
mfpmr. Attempting to write user-level PMRs in either mode causes an illegal instruction exception.

3.4.8 Memory Synchronization Instructions

Memory synchronization instructions control the order in which memory operations complete with respect 
to asynchronous events and the order in which memory operations are seen by other mechanisms that 
access memory. See the section, “Atomic Update Primitives Using lwarx and stwcx.”in the EREF: A 
Programmer’s Reference Manual for Freescale Power Architecture® Processors for additional 
information about these instructions and about related aspects of memory synchronization. See Table 3-35 
for a summary.

Table 3-34. Performance Monitor Instructions

Name Mnemonic Syntax

Move from Performance Monitor Register mfpmr rD,PMRN

Table 3-35. Memory Synchronization Instructions

Name Mnemonic Syntax Implementation Notes

Instruction 
Synchronize

isync — isync is refetch serializing; the e500mc waits for previous instructions (including 
interrupts they generate) to complete before isync executes. This purges all instructions 
from the core and refetches the next instruction. isync does not wait for pending stores 
in the store queue to complete. Any subsequent instruction sees all effects of 
instructions before the isync.
Because it prevents execution of subsequent instructions until previous instructions 
complete, if an isync follows a conditional branch instruction that depends on the value 
returned by a preceding load, the load on which the branch depends is performed before 
any loads caused by instructions after the isync even if the effects of the dependency 
are independent of the value loaded (for example, the value is compared to itself and the 
branch tests selected, CRn[EQ]), and even if branch targets the next sequential 
instruction.
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Load Word and 
Reserve 
Indexed 

lwarx rD,rA,rB lwarx with stwcx. can emulate semaphore operations such as test and set, compare 
and swap, exchange memory, and fetch and add. Both instructions should use the same 
real address, the same size of operation (byte, halfword, word or doubleword), however 
e500mc only requires that the real addresses be in the same coherence granule and the 
size of operation is ignored with respect to whether the store conditional is performed or 
not. The address must be naturally aligned, and should be in pages that are marked as 
WIMGE = 001xx. The e500mc makes reservations on behalf of aligned 64-byte sections 
of address space (coherence granule). 
While the e500mc supports making reservations to cache inhibited memory, or to 
cached memory when the cache is disabled, doing so may not be supported in the 
future. Additionally, while e500mc supports making the reservations and store 
conditionals to real addresses that differ but are within the same coherence granule or 
with different size operations to the same granule, doing so may not be supported in the 
future.
Executing lwarx and stwcx. to a page marked write-through (WIMGE = 10xxx) causes 
a data storage exception. If the location is not naturally aligned, an alignment exception 
occurs. 
See “Atomic Update Primitives Using lwarx and stwcx.,” in the EREF: A Programmer’s 
Reference Manual for Freescale Power Architecture® Processors.”

Memory Barrier mbar MO mbar provides a memory barrier. The behavior of mbar depends on the value of MO 
operand. Note that mbar uses the same opcode as eieio, defined by the PowerPC 
architecture, and with which mbar (MO=1) semantics are identical. 
MO = 0—mbar 0 instruction provides a storage ordering function for all memory access 
instructions executed by the processor executing mbar 0. Executing mbar 0 ensures 
that all data storage accesses caused by instructions preceding the mbar 0 have 
completed before any data storage accesses caused by any instructions after the 
mbar 0. This order is seen by all mechanisms. The memory barrier is throughout the 
memory hierarchy. In the e500mc, mbar 0 waits for proceeding data memory accesses 
to become visible to the entire memory hierarchy; then it is broadcast on the CoreNet 
interface. mbar 0 completes only after its address tenure.
MO = 1— mbar functions identically to eieio. For more information, see Section 3.4.8.1, 
“mbar (MO = 1).”

Table 3-35. Memory Synchronization Instructions (continued)

Name Mnemonic Syntax Implementation Notes
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3.4.8.1 mbar (MO = 1) 

As defined by the architecture, mbar 1 (MO = 1) functions like eieio, as it is defined by the PowerPC 
architecture. It provides ordering for the effects of certain classes of load and store instructions. These 
instructions consist of two sets, which are ordered separately. Memory accesses caused by a dcbz or a dcba 
are ordered like a store. The two sets follow:

• Caching-inhibited, guarded loads and stores to memory and write-through-required stores to 
memory. mbar 1 controls the order in which accesses are performed in main memory. It ensures 
that all applicable memory accesses caused by instructions preceding the mbar 1 have completed 
with respect to main memory before any such accesses caused by instructions following mbar 1 
access main memory. It acts like a barrier that flows through the memory queues and to main 

Memory 
Synchronize 

sync
(msync)

L sync (former versions of the architecture used the mnemonic msync) provides a 
memory barrier to ensure the order of affected load and store memory accesses. sync 
provides 2 types of memory barriers specified by the L field:
 • L = 0 (“heavyweight sync” - hwsync), The memory barrier is throughout the memory 

hierarchy. In the e500mc, sync 0 waits for proceeding data memory accesses to 
become visible to the entire memory hierarchy; then it is broadcast on the CoreNet 
interface. sync 0 completes only after its address tenure. Subsequent instructions 
can execute out of order but complete only after the sync 0 completes. The simplified 
mnemonics hwsync, sync, and msync are equivalent to sync 0.

 • L = 1 (“lightweight sync” - lwsync). The memory barrier provides an ordering function 
for the storage accesses caused by load, store, and dcbz instructions executed by 
the processor executing the sync instruction and for which the specified storage 
location is neither write through required nor caching inhibited. The applicable pairs 
are all pairs ai,bj of such accesses except those in which ai is an access caused by a 
store or dcbz instruction and bj is an access caused by a load instruction.
The sync 1 instruction memory barrier orders accesses described by the applicable 
pairs above to the local caches of the processor such that ai is performed in all caches 
local to the processor prior to any bj access. The simplified mnemonic lwsync is 
equivalent to sync 1.

sync latency depends on the processor state when it is dispatched and on various 
system-level conditions. Frequent use of sync 0 degrades performance and sync 1 
should be used where possible.
In multiprocessing code that performs locking operations to lock shared data structures:
 • sync is used to ensure that all stores into a data structure caused by store 

instructions executed in a critical section of a program are performed with respect to 
another processor before the store that releases the lock is performed with respect to 
that processor. sync 1 (lwsync) or mbar 1 is preferable in many cases.

 • Unlike a context-synchronizing operation, sync 0 does not discard prefetched 
instructions. 

The section, “Lock Acquisition and Import Barriers,” in the EREF: A Programmer’s 
Reference Manual for Freescale Power Architecture® Processors describes how the 
sync and mbar instructions can be used to control memory access ordering when 
memory is shared between programs. 

Store Word
Conditional 
Indexed 

stwcx. rS,rA,rB See lwarx above for a description of how load and reserve and store conditional 
instructions are used in pairs. For stwcx. e500mc takes a data storage exception if the 
page is marked write-through (WIMGE = 10xxx) and takes an alignment exception if the 
access is not naturally aligned. 

Table 3-35. Memory Synchronization Instructions (continued)

Name Mnemonic Syntax Implementation Notes
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memory, preventing the reordering of memory accesses across the barrier. No ordering is 
performed for dcbz if the instruction causes the system alignment error handler to be invoked.
All accesses in this set are ordered as one set; there is not one order for guarded, caching-inhibited 
loads and stores and another for write-through-required stores.

• Stores to memory that are caching-allowed, write-through not required, and memory-coherency 
required. mbar 1 controls the order in which accesses are performed with respect to coherent 
memory. It ensures that, with respect to coherent memory, applicable stores caused by instructions 
before the mbar 1 complete before any applicable stores caused by instructions after it. 

Except for dcbz and dcba, mbar 1 does not affect the order of cache operations (whether caused explicitly 
by a cache management instruction or implicitly by the cache coherency mechanism). Also, mbar 1 does 
not affect the order of accesses in one set with respect to accesses in the other.

mbar 1 may complete before memory accesses caused by instructions preceding it have been performed 
with respect to main memory or coherent memory as appropriate. mbar 1 is intended for use in managing 
shared data structures, in accessing memory-mapped I/O, and in preventing load/store combining 
operations in main memory. For the first use, the shared data structure and the lock that protects it must be 
altered only by stores in the same set (for both cases described above). For the second use, mbar 1 can be 
thought of as placing a barrier into the stream of memory accesses issued by a core, such that any given 
access appears to be on the same side of the barrier to both the core and the I/O device.

Like mbar 0, mbar 1 is broadcast on the CoreNet interface, however, unlike mbar 0, mbar 1 does not 
wait for it address tenure before completing execution.

Because the core performs store operations in order to memory that is designated as both caching-inhibited 
and guarded, mbar 1 is needed for such memory only when loads must be ordered with respect to stores 
or with respect to other loads.

The section, “Lock Acquisition and Import Barriers,” in the EREF: A Programmer’s Reference Manual 
for Freescale Power Architecture® Processors describes how sync and mbar control memory access 
ordering when programs share memory. 

3.4.9 Reservations 

The ability to emulate an atomic operation using load with reservation and store conditional instructions 
is based on the conditional behavior of stwcx., the reservation set by lwarx, and the clearing of that 
reservation if the target location is modified by another processor or mechanism before the store 
conditional instruction performs its store. Behavior of these instructions is described in the EREF: A 
Programmer’s Reference Manual for Freescale Power Architecture® Processors. On the e500mc, a 
reservation may be lost for any of the following reasons:

• Execution of a stwcx. by the processor
• Some other processor successfully modifies a location in the reservation granule and the address 

containing the reservation is marked as Memory Coherence Required (M = 1)
• Execution of another load with reservation instruction, which removes the old reservation and 

establishes a reservation at the address specified in the load with reservation instruction
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• Some other processor successfully executes a dcbtst, dcbtstep, dcbtstls, dcbal, or dcba to a 
location in the reservation granule and the address containing the reservation is marked as Memory 
Coherence Required (M = 1) 

On the e500mc, a reservation also may be lost for any of the following reasons:
• Any asynchronous interrupt is taken on the processor holding the reservation

Software should be written to not assume that the reservation is lost as the result of any interrupt. System 
software should always perform a store conditional instruction to a scratch location when performing a 
context switch or a partition switch to ensure that any held reservation is lost prior to initiating the new 
context.

3.4.10 Memory Control Instructions

Memory control instructions can be classified as follows: 
• User- and supervisor-level cache management instructions. 
• Supervisor-level-only translation lookaside buffer management instructions 

This section describes the user-level cache management instructions. See Section 3.4.11.3, 
“Supervisor-Level Memory Control Instructions,” for information about supervisor-level cache and 
translation lookaside buffer management instructions. Cache-locking instructions are described in 
Section 3.4.10.2, “Cache Locking Instructions.” 

3.4.10.1 User-Level Cache Instructions

The instructions listed in Table 3-36 help user-level programs manage on-chip caches if they are 
implemented. See Chapter 5, “Core Caches and Memory Subsystem,” for more information about cache 
topics. The following sections describe how these operations are treated with respect to the e500mc’s 
caches.

3.4.10.1.1 CT Field Values

The e500mc supports the following CT values:
• CT = 0 indicates the L1 cache.
• CT = 2 indicates the L2 cache.
• CT = 1 indicates the platform cache, if one is implemented on the integrated device. 

Additional values may be defined by the integrated device.
• The CT values 1, 3, 5, and 7 are not supported and produce undefined results when used with an 

address that is mapped to PCI address space on the integrated device. 

As with other memory-related instructions, the effects of cache management instructions on memory are 
weakly-ordered. If the programmer must ensure that cache or other instructions have been performed with 
respect to all other processors and system mechanisms, a sync must be placed after those instructions.

Section 3.4.10.2, “Cache Locking Instructions,” describes cache-locking instructions. 
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Table 3-36. User-Level Cache Instructions 

Name Mnemonic Syntax Implementation Notes

Data Cache 
Block Allocate 

dcba rA,rB If L1CSR0[DCBZ32] = 0 dcba operates on all bytes in cache line (cache-line operation)
If L1CSR0[DCBZ32] = 1 dcba operates on 32 bytes (32-byte operation)
dcba performs the same address translation and protection as a store and is treated as 
a store for debug events. The dcba instruction is treated as a 32 or cache line number of 
bytes store of zeros operation. The store operation is always size aligned to a 32 byte 
granule for a 32 byte operation and a cache line granule for a cache line operation by 
truncating the EA as necessary to achieve the appropriate granule. Using dcba with 
32-byte operation may perform inferior to using cache-line operation and should be 
avoided when possible.

The dcba is treated as a NOP if any of the following occur:
 • The page is marked write-through.
 • The page is marked caching inhibited.
 • A DTLB miss exception or protection violation occurs. 
 • An L2 MMU multi-way hit is detected.
 • The targeted cache is disabled.
When dcba is treated as a NOP, executing the dcba can result in IAC debug events, but 
does not cause DAC debug events.
When using dcba in 32-bye operation on e500mc, if the line is not already valid in the 
cache, the line is read from main storage prior to performing the dcba operation.

Data Cache 
Block Allocate 
by Line

dcbal rA,rB This instruction behaves the same as dcba except it always operates on all bytes in the 
cache line regardless of the setting of L1CSR0[DCBZ32].

Data Cache 
Block Flush

dcbf rA,rB The EA is computed, translated, and checked for protection violations: 
 • For cache hits with the tag marked modified, the cache block is written back to memory 

and the cache entry is invalidated. 
 • For cache hits with the tag marked not modified, the entry is invalidated. 
 • For cache misses, no further action is taken. 
A dcbf is broadcast if WIMGE = xx1xx (coherency enforced).dcbf acts like a load with 
respect to address translation and memory protection. It executes in the LSU regardless 
of whether the cache is disabled or locked.

Data Cache 
Block Set to 
Zero 

dcbz rA,rB If L1CSR0[DCBZ32] = 0 dcbz operates on all bytes in cache line (cache-line operation)
If L1CSR0[DCBZ32] = 1 dcbz operates on 32 bytes (32-byte operation)
dcbz performs the same address translation and protection as a store and is treated as 
a store for debug events. The dcbz instruction is treated as a 32 or cache line number of 
bytes store of zeros operation. The store operation is always size aligned to a 32 byte 
granule for a 32 byte operation and a cache line granule for a cache line operation by 
truncating the EA as necessary to achieve the appropriate granule. Using dcbz with 
32-byte operation may perform inferior to using cache-line operation and should be 
avoided when possible.
dcbz takes an alignment exception if any of the following occur:
 • The page is marked write-through.
 • The page is marked caching inhibited.
When using dcbz in 32-bye operation on e500mc, if the line is not already valid in the 
cache, the line is read from main storage prior to performing the dcbz operation.

Data Cache 
Block Set to 
Zero by Line

dcbzl rA,rB This instruction behaves the same as dcbz except it always operates on all bytes in the 
cache line regardless of the setting of L1CSR0[DCBZ32].

Data Cache 
Block Store 

dcbst rA,rB dcbst is implemented identically to dcbf. 
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3.4.10.2 Cache Locking Instructions

Table 3-37 describes the implementation of the cache locking instructions, which are fully described in the 
EREF: A Programmer’s Reference Manual for Freescale Power Architecture® Processors. 

The dcbtls, dcbtstls, dcblc, icbtls, and icblc cache-locking instructions require hypervisor state privilege 
to execute when MSRP[UCLEP] is set. Execution of these instructions in the guest supervisor state when 
MSRP[UCLEP] is set causes a hypervisor privilege exception. User mode execution of these instructions 
is unaffected and is still controlled by MSR[UCLE].

The CT field designates the specified cache in the cache hierarchy.

In these instructions, unless otherwise stated, the behavior applies to all. 

Data Cache 
Block Touch 

dcbt TH,rA,rB 1 When dcbt executes, the e500mc checks for protection violations (as for a load 
instruction). dcbt is treated as a NOP in the following cases on e500mc:
 • The access would cause a DSI or DTLB Miss exception.
 • The page is marked Caching Inhibited.
 • The page is marked Guarded.
 • The targeted cache is disabled.
 • An L2 MMU multi-way hit is detected.
 • A dcbf (or dcbst, dcbstep, dcbfep) was previously executed and has not yet 

performed its flush and the dcbt and dcbf (or dcbst, dcbstep, dcbfep) specify the 
same cache line, but specify a different byte address within the cache line.

 • HID0[NOPTI] = 1
Otherwise, if no data is in the cache location, then a cache line fill is requested.
When dcbt is treated as a NOP, executing the dcbt can result in IAC debug events, but 
does not cause DAC debug events.

Data Cache 
Block Touch 
for Store

dcbtst TH,rA,rB 1 dcbtst is treated as a dcbt except that the line is allocated and an attempt is made to 
mark it as exclusive in the specified cache.

Instruction 
Cache Block 
Invalidate

icbi rA,rB icbi is broadcast on the CoreNet interface. It should always be followed by a sync and 
an isync to make sure its effects are seen by instruction fetches and instruction execution 
following the icbi itself.

Instruction 
Cache Block 
Touch 

icbt CT,rA,rB When icbt executes, the e500mc checks for protection violations (as for a load 
instruction). icbt is treated as a NOP in the following cases on e500mc:
 • The access would cause a DSI or TLB Miss exception.
 • The page is marked Caching Inhibited.
 • The page is marked Guarded.
 • The targeted cache is disabled.
 • An L2 MMU multi-way hit is detected.
 • HID0[NOPTI] = 1
Otherwise, if no data is in the cache location, then a cache line fill is requested.
When icbt is treated as a NOP, executing the icbt can result in IAC debug events, but 
does not cause DAC debug events.
Note that the primary instruction cache (CT=0) on e500mc does not perform icbt 
instructions and they are treated as a NOP.

1 These instructions formerly used CT as the first operand, however, Power ISA has renamed the field as TH to accommodate 
the capability of performing streaming prefetches. For e500mc, the TH field can be treated as a CT value.

Table 3-36. User-Level Cache Instructions  (continued)

Name Mnemonic Syntax Implementation Notes
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Full descriptions of these instructions are in the “Instruction Set” chapter of the EREF: A Programmer’s 
Reference Manual for Freescale Power Architecture® Processors. Note the following behavior for 
e500mc:

• Unable to lock conditions occur if the locking instruction has no exceptions and the line cannot be 
locked when CT = 0 or CT = 2. When an unable to lock condition occurs the line is not loaded or 
locked and L1CSR0[CUL] (or L1CSR1[ICUL] if an icbtls executed) is set to 1 regardless of 
whether the L2 cache or the primary cache was specified. An unable to lock condition occurs when:
— The targeted cache is not enabled.
— The target address is marked Caching Inhibited (WIMGE = 0bx1xx)
— The instruction is an icbtls, the L2 cache is specified, and L2CSR0[L2DO] = 1.
— The instruction is an dcbtls or dcbtstls, the L2 cache is specified, and L2CSR0[L2IO] = 1.
— An error loading the line occurred either on the CoreNet interface or from the L2 cache.

• An overlocking condition occurs if the locking instruction has no exceptions and if all available 
ways in the specified cache are locked. 
— If an overlocking condition occurs in the primary cache (CT=0), the line is not loaded or locked 

and L1CSR0[CLO] (L1CSR0[ICLO] if an icbtls executed) is set to 1. L1CSR0[CUL] and 
L1CSR1[ICUL] are not set.

— If an overlocking condition occurs in the L2 cache (CT=2) L2CSR0[L2LO] is set to 1. 
L1CSR0[CUL] and L1CSR1[ICUL] are not set. If L2CSR0[L2CLOA] = 1, the line is loaded 
and locked replacing and unlocking a line in the set that would have normally been selected for 
replacement if no lines in the set were locked. If L2CSR0[L2CLOA] = 0, the line is not loaded 
or locked.

• Note that setting L1CSR0[CLFC] flash invalidates all primary data cache lock bits and setting 
L1CSR0[ICLFC] flash invalidates all primary instruction cache lock bits, allowing system 
software to clear all cache locking in the L1 cache without knowing the addresses of the lines 
locked. Setting L2CSR0[L2LFC] flash invalidates all L2 cache lock bits allowing system software 
to clear all cache locking in the L2 cache without knowing the addresses of the lines locked.

Table 3-37. Cache Locking Instructions

Name Mnemonic Syntax Implementation Details

Data Cache Block 
Lock Clear

dcblc CT,rA,rB The line in the specified cache is unlocked, making it eligible for replacement.

Data Cache Block 
Touch and Lock Set

dcbtls CT,rA,rB The line is loaded and locked into the specified cache.

Data Cache Block 
Touch for Store and 
Lock Set

dcbtstls CT,rA,rB The line is loaded and locked into the specified cache. The line is marked as 
modified.

Instruction Cache 
Block Lock Clear

icblc CT,rA,rB The line in the specified cache is unlocked, making it eligible for replacement.

Instruction Cache 
Block Touch and 
Lock Set

icbtls CT,rA,rB The line is loaded and locked into the specified cache.
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Because L1 cache locking is not persistent, setting L1CSR0[CFI] or L1CSR1[ICFI] clears the 
locks in the respective caches because the lines containing the locks are invalidated.

• Touch and lock set instructions (icbtls, dcbtls, and dcbtstls) are always executed and are not 
treated as hints.

• Since e500mc implements cache locking for the L1 cache as non-persistent, when combining 
CT=2 cache operations with CT=0 data cache locking operations to the same line without any 
synchronization, the final state of the CT=0 lock operations is unknown (that is, the line may or 
may not be locked into the L1 data cache).

Cache locking clear instructions (dcblc and icblc) are NOPed if the specified cache is the L1 or L2 cache 
and the cache is not enabled.

Consult the SoC documentation to determined behavior for the platform cache (CT = 1).

To precisely detect an overlock or unable to lock condition in the primary data cache, system software must 
perform the following code sequence:

dcbtls
sync
mfspr (L1CSR0)
(check L1CSR0[CUL] for data cache index unable-to-lock condition)
(check L1CSR0[CLO] for data cache index overlock condition)

The following code sequence precisely detects an overlock in the primary instruction cache:
icbtls
sync
mfspr (L1CSR1)
check L1CSR1[ICUL] for instruction cache index unable-to-lock condition
check L1CSR1[ICLO] for instruction cache index overlock condition

3.4.11 Hypervisor- and Supervisor-Level Instructions 

The architecture includes the structure of the memory management model, supervisor-level registers, and 
the interrupt model. This section describes the hypervisor- and supervisor-level instructions implemented 
on the e500mc. Instructions described here have an associated privilege and actions as described in 
Table 3-38.

3.4.11.1 System Linkage and MSR Access Instructions 

Table 3-39 describes system linkage instructions as they are implemented on the e500mc. The user-level 
sc (LEV = 0) instruction lets a user program call on the system to perform a service and causes the 
processor to take a system call interrupt. The sc (LEV = 1) instruction is also used for the supervisor to 

Table 3-38. Instruction Execution Based on Privilege Level

Privilege Level 
of Instruction

User Mode
(MSR[GS,PR]=0bx1)

Guest Supervisor Mode
(MSR[GS,PR]=0b10)

Hypervisor Mode
(MSR[GS,PR]=0b00)

User execute normally execute normally execute normally

Guest Supervisor privileged instruction exception execute normally execute normally

Hypervisor
privileged instruction exception

embedded hypervisor privilege 
exception

execute normally
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involve the hypervisor to perform a service and causes the processor to take an embedded hypervisor 
system call interrupt. The supervisor-level rfi and rfgi instructions are used for returning from an interrupt 
handler. The hypervisor level rfci instruction is used for critical interrupts; rfdi is used for debug 
interrupts; rfmci is used for machine check interrupts.

Guest supervisor software should use rfi, rfci, rfdi, and rfmci when returning from their associated 
interrupts. When a guest operating system executes rfi, the processor maps the instruction to rfgi assuring 
that the appropriate guest save/restore registers are used for the return. For rfci, rfdi, and rfmci, the 
hypervisor should emulate these instructions as it emulates the taking of these interrupts in guest 
supervisor state.

Privileges are as follows:
• sc is user privileged.
• rfi (rfgi), mfmsr, mtmsr, wrtee, wrteei are guest–supervisor privileged.
• rfci, rfdi, rfmci are hypervisor privileged.

This table lists instructions for accessing the MSR. 

Certain encodings of the SPR field of mtspr and mfspr instructions (shown in Table 3-32) provide access 
to supervisor-level SPRs. Encodings for SPRs are listed in Table 2-2. Simplified mnemonics are provided 
for mtspr and mfspr. See Section 3.3.3, “Synchronization Requirements,” and the EREF: A 
Programmer’s Reference Manual for Freescale Power Architecture® Processors for more information on 
context synchronization requirements when altering certain SPRs.

Table 3-39. System Linkage Instructions—Supervisor-Level 

Name Mnemonic Syntax Implementation Notes

Return from Interrupt rfi — These instructions are context-synchronizing, which for the 
e500mc means it works its way to the final execute stage, 
updates architected registers, and redirects instruction flow. 
In guest supervisor state (MSR[GS,PR]=0b10), rfi (rfgi) 
cannot alter MSR[GS] or any bits protected by MSRP.
Guest supervisor state maps rfi to rfgi. Guest supervisor 
state cannot execute rfci, rfdi, or rfmci as they are hypervisor 
privileged and are emulated by the hypervisor.

Return from Guest Interrupt rfgi —

Return from Critical Interrupt rfci —

Return from Debug Interrupt rfdi —

Return from Machine Check Interrupt rfmci —

System Call sc LEV

Table 3-40. Move to/from Machine State Register Instructions

Name Mnemonic Syntax Notes

Move from Machine State Register mfmsr rD —

Move to Machine State Register mtmsr rS In guest supervisor state (MSR[GS,PR]=0b10) mtmsr cannot 
alter MSR[GS] or any bits protected by MSRP.

Write MSR External Enable wrtee rS —

Write MSR External Enable Immediate wrteei E —
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3.4.11.2 External PID Load Store Instructions

External PID load and store instructions are used by the operating system and hypervisor to perform load, 
store, and cache management instruction to a separate address space while still fetching and executing in 
the normal supervisor or hypervisor context. The operating system or hypervisor selects the address space 
to target by altering the contents of the EPLC and EPSC registers for loads and stores respectively. When 
the effective address specified by the external PID load or store instruction is translated, the translation 
mechanism uses ELPID, EPID, EAS, EPR, and EGS values from the EPLC or EPSC register instead of 
LPIDR, PID, MSR[DS], MSR[PR], and MSR[GS] values. Such instructions are useful for an operating 
system to access and manipulate virtual memory using the context and credentials of a process.

The external PID instructions are implemented as described in EREF: A Programmer’s Reference Manual 
for Freescale Power Architecture® Processors. Any implementation specific behaviors for external PID 
instructions is the same as the non external PID analogous instruction for e500mc (except that the 
translation mechanism is changed as described). See the appropriate description of the analogous 
instruction for any implementation specific details. All external PID instructions are guest supervisor 
privileged.

This table lists external PID load and store instructions.
Table 3-41. External PID Load Store Instructions

Instruction Mnemonic Syntax

Non External 
PID 

Analogous 
Instruction

Load Byte by External PID Indexed lbepx rD,rA,rB lbzx

Load Floating-Point Doubleword by External PID Indexed lfdepx frD,rA,rB lfdx

Load Halfword by External PID Indexed lhepx rD,rA,rB lhzx

Load Word by External PID Indexed lwepx rD,rA,rB lwzx

Store Byte by External PID Indexed stbepx rS,rA,rB stbx

Store Floating-Point Doubleword by External PID Indexed stfdepx frS,rA,rB stfdx

Store Halfword by External PID Indexed sthepx rS,rA,rB sthx

Store Word by External PID Indexed stwepx rS,rA,rB stwx

Data Cache Block Flush by External PID Indexed dcbfep rA,rB dcbf

Data Cache Block Store by External PID Indexed dcbstep rA,rB dcbst

Data Cache Block Touch by External PID Indexed dcbtep TH,rA,rB dcbt

Data Cache Block Touch for Store by External PID Indexed dcbtstep TH,rA,rB dcbtst

Data Cache Block Zero by External PID Indexed dcbzep rA,rB dcbz

Data Cache Block Zero Long by External PID Indexed dcbzlep rA,rB dcbzl

Instruction Cache Block Invalidate by External PID Indexed icbiep rA,rB icbi



Instruction Model

e500mc Core Reference Manual, Rev. 3

Freescale Semiconductor 3-39
 

3.4.11.3 Supervisor-Level Memory Control Instructions 

Memory control instructions include the following: 
• Cache management instructions (supervisor-level and user-level) 
• Translation lookaside buffer management instructions 

This section describes supervisor-level memory control instructions. Section 3.4.10, “Memory Control 
Instructions,” describes user-level memory control instructions. 

3.4.11.3.1 Supervisor-Level Cache Instruction

Table 3-42 lists the supervisor-level cache management instructions except for cache management 
instructions which are part of the External PID instructions.

dcbi is guest supervisor privileged.

See Section 3.4.10.1, “User-Level Cache Instructions,” for cache instructions that provide user-level 
programs the ability to manage on-chip caches. 

3.4.11.3.2 Supervisor-Level TLB Management Instructions

The address translation mechanism is defined in terms of TLBs and page table entries (PTEs) used to locate 
the logical-to-physical address mapping for an access. Chapter 6, “Memory Management Units (MMUs),” 
describes TLB operations. TLB management instructions are implemented as defined in EREF: A 
Programmer’s Reference Manual for Freescale Power Architecture® Processors.

Table 3-42. Supervisor-Level Cache Management Instruction 

Name Mnemonic Syntax Implementation Notes

Data Cache 
Block 

Invalidate

dcbi rA,rB dcbi executes as defined in the Power ISA but has implementation dependent behaviors. 
When the address to be invalidated is marked Memory Coherence Required (WIMGE 
= 0bx01xx), a dcbf is performed which first flushes the line if modified prior to invalidation. If 
the address is not marked as Memory Coherence Required (WIMGE=0bx00xx), the line is 
not flushed and is invalidated. In this case if the line was modified, the modified data is lost.
In the e500mc, dcbi cannot generate a cache-locking exception. 
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This table summarizes the operation of the TLB instructions in the e500mc.
Table 3-43. TLB Management Instructions

Name Mnemonic Syntax Implementation Notes

TLB Invalidate 
Local

tlbilx T,rA, rB Invalidates TLB entries in the processor which executes the tlbilx instruction. TLB entries 
which are protected by the IPROT attribute (entryIPROT=1) are not invalidated.tlbilx can be 
used to invalidate all entries corresponding to a LPID value, all entries corresponding to a 
PID value, or a single entry.”
tlbilx is guest supervisor privileged, however it causes an embedded hypervisor privilege 
exception if EPCR[DGTMI] is set.
Note: tlbilx is the preferred way of performing TLB invalidations, especially for operating 

systems running as a guest to the hypervisor because invalidations are partitioned 
and do not require hypervisor privilege.

Note: tlbilx requires the same local-processor synchronization as tlbivax, but not the 
cross-processor synchronization (that is, it does not require tlbsync). 

TLB Invalidate 
Virtual 

Address 
Indexed

tlbivax rA, rB A TLB invalidate operation is performed whenever tlbivax is executed. tlbivax invalidates 
any TLB entry in the targeted TLB array that corresponds to the virtual address calculated 
by this instruction as long as IPROT is not set; this includes invalidating TLB entries 
contained in TLBs on other processors and devices in addition to the processor executing 
tlbivax. Thus, an invalidate operation is broadcast throughout the coherent domain of the 
processor executing tlbivax. For more information see Section 6.3, “Translation Lookaside 
Buffers (TLBs).”
 • tlbivax is hypervisor privileged.

TLB Read 
Entry

tlbre — tlbre causes the contents of a single TLB entry to be extracted from the MMU and be placed 
in the corresponding fields of the MAS registers. The entry extracted is specified by the 
TLBSEL, ESEL, and EPN fields of MAS0 and MAS2. The contents extracted from the MMU 
are placed in MAS0–MAS3, MAS7, and MAS8. If HID0[EN_MAS7_UPDATE] = 1, MAS7 is 
updated with the four highest-order bits of physical address for the TLB entry. See 
Section 6.3, “Translation Lookaside Buffers (TLBs).”
tlbre is hypervisor privileged.

TLB Search 
Indexed

tlbsx rA, rB tlbsx searches the MMU for a particular entry based on the computed EA and the search 
values in MAS5 and MAS6.If a match is found, MAS1[V] is set and the found entry is read 
into the MAS0–MAS3, MAS7, and MAS8. If HID0[EN_MAS7_UPDATE] = 1, MAS7 is 
updated with the four highest-order bits of physical address for the TLB entry. If the entry is 
not found MAS1[V] is set to 0.See Section 6.3, “Translation Lookaside Buffers (TLBs).”
tlbsx is hypervisor privileged.
Note that rA=0 is a preferred form for tlbsx and that some Freescale implementations, 
including the e500mc, take an illegal instruction exception if rA != 0. 

TLB 
Synchronize

tlbsync — Causes a TLBSYNC transaction on CoreNet interface. See Section 6.3, “Translation 
Lookaside Buffers (TLBs).” 
tlbsync is hypervisor privileged.
Note that only one tlbsync can be in process at any given time on all processors of a 
coherence domain. The hypervisor or operating system should ensure this by doing the 
appropriate mutual exclusion. If e500mc detects multiple tlbsync operations at the same 
time, a machine check can occur.

TLB Write 
Entry

tlbwe — tlbwe causes the contents of certain fields of MAS0–MAS3, MAS7, and MAS8 to be written 
into a single TLB entry in the MMU. The entry written is specified by the TLBSEL, ESEL, 
and EPN fields of MAS0 and MAS2. Execution of tlbwe on the e500mc also causes the 
upper 4 bits of the RPN that reside in MAS7 to be written to the selected TLB entry. See 
Section 6.3, “Translation Lookaside Buffers (TLBs).”
tlbwe is hypervisor privileged regardless of the setting of EPCR[DGTMI] as e500mc does 
not provide a Logical to Real Translation (LRAT) mechanism.
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Implementation Notes

If an attempt is made to write a TLB1 entry and MAS1[TSIZE] specifies an invalid size (that is, 0 or 11 to 
15), the entry is treated as if it is 4KB.

The TLB management instructions from Power ISA 2.06 contain a significant amount of optional 
capabilities. Although these capabilities are described in configuration registers, Freescale 
implementations only utilize a portion of the these capabilities. To minimize compatibility problems, 
system software should incorporate uses of these instructions into subroutines.

Executing tlbsx with rA != 0 causes an illegal instruction exception on e500mc. Software should always 
use tlbsx with rA = 0.

3.4.11.4 Message Clear and Message Send Instructions

The e500mc can generate messages to other processors and devices in the system. Messages are generated 
by using the Message Send (msgsnd) instruction. When a processor executes a msgsnd instruction that 
message is sent to all other processors in the coherence domain. Depending on the message type and the 
payload of the message (specified by rB), other processors that receive this message may take one of 
several types of doorbell interrupts. The e500mc accepts message types which generate the following 
doorbell interrupts:

• Processor doorbell
• Processor doorbell critical
• Guest processor doorbell
• Guest processor doorbell critical
• Guest processor doorbell machine check

See Section Table 4-30., “Message Types and Section 4.9.18.1, “Doorbell Interrupt Definitions. Messages 
that have already been accepted by a processor but have not caused one of the associated interrupts because 
the interrupt is masked may be cleared by the Message Clear (msgclr) instruction.

Both msgsnd and msgclr are implemented as described in the architecture and EREF: A Programmer’s 
Reference Manual for Freescale Power Architecture® Processors.

More information about the doorbell interrupt types can be found in Section 4.9.18.1, “Doorbell Interrupt 
Definitions.”

msgsnd and msgclr are hypervisor privileged.

Table 3-44. Message Clear and Message Send Instructions

Name Mnemonic Syntax

Message Clear msgclr rB

Message Send msgsnd rB
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3.4.11.5 Performance Monitor Instructions (Supervisor Level)

Software communicates with the performance monitor through performance monitor registers (PMRs) 
with the instructions listed in Table 3-45. 

Writing to a performance monitor register (mtpmr) requires guest supervisor privilege when 
MSRP[PMMP] = 0. If MSRP[PMMP] = 1, performance monitor registers are only accessible to the 
hypervisor. User level access is limited to read only access to certain registers through aliases designed to 
be accessed by user level software. Supervisor software can access these as well as all other defined 
performance monitor registers. Attempting to access an undefined performance monitor register causes an 
illegal instruction exception. PMRs are listed in Section 2.18, “Performance Monitor Registers (PMRs).”

3.4.12 Recommended Simplified Mnemonics 

The description of each instruction includes the mnemonic and a formatted list of operands. Compliant 
assemblers support the mnemonics and operand listed. Simplified mnemonics and symbols is provided for 
frequently used instructions; refer to Appendix B, “Simplified Mnemonics,” for a complete list. Programs 
written to be portable across the various assemblers should not assume the existence of mnemonics not 
described in this document. 

3.4.13 Context Synchronization

Context synchronization is achieved by post- and presynchronizing instructions. An instruction is 
presynchronized by completing all instructions before dispatching the presynchronized instruction. 
Post-synchronizing is implemented by not dispatching any later instructions until the post-synchronized 
instruction is completely finished. 

3.5 Debug Instruction Model
The Debugger Notify Halt instruction (dnh) is implemented as defined in Power ISA and EREF: A 
Programmer’s Reference Manual for Freescale Power Architecture® Processors. dnh can be used to halt 
the processor when an external debugger is attached and has enabled halting by setting 
EDBCR0[DNH_EN]. When the processor is halted, the DUI field is passed directly to the debugger as 
information describing the reason for the halt. The DUIS field can be extracted by the debugger if required 
for more detailed information. If an external debugger is not attached or has not enabled halting, dnh takes 
an illegal instruction exception. 

Table 3-45. Supervisor Performance Monitor Instructions

Name Mnemonic Syntax

Move from Performance Monitor Register mfpmr rD,PMRN

Move to Performance Monitor Register mtpmr PMRN,rS

Table 3-46. dnh Debug Instruction

Name Mnemonic Syntax Implementation Details

Debugger Notify Halt dnh DUI,DUIS —
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3.6 Instruction Listing
This table lists the instructions implemented on the e500mc. 

Table 3-47. e500mc Instruction Set

Mnemonic Syntax Classification Cross-Reference

add rD,rA,rB Integer Table 3-5

add. rD,rA,rB Integer Table 3-5

addc rD,rA,rB Integer Table 3-5

addc. rD,rA,rB Integer Table 3-5

addco rD,rA,rB Integer Table 3-5

addco. rD,rA,rB Integer Table 3-5

adde rD,rA,rB Integer Table 3-5

adde. rD,rA,rB Integer Table 3-5

addeo rD,rA,rB Integer Table 3-5

addeo. rD,rA,rB Integer Table 3-5

addi rD,rA,SIMM Integer Table 3-5

addic rD,rA,SIMM Integer Table 3-5

addic. rD,rA,SIMM Integer Table 3-5

addis rD,rA,SIMM Integer Table 3-5

addme rD,rA Integer Table 3-5

addme. rD,rA Integer Table 3-5

addmeo rD,rA Integer Table 3-5

addmeo. rD,rA Integer Table 3-5

addo rD,rA,rB Integer Table 3-5

addo. rD,rA,rB Integer Table 3-5

addze rD,rA Integer Table 3-5

addze. rD,rA Integer Table 3-5

addzeo rD,rA Integer Table 3-5

addzeo. rD,rA Integer Table 3-5

and rA,rS,rB Integer logical Table 3-7

and. rA,rS,rB Integer logical Table 3-7

andc rA,rS,rB Integer logical Table 3-7

andc. rA,rS,rB Integer logical Table 3-7

andi. rA,rS,UIMM Integer logical Table 3-7

andis. rA,rS,UIMM Integer logical Table 3-7
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b LI Branch Table 3-25

ba LI Branch Table 3-25

bc BO,BI,BD Branch Table 3-25

bca BO,BI,BD Branch Table 3-25

bcctr BO,BI Branch Table 3-25

bcctrl BO,BI Branch Table 3-25

bcl BO,BI,BD Branch Table 3-25

bcla BO,BI,BD Branch Table 3-25

bclr BO,BI Branch Table 3-25

bclrl BO,BI Branch Table 3-25

bl LI Branch Table 3-25

bla LI Branch Table 3-25

cmp crfD,L,rA,rB Compare Table 3-6

cmpi crfD,L,rA,SIMM Compare Table 3-6

cmpl crfD,L,rA,rB Compare Table 3-6

cmpli crfD,L,rA,UIMM Compare Table 3-6

cntlzw rA,rS Integer logical Table 3-7

cntlzw. rA,rS Integer logical Table 3-7

crand crbD,crbA,crbB Condition register logical Table 3-6

crandc crbD,crbA,crbB Condition register logical Table 3-6

creqv crbD,crbA,crbB Condition register logical Table 3-6

crnand crbD,crbA,crbB Condition register logical Table 3-6

crnor crbD,crbA,crbB Condition register logical Table 3-6

cror crbD,crbA,crbB Condition register logical Table 3-6

crorc crbD,crbA,crbB Condition register logical Table 3-6

crxor crbD,crbA,crbB Condition register logical Table 3-6

dcba rA,rB Cache control Table 3-36

dcbal rA,rB Extended cache line/cache control Table 3-36

dcbf rA,rB Cache control Table 3-36

dcbfep rA,rB External PID load/store Table 3-41

dcbi rA,rB Cache control Table 3-36

dcblc CT,rA,rB Cache locking Table 3-37

dcbst rA,rB Cache control Table 3-36

Table 3-47. e500mc Instruction Set (continued)

Mnemonic Syntax Classification Cross-Reference
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dcbstep rA,rB External PID load/store Table 3-41

dcbt TH,rA,rB Cache control Table 3-36

dcbtep TH,rA,rB External PID load/store Table 3-41

dcbtls CT,rA,rB Cache locking Table 3-37

dcbtst CT,rA,rB Cache control Table 3-36

dcbtstep TH,rA,rB External PID load/store Table 3-41

dcbtstls CT,rA,rB Cache locking Table 3-37

dcbz rA,rB Cache control Table 3-36

dcbzep rA,rB External PID load/store Table 3-41

dcbzl rA,rB Extended cache line/cache control Table 3-36

dcbzlep rA,rB External PID load/store Table 3-41

divw rD,rA,rB Integer Table 3-5

divw. rD,rA,rB Integer Table 3-5

divwo rD,rA,rB Integer Table 3-5

divwo. rD,rA,rB Integer Table 3-5

divwu rD,rA,rB Integer Table 3-5

divwu. rD,rA,rB Integer Table 3-5

divwuo rD,rA,rB Integer Table 3-5

divwuo. rD,rA,rB Integer Table 3-5

dnh DUI,DUIS Debug Table 3-46

dsn rA,rB Decorated load/store Table 3-16

ehpriv OC Hypervisor Table 3-30.”

eqv rA,rS,rB Integer logical Table 3-7

eqv. rA,rS,rB Integer logical Table 3-7

extsb rA,rS Integer logical Table 3-7

extsb. rA,rS Integer logical Table 3-7

extsh rA,rS Integer logical Table 3-7

extsh. rA,rS Integer logical Table 3-7

fabs frD,frB Floating-point Table 3-17

fabs. frD,frB Floating-point Table 3-17

fadd frD,frA,frB Floating-point Table 3-17

fadd. frD,frA,frB Floating-point Table 3-17

fadds frD,frA,frB Floating-point Table 3-17

Table 3-47. e500mc Instruction Set (continued)

Mnemonic Syntax Classification Cross-Reference
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fadds. frD,frA,frB Floating-point Table 3-17

fcmpo crfD,frA,frB Floating-point Table 3-17

fcmpu crfD,frA,frB Floating-point Table 3-17

fctiw frD,frB Floating-point Table 3-17

fctiw. frD,frB Floating-point Table 3-17

fctiwz frD,frB Floating-point Table 3-17

fctiwz. frD,frB Floating-point Table 3-17

fdiv frD,frA,frB Floating-point Table 3-17

fdiv. frD,frA,frB Floating-point Table 3-17

fdivs frD,frA,frB Floating-point Table 3-17

fdivs. frD,frA,frB Floating-point Table 3-17

fmadd frD,frA,frC,frB Floating-point Table 3-18

fmadd. frD,frA,frC,frB Floating-point Table 3-18

fmadds frD,frA,frC,frB Floating-point Table 3-18

fmadds. frD,frA,frC,frB Floating-point Table 3-18

fmr frD,frB Floating-point Table 3-22

fmr. frD,frB Floating-point Table 3-22

fmsub frD,frA,frC,frB Floating-point Table 3-17

fmsub. frD,frA,frC,frB Floating-point Table 3-17

fmsubs frD,frA,frC,frB Floating-point Table 3-17

fmsubs. frD,frA,frC,frB Floating-point Table 3-17

fmul frD,frA,frC Floating-point Table 3-17

fmul. frD,frA,frC Floating-point Table 3-17

fmuls frD,frA,frC Floating-point Table 3-17

fmuls. frD,frA,frC Floating-point Table 3-17

fnabs frD,frB Floating-point Table 3-17

fnabs. frD,frB Floating-point Table 3-17

fneg frD,frB Floating-point Table 3-17

fneg. frD,frB Floating-point Table 3-17

fnmadd frD,frA,frC,frB Floating-point Table 3-18

fnmadd. frD,frA,frC,frB Floating-point Table 3-18

fnmadds frD,frA,frC,frB Floating-point Table 3-18

fnmadds. frD,frA,frC,frB Floating-point Table 3-18
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fnmsub frD,frA,frC,frB Floating-point Table 3-18

fnmsub. frD,frA,frC,frB Floating-point Table 3-18

fnmsubs frD,frA,frC,frB Floating-point Table 3-18

fnmsubs. frD,frA,frC,frB Floating-point Table 3-18

fres frD,frB Floating-point Table 3-18

fres. frD,frB Floating-point Table 3-18

frsp frD,frB Floating-point Table 3-18

frsp. frD,frB Floating-point Table 3-18

frsqrte frD,frB Floating-point Table 3-18

frsqrte. frD,frB Floating-point Table 3-18

fsel frD,frA,frC,frB Floating-point Table 3-18

fsel. frD,frA,frC,frB Floating-point Table 3-18

fsub frD,frA,frB Floating-point Table 3-18

fsub. frD,frA,frB Floating-point Table 3-18

fsubs frD,frA,frB Floating-point Table 3-18

fsubs. frD,frA,frB Floating-point Table 3-18

icbi frA,frB Cache control Table 3-36

icbiep rA,rB External PID load/store Table 3-41

icblc CT,rA,rB Cache locking Table 3-37

icbt CT,rA,rB Cache control Table 3-36

icbtls CT,rA,rB Cache locking Table 3-37

isel rD,rA,rB,crbC Integer select Table 3-26

isync — Synchronization Table 3-35

lbdx rD,rA,rB Decorated load/store Table 3-16

lbepx rD,rA,rB External PID load/store Table 3-41

lbz rD,d(rA) Integer load Table 3-10

lbzu rD,d(rA) Integer load Table 3-10

lbzux rD,rA,rB Integer load Table 3-10

lbzx rD,rA,rB Integer load Table 3-10

lfd frD,d(rA) Floating-point load/store Table 3-14

lfddx frD,rA,rB Decorated load/store Table 3-16

lfdepx frD,rA,rB External PID load/store Table 3-41

lfdu frD,d(rA) Floating-point load/store Table 3-14
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lfdux frD,rA,rB Floating-point load/store Table 3-14

lfdx frD,rA,rB Floating-point load/store Table 3-14

lfs frD,d(rA) Floating-point load/store Table 3-14

lfsu frD,d(rA) Floating-point load/store Table 3-14

lfsux frD,rA,rB Floating-point load/store Table 3-14

lfsx frD,rA,rB Floating-point load/store Table 3-14

lha rD,d(rA) Integer load Table 3-10

lhau rD,d(rA) Integer load Table 3-10

lhaux rD,rA,rB Integer load Table 3-10

lhax rD,rA,rB Integer load Table 3-10

lhbrx rD,rA,rB Integer load/store w/byte reverse Table 3-12

lhdx rD,rA,rB Decorated load/store Table 3-16

lhepx rD,rA,rB External PID load/store Table 3-41

lhz rD,d(rA) Integer load Table 3-10

lhzu rD,d(rA) Integer load Table 3-10

lhzux rD,rA,rB Integer load Table 3-10

lhzx rD,rA,rB Integer load Table 3-10

lmw rD,d(rA) Integer load Table 3-10

lwarx rD,rA,rB Synchronization Table 3-35

lwbrx rD,rA,rB Integer load/store w/byte reverse Table 3-12

lwdx rD,rA,rB Decorated load/store Table 3-16

lwepx rD,rA,rB External PID load/store Table 3-41

lwz rD,d(rA) Integer load Table 3-10

lwzu rD,d(rA) Integer load Table 3-10

lwzux rD,rA,rB Integer load Table 3-10

lwzx rD,rA,rB Integer load Table 3-10

mbar — Synchronization Table 3-35

mcrf crfD,crfS Condition register logical Table 3-6

mcrfs crfD,crfS_FP Condition register logical Table 3-6

mcrxr crfD Condition register logical Table 3-31

mfcr rD Condition register logical Table 3-31

mffs frD FPSCR Table 3-21

mffs. frD FPSCR Table 3-21
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mfmsr rD MSR Table 3-40

mfocrf rD,CRM CR logical Table 3-31

mfpmr rD,PMRN Move from PMR Table 3-45

mfspr rD,SPR SPR Table 3-32

mftb rD,SPR Move from time base Table 3-32

msgclr rB Doorbell Table 3-44

msgsnd rB Doorbell Table 3-44

mtcrf CRM,rS Condition register logical Table 3-31

mtfsb0 crbD_FP FPSCR Table 3-21

mtfsb0. crbD_FP FPSCR Table 3-21

mtfsb1 crbD_FP FPSCR Table 3-21

mtfsb1. crbD_FP FPSCR Table 3-21

mtfsf FM,fB FPSCR Table 3-21

mtfsf. FM,fB FPSCR Table 3-21

mtfsfi crfD_FP,FP_IMM FPSCR Table 3-21

mtfsfi. crfD_FP,FP_IMM FPSCR Table 3-21

mtmsr rS MSR Table 3-40

mtocrf CRM,rS CR logical Table 3-31

mtpmr PMRN,rS Move to PMR Table 3-34

mtspr SPR,rS SPR Table 3-32

mulhw rD,rA,rB Integer Table 3-5

mulhw. rD,rA,rB Integer Table 3-5

mulhwu rD,rA,rB Integer Table 3-5

mulhwu. rD,rA,rB Integer Table 3-5

mulli rD,rA,SIMM Integer Table 3-5

mullw rD,rA,rB Integer Table 3-5

mullw. rD,rA,rB Integer Table 3-5

mullwo rD,rA,rB Integer Table 3-5

mullwo. rD,rA,rB Integer Table 3-5

nand rA,rS,rB Integer logical Table 3-7

nand. rA,rS,rB Integer logical Table 3-7

neg rD,rA Integer Table 3-5

neg. rD,rA Integer Table 3-5
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nego rD,rA Integer Table 3-5

nego. rD,rA Integer Table 3-5

nor rA,rS,rB Integer logical Table 3-7

nor. rA,rS,rB Integer logical Table 3-7

or rA,rS,rB Integer logical Table 3-7

or. rA,rS,rB Integer logical Table 3-7

orc rA,rS,rB Integer logical Table 3-7

orc. rA,rS,rB Integer logical Table 3-7

ori rA,rS,UIMM Integer logical Table 3-7

oris rA,rS,UIMM Integer logical Table 3-7

rfci — System Linkage Table 3-39

rfdi — System Linkage Table 3-39

rfgi — System Linkage Table 3-39

rfi — System Linkage Table 3-39

rfmci — System Linkage Table 3-39

rlwimi rA,rS,SH,MB,ME Integer rotate Table 3-8

rlwimi. rA,rS,SH,MB,ME Integer rotate Table 3-8

rlwinm rA,rS,SH,MB,ME Integer rotate Table 3-8

rlwinm. rA,rS,SH,MB,ME Integer rotate Table 3-8

rlwnm rA,rS,rB,MB,ME Integer rotate Table 3-8

rlwnm. rA,rS,rB,MB,ME Integer rotate Table 3-8

sc LEV System call Table 3-8

slw rA,rS,rB Integer shift Table 3-9

slw. rA,rS,rB Integer shift Table 3-9

sraw rA,rS,rB Integer shift Table 3-9

sraw. rA,rS,rB Integer shift Table 3-9

srawi rA,rS,SH Integer shift Table 3-9

srawi. rA,rS,SH Integer shift Table 3-9

srw rA,rS,rB Integer shift Table 3-9

srw. rA,rS,rB Integer shift Table 3-9

stb rS,d(rA) Integer store Table 3-11

stbdx rS,rA,rB Decorated load/store Table 3-16

stbepx rS,rA,rB External PID load/store Table 3-41
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stbu rS,d(rA) Integer store Table 3-11

stbux rS,rA,rB Integer store Table 3-11

stbx rS,rA,rB Integer store Table 3-11

stfd frS,d(rA) Floating-point store Table 3-15

stfddx frS,rA,rB Decorated load/store Table 3-16

stfdepx frS,rA,rB External PID load/store Table 3-41

stfdu frS,d(rA) Floating-point store Table 3-15

stfdux frS,rA,rB Floating-point store Table 3-15

stfdx frS,rA,rB Floating-point store Table 3-15

stfiwx frS,rA,rB Floating-point store Table 3-15

stfs frS,d(rA) Floating-point store Table 3-15

stfsu frS,d(rA) Floating-point store Table 3-15

stfsux frS,rA,rB Floating-point store Table 3-15

stfsx frS,rA,rB Floating-point store Table 3-15

sth rS,d(rA) Integer store Table 3-11

sthbrx rS,rA,rB Integer load/store w/byte reverse Table 3-12

sthdx rS,rA,rB Decorated load/store Table 3-16

sthepx rS,rA,rB External PID load/store Table 3-41

sthu rS,d(rA) Integer store Table 3-11

sthux rS,rA,rB Integer store Table 3-11

sthx rS,rA,rB Integer store Table 3-11

stmw rS,d(rA) Integer store Table 3-11

stw rS,d(rA) Integer store Table 3-11

stwbrx rS,rA,rB Integer load/store w/byte reverse Table 3-12

stwcx. rS,rA,rB Synchronization Table 3-35

stwdx rS,rA,rB Decorated load/store Table 3-16

stwepx rS,rA,rB External PID load/store Table 3-41

stwu rS,d(rA) Integer store Table 3-11

stwux rS,rA,rB Integer store Table 3-11

stwx rS,rA,rB Integer store Table 3-11

subf rD,rA,rB Integer Table 3-5

subf. rD,rA,rB Integer Table 3-5

subfc rD,rA,rB Integer Table 3-5
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subfc. rD,rA,rB Integer Table 3-5

subfco rD,rA,rB Integer Table 3-5

subfco. rD,rA,rB Integer Table 3-5

subfe rD,rA,rB Integer Table 3-5

subfe. rD,rA,rB Integer Table 3-5

subfeo rD,rA,rB Integer Table 3-5

subfeo. rD,rA,rB Integer Table 3-5

subfic rD,rA,SIMM Integer Table 3-5

subfme rD,rA Integer Table 3-5

subfme. rD,rA Integer Table 3-5

subfmeo rD,rA Integer Table 3-5

subfmeo. rD,rA Integer Table 3-5

subfo rD,rA,rB Integer Table 3-5

subfo. rD,rA,rB Integer Table 3-5

subfze rD,rA Integer Table 3-5

subfze. rD,rA Integer Table 3-5

subfzeo rD,rA Integer Table 3-5

subfzeo. rD,rA Integer Table 3-5

sync
(msync)

L Synchronization Table 3-35

tlbilx T,rA,rB TLB management Table 3-43

tlbivax rA,rB TLB management Table 3-43

tlbre — TLB management Table 3-43

tlbsx rA,rB TLB management Table 3-43

tlbsync — TLB management Table 3-43

tlbwe — TLB management Table 3-43

tw TO,rA,rB Trap Table 3-28

twi TO,rA,SIMM Trap Table 3-28

wait — Wait Table 3-35

wrtee rS MSR Table 3-40

wrteei E MSR Table 3-40

xor rA,rS,rB Integer logical Table 3-7

xor. rA,rS,rB Integer logical Table 3-7
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xori rA,rS,UIMM Integer logical Table 3-7

xoris rA,rS,UIMM Integer logical Table 3-7
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Chapter 4  
Interrupts and Exceptions
This chapter provides a general description of the interrupt and exception model as it is implemented in 
the e500mc core. It identifies and describes the portions of the interrupt model that are defined by the 
architecture and those that are specific to the e500mc.

4.1 Interrupts and Exceptions Overview
The terms “interrupt” and “exception” are used as follows:
Interrupt An interrupt is the action in which the processor saves its context (typically the 

machine state register (MSR) and next instruction address) and begins execution 
at a predetermined interrupt handler address with a modified MSR.

Exception An exception is the event that, if enabled, may cause the processor to take an 
interrupt. Multiple exceptions may occur during the execution of an instruction 
and the exception priority mechanism determines which of the exceptions cause 
an associated interrupt. In some cases when an asynchronous exception has 
occurred, but the associated interrupt is not enabled, other actions within the 
processor may clear the exception condition prior to it being enabled, which 
prevents the associated interrupt from occurring. The architecture describes 
exceptions as being generated by instructions, the internal timer facility, debug 
events, error conditions, and signals from internal and external peripherals.

There are four categories of interrupts, which are described in the following sections:
• Standard Interrupts
• Critical Interrupts
• Debug Interrupts
• Machine Check Interrupts

4.1.1 Standard Interrupts

Standard interrupts are first-level interrupts that allow the processor to change program flow to handle 
conditions generated by external signals, errors, or conditions arising from program execution or from 
programmable timer-related events. These interrupts are largely identical to those defined originally by the 
PowerPC OEA. They use save and restore registers (SRR0/SRR1) to save state when they are taken and 
they use the rfi instruction to restore state. Asynchronous, noncritical interrupts can be masked by the 
external interrupt enable bit, MSR[EE] (when not in guest state).
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Guest interrupts are standard interrupts that are handled by guest-supervisor software. They use guest save 
and restore registers (GSRR0/GSRR1) to save state when they are taken and they use the rfgi instruction 
to restore state. Guest interrupts are listed in Table 2-5. 

Section 2.3, “Register Mapping in Guest–Supervisor State,” describes how accesses to non-guest registers 
are changed by the processor to their guest register equivalents when MSR[PR] = 0 and MSR[GS] = 1. 

4.1.2 Critical Interrupts

Critical interrupts are logically higher priority than standard interrupts (critical input, processor doorbell 
critical, guest processor doorbell critical, and watchdog timer interrupts) and can be taken during regular 
program flow or during a standard interrupt. They use the critical save and restore registers 
(CSRR0/CSRR1) and the rfci instruction. 

Critical interrupts can be masked by the critical enable bit, MSR[CE] (when not in guest state). 

4.1.3 Debug Interrupts

Debug interrupts are logically a higher priority than critical interrupts and can be taken during regular 
program flow, during a standard interrupt, or during a critical interrupt. They use the debug save and 
restore registers (DSRR0/DSRR1) and the rfdi instruction. See Section 4.9.16, “Debug 
Interrupt—IVOR15.” Debug interrupts can be masked by the debug enable bit, MSR[DE] (when not in 
guest state). 

4.1.4 Machine Check Interrupts

Machine check interrupts are logically a higher priority than critical interrupts and can be taken during 
regular program flow, during a standard interrupt, during a critical interrupt, or during a debug interrupt. 
They use the machine check save and restore registers (MCSRR0/MCSRR1) and the rfmci instruction. 
See Section 4.9.3, “Machine Check Interrupt—IVOR1.” Machine check interrupts can be masked by the 
machine check enable bit, MSR[ME] (when not in guest state). 

The e500mc also implements precise synchronous machine check error report interrupts as well as an 
asynchronous non-maskable interrupt (NMI) which are not masked by MSR[ME]. For e500mc details, see 
Section 4.9.3, “Machine Check Interrupt—IVOR1.”

4.1.5 Special Considerations for Interrupts and Exceptions

The masking of asynchronous interrupts using the MSR bits EE, CE, DE, or ME only prevents the 
associated asynchronous interrupts in the current state (guest or hypervisor). With the exception of guest 
processor doorbell, guest processor doorbell critical, and guest processor doorbell machine check, such 
masking depends on which state the interrupt is directed to as described in Section 4.3, “Directed 
Interrupts.” This means that an asynchronous interrupt that is masked while executing in the guest state 
(its associated masking bit is 0) can still be taken if that interrupt is directed to the hypervisor state. Guest 
processor doorbell, guest processor doorbell critical, and guest processor doorbell machine check require 
that the processor be executing in the guest state and the appropriate interrupt enable bit is set even though 
these interrupts are always directed to the hypervisor state.
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All asynchronous interrupts except the NMI interrupt are ordered because each type of interrupt has its 
own set of save/restore registers. Only one interrupt of each category is reported (standard, critical, debug, 
machine check, and guest), and when it is processed (taken) no program state is lost. Program state may 
be lost if synchronous exceptions occur within the interrupt handler for those same synchronous 
exceptions before software has successfully saved the state of the save/restore registers. For example, 
executing an illegal instruction as the first instruction of the program interrupt handler causes another 
program interrupt changing the state of the SRR0/SRR1 registers before software can save them thus 
destroying the return path to the original interrupt. (See Section 4.6.1, “Interrupt Ordering and Masking.”)

All interrupts except the machine check interrupt are context synchronizing, as defined in the instruction 
model chapter of the EREF: A Programmer’s Reference Manual for Freescale Power Architecture® 
Processors. A machine check interrupt acts like a context-synchronizing operation with respect to 
subsequent instructions. 

4.2 e500mc Implementation of Interrupt Architecture
This section describes the architecture-defined interrupt model as implemented on the e500mc. Specific 
details are also provided throughout this chapter. The e500mc implements all the interrupts defined by the 
embedded category and the e500mc implements the following interrupts that are defined by, but not 
required by, optional parts of the embedded architecture:

• In general, the e500mc implements the machine check interrupt as it is defined by Power ISA 2.06, 
but extends the definition to include synchronous error reports and a non-maskable interrupt 
(NMI).
The e500mc implements three types of machine check interrupts: asynchronous, error report, and 
NMI. Asynchronous machine check events are logged directly into the MCSR. If such an event is 
logged in the MCSR and MSR[ME] = 1 or MSR[GS] = 1, a machine check interrupt is taken. But 
if some of the MCSR's asynchronous bits have been set and MSR[ME] = 0 and MSR[GS] = 0, the 
asynchronous machine check exception is pending and if these bits are still set when MSR[ME] or 
MSR[GS] is changed to 1, the asynchronous machine check interrupt occurs. The e500mc does not 
take a checkstop, as is the case with previous e500 cores. 
In addition. the e500mc implements error report machine check exceptions (which are recorded in 
certain defined MCSR bits). Error report machine check interrupts are not gated by MSR[ME] (or 
MSR[GS]), and are synchronous and precise: They occur only if there is an error condition on an 
instruction that would otherwise complete execution, and not for instructions that have not 
completed and deallocated. For example, the core does not take an error report on an instruction in 
a mispredicted branch path or on an instruction that gets flushed by some other interrupt (such as 
an asynchronous machine check interrupt).

• The e500mc implements debug interrupts as described by the embedded enhanced debug category 
which provides a separate set of debug save/restore registers (DSRR0 and DSRR1).

• The e500mc implements the performance monitor interrupt from the embedded performance 
monitor category.

• The e500mc implements the enabled floating-point exception (program interrupt) and the 
floating-point unavailable interrupt from the floating-point category.

• The e500mc implements the following interrupts defined by the embedded processor control 
category:
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— Processor doorbell
— Processor doorbell critical

• The e500mc implements the following interrupts defined by the embedded hypervisor category:
— Hypervisor privilege
— Hypervisor system call
— Guest processor doorbell interrupt
— Guest processor doorbell critical interrupt
— Guest processor doorbell machine check interrupt

• The e500mc does not implement the unimplemented operation exception of the program interrupt. 
All unimplemented instructions take an illegal instruction exception.

• Interrupt priorities differ from those specified in the architecture as described in Section 4.11, 
“Interrupt Priorities.”

4.3 Directed Interrupts
Interrupts on e500mc are directed to either the guest state or the hypervisor state. The state to which 
interrupts are directed determines which SPRs are used to form the vector address, which save/restore 
registers are used to capture the processor state at the time of the interrupt, and which ESR is used to post 
exception status. Interrupts directed to the guest state use the GIVPR to determine the upper 48 bits of the 
vector address and use GIVORs to provide the lower 16 bits. Interrupts directed to the hypervisor state use 
the IVPR and the IVORs. Interrupts that are directed to the guest state use GSRR0/GSRR1 registers to 
save the context at interrupt time. Interrupts directed to the hypervisor state use SRR0/SRR1, 
CSRR0/CSRR1, DSRR0/DSRR1, and MCSRR0/MCSRR1 for standard, critical, debug, and machine 
check interrupts respectively, with the exception of guest processor doorbell interrupts which use 
GSRR0/GSRR1.

In general, all interrupts are directed to the hypervisor state except for the following cases:
• The system call interrupt is directed to the state from which the interrupt was taken. If an sc 0 

instruction is executed in guest state, the interrupt is directed to the guest state. If an sc 0 instruction 
is executed in hypervisor state, the interrupt is directed to the hypervisor state. Note that sc 1 is 
always directed to the hypervisor state and produces a hypervisor system call interrupt.

• One of the following interrupts occurs while the processor is in the guest state, and the associated 
control bit in the EPCR is set to configure the interrupt to be directed to the guest state:
— External input (EPCR[EXTGS] = 1) 
— Data TLB error (EPCR[DTLBGS] = 1) 
— Instruction TLB error (EPCR[ITLBGS] = 1) 
— Data storage (EPCR[DSIGS] = 1 and TLB[VF] = 0 [virtualization fault]) 
— Instruction storage (EPCR[ISIGS] = 1)

NOTE
A data storage interrupt caused by a virtualization fault exception is always 
taken in the hypervisor state.
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In no case is an interrupt directed to the guest when the processor is executing in the hypervisor state.

For more specific information about how interrupts are directed, see EREF: A Programmer’s Reference 
Manual for Freescale Power Architecture® Processors or Power ISA 2.06.

4.4 Recoverability and MSR[RI]
MSR[RI] is an MSR (and save/restore register) storage bit for compatibility with pre-Book E PowerPC 
processors. When an interrupt occurs, the recoverable interrupt bit, MSR[RI] is unchanged by the interrupt 
mechanism when a new MSR is established; however, when a machine check, error report or NMI 
interrupt occurs, MSR[RI] is cleared.

If used properly, RI determines whether an interrupt that is taken at the machine check interrupt vector can 
be safely returned from (that is, that architected state set by the interrupt mechanism has been safely stored 
by software). RI should be set by software when all MSR values are first established. When an interrupt 
occurs that is taken at the machine check interrupt vector, software should set RI when it has safely stored 
MCSRR0 and MCSRR1. The associated MCSRR1 bit should be checked to determine whether the 
interrupt occurred when another machine check interrupt was being processed and before state was 
successfully saved. If MCSRR1[RI] is set, it is safe to return when processing is complete.

4.5 Interrupt Registers
Table 4-1 summarizes registers used for interrupt handling. The EREF: A Programmer’s Reference 
Manual for Freescale Power Architecture® Processors provides full descriptions.

NOTE
In this manual, references to xSRR0 and xSRR1 apply to the respective 
(standard, critical, machine check, and guest) save restore 0 and save restore 
1 registers. References to (G)register refer to register if the interrupt is taken 
in hypervisor state, or Gregister if the interrupt is taken in guest state (for 
example (G)DEAR refers to DEAR and GDEAR registers).

Whether the interrupt is directed to hypervisor or guest–supervisor software 
is described in see Section 4.3, “Directed Interrupts,” for more details.

Table 4-1. Interrupt Registers

Register Description

Save/restore register 0 
(SRR0, CSRR0, 
DSRR0, GSRR0, 
MCSRR0)

On an interrupt, xSRR0 holds the EA at which execution continues when the corresponding return from 
interrupt instruction executes. Typically, this is the EA of the instruction that caused the interrupt or the 
subsequent instruction.

Save/restore register 1 
(SRR1, CSRR1, 
DSRR1, GSRR1, 
MCSRR1)

When an interrupt is taken, MSR contents are placed into xSRR1. When the return from interrupt (rfi, rfgi, 
rfci, rfdi, rfmci) instruction executes, the values are restored to the MSR from xSRR1. xSRR1 bits that 
correspond to reserved MSR bits are also reserved. Note that an MSR bit that is reserved may be altered 
by a return from interrupt instruction.
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NOTE
System software may need to identify the type of instruction that caused the 
interrupt and examine the TLB entry and ESR to fully identify the exception 
or exceptions. For example, because both protection violation and 
byte-ordering exception conditions may be present, and either causes a data 
storage interrupt, system software would have to look beyond ESR[BO], 
such as the state of MSR[PR] in SRR1 and the TLB entry page protection 
bits, to determine if a protection violation also occurred.

4.6 Exceptions
Exceptions are caused directly by instruction execution or by an asynchronous event. In either case, the 
exception may cause one of several types of interrupts to be invoked.

Data exception 
address register 
(DEAR/GDEAR)

Contains the address referenced by a load, store, or cache management instruction that caused an 
alignment, data TLB miss, or data storage interrupt. When executing in the guest state (MSR[GS] = 1), 
accesses to the DEAR are mapped to GDEAR upon executing mtspr or mfspr. 
DEAR and GDEAR are described in Section 2.9.2, “(Guest) Data Exception Address Register 
(DEAR/GDEAR).” 

Exception proxy 
register (EPR/GEPR)

Defined by the external interrupt proxy facility, which is described in Section 4.9.6.3, “External Proxy.” EPR 
is used to convey the peripheral-specific interrupt vector associated with the external input interrupt 
triggered by the programmable interrupt controller (PIC) in the integrated device. When executing in the 
guest state (MSR[GS] = 1), accesses to the EPR are mapped to GEPR upon executing mfspr. 
EPR and GEPR are described in Section 2.9.5, “(Guest) External Proxy Register (EPR/GEPR).” 

Interrupt vector prefix 
register (IVPR/GIVPR)

(G)IVPR[32-47] provides the high-order 16 bits of the address of the interrupt handling routine for each 
interrupt type. The 16-bit vector offsets are concatenated to the right of (G)IVPR to form the address of 
the interrupt handling routine.

Exception syndrome 
register (ESR/GESR)

Identifies a syndrome for differentiating exception conditions that can generate the same interrupt. When 
such an exception occurs, corresponding (G)ESR bits are set and all others are cleared. Other interrupt 
types do not affect the (G)ESR. (G)ESR does not need to be cleared by software. When executing in the 
guest state (MSR[GS] = 1), accesses to the ESR are mapped to GESR upon executing mtspr or mfspr. 
See Section 2.9.6, “(Guest) Exception Syndrome Register (ESR/GESR).”

Interrupt vector offset 
registers 
(IVORs/GIVORs)

Holds the quad-word index from the base address provided by the (G)IVPR for each interrupt type. 
Table 4-2 lists the (G)IVOR assignments for the e500mc core. Supported (G)IVORs and the associated 
interrupts are listed in Table 4-2.

Machine check 
address register 
(MCAR/MCARU)

On a machine check interrupt, MCAR/MCARU is updated with the address of the data associated with the 
machine check if applicable. See Section 2.9.8, “Machine Check Address Register (MCAR/MCARU).”

Machine check 
syndrome register 
(MCSR)

On a machine check interrupt, MCSR is updated with a syndrome to indicate exceptions, listed in 
Table 2-8 and fully described in the EREF: A Programmer’s Reference Manual for Freescale Power 
Architecture® Processors. Section 2.9.9, “Machine Check Syndrome Register (MCSR),” describes MCSR 
bit fields as they are defined for the e500mc.

Table 4-1. Interrupt Registers (continued)

Register Description
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The following examples are of exceptions caused directly by instruction execution:
• An attempt to execute a reserved-illegal instruction (illegal instruction exception-program 

interrupt)
• An attempt by an application program to execute a privileged instruction or to access a privileged 

SPR (privileged instruction exception-program interrupt)
• An attempt to access a nonexistent SPR (illegal-operation program exception-type program 

interrupt on all accesses to undefined SPRs, regardless of MSR[GS,PR]
• An attempt to access a location that is either unavailable (TLB miss exception-instruction or data 

TLB error interrupt) or not permitted (access control exception-instruction or data storage 
interrupt)

• An attempt to access a location with an effective address alignment not supported by the 
implementation (alignment exception-alignment interrupt)

• Execution of a System Call (sc) instruction (system call/hypervisor system call-system 
call/hypervisor system call interrupt). Whether a system call interrupt occurs or a hypervisor 
system call interrupt occurs depends on the value of the LEV operand. 

• Execution of a trap instruction whose trap condition is met (trap exception-program interrupt)
• Execution of an unimplemented, defined instruction (illegal instruction exception-program 

interrupt)

Invocation of an interrupt is precise. Power Architecture allows for floating-point enabled exceptions to 
be imprecise, however e500mc implements them as precise.

4.6.1 Interrupt Ordering and Masking

Multiple exceptions that can each generate an interrupt can exist simultaneously. However, the architecture 
does not provide for reporting multiple simultaneous interrupts of the same class. therefore, the 
architecture defines that interrupts must be ordered with one another and provides a way to mask certain 
persistent interrupt types, as described in the EREF: A Programmer’s Reference Manual for Freescale 
Power Architecture® Processors.

4.7 Interrupt Classification
All interrupts except machine check are grouped by three independent characteristics:

• The set of resources assigned to the interrupt.
— Standard interrupts use SRR0/SRR1 and the rfi instruction. Guest supervisor versions of these 

interrupts use GSRR0/GSRR1 and the rfgi instruction (note that SRR0, SRR1, and rfi accesses 
are mapped to GSRR0, GSRR1, and rfgi by the processor when in guest supervisor state).

— Critical interrupts use CSRR0/CSRR1 and the rfci instruction. 
— Debug interrupts use DSRR0/DSRR1, and the rfdi instruction.
— Machine check interrupts use MCSRR0/MCSRR1, and the rfmci instruction.

• Whether the interrupt is synchronous or asynchronous. Asynchronous interrupts are caused by 
events external to instruction execution; synchronous interrupts are caused by instruction 
execution. Some synchronous interrupts can be imprecise with respect to the instructions that 
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caused the exception. The EREF: A Programmer’s Reference Manual for Freescale Power 
Architecture® Processors describes asynchronous and synchronous interrupts.

4.8 Interrupt Processing
Each interrupt has a vector, the address of the initial instruction that is executed when an interrupt occurs. 
When an interrupt is taken, the following steps are performed:

1. xSRR0 is loaded with an instruction address at which processing resumes when the corresponding 
return from interrupt instruction executes.

2. The (G)ESR or MCSR may be loaded with exception-specific information. See descriptions of 
individual descriptions in Section 4.9, “Interrupt Definitions.”

3. xSRR1 is loaded with a copy of the MSR contents.
4. New MSR values take effect beginning with the first instruction of the interrupt handler. These 

settings vary somewhat for certain interrupts, as described in Section 4.9, “Interrupt Definitions.” 
MSR fields are described in Section 2.7.1, “Machine State Register (MSR).”

5. Instruction fetching and execution resumes, using the new MSR value, at a location specific to the 
interrupt type ([G]IVPR[32–47] || (G)IVORn[48–59] || 0b0000)
The (G)IVORn for the interrupt type is described in Table 4-2. (G)IVPR and (G)IVOR contents are 
indeterminate upon reset and must be initialized by system software.

At the end of an interrupt handling routine, executing the appropriate return from interrupt instruction 
causes the MSR to be restored from xSRR1 and instruction execution to resume at the address contained 
in xSRR0. 

NOTE
On e500mc, any asynchronous interrupt that is taken clears any reservation 
established from a lwarx instruction. However, this behavior is not required 
by the architecture and software should assume that the reservation is not 
cleared as subsequent future cores may not clear it.

NOTE
At process switch, due to possible data availability requirements and 
process interlocks, the operating system should consider executing the 
following:

• stwcx.—Clear outstanding reservations to prevent pairing a lwarx in the 
old process with a stwcx. in the new one

• sync—Ensure that memory operations of an interrupted process 
complete with respect to other processors before that process begins 
executing on another processor

• Return from interrupt instructions—Ensure that instructions in the new 
process execute in the new context. Normally an operating system must 
use such an instruction to atomically begin executing in the new process 
context at the appropriate privilege level.
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4.9 Interrupt Definitions
Table 4-2 summarizes each interrupt type, exceptions that may cause that interrupt, the interrupt 
classification, which (G)ESR bits can be set, which MSR bits can mask the interrupt type, and which IVOR 
is used to specify the vector address.

Table 4-2. Interrupt Summary by (G)IVOR

IVOR Interrupt Exception
Directing State at 

Exception
(G)ESR1 Enabled by Type2

Save and 
Restore 

Registers
Page

IVOR0 Critical input —  — MSR[CE] or 
MSR[GS]

A CSRRs 4-14

IVOR1 Machine check — — MSR[ME] or 
MSR[GS]

A MCSRRs 4-14

Error report — — — SP MCSRRs 4-14

IVOR2 Data storage 
(DSI)

Access or 
virtualization fault

MSR[GS] = 0 or 
EPCR[DSIGS] = 0 or 
TLB[VF] = 1

[ST], [FP,AP], 
[EPID]

— SP SRRs 4-21

Load reserve or 
store conditional 
to write-through 
required location 
(W = 1)

[ST] — SP

Cache locking [DLK,ILK],[ST] — SP

Byte ordering [ST],[FP],BO, 
[EPID]

— SP

GIVOR2 Data storage 
(DSI)

Access MSR[GS] = 1
EPCR[DSIGS] = 1

[ST], [FP,AP], 
[EPID]

— SP GSRRs 4-21

Load reserve or 
store conditional 
to write- through 
required location 
(W = 1)

[ST] — SP

Cache locking [DLK,ILK],[ST] — SP

Byte ordering [ST],[FP],BO, 
[EPID]

— SP

IVOR3 Instruction 
storage (ISI)

Access MSR[GS] = 0 or 
EPCR[ISIGS] = 0

— — SP SRRs 4-23

GIVOR3 Instruction 
storage (ISI)

Access MSR[GS] = 1 and 
EPCR[ISIGS] = 1

— — SP GSRRs 4-23

IVOR4 External input 3 EPCR[EXTGS] = 0 — MSR[EE] or 
MSR[GS]

A SRRs 4-24

GIVOR4 External input 3 EPCR[EXTGS] = 1 — MSR[EE] and 
MSR[GS]

A GSRRs 4-24

IVOR5 Alignment — [ST],[FP,AP], 
[EPID]

— SP SRRs 4-26
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IVOR6 Program Illegal — PIL — SP SRRs 4-28

Privileged PPR — SP

Trap PTR — SP

Floating-point 
enabled 

FP,[PIE] MSR[FE0] 
MSR[FE1]

SP
SP*
SI
SI*

Unimplemented 
opcode

PUO4 — SP

IVOR7 Floating-point unavailable — — — SP SRRs 4-29

IVOR8 System call MSR[GS] = 0 — — SP* SRRs 4-29

GIVOR8 System call MSR[GS] = 1 — — SP* GSRRs 4-29

IVOR10 Decrementer — — (MSR[EE] or 
MSR[GS]) 

and TCR[DIE]

A SRRs 4-30

IVOR11 Fixed interval timer — — (MSR[EE] or 
MSR[GS]) 

and TCR[FIE]

A SRRs 4-31

IVOR12 Watchdog — — (MSR[CE] or 
MSR[GS]) 

and 
TCR[WIE]

A CSRRs 4-32

IVOR13 Data TLB 
error

Data TLB miss MSR[GS] = 0 or 
EPCR[DTLBGS] = 0

[ST],[FP,AP],
[EPID]

— SP SRRs 4-32

GIVOR13 Data TLB 
error

Data TLB miss MSR[GS] = 1 and 
EPCR[DTLBGS] = 1

[ST],[FP,AP],
[EPID]

— SP GSRRs 4-32

IVOR14 Instruction 
TLB error

Instruction TLB 
miss

MSR[GS] = 0 or
EPCR[ITLBGS] = 0

— — SP SRRs 4-33

GIVOR14 Instruction 
TLB error

Instruction TLB 
miss

MSR[GS] = 1 and 
EPCR[ITLBGS] = 1

— — SP GSRRs 4-33

Table 4-2. Interrupt Summary by (G)IVOR (continued)

IVOR Interrupt Exception
Directing State at 

Exception
(G)ESR1 Enabled by Type2

Save and 
Restore 

Registers
Page



Interrupts and Exceptions

e500mc Core Reference Manual, Rev. 3

4-11 Freescale Semiconductor
 

IVOR15 Debug Trap 
(synchronous)

— — MSR[DE] and 
DBCR0[IDM]
In guest state, 
if 
EPCR[DUVD] 
= 1 and 
MSR[GS] = 0, 
debug events 
(except for 
unconditional 
debug events) 
are not posted 
in the DBSR. 
See 
Section 4.9.1
6.1, 
“Suppressing 
Debug Events 
in Hypervisor 
Mode.”

SP5 DSRRs 4-34

Instruction 
address compare 
(synchronous)

Data address 
compare 
(synchronous)

Instruction 
complete

Branch taken

Return from 
interrupt

Return from 
critical interrupt

Interrupt taken

Critical interrupt 
taken

Unconditional 
debug event

A

IVOR35 Performance monitor — — MSR[EE] or 
MSR[GS]

A SRRs 4-36

IVOR36 Processor doorbell — — MSR[EE] or 
MSR[GS]

A SRRs 4-38

IVOR37 Processor doorbell critical — — MSR[CE] or 
MSR[GS]

A CSRRs 4-38

IVOR38 Guest processor doorbell — — MSR[EE] and 
MSR[GS]

A GSRRs 4-38

IVOR39 Guest processor doorbell critical — — MSR[CE] and 
MSR[GS]

A CSRRs 4-39

Guest processor doorbell 
machine check

— — MSR[ME] and 
MSR[GS]

A CSRRs 4-39

IVOR40 Hypervisor system call — — — SP* SRRs 4-29

IVOR41 Hypervisor privilege — — — SP SRRs 4-40

Table 4-2. Interrupt Summary by (G)IVOR (continued)

IVOR Interrupt Exception
Directing State at 

Exception
(G)ESR1 Enabled by Type2

Save and 
Restore 

Registers
Page
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4.9.1 Partially Executed Instructions

In general, the architecture permits load and store instructions to be partially executed, interrupted, and 
then restarted from the beginning upon return from the interrupt. To guarantee that a particular load or store 
instruction completes without being interrupted and restarted, software must mark the memory as guarded 
and use an elementary (nonmultiple) load or store aligned on an operand-sized boundary.

4.9.1.1 Restarting Instructions After Partial Execution

To guarantee that load and store instructions can, in general, be restarted and completed correctly without 
software intervention, the following rules apply when an execution is partially executed and then 
interrupted:

• For an elementary load, no part of a target register rD is altered.
• For update forms of load or store, the update register, rA, is not altered.

The following effects are permissible when certain instructions are partially executed and then restarted:
• For any store, bytes at the target location may have been altered (if write access to that page in 

which bytes were altered is permitted by the access control mechanism). In addition, for store 
conditional instructions, CR0 has been set to an undefined value, and it is undefined whether the 
reservation has been cleared.

• For any load, bytes at the addressed location may have been accessed (if read access to that page in 
which bytes were accessed is permitted by the access control mechanism).

• For load multiple some registers in the range to be loaded may have been altered. It is a 
programming error to include the addressing registers rA, and possibly rB, in the range to be 
loaded, and thus the rules for partial execution do not protect these registers against overwriting.

NOTE
In no case is access control violated.

1 In general, when an interrupt affects an (G)ESR as indicated in the table, it also causes all other (G)ESR bits to be cleared. 
Special rules may apply for implementation-specific (G)ESR bits. 

Legend:
xxx (no brackets) means (G)ESR[xxx] is set.
[xxx] means (G)ESR[xxx] could be set.
[xxx,yyy] means either (G)ESR[xxx] or (G)ESR[yyy] may be set, but not both.
{xxx,yyy} means either (G)ESR[xxx] or (G)ESR[yyy] and possibly both may be set.

2 Interrupt types:

SP = synchronous and precise 
SI = synchronous and imprecise
A = asynchronous
* = post completion interrupt. xSRR0 registers point after the instruction causing the exception.

3  Section 4.9.6.3, “External Proxy,” describes how the e500mc interacts with a programmable interrupt controller (PIC) defined by 
the integrated device.

4 PUO does not occur on e500mc.
5 This debug interrupt may be made pending if MSR[DE] = 0 at the time of the exception.
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For e500mc the following rules apply:
1. The only instructions that are “interruptible” and for which the changes to registers (on loads) or 

the changes to memory (on stores) are visible are load and store multiple instructions.
2. If a load or store multiple gets interrupted, some number of words may already be processed and 

the GPRs or memory reflects that. When the interrupt returns the multiple instruction is restarted 
and performs all the previous actions as well as finishing the actions (assuming its not interrupted 
again).

3. Any aligned, elementary (byte, halfword, word, doubleword) load or store is not interruptible and 
always performs atomically (meaning that the bytes are all read or written at once and no other 
agent can modify the bytes during the time the bytes are sampled or written.

4. Store conditionals are always atomic. The CR value is always set based on whether the store was 
actually performed or not.

5. Misaligned loads and stores are not guaranteed to be atomic. Therefore another agent may modify 
the data in between the sampling of all the bytes. However, it's unlikely you'd even see this happen 
if the data is cacheable.

6. A load that is not guarded may speculatively access memory and later be canceled if it turns out 
the load was cancelled (because we took an interrupt or had a mispredicted branch). In this case, 
the load data is never made visible to the architected state (i.e. the GPR that is the target of the load 
is not changed).

NOTE
In the same sense, a misaligned load is also possibly sample data 
non-atomically.
In the case of misaligned guarded loads, the guarded load may sample data 
and then be cancelled due to an interrupt, but does not change any visible 
architected state.

4.9.1.2 Interruptions After Partial Execution

As previously stated, elementary, aligned, guarded loads and stores are the only access instructions 
guaranteed not to be interrupted after being partially executed. The following list identifies the specific 
instruction types for which interruption after partial execution may occur, as well as the specific interrupt 
types that could cause the interruption:

• Any load or store (except elementary, aligned, and guarded):
— Any asynchronous interrupt
— Machine check
— Decrementer
— Fixed-interval timer
— Watchdog timer
— Debug (unconditional debug event)

• Misaligned elementary load or store, or any multiple:
All of the above listed under item •, plus the following:
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— Alignment 
— Data storage (if the access crosses a page boundary and protections on the 2 pages differ)
— Data TLB (if the access crosses a page boundary and one of the pages is not in the TLB)
— Debug (data address compare)

4.9.2 Critical Input Interrupt—IVOR0

A critical input interrupt occurs when no higher priority interrupt exists, a critical input exception is 
presented to the interrupt mechanism, and MSR[CE] = 1 or MSR[GS] = 1. The reference manual for the 
integrated device describes how this exception is signaled (typically the signal is described as cint.). 

As defined by the architecture, CSRR0, CSRR1, and MSR are updated as shown in this table.

Instruction execution resumes at address IVPR[32–47] || IVOR0[48–59] || 0b0000.

NOTE
To avoid redundant critical input interrupts, software must take any actions 
required by the implementation to clear any critical input exception status 
before reenabling MSR[CE] or setting MSR[GS].

4.9.3 Machine Check Interrupt—IVOR1

The Machine Check Interrupt consists of three different, but related, types of exception conditions that all 
use the same interrupt vector and same interrupt registers. The three different interrupts are:

• Asynchronous machine check exceptions which are the result of error conditions directly detected 
by the processor or as a result of the assertion of the machine check signal pin (typically described 
in the integrated device reference manual as the mcp signal) as described by Section 4.9.3.4, 
“Asynchronous Machine Check Exceptions.”

• Synchronous error report exceptions which are the result of an instruction encountering an error 
condition, but execution cannot continue without propagating data derived from the error condition 
as described in Section 4.9.3.3, “Machine Check Error Report Synchronous Exceptions.”

• Non-maskable (NMI) interrupts which are non-maskable, non-recoverable interrupts that are 
signaled from the SoC as described by Section 4.9.3.2, “NMI Exceptions.”

For all of these interrupts, the following occur:
• MCSRR0 and MCSRR1 save the return address and MSR.

Table 4-3. Critical Input Interrupt Register Settings

Register Setting

CSRR0 Set to the effective address of the next instruction to be executed

CSRR1 Set to the MSR contents at the time of the interrupt

MSR  • ME and DE are unchanged.
 • RI is not cleared.
 • All other MSR bits are cleared.
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• An address related to the machine check may be stored in MCAR (and MCARU), according to 
Table 4-4.

• The machine check syndrome register, MCSR, is used to log information about the error condition. 
The MCSR is described in Section 2.9.9, “Machine Check Syndrome Register (MCSR).”

• At the end of the machine check interrupt software handler, a Return from Machine Check Interrupt 
(rfmci) may be used to return to the state saved in MCSRR0 and MCSRR1.

Machine check exceptions are typically caused by a hardware failure or by software performing actions 
for which the hardware has not been designed to handle, or cannot provide a suitable result. They may be 
caused indirectly by execution of an instruction, but may not be recognized or reported until long after the 
processor has executed that instruction.

4.9.3.1 General Machine Check, Error Report, and NMI Mechanism

Asynchronous machine check, error report machine check, and NMI exceptions are independent of each 
other, even though they share the same interrupt vector. 

4.9.3.1.1 Error Detection and Reporting Overview

The general flow of error detection and reporting occurs as follows:
• When the processor detects an error directly (that is, the error occurs within the processor) or the 

machine check signal pin (mcp) is asserted, the error is posted to the MCSR by setting an error 
status bit corresponding to the error that was detected. If the error bit set in the MCSR is one of the 
asynchronous machine check error conditions, an asynchronous machine check occurs when 
MSR[ME] = 1 or MSR[GS] = 1. Note that an asynchronous machine check interrupt always occurs 
when the asynchronous machine check interrupt is enabled and any of the asynchronous error bits 
in the MCSR are non-zero.

• If an instruction is a consumer of data associated with the error, the instruction has an error report 
exception associated with the instruction ensuring that if the instruction reaches the point of 
completion, the instruction takes an error report machine check interrupt to prevent the erroneous 
data from propagating.

• It is possible a single error within the processor sets both an asynchronous machine check error 
condition in the MCSR, and associates an error report with the instruction that consumed data 
associated with the error. The asynchronous error bit is always set, and if this triggers an 
asynchronous machine check interrupt before the instruction that has the error report exception 
completes, the asynchronous machine check interrupt flushes the instruction with the error report, 
and the error report does not occur. Likewise, if the instruction with the error report exception 
attempts to complete before the asynchronous error bit is set in MCSR, the error report machine 
check interrupt is taken. In this case, the processor still sets the MCSR asynchronous error bit, 
probably well before software has read the MCSR. When software reads the MCSR, it appears that 
both an asynchronous machine check exception and a synchronous error report occurred, because 
the error report has caused the error report bits to be set, and the processor also has set an 
asynchronous machine check error bit. This can easily happen if the error occurs when MSR[ME] 
= 0 and MSR[GS] = 0 because the asynchronous machine check interrupt is not enabled.
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• It is also possible that an error report machine check interrupt occurs without an associated 
asynchronous machine check error bit being set in the MCSR. This can occur when the processor 
is the consumer of some data for which the error was detected by some agent other than the 
processor. For example, an error in DRAM may occur and if the processor executed a load 
instruction which accessed that DRAM where the error occurred, the load instruction would take 
an error report machine check interrupt if it attempted to complete execution.

• A non-maskable interrupt (NMI) occurs when the integrated device asserts the NMI signal to the 
e500mc. The MCSR[NMI] bit is set when the interrupt occurs. The NMI signal is non-maskable 
and occurs regardless of the state of MSR[ME] or MSR[GS].

NOTE
The taking of an asynchronous machine check interrupt always occurs when 
any of the asynchronous machine check error bits is not zero and the 
asynchronous machine check interrupt is enabled (MSR[ME] = 1 or 
MSR[GS] = 1). The condition persists until software clears the 
asynchronous machine check error bits in MCSR.
To avoid multiple asynchronous machine check interrupts, software should 
always read the contents of the MCSR within the asynchronous machine 
check interrupt handler and clear any set bits in the MCSR prior to 
re-enabling machine check interrupts by setting MSR[ME] or MSR[GS]. 
Note that the processor may set asynchronous machine check error bits in 
MCSR at any time as errors are detected, including when the processor is in 
the asynchronous machine check interrupt handler and MSR[ME] = 0.

An asynchronous machine check, error report, or NMI interrupt occurs when no higher priority interrupt 
exists and an asynchronous machine check, error report, or NMI exception is presented to the interrupt 
mechanism. 

The following general rules apply:
• The instruction whose address is recorded in MCSRR0 has not completed, but may have attempted 

to execute.
• No instruction after the one whose address is recorded in MCSRR0 has completed execution.
• Instructions in the architected instruction stream prior to this instruction have all completed 

successfully.

4.9.3.1.2 Machine Check Interrupt Settings

When a machine check interrupt is taken, registers are updated as shown in this table.
Table 4-4. Machine Check Interrupt Settings

Register Setting

MCSRR0 The core sets this to an EA of an instruction executing or about to execute when the exception occurred. 

MCSRR1 Set to the contents of the MSR at the time of the exception.

MSR  • RI is cleared.
 • All other defined MSR bits are cleared.
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Instruction execution resumes at address IVPR[32–47] || IVOR1[48–59] || 0b0000.

NOTE
For implementations on which a machine check interrupt is caused by 
referring to an invalid physical address, executing dcbz, dcbzl, dcbzep, 
dcbzlep, dcba, or dcbal can ultimately cause a machine check interrupt 
long after the instruction executed by establishing a data cache block 
associated with an invalid physical address. The interrupt can occur later on 
an attempt to write that block to main memory, for example, as the result of 
executing an instruction that causes a cache miss for which the block is the 
target for replacement or as the result of executing dcbst or dcbf.

4.9.3.1.3 Machine Check Exception Sources

The e500mc machine check exception sources are specified in this table. 

MCAR 
(MCARU)

MCAR is updated with the address of the data associated with the machine check. See Section 2.9.8, “Machine 
Check Address Register (MCAR/MCARU).”

MCSR Set according to the machine check condition. See Table 2-8.

Table 4-5. Machine Check Exception Sources

Source Additional Enable Bits1

Machine check input signal asserted. Set immediately on recognition of assertion of the 
mcp input. This input comes from the SoC and is a level sensitive signal. This usually 
occurs as the result of an error detected by the SoC. 

HID0[EMCP]

Instruction cache tag or data array parity error L1CSR1[ICPE] and
L1CSR1[ICE]

Data cache data parity or tag parity error due to a load or store L1CSR0[CECE] and L1CSR0[CE]

L2 MMU multi-way hit.
Multi-way hit in the L2 MMU. Indicates that a lookup in the L2 MMU yielded multiple hits. 
This signifies overlapping TLB entries. The overlap may be between multiple ways in the 
4K array, between multiple entries in the CAM, or between entries in the 4K and CAM.
These errors are detected when the L2 MMU is accessed. It is possible for an overlap 
condition to exist for some time before it is detected. As long as translations are satisfied 
by the L1 MMU, no L2 MMU lookup is required, and the overlap condition is not detected.

If an L2 MMU simultaneous hit occurs during the execution of dcba, dcbal, dcbt, dcbtep, 
dcbtst, dcbtstep, or icbt, no error report machine check occurs on the instruction and no 
access off the core is performed.

HID0[EN_L2MMU_MHD]

Nonmaskable interrupt. None

Simultaneous tlbsync operations detected. The system should never have two 
outstanding tlbsync operations on CoreNet. 

None

L2 cache error L2CSR0[L2E] and L2ERRDIS 2

Table 4-4. Machine Check Interrupt Settings (continued)

Register Setting
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4.9.3.2 NMI Exceptions

Non-maskable interrupt exceptions cause an interrupt on the machine check vector. A non-maskable 
interrupt occurs when the integrated device asserts the nmi signal to the e500mc. The nmi signal is 
non-maskable and occurs regardless of the state of MSR[ME] or MSR[GS]. Software should clear the 
NMI bit in MCSR after the NMI interrupt has been taken before setting MSR[ME] or MSR[GS].

NMI interrupts are by definition non-recoverable since the interrupt occurs asynchronously and the 
interrupt cannot be masked by software. Unrecoverability can occur if the NMI occurs while the processor 
is in the early part of an asynchronous machine check, error report machine check, or another NMI 
interrupt handler and the return state in MCSRR0 and MCSRR1 have not yet been saved by software. It is 
possible for software to use MSR[RI] to determine whether software believes it is safe to return, but the 
system designer must allow for the case for which MCSRR0 and MCSRR1 have not been saved.

4.9.3.3 Machine Check Error Report Synchronous Exceptions 

Error report machine checks are intended to limit the propagation of bad data. For example, if a cache 
parity error is detected on a load, the load instruction is not allowed to complete, a synchronous error report 
machine check is generated, and the MCSRR0 holds the address of the load instruction with which the 
parity error is associated. (For a discussion of instruction completion, see Chapter 10, “Execution 
Timing.”)

Preventing the load instruction from completing prevents the bad data from reaching the GPRs and 
prevents any subsequent instructions dependent on that data from executing. Error reports do not indicate 
the source of the problem (such as the cache parity error in the current example); the source is indicated 
by an asynchronous machine check. When an error report type of machine check occurs, the MCSR 
indicates the operation that incurred the error as shown in this table.

1 “Additional Enable Bits” indicates any other state that, if not enabled, inhibits the recognition this particular error condition.
2 For a description of L2ERRDIS, see Section 2.15.4.1, “L2 Cache Error Disable Register (L2ERRDIS).”

Table 4-6. Error Report Definitions

Error Report Definition

Instruction fetch error report 
(MCSR[IF])

An error occurred while attempting to fetch the instruction corresponding to the address 
contained in MCSRR0.

Load instruction error report 
(MCSR[LD])

An error occurred while attempting to execute the load instruction corresponding to the 
address contained in MCSRR0.
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Table 4-7 describes which error sources generate which error report status bits in the MCSR.

Note that there is no MCSR error status bit for CoreNet data errors. If a CoreNet data error occurs on a 
load or instruction fetch and the instruction reaches the bottom of the completion buffer, an error report 
occurs. But, because there is no MCSR error status bit for data errors, the core does not generate an 
asynchronous machine check. The device that detects the error is expected to report it. For example, 
assume that the core attempts to perform a load from a PCI device that encounters an error. The PCI device 
would signal a “PCI Master Abort” and would signal the error to the programmable interrupt controller 
(PIC). 

The core's memory transaction should be completed with a data error so that the core is not hung awaiting 
the transaction. Eventually, the PIC should interrupt the core (the PIC should be programmed to direct such 
an error to take a machine check interrupt).

Error reports are intended to be a mechanism to stop the propagation of bad data; the asynchronous 
machine check is intended to allow software to attempt to recover from errors gracefully. 

In a multicore system, the PIC is likely to steer all PCI error interrupts to one processor. For the PCI Master 
Abort example, assume that Processor B performs a load that gets a PCI Master Abort, and the PIC steers 
the PCI's error signal to Processor A’s machine check input signal. Here, the error report in Processor B 
prevents the propagation of bad data; Processor A gets the task of attempting a graceful recovery. Some 
interprocessor communication is likely necessary. 

Guarded load instruction 
error report 

(MCSR[LDG])

If LD is set and the load was a guarded load (that is, has the guarded storage attribute), this 
bit may be set. Note that some implementations may have specific conditions that govern 
when this bit is set.

Store instruction error report 
(MCSR[ST])

An error occurred while attempting to perform address translation on the instruction 
corresponding to the address contained in MCSRR0. Since stores may complete with 
respect to the processor pipeline before their effects are seen in all memory subsystem 
areas, only translation errors are reported as error reports with stores. 
Note that some instructions which are considered load instructions with respect to 
permission checking and debug events are reported as store error reports (MCSR[ST] is 
set). See Section 2.9.9, “Machine Check Syndrome Register (MCSR)” for which instructions 
set MCSR[LD] or MCSR[ST].

Table 4-7. Synchronous Machine Check Error Reports

Synchronous Machine Check Source Error Type MCSR Update1 Precise2

Instruction fetch Instruction cache data array parity error  IF Within fetch group3

Instruction cache tag array parity error

L2MMU multi-way hit

CoreNet bad data

L2 cache error

Table 4-6. Error Report Definitions (continued)

Error Report Definition
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An error report occurs only if the instruction that encountered the error reaches the bottom of the 
completion buffer (that is, it becomes the oldest instruction currently in execution) and the instruction 
would have completed otherwise. If the instruction is flushed (possibly due to a mispredicted branch or 
asynchronous interrupt, including an asynchronous machine check) before reaching the bottom of the 
completion buffer, the error report does not occur.

4.9.3.4 Asynchronous Machine Check Exceptions

An asynchronous machine check occurs only when MSR[ME] = 1 or MSR[GS] = 1 and an MCSR 
asynchronous error bit is set. Because MSR[ME] and MSR[GS] are cleared whenever a machine check 
interrupt occurs, a synchronous error report interrupt may clear MSR[ME] and MSR[GS] before the 
MCSR error bit is posted. If the error report handler clears the MCSR error bit before setting MSR[ME] 
or MSR[GS], no asynchronous machine check interrupt occurs.

This table describes asynchronous machine check and NMI exceptions.

Load (or touch) instruction
 

Data cache tag parity error  LD, [LDG]4 Yes

Data cache data array parity error

L2MMU multi-way hit

L2 cache tag parity or data error 
(uncorrectable ECC error)5

CoreNet Bad Data

Store or cache operation instruction L2MMU multi-way hit  ST —

1 The MCSR update column indicates which MCSR bits are updated when the machine check interrupt is taken.
2 The Precise column either indicates ‘yes’ or ‘within fetch group’. If “yes.” the error type causes a machine check in which the 

MCSRR0 points to the instruction that encountered the error, provided that MSR[ME] or MSR[GS] were set when the instruction 
was executed.

3 Error report machine check interrupts caused by instruction fetches (denoted by MCSR[IF]) are associated with all instructions 
within a given fetch group. If any instruction within the fetch group encountered an error of any type, then all instructions within 
the fetch group are marked with an instruction fetch error report exception. therefore, if the error report exception later causes 
a machine check interrupt, MCSRR0 points to the oldest instruction from that fetch group.

4 LDG is set if the load was a guarded load (WIMGE=xxx1x).
5 If L2 error detection is not enabled, an error report exception is not reported and the corrupted instruction may be executed and 

may modify architected state.

Table 4-8. Asynchronous Machine Check and NMI Exceptions

Error Source Error Type Transaction Source MCSR Update1 MCAR Update2

External Machine check input (mcp) pin3 n/a MCP —

NMI Pin n/a NMI —

Instruction 
cache

Data array parity error  Instruction fetch MAV ICPERR EA

Tag array parity error RA

Table 4-7. Synchronous Machine Check Error Reports (continued)

Synchronous Machine Check Source Error Type MCSR Update1 Precise2
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4.9.4 Data Storage Interrupt (DSI)—IVOR2/GIVOR2

A DSI occurs when no higher priority interrupt exists and a data storage exception is presented to the 
interrupt mechanism. The interrupt is directed to the hypervisor unless the following conditions exist: 
determined as follows:

• The exception is not a virtualization fault (TLB[VF] = 0).
• The state in which the exception occurred is the guest state (MSR[GS] = 1).
• The interrupt is programmed to be directed to the guest state (EPCR[DSIGS] = 1).

If all the above conditions are met, the DSI is directed to the guest supervisor state.

This table (taken from Table 4-2) summarizes exception conditions and behavior for the data storage and 
guest data storage interrupts. 

Data cache Tag parity error load, touch, stores, cache 
operations, or snoops

MAV DCERR RA

Data array parity error load, castout, or snoop

L2 cache All types4 All types BSL2_ERR —

L2 MMU Multi-way hit tlbsx, instruction fetch, load, 
touch, store, cache op (all types)

 MAV L2MMU_MHIT EA5

Multiple simultaneous tlbsync 
operations detected

TLBSYNC snoop TLBSYNC none

1 The MCSR update column indicates which MCSR bits are updated when the exception is logged.
2 The MCAR update column indicates whether the error type provides either a real or effective address (RA or EA), or no address 

which is associative with the error.
3 The machine check input pin is used by the SoC to indicate all types of machine check type error which are detected by the 

SoC. Software must query error logging information within the SoC to determine the specific error condition and source.
4 The L2 cache has a separate set of error reporting and capture registers. 
5 The lower 12 bits of the EA are cleared.

Table 4-9. Data Storage interrupt

IVOR Interrupt Exception
Directing State at 

Exception
(G)ESR1 Save/Restore

Registers

IVOR2 Data
storage
(DSI)

Access or virtualization fault MSR[GS] = 0 or 
EPCR[DSIGS] = 0 or 
TLB[VF] = 1

[ST], [FP,AP], [EPID] SRRs

Load reserve or store conditional to 
write-through required location (W = 1)

[ST]

Cache locking [DLK,ILK],[ST]

Byte ordering [ST],[FP],BO, [EPID]

Table 4-8. Asynchronous Machine Check and NMI Exceptions (continued)

Error Source Error Type Transaction Source MCSR Update1 MCAR Update2
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This table describes exceptions as defined by the architecture, noting any e500mc-specific behavior.

GIVOR2 Guest 
data 
storage 
(DSI)

Access MSR[GS] = 1 ¶ 
EPCR[DSIGS] = 1

[ST], [FP,AP], [EPID] GSRRs

Load reserve or store conditional to 
write- through required location (W = 1)

[ST]

Cache locking [DLK,ILK],[ST]

Byte ordering [ST],[FP],BO, [EPID]

1 In general, when an interrupt affects an (G)ESR as indicated in the table, it also causes all other (G)ESR bits to be cleared. 
Special rules may apply for implementation-specific (G)ESR bits. 

Legend:
xxx (no brackets) means (G)ESR[xxx] is set.
[xxx] means (G)ESR[xxx] could be set.
[xxx,yyy] means either (G)ESR[xxx] or (G)ESR[yyy] may be set, but not both.
{xxx,yyy} means either (G)ESR[xxx] or (G)ESR[yyy] and possibly both may be set.

Table 4-10. Data Storage Interrupt Exception Conditions

Exception Cause

Read access 
control 
exception

Occurs when either of the following conditions exists:
 • In user mode (MSR[PR] = 1), a load or load-class cache management instruction attempts to access a 

memory location that is not user-mode read enabled (page access control bit UR = 0).
 • In supervisor mode (MSR[PR] = 0), a load or load-class cache management instruction attempts to access 

a location that is not supervisor-mode read enabled (page access control bit SR = 0).

Virtualization 
fault 

Loads and stores translated by TLB entries with the TLB[VF] = 1 always take a data storage interrupt directed 
to hypervisor state.

Write access 
control 
exception

Occurs when either of the following conditions exists:
 • In user mode (MSR[PR] = 1), a store or store-class cache management instruction attempts to access a 

location that is not user-mode write enabled (page access control bit UW = 0).
 • In supervisor mode (MSR[PR] = 0), a store or store-class cache management instruction attempts to access 

a location that is not supervisor-mode write enabled (page access control bit SW = 0).

Byte-ordering 
exception

Data cannot be accessed in the byte order specified by the page’s endian attribute.
Note: This exception is provided to assist implementations that cannot support dynamically switching byte 

ordering between consecutive accesses, the byte order for a class of accesses, or misaligned accesses 
using a specific byte order. On the e500mc, load/store accesses that cross a page boundary such that 
endianness changes cause a byte-ordering exception. 

Cache locking 
exception 

The locked state of one or more cache lines may potentially be altered. Occurs with the execution of icbtls, 
icblc, dcbtls, dcbtstls, or dcblc when (MSR[PR] = 1) and (MSR[UCLE] = 0). ESR is set as follows:
 • For icbtls and icblc, ESR[ILK] is set. 
 • For dcbtls, dcbtstls, or dcblc, ESR[DLK] is set. The architecture refers to this as a cache-locking exception.

Storage 
synchronization 
exception

Occurs when a lwarx or stwcx. attempts to access a location marked write-through required. 
Note that if the EA associated with a store conditional instruction would have caused a write access control 
exception, were the instruction not a store conditional, even if the store would not be performed (because the 
reservation is not held), a DSI write access control exception occurs.
See “Atomic Update Primitives Using lwarx and stwcx.,” in the “Instruction Model” chapter of the EREF: A 
Programmer’s Reference Manual for Freescale Power Architecture® Processors. 

Table 4-9. Data Storage interrupt (continued)

IVOR Interrupt Exception
Directing State at 

Exception
(G)ESR1 Save/Restore

Registers
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Regardless of the EA, icbt, dcbt, dcbtst, dcba and dcbal cannot cause a data storage interrupt.

NOTE
icbi, icbt, icblc, and icbtls are treated as loads from the addressed byte with 
respect to translation and protection. Both use MSR[DS], not MSR[IS], to 
determine translation for their operands. Instruction storage and TLB error 
interrupts are associated with instruction fetching and not execution. Data 
storage and TLB error interrupts are associated with execution of instruction 
cache management instructions.

When the interrupt occurs, the processor suppresses execution of the instruction that caused it. Registers 
are updated as follows:

Instruction execution resumes at address (G)IVPR[32–47] || (G)IVOR2[48–59] || 0b0000.

4.9.5 Instruction Storage Interrupt (ISI)—IVOR3/GIVOR3

An ISI occurs when no higher priority interrupt exists and an instruction storage interrupt is presented to 
the interrupt mechanism. 

The interrupt is directed to the hypervisor unless the following conditions exist:
• The state in which the exception occurred is the guest state (MSR[GS] = 1).
• The interrupt is programmed to be directed to the guest state (EPCR[ISIGS] = 1).

If all the above conditions are met, the ISI is directed to the guest supervisor state.

Table 4-11. Data Storage Interrupt Register Settings  

Register Setting

(G)SRR0 Set to the EA of the instruction causing the interrupt

(G)SRR1 Set to the MSR contents at the time of the interrupt

(G)ESR ST Set if the instruction causing the interrupt is a store or store-class cache management instruction
DLK Set when a DSI occurs because dcbtls, dcbtstls, or dcblc is executed in user mode and MSR[UCLE] = 0.
ILK Set when a DSI occurs because icbtls or icblc is executed in user mode and MSR[UCLE] = 0.
BO Set if the instruction caused a byte-ordering exception.
All other defined ESR bits are cleared.

MSR  • ME, CE, and DE are unchanged.
 • GS, UCLE, and PMM are cleared if the interrupt is directed to the hypervisor state.
 • UCLE and PMM are cleared If the interrupt is directed to the guest state and the associated bits of MSRP are 0.
 • RI is not cleared.
 • All other defined MSR bits are cleared.

(G)DEAR Set to the EA of a byte that lies both within the range of bytes being accessed by the access or cache management 
instruction and within the page whose access caused the exception,
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This table describes exception conditions.

When an ISI occurs, the processor suppresses execution of the instruction causing the interrupt. 

Registers are updated as shown in this table.

Instruction execution resumes at address (G)IVPR[32–47] || (G)IVOR3[48–59] || 0b0000.

4.9.6 External Input Interrupt—IVOR4/GIVOR4

An external input interrupt occurs when no higher priority interrupt exists, an external input interrupt 
(typically described in the integrated reference manual as the int signal) is presented to the interrupt 
mechanism, and MSR[EE] = 1. The interrupt is directed to the hypervisor unless the following conditions 
exist: determined as follows:

• The state in which the exception occurred is the guest state (MSR[GS] = 1).
• The interrupt is programmed to be directed to the guest state (EPCR[EXTGS] = 1).

If all the above conditions are met, the external input interrupt is directed to the guest supervisor state. The 
interrupt is enabled by the MSR[EE], MSR[GS], and EPCR[EXTGS] bits as follows:

• If EPCR[EXTGS] = 0, the interrupt is enabled if MSR[EE] = 1 or MSR[GS] = 1.
• If EPCR[EXTGS] = 1, the interrupt is enabled if MSR[EE] = 1 and MSR[GS] = 1.

4.9.6.1 Receiving External Input Interrupts

In an integrated device, external interrupts are typically signaled to the core from a programmable interrupt 
controller (PIC), which manages and prioritizes interrupt requests from integrated peripheral devices such 
that the highest priority request is guaranteed to be presented to the core as quickly as possible. 

Table 4-12. Instruction Storage Interrupt Exception Conditions

Exception Cause

Execute access 
control exception

In user mode, an instruction fetch attempts to access memory that is not user mode execute enabled (page 
access control bit UX = 0).
In supervisor mode, an instruction fetch attempts to access a memory that is not supervisor mode execute 
enabled (page access control bit SX = 0).

Table 4-13. Instruction Storage Interrupt Register Settings

Register Setting

(G)SRR0 Set to the EA of the instruction causing the interrupt

(G)SRR1 Set to the MSR contents at the time of the interrupt

MSR  • ME, CE, and DE are unchanged.
 • GS, UCLE, and PMM are cleared if the interrupt is directed to the hypervisor state.
 • UCLE and PMM are cleared If the interrupt is directed to the guest state and the associated bits of MSRP are 0.
 • RI is not cleared.
 • All other defined MSR bits are cleared.

(G)ESR All defined ESR bits are cleared.
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The e500mc provides two methods of receiving external input interrupts, which is controlled through a 
register field in the PIC:

• In one method, the legacy method, the core takes an external input interrupt when the int signal 
from the PIC is asserted and the external input interrupt is enabled. The input is level sensitive and 
if int is deasserted before the interrupt is enabled, no interrupt occurs. If the interrupt is enabled and 
occurs, software reads the memory-mapped Interrupt Acknowledge (IACK) register which 
contains the specific vector of the interrupt. This causes the PIC to deassert int until another 
interrupt is requested and management of the interrupt is software’s responsibility (it is in-service) 
until it performs an associated End of Interrupt (EOI) memory-mapped register write to the PIC.

• In the alternate method known as External Proxy, a signaling protocol occurs between the core and 
the PIC. Instead of just signaling int, the PIC also provides the specific vector for the interrupt. 
When the interrupt is enabled and the PIC is asserting int, the interrupt occurs and the core 
communicates to the PIC that the interrupt has been taken and provides the vector from the PIC in 
the (G)EPR register which software then can read. As part of the communication with the PIC, the 
PIC puts the specific interrupt in-service as if software had read the IACK register in the legacy 
method. This method is further described in Section 4.9.6.3, “External Proxy.” 

4.9.6.2 External Input Interrupt Register Settings

Registers are updated as shown in this table.

Instruction execution resumes at address (G)IVPR[32–47] || (G)IVOR4[48–59] || 0b0000.

NOTE
To avoid redundant external input interrupts, software must take any actions 
required to clear any external input exception status before reenabling 
MSR[EE].

4.9.6.3 External Proxy

The external proxy facility defines an interface for using a core-to-interrupt controller hardware interface 
for acknowledging external interrupts from a programmable interrupt controller (PIC) implemented as part 

Table 4-14. External Input Interrupt Register Settings

Register Setting

(G)SRR0 Set to the effective address of the next instruction to be executed

(G)SRR1 Set to the MSR contents at the time of the interrupt

MSR  • ME, CE, and DE are unchanged.
 • GS, UCLE, and PMM are cleared if the interrupt is directed to the hypervisor state.
 • UCLE and PMM are cleared If the interrupt is directed to the guest state and the associated bits of MSRP are 0.
 • RI is not cleared.
 • All other defined MSR bits are cleared.

(G)EPR If external proxy is used, (G)EPR holds the vector offset that identifies the source that generated the interrupt triggered 
from the PIC. For external interrupts not generated using interrupt proxy, (G)EPR is updated to all zeros.
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of the integrated device. This functionality is enabled through a register field defined by the PIC and 
documented in the reference manual for the integrated device. 

Using this interface reduces the latency required to read and acknowledge the interrupt that normally 
requires a cache-inhibited guarded load to the memory controller.

In previous integrated devices, when the core received a signal from the PIC indicating that the external 
interrupt was necessary to handle a condition typically presented by an integrated peripheral device, the 
interrupt handler responded by reading a memory-mapped register (interrupt acknowledge, or IACK) 
defined by the Open PIC standard. In addition to providing an additional vector offset specific to the 
peripheral device, this read negated the internal signal and changed the status of the interrupt request from 
pending to in-service in which state it would remain until the completion of the interrupt handling. 

The external proxy eliminates the need to read the IACK register by presenting the vector to the external 
proxy register (EPR), or guest external proxy register (GEPR), described in Section 2.9.5, “(Guest) 
External Proxy Register (EPR/GEPR).”

Instead of just signaling int, the PIC also provides the specific vector for the interrupt. When the interrupt 
is enabled and the PIC is asserting int, the interrupt occurs and the core communicates to the PIC that the 
interrupt has been taken and provides the vector from the PIC in the (G)EPR register which software then 
can read. As part of the communication with the PIC, the PIC puts the specific interrupt in-service as if 
software had read the IACK register in the legacy method. The PIC always asserts the highest priority 
pending interrupt to the core and the interrupt that is put in-service is determined by when the core takes 
the interrupt based on the appropriate enabling conditions.From a system software perspective, the core 
does not acknowledge the interrupt until the external input interrupt is taken.

Software in the external input interrupt handler would then read (G)EPR to determine the vector for the 
interrupt. The value of the vector in (G)EPR does not change until the next external input interrupt occurs 
and therefore software must read (G)EPR before re-enabling the interrupt.

When using external proxy (and even with the legacy method), software must ensure that end-of-interrupt 
(EOI) processing is synchronized with taking of external input interrupts such that the EOI indicator is 
received so that the interrupt controller can properly pair it with the source. For example, writing the EOI 
register for the PIC would require that the following sequence occur:

block interrupts; // turn EE off for external interrupts
write EOI register; // signal end of interrupt
read EOI register; // ensure write has completed
unblock interrupts; // allow interrupts

4.9.7 Alignment Interrupt—IVOR5

An alignment interrupt occurs when no higher priority exception exists and an alignment exception is 
presented to the interrupt mechanism. On the e500mc, these exceptions are as follows: 

• The following accesses are not word aligned:
— Floating-point loads and stores 
— Load multiple or store multiple instruction (lmw and stmw).
— A lwarx or stwcx. instruction. 
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NOTE
The architecture does not support use of a misaligned EA by load and 
reserve or store conditional instructions. If a misaligned EA is specified, the 
alignment interrupt handler must treat the instruction as a programming 
error and not attempt to emulate the instruction.

• A dcbz, dcbzep, dcbzepl, or dcbzl is attempted to a page marked write-through or cache-inhibited.

For other accesses, the e500mc performs misaligned accesses in hardware within a single cycle if the 
misaligned operand lies within a doubleword boundary. Accesses that cross a doubleword boundary 
degrade performance. Although many misaligned memory accesses are supported in hardware, their 
frequent use is discouraged because they can compromise overall performance. Only one outstanding 
misalignment at a time is supported, which means it is nonpipelined. A misaligned access that crosses a 
page boundary completely restarts if the second portion of the access causes a TLB miss or a DSI after the 
associated interrupt has been serviced and the TLB miss or DSI handler has returned to re-execute the 
instruction. This can cause the first access to be repeated. 

When an alignment interrupt occurs, the processor suppresses execution of the instruction causing the 
alignment interrupt. Registers are updated as shown in Table 4-15.

Instruction execution resumes at address IVPR[32–47] || IVOR5[48–59] || 0b0000.

Table 4-15. Alignment Interrupt Register Settings

Register Setting

SRR0 Set to the EA of the instruction causing the alignment interrupt

SRR1 Set to the MSR contents at the time of the interrupt

MSR  • ME, CE, and DE are unchanged.
 • RI is not cleared.
 • All other defined MSR bits are cleared.

DEAR Set to the EA of a byte in the range of bytes being accessed and on the page whose access caused the exception

ESR The following bits may be set:
ST Set only if the instruction causing the exception is a store and is cleared for a load
All other defined ESR bits are cleared.
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4.9.8 Program Interrupt—IVOR6

A program interrupt occurs when no higher priority exception exists and a program interrupt is presented 
to the interrupt mechanism. This table lists program interrupt exceptions.

Registers are updated as shown in this table.

Instruction execution resumes at address IVPR[32–47] || IVOR6[48–59] || 0b0000.

Table 4-16. Program Interrupt Exception Conditions

Exception Cause ESR Bits Set

Floating-point 
enabled

A floating-point enabled exception is caused when FPSCR[FEX] is set to 1 by the execution 
of a floating-point instruction that causes an enabled exception, including the case of a Move 
to FPSCR instruction that causes an exception bit and the corresponding enable bit both to 
be 1. Note that in this context, the term ‘enabled exception’ refers to the enabling provided by 
control bits in the FPSCR.

FP

Illegal 
instruction

Attempted execution of any of the following causes an illegal instruction exception.
 • A reserved-illegal instruction or an undefined instruction encoding.
 • A mtspr or mfspr that specifies a SPRN value that is not implemented.
 • A mtspr that specifies a read-only SPRN.
 • A mfspr that specifies a write-only SPRN.
 • A defined, unimplemented instruction. 
On e500mc an instruction in an invalid form causes boundedly undefined results.

PIL

Privileged 
instruction 

MSR[PR] = 1 and execution is attempted of any of the following:
 • A privileged instruction or a hypervisor privileged instruction.
 • mtspr or mfspr that specifies a privileged SPR.
 • mtpmr or mfpmr that specifies a privileged PMR.

PPR

Trap When any of the conditions specified in a trap instruction are met and the exception is not also 
enabled as a debug interrupt. If enabled as a debug interrupt (that is, (DBCR0[TRAP] = 1 & 
DBCR0[IDM] = 1 & MSR[DE] = 1) & (MSR[GS] | ~EPCR[DUVD])), then a debug interrupt is 
taken instead of the program interrupt.

PTR

Unimplemented 
operation 

e500mc does not take unimplemented operation exceptions. All defined, but unimplemented 
instructions take an illegal instruction exception.

—

Table 4-17. Program Interrupt Register Settings

Register Description

SRR0 Set to the EA of the instruction that caused the interrupt.

SRR1 Set to the MSR contents at the time of the interrupt.

MSR  • ME, CE, and DE are unchanged.
 • RI is not cleared.
 • All other defined MSR bits are cleared.

ESR FP Set if an enabled floating-point exception-type program interrupt; otherwise cleared.
PIL Set if an illegal instruction exception-type program interrupt; otherwise cleared.
PPR Set if a privileged instruction exception-type program interrupt; otherwise cleared.
PTR Set if a trap exception-type program interrupt; otherwise cleared.
All other defined ESR bits are cleared.
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4.9.9 Floating-Point Unavailable Interrupt—IVOR7 

A floating-point unavailable interrupt occurs when no higher priority interrupt exists, an attempt is made 
to execute a floating-point instruction (including floating-point load, store, and move instructions), and the 
floating-point available bit in the MSR is disabled (MSR[FP] = 0). SRR0, SRR1, and MSR are updated as 
shown in this table.

Instruction execution resumes at address IVPR[32–47] || IVOR7[48–59] || 0b0000.

4.9.10 System Call/Hypervisor System Call 
Interrupt—IVOR8/GIVOR8/IVOR40

A system call interrupt occurs when no higher priority exception exists and a System Call (sc) instruction 
with LEV = 0 is executed. (G)SRR0, (G)SRR1, and MSR are updated as shown in Table 4-20.

The system call interrupt is directed to the hypervisor if executed in hypervisor state (MSR[GS] = 0) and 
is directed to the guest supervisor if executed in guest state (MSR[GS] = 1).

A hypervisor system call interrupt occurs when no higher priority exception exists and a System Call (sc) 
instruction with LEV = 1 is executed. SRR0, SRR1, and MSR are updated as shown in.

This table describes which (G)IVOR is taken based on the setting of MSR[GS] and the value of the LEV 
operand.

Table 4-18. Floating-Point Unavailable Interrupt Register Settings

Register Description

SRR0 Set to the EA of the instruction causing the floating-point unavailable interrupt.

SRR1 Set to the MSR contents at the time of the interrupt.

MSR  • ME, CE, and DE are unchanged.
 • RI is not cleared.
 • All other defined MSR bits are cleared.

Table 4-19. System Call / Hypervisor System Call Interrupt Selection

LEV MSR[GS] Interrupt

> 1 — Undefined1

1 For e500mc, only the low order bit of the LEV field is 
used and the (G)IVOR is used accordingly, however 
software should not depend on this behavior.

1 — IVOR40

0 0 IVOR8

1 GIVOR8
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For a system call interrupt, instruction execution resumes at address (G)IVPR[32–47] || (G)IVOR8[48–59] 
|| 0b0000.

For a hypervisor system call interrupt, instruction execution resumes at address IVPR[32–47] || 
IVOR40[48–59] || 0b0000.

Hypervisor system call interrupts are provided as way to communicate with the hypervisor software.

NOTE
The hypervisor should check SRR1[PR,GS] to determine the privilege level 
of the software making a hypervisor system call to determine what action, 
if any, should be taken as a result of the hypervisor system call.

4.9.11 Decrementer Interrupt—IVOR10

A decrementer interrupt occurs when no higher priority exception exists, a decrementer exception exists 
(TSR[DIS] = 1), and the interrupt is enabled (TCR[DIE] = 1 and (MSR[EE] = 1 or MSR[GS])). 

NOTE
MSR[EE] also enables external input, processor doorbell, guest processor 
doorbell, fixed-interval timer, and performance monitor interrupts.

This table shows register updates.

Instruction execution resumes at address IVPR[32–47] || IVOR10[48–59] || 0b0000.

Table 4-20. System Call/Hypervisor System Call Interrupt Register Settings

Register Description

(G)SRR0 Set to the EA of the instruction after the sc instruction.

(G)SRR1 Set to the MSR contents at the time of the interrupt.

MSR  • ME, CE, and DE are unchanged.
 • GS, UCLE, and PMM are cleared if the interrupt is directed to the hypervisor state.
 • UCLE and PMM are cleared If the interrupt is directed to the guest state and the associated bits of MSRP are 0.
 • RI is not cleared.
 • All other defined MSR bits are cleared.

Table 4-21. Decrementer Interrupt Register Settings

Register Setting

SRR0 Set to the effective address of the next instruction to be executed.

SRR1 Set to the MSR contents at the time of the interrupt.

MSR  • ME, CE, and DE are unchanged.
 • RI is not cleared.
 • All other defined MSR bits are cleared.

TSR DIS is set. 
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NOTE
To avoid a subsequent redundant decrementer interrupt, software is 
responsible for clearing the decrementer exception status prior to 
re-enabling MSR[EE] or MSR[GS]. To clear the decrementer exception, the 
interrupt handling routine must clear TSR[DIS] by writing a word to TSR 
using mtspr with a 1 in any bit position that is to be cleared and 0 in all other 
positions. The write-data to the TSR is not direct data, but a mask: A 1 
causes the bit to be cleared, and a 0 has no effect.

4.9.12 Fixed-Interval Timer Interrupt—IVOR11

A fixed-interval timer interrupt occurs when no higher priority interrupt exists, a fixed-interval timer 
exception exists (TSR[FIS] = 1), and the interrupt is enabled (TCR[FIE] = 1 and (MSR[EE] or 
MSR[GS] = 1)). The “Timers” chapter in the EREF: A Programmer’s Reference Manual for Freescale 
Power Architecture® Processors describes the architecture definition of the fixed-interval timer. 

MSR[EE] also enables external input, processor doorbell, guest processor 
doorbell, decrementer interrupts and performance monitor interrupts.

The fixed-interval timer period is determined by TCR[FP], which, when concatenated with TCR[FPEXT], 
specifies one of 64 bit locations of the time base used to signal a fixed-interval timer exception on a 
transition from 0 to 1.

TCR[FPEXT || FP] = 000000 selects bit 0 of the Time Base (TBL[0] or TBU[32]).
TCR[FPEXT || FP] = 11_1111 selects TBL[63].

Registers are updated as shown in this table.

Instruction execution resumes at address IVPR[32–47] || IVOR11[48–59] || 0b0000.

NOTE
To avoid redundant fixed-interval timer interrupts, before reenabling 
MSR[EE], the interrupt handler must clear TSR[FIS] by writing a word to 
TSR with a 1 in any bit position to be cleared and 0 in all others. Data written 
to the TSR is a mask. Writing a 1 causes the bit to be cleared; writing a 0 has 
no effect.

Table 4-22. Fixed-Interval Timer Interrupt Register Settings

Register Setting

SRR0 Set to the EA of the next instruction to be executed.

SRR1 Set to the MSR contents at the time of the interrupt.

MSR  • ME, CE, and DE are unchanged.
 • RI is not cleared.
 • All other defined MSR bits are cleared.

TSR FIS is set. 
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4.9.13 Watchdog Timer Interrupt—IVOR12

A watchdog timer interrupt occurs when no higher priority interrupt exists, a watchdog timer exception 
exists (TSR[WIS] = 1), and the interrupt is enabled (TCR[WIE] = 1 and (MSR[CE] or MSR[GS] = 1)). 
The “Timers” chapter in the EREF: A Programmer’s Reference Manual for Freescale Power 
Architecture® Processors describes the architecture definition of the watchdog timer.

NOTE
MSR[CE] also enables the critical input, processor doorbell critical, and 
guest processor doorbell critical interrupts.

Registers are updated as shown in this table.

Instruction execution resumes at address IVPR[32–47] || IVOR12[48–59] || 0b0000.

NOTE
To avoid redundant watchdog timer interrupts, before reenabling MSR[CE], 
the interrupt handling routine must clear TSR[WIS] by writing a word to 
TSR with a 1 in any bit position to be cleared and 0 in all others. Data written 
to the TSR is a mask. Writing a 1 to this bit causes it to be cleared; writing 
a 0 has no effect.

4.9.14 Data TLB Error Interrupt—IVOR13/GIVOR13

A data TLB error interrupt occurs when no higher priority interrupt exists and the exception described in 
Table 4-24 is presented to the interrupt mechanism. The interrupt is directed to the hypervisor unless the 
following conditions exist determined as follows:

• The state in which the exception occurred is the guest state (MSR[GS] = 1).
• The interrupt is programmed to be directed to the guest state (EPCR[DTLBGS] = 1).

If all the above conditions are met, the DTLB is directed to the guest supervisor state.

Table 4-23. Watchdog Timer Interrupt Register Settings

Register Setting

CSRR0 Set to the EA of the next instruction to be executed.

CSRR1 Set to the MSR contents at the time of the interrupt.

MSR  • ME and DE are unchanged.
 • RI is not cleared.
 • All other defined MSR bits are cleared.

TSR WIS is set. 

Table 4-24. Data TLB Error Interrupt Exception Condition

Exception Description

Data TLB miss exception Virtual addresses associated with a data access do not match any valid TLB entry.
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When the interrupt occurs, the processor suppresses execution of the excepting instruction. Registers are 
updated as shown in this table.

Instruction execution resumes at address (G)IVPR[32–47] || (G)IVOR13[48–59] || 0b0000.

NOTE: Implementation
If a store conditional instruction produces an EA for which a normal store 
would cause a data TLB error interrupt, but the processor does not have the 
reservation from a load and reserve instruction, e500mc always takes the 
DTLB interrupt. 

4.9.15 Instruction TLB Error Interrupt—IVOR14/GIVOR14

An instruction TLB error interrupt occurs when no higher priority interrupt exists and the exception 
described in Table 4-26 is presented to the interrupt mechanism. The interrupt is directed to the hypervisor 
unless the following conditions exist: determined as follows:

• The state in which the exception occurred is the guest state (MSR[GS] = 1).
• The interrupt is programmed to be directed to the guest state (EPCR[ITLBGS] = 1).

If all the above conditions are met, the ITLB is directed to the guest supervisor state.

When an instruction TLB error interrupt occurs, the processor suppresses execution of the instruction 
causing the exception.

Table 4-25. Data TLB Error Interrupt Register Settings

Register Setting

(G)SRR0 Set to the EA of the instruction causing the data TLB error interrupt.

(G)SRR1 Set to the MSR contents at the time of the interrupt.

MSR  • ME, CE, and DE are unchanged.
 • GS, UCLE, and PMM are cleared if the interrupt is directed to the hypervisor state.
 • UCLE and PMM are cleared If the interrupt is directed to the guest state and the associated bits of MSRP are 0.
 • RI is not cleared.
 • All other defined MSR bits are cleared.

(G)DEAR Set to the EA of a byte that is both within the range of the bytes being accessed by the memory access or cache 
management instruction and within the page whose access caused the exception.

(G)ESR [ST] Set if the instruction causing the interrupt is a store, dcbi, dcbz, or dcbzl; otherwise cleared
[FP] Set if the instruction causing the interrupt is a floating-point load or store.
[EPID] Set if the instruction causing the interrupt is an external pid instruction.
All other defined ESR bits are cleared

MASn If EPCR[DMIUH] = 1, and a Instruction or Data TLB Error, ISI, or DSI is directed to the hypervisor, MAS registers 
are not changed.
See Table 6-6.

Table 4-26. Instruction TLB Error Interrupt Exception Condition

Exception Description

Instruction TLB miss exception Virtual addresses associated with an instruction fetch do not match any valid TLB entry.
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Registers are updated as shown in Table 4-27.

Instruction execution resumes at address (G)IVPR[32–47] || (G)IVOR14[48–59] || 0b0000.

4.9.16 Debug Interrupt—IVOR15

A debug interrupt occurs when no higher priority interrupt exists, a debug exception is indicated in the 
DBSR, and debug interrupts are enabled (DBCR0[IDM] = 1 and MSR[DE] = 1). A debug exception occurs 
when a debug event causes a corresponding DBSR bit to be set. 

Any time that a DBSR bit is allowed to be set while MSR[DE] = 0, a special DBSR bit, imprecise debug 
event (DBSR[IDE]), is also set. DBSR[IDE] indicates that the associated debug exception bit in DBSR 
was set while debug interrupts were disabled (MSR[DE] = 0). Debug interrupt handler software uses this 
bit to determine whether the address recorded in DSRR0 should be interpreted as the address associated 
with the instruction causing the exception or the address of the instruction after the one that set MSR[DE] 
and thereby enabled the delayed debug interrupt. See Section 4.9.16.2, “Delayed Debug Interrupts.” The 
“Debug Support,” chapter of the EREF: A Programmer’s Reference Manual for Freescale Power 
Architecture® Processors describes such architectural aspects of the debug interrupt. 

Table 4-27. Data TLB Error Interrupt Register Settings

Register Setting

(G)SRR0 Set to the EA of the instruction causing the instruction TLB error interrupt.

(G)SRR1 Set to the MSR contents at the time of the interrupt.

MSR  • ME, CE, and DE are unchanged.
 • GS, UCLE, and PMM are cleared if the interrupt is directed to the hypervisor state.
 • UCLE and PMM are cleared If the interrupt is directed to the guest state and the associated bits of MSRP are 0.
 • RI is not cleared.
 • All other defined MSR bits are cleared.

MASn If EPCR[DMIUH] = 1, and a Instruction or Data TLB Error, ISI, or DSI is directed to the hypervisor, MAS registers 
are not changed.
See Table 6-6.
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Registers are updated as shown in this table.

Note that on the e500mc, if DBCR0[IDM] is cleared, no debug events occur. That is, regardless of MSR, 
DBCR0, DBCR1, and DBCR2 settings, no debug events are logged in DBSR and no debug interrupts are 
taken. 

The e500mc complies with the architecture debug definition, except as follows:
• Data address compare is only supported for effective addresses.
• Instruction address compares IAC3 and IAC4 are not supported.
• Instruction address compare is only supported for effective addresses.
• Data value compare is not supported.

Instruction execution resumes at address IVPR[32–47] || IVOR15[48–59] || 0b0000.

4.9.16.1 Suppressing Debug Events in Hypervisor Mode

Synchronous debug events can be suppressed when executing in hypervisor state. This prevents debug 
events from being recorded (and subsequent debug interrupts from occurring) when executing in 
hypervisor state when the guest operating system is using the debug facility.

When EPCR[DUVD] = 1 and MSR[GS] = 0, all debug events, except the unconditional debug event, are 
suppressed and are not posted in the DBSR and the associated exceptions do not occur. 

Table 4-28. Debug Interrupt Register Settings

Register Description

DSRR0 For exceptions occurring while debug interrupts are enabled (DBCR0[IDM] and MSR[DE] = 1), DSRR0 is set as 
follows:
 • For instruction address compare (IAC registers), data address compare (DAC1R, DAC1W, DAC2R, and DAC2W), 

trap (TRAP), or branch taken (BRT) debug exceptions, set to the EA of the instruction causing the interrupt.
 • For interrupt taken (IRPT) debug exceptions (CIRPT for critical interrupts), set to the EA of the first instruction of the 

interrupt that caused the event.
 • For instruction complete (ICMP) debug exceptions, set to the EA of the instruction that would have executed after 

the one that caused the interrupt.
 • For return from interrupt (RET) debug exceptions, set to the EA of the instruction (rfi, rfci, or rfgi) that caused the 

interrupt.
 • For unconditional debug event (UDE) debug exceptions, set to the EA of the instruction that would have executed 

next had the interrupt not occurred.
For exceptions occurring while debug interrupts are disabled (DBCR0[IDM] = 0 or MSR[DE] = 0), the interrupt occurs 
at the next synchronizing event if DBCR0[IDM] and MSR[DE] are modified such that they are both set and if the DBSR 
still indicates status. When this occurs, DSRR0 holds the EA of the instruction that would have executed next, not the 
address of the instruction that modified DBCR0 or MSR and caused the interrupt.

DSRR1 Set to the MSR contents at the time of the interrupt.

MSR  • ME, is unchanged.RI is not cleared.
 • All other defined MSR bits are cleared.

DBSR Set to indicate type of debug event. See Section 2.17.6, “Debug Status Register (DBSR/DBSRWR).”
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4.9.16.2 Delayed Debug Interrupts

On the e500mc, delayed debug interrupts can be taken under two circumstances:
• A mtmsr instruction that sets MSR[DE] = 1 and any DBSR bit is set (including IDE, but excluding 

MRR). In this case, DSRR0 holds the address of the instruction following the mtmsr.
• Any return from interrupt class (rfi, rfgi, rfci, rfdi, rfmci) instruction sets MSR[DE] and any 

DBSR bit is a one (including IDE, but excluding MRR). In this case, DSRR0 holds the address of 
the target of the return from interrupt instruction.

The e500mc uses DBCR0[IDM] to enable/disable recognition of debug events, and it uses MSR[DE] to 
enable/disable taking debug interrupts when debug events are recognized. When a debug event is 
recognized, the event is logged in DBSR and, if debug interrupts are enabled, a debug interrupt also occurs.

A delayed debug interrupt is a delayed response to a previously logged event. Although DBCR0[IDM] is 
a condition for recognizing and logging a debug event, it is not a condition for taking a delayed debug 
interrupt. This is different from previous versions of e500, for which a delayed debug interrupt required 
IDM = 1.

4.9.17 Performance Monitor Interrupt—IVOR35

A performance monitor interrupt is implemented as defined by the architecture and described in the EREF: 
A Programmer’s Reference Manual for Freescale Power Architecture® Processors. Conditions that can 
be programmed to trigger an interrupt on the e500mc are described in Section 9.11, “Performance 
Monitor.” The interrupt is triggered by an enabled performance monitor condition or event. For a 
performance monitor interrupt to be signaled on an enabled condition or event, PMGC0[PMIE] must be 
set. A PMCn register overflow condition occurs with the following settings:

• PMLCan[CE] = 1; that is, for the given counter the overflow condition is enabled.
• PMCn[OV] = 1; that is, the given counter indicates an overflow.

Performance monitor counters can be frozen on a triggering enabled condition or event if 
PMGC0[FCECE] is set.

Although the interrupt condition could occur with MSR[EE] = 0, the interrupt cannot be taken until 
MSR[EE] or MSR[GS] = 1. If a counter overflows while PMGC0[FCECE] = 0, PMLCan[CE] = 1, and 
MSR[EE] = 0, the counter can wrap around to all zeros again without the interrupt being taken.

Registers are updated as shown in this table.

Instruction execution resumes at address IVPR[32–47] || IVOR35[48–59] || 0b0000.

Table 4-29. Performance Monitor Interrupt Register Settings

Register Setting

SRR0 Set to the EA of the next instruction to be executed.

SRR1 Set to the MSR contents at the time of the interrupt.

MSR  • ME, CE, and DE are unchanged.
 • RI is not cleared.
 • All other defined MSR bits are cleared.
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4.9.18 Doorbell Interrupts—IVOR36–IVOR39
Doorbell interrupts provide a mechanism for a processor to send messages to all devices within its 
coherence domain. These messages can generate interrupts on core devices, and can be filtered by the 
processors that receive the message to observe (cause an exception) or to ignore the message. 

Doorbell interrupts are useful for sending interrupts to a processor. Power ISA 2.06 defines how processors 
send messages and the actions that processors take on the receipt of a message. Actions taken by devices 
other than processors are not defined.

The instructions msgsnd and msgclr are provided for sending and messages to processors and clearing 
received and accepted messages. These instructions are hypervisor privileged. See Section 3.4.11.4, 
“Message Clear and Message Send Instructions.”

The e500mc filters, accepts, and handles the following message types defined in Table 4-30. These 
message types result in the exceptions and interrupts described later in this section.

The message type is specified in the message and is determined by the contents of register rB[32–36] used 
as the operand in the msgsnd instruction.

No other message type is accepted on the e500mc.

4.9.18.1 Doorbell Interrupt Definitions

The architecture defines the following doorbell interrupts, which are implemented on the e500mc:
• Processor doorbell (IVOR36)
• Processor doorbell critical (IVOR37)
• Guest processor doorbell (IVOR38). Note that guest processor doorbell uses GSRR0 and GSRR1 

to save state.
• Guest processor doorbell critical (IVOR39)
• Guest processor doorbell machine check (IVOR39)

Table 4-30. Message Types

Value Description

0 Doorbell interrupt (DBELL). Causes a processor doorbell exception on a processor that receives and accepts the 
message. 

1 Doorbell critical interrupt (DBELL_CRIT). Causes a processor doorbell critical exception on a processor that receives 
and accepts the message.

2 Guest processor doorbell interrupt (G_DBELL). Causes a guest processor doorbell exception on a processor that 
receives and accepts the message.

3 Guest processor doorbell critical interrupt (G_DBELL_CRIT). Causes a guest processor doorbell critical exception on a 
processor that receives and accepts the message.

4 Guest processor doorbell machine check interrupt (G_DBELL_MC). Causes a guest processor doorbell machine check 
exception on a processor that receives and accepts the message.
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4.9.18.1.1 Processor Doorbell Interrupt (IVOR36)

A processor doorbell interrupt occurs when no higher priority exception exists, a processor doorbell 
exception is present, and MSR[EE] or MSR[GS] = 1. Processor doorbell exceptions are generated when 
doorbell type messages are received and accepted by the processor. 

Registers are updated as shown in this table.

Instruction execution resumes at address IVPR[32–47] || IVOR36[48–59] || 0b0000.

4.9.18.1.2 Processor Doorbell Critical Interrupt (IVOR37)

A processor doorbell critical interrupt occurs when no higher priority exception exists, a processor 
doorbell critical exception is present, and MSR[CE] or MSR[GS] = 1. Processor critical doorbell 
exceptions are generated when doorbell critical type messages are received and accepted by the processor. 

Registers are updated as shown in this table.

Instruction execution resumes at address IVPR[32–47] || IVOR37[48–59] || 0b0000.

4.9.18.1.3 Guest Processor Doorbell Interrupts (IVOR38)

A guest processor doorbell interrupt occurs when no higher priority exception exists, a guest processor 
doorbell exception is present, and MSR[EE] and MSR[GS] = 1. Guest processor doorbell exceptions are 
generated when guest doorbell type messages are received and accepted by the processor. 

Registers are updated as shown in this table.

Table 4-31. Processor Doorbell Interrupt Register Settings

Register Setting

SRR0 Set to the EA of the next instruction to be executed.

SRR1 Set to the MSR contents at the time of the interrupt.

MSR  • ME, CE, and DE are unchanged.RI is not cleared.
 • All other defined MSR bits are cleared.

Table 4-32. Processor Doorbell Critical Interrupt Register Settings

Register Setting

CSRR0 Set to the EA of the next instruction to be executed.

CSRR1 Set to the MSR contents at the time of the interrupt.

MSR  • ME and DE are unchanged.RI is not cleared.
 • All other defined MSR bits are cleared.

Table 4-33. Guest Processor Doorbell Interrupt Register Settings

Register Setting

GSRR0 Set to the EA of the next instruction to be executed.
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Instruction execution resumes at address IVPR[32–47] || IVOR38[48–59] || 0b0000.

NOTE
Even though the guest processor doorbell interrupt is always directed to the 
hypervisor, it uses GSRR0 and GSRR1 to save state. This is because the 
interrupt is guaranteed to interrupt out of guest state when it is safe to update 
the guest save/restore registers. The hypervisor should use this mechanism 
to reflect interrupts to the guest state. In this scenario, GSRR0 and GSRR1 
is already set appropriately for the hypervisor.

4.9.18.1.4 Guest Processor Doorbell Critical Interrupts (IVOR39)

A guest processor doorbell critical interrupt occurs when no higher priority exception exists, a processor 
doorbell exception is present, and MSR[CE] and MSR[GS] = 1. Guest processor doorbell critical 
exceptions are generated when guest doorbell critical type messages are received and accepted by the 
processor. 

Registers are updated as shown in this table.

Instruction execution resumes at address IVPR[32–47] || IVOR39[48–59] || 0b0000.

NOTE
The guest processor doorbell critical and the guest processor doorbell 
machine check interrupts use the same IVOR to vector interrupts. Software 
can examine CSRR1 and its own data structures to determine which 
interrupt occurred.

4.9.18.1.5 Guest Processor Doorbell Machine Check Interrupts (IVOR39)

A guest processor doorbell machine check interrupt occurs when no higher priority exception exists, a 
guest processor doorbell machine check exception is present, and MSR[ME] and MSR[GS] = 1. Guest 

GSRR1 Set to the MSR contents at the time of the interrupt.

MSR  • ME, CE, and DE are unchanged.
 • RI is not cleared.
 • All other defined MSR bits are cleared.

Table 4-34. Guest Processor Doorbell Critical Interrupt Register Settings

Register Setting

CSRR0 Set to the EA of the next instruction to be executed.

CSRR1 Set to the MSR contents at the time of the interrupt.

MSR  • ME and DE are unchanged.RI is not cleared.
 • All other defined MSR bits are cleared.

Table 4-33. Guest Processor Doorbell Interrupt Register Settings (continued)

Register Setting
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processor doorbell machine check exceptions are generated when guest doorbell machine check type 
messages are received and accepted by the processor. 

Registers are updated as shown in this table.

Instruction execution resumes at address IVPR[32–47] || IVOR39[48–59] || 0b0000.

NOTE
The guest processor doorbell critical and the guest processor doorbell 
machine check interrupts use the same IVOR to vector interrupts. Software 
can examine CSRR1 and its own data structures to determine which 
interrupt occurred.

4.9.19 Hypervisor Privilege Interrupt—IVOR41

A hypervisor privilege exception occurs when the processor executes an instruction in the guest supervisor 
state and the operation is allowed only in the hypervisor state. A hypervisor privilege exception also occurs 
when an ehpriv instruction is executed, regardless of the state of the processor. See Section 3.4.5.7, 
“Hypervisor Privilege Instruction.”

Registers are updated as shown in this table.

Instruction execution resumes at address IVPR[32–47] || IVOR41[48–59] || 0b0000.

Table 4-35. Guest Processor Doorbell Machine Check Interrupt Register Settings

Register Setting

CSRR0 Set to the EA of the next instruction to be executed.

CSRR1 Set to the MSR contents at the time of the interrupt.

MSR  • ME and DE are unchanged.RI is not cleared.
 • All other defined MSR bits are cleared.

Table 4-36. Hypervisor Privilege Interrupt Register Settings

Register Setting

SRR0 Set to the EA of the instruction which caused the exception.

SRR1 Set to the MSR contents at the time of the interrupt.

MSR  • ME, CE, and DE are unchanged.RI is not cleared.
 • All other defined MSR bits are cleared.
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Hypervisor privilege interrupts are provided as a means for restricting the guest supervisor state from 
performing operations allowed only in the hypervisor state. Table 4-37 lists the resources that cause a 
hypervisor privilege exception when accessed in guest supervisor state.

Table 4-37. Hypervisor Privilege Exceptions from Guest Supervisor State

Resource
Hypervisor 
Privilege 
on Read

Hypervisor 
Privilege 
on Write

Hypervisor 
Privilege 

on Execute
Notes

Instructions

ehpriv — — Yes —

msgclr — — Yes —

msgsnd — — Yes —

rfci — — Yes —

rfdi — — Yes —

rfi — — No Guest supervisor state execution of rfi maps to rfgi.

rfmci — — Yes —

tlbilx — — Yes or No Hypervisor privilege occurs only when EPCR[DGTMI] = 1

tlbivax — — Yes —

tlbre — — Yes —

tlbsx — — Yes —

tlbsync — — Yes —

tlbwe — — Yes —

SPRs

CDCSR0 Yes Yes — —

BUCSR Yes Yes — —

CSRR0 Yes Yes — —

CSRR1 Yes Yes — —

DACn Yes Yes — —

DBCRn Yes Yes — —

DBSR Yes Yes — —

DBSRWR — Yes — Write only register.

DEAR No No — Guest supervisor state access to DEAR maps to GDEAR.

DEC Yes Yes — —

DECAR Yes Yes — e500mc allows reading of DECAR although Power ISA does not 
define it.

EPCR Yes Yes — New register, allows hypervisor to direct certain interrupts and mask 
hypervisor debug events.

EPR No No — Guest supervisor state access to EPR maps to GEPR.
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ESR No No — Guest supervisor state access to ESR maps to GESR.

GIVORn No Yes — Hypervisor privilege occurs on mtspr in guest state.

GIVPR No Yes — Occurs on mtspr in guest state.

GPIR No Yes — —

HID0 Yes Yes — —

IACn Yes Yes — —

IVORn Yes Yes — —

IVPR Yes Yes — —

L1CSRn Yes Yes — —

L2CAPTDATAHI Yes Yes — —

L2CAPTDATALO Yes Yes — —

L2CAPTECC Yes Yes — —

L2CSRn Yes Yes — —

L2ERRADDR Yes Yes — —

L2ERRATTR Yes Yes — —

L2ERRCTL Yes Yes — —

L2ERRDET Yes Yes — —

L2ERRDIS Yes Yes — —

L2ERREADDR Yes Yes — —

L2ERRINJCTL Yes Yes — —

L2ERRINJHI Yes Yes — —

L2ERRINJLO Yes Yes — —

L2ERRINTEN Yes Yes — —

LPIDR Yes Yes — —

MAS5 Yes Yes — —

MAS8 Yes Yes — —

MCAR Yes Yes — —

MCARU Yes Yes — —

MCSR Yes Yes — —

MCSRRn Yes Yes — —

MMUCFG Yes Yes — —

Table 4-37. Hypervisor Privilege Exceptions from Guest Supervisor State (continued)

Resource
Hypervisor 
Privilege 
on Read

Hypervisor 
Privilege 
on Write

Hypervisor 
Privilege 

on Execute
Notes
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4.10 Guidelines for System Software
When software takes an interrupt, it generally wants to save the save/restore registers in case another 
exception occurs while processing the current interrupt. In general software must ensure that no other 
interrupt occurs before the save/restore registers are appropriately saved to memory (usually the stack). 
Hardware automatically disables asynchronous interrupt enables associated with the save/restore register 
pair when the new MSR is established taking the interrupt (for example, on taking a interrupt that uses 

MMUCSR0 Yes Yes — —

MSRP Yes Yes — —

NSPC Yes Yes — —

NSPD Yes Yes — —

PIR No Yes — Guest supervisor state access to PIR maps to GPIR for reads.

SPRG0–SPRG3 No No — Guest supervisor state access to SPRG0–SPRG3 maps to 
GSPRG0–GSPRG3.

SPRG8 Yes Yes — —

SRR0 No No — Guest supervisor state access maps to GSRR0

SRR1 No No — Guest supervisor state access maps to GSRR1

TBL(R) No — — Read only register

TBL(W) Yes Yes —

TBU(R) No — — Read only register

TBU(W) Yes Yes —

TCR Yes Yes — —

TLB0CFG Yes — — Read only register

TLB1CFG Yes — — Read only register

TSR Yes Yes — —

USPRG1-31 No No — Guest user state access to USPRGn maps to GSPRGn.

PMRs

PMCn Yes/no2 Yes/no2 — —

PMLCAn Yes/no2 Yes/no2 — —

PMLCBn Yes/no2 Yes/no2 — —

PMGC0 Yes/no2 Yes/no2 — —

1 USPRG0 is a separate physical register from SPRG0.
2 Access to PMRs is based on the setting of MSRP[PMMP]. If MSRP[PMMP] = 0 reads and writes are allowed to PMRs. If 

MSRP[PMMP] = 1 reads and writes produce a hypervisor privilege exception is supervisor mode and are NOPed in user mode.

Table 4-37. Hypervisor Privilege Exceptions from Guest Supervisor State (continued)

Resource
Hypervisor 
Privilege 
on Read

Hypervisor 
Privilege 
on Write

Hypervisor 
Privilege 

on Execute
Notes
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SRR0/1, MSR[EE] is set to 0 preventing external input, decrementer, fixed interval timer, and processor 
doorbell interrupts from occurring). Software must ensure that synchronous exceptions do not occur prior 
to saving the save/restore registers.

This table lists actions system software must avoid before saving save/restore register contents.

4.11 Interrupt Priorities
Except for the occurrence of multiple synchronous imprecise interrupts, all synchronous (precise and 
imprecise) interrupts are reported in program order, as required by the sequential execution model. Upon 
a synchronizing event, all previously executed instructions are required to report any synchronous 
imprecise interrupt-generating exceptions, and the interrupt is then generated with all of those exception 
types reported cumulatively in the (G)ESR and in any status registers associated with the particular 
exception.

For any single instruction attempting to cause multiple exceptions for which the corresponding 
synchronous interrupt types are enabled, this section defines the priority order by which the instruction is 
permitted to cause a single enabled exception, thus generating a particular synchronous interrupt. Note that 
it is this exception priority mechanism, along with the requirement that synchronous interrupts be 
generated in program order, that guarantees that at any given time there exists for consideration only one 
of the synchronous interrupt types. The exception priority mechanism also prevents certain debug 
exceptions from existing in combination with certain other synchronous interrupt-generating exceptions.

This section does not define the permitted setting of multiple exceptions for which the corresponding 
interrupt types are disabled. The generation of exceptions for which the corresponding interrupt types are 
disabled has no effect on the generation of other exceptions for which the corresponding interrupt types 
are enabled. Conversely, if a particular exception for which the corresponding interrupt type is enabled is 
shown in the following sections to be of a higher priority than another exception, it prevents the setting of 

Table 4-38. Operations to Avoid Before Save/Restore Register are Saved to Memory

Operation Reason

Reenabling MSR[EE] , MSR[CE], MSR[DE], or 
MSR[ME] in interrupt handlers

Prevents any asynchronous interrupts, as well as (in the case of MSR[DE]) 
any debug interrupts, including synchronous and asynchronous types

Branching (or sequential execution) to addresses 
not mapped by the TLB or mapped without SX set.

Prevents instruction storage and instruction TLB error interrupts

Load, store, or cache management instructions to 
addresses not mapped or without permissions.

Prevents data storage and data TLB error interrupts

Execution of System Call (sc), trap (tw, twi, td, tdi), 
or ehpriv instructions 

Prevents system call and trap exception-type program interrupts. Note that 
ehpriv instructions can be executed in guest supervisor state.

Re-enabling of MSR[PR] Prevents privileged instruction exception-type program interrupts. 
Alternatively, software could reenable MSR[PR] but avoid executing any 
privileged instructions.

Execution of any illegal instructions Prevents illegal instruction exception-type program interrupts

Execution of any instruction that could cause an 
alignment interrupt

Prevents alignment interrupts, as described in Section 4.9.7, “Alignment 
Interrupt—IVOR5.” 
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that other exception, independent of whether that other exception’s corresponding interrupt type is enabled 
or disabled.

Except as specifically noted, only one of the exception types listed for a given instruction type is permitted 
to be generated at any given time.

NOTE
Mutually exclusive exception types otherwise with the same priority are 
listed in the order suggested by the sequential execution model.

4.12 Exception Priorities 
The architecture defines exception priorities for all exceptions including those defined in optional 
functionality. Exception types are defined to be either synchronous, in which case the exception occurs as 
a direct result of an instruction in execution, or asynchronous, which occurs based on an event external to 
the execution of a particular instruction or an instruction removes a gating condition to a pending 
exception. Exceptions are exclusively either synchronous or asynchronous.

Because asynchronous exceptions may temporally be sampled either before or after an instruction is 
completed, an implementation can order asynchronous exceptions among only asynchronous exceptions 
and can order synchronous exceptions among only synchronous exceptions. The distinction is important 
because certain synchronous exceptions require post-completion actions. These exceptions (for example, 
system call and debug instruction complete) cannot be separated from the completion of the instruction. 
therefore, asynchronous exceptions cannot be sampled during the completion and post-completion 
synchronous exceptions for a given instruction.

Table 4-39 and Table 4-40 describes the relative priority of each exception type. Exception priority is listed 
from highest to lowest and the lower the numerical relative priorities shown implies a higher priority. In 
many cases, it is impossible for certain exceptions (such as, the trap and illegal program exceptions) to 
occur at the same time. Such exceptions are grouped together at the same relative priority.

Table 4-39.  Asynchronous Exception Priorities

Relative
Priority

Exception
Interrupt

Level1
Interrupt
Nature

Pre or Post
Completion2 Comments

0 Machine Check Machine Check Asynch N/A Asynchronous exceptions may come 
from the processor or from an external 
source.

1 Guest Processor 
Doorbell Machine 

Check

Critical Asynch N/A —
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2 Debug- UDE Debug Asynch N/A Debug-UDE is generally used for an 
externally generated high priority 
attention signal.

Debug- IDE Debug Asynch N/A Imprecise debug event usually taken 
after MSRDE goes from 0 to 1 via rfdi or 
mtmsr.

Debug - Interrupt 
Taken

Debug Asynch N/A Debug interrupt taken after original 
interrupt has changed NIA (Next 
Instruction Address) and MSR.

Debug - Critical 
Interrupt Taken

Debug Asynch N/A Debug interrupt taken after original 
critical interrupt has changed NIA and 
MSR.

3 Critical Input Critical Asynch N/A —

4 Watchdog Critical Asynch N/A —

5 Processor Doorbell 
Critical

Critical Asynch N/A —

6 Guest Processor 
Doorbell Critical

Critical Asynch N/A —

7 External Input Base Asynch N/A —

13 Program - Delayed 
Floating Point Enabled

Base Asynch N/A Delayed Floating Point Enabled 
exceptions occur when FPCSR[FEX] = 1 
and MSR[FE0,FE1] change from 0b00 to 
a non-zero value.

22 Fixed Interval Timer Base Asynch N/A —

23 Decrementer Base Asynch N/A —

24 Processor Doorbell Base Asynch N/A —

25 Guest Processor 
Doorbell

Base Asynch N/A —

26 Performance Monitor Base Asynch N/A —

1 The interrupt level defines which set of save/restore registers are used when the interrupt is taken. They are: Base: SRR0/1, 
Critical: CSRR0/1, Debug: DSRR0/1, and Machine Check: MCSRR0/1.

2 Pre or Post Completion refers to whether the exception occurs before an instruction completes (pre) and the corresponding 
interrupt points to the instruction causing the exception, or if the instruction completes (post) and the corresponding interrupt 
points to the next instruction to be executed.

Table 4-39.  Asynchronous Exception Priorities (continued)

Relative
Priority

Exception
Interrupt

Level1
Interrupt
Nature

Pre or Post
Completion2 Comments
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Table 4-40. Synchronous Exception Priorities

Relative
Priority

Exception
Interrupt

Level1
Interrupt
Nature

Pre or Post
Completion2 Comments

0 Error Report Machine Check Synch pre —

8 Debug - Instruction 
Address Compare

Debug Synch pre —

9 ITLB Base Synch pre —

ISI Base Synch pre —

10 Program - Privileged 
Instruction

Base Synch pre —

Embedded Hypervisor 
Privilege

Base Synch pre —

11 FP Unavailable Base Synch pre —

12 Debug - Trap Debug Synch pre —

13 Program - Illegal 
Instruction

Base Synch pre —

Program - 
Unimplemented 

Operation

Base Synch pre —

Program - Trap Base Synch pre —

Program - Floating 
Point Enabled

Base Synch pre —

15 DTLB Base Synch pre —

DSI Base Synch pre A DSI Virtualization Fault always takes 
priority over all other causes of DSI.

16 Alignment Base Synch pre —

17 System Call Base Synch post System Call Interrupt has SRR0 pointing 
to instruction after sc (that is, post 
completion).

Embedded Hypervisor 
System Call

Base Synch post Embedded Hypervisor System Call 
Interrupt has SRR0 pointing to instruction 
after sc (that is, post completion).

18 Debug - Return from 
Interrupt

Debug Synch pre —

Debug - Return from 
Critical Interrupt

Debug Synch pre —

Debug - Branch Taken Debug Synch pre —

19 Debug - Data Address 
Compare

Debug Synch pre —

21 Debug - Instruction 
Complete

Debug Synch post Debug - Instruction Complete Interrupt has 
DSRR0 pointing to next instruction (that is, 
post completion).
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4.13 e500mc Interrupt Latency
Interrupt latency of the e500mc is 10 cycles or less unless a guarded load or a cache-inhibited stwcx. 
instruction is in the last completion queue entry (CQ0).

1 The interrupt level defines which set of save/restore registers are used when the interrupt is taken. They are: Base: SRR0/1, 
Critical: CSRR0/1, Debug: DSRR0/1, and Machine Check: MCSRR0/1.

2 Pre or Post Completion refers to whether the exception occurs before an instruction completes (pre) and the corresponding 
interrupt points to the instruction causing the exception, or if the instruction completes (post) and the corresponding interrupt 
points to the next instruction to be executed.
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Chapter 5  
Core Caches and Memory Subsystem
This chapter describes the caches and cache structures that are local to the e500mc as well as the e500mc’s 
memory subsystem (MSS), which encompasses the caches, the Load/Store Unit (LSU), the Fetch Unit, and 
the CoreNet interface (commonly called a Bus Interface Unit, or BIU).

The e500mc core contains separate 32-KB, eight-way set associative level 1 (L1) instruction and data 
caches to provide the execution units and registers rapid access to instructions and data. It also incorporates 
a 128-KB unified, eight-way set associative backside L2 cache and provides support for a platform cache 
implemented by the integrated device. 

The LSU manages how data passes between the LSU and the memory resources, both with respect to how 
data is loaded from system memory into the on-chip caches and to how data used by those instructions is 
loaded and stored in the caches and system memory.

The Fetch Unit manages how instructions are passed between the memory resources and the caches and 
into the instruction stream.

The BIU is the interface from the core and its caches to the rest of the integrated device utilizing the 
CoreNet architecture for access to memory and devices that support transactions to addresses in real 
storage space.

NOTE
In this chapter, the term ‘multiprocessor’ is used in the context of 
maintaining cache coherency. These multiprocessor devices could be 
processors or other devices that can access system memory, maintain their 
own caches, and function as bus masters requiring cache coherency.

The terms ‘cache line’ and ‘cache block’ are used interchangeably. In 
particular, cache control instructions include the term ‘cache block’ in their 
names. Note that the size of a cache block is determined by the 
implementation. and that on the e500mc, a cache block, or line, is 16 words.

5.1 Overview
This section lists features of the LSU, the Fetch Unit, the L1 cache, the L2 cache and CoreNet interface. 

The LSU has the following features:
• System memory accesses critical quad-word first. For data accesses, the LSU receives the critical 

quad word as soon as it is available; it does not wait for all 64 bytes. That data is forwarded to the 
requesting unit before being written to the cache, minimizing stalls due to cache fill latency. 
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• Store queueing. Stores cannot execute speculatively and remain queued until completion logic 
indicates that the store is to be committed. When the L1 cache is accessed, stores are deallocated 
from the queue (regardless of whether the cache is updated). If the address is caching-inhibited, the 
store passes from the queue to the BIU and into the memory subsystem.

• L1 load miss queueing. On a load miss, the LSU allocates buffers and then queues a bus transaction 
to read the line. The LSU processes load hits and load misses until one of the following conditions 
occurs:
— There are more than nine outstanding load misses.
— The LSU tries to perform a load miss and there is no place to buffer a new cache line.

• Store miss merging. When a caching-allowed store misses in the data cache, the store data is 
written to a cache line–wide buffer. The bytes in the cache line not specified by the store are 
allocated when the cache line is eventually fetched from memory. When all 64 bytes are valid, the 
cache line is reloaded into the data cache. This behavior is known as store miss merging.
If a subsequent store miss hits in the buffered data, the new data is buffered along with the original 
store. Any number of subsequent stores intended for that cache line can be buffered before the 
corresponding data cache line is allocated. 

• Data line fill buffering extends the cache for loads and caching-allowed stores. Accesses to pages 
marked as cacheable may keep copies of data. Therefore, cache management instructions, such as 
dcbf, are required even if the L1 data cache is disabled. 

The L1 cache implementation has the following features:
• Separate 32-KB instruction and data caches (Harvard architecture)
• Eight-way set associative, nonblocking caches
• Physically addressed cache directories. The physical (real) address tag is stored in the cache 

directory. 
• 2-cycle access time provides 3-cycle read latency for instruction and data caches accesses; 

pipelined accesses provide single-cycle throughput from caches. For details about latency issues, 
see Chapter 10, “Execution Timing.”

• Instruction and data caches have 64-byte cache blocks. A cache block is the block of memory that 
a coherency state describes, also referred to as a cache line.

• Four-state modified/exclusive/shared/invalid (MESI) protocol supported for the data cache. See 
Section 5.5.1, “Data Cache Coherency Model.”

• Both L1 caches support error detection (enabled through L1CSR0 and L1CSR1 bits), as follows:
— Instruction cache: 1 parity bit per word of instruction, 1 bit of parity per tag
— Data cache: 1 parity bit per byte of data, 1 bit of parity per tag

See Section 5.4.4, “L1 Cache Error Detection and Correction.”
• Both caches also support error injection, which provides a way to test error recovery software by 

intentionally injecting errors into the instruction and data caches. See Section 5.4.5, “Cache Error 
Injection.”

• The L1 instruction cache supports automatic error correction by invalidation when an access 
detects a parity error. The subsequent reporting and taking of a machine check or error report 
interrupt causes the instruction to be refetched after invalidation thus correcting the error.
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• The L1 data cache supports automatic error correction by invalidation when operating in write 
shadow mode. In write shadow mode, all writes to the L1 data cache are written through to the L2 
cache. When an access detects an uncorrectable error, the cache is invalidated, and the subsequent 
reporting and taking of a machine check or error report interrupt causes the instruction to be 
re-executed after invalidation thus correcting the error. See Section 5.4.2, “Write Shadow Mode”.

• Each cache can be independently invalidated through cache flash invalidate (CFI) control bits 
located in L1CSR1 and L1CSR0. See Section 5.6.3, “L1 Cache Flash Invalidation.”

• Pseudo–least-recently-used (PLRU) replacement algorithm. See Section 5.8.2.1, “PLRU 
Replacement.”

• Support for individual line locking. See Section 5.6.4, “Instruction and Data Cache Line 
Locking/Unlocking.”

• Support for cache stashing to the L1 data cache from other devices in the integrated device.
• Both instruction and data cache lines are filled in a single-cycle, 64 -byte write from line fill buffers 

as described in Section 5.3.1, “Load/Store Unit (LSU).” Cache line fills write all 64 bytes at once, 
and therefore do not occur until all data has been buffered from the CoreNet interface.

The L2 write-back, backside cache has the following features:
• Dynamic Harvard architecture, merged instruction and data cache
• 128-KB array organized as 256 eight-way sets of 64-byte cache lines
• 36-bit physical address
• Exclusive, modified, shared, invalid, incoherent, locked, and stale states
• 8-way set associativity with a streaming, 7-bit, pseudo-LRU (PLRU) algorithm with aging 

replacement
• Supports data- and instruction-only and way partitioned cache operation. See Section 5.9.3, “L2 

Configuration and Partitioning.”
• 64-byte (16-word) cache-line, coherency-granule size
• Support for individual line locking. See Section 5.9.2, “L2 Line Locking.”
• The L2 is a victim cache for data lines and generally inclusive for instruction lines. The L2 contains 

only those cache entries that have been cast out from the L1 data cache (the L2 is not reloaded when 
the data is reloaded in the L1 data cache). The L1 and L2 caches may or may not have valid copies 
of the same line at the same time.

• The L2 is reloaded whenever the L1 instruction cache is reloaded, but L1 instruction cache entries 
remain even if they are evicted from the L2 (there is no back invalidation).

• An instruction fetch does not cause eviction of modified lines if they hit in L2. Both the instruction 
cache and L2 may have a copy of the line.

• For a transaction with L2 cache, CT = 2, a hit in L1 remains in the L1 unless the transaction is 
dcbtls or dcbtstls, which cause the line to be cast out of the L1 cache.See section

• Locked L2 cache lines are not reloaded with a lock in L1 or vice versa.
• L2 cache lookup happens only if L1 cache lookup misses in L1 for the load- or store-type 

instructions. Snoop starts in L1 and L2 caches in parallel.
• Two-cycle, nonpipelined data array access
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• Latency of 9 cycles after L1 access with one access every two cycles
• Configurable ECC or parity protection for data array
• Parity protection for tag array
• Support for cache stashing to the L2 data cache from other devices in the integrated device.
• ABIST support

The BIU is the core’s interface manager to CoreNet and the rest of the system. The BIU sends and receives 
transactions from CoreNet and routes them to the appropriate other units in the core that require them.

The BIU is connected to the CoreNet interface which provides the interprocessor and inter-device 
connection for address based transactions. CoreNet itself is not described in this document, but has the 
following features:

• The CoreNet interface fabric provides interconnections among the cores, peripheral devices, and 
system memory in a multicore implementation. Along with handling basic storage accesses, it 
manages cache coherency and consistency. CoreNet interfaces run synchronously or 
asynchronously to the processor core frequency. When asynchronous, it allows arbitrary frequency 
ratios between the core the rest of the system. The synchronous or asynchronous nature of the 
CoreNet interface is a function of the design of the integrated device.

• Power Architecture® ordering semantics
• Power Architecture coherency support
• Supports intervention (where a cache line is supplied directly from another cache without having 

to first be written to memory)
• Non-retry based protocol
• Supports stashing to core caches from certain devices

5.2 The Cache Programming Model 
This section describes aspects of the cache programming model architecture in the context of the 
implementation of architecture-defined resources implemented on the e500mc. 

5.2.1 Cache Identifiers

Instructions having a CT (cache target) or TH field for specifying a specific cache hierarchy such as dcbt, 
dcbtst, dcbtls, dcbtstls, dcblc, icbtls, icblc, and icbt use the values described in Section 3.4.10.1.1, “CT 
Field Values,” for cache targets.

5.2.2 Cache Stashing

Caches may be targets of cache stashing, an operation initiated by a device, specifying a hint that the 
addresses should be prefetched into a target cache specified by a cache identifier set by system software 
or predefined by hardware. For the L1 data cache, the identifier is defined in L1CSR2[DCSTASHID]. For 
the backside L2 cache, the identifier is defined in L2CSR1[L2STASHID]. A cache identifier value of 0 
indicates that the cache does not accept or perform stashing.
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Cache identifiers (stash IDs) within the entire system should be set to unique values. That is, cache IDs 
should not be set such that more than one cache in the system has the same ID (other than 0, which disables 
stashing for that cache). Doing so is considered a programming error and may cause a core or the system 
to hang.

Like a prefetch or “touch” operation, stashing to a cache is a performance hint. The stash operation 
initiated by a device can improve performance if the stashed data is prefetched into the targeted cache prior 
to when the data is accessed. This avoids the latency of bringing the data into the cache at the time it is 
needed by the processor. However, since stash operations are hints, depending on conditions within the 
memory hierarchy and the core, stashes may not always be performed when requested. An integrated 
device that initiate stashing operations to the core can optimize its usage of stashing if it is configured to 
understand the amount of buffering dedicated to incoming stashing operations.

The e500mc reserves two Data Line Fill Buffers (holding a cacheline of storage each) to perform incoming 
stashing operations. If both the L1 and L2 cache have stashing disabled, the Data Line Fill Buffers reserved 
for stashing are freed to be used for other core linefill operations. See the reference manual for the 
integrated device for information on configuring devices that perform stashes to optimize use of stashing 
based on the core's resources reserved for handling stashes. 

5.3 Block Diagram
The instruction and data caches are integrated with the LSU, the instruction unit, and the bus interface unit 
in the memory subsystem is shown in Figure 5-1. 

Figure 5-1. Cache/Core Interface Unit Integration

The following sections briefly describe the LSU, the instruction unit, the BIU, and the CoreNet interface. 
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5.3.1 Load/Store Unit (LSU)

The LSU executes integer and floating-point load instructions and manages transactions between the 
caches and the register files (GPRs and FPRs). It provides the logic required to calculate effective 
addresses, handles data alignment, and interfaces with the BIU. Write operations to the data cache can be 
performed on a byte, halfword, word, or doubleword basis. The data cache is provided with a 64-byte 
interface (the width of a cache block).

This section provides an overview of how the LSU coordinates traffic in the instruction pipeline with load 
and store traffic with memory, ensuring that the core maintains a coherent and consistent view of data. See 
Section 5.5.5, “Load/Store Operation Ordering,” for information on architectural coherency implications 
of load/store operations and the LSU. Section 10.4.3, “Load/Store Execution,” describes other aspects of 
the LSU and instruction scheduling.

5.3.1.1 Caching-Allowed Loads and the LSU

When free of data dependencies, cached loads execute in the LSU in a speculative manner with a 
maximum throughput of one instruction per cycle and a total 3-cycle latency for integer loads. Data 
returned from the cache on a load is held in a rename buffer until the completion logic commits the value 
to the processor state. Cache inhibited loads that are not guarded also execute in the LSU in a speculative 
manner, but the latency is longer and is based on the latency through the BIU, CoreNet, and the target 
device.

5.3.1.2 Data Line Fill Buffer (DLFB)

The data line fill buffer (DLFB) is located in the LSU; there are five entries in the DLFB. DLFB entries 
are used for loads, caching-allowed stores, and cache stashes targeted to the processor. If cache stashing is 
enabled, two of the five entries are reserved for handling incoming cache stashes. The DLFB acts as a 
mini-cache. Whenever pages marked as cacheable are accessed, the DLFB (and possibly other internal 
structures) may keep copies of the data. therefore, cache management instructions, such as dcbf, may be 
required even if the L1 data cache is disabled. Unlike the L1 and L2 caches, if the target of a cache inhibited 
load is valid in a DLFB, that load returns the data from the DLFB and is not sent to the BIU to be accessed 
from memory.

DLFBs are updated with data from cacheable stores and the rest of the cache line is obtained from reads 
of that line from the L2 cache or if not in the L2 cache from CoreNet through the BIU. The DLFB merges 
the stores (which represent changes to the line) and the non-stored line. When a DLFB acquires a full line 
of data, the data is written to the L1 data cache. 

5.3.2 Instruction Unit

The instruction unit (also called the fetch unit) interfaces with the L1 instruction cache and the BIU. As 
with the data caches, instructions that miss in the instruction cache are buffered as they are fetched into 
instruction line fill buffers (ILFBs). After an entire line is available, it is written into the instruction cache. 
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5.3.3 Bus Interface Unit (BIU)

The bus interface unit handles all ordering and bus protocol and is the interface between the core and the 
external memory and caches.

The bus interface unit performs transactions through the CoreNet interface by transferring the critical quad 
word first (16 bytes). The CoreNet interface also captures snoop addresses for the L1 data cache, the L2 
data cache, the DLFBs, the MMU (tlbivax), the L1 instruction cache (icbi), and the memory reservation 
(load and store conditional instructions) operations.

5.4 L1 Cache Structure
The L1 instruction and data caches are each organized as 64 sets of eight blocks with 64 bytes in each cache 
line. The following subsections describe the differences in the organization of the instruction and data 
caches.

5.4.1 L1 Data Cache Dimensions 

Figure 5-2 shows the dimensions of the L1 data cache. 

Figure 5-2. L1 Data Cache Organization

Each block (line) consists of 64 bytes of data, 3 status bits (M, V, and S), 1 lock bit, 1 cast-out bit and an 
address tag. For the L1 data cache, a cache block is the 64-byte cache line. Also, although it is not shown 
in Figure 5-2, the data cache has 1 parity bit/byte and 1 parity bit/tag.

Each cache block contains 16 contiguous words from memory that are loaded from an 16-word boundary 
(that is, physical addresses bits 30–35 are zero). Cache blocks are also aligned on page boundaries. 
Physical address bits PA[24:29] provide the index to select a cache set. The tags consist of physical address 
bits PA[0:23]. Address translation occurs in parallel with set selection (from PA[24:29]). Lower address 
bits PA[30:35] locate a byte within the selected block.
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The data cache can be accessed internally while a fill for a miss is pending (allowing hits under misses) 
and the data from a hit can be used as soon as it is available. The LSU forwards the critical doubleword to 
any pending load misses and allows them to finish. Later, when all the data for the miss has arrived, the 
entire cache line is reloaded. In addition, subsequent misses can also be sent to the memory subsystem 
before the original miss is serviced (allowing misses under misses). Up to nine misses can be pending, 
however those nine misses can only occur to up to five different cache lines. 

A cast-out bit indicates whether a cache line chosen for eviction should be cast out to the L2 cache. In 
general a line is cast out of the L1 cache to the L2 cache when it is victimized for replacement.

5.4.2 Write Shadow Mode

Caching can be configured, by setting L1CSR2[DCWS] = 1 (write shadow mode), such that all modified 
data in the L1 cache is written through into the L2 cache. If L1CSR2[DCWS] = 0, the L2 cache is generally 
modified only when an L1 cache line is evicted. 

Using write shadow mode ensures that if data or parity tags are corrupted in the L1 cache, it can be 
invalidated and repopulated with the valid data from the rest of the memory hierarchy.

Only certain configurations of cache operation are supported when using write shadow mode. Invalid 
configurations are not guaranteed to preserve coherency for store operations performed by the processor. 
Table 5-1 shows valid configurations for write shadow mode (when L1CSR2[DCWS] = 1).

5.4.3 L1 Instruction Cache Organization

The L1 instruction cache is organized as shown in Figure 5-3. 

Table 5-1. Valid Write Shadow Mode Configurations (when L1CSR2[DCWS] = 1)

L1 Data Cache 
Enabled

(L1CSR0[CE])

L2 Cache 
Enabled

(L2CSR0[L2E])

L2 Allocation Policy
L2CSR0[L2IO,L2DO]

Supported
Configuration?

Notes

Yes Yes L2IO=0,L2DO=0 Yes Normal configuration for write 
shadow mode.

Yes Yes L2IO=1,L2DO=1 Yes Although the L2IO=1, this special 
case is supported even though 
data allocations are not performed 
in the L2 cache.

No X X No L1 data cache must always be 
enabled when using write shadow 
mode.

Yes No X No L2 data cache must always be 
enabled when using write shadow 
mode.

Yes Yes L2IO=1,L2DO=0 No L2 data cache must be able to 
allocate and hit on data accesses.
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Figure 5-3. L1 Instruction Cache Organization

Each block consists of 16 instructions, 1 status bit (V), 1 lock bit, and an address tag. Also, although it is 
not shown in Figure 5-3, the instruction cache has 1 parity bit/word (8 parity bits for each line) and one 
parity bit/tag.

As with the data cache, each block is loaded from a 16-word boundary (that is, bits 30–35 of the physical 
addresses are zero). Instruction cache blocks are also aligned on page boundaries. Also, PA[24:29] 
provides the index to select a set and PA[30:33] selects an instruction within a block. The tags consist of 
physical address bits PA[0:23]. Address translation occurs in parallel with set selection.

The instruction cache can be accessed internally while a fill for a miss is pending (allowing hits under 
misses). Although the data cannot be used, the hit information stops a subsequent miss from requesting a 
fill. In addition, subsequent misses can also be sent to the memory subsystem before the original miss is 
serviced (allowing misses under misses). When a miss is actually updating the cache, subsequent accesses 
are blocked for 1 cycle. (But up to four instructions being loaded into the instruction cache can be 
forwarded simultaneously to the instruction unit.)

The instruction cache does not implement a full coherence protocol; a single status bit indicates whether 
a cache block is valid. Each line has a single bit for locking. Victimized lines from the L1 instruction cache 
are not cast-out to the L2 cache.

64 Sets

Way 5

Way 6

Way 7

Way 4 Address Tag 4

Address Tag 5

Address Tag 6

Address Tag 7

Way 1

Way 2

Way 3

Way 0 Address Tag 0

Address Tag 1

Address Tag 2

Address Tag 3

Status

Status

Status

Status

Status

Status

Status

Status

Instructions [0–15]

Instructions [0–15]

Instructions [0–15]

Instructions [0–15]

Instructions [0–15]

Instructions [0–15]

Instructions [0–15]

Instructions [0–15]

16 Instructions /Block



Core Caches and Memory Subsystem

e500mc Core Reference Manual, Rev. 3

Freescale Semiconductor 5-10
 

5.4.4 L1 Cache Error Detection and Correction

The L1 instruction cache is protected by parity on both tags and data. Parity information is written into the 
L1 instruction cache when a line fill occurs (anytime new instructions are written into the cache from 
possibly a fetch or a cache locking operation.)

The L1 data cache is protected by parity on both tags and data. Parity information is written into the L1 
data cache when a line fill occurs (anytime new data is written into the cache.)

L1 cache error detection occurs whenever:
• A load instruction hits in the L1 data cache
• An instruction fetch hits in the L1 instruction cache
• A line is cast out of the L1 data cache

Error detection is performed on the L1 instruction cache using parity for tags and parity for data. The 
e500mc implements a cache tag parity bit per entry/set. Cache tag parity is checked for all cache 
transactions.

L1 cache error checking is disabled by default, and can be enabled by setting L1CSR0[CECE] and 
L1CSR1[ICECE].

If an instruction cache data or tag parity error is detected, the following occurs: 
• The instruction cache is automatically flash invalidated. Note L1CSR1[ICEA] = 0 and 

L1CSR1[ICEDT] = 0 configure the behavior for e500mc. These are the only error actions and 
detection types supported for the L1 instruction cache.

• a machine check interrupt (or an error report machine check interrupt) occurs (as described in 
Section 4.9.3, “Machine Check Interrupt—IVOR1”).

If a data cache data or tag parity error is detected, the following occurs: 
• If write shadow mode is configured, the data cache is automatically flash invalidated. See 

Section 5.4.2, “Write Shadow Mode.”
• A machine check interrupt (or an error report machine check interrupt) occurs (as described in 

Section 4.9.3, “Machine Check Interrupt—IVOR1”).

5.4.5 Cache Error Injection

Cache error injection provides a way to test error recovery software by intentionally injecting errors into 
the instruction and data caches, as follows:

• If L1CSR1[ICEI] is set, any instruction cache line fill has all of its parity bits inverted in the 
instruction cache. 

• If L1CSR0[CEI] is set, any data line fill has errors injected as follows based on L1CSR0[CEIT] as 
follows:
— 0b00: A single-bit error is injected into all the bytes of the cache line which are line filled or 

which are written as the result of a store operation. The parity bit on the accessed tag during a 
line allocation is inverted.

— 0b01: The value is reserved. This may cause boundedly-undefined behavior.
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— 0b10: The value is reserved. This may cause boundedly undefined behavior.
— 0b11: The value is reserved. This may cause boundedly undefined behavior.

Line fill operations to the L1 instruction cache can be created by invalidating addresses in the 
cache using icbi, then causing those instructions to be fetched. Line fill operations to the L1 
data cache can be created by invalidating addresses using dcbf then performing load operations 
to those addresses. Store operations can be created by writing data to cacheable memory using 
store (or store class) instructions.
Single-bit errors injected into the data array are accomplished by inverting the parity bit for 
each byte. 

NOTE
Error checking for the L1 instruction cache must be enabled 
(L1CSR1[ICECE] = 1) when L1CSR1[ICEI] is set. Similarly for the data 
cache, L1CSR0[CECE] must be set if L1CSR0[CEI] is set. L1CSR0[CEII] 
cannot be set (using mtspr) without setting L1CSR0[CECE]. 
L1CSR1[ICEI] cannot be set without setting L1CSR1[ICECE].

As described above, if a cache error is detected, a machine check interrupt occurs. Sources for cache errors 
are described in Section 4.9.3, “Machine Check Interrupt—IVOR1.”

5.5 Cache Coherency Support and Memory Access Ordering
This section describes the L1 cache coherency and coherency support.

5.5.1 Data Cache Coherency Model

The L1 data cache and L2 cache supports a MESI (Modified/Exclusive/Shared/Invalid) based cache 
coherency protocol for each cache line. 

The MESI based protocol supports efficient and frequent sharing of data between masters.

Each 64-byte data cache block contains status that define the coherency state of the cache line. The 
CoreNet interface uses this status to support coherency protocols and to direct coherency operations. 
Table 5-2 describes general data cache states. 

Table 5-2. Cache Line State Definitions

Name Description

Modified (M) The line in the cache is modified with respect to main memory. It does not reside in any other coherent cache.

Exclusive (E) The line is in the cache, and this cache has exclusive ownership of it. It is in no other coherent cache and it is 
the same as main memory. This processor may subsequently modify this line without notifying other bus 
masters.

Shared (S) The addressed line is in the cache, it may be in another coherent cache, and it is the same as main memory. 
It cannot be modified by any processor.

Invalid (I) The cache location does not contain valid data.
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Every data cache block state is defined by its status. Note that in a multiprocessor system, a cache line can 
exist in the exclusive state in at most one L1 data cache at a time. 

The core provides full hardware support for cache coherency and ordering instructions and for TLB 
management instructions. 

The core broadcasts cache management instructions (dcbst, dcbstep, dcbf, dcbi (M=1), icbi, icbiep), 
synchronization instructions (mbar - all forms, sync 0), TLB management instructions (tlbsync, tlbivax), 
and cache touch or locking instructions with CT=1.

5.5.2 Instruction Cache Coherency Model

The instruction cache supports only invalid and valid states.

The instruction cache is loaded only as a result of instruction fetching or by an Instruction Cache Block 
Touch and Lock Set (icbtls) instruction. It is not snooped for general coherency with other caches; 
however, it is snooped when the Instruction Cache Block Invalidate (icbi or icbiep) instruction is executed 
by this processor or any other processor in the system. Instruction cache coherency must be maintained by 
software and is supported by a fast hardware flash invalidation capability as described in Section 5.6.3, 
“L1 Cache Flash Invalidation.” Also, the flushing requirement of modifying code from the data cache is 
described in the EREF: A Programmer’s Reference Manual for Freescale Power Architecture® 
Processors.

5.5.3 Snoop Signaling

Hardware maintains cache coherency by snooping address transactions on the CoreNet interface. Software 
enables such transactions to be made visible to other masters in the coherence domain by setting the 
coherency-required bit (M) in the TLBs (WIMGE = 0bxx1xx). The M bit state is sent with the address on 
CoreNet transactions. If asserted, the CoreNet interface transaction should be snooped by other bus 
masters.

The instruction cache is not snooped, except in the case of transactions initiated by a icbi, so coherency 
must be maintained by software. 

5.5.4 WIMGE Settings and Effect on Caches

All instruction and data accesses are performed under control of the WIMGE bits. This section generally 
describes how WIMGE bit settings affect the behavior of the L1 and L2 caches when accesses are marked 
with the “M” bit set (that is, are coherent). The detailed description of all the states and transitions are 
beyond the scope of this manual. For more information about WIMGE bits and their meanings. see the 
EREF: A Programmer’s Reference Manual for Freescale Power Architecture® Processors.

5.5.4.1 Write-Back Stores

A write-back store is a store to a memory address that has a WIMGE setting of 0b00xxx.
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A write-back store that hits a line that is already in exclusive state is immediately stored to the line; the 
state is changed to modified. If a write-back store hits a line that is already in the modified state, it is 
immediately stored to the line, and the line stays as modified. 

If a write-back store operation (that is, caching-allowed and not write-through) hits a line in the shared 
state, the cache line is first invalidated and a read-with-intent-to-modify is issued to the BIU and CoreNet. 
The line is received through the BIU and the written data is merged into the line in the DLFB. The line is 
then written to the cache marked as modified. If a write-back store misses in the cache, the action is the 
same as the shared case, except the line is not first invalidated (as it is not present).

5.5.4.2 Write-Through Stores

A write-through store is a store to a memory address that has a WIMGE setting of 0b10xxx.

A write-through store operation may hit an exclusive cache line. In this case, the store data is written into 
the data cache and the write-through store goes to the L2, the BIU and CoreNet as a single-beat write. The 
cache line stays exclusive.

A write-through store operation may hit in a shared cache line. In this case, that cache line is invalidated 
from the cache, and the write-through store goes to the BIU and CoreNet as a single-beat write.

A write-through store may also hit in a cache line that is already in the modified state. This situation 
normally occurs as a result of page table aliasing in which two effective addresses are mapped to the same 
physical page, but with one mapped as write-through and the other mapped as write-back (that is, not 
write-through). In this case, the cache line remains in its current state, the store data is written into the data 
cache, and the store goes to the BIU and CoreNet as a single-beat write. Such aliasing should in general 
not be used as coherency is not enforced outside of the processor that performs the aliasing.

If a copy exists in both the L1 and the L2 cache and the L2 is enabled, a data write-through store also 
updates the L2 copy. 

5.5.4.3 Caching-Inhibited Loads and Stores

A caching-inhibited load or store (WIMGE = 0bx1xxx) that hits in the cache presents a cache coherency 
paradox and is normally considered a programming error. If a caching-inhibited load hits in the cache, the 
cache data is ignored and the load is provided from the BIU as a single-beat read. If a caching-inhibited 
store hits in the cache or the DLFB, the cache (or DLFB) may be altered but the store is performed on 
CoreNet anyway as a single-beat write.

A caching inhibited load that hits in a DLFB is serviced out of the DLFB and is not sent to the BIU or 
CoreNet and is not seen outside the processor. This is a special case of the cache coherency paradox and 
can produce results not intended by software. If the aliasing of caching and caching inhibited writes must 
be performed, software should ensure that all cached addresses are flushed with dcbf followed by sync 
before executing caching-inhibited loads and stores using the aliased addresses. 
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5.5.4.4 Misaligned Accesses and the Endian (E) Bit

Misaligned accesses that cross page boundaries could corrupt data if one page is big endian and the other is 
little endian. When this situation occurs, the core takes a DSI and sets the BO (byte ordering) bit in the 
exception syndrome register (ESR) instead of performing the accesses.

5.5.4.5 Speculative Accesses and Guarded Memory 

If a memory area is marked as execute-permitted (UX/SX = 1), there is no restriction on how the core 
performs instruction fetching from guarded memory and software should assume that any page that is 
marked as execute-permitted generates instruction fetches even if software never attempts to execute those 
addresses. This is because the fetch unit can generate fetch addresses based on mispredicted speculative 
paths for which the resulting addresses would be such that they are never actually generated by software. 
Note that to prevent inadvertent instruction fetching from memory, such memory should be marked as 
no-execute (UX/SX = 0). Then, if the effective address of a fetched instruction is in no-execute memory, 
an execute access control exception occurs, preventing the access from occurring to that address.

Speculative data accesses to memory have special consideration as well. Memory address must be marked 
as guarded (G = 1) to prevent speculative load accesses to those addresses. Like speculative fetching, the 
processor can generate any effective memory address as the result of a mispredicted branch (including 
forming addresses on that path from index registers which may hold unknown contents at the time). Thus 
to avoid inadvertent speculative references that may cause undesired results, memory that is not “well 
behaved” (well-behaved memory can tolerate speculative reads without any side effects) should always be 
marked as guarded (G = 1) or if there is no underlying real addresses in the system, should not be mapped 
in the TLB.

The core does not perform speculative stores to guarded memory (or to any memory). However, loads from 
guarded memory may be accessed speculatively if the target location is valid in the data cache.

For more information, see the EREF: A Programmer’s Reference Manual for Freescale Power 
Architecture® Processors.

5.5.5 Load/Store Operation Ordering

Load and store operations in Power Architecture are considered to be weakly ordered. That is, certain 
memory accesses can be performed in a different order than the sequential processor execution model 
specifies them. While this appears extraordinarily complicated to the programmer, in fact several 
restrictions placed by the architecture, EREF: A Programmer’s Reference Manual for Freescale Power 
Architecture® Processors, and the implementation simplify this greatly. In practice this requires that the 
programmer only really be aware of the ordering of memory accesses that are used by another core or 
another device and the other core or device care about the order. In general, this reduces even further to 
the following three scenarios:

• The SMP case 
— Code is running on more than one processor 
— Data being manipulated is accessed from more than one processor. 



Core Caches and Memory Subsystem

e500mc Core Reference Manual, Rev. 3

5-15 Freescale Semiconductor
 

— Software is designed, in general, with some sort of mutual exclusion or locking mechanism 
regardless of the architecture (because software running on one processor must make several 
updates to data structure atomically).

• The device driver case 
— Code is running that controls a device through memory-mapped addresses. 
— Accesses to these memory-mapped registers usually need to occur in a specific order because 

the accesses have side effects (for example a store to an address causes the device to perform 
some action and the order these actions are performed must be explicitly controlled in order for 
the device to perform correctly). 

— Addresses are usually marked as caching-inhibited and guarded because the memory is not 
“well behaved.”

• The processor synchronization case. 
— Some registers within the processor, such as the MSR, have special synchronization 

requirements associated with them to guarantee when changes which may effect memory 
accesses, occur. (see Section 3.3.3, “Synchronization Requirements,” for the specific registers 
and their synchronization requirements).

— Only system programmers modifying these special registers need be aware of these cases. 

5.5.5.1 Architecture Ordering Requirements

Power Architecture and EREF: A Programmer’s Reference Manual for Freescale Power Architecture® 
Processors require certain memory accesses to be ordered implicitly, as follows:

1. All loads and stores appear to execute in-order on the same processor. That is, each memory access 
a processor performs, if that memory location is not stored to by another processor or device, it 
appears to be performed in order to the processor. For example, a processor executes the following 
sequence:

lwz r3,0(r4)
lwz r5,100(r4)

Because there is no way for the processor to distinguish which order these loads occurred in 
(because the memory is “well behaved”), the loads can be performed in any order. Similarly the 
sequence

stw r3,0(r4)
stw r5,100(r4)

may also be performed out of order because the processor cannot distinguish which order the stores 
are performed in. However, the sequence

stw r3,0(r4)
lwz r5,0(r4)

must be performed in order because the processor can distinguish a difference depending on 
whether the store or the load is performed first. 
In general this means that the processor performs memory accesses in order between any two 
accesses to overlapping addresses. The core may decide that accesses overlap if they touch the 
same cache line and not merely a common byte.

2. Any load or store that depends on data from a previous load or store must be performed in order. 
For example, a load retrieves the address that is used in a subsequent load:
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lwz r3,0(r4)
lwz r5,0(r3)

Because the second load’s address depends on the first load being performed and providing data, 
the processor must ensure that the first load occurs before the second is attempted (and in fact must 
be sure the first load has returned data before even attempting translation).

3. Guarded caching-inhibited stores must be performed in order with respect to other guarded 
caching-inhibited stores and guarded caching-inhibited loads must be performed in order with 
respect to other guarded caching-inhibited loads. This generally only applies to writing device 
drivers that control memory mapped devices with side effects through store operations.

4. A store operation cannot be performed before a previous load operation regardless of the addresses. 
That is a load is followed by a store, then the load is always performed before the store is. This is 
an EREF: A Programmer’s Reference Manual for Freescale Power Architecture® Processors 
requirement of Freescale processors. It is unlikely, but possible that other Power Architecture cores 
may not require this.

5.5.5.2 Forcing Load and Store Ordering (Memory Barriers)

The implicit ordering requirements enforced by the processor handle the vast majority of all the 
programming cases when accessing memory locations from a single core. Normal software should only 
be concerned in ordering when the memory locations being accessed are done so in an SMP environment 
or the memory locations are part of a device’s memory mapped locations. If these cases occur, then 
software must place explicit memory barriers to control the order of memory accesses. A memory barrier 
causes ordering between memory accesses that occur before the barrier in the instruction stream and 
memory accesses that occur after the barrier in the instruction stream.

There are four memory barriers that can be used on e500mc to order memory accesses, depending on the 
type of memory (the WIMGE attributes) being accessed and the level of performance desired. Memory 
barriers, by definition, can slow down the processor because they prevent the processor from performing 
loads and stores in their most efficient order. The barriers from strongest (that is, enforces the most 
ordering between different types of accesses) to the weakest are:

• sync (or sync 0 or msync)—sync creates a barrier such that all (regardless of WIMGE attributes) 
memory accesses that occur before the sync are performed before any accesses after the sync. sync 
also ensures that no other instructions after the sync are initiated until the instructions before the 
sync and the sync itself, have performed their operations. sync also has the most negative effect on 
performance. sync can be used regardless of the memory attributes of the access and can be used 
in the place of any of the other barriers. However, it should only be used when performance isn’t 
an issue, or if no other barrier orders the memory accesses.

• mbar (or mbar 0)—mbar creates the same barrier sync does, however it does not restrict 
instructions following mbar from being initiated. It does prevent memory accesses following the 
mbar from being performed until all the memory accesses prior to the mbar have been performed. 
mbar affects performance almost as much as sync does.

• mbar 1—mbar 1 creates a memory barrier that is the same as the eieio instruction from the 
original PowerPC architecture. It creates two different barriers:
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— Loads and stores that are both caching-inhibited and guarded (WIMGE = 0b01x1x) as well as 
stores that are write-through required (WIMGE = 0b10xxx). This is useful for the device driver 
case which would be doing loads and stores to caching-inhibited memory.

— Stores that have the following attributes: not caching-inhibited, not write-through required, and 
memory coherence required (WIMGE = 0b001xx). These are stores to normal cacheable 
coherent memory.

mbar 1 is a better performing memory barrier than sync or mbar. For more details refer Chapter 
5-Instruction Set in the “EREF: A Programmer’s Reference Manual for Freescale Power 
Architecture® Processors”

• lwsync (or sync 1)—lwsync (lightweight sync) creates a barrier for normal cacheable memory 
accesses (WIMGE = 0b001xx). It orders all combinations of the loads and stores except for a store 
followed by a load. This is the most efficient barrier for normal SMP programming when dealing 
with multiprocessor locks and critical regions.
lwsync is a better performing memory barrier than sync, mbar, or mbar 1.

Another method also exists for ordering all caching-inhibited loads and stores which are guarded. The 
HID0[CIGLSO] bit can be set to force all caching-inhibited loads and stores which are guarded to be 
performed in order. This is not a barrier, per se, but a system attribute that causes the core to always order 
these accesses. Setting this bit is a good way to deal with the device driver case over a broad range of code 
if the memory accesses to the device are caching-inhibited and guarded which is normally the case. This 
is likely to perform better than inserting mbar in specific places since the implementation of the e500mc 
already orders all of these except for a guarded caching-inhibited store followed by a guarded 
caching-inhibited load. In this case, the e500mc simply ensures that the store is performed on CoreNet 
prior to attempting the load.

5.5.5.2.1 Simplified Memory Barrier Recommendations

The general simplistic recommendation for adding required barriers is as follows:
• For the device driver case, device drivers that access caching-inhibited memory, ensure that 

memory is also guarded and at boot time set HID0[CIGLSO] to 1. This should order all such 
cache-inhibited guarded accesses. If there is software that deals with other types of memory 
attributes (or needs to order accesses between cached and caching-inhibited memory), those 
barriers must be inserted into the code at the appropriate places. In general, those barriers are mbar 
0.

• For the SMP case, normally all that needs to be done is to deal with interactions between multiple 
cores. This is generally already isolated into locking routines that acquire multiprocessor locks and 
release multiprocessor locks. In general, all that is required to modify such routines is to:
— Insert a lwsync barrier after the lock has been acquired, and before the first load of any data 

protected by the lock. This ensures that the load of the protected data structure occurs after the 
load of the lock itself. Note that lwarx and stwcx. should be used to ensure the lock is properly 
acquired.

— Insert a lwsync barrier after the last store to the protected data structure and the store that 
releases the lock. This ensures that the store to the protected data structure occurs prior to the 
store that releases the lock.
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Locking software and multiprocessing software may have various other types of mutual exclusion 
and those should be examined with ordering semantics in mind. Power ISA 2.06 Book II Appendix 
B gives programming examples for various types of shared storage accesses.

5.5.5.3 Memory Access Ordering

Table 5-3 displays the Power ISA and EREF: A Programmer’s Reference Manual for Freescale Power 
Architecture® Processors memory access ordering requirements based on the WIMG attributes and access 
type. For access where the attributes differ, ordering between these types of access generally requires 
mbar 0 (or sync) except that write-through required and guarded caching inhibited loads or stores may be 
ordered with mbar 1. For Table 5-3, entries suggest the most efficient barrier (or may suggest more than 
one). ‘Yes’ means that the given ordering is already guaranteed by the architecture and no barrier is 
required. Not all possible barriers are listed and sync 0 or mbar 0 enforces all barriers.

5.5.5.4 msgsnd Ordering

It may be required to order when messages are sent (which may cause interrupts on other cores) with stores 
performed by the core executing msgsnd. A typical example of this is a producer stores a value in memory 
and then sends a message to another core to cause an interrupt telling the receiving core that there is work 
for it to do (represented by the stores performed by the sending processor). In this case, a sync 0 should be 
placed between the stores and the msgsnd. this guarantees that the store is performed before the message 
is sent.

In all respects of memory ordering and barriers, msgsnd is ordered as if it is a cache inhibited store.

5.5.5.5 Atomic Memory References

The e500mc implements lwarx and stwcx. as described in the EREF: A Programmer’s Reference Manual 
for Freescale Power Architecture® Processors. 

The e500mc takes a data storage interrupt if the location is write-through required but does not take the 
interrupt if the location is caching inhibited (i.e caching inhibited reservations are permitted). Software 
should avoid all possible using reservations on storage that are caching inhibited as future cores may not 
support these.

If the EA is not naturally aligned for any load and reserve or store conditional instruction, an alignment 
interrupt is invoked.

Table 5-3. Architectural Memory Access Ordering

Memory Access Attributes WIMGE
Store-Store 

Ordered
Load-Load 

Ordered
Store-Load 

Ordered
Load-Store 

Ordered

Caching-inhibited and Guarded 0b01x1x Yes Yes HID0[CIGLSO]

mbar 1
Yes

Caching-inhibited and non Guarded 0b01x0x mbar 0 mbar 0 mbar 0 Yes

Write-through 0b10xxx mbar 1 mbar 0 mbar 0 Yes

Write-back 0b00xxx lwsync lwsync mbar 0 Yes
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As specified in the architecture, the core requires that, for a store conditional instruction to succeed, its real 
address must be to the same reservation granule as the real address of a preceding load and reserve 
instruction that established the reservation. The e500mc makes reservations on behalf of aligned 64-byte 
blocks of the memory address space. 

If the reservation has been canceled for any reason (or the reservation does not match the real address 
specified by the store conditional instruction), then the store conditional instruction fails and clears 
CR0[EQ]. The reservation may be invalidated by several events. They are described in Section 3.4.9, 
“Reservations.”

5.6 L1 Cache Control
This section describes how the cache control instructions and L1CSRn bits are used to control the L1 
cache.

5.6.1 Cache Control Instructions

The e500mc implements the cache control instructions as described in Section 3.4.10.1, “User-Level 
Cache Instructions,” and Section 3.4.11.3.1, “Supervisor-Level Cache Instruction.” Note that on the 
e500mc, Data Cache Block Store (dcbst) is mapped to dcbf, dcbstep is mapped to dcbfep, and Instruction 
Cache Touch (icbt) when CT=0 is treated as a NOP. 

If the effective address cannot be translated, all cache control instructions generate TLB miss exceptions 
except dcba, dcbal, dcbt, dcbtep, icbt, dcbtst, and dcbtstep, which are treated as NOPs (and do not cause 
DAC debug exceptions). 

If a dcbt, dcbtep, dcbtst, or dcbtstep instruction accesses a page marked caching-inhibited, it is treated 
as a NOP.

5.6.2 Enabling and Disabling the L1 Caches

The instruction and data caches are enabled and disabled with the cache enable bits, L1CSR0[CE] and 
L1CSR1[ICE], respectively. Disabling a cache does not cause all memory accesses to be performed as 
caching inhibited. When caching-inhibited accesses are desired, the pages must be marked as caching 
inhibited in the MMU pages.

When either the instruction or data cache is disabled, the cache tag state bits are ignored and the 
corresponding cache is not accessed. Caches are disabled at start-up L1CSR0[CE] and L1CSR1[ICE] = 0. 

Disabling the data cache has the following effects:
• Touch instructions (dcbt, dcbtst, dcblc, dcbtls, dcbtstls, icblc, and icbtls) targeted to the disabled 

cache do not affect the cache.
• A dcbz, dcbzl, dcba, or dcbal instruction to a disabled data cache zeros the cache line in memory, 

but does not affect the cache when it is disabled.
• Cache lines are not snooped. Before the data cache is disabled it must be flushed and invalidated 

to prevent coherency problems when it is enabled again. 
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• Cacheable data accesses bypass the data cache, are forwarded to the memory subsystem as 
caching-allowed, and proceed to the CoreNet interface. Returned data is forwarded to the 
requesting execution unit, but is not loaded into any of the caches.

• Other cache management instructions do not affect the disabled cache. 

NOTE
Data line fill buffering, which extends the cache for loads and 
caching-allowed stores, remains enabled. Pages marked as cacheable are 
accessed and may keep copies of data. therefore, cache management 
instructions, such as dcbf, may be required even if the L1 data cache is 
disabled. 

When the instruction cache is disabled (L1CSR1[ICE] = 0), instruction accesses bypass the instruction 
cache. These accesses are forwarded to the memory subsystem as caching-allowed and proceed to the 
CoreNet interface. When the instructions are returned, they are forwarded to the instruction unit but are 
not loaded into the instruction cache.

NOTE
Instruction line fill buffering, which extends the cache for fetches, remains 
enabled. Pages marked as cacheable are accessed by performing a 
cache-line burst transaction even when the cache is disabled and may keep 
copies of instructions in line fill buffers. therefore, cache management 
instructions, such as icbi, may be required even if the L1 instruction cache 
is disabled. 

When an L1 cache is enabled, software must first properly flash invalidate it to prevent stale data (in the 
case where it has been disabled for some period of time during operation) or unknown state (in the case of 
power on reset). Software should perform the invalidation by setting the flash invalidation bit (CFI or 
ICFI) in the appropriate L1 cache control and status register, and then continue to read CFI (or ICFI) until 
the bit is cleared. Software should then perform an isync to ensure that instructions that may have been 
prefetched prior to the cache invalidation are discarded. The setting of L1CSR0[CE] or L1CSR1[ICE] 
must be preceded by a sync and isync instruction, to prevent a cache from being disabled or enabled in the 
middle of a data or instruction access. See Section 3.3.3, “Synchronization Requirements,” for more 
information on synchronization requirements.

5.6.3 L1 Cache Flash Invalidation

The data cache can be invalidated by executing a series of dcbi instructions, or it can be flash invalidated 
by setting L1CSR0[CFI]. The data cache is automatically flash invalidated if write shadow mode is 
configured and any unrecoverable error (tag parity or data parity) occurs. See Section 5.4.2, “Write 
Shadow Mode.” 

If software can guarantee that data is not modified, the cache can be invalidated without updating system 
memory; if a modified line is invalidated, the data is lost. To prevent the loss of data, modified cache lines 
must be flushed, as described in Section 5.7, “L1 Data Cache Flushing.” 
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Because the instruction cache never contains modified data, there is no need to flush the instruction cache 
before it is invalidated. 

The instruction cache can be invalidated by setting L1CSR1[ICFI]. The L1 caches can be flash invalidated 
independently. The setting of L1CSR0[CFI] and L1CSR1[ICFI] must be preceded by an msync and isync, 
respectively.

The instruction cache is automatically flash invalidated if any parity error (tag or data) occurs.

Valid bits in both caches are cleared automatically upon reset. If software desires to clear all valid bits in 
the caches during operation, software must use the Flash Invalidation bits in L1CSR0 and L1CSR1 (CFI 
bits). This causes a flash invalidation, after which the CFI bits are cleared automatically (CFI bits are not 
sticky). Flash invalidate operations are local only to the processor which performs them, other processor’s 
L1 caches are not affected. Software should always poll the CFI bits after setting them to determine when 
the invalidation has been completed and then perform an isync. Software must use care when invalidating 
the entire data cache to ensure that no modified data exists in the cache by first flushing the cache unless 
software does not care about the state that any previous memory operations may have attained.

Individual instruction or data cache blocks can be invalidated by using icbi and dcbi. Note that 
invalidating the caches resets lock bits (causing the locks to be lost) in the L1 caches. Also note that with 
dcbi, the e500mc invalidates the cache block without pushing it out to memory if WIMGE=0bx00xx. If 
WIMGE=0bx01xx, the e500mc performs a dcbf and pushes any modified state to memory before 
invalidating the cache block. See Section 3.4.11.3.1, “Supervisor-Level Cache Instruction.”

Exceptions and other events that can access the L1 cache should be disabled during this time so that the 
PLRU algorithm can function undisturbed.

5.6.4 Instruction and Data Cache Line Locking/Unlocking

User-mode instructions perform cache line locking/unlocking based on the complete address of the cache 
line. dcbtls, dcbtstls, and dcblc are for data cache locking and unlocking and icbtls and icblc are for 
instruction cache locking and unlocking. For descriptions, see Section 3.4.10.2, “Cache Locking 
Instructions.” The CT operand is used to indicate the cache target of the cache line locking instruction. See 
Section 3.4.10.1.1, “CT Field Values.”

Lock instructions (including icbtls and icblc) are treated as loads when translated by the data TLB, and 
they cause exceptions when data TLB errors or data storage interrupts occur.

The user-mode cache lock enable bit, MSR[UCLE], is used to restrict user-mode cache line locking by the 
operating system. If MSR[UCLE] = 0, any cache lock instruction executed in user mode (MSR[PR] = 1) 
causes a cache-locking DSI exception and sets either ESR[DLK] or ESR[ILK]. This allows the OS to 
manage and track the locking/unlocking of cache lines by user-mode tasks. If MSR[UCLE] is set, the 
cache-locking instructions can be executed in user mode and do not cause a DSI for cache locking. 
However, they may still cause a DSI for access violations.
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Table 5-4 shows how cache locking operations are affected by MSR[GS,PR,UCLE] and MSRP[UCLEP] 
which determine whether the core is operating in hypervisor, guest-supervisor, or user (problem state 
mode). 

If all of the ways are locked in a cache set, an attempt to lock another line in that set results in an 
overlocking situation. The new line is not placed in the cache, and either the data cache overlock bit 
L1CSR0[CLO] or instruction cache overlock bit L1CSR1[ICLO] is set. This does not cause an exception 
condition. See Section 3.4.10.2, “Cache Locking Instructions” for a description of what conditions set 
these bits.

It is acceptable to lock all ways of a cache set. A nonlocking line fill for modified data to a new address in 
a completely locked cache set is not put into the cache. However it is loaded into a DWB and creates the 
appropriate normal burst write transfer.

The cache-locking DSI handler must decide whether to lock a given cache line based on available cache 
resources.

5.6.4.1 Effects of Other Cache Instructions on Locked Lines

Other cache management instructions have no effect on the locked state of lines unless that instruction 
causes an invalidate operation on that line. If a dcbi, icbi, icbiep, dcbf, dcbfep, dcbst, or dcbstep target 
a locked line, the line is invalidated and the lock is cleared.

5.6.4.2 Effects of Stores on Locked Lines

Stores can also cause line locks to be cleared. A store to a locked line which is in shared state can cause 
the line to be invalidated before the store is performed, causing the lock on the line to be lost. To avoid this 
scenario, if a locked line is to be stored to, it should not be used by a processor other than the one which 
has it locked.

5.6.4.3 Flash Clearing of Lock Bits

The core allows flash clearing of the instruction and data cache lock bits under software control. Each 
cache’s lock bits can be independently flash cleared through the CLFC control bits in L1CSR0 and 
L1CSR1.

Lock bits in both caches are cleared automatically upon reset. If software desires to clear all lock bits in 
the caches during operation, software must use the CLFC controls. Setting CLFC bits causes a flash 

Table 5-4. Cache Locking Based on MSR[GS,PR,UCLE] and MSRP[UCLEP]

MSR[GS] MSR[PR] MSR[UCLE] MSRP[UCLEP] Result

0 0 — — Execute

x 1 0 — DSI, ESR[DLK or ILK] set

x 1 1 — Execute

- 0 — 0 Execute

1 0 — 1 Embedded hypervisor privilege
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invalidation of the lock bits performed in a single CPU cycle, after which the CLFC bits are automatically 
cleared (CLFC bits are not sticky).

5.7 L1 Data Cache Flushing
Any modified entries in the data cache can be copied back to memory by using a cache flushing instruction 
(dcbf, dcbst, dcbfep, or dcbstep) if the particular addresses which are required to be flushed are known 
by software. However, in some cases, system software may need to force modified data in the L1 data 
cache to be written to memory, and the contents of the cache as well as whether the contents are modified 
is not known. This can happen when software wishes to go to a power management state in which the 
cache does not retain state or a number of other conditions when system software wishes to know that the 
L1 data cache contains no modified state. Forcing all the modified lines in the L1 data cache is called a 
cache flush. To perform a cache flush, software must ensure that all valid lines in the cache are replaced 
by performing a series of reads (loads) in which the cache lines which are read force all the lines to be 
replaced. When a modified line is replaced (evicted), the processor writes any modified data in the 
replaced line to the memory subsystem.

Selection of lines to replace in the L1 data cache when a line is accessed is determined by the PLRU 
(pseudo least recently used) bits, whether a given line is locked, and whether the line already exists in the 
L1 data cache. The cache flush algorithm must control these factors including how the PLRU bits for other 
lines in the cache are affected. In effect each set must have enough accesses to cause all ways in the set to 
be evicted given how the PLRU bits are set. The method for performing a cache flush is as follows:

• Block all interrupts (set MSR[EE,CE,DE,ME] = 0). This prevents an interrupt from occurring 
during the flush algorithm and changing the cache state.

• Perform sync. This ensures that any stores that have completed are performed.
• Unlock any locked cache lines or ensure that the locked lines are flushed. This can be skipped if 

system software does not allow cache line locking, or if it is known that no locked lines contain 
modified data. Locks can be cleared by writing a 1 to L1CSR0[CLFC], performing the required 
synchronization and polling until the bit is clear. If system software knows the addresses of all lines 
locked in the cache it could instead perform dcbf or dcbst type instructions to these lines.

• Ensure that all the existing lines in the cache are replaced through a series of operations which 
cause new lines to be allocated which contain no modified data, or if the new lines contain modified 
data, those modifications can be discarded. To accomplish this perform one of the following 
methods:
— Perform a series of loads which access each cache line once within a contiguous real 52-KB 

region. Software must ensure that no cache line within the 52-KB region is in the L1 data cache 
in the modified state prior to performing the loads.

— Perform a series of loads or dcbz instructions which access each cache line once within a 
contiguous real 48-KB scratch region. Software must ensure that no cache line within the 
48-KB region is in the L1 data cache in any state prior to performing the loads or dcbz 
instructions. This can be ensured by only mapping the real pages in the region in the MMU 
when the cache flushing routine is performed. The pages must be marked as guarded and 
cacheable.
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— Set HID0[DCFA], perform isync, then perform a series of loads which access each cache line 
once within a contiguous real 36-KB region. Software must ensure that no cache line within 
the 52-KB region is in the L1 data cache in the modified state prior to performing the loads. 
Clear HID0[DCFA], perform isync.

— Set HID0[DCFA], perform isync, then perform a series of loads or dcbz instructions which 
access each cache line once within a contiguous real 32-KB scratch region. Software must 
ensure that no cache line within the 32-KB region is in the L1 data cache in any state prior to 
performing the loads or dcbz instructions. This can be ensured by only mapping the real pages 
in the region in the MMU when the cache flushing routine is performed. The pages must be 
marked as guarded and cacheable. Clear HID0[DCFA], perform isync.

• Ensure that all the replaced lines have been written to the memory subsystem by executing sync.
• Flash invalidate the cache by writing a 1 to L1CSR0[CFI], performing the required 

synchronization, then polling until the bit is cleared. This ensures that the memory region that was 
used to cause line replacement in the cache is not present in the cache should the cache flush routine 
get called again before the lines get naturally evicted.

• Re-enable any interrupts that were disabled at the beginning of the cache flush routine.

NOTE
Since the hypervisor can interrupt the guest in the middle of the cache flush 
routine, this can cause the PLRU bits to change and perturb the flush 
algorithm possibly leaving modified lines in the L1 data cache which are not 
flushed. This can be handled by either having the hypervisor treat the setting 
of L1CSR0[CFI] to 1 by the guest as a flush and invalidate request, or by 
providing an hcall service to perform the flush.

5.8 L1 Cache Operation
This section describes operations performed by the L1 instruction and data caches.

5.8.1 Cache Miss and Reload Operations

This section describes the actions taken by the L1 caches on misses for caching-allowed accesses. It also 
describes what happens on cache misses for caching-inhibited accesses as well as disabled and locked L1 
cache conditions.

5.8.1.1 Data Cache Fills

The core data cache blocks are filled (sometimes referred to as a cache reload) from an L2 cache or the 
memory subsystem when cache misses occur for caching-allowed accesses, as described in Section 5.3.1, 
“Load/Store Unit (LSU).”

When the data cache is disabled (L1CSR0[CE] = 0), cacheable data accesses bypass the data cache, are 
forwarded to the memory subsystem as caching-allowed, and proceed to the CoreNet interface. Returned 
data is forwarded to the requesting execution unit, but is not loaded into any of the caches. Such 
transactions are kept in DLFBs. See Section 5.6.2, “Enabling and Disabling the L1 Caches.”
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Each of the eight ways of each set in the data cache can be locked (by locking all of the cache lines in the 
way with the dcbtls or dcbtstls instruction). When at least one way is unlocked, misses are treated 
normally and are allocated to one of the unlocked ways on a reload. If all eight ways are locked, store/load 
misses proceed to the memory subsystem as normal caching-allowed accesses. In this case, the data is 
forwarded to the requesting execution unit when it returns, but it is not loaded into the data cache. If the 
data is modified, it creates the appropriate normal burst write transfer.

Note that caching-inhibited stores should not access any of the caches (see Section 5.5.4.3, 
“Caching-Inhibited Loads and Stores,” for more information). 

5.8.1.2 Instruction Cache Fills

The instruction cache provides a 128-bit interface to the instruction unit, so as many as four instructions 
can be made available to the instruction unit in a single clock cycle on an instruction cache hit. On 
instruction cache hits, the instructions are delivered directly from the instruction cache to the instruction 
unit.

On a miss, an instruction line fill buffer is allocated and the fetch request is sent to the L2 cache. On an L2 
cache hit, the data from the L2 cache is stored in the line fill buffer. When all the data in the line fill buffer 
is received, the instructions in the fetch group from the fetch are transferred to the instruction unit and the 
line fill buffer is written to the instruction cache, writing the entire cache line. If the L2 cache misses, the 
caching-allowed access is sent to the memory subsystem and CoreNet interface. When data is returned and 
all bytes in the line fill buffer are received, the instructions in the fetch group from the fetch are transferred 
to the instruction unit and the line fill buffer is written to the instruction cache, writing the entire cache 
line. In this case the L2 cache also receives the data returned from CoreNet and writes the cache line to the 
L2 cache. When data from an instruction line fill buffer is written to the instruction cache is loaded in one 
64-byte write from the line fill buffer.

The instruction cache is non-blocking, providing for hits under misses. 

If the instruction cache is disabled (L1CSR1[ICE] = 0) or all ways of the associated set are locked, the 
instruction line fill buffer is not written to the instruction cache when the instruction line fill buffer has 
received all the data. The instruction cache operates similarly to the data cache when all eight ways of a 
set are locked. 

For caching-inhibited instruction fetches the instruction unit fetches up to four instructions at a time 
directly from the memory subsystem by performing a cache-line burst (although the transaction is marked 
as caching-inhibited) and discards the other instructions which are not part of the fetch group. When data 
is returned and all bytes in the line fill buffer are received, the instructions in the fetch group from the fetch 
are transferred to the instruction unit. 

Caching-inhibited fetches utilize a line fill buffer to perform their read operation to the memory subsystem, 
but in general do not use the other instructions returned which were not part of the fetch group and the 
other instructions are effectively discarded when the line fill buffer becomes invalid after the fetch is 
complete.
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5.8.1.3 Cache Allocation on Misses

Instruction cache misses cause a new line to be allocated into the instruction cache on a PLRU basis, 
provided the cache is not completely locked or disabled.

If there is a data cache miss for a caching-allowed load or store (including touch instructions) and the line 
is not already going to be allocated into the data cache as a result of a previous load/store miss, the miss 
causes a new line to be allocated into the data cache on a PLRU basis, provided the cache is not completely 
locked or disabled. A store that is write-through or caching-inhibited that misses in the data cache does not 
cause an allocation. Also, cache operations such as dcbi and dcbf that miss in the cache do not cause a fill.

5.8.1.4 Data Cache Block Push Operation

When an L1 cache block in the core is snooped (by another bus master) and the data hits and is modified, 
the cache block must be made available to the snooping device. The push operation propagates to the 
intervention buffer and then to the CoreNet interface.

5.8.2 L1 Cache Block Replacement 

When a new block needs to be placed in the instruction or data cache, a line in the set is chosen to hold the 
new block. If any line in the set is invalid, the lowest numbered way that is invalid is chosen. If no line is 
invalid, the pseudo-least-recently-used (PLRU) replacement algorithm is used. Note that data cache 
replacement selection is performed at reload time and not when the miss occurs. Instruction cache 
replacement selection occurs when an instruction cache miss is first recognized.

When a cache line is accessed, it is tagged as the most-recently-used line of the set. When a miss occurs, 
if all lines in the set are valid (occupied), the least-recently-used line is replaced with the new data. The 
PLRU bits in the cache are updated each time a cache hit occurs based on the most-recently-used cache 
line.

Modified data to be replaced is written back to main memory.

Data load or write-back store accesses that miss in the L1 data cache function similarly to L1 instruction 
cache misses. They cause a new line to be allocated on a PLRU basis, provided the cache is not completely 
locked or disabled. 

Note that modified data in the replacement line of the data cache can cause a cast-out to occur to the 
CoreNet interface. In all such cases, the cast-out is not initiated until new data is ready to be loaded. 

5.8.2.1 PLRU Replacement

Block replacement is performed using a binary decision tree, PLRU algorithm. There is an identifying bit 
for each cache way, L[0–7]. There are seven PLRU bits, B[0–6] for each set in the cache to determine the 
line to be cast out (replacement victim). The PLRU bits are updated when a new line is allocated or 
replaced and when there is a hit in the set. 
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This algorithm prioritizes the replacement of invalid entries over valid ones (starting with way 0). 
Otherwise, if all ways are valid, one is selected for replacement according to the PLRU bit encodings 
shown in Table 5-5.

Table 5-5. L1 PLRU Replacement Way Selection

PLRU Bits Way Selected for Replacement

B0 0 B1 0 B3 0 L0

0 0 1 L1

0 1 B4 0 L2

0 1 1 L3

1 B2 0 B5 0 L4

1 0 1 L5

1 1 B6 0 L6

1 1 1 L7
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Figure 5-4 shows the decision tree used to generate the victim line in the PLRU algorithm.

Figure 5-4. PLRU Replacement Algorithm

During reset, the PLRU and valid bits of the L1 caches are automatically cleared to point to way L0 of 
each set.

5.8.2.2 PLRU Bit Updates

Except for snoop accesses, each time a cache block is accessed, it is tagged as the most-recently-used way 
of the set. For every hit in the cache or when a new block is reloaded, the PLRU bits for the set are updated 
using the rules specified in Table 5-6.

Note that only three PLRU bits are updated for any access. 

The core does not replace locked lines. Lock bits are used at reload time to steer the PLRU algorithm away 
from selecting locked cache lines.

Table 5-6. PLRU Bit Update Rules

Current Access
New State of the PLRU Bits

B0 B1 B2 B3 B4 B5 B6

L0 1 1 No change 1 No change No change No change

L1 1 1 No change 0 No change No change No change

L2 1 0 No change No change 1 No change No change

L3 1 0 No change No change 0 No change No change

L4 0 No change 1 No change No change 1 No change

L5 0 No change 1 No change No change 0 No change

L6 0 No change 0 No change No change No change 1

L7 0 No change 0 No change No change No change 0

Replace
L0

Replace
L1

Replace
L2

Replace
L3

Replace
L4

Replace
L5

Replace
L6

Replace
L7

B0 = 0

B4 = 0

B1 = 0 B1 = 1 B2 = 1B2 = 0

B0 = 1

B3 = 0 B3 = 1 B4 = 1 B5 = 0 B5 = 1 B6 = 0 B6 = 1
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5.9 Backside L2 Cache
The L2 write-back, backside cache has the following features:

• Dynamic Harvard architecture, a unified instruction and data cache, with some characteristics of a 
harvard (split instruction and data) cache

• 128-KB array organized as 256 eight-way sets of 64-byte cache lines 
• 36-bit physical address
• Exclusive, modified, shared, incoherent, invalid, locked, and stale states
• 8-way set associativity with selectable replacement algorithms:

— pseudo-LRU (PLRU)
— streaming PLRU
— streaming PLRU with aging

• Supports unified-, instruction-, and data-only cache operation 
— The L2 cache can be programmed as unified, instruction-only, or data-only. Data-only prevents 

cache lines from being allocated on an instruction fetch miss. Instruction-only prevents cache 
lines from being allocated when a line is victimized from the L1 data cache.

— Partitioning can be configured through L2CSR0[L2WP]. If the L2 cache is configured to 
allocate lines for both data and instruction accesses that miss in the L2 cache 
(L2CSR0[L2IO,L2DO] are both 0) the ways are partitioned to allocate new lines in ways based 
on whether the allocation is for instructions or data. 

— 64-byte (16-word) cache-line, coherency-granule size
See Section 5.9.3, “L2 Configuration and Partitioning.”

• Supports line locking using CT = 2. Unlike the L1 line locking, the L2 locking is persistent and 
locks are not lost when a line is invalidated.

• Data side is a victim cache. The L2 contains only those cache entries that have been cast out from 
the L1 data cache (the L2 is not reloaded when the data is reloaded in the L1 data cache).

• Configurable ECC or parity protection for data array
• Parity protection for tag array
• ABIST support

5.9.1 Dynamic Harvard Implementation

The L2 cache is implemented as a unified cache. That is, entries in the cache can be either instructions that 
were fetched, or data resulting from L1 data cache cast outs. The L2 cache treats lines that are fetched as 
instructions as incoherent in a manner similar to the way that the line would be treated if the L2 cache had 
separate instruction and data caches (as for example, the L1 caches are). Instead of providing a separate 
structures for instruction and data, the fetched instructions are marked with a status bit (N) to denote that 
the line was loaded incoherently. Once N is set, L2 data-side transactions do not hit to it, and when a fetch 
establishes an instruction line in the L2 cache that fetch access is performed non global and is not snooped 
by other processors. This L2 cache implementation is called “Dynamic Harvard” since it has the properties 
of a harvard cache in that the behaviors of the instruction side and the data side differ, but also has the 
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properties that the instruction side and the data side both allocate out of the same pool of available lines 
(that is, the cache is physically unified).

This dynamic harvard implementation allows fetches to be treated as non global and reduces the overall 
snoop overhead that otherwise might be required by the system, while still allowing instructions and data 
lines to allocate from the same pool of available lines in the L2 cache. This means that the amount of lines 
in use by instructions or data varies according to how the processor is executing.

When N is set for any line (when it is allocated as the result of an instruction fetch), the transaction to read 
that line is sent to CoreNet and marked as non global. A later data transaction does not hit to that line, and 
any data transaction that targets a line with the N bit set is sent out to CoreNet to acquire coherent data. 
When the data line is received by the L2 cache, if a line with the same tag exists which is valid and has the 
N bit set, the line is replaced in the L2 cache by the data line and the N bit status is cleared.

To implement dynamic harvard, the L2 cache snoops icbi operations that are performed, regardless of the 
core that performs them. Also operations on the processor that can potentially fill the L2 cache from the 
fetch path must be propagated to the L2 cache. icbi operations do not hit to lines that are marked as 
coherent (N is not set), since the operation effects the instruction cache only. Similarly, snoops for data 
operations from data cache block operations, or from stores do not hit to lines that are marked as incoherent 
(N is set) since the operation effects the data cache only.

Software must deal with the incoherence of instruction lines in the L2 cache in the same manner that it 
does with the harvard L1 instruction cache. To perform instruction modification, data must first be pushed 
from the L2 cache, and when that operation is complete, the instruction side must be invalidated using icbi. 
Power Architecture already requires software to perform this operation, so no additional software is 
required. If software had previously depended on the flash invalidation of the L1 instruction cache to clear 
any cache fetched instructions, this method does not work when the L2 cache is enabled and caching 
instruction fetches. For this reason, software is strongly encouraged to perform the architectural method 
of modifying instructions using dcbf and icbi.

5.9.2 L2 Line Locking

Lines are locked in L2 cache by software using a series of “touch and lock set” instructions. The following 
instructions can lock a line in L2 cache:

• Data Cache Block Touch and Lock Set—dcbtls (CT = 2)
• Data Cache Block Touch for Store and Lock Set—dcbtstls (CT = 2) 
• Instruction Cache Block Touch and Lock Set—icbtls (CT = 2)

Similarly, lines are unlocked from L2 cache by software using a series of “lock clear” instructions. The 
following instructions are used to clear the lock in L2 cache.

• Data Cache Block Lock Clear—dcblc (CT = 2) 
• Instruction Cache Block Lock Clear—icblc (CT = 2) 

There is no distinction between icblc and dcblc in the L2, because both clear the lock on a line regardless 
of whether the lock was previously established as an instruction side or data side lock.
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Software can clear all the locks in the L2 cache by L2CSR0[L2LFC], as described in Section 2.15, “L2 
Cache Registers.” Note that this operation takes many cycles. 

5.9.3 L2 Configuration and Partitioning

The L2 cache can be programmed as data-only, instruction-only, or unified, through the 
L2CSR0[L2IO,L2DO] fields. Setting L2IO (without setting L2DO) indicates that L2 cache lines are 
allocated only for instruction cache transactions that miss in the L2 cache (preventing lines from being 
allocated for data). Data accesses do not hit in the L2 cache and are not allocated due to the setting of L2IO. 
Such accesses are serviced by other parts of the memory hierarchy. Data transactions are not snooped and 
any lines in the L2 cache are not coherent with respect to data transactions.

Attempting to execute data locking instructions when L2IO = 1, causes L1CSR0[CUL] to be set. 

Setting L2DO (without setting L2IO) indicates that cache lines are allocated only for data transactions. The 
L2 cache continues to hit data transactions and participate in the coherence protocol. Instruction fetches 
hit in the L2 cache but no new instruction fetches allocate.

Setting both L2DO and L2IO prevents any new lines from being allocated in the L2 cache, effectively 
locking the entire L2 cache. 

Partitioning can be configured through L2CSR0[L2WP]. If the L2 cache is configured to allocate lines for 
both data and instruction accesses that miss in the L2 cache (L2CSR0[L2IO,L2DO] are both 0) the ways 
are partitioned to allocate new lines in ways based on whether the allocation is for instructions or data. 

A value of 0 allows all ways to be used for either instructions or data. A nonzero value specifies the number 
of ways to be used for allocating instructions. The number of ways specified for data references is the total 
number of ways minus the value in the L2WP field (for example, the value 1 makes one way available for 
instruction allocation, and seven ways available for data allocation). See Section 2.15.2, “L2 Cache 
Control and Status Register (L2CSR0).”

5.9.4 Special Scenarios for Backside L2

This section describes special scenarios of operations in the L2 cache. 

5.9.4.1 Instruction Cache Block Invalidate (icbi)

icbi operations are snooped from the CoreNet interface. If an icbi snoop hits, the line is invalidated if it is 
marked as non-coherent. No special actions are performed for icbi executed on the local processor as those 
operations are also snooped when the icbi is sent out on the CoreNet interface.
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5.9.5 Errors

Table 5-7 describes when L2ERRDET is updated based on error type. 

5.9.6 Performance Monitor Events

Performance monitor events associated with the L2 cache are described in 9.11.6, “Event Selection.” 

Table 5-7. Errors in Different Arrays

Error

L2CSR0 L2ERRDIS L2ERRINTEN L2ERRDET

L2PE TMHITDIS TPAR
DIS

MBEC
CDIS

SBEC
CDIS

PARDI
S

TMHI
TINTE

N

TPARI
NTEN

MBECCINTEN SBECCINTEN PARINTEN TMHI
T

TPAR
ERR

MBE
CCE
RR

SBEC
CER

R

PARE
RR

Tag 
multi-
way 
hit

0 x x x x x x x x x x 0 0 0 0 0

1 0 x x x x 0 x x x x 1 0 0 0 0

1 0 x x x x 1 x x x x 1 0 0 0 0

1 1 x x x x 0 x x x x 0 0 0 0 0

1 1 x x x x 1 x x x x 0 0 0 0 0

Tag
parity error

0 x x x x x x x x x x 0 0 0 0 0

1 x 0 x x x x 0 x x x 0 1 0 0 0

1 x 0 x x x x 1 x x x 0 1 0 0 0

1 x 1 x x x x 0 x x x 0 0 0 0 0

1 x 1 x x x x 1 x x x 0 0 0 0 0

Data parity error 0 x x x x x x x x x x 0 0 0 0 0

1 x x 1 1 0 x x x x 0 0 0 0 0 1

1 x x 1 1 0 x x x x 1 0 0 0 0 1

1 x x 1 1 1 x x x x x 0 0 0 0 0

Single bit ECC 
error

0 x x x x x x x x x x 0 0 0 0 0

1 x x x 0 x x x x 0 x 0 0 0 1 0

1 x x x 0 x x x x 1 x 0 0 0 1 0

1 x x x 1 x x x x x x 0 0 0 0 0

Multi bit ECC 
error

0 x x x x x x x x x x 0 0 0 0 0

1 x x 0 x x x x 0 x x 0 0 1 0 0

1 x x 0 x x x x 1 x x 0 0 1 0 0

1 x x 1 x x x x x x x 0 0 0 0 0
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Chapter 6  
Memory Management Units (MMUs)
This chapter describes the implementation details of the e500mc MMU. The EREF: A Programmer’s 
Reference Manual for Freescale Power Architecture® Processors provides full descriptions of the MMU 
definition, and the register, instruction, and interrupt models as they are defined by the Power ISA™ and 
the Freescale implementation standards.

6.1 e500mc MMU Overview
The e500mc extends the MMU design of previous e500 cores to address the additional needs presented by 
the integration of multiple cores in a single integrated device. In particular, resources are defined that 
support the additional privilege level required to distinguish system-wide, hypervisor level access from 
user and guest supervisor privilege levels. In particular, the machine state register (MSR) problem state 
(MSR[PR]) and guest state (MSR[GS]) bits together determine privilege level, as follows:

• User state (problem state): MSR[PR] = 1
• Hypervisor state: MSR[PR] = 0, MSR[GS] = 0
• Guest supervisor state: MSR[PR] = 0, MSR[GS] = 1

Resources are defined that identify the logical partition with which a memory access is associated. In 
particular, a logical partition is identified by the value in the logical partition ID register (LPIDR). 

The LPIDR and MSR[GS] fields now form part of the virtual address for memory accesses and are 
compared against corresponding fields in the TLBs (TLPID and TGS), as shown in Section 6.2, 
“Effective-to-Real Address Translation.”

e500mc cores employ a two-level MMU architecture with separate data and instruction level 1 (L1) 
MMUs in hardware backed up by a unified level 2 (L2) MMU. The L1 MMUs are completely invisible 
with respect to the architecture and software programming model. The programming model for 
implementing translation look-aside buffers (TLBs) provided by the architecture applies to the L2 MMU. 

NOTE
Because a “bare-metal” operating system has no knowledge of explicit 
embedded hypervisor resources for partitioning (such as the LPIDR register 
and MSR[GS]), these values should remain unchanged from 0 values, in 
effect producing the same virtual address spaces that exist without the 
embedded hypervisor functionality. That is, the virtual addresses that are 
produced are essentially:
0 || 0 || AS || PID || EA
0 || 0 || AS || 0 || EA
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In practice this produces the same effect as not having embedded 
hypervisor.

6.1.1 MMU Features

The e500mc core has the following features:
• 32-bit effective address (EA) translated to 36-bit real (physical) address (using a 48-bit interim 

virtual address) 
• Two-level MMU containing a total of six TLBs for maximizing TLB hit rates
• Processor register (PID) for supporting up to 255 translation IDs at any time in the TLB
• TLB entries for variable-sized, 4-Kbyte to 4-Gbyte pages and fixed-size (4-Kbyte) pages
• No page table format is defined; software is free to use its own page table format.
• TLBs maintained by system software through the TLB instructions and nine MMU assist MAS 

registers

The Level 1 MMUs have the following features:
• Two 8-entry, fully-associative TLB arrays (one for instruction accesses and one for data accesses) 

supporting the eleven variable size page (VSP) page sizes shown in Section 6.2.3, “Variable-Sized 
Pages.”

• Two 64-entry, 4-way set-associative TLB arrays (one for instruction accesses and one for data 
accesses) that support only 4-Kbyte pages

• L1 MMU access occurs in parallel with L1 cache access time (address translation/L1 cache access 
can be fully pipelined so one load/store can be completed on every clock). 

• Performs parallel L1 TLB lookups for instruction and data accesses
• L1 TLB entries are a proper subset of TLB entries resident in L2 MMU (completely maintained by 

the hardware).
• Automatically performs invalidations to maintain consistency with L2 TLBs

The Level 2 MMU has the following features:
• A 64-entry, fully-associative unified (for instruction and data accesses) L2 TLB array (TLB1) 

supports the 11 VSP page sizes shown in Section 6.2.3, “Variable-Sized Pages.”
• A 512-entry, 4-way set-associative unified (for instruction and data accesses) L2 TLB array 

(TLB0) supports only 4-Kbyte pages.
• Hardware assistance for TLB miss exceptions
• TLB1 and TLB0 managed by tlbre, tlbwe, tlbsx, tlbsync, tlbivax, tlbilx, and mtspr instructions
• Performs invalidations in TLB1 and TLB0 caused by tlbivax and tlbilx instructions executed by 

this core. Performs invalidations in TLB1 when MMUCSR0[L2TLB1_FI] is set and invalidations 
in TLB0 when MMUCSR0[L2TLB0_FI] is set. Snoops TLB1 and TLB0 for tlbivax invalidations 
executed by other masters. 

• Setting IPROT implemented in TLB1 protects critical entries from invalidation.
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6.1.2 TLB Entry Maintenance Features

The TLB entries must be loaded and maintained by the system software; this includes performing any 
required table search operations in memory. The e500mc provides support for maintaining TLB entries in 
software with the resources shown in Table 6-1. Section 6.5, “TLB Entry Maintenance—Details,” 
describes hardware assistance features. 

6.2 Effective-to-Real Address Translation
This section discusses effective-to-real address translation.

6.2.1 Address Translation

The fetch and load/store units generate 32-bit effective addresses. The MMU translates these addresses to 
36-bit real addresses (which are used for memory accesses) using an interim virtual address. In multicore 
implementations, such as the e500mc, the virtual address is formed by concatenating 
MSR[GS] || LPIDR || MSR[IS|AS] || PID || EA, as shown in Figure 6-1.

The appropriate L1 MMU (instruction or data) is checked for a matching address translation. The 
instruction L1 MMU and data L1 MMU operate independently and can be accessed in parallel, so that hits 
for instruction accesses and data accesses can occur in the same clock. If an L1 MMU misses, the request 
for translation is forwarded to the unified (instruction and data) L2 MMU. If found, the contents of the 
TLB entry are concatenated with the page offset to obtain the physical address of the requested access. On 

Table 6-1. TLB Maintenance Programming Model

Features Description Section/Page

TLB 
Instructions

tlbre TLB Read Entry instruction 6.4.1/6-15

tlbwe TLB Write Entry instruction 6.4.2/6-15

tlbsx rA, rB (preferred form: tlbsx 0, rB) TLB Search for entry instruction 6.4.3/6-16

tlbilx TLB Invalidate Local instruction 6.4.4/6-17

tlbivax rA, rB TLB Invalidate instruction 6.4.5/6-17

tlbsync TLB synchronize invalidations 6.4.6/6-18

Registers PID Process ID register Table 6-5

MMUCSR0 MMU control and status register

MMUCFG MMU configuration register

TLB0CFG–TLB1CFG TLB configuration registers

MAS0–MAS8 MMU assist registers

(G)DEAR (Guest)Data exception address register

(G)ESR (Guest)Exception syndrome register

Exceptions/ 
Interrupts

Instruction TLB miss Causes instruction TLB error interrupt 4.9.15/4-33

Data TLB miss Causes data TLB error interrupt 4.9.14/4-32

Instruction permissions violation Causes ISI interrupt 4.9.5/4-23

Data permissions violation Causes DSI interrupt 4.9.4/4-21
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misses in the L1 MMU which hit in the L2 MMU, the L1 TLB entries are replaced from their L2 TLB 
counterparts using a true LRU algorithm.

Figure 6-1. Effective-to-Real Address Translation Flow in e500mc

6.2.2 Address Translation Using External PID Addressing

External PID addressing provides an efficient way for system software to move data and perform cache 
operations across disjunct address spaces. On the e500mc, this functionality includes the following 
external PID versions of standard load, store, and cache instructions:

• Load-type instructions: lbepx, lhepx, lwepx, ldepx, dcbtep, dcbtstep, dcbfep, dcbstep, icbiep, 
and lfdepx 

• Store-type instructions: stbepx, sthepx, stwepx, stdepx, dcbzep, dcbzlep, and stfdepx

Memory translation is performed by substituting the values configured in the external PID load/store 
control registers (EPLC and EPSC):

• External load context PR (EPR) replaces MSR[PR] for permissions checking.

Effective Page Number Byte Address

Real Page Number Byte Address

32-bit EA

0–20 bits*

4–24 bits* 

L2 MMU (unified)

Four 48-bit Virtual Addresses (VAs)

8 bits

Instruction

L1 MMUs

Instruction L1 MMU Data L1 MMU
2 TLBs 2 TLBs

* Number of bits depends on page size: 4 Kbytes–4 Gbytes

64-Entry Fully-Assoc. Array (TLB1)

 512-Entry 4-Way Set Assoc. Array (TLB0) 

12–32 bits*

12–32 bits* 

36-bit Real Address

Data 
Access

MSR[IS] MSR[DS]
Access

LPIDR: 
logical partition ID matched 

against TLB[TLPID]

MSR[GS] 
0 = Hypervisor access

1 = guest access

Effective Page Number

GS LPID AS PID
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• The following fields replace the standard values shown in Figure 6-1 to form a virtual address (as 
shown in Figure 6-2):
— External guest state (EGS) replaces MSR[GS] in forming the virtual address and is compared 

against TLB[TGS] during translation. EGS is writable only in hypervisor state.
— External logical partition ID (ELPID) replaces LPIDR and is compared against TLB[TLPID]. 

ELPID is writable only in hypervisor state.
— External load context AS (EAS) replaces MSR[DS] and is compared against TLB[TS].
— External load context process ID (EPID) replaces PID and is compared against TLB[TID].

Figure 6-2. Forming a Virtual Address Using External PID

6.2.3 Variable-Sized Pages

The following page sizes are supported by the fully-associative TLBs that support variable-sized pages 
(VSPs).

• 4 Kbyte
• 16 Kbyte
• 64 Kbyte
• 256 Kbyte
• 1 Mbyte
• 4 Mbyte
• 16 Mbyte
• 64 Mbyte
• 256 Mbyte
• 1 Gbyte
• 4 Gbyte

6.2.3.1 Checking for TLB Entry Hit

Figure 6-3 shows the compare function used to check the MMU structures for a hit for a virtual address 
that corresponds to an instruction or data access. 

A hit to multiple matching TLB entries is considered a programming error. If this occurs, the TLB 
generates an invalid address and TLB entries may be corrupted and a machine check or error report 
interrupt is generated if HID0[EN_L2MMU_MHD] is set. If HID0[EN_L2MMU_MHD] is not set when 
the error occurs the resulting translation is undefined.

Effective Page Number Byte Address

32-bit EA

0–20 bits 12–32 bits
EPLC[EAS] (load)
EPSC[EAS] (store)

EPxC[ELPID]
logical partition ID matched

against TLB[TLPID]
EPxC[EGS]

0 = Hypervisor access
1 = guest access

EGS ELPID EAS EPID

EPxC[EPID] matched
against TLB[PID]
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Figure 6-3. Virtual Address and TLB-Entry Compare Process

6.2.4 Checking for Access Permissions

When a TLB entry matches with a virtual address of an access, the permission bits of the TLB entry are 
compared with attribute information of the access (read/write, execute/data, user/supervisor) to see if the 
access is allowed to that page. The checking of permissions on the e500mc functions as described in the 
EREF: A Programmer’s Reference Manual for Freescale Power Architecture® Processors.

6.3 Translation Lookaside Buffers (TLBs)
To maximize address translation performance and to provide ample flexibility for the operating system, 
the e500mc implements six TLB arrays. Figure 6-4 contains a more detailed description of the 2-level 
structure. Note that for an instruction access, both the I-L1VSP and the I-L1TLB4K are checked in parallel 
for a TLB hit. Similarly, for a data access, both the D-L1VSP and the D-L1TLB4K are checked in parallel 
for a TLB hit. The instruction L1 MMU and data L1 MMU operate independently and can be accessed in 
parallel, so that hits for instruction accesses and data accesses can occur in the same clock. This figure 
shows the 36-bit real addresses and the 4-way set associative TLB0 used in the e500mc.
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Figure 6-4. Two-Level MMU Structure

Additionally, Figure 6-4 shows that when the L2 MMU is checked for a TLB entry, both TLB1 and TLB0 
are checked in parallel. It also identifies the L1 MMUs as invisible to the programming model (not 
accessible to the operating system); they are managed completely by the hardware as inclusive caches of 
the corresponding L2 MMU TLB entries. Conversely, the L2 MMU is managed by the TLB instructions 
by way of the MAS registers. 

A hit to multiple TLB entries in the L1 MMU (even if they are in separate arrays) is considered to be a 
programming error. This is also the case if an access results in a hit to multiple TLB entries in the L2 
MMU.

Table 6-2 lists the various TLBs and describes their characteristics. 
Table 6-2. Index of TLBs

Location Name Page Sizes Supported Associativity Number of TLB Entries Translations Filled by

Instruction
L1 MMU

I-L1VSP 11 page sizes 1

1 See Section 6.2.3, “Variable-Sized Pages,” for supported page sizes.

Fully associative 8 Instruction TLB1 hit

I-L1TLB4K 4 Kbyte 4-way 64 Instruction TLB0 hit

Data 
L1 MMU

D-L1VSP 11 page sizes 1 Fully associative 8 Data TLB1 hit

D-L1TLB4K 4 Kbyte 4-way 64 Data TLB0 hit

L2 MMU TLB1 11 page sizes 1 Fully associative 64 Unified (I and D) tlbwe

TLB0 4 Kbyte 4-way 512 Unified (I and D) tlbwe

Real Page Number Byte Address

Four virtual addresses (VAs)

L1 MMUs

I-L1VSP

I-L1TLB4K

D-L1VSP

D-L1TLB4K

L2 MMUs (unified)

64-Entry Fully-Assoc. VSP Array (TLB1)

512-Entry 4-Way Set Assoc. Array (TLB0)

MAS Registers
Data AccessInstr. Access

‘Invisible’

4–24 bits

36-bit Real Address’

12–32 bits
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6.3.1 L1 TLB Arrays

As shown in Figure 6-1, there are two level 1 (L1) MMUs. As shown in Figure 6-4 and Table 6-2, the 
instruction and data L1 MMUs each implement a 8-entry, fully associative L1VSP array and a 64-entry, 
4-way set associative L1TLB4K array, comprising the following L1 MMU arrays:

• Instruction L1VSP—8-entry, fully-associative
• Instruction L1TLB4K—64-entry, 4-way set-associative
• Data L1VSP—8-entry, fully associative
• Data L1TLB4K—64-entry, 4-way set-associative

As their names imply, L1TLB4K arrays support fixed, 4-Kbyte pages and L1VSP arrays support eleven 
page sizes. To perform a lookup for instruction accesses, both L1TLB4K and L1VSP TLBs in the 
instruction MMU are searched in parallel for the matching entry. Similarly, for data accesses, both 
L1TLB4K and L1VSP TLBs in the data MMU are searched in parallel for the matching entry. The contents 
of a matching entry are concatenated with the page offset of the original EA; the bit range that is translated 
is determined by the page size. The result constitutes the real (physical) address for the access. 

L1TLB4K TLB entries are replaced based on a true LRU algorithm. The L1VSP entries are also replaced 
based on a true LRU replacement algorithm. The LRU bits are updated each time a TLB entry is accessed 
for translation. However, there are other speculative accesses performed to the L1 MMUs that cause the 
LRU bits to be updated. The performance of the L1 MMUs is high, even though it is not possible to predict 
exactly which entry is the next to be replaced.
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Figure 6-5 shows the organization of the L1 TLBs in both the instruction and data L1 MMUs.

Figure 6-5. L1 MMU TLB Organization

6.3.2 L2 TLB Arrays

The level 1 MMUs are backed up by a unified level 2 MMU that translates both instruction and data 
addresses. Like each L1 MMU, the L2 MMU consists of two TLB arrays:

• TLB1: a 64-entry, fully associative array that supports eleven page sizes.
• TLB0: 512-entry, 4-way set associative array that supports only 4-Kbyte page sizes. 
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Figure 6-6 shows the L2 TLBs.

Figure 6-6. L2 MMU TLB Organization
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TLB entry. Note that successful invalidation operations in the L2 MMU also invalidate matching entries 
in the L1 MMU.

6.3.2.2 Replacement Algorithms for L2 MMU Entries

The replacement algorithm for TLB1 must be implemented completely by the system software. Thus, 
when an entry in TLB1 is to be replaced, the software selects which entry to replace and writes the entry 
number to MAS0[ESEL] before executing a tlbwe instruction.

TLB0 entry replacement is also implemented by software. To assist the software with TLB0 replacement, 
the core provides a hint that can be used for implementing a round-robin replacement algorithm. The hint 
is supplied in the appropriate MAS register fields when certain exceptions occur or a tlbsx instruction finds 
a valid entry. The only parameter required to select the entry to replace is the way select value for the new 
entry. (The entry within the way is selected by EA[45–51].) The mechanism for the round-robin 
replacement uses the following fields:

• TLB0[NV]—the next victim field within TLB0. The next victim field is value which points to a 
way in the set which should be used as the next victim if a new TLB entry is to be allocated. There 
is one next victim value for each set in TLB0.

• MAS0[NV]—the next victim field of MAS0
• MAS0[ESEL]—selects the way to be replaced on tlbwe

Table 6-6 describes MAS register updates on various exception conditions.

Note that the system software can load any value into MAS0[ESEL] and MAS0[NV] prior to execution of 
tlbwe, effectively overwriting this round robin replacement algorithm. In this case, the value written by 
software into MAS0[NV] is used as the next TLB0[NV] value on a TLB miss.

Also, note that the MAS0[NV] value is indeterminate after any TLB entry invalidate operation (including 
a flash invalidate). To know its value after an invalidate operation, MAS0[NV] must be read explicitly.

6.3.2.2.1 Round-Robin Replacement for TLB0

The core has a 4-way set associative TLB0, and so fully implements the round-robin scheme with a simple 
2-bit counter that increments the 2-bit value of NV from the selected set of TLB0 entries on each TLB miss 
and loads the incremented value into MAS0[NV] for use by the next tlbwe instruction. Set selection is 
performed using bits from the EA that caused the TLB miss.
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Figure 6-7. Round Robin Replacement for TLB0

When tlbwe executes, MAS0[ESEL] selects way 0, 1, 2, or 3 of TLB0 to be loaded, and if 
MAS0[TLBSEL] = 0 (selecting TLB0), TLB0[NV] is loaded with the MAS0[NV] value. When a TLB 
miss exception causes a TLB error interrupt and if MAS4[TLBSELD] = 0, the hardware automatically 
loads the current value of TLB0[NV] for the selected set into MAS0[ESEL] and the incremented value of 
TLB0[NV] for the selected set into MAS0[NV]. This sets up MAS0 such that if those values are not 
overwritten, the next way is selected on the next execution of tlbwe.

6.3.3 Consistency Between L1 and L2 TLBs

The contents of the L1 TLBs are always a proper subset of the TLB entries currently resident in the L2 
MMU. They serve to improve performance because they have a faster access time than the larger L2 TLBs. 
The relationships between the six TLBs are shown in Figure 6-8.

Figure 6-8. L1 MMU TLB Relationships with L2 TLBs
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misses, but there is a hit for the access in TLB0, the matching entry is automatically loaded into the data 
L1TLB4K array.

NOTE
Writing to LPIDR or PID causes all L1 entries to be invalidated.

Writing to EPLC or EPSC causes all data-side L1 entries to be invalidated. 

Any tlbilx with T = 0 or 1 that clears an L2MMU TLB0/1 entry causes all 
L1 TLBs to be invalidated.

NOTE
When any L2 TLB entry is written or invalidated (through any invalidation 
mechanism), the corresponding entries in any L1 TLB will also be 
invalidated. Changing PID, LPID, EPLC, or EPSC may cause all L1 entries 
to be invalidated.

6.3.4 The G Bit (of WIMGE)

The Guarded (G) bit provides protection from bus accesses due to speculative and faultable instruction 
execution. A speculative access is defined as an access caused by an instruction that is downstream from 
an unresolved branch. A faultable access is defined as an access that could be cancelled due to an exception 
on an uncompleted instruction.

On the e500mc, if the page for this type of access is marked with G = 0 (unguarded), this type of access 
may be issued to the CoreNet interface regardless of the completion status of other instructions. If G = 1, 
the access stalls if it misses in the cache until the access is known to be required by the program execution 
model; that is, all previous instructions will have completed without exception and no asynchronous 
interrupts occur between the time that the access is issued to CoreNet and the time that CoreNet transaction 
request completes. For reads, this requires that the data be returned and the instruction is retired. For writes, 
the instruction retires when the write transaction is committed to be sent to the CoreNet. 

An access with G = 1 attribute that has gone out to the CoreNet interface is guaranteed to complete. That 
is, after the address tenure is acknowledged on the CoreNet, the access completes, even if an asynchronous 
interrupt is pending.

Note that G = 1 misaligned accesses are not guaranteed to be accessed only once. For example a load 
address that crosses a page boundary where one of the parts encounters a TLB miss and the other does not, 
the non-TLB miss part may occur, and the TLB miss exception may be taken. When software loads a valid 
TLB entry for the part that missed, the instruction will be returned to and re-execute performing the load 
operation again to both parts of the misaligned accesses.

The G bit is ignored for instruction fetches, and instructions are fetched speculatively from guarded pages. 
To prevent speculative fetches from guarded pages without instructions, the page should be also designated 
as no-execute (with the UX/SX page permission bits cleared).
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6.3.5 TLB Entry Field Definitions

Table 6-3 summarizes the fields of e500mc TLB entries. These fields are defined by the architecture and 
described in detail in the EREF: A Programmer’s Reference Manual for Freescale Power Architecture® 
Processors. 

6.4 TLB Instructions—Implementation
As described in the EREF: A Programmer’s Reference Manual for Freescale Power Architecture® 
Processors, TLBs are accessed indirectly through MMU assist (MAS) registers. Software can write and 
read the MAS registers with mtspr and mfspr. MAS registers contain information related to reading and 
writing a given entry within the TLBs. For example, data is read from the TLBs into the MAS registers 
with a TLB Read Entry (tlbre) instruction, and data is written to the TLBs from the MAS registers with a 
TLB Write Entry (tlbwe) instruction.

Table 6-3. TLB Entry Bit Definitions

Field Comments

V Valid bit for entry

TS Translation address space (compared with AS bit of the current access. For external PID accesses, TS is 
compared with EPLC[EAS] or EPSC[EAS].

TID[0–7] Translation ID (compared with PID). For external PID accesses, TID is compared with EPLC[EPID] or 
EPSC[EPID].

EPN[0–19] Effective page number (compared with EA[32–51] for 4-Kbyte pages)

RPN[0–23] Real page number: Translated address RA[28–51] for 4-Kbyte pages

SIZE[0–3] Encoded page size. Values not shown are reserved
0000 Reserved
0001 4 Kbytes
0010 16 Kbytes
0011 64 Kbytes
0100 256 Kbytes
0101 1 Mbyte

0110 4 Mbytes
0111 16 Mbytes
1000 64 Mbytes
1001 256 Mbytes
1010 1 Gbyte
1011 4 Gbytes

PERMIS[0–5] Supervisor execute, write, and read permission bits, and user execute, write, and read permission bits. 

WIMGE Memory/cache attributes (write-through, cache-inhibit, memory coherence required, guarded, endian)

X0, X1 Extra system attribute bits

U0–U3 User attribute bits—used only by software. These bits exist in the L2 MMU TLBs only (TLB1 and TLB0)

IPROT Invalidation protection (exists in TLB1 only)

TGS Translation guest space.

VF Virtualization fault. If set, a DSI occurs on data accesses to this page, regardless of the setting of the permission 
bits.
0 Data accesses translated by this TLB entry occur normally.
1 Data accesses translated by this TLB entry always cause a Data Storage Interrupt that is directed to the 

hypervisor state.

TLPID Translation logical partition ID.
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The tlbre, tlbwe, tlbsx, tlbivax, tlbsync, and tlbilx instructions are summarized in this section.

6.4.1 TLB Read Entry (tlbre) Instruction 

TLB entries can be read by executing tlbre instructions. When tlbre executes, MAS registers are used to 
index a specific TLB entry and upon completion of the tlbre, they contain the contents of the indexed TLB 
entry.

Selection of the TLB entry to read is performed by setting MAS0[TLBSEL,ESEL] and MAS2[EPN] to 
indicate the entry to read. MAS0[TLBSEL] selects which TLB the entry should be read from and 
MAS2[EPN] selects the set of entries from which MAS0[ESEL] selects an entry. For fully associative 
TLBs, MAS2[EPN] is not required because MAS0[ESEL] fully identifies the TLB entry. 

The selected entry is then used to update the following MAS register fields: V, IPROT, TID, TS, TSIZE, 
EPN, WIMGE, RPN, U0—U3, X0, X1, TLPID, TGS, VF, and permission bits. If the TLB array supports 
NV, it is used to update the NV field in the MAS registers, otherwise the contents of NV field are 
undefined. The update of MAS registers as a result of a tlbre instruction is summarized in Table 6-6. 

tlbre can only be executed by the hypervisor. If the guest supervisor attempts a tlbre, an embedded 
hypervisor privilege interrupt occurs.

Note that architecturally, if the instruction specifies a TLB entry that is not found, the results placed in 
MAS0–MAS3, MAS5, MAS7 and MAS8 are undefined. However, for e500mc, the TLBSEL, ESEL and 
EPN fields always index to an existing L2 TLB entry and that indexed entry is read. Note that EPN bits 
are only used to index into TLB0. In the case of TLB1, the EPN field is unused for tlbre. See the EREF: 
A Programmer’s Reference Manual for Freescale Power Architecture® Processors for information at the 
architecture level.

6.4.1.1 Reading TLB1 and TLB0 Array Entries

TLB entries are read by first writing the entry-identifying information into MAS0 (and MAS2 for TLB0), 
using mtspr and then executing the tlbre instruction. 

To read a TLB1 entry, MAS0[TLBSEL] must be = 01 and MAS0[ESEL] must point to the desired entry. 
To read a TLB0 entry, MAS0[TLBSEL] must be = 00, MAS0[ESEL] must point to the desired way, and 
EPN[45–51] in MAS2 must be loaded with the desired index.

6.4.2 TLB Write Entry (tlbwe) 

TLB entries can be written by executing tlbwe instructions. When tlbwe executes, MAS registers are used 
to index a specific TLB entry and contain the contents to be written to the indexed TLB entry. Upon 
completion of tlbwe, the TLB entry contents of the MAS registers are written to the indexed TLB entry.

The TLB entry to write is determined by the MAS0[TLBSEL,ESEL] and MAS2[EPN] values. 
MAS0[TLBSEL] selects which TLB the entry should be written to; MAS2[EPN] selects the set of entries 
from which MAS0[ESEL] selects an entry. For fully associative TLBs, MAS2[EPN] is not used to identify 
a TLB entry since the value in MAS0[ESEL] fully identifies the TLB entry. The selected entry is then 
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written with following MAS fields: V, IPROT, TID, TS, TSIZE, EPN, WIMGE, RPN, U0—U3, X0, X1, 
TLPID, TGS, VF, and permission bits. If the TLB array supports NV, it is written with the NV value. 

The effects of updating the TLB entry are not guaranteed to be visible to the programming model until the 
completion of a context synchronizing operation. Writing a TLB entry that is used by the programming 
model prior to a context synchronizing operation produces undefined behavior.

e500mc does not provide a logical to real translation (LRAT) mechanism so tlbwe can only be executed 
by the hypervisor regardless of the state of EPCR[DGTMI]. If the guest supervisor attempts a tlbwe, an 
embedded hypervisor privilege interrupt occurs.

Note that architecturally, if the instruction specifies a TLB entry that is not found, the results are undefined. 
However, for e500mc, the TLBSEL, ESEL and EPN fields always index to an existing L2 TLB entry and 
that indexed entry is written. Note that EPN bits are only used to index into TLB0. In the case of TLB1, 
the EPN field is unused for tlbre. See the EREF: A Programmer’s Reference Manual for Freescale Power 
Architecture® Processors for information at the architecture level.

6.4.2.1 Writing to the TLB1 Array

TLB1 can be written by first writing the necessary information into MAS0–MAS3, MAS5, MAS7, and 
MAS8 using mtspr and then executing the tlbwe instruction. To write an entry into TLB1, 
MAS0[TLBSEL] must be equal to 1, and MAS0[ESEL] must point to the desired entry. When the tlbwe 
instruction is executed, the TLB entry information stored in MAS0–MAS3, MAS5, MAS7, and MAS8 is 
written into the selected TLB entry in the TLB1 array.

6.4.2.2 Writing to the TLB0 Array

TLB0 can be written by first writing the necessary information into MAS0–MAS3, MAS5, MAS7, and 
MAS8 using mtspr and then executing the tlbwe instruction. To write an entry into TLB0, 
MAS0[TLBSEL] must be equal to zero, MAS0[ESEL] must point to the desired way, and EPN[45–51] in 
MAS2 must be loaded with the desired index. When tlbwe executes, the TLB entry information in 
MAS0–MAS3, MAS5, MAS7, and MAS8 is written into the selected entry in TLB0.

6.4.3 TLB Search (tlbsx)—Searching TLB1 and TLB0 Arrays 

Software can search the MMU by using tlbsx, which uses GS, LPIDR, and PID values and an AS value 
from MAS5 and MAS6 instead of from LPIDR, PID, and the MSR. This allows software to search address 
spaces that differ from the current address space defined by the GS, AS, LPID and PID registers. This is 
useful for TLB fault handling.

To search for a TLB, software loads MAS5[SGS] with a GS value, MAS5[SLPID] with an LPID value, 
MAS6[SPID] with a PID value, and MAS6[SAS] with an AS value to search for. Software then executes 
tlbsx specifying the EA to search for. 

If a matching, valid TLB entry is found, the MAS registers are loaded with the information from that TLB 
entry as if the TLB entry were read from by executing tlbre. If the search is successful, MAS1[V] is set to 
1. If the search is unsuccessful, MAS1[V] is set to 0.
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Executing tlbsx updates the MAS registers conditionally based on the success or failure of a TLB lookup 
in the L2 MMU. The values placed into MAS registers differ, depending on whether the search is 
successful. Section 6.7.1, “MAS Register Updates,” describes how MAS registers are updated.

NOTE
Note that rA = 0 is the preferred form for tlbsx and that some Freescale 
implementations, including the e500mc, take an illegal instruction 
exception program interrupt if rA!=0. 

6.4.4 TLB Invalidate Local Indexed (tlbilx) Instruction

Zero, one, or more TLB entries can be invalidated through the execution of a tlbilx instruction. Note that 
guest supervisor software can execute tlbilx. The behavior depends on the T operand, as follows:

• If T = 0, all TLB entries for which entryTLPID = MAS5[SLPID] are invalidated.
• If T = 1, all TLB entries for which entryTLPID = MAS5[SLPID] and entryTID = MAS6[SPID] are 

invalidated.
• If T = 3, all TLB entries for which entryTLPID = MAS5[SLPID] and entryTID = MAS6[SPID] and 

(entryEPN&m) = (EA32:51&m), where m is an appropriate mask based on page size, are invalidated.

If an entry selected for invalidation has IPROT set, that entry is not invalidated.

Unlike tlbivax, TLB entries are only invalidated on the processor which executes tlbilx.

NOTES 
tlbilx is the preferred way of performing TLB invalidations, especially for 
operating systems running as a guest to the hypervisor since the 
invalidations are partitioned and do not require hypervisor privilege.

The preferred form of tlbilx has rA = 0. Forms where rA != 0 takes an 
illegal instruction exception on some Freescale processors.

Hypervisor should always set MAS5[SLPID] to LPIDR when dispatching 
to a guest.

Executing tlbilx with T = 0 or T = 1 may take many cycles to perform. 
Software should only issue these operations when an LPID or a PID value 
is reused or taken out of use.

6.4.5 TLB Invalidate (tlbivax) Instruction

The tlbivax instruction invalidates any TLB entry that corresponds to the virtual addresses calculated by 
the instruction. This includes entries in the executing processor and TLBs on other processors and devices 
throughout the coherence domain of the processor executing tlbivax. 

EA[60] selects the TLB array to which the invalidation is to occur. EA[59] is ignored, but software should 
set it to 0.

If EA[61] (IA field) is set, all TLB entries in the designated TLB array are invalidated, regardless of 
partition, except for TLB entries with the IPROT attribute set to 1.
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If EA[61] is 0, invalidation is partitioned and only TLB entries whose EPN field matches the EA[0:51] 
and whose TLPID field matches the MAS5[SLPID] and whose TGS field matches MAS5[SGS] of the 
processor executing the tlbivax instruction are invalidated. Other TLB entries may be invalidated by the 
implementation, but in no case will any TLB entries (including ones that match the invalidation criteria) 
with the IPROT attribute set be invalidated.

Software should also set MAS6[SPID] and MAS6[SAS] to further identify the entry which is to be 
invalidated although the e500mc does not use these values in the comparison (and will thus invalidate 
entries regardless of the content of their TID and TS fields). If portability of software to future 
implementations is desired, software should not assume that any TLB entry will be invalidated except the 
entry corresponding to the EA, MAS5[SLPID], MAS5[SGS], MAS6[SPID], and MAS6[SAS] as future 
implementations may invalidate to the stricter MAS6[SPID] and MAS6[SAS] criteria.

Because the virtual address can be much larger than the physical address, a subset of the full virtual address 
is broadcast that fits within the space of the implemented physical addressing mode.

Because the tlbivax does not compare PID or AS values, one tlbivax can invalidate multiple entries in a 
targeted TLB. A tlbivax targeting TLB0 can invalidate up to all four ways, and up to all four ways within 
an L1TLB4K index. A tlbivax targeting TLB1 can invalidate up to all 64 entries in the array, or up to all 
8 entries of the L1VSPs (instruction and data). Section 6.3.2.1, “IPROT Invalidation Protection in TLB1,” 
describes how to protect TLB1 entries from this type of invalidation.

The tlbivax instruction invalidates all matching entries in the instruction and data L1 TLBs 
simultaneously. Also, the core always snoops TLB invalidate transactions and invalidates matching TLB 
entries accordingly.

NOTE
Note that rA = 0 is the preferred form for tlbivax and that some Freescale 
implementations take an illegal instruction exception program interrupt if 
rA!=0. 

6.4.5.1 TLB Selection and Invalidate All Address tlbivax Encodings

Because only a subset of the virtual address is broadcast, extra information about the targeted TLB entries 
is encoded in two of the lower EA bits calculated by tlbivax. 

• Bit 60 is interpreted as the TLBSEL field, which indicates whether TLB1 or TLB0 is targeted. 
TLBSEL prevents unwanted invalidations of large pages in TLB1 when a tlbivax targets TLB0.

• Bit 61 is interpreted as the INV_ALL command. Setting bit 61 it indicates that the operation should 
invalidate all entries of either TLB1 or TLB0 as indicated by the TLBSEL field, and invalidate all 
corresponding L1 TLB entries. 

6.4.6 TLB Synchronize (tlbsync) Instruction

The tlbsync instruction causes a TLBSYNC transaction on the CoreNet interface. This instruction 
effectively synchronizes the invalidation of TLB entries; tlbsync does not complete until all memory 
accesses caused by instructions issued before an earlier tlbivax instruction have completed.
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NOTE
Software must ensure that only one tlbsync operation is active at a given 
time. A second tlbsync issued (from any core in the coherence domain) 
before the first one has completed, can cause processors to hang. Software 
should make sure the tlbsync and its associated synchronization is 
contained with a mutual exclusion lock that all processor must acquire 
before executing tlbsync.

6.5 TLB Entry Maintenance—Details
TLB entries must be loaded and maintained by the system software, including performing the required 
table search operations in memory. The e500mc provides some hardware assistance for these software 
tasks. Note that the system software cannot directly access the L1 TLBs, and the L1 TLBs are completely 
and automatically maintained in hardware as a subset of the contents of the L2 TLBs.

In addition to the resources described in Table 6-1, hardware assists TLB entries maintenance as follows:
• Automatic loading of MAS0–MAS2 and MAS6 based on the default values in MAS4 and other 

context when a TLB miss exceptions. This automatically generates most fields of the required TLB 
entry on a miss. Thus software should load MAS4 with likely values to be used in the event of a 
TLB miss.

• Automatic loading of the data exception address register (DEAR or GDEAR) with the EA of the 
load, store, or cache management instruction that caused an alignment, data TLB miss (data TLB 
error interrupt), or permissions violation (DSI interrupt).

• Automatic loading into SRR0 of the EA of the instruction that causes a TLB miss exception or a 
data storage interrupt.

• Automatic updates of the next victim (NV) field and MAS0[ESEL] fields for TLB0 entry 
replacement on TLB misses (TLB error interrupts); this occurs if TLBSELD = 0. See 
Section 6.3.2.2, “Replacement Algorithms for L2 MMU Entries.”

• When tlbwe executes, the information for the selected victim is read from the selected L2 TLB 
(TLB1 or TLB0). The victim’s EPN and TS are sent to both L1 MMUs to provide 
back-invalidation. Thus if the selected victim in the L2 MMU also resides in an L1 MMU, it is 
invalidated (or victimized) in the L1 MMU. This forces inclusion in the TLB hierarchy. 
Additionally, the new TLB entry contained in MAS0–MAS3, MAS7, and MAS8 is written into the 
selected TLB. 

Note that although tlbwe loads an L2 TLB entry, it does not load an L1 TLB entry. L1 arrays are loaded 
with new entries (automatically by the hardware) only when an access misses in the L1 array, but hits in a 
corresponding L2 array.

See Section 6.7.1, “MAS Register Updates,” for a complete description of automatic fields loaded into the 
MAS registers on execution of TLB instructions and for various exception conditions.

The EREF: A Programmer’s Reference Manual for Freescale Power Architecture® Processors provides 
more information on some actions taken on MMU exceptions. The following subsections provide 
supplementary information that applies for the e500mc.
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6.5.1 TLB Interrupt Routines

When the MMUs report an exception, all instructions dispatched before the exception are allowed to 
complete. The interrupt is acknowledged and MAS0–MAS2 and MAS6 are loaded as described in 
Section 6.7.1, “MAS Register Updates.”

Most TLB miss, DSI, and ISI handlers must first save the values of enough GPRs for the handler’s use. 
The handler should then perform an mfcr to copy the CR data into one of the GPRs. Before exiting the 
handler, an mtcrf must restore the CR before the original GPR data must be restored. 

PID must also be restored (if modified) before exiting the handler. Note that PID register updates must be 
followed by an isync. This isync instruction must reside in an instruction page that is valid before the 
changes are made to the PID.

6.5.1.1 Permissions Violations (ISI, DSI) Interrupt Handlers

On a DSI or ISI, software must load the MAS registers appropriately if it wishes to update the TLB entry 
associated with the error. In general, software will ensure the appropriate PID and AS values are in MAS6 
and can then execute a tlbsx using the value from SRR0 if it is an ISI or the value from (G)DEAR if it is 
a DSI.

6.6 TLB States after Reset
During reset, all L1 and L2 MMU TLB entries are flash invalidated. Then entry 0 of TLB1 is loaded with 
the values shown in Table 6-4. Note that only the valid bits for other TLB entries are cleared; other fields 
are not set to a known state so software must ensure that all fields of an entry are initialized appropriately 
through the MAS registers before it is used for translation.

NOTE
This default TLB entry translates the first instruction fetch out of reset (at 
effective address 0xFFFF_FFFC). This instruction should be a branch to the 
beginning of this page. Because this page is only 4 Kbytes, the initial code 
in this page needs to set up more valid TLB entries (and pages) so the 
program can branch into other pages for booting the operating system. In 
particular, the interrupt vector area and the pages that contain the interrupt 
handlers should be set up so exceptions can be handled early in the booting 
process.

Table 6-4. TLB1 Entry 0 Values after Reset

Field Reset Value Comments

V 1 Entry is valid

TS 0 Address space 0

TGS 0 Hypervisor address space

TID[0–7] 0 TID value for shared (global) page

TLPID 0 TLPID value for hypervisor page

TID[0–7] 0x00 TID value for shared (global) page
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6.7 MMU Registers
Table 6-5 provides cross-references to sections with more detailed bit descriptions for the e500mc MMU 
registers. The EREF: A Programmer’s Reference Manual for Freescale Power Architecture® Processors 
lists the architecture definitions for these registers.

6.7.1 MAS Register Updates

Table 6-6 summarizes how MAS register are updated by hardware for each stimulus. The table can be 
interpreted as follows:

• A field name refers to a MAS register field. 
• PID, MSR, EPLC, and EPSC refer to their respective registers.
• EA refers to the effective address used for the memory access which caused a TLB error (miss).
• TLB0[NV] refers to the next victim value for the set selected by EA stored in TLB0.

EPN[32–51] 0xFFFFF Address of last 4-Kbyte page in address space

RPN[34–51] 0x3FFFF Lower 18 bits of RPN

RPN[28–33] SoC supplied Upper 6 bits of real address space. These bits are supplied to the core from the SoC. See 
the reference manual for the integrated device.

SIZE[0–3] 0b0001 4-Kbyte page size

SX/SR/SW 0b111 Full supervisor mode access allowed

UX/UR/UW 0b000 No user mode access allowed

WIMGE 0b01000 Caching-inhibited, noncoherent, not guarded, big-endian

X0–X1 0b00 Reserved system attributes

U0–U3 0b0000 User attribute bits

IPROT 1 Page is protected from invalidation

VF 0 Page is not a virtualization page

Table 6-5. Registers Used for MMU Functions

Registers Section/Page

Process ID (PID) 2.16.2/2-50

Logical Process ID (LPIDR) 2.16.1/2-49

MMU control and status register (MMUCSR0) 2.16.3/2-50

MMU configuration register (MMUCFG) 2.16.4/2-51

TLB configuration registers (TLB0CFG–TLB1CFG) 2.16.5/2-51

MMU assist registers (MAS0–MAS8) 2.16.6/2-52

Data exception address register (DEAR/GDEAR) 2.9.2/2-17

Table 6-4. TLB1 Entry 0 Values after Reset (continued)

Field Reset Value Comments



Memory Management Units (MMUs)

e500mc Core Reference Manual, Rev. 3

Freescale Semiconductor 6-22
 

• The TLB entry specified by TLBSEL and ESEL is referred to as TLB0 (if the value comes only 
from TLB0), TLB1 (if the value comes only from TLB1), or TLB if the value can come from the 
selected TLB array and the field is stored the same regardless of which array it is in.

Table 6-6. MMU Assist Register Field Updates

MAS Field
Inst TLB Error
Data TLB Error

tlbsx Hit tlbsx Miss tlbre

MAS0

TLBSEL TLBSELD if TLB0 hit
0

else
1

TLBSELD —

ESEL if TLBSELD = 0
0b0000 || TLB0[NV]

else
0b000000

if TLBSEL = 0
0b0000 || (way that hit)

else
(entry that hit)

if TLBSELD = 0
0b0000 || TLB0[NV]

else
0b000000

—

NV if TLBSELD = 0
mod(TLB0[NV]+1,4)

else
0

if TLBSEL = 0
TLB0[NV]

else
0

if TLBSELD = 0
mod(TLB0[NV]+1,4)

else
0

if TLBSEL = 0
TLB0[NV]

else
0

MAS1

IPROT 0 If TLB1 hit
TLB1[IPROT]

else
0

0 If TLB1 hit
TLB1[IPROT]

else
0

TID if ext PID load
EPLC[EPID]

elseif ext PID store
EPSC[EPID]

else
PID

TLB[TID] SPID TLB[TID]

TSIZE TSIZED if TLB1 hit
TLB1[TSIZE]

else
1

TSIZED if TLB1 hit
TLB1[TSIZE]

else
1

TS if Data TLB Error
if ext PID load

EPLC[EAS]
elseif ext PID store

EPSC[EAS]
else

MSR[DS]
else

MSR[IS]

TLB[TS] SAS TLB[TS]

V 1 1 0 TLB[V]

MAS2

WIMGE  WIMGED TLB[WIMGE] WIMGED TLB[WIMGE]
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X0, X1 X0D, X1D TLB[X0, X1] X0D, X1D TLB[X0, X1]

EPN[32:51] EA[32:51] of access if TLBSEL = 0
TLB[EPN[32:44]] || EPN[45:51]

else
TLB[EPN[32:51]]

EA[32:51] if TLBSEL = 0
TLB[EPN[32:44]] || EPN[45:51]

else
TLB[EPN[32:51]]

MAS3

UR,SR,UW,
SW,UX,SX

Zeros TLB[UR,SR,UW,SW,UX,SX] Zeros TLB[UR,SR,UW,SW,UX,SX]

U0–U3 Zeros TLB[U0-U3] Zeros TLB[U0-U3]

RPN[32:51] Zeros TLB[RPN[32:51]] Zeros TLB[RPN[32:51]]

MAS4

WIMGED — — — —

WIMGED,
X0D,X1D,
TIDSELD,
TLBSELD,
TSIZED

— — — —

MAS5

SGS — — — —

SLPID — — — —

MAS6

SAS if Data TLB Error
if ext PID load

EPLC[EAS]
elseif ext PID store

EPSC[EAS]
else

MSR[DS]
else

MSR[IS]

— — —

SPID if ext PID load
EPLC[EPID]

elseif ext PID store
EPSC[EPID]

else
PID

— — —

MAS7 (if HID0[EN_MAS7_UPDATE] = 1)

RPN[28:31] Zeros TLB[RPN[28:31]] Zeros TLB[RPN[28:31]]

MAS8

TGS — TLB[TGS] — TLB[TGS]

Table 6-6. MMU Assist Register Field Updates (continued)

MAS Field
Inst TLB Error
Data TLB Error

tlbsx Hit tlbsx Miss tlbre
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VF — TLB[VF] — TLB[VF]

TLPID — TLB[TLPID] — TLB[TLPID]

Table 6-6. MMU Assist Register Field Updates (continued)

MAS Field
Inst TLB Error
Data TLB Error

tlbsx Hit tlbsx Miss tlbre
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Chapter 7  
Timer Facilities
This chapter describes specific implementation details of the e500mc implementation of 
architecture-defined timer facilities. These resources, which include the time base (TB), alternate time 
base (ATB), decrementer (DEC), fixed-interval timer (FIT), and watchdog timer, are described in detail in 
the EREF: A Programmer’s Reference Manual for Freescale Power Architecture® Processors. 

7.1 Timer Facilities
The TB, DEC, FIT, ATB, and watchdog timer provide timing functions for the system. All of these must 
be initialized during start-up.

• The TB provides a long-period counter driven by a frequency that is implementation dependent.
• The decrementer, a counter that is updated at the same rate as the TB, provides a means of signaling 

an exception after a specified amount of time has elapsed unless one of the following occurs:
— DEC is altered by software in the interim
— The TB update frequency changes
The DEC is typically used as a general-purpose software timer.

• The clock source for the TB and the DEC is driven by the integrated device and is normally 
selectable to be a ratio of some integrated device clock frequency, or driven from a clock source 
external to the integrated device (that is, customer supplied). See the reference manual of the 
integrated device for details.

• The fixed-interval timer is essentially a selected bit of the TB, which provides a means of signaling 
an exception whenever the selected bit transitions from 0 to 1, in a repetitive fashion. The 
fixed-interval timer is typically used to trigger periodic system maintenance functions. Software 
may select any bit in the TB to serve as the fixed-interval timer. 

• The ATB provides a 64-bit timer that cannot be written, which increments at an implementation 
dependent frequency. For the e500mc, the ATB frequency is the same as the core frequency which 
makes the ATB useful for measuring elapsed time in core clocks.

• The watchdog timer is also a selected bit of the TB, which provides a means of signalling a critical 
class exception whenever the selected bit transitions from 0 to 1. In addition, if software does not 
respond in time to the initial exception (by clearing the associated status bits in the TSR before the 
next expiration of the watchdog timer interval), then a watchdog timer-generated processor reset 
may result, if so enabled. The watchdog timer is typically used to provide a system error recovery 
function. Software may select any bit in the TB to serve as the watchdog timer.
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The relationship of these timer facilities (except for the ATB) to each other is shown in Figure 7-1.

Figure 7-1. Relationship of Timer Facilities to Time Base

7.2 Timer Registers
This section describes registers used by the timer facilities.

• Timer control register (TCR). Provides control information for the on-chip timer of the core 
complex. The TCR controls decrementer, fixed-interval timer, and watchdog timer options. 
Section 2.8.1, “Timer Control Register (TCR),” describes the TCR in detail.

• Timer status register (TSR). Contains status on timer events and the most recent watchdog 
timer-initiated processor reset. Section 2.8.2, “Timer Status Register (TSR),” describes the TSR in 
detail.

• Decrementer register (DEC). DEC contents can be read into bits 32–63 of a GPR using mfspr, 
clearing bits 0–31. GPR contents can be written to the decrementer using mtspr. See Section 2.8.4, 
“Decrementer Register (DEC),” for more information.

• Decrementer auto-reload register (DECAR). Supports the auto-reload feature of the decrementer. 
The DECAR contents cannot be read. See Section 2.8.5, “Decrementer Auto-Reload Register 
(DECAR),” for more information.

7.3 Watchdog Timer Implementation
When the watchdog timer expires in such a manner as requiring a reset, the core does not perform the reset. 
Instead the core output signals core_wrs[0:1] to reflect the value of TSR[WRS]. The intention is to signal 
the system that a watchdog reset event has occurred. The system can then implement a reset strategy. In 
general, the default strategy will normally be to reset the core, however, leaving the policy decision up to 
the integrated device allows for other strategies to be optionally implemented. See the reference manual 
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for the integrated device for details on what occurs on a watchdog timer expiration that should result in 
reset.

7.4 Performance Monitor Time Base Event
The e500mc provides the ability to count transitions of the TBL bit selected by PMGC0[TBSEL]. This 
count is enabled by setting PMGC0[TBEE]. For specific information, see Chapter 9, “Debug and 
Performance Monitor Facilities.”
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Chapter 8  
Power Management 
This chapter describes the power management facilities as they are implemented on the e500mc core. The 
scope of this chapter is limited to the features of the e500mc only. Additional power management 
capabilities associated with a device that integrates this core (referenced as the integrated device 
throughout the chapter) are documented in the integrated device’s reference manual.

8.1 Overview
A complete power management scheme for a system using the e500mc requires the support of the 
integrated device. The programming model and control of power management states for the core is 
provided by the integrated device. With the exception of the wait instruction, all other power management 
states are achieved through registers provided by the integrated device. 

Power management consists of separate states, shown in Table 8-1 which correspond to power 
management states documented in the integrated device reference manual. These states map directly to 
core activity states, shown in Table 8-2, which describe more of the state machine of how the core 
transitions between states. These transitions are driven by power management signals, shown in Table 8-3, 
to the e500mc from the integrated device. In general, software does not need to concern itself about core 
activity states or the power management signals since the transitions are handled by signals from the 
integrate

8.2 e500mc and Integrated Device Power Management States
The core provides four different power management states in addition to normal operation. These states 
are called wait, doze, nap, and sleep. The doze, nap, and sleep states are controlled through integrated 
device registers and cause the core to transition to different activity states (pm_halted, pm_stopped) while 
the wait state is initiated and controlled solely by the core. Power management states are described in 
Table 8-1. 
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Table 8-1. e500mc Power Management States

State Description

wait The core stops fetching and execution of instructions. All core clocks are active. Timebase continues to 
increment and timer functions are active. All state is retained and snooping activity for the caches and other 
broadcast CoreNet operations such as msgsnd and tlbivax are still active. The wait state is entered when the 
core executes a wait instruction. The wait state is terminated and normal operation resumes when any 
asynchronous interrupt is ready to be taken by the core. When the wait state terminates, the core will take the 
interrupt, and the save/restore register indicating the address to return to after the interrupt is processed will point 
to the instruction following the wait instruction. Note that an external interrupt that is pending, but is not enabled 
by the core, will not cause the wait state to be terminated. The wait state is solely initiated by the core and as 
such does not participate in the protocol between the integrated device and the core with respect to pm_halted 
and pm_stopped core activity states.

Because state is retained in the caches and core registers, and the caches continue to participate in snooping 
activities, software does not need to perform any specific actions prior to entering the wait state to ensure that 
coherent state is maintained.

doze The doze state provides a similar level of power savings as the wait state, but is controlled by the integrated 
device and will terminate when an external asynchronous interrupt is pending, even if the core does not have 
that interrupt enabled. The core stops fetching and execution of instructions. All core clocks are active. Timebase 
continues to increment and timer functions are active. All state is retained and snooping activity for the caches 
and other broadcast CoreNet operations such as msgsnd and tlbivax are still active. The doze state is entered 
when the integrated device is programmed to signal the core to enter the doze state. To enter the doze state, the 
integrated device signals the core to enter the pm_halted activity state.

The doze state is terminated and normal operation resumes when an asynchronous external interrupt to be 
signalled by the integrated device is pending. The doze state may also be terminated when one of the following 
internally generated asynchronous interrupts is pending: decrementer, fixed interval timer, watchdog timer, 
machine check, performance monitor, processor doorbell, processor doorbell critical, guest processor doorbell, 
guest processor doorbell critical, and guest processor doorbell machine check. When the doze state terminates 
the integrated device signals the core to exit the pm_halted activity state. The core resumes fetching and 
executing instructions from the point at which it stopped executing instructions. If the interrupt condition which 
caused the core to exit the doze state is enabled and the interrupt is still pending, the interrupt will immediately 
be taken and the save/restore register indicating the address to return to after the interrupt is processed will point 
to the instruction which would have executed next after the core entered the pm_halted activity state.

Because state is retained in the caches and core registers, and the caches continue to participate in snooping 
activities, software does not need to perform any specific actions prior to entering the doze state to ensure that 
coherent state is maintained.
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The notion of nap, doze, and sleep modes (or states) pertains to, and are defined by, the integrated device 
as a whole. As shown in Figure 8-1, an integrated device may define the terms nap, doze, and sleep to mean 
different things. However, the integrated device controls the core power management by requesting the 
core to enter the core activity states pm_halted, pm_stopped, and by manipulating the timebase enable 
(tben) signal.

nap The core stops fetching and execution of instructions. Core clocks are turned off by the integrated device, except 
for the timebase. The core retains all its state, however with clocks off the core will not receive and process 
transactions from CoreNet. Operations such as snoops, acceptance of messages from a msgsnd operation, and 
TLB invalidations from tlbivax operations will not be seen by the core and will be lost with respect to the core. 
The nap state is entered when the integrated device is programmed to signal the core to enter the nap state. To 
enter the nap state, the integrated device signals the core to enter the pm_halted activity state and then signals 
the core to enter the pm_stopped state.

The nap state is terminated and normal operation resumes when an asynchronous external interrupt to be 
signalled by the integrated device is pending. The nap state may also be terminated when one of the following 
internally generated asynchronous interrupts is pending: decrementer, fixed interval timer, watchdog timer, 
machine check, and performance monitor. When the nap state terminates the integrated device signals the core 
to transition from the pm_stopped activity state to the pm_halted activity state, then exits the core_halted activity 
state. The core resumes fetching and executing instructions from the point at which it stopped executing 
instructions. If the interrupt condition which caused the core to exit the nap state is enabled and the interrupt is 
still pending, the interrupt will immediately be taken and the save/restore register indicating the address to return 
to after the interrupt is processed will point to the instruction which would have executed next after the core 
entered the pm_halted activity state.

Because state is retained in the caches and core registers, but the caches no longer continue to participate in 
snooping activities, software should always flush, then invalidate the caches prior to initiating nap state to ensure 
that any modified data is written out to backing store. Upon exit from nap state, software must update any TLB 
entries that may have changed due to invalidations that were missed while the core was in the pm_stopped 
activity state. In general, this will require the flushing of any dynamic TLB entries and reloading them from the 
software page table. Because the core must flush its caches immediately prior to entering the nap state, the nap 
state will generally only be initiated by writing the appropriate integrated device registers by the specific core 
which will enter the nap state (that is, a core will generally nap itself, not another core).

sleep The sleep state is the same as the nap state, except that the timebase functions are also turned off. 

All software activities required of the nap state are also required by the sleep state. In addition, since the 
timebase is also turned off during sleep, upon exit from sleep state, software will have to reload the timebase 
from some source external to the core. During sleep, the core will not wake from internally generated 
asynchronous interrupts because the core is not processing any events that might cause a wakeup condition to 
be noted.

Table 8-1. e500mc Power Management States (continued)

State Description
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Figure 8-1. Core Activity State Diagram

In addition to the power-management states, dynamic power management automatically stops clocking 
individual internal functional units whenever they are idle. 

Table 8-2 describes the core activity states.

8.3 Power Management Signals
Table 8-3 summarizes the power management signals of the e500mc. Power management signals cause 
the core to transition to different power management states and core activity states. Power management 
states are shown in Table 8-1 and core activity states are shown in Table 8-2.

Table 8-2. Core Activity States

State Descriptions

full_on 
(default)

Default. All internal units are operating at the full clock speed defined at power-up. Dynamic power management 
automatically stops clocking individual internal functional units that are idle.

pm_halted Initiated by asserting the halt input. The e500mc responds by stopping instruction execution. It then it asserts the 
halted output to indicate that it is in the core_halted state. Core clocks continue running, and snooping continues 
to maintain cache coherency. As Figure 8-1 shows, the e500mc is in pm_halted state when the integrated device 
is in doze state.
The following occur once the core is in core_halted state:
 • Suspend instruction fetching.
 • Complete all previously fetched instructions and associated data transactions.

pm_stopped Initiated when stop is asserted to the core while it is in pm_halted state. The core responds by inhibiting clock 
distribution to most of its functional units (after the CoreNet interface idles), and then asserting the stopped 
output. 

tben Disabling the timebase facilities. Additional power reduction is achieved by negating the time base enable (tben) 
input, which stops timebase operations. Note that tben controls the timebase in all power management states. 
Timer operation is independent of power management except for software considerations required for processing 
timer interrupts that occur during pm_stopped state. For example, if the timer facility is stopped, software 
ordinarily uses an external time reference to update the various timing counters upon restart.

pm_halted

pm_stopped

halt & ¬stop

stop

¬halthalt

¬stopstop & halt

full_on ¬halt

(Device doze state)

(Device nap or sleep state)
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Table 8-3. Power Management Signals

Signal I/O Description

halt I Asserted by the integrated device to initiate actions that cause the core to enter halted state.

halted O Asserted by the core when it reaches pm_halted state.

stop I Asserted by the integrated device to initiate the required actions that cause the core to go from pm_halted 
into pm_stopped state (as described in Table 8-2). 

Negating stop returns the core to pm_halted state.

stopped O Asserted by the core anytime the internal functional clocks of the e500mc are stopped (for example after 
integrated device asserts stop). 

tben I Asserted by the integrated device to enable the timebase.

wake_req O Asserted when the core detects an internally generated asynchronous interrupt is enabled and pending. 
This prompts the integrated device to bring the core to a full_on activity state to service the interrupt. The 
interrupts that can assert wake_req are: decrementer, fixed interval timer, watchdog timer, machine 
check, performance monitor, processor doorbell, processor doorbell critical, guest processor doorbell, 
guest processor doorbell critical, and guest processor doorbell machine check.
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8.4 Power Management Protocol
The e500mc responds to signals driven by the platform that command the core to transition from full_on 
state to pm_halted or pm_stopped state by driving the halt and stop signals. When the core has reached the 
requested state, it outputs the halted or stopped signals to inform the platform that the state transition is 
complete. 

Figure 8-2. Core Power Management Handshaking 

8.5 Interrupts and Power Management
In pm_halted or pm_stopped activity state, the core does not recognize external interrupt requests from the 
integrated device. The power management logic of the integrated device must monitor all external 
interrupt requests (as well as the e500mc wake_req output) to detect interrupt requests. Upon sensing an 
interrupt request, the integrated device ordinarily negates stop and halt to restore the core to full_on 
activity state, allowing it to service the interrupt request.

The control of power management state changes is done completely through the integrated device, 
including current state and previous state status. Consult the user manual of the integrated device for 
information on the programming model.
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Chapter 9  
Debug and Performance Monitor Facilities

9.1 Debug and Performance Monitor Facilities Overview
The e500mc core provides hardware support for the following:

• Software debuggers that run natively on the e500mc processor
• External software debuggers that run on external hardware that is attached to the e500mc processor

The architecture defines a set of debug features that support software debuggers that run natively on the 
processor. These features include trace facilities and instruction and data address breakpoints. The 
architecture specifies that these features trigger debug interrupts when they are enabled for internal debug 
mode (IDM). The e500mc implements these features as they are described in the debug chapter of the 
EREF: A Programmer’s Reference Manual for Freescale Power Architecture® Processors.

The e500mc provides the capability for an external debugger to leverage the architecture-defined debug 
mechanisms and use them when they are enabled for external debug mode (EDM). In EDM, the external 
debugger has control over these mechanisms, and software running on the e500mc cannot alter them. In 
EDM, the architecture-defined debug features can be used to cause the core to halt (stop fetching and 
executing instructions) instead of taking a debug interrupt. The e500mc has also implemented the dnh 
instruction, which when enabled, causes the processor to halt for the external debugger.

The performance monitor facility allows software running on the processor to collect information about 
events that occur in the processor. Software can configure counters to count events and later harvest those 
events to determine performance aspects of running software. The performance monitor facility is 
non-intrusive except when a performance monitor interrupt is configured. This can cause an interrupt if 
certain events, such as counter overflow, occur. The performance monitor facility is described in 
Section 9.11, “Performance Monitor.”

9.1.1 Terminology

This chapter uses certain terminology that has the specific meanings defined in this section. This 
terminology is used elsewhere in this manual and in the EREF: A Programmer’s Reference Manual for 
Freescale Power Architecture® Processors and has the same definition. Some of this terminology, such 
as ‘debug event’ appears in Power ISA™ and has a more limited scope, since Power ISA does not define 
external debug capabilities.

The term ‘debug condition’ indicates that a set of specific criteria have been met such that the 
corresponding debug event occurs in the absence of any gating or masking. The criteria for debug 
conditions are obtained from debug control registers.
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The term ‘debug event’ means the setting of a bit in either the debug status register (DBSR) or external 
debug status register 0 (EDBSR0) upon the occurrence of the associated debug condition. However, a 
debug condition does not always result in a debug event. Conditions are prioritized with respect to 
exceptions. Except for some special UDE (Unconditional Debug Event) debug conditions, exceptions that 
have higher priority than a debug condition prevent the debug condition from being recorded as a debug 
event. In internal debug mode (IDM), debug events cause a debug interrupt if the debug enable bit is set 
(MSR[DE] = 1). It is possible that a UDE debug event can occur at the same time another debug event 
occurs. 

The term ‘debug interrupt’ refers to the action of saving old context (machine state register and next 
instruction address) into the debug save/restore registers (DSRR0 and DSRR1) and beginning execution 
at a predetermined interrupt handler address. For additional information, see Section 4.9.16, “Debug 
Interrupt—IVOR15.”

In external debug mode (EDM) (EDBCR0[EDM] = 1), debug events cause the processor to halt.

9.2 Internal (Software) Debug Registers
Internal debug-related registers are accessible to software running on the processor. These registers are 
intended for use by special debug tools and debug software, and not by general application or operating 
system code. These registers are described in Section 2.17, “Internal Debug Registers.”

9.3 External Debug Registers
The external debug registers are used for controlling the core and reporting status while the e500mc is in 
external debug mode. 

9.3.1 External Debug Control Register 0 (EDBCR0)

EDBCR0 is a control register that is accessible to an external debugger through the memory mapped 
interface. An external development tool can write to this register in order to enable EDM, to enable 
Debugger Notify Halt instructions (dnh), or disable certain asynchronous interrupts.

EDBCR0 is not accessible by software running on the e500mc core. However, the state of 
EDBCR0[EDM] is reflected as a read-only bit in DBCR0[EDM].

EDBCR0[EDM] takes precedence over DBCR0[IDM]. Whenever EDM = 1, debug events are enabled 
(whether IDM = 0 or IDM = 1), and any enabled debug event causes the processor to halt.

When EDBCR0 bits controlling asynchronous interrupt disables are set (EDMEO, EDCEO, EDEEO), 
normal asynchronous interrupt enabling conditions are overridden. The setting of these bits does not 
modify the state of the wake_req signal from the core to SoC power management logic. Nor does the 
setting of these bits affect the execution of the wait instruction. When wait is executed and asynchronous 
interrupt disables are set, the processor will wait until the interrupt disables are removed (through the 
external debugger) and an interrupt occurs before continuing execution.

If an external debugger wishes to use the EDMEO, EDCEO, or EDEEO bits to mask the taking of 
asynchronous interrupts, it should set these bits prior to changing any processor state after the processor 
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has been halted to prevent the processor from committing to an interrupt. For example, if after the 
processor is halted and the debugger jams a mtmsr instruction that sets MSR[EE] and the external input 
pin is signalling an external input interrupt is present, the core will be committed to take that interrupt and 
will take the interrupt when the processor is taken out of the halted state even if the processor sets the 
EDMEO, EDCEO, or EDEEO bits prior to resuming execution.

EDBCR0, shown in Figure 9-1, contains bits for enabling external debug features.

This table describes EDBCR0 fields. 

Offset 0xBASE_100 External debugger

 32 33 34 35 36 37 38 63

R
EDM DNH_EN EFT EDMEO EDCEO EDEEO —

W

Reset All zeros

Figure 9-1. External Debug Control Register 0 (EDBCR0)

Table 9-1. EDBCR0 Field Descriptions

Bits Name Description

32 EDM

External Debug Mode
0 = The core is not in external debug mode. Debug events do not cause the processor to halt.
1 = The core is in external debug mode. A qualified debug condition generates an external debug event 

which updates the corresponding EDBSR0 bit and causes the processor to halt. 

33 DNH_EN
Debugger Notify Halt Enable
0 = A Debugger Notify Halt instruction (dnh) results in an illegal instruction exception
1 = dnh causes the processor to halt and update PRSR[DNHM].

34 EFT
(External) Freeze timers on debug halt
0 = Time base counters continue to run during debug halted state
1 = Time base counters freeze when entering debug halted state

35 EDMEO

Debugger Machine Check Interrupt Enable Override. When this bit is set, no asynchronous machine check 
interrupts will occur. Exception conditions for asynchronous machine check interrupts which occur will 
remain pending. This bit has no effect on error report interrupts, nor does it disable the NMI interrupt which 
is taken on the machine check level.
0 = Asynchronous machine check interrupts are enabled as described by the architecture. MSR[ME] and 

MSR[GS] are used to determine if an asynchronous machine check interrupt can be taken.
1 = Asynchronous machine check interrupts are disabled. MSR[ME] and MSR[GS] are not used to determine 

whether an asynchronous machine check interrupt can be taken. NMI interrupts are not affected by the 
setting of this bit.

This bit should only be set when the processor is in External Debug mode by the external debugger. 
Architecturally, the behavior of this bit is undefined when the processor is not in EDM mode. For e500mc, 
this bit behaves the same regardless of whether the processor is in EDM mode.
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9.3.2 External Debug Status Register 0 (EDBSR0)

EDBSR0, shown in Figure 9-2, is a status register that is accessible to an external debugger through 
memory mapped access. If PRSR[DE_HALT] indicates that the core was halted by an enabled debug event 
when DBCR0[EDM] = 1 (see Section 9.3.6, “Processor Run Status Register (PRSR)”), the corresponding 
status bit is set within EDBSR0.

36 EDCEO

Debugger Critical Interrupt Enable Override. When this bit is set, no asynchronous critical interrupts (critical 
input, processor doorbell critical, guest processor doorbell critical, guest processor doorbell machine check, 
or watchdog timer) will occur. Exception conditions for critical interrupts which occur will remain pending 
unless the pending condition is cleared.
0 = Critical interrupts are enabled as described by the architecture. MSR[CE] and MSR[GS] are used to 

determine if an asynchronous critical interrupt can be taken.
1 = Asynchronous machine check interrupts are disabled. MSR[CE] and MSR[GS] are not used to determine 

whether an asynchronous critical interrupt can be taken.

This bit should only be set when the processor is in External Debug mode by the external debugger. 
Architecturally, the behavior of this bit is undefined when the processor is not in EDM mode. For e500mc, 
this bit behaves the same regardless of whether the processor is in EDM mode.

37 EDEEO

Debugger External Interrupt Enable Override. When this bit is set, no asynchronous external interrupts 
(external input, decrementer, fixed interval timer, performance monitor, processor doorbell, or guest 
processor doorbell) will occur. Exception conditions for external interrupts which occur will remain pending 
unless the pending condition is cleared.
0 External interrupts are enabled as described by the architecture. MSR[EE] and MSR[GS] are used to 

determine if an asynchronous external interrupt can be taken.
1 Asynchronous external interrupts are disabled. MSR[EE] and MSR[GS] are not used to determine whether 

an asynchronous external interrupt can be taken.
This bit should only be set when the processor is in External Debug mode by the external debugger. 
Architecturally, the behavior of this bit is undefined when the processor is not in EDM mode. For e500mc, 
this bit behaves the same regardless of whether the processor is in EDM mode.
Note: EREF: A Programmer’s Reference Manual for Freescale Power Architecture® Processors allows 

implementations to consider a delayed floating-point enabled interrupt to be asynchronous, however 
the taking of delayed floating-point is not enabled by MSR[EE] and is unaffected by the setting of 
EDEEO.

38–63 — Reserved

Offset 0xBASE_00C External debugger

 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 56 57 58 59 63

R
—

UDE
—

ICMP BRT IRPT TRAP IAC1 IAC2
—

DAC1R DAC1W DAC2R DAC2W RET
—

CIRPT CRET
—

W

Reset All zeros

Figure 9-2. External Debug Status Register 0 (EDBSR0)

Table 9-1. EDBCR0 Field Descriptions (continued)

Bits Name Description
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Table 9-2 describes EDBSR0 fields. 
Table 9-2. EDBSR0 Field Descriptions

Bits Name Description

32 — Reserved

33 UDE
Unconditional Debug Event
Set if an unconditional debug condition occurred and DBCR0[EDM]=1

34–35 — Reserved 

36 ICMP
Instruction Complete Debug Event
Set if an instruction complete debug condition occurred and DBCR0[EDM]=1

37 BRT
Branch Taken Debug Event
Set if a branch taken debug condition occurred (DBCR0[BRT] = 1) and DBCR0[EDM]=1

38 IRPT
Interrupt Taken Debug Event
Set if an interrupt taken debug condition occurred (DBCR0[IRPT] = 1) and DBCR0[EDM]=1

39 TRAP
Trap Instruction Debug Event
Set if a trap instruction debug condition occurred (DBCR0[TRAP] = 1) and DBCR0[EDM]=1

40 IAC1
Instruction Address Compare 1 Debug Event
Set if an IAC1 debug condition occurred (DBCR0[IAC1] = 1), and DBCR0[EDM]=1

41 IAC2
Instruction Address Compare 2 Debug Event
Set if an IAC2 debug condition occurred (DBCR0[IAC2] = 1 && DBCR1[IAC12M] == 0), and 
DBCR0[EDM] = 1

42–43 — Reserved

44 DAC1R
Data Address Compare 1 Read Debug Event
Set if DBCR0[EDM] = 1 and a read-type DAC1 debug condition occurred (DBCR0[DAC1] = 10 or 
11)

45 DAC1W
Data Address Compare 1 Write Debug Event
Set if DBCR0[EDM] = 1 and a write-type DAC1 debug condition occurred (DBCR0[DAC1] = 01 or 
11)

46 DAC2R
Data Address Compare 2 Read Debug Event
Set if DBCR0[EDM] = 1 and a read-type DAC2 debug condition occurred (DBCR0[DAC1] = 10 or 
11)

47 DAC2W
Data Address Compare 2 Write Debug Event
Set if DBCR0[EDM] = 1 and a write-type DAC2 debug condition occurred (DBCR0[DAC1] = 01 or 
11)

48 RET
Return Debug Event
Set if a return debug condition occurred (DBCR0[RET] = 1) and DBCR0[EDM] = 1.

49–56 — Reserved 

57 CIRPT
Critical Interrupt Taken Debug Event
Set if a critical interrupt debug condition occurred (DBCR0[CIRPT] = 1) and DBCR0[EDM] = 1

58 CRET
Critical Return Debug Event
Set if a critical return debug condition occurred (DBCR0[CRET] = 1), and DBCR0[EDM] = 1

59–63 — Reserved 



Debug and Performance Monitor Facilities

e500mc Core Reference Manual, Rev. 3

9-6 Freescale Semiconductor
 

Upon resuming, the status bit remains asserted until the next enabled debug event halts the core. This 
provides software visibility (read only) into the event that caused the most recent halt.

9.3.3 External Debug Status Register Mask 0 (EDBSRMSK0)

The external debug status register mask 0 (EDBSRMSK0) is used to mask debug events set in EDBSR0 
from causing entry into debug halted mode. A “1” stored in any mask bit prevents debug HALT entry 
caused by the corresponding bit being set in EDBSR0. The mask has no effect on DBSR actions. 
EDBSRMSK0 may be used to allow debug events owned by hardware to be configured for watchpoint 
generation purposes without causing entry into a debug HALT state when the watchpoint occurs. 
EDBSRMSK0 is read and written via access by external development tools. No software access is 
provided. The EDBSRMSK0 register is shown in Figure 9-3.

Figure 9-3. External Debug Status Register Mask 0 (EDBSRMSK0)

Table 9-3 provides bit definitions for external debug status register mask 0.

Offset 0xBASE_01C External debugger

 32 39 40 41 42 43 44 45 46 47 48 63

R
— IAC1M IAC2M — DAC1RM DAC1WM DAC2RM DAC2WM —

W

Reset All zeros

Table 9-3. EDBSRMSK0 Field Descriptions

Bits Name Description

32–39 — Reserved

40
IAC1M

Instruction Address Compare 1 Debug Event Mask
Set to 1 to mask entry into debug HALT state by EDBSR0[IAC1]

41
IAC2M

Instruction Address Compare 2 Debug Event Mask
Set to 1 to mask entry into debug HALT state by EDBSR0[IAC2]

42–43 — Reserved

44
DAC1RM

Data Address Compare 1 Read Debug Event Mask
Set to 1 to mask entry into debug HALT state by EDBSR0[DAC1R]

45
DAC1WM

Data Address Compare 1 Write Debug Event Mask
Set to 1 to mask entry into debug HALT state by EDBSR0[DAC1W]

46
DAC2RM

Data Address Compare 2 Read Debug Event Mask
Set to 1 to mask entry into debug HALT state by EDBSR0[DAC2R]

47
DAC2WM

Data Address Compare 2 Write Debug Event Mask
Set to 1 to mask entry into debug HALT state by EDBSR0[DAC2W]

48–63 — Reserved 
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9.3.4 External Debug Status Register 1 (EDBSR1)

EDBSR1, shown in Figure 9-4, is a status register that is accessible to an external debugger through 
memory mapped access. It provides status information related to instruction jamming errors. The contents 
of EDBSR1 are only valid after an IJAM.

If a jammed instruction causes an exception, EDBSR1 indicates the presence of the exception, and which 
exception was signaled.

Jammed instructions do not take interrupts. In other words, the NIA (Next Instruction Address) is not 
altered to point to an interrupt handler, save/restore registers are not updated, and the MSR is not updated. 
Instead, EDBSR1[IJEE] is set, and the IVOR number for the exception is recorded in EDBSR1[IVOR].

EDBSR1[IJAE] indicates that an IJAM access error occurred, and EDBSR1[IJBUSY] indicates busy 
status on the IJAM access.

Table 9-4 describes EDBSR1 fields. 

Offset 0xBASE_010 External debugger

 32 36 37 42 43 44 45 46 47 63

R LCMP IVOR IJEE
--

IJAE IJBUSY
—

W

Reset All zeros

Figure 9-4. External Debug Status Register 1 (EDBSR1)

Table 9-4. EDBSR1 Field Descriptions

Bits Name Description

32–36 LCMP

Length Completed (instructions completed without error)1

00000 = No instructions completed without error
00001 = One instruction completed without error
All other encodings are reserved.

37–42 IVOR

Interrupt Vector Offset Register Number
If an exception occurs during an instruction jamming operation, the corresponding IVOR number is logged in 
this field. IVOR is valid only if IJEE is set. For example, if a program exception is recognized during an 
instruction jamming operation, IVOR would be set to 0x6 because program interrupts use IVOR6.

43 IJEE

Instruction Jamming Exception Error
0 = No exception occurred while executing the last instruction
1 = An exception occurred while executing the last instruction. EDBSR1[LCMP] indicates how many 

instructions completed prior to the exception while the IVOR field indicates what type of exception 
occurred. Note that exceptions that occur during instruction jamming operations do not cause interrupts.

44 — Reserved

45 IJAE
Instruction Jamming Access Error2

0 = Most recent IJAM access completed without error
1 = An access error occurred during the IJAM operation
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9.3.5 External Debug Exception Syndrome Register (EDESR)

The EDESR provides a syndrome to differentiate between the different kinds of exceptions that generate 
the same interrupt type. If an exception occurs during an instruction jamming operation, the syndrome 
information is captured in the EDESR instead of the ESR. EDESR fields are identical to those specified 
for the ESR, as described in the EREF: A Programmer’s Reference Manual for Freescale Power 
Architecture® Processors with e500mc-specific details listed in Section 2.9.6, “(Guest) Exception 
Syndrome Register (ESR/GESR).” EDESR is read only and is accessible through memory mapped access.

9.3.6 Processor Run Status Register (PRSR)

The PRSR, shown in Figure 9-5, provides status information for processor halt and stop. Halt requests are 
posted to PRSR as soon as they are recognized. When the processor is halted in response to a halt request, 
PRSR[HALTED] is set to indicate that the processor has reached the halted state. The latency between the 
posting of a halt request and the posting of the halted state depends on what the processor was doing at the 
time of the halt request.

The core remains halted or stopped as long as any of the halt or stop conditions exist. The power 
management conditions are cleared, and the corresponding PRSR bits are cleared, when the processor exits 
the halt or stop states. All other halt and stop conditions must be explicitly cleared by clearing the 
corresponding DBSR bit. These bits are cleared by writing a 1 to the bit. As long as PRSR indicates that 
any halted or stopped condition is active, the core remains halted or stopped.

46 IJBUSY
Instruction Jamming Busy Status3

0 = IJAM access idle or completed (not busy)
1 = IJAM access not completed (busy)

47–63 — Reserved

1 The e500mc only supports jamming one instruction at a time
2 EDBSR1[IJAE] is also available at the SoC. Refer to the SoC reference manual for details on external polling of this bit.
3 EDBSR1[IJBUSY] is also available at the SoC. Refer to the SoC reference manual for details on external polling of this bit.

Offset 0xBASE_000 External debugger

32 33 34 35 36 37 38 40 41 42 43 44 47

R HALTED PM_HALT
—

DNH_HALT DE_HALT EDB_HALT
—

WAIT STOPPED PM_STOP
—

W

Reset All zeros

48 63

R
—

W1

Reset All zeros

Figure 9-5. Processor Run Status Register (PRSR)

Table 9-4. EDBSR1 Field Descriptions (continued)

Bits Name Description
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Table 9-5 describes PRSR fields. 

9.3.7 Extended External Debug Control Register 0 (EEDCR0)

The EEDCR0, shown in Figure 9-6, provides extended controls not normally used in external debug 
operations.

1 The writable bits of this register support a write-1-to-clear functionality. Writing zeros has no effect.

Table 9-5. PRSR Field Descriptions

Bits Name Description

32 HALTED Halted state. Set whenever the core is halted. Cleared whenever the core resumes program execution.

33 PM_HALT
Power management halt. Set whenever the processor is halted in response to a power management 
request from the system. This is a non-debug halt.

34 — Reserved

35 DNH_HALT
Debugger notify halt event. Set whenever the processor is halted in response to the dnh instruction. 
This bit should be cleared by the debugger prior to issuing a resume command.

36 DE_HALT
Debug event halt. Set whenever the processor is halted due to the occurrence of an enabled debug 
condition in EDM. This bit should be cleared by the debugger prior to issuing a RESUME command.

37 EDB_HALT
External debug halt request event. Set whenever the processor core receives a debug halt request from 
the system. This bit should be cleared by the debugger prior to issuing a resume command.

38–40 — Reserved

41 WAIT Processor is in a WAIT state caused by execution of a WAIT instruction.

42 STOPPED
Stopped state. Set whenever the core is stopped. Cleared whenever the core resumes program 
execution.

43 PM_STOP
Power management stop. Set whenever the processor is stopped in response to a power management 
stop request from the system. This is a non-debug stop.

44–58 — Reserved

59–63 DNHM
Debugger notify halt message contains the additional information provided by the dnh instruction. The 
information is derived from the DUI operand of the dnh instruction.

Offset 0xBASE_120 External debugger

32 34 35 36 47

R
— forced_halt —

W

Reset All zeros

48 63

R
—

W

Reset All zeros

Figure 9-6. Extended External Debug Control Register 0 (EEDCR0)
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Table 9-6 describes EEDCR0 fields. 

9.4 Nexus Registers
The Nexus control registers provide a mechanism to enable the various tracing features that are supported 
by the e500mc Nexus module. These registers are accessible through the NSPC and NSPD registers, 
described in Section 2.17.9, “Nexus SPR Access Registers.”

9.4.1 Nexus Development Control Register 1 (DC1)

The DC1 provides basic trace enable controls for the core Nexus module.

Bits Name Description

32–34 — Reserved

35 forced_halt

Forced halt. If a debug halt has been requested, but has not completed, writing a 1 to this field will force 
the processor to halt. When halting the processor using this mechanism, the processor may not be put 
back into a run state unless the entire integrated device is reset. 

If this bit is set and a debug halt is not in progress, the request will be ignored.

When read, this field will always return 0.

Forcing the processor to halt using this control should only be used when a normal halt command does 
not complete. The normal halt mechanism may fail to complete if there are problems in the CoreNet 
fabric whereby transactions are not completed. The processor in this case will fail to halt because part 
of the protocol for halting the core is to force all queued memory transaction to complete and wait until 
CoreNet has fully accepted those transactions. If the CoreNet fabric does not acknowledge the 
transactions, the halt sequence will hang. This control could then be used to force the processor into the 
halt state to examine the state of the processor. After a forced_halt is commanded, the external debugger 
should not take any action or jam any instructions which would cause the processor to attempt a 
transaction on the CoreNet interface, as doing so will likely cause the processor to hang.

This field is not present on e500mc Rev 1.x or e500mc Rev 2.x.

36–63 — Reserved

Table 9-6. EEDCR0 Field Descriptions

Offset 0xBASE_4081

1 Also accessible through NSPC/D. See Section 9.9.4.2, “Special-Purpose Register Access (Nexus Only).” 

External debugger

32 38 39 40 48 49 50 51 52 53 54 55 56 57 58 63

R
— OTS — POTD TSEN EOC EIC — TM

W

Reset All zeros

Figure 9-7. Nexus Development Control Register 1 (DC1)
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Table 9-7 describes DC1 fields. 

9.4.2 Nexus Development Control Register 2 (DC2)

DC2, shown in Figure 9-8, provides controls for the Event Out signals EVTO[0:4], which are trigger 
outputs from the core. The functions performed by EVTOn assertion are integrated device-specific. 

Bits Name Description

32–38 — Reserved

39 OTS
Ownership Trace PID Select
0 = PID0 data is transmitted within Ownership Trace Messages
1 = Nexus PID Register (NPIDR) data is transmitted within Ownership Trace Messages

40–48 — Reserved

49 POTD
Periodic Ownership Trace Disable
0 = Periodic Ownership Trace message events are enabled
1 = Periodic Ownership Trace message events are disabled

50–51 TSEN

Timestamp Enable
0x = Timestamp is disabled
10 = Timestamp is enabled for all messages (timestamp is applied to all messages)
11 = Coarse timestamp is enabled (timestamp is periodically applied every 32 messages)

52–53 EOC
Event Out Control
00 = EVTO0 asserted upon occurrence of any watchpoints selected by DC2[EWC0]
01–11 = Reserved, EVTO0 behaves as disabled

54–55 EIC

Event In Control1

00 = EVTI0 assertion causes Program Trace Sync message (trigger use of uncompressed address information 
on next message)

01 = Reserved
10 = EVTI0 disabled for this module
11 = Reserved (should not be used to ensure future compatibility)

1 EVTI may be used as a watchpoint condition independent of the settings of DC1[EIC]. SeeTable 9-43 for information on how 
events are mapped to watchpoints.

56–57 — Reserved

58–63 TM

Trace Mode2

000000 = All trace disabled
xxxxx1 = Ownership Trace enabled
xxxx1x = Data Trace enabled
xxx1xx = Program Trace enabled
xx1xxx = Watchpoint Trace enabled
x1xxxx = Reserved (writing x1xxxx may not read back the same at this bit position - software should not set 

TM1 to a non-zero value)
1xxxxx = Data Acquisition Trace enabled

2 TM may be updated by hardware in response to watchpoint triggering. Writes to this field take precedence over hardware 
updates in the event of a collision. Refer to Section 9.4.5, “Nexus Watchpoint Trigger Control Register 1 (WT1),” for more 
information on watchpoint triggering.

Table 9-7. DC1 Field Descriptions
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NOTE
Further details decribing the full debug functionality of this device are 
beyond the scope of this document. The debugging and performance 
monitoring capability enabled by the device hardware coexists within a 
debug ecosystem that offers a rich variety of tools at different levels of the 
hardware/software stack. Software development and debug tools from 
Freescale (Codewarrior), as well as third-party vendors, provide a rich set 
of options for configuring, controlling and analyzing debug- and 
performance-related events.

Table 9-8 describes DC2 fields. 

Offset 0xBASE_40C1

1 Also accessible through NSPC/D. See Section 9.9.4.2, “Special-Purpose Register Access (Nexus Only).” 

External debugger

32 35 36 39 40 43 44 47 48 49 50 63

R
EWC4 EWC3 EWC2 EWC1 — EWC0

W

Reset All zeros

Figure 9-8. Nexus Development Control Register 2 (DC2)

Table 9-8. DC2 Field Descriptions

Bits Name Description

32–35 EWC4

Event Out Watchpoint Control 4
0000 = No watchpoints trigger EVTO4
0001–1110 = Watchpoint #1–#14 (respectively) triggers EVTO41

1111 = Reserved

36–39 EWC3

Event Out Watchpoint Control 3
0000 = No watchpoints trigger EVTO3
0001–1110 = Watchpoint #1–#14 (respectively) triggers EVTO31

1111 = Reserved

40–43 EWC2

Event Out Watchpoint Control 2
0000 = No watchpoints trigger EVTO2
0001–1110 = Watchpoint #1–#14 (respectively) triggers EVTO21

1111 = Reserved

44–47 EWC1

Event Out Watchpoint Control 1
0000 = No watchpoints trigger EVTO1
0001–1110 = Watchpoint #1–#14 (respectively) triggers EVTO11

1111 = Reserved
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9.4.3 Nexus Development Control Register 3 (DC3)

DC3 is not implemented on the e500mc.

9.4.4 Nexus Development Control Register 4 (DC4)

DC4, shown in Figure 9-9, provides additional control of Nexus debug features, Specifically, this register 
controls the masking of events which initiate Program Correlation Messages (PCM) as well as trace filters 
based on MSR state.

48-49 — Reserved

50–63 EWC0

Event Out Watchpoint Control 01

00000000000000 = No watchpoints trigger EVTO0
xxxxxxxxxxxxx1 = Watchpoint #1 triggers EVTO0
xxxxxxxxxxxx1x = Watchpoint #2 triggers EVTO0
xxxxxxxxxxx1xx = Watchpoint #3 triggers EVTO0
xxxxxxxxxx1xxx = Watchpoint #4 triggers EVTO0
xxxxxxxxx1xxxx = Watchpoint #5 triggers EVTO0
xxxxxxxx1xxxxx = Watchpoint #6 triggers EVTO0
xxxxxxx1xxxxxx = Watchpoint #7 triggers EVTO0
xxxxxx1xxxxxxx = Watchpoint #8 triggers EVTO0
xxxxx1xxxxxxxx = Watchpoint #9 triggers EVTO0
xxxx1xxxxxxxxx = Watchpoint #10 triggers EVTO0
xxx1xxxxxxxxxx = Watchpoint #11 triggers EVTO0
xx1xxxxxxxxxxx = Watchpoint #12 triggers EVTO0
x1xxxxxxxxxxxx = Watchpoint #13 triggers EVTO0
1xxxxxxxxxxxxx = Watchpoint #14 triggers EVTO0

1 Refer to Table 9-43 for information on the events that are mapped to these watchpoints.

Offset 0xBASE_4141

1 Also accessible through NSPC/D. See Section 9.9.4.2, “Special-Purpose Register Access (Nexus Only).” 

External debugger

32 52 53 63

R
PTMARK — EVCDM

W

Reset All zeros

Figure 9-9. Nexus Development Control Register 4 (DC4)

Table 9-8. DC2 Field Descriptions (continued)

Bits Name Description
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Table 9-9 describes DC4 fields.

9.4.5 Nexus Watchpoint Trigger Control Register 1 (WT1)

WT1, shown in Figure 9-10, provides controls for watchpoint triggers that can be used to start and stop 
tracing, producing a temporal window of trace information. 

Whenever a start trigger is detected, the designated trace features are enabled, and the corresponding DC1 
enable bits are set. Whenever a stop trigger is detected, the designated trace features are disabled, and the 
corresponding enable DC1 bits are cleared. If the same trigger condition is used for both start and stop 
triggering, the designated trace features toggle between being enabled and disabled at each occurrence of 
the trigger condition. Similarly, if start and stop triggers for a trace feature occur simultaneously, the 
designated trace feature toggle between enabled and disabled depending on the enable state at the time of 
the trigger events. For example, if tracing is enabled, and start and stop triggers occur simultaneously, 
tracing is disabled. Direct writes of DC1 take precedence over any trace feature enable state that is derived 
from watchpoint triggering. 

Table 9-9. DC4 Field Descriptions

Bits Name Description

32 PTMARK

Program Trace Mark
0 = Ignore MSR[PMM] for masking program trace
1 = Mask program trace when MSR[PMM] = 0, unmask program trace when MSR[PMM] = 1.
MSR[PMM] is the performance monitor mark bit. System software can set PMM to mark which execution 
contexts enable performance monitor statistics to be gathered. This bit is used for Nexus to provide execution 
context filtering. See Section 2.7.1, “Machine State Register (MSR).”

33–52 — Reserved

53–63 EVCDM

Event Code (EVCODE) Mask1

00000000000 = No EVCODEs masked for Program Correlation Messages
xxxxxxxxxx1 = EVCODE #1 is masked for Program Correlation Messages
xxxxxxxxx1x = EVCODE #2 is masked for Program Correlation Messages
xxxxxxxx1xx–xxxxxxx1xxx = Reserved
xxxxxx1xxxx = EVCODE #5 is masked for Program Correlation Messages
xxxxx1xxxxx–xx1xxxxxxxx = Reserved
x1xxxxxxxxx = EVCODE #10 is masked for Program Correlation Messages
1xxxxxxxxxx = EVCODE #11 is masked for Program Correlation Messages

1 Refer to Table 9-35 for implemented EVCODEs

Offset 0xBASE_42C1

1 Also accessible through NSPC/D. See Section 9.9.4.2, “Special-Purpose Register Access (Nexus Only).” 

External debugger

32 35 36 39 40 43 44 47 48 63

R
PTS PTE DTS DTE —

W

Reset All zeros

Figure 9-10. Nexus Watchpoint Trigger Register 1
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Table 9-10 describes WT1 fields. 

Note: Using start and stop triggers for data trace may preclude the ability to correlate data trace and 
program trace if watchpoint messages are used with DACs as a means to try and correlate data trace 
messages to the appropriate region of code (that is, the program trace).

9.4.6 Nexus Watchpoint Mask Register (WMSK)

WMSK, shown in Figure 9-11, controls which watchpoint events are enabled to produce Watchpoint Trace 
Messages (DC1[TM] must also be programmed to generate Watchpoint Trace Messages).

Bits Name Description

32–35 PTS

Program Trace Start
0000 = Trigger disabled
0001–1110 = Start program trace on Watchpoints 1–14 respectively (see Table 9-43)
1111 = Reserved

36–39 PTE

Program Trace End
0000 = Trigger disabled
0001–1110 = Stop program trace on Watchpoints 1–14 respectively (see Table 9-43)
1111 = Reserved

40–43 DTS

Data Trace Start
0000 = Trigger disabled
0001–1110 = Start data trace on Watchpoints 1–14 respectively (see Table 9-43)
1111 = Reserved

44–47 DTE

Data Trace End
0000 = Trigger disabled
0001–1110 = Stop data trace on Watchpoints 1–14 respectively (see Table 9-43)
1111 = Reserved

48–63 — Reserved

Table 9-10. WT1 Field Descriptions

Offset 0xBASE_4581

1 Also accessible through NSPC/D. See Section 9.9.4.2, “Special-Purpose Register Access (Nexus Only).” 

External debugger

32 49 50 63

R
— WEM

W

Reset All zeros

Figure 9-11. Nexus Watchpoint Mask Register
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Table 9-11 describes WMSK fields.

9.4.7 Nexus Overrun Control Register (OVCR)

The OVCR, shown in Figure 9-12, controls Nexus behavior as the internal message queues fill up. 
Response behavior options include suppressing selected message types, stalling the processor’s instruction 
completion and stopping the processor clocks. Refer to Section 9.10.6, “Nexus Message Queues,” for 
more information regarding the internal message queues.

Bits Name Description

32–49 — Reserved

50–63 WEM

Watchpoint Enable for Messaging1

00000000000000 = No Watchpoints enabled for Watchpoint Trace Messaging
xxxxxxxxxxxxx1 = Watchpoint #1 is enabled for Watchpoint Trace Messaging
xxxxxxxxxxxx1x = Watchpoint #2 is enabled for Watchpoint Trace Messaging
xxxxxxxxxxx1xx = Watchpoint #3 is enabled for Watchpoint Trace Messaging
xxxxxxxxxx1xxx = Watchpoint #4 is enabled for Watchpoint Trace Messaging
xxxxxxxxx1xxxx = Watchpoint #5 is enabled for Watchpoint Trace Messaging
xxxxxxxx1xxxxx = Watchpoint #6 is enabled for Watchpoint Trace Messaging
xxxxxxx1xxxxxx = Watchpoint #7 is enabled for Watchpoint Trace Messaging
xxxxxx1xxxxxxx = Watchpoint #8 is enabled for Watchpoint Trace Messaging
xxxxx1xxxxxxxx = Watchpoint #9 is enabled for Watchpoint Trace Messaging
xxxx1xxxxxxxxx = Watchpoint #10 is enabled for Watchpoint Trace Messaging
xxx1xxxxxxxxxx = Watchpoint #11 is enabled for Watchpoint Trace Messaging
xx1xxxxxxxxxxx = Watchpoint #12 is enabled for Watchpoint Trace Messaging
x1xxxxxxxxxxxx = Watchpoint #13 is enabled for Watchpoint Trace Messaging
1xxxxxxxxxxxxx = Watchpoint #14 is enabled for Watchpoint Trace Messaging

1 Refer to Table 9-43 for information on the events that are mapped to these watchpoints.

Table 9-11. WMSK Field Descriptions

Offset 0xBASE_45C1

1 Also accessible through NSPC/D. See Section 9.9.4.2, “Special-Purpose Register Access (Nexus Only).” 

External debugger

32 33 34 35 36 41 42 47 48 49 50 51 52 63

R
— SPTHOLD — SPEN — STTHOLD — STEN

W

Reset All zeros

Figure 9-12. Nexus Overrun Control Register
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Table 9-12 describes OVCR fields.

9.5 Instruction Jamming (IJAM) Registers
This section discusses the following IJAM registers:

• Section 9.5.1, “IJAM Configuration Register (IJCFG)”
• Section 9.5.2, “IJAM Instruction Register (IJIR)”
• Section 9.5.3, “IJAM Data Registers 0 and 1 (IJDATA0, IJDATA1)”

Table 9-12. OVCR Field Descriptions

Bits Name Description

32–33 — Reserved

34–35 SPTHOLD

Suppression Threshold
00 = Suppression threshold is when message queues are 1/4 full
01 = Suppression threshold is when message queues are 1/2 full
10 = Suppression threshold is when message queues are 3/4 full
11 = Reserved

36–41 — Reserved

42–47 SPEN

Suppression Enable
000000 = Suppression is disabled
xxxxx1 = Ownership Trace message suppression is enabled
xxxx1x = Data Trace message suppression is enabled
xxx1xx = Program Trace message suppression is enabled
xx1xxx = Watchpoint Trace message suppression is enabled
x1xxxx = Reserved
1xxxxx = Data Acquisition message suppression is enabled

48–49 — Reserved

50–51 STTHOLD

Stall Threshold
00 = Stall threshold is when message queues are 1/4 full
01 = Stall threshold is when message queues are 1/2 full
10 = Stall threshold is when message queues are 3/4 full
11 = Reserved

52–62 — Reserved

63 STEN
Stall Enable
0 = Processor stalling is disabled
1 = Processor stalling is enabled 
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9.5.1 IJAM Configuration Register (IJCFG)

IJCFG, shown in Figure 9-13, controls the basic settings for jamming instructions into the e500mc. It 
includes page attributes, addressing modes, and target storage space (memory or debug) for load/store 
instructions and other controls.

Figure 9-13. IJAM Configuration Register 

Table 9-13 describes IJCFG fields.

9.5.2 IJAM Instruction Register (IJIR)

IJIR, shown in Figure 9-14, contains the instruction that is to be jammed into the e500mc core. Table 9-26 
lists instructions supported for IJAM and the EREF: A Programmer’s Reference Manual for Freescale 
Power Architecture® Processors lists the Instruction Set.

Offset 0xBASE_608 External debugger

32 51 52 55 56 57 58 62 63

R
— IJRA IJER — WIMGE IJMODE

W

Reset All zeros

Table 9-13. IJCFG Field Descriptions

Bits Name Description

32–51 — Reserved

52–55 IJRA
Real Address (bits 28:31). If the jammed instruction is a load or store instruction, and IJER = 1, these 
4 bits are prepended to the 32-bit effective address to form a 36-bit physical address (PA[28:63] = 
IJRA[0:3] || EA[32:63]). This field is only used when the jammed instruction is a load or store instruction.

56 IJER
Instruction Jamming Load/store Effective/Real Addressing Mode
0 = Load/store instruction (current access) uses effective addressing mode (MMU translation)
1 = Load/store instruction (current access) uses real addressing mode (no MMU translation)

57 — Reserved

58–62 WIMGE

Page attributes for any storage access instruction (current access) when IJCFG[IJER] = 1. The 
meaning of these attributes is the same as defined when the processor is executing storage accesses 
through normal instruction execution. The definition of the WIMGE attributes can be found in the EREF: 
A Programmer’s Reference Manual for Freescale Power Architecture® Processors -Cache and MMU 
Architecture.

63 IJMODE

Instruction Jamming Mode Control
0 = Load/store instructions (current access) target memory storage space.
1 = Load/store instructions (current access) target debug storage space.

Changing the value of this field (whether load/store instructions target memory storage space or debug 
storage space) requires that a sync 0 instruction be jammed and completed immediately prior to 
changing this field. This ensures that prior stores that may have been jammed are performed to the 
proper storage space.
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9.5.3 IJAM Data Registers 0 and 1 (IJDATA0, IJDATA1)

IJDATA0 and IJDATA1, shown in Figure 9-15, contain data associated with load/store instructions. Data 
is written to this register when the jammed instruction requires associated write data (for example, load 
instructions from debug space). Data is read from this register when the jammed instruction has associated 
result data (for example, stores to debug space). These registers should be used when IJCFG[IJMODE] = 
0’b1.

x

9.6 Performance Monitor Registers (PMRs)
The performance monitor provides a set of PMRs for defining, enabling, and counting conditions that 
trigger the performance interrupt. PMRs for e500mc are described in Section 2.18, “Performance Monitor 
Registers (PMRs).” 

9.7 Capture Registers
Capture registers are shadow registers that are used to capture a snapshot of an another register when 
requested. The capture register can then be accessed to determine the value at the time the snapshot 
occurred.

9.7.1 Performance Monitor Counter Capture Registers (PMCC0–PMCC3)

The performance monitor counter capture registers (PMCC0–PMCC3), shown in Figure 9-16, are 32-bit 
registers which capture the PMCn counter values based on the EVTO4 trigger signal. Detail on the 
performance monitor capture feature can be found in Section 9.11.4.2, “Core Performance Monitor & PC 
Capture Function.”

Offset 0xBASE_60C External debugger

32 63

R
IJAM Instruction 

W

Reset All zeros

Figure 9-14. IJAM Instruction Register (IJIR)

Offset 0xBASE_600 (IJDATA0), 0xBASE_604(IJDATA1) External debugger

32 63

R
IJAM Data

W

Reset All zeros

Figure 9-15. IJAM Data Registers (IJDATA0–IJDATA1)
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Table 9-14 describes PMCC register field.

9.7.1.1 Program Counter Capture Register (PCC)

The program counter capture register (PCC), shown in Figure 9-17, is a 32-bit register which captures the 
micro-architected program counter value based on the EVTO4 trigger signal. For e500mc, the program 
counter is accurate to within two instruction windows from when the signal is detected by the core and the 
two instructions at the bottom of the completion queue. Detail on the performance monitor capture feature 
can be found in Section 9.11.4.2, “Core Performance Monitor & PC Capture Function”.

Table 9-15 describes PCC register field.

9.8 Debug Conditions
Debug events and debug interrupts are implemented (with a few exceptions) as defined by the architecture 
and described in the EREF: A Programmer’s Reference Manual for Freescale Power Architecture® 
Processors. Conditions specific to the e500mc are described in the following sections.

9.8.1 Embedded Hypervisor

In the presence of hypervisor software, debug events are modified to be suppressed when debug 
capabilities are enabled in guest state. This prevents debug events from being recorded (and subsequent 

Offset PMCC 0xBASE_030, PMCC1- 0xBASE_034, PMCC1- 0xBASE_038, PMCC1- 
0xBASE_03C

External debugger

32 63

R Captured counter value

W

Reset All zeros

Figure 9-16. Performance Monitor Counter Capture Registers (PMCC0–PMCC3)

Table 9-14. PMCC0–PMCC3 Field Descriptions

Bits Name Description

32–63 Counter Value Value of the PMCn counter upon occurrence of the EVTO[4] trigger

Offset 0xBASE_02C External debugger

32 63

R Captured program counter value

W

Reset All zeros

Figure 9-17. Program Counter Capture Register (PCC)

Table 9-15. PCC Field Descriptions

Bits Name Description

32–63 Captured program counter value Value of the program counter upon occurrence of the EVTO[4] trigger
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debug interrupts from occurring) when executing in embedded hypervisor state when the guest operating 
system is using the debug facility.

When EPCR[DUVD] = 1 and MSR[GS] = 0, all debug events and associated exceptions do not occur 
except for the unconditional debug event, and no debug events are posted in the DBSR. Refer to the EREF: 
A Programmer’s Reference Manual for Freescale Power Architecture® Processors for more details on the 
embedded hypervisor.

9.8.2 Internal and External Debug Modes

The EREF: A Programmer’s Reference Manual for Freescale Power Architecture® Processors and Power 
ISA specifies how the processor behaves in IDM. This is when DBCR0[EDM] = 0 and DBCR0[IDM] = 1.

The architecture allows implementation-dependent behavior when in EDM (DBCR0[EDM] = 1). In 
EDM, the core behaves as follows:

• A mtspr that attempt to change DBCRs, IACs, DACs, NSPC, NSPD, DBSR, or DBSRWR 
behaves as a NOP. The only exception is that jamming an mtspr instruction alters these registers.

• DBSR is not updated when a debug event occurs.
• When a debug event occurs, the core immediately halts. The debug interrupt is not taken. DSRR0, 

DSRR1, MSR, and ESR are not updated before halting. The NIA (Next Instruction Address) is not 
redirected to the first instruction of the debug interrupt handler.

• Upon halting for a debug event, the NIA contains the value that would otherwise have been placed 
in DSRR0 if the processor was in IDM.

• PRSR[DE_HALT] is set, and EDBSR0 indicates which debug events caused the core to halt.
• Delayed debug interrupts do not halt the core.

Note that, in IDM, BRT and ICMP events are not recognized unless debug interrupts are enabled 
(MSR[DE] = 1). therefore, BRT and ICMP can not cause imprecise debug events. However, in EDM, BRT 
and ICMP events are always recognized and cause the processor to halt, even if MSR[DE] = 0.

Because EDM usurps control of the architecture-defined debug control and status registers, simultaneous 
use of an internal and an external debugger is problematic. In particular, it is difficult to use an external 
debugger to debug an internal debugger. The dnh instruction can provide some assistance, though.

9.8.3  Debug Event Response Tables

The following tables identify the masking and gating functions for each condition and indicate the 
responses. Table 9-16 lists responses for instruction complete (ICMP) and branch taken (BRT) conditions. 

NOTE
All debug conditions are gated by DBCR0
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Table 9-17 lists responses for unconditional debug event (UDE), interrupt taken (IRPT), trap (TRAP), 
return from interrupt (RET), critical interrupt taken (CIRPT), and critical return from interrupt (CRET) 
conditions.

Table 9-18 lists responses for instruction address compare 1 and 2 conditions. 

Table 9-16.  Response—ICMP, BRT

HALTED
DBCR0

MSR[DE] Action
EDM IDM

1 x x x No action

0 1 x x Halt. Set EDBSR0[x].

0 0 x 0 No action

0 0 0 x No action

0 0 1 1 Issue debug interrupt. Set DBSR[x]. 

Table 9-17.  Response—UDE, IRPT, TRAP, RET, CIRPT, CRET

HALTED
DBCR0

MSR[DE] Action
EDM IDM

1 x x x No action.

0 1 x x Halt. Set EDBSR0[x]. Generate watchpoint (if enabled).

0 0 0 x No action

0 0 1 0
Set DBSR[x], DBSR[IDE]. More than one DBSR bit may be set for imprecise debug events 
for various operations. Table 9-20 lists possible combinations of concurrent imprecise debug 
events for all operations.

0 0 1 1 Issue debug interrupt. Set DBSR[x]

Table 9-18.  Response—IAC1, IAC2

HALTED
DBCR0

MSR[DE] Action
EDM IDM

1 x x x No action.

0 1 x x Halt. Set EDBSR0[IAC1/2]. Generate IAC1/2 watchpoint

0 0 0 x Generate IAC1/2 watchpoint. No other action. 

0 0 1 0
Set DBSR[IAC1/2], DBSR[IDE]. Generate IAC1/2 watchpoint. More than one DBSR bit 
may be set for imprecise debug events for various operations. Table 9-20 lists possible 
combinations of concurrent imprecise debug events for all operations

0 0 1 1 Issue debug interrupt. Set DBSR[IAC1/2]. Generate IAC1/2 watchpoint
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Table 9-19 lists responses for debug address compare 1 and 2 conditions. 

Table 9-20 lists the combinations of debug events that may be simultaneously recorded in the DBSR 
(DBCR0[EDM] = 0, DBCR0[IDM] = 1) when debug interrupts are disabled (MSR[DE] = 0) for every 
operation type. Multiple debug events can be recorded as a result of a single operation if the DBSR[IDE] 
is set for that operation.

Table 9-19. Response—DAC1, DAC2

HALTED
DBCR0

MSR[DE]
Another Debug 
Event on Same 

Instruction
Action

EDM IDM

1 x x x x No action.

0 1 x x 0 Halt. Set EDBSR0[DAC1/2]. Generate DAC1/2 watchpoint

0 1 x x 1 Halt. Set EDBSR0[IAC1/2]. Generate DAC1/2 watchpoint

0 0 0 x x Generate DAC1/2 watchpoint. No additional action.

0 0 1 0 x

Set DBSR[DAC1/2], DBSR[IDE]. Generate DAC1/2 watchpoint. 
Multiple DBSR bits may be set for imprecise debug events for various 
operations. Table 9-20 lists possible combinations of concurrent 
imprecise debug events for all operations.

0 0 1 1 x
Issue debug interrupt. Set DBSR[DAC1/2]. Generate DAC1/2 
watchpoint

Table 9-20. Recording of Imprecise Debug Events (IDEs)

Operation That Occurs when IDE Events are Possible 
(DBCR0[EDM] = 0, DBCR0[IDM] = 1, MSR[DE] = 0)

Possible Simultaneous Imprecise Debug Events 1

UDE IRPT TRAP IAC1/2 DAC1/2 RET CIRPT CRET

Interrupt Operations

Machine check interrupt — — — — — — — —

Unconditional debug event Yes — — — — — — —

Asynchronous critical input interrupt — — — — — — Yes —

Watchdog timer interrupt — — — — — — Yes —

Asynchronous external input interrupt — Yes — — — — — —

Instruction TLB error interrupt — Yes — Yes — — — —

Instruction storage (ISI) interrupt — Yes — Yes — — — —

Floating point unavailable interrupt — Yes — Yes — — — —

Program Interrupt — Yes Yes2 Yes — — — —

Data TLB error interrupt — Yes — Yes — — — —

Data storage (DSI) interrupt — Yes — Yes — — — —

Alignment interrupt — Yes — Yes — — — —

System call interrupt — Yes — Yes — — — —

Fixed interval timer interrupt — Yes — — — — — —
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9.8.4 Delayed Debug Interrupts

Delayed debug interrupts on the e500mc core can be taken under one of the following circumstances:
• An mtmsr instruction that sets MSR[DE] = 1 and any DBSR bit is a one (including the IDE field, 

but excluding the MRR field). In this case, DSRR0 holds the address of the instruction following 
the mtmsr.

• Any return from interrupt class (rfi, rfci, rfdi, rfmci) instruction sets MSR[DE] = 1 and any DBSR 
bit is a one (including the IDE field, but excluding the MRR field). In this case, DSRR0 holds the 
address of the target of the return from interrupt instruction.

The e500mc uses DBCR0[IDM] to enable/disable recognition of debug events, and it uses MSR[DE] to 
enable/disable taking debug interrupts when debug events are recognized. When a debug event is 
recognized, the event is logged in DBSR and, if debug interrupts are enabled, a debug interrupt also occurs.

A delayed debug interrupt is a delayed response to a previously logged event. Although DBCR0[IDM] is 
a condition for recognizing and logging a debug event, it is not a condition for taking a delayed debug 
interrupt. This is different from some previous versions of e500, which required IDM = 1 in order to take 
a delayed debug interrupt.

9.8.5 Instruction Address Compare Debug Events

The core implements IAC debug events as described in the architecture, with the following exceptions and 
clarifications:

• Only IAC1 and IAC2 are supported. IAC3 and IAC4 are not supported.
• Real Mode comparisons (DBCR1[IAC1ER] = 01 and DBCR1[IAC2ER] = 01) are not supported.

One or more instruction address compare debug conditions (IAC1, IAC2) occur if they are enabled and 
execution is attempted of an instruction at an address that meets the criteria specified in DBCR0, DBCR1, 

Performance monitor interrupt — Yes — — — — — —

Decrementer interrupt — Yes — — — — — —

Instruction Complete Operations

rfi instruction — — — Yes — Yes — —

rfci instruction — — — Yes — — — Yes

Load, store, or cache management instruction — — — Yes Yes — — —

All other instructions — — — Yes — — — —

1 Because debug exceptions do not occur when DE = 0, multiple debug events can be recorded in the DBSR as a result of a 
operation (along with the setting of DBSR[IDE]). All debug events marked “yes” are recorded if they occur for that operation.

2 TRAP is set if the program interrupt is caused by a trap exception.

Table 9-20. Recording of Imprecise Debug Events (IDEs) (continued)

Operation That Occurs when IDE Events are Possible 
(DBCR0[EDM] = 0, DBCR0[IDM] = 1, MSR[DE] = 0)

Possible Simultaneous Imprecise Debug Events 1

UDE IRPT TRAP IAC1/2 DAC1/2 RET CIRPT CRET



Debug and Performance Monitor Facilities

e500mc Core Reference Manual, Rev. 3

Freescale Semiconductor 9-25
 

IAC1, and IAC2. These debug conditions cause debug events to be recorded in DBSR if MSR[DE] = 1 
and no higher priority exception exists or according to Table 9-20 if MSR[DE] = 0. When MSR[DE] = 1, 
the IAC debug conditions are logged when the debug IAC1/2 interrupt is taken. When MSR[DE] = 0, IAC 
debug conditions are recorded in DBSR when an instruction marked with an IAC1/2 condition takes an 
interrupt or completes, according to Table 9-20. MSR[DE] has no effect on the updates to EDBSR0.

Instruction address compares may specify user/supervisor mode and instruction space (MSR[IS]), along 
with an effective address, masked effective address, or range of effective addresses for comparison. Refer 
to Section 2.17.3, “Debug Control Register 1 (DBCR1),” for details on the controls for the various IAC 
event modes.

IAC conditions are masked from generating IAC events if DBCR2[DACLINK1/2] are set. The IAC fields 
of DBSR and EDBSR0 are not updated. In this case, a DAC event occurs if an instruction generates both 
a DAC condition and an IAC condition and no exceptions of higher priority are present.

In EDM, an unmasked IAC debug condition is recorded as a debug event in EDBSR0[IAC1, IAC2], the 
execution of the instruction causing the debug event is suppressed, the processor halts, and NIA is set to 
the address of the excepting instruction.

In IDM, an unmasked IAC debug condition is recorded as a debug event in DBSR[IAC1, IAC2] if 
MSR[DE] = 1 and no higher priority exception exists, or according to Table 9-20, if MSR[DE] = 0. More 
than one bit will be set in DBSR if the instruction address compare mode is not exact address compare 
mode as DBSR bits corresponding to IAC1 and IAC2 will be set.

If debug interrupts are enabled (MSR[DE] = 1) and the debug event is recorded, a debug interrupt is 
generated, the execution of the instruction causing the debug event is suppressed, and DSRR0 is set to the 
address of the excepting instruction.

If debug interrupts are disabled (MSR[DE] = 0), the IAC event is conditionally recorded in the DBSR 
according to the type of operation associated with the event. See Table 9-20 for a complete list of 
operations and their effect on the recording of imprecise debug events as well as which imprecise debug 
events can be simultaneously recorded for a given operation. If the IAC event is recorded in the DBSR, 
DBSR[IDE] is also set to indicate that the debug interrupt (if later enabled) is an imprecise event. In the 
case of a delayed debug interrupt, the DSRR0 contains the address of the instruction following the one that 
enabled debug interrupts. Software in the debug interrupt handler can use the DBSR[IDE] information to 
determine how to interpret the contents of the DSRR0.

9.8.6 Data Address Compare Debug Events

e500mc implements DAC debug events as described in the architecture, with the following exceptions and 
clarifications.

• Real address comparisons (DBCR2[DAC1ER] = 01 and DBCR2[DAC2ER] = 01) are not 
supported.

• All load instructions are considered reads with respect to debug conditions, while all store 
instructions are considered writes with respect to debug conditions.

• When MSR[GS] = 0, the value of EPCR[DUVD] is used to suppress debug DAC events when 
external PID instructions are used, even if the external PID instructions target a context a context 
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where GS = 1. Refer to the EREF: A Programmer’s Reference Manual for Freescale Power 
Architecture® Processors for details.

One or more data address compare debug conditions (DAC1R, DAC1W, DAC2R, DAC2W) occur if they 
are enabled, execution is attempted of a data storage access instruction, and the type and address of the 
data storage access meet the criteria specified in the DBCR0, DBCR2, DAC1, and DAC2. These 
conditions cause debug events to be recorded in DBSR if MSR[DE] = 1 and no higher priority exception 
exists, or according to Table 9-20, if MSR[DE] = 0. MSR[DE] has no effect on the updates to EDBSR0.

Data address compares may specify user/supervisor mode and data space (MSR[DS]), along with an 
effective address, masked effective address, or range of effective addresses for comparison. Refer to 
Section 2.17.4, “Debug Control Register 2 (DBCR2),” for details on the controls for the various DAC 
event modes. 

DBCR0[DAC1] determines whether DAC1 comparisons are performed on read-type accesses, write-type 
accesses, or both. Similarly, DBCR0[DAC2] determines if DAC2 comparisons are performed on read-type 
accesses, write-type accesses, or both.

All load instructions are considered reads with respect to debug conditions, while all store instructions are 
considered writes with respect to debug conditions. In addition, the cache management instructions and 
certain special cases are handled as follows:

dcbt[ls], dcbtst, dcbtep, dcbtstep, icbt[ls], icbi, icbiep, and icblc are all considered reads with respect to 
debug events. Note that dcbt[ep], dcbtst[ep], and icbt are treated as NOPs when they report data storage 
or data TLB miss exceptions, instead of being allowed to cause interrupts. However, these instructions 
cause debug interrupts, even when they would otherwise have been NOPed due to a data storage or data 
TLB miss exception.

dcbz[ep], dcbi, dcbf[ep], dcba, dcbst[ep], dcbtstls, and dcblc are all considered writes with respect to 
debug events. Note that dcbf and dcbst are considered reads with respect to data storage exceptions, 
because they do not actually change the data at a given address. However, because execution of these 
instructions may result in write activity on the processor’s data bus, they are treated as writes with respect 
to debug events. See Table 4-2 for the list of exceptions for all load, store, and cache management 
instructions.

lmw or stmw operations may partially complete if a DAC event occurs after the initial transfer has started. 
DAC events may be further qualified by requiring an IAC condition on the corresponding data storage 
access instruction by setting DBCR2[DACLINK1/2]. When DACs are linked to IACs in this way, a DAC 
event occurs only if an instruction generates both a DAC condition and an IAC condition (IAC1 or IAC2 
debug condition). These linked events are recorded in DBSR[DAC1,DAC2], according to which DAC 
comparator generated the debug condition. For e500mc, a DACLINK1/2 event will only occur if the DAC 
condition matches the first word of a lmw or stmw instruction.

In EDM, if no higher priority exception is associated with the instruction, a DAC debug condition is 
recorded as a debug event in EDBSR0[DAC1R, DAC1W, DAC2R, DAC2W], the execution of the 
instruction causing the debug event is suppressed, the processor halts, and NIA is set to the address of the 
excepting instruction.

In IDM, a DAC debug condition is recorded as a debug event in DBSR[DAC1R,DAC1W,DAC2R, 
DAC2W] if MSR[DE] = 1 and no higher priority exception exists, or according to Table 9-20, if 
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MSR[DE] = 0. More than one bit will be set in DBSR if the data address compare mode is not exact 
address compare mode as DBSR bits corresponding to DAC1 and DAC2 will be set.

If debug interrupts are enabled (MSR[DE] = 1) and the debug event is recorded, a debug interrupt is 
generated, the execution of the instruction causing the debug condition is suppressed, and DSRR0 is set to 
the address of the excepting instruction.

If debug interrupts are disabled (MSR[DE] = 0), the DAC event is conditionally recorded in the DBSR 
according to the type of operation associated with the event. See Table 9-20 for a complete list of 
operations and their effect on the recording of imprecise debug events as well as which imprecise debug 
events can be simultaneously recorded for given operation. If the DAC event is recorded in the DBSR, 
DBSR[IDE] is also set to indicate that the debug interrupt (if later enabled) is an imprecise event. In the 
case of a delayed debug interrupt, the DSRR0 contains the address of the instruction following the one that 
enabled debug interrupts. Software in the debug interrupt handler can use the DBSR[IDE] information to 
determine how to interpret the contents of the DSRR0.

9.8.7 Trap Debug Event

A trap debug condition occurs if trap debug conditions are enabled (DBCR0[TRAP] = 1), a Trap 
instruction (tw, twi) is executed, and the conditions specified by the instruction for the trap are met. This 
condition causes the corresponding debug event to be recorded in DBSR if MSR[DE] = 1 and no higher 
priority exception exists, or according to Table 9-20, if MSR[DE] = 0. When MSR[DE] = 1, the trap debug 
condition is recorded in DBSR when the debug trap interrupt is taken. When MSR[DE] = 0, the trap debug 
condition is recorded in DBSR when the program trap interrupt is taken. MSR[DE] has no effect on the 
updates to EDBSR0.

In EDM, if no higher priority exception exists, a trap debug condition is recorded as a debug event in 
EDBSR0[TRAP], the execution of the trap instruction is suppressed, the processor halts, and NIA (Next 
Instruction Address) is set to the address of the trap instruction.

In IDM, a trap debug condition is recorded as a debug event in DBSR[TRAP] if MSR[DE] = 1 and no 
higher priority exception exists, or according to Table 9-20, if MSR[DE] = 0.

If debug interrupts are enabled (MSR[DE] = 1) and the debug event is recorded, a debug interrupt is 
generated, the execution of the trap instruction is suppressed, and DSRR0 is set to the address of the trap 
instruction.

If debug interrupts are disabled (MSR[DE] = 0), the trap debug event is conditionally recorded in the 
DBSR according to the type of operation associated with the event. See Table 9-20 for a complete list of 
operations and their effect on the recording of imprecise debug events as well as which imprecise debug 
events can be simultaneously recorded for given operation. If the trap debug event is recorded in the 
DBSR, DBSR[IDE] is also set to indicate that the debug interrupt (if later enabled) is an imprecise event. 
In the case of a delayed debug interrupt, the DSRR0 contains the address of the instruction following the 
one that enabled debug interrupts. Software in the debug interrupt handler can use the DBSR[IDE] 
information to determine how to interpret the contents of the DSRR0.



Debug and Performance Monitor Facilities

e500mc Core Reference Manual, Rev. 3

9-28 Freescale Semiconductor
 

9.8.8 Branch Taken Debug Event

A branch taken debug condition occurs if branch taken debug conditions are enabled (DBCR0[BRT] = 1) 
and execution is attempted of a branch instruction which is taken (either an unconditional branch, or a 
conditional branch whose branch condition is true).

In EDM, a branch taken debug condition is recorded as a debug event in EDBSR0[BRT], the execution of 
the branch instruction is suppressed, the processor halts, and NIA (Next Instruction Address) is set to the 
address of the branch instruction.

In IDM, a branch taken debug condition records a debug event in DBSR[BRT] if MSR[DE] = 1. A debug 
interrupt is generated, the execution of the branch instruction is suppressed, and DSRR0 is set to the 
address of the branch instruction. Branch taken debug events are not recognized if MSR[DE] = 0 at the 
time of execution of the branch instruction and thus DBSR[IDE] cannot be set by a branch taken debug 
event

9.8.9 Instruction Complete Debug Event

An instruction complete debug condition occurs if instruction complete debug conditions are enabled 
(DBCR0[ICMP] = 1) and execution of any instruction is completed.

If execution of an instruction is suppressed due to the instruction causing some other exception that is 
enabled to generate an interrupt, then the attempted execution of that instruction does not cause an 
instruction complete debug condition. The sc instruction does not fall into the category of an instruction 
whose execution is suppressed, because the instruction actually executes and then generates a system call 
interrupt. In this case, the instruction complete debug event is also set. If a debug interrupt does occur in 
this case, DSRR0 points to the first instruction in the system call interrupt handler. Note that, in general, 
instruction complete debug conditions do not occur for any instruction whose execution causes a exception 
whose interrupt would save the address of that instruction in the appropriate save/restore register 0. For 
example, a trap instruction which causes a trap exception would not create an instruction complete debug 
condition.

In EDM, an instruction complete debug condition is recorded as a debug event in EDBSR0[ICMP], the 
processor halts, and NIA (Next Instruction Address) is set to the address of the next instruction to be 
executed.

In IDM, an instruction complete debug condition records a debug event in DBSR[ICMP] if MSR[DE] = 1. 
Instruction complete debug events are not recognized if MSR[DE] = 0 at the time of execution of the 
instruction and thus DBSR[IDE] cannot be set by an instruction complete debug event.

Special consideration is given to instructions which enable or disable instruction complete debug events. 
If MSR[DE] = 1, DBCR0[IDM] = 1, DBCR0[EDM] = 0, and DBCR0[ICMP] = 1, and an mtmsr 
instruction which clears MSR[DE] completes, no instruction complete debug event (or interrupt) occurs. 
Conversely, if MSR[DE] = 0, DBCR0[IDM] = 1, DBCR0[ICMP] = 1, and an mtmsr instruction which 
sets MSR[DE] completes, an instruction complete debug event still occurs for the mtmsr itself. 

An mtspr instruction which enables or disables instruction complete debug events by changing the state 
of DBCR0[ICMP] or DBCR0[IDM] (when all other necessary conditions for enabling the event are 
present), causes the enable/disable operation to be applied to the mtspr itself. Return from interrupt class 
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instructions which enable or disable instruction complete debug events through the side effect of a change 
to MSR[DE] is not applied to the return instruction itself, but takes effect on the next instruction following 
the return.

When an instruction complete debug event is recorded in internal debug mode, a debug interrupt is 
generated and the address of the next instruction to be executed is recorded in DSRR0.

9.8.10 Interrupt Taken Debug Event

An interrupt taken debug condition occurs if interrupt taken debug conditions are enabled 
(DBCR0[IRPT] = 1) and a non-debug, noncritical, non-machine check interrupt occurs. Only non-debug, 
noncritical, non-machine check class interrupts cause an interrupt taken debug condition. This condition 
is recorded in DBSR if MSR[DE] = 1, or according to Table 9-20 if MSR[DE] = 0. MSR[DE] has no effect 
on the updates to EDBSR0. 

In EDM, an interrupt taken debug condition is recorded as a debug event in EDBSR0[IRPT], the processor 
halts, and NIA (Next Instruction Address) is set to the address of the noncritical interrupt handler. No 
instructions at the noncritical interrupt handler will have executed.

In IDM, an interrupt taken debug condition is recorded as a debug event in DBSR[IRPT] if MSR[DE] = 1, 
or according to Table 9-20 if MSR[DE] = 0. If debug interrupts are enabled (MSR[DE] = 1), a debug 
interrupt is generated and the value saved in DSRR0 is the address of the noncritical interrupt handler. No 
instructions at the noncritical interrupt handler will have executed.

If debug interrupts are disabled (MSR[DE] = 0), the IRPT debug event is conditionally recorded in the 
DBSR according to the type of operation associated with the event. See Table 9-20 for a complete list of 
operations and their effect on the recording of imprecise debug events as well as which imprecise debug 
events can be simultaneously recorded for given operation. If the IRPT debug event is recorded in the 
DBSR, DBSR[IDE] is also set to indicate that the debug interrupt (if later enabled) is an imprecise event. 
In the case of a delayed debug interrupt, the DSRR0 contains the address of the instruction following the 
one that enabled debug interrupts. Software in the debug interrupt handler can use the DBSR[IDE] 
information to determine how to interpret the contents of the DSRR0.

9.8.11 Interrupt Return Debug Event

A return debug condition occurs if return debug conditions are enabled (DBCR0[RET] = 1) and an attempt 
is made to execute an rfi instruction and no other higher priority exception occurs executing the rfi. This 
condition causes the corresponding debug event to be recorded in DBSR if MSR[DE] = 1, or according to 
Table 9-20 if MSR[DE] = 0. MSR[DE] has no effect on the updates to EDBSR0. 

In EDM, a return debug condition is recorded as a debug event in EDBSR0[RET], execution of the rfi is 
suppressed, the processor halts, and NIA (Next Instruction Address) is set to the address of the rfi 
instruction. 

In IDM, a return debug condition is recorded as a debug event in DBSR[RET] if MSR[DE] = 1 and no 
higher priority exception exists, or according to Table 9-20 if MSR[DE] = 0. If debug interrupts are 
enabled (MSR[DE] = 1), a debug interrupt occurs provided there exists no higher priority exception which 
is enabled to cause an interrupt. The DSRR0 is set to the address of the rfi instruction.
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If debug interrupts are disabled (MSR[DE] = 0) at the time of the execution of the rfi (that is, before the 
MSR is updated by the rfi), the RET event is conditionally recorded in the DBSR according to the type of 
operation associated with the event. See Table 9-20 for a complete list of operations and their effect on the 
recording of imprecise debug events as well as which imprecise debug events can be simultaneously 
recorded for given operation. If the RET debug event is recorded in the DBSR, DBSR[IDE] is also set to 
1 to record the imprecise debug event. In the case of a delayed debug interrupt, the DSRR0 contains the 
address of the instruction following the one that enabled debug interrupts. Software in the debug interrupt 
handler can use the DBSR[IDE] information to determine how to interpret the contents of the DSRR0.

9.8.12 Unconditional Debug Event

An unconditional debug condition occurs when the unconditional debug event (UDE) input transitions to 
the asserted state, and either DBCR0[IDM] = 1 or DBCR0[EDM] = 1. The unconditional debug condition 
is the only debug condition which does not have a corresponding enable bit for the condition in DBCR0. 
This condition causes the corresponding debug event to be recorded in DBSR or EDBSR0 regardless of 
the setting of MSR[DE]. 

In EDM, upon the rising edge of the UDE input, an unconditional debug condition is recorded as a debug 
event in EDBSR0[UDE], the processor halts, and NIA (Next Instruction Address) is set to the address of 
the next instruction to be executed. 

In IDM, upon the rising edge of the UDE input, an unconditional debug condition is recorded as a debug 
event in DBSR[UDE]. If debug interrupts are enabled (MSR[DE] = 1), a debug interrupt occurs in 
response to the unconditional debug event and the DSRR0 is set to the address of the instruction that would 
be executed next were it not for the occurrence of the debug interrupt. DBSR[IDE] is always set regardless 
of the state of MSR[DE] when an unconditional debug event occurs.

If MSR[DE] = 0 when an unconditional debug condition occurs, the condition is recorded as an event in 
the DBSR[UDE] In the case of a delayed debug interrupt, the DSRR0 contains the address of the 
instruction following the one that enabled debug interrupts.

9.8.13 Critical Interrupt Taken Debug Event

A critical interrupt taken debug condition occurs if critical interrupt taken debug conditions are enabled 
(DBCR0[CIRPT] = 1) and a critical interrupt occurs. Only critical class interrupts cause a critical interrupt 
taken debug condition. This condition causes the corresponding debug event to be recorded in DBSR if 
MSR[DE] = 1, or according to Table 9-20, if MSR[DE] = 0. MSR[DE] has no effect on the updates to 
EDBSR0.

In EDM, a critical interrupt taken debug condition is recorded as a debug event in EDBSR0, the processor 
halts, and NIA (Next Instruction Address) is set to the address of the critical interrupt handler. No 
instructions at the critical interrupt handler will have executed.

In IDM, a critical interrupt taken debug condition is recorded as a debug event in DBSR[CIRPT], if 
MSR[DE] = 1, or according to Table 9-20, if MSR[DE] = 0. If debug interrupts are enabled 
(MSR[DE] = 1), a debug interrupt occurs, provided there exists no higher priority exception which is 
enabled to cause an interrupt, and the value saved in DSRR0 is the address of the critical interrupt handler. 
No instructions at the critical interrupt handler will have executed.



Debug and Performance Monitor Facilities

e500mc Core Reference Manual, Rev. 3

Freescale Semiconductor 9-31
 

If debug interrupts are disabled (MSR[DE] = 0), the CIRPT debug event is conditionally recorded in the 
DBSR according to the type of operation associated with the event. See Table 9-20 for a complete list of 
operations and their effect on the recording of imprecise debug events as well as which imprecise debug 
events can be simultaneously recorded for given operation. If the CIRPT debug event is recorded in the 
DBSR, DBSR[IDE] is also set to indicate that the debug interrupt (if later enabled) is an imprecise event. 
In the case of a delayed debug interrupt, the DSRR0 contains the address of the instruction following the 
one that enabled debug interrupts. Software in the debug interrupt handler can use the DBSR[IDE] 
information to determine how to interpret the contents of the DSRR0.

9.8.14 Critical Return Debug Event

A critical return debug condition occurs if critical return debug conditions are enabled 
(DBCR0[CRET] = 1) and an attempt is made to execute an rfci instruction and no other higher priority 
exception occurs executing the rfci. This condition causes the corresponding debug event to be recorded 
in DBSR if MSR[DE] = 1, or according to Table 9-20, if MSR[DE] = 0. MSR[DE] has no effect on the 
updates to EDBSR0.

In EDM, a critical return debug condition is recorded as a debug event in EDBSR0, execution of the rfci 
is suppressed, the processor halts, and NIA (Next Instruction Address) is set to the address of the rfci 
instruction.

In IDM, a critical return debug condition is recorded as a debug event in DBSR[CRET] if MSR[DE] = 1 
and no higher priority exception exists, or according to Table 9-20 if MSR[DE] = 0. If debug interrupts are 
enabled (MSR[DE] = 1), a debug interrupt occurs, provided there exists no higher priority exception 
which is enabled to cause an interrupt. The DSRR0 is set to the address of the rfci instruction.

If debug interrupts are disabled (MSR[DE] = 0) at the time of the execution of the rfci (that is, before the 
MSR is updated by the rfci), the CRET event is conditionally recorded in the DBSR according to the type 
of operation associated with the event. See Table 9-20 for a complete list of operations and their effect on 
the recording of imprecise debug events as well as which imprecise debug events can be simultaneously 
recorded for given operation. If the CRET debug event is recorded in the DBSR, then DBSR[IDE] is also 
set to 1 to record the imprecise debug event. In the case of a delayed debug interrupt, the DSRR0 contains 
the address of the instruction following the one that enabled debug interrupts. Software in the debug 
interrupt handler can use the DBSR[IDE] information to determine how to interpret the DSRR0 contents.

9.9 External Debug Interface
External debug support is supplied through a memory mapped interface which allows access to internal 
cpu registers, arrays and other system state while the core is halted. EDM provides the ability to enter the 
halt state when a debug event occurs. This capability can be used to perform singlestep operations from 
the external debug tool.

9.9.1 Processor Run States

This section discusses the following processor run states:
• Section 9.9.1.1, “Halt”
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• Section 9.9.1.2, “Stop (Freeze)”
• Section 9.9.1.3, “Wait”
• Section 9.9.1.4, “Entering/Exiting Processor Run States”

9.9.1.1 Halt

When the e500mc is in the halted state, the clocks are still running, but the core is not fetching or executing 
instructions. While in this state, an external debugger can jam instructions into the pipeline, and they are 
executed. The core also continues to snoop the core complex bus and maintains cache coherency.

Assertion of pm_halt causes the core to enter the halted state. PRSR[PM_HALT] is asserted to indicate 
that pm_halt has been asserted, and PRSR[HALTED] indicates that the core is in the halted state. When 
pm_halt is deasserted, PRSR[PM_HALT] transitions to zero and, if the processor has not also been halted 
for a halt condition in the debug class, the core resumes immediately.

There are several mechanisms that halt the core. These are described in Table 9-21.

Most external debug operations can only be performed when the processor is halted. Note that if the core 
is halted only because pm_halt is asserted (that is, no other halt requests are active in PRSR), it resumes 
immediately if pm_halt is deasserted. therefore, the core should always be halted with some other debug 
mechanism (for example, setting a system debug event halt) before accessing the contents of the core.

The Processor Run Status Register (PRSR) indicates whether or not the core is halted for debug.

9.9.1.2 Stop (Freeze)

When the e500mc is in the stopped state, the clocks are stopped. The caches are not snooped. If the clocks 
are stopped while the caches contain modified data, coherency may be lost because other processors (or 
other bus masters) do not see the modified data. Coherency may also be lost if the clocks are stopped while 
the caches contain shared or exclusive data, then restarted. In this case, other processors may have changed 
the data, but the stopped processor retains the stale data, which may be used when the processor is 
restarted.

Assertion of core_stop causes to core to enter the stopped state. PRSR[PM_STOP] is asserted to indicate 
that core_stop has been asserted, and PRSR[STOPPED] indicates that the core is in the stopped state. 
When core_stop is deasserted, PRSR[PM_STOP] transitions to zero and, if the processor has not also been 
stopped for a stop condition in the debug class, the core transitions immediately to the appropriate halted 
or running state. The mechanism that can stop the core.

Table 9-21. Methods for Halting the Core

Halt Condition Classification Enable Documentation

Assertion of 
pm_halt

Power 
Management

Always enabled —

Assertion of 
core_dbg_halt

Debug Always enabled —

DNH Debug EDBCR0[DNH_EN] Section 9.9.3, “Debugger Notify Halt (dnh) Instruction”

DE Debug EDBCR0[EDM] Section 9.8.2, “Internal and External Debug Modes”



Debug and Performance Monitor Facilities

e500mc Core Reference Manual, Rev. 3

Freescale Semiconductor 9-33
 

9.9.1.3 Wait

When the processor executes the wait instruction, it discontinues fetching and executing instructions, and 
waits for an asynchronous interrupt. This is the program wait state. This state does not have any effect on 
the processor while it is in the debug halted state, but affects resuming from the halted state. If the 
processor is in the program wait state when the core_resume signal is asserted to exit the halted state, the 
core does not fetch or execute any instructions until an asynchronous interrupt occurs. Otherwise, it begins 
fetching and executing instructions immediately.

If the processor is in the program wait state when the debug halted state is entered, the processor remains 
in the program wait state. Jamming an mtspr to the NIA causes the processor to exit the program wait 
state. Jamming a wait instruction causes the processor to enter the program wait state.

The debugger can examine PRSR[WAIT] to determine whether or not the processor is in the program wait 
state.

9.9.1.4 Entering/Exiting Processor Run States

The e500mc core classifies halt and stop conditions into two categories: power management and debug. 
These categories are distinguished by the steps that are required to exit the halted or stopped state. This is 
done to avoid undesired interactions that could occur when pm_halt or core_stop is toggled while the 
processor is under control of a debugger.

Debug operations should not be performed while the core is halted/stopped only due to power 
management. If the core has been halted or stopped only for power management, the debugger should 
assert core_dbg_halt before executing debug operations.

When the core is running, the SoC should use the following sequence to enter the power management 
stopped state:

1. Assert pm_halt.
2. Wait for core_halted to be asserted by the core.
3. Assert core_stop.

This ensures that the core is left in a recoverable state when the clocks are stopped. For the e500mc, when 
pm_halt and core_stop are asserted simultaneously, the processor first halts, and then stops.

The processor can transition directly from any of the three possible states (running, halted, or stopped) to 
any other of the three states.

Assume that the processor has been halted by one of the halt conditions in the debug class. To resume from 
this state, the debugger must:

1. Clear all of the bits in PRSR that correspond to halt requests in the debug class.

Table 9-22. Methods for Stopping the Core

Stop Condition Classification Enable Documentation

Assertion of 
core_stop

Power 
Management

Always enabled Section 8.3, “Power Management Signals
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2. Assert core_resume.

Similarly, assume that the processor has been stopped by one of the stop conditions in the debug class. To 
resume from this state, the debugger must:

1. Clear all of the bits in PRSR that correspond to stop requests in the debug class,
2. Assert core_resume.

Normally, when the processor has been halted for power management by asserting pm_halt, the processor 
resumes execution when pm_halt is deasserted. Similarly, the processor normally exits the power 
management stopped state whenever core_stop is deasserted. However, if the core has been halted or 
stopped for a halt or stop condition in the debug class, deassertion of pm_halt or core_stop do not cause 
the processor to resume until core_resume is asserted.

If core_resume is asserted while pm_halt or core_stop is asserted, the core remains in the halted or stopped 
for power management state.

If any of the debug related halt status bits are set in the PRSR indicating whether or not the core has been 
halted or stopped for a debug condition, core_resume must be asserted before the core resumes execution.

If the core has been halted or stopped only by assertion of pm_halt or core_stop, simply releasing pm_halt 
or core_stop allows the processor to resume execution.

If the core is in the stopped state, and some halt requests are active in PRSR, then an attempt to resume 
causes the processor to go directly from the stopped to the halted state. If no halt requests are active, the 
processor goes directly from the stopped to the running state.

In order to be able to resume from a stopped state, special steps must be taken when stopping the core. 
These steps are:

1. Flush the caches so that they do not contain any modified data. This prevents coherency problems.
2. Discontinue any snoop traffic.
3. Halt the core
4. Stop the core

9.9.2 Singlestep

An external development tool can singlestep through code using the instruction complete (ICMP), 
interrupt taken (IRPT) and critical interrupt taken (CIRPT) debug events in EDM. If a resume command 
is issued while the ICMP, IRPT, and CIRPT events are enabled in EDM, the processor does one of the 
following:

• Execute and complete one instruction, then halt before executing the next instruction.
• Execute one instruction and take a synchronous interrupt, then halt before executing the first 

instruction of the interrupt handler.
• Immediately take an asynchronous interrupt and halt on the first instruction of the interrupt handler.

therefore, to single step, set ICMP and IRPT and CIRPT, set EDM, clear PRSR and resume. Note that 
PRSR must be cleared prior to each resume command.
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9.9.3 Debugger Notify Halt (dnh) Instruction

The dnh instruction (see Section 3.5, “Debug Instruction Model”) provides a mechanism to halt the 
processor independent of the state of DBCR0[EDM]. It is enabled by setting EDBCR0[DNH_EN] = 1. 
This instruction is not privileged and may be executed while the processor is at any privilege level. It may 
be compiled into code during debug, or an external debugger may substitute dnh for another instruction 
at a location where a breakpoint is desired.

Execution of this instruction when EDBCR0[DNH_EN] = 1 causes the processor to halt. The NIA is set 
to the address of the dnh instruction, the 5-bit DUI operand is captured into PRSR[DNHM] and 
PRSR[DNH_HALT] is set. PRSR[DNHM] can provide an external debugger information about the 
breakpoint that was hit. For example, it could uniquely identify which breakpoint was hit.

The 10-bit DUIS field is an extension to the DUI field. It is not captured into any architecture-defined 
register and can only be acquired by reading the opcode. When the processor halts due to execution of a 
dnh, the NIA can be used to locate instruction and read the DUIS field.

Execution of the dnh instruction when EDBCR0[DNH_EN] = 0 causes an illegal instruction exception.

Software may be instrumented to include dnh instructions in order to transfer control to an external 
development tool at designated points for interactive debugging. The dnh instruction is useful for 
debugging debug interrupt service routines (IVOR15). Without the dnh instruction, it is difficult to halt 
within the debug interrupt routines, because the machine must be in internal debug mode to enter the 
routine but must be in EDM to halt on a debug exception. Because dnh is enabled with 
EDBCR0[DNH_EN] instead of DBCR0[EDM], it provides a way to halt within the debug interrupt 
service routine.

9.9.4 Resource Access

Memory mapped access is provided for debug resources. In addition, a subset of these resources (Nexus 
Trace) is accessible via software SPRs (using mtspr/mfspr instructions). The resources access methods 
areas follows:

• Instruction jamming (memory mapped)
— Access to architecture-defined registers, including GPRs, SPRs, and PMRs.
— Access to memory-mapped resources with and without MMU translations

• Storage access through memory mapped interface
— Direct access to a few architecture-defined registers
— Implementation-dependent access to arrays within the core
— Direct access to memory

9.9.4.1 Memory Mapped Access

Addressing the debug/expert resources through the memory mapped interface entails driving a base 
address for the e500mc core (BASE), a functional group select (GID) and register index for a specific 
register. The functional group select determines what class of resource is to be accessed, while the register 
index determines which resource within the group to access. 
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Refer to the SoC reference manual for specifics on accessing the internal memory mapped resources via 
the external JTAG interface as well as the Aurora high speed serial interface.

Figure 9-18 shows the address bit fields used in accessing debug/expert resources and Table 9-23 
summarizes the debug/expert resource memory map.

23 12 11 8 7 0

ips_addr[23:0] BASE GID Register Index

Figure 9-18. Debug/Expert Resource Access

Table 9-23. Debug/Expert Resource Address Map

Functional 
Group ID

ips_addr[11:8]

Register 
Index

ips_addr[7:0]
Resource

Access
Type

Access
Restric
tions1

Service
Data

Width

Reset 
Source

0x0

Debug Status

0x00 Processor Run Status Register (PRSR) R/W2 E 32 POR

0x04 Reserved

0x08 Machine State Register (MSR) R/W E, H 32 HRESET

0x0c External Debug Status Register (EDBSR0) R E 32 POR

0x10 External Debug Status Register (EDBSR1) R E 32 POR

0x14 External Debug Exception Syndrome Register (EDESR) R E 32 POR

0x18 Processor Version Register (PVR) R 32 N/A

0x1c External Debug Status Register Mask 0 (EDBSRMSK0) R/W E 32 POR

0x20 - 0x28 Reserved

0x2c Program Counter Capture Register (PCC) R 32 POR

0x30 Perfmon Capture Count Register 0 (PMCC0) R 32 POR

0x34 Perfmon Capture Count Register 1 (PMCC1) R 32 POR

0x38 Perfmon Capture Count Register 2 (PMCC2) R 32 POR

0x3c Perfmon Capture Count Register 3 (PMCC3) R 32 POR

0x40-0xfc Reserved

0x1

Debug Control

0x00 External Debug Control Register 0 (EDBCR0) R/W E 32 POR

0x04 - 0x1c Reserved

0x24 - 0xfc Reserved
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0x3

Clock Control/Status

0x00 PLL Control Register 0 (PLL_CTRL0) R/W ? 32 POR

0x04 PLL Control Register 1 (PLL_CTRL1) R/W ? 32 POR

0x08 - 0x2c Reserved

0x30 WAITR Configuration Register 0 (WAITR_CFG0) R/W ? 32 POR

0x34 WAITR_CFG1 R/W ? 32 POR

0x38 WAITF_CFG0 R/W ? 32 POR

0x3c WAITF_CFG1 R/W ? 32 POR

0x40 Test Mode Configuration Register R/W E?, H? 32 POR

0x44 - 0x5c Reserved

0x60 Silicon Debug Control Register 0 (SILCN_DBG_CTRL0) R/W 32 POR

0x64 Silicon Clock Control Register 0 (SILCN_CLK_CTRL0) R/W 32 POR

0x68 Silicon Clock Control Register 1 (SILCN_CLK_CTRL1) R/W 32 POR

0x6c Silicon Clock Control Register 2 (SILCN_CLK_CTRL2) R/W 32 POR

0x70 - 0xfc Reserved

0x4

Nexus

0x00 - 0x04 Reserved

0x08 Nexus Development Control Register 1 (DC1) R/W 32 POR

0x0c Nexus Development Control Register 2 (DC2) R/W 32 POR

0x10 Reserved

0x14 Nexus Development Control Register 4 (DC4) R/W 32 POR

0x18 - 0x28 Reserved

0x2c Watchpoint Trigger Register 1 (WT1) R/W 32 POR

0x30 - 0x54 Reserved

0x58 Watchpoint Mask Register (WMSK) R/W 32 POR

0x5c Nexus Overrun Control Register (OVCR) R/W 32 POR

0x60 - 0xfc Reserved

0x5 0x00 - 0xfc Reserved

0x6

Instruction Jamming

0x00 Instruction Jamming Data Register 0 (IJDATA0) R/W E, H 32 POR

0x04 Instruction Jamming Data Register 1 (IJDATA1) R/W E, H 32 POR

0x08 Instruction Jamming Configuration Register (IJCFG) R/W E, H 32 POR

0x0c Instruction Jamming Instruction Register (IJIR) R/W E, H 32 POR

0x10 - 0xfc Reserved

Table 9-23. Debug/Expert Resource Address Map (continued)
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9.9.4.2 Special-Purpose Register Access (Nexus Only)

Nexus trace resources can also be accessed through e500mc SPRs—specifically the Nexus SPR Access 
Configuration Register (NSPC) and Nexus SPR Access Data Register (NSPD). 

Both read and write accesses are initiated by writing to NSPC via an mtspr instruction with the appropriate 
settings for the desired register index. The register index is identical to that used in accessing the resources 
through the memory map. For information about access, refer to Section 2.17.9, “Nexus SPR Access 
Registers.”

Once the specific Nexus resource has been selected, software can then access the Nexus SPR Access Data 
Register (NSPD) by executing an mtspr instruction (for register writes) or an mfspr (for register reads).

Most registers require the processor to be halted in order to perform an access. Some registers may be 
accessed while the processor is running, but may also be updated by hardware. The values of these 
registers continues to change after their values are acquired by the debugger.

9.9.5 Instruction Jamming

Instruction jamming provides a generalized mechanism to perform debug operations using the existing 
facilities of the processor. When the processor is in a halted state, a development tool can jam instructions 
into the execution pipeline for the processor to execute.

Instruction jamming is useful for observing and altering the state of the machine whenever the processor 
is halted. Typical instruction jams include:

• mfspr—observe the value of an SPR
• mtspr—alter the value in an SPR
• load—observe the value of a memory location
• store—alter the value of a memory location
• Load or store from debug space—alter or observe the value of a GPR (see Section 9.9.5.1, “Debug 

Storage Space (IJCFG[IJMODE] = 1)”)

0x7 - 0x9 Reserved Reserved

0xb - 0xd Reserved

0xe - 0xf Reserved Reserved for LBIST (not currently implemented)

1 If there are no restrictions listed, then software can access the corresponding resource through the memory mapped interface

E = External debugger access only
H = Access allowed when core is halted only
2 Portions of PRSR support write-1-to-clear. All other fields are read-only.

Table 9-23. Debug/Expert Resource Address Map (continued)
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Jammed instructions have no instruction address. therefore, they do not require translation of an instruction 
address, and there is no way to have an ITLB miss or ISI. Furthermore, a jammed instruction does not 
increment the NIA.

Jammed instructions can have undesired effects, particularly if the jammed instruction causes an 
exception. The processor provides some facilities that reduce the number of architectural registers that are 
affected by a jammed instruction that causes an exception. See Section 9.9.5.5, “Exception Conditions and 
Affected Architectural Registers,” for details.

NOTE
Instruction jamming operations require the processor to be halted. 
Instruction jamming may change architecture-defined processor state. It is 
the responsibility of the external debug facility to save and restore any 
critical state.

9.9.5.1 Debug Storage Space (IJCFG[IJMODE] = 1)

Debug storage space is the conduit through which data is passed between an external debugger and the 
processor. From an external debugger’s point of view, debug storage space is just part of the IJAM input 
or IJAM output, which are accessible through memory mapped access. From the processor’s point of view, 
debug storage space is an alternate space that can be used as the source for loads or the destination for 
stores.

Debug storage space is accessed by load/store instructions when the IJMODE bit within the IJCFG register 
is 1. See Section 9.9.5.2, “Instruction Jamming Input,” for a description of the IJAM input.

A debugger wishing to alter the value of a GPR would jam a load instruction. The debugger would place 
the desired load data in the IJAM IR register, and it set IJCFG[IJMODE] = 1 to specify that the load data 
should come from debug storage space (that is, from the IJAM input data in the IJDATA0/1 registers).

A debugger wishing to observe the value in a GPR would jam a store instruction. The debugger would set 
IJCFG[IJMODE] = 1 to specify that the store instruction should place its data into debug storage space 
(that is, send the IJAM output to the IJDATA0/1 registers). The debugger would then read the IJDATA0/1 
registers to obtain the stored data.

Debug storage space is not part of the processor’s memory address space. Although an effective address 
is calculated from the load or store instruction’s operands, the address is not translated. therefore, there is 
no way to have a DTLB miss or DSI when jamming loads or stores to debug space. However, supplying 
operands that yield a nonzero effective address result in unpredictable results. therefore, the preferred 
form of loads and stores to debug space is the immediate form with RA = 0 and a displacement of 0x0.
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The load/store instructions in Table 9-24 are supported when IJMODE = 1.

9.9.5.2 Instruction Jamming Input

Instructions to be jammed into the processor pipeline are transferred into the processor through accesses 
to memory mapped resources. 

For all jammed instructions, the instruction jamming IR (IJIR) is required. This register contains the 32-bit 
Power instruction to be executed. When jamming load, store, or cache management (for example, dcbf) 
instructions, the IJCFG register is also required. This register drives the attributes of the load/store 
operation. When jamming load instructions, and IJCFG[IJMODE] indicates that the load data should be 
supplied from debug space, the IJDATA0/1 register(s) are required. They supply the data to be loaded. For 
more details refer ‘Instruction Set Listings’ in ‘EREF: A Programmer’s Reference Manual for Freescale 
Power Architecture® Processors’.

These registers can be accessed through a memory mapped access individually or through a block transfer. 
On e500mc, incorrect register settings result in unpredictable results. The IJAM register descriptions can 
be found in Section 9.5, “Instruction Jamming (IJAM) Registers.” 

The IJCFG register includes controls for jammed load and store instructions. 

IJCFG[IJMODE] indicates whether jammed load/store instructions access memory or a special debug 
storage space. When IJMODE = 1, a jammed load instruction gets its data from IJDATAn registers, and a 
jammed store instruction writes its data to IJDATA0/1. When IJMODE = 0, load/store instructions access 
the cores memory address space as usual.

The effective/real bit, IJCFG[IJER] indicates whether load/store target addresses should be translated or 
not. Because debug storage space is not addressable, IJER is meaningful only when IJMODE = 0.

When IJCFG[IJER] = 1, load/store instructions do not have their effective addresses translated by the 
core’s MMU. This means that the MMU does not supply a 36-bit physical address or page attributes 
(WIMGE bits) for the load/store instruction. Because the core only generates 32 bits of effective address, 
4 more address bits are needed to form a 36-bit physical address. These additional 4 bits are supplied by 

Table 9-24. Load/Store IJAM Transfers

Instruction IJAM Transfer

lfd fr D, d(rA)
(lfs same syntax)

IJDATA0[0–31] → FPR[0–31]
IJDATA1[0–31] → FPR[32–63]

stfd fr S, d(rA)
(stfs same syntax)

FPR[0–31] → IJDATA0[0–31]
FPR[32–63] → IJDATA1[0–31]

stw rS,0(0) GPR[32–63] → IJDATA1[0–31]

lwz rD,0(0) IJDATA1[0–31] → GPR[32–63]

lhz rD,0(0) IJDATA1[16–31] → GPR[48–63];
16’b0 → GPR[32–47]

lbz rD,0(0) IJDATA1[24–31] → GPR[56–63];
24’b0 → GPR[32–55] 
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the IJRA field of IJCFG. The 36-bit address is formed by prepending the 4-bit IJRA field to the effective 
address calculated by the jammed load/store instruction (PA[28:63] = IJRA[0:3] || EA[32:63). 

Because the WIMGE bits are not supplied by the MMU, they are supplied by the IJCFG[WIMGE] bits 
when IJER = 1. Care must be taken to specify the correct page attributes for a given real address so that 
cache paradoxes do not occur (that is, specifying a page attribute of cache-inhibited for a real address 
which has been previously accessed as cacheable may result in the load or store not accessing memory 
coherently with previous accesses or other processors or agents in the system).

When IJCFG[IJER] = 0, a data TLB miss error occurs if the MMU does not contain an entry that matches 
the virtual address. However, in real addressing mode, MMU translation is not performed and TLB miss 
errors do not occur.

9.9.5.3 Supported Instruction Jamming Instructions

Table 9-26 lists instructions which are supported for instruction jamming (when the processor is in halt 
state). These instructions are executed in the same manner as if the processor were not halted when IJCFG 
is equal to 32’b0. 

The table also includes all instructions that are capable of using options in IJCFG. All other instructions 
are not supported and will have unpredictable (UNPR) results if jammed. In addition, any instruction 
jammed with non zero values in IJCFG other than those explicitly listed as supporting them result in 
unpredictable outcomes.

Table 9-25. Instruction Jamming Addressing Modes

IJCFG[IJMODE] IJCFG[IJER] Page Attributes (LWIMGE)

0 0 Attributes taken from MMU

0 1 Attributes taken from IJCFG[WIMGE]

1 x Don’t care. WIMGE attributes have no meaning when IJMODE=1

Table 9-26. Implemented IJAM Instructions when the Processor Is Halted

Mnemonic Description

dcbf Data Cache Block Flush

dcbi Data Cache Block Invalidate

dcblc Data Cache Block Lock Clear

dcbst Data Cache Block Store

dcbtls Data Cache Block Touch and Lock Set

dcbtstls Data Cache Block Touch for Store and Lock Set

dcbz Data Cache Block Set to Zero

dcbzl Data Cache Block Set to Zero 

icbi Instruction Cache Block Invalidate

icblc Instruction Cache Block Lock Clear
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icbtls Instruction Cache Block Touch and Lock Set

lbz Load Byte and Zero

lfd Load Floating-Point Double

lfs Load Floating-Point Single

lha Load Halfword Algebraic

lhbrx Load Halfword Byte-Reversed Indexed

lhz Load Halfword and Zero

lwbrx Load Word Byte-Reversed Indexed

lwz Load Word and Zero

mfcr Move from Condition Register

mffs[.] Move from FPSCR

mfmsr Move from Machine State Register

mfpmr Move from PMR

mfspr Move from SPR

mtcrf Move to Condition Register Fields

mtfsf[.] Move to FPSCR Fields

mtfsfi[.] Move to FPSCR Field Immediate

mtmsr Move to Machine State Register

mtpmr Move to PMR

mtspr Move to SPR

stb Store Byte

stfd Store Floating-Point Double

stfs Store Floating-Point Single

sth Store Halfword

sthbrx Store Halfword Byte-Reversed Indexed

stw Store Word

stwbrx Store Word Byte-Reverse

sync Sync. Only the form with sync L=0 is supported.

tlbre TLB Read Entry

tlbsx TLB Search Indexed

tlbwe TLB Write Entry

wait Wait

Table 9-26. Implemented IJAM Instructions when the Processor Is Halted (continued)

Mnemonic Description
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9.9.5.4 Instructions Supported only during Instruction Jamming

Table 9-27 lists instructions which are only supported when the processor is halted. These instructions 
produce an illegal instruction exception if attempted when the processor is not halted.

9.9.5.5 Exception Conditions and Affected Architectural Registers

Generally, jammed instructions are allowed to modify any architecture-defined register (such as GPRs, 
SPRs, MSR) in the processor. However, jamming an instruction that causes an exception condition can 
have undesired side effects. The processor has provided several special facilities to reduce these side 
effects. This reduces the debugger’s burden to save and restore architectural state just in case an 
unanticipated exception occurs.

As previously mentioned, the NIA is not incremented when jammed instructions are executed. 
Furthermore, it is not updated to point to an interrupt vector if a jammed instruction causes an exception. 
therefore, the debugger does not have to save the state of the NIA when jamming instructions.

When in normal execution mode (that is, when not jamming), there are several cases when privileges must 
be observed or features must be enabled in order to avoid exception conditions. But when jamming 
instructions, the debugger is given full privileges so that it can avoid setting up architectural state necessary 
to execute a jammed instruction. In particular:

• MSR[PR] is effectively set to 0, giving the debugger access to all privileged instructions. therefore, 
program interrupt for privileged exceptions do not occur for jammed instructions.

• Read/Write privileges are enabled for all load/store instructions. therefore, data storage interrupts 
for read/write access control exceptions do not occur for jammed instructions. This is particularly 
useful when the debugger wishes to alter an instruction on a page and the translation attributes for 
that page do not include write access.

• DBCR0[IDM] is effectively cleared, preventing debug events from being recognized while 
jamming. therefore, DBSR is not updated and debug interrupts do not occur for jammed 
instructions.

In normal execution mode (that is, when not jamming), interrupts update save/restore registers and other 
various machine state. When jamming instructions, many of these registers are not updated if an exception 

Table 9-27. Instructions Supported Only when the Processor is Halted

Mnemonic SPRN
Behavior when Not Halted
(Regardless of MSR[PR])

Behavior when Halted
(Regardless of MSR[PR])

Comment

mfspr NIA
SPRN = 559

Illegal instruction exception Executed Move from SPR, NIA

mtspr NIA Illegal instruction exception Executed Move to SPR, NIA
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occurs. Table 9-28 lists some interesting architectural registers and indicates whether or not they are 
affected by an exception on a jammed instruction.

As Table 9-28 shows, the NIA is not updated when an exception occurs on a jammed instruction. Instead, 
EDBSR1 indicates the IVOR number of the exception that occurred. Similarly, the ESR is not updated, 
but the EDESR contains the information that would have been in the ESR if the exception had occurred in 
functional mode.

Data TLB misses are the most likely exceptions to occur on jammed instructions. They happen if no 
translation is available for a jammed load or store instruction. As can be seen in Table 9-28, the MAS 
registers and DEAR are not updated by a DTLB miss. 

Asynchronous interrupts are always disabled when the processor is halted. therefore, asynchronous 
interrupts do not occur around the time that the processor is executing a jammed instruction.

9.9.5.6 Instruction Jamming Status

The status of instruction jamming operations is captured in the EDBSR1 register. In the event of an 
exception during instruction jamming, the instruction sequence is aborted. 

The number of instructions that completed prior to the exception is recorded in EDBSR1[LCMP] (this is 
zero on e500mc). No interrupt is taken, but the IVOR number associated with the interrupt that would 
normally be taken is recorded in the EDBSR1[IVOR] and exception status is captured in External Debug 
Exception Syndrome Register (EDESR). EDESR is identical to its non-debug counterpart (the ESR) in 
terms of bit field definitions and provide information about the type of exception that occurred during 
instruction jamming.

Debug conditions are masked during instruction jamming and are not recorded. Effectively, 
DBCR0[IDM] = 0, so the DBSR does not log debug events.

Table 9-28. Effect of Exceptions on Machine State

Register Affected by Interrupt Note

NIA No EDBSR1 indicates the IVOR number of the exception

SRR0, SRR1 No —

CSRR0, CSRR1 No —

DSRR0, DSRR1 No —

MCSRR0, MCSRR1 No —

ESR No EDESR contains the information usually captured in ESR

MSR No —

MCSR Yes —

MCAR Yes —

DEAR No —

MAS registers No —

DBSR No —
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The core should be halted for debug before jamming instructions. If an IJAM is performed while the core 
is not halted for debug, an internal bus error is generated. The IJAM may be performed, and the results are 
undefined.

If an access error occurs while jamming instructions, EDBSR1[IJAE] is set. 

9.9.5.7 Special Note on Jamming Store Instructions

Under some conditions (for example, when the data cache is disabled), the effects of jamming a store 
instruction may not immediately become visible in the architectural state of the machine. For example, one 
might jam a store instruction then examine memory, expecting to find the stored data. However, the data 
may remain in non-architecture-defined registers within the core, and not yet be visible in memory. In 
these cases, jamming a sync 0 instruction forces the data from the non-architecture-defined registers into 
some architecturally visible memory space.

Also note that jamming a sync 0 instruction is required immediately prior to changing whether loads/stores 
are performed to memory storage space or to debug space. Since stores may take some time after 
completion to be performed, the sync 0 ensures that the stores are initiated to the appropriate storage space 
prior to the sync 0 instruction completing.

9.9.5.8 Instruction Jamming Output

Results from store instructions that target debug space that have been jammed into the processor pipeline 
are retrieved from the IJDATA0/1 registers. Store word instructions store their data into IJDATA1 Store 
double instructions store the upper word (bits 0–31) into IJDATA0 and the lower word (bits 32–63) into 
IJDATA1. The debugger can then perform register accesses to retrieve the data—it must access both 
registers in the 64-bit data case and only needs to access one of the data registers in the 32-bit case. It is 
expected that the development tool knows how much result data to expect from an instruction.

9.9.5.9 IJAM Procedure 

A summary of the steps to perform various instruction jamming operations appears below:

The following procedure is used for instructions with associated data (input):
1. Confirm that the processor is halted. If not halted, issue a HALT command and wait until the 

processor is halted.
2. Write IJDATA0 with most significant word (if 64-bit data).
3. Write IJDATA1 with (least significant) word, halfword, or byte.
4. Write IJCFG[MODE] =1 to configure load/store operation.
5. Write IJIR to load instruction and run.
6. Check for IJAM completion status (one of two options):

— Scan the SoC-level JTAG IR and capture the status that is shifted out in the process. If the status 
is IJAM not done, repeat this step.

— Read EDBSR1[IJBUSY] to determine status.
7. On error, check EDBSR1 and EDESR.
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NOTE
For 8-bit (byte) and 16-bit (halfword) writes, data should always be written 
to IJDATA1 right-justified (least significant) independent of the specific 
address accessed.

The following procedure is used for instructions with associated data (output):
1. Confirm that the processor is halted. If not halted, issue a HALT command and wait until the 

processor is halted.
2. Write [MODE] =1 to configure load/store operation.
3. Write IJIR to load instruction and run.
4. Check for IJAM completion status (one of two options):

— Scan the SoC-level JTAG IR and capture the status that is shifted out in the process. If the status 
is IJAM not done, repeat this step.

— Read EDBSR1[IJBUSY] to determine status.
5. On error, check EDBSR1 and EDESR.
6. If no error, read IJDATA0—most significant word (if 64-bit data).
7. If no error, read IJDATA1—least-significant word, halfword, or byte.

NOTE
For 8-bit (byte) and 16-bit (halfword) reads, data is always read from 
IJDATA1 right-justified (least significant) independent of the specific 
address accessed.

For instructions with no associated data, use the following procedure:
1. Confirm that the processor is halted. If not halted, issue a HALT command and wait until the 

processor is halted.
2. Write IJIR to load instruction and run
3. Check for IJAM completion status (one of two options):

— Scan the SoC-level JTAG IR and capture the status that is shifted out in the process. If the status 
is IJAM not done, repeat this step.

— Read EDBSR1[IJBUSY] to determine status
4. On error, check EDBSR1 and EDESR

9.9.5.10 Instruction Jamming Error Conditions

If a jammed instruction produces an exception, the instruction does not complete and no interrupt is taken. 
The exception status information is recorded in debug accessible registers for analysis. Exceptions on a 
jammed instruction produces the following side effects:

• EDBSR1[LCMP] = 0
• EDBSR1[IJEE] = 1
• EDBSR1[IVOR] = IVOR register number corresponding to the type of exception that occurred.
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• EDESR = effective value of the ESR if the exception had been processed
• EDBSR1[IJAE] = 1

9.10 Nexus Trace
This specification defines the auxiliary port functions, transfer protocols and standard development 
features of the core Nexus module in compliance with IEEE-ISTO 5001. The development features 
supported are Program Trace, Data Trace, Data Acquisition Messaging, Watchpoint Messaging, and 
Ownership Trace. The e500mc Nexus module supports two Class 4 features: watchpoint triggering and 
processor overrun control.

A portion of the pin interface is also compliant with the IEEE 1149.1 JTAG standard. The IEEE-ISTO 
5001 standard defines an extensible auxiliary port, which is used in conjunction with the JTAG port.

9.10.1 Nexus Features

The e500mc Nexus module is compliant with the IEEE-ISTO 5001 standard. The following features are 
implemented:

1. Program Trace via Branch Trace Messaging (BTM). Branch trace messaging displays program 
flow discontinuities (direct and indirect branches, exceptions, etc.), allowing the development tool 
to interpolate what transpires between the discontinuities. Thus static code may be traced.

2. Data Trace via Data Write Messaging (DWM). This provides the capability for the development 
tool to trace writes to (selected) internal memory-mapped resources.

3. Ownership Trace via Ownership Trace Messaging (OTM). OTM facilitates ownership trace by 
providing visibility of which process ID or operating system task is activated. An Ownership Trace 
Message is transmitted when a new process/task is activated, allowing the development tool to 
trace ownership flow. 

4. Watchpoint Messaging for the following conditions
— IAC and DAC events
— taken interrupts
— completion of return from interrupt class instructions
— externally supplied events
— Performance Monitor events

5. Data Acquisition Messaging (DQM) allows code to be instrumented to export customized 
information to the Nexus Auxiliary Output Port.

6. Watchpoint Trigger enable of Program Trace Messaging
7. Filtering of Program Trace Messaging based on process (indicated by MSR[PMM]).
8. Auxiliary interface for higher data input/output. This interface may be coupled to a high speed 

serial port on the device in order to push the information to a development tool.
— Thirty MDO (Message Data Out) signals.
— Two MSEO (Message Start/End Out) signals.
— Five EVTO (Watchpoint Event) signals
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— Two EVTI (Event In) signals
9. Registers for Program Trace, Data Trace, Ownership Trace, Data Acquisition, Watchpoint 

Messaging, and Watchpoint Trigger
10. All features controllable and configurable via a memory mapped interface which is accessible by 

development tools. 
11. All features controllable and configurable via SPRs which are accessible by embedded software.
12. Timestamp capability on all message types.

9.10.2 Enabling Nexus Operations on the Core 

By default, clocks for Nexus-related circuitry are inactive. These clocks must be enabled in order to use 
any of the Nexus features related to the processor. Nexus clocks are activated upon the first access to a 
Nexus register DC1/2/3/4, WT1, WMSK, OVCR.

Once the core Nexus clocks are active, the various features of the Nexus module can be enabled by 
programming the Nexus registers via the memory mapped or SPR registers.

If the Nexus module is disabled, no trace output is provided, and the Nexus registers are not accessible.

9.10.3 Modes of Operation 

Nexus modes are described as follows:
• Reset

The core Nexus block is placed in reset whenever the core reset input is asserted. While in reset, 
the following actions occur:
— The auxiliary output port signals are deasserted.
— Registers default back to their reset values and are not accessible until reset negates.

• Disabled
For a graceful shutdown of Nexus functionality, all trace modes should be disabled first by clearing 
DC1. The message queues should also be allowed to drain prior to disabling the clocks. 
Alternatively, a reset can be applied to the core which also resets the Nexus state and disables 
clocks to the debug circuitry. Failure to shutdown the Nexus block gracefully may produce 
unpredictable results if the Nexus block is later enabled.
While disabled, none of the Nexus features are accessible.

• Enabled
When Nexus is enabled, the various Nexus features may be activated by programming the Nexus 
control registers, which are accessible via memory mapped or SPR access.

9.10.4 Supported TCODEs

The Nexus auxiliary port allows for flexible transfer operations via public messages. A TCODE defines 
the transfer format, the number and/or size of the packets to be transferred, and the purpose of each packet. 
The IEEE-ISTO 5001 standard defines a set of public messages and allocates additional TCODEs for 
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vendor-specific features outside the scope of the public messages. The Nexus block currently supports the 
public and vendor defined TCODEs shown in Table 9-29.

Table 9-29. Supported TCODEs

Message 
Name

Field Size (bits)1
Field
Name

Field
Type

Field Description
Minimum Maximum

Debug 
Status

6 6 TCODE fixed TCODE number = 0

6 6 SRC fixed source processor identifier

16 16 STATUS fixed Debug Status information (from PRSR[32:47])

0 28 TSTAMP variable Timestamp (optional)

Ownership 
Trace

Message

6 6 TCODE fixed TCODE number = 2

6 6 SRC fixed source processor identifier

1 44 PROCESS variable
Task/Process ID (Refer to Table 9-42 for more information 
about this field)

0 28 TSTAMP variable Timestamp (optional)

Data 
Acquisition 

Message

6 6 TCODE fixed TCODE number = 7

6 6 SRC fixed source processor identifier

8 8 IDTAG fixed identification tag (DEVENT[32:39])

1 32 DQDATA variable exported data taken from DDAM[32:63]

0 28 TSTAMP variable Timestamp (optional)

Error 
Message

6 6 TCODE fixed TCODE number = 8

6 6 SRC fixed source processor identifier

4 4 ETYPE fixed error type (Refer to Table 9-32)

82 82 ECODE fixed error code (Refer to Table 9-31)

0 28 TSTAMP variable Timestamp (optional)

Program 
Trace - 

Synchroniza
tion 

Message

6 6 TCODE fixed TCODE number = 9

6 6 SRC fixed source processor identifier

1 1 MAP fixed instruction address space identifier (IS)

1 1 I-CNT variable for e500mc implementations, this field is set to “0”

1 32 FADDR variable full current instruction address3

0 28 TSTAMP variable Timestamp (optional)
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Data Trace -
Data Write 
Message
w/ Sync

6 6 TCODE fixed TCODE number = 13

6 6 SRC fixed source processor identifier

4 4 DSZ fixed data size (Refer to Table 9-30)

1 13 F-ADDR variable full data write address (leading zeros truncated)

1 64 DATA variable write data value

0 28 TSTAMP variable Timestamp (optional)

Watchpoint 
Message

6 6 TCODE fixed TCODE number = 15

6 6 SRC fixed source processor identifier

1 16 WPHIT variable watchpoint source indicators

0 28 TSTAMP variable Timestamp (optional)

Resource 
Full 

Message

6 6 TCODE fixed TCODE number = 27

6 6 SRC fixed source processor identifier

4 4 RCODE fixed
resource code identifying the full resource (Refer to 
Table 9-33)

1 30 RDATA variable resource data (Refer to Table 9-33)

0 28 TSTAMP variable Timestamp (optional)

Program 
Trace -
Indirect 
Branch 
History 

Message

6 6 TCODE fixed TCODE number = 28

6 6 SRC fixed source processor identifier

2 2 BTYPE fixed branch type (Refer to Table 9-34)

1 8 I-CNT variable
# of sequential instructions completed since the last 
predicate instruction, transmitted instruction count, or taken 
change of flow

1 32 U-ADDR variable unique portion of the indirect change of flow target address

1 30 HIST variable direct branch / predicate instruction history information

0 28 TSTAMP variable Timestamp (optional)

Table 9-29. Supported TCODEs (continued)

Message 
Name

Field Size (bits)1
Field
Name

Field
Type

Field Description
Minimum Maximum
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Program 
Trace -
Indirect 
Branch 
History 

Message
w/ Sync

6 6 TCODE fixed TCODE number = 29

6 6 SRC fixed source processor identifier

2 2 BTYPE fixed branch type (Refer to Table 9-34)

1 8 I-CNT variable
# of sequential instructions completed since the last 
predicate instruction, transmitted instruction count, or taken 
change of flow.

1 32 F-ADDR variable full indirect change of flow target address4

1 30 HIST variable direct branch / predicate instruction history information

0 28 TSTAMP variable Timestamp (optional)

Program 
Trace -

Program 
Correlation 
Message

6 6 TCODE fixed TCODE number = 33

6 6 SRC fixed source processor identifier

4 4 EVCODE fixed
event code identifying the event to correlate with program 
flow (Refer to Table 9-35)

1 8 I-CNT variable
# sequential instructions completed since last predicate 
instruction, transmitted instruction count, or taken change of 
flow

1 30 CDATA variable correlation data (branch history information)

0 28 TSTAMP variable Timestamp (optional)

1 The number shown in this column indicates the minimum logical number of bits required in the field after any applicable 
compression has been employed. The actual minimum number of bits transferred by the implementation may be larger due to 
constraints of the auxiliary output port width (Nexus packets must be zero-padded out to a port boundary in accordance with 
IEEE-ISTO 5001).

2 Note: e500mc uses only 8 bit ECODE encodings, whereas other Nexus clients on the integrated device may use 12 bit ECODE 
encodings. Software decoding Nexus messages should account for this difference.

3 There will be microarchitected (implementation specific) amount of “skid” in terms of the specific instruction address that is 
transmitted relative to the sync condition. Subsequent program trace message fields (I-CNT / HIST) will be based from this 
messaged PC value maintaining a coherent trace flow.

4 Program Trace -Indirect Branch History Message w/ Sync is the message that is generated periodically with the F-ADDR

Table 9-30. Data Trace Size (DSZ) Encodings (TCODE = 13)

DSZ Encoding Transfer Size Description

0000 0 bytes1 0-bit

0001 1 bytes 8-bit

0010 2 bytes 16-bit/halfword

0011 3 bytes 24-bit/string

0100 4 bytes 32-bit/word

Table 9-29. Supported TCODEs (continued)

Message 
Name

Field Size (bits)1
Field
Name

Field
Type

Field Description
Minimum Maximum



Debug and Performance Monitor Facilities

e500mc Core Reference Manual, Rev. 3

9-52 Freescale Semiconductor
 

0101 5 bytes

Misaligned 
access

0110 6 bytes

0111 7 bytes

1000 8 bytes 64-bit / double

1001 16 bytes 128-bit

1010 32 bytes1 256-bit

1011 64 bytes1 512-bit

1100-1111 Reserved

1 Implied data instructions and cache management instructions utilize these 
encodings. Refer to Section 9.10.13.3, “Data Trace Size Field (DSZ).

Table 9-31. Error Code (ECODE) Encodings (TCODE = 8)

Error Code1

1 Note: e500mc uses only 8 bit ECODE encodings, whereas other Nexus clients on the integrated device may use 12 bit ECODE 
encodings. Software decoding Nexus messages should account for this difference.

Description

xxxxxxx1 Watchpoint Trace Message(s) lost. Applies only to Error Type 0 (ETYPE = 0000)

xxxxxx1x Data Trace Message(s) lost. Applies only to Error Type 0 (ETYPE = 0000)

xxxxx1xx Program Trace Message(s) lost

xxxx1xxx Ownership Trace Message(s) lost. Applies only to Error Type 0 (ETYPE = 0000)

xxx1xxxx Status message(s) lost (Debug Status). Applies only to Error Type 0 (ETYPE = 0000)

xx1xxxxx Data Acquisition Message(s) lost

x1xxxxxx Reserved

1xxxxxxx Reserved

Table 9-32. Error Type (ETYPE) Encodings (TCODE = 8)

Error Type Description

0000 Message queue overrun caused one or more messages to be lost

0001 Contention with higher priority messages caused one or more messages to be lost

0010–1111 Reserved

Table 9-33. Resource Code (RCODE) Encoding (TCODE = 27)

Resource Code Description RDATA

0000 Instruction counter Maximum instruction count (0xFD or 0xFE)1

0001 Branch history buffer Branch/predicate history buffer contents

Table 9-30. Data Trace Size (DSZ) Encodings (TCODE = 13) (continued)

DSZ Encoding Transfer Size Description
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9.10.5 Nexus Message Fields

Nexus messages are comprised of fields. Each field is a distinct piece of information within a message, 
and a message may contain multiple fields. Messages are transferred in packets over the Auxiliary Output 
protocol. A packet is a collection of fields. A packet may contain any number of fixed length fields, but 
may contain at most one variable length field. The variable length field must be the last field in a packet. 
This section provides information on some of the fields that comprise the supported messages.

9.10.5.1 TCODE Field

The TCODE field is a 6-bit fixed length field that identifies the type of message and its format. The field 
encodings are assigned by IEEE-ISTO 5001.

0010–0111 Reserved N/A

1000 Timestamp counter Maximum timestamp count (0xFF_FFFF)

1001–1111 Reserved N/A

1 The e500mc can complete up to two (2) instructions per cycle. The RDATA is transmitted with a value of 0xFD 
or 0xFE to accurately indicate the maximum instruction count when the RFM is transmitted.

Table 9-34. Branch Type (B-TYPE) Encoding (TCODE = 28, 29)

Branch Type Code Description

00 Branch instruction

01 Interrupt

1x Reserved

Table 9-35. Event Code (EVCODE) Encoding (TCODE = 33)

Event Code Mnemonic Description

0000 EVCODE #1 Entry into halted state for debug

0001 EVCODE #2 Entry into halted or stopped state for power management

0010–0011 — Reserved

0100 EVCODE #5 Program trace disabled

0101–1000 — Reserved

1001
EVCODE #10 Begin masking of program trace due to MSR[PMM] = 0. This event applies only if 

DC4[PTMARK] = 1.

1010 EVCODE #11 Branch and link occurrence (direct branch function call)

1011–1111 — Reserved

Table 9-33. Resource Code (RCODE) Encoding (TCODE = 27) (continued)

Resource Code Description RDATA
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9.10.5.2 Source ID Field (SRC)

Each Nexus module in a device is identified by a unique client source identification number. The number 
assigned to each Nexus module is determined by the Integrated device. The core implements a 6-bit fixed 
length source ID field consisting of 4-bit client source ID with the upper 2 bits reserved. 

9.10.5.3 Relative Address Field (U-ADDR)

The non-sync forms of the program trace messages include addresses which are relative to the address 
that was transmitted in the previous synchronizing program trace message. The relative address format is 
compliant with IEEE-ISTO 5001 and is designed to reduce the number of bits transmitted for address 
fields.

The relative address is generated by XORing the new address with the previous, and then using only the 
results up to the most significant 1. To recreate the original address, the relative address is XORed with the 
previously decoded address.

The relative address of a program trace message is calculated with respect to the previous program trace 
message, regardless of any address information that may have been sent in any other trace messages in the 
interim between the two program trace messages.

9.10.5.4 Full Address Field (F-ADDR)

Program trace synchronization messages provide the full address associated with the trace event (leading 
zeros may be truncated) with the intent of providing a reference point for development tools to operate 
from when reconstructing relative addresses. Synchronization messages are generated at significant mode 
switches and are also generated periodically to ensure that development tools are guaranteed to have a 
reference address given a sufficiently large sample of trace messages. Program Trace -Indirect Branch 
History Message w/ Sync is the message that is generated periodically with the F-ADDR

9.10.5.5 Timestamp Field (TSTAMP)

The timestamp field is enabled by programming DC1[TSEN]. There are two supported timestamp modes: 
fine and coarse. When fine timestamping is enabled, the timestamp field is appended to all messages from 
the Nexus client and provides a time reference for the trace event. When coarse timestamping is enabled, 
the timestamp field is appended periodically, once every 32 messages.

The timestamp value is recorded at the time that the message enters the internal message queues. The 
timestamp value is constructed from a 24-bit counter operating at the processor frequency plus a 4-bit 
correction counter.

Figure 9-19. Source ID Field Structure

Bit 0 1 2 3 4 5

Subfield Reserved Client Source ID
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When a message pends due to contention with other message types, a 4-bit counter is used to keep track 
of how long the message pends until it actually enters the message queues. This 4-bit correction value is 
concatenated with the 24-bit timestamp and can be used to correct the timestamp value for that pending 
latency by subtracting the correction value from the 24-bit timestamp value. If a message pends for 15 or 
more cycles, the timestamp correction indicates a value of 0xF. A timestamp correction value of 0xF 
should be taken to mean that the timestamp value for that message is unreliable. 

Whenever the 24-bit timestamp counter overflows, a Resource Full Message (RFM) is generated with a 
resource code of 0x8 and an RDATA field of 0xFF_FFFF. The Timestamp Resource Full Messages caused 
by do not pend. Clearing DC1[TSEN] will disable the timestamp counter, preventing Resource Full 
Messages from being generated due to timestamp overflow.

9.10.6 Nexus Message Queues

The e500 Nexus block implements internal message queues capable of storing two messages per cycle. 
Messages that enter the queue are transmitted in the order in which they are received.

If more than two messages attempt to enter the queue in the same cycle, the two highest priority messages 
are stored and the remaining messages may pend and retry transmission to the queues on subsequent 
cycles. Refer to Section 9.10.7, “Nexus Message Priority,” for more information on message priorities.

The overrun control register (OVCR) controls the Nexus behavior as the message queue fills. The Nexus 
block may be programmed to do the following:

• Allow the queue to overflow, drain the contents, queue an overrun error message and resume 
tracing.

• Stall the processor instruction completion when the queue utilization reaches the selected 
threshold.

• Suppress selected message types when the queue utilization reaches the selected threshold.

The Nexus message queues may fill due to software application behavior, which in general are not detailed 
here.

9.10.6.1 Message Queue Overrun

In this mode, the message queue stops accepting messages when an overrun condition is detected. The 
contents of the queues are allowed to drain until empty. Incoming messages are discarded until the queue 
is emptied. At this point, an overrun error message is enqueued which contains information about the types 
of messages that were discarded due to the overrun condition.

MSB LSB

Correction count
(4 bits)

Time stamp count
(24 bits)

Figure 9-20. Time Stamp Field Components
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9.10.6.2 CPU Stall

In CPU stall mode, instruction completion is stalled whenever the queue utilization reaches the selected 
threshold. PRSR[STALL_ST] is set whenever the trigger condition is reached and remains set until the 
stall condition is negated. The instruction completion is stalled long enough drop one threshold level below 
the level which triggered the stall. For example, if stalling the processor is triggered at 1/4 full, the stall 
stays in effect until the queue utilization drops to empty. There may be significant skid from the time that 
the stall request is made until the processor is able to stop completing instructions. This skid should be 
taken into consideration when programming the threshold. Refer to Section 9.4.7, “Nexus Overrun 
Control Register (OVCR),” for programming options.

9.10.6.3 Message Suppression

In this mode, the message queue disables selected message types whenever the queue utilization reaches 
the selected threshold. This allows lower bandwidth tracing to continue and possibly avoids an overrun 
condition. If an overrun condition occurs despite this message suppression, the queue responds according 
to the behavior described in Section 9.10.6.1, “Message Queue Overrun.” As soon as it is triggered, 
message suppression remains in effect until queue utilization drops the threshold below the level selected 
to trigger the suppression.esse

9.10.7 Nexus Message Priority

Nexus messages may be lost due to contention with other message types under the following 
circumstances:

• A new message is generated for a message type already pending retry due to contention with other 
message types in the previous cycle. The pending message is kept and continues to arbitrate for 
entry into the message queues. The new message is discarded. See Table 9-36 for a listing of 
various message types and their relative priority.

• More than two messages within the program trace message type are generated in the same cycle.

Table 9-36 lists the various message types and their relative priority from highest to lowest. Note that 
program trace has been allocated two ports into the message buffer so that two messages can be generated 
in one cycle. 

Up to two message requests can be queued into the message buffer in a given cycle. If more than two 
message requests exist in a given cycle, the two highest priority message classes are queued into the 
message buffer. Any remaining messages that did not successfully queue into the message buffer in that 
cycle generate subsequent responses, as described in Table 9-36.

Table 9-36.  Message Type Priority and Message Dropped Responses

Priority Message Type Message
Pend and Retry on 
Arbitration Loss?

Message Dropped 
Response

0 (highest) Error Error N/A N/A

1 Watchpoint Trace Watchpoint Message (WPM) Y None
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9.10.7.1 Data Acquisition Message Priority Loss Response and Retry

If a Data Acquisition Message (DQM) loses arbitration due to contention with higher priority messages, 
the DQM pends and retries on the subsequent cycle. If a new data acquisition event occurs while a DQM 
is pending, the new event is discarded. An error message is generated to indicate that a DQM has been lost 
due to contention.

9.10.7.2 Ownership Trace Message Priority Loss Response and Retry

If an Ownership Trace Message (OTM) loses arbitration due to contention with higher priority messages, 
the OTM pends and retries on the subsequent cycle. If a new ownership trace event occurs while an OTM 
is pending, then the new event generates a replacement message. Even if the pending OTM is a periodic 
update, software updates of the process ID information are more important than periodic refreshes of the 
process ID state and the new message is transmitted.

9.10.7.3 Program Trace Message Priority Loss Response and Retry

If a Program Trace Message (PTM) loses arbitration due to contention with higher priority messages, the 
PTM pends and retries on the subsequent cycle. If a new program trace event occurs while a PTM is 
pending, the new event is discarded. If the discarded PTM is a Program Correlation Message, a Resource 
Full message for instruction count, history buffer, timestamp overflow or an Indirect Branch with History 
message, then an Error message is generated to indicate that branch trace information has been lost. 

Once the pending PTM is enqueued, if another PTM was discarded during the retry phase, then the next 
Indirect Branch with History Message is upgraded to a sync-type message.

9.10.8 Data Trace Message Priority Loss Response and Retry

If a Data Trace Message (DTM) loses arbitration due to contention with higher priority messages, the 
DTM pends and retries on the subsequent cycle. If a new data trace event occurs while a DTM is pending, 
the new event is discarded.

2
Data Acquisition Data Acquisition Message (DQM) Y DQM error message

Ownership Trace Ownership Trace Message (OTM) Y None

3

Program Trace
(port 1)

Indirect Branch with History (IHM) Y BTM error message
sync upgrade next IHM

Resource Full Message (RFM) for 
instruction counter, history buffer and 
timestamp overflow

Y

4

Program Trace
(port 2)

Program Correlation Message (PCM)
Y

BTM error message
sync upgrade next IHM

Debug Status Message (DS) Y Sync upgrade next IHM

5 (lowest) Data Trace Data Trace Write Message (DTM) Y None

Table 9-36.  Message Type Priority and Message Dropped Responses (continued)

Priority Message Type Message
Pend and Retry on 
Arbitration Loss?

Message Dropped 
Response
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9.10.9 Debug Status Messages

Debug Status Messages are enabled whenever any Nexus trace modes are enabled (DC1[TM] is nonzero). 
A debug status message is generated whenever the processor state changes. Any transition between 
normal, halted and stopped states constitutes a processor state change for the purpose of generating debug 
status messages.

9.10.10 Error Messages

Error messages are enabled whenever the debug logic is enabled. There are two conditions that produce 
an error message, each receiving a separate error type designation:

• A message is discarded due to contention with other (higher priority) message types. Error 
messages have the highest priority - error messages generated if any other messages are discarded 
due to contention. Such errors have an Error Type value of 4’b0001.

• The message queue overruns. After the queue is drained, an error message is enqueued with an 
error code that indicates the types of messages discarded during that time. Such errors have an 
Error Type value of 4’b0000.

9.10.11 Resource Full Messages

Certain trace resources, such as counters and history buffers, have hardware limitations to their size. To 
avoid losing information when these resources become full, the e500mc is capable of generating Resource 
Full messages. The information from this message is added or concatenated with information from 
subsequent messages to interpret the full picture of what has transpired. For the e500mc, Resource Full 
messages are generated upon overflow of any one of three resources: instruction counter, history buffer 
and timestamp counter.

The instruction counter is capable of counting up to 255 sequential instructions before overflowing. If the 
instruction counter overflows, a Resource Full message is generated. Development tools can use this 
information to properly reconstruct program flow. Disabling program trace will disable the instruction 
counter, preventing Resource Full messages from being generated due to this resource.

The branch/predicate history buffer is capable of storing up to 30 bits (29 history events plus the stop bit). 
The history buffer is reset whenever the branch/predicate history information is transmitted in a message. 
If the history buffer becomes full, a Resource Full message is generated to transmit the contents of the 
history buffer. Development tools can concatenate this history information with history fields from other 
program trace messages to obtain the complete branch/predicate history. Disabling program trace will 
disable logging branch/predicate information in the history buffer, preventing Resource Full messages 
from being generated due to this resource.

The timestamp counter is a 24-bit resource which counts cycles at the e500mc processor frequency. When 
enabled, the value from this counter (along with a 4-bit correction value) is appended to trace messages as 
they enter the internal message queues. If the timestamp counter overflows, a Resource Full message is 
generated to transmit the maximum timestamp value (0xFF_FFFF). Development tools can append this 
value to the timestamp value transmitted within the next trace message to reconstruct the true timestamp 
value. Disabling the timestamp feature by clearing DC1[TSEN] will disable the timestamp counter, 
preventing Resource Full messages from being generated due to this resource.
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The specific resource that has become full is indicated by the resource code (RCODE) within the Resource 
Full message. The data associated with the specific resource is captured in the resource data field 
(RDATA). These fields and their values are outlined in Table 9-33, "Resource Code (RCODE) Encoding 
(TCODE = 27).”

9.10.12 Program Trace

This section details the program trace mechanisms supported by the Nexus module included in the core. 
Program trace is implemented using Branch Trace Messaging (BTM) in accordance with IEEE-ISTO 5001 
definitions.

Branch Trace Messaging facilitates program trace by providing the following types of information:
• The number of sequential instructions which have completed since the last predicate instruction, 

transmitted instruction count, or taken change of flow.
• Branch/predicate history indicating whether direct branches in the program flow were taken or not 

as well as indicating whether or not predicate instructions were executed.
• In the case of indirect changes of flow (including interrupts), the target address of the change of 

flow is provided.

9.10.12.1 Enabling and Disabling Program Trace

Program trace can be enabled in one of two ways:
• Setting the appropriate DCI[TM] bit (DC1[61]).
• Programming the PTS field of the WT1 register to enable program trace on the occurrence of a 

watchpoint condition.

Similarly, program trace may be disabled by the following:
• Clearing the appropriate DCI[TM] bit (DC1[61]). Note that resetting the Nexus module clears all 

Nexus registers, disabling program trace as a side effect.
• Programming WT1[PTE] to disable program trace on the occurrence of a watchpoint condition.
• Program trace can be filtered out (effectively disabled) when certain processes are active by 

programming DC4[PTMARK].

Program trace is effectively suppressed whenever the processor core is in the debug halted or debug 
stopped state. Instruction jamming operations do not produce any Program Trace Messages. Whenever the 
processor core leaves the debug halted state, program trace enable state reverts to the status of DC1[61].

9.10.12.2 Sequential Instruction Count Field

Most of the program trace messages include an instruction count field. This instruction count indicates the 
number of sequential instructions that have completed since the last predicate instruction, transmitted 
instruction count, or taken change of flow. Taken indirect branch instructions are included in this count. 
Instructions which produce branch/predicate history information are not included in this count. The 
instruction counter is reset every time the instruction count is transmitted in a message or whenever there 
is a branch/predicate history event. 
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9.10.12.3 Branch/Predicate History Events

The branch/predicate history buffer stores information about branch and predicate instruction execution. 
The buffer is implemented as a left-shifting register. The buffer is preloaded with a one (1) which acts as 
a stop bit (the most significant 1 in the history field is a termination bit for the field). 

A value of one (1) is shifted into the history buffer for each taken direct branch (program counter relative 
branch) or predicate instruction whose condition evaluates to true. A value of zero (0) is shifted into the 
history buffer for each not-taken branch (including indirect branch instructions) or predicate instruction 
whose condition evaluates to false. The e500mc implements a 30-bit history buffer (29 history bits plus 1 
stop bit).

This history buffer information is transmitted as part of an Indirect Branch with History Message, as part 
of a Program Correlation Message, or as part of a Resource Full Message if the history buffer becomes full.

9.10.12.4 Indirect Branch Message Events

An indirect branch event is a change of flow whose branch target cannot be inferred from the source code. 
This includes register indirect branch instructions, and interrupts. When an indirect branch event occurs 
and program trace is enabled, an Indirect Branch with History Message (TCODE 28) is generated. 

The address field of this message is the target address of the change of flow. For interrupts, this is the 
interrupt vector.

Table 9-37. Branch/Predicate History Events

Branch/Predicate History Event History Bit Relevant Instructions Notes

Not taken register indirect branches 0 bcctr, bcctrl, bclr, bclrl —

Not taken direct branches 0 b, ba, bc, bca, bla, bcla, bl, bcl —

Taken direct branches

1

b, ba, bc, bca, bla, bcla, bl, bcl If EVCODE for direct branch function calls 
is not masked in DC4, taken bl and bcl 
instructions generate Program 
Correlation Messages and are not logged 
in the history buffer.

Predicated instructions 1 isel, fsel —

Table 9-38. Indirect Branch Message Events

Indirect Branch Message Event BTYPE Relevant Instructions

Taken register indirect branches 00 bcctr, bcctrl, bclr, bclrl

Return from Interrupt 00 rfi, rfci, rfdi, rfmci

Interrupt taken
01

N/A
Interrupts caused by sc, tw, and twi are messaged in the same way as any other 
taken interrupt event.

Reserved 11 N/A
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9.10.12.5 Resource Full Events

Program trace can produce three types of Resource Full messages (TCODE 27): instruction counter, 
history buffer and timestamp.

The instruction counter is capable of counting up to 255 sequential instructions before overflowing. If the 
instruction counter overflows, a Resource Full message is generated. Development tools can use this 
information to properly reconstruct program flow.

The branch/predicate history buffer is capable of storing up to 30 bits (29 history events plus the stop bit). 
The history buffer is reset whenever the branch/predicate history information is transmitted in a message. 
If the history buffer becomes full, a Resource Full message is generated to transmit the contents of the 
history buffer. Development tools can concatenate this history information with history fields from other 
program trace messages to obtain the complete branch/predicate history.

9.10.12.6 Program Correlation Events

Program Correlation Messages (TCODE 33) are used to correlate processor events to instructions in the 
program flow. Program Correlation Messages provide branch/predicate history and sequential instruction 
count information at the time the event is detected. This information can be used by development tools to 
correlate the event to an instruction in the program flow. Each event can be independently masked by 
setting a bit in Nexus Development Control Register 4 (DC4).

The e500 Nexus module generates Program Correlation Messages for the following events when program 
trace is enabled and the event is not masked in DC4:

• The processor is halted for debug. 
• The processor is halted for power management. 
• Program trace becomes disabled (excluding disable by reset)
• Program trace becomes masked due to MSR[PMM] = 0 and DC4[PTMARK] = 1
• Branch and Link instructions (direct branch function call, bl/bcl)

9.10.12.7 Synchronization Conditions

By default, program trace messages perform XOR compression on the branch target address to produce 
the address field for the message. This compression is consistent with the specification in IEEE-ISTO 
5001.

Under some conditions an uncompressed address is sent to provide development tools with a baseline 
reference address. The nature of these conditions determines the type of message transmitted. In cases 
where there is a discontinuity in program flow, a synchronization message is transmitted indicating a 
“hard” sync has occurred (TCODE 9). Subsequent Program Trace Messages will base their sequential 
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instruction count (I-CNT) and branch history (HIST) values starting from the program counter (PC) value 
transmitted within this message. Hard sync cases are outlined in Table 9-39.

Conditions which do not create a discontinuity are considered “soft” sync cases. These conditions cause 
the next branch trace message to use an uncompressed target address (TCODE 29). Soft sync cases are 
outlined in Table 9-40.

9.10.13 Data Trace

The e500mc supports limited data trace. The features of data trace are as follows:
• Only stores are traced.
• The data trace message is uncorrelated (meaning there is no corresponding Program Correlation 

Message (PCM)).

Table 9-39. Hard Synchronization Conditions

Hard SYNC
Condition

Description

EVTI0 Assertion
The e500mc EVTI0 pin has been asserted (high to low transition) and DC1[EIC] determines that 
EVTI0 generates trace synchronization messages.

Exit from System Reset
The embedded processor has successfully exited system reset.
For program trace messages, this is required to allow the number of instruction units executed 
packet in a subsequent BTM to be correctly interpreted by the tool.

Exit from Debug The embedded processor has exited from the debug HALT state.

Program Trace Enable Program Trace is enabled during normal execution of the embedded processor.

FIFO Overrun

An overrun condition had previously occurred in which one or more trace occurrences were 
discarded by the debug logic. To inform the tool that an overrun condition occurred, the target 
outputs an Error Message (TCODE = 8) prior to a sync message. The error message contains 
an ECODE value indicating the type(s) of messages lost due to the overrun condition.

Message Contention

One or more messages was lost due to contention with a higher priority message. To inform the 
tool that this condition occurred, the target outputs an Error Message (TCODE = 8) prior to a 
sync message. The error message contains an ECODE value indicating the type of message 
lost due to the contention.See Section 9.10.7, “Nexus Message Priority” 

Exit from Power-down
The processor has exited from a power management state.
For program trace messages, this is required to allow the number of instruction units executed 
packet in a subsequent BTM to be correctly interpreted by the tool.

Table 9-40. Soft Synchronization Conditions

Soft SYNC
Condition

Description

EVTI1 
Assertion

The e500mc EVTI1 pin has been asserted (high to low transition).

Periodic 
Message 
Counter

The periodic trace message counter has expired indicating that there have been 255 program trace messages 
without an uncompressed address.This will upgrade the next program trace message to be a sync type.
This insures that with a sufficiently large sample of trace information, there is guaranteed to be a reference 
address that can be used to meaningfully interpret the remainder of the program trace.
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• Each address compare is limited to a maximum of 4 Kbytes on exact match (see Section 2.17.5, 
“Debug Control Register 4 (DBCR4),” for detail on programming extended DAC ranges).

• Misaligned stores are not combined, meaning that each half that has an associated DAC set is sent 
as an independent data trace message.

• Store multiple word instructions (stmw) produce a separate data trace message for each word 
stored that meets the trace criteria.

9.10.13.1 Enabling and Disabling Data Trace

The data trace features rely on the data address compare (DAC) resources in order to compress address 
information by implying upper order address bits from the DAC attribute. Consequently, data trace 
functionality requires DAC settings to be enabled in addition to enabling messaging.

To enable DACs for use by data trace, the following conditions are required:
• DBCR0[IDM] = DBCR0[EDM] = 0. This is required because comparator resources are shared 

with the architecture-defined DAC function. If DBCR0[IDM] or DBCR0[EDM] is set, the DAC 
function has precedence and Data Trace Messages are not generated. 

NOTE
DAC conditions may also trigger Data Trace Messages if the corresponding 
store operation completes. In most cases, a DAC condition prevents the 
store operation from completing (by causing entry into debug halted state or 
generating a debug interrupt). 

The case which does not prevent completion is when DBCR0[EDM] = 0, 
DBCR0[IDM] = 1, and MSR[DE] = 0. In this case, DAC conditions 
produce imprecise debug events which do not suppress the completion of 
the corresponding store operation and consequently produce Data Trace 
Messages when enabled.

• DAC1 and DAC2 should be programmed with the desired addresses for data tracing.
• DBCR0[DAC1, DAC2] should be programmed to enable the DAC condition to occur on store-type 

data storage accesses.
• DBCR4[DAC1XM] and DBCR4[DAC2XM] should be programmed to construct data trace 

address regions which do not exceed 4 Kbytes. If a DAC match region exceeds 4 Kbytes, the 
resulting data trace may be ambiguous as a result of address aliasing.

• Additional filtering of data trace according to privilege and/or address space may be applied by 
programming DBCR2[DAC1U,DAC1ER,DAC2US,DAC2ER].

Data Trace Messaging can be enabled in one of two ways:
• Setting the appropriate DCI[TM] bit (DC1[62]).
• Programming WT1[DTS] to enable data trace on the occurrence of a watchpoint condition.

Similarly, data trace may be disabled by one of the following:
• Disabling the DAC conditions for store-type accesses.
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• Clearing the appropriate DCI[TM] bit (DC1[62]). Note that resetting the Nexus module clears all 
Nexus registers, disabling data trace as a side effect.

• Programming WT1[DTE] to disable data trace on the occurrence of a watchpoint condition.

NOTE
The latter two mechanisms defined above will disable additional stores from 
entering the e500mc store queue, but accesses which have already entered 
the queue (that is, accesses in flight) are messaged out before the DTMs are 
actually disabled. 

Data trace is effectively suppressed whenever the processor core is in the debug halted or debug stopped 
state. Instruction jamming operations do not produce any Data Trace Messages. Whenever the processor 
core leaves the debug halted state, data trace enable state reverts to the status of DC1[62].

9.10.13.2 Data Trace Range Control

The data trace address range is limited to two 4-Kbyte ranges. These ranges are controlled by setting the 
effective addresses in DAC1 and DAC2 and the DAC configuration in DBCR0 and DBCR4. 
DBCR0[DAC1] and DBCR0[DAC2] must be enabled for store-type data storage accesses. 
DBCR4[DAC1XM] and DBCR4[DAC2XM] must be set to modes that ensure that the address range of 
each DAC does not exceed 4 Kbytes. 

9.10.13.3 Data Trace Size Field (DSZ)

For normal data transfers, DSZ indicates the size (in bytes) of the store that is being traced, but there are 
two special cases which use unique DSZ values to indicate specific types of data transfers. 

Certain cache management instructions (dcba, dcbz, dcbal, dcbzl) are treated as store-type data storage 
accesses and always have a data value of zero. For the dcbz and dcba instructions, a mode bit 
(L1CSR0[DCBZ32]) determines whether or not 32-bytes or 64-bytes are zeroed out. This is indicated with 
the respective DSZ value within the data trace message. Data Trace Messages for dcbzl and dcbal 
instructions will always include a DSZ value indicating 64-bytes (4’b1011). Refer to Section 3.4.10.1, 
“User-Level Cache Instructions” for more detail on cache management instructions.

The e500mc supports an additional instruction form, called decorated storage notify (dsn) which provides 
the ability to send an address along with a decoration, but does not include any data. This implied zero data 
trace message transmitted with a DSZ value of zero (4’b0000) indicating a zero byte data transfer. Refer 
to the integrated device reference manual for more detail on the dsn instruction.

9.10.13.4 Data Trace Address Field

The data trace address field consists of a 12-bit address offset and a 1-bit DAC tag identifier as follows:

MSB LSB

DAC tag ADDR[52:63]

Figure 9-21. Data Trace Address Field Components
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A value of 0 for the DAC tag indicates that this store matched only the DAC1 conditions or matched both 
the DAC1 and DAC2 conditions. A value of 1 for the DAC tag indicates that this store matched only the 
DAC2 conditions. The full effective address can be reconstructed by concatenating the DAC information 
with the data trace address field information as follows:

The upper address information should be selected from DAC1 or DAC2 according to the DAC tag bit in 
the data trace address field and the DAC settings. Note that setting the DAC conditions to include regions 
in excess of 4 Kbytes results in address aliasing making precise reconstruction of the full effective address 
impossible (without other implied restrictions or information that can remove the ambiguity).

9.10.13.5 Data Trace Data Field

The data trace data field contains the data that was written by a store operation that met the requirements 
for being traced. Leading zeros are truncated to an auxiliary output port boundary and not transferred in 
the message.

9.10.13.6 Data Trace Message Events

A data trace event is a store-type data storage access that is executed by the load/store unit and which meets 
the criteria set forth for a DAC condition. Additional filtering and triggering may be applied to control 
when data trace events are observed. When a qualified data trace event occurs and data trace is enabled, a 
Data Trace Write with Sync message (TCODE 13) is generated. 

9.10.14 Ownership Trace

Ownership trace facilitates tracking the active operating system task by providing visibility to special 
purpose registers designated for use by the OS for process ID. All OS process ID changes which are 
reflected in the Nexus Process ID Register (NPIDR) or PID Register will generate Ownership Trace 
Messages. Changes in the logical partition ID (LPIDR) will also generate OTMs.

DAC1[32–51] or DAC2[32–51] ADDR[52–63]

Figure 9-22. Data Trace Full Address Reconstruction

Table 9-41. Data Trace Message Events

Data Trace Message Event Source Relevant Instructions Notes

Cache management instructions that 
are treated as store-type data 
storage accesses

dcba, dcbal, dcbz, dcbzl, dcbzep, dcbzl, 
dcbzlep

Treated like data storage writes with write 
data value of zero (refer to Section 9.10.13.3, 
“Data Trace Size Field (DSZ)).

Store instructions that produce data 
storage write accesses

stb[u][x], stbepx, stfd[u][x], stfdepx, 
stfiwx, stfs[u][x], sth[u][x], sthbrx, 
sthepx, stmw, stw[u][x], stwbrx, stwepx

For stmw, a separate data trace message is 
generated for each word stored that meets 
the trace criteria.

Conditional store instruction stwcx. Only generates data trace messages if the 
associated store is successful (that is, the 
condition evaluates to true)
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9.10.14.1 Enabling and Disabling Ownership Trace

Ownership trace can be enabled by the following:
• Setting the appropriate DCI[TM] bit (DC1[63]).

Similarly, ownership trace may be disabled by one of the following:
• Clearing the appropriate DCI[TM] bit (DC1[63]). Note that resetting the Nexus module clears all 

Nexus registers, disabling program trace as a side effect.
• Periodic ownership trace message events can be disabled by setting DC1[POTD]. Ownership trace 

message events due to mtspr instruction execution are unaffected by this control.

Ownership trace is effectively suppressed whenever the processor core is in the debug halted or debug 
stopped state. Instruction jamming operations do not produce any ownership trace messages. Whenever 
the processor core leaves the debug halted state, ownership trace enable state reverts to the status of 
DC1[63].

9.10.14.2 Ownership Trace Process Field

The process field of an Ownership Trace Message provides the contents of several pieces of process ID 
information. The PID value that is transmitted as part of the message is based on the type of ownership 
trace event as well as the value of DC1[OTS]. Refer Section Table 9-42., “OTM PROCESS Field 
Components”. The process field also consists of an index to identify which process ID values are being 
reported for a particular message. Refer to Section 9.10.14.3, “Standard Ownership Trace Message 
Events” and Section 9.10.14.4, ““Sync” Ownership Trace Message Events” for details on ownership trace 
events.

9.10.14.3 Standard Ownership Trace Message Events

The following two events generate standard Ownership Trace Messages when ownership trace is enabled:
• As programmed by DC1[OTS], a write to either (1) the NPIDR register or (2) the PID register is 

performed by executing an mtspr with the selected register as the target. The PROCESS field of 
the resulting ownership trace message indicates that the process ID changed with a PID index of 
0000 and that the new value written to the selected register is conveyed in the PID value subfield.

• When the hypervisor changes LPIDR, an OTM message indicates that the logical partition ID 
changed with a PID index of 0001 and the new LPIDR is conveyed in the PID value subfield.

Table 9-42. OTM PROCESS Field Components

PID Index (4 Bits) PID Index Description PID Value (up to 40 bits)

0000 OS PID information Process ID (PID)1

1 NPIDR[32:63] or PID0 (as programmed in DC1[OTS])

0001 Hypervisor PID information Logical Partition ID (LPIDR)

0010  “Sync” PID information {LPIDR, MSR[GS], PID1, MSR[PR]}

0011–1111 Reserved, not used N/A
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9.10.14.4 “Sync” Ownership Trace Message Events

The following three events generate “sync” OTM messages when ownership trace is enabled:
• Upon assertion of EVTI0 (when DC1[EIC] is programmed to initiate synchronization), all of the 

most recent process ID information is messaged out with a PID index of 0010. This effectively 
creates a “sync” OTM and the PROCESS field for this message reflects the current value in the 
NPIDR register (or PID0), the current privilege level (MSR[PR]), the current logical partition ID 
(LPID) as well as the current guest OS state (MSR[GS]).

• Upon a change in privilege level (MSR[PR]) or a change in guest state (MSR[GS]), an OTM will 
be generated with the same information as in the “sync” OTM case (PID index = 0010).

• Periodically, once every 256 messages, an OTM will also be generated with the same information 
as in the “sync” OTM case (PID index = 0010). These periodic ownership trace message events 
can be disabled by setting DC1[POTD].

• After draining the Nexus queues due to nexus overrun condition, an OTM “sync” message will be 
generated. If Ownership changed during the flush of the Nexus queues, this message along with 
the Hard Sync message synchronizes the trace tool again to the current program flow.

9.10.15 Data Acquisition

This section details the data acquisition mechanisms supported by the Nexus module included in the 
e500mc core. Data Acquisition Trace is implemented using Data Acquisition Trace Messages in 
accordance with IEEE-ISTO 5001 definitions. The control mechanism to export the data is different from 
the recommendations of the standard, however.

Data Acquisition Trace provides a convenient and flexible mechanism for the debugger to observe the 
architectural state of the machine through software instrumentation in either IDM or EDM mode. 

9.10.15.1 Enable and Disable Data Acquisition Trace

Enabling and disabling data acquisition trace messaging is done as follows:
• Enabled by setting the appropriate DCI[TM] bit (DC1[58]).
• Disabled by clearing the appropriate DCI[TM] bit (DC1[58]). 

Note that resetting the Nexus module clears all Nexus registers, disabling Data Acquisition Trace as a side 
effect.

Data Acquisition Trace is effectively suppressed whenever the processor core is in the debug halted or 
debug stopped state. Instruction jamming operations do not produce any Data Acquisition Trace messages. 
Whenever the processor core leaves the debug halted state, Data Acquisition Trace enable state reverts to 
the status of DC1[58].

9.10.15.2 Data Acquisition ID Tag Field

The ID tag field (IDTAG) is a 8-bit value specifying the complementary control or attribute information 
for the data included in the Data Acquisition Message. IDTAG is configured by accessing the DQM 
resources through the DEVENT and DDAM SPR registers. 
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IDTAG is sampled from DEVENT[32:39] when a write to DDAM is performed via mtspr operations. 

The IDTAG is left to the discretion of the development tool to be used in whatever manner is deemed 
appropriate for the application.

9.10.15.3 Data Acquisition Data Field

The Data Acquisition data field (DQDATA) is the data captured from the DDAM write operation via mtspr 
operations. DQDATA is sampled from DDAM[32:63].

9.10.15.4 Data Acquisition Trace Event

For DQM, a dedicated SPR has been allocated (DDAM). It is expected that the general use case is to 
instrument the software and use mtspr operations to generate Data Acquisition Messages.

There is no explicit error response for failed accesses as a result of contention between an internal and 
external debugger. Refer to Section 9.8.2, “Internal and External Debug Modes” for more information 
regarding internal/external debugger contention of debug resources. Reads from the data acquisition 
message register do not generate a data acquisition event and return zeros for the read data.

9.10.16 Watchpoint Trace

This section details the watchpoint trace mechanisms supported by the Nexus module included in the core. 
Watchpoint Trace trace is implemented using Watchpoint Trace Messaging in accordance with IEEE-ISTO 
5001 definitions.

Watchpoint Trace facilitates monitoring program execution for specific event occurrences.

9.10.16.1 Watchpoint Events

Table 9-43 lists all of the watchpoint events supported by the e500mc core. These watchpoint events may 
be used for one or more of the following functions:

• Triggers for enabling/disabling program trace according to the settings programmed in the WT1 
register.

• Assert the debug event out signals (EVTO[4:0]) according to the settings in DC1[EOC] and DC2.
• Generate a Watchpoint Trace message according to the settings programmed in DC1 and WMSK 

registers.
Table 9-43. Core Debug Watchpoint Mappings

 Core Watchpoints Event Description

Watchpoint #1 IAC1 event

Watchpoint #2 IAC2 event

Watchpoint #3 Interrupt taken

Watchpoint #4 Return from interrupt class instruction completed

Watchpoint #5 DAC1 event
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When the processor is in EDM, IACs, DACs return from interrupt. Return from critical interrupt debug 
conditions cause bits to be set in EDBSR0 and the processor to halt instead of taking a debug interrupt. In 
these cases, the watchpoint for the respective events will trigger on the update to EDBSR0 rather than the 
debug interrupt. For e500mc Rev 1.x and Rev 2.x, IACs and DACs that cause halts in EDM mode will not 
trigger watchpoints.

9.10.16.2 Enabling and Disabling Watchpoint Trace Messaging

Watchpoint trace messaging can be enabled by setting the appropriate DCI[TM] bit (DC1[60]) and 
enabling selected watchpoint events to produce a watchpoint trace message by programming WMSK. 
Note that except for interrupt taken, return from interrupt, and EVTI events, additional configuration is 
required to setup the individual watchpoint conditions. These additional configuration controls are specific 
to the event type. 

Similarly, watchpoint trace may be disabled by the following:
• Clearing the appropriate DCI[TM] bit (DC1[60]). Note that resetting the Nexus module clears all 

Nexus registers, disabling watchpoint trace as a side effect.
• Clearing the WMSK register such that no watchpoint events are enabled to produce a watchpoint 

trace message.

Watchpoint trace is effectively suppressed whenever the processor core is in the debug halted or debug 
stopped state. Instruction jamming operations do not produce any watchpoint trace messages. Whenever 
the processor core leaves the debug halted state, watchpoint trace enable state reverts to the status of 
DC1[60].

Watchpoint #6 DAC2 event

Watchpoint #7 Event In (0) (EVTI0)1

Watchpoint #8 Event In (1) (EVTI1)

Watchpoint #9 Data Acquisition Event (0) (DVT0)

Watchpoint #10 Data Acquisition Event (1) (DVT1)

Watchpoint #11 Process ID Update (PID)

Watchpoint #12 Performance Monitor Watchpoint 0 (PMW0)2

Watchpoint #13 Performance Monitor Watchpoint 1 (PMW1)2

Watchpoint #14 Performance Monitor Watchpoint 2 (PMW2)2

Watchpoint #15 Reserved

1 Assertion of EVTI0 produces a watchpoint independent of the settings of DC1[EIC]. That is, an EVTI0 assertion produces a 
watchpoint in addition to any functionality that is enabled in DC1[EIC]
2 Configuration is controlled by the PMLCb registers. See Section 2.18.3, “Local Control B Registers (PMLCb0–PMLCb3).”

Table 9-43. Core Debug Watchpoint Mappings (continued)

 Core Watchpoints Event Description
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9.10.16.3 Watchpoint Hit Field

The watchpoint hit field consists of fifteen bits with one bit per watchpoint event. Whenever a watchpoint 
trace message is generated, the watchpoint hit field of the message includes a 1 for each watchpoint event 
that occurred at that time and a zero for each event that did not occur. Only watchpoints that are enabled 
in WMSK may set a bit in the watchpoint hit field.

9.10.16.4 Watchpoint Trace Message Events

A watchpoint trace message is generated whenever watchpoint trace is enabled (DC1[60] is set) and a 
watchpoint event occurs which is enabled to produce a watchpoint trace message (the corresponding 
WMSK bit is set). If more than one enabled watchpoint occurs in a single cycle, only one watchpoint trace 
message is generated and multiple bits of the watchpoint hit field is set.

9.11 Performance Monitor 

This section describes the performance monitor, which is defined by the architecture and described in the 
EREF: A Programmer’s Reference Manual for Freescale Power Architecture® Processors. The primary 
function of the performance monitor is to count events pertaining to the performance of the core (for 
example, load/store and memory interface activity, cache activity, instructions fetched or executed, 
branches taken or not taken). Some features are defined by the implementation, in particular, the events 
that can be counted.

9.11.1 Overview

The performance monitor provides the ability to count predefined events and processor clocks associated 
with particular operations, for example cache misses, mispredicted branches, or the number of cycles an 
execution unit stalls. The count of such events can be used to trigger the performance monitor interrupt.

The performance monitor can be used to do the following:
• Improve system performance by monitoring software execution and then recoding algorithms for 

more efficiency. For example, memory hierarchy behavior can be monitored and analyzed to 
optimize task scheduling or data distribution algorithms. 

• Characterize processors in environments not easily characterized by benchmarking.
• Help system developers bring up and debug their systems.

The performance monitor uses the following resources: 
• The performance monitor mark bit, MSR[PMM], controls which programs are monitored.
• The move to/from performance monitor registers (PMR) instructions, mtpmr and mfpmr.
• The external input, pm_event.

Most Significant Bit Least Significant Bit

WP15 WP14 WP13 WP12 WP11 WP10 WP9 WP8 WP7 WP6 WP5 WP4 WP3 WP2 WP1

Figure 9-23. Watchpoint Hit Field
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Figure 9-24 shows a detailed view of one of the PMC counters available within the core performance 
monitor. Blue highlights special triggering controls that are available for e500mc.

• PMRs:
— The performance monitor counter registers (PMC0–PMC3) Section 2.18.4, “Performance 

Monitor Counter Registers (PMC0–PMC3/UPMC0–UPMC3) are 32-bit counters used to 

Figure 9-24. Detailed View: Core Performance Monitor Counters 0 through 3
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count software-selectable events. Each counter counts up to 256 events.UPMC0–UPMC3 
provide user-level read access to these registers. Reference events are those events that are 
applicable to most microprocessor microarchitectures and are of general value. They are 
identified in Table 9-47.

— The performance monitor global control register (PMGC0) controls the counting of 
performance monitor events. It takes priority over all other performance monitor control 
registers. UPMGC0 provides user-level read access to PMGC0.

— The performance monitor local control registers (PMLCa0–PMLCa3, PMLCb0–PMLCb3) 
control each individual performance monitor counter. Each counter has a corresponding 
PMLCa and PMLCb register. UPMLCa0–UPMLCa3 and UPMLCb0–UPMLCb3 provide 
user-level read access to PMLCa0–PMLCa3, PMLCb0–PMLCb3).

The performance monitor interrupt follows the architecture-defined interrupt model and is briefly 
described in Section 4.9.17, “Performance Monitor Interrupt—IVOR35.”

Software communication with the performance monitor is achieved through PMRs rather than SPRs. The 
PMRs are used for enabling conditions that can trigger a performance monitor interrupt. 

9.11.2 Performance Monitor Instructions

Instructions for reading and writing the PMRs are shown in Table 9-44. These are described in detail in 
the EREF: A Programmer’s Reference Manual for Freescale Power Architecture® Processors.

9.11.3 Performance Monitor Interrupt

The performance monitor interrupt is triggered by an enabled condition or event. The only enabled 
condition or event defined for the e500 is the following:

• A PMCn overflow condition occurs when both of the following are true:
— The counter’s overflow condition is enabled; PMLCan[CE] is set.
— The counter indicates an overflow; PMCn[OV] is set.

If PMGC0[PMIE] is set, an enabled condition or event triggers the signaling of a performance monitor 
exception. If PMGC0[FCECE] is set, an enabled condition or event also triggers all performance monitor 
counters to freeze.

Although the performance monitor exception condition could occur with MSR[EE] cleared, the interrupt 
cannot be taken until MSR[EE] is set. If PMCn overflows, signals an exception (PMLCan[CE] and 
PMGC0[PMIE] are set) while interrupts are disabled (MSR[EE] is clear), and freezing of the counters is 
not enabled (PMGC0[FCECE] is clear), PMCn can wrap around to all zeros again without the performance 
monitor interrupt being taken.

Table 9-44. Performance Monitor Instructions

Name Mnemonic Syntax

Move from Performance Monitor Register mfpmr rD,PMRN

Move to Performance Monitor Register mtpmr PMRN,rS
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9.11.4 Event Counting

This section describes configurability and specific unconditional counting modes. 

9.11.4.1 Processor Context Configurability

Counting can be enabled if conditions in the processor state match a software-specified condition. Because 
a software task scheduler may switch a processor’s execution among multiple processes and because 
statistics on only a particular process may be of interest, a facility is provided to mark a process. The 
performance monitor mark bit, MSR[PMM], is used for this purpose. System software may set this bit 
when a marked process is running. This enables statistics to be gathered only during the execution of the 
marked process. The states of MSR[PR,PMM] together define a state that the processor (supervisor or 
user) and the process (marked or unmarked) may be in at any time. If this state matches an individual state 
specified by PMLCan[FCS,FCU,FCM1,FCM0], the state for which monitoring is enabled, counting is 
enabled for PMCn.

The processor states and the settings of the FCS, FCU, FCM1, and FCM0 fields in PMLCan necessary to 
enable monitoring of each processor state are shown in Table 9-45.

Two unconditional counting modes may be specified:
• Counting is unconditionally enabled regardless of the states of MSR[PMM] and MSR[PR]. This 

can be accomplished by clearing PMLCan[FCS], PMLCan[FCU], PMLCan[FCM1], and 
PMLCan[FCM0] for each counter control.

• Counting is unconditionally disabled regardless of the states of MSR[PMM] and MSR[PR]. This 
can be accomplished by setting PMGC0[FAC] or by setting PMLCan[FC] for each counter control. 
Alternatively, this can be accomplished by setting PMLCan[FCM1] and PMLCan[FCM0] for each 
counter control or by setting PMLCan[FCS] and PMLCan[FCU] for each counter control.

Table 9-45. Processor States and PMLCa0–PMLCa3 Bit Settings

Processor State FCS FCU FCM1 FCM0

Marked 0 0 0 1

Not marked 0 0 1 0

Supervisor 0 1 0 0

User 1 0 0 0

Marked and supervisor 0 1 0 1

Marked and user 1 0 0 1

Not marked and supervisor 0 1 1 0

Not mark and user 1 0 1 0

All 0 0 0 0

None X X 1 1

None 1 1 X X
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9.11.4.2 Core Performance Monitor & PC Capture Function

For real-time debug, a capture function is available for the core performance counters, PMC0–PMC3 as 
well as the micro-architected program counter (PC). Whenever the core’s EVTO4 signal is asserted, the 
PMC values of each counter and the current PC are captured in registers, which are then readable through 
the e500mc memory mapped interface.

One of the e500mc watchpoint signals, EVTO4, was selected for simultaneous capture of the PMC 
counters and micro-architected PC because it provided capture capability through programming of 
DC2[EWC4] for any of the e500mc watchpoint sources including the following:

• EVTI0 signal, providing a device trigger from the EPU through RCPM
• EVTI1 signal, providing a device trigger from the EPU through RCPM
• IAC match
• DAC match
• Other watchpoint sources

This allows for capture either on an external device event through the EVTI signals or on an event internal 
to the e500mc.

A high-level block diagram of the capture functionality is shown in Figure 9-25. The capture registers are 
written only from the PMCs on the capture signal and are readable only through the e500mc memory 
mapped interface. The location of these registers in the memory map are outlined in Table 9-23.

Figure 9-25. Core Performance Monitor Capture Capability
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NOTE
Note that the EVTI signal, provided from the SoC, can be used to capture 
not only PMC counter (& program counter) values from a single core, but 
from all cores (or a subset of cores) on the SoC as well as the SoC-level 
performance counters located in the event processing unit (EPU). 

9.11.5 Examples 

The following sections provide examples of how to use the performance monitor facility.

9.11.5.1 Chaining Counters

The counter chaining feature can be used to decrease the processing pollution caused by performance 
monitor interrupts (such as cache contamination and pipeline effects) by allowing a higher event count 
than is possible with a single counter. Chaining two counters together effectively adds 32 bits to a counter 
register where the first counter’s overflow event acts like a carry out feeding the second counter. By 
defining the event of interest to be another PMC’s overflow generation, the chained counter increments 
each time the first counter rolls over to zero. Multiple counters may be chained together. 

Because the entire chained value cannot be read in a single instruction, an overflow may occur between 
counter reads, producing an inaccurate value. A sequence like the following is necessary to read the 
complete chained value when it spans multiple counters and the counters are not frozen. The example 
shown is for a two-counter case.
loop: mfpmr  Rx,pmctr1 #load from upper counter

mfpmr Ry,pmctr0 #load from lower counter
mfpmr Rz,pmctr1 #load from upper counter
cmp cr0,0,Rz,Rx #see if ‘old’ = ‘new’
bc 4,2,loop #loop if carry occurred between reads

The comparison and loop are necessary to ensure that a consistent set of values has been obtained. The 
above sequence is not necessary if the counters are frozen.

9.11.5.2 Thresholding

Threshold event measurement enables the counting of duration and usage events. For example, data line 
fill buffer (DLFB) load miss cycles (event C0:76 and C1:76) require a threshold value. A DLFB load miss 
cycles event is counted only when the number of cycles spent recovering from the miss is greater than the 
threshold. Because this event is counted on two counters and each counter has an individual threshold, one 
execution of a performance monitor program can sample two different threshold values. Measuring code 
performance with multiple concurrent thresholds expedites code profiling significantly. 

9.11.6 Event Selection

Event selection is specified through the PMLCan registers described in Section 2.18.2, “Local Control A 
Registers (PMLCa0–PMLCa3/UPMLCa0–UPMLCa3).” The event-select fields in PMLCan[EVENT] are 
described in Table 9-47, which lists encodings for the selectable events to be monitored. Table 9-47 
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establishes a correlation between each counter, events to be traced and the pattern required for the desired 
selection. 

For the purposes of event descriptions, the following definitions of micro-ops apply:
• A micro-op is defined to be:

— 2 for load and store instructions that use an update form (such as lwzu);
— 1 to 32 for load and store multiple instructions (lmw, stmw) depending on the number of 

registers processed;
— 1 for all other instructions

• A store micro-op is defined to be:
— 1 to 32 for store multiple instructions (stmw) depending on the number of registers processed;
— 2 for any misaligned store that crosses a doubleword boundary;
— 1 for all other store instructions including store with update forms;
— 1 for all other instructions that are treated as a store or are processed as an entry in the store 

queue by the implementation:
– dcba*, dcbf*, dcbst*, dcbz*;
– dcbt (CT=1), dcbtst (CT=1);
– icbi*;
– icbt (CT=1);
– dcbtls, dcbtstls, dcblc, icbtls, icblc;
– msgsnd, mbar, sync, tlbivax, tlbilx

— dcbt* instructions that are processed as a NOP are not counted
• A load micro-op is defined to be:

— 1 to 32 for load multiple instructions (lmw) depending on the number of registers processed;
— 2 for any misaligned load that crosses a doubleword boundary;
— 1 for all other load instructions including load with update forms;
— 1 for all other instructions that are treated as a load by the implementation:

– dcbt (CT=0), dcbtst (CT=0)
— dcbt* instructions that are processed as a NOP are not counted

• A cacheable store micro-op is defined to be a store micro-op to an address that is marked with 
WIMGE = 0b00xxx (not write-through and not cacheing inhibited).

• A cacheable load micro-op is defined to be a load micro-op to an address that is marked with 
WIMGE = 0bx0xxx (not cacheing inhibited).

The Spec/Nonspec column indicates whether the event count includes any occurrences due to processing 
that was not architecturally required by the Power ISA sequential execution model (speculative 
processing). 

• Speculative counts include speculative instructions that were later flushed.
• Nonspeculative counts do not include speculative operations, which are flushed. 

Table 9-46 describes how event types are indicated in Table 9-47.
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Table 9-47 describes performance monitor events.

Table 9-46. Event Types

Event Type Label Description

Reference Ref:# Shared across counters PMC0—PMC3. Applicable to most microprocessors. 

Common Com:# Shared across counters PMC0–PMC3. Fairly specific to e500 microarchitectures. 

Counter-specific
C[0–3]:#

Counted only on one or more specific counters. The notation indicates the counter to which 
an event is assigned. For example, an event assigned to counter PMC2 is shown as C2:#.

Table 9-47. Performance Monitor Event Selection

Number Event
Spec/

Nonspec
Count Description

General Events

Ref:0 Nothing Nonspec Register counter holds current value

Ref:1 Processor cycles Nonspec Every processor cycle

Ref:2 Instructions completed Nonspec Completed instructions. 0, 1, or 2 per cycle.

Com:3 Micro-ops completed Nonspec Completed micro-ops.

Com:4
Instructions fetched

Spec
Fetched instructions. 0, 1, 2, 3, or 4 per cycle. (instructions written 
to the IQ.)

Com:5 Micro-ops decoded Spec Micro-ops decoded. 

Com:6 PM_EVENT transitions Spec 0 to 1 transitions on the pm_event input.

Com:7 PM_EVENT cycles Spec Processor cycles that occur when the pm_event input is asserted.

Instruction Types Completed

Com:8 Branch instructions completed Nonspec Completed branch instructions.

Com:9 Load micro-ops completed Nonspec Completed load micro-ops. 

Com:10 Store micro-ops completed Nonspec Completed store micro-ops. 

Com:11
Number of CQ redirects

Nonspec
Fetch redirects initiated from the completion unit. (for example, 
resulting from sc, rfi, rfci, rfdi, rfmci, isync, and interrupts)

Branch Prediction and Execution Events

Com:12 Branches finished Spec Includes all branch instructions

Com:13 Taken branches finished Spec Includes all taken branch instructions

Com:14
Finished unconditional branches 
that miss the BTB

Spec
Includes all taken branch instructions not allocated in the BTB

Com:15

Branches mispredicted (for any 
reason)

Spec

Counts branch instructions mispredicted due to direction, target (for 
example if the CTR contents change), or IAB prediction. Does not 
count instructions that the branch predictor incorrectly predicted to 
be branches. 

Com:16
Branches in the BTB mispredicted 
due to direction prediction.

Spec
Counts branch instructions mispredicted due to direction prediction.
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Com:17
BTB hits and pseudo-hits

Spec
Branch instructions that hit in the BTB or miss in the BTB and are 
not-taken (a pseudo-hit). Characterizes upper bound on prediction 
rate.

Pipeline Stalls

Com:18 Cycles decode stalled Spec Cycles the IQ is not empty but 0 instructions decoded

Com:19 Cycles issue stalled Spec Cycles the issue buffer is not empty but 0 instructions issued

Com:20 Cycles branch issue stalled Spec Cycles the branch buffer is not empty but 0 instructions issued

Com:21 Cycles SFX0 schedule stalled Spec Cycles SFX0 is not empty but 0 instructions scheduled

Com:22 Cycles SFX1 schedule stalled Spec Cycles SFX1 is not empty but 0 instructions scheduled

Com:23 Cycles MU schedule stalled Spec Cycles MU is not empty but 0 instructions scheduled

Com:24 Cycles LRU schedule stalled Spec Cycles LRU is not empty but 0 instructions scheduled

Com:25 Cycles BU schedule stalled Spec Cycles BU is not empty but 0 instructions scheduled

Load/Store, Data Cache, and Data Line Fill Buffer (DLFB) Events

Com:26 Total translated
Spec

Total of load and store micro-ops that reach the second stage of the 
LSU 1

Com:27 Loads translated Spec Cacheable load micro-ops translated.1 

Com:28 Stores translated Spec Cacheable store micro-ops translated.1

Com:29
Touches translated

Spec
Cacheable dcbt and dcbtst instructions translated (CT = 0 only) 
(Doesn’t count touches that are converted to NOPs)

Com:30 Cacheops translated Spec dcba*, dcbf*, dcbi, dcbst*, and dcbz* instructions translated.

Com:31
Cache-inhibited accesses 
translated

Spec
Cache inhibited accesses translated

Com:32 Guarded loads translated Spec Guarded loads translated

Com:33 Write-through stores translated Spec Write-through stores translated

Com:34
Misaligned load or store accesses 
translated

Spec
Misaligned load or store accesses translated.

Com:35 Total allocated to DLFB Spec —

Com:36
Loads translated and allocated to 
DLFB

Spec
Applies to same class of instructions as loads translated.

Com:37
Stores completed and allocated to 
DLFB

Nonspec
Applies to same class of instructions as stores translated.

Com:38
Touches translated and allocated 
to DLFB

Spec
Applies to same class of instructions as touches translated.

Com:39 Stores performed Nonspec Cacheable store micro-ops completed

Com:40 Data L1 cache locks
Nonspec

Cache lines locked in the data L1 cache. (Counts a lock even if an 
overlock condition occurs.)

Table 9-47. Performance Monitor Event Selection (continued)

Number Event
Spec/

Nonspec
Count Description

Freescale
Sticky Note
In Table 9-47, "Performance Monitor Event Selection," changed LRU to LSU in Row Com:24.

Freescale
Cross-Out

Freescale
Cross-Out
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Com:41 Data L1 cache reloads
Spec

Counts cache reloads for any reason. Typically used to determine 
data cache miss rate (along with loads/stores completed). 

Com:42 Data L1 cache castouts Spec Does not count castouts due to dcbf*.

Data Side Replay Conditions: Times Detected

Com:43 Load miss with DLFB full. Spec Counts number of stalls; Com:51 counts cycles stalled.

Com:44 Load miss with load queue full. Spec Counts number of stalls; Com:52 counts cycles stalled.

Com:45
Load guarded miss when the load 
is not yet at the bottom of the CQ.

Spec
Counts number of stalls; Com:53 counts cycles stalled.

Com:46
Translate a store when the store 
queue is full.

Spec
Counts number of stalls; Com:54 counts cycles stalled.

Com:47 Address collision. Spec Counts number of stalls; Com:55 counts cycles stalled.

Com:48 Data MMU miss. Spec Counts number of stalls; Com:56 counts cycles stalled.

Com:49 Data MMU busy. Spec Counts number of stalls; Com:57 counts cycles stalled.

Com:50
Second part of misaligned access 
when first part missed in cache.

Spec
Counts number of stalls; Com:58 counts cycles stalled.

Data Side Replay Conditions: Cycles Stalled

Com:51 Load miss with DLFB full. Spec Counts cycles stalled; Com:43 counts number of stalls.

Com:52 Load miss with load queue full. Spec Counts cycles stalled; Com:44 counts number of stalls.

Com:53
Load guarded miss when the load 
is not yet at the bottom of the CQ.

Spec
Counts cycles stalled; Com:45 counts number of stalls.

Com:54
Translate a store when the store 
queue is full.

Spec
Counts cycles stalled; Com:46 counts number of stalls.

Com:55 Address collision. Spec Counts cycles stalled; Com:47 counts number of stalls.

Com:56 Data MMU miss. Spec Counts cycles stalled; Com:48 counts number of stalls.

Com:57 Data MMU busy. Spec Counts cycles stalled; Com:49 counts number of stalls.

Com:58
Second part of misaligned access 
when first part missed in cache.

Spec
Counts cycles stalled; Com:50 counts number of stalls.

Fetch, Instruction Cache, Instruction Line Fill Buffer (ILFB), and Instruction Prefetch Events

Com:59 Instruction L1 cache locks
Nonspec

Counts cache lines locked in the instruction L1 cache. (Counts a 
lock even if an overlock occurs.)

Com:60
Instruction L1 cache reloads from 
fetch

Spec
Counts reloads due to demand fetch. Typically used to determine 
instruction cache miss rate (along with instructions completed) 

Com:61
Number of fetches

Spec
Counts fetches that write at least one instruction to the IQ. (With 
instruction fetched (com:4), can used to compute 
instructions-per-fetch)

Instruction MMU, Data MMU and L2 MMU Events

Table 9-47. Performance Monitor Event Selection (continued)

Number Event
Spec/

Nonspec
Count Description
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Com:62
Instruction MMU TLB4K reloads

Spec
Counts reloads in the level 1 instruction MMU TLB4K.þA reload in 
the level 2 MMU TLB4Kis not counted.

Com:63
Instruction MMU VSP reloads

Spec
Counts reloads in the level 1 instruction MMU VSP.þA reload in the 
level 2 MMU VSP is not counted.

Com:64
Data MMU TLB4K reloads

Spec
Counts reloads in the level 1 data MMU TLB4K.þA reload in the 
level 2 MMU TLB4K is not counted.

Com:65
Data MMU VSP reloads

Spec
Counts reloads in the level 1 data MMU VSP. A reload in the level 2 
MMU VSP is not counted.

Com:66 L2MMU misses Nonspec Counts instruction TLB/data TLB error interrupts

BIU Interface Usage

Com:67 BIU master requests Spec Master transaction starts (number of Aout sent to CoreNet)

Com:68
BIU master global requests

Spec
Master transaction starts that are global (M=1) (number of Aout with 
M=1 sent to CoreNet). For e500mc Rev 1.x and Rev 2.x this event 
is not supported.

Com:69
BIU master data-side requests

Spec
Master data-side transaction starts (number of D-side Aout sent to 
CoreNet)

Com:70
BIU number of stash requests 
received

Spec
Stash request on Ain matches stash IDs for the core and are sent to 
LFB. For e500mc Rev 1.x and Rev 2.x this event is not supported.

Com:71
BIU number of stash accepts

N/A
LFB signals snarf snoop response for ACRout for stash request. For 
e500mc Rev 1.x and Rev 2.x this event is not supported.

Snoop

Com:72
Snoop requests

N/A
Externally generated snoop requests. (number of Ain from CoreNet 
not from self)

Com:73
Snoop hits

N/A
Snoop hits on all data-side resources regardless of the cache state 
(modified, shared, or exclusive)

Com:74
Snoop pushes

N/A
Snoop pushes from all data-side resources. (Number of ACRout to 
CoreNet for any snoop push). For e500mc Rev 1.x and Rev 2.x this 
event is not supported.

Com:75
Snoop sharing

N/A
Number of ACRout when the core retains a copy of the coherency 
granule. For e500mc Rev 1.x and Rev 2.x this event is not 
supported.

Threshold Events

C0:76
C1:76

Data line fill buffer load miss cycles
Spec

Instances when the number of cycles between a load allocation in 
the data line fill buffer (entry 0) and write-back to the data L1 cache 
exceeds the threshold. 

C0:77
C1:77

ILFB fetch miss cycles
Spec

Instances when the number of cycles between allocation in the ILFB 
(entry 0) and write-back to the instruction L1 cache exceeds the 
threshold. 

Table 9-47. Performance Monitor Event Selection (continued)

Number Event
Spec/

Nonspec
Count Description
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C0:78
C1:78

External input interrupt latency 
cycles N/A

Instances when the number of cycles between request for interrupt 
(int) asserted (but possibly masked/disabled) and redirecting fetch 
to external interrupt vector exceeds threshold.

C0:79
C1:79

Critical input interrupt latency 
cycles N/A

Instances when the number of cycles between request for critical 
interrupt (cint) is asserted (but possibly masked/disabled) and 
redirecting fetch to the critical interrupt vector exceeds threshold.

C0:80
C1:80

External input interrupt pending 
latency cycles

N/A

Instances when the number of cycles between external interrupt 
pending (enabled and pin asserted) and redirecting fetch to the 
external interrupt vector exceeds the threshold. Note that this and 
the next event may count multiple times for a single interrupt if the 
threshold is very small and the interrupt is masked a few cycles after 
it is asserted and later becomes unmasked.

C0:81
C1:81

Critical input interrupt pending 
latency cycles

N/A

Instances when the number of cycles between pin request for 
critical interrupt pending (enabled and pin asserted) and redirecting 
fetch to the critical interrupt vector exceeds the threshold. See note 
for previous event.

Chaining Events2

Com:82 PMC0 overflow N/A PMC0[32] transitions from 1 to 0.

Com:83 PMC1 overflow N/A PMC1[32] transitions from 1 to 0.

Com:84 PMC2 overflow N/A PMC2[32] transitions from 1 to 0.

Com:85 PMC3 overflow N/A PMC3[32] transitioned from 1 to 0.

Interrupt Events

Com:86 Interrupts taken Nonspec —

Com:87 External input interrupts taken Nonspec —

Com:88 Critical input interrupts taken Nonspec —

Com:89 System call and trap interrupts Nonspec —

Misc Events

Com:90
Transitions of TBL bit selected by 
PMGC0[TBSEL].

Nonspec
Counts transitions of the TBL bit selected by PMGC0[TBSEL]. 

Com:91 L2 linefill buffer — Linefill requests to L2

Com:92 L2 Vs — Victim selects to L2

Com:93 Castouts released — Speculative reservations in castout buffer that are not needed

Com:94 INTV allocations — Allocations to INTV queue

Com:95 Store retries to MBAR — DLFB retries to MBAR

Com:96 Store retries due to misc — Retries to store queue, excluding MBAR case

Stashing Events

Com:97 Stash L1 hit N/A Stash hits in L1

Table 9-47. Performance Monitor Event Selection (continued)

Number Event
Spec/

Nonspec
Count Description
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Com:98 Stash L2 hit N/A Stash hits in L2

Com:99 Stash busy 1 N/A Cycles stash 1 DLFB busy

Com:100 Stash busy 2 N/A Cycles stash 2 DLFB’s busy

Com:101 Stash busy 3 N/A Cycles stash 3 DLFB’s busy

Com:102 Stash hit N/A Access hits on stash DLFB

Com:103 Stash hit DLFB N/A Stash hits to a DLFB

Com:106 Stash requests N/A Stash requests

Com:107 Stashes to L1 data cache N/A Stash requests to L1

Com:108 Stashes to backside L2 N/A Stash requests to L2

Com:109 Stalls due to no CAQ or COB — Stalls due to no CAQ or COB

Backside L2 Events

Com:110

L2 cache accesses

Spec

L2 cache accesses, which include the following: load, store, fetch, 
dcba*, dcbz*, dcblc CT = 1, icblc CT=1, dcblc CT=2, icblc CT=2, 
dcbf*, dcbst*, dcbi, CI store, icbi*, lwarx, stwcx., write-though 
store, CI stwcx., mbar, sync, tlbsync, tlbivax, tlbilx, prefetch 
requests(dcbt, dcbtst, dcbtls, dcbtstls CT = 0,1,2 & icbt CT=1, 2 
& icbtls CT = 0,1,2), L2 cache allocation

Com:111

L2 hit cache accesses

Spec

L2 cache accesses, which include the following: load, store, fetch, 
dcba*, dcbz*, dcblc CT = 1, icblc CT=1, dcblc CT=2, icblc CT=2, 
dcbf*, dcbst*, dcbi, CI store, icbi*, lwarx, stwcx., write-though 
store, CI stwcx., mbar, sync, tlbsync, tlbivax, tlbilx, prefetch 
requests(dcbt, dcbtst, dcbtls, dcbtstls CT = 0,1,2 & icbt CT=1, 2 
& icbtls CT = 0,1,2) && L2_hit

Com:112 L2 cache data accesses Spec L2 cache data accesses

Com:113 L2 cache data hits Spec L2 cache data hits

Com:114 L2 cache instruction accesses Spec L2 cache instruction accesses

Com:115 L2 cache instruction hits Spec L2 cache instruction hits

Com:116
L2 cache allocations

Spec
L2 cache allocations: castouts from L1 (clean or modified), dcbt, 
dcbtst CT=2, dcbtls, dcbtstls CT=2, icbt CT=2, icbtls CT=2, fetch

Com:117
L2 cache data allocations

Spec
L2 cache data allocations
castouts from L1, dcbt/dcbtst CT=2, dcbtls/dcbtstls CT=2

Com:118 L2 cache dirty data allocations Spec L2 cache dirty data allocations

Com:119
L2 cache instruction allocations 

Spec
L2 cache instruction allocations 
fetch, icbtls CT=2, icbt CT=2

Com:120 L2 cache Updates Spec L2 cache updates

Com:121 L2 cache clean updates Spec L2 cache clean updates

Com:122 L2 cache dirty updates Spec L2 cache dirty updates

Table 9-47. Performance Monitor Event Selection (continued)

Number Event
Spec/

Nonspec
Count Description
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Com:123 L2 cache clean redundant updates Spec L2 cache clean redundant updates

Com:124 L2 cache dirty redundant updates Spec L2 cache dirty redundant updates

Com:125 L2 cache locks Spec L2 cache locks

Com:126 L2 cache castouts Spec L2 cache castouts

Com:127 L2 cache data dirty hits Spec L2 cache data dirty hits

Com:128 Instruction lfb went high priority Spec Instruction lfb went high priority

Com:129 Snoop throttling turned on Spec Snoop throttling turned on

Com:130 L2 invalidation of clean lines Spec L2 invalidation of clean lines

Com:131 L2 invalidation of Incoherent line Spec L2 invalidation of Incoherent line

Com:132 L2 invalidation of coherent line Spec L2 invalidation of coherent line

Com:133
Coherent lookup miss due to valid 
but incoherent (address matches)

Spec
Coherent lookup miss due to valid but incoherent (address 
matches)

IAC, DAC Events

Com: 140 IAC1s detected Nonspec Every valid IAC1 detection

Com: 141 IAC2s detected Nonspec Every valid IAC2 detection

Com: 142 (reserved) Nonspec —

Com: 143 (reserved) Nonspec —

Com: 144 DAC1s detected Nonspec Every valid DAC1 detection

Com: 145 DAC2s detected Nonspec Every valid DAC2 detection

Com: 146 (reserved) Nonspec —

Com: 147 (reserved) Nonspec —

DVT Events

Com: 148 DVT0 detected Nonspec Detection of a write to DEVENT SPR with DVT0 set

Com: 149 DVT1 detected Nonspec Detection of a write to DEVENT SPR with DVT1 set

Com: 150 DVT2 detected Nonspec Detection of a write to DEVENT SPR with DVT2 set

Com: 151 DVT3 detected Nonspec Detection of a write to DEVENT SPR with DVT3 set

Com: 152 DVT4 detected Nonspec Detection of a write to DEVENT SPR with DVT4 set

Com: 153 DVT5 detected Nonspec Detection of a write to DEVENT SPR with DVT5 set

Com: 154 DVT6 detected Nonspec Detection of a write to DEVENT SPR with DVT6 set

Com: 155 DVT7 detected Nonspec Detection of a write to DEVENT SPR with DVT7 set

Com: 156 Cycles completion stalled (Nexus) Nonspec Number of completion cycles stalled due to Nexus FIFO full

FPU Events

Table 9-47. Performance Monitor Event Selection (continued)

Number Event
Spec/

Nonspec
Count Description
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Com: 160 FPU double pump
Spec

Double pump penalized ops finished through the pipe. Counts once 
for every multiply family double pump operation

Com: 161 FPU finish Spec —

Com: 162 FPU divide cycles Spec Counts once for every cycle of divide execution. (fdivs and fdiv)

Com: 163

FPU denorm input

Spec

Counts extra cycles delay due to denormalized inputs. If there is 
one, this is incremented 4 times, Two operands increments it 5 
times. This shows the real penalty due to denorms, not just how 
often they occur.

Com: 164
FPU result stall

Spec
Counts extra cycles due to denorm results, overflow, mass 
cancellation, zero results, carry-in mispredict, exponent range 
check. 

Com: 165 FPU FPSCR full stall Spec —

Com: 166

FPU pipe sync stall

Spec

Synchronization-op stalls: count once for each cycle that a 
“break-before” FPU is in the RS/issue stage but cannotissue. Also 
count once for each cycle that an FPU op is in the RS/issue stage 
but cannot issue due to “break-after”: of an FPU op currently in 
progress.

Com: 167
FPU input data stall

Spec
FPU data-ready stall: cycles in which there is an op in the RS/issue 
stage that cannot issue because one or more of its operands is not 
yet available.

Extended Load Store Events

Com: 176 Decorated loads Nonspec Number of decorated loads to cache inhibited memory performed

Com: 177 Decorated stores Nonspec Number of decorated stores to cache inhibited memory performed

Com: 178 Load Retries Nonspec Number of load retries

Com: 179 stwcx. successes Nonspec Number of successful stwcx. instructions

Com: 180 stwcx. unsuccessful Nonspec Number of unsuccessful stwcx. instructions

1 For load/store events, a micro-op is described as translated when the micro-op has successfully translated and is in the second 
stage of the load/store translate pipeline.

2 For chaining events, if a counter is configured to count its own overflow bit, that counter does not increment. For example, if 
PMC2 is selected to count PMC2 overflow events, PMC2 does not increment.

Table 9-47. Performance Monitor Event Selection (continued)

Number Event
Spec/

Nonspec
Count Description
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Chapter 10  
Execution Timing
This chapter provides an overview of how the e500mc core performs operations defined by instructions 
and how it reports the results of instruction execution. It provides a high-level description about how the 
core execution units work and how these units interact with other parts of the processor, such as the 
instruction fetching mechanism, cache register files, and other architected registers. It includes tables that 
identify the unit that executes each instruction implemented on the core, the latency for each instruction, 
and other information useful to assembly language programmers.

10.1 Terminology and Conventions
This section provides an alphabetical list of terms used in this chapter. These definitions offer a review of 
commonly used terms and point out specific ways in which these terms are used in this chapter. 

NOTE
Please read this list carefully. Some definitions differ slightly from those 
used to describe previous processors and, in particular, with respect to 
dispatch, issue, finishing, retirement, and write back. 

Branch prediction The process of predicting the direction and target of a branch. Branch direction 
prediction involves guessing whether a branch will be taken. Branch target 
prediction involves guessing the target address of a branch. The e500mc does not 
use the architecture-defined hint bits in the BO operand for static prediction. 
Clearing BUCSR[BPEN] disables dynamic branch prediction; in this case the 
e500mc predicts every branch as not taken. 

Branch resolution The determination of whether a branch prediction is correct. If it is, instructions 
following the predicted branch that may have been speculatively executed can 
complete (see Complete). If it is incorrect, the processor redirects fetching to the 
proper path and marks instructions on the mispredicted path (and any of their 
results) for purging when the mispredicted branch completes.

Complete An instruction is eligible to complete after it finishes executing and makes its 
results available for subsequent instructions. Instructions must complete in order 
from the bottom two entries of the completion queue (CQ). The completion unit 
coordinates how instructions (which may have executed out of order) affect 
architected registers to ensure the appearance of serial execution. This guarantees 
that the completed instruction and all previous instructions can cause no 
exceptions. An instruction completes when it is retired, that is, deleted from the 
CQ. 

Decode The decode stage determines the issue queue to which each instruction is 
dispatched (see Dispatch) and determines whether the required space is available 
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in both that issue queue and the completion queue. If space is available, it decodes 
instructions supplied by the instruction queue, renames any source/target 
operands, and dispatches them to the appropriate issue queues. 

Dispatch Dispatch is the event at the end of the decode stage during which instructions are 
passed to the issue queues and tracking of program order is passed to the 
completion queue.

Fetch The process of bringing instructions from memory (such as a cache or system 
memory) into the instruction queue. 

Finish An executed instruction finishes by signaling the completion queue that execution 
has concluded. An instruction is said to be finished (but not complete) when the 
execution results have been saved in rename registers and made available to 
subsequent instructions, but the completion unit has not yet updated the 
architected registers. 

Issue The stage responsible for reading source operands from rename registers and 
register files. This stage also assigns instructions to the proper execution unit.

Latency The number of clock cycles necessary to execute an instruction and make the 
results of that execution available to subsequent instructions.

Pipeline In the context of instruction timing, this term refers to interconnected stages. The 
events necessary to process an instruction are broken into several cycle-length 
tasks to allow work to be performed on several instructions 
simultaneously—analogous to an assembly line. As an instruction is processed, it 
passes from one stage to the next. When work at one stage is done and the 
instruction passes to the next stage, another instruction can begin work in the 
vacated stage. 
Although an individual instruction may have multiple-cycle latency, pipelining 
makes it possible to overlap processing so the number of instructions processed 
per clock cycle (throughput) is greater than if pipelining were not implemented.

Program order The order of instructions in an executing program. More specifically, this term is 
used to refer to the original order in which program instructions are fetched into 
the instruction queue from the cache. 

Rename registers Temporary buffers for holding results of instructions that have finished execution 
but have not completed. The ability to forward results to rename registers allows 
subsequent instructions to access the new values before they have been written 
back to the architectural registers. 

Reservation station A buffer between the issue and execute stages that allows instructions to be issued 
even though resources necessary for execution or results of other instructions on 
which the issued instruction may depend are not yet available. 

Retirement Removal of a completed instruction from the completion queue at the end of the 
completion stage. (In other documents, this is often called deallocation.)

Speculative instruction Any instruction that is currently behind an older branch instruction that has not 
been resolved.
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Stage Used in two different senses, depending on whether the pipeline is being discussed 
as a physical entity or a sequence of events. As a physical entity, a stage can be 
viewed as the hardware that handles operations on an instruction in that part of the 
pipeline. When viewing the pipeline as a sequence of events, a stage is an element 
in the pipeline during which certain actions are performed, such as decoding the 
instruction, performing an arithmetic operation, or writing back the results. 
Typically, the latency of a stage is one processor clock cycle. Some events, such 
as dispatch, write-back, and completion, happen instantaneously and may be 
thought to occur at the end of a stage. 
An instruction can spend multiple cycles in one stage; for example, a divide takes 
multiple cycles in the execute stage. 
An instruction can also be represented in more than one stage simultaneously, 
especially in the sense that a stage can be seen as a physical resource. For example, 
when instructions are dispatched, they are assigned a place in the CQ at the same 
time they are passed to the issue queues. 

Stall An occurrence when an instruction cannot proceed to the next stage. Such a delay 
is initiated to resolve a data or resource hazard, that is, a situation in which a 
planned instruction cannot execute in the proper clock cycle because data or 
resources needed to process the instruction are not yet available.

Superscalar A superscalar processor is one that can issue multiple instructions concurrently 
from a conventional linear instruction stream. In a superscalar implementation, 
multiple instructions can execute in parallel at the same time.

Throughput The number of instructions processed per cycle. In particular, throughput 
describes the performance of a multiple-stage pipeline where a sequence of 
instructions may pass through with a throughput that is much faster than the 
latency of an individual instruction.

Write-back Write-back (in the context of instruction handling) occurs when a result is written 
into the architecture-defined registers (typically the GPRs). On the e500mc, 
write-back occurs in the clock cycle after the completion stage. Results in the 
write-back buffer cannot be flushed. If an exception occurs, results from previous 
instructions must write back before the exception is taken. 

10.2 Instruction Timing Overview
The e500mc design minimizes the number of clock cycles it takes to fetch, decode, dispatch, issue, and 
execute instructions and to make the results available for a subsequent instruction. To improve throughput, 
the e500mc implements pipelining, superscalar instruction issue, and multiple execution units that operate 
independently and in parallel.

Some instructions, such as loads and stores, access memory and require additional clock cycles between 
the execute and write-back phases. Latencies may be greater if the access is to noncacheable memory, 
causes a TLB miss, misses in the L1 cache, generates a write-back to memory, causes a snoop hit from 
another device that generates additional activity, or encounters other conditions that affect memory 
accesses.
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The e500mc can complete as many as two instructions on each clock cycle. 

The instruction pipeline stages are described as follows:
• Instruction fetch—Includes the clock cycles necessary to request an instruction and the time the 

memory system takes to respond to the request. Fetched instructions are latched into the instruction 
queue (IQ) for consideration by the dispatcher. 
The fetcher tries to initiate a fetch in every cycle in which it is guaranteed that the IQ has room for 
fetched instructions. Instructions are typically fetched from the L1 instruction cache; if caching is 
disabled or the fetch misses in the cache, instructions are fetched from the instruction line fill buffer 
(ILFB). Likewise, on a cache miss, as many as four instructions can be forwarded to the fetch unit 
from the ILFB as the cache line is passed to the instruction cache.
Fetch timing is affected by many things, such as whether an instruction is in the on-chip instruction 
cache or an L2 cache. Those factors increase when it is necessary to fetch instructions from system 
memory and include the processor-to-bus clock ratio, the amount of bus traffic, and whether any 
cache coherency operations are required. 
Fetch timing is also affected by whether effective address translation is available in a TLB, as 
described in Section 10.3.1.1, “L1 and L2 TLB Access Times.” 

• The decode/dispatch stage fully decodes each instruction; most instructions are dispatched to the 
issue queues, but isync, rfi, rfgi, rfci, rfdi, rfmci, sc, ehpriv, dnh, wait, and nops are not. Every 
dispatched instruction is assigned a GPR rename register, an FPR rename register, and a CR field 
rename register, even if they do not specify a GPR, FPR, or CR operand. There is a set of 
GPR/FPR/CRF rename registers for each CQ entry.
The three issue queues, BIQ, GIQ, and FIQ, can accept as many as one, two, and two instructions, 
respectively, in a cycle. Instruction dispatch requires the following:
— Instructions dispatch only from IQ0 and IQ1. 
— As many as two instructions can be dispatched per clock cycle.
— Space must be available in the CQ and the target issue queue for an instruction to decode and 

dispatch.
— Dispatch is in order, if IQ0 cannot dispatch, IQ1 will not dispatch.
In this chapter, dispatch is treated as an event at the end of the decode stage. 

• The issue stage reads source operands from rename registers and register files and determines when 
instructions are latched into reservation stations. 
The general behavior of the issue queues is described as follows:
— The GIQ accepts as many as two instructions from the dispatch unit per cycle. SFX0, SFX1, 

CFX, and all LSU instructions are dispatched to the GIQ, shown in Figure 10-1. 
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Figure 10-1. GPR Issue Queue (GIQ)

The GIQ can hold up to four instructions.
Instructions can be issued out-of-order from GIQ1–GIQ0. GIQ0 can issue to SFX0, CFX, and 
LSU. GIQ1 can issue to SFX1, CFX, and LSU. 
SFX1 executes a subset of the instructions that can be executed in SFX0. The ability to identify 
and dispatch instructions to SFX1 increases the availability of SFX0 to execute more 
computationally intensive instructions.
An instruction in GIQ1 destined for SFX1 or the LSU need not wait for an CFX instruction in 
GIQ0 that is stalled behind a long-latency divide.

— The FIQ accepts as many as two instructions from the dispatch unit per cycle. FPU instructions 
are dispatched to the FIQ.
The FIQ can hold up to four instructions.
Instructions are issued in-order from the FIQ to the FPU and can issue at a rate of one per cycle.

— The BIQ accepts as many as one instruction from the dispatch unit per cycle. BU instructions 
are dispatched to the BIQ.
The BIQ can hold up to two instructions.
Instructions are issued in-order from the BIQ to the BU and can issue at a rate of one per cycle.

• The execute stage is comprised of individual nonblocking execution units implemented in parallel. 
Each execution unit has a reservation station that must be available for an instruction issue to occur. 
In most cases, instructions are issued both to the reservation station and to the execution unit 
simultaneously. However, under some circumstances, an instruction may issue only to a 
reservation station. 
In this stage, operands assigned to the execution stage are latched.
The e500mc has the following execution units:
— Branch unit (BU)—executes branches and CR logical operations
— Floating-point unit (FPU)—executes FPR-based floating point computational instructions. 

Floating-point load and store instructions execute in the LSU. 
— Load/store unit (LSU)—executes loads from and stores to memory, as well as some MMU 

control, cache control, and cache locking instructions. This includes byte, halfword, word, and 
doubleword instructions. 

— Two simple units (SFX0 and SFX1)—execute move to/from SPR instructions, logical 
instructions, and all integer computational instructions except multiply and divide instructions. 

GIQ1

GIQ3

GIQ0

GIQ2

To SFX1, CFX, or LSU

From IQ0/IQ1 

To SFX0, CFX, or LSU
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– SFX0 executes all integer simple unit instructions (that is, all that can be dispatched to 
simple units).

– SFX1 executes most, but not all of the instructions that can be executed in SFX0. 
Most SFX instructions execute in 1 cycle. However some instructions can take more than 1 
cycle. 

— Complex unit (CFX) executes integer multiplication and division instructions.
The execution unit executes the instruction (perhaps over multiple cycles), writes results on its 
result bus, and notifies the CQ when the instruction finishes. The execution unit reports any 
exceptions to the completion stage. Instruction-generated exceptions are not taken until the 
excepting instruction is next to retire.
Most integer instructions have a 1-cycle latency, so results of these instructions are available 
1 clock cycle after an instruction enters the execution unit. The LSU, FPU, and CFX are pipelined.

• The complete and write-back stages maintain the correct architectural machine state and commit 
results to the architecture-defined registers in the proper order. If completion logic detects an 
instruction containing an exception status or a mispredicted branch, all following instructions are 
cancelled, their execution results in rename registers are discarded, and the correct instruction 
stream is fetched.
The complete stage ends when the instruction is retired. Two instructions can be retired per clock 
cycle. If no dependencies exist, as many as two instructions are retired in program order. The 
write-back stage occurs in the clock cycle after the instruction is retired.

10.3 General Timing Considerations
As many as four instructions can be fetched to the IQ during each clock cycle. Two instructions per clock 
cycle can be dispatched to the issue queues. Two instructions from the GIQ, one instruction from the FIQ, 
and one instruction from the BIQ can issue per clock cycle to the appropriate execution units. Two 
instructions can retire and two can write back per cycle. 

The e500mc executes multiple instructions in parallel, using hardware to handle dependencies. When an 
instruction is issued, source data is provided to the appropriate reservation station from either the 
architected register (GPR, FPR, or CRF) or from a rename register. 

Branch prediction is performed in parallel with the fetch stages using the branch prediction unit (BPU), 
which incorporates the branch target buffer (BTB). Predictions are resolved in the branch unit (BU). 
Incorrect predictions are handled as follows:

1. Fetch is redirected to the correct path, and mispredicted instructions are purged. 
2. The mispredicted branch is marked as such in the CQ. 
3. Eventually, the branch is retired and the CQ, issue queue, and execution units are flushed. If the 

correct-path instructions reach the IQ before the back half of the pipeline is flushed, they stall in 
the IQ until the flush occurs.

After an instruction executes, results are made available to subsequent instructions in the appropriate 
rename registers. The architecture-defined GPRs, FPRs, and CRs are updated in the write-back stage. 
Branch instructions that update LR or CTR write back in a similar fashion.
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If a later instruction needs the result as a source operand, the result is simultaneously made available to the 
appropriate execution unit, which allows a data-dependent instruction to be decoded and dispatched 
without waiting to read the data from the architected register file. Results are then stored into the correct 
architected GPR, CR, or FPR during the write-back stage. Branch instructions that update either the LR or 
CTR write back their results in a similar fashion. 

To resolve branch instructions and improve the accuracy of branch predictions, the e500mc implements a 
dynamic branch prediction mechanism using the 512-entry BTB, a four-way set associative cache of 
branch target effective addresses. A BTB entry is allocated whenever a branch resolves as 
taken—unallocated branches are always predicted as not taken. Each BTB entry holds a 2-bit saturating 
branch history counter whose value is incremented or decremented depending on whether the branch was 
taken. These bits can take four values: strongly taken, weakly taken, weakly not taken, and strongly not 
taken. This mechanism is described in Section 10.4.1.2, “BTB Branch Prediction and Resolution.”

The e500mc ignores static branch prediction hints; a and t bits in the BO field in branch encodings are 
ignored. 

Dynamic branch prediction is enabled by setting BUCSR[BPEN]. Clearing BUCSR[BPEN] disables 
dynamic branch prediction, in which case the e500mc predicts every branch as not taken.

Branch instructions are treated like any other instruction and are assigned CQ entries to ensure that the 
CTR and LR are updated sequentially.

The dispatch rate is affected by the serializing behavior of some instructions and the availability of issue 
queues and CQ entries. Instructions are dispatched in program order; an instruction in IQ1 cannot be 
dispatched ahead of one in IQ0.

10.3.1 Instruction Fetch Timing Considerations

Instruction fetch latency depends on the following factors:
• Whether the page translation for the effective address of an instruction fetch is in a TLB. This is 

described in Section 10.3.1.1, “L1 and L2 TLB Access Times.”
• If a page translation is not in a TLB, an instruction TLB miss interrupt is taken. Section 10.3.1.2, 

“Interrupts Associated with Instruction Fetching,” describes other conditions that cause an 
instruction fetch to take an interrupt.

• If an L1 instruction cache miss and an L2 cache miss occurs, a memory transaction is required in 
which fetch latency is affected by bus traffic and bus clock speed. These issues are discussed 
further in Section 10.3.1.3, “Cache-Related Latency.”

10.3.1.1 L1 and L2 TLB Access Times

The L1 TLB arrays are checked for a translation hit in parallel with the on-chip L1 cache lookups and incur 
no penalty on an L1 TLB hit. If the L1 TLB arrays miss, the access proceeds to the L2 TLB arrays. For L1 
instruction address translation misses, the L2 TLB latency is at least 5 clocks; for L1 data address 
translation misses, the L2 TLB latency is at least 5 clocks. These access times may be longer, depending 
on arbitration performed by the L2 arrays for simultaneous instruction L1 TLB misses, data L1 TLB 
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misses, the execution of TLB instructions, and TLB snoop operations (snooping of TLB invalidate 
operations from tlbivax instructions on CoreNet). 

Note that when a TLB invalidate operation is detected, the L2 MMU arrays become inaccessible due to 
the snooping activity caused by the invalidate.

If the MMU is busy due to a higher priority operation, such as a tlbivax or tlbilx, instructions cannot be 
fetched until that operation completes. 

If the page translation is in neither TLB, an instruction TLB error interrupt occurs, as described in 
Section 4.9.15, “Instruction TLB Error Interrupt—IVOR14/GIVOR14.”

TLBs are described in detail in Chapter 6, “Memory Management Units (MMUs).” 

10.3.1.2 Interrupts Associated with Instruction Fetching 

An instruction fetch can generate the following interrupts:
• An instruction TLB error interrupt occurs when the effective address translation for a fetch is not 

found in the TLBs. This interrupt is described in detail in Section 4.9.15, “Instruction TLB Error 
Interrupt—IVOR14/GIVOR14.”

• An instruction storage interrupt is caused when one of the following occurs during an attempt to 
fetch instructions:
— An execute access control exception is caused when one of the following conditions exist:

– In user mode, an instruction fetch attempts to access a memory location that is not user mode 
execute enabled (page access control bit UX = 0). This condition is detected solely on the 
basis of the MSR[PR] bit and occurs regardless of whether the processor is in guest state or 
not.

– In supervisor mode, an instruction fetch attempts to access a memory location that is not 
supervisor mode execute enabled (page access control bit SX = 0). This condition is 
detected solely on the basis of the MSR[PR] bit and occurs regardless of whether the 
processor is in guest state or not.

When an instruction storage interrupt occurs, the processor suppresses execution of the instruction 
causing the exception. For more information, see Section 4.9.5, “Instruction Storage Interrupt 
(ISI)—IVOR3/GIVOR3.”

10.3.1.3 Cache-Related Latency

The following may happen when instructions are fetched from the instruction cache:
• If the fetch hits the cache or an ILFB (Instruction Line Fill Buffer), it takes 2 clock cycles after the 

request for as many as four instructions to enter the IQ. The cache is not blocked to internal 
accesses during a cache reload (hits under misses). 
The cache allows a hit under one miss and is only blocked by a cache line reload for the cycle 
during the cache write. For example, if a cache miss is discarded by a misprediction and a new fetch 
hits, the cache allows instructions to come back. As many as four instructions per cycle are fetched 
from the cache until the original miss comes back and a cache reload is performed, which blocks 
the cache for 1 cycle.
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If the cache is busy due to a higher priority operation, such as an icbi or a cache line reload, 
instructions cannot be fetched until that operation completes. 

• If an instruction fetch misses in the instruction cache, it is fetched from the L2 cache.
• If an instruction fetch misses in the instruction cache and the L2 cache, the e500mc initiates a bus 

transaction to the off-core memory system. 

The architecture defines WIM (of WIMGE) bits that define caching characteristics for the corresponding 
page. Fetching instruction as caching-inhibited (I=1) produce the following actions:

• The ILFB may hit, and the instructions returned from the ILFB will be used, even if the ILFB entry 
was established by an earlier cacheable access.

• The instruction cache will perform an access and may hit, and if a hit occurs the instructions will 
be used.

• The L2 cache will not attempt to perform an access if the access is caching-inhibited.
• If the ILFB and instruction cache do not hit, the fetch is performed by performing bus transactions 

to memory and the fetch will return and use the entire fetch group that was requested. Fetching 
using caching-inhibited accesses will therefore not produce a bus transaction for each instruction, 
but instead one bus transaction for each fetch group.

Software should not alias caching and caching-inhibited real addresses without first invalidating the 
caches and performing an isync prior to fetching to those same addresses caching-inhibited.

10.3.2 Dispatch, Issue, and Completion Considerations

The core’s ability to dispatch as many as two instructions per cycle depends on the mix of instructions and 
on the availability of issue queues and CQ entries. As many as two instructions can be dispatched in 
parallel, but an instruction in IQ1 cannot be dispatched ahead of an instruction in IQ0. 

Instructions can issue out-of-order from GIQ0 and GIQ1. GIQ0 can issue to SFX0, CFX, and LSU. GIQ1 
can issue to SFX1, CFX, and LSU. If an instruction stalls in GIQ0 (reservation station busy), an instruction 
in GIQ1 can issue if its reservation station is available.

Instructions can issue in-order from FIQ. FIQ can issue to the FPU at one per cycle.

Issue queues and reservation stations allow the e500mc to dispatch instructions even if execution units are 
busy. The issue logic reads operands from register files and rename registers and routes instructions to the 
proper execution unit. Execution begins when all operands are available, the instruction is in the 
reservation station, and any execution serialization requirements are met. 

Instructions pass through a single-entry reservation station associated with each execution unit. If a data 
dependency keeps an instruction from starting execution, that instruction is held in a reservation station. 
Execution begins during the same clock cycle that the rename register is updated with the data the 
instruction is dependent on. 

The CQ maintains program order after instructions are dispatched, guaranteeing in-order completion and 
a precise exception model. Instruction state and other information required for completion are kept in this 
14-entry FIFO. All instructions complete in order; none can retire ahead of a previous instruction. In-order 



Execution Timing

e500mc Core Reference Manual, Rev. 3

10-10 Freescale Semiconductor
 

completion ensures the correct architectural state when the e500mc must recover from a mispredicted 
branch or exception. 

Instructions are retired much as they are dispatched: as many as two can be retired simultaneously, but 
never out of order. 

NOTE
• Instructions must be nonspeculative to complete.
• As many as two rename registers can be updated per clock cycle. 

Because load and store with update instructions require two rename 
registers they are broken into two instructions at dispatch (lwzu is 
broken into lwz and addi). These two instructions are assigned two CQ 
entries and each is assigned CR and GPR renames at dispatch. 

• Some instructions have retirement restrictions, such as retiring only out 
of CQ0. See Section 10.3.2.1, “Instruction Serialization.”

Program-related exceptions are signaled when the instruction causing the exception reaches CQ0. 
Previous instructions are allowed to complete before the exception is taken, which ensures that any 
exceptions those instructions may cause are taken. 

10.3.2.1 Instruction Serialization

Although the e500mc core can dispatch and complete two instructions per cycle, some serializing 
instructions limit dispatch and completion to one per cycle. There are seven basic types of instruction 
serialization:
Presync serialization Presync-serialized instructions are held in the instruction queue until all prior 

instructions have completed. They are then decoded and execute. For example, 
instructions such as mfspr that read a non-renamed status register are marked as 
presync-serialized.

Postsync serialization Postsync-serialized instructions, such as mtspr[XER], prevent other instructions 
from decoding until the serialized instruction completes. For example, 
instructions that modify processor state in a way that affects the handling of future 
instruction execution are marked with postsync-serialization. These instructions 
are identified in the latency tables in Section 10.5, “Instruction Latency 
Summary.”

Move-from serializationMove-from serialization is a weaker synchronization than presync serialization. 
A move-from serialized instruction can decode, but stalls in an execution unit’s 
reservation station until all prior instructions have completed. If the instruction is 
currently in the reservation station and is the oldest instruction, it can begin 
execution in the next cycle. Note that subsequent instructions can decode and 
execute while a move-from serialized instruction is pending. Only a few 
instructions are move-from serialized, so that they do not examine architectural 
state until all older instructions that could affect the architectural state have 
completed.
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Move-to serialization A move-to serialized instruction cannot execute until the cycle after it is in CQ0, 
that is, the cycle after it becomes the oldest instruction. This serialization is 
weaker than move-from serialization in that the instruction need not spend an 
extra cycle in the reservation station. Move-to serializing instructions include 
tlbre, tlbsx, tlbwe, mtmsr, wrtee, wrteei, and all mtspr instructions. 

Refetch serialization Refetch-serialized instructions force refetching of subsequent instructions after 
completion. Refetch serialization is used when an instruction has changed or may 
change a particular context needed by subsequent instructions. Examples include 
isync, sc, rfi, rfci, rfmci, rfdi, rfgi, wait, sc, ehpriv, dnh, and any instruction that 
causes the summary-overflow XER(SO) bit to change state.

Store serialization Applies to stores and some LSU instructions that access the data cache. 
Store-serialized instructions are dispatched and held in the LSU’s finished store 
queue. They are not committed to memory until all prior instructions have 
completed. Although a store-serialized instruction waits in the finished store 
queue, other load/store instructions can be freely executed. Some store-serialized 
instructions are further restricted to complete only from CQ0. Only one 
store-serialized instruction can complete per cycle, although nonserialized 
instructions can complete in the same cycle as a store-serialized instruction. In 
general, all stores and cache operation instructions are store serialized.

Unit serialization Unit serialization instructions proceed down the execution pipeline in a normal 
manner, but blocks the reservation station for the execution unit. This prevents 
other instructions from issuing to the reservation station while the unit serialized 
instruction executes. Normally such instructions will modify the architectural 
state of a renamed register and the serialization ensures that no other instruction 
will be accessing the renamed register when the unit serialized instruction 
executes.

10.3.3 Memory Synchronization Timing Considerations

This section describes the behavior of the sync and mbar instructions as they are implemented by the 
e500mc.

10.3.3.1 sync Instruction Timing Considerations

The sync instruction provides a memory barrier throughout the memory hierarchy, for example, to ensure 
that a control bit has been written to its destination control register in the system before the next instruction 
begins execution (such as to clear a pending interrupt). By its nature, it also provides an ordering boundary 
for pre- and post-sync storage transactions.

On the e500mc, sync waits for preceding data memory accesses to reach the point of coherency (that is, 
visible to the entire memory hierarchy), then it is broadcast on the CoreNet interface. A sync does not 
finish execution until all storage transactions caused by prior instructions complete entirely in its caches 
and externally on the bus (address and data complete on the bus, excluding instruction fetches). No 
subsequent instructions and associated storage transactions are initiated until such completion.
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Execution of sync also generates a SYNC command on the CoreNet interface after which the sync 
instruction may be allowed to complete. Subsequent instructions can execute out of order, but they can 
complete only after sync completes.

It is the responsibility of the system to guarantee the intention of the SYNC command on the CoreNet 
interface—usually by ensuring that any transactions received before the SYNC command from the 
e500mc complete in its queues or at their destinations before completing the SYNC command on the 
CoreNet interface.

10.3.3.2  mbar Instruction Timing Considerations

The mbar instruction provides an ordering boundary for storage operations. Its architectural intent is to 
guarantee that storage operations resulting from previous instructions occur before any subsequent storage 
operations occur, thereby ensuring an order between pre- and post-mbar memory operations. It may be 
used, for example, to ensure that reads and writes to an I/O device or between I/O devices occur in program 
order or to ensure that memory updates occur before a semaphore is released.

The architecture allows an implementation to support several classes of storage ordering, selected by the 
MO field of the mbar instruction. The e500mc supports two classes for system flexibility. 

The e500mc implements two variations of mbar, as follows:
• When MO = 0, mbar behaves as defined by the Power ISA™, which on the e500mc for all 

practical purposes produces the same memory barrier as sync. 
• When MO = 1, mbar is a weaker, faster memory barrier; the e500mc executes it as a pipelined or 

flowing ordering barrier for potentially higher performance. This ordering barrier flows along with 
pre- and post-mbar memory transactions through the memory hierarchy (L1 cache, L2 cache, and 
CoreNet interface). On the CoreNet interface, this ordering barrier is issued as an EIEIO command. 
Note that mbar MO = 1 only orders a certain subset of memory transactions depending on the type 
of transaction and the WIMGE settings (see Section 5.5.5.3, “Memory Access Ordering“).
mbar MO = 1 ensures that all data accesses (for the ordered subsets) caused by previous 
instructions complete before any caused by subsequent instructions. This order is seen by all 
mechanisms. However, unlike sync and mbar with MO = 0, subsequent instructions can complete 
without waiting for mbar to perform its CoreNet transaction. This provides a faster way to order 
data accesses. 

10.4 Execution 
The following sections describe instruction execution behavior within each of the respective execution 
units in the e500mc. 

10.4.1 Branch Unit Execution 

When branch or trap instructions change program flow, the IQ must be reloaded with the target instruction 
stream. Previously issued instructions continue executing while the new instruction stream makes its way 
into the IQ. Depending on whether target instructions are cached, opportunities may be missed to execute 
instructions. 
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The e500mc minimizes penalties associated with flow control operations by features such as the branch 
target buffer (BTB), dynamic branch prediction, speculative link and counter registers, and nonblocking 
caches. 

10.4.1.1 Branch Instructions and Completion

Branch instructions are not folded on the e500mc; all branch instructions receive a CQ entry (and CRF and 
GPR renames) at dispatch and must write back in program order. 

Branch instructions are dispatched to the BIQ and are assigned a CQ slot, as shown in Figure 10-2.

In this example, the bc depends on cmp and is predicted as not taken. At the end of clock cycle 1, cmp 
and bc are dispatched to the GIQ and BIQ, respectively, and are issued to SFX0 and the BU at the end of 
clock 2. 

In clock cycle 3, the cmp executes in SFX0 but the bc cannot resolve and complete until the cmp results 
are available; add1 and add2 are dispatched to the GIQ. 

In cycle 4, the bc resolves as correctly predicted; add1 and add2 are issued to the SUs and are marked as 
nonspeculative, and add3 is dispatched to the GIQ. The cmp is retired from the CQ at the end of cycle 4. 

Clock 1 Clock 2 Clock 3 Clock 4 Clock 5
IQ11

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
IQ6
IQ5
IQ4 add3
IQ3 add2
IQ2 add1 add3
IQ1 bc add2
IQ0 cmp add1 add3

BIQ1
BIQ0 bc

GIQ3
GIQ2
GIQ1 add2
GIQ0 cmp add1 add3

CQ13
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
CQ6
CQ5
CQ4
CQ3 add2 add2 (SFX1) add3 (SFX0)
CQ2 add1 add1 (SFX0) add2√
CQ1 bc bc (BU) bc (BU) add1√
CQ0 cmp cmp (SFX0) cmp√ bc √

√ indicates that the instruction has finished execution. 

Figure 10-2. Branch Completion (LR/CTR Write-Back)
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In cycle 5, bc, add1, and add2 finish execution, and bc and add1 retire.

10.4.1.2 BTB Branch Prediction and Resolution 

The e500mc dynamic branch prediction mechanism monitors and records branch instruction behavior, 
from which the next occurrence of the branch instruction is predicted. 

 The e500mc does not support static branch prediction—the BO static prediction in branch instructions is 
ignored. 

The valid bit in each BTB entry is zero (invalid) at reset. When a branch instruction first enters the 
instruction pipeline, it is not allocated in the BTB and so by default is predicted as not taken. If the branch 
is not taken, nothing is allocated in the BTB. If it is taken, the misprediction allocates a BTB entry for this 
branch with an initial prediction of strongly taken, as is shown in the example in Figure 10-3. 

Figure 10-3. Updating Branch History

NOTE
Unconditional branches are allocated in the BTB the first time they are 
encountered. This example shows how the prediction is updated depending 
on whether a branch is taken. 

The BPU detects whether a fetch group includes any branches that hit in the BTB, and if so, determines 
the fetching path based on the prediction and the target address. 

If the prediction is wrong, subsequent instructions and their results are purged. Instructions ahead of the 
predicted branch proceed normally, instruction fetching resumes along the correct path, and the history bits 
are revised. 

The number of speculative branches that have not yet been allocated (and are predicted as not taken) is 
limited only by the space available in the pipeline (the branch execute unit, the BIQ, and the IQ). The 
presence of speculative branches allocated in the BTB slightly reduces speculation depth. 
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Instructions after an unresolved branch can execute speculatively, but in-order completion ensures that 
mispredicted speculative instructions do not complete. When misprediction occurs, the e500mc easily 
redirects fetching and repairs its machine state because the architectural state is not updated. Any 
instructions dispatched after a mispredicted branch instruction are flushed from the CQ, and any results 
are flushed from the rename registers.

10.4.1.2.1 BTB Operations Controlled by BUCSR

This following BTB operations are controlled through BUCSR:
• BTB disabling. BUCSR[BPEN] is used to enable or disable the BTB. The BTB is enabled when 

the bit is set and disabled when it is cleared.When it is disabled, BTB contents are not used to 
predict the branch targets and the BTB is not updated as a result of executing branch. 

• BTB invalidation. Flash invalidation of the BTB is accomplished by writing BUCSR[BBFI] with 
a 0 and then a 1 using mtspr instructions. 

10.4.1.2.2 BTB Special Cases—Phantom Branches and Multiple Matches

The following describes special cases:
• Phantom branches. BTB entries hold effective addresses associated with a branch instruction. A 

process context switch might bring in another task whose MMU translations are such that it uses 
the same effective address for another nonbranch instruction for which the BTB has an entry for a 
previously encountered branch. This causes the fetch unit to redirect instruction fetch to the BTB’s 
target address. Later, during execution of the instruction, the hardware realizes the error and evicts 
the BTB entry. 

• Multiple matches. By ensuring that an entry is unique when it is allocated, the e500mc hardware 
prevents multiple matches for the same fetch address. 

10.4.2 Complex and Simple Unit Execution 

The e500mc has one complex unit (CFX) and two simple units (SFX0, SFX1). SFX0 and SFX1 execute 
all logical and integer computational instructions except multiplies and divides. SFX0 also executes move 
to and from special registers, performance monitor registers, and tlbre, tlbwe, and tlbsx. The CFX 
executes multiplies and divides. 

10.4.2.1 CFX Divide Execution

Divide latency depends upon the operand data and ranges from 4 to 35 cycles, as shown in Table 10-1.
Table 10-1. The Effect of Operands on Divide Latency

Instruction Condition Latency

divwx, 
divwux

rA or rB is 0, or rA < rB 4

rA is representable in 8 bits 11

rA representable in 16 bits 19

rA representable in 32 bits 35
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10.4.2.2 CFX Multiply Execution

Table 10-2 shows the latency and repeat rate for multiply instructions.

10.4.2.3 CFX Bypass Path

The CFX provides a bypass path for divides so the iterative portion of divide execution is performed 
outside of the CFX pipeline, allowing subsequent instructions (except other divides) to execute in the main 
CFX pipeline. In general the bypass path for the divide executes simultaneously with the execution of other 
instructions in the CFX (such as multiply instructions). However, both the normal path and the bypass path 
cannot produce a result on the same cycle. therefore, if both a multiply and a divide are scheduled to 
produce a result on the same cycle, a bubble is created in the CFX pipeline, effectively stalling the CFX 
pipeline (multiply instructions) from finishing execution in order to create a slot for the divide finish 
execution and write its result on the result bus. the result of the divide instruction is stalled until there is a 
slot available in the CFX pipeline.

A new divide instruction cannot start execution if another divide is executing.

10.4.3 Load/Store Execution

The LSU executes instructions that move data between the GPRs and the memory unit of the core (made 
up of the L1 cache, the L2 cache, and the bus interface unit buffers).

The execution of most load instructions is pipelined in the three LSU stages, during which the effective 
address is calculated, MMU translations are performed, the data cache array and tags are read, and cache 
way selection and data alignment are performed. Cacheable loads, when free of data dependencies, 
execute in a speculative manner with a maximum throughput of one instruction per cycle and 3-cycle 
latency (floating-point loads take 4 cycles of latency). Data returned from the cache is held in a rename 
register until the completion logic commits the value to the processor state. 

Stores cannot be executed speculatively and must be held in the store queue until completion logic signals 
that the store instruction is to be committed, at which point the data cache array is updated.

If operands are misaligned, additional latency may be incurred either for an alignment exception or for 
additional cache or bus accesses. Table 10-4 gives load and store instruction execution latencies.

10.4.3.1 Effect of Operand Placement on Performance

The location and alignment of operands in memory may affect performance of memory accesses, in some 
cases significantly, as shown in Table 10-3. 

Alignment of memory operands on natural boundaries guarantees the best performance. For the best 
performance across the widest range of implementations, the programmer should assume the performance 

Table 10-2. The Effect of Operands on Multiply Latency

Instruction Condition Latency

mullwx,
mulhwx,

mulli

Multiply latency is not operand dependent. 4 cycles, repeat rate of 1
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model described in the EREF: A Programmer’s Reference Manual for Freescale Power Architecture® 
Processors. 

The effect of alignment on memory operation performance is the same for big- and little-endian addressing 
modes, including load-multiple and store-multiple operations.

In Table 10-3, optimal means that one effective address (EA) calculation occurs during the memory 
operation. Good means that multiple EA calculations occur during the operation, which may cause 
additional cache or bus activities with multiple transfers. Poor means that an alignment interrupt is 
generated by the memory operation.

10.5 Instruction Latency Summary
Instruction latencies are shown in Table 10-4. The execution unit responsible for executing the instruction 
(where it is dispatched) is listed. Instructions that are dispatched to SFX0, SFX1 mean that those 
instructions can go to either execution unit. COMP means the instruction is not dispatched to a unit, and 
its execution is directly handled by the completion unit.

All latencies assume fairly normal conditions. In general these are also the best case conditions. Some 
instructions may incur additional stalls based on core and SoC conditions. For example, load and store 
instructions may miss in the L1 cache, or attempt to load Guarded Cache Inhibited memory, which may 
incur significant delay since the operation requires the core to retrieve the data from other parts of the 
system connected to the CoreNet interface. Incoming snoops received by the core can also make the cache 
or even the TLB unavailable for instruction use during any given cycle. Such interactions are not described 
here and are beyond the scope of this manual.

Table 10-3. Performance Effects of Operand Placement in Memory

Operand  Boundary Crossing1

1 Optimal: One EA calculation occurs.

Good: Multiple EA calculations occur which may cause additional bus activities with multiple bus transfers.

Poor: Alignment Interrupt occurs

Size Byte Alignment  None  Cache Line Protection Boundary

8 byte 8
<4

optimal
good

—
good

—
good

4 byte 4
<4

optimal
good

—
good

—
good

2 byte 2
<2

optimal
good

—
good

—
good

1 byte 1 optimal — —

lmw, stmw 4
<4

good
poor

good
poor

good
poor
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Information contained in Table 10-4 does not address all effects of the core pipeline, but is intended as a 
guide for instruction scheduling.

• The latency is execution latency from the point of when the instruction begins execution in an 
execution unit until the execution unit has produced the intended result (that is, when it finishes 
execution).

• Other results of the instruction, such as flags (like XER[OV] or the CR result of a “.” instruction) 
may take l extra cycle after execution is finished to be available as inputs to other instructions.

• Other cycles taken for things such as instruction fetch, decode, dispatch, and completion are not 
represented in this table.

• The repeat rate specifies how many cycles it takes before another instruction dispatched to the unit 
can begin execution. For example, an instruction with a latency of 3 and a repeat rate of 1 means 
that even though it takes 3 cycles to produce the result, several of these instructions back to back 
can produce a result every cycle. This indicates how the particular execution unit is pipelined.

• The type of serialization performed on instructions is described in Section 10.3.2.1, “Instruction 
Serialization”.

Table 10-4. e500mc Instruction Latencies

Mnemonic
Execution 

Unit(s)
Serialization

Repeat Rate 
(cycles)

Latency 
(cycles)

Notes

add SFX0, SFX1 — 1 1 —

add. SFX0, SFX1 — 1 1 —

addc SFX0, SFX1 — 1 1 —

addc. SFX0, SFX1 — 1 1 —

addco SFX0, SFX1 — 1 1 —

addco. SFX0, SFX1 — 1 1 —

adde SFX0, SFX1 — 1 1 —

adde. SFX0, SFX1 — 1 1 —

addeo SFX0, SFX1 — 1 1 —

addeo. SFX0, SFX1 — 1 1 —

addi SFX0, SFX1 — 1 1 —

addic SFX0, SFX1 — 1 1 —

addic. SFX0, SFX1 — 1 1 —

addis SFX0, SFX1 — 1 1 —

addme SFX0, SFX1 — 1 1 —

addme. SFX0, SFX1 — 1 1 —

addmeo SFX0, SFX1 — 1 1 —

addmeo. SFX0, SFX1 — 1 1 —

addo SFX0, SFX1 — 1 1 —
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addo. SFX0, SFX1 — 1 1 —

addze SFX0, SFX1 — 1 1 —

addze. SFX0, SFX1 — 1 1 —

addzeo SFX0, SFX1 — 1 1 —

addzeo. SFX0, SFX1 — 1 1 —

and SFX0, SFX1 — 1 1 —

and. SFX0, SFX1 — 1 1 —

andc SFX0, SFX1 — 1 1 —

andc. SFX0, SFX1 — 1 1 —

andi. SFX0, SFX1 — 1 1 —

andis. SFX0, SFX1 — 1 1 —

b BU — 1 1 —

ba BU — 1 1 —

bc BU — 1 1 —

bca BU — 1 1 —

bcctr BU — 1 1 —

bcctrl BU — 1 1 —

bcl BU — 1 1 —

bcla BU — 1 1 —

bclr BU — 1 1 —

bclrl BU — 1 1 —

bl BU — 1 1 —

bla BU — 1 1 —

cmp SFX0, SFX1 — 1 1 or 2 EQ bit is 1 cycle to branch unit, other results are 
2 cycles

cmpi SFX0, SFX1 — 1 1 or 2 EQ bit is 1 cycle to branch unit, other results are 
2 cycles

cmpl SFX0, SFX1 — 1 1 or 2 EQ bit is 1 cycle, other results are 2 cycles

cmpli SFX0, SFX1 — 1 1 or 2 EQ bit is 1 cycle, other results are 2 cycles

cntlzw SFX0 — 1 1 —

cntlzw. SFX0 — 1 1 —

crand BU — 1 1 —

crandc BU — 1 1 —

Table 10-4. e500mc Instruction Latencies (continued)

Mnemonic
Execution 

Unit(s)
Serialization

Repeat Rate 
(cycles)

Latency 
(cycles)

Notes
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creqv BU — 1 1 —

crnand BU — 1 1 —

crnor BU — 1 1 —

cror BU — 1 1 —

crorc BU — 1 1 —

crxor BU — 1 1 —

dcba LSU Store 1 3 —

dcbal LSU Store 1 3 —

dcbf LSU Store 1 3 —

dcbfep LSU Store 1 3 —

dcbi LSU Store 1 3 —

dcblc LSU Store 1 3 —

dcbst LSU Store 1 3 —

dcbstep LSU Store 1 3 —

dcbt LSU — 1 3 —

dcbtep LSU — 1 3 —

dcbtls LSU Store 1 3 —

dcbtst LSU — 1 3 —

dcbtstep LSU — 1 3 —

dcbtstls LSU Store 1 3 —

dcbz LSU Store 1 3 —

dcbzep LSU Store 1 3 —

dcbzl LSU Store 1 3 —

dcbzlep LSU Store 1 3 —

divw CFX — 4 to 35 4 to 35 See Section 10.4.2.1, “CFX Divide Execution”

divw. CFX — 4 to 35 4 to 35 See Section 10.4.2.1, “CFX Divide Execution”

divwo CFX — 4 to 35 4 to 35 See Section 10.4.2.1, “CFX Divide Execution”

divwo. CFX — 4 to 35 4 to 35 See Section 10.4.2.1, “CFX Divide Execution”

divwu CFX — 4 to 35 4 to 35 See Section 10.4.2.1, “CFX Divide Execution”

divwu. CFX — 4 to 35 4 to 35 See Section 10.4.2.1, “CFX Divide Execution”

divwuo CFX — 4 to 35 4 to 35 See Section 10.4.2.1, “CFX Divide Execution”

divwuo. CFX — 4 to 35 4 to 35 See Section 10.4.2.1, “CFX Divide Execution”

Table 10-4. e500mc Instruction Latencies (continued)

Mnemonic
Execution 

Unit(s)
Serialization

Repeat Rate 
(cycles)

Latency 
(cycles)

Notes
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dnh COMP Refetch — — The dnh instruction executes during completion 
and is not dispatched to an execution unit.

dsn LSU Store 1 3 —

ehpriv COMP Refetch — — The ehpriv instruction executes during 
completion and is not dispatched to an execution 
unit.

eqv SFX0, SFX1 — 1 1 —

eqv. SFX0, SFX1 — 1 1 —

extsb SFX0, SFX1 — 1 1 —

extsb. SFX0, SFX1 — 1 1 —

extsh SFX0, SFX1 — 1 1 —

extsh. SFX0, SFX1 — 1 1 —

fabs FPU — 2 8 —

fabs. FPU — 2 8 —

fadd FPU — 4 10 —

fadd. FPU — 4 10 —

fadds FPU — 2 8 —

fadds. FPU — 2 8 —

fcmpo FPU — 2 8 —

fcmpu FPU — 2 8 —

fctiw FPU — 2 8 —

fctiw. FPU — 2 8 —

fctiwz FPU — 2 8 —

fctiwz. FPU — 2 8 —

fdiv FPU — 68 68

fdiv. FPU — 68 68

fdivs FPU — 38 38

fdivs. FPU — 38 38

fmadd FPU — 4 10 —

fmadd. FPU — 4 10 —

fmadds FPU — 2 8 —

fmadds. FPU — 2 8 —

fmr FPU — 2 8 —

Table 10-4. e500mc Instruction Latencies (continued)

Mnemonic
Execution 

Unit(s)
Serialization

Repeat Rate 
(cycles)

Latency 
(cycles)

Notes
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fmr. FPU — 2 8 —

fmsub FPU — 4 10 —

fmsub. FPU — 4 10 —

fmsubs FPU — 2 8 —

fmsubs. FPU — 2 8 —

fmul FPU — 4 10 —

fmul. FPU — 4 10 —

fmuls FPU — 2 8 —

fmuls. FPU — 2 8 —

fnabs FPU — 2 8 —

fnabs. FPU — 2 8 —

fneg FPU — 2 8 —

fneg. FPU — 2 8 —

fnmadd FPU — 4 10 —

fnmadd. FPU — 4 10 —

fnmadds FPU — 2 8 —

fnmadds. FPU — 2 8 —

fnmsub FPU — 4 10 —

fnmsub. FPU — 4 10 —

fnmsubs FPU — 2 8 —

fnmsubs. FPU — 2 8 —

fres FPU — 38 38 —

fres. FPU — 38 38 —

frsp FPU — 2 8 —

frsp. FPU — 2 8 —

frsqrte FPU — 2 8 —

frsqrte. FPU — 2 8 —

fsel FPU — 2 8 —

fsel. FPU — 2 8 —

fsub FPU — 4 10 —

fsub. FPU — 4 10 —

fsubs FPU — 2 8 —

Table 10-4. e500mc Instruction Latencies (continued)

Mnemonic
Execution 

Unit(s)
Serialization

Repeat Rate 
(cycles)

Latency 
(cycles)

Notes
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fsubs. FPU — 2 8 —

icbi LSU Store 1 3 —

icbiep LSU Store 1 3 —

icblc LSU Store 1 3 —

icbt LSU — 1 3 Note icbt with CT=0, is treated as a NOP.

icbtls LSU Presync, postsync 1 3 —

isel SFX0, SFX1 — 1 1 —

isync COMP Refetch 1 1 —

lbdx LSU — — — Decorated loads are normally performed as 
Guarded and CI so latency/repeat rate is system 
driven.

lbepx LSU — 1 3 —

lbz LSU — 1 3 —

lbzu LSU — 1 3 —

lbzux LSU — 1 3 —

lbzx LSU — 1 3 —

lfd LSU — 1 4 —

lfddx LSU — — — Decorated loads are normally performed as 
Guarded and CI so latency/repeat rate is system 
driven.

lfdepx LSU — 1 4 —

lfdu LSU — 1 4 —

lfdux LSU — 1 4 —

lfdx LSU — 1 4 —

lfs LSU — 1 4 —

lfsu LSU — 1 4 —

lfsux LSU — 1 4 —

lfsx LSU — 1 4 —

lha LSU — 1 3 —

lhau LSU — 1 3 —

lhaux LSU — 1 3 —

lhax LSU — 1 3 —

lhbrx LSU — 1 3 —

Table 10-4. e500mc Instruction Latencies (continued)

Mnemonic
Execution 

Unit(s)
Serialization

Repeat Rate 
(cycles)

Latency 
(cycles)

Notes
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lhdx LSU — — — Decorated loads are normally performed as 
Guarded and CI so latency/repeat rate is system 
driven.

lhepx LSU — 1 3 —

lhz LSU — 1 3 —

lhzu LSU — 1 3 —

lhzux LSU — 1 3 —

lhzx LSU — 1 3 —

lmw LSU — r + 3 r + 3 r indicates the number of register loaded. lmw 
will actually stall in decode while completion 
queue entries are allocated for it each cycle.

lwarx LSU Presync 3 3 —

lwbrx LSU — 1 3 —

lwdx LSU — — — Decorated loads are normally performed as 
Guarded and CI so latency/repeat rate is system 
driven.

lwepx LSU — 1 3 —

lwz LSU — 1 3 —

lwzu LSU — 1 3 —

lwzux LSU — 1 3 —

lwzx LSU — 1 3 —

mbar LSU Store 1 3 In general, mbar will take several more cycles to 
perform the ordering

mcrf BU — 1 1 —

mcrfs FPU — 2 8 —

mcrxr BU Presync, postsync 1 1 —

mfcr SFX0 Move-from 5 5 —

mffs FPU Move-from 8 8 —

mffs. FPU Move-from 8 8 —

mfmsr SFX0 — 4 4 —

mfocrf SFX0 Move-from 5 5 —

mfpmr SFX0 — 4 4 —

mfspr
(CTR)

SFX0, SFX1 — 1 1 mfctr stalls in decode until any other mtctr 
instruction finishes execution.

mfspr
(DBSR)

SFX0 Presync, postsync 4 4 —

Table 10-4. e500mc Instruction Latencies (continued)

Mnemonic
Execution 

Unit(s)
Serialization

Repeat Rate 
(cycles)

Latency 
(cycles)

Notes
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mfspr
(LR)

SFX0, SFX1 — 1 1 mflr stalls in decode until any other mtlr 
instruction finishes execution.

mfspr
(other)

SFX0 — 4 4 —

mfspr
(XER)

SFX0 Move-from 5 5 —

mftb SFX0 — 4 4 —

msgclr SFX0 Move-to 1 1 —

msgsnd LSU Store 1 3 —

mtcrf SFX0 Presync, postsync, 
move-to

4 2 If only single field is moved, latency and repeat 
rate is same as mtocrf and there is no 
serialization.

mtfsb0 FPU Move-to 8 8 —

mtfsb0. FPU Move-to 8 8 —

mtfsb1 FPU Move-to 8 8 —

mtfsb1. FPU Move-to 8 8 —

mtfsf FPU Move-to 8 8 —

mtfsf. FPU Move-to 8 8 —

mtfsfi FPU Move-to 8 8 —

mtfsfi. FPU Move-to 8 8 —

mtmsr SFX0, SFX1 Presync, postsync, 
move-to

4 2 —

mtocrf SFX0, SFX1 — 1 1 —

mtpmr SFX0 Move-to 1 1 —

mtspr
(CTR)

SFX0, SFX1 Move-to 1 1 mtctr stalls in decode until any other mtctr 
instruction finishes execution.

mtspr
(DBCR0,
DBSR, or
DBSRWR)

SFX0 Presync, postsync, 
move-to

4 2 —

mtspr
(LR)

SFX0, SFX1 Move-to 1 1 mtlr stalls in decode until any other mtlr 
instruction finishes execution.

mtspr
(NPIDR)

SFX0 Postsync, move-to 4 2 —

mtspr
(other)

SFX0 Move-to 1 1 —

mtspr
(PID)

SFX0 Presync, postsync, 
move-to

4 2

Table 10-4. e500mc Instruction Latencies (continued)

Mnemonic
Execution 

Unit(s)
Serialization

Repeat Rate 
(cycles)

Latency 
(cycles)

Notes
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mtspr
(XER)

SFX0 Postsync, move-to 4 2 —

mulhw CFX — 1 4 See Section 10.4.2.2, “CFX Multiply Execution

mulhw. CFX — 1 4 See Section 10.4.2.2, “CFX Multiply Execution

mulhwu CFX — 1 4 See Section 10.4.2.2, “CFX Multiply Execution

mulhwu. CFX — 1 4 See Section 10.4.2.2, “CFX Multiply Execution

mulli CFX — 1 4 See Section 10.4.2.2, “CFX Multiply Execution

mullw CFX — 1 4 See Section 10.4.2.2, “CFX Multiply Execution

mullw. CFX — 1 4 See Section 10.4.2.2, “CFX Multiply Execution

mullwo CFX — 1 4 See Section 10.4.2.2, “CFX Multiply Execution

mullwo. CFX — 1 4 See Section 10.4.2.2, “CFX Multiply Execution

nand SFX0, SFX1 — 1 1 —

nand. SFX0, SFX1 — 1 1 —

neg SFX0, SFX1 — 1 1 —

neg. SFX0, SFX1 — 1 1 —

nego SFX0, SFX1 — 1 1 —

nego. SFX0, SFX1 — 1 1 —

nor SFX0, SFX1 — 1 1 —

nor. SFX0, SFX1 — 1 1 —

or SFX0, SFX1 — 1 1 —

or. SFX0, SFX1 — 1 1 —

orc SFX0, SFX1 — 1 1 —

orc. SFX0, SFX1 — 1 1 —

ori SFX0, SFX1 — 1 1 —

oris SFX0, SFX1 — 1 1 —

rfci COMP Refetch — — Return from interrupt instructions execute during 
completion and are not dispatched to an 
execution unit.

rfdi COMP Refetch — — Return from interrupt instructions execute during 
completion and are not dispatched to an 
execution unit.

rfgi COMP Refetch — — Return from interrupt instructions execute during 
completion and are not dispatched to an 
execution unit.

Table 10-4. e500mc Instruction Latencies (continued)

Mnemonic
Execution 

Unit(s)
Serialization

Repeat Rate 
(cycles)

Latency 
(cycles)

Notes



Execution Timing

e500mc Core Reference Manual, Rev. 3

Freescale Semiconductor 10-27
 

rfi COMP Refetch — — Return from interrupt instructions execute during 
completion and are not dispatched to an 
execution unit.

rfmci COMP Refetch — — Return from interrupt instructions execute during 
completion and are not dispatched to an 
execution unit.

rlwimi SFX0, SFX1 — 1 1 —

rlwimi. SFX0, SFX1 — 1 1 —

rlwinm SFX0, SFX1 — 1 1 —

rlwinm. SFX0, SFX1 — 1 1 —

rlwnm SFX0, SFX1 — 1 1 —

rlwnm. SFX0, SFX1 — 1 1 —

sc COMP Refetch — — The sc instruction executes during completion 
and is not dispatched to an execution unit.

slw SFX0, SFX1 — 1 1 —

slw. SFX0, SFX1 — 1 1 —

sraw SFX0, SFX1 — 1 1 —

sraw. SFX0, SFX1 — 1 1 —

srawi SFX0, SFX1 — 1 1 —

srawi. SFX0, SFX1 — 1 1 —

srw SFX0, SFX1 — 1 1 —

srw. SFX0, SFX1 — 1 1 —

stb LSU Store 1 3 —

stbdx LSU Store 1 3 —

stbepx LSU Store 1 3 —

stbu LSU Store 1 3 —

stbux LSU Store 1 3 —

stbx LSU Store 1 3 —

stfd LSU Store 1 3 —

stfddx LSU Store 1 3 —

stfdepx LSU Store 1 3 —

stfdu LSU Store 1 3 —

stfdux LSU Store 1 3 —

stfdx LSU Store 1 3 —
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stfiwx LSU Store 1 3 —

stfs LSU Store 1 3 —

stfsu LSU Store 1 3 —

stfsux LSU Store 1 3 —

stfsx LSU Store 1 3 —

sth LSU Store 1 3 —

sthbrx LSU Store 1 3 —

sthdx LSU Store 1 3 —

sthepx LSU Store 1 3 —

sthu LSU Store 1 3 —

sthux LSU Store 1 3 —

sthx LSU Store 1 3 —

stmw LSU Store r + 1 r + 3 r indicates the number of register stored. stmw 
will actually stall in decode while completion 
queue entries are allocated for it each cycle.

stw LSU Store 1 3 —

stwbrx LSU Store 1 3 —

stwcx. LSU Presync, postsync, 
store

1 3 —

stwdx LSU Store 1 3 —

stwepx LSU Store 1 3 —

stwu LSU Store 1 3 —

stwux LSU Store 1 3 —

stwx LSU Store 1 3 —

subf SFX0, SFX1 — 1 1 —

subf. SFX0, SFX1 — 1 1 —

subfc SFX0, SFX1 — 1 1 —

subfc. SFX0, SFX1 — 1 1 —

subfco SFX0, SFX1 — 1 1 —

subfco. SFX0, SFX1 — 1 1 —

subfe SFX0, SFX1 — 1 1 —

subfe. SFX0, SFX1 — 1 1 —

subfeo SFX0, SFX1 — 1 1 —
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subfeo. SFX0, SFX1 — 1 1 —

subfic SFX0, SFX1 — 1 1 —

subfme SFX0, SFX1 — 1 1 —

subfme. SFX0, SFX1 — 1 1 —

subfmeo SFX0, SFX1 — 1 1 —

subfmeo. SFX0, SFX1 — 1 1 —

subfo SFX0, SFX1 — 1 1 —

subfo. SFX0, SFX1 — 1 1 —

subfze SFX0, SFX1 — 1 1 —

subfze. SFX0, SFX1 — 1 1 —

subfzeo SFX0, SFX1 — 1 1 —

subfzeo. SFX0, SFX1 — 1 1 —

sync
(msync)

LSU Postsync, store 1 3 In general, sync will take several more cycles to 
perform the ordering

tlbilx LSU — 1 or 128 3 or 131 When T=0 or T=1, tlbilx requires 131 cycles 
latency and 128 cycles of repeat rate

tlbivax LSU — 1 3 —

tlbre SFX0 Presync, postsync, 
move-to

4 2 —

tlbsx SFX0 Presync, postsync, 
move-to

4 2 —

tlbsync LSU Store 1 3 —

tlbwe SFX0 Presync, postsync, 
move-to

4 2 —

tw SFX0 — 2 2 —

twi SFX0 — 2 2 —

wait COMP Refetch — — The wait instruction executes during completion 
and is not dispatched to an execution unit.

wrtee SFX0 Move-to, postsync 4 2 —

wrteei SFX0 Move-to, postsync 4 2 —

xor SFX0, SFX1 — 1 1 —

xor. SFX0, SFX1 — 1 1 —

xori SFX0, SFX1 — 1 1 —

xoris SFX0, SFX1 — 1 1 —

Table 10-4. e500mc Instruction Latencies (continued)
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10.6 Instruction Scheduling Guidelines
This section provides an overview of instruction scheduling guidelines, followed by detailed examples 
showing how to optimize scheduling with respect to various pipeline stages. Performance can be improved 
by avoiding resource conflicts and scheduling instructions to take fullest advantage of the parallel 
execution units. 

Instruction scheduling can be improved by observing the following guidelines:
• To reduce branch mispredictions, separate the instruction that sets CR bits from the branch 

instruction that evaluates them. Because there can be no more than 26 instructions in the processor 
(with the instruction that sets CR in CQ0 and the dependent branch instruction in IQ11), there is 
no advantage to having more than 24 instructions between them. 

• When branching to a location specified by the CTR or LR, separate the mtspr instruction that 
initializes the CTR or LR from the dependent branch instruction. This ensures the register values 
are immediately available to the branch instruction.

• Schedule instructions so two can be dispatched at a time.
• Schedule instructions to minimize stalls due to busy execution units. 
• Avoid scheduling high-latency instructions close together. Interspersing single-cycle latency 

instructions between longer-latency instructions minimizes the effect that instructions such as 
integer divide can have on throughput. 

• Avoid using serializing instructions.
• Schedule instructions to avoid dispatch stalls. As many as 14 instructions can be assigned CR and 

GPR renames and can be assigned CQ entries; therefore, 14 instructions can be in the execute 
stages at any one time. (However, note the exception of load or store with update instructions, 
which are broken into two instructions at dispatch.)

• Avoid branches where possible; favor not-taken branches over taken branches.
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Chapter 11  
Core Software Initialization Requirements
This chapter describes the steps software should perform at boot time (that is, after power-on reset has 
occurred) to properly initialize the e500mc core.

11.1 Core State and Suggested Software Initialization After Reset
The state of each area of the core is presented with respect to how it is initially set after a reset has occurred, 
and what actions software should perform to properly initialize the core. Note that, in general, the boot 
loader will perform most of these actions, and operating systems or hypervisors will generally start 
execution with this state appropriately initialized.

There are other requirements for software to initialize areas outside of the core which are not addressed 
here. See the integrated device reference manual for more information.

11.2 MMU State
At reset the MMU has all valid bits (TLB[V]) set to 0 except for the initial boot page which is described 
in Section 6.6, “TLB States after Reset.” In addition, all L1MMU entries are invalidated. No other 
information in the invalid TLB entries are initialized. If later software depends on certain values in TLB 
entries to be set to known values, software must do that by writing all the TLB entries individually and 
setting their fields to the known values.

Since the initial TLB entry for the boot page does not have the Guarded bit set, software may want to 
rewrite that TLB entry to set the Guarded bit if at the time it does not want speculative accesses to occur.

11.3 Register State

11.3.1 GPRs

After reset GPRs may contain random values that may differ from core to core or may differ from reset to 
reset. Practically, a GPR should not be used as a source input until it has been previously set to a value by 
software. However, to aid in debugging boot software, the GPRs should be set to known values at the start 
of reset. This can be accomplished by performing an xor instruction for each register using the same 
register as the rA, rS, and rB operands:

xor r0,r0,r0 // set r0 to 0
xor r1,r1,r1 // set r1 to 0
... // do for all 32 GPRs
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11.3.2 FPRs

At reset FPRs may contain random values that may differ from core to core or may differ from reset to 
reset. Practically, an FPR should not be used as a source input until it has been previously set to a value by 
software. However, FPRs contain hidden tag bits that describe the type of information that the FPR holds, 
and using an FPR that has never been properly initialized may give unpredictable results. therefore the 
FPRs should be set to known values at the start of reset. This can be accomplished by loading the FPRs 
with a known value from memory. Note that this operation may not be able to be performed until later in 
the boot process when software has properly initialized memory, or even possibly at the start of the 
operating system or hypervisor. The following code sequence can be used assuming that r3 points to a 
doubleword aligned scratch memory location:

mfmsr r5 // get current MSR
xor r4,r4,r4 // set r4 to 0
ori r4,r5,0x2000 // set MSR[FP]
mtmsr r4
isync
xor r4,r4,r4 // set to 0
stw r4,0(r3) // clear first word of memory location
stw r4,4(r3) // clear second word of memory location
lfd fr0,0(r3) // set fr0 to 0
fmr fr1,fr0 // set fr1 to 0
fmr fr2,fr0 // set fr2 to 0
... // set rest of FPRs using fmr from r0
mtmsr r5 // restore MSR (turn off FP if desired)
isync

11.3.3 SPRs

At reset SPRs are generally set to 0, except for certain SPRs that contain either configuration values or that 
reflect special state out of reset. SPRs that have initial values other than 0 out of reset are shown in 
Table 11-1.

Table 11-1. SPRs with Non-Zero Reset Values

SPR Description of Non-Zero Reset Values

CDCSR0 Set to configuration information denoting presence of Floating Point capability.

DBSR DBSR[MRR] is set to reflect the most recent reset, which after a hard reset will be 0b10.

L1CFG0 Set to configuration information describing the L1 cache capabilities and organization.

L1CFG1 Set to configuration information describing the L1 cache capabilities and organization.

L2CFG0 Set to configuration information describing the L2 cache capabilities and organization.

MMUCFG Set to configuration information describing the MMU capabilities and organization.

PIR Set to a unique identifier of the core distinct from other cores in the system. This value is set from signal inputs 
from the integrated device. The initial value reflects the core’s location in the device’s topology and all cores in 
an integrated device contain unique values for that device.

PVR Set to a value which can identify the version of the core from other Power Architecture® cores.



Core Software Initialization Requirements

e500mc Core Reference Manual, Rev. 3

Freescale Semiconductor 11-3
 

Other SPRs will need to be set up by software, particularly those SPRs which enable and control various 
aspects about how the core operates. Table 11-2 lists SPRs for which software should initialize to 
appropriate values at boot time.

11.3.4 MSR and FPSCR

At reset, both the MSR and FPSCR are set to 0. The FPSCR does not require initialization and can be set 
at a later time before floating point is used depending on which modes software wishes to operate in.

11.4 Timer State
At reset, all the timers are set to 0 and do not require initialization. Timer controls are also set to 0 and 
when software wishes to begin using timers such as the Decrementer, FIT, or Watchdog timer, software 
will have to set appropriate values in the TCR.

SVR Set to a unique identifier of the integrated device distinct from other SoC products and versions of the same SoC 
from Freescale Semiconductor. This value is set from signal inputs from the integrated device. All cores in the 
integrated device contain the same value.

TLB0CFG Set to configuration information describing the TLB0 capabilities and organization.

TLB1CFG Set to configuration information describing the TLB1 capabilities and organization.

Table 11-2. SPRs to Configure the e500mc

SPR What to Configure

BUCSR Branch unit control and status register. See Section 2.11, “Branch Unit Control and Status Register (BUCSR).”

L1CSR0 L1 control and status register. See Section 2.14, “L1 Cache Registers.”

L1CSR1 L1 control and status register. See Section 2.14, “L1 Cache Registers.”

L1CSR2 L1 control and status register. See Section 2.14, “L1 Cache Registers.”

L2CSR0 L2 control and status register. See Section 2.15, “L2 Cache Registers.”

L2CSR1 L2 control and status register. See Section 2.15, “L2 Cache Registers.”

HID0 Error management can be controlled with HID0. Software can set EMCP in order to receive asynchronous errors 
from the SoC. EN_L2MMU_MHD can also be set to have hardware detect multiple hits during translation which 
can result from MMU programming errors or soft errors in the TLB arrays.

The core can be configured to strongly order all guarded cache inhibited loads and stores by setting CIGLSO 
which allows device drivers that perform memory mapped access to cache inhibited guarded memory to not 
require memory barriers.

EN_MAS7_UPDATE should be set to 1 in order to use physical addresses larger than 32 bits. In general this will 
be the case for many SoCs in which e500mc operates.

See Section 2.12, “Hardware Implementation-Dependent Register 0 (HID0).”

Table 11-1. SPRs with Non-Zero Reset Values (continued)

SPR Description of Non-Zero Reset Values
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Both the Time Base and the Alternate Time Base are set to 0 out of reset. The Alternate Time Base will 
begin counting immediately out of reset, however since Time Base ticks are externally signaled to the core, 
the Time Base will begin counting once the integrated device is programmed to enable Time Base ticks to 
the core. See the integrated device reference manual for more information on enabling Time Base ticks to 
the core.

11.5 L1 Cache State
At reset, the L1 cache (both instruction and data cache) are disabled. The contents of the L1 caches is 
random, therefore there can be random values for tag bits, data bits, and coherency bits. Valid and lock bits 
for the L1 caches are cleared at reset. While software does not have to initialize the L1 caches after reset, 
future processors cores may not provide this initialization upon reset. It is therefore recommended that 
software should initialize the L1 caches before the L1 cache is enabled. This can be accomplished by flash 
invalidating the L1 caches and the locks. This will clear the valid bits for all lines and clear the lock bits. 
The tag bits and data bits do not need to be initialized after flash invalidation, because all lines and tags 
will be invalid and will be set correctly when a new line is allocated.

To flash invalidate the L1 caches, software should execute the following code sequence prior to enabling 
the caches:

// L1 data cache
xor r4,r4,r4  // set r4 to 0
ori r5,r4,0x0102 // set CFI and CFLC bits
sync
isync // synchronize setting of L1CSR0
mtspr L1CSR0,r5 // flash invalidate L1 data cache
isync // synchronize setting of L1CSR0

dloop:
mfspr r4,L1CSR0 // get current value
and. r4,r4,r5 // test CFI and CFLC bits
bne dloop // check again if not complete
isync // discard prefetched instructions

// L1 instruction cache
xor r4,r4,r4  // set r4 to 0
ori r5,r4,0x0102 // set ICFI and ICFLC bits
sync
isync // synchronize setting of L1CSR1
mtspr L1CSR1,r5 // flash invalidate L1 instruction cache
isync // synchronize setting of L1CSR1

iloop:
mfspr r4,L1CSR1 // get current value
and. r4,r4,r5 // test ICFI and ICFLC bits
bne iloop // check again if not complete
isync // discard prefetched instructions

After the caches have been invalidated, they can be enabled by setting the L1CSR0[CE] and L1CSR1[ICE] 
bits respectively. Parity checking and/or write shadow mode can be enabled as well by setting the 
appropriate bits in L1CSR0 and L1CSR1. See Section 2.14, “L1 Cache Registers” for descriptions of 
L1CSR0 and L1CSR1.
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11.6 L2 Cache State
At reset, the L2 cache is disabled. The contents of the L2 caches is random, therefore there can be random 
values for tag bits, data bits, valid bits, coherency bits, and lock bits. Software must properly initialize the 
L2 cache before the L2 cache is enabled. This can be accomplished by flash invalidating the L2 cache and 
also flash invalidating the L2 cache locks. This will clear the valid bits and lock bits for all lines. The lock 
bits must be cleared since the L2 cache supports persistent locks. If the lock bits are not cleared, then on 
average 50% of the cache will appear to be locked and those lines will not be available for allocation which 
can have serious performance consequences. The tag bits and data bits do not need to be initialized after 
flash and flash lock invalidation, because all lines and tags will be invalid and will be set correctly when 
a new line is allocated.

To flash invalidate the L2 cache, software should execute the following code sequence prior to enabling 
the L2 cache:

// L2 data cache
xor r4,r4,r4  // set r4 to 0
ori r5,r4,0x0400 // set L2LFC bit
oris r5,r5,0x0020 // set L2FI
sync
isync // synchronize setting of L2CSR0
mtspr L2CSR0,r5 // flash invalidate L2 cache and locks
isync // synchronize setting of L2CSR0

l2loop:
mfspr r4,L2CSR0 // get current value
and. r5,r5,r4  // compare to see if complete
bne l2loop

After the L2 cache has been invalidated, it can be enabled by setting the L2CSR0[L2E] bit. Error detection 
and correction can be enabled as well by setting the appropriate bits in the L2CSR0 register. See 
Section 2.15, “L2 Cache Registers” for descriptions of L2CSR0 and L2 error management registers.

11.7 Branch Target Buffer State
At reset, the branch target buffer (BTB) and other branch prediction mechanisms are disabled. To obtain 
full performance of the e500mc, branch prediction mechanisms should be enabled. Also at reset, the 
contents of the branch target buffer is random, therefore there can be random addresses and random valid 
bits for branch prediction. While this does not cause any specific problem since the BTB will self correct 
over time and mispredicted branches will be resolved correctly, software should invalidate the contents of 
the BTB after reset. This will assist in debugging boot software because fetch accesses will be more 
deterministic once branch prediction is enabled. The branch prediction mechanisms can be invalidated and 
enabled by the following code sequence:

// Branch prediction
xor r4,r4,r4  // set r4 to 0
ori r5,r4,0x0201 // set BBFI and BPEN
mtspr BUCSR,r5 // flash invalidate and enable branch prediction
isync // synchronize setting of BUCSR
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Appendix A
Revision History
This appendix provides a list of the major differences between the e500mc Core Reference Manual, 
Revision 0 through Revision 3.

A.1 Changes From Revision 2 to Revision 3
Major changes to the e500mc Core Reference Manual, from Revision 2 to Revision 3, are as follows:
Section, Page Changes
9.4.2/9-11 Referred users to both Freescale (CodeWarrior) and third-party vendor(s) for 

additional information regarding software development and debug tools.

A.2 Changes From Revision 1 to Revision 2
Major changes to the e500mc Core Reference Manual, from Revision 1 to Revision 2, are as follows:
Section, Page Changes
2.9.9/2-22 In Figure 2-7, “Machine Check Syndrome Register (MCSR),” and Table 2-8, 

“Machine Check Syndrome Register (MCSR),” removed field STE.
2.15.2/2-37 Changed description of L2IO noting that when L2IO is set, data transactions are 

not processed in the L2 cache. 
4.9.3.1.2/4-16 In Table 4-5, “Machine Check Exception Sources,” removed self-test error.
4.9.3.4/4-20 In Table 4-8, “Asynchronous Machine Check and NMI Exceptions,” remove 

self-test error.
9.4.2/9-11 Referred users to third-party tools vendor(s) for additional information regarding 

QorIQ debug capabilities.

A.3 Changes From Revision 0 to Revision 1
Major changes to the e500mc Core Reference Manual, from Revision 0 to Revision 1, are as follows:
Section, Page Changes
2.15.2/2-37 Updated modes in which write shadow mode is allowed to operate such that L2 

cache must be enabled and not in L2IONLY mode.
2.15.2/2-37 In Table 2-18, “L2CSR0 Field Descriptions,” updated the 00 and 10 bitfield 

setting descriptions and added the following text to the description for bits 50–51: 
“The Streaming PLRU modes perform a partial update of the PLRU bits when an 
L2 line is allocated, and a full update on L2 cache hits.”
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5.4.2/5-8 After paragraph two, added the following text: “Only certain configurations of 
cache operation are supported when using write shadow mode. Invalid 
configurations are not guaranteed to preserve coherency for store operations 
performed by the processor.” 

5.4.2/5-8 Added Table 5-1, “Valid Write Shadow Mode Configurations (when 
L1CSR2[DCWS] = 1).” 

5.7/5-23 Rewrote section and added text to clarify the description of the cache flushing 
operation.
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Appendix B  
Simplified Mnemonics
This appendix describes simplified mnemonics, which are provided for easier coding of assembly 
language programs. Simplified mnemonics are defined for the most frequently used forms of branch 
conditional, compare, trap, rotate and shift, and certain other instructions defined by the Power ISA™ and 
by implementations of and extensions to the Power ISA. 

B.1 Overview
Simplified (or extended) mnemonics allow an assembly-language programmer to program using more 
intuitive mnemonics and symbols than the instructions and syntax defined by the instruction set 
architecture. For example, to code the conditional call “branch to an absolute target if CR4 specifies a 
greater than condition, setting the LR without simplified mnemonics, the programmer would write the 
branch conditional instruction, bc 12,17,target. The simplified mnemonic, branch if greater than, bgt 
cr4,target, incorporates the conditions. Not only is it easier to remember the symbols than the numbers 
when programming, it is also easier to interpret simplified mnemonics when reading existing code. 

Although the Power ISA documents include a set of simplified mnemonics, these are not a formal part of 
the architecture, but rather a recommendation for assemblers that support the instruction set. 

Many simplified mnemonics have been added to those originally included in the architecture 
documentation. Some assemblers created their own, and others have been added to support extensions to 
the instruction set. Simplified mnemonics have been added for new architecturally defined and new 
implementation-specific special-purpose registers (SPRs). These simplified mnemonics are described 
only in a very general way. 

B.2 Subtract Simplified Mnemonics 
This section describes simplified mnemonics for subtract instructions.

B.2.1 Subtract Immediate

There is no subtract immediate instruction, however, its effect is achieved by negating the immediate 
operand of an Add Immediate instruction, addi. Simplified mnemonics include this negation, making the 
intent of the computation more clear. These are listed in Table B-1.

Table B-1. Subtract Immediate Simplified Mnemonics

Simplified Mnemonic Standard Mnemonic

subi rD,rA,value addi rD,rA,–value

subis rD,rA,value addis rD,rA,–value
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B.2.2 Subtract

Subtract from instructions subtract the second operand (rA) from the third (rB). The simplified 
mnemonics in Table B-2 use the more common order in which the third operand is subtracted from the 
second. 

B.3 Rotate and Shift Simplified Mnemonics
Rotate and shift instructions provide powerful, general ways to manipulate register contents, but can be 
difficult to understand. Simplified mnemonics are provided for the following operations:
Extract Select a field of n bits starting at bit position b in the source register; left or right 

justify this field in the target register; clear all other bits of the target register.
Insert Select a left- or right-justified field of n bits in the source register; insert this field 

starting at bit position b of the target register; leave other bits of the target register 
unchanged. 

Rotate Rotate the contents of a register right or left n bits without masking.
Shift Shift the contents of a register right or left n bits, clearing vacated bits (logical 

shift).
Clear Clear the leftmost or rightmost n bits of a register.
Clear left and shift left Clear the leftmost b bits of a register, then shift the register left by n bits. This 

operation can be used to scale a (known nonnegative) array index by the width of 
an element. 

B.3.1 Operations on Words

The simplified mnemonics in Table B-3 can be coded with a dot (.) suffix to cause the Rc bit to be set in 
the underlying instruction.

subic rD,rA,value addic rD,rA,–value

subic. rD,rA,value addic. rD,rA,–value

Table B-2. Subtract Simplified Mnemonics

Simplified Mnemonic Standard Mnemonic1

1 rD,rB,rA is not the standard order for the operands. The order of rB and rA is 
reversed to show the equivalent behavior of the simplified mnemonic.

sub[o][.] rD,rA,rB subf[o][.] rD,rB,rA

subc[o][.] rD,rA,rB subfc[o][.] rD,rB,rA

Table B-1. Subtract Immediate Simplified Mnemonics (continued)

Simplified Mnemonic Standard Mnemonic
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Examples using word mnemonics follow:
1. Extract the sign bit (bit 0) of rS and place the result right-justified into rA.

extrwi rA,rS,1,0 equivalent to rlwinm rA,rS,1,31,31
2. Insert the bit extracted in (1) into the sign bit (bit 0) of rB.

insrwi rB,rA,1,0 equivalent to rlwimi rB,rA,31,0,0
3. Shift the contents of rA left 8 bits.

slwi rA,rA,8 equivalent to rlwinm rA,rA,8,0,23
4. Clear the high-order 16 bits of rS and place the result into rA.

clrlwi rA,rS,16 equivalent to rlwinm rA,rS,0,16,31

B.4 Branch Instruction Simplified Mnemonics 
Branch conditional instructions can be coded with the operations, a condition to be tested, and a prediction, 
as part of the instruction mnemonic rather than as numeric operands (the BO and BI operands). Table B-4 
shows the four general types of branch instructions. Simplified mnemonics are defined only for branch 
instructions that include BO and BI operands; there is no need to simplify unconditional branch 
mnemonics. 

Table B-3. Word Rotate and Shift Simplified Mnemonics

Operation Simplified Mnemonic Equivalent to:

Extract and left justify word immediate extlwi rA,rS,n,b (n > 0) rlwinm rA,rS,b,0,n – 1

Extract and right justify word immediate extrwi rA,rS,n,b (n > 0) rlwinm rA,rS,b + n, 32 – n,31

Insert from left word immediate inslwi rA,rS,n,b (n > 0) rlwimi rA,rS,32 – b,b,(b + n) – 1

Insert from right word immediate insrwi rA,rS,n,b (n > 0) rlwimi rA,rS,32 – (b + n),b,(b + n) – 1

Rotate left word immediate rotlwi rA,rS,n rlwinm rA,rS,n,0,31

Rotate right word immediate rotrwi rA,rS,n rlwinm rA,rS,32 – n,0,31

Rotate word left rotlw rA,rS,rB rlwnm rA,rS,rB,0,31

Shift left word immediate slwi rA,rS,n (n < 32) rlwinm rA,rS,n,0,31 – n

Shift right word immediate srwi rA,rS,n (n < 32) rlwinm rA,rS,32 – n,n,31

Clear left word immediate clrlwi rA,rS,n (n < 32) rlwinm rA,rS,0,n,31

Clear right word immediate clrrwi rA,rS,n (n < 32) rlwinm rA,rS,0,0,31 – n

Clear left and shift left word immediate clrlslwi rA,rS,b,n (n ≤ b ≤ 31) rlwinm rA,rS,n,b – n,31 – n

Table B-4. Branch Instructions 

Instruction Name Mnemonic Syntax 

Branch b (ba bl bla) target_addr 

Branch Conditional bc (bca bcl bcla) BO,BI,target_addr 

Branch Conditional to Link Register bclr (bclrl) BO,BI 

Branch Conditional to Count Register bcctr (bcctrl) BO,BI 
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The BO and BI operands correspond to two fields in the instruction opcode, as Figure B-1 shows for 
Branch Conditional (bc, bca, bcl, and bcla) instructions. 

The BO operand specifies branch operations that involve decrementing CTR. It is also used to determine 
whether testing a CR bit causes a branch to occur if the condition is true or false. 

The BI operand identifies a CR bit to test (whether a comparison is less than or greater than, for example). 
The simplified mnemonics avoid the need to memorize the numerical values for BO and BI. 

For example, bc 16,0,target is a conditional branch that, as a BO value of 16 (0b1_0000) indicates, 
decrements CTR, then branches if the decremented CTR is not zero. The operation specified by BO is 
abbreviated as d (for decrement) and nz (for not zero), which replace the c in the original mnemonic; so 
the simplified mnemonic for bc becomes bdnz. The branch does not depend on a condition in the CR, so 
BI can be eliminated, reducing the expression to bdnz target. 

In addition to CTR operations, the BO operand provides an optional prediction bit and a true or false 
indicator can be added. For example, if the previous instruction should branch only on an equal condition 
in CR0, the instruction becomes bc 8,2,target. To incorporate a true condition, the BO value becomes 8 
(as shown in Table B-6); the CR0 equal field is indicated by a BI value of 2 (as shown in Table B-7). 
Incorporating the branch-if-true condition adds a ‘t’ to the simplified mnemonic, bdnzt. The equal 
condition, that is specified by a BI value of 2 (indicating the EQ bit in CR0) is replaced by the eq symbol. 
Using the simplified mnemonic and the eq operand, the expression becomes bdnzt eq,target. 

This example tests CR0[EQ]; however, to test the equal condition in CR5 (CR bit 22), the expression 
becomes bc 8,22,target. The BI operand of 22 indicates CR[22] (CR5[2], or BI field 0b10110), as shown 
in Table B-7. This can be expressed as the simplified mnemonic. bdnzt 4 * cr5 + eq,target. 

The notation, 4 * cr5 + eq may at first seem awkward, but it eliminates computing the value of the CR bit. 
It can be seen that (4 * 5) + 2 = 22. Note that although 32-bit registers in Power ISA processors are 
numbered 32–63, only values 0–31 are valid (or possible) for BI operands. The encoding of the field in the 
instruction uses numbering from 0 - 31 and the instruction converts this into the architecturally described 
bit number by adding 32. 

B.4.1 Key Facts about Simplified Branch Mnemonics

The following key points are helpful in understanding how to use simplified branch mnemonics:
• All simplified branch mnemonics eliminate the BO operand, so if any operand is present in a 

branch simplified mnemonic, it is the BI operand (or a reduced form of it). 
• If the CR is not involved in the branch, the BI operand can be deleted.
• If the CR is involved in the branch, the BI operand can be treated in the following ways:

0 5 6 10 11 15 16 29 30 31

0 0 1 0 0 0 BO BI BD AA LK

Figure B-1. Branch Conditional (bc) Instruction Format
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— It can be specified as a numeric value, just as it is in the architecturally defined instruction, or 
it can be indicated with an easier to remember formula, 4 * crn + [test bit symbol], where n 
indicates the CR field number.

— The condition of the test bit (eq, lt, gt, and so) can be incorporated into the mnemonic, leaving 
the need for an operand that defines only the CR field. 
– If the test bit is in CR0, no operand is needed.
– If the test bit is in CR1–CR7, the BI operand can be replaced with a crS operand (that is, 

cr1, cr2, cr3, and so forth). 

B.4.2 Eliminating the BO Operand

The 5-bit BO field, shown in Figure B-2, encodes the following operations in conditional branch 
instructions:

• Decrement count register (CTR) 
— And test if result is equal to zero
— And test if result is not equal to zero

• Test condition register (CR)
— Test condition true
— Test condition false

• Branch prediction (taken, fall through). If the prediction bit, y, is needed, it is signified by 
appending a plus or minus sign as described in Section B.4.3, “Incorporating the BO Branch 
Prediction.”

BO bits can be interpreted individually as described in Table B-5.

Thus, a BO encoding of 10100 (decimal 20) means ignore the CR bit comparison and do not decrement 
the CTR—in other words, branch unconditionally. Encodings for the BO operand are shown in Table B-6. 

0 1 2 3 4

Figure B-2. BO Field (Bits 6–10 of the Instruction Encoding) 

Table B-5. BO Bit Encodings

BO Bit Description

0 If set, ignore the CR bit comparison.

1 If set, the CR bit comparison is against true, if not set the CR bit comparison is against false

2 If set, the CTR is not decremented. 

3 If BO[2] is set, this bit determines whether the CTR comparison is for equal to zero or not equal to zero.

4 Used for static branch prediction. Use of the this bit is optional and independent from the interpretation of the rest of the 
BO operand. Because simplified branch mnemonics eliminate the BO operand, this bit (the t bit) and other branch 
prediction hint bits (the “a” bit) are programmed by adding a plus or minus sign to the simplified mnemonic, as described 
in Section B.4.3, “Incorporating the BO Branch Prediction.”
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A z bit indicates that the bit is ignored. However, these bits should be cleared, as they may be assigned a 
meaning in a future version of the architecture. 

As shown in Table B-6, the ‘c’ in the standard mnemonic is replaced with the operations otherwise 
specified in the BO field, (d for decrement, z for zero, nz for nonzero, t for true, and f for false). 

NOTE
The test of when a the CTR reaches 0 varies between 32-bit mode and 64-bit 
mode. M = 32 in 32-bit mode (of a 64-bit implementation) and M = 0 in 
64-bit mode.

B.4.3 Incorporating the BO Branch Prediction 

As shown in Table B-6, the low-order bit (t bit) of the BO field along with the a bit provides a hint about 
whether the branch is likely to be taken (static branch prediction). Assemblers should clear these bits 
unless otherwise directed. This default action indicates the following:

• A branch conditional with a negative displacement field is predicted to be taken.

Table B-6. BO Operand Encodings

BO Field
Value1

(Decimal)

1 Assumes t = z = 0. Section B.4.3, “Incorporating the BO Branch Prediction,” describes how to use simplified mnemonics to 
program the y bit for static prediction. 

Description Symbol

0000z2

2 A z bit indicates a bit that is ignored. However, these bits should be cleared, as they may be assigned a meaning in a future 
version of the architecture.

0 Decrement the CTR, then branch if the decremented CTR ≠ 0; condition is FALSE. dnzf

0001z 2 Decrement the CTR, then branch if the decremented CTR = 0; condition is FALSE. dzf

001at3

3 The a and t bits are used for static branch prediction hints such that at = 0b00 specifies no hint, 0b10 specifies the branch is 
very likely not to be taken, and 0b11 specifies the branch is very likely to be taken.

4 Branch if the condition is FALSE.4 Note that ‘false’ and ‘four’ both start with ‘f’.

4 Instructions for which B0 is 12 (branch if condition true) or 4 (branch if condition false) do not depend on the CTR value and 
can be alternately coded by incorporating the condition specified by the BI field, as described in Section B.4.6, “Simplified 
Mnemonics that Incorporate CR Conditions (Eliminates BO and Replaces BI with crS).”

f

0100z 8 Decrement the CTR, then branch if the decremented CTR ≠ 0; condition is TRUE. dnzt 

0101z 10 Decrement the CTR, then branch if the decremented CTR = 0; condition is TRUE. dzt 

011at 12 Branch if the condition is TRUE. 2 Note that ‘true’ and ‘twelve’ both start with ‘t’. t

1a00t5

5 Simplified mnemonics for branch instructions that do not test CR bits (BO = 16, 18, and 20) should specify only a target. 
Otherwise a programming error may occur. 

16 Decrement the CTR, then branch if the decremented CTR ≠ 0. dnz6

6 Notice that these instructions do not use the branch if condition true or false operations. For that reason, simplified mnemonics 
for these should not specify a BI operand. 

1a01t5 18 Decrement the CTR, then branch if the decremented CTR = 0. dz 6

1z1zz 5 20 Branch always. —
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• A branch conditional with a nonnegative displacement field is predicted not to be taken (fall 
through).

• A branch conditional to an address in the LR or CTR is predicted not to be taken (fall through).

If the likely outcome (branch or fall through) of a given branch conditional instruction is known, a suffix can 
be added to the mnemonic that tells the assembler how to set the at bits. That is, ‘+’ indicates that the branch 
is to be taken and ‘–’ indicates that the branch is not to be taken. This suffix can be added to any branch 
conditional mnemonic, standard or simplified.

For relative and absolute branches (bc[l][a]), the setting of the at bits depends on whether the displacement 
field is negative or nonnegative. For negative displacement fields, coding the suffix ‘+’ causes the bit to 
be cleared, and coding the suffix ‘–’ causes the bit to be set. For nonnegative displacement fields, coding 
the suffix ‘+’ causes the bit to be set, and coding the suffix ‘–’ causes the bit to be cleared.

For branches to an address in the LR or CTR (bclr[l] or bcctr[l]), coding the suffix ‘+’ causes the at bits 
to be set, and coding the suffix ‘–’ causes the at bits to be set to 0b10.

Examples of branch prediction follow:
1. Branch if CR0 reflects less than condition, specifying that the branch should be predicted as taken.

blt+ target 
2. Same as (1), but target address is in the LR and the branch should be predicted as not taken.

bltlr–

B.4.4 The BI Operand—CR Bit and Field Representations

With standard branch mnemonics, the BI operand is used when it is necessary to test a CR bit, as shown 
in the example in Section B.4, “Branch Instruction Simplified Mnemonics.” 

With simplified mnemonics, the BI operand is handled differently depending on whether the simplified 
mnemonic incorporates a CR condition to test, as follows:

• Some branch simplified mnemonics incorporate only the BO operand. These simplified 
mnemonics can use the architecturally defined BI operand to specify the CR bit, as follows:
— The BI operand can be presented exactly as it is with standard mnemonics—as a decimal 

number, 0–31.
— Symbols can be used to replace the decimal operand, as shown in the example in Section B.4, 

“Branch Instruction Simplified Mnemonics,” where bdnzt 4 * cr5 + eq,target could be used 
instead of bdnzt 22,target. This is described in Section B.4.4.1.1, “Specifying a CR Bit.”

NOTE
The simplified mnemonics in Section B.4.5, “Simplified Mnemonics that 
Incorporate the BO Operand,” use one of these two methods to specify a CR 
bit. 

• Additional simplified mnemonics are specified that incorporate CR conditions that would 
otherwise be specified by the BI operand, so the BI operand is replaced by the crS operand to 
specify the CR field, CR0–CR7. See Section B.4.4.1, “BI Operand Instruction Encoding.” 
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These mnemonics are described in Section B.4.6, “Simplified Mnemonics that Incorporate CR 
Conditions (Eliminates BO and Replaces BI with crS).”

B.4.4.1 BI Operand Instruction Encoding

The entire 5-bit BI field, shown in Figure B-3, represents the bit number for the CR bit to be tested. For 
standard branch mnemonics and for branch simplified mnemonics that do not incorporate a CR condition, 
the BI operand provides all 5 bits. 

For simplified branch mnemonics described in Section B.4.6, “Simplified Mnemonics that Incorporate CR 
Conditions (Eliminates BO and Replaces BI with crS),” the BI operand is replaced by a crS operand. To 
understand this, it is useful to view the BI operand as comprised of two parts. As Figure B-3 shows, 
BI[0–2] indicates the CR field and BI[3–4] represents the condition to test.

Figure B-3. BI Field (Bits 11–14 of the Instruction Encoding)

Integer record-form instructions update CR0 and floating-point record-form instructions update CR1 as 
described in Table B-7. 

B.4.4.1.1 Specifying a CR Bit

Note that the AIM version the PowerPC architecture numbers CR bits 0–31 and Book E numbers them 
32–63. However, no adjustment is necessary to the code; in Book E devices, 32 is automatically added to 
the BI value, as shown in Table B-7 and Table B-8.

Table B-7. CR0 and CR1 Fields as Updated by Integer and Floating-Point Instructions

 CRn Bit CR Bits (Operand)
BI

Description
0–2 3–4

CR0[0] 32(0) 000 00 Negative (LT)—Set when the result is negative.

CR0[1] 33(1) 000 01 Positive (GT)—Set when the result is positive (and not zero).

CR0[2] 34(2) 000 10 Zero (EQ)—Set when the result is zero.

CR0[3] 35(3) 000 11 Summary overflow (SO). Copy of XER[SO] at the instruction’s completion.

0 1 2 3 4

BI[0–2] specifies CR field, CR0–CR7. BI[3–4] specifies one of the 
4 bits in a CR field. (LT, GT, EQ,SO) 

Simplified mnemonics based on CR
conditions but not CTR values—BO = 12

(branch if true) and BO = 4 branch if false)

Specified by a separate,
reduced BI operand (crS)

Incorporated into the simplified 
mnemonic.

Standard branch mnemonics and
simplified mnemonics based on CTR

values

The BI operand specifies the entire 5-bit field. If CR0 is used, 
the bit can be identified by LT, GT, EQ, or SO. If CR1–CR7 are 
used, the form 4 * crS + LT|GT|EQ|SO can be used. 

BI Opcode Field
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Some simplified mnemonics incorporate only the BO field (as described Section B.4.2, “Eliminating the 
BO Operand”). If one of these simplified mnemonics is used and the CR must be accessed, the BI operand 
can be specified either as a numeric value or by using the symbols in Table B-8. 

Compare word instructions (described in Section B.5, “Compare Word Simplified Mnemonics”), 
floating-point compare instructions, move to CR instructions, and others can also modify CR fields, so 
CR0 and CR1 may hold values that do not adhere to the meanings described in Table B-7. CR logical 
instructions, described in Section B.7, “Condition Register Logical Simplified Mnemonics,” can update 
individual CR bits. 

To provide simplified mnemonics for every possible combination of BO and BI (that is, including bits that 
identified the CR field) would require 210 = 1024 mnemonics, most of that would be only marginally 

Table B-8. BI Operand Settings for CR Fields for Branch Comparisons

 CRn 
Bit

Bit Expression 

CR Bits BI

DescriptionBI 
Operand)

Power 
ISA Bit 
Number

0–2 3–4

CRn[0] 4 * cr0 + lt (or lt)
4 * cr1 + lt
4 * cr2 + lt
4 * cr3+ lt
4 * cr4 + lt
4 * cr5 + lt
4 * cr6 + lt
4 * cr7 + lt

0
4
8

12
16
20
24
28

32
36
40
44
48
52
56
60

000
001
010
011
100
101
110
111

00 Less than or floating-point less than (LT, FL).
For integer compare instructions: 
rA < SIMM or rB (signed comparison) or rA < UIMM or 
rB (unsigned comparison).
For floating-point compare instructions: frA < frB.

CRn[1] 4 * cr0 + gt (or gt)
4 * cr1 + gt
4 * cr2 + gt
4 * cr3+ gt
4 * cr4 + gt
4 * cr5 + gt
4 * cr6 + gt
4 * cr7 + gt

1
5
9

13
17
21
25
29

33
37
41
45
49
53
57
61

000
001
010
011
100
101
110
111

01 Greater than or floating-point greater than (GT, FG).
For integer compare instructions: 
rA > SIMM or rB (signed comparison) or rA > UIMM or 
rB (unsigned comparison).
For floating-point compare instructions: frA > frB. 

CRn[2] 4 * cr0 + eq (or eq)
4 * cr1 + eq
4 * cr2 + eq 
4 * cr3+ eq
4 * cr4 + eq
4 * cr5 + eq
4 * cr6 + eq
4 * cr7 + eq

2
6

10
14
18
22
26
30

34
38
42
46
50
54
58
62

000
001
010
011
100
101
110
111

10 Equal or floating-point equal (EQ, FE).
For integer compare instructions: rA = SIMM, UIMM, 
or rB.
For floating-point compare instructions: frA = frB.

CRn[3] 4 * cr0 + so/un (or 
so/un)

4 * cr1 + so/un
4* cr2 + so/un
4* cr3 + so/un
4* cr4 + so/un
4* cr5 + so/un
4* cr6 + so/un
4* cr7 + so/un

3
7

11
15
19
23
27
31

35
39
43
47
51
55
59
63

000
001
010
011
100
101
110
111

11 Summary overflow or floating-point unordered (SO, 
FU).
For integer compare instructions, this is a copy of 
XER[SO] at instruction completion.
For floating-point compare instructions, one or both of 
frA and frB is a NaN.
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useful. The abbreviated set in Section B.4.5, “Simplified Mnemonics that Incorporate the BO Operand,” 
covers useful cases. Unusual cases can be coded using a standard branch conditional syntax.

B.4.4.1.2 The crS Operand 

The crS symbols are shown in Table B-9. Note that either the symbol or the operand value can be used in 
the syntax used with the simplified mnemonic. 

To identify a CR bit, an expression in which a CR field symbol is multiplied by 4 and then added to a 
bit-number-within-CR-field symbol can be used, (for example, cr0 * 4 + eq). 

B.4.5 Simplified Mnemonics that Incorporate the BO Operand

The mnemonics in Table B-10 allow common BO operand encodings to be specified as part of the 
mnemonic, along with the absolute address (AA) and set link register bits (LK). There are no simplified 
mnemonics for relative and absolute unconditional branches. For these, the basic mnemonics b, ba, bl, and 
bla are used. 

Table B-9. CR Field Identification Symbols

Symbol BI[0–2] CR Bits

cr0 (default, can be eliminated from syntax) 000 32–35

cr1 001 36–39

cr2 010 40–43

cr3 011 44–47

cr4 100 48–51

cr5 101 52–55

cr6 110 56–59

cr7 111 60–63

Table B-10. Branch Simplified Mnemonics

Branch Semantics
LR Update Not Enabled LR Update Enabled

bc bca bclr bcctr bcl bcla bclrl bcctrl

Branch unconditionally 1 — — blr bctr — — blrl bctrl 

Branch if condition true bt bta btlr btctr btl btla btlrl btctrl

Branch if condition false bf bfa bflr bfctr bfl bfla bflrl bfctrl

Decrement CTR, branch if 
CTR ≠ 0 1

bdnz bdnza bdnzlr — bdnzl bdnzla bdnzlrl —

Decrement CTR, branch if 
CTR ≠ 0 and condition true

bdnzt bdnzta bdnztlr — bdnztl bdnztla bdnztlrl —

Decrement CTR, branch if 
CTR ≠ 0 and condition false

bdnzf bdnzfa bdnzflr — bdnzfl bdnzfla bdnzflrl —
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Table B-10 shows the syntax for basic simplified branch mnemonics

The simplified mnemonics in Table B-10 that test a condition require a corresponding CR bit as the first 
operand (as examples 2–5 below illustrate). The symbols in Table B-9 can be used in place of a numeric 
value.

B.4.5.1 Examples that Eliminate the BO Operand

The simplified mnemonics in Table B-10 are used in the following examples: 
1. Decrement CTR and branch if it is still nonzero (closure of a loop controlled by a count loaded into 

CTR) (note that no CR bits are tested).
bdnz target  equivalent to bc 16,0,target
Because this instruction does not test a CR bit, the simplified mnemonic should specify only a 
target operand. Specifying a CR (for example, bdnz 0,target or bdnz cr0,target) may be 
considered a programming error. Subsequent examples test conditions).

2. Same as (1) but branch only if CTR is nonzero and equal condition in CR0.
bdnzt eq,target  equivalent to bc 8,2,target
Other equivalents include bdnzt 2,target or the unlikely bdnzt 4*cr0+eq,target

3. Same as (2), but equal condition is in CR5.
bdnzt 4 * cr5 + eq,target equivalent to bc 8,22,target

Decrement CTR, branch if 
CTR = 0 1

bdz bdza bdzlr — bdzl bdzla bdzlrl —

Decrement CTR, branch if 
CTR = 0 and condition true

bdzt bdzta bdztlr — bdztl bdztla bdztlrl —

Decrement CTR, branch if 
CTR = 0 and condition false

bdzf bdzfa bdzflr — bdzfl bdzfla bdzflrl —

1 Simplified mnemonics for branch instructions that do not test CR bits should specify only a target. Otherwise a programming 
error may occur. 

Table B-11. Branch Instructions 

Instruction
Standard 

Mnemonic
Syntax 

Simplified 
Mnemonic 

Syntax 

Branch b (ba bl bla) target_addr N/A, syntax does not include BO

Branch Conditional bc (bca bcl bcla) BO,BI,target_addr bx1(bxa bxl bxla)

1 x stands for one of the symbols in Table B-6, where applicable.

BI2target_addr

2 BI can be a numeric value or an expression as shown in Table B-9.

Branch Conditional to Link Register bclr (bclrl) BO,BI bxlr (bxlrl) BI

Branch Conditional to Count Register bcctr (bcctrl) BO,BI bxctr (bxctrl) BI

Table B-10. Branch Simplified Mnemonics (continued)

Branch Semantics
LR Update Not Enabled LR Update Enabled

bc bca bclr bcctr bcl bcla bclrl bcctrl
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bdnzt 22,target would also work
4. Branch if bit 59 of CR is false.

bf 27,target  equivalent to bc 4,27,target
bf 4*cr6+so,target would also work

5. Same as (4), but set the link register. This is a form of conditional call.
bfl 27,target  equivalent to bcl 4,27,target

Table B-12 lists simplified mnemonics and syntax for bc and bca without LR updating. 

Table B-13 lists simplified mnemonics and syntax for bclr and bcctr without LR updating. 

Table B-12. Simplified Mnemonics for bc and bca without LR Update

Branch Semantics bc
Simplified
Mnemonic

bca
Simplified
Mnemonic

Branch unconditionally — — — —

Branch if condition true1

1 Instructions for which B0 is either 12 (branch if condition true) or 4 (branch if condition false) do not depend on the 
CTR value and can be alternately coded by incorporating the condition specified by the BI field, as described in 
Section B.4.6, “Simplified Mnemonics that Incorporate CR Conditions (Eliminates BO and Replaces BI with crS).”

bc 12,BI,target  bt BI,target bca 12,BI,target bta BI,target

Branch if condition false 1 bc 4,BI,target bf BI,target bca 4,BI,target bfa BI,target

Decrement CTR, branch if CTR ≠ 0 bc 16,0,target bdnz target2

2 Simplified mnemonics for branch instructions that do not test CR bits should specify only a target. Otherwise a 
programming error may occur. 

bca 16,0,target bdnza target 2

Decrement CTR, branch if CTR ≠ 0 and 
condition true

bc 8,BI,target bdnzt BI,target bca 8,BI,target bdnzta BI,target

Decrement CTR, branch if CTR ≠ 0 and 
condition false

bc 0,BI,target bdnzf BI,target bca 0,BI,target bdnzfa BI,target

Decrement CTR, branch if CTR = 0 bc 18,0,target bdz target 2 bca 18,0,target bdza target 2

Decrement CTR, branch if CTR = 0 and 
condition true

bc 10,BI,target bdzt BI,target bca 10,BI,target bdzta BI,target

Decrement CTR, branch if CTR = 0 and 
condition false

bc 2,BI,target bdzf BI,target bca 2,BI,target bdzfa BI,target

Table B-13. Simplified Mnemonics for bclr and bcctr without LR Update

Branch Semantics bclr
Simplified
Mnemonic

bcctr
Simplified
Mnemonic

Branch unconditionally bclr 20,0 blr 1 bcctr 20,0 bctr 1

Branch if condition true 2 bclr 12,BI btlr BI bcctr 12,BI btctr BI 

Branch if condition false 2 bclr 4,BI bflr BI bcctr 4,BI bfctr BI 

Decrement CTR, branch if CTR ≠ 0 bclr 16,BI bdnzlr BI — —

Decrement CTR, branch if CTR ≠ 0 and condition true bclr 8,BI bdnztlr BI — —

Decrement CTR, branch if CTR ≠ 0 and condition false bclr 0,BI bdnzflr BI — —

Decrement CTR, branch if CTR = 0 bclr 18,0 bdzlr 1 — —
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Table B-14 provides simplified mnemonics and syntax for bcl and bcla.

Table B-15 provides simplified mnemonics and syntax for bclrl and bcctrl with LR updating. 

Decrement CTR, branch if CTR = 0 and condition true bclr 8,BI bdnztlr BI — —

Decrement CTR, branch if CTR = 0 and condition false bclr 2,BI bdzflr BI — —

1 Simplified mnemonics for branch instructions that do not test a CR bit should not specify one; a programming error may occur.
2 Instructions for which B0 is 12 (branch if condition true) or 4 (branch if condition false) do not depend on a CTR value and can 

be alternately coded by incorporating the condition specified by the BI field. See Section B.4.6, “Simplified Mnemonics that 
Incorporate CR Conditions (Eliminates BO and Replaces BI with crS).”

Table B-14. Simplified Mnemonics for bcl and bcla with LR Update

Branch Semantics bcl
Simplified
Mnemonic

bcla
Simplified
Mnemonic

Branch unconditionally — — — —

Branch if condition true 1

1 Instructions for which B0 is either 12 (branch if condition true) or 4 (branch if condition false) do not depend on the CTR value 
and can be alternately coded by incorporating the condition specified by the BI field. See Section B.4.6, “Simplified Mnemonics 
that Incorporate CR Conditions (Eliminates BO and Replaces BI with crS).”

bcl 12,BI,target  btl BI,target bcla 12,BI,target btla BI,target 

Branch if condition false 1 bcl 4,BI,target bfl BI,target bcla 4,BI,target bfla BI,target 

Decrement CTR, branch if CTR ≠ 0 bcl 16,0,target bdnzl target 2

2 Simplified mnemonics for branch instructions that do not test CR bits should specify only a target. A programming error may 
occur. 

bcla 16,0,target bdnzla target 2

Decrement CTR, branch if CTR ≠ 0 and 
condition true

bcl 8,0,target bdnztl BI,target bcla 8,BI,target bdnztla BI,target 

Decrement CTR, branch if CTR ≠ 0 and 
condition false

bcl 0,BI,target bdnzfl BI,target bcla 0,BI,target bdnzfla BI,target 

Decrement CTR, branch if CTR = 0 bcl 18,BI,target bdzl target 2 bcla 18,BI,target bdzla target 2

Decrement CTR, branch if CTR = 0 and 
condition true

bcl 10,BI,target bdztl BI,target bcla 10,BI,target bdztla BI,target 

Decrement CTR, branch if CTR = 0 and 
condition false

bcl 2,BI,target bdzfl BI,target bcla 2,BI,target bdzfla BI,target 

Table B-15. Simplified Mnemonics for bclrl and bcctrl with LR Update

Branch Semantics bclrl
Simplified
Mnemonic

bcctrl
Simplified
Mnemonic

Branch unconditionally bclrl 20,0 blrl 1 bcctrl 20,0 bctrl 1

Branch if condition true bclrl 12,BI btlrl BI bcctrl 12,BI btctrl BI 

Branch if condition false bclrl 4,BI bflrl BI bcctrl 4,BI bfctrl BI 

Decrement CTR, branch if CTR ≠ 0 bclrl 16,0 bdnzlrl 1 — —

Table B-13. Simplified Mnemonics for bclr and bcctr without LR Update (continued)

Branch Semantics bclr
Simplified
Mnemonic

bcctr
Simplified
Mnemonic
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B.4.6 Simplified Mnemonics that Incorporate CR Conditions (Eliminates BO 
and Replaces BI with crS)

The mnemonics in Table B-18 are variations of the branch-if-condition-true (BO = 12) and 
branch-if-condition-false (BO = 4) encodings. Because these instructions do not depend on the CTR, the 
true/false conditions specified by BO can be combined with the CR test bit specified by BI to create a 
different set of simplified mnemonics that eliminates the BO operand and the portion of the BI operand 
(BI[3–4]) that specifies one of the four possible test bits. However, the simplified mnemonic cannot 
specify in which of the eight CR fields the test bit falls, so the BI operand is replaced by a crS operand. 

The standard codes shown in Table B-16 are used for the most common combinations of branch 
conditions. Note that for ease of programming, these codes include synonyms; for example, less than or 
equal (le) and not greater than (ng) achieve the same result. 

NOTE
A CR field symbol, cr0–cr7, is used as the first operand after the simplified 
mnemonic. If CR0 is used, no crS is necessary. 

Decrement CTR, branch if CTR ≠ 0 and condition true bclrl 8,BI bdnztlrl BI — —

Decrement CTR, branch if CTR ≠ 0 and condition false bclrl 0,BI bdnzflrl BI — —

Decrement CTR, branch if CTR = 0 bclrl 18,0 bdzlrl 1 — —

Decrement CTR, branch if CTR = 0 and condition true bclrl 10, BI bdztlrl BI — —

Decrement CTR, branch if CTR = 0 and condition false bclrl 2,BI bdzflrl BI — —

1 Simplified mnemonics for branch instructions that do not test a CR bit should not specify one. A programming error may occur.

Table B-16. Standard Coding for Branch Conditions

Code Description Equivalent Bit Tested

lt Less than — LT

le Less than or equal (equivalent to ng) ng GT

eq Equal — EQ

ge Greater than or equal (equivalent to nl) nl LT

gt Greater than — GT

nl Not less than (equivalent to ge) ge LT

ne Not equal — EQ

ng Not greater than (equivalent to le) le GT

so Summary overflow — SO

ns Not summary overflow — SO

Table B-15. Simplified Mnemonics for bclrl and bcctrl with LR Update (continued)

Branch Semantics bclrl
Simplified
Mnemonic

bcctrl
Simplified
Mnemonic
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Table B-17 shows the syntax for simplified branch mnemonics that incorporate CR conditions. Here, crS 
replaces a BI operand to specify only a CR field (because the specific CR bit within the field is now part 
of the simplified mnemonic. Note that the default is CR0; if no crS is specified, CR0 is used.

Table B-18 shows the simplified branch mnemonics incorporating conditions.

Instructions using the mnemonics in Table B-18 indicate the condition bit, but not the CR field. If no field 
is specified, CR0 is used. The CR field symbols defined in Table B-9 (cr0–cr7) are used for this operand, 
as shown in examples 2–4 below. 

Table B-17. Branch Instructions and Simplified Mnemonics that Incorporate CR Conditions

Instruction
Standard 

Mnemonic
Syntax 

Simplified 
Mnemonic 

Syntax 

Branch b (ba bl bla) target_addr —

Branch Conditional bc (bca bcl bcla) BO,BI,target_addr bx 1(bxa bxl bxla)

1 x stands for one of the symbols in Table B-16, where applicable.

crS2,target_addr 

2 BI can be a numeric value or an expression as shown in Table B-9.

Branch Conditional to Link Register bclr (bclrl) BO,BI bxlr (bxlrl) crS 

Branch Conditional to Count Register bcctr (bcctrl) BO,BI bxctr (bxctrl) crS 

Table B-18. Simplified Mnemonics with Comparison Conditions

Branch Semantics
LR Update Not Enabled LR Update Enabled

bc bca bclr bcctr bcl bcla bclrl bcctrl

Branch if less than blt blta bltlr bltctr bltl bltla bltlrl bltctrl

Branch if less than or equal ble blea blelr blectr blel blela blelrl blectrl

Branch if equal beq beqa beqlr beqctr beql beqla beqlrl beqctrl

Branch if greater than or equal bge bgea bgelr bgectr bgel bgela bgelrl bgectrl

Branch if greater than bgt bgta bgtlr bgtctr bgtl bgtla bgtlrl bgtctrl

Branch if not less than bnl bnla bnllr bnlctr bnll bnlla bnllrl bnlctrl

Branch if not equal bne bnea bnelr bnectr bnel bnela bnelrl bnectrl

Branch if not greater than bng bnga bnglr bngctr bngl bngla bnglrl bngctrl

Branch if summary overflow bso bsoa bsolr bsoctr bsol bsola bsolrl bsoctrl

Branch if not summary overflow bns bnsa bnslr bnsctr bnsl bnsla bnslrl bnsctrl

Branch if unordered bun buna bunlr bunctr bunl bunla bunlrl bunctrl

Branch if not unordered bnu bnua bnulr bnuctr bnul bnula bnulrl bnuctrl



Simplified Mnemonics

e500mc Core Reference Manual, Rev. 3

Freescale Semiconductor B-16
 

B.4.6.1 Branch Simplified Mnemonics that Incorporate CR Conditions:
Examples

The following examples use the simplified mnemonics shown in Table B-18:
1. Branch if CR0 reflects not-equal condition.

bne target equivalent to bc 4,2,target
2. Same as (1) but condition is in CR3.

bne cr3,target equivalent to bc 4,14,target
3. Branch to an absolute target if CR4 specifies greater than condition, setting the LR. This is a form 

of conditional call.
bgtla cr4,target equivalent to bcla 12,17,target

4. Same as (3), but target address is in the CTR.
bgtctrl cr4 equivalent to bcctrl 12,17

B.4.6.2 Branch Simplified Mnemonics that Incorporate CR Conditions:
Listings

Table B-19 shows simplified branch mnemonics and syntax for bc and bca without LR updating. 
Table B-19. Simplified Mnemonics for bc and bca without Comparison Conditions or

LR Update

Branch Semantics bc Simplified Mnemonic bca Simplified Mnemonic

Branch if less than bc 12,BI1,target

1 The value in the BI operand selects CRn[0], the LT bit. 

blt crS target bca 12,BI1,target blta crS target

Branch if less than or equal bc 4,BI2,target

2 The value in the BI operand selects CRn[1], the GT bit. 

ble crS target bca 4,BI2,target blea crS target

Branch if not greater than bng crS target bnga crS target

Branch if equal bc 12,BI3,target

3 The value in the BI operand selects CRn[2], the EQ bit. 

beq crS target bca 12,BI3,target beqa crS target

Branch if greater than or equal bc 4,BI1,target bge crS target bca 4,BI1,target bgea crS target

Branch if not less than bnl crS target bnla crS target

Branch if greater than bc 12,BI2,target bgt crS target bca 12,BI2,target bgta crS target

Branch if not equal bc 4,BI3,target bne crS target bca 4,BI3,target bnea crS target

Branch if summary overflow bc 12,BI4,target

4 The value in the BI operand selects CRn[3], the SO bit. 

bso crS target bca 12,BI4,target bsoa crS target

Branch if unordered bun crS target buna crS target

Branch if not summary overflow bc 4,BI4,target bns crS target bca 4,BI4,target bnsa crS target

Branch if not unordered bnu crS target bnua crS target
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Table B-20 shows simplified branch mnemonics and syntax for bclr and bcctr without LR updating. 

Table B-21 shows simplified branch mnemonics and syntax for bcl and bcla. 

Table B-20. Simplified Mnemonics for bclr and bcctr without Comparison Conditions
or LR Update

Branch Semantics bclr
Simplified 
Mnemonic

bcctr
Simplified 
Mnemonic

Branch if less than bclr 12,BI1,target

1 The value in the BI operand selects CRn[0], the LT bit. 

bltlr crS target bcctr 12,BI1,target bltctr crS target

Branch if less than or equal bclr 4,BI2,target

2 The value in the BI operand selects CRn[1], the GT bit. 

blelr crS target bcctr 4,BI2,target blectr crS target

Branch if not greater than bnglr crS target bngctr crS target

Branch if equal bclr 12,BI3,target

3 The value in the BI operand selects CRn[2], the EQ bit. 

beqlr crS target bcctr 12,BI3,target beqctr crS target

Branch if greater than or equal bclr 4,BI1,target bgelr crS target bcctr 4,BI1,target bgectr crS target

Branch if not less than bnllr crS target bnlctr crS target

Branch if greater than bclr 12,BI2,target bgtlr crS target bcctr 12,BI2,target bgtctr crS target

Branch if not equal bclr 4,BI3,target bnelr crS target bcctr 4,BI3,target bnectr crS target

Branch if summary overflow bclr 12,BI4,target

4 The value in the BI operand selects CRn[3], the SO bit. 

bsolr crS target bcctr 12,BI4,target bsoctr crS target

Branch if not summary overflow bclr 4,BI4,target bnslr crS target bcctr 4,BI4,target bnsctr crS target

Table B-21. Simplified Mnemonics for bcl and bcla with Comparison Conditions and
LR Update

Branch Semantics bcl
Simplified 
Mnemonic

bcla
Simplified 
Mnemonic

Branch if less than bcl 12,BI1,target

1 The value in the BI operand selects CRn[0], the LT bit. 

bltl crS target bcla 12,BI1,target bltla crS target

Branch if less than or equal bcl 4,BI2,target

2 The value in the BI operand selects CRn[1], the GT bit. 

blel crS target bcla 4,BI2,target blela crS target

Branch if not greater than bngl crS target bngla crS target

Branch if equal bcl 12,BI3,target

3 The value in the BI operand selects CRn[2], the EQ bit. 

beql crS target bcla 12,BI3,target beqla crS target

Branch if greater than or equal bcl 4,BI1,target bgel crS target bcla 4,BI1,target bgela crS target

Branch if not less than bnll crS target bnlla crS target

Branch if greater than bcl 12,BI2,target bgtl crS target bcla 12,BI2,target bgtla crS target

Branch if not equal bcl 4,BI3,target bnel crS target bcla 4,BI3,target bnela crS target

Branch if summary overflow bcl 12,BI4,target

4 The value in the BI operand selects CRn[3], the SO bit. 

bsol crS target bcla 12,BI4,target bsola crS target

Branch if not summary overflow bcl 4,BI4,target bnsl crS target bcla 4,BI4,target bnsla crS target



Simplified Mnemonics

e500mc Core Reference Manual, Rev. 3

Freescale Semiconductor B-18
 

Table B-22 shows the simplified branch mnemonics and syntax for bclrl and bcctrl with LR updating. 

B.5 Compare Word Simplified Mnemonics
In compare word instructions, the L operand indicates a word (L = 0) or a doubleword (L = 1). Simplified 
mnemonics in Table B-23 eliminate the L operand for word comparisons. 

As with branch mnemonics, the crD field of a compare instruction can be omitted if CR0 is used, as shown 
in examples 1 and 3 below. Otherwise, the target CR field must be specified as the first operand. The 
following examples use word compare mnemonics: 

1. Compare rA with immediate value 100 as signed 32-bit integers and place result in CR0.
cmpwi rA,100 equivalent to cmpi 0,0,rA,100

2. Same as (1), but place results in CR4.
cmpwi cr4,rA,100 equivalent to cmpi 4,0,rA,100

3. Compare rA and rB as unsigned 32-bit integers and place result in CR0.
cmplw rA,rB equivalent to cmpl 0,0,rA,rB

Table B-22. Simplified Mnemonics for bclrl and bcctrl with Comparison Conditions
and LR Update

Branch Semantics bclrl
Simplified 
Mnemonic

bcctrl
Simplified 
Mnemonic

Branch if less than bclrl 12,BI1,target

1 The value in the BI operand selects CRn[0], the LT bit. 

bltlrl crS target bcctrl 12,BI1,target bltctrl crS target

Branch if less than or equal bclrl 4,BI2,target

2 The value in the BI operand selects CRn[1], the GT bit. 

blelrl crS target bcctrl 4,BI2,target blectrl crS target

Branch if not greater than bnglrl crS target bngctrl crS target

Branch if equal bclrl 12,BI3,target

3 The value in the BI operand selects CRn[2], the EQ bit. 

beqlrl crS target bcctrl 12,BI3,target beqctrl crS target

Branch if greater than or equal bclrl 4,BI1,target bgelrl crS target bcctrl 4,BI1,target bgectrl crS target

Branch if not less than bnllrl crS target bnlctrl crS target

Branch if greater than bclrl 12,BI2,target bgtlrl crS target bcctrl 12,BI2,target bgtctrl crS target

Branch if not equal bclrl 4,BI3,target bnelrl crS target bcctrl 4,BI3,target bnectrl crS target

Branch if summary overflow bclrl 12,B4,target

4 The value in the BI operand selects CRn[3], the SO bit. 

bsolrl crS target bcctrl 12,BI4,target bsoctrl crS target

Branch if not summary overflow bclrl 4,BI4,target bnslrl crS target bcctrl 4,BI4,target bnsctrl crS target

Table B-23. Word Compare Simplified Mnemonics

Operation Simplified Mnemonic Equivalent to:

Compare Word Immediate cmpwi crD,rA,SIMM cmpi crD,0,rA,SIMM

Compare Word cmpw crD,rA,rB cmp crD,0,rA,rB

Compare Logical Word Immediate cmplwi crD,rA,UIMM cmpli crD,0,rA,UIMM

Compare Logical Word cmplw crD,rA,rB cmpl crD,0,rA,rB
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B.6 Compare Doubledoublewordword Simplified Mnemonics
In compare doubleword instructions, the L operand indicates a word (L = 0) or a doubleword (L = 1). 
Simplified mnemonics in Table B-23 eliminate the L operand for doubleword comparisons. 

As with branch mnemonics, the crD field of a compare instruction can be omitted if CR0 is used, as shown 
in examples 1 and 3 below. Otherwise, the target CR field must be specified as the first operand. The 
following examples use word compare mnemonics: 

1. Compare rA with immediate value 100 as signed 64-bit integers and place result in CR0.
cmpdi rA,100 equivalent to cmpi 0,1,rA,100

2. Same as (1), but place results in CR4.
cmpdi cr4,rA,100 equivalent to cmpi 4,1,rA,100

3. Compare rA and rB as unsigned 64-bit integers and place result in CR0.
cmpld rA,rB equivalent to cmpl 0,1,rA,rB

B.7 Condition Register Logical Simplified Mnemonics 
The CR logical instructions, shown in Table B-25, can be used to set, clear, copy, or invert a given CR bit. 
Simplified mnemonics allow these operations to be coded easily. Note that the symbols defined in 
Table B-8 can be used to identify the CR bit.

Examples using the CR logical mnemonics follow:
1. Set CR[57].

crset 25 equivalent to creqv 25,25,25
2. Clear CR0[SO].

crclr so equivalent to crxor 3,3,3
3. Same as (2), but clear CR3[SO].

crclr 4 * cr3 + so equivalent to crxor 15,15,15

Table B-24. Doubleword Compare Simplified Mnemonics

Operation Simplified Mnemonic Equivalent to:

Compare Doubleword Immediate cmpdi crD,rA,SIMM cmpi crD,1,rA,SIMM

Compare Doubleword cmpd crD,rA,rB cmp crD,1,rA,rB

Compare Logical Doubleword Immediate cmpldi crD,rA,UIMM cmpli crD,1,rA,UIMM

Compare Logical Doubleword cmpld crD,rA,rB cmpl crD,1,rA,rB

Table B-25. Condition Register Logical Simplified Mnemonics

Operation Simplified Mnemonic Equivalent to

Condition register set crset bx creqv bx,bx,bx

Condition register clear crclr bx crxor bx,bx,bx

Condition register move crmove bx,by cror bx,by,by

Condition register not crnot bx,by crnor bx,by,by
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4. Invert the CR0[EQ].crnot eq,eq equivalent to crnor 2,2,2
5. Same as (4), but CR4[EQ] is inverted and the result is placed into CR5[EQ].

crnot 4 * cr5 + eq, 4 * cr4 + eq equivalent to crnor 22,18,18

B.8 Trap Instructions Simplified Mnemonics 
The codes in Table B-26 are for the most common combinations of trap conditions. 

The mnemonics in Table B-27 are variations of trap instructions, with the most useful TO values 
represented in the mnemonic rather than specified as a numeric operand.

Table B-26. Standard Codes for Trap Instructions

Code Description TO Encoding < > = <U1

1 The symbol ‘<U’ indicates an unsigned less-than evaluation is performed. 

>U 2

2 The symbol ‘>U’ indicates an unsigned greater-than evaluation is performed.

lt Less than 16 1 0 0 0 0

le Less than or equal 20 1 0 1 0 0

eq Equal 4 0 0 1 0 0

ge Greater than or equal 12 0 1 1 0 0

gt Greater than 8 0 1 0 0 0

nl Not less than 12 0 1 1 0 0

ne Not equal 24 1 1 0 0 0

ng Not greater than 20 1 0 1 0 0

llt Logically less than 2 0 0 0 1 0

lle Logically less than or equal 6 0 0 1 1 0

lge Logically greater than or equal 5 0 0 1 0 1

lgt Logically greater than 1 0 0 0 0 1

lnl Logically not less than 5 0 0 1 0 1

lng Logically not greater than 6 0 0 1 1 0

— Unconditional 31 1 1 1 1 1

Table B-27. Trap Simplified Mnemonics

Trap Semantics
32-Bit Comparison 

twi Immediate tw Register

Trap unconditionally — trap

Trap if less than twlti twlt

Trap if less than or equal twlei twle

Trap if equal tweqi tweq

Trap if greater than or equal twgei twge
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The following examples use the simplified trap mnemonics:
1. Trap if rA is not zero.

twnei rA,0 equivalent to twi 24,rA,0
2. Trap if rA is not equal to rB.

twne rA, rB equivalent to tw 24,rA,rB
3. Trap if rA is logically greater than 0x7FF.

twlgti rA, 0x7FF equivalent to twi 1,rA, 0x7FF
4. Trap unconditionally.

trap equivalent to  tw 31,0,0

Trap instructions evaluate a trap condition as follows: The contents of rA are compared with either the 
sign-extended SIMM field or the contents of rB, depending on the trap instruction. 

The comparison results in five conditions that are ANDed with operand TO. If the result is not 0, the trap 
exception handler is invoked. See Table B-28 for these conditions.

Trap if greater than twgti twgt

Trap if not less than twnli twnl

Trap if not equal twnei twne

Trap if not greater than twngi twng

Trap if logically less than twllti twllt

Trap if logically less than or equal twllei twlle

Trap if logically greater than or equal twlgei twlge

Trap if logically greater than twlgti twlgt

Trap if logically not less than twlnli twlnl

Trap if logically not greater than twlngi twlng

Table B-28. TO Operand Bit Encoding

TO Bit ANDed with Condition

0 Less than, using signed comparison

1 Greater than, using signed comparison

2 Equal

3 Less than, using unsigned comparison

4 Greater than, using unsigned comparison

Table B-27. Trap Simplified Mnemonics (continued)

Trap Semantics
32-Bit Comparison 

twi Immediate tw Register
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B.9 Simplified Mnemonics for Accessing SPRs
The mtspr and mfspr instructions specify a special-purpose register (SPR) as a numeric operand. 
Simplified mnemonics are provided that represent the SPR in the mnemonic rather than requiring it to be 
coded as a numeric operand. The pattern for mtspr and mfspr simplified mnemonics is straightforward: 
replace the -spr portion of the mnemonic with the abbreviation for the spr (for example XER, SRR0, or 
LR), eliminate the SPRN operand, leaving the source or destination GPR operand, rS or rD. 

Following are examples using the SPR simplified mnemonics:
1. Copy the contents of rS to the XER.

mtxer rS  equivalent to mtspr 1,rS
2. Copy the contents of the LR to rD.

mflr rD  equivalent to mfspr rD,8
3. Copy the contents of rS to the CTR.

mtctr rS  equivalent to mtspr 9,rS

The architecture describes extended mnemonics for accessing CTR, LR, and XER only. However, some 
assemblers support other SPRs in the same fashion as shown in the following examples:

1. Copy the contents of rS to CSRR1.
mtcsrr1 rS equivalent to mtspr 59,rS

2. Copy the contents of IVOR0 to rD.
mfivor0 rD equivalent to mfspr rD,400

3. Copy the contents of rS to the SRR0.
mtsrr0 rS  equivalent to mtspr 26,rS

There is an additional simplified mnemonic convention for accessing SPRGs. These are shown in 
Table B-29 along with the equivalent simplified mnemonic using the formula described above.

B.10 Recommended Simplified Mnemonics
This section describes commonly-used operations (such as NOP, load immediate, load address, move 
register, and complement register). 

Table B-29. Additional Simplified Mnemonics for Accessing SPRGs

SPR
Move to SPR Move from SPR

Simplified Mnemonic Equivalent to Simplified Mnemonic Equivalent to

SPRGs mtsprg n, rS mtspr 272 + n,rS mfsprg rD, n mfspr rD,272 + n

mtsprgn rS mfsprgn rD
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B.10.1 NOP (nop)

Many instructions can be coded so that, effectively, no operation is performed. A mnemonic is provided 
for the preferred form of NOP. If an implementation performs any type of run-time optimization related to 
NOPs, the preferred form is the following:

nop equivalent to ori 0,0,0

B.10.2 Load Immediate (li)

The addi and addis instructions can be used to load an immediate value into a register. Additional 
mnemonics are provided to convey the idea that no addition is being performed but that data is being 
moved from the immediate operand of the instruction to a register.

1. Load a 16-bit signed immediate value into rD.
li rD,value equivalent to addi rD,0,value

2. Load a 16-bit signed immediate value, shifted left by 16 bits, into rD. 
lis rD,value equivalent to addis rD,0,value

B.10.3 Load Address (la) 

This mnemonic permits computing the value of a base-displacement operand, using the addi instruction 
that normally requires a separate register and immediate operands.

la rD,d(rA) equivalent to addi rD,rA,d

The la mnemonic is useful for obtaining the address of a variable specified by name, allowing the 
assembler to supply the base register number and compute the displacement. If the variable v is located at 
offset dv bytes from the address in rv, and the assembler has been told to use rv as a base for references 
to the data structure containing v, the following line causes the address of v to be loaded into rD:

la rD,v equivalent to addi rD,rv,dv

B.10.4 Move Register (mr)

Several instructions can be coded to copy the contents of one register to another. A simplified mnemonic 
is provided that signifies that no computation is being performed, but merely that data is being moved from 
one register to another.

The following instruction copies the contents of rS into rA. This mnemonic can be coded with a dot (.) 
suffix to cause the Rc bit to be set in the underlying instruction.

mr rA,rS equivalent to or rA,rS,rS

B.10.5 Complement Register (not)

Several instructions can be coded in a way that they complement the contents of one register and place the 
result into another register. A simplified mnemonic is provided that allows this operation to be coded 
easily.
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The following instruction complements the contents of rS and places the result into rA. This mnemonic 
can be coded with a dot (.) suffix to cause the Rc bit to be set in the underlying instruction.

not rA,rS equivalent to nor rA,rS,rS

B.10.6 Move to Condition Register (mtcr)

This mnemonic permits copying the contents of a GPR to the CR, using the same syntax as the mfcr 
instruction.

mtcr rS equivalent to mtcrf 0xFF,rS

B.10.7 Sync (sync)

The sync extended mnemonics provide simpler mnemonics for specifying certain sync operations:

Lightweight sync
lwsync equivalent to sync 1 
Heavyweight sync
hwsync equivalent to sync 0 
Book E / PowerPC compatibility
sync equivalent to sync 0
msync equivalent to sync 0

B.10.8 Integer Select (isel)

The following mnemonics simplify the most common variants of the isel instruction that access CR0:
Integer Select Less Than 
isellt rD,rA,rB equivalent to isel rD,rA,rB,0 
Integer Select Greater Than 
iselgt rD,rA,rB equivalent to isel rD,rA,rB,1 
Integer Select Equal 
iseleq rD,rA,rB equivalent to isel rD,rA,rB,2

B.10.9 TLB Invalidate Local Indexed 

The following simplified mnemonics are provided for tlbilx encodings: 
tlbilxlpid equivalent to tlbilx 0,0
tlbilxpid equivalent to tlbilx 1,0,0
tlbilxva rA,rB equivalent to tlbilx 3,rA,rB
tlbilxva rB equivalent to tlbilx 3,0,rB
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