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About This Book

This document includes the register model, instruction model, MMU, memory subsystem, debug and
performance monitor facilities of the €e5500. The primary objective of this core reference manual is to
describe the functionality of the e500mc embedded microprocessor core for software and hardware
developers. This book is intended as a companion to the EREF: A Programmers Reference Manual for
Freescale Power Architecture® Processors: A Programmer s Reference Manual for Freescale Embedded
Processors and Power ISA" Version 2.06. Features defined by the Power instruction set architecture (ISA)
are described in the EREF: A Programmers Reference Manual for Freescale Power Architecture®
Processors; this manual focuses on features that are specific to the e500mc microprocessor.

Locate errata or updates for this document at http://www.freescale.com. Information in this book is subject
to change without notice, as described in the disclaimers on the title page of this book. As with any
technical documentation, it is the readers’ responsibility to be sure they are using the most recent version
of the documentation.

Audience

It is assumed that the reader understands operating systems, microprocessor system design, and the basic
principles of RISC processing and has access to the EREF: A Programmer s Reference Manual for
Freescale Power Architecture® Processors and Power ISA" Version 2.06.

Suggested Reading

This section lists additional reading that provides background for the information in this manual as well as
general information about the architecture.

General Information

The following documentation is available from Power.org from their website Attp://www.power.org:

«  PowerISA" Version 2.06B, July 2010
The following documentation, published by Morgan-Kaufmann Publishers, 340 Pine Street, Sixth Floor,
San Francisco, CA, provides useful information about computer architecture in general:

»  Computer Architecture: A Quantitative Approach, Third Edition, by John L. Hennessy and David
A. Patterson

»  Computer Organization and Design: The Hardware/Software Interface, Second Edition, David A.
Patterson and John L. Hennessy

Related Documentation

Freescale documentation is available from the sources listed on the back cover of this manual. The
document order numbers are included in parentheses for ease in ordering:

* EREF: A Programmers Reference Manual for Freescale Power Architecture® Processors: A
Programmers Reference Manual for Freescale Embedded Processors
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This book provides a higher-level view of the programming model as it is defined by the Power
ISA and Freescale implementation standards.

+ Integrated device reference manuals
These books provide details about individual implementations of embedded devices that
incorporate embedded cores, such as the e500mc.

* Addenda/errata to reference manuals
Because some processors have follow-on parts, an addendum is provided that describes the
additional features and functionality changes. These addenda are intended for use with the
corresponding user’s manuals.

» Hardware specifications
Hardware specifications provide specific data regarding bus timing, signal behavior, and AC, DC,
and thermal characteristics, as well as other design considerations.

* Technical summaries
Each device has a technical summary that provides an overview of its features. This document is
roughly the equivalent to the overview (Chapter 1) of an implementation’s user’s manual.

* Application notes
These short documents address specific design issues useful to programmers and engineers
working with Freescale processors.

Additional literature is published as new processors become available. For a current list of documentation,
refer to http://www.freescale.com.

Conventions

This document uses the following notational conventions:

cleared/set

mnemonics

italics

0x0

0b0

rA, rB, rS
rD

frA, frB, frC
frD
REGI[FIELD]

Xy

When a bit takes the value zero, it is said to be cleared; when it takes a value of
one, it is said to be set.

Instruction mnemonics are shown in lowercase bold.

Italics indicate variable command parameters, for example, beetrx.
Book titles in text are set in italics

Internal signals are set in italics, for example, qual BG

Prefix to denote hexadecimal number

Prefix to denote binary number

Instruction syntax used to identify a source GPR

Instruction syntax used to identify a destination GPR

Instruction syntax used to identify a source FPR

Instruction syntax used to identify a destination FPR

Abbreviations for registers are shown in uppercase text. Specific bits, fields, or
ranges appear in brackets. For example, MSR[PR] refers to the privilege mode bit
in the machine state register.

A bit range from bit x to bit y inclusive.
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X-y A bit range from bit x to bit y inclusive.

X In some contexts, such as signal encodings, an unitalicized x indicates a don’t
care.
X An italicized x indicates an alphanumeric variable.

An italicized n indicates an numeric variable.

- NOT logical operator
& AND logical operator
| OR logical operator

Indicates reserved bits or bit fields in a register. Although these bits can be written
to as ones or zeros, they are always read as zeros.

Terminology Conventions

Table i lists certain terms used in this manual that differ from the architecture terminology conventions.

Table i. Terminology Conventions

Architecture Specification This Manual
Extended mnemonics Simplified mnemonics
Privileged mode (or privileged state) Supervisor level
Hypervisor mode (or hypervisor state) Hypervisor level
Problem mode (or problem state) User level
Out-of-order memory accesses Speculative memory accesses
Storage (locations) Memory
Storage (the act of) Access
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Chapter 1
e500mc Overview

This chapter provides a general overview of the e500mc microprocessor core. It includes the following:

* An overview of architecture features as implemented on the e500mc and a summary of the core
feature set

* A summary of the instruction pipeline and flow

* An overview of the programming model

* An overview of interrupts and exceptions handling

* A description of the memory management architecture

» High-level details of the e500mc core memory and coherency model

* A brief description of the CoreNet interface

» A list of differences between different versions of the €500 core from e500v2

The e500mc core provides features that an integrated device may not implement or may implement in a
more specific way. Differences are summarized in the documentation for the integrated device.

1.1 Overview

The e500mc core is a low-power implementation of the resources for embedded processors defined by the
Power ISA™., The core is a 32-bit implementation and implements 32 32-bit general-purpose registers;
however it supports accesses to 36-bit physical addresses. The block diagram in Figure 1-1 shows how the
e500mc functional units operate independently and in parallel. Note that this conceptual diagram does not
attempt to show how these features are implemented physically.

The e500mc is a superscalar processor that can issue two instructions and complete two instructions per
clock cycle. Instructions complete in order, but can execute out of order. Execution results are available to
subsequent instructions through the rename buffers, but those results are recorded into architected registers
in program order, maintaining a precise exception model.

The processor core integrates two simple instruction units (SFX0, SFX1), a multiple-cycle instruction unit
(MU), a branch unit (BU), a floating-point unit (FPU), and a load/store unit (LSU).

The LSU supports 32-bit integer and 64-bit floating-point operands.

The ability to execute six instructions in parallel and the use of simple instructions with short execution
times yield high efficiency and throughput. Most integer instructions execute in one clock cycle.

The core includes on-chip first-level instruction and data memory management units (MMUs) and an
on-chip second-level unified MMU.

* The first-level MMU s for both instruction and data translation are each composed of two
subarrays: an 8-entry fully-associative array of translation look-aside bufter (TLB) entries for
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e500mc Overview

variable-sized pages, and a 64-entry 4-way set-associative array of TLB entries for fixed sized
pages that provide virtual to physical memory address translation for variable-sized pages and
demand-paged fixed pages respectively. These arrays are maintained entirely by the hardware with
a true least-recently-used (LRU) algorithm, and are a cache of the second level MMU.

» The second-level MMU contains a 64-entry, fully-associative unified (instruction and data) TLB
array that provides support for variable-sized pages. It also contains a 512-entry, 4-way
set-associative unified TLB for 4-Kbyte page size support. These second-level TLBs are
maintained completely by the software.

The e500mc includes independent on-chip, 32-Kbyte, eight-way set-associative, physically addressed L1
caches for instructions and data and a unified 128-KB, eight-way set-associative, physically addressed,
backside L2 cache.

e500mc Core Reference Manual, Rev. 3
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Figure 1-1. e500mc Block Diagram
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e500mc Overview

Cache lines on the e500mc are 16 words (64 bytes) wide. The core allows cache-line-based user-mode
locks on cache contents. This provides embedded applications with the capability for locking interrupt
routines or other important (time-sensitive) instruction sequences into the instruction cache. It also allows
data to be locked into the data cache, which supports deterministic execution time.

The e500mc shown as “Core” in Figure 1-2, is designed to be implemented in multicore integrated
devices, and many of the features are defined to support multicore implementations, in particular to
partition the cores in such a way that multiple operating systems can be run with the integrated device.

Control Plane Data Plane Other Services
Symmetrical Asymmetrical Multiprocessor OS
Multiprocessor OS (Shared Code) 0S oS
[ I I ‘
L2 Cache ‘ ‘ L2 Cache ‘ ‘ L2 Cache ‘ ‘ L2 Cache ‘ ‘ L2 Cache ‘ ‘ L2 Cache ‘ ‘ L2 Cache ‘ ‘ L2 Cache ‘
Core Core Core Core Core Core Core Core
| D | D | D | D | D | D | D | D
Cache| |Cache| |Cache| |Cache| |Cache| |[Cache| |Cache| |Cache| |Cache| |Cache| |Cache| |Cache| |Cache| |Cache| |Cache| |Cache

NN T R A

CoreNet Interconnect Fabric

Y ! y ! y ’ Y

Peripheral Peripheral Peripheral Peripheral Peripheral Front-side DDR2/3
Device 1 Device 2 Device 3 Device 4 | ®®® | Device n Platform Cache| | Memory Controller

Figure 1-2. Example Partitioning Scenario of a Multicore Integrated Device

The architecture defines the resources required to allow orderly and secure interactions between the cores,
memory, peripheral devices, and virtual machines. These include a hypervisor and guest supervisor
privilege levels, that determine whether certain activities, such as memory accesses and management,
cache management, and interrupt handling, are to be carried on at a system-wide level (hypervisor level)
or by the operating system within a partition (guest supervisor level).
In particular, e500mc implements the following categories as defined by PowerISA 2.06:

* Base

* Embedded

» Alternate Time Base

» (Cache Specification

* Decorated Storage

* Embedded.Enhanced Debug

* Embedded.External PID

* Embedded.Hypervisor

* Embedded.Little-Endian

e500mc Core Reference Manual, Rev. 3
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Embedded.Performance Monitor
Embedded.Processor Control
Embedded.Cache Locking

External Proxy

Floating Point and Floating Point.Record
Memory Coherence

Store Conditional Page Mobility

Wait

The above categories define instructions, registers, and processor behavior associated with a given
category. For a more complete and canonical definition of the e500mc register and instruction set, see
Chapter 2, “Register Model,” and Chapter 3, “Instruction Model,” respectively.

The CoreNet interface provides the primary on-chip interface between the cores and the rest of the SoC.
CoreNet is a tag-based interface fabric that provides interconnections among the cores, peripheral devices,
and system memory in a multicore implementation.

1.2

Feature Summary

Key features of the e500mc are summarized as follows:

Implements 32-bit architecture, with 36-bit physical addressing

32 32-bit General Purpose Registers (GPR)

32 64-bit Floating Point Registers (FPR)

FPR-based floating-point, binary compatible with e300 and €600 cores
Multicore architecture support

— Hypervisor programming model (category Embedded.Hypervisor in PowerISA 2.06). Many
resources are hypervisor privileged, allowing the hypervisor to completely partition the system.
Performance sensitive resources used by the guest supervisor are manipulated directly by
hardware while less performance sensitive resources require hypervisor software to intervene
to provide partitioning and isolation.

— A set of topology independent interprocessor doorbell interrupts implemented through the
Message Send and Message Clear instructions (category Embedded.Processor Control in
PowerISA 2.06).

CoreNet interface fabric. Provides interconnections among the cores, peripheral devices, and
system memory in a multicore implementation.

Decorated Storage, when used with specifically enabled SoC devices, allowing for high
performance atomic “fire and forget” operations on memory locations performed directly by the
targeted device

Cache features

— Separate 32-Kbyte, eight-way set associative level 1 (L1) instruction and data caches. The L1
cache contains sixty-four 8-way sets of 16 words. See Section 5.4, “L1 Cache Structure.”

— Enhanced Error Detection and Correction

e500mc Core Reference Manual, Rev. 3
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— Parity checking on L1 tags and data

— One-bit-per-word instruction parity checking

— One-bit-per-byte L1 data parity checking

— L2 cache ECC single-bit correction, double-bit detection. L2 cache tags parity detection
only.

— Write shadow mode. This allows all modified data in the L1 cache to be written through to
the L2 cache. This also allows for automatic invalidations to correct cache tag and data
errors since modified data is written through and protected with ECC at another level of the
memory hierarchy.

— Non-maskable Interrupt for soft-reset type capability
— Two-cycle L1 cache array access, three cycle load-to-use latency
— Pseudo-LRU (PLRU) replacement algorithm

— Cache coherency. CoreNet supports four-state cache coherency: modified-exclusive,
exclusive, shared, and invalid (MESI).

— Provides snooping

— Modified and exclusive data intervention allowing cache contents can be shared without
requiring memory to be updated

— Integrated 128-KB, eight-way set-associative backside L2 cache

— Supports data- and instruction-only cache operation
The L2 cache can be programmed as instruction, data, or unified, which control whether a
cache line is allocated on a instruction or data miss (or both or neither).
The L2 Cache supports way partitioning effectively assigning a certain number of ways to
allocate on instruction misses and a certain number of ways to allocate on data misses.

— 64-byte (16-word) cache-line, coherency-granule size

— Cache locking. Allows instructions and data to be locked into their respective caches on a cache
block basis. Locking is performed by a set of touch and lock set instructions. This functionality
can be separately enabled for user mode or supervisor mode.

* Interrupt model. Supports base, critical, debug, and machine-check interrupt levels with separate
interrupt resources (save/restore registers and interrupt return instructions).

— Interrupts have an implicit priority by how their enable bits are masked when an interrupt is
taken. Unless software enables or disables the appropriate interrupt enables while in the
interrupt handler, the priority (from highest to lowest) is:

— Machine Check
— Debug
— Critical
— Base class
— Standard embedded category interrupts
— Less than 10-cycle interrupt latency

— Interrupt vectors formed by concatenation of interrupt vector prefix register (IVPR) and
interrupt vector offset register (IVORn)

e500mc Core Reference Manual, Rev. 3
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— Exception syndrome register (ESR)
Extended multicore interrupt model to support hypervisor and guest mode privilege levels

— System Call instruction to generate a system call or a hypervisor-level system call
(hypercall) interrupt. Executing sc or sc 0 generates a system call and sc 1 generates
hypercall interrupt.

— Doorbell interrupts defined to allow one processor to signal an interrupt to another core
(doorbell, doorbell critical, guest doorbell, guest doorbell critical, and guest doorbell
machine check)

— Ability to configure whether certain interrupts are delivered directly to the guest supervisor
state, or by default to the hypervisor state

— Embedded Hypervisor Privilege interrupt to capture guest supervisor attempts to access
hypervisor resources

— TLBs can be programmed to always force a data storage interrupt (DSI) to generate a
virtualization fault to hypervisor state

External interrupt proxy provides automatic hardware acknowledgement of external interrupts
signaled by the programmable interrupt controller (PIC) on the integrated device, (replacing
the “read IACK” step) increasing responsiveness to external interrupts from peripheral devices
and reducing interrupt latency. See Section 4.9.6.3, “External Proxy.”

Memory management unit (MMU)

32-bit effective address to 36-bit physical address translation

Virtual address fields in TLB entries

— GS field indicates whether the access is guest or supervisor privilege level.

— AS field indicates one of the two address spaces (from IS or DS in the MSR)

— LPID field identifies the logical partition with which the memory access is associated
— PID field identifies the process ID with which the memory access is associated

Extended PID translation mechanism provides an alternative set of load, store, and cache
operations for efficiently transferring large blocks of memory or performing cache operations
across disjunct address spaces, such as an operating system copying a buffer into a
non-privileged area.

TLB entries for variable- (4 Kbytes to 4 Gbytes) and fixed-size (4-Kbyte) pages
Data L1 MMU

— 8-entry, fully-associative TLB array for variable-sized pages

— 64-entry, 4-way set-associative TLB for 4-Kbyte pages

Instruction L1 MMU

— 8-entry, fully-associative TLB array for variable-sized pages

— 64-entry, 4-way set-associative TLB for 4-Kbyte pages

Unified L2 MMU

— 64-entry, fully-associative TLB array (TLB1) for variable-sized pages

— A 512-entry, 4-way set-associative unified (for instruction and data accesses) TLB array
(TLBO) supports only 4-Kbyte pages

e500mc Core Reference Manual, Rev. 3
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— Software reload for TLBs

— Real memory support for as much as 64 Gbytes (236)

— Support for big-endian and true little-endian memory on a per-page basis
* Performance monitor

— Provides the ability to monitor and count dozens of predefined events, such as processor clocks,
misses in the instruction cache or data cache, types of instructions decoded, or mispredicted
branches.

— Can be configured to trigger either a performance monitor interrupt or an event to the Nexus
facility when configured conditions are met.

— Performance Monitor Registers (PMRs) are used to configure and track performance monitor
operations. These registers are accessed with the Move to PMR and Move from PMR
instructions (mtpmr and mfpmr).

* Power management

— Low-power design

— Power-saving modes: core-halted and core-stopped

— Asynchronous bus

— Dynamic power management

— wait instruction, places the core in a Doze-like, low-power mode until an interrupt occurs

» Testability

— Nexus debug support

— Debug Notify Halt (dnh) instruction. When enabled through an external debug facility,
executing dnh causes the core to enter the halted state. Normal instruction execution is frozen,
instructions are not fetched, interrupts are not taken, and the core does not execute instructions

from the architectural instruction stream, and control of the processor is managed by the
external debug facility.

1.3 Instruction Flow

The e500mc core is a pipelined, superscalar processor with parallel execution units that allow instructions
to execute out of order but record their results in order. Pipelining breaks instruction processing into
discrete stages, so multiple instructions in an instruction sequence can occupy the successive stages: as an
instruction completes one stage, it passes to the next, leaving the previous stage available to a subsequent
instruction. So, even though it may take multiple cycles for an instruction to pass through all of the pipeline
stages, once a pipeline is full, instruction throughput is much shorter than the latency.

A superscalar processor is one that, in a single cycle, issues multiple independent instructions into separate
execution units, allowing parallel execution. The core has six execution units, one each for branch (BU),
load/store (LSU), floating-point (FPU), and complex integer operations (CFX), and two for simple
arithmetic operations (SFX0 and SFX1).

The parallel execution units allow multiple instructions to execute in parallel and out of order. For
example, a low-latency addition instruction that is issued to an SFX after an integer divide is issued to the
CFX should finish executing before the higher latency divide instruction. Most instructions can make
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results available to a subsequent instruction, but cannot update the architected GPR specified as its target
operand ahead of the multiple-cycle divide instruction.

The common pipeline stages are as follows:

Instruction fetch—Includes the clock cycles necessary to request an instruction and the time the
memory system takes to respond to the request. Instructions retrieved are latched into the
instruction queue (IQ) for subsequent consideration by the dispatcher.

Instruction fetch timing depends on many variables, such as whether an instruction is in the on-chip
instruction cache or the L2 cache. Those factors increase when it is necessary to fetch instructions
from system memory and include the processor-to-bus clock ratio, the amount of bus traffic, and
whether any cache coherency operations are required.

Because there are so many variables, unless otherwise specified, the instruction timing examples
in this chapter assume optimal performance and show the portion of the fetch stage in which the
instruction is in the instruction queue. The fetchl and fetch2 stages are primarily involved in
retrieving instructions.

The decode/dispatch stage fully decodes each instruction; most instructions are dispatched to the
issue queues (however, isync, rfi, sc, nops, and some other instructions do not go to issue queues).

The issue queues, BIQ, GIQ, and FIQ, can accept as many as one, two, and two instructions,
respectively, in a cycle. The following simplification covers most cases:

— Instructions dispatch only from the two lowest IQ entries—IQO0 and IQ1.
— A total of two instructions can be dispatched to the issue queues per clock cycle.

Dispatch is treated as an event at the end of the decode stage. The issue stage reads source operands

from rename registers and register files and determines when instructions are latched into the

execution unit reservation stations. Note that the e500mc has 14 rename registers, one for each

completion queue entry, so instructions cannot stall because of a shortage of rename registers.

— Space must be available in the CQ for an instruction to decode and dispatch (this includes
instructions that are assigned a space in the CQ but not in an issue queue).

The general behavior of the issue queues is described as follows:

— The GIQ accepts as many as two instructions from the dispatch unit per cycle. SFX0, SFX1,
CFX, and all LSU instructions (including 64-bit loads and stores) are dispatched to the GIQ,
shown in Figure 1-3.

From 1Q0/IQ1

GIQ3
GlQ2
GlQ1 —> To SFX1, CFX, or LSU
GlIQo —> To SFXO0, CFX, or LSU

\& \& V¢ \&

Figure 1-3. GPR Issue Queue (GIQ)

— Instructions can be issued out-of-order from the bottom two GIQ entries (GIQ1-GIQO0). GIQO
can issue to SFX0, CFX, and LSU. GIQ1 can issue to SFX1, CFX, and LSU.
Note that SFX1 executes a subset of the instructions that can be executed in SFXO0. The ability
to identify and dispatch instructions to SFX1 increases the availability of SFX0 to execute more
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computational-intensive instructions.
An instruction in GIQ1 destined for SFX1 or the LSU need not wait for an CFX instruction in
GIQO that is stalled behind a long-latency divide.

— FIQ and BIQ only issue one instruction per cycle each to their respective reservation stations.

» The execute stage accepts instructions from its issue queue when the appropriate reservation
stations are not busy. In this stage, the operands assigned to the execution stage from the issue stage
are latched.

The execution unit executes the instruction (perhaps over multiple cycles), writes results on its
result bus, and notifies the CQ when the instruction finishes. The execution unit reports any
exceptions to the completion stage. Instruction-generated exceptions are not taken until the
excepting instruction is next to retire.

— Branch unit—The branch unit (BU) executes (resolves) all branch and CR logical instructions.
Branches resolve in execution stage. If a branch is mispredicted, it takes five cycles for the next
instruction to reach the execute stage.

— Integer units. Two simple units (SFX0 and SFX1) handle add, subtract, shift, rotate and logical
operations. The complex integer unit (CFX) executes multiplication and divide instructions
Most integer instructions have a one-cycle latency, so results of these instructions are available
one clock cycle after an instruction enters the execution unit.

Integer multiply and divide instructions have longer latency, and the multiply and divide can
overlap execution in most cases. Multiply operations are also pipelined.

— The load/store unit (LSU), shown in Figure 1-4, has the following features:
— Three-cycle load latency
— Fully pipelined
— Load miss queue
— Load hits can continue to be serviced when the load miss queue is full.

— As many as nine load misses to five distinct cache lines can be pipelined in parallel while
L1 cache hits continue to be serviced.
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Reservation Station

v

Load/Store Unit
Three-Stage Pipeline

To completion queue <€———

To GPR/FPR operand buses <———

Queues and Buffers
L1 Store Load <«—> To data cache

To GPR/FPRs <«—>

ooy

To core interface unit

Figure 1-4. Three-Stage Load/Store Unit

* The complete and write-back stages maintain the correct architectural machine state and commit
results to the architecture-defined registers in order. If completion logic detects a mispredicted
branch or an instruction containing an exception status, subsequent instructions are cancelled, their
execution results in rename registers are discarded, and the correct instruction stream is fetched.
The complete stage ends when the instruction is retired. Two instructions can be retired per clock
cycle. If no dependencies exist, as many as two instructions are retired in program order.

Section 10.3.2, “Dispatch, Issue, and Completion Considerations,” describes completion
dependencies.
The write-back stage occurs in the clock cycle after the instruction is retired.

1.4 Programming Model Overview

In general, the e500mc implements the registers and instructions as defined by the architecture (the Power
ISA and Freescale implementation standards) and are fully described in the EREF: A Programmers
Reference Manual for Freescale Power Architecture Processors. The following sections provide a high
level description and a listing of those resources that are implemented on the e500mc.

1.4.1 Register Model Overview

In general, registers on the e500mc are implemented as defined by the architecture. Any e500mc-specific
differences from or extensions to the architecture are described in Chapter 2, “Register Model,” of this
manual.

The e500mc implements the following types of registers:

» Registers that contain values that are specified by using operands that are part of the instruction
syntax defined by the Power ISA. These are as follows:

— Thirty-two, 32-bit general purpose registers (GPRs), specified as follows:
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— rD indicates a GPR that is used as the destination or target of an integer computational,
logical or load instruction.

— rS indicates a GPR that is used as the source of an integer computational, logical, or store
instruction.

— rA, rB, or rC indicate GPRs that are used to hold values that are operated upon for
computational or logical instructions, or that are used for an effective address (EA) or a
decoration.

— Thirty-two, 64-bit floating-point registers (FPRs), specified as follows:
— frD indicates an FPR that is used as the destination or target of a floating-point instruction.
— frS indicates an FPR that is used as the source of a floating-point instruction.

— frA, frB, or frC indicate FPRs are used to hold values that are operated upon for
floating-point instructions.

* Registers that are updated automatically to record a condition that occurs as a by-product of a
computation:

— The condition register, CR consists of eight 4-bit fields that record the results of certain
operations which are typically used for testing and branching. The CR is implemented as
defined in PowerISA. In addition, the CR can be accessed with special move to/move from
instructions.

— The integer exception register, XER, records conditions such as carries and overflows. The
XER is an SPR and can be accessed with move to/move from SPR instructions (mtspr and
mfspr).

— The floating-point status and control register, FPSCR, records and controls exception
conditions, such as overflows, controls the rounding mode, and indicates the type of result for
certain floating-point operations.

— The machine state register, MSR, is a supervisor-level register, although some fields can be
written only by hypervisor-level software. It is used to configure operational behavior, such as
setting the privilege level and enabling asynchronous interrupts. When an interrupt is taken, the
MSR is stored into the appropriate save and restore register 1 (xSRR1) as determined by the
interrupt type. The value in the xXSRR1 is restored in the MSR when the appropriate return from
interrupt is executed. The MSR, which is not an SPR, is accessed by the move to/move from
MSR instructions (mtmsr and mfmsr). The external interrupt enable bit can be written
separately with a Write MSR External Enable instruction (wrtee and wrteei).

*  Most registers are defined as special-purpose registers (SPRs). All SPRs can be accessed by move
to/move from SPR instructions (mtspr and mfspr), executed by software running at the
appropriate privilege level, as indicated by the SPR summary in Table 2-2. Note that some SPRs
are also updated by other mechanisms, such as the save and restore registers, which record the
machine state when an exception is taken, and configuration and status registers, which are affected
by internal signals. SPRs are listed in Section 2.2.1, “Special-Purpose Registers (SPRs).”

» Performance monitor registers (PMRs) are architecture-defined registers provided for configuring
and programming the core-specific performance monitor. PMRs are similar to SPRs in that they
are accessed by move to/from PMR instructions (mtpmr and mfpmr).
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1.4.2 Instruction Model Overview

In general, instructions on the e500mc are implemented as defined by the architecture. Any
e500me-specific differences from or extensions to the architecture are described in Chapter 3, “Instruction
Model,” of this manual.

Table 3-47 lists the instructions implemented in the e500mc.

1.5 Core Revisions

This manual differentiates between different revisions of the e500mc in a few places, where it may be
relevant. The revision of the core can be obtained by performing a mfspr to the PVR register. The
following names are used in this manual to distinguish between the revisions of the core:

Rev 1.x Revision 1 of the core. PVR = 0x8023 xx1x.
Rev 2.x Revision 2 of the core. PVR = 0x8023 xx2x.
Rev 3.x Revision 3 of the core. PVR = 0x8023 xx3x.

1.6 Summary of Differences Between Previous €500 Cores

This section contains a series of differences outlining the changes from previous e500 cores. The changes
described here are at a high level to help understand the programming model changes.

1.6.1 Changes from e500v2 to e500mc

e500mc contains several differences from the e500v2 core. Significant programming model changes occur
from the removal of Signal Processing Engine (SPE) and the embedded floating point functionality and
the addition of FPR based floating point as well as hypervisor partitioning support. User mode software
can be recompiled if the software does not use explicit SPE or embedded floating point intrinsics. User
level software that used any floating point software must also be re-linked since the manner in which
floating point arguments to functions are passed is different. The floating point model of the e500mc is
compatible with the e300 and e600 cores and should provide a seamless transition when migrating
software from the e300 or the 600 to the e500mc.

A summary of the changes to the core is show in Table 1-1. This table is intended to be a general summary
and not an explicit list of differences. Users should use this list to understand what major areas may require
changes to their software when porting from the e500v2.
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Table 1-1. Summary of e500mc and e500v2 Differences

Feature

e500v2

e500mc

Notes

Backside L2 cache

not present

present

An integrated backside L2 cache is present in e500mc.
The backside L2 cache is described throughout this
document.

SPE and embedded
floating point

present

not present

SPE and embedded floating point (floating point done in
the GPRs) is not present in e500mc. This makes the
GPRs 32 bits in size as opposed to 64 bits.

FPR based floating-point not present present FPR based floating-point (category Floating-Point) is
presentin e500mc. The floating point is binary compatible
with e300 and e600. See Section 3.4.4.1, “Floating-Point
Instructions.”

Embedded hypervisor not present present A new privilege level and associated instructions and
registers are provided in e500mc to support partitioning
and virtualization. Changes appear throughout the
document.

Power management uses uses SoC How power management functions are invoked is now

MSR[WE] and | programming model to | mostly controlled by writing SoC registers. See
HIDO[DOZE,N control power Chapter 8, “Power Management.”
AP,SLEEP] to management and
enter power removes MSR[WE],
management | HIDO[DOZE,NAPR,SLE
states EP]. Also adds the wait
instruction.

External proxy not present present External proxy is a mechanism which allows the core to
acknowledge an external input interrupt from the PIC
when the interrupt is taken and provide the interrupt
vector in a core register. See Section 4.9.6.3, “External
Proxy.”

Additional interrupt level for | not present present A separate interrupt level for debug interrupts is provided

Debug interrupts and the associated save /restore registers
DSRRO/DSRR1. See Section 4.9.16, “Debug
Interrupt—IVOR15”

Processor signaling not present present The msgsnd and msgclr instructions are provided to
perform topology independent core to core doorbell
interrupts. See Section 3.4.11.4, “Message Clear and
Message Send Instructions.”

External PID load/store not present present Instructions are provided for supervisor/hypervisor level
software to perform load and store operations using a
different address space context. See Section 3.4.11.2,
“External PID Load Store Instructions.”

Decorated storage not present present Instructions are provided for performing load and store

operations to devices that include meta data that is
interpreted by the target address. Devices in some SoCs
utilize this facility for performing atomic memory updates
like increments and decrements. See Section 3.4.3.2.8,
“Decorated Load and Store Instructions.”
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Table 1-1. Summary of e500mc and e500v2 Differences (continued)

Feature

e500v2

e500mc

Notes

Lightweight
synchronization

not present

Adds the Iwsync
instruction.

The lwsync instruction is provided for a faster form of
memory barrier for load/store ordering to memory that is
cached and coherent. See Section 3.4.10.1, “User-Level
Cache Instructions” and Section 5.5.5, “Load/Store
Operation Ordering.”

CoreNet uses Core uses CoreNet as an | CoreNet is a scalable non-retry based fabric used as an
Complex Bus interconnect interconnect between cores and other devices in the SoC.
(CCB) as
interconnect
Cache stashing not present present The capability to have certain SoC devices “stash” or

pre-load data into a designated core L1 or L2 data cache
is provided. The core is a passive recipient of such
requests. See Section 5.2.2, “Cache Stashing.”

Machine check provides provides error report, | Machine check interrupts are divided into synchronous
machine asynchronous machine | error reports, asynchronous machine checks, and NMI.
check check, and NMI How errors are reported are more conducive to a
interrupt and | interrupts. HIDO[RFXE] | multi-core environment. See Section 4.9.3, “Machine
HIDO[RFXE] is removed. Check Interrupt—IVOR1”
to control how
the core treats
machine
check
interrupts
Write shadow not present present The capability to have all data written to the L1 data cache
be “written through” to the L2 cache (or to memory) is
provided. This provides a method of ensuring that any L1
cache error can be recovered from without loss of data.
See Section 5.4.2, “Write Shadow Mode.”
Cache block size 32 bytes 64 bytes e500mc contains a larger cache block/line/coherence
granule size.
Number of variable size 16 64 e500mc contains a larger number of variable size TLB

TLB entries

entries and larger number of available page sizes. See
Section 6.3.2, “L2 TLB Arrays.”
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Chapter 2
Register Model

This chapter describes implementation-specific details of the register model as it is implemented on the
e500mc core processors. It identifies all registers that are implemented on the e500mc core, but, with a few
exceptions, does not include full descriptions of those registers and register fields that are implemented
exactly as they are defined by the architecture (the Power ISA™ and the Freescale implementation
standards). The EREF: A Programmer s Reference Manual for Freescale Power Architecture® Processors
describes these registers.

It is important to note that a device that integrates the e500mc core may not implement all of the fields and
registers that are defined here, and may interpret some fields more specifically than can be defined here.
For specific details, refer to the e500mc Core Integration chapter in the reference manual for the device
that incorporates the e500mc core.

Only registers associated with the programming model of the core are described in this chapter. Note that
debug registers that are associated with external debug mode (EDM) are described in Chapter 9, “Debug
and Performance Monitor Facilities.”

2.1 Register Model Overview

Although this chapter organizes registers according to their functionality, they can be differentiated
according to how they are accessed, as follows:

* General-purpose registers (GPRs)
Used as source and destination operands for integer computation operations and for specifying the
effective address. See Section 2.4.1, “General-Purpose Registers (GPRs).”

» Floating-point registers (FPRs)
Used as source and destination operands for floating-point computation operations. See
Section 2.5.1, “Floating-Point Registers (FPRs).”

» Special-purpose registers (SPRs)
Accessed with the Move to Special-Purpose Register (mtspr) and Move from Special-Purpose
Register (mfspr) instructions. Section 2.2.1, “Special-Purpose Registers (SPRs),” lists SPRs.

» System-level registers that are not SPRs. These are as follows:

— Machine state register (MSR). Accessed with the Move to Machine State Register (mtmsr) and
Move from Machine State Register (mfmsr) instructions. See Section 2.7.1, “Machine State
Register (MSR).”

— Condition register (CR) bits are grouped into eight 4-bit fields, CRO—CR7, which are set as
follows:

— Specified CR fields can be set by a move to the CR from a GPR (mtcrf).
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2.2

— A specified CR field can be set by a move to the CR from another CR field (merf), or from
the XER (merxr).

— CRO can be set as the implicit result of an integer instruction.
— CRI can be set as the implicit result of a floating-point instruction.

— A specified CR field can be set as the result of an integer or floating-point compare
instruction.
See Section 2.6.1, “Condition Register (CR).”
Performance monitor registers (PMRs). Similar to SPRs, PMRs are accessed by using dedicated

move to/move from instructions (mtpmr and mfpmr). See Section 2.18, “Performance Monitor
Registers (PMRs).”

e500mc Register Model

The following sections describe the e500mc core register model as defined by the architecture and the
additional implementation-specific registers unique to the e500mc.

Freescale processors implement the following types of software-accessible registers:

Registers used for integer operations such as general purpose registers (GPRs) and the integer
exception register (XER). These registers are described in Section 2.4, “Registers for Integer
Operations.”

Condition register (CR)—Used to record conditions such as overflows and carries that occur as a
result of executing arithmetic instructions. CR is described in Section 2.6, “Registers for Branch
Operations.”

Machine state register (MSR)—Used by the operating system to configure parameters such as
user/supervisor mode, address space, and enabling of asynchronous interrupts. MSR is described
in Section 2.7.1, “Machine State Register (MSR).”

Special-purpose registers (SPRs). Accessed explicitly using mtspr and mfspr instructions and
listed in Table 2-2 in Section 2.2.1, “Special-Purpose Registers (SPRs).”

Performance monitor registers (PMRs). Accessed with move to and move from PMR instructions
(mtpmr and mfpmr). PMRs are described in Section 2.18, “Performance Monitor Registers
(PMRs)”.

SPRs are grouped by function, as follows:

Section 2.6, “Registers for Branch Operations”

Section 2.7, “Processor Control Registers”

Section 2.8, “Timer Registers”

Section 2.9, “Interrupt Registers”

Section 2.10, “Software-Use SPRs (SPRGs, GSPRGs, and USPRGO0)”
Section 2.11, “Branch Unit Control and Status Register (BUCSR)”
Section 2.12, “Hardware Implementation-Dependent Register 0 (HIDO0)”
Section 2.14, “L1 Cache Registers”

Section 2.15, “L2 Cache Registers”
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+ Section 2.16, “MMU Registers”
* Section 2.17, “Internal Debug Registers”
» Section 2.18, “Performance Monitor Registers (PMRs)”

2.2.1 Special-Purpose Registers (SPRs)

SPRs are on-chip registers that control the use of the debug facilities, timers, interrupts, memory
management unit, and other architected processor resources and are accessed with the mtspr and mfspr
instructions.

Table 2-2 summarizes SPRs. Access is given by the lowest level of privilege required to access the SPR.
The access methods listed in Table 2-1 appear in the access column of Table 2-2.

Table 2-1. SPR Access Methods

Access Method Denotes access is available for...
User Both mfspr and mtspr regardless of privilege level
User RO Only mfspr regardless of privilege level

Guest supervisor | Both mfspr and mtspr when operating in supervisor mode (MSR[PR] = 0), regardless of the state of the
MSR[GS] bit (that is, it is available in hypervisor state as well).
For details, see Section 2.7.1, “Machine State Register (MSR).

Guest supervisor RO | Only mfspr when operating in supervisor mode (MSR[PR] = 0), regardless of the state of the MSR[GS]
bit (that is, it is available in hypervisor state as well)

Hypervisor Both mfspr and mtspr when operating in hypervisor mode (MSR[GS,PR] = 00)

Hypervisor RO Only mfspr when operating in hypervisor mode (MSR[GS,PR] = 00)

Hypervisor WO Only mtspr when operating in hypervisor mode (MSR[GS,PR] = 00)

Hypervisor R/Clear | Both mfspr and mtspr when operating in hypervisor mode (MSR[GS,PR] = 00); however, an mtspr only
clears bit positions in the SPR that correspond to the bits set in the source GPR.

An mtspr or mfspr instruction that specifies an unsupported SPR number is considered an invalid
instruction. The e500mc takes an illegal-operation program exception on all accesses to undefined SPRs
(or read accesses to SPRs that are write-only and write accesses to SPRs that are read-only), regardless of
MSRJ[GS,PR] and SPRN[5]values. For supported SPR numbers which are privileged, an mfspr or mtspr
while in user mode (MSR[PR] = 1) causes a privilege operation program exception.

NOTE

The behavior of e500mc in user mode when attempting to access an
unsupported privileged SPR number causes an illegal-operation program
exception, not a privilege operation program exception as specified by the
architecture.
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Attempted access to a supported SPR while in guest supervisor state, which
is Hypervisor-privileged, causes an embedded Hypervisor privilege
exception. For example, attempting to read an SPR, which has “Hypervisor
RO” privilege, while in guest supervisor state causes an embedded
hypervisor privilege exception and subsequent interrupt. See

Section 4.9.19, “Hypervisor Privilege Interrupt—IVOR41” for a complete
list of actions that cause embedded hypervisor privilege exceptions.

This table summarizes SPRs.

Table 2-2. Special-Purpose Registers (SPRs)

SPR Defined _
Abbreviation Name SPR Access Section/Page
Number
ATBL Alternate time base register lower 526 User RO 2.8.6/2-16
ATBU Alternate time base register upper 527 User RO 2.8.6/2-16
BUCSR Branch unit control and status register’ 1013 Hypervisor 2.11/2-27
CDCSRO Core device control and status register 696 Hypervisor 2.13/2-28
CSRRO Critical save/restore register 0 58 Hypervisor 2.9.1/2-16
CSRR1 Critical save/restore register 1 59 Hypervisor 2.9.1/2-16
CTR Count register 9 User 2.6.3/2-11
DACH1 Data address compare 1' 316 Hypervisor 2.17.8/2-72
DAC2 Data address compare 21 317 Hypervisor 2.17.8/2-72
DBCRO Debug control register 0 ! 308 Hypervisor 2.17.2/2-63
DBCR1 Debug control register 1’ 309 Hypervisor 2.17.3/2-65
DBCR2 Debug control register 2° 310 Hypervisor 2.17.4/2-67
DBCR4 Debug control register 4’ 563 Hypervisor 2.17.5/2-68
DBSR Debug status register’ 304 Hypervisor 2.17.6/2-69
R/Clear
DBSRWR Debug status register write' 306 Hypervisor 2.17.6/2-69
DDAM Debug data acquisition message. 576 User 2.17.11/2-75
DEAR Data exception address register 61 Guest 2.8.5/2-16
supervisor?

DEC Decrementer 22 Hypervisor 2.8.4/2-15
DECAR Decrementer auto-reload 54 Hypervisor® 2.8.4/2-15
DEVENT Debug event 975 User 2.17.10/2-74
DSRRO Debug save/restore register 0 574 Hypervisor 2.9.1/2-16
DSRR1 Debug save/restore register 1 575 Hypervisor 2.9.1/2-16
EPCR Embedded processor control register 307 Hypervisor 2.7.3/2-12
EPLC External PID load context 947 Guest 2.16.7.1/2-61

supervisor*
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Table 2-2. Special-Purpose Registers (SPRs) (continued)

Register Model

SPR Defined .
Abbreviation Name SPR Access Section/Page
Number
EPR External proxy register 702 Guest supervisor 2.9.5/2-19
RO?

EPSC External PID store context’ 948 Guest 2.16.7.2/2-61
supervisor?

ESR Exception syndrome register 62 Guest 2.9.6/2-19
supervisor?

GDEAR Guest data exception address register 381 Guest supervisor 2.8.5/2-16
GEPR Guest external proxy register 380 | Guest supervisor 2.9.5/2-19
GESR Guest exception syndrome register 383 Guest supervisor 2.9.6/2-19

GIVOR2 Guest data storage interrupt offset 440 Hypervisor 2.9.3/2-18

GIVORS3 Guest instruction storage interrupt offset 441 Hypervisor 2.9.3/2-18

GIVOR4 Guest external input interrupt offset 442 Hypervisor 2.9.3/2-18

GIVOR8 Guest system call interrupt offset 443 Hypervisor 2.9.3/2-18

GIVOR13 Guest data TLB error interrupt offset 444 Hypervisor 2.9.3/2-18
GIVOR14 Guest instruction TLB error interrupt offset 445 Hypervisor 2.9.3/2-18

GIVPR Guest interrupt vector prefix 447 Hypervisor 2.9.3/2-18

GPIR Guest processor ID register 382 Guest 2.9.7/2-21
supervisor®

GSPRGO Guest SPR general 0 368 | Guest supervisor 2.10/2-25

GSPRG1 Guest SPR general 1 369 | Guest supervisor 2.10/2-25

GSPRG2 Guest SPR general 2 370 Guest supervisor 2.10/2-25

GSPRG3 Guest SPR general 3 371 Guest supervisor 2.10/2-25

GSRRO Guest save/restore register 0 378 Guest supervisor 2.9.1/2-16

GSRR1 Guest save/restore register 1 379 Guest supervisor 2.9.1/2-16
HIDO Hardware implementation dependent register 0! 1008 Hypervisor 2.12/2-27

IAC1 Instruction address compare 1 312 Hypervisor 2.17.7/2-72
IAC2 Instruction address compare 21 313 Hypervisor 2.17.7/2-72
IVORO Critical input interrupt offset 400 Hypervisor 2.9.4/2-18
IVOR1 Machine check interrupt offset 401 Hypervisor 2.9.4/2-18
IVOR2 Data storage interrupt offset 402 Hypervisor 2.9.4/2-18
IVOR3 Instruction storage interrupt offset 403 Hypervisor 2.9.4/2-18
IVOR4 External input interrupt offset 404 Hypervisor 2.9.4/2-18
IVOR5 Alignment interrupt offset 405 Hypervisor 2.14.5/2-35
IVOR6 Program interrupt offset 406 Hypervisor 2.9.4/2-18
IVOR7 Floating-point unavailable interrupt offset. 407 Hypervisor 2.9.4/2-18
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Table 2-2. Special-Purpose Registers (SPRs) (continued)

SPR Defined .
Abbreviation Name SPR Access Section/Page
Number
IVOR8 System call interrupt offset 408 Hypervisor 2.9.4/2-18
IVOR9 APU unavailable interrupt offset 409 Hypervisor 2.9.4/2-18
IVOR10 Decrementer interrupt offset 410 Hypervisor 2.9.4/2-18
IVOR11 Fixed-interval timer interrupt offset 411 Hypervisor 2.9.4/2-18
IVOR12 Watchdog timer interrupt offset 412 Hypervisor 2.9.4/2-18
IVOR13 Data TLB error interrupt offset 413 Hypervisor 2.9.4/2-18
IVOR14 Instruction TLB error interrupt offset 414 Hypervisor 2.9.4/2-18
IVOR15 Debug interrupt offset 415 Hypervisor 2.9.4/2-18
IVOR35 Performance monitor interrupt offset 531 Hypervisor 2.9.4/2-18
IVOR36 Processor doorbell interrupt offset 532 Hypervisor 2.9.4/2-18
IVOR37 Processor doorbell critical interrupt offset 533 Hypervisor 2.9.3/2-18
IVOR38 Guest processor doorbell interrupt offset 432 Hypervisor 2.9.4/2-18
IVOR39 Guest processor doorbell critical and machine check 433 Hypervisor 2.9.4/2-18
interrupt offset

IVOR40 Hypervisor system call interrupt offset 434 Hypervisor 2.9.4/2-18
IVOR41 Hypervisor privilege interrupt offset 435 Hypervisor 2.9.4/2-18
IVPR Interrupt vector prefix 63 Hypervisor 2.9.3/2-18
L1CFGO L1 cache configuration register 0 515 User RO 2.14.4/2-34
L1CFG1 L1 cache configuration register 1 516 User RO 2.14.5/2-35
L1CSRO L1 cache control and status register 0' 1010 Hypervisor 2.14.1/2-29
L1CSR1 L1 cache control and status register 1’ 1011 Hypervisor 2.14.2/2-32
L1CSR2 L1 cache control and status register 2° 606 Hypervisor 2.14.3/2-33
L2CAPTDATAHI® | L2 cache error capture data high 988 Hypervisor 2.15.4/2-42
L2CAPTDATALO® | L2 cache error capture data low 989 Hypervisor 2.15.4/2-42
L2CAPTECC® | L2 cache error capture ECC syndrome 990 Hypervisor 2.15.4/2-42
L2CFGO® L2 cache configuration register 0 519 User RO 2.15/2-36
L2CSR0® L2 cache control and status register 0' 1017 Hypervisor 2.15.2/2-37
L2CSR16 L2 cache control and status register 1’ 1018 Hypervisor 2.15/2-36
L2ERRADDR® | L2 cache error address 722 Hypervisor 2.15.4/2-42
L2ERRATTR® L2 cache error attribute 721 Hypervisor 2.15.4/2-42
L2ERRCTL® L2 cache error control 724 Hypervisor 2.15.4/2-42
L2ERRDET® L2 cache error detect 991 Hypervisor 2.15.4/2-42
L2ERRDIS® L2 cache error disable 725 Hypervisor 2.15.4/2-42
L2ERREADDR® | L2 cache error extended address 723 Hypervisor 2.15.4/2-42
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Table 2-2. Special-Purpose Registers (SPRs) (continued)

Register Model

SPR Defined .
Abbreviation Name SPR Access Section/Page
Number
L2ERRINJCTL® | L2 cache error injection control 987 Hypervisor 2.15.4/2-42
L2ERRINJHI® L2 cache error injection mask high 985 Hypervisor 2.15.4/2-42
L2ERRINJLO® | L2 cache error injection mask low 986 Hypervisor 2.15.4/2-42
L2ERRINTEN® | L2 cache error interrupt enable 720 Hypervisor 2.15.4/2-42
LPIDR Logical PID register1 338 Hypervisor 2.16.1/2-49
LR Link register 8 User 2.6.2/2-11
MASO MMU assist register 0' 624 | Guest supervisor 2.16.6.1/2-53
MAS1 MMU assist register 1 625 Guest supervisor 2.16.6.2/2-54
MAS2 MMU assist register 2! 626 Guest supervisor 2.16.6.3/2-55
MAS3 MMU assist register 3! 627 Guest supervisor 2.16.6.4/2-56
MAS4 MMU assist register 4 628 Guest supervisor 2.16.6.5/2-57
MAS5 MMU assist register 5! 339 Hypervisor 2.16.6.6/2-58
MAS6 MMU assist register 6 630 | Guest supervisor 2.16.6.7/2-58
MAS7 MMU assist register 7" 944 | Guest supervisor 2.16.6.8/2-59
MAS8 MMU assist register 8! 341 Hypervisor 2.16.6.9/2-60
MCAR Machine check address register 573 Hypervisor RO 2.9.8/2-21
MCARU Machine check address register upper 569 Hypervisor RO 2.9.8/2-21
MCSR Machine check syndrome register 572 Hypervisor 2.9.9/2-22
MCSRRO Machine-check save/restore register 0 570 Hypervisor 2.9.1/2-16
MCSRR1 Machine-check save/restore register 1 571 Hypervisor 2.9.1/2-16
MMUCFG MMU configuration register 1015 Hypervisor RO 2.16.4/2-51
MMUCSRO MMU control and status register 0° 1012 Hypervisor 2.16.3/2-50
MSRP MSR protect1 311 Hypervisor 2.7.2/2-12
NPIDR’ Nexus processor ID register 517 User 2.17.12/2-75
NSPC Nexus SPR access configuration 984 Hypervisor 2.17.9/2-73
NSPD Nexus SPR access data 983 Hypervisor 2.17.9/2-73
PID Process ID register’ 48 Guest supervisor 2.16.2/2-50
PIR Processor ID register 286 Guest 2.9.7/2-21
supervisor?
PVR Processor version register 287 | Guest supervisor 2.7.4/2-13
RO
SPRGO SPR general 0 272 Guest 2.10/2-25
supervisor?
SPRGH1 SPR general 1 273 Guest 2.10/2-25
supervisor?
e500mc Core Reference Manual, Rev. 3
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Table 2-2. Special-Purpose Registers (SPRs) (continued)

SPR Defined
. Name SPR Access Section/Page
Abbreviation
Number
SPRG2 SPR general 2 274 Guest 2.10/2-25
supervisor?
SPRG3 SPR general 3 259 User RO? 2.10/2-25
SPRG3 SPR general 3 275 Guest 2.10/2-25
supervisor?
SPRG4 SPR general 4 260 User RO 2.10/2-25
SPRG4 SPR general 4 276 | Guest supervisor 2.10/2-25
SPRG5 SPR general 5 261 User RO 2.10/2-25
SPRG5 SPR general 5 277 Guest supervisor 2.10/2-25
SPRG6 SPR general 6 262 User RO 2.10/2-25
SPRG6 SPR general 6 278 Guest supervisor 2.10/2-25
SPRG7 SPR general 7 263 User RO 2.10/2-25
SPRG7 SPR general 7 279 | Guest supervisor 2.10/2-25
SPRG8 SPRG8 604 Hypervisor 2.10/2-25
SPRG9 SPRG9 605 Guest supervisor 2.10/2-25
SRRO Save/restore register 0 26 Guest 2.9.1/2-16
supervisor?
SRR1 Save/restore register 1 27 Guest 2.9.1/2-16
supervisor?
SVR System version register 1023 | Guest supervisor 2.7.5/2-13
RO
TBL(R) Time base lower 268 User RO 2.8.3/2-15
TBL(W) Time base lower 284 Hypervisor 2.8.3/2-15
TBU(R) Time base upper 269 User RO 2.8.3/2-15
TBU(W) Time base upper 285 Hypervisor 2.8.3/2-15
TCR Timer control register 340 Hypervisor 2.8.1/2-14
TLBOCFG TLB configuration register 0 688 Hypervisor RO 2.16.5/2-51
TLB1CFG TLB configuration register 1 689 Hypervisor RO 2.16.5/2-51
TSR Timer status register 336 Hypervisor 2.8.2/2-15
R/Clear
USPRGO User SPR general 08 256 User 2.10/2-25
(VRSAVE)
XER Integer exception register 1 User 2.4.2/2-10

1 Writing to these registers requires synchronization, as described in Section 3.3.3, “Synchronization Requirements.”
2 When these registers are accessed in guest supervisor state, the accesses are mapped to their analogous guest SPRs (for

example, DEAR is mapped to GDEAR). See Section 2.3, “Register Mapping in Guest—Supervisor State.”

3 DECAR is defined by the architecture to be write-only, however the e500mc allows it to be read.
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Certain fields in the register are only writeable when in hypervisor state.

This register is only writeable in hypervisor state, but can be read in guest supervisor state.
On Cores that do not provide an L2 cache, these registers still exist, but always read as zero.
NPIDR contents are transferred to the Nexus port whenever it is written.

USPRGO is a separate physical register from SPRGO.

0 N o o b

2.3 Register Mapping in Guest—Supervisor State

Accesses to certain hypervisor state registers are automatically redirected to the appropriate guest state
registers when in the guest—supervisor state. This helps to improve emulation efficiency and provides a
common programming model for operating systems that may want to run either under control of a
hypervisor or directly on the hardware without a hypervisor. This also removes the requirement for the
hypervisor state software to handle hypervisor privilege interrupts for these registers and to make the
required emulated changes to the guest state for these high-use registers.

Accesses to the registers listed in “Register Accessed” column in Section Table 2-3., “Register Mapping
in Guest—Supervisor State are changed by the processor to the registers listed in “Register mapped to”
column in the table when MSR[PR] = 0 and MSR[GS] = 1. Access to these registers are not mapped when
in hypervisor state (MSR[PR] = 0 and MSR[GS] = 0) or when operating unprivileged (MSR[PR] = 1),
except that an unprivileged access to SPRG3 (SPR 259) is also mapped to GSPRG3.

Table 2-3. Register Mapping in Guest—Supervisor State

Register Accessed Register Mapped to Notes
SRRO GSRRO Access mapped during mtspr, mfspr.
SRR1 GSRR1 Access mapped during mtspr, mfspr.

EPR GEPR Access mapped during mfspr.
ESR GESR Access mapped during mtspr, mfspr.
DEAR GDEAR Access mapped during mtspr, mfspr.

PIR GPIR Access mapped during mfspr.
SPRGO GSPRGO Access mapped during mtspr, mfspr.
SPRGH1 GSPRGH1 Access mapped during mtspr, mfspr.
SPRG2 GSPRG2 Access mapped during mtspr, mfspr
SPRG3 GSPRG3 Access mapped during mtspr, mfspr

SPRG3 (259) GSPRG3 Access mapped during mfspr

2.4 Registers for Integer Operations

The following sections describe registers defined for integer computational instructions.
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2.4.1 General-Purpose Registers (GPRs)

GPRO-GPR31 provide operand space for supporting integer operations. The instruction formats provide
5-bit fields for specifying the GPRs to be used in the execution of the instruction. Each GPR is a 32-bit
register and can be used to contain effective address and integer data.

The GPRs are implemented as defined by the Power ISA and as described in the EREF: A Programmer s
Reference Manual for Freescale Power Architecture® Processors.

2.4.2 Integer Exception Register (XER)

NOTE
XER is an SPR. The e500mc implements the XER as it is defined by the
architecture.

XER bits are set based on the operation of an instruction considered as a whole, not on intermediate results.
For example, the Subtract from Carrying instruction (subfc) specifies the result as the sum of three values,
but it sets bits in the XER based on the entire operation, not on an intermediate sum.

2.5 Registers for Floating-Point Operations

The following sections describe registers defined for floating-point computational instructions.

2.5.1 Floating-Point Registers (FPRs)

FPRO-FPR31 provide operand space for supporting floating-point operations. The instruction formats
provide 5-bit fields for specifying the FPRs to be used in the execution of the instruction. Each FPR is a
64-bit register and can be used to contain single-precision or double-precision floating-point data.

The FPRs are implemented as defined by the Power ISA and as described in the EREF: A Programmers
Reference Manual for Freescale Power Architecture® Processors.

2.5.2 Floating-Point Status and Control Register (FPSCR)

The FPSCR contains all floating-point exception signal bits, exception summary bits, exception enable
bits, and rounding control bits needed for compliance with the IEEE 754 standard. The FPSCR is
implemented as defined by the Power ISA and described in the EREF: A Programmer s Reference Manual
for Freescale Power Architecture® Processors.

For e500mc, if FPSCR[NI] is set, denormalized values are treated as appropriately signed 0 values. That
is, if a denormalized number is an input to a floating point operation, that denormalized number is treated
as 0 with the same sign as the denormalized number. If the result of a floating point operation produces a

denormalized number, the result produced and written to the destination register is an appropriately signed
0.

2.6 Registers for Branch Operations

This section describes registers used by branch and condition register operations.
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2.6.1 Condition Register (CR)

The e500mc implements the condition register as it is defined by the architecture for integer instructions.

2.6.2 Link Register (LR)

The e500mc implements the link register as it is defined by the architecture.

The link register can be used to provide the branch target address for a Branch Conditional to LR
instruction, and it holds the return address after branch and link instructions.

Note that the link register is an SPR.

2.6.3 Count Register (CTR)

The e500mc implements the count register as it is defined by the architecture. The count register can be
used to hold a loop count that can be decremented and tested during execution of branch instructions that
contain an appropriately encoded BO field. If the count register value is 0 before being decremented, it is
—1 afterward. The count register can be used to hold the branch target address for a Branch Conditional to
CTR (beetrx) instruction.

Note that the count register is an SPR.

2.7 Processor Control Registers

This section addresses machine state, processor ID, processor version registers.

2.7.1 Machine State Register (MSR)

The machine state register (MSR), shown in Figure 2-1, is used to define the processor state, that is,
enabling and disabling of interrupts and debugging exceptions, address translation for instruction and data
memory accesses, enabling and disabling some functionality, and specifying whether the processor is in
supervisor or user mode.

When the core runs in guest—supervisor state (MSR[GS] = 1, MSR[PR] = 0), some MSR bits are not
writable. If the MSR is written in guest—supervisor state in any manner, including a mtmsr, rfgi, or rfi, or
as the result of taking an interrupt serviced in guest state, MSR[GS] is not changed.

Certain MSR bits may be changed in guest—supervisor state if permission to do so is enabled by the
hypervisor program. MSR[UCLE,DE,PMM] are writable if the corresponding MSRP-defined bits are
cleared. See Section 2.7.2, “Machine State Register Protect Register (MSRP).” MSRP is writable only in
hypervisor state. When MSR is written in guest state, bits protected by MSRP bits that are set, are not
written and remain unmodified. All other MSR bits are written with the updated values. An attempt to
write the MSRP in guest—supervisor state results in a hypervisor privilege exception.

Changing PR, GS, IS, or DS using the mtmsr instruction requires a context-synchronizing operation
before the effects of the change are guaranteed to be visible. Prior to the context synchronization, these
bits can change at any time and with any combination. Changes in DS, or IS can cause an implicit branch
since these bits are used to compute the virtual address for instruction translation and instructions may be
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fetched and executed from any context from any permutation of these bits. Software should guarantee that
a translation exists for each of the permutations of these address space bits and that translation has the same
characteristics, including permissions and RPN fields. For this reason, it is unwise to use mtmsr to change
these bits and such changes should only be done through return from interrupt type instructions, which
provide the context synchronization atomically with instruction execution.

Guest supervisor

32 34 35 (36 37 38 39‘ ‘45 46 47|48 49 50 51| 52 53 54 55 |56 57 58 59 |60 61 62 63
R
W — GS |—|UCLE — CE|—|EE|PR|FP|ME|FEO|—|DE|FE1| — |IS|DS|—|PMM|RI|—
Reset All zeros

Figure 2-1. Machine State Register (MSR)

When an interrupt occurs, MSR contents of the interrupted process are automatically saved to the
save/restore register 1 (xSRR1) appropriate to the interrupt, and the MSR is altered to values
predetermined for the interrupt taken. At the end of the interrupt handler, the appropriate return from
interrupt instruction restores the values in the save/restore register 1 (xSRR1) to the MSR.

MSR contents are read into a GPR using mfmsr. The contents of a GPR can be written to MSR using
mtmsr. The write MSR external enable instructions (wrtee and wrteei) can be used to set or clear
MSR[EE] without affecting other MSR bits.

The e500mc does not implement the WE bit found in some previous €500 cores. Power management
operations on SoCs using the e500mc are handled through an SoC programming model. Refer to the
reference manual for the integrated device.

2.7.2 Machine State Register Protect Register (ISRP)

The e500mc implements the MSRP as defined by the architecture and described in the EREF: A4
Programmer s Reference Manual for Freescale Power Architecture® Processors. It provides the ability to
write MSR[UCLE,DE,PMM] when the machine is in the guest—supervisor state (MSR[PR] = 0 and
MSR[GS] = 1) by any operation that modifies the MSR (mtmsr, rfi, rfgi, and MSR change on an interrupt
directed to the guest state). An attempt to read or write MSRP when not in the hypervisor state results in
a hypervisor privilege exception when MSR[PR] = 0 and a privilege exception when MSR[PR] = 1.

MSRP settings also affect the execution of Cache Locking instructions and mtpmr/mfpmr instructions.

A change to MSRP requires a context synchronizing operation to be performed before the effects of the
change are guaranteed to be visible in the current context.

2.7.3 Embedded Processor Control Register (EPCR)

The EPCR controls whether certain interrupts are directed to the hypervisor state or to the
guest—supervisor state and suppresses debug events when in hypervisor state. The e500mc implements the
EPCR as it is defined by the architecture and described in the EREF: A Programmer s Reference Manual
for Freescale Power Architecture® Processors.

e500mc Core Reference Manual, Rev. 3

2-12 Freescale Semiconductor



Register Model

2.7.4 Processor Version Register (PVR)

The e500mc implements the PVR, shown in Figure 2-2, as defined by the architecture. The read-only
value identifies the core’s version and revision level of the processor, distinguishing between processors
that differ in attributes that may affect software.

SPR 287 Guest supervisor RO
32 ‘ ‘ ‘ 47 | 48 ‘ ‘ ‘ 63
R Version Revision
w
Reset 1 0 0 0/0 0 0 0/0 0 1 0/0 0 1 1/x x x x|x x x x|x x x x| x x x x

Figure 2-2. Processor Version Register (PVR)

T xxxx may represent different revisions or manufacturing information for the core. Normally software uses the upper 16 bits of
PVR to identify the core.

This table describes the PVR fields.
Table 2-4. PVR Field Descriptions

Bits | Name Description

32-47 | Version | A 16-bit number that identifies the version of the processor. Different version numbers indicate major
differences between processors, such as which optional facilities and instructions are supported.

48-63 | Revision | A 16-bit number that distinguishes between implementations of the version. Different revision numbers
indicate minor differences between processors having the same version number, such as clock rate and

engineering change level.

2.7.5 System Version Register (SVR)

SVR, shown in this figure, contains a read-only SoC-dependent value; consult the documentation for the
integrated device.

SPR 1023 Guest supervisor read only
2 | | | | | 63
R System version
w
Reset SoC-dependent value

Figure 2-3. System Version Register (SVR)

2.8 Timer Registers

The time base (TB), decrementer (DEC), fixed-interval timer (FIT), and watchdog timer provide timing
functions for the system. The e500mc provides the ability to select any of the TB bits to trigger watchdog
and fixed-interval timer events, as shown in this figure.
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|
1 32 63 32 63 |
: TBU TBL 1—o Timer Clock
WS- - - - - ----—-—--__--—=-Z-=C —T———T=T- . (Time Base Clock)
(J tbelk
Watchdog timer events based on one of the TB bits .
selected by concatenating TCR[WPEXT] with TCR[WP] o
(WPEXT Il WP). o
H
Fixed-interval timer events based on one of TB bits <.—
selected by concatenating TCR[FPEXT] with TCR[FP] o
(FPEXT Il FP). .
<
DEC —
Decrementer event = 1/0 detect -] Auto-reload
32 63
DECAR

Figure 2-4. Relationship of Timer Facilities to the Time Base

Note the following characteristics of the e500mc time base implementation:

€500mc time base is clocked only by the SoC (TBCLK)

The only enable/disable control over the time base is the TBEN core signal, controlled by the SoC
through a memory-mapped register, allowing control of stopping and starting the time base on any
core. Refer to the reference manual for the integrated device.

mftb works as it did in the original PowerPC architecture

The e500mc registers involved in timing are described as follows:

The TB is a long-period counter driven at an implementation-dependent frequency.
The DEC provides a way to signal an exception after a specified period of time base tics.

Software can select from one of 64 TB bits to signal a fixed-interval interrupt whenever the bit
transitions from 0 to 1. It is typically used to trigger periodic system maintenance functions. .

The watchdog timer, also a selected TB bit, provides a way to signal a critical exception when the
selected bit transitions from O to 1. It is typically used for system error recovery. If software does
not respond in time to the initial interrupt by clearing the associated status bits in the TSR before
the next expiration of the watchdog timer interval, a watchdog timer-generated processor reset may
result, if so enabled.

All timer facilities must be initialized during start-up.

2.8.1

Timer Control Register (TCR)

The e500mc implements the timer control register as defined by EREF: A Programmers Reference
Manual for Freescale Power Architecture® Processors. The implementation of the integrated device
determines the behavior of the TCR[WRC]. Consult the “Register Summary” chapter in the core section
of the integrated device reference manual.
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The architecture definition for timer control register fields is described in the EREF': A Programmer s
Reference Manual for Freescale Power Architecture® Processors.

2.8.2 Timer Status Register (TSR)

Except as described in this section, the e500mc implements the timer status register as it is defined by the
architecture. The 32-bit TSR contains status on timer events and the most recent watchdog timer-initiated
processor reset. All TSR bits function as write-1-to-clear, except TSR[WRS] which is nonwriteable
(nonclearable).

As a write-1-to-clear register, TSR can be changed only by software by writing a mask of 1 bits indicating
which bit positions are to be cleared. When the TSR is written by an mtspr, WRS bits are not cleared,
regardless of the mask bits supplied with the GPR used for writing. Logically, the instruction mttsr rA
becomes the following:

mask = RA & Oxcfffffff;
TSR = TSR & ~mask;

This change prevents software from clearing a watchdog time-out that should result in the action defined
in TCR[WRC], in which these bits are reflected into the TSR[WRS] when the watchdog times out. Without
this change, it is theoretically possible that these bits could be cleared prior to the SoC seeing the bits
change, causing the watchdog action to fail.

2.8.3 Time Base (TBU and TBL)

The e500mc implements the time base registers as they are defined by the architecture. The time base (TB)
is a 64-bit register, but the architecture provides SPRs to access the upper 32 bits and lower 32 bits.
Reading the lower 32 bits of the time base (TBL, SPR 268), places the lower 32 bits of the time base into
the destination GPR. Reading the upper 32 bits of the time base (TBU, SPR 269) places the upper 32 bits
of the time base into the lower 32 bits of the destination GPR. Writing the time base is done only through
writing the upper 32 (SPR 285) and lower 32 (SPR 284) time base bits through two separate mtspr
instructions. The time base register provides timing functions for the system. The time base register is a
volatile resource and must be initialized during start-up.

For e500mc, the time base can be read in hypervisor state through the SPRs used for writing (284 and 285),
although the architecture defines it as a write-only register.

NOTE

Software should not read the time base through these registers as future
processors may not allow such behavior.

2.8.4 Decrementer Register (DEC)

The e500mc implements the decrementer register as it is defined by the architecture. The decrementer
register is a 32-bit decrementing counter that is decremented at the same rate as the time base is
incremented. It provides a way to signal a decrementer interrupt after a specified number of time base tics
have occurred. It can be configured to signal an interrupt when DEC is decremented from 1 to 0. The DEC
can be configured through the TCR to perform different actions when it is decremented from 1 to 0:
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» It can stop decrementing;

* It can be auto-reloaded from DECAR (see Section 2.8.5, “Decrementer Auto-Reload Register
(DECAR).”);

» It can signal a decrementer exception and take an asynchronous interrupt when External Interrupts
are enabled or when the processor is in guest state (MSR[GS]=1).

The decrementer register is typically used as a general-purpose software timer. Note that writing DEC with
zeros by using an mtspr[DEC] does not automatically generate a decrementer exception.

2.8.5 Decrementer Auto-Reload Register (DECAR)

The e500mc implements the DECAR as it is defined by the architecture. If the auto-reload function is
enabled (TCR[ARE] = 1), the auto-reload value in DECAR is written to the decrementer register when it
decrements from 1 to 0.

For e500mc, the DECAR can be read in hypervisor state, although the architecture defines it as a
write-only register.
NOTE

Software should not read the DECAR as future processors may not allow
such behavior.

2.8.6 Alternate Time Base Registers (ATBL and ATBU)

The alternate time base counter (ATB) register is implemented as defined by the architecture and described
in the EREF: A Programmers Reference Manual for Freescale Power Architecture® Processors. The
ATB is a 64-bit counter that increments at an implementation dependent frequency. The ATB is a 64-bit
register, but the architecture provides SPRs to access the upper 32 bits and lower 32-bits. Reading the
lower 32 bits of the time base (ATBL), places the lower 32 bits of the time base into the destination GPR.
Reading the upper 32 bits of the time base (ATBU) places the upper 32 bits of the time base into the lower
32 bits of the destination GPR.

On the e500mc, the frequency of the ATB increment is the core frequency. ATB is read-only accessible in
user and supervisor mode.

The ATBL register is a 64-bit register

2.9 Interrupt Registers

This section describes the following register bits and their fields:

2.9.1 Save/Restore Registers (XSRR0/xSRR1)

The e500mc implements the following sets of save restore registers, which support the different types of
interrupts implemented on the e500mc.

» Standard save/restore registers (SRR0O and SRR1)
» Critical save/restore registers (CSRR0O and CSRR1)
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* Debug save/restore registers (DSRR0 and DSRR1)
* Machine check save/restore registers (MCSRR0O and MCSRR1)

* QGuest save/restore registers (GSRRO and GSRR1). Note that when executing in guest state
(MSR[GS] = 1), accesses to SRRO/SRR1 are mapped to GSRRO/GSRR1 when any mfspr or
mtspr instruction is executed. See Section 2.3, “Register Mapping in Guest—Supervisor State.”

These registers are implemented as they are defined by the architecture and described in the EREF: A
Programmer s Reference Manual for Freescale Power Architecture® Processors. On an interrupt, xSRRO
holds the address of the instruction where the interrupted process should resume, typically either the
current or subsequent instruction. The instruction is interrupt-specific, although for instruction-caused
exceptions, it is typically the address of the instruction that caused the interrupt. When the appropriate
Return from Interrupt instruction (rfi, rfci, rfdi, rfmci, or rfgi) executes, instruction execution continues
at the address in xSRRO.

When rfi is executed from guest supervisor state, the instruction is mapped to rfgi and uses GSRRO and
GSRRI1.

xSRR1 is provided to save machine state when an interrupt is taken and to restore it when control is passed
back, typically to the interrupted process. When an interrupt is taken, certain MSR settings, specific to the
interrupt, are placed in xSRR1. When the appropriate Return from Interrupt instruction executes, xSRR1
contents are placed into MSR. xSRR1 bits that correspond to reserved MSR bits are also reserved.

Note that a pair of save/restore registers is affected only by the corresponding interrupt or an mtspr that
explicitly targets one of the registers. Reserved MSR bits may be altered by Return from Interrupt
instructions if set in the xXSRR1 register.

For specific information about how the save/restore registers are set, see the individual interrupt
descriptions in Chapter 4, “Interrupts and Exceptions.”

2.9.2 (Guest) Data Exception Address Register (DEAR/GDEAR)

The e500mc implements DEAR/GDEAR as it is defined by the architecture. DEAR is loaded with the
effective address of a data access (caused by a load, store, or cache management instruction) that results
in an alignment, data TLB miss, or DSI exception.

GDEAR is the same as the DEAR. When a DSI or a data TLB error interrupt is taken in the guest state,
GDEAR is set to the EA of the data access causing the exception instead of DEAR.

GDEAR is supervisor privileged (MSR[PR] = 0) and is read/write. Accesses to DEAR in guest—supervisor
state (MSR[GS]=10, MSR[PR] = 10) are mapped to GDEAR for mtspr and mfspr instructions, in the
same manner as other guest registers.

Note that even when DSI interrupts are directed to the guest state by means of EPCR[DSIGS], the DSI
may be directed to the hypervisor if a virtualization fault is set on the TLB entry that caused the DSI. See
Section 2.7.3, “Embedded Processor Control Register (EPCR). Therefore, the DEAR is set instead of
GDEAR.
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2.9.3 (Guest) Interrupt Vector Prefix Register (IVPR/GIVPR)

The e500mc implements IVPR and guest IVPR (GIVPR) as they are defined by the architecture. They are
used with IVORs and GIVORs, respectively, to determine the vector address. (G)IVPR[32-47] provides
the high-order 16 bits of the address of the exception processing routines. The 16-bit vector offsets

(IVORs) are concatenated to the right of (G)IVPR to form the address of the exception processing routine.

When an interrupt is directed to the hypervisor state, [VPR and IVOR# are used to form the address of the
exception processing routine. When an interrupt is directed to the guest—supervisor state, GIVPR and
GIVOR®# are used to form the address of the exception processing routine.

IVPR and GIVPR are 32 bit registers on e500mc.

294 (Guest) Interrupt Vector Offset Registers (IVORs/GIVORSs)

The e500mc implements the IVORs and guest IVORs (GIVORs) as defined by the architecture, but use
only (G)IVOR#[48-59], as shown in Figure 2-5, to hold the quad-word index from the base address
provided by the IVPR for each interrupt type.

SPR (See Table 2-5.) Hypervisor
32 ‘ ‘ ‘ 47 48 ‘ ‘ ‘ 59 | 60 63
R
— Interrupt vector offset —
W
Reset All zeros

Figure 2-5. (Guest) Interrupt Vector Offset Registers ((G)IVORs)

This table shows the (G)IVORs implemented on the e500mc.
Table 2-5. IVOR Assignments

IVOR Number Interrupt Type
IVORO Critical input
IVOR1 Machine check
IVOR2 Data storage
IVOR3 Instruction storage
IVOR4 External input
IVOR5 Alignment
IVOR6 Program
IVOR7 Floating-point unavailable
IVOR8 System call
IVOR9 APU unavailable
IVOR10 Decrementer
IVOR11 Fixed-interval timer interrupt
IVOR12 Watchdog timer interrupt
IVOR13 Data TLB error
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Table 2-5. IVOR Assignments (continued)

IVOR Number Interrupt Type
IVOR14 Instruction TLB error
IVOR15 Debug
IVOR35 Performance monitor
IVOR36 Processor doorbell interrupt
IVOR37 Processor doorbell critical interrupt
IVOR38 Guest processor doorbell
IVOR39 Guest processor doorbell critical and machine check
IVOR40 Hypervisor system call
IVOR41 Hypervisor privilege
Guest-Type IVORs
GIVOR2 Guest data storage interrupt
GIVORS3 Guest instruction storage interrupt
GIVOR4 Guest external input
GIVORS8 Guest system call
GIVOR13 Guest data TLB error
GIVOR14 Guest instruction TLB error

2.9.5 (Guest) External Proxy Register (EPR/GEPR)

The external proxy register (EPR/GEPR) is implemented as it is defined by the architecture and described
inthe EREF': A Programmer s Reference Manual for Freescale Power Architecture® Processors. It is used
to convey the peripheral-specific interrupt vector associated with the external input interrupt triggered by
the programmable interrupt controller (PIC) in the integrated device. The external proxy facility is
described in Section 4.9.6.3, “External Proxy.”

When executing in the guest supervisor state, any read accesses to the EPR are mapped to GEPR upon
executing mfspr. See Section 2.3, “Register Mapping in Guest—Supervisor State,” for more details.

EPR is not writable, however GEPR is writeable.

2.9.6 (Guest) Exception Syndrome Register (ESR/GESR)

The (ESR/GESR) are defined by the architecture and described in the EREF: A Programmer s Reference
Manual for Freescale Power Architecture® Processors. Figure 2-6 shows the ESR/GESR as it is
implemented on the e500mc. GESR is used to post-exception syndrome status when an interrupt is taken
that is directed to the guest state. ESR is used to post—exception syndrome status when an interrupt is taken
that is directed to the hypervisor state. GESR fields are identical to those in the ESR.

When executing in the guest supervisor state any accesses to the ESR are mapped to GESR upon executing
mtspr or mfspr. See Section 2.3, “Register Mapping in Guest—Supervisor State,” for more details.

e500mc Core Reference Manual, Rev. 3

Freescale Semiconductor 2-19



Register Model

The (G)ESR provides a way to differentiate among exceptions that can generate an interrupt type. When
an interrupt is generated, bits corresponding to the specific exception that generated the interrupt are set
and all other (G)ESR bits are cleared. Other interrupt types do not affect (G)ESR contents. The (G)ESR
does not need to be cleared by software. Table 2-6 shows (G)ESR bit definitions. For machine check
exceptions, the e500mc uses the MCSR, described in Section 2.9.9, “Machine Check Syndrome Register
(MCSR).”

The (G)ESR implementation differs from the architecture in the following respects:
* The e500mc does not implement AP, PUO, SPV, VLEMI, MIF, or XTE
* The e500mc implements the EPID field.

SPR 62 (ESR); 383 (GESR) Guest supervisor
32 35/ 36 37 38 39|40 41 42 43 |44 45 46 47 |48 56 57 58 63
R
W — PIL|PPR|PTR|FP|ST|—|DLK|ILK| — [BO|PIE — EPID —
Reset All zeros

Figure 2-6. (Guest) Exception Syndrome Register (ESR/GESR)

This table describes (G)ESR fields and shows associated interrupts.

NOTE

(G)ESR information is incomplete, so system software may need to identify
the type of instruction that caused the interrupt, examine the TLB entry, and
examine the (G)ESR to identify the exception or exceptions fully. For
example, a data storage interrupt may be caused both by a protection
violation exception and by a byte-ordering exception. System software
would have to look beyond (G)ESR[BO], such as the state of MSR[PR] in
(G)SRRI1 and the TLB entry page protection bits, to determine whether a
protection violation also occurred.

Table 2-6. ESR/GESR Field Descriptions

Bits | Name Syndrome Interrupt Types
32-35| — |Reserved —

36 PIL |lllegal instruction exception Program

37 PPR | Privileged instruction exception Program

38 PTR | Trap exception Program

39 FP | Floating-point operations Alignment, data
storage, data TLB,
program

40 ST | Store operation Alignment, DSI,
DTLB error

a1 — | Reserved —

42 DLK | Data cache locking. Set when a DSI occurs because dcbtls, debtstls, or dcblc is DSI

executed in user mode while MSR[UCLE] = 0.
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Table 2-6. ESR/GESR Field Descriptions (continued)

Bits | Name Syndrome Interrupt Types

43 ILK | Instruction cache locking. Set when a DSI occurs because icbtls or icblc is executed in | DSI
user mode while MSR[UCLE] = 0.

44 — | Not supported on the e500mc. Defined by the architecture as AP (auxiliary processor —
operation).

45 — | Not supported on the e500mc. Unimplemented operation exception. On the e500mc, Program
unimplemented instructions are handled as illegal instructions.

46 BO |Byte-ordering exception DS|, ISI

47 PIE |Imprecise exception. Program

48-56| — |Reserved -

57 | EPID |Indicates whether translation was performed using context from EPLC or EPSC. Set when | Data storage,
a DSI, DTLB, or Alignment error occurs during execution of an external PID instruction. | Data TLB error
Alignment

58-63| — |Reserved —

2.9.7 (Guest) Processor ID Register (PIR/GPIR)

The e500mc implements the PIR/GPIR as defined by the Power ISA and the processor control architecture
as described in the EREF: A Programmer s Reference Manual for Freescale Power Architecture®
Processors. The processor sets the initial value of PIR at reset, after which it is writeable by hypervisor
software. The initial value of the PIR is a processor-unique value within the coherence domain and is
described in the EREF: A Programmer s Reference Manual for Freescale Power Architecture®
Processors. The initial value of GPIR at reset is 0. Hypervisor software is expected to initialize GPIR to a
reasonable value when a partition is initialized.

When executing in the guest supervisor state any mfspr accesses to the PIR are mapped to GPIR. The
mtspr accesses are not mapped, and guest supervisor attempts to change PIR or GPIR cause an embedded
hypervisor privilege interrupt. See Section 2.3, “Register Mapping in Guest—Supervisor State,” for more
details.

2.9.8 Machine Check Address Register (MCAR/MCARU)

When the core takes a machine check interrupt, MCAR indicates the address of the data associated with
the machine check exception. MCAR is a 64-bit address and may contain a physical address or an effective
address. The MCARU is a 32-bit alias to the upper 32 bits of MCAR. Not all machine check (or error
report) interrupts that occur have addresses associated with them. Errors that cause MCAR contents to be
updated are implementation-dependent.

MCAR is implemented as defined in the architecture, except as follows: For a certain subset of
asynchronous machine check exception causes, MCAR indicates the address of the data or instruction
access associated with the machine check. The MCSR[MAV] and MCSR[MEA] status bits indicate
whether hardware has updated the MCAR and whether the MCAR contains an effective address or a real
address. MCAR is not modified if a machine check occurs and at the time of the interrupt, MCSR[MAV ]
is already set.
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This table shows the MCAR address and MCSR[MAV,MEA] at error time.
Table 2-7. MCAR Address and MCSR[MAV,MEA] at Error Time

MCSR[MAV] State

Current

Next

MCSR[MEA]:
Next State

MCAR/MCARU

Comment

1

X

Unaltered

MCAR unmodified if currently valid (hold value if already valid)

0

1

MCAR[28-63]

Updated with a real address.

0

1

MCAR[0-63]

Updated with the EA associated with the error. If the detected error is a
multiway hit in the L2ZMMU (MCSR[L2ZMMU_MHIT]), the lower 12 bits of
the EA are cleared providing an EPN for the translation.

2.9.9

Machine Check Syndrome Register (MICSR)

In addition to the MCSR fields defined by the architecture, the e500mc implements a number of other

implementation-specific fields, as shown in Table 2-8. When the core takes a machine check interrupt, it
updates MCSR to differentiate between machine check conditions. The MCSR indicates the type of error
detected and software can use this information to determine whether the error is recoverable and what steps
may be necessary to correct the error.

MCSR bits are divided into the following categories:

* Async bits. Set asynchronously whenever an error event occurs. Any unit that detects an error
automatically posts the error by setting one of these bits. If machine check interrupts are enabled
(MSR[ME] =1 or MSR[GS] = 1), a machine check interrupt occurs when any of these bits in the
MCSR is non-zero.

» Error report bits. Set when a synchronous error report type of machine check occurs.
*  MCAR status bits (MAV, MEA). These give information about the MCAR.
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SPR 572 Hypervisor, Write 1 to Clear
32 33 34 35 36 37
R ICERR DCERR
MCP (ICPERR) (ICPERR) TLBPERR |L2MMU_MHIT .
w wic wic wic wic wic
Reset All zeros
40 42 43 44 45 46 47
R NMI MAV MEA IF
w wic wic wic wic
Reset All zeros
48 49 50 51 55
R LD ST LDG
w wic wic wic
Reset All zeros
56 61 62 63
R TLBSYNC | BSL2_ERR
w wic wic
Reset All zeros

Figure 2-7. Machine Check Syndrome Register (MCSR)

This table describes the MCSR fields.
Table 2-8. Machine Check Syndrome Register (MCSR)

. e Exception Additional Gating
Bit Name Description Type1 Condition?
32 MCP Machine check input signal asserted. Set immediately on Async HIDO[EMCP]
recognition of assertion of the MCP input. This input comes
from the SoC and is a level sensitive signal. This usually
occurs as the result of an error detected by the SoC.
33 ICERR Instruction cache tag or data array parity error Async L1CSR1[ICECE] and
(ICPERR) L1CSR1[ICE]
34 DCERR Uncorrectable L1 data cache data or tag error. Async L1CSRO[CECE] and
(DCPERR) L1CSRO|[CE]
35 — Reserved — —
36 | L2MMU_MHIT | L2 MMU simultaneous hit. Async HIDO[EN_L2MMU_MHD]
37-42 — Reserved — —
43 NMI Nonmaskable interrupt. NMI None
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Table 2-8. Machine Check Syndrome Register (MCSR) (continued)

Bit

Name Description

Exception
Type'!

Additional Gating
Condition?

44

MAV MCAR address valid. The address contained in the MCAR

was updated by the processor and corresponds to the first

detected error condition that contained an associated

address. Subsequent machine check errors that have

associated addresses are not placed in MCAR unless MAV

is 0 at the time the error is logged.

0 The address contained in MCAR is not valid.

1 The address contained in MCAR is valid.

Note: Software should first read MCAR before clearing
MAV. MAV should be cleared before MSR[ME] is set.

Status

45

MEA MCAR effective address. Meaningful only if MAV=1.
0 The MCAR contains a physical (real) address.
1 The MCAR contains an EA.

Status

46

— Reserved

47

IF Instruction fetch error report. An error occurred during the
attempt to fetch the instruction corresponding to the
address in MCSRRO or during an attempted fetch of a
younger instruction than that pointed by MCSRRO.

Error
report

None

48

LD Load instruction error report. An error occurred during the
attempt to execute the load instruction at the address
contained in MCSRRO.

Error
report

None

49

ST Store instruction error report. An error occurred during an
attempt to translate the address of the store type instruction
(orinstruction that is processed by the store queue) located
at the address in MCSRRO.

Error
report

None

50

LDG Guarded load instruction error report. Set along with LD if
the load encountering the error was a guarded load
(WIMGE = xxx1x) and that guarded load did not encounter
one of the data cache errors. Set only if the error
encountered by the load was an L2 or CoreNet error.

Error
report

None

51

— Reserved

52-61

— Reserved

62

TLBSYNC | Simultaneous tlbsync operations detected. The system
should never have two outstanding tlbsync operations on
CoreNet.

Async

None

63

BSL2_ERR |L2 cache error

Async

L2CSRO[L2E] and
L2ERRDIS 3
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T “Exception Type” indicates which exception type caused the update of a given MCSR bit:

— Error report. Indicates that this bit is set only for error report exceptions that cause machine check interrupts. These bits are
only updated when the machine check interrupt is taken. Error report exceptions are not gated by MSR[ME]. These are
synchronous exceptions.

— NMI. Indicates that this bit is only set for the nonmaskable interrupt type exceptions which cause machine check interrupts.
This bit is only updated when the machine check interrupt is taken. NMI exceptions are not gated by MSR[ME]. This is an
asynchronous exception.

— Async. Indicates that this bit is set for an asynchronous machine check exception. These bits are set immediately upon
detection of the error in the MCSR. Once bit is set in the MCSR, a machine check interrupt occurs if MSR[ME]=1. If
MSR[ME]=0, the MCSR bits remain set unless cleared by software, and a machine check occurs when MSR[ME] is set.

— “Status” indicates that this bit provides additional status about the logging of an asynchronous machine check exception.

“Additional Gating Condition” indicates any other state that, if not enabled, inhibits the recognition this particular error condition.
3 For description of L2ERRDIS, see Section 2.15.4, “L2 Error Registers”

2

The setting of MCSR[LD] and MCSR][ST] identifying the type of instruction is implementation
dependent. For e500mc, LD is set by instructions that load data into a register and complete when the load
data is committed to the architected register. ST is set by instructions that perform store operations and
instructions that are processed through the store queue in the LSU. The treatment of an instruction as a
load or store for the purposes of permission checking and debug events may differ from whether the LD
or ST bit is set for an error report.

The following instructions set MCSR[LD] if an error report occurs:

dcbt, dcbtst, icbt, bz, 1bzu, 1bzx, Ibzux, lha, Ihau, lhax, lhaux, lhz, lhzu, lhzx, lhzux, lhbrx,
Imw, lwarx, lwz, lwzu, lwzx, lwzux, Iwbrx, Ibepx, lhepx, Iwepx, dcbtep, dcbtstep, Ibdx, lhdx,
Iwdx, Ifddx, Ifd, Ifdu, Ifdux, Ifdx, Ifdepx, Ifs, Ifsu, Ifsux, Ifsx

The following instructions set MCSR[ST] if an error report occurs:

dcba, dcbal, dcbf, dcbi, deblc, dcbst, dcbtls, debtstls, dcbz, dcbzl, dsn, icbi, icblc, icbtls, stb,
stbu, stbx, stbux, sth, sthu, sthx, sthux, sthbrx, stmw, stw, stwu, stwx, stwux, stwbrx, stwex.,
stbepx, sthepx, stwepx, dcbfep, dcbstep, icbiep, dcbzep, dcbzlep, stbdx, sthdx, stwdx, stfddx,
stfd, stfdu, stfdux, stfdx, stfdepx, stfiwx, stfs, stfsu, stfsux, stfs

2.10 Software-Use SPRs (SPRGs, GSPRGs, and USPRGO0)

The e500mc implements the software-use SPRs (SPRGO-SPRG7, SPRGS8, SPRG9, GSPRG0-GSPRG3,
USPRGO) as defined by the architecture. Their functionality is defined by the user and they are accessed
as shown in this table.

Table 2-9. SPRGs, GSPRGs, and USPRG0

Abbreviation Name SPR Number Access
GSPRGO Guest SPR general 0 368 Guest supervisor
GSPRG1 Guest SPR general 1 369 Guest supervisor
GSPRG2 Guest SPR general 2 370 Guest supervisor
GSPRG3 Guest SPR general 3 371 Guest supervisor

SPRGO SPR general 0 272 Guest supervisor'
SPRGH1 SPR general 1 273 Guest supervisor’
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Table 2-9. SPRGs, GSPRGs, and USPRGO (continued)

Abbreviation Name SPR Number Access
SPRG2 SPR general 2 274 Guest supervisor’
SPRG3 SPR general 3 259 User RO
SPRG3 SPR general 3 275 Guest supervisor’
SPRG4 SPR general 4 260 User RO
SPRG4 SPR general 4 276 Guest supervisor
SPRG5 SPR general 5 261 User RO
SPRG5 SPR general 5 277 Guest supervisor
SPRG6 SPR general 6 262 User RO
SPRG6 SPR general 6 278 Guest supervisor
SPRG7 SPR general 7 263 User RO
SPRG7 SPR general 7 279 Guest supervisor
SPRG8 SPRG8 604 Hypervisor
SPRG9 SPRG9 605 Guest supervisor

USPRGO User SPR general 02 256 User
(VRSAVE)

' When these registers are accessed in guest supervisor state, the access are mapped to their analogous guest SPRs (for
example, SPRGO is mapped to GSPRGO). See Section 2.3, “Register Mapping in Guest—Supervisor State.”

2 USPRGO is a separate physical register from SPRGO.

NOTE

Operating system software should always use SPRG0O, SPRG1, SPRG2,
SPRG3 when accessing GSPRGO0, GSPRG1, GSPRG2, and GSPRG3
because in guest—supervisor state, these accesses are mapped to their
equivalent guest registers. This allows the programming model for the
operating system software to be the same regardless of whether the
operating system is operating in guest state under a hypervisor or is
executing directly on the bare metal.

SPRGs and GSPRGs are 32 bits for 32-bit implementations and 64 bits for
64-bit implementations. For e500mc, these registers are 32 bits. USPRGO
(VRSAVE) is a 32-bit register regardless of whether the processor is a 32-bit
or 64-bit implementation.
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2.11 Branch Unit Control and Status Register (BUCSR)

The BUCSR, shown in Figure 2-8, is an e500mc-specific register used for general control and status of the
branch prediction mechanisms which include the branch target buffer (BTB). Writing to BUCSR requires
synchronization, as described in Section 3.3.3, “Synchronization Requirements.”

SPR 1013 Hypervisor
32 ‘ ‘ ‘ ‘ ‘ 53 54 55‘ ‘ 62 63
R _ BBFI — BPEN
w
Reset All zeros

Figure 2-8. Branch Unit Control and Status Register (BUCSR)

This table describes the BUCSR fields.
Table 2-10. BUCSR Field Descriptions

Bits Name Description
32-53 — Reserved
54 BBFI Branch buffer flash invalidate. Setting BBFI flash clears the valid bit of all entries in the branch prediction

mechanisms; clearing occurs independently from the value of the enable bit (BPEN). BBFI is cleared by
hardware and always reads as 0.

55-62 — Reserved

63 BPEN Branch prediction enable
0 Branch prediction disabled
1 Branch prediction enabled (enables BTB to predict branches)

2.12 Hardware Implementation-Dependent Register 0 (HIDO)
This section describes HIDO, shown in Figure 2-9, as it is implemented on the e500mc core.

NOTE

Some HID fields may not be implemented in a device that incorporates the
e500mc core and some fields may be defined more specifically by the
incorporating device. For specific details it is important to refer to the
“Register Summary” chapter in the device’s reference manual.

HIDO is used for configuration and control. Writing to HIDO requires synchronization, as described in
Section 3.3.3, “Synchronization Requirements.”

SPR 1008 Hypervisor
32 33 34 55 56 57 58 59 60 62 63
R
W EMCP |EN_L2MMU _MHD — EN_MAS7_UPDATE |DCFA| — |CIGLSO| — |NOPTI
Reset All zeros

Figure 2-9. Hardware Implementation-Dependent Register 0 (HIDO)
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This table describes the HIDO fields.

Table 2-11. HIDO Field Descriptions

Bits Name Description

32 EMCP Enable machine check signal. Used to mask out further machine check exceptions caused by

asserting the internal machine check signal from the integrated device.

0 Machine check signalling is disabled.

1 Machine check signalling is enabled. If HIDO[EMCP] = 1, asserting the machine check signal
from the integrated device causes MCSR[MCP] to be set to 1. If MSR[ME] = 1 or
MSR[GS] = 1, a machine check exception and subsequent interrupt occurs.

33 EN_L2MMU_MHD | Enable L2MMU multiple-hit detection. An L2ZMMU multiple hit occurs when more than one entry
matches a given translation. This most likely occurs when software mistakenly loads the TLB with
more than one entry that matches the same translation, but can also occur if a soft error occurs in
a TLB entry.

0 Machine check signalling is disabled.
1 A multiple L2 MMU hit sets MCSR[L2MMU_MHIT] to 1. If MSR[ME] = 1 or MSR[GS] = 1, a
machine check exception and subsequent interrupt occurs.
34-55 — Reserved
56 EN_MAS7_UPDAT | Enable MAS7 update. Enables updating MAS7 by tlbre and tibsx.
E 0 MAS?7 is not updated by a tlbre or tlbsx.
1 MAS?7 is updated by a tibre or tibsx.

57 DCFA Data cache flush assist. Force data cache to ignore invalid sets on miss replacement selection.
0 The data cache flush assist facility is disabled
1 The miss replacement algorithm ignores invalid entries and follows the replacement sequence

defined by the PLRU bits. This reduces the series of uniquely addressed load or dcbz
instructions to eight per set. The bit should be set just before beginning a cache flush routine
and should be cleared when the series of instructions is complete.

58 — Reserved

59 CIGLSO Cache-inhibited guarded load/store ordering.

0 Loads and stores to storage that are marked as cache inhibited and guarded have no ordering
implied except what is defined in the rest of the architecture.
1 Loads and stores to storage that are marked as cache inhibited and guarded are ordered.
60-62 — Reserved
63 NOPTI NOP the data and instruction cache touch instructions. Note that “cache and lock set” and “cache

and lock clear” instructions are not affected by the setting of this bit.

0 dcbt, dcbtep, dcbtst, debtstep, and icbt are enabled, and operate as defined by the
architecture and the rest of this document.

1 dcbt, dcbtep, dcbtst, dcbtstep, and icbt are treated as NOPs.

When touch instructions are treated as NOPs because HIDO[NOPTI] is set, they do not cause

DAC debug events. That is, if a DAC comparison would have caused a debug event, the debug

event is also NOPed and does not occur.

2.13 Core Device Control and Status Register (CDCSRO0)

The core device control and status register is implemented as described in EREF: A Programmer s
Reference Manual for Freescale Power Architecture® Processors. The e500mc core is aware of the
following device programming models:

the Floating Point Device. The device is present and ready.
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For e500mc, writes to CDCSRO are ignored.

This figure shows the core device control and status register 0 format.

SPR 696 Hypervisor
32 ‘ 39 | 40 ‘ 47 | 48 ‘ 55 56 ‘ 63
R Floating Point Device AltiVec Device Multithread Device ‘ SPE Device
w

Reset1100\1ooo\oooo\oooooooo\oooo\oooo\oooo
Figure 2-10. Core Device Control and Status Register 0 (CDCSRO0) Format

2.14 L1 Cache Registers

The L1 cache registers provide control and configuration and status information for the L1 cache
implementation.

2.14.1 L1 Cache Control and Status Register 0 (L1CSRO0)

LICSRO is used for general control and status of the L1 data cache. The e500mc implements the L1CSRO
fields shown in Figure 2-11 as they are defined by the architecture and described in the EREF: A
Programmers Reference Manual for Freescale Power Architecture® Processors. It does not implement
the following:

* Cache way partitioning bits (LICSR0[32-42]).

» Data cache lock overflow allocate bit, CLOA, (L1CSRO[56]).

* Cache operation aborted bit, CABT (L1CSRO[61]). Cache operations are never aborted on
e500mc.

For LICSRO[CEA], e500mc only supports the value 0b00 and always invalidates the entire contents (tags
and data arrays) and generates a machine check or error report on the occurrence of an error detection when
LICSRO[CECE] is set. Writing any other value to this field is ignored.

For LICSRO[CEDT], e500mc only supports the value 0b00 and detects single-bit tag and single-bit data
errors. Writing any other value to this field is ignored.

Note that on the e500mc, setting L1CSR2[DCWS] automatically sets L1CSRO[CFI]. Also, when setting
L1CSRO[CEI], it is required that LICSRO[CECE] also be set in the same mtspr instruction.

Writing to L1CSRO requires synchronization, as described in Section 3.3.3, “Synchronization
Requirements.”

e500mc Core Reference Manual, Rev. 3

Freescale Semiconductor 2-29



Register Model

SPR 1010 Hypervisor
32 35 36 39 40 41 42 43 44 45 46 47
R
— — — — — — CEA — | CECE
w
Reset All zeros
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
R
W CEl — CEDT CSLC| CUL | CLO |CLFC| — CEIT — |DCBz32| — |CFI| CE
Reset All zeros

Figure 2-11. L1 Cache Control and Status Register 0 (L1CSRO0) Fields Implemented on e500mc

Table 2-12. L1CSRO Field Descriptions

Bits Name Description
32-43 — Reserved
44-45 CEA | Data cache error action
00 Error detection causes a machine check interrupt (and possibly error report interrupts). For e500mc, if the
core is in write shadow mode (L1CSR2[DCWS] = 1), the entire data cache is invalidated.
01 Reserved for e500mc.
10 Reserved for e500mc.
11 Reserved
The setting of CEA has no effect if LICSRO[CECE] = 0. Reading CEA is not guaranteed to reflect the last
written value in some implementations, however, it returns either the last written value or 0.
e€500mc only supports the value 0b00 for ICEA
46 — Reserved
47 CECE | (Data) Cache error checking enable.
CPE |0 Error detection of the cache disabled
DCPE |1 Error detection of the cache enabled
48 CEl (Data) Cache error injection enable. See Section 5.4.5, “Cache Error Injection.”
CPI 0 Error error injection disabled
DCPI |1 Error injection enabled.
Cache error checking must also be enabled (CECE = 1) when this bit is set.
Note that if the programmer attempts to set L1ICSRO[CEI] (using mtspr) without setting L1CSRO[CECE],
L1CSRO[CEI] is not set (enforced by hardware).
49-51 — Reserved
50-51 | CEDT |Data cache error detection/correction type
00 Detect tag parity errors and data parity errors
01 reserved for e500mc
10 reserved
11 reserved
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Table 2-12. L1CSRO Field Descriptions (continued)

Bits

Name

Description

52

CSLC
DCSLC

(Data) Cache snoop lock clear.

Sticky bit set by hardware if a cache line lock was cleared by a snoop operation which caused an invalidation.
Note that the lock for that line is cleared whenever the line is invalidated. This bit can be cleared only by
software.

0 The cache has not encountered a snoop that invalidated a locked line.

1 The cache has encountered a snoop that invalidated a locked line.

53

CUL
DCUL

(Data) Cache unable to lock.

Sticky bit set by hardware. This bit can be cleared only by software.
0 Indicates a lock set instruction was effective in the cache

1 Indicates a lock set instruction was not effective in the cache

54

CLO
DCLO

(Data) Cache lock overflow. <E.CL>

Sticky bit set by hardware. This bit can be cleared only by software.

0 Indicates a lock overflow condition was not encountered in the cache
1 Indicates a lock overflow condition was encountered in the cache

55

CLFC
DCLFC

(Data) Cache lock bits flash clear. <E.CL>

Clearing occurs regardless of the enable (L1CSRO[CE]) value.

0 Default.

1 Hardware initiates a cache lock bits flash clear operation. Cleared when the operation is complete.
Note: During a flash clear operation, writing a 1 causes undefined results; writing a 0 has no effect

56

Reserved

57-58

CEIT

Cache error injection type. Controls the type of error injection to be performed.
00 Inject single-bit data error and inject single bit tag error

01 reserved

10 reserved

11 reserved

60

DCBZ32

Data cache operation length.
0 dcba and dcbz (dcbzep) instruction number of bytes operated on is all bytes in cache line
1 dcba and dcbz (dcbzep) number of bytes operated on is 32

61

Reserved

62

CFl
DCFI

(Data) Cache flash invalidate. Invalidation occurs regardless of the enable (L1CSRO[CE]) value.

0 No cache invalidate.

1 Cache flash invalidate operation. A cache invalidation operation is initiated by hardware. Once complete,
this bit is cleared.

Note: During an invalidation operation, writing a 1 causes undefined results; writing a 0 has no effect.

63

CE
DCE

(Data) Cache enable.
0 The cache is not enabled. (not accessed or updated)
1 Enables cache operation.

Note: CE should not be set when the cache is disabled until after the cache has been properly initialized by
flash invalidating the cache . This applies both to the first time the cache is enabled as well as
sequences that want to re-enable the cache after software has disabled it.

Note: If the cache is enabled and software wishes to disable it by writing a 0 to CE, software should first flush
the cache to ensure that any modified data resident in the cache is pushed to memory. If the cache is
not flushed, coherency is lost and any lines in the cache may provide stale data when the cache is
re-enabled.
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2.14.2 L1 Cache Control and Status Register 1 (L1CSR1)

LICSRI is used for general control and status of the L1 instruction cache. The e500mc implements the
L1CSR1 fields shown in Figure 2-12 as they are defined by the architecture and described in the EREF: A
Programmer s Reference Manual for Freescale Power Architecture® Processors. It does not implement
L1CSRI[ICLOA,ICABT] (bits 56 and 61).

For LICSRI[ICEA], e500mc only supports the value 0b00 and always invalidates the entire contents (tags
and data arrays) and generates a machine check or error report on the occurrence of a parity error when
L1CSRI1[ICECE] is set. Writing any other value to this field is ignored.

For LICSRI[ICEDT], e500mc only supports the value 0b00 for parity detection. Writing any other value
to this field is ignored.

When setting L1CSRI1[ICEI], it is required that LICSR1[ICECE] also be set in the same mtspr
instruction.

Writing to LICSR1 requires synchronization, as described in Section 3.3.3, “Synchronization
Requirements.”

SPR 1011 Hypervisor
32 ‘ ‘ 43|44 45 46 47 48 49 50 51| 52 53 54 55 |56 ‘ 61 62 63
R
W — ICEA ICECE|ICEI| — |ICEDT|ICSLC|ICUL|ICLO|ICLFC — ICFI|ICE
Reset All zeros

Figure 2-12. L1 Cache Control and Status Register 1 (L1CSR1) Fields Implemented on the e500mc

This table describes L1CSR1 fields implemented on the e500mc.
Table 2-13. L1CSR1 Field Descriptions

Bits Name Description

32-43 — Reserved

44-45 | ICEA |Instruction cache error action

00 Error detection causes a machine check (and possibly an error report). The location in the instruction
cache which caused the error is invalidated (other instruction cache locations may also be
invalidated).e500mc

01 Reserved for e500mc

10 Reserved for e500mc

11 Reserved

The setting of ICEA has no effect if L1CSR1[ICECE] = 0. Reading ICEA is not guaranteed to reflect the last

written value in some implementations, however, it returns either the last written value or 0.

Note: e500mc only supports the value 0b0O for ICEA.

47 ICECE | Instruction error checking enable.
0 Error checking of the cache disabled
1 Error checking of the cache enabled

48 ICEI |[Instruction cache error injection enable.

0 Error injection disabled

1 Error injection enabled. Note that cache error checking must also be enabled (L1CSR1[ICECE] = 1) when
this bit is set, otherwise, results are undefined and erratic behavior may occur. If LICSRO[ICECE] =0, ICEI
cannot be set (i.e,). LICSRO[ICEI] = L1CSRO[ICECE] & L1CSRO[ICEI]).
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Table 2-13. L1ICSR1 Field Descriptions (continued)

Bits Name Description

49 — Reserved

50-51 | ICEDT | Instruction cache error detection type.

00 Parity detection.

01 Reserved for e500mc

10 Reserved

11 Reserved

The setting of ICEDT has no effect if L1CSR1[ICECE] = 0. Reading ICEDT is not guaranteed to reflect the last
written value in some implementations, however, it returns either the last written value or 0.

Note: e500mc only supports the value 0b0O0 for ICEDT.

52 ICSLC |Instruction cache snoop lock clear. Sticky bit set by hardware if a cache line lock was cleared by a snoop
operation which caused an invalidation. Note that the lock for that line is cleared whenever the line is
invalidated. This bit can be cleared only by software.

0 The cache has not encountered a snoop that invalidated a locked line.

1 The cache has encountered a snoop that invalidated a locked line.

53 ICUL |Instruction cache unable to lock. Sticky bit set by hardware. This bit can be cleared only by software.
0 Indicates a lock set instruction was effective in the cache
1 Indicates a lock set instruction was not effective in the cache

54 ICLO |Instruction cache lock overflow. Sticky bit set by hardware. This bit can be cleared only by software.
0 Indicates a lock overflow condition was not encountered in the cache
1 Indicates a lock overflow condition was encountered in the cache

55 ICLFC |Instruction cache lock bits flash clear. Clearing occurs regardless of the enable (L1CSR1[ICE]) value.

0 Default.

1 Hardware initiates a cache lock bits flash clear operation. This bit is cleared when the operation is complete.

Note: Writing a 1 while a flash clear operation is in progress causes undefined results. Writing a 0 during a
flash clear operation is ignored

5661 — Reserved for implementation dependent use.

62 ICFI |Instruction cache flash invalidate. Invalidation occurs regardless of the enable (L1CSR1,cg) value.
0 No cache invalidate.
1 Cache flash invalidate operation. A cache invalidation operation is initiated by hardware. Once complete,
this bit is cleared.
Note: Writing a 1 during an invalidation operation causes undefined results. Writing a 0 during an invalidation
operation is ignored.

63 ICE Instruction cache enable.

0 The cache is not enabled. (not accessed or updated)

1 Enables cache operation.

Note: ICE should not be set when the cache is disabled until after the cache has been properly initialized by
flash invalidating the cache . This applies both to the first time the cache is enabled as well as
sequences that want to re-enable the cache after software has disabled it.

2.14.3 L1 Cache Control and Status Register 2 (L1CSR2)

L1CSR2, shown in Figure 2-13, provides additional control and status for the primary L1 data cache of the
processor. The e500mc implements L1CSR2 as it is defined by the architecture and described in the EREF':
A Programmer s Reference Manual for Freescale Power Architecture® Processors, with the following
exceptions:
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* Setting LICSR2[DCWS] automatically sets L1CSRO[CFI] to flash invalidate the data cache when
turning on write shadow mode to purge the cache of any modified data. Software should perform
a flush operation on the data cache prior to setting LICSR2[DCWS].

»  While write shadow mode is active (LICSR2[DCWS] = 1), the L2 cache is required to be enabled
and in general be able to allocate lines when store or store type operations are performed. See
Table 5-1 for supported write shadow configurations.

» Although the architecture defines DCSTASHID as L1CSR2[54—63], the e500mc implements only
8 bits (L1CSR2[56—63]) and supports only stash ID values of 8 to 255.

Writing to L1CSR2 requires synchronization, as described in Section 3.3.3, “Synchronization
Requirements.”

SPR 606 Hypervisor
32 33 34 ‘ ‘ ‘ ‘ ‘ 55 | 56 63
R
wl™ DCWS — DCSTASHID
Reset All zeros

Figure 2-13. L1 Cache Control and Status Register 2 (L1CSR2) Fields Implemented on the ¢500mc¢

This table describes how L1CSR2 fields are implemented on the e500mc.
Table 2-14. L1CSR2 Field Descriptions

Bits Name Description

32 — Implementation dependent.

33 DCWS Data cache write shadow. Note that on the e500mc, changing L1CSR2[DCWS] automatically sets
L1CSRO[CFI].

Set by software to place the primary data cache into write shadow mode. When write shadow mode is

enabled, data that is written to the primary data cache is also written through to the backside L2 (or other

parts of the memory hierarchy) so that any subsequent failures in the primary data cache can be recovered

from by invalidating the data cache.

0 The primary data cache is not in write shadow mode.

1 The primary data cache is in write shadow mode.

Note: Software should flush and invalidate the primary data cache before setting DCWS to ensure that no
modified data exists in the primary data cache.

Note: Only certain cache configurations are supported when write shadow mode is enabled. See
Table 5-1.

34-55 — Reserved

56-63 | DCSTASHID | Data cache stash ID. Contains the cache target identifier for external stash operations directed to this
processor’s data cache. Clearing DCSTASHID prevents the primary cache from accepting external stash
operations. Note that the e500mc supports only stash ID values of 8 and larger (that is values between 8
and 255); values from 1 to 7 are illegal.

2.14.4 L1 Cache Configuration Register 0 (L1CFGO0)

L1CFGO, shown in this figure, provides configuration information for the L1 data cache.
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SPR 515 User read-only
32 33 34 35 36 37 38 39 |40 41 42 43 | 44 45 52 53 ‘ ‘ 63
R|CARCH|CWPA|CFAHA | CFISWA CBSIZE |CREPL|CLA|CPA CNWAY CSIZE
W —
Reset 0 O 0 0 0 o0 o 1 0 1 1 1 00000111 00000100000

Figure 2-14. L1 Cache Configuration Register 0 (L1CFGO) Fields Implemented on the e500mc

The EREF': A Programmer s Reference Manual for Freescale Power Architecture® Processors describes
these fields as they are defined in the Power ISA. This table describes how they are implemented on the
€500mec.

Table 2-15. L1CFGO Field Descriptions

Bits Name Description
32-33 CARCH Cache architecture. 0 indicates harvard (split instruction and data)

34 CWPA Cache way partitioning available. 0 indicates unavailable

35 CFAHA Cache flush all by hardware available 0 indicates unavailable

36 CFISWA | Direct cache flush available. 0 indicates unavailable
37-38 — Reserved
39-40 CBSIZE Cache block size. 1 indicates 64 bytes
41-42 CREPL Cache replacement policy 1 indicates psuedo-LRU policy

43 CLA Cache locking available 1 indicates available

44 CPA Cache parity available. 1 indicates available
45-52 CNWAY Cache number of ways. 7 indicates 8 ways
53-63 CSIZE Cache size. 32 indicates 32 Kbytes.

2.14.5 L1 Cache Configuration Register 1 (L1CFG1)

L1CFGl1, shown in this figure, provides configuration information for the L1 instruction cache.

SPR 516 User read-only
32 35 36 37 38 39 ‘ 40 41 42 43 44 45 ‘ ‘52 53 ‘ ‘ 63
R ICFISWA ICBSIZE | ICREPL|ICLA| ICPA ICNWAY ICSIZE
w

Reset 0 00 O 0 o0 o 1 o0 1 1 1 00000111 0000010O0O0O0O0
Figure 2-15. L1 Cache Configuration Register 1 (L1CFG1)
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This table describes the L1ICFG1 fields.

Table 2-16. L1ICFG1 Field Descriptions

Bits Name Description
32-35 — Reserved
36 ICFISWA | Direct cache flush available. 0 indicates unavailable
37-38 — Reserved
39-40 ICBSIZE Instruction cache block size. 1 indicates 64 bytes
41-42 ICREPL Instruction cache replacement policy. 1 indicates pseudo-LRU policy
43 ICLA Instruction cache locking available. 1 indicates available
44 ICPA Instruction cache parity available. 1 indicates available
45-52 ICNWAY Instruction cache number of ways. 7 indicates eight ways
53-63 ICSIZE Instruction cache size. 32 indicates 32 Kbytes

2.15 L2 Cache Registers

L2 cache status, control, and error handling is accomplished through SPRs.

2.15.1

L2 Configuration Register (L2CFGO)

L2CFGO is provided for software to determine the organization and capabilities of the secondary cache
The e500mc implements L2CFGO as it is defined by the architecture and described in the EREF: A4
Programmer s Reference Manual for Freescale Power Architecture® Processors.

L2CFGO, shown in Figure 2-15, provides configuration information for the L2 instruction cache.

SPR 519 User RO
32 33 34 35 ‘ 36 37 38 ‘ 40 41 42 43 44 45 ‘ 49 50 ‘ 63
R| [L2CTEHA|L2CDEHA]|L2CIDPA | L2CBSIZE | L2CREPL | L2CLA L2CNWAY L2CSIZE
W= _
Reset 0 0 1 1 \1 1 0 0\1 0o 1 1 0001\1100\0000\0000\0010

Figure 2-16. L2 Cache Configuration Register 0 (L2CFGO)

This table describes the L2ZCFGO settings for the e500mc.

Table 2-17. L2CFGO Field Descriptions

Bits Name Description
32 — Reserved

33-34 | L2CTEHA |L2 cache tags error handling available. 1 indicates parity detection.

35-36 | L2CDEHA | L2 cache data error handling available. 0b11 indicates both parity and ECC correction available.
37 L2CIDPA | Cache instruction and data partitioning available. 1 indicates available.

38-40 | L2CBSIZE |Cache line size. 1 indicates 64 bytes
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Register Model

Bits Name Description
41-42 L2CREPL | Cache default replacement policy. This is the default line replacement policy at power-on-reset. If an
implementation allows software to change the replacement policy it is not reflected here.1 indicates
pseudo-LRU.
43 L2CLA Cache line locking available. 1 indicates available.
44 — Reserved
45-49 | L2CNWAY | Number of cache ways. 7 indicates 8 ways.
50-63 L2CSIZE |Cache size as a multiple of 64 Kbytes. 2 indicates 128-Kbyte cache.
2.15.2 L2 Cache Control and Status Register (L2CSRO0)

L2CSRO, shown in this figure, provides general control and status for the processor’s L2 cache.

SPR 1017 Hypervisor
32 33 34 35 ‘ 37 38 ‘ 41 42 43 44 46 47
VTI L2E |L2PE| --- L2WP — L2FI | L2IO L2DO
Reset All zeros
48 49 50 51 52 53 54 55 56 57 58 59 63
V‘\j — L2REP L2FL|L2LFC L2LOA| — |L2LO
Reset All zeros

Figure 2-17. L2 Cache Control and Status Register (L2CSRO0)
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This table describes the L2CSRO fields.

Table 2-18. L2ZCSRO Field Descriptions

Bits

Name

Description

32

L2E

L2 cache enable. Implemented as defined in EREF: A Programmer's Reference Manual for Freescale
Power Architecture® Processors. The e500mc requires software to continue to read this bit after setting it
to ensure the desired value has been set before continuing on.

Note: L2E should not be set when the L2 cache is disabled until after the L2 cache has been properly
initialized by flash invalidating the cache and locks. This applies both to the first time the L2 cache is
enabled as well as sequences that want to re-enable the cache after software has disabled it.

Note: If the L2 cache is enabled and software wishes to disable it by writing a 0 to L2E, software should
first flush the L2 cache to ensure that any modified data resident in the L2 cache is pushed to
memory. If the L2 cache is not flushed, coherency is lost and any lines in the cache may provide stale
data when the L2 cache is re-enabled.

33

L2PE

L2 cache parity/ECC error checking enable. Implemented as defined in EREF: A Programmer’s Reference

Manual for Freescale Power Architecture® Processors.

Note: L2PE should not bet set until after the L2 cache has been properly initialized out of reset by flash
invalidation. Doing so can cause erroneous detection of errors because the state of the error
detection bits are random out of reset. See Section 11.5, “L1 Cache State,” for more details on L1
cache initialization.

Note: When error injection is being performed, the value of L2PE and individual error disables are ignored
and errors are always detected. Software should ensure that L2PE is set when performing error
injection.

34

Reserved
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Table 2-18. L2ZCSRO Field Descriptions (continued)

Bits Name Description

35-37 L2WP | L2 Instruction/Data Way Partitioning
If L210 and L2DO are both 0, the ways of the cache are partitioned to allocate new lines in ways based on
whether the allocation is for instructions or data. A value of 0 allows all ways to be used for either
instructions or data. A non-zero value specifies the number of ways to be used for allocating instructions.
The number of ways specified for data references is the total number of ways minus the
value in the L2WP field.
000 All ways are available for instruction allocation and data allocation
001 1 way available for instruction allocation, 7 ways available for data allocation
010 2 ways available for instruction allocation, 6 ways available for data allocation
011 3 ways available for instruction allocation, 5 ways available for data allocation
100 4 ways available for instruction allocation, 4 ways available for data allocation
101 5 ways available for instruction allocation, 3 ways available for data allocation
110 6 ways available for instruction allocation, 2 ways available for data allocation
111 7 ways available for instruction allocation, 1 ways available for data allocation
Performance note: If the number of ways available for instruction or data allocation is not a power of two,
the statistical percentage of total allocations across those available ways over a very long period of time
are not evenly distributed. For instance, if 3-ways (say way A, way B, and way C) are available for data
allocation, the long term percentage of allocations for A, B, and C are not 33%, 33%, 33%, respectively.
Instead, the number of allocations for one of the three ways are closer to 50%, with the other two ways
being closer to 25% (50%, 25%, 25%).
Instruction and Data way partitioning has no effect on cache locking. Cache lines which are locked due to
cache locking instructions are still honored in the presence of way partitioning. If locked lines exist in the
L2 cache prior to enabling L2 way partitioning, those locked lines can exist in the “opposite” partition. For
instance, a line locked by an icbtls instruction can exist in a way which is part of the data partition. To avoid
this condition, locks must be flash invalidated prior to enabling way partitioning.
Because L2WP only controls how new lines are allocated, L2WP can be changed at any time without
affecting the functionality of the L2 Cache.

38-39 | (L2CM) |L2 cache coherency mode. This field is not implemented in e500mc, and always reads as 0.

40-41 — Reserved

42 L2FI L2 cache flash invalidate. Implemented as defined in EREF: A Programmer's Reference Manual for

Freescale Power Architecture® Processors. Note that Lock bits are not cleared by a L2 cache flash
invalidate. Lock bits should be cleared by software at boot time to ensure that random states of the lock
bits for each line do not limit allocation of those lines. See L2CSRO[L2LFC].

Note: When a flash invalidation operation is being performed (i.e. L2FI has been set to 1 by software),
software should not attempt to write 1 to this field again until after hardware has reset this bit to 0 to
indicate that the invalidate operation is complete. Writing a 1 during an invalidation operation causes
undefined results. Writing a 0 during an invalidation operation is ignored.
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Table 2-18. L2ZCSRO Field Descriptions (continued)

Bits Name Description

43 L210 | L2 cache instruction only. Implemented as defined in EREF: A Programmer’s Reference Manual for
Freescale Power Architecture® Processors except that if L210 is set and L2DO is not set, storage accesses
which are data references (i.e. from load/store instructions) are not serviced from the L2 cache even if the
cache had previously allocated and still contains lines from data references that were allocated prior to
setting L2IO. In addition, when L210 is set, the L2 cache does not participate in the coherence protocol
(that is, it does not respond to snoops) except that it processes instruction cache invalidations (icbi) from
any processor. When L210O is set and the L2 cache contains modified data, that data becomes incoherent.
To avoid this situation, if software wishes to set L2I0O (and not L2DO), it should first set both L210 and L2DO
to prevent further allocations, then flush any modified data from the L2 cache, then clear L2DO.

The e500mc requires software to continue to read this bit after setting it to ensure the desired value has
been set before continuing on.

44-46 — Reserved

47 L2DO | L2 cache data only. Implemented as defined in EREF: A Programmer’s Reference Manual for Freescale
Power Architecture® Processors. The e500mc requires software to continue to read this bit after setting it
to ensure the desired value has been set before continuing on.

48-49 — Reserved

50-51 L2REP | L2 line replacement algorithm.

The Streaming PLRU modes perform a partial update of the PLRU bits when an L2 line is allocated, and

a full update on L2 cache hits. Depending on the access pattern, irregularly-accessed transient data is

likely to be evicted before regularly-accessed data.

00 SPLRUA (Streaming Pseudo Least Recently Used with Aging). With this algorithm, the pseudo LRU
state for a given index is updated to mark a given way most recently used on each L2 cache hit. On L2
cache allocations, the pseudo LRU state is partially updated on most L2 cache allocations and fully
updated on every third L2 cache allocations .

01 Invalid

10 SPLRU (Streaming Pseudo Least Recently Used). With this algorithm, the pseudo LRU state for a given
index is updated to mark a given way most recently used on each L2 cache hit. On L2 cache allocations,
the pseudo LRU state is partially updated to a state between least recently used and most recently used
on all L2 cache allocations.

11 PLRU (Pseudo Least Recently Used).With this algorithm, the pseudo LRU state for a given index is
updated to mark a given way most recently used on each L2 cache hit and all L2 cache allocations.

Locks for cache lines locked with cache locking instructions are never selected for line replacement unless

they are explicitly unlocked, regardless of the replacement algorithm.

52 L2FL | L2 cache flush. Implemented as defined in EREF: A Programmer’s Reference Manual for Freescale Power
Architecture® Processors. On e500mc, L2FL should not be set when the L2 cache is not currently enabled
(L2E should already be 1). If L2FL is set and the L2 cache is not enabled, the flush does not occur and the
L2FL bit remains set.

53 L2LFC |L2 cache lock flash clear. On boot, the processor should set this bit to clear any lock state bits which may
be randomly set out of reset, prior to enabling the L2 cache.
54-55 — Reserved
56 L2LOA |L2 cache lock overflow allocate. Implemented as defined in EREF: A Programmer’s Reference Manual for

Freescale Power Architecture® Processors. Note that cache line locking in e500mc L2 is persistent.

57 — Reserved
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Table 2-18. L2ZCSRO Field Descriptions (continued)

Bits Name Description
58 L2LO |L2 cache lock overflow. Implemented as defined in EREF: A Programmer’s Reference Manual for
Freescale Power Architecture® Processors.
59-63 — Reserved

2.15.3 L2 Cache Control and Status Register 1 (L2CSR1)

L2CSR1, shown in Figure 2-18, provides general control and status for the L2 cache of the processor. The
e500mc implements L2CSR1 as defined by the architecture and described in the EREF: A Programmer s
Reference Manual for Freescale Power Architecture® Processors, with the following exceptions:

It implements only the 8 Isbs of the L2Z2STASHID (L2CSR1[L2STASHID]
It does not support stash ID values of less than 8.

In addition it implements the implementation specific fields L2ZINSTLOSSLIMITDIS,
L2INSTLOSSLIMIT, L2ZSNPWINLIMITDIS, and L2ZSNPWINLIMIT.

SPR 1018 Hypervisor
33 34 35 36 37 39 |40 47
R
L2INSTLOSSLIMITDIS L2INSTLOSSLIMIT | L2ZSNPWINLIMITDIS | L2SNPWINLIMIT —
Reset All zeros
55 |56 63
R
— L2STASHID
w
Reset All zeros

Figure 2-18. L2 Cache Control and Status Register 1 (L2CSR1)

This table describes the L2CSR1 fields.

Table 2-19. L2CSR1 e500mc-Specific Field Descriptions

Bits Name Description
32 L2INSTLOSSLIMITDIS | L2 Instruction Loss Limit Disable
0 L2 Instruction Loss Limiting is enabled.
1 L2 Instruction Loss Limiting is disabled.
33 — Reserved
34-35 L2INSTLOSSLIMIT | Some units of the core can lose arbitration for the backside L2 for multiple cycles. This field

specifies how many consecutive cycles instruction fetches can lose backside L2 arbitration
before raising its priority.

00 Raise priority after 8 losses (default)

01 Raise priority after 4 losses

10 Raise priority after 8 losses

11 Raise priority after 16 losses
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Table 2-19. L2ZCSR1 e500mc-Specific Field Descriptions (continued)

Bits Name Description

36 L2SNPWINLIMITDIS |L2 Snoop Win Limit Disable
0 L2 Snoop Win Limiting is enabled.
1 L2 Snoop Win Limiting is disabled

37-39 L2SNPWINLIMIT Snoops receive the highest priority when arbitrating for the backside L2. In a system with very
active snooping, this can starve other units from winning access to the backside L2. This field
specifies how many consecutive snoops can win arbitration before allowing another unit to
win.

000 Limit to 8 consecutive snoops (default)

001 Limit to 2 consecutive snoops

010 Limit to 4 consecutive snoops

011 Limit to 8 consecutive snoops

100 Limit to 16 consecutive snoops

101 Limit to 32 consecutive snoops

110 Limit to 64 consecutive snoops

111 Limit to 128 consecutive snoops

40-55 — Reserved

56-63 L2STASHID L2 cache stash ID. Contains the cache target identifier to be used for external stash
operations directed to this processor’'s L2 cache. A value of 0 for L2ZSTASHID prevents the L2
cache from accepting external stash operations. Note that the e500mc supports only stash
ID values of 8 and larger (that is values between 8 and 255); values from 1 to 7 are illegal.

2.15.4 L2 Error Registers

L2 cache error detection, reporting, and injection allow flexible handling of ECC and parity errors in the
L2 data and tag arrays. The e500mc implements the L2 error detection registers as they are defined by the
architecture and described in the EREF: A Programmer s Reference Manual for Freescale Power
Architecture® Processors. Deviations from the architecture are described here.

2.15.4.1 L2 Cache Error Disable Register (L2ERRDIS)

L2ERRDIS, shown in this figure, provides general control for disabling error detection in the L2 cache of
the processor. The e500mc implements L2ZERRDIS as defined by the architecture and described in the
EREF': A Programmer s Reference Manual for Freescale Power Architecture® Processors except that it
does not implement the TMBECCDIS and TSBECCDIS fields, and implements the implementation
specific field TMHITDIS.

SPR 725 Hypervisor
32 ‘ ‘ ‘ ‘ ‘ 55 56 57 58 59 60 61 62 63
R
W — TMHITDIS| — |TPARDIS|MBECCDIS|SBECCDIS|PARDIS —
Reset All Zeros

Figure 2-19. L2 Cache Error Disable Register (L2ERRDIS)
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This table describes the L2ZERRDIS fields.

Table 2-20. L2ZERRDIS Field Descriptions

Bits Name Description
32-56 — Reserved
56 TMHITDIS Tag multi-way hit error disable.
0 Tag multi-way hit detection enabled if L2CSRO[L2PE] = 1.
1 Tag multi-way hit error detection disabled.
Note: This field is not part of the EREF: A Programmer’s Reference Manual for Freescale Power
Architecture® Processors.
Note: When error injection is being performed, the value of TMHITDIS and L2CSRO[L2PE] are
ignored and errors are always detected. Software should ensure that L2PE is set and
TMHITDIS is clear when performing error injection to the tags.
57-58 — Reserved
59 TPARDIS Tag parity error disable.
0 Tag parity error detection enabled.
1 Tag parity error detection disabled.
Note: When error injection is being performed, the value of TPARDIS and L2CSRO[L2PE] are
ignored and errors are always detected. Software should ensure that L2PE is set and
TPARDIS is clear when performing error injection to the tags.
60 MBECCDIS Data Multiple-bit ECC error disable.
0 Data Multiple-bit ECC error detection enabled.
1 Data Multiple-bit ECC error detection disabled.
Note: When error injection is being performed, the value of MBECCDIS and L2CSRO[L2PE] are
ignored and errors are always detected. Software should ensure that L2PE is set and
MBECCDIS is clear when performing error injection to the data.
61 SBECCDIS Data ECC error disable.
0 Data Single-bit ECC error detection enabled.
1 Data Single-bit ECC error detection disabled.
Note: When error injection is being performed, the value of SBECCDIS and L2CSRO[L2PE] are
ignored and errors are always detected. Software should ensure that L2PE is set and
SBECCDIS is clear when performing error injection to the data.
62 PARDIS Data parity error disable.
0 Data parity error detection enabled if L2CSRO[L2PE] = 1, MBECCDIS = 1, and SBECCDIS = 1
1 Data parity error detection disabled.
Note: When error injection is being performed, the value of PARDIS and L2CSRO[L2PE] are
ignored and errors are always detected. Software should ensure that L2PE is set and
PARDIS is clear when performing error injection to the data.
63 — Reserved
2.15.4.2 L2 Cache Error Detect Register (L2ERRDET)

L2ERRDET, shown in Figure 2-20, provides general status and information for errors detected in the L2
cache of the processor. The e500mc implements LZERRDET as defined by the architecture and described
in the EREF: A Programmer s Reference Manual for Freescale Power Architecture® Processors except
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that it does not implement the TMBECCERR, TSBECCERR, and L2ZCFGERR fields, and implements the
implementation specific fields MULL2ERR and TMHIT.

SPR 991 Hypervisor
32 ‘ ‘ ‘ ‘ 55| 56 57 58 59 61 62 63
R|MULL2ERR TMHIT TPARERR|MBECCERR |SBECCERR|PARERR
w wic wic o wic wic wic wic o
Reset All Zeros

Figure 2-20. L2 Cache Error Detect Register (L2ERRDET)

This table describes the L2ZERRDET fields.

Table 2-21. L2ZERRDET Field Descriptions

Bits Name Description
32 MULL2ERR Multiple L2 errors. Writing a 1 to this bit location resets the bit.
0 Multiple L2 errors of the same type were not detected.
1 Multiple L2 errors of the same type were detected.
Note: This field is not part of EREF: A Programmer’s Reference Manual for Freescale Power
Architecture® Processors.
33-55 — Reserved
56 TMHIT Tag multi-way hit detected. Writing a 1 to this bit location resets the bit.
0 Tag multi-way hit not detected.
1 Tag multi-way hit detected.
Note: This field is not part of EREF: A Programmer’s Reference Manual for Freescale Power
Architecture® Processors.
57-58 — Reserved
59 TPARERR Tag parity error detected. Writing a 1 to this bit location resets the bit.
0 Tag parity error not detected.
1 Tag parity error detected.
60 MBECCERR | Data Multiple-bit ECC error detected. Writing a 1 to this bit location resets the bit.
0 Tag Multiple-bit ECC error not detected.
1 Tag Multiple-bit ECC error detected.
61 SBECCERR Data ECC error detected. Writing a 1 to this bit location resets the bit.
0 Tag Single-bit ECC error not detected.
1 Tag Single-bit ECC error detected.
62 PARERR Data parity error detected. Writing a 1 to this bit location resets the bit.
0 Tag parity error not detected.
1 Tag parity error detected.
63 — Reserved
2.15.4.3 L2 Cache Error Interrupt Enable Register (L2ERRINTEN)

L2ERRINTEN, shown in Figure 2-21, provides general status and information for errors detected in the
L2 cache of the processor. The e500mc implements L2ZERRINTEN as defined by the architecture and
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described in the EREF: A Programmer s Reference Manual for Freescale Power Architecture®
Processors with the following exception:

» It does not implement the TMBECCINTEN, TSBECCINTEN, and L2CFGINTEN fields
* It does implement the implementation specific fields TMHITINTEN.

SPR 720 Hypervisor
32 ‘ ‘ ‘ ‘ ’ 55 56 57 58 59 60 61 62 63
R
W — TMHITINTEN| — |TPARINTEN|MBECCINTEN |SBECCINTEN|PARINTEN | —
Reset All Zeros

Figure 2-21. L2 Cache Error Interrupt Enable Register (L2ERRINTEN)

This table describes the L2ZERRINTEN fields.
Table 2-22. L2ERRINTEN Field Descriptions

Bits Name Description

32-55 — Reserved

56 TMHITINTEN | Tag multi-way hit interrupt reporting enable.

0 Tag multi-way hit interrupt reporting disabled.

1 Tag multi-way hit interrupt reporting enabled through a machine check exception.

Note: This field is not part of EREF: A Programmer’s Reference Manual for Freescale Power
Architecture® Processors.

57-58 — Reserved

59 TPARINTEN | Tag parity error interrupt reporting enable.
0 Tag parity error interrupt reporting disabled.
1 Tag parity error interrupt reporting enabled through a machine check exception.

60 MBECCINTEN | Data Multiple-bit ECC error interrupt reporting enable.
0 Data Multiple-bit ECC error interrupt reporting disabled.
1 Data Multiple-bit ECC error interrupt reporting enabled through a machine check exception.

61 SBECCINTEN | Data ECC error interrupt reporting enable.
0 Data Single-bit ECC error interrupt reporting disabled.
1 Data Single-bit ECC error interrupt reporting enabled through a machine check exception.

62 PARINTEN Data parity error interrupt reporting enable.
0 Data parity error interrupt reporting disabled.
1 Data parity error interrupt reporting enabled through a machine check exception.

63 — Reserved

2.15.4.4 L2 Cache Error Control Register (L2ZERRCTL)

L2ERRCTL, shown in Figure 2-21, provides thresholds and counts for errors detected in the L2 cache of
the processor. The e500mc implements L2ZERRCTL as defined by the architecture and described in the
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EREF': A Programmer s Reference Manual for Freescale Power Architecture® Processors with the
following exception: it does not implement the LZTCCOUNT field.

SPR 724 Hypervisor
32 ‘ 39 | 40 ‘ 47 | 48 ‘ 55 | 56 ‘ 63
R
W — L2CTHRESH — L2CCOUNT
Reset All Zeros

Figure 2-22. L2 Cache Error Control Register (L2ZERRCTL)

This table describes the L2ZERRCTL fields.
Table 2-23. L2ZERRCTL Field Descriptions

Bits Name Description

32-39 — Reserved

40-47 L2CTHRESH | L2 cache threshold. Threshold value for the number of ECC single-bit errors that are detected
before reporting an error condition. L2ZCTHRESH is compared to L2ZCCOUNT each time a single-bit
ECC error is detected.

48-55 — Reserved

56—63 L2CCOUNT L2 data ECC single-bit error count. Counts ECC single-bit errors in the L2 data detected. If
L2CCOUNT equals the ECC single-bit error trigger threshold (L2CTHRESH), an error is reported
if single-bit error reporting for data is enabled. Software should clear this value when such an error
is reported to reset the count.

2.15.4.5 L2 Cache Error Address Capture Registers (L2ERRADDR and
L2ERREADDR)

L2ERRADDR and L2ZERREADDR provides the real address of a captured error detected in the L2 cache
of the processor. The e500mc implements these registers as defined by the architecture and described in
the EREF: A Programmers Reference Manual for Freescale Power Architecture® Processors.

2.15.4.6 L2 Cache Error Capture Data Registers (L2CAPTDATALO and
L2CAPTDATAHI)

L2CAPTDATALO and L2ZCAPTDATAHI provides the array data of a captured error detected in the L2
cache of the processor. L2ZCAPTDATALO captures the lower 32 bits of the doubleword and
L2CAPTDATAHI captures the upper 32 bits of the doubleword. The e500mc implements these registers
as defined by the architecture and described in the EREF: A Programmer s Reference Manual for
Freescale Power Architecture® Processors.

2.15.4.7 L2 Cache Capture ECC Syndrome Register (L2CAPTECC)

L2CAPTECC provides both the calculated and stored ECC syndrome of a captured error detected in the
L2 cache of the processor. The e500mc implements this register as defined by the architecture and
described in the EREF: A Programmer s Reference Manual for Freescale Power Architecture®
Processors.
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2.15.4.8 L2 Cache Error Attribute Register (L2ERRATTR)

L2ERRATTR, shown in Figure 2-23, provides extended information for errors detected in the L2 cache of
the processor. The e500mc implements L2ZERRATTR as defined by the architecture and described in the
EREF': A Programmer s Reference Manual for Freescale Power Architecture® Processors, and
implements the implementation specific fields DWNUM, TRANSSRC, and TRANSTYPE.

SPR 721 Hypervisor
32 33 35|36 ‘ 42 43‘ 47 (48 49 50 51 |52 ‘ ‘ 62 63
R
wl— DWNUM — TRANSSRC — |TRANSTYPE — VALINFO
Reset All Zeros

Figure 2-23. L2 Cache Error Attribute Register (L2ZERRATTR)

This table describes the L2ZERRATTR fields.

Table 2-24. L2ERRATTR Field Descriptions

Bits

Name

Description

32

Reserved

33-35

DWNUM

Doubleword number of the detected error (data ECC errors only).
Note: This field is not part of EREF: A Programmer’s Reference Manual for Freescale Power
Architecture® Processors.

36-42

Reserved

43-47

TRANSSRC

Transaction source for detected error

00000 External (snoop)

10000 Internal (instruction)

10001 Internal (data)

00001-01111 Not Implemented

10010-11111 Not Implemented

Note: This field is not part of EREF: A Programmer’s Reference Manual for Freescale Power
Architecture® Processors.

48-49

Reserved

50-51

TRANSTYPE

Transaction type for detected error

00 Snoop

01 Write

10 Read

11 Not Implemented

Note: This field is not part of EREF: A Programmer s Reference Manual for Freescale Power Architecture®
Processors.

52-62

Reserved

63

VALINFO

L2 capture registers valid.

0 L2 capture registers contain no valid information or no enabled errors were detected.

1 L2 capture registers contain information of the first detected error which has reporting enabled.
Software must clear this bit to unfreeze error capture so error detection hardware can overwrite the
capture address/data/attributes for a newly detected error.
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2.15.4.9 L2 Cache Error Injection Control Register (L2ZERRINJCTL)

L2ERRINJCTL, shown in Figure 2-24, provides control for injecting errors into both the tags and data
array for the L2 cache of the processor. The contents of LZERRINJCTL as defined by the architecture and
described in the EREF: A Programmer s Reference Manual for Freescale Power Architecture®
Processors is implementation dependent, and all fields of this register are e500mc
implementation-specific.

NOTE

When error injection is being performed, the value of specific error disables
in L2ZERRDIS and L2CSRO[L2PE] are ignored and errors are always
detected. Software must ensure that L2PE is set and individual disables in
L2ERRDIS are clear when performing error injection to the data or tags.

SPR 987 Hypervisor
32 ‘ ‘ ‘ 46 47 48 ‘ 53 54 55 56 63
R
W — TERRIEN — ECCMB | DERRIEN ECCERRIM
Reset All Zeros

Figure 2-24. L2 Cache Error Injection Control Register (L2ERRINJCTL)

This table describes the L2ZERRINJCTL fields.
Table 2-25. L2ERRINJCTL Field Descriptions

Bits Name Description

32-46 — Reserved, should be 0.

47 TERRIEN |L2 tag array error injection.

0 No tag errors are injected.

1 All subsequent entries written to the L2 tag array have the parity inverted.

Note: This field is not part of EREF: A Programmer’s Reference Manual for Freescale Power
Architecture® Processors.

48-53 — Reserved, should be 0.

54 ECCMB ECC/Parity mirror byte enable.
0 ECC byte mirroring is disabled.
1 Each doubleword’s most significant byte is mirrored onto the corresponding ECC/parity byte if
DERRIEN = 1.
Note: This field is not part of EREF: A Programmer’s Reference Manual for Freescale Power
Architecture® Processors.
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Table 2-25. L2ERRINJCTL Field Descriptions (continued)

Bits Name Description

55 DERRIEN |L2 data array error injection.

0 No data errors are injected.

1 Subsequent entries written to the L2 data array have data or ECC/parity bits inverted as specified
in the data and ECC error injection masks and/or data path byte mirrored onto the ECC as specified
by the ECC mirror bit enable.

Note: If both ECC mirror byte and data error injection are enabled, ECC mask error injection is

performed on the mirrored ECC.

Note: This field is not part of EREF: A Programmer’s Reference Manual for Freescale Power

Architecture® Processors.

56-63 | ECCERRIM | Error injection mask for the ECC/parity bits. A set bit causes the corresponding ECC/parity bit

to be inverted on writes if DERRIEN = 1.

Note: This field is not part of EREF: A Programmer’s Reference Manual for Freescale Power
Architecture® Processors.

2.15.4.10 L2 Cache Error Injection Mask Registers (L2ERRINJLO and
L2ERRINJHI)

L2ERRINJLO and L2ERRINJHI provide the injection mask describing how errors are to be injected into
the data path doubleword in the L2 cache of the processor. LZERRINJLO provides the mask for the lower
32 bits of the doubleword and L2ZERRINJHI provides the mask for the upper 32 bits of the doubleword. A
set bit in the injection mask causes the corresponding data path bit to be inverted on data array writes when
L2ERRINJCTL[DERRIEN] = 1. The contents of LZERRINJLO and L2ERRINJHI, as defined by the
architecture and described in the EREF: A Programmer s Reference Manual for Freescale Power
Architecture® Processors, is implementation-dependent, and all fields of this register are e500mc
implementation-specific.

2.16 MMU Registers

This section describes the following MMU registers and their fields:
* Logical Partition ID Register (LPIDR)
» Process ID Register (PID)
«  MMU Control and Status Register 0 (MMUCSRO)
*+  MMU Configuration Register MMUCFQG)
* TLB Configuration Registers (TLBnCFQ)
« MMU Assist Registers (MASO-MASS)

2.16.1 Logical Partition ID Register (LPIDR)

LPIDR contains the logical partition ID in use for the processor. LPIDR is part of the virtual address and
is used during address translation comparing LPID to the Translation Logical Partition ID (TLPID) field
in the TLB entry to determine a matching TLB entry. LPIDR is accessible by software only in hypervisor
state (MSR[PR] = 0, MSR[GS] = 0). An attempt to read or write to LPIDR when the core is not in the
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hypervisor state results in a hypervisor privilege exception when MSR[PR] = 0 and a privilege exception
when MSR[PR] = 1.

Only the low-order 6 bits of LPIDR are implemented on e500mc.

When LPIDR is written the results of the change to LPIDR are not guaranteed to be seen until a context
synchronizing event occurs.

2.16.2 Process ID Register (PID)

The architecture specifies that a process ID (PID) value be associated with each effective address
(instruction or data) generated by the processor. PID values, defined by the PID register, are used to
construct virtual addresses for accessing memory. The e500mc implements only the low-order 8 bits for
the process ID. Writing to PIDs requires synchronization, as described in Section 3.3.3, “Synchronization
Requirements.”

2.16.3 MMU Control and Status Register 0 (MMUCSRO)

MMUCSRO shown in Figure 2-25, is used to control the L2 MMUSs. The e500mc implements the
L2TLBO FIand L2TLB1_FI TLB flash invalidate bits, which are implemented as they are defined by the
architecture and described in the EREF: A Programmer s Reference Manual for Freescale Power
Architecture® Processors.

MMUCSRO synchronization is described in Section 3.3.3, “Synchronization Requirements.”

SPR 1012 Hypervisor
3 60 61 62 63
2
R
— L2TLBO_FI|L2TLB1_FI —
w
Reset All zeros

Figure 2-25. MMU Control and Status Register 0 (MMUCSRO0)

This table describes the MMUCSRO fields.
Table 2-26. MMUCSRO Field Descriptions

Bits Name Description

32-60 — Reserved

61 L2TLBO_FI | TLBO flash invalidate (write 1 to invalidate)

0 No flash invalidate. Writing a 0 to this bit during an invalidation operation is ignored.

1 TLB1 invalidation operation. Hardware initiates a TLB1 invalidation operation. When this operation is
complete, this bit is cleared. Writing a 1 during an invalidation operation causes an undefined operation.
This invalidation typically takes 1 cycle.
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Table 2-26. MMUCSRO Field Descriptions (continued)

Bits Name Description

62 L2TLB1_FI | TLB1 flash invalidate (write 1 to invalidate)

0 No flash invalidate. Writing a 0 to this bit during an invalidation operation is ignored.

1 TLB1 invalidation operation. Hardware initiates a TLB1 invalidation operation. When this operation is
complete, this bit is cleared. Writing a 1 during an invalidation operation causes an undefined operation.
This invalidation typically takes 1 cycle.

63 — Reserved

2.16.4 MMU Configuration Register (MMUCFG)

MMUCEFG, shown in this figure, is implemented as defined by the architecture. It provides configuration
information about the e500mec MMU.

SPR 1015 Hypervisor RO

32 35|36 39| 40 ‘ 46 47‘48 49 ‘52 53 ‘ 57 58 59 61 62 63

R LPIDSIZE RASIZE NPIDS PIDSIZE NTLBS | MAVN
w

Reset 0 O O OO 11 0O010O0O1O0OO0OO0OO0OOOOTTOOTTT11TT11TOOO 1T 0O
Figure 2-26. MMU Configuration Register (MMUCFG)

This table describes MMUCFG fields.
Table 2-27. MMUCFG Field Descriptions

Bits Name Description

32-35 — Reserved

36—-39 | LPIDSIZ | LPID size. The number of LPID bits implemented. The processor implements only the least significant
E LPIDR bits. (0b0110 indicates LPIDR is 6 bits, LPIDR[58—-63])

40-46 | RASIZE |Real address size supported by the implementation. (Ob0100100 indicates 36 physical address bits)

47-48 — Reserved

49-52 | NPIDS | Number of PID registers. Indicates the number of PID registers provided by the processor. (0b0001
indicates one PID register implemented)

53-57 | PIDSIZE | PID register size. PIDSIZE is one less than the number of bits in each of the PID registers implemented by
the processor. The processor implements only the least significant PIDSIZE+1 bits in the PID. (0b00111
indicates PID is 8 bits. PID[56—-63])

58-59 — Reserved

60-61 | NTLBS |Number of TLBs. The value of NTLBS is one less than the number of software-accessible TLB structures
that are implemented by the processor. NTLBS is set to one less than the number of TLB structures so that
its value matches the maximum value of MASO[TLBSEL]. (Ob01 indicates two TLBs.)

62—-63 MAVN | MMU architecture version number. Indicates the version number of the architecture of the MMU
implemented by the processor. (0b00 indicates Version 1.0.)

2.16.5 TLB Configuration Registers (TLBnCFG)
TLBnCFG, shown in this figure, provides configuration information for TLBO and TLB1 of the L2 MMU.
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SPR 688 (TLBOCFG); 689 (TLB1CFG) Hypervisor RO
32 ‘ 39 |40 43|44 47| 48 49 50 51|52 63
R ASSOC MINSIZE | MAXSIZE |IPROT|AVAIL NENTRY
W —
Reset: TLBO O 0 0 0 0 1 0 0 0 0O O 1 O O O 1 0 0 00OO0OO1O0OO0OO0ODO0ODOOOODO
TLB1 01 00000O0OOO0OO0OTT1TOT1 1 1 1 0 0O0OO0OOO0OO0O1TO0O0O0OOO0DO

Figure 2-27. TLB Configuration Registers 0 and 1 (TLBOCFG, TLB1CFG)

This table describes the TLB#nCFG fields and shows the values for the e500mc.
Table 2-28. TLBnCFG Field Descriptions

Bits Name Description

32-39 ASSOC | Associativity of TLBn
TLBO: 0x04 Indicates associativity is 4-way set associative
TLB1: 0x40 Indicates associativity is 64 (fully associative since ASSOC = NENTRY)

40-43 MINSIZE | Minimum page size of TLBn
TLBO: Ox1 Indicates smallest page size is 4 Kbytes
TLB1: Ox1 Indicates smallest page size is 4 Kbytes

44-47 MAXSIZE | Maximum page size of TLBn
TLBO: 0x1 Indicates maximum page size is 4 Kbytes
TLB1: OxB Indicates maximum page size is 4 Gbytes

48 IPROT Invalidate protect capability of TLBn
TLBO: 0 Indicates invalidate protection capability not supported
TLB1: 1 Indicates that TLB1 supports invalidate protection capability

49 AVAIL Page size availability of TLBn
TLBO: 0 No variable-sized pages available (MINSIZE = MAXSIZE)
TLB1: 1 Indicates all page sizes between MINSIZE and MAXSIZE supported

50-51 — Reserved

52-63 NENTRY | Number of entries in TLBn
TLBO: 0x200 TLBO contains 512 entries.
TLB1: 0x040 TLB1 contains 64 entries

2.16.6 MMU Assist Registers (MAS0-MASS)

MAS registers are used to manage pages and TLBs. Contents are written to the TLBs when a TLB Write
Entry instruction (tlbwe) executes and are read from the TLBs when a TLB Read Entry instruction (tlbre)
or a TLB Search (tlbsx) executes.

Writing to any MAS register requires synchronization prior to executing a TLB manipulation instruction
(tlbwe, tlbre, tlbilx) which uses values in the MAS register to perform TLB operations. However, multiple
MAS register updates can be performed and a single context synchronization instruction prior to the
execution of the TLB manipulation instruction is sufficient to synchronize all the MAS register changes.
Synchronization is described in Section 3.3.3, “Synchronization Requirements.”
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TLB read (tlbre) and TLB write (tIbwe) instructions use MASO[TLBSEL], MASO[ESEL], and
MAS2[EPN] to select which TLB entry to read from or write to. On e500mc, these fields are used as
described by this table.

Table 2-29. TLB Selection Fields

TLB Array
MASO[TLBSEL] MASO[ESEL] MAS2[EPN] MASO[NV]
0 MASO0[46:47] selects way MAS2[45:51] selects set MASOQ[62:63] indicates Next
(low order 2 bits of ESEL) (low order 7 bits of EPN) Victim value for ESEL
1 MASOQ[42:47] selects entry Not used, as TLB1 is fully associative | NV field not defined for this TLB
(low order 6 bits of ESEL) Array

2.16.6.1 MAS Register 0 (MASO0)

MASO, shown in Figure 2-28, is implemented as defined by the architecture. Only the low-order bit of
TLBSEL, the low-order 6 bits of ESEL, and the low-order 2 bits of NV are implemented.

Writing to MASO requires synchronization, as described in Section 3.3.3, “Synchronization
Requirements.”

SPR 624 Guest supervisor
32 34 35 36 ‘ 41 42 ‘ 47 | 48 ‘ ‘ 61 62 63
R
— TLBSEL — ESEL — NV
w
Reset All zeros

Figure 2-28. MAS Register 0 (MASO)

The MASO fields are described in this table.
Table 2-30. MASO Field Descriptions—MMU Read/Write and Replacement Control

Bit Name Description
32-34 — Reserved
35 TLBSE | Selects TLB for access.
L 0 TLBO
1 TLB1
36-41 — Reserved

42-47 | ESEL |Entry select. Number of the entry in the selected array to be used for tibwe. Updated on TLB error exceptions
(misses) and tlbsx hit and miss cases. Only certain bits are valid, depending on the array selected in TLBSEL.
Other bits should be 0.
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Table 2-30. MASO Field Descriptions—MMU Read/Write and Replacement Control (continued)

Bit Name Description

48-61 — Reserved

62—-63 NV | Next victim. Can be used to identify the next victim to be targeted for a TLB miss replacement operation for
those TLBs that support the NV field.

For the e500mc, NV is the next victim value to be written to TLBO[NV] on execution of tlbwe. This field is also
updated on TLB error exceptions (misses), tlbsx hit and miss cases, and on execution of tibre.

This field is updated based on the calculated next victim value for TLBO (based on the round-robin replacement
algorithm, described in Section 6.3.2.2, “Replacement Algorithms for L2 MMU Entries”). Note that this field is
not defined for operations that specify TLB1 (when TLBSEL = 1).

2.16.6.2 MAS Register 1 (MAS1)

MASI, shown in Figure 2-29, is implemented as defined by the architecture. Only the low-order 8 bits of
TID are implemented and page sizes 4KB through 4GB are supported for TSIZE (when using TLB1).

Writing to MAS1 requires synchronization, as described in Section 3.3.3, “Synchronization
Requirements.”

SPR 625 Guest supervisor
32 33 34 ‘ 39 |40 ‘ 47 | 48 50 51|52 55 | 56 63
R
V | IPROT — TID — TS TSIZE —
w
Reset All zeros

Figure 2-29. MAS Register 1 (MAS1)

The MASI fields are described in this table.
Table 2-31. MAS1 Field Descriptions—Descriptor Context and Configuration Control

Bits | Name Descriptions

32 V | TLB valid bit.
0 This TLB entry is invalid.
1 This TLB entry is valid.

33 IPRO | Invalidate protect. Set to protect this TLB entry from invalidate operations from tlbivax, tlbilx, or MMUCSRO TLB
T |[flash invalidates. Note that not all TLB arrays are necessarily protected from invalidation with IPROT. Arrays that
support invalidate protection are denoted as such in the TLB configuration registers.

0 Entry is not protected from invalidation.

1 Entry is protected from invalidation.

34-39 — | Reserved

40-47 | TID |Translation identity. Defines the process ID for this TLB entry. TID is compared to the process ID in the PID
register during translation. A TID value of 0 defines an entry as global and matches with all process IDs.

48-50 — | Reserved

51 TS | Translation space. Compared with MSR[IS] (instruction fetch) or MSR[DS] (memory reference) to determine if
this TLB entry may be used for translation.
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Table 2-31. MAS1 Field Descriptions—Descriptor Context and Configuration Control (continued)

Bits | Name Descriptions

52-55 | TSIZE | Translation size. Defines the page size of the TLB entry. For TLB arrays with fixed-size TLB entries, TSIZE is
ignored. For variable-size arrays, the page size is 4T5"“E Kbytes. The e500mc supports the following sizes:
0001 4 Kbyte 0111 16 Mbyte
0010 16 Kbyte 1000 64 Mbyte
0011 64 Kbyte 1001 256 Mbyte
0100 256 Kbyte 1010 1 Gbyte
0101 1 Mbyte 1011 4 Gbyte
0110 4 Mbyte

56-63 — | Reserved

2.16.6.3 MAS Register 2 (MAS2)

MAS?2, shown in this figure, is implemented as defined by the architecture. MAS2 is a 32-bit register. The
ACM and VLE fields are not implemented.

Writing to MAS2 requires synchronization, as described in Section 3.3.3, “Synchronization
Requirements.”

SPR 626 Guest supervisor
32 ‘ ‘ ‘ ‘ 51| 52 ‘56 57 58 59 ‘ 60 61 62 63
R
EPN — XO‘X1‘WHM‘G‘E
w
Reset All zeros

Figure 2-30. MAS Register 2 (MAS2)

The MAS?2 fields are described in this table.

Table 2-32. MAS2 Field Descriptions—EPN and Page Attributes

Bits sz Description
32-51 | EPN | Effective page number. Depending on page size, only the bits associated with a page boundary are valid. Bits
that represent offsets within a page are ignored and should be zero.
52-56 | — |Reserved
57 X0 | Implementation-dependent page attribute. Implemented as storage.
58 X1 | Implementation-dependent page attribute. Implemented as storage.
59 W | Write-through

0 This page is considered write-back with respect to the caches in the system.
1 All stores performed to this page are written through the caches to main memory.
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Table 2-32. MAS2 Field Descriptions—EPN and Page Attributes (continued)

Bits Nam Description

60 | Caching-inhibited

0 Accesses to this page are considered cacheable.

1 The page is considered caching-inhibited. All loads and stores to the page bypass the caches and are
performed directly to main memory. A read or write to a caching-inhibited page affects only the memory
element specified by the operation.

Note: Cache-inhibited loads may hit in the L1 or L2 cache, but the transaction is always performed over CoreNet,

ignoring the hit (although the hit may have other unarchitected side effects). Cache-inhibited loads that hit
in the Data Line Fill Buffer (DLFB) are serviced out of the DLFB and are not performed over CoreNet.

Note: Cache-inhibited (non-decorated, and non-guarded) loads execute speculatively on e500mc.

61 M | Memory coherency required

0 Memory coherency is not required.

1 Memory coherency is required. This allows loads and stores to this page to be coherent with loads and stores
from other processors (and devices) in the system, assuming all such devices are participating in the
coherency protocol.

62 G |Guarded

0 Accesses to this page are not guarded and can be performed before it is known if they are required by the
sequential execution model.

1 All loads and stores to this page are performed without speculation (that is, they are known to be required).

Guarded loads (that are not cache inhibited) execute speculatively out of the core caches, but executes

non-speculatively if required to go off core to execute.

63 E | Endianness. Determines endianness for the corresponding page. Little-endian operation is true little endian,
which differs from the modified little-endian byte ordering model available in some previous devices.

0 The page is accessed in big-endian byte order.

1 The page is accessed in true little-endian byte order.

2.16.6.4 MAS Register 3 (MAS3)
MASS3, shown in Figure 2-31, is implemented as defined by the architecture.
NOTE

When an operating system executing as a guest on a hypervisor uses the
RPN fields of MAS3 and MAS7, the RPN should be interpreted by the
hypervisor as a logical address or a guest physical address. The hypervisor
re-writes the RPN field with a real physical address obtained from
translating the logical address to a real physical address when emulating
tlbwe instructions.

Writing to MAS3 requires synchronization, as described in Section 3.3.3, “Synchronization
Requirements.”

SPR 627 Guest supervisor
32 ‘ ‘ ‘ ‘ 51|52 53 54 ‘ 57 58 59|60 61 62 63
R
W RPN — Uo-U3 |UX|SX|UW|SW|UR|SR
Reset All zeros

Figure 2-31. MAS Register 3 (MAS3)
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The MAS3 fields are described in this table.
Table 2-33. MAS3 Field Descriptions—RPN and Access Control

Bits | Name Description

32-51 RPN | Real page number. Depending on page size, only the bits associated with a page boundary are valid. Bits that
represent offsets within a page are ignored and should be zero. MAS3[RPN] contains only the low-order bits
of the real page number. The high order bits of the real page number are located in MAS7. See

Section 2.16.6.8, “MAS Register 7 (MAS7),” for more information.

52-53 — Reserved

54-57 | U0O-U3 | User attribute bits. These bits are associated with a TLB entry and can be used by system software. For
example, these bits may be used to hold information useful to a page scanning algorithm or be used to mark
more abstract page attributes.

58-63 | UX,SX |Permission bits (UX, SX, UW, SW, UR, SR). User and supervisor read, write, and execute permission bits.
UW,SW | See the EREF: A Programmer’s Reference Manual for Freescale Power Architecture® Processors for more
, information on the page permission bits as they are defined by the architecture.

UR,SR

2.16.6.5 MAS Register 4 (MAS4)

MAS4, shown in Figure 2-32, is implemented as defined by the architecture. Only the low-order bit of
TLBSELD is implemented and page sizes 4KB through 4GB are supported for TSIZED (when using
TLB1). The ACMD and VLED fields are not implemented

Writing to MAS4 requires synchronization, as described in Section 3.3.3, “Synchronization
Requirements.”

SPR 628 Guest supervisor
32 34 35 36 ‘ ‘ 51|52 55| 56 57 58 59 | 60 61 62 63
R
wl — TLBSELD — TSIZED | — |X0D|X1D|wD| ID |MD|GD |ED
Reset All zeros

Figure 2-32. MAS Register 4 (MAS4)
The MAS4 fields are described in this table.

Table 2-34. MAS4 Field Descriptions—Hardware Replacement Assist Configuration

Bits Name Description
32-34 — Reserved
35 TLBSEL | TLBSEL default value. Specifies the default value to be loaded in MASO[TLBSEL] on a TLB miss exception.
D
36-51 — Reserved

52-55 | TSIZED |Default TSIZE value. Specifies the default value to be loaded into MAS1[TSIZE] on a TLB miss exception.

56 — Reserved
57 X0D Default X0 value. Specifies the default value to be loaded into MAS2[X0] on a TLB miss exception.
58 X1D Default X1 value. Specifies the default value to be loaded into MAS2[X1] on a TLB miss exception.
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Table 2-34. MAS4 Field Descriptions—Hardware Replacement Assist Configuration (continued)

Bits Name Description

59 WD Default W value. Specifies the default value to be loaded into MAS2[W] on a TLB miss exception.
60 ID Default | value. Specifies the default value to be loaded into MAS2[I] on a TLB miss exception.

61 MD Default M value. Specifies the default value to be loaded into MAS2[M] on a TLB miss exception.
62 GD Default G value. Specifies the default value to be loaded into MAS2[G] on a TLB miss exception.
63 ED Default E value. Specifies the default value to be loaded into MAS2[E] on a TLB miss exception.

2.16.6.6 MAS Register 5 (MAS5)

MASS, shown in Figure 2-33, is implemented as defined by the architecture. MASS5 contains hypervisor
fields for specifying LPID and GS values to be used to search TLB entries with a tlbsx instruction and for
specifying LPID values to invalidate TLB entries with a tlbilx instruction. Only the low-order 6 bits of
SLPID are implemented.

Writing to MASS requires synchronization, as described in Section 3.3.3, “Synchronization
Requirements.”

SPR 339 Hypervisor
32 33 ‘ ‘ ‘ ‘ ‘ ‘ 57 58 63
R SGS — SLPID
w
Reset All zeros

Figure 2-33. MAS Register 5 (MAS5)

The MASS fields are described in this table.
Table 2-35. MMU Assist Register 5 (MAS5) Register Fields

Bits | Name Architecture Note

32 SGS |Search GS. Specifies the GS value used when searching the TLB during execution of tlbsx. The SGS field is
compared with the Translated (TGS) field of each TLB entry to find a matching entry.

33-57 — Reserved

58-63 | SLPID | Search LPID. Specifies the LPID value used when searching the TLB during execution of tlbsx. The SLPID
field is compared with the TLPID field of each TLB entry to find a matching entry.

2.16.6.7 MAS Register 6 (MAS6)

MASG6, shown in Figure 2-34, is implemented as defined by the architecture. Only the low-order 8 bits of
the SPID field are implemented.

Note the SPID field was previously named SPID0. Both names refer to the same field.

Writing to MASG6 requires synchronization, as described in Section 3.3.3, “Synchronization
Requirements.”
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SPR 630 Guest supervisor
32 39 | 40 47 | 48 62 63
R
— SPID — SAS
w
Reset All zeros

Figure 2-34. MAS Register 6 (MASG6)

The MASG6 fields are described in this table.
Table 2-36. MAS6 Field Descriptions

Bits | Name Description

32-39| — |Reserved

40-47 | SPID | Search PID. Specifies the value of PID used when searching the TLB during execution of tibsx. For the e500mc,
SPID contains the search PID value used when searching the TLB during execution of tibsx.

48-62| — |Reserved

63 SAS | Address space (AS) value for searches. Specifies the value of AS used when searching the TLB during
execution of tibsx.

2.16.6.8 MAS Register 7 (MAS7)

MAS7, shown in Figure 2-35, is implemented as defined by the architecture. MAS7 contains the
high-order 32-bits of the real (physical) page number. Since e500mc supports 36 bits of physical address,
only the low-order 4 bits of the high-order 32-bits of the real address (RPN) are implemented.

NOTE

When an operating system executing as a guest on a hypervisor uses the
RPN fields of MAS3 and MAS?7, the RPN should be interpreted by the
hypervisor as a logical address or a guest physical address. The hypervisor
re-writes the RPN field with a real physical address obtained from
translating the logical address to a real physical address when emulating
tlbwe instructions.

Writing to MAS7 requires synchronization, as described in Section 3.3.3, “Synchronization
Requirements.”

SPR 944 Guest supervisor
32 ‘ ‘ ‘ ‘ ‘ ‘ 59 | 60 63
R
— RPN
w
Reset All zeros

Figure 2-35. MAS Register 7 (MAS7)
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The MAS7 fields are described in this table.
Table 2-37. MAS7 Field Descriptions—High-Order RPN

Bits Nam Description

32-59 | — |Reserved

60-63 | RPN | Real page number, 4 high-order bits. MAS3 holds the remainder of the RPN. The byte offset within the page is
provided by the EA and is not present in MAS3 or MAS7.

2.16.6.9 MAS Register 8 (MASS8)

MASS, shown in Figure 2-36, is implemented as defined by the architecture. MAS8 contains hypervisor
state fields used for selecting a TLB entry during translation. Only the low-order 6 bits of TLPID are
implemented.

Writing to MASS requires synchronization, as described in Section 3.3.3, “Synchronization
Requirements.”

SPR 341 Hypervisor
32 33 34 ‘ ‘ ’ ‘ ‘ ‘ 57 58 63
R TGS|VF — TLPID
W
Reset All zeros

Figure 2-36. MAS Register 8 (MAS8) Format

MASS fields are described in this table.
Table 2-38. MMU Assist Register 8 (IAS8) Register Fields

Bits Nam Description

32 | TGS |Translation guest space. During translation, TGS is compared with MSR[GS] to select a TLB entry.

33 VF | Virtualization fault. Controls whether a DSI occurs on data accesses to the page, regardless of permission bit
settings.

0 Data accesses translated by this TLB entry occur normally.

1 Data accesses translated by this TLB entry always cause a data storage interrupt directed to the hypervisor.

34-57| — |Reserved

58-63 | TLPI | Translation logical partition ID. During translation, TLPID is compared with the LPIDR to select a TLB entry. A
D | TLPID value of 0 defines an entry as global and matches all values of LPIDR.

2.16.7 External PID Registers

The e500mc implements the external PID load and store context registers (EPLC and EPSC) as they are
defined by the architecture and described in the EREF': A Programmer s Reference Manual for Freescale
Power Architecture® Processors.
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2.16.7.1 External PID Load Context Register (EPLC)

The EPLC register contains fields to provide the context for external PID load instructions. Figure 2-37
shows the format of the EPLC register. Only the low-order 6 bits of the ELPID field and the low-order 8
bits of the EPID field are implemented.

Writing to EPLC requires synchronization, as described in Section 3.3.3, “Synchronization
Requirements.”

SPR 947 Guest supervisor
32 33 34 35‘ ’ 41 42 ‘ 47 |48 ‘ 55| 56 63
R
W EPR|EAS |[EGS — ELPID — EPID
Reset All zeros

Figure 2-37. External PID Load Context (EPLC) Format

The EPLC fields are described in this table.
Table 2-39. EPLC Fields—External PID Load Context

Bits | Name Descriptions
0-31 — Reserved
32 EPR | External load context PR bit. Used in place of MSR[PR] for load permission checking when an external PID

load instruction is executed.
0 Supervisor mode.
1 User mode.

33 EAS | External load context AS bit. Used in place of MSR[DS] for load translation when an External PID Load
instruction is executed. Compared with TLB[TS] during translation.

0 Address space 0.

1 Address space 1.

34 EGS |External load context GS bit. Used in place of MSR[GS] for load translation when an External PID Load
instruction is executed. Compared with TLB[TGS] during translation.This field is only writable in hypervisor
state (MSR[PR] = 0 and MSR[GS] = 0).

0 Hypervisor address space.

1 Guest address space.

35-41 — Reserved

42-47 | ELPID | External load context LPID value. Used in place of LPIDR value for load translation when an external PID Load
instruction is executed. Compared with TLB[TLPID] during translation. This field is only writable in hypervisor
state (MSR[PR] = 0 and MSR[GS] = 0).

48-55 — Reserved

56-63 | EPID |External load context PID value. Used in place of all PID register values for load translation when an external
PID Load instruction is executed. Compared with TLB[TID] during translation.

2.16.7.2 External PID Store Context (EPSC) Register

EPSC, shown in Figure 2-38, contains fields to provide the context for external PID store instructions. The
field encoding is the same as EPLC. Only the low-order 6 bits of the ELPID field and the low-order 8 bits
of the EPID field are implemented.
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Writing to EPSC requires synchronization, as described in Section 3.3.3, “Synchronization
Requirements.”

SPR 948 Guest supervisor
32 33 34 35‘ 41 42 47|48 ‘ 55 | 56 63
R
W EPR|EAS|EGS — ELPID — EPID
Reset All zeros

Figure 2-38. External PID Store Context (EPSC) Format

The EPSC fields are described in this table.
Table 2-40. EPSC Fields—External PID Store Context

Bits | Name Descriptions

0-31 — Reserved

32 EPR | External store context PR bit. Used in place of MSR[PR] for store permission checking when an External PID
Store instruction is executed.

0 Supervisor mode

1 User mode.

33 EAS |External store context AS bit. Used in place of MSR[DS] for store translation when an External PID Store
instruction is executed. Compared with TLB[TS] during translation.

0 Address space 0

1 Address space 1

34 EGS | External store context GS bit. Used in place of MSR[GS] for store translation when an External PID Store
instruction is executed. Compared with TLB[TGS] during translation.This field is only writable in hypervisor
state (MSR[PR] = 0 and MSR[GS] = 0).

0 Hypervisor address space.

1 Guest address space.

35-41 — Reserved

42-47 | ELPID | External store context LPID value. Used in place of LPIDR value for store translation when an external PID
Store instruction is executed. Compared with TLB[TLPID] during translation. This field is only writable in
hypervisor state (MSR[PR] = 0 and MSR[GS] = 0).

48-55 — Reserved

56-63 | EPID |External store context PID value. Used in place of all PID register values for store translation when an external
PID Store instruction is executed. Compared with TLB[TID] during translation.

2.17 Internal Debug Registers

This section describes debug-related registers that are accessible to software running on the processor.
These registers are intended for use by special debug tools and debug software, and not by general
application or operating system code.

The e500mc implements the category Embedded.Enhanced Debug from Power ISA 2.06 which provides
a separate set of save/restore registers for debug interrupts (DSRRO/DSRR1, see Section 2.9.1,
“Save/Restore Registers (xSRRO/xSRR1)”), an rfdi instruction to return from debug interrupts, and
additional debug events for Critical Interrupt Taken and Critical Interrupt Return.
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The debug registers listed here generally only describe the registers and facilities that are used by software
in the internal debug mode (when DBCRO[IDM] = 1). More detailed description of the debug facilities is
described in Chapter 9, “Debug and Performance Monitor Facilities.”

2.17.1 Unimplemented Internal Debug Registers

The e500mc does not implement the following internal debug registers defined by Power ISA 2.06 and
EREF': A Programmer s Reference Manual for Freescale Power Architecture® Processors:

« DBCR3
+ JAC3,IAC4
« DVC1,DVC2

2.17.2 Debug Control Register 0 (DBCRO0)

DBCRO is used to enable debug conditions, reset the processor, and control timer operation during debug
events. DBCRO is implemented on e500mc as defined by the architecture and described in the EREF: A
Programmer s Reference Manual for Freescale Power Architecture® Processors, except for the following
differences:

* TAC3 and IAC4 are not implemented

+ DBCRO[RST] encodings are more explicitly defined for the e500mc implementation

*  When in external debug mode (EDM) (DBCRO[EDM] = 1), software writes to this register while
e500mc is not halted are ignored

DBCRO, shown in Figure 2-39, contains bits for enabling debug conditions.

SPR 308 Hypervisor
32 33 3435 3 37 38 39 40 41 42 43|44 45 46 47| 48 49 ‘ ‘56 57 58 59| 62 63
R'|EDM
W2 IDM| RST [ICMP |BRT|IRPT|TRAP|IAC1|IAC2| — |DAC1|DAC2|RET — CIRPT|CRET| — |[FT
Reset All zeros

Figure 2-39. Debug Control Register 0 (DBCRO0)

1 All reserved bits read as zero

2 When in EDM (DBCRO[EDM] = 1) software writes to this register are ignored while e500mc is not halted.
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This table provides the bit definitions for DBCRO.
Table 2-41. DBCRO Field Descriptions

Bits Name Description

External Debug Mode. This bit is read only by software. It reflects the status of EDBCRO[EDM].
0 Indicates the processor is not in external debug mode. External debug events are disabled.

32 EDM 1 Indicates the processor is in external debug mode. A qualified debug condition generates an external
debug event by updating the corresponding bit in EDBSRO0 and causing the processor to halt.
Internal Debug Mode
0 Internal debug events are disabled.
33 DM 1 Internal debug events are enabled if DBCRO[EDM] = 0. A qualified debug condition generates an internal

debug event by updating the corresponding bit in the DBSR. If MSR[DE] = 1 and DBCRO[EDM] = 0, the
occurrence of a debug event, or the recording of an earlier debug event in the DBSR when MSR[DE] was
cleared, causes a debug interrupt.

Reset. The architecture defines this field such that 00 is always no action and all other settings are

implementation specific. €500mc implements these bits as follows:

34-35 RST |0x Default (No action)

1x Core reset. Requests a core hard reset if MSR[DE] and DBCRO[IDM] are set. Always cleared on
subsequent cycle.

Instruction Complete Debug Condition Enable
36 ICMP |0 ICMP debug conditions are disabled
1 ICMP debug conditions are enabled

Branch Taken Debug Condition Enable
37 BRT |0 BRT debug conditions are disabled
1 BRT debug conditions are enabled

Interrupt Taken Debug Condition Enable. This bit affects only non-critical, non-debug, and non-machine
check interrupts.

0 IRPT debug conditions are disabled

1 IRPT debug conditions are enabled

38 IRPT

Trap Debug Condition Enable
39 TRAP |0 TRAP debug conditions are disabled
1 TRAP debug conditions are enabled

Instruction Address Compare 1 Debug Condition Enable
40 IAC1 |0 IAC1 debug conditions are disabled
1 1AC1 debug conditions are enabled

Instruction Address Compare 2 Debug Condition Enable
41 IAC2 |0 IAC2 debug conditions are disabled
1 IAC2 debug conditions are enabled

42-43 — Reserved

Data Address Compare 1 Debug Condition Enable

00 DAC1 debug conditions are disabled

44-45 | DAC1 |01 DAC1 debug conditions are enabled only for store-type data storage accesses

10 DAC1 debug conditions are enabled only for load-type data storage accesses

11 DAC1 debug conditions are enabled for load-type or store-type data storage accesses
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Table 2-41. DBCRO Field Descriptions (continued)

Bits Name Description

Data Address Compare 2 Debug Condition Enable

00 DAC2 debug conditions are disabled

46-47 | DAC2 |01 DAC2 debug conditions are enabled only for store-type data storage accesses

10 DAC2 debug conditions are enabled only for load-type data storage accesses

11 DAC2 debug conditions are enabled for load-type or store-type data storage accesses

Return Debug Condition Enable
This bit affects only non-critical, non-debug, and non-machine check interrupts.

48 RET 0 RET debug conditions are disabled
1 RET debug conditions are enabled
49-56 — Reserved

Critical Interrupt Taken Debug Condition Enable
57 CIRPT |0 CIRPT debug conditions are disabled.
1 CIRPT debug conditions are enabled.

Return From Critical Interrupt Debug Condition Enable
58 CRET |0 CRET debug conditions are disabled.
1 CRET debug conditions are enabled.

59-62 — Reserved

Freeze Timers on Debug Event
63 FT 0 Timebase counters are unaffected by DBSR bits
1 Disable clocking of TimeBase counters whenever a DBSR bit is set (excluding DBSR[MRRY])

2.17.3 Debug Control Register 1 (DBCR1)

DBCRI1 is implemented as defined by the architecture and described in the EREF: A Programmer s
Reference Manual for Freescale Power Architecture® Processors, with the following exceptions:

*  When in EDM, software writes to this register while e500mc is not halted are ignored

* TACI1 and IAC2 comparisons must be based on effective addresses. Comparisons based on real
addresses are not supported

* TAC3 and IAC4 debug conditions are not implemented

¢ When IACI2M != 00, IAC2US and IAC2ER settings must match IAC1US and IAC1ER or results
are boundedly undefined

SPR 309 Hypervisor
32 33 34 35|36 37 38 39|40 41 42 ‘ ‘ ‘ ‘ ‘ 63
R
W IAC1US|IAC1ER|IAC2US|IAC2ER|IAC12M —

Reset All zeros

Figure 2-40. Debug Control Register 1 (DBCR1)
' When in EDM (DBCRO[EDM] = 1) software writes to this register are ignored while the €500mc is not halted.
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This table provides the bit definitions for DBCRI.

Table 2-42. DBCR1 Field Descriptions

Bits Name Description
32-33 | IAC1US | Instruction Address Compare 1 User/Supervisor Mode

00 IAC1 debug conditions unaffected by MSR[PR],MSR[GS]

01 Reserved on e500mc

10 IAC1 debug conditions can only occur if MSR[PR] = 0 (supervisor mode)

11 1AC1 debug conditions can only occur if MSR[PR] = 1 (user mode)

34-35 | IAC1ER | Instruction Address Compare 1 Effective/Real Mode

00 IAC1 debug conditions are based on effective addresses

01 Reserved on e500mc

10 IAC1 debug conditions are based on effective addresses and can occur only if MSRJ[IS] = 0

11 IAC1 debug conditions are based on effective addresses and can occur only if MSRJIS] = 1

36-37 | IAC2US | Instruction Address Compare 2 User/Supervisor Mode

00 IAC2 debug conditions unaffected by MSR[PR],MSR[GS]

01 Reserved on e500mc

10 IAC2 debug conditions can only occur if MSR[PR]=0 (supervisor mode)

11 1AC2 debug conditions can only occur if MSR[PR]=1 (user mode)

38-39 | IAC2ER | Instruction Address Compare 2 Effective/Real Mode

00 IAC2 debug conditions are based on effective addresses

01 Reserved on e500mc

10 IAC2 debug conditions are based on effective addresses and can occur only if MSR[IS] =0

11 1AC2 debug conditions are based on effective addresses and can occur only if MSR[IS] = 1

40-41 | IAC12M | Instruction Address Compare 1/2 Mode.

00 Exact address compare. IAC1 debug conditions can only occur if the address of the instruction fetch is
equal to the value specified in IAC1. IAC2 debug conditions can only occur if the address of the
instruction fetch is equal to the value specified in IAC2. IAC1US, IAC1ER, and DBCRO[IAC1] are used
for IAC1 conditions. IAC2US, IAC2ER, and DBCRO[IAC2] are used for IAC2 conditions.

01 Address bit match. IAC1 debug conditions can occur only if the address of the instruction fetch, ANDed
with the contents of IAC2 is equal to the contents of IAC1, also ANDed with the contents of IAC2. IAC2
debug conditions do not occur. The DBCRO[IAC1] setting is used. The value of DBCRO[IAC2] is ignored.
If IAC1US and IAC1ER do not match IAC2US and IAC2ER values, results are boundedly undefined.

10 Inclusive address range compare. IAC1 debug conditions can occur only if the address of the instruction
fetch is greater than or equal to the value specified in IAC1 and less than the value specified in IAC2.
IAC2 debug conditions do not occur. The DBCRO[IAC1] setting is used. The value of DBCRO[IAC2] is
ignored. If IAC1US and IAC1ER do not match IAC2US and IAC2ER values, results are boundedly
undefined.

11 Exclusive address range compare. IAC1 debug conditions can occur only if the address of the
instruction fetch is less than the value specified in IAC1 or is greater than or equal to the value specified
in IAC22. IAC2 debug conditions do not occur. The DBCRO[IAC1] setting is used. The value of
DBCRO[IAC2] is ignored. If IAC1US and IAC1ER do not match IAC2US and IAC2ER values, results are
boundedly undefined.

e500mc sets both DBSR[IAC1] and DBSRJ[IAC2] bits if IAC12M is set to anything other than 0b00 and an

instruction address compare 1 or 2 event occurs.

42—63 — Reserved

1 I1f IAC1 > IAC2 or IAC1 = IAC2 a valid condition never occurs.
2 If IAC1 > IAC2 or IAC1 = IAC2 a valid condition may occur on every instruction fetch.
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2.17.4 Debug Control Register 2 (DBCR2)

DBCR?2 is implemented as defined by the architecture and described in the EREF: A Programmers

Reference Manual for Freescale Power Architecture® Processors, except for the following differences:

When in EDM, software writes to this register are ignored while the e500mc is not halted.

DAC comparisons are based on effective addresses only.

Data Value Compare is not implemented.
DACLINKI and DACLINK?2 are implemented.

This figure shows the debug control register 2.

SPR 310 Hypervisor
32 33 34 35|36 37 38 39| 40 4 42 43 44 ‘ ’ ‘ ‘ 63
R
W DAC1US | DAC1ER | DAC2US | DAC2ER | DAC12M | DACLINK1 |DACLINK2 —
Reset All zeros

Figure 2-41. Debug Control Register 2 (DBCR2)

TWhen in EDM (DBCRO[EDM]=1) software writes to this register are ignored while the e500mc is not halted.

This table provides the bit definitions for DBCR2.

Table 2-43. DBCR2 Field Descriptions

Bits

Name

Description

32-33

DAC1US

Data Address Compare 1 User/Supervisor Mode

00 DAC1 debug conditions unaffected by MSR[PR]

01 Reserved on e500mc

10 DAC1 debug conditions can only occur if MSR[PR] = 0 (supervisor mode)
11 DAC1 debug conditions can only occur if MSR[PR] = 1 (user mode)

34-35

DAC1ER

Data Address Compare 1 Effective/Real mode

00 DACT1 debug conditions are based on effective addresses

01 Reserved on e500mc

10 DAC1 debug conditions are based on effective addresses and can occur only if MSR[DS] = 0
11 DAC1 debug conditions are based on effective addresses and can occur only if MSR[DS] = 1

36-37

DAC2US

Data Address Compare 2 User/Supervisor Mode

00 DAC2 debug conditions unaffected by MSR[PR], MSR[GS]

01 Reserved on e500mc

10 DAC2 debug conditions can only occur if MSR[PR] = 0 (supervisor mode)
11 DAC2 debug conditions can only occur if MSR[PR] = 1 (user mode)

38-39

DAC2ER

Data Address Compare 2 Effective/Real mode

00 DAC2 debug conditions are based on effective addresses

01 Reserved on

10 DAC2 debug conditions are based on effective addresses and can occur only if MSR[DS] = 0
11 DAC2 debug conditions are based on effective addresses and can occur only if MSR[DS] = 1
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Table 2-43. DBCR2 Field Descriptions (continued)

Bits

Name

Description

40-41

DAC12M

Data Address Compare 1/2 Mode

00 Exact address compare. DAC1 debug conditions can only occur if the data storage address is equal
to the value specified in DAC1. DAC2 debug conditions can only occur if the data storage address is
equal to the value specified in DAC2. DAC1US, DAC1ER, and DBCRO[DAC1] are used for DAC1
conditions. DAC2US, DAC2ER, and DBCRO[DAC?2] are used for DAC2 conditions '

01 Address bit match. DAC1 debug conditions can occur only if the data storage address ANDed with
the contents of DAC2 is equal to the contents of DAC1 also ANDed with the contents of DAC2. DAC2
debug conditions do not occur. The DBCRO[DAC1] setting is used. The value of DBCRO[DAC2] is
ignored. DAC1US and DAC1ER values are used and DAC2US and DAC2ER values are ignored.

10 Inclusive address range compare. DAC1 debug conditions can occur only if the data storage address
is greater than or equal to the value specified in DAC1 and less than the value specified in DAC22.
DAC2 debug conditions do not occur. The DBCRO[DAC1] setting is used. The value of DBCRO[DAC2]
is ignored. DAC1US and DAC1ER values are used and DAC2US and DAC2ER values are ignored.

11 Exclusive address range compare. DAC1 debug conditions can occur only if the data storage
address is less than the value specified in DAC1 or is greater than or equal to the value specified in
DAC23. DAC2 debug conditions do not occur. The DBCRO[DAC1] setting is used. The value of
DBCRO[DAC2] is ignored. DAC1US and DAC1ER values are used and DAC2US and DAC2ER
values are ignored.

e500mc sets both DBSR[DAC1] and DBSR[DAC2] bits if DAC12M is set to anything other than 0b00 and
a data address compare 1 or 2 event occurs

42

DACLINK1

Data Address Compare 1 Link to Instruction Address Compare 1

0 No effect

1 DACT1 debug events are linked to IAC1 debug conditions. IAC1 debug conditions do not affect DBSR
or EDBSRO. When linked to IAC1, the DAC1 debug event is qualified based on whether the instruction
also generated an IAC1 debug condition.

43

DACLINK2

Data Address Compare 2 Link to Instruction Address Compare 2

0 No effect

1 DAC2 debug events are linked to IAC2 debug conditions. IAC2 debug conditions do not affect DBSR
or EDBSRO. When linked to IAC2, the DAC2 debug event is qualified based on whether the instruction
also generated an IAC2 debug condition.

44-63

Reserved

! See DBCR4 for extensions to the exact address match (range defined)
2 If DAC1 > DAC2 or DAC1=DAC2 a valid condition never occurs.
3 If DAC1 > DAC2 or DAC1=DAC2 a valid condition may occur on every data storage address.

2.17.5 Debug Control Register 4 (DBCR4)

DBCR4 is used to enable debug modes and provide additional debug controls. The e500mc adds some
implementation specific bits to this register, as described in this figure.

SPR 563 Hypervisor
32 ‘ ‘ 47| 48 51 | 52 55 | 56 ‘ 63
;1 — DAC1XM DAC2XM —
Reset All zeros
Figure 2-42. Debug Control Register 4 (DBCR4)
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' When in EDM (DBCRO[EDM]=1) software writes to this register are ignored while the €500mc is not halted.

This table provides the bit definitions for DBCRO.
Table 2-44. DBCRA4 Field Descriptions

Bits Name Description

32-47 — Reserved

Data Address Compare 1—Extended Mask Control

0000 No additional masking when DBCR2[DAC12M] = 00

0001-1100
Exact Match Bit Mask. Number of low order bits masked in DAC1 when comparing the storage
address with the value in DAC1 for exact address compare (DBRCR2[DAC12M] = 00). The
e500mc supports ranges up to 4KB.

1101-1111
Reserved

48-51 DAC1XM

Data Address Compare 2—Extended Mask Control

0000 No additional masking when DBCR2[DAC12M] = 00

0001-1100
Exact Match Bit Mask. Number of low order bits masked in DAC2 when comparing the storage
address with the value in DAC2 for exact address compare (DBRCR2[DAC12M] = 00). The
e500mc supports ranges up to 4KB

1101-1111
Reserved

52-55 | DAC2XM

56-63 — Reserved

2.17.6 Debug Status Register (DBSR/DBSRWR)

DBSR provides status information for debug events when DBCRO[IDM] = 1 and DBCRO[EDM] = 0, and
for the most recent processor reset.

DBSR is implemented as defined by the architecture and described in the EREF: A Programmer s
Reference Manual for Freescale Power Architecture® Processors, with the following exceptions:

*  When in EDM, software writes to this register are ignored while the e500mc is not halted

*  When in EDM, debug events update EDBSRO instead of DBSR

» Two additional debug events are possible: CIRPT and CRET
DBSRWR is implemented as defined by the architecture and described in the EREF': A Programmer s

Reference Manual for Freescale Power Architecture® Processors, and is used to write the value of the
DBSR to a specific value. DBSRWR is a write-only register.

DBSR is a write-one-to-clear register. Software should normally write DBSR with a mask specifying
which bits of DBSR to clear. DBSRWR should only be used to restore a DBSR value in the case of a
hypervisor partition switch.

Writing DBSRWR changes the value of the DBSR which, if nonzero, may cause later imprecise debug
interrupts.
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This figure shows the debug status register write register.

SPR 306 (DBSRWR) Hypervisor WO
32 33 3435 36 37 38 39 40 41 4243 44 45 46 47 48 49 56 57 58 59 63
R
w' [ioe | uoe | MRR [icvP |[BRT|IRPT | TRAP [1aCt [1ac2| | DACIR | DACIW | DAC2R | DACoW [RET| CIRPT|CRET|
Reset Contents can be read through DBSR only

Figure 2-43. Debug Status Register Write Register (DBSRWR)
' When in EDM (DBCRO[EDM] = 1) software writes to this register are ignored while €500mc is not halted.

This figure shows the debug status register.

SPR 304 (DBSR) Hypervisor
32 33 3435 36 37 38 39 | 40 41 4243] 44 45 46 47 | 48 49 ‘ ‘56 57 58 59| 63
R'/w?2
IDE |UDE| MRR | ICMP | BRT | IRPT | TRAP | IAC1 |IAC2| — | DAC1R | DAC1W |DAC2R|DAC2W |RET| —  [CIRPT|CRET| —
Reset 0 0 1 0 0 O O 0 0O 0 00 O 0 0 0 0 000 O 0 0.0

Figure 2-44. Debug Status Register (DBSR)

1 All reserved bits read as zero

2 Writing to DBSR clears any bits that set to 1 in the corresponding value being written from the source register
(write-one-to-clear). When in EDM (DBCRO[EDM] = 1), software writes to this register are ignored while e500mc is not halted.

This table provides the bit definitions for DBSR and DBSRWR.
Table 2-45. DBSR/DBSRWR Field Descriptions

Bits Name Description

Imprecise Debug Event
32 IDE 0 No imprecise debug events have occurred
1 Animprecise debug event has occurred while MSR[DE] = 0 and DBCRO[IDM] = 1 and DBCRO[EDM] =0

Unconditional Debug Event

0 No unconditional debug events have occurred

1 An unconditional debug event has occurred while DBCRO[IDM] = 1 and DBCRO[EDM] = 0. Note that
33 UDE unconditional debug events are not affected by EPCR[DUVD] on the e500mc.

An unconditional debug event can occur when the UDE signal (level sensitive, active low) is asserted to
the core. When UDE is asserted, DBSR[UDE] is set to 1 if DBCRO[IDM] = 1 and DBCRO[EDM] = 0. When
DBSR[UDE] is set, DBSR[IDE] is also set.

Most Recent Reset. The e500mc implements MRR as follows:

00 No hard reset occurred since this bit was last cleared by software.
34-35 MRR 01 Reserved

10 The previous reset was a hard reset (default value on power-up).
11 Reserved

Instruction Complete Debug Event
0 No instruction complete debug event has occurred

36 ICMP |1 Aninstruction complete debug event has occurred while DBCRO[ICMP] = 1, DBCRO[IDM] = 1,
DBCRO[EDM] = 0, and MSR[DE] = 1. See Section 9.8.9, “Instruction Complete Debug Event,” for more
details.
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Table 2-45. DBSR/DBSRWR Field Descriptions (continued)

Bits

Name

Description

37

BRT

Branch Taken Debug Event

0 No branch taken debug event has occurred

1 Abranch taken debug event has occurred while DBCRO[BRT] = 1, DBCRO[IDM] = 1, DBCRO[EDM] = 0,
and MSR[DE] = 1. See Section 9.8.8, “Branch Taken Debug Event,” for more details.

38

IRPT

Interrupt Taken Debug Event

0 No interrupt taken debug event has occurred

1 An interrupt taken debug event has occurred while DBCRO[IRPT] = 1, DBCRO[IDM] = 1, and
DBCRO[EDM] = 0. See Section 9.8.10, “Interrupt Taken Debug Event,” for more details.

39

TRAP

Trap Instruction Debug Event

0 No trap instruction debug event has occurred

1 A trap instruction debug event has occurred while DBCRO[TRAP] = 1, DBCRO[IDM] = 1, and
DBCRO[EDM] = 0. See Section 9.8.11, “Interrupt Return Debug Event,” for more details.

40

IACH

Instruction Address Compare 1 Debug Event

0 No instruction address compare 1 debug event has occurred

1 An instruction address compare 1 debug event has occurred while DBCRO[IAC1] = 1,
DBCRO[IDM] = 1and DBCRO[EDM] = 0. See Section 9.8.5, “Instruction Address Compare Debug
Events,” for more details.

41

IAC2

Instruction Address Compare 2 Debug Event

0 No instruction address compare 2 debug event has occurred

1 An instruction address compare 2 debug event has occurred while DBCRO[IAC2] = 1,
DBCRO[IDM] = 1and DBCRO[EDM] = 0. See Section 9.8.5, “Instruction Address Compare Debug
Events,” for more details.

42-43

Reserved

44

DAC1R

Data Address Compare 1 Read Debug Event

0 No data address compare 1 debug event has occurred

1 A data address compare 1 debug event has occurred while DBCRO[DAC1] = 10 or 11,
DBCRO[IDM] = 1and DBCRO[EDM] = 0. See Section 9.8.6, “Data Address Compare Debug Events,” for
more details.

45

DAC1W

Data Address Compare 1 Write Debug Event

0 No data address compare 1 debug event has occurred

1 A data address compare 1 debug event has occurred while DBCRO[DAC1] = 01 or 11,
DBCRO[IDM] = 1and DBCRO[EDM] = 0. See Section 9.8.6, “Data Address Compare Debug Events,” for
more details.

46

DAC2R

Data Address Compare 2 Read Debug Event

0 No data address compare 2 debug event has occurred

1 A data address compare 2 debug event has occurred while DBCRO[DAC2] = 10 or 11,
DBCRO[IDM] = 1and DBCRO[EDM] = 0. See Section 9.8.6, “Data Address Compare Debug Events,” for
more details.

47

DAC2W

Data Address Compare 2 Write Debug Event

0 No data address compare 2 debug event has occurred

1 Adata address compare 2 debug event has occurred while DBCRO[DAC2] = 01 or 11, DBCRO[IDM] = 1
and DBCRO[EDM] = 0. See Section 9.8.6, “Data Address Compare Debug Events,” for more details.

48

RET

Return Debug Event

0 No return debug event has occurred

1 A return debug event has occurred while DBCRO[RET] = 1, DBCRO[IDM] = 1and DBCRO[EDM] = 0.
See Section 9.8.11, “Interrupt Return Debug Event,” for more details.
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Table 2-45. DBSR/DBSRWR Field Descriptions (continued)

Bits Name Description

49-56 — Reserved

Critical Interrupt Taken Debug Event.
0 No critical interrupt taken debug event has occurred

57 CIRPT 1 A critical interrupt taken debug event has occurred while DBCRO[CIRPT] = 1, DBCRO[IDM] = 1, and
DBCRO[EDM] = 0.See Section 9.8.13, “Critical Interrupt Taken Debug Event,” for more details.
Critical Return Debug Event.
58 CRET 0 No critical return debug event has occurred
1 A critical return debug event has occurred while DBCRO[CRET] = 1, DBCRO[IDM] = 1, and
DBCRO[EDM] = 0. See Section 9.8.14, “Critical Return Debug Event,” for more details.
59-63 — Reserved

2.17.7 Instruction Address Compare Registers (IAC1-1AC2)

TAC1-IAC2 are implemented as defined by the architecture and described in the EREF: A Programmer s
Reference Manual for Freescale Power Architecture® Processors with one exception: when in EDM,
software writes to this register are ignored while the e500mc is not halted.

IACI1 and TAC2 are 32-bit registers on e500mc.
The instruction address compare registers (IAC1-IAC2) are described in Figure 2-45.

SPR 312 (IAC1), SPR 313 (IAC2) Hypervisor
3 | | | | | | 61 62 63
R .
1 Instruction Address —
w

Reset All zeros

Figure 2-45. Instruction Address Compare Registers (IAC1-I1AC2)
' When in EDM (DBCRO[EDM] = 1) software writes to this register are ignored while the €500mc is not halted.

2.17.8 Data Address Compare Registers (DAC1-DAC2)

DACI-DAC?2 are implemented as defined by the architecture and described in the EREF: A Programmer s
Reference Manual for Freescale Power Architecture® Processors with one exception: when in EDM,
software writes to this register are ignored while the e500mc is not halted.

DACI and DAC?2 are 32-bit registers on e500mc.
The data address compare registers (DAC1 and DAC2) are shown in Figure 2-46.

SPR 316 (IDAC1), SPR 317 (DAC2) Hypervisor
% | | | | | | 62
R
1 Data Address
W
Reset All zeros

Figure 2-46. Data Address Compare Registers (DAC1-DAC2)
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1 When in EDM (DBCRO[EDM] = 1), software writes to this register are ignored while the e500mc is not halted.

2.17.9 Nexus SPR Access Registers

The architecture defines the Nexus SPR access registers to provide access to the memory-mapped registers
implemented as part of the core and described in Section 9.4, “Nexus Registers.” The index offset for these
registers can be specified in the Nexus SPR configuration register (NSPC) after which access to these
registers can be made by using mtspr and mfspr instructions to read and write the Nexus SPR data register
(NSPD).

2.17.9.1 Nexus SPR Configuration Register (NSPC)

The NSPC provides a mechanism for software to access Nexus debug resources (through SPR
instructions). Refer to Section 9.9.4.2, “Special-Purpose Register Access (Nexus Only),” for details on
accessing Nexus resources through the NSPC register.

This figure shows the Nexus SPR configuration register.

SPR 984 Hypervisor
32 ‘ ‘ ‘ ‘ 51| 52 63
R
1 — INDX
w
Reset All zeros

1. When in external debug mode (DBCRO[EDM] = 1) software writes to this register are ignored.
Figure 2-47. Nexus SPR Configuration Register (NSPC)
This table provides the bit definitions for NSPC. See Table 9-23 for the list of the Nexus registers that can
be accessed.
Table 2-46. NSPC Field Descriptions

Bits Name Description

32-51 — Reserved

52-63 | INDX |Register index’

1 Refer to Table 9-23 for appropriate index values for accessing Nexus registers

2.17.9.2 Nexus SPR Data Register (NSPD)

The NSPD provides a mechanism to transfer data to and from SPR resources. The Nexus resource to be
accessed is determined by the programming of the NSPC. For write operations, the write data should be
loaded into the NSPD. For read operations, the read data may be acquired from the NSPD.

Writing to the NSPD register requires an isyne instruction immediately following the mtspr to NSPD to
ensure that the write is completed.
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This figure shows the Nexus SPR data register.

SPR 983 Hypervisor
32 ‘ ‘ ‘ 63
R .
W Nexus SPR Read/Write Data
Reset All zeros

1. When in External Debug Mode (DBCRO[EDM] = 1) software writes to this register are ignored.
Figure 2-48. Nexus SPR Data Register (NSPD)

2.17.10 Debug Event Select Register (DEVENT)

DEVENT allows instrumented software to internally generate signals when an mtspr instruction is
executed and this register is accessed. The value written to this register determines which processor output
signals fire upon access. These signals are used for internal core debug resources, such as the performance
monitor, as well as for SoC-level cross-triggering. See the SoC reference manual for more information on
use cases.

The upper 8 DEVENT bits also provide the IDTAG used to identify channels within Data Acquisition
Messages. See Section 9.10.15, “Data Acquisition,” for more detail on the IDTAG.

This figure shows the debug event register.

SPR 975 User
32 39 | 40 ‘ 55 | 56 63
R
DQTAG — DEVNT
w
Reset All zeros

Figure 2-49. Debug Event Register (DEVENT)

This table provides the bit definitions for DEVENT.
Table 2-47. DEVENT Field Descriptions

Bits Name Description

32-39 DQTAG |IDTAG channel identifier used in Data Acquisition Messages

40-55 — Reserved

Debug Event Signals

00000000 = No signal is asserted
xxxxxxx1 = DVTO is asserted
xxxxxx1x = DVT1 is asserted
xxxxx1xx = DVT2 is asserted
xxxx1xxx = DVT3 is asserted
xxx1xxxx = DVT4 is asserted
xx1xxxxx = DVT5 is asserted
x1xxxxxx = DVT6 is asserted
1xxxxxxx = DVT7 is asserted

56-63 DEVNT

e500mc Core Reference Manual, Rev. 3

2-74 Freescale Semiconductor



Register Model

2.17.11 Debug Data Acquisition Message Register (DDAM)

DDAM allows instrumented software to generate real-time data acquisition messages (as defined by
Nexus) when an mtspr instruction is executed and this register is written. See Section 9.10.15, “Data
Acquisition,” for details.

This figure shows the debug data acquisition message register.

SPR 576 User WO
32 | | | | 63
R
w DDAM
Reset All zeros

Figure 2-50. Debug Data Acquisition Message Register (DDAM)

This table describes the DDAM bit fields.
Table 2-48. DDAM Field Description

Bits Name Description

32-63 DDAM Data value to be transmitted in a Data Acquisition Message (DQM)

2.17.12 Nexus Process ID Register (NPIDR)

NPIDR allows the full process ID utilized by the OS to be transmitted within Nexus Ownership Trace
Messages.

Figure 2-51 shows the Nexus process ID register.

SPR 517 User
32 ‘ ’ ‘ 63
R
Full OS Process ID
w
Reset All zeros

Figure 2-51. Nexus Process ID Register

NOTE

OS accesses to NPIDR must be performed in addition to writes to the PID
register used to create translated addresses in the MMU for Nexus
messaging.

2.18 Performance Monitor Registers (PMRs)

The performance monitor provides a set of performance monitor registers (PMRs) for defining, enabling,
and counting conditions that trigger the performance monitor interrupt. PMRs are defined by the
architecture and described in the EREF: A Programmer s Reference Manual for Freescale Power
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Architecture® Processors. The performance monitor also defines IVOR35 (see Section 2.9.4, “(Guest)
Interrupt Vector Offset Registers (IVORs/GIVORs)”) for providing the address of the performance
monitor interrupt vector. [IVOR35 is described in the interrupt model chapter of the EREF: A
Programmer s Reference Manual for Freescale Power Architecture® Processors.

PMRs are similar to the SPRs and are accessed by mtpmr and mfpmr. As shown in Table 2-49, the
contents of the PMRs are reflected to a read-only user-level equivalent.

Table 2-49. Performance Monitor Registers

Supervisor User
Name Section/Page
Abbreviation PMRn Abbreviation PMRn

Performance monitor counter 0 PMCO 16 UPMCO 0 2.18.4/2-82
Performance monitor counter 1 PMC1 17 UPMCH1 1

Performance monitor counter 2 PMC2 18 UPMC2 2

Performance monitor counter 3 PMC3 19 UPMC3 3

Performance monitor local control a0 PMLCa0 144 UPMLCa0 128 2.18.2/2-77
Performance monitor local control a1 PMLCa1 145 UPMLCat1 129

Performance monitor local control a2 PMLCa2 146 UPMLCa2 130

Performance monitor local control a3 PMLCa3 147 UPMLCa3 131

Performance monitor local control bO PMLCbO 272 UPMLCbO 256 2.18.3/2-79
Performance monitor local control b1 PMLCb1 273 UPMLCb1 257

Performance monitor local control b2 PMLCb2 274 UPMLCb2 258

Performance monitor local control b3 PMLCb3 275 UPMLCb3 259

Performance monitor global control 0 PMGCO 400 UPMGCO 384 2.18.1/2-76

Attempting to access a supervisor PMR from user mode (MSR[PR] = 1), results in a privileged instruction
exception. Attempting to access a non-existent PMR in any privilege mode results in an illegal instruction
exception.

If MSRP[PMMP] = 1, access to PMRs can cause embedded hypervisor privilege exceptions, or return a
value of 0 in the target register. The behavior is described in EREF: A Programmer s Reference Manual
for Freescale Power Architecture® Processors.

2.18.1 Global Control Register 0 (PMGCO0/UPMGCO0)

PMGCO, shown in Figure 2-52, controls all performance monitor counters. PMGCO contents are reflected
to UPMGCO, which is readable by user-level software. The e500mc implements these registers as they are
defined by the architecture and as they are described in the EREF: A Programmer s Reference Manual for
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Freescale Power Architecture® Processors, except for implementation of the following
implementation-specific fields:

» Time base selector (TBSEL), bits 51-52. Selects the time base bit that can cause a time base
transition event (the event occurs when the selected bit changes from 0 to 1).

» Time base transition event exception enable (TBEE), bit 55.

PMR PMGCO (PMR400)UPMGCO (PMR384) PMGCO: Guest supervisor
UPMGCO: User RO
32 33 34 35’ ‘ ‘ ’ 50 51 ‘52 53 54 55 |56 63
R
W FAC | PMIE |FCECE — TBSEL| — | TBEE —
Reset All zeros

Figure 2-52. Performance Monitor Global Control Register 0 (PMGCO0)/
User Performance Monitor Global Control Register 0 (UPMGCO)

PMGCO is cleared by a hard reset. Reading this register does not change its contents. This table describes
the e500mc specific PMGCO fields.

Table 2-50. PMGCO/UPMGCO Implementation-Specific Field Descriptions

Bits | Name Description

51-52 | TBSEL | Time base selector. Selects the time base bit that can cause a time base transition event (the event occurs when
the selected bit changes from 0 to 1).

00 TBI[63] (TBL[63])

01 TB[55] (TBL[55])

10 TB[51] (TBL[51])

11 TB[47] (TBL[47])

Time base transition events can be used to periodically collect information about processor activity. In
multiprocessor systems in which TB registers are synchronized among processors, time base transition events
can be used to correlate the performance monitor data obtained by the several processors. For this use,
software must specify the same TBSEL value for all processors in the system. Because the time-base frequency
is implementation-dependent, software should invoke a system service program to obtain the frequency before
choosing a value for TBSEL.

55 TBEE | Time base transition event exception enable.

0 Exceptions from time base transition events are disabled.

1 Exceptions from time base transition events are enabled. A time base transition is signaled to the
performance monitor if the TB bit specified in PMGCO[TBSEL] changes from 0 to 1. Time base transition
events can be used to freeze the counters (PMGCO[FCECE]) or signal an exception (PMGCO[PMIE]).
Changing PMGCO[TBSEL] while PMGCO[TBEE] is enabled may cause a false 0 to 1 transition that signals
the specified action (freeze, exception) to occur immediately. Although the interrupt signal condition may
occur with MSR[EE] = 0, the interrupt cannot be taken until MSR[EE] = 1 or MSR[GS] = 1.

2.18.2 Local Control A Registers (PMLCa0-PMLCa3/UPMLCa0-UPMLCa3)

PMLCa0-PMLCa3 function as event selectors and give local control for the corresponding performance
monitor counters. PMLCan works with the corresponding PMLCbn register. PMLCan contents are
reflected to UPMLCan. The e500mc implements these registers as they are defined by the architecture and
described in the EREF: A Programmer s Reference Manual for Freescale Power Architecture®
Processors except for the following fields:
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* The EVENT field only implements the low order 8 bits of the EREF: A Programmer s Reference
Manual for Freescale Power Architecture® Processors defined field.

* The FCGSO0 and FCGSI fields are not implemented on e500mc Rev 1.x or Rev 2.x.

PMLCa0 (PMR144) UPMLCa0 (PMR128) PMLCa0-PMLCa3: Guest supervisor
PMLCa1 (PMR145) UPMLCal (PMR129) UPMLCa0-UPMLCa3: User RO
PMLCa2 (PMR146) UPMLCa2 (PMR130)
PMLCa3 (PMR147) UPMLCa3 (PMR131)
32 33 34 35 36 37 38 39|40 ‘ 47|48 ‘ ‘ ‘ 61 62 63
R
W FC|FCS|FCU|FCM1|FCMO|CE| — EVENT — FCGS1 | FCGS0
Reset All zeros

Figure 2-53. Local Control A Registers (PMLCa0-PMLCa3)/
User Local Control A Registers (UPMLCa0-UPMLCa3)

This table describes the PMLCa fields.
Table 2-51. PMLCa0-PMLCa3 Field Descriptions

Bits | Name Description

32 FC |Freeze counter
0 The PMC is incremented (if permitted by other PM control bits).
1 The PMC is not incremented.

33 FCS |Freeze counter in supervisor state
0 The PMC is incremented (if permitted by other PM control bits).
1 The PMC is not incremented if MSR[PR] = 0.

34 FCU |Freeze counter in user state
0 The PMC is incremented (if permitted by other PM control bits).
1 The PMC is not incremented if MSR[PR] = 1.

35 FCM1 | Freeze counter while mark = 1
0 The PMC is incremented (if permitted by other PM control bits).
1 The PMC is not incremented if MSR[PMM] = 1.

36 FCMO | Freeze counter while mark = 0
0 The PMC is incremented (if permitted by other PM control bits).
1 The PMC is not incremented if MSR[PMM] = 0.

37 CE | Condition enable

0 PMCx overflow conditions cannot occur. (PMCx cannot cause interrupts, cannot freeze counters.)
1 Overflow conditions occur when the most-significant-bit of PMCx is equal to one.

It is recommended that CE be cleared when counter PMCx is selected for chaining.

38-39 — Reserved

40-47 | EVEN | Event selector. Up to 256 events selectable.

48-61 — Reserved
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Table 2-51. PMLCa0-PMLCa3 Field Descriptions (continued)

Bits | Name Description

62 FCGS | Freeze counters in guest state.
1 0 The PMC is incremented (if permitted by other PM control bits).
1 The PMC is not incremented if MSR[GS] = 1.

63 FCGS |Freeze counters in hypervisor state.
0 0 The PMC is incremented (if permitted by other PM control bits).
1 The PMC is not incremented if MSR[GS] = 0.

2.18.3 Local Control B Registers (PMLCb0-PMLCb3)

Local control B registers (PMLCbO—PMLCDb3), shown in Figure 2-54, specify a threshold value and a
multiple to apply to a threshold event selected for the corresponding performance monitor counter. For the
€500mc, thresholding is supported only for PMCO and PMC1. PMLCb works with the corresponding
PMLCa. PMLCbr contents are reflected to UPMLCan. The e500mc implements these registers as they are
defined by the architecture and described in the EREF': A Programmer s Reference Manual for Freescale
Power Architecture® Processors except for the following e500mc-specific fields:
* TRIGONCTL and TRIGOFFCTL are available for triggering control
* PMCC and PMP are available for triggering status
PMLCbO (PMR272) UPMLCbO (PMR256) PMLCbO-PMLCb3: Guest supervisor
PMLCb1 (PMR273) UPMLCb1 (PMR257) UPMLCbO-UPMLCb3: User RO

)

)
PMLCb2 (PMR274) UPMLCb2 (PMR258)
PMLCb3 (PMR275) UPMLCb3 (PMR259)

32 35| 36 39 40 41 ‘ 47 |48 50 51|52 53 55 |56 57 58 63
R PMCC
W TRIGONCTL | TRIGOFFCTL — PMP — THRESHMUL — THRESHOLD
Reset All zeros

Figure 2-54. Local Control B Registers (PMLCb0-PMLCb3)/
User Local Control B Registers (UPMLCb0-UPMLCDb3)

Table 2-52 describes the PMLCDb fields.

The implementation specific fields TRIGONCTL and TRIGOFFCTL, provide a method for certain
conditions in the processor from the debug facility or the performance monitor facility to start and stop
performance monitor counting when a certain programmed condition occurs and the counter is not frozen
(for the purposes of this section “frozen” means the counter is frozen by means of either PMLCan[FC] or
PMGCO[FAC]). The trigger state is either set to ON or OFF depending on how the controls are
programmed and when the programmed conditions occur in the processor. When the trigger state is ON,
events are enabled for counting in PMCr if counting is enabled by all other performance monitor controls.
If the trigger state is OFF, counting is disabled for PMCn. For both controls, the following applies to how
the trigger state is determined:

*  When the counter is frozen by means of either PMLCan[FC] or PMGCO[FAC] being set to 1, the
trigger state is set to OFF. The trigger state remains off until the counter is unfrozen and a
subsequent condition sets the trigger state to ON.
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+ If TRIGONCTL = 0b0000, the trigger state is always set to ON when the counter is not frozen.
This setting is used to essentially make triggers inactive and all other performance monitor controls
determine whether events are counted.

» Ifacondition occurs that is programmed via TRIGONCTL and the counter is not frozen, the trigger
state is set to ON.

» Ifa condition occurs that is programmed via TRIGOFFCTL and the counter is not frozen, the
trigger state is set to OFF.

*  Other methods of freezing the PMCr from counter other than PMLCan[FC] or PMGCO[FAC] have
no effect on the trigger state, although such methods can prevent the counter from counting. That
is, the trigger state may be ON, but the PMCr is not counting events because it is frozen from some
other method.
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Table 2-52. PMLCb0-PMLCDb3 Field Descriptions

Bits Name Description
Counter Trigger ON control.
0000 No ON triggering active. This means that the counter is always considered to be triggered ON
when it is not frozen.
0001 Trigger ON when rise of PMCn Qual Pin detected
0010 Trigger ON when previous Performance Monitor Counter overflow condition (bit 32 only)
0011 Trigger ON when IAC1 match (only requires the debug condition, not the event)
0100 Trigger ON when IAC2 match (only requires the debug condition, not the event)
0101 Trigger ON when DAC1 match (only requires the debug condition, not the event)
0110 Trigger ON when DAC2 match (only requires the debug condition, not the event)
0111-1110
32-35 | TRIGONCTL Trigger ON when DVTn asserted
1111 Reserved
Note: DVTn (DVTO, DVT1, .. DVT7) are asserted by writing the DEVENT register. See Section 2.17.10,
“Debug Event Select Register (DEVENT).”
The counter trigger ON control uses certain conditions in the processor as a signal to start counting
when those conditions occur. Triggers associated with debug events require only the debug condition
to be present, and does not require that the debug event occurs. For example, an IAC1 match occurs
which does not result in a debug event because DBCRO[IDM] is not set, still causes counting to begin
if the appropriate trigger ON control is set. For a graphic representation of performance monitor counter
controls see Figure 9-24.
Counter Trigger OFF control
0000 Never trigger OFF due to a condition.
0001 Trigger OFF when fall of PMCn Qual Pin
0010 Trigger OFF when previous Performance Monitor Counter overflow condition (bit 32 only)
0011 Trigger OFF when IAC1 match (only requires the debug condition, not the event)
0100 Trigger OFF when IAC2 match (only requires the debug condition, not the event)
0101 Trigger OFF when DAC1 match (only requires the debug condition, not the event)
0110 Trigger OFF when DAC2 match (only requires the debug condition, not the event)
0111-1110
36-39 | TRIGOFFCTL Trigger OFF when DVTn asserted
1111 Reserved
Note: DVTn (DVTO, DVT1, .. DVT7) are asserted by writing the DEVENT register. See Section 2.17.10,
“Debug Event Select Register (DEVENT).”
The counter trigger OFF control uses certain conditions in the processor as a signal to stop counting
when those conditions occur. Triggers associated with debug events require only the debug condition
to be present, and does not require that the debug event occurs. For example, an IAC1 match occurs
which does not result in a debug event because DBCRO[IDM] is not set, still causes counting to stop if
the appropriate trigger OFF control is set. For a graphic representation of performance monitor counter
controls see Figure 9-24.
PMChn trigger state.
0 PMCn trigger state is OFF.
40 PMCC 1 PMChn trigger state is ON.
Note: This is a status bit which shows the trigger state controlled by TRIGONCTL and TRIGOFFCTL.
When PMCC = 1, a PMCn may still not be counting if it is frozen by means other than
PMLCan[FC] or PMGCO[FAC].
41-47 — Reserved
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Table 2-52. PMLCb0-PMLCDb3 Field Descriptions (continued)

Bits

Name

Description

48-50

PMP

Performance Monitor Overflow Periodicity Select !

000 Performance Monitor Watchpoint (PMWn) triggers on any change to counter bit 32 (period = 231)
001 Performance Monitor Watchpoint (PMWn) triggers on any change to counter bit 43 (period = 220)
010 Performance Monitor Watchpoint (PMWn) triggers on any change to counter bit 49 (period = 21%)
011 Performance Monitor Watchpoint (PMWn) triggers on any change to counter bit 55 (period = 28)
100 Performance Monitor Watchpoint (PMWn) triggers on any change to counter bit 59 (period = 2%)
101 Performance Monitor Watchpoint (PMW n) triggers on any change to counter bit 61 (period = 22)
110 Performance Monitor Watchpoint (PMWn) triggers on any change to counter bit 62 (period = 21)
( (

111 Performance Monitor Watchpoint (PMWn) triggers on any change to counter bit 63 (period = 20)

51-52

Reserved

53-55

THRESHMUL

Threshold multiple

000 Threshold field is multiplied by 1 (PMLCbn[THRESHOLD] x 1)

001 Threshold field is multiplied by 2 (PMLCbn[THRESHOLD] x 2)

010 Threshold field is multiplied by 4 (PMLCbn[THRESHOLD] x 4)

011 Threshold field is multiplied by 8 (PMLCbn[THRESHOLD] x 8)

100 Threshold field is multiplied by 16 (PMLCbn[THRESHOLD] x 16)
101 Threshold field is multiplied by 32 (PMLCbn[THRESHOLD] x 32)
110 Threshold field is multiplied by 64 (PMLCbn[THRESHOLD] x 64)
111 Threshold field is multiplied by 128 (PMLCbn[THRESHOLD] x 128)

56-57

Reserved

58-63

THRESHOLD

Threshold. Only events that exceed this value are counted. Events to which a threshold value applies
are implementation-dependent as are the dimension (for example duration in cycles) and the
granularity with which the threshold value is interpreted.

By varying the threshold value, software can profile event characteristics. For example, if PMC1 is
configured to count cache misses that last longer than the threshold value, software can obtain the
distribution of cache miss durations for a given program by monitoring the program repeatedly using a
different threshold value each time.

T Performance Monitor Counter overflow generates a watchpoint (PMWn) that can be used for triggering or to generate
Watchpoint Messages (if enabled).

2.18.4 Performance Monitor Counter Registers
(PMCO0-PMC3/UPMC0-UPMC3)

The PMCs, shown in Figure 2-55, are 32-bit counters that can be programmed to generate interrupt signals
when they overflow. Each counter is enabled to count 128 events. The e500mc implements these registers
as they are defined by the architecture and described in the EREF: A Programmer s Reference Manual for
Freescale Power Architecture® Processors.
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PMCO (PMR16)  UPMCO (PMRO)
PMC1 (PMR17)  UPMC1 (PMR1)
PMC2 (PMR18)  UPMC2 (PMR2)
PMC3 (PMR19)  UPMC3 (PMR3)

PMCO0-PMCS3: Guest supervisor
UPMCO0-UPMCS3: User RO

32 33 ‘ ‘ ‘ 63

R
oV Counter value
w
Reset All zeros

Figure 2-55. Performance Monitor Counter Registers (PMC0-PMC3)/
User Performance Monitor Counter Registers (UPMCO0-UPMC3)

This table describes the PMC register fields.
Table 2-53. PMCO0-PMCS3 Field Descriptions

Bits Name Description

32 ov Overflow. When this bit is set, it indicates this counter reaches its maximum value.

33-63 | Counter Value |Indicates the number of occurrences of the specified event.

The minimum counter value is 0x0000 0000; 4,294,967,295 (OxFFFF_FFFF) is the maximum. A counter
can increment by 0, 1, 2, 3, or 4 up to the maximum value and then wrap to the minimum value.

A counter enters overflow state when the high-order bit is set by entering the overflow state at the halfway
point between the minimum and maximum values. A performance monitor interrupt handler can easily
identify overflowed counters, even if the interrupt is masked for many cycles (during which the counters
may continue incrementing). A high-order bit is set normally only when the counter increments from a
value below 2,147,483,648 (0x8000_0000) to a value greater than or equal to 2,147,483,648
(0x8000_0000).

NOTE

Initializing PMCs to overflowed values is strongly discouraged. If an
overflowed value is loaded into a PMCr that held a non-overflowed value
(and PMGCO[PMIE], PMLCar[CE], and (MSR[EE] or MSR[GS]) are set),
an interrupt is generated before any events are counted.

The response to an overflow depends on the configuration, as follows:

+ IfPMLCan[CE] is clear, no special actions occur on overflow: the counter continues incrementing,
and no exception is signaled.

+ If PMLCan[CE] and PMGCO[FCECE] are set, all counters are frozen when PMCn overflows.

« If PMLCan[CE] and PMGCO[PMIE] are set, an exception is signaled when PMCn reaches
overflow. Interrupts are masked by when MSR[EE] and MSR[GS] are both 0. An exception may
be signaled while the interrupt is masked by MSR[EE] and MSR[GS], but the interrupt is not taken
until it is fully enabled and only if the overflow condition is still present and the configuration has
not been changed in the meantime to disable the exception.
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However, if MSR[EE] and MSR[GS] remain 0 until after the counter leaves the overflow state
(msb becomes 0), or if MSR[EE] and MSR[GS] remain 0 until after PMLCan[CE] or
PMGCO[PMIE] are cleared, the exception is not signaled.

The following sequence is recommended for setting counter values and configurations:

1. Set PMGCO[FAC] to freeze the counters.

2. Using mtpmr instructions, initialize counters and configure control registers.

3. Release the counters by clearing PMGCO[FAC] with a final mtpmr.
Software is expected to use mtpmr to explicitly set PMCs to non-overflowed values. Setting an
overflowed value may cause an erroneous exception. For example, if both PMGCO[PMIE] and

PMLCan[CE] are set and the mtpmr loads an overflowed value into PMCr, an interrupt may be generated
without an event counting having taken place.
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Chapter 3
Instruction Model

This chapter provides a listing and general description of instructions implemented on the e500mc
processor cores grouping the instructions by general functionality. It provides the syntax and briefly
describes the functionality as defined by the architecture. Full descriptions of these instructions are
provided in the EREF: A Programmer s Reference Manual for Freescale Power Architecture®
Processors.

3.1 Instruction Model Overview

This chapter provides information about the instruction set as implemented on the e500mc, which is an
implementation of the 32-bit Power ISA.The e500mc implements extensions that define additional
instructions, registers, and interrupts. The architecture defines several instructions in a general way,
leaving some details of the execution up to the implementation. Any such details are described in this
chapter.

3.1.1 Supported Power ISA Categories and Unsupported Instructions

The e500mc implements the following categories as defined by Power 1S4 2.06:
* Base
*  Embedded
* Alternate Time Base
» Cache Specification
* Decorated Storage
* Embedded.Enhanced Debug
* Embedded.External PID
* Embedded.Hypervisor
* Embedded.Little-Endian
* Embedded.Performance Monitor
* Embedded.Processor Control
* Embedded.Cache Locking
» External Proxy
» Floating Point and Floating Point.Record
*  Memory Coherence
» Store Conditional Page Mobility
+  Wait
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Table 3-1 lists Power ISA 2.06 instructions defined in the above categories which are not supported on the
e500me. Attempting to execute unsupported instructions results in an illegal instruction exception-type

program exception.

Table 3-1. Unsupported Power ISA 2.06 Instructions (by category)

Category Mnemonic Name Notes
Base cmpb Compare Bytes —
Base divwe[o][.] Divide Word Extended —
Base divweu[o][.] |Divide Word Extended Unsigned —
Base Ibarx Load Byte and Reserve Indexed —
Base lharx Load Halfword and Reserve Indexed —
Base popcntb Population Count Byte —
Base popcntd Population Count Doubleword —
Base popcntw Population Count Word —
Base prtyw Parity Word —
Base stbex. Store Byte Conditional Indexed —
Base sthex. Store Halfword Conditional Indexed —
Embedded.External PID eviddepx Vector Load Doubleword into Doubleword by Category SPE not
External Process ID Indexed supported
Embedded.External PID evstddepx Vector Store Doubleword into Doubleword by Category SPE not
External Process ID Indexed supported
Embedded.External PID lvepx Load Vector by External Process ID Indexed Category Vector not
supported
Embedded.External PID lvepxl Load Vector by External Process ID Indexed LRU |Category Vector not
supported
Embedded.External PID stvepx Store Vector by External Process ID Indexed Category Vector not
supported
Embedded.External PID stvepxl Store Vector by External Process ID Indexed LRU |Category Vector not
supported
Embedded.External PID Idepx Load Doubleword by External Process ID Indexed |Category 64-bit not
supported
Embedded.External PID stdepx Store Doubleword by External Process ID Indexed |Category 64-bit not
supported
Floating Point fefid[.] Floating Convert From Integer Doubleword —
Floating Point fefids[.] Floating Convert From Integer Doubleword Single —
Floating Point fefidul.] Floating Convert From Integer Doubleword —
Unsigned
Floating Point fefidus|.] Floating Convert From Integer Doubleword —
Unsigned Single
Floating Point fepsgnl.] Floating Copy Sign —
Floating Point fetid[.] Floating Convert To Integer Doubleword —
Floating Point fetidu[.] Floating Convert To Integer Doubleword Unsigned —
Floating Point fetiduz[.] Floating Convert To Integer Doubleword Unsigned —
with round toward Zero
Floating Point fetidz[.] Floating Convert To Integer Doubleword with round —

toward Zero
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Table 3-1. Unsupported Power ISA 2.06 Instructions (by category) (continued)

Category Mnemonic Name Notes
Floating Point fetiwul.] Floating Convert To Integer Word Unsigned —
Floating Point fctiwuz][.] Floating Convert To Integer Word Unsigned with —

round towards Zero
Floating Point fre Floating Reciprocal Estimate —
Floating Point frim[.] Floating Round to Integer Minus —
Floating Point frin[.] Floating Round to Integer Nearest —
Floating Point frip[.] Floating Round to Integer Plus —
Floating Point friz[.] Floating Round to Integer Toward Zero —
Floating Point frsqrtes[.] Floating Reciprocal Square Root Estimate Single —
Floating Point fsqri[s][.] Floating Square Root [Single] —
Floating Point ftdivl[.] Floating Test for software Divide —
Floating Point ftsqrt[.] Floating Test for software Square Root —
Floating Point Ifiwax Load Floating-Point as Integer Word Algebraic —

Indexed
Floating Point Ifiwzx Load Floating-Point as Integer Word and Zero —

Indexed
Floating Point mifsfi[.] Move to FPSCR Immediate W field is not

(W field) implemented. Always
behaves as if W = 0.

Floating Point mtfsf[.] Move to FPSCR W and L fields are not

(W and L fields)

implemented. Always
behaves as if W=L = 0.

Wait

wait
(WC field)

Wait

WC field is not
implemented. Always
behaves as Wait 0.

3.2

3.3

Computation Mode

The e500mc is a 32-bit implementation of Power ISA 2.06 and supports only 32-bit GPRs and 32-bit mode
of execution.

Instruction Set Summary

The e500mc instructions are presented in the following functional categories:

Integer instructions
These include arithmetic and logical instructions. For more information, see Section 3.4.3.1,
“Integer Instructions.”

Floating-point instructions

These include floating-point arithmetic and other floating-point instructions.

Load and store instructions
See Section 3.4.3.2, “Load and Store Instructions.”

Flow control instructions
These include branching instructions, CR logical instructions, trap instructions, and other
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instructions that affect the instruction flow. See Section 3.4.5, “Branch and Flow Control
Instructions.”

» Processor control instructions
These instructions are used for performing various tasks associated with moving data to and from
special registers, system linkage instructions, etc. See Section 3.4.6, “Processor Control
Instructions.”

* Memory synchronization instructions
These instructions are used for memory synchronizing. See Section 3.4.8, “Memory
Synchronization Instructions.”

* Memory control instructions
These instructions provide control of caches and TLBs. See Section 3.4.10, “Memory Control
Instructions,” and Section 3.4.11.3, “Supervisor-Level Memory Control Instructions.”

Note that instruction groupings used here do not indicate the execution unit that processes a particular
instruction or group of instructions. This information, which is useful for scheduling instructions most
effectively, is provided in Chapter 10, “Execution Timing.”

Instructions are four bytes long and are word-aligned. Byte, halfword, word loads and stores occur
between memory and a set of thirty-two 32-bit general-purpose registers (GPRs).

Integer instructions operate on word operands that specify GPRs as source and destination registers.
Floating-point instructions operate on doubleword operands, which may contain single- or
double-precision values, and use thirty-two 64-bit floating-point registers (FPRs) as source and destination
registers.

Arithmetic and logical instructions do not read or modify memory. To use the contents of a memory
location in a computation and then modify the same or another location, the memory contents must be
loaded into a register, modified, and then written to the target location using load and store instructions.

The description of each instruction includes the mnemonic and a formatted list of operands. To simplify
assembly language programming, a set of simplified mnemonics and symbols is provided for some of the
frequently used instructions (see Appendix B, “Simplified Mnemonics,” for a complete list). Programs
written to be portable across the various assemblers for the Power ISA should not assume the existence of
mnemonics not described in that document.

3.3.1 Instruction Decoding

Reserved fields in instructions are ignored by e500mc. If an instruction contains a defined field for which
some values of that field are reserved, and that instruction is coded with those reserve values, that
instruction form is considered an invalid form. Execution of an invalid form instruction is boundedly
undefined.

3.3.2 Definition of Boundedly Undefined

When a boundedly undefined execution of an instruction takes place, the resulting undefined results are
bounded in that a spurious change in privilege state is not allowed, and the level of privilege exercised by
the program in relation to memory access and other system resources cannot be exceeded. Boundedly
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undefined results for a given instruction can vary between implementations and between execution
attempts in the same implementation.

3.3.3 Synchronization Requirements

This section discusses synchronization requirements for special registers, certain instructions, and TLBs.
The synchronization described in this section refers to the state of the processor that is performing the
synchronization.

Changing a value in certain system registers and invalidating TLB entries can have the side effect of
altering the context in which data addresses and instruction addresses are interpreted, and in which
instructions are executed. For example, changing MSR[IS] from 0 to 1 has the side effect of changing
address space. These effects need not occur in program order (that is, the strict order in which they occur
in the program) and may require explicit synchronization by software. When multiple changes are made
that affect context to different values, even within the same register, those changes are not guaranteed to
occur at the same time unless the instruction itself is context synchronizing. For example, changing both
MSR[IS] and MSR[GS] with the same mtmsr instruction causes multiple changes to how fetched
instructions are translated. The change to MSR[IS] may occur in a different cycle than MSR[GS], but both
are guaranteed to be complete when a context synchronizing event occurs.

An instruction that alters the context in which data addresses or instruction addresses are interpreted, or in
which instructions are executed, is called a context-altering instruction. This section covers all of the
context-altering instructions. The software synchronization required for each is shown in Table 3-2 and
Table 3-3. Instructions that are not listed do not require explicit synchronization.

The notation “CSI” in the tables means any context-synchronizing instruction (sc, isync, rfi, rfgi, rfci,
rfdi, or rfmci). Any interrupt can be used instead of a context-synchronizing instruction to synchronize
instructions. If it is, references in this section to the synchronizing instruction should be interpreted as
meaning the instruction at which the interrupt occurs. If no software synchronization is required either
before or after a context-altering instruction, the phrase ‘the synchronizing instruction before (or after) the
context-altering instruction’ should be interpreted as meaning the context-altering instruction itself.

The synchronizing instruction before the context-altering instruction ensures that all instructions up to and
including that synchronizing instruction are fetched and executed in the context that existed before the
alteration. The synchronizing instruction after the context-altering instruction ensures that all instructions
after that synchronizing instruction are fetched and executed in the context established by the alteration.
Instructions after the first synchronizing instruction, up to and including the second synchronizing
instruction, may be fetched or executed in either context.

Care must be taken when altering context associated with instruction fetch and instruction address
translation. Altering MSR[IS], MSR[GS], LPIDR, and PID can cause an implicit branch, where the change
in translation or how instructions are fetched causes the processor to fetch instructions from a different real
address than what would have resulted if the context was not changed. Implicit branches are not supported
by the architecture and it is recommended that MSR[IS] and MSR[GS] context changes be performed
through a return from interrupt instruction (rfi, rfgi, rfci, rfdi, or rfmei) which changes all the MSR
context atomically and is completely context synchronizing.
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If a sequence of instructions contains context-altering instructions and contains no instructions that are
affected by any of the context alterations, no software synchronization is required within the sequence.

Sometimes advantage can be taken of the fact that certain instructions that occur naturally in the program,
such as the rfi at the end of an interrupt handler, provide the required synchronization.

No software synchronization is required before altering the MSR because mtmsr is execution
synchronizing. No software synchronization is required before most other alterations shown in Table 3-2,
because all instructions before the context-altering instruction are fetched and decoded before the
context-altering instruction is executed. (The processor must determine whether any of the preceding
instructions are context-synchronizing.)

Table 3-2 identifies the software synchronization requirements for data access for context-altering
instructions that require synchronization.

Table 3-2. Data Access Synchronization Requirements

Context Altering Instruction or Event Required Before Required After Notes
mfspr (L1CSRO0, L1ICSR1) sync None 1
mtmsr (DE) None CsSi —
mtmsr (DS) None CSi —
mtmsr (GS) None CSI —
mtmsr (ME) None CSi 2
mtmsr (PR) None CsSi —
mtpmr (all) None CSl —
mtspr (EPLC) None CsSi —
mtspr (EPSC) None CsSi —
mtspr (L1CSRO, L1CSR1) sync followed by isync isync —
mtspr (L1CSR2) sync followed by isync isync followed by sync3 —
mtspr (L2CSRO) sync followed by isync isync —
mtspr (L2CSR1) sync followed by isync isync followed by sync3 —
mtspr (LPIDR) Csli CsSl —
mtspr (PID) CsSl CsSi —
tibivax csl sync followed by CSI 456
tibilx csl csl 45
tibwe csl csl 45

TA sync prior to reading L1ICSRO or L1CSR1 is required to examine any cache locking status from prior cache locking
operations. The sync ensures that any previous cache locking operations have completed prior to reading the status.

2 A context-synchronizing instruction is required after altering MSR[ME] to ensure that the alteration takes effect for subsequent
machine check interrupts, which may not be recoverable and therefore may not be context-synchronizing.

8 The additional sync after the mtspr is done is required if software is turning off stashing by setting the stash ID field of the

register to zero. The sync ensures that any pending stash operations have finished.

4 For data accesses, the context-synchronizing instruction before tibwe, tlbilx, or tibivax ensures that all memory accesses
due to preceding instructions have completed to a point at which they have reported all exceptions they cause.
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The context-synchronizing instruction after tibwe, tlbilx, or tibivax ensures that subsequent accesses (data and instruction)
use the updated value in any TLB entries affected. It does not ensure that all accesses previously translated by TLB entries
being updated have completed with respect to memory; if these completions must be ensured, tibwe, tibilx, or tibivax must
be followed by an sync and by a context-synchronizing instruction.

To insure that all TLB invalidations are completed and seen in all processors in the coherence domain, the global invalidation
requires that a tibsync be executed after the tlbivax as follows: tlbivax; sync; tlbsync; sync; isync. For the e500mc, this
code should be protected by a mutual exclusion lock such that only one processor at a time is executing this sequence as
multiple tibsync operations on the CoreNet interface may cause the integrated device to hang.

Table 3-3 identifies the software synchronization requirements for instruction fetch and/or execution for
context-altering instructions which require synchronization.

Table 3-3. Instruction Fetch and/or Execution Synchronization Requirements

Context Altering Instruction or Event Required Before Required After Notes
mtmsr (DE) None (O] —
mtmsr (FEO) None CSli —
mtmsr (FE1) None CSl —
mtmsr (FP) None Csl —
mtmsr (IS) None CsSli —
mtmsr (GS) None CsSl —
mtmsr (PR) None Csl —
mtpmr (all) None CSli —
mtspr (L1CSRO, L1CSR1, L1CSR2) sync followed by isync isync —
mtspr (L2CSRO0, L2CSR1) sync followed by isync isync —
mtspr (LPIDR) None CSli —
mtspr (MASn) None isync 1
mtspr (PID) None CSl —
tibivax None CSl 23
tibilx None csl 2
tibwe None csl 2

1

Architecturally, MAS registers changes require an isync before subsequent instructions that use those updated values such
as a tibwe, tlbre, tlbilx, tlbsx, and tibivax. Typically software does several MAS updates and then performs a single isync
prior to executing the TLB management instruction. Currently, e500mc does not require such synchronization because the
mtspr and the TLB management instructions both internally use the same synchronization method. If software choses not to
execute the isync it should be aware that the internal synchronization may change in future cores or even in a future revision
of e500mc.

The context-synchronizing instruction after tlbwe, tlbilx, or tibivax ensures that subsequent accesses (data and instruction)
use the updated value in any TLB entries affected. It does not ensure that all accesses previously translated by TLB entries
being updated have completed with respect to memory; if these completions must be ensured, tibwe, tlbilx, or tibivax must
be followed by an sync and by a context-synchronizing instruction.

To insure that all TLB invalidations are completed and seen in all processors in the coherence domain, the global invalidation
requires that a tlbsync be executed after the tlbivax as follows: tibivax; sync; tibsync; sync; isync. For the e500mc, this
code should be protected by a mutual exclusion lock such that only one processor at a time is executing this sequence as
multiple tlbsync operations on the CoreNet interface may cause the integrated device to hang.
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Table 3-4 identifies the software synchronization requirements for non context-altering instructions that
require synchronization.

Table 3-4. Special Synchronization Requirements

Context Altering Instruction or Event Required Before Required Immediately After Notes
mtspr (BUCSR) None isync —
mtspr (DACn) None isync followed by changing 1
MSRI[DE] from 0 to 1

mtspr (DBCRn) None isync followed by changing 1
MSR[DE] from 0 to 1

mtspr (DBSR) None isync followed by changing 1
MSRI[DE] from 0 to 1

mtspr (DBSRWR) None isync followed by changing 1
MSR[DE] from 0 to 1

mtspr (EPCR[DUVD]) None isync followed by changing 1.2
MSRI[DE] from 0 to 1

mtspr (HIDn) msync followed by isync isync —

mtspr (IACn) None isync followed by changing 1
MSRI[DE] from 0 to 1

mtspr (L2ERR ™) msync followed by isync isync —

mtspr (MMUCSRO) None isync —

mtspr (NSPD) None isync —

1 Synchronization requirements for changing any debug facility registers require that the changes be followed by an isync and a

transition of MSR[DE] from 0 to 1 before the results of the changes are guaranteed to be seen. Normally changes to the debug
registers occurs in the debug interrupt routine when MSR[DE] is 0 and the subsequent return from the debug routine is likely to
set MSR[DE] back to 1 which accomplishes the required synchronization. Software should only make changes to the debug
facility registers when MSR[DE] = 0.

Note that the special synchronization requirement applies only to changes to EPCR[DUVD]. If this bit is not changed, the
synchronization requirements for EPCR is as described in the data or instruction execution tables above.

3.3.3.1 Synchronization with tlbwe, tibivax, and tlbilx Instructions

The following sequence shows why, for data accesses, all memory accesses due to instructions before the
tlbwe or tlbivax must complete to a point at which they have reported any exceptions. Assume valid TLB
entries exist for the target memory location when the sequence starts.

1. A program issues a load or store to a page.
2. The same program executes tlbwe, tlbilx, or tlbivax that invalidates the corresponding TLB entry.
3. The load or store instruction finally executes, and gets a TLB miss exception.

The TLB miss exception is semantically incorrect. To prevent it, a context-synchronizing instruction must
be executed between steps 1 and 2.

The tlbilx instruction requires the same local-processor synchronization as tlbivax, but not the
cross-processor synchronization (that is, it does not require a tlbsync).
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3.3.3.2 Context Synchronization

An instruction or event is context synchronizing if it satisfies the requirements listed below.
Context-synchronizing operations include instructions isync, sc, rfi, rfci, rfmei, rfdi, rfgi, ehpriv, and
most interrupts. The EREF: A Programmer s Reference Manual for Freescale Power Architecture®
Processors describes context synchronization in detail.

1. The operation is not initiated or, in the case of isync, does not complete until all executing
instructions complete to a point at which they have reported all exceptions they cause.

2. Instructions that precede the operation execute in the context (including such parameters as
privilege level, address space, and memory protection) in which they were initiated.

3. Ifthe operation directly causes an interrupt (for example, sc directly causes a system call interrupt)
or is an interrupt, the operation is not initiated until no interrupt-causing exception exists having
higher priority than the exception associated with the interrupt.See Section 4.12, “Exception
Priorities.”

4. Instructions that follow the operation are fetched and executed in the context established by the
operation as required by the sequential execution model. (This requirement dictates that any
prefetched instructions be discarded and that any effects and side effects of executing them
speculatively may also be discarded, except as described in the EREF: A Programmer s Reference
Manual for Freescale Power Architecture® Processors.)

As described in Section 3.3.3.3, “Execution Synchronization,” a context-synchronizing operation is
necessarily execution synchronizing. Unlike sync (msync) and mbar, such operations do not affect the
order of memory accesses with respect to other mechanisms.

3.3.3.3 Execution Synchronization

An instruction is execution synchronizing if it satisfies items 1 and 2 of the definition of context
synchronization (see Section 3.3.3.2, “Context Synchronization”). sync (msync) is treated like isync with
respect to item 1 (that is, the conditions described in item 1 apply to completion of sync). Execution
synchronizing instructions include sync, mtmsr, wrtee, and wrteei. All context-synchronizing
instructions are execution synchronizing.

Unlike a context-synchronizing operation, an execution synchronizing instruction need not ensure that
instructions following it execute in the context established by that execution synchronizing instruction.
This new context becomes effective sometime after the execution synchronizing instruction completes and
before or at a subsequent context-synchronizing operation.

3.3.3.4 Instruction-Related Interrupts

Interrupts are caused either directly by the execution of an instruction or by an asynchronous event. In
either case, an exception may cause one of several types of interrupts to be invoked. For example, an
attempt by an application program to execute a privileged instruction causes a privileged instruction
exception-type program interrupt. Such exceptions and interrupts for the e500mc instructions are
described in Section 4.6, “Exceptions.”
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3.4 Instruction Set Overview

This section provides an overview of the instructions implemented in the e500mc and highlights any
special information with respect to how the e500mc implements a particular instruction.

3.4.1 Record and Overflow Forms

Note that some instructions have record and/or overflow forms that have the following features:

* CR update for integer instructions
The dot (.) suffix on the mnemonic for integer computation instructions enables the update of the
CRO field. CRO is updated based on the signed comparison of the result to 0.

* Integer overflow option
The o suffix indicates that the overflow bit in the XER is enabled. In 32-bit mode, overflow
(XER[OV]) is set if the carryout of bit 32 is not equal to the carryout of bit 33 in the final result of
the operation. Summary overflow (XER[SOV]) is a sticky bit that is set when XER[OV] is set.

* CR update for floating-point instructions
The dot (.) suffix on the mnemonic for floating-point computation instructions enables the update
of the CR1 field. CR1 is updated with the exception status copied from bits FPSCR[32:35].

* CR update for store conditional instructions
Store conditional instructions always include the dot (.) suffix and update CRO based on whether
the store was performed.

3.4.2 Effective Address Computation

Load and store operations (as well as tlbivax, tlbilx, cache locking, and cache management instructions)
generate effective addresses used to determine the address where a storage operation is to be performed.
There are several different forms of effective address generation and some instructions such as integer load
and store instructions provide all such forms. The effective address calculation modes are as follows:

* Register indirect with immediate index addressing. The EA is generated by adding the
sign-extended 16-bit immediate index (d operand) to the contents of the GPR specified by rA. If
rA specifies r0, a value of zero is added to the index. Instruction descriptions show this option as
(rA|0).

» Register indirect with index addressing. The EA is formed by adding the contents of two GPRs
specified as operands rA and rB. A zero in place of the rA operand causes a zero to be added to
the contents of the GPR specified in operand rB

Register indirect addressing. The GPR specified by the rB operand contains the EA.

For more information, see EREF: A Programmer s Reference Manual for Freescale Power Architecture®
Processors.

e500mc Core Reference Manual, Rev. 3

3-10 Freescale Semiconductor



Instruction Model

3.4.3 User-Level Instructions

This section discusses the user-level instructions.

3.4.3.1 Integer Instructions

This section describes the integer instructions. These consist of the following:
» Integer Arithmetic Instructions
* Integer Compare Instructions
* Integer Logical Instructions
» Integer Rotate and Shift Instructions

Integer instructions use the content of the GPRs as source operands and place results into GPRs and the
XER and CR fields.
3.4.3.1.1 Integer Arithmetic Instructions

This table lists the Power ISA integer arithmetic instructions implemented on the e500mec.

Table 3-5. Integer Arithmetic Instructions

Name Mnemonic Syntax
Add add (add. addo addo.) rD,rA,rB
Add Carrying addc (addc. addco addco.) rD,rA,rB
Add Extended adde (adde. addeo addeo.) rD,rA,rB
Add Immediate addi rD,rA,SIMM
Add Immediate Carrying addic rD,rA,SIMM
Add Immediate Carrying and Record addic. rD,rA,SIMM
Add Immediate Shifted addis rD,rA,SIMM
Add to Minus One Extended addme (addme. addmeo addmeo.) rD,rA
Add to Zero Extended addze (addze. addzeo addzeo.) rD,rA
Divide Word divw (divw. divwo divwo.) rD,rA,rB
Divide Word Unsigned divwu divwu. divwuo divwuo. rD,rA,rB
Multiply High Word mulhw (mulhw.) rD,rA,rB
Multiply High Word Unsigned mulhwu (mulhwu.) rD,rA,rB
Multiply Low Immediate mulli rD,rA,SIMM
Multiply Low Word mullw (mullw. mullwo muliwo.) rD,rA,rB
Negate neg (neg. nego nego.) rD,rA
Subtract From subf (subf. subfo subfo.) rD,rA,rB
Subtract from Carrying subfc (subfc. subfco subfco.) rD,rA,rB
Subtract from Extended subfe (subfe. subfeo subfeo.) rD,rA,rB
Subtract from Immediate Carrying subfic rD,rA,SIMM

e500mc Core Reference Manual, Rev. 3

Freescale Semiconductor 3-11



Instruction Model

Table 3-5. Integer Arithmetic Instructions (continued)

Name Mnemonic Syntax
Subtract from Minus One Extended subfme (subfme. subfmeo subfmeo.) rD,rA
Subtract from Zero Extended subfze (subfze. subfzeo subfzeo.) rD,rA

Although there is no subtract immediate instruction, its effect is achieved by negating the immediate
operand of an addi instruction. Simplified mnemonics include this negation. Subtract instructions subtract
the second operand (rA) from the third (rB). Simplified mnemonics are provided in which the third is
subtracted from the second. See Appendix B, “Simplified Mnemonics.”

An implementation that executes instructions with the overflow exception enable bit (OE) set or that sets
the carry bit (CA) can either execute these instructions slowly or prevent execution of the next instruction
until the operation completes. Chapter 10, “Execution Timing,” describes how the e500mc handles such
CR dependencies. The summary overflow and overflow bits XER[SO,0V] are set to reflect an overflow
condition of a 32-bit result only if the instruction’s OE bit is set.

3.4.3.1.2 Integer Compare Instructions

Integer compare instructions algebraically or logically compare the contents of rA with either the
zero-extended value of the UIMM operand, the sign-extended value of the SIMM operand, or the contents
of rB. The comparison is signed for empi and emp and unsigned for empli and empl. Table 3-6 lists
integer compare instructions. The L bit should always be 0.

Table 3-6. Integer Compare Instructions

Name Mnemonic Syntax
Compare cmp crD,L,rA,rB
Compare Immediate cmpi crD,L,rA,SIMM
Compare Logical cmpl crD,L,rA,rB
Compare Logical Immediate cmpli crD,L,rA,UIMM

The erD operand can be omitted if the result of the comparison is to be placed in CRO. Otherwise the target
CR field must be specified in erD by using an explicit field number.

For information on simplified mnemonics, see Appendix B, “Simplified Mnemonics.”

3.4.3.1.3 Integer Logical Instructions

The logical instructions, shown in Table 3-7, perform bit-parallel operations. Logical instructions do not
affect XER[SO,0OV,CA]. See Appendix B, “Simplified Mnemonics,” for simplified mnemonic examples
for integer logical operations.

Table 3-7. Integer Logical Instructions

Name Mnemonic Syntax Implementation Notes
AND and (and.) rA,rS,rB —
AND Immediate andi. rA,rS,UIMM —
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Table 3-7. Integer Logical Instructions (continued)

Name Mnemonic Syntax Implementation Notes

AND Immediate Shifted andis. rA,rS,UIMM —

AND with Complement andc (andc.) rA,rS,rB —

Count Leading Zeros Word cntlzw (cntlzw.) rA,rS —

Equivalent eqv (eqv.) rA,rS,rB —

Extend Sign Byte extsb (extsb.) rA,rS —

Extend Sign Halfword extsh (extsh.) rA,rS —

NAND nand (nand.) rA,rS,rB —

NOR nor (nor.) rA,rS,rB —

OR or (or.) rA,rS,rB —

OR Immediate ori rA,rS,UIMM |ori r0,r0,0 is the preferred form for a NOP. At
dispatch it may enter the completion queue but
not to an execution unit.

OR Immediate Shifted oris rA,rS,UuiMM —

OR with Complement orc (orc.) rA,rS,rB —

XOR xor (xor.) rA,rS,rB —

XOR Immediate Xori rA,rS,UuiMM —

XOR Immediate Shifted Xoris rA,rS,UulIMM —

3.4.3.1.4

Integer Rotate and Shift Instructions

Rotation operations are performed on data from a GPR, and the result, or a portion of the result, is returned
to a GPR. Integer rotate instructions, summarized in Table 3-8, rotate the contents of a register. The result
is either inserted into the target register under control of a mask (if a mask bit is set the associated bit of
the rotated data is placed into the target register, and if the mask bit is cleared the associated bit in the target
register is unchanged) or ANDed with a mask before being placed into the target register. Appendix B,

“Simplified Mnemonics,” lists simplified mnemonics that allow simpler coding of often-used functions

such as clearing the left- or right-most bits of a register, left or right justifying an arbitrary field, and simple

rotates and shifts.

Table 3-8. Integer Rotate Instructions

Name

Mnemonic

Syntax

Rotate Left Word then AND with Mask

riwnm (rlwnm.)

rA,rS,rB,MB,ME

Rotate Left Word Immediate then Mask Insert

riwimi (rlwimi.)

rA,rS,SH,MB,ME

Rotate Left Word Immediate then AND with Mask

rlwinm (rlwinm.)

rA,rS,SH,MB,ME

Integer shift instructions, listed in Table 3-9, perform left and right shifts. Immediate-form logical
(unsigned) shift operations are obtained by specifying masks and shift values for certain rotate
instructions. Appendix B, “Simplified Mnemonics,” shows how to simplify coding of such shifts.
Multiple-precision shifts can be programmed as described in the EREF: A Programmer s Reference
Manual for Freescale Power Architecture® Processors.
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Table 3-9. Integer Shift Instructions

Name Mnemonic Syntax
Shift Left Word slw (slw.) rA,rS,rB
Shift Right Word Srw (srw.) rA,rS,rB
Shift Right Algebraic Word Immediate srawi (srawi.) rA,rS,SH
Shift Right Algebraic Word sraw (sraw.) rA,rS,rB

3.4.3.2 Load and Store Instructions

Although load and store instructions are issued and translated in program order, accesses can occur out of
order. Memory synchronizing (barrier) instructions are provided to enforce strict ordering. e500mc load
and store instructions are grouped as follows:

* Integer load instructions

* Integer store instructions

» Integer load and store with byte-reverse instructions
* Integer load and store multiple instructions

* Floating-point load instructions

» Floating-point store instructions

*  Memory synchronization instructions

» External PID load and store instructions are described in Section 3.4.11.2, “External PID Load
Store Instructions”

» Decorated storage load and store instructions are described in Section 3.4.3.2.8, “Decorated Load
and Store Instructions

Implementation Notes:

The following describes how the e500mc handles misalignment: The e500mc provides hardware support
for misaligned memory accesses, but at the cost of performance degradation. For loads that hit in the cache,
the LSU’s throughput degrades to one misaligned load every 3 cycles. Similarly, stores can be translated
at a rate of one misaligned store every 3 cycles. Additionally, after translation, each misaligned store is
treated as two distinct entries in the store queue, each requiring a cache access.

A word or halfword memory access requires multiple accesses if it crosses a doubleword boundary but not
if it crosses a natural boundary.

Frequent use of misaligned memory accesses can greatly degrade performance.

Any load doubleword, word, or load halfword that crosses a doubleword boundary is interruptible, and
therefore can restart. If the first access has been performed when the interrupt occurs, it is performed again
when the instruction is restarted, even if it is to a page marked as guarded. Any load word or load halfword
that crosses a translation boundary may take a translation exception on the second access. In this case, the
first access may have already occurred.

Accesses that cross a translation boundary where the endianness differs cause a byte-ordering data storage
interrupt.
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3.4.3.21 Update Forms of Load and Store Instructions

Some integer load and store as well as floating-point load and store instructions contain update forms
which update rA with the calculated EA. These instructions are specified with a ‘u’ in the mnemonic.

Update forms where rA = 0 are considered invalid.

Update forms for loads when rA = rD are considered invalid.

3.4.3.2.2 General Integer Load Instructions

This table lists the integer load instructions.

Table 3-10. Integer Load Instructions

Name Mnemonic Syntax
Load Byte and Zero Ibz rD,d(rA)
Load Byte and Zero Indexed Ibzx rD,rA,rB
Load Byte and Zero with Update Ibzu rD,d(rA)
Load Byte and Zero with Update Indexed Ibzux rD,rA,rB
Load Halfword and Zero lhz rD,d(rA)
Load Halfword and Zero Indexed lhzx rD,rA,rB
Load Halfword and Zero with Update lhzu rD,d(rA)
Load Halfword and Zero with Update Indexed lhzux rD,rA,rB
Load Halfword Algebraic lha rD,d(rA)
Load Halfword Algebraic Indexed lhax rD,rA,rB
Load Halfword Algebraic with Update lhau rD,d(rA)
Load Halfword Algebraic with Update Indexed lhaux rD,rA,rB
Load Word and Zero lwz rD,d(rA)
Load Word and Zero Indexed lwzx rD,rA,rB
Load Word and Zero with Update lwzu rD,d(rA)
Load Word and Zero with Update Indexed lwzux rD,rA,rB

Some implementations execute the load algebraic (lha, lhax, lhau, lhaux) instructions with greater latency
than other types of load instructions. The e500mc executes these instructions with the same latency as
other load instructions.

The e500mc also contains load and store instructions for atomic memory accesses. These are described in
Section 3.4.8, “Memory Synchronization Instructions.”
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3.4.3.2.3 Integer Store Instructions

For integer store instructions, the rS contents are stored into the byte, halfword, word, or doubleword in
memory addressed by the EA. This table summarizes integer store instructions.

Table 3-11. Integer Store Instructions

Name Mnemonic Syntax
Store Byte stb rS,d(rA)
Store Byte Indexed stbx rS,rA,rB
Store Byte with Update stbu rS,d(rA)
Store Byte with Update Indexed stbux rS,rA,rB
Store Halfword sth rS,d(rA)
Store Halfword Indexed sthx rS,rA,rB
Store Halfword with Update sthu rS,d(rA)
Store Halfword with Update Indexed sthux rS,rA,rB
Store Word stw rS,d(rA)
Store Word Indexed stwx rS,rA,rB
Store Word with Update stwu rS,d(rA)
Store Word with Update Indexed stwux rS,rA,rB

3.4.3.24 Integer Load and Store with Byte-Reverse Instructions

This table describes integer load and store with byte-reverse instructions. The Power ISA supports true
little endian on a per-page basis.

Table 3-12. Integer Load and Store with Byte-Reverse Instructions

Name Mnemonic Syntax
Load Halfword Byte-Reverse Indexed Ihbrx rD,rA,rB
Load Word Byte-Reverse Indexed lwbrx rD,rA,rB
Store Halfword Byte-Reverse Indexed sthbrx rS,rA,rB
Store Word Byte-Reverse Indexed stwbrx rS,rA,rB

Some implementations run the load/store byte-reverse instructions with greater latency than other types of
load/store instructions. The e500mc executes these instructions with the same latency as other load/store
instructions.

3.4.3.2.5 Integer Load and Store Multiple Instructions

The load/store multiple instructions, listed in Table 3-13, move blocks of data to and from GPRs. If their
operands require memory accesses crossing a page boundary, these instructions may require a data storage
interrupt to translate the second page. Also, if one of these instructions is interrupted, it is restarted,
requiring multiple memory accesses.

The architecture defines Load Multiple Word (Imw) with rA in the range of GPRs to be loaded as an
invalid form. Load and store multiple accesses not word aligned cause an alignment exception.
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If rA is in the range of registers to be loaded, what gets loaded into any register depends on whether an
interrupt occurs (and at what point the interrupt occurs) requiring the instruction to be restarted. If rA is
loaded with a new value from memory and an interrupt and subsequent return to re-execute the Imw
instruction occurs, rA has a different value and forms a completely different EA, which causes the registers
to be reloaded from a storage location not intended by the program.

If an interrupt does not occur, the register to be loaded starting at rA + 1 (for example, if rA is r10, then
rllisrA + 1) then is loaded from the new address calculated from the updated value of rA and the current
running displacement.

Table 3-13. Integer Load and Store Multiple Instructions

Name Mnemonic Syntax
Load Multiple Word Imw rD,d(rA)
Store Multiple Word stmw rS,d(rA)

3.4.3.2.6 Floating-Point Load Instructions

Separate floating-point load instructions are used for single-precision and double-precision operands.
Because FPRs support only double-precision format, the FPU converts single-precision data to
double-precision format before loading the operands into the target FPR. This conversion is described fully
in the “Floating-Point Models” appendix in the EREF: A Programmer s Reference Manual for Freescale
Power Architecture® Processors.

This table provides a list of the floating-point load instructions.

Table 3-14. Floating-Point Load Instructions

Name Mnemonic Operand Syntax
Load Floating-Point Double Ifd frD,d(rA)
Load Floating-Point Double Indexed Ifdx frD,rA,rB
Load Floating-Point Double with Update Ifdu frD,d(rA)
Load Floating-Point Double with Update Indexed Ifdux frD,rA,rB
Load Floating-Point Single Ifs frD,d(rA)
Load Floating-Point Single Indexed Ifsx frD,rA,rB
Load Floating-Point Single with Update Ifsu frD,d(rA)
Load Floating-Point Single with Update Indexed Ifsux frD,rA,rB

3.4.3.2.7 Floating-Point Store Instructions

There are three basic forms of the store instruction—single-precision, double-precision, and integer. The
integer form is supported by the optional stfiwx instruction. Because the FPRs support only
double-precision format for floating-point data, the FPU converts double-precision data to
single-precision format before storing the operands. The conversion steps are described in “Floating-Point
Store Instructions” in Appendix D, “Floating-Point Models,” in the EREF: A Programmer s Reference
Manual for Freescale Power Architecture® Processors.

e500mc Core Reference Manual, Rev. 3

Freescale Semiconductor 3-17



3
4

y
A

Instruction Model

This table lists the floating-point store instructions.

Table 3-15. Floating-Point Store Instructions

Name Mnemonic Operand Syntax
Store Floating-Point as Integer Word Indexed stfiwx frS,rA,rB
Store Floating-Point Double stfd frS,d(rA)
Store Floating-Point Double Indexed stfdx frS,rA,rB
Store Floating-Point Double with Update stfdu frS,d(rA)
Store Floating-Point Double with Update Indexed stfdux frS,rA,rB
Store Floating-Point Single stfs frS,d(rA)
Store Floating-Point Single Indexed stfsx frS,rA,rB
Store Floating-Point Single with Update stfsu frS,d(rA)
Store Floating-Point Single with Update Indexed stfsux frS,rA,rB

3.4.3.2.8 Decorated Load and Store Instructions

Decorated load and store instructions allow efficient, SoC-specific operations targeted by storage address,
such as packet-counting statistics. The SoC defines specific semantics understood by a SoC-customized
resource that requires them. To determine the full semantic of a decorated storage operation, consult
reference manual for the integrated device.

The architecture defines the decorated instructions listed in Table 3-16, which provide the EA in rB and
the decoration in rA.

Table 3-16. Decorated Load and Store Instructions

Instruction Mnemonic | Syntax Description

Load Byte with Decoration Indexed Ibdx rD,rA,rB | The byte, halfword, word, or floating-point doubleword

addressed by EA (in rB) using the decoration supplied by

Load Halfword with Decoration Indexed lhdx rD,rA,rB rA is loaded into target GPR rD.
Load Word with Decoration Indexed lwdx rD,rA,rB
Load Floating-Point Doubleword with Ifddx frD,rA,rB

Decoration Indexed

Store Byte with Decoration Indexed stbdx rS,rA,rB | The contents of rS and the decoration supplied by

GPR(rA) are stored into byte, halfword, word, or

Store Halfword with Decoration Indexed sthdx rS,rA,rB floating-point doubleword in storage addressed by EA
Store Word with Decoration Indexed stwdx rS,rA,rB (rB).
Store Floating-Point Doubleword with stfddx frS,rA,rB

Decoration Indexed

Decorated Storage Notify dsn rA,rB Address-only operation that sends a decoration without
any associated load or store semantics.

Decorated load and store instructions are treated as normal cacheable loads and stores when they are to
addresses that are not cache inhibited. dsn is treated as a 0 byte store. Decorated load and store instructions
to addresses that are caching inhibited are always treated as guarded, regardless of the setting of the G bit
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in the associated TLB entry. This prevents speculative decorated loads from executing, which potentially
produces side effects other than the normal load semantics.

Implementation Notes:

The number of bits of decoration that are delivered along with the address for decorated load, store and
notify operations is implementation dependent based on how many bits of decoration the interconnect
supports. For e500mc, only the low-order 4 bits of the decoration in rA are implemented.

3.4.4 Floating-Point Execution Model

The core provides hardware support for all single- and double-precision floating-point operations for most
value representations and all rounding modes. The PowerPC architecture provides for hardware
implementation of a floating-point system as defined in ANSI/IEEE Standard 754-1985, IEEE Standard
for Binary Floating Point Arithmetic. For detailed information about the floating-point execution model,
refer to the “Operand Conventions” chapter in the EREF: A Programmer s Reference Manual for
Freescale Power Architecture® Processors.

The IEEE 754 standard includes 64- and 32-bit arithmetic. The standard requires that single-precision
arithmetic be provided for single-precision operands. The standard permits double-precision arithmetic
instructions to have either (or both) single-precision or double-precision operands, but states that
single-precision arithmetic instructions should not accept double-precision operands.

The UISA follows these guidelines:

* Double-precision arithmetic instructions may have single-precision operands but always produce
double-precision results.

» Single-precision arithmetic instructions require all operands to be single-precision and always
produce single-precision results.

For arithmetic instructions, conversions from double- to single-precision must be done explicitly by
software, while conversions from single- to double-precision are done implicitly.

All Power ISA implementations provide the equivalent of the execution models described in this chapter
to ensure that identical results are obtained. The definition of the arithmetic instructions for infinities,
denormalized numbers, and NaNs follow conventions described in the following sections.

Although the double-precision format specifies an 11-bit exponent, exponent arithmetic uses two
additional bit positions to avoid potential transient overflow conditions. An extra bit is required when
denormalized double-precision numbers are prenormalized. A second bit is required to permit
computation of the adjusted exponent value in the following examples when the corresponding exception
enable bit is one:

* Underflow during multiplication using a denormalized factor
* Overflow during division using a denormalized divisor

3.4.41 Floating-Point Instructions

This section describes the floating-point instructions, which include the following:

* Floating-Point Arithmetic Instructions

e500mc Core Reference Manual, Rev. 3

Freescale Semiconductor 3-19



Instruction Model

* Floating-Point Multiply-Add Instructions

* Floating-Point Rounding and Conversion Instructions
* Floating-Point Compare Instructions

* Floating-Point Status and Control Register Instructions
* Floating-Point Move Instructions

See Section 3.4.3.2, “Load and Store Instructions,” for information about floating-point loads and stores.

The Power ISA architecture supports a floating-point system as defined in the IEEE 754 standard. All
floating-point operations conform to the IEEE 754 standard, except if software sets the non-IEEE mode
bit (NI) in the FPSCR. The core is in the nondenormalized mode when the NI bit is set in the FPSCR. If
set the following behavioral changes occur:

» If a denormalized result is produced, a default result of zero is generated. The generated zero has
the same sign as the denormalized number.

» Ifadenormalized value occurs on input, a zero value of the same sign as the input is used in the
calculation in place of the denormalized number.

The core performs single- and double-precision floating-point operations compliant with the IEEE 754
floating-point standard.

Implementation Notes

Single-precision denormalized results require two additional processor clock cycles to round. When
loading or storing a single-precision denormalized number, the load/store unit may take up to 24 processor
clock cycles to convert between the internal double-precision format and the external single-precision
format.

34411 Floating-Point Arithmetic Instructions

The floating-point arithmetic instructions are listed in this table.

Table 3-17. Floating-Point Arithmetic Instructions

Name Mnemonic Operand Syntax

Floating Add (Double-Precision) fadd (fadd.) frD,frA,frB
Floating Add Single fadds (fadds.) frD,frA,frB
Floating Divide (Double-Precision) fdiv (fdiv.) frD,frA,frB
Floating Divide Single fdivs (fdivs.) frD,frA,frB
Floating Multiply (Double-Precision) fmul (fmul.) frD,frA,frC
Floating Multiply Single fmuls (fmuls.) frD,frA,frC
Floating Reciprocal Estimate Single fres (fres.) frD,frB
Floating Reciprocal Square Root Estimate frsqrte (frsqrte.) frD,frB
Floating Select fsel (fsel.) frD,frA,frC,frB
Floating Subtract (Double-Precision) fsub (fsub.) frD,frA,frB
Floating Subtract Single fsubs (fsubs.) frD,frA,frB
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3.44.1.2 Floating-Point Multiply-Add Instructions

These instructions combine multiply and add operations without an intermediate rounding operation. The
fractional part of the intermediate product is 106 bits wide, and all 106 bits take part in the add/subtract
portion of the instruction.

The floating-point multiply-add instructions are listed in this table.

Table 3-18. Floating-Point Multiply-Add Instructions

Name Mnemonic Operand Syntax
Floating Multiply-Add (Double-Precision) fmadd (fmadd.) frD,frA,frC,frB
Floating Multiply-Add Single fmadds (fmadds.) frD,frA,frC,frB
Floating Multiply-Subtract (Double-Precision) fmsub (fmsub.) frD,frA,frC,frB
Floating Multiply-Subtract Single fmsubs (fmsubs.) frD,frA,frC,frB
Floating Negative Multiply-Add (Double-Precision) fnmadd (fnmadd.) frD,frA,frC,frB
Floating Negative Multiply-Add Single fnmadds (fnmadds.) frD,frA,frC,frB
Floating Negative Multiply-Subtract (Double-Precision) fnmsub (fnmsub.) frD,frA,frC,frB
Floating Negative Multiply-Subtract Single fnmsubs (fnmsubs.) frD,frA,frC,frB

Implementation Notes

Single-precision multiply-type instructions operate faster than their double-precision equivalents. See
Chapter 10, “Execution Timing,” for more information.

34413 Floating-Point Rounding and Conversion Instructions

The Floating Round to Single-Precision (frsp) instruction is used to truncate a 64-bit double-precision
number to a 32-bit single-precision floating-point number. The floating-point conversion instructions
convert a 64-bit double-precision floating-point number to signed integer numbers.

Examples of uses of these instructions to perform various conversions can be found in Appendix D,
“Floating-Point Models,” in the EREF: A Programmer s Reference Manual for Freescale Power
Architecture® Processors. The floating-point rounding instructions are shown in this table.

Table 3-19. Floating-Point Rounding and Conversion Instructions

Name Mnemonic Operand Syntax
Floating Convert to Integer Word fetiw (fctiw.) frD,frB
Floating Convert to Integer Word with Round Toward Zero fetiwz (fctiwz.) frD,frB
Floating Round to Single-Precision frsp (frsp.) frD,frB
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34414 Floating-Point Compare Instructions

Floating-point compare instructions compare the contents of two floating-point registers. The comparison
ignores the sign of zero (that is +0 = —0). The floating-point compare instructions are listed in this table.

Table 3-20. Floating-Point Compare Instructions

Name Mnemonic Operand Syntax
Floating Compare Ordered fcmpo crfD,frA,frB
Floating Compare Unordered fcmpu crfD,frA,frB

34415 Floating-Point Status and Control Register Instructions

Every FPSCR instruction synchronizes the effects of all floating-point instructions executed by a given
processor. Executing an FPSCR instruction ensures that all floating-point instructions previously initiated
by the given processor have completed before the FPSCR instruction is initiated and that no subsequent
floating-point instructions are initiated by the given processor until the FPSCR instruction has completed.
The FPSCR instructions are listed in this table.

Table 3-21. Floating-Point Status and Control Register Instructions

Name Mnemonic Operand Syntax

Move from FPSCR mffs (mffs.) frD

Move to Condition Register from FPSCR mcrfs crfD,crfS
Move to FPSCR Bit 0 mifsb0 (mtfsb0.) crbD
Move to FPSCR Bit 1 mtfsb1 (mtfsb1.) crbD
Move to FPSCR Field Immediate mtfsfi (mtfsfi.) crfD,IMM
Move to FPSCR Fields mtfsf (mtfsf.) FM,frB

NOTE

The architecture notes that, in some implementations, the Move to FPSCR
Fields (mtfsfx) instruction may perform more slowly when only a portion
of the fields are updated as opposed to all of the fields. This is not the case
in the e500mc.
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3.44.1.6 Floating-Point Move Instructions

Floating-point move instructions copy data from one floating-point register to another. The floating-point
move instructions do not modify the FPSCR. The CR update option in these instructions controls the
placing of result status into CR1. Floating-point move instructions are listed in this table.

Table 3-22. Floating-Point Move Instructions

Name Mnemonic Operand Syntax
Floating Absolute Value fabs (fabs.) frD,frB
Floating Move Register fmr (fmr.) frD,frB
Floating Negate fneg (fneg.) frD,frB
Floating Negative Absolute Value fnabs (fnabs.) frD,frB

3.4.5 Branch and Flow Control Instructions

Some branch instructions can redirect instruction execution conditionally based on the value of bits in the
CR. Information about branch instruction address calculation is provided in the EREF: A Programmer§
Reference Manual for Freescale Power Architecture® Processors.

3.4.5.1 Conditional Branch Control

For branch conditional instructions, the BO operand specifies the conditions under which the branch is
taken. The first four bits of the BO operand specify how the branch is affected by or affects the condition
and count registers. The fifth bit, shown in Table 3-24 as having the value ¢, is used by some
implementations for branch prediction; this is not used on the e500mc.

NOTE

The e500mc ignores the BO operand for branch prediction and the BH field
in the branch conditional to count register and branch conditional to link
register instructions. Instead it implements dynamic branch prediction as
part of the branch table buffer (BTB), described in Section 10.4.1, “Branch
Unit Execution.”

Table 3-23. BO Bit Descriptions

BO Bits Description

0 Setting this bit causes the CR bit to be ignored.

Bit value to test against

2 Setting this causes the decrement to not be decremented.
3 Setting this bit reverses the sense of the CTR test.
4 The e500mc does not use static branch prediction and ignores this bit.
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The encodings for the BO operands are shown in Table 3-24.
Table 3-24. BO Operand Encodings

BO Description
0000z Decrement the CTR, then branch if the decremented CTR # 0 and the condition is FALSE.
0001z Decrement the CTR, then branch if the decremented CTR = 0 and the condition is FALSE.
001at Branch if the condition is FALSE.
0100z Decrement the CTR, then branch if the decremented CTR # 0 and the condition is TRUE.
0101z Decrement the CTR, then branch if the decremented CTR = 0 and the condition is TRUE.
O11at Branch if the condition is TRUE.
1a00t Decrement the CTR, then branch if the decremented CTR = 0.
1a01t Decrement the CTR, then branch if the decremented CTR = 0.
1z1zz Branch always.

Note:

1. In this table, z indicates a bit that is ignored. Note that the z bits should be cleared, as they may be assigned a meaning in
some future version of the architecture.

2. The a and tbits provides a hint about whether a conditional branch is likely to be taken and may be used by some
implementations to improve performance. e500mc always uses dynamic prediction and ignores these bits.

The 5-bit BI operand in branch conditional instructions specifies which CR bit represents the condition to
test. The CR bit selected is BI +32.

If branch instructions use immediate addressing operands, target addresses can be computed ahead of the
branch instruction so instructions can be fetched along the target path. If the branch instructions use LR or
CTR, instructions along the path can be fetched if the LR or CTR is loaded sufficiently ahead of the branch
instruction.

Branching can be conditional or unconditional, and optionally a branch return address is created by storing
the EA of the instruction following the branch instruction in the LR after the branch target address has been
computed. This is done regardless of whether the branch is taken.

3.4.5.2 Branch Instructions

Table 3-25 lists branch instructions. Appendix B, “Simplified Mnemonics,” lists simplified mnemonics
and symbols provided for the most frequently used forms of branch conditional, compare, trap, rotate and
shift, and certain other instructions. The e500mc does not use the BO operand for static branch prediction.

Table 3-25. Branch Instructions

Name Mnemonic Syntax
Branch b (ba bl bla) target_addr
Branch Conditional bec (bca bcl bela) BO,Bl,target_addr
Branch Conditional to Link Register belr (bcelrl) BO,BI
Branch Conditional to Count Register becetr (becetrl) BO,BI
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3.4.5.3 Integer Select (isel)

Integer Select (isel), shown in Table 3-26, is a conditional register move instruction that helps eliminate
branches. Programming guidelines for isel are given in the EREF: A Programmer s Reference Manual for
Freescale Power Architecture® Processors.

Table 3-26. Integer Select Instruction

Name Mnemonic Syntax

Integer Select isel rD,rA,rB,crB

3.4.5.4 Condition Register Logical Instructions

Table 3-27 shows the condition register logical instructions. Both these instructions and the Move
Condition Register Field (merf) instruction are also defined as flow control instructions.

Table 3-27. Condition Register Logical Instructions

Name Mnemonic Syntax
Condition Register AND crand crbD,crbA,crbB
Condition Register OR cror crbD,crbA,crbB
Condition Register XOR crxor crbD,crbA,crbB
Condition Register NAND crnand crbD,crbA,crbB
Condition Register NOR crnor crbD,crbA,crbB
Condition Register Equivalent creqv crbD,crbA,crbB
Condition Register AND with Complement crandc crbD,crbA,crbB
Condition Register OR with Complement crorc crbD,crbA,crbB
Move Condition Register Field mcrf crfD,crfS

Any of these instructions for which the LR update option is enabled are considered invalid.

3.4.5.5 Trap Instructions

Trap instructions, shown in Table 3-28, test for a specified set of conditions. If a condition is met, a system
trap program interrupt is taken. If no conditions are met, execution continues normally. See Section 4.9.8,
“Program Interrupt—IVORG6 and Appendix B, “Simplified Mnemonics,” for more information.

Table 3-28. Trap Instructions

Name Mnemonic Syntax
Trap Word Immediate twi TO,rA,SIMM
Trap Word tw TO,rA,rB
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3.4.5.6 System Linkage Instruction

The System Call (sc¢) instruction permits a program to call on the system to perform a service or an
operating system to call on the hypervisor to perform a service; see Table 3-29 and Section 3.4.11.1,
“System Linkage and MSR Access Instructions.”

Table 3-29. System Linkage Instruction

Name Mnemonic Syntax

System Call sC LEV

Executing sc invokes the system call interrupt handler or the hypervisor system call interrupt handler
depending on the value of the LEV field, see Section 4.9.10, “System Call/Hypervisor System Call
Interrupt—IVORS/GIVORSE/IVOR40.”

An sc instruction without the level field is treated by the assembler as an sc with LEV = 0.

3.4.5.7 Hypervisor Privilege Instruction

The hypervisor facility defines the Generate Embedded Hypervisor Privilege Exception instruction,
ehpriv, which generates a hypervisor privilege exception. See Section 4.9.19, “Hypervisor Privilege
Interrupt—IVOR41.” ehpriv is fully described in EREF: A Programmer s Reference Manual for
Freescale Power Architecture® Processors. Note that the OC field is not interpreted by hardware but is
for the use of the hypervisor to provide specific emulation.

Table 3-30 shows the hypervisor privilege instruction.

Table 3-30. Hypervisor Privilege Instruction

Name Mnemonic Syntax

Hypervisor Privilege ehpriv oC

3.4.6 Processor Control Instructions

Processor control instructions read from and write to the CR, MSR, and SPRs as well as the wait
instruction.

3.4.6.1 Move to/from Condition Register Instructions

Table 3-31 summarizes the instructions for reading from or writing to the CR.

Table 3-31. Move to/from Condition Register Instructions

Name Mnemonic | Syntax Implementation Note
Move to Condition Register Fields mtcrf | CRM,rS |On some implementations, mterf may perform more slowly if
only a portion of the fields are updated. This is not so for the
e500mc.
Move to Condition Register from XER mcerxr crD —
Move from Condition Register mfcr rD —
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Table 3-31. Move to/from Condition Register Instructions (continued)

Name Mnemonic | Syntax Implementation Note

Move from One Condition Register Field| mfocrf |rD,FXM |See the EREF: A Programmer’s Reference Manual for
Freescale Power Architecture® Processors for a full
description of this instruction.

Move to One Condition Register Field mtocrf | FXM,rS |See the EREF: A Programmer’s Reference Manual for
Freescale Power Architecture® Processors for a full
description of this instruction.

Implementation Notes

e500mc implements mfocrf the same as mfer and all the contents of the CR are moved to the destination
register.

e500mc implements mtocrf the same as mterf and all the fields of the CR specified by FXM are moved
to the CR fields specified by FXM.

3.4.6.2 Move to/from Special Purpose Register Instructions
Table 3-32 lists the mtspr and mfspr instructions.

Table 3-32. Move to/from Special-Purpose Register Instructions

Name Mnemonic | Syntax Comments

Move to Special-Purpose Register mtspr SPR,rS —

Move from Special-Purpose Register| mfspr rD,SPR —

Move from Time Base mftb rD,TBR |mftb behaves as if it were an mfspr. Although mftb is supported,
mfspr is prefered, because mftb can only be used to read from
TBL and TBU; mfspr can be used to read TBL, TBU, and ATB
SPRs.

3.4.6.3 Wait for Interrupt Instruction

wait stops synchronous processor activity. Execution ensures that all instructions complete before wait
completes, and that no subsequent instructions initiate until an asynchronous interrupt or a debug
post-completion (for example, ICMP) event and subsequent interrupt occurs. On the e500mc, wait also
causes any prefetched instructions to be discarded and processor instruction fetching ceases until an
interrupt occurs.

Executing a wait instruction is a hint to the processor that no further synchronous processor activity occurs
until the next asynchronous interrupt occurs. The processor may use this to reduce power consumption.
The wait instruction completes and then waits for an interrupt. When an interrupt occurs while the
processor is waiting, its associated save/restore register 0 points to the instruction following the wait.

Table 3-33. Wait for Interrupt Instruction

Name Mnemonic Syntax

Wait for Interrupt wait —
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The e500mc does not implement the WC field of the wait instruction as defined in Power ISA 2.06. The
WC field is ignored.

3.4.7

Performance Monitor Instructions (User Level)

The performance monitor provides read-only, application-level access to some performance monitor
resources. Instructions are listed in Table 3-34.

Table 3-34. Performance Monitor Instructions

Name Mnemonic Syntax

Move from Performance Monitor Register mfpmr rD,PMRN

The user-level PMRs listed in Section Table 2-49., “Performance Monitor Registers are accessed with
mfpmr. Attempting to write user-level PMRs in either mode causes an illegal instruction exception.

3.4.8

Memory Synchronization Instructions

Memory synchronization instructions control the order in which memory operations complete with respect
to asynchronous events and the order in which memory operations are seen by other mechanisms that
access memory. See the section, “Atomic Update Primitives Using lwarx and stwex.”in the EREF: A
Programmers Reference Manual for Freescale Power Architecture® Processors for additional
information about these instructions and about related aspects of memory synchronization. See Table 3-35
for a summary.

Table 3-35. Memory Synchronization Instructions

Name

Mnemonic

Syntax

Implementation Notes

Instruction
Synchronize

isync

isync is refetch serializing; the e500mc waits for previous instructions (including
interrupts they generate) to complete before isync executes. This purges all instructions
from the core and refetches the next instruction. isync does not wait for pending stores
in the store queue to complete. Any subsequent instruction sees all effects of
instructions before the isync.

Because it prevents execution of subsequent instructions until previous instructions
complete, if an isync follows a conditional branch instruction that depends on the value
returned by a preceding load, the load on which the branch depends is performed before
any loads caused by instructions after the isync even if the effects of the dependency
are independent of the value loaded (for example, the value is compared to itself and the
branch tests selected, CRn[EQ]), and even if branch targets the next sequential
instruction.
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Table 3-35. Memory Synchronization Instructions (continued)

Name

Mnemonic

Syntax

Implementation Notes

Load Word and
Reserve
Indexed

lwarx

rD,rA,rB

lwarx with stwex. can emulate semaphore operations such as test and set, compare
and swap, exchange memory, and fetch and add. Both instructions should use the same
real address, the same size of operation (byte, halfword, word or doubleword), however
e500mc only requires that the real addresses be in the same coherence granule and the
size of operation is ignored with respect to whether the store conditional is performed or
not. The address must be naturally aligned, and should be in pages that are marked as
WIMGE = 001xx. The e500mc makes reservations on behalf of aligned 64-byte sections
of address space (coherence granule).

While the e500mc supports making reservations to cache inhibited memory, or to
cached memory when the cache is disabled, doing so may not be supported in the
future. Additionally, while e500mc supports making the reservations and store
conditionals to real addresses that differ but are within the same coherence granule or
with different size operations to the same granule, doing so may not be supported in the
future.

Executing lwarx and stwcx. to a page marked write-through (WIMGE = 10xxx) causes
a data storage exception. If the location is not naturally aligned, an alignment exception
occurs.

See “Atomic Update Primitives Using lwarx and stwex.,” in the EREF: A Programmer’s
Reference Manual for Freescale Power Architecture® Processors.”

Memory Barrier

mbar

MO

mbar provides a memory barrier. The behavior of mbar depends on the value of MO
operand. Note that mbar uses the same opcode as eieio, defined by the PowerPC
architecture, and with which mbar (MO=1) semantics are identical.

MO = 0—mbar 0 instruction provides a storage ordering function for all memory access
instructions executed by the processor executing mbar 0. Executing mbar 0 ensures
that all data storage accesses caused by instructions preceding the mbar 0 have
completed before any data storage accesses caused by any instructions after the
mbar 0. This order is seen by all mechanisms. The memory barrier is throughout the
memory hierarchy. In the e500mc, mbar 0 waits for proceeding data memory accesses
to become visible to the entire memory hierarchy; then it is broadcast on the CoreNet
interface. mbar 0 completes only after its address tenure.

MO = 1— mbar functions identically to eieio. For more information, see Section 3.4.8.1,
“mbar (MO = 1)
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Table 3-35. Memory Synchronization Instructions (continued)

Name

Mnemonic

Syntax

Implementation Notes

Memory
Synchronize

sync
(msync)

L

sync (former versions of the architecture used the mnemonic msync) provides a
memory barrier to ensure the order of affected load and store memory accesses. sync
provides 2 types of memory barriers specified by the L field:

¢ L =0 (“heavyweight sync” - hwsync), The memory barrier is throughout the memory
hierarchy. In the e500mc, sync 0 waits for proceeding data memory accesses to
become visible to the entire memory hierarchy; then it is broadcast on the CoreNet
interface. sync 0 completes only after its address tenure. Subsequent instructions
can execute out of order but complete only after the sync 0 completes. The simplified
mnemonics hwsync, sync, and msync are equivalent to sync 0.

e L=1 (“lightweight sync” - lwsync). The memory barrier provides an ordering function
for the storage accesses caused by load, store, and dcbz instructions executed by
the processor executing the sync instruction and for which the specified storage
location is neither write through required nor caching inhibited. The applicable pairs
are all pairs a;,b; of such accesses except those in which a; is an access caused by a
store or dcbz instruction and b; is an access caused by a load instruction.

The sync 1 instruction memory barrier orders accesses described by the applicable
pairs above to the local caches of the processor such that a; is performed in all caches
local to the processor prior to any b; access. The simplified mnemonic Iwsync is
equivalent to sync 1.

sync latency depends on the processor state when it is dispatched and on various

system-level conditions. Frequent use of sync 0 degrades performance and sync 1

should be used where possible.

In multiprocessing code that performs locking operations to lock shared data structures:

* sync is used to ensure that all stores into a data structure caused by store
instructions executed in a critical section of a program are performed with respect to
another processor before the store that releases the lock is performed with respect to
that processor. sync 1 (lwsync) or mbar 1 is preferable in many cases.

* Unlike a context-synchronizing operation, sync 0 does not discard prefetched
instructions.

The section, “Lock Acquisition and Import Barriers,” in the EREF: A Programmer’s

Reference Manual for Freescale Power Architecture® Processors describes how the

sync and mbar instructions can be used to control memory access ordering when

memory is shared between programs.

Store Word
Conditional
Indexed

stwcex.

rS,rA,rB

See lwarx above for a description of how load and reserve and store conditional
instructions are used in pairs. For stwex. e500mc takes a data storage exception if the
page is marked write-through (WIMGE = 10xxx) and takes an alignment exception if the
access is not naturally aligned.

3.4.8.1

mbar (MO = 1)

As defined by the architecture, mbar 1 (MO = 1) functions like eieio, as it is defined by the PowerPC
architecture. It provides ordering for the effects of certain classes of load and store instructions. These
instructions consist of two sets, which are ordered separately. Memory accesses caused by a debz or a dcba
are ordered like a store. The two sets follow:

* Caching-inhibited, guarded loads and stores to memory and write-through-required stores to
memory. mbar 1 controls the order in which accesses are performed in main memory. It ensures
that all applicable memory accesses caused by instructions preceding the mbar 1 have completed
with respect to main memory before any such accesses caused by instructions following mbar 1
access main memory. It acts like a barrier that flows through the memory queues and to main
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memory, preventing the reordering of memory accesses across the barrier. No ordering is
performed for debz if the instruction causes the system alignment error handler to be invoked.

All accesses in this set are ordered as one set; there is not one order for guarded, caching-inhibited
loads and stores and another for write-through-required stores.

+ Stores to memory that are caching-allowed, write-through not required, and memory-coherency
required. mbar 1 controls the order in which accesses are performed with respect to coherent
memory. It ensures that, with respect to coherent memory, applicable stores caused by instructions
before the mbar 1 complete before any applicable stores caused by instructions after it.

Except for debz and decba, mbar 1 does not affect the order of cache operations (whether caused explicitly
by a cache management instruction or implicitly by the cache coherency mechanism). Also, mbar 1 does
not affect the order of accesses in one set with respect to accesses in the other.

mbar 1 may complete before memory accesses caused by instructions preceding it have been performed
with respect to main memory or coherent memory as appropriate. mbar 1 is intended for use in managing
shared data structures, in accessing memory-mapped I/O, and in preventing load/store combining
operations in main memory. For the first use, the shared data structure and the lock that protects it must be
altered only by stores in the same set (for both cases described above). For the second use, mbar 1 can be
thought of as placing a barrier into the stream of memory accesses issued by a core, such that any given
access appears to be on the same side of the barrier to both the core and the I/O device.

Like mbar 0, mbar 1 is broadcast on the CoreNet interface, however, unlike mbar 0, mbar 1 does not
wait for it address tenure before completing execution.

Because the core performs store operations in order to memory that is designated as both caching-inhibited
and guarded, mbar 1 is needed for such memory only when loads must be ordered with respect to stores
or with respect to other loads.

The section, “Lock Acquisition and Import Barriers,” in the EREF: A Programmers Reference Manual
for Freescale Power Architecture® Processors describes how sync and mbar control memory access
ordering when programs share memory.

3.4.9 Reservations

The ability to emulate an atomic operation using load with reservation and store conditional instructions
is based on the conditional behavior of stwcx., the reservation set by Iwarx, and the clearing of that
reservation if the target location is modified by another processor or mechanism before the store
conditional instruction performs its store. Behavior of these instructions is described in the EREF: A
Programmer s Reference Manual for Freescale Power Architecture® Processors. On the e500mc, a
reservation may be lost for any of the following reasons:

» Execution of a stwex. by the processor

* Some other processor successfully modifies a location in the reservation granule and the address
containing the reservation is marked as Memory Coherence Required (M = 1)

» Execution of another load with reservation instruction, which removes the old reservation and
establishes a reservation at the address specified in the load with reservation instruction
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» Some other processor successfully executes a dcbtst, debtstep, dcbtstls, dcbal, or deba to a
location in the reservation granule and the address containing the reservation is marked as Memory
Coherence Required (M = 1)

On the e500mc, a reservation also may be lost for any of the following reasons:

* Any asynchronous interrupt is taken on the processor holding the reservation
Software should be written to not assume that the reservation is lost as the result of any interrupt. System
software should always perform a store conditional instruction to a scratch location when performing a

context switch or a partition switch to ensure that any held reservation is lost prior to initiating the new
context.

3.4.10 Memory Control Instructions

Memory control instructions can be classified as follows:

» User- and supervisor-level cache management instructions.

» Supervisor-level-only translation lookaside buffer management instructions
This section describes the user-level cache management instructions. See Section 3.4.11.3,
“Supervisor-Level Memory Control Instructions,” for information about supervisor-level cache and

translation lookaside buffer management instructions. Cache-locking instructions are described in
Section 3.4.10.2, “Cache Locking Instructions.”

3.4.10.1 User-Level Cache Instructions

The instructions listed in Table 3-36 help user-level programs manage on-chip caches if they are
implemented. See Chapter 5, “Core Caches and Memory Subsystem,” for more information about cache
topics. The following sections describe how these operations are treated with respect to the eS00mc’s
caches.

3.4.10.1.1 CT Field Values

The e500mc supports the following CT values:
* CT =0 indicates the L1 cache.
* CT =2 indicates the L2 cache.
* CT =1 indicates the platform cache, if one is implemented on the integrated device.
Additional values may be defined by the integrated device.
* The CT values 1, 3, 5, and 7 are not supported and produce undefined results when used with an
address that is mapped to PCI address space on the integrated device.

As with other memory-related instructions, the effects of cache management instructions on memory are
weakly-ordered. If the programmer must ensure that cache or other instructions have been performed with
respect to all other processors and system mechanisms, a sync must be placed after those instructions.

Section 3.4.10.2, “Cache Locking Instructions,” describes cache-locking instructions.
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Table 3-36. User-Level Cache Instructions

Name Mnemonic| Syntax Implementation Notes

Data Cache dcba rA,rB |If L1ICSRO[DCBZ32] = 0 dcba operates on all bytes in cache line (cache-line operation)

Block Allocate If L1ICSRO[DCBZ32] = 1 dcba operates on 32 bytes (32-byte operation)
dcba performs the same address translation and protection as a store and is treated as
a store for debug events. The dcba instruction is treated as a 32 or cache line number of
bytes store of zeros operation. The store operation is always size aligned to a 32 byte
granule for a 32 byte operation and a cache line granule for a cache line operation by
truncating the EA as necessary to achieve the appropriate granule. Using dcba with
32-byte operation may perform inferior to using cache-line operation and should be
avoided when possible.

The dcba is treated as a NOP if any of the following occur:

* The page is marked write-through.

* The page is marked caching inhibited.

* A DTLB miss exception or protection violation occurs.

e An L2 MMU multi-way hit is detected.

* The targeted cache is disabled.

When dcba is treated as a NOP, executing the dcba can result in IAC debug events, but
does not cause DAC debug events.

When using dcba in 32-bye operation on e500mc, if the line is not already valid in the
cache, the line is read from main storage prior to performing the dcba operation.

Data Cache dcbal rA,rB  |This instruction behaves the same as dcba except it always operates on all bytes in the

Block Allocate cache line regardless of the setting of L1ICSRO[DCBZ32].

by Line

Data Cache dcbf rA,rB  |The EA is computed, translated, and checked for protection violations:

Block Flush » For cache hits with the tag marked modified, the cache block is written back to memory

and the cache entry is invalidated.
* For cache hits with the tag marked not modified, the entry is invalidated.
¢ For cache misses, no further action is taken.
A dcbf is broadcast if WIMGE = xx1xx (coherency enforced).dcbf acts like a load with
respect to address translation and memory protection. It executes in the LSU regardless
of whether the cache is disabled or locked.

Data Cache dcbz rA,rB  [If L1CSRO[DCBZ32] = 0 debz operates on all bytes in cache line (cache-line operation)

Block Set to If L1CSRO[DCBZ32] = 1 dcbz operates on 32 bytes (32-byte operation)

Zero dcbz performs the same address translation and protection as a store and is treated as
a store for debug events. The dcbz instruction is treated as a 32 or cache line number of
bytes store of zeros operation. The store operation is always size aligned to a 32 byte
granule for a 32 byte operation and a cache line granule for a cache line operation by
truncating the EA as necessary to achieve the appropriate granule. Using dcbz with
32-byte operation may perform inferior to using cache-line operation and should be
avoided when possible.
dcbz takes an alignment exception if any of the following occur:

* The page is marked write-through.

* The page is marked caching inhibited.

When using dcbz in 32-bye operation on e500mc, if the line is not already valid in the
cache, the line is read from main storage prior to performing the debz operation.

Data Cache dcbzl rA,rB  [This instruction behaves the same as dcbz except it always operates on all bytes in the

Block Set to cache line regardless of the setting of L1ICSRO[DCBZ32].

Zero by Line

Data Cache dcbst rA,rB |dcbst is implemented identically to dcbf.

Block Store
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Table 3-36. User-Level Cache Instructions (continued)
Name Mnemonic| Syntax Implementation Notes
Data Cache dcbt TH,rA,rB 1IWhen dcbt executes, the e500mc checks for protection violations (as for a load
Block Touch instruction). debt is treated as a NOP in the following cases on e500mc:

e The access would cause a DSI or DTLB Miss exception.

* The page is marked Caching Inhibited.

* The page is marked Guarded.

¢ The targeted cache is disabled.

e An L2 MMU multi-way hit is detected.

* A dcbf (or dcbst, dcbstep, dcbfep) was previously executed and has not yet
performed its flush and the dcbt and dcbf (or dcbst, dcbstep, dcbfep) specify the
same cache line, but specify a different byte address within the cache line.

* HIDO[NOPTI] = 1

Otherwise, if no data is in the cache location, then a cache line fill is requested.
When dcbt is treated as a NOP, executing the dcbt can result in IAC debug events, but
does not cause DAC debug events.
Data Cache decbtst |TH,rA,rB 1l dcbtst is treated as a dcbt except that the line is allocated and an attempt is made to
Block Touch mark it as exclusive in the specified cache.
for Store
Instruction icbi rA,rB |icbi is broadcast on the CoreNet interface. It should always be followed by a sync and
Cache Block an isync to make sure its effects are seen by instruction fetches and instruction execution
Invalidate following the icbi itself.
Instruction icbt CT,rA,rB |When icbt executes, the e500mc checks for protection violations (as for a load
Cache Block instruction). icbt is treated as a NOP in the following cases on e500mc:
Touch ¢ The access would cause a DSI or TLB Miss exception.

* The page is marked Caching Inhibited.

* The page is marked Guarded.

* The targeted cache is disabled.

e An L2 MMU multi-way hit is detected.

* HIDO[NOPTI] = 1

Otherwise, if no data is in the cache location, then a cache line fill is requested.
When icbt is treated as a NOP, executing the icbt can result in IAC debug events, but
does not cause DAC debug events.

Note that the primary instruction cache (CT=0) on e500mc does not perform icbt
instructions and they are treated as a NOP.

1 These instructions formerly used CT as the first operand, however, Power ISA has renamed the field as TH to accommodate
the capability of performing streaming prefetches. For e500mc, the TH field can be treated as a CT value.

3.4.10.2

Cache Locking Instructions

Table 3-37 describes the implementation of the cache locking instructions, which are fully described in the
EREF': A Programmers Reference Manual for Freescale Power Architecture® Processors.

The dcbtls, dcbtstls, deble, icbtls, and icblc cache-locking instructions require hypervisor state privilege
to execute when MSRP[UCLEP] is set. Execution of these instructions in the guest supervisor state when
MSRP[UCLEP] is set causes a hypervisor privilege exception. User mode execution of these instructions
is unaffected and is still controlled by MSR[UCLE].

The CT field designates the specified cache in the cache hierarchy.

In these instructions, unless otherwise stated, the behavior applies to all.
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Table 3-37. Cache Locking Instructions

Name Mnemonic| Syntax Implementation Details
Data Cache Block dcblc CT,rA,rB | The line in the specified cache is unlocked, making it eligible for replacement.
Lock Clear
Data Cache Block dcbtls | CT,rA,rB |The line is loaded and locked into the specified cache.
Touch and Lock Set
Data Cache Block | dcbtstls | CT,rA,rB |The line is loaded and locked into the specified cache. The line is marked as
Touch for Store and modified.
Lock Set
Instruction Cache icblc CT,rA,rB [ The line in the specified cache is unlocked, making it eligible for replacement.
Block Lock Clear
Instruction Cache icbtls CT,rA,rB | The line is loaded and locked into the specified cache.
Block Touch and
Lock Set

Full descriptions of these instructions are in the “Instruction Set” chapter of the EREF: A Programmer s
Reference Manual for Freescale Power Architecture® Processors. Note the following behavior for
e500mc:

Unable to lock conditions occur if the locking instruction has no exceptions and the line cannot be
locked when CT = 0 or CT = 2. When an unable to lock condition occurs the line is not loaded or
locked and LICSRO[CUL] (or LICSRI1[ICUL] if an icbtls executed) is set to 1 regardless of

whether the L2 cache or the primary cache was specified. An unable to lock condition occurs when:

— The targeted cache is not enabled.

— The target address is marked Caching Inhibited (WIMGE = 0bx 1xx)

— The instruction is an icbtls, the L2 cache is specified, and L2CSRO[L2DO] = 1.

— The instruction is an dcbtls or dcbtstls, the L2 cache is specified, and L2ZCSRO[L210] = 1.
— An error loading the line occurred either on the CoreNet interface or from the L2 cache.

An overlocking condition occurs if the locking instruction has no exceptions and if all available
ways in the specified cache are locked.

— Ifan overlocking condition occurs in the primary cache (CT=0), the line is not loaded or locked
and L1ICSRO[CLO] (L1CSRO[ICLO] if an icbtls executed) is set to 1. LICSRO[CUL] and
LICSRI[ICUL] are not set.

— If an overlocking condition occurs in the L2 cache (CT=2) L2CSRO[L2LO] is set to 1.
L1CSRO[CUL] and LICSRI[ICUL] are not set. If L2ZCSRO[L2CLOA] = 1, the line is loaded
and locked replacing and unlocking a line in the set that would have normally been selected for
replacement if no lines in the set were locked. If L2ZCSRO[L2CLOA] = 0, the line is not loaded
or locked.

Note that setting L1CSRO[CLFC] flash invalidates all primary data cache lock bits and setting

L1CSRO[ICLFC] flash invalidates all primary instruction cache lock bits, allowing system

software to clear all cache locking in the L1 cache without knowing the addresses of the lines

locked. Setting L2ZCSRO[L2LFC] flash invalidates all L2 cache lock bits allowing system software
to clear all cache locking in the L2 cache without knowing the addresses of the lines locked.
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Because L1 cache locking is not persistent, setting L1CSRO[CFI] or LICSRI[ICFTI] clears the
locks in the respective caches because the lines containing the locks are invalidated.

» Touch and lock set instructions (icbtls, debtls, and debtstls) are always executed and are not
treated as hints.

» Since e500mc implements cache locking for the L1 cache as non-persistent, when combining
CT=2 cache operations with CT=0 data cache locking operations to the same line without any
synchronization, the final state of the CT=0 lock operations is unknown (that is, the line may or
may not be locked into the L1 data cache).

Cache locking clear instructions (dcble and icble) are NOPed if the specified cache is the L1 or L2 cache
and the cache is not enabled.

Consult the SoC documentation to determined behavior for the platform cache (CT = 1).

To precisely detect an overlock or unable to lock condition in the primary data cache, system software must
perform the following code sequence:

dcbtls

sync

mfspr (L1CSRO)

(check L1CSRO[CUL] for data cache index unable-to-lock condition)
(check L1CSRO[CLO] for data cache index overlock condition)

The following code sequence precisely detects an overlock in the primary instruction cache:

icbtls

sync

mfspr (L1CSR1)

check L1CSR1[ICUL] for instruction cache index unable-to-lock condition
check L1CSR1[ICLO] for instruction cache index overlock condition

3.4.11 Hypervisor- and Supervisor-Level Instructions

The architecture includes the structure of the memory management model, supervisor-level registers, and
the interrupt model. This section describes the hypervisor- and supervisor-level instructions implemented
on the e500mc. Instructions described here have an associated privilege and actions as described in
Table 3-38.

Table 3-38. Instruction Execution Based on Privilege Level

Privilege Level User Mode Guest Supervisor Mode Hypervisor Mode
of Instruction (MSR[GS,PR]=0bx1) (MSR[GS,PR]=0b10) (MSR[GS,PR]=0b00)
User execute normally execute normally execute normally
Guest Supervisor| privileged instruction exception execute normally execute normally
Hypervisor privileged instruction exception embedded hyperylsor privilege execute normally
exception

3.4.11.1 System Linkage and MSR Access Instructions

Table 3-39 describes system linkage instructions as they are implemented on the e500mc. The user-level
sc¢ (LEV = 0) instruction lets a user program call on the system to perform a service and causes the
processor to take a system call interrupt. The sc (LEV = 1) instruction is also used for the supervisor to
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involve the hypervisor to perform a service and causes the processor to take an embedded hypervisor
system call interrupt. The supervisor-level rfi and rfgi instructions are used for returning from an interrupt
handler. The hypervisor level rfci instruction is used for critical interrupts; rfdi is used for debug
interrupts; rfmeci is used for machine check interrupts.

Guest supervisor software should use rfi, rfci, rfdi, and rfmei when returning from their associated
interrupts. When a guest operating system executes rfi, the processor maps the instruction to rfgi assuring
that the appropriate guest save/restore registers are used for the return. For rfei, rfdi, and rfmei, the
hypervisor should emulate these instructions as it emulates the taking of these interrupts in guest
supervisor state.

Privileges are as follows:
» scis user privileged.
* rfi (rfgi), mfmsr, mtmsr, wrtee, wrteei are guest—supervisor privileged.
* rfci, rfdi, rfmci are hypervisor privileged.

Table 3-39. System Linkage Instructions—Supervisor-Level

Name Mnemonic | Syntax Implementation Notes
Return from Interrupt rfi — |These instructions are context-synchronizing, which for the
N e500mc means it works its way to the final execute stage,
Return from Guest Interrupt rfgi — |updates architected registers, and redirects instruction flow.
Return from Critical Interrupt rfci — |Inguest supervisor state (MSR[GS,PR]=0b10), rfi (rfgi)

cannot alter MSR[GS] or any bits protected by MSRP.
Return from Debug Interrupt rfdi — | Guest supervisor state maps rfi to rfgi. Guest supervisor
state cannot execute rfci, rfdi, or rfmci as they are hypervisor
privileged and are emulated by the hypervisor.

Return from Machine Check Interrupt rfmci —

System Call sc LEV

This table lists instructions for accessing the MSR.

Table 3-40. Move to/from Machine State Register Instructions

Name Mnemonic | Syntax Notes
Move from Machine State Register mfmsr rD —
Move to Machine State Register mtmsr rS In guest supervisor state (MSR[GS,PR]=0b10) mtmsr cannot
alter MSR[GS] or any bits protected by MSRP.
Write MSR External Enable wrtee rS —
Write MSR External Enable Immediate | wrteei E —

Certain encodings of the SPR field of mtspr and mfspr instructions (shown in Table 3-32) provide access
to supervisor-level SPRs. Encodings for SPRs are listed in Table 2-2. Simplified mnemonics are provided
for mtspr and mfspr. See Section 3.3.3, “Synchronization Requirements,” and the EREF: A
Programmer s Reference Manual for Freescale Power Architecture® Processors for more information on
context synchronization requirements when altering certain SPRs.
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3.4.11.2 External PID Load Store Instructions

External PID load and store instructions are used by the operating system and hypervisor to perform load,
store, and cache management instruction to a separate address space while still fetching and executing in
the normal supervisor or hypervisor context. The operating system or hypervisor selects the address space
to target by altering the contents of the EPLC and EPSC registers for loads and stores respectively. When
the effective address specified by the external PID load or store instruction is translated, the translation
mechanism uses ELPID, EPID, EAS, EPR, and EGS values from the EPLC or EPSC register instead of
LPIDR, PID, MSR[DS], MSR[PR], and MSR[GS] values. Such instructions are useful for an operating
system to access and manipulate virtual memory using the context and credentials of a process.

The external PID instructions are implemented as described in EREF: A Programmer s Reference Manual
for Freescale Power Architecture® Processors. Any implementation specific behaviors for external PID
instructions is the same as the non external PID analogous instruction for e500mc (except that the
translation mechanism is changed as described). See the appropriate description of the analogous
instruction for any implementation specific details. All external PID instructions are guest supervisor
privileged.

This table lists external PID load and store instructions.

Table 3-41. External PID Load Store Instructions

Non External
Instruction Mnemonic Syntax PID
Analogous
Instruction
Load Byte by External PID Indexed Ibepx rD,rA,rB Ibzx
Load Floating-Point Doubleword by External PID Indexed Ifdepx frD,rA,rB Ifdx
Load Halfword by External PID Indexed lhepx rD,rA,rB lhzx
Load Word by External PID Indexed lwepx rD,rA,rB lwzx
Store Byte by External PID Indexed stbepx rS,rA,rB stbx
Store Floating-Point Doubleword by External PID Indexed stfdepx frS,rA,rB stfdx
Store Halfword by External PID Indexed sthepx rS,rA,rB sthx
Store Word by External PID Indexed stwepx rS,rA,rB stwx
Data Cache Block Flush by External PID Indexed dcbfep rA,rB dcbf
Data Cache Block Store by External PID Indexed dcbstep rA,rB dcbst
Data Cache Block Touch by External PID Indexed dcbtep TH,rA,rB dcbt
Data Cache Block Touch for Store by External PID Indexed dcbtstep TH,rA,rB dcbtst
Data Cache Block Zero by External PID Indexed dcbzep rA,rB dcbz
Data Cache Block Zero Long by External PID Indexed dcbzlep rA,rB dcbzl
Instruction Cache Block Invalidate by External PID Indexed icbiep rA,rB icbi
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3.4.11.3 Supervisor-Level Memory Control Instructions

Memory control instructions include the following:
* (Cache management instructions (supervisor-level and user-level)
» Translation lookaside buffer management instructions

This section describes supervisor-level memory control instructions. Section 3.4.10, “Memory Control
Instructions,” describes user-level memory control instructions.

3.4.11.3.1  Supervisor-Level Cache Instruction

Table 3-42 lists the supervisor-level cache management instructions except for cache management
instructions which are part of the External PID instructions.

Table 3-42. Supervisor-Level Cache Management Instruction

Name Mnemonic | Syntax Implementation Notes
Data Cache dcbi rA,rB |dchi executes as defined in the Power ISA but has implementation dependent behaviors.
Block When the address to be invalidated is marked Memory Coherence Required (WIMGE
Invalidate = 0bx01xx), a debf is performed which first flushes the line if modified prior to invalidation. If

the address is not marked as Memory Coherence Required (WIMGE=0bx00xx), the line is
not flushed and is invalidated. In this case if the line was modified, the modified data is lost.
In the e500mc, dcbi cannot generate a cache-locking exception.

dcbi is guest supervisor privileged.

See Section 3.4.10.1, “User-Level Cache Instructions,” for cache instructions that provide user-level
programs the ability to manage on-chip caches.

3.4.11.3.2 Supervisor-Level TLB Management Instructions

The address translation mechanism is defined in terms of TLBs and page table entries (PTEs) used to locate
the logical-to-physical address mapping for an access. Chapter 6, “Memory Management Units (MMUSs),”
describes TLB operations. TLB management instructions are implemented as defined in EREF: A
Programmer’s Reference Manual for Freescale Power Architecture® Processors.

e500mc Core Reference Manual, Rev. 3

Freescale Semiconductor 3-39




Instruction Model

This table summarizes the operation of the TLB instructions in the e500mc.

Table 3-43. TLB Management Instructions

Name

Mnemonic

Syntax

Implementation Notes

TLB Invalidate
Local

tibilx

T,rA, B

Invalidates TLB entries in the processor which executes the tlbilx instruction. TLB entries
which are protected by the IPROT attribute (entry,pror=1) are not invalidated.tlbilx can be
used to invalidate all entries corresponding to a LPID value, all entries corresponding to a
PID value, or a single entry”

tibilx is guest supervisor privileged, however it causes an embedded hypervisor privilege

exception if EPCR[DGTMI] is set.

Note: tibilx is the preferred way of performing TLB invalidations, especially for operating
systems running as a guest to the hypervisor because invalidations are partitioned
and do not require hypervisor privilege.

Note: tlbilx requires the same local-processor synchronization as tlbivax, but not the
cross-processor synchronization (that is, it does not require tlbsync).

TLB Invalidate
Virtual
Address
Indexed

tibivax

rA, rB

A TLB invalidate operation is performed whenever tlbivax is executed. tlbivax invalidates
any TLB entry in the targeted TLB array that corresponds to the virtual address calculated
by this instruction as long as IPROT is not set; this includes invalidating TLB entries
contained in TLBs on other processors and devices in addition to the processor executing
tibivax. Thus, an invalidate operation is broadcast throughout the coherent domain of the
processor executing tibivax. For more information see Section 6.3, “Translation Lookaside
Buffers (TLBs).”

e tlbivax is hypervisor privileged.

TLB Read
Entry

tibre

tlbre causes the contents of a single TLB entry to be extracted from the MMU and be placed
in the corresponding fields of the MAS registers. The entry extracted is specified by the
TLBSEL, ESEL, and EPN fields of MASO and MAS2. The contents extracted from the MMU
are placed in MAS0-MASS3, MAS7, and MASS. If HIDO[EN_MAS7_UPDATE] = 1, MAS7 is
updated with the four highest-order bits of physical address for the TLB entry. See
Section 6.3, “Translation Lookaside Buffers (TLBs).”

tibre is hypervisor privileged.

TLB Search
Indexed

tibsx

rA, rB

tibsx searches the MMU for a particular entry based on the computed EA and the search
values in MAS5 and MASG.If a match is found, MAS1[V] is set and the found entry is read
into the MAS0-MAS3, MAS7, and MASS. If HIDO[EN_MAS7_UPDATE] = 1, MAS7 is
updated with the four highest-order bits of physical address for the TLB entry. If the entry is
not found MAS1[V] is set to 0.See Section 6.3, “Translation Lookaside Buffers (TLBs).”
tibsx is hypervisor privileged.

Note that rA=0 is a preferred form for tibsx and that some Freescale implementations,
including the e500mc, take an illegal instruction exception if rA != 0.

TLB
Synchronize

tibsync

Causes a TLBSYNC transaction on CoreNet interface. See Section 6.3, “Translation
Lookaside Buffers (TLBs).”

tibsync is hypervisor privileged.

Note that only one tlbsync can be in process at any given time on all processors of a
coherence domain. The hypervisor or operating system should ensure this by doing the
appropriate mutual exclusion. If e500mc detects multiple tibsync operations at the same
time, a machine check can occur.

TLB Write
Entry

tibwe

tibwe causes the contents of certain fields of MASO—MAS3, MAS7, and MASS to be written
into a single TLB entry in the MMU. The entry written is specified by the TLBSEL, ESEL,
and EPN fields of MASO and MAS2. Execution of tibwe on the e500mc also causes the
upper 4 bits of the RPN that reside in MAS7 to be written to the selected TLB entry. See
Section 6.3, “Translation Lookaside Buffers (TLBs).”

tibwe is hypervisor privileged regardless of the setting of EPCR[DGTMI] as e500mc does
not provide a Logical to Real Translation (LRAT) mechanism.
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Implementation Notes

If an attempt is made to write a TLB1 entry and MASI1[TSIZE] specifies an invalid size (that is, 0 or 11 to
15), the entry is treated as if it is 4KB.

The TLB management instructions from Power ISA 2.06 contain a significant amount of optional
capabilities. Although these capabilities are described in configuration registers, Freescale
implementations only utilize a portion of the these capabilities. To minimize compatibility problems,
system software should incorporate uses of these instructions into subroutines.

Executing tlbsx with rA != 0 causes an illegal instruction exception on e500mc. Software should always
use tlbsx with rA = 0.

3.4.11.4 Message Clear and Message Send Instructions

The e500mc can generate messages to other processors and devices in the system. Messages are generated
by using the Message Send (msgsnd) instruction. When a processor executes a msgsnd instruction that
message is sent to all other processors in the coherence domain. Depending on the message type and the
payload of the message (specified by rB), other processors that receive this message may take one of
several types of doorbell interrupts. The e500mc accepts message types which generate the following
doorbell interrupts:

* Processor doorbell
* Processor doorbell critical
*  Guest processor doorbell
* Guest processor doorbell critical
*  Guest processor doorbell machine check
See Section Table 4-30., “Message Types and Section 4.9.18.1, “Doorbell Interrupt Definitions. Messages

that have already been accepted by a processor but have not caused one of the associated interrupts because
the interrupt is masked may be cleared by the Message Clear (msgclr) instruction.

Both msgsnd and msgclr are implemented as described in the architecture and EREF: A Programmer s
Reference Manual for Freescale Power Architecture® Processors.

More information about the doorbell interrupt types can be found in Section 4.9.18.1, “Doorbell Interrupt
Definitions.”

Table 3-44. Message Clear and Message Send Instructions

Name Mnemonic Syntax
Message Clear msgclr rB
Message Send msgsnd rB

msgsnd and msgclr are hypervisor privileged.
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3.4.11.5 Performance Monitor Instructions (Supervisor Level)

Software communicates with the performance monitor through performance monitor registers (PMRs)
with the instructions listed in Table 3-45.

Table 3-45. Supervisor Performance Monitor Instructions

Name Mnemonic Syntax
Move from Performance Monitor Register mfpmr rD,PMRN
Move to Performance Monitor Register mtpmr PMRN,rS

Writing to a performance monitor register (mtpmr) requires guest supervisor privilege when
MSRP[PMMP] = 0. If MSRP[PMMP] = 1, performance monitor registers are only accessible to the
hypervisor. User level access is limited to read only access to certain registers through aliases designed to
be accessed by user level software. Supervisor software can access these as well as all other defined
performance monitor registers. Attempting to access an undefined performance monitor register causes an
illegal instruction exception. PMRs are listed in Section 2.18, “Performance Monitor Registers (PMRs).”

3.4.12 Recommended Simplified Mnemonics

The description of each instruction includes the mnemonic and a formatted list of operands. Compliant
assemblers support the mnemonics and operand listed. Simplified mnemonics and symbols is provided for
frequently used instructions; refer to Appendix B, “Simplified Mnemonics,” for a complete list. Programs
written to be portable across the various assemblers should not assume the existence of mnemonics not
described in this document.

3.4.13 Context Synchronization

Context synchronization is achieved by post- and presynchronizing instructions. An instruction is
presynchronized by completing all instructions before dispatching the presynchronized instruction.
Post-synchronizing is implemented by not dispatching any later instructions until the post-synchronized
instruction is completely finished.

3.5 Debug Instruction Model

The Debugger Notify Halt instruction (dnh) is implemented as defined in Power ISA and EREF: A
Programmer s Reference Manual for Freescale Power Architecture® Processors. dnh can be used to halt
the processor when an external debugger is attached and has enabled halting by setting
EDBCRO[DNH_EN]. When the processor is halted, the DUI field is passed directly to the debugger as
information describing the reason for the halt. The DUIS field can be extracted by the debugger if required
for more detailed information. If an external debugger is not attached or has not enabled halting, dnh takes
an illegal instruction exception.

Table 3-46. dnh Debug Instruction

Name Mnemonic Syntax Implementation Details

Debugger Notify Halt dnh DUIL,DUIS —
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3.6 Instruction Listing

This table lists the instructions implemented on the e500mc.

Table 3-47. e500mc Instruction Set

Instruction Model

Mnemonic Syntax Classification Cross-Reference
add rD,rA,rB Integer Table 3-5
add. rD,rA,rB Integer Table 3-5
addc rD,rA,rB Integer Table 3-5
addc. rD,rA,rB Integer Table 3-5

addco rD,rA,rB Integer Table 3-5
addco. rD,rA,rB Integer Table 3-5
adde rD,rA,rB Integer Table 3-5
adde. rD,rA,rB Integer Table 3-5
addeo rD,rA,rB Integer Table 3-5
addeo. rD,rA,rB Integer Table 3-5
addi rD,rA,SIMM Integer Table 3-5
addic rD,rA,SIMM Integer Table 3-5
addic. rD,rA,SIMM Integer Table 3-5
addis rD,rA,SIMM Integer Table 3-5
addme rD,rA Integer Table 3-5
addme. rD,rA Integer Table 3-5
addmeo rD,rA Integer Table 3-5
addmeo. rD,rA Integer Table 3-5
addo rD,rA,rB Integer Table 3-5
addo. rD,rA,rB Integer Table 3-5
addze rD,rA Integer Table 3-5
addze. rD,rA Integer Table 3-5
addzeo rD,rA Integer Table 3-5
addzeo. rD,rA Integer Table 3-5
and rA,rS,rB Integer logical Table 3-7
and. rA,rS,rB Integer logical Table 3-7
andc rA,rS,rB Integer logical Table 3-7
andc. rA,rS,rB Integer logical Table 3-7
andi. rA,rS,UuiIMM Integer logical Table 3-7
andis. rA,rS,UuiIMM Integer logical Table 3-7
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Instruction Model

Table 3-47. e500mc Instruction Set (continued)

Mnemonic Syntax Classification Cross-Reference
b LI Branch Table 3-25
ba LI Branch Table 3-25
bc BO,BI,BD Branch Table 3-25
bca BO,BI,BD Branch Table 3-25
bcctr BO,BI Branch Table 3-25
becetrl BO,BI Branch Table 3-25
bcl BO,BI,BD Branch Table 3-25
bcla BO,BI,BD Branch Table 3-25
belr BO,BI Branch Table 3-25
belrl BO,BI Branch Table 3-25
bl LI Branch Table 3-25
bla LI Branch Table 3-25
cmp crfD,L,rA,rB Compare Table 3-6
cmpi crfD,L,rA,SIMM Compare Table 3-6
cmpl crfD,L,rA,rB Compare Table 3-6
cmpli crfD,L,rA,UIMM Compare Table 3-6
cntlzw rA,rS Integer logical Table 3-7
cntizw. rA,rS Integer logical Table 3-7
crand crbD,crbA,crbB Condition register logical Table 3-6
crandc crbD,crbA,crbB Condition register logical Table 3-6
creqv crbD,crbA,crbB Condition register logical Table 3-6
crnand crbD,crbA,crbB Condition register logical Table 3-6
crnor crbD,crbA,crbB Condition register logical Table 3-6
cror crbD,crbA,crbB Condition register logical Table 3-6
crorc crbD,crbA,crbB Condition register logical Table 3-6
crxor crbD,crbA,crbB Condition register logical Table 3-6
dcba rA,rB Cache control Table 3-36
dcbal rA,rB Extended cache line/cache control Table 3-36
dcbf rA,rB Cache control Table 3-36
dcbfep rA,rB External PID load/store Table 3-41
dcbi rA,rB Cache control Table 3-36
dcblc CT,rA,rB Cache locking Table 3-37
dcbst rA,rB Cache control Table 3-36
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Table 3-47. e500mc Instruction Set (continued)

Instruction Model

Mnemonic Syntax Classification Cross-Reference
dcbstep rA,rB External PID load/store Table 3-41
dcbt TH,rA,rB Cache control Table 3-36
dcbtep TH,rA,rB External PID load/store Table 3-41
dcbtls CT,rA,rB Cache locking Table 3-37
dcbtst CT,rA,rB Cache control Table 3-36
dcbtstep TH,rA,rB External PID load/store Table 3-41
dcbtstls CT,rA,rB Cache locking Table 3-37
dcbz rA,rB Cache control Table 3-36
dcbzep rA,rB External PID load/store Table 3-41
dcbzl rA,rB Extended cache line/cache control Table 3-36
dcbzlep rA,rB External PID load/store Table 3-41
divw rD,rA,rB Integer Table 3-5
divw. rD,rA,rB Integer Table 3-5
divwo rD,rA,rB Integer Table 3-5
divwo. rD,rA,rB Integer Table 3-5
divwu rD,rA,rB Integer Table 3-5
divwu. rD,rA,rB Integer Table 3-5
divwuo rD,rA,rB Integer Table 3-5
divwuo. rD,rA,rB Integer Table 3-5
dnh DUI,DUIS Debug Table 3-46
dsn rA,rB Decorated load/store Table 3-16
ehpriv ocC Hypervisor Table 3-30”
eqv rA,rS,rB Integer logical Table 3-7
eqv. rA,rS,rB Integer logical Table 3-7
extsb rA,rS Integer logical Table 3-7
extsb. rA,rS Integer logical Table 3-7
extsh rA,rS Integer logical Table 3-7
extsh. rA,rS Integer logical Table 3-7
fabs frD,frB Floating-point Table 3-17
fabs. frD,frB Floating-point Table 3-17
fadd frD,frA,frB Floating-point Table 3-17
fadd. frD,frA,frB Floating-point Table 3-17
fadds frD,frA,frB Floating-point Table 3-17
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Table 3-47. e500mc Instruction Set (continued)

Mnemonic Syntax Classification Cross-Reference
fadds. frD,frA,frB Floating-point Table 3-17
fcmpo crfD,frA,frB Floating-point Table 3-17
fcmpu crfD,frA,frB Floating-point Table 3-17

fetiw frD,frB Floating-point Table 3-17
fetiw. frD,frB Floating-point Table 3-17
fctiwz frD,frB Floating-point Table 3-17
fctiwz. frD,frB Floating-point Table 3-17
fdiv frD,frA,frB Floating-point Table 3-17
fdiv. frD,frA,frB Floating-point Table 3-17
fdivs frD,frA,frB Floating-point Table 3-17
fdivs. frD,frA,frB Floating-point Table 3-17
fmadd frD,frA,frC,frB Floating-point Table 3-18
fmadd. frD,frA,frC,frB Floating-point Table 3-18
fmadds frD,frA,frC,frB Floating-point Table 3-18
fmadds. frD,frA,frC,frB Floating-point Table 3-18
fmr frD,frB Floating-point Table 3-22
fmr. frD,frB Floating-point Table 3-22
fmsub frD,frA,frC,frB Floating-point Table 3-17
fmsub. frD,frA,frC,frB Floating-point Table 3-17
fmsubs frD,frA,frC,frB Floating-point Table 3-17
fmsubs. frD,frA,frC,frB Floating-point Table 3-17
fmul frD,frA,frC Floating-point Table 3-17
fmul. frD,frA,frC Floating-point Table 3-17
fmuls frD,frA,frC Floating-point Table 3-17
fmuls. frD,frA,frC Floating-point Table 3-17
fnabs frD,frB Floating-point Table 3-17
fnabs. frD,frB Floating-point Table 3-17
fneg frD,frB Floating-point Table 3-17
fneg. frD,frB Floating-point Table 3-17
fnmadd frD,frA,frC,frB Floating-point Table 3-18
fnmadd. frD,frA,frC,frB Floating-point Table 3-18
fnmadds frD,frA,frC,frB Floating-point Table 3-18
fnmadds. frD,frA,frC,frB Floating-point Table 3-18
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Table 3-47. e500mc Instruction Set (continued)

Instruction Model

Mnemonic Syntax Classification Cross-Reference
fnmsub frD,frA,frC,frB Floating-point Table 3-18
fnmsub. frD,frA,frC,frB Floating-point Table 3-18
fnmsubs frD,frA,frC,frB Floating-point Table 3-18

fnmsubs. frD,frA,frC,frB Floating-point Table 3-18

fres frD,frB Floating-point Table 3-18
fres. frD,frB Floating-point Table 3-18
frsp frD,frB Floating-point Table 3-18
frsp. frD,frB Floating-point Table 3-18
frsqrte frD,frB Floating-point Table 3-18
frsqrte. frD,frB Floating-point Table 3-18
fsel frD,frA,frC,frB Floating-point Table 3-18
fsel. frD,frA,frC,frB Floating-point Table 3-18
fsub frD,frA,frB Floating-point Table 3-18
fsub. frD,frA,frB Floating-point Table 3-18
fsubs frD,frA,frB Floating-point Table 3-18
fsubs. frD,frA,frB Floating-point Table 3-18
icbi frA,frB Cache control Table 3-36
icbiep rA,rB External PID load/store Table 3-41
icblc CT,rA,rB Cache locking Table 3-37
icht CT,rA,rB Cache control Table 3-36
icbtls CT,rA,rB Cache locking Table 3-37
isel rD,rA,rB,crbC Integer select Table 3-26
isync — Synchronization Table 3-35
Ibdx rD,rA,rB Decorated load/store Table 3-16
Ibepx rD,rA,rB External PID load/store Table 3-41
Ibz rD,d(rA) Integer load Table 3-10
Ibzu rD,d(rA) Integer load Table 3-10
lbzux rD,rA,rB Integer load Table 3-10
Ibzx rD,rA,rB Integer load Table 3-10
Ifd frD,d(rA) Floating-point load/store Table 3-14
Ifddx frD,rA,rB Decorated load/store Table 3-16
Ifdepx frD,rA,rB External PID load/store Table 3-41
Ifdu frD,d(rA) Floating-point load/store Table 3-14
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Table 3-47. e500mc Instruction Set (continued)

Mnemonic Syntax Classification Cross-Reference

Ifdux frD,rA,rB Floating-point load/store Table 3-14
Ifdx frD,rA,rB Floating-point load/store Table 3-14

Ifs frD,d(rA) Floating-point load/store Table 3-14
Ifsu frD,d(rA) Floating-point load/store Table 3-14
Ifsux frD,rA,rB Floating-point load/store Table 3-14
Ifsx frD,rA,rB Floating-point load/store Table 3-14

lha rD,d(rA) Integer load Table 3-10
lhau rD,d(rA) Integer load Table 3-10
lhaux rD,rA,rB Integer load Table 3-10
lhax rD,rA,rB Integer load Table 3-10
lhbrx rD,rA,rB Integer load/store w/byte reverse Table 3-12
lhdx rD,rA,rB Decorated load/store Table 3-16
lhepx rD,rA,rB External PID load/store Table 3-41

lhz rD,d(rA) Integer load Table 3-10
lhzu rD,d(rA) Integer load Table 3-10
lhzux rD,rA,rB Integer load Table 3-10
lhzx rD,rA,rB Integer load Table 3-10
Imw rD,d(rA) Integer load Table 3-10
lwarx rD,rA,rB Synchronization Table 3-35
lwbrx rD,rA,rB Integer load/store w/byte reverse Table 3-12
lwdx rD,rA,rB Decorated load/store Table 3-16
lwepx rD,rA,rB External PID load/store Table 3-41

lwz rD,d(rA) Integer load Table 3-10
lwzu rD,d(rA) Integer load Table 3-10
lwzux rD,rA,rB Integer load Table 3-10
lwzx rD,rA,rB Integer load Table 3-10
mbar — Synchronization Table 3-35
mcrf crfD,crfS Condition register logical Table 3-6
mcrfs crfD,crfS_FP Condition register logical Table 3-6
mcerxr crfD Condition register logical Table 3-31
mfcr rD Condition register logical Table 3-31
mffs frD FPSCR Table 3-21
mfifs. frD FPSCR Table 3-21
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Table 3-47. e500mc Instruction Set (continued)

Instruction Model

Mnemonic Syntax Classification Cross-Reference
mfmsr rD MSR Table 3-40
mfocrf rD,CRM CR logical Table 3-31
mfpmr rD,PMRN Move from PMR Table 3-45
mfspr rD,SPR SPR Table 3-32

mftb rD,SPR Move from time base Table 3-32
msgclr rB Doorbell Table 3-44
msgsnd rB Doorbell Table 3-44
mtcrf CRM,rS Condition register logical Table 3-31
mtfsb0 crbD_FP FPSCR Table 3-21
mtfsb0. crbD_FP FPSCR Table 3-21
mtfsb1 crbD_FP FPSCR Table 3-21
mtfsb1. crbD_FP FPSCR Table 3-21
mtfsf FM,fB FPSCR Table 3-21
mitfsf. FM,fB FPSCR Table 3-21
mtfsfi crfD_FP,FP_IMM FPSCR Table 3-21
mtfsfi. crfD_FP,FP_IMM FPSCR Table 3-21
mtmsr rS MSR Table 3-40
mtocrf CRM,rS CR logical Table 3-31
mtpmr PMRN,rS Move to PMR Table 3-34
mtspr SPR,rS SPR Table 3-32
mulhw rD,rA,rB Integer Table 3-5
mulhw. rD,rA,rB Integer Table 3-5
mulhwu rD,rA,rB Integer Table 3-5
mulhwu. rD,rA,rB Integer Table 3-5
mulli rD,rA,SIMM Integer Table 3-5
mullw rD,rA,rB Integer Table 3-5
mullw. rD,rA,rB Integer Table 3-5
mullwo rD,rA,rB Integer Table 3-5
mullwo. rD,rA,rB Integer Table 3-5
nand rA,rS,rB Integer logical Table 3-7
nand. rA,rS,rB Integer logical Table 3-7
neg rD,rA Integer Table 3-5
neg. rD,rA Integer Table 3-5
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Instruction Model

Table 3-47. e500mc Instruction Set (continued)

Mnemonic Syntax Classification Cross-Reference
nego rD,rA Integer Table 3-5
nego. rD,rA Integer Table 3-5

nor rA,rS,rB Integer logical Table 3-7
nor. rA,rS,rB Integer logical Table 3-7
or rA,rS,rB Integer logical Table 3-7
or. rA,rS,rB Integer logical Table 3-7
orc rA,rS,rB Integer logical Table 3-7
orc. rA,rS,rB Integer logical Table 3-7
ori rA,rS,UuIMM Integer logical Table 3-7
oris rA,rS,UuIMM Integer logical Table 3-7
rfci — System Linkage Table 3-39
rfdi — System Linkage Table 3-39
rfgi — System Linkage Table 3-39
rfi — System Linkage Table 3-39
rfmci — System Linkage Table 3-39
rlwimi rA,rS,SH,MB,ME Integer rotate Table 3-8
rlwimi. rA,rS,SH,MB,ME Integer rotate Table 3-8
rlwinm rA,rS,SH,MB,ME Integer rotate Table 3-8
rlwinm. rA,rS,SH,MB,ME Integer rotate Table 3-8
rlwnm rA,rS,rB,MB,ME Integer rotate Table 3-8
rlwnm. rA,rS,rB,MB,ME Integer rotate Table 3-8
sc LEV System call Table 3-8
slw rA,rS,rB Integer shift Table 3-9
slw. rA,rS,rB Integer shift Table 3-9
sraw rA,rS,rB Integer shift Table 3-9
sraw. rA,rS,rB Integer shift Table 3-9
srawi rA,rS,SH Integer shift Table 3-9
srawi. rA,rS,SH Integer shift Table 3-9
srw rA,rS,rB Integer shift Table 3-9
Srw. rA,rS,rB Integer shift Table 3-9
stb rS,d(rA) Integer store Table 3-11
stbdx rS,rA,rB Decorated load/store Table 3-16
stbepx rS,rA,rB External PID load/store Table 3-41
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Instruction Model

Table 3-47. e500mc Instruction Set (continued)

Mnemonic Syntax Classification Cross-Reference

stbu rS,d(rA) Integer store Table 3-11
stbux rS,rA,rB Integer store Table 3-11
stbx rS,rA,rB Integer store Table 3-11
stfd frS,d(rA) Floating-point store Table 3-15
stfddx frS,rA,rB Decorated load/store Table 3-16
stfdepx frS,rA,rB External PID load/store Table 3-41
stfdu frS,d(rA) Floating-point store Table 3-15
stfdux frS,rA,rB Floating-point store Table 3-15
stfdx frS,rA,rB Floating-point store Table 3-15
stfiwx frS,rA,rB Floating-point store Table 3-15
stfs frS,d(rA) Floating-point store Table 3-15
stfsu frS,d(rA) Floating-point store Table 3-15
stfsux frS,rA,rB Floating-point store Table 3-15
stfsx frS,rA,rB Floating-point store Table 3-15
sth rS,d(rA) Integer store Table 3-11
sthbrx rS,rA,rB Integer load/store w/byte reverse Table 3-12
sthdx rS,rA,rB Decorated load/store Table 3-16
sthepx rS,rA,rB External PID load/store Table 3-41
sthu rS,d(rA) Integer store Table 3-11
sthux rS,rA,rB Integer store Table 3-11
sthx rS,rA,rB Integer store Table 3-11
stmw rS,d(rA) Integer store Table 3-11
stw rS,d(rA) Integer store Table 3-11
stwbrx rS,rA,rB Integer load/store w/byte reverse Table 3-12
stwex. rS,rA,rB Synchronization Table 3-35
stwdx rS,rA,rB Decorated load/store Table 3-16
stwepx rS,rA,rB External PID load/store Table 3-41
stwu rS,d(rA) Integer store Table 3-11
stwux rS,rA,rB Integer store Table 3-11
stwx rS,rA,rB Integer store Table 3-11
subf rD,rA,rB Integer Table 3-5
subf. rD,rA,rB Integer Table 3-5
subfc rD,rA,rB Integer Table 3-5
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Table 3-47. e500mc Instruction Set (continued)

Mnemonic Syntax Classification Cross-Reference
subfc. rD,rA,rB Integer Table 3-5
subfco rD,rA,rB Integer Table 3-5
subfco. rD,rA,rB Integer Table 3-5
subfe rD,rA,rB Integer Table 3-5
subfe. rD,rA,rB Integer Table 3-5
subfeo rD,rA,rB Integer Table 3-5
subfeo. rD,rA,rB Integer Table 3-5
subfic rD,rA,SIMM Integer Table 3-5
subfme rD,rA Integer Table 3-5

subfme. rD,rA Integer Table 3-5
subfmeo rD,rA Integer Table 3-5
subfmeo. rD,rA Integer Table 3-5
subfo rD,rA,rB Integer Table 3-5
subfo. rD,rA,rB Integer Table 3-5
subfze rD,rA Integer Table 3-5
subfze. rD,rA Integer Table 3-5
subfzeo rD,rA Integer Table 3-5
subfzeo. rD,rA Integer Table 3-5
sync L Synchronization Table 3-35
(msync)
tibilx T,rA,rB TLB management Table 3-43
tibivax rA,rB TLB management Table 3-43
tibre — TLB management Table 3-43
tibsx rA,rB TLB management Table 3-43
tilbsync — TLB management Table 3-43
tibwe — TLB management Table 3-43
tw TO,rA,rB Trap Table 3-28
twi TO,rA,SIMM Trap Table 3-28
wait — Wait Table 3-35
wrtee rS MSR Table 3-40
wrteei E MSR Table 3-40
xor rA,rS,rB Integer logical Table 3-7
Xor. rA,rS,rB Integer logical Table 3-7
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Table 3-47. e500mc Instruction Set (continued)

Instruction Model

Mnemonic Syntax Classification Cross-Reference
xori rA,rS,UIMM Integer logical Table 3-7
xoris rA,rS,UIMM Integer logical Table 3-7
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Chapter 4
Interrupts and Exceptions

This chapter provides a general description of the interrupt and exception model as it is implemented in
the e500mc core. It identifies and describes the portions of the interrupt model that are defined by the
architecture and those that are specific to the e500mc.

4.1 Interrupts and Exceptions Overview

The terms “interrupt” and “exception” are used as follows:

Interrupt An interrupt is the action in which the processor saves its context (typically the
machine state register (MSR) and next instruction address) and begins execution
at a predetermined interrupt handler address with a modified MSR.

Exception An exception is the event that, if enabled, may cause the processor to take an
interrupt. Multiple exceptions may occur during the execution of an instruction
and the exception priority mechanism determines which of the exceptions cause
an associated interrupt. In some cases when an asynchronous exception has
occurred, but the associated interrupt is not enabled, other actions within the
processor may clear the exception condition prior to it being enabled, which
prevents the associated interrupt from occurring. The architecture describes
exceptions as being generated by instructions, the internal timer facility, debug
events, error conditions, and signals from internal and external peripherals.

There are four categories of interrupts, which are described in the following sections:
+ Standard Interrupts
*  Critical Interrupts
* Debug Interrupts
* Machine Check Interrupts

4.1.1 Standard Interrupts

Standard interrupts are first-level interrupts that allow the processor to change program flow to handle
conditions generated by external signals, errors, or conditions arising from program execution or from
programmable timer-related events. These interrupts are largely identical to those defined originally by the
PowerPC OEA. They use save and restore registers (SRRO/SRR1) to save state when they are taken and
they use the rfi instruction to restore state. Asynchronous, noncritical interrupts can be masked by the
external interrupt enable bit, MSR[EE] (when not in guest state).
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Interrupts and Exceptions

Guest interrupts are standard interrupts that are handled by guest-supervisor software. They use guest save
and restore registers (GSRRO/GSRR1) to save state when they are taken and they use the rfgi instruction
to restore state. Guest interrupts are listed in Table 2-5.

Section 2.3, “Register Mapping in Guest—Supervisor State,” describes how accesses to non-guest registers
are changed by the processor to their guest register equivalents when MSR[PR] = 0 and MSR[GS] = 1.

4.1.2 Critical Interrupts

Critical interrupts are logically higher priority than standard interrupts (critical input, processor doorbell
critical, guest processor doorbell critical, and watchdog timer interrupts) and can be taken during regular
program flow or during a standard interrupt. They use the critical save and restore registers
(CSRRO/CSRR1) and the rfei instruction.

Critical interrupts can be masked by the critical enable bit, MSR[CE] (when not in guest state).

41.3 Debug Interrupts

Debug interrupts are logically a higher priority than critical interrupts and can be taken during regular
program flow, during a standard interrupt, or during a critical interrupt. They use the debug save and
restore registers (DSRRO/DSRR1) and the rfdi instruction. See Section 4.9.16, “Debug
Interrupt—IVOR15.” Debug interrupts can be masked by the debug enable bit, MSR[DE] (when not in
guest state).

4.1.4 Machine Check Interrupts

Machine check interrupts are logically a higher priority than critical interrupts and can be taken during
regular program flow, during a standard interrupt, during a critical interrupt, or during a debug interrupt.
They use the machine check save and restore registers (MCSRRO/MCSRR1) and the rfmei instruction.
See Section 4.9.3, “Machine Check Interrupt—IVOR1.” Machine check interrupts can be masked by the
machine check enable bit, MSR[ME] (when not in guest state).

The e500mc also implements precise synchronous machine check error report interrupts as well as an
asynchronous non-maskable interrupt (NMI) which are not masked by MSR[ME]. For e500mc details, see
Section 4.9.3, “Machine Check Interrupt—IVOR1.”

4.1.5 Special Considerations for Interrupts and Exceptions

The masking of asynchronous interrupts using the MSR bits EE, CE, DE, or ME only prevents the
associated asynchronous interrupts in the current state (guest or hypervisor). With the exception of guest
processor doorbell, guest processor doorbell critical, and guest processor doorbell machine check, such
masking depends on which state the interrupt is directed to as described in Section 4.3, “Directed
Interrupts.” This means that an asynchronous interrupt that is masked while executing in the guest state
(its associated masking bit is 0) can still be taken if that interrupt is directed to the hypervisor state. Guest
processor doorbell, guest processor doorbell critical, and guest processor doorbell machine check require
that the processor be executing in the guest state and the appropriate interrupt enable bit is set even though
these interrupts are always directed to the hypervisor state.
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All asynchronous interrupts except the NMI interrupt are ordered because each type of interrupt has its
own set of save/restore registers. Only one interrupt of each category is reported (standard, critical, debug,
machine check, and guest), and when it is processed (taken) no program state is lost. Program state may
be lost if synchronous exceptions occur within the interrupt handler for those same synchronous
exceptions before software has successfully saved the state of the save/restore registers. For example,
executing an illegal instruction as the first instruction of the program interrupt handler causes another
program interrupt changing the state of the SRRO/SRR1 registers before software can save them thus
destroying the return path to the original interrupt. (See Section 4.6.1, “Interrupt Ordering and Masking.”)

All interrupts except the machine check interrupt are context synchronizing, as defined in the instruction
model chapter of the EREF: A Programmer s Reference Manual for Freescale Power Architecture®
Processors. A machine check interrupt acts like a context-synchronizing operation with respect to
subsequent instructions.

4.2 e500mc Implementation of Interrupt Architecture

This section describes the architecture-defined interrupt model as implemented on the e500mc. Specific
details are also provided throughout this chapter. The e500mc implements all the interrupts defined by the
embedded category and the e500mc implements the following interrupts that are defined by, but not
required by, optional parts of the embedded architecture:

* In general, the e500mc implements the machine check interrupt as it is defined by Power ISA 2.06,
but extends the definition to include synchronous error reports and a non-maskable interrupt
(NMI).

The e500mc implements three types of machine check interrupts: asynchronous, error report, and
NMI. Asynchronous machine check events are logged directly into the MCSR. If such an event is
logged in the MCSR and MSR[ME] = 1 or MSR[GS] = 1, a machine check interrupt is taken. But
if some of the MCSR's asynchronous bits have been set and MSR[ME] = 0 and MSR[GS] = 0, the
asynchronous machine check exception is pending and if these bits are still set when MSR[ME] or
MSR[GS] is changed to 1, the asynchronous machine check interrupt occurs. The e500mc does not
take a checkstop, as is the case with previous €500 cores.

In addition. the e500mc implements error report machine check exceptions (which are recorded in
certain defined MCSR bits). Error report machine check interrupts are not gated by MSR[ME] (or
MSRJ[GS]), and are synchronous and precise: They occur only if there is an error condition on an
instruction that would otherwise complete execution, and not for instructions that have not
completed and deallocated. For example, the core does not take an error report on an instruction in
a mispredicted branch path or on an instruction that gets flushed by some other interrupt (such as
an asynchronous machine check interrupt).

* The e500mc implements debug interrupts as described by the embedded enhanced debug category
which provides a separate set of debug save/restore registers (DSRR0O and DSRR1).

* The e500mc implements the performance monitor interrupt from the embedded performance
monitor category.

* The e500mc implements the enabled floating-point exception (program interrupt) and the
floating-point unavailable interrupt from the floating-point category.

* The e500mc implements the following interrupts defined by the embedded processor control
category:
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— Processor doorbell
— Processor doorbell critical
* The e500mc implements the following interrupts defined by the embedded hypervisor category:
— Hypervisor privilege
— Hypervisor system call
— Guest processor doorbell interrupt
— Guest processor doorbell critical interrupt
— Guest processor doorbell machine check interrupt

* The e500mc does not implement the unimplemented operation exception of the program interrupt.
All unimplemented instructions take an illegal instruction exception.

* Interrupt priorities differ from those specified in the architecture as described in Section 4.11,
“Interrupt Priorities.”

4.3 Directed Interrupts

Interrupts on e500mc are directed to either the guest state or the hypervisor state. The state to which
interrupts are directed determines which SPRs are used to form the vector address, which save/restore
registers are used to capture the processor state at the time of the interrupt, and which ESR is used to post
exception status. Interrupts directed to the guest state use the GIVPR to determine the upper 48 bits of the
vector address and use GIVORSs to provide the lower 16 bits. Interrupts directed to the hypervisor state use
the IVPR and the IVORs. Interrupts that are directed to the guest state use GSRRO/GSRRI registers to
save the context at interrupt time. Interrupts directed to the hypervisor state use SRRO/SRR1,
CSRRO/CSRR1, DSRRO/DSRR1, and MCSRRO/MCSRRI1 for standard, critical, debug, and machine
check interrupts respectively, with the exception of guest processor doorbell interrupts which use
GSRRO/GSRRI.

In general, all interrupts are directed to the hypervisor state except for the following cases:

* The system call interrupt is directed to the state from which the interrupt was taken. If an sc 0
instruction is executed in guest state, the interrupt is directed to the guest state. If an s¢ 0 instruction
is executed in hypervisor state, the interrupt is directed to the hypervisor state. Note that s¢ 1 is
always directed to the hypervisor state and produces a hypervisor system call interrupt.

* One of the following interrupts occurs while the processor is in the guest state, and the associated
control bit in the EPCR is set to configure the interrupt to be directed to the guest state:

— External input (EPCR[EXTGS] =1)

— Data TLB error (EPCR[DTLBGS] =1)

— Instruction TLB error (EPCR[ITLBGS] =1)

— Data storage (EPCR[DSIGS] = 1 and TLB[VF] = 0 [virtualization fault])
— Instruction storage (EPCR[ISIGS] = 1)

NOTE

A data storage interrupt caused by a virtualization fault exception is always
taken in the hypervisor state.
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In no case is an interrupt directed to the guest when the processor is executing in the hypervisor state.

For more specific information about how interrupts are directed, see EREF: A Programmer s Reference
Manual for Freescale Power Architecture® Processors or Power ISA 2.06.

4.4 Recoverability and MSR[RI]

MSRJRI] is an MSR (and save/restore register) storage bit for compatibility with pre-Book E PowerPC
processors. When an interrupt occurs, the recoverable interrupt bit, MSR[RI] is unchanged by the interrupt
mechanism when a new MSR is established; however, when a machine check, error report or NMI
interrupt occurs, MSR[RI] is cleared.

If used properly, RI determines whether an interrupt that is taken at the machine check interrupt vector can
be safely returned from (that is, that architected state set by the interrupt mechanism has been safely stored
by software). RI should be set by software when all MSR values are first established. When an interrupt
occurs that is taken at the machine check interrupt vector, software should set RI when it has safely stored
MCSRRO and MCSRRI1. The associated MCSRR1 bit should be checked to determine whether the
interrupt occurred when another machine check interrupt was being processed and before state was
successfully saved. [f MCSRRI1[RI] is set, it is safe to return when processing is complete.

4.5 Interrupt Registers

Table 4-1 summarizes registers used for interrupt handling. The EREF: A Programmer s Reference
Manual for Freescale Power Architecture® Processors provides full descriptions.

NOTE

In this manual, references to xSRR0 and xSRR1 apply to the respective
(standard, critical, machine check, and guest) save restore 0 and save restore
1 registers. References to (G)register refer to register if the interrupt is taken
in hypervisor state, or Gregister if the interrupt is taken in guest state (for
example (G)DEAR refers to DEAR and GDEAR registers).

Whether the interrupt is directed to hypervisor or guest—supervisor software
is described in see Section 4.3, “Directed Interrupts,” for more details.

Table 4-1. Interrupt Registers

Register Description

Save/restore register 0 |On an interrupt, XSRRO holds the EA at which execution continues when the corresponding return from

(SRRO, CSRRO, interrupt instruction executes. Typically, this is the EA of the instruction that caused the interrupt or the
DSRRO0, GSRRO, subsequent instruction.

MCSRRO0)

Save/restore register 1 |When an interrupt is taken, MSR contents are placed into xXSRR1. When the return from interrupt (rfi, rfgi,
(SRR1, CSRR1, rfci, rfdi, rfmci) instruction executes, the values are restored to the MSR from xXSRR1. xXSRR1 bits that
DSRR1, GSRR1, correspond to reserved MSR bits are also reserved. Note that an MSR bit that is reserved may be altered
MCSRR1) by a return from interrupt instruction.
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Table 4-1. Interrupt Registers (continued)

Register

Description

Data exception
address register
(DEAR/GDEAR)

Contains the address referenced by a load, store, or cache management instruction that caused an
alignment, data TLB miss, or data storage interrupt. When executing in the guest state (MSR[GS] = 1),
accesses to the DEAR are mapped to GDEAR upon executing mtspr or mfspr.

DEAR and GDEAR are described in Section 2.9.2, “(Guest) Data Exception Address Register
(DEAR/GDEAR)”

Exception proxy
register (EPR/GEPR)

Defined by the external interrupt proxy facility, which is described in Section 4.9.6.3, “External Proxy.” EPR
is used to convey the peripheral-specific interrupt vector associated with the external input interrupt
triggered by the programmable interrupt controller (PIC) in the integrated device. When executing in the
guest state (MSR[GS] = 1), accesses to the EPR are mapped to GEPR upon executing mfspr.

EPR and GEPR are described in Section 2.9.5, “(Guest) External Proxy Register (EPR/GEPR).

Interrupt vector prefix
register (IVPR/GIVPR)

(G)IVPR[32-47] provides the high-order 16 bits of the address of the interrupt handling routine for each
interrupt type. The 16-bit vector offsets are concatenated to the right of (G)IVPR to form the address of
the interrupt handling routine.

Exception syndrome
register (ESR/GESR)

Identifies a syndrome for differentiating exception conditions that can generate the same interrupt. When
such an exception occurs, corresponding (G)ESR bits are set and all others are cleared. Other interrupt
types do not affect the (G)ESR. (G)ESR does not need to be cleared by software. When executing in the
guest state (MSR[GS] = 1), accesses to the ESR are mapped to GESR upon executing mtspr or mfspr.
See Section 2.9.6, “(Guest) Exception Syndrome Register (ESR/GESR).”

Interrupt vector offset
registers
(IVORs/GIVORs)

Holds the quad-word index from the base address provided by the (G)IVPR for each interrupt type.
Table 4-2 lists the (G)IVOR assignments for the e500mc core. Supported (G)IVORs and the associated
interrupts are listed in Table 4-2.

Machine check
address register
(MCAR/MCARU)

On a machine check interrupt, MCAR/MCARU is updated with the address of the data associated with the
machine check if applicable. See Section 2.9.8, “Machine Check Address Register (MCAR/MCARU).”

Machine check
syndrome register
(MCSR)

On a machine check interrupt, MCSR is updated with a syndrome to indicate exceptions, listed in

Table 2-8 and fully described in the EREF: A Programmer’s Reference Manual for Freescale Power
Architecture® Processors. Section 2.9.9, “Machine Check Syndrome Register (MCSR),” describes MCSR
bit fields as they are defined for the e500mc.

NOTE

System software may need to identify the type of instruction that caused the
interrupt and examine the TLB entry and ESR to fully identify the exception
or exceptions. For example, because both protection violation and
byte-ordering exception conditions may be present, and either causes a data
storage interrupt, system software would have to look beyond ESR[BO],
such as the state of MSR[PR] in SRR1 and the TLB entry page protection
bits, to determine if a protection violation also occurred.

4.6

Exceptions

Exceptions are caused directly by instruction execution or by an asynchronous event. In either case, the
exception may cause one of several types of interrupts to be invoked.
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The following examples are of exceptions caused directly by instruction execution:
* An attempt to execute a reserved-illegal instruction (illegal instruction exception-program
interrupt)
* An attempt by an application program to execute a privileged instruction or to access a privileged
SPR (privileged instruction exception-program interrupt)

* An attempt to access a nonexistent SPR (illegal-operation program exception-type program
interrupt on all accesses to undefined SPRs, regardless of MSR[GS,PR]

* An attempt to access a location that is either unavailable (TLB miss exception-instruction or data
TLB error interrupt) or not permitted (access control exception-instruction or data storage
interrupt)

* An attempt to access a location with an effective address alignment not supported by the
implementation (alignment exception-alignment interrupt)

» Execution of a System Call (sc) instruction (system call/hypervisor system call-system
call/hypervisor system call interrupt). Whether a system call interrupt occurs or a hypervisor
system call interrupt occurs depends on the value of the LEV operand.

» Execution of a trap instruction whose trap condition is met (trap exception-program interrupt)
» Execution of an unimplemented, defined instruction (illegal instruction exception-program
interrupt)

Invocation of an interrupt is precise. Power Architecture allows for floating-point enabled exceptions to
be imprecise, however e500mc implements them as precise.

4.6.1 Interrupt Ordering and Masking

Multiple exceptions that can each generate an interrupt can exist simultaneously. However, the architecture
does not provide for reporting multiple simultaneous interrupts of the same class. therefore, the
architecture defines that interrupts must be ordered with one another and provides a way to mask certain
persistent interrupt types, as described in the EREF': A Programmer s Reference Manual for Freescale
Power Architecture® Processors.

4.7 Interrupt Classification

All interrupts except machine check are grouped by three independent characteristics:
» The set of resources assigned to the interrupt.

— Standard interrupts use SRRO/SRR1 and the rfi instruction. Guest supervisor versions of these
interrupts use GSRRO/GSRR1 and the rfgi instruction (note that SRR0, SRR 1, and rfi accesses
are mapped to GSRRO, GSRR1, and rfgi by the processor when in guest supervisor state).

— Critical interrupts use CSRRO/CSRR1 and the rfci instruction.
— Debug interrupts use DSRRO/DSRR1, and the rfdi instruction.
— Machine check interrupts use MCSRRO/MCSRR1, and the rfmei instruction.

*  Whether the interrupt is synchronous or asynchronous. Asynchronous interrupts are caused by
events external to instruction execution; synchronous interrupts are caused by instruction
execution. Some synchronous interrupts can be imprecise with respect to the instructions that
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caused the exception. The EREF': A Programmer s Reference Manual for Freescale Power
Architecture® Processors describes asynchronous and synchronous interrupts.

Interrupt Processing

Each interrupt has a vector, the address of the initial instruction that is executed when an interrupt occurs.
When an interrupt is taken, the following steps are performed:

1.

xSRRO is loaded with an instruction address at which processing resumes when the corresponding
return from interrupt instruction executes.

The (G)ESR or MCSR may be loaded with exception-specific information. See descriptions of
individual descriptions in Section 4.9, “Interrupt Definitions.”

xSRR1 is loaded with a copy of the MSR contents.

New MSR values take effect beginning with the first instruction of the interrupt handler. These
settings vary somewhat for certain interrupts, as described in Section 4.9, “Interrupt Definitions.”

MSR fields are described in Section 2.7.1, “Machine State Register (MSR).”

Instruction fetching and execution resumes, using the new MSR value, at a location specific to the
interrupt type ([G]JIVPR[32-47] || (G)IVOR~n[48-59] || 0b0000)

The (G)IVORn= for the interrupt type is described in Table 4-2. (G)IVPR and (G)IVOR contents are
indeterminate upon reset and must be initialized by system software.

At the end of an interrupt handling routine, executing the appropriate return from interrupt instruction
causes the MSR to be restored from xXSRR1 and instruction execution to resume at the address contained
in xXSRRO.

NOTE

On e500mc, any asynchronous interrupt that is taken clears any reservation
established from a Iwarx instruction. However, this behavior is not required
by the architecture and software should assume that the reservation is not
cleared as subsequent future cores may not clear it.

NOTE

At process switch, due to possible data availability requirements and
process interlocks, the operating system should consider executing the
following:

+ stwex.—Clear outstanding reservations to prevent pairing a Iwarx in the
old process with a stwex. in the new one

* sync—Ensure that memory operations of an interrupted process
complete with respect to other processors before that process begins
executing on another processor

* Return from interrupt instructions—Ensure that instructions in the new
process execute in the new context. Normally an operating system must
use such an instruction to atomically begin executing in the new process
context at the appropriate privilege level.
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4.9

Interrupt Definitions

Table 4-2 summarizes each interrupt type, exceptions that may cause that interrupt, the interrupt
classification, which (G)ESR bits can be set, which MSR bits can mask the interrupt type, and which IVOR
is used to specify the vector address.

Table 4-2. Interrupt Summary by (G)IVOR

Directing State at Save and
IVOR Interrupt Exception E 93 (G)ESR! Enabled by |Type?| Restore |Page
xception >
Registers
IVORO |Critical input — — MSR[CE] or A CSRRs 4-14
MSR[GS]
IVOR1 |Machine check — — MSR[ME] or A MCSRRs | 4-14
MSR[GS]
Error report — — — SP MCSRRs | 4-14
IVOR2 |Data storage |Access or MSR[GS] =0 or [ST], [FRAP], — SP SRRs 4-21
(DSI) virtualization fault |EPCR[DSIGS] =0 or [EPID]
TLB[VF] =1
Load reserve or [ST] — SP
store conditional
to write-through
required location
(W=1)
Cache locking [DLK,ILK],[ST] — SP
Byte ordering [ST],[FP],BO, — SP
[EPID]
GIVOR2 |Data storage |Access MSR[GS] = 1 [ST], [FRAP], — SP GSRRs 4-21
(DSI) EPCR[DSIGS] =1 [EPID]
Load reserve or [ST] — SP
store conditional
to write- through
required location
(W=1)
Cache locking [DLK,ILK],[ST] — SP
Byte ordering [ST],[FP],BO, — SP
[EPID]
IVOR3 |Instruction |Access MSR[GS] =0 or — — SP SRRs 4-23
storage (ISI) EPCR[ISIGS] =0
GIVORS |Instruction  |Access MSR[GS] = 1 and — — SP GSRRs 4-23
storage (ISI) EPCRI[ISIGS] = 1
IVOR4 |External input 3 EPCR[EXTGS] =0 — MSRIEE] or A SRRs 4-24
MSR[GS]
GIVOR4 |External input 3 EPCR[EXTGS] =1 — MSR[EE]and | A GSRRs | 4-24
MSR[GS]
IVOR5 |Alignment — [STL,[FRPAP], — SP SRRs 4-26
[EPID]
e500mc Core Reference Manual, Rev. 3
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Table 4-2. Interrupt Summary by (G)IVOR (continued)

Interrupts and Exceptions

Directing State at Save and
IVOR Interrupt Exception E 93 (G)ESR! Enabled by |Type?| Restore |Page
xception >
Registers
IVOR6 |Program lllegal — PIL — SP SRRs 4-28
Privileged PPR — SP
Trap PTR — SP
Floating-point FPR[PIE] MSR[FEQ] SP
enabled MSRI[FE1] SP*
SI
SI
Unimplemented PUO* — SP
opcode
IVOR?7 |Floating-point unavailable — — — SP SRRs 4-29
IVOR8 |System call MSR[GS] =0 — — SP* SRRs 4-29
GIVORS8 |System call MSR[GS] = 1 — — SP* GSRRs | 4-29
IVOR10 |Decrementer — — (MSRI[EE] or A SRRs 4-30
MSR[GS])
and TCRIDIE]
IVOR11 |Fixed interval timer — — (MSRI[EE] or A SRRs 4-31
MSRI[GS])
and TCRIFIE]
IVOR12 |Watchdog — — (MSRICE] or A CSRRs 4-32
MSRI[GS])
and
TCRI[WIE]
IVOR13 |Data TLB Data TLB miss MSR[GS] =0 or [ST],[FRAP], — SP SRRs 4-32
error EPCR[DTLBGS] =0 [EPID]
GIVOR13|Data TLB Data TLB miss MSR[GS] =1 and [ST],[FPAP], — SP GSRRs | 4-32
error EPCR[DTLBGS] =1 [EPID]
IVOR14 |Instruction Instruction TLB MSR[GS] =0 or — — SP SRRs 4-33
TLB error miss EPCR[ITLBGS] =0
GIVOR14|Instruction Instruction TLB MSR[GS] = 1 and — — SP GSRRs | 4-33
TLB error miss EPCRIITLBGS] =1
e500mc Core Reference Manual, Rev. 3
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Table 4-2. Interrupt Summary by (G)IVOR (continued)

Directing State at Save and
IVOR Interrupt Exception E 93 (G)ESR! Enabled by |Type?| Restore |Page
xception >
Registers
IVOR15 |Debug Trap — — MSR[DE]and | SP® DSRRs 4-34
(synchronous) DBCRO[IDM]
- In guest state,
Instruction if
address compare EPCR[DUVD]
(synchronous) —1and
Data address MSR[GS] =0,
compare debug events
(synchronous) (except for
unconditional
Instruction debug events)
complete are not posted
in the DBSR.
Branch taken See
Return from Section 4.9.1
interrupt 6.1,
“Suppressing
Return from Debug Events
critical interrupt in Hypervisor
Interrupt taken Mode:
Critical interrupt
taken
Unconditional A
debug event
IVOR35 |Performance monitor — — MSRIEE] or A SRRs 4-36
MSR[GS]
IVOR36 |Processor doorbell — — MSRIEE] or A SRRs 4-38
MSR[GS]
IVOR37 |Processor doorbell critical — — MSRI[CE] or A CSRRs 4-38
MSR[GS]
IVOR38 |Guest processor doorbell — — MSR[EE]and | A GSRRs 4-38
MSR[GS]
IVOR39 |Guest processor doorbell critical — — MSR[CE]and | A CSRRs 4-39
MSR[GS]
Guest processor doorbell — — MSR[ME]Jand| A CSRRs 4-39
machine check MSR[GS]

IVOR40 |Hypervisor system call — — — SP* SRRs 4-29
IVOR41 |Hypervisor privilege — — — SP SRRs 4-40
e500mc Core Reference Manual, Rev. 3
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' In general, when an interrupt affects an (G)ESR as indicated in the table, it also causes all other (G)ESR bits to be cleared.
Special rules may apply for implementation-specific (G)ESR bits.
Legend:
xxx (no brackets) means (G)ESR[xxx] is set.
[xxx] means (G)ESR[xxx] could be set.
[xxx,yyy] means either (G)ESR[xxx] or (G)ESR[yyy] may be set, but not both.
{xxx,yyy} means either (G)ESR[xxx] or (G)ESR[yyy] and possibly both may be set.
Interrupt types:
SP = synchronous and precise
S| = synchronous and imprecise
A = asynchronous
* = post completion interrupt. XSRRO registers point after the instruction causing the exception.
Section 4.9.6.3, “External Proxy,” describes how the e500mc interacts with a programmable interrupt controller (PIC) defined by
the integrated device.
PUO does not occur on e500mc.

This debug interrupt may be made pending if MSR[DE] = 0 at the time of the exception.

N

w

4.9.1 Partially Executed Instructions

In general, the architecture permits load and store instructions to be partially executed, interrupted, and
then restarted from the beginning upon return from the interrupt. To guarantee that a particular load or store
instruction completes without being interrupted and restarted, software must mark the memory as guarded
and use an elementary (nonmultiple) load or store aligned on an operand-sized boundary.

4911 Restarting Instructions After Partial Execution

To guarantee that load and store instructions can, in general, be restarted and completed correctly without
software intervention, the following rules apply when an execution is partially executed and then
interrupted:

» For an elementary load, no part of a target register rD is altered.
* For update forms of load or store, the update register, rA, is not altered.

The following effects are permissible when certain instructions are partially executed and then restarted:

» For any store, bytes at the target location may have been altered (if write access to that page in
which bytes were altered is permitted by the access control mechanism). In addition, for store
conditional instructions, CRO has been set to an undefined value, and it is undefined whether the
reservation has been cleared.

» For any load, bytes at the addressed location may have been accessed (if read access to that page in
which bytes were accessed is permitted by the access control mechanism).

» For load multiple some registers in the range to be loaded may have been altered. It is a
programming error to include the addressing registers rA, and possibly rB, in the range to be
loaded, and thus the rules for partial execution do not protect these registers against overwriting.

NOTE
In no case is access control violated.
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Freescale Semiconductor 4-12



|
y

'
A

Interrupts and Exceptions

For e500mc the following rules apply:

1. The only instructions that are “interruptible” and for which the changes to registers (on loads) or
the changes to memory (on stores) are visible are load and store multiple instructions.

2. If aload or store multiple gets interrupted, some number of words may already be processed and
the GPRs or memory reflects that. When the interrupt returns the multiple instruction is restarted
and performs all the previous actions as well as finishing the actions (assuming its not interrupted
again).

3. Any aligned, elementary (byte, halfword, word, doubleword) load or store is not interruptible and
always performs atomically (meaning that the bytes are all read or written at once and no other
agent can modify the bytes during the time the bytes are sampled or written.

4. Store conditionals are always atomic. The CR value is always set based on whether the store was
actually performed or not.

5. Misaligned loads and stores are not guaranteed to be atomic. Therefore another agent may modify
the data in between the sampling of all the bytes. However, it's unlikely you'd even see this happen
if the data is cacheable.

6. A load that is not guarded may speculatively access memory and later be canceled if it turns out
the load was cancelled (because we took an interrupt or had a mispredicted branch). In this case,
the load data is never made visible to the architected state (i.e. the GPR that is the target of the load
is not changed).

NOTE
In the same sense, a misaligned load is also possibly sample data
non-atomically.
In the case of misaligned guarded loads, the guarded load may sample data
and then be cancelled due to an interrupt, but does not change any visible
architected state.
4.9.1.2 Interruptions After Partial Execution

As previously stated, elementary, aligned, guarded loads and stores are the only access instructions
guaranteed not to be interrupted after being partially executed. The following list identifies the specific
instruction types for which interruption after partial execution may occur, as well as the specific interrupt
types that could cause the interruption:

Any load or store (except elementary, aligned, and guarded):
— Any asynchronous interrupt

— Machine check

— Decrementer

— Fixed-interval timer

— Watchdog timer

— Debug (unconditional debug event)

Misaligned elementary load or store, or any multiple:

All of the above listed under item e, plus the following:
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— Alignment

— Data storage (if the access crosses a page boundary and protections on the 2 pages differ)
— Data TLB (if the access crosses a page boundary and one of the pages is not in the TLB)
— Debug (data address compare)

4.9.2 Critical Input Interrupt—IVORO

A critical input interrupt occurs when no higher priority interrupt exists, a critical input exception is
presented to the interrupt mechanism, and MSR[CE] = 1 or MSR[GS] = 1. The reference manual for the
integrated device describes how this exception is signaled (typically the signal is described as cint.).

As defined by the architecture, CSRR0, CSRR1, and MSR are updated as shown in this table.
Table 4-3. Critical Input Interrupt Register Settings

Register Setting

CSRRO |Set to the effective address of the next instruction to be executed
CSRR1 |Set to the MSR contents at the time of the interrupt

MSR * ME and DE are unchanged.
¢ Rl is not cleared.
¢ All other MSR bits are cleared.

Instruction execution resumes at address IVPR[32—47] || IVORO0[48-59] || 0b0000.
NOTE

To avoid redundant critical input interrupts, software must take any actions
required by the implementation to clear any critical input exception status
before reenabling MSR[CE] or setting MSR[GS].

4.9.3 Machine Check Interrupt—IVOR1

The Machine Check Interrupt consists of three different, but related, types of exception conditions that all
use the same interrupt vector and same interrupt registers. The three different interrupts are:

* Asynchronous machine check exceptions which are the result of error conditions directly detected
by the processor or as a result of the assertion of the machine check signal pin (typically described
in the integrated device reference manual as the mcp signal) as described by Section 4.9.3.4,
“Asynchronous Machine Check Exceptions.”

* Synchronous error report exceptions which are the result of an instruction encountering an error
condition, but execution cannot continue without propagating data derived from the error condition
as described in Section 4.9.3.3, “Machine Check Error Report Synchronous Exceptions.”

» Non-maskable (NMI) interrupts which are non-maskable, non-recoverable interrupts that are
signaled from the SoC as described by Section 4.9.3.2, “NMI Exceptions.”

For all of these interrupts, the following occur:
*+  MCSRRO and MCSRRI save the return address and MSR.
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* An address related to the machine check may be stored in MCAR (and MCARU), according to
Table 4-4.

* The machine check syndrome register, MCSR, is used to log information about the error condition.
The MCSR is described in Section 2.9.9, “Machine Check Syndrome Register (MCSR).”

» Atthe end of the machine check interrupt software handler, a Return from Machine Check Interrupt
(rfmci) may be used to return to the state saved in MCSRRO and MCSRRI.

Machine check exceptions are typically caused by a hardware failure or by software performing actions
for which the hardware has not been designed to handle, or cannot provide a suitable result. They may be
caused indirectly by execution of an instruction, but may not be recognized or reported until long after the
processor has executed that instruction.

4.9.3.1 General Machine Check, Error Report, and NMI Mechanism

Asynchronous machine check, error report machine check, and NMI exceptions are independent of each
other, even though they share the same interrupt vector.

49.3.1.1 Error Detection and Reporting Overview

The general flow of error detection and reporting occurs as follows:

*  When the processor detects an error directly (that is, the error occurs within the processor) or the
machine check signal pin (mcp) is asserted, the error is posted to the MCSR by setting an error
status bit corresponding to the error that was detected. If the error bit set in the MCSR 1is one of the
asynchronous machine check error conditions, an asynchronous machine check occurs when
MSR[ME] =1 or MSR[GS] = 1. Note that an asynchronous machine check interrupt always occurs
when the asynchronous machine check interrupt is enabled and any of the asynchronous error bits
in the MCSR are non-zero.

« If an instruction is a consumer of data associated with the error, the instruction has an error report
exception associated with the instruction ensuring that if the instruction reaches the point of
completion, the instruction takes an error report machine check interrupt to prevent the erroneous
data from propagating.

» Itis possible a single error within the processor sets both an asynchronous machine check error
condition in the MCSR, and associates an error report with the instruction that consumed data
associated with the error. The asynchronous error bit is always set, and if this triggers an
asynchronous machine check interrupt before the instruction that has the error report exception
completes, the asynchronous machine check interrupt flushes the instruction with the error report,
and the error report does not occur. Likewise, if the instruction with the error report exception
attempts to complete before the asynchronous error bit is set in MCSR, the error report machine
check interrupt is taken. In this case, the processor still sets the MCSR asynchronous error bit,
probably well before software has read the MCSR. When software reads the MCSR, it appears that
both an asynchronous machine check exception and a synchronous error report occurred, because
the error report has caused the error report bits to be set, and the processor also has set an
asynchronous machine check error bit. This can easily happen if the error occurs when MSR[ME]
=0 and MSR[GS] = 0 because the asynchronous machine check interrupt is not enabled.
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» Itis also possible that an error report machine check interrupt occurs without an associated
asynchronous machine check error bit being set in the MCSR. This can occur when the processor
is the consumer of some data for which the error was detected by some agent other than the
processor. For example, an error in DRAM may occur and if the processor executed a load
instruction which accessed that DRAM where the error occurred, the load instruction would take
an error report machine check interrupt if it attempted to complete execution.

* A non-maskable interrupt (NMI) occurs when the integrated device asserts the NMI signal to the
e500mc. The MCSR[NMI] bit is set when the interrupt occurs. The NMI signal is non-maskable
and occurs regardless of the state of MSR[ME] or MSR[GS].

NOTE

The taking of an asynchronous machine check interrupt always occurs when
any of the asynchronous machine check error bits is not zero and the
asynchronous machine check interrupt is enabled (MSR[ME] =1 or
MSR[GS] = 1). The condition persists until software clears the
asynchronous machine check error bits in MCSR.

To avoid multiple asynchronous machine check interrupts, software should
always read the contents of the MCSR within the asynchronous machine
check interrupt handler and clear any set bits in the MCSR prior to
re-enabling machine check interrupts by setting MSR[ME] or MSR[GS].
Note that the processor may set asynchronous machine check error bits in
MCSR at any time as errors are detected, including when the processor is in
the asynchronous machine check interrupt handler and MSR[ME] = 0.

An asynchronous machine check, error report, or NMI interrupt occurs when no higher priority interrupt
exists and an asynchronous machine check, error report, or NMI exception is presented to the interrupt
mechanism.

The following general rules apply:

* The instruction whose address is recorded in MCSRRO has not completed, but may have attempted
to execute.

* No instruction after the one whose address is recorded in MCSRRO has completed execution.

» Instructions in the architected instruction stream prior to this instruction have all completed
successfully.

4.9.3.1.2 Machine Check Interrupt Settings

When a machine check interrupt is taken, registers are updated as shown in this table.

Table 4-4. Machine Check Interrupt Settings

Register Setting

MCSRRO |The core sets this to an EA of an instruction executing or about to execute when the exception occurred.

MCSRR1 |Set to the contents of the MSR at the time of the exception.

MSR ¢ Rl is cleared.
¢ All other defined MSR bits are cleared.
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Table 4-4. Machine Check Interrupt Settings (continued)

Register Setting

MCAR |MCAR is updated with the address of the data associated with the machine check. See Section 2.9.8, “Machine

(MCARU) |Check Address Register (MCAR/MCARU).”

MCSR |Set according to the machine check condition. See Table 2-8.

Instruction execution resumes at address [VPR[32—47] || IVOR1[48-59] || 0b0000.

NOTE

For implementations on which a machine check interrupt is caused by
referring to an invalid physical address, executing debz, dcbzl, dcbzep,
dcbzlep, deba, or debal can ultimately cause a machine check interrupt
long after the instruction executed by establishing a data cache block
associated with an invalid physical address. The interrupt can occur later on
an attempt to write that block to main memory, for example, as the result of
executing an instruction that causes a cache miss for which the block is the
target for replacement or as the result of executing dcbst or debf.

49.3.1.3 Machine Check Exception Sources

The e500mc machine check exception sources are specified in this table.

Table 4-5. Machine Check Exception Sources

Source

Additional Enable Bits’

Machine check input signal asserted. Set immediately on recognition of assertion of the
mcp input. This input comes from the SoC and is a level sensitive signal. This usually
occurs as the result of an error detected by the SoC.

HIDO[EMCP]

Instruction cache tag or data array parity error

L1CSR1[ICPE] and
L1CSR1[ICE]

Data cache data parity or tag parity error due to a load or store

L1CSRO[CECE] and L1CSRO[CE]

L2 MMU multi-way hit.

Multi-way hit in the L2 MMU. Indicates that a lookup in the L2 MMU yielded multiple hits.
This signifies overlapping TLB entries. The overlap may be between multiple ways in the
4K array, between multiple entries in the CAM, or between entries in the 4K and CAM.
These errors are detected when the L2 MMU is accessed. It is possible for an overlap
condition to exist for some time before it is detected. As long as translations are satisfied
by the L1 MMU, no L2 MMU lookup is required, and the overlap condition is not detected.

If an L2 MMU simultaneous hit occurs during the execution of dcba, dcbal, dcbt, debtep,
dcbtst, dcbtstep, or icbt, no error report machine check occurs on the instruction and no
access off the core is performed.

HIDO[EN_L2MMU_MHD]

Nonmaskable interrupt.

None

Simultaneous tlbsync operations detected. The system should never have two
outstanding tibsync operations on CoreNet.

None

L2 cache error

L2CSRO[L2E] and L2ERRDIS 2
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1

“Additional Enable Bits” indicates any other state that, if not enabled, inhibits the recognition this particular error condition.
2 For a description of L2ERRDIS, see Section 2.15.4.1, “L2 Cache Error Disable Register (L2ERRDIS)”

4.9.3.2 NMI Exceptions

Non-maskable interrupt exceptions cause an interrupt on the machine check vector. A non-maskable
interrupt occurs when the integrated device asserts the nmi signal to the e500mc. The nmi signal is
non-maskable and occurs regardless of the state of MSR[ME] or MSR[GS]. Software should clear the
NMI bit in MCSR after the NMI interrupt has been taken before setting MSR[ME] or MSR[GS].

NMI interrupts are by definition non-recoverable since the interrupt occurs asynchronously and the
interrupt cannot be masked by software. Unrecoverability can occur if the NMI occurs while the processor
is in the early part of an asynchronous machine check, error report machine check, or another NMI
interrupt handler and the return state in MCSRRO and MCSRR1 have not yet been saved by software. It is
possible for software to use MSR[RI] to determine whether software believes it is safe to return, but the
system designer must allow for the case for which MCSRRO and MCSRR1 have not been saved.

49.3.3 Machine Check Error Report Synchronous Exceptions

Error report machine checks are intended to limit the propagation of bad data. For example, if a cache
parity error is detected on a load, the load instruction is not allowed to complete, a synchronous error report
machine check is generated, and the MCSRRO holds the address of the load instruction with which the
parity error is associated. (For a discussion of instruction completion, see Chapter 10, “Execution
Timing.”)

Preventing the load instruction from completing prevents the bad data from reaching the GPRs and
prevents any subsequent instructions dependent on that data from executing. Error reports do not indicate
the source of the problem (such as the cache parity error in the current example); the source is indicated
by an asynchronous machine check. When an error report type of machine check occurs, the MCSR
indicates the operation that incurred the error as shown in this table.

Table 4-6. Error Report Definitions

Error Report Definition

Instruction fetch error report | An error occurred while attempting to fetch the instruction corresponding to the address
(MCSRJIF]) contained in MCSRRO.

Load instruction error report | An error occurred while attempting to execute the load instruction corresponding to the
(MCSRILD]) address contained in MCSRRO.
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Table 4-6. Error Report Definitions (continued)

Error Report Definition

Guarded load instruction | If LD is set and the load was a guarded load (that is, has the guarded storage attribute), this
error report bit may be set. Note that some implementations may have specific conditions that govern
(MCSRI[LDG]) when this bit is set.

Store instruction error report | An error occurred while attempting to perform address translation on the instruction
(MCSRI[ST]) corresponding to the address contained in MCSRRO. Since stores may complete with
respect to the processor pipeline before their effects are seen in all memory subsystem
areas, only translation errors are reported as error reports with stores.
Note that some instructions which are considered load instructions with respect to
permission checking and debug events are reported as store error reports (MCSR[ST] is
set). See Section 2.9.9, “Machine Check Syndrome Register (MCSR)” for which instructions
set MCSRILD] or MCSR[ST].

Table 4-7 describes which error sources generate which error report status bits in the MCSR.

Note that there is no MCSR error status bit for CoreNet data errors. If a CoreNet data error occurs on a
load or instruction fetch and the instruction reaches the bottom of the completion buffer, an error report
occurs. But, because there is no MCSR error status bit for data errors, the core does not generate an
asynchronous machine check. The device that detects the error is expected to report it. For example,
assume that the core attempts to perform a load from a PCI device that encounters an error. The PCI device
would signal a “PCI Master Abort” and would signal the error to the programmable interrupt controller
(PIC).

The core's memory transaction should be completed with a data error so that the core is not hung awaiting
the transaction. Eventually, the PIC should interrupt the core (the PIC should be programmed to direct such
an error to take a machine check interrupt).

Error reports are intended to be a mechanism to stop the propagation of bad data; the asynchronous
machine check is intended to allow software to attempt to recover from errors gracefully.

In a multicore system, the PIC is likely to steer all PCI error interrupts to one processor. For the PCI Master
Abort example, assume that Processor B performs a load that gets a PCI Master Abort, and the PIC steers
the PCI's error signal to Processor A’s machine check input signal. Here, the error report in Processor B
prevents the propagation of bad data; Processor A gets the task of attempting a graceful recovery. Some
interprocessor communication is likely necessary.

Table 4-7. Synchronous Machine Check Error Reports

Synchronous Machine Check Source Error Type MCSR Update' Precise?

Instruction fetch Instruction cache data array parity error IF Within fetch group3

Instruction cache tag array parity error

L2MMU multi-way hit

CoreNet bad data

L2 cache error
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Table 4-7. Synchronous Machine Check Error Reports (continued)

Synchronous Machine Check Source Error Type MCSR Update1 Precise?

Load (or touch) instruction Data cache tag parity error LD, [LDG]4 Yes

Data cache data array parity error

L2MMU multi-way hit

L2 cache tag parity or data error
(uncorrectable ECC error)®

CoreNet Bad Data

Store or cache operation instruction L2MMU multi-way hit ST —

The MCSR update column indicates which MCSR bits are updated when the machine check interrupt is taken.

The Precise column either indicates ‘yes’ or ‘within fetch group’. If “yes.” the error type causes a machine check in which the
MCSRRO points to the instruction that encountered the error, provided that MSR[ME] or MSR[GS] were set when the instruction
was executed.

Error report machine check interrupts caused by instruction fetches (denoted by MCSR[IF]) are associated with all instructions
within a given fetch group. If any instruction within the fetch group encountered an error of any type, then all instructions within
the fetch group are marked with an instruction fetch error report exception. therefore, if the error report exception later causes
a machine check interrupt, MCSRRO points to the oldest instruction from that fetch group.

4 LDG is set if the load was a guarded load (WIMGE=xxx1x).

5 If L2 error detection is not enabled, an error report exception is not reported and the corrupted instruction may be executed and
may modify architected state.

An error report occurs only if the instruction that encountered the error reaches the bottom of the
completion buffer (that is, it becomes the oldest instruction currently in execution) and the instruction
would have completed otherwise. If the instruction is flushed (possibly due to a mispredicted branch or
asynchronous interrupt, including an asynchronous machine check) before reaching the bottom of the
completion buffer, the error report does not occur.

4.9.3.4 Asynchronous Machine Check Exceptions

An asynchronous machine check occurs only when MSR[ME] = 1 or MSR[GS] =1 and an MCSR
asynchronous error bit is set. Because MSR[ME] and MSR[GS] are cleared whenever a machine check
interrupt occurs, a synchronous error report interrupt may clear MSR[ME] and MSR[GS] before the
MCSR error bit is posted. If the error report handler clears the MCSR error bit before setting MSR[ME]
or MSR[GS], no asynchronous machine check interrupt occurs.

This table describes asynchronous machine check and NMI exceptions.

Table 4-8. Asynchronous Machine Check and NMI Exceptions

Error Source Error Type Transaction Source MCSR Update! | MCAR Update?
External Machine check input (mcp) pin3 n/a MCP —

NMI Pin n/a NMI —
Instruction Data array parity error Instruction fetch MAV ICPERR EA
cache -

Tag array parity error RA
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Table 4-8. Asynchronous Machine Check and NMI Exceptions (continued)

Error Source Error Type Transaction Source MCSR Update! | MCAR Update?
Data cache Tag parity error load, touch, stores, cache MAV DCERR RA
operations, or snoops
Data array parity error load, castout, or snoop
L2 cache All types4 All types BSL2_ERR —
L2 MMU Multi-way hit tibsx, instruction fetch, load, MAV | L2MMU_MHIT EAS

touch, store, cache op (all types)

Multiple simultaneous tlbsync TLBSYNC snoop TLBSYNC none
operations detected

The MCSR update column indicates which MCSR bits are updated when the exception is logged.

The MCAR update column indicates whether the error type provides either a real or effective address (RA or EA), or no address
which is associative with the error.

The machine check input pin is used by the SoC to indicate all types of machine check type error which are detected by the
SoC. Software must query error logging information within the SoC to determine the specific error condition and source.

4 The L2 cache has a separate set of error reporting and capture registers.
5 The lower 12 bits of the EA are cleared.

4.9.4 Data Storage Interrupt (DSI)—IVOR2/GIVOR2

A DSI occurs when no higher priority interrupt exists and a data storage exception is presented to the
interrupt mechanism. The interrupt is directed to the hypervisor unless the following conditions exist:
determined as follows:

» The exception is not a virtualization fault (TLB[VF] = 0).
» The state in which the exception occurred is the guest state (MSR[GS] = 1).
* The interrupt is programmed to be directed to the guest state (EPCR[DSIGS] = 1).

If all the above conditions are met, the DSI is directed to the guest supervisor state.

This table (taken from Table 4-2) summarizes exception conditions and behavior for the data storage and
guest data storage interrupts.

Table 4-9. Data Storage interrupt

IVOR |Interrupt Exception Directing S'tate at (G)ESR! Save/l.aestore
Exception Registers
IVOR2 |Data Access or virtualization fault MSR[GS] =0 or [ST], [FRAP], [EPID] SRRs
storage — EPCRIDSIGS] = 0 or
(DSI) Logd reserve or stgre condlltlonal to TLB[VF] = 1 [ST]
write-through required location (W = 1)
Cache locking [DLK,ILK],[ST]
Byte ordering [ST],[FP],BO, [EPID]
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Table 4-9. Data Storage interrupt (continued)

IVOR |Interrupt Exception Directing S_tate at (G)ESF!1 Save/lflestore
Exception Registers
GIVOR2 |Guest Access MSR[GS] =11 [ST], [FRAP], [EPID] GSRRs
data — EPCRI[DSIGS] = 1
storage Load reserve or store conditional to [ST]
(DSI) write- through required location (W = 1)
Cache locking [DLK,ILK],[ST]
Byte ordering [STI],[FP],BO, [EPID]

1

In general, when an interrupt affects an (G)ESR as indicated in the table, it also causes all other (G)ESR bits to be cleared.

Special rules may apply for implementation-specific (G)ESR bits.

Legend:

xxx (no brackets) means (G)ESR[xxx] is set.

[xxx] means (G)ESR[xxx] could be set.

[xxx,yyy] means either (G)ESR[xxx] or (G)ESR[yyy] may be set, but not both.
{xxx,yyy} means either (G)ESR[xxx] or (G)ESR[yyy] and possibly both may be set.

This table describes exceptions as defined by the architecture, noting any e500mc-specific behavior.

Table 4-10. Data Storage Interrupt Exception Conditions

Exception

Cause

Read access
control
exception

Occurs when either of the following conditions exists:

¢ In user mode (MSR[PR] = 1), a load or load-class cache management instruction attempts to access a
memory location that is not user-mode read enabled (page access control bit UR = 0).

* In supervisor mode (MSR[PR] = 0), a load or load-class cache management instruction attempts to access
a location that is not supervisor-mode read enabled (page access control bit SR = 0).

Virtualization
fault

Loads and stores translated by TLB entries with the TLB[VF] = 1 always take a data storage interrupt directed
to hypervisor state.

Write access
control
exception

Occurs when either of the following conditions exists:

* In user mode (MSR[PR] = 1), a store or store-class cache management instruction attempts to access a
location that is not user-mode write enabled (page access control bit UW = 0).

¢ In supervisor mode (MSR[PR] = 0), a store or store-class cache management instruction attempts to access
a location that is not supervisor-mode write enabled (page access control bit SW = 0).

Byte-ordering
exception

Data cannot be accessed in the byte order specified by the page’s endian attribute.

Note: This exception is provided to assist implementations that cannot support dynamically switching byte
ordering between consecutive accesses, the byte order for a class of accesses, or misaligned accesses
using a specific byte order. On the e500mc, load/store accesses that cross a page boundary such that
endianness changes cause a byte-ordering exception.

Cache locking

The locked state of one or more cache lines may potentially be altered. Occurs with the execution of icbtls,

exception icblc, dcbtls, dcbtstls, or deblc when (MSR[PR] = 1) and (MSR[UCLE] = 0). ESR is set as follows:

¢ For icbtls and icblc, ESR[ILK] is set.

* For dcbtls, dcbtstls, or deble, ESR[DLK] is set. The architecture refers to this as a cache-locking exception.
Storage Occurs when a lwarx or stwex. attempts to access a location marked write-through required.

synchronization

exception

Note that if the EA associated with a store conditional instruction would have caused a write access control
exception, were the instruction not a store conditional, even if the store would not be performed (because the
reservation is not held), a DSI write access control exception occurs.

See “Atomic Update Primitives Using lwarx and stwex.,” in the “Instruction Model” chapter of the EREF: A
Programmer’s Reference Manual for Freescale Power Architecture® Processors.
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Regardless of the EA, icbt, debt, dcbtst, deba and dcbal cannot cause a data storage interrupt.

NOTE

icbi, icbt, icblc, and icbtls are treated as loads from the addressed byte with
respect to translation and protection. Both use MSR[DS], not MSR[IS], to

determine translation for their operands. Instruction storage and TLB error
interrupts are associated with instruction fetching and not execution. Data

storage and TLB error interrupts are associated with execution of instruction
cache management instructions.

When the interrupt occurs, the processor suppresses execution of the instruction that caused it. Registers
are updated as follows:

Table 4-11. Data Storage Interrupt Register Settings

Register Setting

(G)SRRO |Set to the EA of the instruction causing the interrupt

(G)SRR1 |Set to the MSR contents at the time of the interrupt

(G)ESR |ST Set if the instruction causing the interrupt is a store or store-class cache management instruction

DLK Set when a DSI occurs because dcbtls, dcbtstls, or deblc is executed in user mode and MSR[UCLE] = 0.
ILK Set when a DSI occurs because icbtls or icblc is executed in user mode and MSR[UCLE] = 0.

BO Set if the instruction caused a byte-ordering exception.

All other defined ESR bits are cleared.

MSR * ME, CE, and DE are unchanged.

GS, UCLE, and PMM are cleared if the interrupt is directed to the hypervisor state.

UCLE and PMM are cleared If the interrupt is directed to the guest state and the associated bits of MSRP are 0.
Rl is not cleared.

All other defined MSR bits are cleared.

(G)DEAR |Set to the EA of a byte that lies both within the range of bytes being accessed by the access or cache management
instruction and within the page whose access caused the exception,

Instruction execution resumes at address (G)IVPR[32—47] Il (G)IVOR2[48-59] || 0b0000.

4.9.5 Instruction Storage Interrupt (ISI)—IVOR3/GIVOR3

An ISI occurs when no higher priority interrupt exists and an instruction storage interrupt is presented to
the interrupt mechanism.

The interrupt is directed to the hypervisor unless the following conditions exist:
» The state in which the exception occurred is the guest state (MSR[GS] = 1).
» The interrupt is programmed to be directed to the guest state (EPCR[ISIGS] =1).

If all the above conditions are met, the ISI is directed to the guest supervisor state.
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This table describes exception conditions.

Table 4-12. Instruction Storage Interrupt Exception Conditions

Exception Cause

Execute access In user mode, an instruction fetch attempts to access memory that is not user mode execute enabled (page
control exception |access control bit UX = 0).

In supervisor mode, an instruction fetch attempts to access a memory that is not supervisor mode execute
enabled (page access control bit SX = 0).

When an ISI occurs, the processor suppresses execution of the instruction causing the interrupt.
Registers are updated as shown in this table.

Table 4-13. Instruction Storage Interrupt Register Settings

Register Setting

(G)SRRO0|Set to the EA of the instruction causing the interrupt

(G)SRR1|Set to the MSR contents at the time of the interrupt

MSR | ¢ ME, CE, and DE are unchanged.

* GS, UCLE, and PMM are cleared if the interrupt is directed to the hypervisor state.

e UCLE and PMM are cleared If the interrupt is directed to the guest state and the associated bits of MSRP are 0.
* Rl is not cleared.

* All other defined MSR bits are cleared.

(G)ESR |All defined ESR bits are cleared.

Instruction execution resumes at address (G)IVPR[32—47] || (G)IVOR3[48-59] || 0b0000.

4.9.6 External Input Interrupt—IVOR4/GIVOR4

An external input interrupt occurs when no higher priority interrupt exists, an external input interrupt
(typically described in the integrated reference manual as the inf signal) is presented to the interrupt
mechanism, and MSR[EE] = 1. The interrupt is directed to the hypervisor unless the following conditions
exist: determined as follows:

» The state in which the exception occurred is the guest state (MSR[GS] = 1).
* The interrupt is programmed to be directed to the guest state (EPCR[EXTGS] =1).

If all the above conditions are met, the external input interrupt is directed to the guest supervisor state. The
interrupt is enabled by the MSR[EE], MSR[GS], and EPCR[EXTGS] bits as follows:

« If EPCR[EXTGS] = 0, the interrupt is enabled if MSR[EE] =1 or MSR[GS] = 1.
» If EPCR[EXTGS] = 1, the interrupt is enabled if MSR[EE] = 1 and MSR[GS] = 1.

4.9.6.1 Receiving External Input Interrupts

In an integrated device, external interrupts are typically signaled to the core from a programmable interrupt
controller (PIC), which manages and prioritizes interrupt requests from integrated peripheral devices such
that the highest priority request is guaranteed to be presented to the core as quickly as possible.
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The e500mc provides two methods of receiving external input interrupts, which is controlled through a
register field in the PIC:

* In one method, the legacy method, the core takes an external input interrupt when the int signal
from the PIC is asserted and the external input interrupt is enabled. The input is level sensitive and
ifint is deasserted before the interrupt is enabled, no interrupt occurs. If the interrupt is enabled and
occurs, software reads the memory-mapped Interrupt Acknowledge (IACK) register which
contains the specific vector of the interrupt. This causes the PIC to deassert inf until another
interrupt is requested and management of the interrupt is software’s responsibility (it is in-service)
until it performs an associated End of Interrupt (EOI) memory-mapped register write to the PIC.

* In the alternate method known as External Proxy, a signaling protocol occurs between the core and
the PIC. Instead of just signaling int, the PIC also provides the specific vector for the interrupt.
When the interrupt is enabled and the PIC is asserting int, the interrupt occurs and the core
communicates to the PIC that the interrupt has been taken and provides the vector from the PIC in
the (G)EPR register which software then can read. As part of the communication with the PIC, the
PIC puts the specific interrupt in-service as if software had read the IACK register in the legacy
method. This method is further described in Section 4.9.6.3, “External Proxy.”

4.9.6.2 External Input Interrupt Register Settings
Registers are updated as shown in this table.

Table 4-14. External Input Interrupt Register Settings

Register Setting

(G)SRRO |Set to the effective address of the next instruction to be executed

(G)SRR1 |Set to the MSR contents at the time of the interrupt

MSR * ME, CE, and DE are unchanged.

* GS, UCLE, and PMM are cleared if the interrupt is directed to the hypervisor state.

e UCLE and PMM are cleared If the interrupt is directed to the guest state and the associated bits of MSRP are O.
* Rl is not cleared.

* All other defined MSR bits are cleared.

(G)EPR |If external proxy is used, (G)EPR holds the vector offset that identifies the source that generated the interrupt triggered
from the PIC. For external interrupts not generated using interrupt proxy, (G)EPR is updated to all zeros.

Instruction execution resumes at address (G)IVPR[32-47] || (G)IVOR4[48-59] || 0b0000.
NOTE

To avoid redundant external input interrupts, software must take any actions

required to clear any external input exception status before reenabling
MSRJ[EE].

4.9.6.3 External Proxy

The external proxy facility defines an interface for using a core-to-interrupt controller hardware interface
for acknowledging external interrupts from a programmable interrupt controller (PIC) implemented as part
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of the integrated device. This functionality is enabled through a register field defined by the PIC and
documented in the reference manual for the integrated device.

Using this interface reduces the latency required to read and acknowledge the interrupt that normally
requires a cache-inhibited guarded load to the memory controller.

In previous integrated devices, when the core received a signal from the PIC indicating that the external
interrupt was necessary to handle a condition typically presented by an integrated peripheral device, the
interrupt handler responded by reading a memory-mapped register (interrupt acknowledge, or IACK)
defined by the Open PIC standard. In addition to providing an additional vector offset specific to the
peripheral device, this read negated the internal signal and changed the status of the interrupt request from
pending to in-service in which state it would remain until the completion of the interrupt handling.

The external proxy eliminates the need to read the IACK register by presenting the vector to the external
proxy register (EPR), or guest external proxy register (GEPR), described in Section 2.9.5, “(Guest)
External Proxy Register (EPR/GEPR).”

Instead of just signaling int, the PIC also provides the specific vector for the interrupt. When the interrupt
is enabled and the PIC is asserting int, the interrupt occurs and the core communicates to the PIC that the
interrupt has been taken and provides the vector from the PIC in the (G)EPR register which software then
can read. As part of the communication with the PIC, the PIC puts the specific interrupt in-service as if
software had read the IACK register in the legacy method. The PIC always asserts the highest priority
pending interrupt to the core and the interrupt that is put in-service is determined by when the core takes
the interrupt based on the appropriate enabling conditions.From a system software perspective, the core
does not acknowledge the interrupt until the external input interrupt is taken.

Software in the external input interrupt handler would then read (G)EPR to determine the vector for the
interrupt. The value of the vector in (G)EPR does not change until the next external input interrupt occurs
and therefore software must read (G)EPR before re-enabling the interrupt.

When using external proxy (and even with the legacy method), software must ensure that end-of-interrupt
(EOI) processing is synchronized with taking of external input interrupts such that the EOI indicator is
received so that the interrupt controller can properly pair it with the source. For example, writing the EOI
register for the PIC would require that the following sequence occur:

block interrupts; // turn EE off for external interrupts
write EOI register; // signal end of interrupt

read EOI register; // ensure write has completed

unblock interrupts; // allow interrupts

4.9.7 Alignment Interrupt—IVOR5
An alignment interrupt occurs when no higher priority exception exists and an alignment exception is
presented to the interrupt mechanism. On the e500mc, these exceptions are as follows:
» The following accesses are not word aligned:
— Floating-point loads and stores
— Load multiple or store multiple instruction (Imw and stmw).
— A lwarx or stwex. instruction.
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NOTE

The architecture does not support use of a misaligned EA by load and
reserve or store conditional instructions. If a misaligned EA is specified, the
alignment interrupt handler must treat the instruction as a programming
error and not attempt to emulate the instruction.

* A dcbhz, dcbzep, decbzepl, or dcbzl is attempted to a page marked write-through or cache-inhibited.

For other accesses, the e500mc performs misaligned accesses in hardware within a single cycle if the
misaligned operand lies within a doubleword boundary. Accesses that cross a doubleword boundary
degrade performance. Although many misaligned memory accesses are supported in hardware, their
frequent use is discouraged because they can compromise overall performance. Only one outstanding
misalignment at a time is supported, which means it is nonpipelined. A misaligned access that crosses a
page boundary completely restarts if the second portion of the access causes a TLB miss or a DSI after the
associated interrupt has been serviced and the TLB miss or DSI handler has returned to re-execute the
instruction. This can cause the first access to be repeated.

When an alignment interrupt occurs, the processor suppresses execution of the instruction causing the
alignment interrupt. Registers are updated as shown in Table 4-15.

Table 4-15. Alignment Interrupt Register Settings

Register Setting
SRRO |Set to the EA of the instruction causing the alignment interrupt
SRR1 |Set to the MSR contents at the time of the interrupt
MSR | ME, CE, and DE are unchanged.
* Rl is not cleared.
* All other defined MSR bits are cleared.
DEAR |[Set to the EA of a byte in the range of bytes being accessed and on the page whose access caused the exception
ESR |The following bits may be set:

ST Set only if the instruction causing the exception is a store and is cleared for a load
All other defined ESR bits are cleared.

Instruction execution resumes at address IVPR[32—47] || IVOR5[48-59] || 0b0000.
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4.9.8 Program Interrupt—IVORG6

A program interrupt occurs when no higher priority exception exists and a program interrupt is presented
to the interrupt mechanism. This table lists program interrupt exceptions.

Table 4-16. Program Interrupt Exception Conditions

Exception Cause ESR Bits Set
Floating-point | A floating-point enabled exception is caused when FPSCR[FEX] is set to 1 by the execution FP
enabled of a floating-point instruction that causes an enabled exception, including the case of a Move

to FPSCR instruction that causes an exception bit and the corresponding enable bit both to
be 1. Note that in this context, the term ‘enabled exception’ refers to the enabling provided by
control bits in the FPSCR.

lllegal Attempted execution of any of the following causes an illegal instruction exception. PIL
instruction * A reserved-illegal instruction or an undefined instruction encoding.

* A mtspr or mfspr that specifies a SPRN value that is not implemented.

* A mtspr that specifies a read-only SPRN.

* A mfspr that specifies a write-only SPRN.

¢ A defined, unimplemented instruction.

On e500mc an instruction in an invalid form causes boundedly undefined results.

Privileged MSR[PR] = 1 and execution is attempted of any of the following: PPR
instruction * A privileged instruction or a hypervisor privileged instruction.
* mtispr or mfspr that specifies a privileged SPR.

* mtpmr or mfpmr that specifies a privileged PMR.

Trap When any of the conditions specified in a trap instruction are met and the exception is not also PTR
enabled as a debug interrupt. If enabled as a debug interrupt (that is, (DBCRO[TRAP] =1 &
DBCRO[IDM] = 1 & MSR[DE] = 1) & (MSR[GS] | ~EPCR[DUVD])), then a debug interrupt is
taken instead of the program interrupt.

Unimplemented |e500mc does not take unimplemented operation exceptions. All defined, but unimplemented —
operation instructions take an illegal instruction exception.

Registers are updated as shown in this table.

Table 4-17. Program Interrupt Register Settings

Register Description

SRRO |Set to the EA of the instruction that caused the interrupt.
SRR1 |Set to the MSR contents at the time of the interrupt.

MSR |+ ME, CE, and DE are unchanged.
¢ Rl is not cleared.
¢ All other defined MSR bits are cleared.

ESR |FP Setif an enabled floating-point exception-type program interrupt; otherwise cleared.
PIL Set if an illegal instruction exception-type program interrupt; otherwise cleared.
PPR Set if a privileged instruction exception-type program interrupt; otherwise cleared.
PTR Set if a trap exception-type program interrupt; otherwise cleared.

All other defined ESR bits are cleared.

Instruction execution resumes at address IVPR[32-47] || IVOR6[48-59] || 0b0000.
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4.9.9 Floating-Point Unavailable Interrupt—IVOR7

A floating-point unavailable interrupt occurs when no higher priority interrupt exists, an attempt is made
to execute a floating-point instruction (including floating-point load, store, and move instructions), and the
floating-point available bit in the MSR is disabled (MSR[FP] = 0). SRRO, SRR1, and MSR are updated as
shown in this table.

Table 4-18. Floating-Point Unavailable Interrupt Register Settings

Register Description

SRRO |Set to the EA of the instruction causing the floating-point unavailable interrupt.

SRR1 |Set to the MSR contents at the time of the interrupt.

MSR | * ME, CE, and DE are unchanged.
* Rl is not cleared.
¢ All other defined MSR bits are cleared.

Instruction execution resumes at address [VPR[32—47] || IVOR7[48-59] || 0b0000.

4.9.10 System Call/Hypervisor System Call
Interrupt—IVOR8/GIVORS8/IVOR40

A system call interrupt occurs when no higher priority exception exists and a System Call (sc¢) instruction
with LEV = 0 is executed. (G)SRRO, (G)SRR1, and MSR are updated as shown in Table 4-20.

The system call interrupt is directed to the hypervisor if executed in hypervisor state (MSR[GS] = 0) and
is directed to the guest supervisor if executed in guest state (MSR[GS] = 1).

A hypervisor system call interrupt occurs when no higher priority exception exists and a System Call (sc¢)
instruction with LEV = 1 is executed. SRRO, SRR1, and MSR are updated as shown in.

This table describes which (G)IVOR is taken based on the setting of MSR[GS] and the value of the LEV
operand.

Table 4-19. System Call / Hypervisor System Call Interrupt Selection

LEV MSR[GS] Interrupt
> 1 — Undefined’
1 — IVOR40
0 0 IVOR8
1 GIVORS

1 For e500mc, only the low order bit of the LEV field is
used and the (G)IVOR is used accordingly, however
software should not depend on this behavior.
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Table 4-20. System Call/Hypervisor System Call Interrupt Register Settings

Register Description

(G)SRRO |Set to the EA of the instruction after the sc instruction.

(G)SRR1 |Set to the MSR contents at the time of the interrupt.

MSR | * ME, CE, and DE are unchanged.
* GS, UCLE, and PMM are cleared if the interrupt is directed to the hypervisor state.

¢ UCLE and PMM are cleared If the interrupt is directed to the guest state and the associated bits of MSRP are 0.
¢ Rl is not cleared.

¢ All other defined MSR bits are cleared.

For a system call interrupt, instruction execution resumes at address (G)IVPR[32-47] || (G)IVORS8[48-59]
|| 0b0000.

For a hypervisor system call interrupt, instruction execution resumes at address [IVPR[32—47] ||
IVOR40[48-59] || 0b0000.

Hypervisor system call interrupts are provided as way to communicate with the hypervisor software.

NOTE

The hypervisor should check SRR1[PR,GS] to determine the privilege level
of the software making a hypervisor system call to determine what action,
if any, should be taken as a result of the hypervisor system call.

4.9.11 Decrementer Interrupt—IVOR10

A decrementer interrupt occurs when no higher priority exception exists, a decrementer exception exists
(TSR[DIS] = 1), and the interrupt is enabled (TCR[DIE] = 1 and (MSR[EE] = 1 or MSR[GS))).

NOTE

MSRJEE] also enables external input, processor doorbell, guest processor
doorbell, fixed-interval timer, and performance monitor interrupts.

This table shows register updates.

Table 4-21. Decrementer Interrupt Register Settings

Register Setting

SRRO |Set to the effective address of the next instruction to be executed.

SRR1 |Set to the MSR contents at the time of the interrupt.

MSR | * ME, CE, and DE are unchanged.
¢ Rl is not cleared.
¢ All other defined MSR bits are cleared.

TSR |DIS is set.

Instruction execution resumes at address [IVPR[32—47] || IVOR10[48-59] || 0b0000.
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NOTE

To avoid a subsequent redundant decrementer interrupt, software is
responsible for clearing the decrementer exception status prior to
re-enabling MSR[EE] or MSR[GS]. To clear the decrementer exception, the
interrupt handling routine must clear TSR[DIS] by writing a word to TSR
using mtspr with a 1 in any bit position that is to be cleared and 0 in all other
positions. The write-data to the TSR is not direct data, but a mask: A 1
causes the bit to be cleared, and a 0 has no effect.

4.9.12 Fixed-Interval Timer Interrupt—IVOR11

A fixed-interval timer interrupt occurs when no higher priority interrupt exists, a fixed-interval timer
exception exists (TSR[FIS] = 1), and the interrupt is enabled (TCR[FIE] =1 and (MSR[EE] or
MSR[GS] = 1)). The “Timers” chapter in the EREF: A Programmers Reference Manual for Freescale
Power Architecture® Processors describes the architecture definition of the fixed-interval timer.

MSRJ[EE] also enables external input, processor doorbell, guest processor
doorbell, decrementer interrupts and performance monitor interrupts.

The fixed-interval timer period is determined by TCR[FP], which, when concatenated with TCR[FPEXT],
specifies one of 64 bit locations of the time base used to signal a fixed-interval timer exception on a
transition from 0 to 1.

TCR[FPEXT || FP] = 000000 selects bit 0 of the Time Base (TBL[0] or TBU[32]).
TCR[FPEXT || FP]=11_1111 selects TBL[63].

Registers are updated as shown in this table.

Table 4-22. Fixed-Interval Timer Interrupt Register Settings

Register Setting

SRRO |Set to the EA of the next instruction to be executed.
SRR1 |Set to the MSR contents at the time of the interrupt.

MSR |+ ME, CE, and DE are unchanged.
¢ Rl is not cleared.
¢ All other defined MSR bits are cleared.

TSR |FISis set.

Instruction execution resumes at address [VPR[32—47] || IVOR11[48-59] || 0b0000.

NOTE
To avoid redundant fixed-interval timer interrupts, before reenabling
MSR[EE], the interrupt handler must clear TSR[FIS] by writing a word to
TSR with a 1 in any bit position to be cleared and 0 in all others. Data written
to the TSR is a mask. Writing a 1 causes the bit to be cleared; writing a 0 has
no effect.
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4.9.13 Watchdog Timer Interrupt—IVOR12

A watchdog timer interrupt occurs when no higher priority interrupt exists, a watchdog timer exception
exists (TSR[WIS] = 1), and the interrupt is enabled (TCR[WIE] = 1 and (MSR[CE] or MSR[GS] = 1)).
The “Timers” chapter in the EREF: A Programmer s Reference Manual for Freescale Power
Architecture® Processors describes the architecture definition of the watchdog timer.
NOTE

MSRJ[CE] also enables the critical input, processor doorbell critical, and

guest processor doorbell critical interrupts.
Registers are updated as shown in this table.

Table 4-23. Watchdog Timer Interrupt Register Settings

Register Setting

CSRRO0 |Set to the EA of the next instruction to be executed.

CSRR1 |Set to the MSR contents at the time of the interrupt.

MSR | ¢ ME and DE are unchanged.
¢ Rl is not cleared.
¢ All other defined MSR bits are cleared.

TSR |WIS is set.

Instruction execution resumes at address IVPR[32—47] || IVOR12[48-59] || 0b0000.

NOTE

To avoid redundant watchdog timer interrupts, before reenabling MSR[CE],
the interrupt handling routine must clear TSR[WIS] by writing a word to
TSR with a 1 in any bit position to be cleared and 0 in all others. Data written
to the TSR is a mask. Writing a 1 to this bit causes it to be cleared; writing
a 0 has no effect.

4.9.14 Data TLB Error Interrupt—IVOR13/GIVOR13

A data TLB error interrupt occurs when no higher priority interrupt exists and the exception described in
Table 4-24 is presented to the interrupt mechanism. The interrupt is directed to the hypervisor unless the
following conditions exist determined as follows:

» The state in which the exception occurred is the guest state (MSR[GS] = 1).
» The interrupt is programmed to be directed to the guest state (EPCR[DTLBGS] = 1).
If all the above conditions are met, the DTLB is directed to the guest supervisor state.

Table 4-24. Data TLB Error Interrupt Exception Condition

Exception Description

Data TLB miss exception Virtual addresses associated with a data access do not match any valid TLB entry.
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When the interrupt occurs, the processor suppresses execution of the excepting instruction. Registers are
updated as shown in this table.

Table 4-25. Data TLB Error Interrupt Register Settings

Register Setting

(G)SRRO |[Set to the EA of the instruction causing the data TLB error interrupt.

(G)SRR1 |Set to the MSR contents at the time of the interrupt.

MSR * ME, CE, and DE are unchanged.

* GS, UCLE, and PMM are cleared if the interrupt is directed to the hypervisor state.

¢ UCLE and PMM are cleared If the interrupt is directed to the guest state and the associated bits of MSRP are 0.
* Rl is not cleared.

¢ All other defined MSR bits are cleared.

(G)DEAR |Set to the EA of a byte that is both within the range of the bytes being accessed by the memory access or cache
management instruction and within the page whose access caused the exception.

(G)ESR |[ST] Set if the instruction causing the interrupt is a store, dcbi, debz, or debzl; otherwise cleared
[FP] Set if the instruction causing the interrupt is a floating-point load or store.

[EPID] Set if the instruction causing the interrupt is an external pid instruction.

All other defined ESR bits are cleared

MASnH If EPCR[DMIUH] = 1, and a Instruction or Data TLB Error, ISI, or DSI is directed to the hypervisor, MAS registers
are not changed.
See Table 6-6.

Instruction execution resumes at address (G)IVPR[32—47] Il (G)IVOR13[48-59] || 0b0000.

NOTE: Implementation

If a store conditional instruction produces an EA for which a normal store
would cause a data TLB error interrupt, but the processor does not have the
reservation from a load and reserve instruction, e500mc always takes the
DTLB interrupt.

4.9.15 Instruction TLB Error Interrupt—IVOR14/GIVOR14

An instruction TLB error interrupt occurs when no higher priority interrupt exists and the exception
described in Table 4-26 is presented to the interrupt mechanism. The interrupt is directed to the hypervisor
unless the following conditions exist: determined as follows:

» The state in which the exception occurred is the guest state (MSR[GS] = 1).
» The interrupt is programmed to be directed to the guest state (EPCR[ITLBGS] = 1).
If all the above conditions are met, the ITLB is directed to the guest supervisor state.

Table 4-26. Instruction TLB Error Interrupt Exception Condition

Exception Description

Instruction TLB miss exception |Virtual addresses associated with an instruction fetch do not match any valid TLB entry.

When an instruction TLB error interrupt occurs, the processor suppresses execution of the instruction
causing the exception.
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Registers are updated as shown in Table 4-27.

Table 4-27. Data TLB Error Interrupt Register Settings

Register Setting

(G)SRRO |Set to the EA of the instruction causing the instruction TLB error interrupt.

(G)SRR1 |Set to the MSR contents at the time of the interrupt.

MSR * ME, CE, and DE are unchanged.

* GS, UCLE, and PMM are cleared if the interrupt is directed to the hypervisor state.

e UCLE and PMM are cleared If the interrupt is directed to the guest state and the associated bits of MSRP are 0.
* Rl is not cleared.

* All other defined MSR bits are cleared.

MASn If EPCR[DMIUH] = 1, and a Instruction or Data TLB Error, ISI, or DSl is directed to the hypervisor, MAS registers
are not changed.
See Table 6-6.

Instruction execution resumes at address (G)IVPR[32-47] || (G)IVOR14[48-59] || 0b000O.

4.9.16 Debug Interrupt—IVOR15

A debug interrupt occurs when no higher priority interrupt exists, a debug exception is indicated in the
DBSR, and debug interrupts are enabled (DBCRO[IDM] =1 and MSR[DE] = 1). A debug exception occurs
when a debug event causes a corresponding DBSR bit to be set.

Any time that a DBSR bit is allowed to be set while MSR[DE] = 0, a special DBSR bit, imprecise debug
event (DBSR[IDE]), is also set. DBSR[IDE] indicates that the associated debug exception bit in DBSR
was set while debug interrupts were disabled (MSR[DE] = 0). Debug interrupt handler software uses this
bit to determine whether the address recorded in DSRRO should be interpreted as the address associated
with the instruction causing the exception or the address of the instruction after the one that set MSR[DE]
and thereby enabled the delayed debug interrupt. See Section 4.9.16.2, “Delayed Debug Interrupts.” The
“Debug Support,” chapter of the EREF: A Programmer s Reference Manual for Freescale Power
Architecture® Processors describes such architectural aspects of the debug interrupt.
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Registers are updated as shown in this table.

Table 4-28. Debug Interrupt Register Settings

Register Description

DSRRO |For exceptions occurring while debug interrupts are enabled (DBCRO[IDM] and MSR[DE] = 1), DSRRO is set as

follows:

» For instruction address compare (IAC registers), data address compare (DAC1R, DAC1W, DAC2R, and DAC2W),
trap (TRAP), or branch taken (BRT) debug exceptions, set to the EA of the instruction causing the interrupt.

¢ For interrupt taken (IRPT) debug exceptions (CIRPT for critical interrupts), set to the EA of the first instruction of the
interrupt that caused the event.

* For instruction complete (ICMP) debug exceptions, set to the EA of the instruction that would have executed after
the one that caused the interrupt.

* For return from interrupt (RET) debug exceptions, set to the EA of the instruction (rfi, rfci, or rfgi) that caused the
interrupt.

¢ For unconditional debug event (UDE) debug exceptions, set to the EA of the instruction that would have executed
next had the interrupt not occurred.

For exceptions occurring while debug interrupts are disabled (DBCRO[IDM] = 0 or MSR[DE] = 0), the interrupt occurs

at the next synchronizing event if DBCRO[IDM] and MSR[DE] are modified such that they are both set and if the DBSR

still indicates status. When this occurs, DSRRO holds the EA of the instruction that would have executed next, not the

address of the instruction that modified DBCRO or MSR and caused the interrupt.

DSRR1 |Set to the MSR contents at the time of the interrupt.

MSR | ¢ ME, is unchanged.Rl is not cleared.
¢ All other defined MSR bits are cleared.

DBSR |Set to indicate type of debug event. See Section 2.17.6, “Debug Status Register (DBSR/DBSRWR).”

Note that on the e500mc, if DBCRO[IDM] is cleared, no debug events occur. That is, regardless of MSR,
DBCRO, DBCR1, and DBCR2 settings, no debug events are logged in DBSR and no debug interrupts are
taken.
The e500mc complies with the architecture debug definition, except as follows:

» Data address compare is only supported for effective addresses.

* Instruction address compares IAC3 and IAC4 are not supported.

» Instruction address compare is only supported for effective addresses.

» Data value compare is not supported.

Instruction execution resumes at address IVPR[32—47] || IVOR15[48-59] || 0b0000.

4.9.16.1 Suppressing Debug Events in Hypervisor Mode

Synchronous debug events can be suppressed when executing in hypervisor state. This prevents debug
events from being recorded (and subsequent debug interrupts from occurring) when executing in
hypervisor state when the guest operating system is using the debug facility.

When EPCR[DUVD] =1 and MSR[GS] =0, all debug events, except the unconditional debug event, are
suppressed and are not posted in the DBSR and the associated exceptions do not occur.
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4.9.16.2 Delayed Debug Interrupts

On the e500mc, delayed debug interrupts can be taken under two circumstances:

* A mtmsr instruction that sets MSR[DE] = 1 and any DBSR bit is set (including IDE, but excluding
MRR). In this case, DSRRO holds the address of the instruction following the mtmsr.

* Any return from interrupt class (rfi, rfgi, rfci, rfdi, rfmci) instruction sets MSR[DE] and any

DBSR bit is a one (including IDE, but excluding MRR). In this case, DSRRO holds the address of
the target of the return from interrupt instruction.

The e500mc uses DBCRO[IDM] to enable/disable recognition of debug events, and it uses MSR[DE] to
enable/disable taking debug interrupts when debug events are recognized. When a debug event is
recognized, the event is logged in DBSR and, if debug interrupts are enabled, a debug interrupt also occurs.

A delayed debug interrupt is a delayed response to a previously logged event. Although DBCRO[IDM] is
a condition for recognizing and logging a debug event, it is not a condition for taking a delayed debug
interrupt. This is different from previous versions of €500, for which a delayed debug interrupt required
IDM = 1.

4.9.17 Performance Monitor Interrupt—IVOR35

A performance monitor interrupt is implemented as defined by the architecture and described in the EREF:
A Programmer s Reference Manual for Freescale Power Architecture® Processors. Conditions that can
be programmed to trigger an interrupt on the e500mc are described in Section 9.11, “Performance
Monitor.” The interrupt is triggered by an enabled performance monitor condition or event. For a
performance monitor interrupt to be signaled on an enabled condition or event, PMGCO[PMIE] must be
set. A PMCr register overflow condition occurs with the following settings:

*  PMLCan[CE] = 1; that is, for the given counter the overflow condition is enabled.
*  PMCn[OV] = 1; that is, the given counter indicates an overflow.

Performance monitor counters can be frozen on a triggering enabled condition or event if
PMGCO[FCECE] is set.

Although the interrupt condition could occur with MSR[EE] = 0, the interrupt cannot be taken until
MSR[EE] or MSR[GS] = 1. If a counter overflows while PMGCO[FCECE] = 0, PMLCan[CE] = 1, and
MSR[EE] = 0, the counter can wrap around to all zeros again without the interrupt being taken.

Registers are updated as shown in this table.

Table 4-29. Performance Monitor Interrupt Register Settings

Register Setting

SRRO |Set to the EA of the next instruction to be executed.

SRR1 |Set to the MSR contents at the time of the interrupt.

MSR | ME, CE, and DE are unchanged.
¢ Rlis not cleared.
¢ All other defined MSR bits are cleared.

Instruction execution resumes at address IVPR[32—47] || IVOR35[48-59] || 0b0000.
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4.9.18 Doorbell Interrupts—IVOR36—-IVOR39

Doorbell interrupts provide a mechanism for a processor to send messages to all devices within its
coherence domain. These messages can generate interrupts on core devices, and can be filtered by the
processors that receive the message to observe (cause an exception) or to ignore the message.

Doorbell interrupts are useful for sending interrupts to a processor. Power ISA 2.06 defines how processors
send messages and the actions that processors take on the receipt of a message. Actions taken by devices
other than processors are not defined.

The instructions msgsnd and msgelr are provided for sending and messages to processors and clearing
received and accepted messages. These instructions are hypervisor privileged. See Section 3.4.11.4,
“Message Clear and Message Send Instructions.”

The e500mc filters, accepts, and handles the following message types defined in Table 4-30. These
message types result in the exceptions and interrupts described later in this section.

The message type is specified in the message and is determined by the contents of register rB[32-36] used
as the operand in the msgsnd instruction.

Table 4-30. Message Types

Value Description

0 Doorbell interrupt (DBELL). Causes a processor doorbell exception on a processor that receives and accepts the
message.

1 Doorbell critical interrupt (DBELL_CRIT). Causes a processor doorbell critical exception on a processor that receives
and accepts the message.

2 | Guest processor doorbell interrupt (G_DBELL). Causes a guest processor doorbell exception on a processor that
receives and accepts the message.

3 | Guest processor doorbell critical interrupt (G_DBELL_CRIT). Causes a guest processor doorbell critical exception on a
processor that receives and accepts the message.

4 | Guest processor doorbell machine check interrupt (G_DBELL_MC). Causes a guest processor doorbell machine check
exception on a processor that receives and accepts the message.

No other message type is accepted on the e500mc.

4.9.18.1 Doorbell Interrupt Definitions

The architecture defines the following doorbell interrupts, which are implemented on the e500mc:
* Processor doorbell (IVOR36)
* Processor doorbell critical (IVOR37)

*  Guest processor doorbell (IVOR38). Note that guest processor doorbell uses GSRR0 and GSRR1
to save state.

*  QGuest processor doorbell critical (IVOR39)
*  QGuest processor doorbell machine check (IVOR39)
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4.9.18.1.1  Processor Doorbell Interrupt (IVOR36)

A processor doorbell interrupt occurs when no higher priority exception exists, a processor doorbell
exception is present, and MSR[EE] or MSR[GS] = 1. Processor doorbell exceptions are generated when
doorbell type messages are received and accepted by the processor.

Registers are updated as shown in this table.

Table 4-31. Processor Doorbell Interrupt Register Settings

Register Setting

SRRO |Set to the EA of the next instruction to be executed.

SRR1 |Set to the MSR contents at the time of the interrupt.

MSR * ME, CE, and DE are unchanged.Rl is not cleared.
¢ All other defined MSR bits are cleared.

Instruction execution resumes at address IVPR[32—47] || IVOR36[48-59] || 0b0000.

4.9.18.1.2 Processor Doorbell Critical Interrupt (IVOR37)

A processor doorbell critical interrupt occurs when no higher priority exception exists, a processor
doorbell critical exception is present, and MSR[CE] or MSR[GS] = 1. Processor critical doorbell
exceptions are generated when doorbell critical type messages are received and accepted by the processor.

Registers are updated as shown in this table.

Table 4-32. Processor Doorbell Critical Interrupt Register Settings

Register Setting

CSRRO |Set to the EA of the next instruction to be executed.

CSRR1 |Set to the MSR contents at the time of the interrupt.

MSR | » ME and DE are unchanged.Rl is not cleared.
¢ All other defined MSR bits are cleared.

Instruction execution resumes at address IVPR[32—47] || IVOR37[48-59] || 0b0000.

4.9.18.1.3 Guest Processor Doorbell Interrupts (IVOR38)

A guest processor doorbell interrupt occurs when no higher priority exception exists, a guest processor
doorbell exception is present, and MSR[EE] and MSR[GS] = 1. Guest processor doorbell exceptions are
generated when guest doorbell type messages are received and accepted by the processor.

Registers are updated as shown in this table.

Table 4-33. Guest Processor Doorbell Interrupt Register Settings

Register Setting

GSRRO |Set to the EA of the next instruction to be executed.
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Table 4-33. Guest Processor Doorbell Interrupt Register Settings (continued)

Register Setting

GSRR1 |Set to the MSR contents at the time of the interrupt.

MSR * ME, CE, and DE are unchanged.
¢ Rl is not cleared.
¢ All other defined MSR bits are cleared.

Instruction execution resumes at address IVPR[32—47] || IVOR38[48-59] || 0b0000.

NOTE

Even though the guest processor doorbell interrupt is always directed to the
hypervisor, it uses GSRR0O and GSRRI1 to save state. This is because the
interrupt is guaranteed to interrupt out of guest state when it is safe to update
the guest save/restore registers. The hypervisor should use this mechanism
to reflect interrupts to the guest state. In this scenario, GSRRO and GSRR 1
is already set appropriately for the hypervisor.

4.9.18.1.4 Guest Processor Doorbell Critical Interrupts (IVOR39)

A guest processor doorbell critical interrupt occurs when no higher priority exception exists, a processor
doorbell exception is present, and MSR[CE] and MSR[GS] = 1. Guest processor doorbell critical
exceptions are generated when guest doorbell critical type messages are received and accepted by the
processor.

Registers are updated as shown in this table.

Table 4-34. Guest Processor Doorbell Critical Interrupt Register Settings

Register Setting

CSRRO |Set to the EA of the next instruction to be executed.

CSRR1 |Set to the MSR contents at the time of the interrupt.

MSR | * ME and DE are unchanged.Rl is not cleared.
* All other defined MSR bits are cleared.

Instruction execution resumes at address IVPR[32—47] || IVOR39[48-59] || 0b0000.

NOTE

The guest processor doorbell critical and the guest processor doorbell
machine check interrupts use the same IVOR to vector interrupts. Software
can examine CSRR1 and its own data structures to determine which
interrupt occurred.

4.9.18.1.5 Guest Processor Doorbell Machine Check Interrupts (IVOR39)

A guest processor doorbell machine check interrupt occurs when no higher priority exception exists, a
guest processor doorbell machine check exception is present, and MSR[ME] and MSR[GS] = 1. Guest
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processor doorbell machine check exceptions are generated when guest doorbell machine check type
messages are received and accepted by the processor.

Registers are updated as shown in this table.

Table 4-35. Guest Processor Doorbell Machine Check Interrupt Register Settings

Register Setting

CSRRO |Set to the EA of the next instruction to be executed.

CSRR1 |Set to the MSR contents at the time of the interrupt.

MSR | ME and DE are unchanged.Rl is not cleared.
¢ All other defined MSR bits are cleared.

Instruction execution resumes at address IVPR[32—47] || IVOR39[48-59] || 0b0000.

NOTE

The guest processor doorbell critical and the guest processor doorbell
machine check interrupts use the same [IVOR to vector interrupts. Software
can examine CSRR1 and its own data structures to determine which
interrupt occurred.

4.9.19 Hypervisor Privilege Interrupt—IVOR41

A hypervisor privilege exception occurs when the processor executes an instruction in the guest supervisor
state and the operation is allowed only in the hypervisor state. A hypervisor privilege exception also occurs
when an ehpriv instruction is executed, regardless of the state of the processor. See Section 3.4.5.7,
“Hypervisor Privilege Instruction.”

Registers are updated as shown in this table.

Table 4-36. Hypervisor Privilege Interrupt Register Settings

Register Setting

SRRO |Set to the EA of the instruction which caused the exception.

SRR1 |Set to the MSR contents at the time of the interrupt.

MSR | ME, CE, and DE are unchanged.Rl is not cleared.
¢ All other defined MSR bits are cleared.

Instruction execution resumes at address IVPR[32—47] || IVOR41[48-59] || 0b0000.
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Hypervisor privilege interrupts are provided as a means for restricting the guest supervisor state from
performing operations allowed only in the hypervisor state. Table 4-37 lists the resources that cause a
hypervisor privilege exception when accessed in guest supervisor state.

Table 4-37. Hypervisor Privilege Exceptions from Guest Supervisor State

Hypervisor | Hypervisor | Hypervisor
Resource Privilege | Privilege | Privilege Notes
on Read on Write |on Execute
Instructions
ehpriv — — Yes —
msgclr — — Yes —
msgsnd — — Yes —
rfci — — Yes —
rfdi — — Yes —
rfi — — No Guest supervisor state execution of rfi maps to rfgi.
rfmci — — Yes —
tibilx — — Yes or No Hypervisor privilege occurs only when EPCR[DGTMI] = 1
tibivax — — Yes —
tibre — — Yes —
tibsx — — Yes —
tibsync — — Yes —
tibwe — — Yes —
SPRs
CDCSRO0 Yes Yes — —
BUCSR Yes Yes — —
CSRRO Yes Yes — —
CSRR1 Yes Yes — —
DACn Yes Yes — —
DBCRn Yes Yes — —
DBSR Yes Yes — —
DBSRWR — Yes — Write only register.
DEAR No No — Guest supervisor state access to DEAR maps to GDEAR.
DEC Yes Yes — —
DECAR Yes Yes — e500mc allows reading of DECAR although Power ISA does not
define it.
EPCR Yes Yes — New register, allows hypervisor to direct certain interrupts and mask
hypervisor debug events.
EPR No No — Guest supervisor state access to EPR maps to GEPR.
e500mc Core Reference Manual, Rev. 3
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Table 4-37. Hypervisor Privilege Exceptions from Guest Supervisor State (continued)

Hypervisor | Hypervisor | Hypervisor
Resource Privilege | Privilege | Privilege Notes
on Read on Write |on Execute
ESR No No — Guest supervisor state access to ESR maps to GESR.
GIVORn No Yes — Hypervisor privilege occurs on mtspr in guest state.
GIVPR No Yes — Occurs on mtspr in guest state.
GPIR No Yes — —
HIDO Yes Yes — —
IACn Yes Yes — —
IVORn Yes Yes — —
IVPR Yes Yes — —
L1CSRn Yes Yes — —
L2CAPTDATAHI Yes Yes — —
L2CAPTDATALO Yes Yes — —
L2CAPTECC Yes Yes — —
L2CSRn Yes Yes — —
L2ERRADDR Yes Yes — —
L2ERRATTR Yes Yes — —
L2ERRCTL Yes Yes — —
L2ERRDET Yes Yes — —
L2ERRDIS Yes Yes — —
L2ERREADDR Yes Yes — —
L2ERRINJCTL Yes Yes — —
L2ERRINJHI Yes Yes — —
L2ERRINJLO Yes Yes — —
L2ERRINTEN Yes Yes — —
LPIDR Yes Yes — —
MAS5 Yes Yes — —
MAS8 Yes Yes — —
MCAR Yes Yes — —
MCARU Yes Yes — —
MCSR Yes Yes — —
MCSRRn Yes Yes — —
MMUCFG Yes Yes — —
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Table 4-37. Hypervisor Privilege Exceptions from Guest Supervisor State (continued)

Hypervisor | Hypervisor | Hypervisor
Resource Privilege | Privilege | Privilege Notes
on Read on Write |on Execute
MMUCSRO Yes Yes — —
MSRP Yes Yes — —
NSPC Yes Yes — —
NSPD Yes Yes — —
PIR No Yes — Guest supervisor state access to PIR maps to GPIR for reads.
SPRGO0-SPRG3 No No — Guest supervisor state access to SPRG0-SPRG3 maps to
GSPRGO0-GSPRG3.
SPRG8 Yes Yes — —
SRRO No No — Guest supervisor state access maps to GSRR0
SRR1 No No — Guest supervisor state access maps to GSRR1
TBL(R) No — — Read only register
TBL(W) Yes Yes —
TBU(R) No — — Read only register
TBU(W) Yes Yes —
TCR Yes Yes — —
TLBOCFG Yes — — Read only register
TLB1CFG Yes — — Read only register
TSR Yes Yes — —
USPRG 1-3' No No — Guest user state access to USPRGn maps to GSPRGn.
PMRs
PMCn Yes/no? Yes/no2 — —
PMLCAnN Yes/no2 Yes/no2 — —
PMLCBn Yes/no2 Yes/no2 — —
PMGCO Yes/no2 Yes/no2 — —

' USPRGO is a separate physical register from SPRGO.

2 Access to PMRs is based on the setting of MSRP[PMMP]. If MSRP[PMMP] = 0 reads and writes are allowed to PMRs. If
MSRP[PMMP] = 1 reads and writes produce a hypervisor privilege exception is supervisor mode and are NOPed in user mode.

4.10 Guidelines for System Software

When software takes an interrupt, it generally wants to save the save/restore registers in case another
exception occurs while processing the current interrupt. In general software must ensure that no other
interrupt occurs before the save/restore registers are appropriately saved to memory (usually the stack).
Hardware automatically disables asynchronous interrupt enables associated with the save/restore register
pair when the new MSR is established taking the interrupt (for example, on taking a interrupt that uses
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SRRO/1, MSR[EE] is set to 0 preventing external input, decrementer, fixed interval timer, and processor
doorbell interrupts from occurring). Software must ensure that synchronous exceptions do not occur prior
to saving the save/restore registers.

This table lists actions system software must avoid before saving save/restore register contents.

Table 4-38. Operations to Avoid Before Save/Restore Register are Saved to Memory

Operation Reason

Reenabling MSR[EE] , MSR[CE], MSR[DE], or Prevents any asynchronous interrupts, as well as (in the case of MSR[DE])
MSR[ME] in interrupt handlers any debug interrupts, including synchronous and asynchronous types

Branching (or sequential execution) to addresses |Prevents instruction storage and instruction TLB error interrupts
not mapped by the TLB or mapped without SX set.

Load, store, or cache management instructions to |Prevents data storage and data TLB error interrupts
addresses not mapped or without permissions.

Execution of System Call (sc), trap (tw, twi, td, tdi), | Prevents system call and trap exception-type program interrupts. Note that
or ehpriv instructions ehpriv instructions can be executed in guest supervisor state.

Re-enabling of MSR[PR] Prevents privileged instruction exception-type program interrupts.
Alternatively, software could reenable MSR[PR] but avoid executing any
privileged instructions.

Execution of any illegal instructions Prevents illegal instruction exception-type program interrupts

Execution of any instruction that could cause an Prevents alignment interrupts, as described in Section 4.9.7, “Alignment
alignment interrupt Interrupt—IVORS5.”

4.11 Interrupt Priorities

Except for the occurrence of multiple synchronous imprecise interrupts, all synchronous (precise and
imprecise) interrupts are reported in program order, as required by the sequential execution model. Upon
a synchronizing event, all previously executed instructions are required to report any synchronous
imprecise interrupt-generating exceptions, and the interrupt is then generated with all of those exception
types reported cumulatively in the (G)ESR and in any status registers associated with the particular
exception.

For any single instruction attempting to cause multiple exceptions for which the corresponding
synchronous interrupt types are enabled, this section defines the priority order by which the instruction is
permitted to cause a single enabled exception, thus generating a particular synchronous interrupt. Note that
it is this exception priority mechanism, along with the requirement that synchronous interrupts be
generated in program order, that guarantees that at any given time there exists for consideration only one
of the synchronous interrupt types. The exception priority mechanism also prevents certain debug
exceptions from existing in combination with certain other synchronous interrupt-generating exceptions.

This section does not define the permitted setting of multiple exceptions for which the corresponding
interrupt types are disabled. The generation of exceptions for which the corresponding interrupt types are
disabled has no effect on the generation of other exceptions for which the corresponding interrupt types
are enabled. Conversely, if a particular exception for which the corresponding interrupt type is enabled is
shown in the following sections to be of a higher priority than another exception, it prevents the setting of
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that other exception, independent of whether that other exception’s corresponding interrupt type is enabled
or disabled.

Except as specifically noted, only one of the exception types listed for a given instruction type is permitted
to be generated at any given time.

NOTE

Mutually exclusive exception types otherwise with the same priority are
listed in the order suggested by the sequential execution model.

4.12 Exception Priorities

The architecture defines exception priorities for all exceptions including those defined in optional
functionality. Exception types are defined to be either synchronous, in which case the exception occurs as
a direct result of an instruction in execution, or asynchronous, which occurs based on an event external to
the execution of a particular instruction or an instruction removes a gating condition to a pending
exception. Exceptions are exclusively either synchronous or asynchronous.

Because asynchronous exceptions may temporally be sampled either before or after an instruction is
completed, an implementation can order asynchronous exceptions among only asynchronous exceptions
and can order synchronous exceptions among only synchronous exceptions. The distinction is important
because certain synchronous exceptions require post-completion actions. These exceptions (for example,
system call and debug instruction complete) cannot be separated from the completion of the instruction.
therefore, asynchronous exceptions cannot be sampled during the completion and post-completion
synchronous exceptions for a given instruction.

Table 4-39 and Table 4-40 describes the relative priority of each exception type. Exception priority is listed
from highest to lowest and the lower the numerical relative priorities shown implies a higher priority. In
many cases, it is impossible for certain exceptions (such as, the trap and illegal program exceptions) to
occur at the same time. Such exceptions are grouped together at the same relative priority.

Table 4-39. Asynchronous Exception Priorities

Relative Exception Interrupt Interrupt Pre or Post Comments
Priority P Level' Nature Completion?
0 Machine Check Machine Check Asynch N/A Asynchronous exceptions may come

from the processor or from an external
source.

1 Guest Processor Critical Asynch N/A —
Doorbell Machine
Check
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Table 4-39. Asynchronous Exception Priorities (continued)

Relative Exception Interrupt Interrupt Pre or Post Comments
Priority P Level' Nature Completion?

2 Debug- UDE Debug Asynch N/A Debug-UDE is generally used for an
externally generated high priority
attention signal.

Debug- IDE Debug Asynch N/A Imprecise debug event usually taken
after MSRpg goes from 0 to 1 via rfdi or
mtmsr.

Debug - Interrupt Debug Asynch N/A Debug interrupt taken after original
Taken interrupt has changed NIA (Next
Instruction Address) and MSR.
Debug - Critical Debug Asynch N/A Debug interrupt taken after original
Interrupt Taken critical interrupt has changed NIA and
MSR.

3 Critical Input Critical Asynch N/A —

4 Watchdog Critical Asynch N/A —

5 Processor Doorbell Critical Asynch N/A —

Critical
6 Guest Processor Critical Asynch N/A —
Doorbell Critical
7 External Input Base Asynch N/A —
13 Program - Delayed Base Asynch N/A Delayed Floating Point Enabled
Floating Point Enabled exceptions occur when FPCSR[FEX] = 1

and MSR[FEO,FE1] change from 0b00 to
a non-zero value.

22 Fixed Interval Timer Base Asynch N/A —

23 Decrementer Base Asynch N/A —

24 Processor Doorbell Base Asynch N/A —

25 Guest Processor Base Asynch N/A —

Doorbell
26 Performance Monitor Base Asynch N/A —

' The interrupt level defines which set of save/restore registers are used when the interrupt is taken. They are: Base: SRR0/1,
Critical: CSRR0/1, Debug: DSRR0/1, and Machine Check: MCSRRO0/1.

2 Pre or Post Completion refers to whether the exception occurs before an instruction completes (pre) and the corresponding
interrupt points to the instruction causing the exception, or if the instruction completes (post) and the corresponding interrupt
points to the next instruction to be executed.
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Table 4-40. Synchronous Exception Priorities

Relative Excebtion Interrupt Interrupt Pre or Post Comments
Priority P Level' Nature | Completion?
0 Error Report Machine Check Synch pre —
8 Debug - Instruction Debug Synch pre —
Address Compare
9 ITLB Base Synch pre —
ISI Base Synch pre —
10 Program - Privileged Base Synch pre —
Instruction
Embedded Hypervisor Base Synch pre —
Privilege

11 FP Unavailable Base Synch pre —

12 Debug - Trap Debug Synch pre —

13 Program - lllegal Base Synch pre —

Instruction
Program - Base Synch pre —
Unimplemented
Operation
Program - Trap Base Synch pre —
Program - Floating Base Synch pre —
Point Enabled

15 DTLB Base Synch pre —

DSI Base Synch pre A DSI Virtualization Fault always takes
priority over all other causes of DSI.

16 Alignment Base Synch pre —

17 System Call Base Synch post System Call Interrupt has SRRO pointing
to instruction after sc (that is, post
completion).

Embedded Hypervisor Base Synch post Embedded Hypervisor System Call
System Call Interrupt has SRRO pointing to instruction
after sc (that is, post completion).

18 Debug - Return from Debug Synch pre —

Interrupt
Debug - Return from Debug Synch pre —
Critical Interrupt
Debug - Branch Taken Debug Synch pre —
19 Debug - Data Address Debug Synch pre —
Compare
21 Debug - Instruction Debug Synch post Debug - Instruction Complete Interrupt has

Complete

DSRRO pointing to next instruction (that is,
post completion).

e500mc Core Reference Manual, Rev. 3

4-47

Freescale Semiconductor



Interrupts and Exceptions

' The interrupt level defines which set of save/restore registers are used when the interrupt is taken. They are: Base: SRR0/1,
Critical: CSRR0/1, Debug: DSRRO0/1, and Machine Check: MCSRRO0/1.

2 Pre or Post Completion refers to whether the exception occurs before an instruction completes (pre) and the corresponding

interrupt points to the instruction causing the exception, or if the instruction completes (post) and the corresponding interrupt
points to the next instruction to be executed.

4.13 e500mc Interrupt Latency

Interrupt latency of the e500mc is 10 cycles or less unless a guarded load or a cache-inhibited stwex.
instruction is in the last completion queue entry (CQO).
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Chapter 5
Core Caches and Memory Subsystem

This chapter describes the caches and cache structures that are local to the e500mc as well as the e500mc’s
memory subsystem (MSS), which encompasses the caches, the Load/Store Unit (LSU), the Fetch Unit, and
the CoreNet interface (commonly called a Bus Interface Unit, or BIU).

The e500mc core contains separate 32-KB, eight-way set associative level 1 (L.1) instruction and data
caches to provide the execution units and registers rapid access to instructions and data. It also incorporates
a 128-KB unified, eight-way set associative backside L2 cache and provides support for a platform cache
implemented by the integrated device.

The LSU manages how data passes between the LSU and the memory resources, both with respect to how
data is loaded from system memory into the on-chip caches and to how data used by those instructions is
loaded and stored in the caches and system memory.

The Fetch Unit manages how instructions are passed between the memory resources and the caches and
into the instruction stream.

The BIU is the interface from the core and its caches to the rest of the integrated device utilizing the
CoreNet architecture for access to memory and devices that support transactions to addresses in real
storage space.

NOTE

In this chapter, the term ‘multiprocessor’ is used in the context of
maintaining cache coherency. These multiprocessor devices could be
processors or other devices that can access system memory, maintain their
own caches, and function as bus masters requiring cache coherency.

The terms ‘cache line’ and ‘cache block’ are used interchangeably. In
particular, cache control instructions include the term ‘cache block’ in their
names. Note that the size of a cache block is determined by the
implementation. and that on the e500mc, a cache block, or line, is 16 words.

5.1 Overview
This section lists features of the LSU, the Fetch Unit, the L1 cache, the L2 cache and CoreNet interface.
The LSU has the following features:

+ System memory accesses critical quad-word first. For data accesses, the LSU receives the critical
quad word as soon as it is available; it does not wait for all 64 bytes. That data is forwarded to the
requesting unit before being written to the cache, minimizing stalls due to cache fill latency.
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» Store queueing. Stores cannot execute speculatively and remain queued until completion logic
indicates that the store is to be committed. When the L1 cache is accessed, stores are deallocated
from the queue (regardless of whether the cache is updated). If the address is caching-inhibited, the
store passes from the queue to the BIU and into the memory subsystem.

L1 load miss queueing. On a load miss, the LSU allocates buffers and then queues a bus transaction
to read the line. The LSU processes load hits and load misses until one of the following conditions
occurs:

— There are more than nine outstanding load misses.
— The LSU tries to perform a load miss and there is no place to buffer a new cache line.

+ Store miss merging. When a caching-allowed store misses in the data cache, the store data is
written to a cache line—wide buffer. The bytes in the cache line not specified by the store are
allocated when the cache line is eventually fetched from memory. When all 64 bytes are valid, the
cache line is reloaded into the data cache. This behavior is known as store miss merging.

If a subsequent store miss hits in the buffered data, the new data is buffered along with the original
store. Any number of subsequent stores intended for that cache line can be buffered before the
corresponding data cache line is allocated.

» Data line fill buffering extends the cache for loads and caching-allowed stores. Accesses to pages
marked as cacheable may keep copies of data. Therefore, cache management instructions, such as
dcbf, are required even if the L1 data cache is disabled.

The L1 cache implementation has the following features:
» Separate 32-KB instruction and data caches (Harvard architecture)
» Eight-way set associative, nonblocking caches

» Physically addressed cache directories. The physical (real) address tag is stored in the cache
directory.

* 2-cycle access time provides 3-cycle read latency for instruction and data caches accesses;
pipelined accesses provide single-cycle throughput from caches. For details about latency issues,
see Chapter 10, “Execution Timing.”

» Instruction and data caches have 64-byte cache blocks. A cache block is the block of memory that
a coherency state describes, also referred to as a cache line.

» Four-state modified/exclusive/shared/invalid (MESI) protocol supported for the data cache. See
Section 5.5.1, “Data Cache Coherency Model.”

Both L1 caches support error detection (enabled through L1CSRO0 and L1CSR1 bits), as follows:
— Instruction cache: 1 parity bit per word of instruction, 1 bit of parity per tag

— Data cache: 1 parity bit per byte of data, 1 bit of parity per tag
See Section 5.4.4, “L1 Cache Error Detection and Correction.”

* Both caches also support error injection, which provides a way to test error recovery software by
intentionally injecting errors into the instruction and data caches. See Section 5.4.5, “Cache Error
Injection.”

» The LI instruction cache supports automatic error correction by invalidation when an access
detects a parity error. The subsequent reporting and taking of a machine check or error report
interrupt causes the instruction to be refetched after invalidation thus correcting the error.
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The L1 data cache supports automatic error correction by invalidation when operating in write
shadow mode. In write shadow mode, all writes to the L1 data cache are written through to the L2
cache. When an access detects an uncorrectable error, the cache is invalidated, and the subsequent
reporting and taking of a machine check or error report interrupt causes the instruction to be
re-executed after invalidation thus correcting the error. See Section 5.4.2, “Write Shadow Mode”.

Each cache can be independently invalidated through cache flash invalidate (CFI) control bits
located in LICSR1 and L1CSRO. See Section 5.6.3, “L1 Cache Flash Invalidation.”

Pseudo—least-recently-used (PLRU) replacement algorithm. See Section 5.8.2.1, “PLRU
Replacement.”

Support for individual line locking. See Section 5.6.4, “Instruction and Data Cache Line
Locking/Unlocking.”

Support for cache stashing to the L1 data cache from other devices in the integrated device.

Both instruction and data cache lines are filled in a single-cycle, 64 -byte write from line fill buffers
as described in Section 5.3.1, “Load/Store Unit (LSU).” Cache line fills write all 64 bytes at once,
and therefore do not occur until all data has been buffered from the CoreNet interface.

The L2 write-back, backside cache has the following features:

Dynamic Harvard architecture, merged instruction and data cache
128-KB array organized as 256 eight-way sets of 64-byte cache lines
36-bit physical address

Exclusive, modified, shared, invalid, incoherent, locked, and stale states

8-way set associativity with a streaming, 7-bit, pseudo-LRU (PLRU) algorithm with aging
replacement

Supports data- and instruction-only and way partitioned cache operation. See Section 5.9.3, “L.2
Configuration and Partitioning.”

64-byte (16-word) cache-line, coherency-granule size
Support for individual line locking. See Section 5.9.2, “L2 Line Locking.”

The L2 is a victim cache for data lines and generally inclusive for instruction lines. The L2 contains
only those cache entries that have been cast out from the L1 data cache (the L2 is not reloaded when
the data is reloaded in the L1 data cache). The L1 and L2 caches may or may not have valid copies
of the same line at the same time.

The L2 is reloaded whenever the L1 instruction cache is reloaded, but L1 instruction cache entries
remain even if they are evicted from the L2 (there is no back invalidation).

An instruction fetch does not cause eviction of modified lines if they hit in L2. Both the instruction
cache and L2 may have a copy of the line.

For a transaction with L2 cache, CT = 2, a hit in L1 remains in the L1 unless the transaction is
dcbtls or debtstls, which cause the line to be cast out of the L1 cache.See section

Locked L2 cache lines are not reloaded with a lock in L1 or vice versa.

L2 cache lookup happens only if L1 cache lookup misses in L1 for the load- or store-type
instructions. Snoop starts in L1 and L2 caches in parallel.

Two-cycle, nonpipelined data array access
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» Latency of 9 cycles after L1 access with one access every two cycles

* Configurable ECC or parity protection for data array

» Parity protection for tag array

» Support for cache stashing to the L2 data cache from other devices in the integrated device.
* ABIST support

The BIU is the core’s interface manager to CoreNet and the rest of the system. The BIU sends and receives
transactions from CoreNet and routes them to the appropriate other units in the core that require them.

The BIU is connected to the CoreNet interface which provides the interprocessor and inter-device
connection for address based transactions. CoreNet itself is not described in this document, but has the
following features:

» The CoreNet interface fabric provides interconnections among the cores, peripheral devices, and
system memory in a multicore implementation. Along with handling basic storage accesses, it
manages cache coherency and consistency. CoreNet interfaces run synchronously or
asynchronously to the processor core frequency. When asynchronous, it allows arbitrary frequency
ratios between the core the rest of the system. The synchronous or asynchronous nature of the
CoreNet interface is a function of the design of the integrated device.

» Power Architecture® ordering semantics
» Power Architecture coherency support

» Supports intervention (where a cache line is supplied directly from another cache without having
to first be written to memory)

* Non-retry based protocol
» Supports stashing to core caches from certain devices

5.2 The Cache Programming Model

This section describes aspects of the cache programming model architecture in the context of the
implementation of architecture-defined resources implemented on the e500mc.

5.2.1 Cache Identifiers

Instructions having a CT (cache target) or TH field for specifying a specific cache hierarchy such as dcbt,
dcbtst, dcbtls, dcbtstls, deble, icbtls, icblc, and icbt use the values described in Section 3.4.10.1.1, “CT
Field Values,” for cache targets.

5.2.2 Cache Stashing

Caches may be targets of cache stashing, an operation initiated by a device, specifying a hint that the
addresses should be prefetched into a target cache specified by a cache identifier set by system software
or predefined by hardware. For the L1 data cache, the identifier is defined in L1CSR2[DCSTASHID]. For
the backside L2 cache, the identifier is defined in LZCSR1[L2STASHID]. A cache identifier value of 0
indicates that the cache does not accept or perform stashing.
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Cache identifiers (stash IDs) within the entire system should be set to unique values. That is, cache IDs
should not be set such that more than one cache in the system has the same ID (other than 0, which disables
stashing for that cache). Doing so is considered a programming error and may cause a core or the system
to hang.

Like a prefetch or “touch” operation, stashing to a cache is a performance hint. The stash operation
initiated by a device can improve performance if the stashed data is prefetched into the targeted cache prior
to when the data is accessed. This avoids the latency of bringing the data into the cache at the time it is
needed by the processor. However, since stash operations are hints, depending on conditions within the
memory hierarchy and the core, stashes may not always be performed when requested. An integrated
device that initiate stashing operations to the core can optimize its usage of stashing if it is configured to
understand the amount of buffering dedicated to incoming stashing operations.

The e500mc reserves two Data Line Fill Buffers (holding a cacheline of storage each) to perform incoming
stashing operations. If both the L1 and L2 cache have stashing disabled, the Data Line Fill Buffers reserved
for stashing are freed to be used for other core linefill operations. See the reference manual for the
integrated device for information on configuring devices that perform stashes to optimize use of stashing
based on the core's resources reserved for handling stashes.

5.3 Block Diagram

The instruction and data caches are integrated with the LSU, the instruction unit, and the bus interface unit
in the memory subsystem is shown in Figure 5-1.

Instruction | | Instruction Unit Load/Store Unit B _ Data
MMU g - 1 MMU
A
I-Cache \
Tags Instruction Data »| D-Cache
queueing queueing Tags
|I-Cache 4 and and
Status | instructions buffering buffering D-Cache
8 bytes Status
I-Cache
< »| D-Cache
16 instructiong
(cache block)

64-byte line
(16 word)

Bus Interface Unit

Figure 5-1. Cache/Core Interface Unit Integration

The following sections briefly describe the LSU, the instruction unit, the BIU, and the CoreNet interface.
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5.3.1 Load/Store Unit (LSU)

The LSU executes integer and floating-point load instructions and manages transactions between the
caches and the register files (GPRs and FPRs). It provides the logic required to calculate effective
addresses, handles data alignment, and interfaces with the BIU. Write operations to the data cache can be
performed on a byte, halfword, word, or doubleword basis. The data cache is provided with a 64-byte
interface (the width of a cache block).

This section provides an overview of how the LSU coordinates traffic in the instruction pipeline with load
and store traffic with memory, ensuring that the core maintains a coherent and consistent view of data. See
Section 5.5.5, “Load/Store Operation Ordering,” for information on architectural coherency implications
of load/store operations and the LSU. Section 10.4.3, “Load/Store Execution,” describes other aspects of
the LSU and instruction scheduling.

5.3.1.1 Caching-Allowed Loads and the LSU

When free of data dependencies, cached loads execute in the LSU in a speculative manner with a
maximum throughput of one instruction per cycle and a total 3-cycle latency for integer loads. Data
returned from the cache on a load is held in a rename buffer until the completion logic commits the value
to the processor state. Cache inhibited loads that are not guarded also execute in the LSU in a speculative
manner, but the latency is longer and is based on the latency through the BIU, CoreNet, and the target
device.

5.3.1.2 Data Line Fill Buffer (DLFB)

The data line fill buffer (DLFB) is located in the LSU; there are five entries in the DLFB. DLFB entries
are used for loads, caching-allowed stores, and cache stashes targeted to the processor. If cache stashing is
enabled, two of the five entries are reserved for handling incoming cache stashes. The DLFB acts as a
mini-cache. Whenever pages marked as cacheable are accessed, the DLFB (and possibly other internal
structures) may keep copies of the data. therefore, cache management instructions, such as dcbf, may be
required even if the L1 data cache is disabled. Unlike the L1 and L2 caches, if the target of a cache inhibited
load is valid in a DLFB, that load returns the data from the DLFB and is not sent to the BIU to be accessed
from memory.

DLFBs are updated with data from cacheable stores and the rest of the cache line is obtained from reads
of that line from the L2 cache or if not in the L2 cache from CoreNet through the BIU. The DLFB merges
the stores (which represent changes to the line) and the non-stored line. When a DLFB acquires a full line
of data, the data is written to the L1 data cache.

5.3.2 Instruction Unit

The instruction unit (also called the fetch unit) interfaces with the L1 instruction cache and the BIU. As
with the data caches, instructions that miss in the instruction cache are buffered as they are fetched into
instruction line fill buffers (ILFBs). After an entire line is available, it is written into the instruction cache.
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5.3.3 Bus Interface Unit (BIU)

The bus interface unit handles all ordering and bus protocol and is the interface between the core and the
external memory and caches.

The bus interface unit performs transactions through the CoreNet interface by transferring the critical quad
word first (16 bytes). The CoreNet interface also captures snoop addresses for the L1 data cache, the L2

data cache, the DLFBs, the MMU (tlbivax), the L1 instruction cache (icbi), and the memory reservation
(load and store conditional instructions) operations.

5.4 L1 Cache Structure

The L1 instruction and data caches are each organized as 64 sets of eight blocks with 64 bytes in each cache
line. The following subsections describe the differences in the organization of the instruction and data
caches.

5.4.1 L1 Data Cache Dimensions

Figure 5-2 shows the dimensions of the L1 data cache.

64 Sets . } : L. : | :
— - — — °

WayO| AddressTag0 ||| {Staus ' ‘Words[o-15] = | ]
Way 1| AddressTag1 [ [ —Status S }Wo}rdsl[o_H 5]’ L ]
Way 2| Address Tag2 [ | |—Status T }Wo}rdsi [0—’1 5]’ F—t—t—+— 1]
Way 3| Address Tag3 | [|—{Status S }Wo}rdsl[o_H 5]‘ ———— L
Way 4| Address Tag4 | [ |—{Status o ;Wo;rds:[o_H 5]‘ " =
Way 5| Address Tag5 | [ +——{Status R {Wo{rdsi[o_H 5]‘ — it
Way 6| AddressTag6 [ [ |Status B }Wo}rd 55[0_51 5]i — it
Way 7| AddressTag7 | I~ |[Status e { jWC’deSi[O—H s]i 1 1 1 i jn

|« 16 Words/Block (Line) ——»|

Figure 5-2. L1 Data Cache Organization

Each block (line) consists of 64 bytes of data, 3 status bits (M, V, and S), 1 lock bit, 1 cast-out bit and an
address tag. For the L1 data cache, a cache block is the 64-byte cache line. Also, although it is not shown
in Figure 5-2, the data cache has 1 parity bit/byte and 1 parity bit/tag.

Each cache block contains 16 contiguous words from memory that are loaded from an 16-word boundary
(that is, physical addresses bits 3035 are zero). Cache blocks are also aligned on page boundaries.
Physical address bits PA[24:29] provide the index to select a cache set. The tags consist of physical address
bits PA[0:23]. Address translation occurs in parallel with set selection (from PA[24:29]). Lower address
bits PA[30:35] locate a byte within the selected block.
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The data cache can be accessed internally while a fill for a miss is pending (allowing hits under misses)
and the data from a hit can be used as soon as it is available. The LSU forwards the critical doubleword to
any pending load misses and allows them to finish. Later, when all the data for the miss has arrived, the
entire cache line is reloaded. In addition, subsequent misses can also be sent to the memory subsystem
before the original miss is serviced (allowing misses under misses). Up to nine misses can be pending,
however those nine misses can only occur to up to five different cache lines.

A cast-out bit indicates whether a cache line chosen for eviction should be cast out to the L2 cache. In
general a line is cast out of the L1 cache to the L2 cache when it is victimized for replacement.

5.4.2 Write Shadow Mode

Caching can be configured, by setting LICSR2[DCWS] = 1 (write shadow mode), such that all modified
data in the L1 cache is written through into the L2 cache. f LICSR2[DCWS] =0, the L2 cache is generally
modified only when an L1 cache line is evicted.

Using write shadow mode ensures that if data or parity tags are corrupted in the L1 cache, it can be
invalidated and repopulated with the valid data from the rest of the memory hierarchy.

Only certain configurations of cache operation are supported when using write shadow mode. Invalid
configurations are not guaranteed to preserve coherency for store operations performed by the processor.
Table 5-1 shows valid configurations for write shadow mode (when LICSR2[DCWS] = 1).

Table 5-1. Valid Write Shadow Mode Configurations (when L1CSR2[DCWS] = 1)

L1Data Cache L2 Cache L2 Allocation Policy Supported

Enabled Enabled " . Notes
2
(L1CSRO[CE]) | (L2CSRO[L2E]) L2CSRO[L210,L2DO] | Configuration?
Yes Yes L210=0,L.2DO=0 Yes Normal configuration for write
shadow mode.
Yes Yes L210=1,L.2DO=1 Yes Although the L210=1, this special

case is supported even though
data allocations are not performed
in the L2 cache.

No X X No L1 data cache must always be
enabled when using write shadow
mode.

Yes No X No L2 data cache must always be
enabled when using write shadow
mode.

Yes Yes L210=1,L.2D0O=0 No L2 data cache must be able to
allocate and hit on data accesses.

5.4.3 L1 Instruction Cache Organization

The L1 instruction cache is organized as shown in Figure 5-3.
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Figure 5-3. L1 Instruction Cache Organization

Each block consists of 16 instructions, 1 status bit (V), 1 lock bit, and an address tag. Also, although it is
not shown in Figure 5-3, the instruction cache has 1 parity bit/word (8 parity bits for each line) and one
parity bit/tag.

As with the data cache, each block is loaded from a 16-word boundary (that is, bits 30—35 of the physical
addresses are zero). Instruction cache blocks are also aligned on page boundaries. Also, PA[24:29]
provides the index to select a set and PA[30:33] selects an instruction within a block. The tags consist of
physical address bits PA[0:23]. Address translation occurs in parallel with set selection.

The instruction cache can be accessed internally while a fill for a miss is pending (allowing hits under
misses). Although the data cannot be used, the hit information stops a subsequent miss from requesting a
fill. In addition, subsequent misses can also be sent to the memory subsystem before the original miss is
serviced (allowing misses under misses). When a miss is actually updating the cache, subsequent accesses
are blocked for 1 cycle. (But up to four instructions being loaded into the instruction cache can be
forwarded simultaneously to the instruction unit.)

The instruction cache does not implement a full coherence protocol; a single status bit indicates whether
a cache block is valid. Each line has a single bit for locking. Victimized lines from the L1 instruction cache
are not cast-out to the L2 cache.
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5.44 L1 Cache Error Detection and Correction

The L1 instruction cache is protected by parity on both tags and data. Parity information is written into the
L1 instruction cache when a line fill occurs (anytime new instructions are written into the cache from
possibly a fetch or a cache locking operation.)

The L1 data cache is protected by parity on both tags and data. Parity information is written into the L1
data cache when a line fill occurs (anytime new data is written into the cache.)
L1 cache error detection occurs whenever:
* A load instruction hits in the L1 data cache
* An instruction fetch hits in the L1 instruction cache
* A line is cast out of the L1 data cache
Error detection is performed on the L1 instruction cache using parity for tags and parity for data. The

e500mc implements a cache tag parity bit per entry/set. Cache tag parity is checked for all cache
transactions.

L1 cache error checking is disabled by default, and can be enabled by setting LICSRO[CECE] and
L1CSRI[ICECE].
If an instruction cache data or tag parity error is detected, the following occurs:

» The instruction cache is automatically flash invalidated. Note LICSRI[ICEA] =0 and
L1CSRI[ICEDT] = 0 configure the behavior for e500mc. These are the only error actions and
detection types supported for the L1 instruction cache.

« amachine check interrupt (or an error report machine check interrupt) occurs (as described in
Section 4.9.3, “Machine Check Interrupt—IVOR1”).
If a data cache data or tag parity error is detected, the following occurs:

» If write shadow mode is configured, the data cache is automatically flash invalidated. See
Section 5.4.2, “Write Shadow Mode.”

* A machine check interrupt (or an error report machine check interrupt) occurs (as described in
Section 4.9.3, “Machine Check Interrupt—IVOR1”).

5.4.5 Cache Error Injection

Cache error injection provides a way to test error recovery software by intentionally injecting errors into
the instruction and data caches, as follows:

« If LICSRI[ICEI] is set, any instruction cache line fill has all of its parity bits inverted in the
instruction cache.

« IfL1CSRO[CEI] is set, any data line fill has errors injected as follows based on LICSRO[CEIT] as
follows:

— 0b00: A single-bit error is injected into all the bytes of the cache line which are line filled or
which are written as the result of a store operation. The parity bit on the accessed tag during a
line allocation is inverted.

— 0bO01: The value is reserved. This may cause boundedly-undefined behavior.
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— 0b10: The value is reserved. This may cause boundedly undefined behavior.

— Obl1: The value is reserved. This may cause boundedly undefined behavior.
Line fill operations to the L1 instruction cache can be created by invalidating addresses in the
cache using icbi, then causing those instructions to be fetched. Line fill operations to the L1
data cache can be created by invalidating addresses using debf then performing load operations
to those addresses. Store operations can be created by writing data to cacheable memory using
store (or store class) instructions.
Single-bit errors injected into the data array are accomplished by inverting the parity bit for
each byte.

NOTE

Error checking for the L1 instruction cache must be enabled
(L1CSRI[ICECE] = 1) when L1CSRI[ICEI] is set. Similarly for the data
cache, LICSRO[CECE] must be set if L1ICSRO[CEI] is set. LICSRO[CEII]
cannot be set (using mtspr) without setting L1CSRO[CECE].
L1CSRI1[ICEI] cannot be set without setting LICSR1[ICECE].

As described above, if a cache error is detected, a machine check interrupt occurs. Sources for cache errors
are described in Section 4.9.3, “Machine Check Interrupt—IVORI1.”

5.5 Cache Coherency Support and Memory Access Ordering

This section describes the L1 cache coherency and coherency support.

5.5.1 Data Cache Coherency Model

The L1 data cache and L2 cache supports a MESI (Modified/Exclusive/Shared/Invalid) based cache
coherency protocol for each cache line.

The MESI based protocol supports efficient and frequent sharing of data between masters.

Each 64-byte data cache block contains status that define the coherency state of the cache line. The
CoreNet interface uses this status to support coherency protocols and to direct coherency operations.
Table 5-2 describes general data cache states.

Table 5-2. Cache Line State Definitions

Name Description

Modified (M) |The line in the cache is modified with respect to main memory. It does not reside in any other coherent cache.

Exclusive (E) |The line is in the cache, and this cache has exclusive ownership of it. It is in no other coherent cache and it is
the same as main memory. This processor may subsequently modify this line without notifying other bus
masters.

Shared (S) |The addressed line is in the cache, it may be in another coherent cache, and it is the same as main memory.
It cannot be modified by any processor.

Invalid (1) The cache location does not contain valid data.

e500mc Core Reference Manual, Rev. 3

5-11 Freescale Semiconductor



Core Caches and Memory Subsystem

Every data cache block state is defined by its status. Note that in a multiprocessor system, a cache line can
exist in the exclusive state in at most one L1 data cache at a time.

The core provides full hardware support for cache coherency and ordering instructions and for TLB
management instructions.

The core broadcasts cache management instructions (dcbst, dcbstep, dcbf, debi (M=1), icbi, icbiep),
synchronization instructions (mbar - all forms, syne 0), TLB management instructions (tIbsyne, tlbivax),
and cache touch or locking instructions with CT=1.

5.5.2 Instruction Cache Coherency Model
The instruction cache supports only invalid and valid states.

The instruction cache is loaded only as a result of instruction fetching or by an Instruction Cache Block
Touch and Lock Set (icbtls) instruction. It is not snooped for general coherency with other caches;
however, it is snooped when the Instruction Cache Block Invalidate (icbi or icbiep) instruction is executed
by this processor or any other processor in the system. Instruction cache coherency must be maintained by
software and is supported by a fast hardware flash invalidation capability as described in Section 5.6.3,
“L1 Cache Flash Invalidation.” Also, the flushing requirement of modifying code from the data cache is
described in the EREF: A Programmer s Reference Manual for Freescale Power Architecture®
Processors.

5.5.3 Snoop Signaling

Hardware maintains cache coherency by snooping address transactions on the CoreNet interface. Software
enables such transactions to be made visible to other masters in the coherence domain by setting the
coherency-required bit (M) in the TLBs (WIMGE = Obxx1xx). The M bit state is sent with the address on
CoreNet transactions. If asserted, the CoreNet interface transaction should be snooped by other bus
masters.

The instruction cache is not snooped, except in the case of transactions initiated by a icbi, so coherency
must be maintained by software.

5.5.4 WIMGE Settings and Effect on Caches

All instruction and data accesses are performed under control of the WIMGE bits. This section generally
describes how WIMGE bit settings affect the behavior of the L1 and L2 caches when accesses are marked
with the “M” bit set (that is, are coherent). The detailed description of all the states and transitions are
beyond the scope of this manual. For more information about WIMGE bits and their meanings. see the
EREF': A Programmer s Reference Manual for Freescale Power Architecture® Processors.

5.5.4.1 Write-Back Stores
A write-back store is a store to a memory address that has a WIMGE setting of 0b00xxx.
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A write-back store that hits a line that is already in exclusive state is immediately stored to the line; the
state is changed to modified. If a write-back store hits a line that is already in the modified state, it is
immediately stored to the line, and the line stays as modified.

If a write-back store operation (that is, caching-allowed and not write-through) hits a line in the shared
state, the cache line is first invalidated and a read-with-intent-to-modify is issued to the BIU and CoreNet.
The line is received through the BIU and the written data is merged into the line in the DLFB. The line is
then written to the cache marked as modified. If a write-back store misses in the cache, the action is the
same as the shared case, except the line is not first invalidated (as it is not present).

5.5.4.2 Write-Through Stores
A write-through store is a store to a memory address that has a WIMGE setting of 0b10xxx.

A write-through store operation may hit an exclusive cache line. In this case, the store data is written into
the data cache and the write-through store goes to the L2, the BIU and CoreNet as a single-beat write. The
cache line stays exclusive.

A write-through store operation may hit in a shared cache line. In this case, that cache line is invalidated
from the cache, and the write-through store goes to the BIU and CoreNet as a single-beat write.

A write-through store may also hit in a cache line that is already in the modified state. This situation
normally occurs as a result of page table aliasing in which two effective addresses are mapped to the same
physical page, but with one mapped as write-through and the other mapped as write-back (that is, not
write-through). In this case, the cache line remains in its current state, the store data is written into the data
cache, and the store goes to the BIU and CoreNet as a single-beat write. Such aliasing should in general
not be used as coherency is not enforced outside of the processor that performs the aliasing.

If a copy exists in both the L1 and the L2 cache and the L2 is enabled, a data write-through store also
updates the L2 copy.

5.5.4.3 Caching-Inhibited Loads and Stores

A caching-inhibited load or store (WIMGE = 0bx1xxx) that hits in the cache presents a cache coherency
paradox and is normally considered a programming error. If a caching-inhibited load hits in the cache, the
cache data is ignored and the load is provided from the BIU as a single-beat read. If a caching-inhibited
store hits in the cache or the DLFB, the cache (or DLFB) may be altered but the store is performed on
CoreNet anyway as a single-beat write.

A caching inhibited load that hits in a DLFB is serviced out of the DLFB and is not sent to the BIU or
CoreNet and is not seen outside the processor. This is a special case of the cache coherency paradox and
can produce results not intended by software. If the aliasing of caching and caching inhibited writes must
be performed, software should ensure that all cached addresses are flushed with debf followed by sync
before executing caching-inhibited loads and stores using the aliased addresses.
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5.5.4.4 Misaligned Accesses and the Endian (E) Bit

Misaligned accesses that cross page boundaries could corrupt data if one page is big endian and the other is
little endian. When this situation occurs, the core takes a DSI and sets the BO (byte ordering) bit in the
exception syndrome register (ESR) instead of performing the accesses.

5.5.4.5 Speculative Accesses and Guarded Memory

If a memory area is marked as execute-permitted (UX/SX = 1), there is no restriction on how the core
performs instruction fetching from guarded memory and software should assume that any page that is
marked as execute-permitted generates instruction fetches even if software never attempts to execute those
addresses. This is because the fetch unit can generate fetch addresses based on mispredicted speculative
paths for which the resulting addresses would be such that they are never actually generated by software.
Note that to prevent inadvertent instruction fetching from memory, such memory should be marked as
no-execute (UX/SX = 0). Then, if the effective address of a fetched instruction is in no-execute memory,
an execute access control exception occurs, preventing the access from occurring to that address.

Speculative data accesses to memory have special consideration as well. Memory address must be marked
as guarded (G = 1) to prevent speculative load accesses to those addresses. Like speculative fetching, the
processor can generate any effective memory address as the result of a mispredicted branch (including
forming addresses on that path from index registers which may hold unknown contents at the time). Thus
to avoid inadvertent speculative references that may cause undesired results, memory that is not “well
behaved” (well-behaved memory can tolerate speculative reads without any side effects) should always be
marked as guarded (G = 1) or if there is no underlying real addresses in the system, should not be mapped
in the TLB.

The core does not perform speculative stores to guarded memory (or to any memory). However, loads from
guarded memory may be accessed speculatively if the target location is valid in the data cache.

For more information, see the EREF: A Programmers Reference Manual for Freescale Power
Architecture® Processors.

5.5.5 Load/Store Operation Ordering

Load and store operations in Power Architecture are considered to be weakly ordered. That is, certain
memory accesses can be performed in a different order than the sequential processor execution model
specifies them. While this appears extraordinarily complicated to the programmer, in fact several
restrictions placed by the architecture, EREF: A Programmer s Reference Manual for Freescale Power
Architecture® Processors, and the implementation simplify this greatly. In practice this requires that the
programmer only really be aware of the ordering of memory accesses that are used by another core or
another device and the other core or device care about the order. In general, this reduces even further to
the following three scenarios:

* The SMP case
— Code is running on more than one processor
— Data being manipulated is accessed from more than one processor.
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— Software is designed, in general, with some sort of mutual exclusion or locking mechanism
regardless of the architecture (because software running on one processor must make several
updates to data structure atomically).

The device driver case
— Code is running that controls a device through memory-mapped addresses.

— Accesses to these memory-mapped registers usually need to occur in a specific order because
the accesses have side effects (for example a store to an address causes the device to perform
some action and the order these actions are performed must be explicitly controlled in order for
the device to perform correctly).

— Addresses are usually marked as caching-inhibited and guarded because the memory is not
“well behaved.”

The processor synchronization case.

— Some registers within the processor, such as the MSR, have special synchronization
requirements associated with them to guarantee when changes which may effect memory
accesses, occur. (see Section 3.3.3, “Synchronization Requirements,” for the specific registers
and their synchronization requirements).

— Only system programmers modifying these special registers need be aware of these cases.

5.5.5.1 Architecture Ordering Requirements

Power Architecture and EREF: A Programmers Reference Manual for Freescale Power Architecture®
Processors require certain memory accesses to be ordered implicitly, as follows:

1. Allloads and stores appear to execute in-order on the same processor. That is, each memory access
a processor performs, if that memory location is not stored to by another processor or device, it
appears to be performed in order to the processor. For example, a processor executes the following
sequence:

1wz r3,0(r4)

1wz r5,100(r4)
Because there is no way for the processor to distinguish which order these loads occurred in
(because the memory is “well behaved”), the loads can be performed in any order. Similarly the
sequence

stw r3,0(r4)

stw r5,100(r4)
may also be performed out of order because the processor cannot distinguish which order the stores
are performed in. However, the sequence

stw r3,0(r4)

1wz r5,0(r4)
must be performed in order because the processor can distinguish a difference depending on
whether the store or the load is performed first.
In general this means that the processor performs memory accesses in order between any two
accesses to overlapping addresses. The core may decide that accesses overlap if they touch the
same cache line and not merely a common byte.

2. Any load or store that depends on data from a previous load or store must be performed in order.
For example, a load retrieves the address that is used in a subsequent load:
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lwz r3,0(r4d)
1wz r5,0(r3)

Because the second load’s address depends on the first load being performed and providing data,
the processor must ensure that the first load occurs before the second is attempted (and in fact must
be sure the first load has returned data before even attempting translation).

3. Guarded caching-inhibited stores must be performed in order with respect to other guarded
caching-inhibited stores and guarded caching-inhibited loads must be performed in order with
respect to other guarded caching-inhibited loads. This generally only applies to writing device
drivers that control memory mapped devices with side effects through store operations.

4. A store operation cannot be performed before a previous load operation regardless of the addresses.
That is a load is followed by a store, then the load is always performed before the store is. This is
an EREF': A Programmers Reference Manual for Freescale Power Architecture® Processors
requirement of Freescale processors. It is unlikely, but possible that other Power Architecture cores
may not require this.

5.5.5.2 Forcing Load and Store Ordering (Memory Barriers)

The implicit ordering requirements enforced by the processor handle the vast majority of all the
programming cases when accessing memory locations from a single core. Normal software should only
be concerned in ordering when the memory locations being accessed are done so in an SMP environment
or the memory locations are part of a device’s memory mapped locations. If these cases occur, then
software must place explicit memory barriers to control the order of memory accesses. A memory barrier
causes ordering between memory accesses that occur before the barrier in the instruction stream and
memory accesses that occur after the barrier in the instruction stream.

There are four memory barriers that can be used on e500mc to order memory accesses, depending on the
type of memory (the WIMGE attributes) being accessed and the level of performance desired. Memory
barriers, by definition, can slow down the processor because they prevent the processor from performing
loads and stores in their most efficient order. The barriers from strongest (that is, enforces the most
ordering between different types of accesses) to the weakest are:

» sync (or sync 0 or msync)—sync creates a barrier such that all (regardless of WIMGE attributes)
memory accesses that occur before the sync are performed before any accesses after the sync. sync
also ensures that no other instructions after the sync are initiated until the instructions before the
sync and the sync itself, have performed their operations. syne also has the most negative effect on
performance. sync can be used regardless of the memory attributes of the access and can be used
in the place of any of the other barriers. However, it should only be used when performance isn’t
an issue, or if no other barrier orders the memory accesses.

* mbar (or mbar 0)—mbar creates the same barrier sync does, however it does not restrict
instructions following mbar from being initiated. It does prevent memory accesses following the
mbar from being performed until all the memory accesses prior to the mbar have been performed.
mbar affects performance almost as much as sync does.

* mbar l—mbar 1 creates a memory barrier that is the same as the eieio instruction from the
original PowerPC architecture. It creates two different barriers:

e500mc Core Reference Manual, Rev. 3

Freescale Semiconductor 5-16



Core Caches and Memory Subsystem

— Loads and stores that are both caching-inhibited and guarded (WIMGE = 0b01x1x) as well as
stores that are write-through required (WIMGE = 0b10xxx). This is useful for the device driver
case which would be doing loads and stores to caching-inhibited memory.

— Stores that have the following attributes: not caching-inhibited, not write-through required, and
memory coherence required (WIMGE = 0b001xx). These are stores to normal cacheable
coherent memory.

mbar 1 is a better performing memory barrier than syne or mbar. For more details refer Chapter
S-Instruction Set in the “EREF: A Programmer s Reference Manual for Freescale Power
Architecture® Processors”

* Iwsync (or sync 1)—Iwsync (lightweight sync) creates a barrier for normal cacheable memory
accesses (WIMGE = 0b001xx). It orders all combinations of the loads and stores except for a store
followed by a load. This is the most efficient barrier for normal SMP programming when dealing
with multiprocessor locks and critical regions.

Iwsync is a better performing memory barrier than sync, mbar, or mbar 1.

Another method also exists for ordering all caching-inhibited loads and stores which are guarded. The
HIDO[CIGLSO] bit can be set to force all caching-inhibited loads and stores which are guarded to be
performed in order. This is not a barrier, per se, but a system attribute that causes the core to always order
these accesses. Setting this bit is a good way to deal with the device driver case over a broad range of code
if the memory accesses to the device are caching-inhibited and guarded which is normally the case. This
is likely to perform better than inserting mbar in specific places since the implementation of the e500mc
already orders all of these except for a guarded caching-inhibited store followed by a guarded
caching-inhibited load. In this case, the e500mc simply ensures that the store is performed on CoreNet
prior to attempting the load.

5.5.5.2.1 Simplified Memory Barrier Recommendations

The general simplistic recommendation for adding required barriers is as follows:

» For the device driver case, device drivers that access caching-inhibited memory, ensure that
memory is also guarded and at boot time set HIDO[CIGLSO] to 1. This should order all such
cache-inhibited guarded accesses. If there is software that deals with other types of memory
attributes (or needs to order accesses between cached and caching-inhibited memory), those

barriers must be inserted into the code at the appropriate places. In general, those barriers are mbar
0.

* For the SMP case, normally all that needs to be done is to deal with interactions between multiple
cores. This is generally already isolated into locking routines that acquire multiprocessor locks and
release multiprocessor locks. In general, all that is required to modify such routines is to:

— Insert a Iwsync barrier after the lock has been acquired, and before the first load of any data
protected by the lock. This ensures that the load of the protected data structure occurs after the
load of the lock itself. Note that Iwarx and stwex. should be used to ensure the lock is properly
acquired.

— Insert a Iwsync barrier after the last store to the protected data structure and the store that
releases the lock. This ensures that the store to the protected data structure occurs prior to the
store that releases the lock.
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Locking software and multiprocessing software may have various other types of mutual exclusion
and those should be examined with ordering semantics in mind. Power ISA 2.06 Book II Appendix
B gives programming examples for various types of shared storage accesses.

5.5.5.3

Table 5-3 displays the Power ISA and EREF: A Programmer s Reference Manual for Freescale Power
Architecture® Processors memory access ordering requirements based on the WIMG attributes and access
type. For access where the attributes differ, ordering between these types of access generally requires
mbar 0 (or sync) except that write-through required and guarded caching inhibited loads or stores may be
ordered with mbar 1. For Table 5-3, entries suggest the most efficient barrier (or may suggest more than
one). ‘Yes’ means that the given ordering is already guaranteed by the architecture and no barrier is
required. Not all possible barriers are listed and sync 0 or mbar 0 enforces all barriers.

Memory Access Ordering

Table 5-3. Architectural Memory Access Ordering

Memory Access Atrites | winGe | SgreSior | Loslond | Sreiond | Lesgsiore
Caching-inhibited and Guarded 0b01x1x Yes Yes HIDO[CIGLSOQ] Yes
mbar 1
Caching-inhibited and non Guarded 0b01x0x mbar 0 mbar 0 mbar 0 Yes
Write-through 0b10xxx mbar 1 mbar 0 mbar 0 Yes
Write-back 0b00xxx lwsync lwsync mbar 0 Yes

5.5.5.4

It may be required to order when messages are sent (which may cause interrupts on other cores) with stores
performed by the core executing msgsnd. A typical example of this is a producer stores a value in memory
and then sends a message to another core to cause an interrupt telling the receiving core that there is work
for it to do (represented by the stores performed by the sending processor). In this case, a sync 0 should be
placed between the stores and the msgsnd. this guarantees that the store is performed before the message
1s sent.

msgsnd Ordering

In all respects of memory ordering and barriers, msgsnd is ordered as if it is a cache inhibited store.

5.5.5.5

The e500mc implements lwarx and stwex. as described in the EREF: A Programmer s Reference Manual
for Freescale Power Architecture® Processors.

Atomic Memory References

The e500mc takes a data storage interrupt if the location is write-through required but does not take the
interrupt if the location is caching inhibited (i.e caching inhibited reservations are permitted). Software
should avoid all possible using reservations on storage that are caching inhibited as future cores may not
support these.

If the EA is not naturally aligned for any load and reserve or store conditional instruction, an alignment
interrupt is invoked.
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As specified in the architecture, the core requires that, for a store conditional instruction to succeed, its real
address must be to the same reservation granule as the real address of a preceding load and reserve
instruction that established the reservation. The e500mc makes reservations on behalf of aligned 64-byte
blocks of the memory address space.

If the reservation has been canceled for any reason (or the reservation does not match the real address
specified by the store conditional instruction), then the store conditional instruction fails and clears
CRO[EQ]. The reservation may be invalidated by several events. They are described in Section 3.4.9,
“Reservations.”

5.6 L1 Cache Control

This section describes how the cache control instructions and L1CSR# bits are used to control the L1
cache.

5.6.1 Cache Control Instructions

The e500mc implements the cache control instructions as described in Section 3.4.10.1, “User-Level
Cache Instructions,” and Section 3.4.11.3.1, “Supervisor-Level Cache Instruction.” Note that on the
e500mc, Data Cache Block Store (dcbst) is mapped to debf, debstep is mapped to debfep, and Instruction
Cache Touch (icbt) when CT=0 is treated as a NOP.

If the effective address cannot be translated, all cache control instructions generate TLB miss exceptions
except deba, debal, debt, dcbtep, icbt, debtst, and debtstep, which are treated as NOPs (and do not cause
DAC debug exceptions).

If a dcbt, dcbtep, dcbtst, or debtstep instruction accesses a page marked caching-inhibited, it is treated
as a NOP.

5.6.2 Enabling and Disabling the L1 Caches

The instruction and data caches are enabled and disabled with the cache enable bits, LICSRO[CE] and
L1CSRI[ICE], respectively. Disabling a cache does not cause all memory accesses to be performed as

caching inhibited. When caching-inhibited accesses are desired, the pages must be marked as caching
inhibited in the MMU pages.

When either the instruction or data cache is disabled, the cache tag state bits are ignored and the
corresponding cache is not accessed. Caches are disabled at start-up L1CSRO[CE] and L1CSRI1[ICE] = 0.
Disabling the data cache has the following effects:

* Touch instructions (debt, debtst, deble, debtls, debtstls, icble, and icbtls) targeted to the disabled
cache do not affect the cache.

* A dcbz, dcbzl, decba, or debal instruction to a disabled data cache zeros the cache line in memory,
but does not affect the cache when it is disabled.

* Cache lines are not snooped. Before the data cache is disabled it must be flushed and invalidated
to prevent coherency problems when it is enabled again.
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» Cacheable data accesses bypass the data cache, are forwarded to the memory subsystem as
caching-allowed, and proceed to the CoreNet interface. Returned data is forwarded to the
requesting execution unit, but is not loaded into any of the caches.

» Other cache management instructions do not affect the disabled cache.

NOTE

Data line fill buffering, which extends the cache for loads and
caching-allowed stores, remains enabled. Pages marked as cacheable are
accessed and may keep copies of data. therefore, cache management

instructions, such as dcbf, may be required even if the L1 data cache is
disabled.

When the instruction cache is disabled (LICSRI[ICE] = 0), instruction accesses bypass the instruction
cache. These accesses are forwarded to the memory subsystem as caching-allowed and proceed to the
CoreNet interface. When the instructions are returned, they are forwarded to the instruction unit but are
not loaded into the instruction cache.

NOTE

Instruction line fill buffering, which extends the cache for fetches, remains
enabled. Pages marked as cacheable are accessed by performing a
cache-line burst transaction even when the cache is disabled and may keep
copies of instructions in line fill buffers. therefore, cache management
instructions, such as icbi, may be required even if the L1 instruction cache
is disabled.

When an L1 cache is enabled, software must first properly flash invalidate it to prevent stale data (in the
case where it has been disabled for some period of time during operation) or unknown state (in the case of
power on reset). Software should perform the invalidation by setting the flash invalidation bit (CFI or
ICFI) in the appropriate L1 cache control and status register, and then continue to read CFI (or ICFI) until
the bit is cleared. Software should then perform an isync to ensure that instructions that may have been
prefetched prior to the cache invalidation are discarded. The setting of LICSRO[CE] or LICSRI1[ICE]
must be preceded by a sync and isync instruction, to prevent a cache from being disabled or enabled in the
middle of a data or instruction access. See Section 3.3.3, “Synchronization Requirements,” for more
information on synchronization requirements.

5.6.3 L1 Cache Flash Invalidation

The data cache can be invalidated by executing a series of dcbi instructions, or it can be flash invalidated
by setting L1CSRO[CFI]. The data cache is automatically flash invalidated if write shadow mode is
configured and any unrecoverable error (tag parity or data parity) occurs. See Section 5.4.2, “Write
Shadow Mode.”

If software can guarantee that data is not modified, the cache can be invalidated without updating system
memory; if a modified line is invalidated, the data is lost. To prevent the loss of data, modified cache lines
must be flushed, as described in Section 5.7, “L1 Data Cache Flushing.”
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Because the instruction cache never contains modified data, there is no need to flush the instruction cache
before it is invalidated.

The instruction cache can be invalidated by setting L1CSRI1[ICFI]. The L1 caches can be flash invalidated
independently. The setting of L1CSRO[CFI] and LICSR1[ICFI] must be preceded by an msync and isync,
respectively.

The instruction cache is automatically flash invalidated if any parity error (tag or data) occurs.

Valid bits in both caches are cleared automatically upon reset. If software desires to clear all valid bits in
the caches during operation, software must use the Flash Invalidation bits in LICSRO0 and L1CSR1 (CFI
bits). This causes a flash invalidation, after which the CFI bits are cleared automatically (CFI bits are not
sticky). Flash invalidate operations are local only to the processor which performs them, other processor’s
L1 caches are not affected. Software should always poll the CFI bits after setting them to determine when
the invalidation has been completed and then perform an isync. Software must use care when invalidating
the entire data cache to ensure that no modified data exists in the cache by first flushing the cache unless
software does not care about the state that any previous memory operations may have attained.

Individual instruction or data cache blocks can be invalidated by using icbi and dcbi. Note that
invalidating the caches resets lock bits (causing the locks to be lost) in the L1 caches. Also note that with
dcbi, the e500mc invalidates the cache block without pushing it out to memory if WIMGE=0bx00xx. If
WIMGE=0bx01xx, the e500mc performs a dcbf and pushes any modified state to memory before
invalidating the cache block. See Section 3.4.11.3.1, “Supervisor-Level Cache Instruction.”

Exceptions and other events that can access the L1 cache should be disabled during this time so that the
PLRU algorithm can function undisturbed.

5.6.4 Instruction and Data Cache Line Locking/Unlocking

User-mode instructions perform cache line locking/unlocking based on the complete address of the cache
line. dcbtls, debtstls, and deble are for data cache locking and unlocking and icbtls and icble are for
instruction cache locking and unlocking. For descriptions, see Section 3.4.10.2, “Cache Locking
Instructions.” The CT operand is used to indicate the cache target of the cache line locking instruction. See
Section 3.4.10.1.1, “CT Field Values.”

Lock instructions (including icbtls and icblc) are treated as loads when translated by the data TLB, and
they cause exceptions when data TLB errors or data storage interrupts occur.

The user-mode cache lock enable bit, MSR[UCLE], is used to restrict user-mode cache line locking by the
operating system. If MSR[UCLE] = 0, any cache lock instruction executed in user mode (MSR[PR] = 1)
causes a cache-locking DSI exception and sets either ESR[DLK] or ESR[ILK]. This allows the OS to
manage and track the locking/unlocking of cache lines by user-mode tasks. [f MSR[UCLE] is set, the
cache-locking instructions can be executed in user mode and do not cause a DSI for cache locking.
However, they may still cause a DSI for access violations.
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Table 5-4 shows how cache locking operations are affected by MSR[GS,PR,UCLE] and MSRP[UCLEP]
which determine whether the core is operating in hypervisor, guest-supervisor, or user (problem state
mode).

Table 5-4. Cache Locking Based on MSR[GS,PR,UCLE] and MSRP[UCLEP]

MSR[GS] MSRI[PR] MSR[UCLE] | MSRP[UCLEP] Result
0 0 — — Execute
X 1 0 — DSI, ESR[DLK or ILK] set
X 1 1 — Execute
0 — 0 Execute
1 0 — 1 Embedded hypervisor privilege

If all of the ways are locked in a cache set, an attempt to lock another line in that set results in an
overlocking situation. The new line is not placed in the cache, and either the data cache overlock bit
L1CSRO[CLO] or instruction cache overlock bit LICSR1[ICLO] is set. This does not cause an exception
condition. See Section 3.4.10.2, “Cache Locking Instructions” for a description of what conditions set
these bits.

It is acceptable to lock all ways of a cache set. A nonlocking line fill for modified data to a new address in
a completely locked cache set is not put into the cache. However it is loaded into a DWB and creates the
appropriate normal burst write transfer.

The cache-locking DSI handler must decide whether to lock a given cache line based on available cache
resources.

5.6.4.1 Effects of Other Cache Instructions on Locked Lines

Other cache management instructions have no effect on the locked state of lines unless that instruction
causes an invalidate operation on that line. If a dcbi, icbi, icbiep, dcbf, dcbfep, dcbst, or dcbstep target
a locked line, the line is invalidated and the lock is cleared.

5.6.4.2 Effects of Stores on Locked Lines

Stores can also cause line locks to be cleared. A store to a locked line which is in shared state can cause

the line to be invalidated before the store is performed, causing the lock on the line to be lost. To avoid this
scenario, if a locked line is to be stored to, it should not be used by a processor other than the one which
has it locked.

5.6.4.3

The core allows flash clearing of the instruction and data cache lock bits under software control. Each
cache’s lock bits can be independently flash cleared through the CLFC control bits in LICSRO and
L1CSRI.

Flash Clearing of Lock Bits

Lock bits in both caches are cleared automatically upon reset. If software desires to clear all lock bits in
the caches during operation, software must use the CLFC controls. Setting CLFC bits causes a flash
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invalidation of the lock bits performed in a single CPU cycle, after which the CLFC bits are automatically
cleared (CLFC bits are not sticky).

5.7 L1 Data Cache Flushing

Any modified entries in the data cache can be copied back to memory by using a cache flushing instruction
(dcbf, dcbst, dcbfep, or debstep) if the particular addresses which are required to be flushed are known
by software. However, in some cases, system software may need to force modified data in the L1 data
cache to be written to memory, and the contents of the cache as well as whether the contents are modified
is not known. This can happen when software wishes to go to a power management state in which the
cache does not retain state or a number of other conditions when system software wishes to know that the
L1 data cache contains no modified state. Forcing all the modified lines in the L1 data cache is called a
cache flush. To perform a cache flush, software must ensure that all valid lines in the cache are replaced
by performing a series of reads (loads) in which the cache lines which are read force all the lines to be
replaced. When a modified line is replaced (evicted), the processor writes any modified data in the
replaced line to the memory subsystem.

Selection of lines to replace in the L1 data cache when a line is accessed is determined by the PLRU
(pseudo least recently used) bits, whether a given line is locked, and whether the line already exists in the
L1 data cache. The cache flush algorithm must control these factors including how the PLRU bits for other
lines in the cache are affected. In effect each set must have enough accesses to cause all ways in the set to
be evicted given how the PLRU bits are set. The method for performing a cache flush is as follows:

* Block all interrupts (set MSR[EE,CE,DE,ME] = 0). This prevents an interrupt from occurring
during the flush algorithm and changing the cache state.

» Perform sync. This ensures that any stores that have completed are performed.

* Unlock any locked cache lines or ensure that the locked lines are flushed. This can be skipped if
system software does not allow cache line locking, or if it is known that no locked lines contain
modified data. Locks can be cleared by writing a 1 to LICSRO[CLFC], performing the required
synchronization and polling until the bit is clear. If system software knows the addresses of all lines
locked in the cache it could instead perform dcbf or debst type instructions to these lines.

» Ensure that all the existing lines in the cache are replaced through a series of operations which
cause new lines to be allocated which contain no modified data, or if the new lines contain modified
data, those modifications can be discarded. To accomplish this perform one of the following
methods:

— Perform a series of loads which access each cache line once within a contiguous real 52-KB
region. Software must ensure that no cache line within the 52-KB region is in the L1 data cache
in the modified state prior to performing the loads.

— Perform a series of loads or dcbz instructions which access each cache line once within a
contiguous real 48-KB scratch region. Software must ensure that no cache line within the
48-KB region is in the L1 data cache in any state prior to performing the loads or dcbz
instructions. This can be ensured by only mapping the real pages in the region in the MMU
when the cache flushing routine is performed. The pages must be marked as guarded and
cacheable.
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— Set HIDO[DCFA], perform isyne, then perform a series of loads which access each cache line
once within a contiguous real 36-KB region. Software must ensure that no cache line within
the 52-KB region is in the L1 data cache in the modified state prior to performing the loads.
Clear HIDO[DCFA], perform isync.

— Set HIDO[DCFA], perform isync, then perform a series of loads or debz instructions which
access each cache line once within a contiguous real 32-KB scratch region. Software must
ensure that no cache line within the 32-KB region is in the L1 data cache in any state prior to
performing the loads or debz instructions. This can be ensured by only mapping the real pages
in the region in the MMU when the cache flushing routine is performed. The pages must be
marked as guarded and cacheable. Clear HIDO[DCFA], perform isync.

* Ensure that all the replaced lines have been written to the memory subsystem by executing synec.

 Flash invalidate the cache by writing a 1 to LICSRO[CFI], performing the required
synchronization, then polling until the bit is cleared. This ensures that the memory region that was
used to cause line replacement in the cache is not present in the cache should the cache flush routine
get called again before the lines get naturally evicted.

* Re-enable any interrupts that were disabled at the beginning of the cache flush routine.

NOTE

Since the hypervisor can interrupt the guest in the middle of the cache flush
routine, this can cause the PLRU bits to change and perturb the flush
algorithm possibly leaving modified lines in the L1 data cache which are not
flushed. This can be handled by either having the hypervisor treat the setting
of LICSRO[CFI] to 1 by the guest as a flush and invalidate request, or by
providing an hcall service to perform the flush.

5.8 L1 Cache Operation

This section describes operations performed by the L1 instruction and data caches.

5.8.1 Cache Miss and Reload Operations

This section describes the actions taken by the L1 caches on misses for caching-allowed accesses. It also
describes what happens on cache misses for caching-inhibited accesses as well as disabled and locked L1
cache conditions.

5.8.1.1 Data Cache Fills

The core data cache blocks are filled (sometimes referred to as a cache reload) from an L2 cache or the
memory subsystem when cache misses occur for caching-allowed accesses, as described in Section 5.3.1,
“Load/Store Unit (LSU).”

When the data cache is disabled (L1CSRO[CE] = 0), cacheable data accesses bypass the data cache, are
forwarded to the memory subsystem as caching-allowed, and proceed to the CoreNet interface. Returned
data is forwarded to the requesting execution unit, but is not loaded into any of the caches. Such
transactions are kept in DLFBs. See Section 5.6.2, “Enabling and Disabling the L1 Caches.”
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Each of the eight ways of each set in the data cache can be locked (by locking all of the cache lines in the
way with the dcbtls or dcbtstls instruction). When at least one way is unlocked, misses are treated
normally and are allocated to one of the unlocked ways on a reload. If all eight ways are locked, store/load
misses proceed to the memory subsystem as normal caching-allowed accesses. In this case, the data is
forwarded to the requesting execution unit when it returns, but it is not loaded into the data cache. If the
data is modified, it creates the appropriate normal burst write transfer.

Note that caching-inhibited stores should not access any of the caches (see Section 5.5.4.3,
“Caching-Inhibited Loads and Stores,” for more information).

5.8.1.2 Instruction Cache Fills

The instruction cache provides a 128-bit interface to the instruction unit, so as many as four instructions
can be made available to the instruction unit in a single clock cycle on an instruction cache hit. On
instruction cache hits, the instructions are delivered directly from the instruction cache to the instruction
unit.

On a miss, an instruction line fill buffer is allocated and the fetch request is sent to the L2 cache. On an L2
cache hit, the data from the L2 cache is stored in the line fill buffer. When all the data in the line fill buffer
is received, the instructions in the fetch group from the fetch are transferred to the instruction unit and the
line fill buffer is written to the instruction cache, writing the entire cache line. If the L2 cache misses, the
caching-allowed access is sent to the memory subsystem and CoreNet interface. When data is returned and
all bytes in the line fill buffer are received, the instructions in the fetch group from the fetch are transferred
to the instruction unit and the line fill buffer is written to the instruction cache, writing the entire cache
line. In this case the L2 cache also receives the data returned from CoreNet and writes the cache line to the
L2 cache. When data from an instruction line fill buffer is written to the instruction cache is loaded in one
64-byte write from the line fill buffer.

The instruction cache is non-blocking, providing for hits under misses.

If the instruction cache is disabled (L1CSRI1[ICE] = 0) or all ways of the associated set are locked, the
instruction line fill buffer is not written to the instruction cache when the instruction line fill buffer has
received all the data. The instruction cache operates similarly to the data cache when all eight ways of a
set are locked.

For caching-inhibited instruction fetches the instruction unit fetches up to four instructions at a time
directly from the memory subsystem by performing a cache-line burst (although the transaction is marked
as caching-inhibited) and discards the other instructions which are not part of the fetch group. When data
is returned and all bytes in the line fill buffer are received, the instructions in the fetch group from the fetch
are transferred to the instruction unit.

Caching-inhibited fetches utilize a line fill buffer to perform their read operation to the memory subsystem,
but in general do not use the other instructions returned which were not part of the fetch group and the
other instructions are effectively discarded when the line fill buffer becomes invalid after the fetch is
complete.
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5.8.1.3 Cache Allocation on Misses

Instruction cache misses cause a new line to be allocated into the instruction cache on a PLRU basis,
provided the cache is not completely locked or disabled.

If there is a data cache miss for a caching-allowed load or store (including touch instructions) and the line
is not already going to be allocated into the data cache as a result of a previous load/store miss, the miss

causes a new line to be allocated into the data cache on a PLRU basis, provided the cache is not completely
locked or disabled. A store that is write-through or caching-inhibited that misses in the data cache does not
cause an allocation. Also, cache operations such as dcbi and debf that miss in the cache do not cause a fill.

5.8.1.4 Data Cache Block Push Operation

When an L1 cache block in the core is snooped (by another bus master) and the data hits and is modified,
the cache block must be made available to the snooping device. The push operation propagates to the
intervention buffer and then to the CoreNet interface.

5.8.2 L1 Cache Block Replacement

When a new block needs to be placed in the instruction or data cache, a line in the set is chosen to hold the
new block. If any line in the set is invalid, the lowest numbered way that is invalid is chosen. If no line is
invalid, the pseudo-least-recently-used (PLRU) replacement algorithm is used. Note that data cache
replacement selection is performed at reload time and not when the miss occurs. Instruction cache
replacement selection occurs when an instruction cache miss is first recognized.

When a cache line is accessed, it is tagged as the most-recently-used line of the set. When a miss occurs,
if all lines in the set are valid (occupied), the least-recently-used line is replaced with the new data. The
PLRU bits in the cache are updated each time a cache hit occurs based on the most-recently-used cache
line.

Modified data to be replaced is written back to main memory.

Data load or write-back store accesses that miss in the L1 data cache function similarly to L1 instruction
cache misses. They cause a new line to be allocated on a PLRU basis, provided the cache is not completely
locked or disabled.

Note that modified data in the replacement line of the data cache can cause a cast-out to occur to the
CoreNet interface. In all such cases, the cast-out is not initiated until new data is ready to be loaded.

5.8.2.1 PLRU Replacement

Block replacement is performed using a binary decision tree, PLRU algorithm. There is an identifying bit
for each cache way, L[0—7]. There are seven PLRU bits, B[0—6] for each set in the cache to determine the
line to be cast out (replacement victim). The PLRU bits are updated when a new line is allocated or
replaced and when there is a hit in the set.
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This algorithm prioritizes the replacement of invalid entries over valid ones (starting with way 0).
Otherwise, if all ways are valid, one is selected for replacement according to the PLRU bit encodings
shown in Table 5-5.

Table 5-5. L1 PLRU Replacement Way Selection

PLRU Bits

Way Selected for Replacement

BO

B1

0

B3

LO

L1

B4

L2

o| ©o| O ©

L3

—_

B2

B5

L4

L5

B6

L6

L7
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Figure 5-4 shows the decision tree used to generate the victim line in the PLRU algorithm.

O

Replace

<

/{

Replace

=0

B4 = 1

Replace
L3

Figure 5-4. PLRU Replacement Algorithm
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Replace
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Replace

6=1

During reset, the PLRU and valid bits of the L1 caches are automatically cleared to point to way L0 of

each set.

5.8.2.2

PLRU Bit Updates

Except for snoop accesses, each time a cache block is accessed, it is tagged as the most-recently-used way
of the set. For every hit in the cache or when a new block is reloaded, the PLRU bits for the set are updated
using the rules specified in Table 5-6.

Table 5-6. PLRU Bit Update Rules

New State of the PLRU Bits
Current Access
BO B1 B2 B3 B4 B5 B6
LO 1 1 No change 1 No change | Nochange | No change
L1 1 1 No change 0 No change | Nochange | No change
L2 1 0 No change | No change 1 No change | No change
L3 1 0 No change | No change 0 No change | No change
L4 0 No change 1 No change | No change 1 No change
L5 0 No change 1 No change | No change 0 No change
L6 0 No change 0 No change | Nochange | Nochange 1
L7 0 No change 0 No change | Nochange | Nochange 0

Note that only three PLRU bits are updated for any access.

The core does not replace locked lines. Lock bits are used at reload time to steer the PLRU algorithm away
from selecting locked cache lines.
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5.9 Backside L2 Cache

The L2 write-back, backside cache has the following features:

* Dynamic Harvard architecture, a unified instruction and data cache, with some characteristics of a
harvard (split instruction and data) cache

» 128-KB array organized as 256 eight-way sets of 64-byte cache lines
* 36-bit physical address
» Exclusive, modified, shared, incoherent, invalid, locked, and stale states
» 8-way set associativity with selectable replacement algorithms:
— pseudo-LRU (PLRU)
— streaming PLRU
— streaming PLRU with aging
* Supports unified-, instruction-, and data-only cache operation

— The L2 cache can be programmed as unified, instruction-only, or data-only. Data-only prevents
cache lines from being allocated on an instruction fetch miss. Instruction-only prevents cache
lines from being allocated when a line is victimized from the L1 data cache.

— Partitioning can be configured through L2ZCSRO[L2WP]. If the L2 cache is configured to
allocate lines for both data and instruction accesses that miss in the L2 cache
(L2CSRO[L2I0,L2DO0O] are both 0) the ways are partitioned to allocate new lines in ways based
on whether the allocation is for instructions or data.

— 64-byte (16-word) cache-line, coherency-granule size

See Section 5.9.3, “L2 Configuration and Partitioning.”

* Supports line locking using CT = 2. Unlike the L1 line locking, the L2 locking is persistent and
locks are not lost when a line is invalidated.

» Data side is a victim cache. The L2 contains only those cache entries that have been cast out from
the L1 data cache (the L2 is not reloaded when the data is reloaded in the L1 data cache).

» Configurable ECC or parity protection for data array
» Parity protection for tag array
* ABIST support

5.9.1 Dynamic Harvard Implementation

The L2 cache is implemented as a unified cache. That is, entries in the cache can be either instructions that
were fetched, or data resulting from L1 data cache cast outs. The L2 cache treats lines that are fetched as
instructions as incoherent in a manner similar to the way that the line would be treated if the L2 cache had
separate instruction and data caches (as for example, the L1 caches are). Instead of providing a separate
structures for instruction and data, the fetched instructions are marked with a status bit (N) to denote that
the line was loaded incoherently. Once N is set, L2 data-side transactions do not hit to it, and when a fetch
establishes an instruction line in the L2 cache that fetch access is performed non global and is not snooped
by other processors. This L2 cache implementation is called “Dynamic Harvard” since it has the properties
of a harvard cache in that the behaviors of the instruction side and the data side differ, but also has the
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properties that the instruction side and the data side both allocate out of the same pool of available lines
(that is, the cache is physically unified).

This dynamic harvard implementation allows fetches to be treated as non global and reduces the overall
snoop overhead that otherwise might be required by the system, while still allowing instructions and data
lines to allocate from the same pool of available lines in the L2 cache. This means that the amount of lines
in use by instructions or data varies according to how the processor is executing.

When N is set for any line (when it is allocated as the result of an instruction fetch), the transaction to read
that line is sent to CoreNet and marked as non global. A later data transaction does not hit to that line, and
any data transaction that targets a line with the N bit set is sent out to CoreNet to acquire coherent data.
When the data line is received by the L2 cache, if a line with the same tag exists which is valid and has the
N bit set, the line is replaced in the L2 cache by the data line and the N bit status is cleared.

To implement dynamic harvard, the L2 cache snoops icbi operations that are performed, regardless of the
core that performs them. Also operations on the processor that can potentially fill the L2 cache from the
fetch path must be propagated to the L2 cache. icbi operations do not hit to lines that are marked as
coherent (N is not set), since the operation effects the instruction cache only. Similarly, snoops for data
operations from data cache block operations, or from stores do not hit to lines that are marked as incoherent
(N is set) since the operation effects the data cache only.

Software must deal with the incoherence of instruction lines in the L2 cache in the same manner that it
does with the harvard L1 instruction cache. To perform instruction modification, data must first be pushed
from the L2 cache, and when that operation is complete, the instruction side must be invalidated using icbi.
Power Architecture already requires software to perform this operation, so no additional software is
required. If software had previously depended on the flash invalidation of the L1 instruction cache to clear
any cache fetched instructions, this method does not work when the L2 cache is enabled and caching
instruction fetches. For this reason, software is strongly encouraged to perform the architectural method
of modifying instructions using dcbf and icbi.

5.9.2 L2 Line Locking

Lines are locked in L2 cache by software using a series of “touch and lock set” instructions. The following
instructions can lock a line in L2 cache:

» Data Cache Block Touch and Lock Set—debtls (CT = 2)

» Data Cache Block Touch for Store and Lock Set—debtstls (CT = 2)

* Instruction Cache Block Touch and Lock Set—icbtls (CT = 2)
Similarly, lines are unlocked from L2 cache by software using a series of “lock clear” instructions. The
following instructions are used to clear the lock in L2 cache.

» Data Cache Block Lock Clear—dcblc (CT =2)

» Instruction Cache Block Lock Clear—icble (CT = 2)

There is no distinction between icble and deble in the L2, because both clear the lock on a line regardless
of whether the lock was previously established as an instruction side or data side lock.
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Software can clear all the locks in the L2 cache by LZCSRO[L2LFC], as described in Section 2.15, “L2
Cache Registers.” Note that this operation takes many cycles.

5.9.3 L2 Configuration and Partitioning

The L2 cache can be programmed as data-only, instruction-only, or unified, through the
L2CSRO[L2IO,L2DO] fields. Setting L2IO (without setting L2DO) indicates that L2 cache lines are
allocated only for instruction cache transactions that miss in the L2 cache (preventing lines from being
allocated for data). Data accesses do not hit in the L2 cache and are not allocated due to the setting of L2IO.
Such accesses are serviced by other parts of the memory hierarchy. Data transactions are not snooped and
any lines in the L2 cache are not coherent with respect to data transactions.

Attempting to execute data locking instructions when L210 = 1, causes LICSRO[CUL] to be set.

Setting L2DO (without setting L.210) indicates that cache lines are allocated only for data transactions. The
L2 cache continues to hit data transactions and participate in the coherence protocol. Instruction fetches
hit in the L2 cache but no new instruction fetches allocate.

Setting both L2DO and L2IO prevents any new lines from being allocated in the L2 cache, effectively
locking the entire L2 cache.

Partitioning can be configured through L2ZCSRO[L2WP]. If the L2 cache is configured to allocate lines for
both data and instruction accesses that miss in the L2 cache (L2CSRO[L2I0,L2DO] are both 0) the ways
are partitioned to allocate new lines in ways based on whether the allocation is for instructions or data.

A value of 0 allows all ways to be used for either instructions or data. A nonzero value specifies the number
of ways to be used for allocating instructions. The number of ways specified for data references is the total
number of ways minus the value in the L2ZWP field (for example, the value 1 makes one way available for
instruction allocation, and seven ways available for data allocation). See Section 2.15.2, “L2 Cache
Control and Status Register (L2CSRO0).”

5.9.4 Special Scenarios for Backside L2

This section describes special scenarios of operations in the L2 cache.

5.9.4.1 Instruction Cache Block Invalidate (icbi)

icbi operations are snooped from the CoreNet interface. If an icbi snoop hits, the line is invalidated if it is
marked as non-coherent. No special actions are performed for icbhi executed on the local processor as those
operations are also snooped when the icbi is sent out on the CoreNet interface.
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5.9.5 Errors
Table 5-7 describes when L2ZERRDET is updated based on error type.

Table 5-7. Errors in Different Arrays

L2CSRO L2ERRDIS L2ERRINTEN L2ERRDET
Error L2PE |[TMHITDIS|TPAR [MBEC|SBEC|PARDI| TMHI [TPARI|MBECCINTEN|SBECCINTEN | PARINTEN | TMHI| TPAR| MBE [SBEC|PARE
DIS [CDIS|CDIS| S |[TINTE|NTEN T |ERR|CCE|CER| RR
N RR | R
Tag 0 X X X X X X X X X X ojo0|0|0]|O
VT;;“' 1 0 X | x| x| x| 0] x X X X 110|0|0]|O
hit 1 0 X X X X 1 X X X X 1 0 0 0 0
1 1 X X X X 0 X X X X Oo(0]O0]|]O0]|O
1 1 X X X X 1 X X X X o|(0]O0]|]O0]|O
Tag 0 X X X X X X X X X X Oo(0]O0]|]O0]|O
parity error 1 X 0 X X X X 0 X X X 0|1 0010
1 X 0 X X X X 1 X X X 0| 1 o000
1 X 1 X X X X 0 X X X ojo0o|O0|0]|O
1 X 1 X X X X 1 X X X Oo(0]O0]|]O0]|O
Data parity error| 0 X X X X X X X X X ojo|lO0|0]|O
1 X X 1 1 0 X X X X 0 o|0|O0|O 1
1 X X 1 1 0 X X X X 1 Oo|0]0] 0|1
1 X X 1 1 1 X X X X X o|(0]O0]|O0]|O
Single bit ECC 0 X X X X X X X X X Oo(0]O0]|]O0]|O
error 1 X X X 0 X X X X 0 X 00| 0|1 0
1 X X X 0 X X X X 1 X 0O(0] 0|1 0
1 X X X 1 X X X X X X ojo0|O0|0]|O
Multi bit ECC 0 X X X X X X X X X X o|joO0j0O0|O0O]|O
error 1 X X 0 X X X X 0 X X 0|0 |1 0|0
1 X X 0 X X X X 1 X X 0[O 1 0| O
1 X X 1 X X X X X X X 0O(0]O0]|]O0]|O

5.9.6 Performance Monitor Events

Performance monitor events associated with the L2 cache are described in 9.11.6, “Event Selection.”
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Chapter 6
Memory Management Units (MMUs)

This chapter describes the implementation details of the e500mc MMU. The EREF: A Programmers
Reference Manual for Freescale Power Architecture® Processors provides full descriptions of the MMU
definition, and the register, instruction, and interrupt models as they are defined by the Power ISA™ and
the Freescale implementation standards.

6.1 e500mc MMU Overview

The e500mc extends the MMU design of previous €500 cores to address the additional needs presented by
the integration of multiple cores in a single integrated device. In particular, resources are defined that
support the additional privilege level required to distinguish system-wide, hypervisor level access from
user and guest supervisor privilege levels. In particular, the machine state register (MSR) problem state
(MSR[PR]) and guest state (MSR[GS]) bits together determine privilege level, as follows:

» User state (problem state): MSR[PR] =1
* Hypervisor state: MSR[PR] = 0, MSR[GS] =0
* QGuest supervisor state: MSR[PR] =0, MSR[GS] =1

Resources are defined that identify the logical partition with which a memory access is associated. In
particular, a logical partition is identified by the value in the logical partition ID register (LPIDR).

The LPIDR and MSR[GS] fields now form part of the virtual address for memory accesses and are
compared against corresponding fields in the TLBs (TLPID and TGS), as shown in Section 6.2,
“Effective-to-Real Address Translation.”

e500mc cores employ a two-level MMU architecture with separate data and instruction level 1 (L1)
MMUs in hardware backed up by a unified level 2 (L2) MMU. The L1 MMUs are completely invisible
with respect to the architecture and software programming model. The programming model for
implementing translation look-aside buffers (TLBs) provided by the architecture applies to the L2 MMU.

NOTE

Because a “bare-metal” operating system has no knowledge of explicit
embedded hypervisor resources for partitioning (such as the LPIDR register
and MSR[GS]), these values should remain unchanged from 0 values, in
effect producing the same virtual address spaces that exist without the
embedded hypervisor functionality. That is, the virtual addresses that are
produced are essentially:

0 || O || AS || PID || EA
0 Il 0 [l AS || O || EA
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In practice this produces the same effect as not having embedded
hypervisor.

MMU Features

The e500mc core has the following features:

32-bit effective address (EA) translated to 36-bit real (physical) address (using a 48-bit interim
virtual address)

Two-level MMU containing a total of six TLBs for maximizing TLB hit rates

Processor register (PID) for supporting up to 255 translation IDs at any time in the TLB
TLB entries for variable-sized, 4-Kbyte to 4-Gbyte pages and fixed-size (4-Kbyte) pages
No page table format is defined; software is free to use its own page table format.

TLBs maintained by system software through the TLB instructions and nine MMU assist MAS
registers

The Level 1 MMUs have the following features:

Two 8-entry, fully-associative TLB arrays (one for instruction accesses and one for data accesses)
supporting the eleven variable size page (VSP) page sizes shown in Section 6.2.3, “Variable-Sized
Pages.”

Two 64-entry, 4-way set-associative TLB arrays (one for instruction accesses and one for data
accesses) that support only 4-Kbyte pages

L1 MMU access occurs in parallel with L1 cache access time (address translation/L1 cache access
can be fully pipelined so one load/store can be completed on every clock).

Performs parallel L1 TLB lookups for instruction and data accesses

L1 TLB entries are a proper subset of TLB entries resident in L2 MMU (completely maintained by
the hardware).

Automatically performs invalidations to maintain consistency with L2 TLBs

The Level 2 MMU has the following features:

A 64-entry, fully-associative unified (for instruction and data accesses) L2 TLB array (TLBI)
supports the 11 VSP page sizes shown in Section 6.2.3, “Variable-Sized Pages.”

A 512-entry, 4-way set-associative unified (for instruction and data accesses) L2 TLB array
(TLBO) supports only 4-Kbyte pages.

Hardware assistance for TLB miss exceptions

TLB1 and TLBO managed by tlbre, tibwe, tlbsx, tlbsync, tlbivax, tlbilx, and mtspr instructions

Performs invalidations in TLB1 and TLBO caused by tlbivax and tlbilx instructions executed by
this core. Performs invalidations in TLB1 when MMUCSRO[L2TLB1_FI] is set and invalidations
in TLBO when MMUCSRO[L2TLBO_FI] is set. Snoops TLB1 and TLBO for tlbivax invalidations
executed by other masters.

Setting IPROT implemented in TLB1 protects critical entries from invalidation.

e500mc Core Reference Manual, Rev. 3

Freescale Semiconductor 6-2



Memory Management Units (MMUs)

6.1.2 TLB Entry Maintenance Features

The TLB entries must be loaded and maintained by the system software; this includes performing any
required table search operations in memory. The e500mc provides support for maintaining TLB entries in
software with the resources shown in Table 6-1. Section 6.5, “TLB Entry Maintenance—Details,”
describes hardware assistance features.

Table 6-1. TLB Maintenance Programming Model

Features Description Section/Page
TLB tibre TLB Read Entry instruction 6.4.1/6-15
Instructions [fpwe TLB Write Entry instruction 6.4.2/6-15
tibsx rA, rB (preferred form: tilbsx 0, rB) | TLB Search for entry instruction 6.4.3/6-16
tibilx TLB Invalidate Local instruction 6.4.4/6-17
tibivax rA, rB TLB Invalidate instruction 6.4.5/6-17
tibsync TLB synchronize invalidations 6.4.6/6-18
Registers |PID Process ID register Table 6-5
MMUCSRO MMU control and status register
MMUCFG MMU configuration register
TLBOCFG-TLB1CFG TLB configuration registers
MAS0-MAS8 MMU assist registers
(G)DEAR (Guest)Data exception address register
(G)ESR (Guest)Exception syndrome register
Exceptions/ |Instruction TLB miss Causes instruction TLB error interrupt 4.9.15/4-33
Interrupts  [Data TLB miss Causes data TLB error interrupt 4.9.14/4-32
Instruction permissions violation Causes ISl interrupt 4.9.5/4-23
Data permissions violation Causes DSl interrupt 4.9.4/4-21

6.2 Effective-to-Real Address Translation

This section discusses effective-to-real address translation.

6.2.1 Address Translation

The fetch and load/store units generate 32-bit effective addresses. The MMU translates these addresses to
36-bit real addresses (which are used for memory accesses) using an interim virtual address. In multicore
implementations, such as the e500mc, the virtual address is formed by concatenating

MSRJ[GS] || LPIDR || MSR[IS|AS] || PID || EA, as shown in Figure 6-1.

The appropriate L1 MMU (instruction or data) is checked for a matching address translation. The
instruction L1 MMU and data L1 MMU operate independently and can be accessed in parallel, so that hits
for instruction accesses and data accesses can occur in the same clock. If an L1 MMU misses, the request
for translation is forwarded to the unified (instruction and data) L2 MMU. If found, the contents of the
TLB entry are concatenated with the page offset to obtain the physical address of the requested access. On
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misses in the L1 MMU which hit in the L2 MMU, the L1 TLB entries are replaced from their L2 TLB
counterparts using a true LRU algorithm.

Instruction Data
Access Access
MSR[IS] MSR[DS]

LPIDR: I
logical partition ID matched
against TLB[TLPID]

MSRI[GS Y :
0= H%/perviso; ac[ces]s C> / 32-bit EA \
= guestacgess 8 bits 0-20 bits* 12-32 bits*
GS LPID AS PID Effective Page Number Byte Address

Effective Page Number

Four 48-bit Virtual Addresses (VAS)

L2 MMU (unified) L1 MMUs vy
64-Entry Fully-Assoc. Array (TLB1)

512-Entry 4-Way Set Assoc. Array (TLBO)

Instruction L1 MMU  Data L1 MMU
2 TLBs 2 TLBs

A

4-24 bits* ) 12-32 bits* v
36-bit Real Address Real Page Number Byte Address

* Number of bits depends on page size: 4 Kbytes—4 Gbytes

Figure 6-1. Effective-to-Real Address Translation Flow in e500mc¢

6.2.2 Address Translation Using External PID Addressing

External PID addressing provides an efficient way for system software to move data and perform cache
operations across disjunct address spaces. On the e500mc, this functionality includes the following
external PID versions of standard load, store, and cache instructions:

» Load-type instructions: Ibepx, lhepx, lwepx, ldepx, dcbtep, dcbtstep, dcbfep, dcbstep, icbiep,
and Ifdepx

» Store-type instructions: stbepx, sthepx, stwepx, stdepx, dcbzep, dcbzlep, and stfdepx

Memory translation is performed by substituting the values configured in the external PID load/store
control registers (EPLC and EPSC):

» External load context PR (EPR) replaces MSR[PR] for permissions checking.

e500mc Core Reference Manual, Rev. 3

Freescale Semiconductor 6-4



|
y

'
A

Memory Management Units (MMUs)

* The following fields replace the standard values shown in Figure 6-1 to form a virtual address (as
shown in Figure 6-2):

— External guest state (EGS) replaces MSR[GS] in forming the virtual address and is compared
against TLB[TGS] during translation. EGS is writable only in hypervisor state.

— External logical partition ID (ELPID) replaces LPIDR and is compared against TLB[TLPID].
ELPID is writable only in hypervisor state.

— External load context AS (EAS) replaces MSR[DS] and is compared against TLB[TS].
— External load context process ID (EPID) replaces PID and is compared against TLB[TID].

EPXC[ELPID]
logical partition ID matched EPXC[EPID] matched
against TLB[TLPID] against TLB[PID]
0=H perinEs%)r(%[cEc%sSs], EPSCIEAS] (store) 32-bit EA
= guest access EPLCI[EAS] (load) / N\
0-20 bits 12-32 bits
EGS| |ELPID| |EAS EPID Effective Page Number Byte Address

Figure 6-2. Forming a Virtual Address Using External PID

6.2.3 Variable-Sized Pages

The following page sizes are supported by the fully-associative TLBs that support variable-sized pages
(VSPs).

* 4 Kbyte

+ 16 Kbyte

* 64 Kbyte
* 256 Kbyte
* 1 Mbyte

* 4 Mbyte

* 16 Mbyte
* 64 Mbyte
* 256 Mbyte
* 1 Gbyte

* 4 Gbyte

6.2.3.1 Checking for TLB Entry Hit

Figure 6-3 shows the compare function used to check the MMU structures for a hit for a virtual address
that corresponds to an instruction or data access.

A hit to multiple matching TLB entries is considered a programming error. If this occurs, the TLB
generates an invalid address and TLB entries may be corrupted and a machine check or error report
interrupt is generated if HIDO[EN_L2MMU_ MHD] is set. [f HIDO[EN_L2MMU_ MHD] is not set when

the error occurs the resulting translation is undefined.
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TLB Entry
| TGS TLPID TS TID EPN

[

MSRI[IS]

or
MSRIDS]
PID ;

v_]
( } TLB entry matches VA
=? ’—l

MSR[GS] —]

EA Page Number bits —/—( )

Figure 6-3. Virtual Address and TLB-Entry Compare Process

6.2.4 Checking for Access Permissions

When a TLB entry matches with a virtual address of an access, the permission bits of the TLB entry are
compared with attribute information of the access (read/write, execute/data, user/supervisor) to see if the
access is allowed to that page. The checking of permissions on the e500mc functions as described in the
EREF': A Programmer s Reference Manual for Freescale Power Architecture® Processors.

6.3 Translation Lookaside Buffers (TLBs)

To maximize address translation performance and to provide ample flexibility for the operating system,
the e500mc implements six TLB arrays. Figure 6-4 contains a more detailed description of the 2-level
structure. Note that for an instruction access, both the [-L1VSP and the I-LITLB4K are checked in parallel
for a TLB hit. Similarly, for a data access, both the D-L1VSP and the D-L1TLB4K are checked in parallel
for a TLB hit. The instruction L1 MMU and data L1 MMU operate independently and can be accessed in
parallel, so that hits for instruction accesses and data accesses can occur in the same clock. This figure
shows the 36-bit real addresses and the 4-way set associative TLBO used in the e500mc.
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Four virtual addresses (VAs)

Instr. Access Data Access

MAS Registers

i Invisible RN
L2 MMUs (unified) I-L1VSP D-L1VSP
64-Entry Fully-Assoc. VSP Array (TLB1) |«
I-L1TLB4K D-L1TLB4K
512-Entry 4-Way Set Assoc. Array (TLBO B

424 bits 12-32 bits

Y

36-bit Real Address’

Real Page Number Byte Address

Figure 6-4. Two-Level MMU Structure

Additionally, Figure 6-4 shows that when the L2 MMU is checked for a TLB entry, both TLB1 and TLBO
are checked in parallel. It also identifies the L1 MMUs as invisible to the programming model (not
accessible to the operating system); they are managed completely by the hardware as inclusive caches of
the corresponding L2 MMU TLB entries. Conversely, the L2 MMU is managed by the TLB instructions
by way of the MAS registers.

A hit to multiple TLB entries in the L1 MMU (even if they are in separate arrays) is considered to be a
programming error. This is also the case if an access results in a hit to multiple TLB entries in the L2
MMU.

Table 6-2 lists the various TLBs and describes their characteristics.

Table 6-2. Index of TLBs

Location Name Page Sizes Supported | Associativity | Number of TLB Entries | Translations | Filled by

Instruction | I-L1VSP 11 page sizes 1 Fully associative 8 Instruction TLB1 hit

L1 MMU I-L1TLB4K 4 Kbyte 4-way 64 Instruction TLBO hit

Data D-L1VSP 11 page sizes 1 Fully associative 8 Data TLB1 hit

L1 MMU D-L1TLB4K 4 Kbyte 4-way 64 Data TLBO hit
L2 MMU TLBA 11 page sizes ' Fully associative 64 Unified (land D) | tlbwe
TLBO 4 Kbyte 4-way 512 Unified (I and D) | tlbwe

! See Section 6.2.3, “Variable-Sized Pages,” for supported page sizes.
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6.3.1 L1 TLB Arrays

As shown in Figure 6-1, there are two level 1 (L1) MMUSs. As shown in Figure 6-4 and Table 6-2, the
instruction and data L1 MMUs each implement a 8-entry, fully associative L1 VSP array and a 64-entry,
4-way set associative LITLB4K array, comprising the following L1 MMU arrays:

» Instruction L1 VSP—S-entry, fully-associative

* Instruction LITLB4K—64-entry, 4-way set-associative

» Data L1VSP—S8-entry, fully associative

» Data LITLB4K—64-entry, 4-way set-associative

As their names imply, LITLB4K arrays support fixed, 4-Kbyte pages and L1VSP arrays support eleven
page sizes. To perform a lookup for instruction accesses, both LITLB4K and L1VSP TLBs in the
instruction MMU are searched in parallel for the matching entry. Similarly, for data accesses, both
LITLB4K and L1VSP TLBs in the data MMU are searched in parallel for the matching entry. The contents
of a matching entry are concatenated with the page offset of the original EA; the bit range that is translated
is determined by the page size. The result constitutes the real (physical) address for the access.

LITLB4K TLB entries are replaced based on a true LRU algorithm. The L1VSP entries are also replaced
based on a true LRU replacement algorithm. The LRU bits are updated each time a TLB entry is accessed
for translation. However, there are other speculative accesses performed to the L1 MMUs that cause the
LRU bits to be updated. The performance of the L1 MMUs is high, even though it is not possible to predict
exactly which entry is the next to be replaced.
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Figure 6-5 shows the organization of the L1 TLBs in both the instruction and data L1 MMUss.

Virtual Addresses
L1VSP
VAs | 0 > Compare
1 > Compare
7 »| Compare
hit
L1TLB4K RPN W p—
Y |
v | N
|V | [ way 3 t
way 2
-
way 1
way 0
select || : >
i * — hit
15
MUX
Y
RPN Real Address
> (translated bits,
depending on page size)
Figure 6-5. L1 MMU TLB Organization
6.3.2 L2 TLB Arrays

The level 1 MMUs are backed up by a unified level 2 MMU that translates both instruction and data
addresses. Like each L1 MMU, the L2 MMU consists of two TLB arrays:

« TLBI: a 64-entry, fully associative array that supports eleven page sizes.
« TLBO: 512-entry, 4-way set associative array that supports only 4-Kbyte page sizes.
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Figure 6-6 shows the L2 TLBs.
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> (translated bits,
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Figure 6-6. L2 MMU TLB Organization

6.3.2.1 IPROT Invalidation Protection in TLB1

TLBI1 entries with IPROT set can never be invalidated by a tlbivax or tlbilx instruction executed by this
processor (even when the INV_ALL command is indicated), by a tlbivax instruction executed by another
processor, or by a flash invalidate initiated by writing to the MMUCSRO. IPROT can be used to protect
critical code and data such as interrupt vectors/handlers in order to guarantee that the instruction fetch of
those vectors never takes a TLB miss exception. Entries with IPROT set can be invalidated only by writing
a 0 to the valid bit of the entry (by using the MAS registers and executing the tlbwe instruction).

Only TLB entries in TLB1 can be protected from invalidation; entries in TLBO cannot because they do not
implement [PROT.

Invalidation operations are guaranteed to invalidate the entry that translates the address specified in the
operand of the tlbivax or tlbilx instruction. Other entries may also be invalidated by this operation if they
are not protected with IPROT. A precise invalidation can be performed by writing a 0 to the valid bit of a
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TLB entry. Note that successful invalidation operations in the L2 MMU also invalidate matching entries
in the L1 MMU.

6.3.2.2 Replacement Algorithms for L2 MMU Entries

The replacement algorithm for TLB1 must be implemented completely by the system software. Thus,
when an entry in TLB1 is to be replaced, the software selects which entry to replace and writes the entry
number to MASO[ESEL] before executing a tlbwe instruction.

TLBO entry replacement is also implemented by software. To assist the software with TLBO replacement,
the core provides a hint that can be used for implementing a round-robin replacement algorithm. The hint
is supplied in the appropriate MAS register fields when certain exceptions occur or a tibsx instruction finds
a valid entry. The only parameter required to select the entry to replace is the way select value for the new
entry. (The entry within the way is selected by EA[45-51].) The mechanism for the round-robin
replacement uses the following fields:

» TLBO[NV]—the next victim field within TLBO0. The next victim field is value which points to a
way in the set which should be used as the next victim if a new TLB entry is to be allocated. There
1s one next victim value for each set in TLBO.

*  MASO[NV]—the next victim field of MASO
MASO[ESEL]—selects the way to be replaced on tlbwe

Table 6-6 describes MAS register updates on various exception conditions.

Note that the system software can load any value into MASO[ESEL] and MASO[NV] prior to execution of
tlbwe, effectively overwriting this round robin replacement algorithm. In this case, the value written by
software into MASO[NV] is used as the next TLBO[NV] value on a TLB miss.

Also, note that the MASO[NV] value is indeterminate after any TLB entry invalidate operation (including
a flash invalidate). To know its value after an invalidate operation, MASO[NV] must be read explicitly.
6.3.2.2.1 Round-Robin Replacement for TLBO

The core has a 4-way set associative TLBO0, and so fully implements the round-robin scheme with a simple
2-bit counter that increments the 2-bit value of NV from the selected set of TLBO entries on each TLB miss
and loads the incremented value into MASO[NV] for use by the next tlbwe instruction. Set selection is
performed using bits from the EA that caused the TLB miss.
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tibwe (if MASO[TLBSEL] = 00)

MASO RN
[ v selects way
> ESEL | T > TLBO
1
NV < > > NV
W
’ \ 2-bit
; 1 counter
I
\ L

N 4

TLB miss ('FLB error interrupt)
if MAS4[TLBSELD] =0

Figure 6-7. Round Robin Replacement for TLBO

When tlbwe executes, MASO[ESEL] selects way 0, 1, 2, or 3 of TLBO to be loaded, and if
MASO[TLBSEL] = 0 (selecting TLB0), TLBO[NV] is loaded with the MASO[NV] value. When a TLB
miss exception causes a TLB error interrupt and if MAS4[TLBSELD] = 0, the hardware automatically
loads the current value of TLBO[NV] for the selected set into MASO[ESEL] and the incremented value of
TLBO[NV] for the selected set into MASO[NV]. This sets up MASO such that if those values are not
overwritten, the next way is selected on the next execution of tlbwe.

6.3.3 Consistency Between L1 and L2 TLBs

The contents of the L1 TLBs are always a proper subset of the TLB entries currently resident in the L2
MMU. They serve to improve performance because they have a faster access time than the larger L2 TLBs.
The relationships between the six TLBs are shown in Figure 6-8.

Three 48-bit virtual addresses (VAs)

MAS Registers L1 MMUs \ ‘invisible’

i L1 TLBs

L2 MMUs (unified) I-L1VSP D-L1VSP

|

64-Entry Fully-Assoc. VSP Array (TLB1) ‘6/ I-L1TLB4K D-L1TLB4K

—
512-Entry 4-Way Set Assoc. Array (TLBO é

4-24 bits v 12-28 (or 32) bitsy

36-bit Real Address’ Real Page Number Byte Address

Figure 6-8. L1 MMU TLB Relationships with L2 TLBs

On an L1 MMU miss, L1 MMU array entries are automatically reloaded using entries from their level 2
array equivalent. For example, if the L1 data MMU misses but there is a hit for a virtual address in TLB1,
the matching entry is automatically loaded into the data L1VSP array. Likewise, if the L1 data MMU
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misses, but there is a hit for the access in TLBO, the matching entry is automatically loaded into the data
LITLB4K array.

NOTE
Writing to LPIDR or PID causes all L1 entries to be invalidated.

Writing to EPLC or EPSC causes all data-side L1 entries to be invalidated.

Any tlbilx with T =0 or 1 that clears an L2ZMMU TLBO0/1 entry causes all
L1 TLBs to be invalidated.

NOTE

When any L2 TLB entry is written or invalidated (through any invalidation
mechanism), the corresponding entries in any L1 TLB will also be
invalidated. Changing PID, LPID, EPLC, or EPSC may cause all L1 entries
to be invalidated.

6.3.4 The G Bit (of WIMGE)

The Guarded (G) bit provides protection from bus accesses due to speculative and faultable instruction
execution. A speculative access is defined as an access caused by an instruction that is downstream from
an unresolved branch. A faultable access is defined as an access that could be cancelled due to an exception
on an uncompleted instruction.

On the e500mc, if the page for this type of access is marked with G = 0 (unguarded), this type of access
may be issued to the CoreNet interface regardless of the completion status of other instructions. [f G =1,
the access stalls if it misses in the cache until the access is known to be required by the program execution
model; that is, all previous instructions will have completed without exception and no asynchronous
interrupts occur between the time that the access is issued to CoreNet and the time that CoreNet transaction
request completes. For reads, this requires that the data be returned and the instruction is retired. For writes,
the instruction retires when the write transaction is committed to be sent to the CoreNet.

An access with G = 1 attribute that has gone out to the CoreNet interface is guaranteed to complete. That
is, after the address tenure is acknowledged on the CoreNet, the access completes, even if an asynchronous
interrupt is pending.

Note that G = 1 misaligned accesses are not guaranteed to be accessed only once. For example a load
address that crosses a page boundary where one of the parts encounters a TLB miss and the other does not,
the non-TLB miss part may occur, and the TLB miss exception may be taken. When software loads a valid
TLB entry for the part that missed, the instruction will be returned to and re-execute performing the load
operation again to both parts of the misaligned accesses.

The G bit is ignored for instruction fetches, and instructions are fetched speculatively from guarded pages.
To prevent speculative fetches from guarded pages without instructions, the page should be also designated
as no-execute (with the UX/SX page permission bits cleared).
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6.3.5 TLB Entry Field Definitions

Table 6-3 summarizes the fields of e500mc TLB entries. These fields are defined by the architecture and
described in detail in the EREF: A Programmer s Reference Manual for Freescale Power Architecture®
Processors.

Table 6-3. TLB Entry Bit Definitions

Field Comments
\Y Valid bit for entry
TS Translation address space (compared with AS bit of the current access. For external PID accesses, TS is

compared with EPLC[EAS] or EPSC[EAS].

TID[0-7] |Translation ID (compared with PID). For external PID accesses, TID is compared with EPLC[EPID] or
EPSCIEPID].

EPN[0-19] |Effective page number (compared with EA[32-51] for 4-Kbyte pages)

RPN[0-23] [Real page number: Translated address RA[28-51] for 4-Kbyte pages

SIZE[0-3] |Encoded page size. Values not shown are reserved

0000 Reserved 0110 4 Mbytes
0001 4 Kbytes 0111 16 Mbytes
0010 16 Kbytes 1000 64 Mbytes
0011 64 Kbytes 1001 256 Mbytes
0100 256 Kbytes 1010 1 Gbyte
0101 1 Mbyte 1011 4 Gbytes

PERMIS[0-5] | Supervisor execute, write, and read permission bits, and user execute, write, and read permission bits.

WIMGE |Memory/cache attributes (write-through, cache-inhibit, memory coherence required, guarded, endian)

X0, X1 Extra system attribute bits

uo-uUs User attribute bits—used only by software. These bits exist in the L2 MMU TLBs only (TLB1 and TLBO)

IPROT Invalidation protection (exists in TLB1 only)

TGS Translation guest space.
VF Virtualization fault. If set, a DSI occurs on data accesses to this page, regardless of the setting of the permission
bits.

0 Data accesses translated by this TLB entry occur normally.
1 Data accesses translated by this TLB entry always cause a Data Storage Interrupt that is directed to the
hypervisor state.

TLPID Translation logical partition ID.

6.4 TLB Instructions—Implementation

As described in the EREF: A Programmer § Reference Manual for Freescale Power Architecture®
Processors, TLBs are accessed indirectly through MMU assist (MAS) registers. Software can write and
read the MAS registers with mtspr and mfspr. MAS registers contain information related to reading and
writing a given entry within the TLBs. For example, data is read from the TLBs into the MAS registers
with a TLB Read Entry (tlbre) instruction, and data is written to the TLBs from the MAS registers with a
TLB Write Entry (tlbwe) instruction.
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The tlbre, tlbwe, tlbsx, tlbivax, tlbsyne, and tlbilx instructions are summarized in this section.

6.4.1 TLB Read Entry (tlbre) Instruction

TLB entries can be read by executing tlbre instructions. When tlbre executes, MAS registers are used to
index a specific TLB entry and upon completion of the tlbre, they contain the contents of the indexed TLB
entry.

Selection of the TLB entry to read is performed by setting MASO[TLBSEL,ESEL] and MAS2[EPN] to
indicate the entry to read. MASO[TLBSEL] selects which TLB the entry should be read from and
MAS2[EPN] selects the set of entries from which MASO[ESEL] selects an entry. For fully associative
TLBs, MAS2[EPN] is not required because MASO[ESEL] fully identifies the TLB entry.

The selected entry is then used to update the following MAS register fields: V, IPROT, TID, TS, TSIZE,
EPN, WIMGE, RPN, U0—U3, X0, X1, TLPID, TGS, VF, and permission bits. If the TLB array supports
NV, it is used to update the NV field in the MAS registers, otherwise the contents of NV field are
undefined. The update of MAS registers as a result of a tlbre instruction is summarized in Table 6-6.

tlbre can only be executed by the hypervisor. If the guest supervisor attempts a tlbre, an embedded
hypervisor privilege interrupt occurs.

Note that architecturally, if the instruction specifies a TLB entry that is not found, the results placed in
MASO-MAS3, MASS5, MAS7 and MASS are undefined. However, for e500mc, the TLBSEL, ESEL and
EPN fields always index to an existing L2 TLB entry and that indexed entry is read. Note that EPN bits
are only used to index into TLBO. In the case of TLB1, the EPN field is unused for tlbre. See the EREF:
A Programmer s Reference Manual for Freescale Power Architecture® Processors for information at the
architecture level.

6.4.1.1 Reading TLB1 and TLBO Array Entries

TLB entries are read by first writing the entry-identifying information into MASO (and MAS2 for TLBO0),
using mtspr and then executing the tlbre instruction.

To read a TLB1 entry, MASO[TLBSEL] must be = 01 and MASO[ESEL] must point to the desired entry.
To read a TLBO entry, MASO[TLBSEL] must be = 00, MASO[ESEL] must point to the desired way, and
EPN[45-51] in MAS2 must be loaded with the desired index.

6.4.2 TLB Write Entry (tlbwe)

TLB entries can be written by executing tlbwe instructions. When tlbwe executes, MAS registers are used
to index a specific TLB entry and contain the contents to be written to the indexed TLB entry. Upon
completion of tlbwe, the TLB entry contents of the MAS registers are written to the indexed TLB entry.

The TLB entry to write is determined by the MASO[TLBSEL,ESEL] and MAS2[EPN] values.
MASO[TLBSEL] selects which TLB the entry should be written to; MAS2[EPN] selects the set of entries
from which MASO[ESEL] selects an entry. For fully associative TLBs, MAS2[EPN] is not used to identify
a TLB entry since the value in MASO[ESEL] fully identifies the TLB entry. The selected entry is then
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written with following MAS fields: V, IPROT, TID, TS, TSIZE, EPN, WIMGE, RPN, U0—U3, X0, X1,
TLPID, TGS, VF, and permission bits. If the TLB array supports NV, it is written with the NV value.

The effects of updating the TLB entry are not guaranteed to be visible to the programming model until the
completion of a context synchronizing operation. Writing a TLB entry that is used by the programming
model prior to a context synchronizing operation produces undefined behavior.

e500mc does not provide a logical to real translation (LRAT) mechanism so tlbwe can only be executed
by the hypervisor regardless of the state of EPCR[DGTMI]. If the guest supervisor attempts a tibwe, an
embedded hypervisor privilege interrupt occurs.

Note that architecturally, if the instruction specifies a TLB entry that is not found, the results are undefined.
However, for e500mc, the TLBSEL, ESEL and EPN fields always index to an existing L2 TLB entry and
that indexed entry is written. Note that EPN bits are only used to index into TLBO. In the case of TLBI1,
the EPN field is unused for tlbre. See the EREF: A Programmer s Reference Manual for Freescale Power
Architecture® Processors for information at the architecture level.

6.4.2.1 Writing to the TLB1 Array

TLB1 can be written by first writing the necessary information into MASO-MAS3, MASS5, MAS7, and
MASS using mtspr and then executing the tlbwe instruction. To write an entry into TLBI,
MASO[TLBSEL] must be equal to 1, and MASO[ESEL] must point to the desired entry. When the tlbwe
instruction is executed, the TLB entry information stored in MASO-MAS3, MASS5, MAS7, and MASS is
written into the selected TLB entry in the TLB1 array.

6.4.2.2 Writing to the TLBO Array

TLBO can be written by first writing the necessary information into MASO-MAS3, MASS, MAS7, and
MASS using mtspr and then executing the tlbwe instruction. To write an entry into TLBO,
MASO[TLBSEL] must be equal to zero, MASO[ESEL] must point to the desired way, and EPN[45-51] in
MAS?2 must be loaded with the desired index. When tlbwe executes, the TLB entry information in
MASO0-MAS3, MASS, MAS7, and MASS is written into the selected entry in TLBO.

6.4.3 TLB Search (tlbsx)—Searching TLB1 and TLBO Arrays

Software can search the MMU by using tlbsx, which uses GS, LPIDR, and PID values and an AS value
from MASS5 and MASG6 instead of from LPIDR, PID, and the MSR. This allows software to search address
spaces that differ from the current address space defined by the GS, AS, LPID and PID registers. This is
useful for TLB fault handling.

To search for a TLB, software loads MAS5[SGS] with a GS value, MAS5[SLPID] with an LPID value,
MASG6[SPID] with a PID value, and MAS6[SAS] with an AS value to search for. Software then executes
tlbsx specifying the EA to search for.

If a matching, valid TLB entry is found, the MAS registers are loaded with the information from that TLB
entry as if the TLB entry were read from by executing tlbre. If the search is successful, MAS1[V] is set to
1. If the search is unsuccessful, MAS1[V] is set to 0.
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Executing tlbsx updates the MAS registers conditionally based on the success or failure of a TLB lookup
in the L2 MMU. The values placed into MAS registers differ, depending on whether the search is
successful. Section 6.7.1, “MAS Register Updates,” describes how MAS registers are updated.

NOTE

Note that rA = 0 is the preferred form for tlbsx and that some Freescale
implementations, including the e500mc, take an illegal instruction
exception program interrupt if rA!=0.

6.4.4 TLB Invalidate Local Indexed (tlbilx) Instruction

Zero, one, or more TLB entries can be invalidated through the execution of a tlbilx instruction. Note that
guest supervisor software can execute tlbilx. The behavior depends on the T operand, as follows:

« If T=0, all TLB entries for which entryy; pip = MASS5[SLPID] are invalidated.

« If T =1, all TLB entries for which entryy pjp = MAS5[SLPID] and entrytp = MAS6[SPID] are
invalidated.

« IfT=3, all TLB entries for which entry pjp = MAS5[SLPID] and entry;p = MAS6[SPID] and
(entrygpn&m) = (EA3;.51&m), where m is an appropriate mask based on page size, are invalidated.

If an entry selected for invalidation has IPROT set, that entry is not invalidated.
Unlike tlbivax, TLB entries are only invalidated on the processor which executes tlbilx.

NOTES

tlbilx is the preferred way of performing TLB invalidations, especially for
operating systems running as a guest to the hypervisor since the
invalidations are partitioned and do not require hypervisor privilege.

The preferred form of tlbilx has rA = 0. Forms where rA != 0 takes an
illegal instruction exception on some Freescale processors.

Hypervisor should always set MASS5[SLPID] to LPIDR when dispatching
to a guest.

Executing tlbilx with T =0 or T = 1 may take many cycles to perform.
Software should only issue these operations when an LPID or a PID value
is reused or taken out of use.

6.4.5 TLB Invalidate (tlbivax) Instruction

The tlbivax instruction invalidates any TLB entry that corresponds to the virtual addresses calculated by
the instruction. This includes entries in the executing processor and TLBs on other processors and devices
throughout the coherence domain of the processor executing tlbivax.

EA[60] selects the TLB array to which the invalidation is to occur. EA[59] is ignored, but software should
set it to 0.

If EA[61] (IA field) is set, all TLB entries in the designated TLB array are invalidated, regardless of
partition, except for TLB entries with the IPROT attribute set to 1.
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If EA[61] is 0, invalidation is partitioned and only TLB entries whose EPN field matches the EA[0:51]
and whose TLPID field matches the MAS5[SLPID] and whose TGS field matches MAS5[SGS] of the
processor executing the tlbivax instruction are invalidated. Other TLB entries may be invalidated by the
implementation, but in no case will any TLB entries (including ones that match the invalidation criteria)
with the [PROT attribute set be invalidated.

Software should also set MAS6[SPID] and MAS6[SAS] to further identify the entry which is to be
invalidated although the e500mc does not use these values in the comparison (and will thus invalidate
entries regardless of the content of their TID and TS fields). If portability of software to future
implementations is desired, software should not assume that any TLB entry will be invalidated except the
entry corresponding to the EA, MASS5[SLPID], MAS5[SGS], MAS6[SPID], and MAS6[SAS] as future
implementations may invalidate to the stricter MAS6[SPID] and MAS6[SAS] criteria.

Because the virtual address can be much larger than the physical address, a subset of the full virtual address
is broadcast that fits within the space of the implemented physical addressing mode.

Because the tlbivax does not compare PID or AS values, one tlbivax can invalidate multiple entries in a
targeted TLB. A tlbivax targeting TLBO can invalidate up to all four ways, and up to all four ways within
an LITLB4K index. A tlbivax targeting TLB1 can invalidate up to all 64 entries in the array, or up to all
8 entries of the L1VSPs (instruction and data). Section 6.3.2.1, “IPROT Invalidation Protection in TLB1,”
describes how to protect TLB1 entries from this type of invalidation.

The tlbivax instruction invalidates all matching entries in the instruction and data L1 TLBs
simultaneously. Also, the core always snoops TLB invalidate transactions and invalidates matching TLB
entries accordingly.

NOTE

Note that rA = 0 is the preferred form for tlbivax and that some Freescale

implementations take an illegal instruction exception program interrupt if
rA!=0.

6.4.5.1 TLB Selection and Invalidate All Address tlbivax Encodings

Because only a subset of the virtual address is broadcast, extra information about the targeted TLB entries
is encoded in two of the lower EA bits calculated by tlbivax.

* Bit 60 is interpreted as the TLBSEL field, which indicates whether TLB1 or TLBO is targeted.
TLBSEL prevents unwanted invalidations of large pages in TLB1 when a tlbivax targets TLBO.

» Bit61 is interpreted as the INV_ALL command. Setting bit 61 it indicates that the operation should
invalidate all entries of either TLB1 or TLBO as indicated by the TLBSEL field, and invalidate all
corresponding L1 TLB entries.

6.4.6 TLB Synchronize (tlbsync) Instruction

The tlbsync instruction causes a TLBSYNC transaction on the CoreNet interface. This instruction
effectively synchronizes the invalidation of TLB entries; tlbsync does not complete until all memory
accesses caused by instructions issued before an earlier tIbivax instruction have completed.
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NOTE

Software must ensure that only one tlbsync operation is active at a given
time. A second tlbsync issued (from any core in the coherence domain)
before the first one has completed, can cause processors to hang. Software
should make sure the tlbsync and its associated synchronization is
contained with a mutual exclusion lock that all processor must acquire
before executing tlbsync.

6.5 TLB Entry Maintenance—Details

TLB entries must be loaded and maintained by the system software, including performing the required
table search operations in memory. The e500mc provides some hardware assistance for these software
tasks. Note that the system software cannot directly access the L1 TLBs, and the L1 TLBs are completely
and automatically maintained in hardware as a subset of the contents of the L2 TLBs.

In addition to the resources described in Table 6-1, hardware assists TLB entries maintenance as follows:

* Automatic loading of MASO-MAS2 and MASG6 based on the default values in MAS4 and other
context when a TLB miss exceptions. This automatically generates most fields of the required TLB
entry on a miss. Thus software should load MAS4 with likely values to be used in the event of a
TLB miss.

* Automatic loading of the data exception address register (DEAR or GDEAR) with the EA of the
load, store, or cache management instruction that caused an alignment, data TLB miss (data TLB
error interrupt), or permissions violation (DSI interrupt).

* Automatic loading into SRRO of the EA of the instruction that causes a TLB miss exception or a
data storage interrupt.

» Automatic updates of the next victim (NV) field and MASO[ESEL] fields for TLBO entry
replacement on TLB misses (TLB error interrupts); this occurs if TLBSELD = 0. See
Section 6.3.2.2, “Replacement Algorithms for L2 MMU Entries.”

*  When tlbwe executes, the information for the selected victim is read from the selected L2 TLB
(TLB1 or TLBO). The victim’s EPN and TS are sent to both L1 MMU s to provide
back-invalidation. Thus if the selected victim in the L2 MMU also resides in an L1 MMU, it is
invalidated (or victimized) in the L1 MMU. This forces inclusion in the TLB hierarchy.
Additionally, the new TLB entry contained in MAS0-MAS3, MAS7, and MASS is written into the
selected TLB.

Note that although tlbwe loads an L2 TLB entry, it does not load an L1 TLB entry. L1 arrays are loaded
with new entries (automatically by the hardware) only when an access misses in the L1 array, but hits in a
corresponding L2 array.

See Section 6.7.1, “MAS Register Updates,” for a complete description of automatic fields loaded into the
MAS registers on execution of TLB instructions and for various exception conditions.

The EREF': A Programmer s Reference Manual for Freescale Power Architecture® Processors provides
more information on some actions taken on MMU exceptions. The following subsections provide
supplementary information that applies for the e500mc.
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6.5.1 TLB Interrupt Routines

When the MMU s report an exception, all instructions dispatched before the exception are allowed to
complete. The interrupt is acknowledged and MASO-MAS2 and MASG6 are loaded as described in
Section 6.7.1, “MAS Register Updates.”

Most TLB miss, DSI, and ISI handlers must first save the values of enough GPRs for the handler’s use.
The handler should then perform an mfer to copy the CR data into one of the GPRs. Before exiting the
handler, an mterf must restore the CR before the original GPR data must be restored.

PID must also be restored (if modified) before exiting the handler. Note that PID register updates must be
followed by an isync. This isync instruction must reside in an instruction page that is valid before the
changes are made to the PID.

6.5.1.1 Permissions Violations (ISI, DSI) Interrupt Handlers

On a DSI or ISI, software must load the MAS registers appropriately if it wishes to update the TLB entry
associated with the error. In general, software will ensure the appropriate PID and AS values are in MAS6
and can then execute a tlbsx using the value from SRRO if it is an ISI or the value from (G)DEAR if it is
a DSI.

6.6 TLB States after Reset

During reset, all L1 and L2 MMU TLB entries are flash invalidated. Then entry 0 of TLBI is loaded with
the values shown in Table 6-4. Note that only the valid bits for other TLB entries are cleared; other fields
are not set to a known state so software must ensure that all fields of an entry are initialized appropriately
through the MAS registers before it is used for translation.

NOTE

This default TLB entry translates the first instruction fetch out of reset (at
effective address OXFFFF_FFFC). This instruction should be a branch to the
beginning of this page. Because this page is only 4 Kbytes, the initial code
in this page needs to set up more valid TLB entries (and pages) so the
program can branch into other pages for booting the operating system. In
particular, the interrupt vector area and the pages that contain the interrupt
handlers should be set up so exceptions can be handled early in the booting

process.
Table 6-4. TLB1 Entry 0 Values after Reset
Field Reset Value Comments
\Y 1 Entry is valid
TS 0 Address space 0
TGS 0 Hypervisor address space
TID[0-7] 0 TID value for shared (global) page
TLPID 0 TLPID value for hypervisor page
TID[0-7] 0x00 TID value for shared (global) page
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Table 6-4. TLB1 Entry 0 Values after Reset (continued)

Field Reset Value Comments
EPN[32-51] OxFFFFF Address of last 4-Kbyte page in address space
RPN[34-51] 0x3FFFF Lower 18 bits of RPN

RPN[28-33] SoC supplied Upper 6 bits of real address space. These bits are supplied to the core from the SoC. See
the reference manual for the integrated device.

SIZE[0-3] 0b0001 4-Kbyte page size
SX/SR/SW Ob111 Full supervisor mode access allowed
UX/UR/UW 0b000 No user mode access allowed
WIMGE 0b01000 Caching-inhibited, noncoherent, not guarded, big-endian
X0-X1 0b00 Reserved system attributes
uo-u3 0b0000 User attribute bits
IPROT 1 Page is protected from invalidation
VF 0 Page is not a virtualization page

6.7 MMU Registers

Table 6-5 provides cross-references to sections with more detailed bit descriptions for the e500mc MMU
registers. The EREF: A Programmer s Reference Manual for Freescale Power Architecture® Processors
lists the architecture definitions for these registers.

Table 6-5. Registers Used for MMU Functions

Registers Section/Page
Process ID (PID) 2.16.2/2-50
Logical Process ID (LPIDR) 2.16.1/2-49
MMU control and status register (MMUCSRO) 2.16.3/2-50
MMU configuration register (MMUCFG) 2.16.4/2-51
TLB configuration registers (TLBOCFG-TLB1CFG) 2.16.5/2-51
MMU assist registers (MASO-MASS) 2.16.6/2-52
Data exception address register (DEAR/GDEAR) 2.9.2/2-17

6.7.1 MAS Register Updates
Table 6-6 summarizes how MAS register are updated by hardware for each stimulus. The table can be
interpreted as follows:
» A field name refers to a MAS register field.
» PID, MSR, EPLC, and EPSC refer to their respective registers.
* EA refers to the effective address used for the memory access which caused a TLB error (miss).
« TLBO[NV] refers to the next victim value for the set selected by EA stored in TLBO.
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* The TLB entry specified by TLBSEL and ESEL is referred to as TLBO (if the value comes only
from TLBO), TLBI (if the value comes only from TLB1), or TLB if the value can come from the
selected TLB array and the field is stored the same regardless of which array it is in.

Table 6-6. MMU Assist Register Field Updates

. Inst TLB Error . .
MAS Field Data TLB Error tibsx Hit tibsx Miss tibre
MASO
TLBSEL |TLBSELD if TLBO hit TLBSELD —
0
else
1
ESEL if TLBSELD =0 if TLBSEL =0 if TLBSELD =0 —
0b0000 Il TLBO[NV] | 0b0000 Il (way that hit) 0b0000 Il TLBO[NV]
else else else
0b000000 (entry that hit) 0b000000
NV if TLBSELD =0 if TLBSEL =0 if TLBSELD =0 if TLBSEL =0
mod(TLBO[NV]+1,4)| TLBO[NV] mod(TLBO[NV]+1,4) | TLBO[NV]
else else else else
0 0 0 0
MASH1
IPROT |0 If TLB1 hit 0 If TLB1 hit
TLB1[IPROT] TLB1[IPROT]
else else
0 0
TID if ext PID load TLB[TID] SPID TLB[TID]
EPLCI[EPID]
elseif ext PID store
EPSCIEPID]
else
PID
TSIZE |TSIZED if TLB1 hit TSIZED if TLB1 hit
TLB1[TSIZE] TLB1[TSIZE]
else else
1 1
TS if Data TLB Error TLB[TS] SAS TLB[TS]
if ext PID load
EPLCI[EAS]
elseif ext PID store
EPSCI[EAS]
else
MSR[DS]
else
MSRJIS]
\ 1 1 0 TLB[V]
MAS2
WIMGE | WIMGED TLB[WIMGE] WIMGED TLB[WIMGE]
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Table 6-6. MMU Assist Register Field Updates (continued)

Inst TLB Error

MAS Field Data TLB Error tibsx Hit tibsx Miss tibre
X0, X1 X0D, X1D TLB[X0, X1] X0D, X1D TLB[X0, X1]
EPN[32:51] |EA[32:51] of access |if TLBSEL =0 EA[32:51] if TLBSEL =0
TLB[EPN[32:44]] I| EPN[45:51] TLB[EPN[32:44]] Il EPN[45:51]
else else
TLB[EPN[32:51]] TLB[EPN[32:51]]
MAS3
UR,SR,UW, | Zeros TLB[UR,SR,UW,SW,UX,SX] Zeros TLB[UR,SR,UW,SW,UX,SX]
SW,UX,SX
U0-U3 |Zeros TLB[U0-U3] Zeros TLB[U0-U3]
RPN[32:51] | Zeros TLB[RPN[32:51]] Zeros TLB[RPN[32:51]]
MAS4
WIMGED — — — —
WIMGED, — — — —
X0D,X1D,
TIDSELD,
TLBSELD,
TSIZED
MAS5
SGS — — — —
SLPID — — — —
MAS6
SAS if Data TLB Error — — —
if ext PID load
EPLCI[EAS]
elseif ext PID store
EPSCI[EAS]
else
MSR[DS]
else
MSRJIS]
SPID if ext PID load — — —
EPLCIEPID]
elseif ext PID store
EPSCIEPID]
else
PID
MAS?7 (if HIDO[EN_MAS7_UPDATE] = 1)
RPN[28:31] | Zeros TLB[RPN[28:31]] Zeros TLB[RPN[28:31]]
MASS8
TGS — TLB[TGS] — TLB[TGS]
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Table 6-6. MMU Assist Register Field Updates (continued)

. Inst TLB Error . .
MAS Field Data TLB Error tibsx Hit tibsx Miss tibre
VF — TLB[VF] — TLB[VF]
TLPID — TLB[TLPID] — TLB[TLPID]
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Chapter 7
Timer Facilities

This chapter describes specific implementation details of the e500mc implementation of
architecture-defined timer facilities. These resources, which include the time base (TB), alternate time
base (ATB), decrementer (DEC), fixed-interval timer (FIT), and watchdog timer, are described in detail in
the EREF: A Programmers Reference Manual for Freescale Power Architecture® Processors.

7.1

Timer Facilities

The TB, DEC, FIT, ATB, and watchdog timer provide timing functions for the system. All of these must
be initialized during start-up.

The TB provides a long-period counter driven by a frequency that is implementation dependent.

The decrementer, a counter that is updated at the same rate as the TB, provides a means of signaling
an exception after a specified amount of time has elapsed unless one of the following occurs:

— DEC is altered by software in the interim
— The TB update frequency changes
The DEC is typically used as a general-purpose software timer.

The clock source for the TB and the DEC is driven by the integrated device and is normally
selectable to be a ratio of some integrated device clock frequency, or driven from a clock source
external to the integrated device (that is, customer supplied). See the reference manual of the
integrated device for details.

The fixed-interval timer is essentially a selected bit of the TB, which provides a means of signaling
an exception whenever the selected bit transitions from 0 to 1, in a repetitive fashion. The
fixed-interval timer is typically used to trigger periodic system maintenance functions. Software
may select any bit in the TB to serve as the fixed-interval timer.

The ATB provides a 64-bit timer that cannot be written, which increments at an implementation
dependent frequency. For the e500mc, the ATB frequency is the same as the core frequency which
makes the ATB useful for measuring elapsed time in core clocks.

The watchdog timer is also a selected bit of the TB, which provides a means of signalling a critical
class exception whenever the selected bit transitions from 0 to 1. In addition, if software does not
respond in time to the initial exception (by clearing the associated status bits in the TSR before the
next expiration of the watchdog timer interval), then a watchdog timer-generated processor reset
may result, if so enabled. The watchdog timer is typically used to provide a system error recovery
function. Software may select any bit in the TB to serve as the watchdog timer.
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The relationship of these timer facilities (except for the ATB) to each other is shown in Figure 7-1.

7.2

1 32 63 32 63 1
: TBU TBL 0 Timer Clock
1 ! (Time Base Clock)
L j B D core_tbclk
Watchdog timer events based on one of the TB bits .
selected by TCR[WPEXT] concatenated with TCR[WP] .
(WPEXTIIWP). .
H
Fixed-interval timer events based on one of TB bits selected <
by TCR[FPEXT] concatenated with TCR[FP] (FPEXTIIFP).
<
(Decrementer)
DEC —
Decrementer event = 1/0 detect -] Auto-reload
32 63
DECAR

Figure 7-1. Relationship of Timer Facilities to Time Base

Timer Registers

This section describes registers used by the timer facilities.

7.3

Timer control register (TCR). Provides control information for the on-chip timer of the core
complex. The TCR controls decrementer, fixed-interval timer, and watchdog timer options.

Section 2.8.1, “Timer Control Register (TCR),” describes the TCR in detail.

Timer status register (TSR). Contains status on timer events and the most recent watchdog
timer-initiated processor reset. Section 2.8.2, “Timer Status Register (TSR),” describes the TSR in
detail.

Decrementer register (DEC). DEC contents can be read into bits 32—63 of a GPR using mfspr,
clearing bits 0—31. GPR contents can be written to the decrementer using mtspr. See Section 2.8.4,
“Decrementer Register (DEC),” for more information.

Decrementer auto-reload register (DECAR). Supports the auto-reload feature of the decrementer.
The DECAR contents cannot be read. See Section 2.8.5, “Decrementer Auto-Reload Register
(DECAR),” for more information.

Watchdog Timer Implementation

When the watchdog timer expires in such a manner as requiring a reset, the core does not perform the reset.
Instead the core output signals core_wrs[0:1] to reflect the value of TSR[WRS]. The intention is to signal
the system that a watchdog reset event has occurred. The system can then implement a reset strategy. In
general, the default strategy will normally be to reset the core, however, leaving the policy decision up to
the integrated device allows for other strategies to be optionally implemented. See the reference manual
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for the integrated device for details on what occurs on a watchdog timer expiration that should result in
reset.

7.4 Performance Monitor Time Base Event

The e500mc provides the ability to count transitions of the TBL bit selected by PMGCO[TBSEL]. This
count is enabled by setting PMGCO[TBEE]. For specific information, see Chapter 9, “Debug and
Performance Monitor Facilities.”
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Chapter 8
Power Management

This chapter describes the power management facilities as they are implemented on the e500mc core. The
scope of this chapter is limited to the features of the e500mc only. Additional power management
capabilities associated with a device that integrates this core (referenced as the integrated device
throughout the chapter) are documented in the integrated device’s reference manual.

8.1 Overview

A complete power management scheme for a system using the e500mc requires the support of the
integrated device. The programming model and control of power management states for the core is
provided by the integrated device. With the exception of the wait instruction, all other power management
states are achieved through registers provided by the integrated device.

Power management consists of separate states, shown in Table 8-1 which correspond to power
management states documented in the integrated device reference manual. These states map directly to
core activity states, shown in Table 8-2, which describe more of the state machine of how the core
transitions between states. These transitions are driven by power management signals, shown in Table 8-3,
to the e500mc from the integrated device. In general, software does not need to concern itself about core
activity states or the power management signals since the transitions are handled by signals from the
integrate

8.2 e500mc and Integrated Device Power Management States

The core provides four different power management states in addition to normal operation. These states
are called wait, doze, nap, and sleep. The doze, nap, and sleep states are controlled through integrated
device registers and cause the core to transition to different activity states (pm_halted, pm_stopped) while
the wait state is initiated and controlled solely by the core. Power management states are described in
Table 8-1.
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Table 8-1. e500mc Power Management States

State

Description

wait

The core stops fetching and execution of instructions. All core clocks are active. Timebase continues to
increment and timer functions are active. All state is retained and snooping activity for the caches and other
broadcast CoreNet operations such as msgsnd and tlbivax are still active. The wait state is entered when the
core executes a wait instruction. The wait state is terminated and normal operation resumes when any
asynchronous interrupt is ready to be taken by the core. When the wait state terminates, the core will take the
interrupt, and the save/restore register indicating the address to return to after the interrupt is processed will point
to the instruction following the wait instruction. Note that an external interrupt that is pending, but is not enabled
by the core, will not cause the wait state to be terminated. The wait state is solely initiated by the core and as
such does not participate in the protocol between the integrated device and the core with respect to pm_halted
and pm_stopped core activity states.

Because state is retained in the caches and core registers, and the caches continue to participate in snooping
activities, software does not need to perform any specific actions prior to entering the wait state to ensure that
coherent state is maintained.

doze

The doze state provides a similar level of power savings as the wait state, but is controlled by the integrated
device and will terminate when an external asynchronous interrupt is pending, even if the core does not have
that interrupt enabled. The core stops fetching and execution of instructions. All core clocks are active. Timebase
continues to increment and timer functions are active. All state is retained and snooping activity for the caches
and other broadcast CoreNet operations such as msgsnd and tlbivax are still active. The doze state is entered
when the integrated device is programmed to signal the core to enter the doze state. To enter the doze state, the
integrated device signals the core to enter the pm_halted activity state.

The doze state is terminated and normal operation resumes when an asynchronous external interrupt to be
signalled by the integrated device is pending. The doze state may also be terminated when one of the following
internally generated asynchronous interrupts is pending: decrementer, fixed interval timer, watchdog timer,
machine check, performance monitor, processor doorbell, processor doorbell critical, guest processor doorbell,
guest processor doorbell critical, and guest processor doorbell machine check. When the doze state terminates
the integrated device signals the core to exit the pm_halted activity state. The core resumes fetching and
executing instructions from the point at which it stopped executing instructions. If the interrupt condition which
caused the core to exit the doze state is enabled and the interrupt is still pending, the interrupt will immediately
be taken and the save/restore register indicating the address to return to after the interrupt is processed will point
to the instruction which would have executed next after the core entered the pm_halted activity state.

Because state is retained in the caches and core registers, and the caches continue to participate in snooping
activities, software does not need to perform any specific actions prior to entering the doze state to ensure that
coherent state is maintained.
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Table 8-1. e500mc Power Management States (continued)

State Description

nap The core stops fetching and execution of instructions. Core clocks are turned off by the integrated device, except
for the timebase. The core retains all its state, however with clocks off the core will not receive and process
transactions from CoreNet. Operations such as snoops, acceptance of messages from a msgsnd operation, and
TLB invalidations from tlbivax operations will not be seen by the core and will be lost with respect to the core.
The nap state is entered when the integrated device is programmed to signal the core to enter the nap state. To
enter the nap state, the integrated device signals the core to enter the pm_halted activity state and then signals
the core to enter the pm_stopped state.

The nap state is terminated and normal operation resumes when an asynchronous external interrupt to be
signalled by the integrated device is pending. The nap state may also be terminated when one of the following
internally generated asynchronous interrupts is pending: decrementer, fixed interval timer, watchdog timer,
machine check, and performance monitor. When the nap state terminates the integrated device signals the core
to transition from the pm_stopped activity state to the pm_halted activity state, then exits the core_halted activity
state. The core resumes fetching and executing instructions from the point at which it stopped executing
instructions. If the interrupt condition which caused the core to exit the nap state is enabled and the interrupt is
still pending, the interrupt willimmediately be taken and the save/restore register indicating the address to return
to after the interrupt is processed will point to the instruction which would have executed next after the core
entered the pm_halted activity state.

Because state is retained in the caches and core registers, but the caches no longer continue to participate in
snooping activities, software should always flush, then invalidate the caches prior to initiating nap state to ensure
that any modified data is written out to backing store. Upon exit from nap state, software must update any TLB
entries that may have changed due to invalidations that were missed while the core was in the pm_stopped
activity state. In general, this will require the flushing of any dynamic TLB entries and reloading them from the
software page table. Because the core must flush its caches immediately prior to entering the nap state, the nap
state will generally only be initiated by writing the appropriate integrated device registers by the specific core
which will enter the nap state (that is, a core will generally nap itself, not another core).

sleep The sleep state is the same as the nap state, except that the timebase functions are also turned off.

All software activities required of the nap state are also required by the sleep state. In addition, since the
timebase is also turned off during sleep, upon exit from sleep state, software will have to reload the timebase
from some source external to the core. During sleep, the core will not wake from internally generated
asynchronous interrupts because the core is not processing any events that might cause a wakeup condition to
be noted.

The notion of nap, doze, and sleep modes (or states) pertains to, and are defined by, the integrated device
as awhole. As shown in Figure 8-1, an integrated device may define the terms nap, doze, and sleep to mean
different things. However, the integrated device controls the core power management by requesting the
core to enter the core activity states pm_halted, pm_stopped, and by manipulating the timebase enable
(tben) signal.
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Figure 8-1. Core Activity State Diagram
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In addition to the power-management states, dynamic power management automatically stops clocking
individual internal functional units whenever they are idle.

Table 8-2 describes the core activity states.
Table 8-2. Core Activity States

State Descriptions

full_on Default. All internal units are operating at the full clock speed defined at power-up. Dynamic power management
(default) automatically stops clocking individual internal functional units that are idle.

pm_halted |Initiated by asserting the haltinput. The e500mc responds by stopping instruction execution. It then it asserts the
halted output to indicate that it is in the core_halted state. Core clocks continue running, and snooping continues
to maintain cache coherency. As Figure 8-1 shows, the e500mc is in pm_halted state when the integrated device
is in doze state.

The following occur once the core is in core_halted state:

* Suspend instruction fetching.

e Complete all previously fetched instructions and associated data transactions.

pm_stopped |Initiated when sfop is asserted to the core while it is in pm_halted state. The core responds by inhibiting clock
distribution to most of its functional units (after the CoreNet interface idles), and then asserting the stopped
output.

tben Disabling the timebase facilities. Additional power reduction is achieved by negating the time base enable (tben)
input, which stops timebase operations. Note that tben controls the timebase in all power management states.
Timer operation is independent of power management except for software considerations required for processing
timer interrupts that occur during pm_stopped state. For example, if the timer facility is stopped, software
ordinarily uses an external time reference to update the various timing counters upon restart.

8.3 Power Management Signals

Table 8-3 summarizes the power management signals of the e5S00mc. Power management signals cause
the core to transition to different power management states and core activity states. Power management
states are shown in Table 8-1 and core activity states are shown in Table 8-2.
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Table 8-3. Power Management Signals

Signal /0 Description
hal