

MCF51MM256 Reference Manual

An Energy-Efficient Solution from Freescale

Devices Supported: MCF51MM256 MCF51MM128

> Document Number: MCF51MM256RM Rev. 3

Contents

Chapter 1 Device Overview

1.1	The MCF51MM256 Series Microcontroller	
	1.1.1 Definition	
	1.1.2 Devices in the MCF51MM256 series	
1.2	MCF51MM256/128 Block Diagram	
	1.2.1 Functional Units	
	1.2.2 Functional Versions	
1.3	V1 ColdFire Core	
	1.3.1 User Programming Model	
	1.3.2 Supervisor Programming Model	
1.4	System Clocks	
	1.4.1 System Clock Distribution	
	1.4.2 System Clocks	
	1.4.3 Clock Gating	
	1.4.4 MCG Modes of Operation	
	1.4.5 MCG Mode State Diagram	. 1-12
	Chapter 2	
	Pins and Connections	
2.1	Device Pin Assignments	2-1
2.2	104-Pin MAPBĞA	
2.3	100-Pin LQFP	2-3
2.4	81-Pin MAPBGA	2-4
2.5	80-Pin LQFP	2-5
2.6	Pin Assignments	2-6
	2.6.1 Pinout Summary	. 2-10
	2.6.2 Recommended System Connections	. 2-22
	2.6.3 Interfacing the SCIs to Off-Chip Opto-Isolators	. 2-23
	2.6.4 Power	. 2-23
	2.6.5 Oscillator	
	2.6.6 PTD1/CMPP2/RESET	. 2-25
	2.6.7 PTE4/CMPP3/TPMCLK/IRQ	
	2.6.8 Background / Mode Select (PTD0/BKGD/MS)	. 2-25
	2.6.9 ADC Reference Pins (V _{REFH} , V _{REFL})	
	2.6.10 Bootloader Mode Select (BLMS)	. 2-26
	2.6.11 USB Data Pins (USB_DP, USB_DN)	. 2-26

MCF51MM256 Series Devices Reference Manual, Rev. 3

	2.6.12	2 General-Purpose I/O and Peripheral Ports	2-26
		Chapter 3 Modes of Operation	
3.1		ction	
3.2		es	
3.3		ew	
3.4		Mode	
3.5		ader Mode	
	3.5.1	Entering Bootloader Mode	
	3.5.2	Entering User mode	
	3.5.3	Active Background Mode and Bootloader Mode Arbitrage	
	3.5.4	Bootloader Operation	
		3.5.4.1 Flash Block Checksum	
		3.5.4.2 SIGNATURE Semaphore Register	
		3.5.4.4 Boot Mode Entry Flow Chart	
3.6	Run Mc	odes	
0.0		Run Mode	
		Low-Power Run Mode (LPrun)	
	0.0	3.6.2.1 BDM in Low-Power Run Mode	
3.7	Wait Mo	odes	
		Wait Mode	
	3.7.2	Low-Power Wait Mode (LPwait)	3-11
		3.7.2.1 BDM in Low-Power Wait Mode	3-11
3.8	Stop Mo	odes	
	3.8.1		
		Stop3 Mode	
	3.8.3		
		3.8.3.1 LVD Enabled in Stop Mode	
3.9		p peripheral Modules in Stop and Low-power Modes	
3.10	Debug	Mode	3-16
		Chapter 4	
		Memory	
4.1	MCF51	MM256 Series Memory Map	. 4-1
	4.1.1	Register Addresses and Bit Assignments	
	4.1.2	Detailed register addresses and bit assignments	
	4.1.3	Flash Module Reserved Memory Locations	
	4.1.4	ColdFire Rapid GPIO Memory Map	4-19
	4.1.5	ColdFire Interrupt Controller Memory Map	4-20
4.2	RAM		4-21
4.3	Flash M	Memory	4-21
		Features	
	4.3.2	Dual Flash Controllers	4-23

MCF51MM256 Series Devices Reference Manual, Rev. 3

iv Freescale Semiconductor

4.3.3	Register		
	4.3.3.1	Flash Clock Divider Register (FxCDIV)	4-23
	4.3.3.2	Flash Options Register (FxOPT and NVxOPT)	4-24
	4.3.3.3	Flash Configuration Register (FxCNFG)	4-25
	4.3.3.4	Flash Protection Register (FxPROT and NVxPROT)	4-25
	4.3.3.5		
	4.3.3.6		
Functio	nal Desc	ription	4-29
4.4.1	Flash Co		
	4.4.1.1		
	4.4.1.2		
4.4.2			
	4.4.2.2		
	4.4.2.3		
	4.4.2.4		
	4.4.2.5		
4.4.3			
4.4.4	•		
4.4.6			
4.5.1	Unsecur	ring the MCU using Backdoor Key Access	4-41
		Chapter F	
	Da	•	
5.3.1	Comput	er Operating Properly (COP) watchdog	5-2
5.4.1			
	_	·	
5.4. 0	_		
5.4.2	Interrupt	t Vectors, Sources, and Local Masks	5-5
	Function 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 4.4.6 Securit 4.5.1 Introdu Feature Microcom 5.3.1 5.3.2 5.3.3 Interrup 5.4.1	4.3.3.1 4.3.3.2 4.3.3.3 4.3.3.4 4.3.3.5 4.3.3.6 Functional Desc 4.4.1 Flash Co 4.4.1.1 4.4.1.2 4.4.2 Flash Co 4.4.2.1 4.4.2.2 4.4.2.3 4.4.2.4 4.4.2.5 4.4.3 Illegal Flash So 4.4.4 Operatir 4.4.4.1 4.4.4.2 4.4.4.3 4.4.5 Flash So 4.4.6 Resets 4.4.6.1 4.4.6.2 4.4.6.3 Security 4.5.1 Unsecur Res Introduction Features Microcontroller Flash So 5.3.1 Comput 5.3.2 Illegal O 5.3.3 Illegal A Interrupts & Exc 5.4.1 External 5.4.1.1 5.4.1.2	4.3.3.2 Flash Options Register (FXOPT and NVXOPT) 4.3.3.3 Flash Configuration Register (FXCNFG) 4.3.3.4 Flash Protection Register (FXCNFG) 4.3.3.5 Flash Status Register (FXSTAT) 4.3.3.6 Flash Status Register (FXSTAT) 4.3.3.6 Flash Command Register (FXCMD) Functional Description 4.4.1 Flash Command Operations 4.4.1.1 Writing the FCDIV Register 4.4.1.2 Command Write Sequence 4.4.2 Flash Commands 4.4.2.1 Erase Verify Command 4.4.2.2 Program Command 4.4.2.3 Burst Program Command 4.4.2.5 Mass Erase Command 4.4.2.5 Mass Erase Command 4.4.3.1 Flash Operations 4.4.3.1 Flash Access Violations 4.4.3.1 Flash Access Violations 4.4.3.2 Flash Protection Violations 4.4.3.3 Burst Mode 4.4.4 Operating Modes 4.4.4.1 Wait Mode 4.4.4.2 Stop Modes 4.4.4.1 Wait Mode 4.4.4.2 Reset While Flash Command Active 4.4.6.1 Flash Reset Sequence 4.4.6.1 Flash Reset Sequence 4.4.6.2 Reset While Flash Command Active 4.4.6.3 Program and Erase Times Security 4.5.1 Unsecuring the MCU using Backdoor Key Access Chapter 5 Resets, Interrupts, and General System Control Introduction Features Microcontroller Reset 5.3.1 Computer Operating Properly (COP) Watchdog 5.3.2 Illegal Opcode Detect (ILOP) 5.3.3 Illegal Address Detect (ILAD) Interrupts & Exceptions 5.4.1 External Interrupt Request (IRQ) Pin 5.4.1.1 Pin Configuration Options

Freescale Semiconductor

5.5	Low-Voltage Detect (LVD) System	5-9
	5.5.1 Power-On Reset Operation	5-9
	5.5.2 LVD Reset Operation	
	5.5.3 LVD Interrupt Operation	5-10
	5.5.4 Low-Voltage Warning (LVW) Interrupt Operation	
5.6	Peripheral Clock Gating	
5.7	Reset, Interrupt, and System Control Registers and Control Bits	
	5.7.1 Interrupt Pin Request Status and Control Register (IRQSC)	
	5.7.2 System Reset Status Register (SRS)	
	5.7.3 System Options 1 (SOPT1) Register	
	5.7.4 System Options 2 (SOPT2) Register	
	5.7.5 SIM Clock Set and Select Register (SIMCO)	5-15
	5.7.6 System Device Identification Register (SDIDH, SDIDL)	5-16
	5.7.7 System Clock Gating Control 1 Register (SCGC1)	5-17
	5.7.8 System Clock Gating Control 2 Register (SCGC2)	5-18
	5.7.9 System Clock Gating Control 3 Register (SCGC3)	5-18
	5.7.10 System Options 3 Register (SOPT3)	5-20
	5.7.11 System Options 4 Register (SOPT4)	
	5.7.12 System Options 5 Register (SOPT5)	
	5.7.13 SIM Internal Peripheral Select Register (SIMIPS)	5-22
	5.7.14 Signature Register (Signature)	
	5.7.15 System Power Management Status and Control 1 Register (SPMSC1) .	
	5.7.16 System Power Management Status and Control 2 Register (SPMSC2) .	
	5.7.17 System Power Management Status and Control 3 Register (SPMSC3) .	
	5.7.18 Flash Protection Disable Register (FPROTD)	5-27
	5.7.19 Mini-FlexBus Pin Control 1 (MFBPC1)	
	5.7.20 Mini-FlexBus Pin Control 2 (MFBPC2)	
	5.7.21 Mini-FlexBus Pin Control 3 (MFBPC3)	
	5.7.22 Mini-FlexBus Pin Control 4 (MFBPC4)	5-30
	Chapter 6	
	Parallel Input/Output Control	
6.1	Port Data and Data Direction	6-1
6.2	Pull-up, Slew Rate, and Drive Strength	6-2
	6.2.1 Port Internal Pull-up Enable	
	6.2.2 Port Slew Rate Enable	6-2
	6.2.3 Port Drive Strength Select	6-3
	6.2.4 Port Input Filter Enable	6-3
6.3	ColdFire V1 Rapid GPIO Functionality	6-3
6.4	Keyboard Interrupts	6-3
	6.4.1 Edge Only Sensitivity	
	6.4.2 Edge and Level Sensitivity	6-4
	6.4.3 Pull-up/Pull-down Resistors	6-4
	6.4.4 Keyboard Interrupt Initialization	
6.5	Pin Behavior in Stop Modes	6-5

vi Freescale Semiconductor

6.6	Paralle	l I/O, Key	board Interrupt, and Pin Control Registers	6-5
	6.6.1	Port A F	Registers	6-5
		6.6.1.1	Port A Data Register (PTAD)	6-5
		6.6.1.2	Port A Data Direction Register (PTADD)	
		6.6.1.3	Port A Pull Enable Register (PTAPE)	6-6
		6.6.1.4	Port A Slew Rate Enable Register (PTASE)	6-7
		6.6.1.5	Port A Drive Strength Selection Register (PTADS)	6-7
		6.6.1.6	Port A Input Filter Enable Register (PTAIFE)	
	6.6.2		Registers	
		6.6.2.1	Port B Data Register (PTBD)	
		6.6.2.2	Port B Data Direction Register (PTBDD)	
		6.6.2.3	Port B Pull Enable Register (PTBPE)	
		6.6.2.4	Port B Slew Rate Enable Register (PTBSE)	6-9
		6.6.2.5	Port B Drive Strength Selection Register (PTBDS)	
		6.6.2.6	Port B Input Filter Enable Register (PTBIFE)	
	6.6.3		Registers	6-11
		6.6.3.1	Port C Data Register (PTCD)	
		6.6.3.2	Port C Data Direction Register (PTCDD)	
		6.6.3.3	Port C Pull Enable Register (PTCPE)	
		6.6.3.4	Port C Slew Rate Enable Register (PTCSE)	
		6.6.3.5	Port C Drive Strength Selection Register (PTCDS)	
	0.0.4	6.6.3.6	Port C Input Filter Enable Register (PTCIFE)	
	6.6.4		Registers	
		6.6.4.1	Port D Data Register (PTDD)	
		6.6.4.2	Port D Data Direction Register (PTDDD)	6-14
		6.6.4.3 6.6.4.4	Port D Pull Enable Register (PTDPE)	
		6.6.4.5	Port D Slew Rate Enable Register (PTDSE)	
		6.6.4.6	Port D Drive Strength Selection Register (PTDDS) Port D Input Filter Enable Register (PTDIFE)	
	6.6.5		Registers	
	0.0.5	6.6.5.1	Port E Data Register (PTED)	
		6.6.5.2	Port E Data Direction Register (PTEDD)	
		6.6.5.3	Port E Pull Enable Register (PTEPE)	
		6.6.5.4	Port E Slew Rate Enable Register (PTESE)	
		6.6.5.5	Port E Drive Strength Selection Register (PTEDS)	
		6.6.5.6	Port E Input Filter Enable Register (PTEIFE)	
	6.6.6		Registers	
	0.0.0	6.6.6.1	Port F Data Register (PTFD)	6-19
		6.6.6.2	Port F Data Direction Register (PTFDD)	
		6.6.6.3	Port F Pull Enable Register (PTFPE)	
		6.6.6.4	Port F Slew Rate Enable Register (PTFSE)	6-20
		6.6.6.5	Port F Drive Strength Selection Register (PTFDS)	
		6.6.6.6	Port F Input Filter Enable Register (PTFIFE)	
	6.6.7		Registers	
		6.6.7.1	Port G Data Register (PTGD)	

Freescale Semiconductor vii

	6.6	0.7.2	Port G Data Direction Register (PTGDD)	. 6-22
	6.0	6.7.3	Port G Pull Enable Register (PTGPE)	. 6-22
	6.6	6.7.4	Port G Slew Rate Enable Register (PTGSE)	. 6-23
	6.6	6.7.5	Port G Drive Strength Selection Register (PTGDS)	
	6.6	6.7.6	Port G Input Filter Enable Register (PTGIFE)	
	6.6.8 Pc	ort H Re	gisters	. 6-24
		6.8.1	Port H Data Register (PTHD)	. 6-24
	6.6	6.8.2	Port H Data Direction Register (PTHDD)	. 6-24
	6.6	6.8.3	Port H Pull Enable Register (PTHPE)	. 6-25
	6.6	6.8.4	Port H Slew Rate Enable Register (PTHSE)	
	6.0	6.8.5	Port H Drive Strength Selection Register (PTHDS)	. 6-25
	6.6	6.8.6	Port H Input Filter Enable Register (PTHIFE)	
	6.6.9 Po	ort J Reg	gisters	
	6.6	6.9.1	Port J Data Register (PTJD)	. 6-26
	6.6	6.9.2	Port J Data Direction Register (PTJDD)	. 6-27
	6.6	6.9.3	Port J Pull Enable Register (PTJPE)	. 6-27
	6.6	6.9.4	Port J Slew Rate Enable Register (PTJSE)	
	6.6	6.9.5	Port J Drive Strength Selection Register (PTJDS)	
	6.6	6.9.6	Port J Input Filter Enable Register (PTJIFE)	
	6.6.10 Ke	eyboard	Interrupt 1 (KBI1) Registers	
	6.6	6.10.1	KBI1 Interrupt Status and Control Register (KBI1SC)	. 6-29
	6.6	6.10.2	KBI1 Interrupt Pin Select Register (KBI1PE)	
	6.6	6.10.3	KBI1 Interrupt Edge Select Register (KBI1ES)	
	6.6.11 Ke		Interrupt 2 (KBI2) Registers	
	6.6	6.11.1	KBI2 Interrupt Status and Control Register (KBI2SC)	. 6-31
	6.6	6.11.2	KBI2 Interrupt Pin Select Register (KBI2PE)	
	6.6		KBI2 Interrupt Edge Select Register (KBI2ES)	
			Chapter 7	
			ColdFire Core	
7.1	Introductio	n		7-1
	7.1.1 O	verview		7-1
7.2	Memory M	lap/Reg	ister Description	7-2
	7.2.1 Da	ata Regi	isters (D0–D7)	7-4
	7.2.2 Ac	ddress F	Registers (A0–A6)	7-4
			or/User Stack Pointers (A7 and OTHER_A7)	
	7.2.4 Co	ondition	Code Register (CCR)	7-5
	7.2.5 Pr	ogram (Counter (PC)	7-6
			se Register (VBR)	
	7.2.7 CF	PU Conf	figuration Register (CPUCR)	7-7
	7.2.8 St	atus Re	gister (SR)	7-8
7.3	Functional	Descrip	otion	7-9
	7.3.1 Ins	struction	Set Architecture (ISA_C)	7-9
			Processing Overview	. 7-10
		3.2.1	Exception Stack Frame Definition	

MCF51MM256 Series Devices Reference Manual, Rev. 3
viii Freescale Semiconductor

	7.3.3	Processo	or Exceptions	7-14
		7.3.3.1	Access Error Exception	7-14
		7.3.3.2	Address Error Exception	7-14
		7.3.3.3	Illegal Instruction Exception	7-15
		7.3.3.4	Privilege Violation	
		7.3.3.5	Trace Exception	7-16
		7.3.3.6	Unimplemented Line-A Opcode	7-17
		7.3.3.7	Unimplemented Line-F Opcode	7-17
		7.3.3.8	Debug Interrupt	7-17
		7.3.3.9	RTE and Format Error Exception	7-17
		7.3.3.10	TRAP Instruction Exception	7-18
		7.3.3.11	Unsupported Instruction Exception	7-18
		7.3.3.12	Interrupt Exception	7-18
		7.3.3.13	Fault-on-Fault Halt	7-18
		7.3.3.14	Reset Exception	7-19
	7.3.4	Instructio	n Execution Timing	7-22
		7.3.4.1	Timing Assumptions	
		7.3.4.2	MOVE Instruction Execution Times	
		7.3.4.3	Standard One Operand Instruction Execution Times	
		7.3.4.4	Standard Two Operand Instruction Execution Times	
		7.3.4.5	Miscellaneous Instruction Execution Times	
		7.3.4.6	MAC Instruction Execution Times	
		7.3.4.7	Branch Instruction Execution Times	7-28
			Chantor 9	
			Chapter 8 Multiply-Accumulate Unit (MAC)	
8.1	Introdu	ction	maniply Accumulate offic (mAo)	8-1
0. 1			/	
	0.1.1	8.1.1.1	Introduction to the MAC	
8.2	Memor	• • • • • • • • • • • • • • • • • • • •	gister Definition	
0.2		•	tus Register (MACSR)	
			gister (MASK)	
			ator Register (ACC)	
8.3			iption	
0.0	8.3.1		Il Operation Mode	
	0.0.1	8.3.1.1	Rounding	
		8.3.1.2	Saving and Restoring the MAC Programming Model	
		8.3.1.3	MULS/MULU	
		8.3.1.4	Scale Factor in MAC or MSAC Instructions	
	8.3.2		truction Set Summary	
	8.3.3		truction Execution Times	
			presentation	
			codes	

Chapter 9 Rapid GPIO (RGPIO)

9.1	Introduction	9-1
	9.1.1 Overview	
	9.1.2 Features	
	9.1.3 Modes of Operation	9-5
9.2	External Signal Description	9-5
	9.2.1 Overview	9-5
	9.2.2 Detailed Signal Descriptions	9-5
9.3	Memory Map/Register Definition	
	9.3.1 RGPIO Data Direction (RGPIO_DIR)	9-7
	9.3.2 RGPIO Data (RGPIO_DATA)	9-7
	9.3.3 RGPIO Pin Enable (RGPIO_ENB)	9-8
	9.3.4 RGPIO Clear Data (RGPIO_CLR)	9-8
	9.3.5 RGPIO Set Data (RGPIO_SET)	9- 9
	9.3.6 RGPIO Toggle Data (RGPIO_TOG)	9- 9
9.4	Functional Description	9-10
9.5	Initialization Information	9-10
9.6	Application Information	
	9.6.1 Application 1: Simple Square-Wave Generation	9-11
	9.6.2 Application 2: 16-bit Message Transmission using SPI Protocol	9-11
	01 4 40	
	Chapter 10	
40.4	Interrupt Controller (CF1_INTC)	40.4
10.1	Introduction	
	10.1.1 Overview	
	10.1.2 Features	
40.0	10.1.3 Modes of Operation	
	External Signal Description	
10.3	Memory Map/Register Definition	
	10.3.1 Force Interrupt Register (INTC_FRC)	
	10.3.2 INTC Programmable Level 6, Priority {7,6} Registers (INTC_PL6P{7,6})	
	10.3.3 INTC Wakeup Control Register (INTC_WCR)	
	10.3.4 INTC Set Interrupt Force Register (INTC_SFRC)	10-8
	10.3.6 INTC Software and Level- <i>n</i> IACK Registers (<i>n</i> = 1,2,3,,7)	
10.4	10.3.7 Interrupt Request Level and Priority Assignments	
10.4	10.4.1 Handling of Non-Maskable Level 7 Interrupt Requests	
10 E		
	Initialization Information	
10.0	10.6.1 Emulation of the HCS08's 1-Level IRQ Handling	
	10.6.2 Using INTC_PL6P{7,6} Registers	
	10.6.3 More on Software IACKs	
	TOTAL MICHOUN CONTROL IN CONTROL OF THE PROPERTY OF THE PROPER	

MCF51MM256 Series Devices Reference Manual, Rev. 3

Chapter 11

	Programmable Analog Comparator (SUSPRACMPV1)	
11.1	Introduction	
	11.1.1 PRACMP Configuration Information	
	11.1.2 PRACMP/TPM Configuration Information	
	11.1.3 PRACMP/OPAMP Configuration Information	
	11.1.4 PRACMP Clock Gating	
	11.1.5 Features	
	11.1.6 Modes of Operation	11-3
	11.1.6.1 Operation in Wait Mode	
	11.1.6.2 Operation in Stop Mode	
	11.1.6.3 Operation in Background Mode	
	11.1.7 Block Diagram	
	External Signal Description	
11.3	Memory Map and Register Definition	
	11.3.1 PRACMP Control and Status Register (PRACMPCS)	
	11.3.2 PRACMP Control Register 0 (PRACMPC0)	
	11.3.3 PRACMP Control Register 1 (PRACMPC1)	
	11.3.4 PRACMP Control Register 2 (PRACMPC2)	
	Functional Description	
	Setup and Operation of PRACMP	
	Resets	
11.7	Interrupts	11-10
	Chapter 42	
	Chapter 12	
	Analog-to-Digital Converter (S08ADC16V1)	
12.1	Analog-to-Digital Converter (S08ADC16V1) Introduction	
12.1	Analog-to-Digital Converter (S08ADC16V1) Introduction 12.1.1 Status and Control and Result Registers	12-1
12.1	Analog-to-Digital Converter (S08ADC16V1) Introduction 12.1.1 Status and Control and Result Registers 12.1.2 ADC and TRIAMP Configuration	12-1 12-1
12.1	Analog-to-Digital Converter (S08ADC16V1) Introduction 12.1.1 Status and Control and Result Registers 12.1.2 ADC and TRIAMP Configuration 12.1.3 Dedicated ADC Pins	12-1 12-1 12-1
12.1	Analog-to-Digital Converter (S08ADC16V1) Introduction 12.1.1 Status and Control and Result Registers 12.1.2 ADC and TRIAMP Configuration 12.1.3 Dedicated ADC Pins 12.1.4 ADC Reference Selection	12-1 12-1 12-1 12-2
12.1	Analog-to-Digital Converter (S08ADC16V1) Introduction 12.1.1 Status and Control and Result Registers 12.1.2 ADC and TRIAMP Configuration 12.1.3 Dedicated ADC Pins 12.1.4 ADC Reference Selection 12.1.5 Module Configurations	12-1 12-1 12-1 12-2 12-2
12.1	Analog-to-Digital Converter (S08ADC16V1) Introduction 12.1.1 Status and Control and Result Registers 12.1.2 ADC and TRIAMP Configuration 12.1.3 Dedicated ADC Pins 12.1.4 ADC Reference Selection 12.1.5 Module Configurations 12.1.5.1 Configurations for Stop Modes	12-1 12-1 12-2 12-2 12-2
12.1	Analog-to-Digital Converter (S08ADC16V1) Introduction 12.1.1 Status and Control and Result Registers 12.1.2 ADC and TRIAMP Configuration 12.1.3 Dedicated ADC Pins 12.1.4 ADC Reference Selection 12.1.5 Module Configurations 12.1.5.1 Configurations for Stop Modes 12.1.5.2 Differential Channel Assignments	12-1 12-1 12-2 12-2 12-2 12-3
12.1	Analog-to-Digital Converter (S08ADC16V1) Introduction 12.1.1 Status and Control and Result Registers 12.1.2 ADC and TRIAMP Configuration 12.1.3 Dedicated ADC Pins 12.1.4 ADC Reference Selection 12.1.5 Module Configurations 12.1.5.1 Configurations for Stop Modes 12.1.5.2 Differential Channel Assignments 12.1.5.3 Single-Ended Channel Assignments	12-1 12-1 12-2 12-2 12-2 12-3 12-3
12.1	Analog-to-Digital Converter (S08ADC16V1) Introduction 12.1.1 Status and Control and Result Registers 12.1.2 ADC and TRIAMP Configuration 12.1.3 Dedicated ADC Pins 12.1.4 ADC Reference Selection 12.1.5 Module Configurations 12.1.5.1 Configurations for Stop Modes 12.1.5.2 Differential Channel Assignments 12.1.5.3 Single-Ended Channel Assignments 12.1.5.4 Alternate Clock	12-1 12-1 12-2 12-2 12-3 12-3 12-4
12.1	Analog-to-Digital Converter (S08ADC16V1) Introduction 12.1.1 Status and Control and Result Registers 12.1.2 ADC and TRIAMP Configuration 12.1.3 Dedicated ADC Pins 12.1.4 ADC Reference Selection 12.1.5 Module Configurations 12.1.5.1 Configurations for Stop Modes 12.1.5.2 Differential Channel Assignments 12.1.5.3 Single-Ended Channel Assignments 12.1.5.4 Alternate Clock 12.1.5.5 Hardware Triggers	12-1 12-1 12-2 12-2 12-3 12-3 12-4 12-4
12.1	Analog-to-Digital Converter (S08ADC16V1) Introduction 12.1.1 Status and Control and Result Registers 12.1.2 ADC and TRIAMP Configuration 12.1.3 Dedicated ADC Pins 12.1.4 ADC Reference Selection 12.1.5 Module Configurations 12.1.5.1 Configurations for Stop Modes 12.1.5.2 Differential Channel Assignments 12.1.5.3 Single-Ended Channel Assignments 12.1.5.4 Alternate Clock 12.1.5.5 Hardware Triggers 12.1.5.6 Temperature Sensor	12-1 12-1 12-2 12-2 12-3 12-4 12-4 12-5
12.1	Analog-to-Digital Converter (S08ADC16V1) Introduction 12.1.1 Status and Control and Result Registers 12.1.2 ADC and TRIAMP Configuration 12.1.3 Dedicated ADC Pins 12.1.4 ADC Reference Selection 12.1.5 Module Configurations 12.1.5.1 Configurations for Stop Modes 12.1.5.2 Differential Channel Assignments 12.1.5.3 Single-Ended Channel Assignments 12.1.5.4 Alternate Clock 12.1.5.5 Hardware Triggers 12.1.5.6 Temperature Sensor 12.1.6 ADC Clock Gating	12-1 12-1 12-2 12-2 12-3 12-3 12-4 12-4 12-5 12-7
12.1	Analog-to-Digital Converter (S08ADC16V1) Introduction 12.1.1 Status and Control and Result Registers 12.1.2 ADC and TRIAMP Configuration 12.1.3 Dedicated ADC Pins 12.1.4 ADC Reference Selection 12.1.5 Module Configurations 12.1.5.1 Configurations for Stop Modes 12.1.5.2 Differential Channel Assignments 12.1.5.3 Single-Ended Channel Assignments 12.1.5.4 Alternate Clock 12.1.5.5 Hardware Triggers 12.1.5.6 Temperature Sensor 12.1.6 ADC Clock Gating 12.1.7 Features	12-1 12-1 12-2 12-2 12-3 12-4 12-4 12-5 12-7 12-7
	Analog-to-Digital Converter (S08ADC16V1) Introduction 12.1.1 Status and Control and Result Registers 12.1.2 ADC and TRIAMP Configuration 12.1.3 Dedicated ADC Pins 12.1.4 ADC Reference Selection 12.1.5 Module Configurations 12.1.5.1 Configurations for Stop Modes 12.1.5.2 Differential Channel Assignments 12.1.5.3 Single-Ended Channel Assignments 12.1.5.4 Alternate Clock 12.1.5.5 Hardware Triggers 12.1.5.6 Temperature Sensor 12.1.6 ADC Clock Gating 12.1.7 Features 12.1.8 Block Diagram	12-1 12-1 12-2 12-2 12-3 12-4 12-4 12-5 12-7 12-7
	Analog-to-Digital Converter (S08ADC16V1) Introduction 12.1.1 Status and Control and Result Registers 12.1.2 ADC and TRIAMP Configuration 12.1.3 Dedicated ADC Pins 12.1.4 ADC Reference Selection 12.1.5 Module Configurations 12.1.5.1 Configurations for Stop Modes 12.1.5.2 Differential Channel Assignments 12.1.5.3 Single-Ended Channel Assignments 12.1.5.4 Alternate Clock 12.1.5.5 Hardware Triggers 12.1.5.6 Temperature Sensor 12.1.6 ADC Clock Gating 12.1.7 Features 12.1.8 Block Diagram External Signal Description	12-1 12-1 12-2 12-2 12-3 12-3 12-4 12-5 12-7 12-7 12-7
	Analog-to-Digital Converter (S08ADC16V1) Introduction 12.1.1 Status and Control and Result Registers 12.1.2 ADC and TRIAMP Configuration 12.1.3 Dedicated ADC Pins 12.1.4 ADC Reference Selection 12.1.5 Module Configurations 12.1.5.1 Configurations for Stop Modes 12.1.5.2 Differential Channel Assignments 12.1.5.3 Single-Ended Channel Assignments 12.1.5.4 Alternate Clock 12.1.5.5 Hardware Triggers 12.1.5.6 Temperature Sensor 12.1.6 ADC Clock Gating 12.1.7 Features 12.1.8 Block Diagram External Signal Description 12.2.1 Analog Power (VDDAD)	12-1 12-1 12-2 12-2 12-3 12-3 12-4 12-7 12-7 12-7 12-7 12-8 12-9
	Analog-to-Digital Converter (S08ADC16V1) Introduction 12.1.1 Status and Control and Result Registers 12.1.2 ADC and TRIAMP Configuration 12.1.3 Dedicated ADC Pins 12.1.4 ADC Reference Selection 12.1.5 Module Configurations 12.1.5.1 Configurations for Stop Modes 12.1.5.2 Differential Channel Assignments 12.1.5.3 Single-Ended Channel Assignments 12.1.5.4 Alternate Clock 12.1.5.5 Hardware Triggers 12.1.5.6 Temperature Sensor 12.1.6 ADC Clock Gating 12.1.7 Features 12.1.8 Block Diagram External Signal Description	12-1 12-1 12-2 12-2 12-3 12-4 12-4 12-7 12-7 12-7 12-7 12-8 12-9

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor xi

	12.2.4 Voltage Reference Select Low (V _{REFL})	. 12-10
	12.2.5 Analog Channel Inputs (ADx)	
	12.2.6 Differential Analog Channel Inputs (DADx)	. 12-10
12.3	Register Definition	. 12-10
	12.3.1 Status and Control Registers 1 (ADCSC1A:ADCSC1n)	. 12-11
	12.3.2 Configuration Register 1 (ADCCFG1)	. 12-12
	12.3.3 Configuration Register 2 (ADCCFG2)	
	12.3.4 Data Result Registers (ADCRHA:ADCRLA to ADCRHn:ADCRLn)	. 12-15
	12.3.5 Compare Value Registers (ADCCV1H:ADCCV1L and ADCCV2H:ADCCV2	
	12-16	,
	12.3.6 Status and Control Register 2 (ADCSC2)	. 12-17
	12.3.7 Status and Control Register 3 (ADCSC3)	
	12.3.8 ADC Offset Correction Register (ADCOFSH:ADCOFSL)	
	12.3.9 ADC Plus-Side Gain Register (ADCPGH:ADCPGL)	
	12.3.10ADC Minus-Side Gain Register (ADCMGH:ADCMGL)	
	12.3.11ADC Plus-Side General Calibration Value Registers (ADCCLPx)	
	12.3.12ADC Minus-Side General Calibration Value Registers (ADCCLMx)	
	12.3.13Pin Control 1 Register (APCTL1)	
	12.3.14Pin Control 2 Register (APCTL2)	
12.4	Functional Description	
	12.4.1 Clock Select and Divide Control	
	12.4.2 Input Select and Pin Control	
	12.4.3 Voltage Reference Selection	
	12.4.4 Hardware Trigger and Channel Selects	
	12.4.5 Conversion Control	
	12.4.5.1 Initiating Conversions	
	12.4.5.2 Completing Conversions	
	12.4.5.3 Aborting Conversions	
	12.4.5.4 Power Control	
	12.4.5.5 Sample Time and Total Conversion Time	. 12-31
	12.4.5.6 Conversion Time Examples	. 12-33
	12.4.5.6.1 Typical conversion time configuration	. 12-33
	12.4.5.6.2 Long conversion time configuration	. 12-33
	12.4.5.7 Hardware Average Function	. 12-34
	12.4.6 Automatic Compare Function	
	12.4.7 Calibration Function	
	12.4.8 User Defined Offset Function	
	12.4.9 Temperature Sensor	
	12.4.10MCU Wait Mode Operation	
	12.4.11MCU Stop3 Mode Operation	
	12.4.11.1 Stop3 Mode With ADACK Disabled	
	12.4.11.2 Stop3 Mode With ADACK Enabled	
	12.4.12MCU Stop2 Mode Operation	
12.5	Initialization Information	
	12.5.1 ADC Module Initialization Example	. 12-40

xii Freescale Semiconductor

	12.5.1.1 Initialization Sequence	2-40
	12.5.1.2 Pseudo-Code Example	2-40
12.6	Application Information	
	12.6.1 External Pins and Routing	
	12.6.1.1 Analog Supply Pins	
	12.6.1.2 Analog Voltage Reference Pins	
	12.6.1.3 Analog Input Pins	
	12.6.2 Sources of Error	
	12.6.2.1 Sampling Error	
	12.6.2.2 Pin Leakage Error	
	12.6.2.3 Noise-Induced Errors	
	12.6.2.4 Code Width and Quantization Error	
	12.6.2.5 Linearity Errors	
	12.6.2.6 Code Jitter, Non-Monotonicity, and Missing Codes	
	72.0.2.0 Code dittor, from Monotomory, and Miconing Coded	0
	Chapter 13	
	Cyclic Redundancy Check (CRC)	
12 1	Introduction	12 1
13.1		
	13.1.1 Features	
	13.1.2 Modes of Operation	
42.2	13.1.3 Block Diagram	
	External Signal Description	
13.3	Register Definition	
	13.3.1 Memory Map	
	13.3.2 Register Descriptions	
	13.3.2.1 CRC High Register (CRCH)	
	13.3.2.2 CRC Low Register (CRCL)	3-6
40.4	13.3.2.3 Transpose Register (TRANSPOSE)	
13.4	Functional Description	
	13.4.1 ITU-T (CCITT) Recommendations and Expected CRC Results	
	13.4.2 Programming model extension for CF1Core	
40.5	13.4.3 Transpose feature	
13.5	Initialization Information	3-10
	Chapter 14	
	•	
	Carrier Modulator Timer (CMT)	
	Introduction	
	Clock Selection	
	IRO Pin Description	
	Features	
	CMT Block Diagram	
	External Signal Descriptions	
14.7	Register Definition	4-4
	14.7.1 Carrier Generator Data Registers (CMTCGH1, CMTCGL1, CMTCGH2, and	
	CMTCGL2) 1	14-4

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor xiii

14.7.2 CMT Output Control Register (CMTOC)	14-5
14.7.3 CMT Modulator Status and Control Register	14-6
14.7.4 CMT Modulator Data Registers (CMTCMD1, CMTCMD2, CMTCMD3 and	
CMTCMD4)	14-8
14.8 Functional Description	
14.8.1 Carrier Generator	. 14-10
14.8.2 Modulator	. 14-12
14.8.2.1 Time Mode	. 14-13
14.8.2.2 Baseband Mode	. 14-14
14.8.2.3 FSK Mode	. 14-14
14.8.2.4 Extended Space Operation	. 14-15
14.8.2.4.1 EXSPC Operation in Time Mode	. 14-15
14.8.2.4.2 EXSPC Operation in FSK Mode	. 14-16
14.8.3 Transmitter	. 14-16
14.8.4 CMT Interrupts	. 14-16
14.8.5 Low-Power Mode Operation	. 14-17
14.8.5.1 Wait Mode Operation	. 14-17
14.8.5.2 Stop3 Mode Operation	. 14-17
14.8.5.3 Stop2 Mode Operation	. 14-17
14.8.5.4 Background Mode Operation	. 14-18
Chapter 15	
12-bit Digital to Analog Converter (DAC12LVLPv1)	
15.1 Introduction	
15.1.1 DAC Clock Gating	
15.1.2 DAC V _{ext} and V _{int} Configuration	15-1
15.1.3 DAC Hardware Trigger Configuration	
15.1.4 Features	
15.1.5 Block Diagram	
15.2 Register Definition	
15.2.1 DAC Data Register x (DACDATxH:DACDATxL)	
15.2.2 DAC Status Register (DACS)	
15.2.3 DAC Control Register (DACCO)	
15.2.4 DAC Control Register1 (DACC1)	
15.2.5 DAC Control Register 2 (DACC2)	
15.3 Functional Description	
15.3.1 DAC Data Buffer Operation	
15.3.1.1 Buffer Normal Mode	
15.3.1.2 Buffer Swing Mode	
15.3.1.3 Buffer One-time Scan Mode	
15.3.2 Resets	
15.3.3 Low Power Mode Operation	
15.3.3.1 Wait Mode Operation	
15.3.3.2 Stop Mode Operation	
15.3.4 Background Mode Operation	15-0

xiv Freescale Semiconductor

Chapter 16 Inter-Integrated Circuit (S08IICV3)

16.1	Introduction	16-1
	16.1.1 Module Configuration	
	16.1.2 IIC Clock Gating	
	16.1.3 Features	
	16.1.4 Modes of Operation	
	16.1.5 Block Diagram	
16.2	External Signal Description	
	16.2.1 SCL — Serial Clock Line	
	16.2.2 SDA — Serial Data Line	
16.3	Register Definition	
	16.3.1 Module Memory Map	
	16.3.2 IIC Address Register 1 (IICA1)	
	16.3.3 IIC Frequency Divider Register (IICF)	
	16.3.4 IIC Control Register (IICC1)	
	16.3.5 IIC Status Register (IICS)	
	16.3.6 IIC Data I/O Register (IICD)	
	16.3.7 IIC Control Register 2 (IICC2)	
	16.3.8 IIC SMBus Control and Status Register (IICSMB)	
	16.3.9 IIC Address Register 2 (IICA2)	
	16.3.10IIC SCL Low Time Out Register High (IICSLTH)	
	16.3.11IIC SCL LowTime Out register Low (IICSLTL)	
	16.3.12IIC Programmable Input Glitch Filter (IICFLT)	
16.4	Functional Description	
	16.4.1 IIC Protocol	
	16.4.1.1 START Signal	16-18
	16.4.1.2 Slave Address Transmission	16-18
	16.4.1.3 Data Transfer	16-18
	16.4.1.4 STOP Signal	<mark>16-1</mark> 9
	16.4.1.5 Repeated START Signal	16-1 9
	16.4.1.6 Arbitration Procedure	
	16.4.1.7 Clock Synchronization	<mark>16-1</mark> 9
	16.4.1.8 Handshaking	<mark>16-2</mark> 0
	16.4.1.9 Clock Stretching	<mark>16-2</mark> 0
	16.4.2 10-bit Address	
	16.4.2.1 Master-Transmitter Addresses a Slave-Receiver	16-21
	16.4.2.2 Master-Receiver Addresses a Slave-Transmitter	16-21
	16.4.3 Address Matching	
	16.4.4 System Management Bus Specification	16-22
	16.4.4.1 Timeouts	
	16.4.4.1.1 SCL Low Timeout	
	16.4.4.1.2 SCL High (SMBus Free) Timeout	16-23
	16.4.4.1.3 CSMBCLK TIMEOUT MEXT	
	16.4.4.1.4 CSMBCLK TIMEOUT SEXT	1 <mark>6-2</mark> 3

MCF51MM256 Series Devices Reference Manual, Rev. 3

	16.4.4.2 FAST ACK and NACK	16-24
16.5	Resets	16-24
16.6	Interrupts	
	16.6.1 Byte Transfer Interrupt	
	16.6.2 Address Detect Interrupt	
	16.6.3 Arbitration Lost Interrupt	
	16.6.4 Timeouts Interrupt in SMbus	
	16.6.5 Programmable input glitch filter	
	Initialization/Application Information	
16.8	SMBALERT#	16-30
	01 4 4=	
	Chapter 17	
	Multipurpose Clock Generator (S08MCGV3)	
17.1	Introduction	
	17.1.1 Clock Check & Select Function	
	17.1.2 Clock Check & Select Control (CCSCTRL)	
	17.1.3 CCS XOSC1 Timer Register (CCSTMR1)	
	17.1.4 CCS XOSC2 Timer Register (CCSTMR2)	
	17.1.5 CCS Internal Reference Clock Timer Register (CCSTMRIR)	
	17.1.6 Operation	
	17.1.7 Features	
	17.1.8 Modes of Operation	
	External Signal Description	
17.3	Register Definition	
	17.3.1 MCG Control Register 1 (MCGC1)	
	17.3.2 MCG Control Register 2 (MCGC2)	
	17.3.3 MCG Trim Register (MCGTRM)	
	17.3.4 MCG Status and Control Register (MCGSC)	
	17.3.5 MCG Control Register 3 (MCGC3)	
	17.3.6 MCG Control Register 4 (MCGC4)	
4 7 4	17.3.7 MCG Test Register (MCGT)	
17.4	Functional Description	17-16
	17.4.1 MCG Modes of Operation	
	17.4.2 MCG Mode State Diagram	
	17.4.3 Mode Switching	
	17.4.4 Bus Frequency Divider	
	17.4.6 Internal Reference Clock	
	17.4.7 External Reference Clock	
	17.4.7 External Reference Clock	
	17.4.9 MCGPLLSCLK Operation	
175	Initialization / Application Information	
17.5	17.5.1 MCG Module Initialization Sequence	
	17.5.1.1 Initializing the MCG	
	17.5.2 Using a 32.768 kHz Reference	
	17.0.2 Comy a 02.700 km2 redording	17 20

xvi Freescale Semiconductor

		de Switching	
	17.5.3.1	Example 1: Moving from FEI to PEE Mode: External Crysta Bus Frequency = 16 MHz	
	47.500		
	17.5.3.2	Example 2: Moving from PEE to BLPI Mode: Bus Frequence 17-28	;y =16 KHZ .
	17.5.3.3	Example 3: Moving from BLPI to FEE Mode: External Cryst Bus Frequency = 16 MHz	
	17 F 4 Colibration	ng the Internal Reference Clock (IRC)	
	17.5.4.1	Example 4: Internal Reference Clock Trim	17-33
		Chapter 18	
40.4		Mini-FlexBus	40.4
18.1			
		V	
		§ _.	
		f Operation	
		Configuration	
		Bus Security Level	
		Bus Clock Gating	
18.2			
		and Data Buses (FB_A[19:0], FB_D[7:0], FB_AD[:0])	
	18.2.1 19	<u></u>	18-4
		ects (FB_CS[1:0])	
		nable (F <u>B_O</u> E)	
		rite (FB_R/W)	
		Latch Enable (FB_ALE)	
18.3		gister Definition	
		ect Address Registers (CSAR0 – CSAR1)	
		ect Mask Registers (CSMR0 – CSMR1)	
	•	ect Control Registers (CSCR0 – CSCR1)	
18.4		ription	
	18.4.1 Chip-Sel	ect Operation	18-8
	18.4.1.1	General Chip-Select Operation	18-9
		8- and 16-Bit Port Sizing	
		nsfer Operation	
		e Alignment and Physical Connections	
		/Data Bus Multiplexing	
	18.4.5 Bus Cyc	le Execution	
	18.4.5.1		
	18.4.6 Mini-Flex	Bus Timing Examples	
	18.4.6.1	Basic Read Bus Cycle	
	18.4.6.2	· · · · · · · · · · · · · · · · · · ·	
		Bus Cycle Sizing	
		Timing Variations	
	18	3.4.6.4.1 Wait States	18-17

Freescale Semiconductor xvii

	18.4.6.4.2 Address Setup and Hold	18-20
	18.4.7 Bus Errors	18-22
	Chapter 19	
	General Purpose Operational Amplifier (OPAMP)	
10 1	Introduction	10-1
15.1	19.1.1 OPAMP Clock Gating	
	19.1.2 Features	
	19.1.3 Modes of Operation	
	19.1.4 Block Diagram	
19.2	Signal Description	
	Memory Map and Registers	
	19.3.1 Module Memory Map	
	19.3.2 Register Descriptions	
	19.3.2.1 GPAMP Control Register 0 (GPAMPxC0)	19-6
	19.3.2.2 GPAMP Control Register 1 (GPAMPxC1)	19-7
	19.3.2.3 GPAMP Control Register 2 (GPAMPxC2)	19-7
19.4	Functional Description	
	19.4.1 OPAMP Configuration	
	19.4.2 Buffer Configuration	
	19.4.3 Inverting PGA Configuration	
	19.4.4 Non-Inverting PGA Configuration	19-12
	Chanter 20	
	Chapter 20 Programmable Delay Block (PDB)	
20.1	Programmable Delay Block (PDB)	20-1
20.1	Programmable Delay Block (PDB) Introduction	
20.1	Programmable Delay Block (PDB) Introduction	20-1
	Programmable Delay Block (PDB) Introduction	20-1
	Programmable Delay Block (PDB) Introduction 20.1.1 Overview 20.1.2 PDB Trigger Inputs ADC Hardware Triggers and Selects	20-1
	Programmable Delay Block (PDB) Introduction	20-1 20-1 20-2 20-2
	Programmable Delay Block (PDB) Introduction 20.1.1 Overview 20.1.2 PDB Trigger Inputs ADC Hardware Triggers and Selects 20.2.1 PDB Trigger Acknowledgement Inputs	20-1 20-1 20-2 20-2
	Programmable Delay Block (PDB) Introduction 20.1.1 Overview 20.1.2 PDB Trigger Inputs ADC Hardware Triggers and Selects 20.2.1 PDB Trigger Acknowledgement Inputs 20.2.2 Features	20-1 20-2 20-2 20-4 20-4
20.2	Programmable Delay Block (PDB) Introduction 20.1.1 Overview 20.1.2 PDB Trigger Inputs ADC Hardware Triggers and Selects 20.2.1 PDB Trigger Acknowledgement Inputs 20.2.2 Features 20.2.3 Modes of Operation	20-1 20-2 20-2 20-4 20-6
20.2	Programmable Delay Block (PDB) Introduction 20.1.1 Overview 20.1.2 PDB Trigger Inputs ADC Hardware Triggers and Selects 20.2.1 PDB Trigger Acknowledgement Inputs 20.2.2 Features 20.2.3 Modes of Operation 20.2.4 Block Diagram	20-1 20-2 20-2 20-4 20-6 20-11
20.2	Programmable Delay Block (PDB) Introduction 20.1.1 Overview 20.1.2 PDB Trigger Inputs ADC Hardware Triggers and Selects 20.2.1 PDB Trigger Acknowledgement Inputs 20.2.2 Features 20.2.3 Modes of Operation 20.2.4 Block Diagram Memory Map and Registers 20.3.1 Memory Map 20.3.2 Registers Descriptions	20-1 20-2 20-2 20-4 20-6 20-11 20-11
20.2	Programmable Delay Block (PDB) Introduction 20.1.1 Overview 20.1.2 PDB Trigger Inputs ADC Hardware Triggers and Selects 20.2.1 PDB Trigger Acknowledgement Inputs 20.2.2 Features 20.2.3 Modes of Operation 20.2.4 Block Diagram Memory Map and Registers 20.3.1 Memory Map 20.3.2 Registers Descriptions 20.3.2.1 PDB Status and Control Register (PDBSC)	20-1 20-2 20-2 20-4 20-6 20-11 20-11 20-11
20.2	Programmable Delay Block (PDB) Introduction 20.1.1 Overview 20.1.2 PDB Trigger Inputs ADC Hardware Triggers and Selects 20.2.1 PDB Trigger Acknowledgement Inputs 20.2.2 Features 20.2.3 Modes of Operation 20.2.4 Block Diagram Memory Map and Registers 20.3.1 Memory Map 20.3.2 Registers Descriptions 20.3.2.1 PDB Status and Control Register (PDBSC) 20.3.2.2 PDB Control Register 1 (PDBC1)	20-1 20-2 20-2 20-4 20-6 20-11 20-11 20-11 20-13
20.2	Programmable Delay Block (PDB) Introduction 20.1.1 Overview 20.1.2 PDB Trigger Inputs ADC Hardware Triggers and Selects 20.2.1 PDB Trigger Acknowledgement Inputs 20.2.2 Features 20.2.3 Modes of Operation 20.2.4 Block Diagram Memory Map and Registers 20.3.1 Memory Map 20.3.2 Registers Descriptions 20.3.2.1 PDB Status and Control Register (PDBSC) 20.3.2.2 PDB Control Register 1 (PDBC1) 20.3.2.3 PDB Control Register 2 (PDBC2)	20-1 20-2 20-2 20-4 20-6 20-11 20-11 20-13 20-14
20.2	Programmable Delay Block (PDB) Introduction 20.1.1 Overview 20.1.2 PDB Trigger Inputs ADC Hardware Triggers and Selects 20.2.1 PDB Trigger Acknowledgement Inputs 20.2.2 Features 20.2.3 Modes of Operation 20.2.4 Block Diagram Memory Map and Registers 20.3.1 Memory Map 20.3.2 Registers Descriptions 20.3.2.1 PDB Status and Control Register (PDBSC) 20.3.2.2 PDB Control Register 1 (PDBC1) 20.3.2.3 PDB Control Register 2 (PDBC2) 20.3.2.4 PDB Channel Enable Register (PDBCHEN)	20-1 20-2 20-2 20-4 20-6 20-11 20-11 20-11 20-14 20-14 20-15
20.2	Introduction 20.1.1 Overview 20.1.2 PDB Trigger Inputs ADC Hardware Triggers and Selects 20.2.1 PDB Trigger Acknowledgement Inputs 20.2.2 Features 20.2.3 Modes of Operation 20.2.4 Block Diagram Memory Map and Registers 20.3.1 Memory Map 20.3.2 Registers Descriptions 20.3.2.1 PDB Status and Control Register (PDBSC) 20.3.2.2 PDB Control Register 1 (PDBC1) 20.3.2.3 PDB Control Register 2 (PDBC2) 20.3.2.4 PDB Channel Enable Register (PDBCHEN) 20.3.2.5 PDB Modulus Registers (PDBMODH:PDBMODL)	20-1 20-2 20-2 20-4 20-4 20-6 20-11 20-11 20-11 20-15 20-15
20.2	Introduction 20.1.1 Overview 20.1.2 PDB Trigger Inputs ADC Hardware Triggers and Selects 20.2.1 PDB Trigger Acknowledgement Inputs 20.2.2 Features 20.2.3 Modes of Operation 20.2.4 Block Diagram Memory Map and Registers 20.3.1 Memory Map 20.3.2 Registers Descriptions 20.3.2.1 PDB Status and Control Register (PDBSC) 20.3.2.2 PDB Control Register 1 (PDBC1) 20.3.2.3 PDB Control Register 2 (PDBC2) 20.3.2.4 PDB Channel Enable Register (PDBCHEN) 20.3.2.5 PDB Modulus Registers (PDBMODH:PDBMODL) 20.3.2.6 PDB Counter Registers (PDBCNTH:PDBCNTL)	20-1 20-2 20-2 20-4 20-6 20-11 20-11 20-11 20-13 20-14 20-15 20-16
20.2	Introduction 20.1.1 Overview 20.1.2 PDB Trigger Inputs ADC Hardware Triggers and Selects 20.2.1 PDB Trigger Acknowledgement Inputs 20.2.2 Features 20.2.3 Modes of Operation 20.2.4 Block Diagram Memory Map and Registers 20.3.1 Memory Map 20.3.2 Registers Descriptions 20.3.2.1 PDB Status and Control Register (PDBSC) 20.3.2.2 PDB Control Register 1 (PDBC1) 20.3.2.3 PDB Control Register 2 (PDBC2) 20.3.2.4 PDB Channel Enable Register (PDBCHEN) 20.3.2.5 PDB Modulus Registers (PDBMODH:PDBMODL) 20.3.2.6 PDB Counter Registers (PDBCNTH:PDBCNTL) 20.3.2.7 PDB Interrupt Delay Register (PDBIDLYH:PDBIDLYL)	20-1 20-2 20-2 20-4 20-6 20-11 20-11 20-11 20-14 20-15 20-16 20-16
20.2	Introduction 20.1.1 Overview 20.1.2 PDB Trigger Inputs ADC Hardware Triggers and Selects 20.2.1 PDB Trigger Acknowledgement Inputs 20.2.2 Features 20.2.3 Modes of Operation 20.2.4 Block Diagram Memory Map and Registers 20.3.1 Memory Map 20.3.2 Registers Descriptions 20.3.2.1 PDB Status and Control Register (PDBSC) 20.3.2.2 PDB Control Register 1 (PDBC1) 20.3.2.3 PDB Control Register 2 (PDBC2) 20.3.2.4 PDB Channel Enable Register (PDBCHEN) 20.3.2.5 PDB Modulus Registers (PDBMODH:PDBMODL) 20.3.2.6 PDB Counter Registers (PDBCNTH:PDBCNTL)	20-1 20-2 20-2 20-4 20-4 20-6 20-11 20-11 20-13 20-15 20-16 20-16 20-16

MCF51MM256 Series Devices Reference Manual, Rev. 3

xviii Freescale Semiconductor

	20.3.3 Functional Description	
	20.3.3.1 Impact of Using the Prescaler on Timing Resolution	20-18
20.4	Resets	20-18
20.5	Clocks	20-18
20.6	Interrupts	20-18
	Chapter 21	
	Serial Communication Interface (S08SCIV4)	
21 1	Introduction	21-19
	21.1.1 SCIx Clock Gating	
	21.1.2 Module Configuration	
	21.1.3 Module Block Diagram	
	21.1.4 Interfacing the SCIs to Off-Chip Opto-Isolators	
	21.1.5 Features	
	21.1.6 Modes of Operation	
	21.1.7 Block Diagram	
21.2	Register Definition	
21.2	21.2.1 SCI Baud Rate Registers (SCIxBDH, SCIxBDL)	
	21.2.2 SCI Control Register 1 (SCIxC1)	
	21.2.3 SCI Control Register 2 (SCIxC2)	
	21.2.4 SCI Status Register 1 (SCIxS1)	
	21.2.5 SCI Status Register 2 (SCIxS2)	
	21.2.6 SCI Control Register 3 (SCIxC3)	
	21.2.7 SCI Data Register (SCIxD)	
21.3	Functional Description	
21.0	21.3.1 Baud Rate Generation	
	21.3.2 Transmitter Functional Description	
	21.3.2.1 Send Break and Queued Idle	
	21.3.3 Receiver Functional Description	
	21.3.3.1 Data Sampling Technique	
	21.3.3.2 Receiver Wakeup Operation	
	21.3.3.2.1 Idle-Line Wakeup	
	21.3.3.2.2 Address-Mark Wakeup	
	21.3.4 Interrupts and Status Flags	
	21.3.5 Additional SCI Functions	
	21.3.5.1 8- and 9-Bit Data Modes	
	21.3.5.2 Stop Mode Operation	
	21.3.5.3 Loop Mode	
	21.3.5.4 Single-Wire Operation	
	21101011 Olligio Villo opolation 111111111111111111111111111111111111	2 . 00
	Chapter 22	
	16-bit Serial Peripheral Interface (S08SPI16V5)	
22.1	Introduction	ეე_1
44. I	22.1.1 SPI1 Clock Gating	
	22.1.2 Features	
	22.1.2 i Galui 63	22-3

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor xix

22.1.3 Modes of O	Operation	22-3
22.1.4 Block Diagr	rams	22-4
22.1.4.1 S	SPI System Block Diagram	22-4
	SPI Module Block Diagram	
	scription	
22.2.1 SPSCK —	SPI Serial Clock	22-6
22.2.2 MOSI — Ma	aster Data Out, Slave Data In	22-6
	aster Data In, Slave Data Out	
	e Select	
22.3 Register Definition		22-6
	I Register 1 (SPIxC1)	
	Register 2 (SPIxC2)	
	Rate Register (SPIxBR)	
	Register (SPIxS)	
	egisters (SPIxDH:SPIxDL)	
22.3.6 SPI Match I	Registers (SPIxMH:SPIxML)	22-15
	I Register 3 (SPIxC3) — enable FIFO feature	
22.3.8 SPI Clear In	nterrupt Register (SPIxCI)	22-17
	ion	
22.4.1 General		22-18
22.4.2 Master Mod	de	22-18
22.4.3 Slave Mode	9	22-19
22.4.4 SPI FIFO M	MODE	22-21
22.4.5 Data Transr	mission Length	22-22
	Formats	
	Rate Generation	
22.4.8 Special Fea	atures	22-25
	SS Output	
	Bidirectional Mode (MOMI or SISO)	
	itions	
	Mode Fault Error	
22.4.10Low-power	r Mode Options	22-27
	SPI in Run Mode	
	SPI in Wait Mode	
	SPI in Stop Mode	
	Reset	
	nterrupts	
	ıpts	
	MODF	
	SPRF	
	SPTEF	
	SPMF	
	NEAREF	
	RNFULLF	
22.5 Initialization/Applica	ation Information	22-30

xx Freescale Semiconductor

	22.5.1 SPI Module Initialization Example	
	22.5.1.1 Initialization Sequence	
	22.5.1.2 Pseudo—Code Example	. 22-30
	Chantar 00	
	Chapter 23	
	8-bit Serial Peripheral Interface (S08SPIV5)	00.4
23.1	Introduction	
	23.1.1 SPI2 Clock Gating	
	23.1.2 Features	
	23.1.3 Modes of Operation	
	23.1.4 Block Diagrams	
	23.1.4.1 SPI System Block Diagram	
	23.1.4.2 SPI Module Block Diagram	
23.2	External Signal Description	
	23.2.1 SPSCK — SPI Serial Clock	
	23.2.2 MOSI — Master Data Out, Slave Data In	
	23.2.3 MISO — Master Data In, Slave Data Out	
	23.2.4 SS — Slave Select	
23.3	Register Definition	
	23.3.1 SPI Control Register 1 (SPIxC1)	
	23.3.2 SPI Control Register 2 (SPIxC2)	
	23.3.3 SPI Baud Rate Register (SPIxBR)	
	23.3.4 SPI Status Register (SPIxS)	
	23.3.5 SPI Data Register	
	23.3.6 SPI Match Register	
23.4	Functional Description	
	23.4.1 General	
	23.4.2 Master Mode	
	23.4.3 Slave Mode	
	23.4.4 SPI Clock Formats	
	23.4.5 SPI Baud Rate Generation	
	23.4.6 Special Features	
	23.4.6.1 SS Output	
	23.4.6.2 Bidirectional Mode (MOMI or SISO)	
	23.4.7 Error Conditions	
	23.4.7.1 Mode Fault Error	
	23.4.8 Low-power Mode Options	. 23-20
	23.4.8.1 SPI in Run Mode	. 23-20
	23.4.8.2 SPI in Wait Mode	. 23-20
	23.4.8.3 SPI in Stop Mode	. 23-21
	23.4.8.4 Reset	. 23-21
	23.4.8.5 Interrupts	. 23-21
	23.4.9 SPI Interrupts	. 23-21
	23.4.9.1 MODF	. 23-22
	23.4.9.2 SPRF	. 23-22

Freescale Semiconductor xxi

	23.4.9.3 SPTEF	. 23-22
	23.4.9.4 SPMF	
23.5	Initialization/Application Information	. 23-22
	23.5.1 SPI Module Initialization Example	
	23.5.1.1 Initialization Sequence	. 23-22
	23.5.1.2 Pseudo—Code Example	. 23-23
	Chapter 24	
	Time Of Day Module (S08TODV1)	
24.1	Introduction	
	24.1.1 TOD Clock Sources	
	24.1.2 TOD Modes of Operation	
	24.1.3 TOD Status after Stop2 Wakeup	
	24.1.4 Features	
	24.1.5 Modes of Operation	
	24.1.6 Block Diagram	
24.2	External Signal Description	
	24.2.1 TOD Clock (TODCLK)	
	24.2.2 TOD Match Signal (TODMTCHS)	
24.3	Register Descriptions	
	24.3.1 TOD Control Register (TODC)	
	24.3.2 TOD Status and Control Register (TODSC)	
	24.3.3 TOD Match Register (TODM)	
	24.3.4 TOD Counter Register (TODCNT)	
24.4	Functional Description	
	24.4.1 TOD Counter Register	
	24.4.2 TOD Match Value	
	24.4.3 Match Write Complete	
	24.4.4 TOD Clock Select and Prescaler	
	24.4.4.1 TOD Clock Output	
	24.4.5 Quarter-Second, One-Second, and Match Interrupts	
	24.4.5.1 Quarter-Second Interrupt	
	24.4.5.2 One-Second Interrupt	
	24.4.5.3 Match Interrupt	
	24.4.6 Resets	
04 E	24.4.7 Interrupts	
24.5	Initialization	
	24.5.1 Initialization Sequence	
	24.5.2 Initialization Examples	
	24.5.2.2 Initialization Example 2	
24 6	Application Information	. 24-17

xxii Freescale Semiconductor

Chapter 25 Timer/Pulse-Width Modulator (S08TPMV3)

25.1	Introduction	25-1
	25.1.1 ACMP/TPM Configuration Information	
	25.1.2 TPM External Clock	
	25.1.3 TPM Clock Gating	
	25.1.4 Features	
	25.1.5 Modes of Operation	
	25.1.6 Block Diagram	
25.2	Signal Description	
	25.2.1 Detailed Signal Descriptions	
	25.2.1.1 EXTCLK — External Clock Source	
	25.2.1.2 TPMxCHn — TPM Channel n I/O Pins	
25.3	Register Definition	
	25.3.1 TPM Status and Control Register (TPMxSC)	
	25.3.2 TPM-Counter Registers (TPMxCNTH:TPMxCNTL)	
	25.3.3 TPM Counter Modulo Registers (TPMxMODH:TPMxMODL)	
	25.3.4 TPM Channel n Status and Control Register (TPMxCnSC)	
	25.3.5 TPM Channel Value Registers (TPMxCnVH:TPMxCnVL)	. 25-13
25.4	Functional Description	
	25.4.1 Counter	
	25.4.1.1 Counter Clock Source	
	25.4.1.2 Counter Overflow and Modulo Reset	. 25-16
	25.4.1.3 Counting Modes	. 25-16
	25.4.1.4 Manual Counter Reset	. 25-16
	25.4.2 Channel Mode Selection	. 25-16
	25.4.2.1 Input Capture Mode	. 25-16
	25.4.2.2 Output Compare Mode	. 25-17
	25.4.2.3 Edge-Aligned PWM Mode	
	25.4.2.4 Center-Aligned PWM Mode	
25.5	Reset Overview	. 25-19
	25.5.1 General	. 25-19
	25.5.2 Description of Reset Operation	. 25-20
25.6	Interrupts	. 25-20
	25.6.1 General	. 25-20
	25.6.2 Description of Interrupt Operation	. 25-20
	25.6.2.1 Timer Overflow Interrupt (TOF) Description	. 25-2
	25.6.2.1.1 Normal Case	. 25-2
	25.6.2.1.2 Center-Aligned PWM Case	. 25-2
	25.6.2.2 Channel Event Interrupt Description	. 25-21
	25.6.2.2.1 Input Capture Events	
	25.6.2.2.2 Output Compare Events	
	25.6.2.2.3 PWM End-of-Duty-Cycle Events	

Freescale Semiconductor xxiii

Chapter 26 Trans-Impedance Amplifier (TRIAMP)

26.1	Introduction	
	26.1.1 TRIAMP Clock Gating	
	26.1.2 Features	
	26.1.3 Modes of Operation	
	26.1.4 Block Diagram	26-3
	26.1.5 Signal Description	
26.2	Register Definitions	26-4
	26.2.1 TIAMP Control Register 0 (TIAMPxC0)	26-4
26.3	Functional Description	
	26.3.1 Trans-Impedance Amplifier Configuration	
	Chapter 27	
	USB On-the-GO (USBOTG)	
	27.0.1 Module Configuration	27-3
	27.0.2 USB Clock Gating	
27.1	Overview	
	Introduction	
	27.2.1 USB	
	27.2.2 USB On-The-Go	
	27.2.3 USB-FS Features	
	27.2.4 Modes of Operation	
	27.2.4.1 Run Mode	
	27.2.4.2 Wait Mode	
	27.2.4.3 Stop Mode	
27.3	External Signal Description	
	27.3.1 USB Pull-up/Pull-down Connections	
	27.3.2 USB OTG Connections	
27.4	Functional Description	
	27.4.1 Data Structures	
27.5	Programmers Interface	
	27.5.1 Buffer Descriptor Table	
	27.5.2 Rx vs. Tx as a USB Target Device or USB Host	
	27.5.3 Addressing Buffer Descriptor Table Entries	
	27.5.4 Buffer Descriptor Formats	
	27.5.5 USB Transaction	
27 6	Memory Map/Register Definitions	
	27.6.1 Capability Registers	
	27.6.1.1 Peripheral ID Register (PER_ID)	27-16
	27.6.1.2 Peripheral ID Complement Register (ID_COMP)	
	27.6.1.3 Peripheral Revision Register (REV)	
	27.6.1.4 Peripheral Additional Info Register (ADD_INFO)	
	27.6.1.5 OTG Interrupt Status Register (OTG_INT_STAT)	
	27.6.1.6 OTG Interrupt Control Register (OTG_INT_EN)	
	27.0.1.0 OTO IIII ETTUPI COTILI OF NEGISIEF (OTO_IIVI_EIV)	. 21-19

xxiv Freescale Semiconductor

MCF51MM256 Series Devices Reference Manual, Rev. 3

	27.6.1.7	Interrupt Status Register (OTG_STAT)	. 27-20
	27.6.1.8	OTG Control Register (OTG_CTRL)	. 27-21
	27.6.1.9	Interrupt Status Register (INT_STAT)	. 27-22
		Interrupt Enable Register (INT_ENB)	
		Error Interrupt Status Register (ERR_STAT)	
		Error Interrupt Enable Register (ERR_ENB)	
		Status Register (STAT)	
		Control Register (CTL)	
		Address Register (ADDR)	
		BDT Page Register 1 (BDT_PAGE_01)	
		Frame Number Register Low/High (FRM_NUML, FRM_NUMH)	
		Token Register (TOKEN)	
		SOF Threshold Register (SOF_THLD)	
		BDT Page Register 2 (BDT_PAGE_02)	
		BDT Page Register 3 (BDT_PAGE_03)	
		Endpoint Control Registers 0 – 15 (ENDPT0–15)	
		USB Control Register (USB_CTRL)	
		USB OTG Observe Register (USB_OTG_OBSERVE)	
		USB OTG Control Register (USB_OTG_CONTROL)	
		USB Transceiver and Regulator Control Register 0 (USBTRC0)	
a - -		OTG Pin Control Register (OTGPIN)	
27.7		ode Operation	
07.0		ation of External Pull-up/Pull-down for USB	
		tion Examples	
27.9		ation	
		I Role A Device Operation	
		I Role B Device Operation	
		nand State	
	27.9.4 USB Susp	pend State	. 21-41
		Chapter 28	
	,	Voltage Reference Module (S08VREFV1)	
20.1			20.1
20.1		nfiguration Information	
		ock Gating	
		Operation	
		Signal Description	
28.2		Register Definition	
20.2		m Register (VREFTRM)	
	28.2.1 VIXET IIII	atus and Control Register (VREFSC)	28-6
28.3	Functional Descri	ption	28-7
_0.0		deference Disabled, VREFEN=0	
		eference Enabled, VREFEN=1	
	20.0.2 Vollage N	COOLONG EHADIGU, VIXELEIN-L	20-1

Freescale Semiconductor xxv

	28.3.2.1 Mode[1:0]=00	28-7
	28.3.2.2 Mode[1:0]=01	28-7
	28.3.2.3 Mode[1:0]=10	28-8
	28.3.2.4 Mode[1:0]=11	28-8
28.4	Initialization Information	
	Chapter 29	
	Version 1 ColdFire Debug (CF1_DEBUG)	
29.1	Introduction	29-1
	29.1.1 Overview	29-2
	29.1.2 Features	29-3
	29.1.3 Modes of Operations	29-3
29.2	External Signal Descriptions	29-5
29.3	Memory Map/Register Definition	29-6
	29.3.1 Configuration/Status Register (CSR)	
	29.3.2 Extended Configuration/Status Register (XCSR)	
	29.3.3 Configuration/Status Register 2 (CSR2)	
	29.3.4 Configuration/Status Register 3 (CSR3)	
	29.3.5 BDM Address Attribute Register (BAAR)	
	29.3.6 Address Attribute Trigger Register (AATR)	
	29.3.7 Trigger Definition Register (TDR)	
	29.3.8 Program Counter Breakpoint/Mask Registers (PBR0-3, PBMR)	
	29.3.9 Address Breakpoint Registers (ABLR, ABHR)	
	29.3.10Data Breakpoint and Mask Registers (DBR, DBMR)	
	29.3.10.1 Resulting Set of Possible Trigger Combinations	29-26
	29.3.11PST Buffer (PSTB)	
29.4	Functional Description	29-27
	29.4.1 Background Debug Mode (BDM)	29-27
	29.4.1.1 CPU Halt	29-28
	29.4.1.2 Background Debug Serial Interface Controller (BDC)	29-29
	29.4.1.3 BDM Communication Details	29-30
	29.4.1.4 BDM Command Set Descriptions	29-33
	29.4.1.5 BDM Command Set Summary	29-36
	29.4.1.5.1 SYNC	29-38
	29.4.1.5.2 ACK_DISABLE	29-39
	29.4.1.5.3 ACK_ENABLE	29-39
	29.4.1.5.4 BACKGROUND	
	29.4.1.5.5 DUMP_MEM.sz, DUMP_MEM.sz_WS	29-40
	29.4.1.5.6 FILL_MEM.sz, FILL_MEM.sz_WS	29-42
	29.4.1.5.7 GO	
	29.4.1.5.8 NOP	29-43
	29.4.1.5.9 READ_CREG	29-44
	29.4.1.5.10 READ_DREG	
	29.4.1.5.11 READ_MEM.sz, READ_MEM.sz_WS	29-45
	29.4.1.5.12 READ_PSTB	29-46

xxvi Freescale Semiconductor

	29.4.1.5.13 READ_Rn	. 29-46
	29.4.1.5.14 READ_XCSR_BYTE	. 29-46
	29.4.1.5.15 READ_CSR2_BYTE	. 29-47
	29.4.1.5.16 READ_CSR3_BYTE	. 29-47
	29.4.1.5.17 SYNC_PC	. 29-47
	29.4.1.5.18 WRITE_CREG	. 29-48
	29.4.1.5.19 WRITE_DREG	. 29-48
	29.4.1.5.20 WRITE_MEM.sz, WRITE_MEM.sz_WS	. 29-49
	29.4.1.5.21 WRITE_Rn	. 29-50
	29.4.1.5.22 WRITE_XCSR_BYTE	. 29-50
	29.4.1.5.23 WRITE_CSR2_BYTE	. 29-50
	29.4.1.5.24 WRITE_CSR3_BYTE	. 29-50
	29.4.1.5.25 BDM Accesses of the MAC Registers	. 29-51
	29.4.1.6 Serial Interface Hardware Handshake Protocol	. 29-51
	29.4.1.7 Hardware Handshake Abort Procedure	. 29-53
	29.4.2 Real-Time Debug Support	. 29-56
	29.4.3 Trace Support	. 29-56
	29.4.3.1 Begin Execution of Taken Branch (PST = 0x05)	. 29-58
	29.4.3.2 PST Trace Buffer (PSTB) Entry Format	. 29-60
	29.4.3.3 PST/DDATA Example	. 29-60
	29.4.3.4 Processor Status, Debug Data Definition	. 29-62
	29.4.3.4.1 User Instruction Set	. 29-62
	29.4.3.4.2 Supervisor Instruction Set	
	29.4.4 Freescale-Recommended BDM Pinout	. 29-67
	Appendix A	
	Revision History	
A.1	Changes Between Rev. 0 and Rev. 1	A-1
A.2	Changes Between Rev. 1 and Rev. 2	
A.3	Changes Between Rev. 2 and Rev. 3	
	9	_

MCF51MM256 Series Devices Reference Manual, Rev. 3 Freescale Semiconductor xxvii

xxviii Freescale Semiconductor

About This Book

The primary objective of this reference manual is to define the processor for software and hardware developers. The information in this book is subject to change without notice, as described in the disclaimers on the title page. As with any technical documentation, the reader must use the most recent version of the documentation.

To locate any published errata or updates for this document, refer to the world-wide web at http://www.freescale.com/coldfire.

Portions of Chapter 27, "USB On-the-GO (USBOTG) relating to the EHCI specification are Copyright © Intel Corporation 1999-2001. The EHCI specification is provided "As Is" with no warranties whatsoever, including any warranty of merchantability, non-infringement, fitness for any particular purpose, or any warranty otherwise arising out of any proposal, specification or sample. Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to use of information in the EHCI specification. Intel may make changes to the EHCI specifications at any time, without notice.

Audience

This manual is intended for system software and hardware developers and applications programmers who want to develop products with this ColdFire processor. It is assumed that the reader understands operating systems, microprocessor system design, basic principles of software and hardware, and basic details of the ColdFire® architecture.

Suggested Reading

This section lists additional reading that provides background for the information in this manual as well as general information about ColdFire architecture.

General Information

Useful information about the ColdFire architecture and computer architecture in general:

- ColdFire Programmers Reference Manual (MCF5200PRM/AD)
- *Using Microprocessors and Microcomputers: The Motorola Family,* William C. Wray, Ross Bannatyne, Joseph D. Greenfield
- Computer Architecture: A Quantitative Approach, Second Edition, by John L. Hennessy and David A. Patterson.
- Computer Organization and Design: The Hardware/Software Interface, Second Edition, David A. Patterson and John L. Hennessy.

Freescale Semiconductor xxix

ColdFire Documentation

ColdFire documentation is available from the sources listed on the back cover of this manual, as well as our web site, http://www.freescale.com/coldfire.

- Reference manuals These books provide details about individual ColdFire implementations and are intended to be used in conjunction with the *ColdFire Programmers Reference Manual*.
- Data sheets Data sheets provide specific data regarding pin-out diagrams, bus timing, signal behavior, and AC, DC, and thermal characteristics, as well as other design considerations.
- Product briefs Each device has a product brief that provides an overview of its features. This document is roughly equivalent to the overview (Chapter 1) of an device's reference manual.
- Application notes These short documents address specific design issues useful to programmers and engineers working with Freescale Semiconductor processors.

Additional literature is published as new processors become available. For a current list of ColdFire documentation, refer to http://www.freescale.com/coldfire.

Conventions

This document uses the following notational conventions:

cleared/set When a bit takes the value zero, it is said to be cleared; when it takes a value of

one, it is said to be set.

MNEMONICS In text, instruction mnemonics are shown in uppercase.

mnemonics In code and tables, instruction mnemonics are shown in lowercase.

italics Italics indicate variable command parameters.

Book titles in text are set in italics.

0x0 Prefix to denote hexadecimal number

ObO Prefix to denote binary number

REG[FIELD] Abbreviations for registers are shown in uppercase. Specific bits, fields, or ranges

appear in brackets. For example, RAMBAR[BA] identifies the base address field

in the RAM base address register.

nibble A 4-bit data unit
byte An 8-bit data unit
word A 16-bit data unit
longword A 32-bit data unit

x In some contexts, such as signal encodings, x indicates a don't care.

n Used to express an undefined numerical value

NOT logical operator& AND logical operatorOR logical operator

xxx Freescale Semiconductor

¹The only exceptions to this appear in the discussion of serial communication modules that support variable-length data transmission units. To simplify the discussion these units are referred to as words regardless of length.

| Field concatenation operator

OVERBAR An overbar indicates that a signal is active-low.

Register Figure Conventions

This document uses the following conventions for the register reset values:

— Undefined at reset.

u Unaffected by reset.

[signal_name] Reset value is determined by the polarity of the indicated signal.

The following register fields are used:

R 0 W	Indicates a reserved bit field in a memory-mapped register. These bits are always read as zeros.
R 1 W	Indicates a reserved bit field in a memory-mapped register. These bits are always read as ones.
R FIELDNAME	Indicates a read/write bit.
R FIELDNAME W	Indicates a read-only bit field in a memory-mapped register.
R W FIELDNAME	Indicates a write-only bit field in a memory-mapped register.
R FIELDNAME W w1c	Write 1 to clear: indicates that writing a 1 to this bit field clears it.
R 0 W FIELDNAME	Indicates a self-clearing bit.

Freescale Semiconductor xxxi

xxxii Freescale Semiconductor

Chapter 1 Device Overview

1.1 The MCF51MM256 Series Microcontroller

1.1.1 Definition

The MCF51MM256 and MCF51MM128 series microcontrollers are systems-on-chip (SoCs) that are based on the ColdFire $^{\circledR}$ V1 core and:

- Operate at processor core speeds up to 50.33 MHz (peripherals operate at half of this speed).
- Integrate technologies that are important for today's consumer and industrial applications, such as USB On-the-Go and high precision analog.

1.1.2 Devices in the MCF51MM256 series

There are two members of the MCF51MM256 series, each available in various packages, as shown in Table 1-1.

Table 1-1. MCF51MM256 Series Package Availability

	MCF51MM256	MCF51MM128
104-pin MAPBGA	Yes	_
100-pin LQFP	Yes	_
81-pin MAPBGA	Yes	Yes
80-pin LQFP	Yes	Yes

The MCF51MM256 series is summarized in the following tables.

Table 1-2. MCF51MM256/128 Features by MCU and Package

Feature		MCF51N	/M256		MCF5	1MM128
FLASH Size (bytes)	262144		131072			
RAM Size (bytes)	32K			32K		
Pin Quantity	104	100	81	80	81	80
Programmable Analog Comparator (PRACMP)	yes	yes	yes	yes	yes	yes
Debug Module (DBG)	yes	yes	yes	yes	yes	yes
Multipurpose Clock Generator (MCG)	yes	yes	yes	yes	yes	yes
Inter-Integrated Communication (IIC)	yes	yes	yes	yes	yes	yes
Interrupt Request Pin (IRQ)	yes	yes	yes	yes	yes	yes

Freescale Semiconductor 1-1

Device Overview

Table 1-2. MCF51MM256/128 Features by MCU and Package

Feature		MCF51N	IM256		MCF5	1MM128
Keyboard Interrupt (KBI)	16	16	16	16	16	16
Digital General Purpose I/O ¹	69	65	48	47	48	47
Dedicated Analog Input Pins	14	14	14	14	14	14
Power and Ground Pins	8	8	8	8	8	8
Time Of Day (TOD)	yes	yes	yes	yes	yes	yes
Serial Communications (SCI1)	yes	yes	yes	yes	yes	yes
Serial Communications (SCI2)	yes	yes	yes	yes	yes	yes
Serial Peripheral Interface (SPI1(FIFO))	yes	yes	yes	yes	yes	yes
Serial Peripheral Interface(SPI2)	yes	yes	yes	yes	yes	yes
Carrier Modulator Timer Pin (IRO)	yes	yes	yes	yes	yes	yes
TPM Input Clock Pin (TPMCLK)	yes	yes	yes	yes	yes	yes
TPM1 Channels	4	4	4	4	4	4
TPM2 Channels	4	4	4	4	4	4
XOSC1	yes	yes	yes	yes	yes	yes
XOSC2	yes	yes	yes	yes	yes	yes
USB On-the-Go	yes	yes	yes	yes	yes	yes
Mini-FlexBus	yes	yes	DATA ²	DATA ²	DATA ²	DATA ²
Rapid GPIO	16	16	9	9	9	9
MEASU	JREMENT E	NGINE				
Programmable Delay Block (PDB)	yes	yes	yes	yes	yes	yes
16-Bit SAR ADC Differential Channels ³	4	4	4	4	4	4
16-Bit SAR ADC Single-Ended Channels	8	8	8	8	8	8
DAC Ouput Pin (DACO)	yes	yes	yes	yes	yes	yes
Voltage Reference Output Pin (VREFO)	yes	yes	yes	yes	yes	yes
General Purpose Operational Amplifier (OPAMP)	yes	yes	yes	yes	yes	yes
Trans-Impedance Amplifier (TRIAMP)	yes	yes	yes	yes	yes	yes

¹ Port I/O count does not include BLMS, BKGD and IRQ. BLMS and BKGD are Output only, IRQ is input only.

1.2 MCF51MM256/128 Block Diagram

Figure 1-1 shows the connections between the MCF51MM256/ pins and modules.

² The 80/81 pin packages contain the Mini-FlexBus data pins to support an 8-bit data bus interface to external peripherals.

³ Each differential channel is comprised of 2 pin inputs.

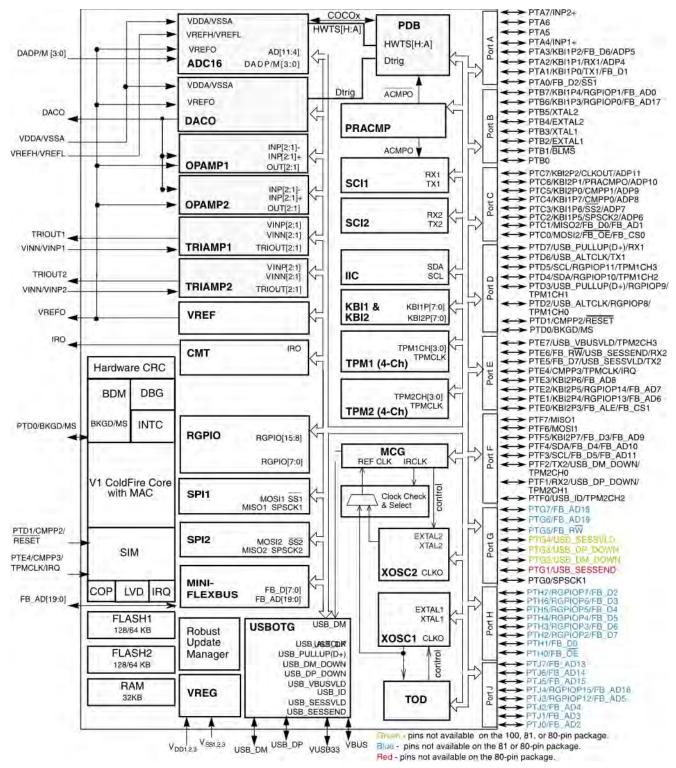


Figure 1-1. MCF51MM256 Series Block Diagram

Freescale Semiconductor 1-3

1.2.1 Functional Units

Table 1-3 describes the functional units of the MCF51MM256/128devices.

Table 1-3. MCF51MM256/128 Functional Units

Measurement Engine DAC (digital to analog converter) — Used to output voltages at up to 16 bits of resolution. The ADC has differential and 8 single-ended inputs. OPAMP — General purpose op amp used for signal amplification. TRIAMP — Transimpedance amplifier optimized for currents into voltages. Measurement Engine PDB — The measurement ento precisely trigger the DAC and the ADC modules to biasing and measuring. Mini-FlexBus Provides expansion capability for off-chip memory and the ADC memory and	easures analog up to four I filtering or r converting small agine PDB is used to complete sensor
16-BIT SAR ADC (analog-to-digital converter) — Me voltages at up to 16 bits of resolution. The ADC has differential and 8 single-ended inputs. OPAMP — General purpose op amp used for signal amplification. TRIAMP — Transimpedance amplifier optimized for currents into voltages. Measurement Engine PDB — The measurement en to precisely trigger the DAC and the ADC modules to biasing and measuring.	easures analog up to four I filtering or r converting small agine PDB is used to complete sensor
voltages at up to 16 bits of resolution. The ADC has differential and 8 single-ended inputs. OPAMP — General purpose op amp used for signal amplification. TRIAMP — Transimpedance amplifier optimized for currents into voltages. Measurement Engine PDB — The measurement en to precisely trigger the DAC and the ADC modules to biasing and measuring.	I filtering or r converting small gine PDB is used o complete sensor
amplification. TRIAMP — Transimpedance amplifier optimized for currents into voltages. Measurement Engine PDB — The measurement en to precisely trigger the DAC and the ADC modules to biasing and measuring.	r converting small gine PDB is used complete sensor
currents into voltages. Measurement Engine PDB — The measurement en to precisely trigger the DAC and the ADC modules to biasing and measuring.	igine PDB is used complete sensor
to precisely trigger the DAC and the ADC modules to biasing and measuring.	o complete sensor
Mini-FlexBus Provides expansion capability for off-chip memory a	nd peripherals.
USB On-the-Go dual-role controller.	
CMT (Carrier Modulator Timer) Infrared output used for the Remote Controller oper	ration.
MCG (Multipurpose Clock Generator) Provides clocking options for the device, including a particular (PLL) and frequency-locked loop (FLL) for multiplying clock sources.	
BDM (Background Debug Module) Provides single pin debugging interface (part of the	V1 ColdFire core).
CF1 CORE (V1 ColdFire Core) Executes programs and interrupt handlers.	
PRACMP Analog comparators for comparing external analog seach other, or a variety of reference levels.	signals against
COP (Computer Operating Properly) Software Watchdog.	
IRQ (Interrupt Request) Single-pin high-priority interrupt (part of the V1 Cold	lFire core).
CRC (Cyclic Redundancy Check) High-speed CRC calculation.	
DBG (Debug) Provides debugging and emulation capabilities (part core)	of the V1 ColdFire.
FLASH (Flash Memory) Provides storage for program code, constants, and v	variables.
IIC (Inter-integrated Circuits) Supports standard IIC communications protocol and	SMBus.
INTC (Interrupt Controller) Controls and prioritizes all device interrupts.	
KBI1 & KBI2 Keyboard Interfaces 1 and 2.	
LVD (Low-voltage Detect) Provides an interrupt to theColdFire V1 CORE in the supply voltage drops below a critical value. The LVD programmed to reset the device upon a low voltage	can also be
VREF (Voltage Reference) The Voltage Reference output is available for both or	n- and off-chip use.

1-4 Freescale Semiconductor

Table 1-3. MCF51MM256/128 Functional Units (Continued)

Unit	Function
RAM (Random-Access Memory)	Provides stack and variable storage.
RGPIO (Rapid General-purpose Input/output)	Allows for I/O port access at CPU clock speeds. RGPIO is used to implement GPIO functionality.
SCI1, SCI2 (Serial Communications Interfaces)	Serial communications UARTs capable of supporting RS-232 and LIN protocols.
SIM (system integration unit)	
SPI1 (FIFO), SPI2 (Serial Peripheral Interfaces)	SPI1 and SPI2 provide standard master/slave capability. SPI contains a FIFO buffer in order to increase the throughput for this peripheral.
TPM1, TPM2 (Timer/PWM Module)	Timer/PWM module can be used for a variety of generic timer operations as well as pulse-width modulation.
VREG (Voltage Regulator)	Controls power management across the device.
XOSC1 and XOSC2 (Crystal Oscillators)	These devices incorporate redundant crystal oscillators. One is intended primarily for use by the TOD, and the other by the CPU and other peripherals.

1.2.2 Functional Versions

Table 1-4 provides the functional version of the on-chip modules.

Table 1-4. Versions of On-Chip Modules

Module ¹	Version						
Analog-to-Digital Converter (ADC16)							
General Purpose Operational Amplifier (OPAMP)							
Trans-Impedance Operational Amplifier (TRIAMP)							
Digital to Analog Converter (DAC)	1						
Programmable Delay Block (PDB)							
Central Processing Unit — ColdFire V1 (CPU)							
Inter-Integrated Circuit (IIC)							
Multi-Purpose Clock Generator (MCG)							
Low-Power Oscillator (XOSCVLP)							
Carrier Modulator Timer (CMT)							
Mini-FlexBus	1						
On-Chip In-Circuit Debug/Emulator - ColdFire V1 (DBG)	1						

Freescale Semiconductor 1-5

Device Overview

Table 1-4. Versions of On-Chip Modules (Continued)

Module ¹	Version						
Programable Analog Comparator (PRACMP)							
Serial Communications Interface (SCI)							
Serial Peripheral Interface (SPI)							
Time-of-Day (TOD)	1						
USB On-the-Go (USBOTG)	1						
Timer Pulse-Width Modulator (TPM)							
System Integration Module (SIM)							
Cyclic Redundancy Check	3						
Keyboard Interrupt	2						
Voltage Reference (VREF)	1						
Voltage Regulator (VREG)	1						
Interrupt Request (IRQ)	3						
Flash Wrapper	1						
GPIO	0						
Port Control	1						

¹Shaded Modules comprise the measurement engine.

1.3 V1 ColdFire Core

The MCF51MM256/128 devices contain a version of the V1 ColdFire platform that is optimized for area and low power. The CPU implements ColdFire instruction set architecture revision C (ISA_C) with added capabilities:

- Hardware MAC support for $16X16 \pm 32$ and $32X32 \pm 32$ bit multiply-accumulate operations (32-bit accumulator)
- Upward compatibility with all other ColdFire cores (V2–V5)

An integrated multi-master crossbar switch on the ColdFire system busses provides access to system resources by the CPU.

For more details on the V1 ColdFire core, see Chapter 7, "ColdFire Core."

A simplified block diagram of the V1 core including the processor and debug module is shown in Figure 1-2.

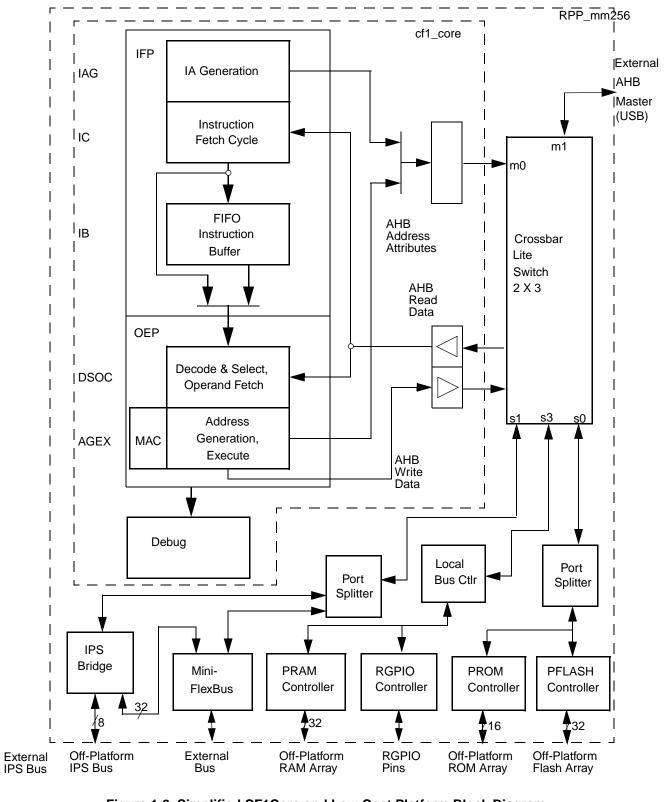


Figure 1-2. Simplified CF1Core and Low-Cost Platform Block Diagram

Table 1-5. Acronyms used in Figure 1-2

Acronym	Meaning
IFP	Instruction Fetch Pipeline
OEP	Operand Fetch Pipeline
PST/DDATA	Processor Status / Debug Data
BDC	Background Debug Controller
BDM	Background Debug Module
RTD	Real Time Debug
AXBS	Amba-AHB Crossbar Switch
INTC	Interrupt Controller
IPS	IP Skyblue Bus Controller

1.3.1 User Programming Model

Table 1-6 illustrates the integer portion of the user programming model. It consists of the following registers:

- 16 general-purpose 32-bit registers (D0–D7, A0–A7)
- 32-bit program counter (PC)
- 8-bit condition code register (CCR)

1.3.2 Supervisor Programming Model

System programmers use the supervisor programming model to implement operating system functions. All accesses that affect the control features of ColdFire processors must be made in supervisor mode and can be accessed only by privileged instructions. The supervisor programming model consists of the registers available in user mode as well as the registers listed in Table 1-6.

Table 1-6. Version 1 ColdFire CPU Programming Model

Register	Width (bits)	Reset Value								
Supervisor/User Registers										
Data Register 0 (D0)	32	0xCF1*_**29								
Data Register 1 (D1)	32	0x010*0_10*0								
Data Register 2–7 (D2–D7)	32	Undefined								
Address Register 0–6 (A0–A6)	32	Undefined								
Supervisor/User A7 Stack Pointer (A7)	32	Undefined								
Program Counter (PC)	32	Contents of memory at 0x00_0004								
Condition Code Register (CCR)	8	Undefined								

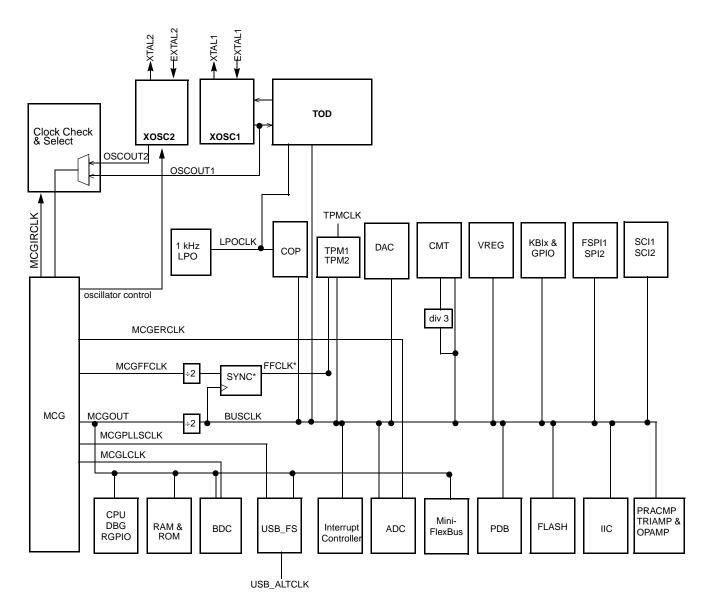
MCF51MM256 Series Devices Reference Manual, Rev. 3

1-8 Freescale Semiconductor

Table 1-6. Version 1 ColdFire CPU Programming Model (Continued)

Register	Width (bits)	Reset Value								
Supervisor Registers										
Status Register (SR)	16	0x27								
User/Supervisor A7 Stack Pointer (OTHER_A7)	32	Contents of memory at 0x00_0000								
Vector Base Register (VBR)	32	0x0000_0000								
CPU Configuration Register (CPUCR)	32	0x0000_0000								

1.4 System Clocks


This section discusses on-chip clock generation and distribution for the MCF51MM256 series devices.

1.4.1 System Clock Distribution

Figure 1-3 shows how clocks from the MCG and XOSCx are distributed to the microcontroller's other functional units. Some modules in the microcontroller have selectable clock inputs. All memory-mapped registers associated with the modules (except RGPIO) are clocked with BUSCLK. The RGPIO registers are clocked with the CPU clock (MCGOUT).

Device Overview

Note: The ADC has minimum and maximum frequency requirements. See the ADC chapter and the *MCF51MM256 series Data Sheet*. Flash memory has frequency requirements for program and erase operations. Each ADC also has it's own internal asynchronous clock source, which is not shown above.

Figure 1-3. System Clock Distribution Diagram

^{*} The fixed frequency clock (FFCLK) is internally synchronized to the bus clock (BUSCLK) and must not exceed one half of the bus clock frequency.

1.4.2 System Clocks

Table 1-7 describes each of the system clocks.

Table 1-7. System Clocks

Clock	Description
MCGOUT	This clock source is used as the CPU clock and is divided by two to generate the peripheral bus clock. Control bits in the MCG control registers determine which of three clock sources is connected: • Internal reference clock • External reference clock • Frequency-locked loop (FLL) or phase-locked loop (PLL) output This clock drives the CPU, debug, RAM, and BDM directly and is divided by two to clock all peripherals (BUSCLK). See Chapter 17, "Multipurpose Clock Generator (S08MCGV3)," for details on configuring the
	MCGOUT clock.
MCGLCLK	This clock source is derived from the digitally controlled oscillator (DCO) of the MCG. Development tools can select this internal self-clocked source to speed up BDC communications in systems where the bus clock is slow.
MCGERCLK	MCG External Reference Clock—This is the external reference clock and can be selected as the alternate clock for the ADC.
MCGIRCLK	MCG Internal Reference Clock—This is the internal reference clock and can be selected as the TOD clock source.
MCGFFCLK	MCG Fixed-Frequency Clock—This clock is divided by 2 to generate the fixed frequency clock (FFCLK) after being synchronized to the bus clock. It can be selected as clock source for the TPM modules. The frequency of the FFCLK is determined by the settings of the MCG.
LPOCLK	Low-Power Oscillator Clock —This clock is generated from an internal low-power oscillator that is completely independent of the MCG module. The LPOCLK can be selected as the clock source to the TOD or COP.
TPMCLK	TPM Clock —An optional external clock source for the TPMs. This clock must be limited to one-quarter the frequency of the bus clock for synchronization.
MCGPLLSCLK	This clock has a direct connection to the PLL output clock (running at 48 MHz) and thus allows the user to have the flexibility to run the MCGOUT at lower frequencies to conserve power.
ADACK (not shown)	The ADC module also has an internally generated asynchronous clock that allows it to run in STOP mode (ADACK). This signal is not available externally.
OSCOUT1	Low-power crystal oscillator output that can be used as the reference clock to the MCG or the TOD.
OSCOUT2	Low-power crystal oscillator output that can be used as the reference clock to the MCG.

1.4.3 Clock Gating

To save power, peripheral clocks can be shut off by programming the system clock gating registers. For details, refer to Section 5.7.7, "System Clock Gating Control 1 Register (SCGC1)".

1.4.4 MCG Modes of Operation

The MCG operates in one of the modes described in Table 1-8.

Freescale Semiconductor 1-11

Table 1-8. MCG Modes

Mode	Related field values ¹	Description
FLL Engaged Internal (FEI)	• MCGC1[IREFS] = 1 • MCGC1[CLKS] = 00 • MCGC3[PLLS] = 0	Default. The MCG supplies a clock derived from one of the on-chip FLLs, which is sourced by the internal reference clock. Upon exiting reset, the default FLL is that which generates the x MHz bus / y MHz CPU clocks.
FLL Engaged External (FEE)	• MCGC1[IREFS] = 0 • MCGC1[CLKS] = 00 • MCGC3[PLLS] = 0	The MCG supplies a clock derived from the FLL, which is sourced from an external reference clock (or crystal oscillator).
FLL Bypassed Internal (FBI)	 MCGC1[IREFS] = 1 MCGC1[CLKS] = 01 MCGC3[PLLS] = 0 XCSM[ENBDM] = 1 or MCGC2[LP] = 0 	The FLL is enabled and sourced by the internal reference clock but is bypassed. The MCGOUT clock is derived from the internal reference clock.
FLL Bypassed External (FBE)	 MCGC1[IREFS] = 0 MCGC1[CLKS] = 10 MCGC3[PLLS] = 0 XCSM[ENBDM] = 1 or MCGC2[LP] = 0 	The FLL is enabled and controlled by an external reference clock but is bypassed. The MCGOUT clock is derived from the external reference clock. The external reference clock can be an external crystal/resonator supplied by an XOSC1 or XOSC2 controlled by the MCG, or it can be another external clock source.
PLL Engaged External (PEE)	• MCGC1[IREFS] = 0 • MCGC1[CLKS] = 00 • MCGC3[PLLS] = 1	The MCG supplies a clock derived from the PLL, which is sourced from an external reference clock (or crystal oscillator).
PLL Bypassed External (PBE)	 MCGC1[IREFS] = 0 MCGC1[CLKS] = 10 MCGC3[PLLS] = 1 XCSM[ENBDM] = 1 or MCGC2[LP] = 0 	The MCG supplies a clock MCGOUT derived from the external reference clock (or crystal oscillator). The PLL is also sourced from the external clock source but is bypassed.
Bypassed Low Power Internal (BLPI)	 MCGC1[IREFS] = 1 MCGC1[CLKS] = 01 XCSM[ENBDM] = 0 and MCGC2[LP] = 1 	The FLL and PLL are disabled and bypassed, and the MCG supplies MCGOUT derived from the internal reference clock.
Bypassed Low Power External (BLPE)	 MCGC1[IREFS] = 0 MCGC1[CLKS] = 10 XCSM[ENBDM] = 0 and MCGC2[LP] = 1 	The FLL and PLL are disabled and bypassed, and the MCG supplies MCGOUT derived from the external reference clock.
STOP	_	The FLL and PLL are disabled, and the internal or external reference clocks can be selected to be enabled or disabled. The microcontroller does not provide a microcontroller clock source unless BDC[ENBDM] is enabled.

For descriptions of the MCGC1, MCGC2, and MCGC3 registers, see Chapter 17, "Multipurpose Clock Generator (S08MCGV3)". For a description of the XCSM register, see Chapter 29, "Version 1 ColdFire Debug (CF1_DEBUG)".

1.4.5 MCG Mode State Diagram

Figure 1-4 shows the valid state transitions for the MCG.

The IREFS and CLKS fields are contained within the MCG module definition. The LP bit is part of the on-chip power management controller (PMC) block.

The clock source for the BDC is controlled by the BDC clksw bit. Choices for the BDC clock are MCGOUT and the output from DCO.

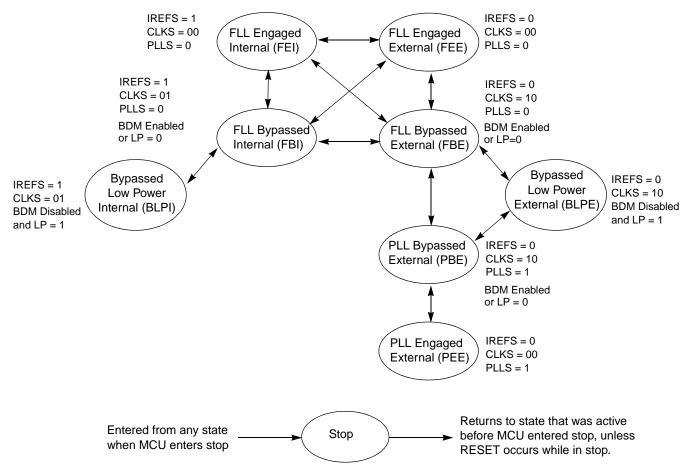


Figure 1-4. MCG Mode State Diagram

Freescale Semiconductor 1-13

Device Overview

1-14 Freescale Semiconductor

Chapter 2 Pins and Connections

This section describes signals that connect to package pins. It includes pinout diagrams, recommended system connections, and detailed discussions of signals.

2.1 Device Pin Assignments

The following figures depict the various device pin assignments.

2.2 104-Pin MAPBGA

The following figure shows the 104-pin MAPBGA pinout configuration.

	1	2	3	4	5	6	7	8	9	10	11	_
A	PTF6	PTF7	USB_DP	USB_DM	VUSB33	PTF4	PTF3	FB_AD12	PTJ7	PTJ5	PTJ4	Α
В	PTG0	PTA0	PTG3	VBUS	PTF5	PTJ6	PTH0	PTE5	PTF0	PTF1	PTF2	В
С	IRO	PTG4	PTA6	PTG2	PTG6	PTG5	PTG7	PTH1	PTE4	PTE6	PTE7	С
D	PTA5	PTA4	PTB1	VDD1		VDD2		VDD3	PTA1	PTE3	PTE2	D
E	VSSA	PTA7	PTB0						PTA2	PTJ3	PTE1	E
F	VREFL	INP1-	INP2-	PTG1				PTC7	PTJ2	PTJ0	PTJ1	F
G	TRIOUT1	OUT1	OUT2						PTD5	PTD7	PTE0	G
Н	VINP1	VINN1	PTA3	VSS1		VSS2		VSS3	PTD4	PTD3	PTD2	н
J	DADP0	DADM0	PTH7	PTH6	PTH4	PTH3	PTH2	PTD6	PTC2	PTC0	PTC1	J
K	VINP2	VINN2	DADP1	PTH5	PTB6	PTB7	PTC3	PTD1	PTC4	PTC5	PTC6	K
L	TRIOUT2	DACO	DADM1	VREFO	VREFH	VDDA	PTB3	PTB2	PTD0	PTB5	PTB4	L
	1	2	3	4	5	6	7	8	9	10	11	_

Figure 2-1. 104-Pin MAPBGA

2.3 100-Pin LQFP

The following figure shows the 100-pin LQFP pinout configuration.

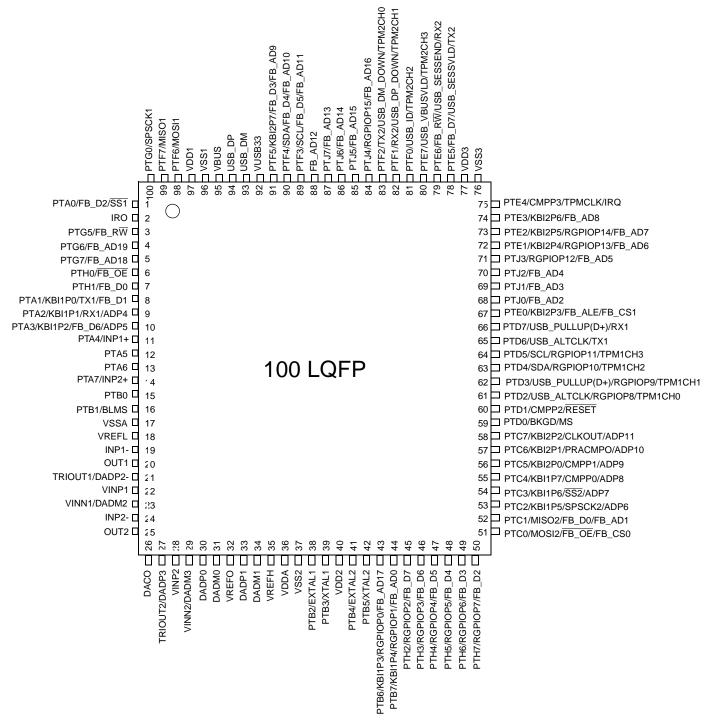


Figure 2-2. 100-Pin LQFP

Freescale Semiconductor 2-3

2.4 81-Pin MAPBGA

The following figure shows the 81-pin MAPBGA pinout configuration.

	1	2	3	4	5	6	7	8	9	_
Α	IRO	PTG0	PTF6	USB_DP	VBUS	VUSB33	PTF4	PTF3	PTE4	Α
В	PTF7	PTA0	PTG1	USB_DM	PTF5	PTE7	PTF1	PTF0	PTE3	В
С	PTA4	PTA5	PTA6	PTA1	PTF2	PTE6	PTE5	PTE2	PTE1	С
D	INP1-	PTA7	PTB0	PTB1	PTA2	PTA3	PTD5	PTD7	PTE0	D
E	OUT1	VINN1	OUT2	VDD2	VDD3	VDD1	PTD2	PTD3	PTD6	E
F	VINP1	TRIOUT1	INP2-	VSS2	VSS3	VSS1	PTB7	PTC7	PTD4	F
G	DADP0	DACO	TRIOUT2	VINN2	VREFO	PTB6	PTC0	PTC1	PTC2	G
н	DADM0	DADM1	DADP1	VINP2	PTC3	PTC4	PTD0	PTC5	PTC6	Н
J	VSSA	VREFL	VREFH	VDDA	PTB2	PTB3	PTD1	PTB4	PTB5	J
	1	2	3	4	5	6	7	8	9	•

Figure 2-3. 81-Pin MAPBGA

2.5 80-Pin LQFP

The following figure shows the 80-pin LQFP pinout configuration.

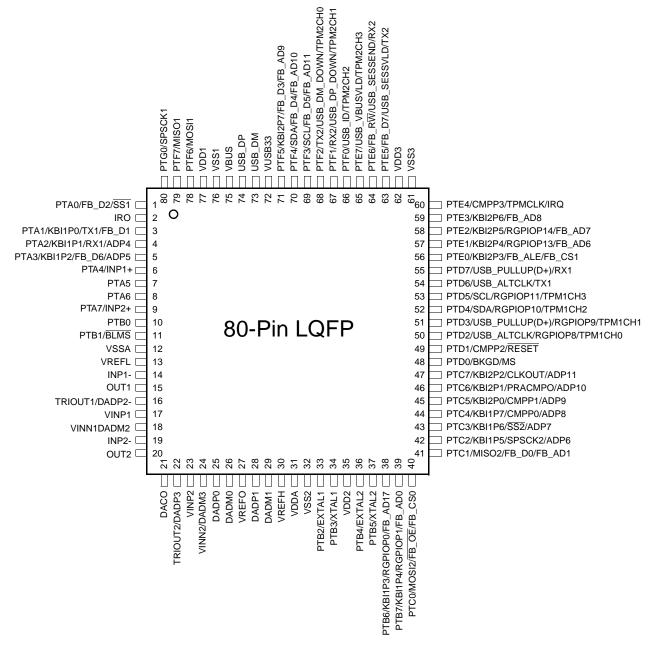


Figure 2-4. 80-Pin LQFP

Freescale Semiconductor 2-5

2.6 Pin Assignments

MCF51MM256/128 uses the HCS08 style of pin muxing to be Flexis-compatible. The pin defaults as GPIO and the alternate functions follow a priority where ALT3 has the highest priority. The following table shows the package pin assignments.

Table 2-1. Package Pin Assignments

	Pac	kage						
104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Alternate 1	Alternate 2	Alternate 3	Composite Pin Name
B2	1	B2	1	PTA0	FB_D2	SS1	_	PTA0/FB_D2/ SS1
C1	2	A1	2	IRO	_	_	_	IRO
C6	3	_	_	PTG5	FB_RW	_	_	PTG5/FB_RW
C5	4	_	_	PTG6	FB_AD19	_	_	PTG6/FB_AD19
C7	5	_	_	PTG7	FB_AD18	_	_	PTG7/FB_AD18
В7	6	_	_	PTH0	FB_OE	_	_	PTH0/FB_OE
C8	7	_	_	PTH1	FB_D0	_	_	PTH1/FB_D0
D9	8	C4	3	PTA1	KBI1P0	TX1	FB_D1	PTA1/KBI1P0/TX1/FB_D1
E9	9	D5	4	PTA2	KBI1P1	RX1	ADP4	PTA2/KBI1P1/RX1/ADP4
НЗ	10	D6	5	PTA3	KBI1P2	FB_D6	ADP5	PTA3/KBI1P2/FB_D6/ADP5
D2	11	C1	6	PTA4	INP1+	_	_	PTA4/INP1+
D1	12	C2	7	PTA5	_	_	_	PTA5
C3	13	С3	8	PTA6	_	_	_	PTA6
E2	14	D2	9	PTA7	INP2+	_	_	PTA7/INP2+
E3	15	D3	10	PTB0	_	_	_	PTB0
D3	16	D4	11	PTB1	BLMS	_	_	PTB1/BLMS
E1	17	J1	12	VSSA	_	_	_	VSSA
F1	18	J2	13	VREFL	_	_	_	VREFL
F2	19	D1	14	INP1-	_	_	_	INP1-
G2	20	E1	15	OUT1	_	_	_	OUT1
G1	21	F2	16	DADP2	TRIOUT1	_	_	DADP2/TRIOUT1
H1	22	F1	17	VINP1	_	_	_	VINP1
H2	23	E2	18	DADM2	VINN1	_	_	DADM2/VINN1
F3	24	F3	19	INP2-	_	_	_	INP2-
G3	25	E3	20	OUT2	_	_	_	OUT2

2-6 Freescale Semiconductor

Table 2-1. Package Pin Assignments

	Pacl	kage						
104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Alternate 1	Alternate 2	Alternate 3	Composite Pin Name
L2	26	G2	21	DACO	_	_	_	DACO
L1	27	G3	22	DADP3	TRIOUT2	_	_	DADP3/TRIOUT2
K1	28	H4	23	VINP2	_	_	_	VINP2
K2	29	G4	24	DADM3	VINN2	_	_	DADM3/VINN2
J1	30	G1	25	DADP0	_	_	_	DADP0
J2	31	H1	26	DADM0	_	_	_	DADM0
L4	32	G5	27	VREFO	_	_	_	VREFO
K3	33	Н3	28	DADP1	_	_	_	DADP1
L3	34	H2	29	DADM1	_	_	_	DADM1
L5	35	J3	30	VREFH	_	_	_	VREFH
L6	36	J4	31	VDDA	_	_	_	VDDA
H6	37	F4	32	VSS2	_	_	_	VSS2
L8	38	J5	33	PTB2	EXTAL1	_	_	PTB2/EXTAL1
L7	39	J6	34	PTB3	XTAL1	_	_	PTB3/XTAL1
D6	40	E4	35	VDD2	_	_	_	VDD2
L11	41	J8	36	PTB4	EXTAL2	_	_	PTB4/EXTAL2
L10	42	J9	37	PTB5	XTAL2	_	_	PTB5/XTAL2
K5	43	G6	38	PTB6	KBI1P3	RGPIOP0	FB_AD17	PTB6/KBI1P3/RGPIOP0/FB_AD17
K6	44	F7	39	PTB7	KBI1P4	RGPIOP1	FB_AD0	PTB7/KBI1P4/RGPIOP1/FB_AD0
J7	45	_	_	PTH2	RGPIOP2	FB_D7	_	PTH2/RGPIOP2/FB_D7
J6	46	_	_	PTH3	RGPIOP3	FB_D6	_	PTH3/RGPIOP3/FB_D6
J5	47	_	_	PTH4	RGPIOP4	FB_D5	_	PTH4/RGPIOP4/FB_D5
K4	48	_	_	PTH5	RGPIOP5	FB_D4	_	PTH5/RGPIOP5/FB_D4
J4	49	_	_	PTH6	RGPIOP6	FB_D3	_	PTH6/RGPIOP6/FB_D3
J3	50	_	_	PTH7	RGPIOP7	FB_D2	_	PTH7/RGPIOP7/FB_D2
J10	51	G7	40	PTC0	MOSI2	FB_OE	FB_CS0	PTC0/MOSI2/FB_OE/FB_CS0
J11	52	G8	41	PTC1	MISO2	FB_D0	FB_AD1	PTC1/MISO2/FB_D0/FB_AD1
J9	53	G9	42	PTC2	KBI1P5	SPSCK2	ADP6	PTC2/KBI1P5/SPSCK2/ADP6
K7	54	H5	43	PTC3	KBI1P6	SS2	ADP7	PTC3/KBI1P6/SS2/ADP7

Table 2-1. Package Pin Assignments

	Pacl	kage						
104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Alternate 1	Alternate 2	Alternate 3	Composite Pin Name
K 9	55	H6	44	PTC4	KBI1P7	CMPP0	ADP8	PTC4/KBI1P7/CMPP0/ADP8
K10	56	H8	45	PTC5	KBI2P0	CMPP1	ADP9	PTC5/KBI2P0/CMPP1/ADP9
K11	57	H9	46	PTC6	KBI2P1	PRACMPO	ADP10	PTC6/KBI2P1/PRACMPO/ADP10
F8	58	F8	47	PTC7	KBI2P2	CLKOUT	ADP11	PTC7/KBI2P2/CLKOUT/ADP11
L9	59	H7	48	PTD0	BKGD	MS	_	PTD0/BKGD/MS
K8	60	J7	49	PTD1	CMPP2	RESET	_	PTD1/CMPP2/RESET
H11	61	E7	50	PTD2	USB_ALTCLK	RGPIOP8	TPM1CH0	PTD2/USB_ALTCLK/RGPIOP8/TPM1CH0
H10	62	E8	51	PTD3	USB_PULLUP (D+)	RGPIOP9	TPM1CH1	PTD3/USB_PULLUP(D+)/RGPIOP9/TPM1CH1
H9	63	F9	52	PTD4	SDA	RGPIOP10	TPM1CH2	PTD4/SDA/RGPIOP10/TPM1CH2
G9	64	D7	53	PTD5	SCL	RGPIOP11	TPM1CH3	PTD5/SCL/RGPIOP11/TPM1CH3
J8	65	E9	54	PTD6	USB_ALTCLK	TX1	_	PTD6/USB_ALTCLK/TX1
G10	66	D8	55	PTD7	USB_PULLUP (D+)	RX1	_	PTD7/USB_PULLUP(D+) /RX1
G11	67	D9	56	PTE0	KBI2P3	FB_ALE	FB_CS1	PTE0/KBI2P3/FB_ALE/FB_CS1
F10	68	_	_	PTJ0	FB_AD2	_	_	PTJ0/FB_AD2
F11	69	_	_	PTJ1	FB_AD3	_	_	PTJ1/FB_AD3
F9	70	_	_	PTJ2	FB_AD4	_	_	PTJ2/FB_AD4
E10	71	_	_	PTJ3	RGPIOP12	FB_AD5	_	PTJ3/RGPIOP12/FB_AD5
E11	72	C9	57	PTE1	KBI2P4	RGPIOP13	FB_AD6	PTE1/KBI2P4/RGPIOP13/FB_AD6
D11	73	C8	58	PTE2	KBI2P5	RGPIOP14	FB_AD7	PTE2/KBI2P5/RGPIOP14/FB_AD7
D10	74	В9	59	PTE3	KBI2P6	FB_AD8	_	PTE3/KBI2P6/FB_AD8
C9	75	A9	60	PTE4	CMPP3	TPMCLK	IRQ	PTE4/CMPP3/TPMCLK/IRQ
H8	76	F5	61	VSS3	_	_	_	VSS3
D8	77	E5	62	VDD3	_	_	_	VDD3
B8	78	C7	63	PTE5	FB_D7	USB_ SESSVLD	TX2	PTE5/FB_D7/USB_SESSVLD/TX2
C10	79	C6	64	PTE6	FB_RW	USB_ SESSEND	RX2	PTE6/FB_RW/USB_SESSEND/RX2
C11	80	В6	65	PTE7	USB_ VBUSVLD	TPM2CH3	_	PTE7/USB_VBUSVLD/TPM2CH3

2-8 Freescale Semiconductor

Table 2-1. Package Pin Assignments

	Pacl	kage						
104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Alternate 1	Alternate 2	Alternate 3	Composite Pin Name
В9	81	B8	66	PTF0	USB_ID	TPM2CH2	_	PTF0/USB_ID/TPM2CH2
B10	82	B7	67	PTF1	RX2	USB_DP_ DOWN	TPM2CH1	PTF1/RX2/USB_DP_DOWN/TPM2CH1
B11	83	C5	68	PTF2	TX2	USB_DM_ DOWN	TPM2CH0	PTF2/TX2/USB_DM_DOWN/TPM2CH0
A11	84	_	_	PTJ4	RGPIOP15	FB_AD16	_	PTJ4/RGPIOP15/FB_AD16
A10	85	_	_	PTJ5	FB_AD15	_	_	PTJ5/FB_AD15
В6	86	_	_	PTJ6	FB_AD14	_	_	PTJ6/FB_AD14
A9	87		_	PTJ7	FB_AD13	1	_	PTJ7/FB_AD13
A8	88		_	FB_AD12	1	1	_	FB_AD12
A7	89	A8	69	PTF3	SCL	FB_D5	FB_AD11	PTF3/SCL/FB_D5/FB_AD11
A6	90	A7	70	PTF4	SDA	FB_D4	FB_AD10	PTF4/SDA/FB_D4/FB_AD10
B5	91	B5	71	PTF5	KBI2P7	FB_D3	FB_AD9	PTF5/KBI2P7/FB_D3/FB_AD9
A5	92	A6	72	VUSB33		1		VUSB33
A4	93	B4	73	USB_DM	_	_	_	USB_DM
А3	94	A4	74	USB_DP		1		USB_DP
B4	95	A5	75	VBUS		1		VBUS
H4	96	F6	76	VSS1				VSS1
D4	97	E6	77	VDD1	_	_	_	VDD1
A1	98	А3	78	PTF6	MOSI1	_	_	PTF6/MOSI1
A2	99	B1	79	PTF7	MISO1	_	_	PTF7/MISO1
B1	100	A2	80	PTG0	SPSCK1	_	_	PTG0/SPSCK1
F4		A1	_	PTG1	USB_ SESSEND	_	_	PTG1/USB_SESSEND
C4	_	_	_	PTG2	USB_DM_ DOWN	_	_	PTG2/USB_DM_DOWN
В3	_	-	_	PTG3	USB_DP_ DOWN	_	_	PTG3/USB_DP_DOWN
C2	_	_	_	PTG4	USB_SESSVLD	_	_	PTG4/USB_SESSVLD

Drive strength, pullup enable¹, slew rate and input filter settings in the GPIO apply to any digital use of the associated pin.

2.6.1 Pinout Summary

The following tables identify pin options on a peripheral-by-peripheral basis.

Table 2-2. RGPIO Pinout Summary

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	RGPIO
K5	43	G6	38	PTB6	PTB6/KBI1P3/RGPIOP0/FB_AD17	RGPIOP0
K6	44	F7	39	PTB7	PTB7/KBI1P4/RGPIOP1/FB_AD0	RGPIOP1
H9	63	F9	52	PTD4	PTD4/SDA/RGPIOP10/TPM1CH2	RGPIOP10
G9	64	D7	53	PTD5	PTD5/SCL/RGPIOP11/TPM1CH3	RGPIOP11
E10	71	_	_	PTJ3	PTJ3/RGPIOP12/FB_AD5	RGPIOP12
E11	72	C9	57	PTE1	PTE1/KBI2P4/RGPIOP13/FB_AD6	RGPIOP13
D11	73	C8	58	PTE2	PTE2/KBI2P5/RGPIOP14/FB_AD7	RGPIOP14
A11	84	_	_	PTJ4	PTJ4/RGPIOP15/FB_AD16	RGPIOP15
J7	45	_	_	PTH2	PTH2/RGPIOP2/FB_D7	RGPIOP2
J6	46	_	_	PTH3	PTH3/RGPIOP3/FB_D6	RGPIOP3
J5	47	_	_	PTH4	PTH4/RGPIOP4/FB_D5	RGPIOP4
K4	48	_	_	PTH5	PTH5/RGPIOP5/FB_D4	RGPIOP5
J4	49	_	_	PTH6	PTH6/RGPIOP6/FB_D3	RGPIOP6
J3	50	_	_	PTH7	PTH7/RGPIOP7/FB_D2	RGPIOP7
H11	61	E7	50	PTD2	PTD2/USB_ALTCLK/RGPIOP8/ TPM1CH0	RGPIOP8
H10	62	E8	51	PTD3	PTD3/USB_PULLUP(D+)/RGPIOP9/ TPM1CH1	RGPIOP9

Table 2-3. PTA Pinout Summary

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	РТА
B2	1	B2	1	PTA0	PTA0/FB_D2/SS1	PTA0
D9	8	C4	3	PTA1	PTA1/KBI1P0/TX1/FB_D1	PTA1
E9	9	D5	4	PTA2	PTA2/KBI1P1/RX1/ADP4	PTA2

^{1.} There is one special case with regard to pullup enable functions. PTE4 can be programmed to operate as IRQ. When in that mode, the pullup enable is controlled via IRQSC[IRQPDD].

MCF51MM256 Series Devices Reference Manual, Rev. 3

2-10 Freescale Semiconductor

Table 2-3. PTA Pinout Summary (Continued)

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	РТА
H3	10	D6	5	PTA3	PTA3/KBI1P2/FB_D6/ADP5	PTA3
D2	11	C1	6	PTA4	PTA4/INP1+	PTA4
D1	12	C2	7	PTA5	PTA5	PTA5
C3	13	C3	8	PTA6	PTA6	PTA6
E2	14	D2	9	PTA7	PTA7/INP2+	PTA7

Table 2-4. PTB Pinout Summary

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	РТВ
E3	15	D3	10	PTB0	PTB0	PTB0
D3	16	D4	11	PTB1	PTB1/BLMS	PTB1
L8	38	J5	33	PTB2	PTB2/EXTAL1	PTB2
L7	39	J6	34	PTB3	PTB3/XTAL1	PTB3
L11	41	J8	36	PTB4	PTB4/EXTAL2	PTB4
L10	42	J9	37	PTB5	PTB5/XTAL2	PTB5
K5	43	G6	38	PTB6	PTB6/KBI1P3/RGPIOP0/FB_AD17	PTB6
K6	44	F7	39	PTB7	PTB7/KBI1P4/RGPIOP1/FB_AD0	PTB7

Table 2-5. PTC Pinout Summary

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	РТС
J10	51	G7	40	PTC0	PTC0/MOSI2/FB_OE/FB_CS0	PTC0
J11	52	G8	41	PTC1	PTC1/MISO2/FB_D0/FB_AD1	PTC1
J9	53	G9	42	PTC2	PTC2/KBI1P5/SPSCK2/ADP6	PTC2
K7	54	H5	43	PTC3	PTC3/KBI1P6/SS2/ADP7	PTC3
K9	55	H6	44	PTC4	PTC4/KBI1P7/CMPP0/ADP8	PTC4
K10	56	H8	45	PTC5	PTC5/KBI2P0/CMPP1/ADP9	PTC5
K11	57	H9	46	PTC6	PTC6/KBI2P1/PRACMPO/ADP10	PTC6
F8	58	F8	47	PTC7	PTC7/KBI2P2/CLKOUT/ADP11	PTC7

Freescale Semiconductor 2-11

Table 2-6. PTD Pinout Summary

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	PTD
L9	59	H7	48	PTD0	PTD0/BKGD/MS	PTD0
K8	60	J7	49	PTD1	PTD1/CMPP2/RESET	PTD1
H11	61	E7	50	PTD2	PTD2/USB_ALTCLK/RGPIOP8/TPM1CH0	PTD2
H10	62	E8	51	PTD3	PTD3/USB_PULLUP(D+)/RGPIOP9/ TPM1CH1	PTD3
H9	63	F9	52	PTD4	PTD4/SDA/RGPIOP10/TPM1CH2	PTD4
G9	64	D7	53	PTD5	PTD5/SCL/RGPIOP11/TPM1CH3	PTD5
J8	65	E9	54	PTD6	PTD6/USB_ALTCLK/TX1	PTD6
G10	66	D8	55	PTD7	PTD7/USB_PULLUP(D+)/RX1	PTD7

Table 2-7. PTE Pinout Summary

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	PTE
G11	67	D9	56	PTE0	PTE0/KBI2P3/FB_ALE/FB_CS1	PTE0
E11	72	C9	57	PTE1	PTE1/KBI2P4/RGPIOP13/FB_AD6	PTE1
D11	73	C8	58	PTE2	PTE2/KBI2P5/RGPIOP14/FB_AD7	PTE2
D10	74	В9	59	PTE3	PTE3/KBI2P6/FB_AD8	PTE3
C9	75	A9	60	PTE4 ¹	PTE4/CMPP3/TPMCLK/IRQ	PTE4
B8	78	C7	63	PTE5	PTE5/FB_D7/USB_SESSVLD/TX2	PTE5
C10	79	C6	64	PTE6	PTE6/FB_RW/USB_SESSEND/RX2	PTE6
C11	80	В6	65	PTE7	PTE7/USB_VBUSVLD/TPM2CH3	PTE7

¹ PTE4/CMPP3/TPMCLK/IRQ is limited to input-only for the port I/O function.

Table 2-8. PTF Pinout Summary

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	PTF
В9	81	B8	66	PTF0	PTF0/USB_ID/TPM2CH2	PTF0
B10	82	В7	67	PTF1	PTF1/RX2/USB_DP_DOWN/TPM2CH1	PTF1
B11	83	C5	68	PTF2	PTF2/TX2/USB_DM_DOWN/TPM2CH0	PTF2
A7	89	A8	69	PTF3	PTF3/SCL/FB_D5/FB_AD11	PTF3
A6	90	A9	70	PTF4	PTF4/SDA/FB_D4/FB_AD10	PTF4
B5	91	B5	71	PTF5	PTF5/KBI2P7/FB_D3/FB_AD9	PTF5

2-12 Freescale Semiconductor

Table 2-8. PTF Pinout Summary (Continued)

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	PTF
A1	98	А3	78	PTF6	PTF6/MOSI1	PTF6
A2	99	B1	79	PTF7	PTF7/MISO1	PTF7

Table 2-9. PTG Pinout Summary

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	PTG
B1	100	A2	80	PTG0	PTG0/SPSCK1	PTG0
F4	_	A1	_	PTG1	PTG1	PTG1
C4	_	_	_	PTG2	PTG2	PTG2
В3	_	_	_	PTG3	PTG3	PTG3
C2	_	_	_	PTG4	PTG4	PTG4
C6	3	_	_	PTG5	PTG5/FB_RW	PTG5
C5	4	_	_	PTG6	PTG6/FB_AD19	PTG6
C7	5	_	_	PTG7	PTG7/FB_AD18	PTG7

Table 2-10. PTH Pinout Summary

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	РТН
B7	6	_	_	PTH0	PTH0/FB_OE	PTH0
C8	7	_	_	PTH1	PTH1/FB_D0	PTH1
J7	45	_	_	PTH2	PTH2/RGPIOP2/FB_D7	PTH2
J6	46	_	_	PTH3	PTH3/RGPIOP3/FB_D6	PTH3
J5	47	_	_	PTH4	PTH4/RGPIOP4/FB_D5	PTH4
K4	48	_	_	PTH5	PTH5/RGPIOP5/FB_D4	PTH5
J4	49	_	_	PTH6	PTH6/RGPIOP6/FB_D3	PTH6
J3	50	_	_	PTH7	PTH7/RGPIOP7/FB_D2	PTH7

Table 2-11. PTJ Pinout Summary

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	PTJ
F10	68	_	_	PTJ0	PTJ0/FB_AD2	PTJ0
F11	69	_	_	PTJ1	PTJ1/FB_AD3	PTJ1
F9	70	_	_	PTJ2	PTJ2/FB_AD4	PTJ2
E10	71	_	_	PTJ3	PTJ3/RGPIOP12/FB_AD5	PTJ3

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor 2-13

Table 2-11. PTJ Pinout Summary

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	PTJ
A11	84	_	_	PTJ4	PTJ4/RGPIOP15/FB_AD16	PTJ4
A10	85	_	_	PTJ5	PTJ5/FB_AD15	PTJ5
В6	86	_	_	PTJ6	PTJ6/FB_AD14	PTJ6
A9	87	_	_	PTJ7	PTJ7/FB_AD13	PTJ7

Table 2-12. OSC1 Pinout Summary

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	OSC1
L8	38	J5	33	PTB2	PTB2/EXTAL1	EXTAL1
L7	39	J6	34	PTB3	PTB3/XTAL1	XTAL1

Table 2-13. OSC2 Pinout Summary

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	OSC2
L11	41	J8	36	PTB4	PTB4/EXTAL2	EXTAL2
L10	42	J9	37	PTB5	PTB5/XTAL2	XTAL2

Table 2-14. KBI1 Pinout Summary

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	КВІ1
D9	8	C4	3	PTA1	PTA1/KBI1P0/TX1/FB_D1	KBI1P0
E9	9	D5	4	PTA2	PTA2/KBI1P1/RX1/ADP4	KBI1P1
H3	10	D6	5	PTA3	PTA3/KBI1P2/FB_D6/ADP5	KBI1P2
K5	43	G6	38	PTB6	PTB6/KBI1P3/RGPIOP0/FB_AD17	KBI1P3
K6	44	F7	39	PTB7	PTB7/KBI1P4/RGPIOP1/FB_AD0	KBI1P4
J9	53	G9	42	PTC2	PTC2/KBI1P5/SPSCK2/ADP6	KBI1P5
K7	54	H5	43	PTC3	PTC3/KBI1P6/SS2/ADP7	KBI1P6
K9	55	H6	44	PTC4	PTC4/KBI1P7/CMPP0/ADP8	KBI1P7

Table 2-15. KBI2 Pinout Summary

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	KBI2
K10	56	H8	45	PTC5	PTC5/KBI2P0/CMPP1/ADP9	KBI2P0
K11	57	H9	46	PTC6	PTC6/KBI2P1/PRACMPO/ADP10	KBI2P1

MCF51MM256 Series Devices Reference Manual, Rev. 3

2-14 Freescale Semiconductor

Table 2-15. KBI2 Pinout Summary (Continued)

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	KBI2
F8	58	F8	47	PTC7	PTC7/KBI2P2/CLKOUT/ADP11	KBI2P2
G11	67	D9	56	PTE0	PTE0/KBI2P3/FB_ALE/FB_CS1	KBI2P3
E11	72	C9	57	PTE1	PTE1/KBI2P4/RGPIOP13/FB_AD6	KBI2P4
D11	73	C8	58	PTE2	PTE2/KBI2P5/RGPIOP14/FB_AD7	KBI2P5
D10	74	В9	59	PTE3	PTE3/KBI2P6/FB_AD8	KBI2P6
B5	91	B5	71	PTF5	PTF5/KBI2P7/FB_D3/FB_AD9	KBI2P7

Table 2-16. SPI Pinout Summary

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	SPI1
A2	99	B1	79	PTF7	PTF7/MISO1	MISO1
A1	98	А3	78	PTF6	PTF6/MOSI1	MOSI1
B1	100	A2	80	PTG0	PTG0/SPSCK1	SPSCK1
B2	1	B2	1	PTA0	PTA0/FB_D2/SS1	SS1

Table 2-17. SPI2 Pinout Summary

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	SPI2
J11	52	G8	41	PTC1	PTC1/MISO2/FB_D0/FB_AD1	MISO2
J10	51	G7	40	PTC0	PTC0/MOSI2/FB_OE/FB_CS0	MOSI2
J9	53	G9	42	PTC2	PTC2/KBI1P5/SPSCK2/ADP6	SPSCK2
K7	54	H5	43	PTC3	PTC3/KBI1P6/SS2/ADP7	SS2

Table 2-18. IIC Pinout Summary

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	IIC
G9	64	D7	53	PTD5	PTD5/SCL/RGPIOP11/TPM1CH3	SCL
A7	89	A8	69	PTF3	PTF3/SCL/FB_D5/FB_AD11	SCL
H9	63	F9	52	PTD4	PTD4/SDA/RGPIOP10/TPM1CH2	SDA
A6	90	A9	70	PTF4	PTF4/SDA/FB_D4/FB_AD10	SDA

Table 2-19. Other Pinout Summary

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	Other
L9	59	H7	48	PTD0	PTD0/BKGD/MS	BKGD/MS
F8	58	F8	47	PTC7	PTC7/KBI2P2/CLKOUT/ADP11	CLKOUT
C9	75	A9	60	PTE4	PTE4/CMPP3/TPMCLK/IRQ	IRQ
K8	60	J7	49	PTD1	PTD1/CMPP2/RESET	RESET

Table 2-20. OPAMP Pinout Summary

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	OPAMP
F2	19	D1	14	INP1-	INP1-	INP1-
D2	11	C1	6	PTA4	PTA4/INP1+	INP1+
F3	24	F3	19	INP2-	INP2-	INP2-
E2	14	D2	9	PTA7	PTA7/INP2+	INP2+
G2	20	E1	15	OUT1	OUT1	OUT1
G3	25	E3	20	OUT2	OUT2	OUT2

Table 2-21. TRIAMP Pinout Summary

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	TRIAMP
G1	21	F2	16	TRIOUT1	TRIOUT1/DADP2	TRIOUT1
L1	27	G3	22	TRIOUT2	TRIOUT2/DADP3	TRIOUT2
H2	23	E2	18	VINN1	VINN1/DADM2	VINN1
K2	29	G4	24	VINN2	VINN2/DADM3	VINN2
H1	22	F1	17	VINP1	VINP1	VINP1
K1	28	H4	23	VINP2	VINP2	VINP2

Table 2-22. MFB Pinout Summary

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	MFB
K6	44	F7	39	PTB7	PTB7/KBI1P4/RGPIOP1/FB_AD0	FB_AD0
A8	88	_	_		FB_AD12	FB_AD12
A9	87	_	_	PTJ7	PTJ7/FB_AD13	FB_AD13
В6	86	_	_	PTJ6	PTJ6/FB_AD14	FB_AD14
A10	85	_	_	PTJ5	PTJ5/FB_AD15	FB_AD15
A11	84	_	_	PTJ4	PTJ4/RGPIOP15/FB_AD16	FB_AD16

MCF51MM256 Series Devices Reference Manual, Rev. 3

2-16 Freescale Semiconductor

Table 2-22. MFB Pinout Summary (Continued)

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	MFB
K5	43	G6	38	PTB6	PTB6/KBI1P3/RGPIOP0/FB_AD17	FB_AD17
C7	5	_	_	PTG7	PTG7/FB_AD18	FB_AD18
C5	4	_	_	PTG6	PTG6/FB_AD19	FB_AD19
F10	68	_	_	PTJ0	PTJ0/FB_AD2	FB_AD2
F11	69	_	_	PTJ1	PTJ1/FB_AD3	FB_AD3
F9	70	_	_	PTJ2	PTJ2/FB_AD4	FB_AD4
E10	71	_	_	PTJ3	PTJ3/RGPIOP12/FB_AD5	FB_AD5
E11	72	C9	57	PTE1	PTE1/KBI2P4/RGPIOP13/FB_AD6	FB_AD6
D11	73	C8	58	PTE2	PTE2/KBI2P5/RGPIOP14/FB_AD7	FB_AD7
D10	74	В9	59	PTE3	PTE3/KBI2P6/FB_AD8	FB_AD8
G11	67	D9	56	PTE0	PTE0/KBI2P3/FB_ALE/FB_CS1	FB_ALE/ FB_CS1
C8	7	_	_	PTH1	PTH1/FB_D0	FB_D0
J11	52	G8	41	PTC1	PTC1/MISO2/FB_D0/FB_AD1	FB_D0/ FB_AD1
D9	8	C4	3	PTA1	PTA1/KBI1P0/TX1/FB_D1	FB_D1
B2	1	B2	1	PTA0	PTA0/FB_D2/ SS1	FB_D2
J3	50	_	_	PTH7	PTH7/RGPIOP7/FB_D2	FB_D2
J4	49	_	_	PTH6	PTH6/RGPIOP6/FB_D3	FB_D3
B5	91	B5	71	PTF5	PTF5/KBI2P7/FB_D3/FB_AD9	FB_D3/ FB_AD9
K4	48	_	_	PTH5	PTH5/RGPIOP5/FB_D4	FB_D4
A6	90	A9	70	PTF4	PTF4/SDA/FB_D4/FB_AD10	FB_D4/ FB_AD10
J5	47	_	_	PTH4	PTH4/RGPIOP4/FB_D5	FB_D5
A7	89	A8	69	PTF3	PTF3/SCL/FB_D5/FB_AD11	FB_D5/ FB_AD11
НЗ	10	D6	5	PTA3	PTA3/KBI1P2/FB_D6/ADP5	FB_D6
J6	46	_	_	PTH3	PTH3/RGPIOP3/FB_D6	FB_D6
J7	45	_	_	PTH2	PTH2/RGPIOP2/FB_D7	FB_D7
B8	78	C7	63	PTE5	PTE5/FB_D7/USB_SESSVLD/TX2	FB_D7
В7	6	_	_	PTH0	PTH0/FB_OE	FB_OE
J10	51	G7	40	PTC0	PTC0/MOSI2/FB_OE/FB_CS0	FB_OE/ FB_CS0

Table 2-22. MFB Pinout Summary (Continued)

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	MFB
C6	3	_	_	PTG5	PTG5/FB_RW	FB_RW
C10	79	C6	64	PTE6	PTE6/FB_RW/USB_SESSEND/RX2	FB_RW

Table 2-23. DAC Pinout Summary

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	DAC
L2	26	G2	21	DACO	DACO	DACO

Table 2-24. VREF Pinout Summary

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	VREF
L4	32	G5	27	VREFO	VREFO	VREFO

Table 2-25. CMT Pinout Summary

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	СМТ
C1	2	A1	2	IRO	IRO	IRO

Table 2-26. P/G Pinout Summary

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	P/G
D4	97	E6	77	VDD1	VDD1	VDD1
D6	40	E4	35	VDD2	VDD2	VDD2
D8	77	E5	62	VDD3	VDD3	VDD3
L6	36	J4	31	VDDA	VDDA	VDDA
H4	96	F6	76	VSS1	VSS1	VSS1
H6	37	F4	32	VSS2	VSS2	VSS2
H8	76	F5	61	VSS3	VSS3	VSS3
E1	17	J1	12	VSSA	VSSA	VSSA

Table 2-27. USB Pinout Summary

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	USB
H11	61	E7	50	PTD2	PTD2/USB_ALTCLK/RGPIOP8/TPM1CH0	USB_ALTCLK
J8	65	E9	54	PTD6	PTD6/USB_ALTCLK/TX1	USB_ALTCLK

MCF51MM256 Series Devices Reference Manual, Rev. 3

2-18 Freescale Semiconductor

Table 2-27. USB Pinout Summary (Continued)

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	USB
A4	93	B4	73	USB_DM	USB_DM	USB_DM
B11	83	C5	68	PTF2	PTF2/TX2/USB_DM_DOWN/TPM2CH0	USB_DM_DOWN
C4	_	_	_	PTG2	PTG2/USB_DM_DOWN	USB_DM_DOWN
А3	94	A4	74	USB_DP	USB_DP	USB_DP
B10	82	B7	67	PTF1	PTF1/RX2/USB_DP_DOWN/TPM2CH1	USB_DP_DOWN
В3	_	_	_	PTG3	PTG3/USB_DP_DOWN	USB_DP_DOWN
В9	81	B8	66	PTF0	PTF0/USB_ID/TPM2CH2	USB_ID
H10	62	E8	51	PTD3	PTD3/USB_PULLUP(D+)/RGPIOP9/ TPM1CH1	USB_PULLUP(D+)
G10	66	D8	55	PTD7	PTD7/USB_PULLUP(D+)/RX1	USB_PULLUP(D+)
C10	79	C6	64	PTE6	PTE6/FB_RW/USB_SESSEND/RX2	USB_SESSEND
F4	_	81	_	PTG1	PTG1/USB_SESSEND	USB_SESSEND
B8	78	C7	63	PTE5	PTE5/FB_D7/USB_SESSVLD/TX2	USB_SESSVLD
C2	_	_	_	PTG4	PTG4/USB_SESSVLD	USB_SESSVLD
C11	80	В6	65	PTE7	PTE7/USB_VBUSVLD/TPM2CH3	USB_VBUSVLD
B4	95	A5	75	VBUS	VBUS	VBUS
A5	92	A6	72	VUSB33	VUSB33	VUSB33

Table 2-28. SCI1 Pinout Summary

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	SCI1
E9	9	D5	4	PTA2	PTA2/KBI1P1/RX1/ADP4	RX1
G10	66	D8	55	PTD7	PTD7/USB_PULLUP(D+) /RX1	RX1
D9	8	C4	3	PTA1	PTA1/KBI1P0/TX1/FB_D1	TX1
J8	65	E9	54	PTD6	PTD6/USB_ALTCLK/TX1	TX1

Table 2-29. SCI2 Pinout Summary

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	SCI2
C10	79	C6	64	PTE6	PTE6/FB_RW/USB_SESSEND/RX2	RX2
B10	82	B7	67	PTF1	PTF1/RX2/USB_DP_DOWN/TPM2CH1	RX2
B8	78	C7	63	PTE5	PTE5/FB_D7/USB_SESSVLD/TX2	TX2
B11	83	C5	68	PTF2	PTF2/TX2/USB_DM_DOWN/TPM2CH0	TX2

Freescale Semiconductor 2-19

Table 2-30. PRACMP Pinout Summary

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	PRACMP
K9	55	H6	44	PTC4	PTC4/KBI1P7/CMPP0/ADP8	CMPP0
K10	56	H8	45	PTC5	PTC5/KBI2P0/CMPP1/ADP9	CMPP1
K8	60	J7	49	PTD1	PTD1/CMPP2/RESET	CMPP2
C9	75	A9	60	PTE4	PTE4/CMPP3/TPMCLK/IRQ	CMPP3
K11	57	H9	46	PTC6	PTC6/KBI2P1/PRACMPO/ADP10	PRACMPO

Table 2-31. ADC Pinout Summary

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	ADC
K11	57	H9	46	PTC6	PTC6/KBI2P1/PRACMPO/ADP10	ADP10
F8	58	F8	47	PTC7	PTC7/KBI2P2/CLKOUT/ADP11	ADP11
E9	9	D5	4	PTA2	PTA2/KBI1P1/RX1/ADP4	ADP4
H3	10	D6	5	PTA3	PTA3/KBI1P2/FB_D6/ADP5	ADP5
J9	53	G9	42	PTC2	PTC2/KBI1P5/SPSCK2/ADP6	ADP6
K7	54	H5	43	PTC3	PTC3/KBI1P6/SS2/ADP7	ADP7
K9	55	H6	44	PTC4	PTC4/KBI1P7/CMPP0/ADP8	ADP8
K10	56	H8	45	PTC5	PTC5/KBI2P0/CMPP1/ADP9	ADP9
J2	31	H1	26	DADM0	DADM0	DADM0
L3	34	НЗ	29	DADM1	DADM1	DADM1
H2	23	E2	18	VINN1	VINN1/DADM2	DADM2
K2	29	G4	24	VINN2	VINN2/DADM3	DADM3
J1	30	G1	25	DADP0	DADP0	DADP0
K3	33	H2	28	DADP1	DADP1	DADP1
G1	21	F2	16	TRIOUT1	TRIOUT1/DADP2	DADP2
L1	27	G3	22	TRIOUT2	TRIOUT2/DADP3	DADP3
L5	35	J3	30	VREFH	VREFH	VREFH
F1	18	J2	13	VREFL	VREFL	VREFL

2-20 Freescale Semiconductor

Table 2-32. TPM1 Pinout Summary

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	TPM1
H11	61	E7	50	PTD2	PTD2/USB_ALTCLK/RGPIOP8/TPM1CH0	TPM1CH0
H10	62	E8	51	PTD3	PTD3/USB_PULLUP(D+)/RGPIOP9/ TPM1CH1	TPM1CH1
H9	63	F9	52	PTD4	PTD4/SDA/RGPIOP10/TPM1CH2	TPM1CH2
G9	64	D7	53	PTD5	PTD5/SCL/RGPIOP11/TPM1CH3	TPM1CH3
C9	75	A9	60	PTE4	PTE4/CMPP3/TPMCLK/IRQ	TPMCLK

Table 2-33. TPM2 Pinout Summary

104 MAPBGA	100 LQFP	81 MAPBGA	80 LQFP	Default Function	Composite Pin Name	TPM2
B11	83	C5	68	PTF2	PTF2/TX2/USB_DM_DOWN/TPM2CH0	TPM2CH0
B10	82	B7	67	PTF1	PTF1/RX2/USB_DP_DOWN/TPM2CH1	TPM2CH1
В9	81	B8	66	PTF0	PTF0/USB_ID/TPM2CH2	TPM2CH2
C11	80	В6	65	PTE7	PTE7/USB_VBUSVLD/TPM2CH3	TPM2CH3
C9	75	A9	60	PTE4	PTE4/CMPP3/TPMCLK/IRQ	TPMCLK

2.6.2 Recommended System Connections

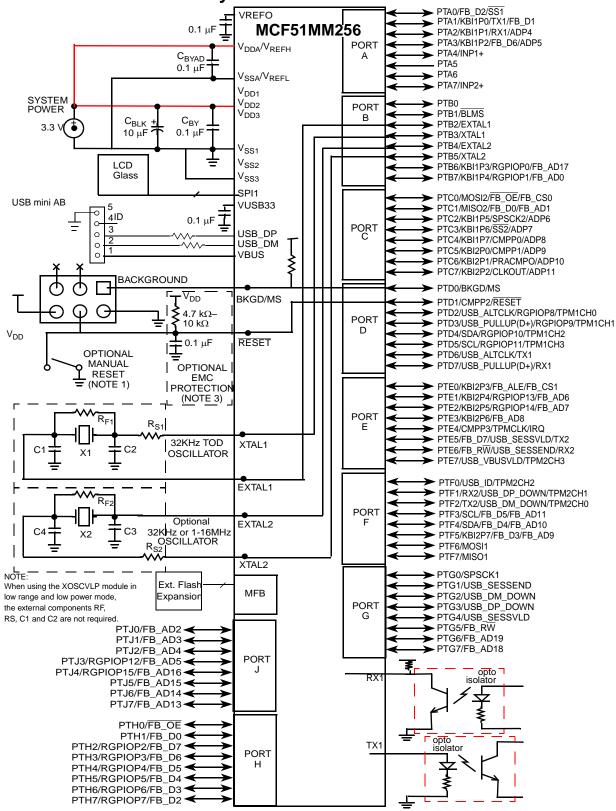


Figure 2-5. Recommended System Connections

Interfacing the SCIs to Off-Chip Opto-Isolators 2.6.3

SCI1 is designed with twice the normal I/O drive capability on the TX1 pin. The RX pin can either be fed directly from the digital I/O buffer, or those signals can be pre-conditioned using the comparators as shown in Figure 2-6 Similarly, the TX output can be modulated with the output of one of the timers before being passed off chip.

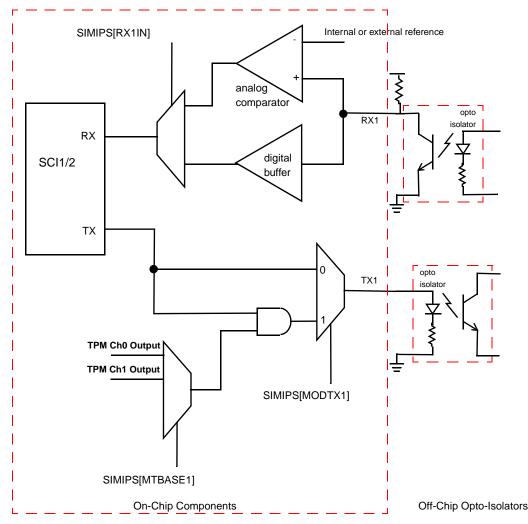


Figure 2-6. On-Chip Signal Conditioning Associated with SCI RX and TX Pins

Controls for the circuitry shown in Figure 2-6 are discussed in Section 5.7.13, "SIM Internal Peripheral Select Register (SIMIPS)."

2.6.4 **Power**

V_{DD1,2,3} and V_{SS1,2,3} are the primary power supply pins for the microcontroller. This voltage source supplies power to all I/O buffer circuitry and to an internal voltage regulator. The internal voltage regulator provides regulated lower-voltage source to the CPU and other internal circuitry of the microcontroller.

MCF51MM256 Series Devices Reference Manual, Rev. 3 Freescale Semiconductor 2-23

Typically, application systems have two separate capacitors across the power pins. In this case, there should be a bulk electrolytic capacitor, such as a 10 µF tantalum capacitor, to provide bulk charge storage for the overall system and a 0.1 µF ceramic bypass capacitor located as close to the microcontroller power pins as practical to suppress high-frequency noise. The MCF51MM256 has three V_{DD} pins. Each pin must have a bypass capacitor for best noise suppression.

V_{DDA} and V_{SSA} are the analog power supply pins for the microcontroller. This voltage source supplies power to the ADC module. A 0.1 µF ceramic bypass capacitor should be located as close to the microcontroller power pins as practical to suppress high-frequency noise.

V_{USB33} maintains an output voltage of 3.3 V and sources enough current for the internal USB transceiver and USB pullup resistor. The VBUS input is used to supply the voltage necessary to power the internal USB 3.3V regulator. VUSB33 can also supply the internal USB when there is no VBUS supply and the internal USB regulator is disabled.

For V_{USB33} , two separate capacitors (4.7 μF bulk electrolytic stability capacitor and 0.47 μF ceramic bypass capacitors) must be connected across this pin to ground to decrease the output ripple of this voltage regulator when it is enabled.

2.6.5 Oscillator

Immediately after reset, the microcontroller uses an internally generated clock provided by the multipurpose clock generation (MCG) module.

The oscillator (XOSC1 or XOSC2) in this microcontroller is a Pierce oscillator that can accommodate a crystal or ceramic resonator. Optionally, an external clock source can be connected to the EXTAL input pin.

When using the oscillator module in low range and low power mode, the external components RF, RS, C1 and C2 are not required.

For using the oscillator module in other modes, refer to Figure 2-5 for the following discussion. R_S (when used) and R_E should be low-inductance resistors such as carbon composition resistors. Wire-wound resistors, and some metal film resistors, have too much inductance. C1 and C2 normally should be high-quality ceramic capacitors that are specifically designed for high-frequency applications.

R_E is used to provide a bias path to keep the EXTAL input in its linear range during crystal startup; its value is not generally critical. Typical systems use 1 M Ω to 10 M Ω . Higher values are sensitive to humidity and lower values reduce gain and (in extreme cases) could prevent startup.

C1 and C2 are typically in the 5 pF to 25 pF range and are chosen to match the requirements of a specific crystal or resonator. Be sure to take into account printed circuit board (PCB) capacitance and microcontroller pin capacitance when selecting C1 and C2. The crystal manufacturer typically specifies a load capacitance that is the series combination of C1 and C2 (which are usually the same size). As a first-order approximation, use 10 pF as an estimate of combined pin and PCB capacitance for each oscillator pin (EXTAL and XTAL).

MCF51MM256 Series Devices Reference Manual, Rev. 3 2-24 Freescale Semiconductor

2-25

2.6.6 PTD1/CMPP2/RESET

After a power-on reset (POR) the PTD1/CMPP2/RESET pin defaults to RESET. Clearing RSTPE in SOPT1 allows the pin to be a GPIO pin or as an input to the PRACMP. When configured as a GPIO, the pin will remain as a GPIO until the next POR or LVD reset. When enabled, the RESET pin can be used to reset the MCU from an external source when the pin is driven low. Internal power-on reset and low-voltage reset circuitry typically make external reset circuitry unnecessary. This pin is normally connected to the standard 6-pin background debug connector so a development system can directly reset the MCU system. A manual external reset can be added by supplying a simple switch to ground (pull reset pin low to force a reset).

Whenever any non-POR reset is initiated (whether from an external signal or from an internal system), the enabled RESET pin is driven low for about 66 bus cycles. The reset circuitry decodes the cause of reset and records it by setting a corresponding bit in the system reset status register (SRS).

In EMC-sensitive applications, an external RC filter is recommended on the reset pin. See Figure 2-5 for an example.

2.6.7 PTE4/CMPP3/TPMCLK/IRQ

The IRQ pin is the input source for the IRQ interrupt. If the IRQ function is not enabled, this pin can be used for other functions. In EMC-sensitive applications, an external RC filter is recommended on the IRQ pin. See Figure 2-5. for an example.

NOTE

The voltage on the internally pulled up IRQ pin when measured is below V_{DD} . The internal gates connected to this pin are pulled to V_{DD} . If the IRQ pin is required to drive to a V_{DD} level, an external pullup must be used.

2.6.8 Background / Mode Select (PTD0/BKGD/MS)

During a power-on-reset (POR) or background debug force reset (see bit BDFR in Section 29.3.3, "Configuration/Status Register 2 (CSR2)," for more information), the BKGD/MS pin functions as a mode select pin. Immediately after any reset, the pin functions as the background pin and can be used for background debug communication.

If the BKGD/MS pin is unconnected, the microcontroller enters normal operating mode at the rising edge of the internal reset after a POR or forced BDC reset. If a debug system is connected to the 6-pin standard background debug header, it can hold BKGD/MS low during a POR or immediately after issuing a background debug force reset¹, which forces the microcontroller to halt mode.

The BKGD/MS pin is used primarily for background debug controller (BDC) communications using a custom protocol that uses 16 clock cycles of the target microcontroller's BDC clock per bit time. The target microcontroller's BDC clock could be as fast as the bus clock rate, so there should never be any significant capacitance connected to the BKGD/MS pin that could interfere with background serial communications.

Freescale Semiconductor

^{1.} Specifically, BKGD must be held low through the first 16 cycles after deassertion of the internal reset.

Although the BKGD/MS pin is a pseudo open-drain pin, the background debug communication protocol provides brief, actively driven, high speed-up pulses to ensure fast rise times. Small capacitances from cables and the absolute value of the internal pullup device play almost no role in determining rise and fall times on the BKGD/MS pin.

2.6.9 ADC Reference Pins (V_{REFH}, V_{REFL})

The V_{REFH} and V_{REFL} pins are the voltage reference high and voltage reference low inputs, respectively, for the ADC module.

2.6.10 Bootloader Mode Select (BLMS)

During a power-on-reset (POR), the CPU detects the state of the PTB1/ \overline{BLMS} pin that functions as a mode select pin. When the \overline{BLMS} pin is held low and BKGD/MS is not pulled low, the CPU enters the bootloader mode. During a power-on-reset (POR), an internal pullup device is automatically enabled in PTB1/ \overline{BLMS} pin. Immediately after reset rises the pin functions as a general-purpose output only pin and an internal pullup device is automatically disabled.

2.6.11 USB Data Pins (USB_DP, USB_DN)

The USB_DP (D+) and USB_DN (D-) pins are the analog input/output lines to/from full-speed internal USB transceiver. An optional internal pullup resistor for the USB_DP pin, R_{PUDP}, is available. See Chapter 27, "USB On-the-GO (USBOTG)" for more details.

2.6.12 General-Purpose I/O and Peripheral Ports

The MCF51MM256 series microcontrollers support up to 69 general-purpose I/O pins, which are shared with on-chip peripheral functions (timers, serial I/O, ADC, ACMP, etc.).

When a port pin is configured as a general-purpose output or a peripheral uses the port pin as an output, software can select one of two drive strengths and enable or disable slew rate control. When a port pin is configured as a general-purpose input or a peripheral uses the port pin as an input, software can enable a pull-up device. Immediately after reset, all of these pins are configured as high-impedance general-purpose inputs with internal pull-up devices disabled.

When an on-chip peripheral system is controlling a pin, data direction control bits determine what is read from the port data registers, even though the peripheral controls the pin direction via the pin's output buffer enable. For information about controlling these pins as general-purpose I/O pins, see Chapter 6, "Parallel Input/Output Control."

NOTE

To avoid extra current drain from floating input pins, the reset initialization routine in the application program should enable on-chip pullup devices or change the direction of unused or non-bonded pins to outputs so they do not float.

MCF51MM256 Series Devices Reference Manual, Rev. 3

Chapter 3 Modes of Operation

3.1 Introduction

The operating modes of the MCF51MM256 series MCUs are described in this chapter. Entry into each mode, exit from each mode, and functionality while in each of the modes are described.

The overall system mode is generally a function of a number of separate, but interrelated, variables: debug mode, security mode, power mode and clock mode. Clock modes were discussed in Section 17.4.1, "MCG Modes of Operation." This chapter covers the other dimensions of the system operating mode.

3.2 Features

- Debug mode for code development. For devices based on the V1 ColdFire core, such as those in the MCF51MM256 series, debug mode and secure mode are mutually exclusive.
- Secure mode BDC access to CPU resources is extremely restricted. It is possible to tell that the
 device has been secured, and to clear security, which involves mass erasing the on-chip flash
 memory. No other CPU access is allowed. Secure mode can be used in conjunction with each of
 the power modes below.
- Bootloader mode Enables USB communications to external host for programming and erasing the FLASH as an alternate to using the BDC.
- Run mode CPU clocks can be run at full speed, and the internal supply is fully regulated.
- LPrun mode CPU and peripheral clocks are restricted to 250 kHz CPU clock and 125 kHz bus clock maximum and the internal supply is in soft regulation.
- Wait mode The CPU shuts down to conserve power; peripheral clocks are running and full regulation is maintained.
- LPwait mode CPU shuts down to conserve power; peripheral clocks are running at reduced speed (125 kHz maximum) and the internal supply is in soft regulation.
- Stop modes—System (CPU and peripheral) clocks are stopped.
 - Stop4—All internal circuits are powered (full regulation mode) and internal clock sources at max frequency for fastest recovery, LVD enabled, no clocking to peripherals ENBDM=1.
 - Stop3—All internal circuits are powered and clocks sources are at minimal values (BLPI or BLPE mode), LVD disabled, providing a good compromise between power utilization and speed of recovery. ENBDM=0.
 - Stop2—Partial power-down of internal circuits; RAM content is retained. The lowest power mode for this device. A reset or IRQ is required to return from Stop2 mode.

On the MCF51MM256 series MCUs, Wait, Stop2, Stop3 and Stop4 are all entered via the CPU STOP instruction. See Table 3-1 and subsequent sections of this chapter for details.

3.3 Overview

The ColdFire CPU has two primary user modes of operation, run and stop. (The CPU also supports a halt mode that is used strictly for debug operations.) The STOP instruction is used to invoke stop and wait modes for this family of devices.

The Systems Option Register 1 (SOPT1) contains two bits which control operation of the STOP instruction. If SOPT1[WAITE] is set when STOP is executed, the wait mode is entered. Otherwise, if SOPT1[STOPE] is set, the CPU enters one of the stop modes. It is illegal to execute a STOP instruction if neither STOPE or WAITE are set. This results in reset assertion if the Instruction-related Reset Disable bit in the CPU Control Register (CPUCR[IRD]) is cleared or an illegal instruction exception if CPUCR[IRD] is set.

The MCF51MM256 series devices augment stop, wait, and run in a number of ways. The power management controller (PMC) can run the device in fully-regulated mode, standby mode, and partial power-down mode. Standby (loose regulation) or partial power-down can be programmed to occur naturally as a result of a STOP instruction. Additionally, standby mode can be explicitly invoked via the LPR (low-power) bit in the PMC System Power Management Status & Control Register 2 (SPMSC2[LPR]). Use of standby is limited to bus frequencies less than 125 kHz; and neither standby nor partial power-down are allowed when XCSR[ENBDM] bit is set to enable debugging in stop and wait modes.

During partial power-down mode, the regulator is in standby mode and much of the digital logic on the chip is switched off. These interactions can be seen schematically in Figure 3-1. This figure is for conceptual purposes only. It does not reflect any sequence or time dependencies between the PMC and other parts of the device, nor does it represent any actual design partitioning.

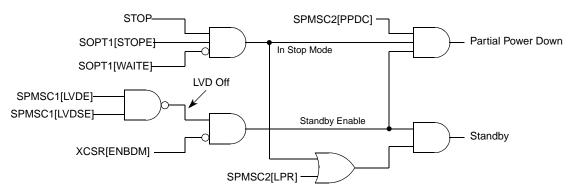
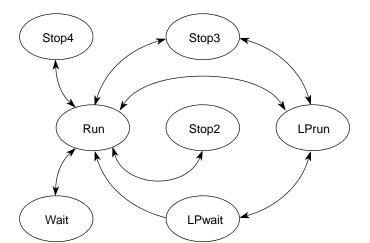


Figure 3-1. Power Modes — Conceptual Drawing

It is illegal for the software to have SPMSC2[PPDC] and SPMSC2[LPR] asserted concurrently. This restriction arises because the sequence of events from normal to low-power modes involves use of both bits. After entering a low-power mode, it is not possible to switch to another low-power mode.


Table 3-1. CPU / Power Mode Selections

	SOPT1 SIM		CSR2 BDC		ISC1 IIC	SPM	ISC2 IC	CPU and	Effects on Sub-System	
Mode of Operation	STOPE	WAITE	ENBDM ¹	LVDE	LVDSE	LPR	РРОС	Peripheral Clocks	BDC Clock	Switched Power
Run mode - processor and peripherals clocked normally.			Х	Х	х	0	Х			
Glocked Hormany.	х	х	x	1	1	х	х	On. MCG in any mode	On	On
			1	х	х	х	х		Note: When not needed, the BDC	
LPrun mode with low voltage detect disabled - processor and peripherals			0	0	х			Low freq required.	clock can be gated off at the discretion of the	
clocked at low frequency ² . Low voltage detects are not active.	Х	Х	0	1	0	1	0	MCG in BLPE mode.	processor. The clock is available within a few cycles of demand	Loose Reg
Wait mode - processor clock nominally inactive, but peripherals are clocked.			х	Х	х	0	х	Periph clocks on. CPU clock on if	by the processor, normally when a	
inactive, but peripricials are clocked.	х	1	x	1	1	х	х	ENBDM=1.	negative edge is On detected on BKGD.	On
			1	х	х	х	х	On	The BDM command associated with that	
LPwait mode - processor clock is inactive, peripherals are clocked at low frequency and				0	х		_	CPU clock is off. Periph clocks at	negative edge may not take affect.	_
the PMC is loosely regulating. Low voltage detects are not active.	Х	1	0	1	0	1	0	low speed. MCG in BLPE.	not take alleet.	Loose Reg
Stop modes disabled; Illegal opcode reset if STOP instruction executed and CPUCR[IRD] is cleared, else illegal instruction exception is generated.	0	0	Function of BKGD/ MS at reset	⇒1	⇒ 1	⇒0	⇒0	⇒On	Function of BKGD/MS at reset	⇒On
Stop4 - Either low-power modes have not been requested, or low voltage detects are			х	Х	х	0	0	Peripheral clocks		
enabled or ENBDM = 1.			×	1	1	1	0	off. CPU clock on if ENBDM=1.	BDC clock enabled	
	1	0	x	1	1	0	1	ENBBIN-1.	only if ENBDM=1 prior to entering stop.	On
			1	Х	x	Х	х	CPU clock on. Periph clocks off.		
Stop3 - Low voltage detect in stop is not enabled. Clocks must be at low frequency				1	0			Low freq required. MCG in BLPE		
and are gated. The regulator is in loose regulation.	1	0	0	0	x	1	0	mode. CPU and peripheral clocks are gated off.	Off	Loose Reg
Stop2 - Low voltage detects are not active. If BDC is enabled, stop4 is invoked rather than	1	0		1	0	0	1	N/A	N/A	Off
stop2.				0	0 x	0		18/7	IV/A	Oii

ENBDM is located in the upper byte of the XCSR register which is write-accessible only through BDC commands, see Section 29.3.2, "Extended Configuration/Status Register (XCSR)".

² 250 kHz maximum CPU frequency in LPrun; 125 kHz maximum peripheral clock frequency.

Mode	Regulator State
Run	Full On
Wait	Full On
Stop4	Full On
LPrun	Standby
LPwait	Standby
Stop3	Standby
Stop2	Partial Power Off

Figure 3-2. Allowable Power Mode Transitions for Mission Mode

Figure 3-2 illustrates mission mode state transitions allowed between the legal states shown in Table 3-1. RESET must be asserted low, or the TOD must issue a wakeup signal, in order to exit stop2. Only interrupt assertion is necessary to exit the other stop and wait modes.

Figure 3-3 takes the same set of states and transitions shown in Figure 3-2 and adds the BDM halt mode for development purposes. If BDM is enabled, the chip automatically shifts LP modes into their fully regulated equivalents. If software or debugger sets SPMSC2[LPR] while BDM is enabled, SPMSC2[LPRS] reflects the fact that the regulator is not in standby. Similarly, SPMSC2[PPDF] does not indicate a recovery from stop2 if XCSR[ENBDM] forced stop4 to occur in its place.¹

Stated another way, if XCSR[ENBDM] has been set via the BDM interface, then the power management controller keeps (or puts) the regulator in full regulation despite other settings in the contrary. The states shown in Figure 3-3 then map as follows:

- LPrun ⇒ Run
- LPwait \Rightarrow Wait
- Stop3 \Rightarrow Stop4
- Stop2 \Rightarrow Stop4

From a software perspective (and disregarding PMC status bits), the system remains in the appropriate low-power state, and can be debugged as such.

See Section 3.7, "Wait Modes," for a description of the various ways to enter halt mode.

MCF51MM256 Series Devices Reference Manual, Rev. 3

3-4 Freescale Semiconductor

^{1.} This can have subtle impacts on recovery from stop. The IRQ input can wake the device from stop4 if it has been enabled for that purpose. A low on the RESETB pin wakes the device from stop2 (there is an asynchronous path to the power management controller in that state).

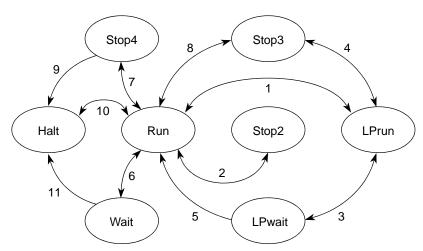


Figure 3-3. All Allowable Power Mode Transitions for

Table 3-2 defines triggers for the various state transitions shown in Figure 3-2.

Table 3-2. Triggers for State Transition

Transition #	From	То	Trigger
	Run	LPrun	Configure settings shown in Table 3-1, switch LPR=1 last
1			Clear SPMSC2[LPR]
	LPrun	Run	Interrupt when SPMSC2[LPWUI]=1
			Negative transition on enabled BKGD/MS pin.
2	Run	Stop2	Pre-configure settings shown in Table 3-1, execute STOP instruction
2	Stop2	Run	Assert zero on IRQ, RESET or TOD timeout. Reload environment from RAM.
3	LPrun	LPwait	Pre-configure settings shown in Table 3-1, execute STOP instruction
	LPwait	LPrun	Interrupt when SPMSC2[LPWUI]=0
4	LPrun	Stop3	Execute STOP instruction
4	Stop3	LPrun	Interrupt when SPMSC2[LPWUI]=0
5	LPwait	Run	Interrupt when SPMSC2[LPWUI]=1
3	Run	LPwait	Not supported.
6	Run	Wait	Pre-configure settings shown in Table 3-1, execute STOP instruction
	Wait	Run	Interrupt
7	Run	Stop4	Pre-configure settings shown in Table 3-1, execute STOP instruction
	Stop4	Run	Interrupt

Freescale Semiconductor 3-5

Table 3-2. Triggers for State Transition

Transition #	From	То	Trigger
	Stop3	Run	Interrupt when SPMSC2[LPWUI]=1
8	Run	Stop3	Pre-configure settings shown in Table 3-1, execute STOP instruction. The LP bit does not have to be set prior to entering Stop3 in this fashion. But low voltage interrupts and BDM must be disabled.
9	Stop4	Halt	When a BACKGROUND command is received through the BKGD/MS pin (XCSR[ENBDM] must equal one).
	Halt	Stop4	Not supported.
	Halt	Run	GO instruction issued via BDM
10	Run	Halt	When a BACKGROUND command is received through the BKGD/MS pin OR When a HALT instruction is executed OR When encountering a BDM breakpoint
11	Wait	Halt	When a BACKGROUND command is received through the BKGD/MS pin (XCSR[ENBDM] must equal one).
	Halt	Wait	Not supported.

An analog connection from this pin to the on-chip regulator wakes up the regulator, which then initiates a power-on-reset sequence.

Individual power states are discussed in more detail in the following sections.

3.4 **Secure Mode**

While the MCU is in secure mode, there are severe restrictions on which debug commands can be used. In this mode, only the upper byte of the core's XCSR, CSR2, and CSR3 registers can be accessed. See Chapter 29, "Version 1 ColdFire Debug (CF1 DEBUG)," for details.

3.5 **Bootloader Mode**

Upon exiting reset, the CPU fetches the SR and PC from locations 0x0 and 0x4 out of the bootloader ROM and executes code starting at the newly set value of the PC. While executing out of the bootloader several qualification factors are examined to determine whether to continue executing bootloader code or begin executing user code. The bootloader ROM can be accessed in bootloader mode or user mode. This section describes the valid operations and protection mechanism in bootloader and user modes.

The following four items will be examined after each reset of the MCU.

- BLMS pin
- SIGNATURE semaphore byte
- Flash block CRC checksum
- CRC BYPASS byte

3.5.1 Entering Bootloader Mode

Bootloader mode can be entered in the following four conditions:

- When BLMS pin is low and BKGD/MS is not pulled low during power-on-reset (POR), the bootloader mode is entered directly with no other qualifications.
- When BLMS pin and BKGD/MS are high during power-on-reset (POR), a CHECKSUM BYPASS flash location is examined. If it is not equal to 0x00 or 0xFF, then the bootloader mode is entered.
- When BLMS pin and BKGD/MS are high during power-on-reset (POR), a CHECKSUM BYPASS flash location is examined. If it is equal to 0xFF, a flash CRC is calculated for the flash array and compared with a FLASHCRC 16-bit word. If the result does not match, then the bootloader mode is entered.
- After a reset (other than a power-on reset), the SIGNATURE semaphore byte is examined. If it is equal to 0xC3, then the bootloader mode is entered.

3.5.2 Entering User mode

User mode can be entered in the following three conditions:

- When BLMS pin and BKGD/MS are high during power-on-reset (POR), and the CHECKSUM BYPASS byte is equal to 0x00, the user mode is entered.
- When BLMS pin and BKGD/MS are high during power-on-reset (POR), and the CHECKSUM BYPASS byte is equal to 0xFF, a flash CRC is calculated for the flash array and compared with a FLASHCRC 16-bit word. If the result matches, the user mode is entered.
- When a reset occurs (other than a power-on reset), if the SIGNATURE semaphore is not equal to 0xC3, the user mode is entered.

3.5.3 Active Background Mode and Bootloader Mode Arbitrage

During POR, if both BKGD/MS and \overline{BLMS} pins are low, active background mode is entered.

3.5.4 Bootloader Operation

This section describes the bootloader mechanism and bootloader flow chart.

The bootloader software is located in bootloader ROM. You can perform flash erasing and programming when:

- Bootloader mode is entered.
- Flash block checksum that has been calculated and flash block checksum do not match after power-on reset.
- SIGNATURE value in register matches.

3.5.4.1 Flash Block Checksum

Upon power-on reset (POR), if BLMSS = 0 and the value of checksum bypass is 0xFF, the bootloader calculates the flash checksum. The checksum is calculated for the Flash locations:

Freescale Semiconductor 3-7

 $(0x0000_0000:0x0000_F7FF)$

(0x0001_0800:0x0002_F7FF)

(0x0003_0800: 0x0003_FFFF)

The calculated checksum are verified with a checksum written to the two bytes of the flash (FLASHCRC). If the checksum matches, the previous bootloader operation was successful and the MCU jumps to the user code entry and starts to execute user code. If the checksum does not match, it jumps to bootloader entry to wait for commands.

Flash block checksum calculation uses 16-bit CRC.

3.5.4.2 SIGNATURE Semaphore Register

After a reset (other than a power-on reset), the bootloader verifies SIGNATURE semaphore register. If SIGNATURE = 0xC3, the MCU jumps to bootloader entry to wait for commands. If not, it jumps to the user code entry and starts to execute user code.

Users are required to provide a mechanism in their application code to set the SIGNATURE to 0xC3 and initiate a reset if they want to re-enter bootloader mode after a successful user code has been programmed. Alternatively, BKGD mode can be entered and SIGNATURE can be updated using BDM commands and reset initiated with BKGD pin high.

3.5.4.3 Flash Partial Erase Semaphore

The value of flash partial erase is programmed by the user. Only when flash partial erase is programmed to 0x00, can the partial erase flash array command be supported by bootloader.

The value of this byte is 0xFF when the device is shipped from Freescale.

3.5.4.4 Boot Mode Entry Flow Chart

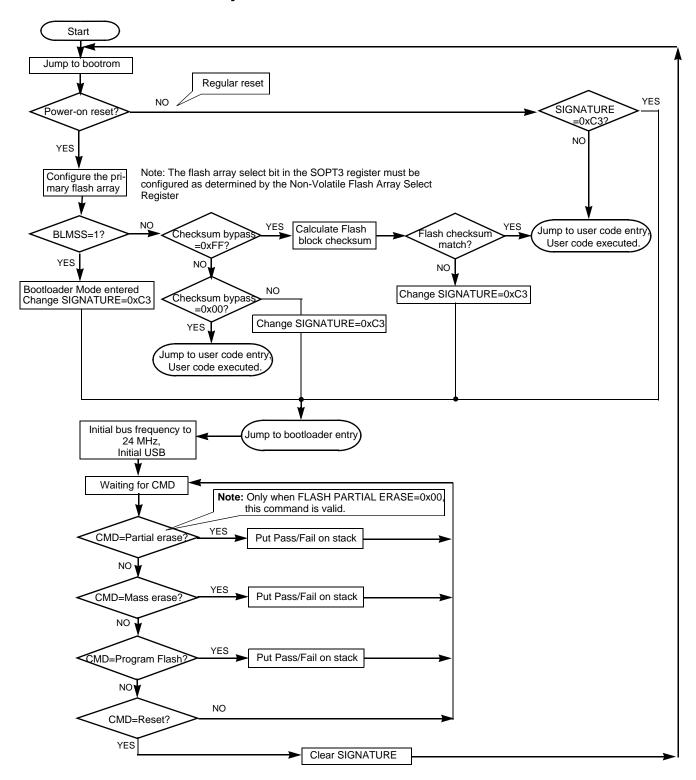


Figure 3-4. Bootloader Flow Chart

Freescale Semiconductor 3-9

3.6 Run Modes

3.6.1 Run Mode

Run mode is the normal operating mode for the MCF51MM256 series MCUs. This mode is selected after any internal reset including LVD and when both the BKGD/MS and \overline{BLMS} pins are high after a POR exit or a BDC forced reset. Upon exiting reset, the CPU fetches the SR and PC from locations 0x0 and 0x4 out of the bootloader ROM and executes code starting at the newly set value of the PC.

NOTE

CPU during reset will access the bootloader ROM at 0x0 and 0x4 but non-reset CPU, multi-master or bdm accesses will read user Flash.

3.6.2 Low-Power Run Mode (LPrun)

In the low-power run mode, the on-chip voltage regulator is put into its standby (or loose regulation) state. In this state, the power consumption is reduced to a minimum that allows CPU functionality. Power consumption is reduced the most by disabling the clocks to all unused peripherals by clearing the corresponding bits in the SCGC1 and SCGC2 registers¹.

Before entering this mode, the following conditions must be met:

- BLPE² is the selected clock mode for the MCG. For more information, see Table 39-14.
- MCGC2[HGO] is cleared.
- The bus frequency is less than 125 kHz.
- The ADC must be in low-power mode (ADLPC=1) or disabled.
- Low-voltage detect must be disabled. The LVDE and/or LVDSE bit in SPMSC1 register must be cleared.
- Flash programming/erasing is not allowed

After these conditions are met, low-power run mode can be entered by setting SPMSC2[LPR].

To re-enter standard run mode, clear the LPR bit. SPMSC2[LPRS] is a read-only status bit that can be used to determine if the regulator is in full-regulation mode or not. When LPRS is cleared, the regulator is in full-regulation mode and the MCU can run at full speed in any clock mode.

Assuming that SOPT1[BKGDPE] is set to enable BKGD/MS, the device also switches from LPrun to run mode when it detects a negative transition on the BKGD/MS pin.

Low-power run mode also provides the option to return to full regulation if any interrupt occurs. This is done by setting SPMSC2[LPWUI]. The MCG can then be set for full speed immediately in the interrupt service routine.

3.6.2.1 BDM in Low-Power Run Mode

Low-power run mode cannot be entered when the MCU is in active background debug mode.

- 1. System clock gating control registers 1 and 2
- 2. FLL bypassed external low-power

3-10 Freescale Semiconductor

If a device is in low-power run mode, a falling edge on an active BKGD/MS pin exits low-power run mode, clears the LPR and LPRS bits, and returns the device to normal run mode.

3.7 Wait Modes

3.7.1 Wait Mode

Wait mode is entered by executing a STOP instruction after configuring the device as per Table 3-1. If the WAITE control bit is set when STOP is executed, the Wait mode is entered. Upon execution of the STOP instruction, the CPU enters a low-power state in which it is not clocked.

The V1 ColdFire core does not differentiate between Stop and Wait modes. The difference between the two is at the device level. In Stop mode, most peripheral clocks are shut down; in Wait mode, they continue to run.

The ENBDM bit in the XCSR register must be set prior to entering Wait mode if the device is required to respond to BDM instructions after in Wait mode.

The low voltage detector, if enabled, can be configured to interrupt the CPU and exit Wait mode into Run mode.

When an interrupt request occurs, the CPU exits Wait mode and resumes processing, beginning with the stacking operations leading to the interrupt service routine.

3.7.2 Low-Power Wait Mode (LPwait)

Low-power wait mode is entered by executing a STOP instruction while the MCU is in low-power run mode and configured per Table 3-1. In the low-power wait mode, the on-chip voltage regulator remains in its standby state as in the low-power run mode. In this state, the power consumption is reduced to a minimum that allows most modules to maintain funtionality. Power consumption is reduced the most by disabling the clocks to all unused peripherals by clearing the corresponding bits in the SCGC registers.

Low-power run mode restrictions also apply to low-power wait mode.

If the LPWUI bit is set when the STOP instruction is executed, the voltage regulator returns to full regulation when wait mode is exited. The MCG can be set for full speed immediately in the interrupt service routine.

If the LPWUI bit is cleared when the STOP instruction is executed, the device returns to low-power run mode.

Any reset exits low-power wait mode, clears the LPR bit, and returns the device to normal run mode.

3.7.2.1 BDM in Low-Power Wait Mode

If a device is in low-power wait mode, a falling edge on an active BKGD/MS pin exits low-power wait mode, clears the LPR and LPRS bits, and returns the device to normal run mode.

Freescale Semiconductor 3-11

3.8 Stop Modes

One of three Stop modes are entered upon execution of a STOP instruction when SOPT1[STOPE] is set. SOPT1[WAITE] must be clear. In Stop3 mode, the bus and CPU clocks are halted. If the ENBDM bit is set prior to entering Stop4, only the peripheral clocks are halted. The MCG module can be configured to leave the reference clocks running. See Chapter 17, "Multipurpose Clock Generator (S08MCGV3)" for more information.

NOTE

If neither the WAITE nor STOPE bit is set when the CPU executes a STOP instruction, the MCU does not enter either of the stop modes. Instead, it initiates an illegal opcode reset (if CPUCR[IRD]=0) or generates an illegal instruction exception.

The Stop modes are selected by setting the appropriate bits in the SPMSC2 register. Table 3-1 shows all of the control bits that affect mode selection under various conditions. The selected mode is entered following the execution of a STOP instruction.

Entry into the active background mode from run mode is enabled if ENBDM in XCSR is set. Chapter 29, "Version 1 ColdFire Debug (CF1_DEBUG)" explains this register. If ENBDM is set when the CPU executes a STOP instruction, the system clocks to the background debug logic remain active, and the peripheral clocks get gated, when the MCU enters stop mode. Because of this behavior, background debug communication remains possible.

Most background commands are not available in Stop mode. The memory-access-with-status commands do not allow memory access, but they report an error indicating that the MCU is in Stop or Wait mode. The BACKGROUND command can be used to wake the MCU from Stop mode and enter Active Background debug mode if the ENBDM bit is set prior to entering Stop mode. After entering background debug mode, all background commands are available.

In addition, the MCG and XOSC continue operation in the clock configurations set prior to stop entry. Also, the voltage regulator does not enter its low-power standby state, but maintains full internal regulation.

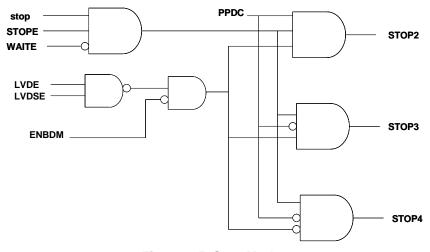


Figure 3-5. Stop Modes

3-12 Freescale Semiconductor

3.8.1 Stop2 Mode

Stop2 mode is entered by executing a STOP instruction under the conditions as shown in Table 3-1. Most of the internal circuitry of the MCU is powered off in Stop2 mode, with the exception of the RAM. Upon entering Stop2 mode, all I/O pin control signals are latched so that the pins retain their states during Stop2 mode. Exiting from Stop2 mode is performed by asserting either wake-up pin: RESET or IRQ.

IRQ always functions as an active-low wakeup input when the MCU is in Stop2 mode, regardless of how the pin is configured before entering Stop2 mode. The pullup on this pin is always disabled in Stop2 mode. This pin must be driven or pulled high externally while in Stop2 mode.

In addition, the TOD interrupt can wake the MCU from Stop2 mode, if enabled and using the low power oscillator (LPO). If the TOD is using the external clock source (EREFSTEN = 1) or internal clock source (IREFSTEN = 1), then the TOD is disabled in Stop2 mode.

Upon wake-up from Stop2 mode, the MCU starts up as from a power-on reset (POR):

- All module control and status registers are reset.
- The LVD reset function is enabled, and the MCU remains in the reset state if VDD is below the LVD trip point (low trip point selected due to POR).
- The CPU takes the reset vector.

In addition to the above, upon waking up from Stop2 mode, SPMSC2[PPDF] is set. This flag is used to direct user code to go to a Stop2 recovery routine. PPDF remains set, and the I/O pin states remain latched until a 1 is written to SPMSC2[PPDACK]. To maintain I/O states for pins that were configured as general-purpose I/O before entering Stop2 mode, software must restore the contents of the I/O port registers, which have been saved in RAM, to the port registers before writing to SPMSC2[PPDACK]. If the port registers are not restored from RAM before writing to SPMSC2[PPDACK], then the pins switch to their reset states when SPMSC2[PPDACK] is written.

For pins that were configured as peripheral I/O, software must reconfigure the peripheral module that interfaces to the pin before writing to SPMSC2[PPDACK]. If the peripheral module is not enabled before writing to SPMSC2[PPDACK], the pins are controlled by their associated port control registers when the I/O latches are opened.

3.8.2 Stop3 Mode

Stop3 mode is entered by executing a STOP instruction under the conditions as shown in Table 3-1 (SPMSC2[PPDC] = 0 and SPMSC1[LVDSE] = 0). The states of all of the internal registers and logic, RAM contents, and I/O pin states are maintained. Stop3 mode can be exited by asserting RESET, or by an interrupt from one of the following sources: the USB resume interrupt, ADC, IRQ, KBI, or the ACMP. If Stop3 mode is exited by means of the RESET pin, then the MCU is reset and operation resumes after taking the reset vector. Exit by means of one of the internal interrupt sources results in the MCU taking the appropriate interrupt vector.

3.8.3 **Stop4 Mode**

Stop4 mode is entered by executing a STOP instruction under the conditions shown in Table 3-1 (SPMSC1[LVDSE]=1). The states of all of the internal registers and logic, RAM contents, and I/O pin states are maintained. The MCG is configured to be running with the PLL or FLL engaged. Stop4 can be exited by asserting RESET, or by an interrupt from one of the following sources: the Time of Day (TOD) interrupt, the USB resume interrupt, LVD, ADC, IRQ, KBI, or the ACMP. If stop4 is exited by means of the RESET pin, the MCU is reset and operation resumes after taking the reset vector. Exit by means of one of the internal interrupt sources results in the MCU taking the appropriate interrupt vector.

3.8.3.1 LVD Enabled in Stop Mode

The LVD is capable of generating an interrupt or a reset when the supply voltage drops below the LVD voltage. If the LVD is enabled in stop (SPMSC1[LVDE] && SPMSC1[LVDSE] = 1) at the time the CPU executes a STOP instruction, then the voltage regulator remains active during Stop mode. If the user attempts to enter Stop2 mode with the LVD enabled for Stop mode, the MCU enters Stop4 mode instead. For the ADC to operate, the LVD must be left enabled when entering Stop4 mode. For the ACMP to operate when PRACMPC1[PRGINS] is set, the VREF must be left enabled when entering Stop4. For the OSC to operate with an external reference when MCGC2[RANGE] is set, the LVD must be left enabled when entering Stop4 mode.

3.9 On-Chip peripheral Modules in Stop and Low-power Modes

When the MCU enters any stop mode (wait not included), system clocks to the internal peripheral modules are stopped. Even in the exception case (ENBDM = 1), where clocks to the background debug logic continue to operate, clocks to the peripheral systems are halted to reduce power consumption. Refer to Section 3.8.1, "Stop2 Mode," and Section 3.8.2, "Stop3 Mode," for specific information on system behavior in stop modes.

When the MCU enters LPwait or LPrun modes, system clocks to the internal peripheral modules continue based on the settings of the clock gating control registers (SCGC1 and SCGC2).

Table 3-3 defines terms used in Table 3-4 to describe operation of components on the chip in the various low-power modes.

Voltage Regulator	Clocked ¹	Not Clocked
Full Regulation	FullOn	FullNoClk FullADACK ²
Soft Regulation	SoftOn ³	SoftNoClk Disabled SoftADACK ⁴
Off	N/A	Off

Table 3-3. Abbreviations used in Table 3-4

3-14 Freescale Semiconductor

Subject to module enables and settings of System Clock Gating Control Registers 1 and 2 (SCGC1 and SCGC2).

- This ADC-specific mode defines the case where the device is fully regulated and the normal peripheral clock is stopped. In this case, the ADC can run using its internally generated asynchronous ADACK clock.
- $^{\rm 3}$ $\,$ Analog modules must be in their low-power mode when the device is operated in this state.
- ⁴ This ADC-specific mode defines the case where the device is in soft regulation and the normal peripheral clock is stopped. In this case, the ADC can only be run using its low-power mode and internally generated asynchronous ADACK clock.

Table 3-4. Low-Power Mode Behavior

Davishasal	Mode									
Peripheral	Stop2	Stop3	Stop4	LPwait	Wait	Run	LPrun			
V1 ColdFire core	Off	Standby ¹	Standby	SoftNoClk	Standby	On	SoftOn			
RAM	Standby	Standby	Standby	SoftNoClk	Standby	On	SoftOn			
Flash	Off	Standby	Standby	SoftNoClk	On	On	SoftOn			
Port I/O Registers	Off	Standby	Standby	SoftOn	On	On	SoftOn			
Mini-FlexBus	Pin States Held ²	Standby	Standby	_	Standby	On	_			
ADC ^{,3}	Off	On	On	SoftOn	On	On	SoftOn			
ACMP	Off	On	On	SoftOn	On	On	SoftOn			
BDC/BDM	Off	Standby	On	SoftOn	On	On	SoftOn			
COP	Off	Standby	Standby	SoftOn	On	On	SoftOn			
Crystal Oscillator	Optionally On	Optionally On	On All Modes	RANGE=0 HGO=0	On All Modes	On	RANGE=0 HGO=0			
MCG	Off	On ⁴	On	_	On	On	_			
SIM	Off	On	On	_	On	On	_			
IIC	Off	Standby	Standby	SoftOn	On	On	SoftOn			
IRQ	Off (Wake Up via POR) ⁵	NoClk (Wake Up)	NoClk (Wake Up)	SoftOn	On	On	SoftOn			
KBI	Off	NoClk (Wake Up)	NoClk (Wake Up)	SoftOn	On	On	SoftOn			
LVD/LVW	Off	Standby	On (Wake Up)	Disabled	On	On	Disabled			
TOD	Optionally On if using XOSC1 or LPO enabled	On (Wake Up)	On (Wake Up)	_	On	On	_			
SCIx	Off	Standby	Standby	SoftOn	On	On	SoftOn			
SPIx	Off	Standby	Standby	SoftOn	On	On	SoftOn			
DAC	Off	Standby	Standby	_	On	On	_			
OPAMP	Off	On	On	_	On	On	_			
TRIAMP	Off	On	On	_	On	On	_			
VREF	Off	Standby	Standby	_	On	On	_			

Freescale Semiconductor 3-15

Table 3-4. Low-Power Mode Behavior (Continued)

Davimbanal	Mode										
Peripheral	Stop2	Stop3	Stop4	LPwait	Wait	Run	LPrun				
USB (SIE and Transceiver)	Off	Optionally On ⁶	Optionally On ⁶	_	On	On	_				
USB 3.3V Regulator	Off	Optionally On ⁷	Optionally On ⁷	_	On	On	_				
TPMx	Off	Standby	Standby	SoftOn	On	On	SoftOn				
CMT	Off	Standby	Standby	_	On	On	_				
Voltage Regulator / PMC	Parital Shutdown. 1kHz osc if enabled	On	On	SoftOn 1 kHz osc on	On	On	SoftOn 1 kHz osc on				

¹ OFF=power off,clocks disabled: ON=power on,clocks enabled: Standby= power on, clocks disabled

3.10 Debug Mode

Debug mode functions are managed through the background debug controller (BDC) in the V1 ColdFire core. The BDC provides the means for analyzing MCU operation during software development.

Debug commands are of two types:

- Non-intrusive commands, defined as commands that can be issued while the user program is running. Non-intrusive commands can be issued through the BKGD pin while the MCU is in Run mode; non-intrusive commands can also be executed when the MCU is in the Halt mode.
 Non-intrusive commands include:
 - Memory access commands
 - Memory-access-with-status commands
 - Debug register access commands
 - Miscellaneous commands such as BACKGROUND, READ PSTB, and SYNC PC
- Active background commands, which can only be executed while the MCU is in Halt mode. Active background commands include commands to:
 - Read or write CPU registers
 - Leave Halt mode to return to the user application program (GO)

The CPU Halt mode is entered in a number of ways:

• The BKGD/MS pin is low during POR

² This behavior is due to operation of the I/O cells in conjunction with the PMC. The Mini-Flexbus does not actually save state during the transitions through stop2.

³ LVD must be enabled to run in stop if converting the bandgap channel.

⁴ User must select BLPI or BLPE prior to entering STOP3 mode.

The RESET pin also has a direct connection to the on-chip regulator wakeup input. Asserting a low on this pin while in STOP2 triggers the PMC to wakeup. As a result, the device undergoes a power-on-reset sequence.

⁶ USBEN in CTL is set, else off.

⁷ USBVREN in USBTRC0 is set to enable USB 3.3V Regulator, else off

- The BKGD/MS pin is low immediately after issuing a background debug force reset (see Section 29.3.3, "Configuration/Status Register 2 (CSR2)," for details)
- A background debug force reset occurs and (CSR2[BDFR] = 1) and CSR2[BFHBR] = 1
- A computer operating properly reset occurs and CSR2[COPHR] = 1
- An illegal operand reset occurs and CSR2[IOPHR] = 1
- An illegal address reset occurs and CSR2[IADHR] = 1
- A BACKGROUND command is received through the BKGD/MS pin. If necessary, this wakes the part from Stop/Wait modes
- A HALT instruction is executed
- Encountering a BDM breakpoint and the trigger response is programmable to generate a halt

While in Halt mode, CPU waits for serial background commands rather than executing instructions from the user application program.

The BDC clock source is controlled by the XCSR[CLKSW] bit. When XCSR[CLKSW] is 1, the BDC serial clock is BUSCLK. When XCSR[CLKSW] is 0, the BDC serial clock is MCGLCLK. This signal is supplied from the on-chip DCO. Normally, MCGLCLK should be used when the device is in any of the following clock modes: FBE, FEI, FBI, and FEE. The FLL clocks are not available when the device is in BLPE and BLPI modes. In these cases, MCGOUT should be used.

The ENBDM bit determines whether the device can be placed in Halt mode, whether the CPU and BDC serial clocks continue to run in Stop modes, and if the regulator can be placed into Standby mode. Again, if booting to Halt mode, ENBDM and CLKSW are automatically set.

If ENBDM is cleared, the ColdFire core treats the HALT instruction as an illegal instruction and responds with a reset event (if CPUCR[IRD] = 0) or a processor exception (if CPUCR[IRD] = 1).

When the XCSR[ENBDM] is set, the device can be restarted from Stop/Wait via the BDM interface.

Most users will not need to be aware of these nuances because they are normally visible only to the development tools.

The debug interface is used to program a bootloader or user application program into the flash program memory before the MCU is operated in Run mode for the first time. When the MCU is shipped from the Freescale Semiconductor factory, the flash program memory is erased by default unless specifically noted, so there is no program that could be executed in run mode until the flash memory is initially programmed. The debug interface can also be used to erase and reprogram the flash memory after it has been previously programmed.

For additional information about the debug interface, refer to Chapter 29, "Version 1 ColdFire Debug (CF1 DEBUG)."

Freescale Semiconductor 3-17

3-18 Freescale Semiconductor

Chapter 4 Memory

4.1 MCF51MM256 Series Memory Map

As shown in Figure 4-1, on-chip memory in the MCF51MM256 series microcontrollers consists of RAM, Boot ROM, space available for off chip expansion and flash program memory for nonvolatile data storage, plus I/O and control/status registers.

	MCF51MM256		MCF51MM128
CPU Address		CPU Address	
0x(00)00_0000	Flash	0x(00)00_0000 0x(00)01 FFFF	Flash 128 KBytes
0x(00)03_FFFF 0x(00)04_0000	256 KBytes Reserved	0x(0Ó)02_0000	Reserved
0x(00)30_0000 0x(00)30_1FFF	USB Boot ROM	0x(00)30_0000 0x(00)30_1FFF	USB Boot ROM
0x(00)3F_FFFF 0x(00)40_0000 0x(00)7F_FFFF 0x(00)80_0000	Reserved	0x(00)3F_FFFF	Reserved
	Available for off-chip expansion	0x(00)40_0000 0x(00)7F_FFFF	Available for off-chip expansion
	RAM ¹ 32 KBytes	0x(0ó)80_0000	RAM ¹ 32 KBytes
0x(00)9F_FFFF		0x(00)9F_FFFF	
0x(00)9F_FFFF 0x(00)AO_0000 0x(00)BF_FFFF 0x(00)CO_0000 0x(00)CO_000F 0x(00)CO_0010 0x(00)FF_7FFF	Available for off-chip expansion	0x(00)A0_0000 0x(00)BF FFFF	Available for off-chip expansion
	ColdFire RGPIO	0x(00)C0_0000 0x(00)C0_000F	ColdFire RGPIO
	Unimplemented	0x(00)C0_0010 0x(00)FF_7FFF	Unimplemented
0x(00)FF_8000 0x(00)FF_FFFF	Slave Peripherals	0x(00)FF_8000 0x(00)FF_FFFF	Slave Peripherals

^{1.} RAM is wrapped and repeats every 0x7FFF. For example, address 0x(00)80_0000 can also be accessed at 0x(00)80_8000.

Figure 4-1. MCF51MM256 Series Memory Maps

Freescale Semiconductor 4-1

4-2

Regions within the memory map are subject to restrictions with regard to the types of CPU accesses allowed. These are outlined in Table 4-1. Non-supported access types terminate the bus cycle with an error (and would typically generate a system reset in response to the error termination).

Read Write **Base Address** Region Word **Byte** Long **Byte** Word Lona 0x(00)00_0000 Flash Х Х 0x(00)30 0000 Boot ROM Х 0x(00)80_0000 RAM Х Х Х Х Х 0x(00)C0_0000 Rapid GPIO Х Χ Χ Х Х Χ 0x(FF)FF_8000 Peripherals Х Х Х Х Х Х 0x(FF)FF_E800 Mini-FlexBus х х х

Table 4-1. CPU Access Type Allowed by Region

Consistent with past ColdFire devices, flash configuration data is located at $0x(00)00_0400$. The slave peripherals section of the memory map is further broken into the following sub-sections:

```
0x(FF)FF_8000 - 0x(FF)FF_807F Direct-page peripheral regs 0x(FF)FF_9800 - 0x(FF)FF_994F High-page peripheral regs 0x(FF)FF_FFC0 - 0x(FF)FF_FFFF Interrupt controller
```

The section of memory at $0x(00)C0_0000$ is assigned for use by the ColdFire Rapid GPIO module. See Table 4-7 for the rapid GPIO memory map and Chapter 9, "Rapid GPIO (RGPIO)," for further details on the module.

The MCF51MM256 series microcontrollers use an 8-bit peripheral bus. The bus bridge from the ColdFire system bus to the peripheral bus is capable of serializing 16-bit accesses into two 8-bit accesses and 32-bit access into four 8-bit accesses. This can be used to speed access to properly aligned peripheral registers. Not all peripheral registers are aligned to take advantage of this feature.

CPU accesses to those parts of the memory map marked as reserved in Figure 4-1 result in an illegal address reset if CPUCR[ARD] = 0 or an address error exception if CPUCR[ARD] = 1.

The lower 32 Kbytes of flash memory and slave peripherals section of the memory map are most efficiently accessed using the ColdFire absolute short addressing mode. RAM is most efficiently accessed using the A5-relative addressing mode (address register indirect with displacement mode).

4.1.1 Register Addresses and Bit Assignments

Peripheral registers in the MCF51MM256 series microcontrollers are divided into two groups:

- Direct-page registers located at 0x(FF)FF_8000 in the memory map.
- High-page registers located at 0x(FF)FF_9800 in the memory map.

There is no functional advantage to locating peripherals in the direct page versus the high page peripheral space for an MCF51MM256 series microcontroller. Both sets of registers may be efficiently accessed

using the ColdFire absolute short addressing mode. The areas are differentiated to maintain documentation compatibility with the MC9S08MM128.

Peripheral register addresses for the MCF51MM256 series microcontrollers are shifted 0x(FF)FF_8000 compared with the MC9S08MM128 devices.

The ColdFire interrupt controller module is mapped in the peripheral space and occupies a 64-byte space at the upper end of memory. Accordingly, its address decode is defined as $0x(FF)FF_FFC0_0x(FF)FF_FFFF$. This 64-byte space includes the program-visible interrupt controller registers as well as the space used for interrupt acknowledge (IACK) cycles.

There is a nonvolatile register area consisting of a block of 16 bytes in flash memory at $0x(00)00_0400-0x(00)00_040F$. Nonvolatile register locations include:

- NVxPROT and NVxOPT are loaded into working registers at reset
- An 8-byte backdoor comparison key that optionally allows a user to gain controlled access to secure memory

Because the nonvolatile register locations are flash memory, they must be erased and programmed like other flash memory locations.

4.1.2 Detailed register addresses and bit assignments

Table 4-2 is a summary of all user-accessible direct-page registers and control bits.

In Table 4-2, the register names in column two are shown in bold to set them apart from the bit names to the right. Cells that are not associated with named bits are shaded. A shaded cell with a 0 indicates this unused bit always reads as a 0. Shaded cells with dashes indicate unused or reserved bit locations that could read as 1s or 0s. When writing to these bits, write a 0 unless otherwise specified.

Recall that ColdFire has a big endian byte addressable memory architecture. The most significant byte of each address is the lowest numbered as shown in Figure 4-2. Multi-byte operands (e.g., 16-bit words and 32-bit longwords) are referenced using an address pointing to the most significant (first) byte.

Freescale Semiconductor 4-3

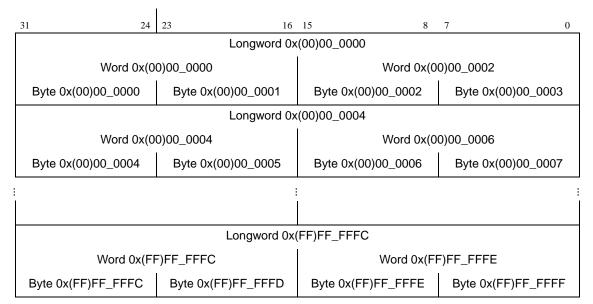


Figure 4-2. ColdFire Memory Organization

Table 4-2. Direct-Page Register Summary

Address	Name	Bit 7	6	5	4	3	2	1	Bit 0
0x(FF)FF_8000	PTAD	PTAD7	PTAD6	PTAD5	PTAD4	PTAD3	PTAD2	PTAD1	PTAD0
0x(FF)FF_8001	PTADD	PTADD7	PTADD6	PTADD5	PTADD4	PTADD3	PTADD2	PTADD1	PTADD0
0x(FF)FF_8002	PTBD	PTBD7	PTBD6	PTBD5	PTBD4	PTBD3	PTBD2	PTBD1	PTBD0
0x(FF)FF_8003	PTBDD	PTBDD7	PTBDD6	PTBDD5	PTBDD4	PTBDD3	PTBDD2	PTBDD1	PTBDD0
0x(FF)FF_8004	PTCD	PTCD7	PTCD6	PTCD5	PTCD4	PTCD3	PTCD2	PTCD1	PTCD0
0x(FF)FF_8005	PTCDD	PTCDD7	PTCDD6	PTCDD5	PTCDD4	PTCDD3	PTCDD2	PTCDD1	PTCDD0
0x(FF)FF_8006	PTDD	PTDD7	PTDD6	PTDD5	PTDD4	PTDD3	PTDD2	PTDD1	PTDD0
0x(FF)FF_8007	PTDDD	PTDDD7	PTDDD6	PTDDD5	PTDDD4	PTDDD3	PTDDD2	PTDDD1	PTDDD0
0x(FF)FF_8008- (FF)FF_800F	RESERVED	_	_	_	_	_	_	_	_
0x(FF)FF_8010	DACDAT0H				DDAT	0[15:8]			
0x(FF)FF_8011	DACDAT0L				DDAT	0[7:0]			
0x(FF)FF_8012	DACDAT1H				DDAT	1[15:8]			
0x(FF)FF_8013	DACDAT1L				DDAT	1[7:0]			
0x(FF)FF_8014	DACDAT2H				DDAT	2[15:8]			
0x(FF)FF_8015	DACDAT2L				DDAT	2[7:0]			
0x(FF)FF_8016	DACDAT3H				DDAT	3[15:8]			
0x(FF)FF_8017	DACDAT3L				DDAT	3[7:0]			
0x(FF)FF_8018	DACDAT4H				DDAT	4[15:8]			
0x(FF)FF_8019	DACDAT4L				DDAT	4[7:0]			

MCF51MM256 Series Devices Reference Manual, Rev. 3

4-4 Freescale Semiconductor

Table 4-2. Direct-Page Register Summary (Continued)

Address	Name	Bit 7	6	5	4	3	2	1	Bit 0	
0x(FF)FF_801A	DACDAT5H				DDAT	5[15:8]				
0x(FF)FF_801B	DACDAT5L		DDAT5[7:0]							
0x(FF)FF_801C	DACDAT6H		DDAT6[15:8]							
0x(FF)FF_801D	DACDAT6L		DDAT6[7:0]							
0x(FF)FF_801E	DACDAT7H				DDAT	7[15:8]				
0x(FF)FF_801F	DACDAT7L				DDAT	Г7[7:0]				
0x(FF)FF_8020	DACDAT8H	_			DDAT	8[15:8]				
0x(FF)FF_8021	DACDAT8L				DDAT	Г8[7:0]				
0x(FF)FF_8022	DACDAT9H				DDAT	9[15:8]				
0x(FF)FF_8023	DACDAT9L				DDAT	Г9[7:0]				
0x(FF)FF_8024	DACDAT10H				DDAT1	10[15:8]				
0x(FF)FF_8025	DACDAT10L				DDAT	10[7:0]				
0x(FF)FF_8026	DACDAT11H	_			DDAT*	11[15:8]				
0x(FF)FF_8027	DACDAT11L	_			DDAT	11[7:0]				
0x(FF)FF_8028	DACDAT12H	_			DDAT1	12[15:8]				
0x(FF)FF_8029	DACDAT12L	_			DDAT	12[7:0]				
0x(FF)FF_802A	DACDAT13H				DDAT1	13[15:8]				
0x(FF)FF_802B	DACDAT13L				DDAT	13[7:0]				
0x(FF)FF_802C	DACDAT14H				DDAT1	14[15:8]				
0x(FF)FF_802D	DACDAT14L				DDAT	14[7:0]				
0x(FF)FF_802E	DACDAT15H				DDAT1	15[15:8]				
0x(FF)FF_802F	DACDAT15L				DDAT	15[7:0]				
0x(FF)FF_8030	DACS	0	0	0	0	0	DACWM	DACRPT	DACRPB	
0x(FF)FF_8031	DACC0	DACEN	DACRFS	DACTSEL	DACSTRG	LPEN	DACWIE	DACTIE	DACBIE	
0x(FF)FF_8032	DACC1	0	0	0	DAC	BFWM	DAC	BFMD	DACBFE	
0x(FF)FF_8033	DACC2		DAC	BFRP			DACE	BFUP		
0x(FF)FF_8034	PRACMPCS	ACEN	ACMPF	0	ACOPE	ACMPO	ACI	INTS	ACIEN	
0x(FF)FF_8035	PRACMPC0	0		ACPSEL		0		ACNSEL		
0x(FF)FF_8036	PRACMPC1	PRGEN	PRGINS	0	PRGOS4	PRGOS3	PRGOS2	PRGOS1	PRGOS0	
0x(FF)FF_8037	PRACMPC2	0	ACIPE6	ACIPE5	ACIPE4	ACIPE3	ACIPE2	ACIPE1	ACIPE0	
0x(FF)FF_8038	MCGC1	CI	_KS		RDIV		IREFS	IRCLKEN	IREFSTEN	
0x(FF)FF_8039	MCGC2	BI	VIC	RANGE	HGO	LP	EREFS	ERCLKEN	EREFSTEN	
0x(FF)FF_803A	MCGTRM				TF	RIM		•	•	
0x(FF)FF_803B	MCGSC	LOLS	LOCK	PLLST	IREFST	CLK	ST	OSCINIT	FTRIM	
0x(FF)FF_803C	MCGC3	LOLIE	PLLS	CME	DIV32		VD	IV		

MCF51MM256 Series Devices Reference Manual, Rev. 3

Table 4-2. Direct-Page Register Summary (Continued)

Address	Name	Bit 7	6	5	4	3	2	1	Bit 0		
0x(FF)FF_803D	MCGC4	0	0	DMX32	0	0	0	DRST /	DRS		
0x(FF)FF_803E- 0x(FF)FF_803F	RESERVED	_	_	_	_	_	_	_	_		
0x(FF)FF_8040	ADCSC1A	COCOA	AIENA	DIFFA			ADCHA				
0x(FF)FF_8041	ADCSC1B	СОСОВ	AIENB	DIFFB			ADCHB				
0x(FF)FF_8042	ADCSC1C	COCOC	AIENC	DIFFC			ADCHC				
0x(FF)FF_8043	ADCSC1D	COCOD	AIEND	DIFFD			ADCHD				
0x(FF)FF_8044	ADCSC1E	COCOE	AIENE	DIFFE			ADCHE				
0x(FF)FF_8045	ADCSC1F	COCOF	AIENF	DIFFF			ADCHF				
0x(FF)FF_8046	ADCSC1G	COCOG	AIENG	DIFFG			ADCHG				
0x(FF)FF_8047	ADCSC1H	СОСОН	AIENH	DIFFH			ADCHH				
0x(FF)FF_8048	ADCCFG1	ADLPC	AI	OIV	ADLSMP	MOI	DE	ADIC	LK		
0x(FF)FF_8049	ADCCFG2	0	0	0	0	0 ADACKEN ADHSC ADLST			STS		
0x(FF)FF_804A	ADCRHA		DA[15:8]								
0x(FF)FF_804B	ADCRLA		DA[7:0]								
0x(FF)FF_804C	ADCRHB		DB[15:8]								
0x(FF)FF_804D	ADCRLB		DB[7:0]								
0x(FF)FF_804E	ADCRHC				DC[15:8]					
0x(FF)FF_804F	ADCRLC				DC	[7:0]					
0x(FF)FF_8050	ADCRHD				DD[15:8]					
0x(FF)FF_8051	ADCRLD				DD	[7:0]					
0x(FF)FF_8052	ADCRHE				DE[15:8]					
0x(FF)FF_8053	ADCRLE				DE	[7:0]					
0x(FF)FF_8054	ADCRHF				DF[15:8]					
0x(FF)FF_8055	ADCRLF				DF	[7:0]					
0x(FF)FF_8056	ADCRHG				DG[15:8]					
0x(FF)FF_8057	ADCRLG				DG	[7:0]					
0x(FF)FF_8058	ADCRHH				DH[15:8]					
0x(FF)FF_8059	ADCRLH				DH	[7:0]					
0x(FF)FF_805A- 0x(FF)FF_805B	RESERVED	_	_	_	_	_	_	-	_		
0x(FF)FF_805C	VREFTRM				TI	RM					
0x(FF)FF_805D	VREFSC	VREFEN	0	0	0	0	VREFST	MOI)E		
0x(FF)FF_805E	RESERVED	_	-	-	_	_	_	_	_		
0x(FF)FF_805F	IRQSC	0	IRQPDD	IRQEDG	IRQPE	IRQF	IRQACK	IRQIE	IRQMOD		

4-6 Freescale Semiconductor

Table 4-2. Direct-Page Register Summary (Continued)

Address	Name	Bit 7	6	5	4	3	2	1	Bit 0
0x(FF)FF_8060	IICA1	AD7	AD6	AD5	AD4	AD3	AD2	AD1	0
0x(FF)FF_8061	IICF	MU	JLT			ICF	?		
0x(FF)FF_8062	IICC1	IICEN	IICIE	MST	TX	TXAK	RSTA	0	0
0x(FF)FF_8063	IICS	TCF	IAAS	BUSY	ARBL	0	SRW	IICIF	RXAK
0x(FF)FF_8064	IICD				DA	ATA			
0x(FF)FF_8065	IICC2	GCAEN	ADEXT	0	0	0	AD10	AD9	AD8
0x(FF)FF_8066	IICSMB	FACK	ALERTEN	SIICAEN	TCKSEL	SLTF	SHTF	0	0
0x(FF)FF_8067	IICA2	SAD7	SAD6	SAD5	SAD4	SAD3	SAD2	SAD1	0
0x(FF)FF_8068	IICSLTH	SSLT15	SSLT14	SSLT13	SSLT12	SSLT11	SSLT10	SSLT9	SSLT8
0x(FF)FF_8069	IICSLTL	SSLT7	SSLT6	SSLT5	SSLT4	SSLT3	SSLT2	SSLT1	SSLT0
0x(FF)FF_806A	IICFLT	0	0	0	0	FLT3	FLT2	FLT1	FLT0
0x(FF)FF_806B	RESERVED	_	_	_	_	_	_	_	_
0x(FF)FF_806C	KBI1SC	0	0	0	0	KB1F	KB1ACK	KB1IE	KBI1MOD
0x(FF)FF_806D	KBI1PE	KBI1PE7	KBI1PE6	KBI1PE5	KBI1PE4	KBI1PE3	KBI1PE2	KBI1PE1	KBI1PE0
0x(FF)FF_806E	KBI1ES	KB1EDG7	KB1EDG6	KB1EDG5	KB1EDG4	KB1EDG3	KB1EDG2	KB1EDG1	KB1EDG0
0x(FF)FF_806F	RESERVED	_	_	_	_	_	_	_	_
0x(FF)FF_8070	SPI1C1	SPIE	SPE	SPTIE	MSTR	CPOL	СРНА	SSOE	LSBFE
0x(FF)FF_8071	SPI1C2	SPMIE	SPIMODE	0	MODFEN	BIDIROE	0	SPISWAI	SPC0
0x(FF)FF_8072	SPI1BR	0	SPPR2	SPPR1	SPPR0	SPR3	SPR2	SPR1	SPR0
0x(FF)FF_8073	SPI1S	SPRF	SPMF	SPTEF	MODF	RNFULLF	TNEARF	TXFULLF	RFIFOEF
0x(FF)FF_8074	SPI1DH	Bit 15	14	13	12	11	10	9	Bit 8
0x(FF)FF_8075	SPI1DL	Bit 7	6	5	4	3	2	1	Bit 0
0x(FF)FF_8076	SPI1MH	Bit 15	14	13	12	11	10	9	Bit 8
0x(FF)FF_8077	SPI1ML	Bit 7	6	5	4	3	2	1	Bit 0
0x(FF)FF_8078	SPI1C3	0	0	TNEAREF MARK	RNFULL MARK	INTCLR	TNEARIEN	RNFULLIEN	FIFOMODE
0x(FF)FF_8079	SPI1CI	TXFERR	RXFERR	TXFOF	RXFOF	TNEAREFCI	RNFULLFCI	SPTEFCI	SPRFCI
0x(FF)FF_807A- 0x(FF)FF_807B	RESERVED	-	_	_	_	_	_	_	-
0x(FF)FF_807C	KBI2SC	0	0	0	0	KB2F	KB2ACK	KB2IE	KBI2MOD
0x(FF)FF_807D	KBI2PE	KBI2PE7	KBI2PE6	KBI2PE5	KBI2PE4	KBI2PE3	KBI2PE2	KBI2PE1	KBI2PE0
0x(FF)FF_807E	KBI2ES	KB2EDG7	KB2EDG6	KB2EDG5	KB2EDG4	KB2EDG3	KB2EDG2	KB2EDG1	KB2EDG0
0x(FF)FF_807F	RESERVED	_	_	_	_	_	_	_	_

Table 4-3. High-Page Register Summary

Address	Name	Bit 7	6	5	4	3	2	1	Bit 0	
0x(FF)FF_9800	SRS	POR	PIN	COP	ILOP	ILAD	LOC	LVD	0	
0x(FF)FF_9801	Reserved	_	_	_	_	_	_	_	_	
0x(FF)FF_9802	SOPT1	COPT1	COPT0	STOPE	WAITE	BLMSS	MBSL	BKGDPE	RSTPE	
0x(FF)FF_9803	SOPT2	COPCLKS	COPW	USB_BIGEN D	CLKOUT_EN	CMT_CLK_SE L	-	_	ACIC	
0x(FF)FF_9804- 0x(FF)FF_9805	Reserved	-	-	-	-	_	1	-	_	
0x(FF)FF_9806	SDIDH		F	REV		ID11	ID10	ID9	ID8	
0x(FF)FF_9807	SDIDL	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0	
0x(FF)FF_9808	SCGC1	CMT	TPM2	TPM1	ADC	DAC	IIC	SCI2	SCI1	
0x(FF)FF_9809	SCGC2	USB	PDB	IRQ	KBI	PRACMP	MFB	SPI2	SPI1	
0x(FF)FF_980A	SCGC3	VREF	CRC	FLS2	FLS1	TRIAMP2	TRIAMP1	GPOA2	GPOA1	
0x(FF)FF_980B	SOPT3	SCI2PS	SCI1PS	IICPS	USBPS	MB_DATA	ARRAYSEL	SCI1_PAD	CMT_PAD	
0x(FF)FF_980C	SOPT4	_	FBALEEN	FBAD12FE	FBAD12PUE	FBAD12SRE	FBAD12DSE	IROSRE	IRODSE	
0x(FF)FF_980D	SOPT5 ¹	_	_	_			_			
0x(FF)FF_980E	SIMIPS	ADCTRS	RX1N	_	_	MTBA	ASE1	_	MODTX1	
0x(FF)FF_980F	SIGNATURE				SIGNATURE S	SEMAPHORE	FN 7507 051			
0x(FF)FF_9810	CCSCTRL	RANGE1	HGO1	ERCLKEN1	OSCINIT1	EREFS1	EN	TEST	SEL	
0x(FF)FF_9811	CCSTMR1				CN	T1				
0x(FF)FF_9812	CCSTMR2				CN	T2				
0x(FF)FF_9813	CCSTMRIR				CNT	ΓIR				
0x(FF)FF_9814	FPROTD	_	_	_	_	_	_	_	FPDIS	
0x(FF)FF_9815	MFBPC1	MFBPEN_AD7	MFBPEN_AD6	MFBPEN_AD5	MFBPEN_AD4	MFBPEN_AD3	MFBPEN_AD2	MFBPEN_AD1	MFBPEN_AD0	
0x(FF)FF_9816	MFBPC2	MFBPEN_AD1 5	MFBPEN_AD1 4	MFBPEN_AD1	MFBPEN_AD12	MFBPEN_AD11	MFBPEN_AD1 0	MFBPEN_AD9	MFBPEN_AD8	
0x(FF)FF_9817	MFBPC3	MFBPEN_D3	MFBPEN_D2	MFBPEN_D1	MFBPEN_D0	MFBPEN_AD19	MFBPEN_AD1 8	MFBPEN_AD17	MFBPEN_AD16	
0x(FF)FF_9818	MFBPC4	EN_CS1	EN_CS0	EN_OE	EN_RW	MFBPEN_D7	MFBPEN_D6	MFBPEN_D5	MFBPEN_D4	
0x(FF)FF_9819	SIMCO		-	_	_	_		CS		
0x(FF)FF_981A- 0x(FF)FF_981B	Reserved	1	-	-	-	_	1	-	-	
0x(FF)FF_981C	SPMSC1	LVDF	LVDACK	LVDIE	LVDRE	LVDSE	LVDE	0	BGBE	
0x(FF)FF_981D	SPMSC2	LPR	LPRS	LPWUI	0	PPDF	PPDACK	PPDE	PPDC	
0x(FF)FF_981E	Reserved	_	_	_	_	_	_	_	_	
0x(FF)FF_981F	SPMSC3	LVwF	LVWACK	LVDV	LVWV	LVWIE	0	0	0	
0x(FF)FF_9820- 0x(FF)FF_982F	Reserved	_	_	_	-	_	_	_	_	

4-8 Freescale Semiconductor

Table 4-3. High-Page Register Summary (Continued)

Address	Name	Bit 7	6	5	4	3	2	1	Bit 0
0x(FF)FF_9830	PTED	PTED7	PTED6	PTED5	PTED4	PTED3	PTED2	PTED1	PTED0
0x(FF)FF_9831	PTEDD	PTEDD7	PTEDD6	PTEDD5	_	PTEDD3	PTEDD2	PTEDD1	PTEDD0
0x(FF)FF_9832	PTFD	PTFD7	PTFD6	PTFD5	PTFD4	PTFD3	PTFD2	PTFD1	PTFD0
0x(FF)FF_9833	PTFDD	PTFDD7	PTFDD6	PTFDD5	PTFDD4	PTFDD3	PTFDD2	PTFDD1	PTFDD0
0x(FF)FF_9834- 0x(FF)FF_9837	Reserved	_	_	_	_	_	_	_	-
0x(FF)FF_9838	SCI2BDH	LBKDIE	RXEDGIE	0	SBR12	SBR11	SBR10	SBR9	SBR8
0x(FF)FF_9839	SCI2BDL	SBR7	SBR6	SBR5	SBR4	SBR3	SBR2	SBR1	SBR0
0x(FF)FF_983A	SCI2C1	LOOPS	SCISWAI	RSRC	М	WAKE	ILT	PE	PT
0x(FF)FF_983B	SCI2C2	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK
0x(FF)FF_983C	SCI2S1	TDRE	TC	RDRF	IDLE	OR	NF	FE	PF
0x(FF)FF_983D	SCI2S2	LBKDIF	RXEDGIF	0	RXINV	RWUID	BRK13	LBKDE	RAF
0x(FF)FF_983E	SCI2C3	R8	Т8	TXDIR	TXINV	ORIE	NEIE	FEIE	PEIE
0x(FF)FF_983F	SCI2D	Bit 7	6	5	4	3	2	1	Bit 0
0x(FF)FF_9840	SPI2C1	SPI2E	SP2E	SP2TIE	MSTR	CPOL	СРНА	SSOE	LSBFE
0x(FF)FF_9841	SPI2C2	SPMIE	0	0	MODFEN	BIDIROE	0	SPI2SWAI	SP2C0
0x(FF)FF_9842	SPI2BR	0	SP2PR2	SP2PR1	SP2PR0	SP2R3	SP2R2	SP2R1	SP2R0
0x(FF)FF_9843	SPI2S	SP2RF	0	SP2TEF	MODF	0	0	0	0
0x(FF)FF_9844	Reserved	_	_	_	_	_	_	_	_
0x(FF)FF_9845	SPI2D	Bit 7	6	5	4	3	2	1	Bit 0
0x(FF)FF_9846	Reserved	_	_	_	_	_	_	_	_
0x(FF)FF_9847	SPI2MR	Bit 7	6	5	4	3	2	1	Bit 0
0x(FF)FF_9848	PTGD	PTGD7	PTGD6	PTGD5	PTGD4	PTGD3	PTGD2	PTGD1	PTGD0
0x(FF)FF_9849	PTGDD	PTGDD7	PTGDD6	PTGDD5	PTGDD4	PTGDD3	PTGDD2	PTGDD1	PTGDD0
0x(FF)FF_984A- 0x(FF)FF_984F	Reserved	_	_	_	_	_	_	_	_
0x(FF)FF_9850	PTAPE	PTAPE7	PTAPE6	PTAPE5	PTAPE4	PTAPE3	PTAPE2	PTAPE1	PTAPE0
0x(FF)FF_9851	PTASE	PTASE7	PTASE6	PTASE5	PTASE4	PTASE3	PTASE2	PTASE1	PTASE0
0x(FF)FF_9852	PTADS	PTADS7	PTADS6	PTADS5	PTADS4	PTADS3	PTADS2	PTADS1	PTADS0
0x(FF)FF_9853	PTAIFE	PTAIFE7	PTAIFE6	PTAIFE5	PTAIFE4	PTAIFE3	PTAIFE2	PTAIFE1	PTAIFE0
0x(FF)FF_9854	PTBPE	PTBPE7	PTBPE6	PTBPE5	PTBPE4	PTBPE3	PTBPE2	PTBPE1	PTBPE0
0x(FF)FF_9855	PTBSE	PTBSE7	PTBSE6	PTBSE5	PTBSE4	PTBSE3	PTBSE2	PTBSE1	PTBSE0
0x(FF)FF_9856	PTBDS	PTBDS7	PTBDS6	PTBDS5	PTBDS4	PTBDS3	PTBDS2	PTBDS1	PTBDS0
0x(FF)FF_9857	PTBIFE	PTBIFE7	PTBIFE6	PTBIFE5	PTBIFE4	PTBIFE3	PTBIFE2	PTBIFE1	PTBIFE0
0x(FF)FF_9858	PTCPE	PTCPE7	PTCPE6	PTCPE5	PTCPE4	PTCPE3	PTCPE2	PTCPE1	PTCPE0

Freescale Semiconductor 4-9

Table 4-3. High-Page Register Summary (Continued)

Address	Name	Bit 7	6	5	4	3	2	1	Bit 0
0x(FF)FF_9859	PTCSE	PTCSE7	PTCSE6	PTCSE5	PTCSE4	PTCSE3	PTCSE2	PTCSE1	PTCSE0
0x(FF)FF_985A	PTCDS	PTCDS7	PTCDS6	PTCDS5	PTCDS4	PTCDS3	PTCDS2	PTCDS1	PTCDS0
0x(FF)FF_985B	PTCIFE	PTCIFE7	PTCIFE6	PTCIFE5	PTCIFE4	PTCIFE3	PTCIFE2	PTCIFE1	PTCIFE0
0x(FF)FF_985C	PTDPE	PTDPE7	PTDPE6	PTDPE5	PTDPE4	PTDPE3	PTDPE2	PTDPE1	PTDPE0
0x(FF)FF_985D	PTDSE	PTDSE7	PTDSE6	PTDSE5	PTDSE4	PTDSE3	PTDSE2	PTDSE1	PTDSE0
0x(FF)FF_985E	PTDDS	PTDDS7	PTDDS6	PTDDS5	PTDDS4	PTDDS3	PTDDS2	PTDDS1	PTDDS0
0x(FF)FF_985F	PTDIFE	PTDIFE7	PTDIFE6	PTDIFE5	PTDIFE4	PTDIFE3	PTDIFE2	PTDIFE1	PTDIFE0
0x(FF)FF_9860	PTEPE	PTEPE7	PTEPE6	PTEPE5	PTEPE4	PTEPE3	PTEPE2	PTEPE1	PTEPE0
0x(FF)FF_9861	PTESE	PTESE7	PTESE6	PTESE5	PTESE4	PTESE3	PTESE2	PTESE1	PTESE0
0x(FF)FF_9862	PTEDS	PTEDS7	PTEDS6	PTEDS5	PTEDS4	PTEDS3	PTEDS2	PTEDS1	PTEDS0
0x(FF)FF_9863	PTEIFE	PTEIFE7	PTEIFE6	PTEIFE5	PTEIFE4	PTEIFE3	PTEIFE2	PTEIFE1	PTEIFE0
0x(FF)FF_9864	PTFPE	PTFPE7	PTFPE6	PTFPE5	PTFPE4	PTFPE3	PTFPE2	PTFPE1	PTFPE0
0x(FF)FF_9865	PTFSE	PTFSE7	PTFSE6	PTFSE5	PTFSE4	PTFSE3	PTFSE2	PTFSE1	PTFSE0
0x(FF)FF_9866	PTFDS	PTFDS7	PTFDS6	PTFDS5	PTFDS4	PTFDS3	PTFDS2	PTFDS1	PTFDS0
0x(FF)FF_9867	PTFIFE	PTFIFE7	PTFIFE6	PTFIFE5	PTFIFE4	PTFIFE3	PTFIFE2	PTFIFE1	PTFIFE0
0x(FF)FF_9868	PTGPE	PTGPE7	PTGPE6	PTGPE5	PTGPE4	PTGPE3	PTGPE2	PTGPE1	PTGPE0
0x(FF)FF_9869	PTGSE	PTGSE7	PTGSE6	PTGSE5	PTGSE4	PTGSE3	PTGSE2	PTGSE1	PTGSE0
0x(FF)FF_986A	PTGDS	PTGDS7	PTGDS6	PTGDS5	PTGDS4	PTGDS3	PTGDS2	PTGDS1	PTGDS0
0x(FF)FF_986B	PTGIFE	PTGIFE7	PTGIFE6	PTGIFE5	PTGIFE4	PTGIFE3	PTGIFE2	PTGIFE1	PTGIFE0
0x(FF)FF_986C	TIAMP1C0	TIAMPEN	LPEN	1	I	ı	1	1	_
0x(FF)FF_986D	Reserved	ı	ı	1	ı	ı	1		_
0x(FF)FF_986E	TIAMP2C0	TIAMPEN	LPEN	ı	I	ı	1		_
0x(FF)FF_986F	Reserved	ı	1	1	I	ı	1	1	_
0x(FF)FF_9870	CMTCGH1	PH7	PH6	PH5	PH4	PH3	PH2	PH1	PH0
0x(FF)FF_9871	CMTCGL1	PL7	PL6	PL5	PL4	PL3	PL2	PL1	PL0
0x(FF)FF_9872	CMTCGH2	SH7	SH6	SH5	SH4	SH3	SH2	SH1	SH0
0x(FF)FF_9873	CMTCGL2	SL7	SL6	SL5	SL4	SL3	SL2	SL1	SL0
0x(FF)FF_9874	CMTOC	IROL	CMTPOL	IROPEN	0	0	0	0	0
0x(FF)FF_9875	CMTMSC	EOCF	CMTDIV1	CMTDIV0	EXSPC	BASE	FSK	EOCIE	MCGEN
0x(FF)FF_9876	CMTCMD1	MB15	MB14	MB13	MB12	MB11	MB10	MB9	MB8
0x(FF)FF_9877	CMTCMD2	MB7	MB6	MB5	MB4	MB3	MB2	MB1	MB0
0x(FF)FF_9878	CMTCMD3	SB15	SB14	SB13	SB12	SB11	SB10	SB9	SB8
0x(FF)FF_9879	CMTCMD4	SB7	SB6	SB5	SB4	SB3	SB2	SB1	SB0
0x(FF)FF_987A- 0x(FF)FF_987B	Reserved	_	_	_	_	_	_	_	_

4-10 Freescale Semiconductor

Table 4-3. High-Page Register Summary (Continued)

Address	Name	Bit 7	6	5	4	3	2	1	Bit 0		
0x(FF)FF_987C	GPAMP1C0	GPAMPEN	LPEN	_	_	_	_	МО	DE		
0x(FF)FF_987D	GPAMP1C1	_	_	_	AMPRF2	AMPRF1	AMPRF0	AMPRI1	AMPRI0		
0x(FF)FF_987E	GPAMP1C2		AMPPSEL2	AMPPSEL1	AMPPSEL0		AMPNSEL2	AMPNSEL1	AMPNSEL0		
0x(FF)FF_987F- 0x(FF)FF_988F	Reserved	_	_	_	-	_	_	-	_		
0x(FF)FF_9890	CRCH	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8		
0x(FF)FF_9891	CRCL	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
0x(FF)FF_9892	Transpose	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
0x(FF)FF_9893- 0x(FF)FF_9897	Reserved	_	_	_	-	_	_	-	_		
0x(FF)FF_9898	GPAMP2C0	GPAMPEN	LPEN	_	_	_	_	MO	DE		
0x(FF)FF_9899	GPAMP2C1	_	_	_	AMPRF2	AMPRF1	AMPRF0	AMPRI1	AMPRI0		
0x(FF)FF_989A	GPAMP2C2	_	AMPPSEL2	AMPPSEL1	AMPPSEL0	_	AMPNSEL2	AMPNSEL1	AMPNSEL0		
0x(FF)FF_989B	Reserved	_	_	_	_	_	_	_	_		
0x(FF)FF_989C	TODC	TODEN	TODO	CLKS	TODR	TODCLKEN		TODPS			
0x(FF)FF_989D	TODSC	QSECF	SECF	MTCHF	QSECIE	SECIE	MTCHIE	MTCHEN	MTCHWC		
0x(FF)FF_989E	TODM			TO	DDM			MQSEC			
0x(FF)FF_989F	TODCNT				TOD	CNT					
0x(FF)FF_98A0	TPM2SC	TOF	TOIE	CPWMS	CLKSB	CLKSA	PS2	PS1	PS0		
0x(FF)FF_98A1	TPM2CNTH	Bit 15	14	13	12	11	10	9	Bit 8		
0x(FF)FF_98A2	TPM2CNTL	Bit 7	6	5	4	3	2	1	Bit 0		
0x(FF)FF_98A3	TPM2MODH	Bit 15	14	13	12	11	10	9	Bit 8		
0x(FF)FF_98A4	TPM2MODL	Bit 7	6	5	4	3	2	1	Bit 0		
0x(FF)FF_98A5	TPM2C0SC	CH0F	CH0IE	MS0B	MS0A	ELS0B	ELS0A	0	0		
0x(FF)FF_98A6	TPM2C0VH	Bit 15	14	13	12	11	10	9	Bit 8		
0x(FF)FF_98A7	TPM2C0VL	Bit 7	6	5	4	3	2	1	Bit 0		
0x(FF)FF_98A8	TPM2C1SC	CH1F	CH1IE	MS1B	MS1A	ELS1B	ELS1A	0	0		
0x(FF)FF_98A9	TPM2C1VH	Bit 15	14	13	12	11	10	9	Bit 8		
0x(FF)FF_98AA	TPM2C1VL	Bit 7	6	5	4	3	2	1	Bit 0		
0x(FF)FF_98AB	TPM2C2SC	CH2F	CH2IE	MS2B	MS2A	ELS2B	ELS2A	0	0		
0x(FF)FF_98AC	TPM2C2VH	Bit 15	14	13	12	11	10	9	Bit 8		
0x(FF)FF_98AD	TPM2C2VL	Bit 7	6	5	4	3	2	1	Bit 0		
0x(FF)FF_98AE	TPM2C3SC	CH3F	CH3IE	MS3B	MS3A	ELS3B	ELS3A	0	0		
0x(FF)FF_98AF	TPM2C3VH	Bit 15	14	13	12	11	10	9	Bit 8		
0x(FF)FF_98B0	TPM2C3VL	Bit 7	6	5	4	3	2	1	Bit 0		

Table 4-3. High-Page Register Summary (Continued)

Address	Name	Bit 7	6	5	4	3	2	1	Bit 0			
0x(FF)FF_98B1- 0x(FF)FF_98B7	Reserved	_	-	_	_	_	_	_	_			
0x(FF)FF_98B8	SCI1BDH	LBKDIE	RXEDGIE	0	SBR12	SBR11	SBR10	SBR9	SBR8			
0x(FF)FF_98B9	SCI1BDL	SBR7	SBR6	SBR5	SBR4	SBR3	SBR2	SBR1	SBR0			
0x(FF)FF_98BA	SCI1C1	LOOPS	SCISWAI	RSRC	M	WAKE	ILT	PE	PT			
0x(FF)FF_98BB	SCI1C2	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK			
0x(FF)FF_98BC	SCI1S1	TDRE	TC	RDRF	IDLE	OR	NF	FE	PF			
0x(FF)FF_98BD	SCI1S2	LBKDIF	RXEDGIF	0	RXINV	RWUID	BRK13	LBKDE	RAF			
0x(FF)FF_98BE	SCI1C3	R8	Т8	TXDIR	TXINV	ORIE	NEIE	FEIE	PEIE			
0x(FF)FF_98BF	SCI1D	Bit 7	6	5	4	3	2	1	Bit 0			
0x(FF)FF_98C0	PDBSC	PDBEN	PDBIF	PDBIE	LDMOD	TC)S	DACTOE	LDOK			
0x(FF)FF_98C1	PDBC1		PRESCALER			TRIGSEL		CONT	MULT			
0x(FF)FF_98C2	PDBC2	BB7	BB6	BB5	BB4	BB3	BB2	BB1	SWTRIG			
0x(FF)FF_98C3	PDBCHEN	CHEN7	CHEN6	CHEN5	CHEN4	CHEN3	CHEN2	CHEN1	CHEN0			
0x(FF)FF_98C4	PDBMODH		MOD[15:8]									
0x(FF)FF_98C5	PDBMODL		MOD[7:0]									
0x(FF)FF_98C6	PDBCNTH				COUNT	Γ[15:8]						
0x(FF)FF_98C7	PDBCNTL				COUN	T[7:0]						
0x(FF)FF_98C8	PDBIDLYH				IDELA	/[15:8]						
0x(FF)FF_98C9	PDBIDLYL				IDELA	Y[7:0]						
0x(FF)FF_98CA	DACINTH				DACIN ⁻	T[15:8]						
0x(FF)FF_98CB	DACINTL				DACIN	T[7:0]						
0x(FF)FF_98CC	PDBDLYAH				DELAY	'[15:8]						
0x(FF)FF_98CD	PDBDLYAL				DELA	Y[7:0]						
0x(FF)FF_98CE	PDBDLYBH				DELAY	'[15:8]						
0x(FF)FF_98CF	PDBDLYBL				DELA	Y[7:0]						
0x(FF)FF_98D0	PDBDLYCH				DELAY	'[15:8]						
0x(FF)FF_98D1	PDBDLYCL				DELA	Y[7:0]						
0x(FF)FF_98D2	PDBDLYDH				DELAY	'[15:8]						
0x(FF)FF_98D3	PDBDLYDL		DELAY[7:0]									
0x(FF)FF_98D4	PDBDLYEH		DELAY[15:8]									
0x(FF)FF_98D5	PDBDLYEL		DELAY[7:0]									
0x(FF)FF_98D6	PDBDLYFH		DELAY[15:8]									
0x(FF)FF_98D7	PDBDLYFL		DELAY[7:0]									
0x(FF)FF_98D8	PDBDLYGH				DELAY	[15:8]						

4-12 Freescale Semiconductor

Table 4-3. High-Page Register Summary (Continued)

Address	Name	Bit 7	6	5	4	3	2	1	Bit 0	
0x(FF)FF_98D9	PDBDLYGL				DELA	Y[7:0]				
0x(FF)FF_98DA	PDBDLYHH				DELAY	[15:8]				
0x(FF)FF_98DB	PDBDLYHL				DELA	Y[7:0]				
0x(FF)FF_98DC- (FF)FF_98DF	Reserved	_	_	_	_	_	_	_	_	
0x(FF)FF_98E0	TPM1SC	TOF	TOIE	CPWMS	CLKSB	CLKSA	PS2	PS1	PS0	
0x(FF)FF_98E1	TPM1CNTH	Bit 15	14	13	12	11	10	9	Bit 8	
0x(FF)FF_98E2	TPM1CNTL	Bit 7	6	5	4	3	2	1	Bit 0	
0x(FF)FF_98E3	TPM1MODH	Bit 15	14	13	12	11	10	9	Bit 8	
0x(FF)FF_98E4	TPM1MODL	Bit 7	6	5	4	3	2	1	Bit 0	
0x(FF)FF_98E5	TPM1C0SC	CH0F	CH0IE	MS0B	MS0A	ELS0B	ELS0A	0	0	
0x(FF)FF_98E6	TPM1C0VH	Bit 15	14	13	12	11	10	9	Bit 8	
0x(FF)FF_98E7	TPM1C0VL	Bit 7	6	5	4	3	2	1	Bit 0	
0x(FF)FF_98E8	TPM1C1SC	CH1F	CH1IE	MS1B	MS1A	ELS1B	ELS1A	0	0	
0x(FF)FF_98E9	TPM1C1VH	Bit 15	14	13	12	11	10	9	Bit 8	
0x(FF)FF_98EA	TPM1C1VL	Bit 7	6	5	4	3	2	1	Bit 0	
0x(FF)FF_98EB	TPM1C2SC	CH2F	CH2IE	MS2B	MS2A	ELS2B	ELS2A	0	0	
0x(FF)FF_98EC	TPM1C2VH	Bit 15	14	13	12	11	10	9	Bit 8	
0x(FF)FF_98ED	TPM1C2VL	Bit 7	6	5	4	3	2	1	Bit 0	
0x(FF)FF_98EE	TPM1C3SC	CH3F	CH3IE	MS3B	MS3A	ELS3B	ELS3A	0	0	
0x(FF)FF_98EF	TPM1C3VH	Bit 15	14	13	12	11	10	9	Bit 8	
0x(FF)FF_98F0	TPM1C3VL	Bit 7	6	5	4	3	2	1	Bit 0	
0x(FF)FF_98F1- 0x(FF)FF_98F7	Reserved	_	_	_	_	_	_	_	_	
0x(FF)FF_98F8	ADCCV1H				CV1[15:8]	•			
0x(FF)FF_98F9	ADCCV1L				CV1[7:0]				
0x(FF)FF_98FA	ADCCV2H				CV2[15:8]				
0x(FF)FF_98FB	ADCCV2L				CV2[7:0]				
0x(FF)FF_98FC	ADCSC2	ADACT ADTRG ACFE ACFGT ACREN 0 REFSEL								
0x(FF)FF_98FD	ADCSC3	CAL	CALF	0	0	ADCO	AVGE	AV	GS	
0x(FF)FF_98FE	ADCOFSH		<u> </u>		OFS[15:8]	ı			
0x(FF)FF_98FF	ADCOFSL				OFS	[7:0]				
0x(FF)FF_9900	ADCPGH				PG[1	5:8]				
0x(FF)FF_9901	ADCPGL				PG[7:0]				
0x(FF)FF_9902	ADCMGH				MG[1	5:8]				

Table 4-3. High-Page Register Summary (Continued)

Address	Name	Bit 7	6	5	4	3	2	1	Bit 0	
0x(FF)FF_9903	ADCMGL				MG[7	7:0]				
0x(FF)FF_9904	ADCCLPD	0	0			CLF	PD			
0x(FF)FF_9905	ADCCLPS	0	0			CLF	PS			
0x(FF)FF_9906	ADCCLP4H	0	0	0	0	0	0	CLP	4[9:8]	
0x(FF)FF_9907	ADCCLP4L				CLP4	[7:0]				
0x(FF)FF_9908	ADCCLP3H	0	0	0	0	0	0	0	CLP3[8]	
0x(FF)FF_9909	ADCCLP3L	_		l	CLP3	[7:0]	l			
0x(FF)FF_990A	ADCCLP2	_			CLF	2				
0x(FF)FF_990B	ADCCLP1	0				CLP1				
0x(FF)FF_990C	ADCCLP0	0	0			CLF	20			
0x(FF)FF_990D	Reserved	_	_	_	_	_	_	_	_	
0x(FF)FF_990E	ADCCLMD	0	0			CLN	/ID		1	
0x(FF)FF_990F	ADCCLMS	0	0			CLN	MS			
0x(FF)FF_9910	ADCCLM4H	0	0	0	0	0	0	CLM	4[9:8]	
0x(FF)FF_9911	ADCCLM4L			•	CLM4	[7:0]				
0x(FF)FF_9912	ADCCLM3H	0	0	0 0 0 0 0 CLN						
0x(FF)FF_9913	ADCCLM3L		CLM3[7:0]							
0x(FF)FF_9914	ADCCLM2				CLM	Л2				
0x(FF)FF_9915	ADCCLM1	0				CLM1				
0x(FF)FF_9916	ADCCLM0	0	0			CLN	10			
0x(FF)FF_9917	APCTL1	ADPC7	ADPC6	ADPC5	ADPC4	ADPC3	ADPC2	ADPC1	ADPC0	
0x(FF)FF_9918	APCTL2	ADPC15	ADPC14	ADPC13	ADPC12	ADPC11	ADPC10	ADPC9	ADPC8	
0x(FF)FF_9919- 0x(FF)FF_991F	Reserved	_	_	_	_	_	_	_	_	
0x(FF)FF_9920	F1CDIV	FDIVLD	PRDIV8			FDI	V			
0x(FF)FF_9921	F10PT	KE	YEN	0	0	0	0	SI	EC	
0x(FF)FF_9922	Reserved	_	_	-	_	_	-	_	_	
0x(FF)FF_9923	F1CNFG	CBEIE	CCIE	KEYACC	0	0	0	0	0	
0x(FF)FF_9924	F1PROT		FPS FPC						FPOPEN	
0x(FF)FF_9925	F1STAT	FCBEF	FCCF	FPVIOL	FACCERR	0	FBLANK	0	0	
0x(FF)FF_9926	F1CMD	0				FCMD				
0x(FF)FF_9927- 0x(FF)FF_992F	Reserved	_	_	_	_	_	_	_	_	
0x(FF)FF_9930	F2CDIV	FDIVLD	FDIVLD PRDIV8 FDIV							
0x(FF)FF_9931	F2OPT	KE	YEN	0	0	0	0	SI	EC	

4-14 Freescale Semiconductor

Table 4-3. High-Page Register Summary (Continued)

Address	Name	Bit 7	6	5	4	3	2	1	Bit 0
0x(FF)FF_9932	Reserved	_	_	_	_	_	_	_	_
0x(FF)FF_9933	F2CNFG	CBEIE	CCIE	KEYACC	0	0	0	0	0
0x(FF)FF_9934	F2PROT				FPS				FPOPEN
0x(FF)FF_9935	F2STAT	FCBEF	FCCF	FPVIOL	FACCERR	0	FBLANK	0	0
0x(FF)FF_9936	F2CMD	0				FCMD			
0x(FF)FF_9937- 0x(FF)FF_993F	Reserved	_	_	_	_	_	_	_	_
0x(FF)FF_9940	PTHD	PTHD7	PTHD6	PTHD5	PTHD4	PTHD3	PTHD2	PTHD1	PTHD0
0x(FF)FF_9941	PTHDD	PTHDD7	PTHDD6	PTHDD5	PTHDD4	PTHDD3	PTHDD2	PTHDD1	PTHDD0
0x(FF)FF_9942	PTJD	PTJD7	PTJD6	PTJD5	PTJD4	PTJD3	PTJD2	PTJD1	PTJD0
0x(FF)FF_9943	PTJDD	PTJDD7	PTJDD6	PTJDD5	PTJDD4	PTJDD3	PTJDD2	PTJDD1	PTJDD0
0x(FF)FF_9944- 0x(FF)FF_9947	Reserved	_	_	_	_	_	_	_	_
0x(FF)FF_9948	PTHPE	PTHPE7	PTHPE6	PTHPE5	PTHPE4	PTHPE3	PTHPE2	PTHPE1	PTHPE0
0x(FF)FF_9949	PTHSE	PTHSE7	PTHSE6	PTHSE5	PTHSE4	PTHSE3	PTHSE2	PTHSE1	PTHSE0
0x(FF)FF_994A	PTHDS	PTHDS7	PTHDS6	PTHDS5	PTHDS4	PTHDS3	PTHDS2	PTHDS1	PTHDS0
0x(FF)FF_994B	PTHIFE	PTHIFE7	PTHIFE6	PTHIFE5	PTHIFE4	PTHIFE3	PTHIFE2	PTHIFE1	PTHIFE0
0x(FF)FF_994C	PTJPE	PTJPE7	PTJPE6	PTJPE5	PTJPE4	PTJPE3	PTJPE2	PTJPE1	PTJPE0
0x(FF)FF_994D	PTJSE	PTJSE7	PTJSE6	PTJSE5	PTJSE4	PTJSE3	PTJSE2	PTJSE1	PTJSE0
0x(FF)FF_994E	PTJDS	PTJDS7	PTJDS6	PTJDS5	PTJDS4	PTJDS3	PTJDS2	PTJDS1	PTJDS0
0x(FF)FF_994F	PTJIFE	PTJIFE7	PTJIFE6	PTJIFE5	PTJIFE4	PTJIFE3	PTJIFE2	PTJIFE1	PTJIFE0

¹ This location is reserved for Freescale internal testing. Do not write any value to this location. Writing a value to this location can affect on-chip LVD performance.

Table 4-4. USB Register Summary

Address	Name	Bit 7	6	5	4	3	2	1	Bit 0
0x(FF)FF_9A00	PERID	0	0	ID5	ID4	ID3	ID2	ID1	ID0
0x(FF)FF_9A04	IDCOMP	1	1	NID5	NID4	NID3	NID2	NID1	NID0
0x(FF)FF_9A08	REV	REV7	REV6	REV5	REV4	REV3	REV2	REV1	REV0
0x(FF)FF_9A0C	ADD_INFO			IRQ_NUM			0	0	IEHOST
0x(FF)FF_9A10	OTG_INT_ STAT	ID_CHG	1_MSEC	LINE_ STATE_ CHG	_	SESS_ VLD_ CHG	B_SESS_CH G	-	A_VBUS_CH G
0x(FF)FF_9A14	OTG_INT_EN	ID_EN	1_MSEC_EN	LINE_ STATE_ EN	-	SESS_ VLD_EN	B_SESS_EN	-	A_VBUS_EN

Freescale Semiconductor 4-15

Table 4-4. USB Register Summary (Continued)

Address	Name	Bit 7	6	5	4	3	2	1	Bit 0
0x(FF)FF_9A18	OTG_STAT	ID	1_MSEC_EN	LINE_ STATE_ STABLE	_	SESS_ VLD	B_SESS_EN D	-	A_VBUS_VL D
0x(FF)FF_9A1C	OTG_CTRL	DP_HIGH	_	DP_LOW	DM_LOW	_	OTG_EN	_	_
0x(FF)FF_9A80	INT_STAT	STALL	ATTACH	RESUME	SLEEP	TOK_ DNE	SOF_ TOK	ERROR	USB_ RST
0x(FF)FF_9A84	INT_ENB	STALL_ EN	ATTACH_EN	RESUME_E N	SLEEP_ EN	TOK_ DNE_EN	SOF_ TOK_EN	ERROR_EN	USB_ RST_EN
0x(FF)FF_9A88	ERR_STAT	BTS_ ERR	_	DMA_ ERR	BTO_ ERR	DFN8	CRC16	CRC5_ EOF	PID_ERR
0x(FF)FF_9A8C	ERRENB	BTSERR	_	BUFERR	BTOERR	DFN8	CRC16		PIDERR
0x(FF)FF_9A90	STAT		ENDF	P [3:0]		TX	ODD	_	_
0x(FF)FF_9A94	CTL	JSTATE	SE0	TXSUSPEND /TOKEN BUSY	RESET	HOST_ MODE_ EN	RESUME	ODD_ RST	USB_EN/ SOF_EN
0x(FF)FF_9A98	ADDR	LS_EN				ADDR [6:0]			
0x(FF)FF_9A9C	BDT_PAGE_01	BDT_ BA15	BDT_ BA14	BDT_ BA13	BDT_ BA12	BDT_ BA11	BDT_ BA10	BDT_ BA9	NOT USED
0x(FF)FF_9AA0	FRM_NUML	FRM7	FRM8	FRM5	FRM4	FRM3	FRM2	FRM1	FRM0
0x(FF)FF_9AA4	FRM_NUMH	0	0	0	0	0	FRM10	FRM9	FRM8
0x(FF)FF_9AA8	TOKEN		TOKE	N_PID			TOKEN_	_ENDPT	
0x(FF)FF_9AAC	SOF_THLD	CNT7	CNT6	CNT5	CNT4	CNT3	CNT2	CNT1	CNT0
0x(FF)FF_9AB0	BDT_PAGE_02	BDT_ BA23	BDT_ BA22	BDT_ BA21	BDT_ BA20	BDT_ BA19	BDT_ BA18	BDT_ BA17	BDT_ BA16
0x(FF)FF_9AB4	BDT_PAGE_03	BDT_ BA31	BDT_ BA30	BDT_ BA29	BDT_ BA28	BDT_ BA27	BDT_ BA26	BDT_ BA25	BDT_ BA24
0x(FF)FF_9AB8- 0x(FF)FF_9ABF	Reserved	I	-	1	_	1	1	1	_
0x(FF)FF_9AC0	ENDPT0	HOST_ WO_HUB	RETRY_DIS	0	EP_CTL_DIS	EP_RX_EN	EP_TX_ EN	EP_ STALL	EP_ HSHK
0x(FF)FF_9AC4	ENDPT1	HOST_ WO_HUB	RETRY_DIS	0	EP_CTL_DIS	EP_RX_EN	EP_TX_ EN	EP_ STALL	EP_ HSHK
0x(FF)FF_9AC8	ENDPT2	HOST_ WO_HUB	RETRY_DIS	0	EP_CTL_DIS	EP_RX_EN	EP_TX_ EN	EP_ STALL	EP_ HSHK
0x(FF)FF_9ACC	ENDPT3	HOST_ WO_HUB	RETRY_DIS	0	EP_CTL_DIS	EP_RX_EN	EP_TX_ EN	EP_ STALL	EP_ HSHK
0x(FF)FF_9AD0	ENDPT4	HOST_ WO_HUB	RETRY_DIS	0	EP_CTL_DIS	EP_RX_EN	EP_TX_ EN	EP_ STALL	EP_ HSHK
0x(FF)FF_9AD4	ENDPT5	HOST_ WO_HUB	RETRY_DIS	0	EP_CTL_DIS	EP_RX_EN	EP_TX_ EN	EP_ STALL	EP_ HSHK
0x(FF)FF_9AD8	ENDPT6	HOST_ WO_HUB	RETRY_DIS	0	EP_CTL_DIS	EP_RX_EN	EP_TX_ EN	EP_ STALL	EP_ HSHK

4-16 Freescale Semiconductor

Table 4-4. USB Register Summary (Continued)

Address	Name	Bit 7	6	5	4	3	2	1	Bit 0
0x(FF)FF_9ADC	ENDPT7	HOST_ WO_HUB	RETRY_DIS	0	EP_CTL_DIS	EP_RX_EN	EP_TX_ EN	EP_ STALL	EP_ HSHK
0x(FF)FF_9AE0	ENDPT8	HOST_ WO_HUB	RETRY_DIS	0	EP_CTL_DIS	EP_RX_EN	EP_TX_ EN	EP_ STALL	EP_ HSHK
0x(FF)FF_9AE4	ENDPT9	HOST_ WO_HUB	RETRY_DIS	0	EP_CTL_DIS	EP_RX_EN	EP_TX_ EN	EP_ STALL	EP_ HSHK
0x(FF)FF_9AE8	ENDPT10	HOST_ WO_HUB	RETRY_DIS	0	EP_CTL_DIS	EP_RX_EN	EP_TX_ EN	EP_ STALL	EP_ HSHK
0x(FF)FF_9AEC	ENDPT11	HOST_ WO_HUB	RETRY_DIS	0	EP_CTL_DIS	EP_RX_EN	EP_TX_ EN	EP_ STALL	EP_ HSHK
0x(FF)FF_9AF0	ENDPT12	HOST_ WO_HUB	RETRY_DIS	0	EP_CTL_DIS	EP_RX_EN	EP_TX_ EN	EP_ STALL	EP_ HSHK
0x(FF)FF_9AF4	ENDPT13	HOST_ WO_HUB	RETRY_DIS	0	EP_CTL_DIS	EP_RX_EN	EP_TX_ EN	EP_ STALL	EP_ HSHK
0x(FF)FF_9AF8	ENDPT14	HOST_ WO_HUB	RETRY_DIS	0	EP_CTL_DIS	EP_RX_EN	EP_TX_ EN	EP_ STALL	EP_ HSHK
0x(FF)FF_9AFC	ENDPT15	HOST_ WO_HUB	RETRY_DIS	0	EP_CTL_DIS	EP_RX_EN	EP_TX_ EN	EP_ STALL	EP_ HSHK
0x(FF)FF_9B00	USB_CTRL	SUSP	PDE	_	_	_	_	CLK_	SRC
0x(FF)FF_9B04	USB_OTG_ OBSERVE	DP_PU	DP_PD	0	DM_PD	-	_	_	-
0x(FF)FF_9B08	USB_OTG_ CONTROL	_	_	_	DPPULLUP_ NONOTG	ID	VBUS VLD	SESS VLD	SESS END
0x(FF)FF_9B0C	USBTRC0	USB RESET	USBPU	USB RESMEN	_	-	USB VREN	-	USB_ RESUME_IN T
0x(FF)FF_9B10	OTGPIN	_	USBID	DP DOWN	DM DOWN	PULLUP	VBUS VLD	SESS END	SESS VLD
0x(FF)FF_9B11- 0x(FF)FF_9BFF	Reserved	_	_	_	_	_	_	_	_

Table 4-5. Mini-FlexBus Register Summary

Address	Name	Bit 7	6	5	4	3	2	1	Bit 0
0x(FF)FF_E800					BA[3	1:24]			
0x(FF)FF_E801	MBCSAR0				BA[2	3:16]			
0x(FF)FF_E802	WIDCJARU	_	_	_	_	_	_	_	_
0x(FF)FF_E803		_	_	_	_	_	_	_	_
0x(FF)FF_E804					BAM[31:24]			
0x(FF)FF_E805	MBCSMR0				BAM[23:16]			
0x(FF)FF_E806	WIDCSWING	_	_	_	_	1	-	1	WP
0x(FF)FF_E807		_	_	_	_	_	_	_	V

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor 4-17

Table 4-5. Mini-FlexBus Register Summary (Continued)

Address	Name	Bit 7	6	5	4	3	2	1	Bit 0		
0x(FF)FF_E808	MBCSCR0	_	_	_	_	_	_	_	_		
0x(FF)FF_E809		_	0	AS	ET	RD	АН	WRAH			
0x(FF)FF_E80A		WS							AA		
0x(FF)FF_E80B		PS		_	_	_	_	_	_		
0x(FF)FF_E80C	MBCSAR1	BA[31:24]									
0x(FF)FF_E80D		BA[23:16]									
0x(FF)FF_E80E		_	_	_	_	_	_	_	_		
0x(FF)FF_E80F		_	_	_	_	_	_	_	_		
0x(FF)FF_E810		BAM[31:24]									
0x(FF)FF_E811	MBCSMR1	BAM[23:16]									
0x(FF)FF_E812		_	_	_	_	_	_	_	WP		
0x(FF)FF_E813		_	_	_	_	_	_	_	V		
0x(FF)FF_E814	MBCSCR1	SWS							_		
0x(FF)FF_E815		SWSEN	_	AS	ET RDAH			WRAH			
0x(FF)FF_E816		WS							AA		
0x(FF)FF_E817		PS		BEM	BSTR	BSTW	_	_	_		

4.1.3 Flash Module Reserved Memory Locations

Several reserved flash memory locations, shown in Table 4-6, are used for storing values used by corresponding peripheral registers. These registers include an 8-byte backdoor key that can be used to gain access to secure memory resources. During reset events, the contents of the flash protection byte (NVxPROT) and flash nonvolatile byte (NVxOPT) in the reserved flash memory are transferred into the corresponding FxPROT and FxOPT registers in the high-page register area to control security and block protection options.

Table 4-6. Reserved Flash Memory Addresses

Address	Register	7	6	5	4	3	2	1	0	
0x(00)00_03FC- 0x(00)00_03FD	Reserved	_	_	_	_	_	_	_	_	
0x(00)00_03FE	Storage of FTRIM	0	0	0	0	0	0	0	FTRIM	
0x(00)00_03FF	Storage of MCGTRM	TRIM								
0x(00)00_0400- 0x(00)00_0407		8-Byte Backdoor Comparison Key								
0x(00)00_0408		FCHKSH								
0x(00)00_0409		FCHKSL								
0x(00)00_040A	CHKSBYP									

4-18 Freescale Semiconductor

						•	•		
Address	Register	7	6	5	4	3	2	1	0
0x(00)00_040B			Partial_Erase_Semaphore						
0x(00)00_040D	NVxPROT		FPS FP						FPOPEN
0x(00)00_040E	Reserved	_	_	_	_	_	_	_	_
0x(00)00_040F	NVxOPT	KEYEN 0 0 0 0 SEC						EC	
0x(00)00_0410	FLASHAS	0	0	0	0	0	0	ARRA	YSFI ¹

Table 4-6. Reserved Flash Memory Addresses (Continued)

The factory trim values are stored in the flash information row (IFR)¹ and are automatically loaded into the MCGTRM and MCGSC registers after any reset. The oscillator trim values stored in TRIM and FTRIM can be reprogrammed by third party programmers and must be copied into the corresponding MCG registers (MCGTRM and MCGSC) by user code to override the factory trim.

NOTE

When the MCU is in active BDM, the trim value in the IFR is not loaded. Instead, the MCGTRM register resets to 0x80 and MCGSC[FTRIM] resets to zero.

Provided the key enable (KEYEN) bit is set, the 8-byte comparison key can be used to temporarily disengage memory security. This key mechanism can be accessed only through user code running in secure memory (A security key cannot be entered directly through background debug commands). This security key can be disabled completely by clearing the KEYEN bit. If the security key is disabled, the only way to disengage security is by mass-erasing the flash (normally through the background debug interface) and verifying the flash is blank.

4.1.4 ColdFire Rapid GPIO Memory Map

The rapid GPIO module is mapped into a 16-byte area starting at location 0xC0_0000. Its memory map is shown below in Table 4-7.

Register **Address** Bit 7 Bit 0 Name 0x(00)C0_0000 RGPIO_DIR 0x(00)C0_0001 RGPIO_DIR 0x(00)C0_0002 RGPIO_DATA 0x(00)C0_0003 RGPIO_DATA 0x(00)C0_0004 RGPIO_ENB 0x(00)C0_0005 RGPIO_ENB RGPIO_CLR 0x(00)C0_0006

Table 4-7. V1 ColdFire Rapid GPIO Memory Map

MCF51MM256 Series Devices Reference Manual, Rev. 3

Bit1 is the Flash Array Select Protection bit and Bit0 is the Flash Array Select bit. If Bit 1 = 0, then FLASHAS_Bit0 is copied to the SOPT3_ARRAYSEL bit. If Bit1 = 1, then nothing happens. This can be confusing for cases when flash is in an erased state.

IFR — Nonvolatile information memory that can only be accessed during production test. During production test, system
initialization, configuration, and test information is stored in the IFR. This information cannot be read or modified in normal
user or background debug modes.

Table 4-7. V1 ColdFire Rapid GPIO Memory Map (Continued)

Address	Register Name	Bit 7	6	5	4	3	2	1	Bit 0
0x(00)C0_0007	RGPIO_CLR	7	6	5	4	3	2	1	0
0x(00)C0_0008	Reserved	_	_	_	_	_	_	_	_
0x(00)C0_0009	Reserved	_	_	_	_	_	_	_	_
0x(00)C0_000A	RGPIO_SET	15	14	13	12	11	10	9	8
0x(00)C0_000B	RGPIO_SET	7	6	5	4	3	2	1	0
0x(00)C0_000C	Reserved	_	_	_	_	_	_	_	_
0x(00)C0_000D	Reserved	_	_	_	_	_	_	_	_
0x(00)C0_000E	RGPIO_TOG	15	14	13	12	11	10	9	8
0x(00)C0_000F	RGPIO_TOG	7	6	5	4	3	2	1	0

4.1.5 ColdFire Interrupt Controller Memory Map

The V1 ColdFire interrupt controller (CF1_INTC) register map is sparsely-populated, but retains compatibility with earlier ColdFire interrupt controller definitions. The CF1_INTC occupies the upper 64 bytes of the 4 GB address space and all memory locations are accessed as 8-bit (byte) operands.

Table 4-8. V1 ColdFire Interrupt Controller Memory Map

Address	Register Name	msb	Bit Number					Isb	
0x(FF)FF_FFC0- 0x(FF)FF_FFDF	Reserved	_	_	_	_	_	_	_	-
0x(FF)FF_FFD0	INTC_FRC	0	LVL1	LVL2	LVL3	LVL4	LVL5	LVL6	LVL7
0x(FF)FF_FFD1- 0x(FF)FF_FFD7	Reserved	_	_	_	_	_	_	_	_
0x(FF)FF_FFD8	INTC_PL6P7	0	0			RE	QN		
0x(FF)FF_FFD9	INTC_PL6P6	0	0			RE	QN		
0x(FF)FF_FFDA	Reserved	_	_	_	_	_	_	_	_
0x(FF)FF_FFDB	INTC_WCR	ENB	0	0	0	0		MASK	
0x(FF)FF_FFDC- 0x(FF)FF_FFDD	Reserved	_	_	_	_	_	_	_	-
0x(FF)FF_FFDE	INT_SFRC	0	0			SI	T		
0x(FF)FF_FFDF	INT_CFRC	0	0	CLR					
0x(FF)FF_FFE0	INTC_SWIACK	0		•		VECN			
0x(FF)FF_FFE1- 0x(FF)FF_FFE3	Reserved	_	_	_	_	_	_	_	-
0x(FF)FF_FFE4	INTC_ LVL1IACK	0				VECN			
0x(FF)FF_FFE5- 0x(FF)FF_FFE7	Reserved	_	_	_	_	_	_	_	_
0x(FF)FF_FFE8	INTC_ LVL2IACK	0				VECN			
0x(FF)FF_FFE9- 0x(FF)FF_FFEB	Reserved	_	_	_	_	_	_	_	_
0x(FF)FF_FFEC	INTC_ LVL3IACK	0	VECN						
0x(FF)FF_FFED- 0x(FF)FF_FFEF	Reserved	_	_	_	_	_	_	_	_

4-20 Freescale Semiconductor

Address	Register Name	msb			Bit Nu	ımber			lsb
0x(FF)FF_FFF0	INTC_ LVL4IACK	0				VECN			
0x(FF)FF_FFF1- 0x(FF)FF_FFF3	Reserved	_	_	_	_	_	_	_	_
0x(FF)FF_FFF4	INTC_ LVL5IACK	0				VECN			
0x(FF)FF_FFF5- 0x(FF)FF_FFF7	Reserved	_	_	-	_	_	_	_	_
0x(FF)FF_FFF8	INTC_ LVL6IACK	0				VECN			
0x(FF)FF_FFF9- 0x(FF)FF_FFFB	Reserved	_	_	_	_	_	_	_	_
0x(FF)FF_FFFC	INTC_ LVL7IACK	0				VECN			
0x(FF)FF_FFFD- 0x(FF)FF_FFFF	Reserved	_	_	_	_	_	_	_	_

Table 4-8. V1 ColdFire Interrupt Controller Memory Map (Continued)

4.2 RAM

The MCF51MM256 series microcontroller includes up to 32 Kbytes of static RAM. RAM is most efficiently accessed using the A5-relative addressing mode (address register indirect with displacement mode). Any single bit in this area can be accessed with the bit manipulation instructions (BCLR, BSET,etc.).

At power-on, the contents of RAM are uninitialized. RAM data is unaffected by any reset provided that the supply voltage does not drop below the minimum value for RAM retention (V_{RAM}) .

4.3 Flash Memory

The flash memory is for program storage and read-only data. In-circuit programming allows the operating program to be loaded into the flash memory after final assembly of the application product. It is possible to program the entire array through the single-wire background debug interface. Because no special voltages are needed for flash erase and programming operations, in-application programming is also possible through other software-controlled communication paths.

Flash memory is ideal for single-supply applications allowing for field reprogramming without requiring external high voltage sources for program or erase operations. The flash module includes a memory controller that executes commands to modify flash memory contents.

Array read access time is one bus cycle for bytes, aligned words, and aligned longwords.

Multiple accesses are needed for misaligned words and longword operands. For flash memory, an erased bit reads 1 and a programmed bit reads 0. It is not possible to read from a flash block while any command is executing on that specific flash block.

CAUTION

A flash block address must be in the erased state before being programmed. Cumulative programming of bits within a flash block address is not allowed except for status field updates required in EEPROM emulation applications.

Flash memory on this device must be programmed 32-bits at a time with long word address aligned when the low-voltage detect flag (LVDF) in the System Power Management Status and Control 1 register (SPMSC1) is clear. If SPMSC1[LVDF] is set, the programming sequence must be modified such that odd and even bytes are written separately. This device's flash memory is organized as two 16-bit wide blocks interleaved to yield a 32-bit data path. When programming flash if LVDF is set, alternate bytes must be set to 0xFF as shown in Table 4-9. Failure to adhere to these guidelines may result in a partially programmed flash array.

Addresses	Desired Value	Values Programmed
0x00 - 0x03 0x00 - 0x03	0x5555_AAAA	0x55FF_AAFF 0xFF55_FFAA
0x04 - 0x07 0x04 - 0x07	0x0CCC_0000	0xCCFF_CCFF 0xFFCC_FFCC
0x08 – 0x0B 0x08 – 0x0B	0x1234_5678	0x12FF_56FF 0xFF34_FF78
0x0C - 0x0F 0x0C - 0x0F	0x9ABC_DEF0	0x9AFF_DEFF 0xFFBC_FFF0

Table 4-9. Alternate Bytes Setting

4.3.1 Features

Features of the flash memory include:

- The MCF51MM256 series incorporate dual flash controllers, allowing the microcontroller to execute code from one flash array while programming the other.
- Flash size
 - MCF51MM256: 262,144 bytes (256 sectors if 1024 bytes each)
 - MCF51MM128: 131,072 (128 sectors of 1024 bytes each)
- Automated program and erase algorithm
- Fast program and sector erase operation
- Burst program command for faster flash array program times
- Single power supply program and erase
- Command interface for fast program and erase operation
- Up to 100,000 program/erase cycles at typical voltage and temperature
- Flexible block protection (on any 2-Kbyte memory boundary for each flash block)
- Security feature to prevent unauthorized access to on-chip memory and resources
- Auto power-down for low-frequency read accesses

4-22 Freescale Semiconductor

4.3.2 Dual Flash Controllers

The MCF51MM256 and MCF51MM128 devices each separate available flash into two distinct blocks. Each block is controlled by its own, independent, flash controller. Memory mapping of the individual arrays is impacted by the current state of ARRAYSEL bit in the SOPT3 register as shown in Table 4-10. Upon initial power up, ARRAYSEL=0, and Array 1 is located at the bottom of the memory map with Array 2 above it. Setting ARRAYSEL=1 reverses the locations of the two arrays in the memory map. The V1 ColdFire core will normally boot from 0x(00)00_0000. The procedure to swap flash arrays must be located in RAM, and must include the following steps:

- Disable flash speculation by the V1 ColdFire CPU by setting CPUCR[FSD] to 1
- Disable all interrupts
- Toggle ARRAYSEL
- Re-enable interrupts
- If desired, re-enable flash seculation by the V1 ColdFire CPU by re-setting CPUCR[FSD] to 0
- jump back (using an indirect jump) to main application code residing in flash memory

Note that swapping flash arrays as discussed above does NOT change the location of the flash controllers in the memory map. Registers in FTSR1 and FTSR2 are fixed in the memory map. Only the flash arrays are impacted by changing ARRAYSEL.

ARRAYSEL	Array	MCF51MM256	MCF51MM128
0 (initial POR value)	FTSR1	0x(00)00_0000	0x(00)00_0000
	FTSR2	0x(00)02_0000	0x(00)01_0000
1	FTSR1	0x(00)02_0000	000001_0000
	FTSR2	0x(00)00_0000	0x(00)00_0000

Table 4-10. Flash Array Base Address

4.3.3 Register Descriptions

The flash controller (FTSR) contains a set of 12 control and status registers. Detailed descriptions of each register bit are provided in the sections that follow.

4.3.3.1 Flash Clock Divider Register (FxCDIV)

The FxCDIV register controls the length of timed events in program and erase algorithms executed by the flash memory controller. All bits in the FxCDIV register are readable and writable with restrictions as determined by the value of FDIVLD when writing to the FxCDIV register.

Figure 4-3. Flash Clock Divider Register (FxCDIV)

MCF51MM256 Series Devices Reference Manual, Rev. 3

Table 4-11. FxCDIV Field Descriptions

Field	Description
7 FDIVLD	Clock Divider Load Control. When writing to the FxCDIV register for the first time after a reset, the value of the FDIVLD bit written controls the future ability to write to the FxCDIV register: 0 Writing a 0 to FDIVLD locks the FxCDIV register contents; all future writes to FxCDIV are ignored. 1 Writing a 1 to FDIVLD keeps the FxCDIV register writable; next write to FxCDIV is allowed. When reading the FxCDIV register, the value of the FDIVLD bit read indicates the following: 0 FxCDIV register has not been written to since the last reset. 1 FxCDIV register has been written to since the last reset.
6 PRDIV8	Enable Prescalar by 8. 0 The bus clock is directly fed into the clock divider. 1 The bus clock is divided by 8 before feeding into the clock divider.
5–0 FDIV	Clock Divider Bits. The combination of PRDIV8 and FDIV[5:0] must divide the bus clock down to a frequency of 150 kHz–200 kHz. The minimum divide ratio is 2 (PRDIV8 = 0, FDIV = 0x01) and the maximum divide ratio is 512 (PRDIV8 = 1, FDIV = 0x3F).

4.3.3.2 Flash Options Register (FxOPT and NVxOPT)

The FxOPT register holds all bits associated with the security of the MCU and flash module. All bits in the FxOPT register are readable but are not writable.

The FxOPT register is loaded from the flash configuration field during the reset sequence, indicated by F in Figure 4-4.

The security feature in the flash module is described in Section 4.4, "Functional Description".

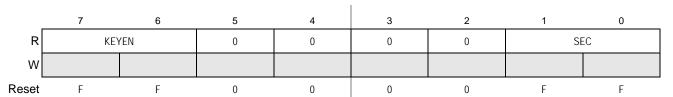


Figure 4-4. Flash Options Register (FxOPT)

Table 4-12. FxOPT Field Descriptions

Field	Description
7–6 KEYEN	Backdoor Key Security Enable Bits. The KEYEN[1:0] bits define the enabling of backdoor key access to the flash module. 00 Disabled 01 Disabled (Preferred KEYEN state to disable Backdoor Key Access) 10 Enabled 11 Disabled
5–2	Reserved, should be cleared.
1–0 SEC	Flash Security Bits. The SEC[1:0] bits define the security state of the MCU. If the flash module is unsecured using backdoor key access, the SEC[1:0] bits are forced to the unsecured state. 00 Unsecured 01 Unsecured 10 Secured 11 Unsecured

MCF51MM256 Series Devices Reference Manual, Rev. 3

4-24 Freescale Semiconductor

4.3.3.3 Flash Configuration Register (FxCNFG)

The FxCNFG register gates the security backdoor writes.

KEYACC is readable and writable while all remaining bits read 0 and are not writable. KEYACC is only writable if KEYEN is set to the enabled state (see Section 4.3.3.2, "Flash Options Register (FxOPT and NVxOPT)").

NOTE

Flash array reads are allowed while KEYACC is set.

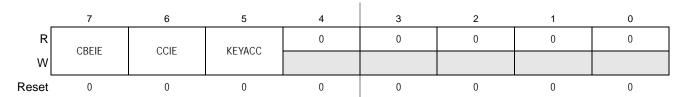


Figure 4-5. Flash Configuration Register (FxCNFG)

Table 4-13. FxCNFG Field Descriptions

Field	Description
7 CBEIE	Command Buffer Empty Interrupt Enable — The CBEIE bit enables an interrupt in case of an empty command buffer in the flash module. 0 Command buffer empty interrupt disabled. 1 An interrupt will be requested whenever the CBEIF flag (see Section 4.3.3.5, "Flash Status Register (FxSTAT)") is set.
6 CCIE	Command Complete Interrupt Enable — The CCIE bit enables an interrupt in case all commands have been completed in the flash module. 0 Command complete interrupt disabled. 1 An interrupt will be requested whenever the CCIF flag (see Section 4.3.3.5, "Flash Status Register (FxSTAT)") is set.
5 KEYACC	Enable Security Key Writing 0 Writes to the flash block are interpreted as the start of a command write sequence. 1 Writes to the flash block are interpreted as keys to open the backdoor.
4–0	Reserved,

Flash Protection Register (FxPROT and NVxPROT) 4.3.3.4

NOTE

The FxPROT register defines which flash sectors are protected against program or erase operations. FxPROT bits are readable and writable as long as the size of the protected flash memory is being increased. Any write to FxPROT that attempts to decrease the size of the protected flash memory is ignored.

MCF51MM256/128 have two flash blocks. Each block protection is configured by its respective FxPROT and NVxPROT registers. The flash block swap feature is described in Section 4.1.3, "Flash Module Reserved Memory Locations." The protection follows the flash block instead of the memory addresses.

During the reset sequence, the FxPROT register is loaded from the flash protection byte in the flash configuration field, indicated by F in Figure 4-6. To change the flash protection loaded during the reset sequence, the flash sector containing the flash configuration field must be unprotected. Then, the flash protection byte must be reprogrammed.

Trying to alter data in any protected area in the flash memory results in a protection violation error and FxSTAT[FPVIOL] is set. The mass erase of the flash array is not possible if any of the flash sectors contained in the flash array are protected.

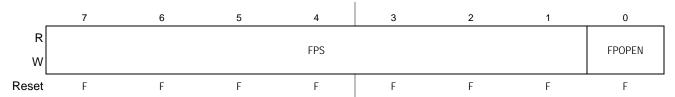


Figure 4-6. Flash Protection Register (FxPROT)

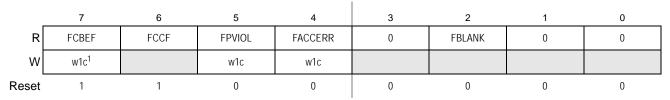
Table 4-14. FxPROT Field Descriptions

Field	Description
	Flash Protection Size. With FPOPEN set, the FPS bits determine the size of the protected flash address range as shown in Table 4-15.
0 FPOPEN	Flash Protection Open 0 Flash array fully protected. 1 Flash array protected address range determined by FPS bits.

Table 4-15. Flash Protection Address Range

FPS	FPOPEN	Protected Address Range Relative to Flash Array Base	Protected Size
_	0	0x0_0000-0x1_FFFF	128 Kbytes
0x00-0x3F		0x0_0000-0x1_FFFF	128 Kbytes
0x40		0x0_0000-0x1_F7FF	126 Kbytes
0x41		0x0_0000-0x1_EFFF	124 Kbytes
0x42	1	0x0_0000-0x1_E7FF	122 Kbytes
0x43	1	0x0_0000-0x1_DFFF	120 Kbytes
0x44		0x0_0000-0x1_D7FF	118 Kbytes
0x45		0x0_0000-0x1_CFFF	116 Kbytes
0x46		0x0_0000-0x1_C7FF	114 Kbytes

MCF51MM256 Series Devices Reference Manual, Rev. 3


4-26 Freescale Semiconductor

FPS	FPOPEN	Protected Address Range Relative to Flash Array Base	Protected Size
0x47		0x0_0000-0x1_BFFF	112 Kbytes
0x5B		0x0_0000-0x1_1FFF	72 Kbytes
0x5C		0x0_0000-0x1_17FF	70 Kbytes
0x5D		0x0_0000-0x1_0FFF	68 Kbytes
0x5E		0x0_0000-0x1_07FF	66 Kbytes
0x5F		0x0_0000-0x0_FFFF	64 Kbytes
0x60		0x0_0000-0x0_F7FF	62 Kbytes
0x61		0x0_0000-0x0_EFFF	60 Kbytes
0x62		0x0_0000-0x0_E7FF	58 Kbytes
0x63	1	0x0_0000-0x0_DFFF	56 Kbytes
•••			
0x77		0x0_0000-0x0_3FFF	16 Kbytes
0x78		0x0_0000-0x0_37FF	14 Kbytes
0x79		0x0_0000-0x0_2FFF	12 Kbytes
0x7A		0x0_0000-0x0_27FF	10 Kbytes
0x7B		0x0_0000-0x0_1FFF	8 Kbytes
0x7C		0x0_0000-0x0_17FF	6 Kbytes
0x7D		0x0_0000-0x0_0FFF	4 Kbytes
0x7E		0x0_0000-0x0_07FF	2 Kbytes
0x7F		No Protection	0 Kbytes

4.3.3.5 Flash Status Register (FxSTAT)

The FxSTAT register defines the operational status of the flash module. FCBEF, FPVIOL and FACCERR are readable and writable. FBLANK is readable and not writable. The remaining bits read 0 and are not writable.

¹ w1c stands for writing 1 to clear.

Figure 4-7. Flash Status Register (FxSTAT)

MCF51MM256 Series Devices Reference Manual, Rev. 3

Table 4-16. FxSTAT Field Descriptions

Field	Description
7 FCBEF	Command Buffer Empty Flag. The FCBEF flag indicates that the command buffer is empty so that a new command write sequence can be started when performing burst programming. Writing a 0 to the FCBEF flag has no effect on FCBEF. Writing a 0 to FCBEF after writing an aligned address to the flash array memory, but before FCBEF is cleared, aborts a command write sequence and causes the FACCERR flag to be set. Writing a 0 to FCBEF outside of a command write sequence does not set the FACCERR flag. Writing a 1 to this bit clears it. 0 Command buffers are full. 1 Command buffers are ready to accept a new command.
6 FCCF	Command Complete Flag. The FCCF flag indicates that there are no more commands pending. The FCCF flag is cleared when FCBEF is cleared and sets automatically upon completion of all active and pending commands. The FCCF flag does not set when an active program command completes and a pending burst program command is fetched from the command buffer. Writing to the FCCF flag has no effect on FCCF. O Command in progress. 1 All commands are completed.
5 FPVIOL	Protection Violation Flag. The FPVIOL flag indicates an attempt was made to program or erase an address in a protected area of the flash memory during a command write sequence. Writing a 0 to the FPVIOL flag has no effect on FPVIOL. Writing a 1 to this bit clears it. While FPVIOL is set, it is not possible to launch a command or start a command write sequence. 0 No protection violation detected. 1 Protection violation has occurred.
4 FACCERR	Access Error Flag. The FACCERR flag indicates an illegal access has occurred to the flash memory caused by either a violation of the command write sequence, issuing an illegal flash command (see Section 4.3.3.6, "Flash Command Register (FxCMD)"), or the execution of a CPU STOP instruction while a command is executing (FCCF = 0). Writing a 0 to the FACCERR flag has no effect on FACCERR. Writing a 1 to this bit clears it. While FACCERR is set, it is not possible to launch a command or start a command write sequence. 0 No access error detected. 1 Access error has occurred.
3	Reserved, must be cleared.
2 FBLANK	Flag Indicating the Erase Verify Operation Status. When the FCCF flag is set after completion of an erase verify command, the FBLANK flag indicates the result of the erase verify operation. The FBLANK flag is cleared by the flash module when FCBEF is cleared as part of a new valid command write sequence. Writing to the FBLANK flag has no effect on FBLANK. O Flash block verified as not erased. 1 Flash block verified as erased.
1–0	Reserved, should be cleared.

4.3.3.6 Flash Command Register (FxCMD)

The FxCMD register is the flash command register. Bits 6–0 are readable and writable during a command write sequence, while bit 7 reads 0 and is not writable.

Figure 4-8. Flash Command Register (FxCMD)

MCF51MM256 Series Devices Reference Manual, Rev. 3

Table 4-17. FxCMD Field Descriptions

Field	Description
7	Reserved, must be cleared.
6-0 FCMD	Flash Command. Valid flash commands are shown below. Writing any command other than those listed sets the FACCERR flag in the FxSTAT register. 0x05 Erase verify 0x20 Program 0x25 Burst program 0x40 Sector erase 0x41 Mass erase

4.4 Functional Description

4.4.1 Flash Command Operations

Flash command operations execute program, erase, and erase verify algorithms described in this section. The program and erase algorithms are controlled by the flash memory controller whose time base, FCLK, is derived from the bus clock via a programmable divider.

The next sections describe:

- 1. How to write the FCDIV register to set FCLK
- 2. Command write sequences to program, erase, and erase verify operations on the flash memory
- 3. Valid flash commands
- 4. Effects resulting from illegal flash command write sequences or aborting flash operations

4.4.1.1 Writing the FCDIV Register

Prior to issuing any flash command after a reset, write the FCDIV register to divide the bus clock within 150–200 kHz. The FCDIV[PRDIV8, FDIV] bits must be set as described in Figure 4-9.

For example, if the bus clock frequency is 25 MHz, FCDIV[FDIV] should be set to 0x0F (001111) and the FCDIV[PRDIV8] bit set to 1. The resulting FCLK frequency is then 195 kHz. In this case, the flash program and erase algorithm timings are increased over the optimum target by:

$$(200 - 195) \div 200 = 3\%$$

Eqn. 4-1

CAUTION

Program and erase command execution time increase proportionally with the period of FCLK. Programming or erasing the flash memory with FCLK less than 150 kHz should be avoided. Setting FCDIV to a value such that FCLK is less than 150 kHz can destroy the flash memory due to overstress. Setting FCDIV to a value where FCLK is greater than 200 kHz can result in incomplete programming or erasure of the flash memory cells.

If the FCDIV register is written, the FDIVLD bit is automatically set. If the FDIVLD bit is 0, the FCDIV register has not been written since the last reset. If the FCDIV register has not been written to, the flash command loaded during a command write sequence does not execute and FSTAT[FACCERR] is set.

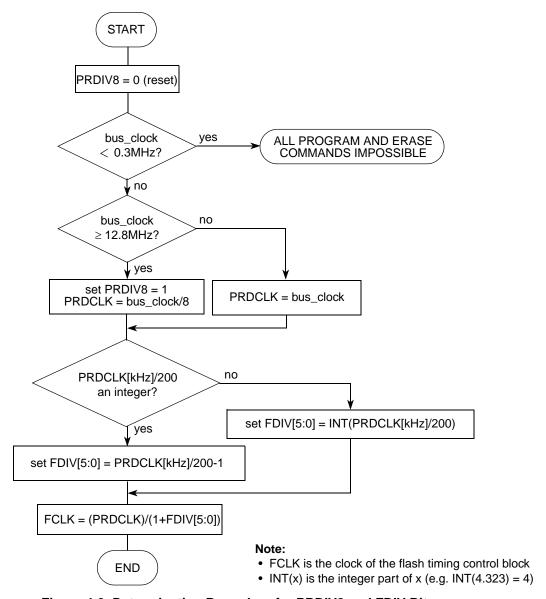


Figure 4-9. Determination Procedure for PRDIV8 and FDIV Bits

4.4.1.2 **Command Write Sequence**

The flash command controller supervises the command write sequence to execute program, erase, and erase verify algorithms.

Before starting a command write sequence, the FACCERR and FPVIOL flags in the FSTAT register must be clear and the FCBEF flag must be set (see Section 4.3.3.5).

4-31

A command write sequence consists of three steps that must be strictly adhered to with writes to the flash module not permitted between the steps. However, flash register and array reads are allowed during a command write sequence. The basic command write sequence is as follows:

- 1. Write to a valid address in the flash array memory.
- 2. Write a valid command to the FCMD register.
- 3. Clear the FCBEF flag in the FSTAT register by writing a 1 to FCBEF to launch the command.

After a command is launched, the completion of the command operation is indicated by the setting of FSTAT[FCCF]. The FCCF flag sets upon completion of all active and buffered burst program commands.

4.4.2 Flash Commands

Table 4-18 summarizes the valid flash commands along with the effects of the commands on the flash block.

FCMD	NVM Command	Function on Flash Memory	
0x05	Erase Verify	Verify all memory bytes in the flash array memory are erased.	
		If the flash array memory is erased, FSTAT[FBLANK] sets upon command completion.	
0x20	Program	Program an address in the flash array.	
0x25	Burst Program	Program an address in the flash array with the internal address incrementing after the program operation.	
0x40	Sector Erase	Erase all memory bytes in a sector of the flash array.	
0x41	Mass Erase	Erase all memory bytes in the flash array.	
		A mass erase of the full flash array is only possible when no protection is enabled prior to launching the command.	

Table 4-18. Flash Command Description

CAUTION

A flash block address must be in the erased state before being programmed. Cumulative programming of bits within a flash block address is not allowed except for status field updates required in EEPROM emulation applications.

4.4.2.1 Erase Verify Command

The erase verify operation verifies that the entire flash array memory is erased.

An example flow to execute the erase verify operation is shown in Figure 4-10. The erase verify command write sequence is as follows:

- 1. Write to a flash block address to start the command write sequence for the erase verify command. The address and data written are ignored.
- 2. Write the erase verify command, 0x05, to the FCMD register.
- 3. Clear the FCBEF flag in the FSTAT register by writing a 1 to FCBEF to launch the erase verify command.

After launching the erase verify command, FSTAT[FCCF] sets after the operation has completed. The number of bus cycles required to execute the erase verify operation is equal to the number of addresses in the flash array memory plus several bus cycles as measured from the time the FCBEF flag is cleared until the FCCF flag is set. Upon completion of the erase verify operation, FSTAT[FBLANK] is set if all addresses in the flash array memory are verified to be erased. If any address in the flash array memory is not erased, the erase verify operation terminates and FSTAT[FBLANK] remains cleared.



Figure 4-10. Example Erase Verify Command Flow

4-32 Freescale Semiconductor

4.4.2.2 Program Command

The program operation programs a previously erased address in the flash memory using an embedded algorithm. An example flow to execute the program operation is shown in Figure 4-11. The program command write sequence is as follows:

- 1. Write to a flash block address to start the command write sequence for the program command. The data written is programmed to the address written.
- 2. Write the program command, 0x20, to the FCMD register.
- 3. Clear the FCBEF flag in the FSTAT register by writing a 1 to FCBEF to launch the program command.

If an address to be programmed is in a protected area of the flash block, FSTAT[FPVIOL] sets and the program command does not launch. After the program command has successfully launched and the program operation has completed, FSTAT[FCCF] is set.

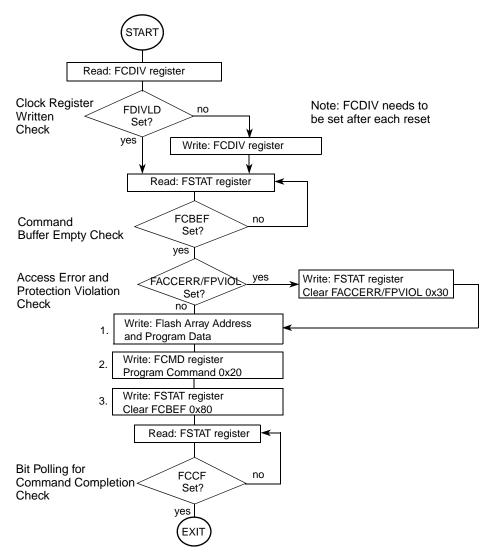


Figure 4-11. Example Program Command Flow

MCF51MM256 Series Devices Reference Manual, Rev. 3

4.4.2.3 Burst Program Command

The burst program operation programs previously erased data in the flash memory using an embedded algorithm.

While burst programming, two internal data registers operate as a buffer and a register (2-stage FIFO) so that a second burst programming command along with the necessary data can be stored to the buffers while the first burst programming command remains in progress. This pipelined operation allows a time optimization when programming more than one consecutive address on a specific row in the flash array as the high voltage generation can be kept active in between two programming commands.

An example flow to execute the burst program operation is shown in Figure 4-12. The burst program command write sequence is as follows:

- 1. Write to a flash block address to start the command write sequence for the burst program command. The data written is programmed to the address written.
- 2. Write the program burst command, 0x25, to the FCMD register.
- 3. Clear the FCBEF flag in the FSTAT register by writing a 1 to FCBEF to launch the program burst command.
- 4. After the FCBEF flag in the FSTAT register returns to a 1, repeat steps 1 through 3. The address written is ignored but is incremented internally.

The burst program procedure can be used to program the entire flash memory even while crossing row boundaries within the flash array. If data to be burst programmed falls within a protected area of the flash array, FSTAT[FPVIOL] is set and the burst program command does not launch. After the burst program command has successfully launched and the burst program operation has completed, FSTAT[FCCF] is set unless a new burst program command write sequence has been buffered. By executing a new burst program command write sequence on sequential addresses after the FCBEF flag in the FSTAT register has been set, a greater than 50% faster programming time for the entire flash array can be effectively achieved when compared to using the basic program command.

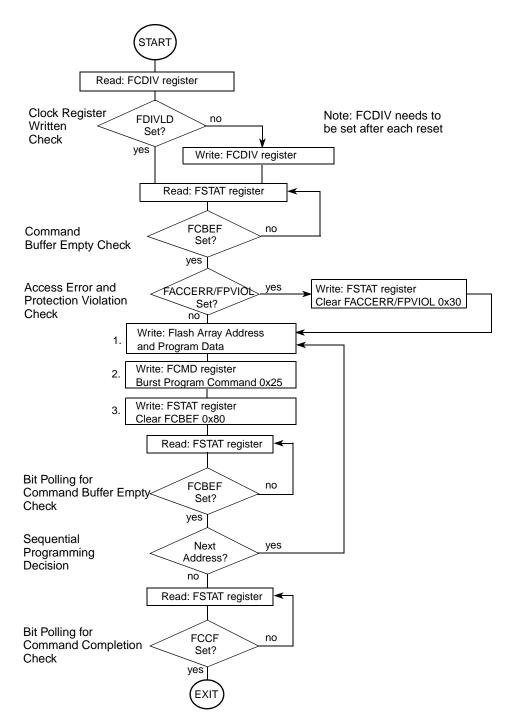


Figure 4-12. Example Burst Program Command Flow

4.4.2.4 Sector Erase Command

The sector erase operation erases all addresses in a 2Kbyte sector of flash memory using an embedded algorithm.

An example flow to execute the sector erase operation is shown in Figure 4-13. The sector erase command write sequence is as follows:

- 1. Write to a flash block address to start the command write sequence for the sector erase command. The flash address written determines the sector to be erased while the data written is ignored.
- 2. Write the sector erase command, 0x40, to the FCMD register.
- 3. Clear the FCBEF flag in the FSTAT register by writing a 1 to FCBEF to launch the sector erase command.

If a flash sector to be erased is in a protected area of the flash block, FSTAT[FPVIOL] is set and the sector erase command does not launch. After the sector erase command has successfully launched and the sector erase operation has completed, FSTAT[FCCF] is set.

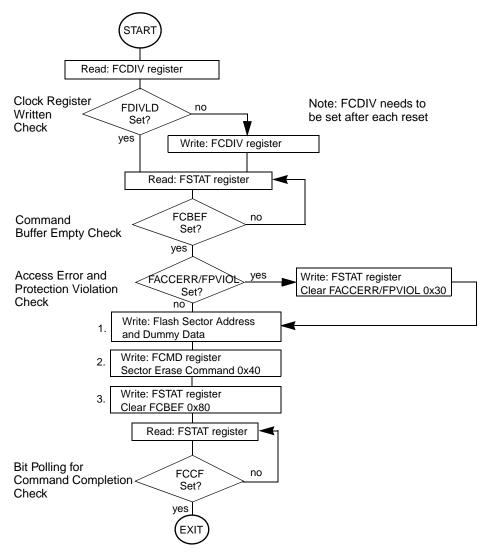


Figure 4-13. Example Sector Erase Command Flow

MCF51MM256 Series Devices Reference Manual, Rev. 3

4-36 Freescale Semiconductor

4.4.2.5 Mass Erase Command

The mass erase operation erases the entire flash array memory using an embedded algorithm. An example flow to execute the mass erase operation is shown in Figure 4-14. The mass erase command write sequence is as follows:

- 1. Write to a flash block address to start the command write sequence for the mass erase command. The address and data written is ignored.
- 2. Write the mass erase command, 0x41, to the FCMD register.
- 3. Clear the FCBEF flag in the FSTAT register by writing a 1 to FCBEF to launch the mass erase command.

If the flash array memory to be mass erased contains any protected area, FSTAT[FPVIOL] is set and the mass erase command does not launch. After the mass erase command has successfully launched and the mass erase operation has completed, FSTAT[FCCF] is set.

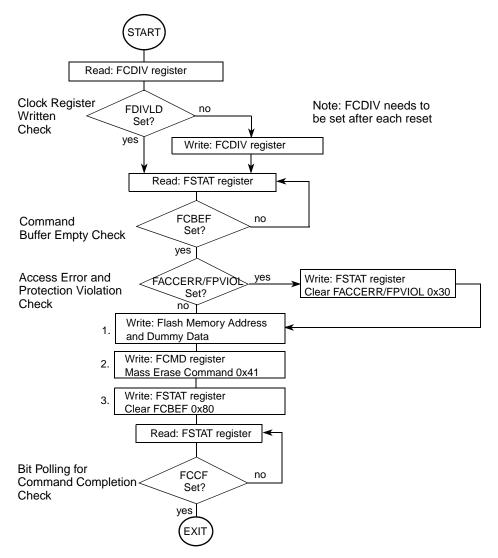


Figure 4-14. Example Mass Erase Command Flow

MCF51MM256 Series Devices Reference Manual, Rev. 3

NOTE

The BDM can also perform a mass erase and verify command. See Chapter 29, "Version 1 ColdFire Debug (CF1_DEBUG)," for details.

4.4.3 Illegal Flash Operations

4.4.3.1 Flash Access Violations

The FACCERR flag is set during the command write sequence if any of the following illegal steps are performed, causing the command write sequence to immediately abort:

- 1. Writing to a flash address before initializing the FCDIV register.
- 2. This scenario can cause an illegal address reset as this operation is not supported per the memory map. To cause an exception instead of a system reset, set the ADR bit of core register CPUCR. After setting the ADR bit, performing a write operation sets the FACCERR flag.
- 3. Writing to any flash register other than FCMD after writing to a flash address.
- 4. Writing to a second flash address in the same command write sequence.
- 5. Writing an invalid command to the FCMD register.
- 6. Writing a command other than burst program while FCBEF is set and FCCF is clear.
- 7. When security is enabled, writing a command other than erase verify or mass erase to the FCMD register when the write originates from a non-secure memory location or from the background debug mode.
- 8. Writing to a flash address after writing to the FCMD register.
- 9. Writing to any flash register other than FSTAT (to clear FCBEF) after writing to the FCMD register.
- 10. Writing a 0 to the FCBEF flag in the FSTAT register to abort a command write sequence.

The FACCERR flag is also set if the MCU enters stop mode while any command is active (FCCF=0). The operation is aborted immediately and, if burst programming, any pending burst program command is purged (see Section 4.4.4.2, "Stop Modes").

The FACCERR flag does not set if any flash register is read during a valid command write sequence.

If the flash memory is read during execution of an algorithm (FCCF = 0), the read operation returns invalid data and the FACCERR flag is not set.

If the FACCERR flag is set in the FSTAT register, clear the FACCERR flag before starting another command write sequence (see Section 4.3.3.5, "Flash Status Register (FxSTAT)").

4.4.3.2 Flash Protection Violations

The FPVIOL flag is set after the command is written to the FCMD register if any of the following illegal operations are attempted:

1. Writing the program command if the address written in the command write sequence was in a protected area of the flash array.

- 2. Writing the sector erase command if the address written in the command write sequence was in a protected area of the flash array.
- 3. Writing the mass erase command while any flash protection is enabled.

As a result of any of the above, the command write sequence immediately aborts. If FSTAT[FPVIOL] is set, clear the FPVIOL flag before starting another command write sequence (see Section 4.3.3.5, "Flash Status Register (FxSTAT)").

4.4.4 Operating Modes

4.4.4.1 Wait Mode

If a command is active (FCCF = 0) when the MCU enters wait mode, the active command and any buffered command is completed.

4.4.4.2 Stop Modes

If a command is active (FCCF = 0) when the MCU enters any stop mode, the operation is aborted. If the operation is program or erase, the flash array data being programmed or erased may be corrupted and the FCCF and FACCERR flags are set. If active, the high voltage circuitry to the flash array is immediately switched off when entering stop mode. Upon exit from stop mode, the FCBEF flag is set and any buffered command is not launched. The FACCERR flag must be cleared before starting a command write sequence (see Section 4.4.1.2, "Command Write Sequence").

NOTE

As active commands are immediately aborted when the MCU enters stop mode, do not use the STOP instruction during program or erase operations.

Active commands continue when the MCU enters wait mode. Use of the STOP instruction when SOPT1[WAITE] is set is acceptable.

4.4.4.3 Background Debug Mode

In background debug mode, the FPROT register is writable without restrictions. If the MCU is unsecured, all flash commands listed in Table 4-12 can be executed. If the MCU is secured, only a compound mass erase and erase verify command can be executed. See Chapter 29, "Version 1 ColdFire Debug (CF1_DEBUG)," for details.

4.4.5 Flash Security

The flash module provides the necessary security information to the MCU. During each reset sequence, the flash module determines the security state of the MCU as defined in Section 4.1.3, "Flash Module Reserved Memory Locations".

The contents of the flash security byte in the flash configuration field (see Section 4.3.3.3) must be changed directly by programming the flash security byte location when the MCU is unsecured and the

sector containing the flash security byte is unprotected. If the flash security byte is left in a secured state, any reset causes the MCU to initialize into a secure operating mode.

4.4.6 Resets

4.4.6.1 Flash Reset Sequence

On each reset, the flash module executes a reset sequence to hold CPU activity while reading the following resources from the flash block:

- MCU control parameters (see Section 4.1.3)
- Flash protection byte (see Section 4.1.3 and Section 4.3.3.4)
- Flash nonvolatile byte (see Section 4.1.3)
- Flash security byte (see Section 4.1.3 and Section 4.3.3.2)

4.4.6.2 Reset While Flash Command Active

If a reset occurs while any flash command is in progress, that command is immediately aborted. The state of the flash array address being programmed or the sector/block being erased is not guaranteed.

4.4.6.3 Program and Erase Times

Before any program or erase command can be accepted, the flash clock divider (FCDIV) must be written to set the internal clock for the flash module to a frequency (f_{FCLK}) between 150 kHz and 200 kHz.

If the initial flash event is a mass erase and verify from BDM, then CSR3[31:24] must be loaded before the XCSR is written to initiate the erase and verify. The data in the XCSR and CSR3 is then loaded into the flash's FCDIV register. (See Section 29.3.4, "Configuration/Status Register 3 (CSR3)"). However, if the first flash event is executed by the processor directly, the flash's FCDIV register is written directly, and the XCSR and CSR3 are not involved.

One period of the resulting clock $(1/f_{FCLK})$ is used by the command processor to time program and erase pulses. An integer number of these timing pulses are used by the command processor to complete a program or erase command.

Program and erase times are given in the MCF51MM256 Data Sheet, order number MCF51MM256.

4.5 Security

The MCF51MM256/128 microcontroller includes circuitry to prevent unauthorized access to the contents of flash and RAM memory. When security is engaged, BDM access is restricted to the upper byte of the ColdFire CSR, XCSR, and CSR2 registers. RAM, flash memory, peripheral registers and most of the CPU register set are not available via BDM. Programs executing from internal memory have normal access to all microcontroller memory locations and resources.

The MCF51MM256/128 devices include two independent flash blocks in support of the robust update feature for on-chip flash. Each flash block has its own set of two security bits as described below. Security must be clear ON BOTH flash blocks in order for the device to be unsecured. This allows the device to

remain secure, even when updating one of the two flash blocks during a code upgrade. The remainder of this section discusses security from the perspective of a single flash block. Routines for clearing flash security must be applied to both blocks before the device can be unsecured.

Security is engaged or disengaged based on the state of two nonvolatile register bits (SEC01, SEC00) in the FxOPT register. During reset, the contents of the nonvolatile location, NVxOPT, are copied from flash into the working FxOPT register in high-page register space. A user engages security by programming the NVxOPT location which can be done at the same time the flash memory is programmed. The 1:0 stage engages the security and other three combinations disengage security.

Upon exiting reset, the XCSR[25] bit in the ColdFire CPU is initialized to one if the device is secured, zero otherwise.

A user can choose to allow or disallow a security unlocking mechanism through an 8-byte backdoor security key. The security key can be written by the CPU executing from internal memory. It cannot be entered without the cooperation of a secure user program. The procedure for this is detailed in Section 4.5.1, "Unsecuring the MCU using Backdoor Key Access."

Development tools will unsecure devices via an alternate BDM-based methodology shown in Figure 4-15. Because both RESET and BKGD pins can be reprogrammed via software, a power-on-reset is required to be absolutely certain of obtaining control of the device via BDM, which is a required prerequisite for clearing security. Other methods (outlined in red in Figure 4-15) can also be used, but may not work under all circumstances.

This device supports two levels of security. Both restrict BDM communications as outlined above. In addition, SOPT1[SL] (see Section 5.7.3, "System Options 1 (SOPT1) Register") can be used to enable/disable off-chip data accesses through the Mini-FlexBus interface. Off-chip op code accesses through the Mini-FlexBus are always disallowed when security is enabled.

4.5.1 Unsecuring the MCU using Backdoor Key Access

The MCU may be unsecured by using the backdoor key access feature that requires knowledge of the contents of the backdoor keys (see Section 4.1.3, "Flash Module Reserved Memory Locations"). If the KEYEN[1:0] bits are in the enabled state (see Section 4.3.3.2, "Flash Options Register (FxOPT and NVxOPT)") and the KEYACC bit is set, a write to a backdoor key address in the flash memory triggers a comparison between the written data and the backdoor key data stored in the flash memory. If all backdoor keys are written to the correct addresses in the correct order and the data matches the backdoor keys stored in the flash memory, the MCU is unsecured. The data must be written to the backdoor keys sequentially. Values $0x0000_0000$ and $0xFFFF_FFFF$ are not permitted as backdoor keys. While the KEYACC bit is set, reads of the flash memory return valid data.

The user code stored in the flash memory must have a method of receiving the backdoor keys from an external stimulus. This external stimulus would typically be through one of the on-chip serial ports.

If the KEYEN[1:0] bits are in the enabled state (see Section 4.3.3.2, "Flash Options Register (FxOPT and NVxOPT)"), the MCU can be unsecured by the backdoor key access sequence described below:

1. Set FxCNFG[KEYACC].

- 2. Execute three NOP instructions to provide time for the backdoor state machine to load the starting address and number of keys required into the flash state machine.
- 3. Sequentially write the correct longwords to the flash address(es) containing the backdoor keys.
- 4. Clear the KEYACC bit. Depending on the user code used to write the backdoor keys, a wait cycle (NOP) may be required before clearing the KEYACC bit.
- 5. If all data written match the backdoor keys, the MCU is unsecured and the SEC[1:0] bits in the NVxOPT register are forced to an unsecured state.

The backdoor key access sequence is monitored by an internal security state machine. An illegal operation during the backdoor key access sequence causes the security state machine to lock, leaving the MCU in the secured state. A reset of the MCU causes the security state machine to exit the lock state and allows a new backdoor key access sequence to be attempted. The following operations during the backdoor key access sequence lock the security state machine:

- 1. If any of the keys written does not match the backdoor keys programmed in the flash array.
- 2. If the keys are written in the wrong sequence.
- 3. If any of the keys written are all 0's or all 1's.
- 4. If the KEYACC bit does not remain set while the keys are written.
- 5. If any of the keys are written on successive MCU clock cycles.
- 6. Executing a STOP instruction before all keys have been written.

After the backdoor keys have been correctly matched, the MCU is unsecured. After the MCU is unsecured, the flash security byte can be programmed to the unsecure state, if desired.

In the unsecure state, you have full control of the contents of the backdoor keys by programming the associated addresses in the flash configuration field (see Section 4.1.3, "Flash Module Reserved Memory Locations").

The security as defined in the flash security byte is not changed by using the backdoor key access sequence to unsecure. The stored backdoor keys are unaffected by the backdoor key access sequence. After the next reset of the MCU, the security state of the flash module is determined by the flash security byte. The backdoor key access sequence has no effect on the program and erase protections defined in the flash protection register (FxPROT).

It is not possible to unsecure the MCU by using the backdoor key access sequence in background debug mode (BDM) as the MCU does not allow flash array writes in BDM to the flash module.

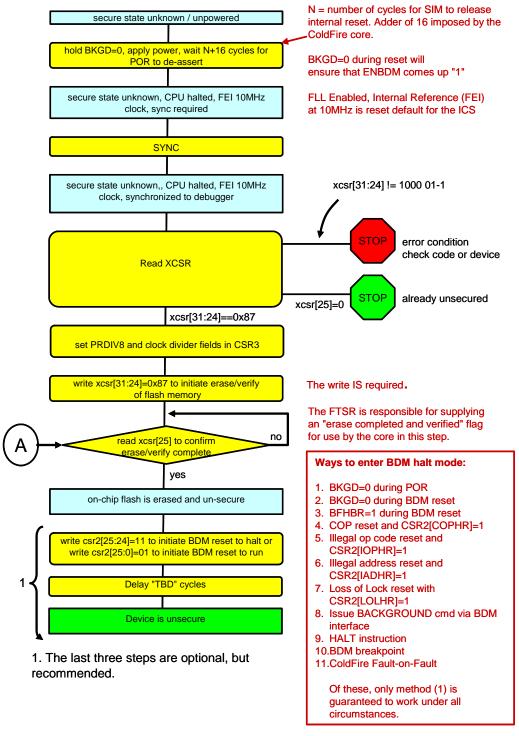


Figure 4-15. Procedure for Clearing Security on MCF51MM256/128 MCUs via the BDM Port 1



Figure 4-16. Procedure for Clearing Security on MCF51MM256/128 MCUs via the BDM Port 2

4-44 Freescale Semiconductor

Chapter 5 Resets, Interrupts, and General System Control

5.1 Introduction

This section discusses basic reset and interrupt mechanisms and the various sources of reset and interrupt on an MCF51MM256 series microcontroller. Some interrupt sources from peripheral modules are discussed in greater detail within other sections of this document. This section gathers basic information about all reset and interrupt sources in one place for easy reference.

5.2 Features

Reset and interrupt features include:

- Multiple sources of reset for flexible system configuration and reliable operation
- System reset status (SRS) register to indicate source of most recent reset
- Separate interrupt vector for most modules (reduces polling overhead) (see Table 5-1)

5.3 Microcontroller Reset

Resetting the microcontroller provides a way to start processing from a known set of initial conditions. When the ColdFire processor exits reset, it fetches initial 32-bit values for the supervisor stack pointer and program counter from locations $0x(00)00_0000$ and $0x(00)00_0004$ respectively. On-chip peripheral modules are disabled and I/O pins are initially configured as general-purpose high-impedance inputs with pull-up devices disabled.

The MCF51MM256 series microcontrollers have the following sources for reset:

- Power-on reset (POR)
- External pin reset (PIN)
- Computer operating properly (COP) timer
- Illegal opcode detect (ILOP)
- Illegal address detect (ILAD)
- Low-voltage detect (LVD)
- Clock generator (MCG) loss of clock reset (LOC)
- Background debug forced reset

Each of these sources, with the exception of the background debug forced reset, has an associated bit in the system reset status register (SRS).

Resets, Interrupts, and General System Control

5.3.1 Computer Operating Properly (COP) Watchdog

The COP watchdog is intended to force a system reset when the application software fails to execute as expected. To prevent a system reset from the COP timer (when it is enabled), application software must reset the COP counter periodically. If the application program gets lost and fails to reset the COP counter before it times out, a system reset is generated to force the system back to a known starting point.

After any reset, the COP watchdog is enabled (see Section 5.7.3, "System Options 1 (SOPT1) Register," for additional information). If the COP watchdog is not used in an application, it can be disabled by clearing SOPT1[COPT].

The COP counter is reset by writing 0x55 and 0xAA (in this order) to the address of SRS during the selected timeout period. Writes do not affect the data in the read-only SRS. As soon as the write sequence is done, the COP timeout period is restarted. If the program fails to do this during the time-out period, the microcontroller resets. Also, if any value other than 0x55 or 0xAA is written to SRS, the microcontroller is immediately reset.

The SOPT2[COPCLKS] field (see Section 5.7.4, "System Options 2 (SOPT2) Register," for additional information) selects the clock source used for the COP timer. The clock source options are the bus clock or an internal 1 kHz LPOCLK source. With each clock source, there are three associated time-outs controlled by SOPT1[COPT]. Table 5-7 summarizes the control functions of the COPCLKS and COPT bits. The COP watchdog defaults to operation from the 1 kHz LPOCLK source and the longest time-out (2¹⁰ cycles).

When the bus clock source is selected, windowed COP operation is available by setting SOPT2[COPW]. In this mode, writes to the SRS register to clear the COP timer must occur in the last 25% of the selected timeout period. A premature write immediately resets the microcontroller. When the 1 kHz LPOCLK source is selected, windowed COP operation is not available.

The COP counter is initialized by the first writes to the SOPT1 and SOPT2 registers and after any system reset. Subsequent writes to SOPT1 and SOPT2 have no effect on COP operation. Even if the application uses the reset default settings of the COPT, COPCLKS, and COPW bits, the user should write to the write-once SOPT1 and SOPT2 registers during reset initialization to lock in the settings. This prevents accidental changes if the application program gets lost.

The write to SRS that services (clears) the COP counter should not be placed in an interrupt service routine (ISR) because the ISR could continue to be executed periodically even if the main application program fails

If the bus clock source is selected, the COP counter does not increment while the microcontroller is in background debug mode or while the system is in stop mode. The COP counter resumes when the microcontroller exits background debug mode or stop mode.

If the 1 kHz LPOCLK source is selected, the COP counter is re-initialized to zero upon entry to background debug mode or stop mode and begins from zero upon exit from background debug mode or stop mode.

5-3

5.3.2 Illegal Opcode Detect (ILOP)

The default configuration of the V1 ColdFire core enables the generation of an MCU reset in response to the processor's attempted execution of an illegal instruction (except for the ILLEGAL opcode), illegal line A, illegal line F instruction or the detection of a privilege violation (attempted execution of a supervisor instruction while in user mode).

The attempted execution of the STOP instruction with (SOPT[STOPE] = 0 && SOPT[WAITE] = 0) is treated as an illegal instruction.

The attempted execution of the HALT instruction with XCSR[ENBDM] = 0 is treated as an illegal instruction.

The processor generates a reset in response to any of these events if CPUCR[IRD] = 0. If this configuration bit is set, the processor generates the appropriate exception instead of forcing a reset.

5.3.3 Illegal Address Detect (ILAD)

The default configuration of the V1 ColdFire core enables the generation of an MCU reset in response to any processor-detected address error, bus error termination, RTE format error or fault-on-fault condition.

The processor generates a reset if CPUCR[ARD] = 0. If this configuration bit is set, the processor generates the appropriate exception instead of forcing a reset, or simply halts the processor in response to the fault-on-fault condition.

5.4 Interrupts & Exceptions

The interrupt architecture of ColdFire utilizes a 3-bit encoded interrupt priority level sent from the interrupt controller to the core, providing 7 levels of interrupt requests. Level 7 represents the highest priority interrupt level, while level 1 is the lowest priority. The processor samples for active interrupt requests once per instruction by comparing the encoded priority level against a 3-bit interrupt mask value (I) contained in bits 10:8 of the processor's status register (SR). If the priority level is greater than the SR[I] field at the sample point, the processor suspends normal instruction execution and initiates interrupt exception processing.

Level 7 interrupts are treated as non-maskable and edge-sensitive within the processor, while levels 1-6 are treated as level-sensitive and may be masked depending on the value of the SR[I] field. For correct operation, the ColdFire processor requires that, after asserted, the interrupt source remain asserted until explicitly disabled by the interrupt service routine.

During the interrupt exception processing, the CPU does the following tasks in order:

- 1. enters supervisor mode,
- 2. disables trace mode,
- 3. uses the vector provided by the INTC when the interrupt was signaled (if CPUCR[IACK] = 0) or explicitly fetches an 8-bit vector from the INTC (if CPUCR[IACK] = 1).

This byte-sized operand fetch during exception processing is known as the interrupt acknowledge (IACK) cycle. The fetched data provides an index into the exception vector table that contains up to 256 addresses

MCF51MM256 Series Devices Reference Manual, Rev. 3

Resets, Interrupts, and General System Control

(depending upon the specific device), each pointing to the beginning of a specific exception service routine.

In particular, the first 64 exception vectors are reserved for the processor to manage reset, error conditions (access, address), arithmetic faults, system calls, etc. Vectors 64–255 are reserved for interrupt service routines. The MCF51MM256 series microcontrollers support 37 peripheral interrupt sources and an additional seven software interrupt sources. These are mapped into the standard seven ColdFire interrupt levels, with up to 9 levels of prioritization within a given level by the V1 ColdFire interrupt controller. See Table 5-1 for details.

After the interrupt vector number has been retrieved, the processor continues by creating a stack frame in memory. For ColdFire, all exception stack frames are two longwords in length, and contain 32 bits of vector and status register data, along with the 32-bit program counter value of the instruction that was interrupted. After the exception stack frame is stored in memory, the processor accesses the 32-bit pointer from the exception vector table using the vector number as the offset, and then jumps to that address to begin execution of the service routine. After the status register is stored in the exception stack frame, the SR[I] mask field is set to the level of the interrupt being acknowledged, effectively masking that level and all lower values while in the service routine.

All ColdFire processors guarantee that the first instruction of the service routine is executed before interrupt sampling is resumed. By making this initial instruction a load of the SR, interrupts can be safely disabled, if required. Optionally, the processor can be configured to automatically raise the mask level to 7 for any interrupt during exception processing by setting CPUCR[IME] = 1.

During the execution of the service routine, the appropriate actions must be performed on the peripheral to negate the interrupt request.

For more information on exception processing, see the *ColdFire Programmer's Reference Manual*. For additional information specific to this device, see Chapter 29, "Version 1 ColdFire Debug (CF1 DEBUG)."

5.4.1 External Interrupt Request (IRQ) Pin

External interrupts are managed by the IRQ status and control register, IRQSC. When the IRQ function is enabled, synchronous logic monitors the pin for edge-only or edge-and-level events. When the microcontroller is in stop mode and system clocks are shut down, a separate asynchronous path is used, so the IRQ pin (if enabled) can wake the microcontroller.

NOTE

- This pin does not contain a clamp diode to V_{DD} and should not be driven above V_{DD}.
- The voltage measured on the internally pulled up IRQ pin will not be pulled to V_{DD} . The internal gates connected to this pin are pulled to V_{DD} . The IRQ pullup should not be used to pull up components external to the microcontroller.

MCF51MM256 Series Devices Reference Manual, Rev. 3

5.4.1.1 Pin Configuration Options

The IRQ pin enable (IRQPE) control bit in IRQSC must be set for the IRQ pin to act as the interrupt request (IRQ) input. As an IRQ input, the user can choose the polarity of edges or levels detected (IRQEDG), whether the pin detects edges-only or edges and levels (IRQMOD), and whether an event causes an interrupt or only sets the IRQF flag that can be polled by software (IRQIE).

The IRQ pin, when enabled, defaults to use an internal pull device (IRQPDD = 0), configured as a pull-up or pull-down depending on the polarity chosen. If the user desires to use an external pull-up or pull-down, the IRQPDD can be set to turn off the internal device.

NOTE

- This pin does not contain a clamp diode to V_{DD} and should not be driven above V_{DD}.
- The voltage measured on the internally pulled up IRQ pin is not pulled to V_{DD}. The internal gates connected to this pin are pulled to V_{DD}. The IRQ pullup should not be used to pull up components external to the microcontroller.

5.4.1.2 Edge and Level Sensitivity

The IRQMOD control bit re-configures the detection logic so it detects edge events and pin levels. In the edge and level detection mode, the IRQF status flag becomes set when an edge is detected (when the IRQ pin changes from the deasserted to the asserted level), but the flag is continuously set (and cannot be cleared) as long as the IRQ pin remains at the asserted level.

5.4.2 Interrupt Vectors, Sources, and Local Masks

Table 5-1 shows address assignments for reset and interrupt vectors. The vector names shown in this table are the labels used in the Freescale Semiconductor-provided equate file for the MCF51MM256 series microcontrollers. The table is sorted by priority of the sources, with higher-priority sources at the top of the table. The force_lvl entries do not follow the address and vector number order of the surrounding vectors.

Vector Number(s)	Vector Address Offset	Interrupt Level	Priority within Level	Stacked Program Counter	Assignment
0	0x000	_	N/A	_	Initial supervisor stack pointer
1	0x004	_	N/A	_	Initial program counter
2–63	_	_	N/A	_	Reserved for internal CPU exceptions (see Table 7-6)

Table 5-1. Address Assignments for Reset and Interrupt Vectors

Resets, Interrupts, and General System Control

Table 5-1. Address Assignments for Reset and Interrupt Vectors (Continued)

Vector Number(s)	Vector Address Offset	Interrupt Level	Priority within Level	Stacked Program Counter	Assignment
_	_	7	7-5	_	Reserved
64	0x100	7	mid	Next	IRQ_pin
65	0x104	7	3	Next	Low_voltage_detect
66	0x108	7	2	Next	Loss of Lock
67	0x10C	7	1	Next	Reserved
_	_	6	7	_	Reserved for remapped vector #1
_	_	6	6	_	Reserved for remapped vector #2
68	0x110	6	5	Next	PDB
69	0x114	6	4	Next	DAC
70	0x118	6	3	Next	SPI1
71	0x11C	6	2	Next	ADC
72	0x120	6	1	Next	USB_Status
73	0x124	5	7	Next	TPM1_ch0
74	0x128	5	6	Next	TPM1_ch1
75	0x12C	5	5	Next	TPM1_ch2
76	0x130	5	4	Next	TPM1_ch3
77	0x134	5	3	Next	TPM1_ovfl
78	0x138	5	2	Next	SPI2
79	0x13C	5	1	Next	CMT
80	0x140	4	7	Next	TPM2_ch0
81	0x144	4	6	Next	TPM2_ch1
82	0x148	4	5	Next	TPM2_ch2
83	0x14C	4	4	Next	TPM2_ch3
84	0x150	4	3	Next	TPM2_ovfl
85	0x154	4	2	Next	IIC
86	0x158	4	1	Next	PRACMP
87	0x15C	3	7	Next	SCI1_err
88	0x160	3	6	Next	SCI1_rx
89	0x164	3	5	Next	SCI1_tx

5-6 Freescale Semiconductor

Table 5-1. Address Assignments for Reset and Interrupt Vectors (Continued)

Vector Number(s)	Vector Address Offset	Interrupt Level	Priority within Level	Stacked Program Counter	Assignment
90	0x168	3	4	Next	SCI2_err
91	0x16C	3	3	Next	SCI2_rx
92	0x170	3	2	Next	SCI2_tx
93	0x174	3	1	Next	EXPANSION
94	0x178	2	7	Next	EXPANSION
95	0x17C	2	6	Next	KBI1
96	0x180	2	5	Next	KBI2
97	0x184	2	4	Next	TOD
98	0x188	2	3	Next	EXPANSION
99	0x18C	2	2	Next	EXPANSION
100	0x190	2	1	Next	EXPANSION
101	0x194	1	7	Next	EXPANSION
102	0x198	1	6	Next	EXPANSION
103	0x19C	7	0	Next	Level 7 Software Interrupt
104	0x1A0	6	0	Next	Level 6 Software Interrupt
105	0x1A4	5	0	Next	Level 5 Software Interrupt
106	0x1A8	4	0	Next	Level 4 Software Interrupt
107	0x1AC	3	0	Next	Level 3 Software Interrupt
108	0x1B0	2	0	Next	Level 2 Software Interrupt
109	0x1B4	1	0	Next	Level 1 Software Interrupt
110	0x1B8	1	5	Next	EXPANSION
111	0x1BC	1	4	Next	EXPANSION
112	0x1C0	1	3	Next	FTSR1
113	0x1C4	1	2	Next	FTSR2
114	0x1C8	1	1	Next	EXPANSION
115	0x1CC	N/A	N/A	Next	Reserved

Resets, Interrupts, and General System Control

Table 5-1. Address Assignments for Reset and Interrupt Vectors (Continued)

Vector Number(s)	Vector Address Offset	Interrupt Level	Priority within Level	Stacked Program Counter	Assignment
				Next	Reserved
255	0x3FC	N/A	N/A	Next	Reserved

Not shown in Table 5-1 are the standard set of ColdFire exceptions, many of which apply to this device. These are listed below in Table 5-2.

The CPU configuration register (CPUCR) within the supervisor programming model allows the users to determine if specific ColdFire exception conditions are to generate a normal exception or a system reset. The default state of the CPUCR forces a system reset for any of the exception types listed in Table 5-2.

Table 5-2. ColdFire Exception Vector Table¹

Vector	Exception	Reset Disabled via CPUCR	Reported using SRS
64-98	I/O Interrupts	N/A	_
61	Unsupported instruction	N/A	_
47	Trap #15	N/A	_
46	Trap #14	N/A	_
45	Trap #13	N/A	_
44	Trap #12	N/A	_
43	Trap #11	N/A	_
42	Trap #10	N/A	_
41	Trap #9	N/A	_
40	Trap #8	N/A	_
39	Trap #7	N/A	_
38	Trap #6	N/A	_
37	Trap #5	N/A	_
36	Trap #4	N/A	_
35	Trap #3	N/A	_
34	Trap #2	N/A	_
33	Trap #1	N/A	_
32	Trap #0	N/A	_
24	Spurious IRQ	N/A	_
14	Format error	CPUCR[31]	ilad
12	Debug breakpoint IRQ	N/A	_
11	Illegal LineF	CPUCR[30]	ilop

MCF51MM256 Series Devices Reference Manual, Rev. 3

5-8 Freescale Semiconductor

Vector	Exception	Reset Disabled via CPUCR	Reported using SRS
10	Illegal LineA	CPUCR[30]	ilop
9	Trace	N/A	_
8	Privileged Violation	CPUCR[30]	ilop
4	Illegal instruction	CPUCR[30]	ilop ²
3	Address error	CPUCR[31]	ilad
2	Access error	CPUCR[31]	ilad
n/a	Flt-on-Flt Halt	CPUCR[31]	ilad

Table 5-2. ColdFire Exception Vector Table (Continued)

5.5 Low-Voltage Detect (LVD) System

The MCF51MM256/128 microcontroller includes a system to protect against low voltage conditions to protect memory contents and control microcontroller system states during supply voltage variations. The system is comprised of a power-on reset (POR) circuit and a LVD circuit with a user-selectable trip voltage, either high (V_{LVDH}) or low (V_{LVDL}). The LVD circuit is enabled when the SPMSC1[LVDE] bit is set and the trip voltage is selected by the SPMSC3[LVDV] bit. The LVD is disabled upon entering Stop2 or Stop3 modes unless the LVDSE bit is set. If both LVDE and LVDSE are set when the STOP instruction is processed, the device will enter STOP4 mode. The LVD can be left enabled in this mode.

5.5.1 Power-On Reset Operation

When power is initially applied to the microcontroller, or when the supply voltage drops below the power-on reset re-arm voltage level, V_{POR} , the POR circuit will cause a reset condition. As the supply voltage rises, the LVD circuit will hold the microcontroller in reset until the supply has risen above the LVD low threshold, V_{LVDL} . Both the POR bit and the LVD bit in SRS are set following a POR.

5.5.2 LVD Reset Operation

The LVD can be configured to generate a reset upon detection of a low voltage condition by setting LVDRE to 1. The low voltage detection threshold is determined by the LVDV bit. After an LVD reset has occurred, the LVD system will hold the microcontroller in reset until the supply voltage has risen above the low voltage detection threshold. The LVD bit in the SRS register is set following either an LVD reset or POR.

Exception vector numbers not appearing in this table are not applicable to the V1 core and are "reserved".

The execution of the ILLEGAL instruction (0x4AFC) always generates an illegal instruction exception, regardless of the state of CPUCR[30].

Resets, Interrupts, and General System Control

5.5.3 LVD Interrupt Operation

When a low-voltage condition is detected and the LVD circuit is configured using SPMSC1 for interrupt operation (LVDE set, LVDIE set, and LVDRE clear), then LVDF in SPMSC1 will be set and an LVD interrupt request will occur. To clear the LVDF bit, write a 1 to the LVDACK bit in SPMSC1.

5.5.4 Low-Voltage Warning (LVW) Interrupt Operation

The LVD system has a low voltage warning flag (LVWF) to indicate that the supply voltage is approaching, but is above, the LVD voltage. The LVW also has an interrupt associated with it, enabled by setting the SPMSC3[LVWIE] bit. If enabled, an LVW interrupt request will occur when the LVWF is set. Write a 1 to the SPMSC3[LVWACK] bit to clear LVWF. There are two user-selectable trip voltages for the LVW, one high (V_{LVWH}) and one low (V_{LVWH}) . Use the SPMSC3[LVWV] bit to select the trip voltage.

5.6 Peripheral Clock Gating

The MCF51MM256 series microcontroller includes a clock gating system to manage the bus clock sources to the individual peripherals. Using this system, the user can enable or disable the bus clock to each of the peripherals at the clock source, eliminating unnecessary clocks to peripherals which are not in use; thereby reducing the overall run and wait mode currents.

Out of reset, all peripheral clocks will be enabled. For lowest possible run or wait currents, user software should disable the clock source to any peripheral not in use. The actual clock will be enabled or disabled immediately following the write to the clock gating control registers (SCGC1, SCGC2, SCGC3). Any peripheral with a gated clock can not be used unless its clock is enabled. Writing to the registers of a peripheral with a disabled clock has no effect.

NOTE

Your software should disable the peripheral before disabling the clocks to the peripheral. When clocks are re-enabled to a peripheral, the peripheral registers need to be re-initialized by software.

In stop modes, the bus clock is disabled for all gated peripherals, regardless of the settings in the SCGC1, SCGC2, and SCGC3 registers.

5.7 Reset, Interrupt, and System Control Registers and Control Bits

One 8-bit register in the direct page register space and eight 8-bit registers in the high-page register space are related to reset and interrupt systems.

Refer to Section 4.1.2, "Detailed register addresses and bit assignments," for the absolute address assignments for all registers. This section refers to registers and control bits only by their names. A Freescale-provided equate or header file is used to translate these names into the appropriate absolute addresses.

Some control bits in the SOPT1 and SPMSC2 registers are related to modes of operation. Although brief descriptions of these bits are provided here, the related functions are discussed in greater detail in Chapter 3, "Modes of Operation."

5.7.1 Interrupt Pin Request Status and Control Register (IRQSC)

This direct page register includes status and control bits used to configure the IRQ function, report status, and acknowledge IRQ events.

Figure 5-1. Interrupt Request Status and Control Register (IRQSC)

Table 5-3. IRQSC Register Field Descriptions

Field	Description
7	Reserved, should be cleared.
6 IRQPDD	Interrupt Request (IRQ) Pull Device Disable— This read/write control bit is used to disable the internal pull-up/pull-down device when the IRQ pin is enabled (IRQPE = 1) allowing for an external device to be used. 0 IRQ pull device enabled if IRQPE = 1. 1 IRQ pull device disabled if IRQPE = 1.
5 IRQEDG	Interrupt Request (IRQ) Edge Select — This read/write control bit is used to select the polarity of edges or levels on the IRQ pin that cause IRQF to be set. The IRQMOD control bit determines whether the IRQ pin is sensitive to both edges and levels or only edges. When IRQEDG = 1 and the internal pull device is enabled, the pull-up device is reconfigured as an optional pull-down device. O IRQ is falling edge or falling edge/low-level sensitive. 1 IRQ is rising edge or rising edge/high-level sensitive.
4 IRQPE	IRQ Pin Enable — This read/write control bit enables the IRQ pin function. When this bit is set the IRQ pin can be used as an external interrupt request. 0 IRQ pin function is disabled. 1 IRQ pin function is enabled.
3 IRQF	IRQ Flag — This read-only status bit indicates when an interrupt request event has occurred. 0 No IRQ request. 1 IRQ event detected.
2 IRQACK	IRQ Acknowledge — This write-only bit is used to acknowledge interrupt request events (write 1 to clear IRQF). Writing 0 has no meaning or effect. Reads always return 0. If edge-and-level detection is selected (IRQMOD = 1), IRQF cannot be cleared while the IRQ pin remains at its asserted level.
1 IRQIE	IRQ Interrupt Enable — This read/write control bit determines whether IRQ events generate an interrupt request. 0 Interrupt request when IRQF set is disabled (use polling). 1 Interrupt requested when IRQF = 1.
0 IRQMOD	IRQ Detection Mode — This read/write control bit selects edge-only detection or edge-and-level detection. The IRQEDG control bit determines the polarity of edges and levels that are detected as interrupt request events. See Section 5.4.1.2, "Edge and Level Sensitivity" for more details. O IRQ event on falling edges or rising edges only. 1 IRQ event on falling edges and low levels or on rising edges and high levels.

Freescale Semiconductor 5-11

5.7.2 System Reset Status Register (SRS)

This high page register includes read-only status flags to indicate the source of the most recent reset. When a debug host forces reset by setting CSR2[BDFR], none of the status bits in SRS is set. To reset the COP counter, write 0x55 and 0xAA (in this order) to the address of SRS during the selected timeout period. The reset state of these bits depends on what caused the microcontroller to reset.

_	7	6	5	4	3	2	1	0
R	POR	PIN	COP	ILOP	ILAD	LOC	LVD	0
W		W	riting any valu	e to SRS addre	ss clears COP	watchdog time	er.	
POR:	1	0	0	0	0	0	1	0
LVD:	u	0	0	0	0	0	1	0
Any other reset:	0	Note ¹	Note ¹	Note ¹	Note ¹	0	0	0

Any of these reset sources that are active at the time of reset entry causes the corresponding bit(s) to be set. Bits corresponding to sources that are not active at the time of reset entry are cleared.

Figure 5-2. System Reset Status (SRS)

Table 5-4. SRS Register Field Descriptions

Field	Description
7 POR	Power-On Reset — Reset was caused by the power-on detection logic. Because the internal supply voltage was ramping up at the time, the low-voltage reset (LVD) status bit is also set to indicate that the reset occurred while the internal supply was below the LVD threshold. O Reset not caused by POR. POR caused reset.
6 PIN	External Reset Pin — Reset was caused by an active-low level on the external reset pin. O Reset not caused by external reset pin. Reset came from external reset pin.
5 COP	Computer Operating Properly (COP) Watchdog — Reset was caused by the COP watchdog timer timing out. This reset source can be blocked by SOPT1[COPT] = 0b00. Reset not caused by COP timeout. Reset caused by COP timeout.
4 ILOP	Illegal Opcode — Reset was caused by an attempt to execute an unimplemented or illegal opcode. This includes any illegal instruction [except the ILLEGAL (0x4AFC) opcode] or a privilege violation (execution of a privileged instruction in user mode). The STOP instruction is considered illegal if stop is disabled by ((SOPT[STOPE] = 0) && (SOPT[WAITE] = 0)). The HALT instruction is considered illegal if the BDM interface is disabled by XCSR[ENBDM] = 0. 0 Reset not caused by an illegal opcode. 1 Reset caused by an illegal opcode.
3 ILAD	Illegal Address — Reset was caused by the processor's attempted access of an illegal address in the memory map, an address error, an RTE format error or the fault-on-fault condition. All the illegal address resets are enabled when CPUCR[ARD] = 0. When CPUCR[ARD] = 1, then the appropriate processor exception is generated instead of the reset, or if a fault-on-fault condition is reached, the processor simply halts. O Reset not caused by an illegal access. 1 Reset caused by an illegal access.

5-12 Freescale Semiconductor

Table 5-4. SRS Register Field Descriptions (Cont	inued)
--	--------

Field	Description
2 LOC	Loss-of-Clock Reset — Reset was caused by a loss of external clock. 0 Reset not caused by a loss of external clock. 1 Reset caused by a loss of external clock.
1 LVD	Low Voltage Detect — If the LVD is enabled with LVDRE set, and the supply drops below the LVD trip voltage, an LVD reset occurs. This bit is also set by POR. 0 Reset not caused by LVD trip or POR. 1 Reset caused by LVD trip or POR.

5.7.3 System Options 1 (SOPT1) Register

This high-page register has four write-once bits and one write anytime bit. For the write-once bits, only the first write after reset is honored. All bits in the register can be read at any time. Any subsequent attempt to write a write-once bit is ignored to avoid accidental changes to these sensitive settings. SOPT1 should be written to during the reset initialization program to set the desired controls, even if the desired settings are the same as the reset settings.

_	7	6	5	4	3	2	1	0
R		COPT ¹	STOPE ¹	WAITE	BLMSS	MBSL	BKGDPE ¹	RSTPE ¹
W								
POR:	1	1	0	1	0	0	1	1
LVD:	1	1	0	1	0	0	1	1
Any other reset:	1	1	0	1	0	0	1	u

¹ These bits can be written only one time after reset. Subsequent writes are ignored.

Figure 5-3. System Options 1 (SOPT1) Register

Table 5-5. SOPT1 Field Descriptions

Field	Description
7–6 COPT	COP Watchdog Timeout — These write-once bits select the timeout period of the COP. COPT along with SOPT2[COPCLKS] defines the COP timeout period as described in Table 5-7.
5 STOPE	Stop Mode Enable — This write-once bit is used to enable stop mode. If stop and wait modes are disabled and a user program attempts to execute a STOP instruction, an illegal opcode reset may be generated depending on CPUCR[IRD].
4 WAITE	WAIT Mode Enable — This write-anytime bit is used to enable WAIT mode. If stop and wait modes are disabled and a user program attempts to execute a STOP instruction, an illegal opcode reset may be generated depending on CPUCR[IRD].
3 BLMSS	Boot Loader Mode Select Status— This Read only bit shows the status of the BLMS bit during the last Power on Reset. 0 BLMS pin was high at last POR 1 BLMS pin was low at last POR.

Freescale Semiconductor 5-13

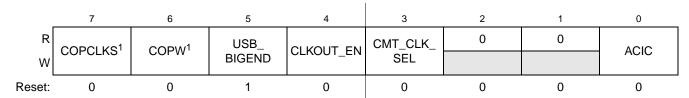


Table 5-5. SOPT1 Field Descriptions (Continued)

Field	Description
2 MBSL	Mini-FlexBus Security Level — If security is enabled via the mechanisms outlined in Section 18.1.5, "Mini-FlexBus Security Level," then this bit affects what CPU operations can access off-chip via the Mini-FlexBus interface. This bit has no effect if security is not enabled. O All off-chip access (opcode and data) via the Mini-FlexBus is disallowed. Off-chip opcode accessed are disallowed. Data accesses are allowed.
1 BKGDPE	Background Debug Mode Pin Enable — This write-once bit when set enables the PTD0/BKGD/MS pin to function as BKGD/MS. When clear, the pin functions as one of its output only alternative functions. This pin defaults to the BKGD/MS function following any MCU reset. 0 PTD0/BKGD/MS pin functions as PTD0. 1 PTD0/BKGD/MS pin functions as BKGD/MS.
0 RSTPE	RESET Pin Enable — When set, this write-once bit enables the PTD1/CMPP2/RESET pin to function as RESET. When clear, the pin functions as an open-drain output only. This pin defaults to its RESET function following an MCU POR or LVD. When RSTPE is set, an internal pullup device is enabled on RESET. 0 PTD1/CMPP2/RESET pin functions as PTD1. 1 PTD1/CMPP2/RESET pin functions as RESET.

5.7.4 System Options 2 (SOPT2) Register

This high page register contains bits to configure microcontroller specific features on the MCF51MM256 series microcontrollers.

¹ This bit can be written to only one time after reset. Additional writes are ignored.

Figure 5-4. System Options 2 (SOPT2) Register

Table 5-6. SOPT2 Register Field Descriptions

Field	Description
7 COPCLKS	COP Watchdog Clock Select — This write-once bit selects the clock source of the COP watchdog. 0 Internal 1 kHz LPOCLK is source to COP. 1 Bus clock is source to COP.
6 COPW	COP Window Mode — This write-once bit specifies whether the COP operates in Normal or Window mode. In Window mode, the 0x55–0xAA write sequence to the SRS register must occur within the last 25% of the selected period; any write to the SRS register during the first 75% of the selected period resets the microcontroller. 0 Normal mode 1 Window mode
5 USB_BIGEND	USB Big Endian — This bit is used to control the endianess (byte order) in USB: 0 Little Endian 1 Big Endian

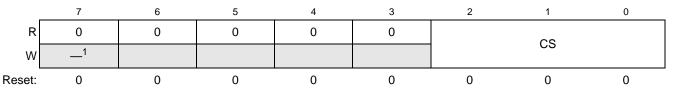
MCF51MM256 Series Devices Reference Manual, Rev. 3

5-14 Freescale Semiconductor

5-15

Table 5-6. SOPT2 Register Field Descriptions (Continued	Table 5-6.	SOPT2 Rea	ister Field De	escriptions ((Continued)
---	------------	-----------	----------------	---------------	-------------

Field	Description
4 CLKOUT_EN	Clock Output Enable — This bit is used to mux out the BUSCLK clock to PTC7. 0 BUSCLK is not available on the external pin PTC7. 1 BUSCLK is available on the external pin PTC7.
3 CMT_CLK_SEL	CMT Clock Select — This bit selects between BUSCLK and BUSCLK/3 to the CMT module. 0 Clock source to CMT is BUSCLK. 1 Clock source to CMT is BUSCLK/3.
0 ACIC	Analog Comparator to Input Capture Enable— This bit connects the output of the ACMP to TPM1 input channel 0. See Chapter 11, "Programmable Analog Comparator (\$08PRACMPV1)," and Chapter 25, "Timer/Pulse-Width Modulator (\$08TPMV3)," for more details on this feature. 0 ACMP output not connected to TPM1 input channel 0. 1 ACMP output connected to TPM1 input channel 0.


Table 5-7. COP Configuration Options

Control Bits		- Clock Source	COP Window ¹ Opens	COP Overflow Count
SOPT2[COPCLKS]	SOPT1[COPT]	- Clock Source	(SOPT2[COPW] = 1)	COP Overnow Count
N/A	00	N/A	N/A	COP is disabled
0	01	1 kHz LPOCLK	N/A	2 ⁵ cycles (32 ms ²)
0	10	1 kHz LPOCLK	N/A	2 ⁸ cycles (256 ms ²)
0	11	1 kHz LPOCLK	N/A	2 ¹⁰ cycles (1,024 ms ²)
1	01	BUSCLK	6,144 cycles	2 ¹³ cycles ¹
1	10	BUSCLK	49,152 cycles	2 ¹⁶ cycles ¹
1	11	BUSCLK	196,608 cycles	2 ¹⁸ cycles ¹

Windowed COP operation requires the user to clear the COP timer in the last 25% of the selected timeout period. This column displays the minimum number of clock counts required before the COP timer can be reset when in windowed COP mode (SOPT2[COPW] = 1).

5.7.5 SIM Clock Set and Select Register (SIMCO)

This register controls operation of the CLKOUT pin. The CS field in this register controls the output mux function for the CLKOUT pin. The various clock sources must be enabled/disabled via the appropriate controls elsewhere in the device.

¹ Bit 7 of SIMCO register is reserved for internal Freescale testing. Writing a "1" to this bit impacts TPM1 external clock selection.

Freescale Semiconductor

² Values shown in milliseconds based on $t_{LPO} = 1$ ms.

Table 5-8. SIMCO Bit Field Descriptions

Field	Description Reserved							
7–3								
CS	CLKOUT Select 000 CLKOUT = 0 001 CLKOUT = Crystal oscillator 1 010 CLKOUT = Crystal oscillator 2 011 CLKOUT = internal RC oscillator 100 CLKOUT = BUSCLK 101 CLKOUT = CPUCLK 111 CLKOUT = LPOCLK 111 CLKOUT = ADC asynchronous clock							

5.7.6 System Device Identification Register (SDIDH, SDIDL)

These high page read-only registers are included so host development systems can identify the ColdFire derivative. This allows the development software to recognize where specific memory blocks, registers, and control bits are located in a target microcontroller.

Additional configuration information about the ColdFire core and memory system is loaded into the 32-bit D0 (core) and D1 (memory) registers at reset. This information can be stored into memory by the system startup code for later use by configuration-sensitive application code.

Figure 5-5. System Device Identification Register — High (SDIDH)

Table 5-9. SDIDH Register Field Descriptions

Field	Description
7–4 REV	Revision Number. This field indicates the chip revision number.
3–0 ID[11:8]	Part Identification Number — Each derivative in the ColdFire family has a unique identification number. The MCF51MM256 series microcontrollers are hard coded to the value 0xC04. See also ID bits in Table 5-10.

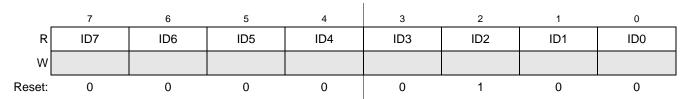


Figure 5-6. System Device Identification Register — Low (SDIDL)

Table 5-10. SDIDL Register Field Descriptions

Field	Description
7–0 ID[7–0]	Part Identification Number — Each derivative in the ColdFire family has a unique identification number. The MCF51MM256 series microcontrollers are hard coded to the value 0xC04. See also ID bits in Table 5-9.

5.7.7 System Clock Gating Control 1 Register (SCGC1)

This high page register contains control bits to enable or disable the bus clock to the CMT, TPMx, ADC, DAC, IIC, and SCIx modules. Gating off the clocks to unused peripherals is used to reduce the microcontroller's run and wait currents. See Section 5.6, "Peripheral Clock Gating," for more information.

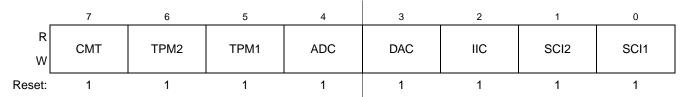


Figure 5-7. System Clock Gating Control 1 Register (SCGC1)

Table 5-11. SCGC1 Register Field Descriptions

Field	Description
7 CMT	CMT Clock Gate Control — This bit controls the clock gate to the CMT module. 0 Bus clock to the CMT module is disabled. 1 Bus clock to the CMT module is enabled.
6 TPM2	TPM2 Clock Gate Control — This bit controls the clock gate to the TPM2 module. 0 Bus clock to the TPM2 module is disabled. 1 Bus clock to the TPM2 module is enabled.
5 TPM1	TPM1 Clock Gate Control — This bit controls the clock gate to the TPM1 module. 0 Bus clock to the TPM1 module is disabled. 1 Bus clock to the TPM1 module is enabled.
4 ADC	ADC Clock Gate Control — This bit controls the clock gate to the ADC module. 0 Bus clock to the ADC module is disabled. 1 Bus clock to the ADC module is enabled.
3 DAC	DAC Clock Gate Control — This bit controls the clock gate to the DAC module. 0 Bus clock to the DAC module is disabled. 1 Bus clock to the DAC module is enabled.
2 IIC	IIC Clock Gate Control — This bit controls the clock gate to the IIC1 module. 0 Bus clock to the IIC module is disabled. 1 Bus clock to the IIC module is enabled.
1 SCI2	SCI2 Clock Gate Control — This bit controls the clock gate to the SCI2 module. 0 Bus clock to the SCI2 module is disabled. 1 Bus clock to the SCI2 module is enabled.
0 SCI1	SCI1 Clock Gate Control — This bit controls the clock gate to the SCI1 module. 0 Bus clock to the SCI1 module is disabled. 1 Bus clock to the SCI1 module is enabled.

Freescale Semiconductor 5-17

5.7.8 System Clock Gating Control 2 Register (SCGC2)

This high page register contains control bits to enable or disable the bus clock to the USB, PDB, IRQ, KBI, ACMP, Mini-FlexBus, and SPIx modules. Gating off the clocks to unused peripherals is used to reduce the microcontroller's run and wait currents. See Section 5.6, "Peripheral Clock Gating," for more information.

Figure 5-8. System Clock Gating Control 2 Register (SCGC2)

Table 5-12. SCGC2 Register Field Descriptions

Field	Description						
7 USB	USB Clock Gate Control — This bit controls the bus clock gate to the USB module. 0 Bus clock to the USB module is disabled. 1 Bus clock to the USB module is enabled.						
6 PDB	PDB Clock Gate Control — This bit controls the bus clock gate to the PDB registers. 0 Bus clock to PDB registers is disabled. 1 Bus clock to PDB registers is enabled.						
5 IRQ	IRQ Clock Gate Control — This bit controls the bus clock gate to the IRQ module. 0 Bus clock to the IRQ module is disabled. 1 Bus clock to the IRQ module is enabled.						
4 KBI	KBI Clock Gate Control — This bit controls the clock gate to both of the KBI modules. 0 Bus clock to the KBI modules is disabled. 1 Bus clock to the KBI modules is enabled.						
3 PRACMP	PRACMP Clock Gate Control — This bit controls the clock gate to the PRACMP modules. 0 Bus clock to the PRACMP module is disabled. 1 Bus clock to the PRACMP module is enabled.						
2 MFB	MFB Clock Gate Control — This bit controls the bus clock gate to the MFB module. Only the bus clock is gated; the clock source of MFB is not controlled by this bit. 0 Bus clock to the MFB module is disabled. 1 Bus clock to the MFB module is enabled.						
1 SPI2	SPI2 Clock Gate Control — This bit controls the clock gate to the SPI2 module. 0 Bus clock to the SPI2 module is disabled. 1 Bus clock to the SPI2 module is enabled.						
0 SPI1	SPI1 Clock Gate Control — This bit controls the clock gate to the SPI1 module. 0 Bus clock to the SPI1 module is disabled. 1 Bus clock to the SPI1 module is enabled.						

5.7.9 System Clock Gating Control 3 Register (SCGC3)

This high page register contains control bits to enable or disable the bus clock to the following modules:

- VREF
- FLSx

- TRIAMPx
- GPOAx

Gating off the clocks to unused peripherals is used to reduce the microcontroller's run and wait currents. See Section 5.6, "Peripheral Clock Gating," for more information.

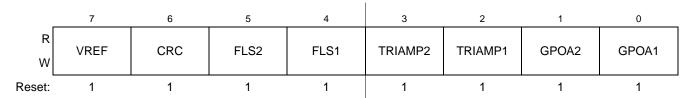


Figure 5-9. System Clock Gating Control 3 Register (SCGC3)

Table 5-13. SCGC3 Register Field Descriptions

Field	Description						
7 VREF	VREF Clock Gate Control — This bit controls the clock gate to the VREF module. 0 Bus clock to the VREF module is disabled. 1 Bus clock to the VREF module is enabled.						
6 CRC	CRC Clock Gate Control — This bit controls the clock gate to the CRC module. 0 Bus clock to the CRC module is disabled. 1 Bus clock to the CRC module is enabled.						
5 FLS2	FLS2 Clock Gate Control — This bit controls the clock gate to the FLS2 module. 0 Bus clock to the FLS2 module is disabled. 1 Bus clock to the FLS2 module is enabled.						
4 FLS1	FLS1 Clock Gate Control — This bit controls the clock gate to the FLS1 module. 0 Bus clock to the FLS1 module is disabled. 1 Bus clock to the FLS1 module is enabled.						
3 TRIAMP2	TRIAMP2 Clock Gate Control — This bit controls the clock gate to the TRIAMP2 module. 0 Bus clock to the TRIAMP2 module is disabled. 1 Bus clock to the TRIAMP2 module is enabled.						
2 TRIAMP1	TRIAMP1 Clock Gate Control — This bit controls the clock gate to the TRIAMP1 module. 0 Bus clock to the TRIAMP1 module is disabled. 1 Bus clock to the TRIAMP1 module is enabled.						
1 GPOA2	GPOA2 Clock Gate Control — This bit controls the clock gate to the GPOA2 module. 0 Bus clock to the GPOA2 module is disabled. 1 Bus clock to the GPOA2 module is enabled.						
0 GPOA1	GPOA1 Clock Gate Control — This bit controls the clock gate to the GPOA1 module. 0 Bus clock to the GPOA1 module is disabled. 1 Bus clock to the GPOA1 module is enabled.						

Freescale Semiconductor 5-19

5.7.10 System Options 3 Register (SOPT3)

This register contains a bit that controls the pad drive strength for the CMT module.

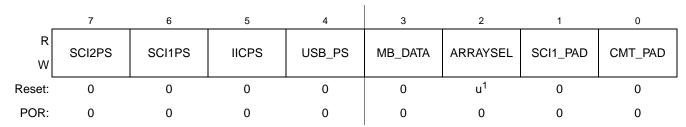


Figure 5-10. System Options 3 Register (SOPT3)

Table 5-14. SOPT3 Field Descriptions

Field	Description						
7 SCI2PS	Configures TX2 and RX2 signal locations. 0 PTE5, PTE6 1 PTF1, PTF2						
6 SCI1PS	Configures TX1 and RX1 signal locations. 0 PTA1, PTA2 1 PTD6, PTD7						
5 IICPS	Configures SDA and SCL signal locations. 0 PTD4, PTD5 1 PTF4, PTF3						
4 USB_PS	Configures USB signals as described below: 0 USB_SESSVLD pin PTG4 USB_PULLUP(D+) pin PTD3 USB_DP_DOWN pin PTG3 USB_DM_DOWN pin PTG2 USB_ALTCLK pin PTD2 1 USB_SESSVLD pin PTE7 USB_SESSEND pin PTE6 USB_PULLUP(D+) pin PTD7 USB_DP_DOWN pin PTF1 USB_DP_DOWN pin PTF1 USB_DM_DOWN pin PTF2 USB_DM_DOWN pin PTF2 USB_ALTCLK pin PTD6						

¹ This bit is reinitialized by POR, all other resets do not affect this bit.

Table 5-14. SOPT3 Field Descriptions (Continued)

Field	Description							
3 MB_DATA	Mini-FlexBus data bus configuration bit — This bit determines which MFB signals are routed to which pins as described below: MB_DATA = 0 FB_D0 pin PTH1 FB_D2 pin PTH7 FB_D3 pin PTH6 FB_D4 pin PTH5 FB_D6 pin PTH4 FB_D6 pin PTH2 FB_RW pin PTG5 FB_OE pin PTH0 MB_DATA = 1 FB_D0 pin PTC1 FFB_D2 pin PTA0 FB_D3 pin PTF5 FB_D4 pin PTF4 FB_D5 pin PTF3 FB_D6 pin PTF3 FB_D6 pin PTF3 FB_D6 pin PTE5 FB_D7 pin PTE5 FB_RW pin PTE5 FB_RW pin PTE5 FB_D7 pin PTE5 FB_D7 pin PTE5 FB_RW pin PTE5 FB_RW pin PTE6 FB_D7 pin PTE5							
2 ARRAYSEL	Array select — This bit determines the mapping of the 2 flash arrays as described in Table 4-10.							
1 SCI1_PAD	SCI_PAD pad drive strength — This bit controls the SCI1 TX(PTD6) pad drive strength by connecting two pads together. 0 single-pad drive strength 1 dual-pads bounding drive strength							
0 CMT_PAD	CMT pad drive strength — This bit controls the CMT pad drive strength by connecting two pads together. 0 single-pad drive strength 1 dual-pads bounding drive strength							

5.7.11 System Options 4 Register (SOPT4)

This register contains bits that control the drive strength and slew rate of various ports.

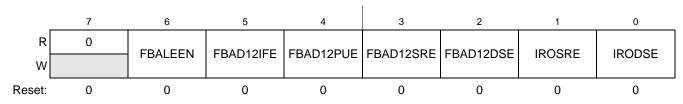


Figure 5-11. System Options 4 Register (SOPT4)

Table 5-15. SOPT4 Field Descriptions

Field	Description
7	Reserved, should be cleared.
6 FBALEEN	Mini-FlexBus address latch enable 1 The ALE function is provided on the PTE0 pin if the EN_CS1 is set and the Mini-Flexbus is enabled. 0 Address latch disable.
5 FBAD12FE	Input filter enable for the pin where the FB_AD12 signal is located 1 Input filter enable. 0 Input filter disable.
4 FBAD12PUE	Pull-up enable for the pin where the FB_AD12 signal is located 1 Pull-up enable. 0 Pull-up disable.
3 FBAD12SRE	Output slew rate control enable for the pin where the FB_AD12 signal is located 1 Output slew rate control enable. 0 Output slew rate control disable.
2 FBAD12DSE	Drive strength control enable for the pin where the FB_AD12 signal is located 1 Drive strength control enable. 0 Drive strength control disable.
1 IROSRE	Output slew rate control enable for IRO pin 1 Output slew rate control enable. 0 Output slew rate control disable.
0 IRODSE	Drive strength control enable for IRO pin 1 Drive strength control enable. 0 Drive strength control disable.

5.7.12 System Options 5 Register (SOPT5)

CAUTION

This location is reserved for Freescale internal testing. Do not write any value to this location. Writing a value to this location can affect on-chip LVD performance.

5.7.13 SIM Internal Peripheral Select Register (SIMIPS)

The fields in this register control source used for the SCI1 RX pin, as well as modulation choice for the SCI1 TX pin. The various clock sources used for modulation purposes must be enabled/disabled via the appropriate controls elsewhere in the device. See Figure 2-6 for an illustration of these controls in action.

5-22 Freescale Semiconductor

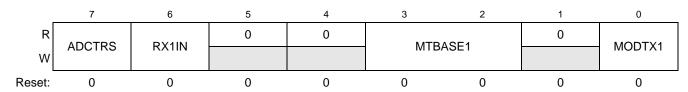


Figure 5-12. SIM Internal Peripheral Select Register (SIMIPS)

Table 5-16. SIMIPS Register Bit Fields

Field	Description				
7 ADCTRS	ADC Hardware Trigger Select O PDB is the source of ADHWT. This is the default case for user applications. 1 TOD interrupt is the source of ADHWT. The typical application is to use the ADC for the VDD measurements.				
6 RX1IN	SCI1 RX Input Pin Select 0 RX1 is fed from the digital input pin (assuming RX1 is enabled on that pin) 1 RX1 is fed from the output of comparator 1				
3-2 MTBASE1	SCI1 TX Modulation Time Base Select 00 TPM1CH0 01 TPM1CH1 10 TPM2CH0 11 TPM2CH1				
0 MODTX1	Modulate TX1 0 Do not modulate the output of SCI1 1 Modulate the output of SCI1 with the timebase selected via the MTBASE1 field				

5.7.14 Signature Register (Signature)

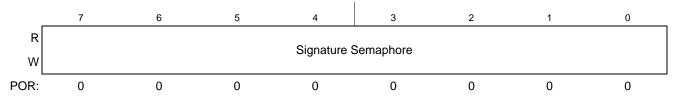


Figure 5-13. Signature Register (Signature)

Table 5-17. Signature Register Field Descriptions

	Field	Description					
7:0 Signature	Cianatura	The SIGNATURE semaphore is used as the semaphore to jump to bootloader mode or not after regular reset. This byte only can be cleared by power-on reset (POR), content retains after regular reset.					

5.7.15 System Power Management Status and Control 1 Register (SPMSC1)

This high page register contains status and control bits to support the low voltage detect function, and to enable the bandgap voltage reference for use by the ADC module. This register should be written during

Freescale Semiconductor 5-23

the user's reset initialization program to set the desired controls even if the desired settings are the same as the reset settings.

	7	6	5	4	3	2	1	0
R	LVDF ¹	0	LVDIE	LVDRE ²	LVDSE	LVDE ²	0	DCDE
w		LVDACK	LVDIE	LVDKE	LVDSE	LVDE		BGBE
Reset:	0	0	0	1	1	1	0	0

¹ LVDF is set in the case when V_{Supply} transitions below the trip point or after reset and V_{Supply} is already below V_{LVW}.

Figure 5-14. System Power Management Status and Control 1 Register (SPMSC1)

Table 5-18. SPMSC1 Register Field Descriptions

Field	Description
7 LVDF	Low-Voltage Detect Flag — The LVDF bit indicates the low-voltage detect status. 0 Low-voltage detect is not present. 1 Low-voltage detect is present or was present.
6 LVDACK	Low-Voltage Detect Acknowledge — If LVDF = 1, a low-voltage condition has occurred. To acknowledge this low-voltage detect, write 1 to LVDACK, which automatically clears LVDF to 0 if the low-voltage detect is no longer present.
5 LVDIE	Low-Voltage Detect Interrupt Enable — This bit enables hardware interrupt requests for LVDF. 0 Hardware interrupt disabled (use polling). 1 Request a hardware interrupt when LVDF = 1.
4 LVDRE	Low-Voltage Detect Reset Enable — This write-once bit enables LVDF events to generate a hardware reset (provided LVDE = 1). 0 LVDF does not generate hardware resets. 1 Force an MCU reset when an enabled low-voltage detect event occurs.
3 LVDSE	Low-Voltage Detect Stop Enable — Provided LVDE = 1, this read/write bit determines whether the low-voltage detect function operates when the MCU is in stop mode. 1 Low-voltage detect disabled during stop mode. 2 Low-voltage detect enabled during stop mode.
2 LVDE	Low-Voltage Detect Enable — This write-once bit enables low-voltage detect logic and qualifies the operation of other bits in this register. 0 LVD logic disabled. 1 LVD logic enabled.
0 BGBE	Bandgap Buffer Enable — This bit enables an internal buffer for the bandgap voltage reference for use by the ADC module on one of its internal channels. 0 Bandgap buffer disabled. 1 Bandgap buffer enabled.

5.7.16 System Power Management Status and Control 2 Register (SPMSC2)

This high page register contains status and control bits to configure the low power run and wait modes as well as configure the stop mode behavior of the microcontroller.

SPMSC2 is not reset when exiting from STOP2.

5-24 Freescale Semiconductor

² This bit can be written only one time after reset. Additional writes are ignored.

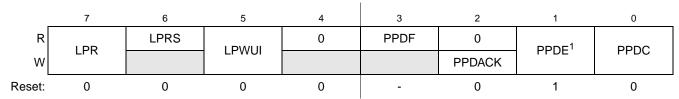


Figure 5-15. System Power Management Status and Control 2 Register (SPMSC2)

Table 5-19. SPMSC2 Bit Field Descriptions

Field	Description
rieid	Description
7 LPR	Low-Power Regulator Control — The LPR bit controls entry into the low-power run and low-power wait modes in which the voltage regulator is put into standby. This bit cannot be set if PPDC=1. If PPDC and LPR are set in a single write instruction, only PPDC is actually set. LPR is cleared when an interrupt occurs in low-power mode and the LPWUI bit is 1. 0 Low-power run and low-power wait modes are disabled. 1 Low-power run and low-power wait modes are requested.
6 LPRS	Low-Power Regulator Status — This read-only status bit indicates that the voltage regulator has entered into standby for the low-power run or wait mode. O The voltage regulator is not currently in standby. The voltage regulator is currently in standby.
5 LPWUI	Low-Power Wake-Up on Interrupt — This bit controls whether or not the voltage regulator exits standby when any active MCU interrupt occurs. O The voltage regulator remains in standby on an interrupt. The voltage regulator exits standby on an interrupt. LPR is cleared.
4	RESERVED
3 PPDF	Partial Power-Down Flag — This read-only status bit indicates that the microcontroller has recovered from Stop2 mode. 0 Microcontroller has not recovered from Stop2 mode. 1 Microcontroller recovered from Stop2 mode.
2 PPDACK	Partial Power-Down Acknowledge — Writing a 1 to PPDACK clears the PPDF bit.
1 PPDE	Partial Power-Down Enable —The write-once PPDE bit can be used to lockout the partial power-down feature. This is a write-once bit. O Partial power-down is not enabled. Partial power-down is enabled and controlled via the PPDC bit.
0 PPDC	Partial Power-Down Control — The PPDC bit controls which power-down mode is selected. This bit cannot be set if LPR = 1. If PPDC and LPR are set in a single write instruction, only PPDC will actually be set. PPDE must be set in order for PPDC to be set. O Stop3 low power mode enabled. Stop2 partial power-down mode enabled.

¹ See the MCF51MM256 Data Sheet Electrical Characteristics appendix for minimum and maximum values.

Freescale Semiconductor 5-25

¹ PPDE is a write-once bit that can be used to permanently disable the PPDC bit.

5.7.17 System Power Management Status and Control 3 Register (SPMSC3)

This register reports the status of the low voltage warning function and is used to select the low voltage detect trip voltage. SPMSC3 is not reset when exiting from stop2.

	7	6	5	4	3	2	1	0
R	LVWF	0	LVDV	LVWV	LVWIE	0	0	0
W		LVWACK	LVDV	LVVVV	LVVVIE			
POR:	0 ¹	0	0	0	0	0	0	0
LVR:	0 ¹	0	U	U	0	0	0	0
Other resets:	01	0	U	U	0	0	0	0

LVWF is set when V_{Supply} transitions below the trip point or after reset and V_{Supply} is already below V_{LVW}.

Figure 5-16. System Power Management Status and Control 3 Register (SPMSC3)

Table 5-20. SPMSC3 Bit Field Descriptions

Field	Description
7 LVWF	Low-Voltage Warning Flag — The LVWF bit indicates the low voltage warning status. 0 Low voltage warning not present. 1 Low voltage warning is present or was present.
6 LVWACK	Low-Voltage Warning Acknowledge — Writing a 1 to LVWACK clears LVWF if a low voltage warning is not present.
5 LVDV	Low-Voltage Detect Voltage Select — The LVDV bit selects the LVD trip point voltage (V _{LVD}). 0 Low trip point selected (V _{LVD} = V _{LVDL}). 1 High trip point selected (V _{LVD} = V _{LVDH}).
4 LVWV	Low-Voltage Warning Voltage Select — The LVWV bit selects the LVW trip point voltage (V _{LVW}). 0 Low trip point selected (V _{LVW} = V _{LVWL}). 1 High trip point selected (V _{LVW} = V _{LVWH}).
3 LVWIE	Low-Voltage Warning Interrupt Enable — This bit enables hardware interrupt requests for LVWF. 0 Hardware interrupt disabled (use polling). 1 Request a hardware interrupt when LVWF is set.
2–0	Reserved, should be cleared.

Table 5-21. LVD and LVW Trip Point Typical Values¹

LVDV:LVWV	LVW Trip Point	LVD Trip Point
00	V _{LVWL} = 2.15	V _{LVDL} = 1.86
01	V _{LVWH} = 2.6	

5-26 Freescale Semiconductor

5-27

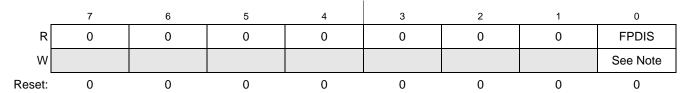

LVDV:LVWV	LVW Trip Point	LVD Trip Point
10 Not Recommended	V _{LVWL} = 2.15	V _{LVDH} = 2.33
11	V11/04/LI = 2.6	

Table 5-21. LVD and LVW Trip Point Typical Values¹ (Continued)

5.7.18 Flash Protection Disable Register (FPROTD)

The FPROTD register provides a secure way for the USB bootrom code to overwrite the flash block protection registers. Back to back writes of 0x55 and 0xAA to FROTD, provided the device is in bootmode sets the FPDIS bit. The FPDIS bit is used as a signal to the flash module to allow writes to each block protection register.

Any writes other than 0x55 followed by 0xAA clears the FPDIS bit.

Back to back writes of 0x55 and 0xAA, set FPDIS, any other back to back data clears FPDIS.

Figure 5-17. Flash Protection Disable Register (FPROTD)

Table 5-22. FPROTD Field Descriptions

Fiel	ld	Description
0 FPD	DIS	This bit is set when the device is in bootmode and back to back writes of 0x55 and 0xAA occur. It is cleared during any writes other than 0x55 followed by 0xAA. 0 Writes to the flash block protection registers are not allowed 1 Writes to flash block protection registers are allowed

5.7.19 Mini-FlexBus Pin Control 1 (MFBPC1)

When the Mini-FlexBus is enabled this register is used to enable or disable the Mini-FlexBus functionality for the associated pin. Each of the 32 Mini-FlexBus signals has a corresponding enable bit as described below.

MCF51MM256 Series Devices Reference Manual, Rev. 3

Note: Data in this table may not be up-to-date. Please refer to the DC Characteristics table in the MCF51MM256 series Data Sheet for the latest values.

_	7	6	5	4	3	2	1	0
R W	MFBPEN_ AD7	MFBPEN_ AD6	MFBPEN_ AD5	MFBPEN_ AD4	MFBPEN_ AD3	MFBPEN_ AD2	MFBPEN_ AD1	MFBPEN_ AD0
POR:	0	0	0	0	0	0	0	0
LVR:	0	0	0	0	0	0	0	0
Other resets:	0	0	0	0	0	0	0	0

Figure 5-18. Mini-FlexBus Pin Control 1 (MFBPC1)

Table 5-23. MFBPC1 Field Descriptions

Field	Description
Field	Description
7 MFBPEN_AD7	Mini-FlexBus pin control for FB_AD7 0 FB_AD7 functionality disabled 1 FB_AD7 functionality enabled if the Mini-FlexBus is enabled.
6 MFBPEN_AD6	Mini-FlexBus pin control for FB_AD6 0 FB_AD6 functionality disabled 1 FB_AD6 functionality enabled if the Mini-FlexBus is enabled.
5 MFBPEN_AD5	Mini-FlexBus pin control for FB_AD5 0 FB_AD5 functionality disabled 1 FB_AD5 functionality enabled if the Mini-FlexBus is enabled.
4 MFBPEN_AD4	Mini-FlexBus pin control for FB_AD4 0 FB_AD4 functionality disabled 1 FB_AD4 functionality enabled if the Mini-FlexBus is enabled.
3 MFBPEN_AD3	Mini-FlexBus pin control for FB_AD3 0 FB_AD3 functionality disabled 1 FB_AD3 functionality enabled if the Mini-FlexBus is enabled.
2 MFBPEN_AD2	Mini-FlexBus pin control for FB_AD2 0 FB_AD2 functionality disabled 1 FB_AD2 functionality enabled if the Mini-FlexBus is enabled.
1 MFBPEN_AD1	Mini-FlexBus pin control for FB_AD1 0 FB_AD1 functionality disabled 1 FB_AD1 functionality enabled if the Mini-FlexBus is enabled.
0 MFBPEN_AD0	Mini-FlexBus pin control for FB_AD0 0 FB_AD0 functionality disabled 1 FB_AD0 functionality enabled if the Mini-FlexBus is enabled.

5.7.20 Mini-FlexBus Pin Control 2 (MFBPC2)

When the Mini-FlexBus is enabled this register is used to enable or disable the Mini-FlexBus functionality for the associated pin. Each of the 32 Mini-FlexBus signals has a corresponding enable bit as described below.

5-28 Freescale Semiconductor

	7	6	5	4	3	2	1	0
R W	IVIEDEEN_A	MFBPEN_A D14	MFBPEN_A D13	MFBPEN_A D12	MFBPEN_A D11	MFBPEN_A D10	MFBPEN_A D9	MFBPEN_A D8
POR:	0	0	0	0	0	0	0	0
LVR:	0	0	0	0	0	0	0	0
Other resets:	0	0	0	0	0	0	0	0

Figure 5-19. Mini-FlexBus Pin Control 2 (MFBPC2)

Table 5-24. MFBPC2 Field Descriptions

Field	Description
7 MFBPEN_AD15	Mini-FlexBus pin control for FB_AD15 0 FB_AD15 functionality disabled 1 FB_AD15 functionality enabled if the Mini-FlexBus is enabled.
6 MFBPEN_AD14	Mini-FlexBus pin control for FB_AD14 0 FB_AD14 functionality disabled 1 FB_AD14 functionality enabled if the Mini-FlexBus is enabled.
5 MFBPEN_AD13	Mini-FlexBus pin control for FB_AD13 0 FB_AD13 functionality disabled 1 FB_AD13 functionality enabled if the Mini-FlexBus is enabled.
4 MFBPEN_AD12	Mini-FlexBus pin control for FB_AD12 0 FB_AD12 functionality disabled 1 FB_AD12 functionality enabled if the Mini-FlexBus is enabled.
3 MFBPEN_AD11	Mini-FlexBus pin control for FB_AD11 0 FB_AD11 functionality disabled 1 FB_AD11 functionality enabled if the Mini-FlexBus is enabled.
2 MFBPEN_AD10	Mini-FlexBus pin control for FB_AD10 0 FB_AD10 functionality disabled 1 FB_AD10 functionality enabled if the Mini-FlexBus is enabled.
1 MFBPEN_AD9	Mini-FlexBus pin control for FB_AD9 0 FB_AD9 functionality disabled 1 FB_AD9 functionality enabled if the Mini-FlexBus is enabled.
0 MFBPEN_AD8	Mini-FlexBus pin control for FB_AD8 0 FB_AD8 functionality disabled 1 FB_AD8 functionality enabled if the Mini-FlexBus is enabled.

5.7.21 Mini-FlexBus Pin Control 3 (MFBPC3)

When the Mini-FlexBus is enabled this register is used to enable or disable the Mini-FlexBus functionality for the associated pin. Each of the 32 Mini-FlexBus signals has a corresponding enable bit as described below.

Freescale Semiconductor 5-29

	7	6	5	4	3	2	1	0
R W	MFBPEN_D3	MFBPEN_D2	MFBPEN_D1	MFBPEN_D0	MFBPEN_A D19	MFBPEN_A D18	MFBPEN_A D17	MFBPEN_A D16
POR:	0	0	0	0	0	0	0	0
LVR:	0	0	0	0	0	0	0	0
Any other reset:	0	0	0	0	0	0	0	0

Figure 5-20. Mini-FlexBus Pin Control 3 (MFBPC3)

Table 5-25. MFBPC3 Field Descriptions

Field	Description
7 MFBPEN_D3	Mini-FlexBus pin control for FB_D3 0 FB_D3 functionality disabled 1 FB_D3 functionality enabled if the Mini-FlexBus is enabled.
6 MFBPEN_D2	Mini-FlexBus pin control for FB_D2 0 FB_D2 functionality disabled 1 FB_D2 functionality enabled if the Mini-FlexBus is enabled.
5 MFBPEN_D1	Mini-FlexBus pin control for FB_D1 0 FB_D1 functionality disabled 1 FB_D1 functionality enabled if the Mini-FlexBus is enabled.
4 MFBPEN_D0	Mini-FlexBus pin control for FB_D0 0 FB_D0 functionality disabled 1 FB_D0 functionality enabled if the Mini-FlexBus is enabled.
3 MFBPEN_AD19	Mini-FlexBus pin control for FB_AD19 0 FB_AD19 functionality disabled 1 FB_AD19 functionality enabled if the Mini-FlexBus is enabled.
2 MFBPEN_AD18	Mini-FlexBus pin control for FB_AD18 0 FB_AD18 functionality disabled 1 FB_AD18 functionality enabled if the Mini-FlexBus is enabled.
1 MFBPEN_AD17	Mini-FlexBus pin control for FB_AD17 0 FB_AD17 functionality disabled 1 FB_AD 17 functionality enabled if the Mini-FlexBus is enabled.
0 MFBPEN_AD16	Mini-FlexBus pin control for FB_AD16 0 FB_AD16 functionality disabled 1 FB_AD16 functionality enabled if the Mini-FlexBus is enabled.

5.7.22 Mini-FlexBus Pin Control 4 (MFBPC4)

When the Mini-FlexBus is enabled this register is used to enable or disable the Mini-FlexBus functionality for the associated pin. Each of the 32 Mini-FlexBus signals has a corresponding enable bit as described below.

5-30 Freescale Semiconductor

	7	6	5	4	3	2	1	0
R W	EN_CS1	EN_CS0	EN_OE	EN_RW	MFBPEN_D7	MFBPEN_D6	MFBPEN_D5	MFBPEN_D4
POR:	0	0	0	0	0	0	0	0
LVR:	0	0	0	0	0	0	0	0
Any other reset:	0	0	0	0	0	0	0	0

Figure 5-21. Mini-FlexBus Pin Control 4 (MFBPC4)

Table 5-26. MFBPC4 Field Descriptions

Field	Description
7 EN_CS1	Mini-FlexBus pin control for FB_CS1/FB_ALE 0 FB_CS1/ALE functionality disabled 1 FB_CS1/ALE functionality enabled if the Mini-FlexBus is enabled.
6 EN_CS0	Mini-FlexBus pin control for FB_CS0 0 FB_CS0 functionality disabled 1 FB_CS0 functionality enabled if the Mini-FlexBus is enabled.
5 EN_OE	Mini-FlexBus pin control for FB_OE 0 FB_OE functionality disabled 1 FB_OE functionality enabled if the Mini-FlexBus is enabled.
4 EN_RW	Mini-FlexBus pin control for FB_RW 0 FB_RW functionality disabled 1 FB_RW functionality enabled if the Mini-FlexBus is enabled.
3 MFBPEN_D7	Mini-FlexBus pin control for FB_D7 0 FB_D7 functionality disabled 1 FB_D7 functionality enabled if the Mini-FlexBus is enabled.
2 MFBPEN_D6	Mini-FlexBus pin control for FB_D6 0 FB_D6 functionality disabled 1 FB_D6 functionality enabled if the Mini-FlexBus is enabled.
1 MFBPEN_D5	Mini-FlexBus pin control for FB_D5 0 FB_D5 functionality disabled 1 FB_D5 functionality enabled if the Mini-FlexBus is enabled.
0 MFBPEN_D4	Mini-FlexBus pin control for FB_D4 0 FB_D4 functionality disabled 1 FB_D4 functionality enabled if the Mini-FlexBus is enabled.

Chapter 6 Parallel Input/Output Control

This section explains software controls related to parallel input/output (I/O) and pin control. The MCF51MM256 series MCUs have up to nine parallel I/O ports which include a total of 69 I/O pins and one input-only pin, and 2 output only pins. See Chapter 2, "Pins and Connections," for more information about pin assignments and external hardware considerations of these pins.

In addition to standard I/O port functionality, some port pins have set/clear/toggle functions which are integrated as part of the ColdFire core itself to improve edge resolution on those pins. See Section 6.3, "ColdFire V1 Rapid GPIO Functionality," and Chapter 9, "Rapid GPIO (RGPIO)," for additional details.

Many port pins are shared with on-chip peripherals such as time systems, communication systems, or keyboard interrupts as shown in Figure 1-1. The peripheral modules have priority over the general-purpose I/O functions so that when a peripheral is enabled, the I/O functions associated with the shared pins may be disabled.

After reset, the shared peripheral functions are disabled and the pins are configured as inputs (PTxDDn = 0). The pin control functions for each pin are configured as follows: slew rate control enabled (PTxSEn = 1), low drive strength selected (PTxDSn = 0), and internal pull-ups disabled (PTxPEn = 0).

NOTE

Not all general-purpose I/O pins are available on all packages. To avoid extra current drain from floating input pins, the user's reset initialization routine in the application program must either enable on-chip pull-up devices or change the direction of unconnected pins to outputs so the pins do not float.

6.1 Port Data and Data Direction

Reading and writing of parallel I/Os are performed through the port data registers. The direction, either input or output, is controlled through the port data direction registers. The parallel I/O port function for an individual pin is illustrated in the block diagram shown in Figure 6-1.

The data direction control bit (PTxDDn) determines whether the output buffer for the associated pin is enabled, and also controls the source for port data register reads. The input buffer for the associated pin is always enabled unless the pin is enabled as an analog function or is an output-only pin.

When a shared digital function is enabled for a pin, the output buffer is controlled by the shared function. However, the data direction register bit will continue to control the source for reads of the port data register.

When a shared analog function is enabled for a pin, both the input and output buffers are disabled. A value of 0 is read for any port data bit where the bit is an input (PTxDDn = 0) and the input buffer is disabled. In general, whenever a pin is shared with both an alternate digital function and an analog function, the analog

Parallel Input/Output Control

function has priority such that if both the digital and analog functions are enabled, the analog function controls the pin.

It is good programming practice to write to the port data register before changing the direction of a port pin to become an output. This ensures that the pin will not be driven momentarily with an old data value that happened to be in the port data register.

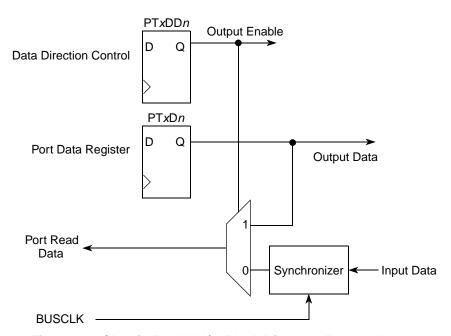


Figure 6-1. Classic Parallel I/O Block Diagram: Ports A-H, J

6.2 Pull-up, Slew Rate, and Drive Strength

A set of high page registers are used to control pull-ups, slew rate, and drive strength for the pins. They may also be used in conjunction with the peripheral functions on these pins. These registers are associated with the parallel I/O ports, but operate independently of the parallel I/O registers.

6.2.1 Port Internal Pull-up Enable

An internal pull-up device can be enabled for each port pin by setting the corresponding bit in the pull-up enable register (PTxPEn). The pull-up device is disabled if the pin is configured as an output by the parallel I/O control logic or any shared peripheral function regardless of the state of the corresponding pull-up enable register bit. The pull-up device is also disabled if the pin is controlled by an analog function.

6.2.2 Port Slew Rate Enable

Slew rate control can be enabled for each port pin by setting the corresponding bit in the slew rate control register (PTxSEn). When enabled, slew control limits the rate at which an output can transition in order to reduce EMC emissions. Slew rate control has no effect on pins that are configured as inputs.

6-2 Freescale Semiconductor

6.2.3 Port Drive Strength Select

An output pin can be selected to have high output drive strength by setting the corresponding bit in the drive strength select register (PTxDSn). When high drive is selected, a pin is capable of sourcing and sinking greater current. Even though every I/O pin can be selected as high drive, the user must ensure that the total current source and sink limits for the MCU are not exceeded. Drive strength selection is intended to affect the DC behavior of I/O pins. However, the AC behavior is also affected. High drive allows a pin to drive a greater load with the same switching speed as a low drive enabled pin into a smaller load. Because of this, the EMC emissions may be affected by enabling pins as high drive.

6.2.4 Port Input Filter Enable

The pad cells used on this device incorporate optional low pass filters on the digital input functions. These may be enabled by setting the appropriate bit in the input filter enable register (PTxIFE[n]) corresponding to a given pin. When set high, a low pass filter (10MHz to 30MHz bandwidth) is enabled in the logic input path. When set low, the filter is bypassed.

The filter is enabled during and after reset by setting the associated PTxIFE bit. The filter is disabled through software control by clearing the associated PTxIFE bit.

6.3 ColdFire V1 Rapid GPIO Functionality

The V1 ColdFire core is capable of performing higher speed I/O via its system bus, which does not have latency penalties associated with the on-chip peripheral bus bridge. The ColdFire core contains separate set/clear/data registers which reside at address 0xC0_0000. This functionality can be programmed to take priority on some ports.

This functionality is further defined in Chapter 9, "Rapid GPIO (RGPIO)."

6.4 Keyboard Interrupts

Some port pins can be configured as keyboard interrupt inputs and as an external means of waking the MCU from stop or wait low-power modes. The block diagram for each keyboard interrupt logic is shown Figure 6-2.

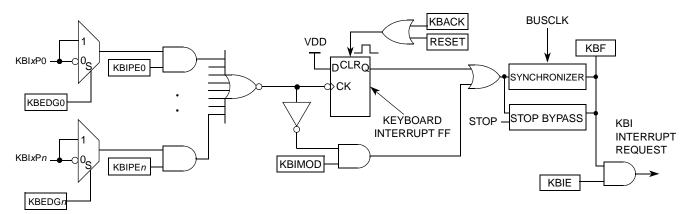


Figure 6-2. Port Interrupt Block Diagram

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor 6-3

Parallel Input/Output Control

Writing to the KBIPE*n* bits in the keyboard *x* interrupt pin enable register (KBI*x*PE) independently enables or disables each port pin. Each port can be configured as edge sensitive or edge and level sensitive based on the KBIMOD bit in the keyboard interrupt status and control register (KBI*x*SC). Edge sensitivity can be software programmed to be either falling or rising; the level can be either low or high. The polarity of the edge or edge and level sensitivity is selected using the KBEDG*n* bits in the keyboard interrupt edge select register (KBI*x*ES).

Synchronous logic is used to detect edges. Prior to detecting an edge, enabled port inputs must be at the deasserted logic level. A falling edge is detected when an enabled port input signal is seen as a logic 1 (the deasserted level) during one bus cycle and then a logic 0 (the asserted level) during the next cycle. A rising edge is detected when the input signal is seen as a logic 0 during one bus cycle and then a logic 1 during the next cycle.

6.4.1 Edge Only Sensitivity

A valid edge on an enabled port pin will set KBF in KBIxSC. If the KBIxSC[KBIE] bit is set, an interrupt request will be presented to the CPU. Clearing of KBF is accomplished by writing a 1 to KBIxSC[KBACK].

6.4.2 Edge and Level Sensitivity

A valid edge or level on an enabled port pin will set the KBIxSC[KBF] bit. If KBIxSC[KBIE] is set, an interrupt request will be presented to the CPU. Clearing of KBF is accomplished by writing a 1 to KBIxSC[KBACK], provided all enabled port inputs are at their deasserted levels. KBF will remain set if any enabled port pin is asserted while attempting to clear by writing a 1 to KBACK.

6.4.3 Pull-up/Pull-down Resistors

The keyboard interrupt pins can be configured to use an internal pull-up/pull-down resistor using the associated I/O port pull-up enable register. If an internal resistor is enabled, the KBIxES register is used to select whether the resistor is a pull-up (KBEDGn = 0) or a pull-down (KBEDGn = 1).

6.4.4 Keyboard Interrupt Initialization

When an interrupt pin is first enabled, it is possible to get a false interrupt flag. To prevent a false interrupt request during pin interrupt initialization, the user should do the following:

- 1. Mask interrupts by clearing KBIxSC[KBIE].
- 2. Select the pin polarity by setting the appropriate KBIxES[KBEDGn] bits.
- 3. If using internal pull-up/pull-down device, configure the associated pull enable bits in KBIxPE.
- 4. Enable the interrupt pins by setting the appropriate KBIxPE[KBIPEn] bits.
- 5. Write to KBIxSC[KBACK] to clear any false interrupts.
- 6. Set KBIxSC[KBIE] to enable interrupts.

6.5 Pin Behavior in Stop Modes

Pin behavior following execution of a STOP instruction depends on the stop mode that is entered. An explanation of pin behavior for the various stop modes follows:

- Stop2 mode is a partial power-down mode, whereby I/O latches are maintained in their state as before the STOP instruction was executed (port states are lost and will need to be restored upon exiting stop2). CPU register status and the state of I/O registers should be saved in RAM before the STOP instruction is executed to place the MCU in Stop2 mode.

 Upon recovery from Stop2 mode, before accessing any I/O, the user should examine the state of the SPMSC2[PPDF] bit. If the PPDF bit is cleared, I/O must be initialized as if a power-on-reset had occurred. If the PPDF bit is set, I/O register states should be restored from the values saved in RAM before the STOP instruction was executed and peripherals may require initialization or restoration to their pre-stop condition. The user must then write a 1 to the SPMSC2[PPDACK] bit. Access to I/O is now permitted again in the user application program.
- In Stop3 and Stop4 modes, all I/O is maintained because internal logic circuity stays powered. Upon recovery, normal I/O function is available to the user.

6.6 Parallel I/O, Keyboard Interrupt, and Pin Control Registers

This section provides information about the registers associated with the parallel I/O ports. The data and data direction registers and the keyboard interrupt registers are located in page zero of the memory map. The pull-up, slew rate, drive strength, and interrupt control registers are located in the high page section of the memory map.

Refer to tables in Chapter 4, "Memory," for the absolute address assignments for all parallel I/O and their pin control registers. This section refers to registers and control bits only by their names. A Freescale Semiconductor-provided equate or header file normally is used to translate these names into the appropriate absolute addresses.

6.6.1 Port A Registers

Port A is an 8bit Input Output Port.

On reset the pins will default to the input state and under the I/O control.

Port A is controlled by the registers listed below.

6.6.1.1 Port A Data Register (PTAD)

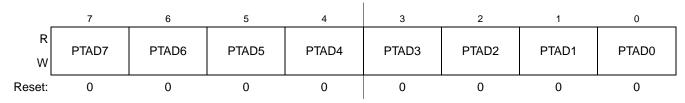


Figure 6-3. Port A Data Register (PTAD)

Freescale Semiconductor 6-5

Parallel Input/Output Control

Table 6-1. PTAD Register Field Descriptions

Field	Description
7–0 PTAD <i>n</i>	Port A Data Register Bits — For port A pins that are inputs, reads return the logic level on the pin. For port A pins that are configured as outputs, reads return the last value written to this register. Writes are latched into all bits of this register. For port A pins that are configured as outputs, the logic level is driven out the corresponding MCU pin. Reset forces PTAD to all 0s, but these 0s are not driven out the corresponding pins because reset also configures all port pins as high-impedance inputs with pull-ups/pull-downs disabled.

6.6.1.2 Port A Data Direction Register (PTADD)

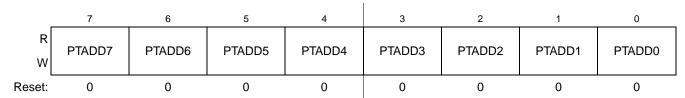


Figure 6-4. Port A Data Direction Register (PTADD)

Table 6-2. PTADD Register Field Descriptions

Field	Description
	Data Direction for Port A Bits — These read/write bits control the direction of port A pins and what is read for PTAD reads.
	 Input (output driver disabled) and reads return the pin value. Output driver enabled for port A bit n and PTAD reads return the contents of PTADn.

6.6.1.3 Port A Pull Enable Register (PTAPE)

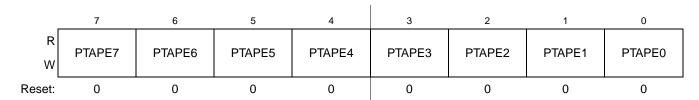


Figure 6-5. Internal Pull Enable for Port A Register (PTAPE)

Table 6-3. PTAPE Register Field Descriptions

Field	Description
	Internal Pull Enable for Port A Bits — Each of these control bits determines if the internal pull-up device is enabled for the associated PTA pin. For port A pins that are configured as outputs, these bits have no effect and the internal pull devices are disabled. 0 Internal pull-up device disabled for port A bit <i>n</i> . 1 Internal pull-up device enabled for port A bit <i>n</i> .

6-6 Freescale Semiconductor

MCF51MM256 Series Devices Reference Manual, Rev. 3

6.6.1.4 Port A Slew Rate Enable Register (PTASE)

_	7	6	5	4	3	2	1	0
R W	PTASE7	PTASE6	PTASE5 ¹	PTASE4	PTASE3	PTASE2	PTASE1	PTASE0
Reset:	0	0	0	0	0	0	0	0

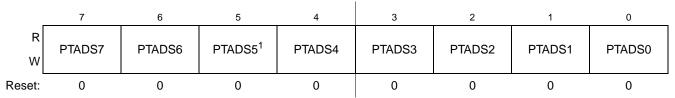

¹ PTASE5 has no effect on the open drain PTA5 pin.

Figure 6-6. Slew Rate Enable for Port A Register (PTASE)

Table 6-4. PTASE Register Field Descriptions

Field	Description
7–0 PTASE <i>n</i>	Output Slew Rate Enable for Port A Bits — Each of these control bits determines if the output slew rate control is enabled for the associated PTA pin. For port A pins that are configured as inputs, these bits have no effect. Output slew rate control disabled for port A bit <i>n</i> . Output slew rate control enabled for port A bit <i>n</i> .

6.6.1.5 Port A Drive Strength Selection Register (PTADS)

¹ PTADS5 has no effect on the open drain PTA5 pin.

Figure 6-7. Drive Strength Selection for Port A Register (PTADS)

Table 6-5. PTADS Register Field Descriptions

Field	Description
	Output Drive Strength Selection for Port A Bits — Each of these control bits selects between low and high output drive for the associated PTA pin. For port A pins that are configured as inputs, these bits have no effect. 1 Use the output drive strength selected for port A bit n. 2 High output drive strength selected for port A bit n.

Parallel Input/Output Control

6.6.1.6 Port A Input Filter Enable Register (PTAIFE)

The Port A pin incorporates an optional input low-pass filter. Set the associated PTAIFE bit during and after reset to enable the filter. To disable the filter, clear the associated PTAIFE bit through software control.

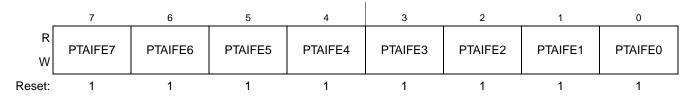


Figure 6-8. Input Filter Enable for Port A Register (PTAIFE)

Table 6-6. PTAIFE Register Field Descriptions

Field	Description
	Input Filter Enable for Port A Bits — Input low-pass filter enable control bits for PTA pins. 0 Input filter disabled. 1 Input filter enabled.

6.6.2 Port B Registers

Port B is controlled by the registers listed below.

6.6.2.1 Port B Data Register (PTBD)

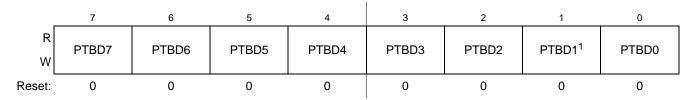


Figure 6-9. Port B Data Register (PTBD)

Table 6-7. PTBD Register Field Descriptions

Field	Description
7–0 PTBD <i>n</i>	Port B Data Register Bits — For port B pins that are inputs, reads return the logic level on the pin. For port B pins that are configured as outputs, reads return the last value written to this register. Writes are latched into all bits of this register. For port B pins that are configured as outputs, the logic level is driven out the corresponding MCU pin. Reset forces PTBD to all 0s, but these 0s are not driven out the corresponding pins because reset also configures all port pins as high-impedance inputs with pull-ups/pull-downs disabled.

6-8 Freescale Semiconductor

¹ Reading PTBD1 always returns the contents of PTBD1 regardless of the setting of the PTBDD1 bit.

6.6.2.2 Port B Data Direction Register (PTBDD)

_	7	6	5	4	3	2	1	0
R W	PTBDD7	PTBDD6	PTBDD5	PTBDD4	PTBDD3	PTBDD2	PTBDD1 ¹	PTBDD0
Reset:	0	0	0	0	0	0	0	0

Figure 6-10. Port B Data Direction Register (PTBDD)

Table 6-8. PTBDD Register Field Descriptions

Field	Description
7–0 PTBDD <i>n</i>	Data Direction for Port B Bits — These read/write bits control the direction of port B pins and what is read for PTBD reads.
	 Input (output driver disabled) and reads return the pin value. Output driver enabled for port B bit n and PTBD reads return the contents of PTBDn.

6.6.2.3 Port B Pull Enable Register (PTBPE)

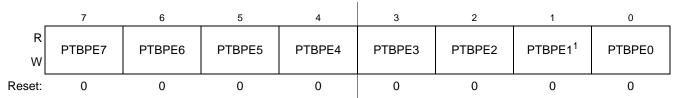


Figure 6-11. Internal Pull Enable for Port B Register (PTBPE)

Table 6-9. PTBPE Register Field Descriptions

Field	Description
7–0 PTBPE <i>n</i>	Internal Pull Enable for Port B Bits — Each of these control bits determines if the internal pull-up device is enabled for the associated PTB pin. For port B pins that are configured as outputs, these bits have no effect and the internal pull devices are disabled. 0 Internal pull-up device disabled for port B bit <i>n</i> . 1 Internal pull-up device enabled for port B bit <i>n</i> .

6.6.2.4 Port B Slew Rate Enable Register (PTBSE)

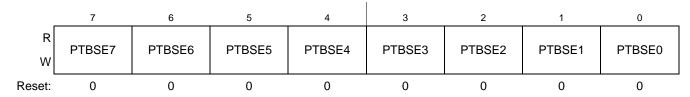


Figure 6-12. Slew Rate Enable for Port B Register (PTBSE)

Freescale Semiconductor 6-9

¹ PTBDD1 has no effect on the output only PTB1 pin.

¹ PTBPE1 has no effect on the output only PTB1 pin.

Parallel Input/Output Control

Table 6-10. PTBSE Register Field Descriptions

Field	Description
	Output Slew Rate Enable for Port B Bits — Each of these control bits determines if the output slew rate control is enabled for the associated PTB pin. For port B pins that are configured as inputs, these bits have no effect. Output slew rate control disabled for port B bit <i>n</i> . Output slew rate control enabled for port B bit <i>n</i> .

6.6.2.5 Port B Drive Strength Selection Register (PTBDS)

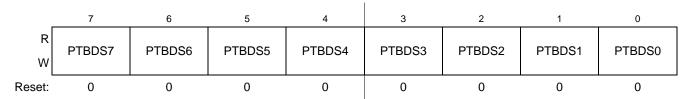


Figure 6-13. Drive Strength Selection for Port B Register (PTBDS)

Table 6-11. PTBDS Register Field Descriptions

Field	Description
7–0 PTBDS <i>n</i>	Output Drive Strength Selection for Port B Bits — Each of these control bits selects between low and high output drive for the associated PTB pin. For port B pins that are configured as inputs, these bits have no effect. 1 Use the output drive strength selected for port B bit n. 2 High output drive strength selected for port B bit n.

6.6.2.6 Port B Input Filter Enable Register (PTBIFE)

The Port B pin incorporates an optional input low-pass filter. Set the associated PTBIFE bit during and after reset to enable the filter. To disable the filter, clear the associated PTBIFE bit through software control.

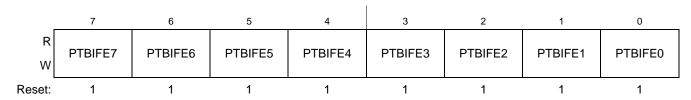


Figure 6-14. Input Filter Enable for Port B Register (PTBIFE)

Table 6-12. PTBIFE Register Field Descriptions

	Field	Description
P.		 Input Filter Enable for Port B Bits — Input low-pass filter enable control bits for PTB pins. Input filter disabled. Input filter enabled.

MCF51MM256 Series Devices Reference Manual, Rev. 3

6.6.3 Port C Registers

Port C is controlled by the registers listed below.

6.6.3.1 Port C Data Register (PTCD)

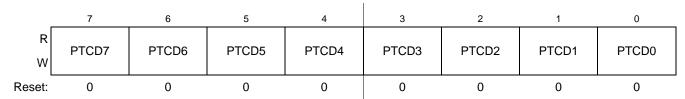


Figure 6-15. Port C Data Register (PTCD)

Table 6-13. PTCD Register Field Descriptions

Field	Description
7–0 PTCD <i>n</i>	Port C Data Register Bits — For port C pins that are inputs, reads return the logic level on the pin. For port C pins that are configured as outputs, reads return the last value written to this register. Writes are latched into all bits of this register. For port C pins that are configured as outputs, the logic level is driven out the corresponding MCU pin. Reset forces PTCD to all 0s, but these 0s are not driven out the corresponding pins because reset also configures all port pins as high-impedance inputs with pull-ups disabled.

6.6.3.2 Port C Data Direction Register (PTCDD)

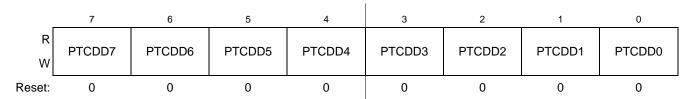


Figure 6-16. Port C Data Direction Register (PTCDD)

Table 6-14. PTCDD Register Field Descriptions

Field	Description
7–0 PTCDD <i>n</i>	 Data Direction for Port C Bits — These read/write bits control the direction of port C pins and what is read for PTCD reads. Input (output driver disabled) and reads return the pin value. Output driver enabled for port C bit n and PTCD reads return the contents of PTCDn.

Parallel Input/Output Control

6.6.3.3 Port C Pull Enable Register (PTCPE)

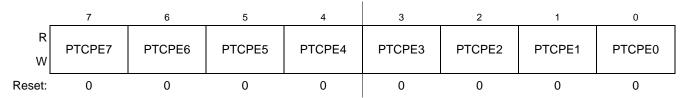


Figure 6-17. Internal Pull Enable for Port C Register (PTCPE)

Table 6-15. PTCPE Register Field Descriptions

Field	Description
PTCPE <i>n</i>	Internal Pull Enable for Port C Bits — Each of these control bits determines if the internal pull-up device is enabled for the associated PTC pin. For port C pins that are configured as outputs, these bits have no effect and the internal pull devices are disabled. 0 Internal pull-up device disabled for port C bit <i>n</i> . 1 Internal pull-up device enabled for port C bit <i>n</i> .

6.6.3.4 Port C Slew Rate Enable Register (PTCSE)

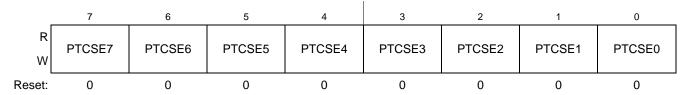


Figure 6-18. Slew Rate Enable for Port C Register (PTCSE)

Table 6-16. PTCSE Register Field Descriptions

Field	Description
7–0 PTCSE <i>n</i>	Output Slew Rate Enable for Port C Bits — Each of these control bits determines if the output slew rate control is enabled for the associated PTC pin. For port C pins that are configured as inputs, these bits have no effect. O Output slew rate control disabled for port C bit <i>n</i> . Output slew rate control enabled for port C bit <i>n</i> .

6.6.3.5 Port C Drive Strength Selection Register (PTCDS)

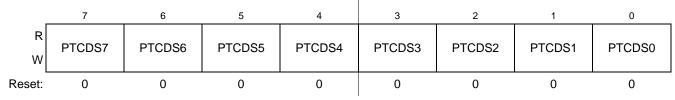


Figure 6-19. Drive Strength Selection for Port C Register (PTCDS)

Field	Description
7–0 PTCDS <i>n</i>	Output Drive Strength Selection for Port C Bits — Each of these control bits selects between low and high output drive for the associated PTC pin. For port C pins that are configured as inputs, these bits have no effect. 1 Low output drive strength selected for port C bit n. 2 High output drive strength selected for port C bit n.

6.6.3.6 Port C Input Filter Enable Register (PTCIFE)

The Port C pin incorporates an optional input low-pass filter. Set the associated PTCIFE bit during and after reset to enable the filter. To disable the filter, clear the associated PTCIFE bit through software control.

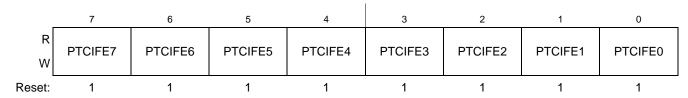


Figure 6-20. Input Filter Enable for Port C Register (PTCIFE)

Table 6-18. PTCIFE Register Field Descriptions

Field	Description
	Input Filter Enable for Port C Bits — Input low-pass filter enable control bits for PTC pins. 0 Input filter disabled. 1 Input filter enabled.

6.6.4 Port D Registers

Port D is controlled by the registers listed below.

PTD0 is an output only pin, so the control bits for input functions have no effect on this pin.

6.6.4.1 Port D Data Register (PTDD)

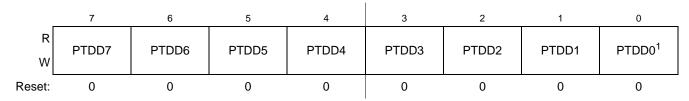


Figure 6-21. Port D Data Register (PTDD)

¹ Reads of bit PTDD0 always return the contents of the PTDD0, regardless of the value stored in the PTDDD0 bit.

Parallel Input/Output Control

Table 6-19. PTDD Register Field Descriptions

Field	Description
7–0 PTDD <i>n</i>	Port D Data Register Bits — For port D pins that are inputs, reads return the logic level on the pin. For port D pins that are configured as outputs, reads return the last value written to this register. Writes are latched into all bits of this register. For port D pins that are configured as outputs, the logic level is driven out the corresponding MCU pin. Reset forces PTDD to all 0s, but these 0s are not driven out the corresponding pins because reset also configures all port pins as high-impedance inputs with pull-ups/pull-downs disabled.

6.6.4.2 Port D Data Direction Register (PTDDD)

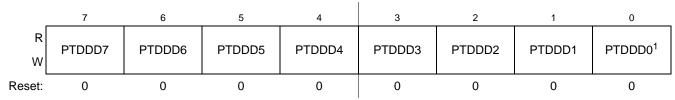


Figure 6-22. Port D Data Direction Register (PTDDD)

Table 6-20. PTDDD Register Field Descriptions

Field	Description
7–0 PTDDD <i>n</i>	Data Direction for Port D Bits — These read/write bits control the direction of port D pins and what is read for PTDD reads.
	 Input (output driver disabled) and reads return the pin value. Output driver enabled for port D bit n and PTDD reads return the contents of PTDDn.

6.6.4.3 Port D Pull Enable Register (PTDPE)

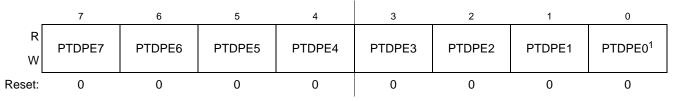


Figure 6-23. Internal Pull Enable for Port D Register (PTDPE)

Table 6-21. PTDPE Register Field Descriptions

Field	Description
PTDPE <i>n</i>	Internal Pull Enable for Port D Bits — Each of these control bits determines if the internal pull-up device is enabled for the associated PTD pin. For port D pins that are configured as outputs, these bits have no effect and the internal pull devices are disabled. 0 Internal pull-up device disabled for port D bit <i>n</i> . 1 Internal pull-up device enabled for port D bit <i>n</i> .

MCF51MM256 Series Devices Reference Manual, Rev. 3

6-14 Freescale Semiconductor

¹ PTDDD0 has no effect in the output only PTD0 pin

¹ PTDPE0 has no effect in the output only PTD0 pin

6.6.4.4 Port D Slew Rate Enable Register (PTDSE)

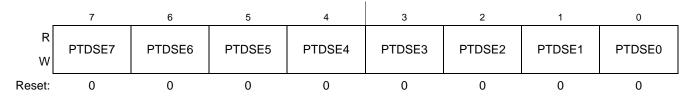


Figure 6-24. Slew Rate Enable for Port D Register (PTDSE)

Table 6-22. PTDSE Register Field Descriptions

Field	Description
PTDSE <i>n</i>	Output Slew Rate Enable for Port D Bits — Each of these control bits determines if the output slew rate control is enabled for the associated PTD pin. For port D pins that are configured as inputs, these bits have no effect. O Output slew rate control disabled for port D bit <i>n</i> . Output slew rate control enabled for port D bit <i>n</i> .

6.6.4.5 Port D Drive Strength Selection Register (PTDDS)

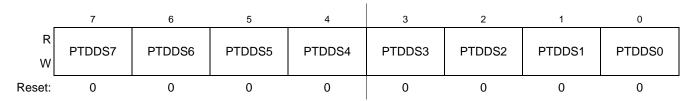


Figure 6-25. Drive Strength Selection for Port D Register (PTDDS)

Table 6-23. PTDDS Register Field Descriptions

Field	Description
7–0 PTDDS <i>n</i>	Output Drive Strength Selection for Port D Bits — Each of these control bits selects between low and high output drive for the associated PTD pin. For port D pins that are configured as inputs, these bits have no effect. 1 Use the output drive strength selected for port D bit n. 2 High output drive strength selected for port D bit n.

6.6.4.6 Port D Input Filter Enable Register (PTDIFE)

The Port D pin incorporates an optional input low-pass filter. Set the associated PTDIFE bit during and after reset to enable the filter. To disable the filter, clear the associated PTDIFE bit through software control.

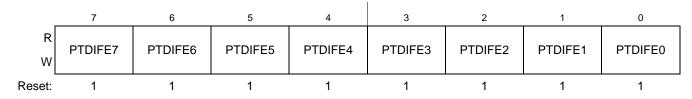


Figure 6-26. Input Filter Enable for Port D Register (PTDIFE)

Freescale Semiconductor 6-15

Table 6-24. PTDIFE Register Field Descriptions

Field	Description
7–0 PTDIFE <i>n</i>	Input Filter Enable for Port D Bits — Input low-pass filter enable control bits for PTD pins. 0 Input filter disabled. 1 Input filter enabled.

6.6.5 Port E Registers

Port E is controlled by the registers listed below.

PTE4 is an input only pin. The control bits for input functions do not have an effect on this pin.

6.6.5.1 Port E Data Register (PTED)

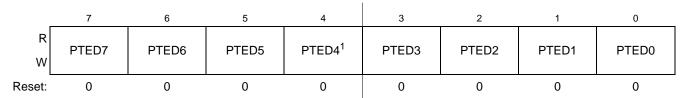


Figure 6-27. Port E Data Register (PTED)

Table 6-25. PTED Register Field Descriptions

Field	Description
7–0 PTED <i>n</i>	Port E Data Register Bits — For port E pins that are inputs, reads return the logic level on the pin. For port E pins that are configured as outputs, reads return the last value written to this register. Writes are latched into all bits of this register. For port E pins that are configured as outputs, the logic level is driven out the corresponding MCU pin. Reset forces PTED to all 0s, but these 0s are not driven out the corresponding pins because reset also configures all port pins as high-impedance inputs with pull-ups disabled.

6.6.5.2 Port E Data Direction Register (PTEDD)

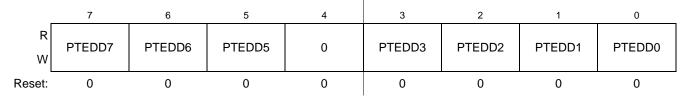


Figure 6-28. Port E Data Direction Register (PTEDD)

6-16 Freescale Semiconductor

Reads of bit PTED4 always return the pin value.

Table 6-26. PTEDD Register Field Descriptions

Field	Description
7–0 PTEDD <i>n</i>	Data Direction for Port E Bits — These read/write bits control the direction of port E pins and what is read for PTED reads.
	 0 Input (output driver disabled) and reads return the pin value. 1 Output driver enabled for port E bit n and PTED reads return the contents of PTEDn.

Table 6-27. PTETOG Register Field Descriptions

Field	Description
7–0 PTETOG <i>n</i>	Toggle Enable for Port E Bits — Writing any bit to one in this location will toggle the corresponding bit in the data register. Writing a zero to any bit in this register has no effect. 0 Corresponding PTED <i>n</i> maintains current value. 1 Corresponding PTED <i>n</i> is toggled once.

6.6.5.3 Port E Pull Enable Register (PTEPE)

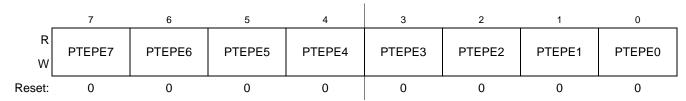


Figure 6-29. Internal Pull Enable for Port E Register (PTEPE)

Table 6-28. PTEPE Register Field Descriptions

Field	Description
7–0 PTEPE <i>n</i>	Internal Pull Enable for Port E Bits — Each of these control bits determines if the internal pull-up device is enabled for the associated PTE pin. For port E pins that are configured as outputs, these bits have no effect and the internal pull devices are disabled. 0 Internal pull-up device disabled for port E bit <i>n</i> . 1 Internal pull-up device enabled for port E bit <i>n</i> .

6.6.5.4 Port E Slew Rate Enable Register (PTESE)

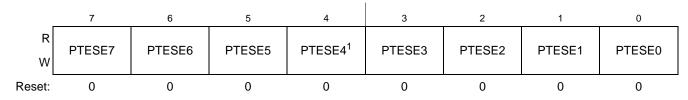


Figure 6-30. Slew Rate Enable for Port E Register (PTESE)

Freescale Semiconductor 6-17

¹ PTE4SE has no effect on the PTE4 pin

Table 6-29. PTESE Register Field Descriptions

Field	Description
	Output Slew Rate Enable for Port E Bits — Each of these control bits determines if the output slew rate control is enabled for the associated PTE pin. For port E pins that are configured as inputs, these bits have no effect. Output slew rate control disabled for port E bit <i>n</i> . Output slew rate control enabled for port E bit <i>n</i> .

6.6.5.5 Port E Drive Strength Selection Register (PTEDS)

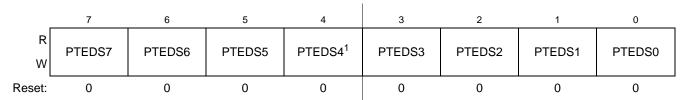


Figure 6-31. Drive Strength Selection for Port E Register (PTEDS)

Table 6-30. PTEDS Register Field Descriptions

Field	Description
7–0 PTEDS <i>n</i>	Output Drive Strength Selection for Port E Bits — Each of these control bits selects between low and high output drive for the associated PTE pin. For port E pins that are configured as inputs, these bits have no effect. 1 Low output drive strength selected for port E bit <i>n</i> . 2 High output drive strength selected for port E bit <i>n</i> .

6.6.5.6 Port E Input Filter Enable Register (PTEIFE)

The Port E pin incorporates an optional input low-pass filter. Set the associated PTEIFE bit during and after reset to enable the filter. To disable the filter, clear the associated PTEIFE bit through software control.

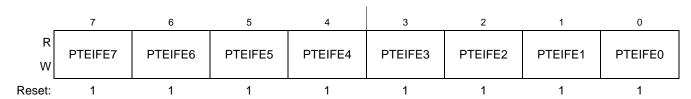


Figure 6-32. Input Filter Enable for Port E Register (PTEIFE)

Table 6-31. PTEIFE Register Field Descriptions

Field	Description
	Input Filter Enable for Port E Bits — Input low-pass filter enable control bits for PTE pins. 0 Input filter disabled. 1 Input filter enabled.

MCF51MM256 Series Devices Reference Manual, Rev. 3

¹ PTEDS4 has no effect on the PTE4 pin

6.6.6 Port F Registers

Port F is controlled by the registers listed below.

PTF6 is an output only pin, so the control bits for input functions have no effect on this pin.

6.6.6.1 Port F Data Register (PTFD)

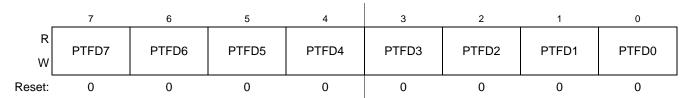


Figure 6-33. Port F Data Register (PTFD)

Table 6-32. PTFD Register Field Descriptions

Field	Description
PTFDn	Port F Data Register Bits — For port F pins that are inputs, reads return the logic level on the pin. For port F pins that are configured as outputs, reads return the last value written to this register. Writes are latched into all bits of this register. For port F pins that are configured as outputs, the logic level is driven out the corresponding MCU pin. Reset forces PTFD to all 0s, but these 0s are not driven out the corresponding pins because reset also configures all port pins as high-impedance inputs with pull-ups disabled.

6.6.6.2 Port F Data Direction Register (PTFDD)

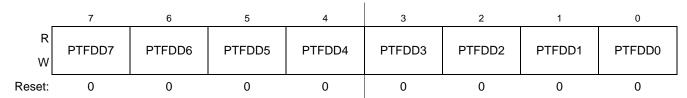


Figure 6-34. Port F Data Direction Register (PTFDD)

Table 6-33. PTFDD Register Field Descriptions

Field	Description
PTFDD <i>n</i>	 Data Direction for Port F Bits — These read/write bits control the direction of port F pins and what is read for PTFD reads. Input (output driver disabled) and reads return the pin value. Output driver enabled for port F bit n and PTFD reads return the contents of PTFDn.

6.6.6.3 Port F Pull Enable Register (PTFPE)

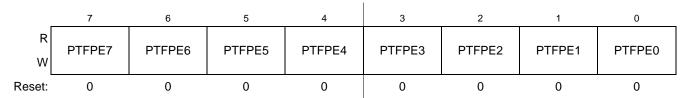


Figure 6-35. Internal Pull Enable for Port F Register (PTFPE)

Table 6-34. PTFPE Register Field Descriptions

Field	Description
PTFPE <i>n</i>	Internal Pull Enable for Port F Bits — Each of these control bits determines if the internal pull-up device is enabled for the associated PTF pin. For port F pins that are configured as outputs, these bits have no effect and the internal pull devices are disabled. 0 Internal pull-up device disabled for port F bit <i>n</i> . 1 Internal pull-up device enabled for port F bit <i>n</i> .

6.6.6.4 Port F Slew Rate Enable Register (PTFSE)

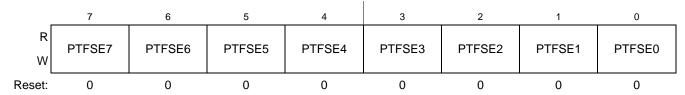


Figure 6-36. Slew Rate Enable for Port F Register (PTFSE)

Table 6-35. PTFSE Register Field Descriptions

Field	Description
7–0 PTFSE <i>n</i>	Output Slew Rate Enable for Port F Bits — Each of these control bits determines if the output slew rate control is enabled for the associated PTF pin. For port F pins that are configured as inputs, these bits have no effect. Output slew rate control disabled for port F bit <i>n</i> . Output slew rate control enabled for port F bit <i>n</i> .

6.6.6.5 Port F Drive Strength Selection Register (PTFDS)

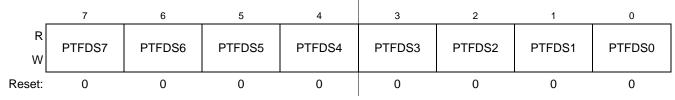


Figure 6-37. Drive Strength Selection for Port F Register (PTFDS)

6-21

Table 6-36. PTFDS Register Field Descriptions

Field	Description
7–0 PTFDS <i>n</i>	Output Drive Strength Selection for Port F Bits — Each of these control bits selects between low and high output drive for the associated PTF pin. For port F pins that are configured as inputs, these bits have no effect. 1 Use the output drive strength selected for port F bit n. 2 High output drive strength selected for port F bit n.

6.6.6.6 Port F Input Filter Enable Register (PTFIFE)

The Port F pin incorporates an optional input low-pass filter. Set the associated PTFIFE bit during and after reset to enable the filter. To disable the filter, clear the associated PTFIFE bit through software control.

Figure 6-38. Input Filter Enable for Port F Register (PTFIFE)

Table 6-37. PTFIFE Register Field Descriptions

Field	Description
7–0 PTFIFE <i>n</i>	Input Filter Enable for Port F Bits — Input low-pass filter enable control bits for PTF pins. 0 Input filter disabled. 1 Input filter enabled.

6.6.7 Port G Registers

Port G is controlled by the registers listed below.

6.6.7.1 Port G Data Register (PTGD)

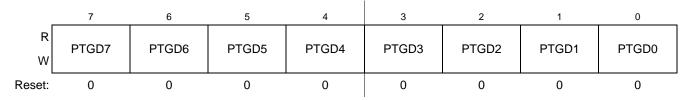


Figure 6-39. Port G Data Register (PTGD)

MCF51MM256 Series Devices Reference Manual, Rev. 3

Table 6-38. PTGD Register Field Descriptions

Field	Description
7–0 PTGD <i>n</i>	Port G Data Register Bits — For port G pins that are inputs, reads return the logic level on the pin. For port G pins that are configured as outputs, reads return the last value written to this register. Writes are latched into all bits of this register. For port G pins that are configured as outputs, the logic level is driven out the corresponding MCU pin. Reset forces PTGD to all 0s, but these 0s are not driven out the corresponding pins because reset also configures all port pins as high-impedance inputs with pull-ups disabled.

Port G Data Direction Register (PTGDD) 6.6.7.2

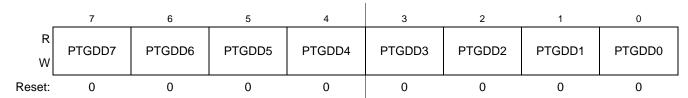


Figure 6-40. Port G Data Direction Register (PTGDD)

Table 6-39. PTGDD Register Field Descriptions

Field	Description
	Data Direction for Port G Bits — These read/write bits control the direction of port G pins and what is read for PTGD reads.
	 Input (output driver disabled) and reads return the pin value. Output driver enabled for port G bit n and PTGD reads return the contents of PTGDn.

Port G Pull Enable Register (PTGPE) 6.6.7.3

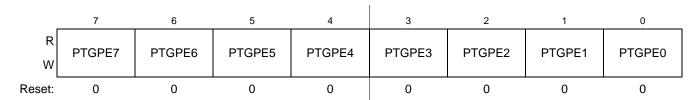


Figure 6-41. Internal Pull Enable for Port G Register (PTGPE)

Table 6-40. PTGPE Register Field Descriptions

Field	Description
PTGPE <i>n</i>	Internal Pull Enable for Port G Bits — Each of these control bits determines if the internal pull-up device is enabled for the associated PTG pin. For port G pins that are configured as outputs, these bits have no effect and the internal pull devices are disabled. 0 Internal pull-up device disabled for port G bit <i>n</i> . 1 Internal pull-up device enabled for port G bit <i>n</i> .

6.6.7.4 Port G Slew Rate Enable Register (PTGSE)

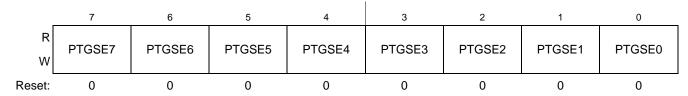


Figure 6-42. Slew Rate Enable for Port G Register (PTGSE)

Table 6-41. PTGSE Register Field Descriptions

Field	Description
PTGSE <i>n</i>	Output Slew Rate Enable for Port G Bits — Each of these control bits determines if the output slew rate control is enabled for the associated PTG pin. For port G pins that are configured as inputs, these bits have no effect. Output slew rate control disabled for port G bit <i>n</i> . Output slew rate control enabled for port G bit <i>n</i> .

6.6.7.5 Port G Drive Strength Selection Register (PTGDS)

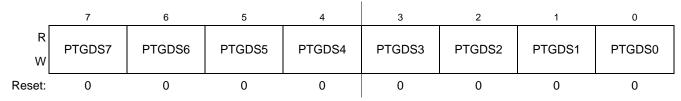


Figure 6-43. Drive Strength Selection for Port G Register (PTGDS)

Table 6-42. PTGDS Register Field Descriptions

Field	Description
7–0 PTGDS <i>n</i>	Output Drive Strength Selection for Port G Bits — Each of these control bits selects between low and high output drive for the associated PTG pin. For port G pins that are configured as inputs, these bits have no effect. 1 Use the output drive strength selected for port G bit n. 2 High output drive strength selected for port G bit n.

6.6.7.6 Port G Input Filter Enable Register (PTGIFE)

The Port G pin incorporates an optional input low-pass filter. Set the associated PTGIFE bit during and after reset to enable the filter. To disable the filter, clear the associated PTGIFE bit through software control.

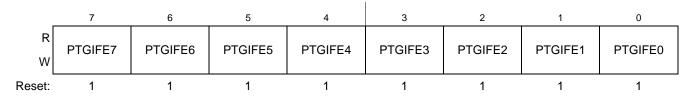


Figure 6-44. Input Filter Enable for Port G Register (PTGIFE)

Freescale Semiconductor 6-23

Table 6-43. PTGIFE Register Field Descriptions

Field	Description
7–0 PTGIFE <i>n</i>	Input Filter Enable for Port G Bits — Input low-pass filter enable control bits for PTG pins. 0 Input filter disabled. 1 Input filter enabled.

6.6.8 Port H Registers

Port H is controlled by the registers listed below.

6.6.8.1 Port H Data Register (PTHD)

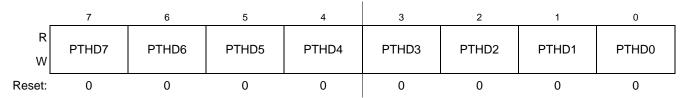


Figure 6-45. Port H Data Register (PTHD)

Table 6-44. PTHD Register Field Descriptions

Field	Description
7–0 PTHD <i>n</i>	Port H Data Register Bits — For port H pins that are inputs, reads return the logic level on the pin. For port H pins that are configured as outputs, reads return the last value written to this register. Writes are latched into all bits of this register. For port H pins that are configured as outputs, the logic level is driven out the corresponding MCU pin. Reset forces PTHD to all 0s, but these 0s are not driven out the corresponding pins because reset also configures all port pins as high-impedance inputs with pull-ups disabled.

6.6.8.2 Port H Data Direction Register (PTHDD)

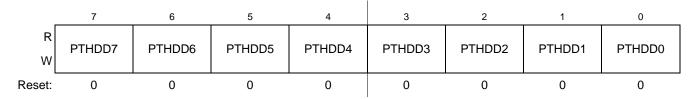


Figure 6-46. Port H Data Direction Register (PTHDD)

Table 6-45. PTHDD Register Field Descriptions

Fie	eld	Description
1	HDD <i>n</i>	 Data Direction for Port H Bits — These read/write bits control the direction of port H pins and what is read for PTHD reads. Input (output driver disabled) and reads return the pin value. Output driver enabled for port H bit <i>n</i> and PTHD reads return the contents of PTHD<i>n</i>.

MCF51MM256 Series Devices Reference Manual, Rev. 3

6-24 Freescale Semiconductor

6.6.8.3 **Port H Pull Enable Register (PTHPE)**

Figure 6-47. Internal Pull Enable for Port H Register (PTHPE)

Table 6-46. PTHPE Register Field Descriptions

Field	Description					
PTHPE <i>n</i>	Internal Pull Enable for Port H Bits — Each of these control bits determines if the internal pull-up device is enabled for the associated PTH pin. For port H pins that are configured as outputs, these bits have no effect and the internal pull devices are disabled. 0 Internal pull-up device disabled for port H bit <i>n</i> . 1 Internal pull-up device enabled for port H bit <i>n</i> .					

Port H Slew Rate Enable Register (PTHSE) 6.6.8.4

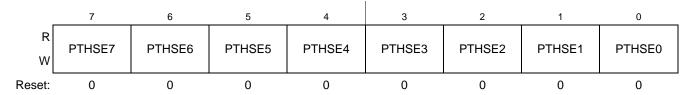


Figure 6-48. Slew Rate Enable for Port H Register (PTHSE)

Table 6-47. PTHSE Register Field Descriptions

Field	Description					
7–0 PTHSE <i>n</i>	Output Slew Rate Enable for Port H Bits — Each of these control bits determines if the output slew rate control is enabled for the associated PTH pin. For port H pins that are configured as inputs, these bits have no effect. Output slew rate control disabled for port H bit <i>n</i> . Output slew rate control enabled for port H bit <i>n</i> .					

6.6.8.5 Port H Drive Strength Selection Register (PTHDS)

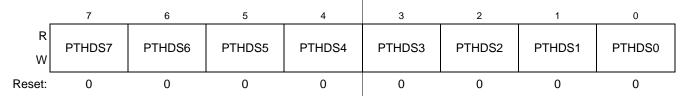


Figure 6-49. Drive Strength Selection for Port H Register (PTHDS)

MCF51MM256 Series Devices Reference Manual, Rev. 3 Freescale Semiconductor 6-25

Table 6-48. PTHDS Register Field Descriptions

Field	Description					
7–0 PTHDS <i>n</i>	Output Drive Strength Selection for Port H Bits — Each of these control bits selects between low and high output drive for the associated PTH pin. For port H pins that are configured as inputs, these bits have no effect. 1 Use the output drive strength selected for port H bit n. 2 High output drive strength selected for port H bit n.					

6.6.8.6 Port H Input Filter Enable Register (PTHIFE)

The Port H pin incorporates an optional input low-pass filter. Set the associated PTHIFE bit during and after reset to enable the filter. To disable the filter, clear the associated PTHIFE bit through software control.

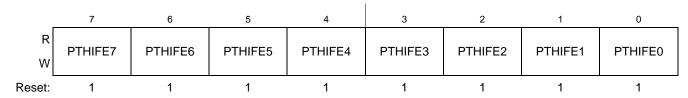


Figure 6-50. Input Filter Enable for Port H Register (PTHIFE)

Table 6-49. PTHIFE Register Field Descriptions

Field	Description
	Input Filter Enable for Port H Bits — Input low-pass filter enable control bits for PTH pins. 0 Input filter disabled. 1 Input filter enabled.

6.6.9 Port J Registers

Port J is controlled by the registers listed below.

6.6.9.1 Port J Data Register (PTJD)

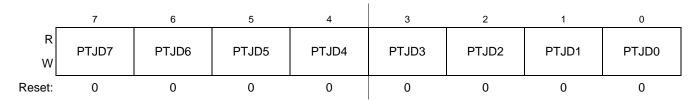


Figure 6-51. Port J Data Register (PTJD)

6-26 Freescale Semiconductor

Table 6-50. PTJD Register Field Descriptions

Field	Description					
7–0 PTJD <i>n</i>	Port J Data Register Bits — For port J pins that are inputs, reads return the logic level on the pin. For port J pins that are configured as outputs, reads return the last value written to this register. Writes are latched into all bits of this register. For port J pins that are configured as outputs, the logic level is driven out the corresponding MCU pin. Reset forces PTJD to all 0s, but these 0s are not driven out the corresponding pins because reset also configures all port pins as high-impedance inputs with pull-ups disabled.					

Port J Data Direction Register (PTJDD) 6.6.9.2

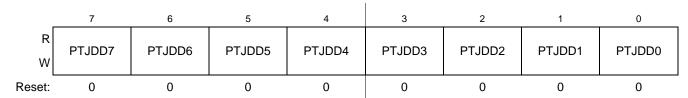


Figure 6-52. Port J Data Direction Register (PTJDD)

Table 6-51. PTJDD Register Field Descriptions

Field	Description					
	Data Direction for Port J Bits — These read/write bits control the direction of port J pins and what is read for PTJD reads.					
	 Input (output driver disabled) and reads return the pin value. Output driver enabled for port J bit n and PTJD reads return the contents of PTJDn. 					

Port J Pull Enable Register (PTJPE) 6.6.9.3

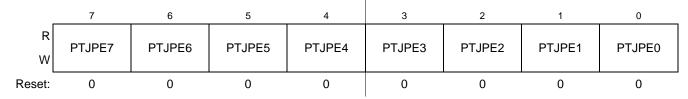


Figure 6-53. Internal Pull Enable for Port J Register (PTJPE)

Table 6-52. PTJPE Register Field Descriptions

Field	Description
PTJPE <i>n</i>	Internal Pull Enable for Port J Bits — Each of these control bits determines if the internal pull-up device is enabled for the associated PTJ pin. For port J pins that are configured as outputs, these bits have no effect and the internal pull devices are disabled. 0 Internal pull-up device disabled for port J bit <i>n</i> . 1 Internal pull-up device enabled for port J bit <i>n</i> .

MCF51MM256 Series Devices Reference Manual, Rev. 3 Freescale Semiconductor 6-27

6.6.9.4 Port J Slew Rate Enable Register (PTJSE)

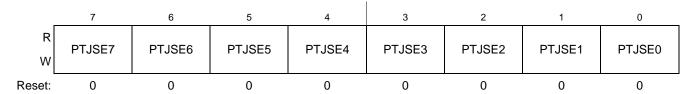


Figure 6-54. Slew Rate Enable for Port J Register (PTJSE)

Table 6-53. PTJSE Register Field Descriptions

Field	Description
	Output Slew Rate Enable for Port J Bits — Each of these control bits determines if the output slew rate control is enabled for the associated PTJ pin. For port J pins that are configured as inputs, these bits have no effect. Output slew rate control disabled for port J bit <i>n</i> . Output slew rate control enabled for port J bit <i>n</i> .

6.6.9.5 Port J Drive Strength Selection Register (PTJDS)

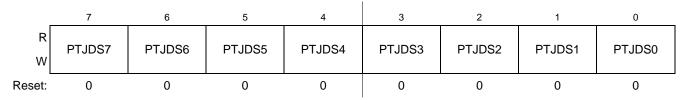


Figure 6-55. Drive Strength Selection for Port J Register (PTJDS)

Table 6-54. PTJDS Register Field Descriptions

Field	Description					
7–0 PTJDS <i>n</i>	Output Drive Strength Selection for Port J Bits — Each of these control bits selects between low and high output drive for the associated PTJ pin. For port J pins that are configured as inputs, these bits have no effect. 1 Low output drive strength selected for port J bit <i>n</i> . 2 High output drive strength selected for port J bit <i>n</i> .					

6.6.9.6 Port J Input Filter Enable Register (PTJIFE)

The Port J pin incorporates an optional input low-pass filter. Set the associated PTJIFE bit during and after reset to enable the filter. To disable the filter, clear the associated PTJIFE bit through software control.

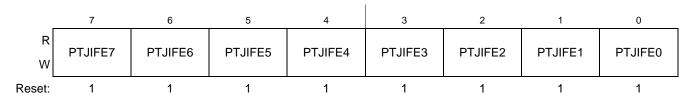


Figure 6-56. Input Filter Enable for Port J Register (PTJIFE)

Table 6-55. PTJIFE Register Field Descriptions

Field	Description					
7–0 PTJIFE <i>n</i>	Input Filter Enable for Port J Bits — Input low-pass filter enable control bits for PTJ pins. 0 Input filter disabled. 1 Input filter enabled.					

6.6.10 Keyboard Interrupt 1 (KBI1) Registers

KBI1 is controlled by the registers listed below. Table 6-56 shows KBI1 pin mapping to the port I/O pins.

Table 6-56. KBI1 Pin Mapping

Port pin	PTC4	PTC3	PTC2	PTB7	PTB6	PTA3	PTA2	PTA1
KBI1 pin	KBI1P7	KBI1P6	KBI1P5	KBI1P4	KBI1P3	KBI1P2	KBI1P1	KBI1P0

6.6.10.1 KBI1 Interrupt Status and Control Register (KBI1SC)

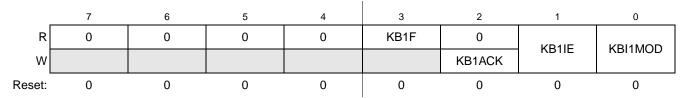


Figure 6-57. KBI1 Interrupt Status and Control Register (KBI1SC)

Table 6-57. KBI1SC Register Field Descriptions

Field	Description					
7–4	Reserved, should be cleared.					
3 KB1F	 KBI1 Interrupt Flag — KBF indicates when a KBI1 interrupt is detected. Writes have no effect on KBF. No KBI1 interrupt detected. KBI1 interrupt detected. 					
2 KB1ACK	KBI1 Interrupt Acknowledge — Writing a 1 to KBACK is part of the flag clearing mechanism. KBACK always reads as 0.					
1 KB1IE	KBI1 Interrupt Enable — KBIE determines whether a KBI1 interrupt is requested. 0 KBI1 interrupt request not enabled. 1 KBI1 interrupt request enabled.					
0 KBI1MOD	KBI1 Detection Mode — KBIMOD (along with the KBI1ES bits) controls the detection mode of the KBI1 interrupt pins. 0 KBI1 pins detect edges only. 1 KBI1 pins detect both edges and levels.					

6.6.10.2 KBI1 Interrupt Pin Select Register (KBI1PE)

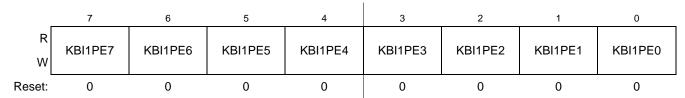


Figure 6-58. KBI1 Interrupt Pin Select Register (KBI1PE)

Table 6-58. KBI1PE Register Field Descriptions

Field	Description
	 KBI1 Interrupt Pin Selects — Each of the KBIPEn bits enable the corresponding KBI1 interrupt pin. 0 Pin not enabled as interrupt. 1 Pin enabled as interrupt.

6.6.10.3 KBI1 Interrupt Edge Select Register (KBI1ES)

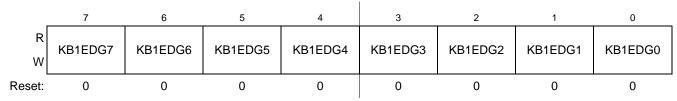


Figure 6-59. KBI1 Edge Select Register (KBI1ES)

6.6.11 Keyboard Interrupt 2 (KBI2) Registers

Table 6-59. KBI2ES Register Field Descriptions

Field	Description
7–0 KBEDG <i>n</i>	 KBI2 Edge Selects — Each of the KBEDGn bits serves a dual purpose by selecting the polarity of the active interrupt edge as well as selecting a pull-up or pull-down device if enabled. O A pull-up device is connected to the associated pin and detects falling edge/low level for interrupt generation. A pull-down device is connected to the associated pin and detects rising edge/high level for interrupt generation.

KBI2 is controlled by the registers listed below. Table 6-56 shows KBI2 pin mapping to the port I/O pins.

Table 6-60. KBI2 Pin Mapping

Port pin	PTF5	PTE3	PTE2	PTE1	PTE0	PTC7	PTC6	PTC5
KBI2 pin	KBI2P7	KBI2P6	KBI2P5	KBI2P4	KBI2P3	KBI2P2	KBI2P1	KBI2P0

6.6.11.1 KBI2 Interrupt Status and Control Register (KBI2SC)

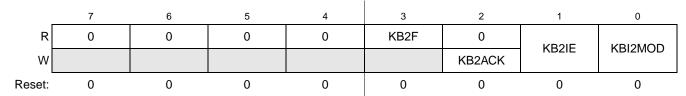


Figure 6-60. KBI2 Interrupt Status and Control Register (KBI2SC)

Table 6-61. KBI2SC Register Field Descriptions

Field	Description
7–4	Reserved, should be cleared.
3 KB2F	 KBI2 Interrupt Flag — KBF indicates when a KBI2 interrupt is detected. Writes have no effect on KBF. No KBI2 interrupt detected. KBI2 interrupt detected.
2 KB2ACK	KBI2 Interrupt Acknowledge — Writing a 1 to KBACK is part of the flag clearing mechanism. KBACK always reads as 0.
1 KB2IE	 KBI2 Interrupt Enable — KBIE determines whether a KBI2 interrupt is requested. 0 KBI2 interrupt request not enabled. 1 KBI2 interrupt request enabled.
0 KBI2MOD	 KBI2 Detection Mode — KBIMOD (along with the KBI2ES bits) controls the detection mode of the KBI2 interrupt pins. KBI2 pins detect edges only. KBI2 pins detect both edges and levels.

6.6.11.2 KBI2 Interrupt Pin Select Register (KBI2PE)

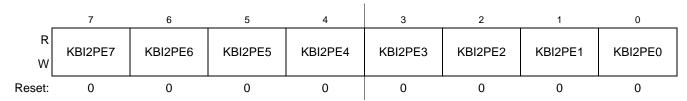


Figure 6-61. KBI2 Interrupt Pin Select Register (KBI2PE)

Table 6-62. KBI2PE Register Field Descriptions

Field	Description
	 KBI2 Interrupt Pin Selects — Each of the KBIPEn bits enable the corresponding KBI2 interrupt pin. 0 Pin not enabled as interrupt. 1 Pin enabled as interrupt.

6.6.11.3 KBI2 Interrupt Edge Select Register (KBI2ES)

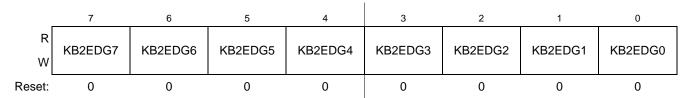


Figure 6-62. KBI2 Edge Select Register (KBI2ES)

Table 6-63. KBI2ES Register Field Descriptions

Field	Description
7–0 KB2EDG <i>n</i>	 KBI2 Edge Selects — Each of the KBEDGn bits serves a dual purpose by selecting the polarity of the active interrupt edge as well as selecting a pull-up or pull-down device if enabled. 0 A pull-up device is connected to the associated pin and detects falling edge/low level for interrupt generation. 1 A pull-down device is connected to the associated pin and detects rising edge/high level for interrupt generation.

Chapter 7 ColdFire Core

7.1 Introduction

This section describes the organization of the Version 1 (V1) ColdFire[®] processor core and an overview of the program-visible registers. For detailed information on instructions, see the ISA_C definition in the *ColdFire Family Programmer's Reference Manual*.

7.1.1 Overview

As with all ColdFire cores, the V1 ColdFire core is comprised of two separate pipelines decoupled by an instruction buffer.

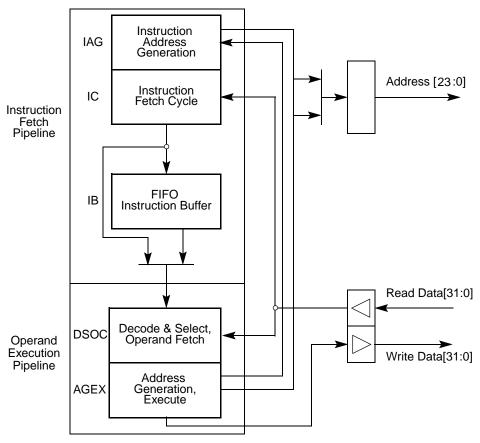


Figure 7-1. V1 ColdFire Core Pipelines

The instruction fetch pipeline (IFP) is a two-stage pipeline for prefetching instructions. The prefetched instruction stream is then gated into the two-stage operand execution pipeline (OEP), that decodes the

instruction, fetches the required operands, and then executes the required function. Because the IFP and OEP pipelines are decoupled by an instruction buffer serving as a FIFO queue, the IFP is able to prefetch instructions in advance of their actual use by the OEP thereby minimizing time stalled waiting for instructions.

The V1 ColdFire core pipeline stages include the following:

- Two-stage instruction fetch pipeline (IFP) (plus optional instruction buffer stage)
 - Instruction address generation (IAG) Calculates the next prefetch address
 - Instruction fetch cycle (IC)—Initiates prefetch on the processor's local bus
 - Instruction buffer (IB) Optional buffer stage minimizes fetch latency effects using FIFO queue
- Two-stage operand execution pipeline (OEP)
 - Decode and select/operand fetch cycle (DSOC)—Decodes instructions and fetches the required components for effective address calculation, or the operand fetch cycle
 - Address generation/execute cycle (AGEX)—Calculates operand address or executes the instruction

When the instruction buffer is empty, opcodes are loaded directly from the IC cycle into the operand execution pipeline. If the buffer is not empty, the IFP stores the contents of the fetched instruction in the IB until it is required by the OEP. The instruction buffer on the V1 core contains three longwords of storage.

For register-to-register and register-to-memory store operations, the instruction passes through both OEP stages once. For memory-to-register and read-modify-write memory operations, an instruction is effectively staged through the OEP twice; the first time to calculate the effective address and initiate the operand fetch on the processor's local bus, and the second time to complete the operand reference and perform the required function defined by the instruction.

The resulting pipeline and local bus structure allow the V1 ColdFire core to deliver sustained high performance across a variety of demanding embedded applications.

7.2 Memory Map/Register Description

The following sections describe the processor registers in the user and supervisor programming models. The programming model is selected based on the processor privilege level (user mode or supervisor mode) as defined by the S bit of the status register (SR). Table 7-1 lists the processor registers.

The user-programming model consists of the following registers:

- 16 general-purpose 32-bit registers (D0–D7, A0–A7)
- 32-bit program counter (PC)
- 8-bit condition code register (CCR)
- MAC registers (described fully in Chapter 8, "Multiply-Accumulate Unit (MAC)")
 - One 32-bit accumulator(ACC) register
 - One 16-bit mask register (MASK)
 - 8-bit Status register (MACSR)

The supervisor programming model is to be used only by system control software to implement restricted operating system functions, I/O control, and memory management. All accesses that affect the control features of ColdFire processors are in the supervisor programming model, that consists of registers available in user mode as well as the following control registers:

- 16-bit status register (SR)
- 32-bit supervisor stack pointer (SSP)
- 32-bit vector base register (VBR)
- 32-bit CPU configuration register (CPUCR)

Table 7-1. ColdFire Core Programming Model

BDM Command ¹	Register	Width (bits)	Access	Reset Value	Written with MOVEC ²	Section/Page
	Supervisor/Us	er Access	Register	's	I	
Load: 0x60 Store: 0x40	Data Register 0 (D0)	32	R/W	See 7.3.3.14/7-19	No	7.2.1/7-4
Load: 0x61 Store: 0x41	Data Register 1 (D1)	32	R/W	See 7.3.3.14/7-19	No	7.2.1/7-4
Load: 0x6-7 Store: 0x4-7	Data Register –7 (D–D7)	32	R/W	POR: Undefined Else: Unaffected	No	7.2.1/7-4
Load: 0x68-E Store: 0x48-E	Address Register 0–6 (A0–A6)	32	R/W	POR: Undefined Else: Unaffected	No	7.2.2/7-4
Load: 0x6F Store: 0x4F	User A7 Stack Pointer (A7)	32	R/W	POR: Undefined Else: Unaffected	No	7.2.3/7-5
Load: 0xE4 Store: 0xC4	MAC Status Register (MACSR)	8	R/W	0x00	No	8.2.1/8-2
Load: 0xE5 Store: 0xC5	MAC Address Mask Register (MASK)	16	R/W	0xFFFF	No	8.2.2/8-4
Load: 0xE6 Store: 0xC6	MAC Accumulator (ACC)	32	R/W	POR: Undefined Else: Unaffected	No	8.2.3/8-5
Load: 0xEE Store: 0xCE	Condition Code Register (CCR)	8	R/W	POR: Undefined Else: Unaffected	No	7.2.4/7-5
Load: 0xEF Store: 0xCF	Program Counter (PC)	32	R/W	Contents of location 0x(00)00_0004	No	7.2.5/7-6
	Supervisor Ac	cess Only	Register	's		
Load: 0xE0 Store: 0xC0	Supervisor A7 Stack Pointer (OTHER_A7)	32	R/W	Contents of location 0x(00)00_0000	No	7.2.3/7-5
Load: 0xE1 Store: 0xC1	Vector Base Register (VBR)	32	R/W	See section	Yes; Rc = 0x801	7.2.6/7-7
Load: 0xE2 Store: 0xC2	CPU Configuration Register (CPUCR)	32	W	See section	Yes; Rc = 0x802	7.2.7/7-7

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor 7-3

Table 7-1. ColdFire Core Programming Model (Continued)

BDM Command ¹	Register	Width (bits)	Access	Reset Value	Written with MOVEC ²	Section/Page
Load: 0xEE Store: 0xCE	Status Register (SR)	16	R/W	0x27	No	7.2.8/7-8

The values listed in this column represent the 8-bit BDM command code used when accessing the core registers via the 1-pin BDM port. For more information see Chapter 29, "Version 1 ColdFire Debug (CF1_DEBUG)." (These BDM commands are not similar to other ColdFire processors.)

7.2.1 Data Registers (D0–D7)

D0–D7 data registers are for bit (1-bit), byte (8-bit), word (16-bit) and longword (32-bit) operations; they can also be used as index registers.

NOTE

Registers D0 and D1 contain hardware configuration details after reset. See Section 7.3.3.14, "Reset Exception" for more details.

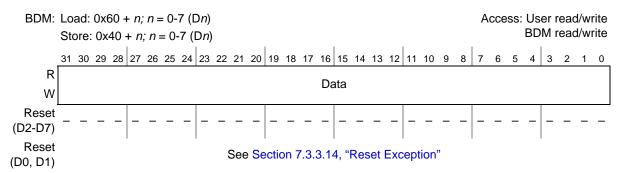


Figure 7-2. Data Registers (D0-D7)

7.2.2 Address Registers (A0-A6)

These registers can be used as software stack pointers, index registers, or base address registers. They can also be used for word and longword operations.

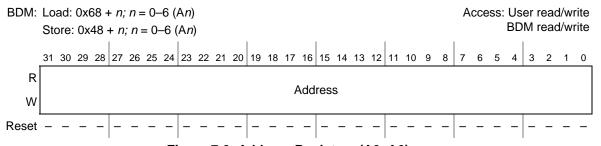


Figure 7-3. Address Registers (A0–A6)

7-4 Freescale Semiconductor

² If the given register is written using the MOVEC instruction, the 12-bit control register address (Rc) is also specified.

7.2.3 Supervisor/User Stack Pointers (A7 and OTHER_A7)

This ColdFire architecture supports two independent stack pointer (A7) registers—the supervisor stack pointer (SSP) and the user stack pointer (USP). The hardware implementation of these two program-visible 32-bit registers does not identify one as the SSP and the other as the USP. Instead, the hardware uses one 32-bit register as the active A7 and the other as OTHER_A7. Thus, the register contents are a function of the processor operation mode, as shown in the following:

The BDM programming model supports direct reads and writes to A7 and OTHER_A7. It is the responsibility of the external development system to determine, based on the setting of SR[S], the mapping of A7 and OTHER A7 to the two program-visible definitions (SSP and USP).

To support dual stack pointers, the following two supervisor instructions are included in the ColdFire instruction set architecture to load/store the USP:

```
move.l Ay, USP; move to USP move.l USP, Ax; move from USP
```

These instructions are described in the *ColdFire Family Programmer's Reference Manual*. All other instruction references to the stack pointer, explicit or implicit, access the active A7 register.

NOTE

The USP must be initialized using the move.1 Ay, USP instruction before any entry into user mode.

The SSP is loaded during reset exception processing with the contents of location $0x(00)00_0000$.

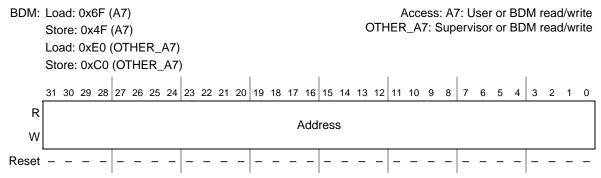


Figure 7-4. Stack Pointer Registers (A7 and OTHER_A7)

7.2.4 Condition Code Register (CCR)

The CCR is the LSB of the processor status register (SR). Bits 4–0 act as indicator flags for results generated by processor operations. The extend bit (X) is also an input operand during multiprecision arithmetic computations. The CCR register must be explicitly loaded after reset and before any compare (CMP), Bcc, or Scc instructions are executed.

Freescale Semiconductor 7-5

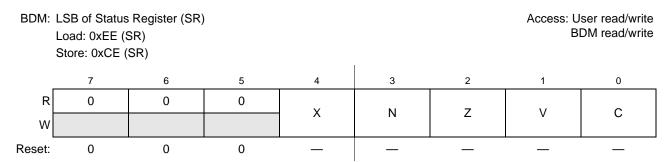


Figure 7-5. Condition Code Register (CCR)

Table 7-2. CCR Field Descriptions

Field	Description
7–5	Reserved, must be cleared.
4 X	Extend condition code bit. Set to the C-bit value for arithmetic operations; otherwise not affected or set to a specified result.
3 N	Negative condition code bit. Set if most significant bit of the result is set; otherwise cleared.
2 Z	Zero condition code bit. Set if result equals zero; otherwise cleared.
1 V	Overflow condition code bit. Set if an arithmetic overflow occurs implying the result cannot be represented in operand size; otherwise cleared.
0 C	Carry condition code bit. Set if a carry out of the operand msb occurs for an addition or if a borrow occurs in a subtraction; otherwise cleared.

7.2.5 Program Counter (PC)

The PC contains the currently executing instruction address. During instruction execution and exception processing, the processor automatically increments PC contents or places a new value in the PC. The PC is a base address for PC-relative operand addressing.

The PC is initially loaded during reset exception processing with the contents at location $0x(00)00_0004$.

Figure 7-6. Program Counter Register (PC)

MCF51MM256 Series Devices Reference Manual, Rev. 3

7.2.6 Vector Base Register (VBR)

The VBR contains the base address of the exception vector table in the memory. To access the vector table, the displacement of an exception vector is added to the value in VBR. The lower 20 bits of the VBR are not implemented by ColdFire processors. They are assumed to be zero, forcing the table to be aligned on a 1 MB boundary.

In addition, because the V1 ColdFire core supports a 16 MB address space, the upper byte of the VBR is also forced to zero. The VBR can be used to relocate the exception vector table from its default position in the flash memory (address $0x(00)00_0000$) to the base of the RAM (address $0x(00)80_0000$) if needed.

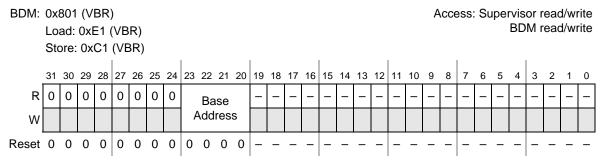


Figure 7-7. Vector Base Register (VBR)

7.2.7 **CPU Configuration Register (CPUCR)**

The CPUCR provides supervisor mode configurability of specific core functionality. Certain hardware features can be enabled/disabled individually based on the state of the CPUCR.

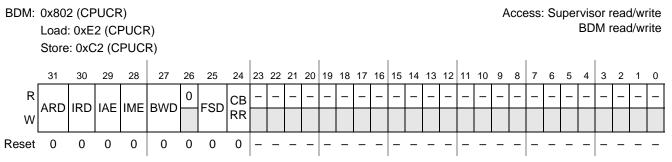


Figure 7-8. CPU Configuration Register (CPUCR)

Freescale Semiconductor

Table 7-3. CPUCR Field Descriptions

Field	Description
31 ARD	Address-related reset disable. Used to disable the generation of a reset event in response to a processor exception caused by an address error, a bus error, an RTE format error, or a fault-on-fault halt condition. O The detection of these types of exception conditions or the fault-on-fault halt condition generate a reset event. No reset is generated in response to these exception conditions.
30 IRD	Instruction-related reset disable. Used to disable the generation of a reset event in response to a processor exception caused by the attempted execution of an illegal instruction (except for the ILLEGAL opcode), illegal line A, illegal line F instructions, or a privilege violation. O The detection of these types of exception conditions generate a reset event. 1 No reset is generated in response to these exception conditions.
29 IAE	Interrupt acknowledge (IACK) enable. Forces the processor to generate an IACK read cycle from the interrupt controller during exception processing to retrieve the vector number of the interrupt request being acknowledged. The processor's execution time for an interrupt exception is slightly improved when this bit is cleared. O The processor uses the vector number provided by the interrupt controller at the time the request is signaled. I IACK read cycle from the interrupt controller is generated.
28 IME	Interrupt mask enable. Forces the processor to raise the interrupt level mask (SR[I]) to 7 during every interrupt exception. O As part of an interrupt exception, the processor sets SR[I] to the level of the interrupt being serviced. As part of an interrupt exception, the processor sets SR[I] to 7. This disables all level 1-6 interrupt requests but allows recognition of the edge-sensitive level 7 requests.
27 BWD	Buffered write disable. The ColdFire core is capable of marking processor memory writes as bufferable or non-bufferable. 0 Writes are buffered and the bus cycle is terminated immediately with zero wait states. 1 Disable the buffering of writes. In this configuration, the write transfer is terminated based on the response time of the addressed destination memory device. Note: If buffered writes are enabled (BWD = 0), any error status is lost as the immediate termination of the data transfer assumes an error-free completion.
26	Reserved, must be cleared.
25 FSD	Flash speculation disabled. Disables certain performance-enhancing features related to address speculation in the flash memory controller. O The flash controller tries to speculate on read accesses to improve processor performance by minimizing the exposed flash memory access time. Recall the basic flash access time is two processor cycles. 1 Certain flash address speculation is disabled.
24 CBRR	Crossbar round-robin arbitration enable. Configures the crossbar slave ports to fixed-priority or round-robin arbitration. 0 Fixed-priority arbitration 1 Round robin arbitration
23–0	Reserved, must be cleared.

7.2.8 Status Register (SR)

The SR stores the processor status and includes the CCR, the interrupt priority mask, and other control bits. In supervisor mode, software can access the entire SR. In user mode, only the lower 8 bits (CCR) are accessible. The control bits indicate the following states for the processor: trace mode (T bit), supervisor or user mode (S bit), and master or interrupt state (M bit). All defined bits in the SR have read/write access when in supervisor mode. The lower byte of the SR (the CCR) must be loaded explicitly after reset and before any compare (CMP), Bcc, or Scc instructions execute.

7-8 Freescale Semiconductor

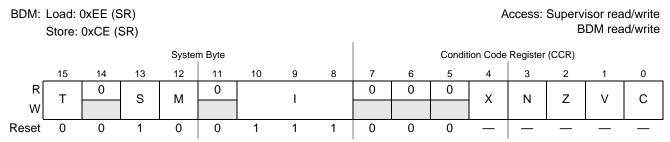


Figure 7-9. Status Register (SR)

Table 7-4. SR Field Descriptions

Field	Description
15 T	Trace enable. When set, the processor performs a trace exception after every instruction.
14	Reserved, must be cleared.
13 S	Supervisor/user state. 0 User mode 1 Supervisor mode
12 M	Master/interrupt state. Bit is cleared by an interrupt exception and software can set it during execution of the RTE or move to SR instructions.
11	Reserved, must be cleared.
10–8 I	Interrupt level mask. Defines current interrupt level. Interrupt requests are inhibited for all priority levels less than or equal to current level, except edge-sensitive level 7 requests, which cannot be masked.
7–0 CCR	Refer to Section 7.2.4, "Condition Code Register (CCR)".

7.3 Functional Description

7.3.1 Instruction Set Architecture (ISA_C)

The original ColdFire instruction set architecture (ISA_A) was derived from the M68000 family opcodes based on extensive analysis of embedded application code. The ISA was optimized for code compiled from high-level languages where the dominant operand size was the 32-bit integer declaration. This approach minimized processor complexity and cost, while providing excellent performance for compiled applications.

After the initial ColdFire compilers were created, developers noted there were certain ISA additions that would enhance code density and overall performance. Additionally, as users implemented ColdFire-based designs into a wide range of embedded systems, they found certain frequently-used instruction sequences that could be improved by the creation of additional instructions.

The original ISA definition minimized support for instructions referencing byte- and word-sized operands. Full support for the move byte and move word instructions was provided, but the only other opcodes supporting these data types are CLR (clear) and TST (test). A set of instruction enhancements has been

Freescale Semiconductor 7-9

implemented in subsequent ISA revisions, ISA_B and ISA_C. The new opcodes primarily addressed three areas:

- 1. Enhanced support for byte and word-sized operands
- 2. Enhanced support for position-independent code
- 3. Miscellaneous instruction additions to address new functionality

Table 7-5 summarizes the instructions added to revision ISA_A to form revision ISA_C. For more details see the *ColdFire Family Programmer's Reference Manual*.

Table 7-5. Instruction Enhancements over Revision ISA_A

Instruction	Description
BITREV	The contents of the destination data register are bit-reversed; that is, new Dn[31] equals old Dn[0], new Dn[30] equals old Dn[1],, new Dn[0] equals old Dn[31].
BYTEREV	The contents of the destination data register are byte-reversed; that is, new Dn[31:24] equals old Dn[7:0],, new Dn[7:0] equals old Dn[31:24].
FF1	The data register, Dn, is scanned, beginning from the most-significant bit (Dn[31]) and ending with the least-significant bit (Dn[0]), searching for the first set bit. The data register is then loaded with the offset count from bit 31 where the first set bit appears.
MOV3Q.L	Moves 3-bit immediate data to the destination location.
Move from USP	User Stack Pointer → Destination register
Move to USP	Source register → User Stack Pointer
MVS.{B,W}	Sign-extends source operand and moves it to destination register.
MVZ.{B,W}	Zero-fills source operand and moves it to destination register.
SATS.L	Performs saturation operation for signed arithmetic and updates destination register, depending on CCR[V] and bit 31 of the register.
TAS.B	Performs indivisible read-modify-write cycle to test and set addressed memory byte.
Bcc.L	Branch conditionally, longword
BSR.L	Branch to sub-routine, longword
CMP.{B,W}	Compare, byte and word
CMPA.W	Compare address, word
CMPI.{B,W}	Compare immediate, byte and word
MOVEI	Move immediate, byte and word to memory using Ax with displacement
STLDSR	Pushes the contents of the status register onto the stack and then reloads the status register with the immediate data value.

7.3.2 Exception Processing Overview

Exception processing for ColdFire processors is streamlined for performance. The ColdFire processors differ from the M68000 family because they include:

- A simplified exception vector table
- Reduced relocation capabilities using the vector-base register

7-10 Freescale Semiconductor

- A single exception stack frame format
- Use of separate system stack pointers for user and supervisor modes.

All ColdFire processors use an instruction restart exception model. Exception processing includes all actions from fault condition detection to the initiation of fetch for first handler instruction. Exception processing is comprised of four major steps:

- 1. The processor makes an internal copy of the SR and then enters supervisor mode by setting the S bit and disabling trace mode by clearing the T bit. The interrupt exception also forces the M bit to be cleared and the interrupt priority mask to set to current interrupt request level.
- 2. The processor determines the exception vector number. For all faults except interrupts, the processor performs this calculation based on exception type. For interrupts, the processor performs an interrupt-acknowledge (IACK) bus cycle to obtain the vector number from the interrupt controller if CPUCR[IAE] is set. The IACK cycle is mapped to special locations within the interrupt controller's address space with the interrupt level encoded in the address. If CPUCR[IAE] is cleared, the processor uses the vector number supplied by the interrupt controller at the time the request was signaled for improved performance.
- 3. The processor saves the current context by creating an exception stack frame on the system stack. The exception stack frame is created at a 0-modulo-4 address on top of the system stack pointed to by the supervisor stack pointer (SSP). As shown in Figure 7-10, the processor uses a simplified fixed-length stack frame for all exceptions. The exception type determines whether the program counter placed in the exception stack frame defines the location of the faulting instruction (fault) or the address of the next instruction to be executed (next).
- 4. The processor calculates the address of the first instruction of the exception handler. By definition, the exception vector table is aligned on a 1 MB boundary. This instruction address is generated by fetching an exception vector from the table located at the address defined in the vector base register. The index into the exception table is calculated as (4 × vector number). After the exception vector has been fetched, the vector contents determine the address of the first instruction of the desired handler. After the instruction fetch for the first opcode of the handler has initiated, exception processing terminates and normal instruction processing continues in the handler.

All ColdFire processors support a 1024-byte vector table aligned on any 1 MB address boundary (see Table 7-6). For the V1 ColdFire core, the only practical locations for the vector table are based at $0x(00)00_0000$ in the flash or $0x(00)80_0000$ in the internal SRAM.

The table contains 256 exception vectors; the first 64 are defined for the core and the remaining 192 are device-specific peripheral interrupt vectors. See Chapter 10, "Interrupt Controller (CF1_INTC)" for details on the device-specific interrupt sources.

For the V1 ColdFire core, the table is partially populated with the first 64 reserved for internal processor exceptions, while vectors 64-102 are reserved for the peripheral I/O requests and the seven software interrupts. Vectors 103–255 are unused and reserved.

Table 7-6. Exception Vector Assignments

Vector Number(s)	Vector Offset (Hex)	Stacked Program Counter	Assignment
0	0x000	_	Initial supervisor stack pointer
1	0x004	_	Initial program counter
2	0x008	Fault	Access error
3	0x00C	Fault	Address error
4	0x010	Fault	Illegal instruction
5–7	0x014-0x01C		Reserved
8	0x020	Fault	Privilege violation
9	0x024	Next	Trace
10	0x028	Fault	Unimplemented line-A opcode
11	0x02C	Fault	Unimplemented line-F opcode
12	0x030	Next	Debug interrupt
13	0x034	_	Reserved
14	0x038	Fault	Format error
15–23	0x03C-0x05C	_	Reserved
24	0x060	Next	Spurious interrupt
25–31	0x064-0x07C	_	Reserved
32–47	0x080-0x0BC	Next	Trap # 0-15 instructions
48–60	0x0C0-0x0F0	_	Reserved
61	0x0F4	Fault	Unsupported instruction
62–63	0x0F8-0x0FC	_	Reserved
64–102	0x100-0x198	Next	Device-specific interrupts
103–255	0x19C-0x3FC	_	Reserved

Fault refers to the PC of the instruction that caused the exception. Next refers to the PC of the instruction that follows the instruction that caused the fault.

All ColdFire processors inhibit interrupt sampling during the first instruction of all exception handlers. This allows any handler to disable interrupts effectively, if necessary, by raising the interrupt mask level contained in the status register. In addition, the ISA_C architecture includes an instruction (STLDSR) that stores the current interrupt mask level and loads a value into the SR. This instruction is specifically intended for use as the first instruction of an interrupt service routine that services multiple interrupt requests with different interrupt levels. Finally, the V1 ColdFire core includes the CPUCR[IME] bit that forces the processor to automatically raise the mask level to 7 during the interrupt exception, removing the need for any explicit instruction in the service routine to perform this function. For more details, see *ColdFire Family Programmer's Reference Manual*.

7.3.2.1 Exception Stack Frame Definition

Figure 7-10 shows exception stack frame. The first longword contains the 16-bit format/vector word (F/V) and the 16-bit status register, and the second longword contains the 32-bit program counter address.

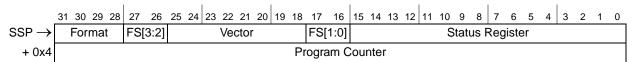


Figure 7-10. Exception Stack Frame Form

The 16-bit format/vector word contains three unique fields:

• A 4-bit format field at the top of the system stack is always written with a value of 4, 5, 6, or 7 by the processor, indicating a two-longword frame format. See Table 7-7.

Original SSP @ Time of Exception, Bits 1:0	SSP @ 1st Instruction of Handler	Format Field
00	Original SSP - 8	0100
01	Original SSP - 9	0101
10	Original SSP - 10	0110
11	Original SSP - 11	0111

Table 7-7. Format Field Encodings

• There is a 4-bit fault status field, FS[3:0], at the top of the system stack. This field is defined for access and address errors only and written as zeros for all other exceptions. See Table 7-8.

FS[3:0]	Definition
00 <i>xx</i>	Reserved
0100	Error on instruction fetch
0101	Reserved
011x	Reserved
1000	Error on operand write
1001	Reserved
101x	Reserved
1100	Error on operand read
1101	Reserved
111x	Reserved

Table 7-8. Fault Status Encodings

• The 8-bit vector number, vector[7:0], defines the exception type and is calculated by the processor for all internal faults and represents the value supplied by the interrupt controller in case of an interrupt. See Table 7-6.

Freescale Semiconductor 7-13

7.3.3 Processor Exceptions

7.3.3.1 Access Error Exception

The default operation of the V1 ColdFire processor is the generation of an illegal address reset event if an access error (also known as a bus error) is detected. If CPUCR[ARD] is set, the reset is disabled and a processor exception is generated as detailed below.

The exact processor response to an access error depends on the memory reference being performed. For an instruction fetch, the processor postpones the error reporting until the faulted reference is needed by an instruction for execution. Therefore, faults during instruction prefetches followed by a change of instruction flow do not generate an exception. When the processor attempts to execute an instruction with a faulted opword and/or extension words, the access error is signaled and the instruction is aborted. For this type of exception, the programming model has not been altered by the instruction generating the access error.

If the access error occurs on an operand read, the processor immediately aborts the current instruction's execution and initiates exception processing. In this situation, any address register updates attributable to the auto-addressing modes, (for example, (An)+,-(An)), have already been performed, so the programming model contains the updated An value. In addition, if an access error occurs during a MOVEM instruction loading from memory, any registers already updated before the fault occurs contain the operands from memory.

The V1 ColdFire processor uses an imprecise reporting mechanism for access errors on operand writes. Because the actual write cycle may be decoupled from the processor's issuing of the operation, the signaling of an access error appears to be decoupled from the instruction that generated the write. Accordingly, the PC contained in the exception stack frame merely represents the location in the program when the access error was signaled. All programming model updates associated with the write instruction are completed. The NOP instruction can collect access errors for writes. This instruction delays its execution until all previous operations, including all pending write operations, are complete. If any previous write terminates with an access error, it is guaranteed to be reported on the NOP instruction.

7.3.3.2 Address Error Exception

The default operation of the V1 ColdFire processor is the generation of an illegal address reset event if an address error is detected. If CPUCR[ARD] equals 1, then the reset is disabled and a processor exception is generated as detailed below.

Any attempted execution transferring control to an odd instruction address (if bit 0 of the target address is set) results in an address error exception.

Any attempted use of a word-sized index register (Xn.w) or a scale factor of eight on an indexed effective addressing mode generates an address error, as does an attempted execution of a full-format indexed addressing mode, which is defined by bit 8 of extension word 1 being set.

If an address error occurs on an RTS instruction, the Version 1 ColdFire processor overwrites the faulting return PC with the address error stack frame.

7.3.3.3 Illegal Instruction Exception

The default operation of the V1 ColdFire processor is the generation of an illegal opcode reset event if an illegal instruction is detected. If CPUCR[IRD] is set, the reset is disabled and a processor exception is generated as detailed below. There is one special case involving the ILLEGAL opcode (0x4AFC); attempted execution of this instruction always generates an illegal instruction exception, regardless of the state of the CPUCR[IRD] bit.

The ColdFire variable-length instruction set architecture supports three instruction sizes: 16, 32, or 48 bits. The first instruction word is known as the operation word (or opword), while the optional words are known as extension word 1 and extension word 2. The opword is further subdivided into three sections: the upper four bits segment the entire ISA into 16 instruction lines, the next 6 bits define the operation mode (opmode), and the low-order 6 bits define the effective address. See Figure 7-11. The opword line definition is shown in Table 7-9.

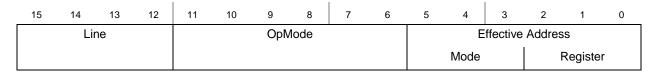


Figure 7-11. ColdFire Instruction Operation Word (Opword) Format

Opword[Line]	Instruction Class
0x0	Bit manipulation, Arithmetic and Logical Immediate
0x1	Move Byte
0x2	Move Long
0x3	Move Word
0x4	Miscellaneous
0x5	Add (ADDQ) and Subtract Quick (SUBQ), Set according to Condition Codes (Scc)
0x6	PC-relative change-of-flow instructions Conditional (Bcc) and unconditional (BRA) branches, subroutine calls (BSR)
0x7	Move Quick (MOVEQ), Move with sign extension (MVS) and zero fill (MVZ)
0x8	Logical OR (OR)
0x9	Subtract (SUB), Subtract Extended (SUBX)
0xA	MAC, Move 3-bit Quick (MOV3Q)
0xB	Compare (CMP), Exclusive-OR (EOR)
0xC	Logical AND (AND), Multiply Word (MUL)
0xD	Add (ADD), Add Extended (ADDX)
0xE	Arithmetic and logical shifts (ASL, ASR, LSL, LSR)
0xF	Write DDATA (WDDATA), Write Debug (WDEBUG)

Freescale Semiconductor 7-15

In the original M68000 ISA definition, lines A and F were effectively reserved for user-defined operations (line A) and co-processor instructions (line F). Accordingly, there are two unique exception vectors associated with illegal opwords in these two lines.

Any attempted execution of an illegal 16-bit opcode (except for line-A and line-F opcodes) generates an illegal instruction exception (vector 4). Additionally, any attempted execution of any non-MAC line-A and most line-F opcodes generate their unique exception types, vector numbers 10 and 11, respectively. ColdFire cores do not provide illegal instruction detection on the extension words on any instruction, including MOVEC.

The V1 ColdFire processor also detects two special cases involving illegal instruction conditions:

- 1. If execution of the stop instruction is attempted and neither low-power stop nor wait modes are enabled, the processor signals an illegal instruction.
- 2. If execution of the halt instruction is attempted and BDM is not enabled (XCSR[ENBDM] equals 0), the processor signals an illegal instruction.

In both cases, the processor response is then dependent on the state of CPUCR[IRD]— a reset event or a processor exception.

7.3.3.4 Privilege Violation

The default operation of the V1 ColdFire processor is the generation of an illegal opcode reset event if a privilege violation is detected. If CPUCR[IRD] is set, the reset is disabled and a processor exception is generated as detailed below.

The attempted execution of a supervisor mode instruction while in user mode generates a privilege violation exception. See *ColdFire Programmer's Reference Manual* for a list of supervisor-mode instructions.

There is one special case involving the HALT instruction. Normally, this opcode is a supervisor mode instruction, but if the debug module's CSR[UHE] is set, then this instruction can be also be executed in user mode for debugging purposes.

7.3.3.5 Trace Exception

To aid in program development, all ColdFire processors provide an instruction-by-instruction tracing capability. While in trace mode, indicated by setting of the SR[T] bit, the completion of an instruction execution (for all but the stop instruction) signals a trace exception. This functionality allows a debugger to monitor program execution.

The stop instruction has the following effects:

- 1. The instruction before the stop executes and then generates a trace exception. In the exception stack frame, the PC points to the stop opcode.
- 2. When the trace handler is exited, the stop instruction executes, loading the SR with the immediate operand from the instruction.
- 3. The processor then generates a trace exception. The PC in the exception stack frame points to the instruction after the stop, and the SR reflects the value loaded in the previous step.

If the processor is not in trace mode and executes a stop instruction where the immediate operand sets SR[T], hardware loads the SR and generates a trace exception. The PC in the exception stack frame points to the instruction after the stop, and the SR reflects the value loaded in step 2.

Because ColdFire processors do not support any hardware stacking of multiple exceptions, it is the responsibility of the operating system to check for trace mode after processing other exception types. As an example, consider a TRAP instruction execution while in trace mode. The processor initiates the trap exception and then passes control to the corresponding handler. If the system requires that a trace exception be processed, it is the responsibility of the trap exception handler to check for this condition (SR[T] in the exception stack frame set) and pass control to the trace handler before returning from the original exception.

7.3.3.6 **Unimplemented Line-A Opcode**

The default operation of the V1 ColdFire processor is the generation of an illegal opcode reset event if an unimplemented line-A opcode is detected. If CPUCR[IRD] is set, the reset is disabled and a processor exception is generated as detailed below.

A line-A opcode is defined when bits 15-12 of the opword are 0b1010. This exception is generated by the attempted execution of an undefined line-A opcode.

7.3.3.7 **Unimplemented Line-F Opcode**

The default operation of the V1 ColdFire processor is the generation of an illegal opcode reset event if an unimplemented line-F opcode is detected. If CPUCR[IRD] is set, the reset is disabled and a processor exception is generated as detailed below.

A line-F opcode is defined when bits 15-12 of the opword are 0b1111. This exception is generated when attempting to execute an undefined line-F opcode.

7.3.3.8 **Debug Interrupt**

See Chapter 29, "Version 1 ColdFire Debug (CF1_DEBUG)," for a detailed explanation of this exception, which is generated in response to a hardware breakpoint register trigger. The processor does not generate an IACK cycle, but rather calculates the vector number internally (vector number 12). Additionally, SR[M,I] are unaffected by the interrupt.

7.3.3.9 **RTE and Format Error Exception**

The default operation of the V1 ColdFire processor is the generation of an illegal address reset event if an RTE format error is detected. If CPUCR[ARD] is set, the reset is disabled and a processor exception is generated as detailed below.

When an RTE instruction is executed, the processor first examines the 4-bit format field to validate the frame type. For a ColdFire core, any attempted RTE execution (where the format is not equal to $\{4,5,6,7\}$) generates a format error. The exception stack frame for the format error is created without disturbing the original RTE frame and the stacked PC pointing to the RTE instruction.

MCF51MM256 Series Devices Reference Manual, Rev. 3 7-17 Freescale Semiconductor

The selection of the format value provides some limited debug support for porting code from M68000 applications. On M68000 family processors, the SR was located at the top of the stack. On those processors, bit 30 of the longword addressed by the system stack pointer is typically zero. Thus, if an RTE is attempted using this old format, it generates a format error on a ColdFire processor.

If the format field defines a valid type, the processor: (1) reloads the SR operand, (2) fetches the second longword operand, (3) adjusts the stack pointer by adding the format value to the auto-incremented address after the fetch of the first longword, and then (4) transfers control to the instruction address defined by the second longword operand within the stack frame.

7.3.3.10 TRAP Instruction Exception

The TRAP #n instruction always forces an exception as part of its execution and is useful for implementing system calls. The TRAP instruction may be used to change from user to supervisor mode.

This set of 16 instructions provides a similar but expanded functionality compared to the S08's SWI (software interrupt) instruction. Do not confuse these instructions and their functionality with the software-scheduled interrupt requests, which are handled like normal I/O interrupt requests by the interrupt controller. The processing of the software-scheduled IRQs can be masked, based on the interrupt priority level defined by the SR[I] field.

7.3.3.11 Unsupported Instruction Exception

If execution of a valid instruction is attempted but the required hardware is not present in the processor, an unsupported instruction exception is generated. The instruction functionality can then be emulated in the exception handler, if desired.

All ColdFire cores record the processor hardware configuration in the D0 register immediately after the negation of RESET. See Section 7.3.3.14, "Reset Exception," for details.

7.3.3.12 Interrupt Exception

Interrupt exception processing includes interrupt recognition and the fetch of the appropriate vector from the interrupt controller using an IACK cycle or using the previously-supplied vector number, under control of CPUCR[IAE]. See Chapter 10, "Interrupt Controller (CF1_INTC)," for details on the interrupt controller.

7.3.3.13 Fault-on-Fault Halt

The default operation of the V1 ColdFire processor is the generation of an illegal address reset event if a fault-on-fault halt condition is detected. If CPUCR[ARD] is set, the reset is disabled and the processor is halted as detailed below.

If a ColdFire processor encounters any type of fault during the exception processing of another fault, the processor immediately halts execution with the catastrophic fault-on-fault condition. A reset is required to to exit this state.

7.3.3.14 Reset Exception

Asserting the reset input signal (RESET) to the processor causes a reset exception. The reset exception has the highest priority of any exception; it provides for system initialization and recovery from catastrophic failure. Reset also aborts any processing in progress when the reset input is recognized. Processing cannot be recovered.

The reset exception places the processor in the supervisor mode by setting the SR[S] bit and disables tracing by clearing the SR[T] bit. This exception also clears the SR[M] bit and sets the processor's SR[I] field to the highest level (level 7, 0b111). Next, the VBR is initialized to zero (0x0000_0000). The control registers specifying the operation of any memories (e.g., cache and/or RAM modules) connected directly to the processor are disabled.

NOTE

Other implementation-specific registers are also affected. Refer to each module in this reference manual for details on these registers.

After the processor is granted the bus, it performs two longword read-bus cycles. The first longword at address $0x(00)00_0000$ is loaded into the supervisor stack pointer and the second longword at address $0x(00)00_0004$ is loaded into the program counter. After the initial instruction is fetched from memory, program execution begins at the address in the PC. If an access error or address error occurs before the first instruction is executed, the processor enters the fault-on-fault state.

ColdFire processors load hardware configuration information into the D0 and D1 general-purpose registers after system reset. The hardware configuration information is loaded immediately after the reset-in signal is negated. This allows an emulator to read out the contents of these registers via the BDM to determine the hardware configuration.

Information loaded into D0 defines the processor hardware configuration as shown in Figure 7-12.

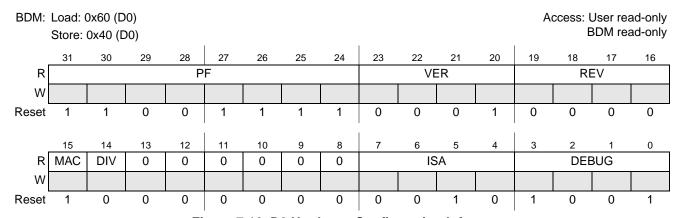


Figure 7-12. D0 Hardware Configuration Info

ColdFire Core

Table 7-10. D0 Hardware Configuration Info Field Description

Field	Description
31–24 PF	Processor family. This field is fixed to a hex value of 0xCF indicating a ColdFire core is present.
23–20 VER	ColdFire core version number. Defines the hardware microarchitecture version of ColdFire core. 0001 V1 ColdFire core (This is the value used for this device.) 0010 V2 ColdFire core 0011 V3 ColdFire core 0100 V4 ColdFire core 0101 V5 ColdFire core Else Reserved for future use
19–16 REV	Processor revision number. The default is 0b0000.
15 MAC	MAC present. This bit signals if the optional multiply-accumulate (MAC) execution engine is present in processor core. 0 MAC execute engine not present in core. 1 MAC execute engine is present in core. (This is the value used for this device.)
14 DIV	Divide present. This bit signals if the hardware divider (DIV) is present in the processor core. 0 Divide execute engine not present in core. (This is the value used for this device.) 1 Divide execute engine is present in core.
13–8	Reserved.
7–4 ISA	ISA revision. Defines the instruction-set architecture (ISA) revision level implemented in ColdFire processor core. 0000 ISA_A 0001 ISA_B 0010 ISA_C (This is the value used for this device.) 1000 ISA_A+ Else Reserved
3–0 DEBUG	Debug module revision number. Defines revision level of the debug module used in the ColdFire processor core. 0000 DEBUG_A 0001 DEBUG_B 0010 DEBUG_C 0011 DEBUG_D 0100 DEBUG_E 1001 DEBUG_B+ (This is the value used for this device.) 1011 DEBUG_D+ 1111 DEBUG_D+PST Buffer Else Reserved

Information loaded into D1 defines the local memory hardware configuration as shown in the figure below.

BDM: Load: 0x61 (D1) Access: User read-only BDM read-only Store: 0x41 (D1) FLASHSZ¹ W Reset **ROMSZ** SRAMSZ W Reset

Figure 7-13. D1 Hardware Configuration Info

Table 7-11. D1 Hardware Configuration Information Field Description

Field	Description
31–24	Reserved.
23–19 FLASHSZ	Flash bank size. 00000-01110 No flash 10000 64 KB flash 10010 128 KB flash 10011 96 KB flash 10010 256 KB flash (This is the value used for this device) 10110 512 KB flash Else Reserved for future use Note: The FLASHSZ size depends on memory size. The size shown is for 256 KB flash.
18–16	Reserved
15–12	Reserved, resets to 0b0001
11–8 ROMSZ	Boot ROM size. Indicates the size of the boot ROM. 0000 No boot ROM 0001 512 bytes 0010 1 KB 0011 2 KB 0100 4 KB 0101 8 KB (This is the value used for this device) 0110 16 KB 0111 32 KB Else Reserved for future use

Freescale Semiconductor 7-21

¹ The FLASHSZ size depends on memory size. The size shown is for 256 KB flash.

ColdFire Core

Table 7-11. D1 Hardware Configuration Information Field Description (Continued)

Field	Description
7–3	SRAM bank size.
SRAMSZ	00000 No SRAM
	00010 512 bytes
	00100 1 KB
	00110 2 KB
	01000 4 KB
	01010 8 KB
	01100 16 KB
	01111 24 KB
	01110 32 KB (This is the value used for this device)
	10000 64 KB
	10010 128 KB
	Else Reserved for future use
2–0	Reserved.

7.3.4 Instruction Execution Timing

This section presents processor instruction execution times in terms of processor-core clock cycles. The number of operand references for each instruction is enclosed in parentheses following the number of processor clock cycles. Each timing entry is presented as C(R/W) where:

- C is the number of processor clock cycles, including all applicable operand fetches and writes, and all internal core cycles required to complete the instruction execution.
- R/W is the number of operand reads (R) and writes (W) required by the instruction. An operation performing a read-modify-write function is denoted as (1/1).

This section includes the assumptions concerning the timing values and the execution time details.

7.3.4.1 Timing Assumptions

For the timing data presented in this section, these assumptions apply:

- 1. The OEP is loaded with the opword and all required extension words at the beginning of each instruction execution. This implies that the OEP does not wait for the IFP to supply opwords and/or extension words.
- 2. The OEP does not experience any sequence-related pipeline stalls. The most common example of stall involves consecutive store operations, excluding the MOVEM instruction. For all STORE operations (except MOVEM), certain hardware resources within the processor are marked as busy for two clock cycles after the final decode and select/operand fetch cycle (DSOC) of the store instruction. If a subsequent STORE instruction is encountered within this 2-cycle window, it is stalled until the resource again becomes available. Thus, the maximum pipeline stall involving consecutive STORE operations is two cycles. The MOVEM instruction uses a different set of resources and this stall does not apply.
- 3. The OEP completes all memory accesses without any stall conditions caused by the memory itself. Thus, the timing details provided in this section assume that an infinite zero-wait state memory is attached to the processor core.

MCF51MM256 Series Devices Reference Manual, Rev. 3

4. All operand data accesses are aligned on the same byte boundary as the operand size; for example, 16-bit operands aligned on 0-modulo-2 addresses, 32-bit operands aligned on 0-modulo-4 addresses.

The processor core decomposes misaligned operand references into a series of aligned accesses as shown in Table 7-12.

Bus Additional address[1:0] Size **Operations** C(R/W) 01 or 11 Word Byte, Byte 2(1/0) if read 1(0/1) if write 01 or 11 Byte, Word, 3(2/0) if read Long 2(0/2) if write Byte 2(1/0) if read 10 Word, Word Long 1(0/1) if write

Table 7-12. Misaligned Operand References

7.3.4.2 MOVE Instruction Execution Times

Table 7-13 lists execution times for MOVE.{B,W} instructions; Table 7-14 lists timings for MOVE.L.

NOTE

For all tables in this section, the execution time of any instruction using the PC-relative effective addressing modes is the same for the comparable An-relative mode.

ET with $\{\langle ea \rangle = (d16,PC)\}$ equals ET with $\{\langle ea \rangle = (d16,An)\}$ ET with $\{\langle ea \rangle = (d8,PC,Xi*SF)\}$ equals ET with $\{\langle ea \rangle = (d8,An,Xi*SF)\}$

The nomenclature xxx.wl refers to both forms of absolute addressing, xxx.w and xxx.l.

Table 7-13. MOVE Byte and Word Execution Times

Source				Destination	1		
Source	Rx	(Ax)	(Ax)+	-(Ax)	(d16,Ax)	(d8,Ax,Xi*SF)	xxx.wl
Dy	1(0/0)	1(0/1)	1(0/1)	1(0/1)	1(0/1)	2(0/1)	1(0/1)
Ay	1(0/0)	1(0/1)	1(0/1)	1(0/1)	1(0/1)	2(0/1)	1(0/1)
(Ay)	2(1/0)	3(1/1)	3(1/1)	3(1/1)	3(1/1)	4(1/1))	3(1/1)
(Ay)+	2(1/0)	3(1/1)	3(1/1)	3(1/1)	3(1/1)	4(1/1))	3(1/1)
-(Ay)	2(1/0)	3(1/1)	3(1/1)	3(1/1)	3(1/1)	4(1/1))	3(1/1)
(d16,Ay)	2(1/0)	3(1/1)	3(1/1)	3(1/1)	3(1/1)	_	_
(d8,Ay,Xi*SF)	3(1/0)	4(1/1)	4(1/1)	4(1/1)	_	_	
XXX.W	2(1/0)	3(1/1)	3(1/1)	3(1/1)	_	_	_
xxx.l	2(1/0)	3(1/1)	3(1/1)	3(1/1)	_	_	

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor 7-23

ColdFire Core

Table 7-13. MOVE Byte and Word Execution Times (Continued)

Source	Destination										
Source	Rx	(Ax)	(Ax)+	-(Ax)	(d16,Ax)	(d8,Ax,Xi*SF)	xxx.wl				
(d16,PC)	2(1/0)	3(1/1)	3(1/1)	3(1/1)	3(1/1)	_	_				
(d8,PC,Xi*SF)	3(1/0)	4(1/1)	4(1/1)	4(1/1))	_	_	_				
#xxx	1(0/0)	3(0/1)	3(0/1)	3(0/1)	1(0/1)	_	_				

Table 7-14. MOVE Long Execution Times

Sauraa	Destination										
Source -	Rx	(Ax)	(Ax)+	-(Ax)	(d16,Ax)	(d8,Ax,Xi*SF)	xxx.wl				
Dy	1(0/0)	1(0/1)	1(0/1)	1(0/1)	1(0/1)	2(0/1)	1(0/1)				
Ау	1(0/0)	1(0/1)	1(0/1)	1(0/1)	1(0/1)	2(0/1)	1(0/1)				
(Ay)	2(1/0)	2(1/1)	2(1/1)	2(1/1)	2(1/1)	3(1/1)	2(1/1)				
(Ay)+	2(1/0)	2(1/1)	2(1/1)	2(1/1)	2(1/1)	3(1/1)	2(1/1)				
-(Ay)	2(1/0)	2(1/1)	2(1/1)	2(1/1)	2(1/1)	3(1/1)	2(1/1)				
(d16,Ay)	2(1/0)	2(1/1)	2(1/1)	2(1/1)	2(1/1)	_	_				
(d8,Ay,Xi*SF)	3(1/0)	3(1/1)	3(1/1)	3(1/1)	_	_	_				
XXX.W	2(1/0)	2(1/1)	2(1/1)	2(1/1)	_	_	_				
xxx.l	2(1/0)	2(1/1)	2(1/1)	2(1/1)	_	_	_				
(d16,PC)	2(1/0)	2(1/1)	2(1/1)	2(1/1)	2(1/1)	_	_				
(d8,PC,Xi*SF)	3(1/0)	3(1/1)	3(1/1)	3(1/1)	_	_	_				
#xxx	1(0/0)	2(0/1)	2(0/1)	2(0/1)	_	_	_				

7.3.4.3 Standard One Operand Instruction Execution Times

Table 7-15. One Operand Instruction Execution Times

Opcode	<ea></ea>	Effective Address									
Opcode	<ea></ea>	Rn	(An)	(An)+	-(An)	(d16,An)	(d8,An,Xn*SF)	xxx.wl	#xxx		
BITREV	Dx	1(0/0)	_	_	_	_	_		_		
BYTEREV	Dx	1(0/0)	_	_	_	_	_		_		
CLR.B	<ea></ea>	1(0/0)	1(0/1)	1(0/1)	1(0/1)	1(0/1)	2(0/1)	1(0/1)	_		
CLR.W	<ea></ea>	1(0/0)	1(0/1)	1(0/1)	1(0/1)	1(0/1)	2(0/1)	1(0/1)	_		
CLR.L	<ea></ea>	1(0/0)	1(0/1)	1(0/1)	1(0/1)	1(0/1)	2(0/1)	1(0/1)	_		
EXT.W	Dx	1(0/0)	_	_	_	_	_	_	_		
EXT.L	Dx	1(0/0)	_	_	_	_	_	_	_		
EXTB.L	Dx	1(0/0)	_	_	_	_	_	_	_		

7-24 Freescale Semiconductor

Opendo	<ea></ea>		Effective Address								
Opcode	<ea></ea>	Rn	(An)	(An)+	-(An)	(d16,An)	(d8,An,Xn*SF)	xxx.wl	#xxx		
FF1	Dx	1(0/0)	_	_	_	_	_	_	_		
NEG.L	Dx	1(0/0)	_	_	_	_	_	_	_		
NEGX.L	Dx	1(0/0)	_	_	_	_	_	_	_		
NOT.L	Dx	1(0/0)	_	_	_	_	_	_	_		
SATS.L	Dx	1(0/0)	_	_	_	_	_	_	_		
SCC	Dx	1(0/0)	_	_	_	_	_	_	_		
SWAP	Dx	1(0/0)	_	_	_	_	_	_	_		
TAS.B	<ea></ea>	_	3(1/1)	3(1/1)	3(1/1)	3(1/1)	4(1/1)	3(1/1)	_		
TST.B	<ea></ea>	1(0/0)	2(1/0)	2(1/0)	2(1/0)	2(1/0)	3(1/0)	2(1/0)	1(0/0)		
TST.W	<ea></ea>	1(0/0)	2(1/0)	2(1/0)	2(1/0)	2(1/0)	3(1/0)	2(1/0)	1(0/0)		
TST.L	<ea></ea>	1(0/0)	2(1/0)	2(1/0)	2(1/0)	2(1/0)	3(1/0)	2(1/0)	1(0/0)		

7.3.4.4 Standard Two Operand Instruction Execution Times

Table 7-16. Two Operand Instruction Execution Times

					Effe	ctive Addre	ess		
Opcode	<ea></ea>	Rn	(An)	(An)+	-(An)	(d16,An) (d16,PC)	(d8,An,Xn*SF) (d8,PC,Xn*SF)	xxx.wl	#xxx
ADD.L	<ea>,Rx</ea>	1(0/0)	3(1/0)	3(1/0)	3(1/0)	3(1/0)	4(1/0)	3(1/0)	1(0/0)
ADD.L	Dy, <ea></ea>	_	3(1/1)	3(1/1)	3(1/1)	3(1/1)	4(1/1)	3(1/1)	_
ADDI.L	#imm,Dx	1(0/0)	_	_	_	_	_	_	_
ADDQ.L	#imm, <ea></ea>	1(0/0)	3(1/1)	3(1/1)	3(1/1)	3(1/1)	4(1/1)	3(1/1)	_
ADDX.L	Dy,Dx	1(0/0)	_	_	_	_	_	_	_
AND.L	<ea>,Rx</ea>	1(0/0)	3(1/0)	3(1/0)	3(1/0)	3(1/0)	4(1/0)	3(1/0)	1(0/0)
AND.L	Dy, <ea></ea>	_	3(1/1)	3(1/1)	3(1/1)	3(1/1)	4(1/1)	3(1/1)	_
ANDI.L	#imm,Dx	1(0/0)	_	_	_	_	_	_	_
ASL.L	<ea>,Dx</ea>	1(0/0)	_	_	_	_	_	_	1(0/0)
ASR.L	<ea>,Dx</ea>	1(0/0)	_	_	_	_	_	_	1(0/0)
BCHG	Dy, <ea></ea>	2(0/0)	4(1/1)	4(1/1)	4(1/1)	4(1/1)	5(1/1)	4(1/1)	_
BCHG	#imm, <ea></ea>	2(0/0)	4(1/1)	4(1/1)	4(1/1)	4(1/1)	_	_	_
BCLR	Dy, <ea></ea>	2(0/0)	4(1/1)	4(1/1)	4(1/1)	4(1/1)	5(1/1)	4(1/1)	_
BCLR	#imm, <ea></ea>	2(0/0)	4(1/1)	4(1/1)	4(1/1)	4(1/1)	_	_	_
BSET	Dy, <ea></ea>	2(0/0)	4(1/1)	4(1/1)	4(1/1)	4(1/1)	5(1/1)	4(1/1)	_
BSET	#imm, <ea></ea>	2(0/0)	4(1/1)	4(1/1)	4(1/1)	4(1/1)	_	_	_

Freescale Semiconductor 7-25

Table 7-16. Two Operand Instruction Execution Times (Continued)

					Effe	ctive Addre	ess		
Opcode	<ea></ea>	Rn	(An)	(An)+	-(An)	(d16,An) (d16,PC)	(d8,An,Xn*SF) (d8,PC,Xn*SF)	xxx.wl	#xxx
BTST	Dy, <ea></ea>	2(0/0)	3(1/0)	3(1/0)	3(1/0)	3(1/0)	4(1/0)	3(1/0)	_
BTST	#imm, <ea></ea>	1(0/0)	3(1/0)	3(1/0)	3(1/0)	3(1/0)	_	_	_
CMP.B	<ea>,Rx</ea>	1(0/0)	3(1/0)	3(1/0)	3(1/0)	3(1/0)	4(1/0)	3(1/0)	1(0/0)
CMP.W	<ea>,Rx</ea>	1(0/0)	3(1/0)	3(1/0)	3(1/0)	3(1/0)	4(1/0)	3(1/0)	1(0/0)
CMP.L	<ea>,Rx</ea>	1(0/0)	3(1/0)	3(1/0)	3(1/0)	3(1/0)	4(1/0)	3(1/0)	1(0/0)
CMPI.B	#imm,Dx	1(0/0)	_	_	_	_	_	_	_
CMPI.W	#imm,Dx	1(0/0)	_	_	_	_	_	_	_
CMPI.L	#imm,Dx	1(0/0)	_	_	_	_	_	_	_
EOR.L	Dy, <ea></ea>	1(0/0)	3(1/1)	3(1/1)	3(1/1)	3(1/1)	4(1/1)	3(1/1)	_
EORI.L	#imm,Dx	1(0/0)	_	_	_	_	_	_	_
LEA	<ea>,Ax</ea>	_	1(0/0)	_	_	1(0/0)	2(0/0)	1(0/0)	_
LSL.L	<ea>,Dx</ea>	1(0/0)	_	_	_	_	_	_	1(0/0)
LSR.L	<ea>,Dx</ea>	1(0/0)	_	_	_	_	_	_	1(0/0)
MOVEQ.L	#imm,Dx	_	_	_	_	_	_	_	1(0/0)
OR.L	<ea>,Rx</ea>	1(0/0)	3(1/0)	3(1/0)	3(1/0)	3(1/0)	4(1/0)	3(1/0)	1(0/0)
OR.L	Dy, <ea></ea>	_	3(1/1)	3(1/1)	3(1/1)	3(1/1)	4(1/1)	3(1/1)	_
ORI.L	#imm,Dx	1(0/0)	_	_	_	_	_	_	_
SUB.L	<ea>,Rx</ea>	1(0/0)	3(1/0)	3(1/0)	3(1/0)	3(1/0)	4(1/0)	3(1/0)	1(0/0)
SUB.L	Dy, <ea></ea>	_	3(1/1)	3(1/1)	3(1/1)	3(1/1)	4(1/1)	3(1/1)	_
SUBI.L	#imm,Dx	1(0/0)	_	_	_	_	_	_	_
SUBQ.L	#imm, <ea></ea>	1(0/0)	3(1/1)	3(1/1)	3(1/1)	3(1/1)	4(1/1)	3(1/1)	_
SUBX.L	Dy,Dx	1(0/0)	_				_	_	_

7.3.4.5 Miscellaneous Instruction Execution Times

Table 7-17. Miscellaneous Instruction Execution Times

Opcode	FA	Effective Address								
	<ea></ea>	Rn	(An)	(An)+	-(An)	(d16,An)	(d8,An,Xn*SF)	xxx.wl	#xxx	
LINK.W	Ay,#imm	2(0/1)	_	_	_	_	_	_	_	
MOV3Q.L	#imm, <ea></ea>	1(0/0)	1(0/1)	1(0/1)	1(0/1)	1(0/1)	2(0/1)	1(0/1)	_	
MOVE.L	Ay,USP	3(0/0)	_	_	_	_	_	_	_	
MOVE.L	USP,Ax	3(0/0)	_	_	_	_	_	_	_	
MOVE.W	CCR,Dx	1(0/0)	_	_	_	_	_	_	_	
MOVE.W	<ea>,CCR</ea>	1(0/0)	_	_	_	_	_	_	1(0/0)	
MOVE.W	SR,Dx	1(0/0)	_	_	_	_	_	_	_	

Table 7-17. Miscellaneous Instruction Execution Times (Continued)

Oncodo	.EA.	Effective Address									
Opcode	<ea></ea>	Rn	(An)	(An)+	-(An)	(d16,An)	(d8,An,Xn*SF)	xxx.wl	#xxx		
MOVE.W	<ea>,SR</ea>	7(0/0)	_	_	_	_	_	_	7(0/0) ²		
MOVEC	Ry,Rc	9(0/1)	_	_	_	_	_	_	_		
MOVEM.L	<ea>,and list</ea>	_	1+n(n/0)	_	_	1+n(n/0)	_	_	_		
MOVEM.L	and list, <ea></ea>	_	1+n(0/n)	_	_	1+n(0/n)	_	_	_		
MVS	<ea>,Dx</ea>	1(0/0)	2(1/0)	2(1/0)	2(1/0)	2(1/0)	3(1/0)	2(1/0)	1(0/0)		
MVZ	<ea>,Dx</ea>	1(0/0)	2(1/0)	2(1/0)	2(1/0)	2(1/0)	3(1/0)	2(1/0)	1(0/0)		
NOP		3(0/0)	_	_	_	_	_	_	_		
PEA	<ea></ea>	_	2(0/1)	_	_	2(0/1) 4	3(0/1) ⁵	2(0/1)	_		
PULSE		1(0/0)	_	_	_	_	_	_	_		
STLDSR	#imm	_	_	_	_	_	_		5(0/1)		
STOP	#imm	_	_	_	_	_	_	_	3(0/0) ³		
TRAP	#imm	_	_	_	_	_	_		12(1/2)		
TPF		1(0/0)	_	_	_	_	_	_	_		
TPF.W		1(0/0)	_	_	_	_	_	_	_		
TPF.L		1(0/0)	_	_	_	_	_	_	_		
UNLK	Ax	2(1/0)	_	_	_	_	_	_	_		
WDDATA	<ea></ea>	_	3(1/0)	3(1/0)	3(1/0)	3(1/0)	4(1/0)	3(1/0)			
WDEBUG	<ea></ea>	_	5(2/0)	_	_	5(2/0)	_	_			

¹The n is the number of registers moved by the MOVEM opcode.

7.3.4.6 MAC Instruction Execution Times

Table 7-18. MAC Instruction Execution Times

		Effective Address							
Opcode	<ea></ea>	Rn	(An)	(An)+	-(An)	(d16,An)	(d8,An, Xn*SF)	xxx.wl	#xxx
MAC.L	Ry, Rx	3(0/0)	_	_	_	_	_	_	_
MAC.L	Ry, Rx, <ea>, Rw</ea>	_	(1/0)	(1/0)	(1/0)	(1/0) ¹	_	_	_
MAC.W	Ry, Rx	1(0/0)	_	_	_	_	_	_	_
MAC.W	Ry, Rx, <ea>, Rw</ea>	_	(1/0)	(1/0)	(1/0)	(1/0) ¹	_	_	_

Freescale Semiconductor 7-27

²If a MOVE.W #imm,SR instruction is executed and imm[13] equals 1, the execution time is 1(0/0).

³The execution time for STOP is the time required until the processor begins sampling continuously for interrupts.

⁴PEA execution times are the same for (d16,PC).

⁵PEA execution times are the same for (d8,PC,Xn*SF).

Table 7-18. MAC Instruction Execution Times (Continued)

					Effectiv	e Address	3		
Opcode	<ea></ea>	Rn	(An)	(An)+	-(An)	(d16,An)	(d8,An, Xn*SF)	xxx.wl	#xxx
MOVE.L	<ea>y, Racc</ea>	1(0/0)	_	_	_	_	_	_	1(0/0)
MOVE.L	<ea>y, MACSR</ea>	2(0/0)	_	_	_	_	_	_	2(0/0)
MOVE.L	<ea>y, Rmask</ea>	1(0/0)	_	_	_	_	_	_	1(0/0)
MOVE.L	Racc, <ea>x</ea>	1(0/0) ²	_	_	_	_	_	_	_
MOVE.L	MACSR, <ea>x</ea>	1(0/0)	_	_	_	_	_	_	_
MOVE.L	Rmask, <ea>x</ea>	1(0/0)	_	_	_	_	_	_	_
MSAC.L	Ry, Rx	3(0/0)	_	_	_	_	_	_	_
MSAC.W	Ry, Rx	1(0/0)	_	_	_	_	_	_	_
MSAC.L	Ry, Rx, <ea>, Rw</ea>	_	(1/0)	(1/0)	(1/0)	(1/0) ¹	_	_	_
MSAC.W	Ry, Rx, <ea>, Rw</ea>	_	(1/0)	(1/0)	(1/0)	(1/0) ¹	_	_	_
MULS.L	<ea>y, Dx</ea>	5(0/0)	(1/0)	(1/0)	(1/0)	(1/0)	_	_	_
MULS.W	<ea>y, Dx</ea>	3(0/0)	(1/0)	(1/0)	(1/0)	(1/0)	(1/0)	(1/0)	3(0/0)
MULU.L	<ea>y, Dx</ea>	5(0/0)	(1/0)	(1/0)	(1/0)	(1/0)	_	_	_
MULU.W	<ea>y, Dx</ea>	3(0/0)	(1/0)	(1/0)	(1/0)	(1/0)	(1/0)	(1/0)	3(0/0)

¹ Effective address of (d16,PC) not supported

7.3.4.7 Branch Instruction Execution Times

Table 7-19. General Branch Instruction Execution Times

		Effective Address							
Opcode <ea></ea>	<ea></ea>	Rn	(An)	(An)+	-(An)	(d16,An) (d16,PC)	(d8,An,Xi*SF) (d8,PC,Xi*SF)	xxx.wl	#xxx
BRA		_	_	_	_	2(0/1)	_	_	
BSR		_	_		_	3(0/1)	_		_
JMP	<ea></ea>		3(0/0)	_	_	3(0/0)	4(0/0)	3(0/0)	_
JSR	<ea></ea>	_	3(0/1)	_	_	3(0/1)	4(0/1)	3(0/1)	_
RTE		_	_	7(2/0)	_	_	_	_	_
RTS		_	_	5(1/0)	_	_	_	_	_

Storing the accumulator requires one additional processor clock cycle when rounding is performed

Table 7-20. Bcc Instruction Execution Times

Opcode	Forward	Forward	Backward	Backward
	Taken	Not Taken	Taken	Not Taken
Всс	3(0/0)	1(0/0)	2(0/0)	3(0/0)

ColdFire Core

7-30 Freescale Semiconductor

Chapter 8 Multiply-Accumulate Unit (MAC)

8.1 Introduction

This chapter describes the functionality, microarchitecture, and performance of the multiply-accumulate (MAC) unit in the ColdFire family of processors.

8.1.1 Overview

The MAC design provides a set of DSP operations that can improve the performance of embedded code while supporting the integer multiply instructions of the baseline ColdFire architecture.

The MAC provides functionality in three related areas:

- 1. Signed and unsigned integer multiplication
- 2. Multiply-accumulate operations supporting signed and unsigned integer operands as well as signed, fixed-point, and fractional operands
- 3. Miscellaneous register operations

The MAC features a three-stage execution pipeline optimized for 16-bit operands, with a 16x16 multiply array and a single 32-bit accumulator.

The three areas of functionality are addressed in detail in following sections. The logic required to support this functionality is contained in a MAC module (Figure 8-1).

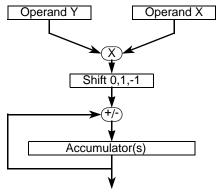


Figure 8-1. Multiply-Accumulate Functionality Diagram

8.1.1.1 Introduction to the MAC

The MAC is an extension of the basic multiplier in most microprocessors. It is typically implemented in hardware within an architecture and supports rapid execution of signal processing algorithms in fewer

Multiply-Accumulate Unit (MAC)

cycles than comparable non-MAC architectures. For example, small digital filters can tolerate some variance in an algorithm's execution time, but larger, more complicated algorithms such as orthogonal transforms may have more demanding speed requirements beyond scope of any processor architecture and may require full DSP implementation.

To balance speed, size, and functionality, the ColdFire MAC is optimized for a small set of operations that involve multiplication and cumulative additions. Specifically, the multiplier array is optimized for single-cycle pipelined operations with a possible accumulation after product generation. This functionality is common in many signal processing applications. The ColdFire core architecture is also modified to allow an operand to be fetched in parallel with a multiply, increasing overall performance for certain DSP operations.

Consider a typical filtering operation where the filter is defined as in Equation 8-1.

$$y(i) = \sum_{k=1}^{N-1} a(k)y(i-k) + \sum_{k=0}^{N-1} b(k)x(i-k)$$
 Eqn. 8-1

Here, the output y(i) is determined by past output values and past input values. This is the general form of an infinite impulse response (IIR) filter. A finite impulse response (FIR) filter can be obtained by setting coefficients a(k) to zero. In either case, the operations involved in computing such a filter are multiplies and product summing. To show this point, reduce Equation 8-1 to a simple, four-tap FIR filter, shown in Equation 8-2, in which the accumulated sum is a past data values and coefficients sum.

$$y(i) = \sum_{k=0}^{3} b(k)x(i-k) = b(0)x(i) + b(1)x(i-1) + b(2)x(i-2) + b(3)x(i-3)$$
 Eqn. 8-2

8.2 Memory Map/Register Definition

The following table and sections explain the MAC registers:

Width BDM¹ Register Access **Reset Value** Section/Page (bits) Read: 0xE4 MAC Status Register (MACSR) 8 R/W 0x00 8.2.1/8-2 Write: 0xC4 Read: 0xE5 MAC Address Mask Register (MASK) 16 R/W 0xFFFF 8.2.2/8-4 Write: 0xC5 Undefined Read: 0xE6 Accumulator (ACC) 32 R/W 8.2.3/8-5 Write: 0xC6

Table 8-1. MAC Memory Map

8.2.1 MAC Status Register (MACSR)

The MAC status register (MACSR) contains a 4-bit operational mode field and condition flags. Operational mode bits control whether operands are signed or unsigned and whether they are treated as integers or fractions. These bits also control the overflow/saturation mode and the way in which rounding is performed. Negative, zero, and overflow condition flags are also provided.

For more information see Chapter 29, "Version 1 ColdFire Debug (CF1_DEBUG)."

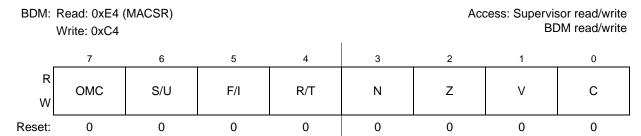


Figure 8-2. MAC Status Register (MACSR)

Table 8-2. MACSR Field Descriptions

Field	Description
7 OMC	Overflow saturation mode. Enables or disables saturation mode on overflow. If set, the accumulator is set to the appropriate constant (see S/U field description) on any operation that overflows the accumulator. After saturation, the accumulator remains unaffected by any other MAC or MSAC instructions until the overflow bit is cleared or the accumulator is directly loaded.
6 S/U	Signed/unsigned operations. In integer mode: S/U determines whether operations performed are signed or unsigned. It also determines the accumulator value during saturation, if enabled. O Signed numbers. On overflow, if OMC is enabled, the accumulator saturates to the most positive (0x7FFF_FFFF) or the most negative (0x8000_0000) number, depending on the instruction and the product value that overflowed. 1 Unsigned numbers. On overflow, if OMC is enabled, the accumulator saturates to the smallest value (0x0000_0000) or the largest value (0xFFFF_FFFF), depending on the instruction. In fractional mode: S/U controls rounding while storing the accumulator to a general-purpose register. O Move accumulator without rounding to a 16-bit value. Accumulator is moved to a general-purpose register as a 32-bit value. 1 The accumulator is rounded to a 16-bit value using the round-to-nearest (even) method when moved to a general-purpose register. See Section 8.3.1.1, "Rounding". The resulting 16-bit value is stored in the lower word of the destination register. The upper word is zero-filled. This rounding procedure does not affect the accumulator value.
5 F/I	Fractional/integer mode. Determines whether input operands are treated as fractions or integers. O Integers can be represented in signed or unsigned notation, depending on the value of S/U. Fractions are represented in signed, fixed-point, two's complement notation. Values range from -1 to 1 - 2 ⁻¹⁵ for 16-bit fractions and -1 to 1 - 2 ⁻³¹ for 32-bit fractions. See Section 8.3.4, "Data Representation."
4 R/T	Round/truncate mode. Controls rounding procedure for MSAC.L instructions when in fractional mode. 0 Truncate. The product's lsbs are dropped before it is combined with the accumulator. 1 Round-to-nearest (even). The 64-bit product of two 32-bit, fractional operands is rounded to the nearest 32-bit value. If the low-order 32 bits equal 0x8000_0000, the upper 32 bits are rounded to the nearest even (lsb = 0) value. See Section 8.3.1.1, "Rounding".
3 N	Negative. Set if the msb of the result is set, otherwise cleared. N is affected only by MAC, MSAC, and load operations; it is not affected by MULS and MULU instructions.
2 Z	Zero. Set if the result equals zero, otherwise cleared. This bit is affected only by MAC, MSAC, and load operations; it is not affected by MULS and MULU instructions.

Freescale Semiconductor 8-3

Table 8-2. MACSR Field Descriptions (Continued)

Field	Description
	Overflow. Set if an arithmetic overflow occurs, implying that the result cannot be represented in the operand size. After set, V remains set until the accumulator register is loaded with a new value or MACSR is directly loaded. MULS and MULU instructions do not change this value.
0	Carry. This field is always zero.

Table 8-3 summarizes the interaction of the MACSR[S/U,F/I,R/T] control bits.

Table 8-3. Summary of S/U, F/I, and R/T Control Bits

S/U	F/I	R/T	Operational Modes
0	0	Х	Signed, integer
0	1	0	Signed, fractional Truncate on MAC.L and MSAC.L No round on accumulator stores
0	1	1	Signed, fractional Round on MAC.L and MSAC.L No round on accumulator stores
1	0	Х	Unsigned, integer
1	1	0	Signed, fractional Truncate on MAC.L and MSAC.L Round-to-16-bits on accumulator stores
1	1	1	Signed, fractional Round on MAC.L and MSAC.L Round-to-16-bits on accumulator stores

8.2.2 Mask Register (MASK)

The MASK register performs a simple AND with the operand address for MAC instructions. The processor calculates the normal operand address and, if enabled, that address is then ANDed with {0xFFFF, MASK[15:0]} to form the final address. Therefore, with certain MASK bits cleared, the operand address can be constrained to a certain memory region. This is used primarily to implement circular queues with the (An)+ addressing mode.

This minimizes the addressing support required for filtering, convolution, or any routine that implements a data array as a circular queue. For MAC + MOVE operations, the MASK contents can optionally be included in all memory effective address calculations. The syntax is as follows:

mac.sz Ry, RxSF, <ea>y&, Rw

The & operator enables the MASK use and causes bit 5 of the extension word to be set. The exact algorithm for the use of MASK is:


```
if extension word, bit [5] = 1, the MASK bit, then
    if <ea> = (An)
        oa = An & {0xFFFF, MASK}

if <ea> = (An)+
    oa = An
        An = (An + 4) & {0xFFFF, MASK}

if <ea> =-(An)
    oa = (An - 4) & {0xFFFF, MASK}
    An = (An - 4) & {0xFFFF, MASK}

if <ea> = (d16,An)
    oa = (An + se_d16) & {0xFFFF0x, MASK}
```

Here, *oa* is the calculated operand address and *se_d16* is a sign-extended 16-bit displacement. For auto-addressing modes of post-increment and pre-decrement, the updated An value calculation is also shown.

Use of the post-increment addressing mode, {(An)+} with the MASK is suggested for circular queue implementations.

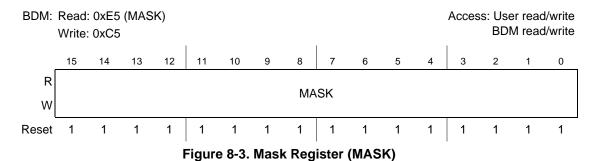


Table 8-4. MASK Field Descriptions

Field	Description
15–0 MASK	Performs a simple AND with the operand address for MAC instructions.

8.2.3 Accumulator Register (ACC)

The accumulator register store 32-bits of the MAC operation result.

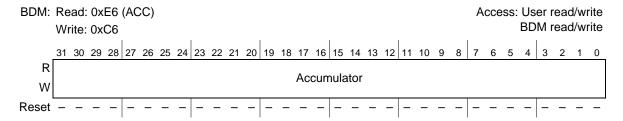


Figure 8-4. Accumulator Register (ACC)

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor

8-5

Table 8-5. ACC Field Descriptions

Field	Description
31–0 Accumulator	Store 32-bits of the result of the MAC operation.

8.3 Functional Description

The MAC speeds execution of ColdFire integer-multiply instructions (MULS and MULU) and provides additional functionality for multiply-accumulate operations. By executing MULS and MULU in the MAC, execution times are minimized and deterministic compared to the 2-bit/cycle algorithm with early termination that the OEP normally uses if no MAC hardware is present.

The added MAC instructions to the ColdFire ISA provide for the multiplication of two numbers, followed by the addition or subtraction of the product to or from the value in the accumulator. Optionally, the product may be shifted left or right by 1 bit before addition or subtraction. Hardware support for saturation arithmetic can be enabled to minimize software overhead when dealing with potential overflow conditions. Multiply-accumulate operations support 16- or 32-bit input operands in these formats:

- Signed integers
- Unsigned integers
- Signed, fixed-point, fractional numbers

The MAC is optimized for 16-bit multiplications to keep the area consumption low. Two 16-bit operands produce a 32-bit product. Longword operations are performed by reusing the 16-bit multiplier array at the expense of a small amount of extra control logic. Again, the product of two 32-bit operands is a 32-bit result. For longword integer operations, only the least significant 32 bits of the product are calculated. For fractional operations, the entire 64-bit product is calculated and then truncated or rounded to a 32-bit result using the round-to-nearest (even) method.

Because the multiplier array is implemented in a three-stage pipeline, MAC instructions have an effective issue rate of 1 cycle for word operations, 3 cycles for longword integer operations, and 4 cycles for 32-bit fractional operations.

All arithmetic operations use register-based input operands, and summed values are stored in the accumulator. Therefore, an additional MOVE instruction is needed to store data in a general-purpose register.

The need to move large amounts of data presents an obstacle to obtaining high throughput rates in DSP engines. Existing ColdFire instructions can accommodate these requirements. A MOVEM instruction can efficiently move large data blocks. The ability to load an operand simultaneously from memory into a register and execute a MAC instruction makes some DSP operations such as filtering and convolution more manageable.

The programming model includes a mask register (MASK), which can optionally be used to generate an operand address during MAC + MOVE instructions. The register application with auto-increment addressing mode supports efficient implementation of circular data queues for memory operands.

8.3.1 Fractional Operation Mode

This section describes behavior when the fractional mode is used (MACSR[F/I] is set).

8.3.1.1 Rounding

When the processor is in fractional mode, there are two operations during which rounding can occur:

- 1. The 32-bit accumulator is moved into a general purpose register. If MACSR[S/U] is cleared, the accumulator is stored as is in the destination register; if it is set, the 32-bit value is rounded to a 16-bit value using the round-to-nearest (even) method. The resulting 16-bit number is stored in the lower word of the destination register. The upper word is zero-filled. The accumulator value is unaffected by this rounding procedure.
- 2. Execution of a MAC (or MSAC) instruction with 32-bit operands. If MACSR[R/T] is zero, multiplying two 32-bit numbers creates a 64-bit product truncated to the upper 32 bits; otherwise, it is rounded using round-to-nearest (even) method.

To understand the round-to-nearest-even method, consider the following example involving the rounding of a 32-bit number, R0, to a 16-bit number. Using this method, the 32-bit number is rounded to the closest 16-bit number possible. Let the high-order 16 bits of R0 be named R0.U and the low-order 16 bits be R0.L.

- If R0.L is less than 0x8000, the result is truncated to the value of R0.U.
- If R0.L is greater than 0x8000, the upper word is incremented (rounded up).
- If R0.L is 0x8000, R0 is half-way between two 16-bit numbers. In this case, rounding is based on the lsb of R0.U, so the result is always even (lsb = 0).
 - If the lsb of R0.U equals 1 and R0.L equals 0x8000, the number is rounded up.
 - If the lsb of R0.U equals 0 and R0.L equals 0x8000, the number is rounded down.

This method minimizes rounding bias and creates as statistically correct an answer as possible.

The rounding algorithm is summarized in the following pseudocode:

The round-to-nearest-even technique is also known as convergent rounding.

8.3.1.2 Saving and Restoring the MAC Programming Model

The presence of rounding logic in the MAC output datapath requires special care during the MAC's save/restore process. In particular, any result rounding modes must be disabled during the save/restore process so the exact bit-wise contents of the MAC registers are accessed. Consider the memory structure containing the MAC programming model:

```
struct macState {
    int acc;
    int mask;
```

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor 8-7

Multiply-Accumulate Unit (MAC)

```
int macsr;
} macState;
```

The following assembly language routine shows the proper sequence for a correct MAC state save. This code assumes all Dn and An registers are available for use, and the memory location of the state save is defined by A7.

```
MAC_state_save:

move.l macsr,d7 ; save the macsr
clr.l d0 ; zero the register to ...
move.l d0,macsr ; disable rounding in the macsr
move.l acc,d5 ; save the accumulator
move.l mask,d6 ; save the address mask
movem.l #0x00e0,(a7) ; move the state to memory
```

This code performs the MAC state restore:

```
MAC_state_restore:
    movem.l (a7),#0x00e0; restore the state from memory
    move.l #0,macsr ; disable rounding in the macsr
    move.l d5,acc ; restore the accumulator
    move.l d6,mask ; restore the address mask
    move.l d7,macsr ; restore the macsr
```

Executing this sequence type can correctly save and restore the exact state of the MAC programming model.

8.3.1.3 MULS/MULU

MULS and MULU are unaffected by fractional-mode operation; operands remain assumed to be integers.

8.3.1.4 Scale Factor in MAC or MSAC Instructions

The scale factor is ignored while the MAC is in fractional mode.

8.3.2 MAC Instruction Set Summary

Table 8-6 summarizes MAC unit instructions.

Table 8-6. MAC Instruction Summary

Command	Mnemonic	Description
Multiply Signed	muls <ea>y,Dx</ea>	Multiplies two signed operands yielding a signed result
Multiply Unsigned	mulu <ea>y,Dx</ea>	Multiplies two unsigned operands yielding an unsigned result
Multiply Accumulate	mac Ry,RxSF msac Ry,RxSF	Multiplies two operands, then adds/subtracts the product to/from the accumulator
Multiply Accumulate with Load	mac Ry,RxSF,Rw msac Ry,RxSF,Rw	Multiplies two operands, combines the product to the accumulator while loading a register with the memory operand
Load Accumulator	move.l {Ry,#imm},ACC	Loads the accumulator with a 32-bit operand
Store Accumulator	move.l ACC,Rx	Writes the contents of the accumulator to a CPU register

MCF51MM256 Series Devices Reference Manual, Rev. 3

8-8 Freescale Semiconductor

		,
Command	Mnemonic	Description
Load MACSR	move.l {Ry,#imm},MACSR	Writes a value to MACSR
Store MACSR	move.1 MACSR,Rx	Write the contents of MACSR to a CPU register
Store MACSR to CCR	move.1 MACSR,CCR	Write the contents of MACSR to the CCR
Load MAC Mask Reg	move.l {Ry, #imm}, MASK	Writes a value to the MASK register
Store MAC Mask Reg	move.l MASK,Rx	Writes the contents of the MASK to a CPU register

Table 8-6. MAC Instruction Summary (Continued)

8.3.3 MAC Instruction Execution Times

The instruction execution times for the MAC can be found in Section 7.3.4.6, "MAC Instruction Execution Times".

8.3.4 Data Representation

MACSR[S/U,F/I] selects one of the following three modes, where each mode defines a unique operand type:

- 1. Two's complement signed integer: In this format, an N-bit operand value lies in the range $-2^{(N-1)}$ < operand < $2^{(N-1)}$ 1. The binary point is right of the lsb.
- 2. Unsigned integer: In this format, an N-bit operand value lies in the range $0 \le operand \le 2^N 1$. The binary point is right of the lsb.
- 3. Two's complement, signed fractional: In an N-bit number, the first bit is the sign bit. The remaining bits signify the first N-1 bits after the binary point. Given an N-bit number, $a_{N-1}a_{N-2}a_{N-3}... a_2a_1a_0$, its value is given by the equation in Equation 8-3.

value =
$$-(1 \cdot a_{N-1}) + \sum_{i=0}^{N-2} 2^{-(i+1-N)} \cdot ai$$

Eqn. 8-3

This format can represent numbers in the range -1 $\stackrel{\scriptscriptstyle i=0}{\leq}$ operand ≤ 1 - $2^{(N\text{-}1)}.$

For words and longwords, the largest negative number that can be represented is -1, whose internal representation is 0x8000 and $0x8000_0000$, respectively. The largest positive word is 0x7FFF or $(1 - 2^{-15})$; the most positive longword is $0x7FFF_FFFF$ or $(1 - 2^{-31})$.

8.3.5 MAC Opcodes

MAC opcodes are described in the ColdFire Programmer's Reference Manual.

Remember the following:

- Unless otherwise noted, the value of MACSR[N,Z] is based on the result of the final operation that involves the product and the accumulator.
- The overflow (V) flag is managed differently. It is set if the complete product cannot be represented as a 32-bit value (this applies to 32 × 32 integer operations only) or if the combination of the product with the accumulator cannot be represented in the given number of bits. This indicator is

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor 8-9

Multiply-Accumulate Unit (MAC)

treated as a sticky flag, meaning after set, it remains set until the accumulator or the MACSR is directly loaded. See Section 8.2.1, "MAC Status Register (MACSR)".

- The optional 1-bit shift of the product is specified using the notation {<< |>>} SF, where <<1 indicates a left shift and >>1 indicates a right shift. The shift is performed before the product is added to or subtracted from the accumulator. Without this operator, the product is not shifted. If the MAC is in fractional mode (MACSR[F/I] is set), SF is ignored and no shift is performed. Because a product can overflow, the following guidelines are implemented:
 - For unsigned word and longword operations, a zero is shifted into the product on right shifts.
 - For signed, word operations, the sign bit is shifted into the product on right shifts unless the product is zero. For signed, longword operations, the sign bit is shifted into the product unless an overflow occurs or the product is zero, in which case a zero is shifted in.
 - For all left shifts, a zero is inserted into the lsb position.

The following pseudocode explains basic MAC or MSAC instruction functionality. This example is presented as a case statement covering the three basic operating modes with signed integers, unsigned integers, and signed fractionals. Throughout this example, a comma-separated list in curly brackets, {}, indicates a concatenation operation.

```
switch (MACSR[6:5])
                          /* MACSR[S/U, F/I] */
   case 0:
                         /* signed integers */
      if (MACSR.OMC == 0 | MACSR.V == 0)
         then {
               MACSR.V = 0
                /* select the input operands */
                if (sz == word)
                   then \{if (U/Ly == 1)\}
                             then operandY[31:0] = \{\text{sign-extended Ry}[31], \text{Ry}[31:16]\}
                             else operandY[31:0] = {sign-extended Ry[15], Ry[15:0]}
                          if (U/Lx == 1)
                             then operandX[31:0] = \{\text{sign-extended Rx}[31], \text{Rx}[31:16]\}
                             else operandX[31:0] = \{ sign-extended Rx[15], Rx[15:0] \}
                   else \{\text{operandY}[31:0] = \text{Ry}[31:0]
                          operandX[31:0] = Rx[31:0]
                /* perform the multiply */
                product[63:0] = operandY[31:0] * operandX[31:0]
                /* check for product overflow */
                if ((product[63:31] != 0x0000_0000_0) && (product[63:31] != 0xffff_ffff_1))
                                 /* product overflow */
                   then {
                         MACSR.V = 1
                         if (inst == MSAC && MACSR.OMC == 1)
                             then if (product[63] == 1)
                                     then result[31:0] = 0x7fff_fff
                                     else result[31:0] = 0x8000\_0000
                             else if (MACSR.OMC == 1)
                                     then /* overflowed MAC,
                                              saturationMode enabled */
                                           if (product[63] == 1)
                                              then result[31:0] = 0x8000_0000
```

MCF51MM256 Series Devices Reference Manual, Rev. 3

8-10 Freescale Semiconductor


```
else result[31:0] = 0x7fff_fff
   }
/* scale product before combining with accumulator */
switch (SF)
               /* 2-bit scale factor */
    case 0:
                /* no scaling specified */
       break;
    case 1:
                /* SF = "<< 1" */
       if (product[31] ^ product[30])
          then \{MACSR.V = 1
                if (inst == MSAC && MACSR.OMC == 1)
                   then if (product[63] == 1)
                           then result[31:0] = 0x7fff_fff
                           else result[31:0] = 0x8000\_0000
                   else if (MACSR.OMC == 1)
                         then /* overflowed MAC,
                                 saturationMode enabled */
                              if (product[63] == 1)
                                 then result[31:0] = 0x8000_0000
                                 else result[31:0] = 0x7fff_fff
          else product[31:0] = {product[30:0], 0}
       break;
    case 2:
                /* reserved encoding */
       break;
    case 3:
                /* SF = ">> 1" */
       if (MACSR.OMC == 0 | MACSR.V = 0)
          then product[31:0] = {product[31], product[31:1]}
       break;
}
/* combine with accumulator */
if (MACSR.V == 0)
   then {if (inst == MSAC)
            then result[31:0] = acc[31:0] - product[31:0]
            else result[31:0] = acc[31:0] + product[31:0]
/* check for accumulation overflow */
if (accumulationOverflow == 1)
   then \{MACSR.V = 1
         if (MACSR.OMC == 1)
            then /* accumulation overflow,
                    saturationMode enabled */
                 if (result[31] == 1)
                     then result[31:0] = 0x7fff_fff
                    else result[31:0] = 0x8000_{-0000}
   }
/* transfer the result to the accumulator */
acc[31:0] = result[31:0]
MACSR.N = result[31]
if (result[31:0] == 0 \times 0000 - 0000)
   then MACSR.Z = 1
   else MACSR.Z = 0
```

MCF51MM256 Series Devices Reference Manual, Rev. 3

}

Freescale Semiconductor 8-11

Multiply-Accumulate Unit (MAC)

```
break;
case 1:
case 3:
                      /* signed fractionals */
   if (MACSR.OMC == 0 \mid MACSR.V == 0)
      then {
            MACSR.V = 0
            if (sz == word)
               then \{if (U/Ly == 1)\}
                         then operandY[31:0] = \{Ry[31:16], 0x0000\}
                         else operandY[31:0] = \{Ry[15:0], 0x0000\}
                      if (U/Lx == 1)
                         then operandX[31:0] = \{Rx[31:16], 0x0000\}
                         else operandX[31:0] = \{Rx[15:0], 0x0000\}
                else \{\text{operandY}[31:0] = \text{Ry}[31:0]
                      operandX[31:0] = Rx[31:0]
            /* perform the multiply */
            product[63:0] = (operandY[31:0] * operandX[31:0]) << 1</pre>
            /* check for product rounding */
            if (MACSR.R/T == 1)
                then { /* perform convergent rounding */
                      if (product[31:0] > 0x8000_0000)
                         then product[63:32] = product[63:32] + 1
                         else if ((product[31:0] == 0x8000_0000) && (product[32] == 1))
                                  then product[63:32] = product[63:32] + 1
                }
            /* combine with accumulator */
            if (inst == MSAC)
                then result[31:0] = acc[31:0] - product[63:32]
                else result[31:0] = acc[31:0] + product[63:32]
            /* check for accumulation overflow */
            if (accumulationOverflow == 1)
                then \{MACSR.V = 1
                      if (MACSR.OMC == 1)
                         then /* accumulation overflow,
                                  saturationMode enabled */
                              if (result[31] == 1)
                                  then result[31:0] = 0x7fff_fff
                                  else result[31:0] = 0x8000_0000
                }
            /* transfer the result to the accumulator */
            acc[31:0] = result[31:0]
            MACSR.N = result[31]
            if (result[31:0] == 0 \times 0000_{-0000})
               then MACSR.Z = 1
               else MACSR.Z = 0
      }
break;
case 2:
                      /* unsigned integers */
```

MCF51MM256 Series Devices Reference Manual, Rev. 3


```
if (MACSR.OMC == 0 | MACSR.V == 0)
   then {
         MACSR.V = 0
         /* select the input operands */
         if (sz == word)
            then \{if (U/Ly == 1)\}
                     then operandY[31:0] = \{0x0000, Ry[31:16]\}
                     else operandY[31:0] = \{0x0000, Ry[15:0]\}
                  if (U/Lx == 1)
                      then operandX[31:0] = \{0x0000, Rx[31:16]\}
                     else operandX[31:0] = \{0x0000, Rx[15:0]\}
            else {operandY[31:0] = Ry[31:0]
                  operandX[31:0] = Rx[31:0]
         /* perform the multiply */
         product[63:0] = operandY[31:0] * operandX[31:0]
         /* check for product overflow */
         if (product[63:32] != 0x0000_0000)
            then {
                          /* product overflow */
                  MACSR.V = 1
                  if (inst == MSAC && MACSR.OMC == 1)
                     then result[31:0] = 0x0000_{-0000}
                     else if (MACSR.OMC == 1)
                              then /* overflowed MAC,
                                      saturationMode enabled */
                                   result[31:0] = 0xffff_ffff
            }
         /* scale product before combining with accumulator */
         switch (SF)
                        /* 2-bit scale factor */
             case 0:
                          /* no scaling specified */
                break;
                         /* SF = "<< 1" */
             case 1:
                if (product[31] == 1)
                   then \{MACSR.V = 1
                          if (inst == MSAC && MACSR.OMC == 1)
                             then result[31:0] = 0 \times 0000 \ 0000
                             else if (MACSR.OMC == 1)
                                     then /* overflowed MAC,
                                              saturationMode enabled */
                                          result[31:0] = 0xffff_ffff
                   else product[31:0] = {product[30:0], 0}
                break;
             case 2:
                         /* reserved encoding */
                break;
             case 3:
                          /* SF = ">> 1" */
                product[31:0] = {0, product[31:1]}
                break;
         }
         /* combine with accumulator */
         if (MACSR.V == 0)
```

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor 8-13

Multiply-Accumulate Unit (MAC)

```
then {if (inst == MSAC)
                         then result[31:0] = acc[31:0] - product[31:0]
                         else result[31:0] = acc[31:0] + product[31:0]
            /* check for accumulation overflow */
            if (accumulationOverflow == 1)
               then \{MACSR.V = 1
                      if (inst == MSAC && MACSR.OMC == 1)
                         then result[31:0] = 0 \times 00000\_0000
                         else if (MACSR.OMC == 1)
                              then /* overflowed MAC,
                                       saturationMode enabled */
                                    result[31:0] = 0xffff_ffff
               }
            /* transfer the result to the accumulator */
            acc[31:0] = result[31:0]
            MACSR.N = result[31]
            if (result[31:0] == 0 \times 00000\_0000)
               then MACSR.Z = 1
               else MACSR.Z = 0
break; }
```

MCF51MM256 Series Devices Reference Manual, Rev. 3

8-14

Freescale Semiconductor

Chapter 9 Rapid GPIO (RGPIO)

9.1 Introduction

The Rapid GPIO (RGPIO) module provides a 16-bit general-purpose I/O module directly connected to the processor's high-speed 32-bit local bus. This connection plus support for single-cycle, zero wait-state data transfers allows the RGPIO module to provide improved pin performance when compared to more traditional GPIO modules located on the internal slave peripheral bus.

Many of the pins associated with a device may be used for several different functions. Their primary functions are to provide external interfaces to access off-chip resources. When not used for their primary function, many of the pins may be used as general-purpose digital I/O (GPIO) pins. The definition of the exact pin functions and the affected signals is specific to each device. Every GPIO port, including the RGPIO module, has registers that configure, monitor, and control the port pins.

NOTE

 Most pin functions default to GPIO and must be software configured before using RGPIO.

Rapid GPIO (RGPIO)

Figure 9-1 shows the MCF51MM256 series block diagram with the RGPIO highlighted.

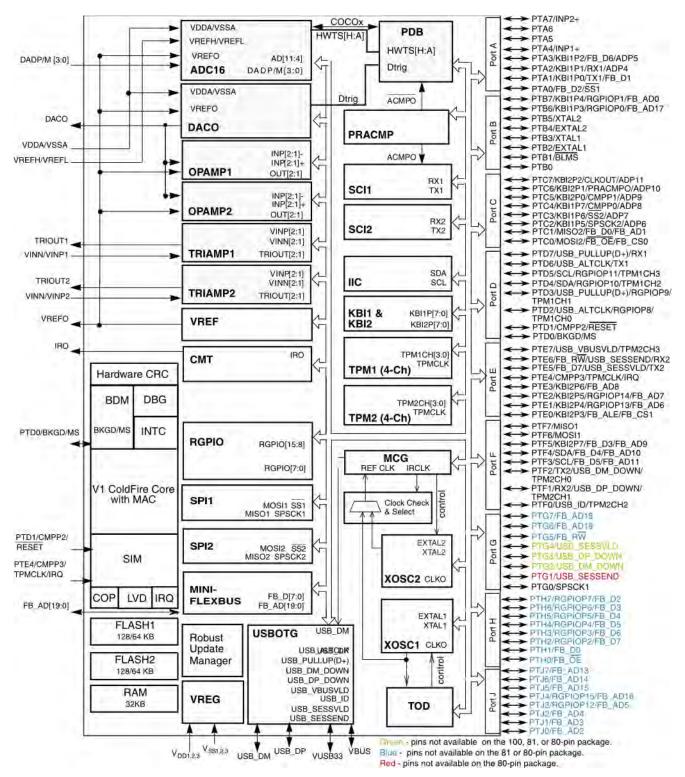


Figure 9-1. MCF51MM256 Series Block Diagram Highlighting RGPIO Block and Pins

9-2 Freescale Semiconductor

9.1.1 Overview

The RGPIO module provides 16-bits of high-speed GPIO functionality, mapped to the processor's bus. The key features of this module include:

- 16 bits of high-speed GPIO functionality connected to the processor's local 32-bit bus
- Memory-mapped device connected to the ColdFire core's local bus
 - Support for all access sizes: byte, word, and longword
 - All reads and writes complete in a single data phase cycle for zero wait-state response
- Data bits can be accessed directly or via alternate addresses to provide set, clear, and toggle functions
 - Alternate addresses allow set, clear, toggle functions using simple store operations without the need for read-modify-write references
- Unique data direction and pin enable control registers
- Package pin toggle rates typically 1.5–3.5x faster than comparable pin mapped onto peripheral bus

A simplified block diagram of the RGPIO module is shown in Figure 9-2. The details of the pin muxing and pad logic are device-specific.

MCF51MM256 Series Devices Reference Manual, Rev. 3

Rapid GPIO (RGPIO)

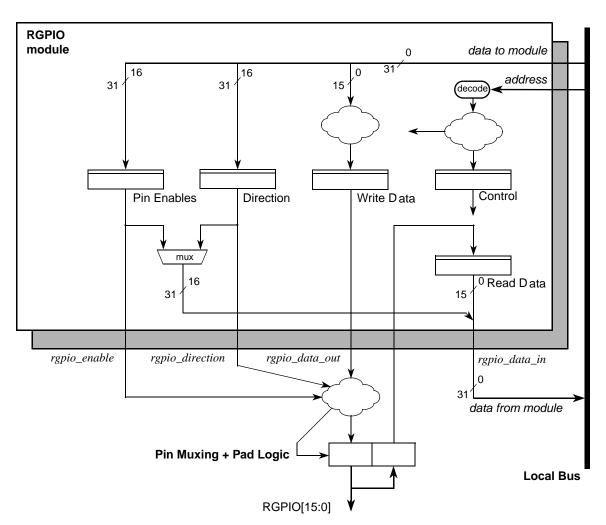


Figure 9-2. RGPIO Block Diagram

9.1.2 Features

The major features of the RGPIO module providing 16 bits of high-speed general-purpose input/output are:

- Small memory-mapped device connected to the processor's local bus
 - All memory references complete in a single cycle to provide zero wait-state responses
 - Located in processor's high-speed clock domain
- Simple programming model
 - Four 16-bit registers, mapped as three program-visible locations
 - Register for pin enables
 - Register for controlling the pin data direction
 - Register for storing output pin data
 - Register for reading current pin state

- The two data registers (read, write) are mapped to a single program-visible location
- Alternate addresses to perform data set, clear, and toggle functions using simple writes
- Separate read and write programming model views enable simplified driver software
 - Support for any access size (byte, word, or longword)

9.1.3 Modes of Operation

The RGPIO module does not support any special modes of operation. As a memory-mapped device located on the processor's high-speed local bus, it responds based strictly on memory address and does not consider the operating mode (supervisor, user) of its references.

9.2 External Signal Description

9.2.1 Overview

As shown in Figure 9-2, the RGPIO module's interface to external logic is indirect via the device pin-muxing and pad logic. For a list of the associated RGPIO input/output signals, see Table 9-1.

Table 9-1. RGPIO Module External I/O Signals

Signal Name	Туре	Description	
RGPIO[15:0]	I/O	RGPIO Data Input/Output	

9.2.2 Detailed Signal Descriptions

Table 9-2 provides descriptions of the RGPIO module's input and output signals.

Table 9-2. RGPIO Detailed Signal Descriptions

Signal	I/O	Description			
RGPIO[15:0]	I/O	•	Data Input/Output. When configured as an input, the state of this signal is reflected in the read data register. When configured as an output, this signal is the output of the write data register.		
		State Meaning	Asserted— Input: Indicates the RGPIO pin was sampled as a logic high at the time of the read. Output: Indicates a properly-enabled RGPIO output pin is to be driven high. Negated— Input: Indicates the RGPIO pin was sampled as a logic low at the time of the read. Output: Indicates a properly-enabled RGPIO output pin is to be driven low.		
		Timing	Assertion/Negation— Input: Anytime. The input signal is sampled at the rising-edge of the processor's high-speed clock on the data phase cycle of a read transfer of this register. Output: Occurs at the rising-edge of the processor's high-speed clock on the data phase cycle of a write transfer to this register. This output is asynchronously cleared by system reset.		

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor 9-5

Rapid GPIO (RGPIO)

9.3 Memory Map/Register Definition

The RGPIO module provides a compact 16-byte programming model based at a system memory address of $0x(00)C0_0000$ (noted as RGPIO_BASE throughout the chapter). As previously noted, the programming model views are different between reads and writes as this enables simplified software for manipulation of the RGPIO pins.

Additionally, the RGPIO programming model is defined with a 32-bit organization. The basic size of each program-visible register is 16 bits, but the programming model may be referenced using byte (8-bit), word (16-bit) or longword (32-bit) accesses. Performance is typically maximized using 32-bit accesses.

NOTE

Writes to the two-byte fields at RGPIO_BASE + 0x8 and RGPIO_BASE + 0xC are allowed, but do not affect any program-visible register within the RGPIO module.

Table 9-3. RGPIO Write Memory Map

Offset Address	Register	Width (bits)	Access	Reset Value	Section/Page
0x00	RGPIO Data Direction Register (RGPIO_DIR)	16	W	0x0000	9.3.1/9-7
0x02	RGPIO Write Data Register (RGPIO_DATA)	16	W	0x0000	9.3.2/9-7
0x04	RGPIO Pin Enable Register (RGPIO_ENB)	16	W	0x0000	9.3.3/9-8
0x06	RGPIO Write Data Clear Register (RGPIO_CLR)	16	W	N/A	9.3.4/9-8
0x0A	RGPIO Write Data Set Register (RGPIO_SET)	16	W	N/A	9.3.5/9-9
0x0E	RGPIO Write Data Toggle Register (RGPIO_TOG)	16	W	N/A	9.3.6/9-9

Table 9-4. RGPIO Read Memory Map

Offset Address	Register	Width (bits)	Access	Reset Value	Section/Page
0x00	RGPIO Data Direction Register (RGPIO_DIR)	16	R	0x0000	9.3.1/9-7
0x02	RGPIO Write Data Register (RGPIO_DATA)	16	R	0x0000	9.3.2/9-7
0x04	RGPIO Pin Enable Register (RGPIO_ENB)	16	R	0x0000	9.3.3/9-8
0x06	RGPIO Write Data Register (RGPIO_DATA)	16	R	0x0000	9.3.2/9-7
0x08	RGPIO Data Direction Register (RGPIO_DIR)	16	R	0x0000	9.3.1/9-7
0x0A	RGPIO Write Data Register (RGPIO_DATA)	16	R	0x0000	9.3.2/9-7
0x0C	RGPIO Data Direction Register (RGPIO_DIR)	16	R	0x0000	9.3.1/9-7
0x0E	RGPIO Write Data Register (RGPIO_DATA)	16	R	0x0000	9.3.2/9-7

RGPIO Data Direction (RGPIO DIR) 9.3.1

The read/write RGPIO_DIR register defines whether a properly-enabled RGPIO pin is configured as an input or output:

- Setting any bit in RGPIO_DIR configures a properly-enabled RGPIO port pin as an output
- Clearing any bit in RGPIO_DIR configures a properly-enabled RGPIO port pin as an input

At reset, all bits in the RGPIO_DIR are cleared.

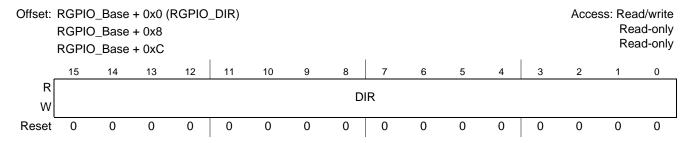


Figure 9-3. RGPIO Data Direction Register (RGPIO_DIR)

Table 9-5. RGPIO DIR Field Descriptions

Field	Description
DIR	Data direction. 0 A properly-enabled RGPIO pin is configured as an input 1 A properly-enabled RGPIO pin is configured as an output

9.3.2 **RGPIO Data (RGPIO DATA)**

The RGPIO DATA register specifies the write data for a properly-enabled RGPIO output pin or the sampled read data value for a properly-enabled input pin. An attempted read of the RGPIO_DATA register returns undefined data for disabled pins, since the data value is dependent on the device-level pin muxing and pad implementation. The RGPIO_DATA register is read/write. At reset, all bits in the RGPIO_DATA registers are cleared.

To set bits in a RGPIO DATA register, directly set the RGPIO DATA bits or set the corresponding bits in the RGPIO SET register. To clear bits in the RGPIO DATA register, directly clear the RGPIO DATA bits, or clear the corresponding bits in the RGPIO CLR register. Setting a bit in the RGPIO TOG register inverts (toggles) the state of the corresponding bit in the RGPIO DATA register.

MCF51MM256 Series Devices Reference Manual, Rev. 3 Freescale Semiconductor 9-7

Rapid GPIO (RGPIO)

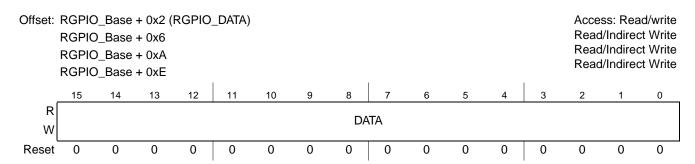


Figure 9-4. RGPIO Data Register (RGPIO_DATA)

Table 9-6. RGPIO_DATA Field Descriptions

Field	Description
	RGPIO data. 0 A properly-enabled RGPIO output pin is driven with a logic 0, or a properly-enabled RGPIO input pin was read as a logic 0 1 A properly-enabled RGPIO output pin is driven with a logic 1, or a properly-enabled RGPIO input pin was read as a logic 1

9.3.3 RGPIO Pin Enable (RGPIO_ENB)

The RGPIO_ENB register configures the corresponding package pin as a RGPIO pin instead of the normal GPIO pin mapped onto the peripheral bus.

The RGPIO_ENB register is read/write. At reset, all bits in the RGPIO_ENB are cleared, disabling the RGPIO functionality.

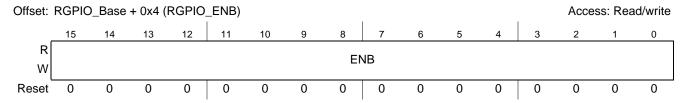


Figure 9-5. RGPIO Enable Register (RGPIO_ENB)

Table 9-7. RGPIO_ENB Field Descriptions

Field	Description
	Enable pin for RGPIO The corresponding package pin is configured for use as a normal GPIO pin, not a RGPIO The corresponding package pin is configured for use as a RGPIO pin

9.3.4 RGPIO Clear Data (RGPIO_CLR)

The RGPIO_CLR register provides a mechanism to clear specific bits in the RGPIO_DATA by performing a simple write. Clearing a bit in RGPIO_CLR clears the corresponding bit in the RGPIO_DATA register.

MCF51MM256 Series Devices Reference Manual, Rev. 3

Setting it has no effect. The RGPIO_CLR register is write-only; reads of this address return the RGPIO_DATA register.

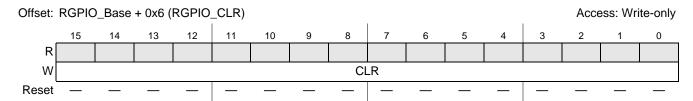


Figure 9-6. RGPIO Clear Data Register (RGPIO_CLR)

Table 9-8. RGPIO_CLR Field Descriptions

Field	Description
	Clear data bit 0 Clears the corresponding bit in the RGPIO_DATA register 1 No effect

9.3.5 RGPIO Set Data (RGPIO_SET)

The RGPIO_SET register provides a mechanism to set specific bits in the RGPIO_DATA register by performing a simple write. Setting a bit in RGPIO_SET asserts the corresponding bit in the RGPIO_DATA register. Clearing it has no effect. The RGPIO_SET register is write-only; reads of this address return the RGPIO_DATA register.

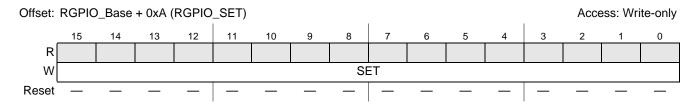


Figure 9-7. RGPIO Set Data Register (RGPIO_SET)

Table 9-9. RGPIO_SET Field Descriptions

Field	Description
SET	Set data bit 0 No effect 1 Sets the corresponding bit in the RGPIO_DATA register

9.3.6 RGPIO Toggle Data (RGPIO_TOG)

The RGPIO_TOG register provides a mechanism to invert (toggle) specific bits in the RGPIO_DATA register by performing a simple write. Setting a bit in RGPIO_TOG inverts the corresponding bit in the RGPIO_DATA register. Clearing it has no effect. The RGPIO_TOG register is write-only; reads of this address return the RGPIO_DATA register.

Freescale Semiconductor 9-9

Rapid GPIO (RGPIO)

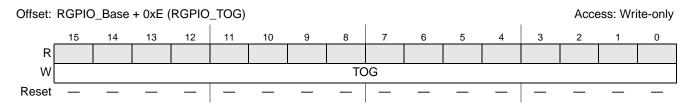


Figure 9-8. RGPIO Toggle Data Register (RGPIO_TOG)

Table 9-10. RGPIO TOG Field Descriptions

Field	Description
15–0 TOG	Toggle data. 0 No effect 1 Inverts the corresponding bit in RGPIO_DATA

9.4 Functional Description

The RGPIO module is a relatively-simple design with its behavior controlled by the program-visible registers defined within its programming model.

The RGPIO module is connected to the processor's local two-stage pipelined bus with the stages of the ColdFire core's operand execution pipeline (OEP) mapped directly onto the bus. This structure allows the processor access to the RGPIO module for single-cycle pipelined reads and writes with a zero wait-state response (as viewed in the system bus data phase stage).

9.5 Initialization Information

The reset state of the RGPIO module disables the entire 16-bit data port. Prior to using the RGPIO port, software typically:

- Enables the appropriate pins in RGPIO_ENB
- Configures the pin direction in RGPIO_DIR
- Defines the contents of the data register (RGPIO_DATA)

9.6 Application Information

This section examines the relative performance of the RGPIO output pins for two simple applications

- The processor executes a loop to toggle an output pin for a specific number of cycles, producing a square-wave output
- The processor transmits a 16-bit message using a three-pin SPI-like interface with a serial clock, serial chip select, and serial data bit.

In both applications, the relative speed of the GPIO output is presented as a function of the location of the output bit (RGPIO versus peripheral bus GPIO).

Application 1: Simple Square-Wave Generation 9.6.1

In this example, several different instruction loops are executed, each generating a square-wave output with a 50% duty cycle. For this analysis, the executed code is mapped into the processor's RAM. This configuration is selected to remove any jitter from the output square wave caused by the limitations defined by the two-cycle flash memory accesses and restrictions on the initiation of a flash access. The following instruction loops were studied:

- BCHG LOOP In this loop, a bit change instruction was executed using the GPIO data byte as the operand. This instruction performs a read-modify-write operation and inverts the addressed bit. A pulse counter is decremented until the appropriate number of square-wave pulses have been generated.
- SET+CLR LOOP For this construct, two store instructions are executed: one to set the GPIO data pin and another to clear it. Single-cycle NOP instructions (the tpf opcode) are included to maintain the 50% duty cycle of the generated square wave. The pulse counter is decremented until the appropriate number of square-wave pulse have been generated.

The square-wave output frequency was measured and the relative performance results are presented in Table 9-11. The relative performance is stated as a fraction of the processor's operating frequency, defined as f MHz. The performance of the BCHG loop operating on a GPIO output is selected as the reference.

	Peripheral Bus-mapped GPIO			RGPIO		
Loop	Sq-Wave Frequency	Frequency @ CPU f = 50 MHz	Relative Speed	Sq-Wave Frequency	Frequency @ CPU f = 50 MHz	Relative Speed
bchg	$(1/24) \times f MHz$	2.083 MHz	1.00x	$(1/14) \times f MHz$	3.571 MHz	1.71x
set+clr (+toggle)	$(1/12) \times f MHz$	4.167 MHz	2.00x	$(1/8) \times f MHz$	6.250 MHz	3.00x

Table 9-11. Square-Wave Output Performance

NOTE

The square-wave frequency is measured from rising-edge to rising-edge, where the output wave has a 50% duty cycle.

9.6.2 **Application 2: 16-bit Message Transmission using SPI Protocol**

In this second example, a 16-bit message is transmitted using three programmable output pins. The output pins include a serial clock, an active-high chip select, and the serial data bit. The software is configured to sample the serial data bit at the rising-edge of the clock with the data sent in a most-significant to least-significant bit order. The resulting 3-bit output is shown in Figure 9-9.

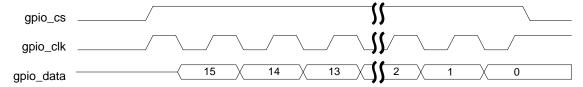


Figure 9-9. GPIO SPI Example Timing Diagram

MCF51MM256 Series Devices Reference Manual, Rev. 3 Freescale Semiconductor 9-11

Rapid GPIO (RGPIO)

For this example, the processing of the SPI message is considerably more complex than the generation of a simple square wave of the previous example. The code snippet used to extract the data bit from the message and build the required GPIO data register writes is shown in Figure 9-10.

```
# subtest: send a 16-bit message via a SPI interface using a RGPIO
                     # the SPI protocol uses a 3-bit value: clock, chip-select, data
                     # the data is centered around the rising-edge of the clock
                             align
                                     16
                     send_16b_spi_message_rgpio:
00510: 4fef fff4
                             lea
                                     -12(%sp),%sp
                                                         # allocate stack space
00514: 48d7 008c
                             movm.1 &0x8c,(%sp)
                                                        # save d2,d3,d7
00518: 3439 0080 0582
                             mov.w RAM_BASE+message2,%d2
                                                             # get 16-bit message
0051e: 760f
                             movq.l &15,%d3
                                                        # static shift count
00520: 7e10
                             movq.l &16,%d7
                                                         # message bit length
00522: 207c 00c0 0003
                                                       # pointer to low-order data byte
                             mov.1
                                     &RGPIO_DATA+1,%a0
00528: 203c 0000 ffff
                                     &0xffff,%d0
                                                         # data value for _ENB and _DIR regs
                             mov.1
0052e: 3140 fffd
                                     %d0,-3(%a0)
                                                        # set RGPIO_DIR register
                             mov.w
00532: 3140 0001
                                     %d0,1(%a0)
                                                        # set RGPIO_ENB register
                             mov.w
                                                        # d1[17:16] = {clk, cs}
00536: 223c 0001 0000
                             mov.l
                                     &0x10000,%d1
0053c: 2001
                             mov.1
                                     %d1,%d0
                                                         # copy into temp reg
                                     %d3,%d0
                                                        # align in d0[2:0]
0053e: e6a8
                             lsr.l
00540: 5880
                             addq.l &4,%d0
                                                        # set clk = 1
00542: 1080
                                                        # initialize data
                                     %d0,(%a0)
                             mov.b
00544: 6002
                             bra.b
                                     T.%1
                             align
                     L%1:
                                                         # d1[17:15] = {clk, cs, data}
00548: 3202
                                     %d2,%d1
                             mov.w
0054a: 2001
                                     %d1,%d0
                                                        # copy into temp reg
                             mov.1
0054c: e6a8
                                     %d3,%d0
                                                        # align in d0[2:0]
                             lsr.l
0054e: 1080
                                                        # transmit data with clk = 0
                             mov.b
                                     %d0,(%a0)
00550: 5880
                             addq.l &4,%d0
                                                        # force clk = 1
00552: e38a
                             lsl.l
                                     &1,%d2
                                                         # d2[15] = new message data bit
00554: 51fc
                             tpf
                                                         # preserve 50% duty cycle
00556: 51fc
                             tpf
00558: 51fc
                             tpf
0055a: 51fc
                             tpf
0055c: 1080
                             mov.b
                                     %d0,(%a0)
                                                         # transmit data with clk = 1
0055e: 5387
                             subq.1
                                     &1,%d7
                                                         # decrement loop counter
00560: 66e6
                             bne.b
                                     L%1
00562: c0bc 0000 fff5
                                     &0xfff5,%d0
                                                         # negate chip-select
                             and.l
00568: 1080
                             mov.b
                                     %d0,(%a0)
                                                         # update gpio
0056a: 4cd7 008c
                                                         # restore d2,d3,d7
                             movm.1 (%sp),&0x8c
0056e: 4fef 000c
                                                         # deallocate stack space
                             lea
                                     12(%sp),%sp
00572: 4e75
                             rts
```

Figure 9-10. GPIO SPI Code Example

The resulting SPI performance, as measured in the effective Mbps transmission rate for the 16-bit message, is shown in Table 9-12.

MCF51MM256 Series Devices Reference Manual, Rev. 3

Table 9-12. Emulated SPI Performance using GPIO Outputs

Peripheral Bus-map	ped GPIO	RGPIO	
SPI Speed @ Relative CPU f = 50 MHz Speed		SPI Speed @ CPU f = 50 MHz	Relative Speed
2.063 Mbps	1.00x	3.809 Mbps	1.29x

Rapid GPIO (RGPIO)

9-14 Freescale Semiconductor

Chapter 10 Interrupt Controller (CF1_INTC)

Introduction 10.1

The CF1_INTC interrupt controller (CF1_INTC) is intended for use in low-cost microcontroller designs using the Version 1 (V1) ColdFire processor core. In keeping with the general philosophy for devices based on this low-end 32-bit processor, the interrupt controller generally supports less programmability compared to similar modules in other ColdFire microcontrollers and embedded microprocessors. However, CF1 INTC provides the required functionality with a minimal silicon cost.

These requirements guide the CF1 INTC module definition to support Freescale's Controller Continuum:

- The priorities of the interrupt requests between comparable HCS08 and V1 ColdFire devices are identical.
- Supports a mode of operation (through software convention with hardware assists) equivalent to the S08's interrupt processing with only one level of nesting.
- Leverages the current ColdFire interrupt controller programming model and functionality, but with a minimal hardware implementation and cost.

Table 10-1 provides a high-level architectural comparison between HCS08 and ColdFire exception processing as these differences are important in the definition of the CF1 INTC module. Throughout this do pr

	Attribute HOOSS NA CALIFIE				
	Table 10-1. Exception Processing Comparison				
1	rocess an interrupt exception.				
l	ocument, the term IRQ refers to an interrupt request and ISR refers to an interrupt service routine to				
•	decising as these differences are important in the definition of the efficience. Throughout this				

Attribute	HCS08	V1 ColdFire	
Exception Vector Table	32 two-byte entries, fixed location at upper end of memory	103 four-byte entries, located at lower end of memory at reset, relocatable with the VBR	
More on Vectors	2 for CPU + 30 for IRQs, reset at upper address	64 for CPU + 39 for IRQs, reset at lowest address	
Exception Stack Frame	5-byte frame: CCR, A, X, PC	8-byte frame: F/V, SR, PC; General-purpose registers (An, Dn) must be saved/restored by the ISR	
Interrupt Levels	1 = f(CCR[I])	7= f(SR[I]) with automatic hardware support for nesting	
Non-Maskable IRQ Support	No	Yes, with level 7 interrupts	
Core-enforced IRQ Sensitivity	No	Level 7 is edge sensitive, else level sensitive	
INTC Vectoring	Fixed priorities and vector assignments	Fixed priorities and vector assignments, plus any 2 IRQs can be remapped as the highest priority level 6 requests	

Freescale Semiconductor 10-1

Table 10-1. Exception Processing Comparison (Continued)

Attribute	HCS08	V1 ColdFire
Software IACK	No	Yes
Exit Instruction from ISR	RTI	RTE

10.1.1 Overview

Interrupt exception processing includes interrupt recognition, aborting the current instruction execution stream, storing an 8-byte exception stack frame in the memory, calculation of the appropriate vector, and passing control to the specified interrupt service routine.

Unless specifically noted otherwise, all ColdFire processors sample for interrupts once during each instruction's execution during the first cycle of execution in the OEP. Additionally, all ColdFire processors use an instruction restart exception model.

The ColdFire processor architecture defines a 3-bit interrupt priority mask field in the processor's status register (SR[I]). This field, and the associated hardware, support seven levels of interrupt requests with the processor providing automatic nesting capabilities. The levels are defined in descending numeric order with $7 > 6 \dots > 1$. Level 7 interrupts are treated as non-maskable, edge-sensitive requests while levels 6-1 are maskable, level-sensitive requests. The SR[I] field defines the processor's current interrupt level. The processor continuously compares the encoded IRQ level from CF1_INTC against SR[I]. Recall that interrupt requests are inhibited for all levels less than or equal to the current level, except the edge-sensitive level 7 request that cannot be masked.

Exception processing for ColdFire processors is streamlined for performance and includes all actions from detecting the fault condition to the initiation of fetch for the first handler instruction. Exception processing is comprised of four major steps.

- 1. The processor makes an internal copy of the status register (SR) and enters supervisor mode by setting SR[S] and disabling trace mode by clearing SR[T]. The occurrence of an interrupt exception also forces the master mode (M) bit to clear and the interrupt priority mask (I) to set to the level of the current interrupt request.
- 2. The processor determines the exception vector number. For all faults except interrupts, the processor performs this calculation based on the exception type. For interrupts, the processor performs an IACK bus cycle to obtain the vector number from the interrupt controller if CPUCR[IAE] equals 1. The IACK cycle is mapped to special locations within the interrupt controller's IPS address space with the interrupt level encoded in the address. If CPUCR[IAE] equals 0, the processor uses the vector number supplied by the interrupt controller at the time the request was signaled (for improved performance).
- 3. The processor saves the current context by creating an exception stack frame on the system stack. As a result, exception stack frame is created at a 0-modulo-4 address on top of the system stack defined by the supervisor stack pointer (SSP). The processor uses an 8-byte stack frame for all exceptions. It contains the vector number of the exception, the contents of the status register at the time of the exception, and the program counter (PC) at the time of the exception. The exception

10-2 Freescale Semiconductor

- type determines whether the program counter placed in the exception stack frame defines the location of the faulting instruction (fault) or the address of the next instruction to be executed (next). For interrupts, the stacked PC is always the address of the next instruction to be executed.
- 4. The processor calculates the address of the first instruction of the exception handler. By definition, the exception vector table is aligned on a 1MB boundary. This instruction address is generated by fetching a 32-bit exception vector from the table located at the address defined in the vector base register (VBR). The index into the exception table is calculated as $(4 \times \text{vector number})$. After the exception vector has been fetched, the contents of the vector serves as a 32-bit pointer to the address of the first instruction of the desired handler. After the instruction fetch for the first opcode of the handler has been initiated, exception processing terminates and normal instruction processing continues in the handler.

All ColdFire processors support a 1024-byte vector table aligned on any 1-MB address boundary. For the V1 ColdFire core, the only practical locations for the vector table are based at 0x(00)00-0000 in the flash or 0x(00)80_0000 in the RAM. The table contains 256 exception vectors; the first 64 are reserved for internal processor exceptions, and the remaining 192 are device-specific interrupt vectors. The IRQ assignment table is partially populated depending on the exact set of peripherals for the given device.

The basic ColdFire interrupt controller supports up to 63 request sources mapped as nine priorities for each of the seven supported levels (7 levels \times 9 priorities per level). Within the nine priorities within a level, the mid-point is typically reserved for package-level IRQ inputs. The levels and priorities within the level follow a descending order: 7 > 6 > ... > 1 > 0.

The HCS08 architecture supports a 32-entry exception vector table: the first two vectors are reserved for internal CPU/system exceptions and the remaining are available for I/O interrupt requests. The requirement for an exact match between the interrupt requests and priorities across two architectures means the sources are mapped to a sparsely-populated two-dimensional ColdFire array of seven interrupt levels and nine priorities within the level. The following association between the HCS08 and ColdFire vector numbers applies:

ColdFire Vector Number = 62 + HCS08 Vector Number

The CF1 INTC performs a cycle-by-cycle evaluation of the active requests and signals the highest-level, highest-priority request to the V1 ColdFire core in the form of an encoded interrupt level and the exception vector associated with the request. The module also includes a byte-wide interface to access its programming model. These interfaces are shown in the simplified block diagram of Figure 10-1.

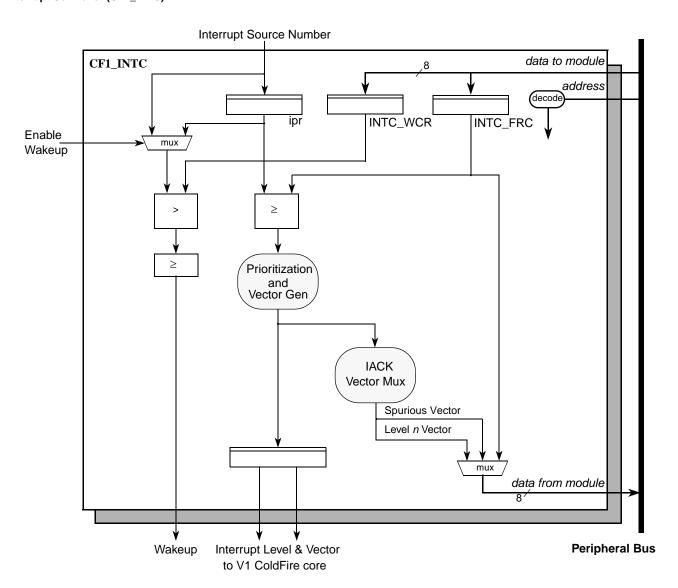


Figure 10-1. CF1 INTC Block Diagram

10.1.2 Features

The Version 1 ColdFire interrupt controller includes:

- Memory-mapped off-platform slave module
 - 64-byte space located at top end of memory: 0x(FF)FF_FFC0-0x(FF)FF_FFFF
 - Programming model accessed via the peripheral bus
 - Encoded interrupt level and vector sent directly to processor core
- Support of 44 peripheral I/O interrupt requests plus seven software (one per level) interrupt requests
- Fixed association between interrupt request source and level plus priority
 - I/O requests assigned across seven available levels and nine priorities per level

MCF51MM256 Series Devices Reference Manual, Rev. 3

- Exactly matches HCS08 interrupt request priorities
- Up to two requests can be remapped to the highest maskable level + priority
- Unique vector number for each interrupt source
 - ColdFire vector number = 62 + HCS08 vector number
 - Details on IRQ and vector assignments are device-specific
- Support for service routine interrupt acknowledge (software IACK) read cycles for improved system performance
- Combinatorial path provides wakeup signal from wait and stop modes

10.1.3 Modes of Operation

The CF1_INTC module does not support any special modes of operation. As a memory-mapped slave peripheral located on the platform's slave bus, it responds based strictly on the memory addresses of the connected bus.

One special behavior of the CF1_INTC deserves mention. When the device enters a wait or stop mode and certain clocks are disabled, there is an input signal that can be asserted to enable a purely-combinational logic path for monitoring the assertion of an interrupt request. After a request of unmasked level is asserted, this combinational logic path asserts an output signal that is sent to the clock generation logic to re-enable the internal device clocks to exit the low-power mode.

10.2 External Signal Description

The CF1_INTC module does not include any external interfaces.

10.3 Memory Map/Register Definition

The CF1_INTC module provides a 64-byte programming model mapped to the upper region of the 16 MB address space. All the register names are prefixed with INTC as an abbreviation for the full module name.

The programming model is referenced using 8-bit accesses. Attempted references to undefined (reserved) addresses or with a non-supported access type (for example, a write to a read-only register) generate a bus error termination.

The programming model follows the definition from previous ColdFire interrupt controllers. This compatibility accounts for the various memory holes in this module's memory map.

The CF1_INTC module is based at address 0x(FF)FF_FFC0 (referred to as CF1_INTC_BASE throughout the chapter) and occupies the upper 64 bytes of the peripheral space. The module memory map is shown in Table 10-2.

Table 10-2. CF1_INTC Memory Map

Offset Address	Register Name	Register Description	Width (bits)	Access	Reset Value	Section/ Page
0x10	INTC_FRC	CF1_INTC Force Interrupt Register	8	R/W	0x00	10.3.1/10-6
0x18	INTC_PL6P7	CF1_INTC Programmable Level 6, Priority 7	8	R/W	0x00	10.3.2/10-7
0x19	INTC_PL6P6	CF1_INTC Programmable Level 6, Priority 6	8	R/W	0x00	10.3.2/10-7
0x1B	INTC_WCR	CF1_INTC Wakeup Control Register	8	R/W	0x80	10.3.3/10-8
0x1E	INTC_SFRC	CF1_INTC Set Interrupt Force Register	8	Write	_	10.3.4/10-9
0x1F	INTC_CFRC	CF1_INTC Clear Interrupt Force Register	8	Write	_	10.3.5/10-10
0x20	INTC_SWIACK	CF1_INTC Software Interrupt Acknowledge	8	Read	0x00	10.3.6/10-11
0x24	INTC_LVL1IACK	CF1_INTC Level 1 Interrupt Acknowledge	8	Read	0x18	10.3.6/10-11
0x28	INTC_LVL2IACK	CF1_INTC Level 2 Interrupt Acknowledge	8	Read	0x18	10.3.6/10-11
0x2C	INTC_LVL3IACK	CF1_INTC Level 3 Interrupt Acknowledge	8	Read	0x18	10.3.6/10-11
0x30	INTC_LVL4IACK	CF1_INTC Level 4 Interrupt Acknowledge	8	Read	0x18	10.3.6/10-11
0x34	INTC_LVL5IACK	CF1_INTC Level 5 Interrupt Acknowledge	8	Read	0x18	10.3.6/10-11
0x38	INTC_LVL6IACK	CF1_INTC Level 6 Interrupt Acknowledge	8	Read	0x18	10.3.6/10-11
0x3C	INTC_LVL7IACK	CF1_INTC Level 7 Interrupt Acknowledge	8	Read	0x18	10.3.6/10-11

10.3.1 Force Interrupt Register (INTC_FRC)

The INTC_FRC register allows software to generate a unique interrupt for each possible level at the lowest priority within the level for functional or debug purposes. These interrupts may be self-scheduled by setting one or more of the bits in the INTC_FRC register. In some cases, the handling of a normal interrupt request may cause critical processing by the service routine along with the scheduling (using the INTC_FRC register) of a lower priority level interrupt request to be processed at a later time for less-critical task handling.

The INTC_FRC register may be modified directly using a read-modify-write sequence or through a simple write operation using the set/clear force interrupt registers (INTC_SFRC, INTC_CFRC).

NOTE

Take special notice of the bit numbers within this register, 63–56. This is for compatibility with other ColdFire interrupt controllers.

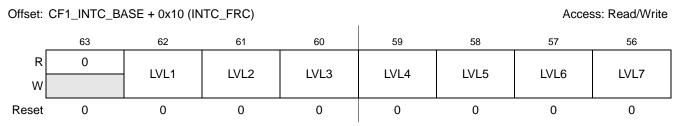


Figure 10-2. Force Interrupt Register (INTC_FRC)

Table 10-3. INTC_FRC Field Descriptions

Field	Description
63	Reserved, must be cleared.
62 LVL1	Force Level 1 interrupt. 0 Negates the forced level 1 interrupt request. 1 Forces a level 1 interrupt request.
61 LVL2	Force Level 2 interrupt. 0 Negates the forced level 2 interrupt request. 1 Forces a level 2 interrupt request.
60 LVL3	Force Level 3 interrupt. 0 Negates the forced level 3 interrupt request. 1 Forces a level 3 interrupt request.
59 LVL4	Force Level 4 interrupt. 0 Negates the forced level 4 interrupt request. 1 Forces a level 4 interrupt request.
58 LVL5	Force Level 5 interrupt. O Negates the forced level 5 interrupt request. 1 Forces a level 5 interrupt request.
57 LVL6	Force Level 6 interrupt. O Negates the forced level 6 interrupt request. 1 Forces a level 6 interrupt request.
55 LVL7	Force Level 7 interrupt. 0 Negates the forced level 7 interrupt request. 1 Forces a level 7 interrupt request.

10.3.2 INTC Programmable Level 6, Priority {7,6} Registers (INTC_PL6P{7,6})

The level seven interrupt requests cannot have their levels reassigned. However, any of the remaining peripheral interrupt requests can be reassigned as the highest priority maskable requests using these two registers (INTC_PL6P7 and INTC_PL6P6). The vector number associated with the interrupt requests does not change. Rather, only the interrupt request's level and priority are altered, based on the contents of the INTC_PL6P{7,6} registers.

Freescale Semiconductor 10-7

NOTE

The requests associated with the INTC_FRC register have a fixed level and priority that cannot be altered.

The INTC_PL6P7 register specifies the highest-priority, maskable interrupt request that is defined as the level six, priority seven request. The INTC_PL6P6 register specifies the second-highest-priority, maskable interrupt request defined as the level six, priority six request. Reset clears both registers, disabling any request re-mapping.

For an example of the use of these registers, see Section 10.6.2, "Using INTC_PL6P{7,6} Registers."

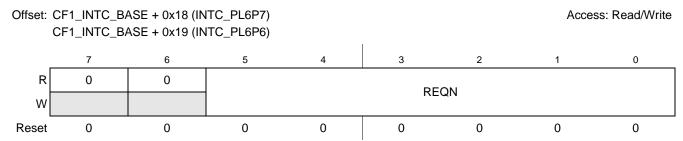


Figure 10-3. Programmable Level 6, Priority {7,6} Registers (INTC_PL6P{7,6})

Table 10-4. INTC_PL6P{7,6} Field Descriptions

Field	Description
7–6	Reserved, must be cleared.
5–0 REQN	Request number. Defines the peripheral IRQ number to be remapped as the level 6, priority 7 (for INTC_PL6P7) request and level 6, priority 6 (for INTC_PL6P6) request. Note: The value must be a valid interrupt number. Unused or reserved interrupt numbers are ignored.

10.3.3 INTC Wakeup Control Register (INTC_WCR)

The interrupt controller provides a combinatorial logic path to generate a special wakeup signal to exit from the wait or stop modes. The INTC_WCR register defines wakeup condition for interrupt recognition during wait and stop modes. This mode of operation works as follows:

- 1. Write to the INTC_WCR to enable this operation (set INTC_WCR[ENB]) and define the interrupt mask level needed to force the core to exit wait or stop mode (INTC_WCR[MASK]). The maximum value of INTC_WCR[MASK] is 0x6 (0b110). The INTC_WCR is enabled with a mask level of 0 as the default after reset.
- 2. Execute a stop instruction to place the processor into wait or stop mode.
- 3. After the processor is stopped, the interrupt controller enables special logic that evaluates the incoming interrupt sources in a purely combinatorial path; no clocked storage elements are involved.
- 4. If an active interrupt request is asserted and the resulting interrupt level is greater than the mask value contained in INTC_WCR[MASK], the interrupt controller asserts the wakeup output signal. This signal is routed to the clock generation logic to exit the low-power mode and resume processing.

MCF51MM256 Series Devices Reference Manual, Rev. 3

10-9

Typically, the interrupt mask level loaded into the processor's status register field (SR[I]) during the execution of the stop instruction matches the INTC_WCR[MASK] value.

The interrupt controller's wakeup signal is defined as:

wakeup = INTC_WCR[ENB] & (level of any asserted_int_request > INTC_WCR[MASK])

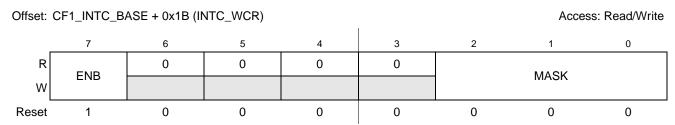


Figure 10-4. Wakeup Control Register (INTC_WCR)

Table 10-5. INTC_WCR Field Descriptions

Field	Description
7 ENB	Enable wakeup signal. 0 Wakeup signal disabled 1 Enables the assertion of the combinational wakeup signal to the clock generation logic.
6–3	Reserved, must be cleared.
2-0 MASK	Interrupt mask level. Defines the interrupt mask level during wait or stop mode and is enforced by the hardware to be within the range 0–6. If INTC_WCR[ENB] is set, when an interrupt request of a level higher than MASK occurs, the interrupt controller asserts the wakeup signal to the clock generation logic.

10.3.4 INTC Set Interrupt Force Register (INTC_SFRC)

The INTC_SFRC register provides a simple memory-mapped mechanism to set a given bit in the INTC_FRC register to assert a specific level interrupt request. The data value written causes the appropriate bit in the INTC_FRC register to be set. Attempted reads of this register generate an error termination.

This register is provided so interrupt service routines can generate a forced interrupt request without the need to perform a read-modify-write sequence on the INTC_FRC register.

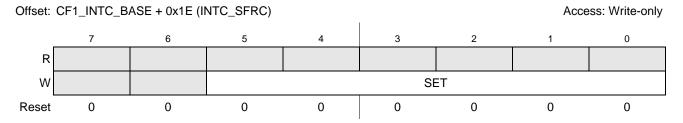


Figure 10-5. INTC_SFRC Register

Freescale Semiconductor

Table 10-6. INTC_SFRC Field Descriptions

Field	Description
7–6	Reserved, must be cleared.
5–0 SET	For data values within the 56–62 range, the corresponding bit in the INTC_FRC register is set, as defined below. 0x38 Bit 56, INTC_FRC[LVL7] is set 0x39 Bit 57, INTC_FRC[LVL6] is set 0x3A Bit 58, INTC_FRC[LVL5] is set 0x3B Bit 59, INTC_FRC[LVL4] is set 0x3C Bit 60, INTC_FRC[LVL3] is set 0x3D Bit 61, INTC_FRC[LVL2] is set 0x3E Bit 62, INTC_FRC[LVL1] is set Note: Data values outside this range do not affect the INTC_FRC register. It is recommended the data values be restricted to the 0x38–0x3E (56–62) range to ensure compatibility with future devices.

10.3.5 INTC Clear Interrupt Force Register (INTC_CFRC)

The INTC_CFRC register provides a simple memory-mapped mechanism to clear a given bit in the INTC_FRC register to negate a specific level interrupt request. The data value on the register write causes the appropriate bit in the INTC_FRC register to be cleared. Attempted reads of this register generate an error termination.

This register is provided so interrupt service routines can negate a forced interrupt request without the need to perform a read-modify-write sequence on the INTC_FRC register.

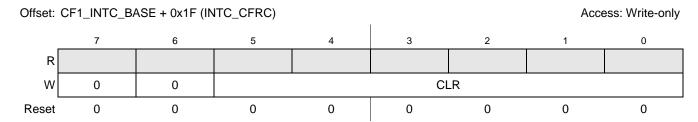


Figure 10-6. INTC_CFRC Register

Table 10-7. INTC_CFRC Field Descriptions

Field	Description
7–6	Reserved, must be cleared.
5–0 CLR	For data values within the 56–62 range, the corresponding bit in the INTC_FRC register is cleared, as defined below. 0x38 Bit 56, INTC_FRC[LVL7] is cleared 0x39 Bit 57, INTC_FRC[LVL6] is cleared 0x3A Bit 58, INTC_FRC[LVL5] is cleared 0x3B Bit 59, INTC_FRC[LVL4] is cleared 0x3C Bit 60, INTC_FRC[LVL3] is cleared 0x3D Bit 61, INTC_FRC[LVL2] is cleared 0x3E Bit 62, INTC_FRC[LVL1] is cleared Note: Data values outside this range do not affect the INTC_FRC register. It is recommended the data values be restricted to the 0x38–0x3E (56–62) range to ensure compatibility with future devices.

MCF51MM256 Series Devices Reference Manual, Rev. 3

10.3.6 INTC Software and Level-n IACK Registers (n = 1,2,3,...,7)

The eight read-only interrupt acknowledge (IACK) registers can be explicitly addressed by the memory-mapped accesses or implicitly addressed by a processor-generated interrupt acknowledge cycle during exception processing when CPUCR[IAE] is set. In either case, the interrupt controller's actions are similar.

First, consider an IACK cycle to a specific level, a level-n IACK. When this type of IACK arrives in the interrupt controller, the controller examines all currently-active level-n interrupt requests, determines the highest priority within the level, and then responds with the unique vector number corresponding to that specific interrupt source. The vector number is supplied as the data for the byte-sized IACK read cycle.

If there is no active interrupt source at the time of the level-n IACK, a special spurious interrupt vector (vector number 24 (0x18)) is returned. It is the responsibility of the service routine to manage this error situation.

This protocol implies the interrupting peripheral is not accessed during the acknowledge cycle because the interrupt controller completely services the acknowledge. This means the interrupt source must be explicitly disabled in the peripheral device by the interrupt service routine. This approach provides unique vector capability for all interrupt requests, regardless of the complexity of the peripheral device.

Second, the interrupt controller also supports the concept of a software IACK. This is the ability to query the interrupt controller near the end of an interrupt service routine (after the current interrupt request has been negated) to determine if there are any pending (but currently masked) interrupt requests. If the response to the software IACK's byte operand read is non-zero, the service routine uses the returned value as the vector number of the highest pending interrupt request and passes control to the appropriate new handler. If the returned value is zero, there is no pending interrupt request.

This process avoids the overhead of a context restore and RTE instruction execution, followed immediately by another interrupt exception and context save. In system environments with high rates of interrupt activity, this mechanism can noticeably improve overall performance. For additional details on software IACKs, see Section 10.6.3, "More on Software IACKs."

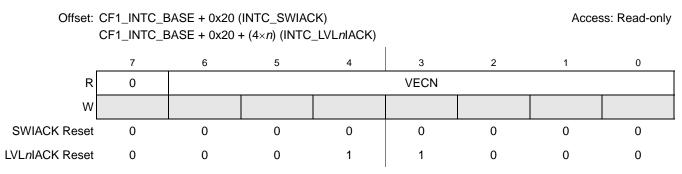
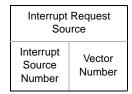


Table 10-8. Software and Level-n IACK Registers (INTC_SWIACK, INTC_LVLnIACK)

Freescale Semiconductor 10-11

Table 10-9. INTC_SWIACK, INTC_LVLnIACK Field Descriptions


Field	Description
7	Reserved, must be cleared.
6–0 VECN	Vector number. Indicates the appropriate vector number.
	For the SWIACK register, it is the highest-level, highest-priority request currently being asserted in the CF1_INTC module. If there are no pending requests, VECN is zero.
	For the LVL <i>n</i> IACK register, it is the highest priority request within the specified level- <i>n</i> . If there are no pending requests within the level, VECN is 0x18 (24) to signal a spurious interrupt.

10.3.7 Interrupt Request Level and Priority Assignments

This section provides multiple views of the interrupt request assignment: a two-dimensional view of levels and priorities within the level (Table 10-11) and a tabular representation based on request priority (Table 10-12).

The CF1_INTC module implements a sparsely-populated 7×9 matrix of levels (7) and priorities within each level (9). In this representation, the leftmost top cell (level 7, priority 7) is the highest interrupt request while the rightmost lowest cell (level 1, priority 0) is the lowest interrupt request. The following legend is used for this table:

Table 10-10. Legend for Table 10-11

NOTE

For remapped and forced interrupts, the interrupt source number entry indicates the register or register field that enables the corresponding interrupt.

Table 10-11. ColdFire [Level][Priority within Level] Matrix Interrupt Assignments

Level					Priority within Level													
Level	7		6 5 4		Midp	ooint	;	3	2	2	,	1	0					
7									IRQ	_pin	Low_v	oltage/	Loss	of lock			force_	vl7
'				•	_	_	_		0	64	1	65	2	66	_		FRC[56]	103
6	remap	ped	remap	ped	PΙ	DВ	D/	AC			SF	PI1	ΑI	OC .	USB_	Status	force_	vl6
6	PL6P7	*	PL6P6	*	4	68	5	69	_	_	6	70	7	71	8	67	FRC[57]	104
5	TPM1_	_ch0	TPM1	_ch1	TPM ²	I_ch2	TPM ²	1_ch3			TPM ²	1_ovfl	SI	PI2	CI	ИΤ	force_	vl5
3	9	73	10	74	11	75	12	76			13	77	14	78	15	79	FRC[58]	105

MCF51MM256 Series Devices Reference Manual, Rev. 3

10-12 Freescale Semiconductor

Table 10-11. ColdFire [Level][Priority within Level] Matrix Interrupt Assignments (Continued)

Level								Prio	rity within L	evel							
Level	7		6		5 4		Midpoint	3		2			1	0			
4	TPM2	_ch0	TPM2	_ch1	TPM2	2_ch2	TPM	2_ch3		TPM	2_ovfl	II	С	PRA	CMP	force_l	vl4
4	16	80	17	81	18	82	19	83	_	20	84	21	85	22	86	FRC[59]	106
3	SCI1	_err	SCI1	_rx	SCI	1_tx	SCI	2_err		SCI	2_rx	SCI	2_tx			force_l	vl3
3	23	87	24	88	25	89	26	90	_	27	91	28	92	_		FRC[60]	107
2			KB	11	KE	312	TOD									force_l	lvl2
2	_	-	31	95	32	96	33	97	_		_		_	_	_	FRC[61]	108
1	1 –			•						FTS	SR1	FTS	SR2			force_l	vl1
•				-		_	_	_		41	112	42	113		_	FRC[62]	109

Table 10-12 presents the same information on interrupt request assignments, but from the highest priority request to the lowest.

Table 10-12. V1 ColdFire Interrupt Assignments

IRQ Source	Level	Priority within Level	Interrupt Source Number	Vector
IRQ_pin	7	mid	0	64
low_voltage	7	3	1	65
loss_of_lock	7	2	2	66
Reserved	7	1	_	*
Force_lvl7	7	0	INTC_FRC[56]	103
Reserved for remapped vector #1	6	7	INTC_PL6P7	*
Reserved for remapped vector #2	6	6	INTC_PL6P6	*
PDB	6	5	4	68
DAC	6	4	5	69
SPI1	6	3	6	70
ADC	6	2	7	71
USB_status	6	1	8	72
force_lvl6	6	0	INTC_FRC[57]	104
tpm1_ch0	5	7	9	73
tpm1_ch1	5	6	10	74
tpm1_ch2	5	5	11	75
tpm1_ch3	5	4	12	76

Freescale Semiconductor 10-13

Table 10-12. V1 ColdFire Interrupt Assignments (Continued)

IRQ Source	Level	Priority within Level	Interrupt Source Number	Vector
tpm1_ovfl	5	3	13	77
SPI2	5	2	14	78
CMT	5	1	15	79
force_lvl5	5	0	INTC_FRC[58]	105
tpm2_ch0	4	7	16	80
tpm2_ch1	4	6	17	81
tpm2_ch2	4	5	18	82
tpm2_ch3	4	4	19	83
tpm2_ovfl	4	3	20	84
IIC	4	2	21	85
PRACMP	4	1	22	86
force_lvl4	4	0	INTC_FRC[59]	106
SCI1_err	3	7	23	87
SCI1_rx	3	6	24	88
SCI1_tx	3	5	25	89
SCI2_err	3	4	26	90
SCI2_rx	3	3	27	91
SCI2_tx	3	2	28	92
Reserved	3	1	_	93
force_lvl3	3	0	INTC_FRC[60]	107
Reserved	2	7	_	94
KBI1	2	6	31	95
KBI2	2	5	32	96
TOD	2	4	33	97
Reserved	2	3	_	98
Reserved	2	2	_	99
Reserved	2	1	_	100
Force_lvl2	2	0	INTC_FRC[61]	108
Reserved	1	7	_	101
Reserved	1	6	_	102
Reserved	1	5	_	110
Reserved	1	4	_	111

10-14 Freescale Semiconductor

IRQ Source	Level	Priority within Level	Interrupt Source Number	Vector
FTSR1	1	3	41	112
FTSR2	1	2	42	113
Reserved	1	1	_	114
Force_lvl1	1	0	INTC_FRC[62]	109

Table 10-12. V1 ColdFire Interrupt Assignments (Continued)

Functional Description 10.4

The basic operation of the CF1 INTC is detailed in the preceding sections. This section describes special rules applicable to non-maskable level seven interrupt requests and the module's interfaces.

10.4.1 Handling of Non-Maskable Level 7 Interrupt Requests

The CPU treats level seven interrupts as non-maskable, edge-sensitive requests, while levels one through six are maskable, level-sensitive requests. As a result of this definition, level seven interrupt requests are a special case. The edge-sensitive nature of these requests means the encoded 3-bit level input from the CF1 INTC to the V1 ColdFire core must change state before the CPU detects an interrupt. A non-maskable interrupt (NMI) is generated each time the encoded interrupt level changes to level seven (regardless of the SR[I] field) and each time the SR[I] mask changes from seven to a lower value while the encoded request level remains at seven.

Initialization Information 10.5

The reset state of the CF1_INTC module enables the default IRQ mappings and clears any software-forced interrupt requests (INTC FRC is cleared). Immediately after reset, the CF1 INTC begins its cycle-by-cycle evaluation of any asserted interrupt requests and forms the appropriate encoded interrupt level and vector information for the V1 Coldfire processor core. The ability to mask individual interrupt requests using the interrupt controller's IMR is always available, regardless of the level of a particular interrupt request.

Application Information 10.6

This section discusses three application topics: emulation of the HCS08's one level interrupt nesting structure, elevating the priority of two IRQs, and more details on the operation of the software interrupt acknowledge (SWIACK) mechanism.

10.6.1 Emulation of the HCS08's 1-Level IRQ Handling

As noted in Table 10-1, the HCS08 architecture specifies a 1-level IRQ nesting capability. Interrupt masking is controlled by CCR[I], the interrupt mask flag: clearing CCR[I] enables interrupts, while setting CCR[I] disables interrupts. The ColdFire architecture defines seven interrupt levels, controlled by the 3-bit

MCF51MM256 Series Devices Reference Manual, Rev. 3 Freescale Semiconductor 10-15

interrupt priority mask field in the status register, SR[I], and the hardware automatically supports nesting of interrupts.

To emulate the HCS08's 1-level IRQ capabilities on V1 ColdFire, only two SR[I] settings are used:

- Writing 0 to SR[I] enables interrupts.
- Writing 7 to SR[I] disables interrupts.

The ColdFire core treats the level seven requests as non-maskable, edge-sensitive interrupts.

ColdFire processors inhibit interrupt sampling during the first instruction of all exception handlers. This allows any handler to effectively disable interrupts, if necessary, by raising the interrupt mask level contained in the status register as the first instruction in the ISR. In addition, the V1 instruction set architecture (ISA_C) includes an instruction (STLDSR) that stores the current interrupt mask level and loads a value into the SR. This instruction is specifically intended for use as the first instruction of an interrupt service routine that services multiple interrupt requests with different interrupt levels. For more details see the *ColdFire Family Programmer's Reference Manual*. A MOVE-to-SR instruction also performs a similar function.

To emulate the HCS08's 1-level IRQ nesting mechanisms, the ColdFire implementation enables interrupts by clearing SR[I] (typically when using RTE to return to a process) and disables interrupts upon entering every interrupt service routine by one of three methods:

- 1. Execution of STLDSR #0x2700 as the first instruction of an ISR.
- 2. Execution of MOVE.w #0x2700.SR as the first instruction of an ISR.
- 3. Static assertion of CPUCR[IME] that forces the processor to load SR[I] with seven automatically upon the occurrence of an interrupt exception. Because this method removes the need to execute multi-cycle instructions of #1 or #2, this approach improves system performance.

10.6.2 Using INTC_PL6P{7,6} Registers

Section 10.3.2, "INTC Programmable Level 6, Priority {7,6} Registers (INTC_PL6P{7,6})," describes control registers that provide the ability to dynamically alter the request level and priority of two IRQs. Specifically, these registers provide the ability to reassign two IRQs to be the highest level 6 (maskable) requests. Consider the following example.

Suppose the system operation desires to remap the receive and transmit interrupt requests of a serial communication device (SCI1) as the highest two maskable interrupts. The default assignments for the SCI1 transmit and receive interrupts are:

- sci1_rx = interrupt source 25 = vector 88 = level 3, priority 6
- sci1_tx = interrupt source 26 = vector 89 = level 3, priority 5

To remap these two requests, the INTC_PL6P{7,6} registers are programmed with the desired interrupt source number:

- Setting INTC_PL6P7 to 25 (0x19), remaps sci1_rx as level 6, priority 7.
- Setting INTC_PL6P6 to 26 (0x1A), remaps sci1_tx as level 6, priority 6.

The reset state of the INTC_PL6P{7,6} registers disables any request remapping.

10.6.3 More on Software IACKs

As previously mentioned, the notion of a software IACK refers to the ability to query the interrupt controller near the end of an interrupt service routine (after the current interrupt request has been cleared) to determine if there are any pending (but currently masked) interrupt requests. If the response to the software IACK's byte operand read is non-zero, the service routine uses the value as the vector number of the highest pending interrupt request and passes control to the appropriate new handler. This process avoids the overhead of a context restore and RTE instruction execution, followed immediately by another interrupt exception and context save. In system environments with high rates of interrupt activity, this mechanism can improve overall system performance noticeably.

To illustrate this concept, consider the following ISR code snippet shown in Figure 10-7.

```
align
                irqxx_entry:
00588: 4fef fff0 lea -16(sp),sp
                                          # allocate stack space
0058c: 48d7 0303 movem.l #0x0303,(sp)
                                          # save d0/d1/a0/a1 on stack
                irgxx alternate entry:
00590:
                irqxx_swiack:
005c0: 71b8 ffe0 mvz.b INTC_SWIACK.w,d0 # perform software IACK
005c4: 0c00 0041 cmpi.b #0x41,d0
                                         # pending IRQ or level 7?
005c8: 6f0a ble.b irqxx_exit
                                         # no pending IRO, then exit
              sub.l a0,a0
005ca: 91c8
                                         # clear a0
005cc: 2270 0c00 move.l 0(a0,d0.1*4),a1  # fetch pointer from xcpt table
005d0: 4ee9 0008 jmp
                        8(a1)
                                          # goto alternate isr entry point
                align
                irgxx exit:
005d4: 4cd7 0303 movem.l (sp), #0x0303
                                         # restore d0/d1/a0/a1
005d8: 4fef 0010 lea
                                          # deallocate stack space
                        16(sp),sp
005dc: 4e73
                                          # return from handler
                rte
```

Figure 10-7. ISR Code Snippet with SWIACK

This snippet includes the prologue and epilogue for an interrupt service routine as well as code needed to perform software IACK.

At the entry point (irqxx_entry), there is a two-instruction prologue to allocate space on the supervisor stack to save the four volatile registers (d0, d1, a0, a1) defined in the ColdFire application binary interface. After saving these registers, the ISR continues at the alternate entry point.

The software IACK is performed near the end of the ISR, after the source of the current interrupt request is negated. First, the appropriate memory-mapped byte location in the interrupt controller is read (PC = 0x5C0). The CF1_INTC module returns the vector number of the highest priority pending request. If no request is pending, zero is returned. The compare instruction is needed to manage a special case involving pending level seven requests. Because the level seven requests are non-maskable, the ISR is interrupted to service one of these requests. To avoid any race conditions, this check ignores the level seven vector numbers. The result is the conditional branch (PC = 0x5C8) is taken if there are no pending requests or if the pending request is a level seven.

Freescale Semiconductor 10-17

If there is a pending non-level seven request, execution continues with a three instruction sequence to calculate and then branch to the appropriate alternate ISR entry point. This sequence assumes the exception vector table is based at address 0x(00)00_0000 and that each ISR uses the same two-instruction prologue shown here. The resulting alternate entry point is a fixed offset (8 bytes) from the normal entry point defined in the exception vector table.

The ISR epilogue includes a three instruction sequence to restore the volatile registers from the stack and return from the interrupt exception.

This example is intentionally simple, but does show how performing the software IACK and passing control to an alternate entry point when there is a pending but masked interrupt request can avoid the execution of the ISR epilogue, another interrupt exception, and the ISR prologue.

MCF51MM256 Series Devices Reference Manual, Rev. 3 10-18 Freescale Semiconductor

Chapter 11 Programmable Analog Comparator (S08PRACMPV1)

11.1 Introduction

The PRACMP is a CMOS comparator with a programmable reference input. The comparator has up to four (4) input pins, each of them can be compared with any input pins. An internal programmable reference generator divides the V_{in} into 32 levels; the V_{in} can be selected from two external sources. Output of this reference generator can be one of the eight selectable inputs to the comparator. The comparator circuit is designed to operate across the full range of the supply voltage (rail-to-rail operation).

11.1.1 PRACMP Configuration Information

When using the bandgap reference voltage for input to PRACMP, enable the VREF output to supply a reference signal to the PRACMP. See the VREF module chapter for information on how to enable the VREF output. For the value of the bandgap voltage reference, see the data sheet for this device.

NOTE

For these devices, V_{in2} is connected to VREFO. Therefore, the PRGINS bit in the PRACMPC1 register selects:

- VREFO when PRGINS=0
- V_{DD} when PRGINS=1

11.1.2 PRACMP/TPM Configuration Information

The PRACMP module can be configured to connect the output of the analog comparator to TPM1 input capture channel 0 by setting the ACIC bit in SOPT2. With ACIC set, the TPM1CH0 pin is not available externally regardless of the configuration of the TPM1 module.

11.1.3 PRACMP/OPAMP Configuration Information

The OPAMP can provide internal or external input to the PRACMP.

11.1.4 PRACMP Clock Gating

Use the PRACMP bit in the SCGC2 register to gate on and off the bus clock to the PRACMP module. This bit is set after any reset which enables the bus clock to this module. To conserve power, clear the PRACMP bitto disable the clock to this module when not in use. See 5.6, "Peripheral Clock Gating," for details.

Freescale Semiconductor

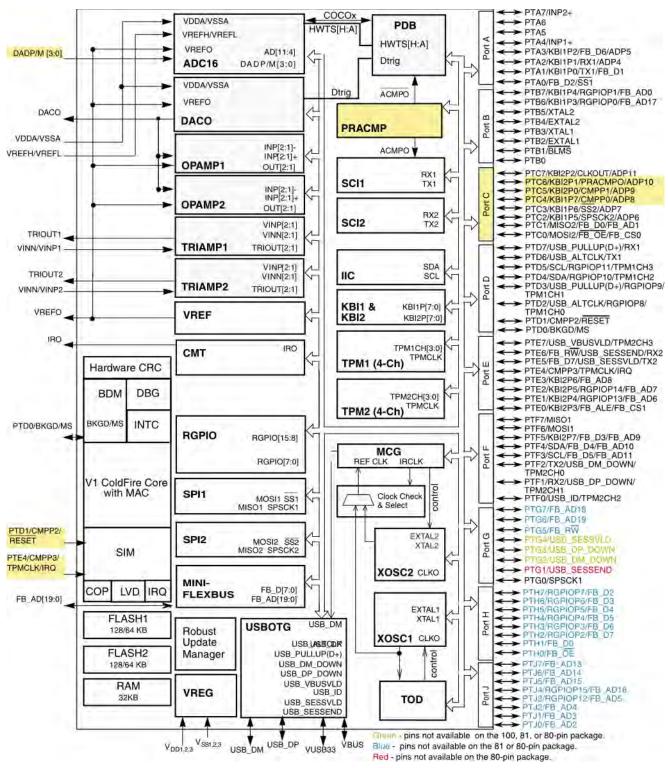


Figure 11-1. Block Diagram Highlighting PRACMP Block and Pins

11.1.5 Features

PRACMP features include:

- MCF51MM256 series On-chip programmable reference generator output (1/32 V_{in} to V_{in} , step is 1/32 V_{in} , V_{in} can be selected from external V_{DD} and internal VREFO)
- Typically 5 mV of input offset
- Less than 40 μ A in enable mode and less than 1 nA in disable mode (excluding programmable reference generator)
- Fixed ACMP hysteresis which is from 3 mV to 20 mV
- Up to eight selectable comparator inputs; each input can be compared with any input by any polarity sequence
- Selectable interrupt on rising edge, falling edge, or either rising or falling edges of comparator output
- Remains operational in stop3 mode

11.1.6 Modes of Operation

This section defines the PRACMP operation in wait, stop, and background debug modes.

11.1.6.1 Operation in Wait Mode

The PRACMP continues to operate in wait mode if enabled. The interrupt can wake up the MCU if enabled.

11.1.6.2 Operation in Stop Mode

The PRACMP (including PRG and ACMP) continues to operate in stop3 mode if enabled. If ACIEN is set, a PRACMP interrupt still can be generated to wake the MCU up from stop3 mode.

If the stop3 is exited by an interrupt, the PRACMP remains the setting before entering the stop. If stop3 is exited with a reset, the PRACMP goes into its reset.

To conserve power, turn it off if its output is not used as a reference input of ACMP, because the PRG consumes additional power.

In stop2 mode, the PRACMP is shut down completely. Any waking up from stop2 brings PRACMP to its reset state.

11.1.6.3 Operation in Background Mode

When the MCU is in active background debug mode, the PRACMP continues operating normally.

11.1.7 Block Diagram

The block diagram of the PRACMP module is shown in Figure 11-2.

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor

Programmable Analog Comparator (S08PRACMPV1)

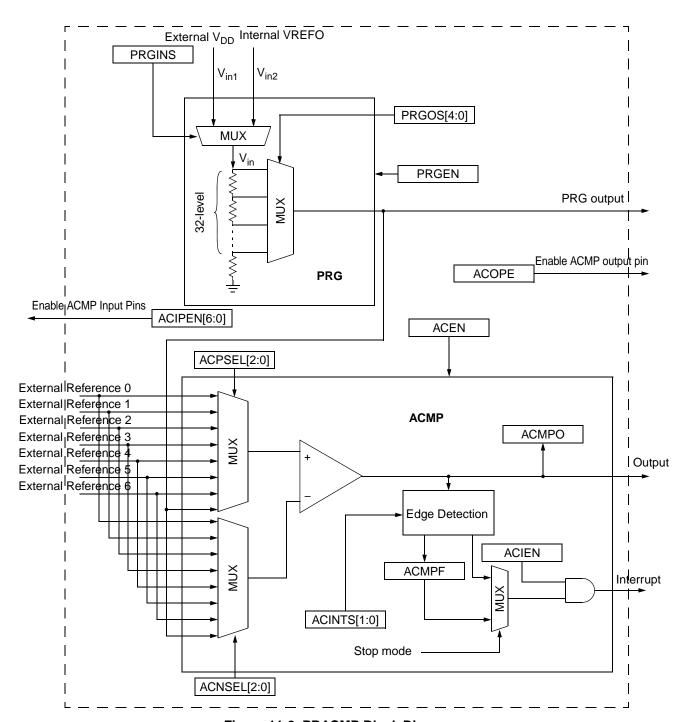


Figure 11-2. PRACMP Block Diagram

11.2 External Signal Description

The output of PRACMP can also be mapped to an external pin. When the output is mapped to an external pin, register bit ACOPE controls the pin to enable/disable the PRACMP output function.

11.3 Memory Map and Register Definition

Table 11-1 is the memory map of the programmable reference analog comparator (PRACMP).

Table 11-1.	Module	Memory	Мар
-------------	--------	--------	-----

Address	Use	Access
Base + \$0	PRACMP Control and Status Register (PRACMPCS)	Read/Write
Base + \$1	PRACMP Control Register 0 (PRACMPC0)	Read/Write
Base + \$2	PRACMP Control Register 1 (PRACMPC1)	Read/Write
Base + \$3	PRACMP Control Register 2 (PRACMPC2)	Read/Write

Refer to the direct-page register summary in the memory chapter of this reference manual for the absolute address assignments for all PRACMP registers.

11.3.1 PRACMP Control and Status Register (PRACMPCS)

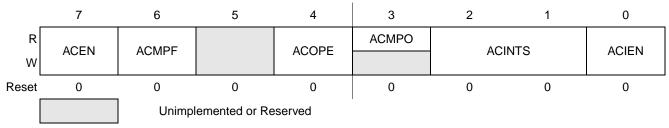


Figure 11-3. PRACMP Control and Status Register (PRACMPCS)

Table 11-2. PRACMPCS Descriptions

Field	Description
7 ACEN	ACMP enable control bit 0 The ACMP is disabled 1 The ACMP is enabled
6 ACMPF	ACMP Interrupt Flag Bit — Synchronously set by hardware when ACMP output has a valid edge defined by ACINTS[1:0]. The setting of this bit lags the ACMPO 2 bus clocks. Clear ACMPF bit by writing a 0 to this bit. Writing a 1 to this bit has not effect.
4 ACOPE	ACMP Output Pin Enable — ACOPE enables the pad logic so that the output can be placed onto an external pin Output of ACMP can't be placed onto external pin Output of ACMP can be placed onto external pin
3 ACMPO	ACMP Output Bit — ACMP output is synchronized by bus clock to form this bit. It changes following the ACMP output. This bit is a read only bit. • Set when the output of the ACMP is high • Cleared when the output of the ACMP is low • After any reset or when the ACMP is disabled, this bit is read as 0.

Freescale Semiconductor 11-5

Programmable Analog Comparator (S08PRACMPV1)

Table 11-2. PRACMPCS Descriptions (Continued)

Field	Description
2:1 ACINTS [1:0]	ACMP Interrupt Select — Determines the sensitivity modes of the interrupt trigger. 00 ACMP interrupt on output falling or rising edge 01 ACMP interrupt on output falling edge 10 ACMP interrupt on output rising edge 11 Reserved
0 ACIEN	ACMP Interrupt Enable — Enables an ACMP CPU interrupt 1 Enable the ACMP Interrupt 0 Disable the ACMP Interrupt

11.3.2 PRACMP Control Register 0 (PRACMPC0)

Figure 11-4. PRACMP Control Register 0 (PRACMPC0)

Table 11-3. PRACMPC0 Field Descriptions

Field	Description
6:4	ACMP Positive Input Select ¹
ACPSEL[2:0]	000 External reference 0, CMPP0
	001 External reference 1, CMPP1
	010 External reference 2, CMPP2
	011 External reference 3, CMPP3
	100 GPAMP1 Output , OPAMP OUT1
	101 GPAMP2 Output , OPAMP OUT2
	110 Buffered Bandgap Voltage , PMC bandgap VREF
	111 Internal PRG output, external V _{DD} , VREF out
2:0	ACMP Negative Input Select ¹
ACNSEL[2:0]	000 External reference 0, CMPP0
	001 External reference 1, CMPP1
	010 External reference 2, CMPP2
	011 External reference 3, CMPP3
	100 GPAMP1 Output , OPAMP OUT1
	101 GPAMP2 Output , OPAMP OUT2
	110 Buffered Bandgap Voltage , PMC bandgap VREF
	111 Internal PRG output, external V _{DD} , VREF out

Do not configure ACPSEL and ACNSEL to use the same value to operate the comparator. Selecting the same channel for the comparator may cause an unstable oscilliation on the output of the comparator.

11-6 Freescale Semiconductor

Selects negative input, same as ACPSEL

11.3.3 PRACMP Control Register 1 (PRACMPC1)

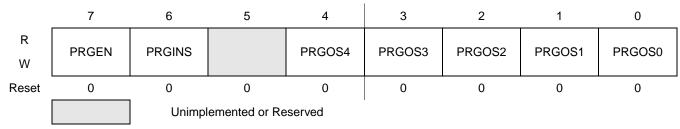


Figure 11-5. PRACMP Control Register 1 (PRACMPC1)

Table 11-4. PRACMPC1 Field Descriptions

Field	Description
7 PRGEN	Programmable Reference Generator Enable — The PRGEN bit starts the Programmable Reference Generator operation. 0 The PRG system is disabled 1 The PRG system is enabled
6 PRGINS	Programmable Reference Generator Input Selection 0 The PRG selects VREF out (~1.2V) as the reference voltage 1 The PRG selects V _{in1} (external power supply)as the reference voltage
4:0 PRGOS[4:0]	

Table 11-5 lists the output configuration of programmable reference generator (PRG).

Table 11-5. PRG Out Configuration

PRGOS[4:0]	Output Voltage of PRG
00000	1V _{In} /32
00001	2V _{In} /32
00010	3V _{In} /32
00011	4V _{In} /32
00100	5V _{In} /32
00101	6V _{In} /32
00110	7V _{In} /32
00111	8V _{In} /32
01000	9V _{In} /32
01001	10V _{In} /32
01010	11V _{In} /32
01011	12V _{In} /32
01100	13V _{In} /32
01101	14V _{In} /32
01110	15V _{In} /32

Freescale Semiconductor 11-7

Programmable Analog Comparator (S08PRACMPV1)

Table 11-5. PRG Out Configuration (Continued)

PRGOS[4:0]	Output Voltage of PRG
01111	16V _{In} /32
10000	17V _{In} /32
10001	18V _{In} /32
10010	19V _{In} /32
10011	20V _{In} /32
10100	21V _{In} /32
10101	22V _{In} /32
10110	23V _{In} /32
10111	24V _{In} /32
11000	25V _{In} /32
11001	26V _{In} /32
11010	27V _{In} /32
11011	28V _{In} /32
11100	29V _{In} /32
11101	30V _{In} /32
11110	31V _{In} /32
11111	V _{In}

11.3.4 PRACMP Control Register 2 (PRACMPC2)

Figure 11-6. PRACMP Control Register 2 (PRACMPC2)

Table 11-6. PRACMPC2 Field Descriptions

Field	Description
6:0 ACIPE6:ACIPE0	ACMP Input Pin Enable — This 7-bit register controls if the corresponding PRACMP external pin can be driven an analog input.
	The corresponding external analog input is not allowed The corresponding external analog input is allowed

11.4 Functional Description

The PRACMP module is functionally composed of two parts: programmable reference generator (PRG) and analog comparator (ACMP).

The programmable reference generator (PRG) includes a 32-level DAC (digital to analog convertor) and relevant control logic. PRG can select one of two reference inputs, V_{in1} (external Vdd) or V_{in2} (internal regulated Vdd), as the DAC input V_{in} by setting PRGINS bit of PRACMPC1. After the DAC is enabled, it converts the data set in PRGOS[4:0] bits of PRACMPC1 to a stepped analog output which is fed into ACMP as an internal reference input. This stepped analog output is also mapped out of the module. The output voltage range is from $V_{in}/32$ to V_{in} . The step size is $V_{in}/32$.

The ACMP can achieve the analog comparison between positive input and negative input, and then give out a digital output and relevant interrupt. Both the positive and negative input of ACMP can be selected from the eight common inputs: seven external reference inputs and one internal reference input from the PRG output. The positive input of ACMP is selected by ACPSEL[2:0] bits of PRACMPC0 and the negative input is selected by ACNSEL[2:0] bits of PRACMPC0. Any pair of the eight inputs can be compared by configuring the PRACMPC0 with the appropriate value.

After the ACMP is enabled by setting ACEN in PRACMPCS, the comparison result appears as a digital output. Whenever a valid edge defined in ACINTS[1:0] occurs, the ACMPF bit in PRACMPCS register is asserted. If ACIEN is set, a PRACMP CPU interrupt occurs. The valid edge is defined by ACINTS[1:0]. When ACINTS[1:0] = 00, both the rising edge and falling edge on the ACMP output are valid. When ACINTS[1:0] = 01, only the falling edge on ACMP output is valid. When ACINTS[1:0] = 10, only rising edge on ACMP output is valid. ACINTS[1:0] = 11 is reserved.

The ACMP output is synchronized by the bus clock to generate ACMPO bit in PRACMPCS so that the CPU can read the comparison. In stop3 mode if the output of ACMP is changed, ACMPO can't be updated in time. The output can be synchronized and the ACMPO bit can be updated upon the waking up of the CPU because of the availability of the bus clock. The ACMPO changes following the comparison result, so it can serve as a tracking flag that continuously indicates the voltage delta on the inputs.

If a reference input external to the chip is selected as an input of ACMP, the corresponding ACIPE bit of PRACMPC2 should be set to enable the input from pad interface. If the output of the ACMP needs to be put onto the external pin, the ACOPE bit of PRACMPCS must enable the ACMP pin function of pad logic.

11.5 Setup and Operation of PRACMP

The two parts of PRACMP (PRG and ACMP) can be set up and operated independently. But if the PRG works as an input of the ACMP, the PRG must be configured before the ACMP is enabled.

Because the input-switching can cause problems on the ACMP inputs, the user should complete the input selection before enabling the ACMP and should not change the input selection setting when the ACMP is enabled to avoid unexpected output. Similarly, because the programmable reference generator (PRG) experiences a setup delay after the PRGOS[4:0] is changed, the user should complete the setting of PRGOS[4:0] before PRG is enabled.

11.6 Resets

During a reset the PRACMP is configured in the default mode. Both ACMP and PRG are disabled.

Programmable Analog Comparator (S08PRACMPV1)

11.7 Interrupts

NOTE

If the bus clock is available when a valid edge (as defined in ACINTS[1:0]) occurs, the ACMPF bit in PRACMPCS register is asserted.

- If ACIEN is set, a PRACMP interrupt event occurs. The ACMPF bit remains asserted until the PRACMP interrupt is cleared by software
- When in stop3 mode, a valid edge on ACMP output generates an asynchronous interrupt which can wake the MCU up from stop3. To clear the interrupt, write a 0 to the ACMPF bit.

Chapter 12 Analog-to-Digital Converter (S08ADC16V1)

12.1 Introduction

The 16-bit analog-to-digital converter (ADC) is a successive approximation ADC designed for operation within an integrated microcontroller system-on-chip.

Figure 12-2 shows the block diagram with the ADC module highlighted.

12.1.1 Status and Control and Result Registers

This series of devices contains 8 Status and Control 1 registers and 8 result registers. These registers allow up to eight ADC conversions to occur without CPU intervention using hardware triggering. Hardware trigger operation is supported with the PDB peripheral.

12.1.2 ADC and TRIAMP Configuration

The DADP2/DADM2 and DADP3/DADM3 pins are internally connected to the TRIOUTx /VINNx pins of the Trans-Impedance Amplifier (TRIAMP) peripheral. When deferential conversions are completed for these pins, it allows the voltage across an external feedback resistor to be analyzed.

12.1.3 Dedicated ADC Pins

The DADPn and DADMn pins are dedicated differential ADC pins.

Analog-to-Digital Converter (S08ADC16V1)

12.1.4 ADC Reference Selection

This device has the ability to select from several different reference voltages for the ADC. The following table describes the options available for this device.

REFSEL Reference Source

00 PAD, VREFH, VREFL

01 Internal VREF module

10 PMC bandgap

11 Reserved

Table 12-1. Reference Assignment

REFSEL is at the lowest 2 bits of register ADCSC2 and selects the voltage reference for the ADC.

- If REFSEL = 00, then PAD, VREFL, and VREFH act as the ADC conversion reference.
- If REFSEL = 01, then the internal VREF module output acts as the ADC conversion reference.
- If REFSEL = 10, then 1.2 V PMC bandgap output acts as the ADC conversion reference.
- If REFSEL = 11 (reserved), then selects the default voltage reference same as REFSEL = 2'b00.

12.1.5 Module Configurations

This section provides device-specific information for configuring the ADC.

12.1.5.1 Configurations for Stop Modes

The ADC, if enabled, must be configured to use the asynchronous clock source, ADACK, to meet the ADC minimum frequency requirements. The VREF output must be enabled in order to convert the bandgap channel in stop mode.

12.1.5.2 Differential Channel Assignments

The ADC differential channel assignments for the devices are shown in Table 12-2. Differential channels are selected when the DIFFn bit in the corresponding ADSC1n register is set (DIFFn= 1). Reserved channels convert to an unknown value.

Table 12-2. ADC Differential Channel Assignment

ADCH	Channel	Input	Pin Control
00000	DAD0	DADP0 and DADM0	ADPC0
00001	DAD1	DADP1 and DADM1	ADPC1
00010	DAD2	DADP2 and DADM2	ADPC2
00011	DAD3	DADP3 and DADM3	ADPC3
00100	R	Reserved	N/A
00101	R	Reserved	N/A
00110	R	Reserved	N/A
00111	R	Reserved	N/A
01000	R	Reserved	N/A
01001	R	Reserved	N/A
01010	R	Reserved	N/A
01011	R	Reserved	N/A
01100	R	Reserved	N/A
01101	R	Reserved	N/A
01110	R	Reserved	N/A
01111	R	Reserved	N/A

ADCH	Channel	Input	Pin Control
10000	R	Reserved	N/A
10001	R	Reserved	N/A
10010	R	Reserved	N/A
10011	R	Reserved	N/A
10100	R	Reserved	N/A
10101	R	Reserved	N/A
10110	R	Reserved	N/A
10111	R	Reserved	N/A
11000	R	Reserved	N/A
11001	R	Reserved	N/A
11010	Temp-Diff erential	Temperature Sensor ¹	N/A
11011	Bandgap	PMC Bandgap	N/A
11100	R	Reserved	N/A
11101	V _{REFH}	V_{REFH}	N/A
11110	R	Reserved	N/A
11111	Module Disabled	None	N/A

¹ 1 For information, see Section 12.1.5.6, "Temperature Sensor."

12.1.5.3 Single-Ended Channel Assignments

The ADC single-ended channel assignments for the devices are shown in Table 12-3. Single-ended channels are selected when the DIFFn bit in the corrensponding ADSC1n register is cleared (DIFFn= 0). Reserved channels convert to an unknown value.

Table 12-3. ADC Single-Ended Channel Assignment

ADCH	Channel	Input	Pin Control
00000	DADP0	DADP0	ADPC0
00001	DADP1	DADP1	ADPC1
00010	DADP2	TRIOUT1/DADP2	ADPC2
00011	DADP3	TRIOUT2/DADP3	ADPC3
00100	AD4	PTA2/KBI1P1/RX1/ADP4	ADPC4

ADCH	Channel	Input	Pin Control
10000	AD16	OUT2(from OPAMP)	ADPC16
10001	AD17	DACO	ADPC17
10010	AD18	Reserved	ADPC18
10011	AD19	Reserved	ADPC19
10100	AD20	Reserved	ADPC20

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor 12-3

Analog-to-Digital Converter (S08ADC16V1)

Table 12-3. ADC Single-Ended Channel Assignment (Continued)

ADCH	Channel	Input	Pin Control
00101	AD5	PTA3/KBI1P2/FB_D6/ADP5	ADPC5
00110	AD6	PTC2/KBI1P5/SPSCK2/ADP6	ADPC6
00111	AD7	PTC3/KBI1P6/SS2/ADP7	ADPC7
01000	AD8	PTC4/KBI1P7/CMPP0/ADP8	ADPC8
01001	AD9	PTC5/KBI2P0/CMPP1/ADP9	ADPC9
01010	AD10	PTC6/KBI2P1/PACMPO/ADP10	ADPC10
01011	AD11	PTC7/KBI2P2/CLKOUT/ADP11	ADPC11
01100	AD12	Reserved	N/A
01101	AD13	Reserved	N/A
01110	AD14	ACMP_OUT	ADPC14
01111	AD15	OUT1 (from OPAMP)	ADPC15

ADCH	Channel	Input	Pin Control
10101	AD21	Reserved	ADPC21
10110	AD22	Reserved	ADPC22
10111	AD23	Reserved	ADPC23
11000	AD24	VREFO	ADPC24
11001	R	Reserved	N/A
11010	Temp Single-ended	Temperature Sensor ¹	N/A
11011	Bandgap	PMC Bandgap	N/A
11100	R	Reserved	N/A
11101	V _{REFH}	V_{REFH}	N/A
11110	V _{REFL}	V _{REFL}	N/A
11111 Module Disabled		None	N/A

NOTE

Enable the VREF output to supply the bandgap voltage. See Chapter 28, "Voltage Reference Module (S08VREFV1)," for information on how to enable the VREF output. For the value of the bandgap voltage reference, see the data sheet.

12.1.5.4 Alternate Clock

The ADC is capable of performing conversions using the MCU bus clock, the bus clock divided by two, the local asynchronous clock (ADACK) within the module, or the alternate clock (ALTCLK). The ALTCLK is connected to the MCGERCLK. See Chapter 17, "Multipurpose Clock Generator (S08MCGV3)" for more information.

12.1.5.5 Hardware Triggers

The ADC hardware trigger can be provided from the:

- Time of Day (TOD) module
- Programmable Delay Block (PDB)

The ADCTRS bit from the SIMIPS register selects the hardware trigger source.

The PDB can be configured to generate up to eight hardware trigger select signals. The ADC hardware trigger select signals pre-select one of the eight ADCSC1n registers as the source for the next ADC conversion.

For information, see Section 12.1.5.6, "Temperature Sensor."

12.1.5.6 Temperature Sensor

The ADC module includes a temperature sensor whose output is connected to one of the ADC analog channel inputs. Equation 12-1 provides an approximate transfer function of the temperature sensor.

Temp = 25 -
$$((V_{TEMP} - V_{TEMP25}) \div m)$$

Eqn. 12-1

where:

- V_{TEMP} is the voltage of the temperature sensor channel at the ambient temperature.
- V_{TEMP25} is the voltage of the temperature sensor channel at 25°C.
- m is the hot or cold voltage versus temperature slope in V/°C.

For temperature calculations, use the V_{TEMP25} and m values in the data sheet.

Have your application code, read the temperature sensor channel, calculate V_{TEMP} and compare it to V_{TEMP25} . If V_{TEMP} is greater than V_{TEMP25} , the cold slope value is applied in Equation 12-1. If V_{TEMP} is less than V_{TEMP25} , the hot slope value is applied in Equation 12-1.

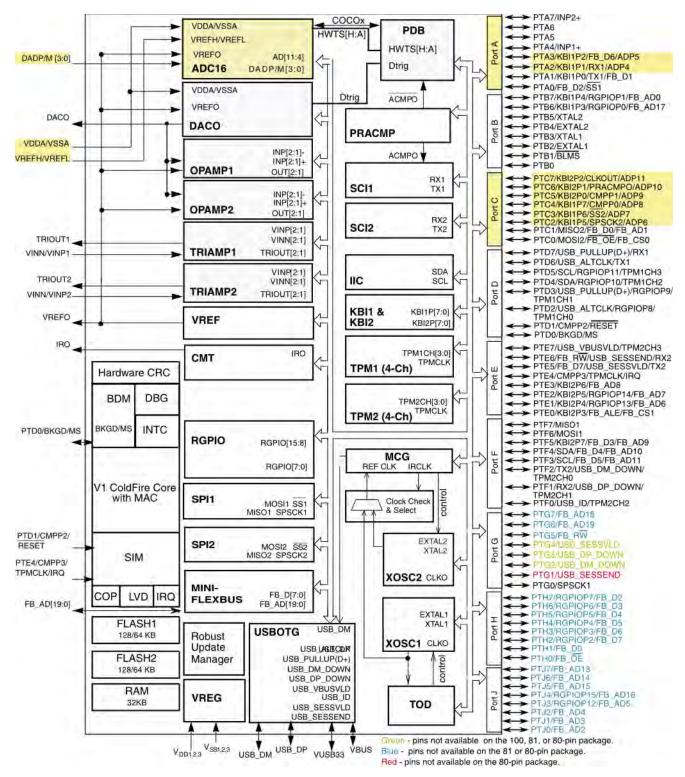


Figure 12-1. Block Diagram Highlighting ADC Block and Pins

12-6 Freescale Semiconductor

12.1.6 ADC Clock Gating

The bus clock to the ADC can be gated on and off using the ADC bit in SCGC1. This bit is set after any reset which enables the bus clock to this module. To conserve power, the ADC bit can be cleared to disable the clock to this module when not in use. See Section 5.7.7, "System Clock Gating Control 1 Register (SCGC1)," for details.

12.1.7 Features

Features of the ADC module include:

- Linear successive approximation algorithm with up to 16-bit resolution
- Up to four pairs of differential and 24 single-ended external analog inputs
- Output Modes:
 - Differential 16-bit, 13-bit, 11-bit, and 9-bit modes
 - Single-ended 16-bit, 12-bit, 10-bit, and 8-bit modes
- Output formatted in 2s complement 16b sign extended for differential modes
- Output in right-justified unsigned format for single-ended
- Single or continuous conversion (automatic return to idle after single conversion)
- Configurable sample time and conversion speed/power
- Conversion complete / Hardware average complete flag and interrupt
- Input clock selectable from up to four sources
- Operation in wait or stop3 modes for lower noise operation
- Asynchronous clock source for lower noise operation with option to output the clock
- Selectable asynchronous hardware conversion trigger with hardware channel select
- Automatic compare with interrupt for less-than, greater-than or equal-to, within range, or out-of-range, programmable value
- Temperature sensor
- Hardware average function
- Selectable voltage reference
 - Internal
 - External
 - Alternate
- Self-Calibration mode

12.1.8 Block Diagram

Figure 12-2 provides a block diagram of the ADC module.

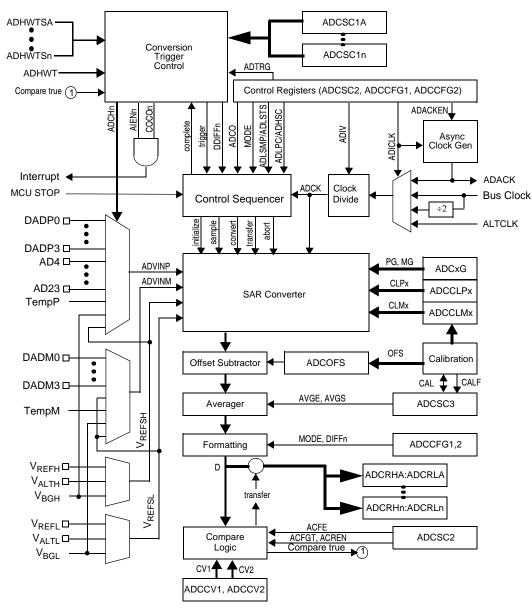


Figure 12-2. ADC Block Diagram

12.2 External Signal Description

The ADC module supports up to four pairs of differential inputs and 24 single-ended inputs. Each differential pair requires two inputs, DADPx and DADMx. The ADC also requires four supply/reference/ground connections.

Table 12-4. Signal Properties

Name	Function
DADP0-DADP3	Differential Analog Channel Inputs
DADM0-DADM3	Differential Analog Channel Inputs

MCF51MM256 Series Devices Reference Manual, Rev. 3

12-8 Freescale Semiconductor

Name	Function
AD4–AD23	Analog Channel inputs
V _{REFSH}	Voltage Reference Select High
V _{REFSL}	Voltage Reference Select Low
V_{DDAD}	Analog power supply
V _{SSAD}	Analog ground

Table 12-4. Signal Properties (Continued)

12.2.1 Analog Power (V_{DDAD})

The ADC analog portion uses V_{DDAD} as its power connection. In some packages, V_{DDAD} is connected internally to V_{DD} . If externally available, connect the V_{DDAD} pin to the same voltage potential as V_{DD} . External filtering may be necessary to ensure clean V_{DDAD} for good results.

12.2.2 Analog Ground (V_{SSAD})

The ADC analog portion uses V_{SSAD} as its ground connection. In some packages, V_{SSAD} is connected internally to V_{SS} . If externally available, connect the V_{SSAD} pin to the same voltage potential as V_{SS} .

12.2.3 Voltage Reference Select High (V_{REFSH})

V_{REFSH} is the high-reference voltage for the converter.

The ADC can be configured to accept one of three voltage reference pairs for V_{REFSH} . Each pair contains a positive reference which must be between the minimum Ref Voltage High (defined in) and V_{DDAD} , and a ground reference which must be at the same potential as V_{SSAD} .

The three pairs are:

- external (V_{RFFH} and V_{RFFI})
- alternate $(V_{ALTH}$ and $V_{ALTL})$
- internal bandgap (V_{BGH} and V_{BGI})

These voltage references are selected using the REFSEL bits in the ADCSC2 register. The alternate (V_{ALTH} and V_{ALTL}) voltage reference pair may select additional external pins or internal sources depending on MCU configuration. Consult the module introduction for information on the Voltage References specific to this MCU.

In some packages, V_{REFH} is connected in the package to V_{DDAD} . If externally available, the positive reference(s) may be connected to the same potential as V_{DDAD} or may be driven by an external source to a level between the minimum Ref Voltage High (defined in the Data Sheet) and the V_{DDAD} potential (V_{REFH} must never exceed V_{DDAD}).

12.2.4 Voltage Reference Select Low (V_{REFL})

 V_{REFSL} is the low reference voltage for the converter. The ADC can be configured to accept one of three voltage reference pairs for V_{REFSL} . Each pair contains a positive reference which must be between the minimum Ref Voltage High (defined in Appendix A) and V_{DDAD} , and a ground reference which must be at the same potential as V_{SSAD} . The three pairs are external (V_{REFH} and V_{REFL}), alternate (V_{ALTH} and V_{ALTL}) and the internal bandgap (V_{BGH} and V_{BGL}). These voltage references are selected using the REFSEL bits. The alternate (V_{ALTH} and V_{ALTL}) voltage reference pair may select additional external pins or internal sources depending on MCU configuration. Consult the module introduction for information on the Voltage References specific to this MCU.

In some packages, V_{REFL} is connected in the package to V_{SSAD} . If externally available, connect the ground reference(s) to the same voltage potential as V_{SSAD} .

12.2.5 Analog Channel Inputs (ADx)

The ADC module supports up to 24 single-ended analog inputs. A single-ended input is selected for conversion through the ADCHn channel select bits when the DIFFn bit in the ADCSC1n register is low.

12.2.6 Differential Analog Channel Inputs (DADx)

The ADC module supports up to four differential analog channel inputs. Each differential analog input is a pair of external pins (DADPx and DADMx) referenced to each other to provide the most accurate analog to digital readings. A differential input is selected for conversion through the ADCHn channel select bits when the DIFFn bit in the ADCSC1n register bit is high.

12.3 Register Definition

These memory-mapped registers control and monitor operation of the ADC:

- Status and channel control registers, ADCSC1A:ADCSC1n
- Configuration registers, ADCCFG1 and ADCCFG2
- Data result registers, ADCRHA: ADCRLA to ADCRHn: ADCRLn
- Compare value registers, ADCCV1H, ADCCV1L, ADCCV2H, and ADCCV2L
- General status and control registers, ADCSC2 and ADCSC3
- Configuration registers, ADCCFG1 and ADCCFG2
- Offset Correction Registers, ADCOFSH and ADCOFSL
- Plus-input gain registers, ADCPGH and ADCPGL
- Minus-input gain registers, ADCMGH and ADCMGL
- Plus-side general calibration registers, ADCCLP0, ADCCLP1, ADCCLP2, ADCCLP3H, ADCCLP3L, ADCCLP4H, ADCCLP4L, ADCCLSP, ADCCLDP
- Minus-side general calibration registers, ADCCLM0, ADCCLM1, ADCCLM2, ADCCLM3H, ADCCLM3L, ADCCLM4H, ADCCLM4L, ADCCLSM, ADCCLDM
- Pin enable registers, APCTL1, APCTL2

12.3.1 Status and Control Registers 1 (ADCSC1A:ADCSC1n)

This section describes the function of the ADC status and channel control registers, ADCSC1A through ADCSC1n. ADCSC1A is used for both software and hardware trigger modes of operation. ADCSC1B-ADCSC1n indicate potentially multiple ADCSC1 registers for use only in hardware trigger mode. Consult the module introduction for information on the number of ADCSC1n registers specific to this MCU. The ADCSC1A to ADCSC1n registers have identical fields, and are used in a "ping-pong" approach to control ADC operation. At any one point in time, only one of the ADCSC1A to ADCSC1n registers is actively controlling ADC conversions. Updating ADCSC1A while ADCSC1n is actively controlling a conversion is allowed (and vice-versa for any of the ADCSC1n registers specific to this MCU). Writing ADCSC1A while ADCSC1A is actively controlling a conversion aborts the current conversion. In software trigger mode (ADTRG=0), writes to ADCSC1A subsequently initiates a new conversion (if the ADCHn bits are equal to a value other than all 1s). Similarly, writing any of the ADCSC1n registers while that specific ADCSC1n register is actively controlling a conversion aborts the current conversion. Any of the ADCSC1B -ADCSC1n registers are not used for software trigger operation and therefore writes to the ADCSC1B -ADCSC1n registers do not initiate a new conversion.

Figure 12-3. Status and Channel Control Register 1n (ADCSC1n)

Table 12-5. ADCSC1:ADCSC1n Field Descriptions

Field	Description
7 COCOn	Conversion Complete Flag - The COCOn flag is a read-only bit that is set each time a conversion is completed when the compare function is disabled (ACFE=0) and the hardware average function is disabled (AVGE=0). When the compare function is enabled (ACFE=1), the COCOn flag is set upon completion of a conversion only if the compare result is true. When the hardware average function is enabled (AVGE=1), the COCOn flag is set upon completion of the selected number of conversions (determined by the AVGS bits). The COCO1 flag will also set at the completion of a Calibration sequence. The COCOn bit is cleared when the respective ADCSCn is written or when the respective ADCRLn is read. O Conversion not completed Conversion completed
6 AIENn	Interrupt Enable - AIENn enables conversion complete interrupts. When COCOn becomes set while the respective AIENn is high, an interrupt is asserted. O Conversion complete interrupt disabled Conversion complete interrupt enabled

Table 12-5. ADCSC1:ADCSC1n Field Descriptions (Continued)

Field	Description
5 DIFFn	Differential Mode Enable - DIFFn configures the ADC to operate in differential mode. When enabled this mode automatically selects from the differential channels, changes the conversion algorithm and the number of cycles to complete a conversion. 0 Single-ended conversions and input channels are selected 1 Differential conversions and input channels are selected
4:0 ADCHn[4:0]	Input Channel Select - The ADCHn bits form a 5-bit field that selects one of the input channels. The input channel decode is dependent upon the value of the DIFFn bit as detailed in Table 12-6. The successive approximation converter subsystem is turned off when the channel select bits are all set(ADCHn = 11111). This feature allows for explicit disabling of the ADC and isolation of the input channel from all sources. Terminating continuous conversions this way prevents an additional, single conversion from being performed. It is not necessary to set the channel select bits to all ones to place the ADC in a low-power state when continuous conversions are not enabled because the module automatically enters a low-power state when a conversion completes.

Table 12-6. Input Channel Select

ADCHn	Input Selected when DIFFn=0	Input Selected when DIFFn=1					
00000-00011	DADP0-DADP3	DAD0-DAD3 ¹					
00100-10111	AD4-AD23	Reserved					
11000-11001	Reserved	Reserved					
11010	Temp Sensor (single-ended)	Temp Sensor (differential)					
11011	Bandgap (single-ended)	Bandgap (differential)					
11100	Reserved	Reserved					
11101	V _{REFSH} ²	-V _{REFSH} ² (differential)					
11110	V_{REFSL}^2	Reserved					
11111	Module disabled						

¹ DAD0-DAD3 are associated with the input pin pairs DADPx and DADMx.

12.3.2 Configuration Register 1 (ADCCFG1)

ADCCFG1 selects the mode of operation, clock source, clock divide, and configure for low power or long sample time.

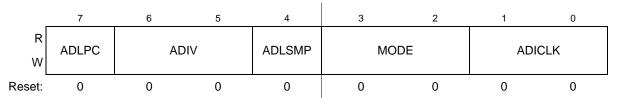


Figure 12-4. Configuration Register (ADCCFG1)

12-12 Freescale Semiconductor

Voltage Reference selected is determined by the REFSEL bits in the ADCSC2 register. Refer to Section 12.4.3 for more information on voltage reference selection.

Table 12-7. ADCCFG1 Register Field Descriptions

Field	Description
7 ADLPC	Low-Power Configuration - ADLPC controls the power configuration of the successive approximation converter. This optimizes power consumption when higher sample rates are not required. 0 Normal power configuration 1 Low-power configuration: The power is reduced at the expense of maximum clock speed.
6:5 ADIV[6:5]	Clock Divide Select - ADIV selects the divide ratio used by the ADC to generate the internal clock ADCK. Table 12-8 shows the available clock configurations.
4 ADLSMP	Sample Time Configuration - ADLSMP selects between different sample times based on the conversion mode selected. This bit adjusts the sample period to allow higher impedance inputs to be accurately sampled or to maximize conversion speed for lower impedance inputs. Longer sample times can also be used to lower overall power consumption when continuous conversions are enabled if high conversion rates are not required. When ADLSMP=1, the Long Sample Time Select bits (ADLSTS[1:0]) can select the extent of the long sample time. O Short sample time (The ADLTS bits can select the extent of the long sample time)
3:2 MODE[3:2]	Conversion Mode Selection - MODE bits are used to select between the ADC resolution mode. See Table 12-9.
1:0 ADICLK[1:0]	Input Clock Select - ADICLK bits select the input clock source to generate the internal clock ADCK. See Table 12-10.

Table 12-8. Clock Divide Select

ADIV	Divide Ratio	Clock Rate
00	1	Input clock
01	2	Input clock ÷ 2
10	4	Input clock ÷ 4
11	8	Input clock ÷ 8

Table 12-9. Conversion Modes

MODE	DIFFn	Conversion Mode Description
00	0	single-ended 8-bit conversion
00	1	Differential 9-bit conversion with 2s complement output
01	0	single-ended 12-bit conversion
01	1	Differential 13-bit conversion with 2s complement output
10	0	single-ended 10-bit conversion
10	1	Differential 11-bit conversion with 2s complement output
11	0	single-ended 16-bit conversion
11	1	Differential 16-bit conversion with 2s complement output

Table 12-10. Input Clock Select

ADICLK	Selected Clock Source
00	Bus clock
01	Bus clock divided by 2
10	Alternate clock (ALTCLK)
11	Asynchronous clock (ADACK)

12.3.3 Configuration Register 2 (ADCCFG2)

ADCCFG2 selects differential mode, the special high speed configuration for very high speed conversions, and selects the long sample time duration during long sample mode.

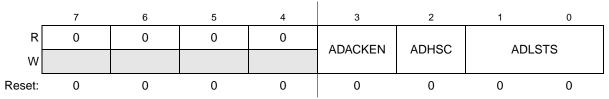


Figure 12-5. Configuration Register 2(ADCCFG2)

Table 12-11. ADCCFG2 Register Field Descriptions

Field	Description
3 ADACKEN	Asynchronous clock output enable - ADACKEN enables the ADC's asynchronous clock source and the clock source output regardless of the conversion and input clock select (ADICLK bits) status of the ADC. Based on MCU configuration the asynchronous clock may be used by other modules (see module introduction section). Setting this bit allows the clock to be used even while the ADC is idle or operating from a different clock source. Also, latency of initiating a single or first-continuous conversion with the asynchronous clock selected is reduced since the ADACK clock is already operational. O Asynchronous clock output disabled; Asynchronous clock only enabled if selected by ADICLK and a conversion is active Asynchronous clock and clock output enabled regardless of the state of the ADC
2 ADHSC	High Speed Configuration- ADHSC configures the ADC for very high speed operation. The conversion sequence is altered (4 ADCK cycles added to the conversion time) to allow higher speed conversion clocks. O Normal conversion sequence selected High speed conversion sequence selected (4 additional ADCK cycles to total conversion time)
1:0 ADLSTS	Long Sample Time Select - ADLSTS selects between the extended sample times when long sample time is selected (ADLSMP=1). This allows higher impedance inputs to be accurately sampled or to maximize conversion speed for lower impedance inputs. Longer sample times can also be used to lower overall power consumption when continuous conversions are enabled if high conversion rates are not required. 00 Default longest sample time (20 extra ADCK cycles; 24 ADCK cycles total) 11 2 extra ADCK cycles; 16 ADCK cycles total sample time 10 6 extra ADCK cycles; 6 ADCK cycles total sample time

12-14 Freescale Semiconductor

12.3.4 Data Result Registers (ADCRHA: ADCRLA to ADCRHn: ADCRLn)

The Data Result Registers (ADCRHA:ADCRLA to ADCRHn:ADCRLn) contain the result of an ADC conversion of the channel selected by the respective status and channel control register (ADCSC1A:ADCSC1n). For every ADCSC1A:ADCSC1n status and channel control register, there is a respective ADCRHA:ADCRLA to ADCRHn:ADCRLn data result register. Consult the module introduction for information on the number of ADCRHn:ADCRLn registers specific to this MCU.Reading ADCRHn prevents the ADC from transferring subsequent conversion results into the result registers until ADCRLn is read. If ADCRLn is not read until after the next conversion is completed, the intermediate conversion result is lost. In 8-bit single-ended mode, there is no interlocking with ADCRLn.

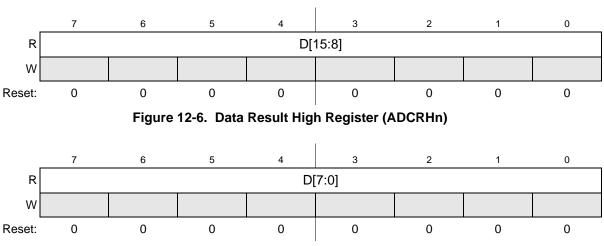


Figure 12-7. Data Result Low Register (ADCRLn)

ADCRHn contains the upper bits of the result of a conversion based on the conversion mode. ADCRLn contains the lower eight bits of the result of a conversion, or all eight bits of an 8-bit single-ended conversion. Unused bits in the ADCRHn register are cleared in unsigned right justified modes and carry the sign bit (MSB) in sign extended 2's complement modes. For example when configured for 10-bit single-ended mode, D[15:10] are cleared. When configured for 11-bit differential mode, D[15:10] carry the sign bit (bit 10 extended through bit 15).

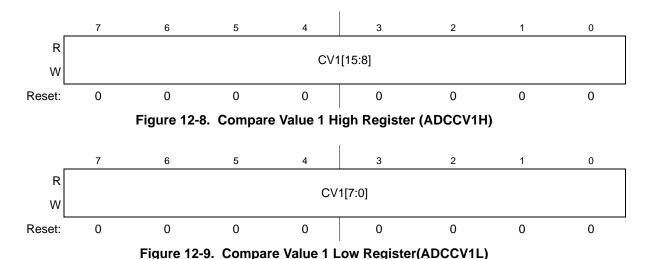
Table 12-12 describes the behavior of the data result registers in the different modes of operation.

Conversion		Data Result Register bits																
Mode	D15	D14	D13	D12	D11	D10	60	D8	D7	9Q	D2	D4	D3	D2	D1	D0	Format	
16b differential	S	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	signed 2's complement	
16b single-ended	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	unsigned right justified	
13b differential	S	S	s	S	D	D	D	D	D	D	D	D	D	D	D	D	sign extended 2's complement	
12b single-ended	0	0	0	0	D	D	D	D	D	D	D	D	D	D	D	D	unsigned right justified	
11b differential	S	s	S	S	S	S	D	D	D	D	D	D	D	D	D	D	sign extended 2's complement	

Table 12-12. Data Result Register Description

MCF51MM256 Series Devices Reference Manual, Rev. 3

Conversion		Data Result Register bits															
Conversion Mode	D15	D14	D13	D12	D11	D10	6 Q	D8	D7	9Q	D2	D4	D3	D2	D1	D0	Format
10b single-ended	0	0	0	0	0	0	D	D	D	D	D	D	D	D	D	D	unsigned right justified
9b differential	S	S	S	S	S	S	S	S	D	D	D	D	D	D	D	D	sign extended 2's complement
8b single-ended	0	0	0	0	0	0	0	0	D	D	D	D	D	D	D	D	unsigned right justified


S: Sign bit or sign bit extension.

12.3.5 Compare Value Registers (ADCCV1H:ADCCV1L and ADCCV2H:ADCCV2L)

The Compare Value Registers (ADCCV1H:ADCCV1L & ADCCV2H:ADCCV2L) contain a compare value used to compare with the conversion result when the compare function is enabled (ACFE=1). This register is formatted the same for both bit position definition and value format (unsigned or sign-extended 2's complement) as the Data Result Registers (ADCRHn:ADCRLn) in the different modes of operation (See Table 12-12). Therefore, the compare function only uses the compare value register bits that are related to the ADC mode of operation.

The compare value 2 registers (ADCCV2H:ADCCV2L) are utilized only when the compare range function is enabled (ACREN=1).

In all modes except 8-bit single-ended conversions, the ADCCV1H register holds the upper bits of the first compare value. In 8-bit single-ended mode, ADCCV1H is not used during compare. In all conversion modes, the ADCCV1L register holds the lower 8 bits of the first compare value. The compare function is further detailed in Section 12.4.6.

MCF51MM256 Series Devices Reference Manual, Rev. 3

12-16 Freescale Semiconductor

D: Data (2's complement data if indicated).

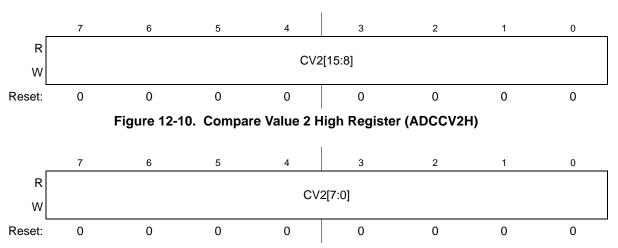


Figure 12-11. Compare Value 2Low Register(ADCCV2L)

12.3.6 Status and Control Register 2 (ADCSC2)

The ADCSC2 register contains the conversion active, hardware/software trigger select, compare function and voltage reference select of the ADC module.

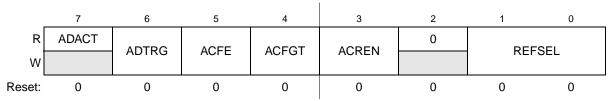


Figure 12-12. Status and Control Register 2 (ADCSC2)

Table 12-13. ADCSC2 Register Field Descriptions

Field	Description
7 ADACT	Conversion Active - ADACT indicates that a conversion or hardware averaging is in progress. ADACT is set when a conversion is initiated and cleared when a conversion is completed or aborted. O Conversion not in progress Conversion in progress
6 ADTRG	Conversion Trigger Select - ADTRG selects the type of trigger used for initiating a conversion. Two types of trigger are selectable: software trigger and hardware trigger. When software trigger is selected, a conversion is initiated following a write to ADCSC1A. When hardware trigger is selected, a conversion is initiated following the assertion of the ADHWT input after a pulse of the ADHWTSn input.Refer to Section 12.4.5.1 for more information on initiating conversions. O Software trigger selected Hardware trigger selected
5 ACFE	Compare Function Enable - ACFE enables the compare function. 0 Compare function disabled 1 Compare function enabled

Table 12-13. ADCSC2 Register Field Descriptions (Continued)

Field	Description
4 ACFGT	Compare Function Greater Than Enable - ACFGT configures the compare function to check the conversion result relative to the compare value register(s) (ADCCV1H:ADCCV1L and ADCCV2H:ADCCV2L) based upon the value of ACREN. The ACFE bit must be set for ACFGT to have any effect. The compare function modes are further detailed in Table 12-24 in Section 12.4.6. O Configures Less Than Threshold, Outside Range Not Inclusive and Inside Range Not Inclusive functionality based on the values placed in the ADCCV1 and ADCCV2 registers. Configures GreaterThan Or EqualTo Threshold, Outside Range Inclusive and Inside Range Inclusive functionality based on the values placed in the ADCCV1 and ADCCV2 registers.
3 ACREN	Compare Function Range Enable - ACREN configures the compare function to check the conversion result of the input being monitored is either between or outside the range formed by the compare value registers (ADCCV1H:ADCCV1L and ADCCV2H:ADCCV2L) determined by the value of ACFGT. The ACFE bit must be set for ACFGT to have any effect. The compare function modes are further detailed in Table 12-24 in Section 12.4.6. O Range function disabled. Only the compare value 1 register (ADCCV1H:ADCCV1L) is compared. Range function enabled. Both compare value registers (ADCCV1H:ADCCV1L and ADCCV2H:ADCCV2L) are compared.
1:0 REFSEL [1:0]	 Voltage Reference Selection - REFSEL bits select the voltage reference source used for conversions.Refer to Section 12.4.3 for more information on voltage reference selection. 00 Default voltage reference pin pair (External pins V_{REFH} and V_{REFL}). 01 Alternate reference pair (V_{ALTH} and V_{ALTL}). This pair may be additional external pins or internal sources depending on MCU configuration.Consult the module introduction for information on the Voltage Reference specific to this MCU. 10 Internal bandgap reference and associated ground reference (V_{BGH} and V_{BGL}). 11 Reserved - Selects default voltage reference (V_{REFH} and V_{REFL}) pin pair.

12.3.7 Status and Control Register 3 (ADCSC3)

The ADCSC3 register controls the calibration, continuous convert and hardware averaging functions of the ADC module.

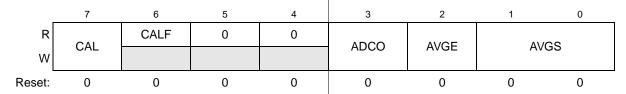


Figure 12-13. Status and Control Register 3 (ADCSC3)

Table 12-14. ADCSC3 Register Field Descriptions

Field	Description
7 CAL	Calibration - CAL begins the calibration sequence when set. This bit stays set while the calibration is in progress and is cleared when the calibration sequence is complete. The CALF bit must be checked to determine the result of the calibration sequence. Once started, the calibration routine cannot be interrupted by writes to the ADC registers or the results will be invalid and the CALF bit will set. Setting the CAL bit will abort any current conversion.
6 CALF	Calibration Failed Flag - CALF displays the result of the calibration sequence. The calibration sequence will fail if ADTRG = 1, any ADC register is written, or any stop mode is entered before the calibration sequence completes. The CALF bit is cleared by writing a 1 to this bit. O Calibration completed normally. Calibration failed. ADC accuracy specifications are not guaranteed.
3 ADCO	 Continuous Conversion Enable - ADCO enables continuous conversions. Refer to Section 12.4.5.1 for more information on initiating conversions. One conversion or one set of conversions if the hardware average function is enabled (AVGE=1) after initiating a conversion. Continuous conversions or sets of conversions if the hardware average function is enabled (AVGE=1) after initiating a conversion.
2 AVGE	Hardware average enable - AVGE enables the hardware average function of the ADC. 0 Hardware average function disabled 1 Hardware average function enabled
1:0 AVGS	Hardware Average select - AVGS determine how many ADC conversions will be averaged to create the ADC average result. 00 - 4 Samples averaged 01 - 8 Samples averaged 10 - 16 Samples averaged 11 - 32 Samples averaged

12.3.8 ADC Offset Correction Register (ADCOFSH:ADCOFSL)

The ADC Offset Correction Register (ADCOFSH:ADCOFSL) contains the user-selected or calibration-generated offset error correction value.

This register is a 2's complement, left justified, 16b value formed by the concatenation of:

- ADCOFSH
- ADCOFSL.

The value in the offset correction registers (ADCOFSH:ADCOFSL) is subtracted from the conversion and the result is transferred into the result registers (ADCRHn:ADCRLn).

NOTE

If the result is above the maximum or below the minimum result value, it is forced to the appropriate limit for the current mode of operation. For additional information, please see Section 12.4.8.

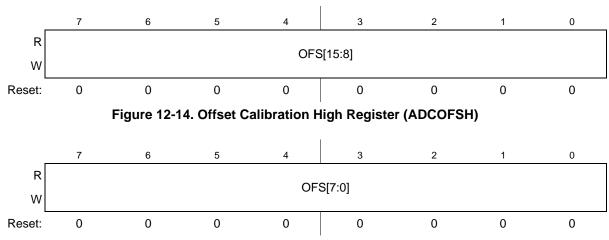


Figure 12-15. Offset Calibration Low Register (ADCOFSL)

12.3.9 ADC Plus-Side Gain Register (ADCPGH:ADCPGL)

The Plus-Side Gain Register (ADCPGH:ADCPGL) contains the gain error correction for the plus-side input in differential mode or the overall conversion in single-ended mode. ADCPGH:ADCPGL represent a 16 bit floating point number representation of the gain adjustment factor, with the decimal point fixed between ADPG15 and ADPG14. This register must be written by the user with the value described in the calibration procedure or the gain error specifications may not be met.

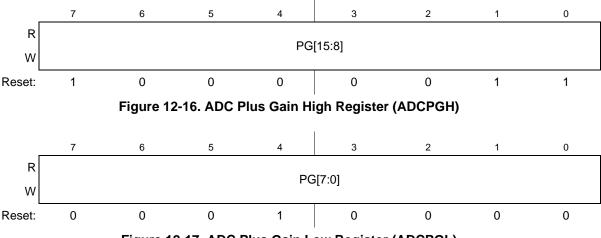


Figure 12-17. ADC Plus Gain Low Register (ADCPGL)

12.3.10 ADC Minus-Side Gain Register (ADCMGH:ADCMGL)

The Minus-Side Gain Register (ADCMGH:ADCMGL) contains the gain error correction for the minus-side input in differential mode. This register is ignored in single-ended mode. ADCMGH:ADCMGL represent a 16 bit floating point number representation of the gain adjustment

factor, with the decimal point fixed between ADPG15 and ADPG14. This register must be written by the user with the value described in the calibration procedure or the gain error specifications may not be met.

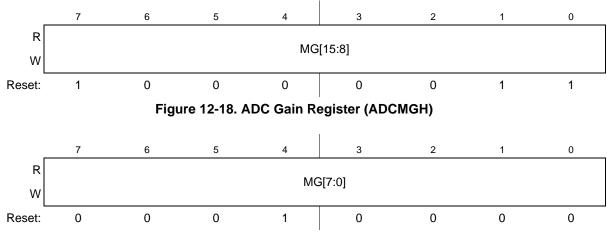


Figure 12-19. ADC Gain Register (ADCMGL)

12.3.11 ADC Plus-Side General Calibration Value Registers (ADCCLPx)

The Plus-Side General Calibration Value Registers (ADCCLPx) contain calibration information that is generated by the calibration function. These registers contain seven calibration values of varying widths: CLP0[5:0], CLP1[6:0], CLP2[7:0], CLP3[8:0], CLP4[9:0], CLPS[5:0], and CLPD[5:0]. ADCCLPx are automatically set once the self calibration sequence is done (CAL is cleared). If these registers are written by the user after calibration, the linearity error specifications may not be met.

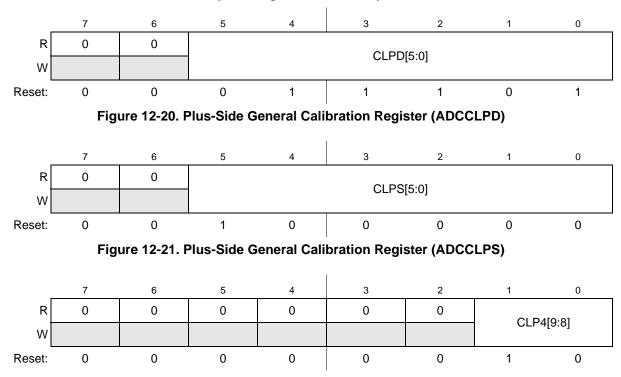


Figure 12-22. Plus-Side General Calibration Register (ADCCLP4H)

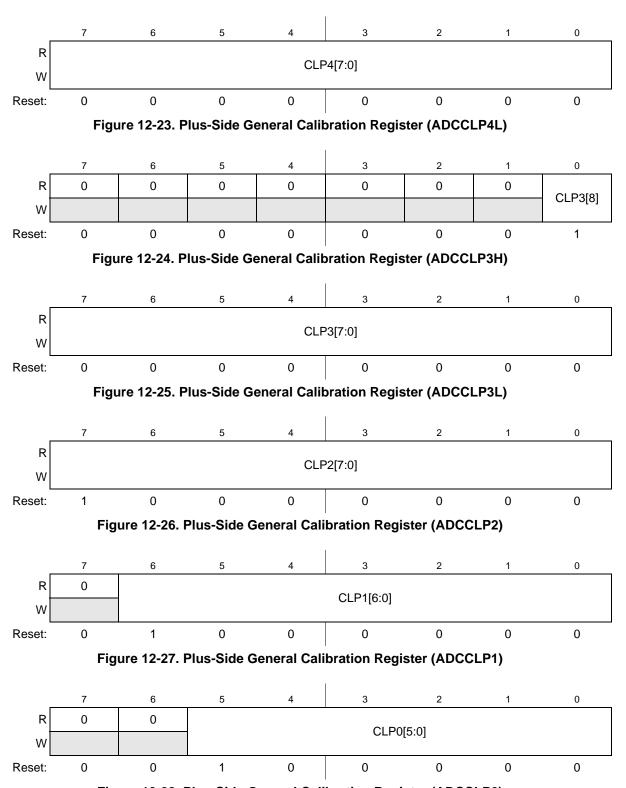


Figure 12-28. Plus-Side General Calibration Register (ADCCLP0)

12-22 Freescale Semiconductor

12.3.12 ADC Minus-Side General Calibration Value Registers (ADCCLMx)

ADCCLMx contain calibration information that is generated by the calibration function. These registers contain seven calibration values of varying widths: CLM0[5:0], CLM1[6:0], CLM2[7:0], CLM3[8:0], CLM4[9:0], CLMS[5:0], and CLMD[5:0]. ADCCLMx are automatically set once the self calibration sequence is done (CAL is cleared). If these registers are written by the user after calibration, the linearity error specifications may not be met.

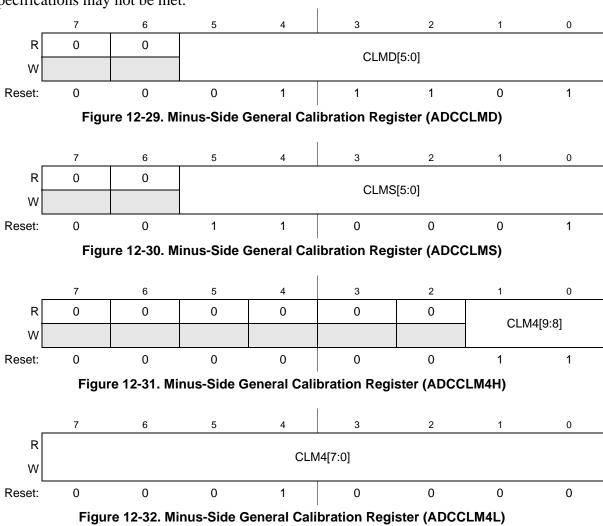


Figure 12-33. Minus-Side General Calibration Register (ADCCLM3H)

CLM3[8]

R

W

Reset:

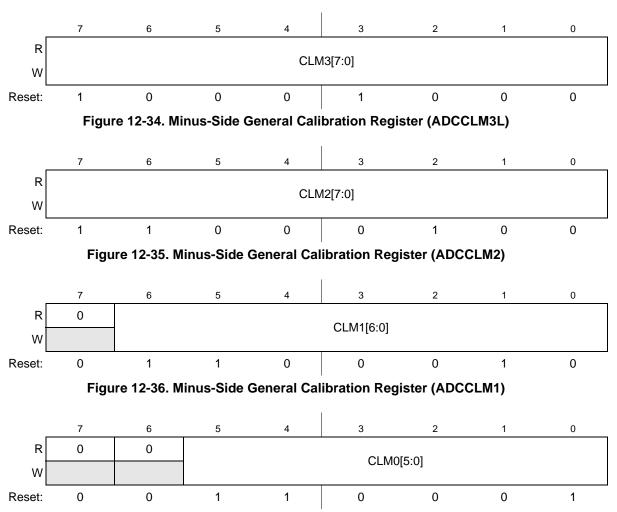
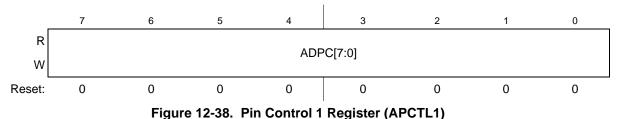



Figure 12-37. Minus-Side General Calibration Register (ADCCLM0)

12.3.13 Pin Control 1 Register (APCTL1)

The pin control registers disable the I/O port control of MCU pins used as analog inputs. APCTL1 is used to control the pins associated with channels 0–7 of the ADC module.

Table 12-15. APCTL1 Register Field Descriptions

Field	Description
7 ADPC7	ADC Pin Control 7 - ADPC7 controls the pin associated with channel AD7. 0 AD7 pin I/O control enabled 1 AD7 pin I/O control disabled
6 ADPC6	ADC Pin Control 6 - ADPC6 controls the pin associated with channel AD6. 0 AD6 pin I/O control enabled 1 AD6 pin I/O control disabled
5 ADPC5	ADC Pin Control 5- ADPC5 controls the pin associated with channel AD5. 0 AD5 pin I/O control enabled 1 AD5 pin I/O control disabled
4 ADPC4	ADC Pin Control 4 - ADPC4 controls the pin associated with channel AD4. 0 AD4 pin I/O control enabled 1 AD4 pin I/O control disabled
3 ADPC3	ADC Pin Control 3 - ADPC3 controls the pin associated with channel AD3. 0 AD3 pin I/O control enabled 1 AD3 pin I/O control disabled
2 ADPC2	ADC Pin Control 2 - ADPC2 controls the pin associated with channel AD2. 0 AD2 pin I/O control enabled 1 AD2 pin I/O control disabled
1 ADPC1	ADC Pin Control 1 - ADPC1 controls the pin associated with channel AD1. 0 AD1 pin I/O control enabled 1 AD1 pin I/O control disabled
0 ADPC0	ADC Pin Control 0 - ADPC0 controls the pin associated with channel AD0. 0 AD0 pin I/O control enabled 1 AD0 pin I/O control disabled

12.3.14 Pin Control 2 Register (APCTL2)

APCTL2 controls channels 8-15 of the ADC module.

Figure 12-39. Pin Control 2 Register (APCTL2)

Table 12-16. APCTL2 Register Field Descriptions

Field	Description
7 ADPC15	ADC Pin Control 15 - ADPC15 controls the pin associated with channel AD15. 0 AD15 pin I/O control enabled 1 AD15 pin I/O control disabled
6 ADPC14	ADC Pin Control 14 - ADPC14 controls the pin associated with channel AD14. 0 AD14 pin I/O control enabled 1 AD14 pin I/O control disabled
5 ADPC13	ADC Pin Control 13 - ADPC13 controls the pin associated with channel AD13. 0 AD13 pin I/O control enabled 1 AD13 pin I/O control disabled
4 ADPC12	ADC Pin Control 12 - ADPC12 controls the pin associated with channel AD12. 0 AD12 pin I/O control enabled 1 AD12 pin I/O control disabled
3 ADPC11	ADC Pin Control 11 - ADPC11 controls the pin associated with channel AD11. 0 AD11 pin I/O control enabled 1 AD11 pin I/O control disabled
2 ADPC10	ADC Pin Control 10 - ADPC10 controls the pin associated with channel AD10. 0 AD10 pin I/O control enabled 1 AD10 pin I/O control disabled
1 ADPC9	ADC Pin Control 9 - ADPC9 controls the pin associated with channel AD9. 0 AD9 pin I/O control enabled 1 AD9 pin I/O control disabled
0 ADPC8	ADC Pin Control 8 - ADPC8 controls the pin associated with channel AD8. 0 AD8 pin I/O control enabled 1 AD8 pin I/O control disabled

Functional Description 12.4

The ADC module is disabled during reset, stop2 or when the ADCHn bits are all high. The module is idle when a conversion has completed and another conversion has not been initiated. When idle and the asynchronous clock output enable is disabled (ADACKEN=0), the module is in its lowest power state. The ADC can perform an analog-to-digital conversion on any of the software selectable channels. All modes perform conversion by a successive approximation algorithm.

To meet accuracy specifications, the ADC module must be calibrated using the on chip calibration function. Calibration is recommended to be done after any reset. See Section 12.4.7 for details on how to perform calibration.

When the conversion is completed, the result is placed in the data registers (ADCRHn and ADCRLn). The conversion complete flag (COCOn) is then set and an interrupt is generated if the respective conversion complete interrupt has been enabled (AIENn=1).

The ADC module has the capability of automatically comparing the result of a conversion with the contents of the compare value registers. The compare function is enabled by setting the ACFE bit and operates with any of the conversion modes and configurations.

MCF51MM256 Series Devices Reference Manual, Rev. 3 12-26 Freescale Semiconductor

12-27

The ADC module has the capability of automatically averaging the result of multiple conversions. The hardware average function is enabled by setting the AVGE bit and operates with any of the conversion modes and configurations.

12.4.1 Clock Select and Divide Control

One of four clock sources can be selected as the clock source for the ADC module. This clock source is then divided by a configurable value to generate the input clock to the converter (ADCK). The clock is selected from one of the following sources by means of the ADICLK bits.

- The bus clock. This is the default selection following reset.
- The bus clock divided by two. For higher bus clock rates, this allows a maximum divide by 16 of the bus clock with using the ADIV bits.
- ALTCLK, as defined for this MCU (See module section introduction).
- The asynchronous clock (ADACK). This clock is generated from a clock source within the ADC module. Conversions are possible using ADACK as the input clock source while the MCU is in stop3 mode. Refer to Section 12.4.5.4 for more information.

Whichever clock is selected, its frequency must fall within the specified frequency range for ADCK. If the available clocks are too slow, the ADC may not perform according to specifications. If the available clocks are too fast, the clock must be divided to the appropriate frequency. This divider is specified by the ADIV bits and can be divide-by 1, 2, 4, or 8.

12.4.2 Input Select and Pin Control

The pin control registers (APCTL1, APCTL2) disable the I/O port control of the pins used as analog inputs. When a pin control register bit is set, the following conditions are forced for the associated MCU pin:

- The output buffer is forced to its high impedance state.
- The input buffer is disabled. A read of the I/O port returns a zero for any pin with its input buffer disabled.
- The pullup is disabled.

12.4.3 Voltage Reference Selection

The ADC can be configured to accept one of three voltage reference pairs as the reference voltage (V_{REFSH} and V_{REFSL}) used for conversions. Each pair contains a positive reference which must be between the minimum Ref Voltage High (defined in Appendix A) and V_{DDAD} , and a ground reference which must be at the same potential as V_{SSAD} . The three pairs are external (V_{REFH} and V_{REFL}), alternate (V_{ALTH} and V_{ALTL}) and the internal bandgap (V_{BGH} and V_{BGL}). These voltage references are selected using the REFSEL bits in the ADCSC2 register. The alternate (V_{ALTH} and V_{ALTL}) voltage reference pair may select additional external pins or internal sources depending on MCU configuration. Consult the module introduction for information on the Voltage References specific to this MCU.

12.4.4 Hardware Trigger and Channel Selects

The ADC module has a selectable asynchronous hardware conversion trigger, ADHWT, that is enabled when the ADTRG bit is set and a hardware trigger select event (ADHWTSn) has occurred. This source is not available on all MCUs. Consult the module introduction for information on the ADHWT source and the ADHWTSn configurations specific to this MCU.

When the ADHWT source is available and hardware trigger is enabled (ADTRG=1), a conversion is initiated on the rising edge of the ADHWT after a hardware trigger select event (ADHWTSn) has occurred. If a conversion is in progress when a rising edge of a trigger occurs, the rising edge is ignored. In continuous convert configuration, only the initial rising edge to launch continuous conversions is observed and until conversion gets aborted the ADC will continue to do conversions on the same ADC Status and Control register that initiated the conversion. The hardware trigger function operates in conjunction with any of the conversion modes and configurations.

The hardware trigger select event (ADHWTSn) must be set prior to and during the receipt of the ADHWT signal. If these conditions are not met the converter may ignore the trigger or use the incorrect configuration. If a hardware trigger select event gets asserted during a conversion, it must stay asserted until end of current conversion and remain set until the receipt of the ADHWT signal to trigger a new conversion. The channel and status fields selected for the conversion will depend on the active trigger select signal (ADHWTSA active selects ADCSC1A; ADHWTSn active selects ADCSC1n).

NOTE

Asserting more than one hardware trigger select signal (ADHWTSn) at the same time will result in unknown results. To avoid this, only select one hardware trigger select signal (ADHWTSn) prior to the next intended conversion.

When the conversion is completed, the result is placed in the data registers associated with the ADHWTSn received (ADHWTSA active selects ADCRHA:ADCRLA; ADHWTSn active selects ADCRHn:ADCRLn). The conversion complete flag associated with the ADHWTSn received (COCOn) is then set and an interrupt is generated if the respective conversion complete interrupt has been enabled (AIENn=1).

12.4.5 Conversion Control

Conversions can be performed as determined by the MODE bits and the DIFFn bit as shown in Table 12-9.

Conversions can be initiated by a software or hardware trigger. In addition, the ADC module can be configured for low power operation, long sample time, continuous conversion, hardware average and automatic compare of the conversion result to a software determined compare value.

12.4.5.1 Initiating Conversions

A conversion is initiated:

• Following a write to ADCSC1A (with ADCHA bits not all 1's) if software triggered operation is selected (ADTRG=0).

12-28 Freescale Semiconductor

• Following a hardware trigger (ADHWT) event if hardware triggered operation is selected (ADTRG=1) and a hardware trigger select event (ADHWTSn) has occurred. The channel and status fields selected will depend on the active trigger select signal (ADHWTSA active selects ADCSC1A; ADHWTSn active selects ADCSC1n; if neither is active the off condition is selected).

NOTE

Selecting more than one hardware trigger select signal (ADHWTSn) prior to a conversion completion will result in unknown results. To avoid this, only select one hardware trigger select signal (ADHWTSn) prior to a conversion completion.

• Following the transfer of the result to the data registers when continuous conversion is enabled (ADCO=1).

If continuous conversions are enabled, a new conversion is automatically initiated after the completion of the current conversion. In software triggered operation (ADTRG=0), continuous conversions begin after ADCSC1A is written and continue until aborted. In hardware triggered operation(ADTRG=1 and one ADHWTSn event has occurred), continuous conversions begin after a hardware trigger event and continue until aborted.

If hardware averaging is enabled, a new conversion is automatically initiated after the completion of the current conversion until the correct number of conversions is completed. In software triggered operation, conversions begin after ADCSC1A is written. In hardware triggered operation, conversions begin after a hardware trigger. If continuous conversions are also enabled, a new set of conversions to be averaged are initiated following the last of the selected number of conversions.

12.4.5.2 Completing Conversions

A conversion is completed when the result of the conversion is transferred into the data result registers, ADCRHn and ADCRLn. If the compare functions are disabled, this is indicated by the setting of COCOn. If hardware averaging is enabled, COCOn sets only if the last of the selected number of conversions is complete. If the compare function is enabled, COCOn sets and conversion result data is transferred only if the compare condition is true. If both hardware averaging and compare functions are enabled then COCOn sets only if the last of the selected number of conversions is complete and the compare condition is true. An interrupt is generated if AIENn is high at the time that COCOn is set. In all modes except 8-bit single-ended conversions, a blocking mechanism prevents a new result from overwriting previous data in ADCRHn and ADCRLn if the previous data is in the process of being read (the ADCRHn register has been read but the ADCRLn register has not). When blocking is active, the conversion result data transfer is blocked, COCOn is not set, and the new result is lost. In the case of single conversions with the compare function enabled and the compare condition false, blocking has no effect and ADC operation is terminated. In all other cases of operation, when a conversion result data transfer is blocked, another conversion is initiated regardless of the state of ADCO (single or continuous conversions enabled).

NOTE

If continuous conversions are enabled, the blocking mechanism could result in the loss of data occurring at specific timepoints. To avoid this issue, the data must be read in fewer cycles than an ADC conversion time, accounting for interrupt or software polling loop latency.

If single conversions are enabled, the blocking mechanism could result in several discarded conversions and excess power consumption. To avoid this issue, the data registers must not be read after initiating a single conversion until the conversion completes.

12.4.5.3 Aborting Conversions

Any conversion in progress is aborted when:

- Writing ADCSC1A while ADCSC1A is actively controlling a conversion aborts the current conversion. In software trigger mode (ADTRG=0), a write to ADCSC1A initiates a new conversion (if the ADCHA bits are equal to a value other than all 1s). Writing any of the ADCSC1(B-n) registers while that specific ADCSC1(B-n) register is actively controlling a conversion aborts the current conversion. The ADCSC1(B-n) registers are not used for software trigger operation and therefore writes to the ADCSC1(B-n) registers do not initiate a new conversion.
- A write to any ADC register besides the ADCSC1A:ADCSC1n registers occurs. This indicates a mode of operation change has occurred and the current conversion is therefore invalid.
- The MCU is reset or enters stop2 mode.
- The MCU enters stop3 mode with ADACK not enabled.

When a conversion is aborted, the contents of the data registers, ADCRHn and ADCRLn, are not altered. The data registers continue to be the values transferred after the completion of the last successful conversion. If the conversion was aborted by a reset or stop2, ADCRHA: ADCRLA and ADCRHn: ADCRLn return to their reset states.

12.4.5.4 Power Control

The ADC module remains in its idle state until a conversion is initiated. If ADACK is selected as the conversion clock source but the asynchronous clock output is disabled (ADACKEN=0), the ADACK clock generator will also remain in its idle state (disabled) until a conversion is initiated. If the asynchronous clock output is enabled (ADACKEN=1), it will remain active regardless of the state of the ADC or the MCU power mode.

Power consumption when the ADC is active can be reduced by setting ADLPC. This results in a lower maximum value for f_{ADCK} (see the electrical specifications).

12.4.5.5 Sample Time and Total Conversion Time

The total conversion time depends upon: the sample time (as determined by ADLSMP and ADLSTS bits), the MCU bus frequency, the conversion mode (as determined by MODE and DIFFn bits), the high speed configuration (ADHSC bit), and the frequency of the conversion clock (f_{ADCK}).

The ADHSC bit is used to configure a higher clock input frequency. This will allow faster overall conversion times. In order to meet internal A/D converter timing requirements the ADHSC bit adds additional ADCK cycles. Conversions with ADHSC = 1 take four more ADCK cycles. ADHSC should be used when the ADCLK exceeds the limit for ADHSC = 0.

After the module becomes active, sampling of the input begins. ADLSMP and ADLSTS select between sample times based on the conversion mode that is selected. When sampling is complete, the converter is isolated from the input channel and a successive approximation algorithm is performed to determine the digital value of the analog signal. The result of the conversion is transferred to ADCRHn and ADCRLn upon completion of the conversion algorithm.

If the bus frequency is less than the f_{ADCK} frequency, precise sample time for continuous conversions cannot be guaranteed when short sample is enabled (ADLSMP=0). The maximum total conversion time is determined by the clock source chosen and the divide ratio selected. The clock source is selectable by the ADICLK bits, and the divide ratio is specified by the ADIV bits. The maximum total conversion time for all configurations is summarized in the equation below. Refer to Table 12-20 through Table 18-27 for the variables referenced in the equation.

Conversion Time Equation

Egn. 12-2

 $ConversionTime = SFCAdder + AverageNum \times (BCT + LSTAdder + HSCAdder)$

ADLSMP	ADACKEN	ADICLK	Single or First Continuous Time Adder (SFCAdder)
1	Х	0x, 10	3 ADCK cycles + 5 bus clock cycles
1	1	11	3 ADCK cycles + 5 bus clock cycles ¹
1	0	11	5μs + 3 ADCK cycles + 5 bus clock cycles
0	Х	0x, 10	5 ADCK cycles + 5 bus clock cycles
0	1	11	5 ADCK cycles + 5 bus clock cycles ¹

Table 12-17. Single or First Continuous Time Adder (SFCAdder)

5μs + 5 ADCK cycles + 5 bus clock cycles

ADACKEN must be 1 for at least 5us prior to the conversion is initiated to achieve this time

Table 12-18. Average Number Factor (AverageNum)

AVGE	AVGS[1:0]	Average Number Factor (AverageNum)
0	xx	1
1	00	4
1	01	8
1	10	16
1	11	32

Table 12-19. Base Conversion Time (BCT)

Mode	Base Conversion Time (BCT)
8b se	17 ADCK cycles
9b diff	27 ADCK cycles
10b s.e.	20 ADCK cycles
11b diff	30 ADCK cycles
12b s.e.	20 ADCK cycles
13b diff	30 ADCK cycles
16b s.e.	25 ADCK cycles
16b diff	34 ADCK cycles

Table 12-20. Long Sample Time Adder (LSTAdder)

ADLSMP	ADLSTS	Long Sample Time Adder (LSTAdder)
0	XX	0 ADCK cycles
1	00	20 ADCK cycles
1	01	12 ADCK cycles
1	10	6 ADCK cycles
1	11	2 ADCK cycles

12-32 Freescale Semiconductor

Table 12-21. High-Speed Conversion Time Adder (HSCAdder)

ADHSC	High Speed Conversion Time Adder (HSCAdder)
0	0 ADCK cycles
1	4 ADCK cycles

NOTE

The ADCK frequency must be between f_{ADCK} minimum and f_{ADCK} maximum to meet ADC specifications.

12.4.5.6 Conversion Time Examples

The following examples use Equation 12-2 and the information provided in Table 12-20 through Table 18-27.

12.4.5.6.1 Typical conversion time configuration

A typical configuration for ADC conversion is: 10-bit mode, with the bus clock selected as the input clock source, the input clock divide-by-1 ratio selected, and a bus frequency of 8 MHz, long sample time disabled and high speed conversion enabled. The conversion time for a single conversion is calculated by using Equation 12-2 and the information provided in Table 12-20 through Table 18-27. The table below lists the variables of Equation 12-2.

 Variable
 Time

 SFCAdder
 5 ADCK cycles + 5 bus clock cycles

 AverageNum
 1

 BCT
 20 ADCK cycles

 LSTAdder
 0

 HSCAdder
 4

Table 12-22. Typical Conversion Time

The resulting conversion time is generated using the parameters listed in Table 12-24. So, for Bus clock equal to 8 MHz and ADCK equal to 8 MHz, the resulting conversion time is 4.25 us.

12.4.5.6.2 Long conversion time configuration

A configuration for long ADC conversion is: 16-bit differential mode, with the bus clock selected as the input clock source, the input clock divide-by-8 ratio selected, and a bus frequency of 8 MHz, long sample time enabled and configured for longest adder and high speed conversion disabled. Average enabled for 32 conversions. The conversion time for this conversion is calculated by using Equation 12-2 and the information provided in Table 12-20 through Table 18-27. The table below list the variables of Equation 12-2.

MCF51MM256 Series Devices Reference Manual, Rev. 3

Variable	Time
SFCAdder	3 ADCK cycles + 5 bus clock cycles
AverageNum	32
BCT	34 ADCK cycles
LSTAdder	20 ADCK cycles
HSCAdder	0

Table 12-23. Long Conversion Time

The resulting conversion time is generated using the parameters listed in Table 12-24. So, for Bus clock equal to 8 MHz and ADCK equal to 1 MHz the resulting total conversion time is 1.732 ms.

12.4.5.7 Hardware Average Function

The hardware average function can be enabled (AVGE=1) to perform a hardware average of multiple conversions. The number of conversions is determined by the AVGS[1:0] bits, which select 4, 8, 16 or 32 conversions to be averaged. While the hardware average function is in progress, the ADACT bit is set.

After the selected input is sampled and converted, the result is placed in an accumulator from which an average is calculated once the selected number of conversions has been completed. When hardware averaging is selected the completion of a single conversion will not set the COCOn bit.

If the compare function is either disabled or evaluates true, after the selected number of conversions are completed, the average conversion result is transferred into the data result registers, ADCRHn and ADCRLn, and the COCOn bit is set. An ADC interrupt is generated upon the setting of COCOn if the respective ADC interrupt is enabled (AIENn=1).

NOTE

The hardware average function can perform conversions on a channel while the MCU is in wait or stop3 mode. The ADC interrupt wakes the MCU when the hardware average is complete if AIENn was set.

12.4.6 Automatic Compare Function

The compare function can be configured to check if the result is less than or greater-than-or-equal-to a single compare value, or if the result falls within or outside a range determined by two compare values. The compare mode is determined by ACFGT, ACREN and the values in the compare value registers(ADCCV1H:ADCCV1L and ADCCV2H:ADCCV2L). After the input is sampled and converted,

the compare values (ADCCV1H:ADCCV1L and ADCCV2H:ADCCV2L) are used as described in Table 12-24. There are six compare modes as shown in Table 12-24.

Table 12-24. Compare Modes

ACFGT	ACREN	ADCCV1 relative to ADCCV2	Function	Compare Mode Description
0	0	-	Less than threshold	Compare true if the result is less than the ADCCV1 registers.
1	0	-	Greater than or equal to threshold	Compare true if the result is greater than or equal to ADCCV1 registers.
0	1	Less than or equal	Outside range, not inclusive	Compare true if the result is less than ADCCV1 Or the result is Greater than ADCCV2
0	1	Greater than	Inside range, not inclusive	Compare true if the result is less than ADCCV1 And the result is greater than ADCCV2
1	1	Less Than or equal	Inside range, inclusive	Compare true if the result is greater than or equal to ADCCV1 And the result is less than or equal to ADCCV2
1	1	Greater than	Outside range, inclusive	Compare true if the result is greater than or equal to ADCCV1 Or the result is less than or equal to ADCCV2

With the ADC range enable bit set, ADCREN =1, if compare value register 1(ADCCV1 value) is less than or equal to the compare value register 2 (ADCCV2 value), setting ACFGT will select a trigger-if-inside-compare-range, inclusive-of-endpoints function. Clearing ACFGT will select a trigger-if-outside-compare-range, not-inclusive-of-endpoints function.

If ADCCV1 is greater than the ADCCV2, setting ACFGT will select a trigger-if-outside-compare-range, inclusive-of-endpoints function. Clearing ACFGT will select a trigger-if-inside-compare-range, not-inclusive-of-endpoints function.

If the condition selected evaluates true, COCOn is set.

Upon completion of a conversion while the compare function is enabled, if the compare condition is not true, COCOn is not set and the conversion result data will not be transferred to the result register. If the hardware averaging function is enabled, the compare function compares the averaged result to the compare values. The same compare function definitions apply. An ADC interrupt is generated upon the setting of COCOn if the respective ADC interrupt is enabled (AIENn=1).

NOTE

The compare function can monitor the voltage on a channel while the MCU is in wait or stop3 mode. The ADC interrupt wakes the MCU when the compare condition is met.

12.4.7 Calibration Function

The ADC contains a self-calibration function that is required to achieve the specified accuracy. Calibration must be run or valid calibration values written after any reset and before a conversion is initiated. The calibration function sets the offset calibration value and the plus-side and minus-side calibration values.

MCF51MM256 Series Devices Reference Manual, Rev. 3

The offset calibration value is automatically stored in the ADC Offset Correction Registers (ADCOFSH and ADCOFSL) and the plus-side and minus-side calibration values are automatically stored in the ADC Plus-Side and Minus-Side Calibration registers (CLPD, CLPS, CLP4, CLP3, CLP2, CLP1, CLP0 and CLMD, CLMS, CLP4, CLM3, CLM2, CLM1, CLM0). The user must configure the ADC correctly prior to calibration, and must generate the plus-side and minus-side gain calibration results and store them in the ADC GAIN registers (ADCPGH and ADCPGL) after the calibration function completes.

Prior to calibration, the user must configure the ADC's clock source and frequency, low power configuration, voltage reference selection, sample time and the high speed configuration according to the application's clock source availability and needs. If the application uses the ADC in a wide variety of configurations, the configuration for which the highest accuracy is required should be selected, or multiple calibrations can be done for the different configurations. The input channel, conversion mode continuous function, compare function, hardware average function, resolution mode, and differential/single-ended mode are all ignored during the calibration function.

To initiate calibration, the user sets the CAL bit and the calibration will automatically begin if the ADTRG bit = 0. If ADTRG = 1, the CAL bit will not get set and the calibration fail flag (CALF) will be set. While calibration is active, no ADC register can be written and no stop mode may be entered or the calibration routine will be aborted causing the CAL bit to clear and the CALF bit to set. At the end of a calibration sequence the COCO bit of the ADSC1A register will be set. The AIEN1 bit can be used to allow an interrupt to occur at the end of a calibration sequence. If at the end of calibration routine the CALF bit is not set, the automatic calibration routine completed successfully.

To complete calibration, the user must generate the gain calibration values using the following procedure:

- Initialize (clear) a 16b variable in RAM.
- Add the following plus-side calibration results CLP0, CLP1, CLP2, CLP3, CLP4, and CLPS to the variable.
- Divide the variable by two.
- Set the MSB of the variable.
- The previous two steps can be achieved by setting the carry bit, rotating-right through the carry bit on the high byte and again on the low byte.
- Store the value in the plus-side gain calibration registers ADCPGH and ADCPGL.
- Repeat procedure for the minus-side gain calibration value.

When complete the user may reconfigure and use the ADC as desired. A second calibration may also be performed if desired by clearing and again setting the CAL bit.

Overall the calibration routine may take as many as 14000 ADCK cycles and 100 bus cycles, depending on the results and the clock source chosen. For an 8 MHz clock source this is about 1.7 msec. To reduce this latency, the calibration values (offset, plus- and minus-side gain, and plus- and minus-side calibration values) may be stored in flash after an initial calibration and recovered prior to the first ADC conversion. This should reduce the calibration latency to 20 register store operations on all subsequent power, reset, or stop2 mode recoveries.

12.4.8 User Defined Offset Function

The ADC Offset Correction Register (ADCOFSH:ADCOFSL) contains the user selected or calibration generated offset error correction value. This register is a 2's complement, left justified, 16b value formed by the concatenation of ADCOFSH and ADCOFSL. The value in the offset correction registers (ADCOFSH:ADCOFSL) is subtracted from the conversion and the result is transferred into the result registers (ADCRHn:ADCRLn). If the result is above the maximum or below the minimum result value, it is forced to the appropriate limit for the current mode of operation. For additional information please see Section 12.4.8

The formatting of the ADC Offset Correction Register is different from the Data Result Registers (ADCRHn:ADCRLn) to preserve the resolution of the calibration value regardless of the conversion mode selected. Lower order bits are ignored in lower resolution modes. For example, in 8b single-ended mode, the bits OFS[14:7] are subtracted from D[7:0]; bit OFS[15] indicates the sign (negative numbers are effectively added to the result) and bits OFS[6:0] are ignored. The same bits are used in 9b differential mode since bit OFS[15] indicates the sign bit, which maps to bit D[8]. For 16b differential mode, all bits OFS[15:0] are directly subtracted from the conversion result data D[15:0]. Finally, in 16b single-ended mode, there is no bit in the Offset Correction Register corresponding to the least significant result bit D[0], so odd values (-1 or +1, etc.) cannot be subtracted from the result.ADCOFSH is automatically set according to calibration requirements once the self calibration sequence is done (CAL is cleared). Write ADCOFSH:ADCOFSL to override the calibration result if desired. If the Offset Correction Register is written to a value that is different from the calibration value, the ADC error specifications may not be met. It is recommended that the value generated by the calibration function be stored in memory before overwriting with a specified value.

NOTE

There is an effective limit to the values of Offset that can be set. If the magnitude of the offset is too great, the results of the conversions cap off at the limits.

Use the offset calibration function to remove application offsets or DC bias values. The Offset Correction Registers ADCOFSH and ADCOFSL may be written with a number in 2's complement format and this offset will be subtracted from the result (or hardware averaged value). To add an offset, store the negative offset in 2's complement format and the effect will be an addition. An offset correction that results in an out-of-range value will be forced to the minimum or maximum value (the minimum value for single-ended conversions is 0x0000; for a differential conversion 0x8000).

To preserve accuracy, the calibrated offset value initially stored in the ADCOFS registers must be added to the user defined offset. For applications which may change the offset repeatedly during operation, it is recommended to store the initial offset calibration value in flash so that it can be recovered and added to any user offset adjustment value -nd the sum stored in the ADCOFS registers.

12.4.9 Temperature Sensor

The ADC module includes a temperature sensor whose output is connected to one of the ADC analog channel inputs. Equation 12-3 provides an approximate transfer function of the temperature sensor.

Temp = 25 -
$$((V_{TEMP} - V_{TEMP25}) \div m)$$
 Eqn. 12-3

where:

MCF51MM256 Series Devices Reference Manual, Rev. 3

- V_{TEMP} is the voltage of the temperature sensor channel at the ambient temperature.
- V_{TEMP25} is the voltage of the temperature sensor channel at 25°C.
- m is the hot or cold voltage versus temperature slope in V/°C.

For temperature calculations, use the V_{TEMP25} and m values from the ADC Electricals table.

In application code, the user reads the temperature sensor channel, calculates V_{TEMP} , and compares to V_{TEMP25} . If V_{TEMP} is greater than V_{TEMP25} the cold slope value is applied in Equation 12-3. If V_{TEMP} is less than V_{TEMP25} the hot slope value is applied in Equation 12-3.

For more information on using the temperature sensor, consult AN3031.

12.4.10 MCU Wait Mode Operation

Wait mode is a lower power-consumption standby mode from which recovery is fast because the clock sources remain active. If a conversion is in progress when the MCU enters wait mode, it continues until completion. Conversions can be initiated while the MCU is in wait mode by means of the hardware trigger or if continuous conversions are enabled.

The bus clock, bus clock divided by two, and ADACK are available as conversion clock sources while in wait mode. The use of ALTCLK as the conversion clock source in wait is dependent on the definition of ALTCLK for this MCU. Consult the module introduction for information on ALTCLK specific to this MCU.

If the compare and hardware averaging functions are disabled, a conversion complete event sets the COCOn and generates an ADC interrupt to wake the MCU from wait mode if the respective ADC interrupt is enabled (AIENn=1). If the hardware averaging function is enabled the COCOn will set (and generate an interrupt if enabled) when the selected number of conversions are complete. If the compare function is enabled the COCOn will set (and generate an interrupt if enabled) only if the compare conditions are met. If a single conversion is selected and the compare trigger is not met, the ADC will return to its idle state and cannot wake the MCU from wait mode unless a new conversion is initiated by the hardware trigger.

12.4.11 MCU Stop3 Mode Operation

Stop mode is a low power-consumption standby mode during which most or all clock sources on the MCU are disabled.

12.4.11.1 Stop3 Mode With ADACK Disabled

If the asynchronous clock, ADACK, is not selected as the conversion clock, executing a stop instruction aborts the current conversion and places the ADC in its idle state. The contents of the ADC registers, including ADCRHn and ADCRLn, are unaffected by stop3 mode. After exiting from stop3 mode, a software or hardware trigger is required to resume conversions.

12-38 Freescale Semiconductor

12.4.11.2 Stop3 Mode With ADACK Enabled

If ADACK is selected as the conversion clock, the ADC continues operation during stop3 mode. For guaranteed ADC operation, the MCU's voltage regulator must remain active during stop3 mode. Consult the module introduction for configuration information for this MCU.

If a conversion is in progress when the MCU enters stop3 mode, it continues until completion. Conversions can be initiated while the MCU is in stop3 mode by means of the hardware trigger or if continuous conversions are enabled.

If the compare and hardware averaging functions are disabled, a conversion complete event sets the COCOn and generates an ADC interrupt to wake the MCU from stop3 mode if the respective ADC interrupt is enabled (AIENn = 1). The result register will contain the data from the first completed conversion that occurred during stop3 mode. If the hardware averaging function is enabled the COCOn will set (and generate an interrupt if enabled) when the selected number of conversions are complete. If the compare function is enabled the COCOn will set (and generate an interrupt if enabled) only if the compare conditions are met. If a single conversion is selected and the compare is not true, the ADC will return to its idle state and cannot wake the MCU from stop3 mode unless a new conversion is initiated by another hardware trigger.

NOTE

The ADC module can wake the system from low-power stop and cause the MCU to begin consuming run-level currents without generating a system level interrupt. To prevent this scenario, software should ensure the conversion result data transfer blocking mechanism (discussed in Section 12.4.5.2, "Completing Conversions) is cleared when entering stop3 and continuing ADC conversions.

12.4.12 MCU Stop2 Mode Operation

The ADC module is automatically disabled when the MCU enters stop2 mode. All module registers contain their reset values following exit from stop2. Therefore, the module must be re-enabled and re-configured following exit from stop2.

12.5 Initialization Information

This section gives an example that provides some basic direction on how to initialize and configure the ADC module. You can configure the module for 8-, 10-, 12-, or 16-bit single-ended resolution or 9-, 11-, 13-, or 16-bit differential resolution, single or continuous conversion, and a polled or interrupt approach, among many other options. Refer to Table 12-8, Table 12-9, and Table 12-10 for information used in this example.

NOTE

Hexadecimal values designated by a preceding 0x, binary values designated by a preceding %, and decimal values have no preceding character.

12.5.1 ADC Module Initialization Example

12.5.1.1 Initialization Sequence

Before the ADC module can be used to complete conversions, an initialization procedure must be performed. A typical sequence is as follows:

- 1. Calibrate the ADC by following the calibration instructions in Section 12.4.7.
- 2. Update the configuration register (ADCCFG) to select the input clock source and the divide ratio used to generate the internal clock, ADCK. This register is also used for selecting sample time and low-power configuration.
- 3. Update status and control register 2 (ADCSC2) to select the conversion trigger (hardware or software) and compare function options, if enabled.
- 4. Update status and control register 3 (ADSC3) to select whether conversions will be continuous or completed only once (ADCO) and to select whether to perform hardware averaging.
- 5. Update status and control register (ADCSC1:ADCSC1n) to select whether conversions will be single-ended or differential and to enable or disable conversion complete interrupts. The input channel on which conversions will be performed is also selected here.

12.5.1.2 Pseudo-Code Example

In this example, the ADC module is set up with interrupts enabled to perform a single 10-bit conversion at low power with a long sample time on input channel 1, where the internal ADCK clock is derived from the bus clock divided by 1.

ADCCFG = 0x98 (%10011000)

Bit 7	ADLPC	1	Configures for low power (lowers maximum clock speed.
Bit 6:5	ADIV	00	Sets the ADCK to the input clock ÷ 1.
Bit 4	ADLSMP	1	Configures for long sample time.
Bit 3:2	MODE	10	Sets mode at 10-bit conversions.
Bit 1:0	ADICLK	00	Selects bus clock as input clock source.

ADCSC2 = 0x00 (%00000000)

Bit 7	ADACT	0	Flag indicates if a conversion is in progress.
Bit 6	ADTRG	0	Software trigger selected.
Bit 5	ACFE	0	Compare function disabled.
Bit 4	ACFGT	0	Not used in this example.
Bit 3:2		00	Reserved, always reads zero.
Bit 1:0		00	Reserved for Freescale's internal use; always write zero.

ADCSC1A = 0x41 (%01000001)

Bit 7	COCOA	0	Read-only flag which is set when a conversion completes.
Bit 6	AIENA	1	Conversion complete interrupt enabled.
Bit 5	ADCOA	0	One conversion only (continuous conversions disabled).
Bit 4:0	ADCHA	00001	Input channel 1 selected as ADC input channel.

12-40 Freescale Semiconductor

MCF51MM256 Series Devices Reference Manual, Rev. 3

ADCRHA/LA = 0xxx

Holds results of conversion. Read high byte (ADCRHA) before low byte (ADCRLA) so that conversion data cannot be overwritten with data from the next conversion.

ADCCVH/L = 0xxx

Holds compare value when compare function enabled.

APCTL1=0x02

AD1 pin I/O control disabled. All other AD pins remain general purpose I/O pins.

APCTL2=0x00

All other AD pins remain general purpose I/O pins.

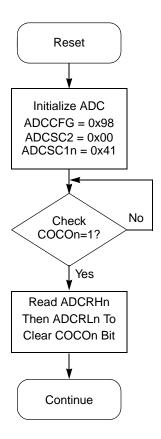


Figure 12-40. Initialization Flowchart for Example

12.6 Application Information

This section contains information for using the ADC module in applications. The ADC has been designed to be integrated into a microcontroller for use in embedded control applications requiring an A/D converter.

Freescale Semiconductor 12-41

Analog-to-Digital Converter (S08ADC16V1)

12.6.1 External Pins and Routing

The following sections discuss the external pins associated with the ADC module and how they should be used for best results.

12.6.1.1 Analog Supply Pins

The ADC module has analog power and ground supplies (V_{DDAD} and V_{SSAD}) available as separate pins on some devices. V_{SSAD} is shared on the same pin as the MCU digital V_{SS} on some devices. On other devices, V_{SSAD} and V_{DDAD} are shared with the MCU digital supply pins. In these cases, there are separate pads for the analog supplies bonded to the same pin as the corresponding digital supply so that some degree of isolation between the supplies is maintained.

When available on a separate pin, both V_{DDAD} and V_{SSAD} must be connected to the same voltage potential as their corresponding MCU digital supply (V_{DD} and V_{SS}) and must be routed carefully for maximum noise immunity and bypass capacitors placed as near as possible to the package.

If separate power supplies are used for analog and digital power, the ground connection between these supplies must be at the V_{SSAD} pin. This should be the only ground connection between these supplies if possible. The V_{SSAD} pin makes a good single point ground location.

12.6.1.2 Analog Voltage Reference Pins

In addition to the analog supplies, the ADC module has connections for two reference voltage inputs used by the converter, V_{REFSH} and V_{REFSL} . V_{REFSH} is the high reference voltage for the converter. V_{REFSL} is the low reference voltage for the converter.

The ADC can be configured to accept one of three voltage reference pairs for V_{REFSH} and V_{REFSL} . Each pair contains a positive reference and a ground reference. The three pairs are external (V_{REFH} and V_{REFL}), alternate (V_{ALTH} and V_{ALTL}) and the internal bandgap (V_{BGH} and V_{BGL}). These voltage references are selected using the REFSEL bits in the ADCSC2 register. The alternate (V_{ALTH} and V_{ALTL}) voltage reference pair may select additional external pins or internal sources depending on MCU configuration. Consult the module introduction for information on the Voltage References specific to this MCU.

In some packages, the external or alternate pairs are connected in the package to V_{DDAD} and V_{SSAD} , respectively. One of these positive references may be shared on the same pin as V_{DDAD} on some devices. One of these ground references may be shared on the same pin as V_{SSAD} on some devices.

If externally available, the positive reference may be connected to the same potential as V_{DDAD} or may be driven by an external source to a level between the minimum Ref Voltage High (defined in Appendix A) and the V_{DDAD} potential (the positive reference must never exceed V_{DDAD}). If externally available, the ground reference must be connected to the same voltage potential as V_{SSAD} . The voltage reference pairs must be routed carefully for maximum noise immunity and bypass capacitors placed as near as possible to the package.

AC current in the form of current spikes required to supply charge to the capacitor array at each successive approximation step is drawn through the V_{REFH} and V_{REFL} loop. The best external component to meet this current demand is a 0.1 μF capacitor with good high frequency characteristics. This capacitor is connected between V_{REFH} and V_{REFL} and must be placed as near as possible to the package pins. Resistance in the

12-42 Freescale Semiconductor

path is not recommended because the current causes a voltage drop that could result in conversion errors. Inductance in this path must be minimum (parasitic only).

12.6.1.3 Analog Input Pins

The external analog inputs are typically shared with digital I/O pins on MCU devices. The pin I/O control is disabled by setting the appropriate control bit in one of the pin control registers. Conversions can be performed on inputs without the associated pin control register bit set. It is recommended that the pin control register bit always be set when using a pin as an analog input. This avoids problems with contention because the output buffer is in its high impedance state and the pullup is disabled. Also, the input buffer draws DC current when its input is not at V_{DD} or V_{SS} . Setting the pin control register bits for all pins used as analog inputs should be done to achieve lowest operating current.

Empirical data shows that capacitors on the analog inputs improve performance in the presence of noise or when the source impedance is high. Use of $0.01~\mu F$ capacitors with good high-frequency characteristics is sufficient. These capacitors are not necessary in all cases, but when used they must be placed as near as possible to the package pins and be referenced to V_{SSA} .

For proper conversion, the input voltage must fall between V_{REFH} and V_{REFL} . If the input is equal to or exceeds V_{REFH} , the converter circuit converts the signal to 0xFFF (full scale 12-bit representation), 0x3FF (full scale 10-bit representation) or 0xFF (full scale 8-bit representation). If the input is equal to or less than V_{REFL} , the converter circuit converts it to 0x000. Input voltages between V_{REFH} and V_{REFL} are straight-line linear conversions. There is a brief current associated with V_{REFL} when the sampling capacitor is charging.

For minimal loss of accuracy due to current injection, pins adjacent to the analog input pins should not be transitioning during conversions.

12.6.2 Sources of Error

Several sources of error exist for A/D conversions. These are discussed in the following sections.

12.6.2.1 Sampling Error

For proper conversions, the input must be sampled long enough to achieve the proper accuracy. Given the maximum input resistance of approximately $7k\Omega$ and input capacitance of approximately 5.5 pF, sampling to within 1/4LSB (at 12-bit resolution) can be achieved within the minimum sample window (3.5 cycles @ 8 MHz maximum ADCK frequency) provided the resistance of the external analog source (R_{AS}) is kept below $2 k\Omega$.

Higher source resistances or higher-accuracy sampling is possible by setting ADLSMP and changing the ADLSTS bits (to increase the sample window) or decreasing ADCK frequency to increase sample time.

12.6.2.2 Pin Leakage Error

Leakage on the I/O pins can cause conversion error if the external analog source resistance (R_{AS}) is high. If this error cannot be tolerated by the application, keep R_{AS} lower than V_{DDAD} / ($2^{N*}I_{LEAK}$) for less than 1/4LSB leakage error (N=8 in 8-bit, 10 in 10-bit or 12 in 12-bit mode).

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor 12-43

Analog-to-Digital Converter (S08ADC16V1)

12.6.2.3 Noise-Induced Errors

System noise that occurs during the sample or conversion process can affect the accuracy of the conversion. The ADC accuracy numbers are guaranteed as specified only if the following conditions are met:

- There is a 0.1 μ F low-ESR capacitor from V_{REFH} to V_{REFL} .
- There is a 0.1 μ F low-ESR capacitor from V_{DDAD} to V_{SSAD} .
- If inductive isolation is used from the primary supply, an additional 1 μF capacitor is placed from V_{DDAD} to V_{SSAD}.
- V_{SSAD} (and V_{REFL}, if connected) is connected to V_{SS} at a quiet point in the ground plane.
- Operate the MCU in wait or stop3 mode before initiating (hardware triggered conversions) or immediately after initiating (hardware or software triggered conversions) the ADC conversion.
 - For software triggered conversions, immediately follow the write to ADCSC1 with a stop instruction.
 - For stop3 mode operation, select ADACK as the clock source. Operation in stop3 reduces V_{DD} noise but increases effective conversion time due to stop recovery.
- There is no I/O switching, input or output, on the MCU during the conversion.

There are some situations where external system activity causes radiated or conducted noise emissions or excessive V_{DD} noise is coupled into the ADC. In these situations, or when the MCU cannot be placed in wait or stop3 or I/O activity cannot be halted, these recommended actions may reduce the effect of noise on the accuracy:

- Place a 0.01 μ F capacitor (C_{AS}) on the selected input channel to V_{REFL} or V_{SSAD} (this improves noise issues, but affects the sample rate based on the external analog source resistance).
- Average the result by converting the analog input many times in succession and dividing the sum
 of the results. Four samples are required to eliminate the effect of a 1LSB, one-time error.
- Reduce the effect of synchronous noise by operating off the asynchronous clock (ADACK) and averaging. Noise that is synchronous to ADCK cannot be averaged out.

12.6.2.4 Code Width and Quantization Error

The ADC quantizes the ideal straight-line transfer function into 4096 steps (in 12-bit mode). Each step ideally has the same height (1 code) and width. The width is defined as the delta between the transition points to one code and the next. The ideal code width for an N bit converter (in this case N can be 8, 10 or 12), defined as 1LSB, is:

1 Isb =
$$(V_{REFH} - V_{REFL}) / 2^N$$
 Eqn. 12-4

There is an inherent quantization error due to the digitalization of the result. For 8-bit or 10-bit conversions the code transitions when the voltage is at the midpoint between the points where the straight line transfer function is exactly represented by the actual transfer function. Therefore, the quantization error will be \pm 1/2 lsb in 8- or 10-bit mode. As a consequence, however, the code width of the first (0x000) conversion is only 1/2 lsb and the code width of the last (0xFF or 0x3FF) is 1.5 lsb.

12-44 Freescale Semiconductor

For 12-bit conversions the code transitions only after the full code width is present, so the quantization error is –1 lsb to 0 lsb and the code width of each step is 1 lsb.

12.6.2.5 Linearity Errors

The ADC may also exhibit non-linearity of several forms. Every effort has been made to reduce these errors but the system should be aware of them because they affect overall accuracy. These errors are:

- Zero-scale error (E_{ZS}) (sometimes called offset) This error is defined as the difference between the actual code width of the first conversion and the ideal code width (1/2 lsb in 8-bit or 10-bit modes and 1 lsb in 12-bit mode). If the first conversion is 0x001, the difference between the actual 0x001 code width and its ideal (1 lsb) is used.
- Full-scale error (E_{FS}) This error is defined as the difference between the actual code width of the last conversion and the ideal code width (1.5 lsb in 8-bit or 10-bit modes and 1LSB in 12-bit mode). If the last conversion is 0x3FE, the difference between the actual 0x3FE code width and its ideal (1LSB) is used.
- Differential non-linearity (DNL) This error is defined as the worst-case difference between the actual code width and the ideal code width for all conversions.
- Integral non-linearity (INL) This error is defined as the highest-value the (absolute value of the) running sum of DNL achieves. More simply, this is the worst-case difference of the actual transition voltage to a given code and its corresponding ideal transition voltage, for all codes.
- Total unadjusted error (TUE) This error is defined as the difference between the actual transfer function and the ideal straight-line transfer function and includes all forms of error.

12.6.2.6 Code Jitter, Non-Monotonicity, and Missing Codes

Analog-to-digital converters are susceptible to three special forms of error. These are code jitter, non-monotonicity, and missing codes.

Code jitter is when, at certain points, a given input voltage converts to one of two values when sampled repeatedly. Ideally, when the input voltage is infinitesimally smaller than the transition voltage, the converter yields the lower code (and vice-versa). However, even small amounts of system noise can cause the converter to be indeterminate (between two codes) for a range of input voltages around the transition voltage. This range is normally around $\pm 1/2$ lsb in 8-bit or 10-bit mode, or around 2 lsb in 12-bit mode, and increases with noise.

This error may be reduced by repeatedly sampling the input and averaging the result. Additionally the techniques discussed in Section 12.6.2.3 reduces this error.

Non-monotonicity is defined as when, except for code jitter, the converter converts to a lower code for a higher input voltage. Missing codes are those values never converted for any input value.

In 8-bit or 10-bit mode, the ADC is guaranteed to be monotonic and have no missing codes.

Freescale Semiconductor 12-45

Analog-to-Digital Converter (S08ADC16V1)

Chapter 13 Cyclic Redundancy Check (CRC)

13.1 Introduction

The CRC block provides hardware acceleration for CRC16-CCITT compliancy with $x^{16} + x^{12} + x^5 + 1$ polynomial. It is implemented on the 8-bit peripheral bus, and provides a very simple programming interface of only two 8-bit registers. The V1 ColdFire 8-bit peripheral bus bridge serializes 16-bit accesses into two 8-bit accesses, so both registers can be read/written using a single 16-bit read/write instruction.

This peripheral is available in both RUN and LPRUN modes.

NOTE

For details on low-power mode operation, refer to Table 3-4 in Chapter 3, "Modes of Operation".

Cyclic Redundancy Check (CRC)

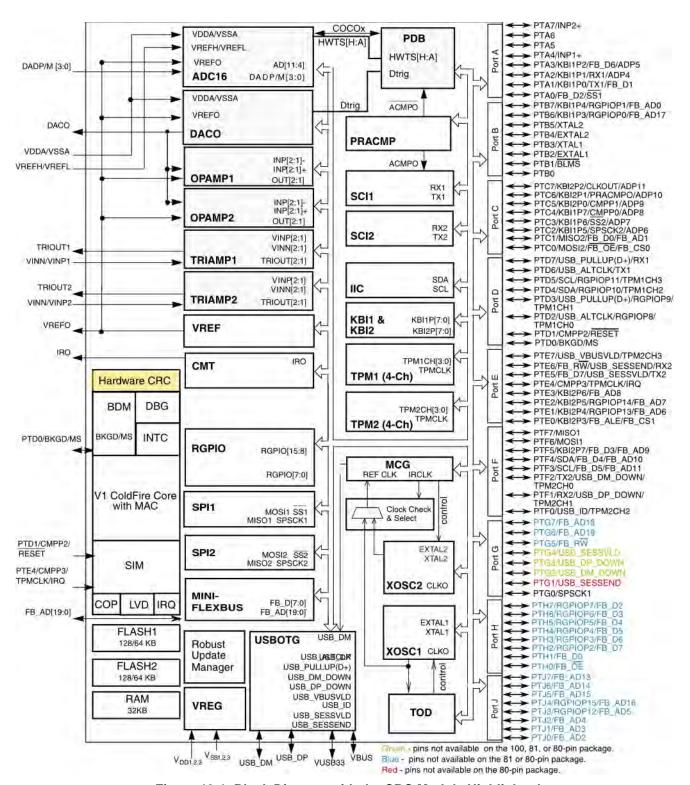


Figure 13-1. Block Diagram with the CRC Module Highlighted

13-2 Freescale Semiconductor

13.1.1 Features

Features of the CRC module include:

- Hardware CRC generator circuit using 16-bit shift register
- CRC16-CCITT compliancy with $x^{16} + x^{12} + x^5 + 1$ polynomial
- Error detection for all single, double, odd, and most multi-bit errors
- Programmable initial seed value
- High-speed CRC calculation
- Optional feature to transpose input data and CRC result via transpose register, required on applications where bytes are in LSb (Least Significant bit) format.

13.1.2 Modes of Operation

This section defines the CRC operation in run, wait, and stop modes.

- Run Mode This is the basic mode of operation.
- Wait Mode The CRC module is operational.
- Stop 2 Modes —The CRC module is not functional in these modes and will be put into its reset state upon recovery from stop.
- Stop 3 Mode In this mode, the CRC module will go into a low-power standby state. Any CRC calculations in progress will stop and resume after the CPU goes into run mode.

Freescale Semiconductor 13-3

Cyclic Redundancy Check (CRC)

13.1.3 Block Diagram

Figure 13-2 provides a block diagram of the CRC module.

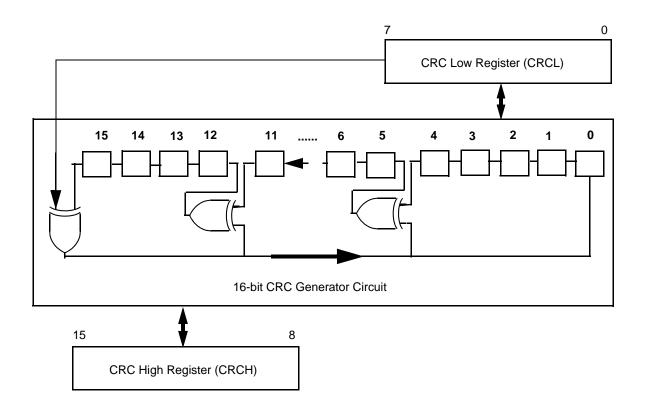


Figure 13-2. Cyclic Redundancy Check (CRC) Module Block Diagram

13.2 External Signal Description

There are no CRC signals that connect off chip.

13.3 Register Definition

13.3.1 Memory Map

Table 13-1. CRC Register Summary

Name		7	6	5	4	3	2	1	0
(a#aat 0)	R W	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8

MCF51MM256 Series Devices Reference Manual, Rev. 3

Table 13-1. CRC Register	Summarv
--------------------------	---------

Name		7	6	5	4	3	2	1	0
CRCL (offset=1)	R W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TRANSPOSE (offset=2)	R W	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0

NOTE

The transpose feature (offset=2) is optional. If this feature is required by the MCU, parameter TRANSPOSE_FEATURE should be 1'b1. Otherwise, it should be 1'b0 (default).

NOTE

Offsets 4,5,6 and 7 are also mapped onto the CRCL register. This is an *alias* only used on CF1Core (version 1 of ColdFire core) and should be ignored for HCS08 cores. See Section 13.4.2, "Programming model extension for CF1Core for more details.

13.3.2 Register Descriptions

The CRC module includes:

- A 16-bit CRC result and seed register (CRCH:CRCL)
- An 8-bit transpose register to convert from LSb to MSb format (or vice-versa) when required by the application

Refer to the direct-page register summary in the Memory chapter of this data sheet for the absolute address assignments for all CRC registers. This section refers to registers only by their names. A Freescale-provided equate or header file is used to translate these names into the appropriate absolute addresses.

13.3.2.1 CRC High Register (CRCH)

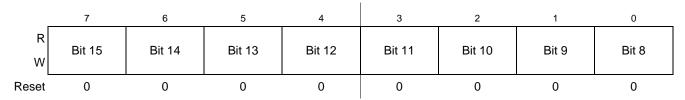


Figure 13-3. CRC High Register (CRCH)

Freescale Semiconductor

Cyclic Redundancy Check (CRC)

Table 13-2. Register Field Descriptions

Field	Description
7:0 CRCH	CRCH — This is the high byte of the 16-bit CRC register. A write to CRCH will load the high byte of the initial 16-bit seed value directly into bits 15-8 of the shift register in the CRC generator. The CRC generator will then expect the low byte of the seed value to be written to CRCL and loaded directly into bits 7-0 of the shift register. Once both seed bytes written to CRCH:CRCL have been loaded into the CRC generator, and a byte of data has been written to CRCL, the shift register will begin shifting. A read of CRCH will read bits 15-8 of the current CRC calculation result directly out of the shift register in the CRC generator.

CRC Low Register (CRCL) 13.3.2.2

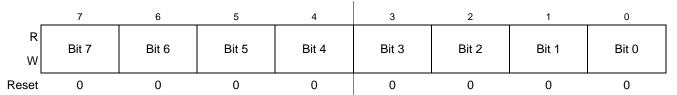


Figure 13-4. CRC Low Register (CRCL)

Table 13-3. Register Field Descriptions

Field	Description
7:0	CRCL — This is the low byte of the 16-bit CRC register. Normally, a write to CRCL will cause the CRC generator to
CRCL	begin clocking through the 16-bit CRC generator. As a special case, if a write to CRCH has occurred previously, a subsequent write to CRCL will load the value in the register as the low byte of a 16-bit seed value directly into bits 7-0 of the shift register in the CRC generator. A read of CRCL will read bits 7-0 of the current CRC calculation result directly out of the shift register in the CRC generator.

13.3.2.3 **Transpose Register (TRANSPOSE)**

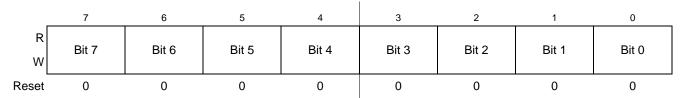


Figure 13-5. CRC High Register (CRCH)

Table 13-4. Register Field Descriptions

Field	Description
7:0 TRANSP OSE	TRANSPOSE This register is used to transpose data, converting from LSb to MSb (or vice-versa). The byte to be transposed should be first written to TRANSPOSE and then subsequent reads from TRANSPOSE will return the transposed value of the last written byte (bit 7 becomes bit 0, bit 6 becomes bit 1, and so forth).

Functional Description 13.4

To enable the CRC function, a write to the CRCH register will trigger the first half of the seed mechanism which will place the CRCH value directly into bits 15-8 of the CRC generator shift register. The CRC generator will then expect a write to CRCL to complete the seed mechanism.

As soon as the CRCL register is written to, its value will be loaded directly into bits 7-0 of the shift register, and the second half of the seed mechanism will be complete. This value in CRCH:CRCL will be the initial seed value in the CRC generator.

Now the first byte of the data on which the CRC calculation will be applied should be written to CRCL. This write after the completion of the seed mechanism will trigger the CRC module to begin the CRC checking process. The CRC generator will shift the bits in the CRCL register (MSB first) into the shift register of the generator. One Bus cycle after writing to CRCL all 8 bits have been shifted into the CRC generator, and then the result of the shifting, or the value currently in the shift register, can be read directly from CRCH:CRCL, and the next data byte to include in the CRC calculation can be written to the CRCL register.

This next byte will then also be shifted through the CRC generator's 16-bit shift register, and after the shifting has been completed, the result of this second calculation can be read directly from CRCH:CRCL.

After each byte has finished shifting, a new CRC result will appear in CRCH:CRCL, and an additional byte may be written to the CRCL register to be included within the CRC16-CCITT calculation. A new CRC result will appear in CRCH:CRCL each time 8-bits have been shifted into the shift register.

To start a new CRC calculation, write to CRCH, and the seed mechanism for a new CRC calculation will begin again.

ITU-T (CCITT) Recommendations and Expected CRC Results 13.4.1

The CRC polynomial 0x1021 ($x^{16} + x^{12} + x^5 + 1$) is popularly known as *CRC-CCITT* since it was initially proposed by the ITU-T (formerly CCITT) committee.

Although the ITU-T recommendations are very clear about the polynomial to be used, 0x1021, they accept variations in the way the polynomial is implemented:

- ITU-T V.41 implements the same circuit shown in Figure 13-2, but it recommends a SEED = 0x0000.
- ITU-T T.30 and ITU-T X.25 implement the same circuit shown in Figure 13-2, but they recommend the final CRC result to be negated (one-complement operation). Also, they recommend a SEED = 0xFFFF.

Moreover, it is common to find circuits in literature slightly different from the one suggested by the recommendations above, but also known as CRC-CCITT circuits (many variations require the message to be augmented with zeros).

The circuit implemented in the CRC module is exactly the one suggested by the ITU-T V.41 recommendation, with an added flexibility of a programmable SEED. As in ITU-T V.41, no augmentation is needed and the CRC result is not negated. Table 13-5 shows some expected results that can be used as

MCF51MM256 Series Devices Reference Manual, Rev. 3

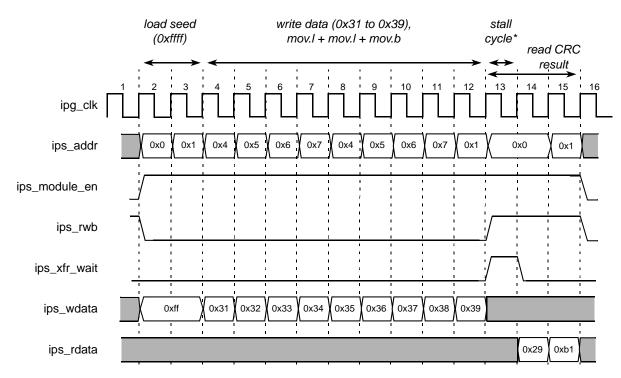
Cyclic Redundancy Check (CRC)

a reference. Notice that these are ASCII string messages. For example, message "123456789" is encoded with bytes 0x31 to 0x39 (see ASCII table).

Table 13-5. Expected CRC results

ASCII String Message	SEED (initial CRC value)	CRC result
"A"	0x0000	0x58e5
"A"	0xffff	0xb915
"A"	0x1d0f ¹	0x9479
"123456789"	0x0000	0x31c3
"123456789"	0xffff	0x29b1
"123456789"	0x1d0f ¹	0xe5cc
A string of 256 upper case "A" characters with no line breaks	0x0000	0xabe3
A string of 256 upper case "A" characters with no line breaks	0xffff	0xea0b
A string of 256 upper case "A" characters with no line breaks	0x1d0f ¹	0xe938

One common variation of CRC-CCITT require the message to be augmented with zeros and a SEED=0xFFFF. The CRC module will give the same results of this alternative implementation when SEED=0x1D0F and no message augmentation.


13.4.2 Programming model extension for CF1Core

The CRC module extends its original programming model to allow faster CRC calculations on CF1 cores. Memory offsets 0x4, 0x5, 0x6 and 0x7 are mapped (aliased) onto the CRCL register, in a way that the CF1Core can execute 32-bit store instructions to write data to the CRC module. The code should use a single *mov.l* store instruction to send four bytes beginning at address 0x4, which will be decomposed by the platform into four sequential/consecutive byte writes to offsets 0x4-0x7 (all aliased to the CRCL position).

In addition, reads from 0x4-0x7 return the contents of the CRCL register. Reads from 0x2-0x3 (unused/reserved) return 0x00. Writes to 0x2-0x3 have no effect.

Due to internal CF1Core characteristics, this approach provides a greater data transfer rate than the original programming model used on HCS08 (single byte writes to CRCL position). Figure 13-6 illustrates a message calculation on CF1Core.

^{*} On cycle 13, there is a read-after-write hazard, since calculation of 0x39 data is underway. *ips_xfr_wait* is asserted to signalize a stall cycle (the IPS master should wait until cycle 14 to read the CRC result).

Figure 13-6. CRC calculation of ASCII message "123456789" (0x31 to 0x39) on CF1Core

13.4.3 Transpose feature

The CRC module provides an optional feature to transpose data (invert bit order). This feature is specially useful on applications where the LSb format is used, since the CRC CCITT expects data in the MSb format. In that case, before writing new data bytes to CRCL, these bytes should be transposed as follows:

- 1. Write data byte to TRANSPOSE register
- 2. Read data from TRANSPOSE register (subsequent reads will result in the transposed value of the last written data)
- 3. Write transposed byte to CRCL.

After all data is fed into CRC, the CRCH:CRCL result is available in the MSb format. Then, these two bytes should also be transposed: the values read from CRCH:CRCL should be written/read to/from the TRANSPOSE register.

Although the transpose feature was initially designed to address LSb applications interfacing with the CRC module, it is important to notice that this feature is not necessarily tied to CRC applications. Since it was designed as an independent register, any application should be able to transpose data by writing/reading to/from the TRANSPOSE register (e.g. Big endian / Little endian conversion in USB).

Freescale Semiconductor

Cyclic Redundancy Check (CRC)

13.5 Initialization Information

To initialize the CRC Module and initiate a CRC16-CCITT calculation, follow this procedure:

- 1. Write high byte of initial seed value to CRCH.
- 2. Write low byte of initial seed value to CRCL.
- 3. Write first byte of data on which CRC is to be calculated to CRCL (an alternative option is offered for CF1Cores. See Section 13.4.2, "Programming model extension for CF1Core).
- 4. In the next bus cycle after step 3, if desired, the CRC result from the first byte can be read from CRCH:CRCL.
- 5. Repeat steps 3-4 until the end of all data to be checked.

Chapter 14 Carrier Modulator Timer (CMT)

14.1 Introduction

The CMT consists of a carrier generator, modulator, and transmitter that drives the infrared out (IRO) pin.

14.2 Clock Selection

The SOPT2[CMT_CLK_SEL] bit selects between bus clock and bus clock divided by 3 as the CMT input clock. This bit can be used to implement a slower timebase for the CMT, when in high bus speed configurations.

NOTE

In the S08 MM core, the bus clock is the only clock source for CMT.

14.3 IRO Pin Description

The IRO pin is the only pin associated with the CMT. The pin is driven by the transmitter output when the CMTMSC[MCGEN] bit and the CMTOC[IROPEN] bit are set. If MCGEN is clear and the IROPEN bit is set, the pin is driven by the CMTOC[IROL] bit. This enables user software to directly control the state of the IRO pin by writing to the IROL bit. If IROPEN is clear, the pin is disabled and is not driven by the CMT module. This is so the CMT can be configured as a modulo timer for generating periodic interrupts without causing pin activity.

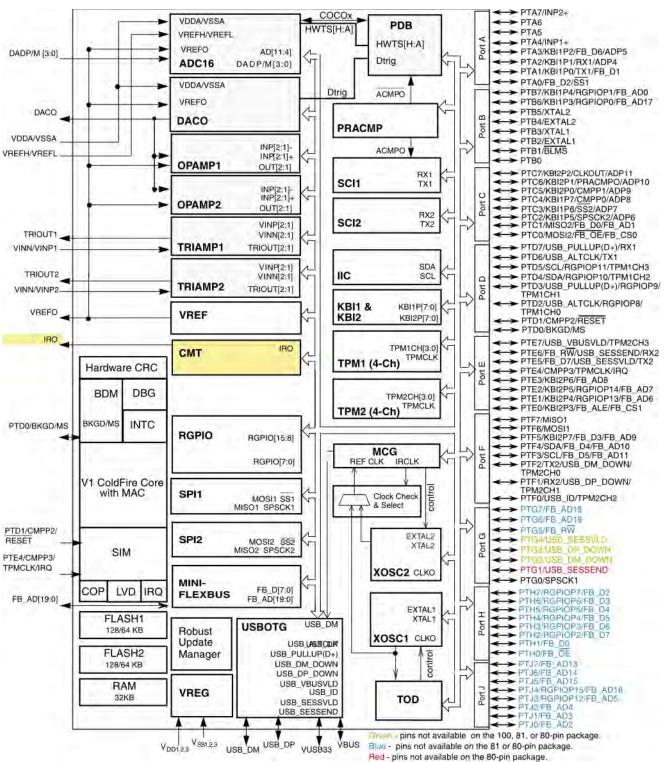


Table 14-1. Block Diagram with CMT Module Highlighted

14.4 Features

The CMT consists of a carrier generator, modulator, and transmitter which drives the infrared out pin. The features of this module include:

- Four modes of operation
 - Time with independent control of high and low times
 - Baseband
 - Frequency shift key (FSK)
 - Direct software control of IRO pin
- Extended space operation in time, baseband, and FSK modes
- Selectable input clock divide: 1, 2, 4, or 8
- Interrupt on end of cycle
 - Ability to disable IRO pin and use as timer interrupt

14.5 CMT Block Diagram

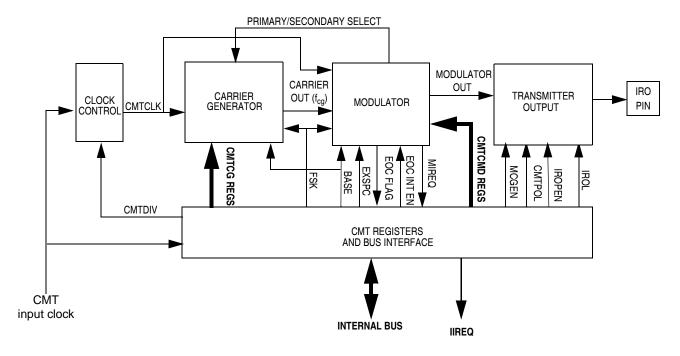


Figure 14-1. Carrier Modulator Transmitter Module Block Diagram

14.6 External Signal Descriptions

There is only one pin associated with the CMT, the IRO pin. The pin is driven by the transmitter output when the MCGEN bit in the CMTMSC register is set and the IROPEN bit in the CMTOC register is set. If the MCGEN bit is clear and the IROPEN bit is set, the pin is driven by the IROL bit in the CMTOC register. This enables user software to directly control the state of the IRO pin by writing to the IROL bit.

Freescale Semiconductor 14-3

If the IROPEN bit is clear, the pin is disabled and is not driven by the CMT module. This is so the CMT can be configured as a modulo timer for generating periodic interrupts without causing pin activity.

14.7 Register Definition

The following registers control and monitor CMT operation:

- CMT carrier generator data registers (CMTCGH1, CMTCGL1, CMTCGH2, CMTCGL2)
- CMT output control register (CMTOC)
- CMT modulator status and control register (CMTMSC)
- CMT modulator period data registers (CMTCMD1, CMTCMD2, CMTCMD3, CMTCMD4)

14.7.1 Carrier Generator Data Registers (CMTCGH1, CMTCGL1, CMTCGH2, and CMTCGL2)

The carrier generator data registers contain the primary and secondary high and low values for generating the carrier output.

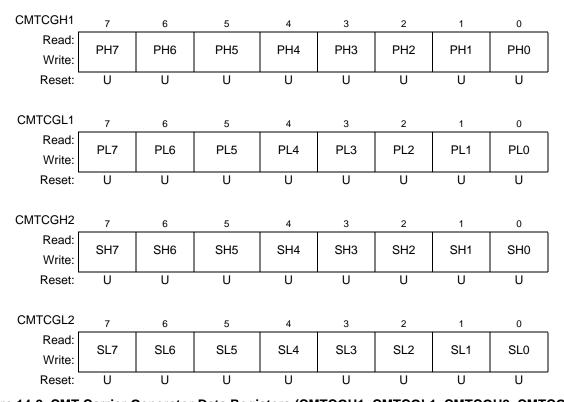


Figure 14-2. CMT Carrier Generator Data Registers (CMTCGH1, CMTCGL1, CMTCGH2, CMTCGL2)

14-4 Freescale Semiconductor

Carrier	Data Values	Description
Primary Carrier High and Low Time Data Values	PH0–PH7 and PL0–PL7	When selected, these bits contain the number of input clocks required to generate the carrier high and low time periods. When operating in time mode (see Section 14.8.2.1, "Time Mode") this register pair is always selected. When operating in FSK mode (see Section 14.8.2.3, "FSK Mode") this register pair and the secondary register pair are alternately selected under control of the modulator. The primary carrier high and low time values are undefined out of reset. These bits must be written to nonzero values before the carrier generator is enabled to avoid spurious results.
Secondary Carrier High and Low Time Data Values	SH0–SH7 and SL0–SL7	When selected, these bits contain the number of input clocks required to generate the carrier high and low time periods. When operating in time mode (see Section 14.8.2.1, "Time Mode") this register pair is never selected. When operating in FSK mode (see Section 14.8.2.3, "FSK Mode") this register pair and the primary register pair are alternately selected under control of the modulator. The secondary carrier high and low time values are undefined out of reset. These bits must be written to nonzero values before the carrier generator is enabled when operating in FSK mode.

14.7.2 CMT Output Control Register (CMTOC)

This register is used to control the IRO output of the CMT module.

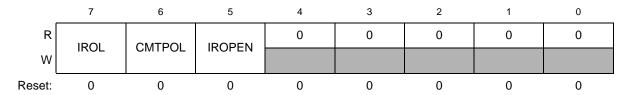


Figure 14-3. CMT Output Control Register (CMTOC)
Table 14-3. PRACMPxCS Field Descriptions

Field	Description
7 IROL	IRO Latch Control Reading IROL reads the state of the IRO latch. Writing IROL changes the state of the IRO pin when the MCGEN bit in the CMTMSC register is clear and the IROPEN bit is set.

Table 14-3. PRACMPxCS Field Descriptions (Continued)

Field	Description				
6 CMTPOL	CMT Output Polarity The CMTPOL bit controls the polarity of the IRO pin output of the CMT. 1 IRO pin is active high 0 IRO pin is active low				
5 IROPEN	IRO Pin Enable The IROPEN bit is used to enable and disable the IRO pin. When the pin is enabled, it is an output which drives out either the CMT transmitter output or the state of the IROL bit depending on whether the MCGEN bit in the CMTMSC register is set or not. Also, the state of the output is either inverted or not depending on the state of the CMTPOL bit. When the pin is disabled, it is in a high impedance state so as not to draw any current. The pin is disabled during reset. O IRO pin disabled 1 IRO pin enabled as output				

14.7.3 CMT Modulator Status and Control Register

The CMT modulator status and control register (CMTMSC) contains the modulator and carrier generator enable (MCGEN), end of cycle interrupt enable (EOCIE), FSK mode select (FSK), baseband enable (BASE), extended space (EXSPC), prescaler (CMTDIV) bits, and the end of cycle (EOCF) status bit.

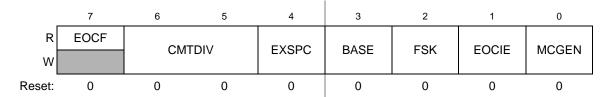


Figure 14-4. CMT Modulator Status and Control Register (CMTMSC)

Table 14-4. PRACMPxCS Field Descriptions

Field	Description
7 EOCF	 End Of Cycle Status Flag The EOCF bit is set when: The modulator is not currently active and the MCGEN bit is set to begin the initial CMT transmission. At the end of each modulation cycle while the MCGEN bit is set. This is recognized when a match occurs between the contents of the space period register and the down counter. At this time, the counter is initialized with the (possibly new) contents of the mark period buffer, CMTCMD1 and CMTCMD2, and the space period register is loaded with the (possibly new) contents of the space period buffer, CMTCMD3 and CMTCMD4. This flag is cleared by a read of the CMTMSC register followed by an access of CMTCMD2 or CMTCMD4. In the case where the MCGEN bit is cleared and then set before the end of the modulation cycle, EOCF will not be set when MCGEN is set, but will be set at the end of the current modulation cycle. No end of modulation cycle occurrence since flag last cleared End of modulator cycle has occurred
6–5 CMTDIV	CMT Clock Divide Prescaler The CMT clock divide prescaler causes the CMT to be clocked at the CMT input clock frequency, or the CMT input clock frequency divided by 1, 2, 4, or 8. Since these bits are not double buffered, they should not be changed during a transmission. 00 CMT input clock \div 1 01 CMT input clock \div 2 10 CMT input clock \div 4 11 CMT input clock \div 8
4 EXSPC	Extended Space Enable The EXSPC bit enables extended space operation 1 Extended space enabled 0 Extended space disabled
3 BASE	Baseband Enable When set, the BASE bit disables the carrier generator and forces the carrier output high for generation of baseband protocols. When BASE is clear, the carrier generator is enabled and the carrier output toggles at the frequency determined by values stored in the carrier data registers. See Section 14.8.2.2, "Baseband Mode". This bit is cleared by reset. This bit is not double buffered and should not be written to during a transmission. O Baseband mode disabled 1 Baseband mode enabled
2 FSK	FSK Mode Select The FSK bit enables FSK operation 0 CMT operates in Time or Baseband mode 1 CMT operates in FSK mode
1 EOCIE	End of Cycle Interrupt Enable A CPU interrupt will be requested when EOCF is set if EOCIE is high.0CPU interrupt disabled 1 CPU interrupt enabled
0 MCGEN	Modulator and Carrier Generator Enable Setting MCGEN will initialize the carrier generator and modulator and will enable all clocks. Once enabled, the carrier generator and modulator will function continuously. When MCGEN is cleared, the current modulator cycle will be allowed to expire before all carrier and modulator clocks are disabled (to save power) and the modulator output is forced low. To prevent spurious operation, the user should initialize all data and control registers before enabling the system. O Modulator and carrier generator disabled Modulator and carrier generator enabled

14.7.4 CMT Modulator Data Registers (CMTCMD1, CMTCMD2, CMTCMD3 and CMTCMD4)

The modulator data registers control the mark and space periods of the modulator for all modes. The contents of these registers are transferred to the modulator down counter and space period register upon the completion of a modulation period.

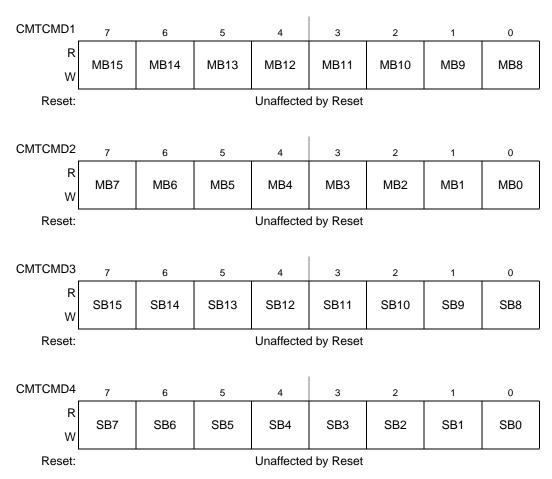


Figure 14-5. CMT Modulator Data Registers (CMTCMD1, CMTCMD2, CMTCMD3 and CMTCMD4)

14.8 Functional Description

The CMT module consists of a carrier generator, a modulator, a transmitter output and control registers. The block diagram is shown in Figure 14-1. The module has three main modes of operation:

- Time
- Baseband
- Frequency shift key (FSK).

When operating in time mode, the user independently defines the high and low times of the carrier signal to determine both period and duty cycle. The carrier generator resolution is 125 ns when operating with an 8 MHz internal bus frequency and the CMTMSC[CMTDIV] equal 00. The carrier generator can generate

14-8 Freescale Semiconductor

signals with periods between 250 ns (4 MHz) and 127.5 μs (7.84 kHz) in steps of 125 ns. The table below shows the relationship between the clock divide bits and the carrier generator resolution, minimum carrier generator period, and minimum modulator period.

Min Carrier Min **CMT Input Carrier Generator CMTDIV Generator Period Modulator Period** Clock (MHz) Resolution (µs) (μ**s**) (μ**s**) 8 00 0.125 0.25 1.0 01 0.25 8 0.5 2.0 8 10 0.5 1.0 4.0 1.0 2.0 8 11 8.0

Table 14-5. Clock Divide

The possible duty cycle options will depend upon the number of counts required to complete the carrier period. For example, a 1.6 MHz signal has a period of 625 ns and will therefore require 5 x 125 ns counts to generate. These counts may be split between high and low times, so the duty cycles available will be 20% (one high, four low), 40% (two high, three low), 60% (three high, two low) and 80% (four high, one low).

For lower frequency signals with larger periods, higher resolution (as a percentage of the total period) duty cycles are possible.

When the BASE bit in the CMT modulator status and control register (CMTMSC) is set, the carrier output (f_{cg}) to the modulator is held to IRO pin active level continuously to allow for the generation of baseband protocols.

A third mode allows the carrier generator to alternate between two sets of high and low times. When operating in FSK mode, the generator will toggle between the two sets when instructed by the modulator, allowing the user to dynamically switch between two carrier frequencies without CPU intervention.

The modulator provides a simple method to control protocol timing. The modulator has a minimum resolution of $1.0~\mu s$ with an 8~MHz internal CMT input clock. It can count bus clocks (to provide real-time control) or it can count carrier clocks (for self-clocked protocols). See Section 14.8.2, "Modulator" for more details.

The transmitter output block controls the state of the infrared out pin (IRO). The modulator output is gated on to the IRO pin when the modulator/carrier generator is enabled.

A summary of the possible modes is shown in Table 14-6.

Table 14-6. CMT Modes of Operation

Mode	MCGEN Bit ¹	BASE Bit ²	FSK Bit ⁽²⁾	EXSPC Bit	Comment
Time	1	0	0	0	f_{cg} controlled by primary high and low registers. f_{cg} transmitted to IRO pin when modulator gate is open.

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor 14-9

Table 14-6. CMT Modes of Operation (Continued)

Mode	MCGEN Bit ¹	BASE Bit ²	FSK Bit ⁽²⁾	EXSPC Bit	Comment
Baseband	1	1	х	0	$\ensuremath{f_{\text{cg}}}$ is always active level. IRO pin active level when modulator gate is open.
FSK	1	0	1	0	f_{cg} control alternates between primary high/low registers and secondary high/low registers. f_{cg} transmitted to IRO pin when modulator gate is open.
Extended Space	1	х	x	1	Setting the EXSPC bit causes subsequent modulator cycles to be spaces (modulator out not asserted) for the duration of the modulator period (mark and space times).
IRO Latch	0	х	x	х	IROL bit controls state of IRO pin.

¹ To prevent spurious operation, initialize all data and control registers before beginning a transmission (MCGEN=1).

14.8.1 Carrier Generator

The carrier signal is generated by counting a register-selected number of input clocks (125 ns for an 8 MHz bus) for both the carrier high time and the carrier low time. The period is determined by the total number of clocks counted. The duty cycle is determined by the ratio of high time clocks to total clocks counted. The high and low time values are user programmable and are held in two registers.

An alternate set of high/low count values is held in another set of registers to allow the generation of dual frequency FSK (frequency shift keying) protocols without CPU intervention.

NOTE

Only non-zero data values are allowed. The carrier generator will not work if any of the count values are equal to zero.

The MCGEN bit in the CMTMSC register must be set and the BASE bit must be cleared to enable carrier generator clocks. When the BASE bit is set, the carrier output to the modulator is held to IRO pin active level continuously. The block diagram is shown in Figure 14-1.

² These bits are not double buffered and should not be changed during a transmission (while MCGEN=1).

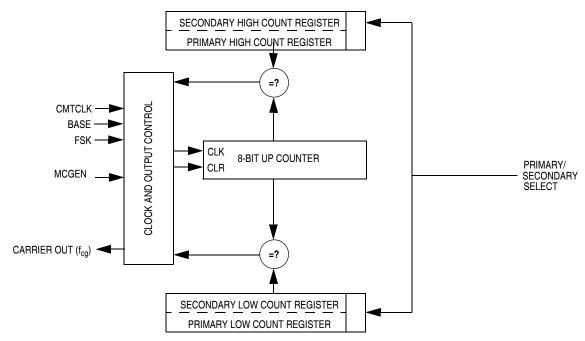


Figure 14-6. Carrier Generator Block Diagram

The high/low time counter is an 8-bit up counter. After each increment, the contents of the counter are compared with the appropriate high or low count value register. When the compare value is reached, the counter is reset to a value of 0x01, and the compare is redirected to the other count value register.

Assuming that the high time count compare register is currently active, a valid compare will cause the carrier output to be driven IRO pin active level. The counter will continue to increment (starting at reset value of 0x01). When the value stored in the selected low count value register is reached, the counter will again be reset and the carrier output will be driven IRO pin inactive level.

The cycle repeats, automatically generating a periodic signal which is directed to the modulator. The lowest frequency (maximum period) and highest frequency (minimum period) which can be generated are defined as:

$$f_{max} = f_{CMTCLK} \div (2 \times 1) Hz$$
 Eqn. 14-1

$$f_{min} = f_{CMTCLK} \div (2 \times (2^8 - 1)) Hz$$
 Eqn. 14-2

In the general case, the carrier generator output frequency is:

$$f_{cq} = f_{CMTCLK} \div (Highcount + Lowcount) Hz$$
 Eqn. 14-3

Where:

0 < Highcount < 256 and

0 < *Lowcount* < 256

The duty cycle of the carrier signal is controlled by varying the ratio of high time to low + high time. As the input clock period is fixed, the duty cycle resolution will be proportional to the number of counts required to generate the desired carrier period.

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor 14-11

$$Duty Cycle = \frac{Highcount}{Highcount + Lowcount}$$

Egn. 14-4

14.8.2 Modulator

The modulator has three main modes of operation:

- The modulator can gate the carrier onto the modulator output (Time mode)
- The modulator can control the logic level of the modulator output (Baseband mode)
- The modulator can count carrier periods and instruct the carrier generator to alternate between two carrier frequencies whenever a modulation period (mark + space counts) expires (FSK mode)

The modulator includes a 17-bit down counter with underflow detection. The counter is loaded from the 16-bit modulation mark period buffer registers, CMTCMD1 and CMTCMD2. The most significant bit is loaded with a logic zero and serves as a sign bit. When the counter holds a positive value, the modulator gate is open and the carrier signal is driven to the transmitter block.

When the counter underflows, the modulator gate is closed and a 16-bit comparator is enabled which compares the logical complement of the value of the down counter with the contents of the modulation space period register which has been loaded from the registers, CMTCMD3 and CMTCMD4.

When a match is obtained the cycle repeats by opening the modulator gate, reloading the counter with the contents of CMTCMD1 and CMTCMD2, and reloading the modulation space period register with the contents of CMTCMD3 and CMTCMD4.

Should the contents of the modulation space period register be all zeroes, the match will be immediate and no space period will be generated (for instance, for FSK protocols which require successive bursts of different frequencies).

The MCGEN bit in the CMTMSC register must be set to enable the modulator timer.

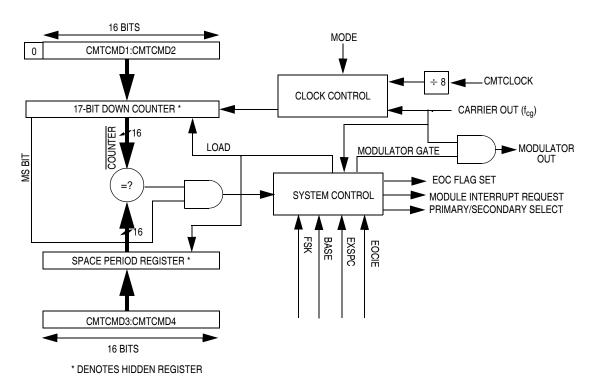


Figure 14-7. Modulator Block Diagram

14.8.2.1 Time Mode

When the modulator operates in time mode (MCGEN bit is set, BASE bit is clear, and FSK bit is clear), the modulation mark period consists of an integer number of CMTCLK \div 8 clock periods. The modulation space period consists of zero or an integer number of CMTCLK \div 8 clock periods. With an 8 MHz bus and CMTDIV = 00, the modulator resolution is 1 μ s and has a maximum mark and space period of about 65.535 ms each. See Figure 14-8 for an example of the time mode and baseband mode outputs.

The mark and space time equations for time and baseband mode are:

$$\mathbf{t_{mark}} = (\mathsf{CMTCMD1}: \mathsf{CMTCMD2} + \mathbf{1}) \div (\mathbf{f_{\mathsf{CMTCLK}}} \div 8)$$
 Eqn. 14-5
$$\mathbf{t_{space}} = \mathsf{CMTCMD3}: \mathsf{CMTCMD4} \div (\mathbf{f_{\mathsf{CMTCLK}}} \div 8)$$
 Eqn. 14-6

where CMTCMD1:CMTCMD2 and CMTCMD3:CMTCMD4 are the decimal values of the concatenated registers.

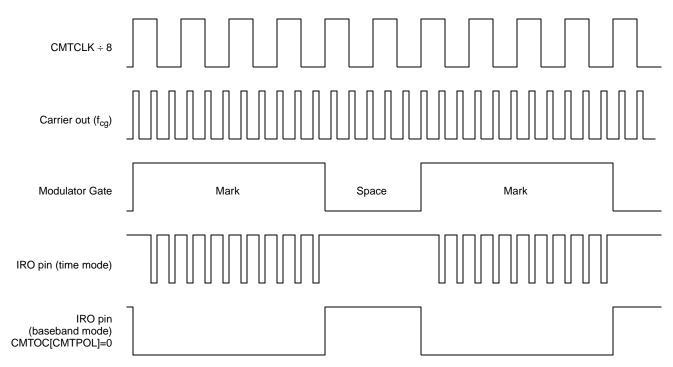


Figure 14-8. Example CMT Output in Time and Baseband Modes

14.8.2.2 Baseband Mode

Baseband mode (MCGEN bit is set and BASE bit is set) is a derivative of time mode, where the mark and space period is based on (CMTCLK \div 8) counts. The mark and space calculations are the same as in time mode. In this mode the modulator output will be at active level for the duration of the mark period and at an inactive level for the duration of a space period. See Figure 14-8 for an example of the output for both baseband and time modes. In the example, the carrier out frequency (f_{cg}) is generated with a high count of 0x01 and a low count of 0x02 which results in a divide of 3 of CMTCLK with a 33% duty cycle. The modulator down counter was loaded with the value 0x0003 and the space period register with 0x0002.

NOTE

The waveforms in Figure 14-8 and Figure 14-9 are for the purpose of conceptual illustration and are not meant to represent precise timing relationships between the signals shown.

14.8.2.3 FSK Mode

When the modulator operates in FSK mode (MCGEN bit is set, FSK bit is set, and BASE bit is clear), the modulation mark and space periods consist of an integer number of carrier clocks (space period can be zero). When the mark period expires, the space period is transparently started (as in time mode). The carrier generator toggles between primary and secondary data register values whenever the modulator space period expires.

14-14 Freescale Semiconductor

The space period provides an interpulse gap (no carrier). If CMTCMD3:CMTCMD4 = 0x0000, then the modulator and carrier generator will switch between carrier frequencies without a gap or any carrier glitches (zero space).

Using timing data for carrier burst and interpulse gap length calculated by the CPU, FSK mode can automatically generate a phase-coherent, dual-frequency FSK signal with programmable burst and interburst gaps.

The mark and space time equations for FSK mode are:

$$t_{mark}$$
 = (CMTCMD1:CMTCMD2 + 1) ÷ f_{cg} Eqn. 14-7
 t_{space} = CMTCMD3:CMTCMD4 ÷ f_{cg} Eqn. 14-8

Where f_{cg} is the frequency output from the carrier generator. The example in figure below shows what the IRO pin output looks like in FSK mode with the following values: CMTCMD1:CMTCMD2 = 0x0003, CMTCMD3:CMTCMD4 = 0x0002, primary carrier high count = 0x01, primary carrier low count = 0x02, secondary carrier high count = 0x03, and secondary carrier low count = 0x01.

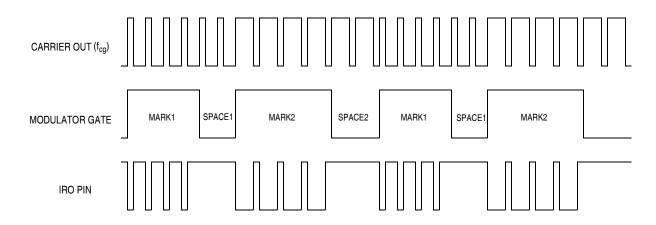


Figure 14-9. Example CMT Output in FSK Mode

14.8.2.4 Extended Space Operation

In either time, baseband or FSK mode, the space period can be made longer than the maximum possible value of the space period register. Setting the EXSPC bit in the CMTMSC register will force the modulator to treat the next modulation period (beginning with the next load of the counter and space period register) as a space period equal in length to the mark and space counts combined. Subsequent modulation periods will consist entirely of these extended space periods with no mark periods. Clearing EXSPC will return the modulator to standard operation at the beginning of the next modulation period.

14.8.2.4.1 EXSPC Operation in Time Mode

To calculate the length of an extended space in time or baseband modes, add the mark and space times and multiply by the number of modulation periods that EXSPC is set.

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor 14-15

$$t_{exspace} = (t_{mark} + t_{space}) x$$
(number of modulation periods)

Eqn. 14-9

For an example of extended space operation, see Figure 14-10.

NOTE

The EXSPC feature can be used to emulate a zero mark event.

Figure 14-10. Extended Space Operation

14.8.2.4.2 EXSPC Operation in FSK Mode

In FSK mode, the modulator continues to count carrier out clocks, alternating between the primary and secondary registers at the end of each modulation period.

To calculate the length of an extended space in FSK mode, one needs to know whether the EXSPC bit was set on a primary or secondary modulation period, as well as the total number of both primary and secondary modulation periods completed while the EXSPC bit is high. A status bit for the current modulation is not accessible to the CPU. If necessary, software should maintain tracking of the current modulation cycle (primary or secondary). The extended space period ends at the completion of the space period time of the modulation period during which the EXSPC bit is cleared.

If the EXSPC bit was set during a primary modulation cycle, use the equation:

$$t_{exspace} = (t_{space})_{p} + (t_{mark} + t_{space})_{s} + (t_{mark} + t_{space})_{p} + \dots$$
 Eqn. 14-10

Where the subscripts p and s refer to mark and space times for the primary and secondary modulation cycles.

If the EXSPC bit was set during a secondary modulation cycle, use the equation:

$$t_{exspace} = (t_{space})_s + (t_{mark} + t_{space})_p + (t_{mark} + t_{space})_s + \dots$$
 Eqn. 14-11

14.8.3 Transmitter

The transmitter output block controls the state of the infrared out pin (IRO). The modulator output is gated on to the IRO pin when the modulator/carrier generator is enabled. When the modulator/carrier generator is disabled, the IRO pin is controlled by the state of the IRO latch.

A polarity bit in the CMTOC register enables the IRO pin to be high true or low true.

14.8.4 CMT Interrupts

The end of cycle flag (EOCF) is set when:

- The modulator is not currently active and the MCGEN bit is set to begin the initial CMT transmission
- At the end of each modulation cycle (when the counter is reloaded from CMTCMD1:CMTCMD2) while the MCGEN bit is set

In the case where the MCGEN bit is cleared and then set before the end of the modulation cycle, the EOCF bit will not be set when the MCGEN is set, but will become set at the end of the current modulation cycle.

When the MCGEN becomes disabled, the CMT module does not set the EOC flag at the end of the last modulation cycle.

The EOCF bit is cleared by reading the CMT modulator status and control register (CMTMSC) followed by an access of CMTCMD2 or CMTCMD4.

If the EOC interrupt enable (EOCIE) bit is high when the EOCF bit is set, the CMT module will generate an interrupt request. The EOCF bit must be cleared within the interrupt service routine to prevent another interrupt from being generated after exiting the interrupt service routine.

The EOC interrupt is coincident with loading the down-counter with the contents of CMTCMD1:CMTCMD2 and loading the space period register with the contents of CMTCMD3:CMTCMD4. The EOC interrupt provides a means for the user to reload new mark/space values into the modulator data registers. Modulator data register updates will take effect at the end of the current modulation cycle. Note that the down-counter and space period register are updated at the end of every modulation cycle, irrespective of interrupt handling and the state of the EOCF flag.

14.8.5 Low-Power Mode Operation

14.8.5.1 Wait Mode Operation

During wait mode the CMT, if enabled, will continue to operate normally. However, there will be no new codes or changes of pattern mode while in wait mode, because the CPU is not operating.

14.8.5.2 Stop3 Mode Operation

During Stop3 mode, clocks to the CMT module are halted. No registers are affected.

Note that because the clocks are halted, the CMT will resume upon exit from Stop3. Software should ensure that the Stop3 mode is not entered while the modulator is still in operation to prevent the IRO pin from being asserted while in Stop3 mode. This may require a time-out period from the time that the MCGEN bit is cleared to allow the last modulator cycle to complete.

14.8.5.3 Stop2 Mode Operation

During Stop2 mode, the CMT module is completely powered off internally and the IRO pin state at the time that Stop2 mode is entered is latched and held. To prevent the IRO pin from being asserted while in Stop2 mode, software should assure that the pin is not active when entering Stop2 mode. Upon wake-up from Stop2 mode, the CMT module will be in the reset state.

Freescale Semiconductor 14-17

14.8.5.4 Background Mode Operation

When the microcontroller is in active background mode, the CMT temporarily suspends all counting until the microcontroller returns to normal user mode.

Chapter 15 12-bit Digital to Analog Converter (DAC12LVLPv1)

15.1 Introduction

The 12-bit Digital to Analog converter (DAC) can provide a voltage output on the DACO pin. Figure 15-1 shows the block diagram with the DAC highlighted.

15.1.1 DAC Clock Gating

The bus clock to the DAC can be gated on and off using the DAC bit in SCGC1. These bits are set after any reset, which enables the bus clock to this module. To conserve power, these bits can be cleared to disable the clock to this module when not in use. See Section 5.6, "Peripheral Clock Gating," for details.

15.1.2 DAC V_{ext} and V_{int} Configuration

On this device, V_{ext} is connected to VDDA and V_{int} is connected to the bandgap voltage, V_{refo} .

15.1.3 DAC Hardware Trigger Configuration

On this device, the hardware trigger is connected to the PDB output.

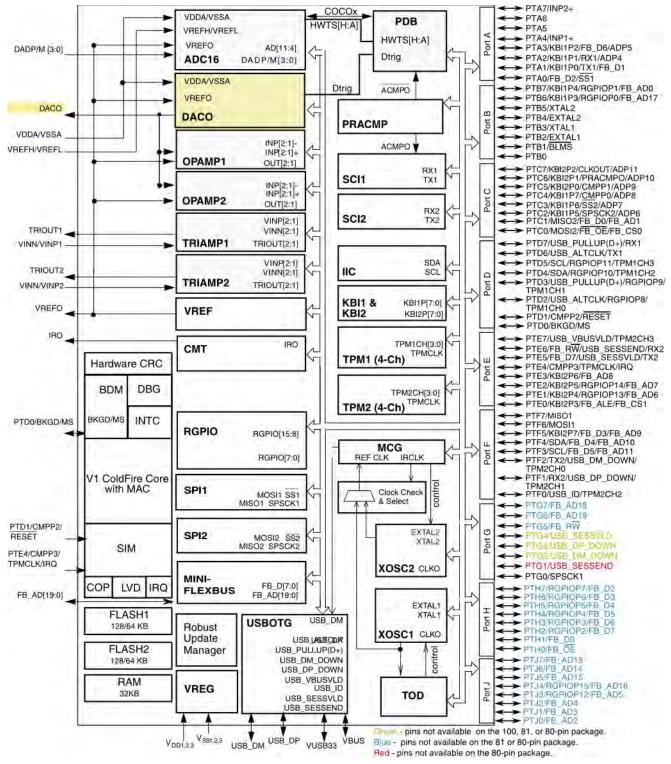


Figure 15-1. Block Diagram Highlighting DAC Blocks and Pins

15-2 Freescale Semiconductor

15.1.4 Features

The DAC module features include:

- 1.8 V 3.6 V operation.
- On-chip programmable reference generator output (1/4096 Vin to Vin, step is 1/4096 Vin)
- Vin can be selected from two reference sources:
 - While VDDA is 1.8 V ~ 3.6 V, VREFH_EXT (VDDA) can be used and guaranteed.
 - While VDDA is 2.4 V ~ 3.6 V, both VREFH_INT (output of VREF) and VREFH_EXT (VDDA) can be used and guaranteed.
- Optional operation in STOP3 mode
- 16-word data buffer supported with configurable watermark and multiple operation modes

15.1.5 Block Diagram

Figure 15-2 is the block diagram of the DAC module.

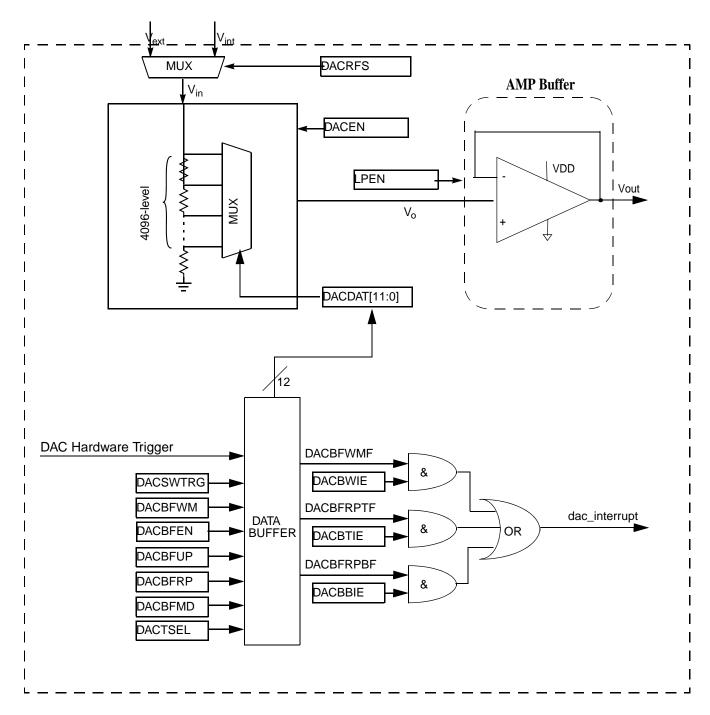


Figure 15-2. DAC Block Diagram

15.2 Register Definition

The DAC has 20 8-bit registers to control analog comparator and programmable voltage divider to perform the Digital to Analog functions.

15.2.1 DAC Data Register x (DACDATxH:DACDATxL)

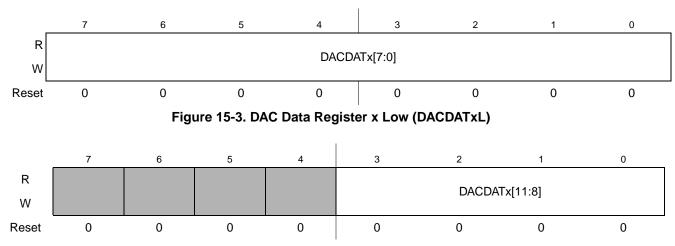


Figure 15-4. DAC Data Register x High (DACDATxH)

When the DAC Buffer is not enabled, DACDAT0[11:0] controls the output voltage based on the following formula.

Vout = Vin * (1+DACDAT0[11:0])/4096

Eqn. 15-1

When the DAC Buffer is enabled, DACDATx[11:0] is mapped to the 16-word buffer. Refer to 3.1 "DAC Buffer Operation" for details.

When writing a new value to DAC Data Register x (DACDATxH:DACDATxL), the write order should be DACDATxH first, then DACDATxL. Otherwise the value will not be properly loaded to the effective DAC hard block and a mismatch between the DAC output may be observed. Reading DACDATx as the write-value does not mean the value is properly loaded to the DAC hard block. Therefore, the write sequence of high byte first then low byte must be followed.

15.2.2 DAC Status Register (DACS)



Figure 15-5. DAC Status Register

NOTE

If one of the flag is set, it must be cleared by software, or it will keep it's value. Write zero value to the status register, the relevant bit (s) will be cleared. It's no effect to write 1 to this register. After reset, DACRPT is set, it can be cleared by software if needed. The flag registers can be set only when the data buffer status is changed.

MCF51MM256 Series Devices Reference Manual, Rev. 3

12-bit Digital to Analog Converter (DAC12LVLPv1)

Table 15-1. DAC Status Register

Field	Description	
7:3	Reserved	
2 DACWM	DAC buffer watermark flag. 0 The DAC buffer read pointer doesn't reach the watermark level 1 The DAC buffer read pointer reaches the watermark level	
1 DACRPT	DAC buffer read pointer top position flag. 1 The DAC buffer read pointer is not zero 2 The DAC buffer read pointer is zero	
0 DACRPB	DAC buffer read pointer bottom position flag. 0 The DAC buffer read pointer isn't equal to the DACBFUP 1 The DAC buffer read pointer is equal to the DACBFUP.	

15.2.3 DAC Control Register (DACC0)



Figure 15-6. DAC Control Register 0 (DACC0)

Table 15-2. DACC0 Field Descriptions

Field	Description		
7 DACEN	DAC enable — The DACEN bit starts the Programmable Reference Generator operation. 1 The DAC system is enabled.		
6 DACRFS	DAC Reference Select 0 The DAC selects V _{int} as the reference voltage. 1 The DAC selects V _{ext} as the reference voltage.		
5 DACTSEL	DAC trigger select 0 The DAC hardware trigger is selected. 1 The DAC software trigger is selected.		
4 DACSTRG	DAC software trigger — active high. This is a write-only bit; it is always "0" when read. If the DAC software trigger is selected and buffer enabled, writing a 1 to this bit advances the buffer read pointer once. 0 The DAC soft trigger is not valid. 1 The DAC soft trigger is valid.		
3 LPEN	DAC low power control 0 High power mode. 1 Low power mode.		
2 DACWIE	DAC buffer watermark interrupt enable. 0 The DAC buffer watermark interrupt is disabled. 1 The DAC buffer watermark interrupt is enabled.		

15-6 Freescale Semiconductor

Table 15-2. DACC0 Field Descriptions (Continued)

Field	Description	
1 DACTIE	DAC buffer read pointer top flag interrupt enable. 1 The DAC buffer read pointer top flag interrupt is disabled. 2 The DAC buffer read pointer top flag interrupt is enabled.	
0 DACBIE	DAC buffer read pointer bottom flag interrupt enable. 1 The DAC buffer read pointer bottom flag interrupt is disabled. 2 The DAC buffer read pointer bottom flag interrupt is enabled.	

15.2.4 DAC Control Register1 (DACC1)

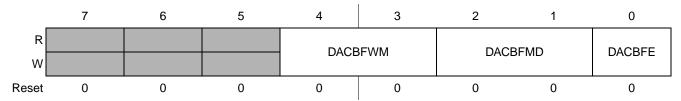


Figure 15-7. DAC Control Register 1 (DACC1)

Table 15-3. DACC1 Field Descriptions

Field	Description		
7:3	Reserved		
4:3 DACBFWM	DAC Buffer Watermark Select — When the word number between the read pointer and the upper address is equal to DACBFWM, the DACWM bit in status register will be set. DACWM can be used to inform the software need to refresh the DAC buffer. 00 1 word 01 2 words 10 3 words 11 4 words		
2:1 DACBFMD	DAC Buffer Work Mode Select 00 Normal mode 01 Swing mode 10 One-time scan mode 11 Reserved		
0 DACBFE	 DAC Buffer Enable 0 Buffer read pointer disabled. The converted data is always the first word of the buffer. 1 Buffer read pointer enabled. The converted data is the word that the read pointer points to. It means converted data can be from any word of the buffer. 		

12-bit Digital to Analog Converter (DAC12LVLPv1)

15.2.5 DAC Control Register 2 (DACC2)

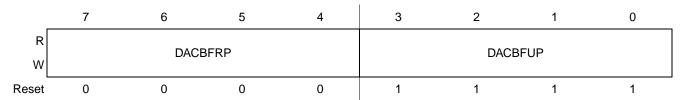


Figure 15-8. DAC Control Register 2 (DACC2)

Table 15-4. DACC2 Field Descriptions

Field	Description
7:4 DACBFRP	DAC Buffer Read Pointer — These 4 bits keep the current value of the buffer read pointer
3:0 DACBFUP	DAC Buffer Upper Limit — These 4 bits select the buffer's upper limit. The buffer read pointer cannot exceed it.

15.3 Functional Description

The 12-bit Digital-to-Analog Convertor (DAC12LVLP) module can select one of two reference inputs V_{in1} and V_{in2} as the DAC reference voltage (V_{in}) by DACRFS bit of DACC0 register. Refer to the module introduction for information on the source for V_{ext} and V_{int} . When the DAC12LVLP is enabled, it converts the data in DACDAT0[11:0] or the data from the DAC data buffer to a stepped analog output voltage. The output voltage range is from $V_{in}/4096$ to V_{in} , and the step is $V_{in}/4096$.

15.3.1 DAC Data Buffer Operation

When the DAC is enabled and the buffer isn't enabled, the DAC12LVLP module always converts the data in DACDAT0 to analog output voltage.

When both the DAC and the buffer are enabled, the DAC12LVLP converts the data in the data buffer to analog output voltage. The data buffer read pointer advances to the next word in the event the hardware trigger or the software trigger occurs. Refer to the DAC12LVLP Introduction section for the hardware trigger connection. The data buffer can be configured to operate in normal mode, swing mode, or one-time scan mode. When the buffer operation is switched from one mode to another, the read pointer doesn't change. The read pointer can be set to any value between 0 and DACBFUP by writing DACBFRP in DACC2.

15.3.1.1 Buffer Normal Mode

This is the default mode. The buffer works as a circular buffer. The read pointer increases by one every time when the trigger occurs. When the read pointer reaches the upper limit, it goes to the zero directly in the next trigger event.

15.3.1.2 Buffer Swing Mode

This mode is similar to the Normal mode. But when the read pointer reaches the upper limit, it doesn't go to the zero. It will descend by one in the next trigger events until zero is reached.

15.3.1.3 Buffer One-time Scan Mode

The read pointer increases by one every time the trigger occurs. When it reaches the upper limit, it stops. If the read pointer is reset to an address other than the upper limit, it will increase to the upper address and then stop.

NOTE

If the software set the read pointer to the upper limit, the read pointer will not advance in this mode.

15.3.2 Resets

During reset, the DAC12LVLP is configured in the default mode. DAC12LVLP is disabled.

15.3.3 Low Power Mode Operation

15.3.3.1 Wait Mode Operation

In wait mode, the DAC12LVLP operates normally if enabled.

15.3.3.2 Stop Mode Operation

The DAC12LVLP continues to operate in stop3 mode if enabled, the output voltage will hold the value before STOP.

In stop2 mode, the DAC12LVLP is fully shut down.

15.3.4 Background Mode Operation

When the MCU is in active background mode, the DAC12LVLP operates normally.

12-bit Digital to Analog Converter (DAC12LVLPv1)

Chapter 16 Inter-Integrated Circuit (S08IICV3)

16.1 Introduction

The inter-integrated circuit (IIC) provides a method of communication between a number of devices. The interface is designed to operate up to 100 kbps with maximum bus loading and timing. The device is capable of operating at higher baud rates, up to a maximum of clock/20, with reduced bus loading. The maximum communication length and the number of devices that can be connected are limited by a maximum bus capacitance of 400 pF.

NOTE

- MCF51MM256 series devices do not include stop1 mode. Please ignore references to stop1.
- The SDA and SCL should not be driven above V_{DD}. These pins are pseudo open-drain and contain a protection diode to V_{DD}.

16.1.1 Module Configuration

The IIC module pins, SDA and SCL can be repositioned under software control using IICPS in SOPT3 as shown in Table 16-1. IICPS in SOPT3 selects which general-purpose I/O ports are associated with IIC operation.

IICPS in SOPT3	Port Pin for SDA	Port Pin for SCL	
0 (default)	PTD4	PTD5	
1	PTF4	PTF3	

Table 16-1. IIC Position Options

16.1.2 IIC Clock Gating

The bus clock to the IIC can be gated on and off using the IIC bit in SCGC1. This bit is set after any reset, which enables the bus clock to this module. To conserve power, the IIC bit can be cleared to disable the clock to this module when not in use. See Section 5.7.7, "System Clock Gating Control 1 Register (SCGC1)," for details.

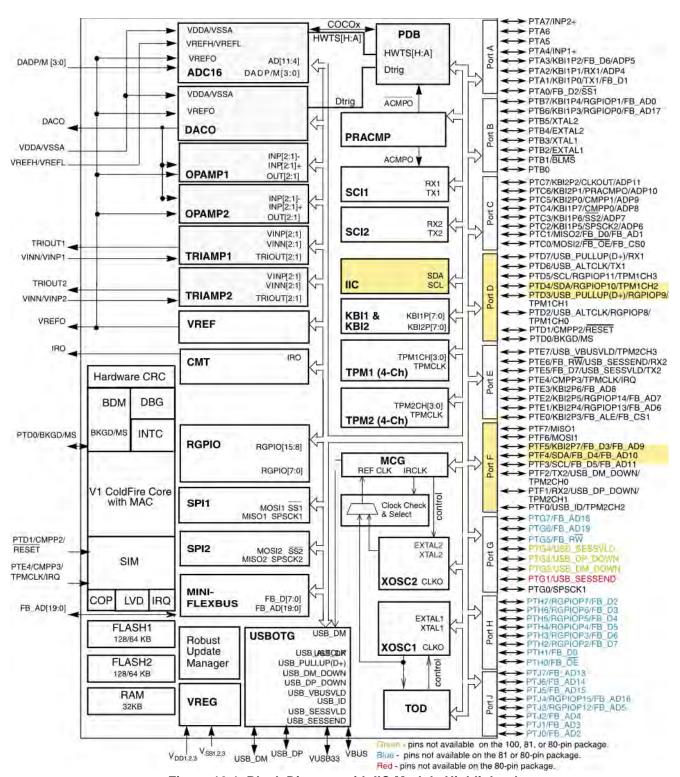


Figure 16-1. Block Diagram with IIC Module Highlighted

Supports System Management Bus Specification (SMBus), version 2.

16-2 Freescale Semiconductor

16.1.3 Features

The IIC includes these distinctive features:

- Compatible with IIC bus standard
- Multi-master operation
- Software programmable for one of 64 different serial clock frequencies
- Software selectable acknowledge bit
- Interrupt driven byte-by-byte data transfer
- Arbitration lost interrupt with automatic mode switching from master to slave
- Calling address identification interrupt
- START and STOP signal generation/detection
- Repeated START signal generation/detection
- Acknowledge bit generation/detection
- Bus busy detection
- General call recognition
- 10-bit address extension
- Support System Management Bus Specification(SMBus), version2
- Programmable glitch input filter

16.1.4 Modes of Operation

A brief description of the IIC in the various MCU modes follows:

- **Run mode** This is the basic mode of operation. To conserve power in this mode, disable the module.
- Wait mode The module continues to operate while the MCU is in wait mode and can provide a wake-up interrupt.
- **Stop mode** The IIC is inactive in stop3 mode for reduced power consumption. The STOP instruction does not affect IIC register states. Stop2 will reset the register contents.

16.1.5 Block Diagram

Figure 16-2 is a block diagram of the IIC.

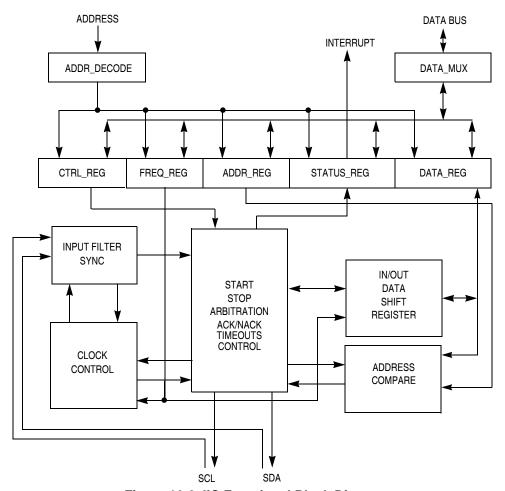


Figure 16-2. IIC Functional Block Diagram

16.2 External Signal Description

This section describes each user-accessible pin signal.

16.2.1 SCL — Serial Clock Line

The bidirectional SCL is the serial clock line of the IIC system.

16.2.2 SDA — Serial Data Line

The bidirectional SDA is the serial data line of the IIC system.

16.3 Register Definition

16.3.1 Module Memory Map

The IIC has ten 8-bit registers. The base address of the module is hardware programmable. The IIC register map is fixed and begins at the module's base address. Table 16-2 summarizes the IIC module's address space. The following section describes the bit-level arrangement and functionality of each register.

Address	Use	Access
Base + \$0000	IIC Address Register 1 (IICA1)	read/write
Base + \$0001	IIC Frequency Divider Register (IICF)	read/write
Base + \$0002	IIC Control Register 1 (IICC1)	read/write
Base + \$0003	IIC Status Register (IICS)	read
Base + \$0004	Base + \$0004 IIC Data IO Register (IICD)	
Base + \$0005	IIC Control Register 2 (IICC2)	read/write
Base + \$0006 IIC input programmable filter (IICFLT)		read/write
Base + \$0006	SMBUS IIC Control and Status Register (IICSMB)	read/write
Base + \$0007	IIC Address Register 2 (IICA2)	read/write
Base + \$0008	Base + \$0008 IIC SCL Low Time Out Register High (IICSLTH)	
Base + \$0009	Base + \$0009 IIC SCL Low Time Out Register Low (IICSLTL)	
Base + \$000A	Base + \$000A IIC input programmable filter (IICFLT)	

Table 16-2. Module Memory Map

This section consists of the IIC register descriptions in address order.

Refer to the direct-page register summary in the Memory chapter of this document for the absolute address assignments for all IIC registers. This section refers to registers and control bits only by their names. A Freescale-provided equate or header file is used to translate these names into the appropriate absolute addresses.

NOTE

If SMBus is selected, then the IICFLT's address is \$000A, or it should be \$0006.

16.3.2 IIC Address Register 1 (IICA1)

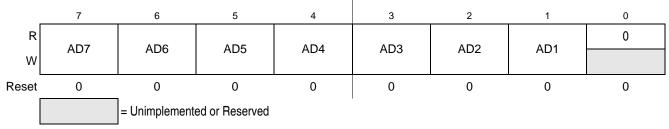


Figure 16-3. IIC Address Register 1 (IICA1)

MCF51MM256 Series Devices Reference Manual, Rev. 3

Table 16-3. IICA1 Field Descriptions

Field	Description
7:1 AD[7:1]	Slave Address 1— The AD[7:1] field contains the slave address to be used by the IIC module. This field is used on the 7-bit address scheme and the lower seven bits of the 10-bit address scheme.

16.3.3 IIC Frequency Divider Register (IICF)

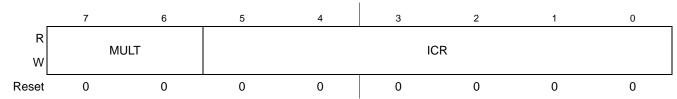


Figure 16-4. IIC Frequency Divider Register (IICF)

Table 16-4. IICF Field Descriptions

Field	Description				
7:6 MULT					
5:0 ICR	IIC Clock Rate — The ICR bits are used to prescale the bus clock for bit rate selection. These bits are bits are used to determine the IIC baud rate, the SDA hold time, the SCL Start hold time and the SC time. Table 16-5 provides the SCL divider and hold values for corresponding values of the ICR. The SCL divider multiplied by multiplier factor mul is used to generate IIC baud rate.				
	IIC baud rate = bus speed (Hz)/(mul * SCL divider)	Eqn. 16-1			
	SDA hold time is the delay from the falling edge of SCL (IIC clock) to the changing of SDA (IIC data	a).			
	SDA hold time = bus period (s) * mul * SDA hold value	Eqn. 16-2			
	SCL Start hold time is the delay from the falling edge of SDA (IIC data) while SCL is high (Start con falling edge of SCL (IIC clock).	dition) to the			
	SCL Start hold time = bus period (s) * mul * SCL Start hold value	Eqn. 16-3			
	SCL Stop hold time is the delay from the rising edge of SCL (IIC clock) to the rising edge of SDA SDA (IIC data) while SCL is high (Stop condition).				
	SCL Stop hold time = bus period (s) * mul * SCL Stop hold value	Eqn. 16-4			

MCF51MM256 Series Devices Reference Manual, Rev. 3

16-6

Freescale Semiconductor

For example if the bus speed is 8MHz, the table below shows the possible hold time values with different ICR and MULT selections to achieve an IIC baud rate of 100kbps.

MULT	ICR		Hold times (µs)	
WIULI	ICK	SDA	SCL Start	SCL Stop
0x2	0x00	3.500	3.000	5.500
0x1	0x07	2.500	4.000	5.250
0x1	0x0B	2.250	4.000	5.250
0x0	0x14	2.125	4.250	5.125
0x0	0x18	1.125	4.750	5.125

Table 16-5. IIC Divider and Hold Values

ICR (hex)	SCL Divider	SDA Hold Value	SCL Hold (Start) Value	SCL Hold (Stop) Value
00	20	7	6	11
01	22	7	7	12
02	24	8	8	13
03	26	8	9	14
04	28	9	10	15
05	30	9	11	16
06	34	10	13	18
07	40	10	16	21
08	28	7	10	15
09	32	7	12	17
0A	36	9	14	19
0B	40	9	16	21
0C	44	11	18	23
0D	48	11	20	25
0E	56	13	24	29
0F	68	13	30	35
10	48	9	18	25
11	56	9	22	29
12	64	13	26	33
13	72	13	30	37
14	80	17	34	41
15	88	17	38	45
16	104	21	46	53
17	128	21	58	65
18	80	9	38	41
19	96	9	46	49
1A	112	17	54	57
1B	128	17	62	65
1C	144	25	70	73
1D	160	25	78	81
1E	192	33	94	97
1F	240	33	118	121

ICR (hex)	SCL Divider	SDA Hold Value	SCL Hold (Start) Value	SCL Hold (Stop) Value
20	160	17	78	81
21	192	17	94	97
22	224	33	110	113
23	256	33	126	129
24	288	49	142	145
25	320	49	158	161
26	384	65	190	193
27	480	65	238	241
28	320	33	158	161
29	384	33	190	193
2A	448	65	222	225
2B	512	65	254	257
2C	576	97	286	289
2D	640	97	318	321
2E	768	129	382	385
2F	960	129	478	481
30	640	65	318	321
31	768	65	382	385
32	896	129	446	449
33	1024	129	510	513
34	1152	193	574	577
35	1280	193	638	641
36	1536	257	766	769
37	1920	257	958	961
38	1280	129	638	641
39	1536	129	766	769
3A	1792	257	894	897
3B	2048	257	1022	1025
3C	2304	385	1150	1153
3D	2560	385	1278	1281
3E	3072	513	1534	1537
3F	3840	513	1918	1921

16.3.4 IIC Control Register (IICC1)

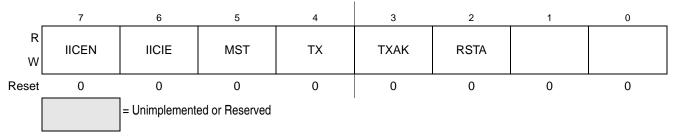


Figure 16-5. IIC Control Register (IICC1)

Table 16-6. IICC1 Field Descriptions

Field	Description IIC Enable — The IICEN bit determines whether the IIC module is enabled. 0 IIC is not enabled. 1 IIC is enabled.					
7 IICEN						
6 IICIE	IIC Interrupt Enable — The IICIE bit determines whether an IIC interrupt is requested. 0 IIC interrupt request not enabled. 1 IIC interrupt request enabled.					
5 MST	Master Mode Select — When the MST bit is changed from a 0 to a 1, a START signal is generated on the bus and master mode is selected. When this bit changes from a 1 to a 0 a STOP signal is generated and the mode of operation changes from master to slave. O Slave mode. Master mode.					
4 TX	Transmit Mode Select — The TX bit selects the direction of master and slave transfers. In master mode this bit should be set according to the type of transfer required. Therefore, for address cycles, this bit will always be high. When addressed as a slave this bit should be set by software according to the SRW bit in the status register. O Receive. 1 Transmit.					
3 TXAK	Transmit Acknowledge Enable — This bit specifies the value driven onto the SDA during data acknowledge cycles for both master and slave receivers. There are two conditions will effect NAK/ACK generation. If FACK (fast NACK/ACK) is cleared, 0 An acknowledge signal will be sent out to the bus on the following receiving data byte. 1 No acknowledge signal response is sent to the bus on the following receiving data byte. If FASK bit is set. no ACK or NACK is sent out after receiving one data byte until this TXAK bit is written 0 An acknowledge signal will be sent out to the bus on the current receiving data byte 1 No acknowledge signal response is sent to the bus on the current receiving data byte Note: SCL is held to low until TXAK is written.					
2 RSTA (Write Only read always 0)	Repeat START — Writing a 1 to this bit will generate a repeated START condition provided it is the current master. Attempting a repeat at the wrong time will result in loss of arbitration. O No repeat start detected in bus operation. Repeat start generated.					

16.3.5 IIC Status Register (IICS)

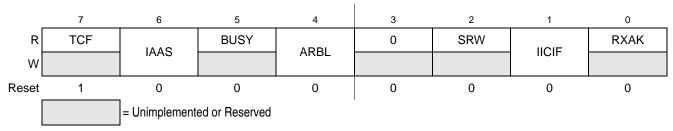


Figure 16-6. IIC Status Register (IICS)

Table 16-7. IICS Field Descriptions

Field	Description						
7 TCF	Transfer Complete Flag — This bit is set on the completion of a byte and acknowledge bit transfer. Note that this bit is only valid during or immediately following a transfer to the IIC module or from the IIC module. The TCF bit is cleared by reading the IICD register in receive mode or writing to the IICD in transmit mode. O Transfer in progress. 1 Transfer complete.						
6 IAAS	Addressed as a Slave — The IAAS bit is set when one of the following conditions is met 1) When the calling address matches the programmed slave address, 2) If the GCAEN bit is set and a general call is received. 3) If SIICAEN bit is set, when the calling address matches the 2nd programmed slave address 4) If ALERTEN bit is set and SMBus alert response address is received This bit is set before ACK bit. The CPU needs to check the SRW bit and set TX/RX bit accordingly. Writing the IICC1 register with any value clears this bit. 0 Not addressed. 1 Addressed as a slave.						
5 BUSY	 Bus Busy — The BUSY bit indicates the status of the bus regardless of slave or master mode. The BUSY bit is set when a START signal is detected and cleared when a STOP signal is detected. 0 Bus is idle. 1 Bus is busy. 						
4 ARBL	Arbitration Lost — This bit is set by hardware when the arbitration procedure is lost. The ARBL bit must be cleared by software, by writing a 1 to it. O Standard bus operation. Loss of arbitration.						
2 SRW	Slave Read/Write — When addressed as a slave the SRW bit indicates the value of the R/W command bit of the calling address sent to the master. O Slave receive, master writing to slave. Slave transmit, master reading from slave.						

Table 16-7. IICS Field Descriptions (Continued)

Field	Description					
1 IICIF	 IIC Interrupt Flag — The IICIF bit is set when an interrupt is pending. This bit must be cleared by software, by writing a 1 to it in the interrupt routine. One of the following events can set the IICIF bit: One byte transfer including ACK/NACK bit completes if FACK = 0 One byte transfer excluding ACK/NACK bit completes if FACK = 1 and this byte is an address byte One byte transfer excluding ACK/NCAK bit completes if FACK = 1 and this byte is a data byte. an ACK or NACK is sent out on the bus by writing 0 or 1 to TXAK after this bit is set. Match of slave addresses to calling address (Primary Slave address, General Call address, Alert Response address, and Second Slave address) (Received address is stored in data register) Arbitration lost Timeouts in SMBus mode except high timeout No interrupt pending. Interrupt pending. NOTE: The IICIF will be cleared right after 1 bus cycle delay after writing a logic 1 to it. 					
0 RXAK	Receive Acknowledge — When the RXAK bit is low, it indicates an acknowledge signal has been received after the completion of one byte of data transmission on the bus. If the RXAK bit is high it means that no acknowledge signal is detected. O Acknowledge received. No acknowledge received.					

16.3.6 IIC Data I/O Register (IICD)

Figure 16-7. IIC Data I/O Register (IICD)

Table 16-8. IICD Field Descriptions

Field	Description
7:0 DATA	Data — In master transmit mode, when data is written to the IICD, a data transfer is initiated. The most significant bit is sent first. In master receive mode, reading this register initiates receiving of the next byte of data.

NOTE

When transitioning out of master receive mode, the IIC mode should be switched before reading the IICD register to prevent an inadvertent initiation of a master receive data transfer.

In slave mode, the same functions are available after an address match has occurred.

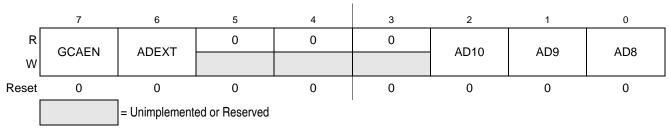
Note that the TX bit in IICC must correctly reflect the desired direction of transfer in master and slave modes for the transmission to begin. For instance, if the IIC is configured for master transmit but a master receive is desired, then reading the IICD will not initiate the receive.

Reading the IICD will return the last byte received while the IIC is configured in either master receive or slave receive modes. The IICD does not reflect every byte that is transmitted on the IIC bus, nor can software verify that a byte has been written to the IICD correctly by reading it back.

In master transmit mode, the first byte of data written to IICD following assertion of MST (Start bit) or assertion of RSTA bit (repeated Start) is used for the address transfer and should comprise of the calling address (in bit 7 to bit 1) concatenated with the required R/\overline{W} bit (in position bit 0).

MCF51MM256 Series Devices Reference Manual, Rev. 3 16-12 Freescale Semiconductor

16.3.7 IIC Control Register 2 (IICC2)



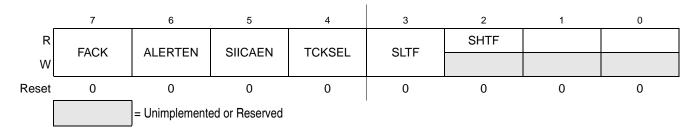

Figure 16-8. IIC Control Register (IICC2)

Table 16-9. IICC2 Field Descriptions

Field	Description
7 GCAEN	General Call Address Enable — The GCAEN bit enables or disables general call address. 0 General call address is disabled 1 General call address is enabled.
6 ADEXT	Address Extension — The ADEXT bit controls the number of bits used for the slave address. 0 7-bit address scheme 1 10-bit address scheme
2:0 AD[10:8]	Slave Address — The AD[10:8] field contains the upper three bits of the slave address in the 10-bit address scheme. This field is only valid when the ADEXT bit is set.

16.3.8 IIC SMBus Control and Status Register (IICSMB)

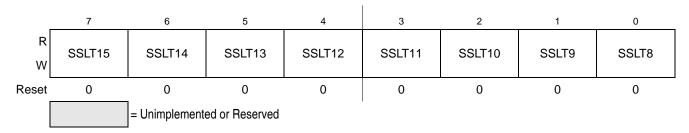
Table 16-10. IICSMB Field Descriptions

Field	Description					
7 FACK	Fast NACK/ACK enable — For SMBus Packet Error Checking, CPU should be able to issue an ACK or NACK according to the result of receiving data byte. O ACK or NACK will be sent out on the following receiving data byte. Writing an 0 to TXAK after receiving data byte will generate an ACK; Writing an 1 to TXAK after receiving data byte will generate a NACK					
6 ALERTEN	SMBus Alert Response Address Enable — The ALERTEN bit enables or disable SMBus alert response address. 0 SMBus alert response address matching is disabled 1 SMBus alert response address matching is enabled.					
5 SIICAEN	Second IIC Address Enable — The SIICAEN bit enables or disable SMBus device default address. 0 IIC Address Register 2 matching is disabled. 1 IIC Address Register 2 matching is enabled.					
4 TCKSEL	Time Out Counter Clock Select— This bit selects the clock sources of Time Out Counter 0 Time Out Counter counts at bus/64 frequency 1 Time Out Counter counts at the bus frequency					
3 SLTF	SCL Low Timeout Flag — This read-only bit is set to logic 1 when IICSLT loaded non zero value (LoValue) and a SCL Low Time Out occurs. This bit is cleared by software, by writting a logic 1 to it or IICIF. O No LOW TIME OUT occurs. A LOW TIME OUT occurs. Note: LOW TIME OUT function is disabled when IIC SCL LOW TIMER OUT register is set to zero					
2 SHTF	SCL High Timeout Flag — This read-only bit is set to logic 1 when SCL and SDA are held high more than clock * LoValue/512, which indicates the Bus Free. This bit is cleared automatically. 0 No HIGH TIMEOUT occurs. 1 An HIGH TIMEOUT occurs.					

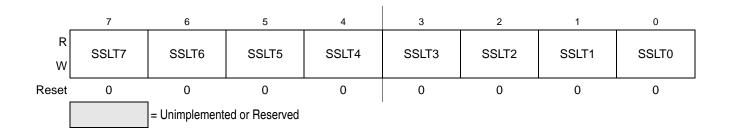
NOTE

- 1. A master can assume that the bus is free if it detects that the clock and data signals have been high for greater than THIGH,MAX, however, the SHTF will rise in bus transmission process but bus idle state.
- 2. When TCKSEL=1 there is no meaning to monitor SHTF since the bus speed is too high to match the protocol of SMBus.

16-14 Freescale Semiconductor

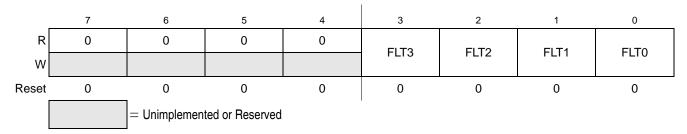


16.3.9 IIC Address Register 2 (IICA2)


Field	Description
7:1 SAD[7:1]	SMBUs Address — The AD[7:1] field contains the slave address to be used by the SMBus. This field is used on the device default address or other related address

16.3.10 IIC SCL Low Time Out Register High (IICSLTH)

Field	Description						
7:0 SSLT[15:8]	The value in this register is the most significant byte of SCL low time out value that determines the time-out period of SCL low.						


16.3.11 IIC SCL LowTime Out register Low (IICSLTL)

Field	Description					
7:0 SSLT[7:0]	The value in this register is the least significant byte of SCL low time out value that determines the time-out period of SCL low					

16.3.12 IIC Programmable Input Glitch Filter (IICFLT)

Table 16-11. IICFLT Field Descriptions

Field	Description
3:0 FLT	IIC Programmable Filter Factor contain the programming controls for the width of glitch (in terms of bus clock cycles) the filter should absorb; in other words, the filter does not let glitches less than or equal to this width setting pass. FLT[3:0]
	0000 No Filter / Bypass 0001 Filter glitches up to width of 1 (half) IPBUS clock cycle 0010 Filter glitches up to width of 2 (half) IPBUS clock cycles 0011 Filter glitches up to width of 3 (half) IPBUS clock cycles 0100 Filter glitches up to width of 4 (half) IPBUS clock cycles 0101 Filter glitches up to width of 5 (half) IPBUS clock cycles 0110 Filter glitches up to width of 6 (half) IPBUS clock cycles 0111 Filter glitches up to width of 7 (half) IPBUS clock cycles 1000 Filter glitches up to width of 8 (half) IPBUS clock cycle
	1001 Filter glitches up to width of 9 (half) IPBUS clock cycles 1010 Filter glitches up to width of 10 (half) IPBUS clock cycles 1011 Filter glitches up to width of 11 (half) IPBUS clock cycles 1100 Filter glitches up to width of 12 (half) IPBUS clock cycles 1101 Filter glitches up to width of 13 (half) IPBUS clock cycles 1110 Filter glitches up to width of 14 (half) IPBUS clock cycles 1111 Filter glitches up to width of 15 (half) IPBUS clock cycles
	NOTE: The width of the FLT is an integration option which can be changed in different SoCs And Also the clock source used is an integration configurative option - It could be the 2X IPBus clock or the IPbus clock - which one needs to be identified at architectural definition. For the 4-bit definitions above, hard descriptions of "half" IPBUS clock cycles will not be the case when the IPBUS clock is used for filtering logic.

MCF51MM256 Series Devices Reference Manual, Rev. 3

16-16

Freescale Semiconductor

16.4 Functional Description

This section provides a complete functional description of the IIC module.

16.4.1 IIC Protocol

The IIC bus system uses a serial data line (SDA) and a serial clock line (SCL) for data transfer. All devices connected to it must have open drain or open collector outputs. A logic AND function is exercised on both lines with external pull-up resistors. The value of these resistors is system dependent.

Normally, a standard communication is composed of four parts:

- START signal
- Slave address transmission
- Data transfer
- STOP signal

The STOP signal should not be confused with the CPU STOP instruction. The IIC bus system communication is described briefly in the following sections and illustrated in Figure 16-9.

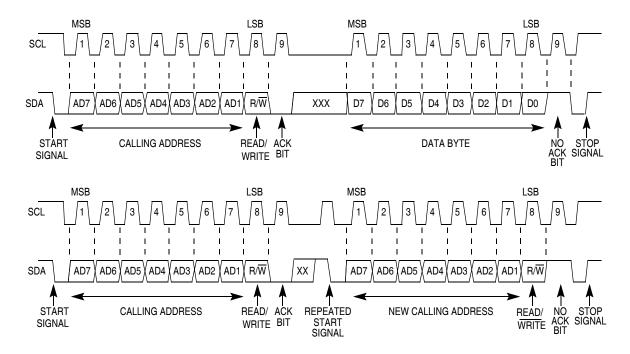


Figure 16-9. IIC Bus Transmission Signals

16.4.1.1 START Signal

When the bus is free; in other words, no master device is engaging the bus (both SCL and SDA lines are at logical high), a master may initiate communication by sending a START signal. As shown in Figure 16-9, a START signal is defined as a high-to-low transition of SDA while SCL is high. This signal denotes the beginning of a new data transfer (each data transfer may contain several bytes of data) and brings all slaves out of their idle states.

16.4.1.2 Slave Address Transmission

The first byte of data transferred immediately after the START signal is the slave address transmitted by the master. This is a seven-bit calling address followed by a R/\overline{W} bit. The R/\overline{W} bit tells the slave the desired direction of data transfer.

- 1 =Read transfer, the slave transmits data to the master.
- 0 =Write transfer, the master transmits data to the slave.

Only the slave with a calling address that matches the one transmitted by the master will respond by sending back an acknowledge bit. This is done by pulling the SDA low at the 9th clock (see Figure 16-9).

No two slaves in the system may have the same address. If the IIC module is the master, it must not transmit an address that is equal to its own slave address. The IIC cannot be master and slave at the same time. However, if arbitration is lost during an address cycle, the IIC will revert to slave mode and operate correctly even if it is being addressed by another master.

16.4.1.3 Data Transfer

Before successful slave addressing is achieved, the data transfer can proceed byte-by-byte in a direction specified by the R/\overline{W} bit sent by the calling master.

All transfers that come after an address cycle are referred to as data transfers, even if they carry sub-address information for the slave device

Each data byte is 8 bits long. Data may be changed only while SCL is low and must be held stable while SCL is high as shown in Figure 16-9. There is one clock pulse on SCL for each data bit, the MSB being transferred first. Each data byte is followed by a 9th (acknowledge) bit, which is signalled from the receiving device. An acknowledge is signalled by pulling the SDA low at the ninth clock. In summary, one complete data transfer needs nine clock pulses.

If the slave receiver does not acknowledge the master in the 9th bit time, the SDA line must be left high by the slave. The master interprets the failed acknowledge as an unsuccessful data transfer.

If the master receiver does not acknowledge the slave transmitter after a data byte transmission, the slave interprets this as an end of data transfer and releases the SDA line.

In either case, the data transfer is aborted and the master does one of two things:

- Relinquishes the bus by generating a STOP signal.
- Commences a new calling by generating a repeated START signal.

16.4.1.4 STOP Signal

The master can terminate the communication by generating a STOP signal to free the bus. However, the master may generate a START signal followed by a calling command without generating a STOP signal first. This is called repeated START. A STOP signal is defined as a low-to-high transition of SDA while SCL at logical 1 (see Figure 16-9).

The master can generate a STOP even if the slave has generated an acknowledge at which point the slave must release the bus.

16.4.1.5 Repeated START Signal

As shown in Figure 16-9, a repeated START signal is a START signal generated without first generating a STOP signal to terminate the communication. This is used by the master to communicate with another slave or with the same slave in different mode (transmit/receive mode) without releasing the bus.

16.4.1.6 Arbitration Procedure

The IIC bus is a true multi-master bus that allows more than one master to be connected on it. If two or more masters try to control the bus at the same time, a clock synchronization procedure determines the bus clock, for which the low period is equal to the longest clock low period and the high is equal to the shortest one among the masters. The relative priority of the contending masters is determined by a data arbitration procedure, a bus master loses arbitration if it transmits logic 1 while another master transmits logic 0. The losing masters immediately switch over to slave receive mode and stop driving SDA output. In this case, the transition from master to slave mode does not generate a STOP condition. Meanwhile, a status bit is set by hardware to indicate loss of arbitration.

16.4.1.7 Clock Synchronization

Because wire-AND logic is performed on the SCL line, a high-to-low transition on the SCL line affects all the devices connected on the bus. The devices start counting their low period and after a device's clock has gone low, it holds the SCL line low until the clock high state is reached. However, the change of low to high in this device clock may not change the state of the SCL line if another device clock is still within its low period. Therefore, synchronized clock SCL is held low by the device with the longest low period. Devices with shorter low periods enter a high wait state during this time (see Figure 16-10). When all devices concerned have counted off their low period, the synchronized clock SCL line is released and pulled high. There is then no difference between the device clocks and the state of the SCL line and all the devices start counting their high periods. The first device to complete its high period pulls the SCL line low again.

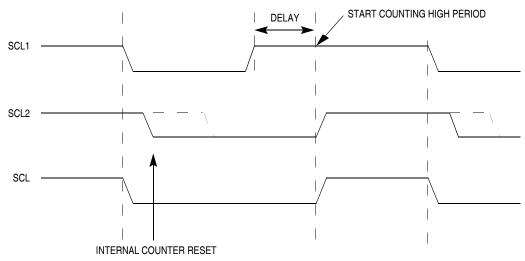


Figure 16-10. IIC Clock Synchronization

16.4.1.8 Handshaking

The clock synchronization mechanism can be used as a handshake in data transfer. Slave devices may hold the SCL low after completion of one byte transfer (9 bits). In such case, it halts the bus clock and forces the master clock into wait states until the slave releases the SCL line.

16.4.1.9 Clock Stretching

The clock synchronization mechanism can be used by slaves to slow down the bit rate of a transfer. After the master has driven SCL low the slave can drive SCL low for the required period and then release it. If the slave SCL low period is greater than the master SCL low period then the resulting SCL bus signal low period is stretched.

16.4.2 10-bit Address

For 10-bit addressing, 0x11110 is used for the first 5 bits of the first address byte. Various combinations of read/write formats are possible within a transfer that includes 10-bit addressing.

16.4.2.1 Master-Transmitter Addresses a Slave-Receiver

The transfer direction is not changed (see Table 16-12). When a 10-bit address follows a START condition, each slave compares the first seven bits of the first byte of the slave address (11110XX) with its own address and tests whether the eighth bit (R/\overline{W}) direction bit) is 0. It is possible that more than one device will find a match and generate an acknowledge (A1). Each slave that finds a match will compare the eight bits of the second byte of the slave address with its own address, but only one slave will find a match and generate an acknowledge (A2). The matching slave will remain addressed by the master until it receives a STOP condition (P) or a repeated START condition (Sr) followed by a different slave address.

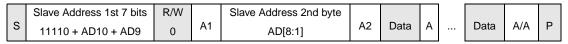


Table 16-12. Master-Transmitter Addresses Slave-Receiver with a 10-bit Address

After the master-transmitter has sent the first byte of the 10-bit address, the slave-receiver will see an IIC interrupt. User software must ensure that for this interrupt, the contents of IICD are ignored and not treated as valid data.

16.4.2.2 Master-Receiver Addresses a Slave-Transmitter

The transfer direction is changed after the second R/\overline{W} bit (see Table 16-13). Up to and including acknowledge bit A2, the procedure is the same as that described for a master-transmitter addressing a slave-receiver. After the repeated START condition (Sr), a matching slave remembers that it was addressed before. This slave then checks whether the first seven bits of the first byte of the slave address following Sr are the same as they were after the START condition (S), and tests whether the eighth (R/\overline{W}) bit is 1. If there is a match, the slave considers that it has been addressed as a transmitter and generates acknowledge A3. The slave-transmitter remains addressed until it receives a STOP condition (P) or a repeated START condition (Sr) followed by a different slave address.

After a repeated START condition (Sr), all other slave devices will also compare the first seven bits of the first byte of the slave address with their own addresses and test the eighth (R/\overline{W}) bit. However, none of them will be addressed because $R/\overline{W} = 1$ (for 10-bit devices), or the 11110XX slave address (for 7-bit devices) does not match.

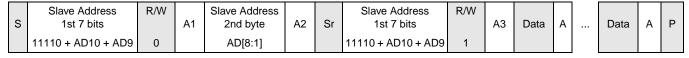


Table 16-13. Master-Receiver Addresses a Slave-Transmitter with a 10-bit Address

After the master-receiver has sent the first byte of the 10-bit address, the slave-transmitter will see an IIC interrupt. User software must ensure that for this interrupt, the contents of IICD are ignored and not treated as valid data.

MCF51MM256 Series Devices Reference Manual, Rev. 3 Freescale Semiconductor 16-21

16.4.3 Address Matching

All received Addresses can be requested in 7-bit or 10-bit address. IIC Address Register 1, which contains IIC primary slave address, always participates the address matching process. If the GCAEN bit is set, general call will participate the address matching process. If the ALERTEN bit is set, alert response will participate the address matching process. If SIICAEN bit is set, the IIC Address Register 2 will participate the address matching process.

When the IIC responds to one of above mentioned address, it acts as a slave-receiver and the IAAS bit is set after the address cycle. Software need to read the IICD register after the first byte transfer to determine which the address is matched.

16.4.4 System Management Bus Specification

SMBus provides a control bus for system and power management related tasks. A system may use SMBus to pass messages to and from devices instead of tripping individual control lines. Removing the individual control lines reduces pin count. Accepting messages ensures future expandability. With System Management Bus, a device can provide manufacturer information, tell the system what its model/part number is, save its state for a suspend event, report different types of errors, accept control parameters, and return its status.

16.4.4.1 Timeouts

The Ttimeout,min parameter allows a master or slave to conclude that a defective device is holding the clock low indefinitely or a master is intentionally trying to drive devices off the bus. It is highly recommended that a slave device release the bus (stop driving the bus and let SCL and SDA float high) when it detects any single clock held low longer than Ttimeout,min. Devices that have detected this condition should_reset their communication and be able to receive a new START condition in no later than Ttimeout,max.

SMBus defines a clock low time-out, TTIMEOUT of 35 ms and specifies TLOW: SEXT as the cumulative clock low extend time for a slave device and specifies TLOW: MEXT as the cumulative clock low extend time for a master device.

16.4.4.1.1 SCL Low Timeout

If the SCL line is held low by a slave device on the bus, no further communication is possible. Furthermore, the master cannot force the SCL line high to correct the error condition. To solve this problem, the SMBus protocol specifies that devices participating in a transfer must detect any clock cycle held low longer than a "timeout" value condition. Devices that have detected the timeout condition must reset the communication. When active master, if the IIC detects that SMBCLK low has exceeded the value of TTIMEOUT,MIN it must generate a stop condition within or after the current data byte in the transfer process. When slave, upon detection of the TTIMEOUT,MIN condition, the IIC shall reset its communication and be able to receive a new START condition.

16.4.4.1.2 SCL High (SMBus Free) Timeout

The IIC shall assume that the bus is idle, when it has determined that the SMBCLK and SMBDAT signals have been high for at least Thigh:MAX.HIGH timeout can occur in two ways: 1) HIGH timeout detected after a STOP condition appears on the bus; 2) HIGH timeout detected after a START condition, but before a STOP condition appears on the bus. Any master detecting either scenario can assume the bus is free then SHTF rises. HIGH timeout occurred in scenario 2 if it ever detects that both the following is true:BUSY bit is high and SHTF is high.

16.4.4.1.3 CSMBCLK TIMEOUT MEXT

Figure 1-10: Timeout measurement intervals illustrates the definition of the timeout intervals, TLOW:SEXT and TLOW:MEXT. When master mode, the I2C must not cumulatively extend its clock cycles for a period greater than TLOW:MEXT within a byte, where each byte is defined as START-to-ACK, ACK-to-ACK, or ACK-to-STOP. When CSMBCLK TIMEOUT MEXT occurs SMBus MEXT will rise and also trigger the SLTF.

16.4.4.1.4 CSMBCLK TIMEOUT SEXT

A Master is allowed to abort the transaction in progress to any slave that violates the TLOW:SEXT or TTIMEOUT,MIN specifications. This can be accomplished by the Master issuing a STOP condition at the conclusion of the byte transfer in progress. When slave, the I2C must not cumulatively extend its clock cycles for a period greater than TLOW:SEXT during any message from the initial START to the STOP. When CSMBCLK TIMEOUT SEXT occurs SEXT will rise and also trigger SLTF.

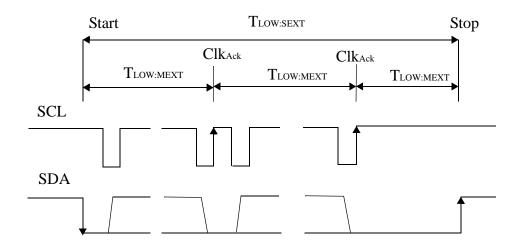


Figure 16-11. Timeout measurement intervals

NOTE

CSMBCLK TIMEOUT SEXT and MEXT are optional functions which will be implemented in second step.

MCF51MM256 Series Devices Reference Manual, Rev. 3

16.4.4.2 FAST ACK and NACK

To improve reliability and communication robustness, implementation of Packet Error Checking (PEC) by SMBus devices is optional for SMBus devices but required for devices participating in and only during the Address Resolution Protocol (ARP) process. The PEC is a CRC-8 error checking byte, calculated on all the message bytes. The PEC is appended to the message by the device that supplied the last data byte. If the PEC is present but not correct, a NACK is issued by receiver. Otherwise an ACK will be issued. In order to calculate the CRC-8 by software, this module can hold SCL line to low after receiving eighth SCL (bit 8th) if this byte is a data byte. So software can determine whether an ACK or NACK should be sent out to the bus by setting or clearing TXAK bit if FASK (fast ACK/NACK enable bit) is enabled.

SMBus requires devices to acknowledge their own address always, as a mechanism to detect a removable devices presence on the bus (battery, docking station, etc.) Besides to indicate a slave device busy condition, SMBus is using the NACK mechanism also to indicate the reception of an invalid command or data. Since such a condition may occur on the last byte of the transfer, it is required that SMBus devices have the ability to generate the not acknowledge after the transfer of each byte and before the completion of the transaction. This is important because SMBus does not provide any other resend signaling. This difference in the use of the NACK signaling has implications on the specific implementation of the SMBus port, especially in devices that handle critical system data such as the SMBus host and the SBS components.

NOTE

In the last byte of master receive slave transmit mode, the master should send NACK to bus so FACK should be switched off before the last byte transmit.

16.5 Resets

The IIC is disabled after reset. The IIC cannot cause an MCU reset.

16.6 Interrupts

The IIC generates a single interrupt.

An interrupt from the IIC is generated when any of the events in Table 16-14 occur, provided the IICIE bit is set. The interrupt is driven by bit IICIF (of the IIC status register) and masked with bit IICIE (of the IIC control register). The IICIF bit must be cleared by software by writing a 1 to it in the interrupt routine. The user can determine the interrupt type by reading the status register. For SMBus timeouts interrupt, the interrupt is driven by SLTF and masked with bit IICIE. The SLTF bit must be cleared by software by

writing a 1 to it in the interrupt routine. The user can determine the interrupt type by reading the status register.

NOTE

In Master receive mode, the FACK should be set zero before the last byte transfer.

Interrupt Source Status Local Enable Flag Complete 1-byte transfer TCF **IICIF** IICIE Match of received calling address IAAS **IICIF IICIE** Arbitration Lost ARBL **IICIF IICIE** IICIF SMBus Timeout Interrupt Flag SLTF IICIE

Table 16-14. Interrupt Summary

16.6.1 Byte Transfer Interrupt

The TCF (transfer complete flag) bit is set at the falling edge of the 9th clock to indicate the completion of byte transfer.

16.6.2 Address Detect Interrupt

When the calling address matches the programmed slave address (IIC address register) or when the GCAEN bit is set and a general call is received, the IAAS bit in the status register is set. The CPU is interrupted, provided the IICIE is set. The CPU must check the SRW bit and set its Tx mode accordingly.

16.6.3 Arbitration Lost Interrupt

The IIC is a true multi-master bus that allows more than one master to be connected on it. If two or more masters try to control the bus at the same time, the relative priority of the contending masters is determined by a data arbitration procedure. The IIC module asserts this interrupt when it loses the data arbitration process and the ARBL bit in the status register is set.

Arbitration is lost in the following circumstances:

- SDA sampled as a low when the master drives a high during an address or data transmit cycle.
- SDA sampled as a low when the master drives a high during the acknowledge bit of a data receive cycle.
- A START cycle is attempted when the bus is busy.
- A repeated START cycle is requested in slave mode.
- A STOP condition is detected when the master did not request it.

This bit must be cleared by software by writing a 1 to it.

16.6.4 Timeouts Interrupt in SMbus

When IICIE is set, the IIC asserts a timeout interrupt output SLTF upon detection of any of the mentioned timeout conditions, with one exception. The HIGH TIMEOUT mechanism shall not be used to influence

MCF51MM256 Series Devices Reference Manual, Rev. 3

the timeout interrupt output, because the HIGH TIMEOUT indicates an idle condition on the bus.And SLTF will rise when it matches the HIGH TIMEOUT and fall automatically to just indicate the bus status.

16.6.5 Programmable input glitch filter

An IIC glitch filter has been added outside the IIC legacy modules, but within the IIC package. This filter can absorb glitches on the IIC clock and data lines for I2C module. The width of the glitch to absorb can be specified in terms of number of half bus clock cycles. A single glitch filter control register is provided as IICFLT. Effectively, any down-up-down or up-down-up transition on the data line that occurs within the number of clock cycles programmed here is ignored by the IIC.the programmer only needs to specify the size of glitch (in terms of bus clock cycles) for the filter to absorb and not pass.

MCF51MM256 Series Devices Reference Manual, Rev. 3

16-26

Freescale Semiconductor

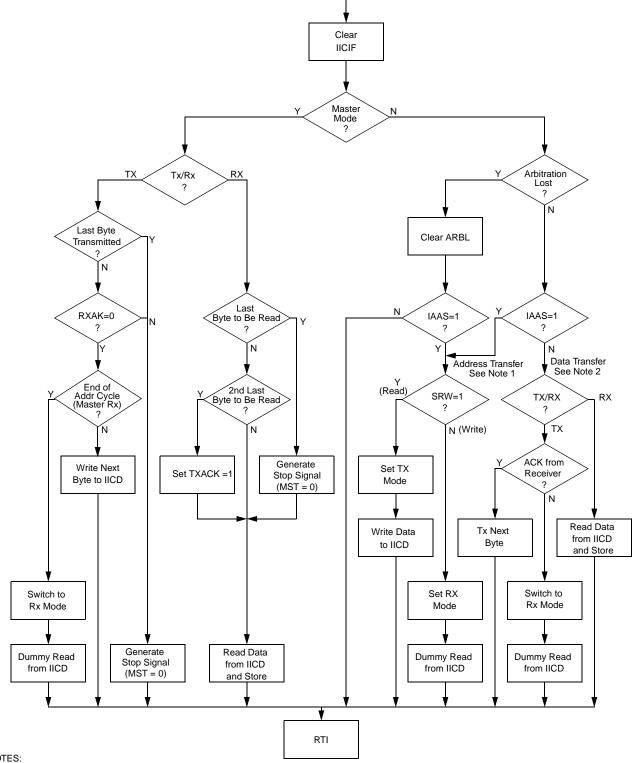
16.7 Initialization/Application Information

Module Initialization (Slave)

- 1. Write: IICC2
 - to enable or disable general call
 - to select 10-bit or 7-bit addressing mode
- 2. Write: IICA1
 - to set the slave address
- 3. Write: IICC1
 - to enable IIC and interrupts
- 4. Initialize RAM variables (IICEN = 1 and IICIE = 1) for transmit data
- 5. Initialize RAM variables used to achieve the routine shown in Figure 16-12

Module Initialization (Master)

- 1. Write: IICF
 - to set the IIC baud rate (example provided in this chapter)
- 2. Write: IICC1
 - to enable IIC and interrupts
- 3. Initialize RAM variables (IICEN = 1 and IICIE = 1) for transmit data
- 4. Initialize RAM variables used to achieve the routine shown in Figure 16-12
- 5. Write: IICC1
 - to enable TX
- 6. Write: IICC1
 - to enable MST (master mode)
- 7. Write: IICD
 - with the address of the target slave. (The LSB of this byte will determine whether the communication is master receive or transmit.)


Module Use

The routine shown in Figure 16-12 can handle both master and slave IIC operations. For slave operation, an incoming IIC message that contains the proper address will begin IIC communication. For master operation, communication must be initiated by writing to the IICD register.

Register Model

IICA1	AD[7:1] 0								
	Address to which the module will respond when addressed as a slave (in slave module will respond when addressed as a slave (in slave module will respond when addressed as a slave (in slave module will respond when addressed as a slave (in slave module will respond when addressed as a slave (in slave module will respond when addressed as a slave (in slave module will respond when addressed as a slave (in slave module will respond when addressed as a slave (in slave module will respond when addressed as a slave (in slave module will respond when addressed as a slave (in slave module will respond when addressed as a slave (in slave module will respond when addressed as a slave (in slave module will respond when addressed as a slave (in slave module will respond when addressed as a slave (in slave module will respond when addressed as a slave will respond when addressed as a slave (in slave module will respond when addressed as a slave will respond when addressed as a slave will respond when addressed will respond with the addressed will respond when addressed will respond when addressed will respond with the addressed will respond when addressed will respond with the addressed will respond when addressed will respond with the addressed will respond with the addressed will respond when addressed will respond with the addressed will resp								
IICF	MULT ICR								
	Baud rate = BUSCLK / (2 x MULT x (SCL DIVIDER))								
IICC1	IICEN	IICIE	MST	TX	TXAK	RSTA	0	0	
	Module o	onfiguration	n				•		
IICS	TCF	IAAS	BUSY	ARBL	0	SRW	IICIF	RXAK	
	Module status flags								
IICD				DA	TA				
	Data register; Write to transmit IIC data read to read IIC data								
IICC2	GCAEN	ADEXT	0	0	0	AD10	AD9	AD8	
	Address configuration								
IICFLT	0	0	0	0	FLT3	FLT2	FLT1	FLT0	
	IIC Programmable Input Glitch Filter								

NOTES:

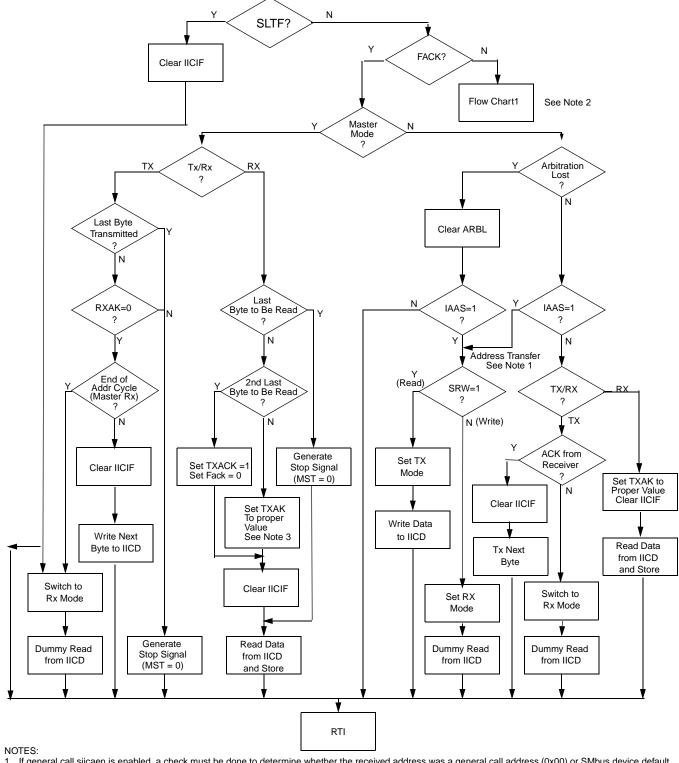

- 1. If general call is enabled, a check must be done to determine whether the received address was a general call address (0x00). If the received address was a general call address, then the general call must be handled by user software.
- 2. When 10-bit addressing is used to address a slave, the slave will see an interrupt following the first byte of the extended address. User software must ensure that for this interrupt, the contents of IICD are ignored and not treated as a valid data transfer.

Figure 16-12. Typical IIC Interrupt Routine

MCF51MM256 Series Devices Reference Manual, Rev. 3

16-28 Freescale Semiconductor

- 1. If general call siicaen is enabled, a check must be done to determine whether the received address was a general call address (0x00) or SMbus device default address. If the received address was one of them, then it must be handled by user software.
- 2. Flow chart1 means figure 1-12 Typical IIC Interrupt Routine.
- 3. Delay about 1-2bit scl cycle waiting data register updated then clear IICIF

Figure 16-14. Typical IIC SMBus Interrupt Routine

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor 16-29

Inter-Integrated Circuit (S08IICV3)

16.8 SMBALERT#

Another optional signal is an interrupt line for devices that want to trade their ability to master for a pin. SMBALERT# is a wired-AND signal just as the SMBCLK and SMBDAT signals are. SMBALERT# is used in conjunction with the SMBus General Call Address. Messages invoked with the SMBus are 2 bytes long. (Now there is no ALERT# port in current block)

A slave-only device can signal the host through SMBALERT# that it wants to talk. The host processes the interrupt and simultaneously accesses all SMBALERT# devices through the Alert Response Address (ARA). Only the device(s) which pulled SMBALERT# low will acknowledge the Alert Response Address.

The host performs a modified Receive Byte operation. The 7 bit device address provided by the slave transmit device is placed in the 7 most significant bits of the byte. The eighth bit can be a zero or one.

If more than one device pulls SMBALERT# low, the highest priority (lowest address) device will win communication rights via standard arbitration during the slave address transfer.

After acknowledging the slave address the device must disengage its SMBALERT# pulldown. If the host still sees SMBALERT# low when the message transfer is complete, it knows to read the ARA again.

A host which does not implement the SMBALERT# signal may periodically access the ARA.

S	Alert Response Address	Rd A	Device Address	Α	Р	
---	---------------------------	------	----------------	---	---	--

Table 0-1. A 7-bit-Addressable Device Responds to an ARA

NOTE: The user should put Device Address on bus by software after response to the Alert response address in current block.

MCF51MM256 Series Devices Reference Manual, Rev. 3

Chapter 17 Multipurpose Clock Generator (S08MCGV3)

17.1 Introduction

The multipurpose clock generator (MCG) module provides several clock source choices for this device. The module contains a frequency-locked loop (FLL) and a phase-locked loop (PLL) that are controllable by an internal or an external reference clock. The module can select either of the FLL or PLL clocks or either of the internal or external reference clocks as a source for the MCU system clock. The selected clock source is passed through a reduced bus divider that allows a lower output clock frequency to be derived.

For USB operation on this series of devices, the MCG must be configured for PLL engaged external (PEE) mode to achieve a MCGOUT frequency of 48 MHz.

These devices are unique in that they support a Time of Day module which includes a dedicated oscillator. The TOD oscillator can also be used as the reference clock into the MCG.

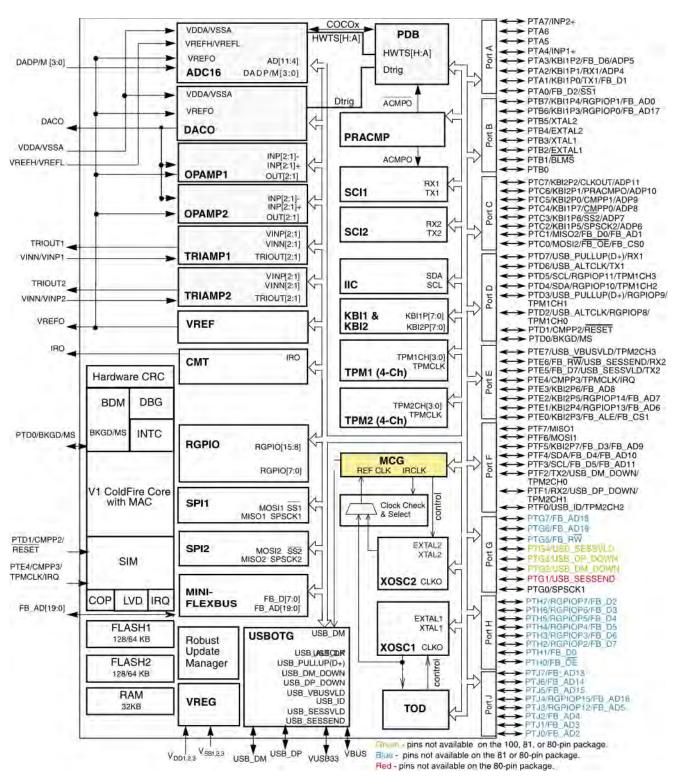


Figure 17-1. Block Diagram with MCG Module Highlighted

17-2 Freescale Semiconductor

17.1.1 Clock Check & Select Function

The "Clock Check & Select" feature of the following figures is a very simple block used to check the oscillator clocks for activity and control the mux which selects the external clock for the MCG. This function is implemented external to the MCG module itself, and is specific to this device.

The four registers that comprise this operation are described in the following table.

Register	Function
CCSCTRL	Clock Check & Select Control Register
CCSTMR1	8-bit counter incremented by XOSC1 timebase
CCSTMR2	8-bit counter incremented by XOSC2 timebase
CCSTMRIR	8-bit counter incremented via IR clock timebase

Table 17-1. Clock Check & Select Registers

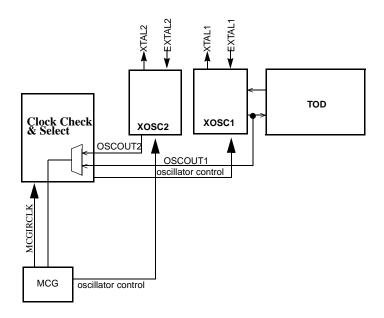


Figure 17-2. A subset of Figure 1-3

17.1.2 Clock Check & Select Control (CCSCTRL)

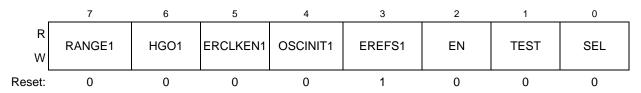


Figure 17-3. Clock Check & Select Control Register (CCSCTRL)

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor 17-3

Table 17-2. CCS Control Register Field Descriptions

Field	Description
7 RANGE1	Frequency Range Select — Selects the frequency range for the external oscillator 1 (XOSC1). 0 Low frequency range selected for the external oscillator. 1 High frequency range selected for the external oscillator.
6 HGO1	High-Gain Oscillator Select — The HGO bit controls the external oscillator 1 (XOSC1) mode of operation. 0 Configures external oscillator for low-power operation. 1 Configures external oscillator for high-gain operation.
5 ERCLKEN1	External Clock Enable — The ERCLKEN1 bit enables the external reference clock provided by XOSC1 for use as MCGERCLK. 0 MCGERCLK inactive. 1 MCGERCLK active.
4 OSCINIT1	Oscillator Initialization — The OSCINIT1 bit indicates the external clock source has finished its initialization cycles and is stabilized.
3 EREFS1	External Reference Select — The EREFS1 bit selects the source for the external reference clock of the MCG when using XOSC1. 0 External Clock Source requested. 1 Oscillator requested.
2 EN	Enable bit — The EN bit disables inputs to the clock check counter to save power. 0 The OSCOUT1, OSCOUT2, and MCGIRCLK inputs to the clock check counters are disabled for power saving. 1 The clock inputs are enabled.
1 TEST	Test bit — Writing a "1" to this bit clears CCSTMR1, CCSTMR2 and CCSTMRIR. The three counters will then begin incrementing until any one of the three hits 0xFF, at which point the test completes, and TEST is cleared.
0 SEL	Select bit — The SEL bit selects the external clock input to the MCG. This bit should only be changed when the MCG is NOT utilizing the external clock input. 0 XOSC2 is selected as the external clock input to the MCG and XOSC1 is selected to the TOD (default). 1 XOSC1 is selected as the external clock input to the MCG and TOD.

CCS XOSC1 Timer Register (CCSTMR1) 17.1.3

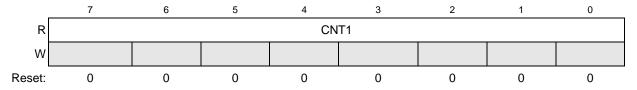


Figure 17-4. CCS XOSC1 Timer Register (CCSTMR1)

Table 17-3. CCSTMR1 Register Field Descriptions

Field	Description
CNT1	CNT1 — This register is one of three used to compare XOSC1, XOSC2 and internal relaxation oscillator frequencies. It is initialized to zero upon a write of "1" to CCSCTRL[TEST]. It contains a valid value once CCSCTRL[TEST] resets itself to "0". By comparing the values of the three registers, application code can determine the crude health of the various clock sources.

17.1.4 CCS XOSC2 Timer Register (CCSTMR2)

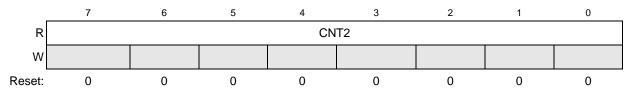


Figure 17-5. CCS XOSC2 Timer Register (CCSTMR2)

Table 17-4. CCSTMR2 Register Field Descriptions

Field	Description
CNT2	CNT2 —This register is one of three used to compare XOSC1, XOSC2 and internal relaxation oscillator frequencies. It is initialized to zero upon a write of "1" to CCSCTRL[TEST]. It contains a valid value once CCSCTRL[TEST] resets itself to "0". By comparing the values of the three registers, application code can determine the crude health of the various clock sources.

17.1.5 CCS Internal Reference Clock Timer Register (CCSTMRIR)

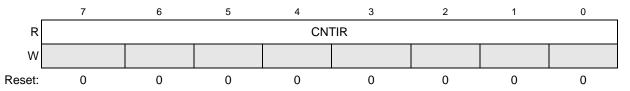


Figure 17-6. CCS Internal Reference Clock Timer Register (CCSTMRIR)

Table 17-5. CCSTMRIR Register Field Descriptions

Field	Description
7-0 CNTIR	CNTIR —This register is one of three used to compare XOSC1, XOSC2 and internal relaxation oscillator frequencies. It is initialized to zero upon a write of "1" to CCSCTRL[TEST]. It contains a valid value once CCSCTRL[TEST] resets itself to "0". By comparing the values of the three registers, application code can determine the crude health of the various clock sources.

17.1.6 Operation

The clock check and select (CCS) feature is a basic clock monitor of the internal reference clock and two XOSC clocks using the following 8-bit counters:

- CCSTMR1
- CCSTMR2
- CCSTMRIR

The major purpose of this feature is to monitor the stability and availability of the XOSC clocks and provide a rough frequency measurement of the three clock sources. The registers are 8-bit so the maximum count is 255.

Basically, whichever counter reaches 255 first sends a stop signal to the other two counters. It takes approximately 3 clock cycles for the stop signal to sync with the other two counters. Software can then compare the three registers to obtain a crude (3/256 is ~1.2%) measurement of how well the three frequencies correlate.

NOTE

The clock check feature should only be used to check the stability and availability of the XOSC clocks. CCS is not intended to be used as an accurate frequency measurement of the clocks.

17.1.7 Features

Key features of the MCG module are:

- Frequency-locked loop (FLL)
 - Internal or external reference clock can be used to control the FLL
- Phase-locked loop (PLL)
 - Voltage-controlled oscillator (VCO)
 - Modulo VCO frequency divider
 - Phase/Frequency detector
 - Integrated loop filter
 - Lock detector with interrupt capability
- Internal reference clock
 - Nine trim bits for accuracy
 - Can be selected as the clock source for the MCU
- External reference clock
 - Control for a separate crystal oscillator
 - Clock monitor with reset capability
 - Can be selected as the clock source for the MCU
- Reference divider is provided
- Clock source selected can be divided down by 1, 2, 4, or 8
- BDC clock (MCGLCLK) is provided as a constant divide-by-2 of the DCO output whether in an FLL or PLL mode. Three selectable digitally controlled oscillators (DCOs) optimized for different frequency ranges.
- Option to maximize DCO output frequency for a 32,768 Hz external reference clock source.
- The PLL can be used to drive MCGPLLSCLK even when MCGOUT is driven from one of the reference clocks (PBE mode).

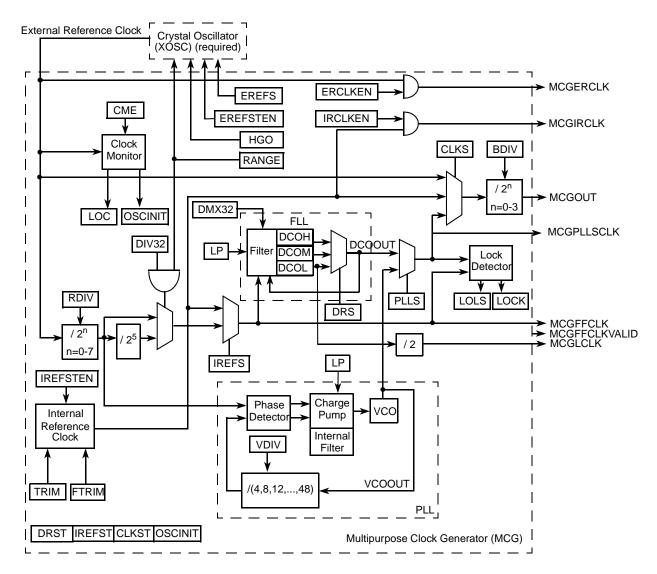


Figure 17-7. Multipurpose Clock Generator (MCG) Block Diagram

NOTE

The MCG requires the attachment of a crystal oscillator (XOSC) module, which provides an external reference clock.

17.1.8 Modes of Operation

There are several modes of operation for the MCG. For details, see Section 17.4.1, "MCG Modes of Operation."

17.2 External Signal Description

There are no MCG signals that connect off chip.

17.3 Register Definition

17.3.1 MCG Control Register 1 (MCGC1)

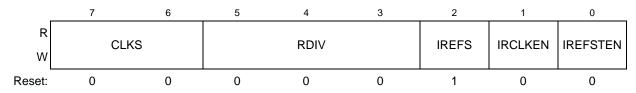


Figure 17-8. MCG Control Register 1 (MCGC1)

Table 17-6. MCG Control Register 1 Field Descriptions

Field	Description	
7:6 CLKS	Clock Source Select — Selects the system clock source. 00 Encoding 0 — Output of FLL or PLL is selected. 01 Encoding 1 — Internal reference clock is selected. 10 Encoding 2 — External reference clock is selected. 11 Encoding 3 — Reserved, defaults to 00.	
5:3 RDIV	External Reference Divider — Selects the amount to divide down the external reference clock. If the FLL is selected, the resulting frequency must be in the range 31.25 kHz to 39.0625 kHz. If the PLL is selected, the resulting frequency must be in the range 1 MHz to 2 MHz. See Table 17-7 and Table 17-8 for the divide-by factors.	
2 IREFS	Internal Reference Select — Selects the reference clock source. 1 Internal reference clock selected 0 External reference clock selected	
1 IRCLKEN	Internal Reference Clock Enable — Enables the internal reference clock for use as MCGIRCLK. 1 MCGIRCLK active 0 MCGIRCLK inactive	
0 IREFSTEN	Internal Reference Stop Enable — Controls whether or not the internal reference clock remains enabled when the MCG enters stop mode. 1 Internal reference clock stays enabled in stop if IRCLKEN is set or if MCG is in FEI, FBI, or BLPI mode before entering stop 0 Internal reference clock is disabled in stop	

17-8 Freescale Semiconductor

Table 17-7. FLL External Reference Divide Factor

	Divide Factor			
RDIV	RANGE:DIV32 0:X	RANGE:DIV32 1:0	RANGE:DIV32 1:1	
0	1	1	32	
1	2	2	64	
2	4	4	128	
3	8	8	256	
4	16	16	512	
5	32	32	1024	
6	64	64	Reserved	
7	128	128	Reserved	

Table 17-8. PLL External Reference Divide Factor

RDIV	Divide Factor
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128

17.3.2 MCG Control Register 2 (MCGC2)

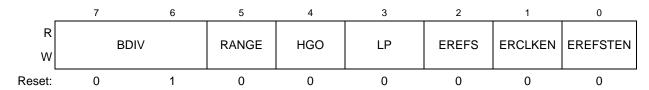


Figure 17-9. MCG Control Register 2 (MCGC2)

Table 17-9. MCG Control Register 2 Field Descriptions

Field	Description	
7:6 BDIV	Bus Frequency Divider — Selects the amount to divide down the clock source selected by the CLKS bits in the MCGC1 register. This controls the bus frequency. On Encoding 0 — Divides selected clock by 1 On Encoding 1 — Divides selected clock by 2 (reset default) Encoding 2 — Divides selected clock by 4 Encoding 3 — Divides selected clock by 8	
5 RANGE	Frequency Range Select — Selects the frequency range for the crystal oscillator or external clock source. 1 High frequency range selected for the crystal oscillator of 1 MHz to 16 MHz (1 MHz to 40 MHz for external clock source) 0 Low frequency range selected for the crystal oscillator of 32 kHz to 100 kHz (32 kHz to 1 MHz for external clock source)	
4 HGO	High Gain Oscillator Select — Controls the crystal oscillator mode of operation. 1 Configure crystal oscillator for high gain operation 0 Configure crystal oscillator for low power operation	
3 LP	Low Power Select — Controls whether the FLL (or PLL) is disabled in bypassed modes. 1 FLL (or PLL) is disabled in bypass modes (lower power). 0 FLL (or PLL) is not disabled in bypass modes.	
2 EREFS	External Reference Select — Selects the source for the external reference clock. 1 Oscillator requested 0 External Clock Source requested	
1 ERCLKEN	External Reference Enable — Enables the external reference clock for use as MCGERCLK. 1 MCGERCLK active 0 MCGERCLK inactive	
0 EREFSTEN	External Reference Stop Enable — Controls whether or not the external reference clock remains enabled when the MCG enters stop mode. 1 External reference clock stays enabled in stop if ERCLKEN is set or if MCG is in FEE, FBE, PEE, PBE, or BLPE mode before entering stop 0 External reference clock is disabled in stop	

17-10 Freescale Semiconductor

17.3.3 MCG Trim Register (MCGTRM)

Figure 17-10. MCG Trim Register (MCGTRM)

Table 17-10. MCG Trim Register Field Descriptions

Field	Description
7:0 TRIM	MCG Trim Setting — Controls the internal reference clock frequency by controlling the internal reference clock period. The TRIM bits are binary weighted (i.e., bit 1 will adjust twice as much as bit 0). Increasing the binary value in TRIM will increase the period, and decreasing the value will decrease the period.
	An additional fine trim bit is available in MCGSC as the FTRIM bit.
	If a TRIM[7:0] value stored in nonvolatile memory is to be used, it's the user's responsibility to copy that value from the nonvolatile memory location to this register.

A value for TRIM is loaded during reset from a factory programmed location when not in any BDM mode. If in a BDM mode, a default value of 0x80 is loaded.

17.3.4 MCG Status and Control Register (MCGSC)

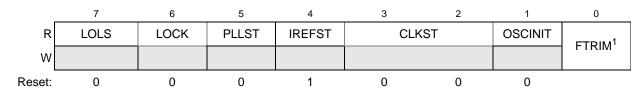


Figure 17-11. MCG Status and Control Register (MCGSC)

Table 17-11. MCG Status and Control Register Field Description

Field	Description	
7 LOLS	Loss of Lock Status — This bit is a sticky indication of lock status for the FLL or PLL. LOLS is set when lock detection is enabled and after acquiring lock, the FLL or PLL output frequency has fallen outside the lock exit frequency tolerance, D _{unl} . LOLIE determines whether an interrupt request is made when set. LOLS is cleared b reset or by writing a logic 1 to LOLS when LOLS is set. Writing a logic 0 to LOLS has no effect. O FLL or PLL has not lost lock since LOLS was last cleared. 1 FLL or PLL has lost lock since LOLS was last cleared.	
6 LOCK	Lock Status — Indicates whether the FLL or PLL has acquired lock. Lock detection is disabled when both the FLL and PLL are disabled. If the lock status bit is set, changing the value of DMX32, DRS[1:0] and IREFS bits in FBE, FBI, FEE and FEI modes; DIV32 bit in FBE and FEE modes; TRIM[7:0] bits in FBI and FEI modes; RDIV[2:0] bits in FBE, FEE, PBE and PEE modes; VDIV[3:0] bits in PBE and PEE modes; and PLLS bit, causes the lock status bit to clear and stay clear until the FLL or PLL has reacquired lock. Entry into BLPI, BLPE or stop mode also causes the lock status bit to clear and stay cleared until the exit of these modes and the FLL or PLL has reacquired lock. 0 FLL or PLL is currently unlocked. 1 FLL or PLL is currently locked.	
5 PLLST	PLL Select Status — The PLLST bit indicates the current source for the PLLS clock. The PLLST bit does not update immediately after a write to the PLLS bit due to internal synchronization between clock domains. 0 Source of PLLS clock is FLL clock. 1 Source of PLLS clock is PLL clock.	
4 IREFST	Internal Reference Status — The IREFST bit indicates the current source for the reference clock. The IREFST bit does not update immediately after a write to the IREFS bit due to internal synchronization between clock domains. O Source of reference clock is external reference clock (oscillator or external clock source as determined by the EREFS bit in the MCGC2 register). Source of reference clock is internal reference clock.	
3:2 CLKST	Clock Mode Status — The CLKST bits indicate the current clock mode. The CLKST bits do not update immediately after a write to the CLKS bits due to internal synchronization between clock domains. 00 Encoding 0 — Output of FLL is selected. 01 Encoding 1 — Internal reference clock is selected. 10 Encoding 2 — External reference clock is selected. 11 Encoding 3 — Output of PLL is selected.	

17-12 Freescale Semiconductor

¹ A value for FTRIM is loaded during reset from a factory programmed location when not in any BDM mode. If in a BDM mode, a default value of 0x0 is loaded.

Table 17-11. MCG Status and Control Register Field Description (Continued)

Field	Description
1 OSCINIT	OSC Initialization — If the external reference clock is selected by ERCLKEN or by the MCG being in FEE, FBE, PEE, PBE, or BLPE mode, and if EREFS is set, then this bit is set after the initialization cycles of the crystal oscillator clock have completed. This bit is only cleared when either EREFS is cleared or when the MCG is in either FEI, FBI, or BLPI mode and ERCLKEN is cleared.
0 FTRIM	MCG Fine Trim — Controls the smallest adjustment of the internal reference clock frequency. Setting FTRIM will increase the period and clearing FTRIM will decrease the period by the smallest amount possible.
	If an FTRIM value stored in nonvolatile memory is to be used, it's the user's responsibility to copy that value from the nonvolatile memory location to this register's FTRIM bit.

17.3.5 MCG Control Register 3 (MCGC3)

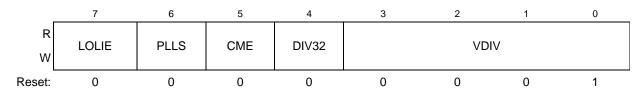


Figure 17-12. MCG PLL Register (MCGPLL)

Table 17-12. MCG PLL Register Field Descriptions

Field	Description
7 LOLIE	Loss of Lock Interrupt Enable — Determines if an interrupt request is made following a loss of lock indication. The LOLIE bit only has an effect when LOLS is set. 0 No request on loss of lock. 1 Generate an interrupt request on loss of lock.
6 PLLS	PLL Select — Controls whether the PLL or FLL is selected. If the PLLS bit is clear, the PLL is disabled in all modes. If the PLLS is set, the FLL is disabled in all modes. 1 PLL is selected 0 FLL is selected
5 CME	Clock Monitor Enable — Determines if a reset request is made following a loss of external clock indication. The CME bit should only be set to a logic 1 when either the MCG is in an operational mode that uses the external clock (FEE, FBE, PEE, PBE, or BLPE) or the external reference is enabled (ERCLKEN=1 in the MCGC2 register). Whenever the CME bit is set to a logic 1, the value of the RANGE bit in the MCGC2 register should not be changed. If the external reference clock is set to be disabled when the MCG enters STOP mode (EREFSTEN=0), then the CME bit should be set to a logic 0 before the MCG enters STOP mode. Otherwise a reset request may occur while in STOP mode. O Clock monitor is disabled. 1 Generate a reset request on loss of external clock.

MCF51MM256 Series Devices Reference Manual, Rev. 3 17-13 Freescale Semiconductor

Table 17-12. MCG PLL Register Field Descriptions (Continued)

Field	Description
4 DIV32	Divide-by-32 Enable — Controls an additional divide-by-32 factor to the external reference clock for the FLL when RANGE bit is set. When the RANGE bit is 0, this bit has no effect. Writes to this bit are ignored if PLLS bit is set. 0 Divide-by-32 is disabled. 1 Divide-by-32 is enabled when RANGE=1.
3:0 VDIV	VCO Divider — Selects the amount to divide down the VCO output of PLL. The VDIV bits establish the multiplication factor (M) applied to the reference clock frequency. 0000 Encoding 0 — Reserved. 0001 Encoding 1 — Multiply by 4. 0010 Encoding 2 — Multiply by 8. 0011 Encoding 3 — Multiply by 12. 0100 Encoding 4 — Multiply by 16. 0101 Encoding 5 — Multiply by 20. 0110 Encoding 6 — Multiply by 24. 0111 Encoding 7 — Multiply by 28. 1000 Encoding 8 — Multiply by 32. 1001 Encoding 9 — Multiply by 36. 1010 Encoding 10 — Multiply by 40. 1011 Encoding 11 — Multiply by 44. 1100 Encoding 12 — Multiply by 48. 1101 Encoding 13 — Reserved (default to M=48). 111x Encoding 14-15 — Reserved (default to M=48).

17.3.6 MCG Control Register 4 (MCGC4)

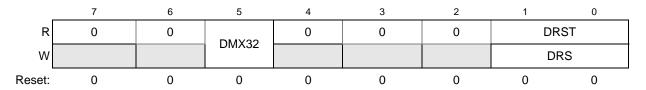


Figure 17-13. MCG Control Register 4 (MCGC4)

Table 17-13. MCG Test and Control Register Field Descriptions

Field	Description		
7:6	Reserved for test, user code should not write 1's to these bits.		
5 DMX32	DCO Maximum frequency with 32.768 kHz reference — The DMX32 bit controls whether or not the DCO frequency range is narrowed to its maximum frequency with a 32.768 kHz reference. See Table 17-14. 0 DCO has default range of 25%. 1 DCO is fined tuned for maximum frequency with 32.768 kHz reference.		
4:2	Reserved for test, user code should not write 1's to these bits.		
1:0 DRST DRS	DCO Range Status — The DRST read bits indicate the current frequency range for the FLL output, DCOOUT. See Table 17-14. The DRST bits do not update immediately after a write to the DRS field due to internal synchronization between clock domains. The DRST bits are not valid in BLPI, BLPE, PBE or PEE mode and it reads zero regardless of the DCO range selected by the DRS bits.		
	DCO Range Select — The DRS bits select the frequency range for the FLL output, DCOOUT. Writes to the DRS bits while either the LP or PLLS bit is set are ignored. 00 Low range. 01 Mid range. 10 High range. 11 Reserved		

Table 17-14. DCO frequency range¹

DRS	DMX32	Reference range	FLL factor	DCO range
00	0	31.25 - 39.0625 kHz	512	16 - 20 MHz
	1	32.768 kHz	608	19.92 MHz
01	0	31.25 - 39.0625 kHz	1024	32 - 40 MHz
	1	32.768 kHz	1216	39.85 MHz
10	0	31.25 - 39.0625 kHz	1536	48-60 MHz
	1	32.768 kHz	1824	59.77 MHz
11	Reserved			

The resulting bus clock frequency should not exceed the maximum specified bus clock frequency of the device.

17.3.7 MCG Test Register (MCGT)

Table 17-15. MCG Test Register Field Descriptions

Field	Description
7:6	Reserved for test, user code should not write 1's to these bits.
5	Reserved, user code should not write 1's to these bits
4:1	Reserved for test, user code should not write 1's to these bits.
0	Reserved, user code should not write 1's to these bits

Freescale Semiconductor 17-15

17.4 Functional Description

17.4.1 MCG Modes of Operation

The MCG operates in one of the modes described in Table 17-16.

NOTE

The MCG restricts transitions between modes. For the permitted transitions, see Section 17.4.2, "MCG Mode State Diagram."

Table 17-16. MCG Modes of Operation

Mode	Related field values	Description
FLL Engaged Internal (FEI)	 MCGC1[IREFS] = 1 MCGC1[CLKS] = 00 MCGC3[PLLS] = 0 	Default. MCGOUT is derived from the FLL clock, which is controlled by the internal reference clock. The FLL clock frequency locks to a multiplication factor, as selected by the DRS[1:0] and DMX32 bits, times the internal reference frequency. MCGLCLK is derived from the FLL, and the PLL is disabled in a low-power state.
FLL Engaged External (FEE)	 MCGC1[IREFS] = 0 MCGC1[CLKS] = 00 MCGC1[RDIV] is programmed to divide the reference clock to be within the range of 31.2500 to 39.0625 kHz. MCGC3[PLLS] = 0 	MCGOUT is derived from the FLL clock, which is controlled by the external reference clock. The external reference clock that is enabled can be produced by an external crystal, ceramic resonator, or another external clock source connected to the required crystal oscillator (XOSC). The FLL clock frequency locks to a multiplication factor, as selected by the DRS[1:0] and DMX32 bits, times the external reference frequency, as specified by MCGC1[RDIV], MCGC2[RANGE], and MCGC3[DIV32]. MCGLCLK is derived from the FLL, and the PLL is disabled in a low-power state.
FLL Bypassed Internal (FBI)	 MCGC1[IREFS] = 1 MCGC1[CLKS] = 01 MCGC2[LP] = 0 (or the BDM is enabled) MCGC3[PLLS] = 0 	MCGOUT is derived from the internal reference clock; the FLL is operational, but its output clock is not used. This mode is useful to allow the FLL to acquire its target frequency while the MCGOUT clock is driven from the internal reference clock. MCGOUT is derived from the internal reference clock. The FLL clock is controlled by the internal reference clock, and the FLL clock frequency locks to a multiplication factor, as selected by the DRS[1:0] and DMX32 bits, times the internal reference frequency. MCGLCLK is derived from the FLL, and the PLL is disabled in a low-power state.
FLL Bypassed External (FBE)	 MCGC1[IREFS] = 0 MCGC1[CLKS] = 10 MCGC1[RDIV] is programmed to divide the reference clock to be within the range of 31.2500 to 39.0625 kHz MCGC2[LP] = 0 (or the BDM is enabled) MCGC3[PLLS] = 0 	MCGOUT is derived from the external reference clock; the FLL is operational, but its output clock is not used. This mode is useful to allow the FLL to acquire its target frequency while MCGOUT is driven from the external reference clock. MCGOUT is derived from the external reference clock. The external reference clock that is enabled can be produced by an external crystal, ceramic resonator, or another external clock source connected to the required crystal oscillator (XOSC). The FLL clock is controlled by the external reference clock, and the FLL clock frequency locks to a multiplication factor, as selected by the DRS[1:0] and DMX32 bits, times the external reference frequency, as selected by MCGC1[RDIV], MCGC2[RANGE], and MCGC3[DIV32]. MCGLCLK is derived from the FLL, and the PLL is disabled in a low-power state.

MCF51MM256 Series Devices Reference Manual, Rev. 3

17-16

Freescale Semiconductor

Table 17-16. MCG Modes of Operation (Continued)

Mode	Related field values	Description
PLL Engaged External (PEE)	MCGC1[IREFS] = 0 MCGC1[CLKS] = 00 MCGC1[RDIV] is programmed to divide the reference clock to be within the range of 1 to 2 MHz. PLLS = 1	MCGOUT is derived from the PLL clock, which is controlled by the external reference clock. The external reference clock that is enabled can be produced by an external crystal, ceramic resonator, or another external clock source connected to the required crystal oscillator (XOSC). The PLL clock frequency locks to a multiplication factor, as specified by MCGC3[VDIV], times the external reference frequency, as specified by MCGC1[RDIV], MCGC2[RANGE], and MCGC3[DIV32]. If the BDM is enabled, MCGLCLK is derived from the DCO (open-loop mode) divided by two. If the BDM is not enabled, the FLL is disabled in a low-power state. In this mode, MCGT[DRST] is read as a 0 regardless of the value of MCGT[DRS].
PLL Bypassed External (PBE)	 MCGC1[IREFS] = 0 MCGC1[CLKS] = 10 MCGC1[RDIV] is programmed to divide the reference clock to be within the range of 1 to 2 MHz. MCGC2[LP] = 0 MCGC3[PLLS] = 1 	MCGOUT is derived from the external reference clock; the PLL is operational, but its output clock is not used. This mode is useful to allow the PLL to acquire its target frequency while MCGOUT is driven from the external reference clock. MCGOUT is derived from the external reference clock. The external reference clock that is enabled can be produced by an external crystal, ceramic resonator, or another external clock source connected to the required crystal oscillator (XOSC). The PLL clock frequency locks to a multiplication factor, as specified by MCGC3[VDIV], times the external reference frequency, as specified by MCGC1[RDIV], MCGC2[RANGE], and MCGC3[DIV32]. If the BDM is enabled, MCGLCLK is derived from the DCO (open-loop mode) divided by two. If the BDM is not enabled, the FLL is disabled in a low-power state. In this mode, MCGT[DRST] is read as a 0 regardless of the value of MCGT[DRS].
Bypassed Low Power Internal (BLPI)	 MCGC1[IREFS] = 1 MCGC1[CLKS] = 01MCGC3[PLLS] = 0 MCGC2[LP] = 1 (and the BDM is disabled) 	MCGOUT is derived from the internal reference clock. The PLL and FLL are disabled, and MCGLCLK is not available for BDC communications. If the BDM becomes enabled, the mode switches to FLL bypassed internal (FBI) mode. In this mode, MCGT[DRST] is read as a 0 regardless of the value of MCGT[DRS].
Bypassed Low Power External (BLPE)	 MCGC1[IREFS] = 0 MCGC1[CLKS] = 10 MCGC2[LP] = 1 (and the BDM is disabled) 	MCGOUT is derived from the external reference clock. The external reference clock that is enabled can be produced by an external crystal, ceramic resonator, or another external clock source connected to the required crystal oscillator (XOSC). The PLL and FLL are disabled, and MCGLCLK is not available for BDC communications. If the BDM becomes enabled, the mode switches to one of the bypassed external modes as determined by the state of MCGC3[PLLS]. In this mode, MCGT[DRST] is read as a 0 regardless of the value of MCGT[DRS].

Table 17-16. MCG Modes of Operation (Continued)

Mode	Related field values	Description
Stop		Entered whenever the MCU enters a Stop state. The FLL and PLL are disabled, and all MCG clock signals are static except in the following cases: MCGIRCLK is active in Stop mode when all the following conditions become true: • MCGC1[IRCLKEN] = 1 • MCGC1[IREFSTEN] = 1 MCGERCLK is active in Stop mode when all the following conditions become true: • MCGC2[ERCLKEN] = 1 • MCGC2[ERCLKEN] = 1

17.4.2 MCG Mode State Diagram

Figure 17-15 shows the MCG's mode state diagram. The arrows indicate the permitted mode transitions.

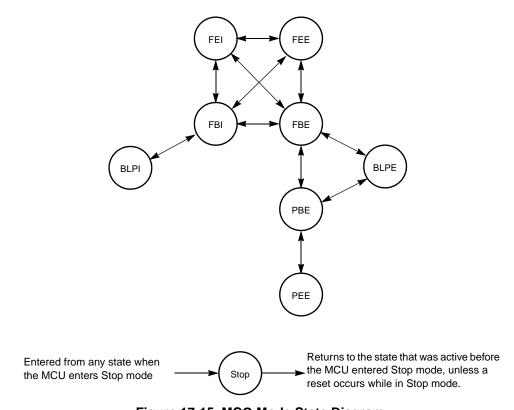


Figure 17-15. MCG Mode State Diagram

17.4.3 Mode Switching

The IREFS bit can be changed at anytime, but the actual switch to the newly selected clock is shown by the IREFST bit. When switching between engaged internal and engaged external modes, the FLL or PLL will begin locking again after the switch is completed.

17-18 Freescale Semiconductor

The CLKS bits can also be changed at anytime, but the actual switch to the newly selected clock is shown by the CLKST bits. If the newly selected clock is not available, the previous clock will remain selected.

The DRS bits can be changed at anytime except when LP bit is 1. If the DRS bits are changed while in FLL engaged internal (FEI) or FLL engaged external (FEE), the bus clock remains at the previous DCO range until the new DCO starts. When the new DCO starts the bus clock switches to it. After switching to the new DCO the FLL remains unlocked for several reference cycles. Once the selected DCO startup time is over, the FLL is locked. The completion of the switch is shown by the DRST bits.

For details see Figure 17-15.

17.4.4 Bus Frequency Divider

The BDIV bits can be changed at anytime and the actual switch to the new frequency will occur immediately.

17.4.5 Low Power Bit Usage

The low power bit (LP) is provided to allow the FLL or PLL to be disabled and thus conserve power when these systems are not being used. The DRS bit can not be written while LP bit is 1. However, in some applications it may be desirable to enable the FLL or PLL and allow it to lock for maximum accuracy before switching to an engaged mode. Do this by writing the LP bit to 0.

17.4.6 Internal Reference Clock

When IRCLKEN is set the internal reference clock signal will be presented as MCGIRCLK, which can be used as an additional clock source. The MCGIRCLK frequency can be re-targeted by trimming the period of the internal reference clock. This can be done by writing a new value to the TRIM bits in the MCGTRM register. Writing a larger value will decrease the MCGIRCLK frequency, and writing a smaller value to the MCGTRM register will increase the MCGIRCLK frequency. The TRIM bits will effect the MCGOUT frequency if the MCG is in FLL engaged internal (FEI), FLL bypassed internal (FBI), or bypassed low power internal (BLPI) mode. The TRIM and FTRIM value is initialized by POR but is not affected by other resets.

Until MCGIRCLK is trimmed, programming low reference divider (RDIV) factors may result in MCGOUT frequencies that exceed the maximum chip-level frequency and violate the chip-level clock timing specifications (see the Device Overview chapter).

If IREFSTEN and IRCLKEN bits are both set, the internal reference clock will keep running during stop mode in order to provide a fast recovery upon exiting stop.

17.4.7 External Reference Clock

The MCG module can support an external reference clock with frequencies between 31.25 kHz to 40 MHz in all modes. When ERCLKEN is set, the external reference clock signal will be presented as MCGERCLK, which can be used as an additional clock source. When IREFS = 1, the external reference clock will not be used by the FLL or PLL and will only be used as MCGERCLK. In these modes, the

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor 17-19

frequency can be equal to the maximum frequency the chip-level timing specifications will support (see the Device Overview chapter).

If EREFSTEN and ERCLKEN bits are both set or the MCG is in FEE, FBE, PEE, PBE or BLPE mode, the external reference clock will keep running during stop mode in order to provide a fast recovery upon exiting stop.

If CME bit is written to 1, the clock monitor is enabled. If the external reference falls below a certain frequency (f_{loc_high} or f_{loc_low} depending on the RANGE bit in the MCGC2), the MCU will reset. The LOC bit in the System Reset Status (SRS) register will be set to indicate the error.

17.4.8 Fixed Frequency Clock

The MCG presents the divided reference clock as MCGFFCLK for use as an additional clock source. The MCGFFCLK frequency must be no more than 1/4 of the MCGOUT frequency to be valid.

17.4.9 MCGPLLSCLK Operation

This clock is intended for use in systems which include a USB interface. It allows the MCG to supply a 48MHz clock to the USB. This same clock can be used to derive MCGOUT. Alternately, MCGOUT can be derived from either internal or external reference clock. This allows the CPU to run at a lower frequency (to conserve power) while the USB continues to monitor traffic.

Note that the FLL can not be used for generation of the system clocks while the PLL is supplying MCGPLLSCLK.

17.5 Initialization / Application Information

This section describes how to initialize and configure the MCG module in application. The following sections include examples on how to initialize the MCG and properly switch between the various available modes.

17.5.1 MCG Module Initialization Sequence

The MCG comes out of reset configured for FEI mode with the BDIV set for divide-by-2. The internal reference will stabilize in t_{irefst} microseconds before the FLL can acquire lock. As soon as the internal reference is stable, the FLL will acquire lock in t_{fll} acquire milliseconds.

NOTE

If the internal reference is not already trimmed, the BDIV value should not be changed to divide-by-1 without first trimming the internal reference. Failure to do so could result in the MCU running out of specification.

17.5.1.1 Initializing the MCG

Because the MCG comes out of reset in FEI mode, the only MCG modes which can be directly switched to upon reset are FEE, FBE, and FBI modes (see Figure 17-15). Reaching any of the other modes requires first configuring the MCG for one of these three initial modes. Care must be taken to check relevant status bits in the MCGSC register reflecting all configuration changes within each mode.

To change from FEI mode to FEE or FBE modes, follow this procedure:

- 1. Enable the external clock source by setting the appropriate bits in MCGC2.
- 2. If the RANGE bit (bit 5) in MCGC2 is set, set DIV32 in MCGC3 to allow access to the proper RDIV values.
- 3. Write to MCGC1 to select the clock mode.
 - If entering FEE mode, set RDIV appropriately, clear the IREFS bit to switch to the external reference, and leave the CLKS bits at %00 so that the output of the FLL is selected as the system clock source.
 - If entering FBE, clear the IREFS bit to switch to the external reference and change the CLKS bits to %10 so that the external reference clock is selected as the system clock source. The RDIV bits should also be set appropriately here according to the external reference frequency because although the FLL is bypassed, it is still on in FBE mode.
 - The internal reference can optionally be kept running by setting the IRCLKEN bit. This is useful if the application will switch back and forth between internal and external modes. For minimum power consumption, leave the internal reference disabled while in an external clock mode.
- 4. Once the proper configuration bits have been set, wait for the affected bits in the MCGSC register to be changed appropriately, reflecting that the MCG has moved into the proper mode.
 - If ERCLKEN was set in step 1 or the MCG is in FEE, FBE, PEE, PBE, or BLPE mode, and EREFS was also set in step 1, wait here for the OSCINIT bit to become set indicating that the

Freescale Semiconductor 17-21

- external clock source has finished its initialization cycles and stabilized. Typical crystal startup times are given in Appendix A, "Electrical Characteristics".
- If in FEE mode, check to make sure the IREFST bit is cleared and the LOCK bit is set before moving on.
- If in FBE mode, check to make sure the IREFST bit is cleared, the LOCK bit is set, and the CLKST bits have changed to %10 indicating the external reference clock has been appropriately selected. Although the FLL is bypassed in FBE mode, it is still on and will lock in FBE mode.
- 5. Write to the MCGC4 register to determine the DCO output (MCGOUT) frequency range. Make sure that the resulting bus clock frequency does not exceed the maximum specified bus clock frequency of the device.
 - By default, with DMX32 cleared to 0, the FLL multiplier for the DCO output is 512. For greater flexibility, if a mid-range FLL multiplier of 1024 is desired instead, set the DRS[1:0] bits to %01 for a DCO output frequency of 33.55 MHz. If a high-range FLL multiplier of 1536 is desired instead, set the DRS[1:0] bits to %10 for a DCO output frequency of 50.33 MHz.
 - When using a 32.768 kHz external reference, if the maximum low-range DCO frequency that can be achieved with a 32.768 kHz reference is desired, set the DRS[1:0] bits to %00 and set the DMX32 bit to 1. The resulting DCO output (MCGOUT) frequency with the new multiplier of 608 will be 19.92 MHz.
 - When using a 32.768 kHz external reference, if the maximum mid-range DCO frequency that can be achieved with a 32.768 kHz reference is desired, set the DRS[1:0] bits to %01 and set the DMX32 bit to 1. The resulting DCO output (MCGOUT) frequency with the new multiplier of 1216 will be 39.85 MHz.
 - When using a 32.768 kHz external reference, if the maximum high-range DCO frequency that can be achieved with a 32.768 kHz reference is desired, set the DRS[1:0] bits to %10 and set the DMX32 bit to 1. The resulting DCO output (MCGOUT) frequency with the new multiplier of 1824 will be 59.77 MHz.
- 6. Wait for the LOCK bit in MCGSC to become set, indicating that the FLL has locked to the new multiplier value designated by the DRS and DMX32 bits.

NOTE

Setting DIV32 (bit 4) in MCGC3 is strongly recommended for FLL external modes when using a high frequency range (RANGE = 1) external reference clock. The DIV32 bit is ignored in all other modes.

To change from FEI clock mode to FBI clock mode, follow this procedure:

- 1. Change the CLKS bits in MCGC1 to %01 so that the internal reference clock is selected as the system clock source.
- 2. Wait for the CLKST bits in the MCGSC register to change to %01, indicating that the internal reference clock has been appropriately selected.

17.5.2 Using a 32.768 kHz Reference

In FEE and FBE modes, if using a 32.768 kHz external reference, at the default FLL multiplication factor of 512, the DCO output (MCGOUT) frequency is 16.78 MHz at high-range. If the DRS[1:0] bits are set to %01, the multiplication factor is doubled to 1024, and the resulting DCO output frequency is 33.55 Mhz at mid-range. If the DRS[1:0] bits are set to %10, the multiplication factor is set to 1536, and the resulting DCO output frequency is 50.33 Mhz at high-range. Make sure that the resulting bus clock frequency does not exceed the maximum specified bus clock frequency of the device.

Setting the DMX32 bit in MCGC4 to 1 increases the FLL multiplication factor to allow the 32.768 kHz reference to achieve its maximum DCO output frequency. When the DRS[1:0] bits are set to %00, the 32.768 kHz reference can achieve a high-range maximum DCO output of 19.92 MHz with a multiplier of 608. When the DRS[1:0] bits are set to %01, the 32.768 kHz reference can achieve a mid-range maximum DCO output of 39.85 MHz with a multiplier of 1216. When the DRS[1:0] bits are set to %10, the 32.768 kHz reference can achieve a high-range maximum DCO output of 59.77 MHz with a multiplier of 1824. Make sure that the resulting bus clock frequency does not exceed the maximum specified bus clock frequency of the device.

In FBI and FEI modes, setting the DMX32 bit is not recommended. If the internal reference is trimmed to a frequency above 32.768 kHz, the greater FLL multiplication factor could potentially push the microcontroller system clock out of specification and damage the part.

17.5.3 MCG Mode Switching

When switching between operational modes of the MCG, certain configuration bits must be changed in order to properly move from one mode to another. Each time any of these bits are changed (PLLS, IREFS, CLKS, or EREFS), the corresponding bits in the MCGSC register (PLLST, IREFST, CLKST, or OSCINIT) must be checked before moving on in the application software.

Additionally, care must be taken to ensure that the reference clock divider (RDIV) is set properly for the mode being switched to. For instance, in PEE mode, if using a 4 MHz crystal, RDIV must be set to %001 (divide-by-2) or %010 (divide -by-4) in order to divide the external reference down to the required frequency between 1 and 2 MHz.

If switching to FBE or FEE mode, first setting the DIV32 bit will ensure a proper reference frequency is sent to the FLL clock at all times.

In FBE, FEE, FBI, and FEI modes, at any time, the application can switch the FLL multiplication factor between 512, 1024, and 1536 with the DRS[1:0] bits in MCGC4. Writes to the DRS[1:0] bits will be ignored if LP=1 or PLLS=1.

The RDIV and IREFS bits should always be set properly before changing the PLLS bit so that the FLL or PLL clock has an appropriate reference clock frequency to switch to. The table below shows MCGOUT

frequency calculations using RDIV, BDIV, and VDIV settings for each clock mode. The bus frequency is equal to MCGOUT divided by 2.

Table 17-17. MCGOUT Frequency Calculation Options

Clock Mode	f _{MCGOUT} 1	Note
FEI (FLL engaged internal)	(f _{int} * F) / B	Typical f _{MCGOUT} = 16 MHz immediately after reset.
FEE (FLL engaged external)	(f _{ext} / R *F) / B	f _{ext} / R must be in the range of 31.25 kHz to 39.0625 kHz
FBE (FLL bypassed external)	f _{ext} / B	f _{ext} / R must be in the range of 31.25 kHz to 39.0625 kHz
FBI (FLL bypassed internal)	f _{int} / B	Typical f _{int} = 32 kHz
PEE (PLL engaged external)	[(f _{ext} / R) * M] / B	f _{ext} / R must be in the range of 1 MHz to 2 MHz
PBE (PLL bypassed external)	f _{ext} / B	f _{ext} / R must be in the range of 1 MHz to 2 MHz
BLPI (Bypassed low power internal)	f _{int} / B	
BLPE (Bypassed low power external)	f _{ext} / B	

¹R is the reference divider selected by the RDIV bits, B is the bus frequency divider selected by the BDIV bits, F is the FLL factor selected by the DRS[1:0] and DMX32 bits, and M is the multiplier selected by the VDIV bits.

This section will include 3 mode switching examples using an 8 MHz external crystal. If using an external clock source less than 1 MHz, the MCG should not be configured for any of the PLL modes (PEE and PBE).

17.5.3.1 Example 1: Moving from FEI to PEE Mode: External Crystal = 8 MHz, Bus Frequency = 16 MHz

In this example, the MCG will move through the proper operational modes from FEI to PEE mode until the 8 MHz crystal reference frequency is set to achieve a bus frequency of 16 MHz. Because the MCG is in FEI mode out of reset, this example also shows how to initialize the MCG for PEE mode out of reset. First, the code sequence will be described. Then a flowchart will be included which illustrates the sequence.

- 1. First, FEI must transition to FBE mode:
 - a) MCGC2 = 0x36 (%00110110)
 - BDIV (bits 7 and 6) set to %00, or divide-by-1
 - RANGE (bit 5) set to 1 because the frequency of 8 MHz is within the high frequency range
 - HGO (bit 4) set to 1 to configure the crystal oscillator for high gain operation
 - EREFS (bit 2) set to 1, because a crystal is being used
 - ERCLKEN (bit 1) set to 1 to ensure the external reference clock is active

MCF51MM256 Series Devices Reference Manual, Rev. 3

- b) Loop until OSCINIT (bit 1) in MCGSC is 1, indicating the crystal selected by the EREFS bit has been initialized.
- c) Because RANGE = 1, set DIV32 (bit 4) in MCGC3 to allow access to the proper RDIV bits while in an FLL external mode.
- d) MCGC1 = 0x98 (%10011000)
 - CLKS (bits 7 and 6) set to %10 in order to select external reference clock as system clock source
 - RDIV (bits 5-3) set to %011, or divide-by-256 because 8MHz / 256 = 31.25 kHz which is in the 31.25 kHz to 39.0625 kHz range required by the FLL
 - IREFS (bit 2) cleared to 0, selecting the external reference clock
- e) Loop until IREFST (bit 4) in MCGSC is 0, indicating the external reference is the current source for the reference clock
- f) Loop until CLKST (bits 3 and 2) in MCGSC is %10, indicating that the external reference clock is selected to feed MCGOUT
- 2. Then, FBE must transition either directly to PBE mode or first through BLPE mode and then to PBE mode:
 - a) BLPE: If a transition through BLPE mode is desired, first set LP (bit 3) in MCGC2 to 1.
 - b) BLPE/PBE: MCGC3 = 0x58 (%01011000)
 - PLLS (bit 6) set to 1, selects the PLL. At this time, with an RDIV value of %011, the FLL reference divider of 256 is switched to the PLL reference divider of 8 (see Table 17-8), resulting in a reference frequency of 8 MHz/8 = 1 MHz. In BLPE mode, changing the PLLS bit only prepares the MCG for PLL usage in PBE mode
 - DIV32 (bit 4) still set at 1. Because the MCG is in a PLL mode, the DIV32 bit is ignored.
 Keeping it set at 1 makes transitions back into an FLL external mode easier.
 - VDIV (bits 3-0) set to %1000, or multiply-by-32 because 1 MHz reference * 32= 32MHz.
 In BLPE mode, the configuration of the VDIV bits does not matter because the PLL is disabled. Changing them only sets up the multiply value for PLL usage in PBE mode
 - c) BLPE: If transitioning through BLPE mode, clear LP (bit 3) in MCGC2 to 0 here to switch to PBE mode
 - d) PBE: Loop until PLLST (bit 5) in MCGSC is set, indicating that the current source for the PLLS clock is the PLL
 - e) PBE: Then loop until LOCK (bit 6) in MCGSC is set, indicating that the PLL has acquired lock
- 3. Lastly, PBE mode transitions into PEE mode:
 - a) MCGC1 = 0x18 (%00011000)
 - CLKS (bits7 and 6) in MCGSC1 set to %00 in order to select the output of the PLL as the system clock source

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor 17-25

- b) Loop until CLKST (bits 3 and 2) in MCGSC are %11, indicating that the PLL output is selected to feed MCGOUT in the current clock mode
 - $-\,$ Now, With an RDIV of divide-by-8, a BDIV of divide-by-1, and a VDIV of multiply-by-32, MCGOUT = [(8 MHz / 8) * 32] / 1 = 32 MHz, and the bus frequency is MCGOUT / 2, or 16 MHz

17-26 Freescale Semiconductor

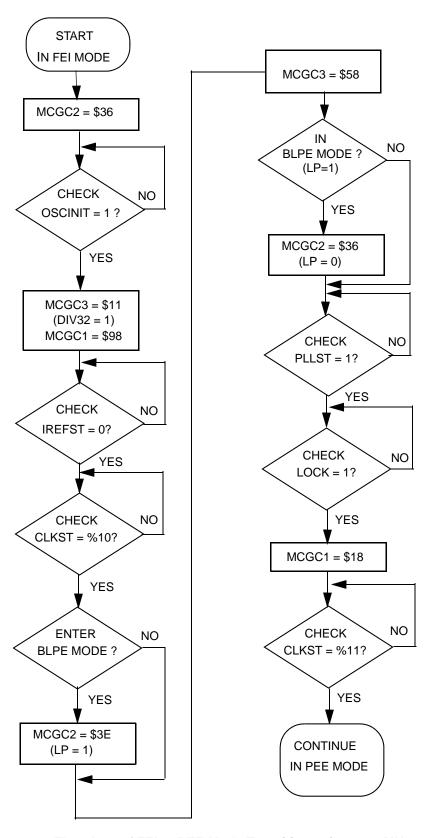


Figure 17-16. Flowchart of FEI to PEE Mode Transition using an 8 MHz crystal

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor 17-27

17.5.3.2 Example 2: Moving from PEE to BLPI Mode: Bus Frequency =16 kHz

In this example, the MCG will move through the proper operational modes from PEE mode with an 8MHz crystal configured for an 16 MHz bus frequency (see previous example) to BLPI mode with a 16 kHz bus frequency. First, the code sequence will be described. Then a flowchart will be included which illustrates the sequence.

- 1. First, PEE must transition to PBE mode:
 - a) MCGC1 = 0x98 (%10011000)
 - CLKS (bits 7 and 6) set to %10 in order to switch the system clock source to the external reference clock
 - b) Loop until CLKST (bits 3 and 2) in MCGSC are %10, indicating that the external reference clock is selected to feed MCGOUT
- 2. Then, PBE must transition either directly to FBE mode or first through BLPE mode and then to FBE mode:
 - a) BLPE: If a transition through BLPE mode is desired, first set LP (bit 3) in MCGC2 to 1
 - b) BLPE/FBE: MCGC3 = 0x18(%00011000)
 - PLLS (bit 6) clear to 0 to select the FLL. At this time, with an RDIV value of %011, the PLL reference divider of 8 is switched to an FLL divider of 256 (see Table 17-7), resulting in a reference frequency of 8 MHz / 256 = 31.25 kHz. If RDIV was not previously set to %011 (necessary to achieve required 31.25-39.06 kHz FLL reference frequency with an 8 MHz external source frequency), it must be changed prior to clearing the PLLS bit. In BLPE mode, changing this bit only prepares the MCG for FLL usage in FBE mode. With PLLS = 0, the VDIV value does not matter.
 - DIV32 (bit 4) set to 1 (if previously cleared), automatically switches RDIV bits to the proper reference divider for the FLL clock (divide-by-256)
 - c) BLPE: If transitioning through BLPE mode, clear LP (bit 3) in MCGC2 to 0 here to switch to FBE mode
 - d) FBE: Loop until PLLST (bit 5) in MCGSC is clear, indicating that the current source for the PLLS clock is the FLL
 - e) FBE: Optionally, loop until LOCK (bit 6) in the MCGSC is set, indicating that the FLL has acquired lock. Although the FLL is bypassed in FBE mode, it is still enabled and running.
- 3. Next, FBE mode transitions into FBI mode:
 - a) MCGC1 = 0x5C (%01011100)
 - CLKS (bits7 and 6) in MCGSC1 set to %01 in order to switch the system clock to the internal reference clock

17-28 Freescale Semiconductor

- IREFS (bit 2) set to 1 to select the internal reference clock as the reference clock source
- RDIV (bits 5-3) remain unchanged because the reference divider does not affect the internal reference.
- b) Loop until IREFST (bit 4) in MCGSC is 1, indicating the internal reference clock has been selected as the reference clock source
- c) Loop until CLKST (bits 3 and 2) in MCGSC are %01, indicating that the internal reference clock is selected to feed MCGOUT
- 4. Lastly, FBI transitions into BLPI mode.
 - a) MCGC2 = 0x08 (%00001000)
 - LP (bit 3) in MCGSC is 1
 - RANGE, HGO, EREFS, ERCLKEN, and EREFSTEN bits are ignored when the IREFS bit (bit2) in MCGC is set. They can remain set, or be cleared at this point.

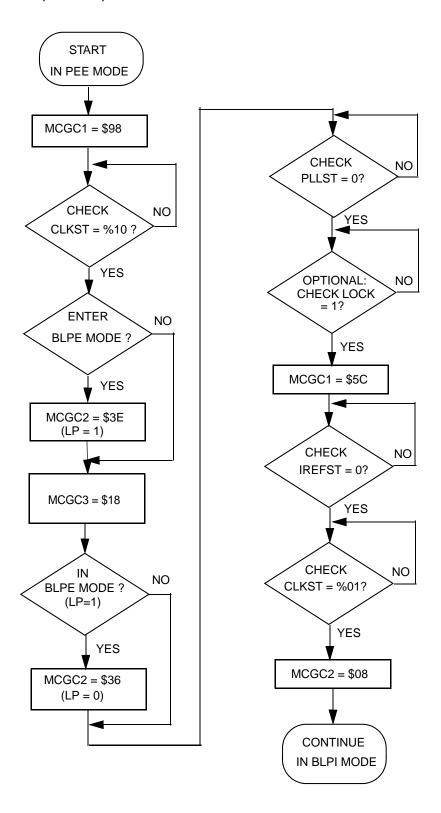


Figure 17-17. Flowchart of PEE to BLPI Mode Transition using an 8 MHz crystal

17-30 Freescale Semiconductor

17.5.3.3 Example 3: Moving from BLPI to FEE Mode: External Crystal = 8 MHz, Bus Frequency = 16 MHz

In this example, the MCG will move through the proper operational modes from BLPI mode at a 16 kHz bus frequency running off of the internal reference clock (see previous example) to FEE mode using an 8MHz crystal configured for a 16 MHz bus frequency. First, the code sequence will be described. Then a flowchart will be included which illustrates the sequence.

- 1. First, BLPI must transition to FBI mode.
 - a) MCGC2 = 0x00 (%00000000)
 - LP (bit 3) in MCGSC is 0
 - b) Optionally, loop until LOCK (bit 6) in the MCGSC is set, indicating that the FLL has acquired lock. Although the FLL is bypassed in FBI mode, it is still enabled and running.
- 2. Next, FBI will transition to FEE mode.
 - a) MCGC2 = 0x36 (%00110110)
 - RANGE (bit 5) set to 1 because the frequency of 8 MHz is within the high frequency range
 - HGO (bit 4) set to 1 to configure the crystal oscillator for high gain operation
 - EREFS (bit 2) set to 1, because a crystal is being used
 - ERCLKEN (bit 1) set to 1 to ensure the external reference clock is active
 - b) Loop until OSCINIT (bit 1) in MCGSC is 1, indicating the crystal selected by the EREFS bit has been initialized.
 - c) MCGC1 = 0x18 (%00011000)
 - CLKS (bits 7 and 6) set to %00 in order to select the output of the FLL as system clock source
 - RDIV (bits 5-3) remain at %011, or divide-by-256 for a reference of 8 MHz / 256 = 31.25 kHz.
 - IREFS (bit 1) cleared to 0, selecting the external reference clock
 - d) Loop until IREFST (bit 4) in MCGSC is 0, indicating the external reference clock is the current source for the reference clock
 - e) Optionally, loop until LOCK (bit 6) in the MCGSC is set, indicating that the FLL has reacquired lock.
 - f) Loop until CLKST (bits 3 and 2) in MCGSC are %00, indicating that the output of the FLL is selected to feed MCGOUT
 - g) Now, with a 31.25 kHz reference frequency, a fixed DCO multiplier of 512, and a bus divider of 1, MCGOUT = 31.25 kHz * 512 / 1 = 16 MHz. Therefore, the bus frequency is 8 MHz.
 - h) At this point, by default, the DRS[1:0] bits in MCGC4 are set to %00 and DMX32 in MCGC4 is cleared to 0. If a bus frequency of 16MHz is desired instead, set the DRS[1:0] bits to \$01 to switch the FLL multiplication factor from 512 to 1024 and loop until LOCK (bit 6) in MCGSC is set, indicating that the FLL has reacquired LOCK. To return the bus frequency to 8 MHz, set the DRS[1:0] bits to %00 again, and the FLL multiplication factor will switch back to 512. Then loop again until the LOCK bit is set.

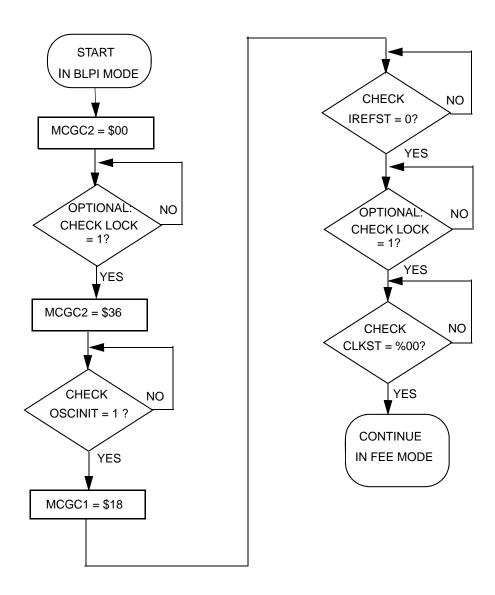


Figure 17-18. Flowchart of BLPI to FEE Mode Transition using an 8 MHz crystal

17.5.4 Calibrating the Internal Reference Clock (IRC)

The IRC is calibrated by writing to the MCGTRM register first, then using the FTRIM bit to "fine tune" the frequency. We will refer to this total 9-bit value as the trim value, ranging from 0x000 to 0x1FF, where the FTRIM bit is the LSB.

The trim value after reset is the factory trim value unless the device resets into any BDM mode in which case it is 0x800. Writing a larger value will decrease the frequency and smaller values will increase the frequency. The trim value is linear with the period, except that slight variations in wafer fab processing produce slight non-linearities between trim value and period. These non-linearities are why an iterative

trimming approach to search for the best trim value is recommended. In Example 4: Internal Reference Clock Trim later in this section, this approach will be demonstrated.

If a user specified trim value has been found for a device (to replace the factory trim value), this value can be stored in FLASH memory to save the value. If power is removed from the device, the IRC can easily be re-trimmed to the user specified value by copying the saved value from FLASH to the MCG registers. Freescale identifies recommended FLASH locations for storing the trim value for each MCU. Consult the memory map in the data sheet for these locations.

17.5.4.1 **Example 4: Internal Reference Clock Trim**

For applications that require a user specified tight frequency tolerance, a trimming procedure is provided that will allow a very accurate internal clock source. This section outlines one example of trimming the internal oscillator. Many other possible trimming procedures are valid and can be used.

In the example below, the MCG trim will be calibrated for the 9-bit MCGTRM and FTRIM collective value. This value will be referred to as TRMVAL.

MCF51MM256 Series Devices Reference Manual, Rev. 3 Freescale Semiconductor 17-33

Initial conditions:

- 1) Clock supplied from ATE has 500 µsec duty period
- 2) MCG configured for internal reference with 8MHz bus

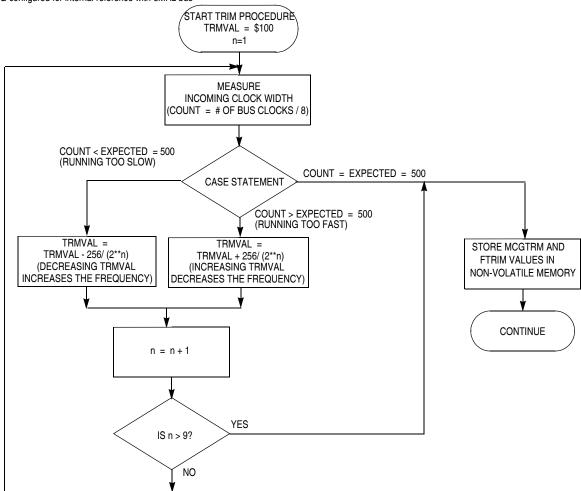


Figure 17-19. Trim Procedure

In this particular case, the MCU has been attached to a PCB and the entire assembly is undergoing final test with automated test equipment. A separate signal or message is provided to the MCU operating under user provided software control. The MCU initiates a trim procedure as outlined in Figure 17-19 while the tester supplies a precision reference signal.

If the intended bus frequency is near the maximum allowed for the device, it is recommended to trim using a reference divider value (RDIV setting) of twice the final value. After the trim procedure is complete, the reference divider can be restored. This will prevent accidental overshoot of the maximum clock frequency.

MCF51MM256 Series Devices Reference Manual, Rev. 3 17-34 Freescale Semiconductor

Chapter 18 Mini-FlexBus

18.1 Introduction

This chapter describes external bus data transfer operations and error conditions. It describes transfers initiated by the ColdFire processor (or any other bus master) and includes detailed timing diagrams showing the interaction of signals in supported bus operations.

The Mini-FlexBus is a subset of the FlexBus module found on other ColdFire microprocessors. The Mini-FlexBus minimizes package pin-outs while maintaining a high level of configurability and functionality.

NOTE

• In this chapter, unless otherwise noted, clock refers to the FB_CLK used for the external bus (f_{sys}).

18.1.1 Overview

A multi-function external bus interface called the Mini-FlexBus interface controller is provided on the device with basic functionality of interfacing to slave-only devices. It can be directly connected to the following asynchronous or synchronous devices with little or no additional circuitry:

- External ROMs
- Flash memories
- Programmable logic devices
- Other simple target (slave) devices

For asynchronous devices, a simple chip-select based interface can be used.

The Mini-FlexBus interface has up to two general purpose chip-selects, $\overline{FB_CS}[1:0]$. The actual number of chip selects available depends upon the device and its pin configuration.

18.1.2 Features

Key Mini-FlexBus features include:

- Two independent, user-programmable chip-select signals (FB_CS[1:0]) that can interface with external SRAM, PROM, EPROM, EEPROM, flash, and other peripherals
- 8- and 16-bit port sizes with configuration for multiplexed or non-multiplexed address and data buses
- Byte-, word-, longword-, and 16-byte line-sized transfers

- Programmable address-setup time with respect to the assertion of chip select
- Programmable address-hold time with respect to the negation of chip select and transfer direction

18.1.3 Modes of Operation

The external interface is a configurable multiplexed bus set to one of the following modes:

- Up to a 20-bit address (non-multiplexed) with 8-bit data
- Up to a 20-bit address (multiplexed) with 16-bit data (write masking of upper/lower bytes not supported)
- Up to a 20-bit address (multiplexed) with 8-bit data

18.1.4 Module Configuration

A subset of the Mini-FlexBus signals can be repositioned under software control using SOPT3[MB_DATA] as shown in Table 18-1. This functionality allows the 81-pin MAPBGA and 80-pin LQFP devices a minimal functionality data bus to interface with slave devices. SOPT3[MB_DATA] selects which general-purpose I/O ports are associated with Mini-FlexBus operation.

Table 18-1. Mini-FlexBus Position Options

SOPT3[MB_DATA]	FB_D0	FB_D2	FB_D3	FB_D4	FB_D5	FB_D6	FB_D7	FB_R/W	FB_OE
0 (default)	PTH1	PTH7	PTH6	PTH5	PTH4	PTH3	PTH2	PTG5	PTH0
1	PTC1	PTA0	PTF5	PTF4	PTF3	PTA3	PTE5	PTE6	PTC0

18.1.5 Mini-FlexBus Security Level

SOPT1[MBSL] controls the Mini-FlexBus security level. This bit has no effect if security is not enabled. If security is enabled and MBSL is set, off-chip opcode accesses via the Mini-FlexBus are disallowed, while data accesses are allowed.

18.1.6 Mini-FlexBus Clock Gating

The bus clock to the Mini-FlexBus can be gated on and off using SCGC2[MFB]. This bit is set after any reset, which enables the bus clock to this module. When this module is not in use, clear the MFB bit to disable the clock and conserve power. See Section 5.6, "Peripheral Clock Gating," for details.

18-2 Freescale Semiconductor

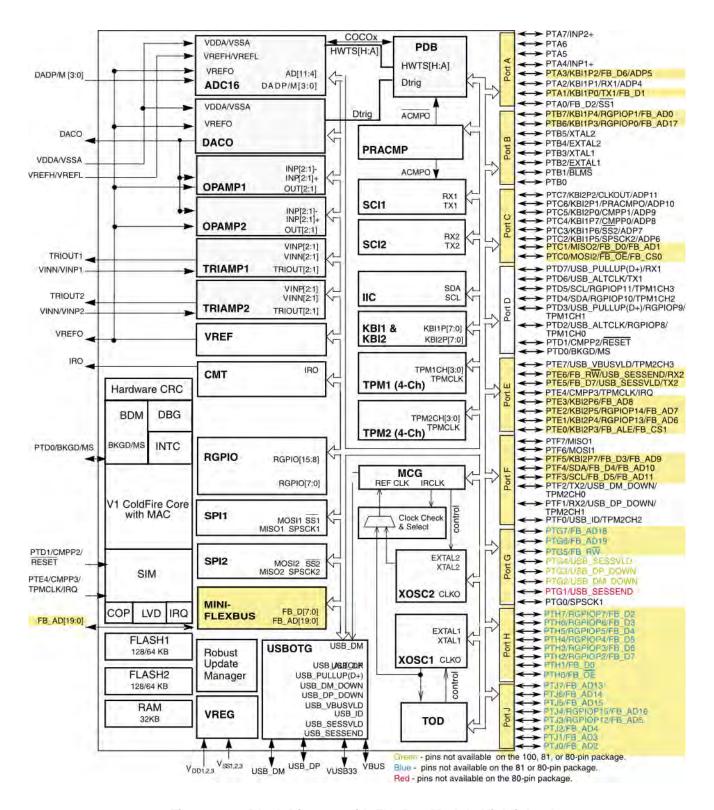


Figure 18-1. Block Diagram with FlexBus Module Highlighted

18.2 External Signals

This section describes the external signals involved in data-transfer operations.

Table 18-2. Mini-FlexBus Signal Summary

Signal Name	I/O	Description
FB_A[19:0]	I/O	In a non-multiplexed configuration, this is the address bus. In a multiplexed configuration this bus is the address/data bus, FB_AD[19:0].
FB_D[7:0]	I/O	In a non-multiplexed configuration, this is the data bus. In multiplexed configurations, this bus is not used.
FB_CS[1:0]	0	General purpose chip-selects. In multiplexed mode, only FB_CS0 is available. FB_CS1 is multiplexed with FB_ALE on a configurable package pin.
FB_OE	0	Output enable
FB_R/W	0	Read/write. 1 = Read, 0 = Write
FB_ALE	0	Address latch enable. This signal is multiplexed with FB_CS1 on a configurable package pin.

18.2.1 Address and Data Buses (FB_A[19:0], FB_D[7:0], FB_AD[19:0])

In non-multiplexed mode, the FB_A[19:0] and FB_D[7:0] buses carry the address and data, respectively.

In multiplexed mode, the FB_AD[19:0] bus carries the address and data. The full 20-bit address is driven on the first clock of a bus cycle (address phase). Following the first clock, the data is driven on the bus (data phase). During the data phase, the address continues driving on the pins not used for data. For example, in 16-bit mode the address continues driving on FB_AD[19:16] and in 8-bit mode the address continues driving on FB_AD[19:8].

18.2.2 Chip Selects (FB_CS[1:0])

The chip-select signal indicates which device is selected. A particular chip-select asserts when the transfer address is within the device's address space, as defined in the base- and mask-address registers. The actual number of chip selects available depends upon the pin configuration.

18.2.3 Output Enable (FB_OE)

The output enable signal (FB_OE) is sent to the interfacing memory and/or peripheral to enable a read transfer. FB_OE is only asserted during read accesses when a chip select matches the current address decode.

18.2.4 Read/Write (FB_R/ \overline{W})

The processor drives the FB_R/ \overline{W} signal to indicate the current bus operation direction. It is driven high during read bus cycles and low during write bus cycles.

18-4 Freescale Semiconductor

18-5

18.2.5 Address Latch Enable (FB_ALE)

The assertion of FB_ALE indicates that the device has begun a bus transaction and the address and attributes are valid. FB_ALE is asserted for one bus clock cycle. FB_ALE may be used externally to capture the bus transfer address (Figure 18-8).

18.3 Memory Map/Register Definition

The following tables describe the registers and bit meanings for configuring chip-select operation. Table 18-3 shows the chip-select register memory map.

The actual number of chip select registers available depends upon the device and its pin configuration. If the device does not support certain chip select signals or the pin is not configured for a chip-select function, then that corresponding set of chip-select registers has no effect on an external pin.

NOTE

You must set CSMR0[V] before the chip select registers take effect.

Offset	Register	Width (bits)	Access	Reset Value	Section/ Page
0x00 0x0C	Chip-Select Address Register (CSAR <i>n</i>) $n = 0 - 1$	32	R/W	0x0000_0000	18.3.1/18-5
0x04 0x10	Chip-Select Mask Register (CSMR <i>n</i>) $n = 0 - 1$	32	R/W	0x0000_0000	18.3.2/18-6
0x08 0x14	Chip-Select Control Register (CSCRn) n = 0 - 1	32	R/W	See Section	18.3.3/18-7

Table 18-3. Mini-FlexBus Chip Select Memory Map

18.3.1 Chip-Select Address Registers (CSAR0 – CSAR1)

The CSAR*n* registers specify the chip-select base addresses.

NOTE

The only applicable address range for which the chip-selects can be active are $0x(00)40_0000 - 0x(00)7F_FFFF$. Set the CSARn and CSMRn registers appropriately before accessing this region.

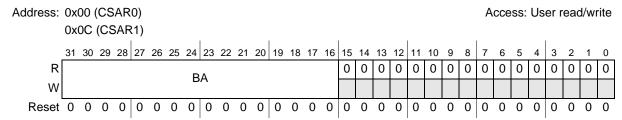


Figure 18-2. Chip-Select Address Registers (CSARn)

Table 18-4. CSARn Field Descriptions

Field	Description
31–16 BA	Base address. Defines the base address for memory dedicated to chip-select FB_CSn. BA is compared to bits 31–16 on the internal address bus to determine if chip-select memory is being accessed.
15–0	Reserved, must be cleared.

18.3.2 Chip-Select Mask Registers (CSMR0 – CSMR1)

CSMRn registers specify the address mask and allowable access types for the respective chip-selects.

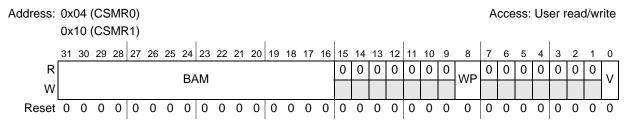


Figure 18-3. Chip-Select Mask Registers (CSMRn)

Table 18-5. CSMRn Field Descriptions

Field	Description
31–16 BAM	Base address mask. Defines the chip-select block size by masking address bits. Setting a BAM bit causes the corresponding CSAR bit to be a don't care in the decode. 0 Corresponding address bit is used in chip-select decode. 1 Corresponding address bit is a don't care in chip-select decode.
	The block size for \$\overline{FB_CSn}\$ is \$2^n\$; n = (number of bits set in respective CSMR[BAM]) + 16. For example, if CSAR0 equals 0x0040 and CSMR0[BAM] equals 0x000, \$\overline{FB_CS0}\$ addresses two discontinuous 64 KB memory blocks: one from 0x40_0000 - 0x40_FFFF and one from 0x48_0000 - 0x48_FFFF. Likewise, for \$\overline{FB_CS0}\$ to access 2 MB of address space starting at location 0x40_0000, \$\overline{FB_CS1}\$ must begin at the next byte after \$\overline{FB_CS0}\$ for a 1 MB address space. Therefore, CSAR0 equals 0x0040, CSMR0[BAM] equals 0x001F, CSAR1 equals 0x0060, and CSMR1[BAM] equals 0x000F.
15–9	Reserved, must be cleared.
8 WP	Write protect. Controls write accesses to the address range in the corresponding CSAR. Attempting to write to the range of addresses for which CSAR n[WP] is set results in a bus error termination of the internal cycle and no external cycle. O Read and write accesses are allowed Only read accesses are allowed
7–1	Reserved, must be cleared.
0 V	Valid bit. Indicates whether the corresponding CSAR, CSMR, and CSCR contents are valid. Programmed chip-selects do not assert until V bit is set. Reset clears each CSMRn[V]. Note: At reset, no chip-select can be used until the CSMR0[V] is set. Afterward, FB_CS[1:0] functions as programmed. O Chip-select invalid Chip-select valid

18-6 Freescale Semiconductor

18.3.3 Chip-Select Control Registers (CSCR0 – CSCR1)

Each CSCRn controls the auto-acknowledge, address setup and hold times, port size, and number of wait states.

Address: 0x08 (CSCR0) Access: User read/write 0x14 (CSCR1) R **ASET RDAH** WRAH W Reset: CSCR0 Reset: CSCR1 R WS MUX AAPS W Reset: CSCR0 Reset: CSCR1

Figure 18-4. Chip-Select Control Registers (CSCRn)

Table 18-6. CSCRn Field Descriptions

Field		Descrip	tion					
31–22	Reserved, must be cleared							
21–20 ASET	Address setup. This field controls the assertion of the chip-select with respect to assertion of a valid address and attributes. The address and attributes are considered valid at the same time FB_ALE asserts. 00 Assert FB_CSn on first rising clock edge after address is asserted. (Default FB_CS1) 01 Assert FB_CSn on second rising clock edge after address is asserted. 10 Assert FB_CSn on third rising clock edge after address is asserted. 11 Assert FB_CSn on fourth rising clock edge after address is asserted. (Default FB_CS0)							
19–18 RDAH	Read address hold or deselect. This field controls the address and attribute hold time after the termination during a read cycle that hits in the chip-select address space. Note: The hold time applies only at the end of a transfer. Therefore, during a transfer to a port size smaller than the transfer size, the hold time is only added after the last bus cycle. The number of cycles the address and attributes are held after FB_CSn negation depends on the value of CSCRn[AA] as shown below.							
		RDAH	AA = 1					
		00 0 cycles (FB_CS1 Default)						
	01 1 cycles							
		10	2 cycles					
		11 (FB_CS0 Default)	3 cycles					

Table 18-6. CSCRn Field Descriptions (Continued)

Field	Description
17–16 WRAH	 Write address hold or deselect. This field controls the address, data, and attribute hold time after the termination of a write cycle that hits in the chip-select address space. Note: The hold time applies only at the end of a transfer. Therefore, during a transfer to a port size smaller than the transfer size, the hold time is only added after the last bus cycle. 00 Hold address and attributes one cycle after FB_CSn negates on writes. (Default FB_CS1) 01 Hold address and attributes two cycles after FB_CSn negates on writes. 10 Hold address and attributes three cycles after FB_CSn negates on writes. 11 Hold address and attributes four cycles after FB_CSn negates on writes. (Default FB_CS0)
15–10 WS	Wait states. The number of wait states inserted after $\overline{FB_CS n}$ asserts and before an internal transfer acknowledge is generated (WS = 0 inserts zero wait states, WS = 0x3F inserts 63 wait states).
9 MUX	Multiplexed mode. Selects between multiplexed and non-multiplexed address/data bus. 0 Non-multiplexed configuration. Address information is driven on FB_ADn and data is read/written on FB_dn. 1 Non-multiplexed configuration. Address information is driven on FB_ADn, and low-order address lines (FB_AD[7:0] for byte port size or FB_AD[15:0] for word port size) must be latched using the falling edge of FB_ALE as the latch enable. Data is read/written on FB_AD[7:0] for byte port size and FB_AD[15:0] for word port size.
8 AA	Auto-acknowledge enable. Determines the assertion of the internal transfer acknowledge for accesses specified by the chip-select address. This bit must be set. O Reserved Internal transfer acknowledge is asserted as specified by WS
	Note: This bit must be set, since only internal termination is supported by the Mini-FlexBus.
7–6 PS	Port size. Specifies the data port width associated with each chip-select. It determines where data is driven during write cycles and where data is sampled during read cycles. 00 Reserved 01 8-bit port size. Valid data sampled and driven on FB_D[7:0] 1x 16-bit port size. Valid data sampled and driven on FB_AD[15:0]. Only supported in multiplexed mode.
5–0	Reserved, must be cleared.

18.4 Functional Description

18.4.1 Chip-Select Operation

Each chip-select has a dedicated set of registers for configuration and control:

- Chip-select address registers (CSAR*n*) control the base address space of the chip-select. See Section 18.3.1, "Chip-Select Address Registers (CSAR0 CSAR1)."
- Chip-select mask registers (CSMRn) provide 16-bit address masking and access control. See Section 18.3.2, "Chip-Select Mask Registers (CSMR0 CSMR1)."
- Chip-select control registers (CSCRn) provide port size, wait-state generation, address setup and hold times, and automatic acknowledge generation features. See Section 18.3.3, "Chip-Select Control Registers (CSCR0 – CSCR1)."

MCF51MM256 Series Devices Reference Manual, Rev. 3

18.4.1.1 General Chip-Select Operation

When a bus cycle is routed to the Mini-FlexBus, the device first compares its address with the base address and mask configurations programmed for chip-selects 0 and 1 (configured in CSCR0 – CSCR1). The results depend on if the address matches or not as shown in Table 18-7.

Table 18-7. Results of Address Comparison

Address Matches CSAR n?	Result
Yes, one CSAR	The appropriate chip-select is asserted, generating an external bus cycle as defined in the chip-select control register. If CSMR[WP] is set and a write access is performed, the internal bus cycle terminates with a bus error, no chip select is asserted, and no external bus cycle is performed.
No	The internal bus cycle terminates with a bus error, no chip select is asserted, and no external bus cycle is performed.
Yes, multiple CSARs	The internal bus cycle terminates with a bus error, no chip select is asserted, and no external bus cycle is performed.

18.4.1.2 8- and 16-Bit Port Sizing

Static bus sizing is programmable through the port size bits, CSCR[PS]. The processor always drives a 20-bit address on the FB_AD bus regardless of the external device's address size. The external device must connect its address lines to the appropriate FB_AD bits from FB_AD0 upward. Its data bus must be connected to FB_AD[7:0] in non-multiplexed mode (CSCR[MUX] = 0) or FB_AD0 to FB_ADn in multiplexed mode (CSCR[MUX] = 1) where n = 15 if CSCR[PS] = 1x or n = 7 if CSCR[PS] = 01. No bit ordering is required when connecting address and data lines to the FB_AD bus. For example, a full 16-bit address/16-bit data device connects its addr[15:0] to FB_AD[16:1] and data[15:0] to FB_AD[15:0]. See Figure 18-5 for a graphical connection.

18.4.2 Data Transfer Operation

Data transfers between the chip and other devices involve these signals:

- Address/data bus (FB AD[19:0])
- Control signals (FB_ALE, FB_CSn, FB_OE)
- Attribute signals (FB_R/ \overline{W})

The address, write data, FB_ALE, FB_CSn, and all attribute signals change on the rising edge of the Mini-FlexBus clock (FB_CLK). Read data is latched into the device on the rising edge of the clock.

The Mini-FlexBus supports byte-, word-, longword-, and 16-byte (line) operand transfers and allows accesses to 8- and 16-bit data ports. Transfer parameters (address setup and hold, port size, the number of wait states for the external device being accessed, automatic internal transfer termination enable or disable) are programmed in the chip-select control registers (CSCRs). See Section 18.3.3, "Chip-Select Control Registers (CSCR0 – CSCR1)."

18.4.3 Data Byte Alignment and Physical Connections

The device aligns data transfers in Mini-FlexBus byte lanes with the number of lanes depending on the data port width. Figure 18-5 shows the byte lanes that external memory connects to and the sequential transfers of a longword transfer for the supported port sizes . For example, an 8-bit memory connects to the single lane FB_AD[7:0]. A longword transfer through this 8-bit port takes four transfers, starting with the MSB to the LSB.

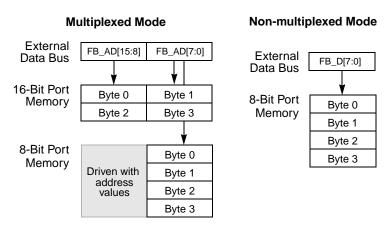


Figure 18-5. Connections for External Memory Port Sizes

18.4.4 Address/Data Bus Multiplexing

The interface supports a single 20-bit wide multiplexed address and data bus (FB_AD[19:0]). The full 20-bit address is always driven on the first clock of a bus cycle. During the data phase, the FB_AD[15:0] lines used for data are determined by the programmed port size for the corresponding chip select. The device continues to drive the address on any FB_AD[15:0] lines not used for data.

The table below lists the supported combinations of address and data bus widths.

FB_AD Port Size & Phase [15:8] [19:16] [7:0] Address phase Address 16-bit Data Data phase Address Address Address phase 8-bit Data phase Address Data

Table 18-9. Mini-FlexBus Multiplexed Operating Modes

18.4.5 Bus Cycle Execution

As shown in Figure 18-8 and Figure 18-10, basic bus operations occur in four clocks:

- 1. S0: At the first clock edge, the address, attributes, and FB ALE are driven.
- 2. S1: FB_CSn is asserted at the second rising clock edge to indicate the device selected; by that time, the address and attributes are valid and stable. FB_ALE is negated at this edge.

MCF51MM256 Series Devices Reference Manual, Rev. 3

18-10 Freescale Semiconductor

For a write transfer, data is driven on the bus at this clock edge and continues to be driven until one clock cycle after \overline{FB} _CSn negates. For a read transfer, data is also driven into the device during this cycle.

- 3. S2: Read data is sampled on the third clock edge. After this edge read data can be tri-stated.
- 4. S3: FB_CSn is negated at the fourth rising clock edge. This last clock of the bus cycle uses what would be an idle clock between cycles to provide hold time for address, attributes, and write data.

18.4.5.1 Data Transfer Cycle States

An on-chip state machine controls the data-transfer operation in the device. Figure 18-6 shows the state-transition diagram for basic read and write cycles.

Figure 18-6. Data-Transfer-State-Transition Diagram

Table 18-10 describes the states as they appear in subsequent timing diagrams.

Table 18-10. Bus Cycle States

State	Cycle	Description
S0	All	The read or write cycle is initiated. On the rising clock edge, the device places a valid address on FB_AD[19:0], asserts FB_ALE, and drives FB_R/W high for a read and low for a write.
S1	All	FB_ALE is negated on the rising edge of FB_CLK, and FB_CSn is asserted. Data is driven on FB_AD[X:0] for writes, and FB_AD[X:0] is tristated for reads. Address continues to be driven on the FB_AD pins that are unused for data.
	Read	Data is driven by the external device before the next rising edge of FB_CLK (the rising edge that begins S2).
S2	All	FB_CSn is negated and the internal system bus transfer is completed.
	Read	The processor latches data on the rising clock edge entering S2. The external device can stop driving data after this edge. However, data can be driven until the end of S3 or any additional address hold cycles.
S3	All	Address, data, and FB_R/W go invalid off the rising edge of FB_CLK at the beginning of S3, terminating the read or write cycle.

18.4.6 Mini-FlexBus Timing Examples

18.4.6.1 Basic Read Bus Cycle

During a read cycle, the ColdFire device receives data from memory or a peripheral device. Figure 18-7 is a read cycle flowchart.

NOTE

Throughout this chapter FB_AD[X:0] indicates a 16-, or 8-bit wide data bus. FB_AD[19:X+I] is an address bus that can be 12-, or 4-bits in width.

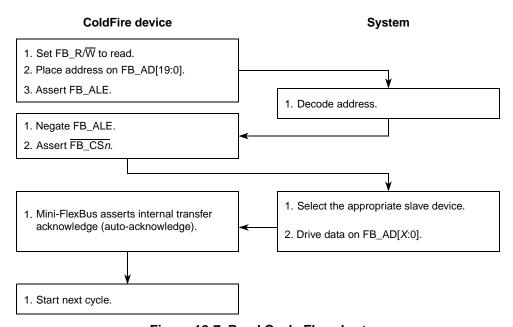


Figure 18-7. Read Cycle Flowchart

The read cycle timing diagram is shown in Figure 18-8.

NOTE

The processor drives the data lines during the first clock cycle of the transfer with the full 20-bit address. This may be ignored by standard connected devices using non-multiplexed address and data buses. However, some applications may find this feature beneficial.

MCF51MM256 Series Devices Reference Manual, Rev. 3

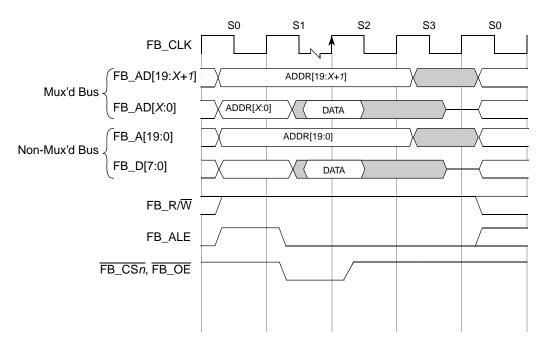


Figure 18-8. Basic Read-Bus Cycle

18.4.6.2 Basic Write Bus Cycle

During a write cycle, the device sends data to memory or to a peripheral device. Figure 18-9 shows the write cycle flowchart.

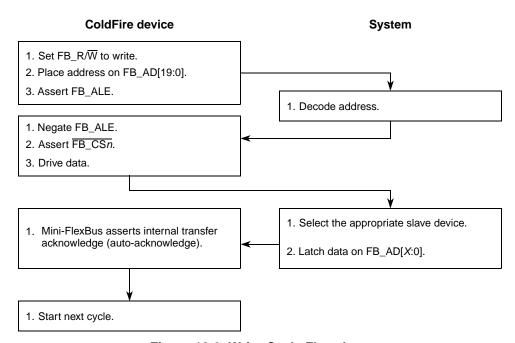


Figure 18-9. Write-Cycle Flowchart

MCF51MM256 Series Devices Reference Manual, Rev. 3

Figure 18-10 shows the write cycle timing diagram.

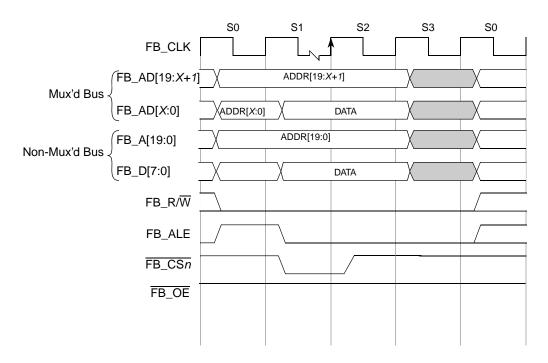


Figure 18-10. Basic Write-Bus Cycle

18.4.6.3 Bus Cycle Sizing

This section shows timing diagrams for various port size scenarios. Figure 18-11 illustrates the basic byte read transfer to an 8-bit device with no wait states. The address is driven on the full FB_AD[19:8] bus in

the first clock. The device tristates FB_AD[7:0] on the second clock and continues to drive address on FB_AD[19:8] throughout the bus cycle. The external device returns the read data on FB_AD[7:0].

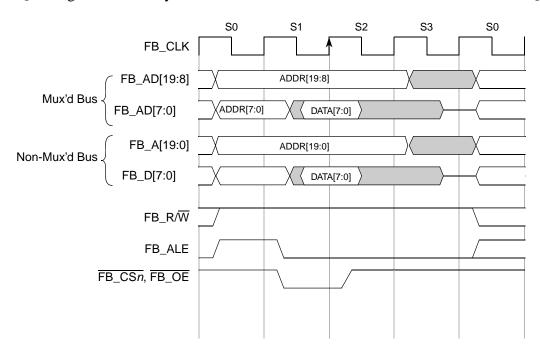


Figure 18-11. Single Byte-Read Transfer

Figure 18-12 shows the similar configuration for a write transfer. The data is driven from the second clock on FB_AD[7:0].

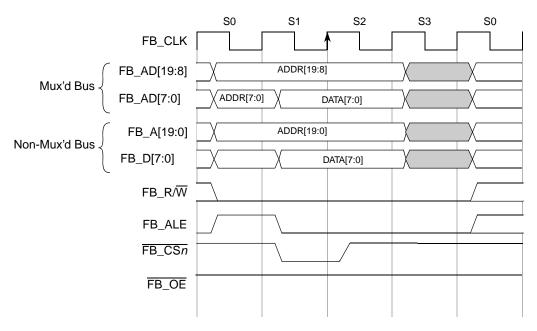


Figure 18-12. Single Byte-Write Transfer

MCF51MM256 Series Devices Reference Manual, Rev. 3

Figure 18-13 illustrates the basic word read transfer to a 16-bit device with no wait states. The address is driven on the full FB_AD[19:0] bus in the first clock. The device tristates FB_AD[15:0] on the second clock and continues to drive the address on FB_AD[19:16] throughout the bus cycle. The external device returns the read data on FB_AD[15:0].

NOTE

In non-multiplexed mode, the Mini-FlexBus does not support connection to a 16-bit device.

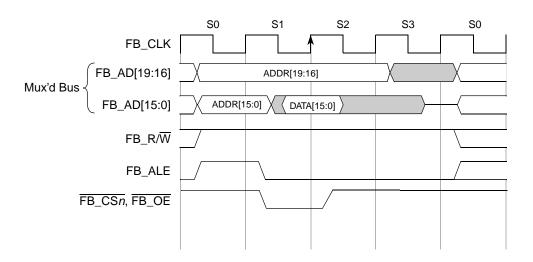


Figure 18-13. Single Word-Read Transfer

Figure 18-14 shows the similar configuration for a write transfer. The data is driven from the second clock on FB_AD[15:0].

NOTE

In non-multiplexed mode, the Mini-FlexBus does not support connection to a 16-bit device.

18-16 Freescale Semiconductor

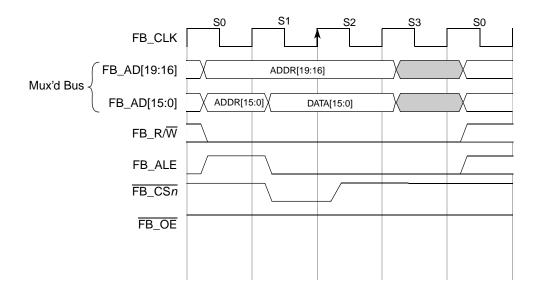


Figure 18-14. Single Word-Write Transfer

18.4.6.4 Timing Variations

The Mini-FlexBus module has several features that can change the timing characteristics of a basic reador write-bus cycle to provide additional address setup, address hold, and time for a device to provide or latch data.

18.4.6.4.1 Wait States

Wait states can be inserted before each beat of a transfer by programming the CSCR*n* registers. Wait states can give the peripheral or memory more time to return read data or sample write data.

Figure 18-15 and Figure 18-16 show the basic read and write bus cycles (also shown in Figure 18-8 and Figure 18-13) with the default of no wait states.

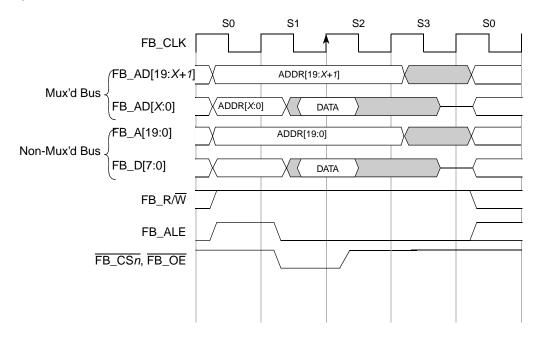


Figure 18-15. Basic Read-Bus Cycle (No Wait States)

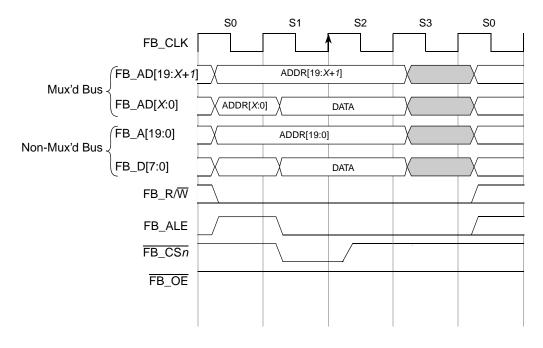


Figure 18-16. Basic Write-Bus Cycle (No Wait States)

18-18 Freescale Semiconductor

If wait states are used, the S1 state repeats continuously until the the chip-select auto-acknowledge unit asserts internal transfer acknowledge. Figure 18-17 and Figure 18-18 show a read and write cycle with one wait state.

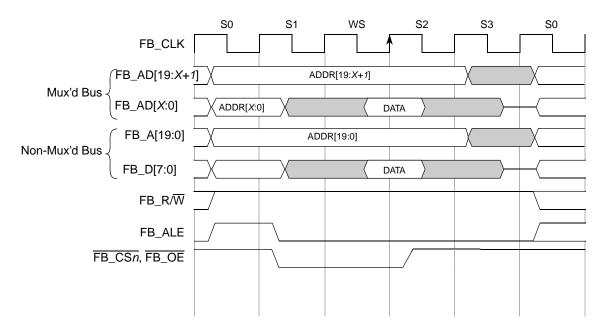


Figure 18-17. Read-Bus Cycle (One Wait State)

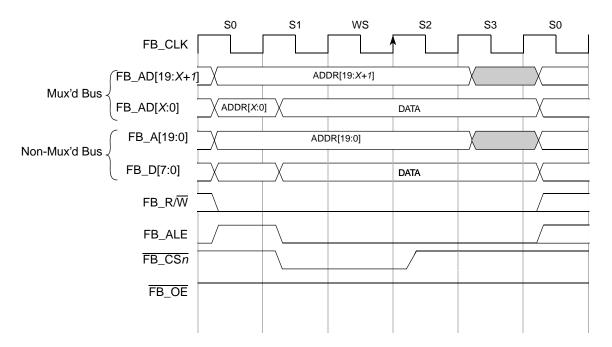


Figure 18-18. Write-Bus Cycle (One Wait State)

18.4.6.4.2 Address Setup and Hold

The timing of the assertion and negation of the chip selects, byte selects, and output enable can be programmed on a chip-select basis. Each chip-select can be programmed to assert one to four clocks after address-latch enable (FB_ALE) is asserted. Figure 18-19 and Figure 18-20 show read- and write-bus cycles with two clocks of address setup.

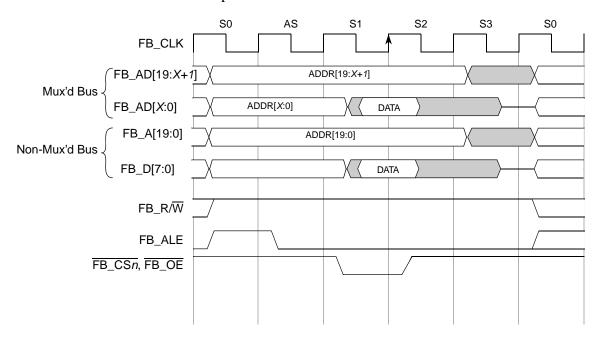


Figure 18-19. Read-Bus Cycle with Two-Clock Address Setup (No Wait States)

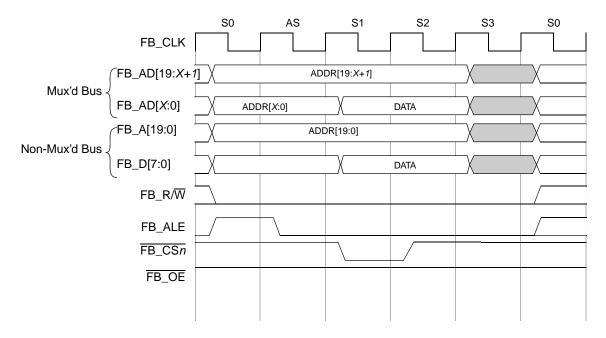


Figure 18-20. Write-Bus Cycle with Two Clock Address Setup (No Wait States)

MCF51MM256 Series Devices Reference Manual, Rev. 3

18-20 Freescale Semiconductor

In addition to address setup, a programmable address hold option for each chip select exists. Address and attributes can be held one to four clocks after chip-select, byte-selects, and output-enable negate. Figure 18-21 and Figure 18-22 show read and write bus cycles with two clocks of address hold.

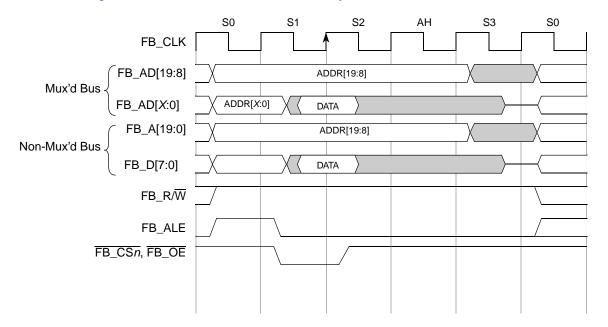


Figure 18-21. Read Cycle with Two-Clock Address Hold (No Wait States)

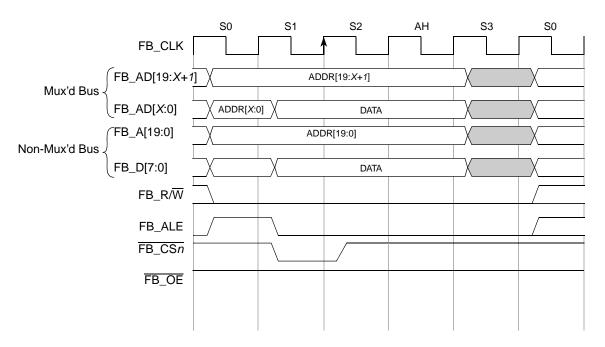


Figure 18-22. Write Cycle with Two-Clock Address Hold (No Wait States)

Figure 18-23 shows a bus cycle using address setup, wait states, and address hold.

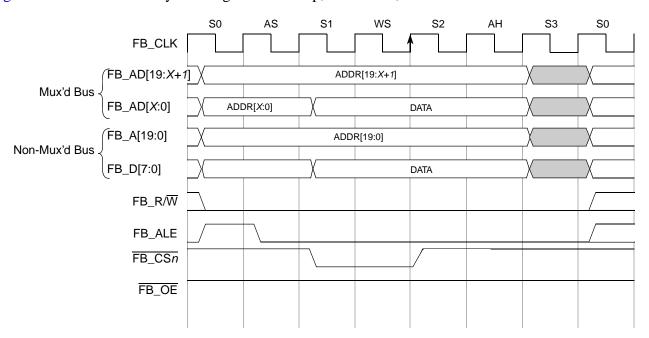


Figure 18-23. Write Cycle with Two-Clock Address Setup and Two-Clock Hold (One Wait State)

18.4.7 Bus Errors

There are certain accesses to the Mini-FlexBus that cause the system bus to hang. It is important to have a good access-error handler to manage these conditions.

One such access is if CSCRn[AA] is cleared, the system hangs. Four other types of accesses cause the access to terminate with a bus error.

- Mini-Flexbus module disabled using the platform peripheral power management control.
 Mini-FlexBus accesses cause an error termination on the bus and prohibit the access to the Mini-FlexBus.
- Attempted writes to space defined as write protected (CSMRn[WP] is set) are terminated with an error response and the access is inhibited to the Mini-FlexBus.
- Mini-FlexBus access not hitting in either chip select region is terminated with an error response and the access is inhibited to the Mini-FlexBus.
- Mini-FlexBus access hitting in both chip select regions is terminated with an error response and the access is inhibited to the Mini-FlexBus

18-22 Freescale Semiconductor

Chapter 19 General Purpose Operational Amplifier (OPAMP)

19.1 Introduction

The general purpose amplifier (OPAMP) block is a CMOS single supply, low input offset voltage, low input offset and bias current amplifier that is designed for low-voltage, low-power operation over an input voltage range of 1.8 V to 3.6 V. The OPAMP also has several timing and control settings that can be software configured depending on the applications requirements. Timing and control consists of registers and control logic for:

- Amplifier gain programmable
- Operation in low-power modes

The devices contain two OPAMP modules. These modules can be configured to perform many different OPAMP configurations. The output of the OPAMP modules can be routed to the ADC for signal analysis. Figure 19-1 shows the block diagram with the OPAMP highlighted.

19.1.1 OPAMP Clock Gating

The bus clock to the OPAMPx can be gated on and off using the OPAMPx bit in SCGC3. These bits are set after any reset, which enables the bus clock to this module. To conserve power, these bits can be cleared to disable the clock to this module when not in use. See Section 5.6, "Peripheral Clock Gating," for details.

General Purpose Operational Amplifier (OPAMP)

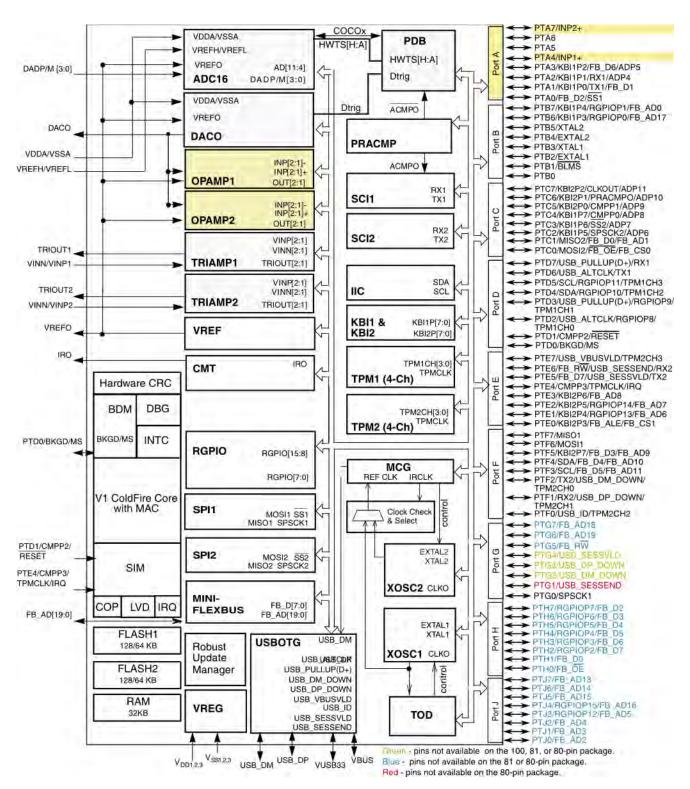


Figure 19-1. Block Diagram with the OPAMP Module Highlighted

19-2 Freescale Semiconductor

19.1.2 Features

The General Purpose Operational Amplifier (OPAMP) module features include:

- 1.8 V-3.6 V V_{DD} operation
- Programmable voltage gain
- On-chip generation of bias voltages
- Low-power, low-voltage CMOS technology
- Low-input offset voltage¹
- Low-input offset current¹
- Low-input bias current¹
- Low-current consumption¹

19.1.3 Modes of Operation

The OPAMP module supports the following operation modes

- STOP2 is disabled and not powered.
- STOP3 is disabled and not powered when GAMPEN is low.
- WAIT is disabled and not powered when GAMPEN is low.

^{1.} Please refer to data sheet for latest characterization data.

General Purpose Operational Amplifier (OPAMP)

19.1.4 Block Diagram

Figure 19-2 is a block diagram of the OPAMP module.

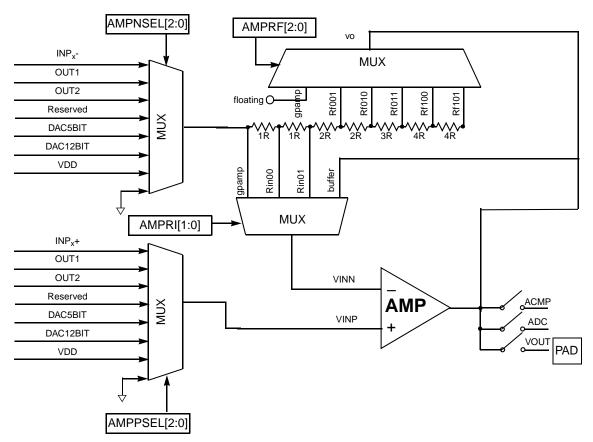


Figure 19-2. OPAMP Block Diagram

Table 19-1. Signal Properties

MODE1	MODE0	AMPRI[1:0]	AMPRF[2:0]	Buffer	gpamp	Gain	Function
0	0	xx	xxx	1	0	_	Buffer Mode
1	0	XX	xxx	0	1	_	General Amplifier Mode
0	1	00	000	х	х	_	Inverting PGA Mode
0	1	00	001	х	х	3	Inverting PGA Mode
0	1	00	010	х	х	5	Inverting PGA Mode
0	1	00	011	х	х	8	Inverting PGA Mode
0	1	00	100	Х	х	12	Inverting PGA Mode
0	1	00	101	х	х	16	Inverting PGA Mode
0	1	00	110	Х	х	_	Inverting PGA Mode
0	1	00	111	х	х	_	Inverting PGA Mode
0	1	01	000	х	х	_	Inverting PGA Mode
0	1	01	001	х	х	1	Inverting PGA Mode

MCF51MM256 Series Devices Reference Manual, Rev. 3

19-4 Freescale Semiconductor

Table 19-1. Signal Properties (Continued)

MODE1	MODE0	AMPRI[1:0]	AMPRF[2:0]	Buffer	gpamp	Gain	Function
0	1	01	010	Х	х	2	Inverting PGA Mode
0	1	01	011	Х	х	7/2	Inverting PGA Mode
0	1	01	100	Х	х	11/2	Inverting PGA Mode
0	1	01	101	Х	х	15/2	Inverting PGA Mode
0	1	01	110	Х	х	_	Inverting PGA Mode
0	1	01	111	Х	х	_	Inverting PGA Mode
1	1	00	000	Х	х	_	Non-inverting PGA Mode
1	1	00	001	Х	х	4	Non-inverting PGA Mode
1	1	00	010	Х	х	6	Non-inverting PGA Mode
1	1	00	011	Х	х	9	Non-inverting PGA Mode
1	1	00	100	Х	х	13	Non-inverting PGA Mode
1	1	00	101	Х	х	17	Non-inverting PGA Mode
1	1	00	110	Х	х	_	Non-inverting PGA Mode
1	1	00	111	Х	х	_	Non-inverting PGA Mode
1	1	01	000	Х	х	_	Non-inverting PGA Mode
1	1	01	001	Х	х	2	Non-inverting PGA Mode
1	1	01	010	Х	х	3	Non-inverting PGA Mode
1	1	01	011	Х	х	9/2	Non-inverting PGA Mode
1	1	01	100	Х	х	13/2	Non-inverting PGA Mode
1	1	01	101	Х	х	17/2	Non-inverting PGA Mode
1	1	01	110	Х	х	_	Non-inverting PGA Mode
1	1	01	111	Х	х	_	Non-inverting PGA Mode

19.2 Signal Description

Table 19-2. Signal Properties

Name	Direction	Source/ Destination	Description
INP _x -	INPUT	PAD	Amplifier negative input terminal — This is an analog input terminal. The leakage and offset current of the pad should be significantly small. ¹
INP _x +	INPUT	PAD	Amplifier positive input terminal — This is an analog input terminal. The leakage and offset current of the pad should be significantly small. ¹
VOUT _x	OUTPUT	PAD	Amplifier output terminal — This is an analog output terminal.

See the Data Sheet for the value of input offset current and input bias current.

General Purpose Operational Amplifier (OPAMP)

19.3 Memory Map and Registers

This section provides a detailed description of all memory and registers.

19.3.1 Module Memory Map

The memory map for the OPAMP module is given in Table 19-3. The address listed for each register is the address offset. The total address for each register is the sum of the base address for the OPAMP module and the address offset for each register.

Address	Use	Access
0x00	GPAMP Control Register 0 (GPAMPxC0)	Read/Write
0x01	GPAMP Control Register 1 (GPAMPxC1)	Read/Write
0x02	GPAMP Control Register 2 (GPAMPxC2)	Read/Write

Table 19-3. Module Memory Map

19.3.2 Register Descriptions

This section consists of register descriptions. Each description includes a standard register diagram. Details of register bit and field function follow the register diagrams, in bit order.

19.3.2.1 GPAMP Control Register 0 (GPAMPxC0)

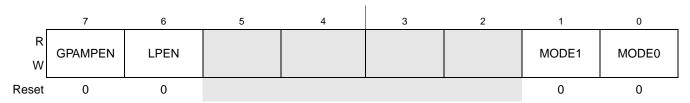


Figure 19-3. GPAMP Control Register 0 (GPAMPxC0)

Table 19-4. GPAMPxC0 Field Descriptions

Field	Description
7 GPAMPEN	OPAMP Enable — The GPAMPEN bit enables General Purpose Operational Amplifier. 1 The OPAMP is disabled and not powered. This mode of operation is available in any of the modes the MCU operates. 2 OPAMP is enabled. In this mode the amplifier is powered and enabled. This mode of operation is available when the MCU is in modes other than Stop1 and Stop2 mode.
6 LPEN	Low-Power Mode Enable 0 The OPAMP is working in high-speed mode. 1 The OPAMP is working in low-power mode.

MCF51MM256 Series Devices Reference Manual, Rev. 3

19-6

Freescale Semiconductor

Table 19-4. GPAMPxC0 Field Descriptions (Continued)

Field	Description
5:2	Reserved
1:0 MODE	PGA Gain Setting — Selects the OPAMP gain. 00 Buffer 10 General purpose 01 Inverting PGA 11 Non-inverting PGA

19.3.2.2 GPAMP Control Register 1 (GPAMPxC1)

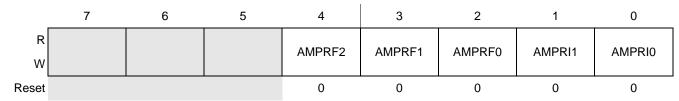


Figure 19-4. GPAMP Control Register 1 (GPAMPxC1)

Table 19-5. GPAMPxC1 Field Descriptions

Field	Description
7:5	Reserved
4:2 AMPRF	OPAMP Gains Selector see Table 19-1
1:0 AMPR	OPAMP Gains Selector see Table 19-1

19.3.2.3 GPAMP Control Register 2 (GPAMPxC2)

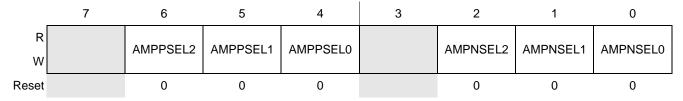


Figure 19-5. GPAMP Control Register 2 (GPAMPxC2)

General Purpose Operational Amplifier (OPAMP)

Table 19-6. GPAMPxC2 Field Descriptions

Field	Description
7	Reserved
6–4 AMPPSEL	Amplifier Positive Input Terminal Selector 000 INP _x + 001 OUT1 010 OUT2 011 Reserved 100 DAC5BIT 101 DAC12BIT 110 VDD 111 GND
3	Reserved
2-0 AMPNSEL	Amplifier Negative Input Terminal Selector 000 INP _x - 001 OUT1 010 OUT2 011 Reserved 100 DAC5BIT 101 DAC12BIT 110 VDD 111 GND

19.4 Functional Description

This section provides a complete functional description of the General Purpose Operational Amplifier (OPAMP) block, detailing the operation of the design from the end-user perspective.

19.4.1 **OPAMP** Configuration

The following is a block diagram of the OPAMP module in general purpose mode.

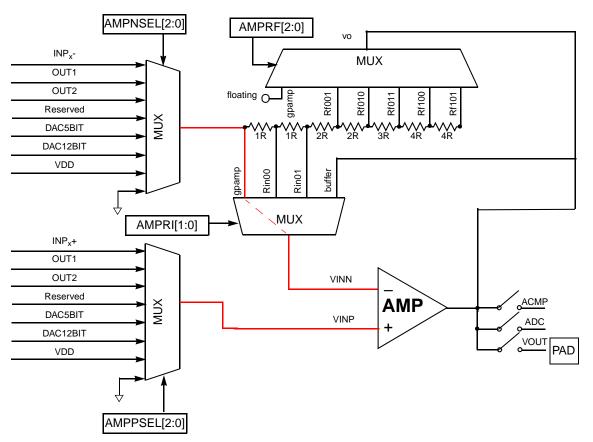


Figure 19-6. Operational Amplifier (OPAMP) Block Diagram in General Purpose Mode

General Purpose Operational Amplifier (OPAMP)

19.4.2 Buffer Configuration

The following is a block diagram of the OPAMP module in buffer configuration mode.



Figure 19-7. Operational Amplifier (OPAMP) Block Diagram in Buffered Configuration Mode

19-10 Freescale Semiconductor

19.4.3 Inverting PGA Configuration

The following is a block diagram of the OPAMP module in inverting PGA configuration.

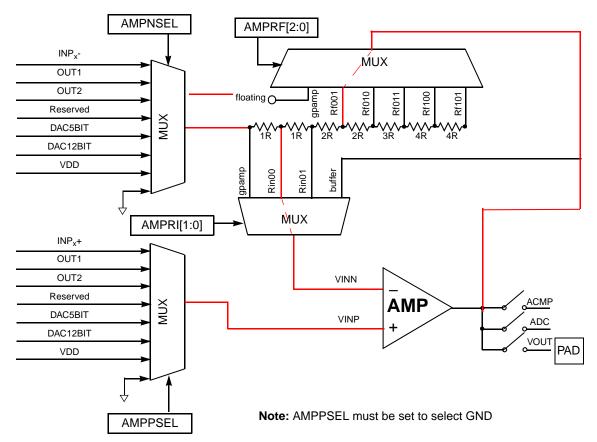


Figure 19-8. Operational Amplifier (OPAMP) Block Diagram in Inverting PGA Mode

General Purpose Operational Amplifier (OPAMP)

19.4.4 Non-Inverting PGA Configuration

The following is a block diagram of the OPAMP module in non-inverting PGA configuration.

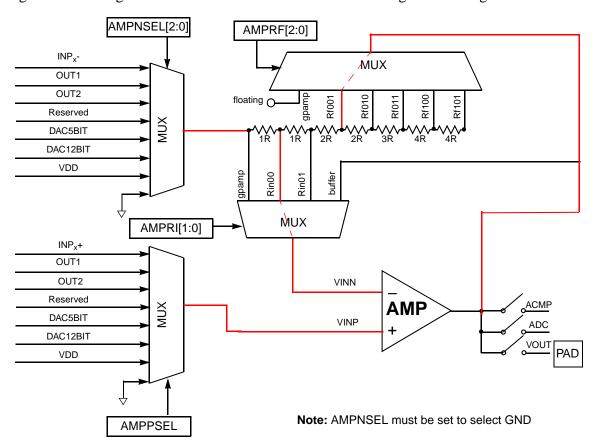


Figure 19-9. Operational Amplifier (OPAMP) Block Diagram in Non-Inverting PGA Mode

19-12 Freescale Semiconductor

Chapter 20 Programmable Delay Block (PDB)

20.1 Introduction

The Programmable Delay Block (PDB) is a key component in the measurement engine. This simple timer is used to control the hardware triggering of the ADC and the DAC so that precise timing between DAC updates and ADC conversions can be achieved.

NOTE

This device has eight (8) PDB channels where n is mentioned as 0 to 7 in this chapter. However, the corresponding PDBDLYn registers are labeled as PDBDLYA to PDBDLYH in the memory map.

20.1.1 Overview

Many applications need to synchronize the time at which multiple ADC samples are taken with respect to an external trigger or event. The Programmable Delay Block provides controllable delays from either an external trigger or a programmable interval tick to the sample trigger input of one or more ADCs. The PDB also can generate a hardware trigger to the DAC. This signal can be used to advance the DAC Buffer pointer in order to change sensor biasing while ADC conversions are being triggered.

20.1.2 PDB Trigger Inputs

The PDB on these devices has three input trigger sources that initiate the PDB operation. The three sources are:

- ACMP output (ACMPO)
- ADC flag ADCSC1A_COCO
- Software

To select the input trigger source, set the TRIGSEL bits in the PDBC1 register as described in the following table.

Table 20-1. Selecting the PDB Input Trigger Source

Input Trigger Source	PDBC1 Register Value for TRIGSEL bits	Connected to
ACMPO	0b001	TRIGGERIN1
ADCSC1A_COCO	0b000	TRIGGERIN0

Programmable Delay Block (PDB)

Table 20-1. Selecting the PDB Input Trigger Source

Input Trigger Source	PDBC1 Register Value for TRIGSEL bits	Connected to
Software Trigger	0b111	

20.2 ADC Hardware Triggers and Selects

The following table explains the ADHWT and ADHWTSn source as referenced in the ADC chapter.

Table 20-2. ADC Hardware Triggers and Selects

PDB Pre-Trigger	Trigger/Select	Conversion
PDB Trigger 0	ADHWT	This triggers the ADC conversion.
PDB Pre-Trigger 0	ADHWTSA	This selects ADCSC1A.
PDB Pre-Trigger 1	ADHWTSB	This selects ADCSC1B.
PDB Pre-Trigger 2	ADHWTSC	This selects ADCSC1C.
PDB Pre-Trigger 3	ADHWTSD	This selects ADCSC1D.
PDB Pre-Trigger 4	ADHWTSE	This selects ADCSC1E.
PDB Pre-Trigger 5	ADHWTSF	This selects ADCSC1F.
PDB Pre-Trigger 6	ADHWTSG	This selects ADCSC1G.
PDB Pre-Trigger 7	ADHWTSH	This selects ADCSC1H.

20.2.1 PDB Trigger Acknowledgement Inputs

The PDB Trigger Acknowledgement inputs in back-to-back operation mode are connected to the ADCSC1*n*_COCO flag. ADCSC1B_COCO to ADCSC1H_COCO acknowledge PDB channel 1 to 7 respectively.

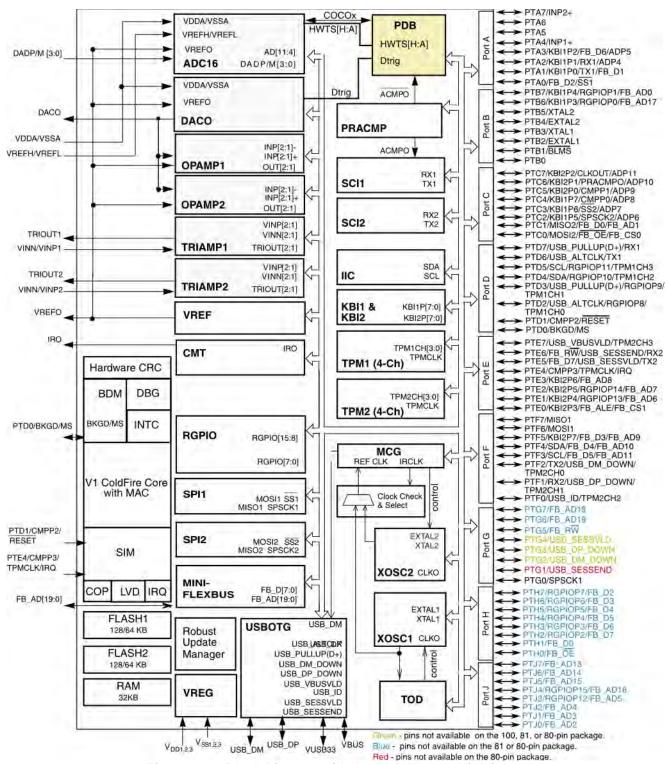


Figure 20-1. Block Diagram with the PDB Module Highlighted

20.2.2 Features

- Eight channels
 - Each channel supplies a single trigger output event
 - Each trigger output is independently enabled and individually controlled
 - Each channel can be triggered from a programmed delay or from previous channel acknowledgment
- All channel trigger outputs can be ORed together to schedule multiple conversions from one input trigger event
- Prescaler options to support divided-by-1 up to divided-by-2560
- DAC Trigger Interval Register (16-bit) that is used to place the interval count between DAC hardware trigger output signals
- Multiple sources for PDB input triggering
 - Single software trigger input
 - Up to 7 trigger inputs from either on-chip or off-chip sources
- Positive transition of trigger_in will initiate the PDB primary counter
- Continuous trigger or single shot mode supported
- Bypass mode supported
- One programmable interrupt

20.2.3 Modes of Operation

Modes of operation include:

Disabled Counter is off and all trigger outputs are low.

Enabled OneShot Counter is enabled and restarted at count zero upon receiving a positive edge on

the trigger input. Each Trigger output asserts once per input trigger.

Enabled Continuous Counter is enabled and restarted at count zero. The counter will be rolled over to

zero again when the count reaches the value specified in the MOD internal buffer, and counting restarts. This enables a continuous stream of triggers out as a result

of a single trigger input.

Enabled Back-to-BackThe PDB trigger logic initiates triggers based on the Triggern acknowledgment

detect signal. This signal comes from the conversion complete flag of the ADCSCn. With this configuration, ADC conversions can occur back to back.

Enabled Bypassed The input trigger bypasses the PDB logic entirely. It is possible to bypass all or

only one of the trigger outputs; Therefore this mode can be used in conjunction

with any of the above.

NOTE

• For all of the Enabled modes, if the DAC hardware trigger output is enabled each time the count reaches the DAC interval count value, a trigger signal is sent to the DAC.

20-4 Freescale Semiconductor

• In Enabled OneShot and Enabled Continuous modes, the outputs of the channel comparators can be combined in such a way that all the ADC events can be triggered from a single input event. These are referred to as AllShot and Continuous AllShot modes.

20.2.4 Block Diagram

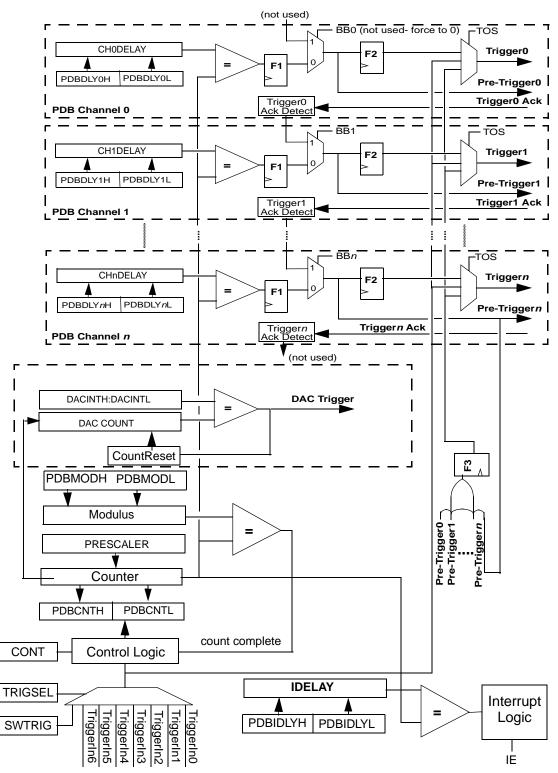


Figure 20-2. PDB Block Diagram

Figure 20-2. illustrates the basic structure of the PDB block. It contains a primary counter whose output is compared against several different digital values.

Each channel output delay (PDBDLY*n*H:L) determines the time between assertion of the trigger input (software or hardware trigger) to the point at which the associated ADC trigger output signals are generated. These times are defined as:

- Trigger input to Pre-Trigger $n = (PRESCALER \times PDBDLYnH:L) + 1$ peripheral bus clock cycle
- Add one additional peripheral bus clock cycle to determine the time at which the trigger output pulses for 1 peripheral bus clock cycle.

Pre-Trigger outputs are used to precondition interfacing logic one peripheral bus clock period prior to the actual event trigger. When interfacing to ADC blocks with multiple control and result registers, Pre-Trigger outputs provide select control for these registers, allowing them to operate in a ping-pong fashion, sequencing through conversions between multiple analog sources without reconfiguration of the ADC.

The signals shown in Figure 20-3. would be used to operate the ADC to sample signal A and sample single B in OneShot mode. The trigger delays for the ADC are independently set via the Delay 0 and Delay 1 parameters placed in the PDBDLYnH:L. The PDB input trigger signal from a separate module or software can initiate the PDB to trigger the ADC twice with two different delays. But the time between Trigger0 and Trigger1 must be longer than the ADC conversion time, then the second trigger signal can take effect.

NOTE

PDB timing for trigger input to Pre-Triggern = (PRESCALER x PDBDLYnH:L) + 1 peripheral bus clock cycle. Add one additional peripheral bus clock cycle to determine the time at which the trigger output pulses for 1 peripheral bus clock cycle.

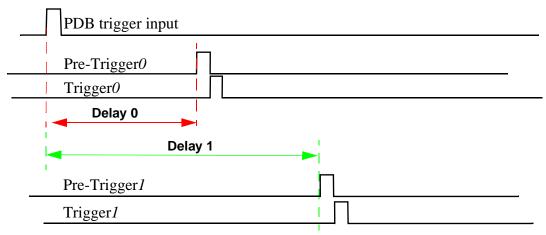


Figure 20-3. Decoupled Channel Trigger Generation

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor 20-7

The third digital value, modulus, resets the counter to zero at the end of the count. If the CONT bit in the PDBC1 is set, the counter resumes a new count. Otherwise, the timer operation will cease until the next trigger input event occurs.

The DAC Interval Register (DACINTH:L) determines the time between DAC hardware trigger pulses. If the DAC trigger output is enabled (DACTOE is set) each time the PDB counter register increments the number of counts placed in the DACINTH:L registers, the PDB will output a DAC trigger pulse.

Together the DAC trigger pulse and the ADC trigger pulses allow precise timing of DAC updates and ADC measurements.

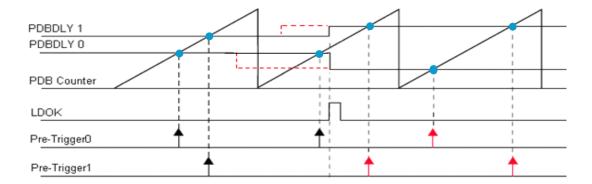
The following 16-bit registers impact PDB operation:

- Channel Delay register (PDBDLY*n*H:L)
- Modulus register (PDBMODH:L)
- Interrupt Delay register (PDBIDLYH:L)
- DAC Trigger Interval register (DACINTH:L)

Like all 16-bit registers, these internal registers are buffered and any values written to them are written first to their buffer registers. The circumstances that cause these registers to be updated with the values from their buffer registers are summarized in the following table according to the current operation mode.

Operation Mode	PDBSC Register		Value Undates
	LDOK bit	LDMOD bit	Value Updates
Any mode	Write 1	0	Immediately after write 1 to LDOK.
Continuous	Write 1	1	Immediately after counter rolls over.
OneShot	Write 1	1	Immediately after trigger signal received.

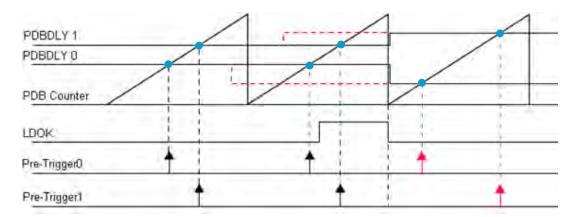
Table 20-3. Updating the registers that impact PDB operation


Values written to any of these registers after a logic 1 is written to the LDOK bit, are ignored and the associated buffer register is not updated until the existing values in the buffer registers are loaded into the internal registers. Read the LDOK bit to determine if the values in buffer registers have been loaded into internal registers and have taken effect.

The PDB 16-bit counter operates on up count mode. The two read-only counter registers contain the high and low bytes of the value in the PDB counter. Reading either byte latches the contents of both bytes into a buffer where they remain latched until another read of either bytes is performed. Odd-numbered reads return new data from the counter. Even-numbered reads return latched data.

The following figures are examples of the LDMOD bit effects. The PDB Counter is configured in continuous mode where it repeats counting up and rolling over to 0 after matching a fixed PDB Modulus (PDBMOD) register value. The black arrows represent Pre-Triggers based on previous PDB delay registers value. The red arrows represent Pre-Triggers based on new effective PDB delay registers value.

20-8 Freescale Semiconductor



Symbol	Description
	Attempts to write a new value to PDB delay (PDBDLY) registers.
\uparrow	Pre-Triggers based on previous PDB delay registers value.
1	Pre-Triggers based on new effective PDB delay registers value.
•	Pre-Triggers are asserted when the PDB Counter reaches the corresponding effective PDBDLY value.

Figure 20-4. Registers Update with LDMOD bit = 0 in Continuous Mode

In Figure 20-4, new values for PDBDLY registers do not become effective until after the LDOK is written to 1. The new values become effective immediately after LDOK is written to 1.

Symbol	Description
	Attempts to write a new value to PDB delay (PDBDLY) registers.
↑	Pre-Triggers based on previous PDB delay registers value.
↑	Pre-Triggers based on new effective PDB delay registers value.
•	Pre-Triggers are asserted when the PDB Counter reaches the corresponding effective PDBDLY value.

Figure 20-5. Registers Update with LDMODE Bit = 1 in Continuous Mode

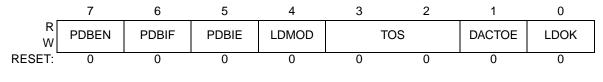
Freescale Semiconductor 20-9

In Figure 20-5, new values for PDBDLY registers do not become effective until after the LDOK is written to 1 and PDB Counter rolls over to 0. The LDOK bit is held at high until PDB Counter rolls over to 0. This bit can be used to indicate when the new delay registers value become effective.

20-10 Freescale Semiconductor

20.3 Memory Map and Registers

20.3.1 Memory Map


Offset	Register	Description
0x00	PDBSC	PDB Status and Control Register
0x01	PDBC1	PDB Control Register 1
0x02	PDBC2	PDB Control Register 2
0x03	PDBCHEN	PDB Channel Enable
0x04	PDBMODH	PDB Modulus Register High
0x05	PDBMODL	PDB Modulus Register Low
0x06	PDBCNTH	PDB Counter Register High
0x07	PDBCNTL	PDB Counter Register Low
0x08	PDBIDLYH	PDB Interrupt Delay Register High
0x09	PDBIDLYL	PDB Interrupt Delay Register Low
0x0A	DACINTH	DAC Trigger Interval Register High
0x0B	DACINTL	DAC Trigger Interval Register Low
0x0C + (n x 2)	PDBDLY <i>n</i> H	PDB Delay n Register High
0x0D + (n x 2)	PDBDLY <i>n</i> L	PDB Delay n Register Low

Note: This device has eight (8) PDB channels where n is mentioned as 0 to 7 in this chapter. However, the corresponding PDBDLYn registers are labeled as PDBDLYA to PDBDLYH in the memory map.

20.3.2 Registers Descriptions

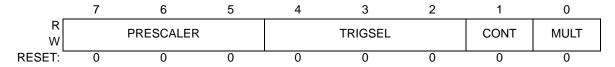
20.3.2.1 PDB Status and Control Register (PDBSC)

This register contains status and control bits for the Programmable Delay Block.

= Reserved or unused

Figure 20-6. PDB Status and Control Register (PDBSC)

Freescale Semiconductor 20-11


Table 20-4. PDBSC Register Field Descriptions

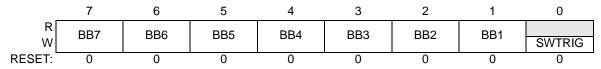
Field	Description
7 PDBEN	PDB module Enable 0 Counter is off and all trigger signals are disabled. 1 Counter is enabled.
6 PDBIF	PDB Interrupt Flag This bit is set when a successful compare of value of counter and the IDELAY internal buffer occurs. Clear this bit by writing logic one to it.
5 PDBIE	PDB Interrupt Enable 0 Interrupt requests disabled 1 Interrupt requests enabled
4 LDMOD	 Load Mode Select Internal registers of PDBDLYnH:L, PDBMODH:L, PDBIDLYH:L and DACINTH:L are updated with values of their buffer registers and take effect immediately after logic 1 is written into LDOK bit Internal registers of PDBDLYnH:L, PDBMODH:L, PDBIDLYH:L, and DACINTH:L are updated with values of their buffer registers and take effect when the counter rolls over in continuous mode or trigger signal is received in one shot mode after logic 1 is written into LDOK bit
3:2 TOS	Trigger Output Select 00 Counter delay is bypassed 01 Trigger A is function of Channel A Delay only 10 Trigger n is OR function of all available channel outputs. This setting is required for back-to-back or multiple channel delays operation. 11 Reserved
1 DACTOE	DAC Trigger Output Enable 0 No DAC trigger output 1 DAC interval register defines the number of PDB counts between DAC trigger outputs.
0 LDOK	Load OK — Writing logic 1 to this bit loads values in buffer registers of PDBDLY nH:L, PDBMODH:L, PDBIDLYH:L and DACINTH:L into their internal registers. The internal delay registers, modulus value, interrupt delay and DAC trigger interval value will take effect immediately if LDMOD = 0, or when the counter rolls over in continuous mode or trigger signal is received in one shot mode if LDMOD = 1. Any value written to any one of the above registers, after a logic 1 being written to LDOK bit, will be ignored and buffer register will not be updated until the values in buffer registers are loaded into the internal registers. This bit is cleared when the values in buffer registers are loaded into internal registers. Writing logic "0" to this bit has no effect. Reading this bit can determine if the values in buffer registers are loaded into internal registers and take effect.

20.3.2.2 PDB Control Register 1 (PDBC1)

This register contains control bits for the Programmable Delay Block.

= Reserved or unused

Figure 20-7. PDB Control Register 1 (PDBC1)


Table 20-5. PDBC1 Register Field Descriptions

Field	Description
7:5 PRESCALER	Clock Prescaler Select 000 timer uses peripheral clock 001 timer uses peripheral clock / 2 010 timer uses peripheral clock / 4 011 timer uses peripheral clock / 8 100 timer uses peripheral clock / 16 101 timer uses peripheral clock / 32 110 timer uses peripheral clock / 64 111 timer uses peripheral clock / 128
4:2 TRIGSEL	Input Trigger Select 000 TriggerIn0 is ADCSC1A_COCO. 001 TriggerIn1 is ACMPO. 111 SWTRIG is selected.
1 CONT	Continuous Mode Enable 0 Module is in OneShot mode. 1 Module is in continuous mode.
0 MULT	Multiply Prescaler bit 0 Prescale factor is defined by the prescaler select bits. 1 Prescale factor is defined by the value selected by the prescaler bits multiplied by 20.

20.3.2.3 PDB Control Register 2 (PDBC2)

This register is used to enable each of the acknowledgment detect input for each of the channels.

= Reserved or unused

Figure 20-8. PDB Control Register (PDBC2)

Table 20-6. PDBC2 Register Field Descriptions

Field	Description	
7:1 BB7-BB1	Back-to-Back Enable 0 Trigger acknowledge signals are not used 1 Trigger acknowledge signals are used to allow the next trigger to be set for back to back operation	
	Software Trigger — When TRIGSEL = 3'b111 and the module is enabled, writing a one to this field triggers a reset and restart of the counter.	

20.3.2.4 PDB Channel Enable Register (PDBCHEN)

This register is used to enable or disable each of the trigger outputs associated with channel 0 to 7.

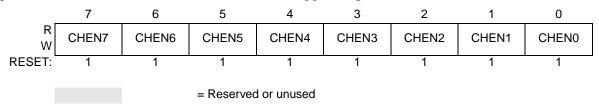


Figure 20-9. PDB Channel Enable Register (PDBCHEN)

Table 20-7. PDBCHEN Register Field Descriptions

Field	Description
7:0 CHEN7 - CHEN0	PDB channel enable bits 0 Channel n trigger outputs are disabled and held low. 1 Channel n trigger outputs are enabled.

NOTE

Only trigger 0 is used as the hardware trigger to the ADC, so channel 0 enable (CHEN0) must be set for the PDB to trigger ADC conversions. If channel 0 enable (CHEN0) is cleared, any other PDB delays will not trigger ADC conversions.

20.3.2.5 PDB Modulus Registers (PDBMODH:PDBMODL)

These registers specify the period of the counter in terms of peripheral bus clock cycles. When the counter reaches this value, it will be reset back to all zeroes. If the PDBCS_CONT is set, the count will begin anew. Reads of these registers will return the value of internal registers that is taking affect for the current period of the PDB.

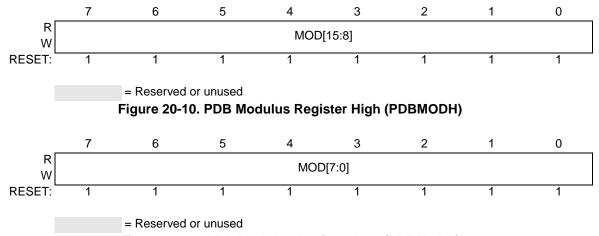


Figure 20-11. PDB Modulus Register Low (PDBMODL)

Freescale Semiconductor 20-15

20.3.2.6 PDB Counter Registers (PDBCNTH:PDBCNTL)

This is a 16-bit counter which operates on up-count mode. The two read-only counter registers contain the high and low bytes of the value in the PDB counter. Reading either byte latches the contents of both bytes into a buffer where they remain latched until PDBCNTH or PDBCNTL is read.

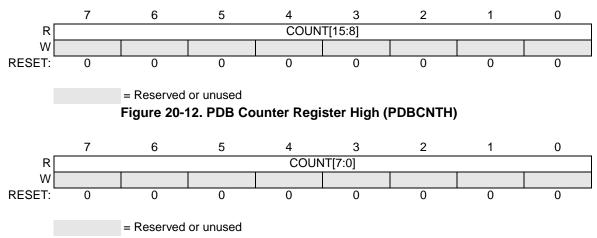
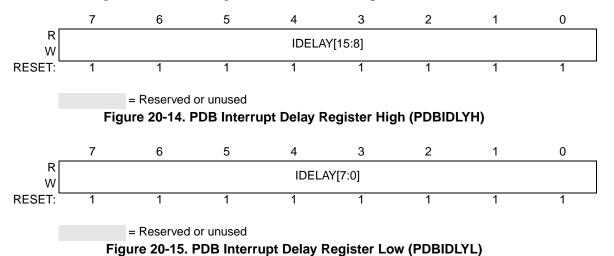
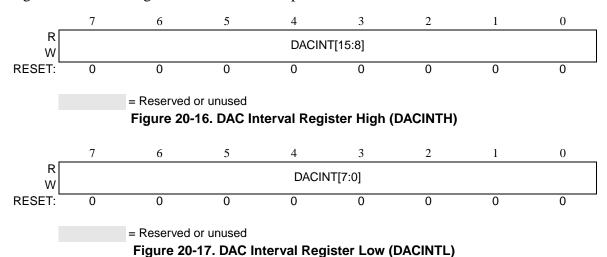



Figure 20-13. PDB Counter Register Low (PDBCNTL)

20.3.2.7 PDB Interrupt Delay Register (PDBIDLYH:PDBIDLYL)

These registers can be used to read and write the value to schedule the PDB interrupt. This feature can be used to schedule an independent interrupt at some point in the PDB cycle. Reads of these registers return the value of internal registers that is taking affect for the current period of the PDB.

PDBSC_IE must be set in order for an interrupt to be issued as a result of the count value equaling IDELAY. However, PDBSC_IF is set whenever the count value equals IDELAY.


20.3.2.8 DAC Interval Registers (DACINTH:DACINTL)

These registers specify the time between DAC hardware trigger pulses. If the DAC trigger output is enabled (DACTOE) each time the PDB counter register increments the number of counts placed in the

20-16 Freescale Semiconductor

DACINTH:L registers, the PDB outputs a DAC trigger pulse. Reads of these registers return the value of internal registers that is taking affect for the current period of the PDB.

20.3.2.9 PDB Delay Registers (PDBDLY*n*H:PDBDLY*n*L)

These registers are used to specify the delay from assertion of TriggerIn to assertion of the Trigger outputs. The delay is only applicable if the module is enabled and the associated output trigger has not been bypassed. The delay is in terms of peripheral clock cycles. Reads of these registers will return the value of internal registers that is taking affect for the current period of the PDB.

NOTE

When PDB channel delays are used as the trigger of the ADC conversion, the application code must ensure that the interval of the delay is longer than the ADC conversion time so that the ADC conversion results are properly handled and loaded to each of the result registers and that the CHEN0 bit is set to allow channel delays other than channel delay 0 to trigger the ADC coversions.

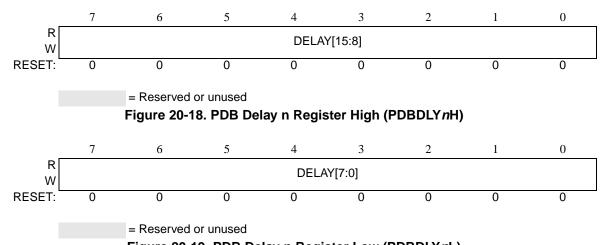


Figure 20-19. PDB Delay n Register Low (PDBDLYnL)

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor 20-17

20.3.3 Functional Description

20.3.3.1 Impact of Using the Prescaler on Timing Resolution

Use of prescalers greater than 1 limit the count/delay accuracy in terms of peripheral clock cycles (to the modulus of the prescaler value). If the prescaler is set to div 2, then the only values of total peripheral clocks that can be detected are even values; if div is set to 4, then the only values of total peripheral clocks that can be decoded as detected are mod (4) and so forth. If the users want to set a really long delay value and used div 128, then they would be limited to an resolution of 128 bus clocks.

Therefore, use the lowest possible prescaler for a given application.

20.4 Resets

This module has a single reset input, corresponding to the chip-wide peripheral reset. After reset, all registers are set to their reset values.

20.5 Clocks

This module has a single clock input, the peripheral bus clock.

20.6 Interrupts

This module has one interrupt source. When a successful comparison of the counter value and the IDELAY internal buffer occurs, the PDBIF is set. If the PDBIE is set, an interrupt is generated. Write a 1 to the PDBIF bit to clear the interrupt.

Chapter 21 Serial Communication Interface (S08SCIV4)

21.1 Introduction

The SCI allows asynchronous serial communications with peripheral devices and other CPUs.

NOTE

Ignore any references to stop1 low-power mode in this chapter, because this device does not support it.

For details on low-power mode operation, refer to Table 3-4 in Chapter 3, "Modes of Operation".

21.1.1 SCIx Clock Gating

The bus clock to the SCIx can be gated on and off using the SCIx bit in SCGC1. This bit is set after any reset, which enables the bus clock to this module. To conserve power, the SCIx bit can be cleared to disable the clock to this module when not in use. See Section 5.7.7, "System Clock Gating Control 1 Register (SCGC1)," for details.

21.1.2 Module Configuration

The SCI1 and SCI2 module pins can be repositioned via software-control using SCIxPS in SOPT3 as shown in Table 21-1 and Table 21-2. SCIxPS in SOPT3 selects which general-purpose I/O ports are associated with SCI operation.

Table 21-1. SCI1 Position Options

SCI1PS in SOPT3	Port Pin for TX1	Port Pin for RX1
0 (default)	PTA1	PTA2
1	PTD6	PTD7

Table 21-2. SCI2 Position Options

SCI2PS in SOPT3	Port Pin for TX2	Port Pin for RX2
0 (default)	PTE5	PTE6
1	PTF2	PTF1

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor 21-19

21.1.3 Module Block Diagram

Figure 21-1 shows a block diagram of the SCIx module.

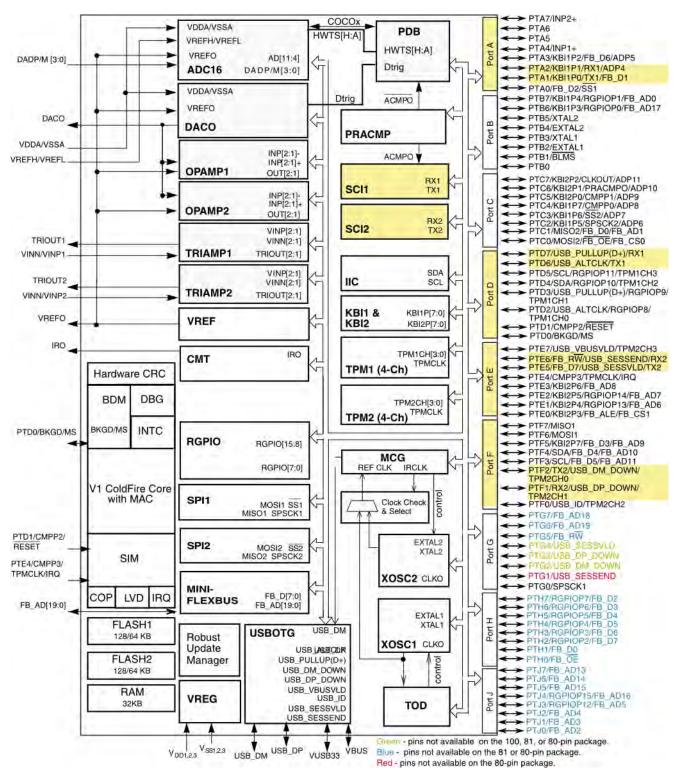


Figure 21-1. Block Diagram with the SCI Module highlighted

21-20 Freescale Semiconductor

21.1.4 Interfacing the SCIs to Off-Chip Opto-Isolators

SCI1 is designed with twice the normal I/O drive capability on the TX1 pin. The RX pin can either be fed directly from the digital I/O buffer, or those signals can be pre-conditioned using the comparators as shown in Figure 21-2 Similarly, the TX output can be modulated with the output of one of the timers before being passed off chip.

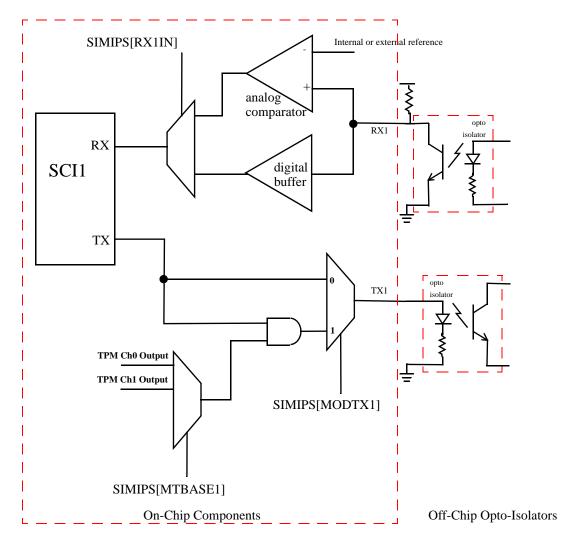


Figure 21-2. On-Chip Signal Conditioning Associated with SCI1 RX and TX Pins

Controls for the circuitry shown in Figure 21-2 are discussed in Section 5.7.13, "SIM Internal Peripheral Select Register (SIMIPS)."

21.1.5 Features

Features of SCI module include:

- Full-duplex, standard non-return-to-zero (NRZ) format
- Double-buffered transmitter and receiver with separate enables

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor 21-21

- Programmable baud rates (13-bit modulo divider)
- Interrupt-driven or polled operation:
 - Transmit data register empty and transmission complete
 - Receive data register full
 - Receive overrun, parity error, framing error, and noise error
 - Idle receiver detect
 - Active edge on receive pin
 - Break detect supporting LIN
- Hardware parity generation and checking
- Programmable 8-bit or 9-bit character length
- Receiver wakeup by idle-line or address-mark
- Optional 13-bit break character generation / 11-bit break character detection
- Selectable transmitter output polarity

21.1.6 Modes of Operation

See Section 21.3, "Functional Description," for details concerning SCI operation in the following modes:

- 8- and 9-bit data modes
- Stop mode operation
- Loop mode
- Single-wire mode

21.1.7 Block Diagram

Figure 21-3 shows the transmitter portion of the SCI.

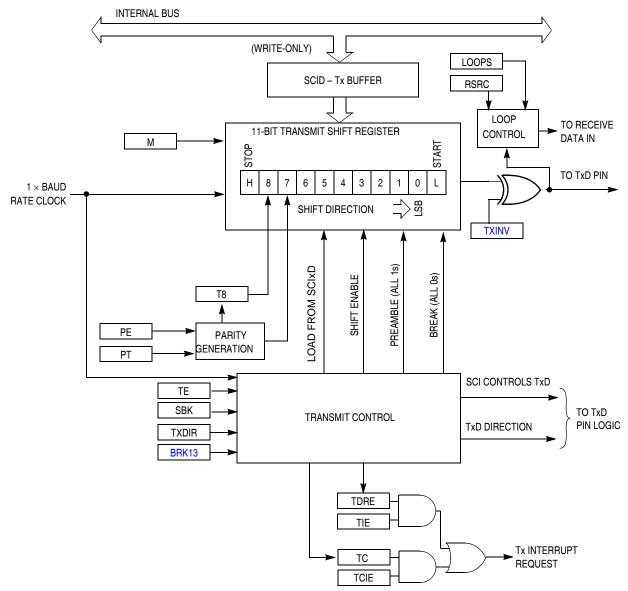


Figure 21-3. SCI Transmitter Block Diagram

Figure 21-4 shows the receiver portion of the SCI.

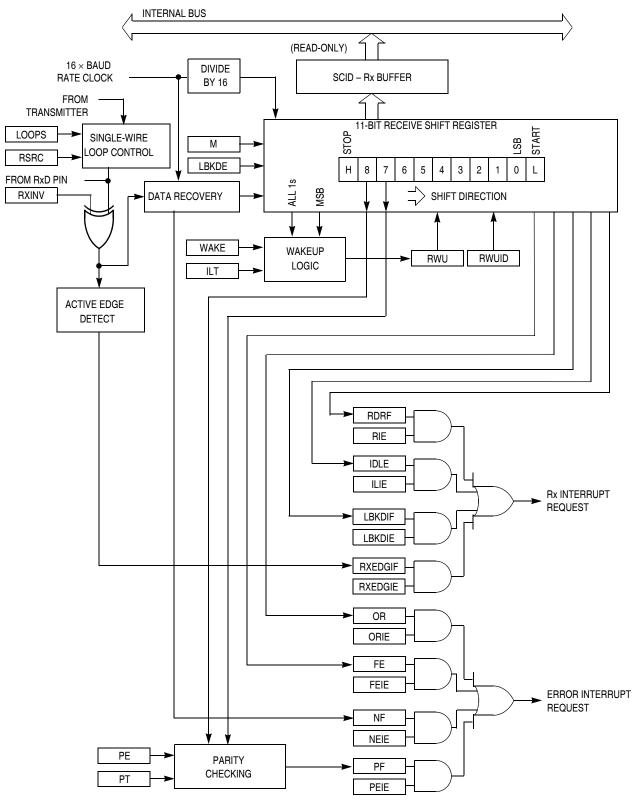


Figure 21-4. SCI Receiver Block Diagram

21-24 Freescale Semiconductor

21.2 Register Definition

The SCI has eight 8-bit registers to control baud rate, select SCI options, report SCI status, and for transmit/receive data.

Refer to the direct-page register summary in the Memory chapter of the *MCF51MM256 series Reference Manual* for the absolute address assignments for all SCI registers. This section refers to registers and control bits only by their names. A Freescale-provided equate or header file is used to translate these names into the appropriate absolute addresses.

21.2.1 SCI Baud Rate Registers (SCIxBDH, SCIxBDL)

This pair of registers controls the prescale divisor for SCI baud rate generation. To update the 13-bit baud rate setting [SBR12:SBR0], first write to SCIxBDH to buffer the high half of the new value and then write to SCIxBDL. The working value in SCIxBDH does not change until SCIxBDL is written.

SCIxBDL is reset to a non-zero value, so after reset the baud rate generator remains disabled until the first time the receiver or transmitter is enabled (RE or TE bits in SCIxC2 are written to 1).

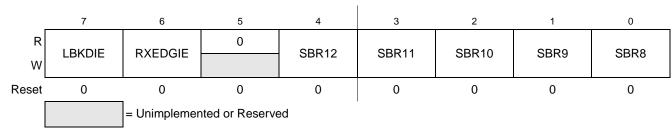


Figure 21-5. SCI Baud Rate Register (SCIxBDH)

Table 21-3. SCIxBDH Field Descriptions

Field	Description
7 LBKDIE	LIN Break Detect Interrupt Enable (for LBKDIF) 0 Hardware interrupts from LBKDIF disabled (use polling). 1 Hardware interrupt requested when LBKDIF flag is 1.
6 RXEDGIE	RxD Input Active Edge Interrupt Enable (for RXEDGIF) 0 Hardware interrupts from RXEDGIF disabled (use polling). 1 Hardware interrupt requested when RXEDGIF flag is 1.
4:0 SBR[12:8]	Baud Rate Modulo Divisor — The 13 bits in SBR[12:0] are referred to collectively as BR, and they set the modulo divide rate for the SCI baud rate generator. When BR = 0, the SCI baud rate generator is disabled to reduce supply current. When BR = 1 to 8191, the SCI baud rate = BUSCLK/(16×BR). See also BR bits in Table 21-4.

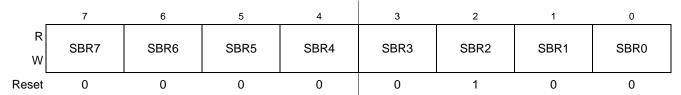


Figure 21-6. SCI Baud Rate Register (SCIxBDL)

Table 21-4. SCIxBDL Field Descriptions

Field	Description
	Baud Rate Modulo Divisor — These 13 bits in SBR[12:0] are referred to collectively as BR, and they set the modulo divide rate for the SCI baud rate generator. When BR = 0, the SCI baud rate generator is disabled to reduce supply current. When BR = 1 to 8191, the SCI baud rate = BUSCLK/(16×BR). See also BR bits in Table 21-3.

21.2.2 SCI Control Register 1 (SCIxC1)

This read/write register is used to control various optional features of the SCI system.

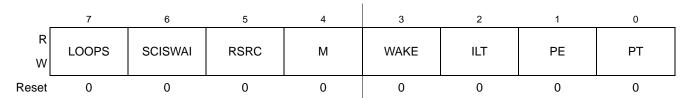


Figure 21-7. SCI Control Register 1 (SCIxC1)

Table 21-5. SCIxC1 Field Descriptions

Field	Description		
7 LOOPS	 Loop Mode Select — Selects between loop back modes and normal 2-pin full-duplex modes. When LOOPS = 7 the transmitter output is internally connected to the receiver input. Normal operation — RxD and TxD use separate pins. Loop mode or single-wire mode where transmitter outputs are internally connected to receiver input. (See RSRC bit that follows.) RxD pin is not used by SCI. 		
6 SCISWAI	SCI Stops in Wait Mode 0 SCI clocks continue to run in wait mode so the SCI can be the source of an interrupt that wakes up the CPU. 1 SCI clocks freeze while CPU is in wait mode.		
5 RSRC	Receiver Source Select — This bit has no meaning or effect unless the LOOPS bit is set to 1. When LOOPS = 1, the receiver input is internally connected to the TxD pin and RSRC determines whether this connection is also connected to the transmitter output. O Provided LOOPS = 1, RSRC = 0 selects internal loop back mode and the SCI does not use the RxD pins. Single-wire SCI mode where the TxD pin is connected to the transmitter output and receiver input.		
4 M	9-Bit or 8-Bit Mode Select 0 Normal — start + 8 data bits (LSB first) + stop. 1 Receiver and transmitter use 9-bit data characters start + 8 data bits (LSB first) + 9th data bit + stop.		

21-26 Freescale Semiconductor

Table 21-5. SCIxC1 Field Descriptions (Continued)

Field	Description		
3 WAKE	Receiver Wakeup Method Select — Refer to Section 21.3.3.2, "Receiver Wakeup Operation" for more information. 0 Idle-line wakeup. 1 Address-mark wakeup.		
2 ILT	Idle Line Type Select — Setting this bit to 1 ensures that the stop bit and logic 1 bits at the end of a character do not count toward the 10 or 11 bit times of logic high level needed by the idle line detection logic. Refer to Section 21.3.3.2.1, "Idle-Line Wakeup" for more information. 0 Idle character bit count starts after start bit. 1 Idle character bit count starts after stop bit.		
1 PE	 Parity Enable — Enables hardware parity generation and checking. When parity is enabled, the most significant bit (MSB) of the data character (eighth or ninth data bit) is treated as the parity bit. No hardware parity generation or checking. Parity enabled. 		
0 PT	Parity Type — Provided parity is enabled (PE = 1), this bit selects even or odd parity. Odd parity means the total number of 1s in the data character, including the parity bit, is odd. Even parity means the total number of 1s in the data character, including the parity bit, is even. 0 Even parity. 1 Odd parity.		

21.2.3 SCI Control Register 2 (SCIxC2)

This register can be read or written at any time.

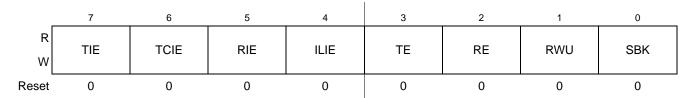


Figure 21-8. SCI Control Register 2 (SCIxC2)

Table 21-6. SCIxC2 Field Descriptions

Field	Description		
7 TIE	Transmit Interrupt Enable (for TDRE) 0 Hardware interrupts from TDRE disabled (use polling). 1 Hardware interrupt requested when TDRE flag is 1.		
6 TCIE	Transmission Complete Interrupt Enable (for TC) 0 Hardware interrupts from TC disabled (use polling). 1 Hardware interrupt requested when TC flag is 1.		
5 RIE	ceiver Interrupt Enable (for RDRF) Hardware interrupts from RDRF disabled (use polling). Hardware interrupt requested when RDRF flag is 1.		
4 ILIE	Idle Line Interrupt Enable (for IDLE) O Hardware interrupts from IDLE disabled (use polling). Hardware interrupt requested when IDLE flag is 1.		

Table 21-6. SCIxC2 Field Descriptions (Continued)

Field	Description		
3 TE	Transmitter Enable 0 Transmitter off. 1 Transmitter on. TE must be 1 in order to use the SCI transmitter. When TE = 1, the SCI forces the TxD pin to act as an output for the SCI system. When the SCI is configured for single-wire operation (LOOPS = RSRC = 1), TXDIR controls the direction of traffic on the single SCI communication line (TxD pin). TE also can be used to queue an idle character by writing TE = 0 then TE = 1 while a transmission is in progress. Refer to Section 21.3.2.1, "Send Break and Queued Idle" for more details. When TE is written to 0, the transmitter keeps control of the port TxD pin until any data, queued idle, or queued break character finishes transmitting before allowing the pin to revert to a general-purpose I/O pin.		
2 RE	Receiver Enable — When the SCI receiver is off, the RxD pin reverts to being a general-purpose port I/O pin. If LOOPS = 1 the RxD pin reverts to being a general-purpose I/O pin even if RE = 1. 0 Receiver off. 1 Receiver on.		
1 RWU	Receiver Wakeup Control — This bit can be written to 1 to place the SCI receiver in a standby state where it waits for automatic hardware detection of a selected wakeup condition. The wakeup condition is either an idle line between messages (WAKE = 0, idle-line wakeup), or a logic 1 in the most significant data bit in a character (WAKE = 1, address-mark wakeup). Application software sets RWU and (normally) a selected hardware condition automatically clears RWU. Refer to Section 21.3.3.2, "Receiver Wakeup Operation" for more details. O Normal SCI receiver operation. 1 SCI receiver in standby waiting for wakeup condition.		
0 SBK	Send Break — Writing a 1 and then a 0 to SBK queues a break character in the transmit data stream. Additional break characters of 10 or 11 (13 or 14 if BRK13 = 1) bit times of logic 0 are queued as long as SBK = 1. Depending on the timing of the set and clear of SBK relative to the information currently being transmitted, a second break character may be queued before software clears SBK. Refer to Section 21.3.2.1, "Send Break an Queued Idle" for more details. 0 Normal transmitter operation. 1 Queue break character(s) to be sent.		

21.2.4 SCI Status Register 1 (SCIxS1)

This register has eight read-only status flags. Writes have no effect. Special software sequences (which do not involve writing to this register) clear these status flags.

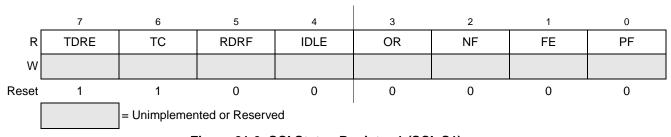


Figure 21-9. SCI Status Register 1 (SCIxS1)

Table 21-7. SCIxS1 Field Descriptions

Field	Description			
7 TDRE	Transmit Data Register Empty Flag — TDRE is set out of reset and when a transmit data value transfers the transmit data buffer to the transmit shifter, leaving room for a new character in the buffer. To clear TDRE, SCIxS1 with TDRE = 1 and then write to the SCI data register (SCIxD). 0 Transmit data register (buffer) full. 1 Transmit data register (buffer) empty.			
6 TC	Transmission Complete Flag — TC is set out of reset and when TDRE = 1 and no data, preamble, or break character is being transmitted. 0 Transmitter active (sending data, a preamble, or a break). 1 Transmitter idle (transmission activity complete). TC is cleared automatically by reading SCIxS1 with TC = 1 and then doing one of the following three things: • Write to the SCI data register (SCIxD) to transmit new data • Queue a preamble by changing TE from 0 to 1 • Queue a break character by writing 1 to SBK in SCIxC2			
5 RDRF	Receive Data Register Full Flag — RDRF becomes set when a character transfers from the receive shifter in the receive data register (SCIxD). To clear RDRF, read SCIxS1 with RDRF = 1 and then read the SCI data register (SCIxD). 0 Receive data register empty. 1 Receive data register full.			
4 IDLE	Idle Line Flag — IDLE is set when the SCI receive line becomes idle for a full character time after a perio activity. When ILT = 0, the receiver starts counting idle bit times after the start bit. So if the receive charact all 1s, these bit times and the stop bit time count toward the full character time of logic high (10 or 11 bit time depending on the M control bit) needed for the receiver to detect an idle line. When ILT = 1, the receiver do start counting idle bit times until after the stop bit. So the stop bit and any logic high bit times at the end of previous character do not count toward the full character time of logic high needed for the receiver to deterible line. To clear IDLE, read SCIxS1 with IDLE = 1 and then read the SCI data register (SCIxD). After IDLE has be cleared, it cannot become set again until after a new character has been received and RDRF has been set. will get set only once even if the receive line remains idle for an extended period. No idle line detected.			
3 OR	Receiver Overrun Flag — OR is set when a new serial character is ready to be transferred to the receive da register (buffer), but the previously received character has not been read from SCIxD yet. In this case, the ne character (and all associated error information) is lost because there is no room to move it into SCIxD. To clest OR, read SCIxS1 with OR = 1 and then read the SCI data register (SCIxD). O No overrun. Receive overrun (new SCI data lost).			
2 NF	Noise Flag — The advanced sampling technique used in the receiver takes seven samples during the start be and three samples in each data bit and the stop bit. If any of these samples disagrees with the rest of the sample within any bit time in the frame, the flag NF is set at the same time as the RDRF flag is set for the character. To clear NF, read SCIxS1 and then read the SCI data register (SCIxD). O No noise detected. Noise detected in the received character in SCIxD.			

Table 21-7. SCIxS1 Field Descriptions (Continued)

Field	Description		
1 FE	Framing Error Flag — FE is set at the same time as RDRF when the receiver detects a logic 0 where the stop bit was expected. This suggests the receiver was not properly aligned to a character frame. To clear FE, read SCIxS1 with FE = 1 and then read the SCI data register (SCIxD). 0 No framing error detected. This does not guarantee the framing is correct. 1 Framing error.		
0 PF	Parity Error Flag — PF is set at the same time as RDRF when parity is enabled (PE = 1) and the parity bit in the received character does not agree with the expected parity value. To clear PF, read SCIxS1 and then read the SCI data register (SCIxD). No parity error. Parity error.		

21.2.5 SCI Status Register 2 (SCIxS2)

This register contains one read-only status flag.

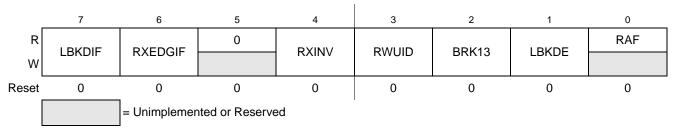


Figure 21-10. SCI Status Register 2 (SCIxS2)

Table 21-8. SCIxS2 Field Descriptions

Field	Description			
7 LBKDIF	IN Break Detect Interrupt Flag — LBKDIF is set when the LIN break detect circuitry is enabled and a LIN break haracter is detected. LBKDIF is cleared by writing a "1" to it. No LIN break character has been detected. LIN break character has been detected.			
6 RXEDGIF	RxD Pin Active Edge Interrupt Flag — RXEDGIF is set when an active edge (falling if RXINV = 0, rising if RXINV=1) on the RxD pin occurs. RXEDGIF is cleared by writing a "1" to it. No active edge on the receive pin has occurred. An active edge on the receive pin has occurred.			
4 RXINV ¹	Receive Data Inversion — Setting this bit reverses the polarity of the received data input. Receive data not inverted Receive data inverted			
3 RWUID	Receive Wake Up Idle Detect— RWUID controls whether the idle character that wakes up the receiver sets IDLE bit. 0 During receive standby state (RWU = 1), the IDLE bit does not get set upon detection of an idle character. 1 During receive standby state (RWU = 1), the IDLE bit gets set upon detection of an idle character.			
2 BRK13	Break Character Generation Length — BRK13 selects a longer transmitted break character length. The state of this bit does not affect the detection of a framing error. O Break character is transmitted with length of 10 bit times (11 if M = 1) 1 Break character is transmitted with length of 13 bit times (14 if M = 1)			

21-30 Freescale Semiconductor

Field	Description		
1 LBKDE	LIN Break Detection Enable— LBKDE selects a longer break character detection length. While LBKDE is set, framing error (FE) and receive data register full (RDRF) flags are prevented from setting. 0 Break character is detected at length of 10 bit times (11 if M = 1). 1 Break character is detected at length of 11 bit times (12 if M = 1).		
0 RAF	Receiver Active Flag — RAF is set when the SCI receiver detects the beginning of a valid start bit, and RAF is cleared automatically when the receiver detects an idle line. This status flag can be used to check whether an SCI character is being received before instructing the MCU to go to stop mode. 0 SCI receiver idle waiting for a start bit. 1 SCI receiver active (RxD input not idle).		

¹ Setting RXINV inverts the RxD input for all cases: data bits, start and stop bits, break, and idle.

When using an internal oscillator in a LIN system, it is necessary to raise the break detection threshold by one bit time. Under the worst case timing conditions allowed in LIN, it is possible that a 0x00 data character can appear to be 10.26 bit times long at a slave running 14% faster than the master. This would trigger normal break detection circuitry designed to detect a 10 bit break symbol. When the LBKDE bit is set, framing errors are inhibited and the break detection threshold changes from 10 bits to 11 bits, preventing false detection of a 0x00 data character as a LIN break symbol.

21.2.6 SCI Control Register 3 (SCIxC3)

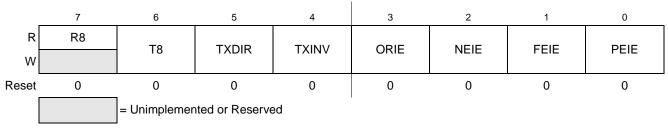


Figure 21-11. SCI Control Register 3 (SCIxC3)

Table 21-9. SCIxC3 Field Descriptions

Field	Description			
7 R8	Ninth Data Bit for Receiver — When the SCI is configured for 9-bit data (M = 1), R8 can be thought of as a ninth receive data bit to the left of the MSB of the buffered data in the SCIxD register. When reading 9-bit data, read R8 before reading SCIxD because reading SCIxD completes automatic flag clearing sequences which could allow R8 and SCIxD to be overwritten with new data.			
6 T8	Ninth Data Bit for Transmitter — When the SCI is configured for 9-bit data (M = 1), T8 may be thought of as a ninth transmit data bit to the left of the MSB of the data in the SCIxD register. When writing 9-bit data, the entire 9-bit value is transferred to the SCI shift register after SCIxD is written so T8 should be written (if it needs to change from its previous value) before SCIxD is written. If T8 does not need to change in the new value (such as when it is used to generate mark or space parity), it need not be written each time SCIxD is written.			
5 TXDIR	TxD Pin Direction in Single-Wire Mode — When the SCI is configured for single-wire half-duplex operation (LOOPS = RSRC = 1), this bit determines the direction of data at the TxD pin. 1 TxD pin is an output in single-wire mode. 2 TxD pin is an output in single-wire mode.			

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor 21-31

Table 21-9. SCIxC3 Field Descriptions (Continued)

Field	Description			
4 TXINV ¹	Transmit Data Inversion — Setting this bit reverses the polarity of the transmitted data output. Transmit data not inverted Transmit data inverted			
3 ORIE	Overrun Interrupt Enable — This bit enables the overrun flag (OR) to generate hardware interrupt requests. O OR interrupts disabled (use polling). Hardware interrupt requested when OR = 1.			
2 NEIE	oise Error Interrupt Enable — This bit enables the noise flag (NF) to generate hardware interrupt requests. NF interrupts disabled (use polling). Hardware interrupt requested when NF = 1.			
1 FEIE	Framing Error Interrupt Enable — This bit enables the framing error flag (FE) to generate hardware interrupt requests. 0 FE interrupts disabled (use polling). 1 Hardware interrupt requested when FE = 1.			
0 PEIE	Parity Error Interrupt Enable — This bit enables the parity error flag (PF) to generate hardware interrupt requests. O PF interrupts disabled (use polling). Hardware interrupt requested when PF = 1.			

Setting TXINV inverts the TxD output for all cases: data bits, start and stop bits, break, and idle.

21.2.7 SCI Data Register (SCIxD)

This register is actually two separate registers. Reads return the contents of the read-only receive data buffer and writes go to the write-only transmit data buffer. Reads and writes of this register are also involved in the automatic flag clearing mechanisms for the SCI status flags.

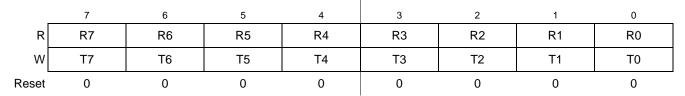


Figure 21-12. SCI Data Register (SCIxD)

21.3 Functional Description

The SCI allows full-duplex, asynchronous, NRZ serial communication among the MCU and remote devices, including other MCUs. The SCI comprises a baud rate generator, transmitter, and receiver block. The transmitter and receiver operate independently, although they use the same baud rate generator. During normal operation, the MCU monitors the status of the SCI, writes the data to be transmitted, and processes received data. The following describes each of the blocks of the SCI.

21.3.1 Baud Rate Generation

As shown in Figure 21-13, the clock source for the SCI baud rate generator is the bus-rate clock.

21-32 Freescale Semiconductor

21-33

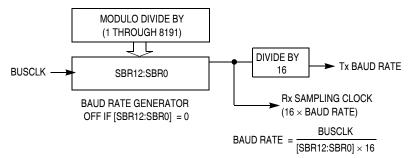


Figure 21-13. SCI Baud Rate Generation

SCI communications require the transmitter and receiver (which typically derive baud rates from independent clock sources) to use the same baud rate. Allowed tolerance on this baud frequency depends on the details of how the receiver synchronizes to the leading edge of the start bit and how bit sampling is performed.

The MCU resynchronizes to bit boundaries on every high-to-low transition. In the worst case, there are no such transitions in the full 10- or 11-bit time character frame so any mismatch in baud rate is accumulated for the whole character time. For a SCI system whose bus frequency is driven by a crystal, the allowed baud rate mismatch is about ± 4.5 % for 8-bit data format and about ± 4 % for 9-bit data format. Although baud rate modulo divider settings do not always produce baud rates that exactly match standard rates, it is normally possible to get within a few percent, which is acceptable for reliable communications.

21.3.2 Transmitter Functional Description

This section describes the overall block diagram for the SCI transmitter, as well as specialized functions for sending break and idle characters. The transmitter block diagram is shown in Figure 21-3.

The transmitter output (TxD) idle state defaults to logic high (TXINV = 0 following reset). The transmitter output is inverted by setting TXINV = 1. The transmitter is enabled by setting the TE bit in SCIxC2. This queues a preamble character that is one full character frame of the idle state. The transmitter then remains idle until data is available in the transmit data buffer. Programs store data into the transmit data buffer by writing to the SCI data register (SCIxD).

The central element of the SCI transmitter is the transmit shift register that is 10 or 11 bits long depending on the setting in the M control bit. For the remainder of this section, assume M=0, selecting the normal 8-bit data mode. In 8-bit data mode, the shift register holds a start bit, eight data bits, and a stop bit. When the transmit shift register is available for a new SCI character, the value waiting in the transmit data register is transferred to the shift register (synchronized with the baud rate clock) and the transmit data register empty (TDRE) status flag is set to indicate another character can be written to the transmit data buffer at SCIxD.

If no new character is waiting in the transmit data buffer after a stop bit is shifted out the TxD pin, the transmitter sets the transmit complete flag and enters an idle mode, with TxD high, waiting for more characters to transmit.

Writing 0 to TE does not immediately release the pin to be a general-purpose I/O pin. Any transmit activity in progress must first be completed. This includes data characters in progress, queued idle characters, and queued break characters.

Freescale Semiconductor

21.3.2.1 Send Break and Queued Idle

The SBK control bit in SCIxC2 sends break characters originally used to gain the attention of old teletype receivers. Break characters are a full character time of logic 0 (10 bit times including the start and stop bits). A longer break of 13 bit times can be enabled by setting BRK13 = 1. Normally, a program would wait for TDRE to become set to indicate the last character of a message has moved to the transmit shifter, then write 1 and then write 0 to the SBK bit. This action queues a break character to be sent as soon as the shifter is available. If SBK remains 1 when the queued break moves into the shifter (synchronized to the baud rate clock), an additional break character is queued. If the receiving device is another Freescale Semiconductor SCI, the break characters are received as 0s in all eight data bits and a framing error (FE = 1) occurs.

When idle-line wakeup is used, a full character time of idle (logic 1) is needed between messages to wake up any sleeping receivers. Normally, a program would wait for TDRE to become set to indicate the last character of a message has moved to the transmit shifter, then write 0 and then write 1 to the TE bit. This action queues an idle character to be sent as soon as the shifter is available. As long as the character in the shifter does not finish while TE = 0, the SCI transmitter never actually releases control of the TxD pin. If there is a possibility of the shifter finishing while TE = 0, set the general-purpose I/O controls so the pin shared with TxD is an output driving a logic 1. This ensures that the TxD line looks like a normal idle line even if the SCI loses control of the port pin between writing 0 and then 1 to TE.

The length of the break character is affected by the BRK13 and M bits as shown below.

BRK13	М	Break Character Length
0	0	10 bit times
0	1	11 bit times
1	0	13 bit times
1	1	14 bit times

Table 21-10. Break Character Length

Receiver Functional Description 21.3.3

In this section, the receiver block diagram (Figure 21-4) is a guide for the overall receiver functional description. Next, the data sampling technique used to reconstruct receiver data is described in more detail. Finally, two variations of the receiver wakeup function are explained.

Set RXINV = 1 to invert the receiver input. Set the RE bit in SCIxC2 to enable the receiver. Character frames consist of a start bit of logic 0, eight (or nine) data bits (LSB first), and a stop bit of logic 1. For information about 9-bit data mode, refer to Section •, "8- and 9-bit data modes." For the remainder of this discussion, assume the SCI is configured for normal 8-bit data mode.

After receiving the stop bit into the receive shifter, and provided the receive data register is not already full, the data character is transferred to the receive data register and the receive data register full (RDRF) status flag is set. If RDRF was already set indicating the receive data register (buffer) was already full, the overrun (OR) status flag is set and the new data is lost. Because the SCI receiver is double-buffered, the program has one full character time after RDRF is set before the data in the receive data buffer must be read to avoid a receiver overrun.

MCF51MM256 Series Devices Reference Manual, Rev. 3 21-34 Freescale Semiconductor

When a program detects that the receive data register is full (RDRF = 1), it reads SCIxD to get the data from the receive data register. The RDRF flag is cleared automatically when the program that handles receive data issues a 2-step sequence. Refer to Section 21.3.4, "Interrupts and Status Flags" for more details about flag clearing.

21.3.3.1 **Data Sampling Technique**

The SCI receiver uses a 16× baud rate clock for sampling. To search for a falling edge on the RxD serial data input pin, the receiver starts taking logic level samples at 16 times the baud rate. A falling edge is defined as a logic 0 sample after three consecutive logic 1 samples. The 16× baud rate clock divides the bit time into 16 segments labeled RT1 through RT16. When a falling edge is located, three more samples are taken at RT3, RT5, and RT7 to make sure this was a real start bit and not merely noise. If at least two of these three samples are 0, the receiver assumes it is synchronized to a receive character.

The receiver then samples each bit time, including the start and stop bits, at RT8, RT9, and RT10 to determine the logic level for that bit. The logic level is interpreted to be that of the majority of the samples taken during the bit time. In the case of the start bit, the bit is assumed to be 0 if at least two of the samples at RT3, RT5, and RT7 are 0 even if one or all of the samples taken at RT8, RT9, and RT10 are 1s. If any sample in any bit time (including the start and stop bits) in a character frame fails to agree with the logic level for that bit, the noise flag (NF) is set when the received character is transferred to the receive data buffer.

The falling edge detection logic continuously looks for falling edges. If an edge is detected, the sample clock is resynchronized to bit times. This improves the reliability of the receiver in the presence of noise or mismatched baud rates. It does not improve worst case analysis because some characters do not have any extra falling edges anywhere in the character frame.

In the case of a framing error, provided the received character was not a break character, the sampling logic that searches for a falling edge is filled with three logic 1 samples so that a new start bit can be detected almost immediately.

In the case of a framing error, the receiver is inhibited from receiving any new characters until the framing error flag is cleared. The receive shift register continues to function, but a complete character cannot transfer to the receive data buffer if FE remains set.

21.3.3.2 **Receiver Wakeup Operation**

Receiver wakeup is a hardware mechanism that allows an SCI receiver to ignore the characters in a message intended for a different SCI receiver. In such a system, all receivers evaluate the first character(s) of each message, and as soon as they determine the message is intended for a different receiver, they write logic 1 to the receiver wake up (RWU) control bit in SCIxC2. When RWU bit is set, the status flags associated with the receiver (with the exception of the idle bit, IDLE, when RWUID bit is set) are inhibited from setting. This eliminates the need for software overhead to handle unimportant message characters. At the end of a message, or at the beginning of the next message, all receivers automatically force RWU to 0 so all receivers wake up in time to look at the first character(s) of the next message.

21.3.3.2.1 Idle-Line Wakeup

When WAKE = 0, the receiver is configured for idle-line wakeup. In this mode, RWU is cleared automatically when the receiver detects a full character time of the idle-line level. The M control bit selects 8-bit or 9-bit data mode that determines how many bit times of idle are needed to constitute a full character time (10 or 11 bit times because of the start and stop bits).

When RWU is one and RWUID is zero, the idle condition that wakes up the receiver does not set the IDLE flag. The receiver wakes up and waits for the first data character of the next message which sets the RDRF flag and generate an interrupt if enabled. When RWUID is one, any idle condition sets the IDLE flag and generates an interrupt if enabled, regardless of whether RWU is zero or one.

The idle-line type (ILT) control bit selects one of two ways to detect an idle line. When ILT = 0, the idle bit counter starts after the start bit so the stop bit and any logic 1s at the end of a character count toward the full character time of idle. When ILT = 1, the idle bit counter does not start until after a stop bit time, so the idle detection is not affected by the data in the last character of the previous message.

21.3.3.2.2 Address-Mark Wakeup

When WAKE = 1, the receiver is configured for address-mark wakeup. In this mode, RWU is cleared automatically when the receiver detects a logic 1 in the most significant bit of a received character (eighth bit in M = 0 mode and ninth bit in M = 1 mode).

Address-mark wakeup allows messages to contain idle characters, but requires the MSB be reserved for use in address frames. The logic 1 MSB of an address frame clears the RWU bit before the stop bit is received and sets the RDRF flag. In this case, the character with the MSB set is received even though the receiver was sleeping during most of this character time.

21.3.4 Interrupts and Status Flags

The SCI system has three separate interrupt vectors to reduce the amount of software needed to isolate the cause of the interrupt. One interrupt vector is associated with the transmitter for TDRE and TC events. Another interrupt vector is associated with the receiver for RDRF, IDLE, RXEDGIF and LBKDIF events. A third vector is used for OR, NF, FE, and PF error conditions. Local interrupt enable masks can separately mask each of these ten interrupt sources. Software can still poll the flags when the local masks are cleared to disable generation of hardware interrupt requests.

The SCI transmitter has two status flags that can generate hardware interrupt requests. Transmit data register empty (TDRE) indicates available room in the transmit data buffer to write another transmit character to SCIxD. If the transmit interrupt enable (TIE) bit is set, a hardware interrupt is requested when TDRE = 1. Transmit complete (TC) indicates that the transmitter is finished transmitting all data, preamble, and break characters and is idle with TxD at the inactive level. This flag is often used in systems with modems to determine when it is safe to turn off the modem. If the transmit complete interrupt enable (TCIE) bit is set, a hardware interrupt will be requested whenever TC = 1. Instead of hardware interrupts, software polling may be used to monitor the TDRE and TC status flags if the corresponding TIE or TCIE local interrupt masks are 0s.

MCF51MM256 Series Devices Reference Manual, Rev. 3

When a program detects that the receive data register is full (RDRF = 1), it gets the data from the receive data register by reading SCIxD. The RDRF flag is cleared by reading SCIxS1 while RDRF = 1 and then reading SCIxD.

When polling is used, this sequence is naturally satisfied in the normal course of the user program. If hardware interrupts are used, SCIxS1 must be read in the interrupt service routine (ISR). Normally, this is done in the ISR anyway to check for receive errors, so the sequence is automatically satisfied.

The IDLE status flag includes logic that prevents it from getting set repeatedly when the RxD line remains idle for an extended period of time. IDLE is cleared by reading SCIxS1 while IDLE = 1 and then reading SCIxD. After IDLE has been cleared, it cannot become set again until the receiver has received at least one new character and has set RDRF.

If the associated error was detected in the received character that caused RDRF to be set, the error flags — noise flag (NF), framing error (FE), and parity error flag (PF) — are set at the same time as RDRF. These flags are not set in overrun cases.

If RDRF was already set when a new character is ready to be transferred from the receive shifter to the receive data buffer, the overrun (OR) flag is set instead of the data along with any associated NF, FE, or PF condition is lost.

At any time, an active edge on the RxD serial data input pin causes the RXEDGIF flag to set. The RXEDGIF flag is cleared by writing a "1" to it. This function does depend on the receiver being enabled (RE = 1).

21.3.5 Additional SCI Functions

The following sections describe additional SCI functions.

21.3.5.1 8- and 9-Bit Data Modes

The SCI system (transmitter and receiver) can be configured to operate in 9-bit data mode by setting the M control bit in SCIxC1. In 9-bit mode, there is a ninth data bit to the left of the MSB of the SCI data register. For the transmit data buffer, this bit is stored in T8 in SCIxC3. For the receiver, the ninth bit is held in R8 in SCIxC3.

For coherent writes to the transmit data buffer, write to the T8 bit before writing to SCIxD.

If the bit value to be transmitted as the ninth bit of a new character is the same as for the previous character, it is not necessary to write to T8 again. When data is transferred from the transmit data buffer to the transmit shifter, the value in T8 is copied at the same time data is transferred from SCIxD to the shifter.

Typically, use the 9-bit data mode in conjunction with parity to allow eight bits of data plus the parity in the ninth bit. Or use it with address-mark wakeup so the ninth data bit can serve as the wakeup bit. In custom protocols, the ninth bit can also serve as a software-controlled marker.

21.3.5.2 Stop Mode Operation

During all stop modes, clocks to the SCI module are halted.

In stop2 modes, all SCI register data is lost and must be re-initialized upon recovery from these two stop modes. No SCI module registers are affected in stop3 mode.

The receive input active edge detect circuit remains active in stop3 mode, but not in stop2. An active edge on the receive input brings the CPU out of stop3 mode if the interrupt is not masked (RXEDGIE = 1).

Note, because the clocks are halted, the SCI module resumes operation upon exit from stop (only in stop3 mode). Software should ensure stop mode is not entered while there is a character being transmitted out of or received into the SCI module.

21.3.5.3 Loop Mode

When LOOPS = 1, the RSRC bit in the same register chooses between loop mode (RSRC = 0) or single-wire mode (RSRC = 1). Loop mode is sometimes used to check software, independent of connections in the external system, to help isolate system problems. In this mode, the transmitter output is internally connected to the receiver input and the RxD pin is not used by the SCI, so it reverts to a general-purpose port I/O pin.

21.3.5.4 Single-Wire Operation

When LOOPS = 1, the RSRC bit in the same register chooses between loop mode (RSRC = 0) or single-wire mode (RSRC = 1). Single-wire mode is used to implement a half-duplex serial connection. The receiver is internally connected to the transmitter output and to the TxD pin. The RxD pin is not used and reverts to a general-purpose port I/O pin.

In single-wire mode, the TXDIR bit in SCIxC3 controls the direction of serial data on the TxD pin. When TXDIR = 0, the TxD pin is an input to the SCI receiver and the transmitter is temporarily disconnected from the TxD pin so an external device can send serial data to the receiver. When TXDIR = 1, the TxD pin is an output driven by the transmitter. In single-wire mode, the internal loop back connection from the transmitter to the receiver causes the receiver to receive characters that are sent out by the transmitter.

Chapter 22 16-bit Serial Peripheral Interface (S08SPI16V5)

22.1 Introduction

The SPI1 in these devices is a 16-bit serial peripheral interface (SPI) module with FIFO.

NOTE

There are two SPI modules on this device. Replace SPIx with the appropriate peripheral designation (SPI1 or SPI2), depending upon your use:

- SPI1 for the 16-bit SPI with FIFO module.
- SPI2 for the 8-bit SPI module.

22.1.1 SPI1 Clock Gating

The bus clock to the SPI1 can be gated on and off using the SPI1 bit in SCGC2. These bits are set after any reset, which enables the bus clock to this module. To conserve power, these bits can be cleared to disable the clock to this module when not in use. See Section 5.7.8, "System Clock Gating Control 2 Register (SCGC2)," for details.

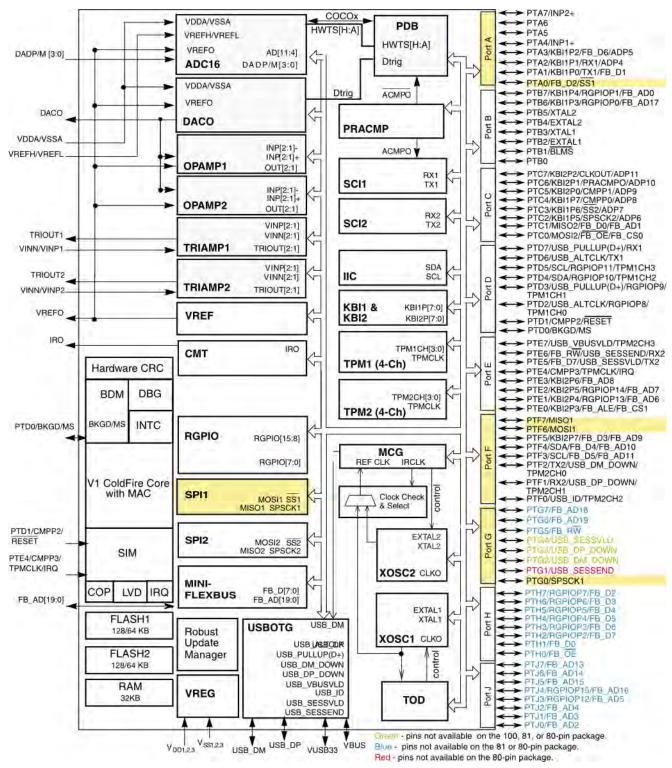


Figure 22-1. Block Diagram with SPI1 Module Highlighted

22-2 Freescale Semiconductor

22.1.2 Features

The SPI includes these distinctive features:

- Master mode or slave mode operation
- Full-duplex or single-wire bidirectional mode
- Programmable transmit bit rate
- Double-buffered transmit and receive data register
- Serial clock phase and polarity options
- Slave select output
- Mode fault error flag with CPU interrupt capability
- Control of SPI operation during wait mode
- Selectable MSB-first or LSB-first shifting
- Programmable 8- or 16-bit data transmission length
- Receive data buffer hardware match feature
- 64-bit FIFO mode for high speed/large amounts of data transfers.

22.1.3 Modes of Operation

The SPI functions in three modes, run, wait, and stop.

- Run Mode
 - This is the basic mode of operation.
- Wait Mode
 - SPI operation in wait mode is a configurable low-power mode, controlled by the SPISWAI bit located in the SPIxC2 register. In wait mode, if the SPISWAI bit is clear, the SPI operates like in Run Mode. If the SPISWAI bit is set, the SPI goes into a power conservative state, with the SPI clock generation turned off. If the SPI is configured as a master, any transmission in progress stops, but is resumed after CPU goes into Run Mode. If the SPI is configured as a slave, reception and transmission of a byte continues, so that the slave stays synchronized to the master.
- Stop Mode
 - The SPI is inactive in stop3/stop4 mode for reduced power consumption. If the SPI is configured as a master, any transmission in progress stops, but is resumed after the CPU goes into Run Mode. If the SPI is configured as a slave, reception and transmission of a data continues, so that the slave stays synchronized to the master.

The SPI is completely disabled in all other stop modes. When the CPU wakes from these stop modes, all SPI register content will be reset.

This is a high level description only, detailed descriptions of operating modes are contained in section Section 22.4.10, "Low-power Mode Options."

22.1.4 Block Diagrams

This section includes block diagrams showing SPI system connections, the internal organization of the SPI module, and the SPI clock dividers that control the master mode bit rate.

22.1.4.1 SPI System Block Diagram

Figure 22-2 shows the SPI modules of two MCUs connected in a master-slave arrangement. The master device initiates all SPI data transfers. During a transfer, the master shifts data out (on the MOSI pin) to the slave while simultaneously shifting data in (on the MISO pin) from the slave. The transfer effectively exchanges the data that was in the SPI shift registers of the two SPI systems. The SPSCK signal is a clock output from the master and an input to the slave. The slave device must be selected by a low level on the slave select input $(\overline{SS}$ pin). In this system, the master device has configured its \overline{SS} pin as an optional slave select output.

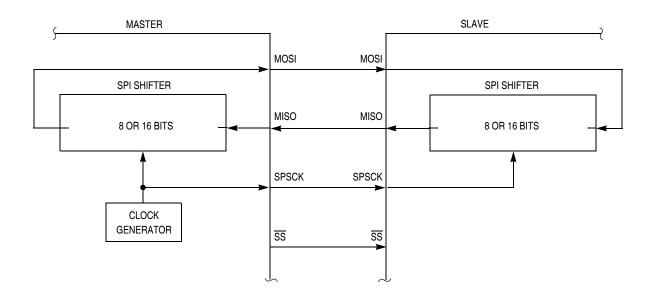


Figure 22-2. SPI System Connections

22.1.4.2 SPI Module Block Diagram

Figure 22-3 is a block diagram of the SPI module. The central element of the SPI is the SPI shift register. Data is written to the double-buffered transmitter (write to SPIxDH:SPIxDL) and gets transferred to the SPI shift register at the start of a data transfer. After shifting in 8 or 16 bits (as determined by SPIMODE bit) of data, the data is transferred into the double-buffered receiver where it can be read (read from SPIxDH:SPIxDL). Pin multiplexing logic controls connections between MCU pins and the SPI module.

Additionally there is an 8-byte receive FIFO and an 8-byte transmit FIFO that once enabled provide features to allow less CPU interrupts to occur when transmitting/receiving high volume/high speed data. When FIFO mode is enabled, the SPI can still function in either 8-bit or 16-bit mode (as per **SPIMODE** bit) and 3 additional flags help monitor the FIFO status and two of these flags can provide CPU interrupts.

MCF51MM256 Series Devices Reference Manual, Rev. 3

22-4

Freescale Semiconductor

When the SPI is configured as a master, the clock output is routed to the SPSCK pin, the shifter output is routed to MOSI, and the shifter input is routed from the MISO pin.

When the SPI is configured as a slave, the SPSCK pin is routed to the clock input of the SPI, the shifter output is routed to MISO, and the shifter input is routed from the MOSI pin.

In the external SPI system, simply connect all SPSCK pins to each other, all MISO pins together, and all MOSI pins together. Peripheral devices often use slightly different names for these pins.

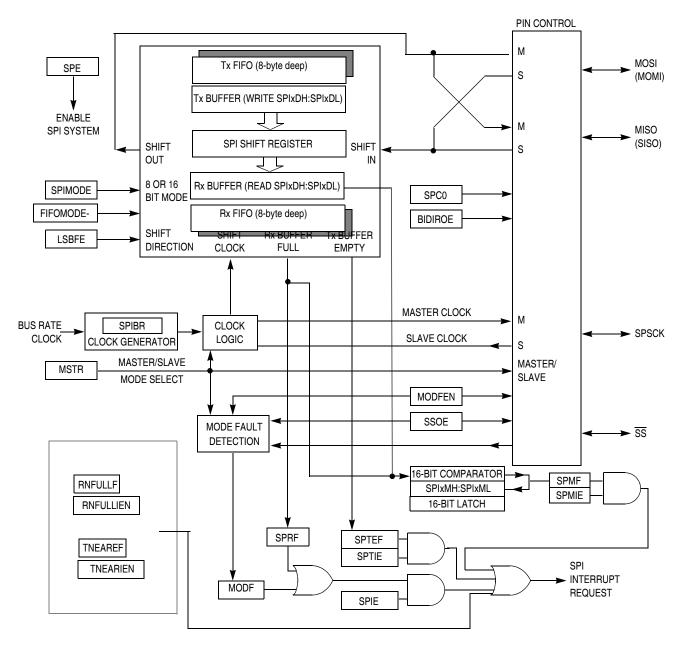


Figure 22-3. SPI Module Block Diagram

22.2 External Signal Description

The SPI optionally shares four port pins. The function of these pins depends on the settings of SPI control bits. When the SPI is disabled (SPE = 0), these four pins revert to being general-purpose port I/O pins that are not controlled by the SPI.

22.2.1 SPSCK — SPI Serial Clock

When the SPI is enabled as a slave, this pin is the serial clock input. When the SPI is enabled as a master, this pin is the serial clock output.

22.2.2 MOSI — Master Data Out, Slave Data In

When the SPI is enabled as a master and SPI pin control zero (SPC0) is 0 (not bidirectional mode), this pin is the serial data output. When the SPI is enabled as a slave and SPC0 = 0, this pin is the serial data input. If SPC0 = 1 to select single-wire bidirectional mode, and master mode is selected, this pin becomes the bidirectional data I/O pin (MOMI). Also, the bidirectional mode output enable bit determines whether the pin acts as an input (BIDIROE = 0) or an output (BIDIROE = 1). If SPC0 = 1 and slave mode is selected, this pin is not used by the SPI and reverts to being a general-purpose port I/O pin.

22.2.3 MISO — Master Data In, Slave Data Out

When the SPI is enabled as a master and SPI pin control zero (SPC0) is 0 (not bidirectional mode), this pin is the serial data input. When the SPI is enabled as a slave and SPC0 = 0, this pin is the serial data output. If SPC0 = 1 to select single-wire bidirectional mode, and slave mode is selected, this pin becomes the bidirectional data I/O pin (SISO) and the bidirectional mode output enable bit determines whether the pin acts as an input (BIDIROE = 0) or an output (BIDIROE = 1). If SPC0 = 1 and master mode is selected, this pin is not used by the SPI and reverts to being a general-purpose port I/O pin.

22.2.4 SS — Slave Select

When the SPI is enabled as a slave, this pin is the low-true slave select input. When the SPI is enabled as a master and mode fault enable is off (MODFEN = 0), this pin is not used by the SPI and reverts to being a general-purpose port I/O pin. When the SPI is enabled as a master and MODFEN = 1, the slave select output enable bit determines whether this pin acts as the mode fault input (SSOE = 0) or as the slave select output (SSOE = 1).

22.3 Register Definition

The SPI has above 8-bit registers to select SPI options, control baud rate, report SPI status, hold an SPI data match value, and for transmit/receive data.

Refer to the direct-page register summary in the Memory chapter of this data sheet for the absolute address assignments for all SPI registers. This section refers to registers and control bits only by their names, and a Freescale-provided equate or header file is used to translate these names into the appropriate absolute addresses.

22-6 Freescale Semiconductor

22.3.1 SPI Control Register 1 (SPIxC1)

This read/write register includes the SPI enable control, interrupt enables, and configuration options.

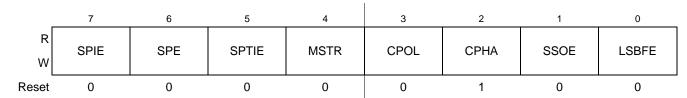


Figure 22-4. SPI Control Register 1 (SPIxC1)

Table 22-1. SPIxC1 Field Descriptions

Field	Description
7 SPIE	FIFOMODE=0 SPI Interrupt Enable (for SPRF and MODF) — This is the interrupt enable for SPI receive buffer full (SPRF) and mode fault (MODF) events. 0 Interrupts from SPRF and MODF inhibited (use polling) 1 When SPRF or MODF is 1, request a hardware interrupt
	FIFOMODE=1 SPI Read FIFO Full Interrupt Enable — This bit when set enables the SPI to interrupt the CPU when the Receive FIFO is full. An interrupt will occur when SPRF flag is set or MODF is set. O Read FIFO Full Interrupts are disabled Read FIFO Full Interrupts are enabled
6 SPE	SPI System Enable — This bit enables the SPI system and dedicates the SPI port pins to SPI system functions. If SPE is cleared, SPI is disabled and forced into idle state, and all status bits in the SPIxS register are reset. O SPI system inactive SPI system enabled
5 SPTIE	SPI Transmit Interrupt Enable — FIFOMODE=0 This is the interrupt enable bit for SPI transmit buffer empty (SPTEF). An interrupt occurs when the SPI transmit buffer is empty (SPTEF is set)
	FIFOMODE=1 This is the interrupt enable bit for SPI transmit FIFO empty (SPTEF). An interrupt occurs when the SPI transmit FIFO is empty (SPTEF is set)
	0 Interrupts from SPTEF inhibited (use polling)1 When SPTEF is 1, hardware interrupt requested
4 MSTR	Master/Slave Mode Select — This bit selects master or slave mode operation. O SPI module configured as a slave SPI device 1 SPI module configured as a master SPI device
3 CPOL	Clock Polarity — This bit selects an inverted or non-inverted SPI clock. To transmit data between SPI modules, the SPI modules must have identical CPOL values. This bit effectively places an inverter in series with the clock signal from a master SPI or to a slave SPI device. Refer to Section 22.4.6, "SPI Clock Formats" for more details. O Active-high SPI clock (idles low) Active-low SPI clock (idles high)

Table 22-1. SPIxC1 Field Descriptions (Continued)

Field	Description
2 CPHA	Clock Phase — This bit selects one of two clock formats for different kinds of synchronous serial peripheral devices. Refer to Section 22.4.6, "SPI Clock Formats" for more details. 0 First edge on SPSCK occurs at the middle of the first cycle of a data transfer 1 First edge on SPSCK occurs at the start of the first cycle of a data transfer
1 SSOE	Slave Select Output Enable — This bit is used in combination with the mode fault enable (MODFEN) bit in SPIxC2 and the master/slave (MSTR) control bit to determine the function of the SS pin as shown in Table 22-2.
0 LSBFE	LSB First (Shifter Direction) — This bit does not affect the position of the MSB and LSB in the data register. Reads and writes of the data register always have the MSB in bit 7 (or bit 15 in 16-bit mode). O SPI serial data transfers start with most significant bit SPI serial data transfers start with least significant bit

Table 22-2. SS Pin Function

MODFEN	SSOE	Master Mode	Slave Mode
0	0	General-purpose I/O (not SPI)	Slave select input
0	1	General-purpose I/O (not SPI)	Slave select input
1	0	SS input for mode fault	Slave select input
1	1	Automatic SS output	Slave select input

22.3.2 SPI Control Register 2 (SPIxC2)

This read/write register is used to control optional features of the SPI system. Bits 5 and 2 are not implemented and always read 0.

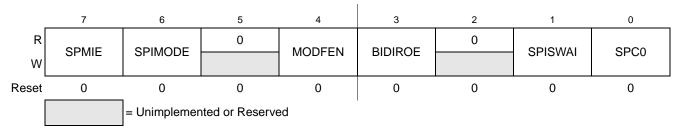


Figure 22-5. SPI Control Register 2 (SPIxC2)

22-8 Freescale Semiconductor

Table 22-3. SPIxC2 Register Field Descriptions

Field	Description
7 SPMIE	SPI Match Interrupt Enable — This is the interrupt enable for the SPI receive data buffer hardware match (SPMF) function. 0 Interrupts from SPMF inhibited (use polling). 1 When SPMF = 1, requests a hardware interrupt.
6 SPIMODE	SPI 8- or 16-bit Mode — This bit allows the user to select either an 8-bit or 16-bit SPI data transmission length. In master mode, a change of this bit will abort a transmission in progress, force the SPI system into idle state, and reset all status bits in the SPIxS register. Refer to section Section 22.4.5, "Data Transmission Length," for details. 0 8-bit SPI shift register, match register, and buffers. 1 16-bit SPI shift register, match register, and buffers.
4 MODFEN	Master Mode-Fault Function Enable — When the SPI is configured for slave mode, this bit has no meaning or effect. (The \overline{SS} pin is the slave select input.) In master mode, this bit determines how the \overline{SS} pin is used (refer to Table 22-2 for details) 0 Mode fault function disabled, master \overline{SS} pin reverts to general-purpose I/O not controlled by SPI 1 Mode fault function enabled, master \overline{SS} pin acts as the mode fault input or the slave select output
3 BIDIROE	Bidirectional Mode Output Enable — When bidirectional mode is enabled by SPI pin control 0 (SPC0) = 1, BIDIROE determines whether the SPI data output driver is enabled to the single bidirectional SPI I/O pin. Depending on whether the SPI is configured as a master or a slave, it uses either the MOSI (MOMI) or MISO (SISO) pin, respectively, as the single SPI data I/O pin. When SPC0 = 0, BIDIROE has no meaning or effect. 0 Output driver disabled so SPI data I/O pin acts as an input 1 SPI I/O pin enabled as an output
1 SPISWAI	SPI Stop in Wait Mode — This bit is used for power conservation while in wait. 0 SPI clocks continue to operate in wait mode 1 SPI clocks stop when the MCU enters wait mode
0 SPC0	SPI Pin Control 0 — This bit enables bidirectional pin configurations as shown in Table 22-4. 0 SPI uses separate pins for data input and data output. 1 SPI configured for single-wire bidirectional operation.

Table 22-4. Bidirectional Pin Configurations

Pin Mode	SPC0	BIDIROE	MISO	MOSI
		Master	Mode of Operation	
Normal	0	Х	Master In	Master Out
Bidirectional	1	0	MISO not used by SPI	Master In
		1		Master I/O
Slave Mode of Operation				
Normal	0	Х	Slave Out	Slave In
Bidirectional	1	0	Slave In	MOSI not used by SPI
		1	Slave I/O	

22.3.3 SPI Baud Rate Register (SPIxBR)

This register is used to set the prescaler and bit rate divisor for an SPI master. This register may be read or written at any time.

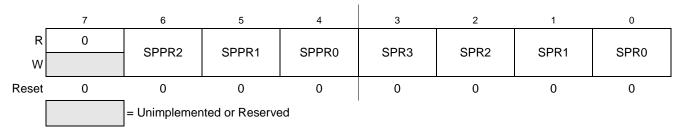


Figure 22-6. SPI Baud Rate Register (SPIxBR)

Table 22-5. SPIxBR Register Field Descriptions

Field	Description
6:4 SPPR[2:0]	SPI Baud Rate Prescale Divisor — This 3-bit field selects one of eight divisors for the SPI baud rate prescaler as shown in Table 22-6. The input to this prescaler is the bus rate clock (BUSCLK). The output of this prescaler drives the input of the SPI baud rate divider (see Figure 22-19). See Section 22.4.7, "SPI Baud Rate Generation," for details.
3:0 SPR[3:0]	SPI Baud Rate Divisor — This 4-bit field selects one of nine divisors for the SPI baud rate divider as shown in Table 22-7. The input to this divider comes from the SPI baud rate prescaler (see Figure 22-19). See Section 22.4.7, "SPI Baud Rate Generation," for details.

Table 22-6. SPI Baud Rate Prescaler Divisor

SPPR2:SPPR1:SPPR0	Prescaler Divisor
0:0:0	1
0:0:1	2
0:1:0	3
0:1:1	4
1:0:0	5
1:0:1	6
1:1:0	7
1:1:1	8

22-10 Freescale Semiconductor

SPR3:SPR2:SPR1:SPR0	Rate Divisor
0:0:0:0	2
0:0:0:1	4
0:0:1:0	8
0:0:1:1	16
0:1:0:0	32
0:1:0:1	64
0:1:1:0	128
0:1:1:1	256
1:0:0:0	512
All other combinations	Reserved

Table 22-7. SPI Baud Rate Divisor

22.3.4 SPI Status Register (SPIxS)

This register has eight read-only status bits. Writes have no meaning or effect.



Figure 22-7. SPI Status Register (SPIxS)

This register has 4 additional flags RNFULLF, TNEARF, TXFULLF and RFIFOEF which provide mechanisms to support an 8-byte FIFO mode. When in 8-byte FIFO mode, the function of SPRF and SPTEF differ slightly from the normal buffered modes, mainly in how these flags are cleared by the amount available in the transmit and receive FIFOs.

Note: PoR values of TNEAREF and RFIFOEF is 0. If status register is reset due to change of SPIMODE, FIFOMODE or SPE than, if FIFOMODE = 1, TNEAREF and RFIFOEF resets to 1 else if FIFOMODE = 0, TNEAREF and RFIFOEF resets to 0

Table 22-8. SPIxS Register Field Descriptions

Field	Description
7 SPRF	SPI Read Buffer Full Flag — SPRF is set at the completion of an SPI transfer to indicate that received data may be read from the SPI data register (SPIxDH:SPIxDL). SPRF is cleared by reading SPRF while it is set, then reading the SPI data register. 0 No data available in the receive data buffer. 1 Data available in the receive data buffer. FIFOMODE=1
	SPI Read FIFO FULL Flag — This bit indicates the status of the Read FIFO when FIFOMODE enabled. The SPRF is set when the read FIFO has received 64bits (4 words or 8 bytes) of data from the shifter and there has been no CPU reads of SPIxDH:SPIxDL. SPRF is cleared by reading the SPI Data Register, which empties the FIFO, assuming another SPI message is not received.
	O Read FIFO is not Full Read FIFO is Full.
6 SPMF	SPI Match Flag — SPMF is set after SPRF = 1 when the value in the receive data buffer matches the value in SPIxMH:SPIxML. To clear the flag, read SPMF when it is set, then write a 1 to it. Value in the receive data buffer does not match the value in SPIxMH:SPIxML registers. Value in the receive data buffer matches the value in SPIxMH:SPIxML registers.
5 SPTEF	SPI Transmit Buffer Empty Flag — This bit is set when the transmit data buffer is empty. It is cleared by reading SPIxS with SPTEF set, followed by writing a data value to the transmit buffer at SPIxDH:SPIxDL. SPIxS must be read with SPTEF = 1 before writing data to SPIxDH:SPIxDL or the SPIxDH:SPIxDL write will be ignored. SPTEF is automatically set when all data from the transmit buffer transfers into the transmit shift register. For an idle SPI, data written to SPIxDH:SPIxDL is transferred to the shifter almost immediately so SPTEF is set within two bus cycles allowing a second data to be queued into the transmit buffer. After completion of the transfer of the data in the shift register, the queued data from the transmit buffer will automatically move to the shifter and SPTEF will be set to indicate there is room for new data in the transmit buffer. If no new data is waiting in the transmit buffer, SPTEF simply remains set and no data moves from the buffer to the shifter. O SPI transmit buffer not empty SPI transmit buffer empty
	FIFOMODE=1 SPI Transmit FIFO Empty Flag — This bit when in FIFOMODE now changed to provide status of the FIFO rather than an 8or16-bit buffer. This bit is set when the Transmit FIFO is empty. It is cleared by writing a data value to the transmit FIFO at SPIxDH:SPIxDL. SPTEF is automatically set when all data from transmit FIFO transfers into the transmit shift register. For an idle SPI, data written to SPIxDH:SPIxDL is transferred to the shifter almost immediately so SPTEF is set within two bus cycles, a second write of data to the SPIxDH:SPIxDL will clear this SPTEF flag. After completion of the transfer of the data in the shift register, the queued data from the transmit FIFO will automatically move to the shifter and SPTEF will be set only when all data written to the transmit FIFO has been transferred to the shifter. If no new data is waiting in the transmit FIFO, SPTEF simply remains set and no data moves from the buffer to the shifter. 0 SPI FIFO not empty 1 SPI FIFO empty
4 MODF	Master Mode Fault Flag — MODF is set if the SPI is configured as a master and the slave select input goes low, indicating some other SPI device is also configured as a master. The SS pin acts as a mode fault error input only when MSTR = 1, MODFEN = 1, and SSOE = 0; otherwise, MODF will never be set. MODF is cleared by reading MODF while it is 1, then writing to SPI control register 1 (SPIxC1). 0 No mode fault error 1 Mode fault error detected

22-12 Freescale Semiconductor

Table 22-8. SPIxS Register Field Descriptions

Field	Description
3 RNFULLF	Receive FIFO Nearly Full Flag — This flag is set when more than three16bit words or six 8bit bytes of data remain in the receive FIFO provided SPIxC3[4] = 0 or when more than two 16bit words or four 8bit bytes of data remain in the receive FIFO provided SPIxC3[4] = 1. It has no function if FIFOMODE=0. 0 Receive FIFO has received less than 48bits/32bits (See SPIxC3[4]). 1 Receive FIFO has received 48bits/32bits(See SPIxC3[4]) or more.
2 TNEAREF	Transmit FIFO Nearly Empty Flag — This flag is set when only one 16bit word or 2 8bit bytes of data remain in the transmit FIFO provided SPIxC3[5] = 0 or when only two 16bit words or 4 8bit bytes of data remain in the transmit FIFO provided SPIxC3[5] =1. If FIFOMODE is not enabled this bit should be ignored. 0 Transmit FIFO has more than 16bits/32bits (See SPIxC3[5]) left to transmit. 1 Transmit FIFO has 16bits/32 bits (See SPIxC3[5])or less left to transmit
1 TXFULLF	Transmit FIFO Full Flag - This bit indicates status of transmit FIFO when FIFO mode is enabled. This flag is set when there are 8 bytes in transmit FIFO. If FIFOMODE is not enabled this bit should be ignored. 0 Transmit FIFO has less than 8 bytes. 1 Transmit FIFO has 8 bytes of data.
0 RFIFOEF	 SPI Read FIFO Empty Flag — This bit indicates the status of the Read FIFO when FIFOMODE enabled. If FIFOMODE is not enabled this bit should be ignored. Read FIFO has data. Reads of the SPIxDH:SPIxDL registers in 16-bit mode or SPIxDL register in 8-bit mode will empty the Read FIFO. Read FIFO is empty.

For FIFO management there are two other important flags that are used to help make the operation more efficient when transferring large amounts of data. These are the Receive FIFO Nearly Full Flag (RNFULLF) and the Transmit FIFO Nearly Empty Flag (TNEAREF). Both these flags provide a "watermark" feature of the FIFOs to allow continuous transmissions of data when running at high speed.

The **RNFULLF** flag can generate an interrupt if the **RNFULLIEN** bit in the **SPIxC3** Register is set which allows the CPU to start emptying the Receive FIFO without delaying the reception of subsequent bytes. The user can also determine if all data in Receive FIFO has been read by monitoring the **RFIFOEF** flag.

The TNEAREF flag can generate an interrupt if the TNEARIEN bit n the SPIxC3 Register is set which allows the CPU to start filling the Transmit FIFO before it is empty and thus provide a mechanism to have no breaks in SPI transmission.

NOTE

SPIxS and both TX and RX FIFOs gets reset due to change in SPIMODE, FIFOMODE or SPE. PoR values of SPIxS are show in Figure 22-7 and Figure 22-8.

Figure 22-7 and Figure 22-8 shows the reset values due to change of modes after PoR.

MCF51MM256 Series Devices Reference Manual, Rev. 3 Freescale Semiconductor 22-13

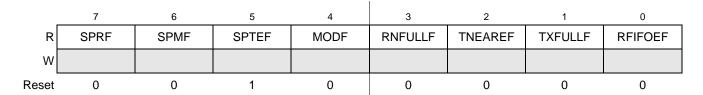


Figure 22-8. Reset values of SPIxS after PoR with FIFOMODE = 0

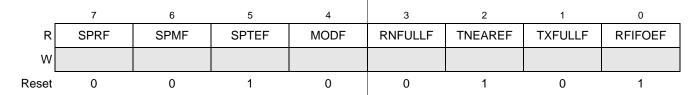


Figure 22-9. Reset values of SPIxS after PoR with FIFOMODE = 1

22.3.5 SPI Data Registers (SPIxDH:SPIxDL)

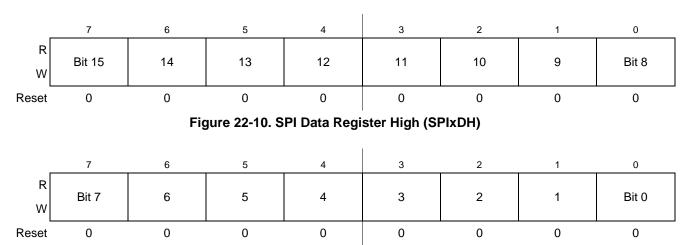


Figure 22-11. SPI Data Register Low (SPIxDL)

The SPI data registers (SPIxDH:SPIxDL) are both the input and output register for SPI data. A write to these registers writes to the transmit data buffer, allowing data to be queued and transmitted.

When the SPI is configured as a master, data queued in the transmit data buffer is transmitted immediately after the previous transmission has completed.

The SPI transmit buffer empty flag (SPTEF) in the SPIxS register indicates when the transmit data buffer is ready to accept new data. SPIxS must be read when SPTEF is set before writing to the SPI data registers, or the write will be ignored.

22-14 Freescale Semiconductor

22-15

Data may be read from SPIxDH:SPIxDL any time after SPRF is set and before another transfer is finished. Failure to read the data out of the receive data buffer before a new transfer ends causes a receive overrun condition and the data from the new transfer is lost.

In 8-bit mode, only SPIxDL is available. Reads of SPIxDH will return all 0s. Writes to SPIxDH will be ignored.

In 16-bit mode, reading either byte (SPIxDH or SPIxDL) latches the contents of both bytes into a buffer where they remain latched until the other byte is read. Writing to either byte (SPIxDH or SPIxDL) latches the value into a buffer. When both bytes have been written, they are transferred as a coherent 16-bit value into the transmit data buffer.

22.3.6 SPI Match Registers (SPIxMH:SPIxML)

These read/write registers contain the hardware compare value, which sets the SPI match flag (SPMF) when the value received in the SPI receive data buffer equals the value in the SPIxML registers.

In 8-bit mode, only SPIxML is available. Reads of SPIxMH will return all 0s. Writes to SPIxMH will be ignored.

In 16-bit mode, reading either byte (SPIxMH or SPIxML) latches the contents of both bytes into a buffer where they remain latched until the other byte is read. Writing to either byte (SPIxMH or SPIxML) latches the value into a buffer. When both bytes have been written, they are transferred as a coherent value into the SPI match registers.

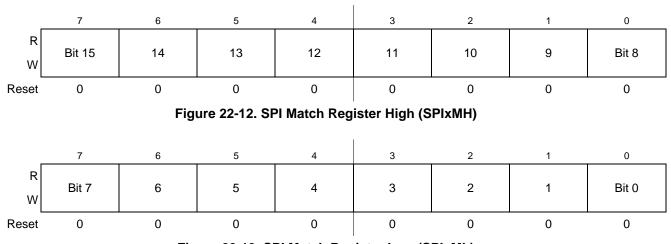


Figure 22-13. SPI Match Register Low (SPIxML)

22.3.7 SPI Control Register 3 (SPIxC3) — enable FIFO feature

The SPI Control Register 3 introduces a 64-bit FIFO function on both transmit and receive buffers to be utilized on the SPI. Utilizing this FIFO feature allows the SPI to provide high speed transfers of large amounts of data without consuming large amounts of the CPU bandwidth.

Enabling this FIFO function will effect the behavior of some of the Read/Write Buffer flags in the SPIxS register namely:

• The **SPRF** of the **SPIxS** register will be set when the Receive FIFO is filled and will interrupt the CPU if the **SPIE** in the **SPIxC1** register is set.

and

• The **SPTEF** of the **SPIxS** register will be set when the Transmit FIFO is empty, and will interrupt the CPU if the **SPTIE** bit is set in the **SPIxC1** register. See **SPIxC1** and **SPIxS** registers.

FIFO mode is enabled by setting the **FIFOMODE** bit, and provides the SPI with an 8-byte receive FIFO and an 8-byte transmit FIFO to reduce the amount of CPU interrupts for high speed/high volume data transfers.

Two interrupt enable bits **TNEARIEN** and **RNFULLIEN** provide CPU interrupts based on the "watermark" feature of the **TNEARF** and **RNFULLF** flags of the SPIxS register.

Note: This register has six read/write control bits. Bits 7 through 6 are not implemented and always read 0. Writes have no meaning or effect. Write to this register happens only when FIFOMODE bit is 1.

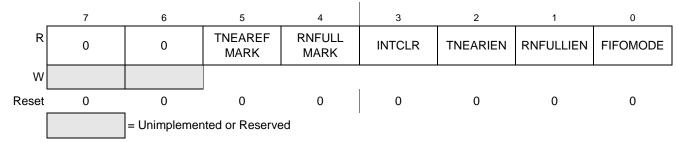


Figure 22-14. SPI Control Register (SPIxC3S)

Table 22-9. SPIxC3S Register Field Descriptions

Field	Description
5 TNEAREF MARK	Transmit FIFO Nearly Empty Water Mark — This bit selects the mark after which TNEAREF flag is asserted. 1 TNEAREF is set when Transmit FIFO has 32bits or less. 2 TNEAREF is set when Transmit FIFO has 32bits or less.
4 RNFULLF MARK	Receive FIFO Nearly Full Water Mark — This bit selects the mark for which RNFULLF flag is asserted 0 RNFULLF is set when Receive FIFO has 48bits or more 1 RNFULLF is set when Receive FIFO has 32bits or more.
3 INTCLR	Interrupt Clearing Mechanism Select — This bit selects the mechanism by which SPRF, SPTEF, TNEAREF, RNFULLF interrupts gets cleared. 0 Interrupts gets cleared when respective flags gets cleared depending on the state of FIFOs 1 Interrupts gets cleared by writing to the SPIxCI respective bits.
2 TNEARIEN	Transmit FIFO Nearly Empty Interrupt Enable — Writing to this bit enables the SPI to interrupt the CPU when the TNEAREF flag is set. This is an additional interrupt on the SPI and will only interrupt the CPU if SPTIE in the SPIxC1 register is also set. This bit is ignored and has no function if FIFOMODE=0. 0 No interrupt on Transmit FIFO Nearly Empty Flag being set. 1 Enable interrupts on Transmit FIFO Nearly Empty Flag being set.

MCF51MM256 Series Devices Reference Manual, Rev. 3

22-16 Freescale Semiconductor

22-17

Field	Description		
1 RNFULLIEN	Receive FIFO Nearly Full Interrupt Enable — Writing to this bit enables the SPI to interrupt the CPU when the RNEARFF flag is set. This is an additional interrupt on the SPI and will only interrupt the CPU if SPIE in the SPIxC1 register is also set. This bit is ignored and has no function if FIFOMODE=0. 0 No interrupt on RNEARFF being set. 1 Enable interrupts on RNEARFF being set.		
0 FIFOMODE	SPI FIFO Mode Enable — This bit enables the SPI to utilize a 64bit FIFO (8 bytes 4 16-bit words) for both transmit and receive buffers. 0 Buffer mode disabled. 1 Data available in the receive data buffer.		

22.3.8 SPI Clear Interrupt Register (SPIxCI)

The SPI Clear Interrupt register has 4 bits dedicated for clearing the interrupts. Writing 1 to these bits clears the respective interrupts if INTCLR bit in SPIxCR3 is set.

It also have 2 bits to indicate the transmit FIFO and receive FIFO overrun conditions. When receive FIFO is full and a data is received RXFOF flag is set. Similarly, when transmit FIFO is full and write happens to SPIDR TXFOF is set. These flags get cleared when a read happens to this register with the flags set.

There are two more bits to indicate the error flags. These flags gets set when due to some spurious reasons entries in FIFO becomes greater than 8. At this point all the flags in status register gets reset and entries in FIFO are flushed with respective error flags set. These flags are cleared when a read happen at SPIxCI with the error flags set.

Note: Bits [7:4] are read-only bits. These bits gets cleared when a read happens to this register with the flags set. Bits [3:0] are clear interrupts bits which clears the interrupts by writing 1 to respective bits. Reading these bits always return 0.

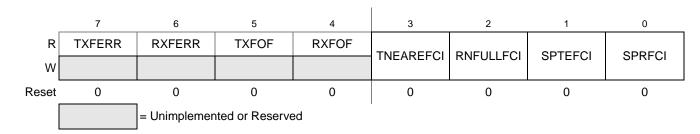


Table 22-10. SPIxCI Register Field Descriptions

Field	Description		
7 TXFERR	Transmit FIFO Error Flag- This flag indicates that TX FIFO error occurred because entries in FIFO goes above 8. 0 No TX FIFO error occurred. 1 TX FIFO error occurred.		
6 RXFERR	Receive FIFO Error Flag- This flag indicates that RX FIFO error occurred because entries in FIFO goes above 8. 0 No RX FIFO error occurred. 1 RX FIFO error occurred.		

Table 22-10. SPIxCI Register Field Descriptions

Field	Description		
5 TXFOF	TX FIFO Overflow Flag- This Flag indicates that TX FIFO overflow condition has occurred. 0 TX FIFO overflow condition has not occurred. 1 TX FIFO overflow condition occurred.		
4 RXFOF	RX FIFO Overflow Flag - This Flag indicates that RX FIFO overflow condition has occurred. 0 RX FIFO overflow condition has not occurred. 1 RX FIFO overflow condition occurred.		
3 TNEAREFCI	Transmit FIFO Nearly Empty Flag Clear Interrupt Register — Write of 1 clears the TNEAREF interrupt provided SPIxC3[3] is set.		
2 RNFULLFCI	Receive FIFO Nearly Full Flag Clear Interrupt Register — Write of 1 clears the RNFULLF interrupt provided SPIxC3[3] is set.		
1 SPTEFCI	Transmit FIFO Empty Flag Clear Interrupt Register — Write of 1 clears the SPTEF interrupt provided SPIxC3[3] is set.		
0 SPRFCI	Receive FIFO Full Flag Clear Interrupt Register — Write of 1 clears the TNEAREF interrupt provided SPIxC3[3] is set.		

22.4 Functional Description

22.4.1 General

The SPI system is enabled by setting the SPI enable (SPE) bit in SPI Control Register 1. While the SPE bit is set, the four associated SPI port pins are dedicated to the SPI function as:

- Slave select (\overline{SS})
- Serial clock (SPSCK)
- Master out/slave in (MOSI)
- Master in/slave out (MISO)

An SPI transfer is initiated in the master SPI device by reading the SPI status register (SPIxS) when SPTEF = 1 and then writing data to the transmit data buffer (write to SPIxDH:SPIxDL). When a transfer is complete, received data is moved into the receive data buffer. The SPIxDH:SPIxDL registers act as the SPI receive data buffer for reads and as the SPI transmit data buffer for writes.

The clock phase control bit (CPHA) and a clock polarity control bit (CPOL) in the SPI Control Register 1 (SPIxC1) select one of four possible clock formats to be used by the SPI system. The CPOL bit simply selects a non-inverted or inverted clock. The CPHA bit is used to accommodate two fundamentally different protocols by sampling data on odd numbered SPSCK edges or on even numbered SPSCK edges.

The SPI can be configured to operate as a master or as a slave. When the MSTR bit in SPI control register 1 is set, master mode is selected, when the MSTR bit is clear, slave mode is selected.

22.4.2 Master Mode

The SPI operates in master mode when the MSTR bit is set. Only a master SPI module can initiate transmissions. A transmission begins by reading the SPIxS register while SPTEF = 1 and writing to the

master SPI data registers. If the shift register is empty, the byte immediately transfers to the shift register. The data begins shifting out on the MOSI pin under the control of the serial clock.

SPSCK

The SPR3, SPR2, SPR1, and SPR0 baud rate selection bits in conjunction with the SPPR2, SPPR1, and SPPR0 baud rate preselection bits in the SPI Baud Rate register control the baud rate generator and determine the speed of the transmission. The SPSCK pin is the SPI clock output. Through the SPSCK pin, the baud rate generator of the master controls the shift register of the slave peripheral.

• MOSI, MISO pin

In master mode, the function of the serial data output pin (MOSI) and the serial data input pin (MISO) is determined by the SPC0 and BIDIROE control bits.

• \overline{SS} pin

If MODFEN and SSOE bit are set, the \overline{SS} pin is configured as slave select output. The \overline{SS} output becomes low during each transmission and is high when the SPI is in idle state.

If MODFEN is set and SSOE is cleared, the \overline{SS} pin is configured as input for detecting mode fault error. If the \overline{SS} input becomes low this indicates a mode fault error where another master tries to drive the MOSI and SPSCK lines. In this case, the SPI immediately switches to slave mode, by clearing the MSTR bit and also disables the slave output buffer MISO (or SISO in bidirectional mode). So the result is that all outputs are disabled and SPSCK, MOSI and MISO are inputs. If a transmission is in progress when the mode fault occurs, the transmission is aborted and the SPI is forced into idle state.

This mode fault error also sets the mode fault (MODF) flag in the SPI Status Register (SPIxS). If the SPI interrupt enable bit (SPIE) is set when the MODF flag gets set, then an SPI interrupt sequence is also requested.

When a write to the SPI Data Register in the master occurs, there is a half SPSCK-cycle delay. After the delay, SPSCK is started within the master. The rest of the transfer operation differs slightly, depending on the clock format specified by the SPI clock phase bit, CPHA, in SPI Control Register 1 (see Section 22.4.6, "SPI Clock Formats).

NOTE

A change of the bits CPOL, CPHA, SSOE, LSBFE, MODFEN, SPC0, BIDIROE with SPC0 set, SPIMODE, FIFOMODE, SPPR2-SPPR0 and SPR3-SPR0 in master mode will abort a transmission in progress and force the SPI into idle state. The remote slave cannot detect this, therefore the master has to ensure that the remote slave is set back to idle state.

22.4.3 Slave Mode

The SPI operates in slave mode when the MSTR bit in SPI Control Register1 is clear.

SPSCK

In slave mode, SPSCK is the SPI clock input from the master.

MISO, MOSI pin

In slave mode, the function of the serial data output pin (MISO) and serial data input pin (MOSI) is determined by the SPC0 bit and BIDIROE bit in SPI Control Register 2.

• \overline{SS} pin

The \overline{SS} pin is the slave select input. Before a data transmission occurs, the \overline{SS} pin of the slave SPI must be low. \overline{SS} must remain low until the transmission is complete. If \overline{SS} goes high, the SPI is forced into idle state.

The \overline{SS} input also controls the serial data output pin, if \overline{SS} is high (not selected), the serial data output pin is high impedance, and, if \overline{SS} is low the first bit in the SPI Data Register is driven out of the serial data output pin. Also, if the slave is not selected (\overline{SS} is high), then the SPSCK input is ignored and no internal shifting of the SPI shift register takes place.

Although the SPI is capable of duplex operation, some SPI peripherals are capable of only receiving SPI data in a slave mode. For these simpler devices, there is no serial data out pin.

NOTE

When peripherals with duplex capability are used, take care not to simultaneously enable two receivers whose serial outputs drive the same system slave's serial data output line.

As long as no more than one slave device drives the system slave's serial data output line, it is possible for several slaves to receive the same transmission from a master, although the master would not receive return information from all of the receiving slaves.

If the CPHA bit in SPI Control Register 1 is clear, odd numbered edges on the SPSCK input cause the data at the serial data input pin to be latched. Even numbered edges cause the value previously latched from the serial data input pin to shift into the LSB or MSB of the SPI shift register, depending on the LSBFE bit.

If the CPHA bit is set, even numbered edges on the SPSCK input cause the data at the serial data input pin to be latched. Odd numbered edges cause the value previously latched from the serial data input pin to shift into the LSB or MSB of the SPI shift register, depending on the LSBFE bit.

When CPHA is set, the first edge is used to get the first data bit onto the serial data output pin. When CPHA is clear and the \overline{SS} input is low (slave selected), the first bit of the SPI data is driven out of the serial data output pin. After the eighth (SPIMODE = 0) or sixteenth (SPIMODE = 1) shift, the transfer is considered complete and the received data is transferred into the SPI data registers. To indicate transfer is complete, the SPRF flag in the SPI Status Register is set.

NOTE

A change of the bits CPOL, CPHA, SSOE, LSBFE, MODFEN, SPC0 and BIDIROE with SPC0 set FIFOMODE and SPIMODE in slave mode will corrupt a transmission in progress and has to be avoided.

22.4.4 SPI FIFO MODE

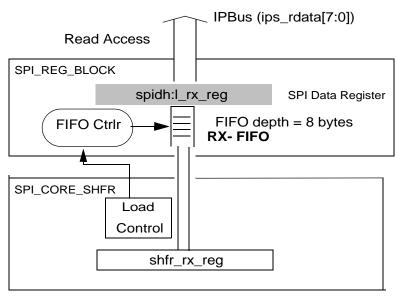


Figure 22-15. SPIH:L read side structural overview in FIFO mode

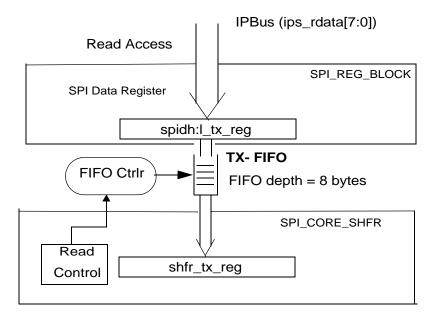


Figure 22-16. SPIH:L write side structural overview in FIFO mode

SPI works in FIFO mode when SPIxC3[0] bit is set. When in FIFO mode SPI RX buffer and SPI TX buffer is replaced by a 8 byte deep FIFO as shown in figure above.

22.4.5 Data Transmission Length

The SPI can support data lengths of 8 or 16 bits. The length can be configured with the SPIMODE bit in the SPIxC2 register.

In 8-bit mode (SPIMODE = 0), the SPI Data Register is comprised of one byte: SPIxDL. The SPI Match Register is also comprised of only one byte: SPIxML. Reads of SPIxDH and SPIxMH will return zero. Writes to SPIxDH and SPIxMH will be ignored.

In 16-bit mode (SPIMODE = 1), the SPI Data Register is comprised of two bytes: SPIxDH and SPIxDL. Reading either byte (SPIxDH or SPIxDL) latches the contents of both bytes into a buffer where they remain latched until the other byte is read. Writing to either byte (SPIxDH or SPIxDL) latches the value into a buffer. When both bytes have been written, they are transferred as a coherent 16-bit value into the transmit data buffer.

In 16-bit mode, the SPI Match Register is also comprised of two bytes: SPIxMH and SPIxML. There is no buffer mechanism for the reading of SPIxMH and SPIxML since they can only be changed by writing at CPU side. Writing to either byte (SPIxMH or SPIxML) latches the value into a buffer. When both bytes have been written, they are transferred as a coherent 16-bit value into the transmit data buffer.

Any switching between 8- and 16-bit data transmission length (controlled by SPIMODE bit) in master mode will abort a transmission in progress, force the SPI system into idle state, and reset all status bits in the SPIxS register. To initiate a transfer after writing to SPIMODE, the SPIxS register must be read with SPTEF = 1, and data must be written to SPIxDH:SPIxDL in 16-bit mode (SPIMODE = 1) or SPIxDL in 8-bit mode (SPIMODE = 0).

In slave mode, user software should write to SPIMODE only once to prevent corrupting a transmission in progress.

NOTE

Data can be lost if the data length is not the same for both master and slave devices.

22.4.6 SPI Clock Formats

To accommodate a wide variety of synchronous serial peripherals from different manufacturers, the SPI system has a clock polarity (CPOL) bit and a clock phase (CPHA) control bit to select one of four clock formats for data transfers. CPOL selectively inserts an inverter in series with the clock. CPHA chooses between two different clock phase relationships between the clock and data.

Figure 22-17 shows the clock formats when SPIMODE = 0 (8-bit mode) and CPHA = 1. At the top of the figure, the eight bit times are shown for reference with bit 1 starting at the first SPSCK edge and bit 8 ending one-half SPSCK cycle after the eighth SPSCK edge. The MSB first and LSB first lines show the order of SPI data bits depending on the setting in LSBFE. Both variations of SPSCK polarity are shown, but only one of these waveforms applies for a specific transfer, depending on the value in CPOL. The SAMPLE IN waveform applies to the MOSI input of a slave or the MISO input of a master. The MOSI waveform applies to the MOSI output pin from a master and the MISO waveform applies to the MISO output from a slave. The $\overline{\text{SS}}$ OUT waveform applies to the slave select output from a master (provided MODFEN and SSOE = 1). The master $\overline{\text{SS}}$ output goes to active low one-half SPSCK cycle before the start

of the transfer and goes back high at the end of the eighth bit time of the transfer. The \overline{SS} IN waveform applies to the slave select input of a slave.

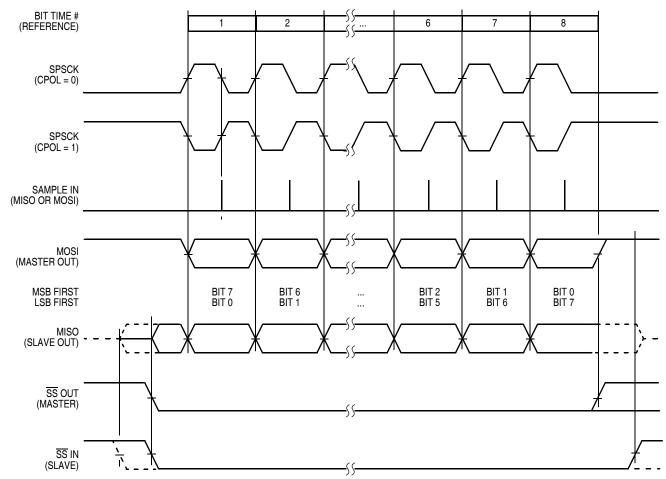


Figure 22-17. SPI Clock Formats (CPHA = 1)

When CPHA = 1, the slave begins to drive its MISO output when \overline{SS} goes to active low, but the data is not defined until the first SPSCK edge. The first SPSCK edge shifts the first bit of data from the shifter onto the MOSI output of the master and the MISO output of the slave. The next SPSCK edge causes both the master and the slave to sample the data bit values on their MISO and MOSI inputs, respectively. At the third SPSCK edge, the SPI shifter shifts one bit position which shifts in the bit value that was just sampled, and shifts the second data bit value out the other end of the shifter to the MOSI and MISO outputs of the master and slave, respectively. When CPHA = 1, the slave's \overline{SS} input is not required to go to its inactive high level between transfers.

Figure 22-18 shows the clock formats when SPIMODE = 0 and CPHA = 0. At the top of the figure, the eight bit times are shown for reference with bit 1 starting as the slave is selected (\overline{SS} IN goes low), and bit 8 ends at the last SPSCK edge. The MSB first and LSB first lines show the order of SPI data bits depending on the setting in LSBFE. Both variations of SPSCK polarity are shown, but only one of these waveforms applies for a specific transfer, depending on the value in CPOL. The SAMPLE IN waveform applies to the MOSI input of a slave or the MISO input of a master. The MOSI waveform applies to the MOSI output

pin from a master and the MISO waveform applies to the MISO output from a slave. The \overline{SS} OUT waveform applies to the slave select output from a master (provided MODFEN and SSOE = 1). The master \overline{SS} output goes to active low at the start of the first bit time of the transfer and goes back high one-half SPSCK cycle after the end of the eighth bit time of the transfer. The \overline{SS} IN waveform applies to the slave select input of a slave.

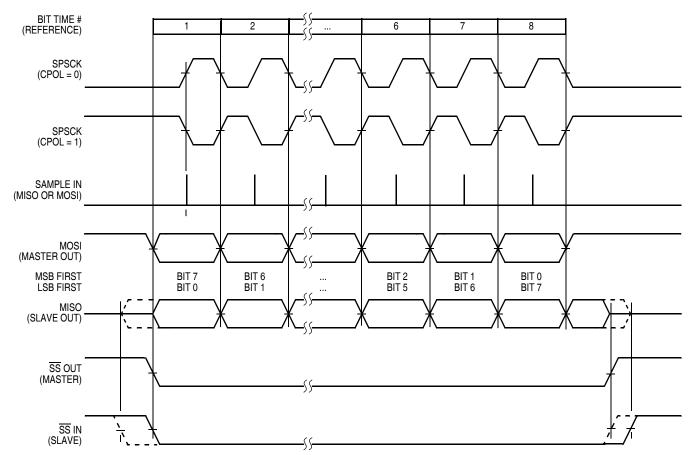


Figure 22-18. SPI Clock Formats (CPHA = 0)

When CPHA = 0, the slave begins to drive its MISO output with the first data bit value (MSB or LSB depending on LSBFE) when \overline{SS} goes to active low. The first SPSCK edge causes both the master and the slave to sample the data bit values on their MISO and MOSI inputs, respectively. At the second SPSCK edge, the SPI shifter shifts one bit position which shifts in the bit value that was just sampled and shifts the second data bit value out the other end of the shifter to the MOSI and MISO outputs of the master and slave, respectively. When CPHA = 0, the slave's \overline{SS} input must go to its inactive high level between transfers.

22.4.7 SPI Baud Rate Generation

As shown in Figure 22-19, the clock source for the SPI baud rate generator is the bus clock. The three prescale bits (SPPR2:SPPR1:SPPR0) choose a prescale divisor of 1, 2, 3, 4, 5, 6, 7, or 8. The three rate select bits (SPR3:SPR2:SPR1:SPR0) divide the output of the prescaler stage by 2, 4, 8, 16, 32, 64, 128, 256 or 512 to get the internal SPI master mode bit-rate clock.

MCF51MM256 Series Devices Reference Manual, Rev. 3

22-24 Freescale Semiconductor

The baud rate generator is activated only when the SPI is in the master mode and a serial transfer is taking place. In the other cases, the divider is disabled to decrease I_{DD} current.

The baud rate divisor equation is as follows except those reserved combinations in Table 22-7:

$$BaudRateDivisor = (SPPR + 1) \bullet 2^{(SPR + 1)}$$

The baud rate can be calculated with the following equation:

Baud Rate = BusClock/BaudRateDivisor

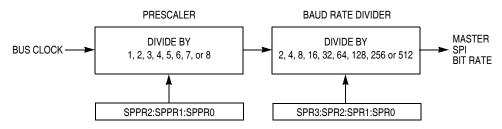


Figure 22-19. SPI Baud Rate Generation

22.4.8 Special Features

22.4.8.1 **SS** Output

The \overline{SS} output feature automatically drives the \overline{SS} pin low during transmission to select external devices and drives it high during idle to deselect external devices. When \overline{SS} output is selected, the \overline{SS} output pin is connected to the \overline{SS} input pin of the external device.

The \overline{SS} output is available only in master mode during normal SPI operation by asserting the SSOE and MODFEN bits as shown in Table 22-2.

The mode fault feature is disabled while \overline{SS} output is enabled.

NOTE

Care must be taken when using the \overline{SS} output feature in a multi-master system since the mode fault feature is not available for detecting system errors between masters.

22.4.8.2 Bidirectional Mode (MOMI or SISO)

The bidirectional mode is selected when the SPC0 bit is set in SPI Control Register 2 (see Section Table 22-11., "Normal Mode and Bidirectional Mode.") In this mode, the SPI uses only one serial data pin for the interface with external device(s). The MSTR bit decides which pin to use. The MOSI pin becomes the serial data I/O (MOMI) pin for the master mode, and the MISO pin becomes serial data I/O (SISO) pin for the slave mode. The MISO pin in master mode and MOSI pin in slave mode are not used by the SPI.

Table 22-11. Normal Mode and Bidirectional Mode

The direction of each serial I/O pin depends on the BIDIROE bit. If the pin is configured as an output, serial data from the shift register is driven out on the pin. The same pin is also the serial input to the shift register.

The SPSCK is output for the master mode and input for the slave mode.

The \overline{SS} is the input or output for the master mode, and it is always the input for the slave mode.

The bidirectional mode does not affect SPSCK and \overline{SS} functions.

NOTE

In bidirectional master mode, with mode fault enabled, both data pins MISO and MOSI can be occupied by the SPI, though MOSI is normally used for transmissions in bidirectional mode and MISO is not used by the SPI. If a mode fault occurs, the SPI is automatically switched to slave mode, in this case MISO becomes occupied by the SPI and MOSI is not used. This has to be considered, if the MISO pin is used for another purpose.

22.4.9 Error Conditions

The SPI has one error condition:

Mode fault error

22.4.9.1 Mode Fault Error

If the \overline{SS} input becomes low while the SPI is configured as a master, it indicates a system error where more than one master may be trying to drive the MOSI and SPSCK lines simultaneously. This condition is not

MCF51MM256 Series Devices Reference Manual, Rev. 3

permitted in normal operation, and the MODF bit in the SPI status register is set automatically provided the MODFEN bit is set.

In the special case where the SPI is in master mode and MODFEN bit is cleared, the \overline{SS} pin is not used by the SPI. In this special case, the mode fault error function is inhibited and MODF remains cleared. In case the SPI system is configured as a slave, the \overline{SS} pin is a dedicated input pin. Mode fault error doesn't occur in slave mode.

If a mode fault error occurs the SPI is switched to slave mode, with the exception that the slave output buffer is disabled. So SPSCK, MISO and MOSI pins are forced to be high impedance inputs to avoid any possibility of conflict with another output driver. A transmission in progress is aborted and the SPI is forced into idle state.

If the mode fault error occurs in the bidirectional mode for a SPI system configured in master mode, output enable of the MOMI (MOSI in bidirectional mode) is cleared if it was set. No mode fault error occurs in the bidirectional mode for the SPI system configured in slave mode.

The mode fault flag is cleared automatically by a read of the SPI Status Register (with MODF set) followed by a write to SPI Control Register 1. If the mode fault flag is cleared, the SPI becomes a normal master or slave again.

22.4.10 Low-power Mode Options

22.4.10.1 SPI in Run Mode

In run mode with the SPI system enable (SPE) bit in the SPI control register clear, the SPI system is in a low-power, disabled state. SPI registers can still be accessed, but clocks to the core of this module are disabled.

22.4.10.2 SPI in Wait Mode

SPI operation in wait mode depends upon the state of the SPISWAI bit in SPI Control Register 2.

- If SPISWAI is clear, the SPI operates normally when the CPU is in wait mode
- If SPISWAI is set, SPI clock generation ceases and the SPI module enters a power conservation state when the CPU is in wait mode.
 - If SPISWAI is set and the SPI is configured for master, any transmission and reception in progress stops at wait mode entry. The transmission and reception resumes when the SPI exits wait mode.
 - If SPISWAI is set and the SPI is configured as a slave, any transmission and reception in progress continues if the SPSCK continues to be driven from the master. This keeps the slave synchronized to the master and the SPSCK.
 - If the master transmits data while the slave is in wait mode, the slave will continue to send out data consistent with the operation mode at the start of wait mode (i.e., if the slave is currently sending its SPIxDH:SPIxDL to the master, it will continue to send the same byte. Otherwise, if the slave is currently sending the last data received byte from the master, it will continue to send each previously receive data from the master byte).

MCF51MM256 Series Devices Reference Manual, Rev. 3

NOTE

Care must be taken when expecting data from a master while the slave is in wait or stop3 mode. Even though the shift register will continue to operate, the rest of the SPI is shut down (i.e. a SPRF interrupt will not be generated until exiting stop or wait mode). Also, the data from the shift register will not be copied into the SPIxDH:SPIxDL registers until after the slave SPI has exited wait or stop mode. A SPRF flag and SPIxDH:SPIxDL copy is only generated if wait mode is entered or exited during a tranmission. If the slave enters wait mode in idle mode and exits wait mode in idle mode, neither a SPRF nor a SPIxDH:SPIxDL copy will occur.

22.4.10.3 SPI in Stop Mode

Stop3 mode is dependent on the SPI system. Upon entry to stop3 mode, the SPI module clock is disabled (held high or low). If the SPI is in master mode and exchanging data when the CPU enters stop mode, the transmission is frozen until the CPU exits stop mode. After stop, data to and from the external SPI is exchanged correctly. In slave mode, the SPI will stay synchronized with the master.

The stop mode is not dependent on the SPISWAI bit.

In all other stop modes, the SPI module is completely disabled. After stop, all registers are reset to their default values, and the SPI module must be re-initialized.

22.4.10.4 Reset

The reset values of registers and signals are described in Section 22.3, "Register Definition." which details the registers and their bit-fields.

- If a data transmission occurs in slave mode after reset without a write to SPIxDH:SPIxDL, it will transmit garbage, or the data last received from the master before the reset.
- Reading from the SPIxDH:SPIxDL after reset will always read zeros.

22.4.10.5 Interrupts

The SPI only originates interrupt requests when the SPI is enabled (SPE bit in SPIxC1 set). The following is a description of how the SPI makes a request and how the MCU should acknowledge that request. The interrupt vector offset and interrupt priority are chip dependent.

22.4.11 SPI Interrupts

There are four flag bits, three interrupt mask bits, and one interrupt vector associated with the SPI system. The SPI interrupt enable mask (SPIE) enables interrupts from the SPI receiver full flag (SPRF) and mode fault flag (MODF). The SPI transmit interrupt enable mask (SPTIE) enables interrupts from the SPI transmit buffer empty flag (SPTEF). The SPI match interrupt enable mask bit (SPIMIE) enables interrupts from the SPI match flag (SPMF). When one of the flag bits is set, and the associated interrupt mask bit is set, a hardware interrupt request is sent to the CPU. If the interrupt mask bits are cleared, software can poll the associated flag bits instead of using interrupts. The SPI interrupt service routine (ISR) should check

22-28 Freescale Semiconductor

the flag bits to determine what event caused the interrupt. The service routine should also clear the flag bit(s) before returning from the ISR (usually near the beginning of the ISR).

22.4.11.1 MODF

MODF occurs when the master detects an error on the \overline{SS} pin. The master SPI must be configured for the MODF feature (see Table 22-2). Once MODF is set, the current transfer is aborted and the following bit is changed:

• MSTR=0, The master bit in SPIxC1 resets.

The MODF interrupt is reflected in the status register MODF flag. Clearing the flag will also clear the interrupt. This interrupt will stay active while the MODF flag is set. MODF has an automatic clearing process which is described in Section 22.3.4, "SPI Status Register (SPIxS)."

22.4.11.2 SPRF

SPRF occurs when new data has been received and copied to the SPI receive data buffer. In 8-bit mode, SPRF is set only after all 8 bits have been shifted out of the shift register and into SPIxDL. In 16-bit mode, SPRF is set only after all 16 bits have been shifted out of the shift register and into SPIxDH:SPIxDL.

Once SPRF is set, it does not clear until it is serviced. SPRF has an automatic clearing process which is described in Section 22.3.4, "SPI Status Register (SPIxS)." In the event that the SPRF is not serviced before the end of the next transfer (i.e. SPRF remains active throughout another transfer), the latter transfers will be ignored and no new data will be copied into the SPIxDH:SPIxDL.

22.4.11.3 SPTEF

SPTEF occurs when the SPI transmit buffer is ready to accept new data. In 8-bit mode, SPTEF is set only after all 8 bits have been moved from SPIxDL into the shifter. In 16-bit mode, SPTEF is set only after all 16 bits have been moved from SPIxDH:SPIxDL into the shifter.

Once SPTEF is set, it does not clear until it is serviced. SPTEF has an automatic clearing process which is described in Section 22.3.4, "SPI Status Register (SPIxS).

22.4.11.4 SPMF

SPMF occurs when the data in the receive data buffer is equal to the data in the SPI match register. In 8-bit mode, SPMF is set only after bits 8–0 in the receive data buffer are determined to be equivalent to the value in SPIxML. In 16-bit mode, SPMF is set after bits 15–0 in the receive data buffer are determined to be equivalent to the value in SPIxMH:SPIxML.

22.4.11.5 TNEAREF

TNEAREF flag is set when only one 16bit words or 2 8bit bytes of data remain in the transmit FIFO provided SPIxC3[5] = 0 or when only two 16bit words or 4 8bit bytes of data remain in the transmit FIFO provided SPIxC3[5] =1. If FIFOMODE is not enabled this bit should be ignored.

Clearing of this interrupts depends on state of SPIxC3[3] and the status of TNEAREF as described Section 22.3.4, "SPI Status Register (SPIxS)

22.4.11.6 RNFULLF

RNFULLF is set when more than three 16bit words or six 8bit bytes of data remain in the receive FIFO provided SPIxC3[4] = 0 or when more than two 16bit words or four 8bit bytes of data remain in the receive FIFO provided SPIxC3[4] = 1.

Clearing of this interrupts depends on state of SPIxC3[3] and the status of RNFULLF as described Section 22.3.4, "SPI Status Register (SPIxS)

22.5 Initialization/Application Information

22.5.1 SPI Module Initialization Example

22.5.1.1 Initialization Sequence

Before the SPI module can be used for communication, an initialization procedure must be carried out, as follows:

- 1. Update control register 1 (SPIxC1) to enable the SPI and to control interrupt enables. This register also sets the SPI as master or slave, determines clock phase and polarity, and configures the main SPI options.
- 2. Update control register 2 (SPIxC2) to enable additional SPI functions such as the SPI match interrupt feature, the master mode-fault function, and bidirectional mode output. 8- or 16-bit mode select and other optional features are controlled here as well.
- 3. Update the baud rate register (SPIxBR) to set the prescaler and bit rate divisor for an SPI master.
- 4. Update the hardware match register (SPIxMH:SPIxML) with the value to be compared to the receive data register for triggering an interrupt if hardware match interrupts are enabled.
- 5. In the master, read SPIxS while SPTEF = 1, and then write to the transmit data register (SPIxDH:SPIxDL) to begin transfer.

22.5.1.2 Pseudo—Code Example

In this example, the SPI module will be set up for master mode with only hardware match interrupts enabled. The SPI will run in 16-bit mode at a maximum baud rate of bus clock divided by 2. Clock phase and polarity will be set for an active-high SPI clock where the first edge on SPSCK occurs at the start of the first cycle of a data transfer.

22-30 Freescale Semiconductor

SPIxC1=0x54(%01010100)

Bit 7	SPIE	= 0	Disables receive and mode fault interrupts
Bit 6	SPE	= 1	Enables the SPI system
Bit 5	SPTIE	= 0	Disables SPI transmit interrupts
Bit 4	MSTR	= 1	Sets the SPI module as a master SPI device
Bit 3	CPOL	= 0	Configures SPI clock as active-high
Bit 2	CPHA	= 1	First edge on SPSCK at start of first data transfer cycle
Bit 1	SSOE	= 0	Determines SS pin function when mode fault enabled
Bit 0	LSBFE	= 0	SPI serial data transfers start with most significant bit

SPIxC2 = 0xC0(%11000000)

Bit 7	SPMIE	= 1	SPI hardware match interrupt enabled
Bit 6	SPIMODE	= 1	Configures SPI for 16-bit mode
Bit 5		= 0	Unimplemented
Bit 4	MODFEN	= 0	Disables mode fault function
Bit 3	BIDIROE	= 0	SPI data I/O pin acts as input
Bit 2		= 0	Unimplemented
Bit 1	SPISWAI	= 0	SPI clocks operate in wait mode
Bit 0	SPC0	= 0	uses separate pins for data input and output

SPIxBR = 0x00(%00000000)

Bit /	= 0	Unimplemented
Bit 6:4	= 000	Sets prescale divisor to 1
Bit 3:0	= 0000	Sets baud rate divisor to 2

SPIxS = 0x00(%00000000)

Bit 7	SPRF	= 0	Flag is set when receive data buffer is full
Bit 6	SPMF	= 0	Flag is set when SPIMH/L = receive data buffer
Bit 5	SPTEF	= 0	Flag is set when transmit data buffer is empty
Bit 4	MODF	= 0	Mode fault flag for master mode
Bit 3:0		= 0	FIFOMODE is not enabled

SPIxMH = 0xXX

In 16-bit mode, this register holds bits 8–15 of the hardware match buffer. In 8-bit mode, writes to this register will be ignored.

SPIxML = 0xXX

Holds bits 0-7 of the hardware match buffer.

SPIxDH = 0xxx

In 16-bit mode, this register holds bits 8–15 of the data to be transmitted by the transmit buffer and received by the receive buffer.

MCF51MM256 Series Devices Reference Manual, Rev. 3

SPIxDL = 0xxx

Holds bits 0–7 of the data to be transmitted by the transmit buffer and received by the receive buffer.

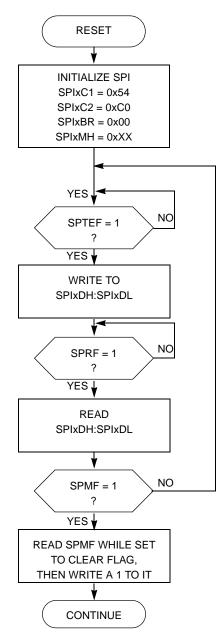


Figure 22-20. Initialization Flowchart Example for SPI Master Device in 16-bit Mode for FIFOMODE = 0

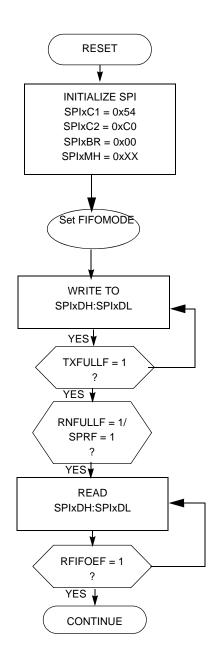


Figure 22-21. Initialization Flowchart Example for SPI Master Device in 16-bit Mode for FIFOMODE=1

Chapter 23 8-bit Serial Peripheral Interface (S08SPIV5)

23.1 Introduction

Figure 23-1 shows the block diagram with the SPI2 highlighted.

NOTE

There are two SPI modules on this device. Replace SPIx with the appropriate peripheral designation (SPI1 or SPI2), depending upon your use:

- SPI1 for the 16-bit SPI with FIFO module.
- SPI2 for the 8-bit SPI module.

23.1.1 SPI2 Clock Gating

The bus clock to the SPI2 can be gated on and off using the SPI2 bit in SCGC2. These bits are set after any reset which enables the bus clock to this module. To conserve power, these bits can be cleared to disable the clock to this module when not in use. See Section 5.7.8, "System Clock Gating Control 2 Register (SCGC2)," for details.

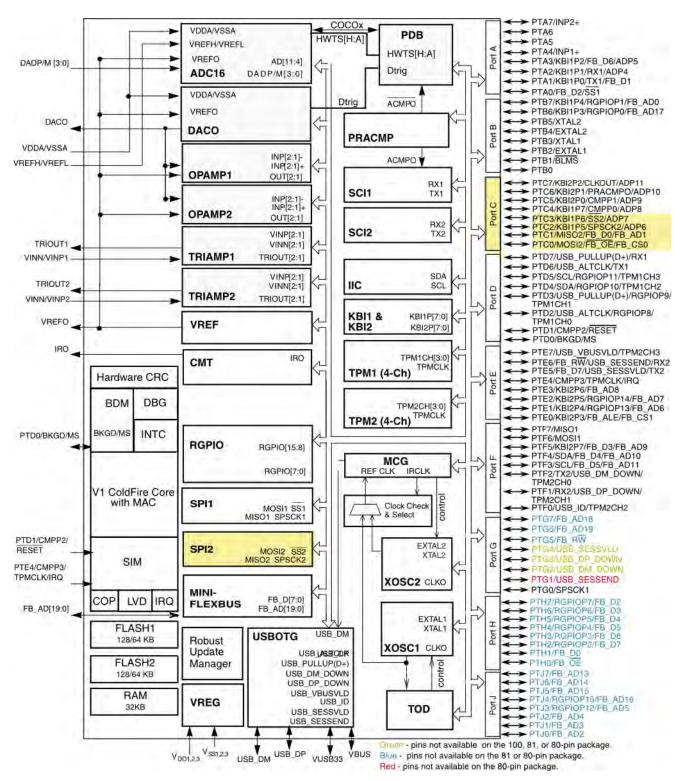


Figure 23-1. Block Diagram Highlighting SPI2 Block and Pins

23-2 Freescale Semiconductor

23.1.2 Features

The SPI includes these distinctive features:

- Master mode or slave mode operation
- Full-duplex or single-wire bidirectional mode
- Programmable transmit bit rate
- Double-buffered transmit and receive data register
- Serial clock phase and polarity options
- Slave select output
- Mode fault error flag with CPU interrupt capability
- Control of SPI operation during wait mode
- Selectable MSB-first or LSB-first shifting
- Receive data buffer hardware match feature

23.1.3 Modes of Operation

The SPI functions in three modes, run, wait, and stop.

- Run Mode
 This is the basic mode of operation.
- Wait Mode

SPI operation in wait mode is a configurable low-power mode, controlled by the SPISWAI bit located in the SPIxC2 register. In wait mode, if the SPISWAI bit is clear, the SPI operates like in Run Mode. If the SPISWAI bit is set, the SPI goes into a power conservative state, with the SPI clock generation turned off. If the SPI is configured as a master, any transmission in progress stops, but is resumed after CPU goes into Run Mode. If the SPI is configured as a slave, reception and transmission of a byte continues, so that the slave stays synchronized to the master.

• Stop Mode

The SPI is inactive in stop3/stop4 mode for reduced power consumption. If the SPI is configured as a master, any transmission in progress stops, but is resumed after the CPU goes into Run Mode. If the SPI is configured as a slave, reception and transmission of a data continues, so that the slave stays synchronized to the master.

The SPI is completely disabled in all other stop modes. When the CPU wakes from these stop modes, all SPI register content will be reset.

This is a high level description only, detailed descriptions of operating modes are contained in section Section 23.4.8, "Low-power Mode Options."

23.1.4 Block Diagrams

This section includes block diagrams showing SPI system connections, the internal organization of the SPI module, and the SPI clock dividers that control the master mode bit rate.

23.1.4.1 SPI System Block Diagram

Figure 23-2 shows the SPI modules of two MCUs connected in a master-slave arrangement. The master device initiates all SPI data transfers. During a transfer, the master shifts data out (on the MOSI pin) to the slave while simultaneously shifting data in (on the MISO pin) from the slave. The transfer effectively exchanges the data that was in the SPI shift registers of the two SPI systems. The SPSCK signal is a clock output from the master and an input to the slave. The slave device must be selected by a low level on the slave select input $(\overline{SS}$ pin). In this system, the master device has configured its \overline{SS} pin as an optional slave select output.

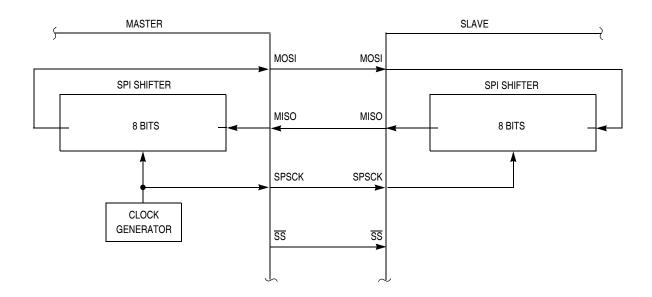


Figure 23-2. SPI System Connections

23.1.4.2 SPI Module Block Diagram

Figure 23-3 is a block diagram of the SPI module. The central element of the SPI is the SPI shift register. Data is written to the double-buffered transmitter (write to SPIxD) and gets transferred to the SPI shift register at the start of a data transfer. After shifting in 8 or 16 bits (as determined by SPIMODE bit) of data, the data is transferred into the double-buffered receiver where it can be read (read from SPIxD). Pin multiplexing logic controls connections between MCU pins and the SPI module.

When the SPI is configured as a master, the clock output is routed to the SPSCK pin, the shifter output is routed to MOSI, and the shifter input is routed from the MISO pin.

When the SPI is configured as a slave, the SPSCK pin is routed to the clock input of the SPI, the shifter output is routed to MISO, and the shifter input is routed from the MOSI pin.

In the external SPI system, simply connect all SPSCK pins to each other, all MISO pins together, and all MOSI pins together. Peripheral devices often use slightly different names for these pins.

23-4 Freescale Semiconductor

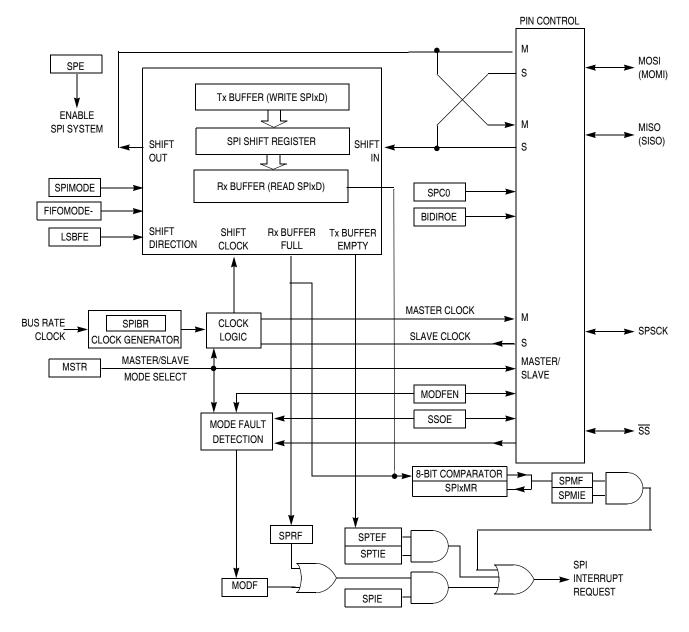


Figure 23-3. SPI Module Block Diagram

23.2 External Signal Description

The SPI optionally shares four port pins. The function of these pins depends on the settings of SPI control bits. When the SPI is disabled (SPE = 0), these four pins revert to being general-purpose port I/O pins that are not controlled by the SPI.

23.2.1 SPSCK — SPI Serial Clock

When the SPI is enabled as a slave, this pin is the serial clock input. When the SPI is enabled as a master, this pin is the serial clock output.

Freescale Semiconductor 23-5

23.2.2 MOSI — Master Data Out, Slave Data In

When the SPI is enabled as a master and SPI pin control zero (SPC0) is 0 (not bidirectional mode), this pin is the serial data output. When the SPI is enabled as a slave and SPC0 = 0, this pin is the serial data input. If SPC0 = 1 to select single-wire bidirectional mode, and master mode is selected, this pin becomes the bidirectional data I/O pin (MOMI). Also, the bidirectional mode output enable bit determines whether the pin acts as an input (BIDIROE = 0) or an output (BIDIROE = 1). If SPC0 = 1 and slave mode is selected, this pin is not used by the SPI and reverts to being a general-purpose port I/O pin.

23.2.3 MISO — Master Data In, Slave Data Out

When the SPI is enabled as a master and SPI pin control zero (SPC0) is 0 (not bidirectional mode), this pin is the serial data input. When the SPI is enabled as a slave and SPC0 = 0, this pin is the serial data output. If SPC0 = 1 to select single-wire bidirectional mode, and slave mode is selected, this pin becomes the bidirectional data I/O pin (SISO) and the bidirectional mode output enable bit determines whether the pin acts as an input (BIDIROE = 0) or an output (BIDIROE = 1). If SPC0 = 1 and master mode is selected, this pin is not used by the SPI and reverts to being a general-purpose port I/O pin.

23.2.4 \overline{SS} — Slave Select

When the SPI is enabled as a slave, this pin is the low-true slave select input. When the SPI is enabled as a master and mode fault enable is off (MODFEN = 0), this pin is not used by the SPI and reverts to being a general-purpose port I/O pin. When the SPI is enabled as a master and MODFEN = 1, the slave select output enable bit determines whether this pin acts as the mode fault input (SSOE = 0) or as the slave select output (SSOE = 1).

23.3 Register Definition

The SPI has above 8-bit registers to select SPI options, control baud rate, report SPI status, hold an SPI data match value, and for transmit/receive data.

Refer to the direct-page register summary in the Memory chapter of this data sheet for the absolute address assignments for all SPI registers. This section refers to registers and control bits only by their names, and a Freescale-provided equate or header file is used to translate these names into the appropriate absolute addresses.

23.3.1 SPI Control Register 1 (SPIxC1)

This read/write register includes the SPI enable control, interrupt enables, and configuration options.

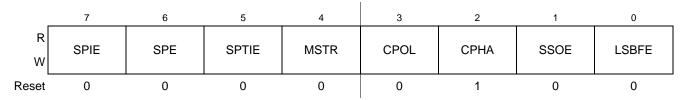


Figure 23-4. SPI Control Register 1 (SPIxC1)

23-6 Freescale Semiconductor

Table 23-1. SPIxC1 Field Descriptions

Field	Description
7 SPIE	FIFOMODE=0 SPI Interrupt Enable (for SPRF and MODF) — This is the interrupt enable for SPI receive buffer full (SPRF) and mode fault (MODF) events. 0 Interrupts from SPRF and MODF inhibited (use polling) 1 When SPRF or MODF is 1, request a hardware interrupt FIFOMODE=1
	SPI Read FIFO Full Interrupt Enable — This bit when set enables the SPI to interrupt the CPU when the Receive FIFO is full. An interrupt will occur when SPRF flag is set or MODF is set. O Read FIFO Full Interrupts are disabled Read FIFO Full Interrupts are enabled
6 SPE	SPI System Enable — This bit enables the SPI system and dedicates the SPI port pins to SPI system functions. If SPE is cleared, SPI is disabled and forced into idle state, and all status bits in the SPIxS register are reset. O SPI system inactive SPI system enabled
5 SPTIE	SPI Transmit Interrupt Enable — FIFOMODE=0 This is the interrupt enable bit for SPI transmit buffer empty (SPTEF). An interrupt occurs when the SPI transmit buffer is empty (SPTEF is set)
	FIFOMODE=1 This is the interrupt enable bit for SPI transmit FIFO empty (SPTEF). An interrupt occurs when the SPI transmit FIFO is empty (SPTEF is set)
	0 Interrupts from SPTEF inhibited (use polling)1 When SPTEF is 1, hardware interrupt requested
4 MSTR	Master/Slave Mode Select — This bit selects master or slave mode operation. O SPI module configured as a slave SPI device 1 SPI module configured as a master SPI device
3 CPOL	Clock Polarity — This bit selects an inverted or non-inverted SPI clock. To transmit data between SPI modules, the SPI modules must have identical CPOL values. This bit effectively places an inverter in series with the clock signal from a master SPI or to a slave SPI device. Refer to Section 23.4.4, "SPI Clock Formats" for more details. O Active-high SPI clock (idles low) 1 Active-low SPI clock (idles high)
2 CPHA	Clock Phase — This bit selects one of two clock formats for different kinds of synchronous serial peripheral devices. Refer to Section 23.4.4, "SPI Clock Formats" for more details. 0 First edge on SPSCK occurs at the middle of the first cycle of a data transfer 1 First edge on SPSCK occurs at the start of the first cycle of a data transfer
1 SSOE	Slave Select Output Enable — This bit is used in combination with the mode fault enable (MODFEN) bit in SPIxC2 and the master/slave (MSTR) control bit to determine the function of the SS pin as shown in Table 23-2.
0 LSBFE	LSB First (Shifter Direction) — This bit does not affect the position of the MSB and LSB in the data register. Reads and writes of the data register always have the MSB in bit 7 (or bit 15 in 16-bit mode). O SPI serial data transfers start with most significant bit SPI serial data transfers start with least significant bit

T -1.1.	~~ ~	\sim	D		
Table	フィーフ	6.6	PIN	⊢!!n	CTION

MODFEN	SSOE	Master Mode	Slave Mode
0	0	General-purpose I/O (not SPI)	Slave select input
0	1	General-purpose I/O (not SPI)	Slave select input
1	0	SS input for mode fault	Slave select input
1	1	Automatic SS output	Slave select input

23.3.2 SPI Control Register 2 (SPIxC2)

This read/write register is used to control optional features of the SPI system. Bits 6, 5 and 2 are not implemented and always read 0.

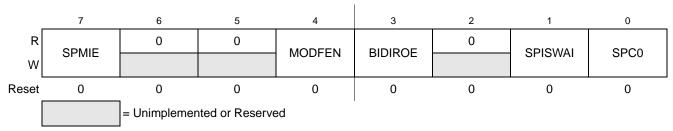


Figure 23-5. SPI Control Register 2 (SPIxC2)

Table 23-3. SPIxC2 Register Field Descriptions

Field	Description
7 SPMIE	SPI Match Interrupt Enable — This is the interrupt enable for the SPI receive data buffer hardware match (SPMF) function. 0 Interrupts from SPMF inhibited (use polling). 1 When SPMF = 1, requests a hardware interrupt.
4 MODFEN	Master Mode-Fault Function Enable — When the SPI is configured for slave mode, this bit has no meaning or effect. (The SS pin is the slave select input.) In master mode, this bit determines how the SS pin is used (refer to Table 23-2 for details) 0 Mode fault function disabled, master SS pin reverts to general-purpose I/O not controlled by SPI 1 Mode fault function enabled, master SS pin acts as the mode fault input or the slave select output
3 BIDIROE	Bidirectional Mode Output Enable — When bidirectional mode is enabled by SPI pin control 0 (SPC0) = 1, BIDIROE determines whether the SPI data output driver is enabled to the single bidirectional SPI I/O pin. Depending on whether the SPI is configured as a master or a slave, it uses either the MOSI (MOMI) or MISO (SISO) pin, respectively, as the single SPI data I/O pin. When SPC0 = 0, BIDIROE has no meaning or effect. 0 Output driver disabled so SPI data I/O pin acts as an input 1 SPI I/O pin enabled as an output
1 SPISWAI	SPI Stop in Wait Mode — This bit is used for power conservation while in wait. 0 SPI clocks continue to operate in wait mode 1 SPI clocks stop when the MCU enters wait mode
0 SPC0	 SPI Pin Control 0 — This bit enables bidirectional pin configurations as shown in Table 23-4. SPI uses separate pins for data input and data output. SPI configured for single-wire bidirectional operation.

Pin Mode	SPC0	BIDIROE	MISO	MOSI		
	Master Mode of Operation					
Normal	0	Х	Master In	Master Out		
Bidirectional	1	0	MISO not used by SPI	Master In		
		1		Master I/O		
Slave Mode of Operation						
Normal	0	Х	Slave Out	Slave In		
Bidirectional	1	0	Slave In	MOSI not used by SPI		
		1	Slave I/O			

Table 23-4. Bidirectional Pin Configurations

23.3.3 SPI Baud Rate Register (SPIxBR)

This register is used to set the prescaler and bit rate divisor for an SPI master. This register may be read or written at any time.

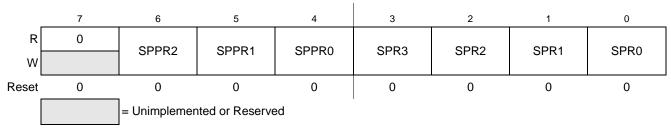


Figure 23-6. SPI Baud Rate Register (SPIxBR)

Table 23-5. SPIxBR Register Field Descriptions

Field	Description
6:4 SPPR[2:0]	SPI Baud Rate Prescale Divisor — This 3-bit field selects one of eight divisors for the SPI baud rate prescaler as shown in Table 23-6. The input to this prescaler is the bus rate clock (BUSCLK). The output of this prescaler drives the input of the SPI baud rate divider (see Figure 23-12). See Section 23.4.5, "SPI Baud Rate Generation," for details.
3:0 SPR[3:0]	SPI Baud Rate Divisor — This 4-bit field selects one of nine divisors for the SPI baud rate divider as shown in Table 23-7. The input to this divider comes from the SPI baud rate prescaler (see Figure 23-12). See Section 23.4.5, "SPI Baud Rate Generation," for details.

Table 23-6. SPI Baud Rate Prescaler Divisor

SPPR2:SPPR1:SPPR0	Prescaler Divisor
0:0:0	1
0:0:1	2
0:1:0	3
0:1:1	4
1:0:0	5
1:0:1	6

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor 23-9

Table 23-6. SPI Baud Rate Prescaler Divisor (Continued)

SPPR2:SPPR1:SPPR0	Prescaler Divisor
1:1:0	7
1:1:1	8

Table 23-7. SPI Baud Rate Divisor

SPR3:SPR2:SPR1:SPR0	Rate Divisor
0:0:0:0	2
0:0:0:1	4
0:0:1:0	8
0:0:1:1	16
0:1:0:0	32
0:1:0:1	64
0:1:1:0	128
0:1:1:1	256
1:0:0:0	512
All other combinations	Reserved

23.3.4 SPI Status Register (SPIxS)

This register has four read-only status bits. Bits 3 through 0 are not implemented and always read 0. Writes have no meaning or effect.

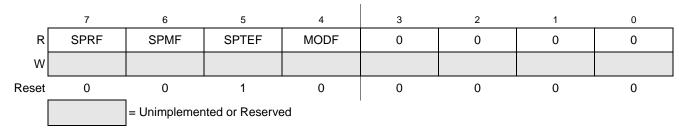


Figure 23-7. SPI Status Register (SPIxS)

Table 23-8. SPIxS Register Field Descriptions

Field	Description
7 SPRF	SPI Read Buffer Full Flag — SPRF is set at the completion of an SPI transfer to indicate that received data may be read from the SPI data register (SPIxD). SPRF is cleared by reading SPRF while it is set, then reading the SPI data register. 0 No data available in the receive data buffer. 1 Data available in the receive data buffer.
6 SPMF	SPI Match Flag — SPMF is set after SPRF = 1 when the value in the receive data buffer matches the value in SPIxMR. To clear the flag, read SPMF when it is set, then write a 1 to it. 0 Value in the receive data buffer does not match the value in SPIxMR registers. 1 Value in the receive data buffer matches the value in SPIxMR registers.
5 SPTEF	SPI Transmit Buffer Empty Flag — This bit is set when the transmit data buffer is empty. It is cleared by reading SPIxS with SPTEF set, followed by writing a data value to the transmit buffer at SPIxD. SPIxS must be read with SPTEF = 1 before writing data to SPIxD or the SPIxD write will be ignored. SPTEF is automatically set when all data from the transmit buffer transfers into the transmit shift register. For an idle SPI, data written to SPIxD is transferred to the shifter almost immediately so SPTEF is set within two bus cycles allowing a second data to be queued into the transmit buffer. After completion of the transfer of the data in the shift register, the queued data from the transmit buffer will automatically move to the shifter and SPTEF will be set to indicate there is room for new data in the transmit buffer. If no new data is waiting in the transmit buffer, SPTEF simply remains set and no data moves from the buffer to the shifter. O SPI transmit buffer empty SPI transmit buffer empty
4 MODF	Master Mode Fault Flag — MODF is set if the SPI is configured as a master and the slave select input goes low, indicating some other SPI device is also configured as a master. The SS pin acts as a mode fault error input only when MSTR = 1, MODFEN = 1, and SSOE = 0; otherwise, MODF will never be set. MODF is cleared by reading MODF while it is 1, then writing to SPI control register 1 (SPIxC1). 0 No mode fault error 1 Mode fault error detected

23.3.5 SPI Data Register

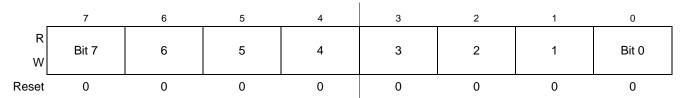


Figure 23-8. SPI Data Register(SPIxD)

The SPI data register is both the input and output register for SPI data. A write to this register writes to the transmit data buffer, allowing data to be queued and transmitted.

When the SPI is configured as a master, data queued in the transmit data buffer is transmitted immediately after the previous transmission has completed.

Freescale Semiconductor 23-11

The SPI transmit buffer empty flag (SPTEF) in the SPIxS register indicates when the transmit data buffer is ready to accept new data. SPIxS must be read when SPTEF is set before writing to the SPI data register, or the write will be ignored.

Data may be read from SPIxD any time after SPRF is set and before another transfer is finished. Failure to read the data out of the receive data buffer before a new transfer ends causes a receive overrun condition and the data from the new transfer is lost.

23.3.6 SPI Match Register

This register contains the hardware compare value, which sets the SPI match flag (SPMF) when the value received in the SPI receive data buffer equals the value in the SPIxMR register.

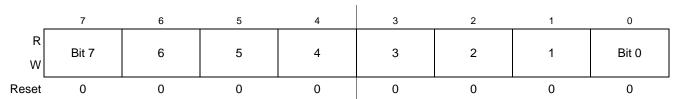


Figure 23-9. SPI Match Register(SPIxMR)

23.4 Functional Description

23.4.1 **General**

The SPI system is enabled by setting the SPI enable (SPE) bit in SPI Control Register 1. While the SPE bit is set, the four associated SPI port pins are dedicated to the SPI function as:

- Slave select (SS)
- Serial clock (SPSCK)
- Master out/slave in (MOSI)
- Master in/slave out (MISO)

An SPI transfer is initiated in the master SPI device by reading the SPI status register (SPIxS) when SPTEF = 1 and then writing data to the transmit data buffer (write to SPIxD). When a transfer is complete, received data is moved into the receive data buffer. The SPIxD register acts as the SPI receive data buffer for reads and as the SPI transmit data buffer for writes.

The clock phase control bit (CPHA) and a clock polarity control bit (CPOL) in the SPI Control Register 1 (SPIxC1) select one of four possible clock formats to be used by the SPI system. The CPOL bit simply selects a non-inverted or inverted clock. The CPHA bit is used to accommodate two fundamentally different protocols by sampling data on odd numbered SPSCK edges or on even numbered SPSCK edges.

The SPI can be configured to operate as a master or as a slave. When the MSTR bit in SPI control register 1 is set, master mode is selected, when the MSTR bit is clear, slave mode is selected.

23.4.2 Master Mode

The SPI operates in master mode when the MSTR bit is set. Only a master SPI module can initiate transmissions. A transmission begins by reading the SPIxS register while SPTEF = 1 and writing to the master SPI data registers. If the shift register is empty, the byte immediately transfers to the shift register. The data begins shifting out on the MOSI pin under the control of the serial clock.

SPSCK

The SPR3, SPR2, SPR1, and SPR0 baud rate selection bits in conjunction with the SPPR2, SPPR1, and SPPR0 baud rate preselection bits in the SPI Baud Rate register control the baud rate generator and determine the speed of the transmission. The SPSCK pin is the SPI clock output. Through the SPSCK pin, the baud rate generator of the master controls the shift register of the slave peripheral.

MOSI, MISO pin

In master mode, the function of the serial data output pin (MOSI) and the serial data input pin (MISO) is determined by the SPC0 and BIDIROE control bits.

• \overline{SS} pin

If MODFEN and SSOE bit are set, the \overline{SS} pin is configured as slave select output. The \overline{SS} output becomes low during each transmission and is high when the SPI is in idle state.

If MODFEN is set and SSOE is cleared, the \overline{SS} pin is configured as input for detecting mode fault error. If the \overline{SS} input becomes low this indicates a mode fault error where another master tries to drive the MOSI and SPSCK lines. In this case, the SPI immediately switches to slave mode, by clearing the MSTR bit and also disables the slave output buffer MISO (or SISO in bidirectional mode). So the result is that all outputs are disabled and SPSCK, MOSI and MISO are inputs. If a transmission is in progress when the mode fault occurs, the transmission is aborted and the SPI is forced into idle state.

This mode fault error also sets the mode fault (MODF) flag in the SPI Status Register (SPIxS). If the SPI interrupt enable bit (SPIE) is set when the MODF flag gets set, then an SPI interrupt sequence is also requested.

When a write to the SPI Data Register in the master occurs, there is a half SPSCK-cycle delay. After the delay, SPSCK is started within the master. The rest of the transfer operation differs slightly, depending on the clock format specified by the SPI clock phase bit, CPHA, in SPI Control Register 1 (see Section 23.4.4, "SPI Clock Formats).

NOTE

A change of the bits CPOL, CPHA, SSOE, LSBFE, MODFEN, SPC0, BIDIROE with SPC0 set, SPPR2-SPPR0 and SPR3-SPR0 in master mode will abort a transmission in progress and force the SPI into idle state. The remote slave cannot detect this, therefore the master has to ensure that the remote slave is set back to idle state.

23.4.3 Slave Mode

The SPI operates in slave mode when the MSTR bit in SPI Control Register1 is clear.

SPSCK

In slave mode, SPSCK is the SPI clock input from the master.

MISO, MOSI pin

In slave mode, the function of the serial data output pin (MISO) and serial data input pin (MOSI) is determined by the SPC0 bit and BIDIROE bit in SPI Control Register 2.

• \overline{SS} pin

The \overline{SS} pin is the slave select input. Before a data transmission occurs, the \overline{SS} pin of the slave SPI must be low. \overline{SS} must remain low until the transmission is complete. If \overline{SS} goes high, the SPI is forced into idle state.

The \overline{SS} input also controls the serial data output pin, if \overline{SS} is high (not selected), the serial data output pin is high impedance, and, if \overline{SS} is low the first bit in the SPI Data Register is driven out of the serial data output pin. Also, if the slave is not selected (\overline{SS} is high), then the SPSCK input is ignored and no internal shifting of the SPI shift register takes place.

Although the SPI is capable of duplex operation, some SPI peripherals are capable of only receiving SPI data in a slave mode. For these simpler devices, there is no serial data out pin.

NOTE

When peripherals with duplex capability are used, take care not to simultaneously enable two receivers whose serial outputs drive the same system slave's serial data output line.

As long as no more than one slave device drives the system slave's serial data output line, it is possible for several slaves to receive the same transmission from a master, although the master would not receive return information from all of the receiving slaves.

If the CPHA bit in SPI Control Register 1 is clear, odd numbered edges on the SPSCK input cause the data at the serial data input pin to be latched. Even numbered edges cause the value previously latched from the serial data input pin to shift into the LSB or MSB of the SPI shift register, depending on the LSBFE bit.

If the CPHA bit is set, even numbered edges on the SPSCK input cause the data at the serial data input pin to be latched. Odd numbered edges cause the value previously latched from the serial data input pin to shift into the LSB or MSB of the SPI shift register, depending on the LSBFE bit.

When CPHA is set, the first edge is used to get the first data bit onto the serial data output pin. When CPHA is clear and the \overline{SS} input is low (slave selected), the first bit of the SPI data is driven out of the serial data output pin. After the eighth shift, the transfer is considered complete and the received data is transferred into the SPI data registers. To indicate transfer is complete, the SPRF flag in the SPI Status Register is set.

23-15

NOTE

A change of the bits CPOL, CPHA, SSOE, LSBFE, MODFEN, SPC0 and BIDIROE with SPC0 setin slave mode will corrupt a transmission in progress and has to be avoided.

23.4.4 SPI Clock Formats

To accommodate a wide variety of synchronous serial peripherals from different manufacturers, the SPI system has a clock polarity (CPOL) bit and a clock phase (CPHA) control bit to select one of four clock formats for data transfers. CPOL selectively inserts an inverter in series with the clock. CPHA chooses between two different clock phase relationships between the clock and data.

Figure 23-10 shows the clock formats when CPHA = 1. At the top of the figure, the eight bit times are shown for reference with bit 1 starting at the first SPSCK edge and bit 8 ending one-half SPSCK cycle after the eighth SPSCK edge. The MSB first and LSB first lines show the order of SPI data bits depending on the setting in LSBFE. Both variations of SPSCK polarity are shown, but only one of these waveforms applies for a specific transfer, depending on the value in CPOL. The SAMPLE IN waveform applies to the MOSI input of a slave or the MISO input of a master. The MOSI waveform applies to the MOSI output pin from a master and the MISO waveform applies to the MISO output from a slave. The $\overline{\text{SS}}$ OUT waveform applies to the slave select output from a master (provided MODFEN and SSOE = 1). The master $\overline{\text{SS}}$ output goes to active low one-half SPSCK cycle before the start of the transfer and goes back high at the end of the eighth bit time of the transfer. The $\overline{\text{SS}}$ IN waveform applies to the slave select input of a slave.

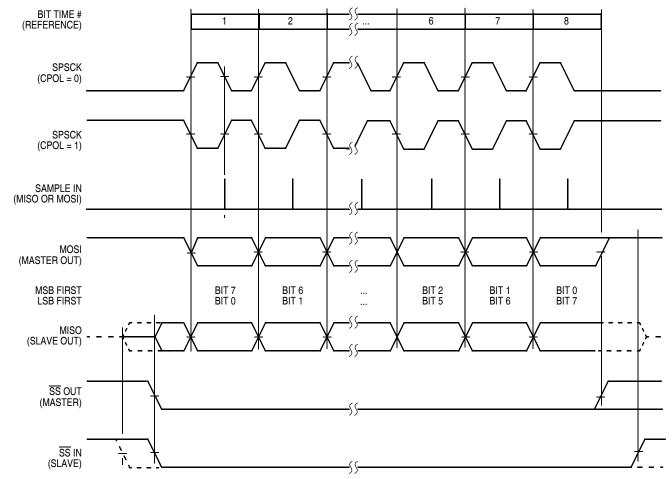


Figure 23-10. SPI Clock Formats (CPHA = 1)

When CPHA = 1, the slave begins to drive its MISO output when \overline{SS} goes to active low, but the data is not defined until the first SPSCK edge. The first SPSCK edge shifts the first bit of data from the shifter onto the MOSI output of the master and the MISO output of the slave. The next SPSCK edge causes both the master and the slave to sample the data bit values on their MISO and MOSI inputs, respectively. At the third SPSCK edge, the SPI shifter shifts one bit position which shifts in the bit value that was just sampled, and shifts the second data bit value out the other end of the shifter to the MOSI and MISO outputs of the master and slave, respectively. When CPHA = 1, the slave's \overline{SS} input is not required to go to its inactive high level between transfers.

Figure 23-11 shows the clock formats when CPHA = 0. At the top of the figure, the eight bit times are shown for reference with bit 1 starting as the slave is selected (\overline{SS} IN goes low), and bit 8 ends at the last SPSCK edge. The MSB first and LSB first lines show the order of SPI data bits depending on the setting in LSBFE. Both variations of SPSCK polarity are shown, but only one of these waveforms applies for a specific transfer, depending on the value in CPOL. The SAMPLE IN waveform applies to the MOSI input of a slave or the MISO input of a master. The MOSI waveform applies to the MOSI output pin from a master and the MISO waveform applies to the MISO output from a slave. The \overline{SS} OUT waveform applies to the slave select output from a master (provided MODFEN and SSOE = 1). The master \overline{SS} output goes to active low at the start of the first bit time of the transfer and goes back high one-half SPSCK cycle after

the end of the eighth bit time of the transfer. The \overline{SS} IN waveform applies to the slave select input of a slave.

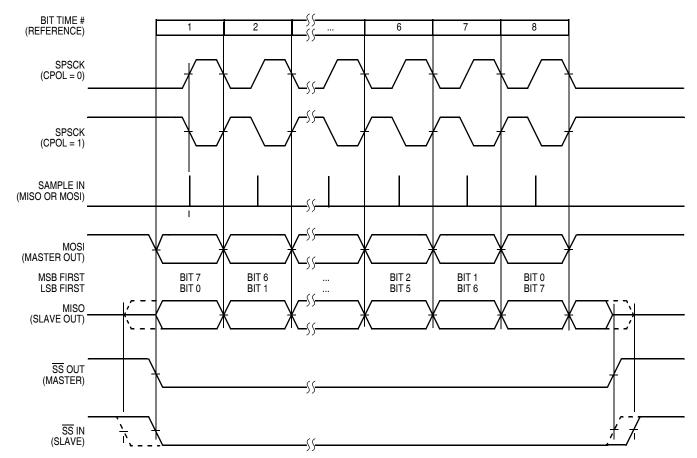


Figure 23-11. SPI Clock Formats (CPHA = 0)

When CPHA = 0, the slave begins to drive its MISO output with the first data bit value (MSB or LSB depending on LSBFE) when \overline{SS} goes to active low. The first SPSCK edge causes both the master and the slave to sample the data bit values on their MISO and MOSI inputs, respectively. At the second SPSCK edge, the SPI shifter shifts one bit position which shifts in the bit value that was just sampled and shifts the second data bit value out the other end of the shifter to the MOSI and MISO outputs of the master and slave, respectively. When CPHA = 0, the slave's \overline{SS} input must go to its inactive high level between transfers.

23.4.5 SPI Baud Rate Generation

As shown in Figure 23-12, the clock source for the SPI baud rate generator is the bus clock. The three prescale bits (SPPR2:SPPR1:SPPR0) choose a prescale divisor of 1, 2, 3, 4, 5, 6, 7, or 8. The three rate select bits (SPR3:SPR2:SPR1:SPR0) divide the output of the prescaler stage by 2, 4, 8, 16, 32, 64, 128, 256 or 512 to get the internal SPI master mode bit-rate clock.

The baud rate generator is activated only when the SPI is in the master mode and a serial transfer is taking place. In the other cases, the divider is disabled to decrease I_{DD} current.

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor 23-17

The baud rate divisor equation is as follows except those reserved combinations in Table 23-7:

BaudRateDivisor =
$$(SPPR + 1) \cdot 2^{(SPR + 1)}$$

The baud rate can be calculated with the following equation:

Baud Rate = BusClock/BaudRateDivisor

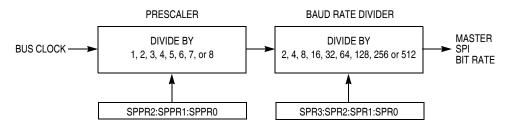


Figure 23-12. SPI Baud Rate Generation

23.4.6 Special Features

23.4.6.1 **SS** Output

The \overline{SS} output feature automatically drives the \overline{SS} pin low during transmission to select external devices and drives it high during idle to deselect external devices. When \overline{SS} output is selected, the \overline{SS} output pin is connected to the \overline{SS} input pin of the external device.

The \overline{SS} output is available only in master mode during normal SPI operation by asserting the SSOE and MODFEN bits as shown in Table 23-2.

The mode fault feature is disabled while \overline{SS} output is enabled.

NOTE

Care must be taken when using the \overline{SS} output feature in a multi-master system since the mode fault feature is not available for detecting system errors between masters.

23.4.6.2 Bidirectional Mode (MOMI or SISO)

The bidirectional mode is selected when the SPC0 bit is set in SPI Control Register 2 (see Section Table 23-9., "Normal Mode and Bidirectional Mode.") In this mode, the SPI uses only one serial data pin for the interface with external device(s). The MSTR bit decides which pin to use. The MOSI pin becomes the serial data I/O (MOMI) pin for the master mode, and the MISO pin becomes serial data I/O (SISO) pin for the slave mode. The MISO pin in master mode and MOSI pin in slave mode are not used by the SPI.

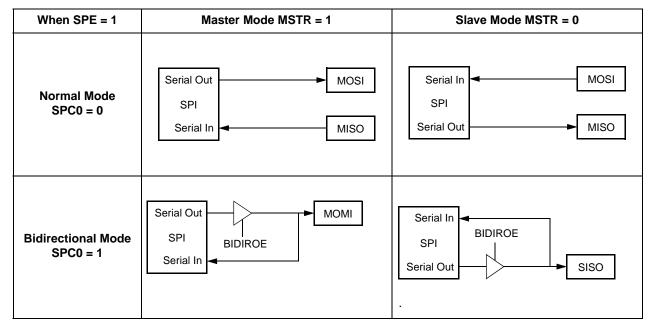


Table 23-9. Normal Mode and Bidirectional Mode

The direction of each serial I/O pin depends on the BIDIROE bit. If the pin is configured as an output, serial data from the shift register is driven out on the pin. The same pin is also the serial input to the shift register.

The SPSCK is output for the master mode and input for the slave mode.

The \overline{SS} is the input or output for the master mode, and it is always the input for the slave mode.

The bidirectional mode does not affect SPSCK and \overline{SS} functions.

NOTE

In bidirectional master mode, with mode fault enabled, both data pins MISO and MOSI can be occupied by the SPI, though MOSI is normally used for transmissions in bidirectional mode and MISO is not used by the SPI. If a mode fault occurs, the SPI is automatically switched to slave mode, in this case MISO becomes occupied by the SPI and MOSI is not used. This has to be considered, if the MISO pin is used for another purpose.

23.4.7 Error Conditions

The SPI has one error condition:

Mode fault error

23.4.7.1 Mode Fault Error

If the \overline{SS} input becomes low while the SPI is configured as a master, it indicates a system error where more than one master may be trying to drive the MOSI and SPSCK lines simultaneously. This condition is not

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor 23-19

permitted in normal operation, and the MODF bit in the SPI status register is set automatically provided the MODFEN bit is set.

In the special case where the SPI is in master mode and MODFEN bit is cleared, the \overline{SS} pin is not used by the SPI. In this special case, the mode fault error function is inhibited and MODF remains cleared. In case the SPI system is configured as a slave, the \overline{SS} pin is a dedicated input pin. Mode fault error doesn't occur in slave mode.

If a mode fault error occurs the SPI is switched to slave mode, with the exception that the slave output buffer is disabled. So SPSCK, MISO and MOSI pins are forced to be high impedance inputs to avoid any possibility of conflict with another output driver. A transmission in progress is aborted and the SPI is forced into idle state.

If the mode fault error occurs in the bidirectional mode for a SPI system configured in master mode, output enable of the MOMI (MOSI in bidirectional mode) is cleared if it was set. No mode fault error occurs in the bidirectional mode for the SPI system configured in slave mode.

The mode fault flag is cleared automatically by a read of the SPI Status Register (with MODF set) followed by a write to SPI Control Register 1. If the mode fault flag is cleared, the SPI becomes a normal master or slave again.

23.4.8 Low-power Mode Options

23.4.8.1 SPI in Run Mode

In run mode with the SPI system enable (SPE) bit in the SPI control register clear, the SPI system is in a low-power, disabled state. SPI registers can still be accessed, but clocks to the core of this module are disabled.

23.4.8.2 SPI in Wait Mode

SPI operation in wait mode depends upon the state of the SPISWAI bit in SPI Control Register 2.

- If SPISWAI is clear, the SPI operates normally when the CPU is in wait mode
- If SPISWAI is set, SPI clock generation ceases and the SPI module enters a power conservation state when the CPU is in wait mode.
 - If SPISWAI is set and the SPI is configured for master, any transmission and reception in progress stops at wait mode entry. The transmission and reception resumes when the SPI exits wait mode.
 - If SPISWAI is set and the SPI is configured as a slave, any transmission and reception in progress continues if the SPSCK continues to be driven from the master. This keeps the slave synchronized to the master and the SPSCK.
 - If the master transmits data while the slave is in wait mode, the slave will continue to send out data consistent with the operation mode at the start of wait mode (i.e., if the slave is currently sending its SPIxD to the master, it will continue to send the same byte. Otherwise, if the slave is currently sending the last data received byte from the master, it will continue to send each previously receive data from the master byte).

MCF51MM256 Series Devices Reference Manual, Rev. 3

23-20 Freescale Semiconductor

NOTE

Care must be taken when expecting data from a master while the slave is in wait or stop3 mode. Even though the shift register will continue to operate, the rest of the SPI is shut down (i.e. a SPRF interrupt will not be generated until exiting stop or wait mode). Also, the data from the shift register will not be copied into the SPIxD registers until after the slave SPI has exited wait or stop mode. A SPRF flag and SPIxD copy is only generated if wait mode is entered or exited during a tranmission. If the slave enters wait mode in idle mode and exits wait mode in idle mode, neither a SPRF nor a SPIxD copy will occur.

23.4.8.3 SPI in Stop Mode

Stop3 mode is dependent on the SPI system. Upon entry to stop3 mode, the SPI module clock is disabled (held high or low). If the SPI is in master mode and exchanging data when the CPU enters stop mode, the transmission is frozen until the CPU exits stop mode. After stop, data to and from the external SPI is exchanged correctly. In slave mode, the SPI will stay synchronized with the master.

The stop mode is not dependent on the SPISWAI bit.

In all other stop modes, the SPI module is completely disabled. After stop, all registers are reset to their default values, and the SPI module must be re-initialized.

23.4.8.4 Reset

The reset values of registers and signals are described in Section 23.3, "Register Definition." which details the registers and their bit-fields.

- If a data transmission occurs in slave mode after reset without a write to SPIxD, it will transmit garbage, or the data last received from the master before the reset.
- Reading from the SPIxD after reset will always read zeros.

23.4.8.5 Interrupts

The SPI only originates interrupt requests when the SPI is enabled (SPE bit in SPIxC1 set). The following is a description of how the SPI makes a request and how the MCU should acknowledge that request. The interrupt vector offset and interrupt priority are chip dependent.

23.4.9 SPI Interrupts

There are four flag bits, three interrupt mask bits, and one interrupt vector associated with the SPI system. The SPI interrupt enable mask (SPIE) enables interrupts from the SPI receiver full flag (SPRF) and mode fault flag (MODF). The SPI transmit interrupt enable mask (SPTIE) enables interrupts from the SPI transmit buffer empty flag (SPTEF). The SPI match interrupt enable mask bit (SPIMIE) enables interrupts from the SPI match flag (SPMF). When one of the flag bits is set, and the associated interrupt mask bit is set, a hardware interrupt request is sent to the CPU. If the interrupt mask bits are cleared, software can poll the associated flag bits instead of using interrupts. The SPI interrupt service routine (ISR) should check

the flag bits to determine what event caused the interrupt. The service routine should also clear the flag bit(s) before returning from the ISR (usually near the beginning of the ISR).

23.4.9.1 MODF

MODF occurs when the master detects an error on the \overline{SS} pin. The master SPI must be configured for the MODF feature (see Table 23-2). Once MODF is set, the current transfer is aborted and the following bit is changed:

• MSTR=0, The master bit in SPIxC1 resets.

The MODF interrupt is reflected in the status register MODF flag. Clearing the flag will also clear the interrupt. This interrupt will stay active while the MODF flag is set. MODF has an automatic clearing process which is described in Section 23.3.4, "SPI Status Register (SPIxS)."

23.4.9.2 SPRF

SPRF occurs when new data has been received and copied to the SPI receive data buffer. Once SPRF is set, it does not clear until it is serviced. SPRF has an automatic clearing process which is described in Section 23.3.4, "SPI Status Register (SPIxS)." In the event that the SPRF is not serviced before the end of the next transfer (i.e. SPRF remains active throughout another transfer), the latter transfers will be ignored and no new data will be copied into the SPIxD.

23.4.9.3 SPTEF

SPTEF occurs when the SPI transmit buffer is ready to accept new data. Once SPTEF is set, it does not clear until it is serviced. SPTEF has an automatic clearing process which is described in Section 23.3.4, "SPI Status Register (SPIxS).

23.4.9.4 SPMF

SPMF occurs when the data in the receive data buffer is equal to the data in the SPI match register.

23.5 Initialization/Application Information

23.5.1 SPI Module Initialization Example

23.5.1.1 Initialization Sequence

Before the SPI module can be used for communication, an initialization procedure must be carried out, as follows:

1. Update control register 1 (SPIxC1) to enable the SPI and to control interrupt enables. This register also sets the SPI as master or slave, determines clock phase and polarity, and configures the main SPI options.

23-22 Freescale Semiconductor

- 2. Update control register 2 (SPIxC2) to enable additional SPI functions such as the SPI match interrupt feature, the master mode-fault function, and bidirectional mode output and other optional features are controlled here as well.
- 3. Update the baud rate register (SPIxBR) to set the prescaler and bit rate divisor for an SPI master.
- 4. Update the hardware match register (SPIxMR) with the value to be compared to the receive data register for triggering an interrupt if hardware match interrupts are enabled.
- 5. In the master, read SPIxS while SPTEF = 1, and then write to the transmit data register (SPIxD) to begin transfer.

23.5.1.2 Pseudo—Code Example

In this example, the SPI module will be set up for master mode with only hardware match interrupts enabled. The SPI will run at a maximum baud rate of bus clock divided by 2. Clock phase and polarity will be set for an active-high SPI clock where the first edge on SPSCK occurs at the start of the first cycle of a data transfer.

SPIxC1=0x54(%01010100)

Bit 7	SPIE	= 0	Disables receive and mode fault interrupts
Bit 6	SPE	= 1	Enables the SPI system
Bit 5	SPTIE	= 0	Disables SPI transmit interrupts
Bit 4	MSTR	= 1	Sets the SPI module as a master SPI device
Bit 3	CPOL	= 0	Configures SPI clock as active-high
Bit 2	CPHA	= 1	First edge on SPSCK at start of first data transfer cycle
Bit 1	SSOE	= 0	Determines $\overline{\text{SS}}$ pin function when mode fault enabled
Bit 0	LSBFE	= 0	SPI serial data transfers start with most significant bit

SPIxC2 = 0x80(%10000000)

Bit 7	SPMIE	= 1	SPI hardware match interrupt enabled
Bit 6		= 0	Unimplemented
Bit 5		= 0	Unimplemented
Bit 4	MODFEN	= 0	Disables mode fault function
Bit 3	BIDIROE	= 0	SPI data I/O pin acts as input
Bit 2		= 0	Unimplemented
Bit 1	SPISWAI	= 0	SPI clocks operate in wait mode
Bit 0	SPC0	= 0	uses separate pins for data input and output

SPIxBR = 0x00(%00000000)

Bit /	= 0	Unimpiementea
Bit 6:4	= 000	Sets prescale divisor to 1
Bit 3:0	= 0000	Sets baud rate divisor to 2

Freescale Semiconductor 23-23

SPIxS = 0x00(%00000000)

Bit 7	SPRF	= 0	Flag is set when receive data buffer is full
Bit 6	SPMF	= 0	Flag is set when SPIMR = receive data buffer
Bit 5	SPTEF	= 0	Flag is set when transmit data buffer is empty
Bit 4	MODF	= 0	Mode fault flag for master mode
Bit 3:0		= 0	Unimplemented

SPIxMR = 0xXX

Holds bits 0-7 of the hardware match buffer.

SPIxD = 0xxx

Holds bits 0–7 of the data to be transmitted by the transmit buffer and received by the receive buffer.

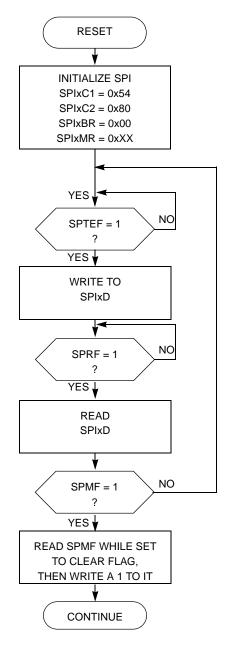


Figure 23-13. Initialization Flowchart Example for SPI Master Device

Chapter 24 Time Of Day Module (S08TODV1)

24.1 Introduction

The time of day module (TOD) consists of one 8-bit counter, one 6-bit match register, several binary-based and decimal-based prescaler dividers, three clock source options, and one interrupt that can be used for quarter second, one second and match conditions. This module can be used for time-of-day, calendar or any task scheduling functions. It can also serve as a cyclic wake up from low-power modes without the need of external components.

24.1.1 TOD Clock Sources

The TOD module can be clocked from the MCGIRCLK, XOSC1 or the LPO.

24.1.2 TOD Modes of Operation

All clock sources are available in all modes except stop2. The XOSC1 and LPO can be enabled as the clock source of the TOD in stop2.

24.1.3 TOD Status after Stop2 Wakeup

The registers associated with the TOD are unaffected after a stop2 wakeup.

Time Of Day Module (S08TODV1)

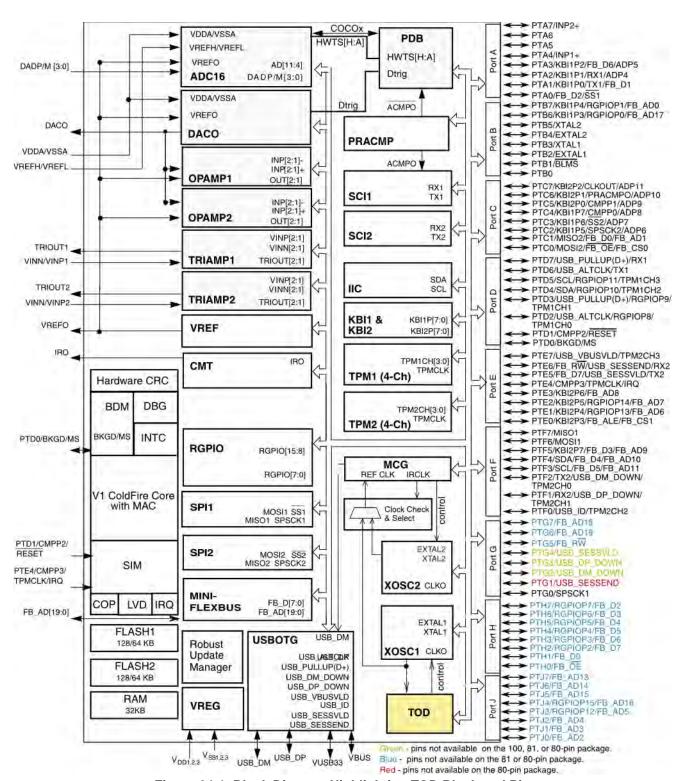


Figure 24-1. Block Diagram Highlighting TOD Block and Pins

24.1.4 Features

Time of day module features include:

- 8-bit counter register that increments every 0.25 seconds
- Prescaler that handles standard input frequencies
- Configurable interrupts
 - Quarter second
 - One second
 - Match
- Match functionality enabled by a control bit
- Counter reset on match to facilitate time-keeping software
- Operation in low-power modes: LPrun, wait, LPwait, stop3, and stop2
- Option to use internal 1 kHz low-power oscillator (LPO)
- TOD clock output (TODCLK)

24.1.5 Modes of Operation

The TOD module supports five low-power operation modes:

Table 24-1. TOD Operation Modes

Mode	Operation				
Stop2	In stop2 mode the TOD module can use an external clock source or the internal 1 KHz LPO as an input. The TOD clock input MCGIRCLK is not available in stop2 mode. In stop2 mode, all interrupt sources (quarter second, 1 second, and match) are capable of waking the MCU from stop2 mode. • If selected, the external clock source must be enabled to operate in stop mode. (EREFSTEN) • If enabled, the TODCLK signal is generated.				
Stop3	In stop3 mode the TOD module can use an external clock source, the internal 1 kHz LPO or MCGIRCLK as an input. In stop3 mode all interrupt sources (quarter second, 1 second, and match) are capable of waking the MCU from stop3 mode. • If selected, the external clock source must be enabled to operate in stop mode. (EREFSTEN) • If selected, the internal clock source must be enabled to operate in stop mode. (IREFSTEN) • If enabled, the TODCLK signal is generated.				
LPWait	In low-power wait mode the TOD reference clock continues to run. All interrupt sources (quarter second, 1 second, and match) are capable of waking the MCU from low-power wait mode. If enabled, the TODCLK signal is generated.				
Wait	In wait mode the TOD reference clock continues to run. All interrupt sources (quarter second, 1 second, and match) are capable of waking the MCU from wait mode. If enabled, the TODCLK signal is generated.				
LPRun	In low-power run mode the TOD reference clock continues to run. All interrupt sources (quarter second, 1 second, and match) are capable of waking the MCU from low-power run mode. If enabled, the TODCLK signal is generated.				

Freescale Semiconductor 24-3

Time Of Day Module (S08TODV1)

24.1.6 Block Diagram

Figure 24-2 is a block diagram of the TOD module.

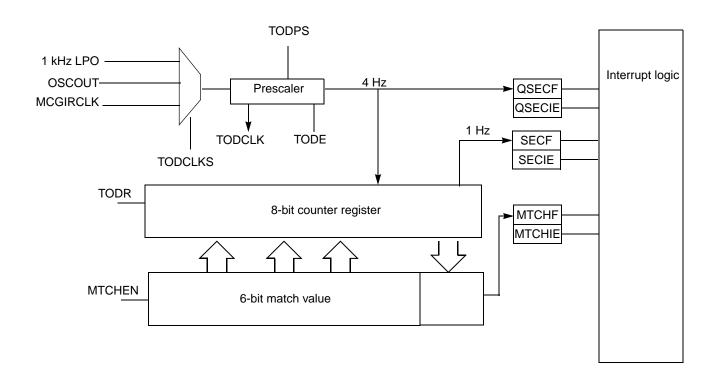


Figure 24-2. TOD Block Diagram

24.2 External Signal Description

The TOD module can output TODCLK. This clock can be used by other modules.

Table 24-2. Signal Properties

Name	Function
TODCLK	Clock output to be used by other modules.
TODMTCHS	TOD match signal

24.2.1 TOD Clock (TODCLK)

A clock can be provided for other modules. The TODPS bits are used to create the TOD clock. The TODCLKEN bit in the TODC register can enable or disable the TOD clock. If enabled, the TODCLK signal will be generated in low power modes.

24.2.2 TOD Match Signal (TODMTCHS)

The TOD module has output (TODMTCHS) that is set when the TOD match condition occurs. This output does not depend the value on the MTCHIE bit. For example, this output can be used to start an ADC conversion (ADC hardware trigger). This output is cleared automatically.

24.3 Register Descriptions

This section consists of register descriptions. Each description includes a standard register diagram. Details of register bit and field function follow the register diagrams, in bit order.

24.3.1 TOD Control Register (TODC)

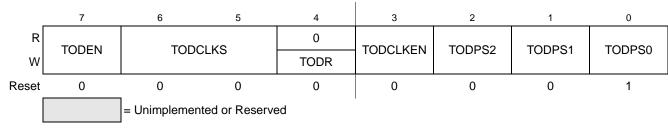


Figure 24-3. TOD Control Register (TODC)

Read: anytime

Write: TODEN, TODR anytime.

Time Of Day Module (S08TODV1)

Table 24-3. TODC Field Descriptions

Field	Description			
7 TODEN	Time of Day Enable— The TODEN bit enables the TOD module. O TOD module disabled and the TODCNT is reset to \$00 and the 4 Hz generator is cleared. TOD module enabled.			
TOD Clock Source— The TOD module has three possible clock sources. This bit field is use clock source is the basis for the TOD. Do not change TODCLKS if TODEN = 1. 00 Selects the OSCOUT clock as the TOD clock source 01 1 kHz LPO as the TOD clock source 10 Selects the internal reference clock as the TOD clock source 11 Reserved				
4 TODR	TOD Reset— Reset the TOD counter to \$00 and the 4 Hz generator is cleared. When this bit is set, all TOD counts are cleared, allowing counting to begin at exactly \$00. This bit always reads as 0. 0 No operation. 1 TOD counter register reset to \$00.			
3 TODCLKEN	TOD Clock Enable— The TODCLKEN bit enables the TOD clock, which can be used by other MCU peripherals. 1 TOD clock output disabled. 1 TOD clock output enabled.			
2:0 TODPS[2:0]	TOD Prescaler Bits— The TOD prescaler bits are used to divide TOD reference clocks to create a 4 Hz timebase. Do not change TODPS if TODEN = 1. 000 1kHz prescaler (Use for 1 kHz LPO) 001 Use for 32.768 kHz (TODCLK = 32.768kHz) 010 Use for 32 kHz (TODCLK = 32kHz) 011 Use for 38.4 kHz (TODCLK = 38.4kHz) 100 Use for 4.9152 MHz (TODCLK = 38.4 kHz) 101 Use for 4 MHz (TODCLK = 32kHz) 110 Use for 8 MHz (TODCLK = 32kHz) 111 Use for 16 MHz (TODCLK = 32kHz)			

24.3.2 TOD Status and Control Register (TODSC)

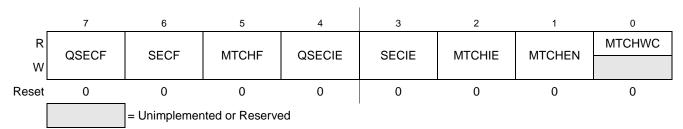


Figure 24-4. TOD Status Register (TODSC)

Read: anytime Write: anytime

Table 24-4. TODSC Field Descriptions

Field	Description			
7 QSECF	Quarter-Second Interrupt Flag—QSECF indicates a quarter-second condition occurred. Write a 1 to QSECF to clear the interrupt flag. 0 Quarter -second interrupt condition has not occurred. 1 Quarter-second interrupt condition has occurred.			
6 SECF	Second Interrupt Flag— SECF indicates a one-second condition occurred. Write a 1 to SECF to clear the interrupt flag. 0 One-second interrupt condition has not occurred. 1 One-second interrupt condition has occurred.			
5 MTCHF	Match Interrupt Flag— MTCHF indicates the match condition occurred. Write a 1 to the MTCHF to clear the interrupt flag. 0 Match interrupt condition has not occurred. 1 Match interrupt condition has occurred.			
4 QSECIE	Quarter-Second Interrupt Enable— Enables or disables quarter-second interrupt. The quarter-second interrupt occurs every time the TOD counter register increments. 0 Quarter-second interrupt disabled. 1 Quarter-second interrupt enabled.			
3 SECIE	Second Interrupt Enable— Enables or disables one-second interrupt. The one-second interrupt occurs every fourth count of the TOD counter register. One-second interrupt disabled. One-second interrupt enabled.			
2 MTCHIE	Match Interrupt Enable— Enables/disables the match interrupt. The match interrupt condition occurs when the match functionality is enabled (MTCHEN = 1) and the TOD counter register reaches the value in the match register 0 Match interrupt disabled. 1 Match interrupt enabled.			
1 MTCHEN	Match Function Enable— Enables/disables the match functionality. This bit must be set for the match interrupt to occur when the TOD counter register reaches the value in the match register. When a match occurs, the upper 6 bits of the counter register are reset to 0. 0 Match function disabled. 1 Match function enabled.			
0 MTCHWC	Match Write Complete— This bit indicates when writes to the match register have been completed. When the match register is written this bit is set, when the match register is completed this bit is cleared automatically. 1 Write to the TOD match register is not complete.			

Freescale Semiconductor 24-7

Time Of Day Module (S08TODV1)

24.3.3 TOD Match Register (TODM)

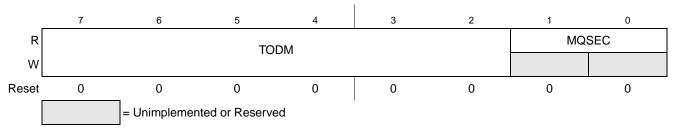


Figure 24-5. TOD Match Register (TODM)

Read: anytime

Table 24-5. TODM Field Descriptions

Field	Description				
7:2 TODM	TOD Match Value — The 6 bit match value is compared against the upper 6 bits of the TOD counter register and a match occurs when the TOD counter register reaches the value in the TOD match register. The lower 2 bits of the TOD match register (MQSEC) are preloaded by hardware with the lower 2 bits of TODCNT when the match value is written. When a match occurs and MTCHEN = 1, the match Interrupt flag is asserted and the upper 6 bits of the TOD counter register are reset to 0.				
1:0 MQSEC	Match Quarter-Second Bits —These bits are preloaded with the lower 2 bits of TODCNT when the match value is written. These bits are read only.				

24.3.4 TOD Counter Register (TODCNT)

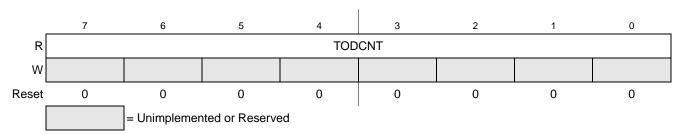


Figure 24-6. TOD Counter Register (TODCNT)

Read: anytime

Table 24-6. TODCNT Field Descriptions

Field	Description
7:0 TODCNT	TOD Counter Register— The TOD count register contains the current state of the TOD quarter-second counter.

24.4 Functional Description

This section provides a complete functional description of the TOD block, detailing the operation of the design from the end-user perspective.

24-8 Freescale Semiconductor

Before enabling the TOD module by asserting the TODEN bit in the TODC register, the proper clock source and prescaler must be selected. Out of reset, the TOD module is configured with default settings, but these settings are not optimal for every application. The default settings configure TOD operation for an external 32.768 KHz oscillator. The TOD module provides a prescaler that allows several versatile configuration settings for the input clock source Refer to the TODPS bit field description in Table 24-3 to see the different input clock sources that can be used.

The TOD clock source and the TOD prescaler must be modified only if the TOD is disabled. (TODEN = 0)

Selection of the proper clock source and prescaler settings is critical because these settings are used to create the 4 Hz internal time base that is the basis for the TOD counter register. This ensures that quarter-second and one-second interrupts will occur at the appropriate times. The match interrupt can be used to generate interrupts at intervals that are multiple seconds.

Time of day can be maintained using software and the TOD module.

24.4.1 TOD Counter Register

The TOD counter is an 8-bit counter that starts at \$00 and increments until \$FF. After \$FF is reached, the counter rolls over to \$00. This creates up to 256 counts.

A 4 Hz signal is the reference clock to the TOD counter. Each tick in the TOD counter is 0.25 of a second and 4 ticks are a second. The second and quarter-second interrupts depend on proper initialization of the TOD prescaler and clock source bits.

The TODR bit in the TODC register can be used to reset the TOD counter to \$00. The TODR bit also resets the 4 Hz generator ensuring that all TOD counting is starting at absolute zero time.

If the match function is enabled (MTCHEN = 1), the match flag is set when the TOD counter register reaches the value in the TOD match register and the upper 6 bits of the TOD counter register are reset to 0.

24.4.2 TOD Match Value

The TOD match value is used to generate interrupts at multiple second intervals. The TOD match value is a 6-bit value that can be set to any value from \$00 to \$3F. To enable match functionality, the MTCHEN bit must be set. Always configure the TODM value before setting the MTCHEN bit, this ensures that the next Match condition will occur at the desired setting.

When TODM is written, the lower 2 bits of the TODCNT are preloaded into MQSEC (the lower 2 bits of the TODM register). When TODCNT reaches the value in the TOD match register, a match condition is generated, the MTCHF is set, and the upper 6 bits of the TOD counter register are reset to 0.

For example, if the match value is set to \$3C and the lower 2 bits of the TODCNT are 00, a match condition occurs when the counter transitions from \$EF to \$F0.

TOD Counter Register = \$F0							
1	1	1	1	0	0	0	0

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor 24-9

Time Of Day Module (S08TODV1)

TOD Match Value = \$3C					MQSEC	
1 1 1 1 0 0					0	0

When the match condition occurs, the upper six bits of the TOD counter register are reset to 0. The lower two bits are not affected, ensureing that one-second and quarter-second interrupt functions are not affected by a match. No time counts are lost during this time, therefore, the time interval between match conditions is exactly the same. For this case, as long as the match value is not changed, the next match condition occurs after 240 TOD counts or 1 minute. This operation facilitates timekeeping by generating a match condition after every minute.

The match value can also be used to facilitate alarm timeouts. For example, to generate an interrupt in 1 minute past the current time.

So if the TOD counter register is \$50, the TOD match value must be set to \$10 to generate an interrupt 1 minute past the time when the counter was \$50. This can be calculated by the following algorithm.

Match value = (TOD counter register/4 + The TOD match value for 1 minute) and mask overvflow Eqn. 24-1

Match value =
$$($50/4 + $3C)$$
 and $$3F = 10

Egn. 24-2

When the match condition occurs, the upper six bits of the TOD counter register reset to 0. If the match register is not changed, the next match condition occurs when the upper six bits of the TOD counter matches the match value (\$10). This occurs when the TOD counter reaches \$40 or 64 TOD quarter-second counts. The next match condition occurs in 16 seconds, not 1 minute.

If the TOD match value is written to a value that is below the current value of the upper six bits of the TOD counter register, the match condition does not occur until the TOD counter has rolled over and matched the TOD match value. For example, if the TOD counter is \$FF and the TOD match value is written to \$01 then the match interrupt occurs after eight TOD counter ticks (2 seconds). Subsequent match interrupts occur every second.

If the TOD match value is written from a value that is close to the current value of the TODCNT register to a new value, the match condition may still occur at the old TOD match value. The TOD match value will be valid if it is changed when the TODCNT is 2 TODCNT values from the current TOD match value.

If the TOD match value is written to \$00 and the TODCNT is reset by the TODR bit or by disabling and enabling the TOD module, the TOD match condition will not be valid. Care should be taken when writing the TOD match value to \$00 because the TOD match interrupt may not occur at the expected time interval if the TOD match value is written to \$00 and the TODCNT is reset.

The MTCHIE bit is used to enable or disable an interrupt when a match condition occurs.

24.4.3 Match Write Complete

When writing the TOD Match Value it may be necessary to monitor the MTCHWC bit for the case of back-to-back writes of the TOD match value. If the second write is done while MTCHWC = 1, the write

24-11

does not occur. The MTCHWC can be used to verify that the last TOD match register write is complete. Normal TOD use does not require back-to-back writes of the TOD match register.

24.4.4 TOD Clock Select and Prescaler

The TOD module defaults to operate using a 32.768 kHz clock input. Three possible clock sources are available to the TOD module:

- OSCOUT (TODCLKS = 00)
- Internal 1kHz LPO (TODCLKS =01)
- MCGIRCLK (TODCLKS =10)

NOTE

Select the appropriate clock source for the desired accuracy. OSCOUT is as accurate as the external source, MCGIRCLK is as accurate as the MCG specifications, and the 1 kHz LPO is the least accurate clock source.

Table 24-7 shows the TOD clock tree. The clock tree shows the three possible clock sources and the TOD clock output.

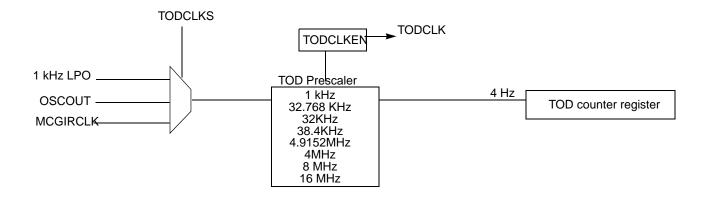


Figure 24-7. TOD Clock Tree

The TOD prescaler has dividers to generate the 4 Hz reference input to the TOD counter register. Setting the TODPS bits correctly configures internal dividers to generate the 4 Hz signal. The TOD prescaler also uses dividers to generate the TOD clock output. The TODPS must not be changed if TODEN = 1.

24.4.4.1 TOD Clock Output

The TOD module can be configured to generate a TOD clock. The TOD clock is available for use by other peripherals of the microcontroller as determined by the SOC guide. The TOD clock output is enabled with the TODCLKEN bit in the TODC register.

The TOD prescaler contains dividers for low and high frequency inputs as described in the TODPS bit description. The following table shows the value of TOD clock for various inputs.

MCF51MM256 Series Devices Reference Manual, Rev. 3
Freescale Semiconductor

Time Of Day Module (S08TODV1)

Input	TODPS[2:0]	TOD Clock
1 kHz LPO	000	-
32.768 KHz	001	32.768 KHz
32 KHz	010	32 KHz
38.4 KHz	011	38.4 KHz
4.9152 MHz	100	38.4 kHz
4 MHz	101	32 kHz
8 MHz	110	32kHz
16 MHz	111	32 kHz

24.4.5 Quarter-Second, One-Second, and Match Interrupts

The TOD module contains quarter-second, one-second, and match interrupts to facilitate time of day applications. These interrupts have corresponding flags (QSECF, SECF, and MTCHF) that are set when the conditions are met and for the case of MTCHF the match functionality must be enabled (MTCHEN =1). These flags are set regardless if the interrupt is enabled using the coresponding interrupt enable bits. These flags must be cleared to allow the next interrupt to occur.

24.4.5.1 Quarter-Second Interrupt

The TOD counter register is a quarter-second counter. Each tick in this counter represents a quarter second. If the quarter-second interrupt is enabled (QSECIE = 1), each tick in this register results in a TOD interrupt. For example, when the TOD counter register changes from \$01 to \$02, the QSECF is set and the interrupt is generated. To clear the QSECF, an interrupt service routine must write a 1 to it so that the next quarter-second interrupt can occur.

24.4.5.2 One-Second Interrupt

The one-second interrupt is enabled by the SECIE bit in the TODSC register. When the one-second interrupt is enabled, an interrupt is generated every four counts of the TOD counter register. For example, when the TOD counter register changes from \$03 to \$04, the SECF is set and an interrupt is generated. To clear the SECF, an interrupt service routine must write a 1 to it so that the next one-second interrupt can occur.

If both the quarter-second and one-second interrupts are enabled, only one interrupt is generated when the TOD counter register changes from \$03 to \$04. The QSECF and the SECF are set and both must be cleared by the TOD interrupt service routine.

24.4.5.3 Match Interrupt

The TOD match functionality can be used to generate interrupts at multiple-second time intervals. This functionality must be enabled using the MTCHEN bit. If MTCHEN = 1, the TOD match interrupt occurs when the TOD counter register reaches the value that is placed in the TODM and the MTCHIE bit is set.

NOTE

The TOD match value (TODM) should always be written before enabling the match functionality (MTCHEN = 1).

To generate an interrupt after 4 seconds, the TOD match value must be written to a value that is four counts past the upper six bits of the TOD counter register. See Section 24.3.3, "TOD Match Register (TODM)," for an example. When the TOD counter register reaches the value placed in TODM, the MTCHF is set and an interrupt is generated. The upper six bits of the TOD counter are reset. An interrupt service routine must clear the MTCHF by writing a 1 to it so that the next match interrupt can occur. All interrupt flags that are set must be cleared by the TOD interrupt service routine so that the interrupt may occur again.

If the MTCHIE bit is not set when MTCHEN =1, then match conditions will occur, the MTCHF will be set, and the upper six bits of the TOD counter register will reset to 0 after the match condition has occured.

24.4.6 Resets

During a reset, the TOD module is configured in the default mode. The default mode includes the following settings:

- TODEN is cleared. TOD is disabled
- TODCLKS is cleared and TODPS = 001, defaults to 32.768 kHz external oscillator clock source
- All TOD interrupts are disabled
- MTCHEN is cleared, match condition is disabled
- TOD counter register and TOD match register are cleared

24.4.7 Interrupts

See Section 24.4.5, "Quarter-Second, One-Second, and Match Interrupts."

24.5 Initialization

This section provides a recommended initialization sequence for the TOD module and also includes initialization examples for several possible TOD application scenarios.

24.5.1 Initialization Sequence

This list provides a recommended initialization sequence for the TOD module.

- 1. Configure the TODC register
 - a) Configure TOD clock source (TODCLKS bit)
 - b) Configure the proper TOD prescaler (TODPS bits)
- 2. Write the TOD match register (optional)
 - a) Write the TOD match value to the desired value (TODM register)
- 3. Enable the TODSC register(optional)
 - a) Enable match functionality

Freescale Semiconductor 24-13

Time Of Day Module (S08TODV1)

- b) Enable desired TOD interrupts (QSECIE, SECIE, MTCHIE bits)
- 4. Enable TODC register
 - a) (Optional) Enable TOD clock output (TODCLKEN bit)
 - b) Enable the TOD module (TODEN bit)

24.5.2 Initialization Examples

This section provides initialization information for configurating the TOD. Each example details the register and bit field values required to achieve the appropriate TOD configuration for a given TOD application scenario. Table 24-7 lists each example and the setup requirements.

Example	TOD Clock Source	Required Interrupt Timeout	TOD Clock Output
1	External 32.768 kHz	0.25 sec.	no
2	Internal 38.4 kHz	1 sec.	no
3	Internal 1 kHz LPO	approx. 1 min.	no

Table 24-7. TOD Application Scenarios

These examples illustrate the flexibility of the TOD module to be configured to meet a range of application requirements including:

- Clock inputs/sources
- Required interrupt timeout
- TOD clock output

24.5.2.1 Initialization Example 1

TOD setup requirements for example 1 are reiterated in Table 24-8:

Table 24-8. TOD Setup Requirements (Example 1)

Example	TOD Clock Source	Required Interrupt Timeout	TOD clock Output
1	External 32.768 kHz	0.25 sec.	no

Table 24-9 lists the required setup values required to initialize the TOD as specified in example 1:

Table 24-9. Initialization Register Values for Example 1

Register	Bit or Bit Field	Binary Value	Comment
TODC	TODEN	1	Enable the TOD module, last step of initialization
100X1001	TODCLKS	00	Use OSCOUT for external 32.768 KHz TOD clock source
	TODR	Х	TOD reset optional
	TODCLKEN	0	TOD clock output is disabled
	TODPS	001	For 32.768 KHz, TODPS is set to 001
TODSC	QSECF	1	Clear the quarter-second interrupt QSECF
1XX1000x	SECF	Х	One-second interrupt is not used
	MTCHF	Х	Match interrupt is not used
	QSECIE	1	Enable quarter-second interrupts
	SECIE	0	One-second interrupt is not used
	MTCHIE	0	Match interrupt is not used
	MTCHEN	0	Match functionality is disabled
	MTCHWC	Х	Match complete flag not used
TODM \$XX	TODM	\$XX	Match value is not used

Time Of Day Module (S08TODV1)

24.5.2.2 Initialization Example 2

TOD setup requirements for example 2 are reiterated in Table 24-10:

Table 24-10. TOD Setup Requirements (Example 2)

Example	TOD Clock Source	Required Interrupt Timeout	TOD Clock Output
2	Internal 38.4 kHz	1 sec.	no

Table 24-11 lists the required setup values required to initialize the TOD as specified in example 2:

Table 24-11. Initialization Register Values for Example 2

Register	Bit or Bit Field	Binary Value	Comment
TODC	TODEN	1	Enable the TOD module, last step of initialization
110X1010	TODCLKS	10	Use MCGIRCLK for internal 38.4 kHz TOD clock source
	TODR	Х	TOD Reset optional
	TODCLKEN	0	TODCLK output is disabled
	TODPS	011	For 38.4 KHz, TODPS is set to 011
TODSC	QSECF	Х	Quarter-second interrupt is not used
X1X0100x	SECF	1	Clear one-second interrupt flag
	MTCHF	Х	Match interrupt is not used
	QSECIE	0	Quarter-second interrupt is not used
	SECIE	1	Enable one-second interrupt
	MTCHIE	0	Match interrupt is not used
	MTCHEN	0	Match functionality is disabled
	MTCHWC	Х	Match complete flag not used
TODM \$XX	TODM	\$XX	Match value is not used

24-16 Freescale Semiconductor

24.5.2.3 Initialization Example 3

TOD setup requirements for example 3 are reiterated in Table 24-12:

Table 24-12. TOD Setup Requirements (Example 3)

Example	TOD Clock Source	Required Interrupt Timeout	TOD Clock Output
3	Internal 1 kHz LPO	approx. 1 min.	no

Table 24-13 lists the required setup values required to initialize the TOD as specified in Example 3:

Table 24-13. Initialization Register Values for Example 3

Register	Bit or Bit field	Binary Value	Comment
TODC	TODEN	1	Enable the TOD module, last step of initialization
10110000	TODCLKS	01	Use for internal 1 kHz low-power oscillator TOD clock source
	TODR	1	TOD reset to begin TOD counts at \$00
	TODCLKEN	0	TODCLK output disabled
	TODPS	000	For 1 KHz low-power oscillator,TODPS is set to 000
TODSC	QSECF	Х	Quarter-second interrupt is not used
XX10011x	SECF	Х	One-second interrupt is not used
	MTCHF	1	Clear match interrupt flag
	QSECIE	0	Quarter-second interrupt is not used
	SECIE	0	One-second interrupt is not used
	MTCHIE	1	Match interrupt is enabled
	MTCHEN	1	Match functionality is enabled
	MTCHWC	Х	Match complete flag not used
TODM 111100XX	TODM	\$3C	Match value is set to \$3C to generate an interrupt after \$F0 or 240 counts of the TOD counter register. Always write the match value before setting the MTCHEN bit.

24.6 Application Information

The most common application for the TOD module is keeping the time of day. The TOD module can be used to keep track of the second, minute, hour, day, month, and year. To accomplish these tasks, software is used to count quarter seconds or seconds. Seconds are added up in RAM until they reach minutes, minutes are added up until they reach hours, and so forth.

Freescale Semiconductor 24-17

Time Of Day Module (S08TODV1)

Chapter 25 Timer/Pulse-Width Modulator (S08TPMV3)

25.1 Introduction

These devices contain two 4-channel TPM peripherals: TPM1 and TPM2.

25.1.1 ACMP/TPM Configuration Information

The ACMP module can be configured to connect the output of the analog comparator to the TPM1 input capture channel 0 by setting the corresponding ACIC bit in SOPT2. With ACIC set, the TPM1CH0 pin is not available externally regardless of the configuration of the TPM1 module.

25.1.2 TPM External Clock

Both the TPM modules on these devices use the TCLK pin.

25.1.3 TPM Clock Gating

The bus clock to the TPMs can be gated on and off using the TPM2 bit and TPM1 bit in SCGC1. These bits are set after any reset that enables the bus clock to this module. To conserve power, these bits can be cleared to disable the clock to this module when not in use. See Section 5.6, "Peripheral Clock Gating," for details.



Figure 25-1. Block Diagram Highlighting TPM Blocks and Pins

25.1.4 Features

The TPM includes these distinctive features:

- One to eight channels:
 - Each channel is input capture, output compare, or edge-aligned PWM
 - Rising-edge, falling-edge, or any-edge input capture trigger
 - Set, clear, or toggle output compare action
 - Selectable polarity on PWM outputs
- Module is configured for buffered, center-aligned pulse-width-modulation (CPWM) on all channels
- Timer clock source selectable as bus clock, fixed frequency clock, or an external clock
 - Prescale taps for divide-by 1, 2, 4, 8, 16, 32, 64, or 128 used for any clock input selection
 - Fixed frequency clock is an additional clock input to allow the selection of an on chip clock source other than bus clock
 - Selecting external clock connects TPM clock to a chip level input pin therefore allowing to synchronize the TPM counter with an off chip clock source
- 16-bit free-running or modulus count with up/down selection
- One interrupt per channel and one interrupt for TPM counter overflow

25.1.5 Modes of Operation

In general, TPM channels are independently configured to operate in input capture, output compare, or edge-aligned PWM modes. A control bit allows the whole TPM (all channels) to switch to center-aligned PWM mode. When center-aligned PWM mode is selected, input capture, output compare, and edge-aligned PWM functions are not available on any channels of this TPM module.

When the MCU is in active BDM background or BDM foreground mode, the TPM temporarily suspends all counting until the MCU returns to normal user operating mode. During stop mode, all TPM input clocks are stopped, so the TPM is effectively disabled until clocks resume. During wait mode, the TPM continues to operate normally. If the TPM does not need to produce a real time reference or provide the interrupt sources needed to wake the MCU from wait mode, the power can then be saved by disabling TPM functions before entering wait mode.

- Input capture mode
 - When a selected edge event occurs on the associated MCU pin, the current value of the 16-bit timer counter is captured into the channel value register and an interrupt flag bit is set. Rising edges, falling edges, any edge, or no edge (disable channel) are selected as the active edge that triggers the input capture.
- Output compare mode
 - When the value in the timer counter register matches the channel value register, an interrupt flag bit is set, and a selected output action is forced on the associated MCU pin. The output compare action is selected to force the pin to zero, force the pin to one, toggle the pin, or ignore the pin (used for software timing functions).

Freescale Semiconductor 25-3

Edge-aligned PWM mode

The value of a 16-bit modulo register plus 1 sets the period of the PWM output signal. The channel value register sets the duty cycle of the PWM output signal. You can also choose the polarity of the PWM output signal. Interrupts are available at the end of the period and at the duty-cycle transition point. This type of PWM signal is called edge-aligned because the leading edges of all PWM signals are aligned with the beginning of the period that is same for all channels within a TPM.

• Center-aligned PWM mode

Twice the value of a 16-bit modulo register sets the period of the PWM output, and the channel-value register sets the half-duty-cycle duration. The timer counter counts up until it reaches the modulo value and then counts down until it reaches zero. As the count matches the channel value register while counting down, the PWM output becomes active. When the count matches the channel value register while counting up, the PWM output becomes inactive. This type of PWM signal is called center-aligned because the centers of the active duty cycle periods for all channels are aligned with a count value of zero. This type of PWM is required for types of motors used in small appliances.

This is a high-level description only. Detailed descriptions of operating modes are in later sections.

25.1.6 Block Diagram

The TPM uses one input/output (I/O) pin per channel, TPMxCHn (timer channel n) where n is the channel number (1–8). The TPM shares its I/O pins with general purpose I/O port pins (refer to I/O pin descriptions in full-chip specification for the specific chip implementation).

Figure 25-2 shows the TPM structure. The central component of the TPM is the 16-bit counter that can operate as a free-running counter or a modulo up/down counter. The TPM counter (when operating in normal up-counting mode) provides the timing reference for the input capture, output compare, and edge-aligned PWM functions. The timer counter modulo registers, TPMxMODH:TPMxMODL, control the modulo value of the counter (the values 0x0000 or 0xFFFF effectively make the counter free running). Software can read the counter value at any time without affecting the counting sequence. Any write to either half of the TPMxCNT counter resets the counter, regardless of the data value written.

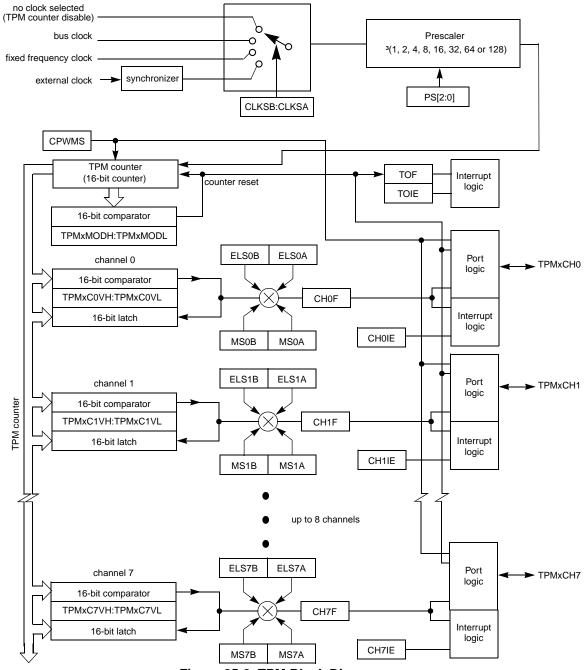


Figure 25-2. TPM Block Diagram

The TPM channels are programmable independently as input capture, output compare, or edge-aligned PWM channels. Alternately, the TPM can be configured to produce CPWM outputs on all channels. When the TPM is configured for CPWMs (the counter operates as an up/down counter) input capture, output compare, and EPWM functions are not practical.

25.2 Signal Description

Table 25-1 shows the user-accessible signals for the TPM. The number of channels are varied from one to eight. When an external clock is included, it can be shared with the same pin as any TPM channel; however, it could be connected to a separate input pin. Refer to the I/O pin descriptions in full-chip specification for the specific chip implementation.

Name Function

EXTCLK¹ External clock source that is selected to drive the TPM counter.

TPMxCHn² I/O pin associated with TPM channel n.

Table 25-1. Signal Properties

25.2.1 Detailed Signal Descriptions

25.2.1.1 EXTCLK — External Clock Source

The external clock signal can share the same pin as a channel pin, however the channel pin can not be used for channel I/O function when external clock is selected. If this pin is used as an external clock (CLKSB:CLKSA = 1:1), the channel can still be configured to output compare mode therefore allowing its use as a timer (ELSnB:ELSnA = 0:0).

For proper TPM operation, the external clock frequency must not exceed one-fourth of the bus clock frequency.

25.2.1.2 TPMxCHn — TPM Channel n I/O Pins

The TPM channel does not control the I/O pin when ELSnB:ELSnA or CLKSB:CLKSA are cleared so it normally reverts to general purpose I/O control. When CPWMS is set and ELSnB:ELSnA are not cleared, all TPM channels are configured for center-aligned PWM and the TPMxCHn pins are all controlled by TPM. When CPWMS is cleared, the MSnB:MSnA control bits determine whether the channel is configured for input capture, output compare, or edge-aligned PWM.

When a channel is configured for input capture (CPWMS = 0, MSnB:MSnA = 0:0, and ELSnB:ELSnA \neq 0:0), the TPMxCHn pin is forced to act as an edge-sensitive input to the TPM. ELSnB:ELSnA control bits determine what polarity edge or edges trigger input capture events. The channel input signal is synchronized on the bus clock. This implies the minimum pulse width—that can

25-6 Freescale Semiconductor

The external clock pin can be shared with any channel pin. However, depending upon full-chip implementation, this signal could be connected to a separate external pin.

 $^{^{2}}$ n = channel number (1–8)

be reliably detected—on an input capture pin is four bus clock periods (with ideal clock pulses as near as two bus clocks can be detected).

When a channel is configured for output compare (CPWMS = 0, MSnB:MSnA = 0:1, and ELSnB:ELSnA \neq 0:0), the TPMxCHn pin is an output controlled by the TPM. The ELSnB:ELSnA bits determine whether the TPMxCHn pin is toggled, cleared, or set each time the 16-bit channel value register matches the TPM counter.

When the output compare toggle mode is initially selected, the previous value on the pin is driven out until the next output compare event, the pin is then toggled.

When a channel is configured for edge-aligned PWM (CPWMS = 0, MSnB = 1, and ELSnB:ELSnA \neq 0:0), the TPMxCHn pin is an output controlled by the TPM, and ELSnB:ELSnA bits control the polarity of the PWM output signal. When ELSnB is set and ELSnA is cleared, the TPMxCHn pin is forced high at the start of each new period (TPMxCNT=0x0000), and it is forced low when the channel value register matches the TPM counter. When ELSnA is set, the TPMxCHn pin is forced low at the start of each new period (TPMxCNT=0x0000), and it is forced high when the channel value register matches the TPM counter.

TPMxMODH:TPMxMODL = 0x0008 TPMxCnVH:TPMxCnVL = 0x0005

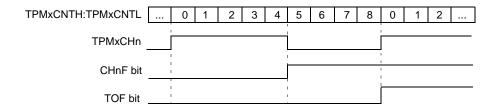


Figure 25-3. High-true pulse of an edge-aligned PWM

TPMxMODH:TPMxMODL = 0x0008 TPMxCnVH:TPMxCnVL = 0x0005

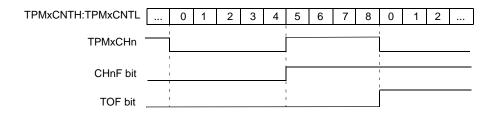


Figure 25-4. Low-true pulse of an edge-aligned PWM

When the TPM is configured for center-aligned PWM (CPWMS = 1 and ELSnB:ELSnA \neq 0:0), the TPMxCHn pins are outputs controlled by the TPM, and ELSnB:ELSnA bits control the polarity of the PWM output signal. If ELSnB is set and ELSnA is cleared, the corresponding TPMxCHn pin is cleared when the TPM counter is counting up, and the channel value register matches the TPM counter; and it is

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor 25-7

set when the TPM counter is counting down, and the channel value register matches the TPM counter. If ELSnA is set, the corresponding TPMxCHn pin is set when the TPM counter is counting up and the channel value register matches the TPM counter; and it is cleared when the TPM counter is counting down and the channel value register matches the TPM counter.

TPMxMODH:TPMxMODL = 0x0008 TPMxCnVH:TPMxCnVL = 0x0005

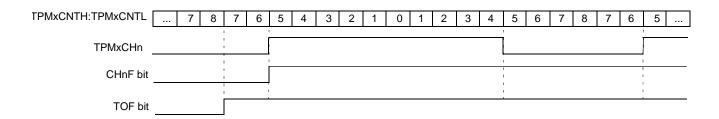


Figure 25-5. High-true pulse of a center-aligned PWM

TPMxMODH:TPMxMODL = 0x0008 TPMxCnVH:TPMxCnVL = 0x0005

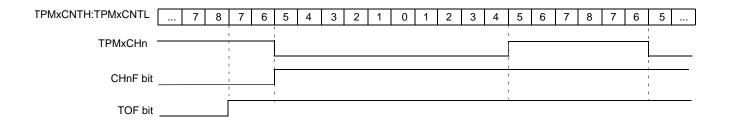


Figure 25-6. Low-true pulse of a center-aligned PWM

25-8 Freescale Semiconductor

25.3 Register Definition

25.3.1 TPM Status and Control Register (TPMxSC)

TPMxSC contains the overflow status flag and control bits used to configure the interrupt enable, TPM configuration, clock source, and prescale factor. These controls relate to all channels within this timer module.

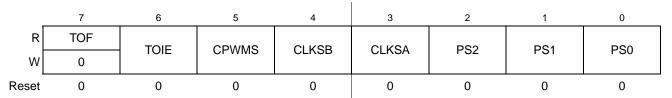


Figure 25-7. TPM Status and Control Register (TPMxSC)

Table 25-2. TPMxSC Field Descriptions

Field	Description
7 TOF	Timer overflow flag. This read/write flag is set when the TPM counter resets to 0x0000 after reaching the modulo value programmed in the TPM counter modulo registers. Clear TOF by reading the TPM status and control register when TOF is set and then writing a logic 0 to TOF. If another TPM overflow occurs before the clearing sequence is completed, the sequence is reset so TOF remains set after the clear sequence was completed for the earlier TOF. This is done so a TOF interrupt request cannot be lost during the clearing sequence for a previous TOF. Reset clears TOF. Writing a logic 1 to TOF has no effect. 1 TPM counter has not reached modulo value or overflow. 1 TPM counter has overflowed.
6 TOIE	Timer overflow interrupt enable. This read/write bit enables TPM overflow interrupts. If TOIE is set, an interrupt is generated when TOF equals one. Reset clears TOIE. 0 TOF interrupts inhibited (use for software polling). 1 TOF interrupts enabled.
5 CPWMS	Center-aligned PWM select. This read/write bit selects CPWM operating mode. By default, the TPM operates in up-counting mode for input capture, output compare, and edge-aligned PWM functions. Setting CPWMS reconfigures the TPM to operate in up/down counting mode for CPWM functions. Reset clears CPWMS. O All channels operate as input capture, output compare, or edge-aligned PWM mode as selected by the MSnB:MSnA control bits in each channel's status and control register. All channels operate in center-aligned PWM mode.
4–3 CLKS[B:A]	Clock source selection bits. As shown in Table 25-3, this 2-bit field is used to disable the TPM counter or select one of three clock sources to TPM counter and counter prescaler.
2-0 PS[2:0]	Prescale factor select. This 3-bit field selects one of eight division factors for the TPM clock as shown in Table 25-4. This prescaler is located after any clock synchronization or clock selection so it affects the clock selected to drive the TPM counter. The new prescale factor affects the selected clock on the next bus clock cycle after the new value is updated into the register bits.

Table 25-3. TPM Clock Selection

CLKSB:CLKSA	TPM Clock to Prescaler Input
00	No clock selected (TPM counter disable)

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor 25-9

Table 25-3, TPM Clock Selection

CLKSB:CLKSA	TPM Clock to Prescaler Input
01	Bus clock
10	Fixed frequency clock
11	External clock

Table 25-4. Prescale Factor Selection

PS[2:0]	TPM Clock Divided-by
000	1
001	2
010	4
011	8
100	16
101	32
110	64
111	128

25.3.2 TPM-Counter Registers (TPMxCNTH:TPMxCNTL)

The two read-only TPM counter registers contain the high and low bytes of the value in the TPM counter. Reading either byte (TPMxCNTH or TPMxCNTL) latches the contents of both bytes into a buffer where they remain latched until the other half is read. This allows coherent 16-bit reads in big-endian or little-endian order that makes this more friendly to various compiler implementations. The coherency mechanism is automatically restarted by an MCU reset or any write to the timer status/control register (TPMxSC).

Reset clears the TPM counter registers. Writing any value to TPMxCNTH or TPMxCNTL also clears the TPM counter (TPMxCNTH:TPMxCNTL) and resets the coherency mechanism, regardless of the data involved in the write.

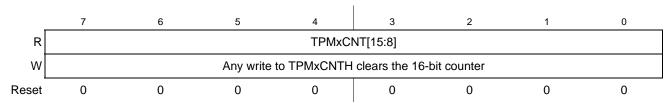


Figure 25-8. TPM Counter Register High (TPMxCNTH)

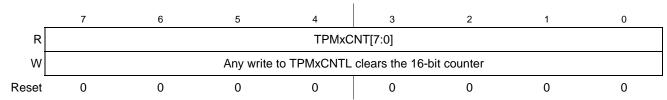


Figure 25-9. TPM Counter Register Low (TPMxCNTL)

When BDM is active, the timer counter is frozen (this is the value you read). The coherency mechanism is frozen so the buffer latches remain in the state they were in when the BDM became active, even if one or both counter halves are read while BDM is active. This assures that if you were in the middle of reading a 16-bit register when BDM became active, it reads the appropriate value from the other half of the 16-bit value after returning to normal execution.

In BDM mode, writing any value to TPMxSC, TPMxCNTH, or TPMxCNTL registers resets the read coherency mechanism of the TPMxCNTH:TPMxCNTL registers, regardless of the data involved in the write.

25.3.3 TPM Counter Modulo Registers (TPMxMODH:TPMxMODL)

The read/write TPM modulo registers contain the modulo value for the TPM counter. After the TPM counter reaches the modulo value, the TPM counter resumes counting from 0x0000 at the next clock, and the overflow flag (TOF) becomes set. Writing to TPMxMODH or TPMxMODL inhibits the TOF bit and overflow interrupts until the other byte is written. Reset sets the TPM counter modulo registers to 0x0000 that results in a free running timer counter (modulo disabled).

Writes to any of the registers TPMxMODH and TPMxMODL actually writes to buffer registers and the registers are updated with the value of their write buffer according to the value of CLKSB:CLKSA bits:

- If CLKSB and CLKSA are cleared, the registers are updated when the second byte is written
- If CLKSB and CLKSA are not cleared, the registers are updated after both bytes were written, and the TPM counter changes from (TPMxMODH:TPMxMODL 1) to (TPMxMODH:TPMxMODL). If the TPM counter is a free-running counter, the update is made when the TPM counter changes from 0xFFFE to 0xFFFF

The latching mechanism is manually reset by writing to the TPMxSC address (whether BDM is active or not).

When BDM is active, the coherency mechanism is frozen (unless reset by writing to TPMxSC register) so the buffer latches remain in the state they were in when the BDM became active, even if one or both halves of the modulo register are written while BDM is active. Any write to the modulo registers bypasses the buffer latches and directly writes to the modulo register while BDM is active.

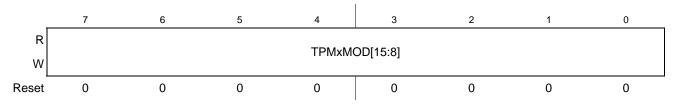
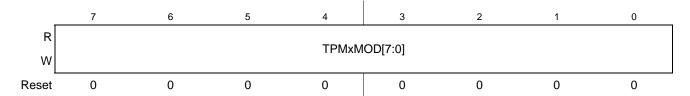



Figure 25-10. TPM Counter Modulo Register High (TPMxMODH)

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor 25-11

Reset the TPM counter before writing to the TPM modulo registers to avoid confusion about when the first counter overflow occurs.

25.3.4 TPM Channel n Status and Control Register (TPMxCnSC)

TPMxCnSC contains the channel-interrupt-status flag and control bits that configure the interrupt enable, channel configuration, and pin function.

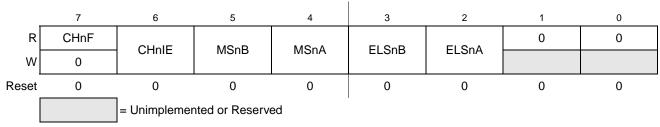


Figure 25-12. TPM Channel n Status and Control Register (TPMxCnSC)

Table 25-5. TPMxCnSC Field Descriptions

Field	Description
7 CHnF	Channel n flag. When channel n is an input capture channel, this read/write bit is set when an active edge occurs on the channel n input. When channel n is an output compare or edge-aligned/center-aligned PWM channel, CHnF is set when the value in the TPM counter registers matches the value in the TPM channel n value registers. When channel n is an edge-aligned/center-aligned PWM channel and the duty cycle is set to 0% or 100%, CHnF is not set even when the value in the TPM counter registers matches the value in the TPM channel n value registers. A corresponding interrupt is requested when this bit is set and channel n interrupt is enabled (CHnIE = 1). Clear CHnF by reading TPMxCnSC while this bit is set and then writing a logic 0 to it. If another interrupt request occurs before the clearing sequence is completed CHnF remains set. This is done so a CHnF interrupt request is not lost due to clearing a previous CHnF. Reset clears this bit. Writing a logic 1 to CHnF has no effect. No input capture or output compare event occurred on channel n.
6 CHnIE	Channel n interrupt enable. This read/write bit enables interrupts from channel n. Reset clears this bit. O Channel n interrupt requests disabled (use for software polling). Channel n interrupt requests enabled.
5 MSnB	Mode select B for TPM channel n. When CPWMS is cleared, setting the MSnB bit configures TPM channel n for edge-aligned PWM mode. Refer to the summary of channel mode and setup controls in Table 25-6.

MCF51MM256 Series Devices Reference Manual, Rev. 3

Table 25-5. TPMxCnSC Field Descriptions (Continued)

Field	Description
4 MSnA	Mode select A for TPM channel n. When CPWMS and MSnB are cleared, the MSnA bit configures TPM channel n for input capture mode or output compare mode. Refer to Table 25-6 for a summary of channel mode and setup controls. Note: If the associated port pin is not stable for at least two bus clock cycles before changing to input capture mode, it is possible to get an unexpected indication of an edge trigger.
3–2 ELSnB ELSnA	Edge/level select bits. Depending upon the operating mode for the timer channel as set by CPWMS:MSnB:MSnA and shown in Table 25-6, these bits select the polarity of the input edge that triggers an input capture event, select the level that is driven in response to an output compare match, or select the polarity of the PWM output. If ELSnB and ELSnA bits are cleared, the channel pin is not controlled by TPM. This configuration can be used by software compare only, because it does not require the use of a pin for the channel.

Table 25-6. Mode, Edge, and Level Selection

CPWMS	MSnB:MSnA	ELSnB:ELSnA	Mode	Configuration
Х	XX	00	Pin is not controlled by TPM. It is reverted to general purpose I/O or other peripheral control	
0	00	01	Input capture Capture on rising edge only	
		10]	Capture on falling edge only
		11]	Capture on rising or falling edge
	01	00	Output compare	Software compare only
		01		Toggle output on channel match
		10		Clear output on channel match
		11		Set output on channel match
	1X	10	Edge-aligned	High-true pulses (clear output on channel match)
		X1	PWM	Low-true pulses (set output on channel match)
1	XX	10 Center-aliq PWM		High-true pulses (clear output on channel match when TPM counter is counting up)
		X1		Low-true pulses (set output on channel match when TPM counter is counting up)

25.3.5 TPM Channel Value Registers (TPMxCnVH:TPMxCnVL)

These read/write registers contain the captured TPM counter value of the input capture function or the output compare value for the output compare or PWM functions. The channel registers are cleared by reset.

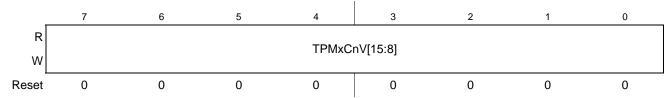


Figure 25-13. TPM Channel Value Register High (TPMxCnVH)

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor 25-13

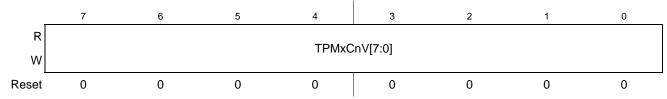


Figure 25-14. TPM Channel Value Register Low (TPMxCnVL)

In input capture mode, reading either byte (TPMxCnVH or TPMxCnVL) latches the contents of both bytes into a buffer where they remain latched until the other half is read. This latching mechanism also resets (becomes unlatched) when the TPMxCnSC register is written (whether BDM mode is active or not). Any write to the channel registers is ignored during the input capture mode.

When BDM is active, the coherency mechanism is frozen (unless reset by writing to TPMxCnSC register) so the buffer latches remain in the state they were in when the BDM became active, even if one or both halves of the channel register are read while BDM is active. This assures that if you were in the middle of reading a 16-bit register when BDM became active, it reads the appropriate value from the other half of the 16-bit value after returning to normal execution. The value read from the TPMxCnVH and TPMxCnVL registers in BDM mode is the value of these registers and not the value of their read buffer.

In output compare or PWM modes, writing to either byte (TPMxCnVH or TPMxCnVL) latches the value into a buffer. After both bytes were written, they are transferred as a coherent 16-bit value into the timer-channel registers according to the value of CLKSB:CLKSA bits and the selected mode:

- If CLKSB and CLKSA are cleared, the registers are updated when the second byte is written.
- If CLKSB and CLKSA are not cleared and in output compare mode, the registers are updated after the second byte is written and on the next change of the TPM counter (end of the prescaler counting).
- If CLKSB and CLKSA are not cleared and in EPWM or CPWM modes, the registers are updated after both bytes were written, and the TPM counter changes from (TPMxMODH:TPMxMODL 1) to (TPMxMODH:TPMxMODL). If the TPM counter is a free-running counter, the update is made when the TPM counter changes from 0xFFFE to 0xFFFF.

The latching mechanism is manually reset by writing to the TPMxCnSC register (whether BDM mode is active or not). This latching mechanism allows coherent 16-bit writes in either big-endian or little-endian order that is friendly to various compiler implementations.

When BDM is active, the coherency mechanism is frozen so the buffer latches remain in the state they were in when the BDM became active even if one or both halves of the channel register are written while BDM is active. Any write to the channel registers bypasses the buffer latches and directly write to the channel register while BDM is active. The values written to the channel register while BDM is active are used for PWM and output compare operation after normal execution resumes. Writes to the channel registers while BDM is active do not interfere with partial completion of a coherency sequence. After the coherency mechanism is fully exercised, the channel registers are updated using the buffered values (while BDM was not active).

25.4 Functional Description

All TPM functions are associated with a central 16-bit counter that allows flexible selection of the clock and prescale factor. There is also a 16-bit modulo register associated with this counter.

The CPWMS control bit chooses between center-aligned PWM operation for all channels in the TPM (CPWMS=1) or general purpose timing functions (CPWMS=0) where each channel can independently be configured to operate in input capture, output compare, or edge-aligned PWM mode. The CPWMS control bit is located in the TPM status and control register because it affects all channels within the TPM and influences the way the main counter operates. (In CPWM mode, the counter changes to an up/down mode rather than the up-counting mode used for general purpose timer functions.)

The following sections describe TPM counter and each of the timer operating modes (input capture, output compare, edge-aligned PWM, and center-aligned PWM). Because details of pin operation and interrupt activity depend upon the operating mode, these topics are covered in the associated mode explanation sections.

25.4.1 Counter

All timer functions are based on the main 16-bit counter (TPMxCNTH:TPMxCNTL). This section discusses selection of the clock, end-of-count overflow, up-counting vs. up/down counting, and manual counter reset.

25.4.1.1 Counter Clock Source

The 2-bit field, CLKSB:CLKSA, in the timer status and control register (TPMxSC) disables the TPM counter or selects one of three clock sources to TPM counter (Table 25-3). After any MCU reset, CLKSB and CLKSA are cleared so no clock is selected and the TPM counter is disabled (TPM is in a very low power state). You can read or write these control bits at any time. Disabling the TPM counter by writing 00 to CLKSB:CLKSA bits, does not affect the values in the TPM counter or other registers.

The fixed frequency clock is an alternative clock source for the TPM counter that allows the selection of a clock other than the bus clock or external clock. This clock input is defined by chip integration. You can refer chip specific documentation for further information. Due to TPM hardware implementation limitations, the frequency of the fixed frequency clock must not exceed the bus clock frequency. The fixed frequency clock has no limitations for low frequency operation.

The external clock passes through a synchronizer clocked by the bus clock to assure that counter transitions are properly aligned to bus clock transitions. Therefore, in order to meet Nyquist criteria considering also jitter, the frequency of the external clock source must not exceed 1/4 of the bus clock frequency.

When the external clock source is shared with a TPM channel pin, this pin must not be used in input capture mode. However, this channel can be used in output compare mode with ELSnB:ELSnA = 0:0 for software timing functions. In this case, the channel output is disabled, but the channel match events continue to set the appropriate flag.

25.4.1.2 Counter Overflow and Modulo Reset

An interrupt flag and enable are associated with the 16-bit main counter. The flag (TOF) is a software-accessible indication that the timer counter has overflowed. The enable signal selects between software polling (TOIE = 0) where no interrupt is generated, or interrupt-driven operation (TOIE = 1) where the interrupt is generated whenever the TOF is set.

The conditions causing TOF to become set depend on whether the TPM is configured for center-aligned PWM (CPWMS = 1). If CPWMS is cleared and there is no modulus limit, the 16-bit timer counter counts from 0x0000 through 0xFFFF and overflows to 0x0000 on the next counting clock. TOF is set at the transition from 0xFFFF to 0x0000. When a modulus limit is set, TOF is set at the transition from the value set in the modulus register to 0x0000. When the TPM is in center-aligned PWM mode (CPWMS = 1), the TOF flag is set as the counter changes direction at the end of the count value set in the modulus register (at the transition from the value set in the modulus register to the next lower count value). This corresponds to the end of a PWM period (the 0x0000 count value corresponds to the center of a period).

25.4.1.3 Counting Modes

The main timer counter has two counting modes. When center-aligned PWM is selected (CPWMS = 1), the counter operates in up/down counting mode. Otherwise, the counter operates as a simple up counter. As an up counter, the timer counter counts from 0x0000 through its terminal count and continues with 0x0000. The terminal count is 0xFFFF or a modulus value in TPMxMODH:TPMxMODL.

When center-aligned PWM operation is specified, the counter counts up from 0x0000 through its terminal count and then down to 0x0000 where it changes back to up counting. The terminal count value and 0x0000 are normal length counts (one timer clock period long). In this mode, the timer overflow flag (TOF) is set at the end of the terminal-count period (as the count changes to the next lower count value).

25.4.1.4 Manual Counter Reset

The main timer counter can be manually reset at any time by writing any value to TPMxCNTH or TPMxCNTL. Resetting the counter in this manner also resets the coherency mechanism in case only half of the counter was read before resetting the count.

25.4.2 Channel Mode Selection

If CPWMS is cleared, MSnB and MSnA bits determine the basic mode of operation for the corresponding channel. Choices include input capture, output compare, and edge-aligned PWM.

25.4.2.1 Input Capture Mode

With the input capture function, the TPM can capture the time at which an external event occurs. When an active edge occurs on the pin of an input capture channel, the TPM latches the contents of the TPM counter into the channel-value registers (TPMxCnVH:TPMxCnVL). Rising edges, falling edges, or any edge is chosen as the active edge that triggers an input capture.

In input capture mode, the TPMxCnVH and TPMxCnVL registers are read only.

When either half of the 16-bit capture register is read, the other half is latched into a buffer to support coherent 16-bit accesses in big-endian or little-endian order. The coherency sequence can be manually reset by writing to TPMxCnSC.

An input capture event sets a flag bit (CHnF) that optionally generates a CPU interrupt request.

While in BDM, the input capture function works as configured. When an external event occurs, the TPM latches the contents of the TPM counter (frozen because of the BDM mode) into the channel value registers and sets the flag bit.

25.4.2.2 Output Compare Mode

With the output compare function, the TPM can generate timed pulses with programmable position, polarity, duration, and frequency. When the counter reaches the value in TPMxCnVH:TPMxCnVL registers of an output compare channel, the TPM can set, clear, or toggle the channel pin.

Writes to any of TPMxCnVH and TPMxCnVL registers actually write to buffer registers. In output compare mode, the TPMxCnVH:TPMxCnVL registers are updated with the value of their write buffer only after both bytes were written and according to the value of CLKSB:CLKSA bits:

- If CLKSB and CLKSA are cleared, the registers are updated when the second byte is written
- If CLKSB and CLKSA are not cleared, the registers are updated at the next change of the TPM counter (end of the prescaler counting) after the second byte is written.

The coherency sequence can be manually reset by writing to the channel status/control register (TPMxCnSC).

An output compare event sets a flag bit (CHnF) that optionally generates a CPU interrupt request.

25.4.2.3 Edge-Aligned PWM Mode

This type of PWM output uses the normal up-counting mode of the timer counter (CPWMS=0) and can be used when other channels in the same TPM are configured for input capture or output compare functions. The period of this PWM signal is determined by the value of the modulus register (TPMxMODH:TPMxMODL) plus 1. The duty cycle is determined by the value of the timer channel register (TPMxCnVH:TPMxCnVL). The polarity of this PWM signal is determined by ELSnA bit. 0% and 100% duty cycle cases are possible.

The time between the modulus overflow and the channel match value (TPMxCnVH:TPMxCnVL) is the pulse width or duty cycle (Figure 25-15). If ELSnA is cleared, the counter overflow forces the PWM signal high, and the channel match forces the PWM signal low. If ELSnA is set, the counter overflow forces the PWM signal low, and the channel match forces the PWM signal high.

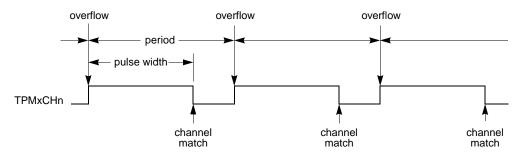


Figure 25-15. EPWM period and pulse width (ELSnA=0)

When the channel value register is set to 0x0000, the duty cycle is 0%. A 100% duty cycle is achieved by setting the timer-channel register (TPMxCnVH:TPMxCnVL) to a value greater than the modulus setting. This implies that the modulus setting must be less than 0xFFFF in order to get 100% duty cycle.

The timer channel registers are buffered to ensure coherent 16-bit updates and to avoid unexpected PWM pulse widths. Writes to any of the registers TPMxCnVH and TPMxCnVL actually write to buffer registers. In edge-aligned PWM mode, the TPMxCnVH:TPMxCnVL registers are updated with the value of their write buffer according to the value of CLKSB:CLKSA bits:

- If CLKSB and CLKSA are cleared, the registers are updated when the second byte is written
- If CLKSB and CLKSA are not cleared, the registers are updated after both bytes were written, and the TPM counter changes from (TPMxMODH:TPMxMODL 1) to (TPMxMODH:TPMxMODL). If the TPM counter is a free-running counter, the update is made when the TPM counter changes from 0xFFFE to 0xFFFF.

25.4.2.4 Center-Aligned PWM Mode

This type of PWM output uses the up/down counting mode of the timer counter (CPWMS=1). The channel match value in TPMxCnVH:TPMxCnVL determines the pulse width (duty cycle) of the PWM signal while the period is determined by the value in TPMxMODH:TPMxMODL. TPMxMODH:TPMxMODL must be kept in the range of 0x0001 to 0x7FFF because values outside this range can produce ambiguous results. ELSnA determines the polarity of the CPWM signal.

```
pulse width = 2 \times (TPMxCnVH:TPMxCnVL)
period = 2 \times (TPMxMODH:TPMxMODL); TPMxMODH:TPMxMODL = 0x0001-0x7FFF
```

If TPMxCnVH:TPMxCnVL is zero or negative (bit 15 set), the duty cycle is 0%. If TPMxCnVH:TPMxCnVL is a positive value (bit 15 clear) and is greater than the non-zero modulus setting, the duty cycle is 100% because the channel match never occurs. This implies the usable range of periods set by the modulus register is 0x0001 through 0x7FFE (0x7FFF if you do not need to generate 100% duty cycle). This is not a significant limitation. The resulting period is much longer than required for normal applications.

All zeros in TPMxMODH:TPMxMODL is a special case that must not be used with center-aligned PWM mode. When CPWMS is cleared, this case corresponds to the counter running free from 0x0000 through 0xFFFF. When CPWMS is set, the counter needs a valid match to the modulus register somewhere other than at 0x0000 in order to change directions from up-counting to down-counting.

The channel match value in the TPM channel registers (times two) determines the pulse width (duty cycle) of the CPWM signal (Figure 25-16). If ELSnA is cleared, a channel match occurring while counting up clears the CPWM output signal and a channel match occurring while counting down sets the output. The counter counts up until it reaches the modulo setting in TPMxMODH:TPMxMODL, then counts down until it reaches zero. This sets the period equal to two times TPMxMODH:TPMxMODL.

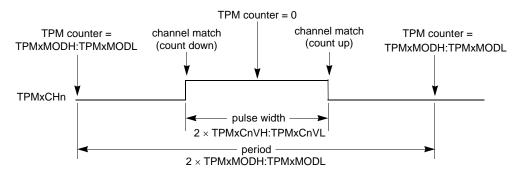


Figure 25-16. CPWM period and pulse width (ELSnA=0)

Center-aligned PWM outputs typically produce less noise than edge-aligned PWMs because fewer I/O pin transitions are lined up at the same system clock edge. This type of PWM is also required for some types of motor drives.

Input capture, output compare, and edge-aligned PWM functions do not make sense when the counter is operating in up/down counting mode so this implies that all active channels within a TPM must be used in CPWM mode when CPWMS is set.

The timer channel registers are buffered to ensure coherent 16-bit updates and to avoid unexpected PWM pulse widths. Writes to any of the registers TPMxCnVH and TPMxCnVL actually write to buffer registers. In center-aligned PWM mode, the TPMxCnVH:TPMxCnVL registers are updated with the value of their write buffer according to the value of CLKSB:CLKSA bits:

- If CLKSB and CLKSA are cleared, the registers are updated when the second byte is written
- If CLKSB and CLKSA are not cleared, the registers are updated after both bytes were written, and the TPM counter changes from (TPMxMODH:TPMxMODL 1) to (TPMxMODH:TPMxMODL). If the TPM counter is a free-running counter, the update is made when the TPM counter changes from 0xFFFE to 0xFFFF.

When TPMxCNTH:TPMxCNTL equals TPMxMODH:TPMxMODL, the TPM can optionally generate a TOF interrupt (at the end of this count).

25.5 Reset Overview

25.5.1 **General**

The TPM is reset whenever any MCU reset occurs.

25.5.2 Description of Reset Operation

Reset clears TPMxSC that disables TPM counter clock and overflow interrupt (TOIE=0). CPWMS, MSnB, MSnA, ELSnB, and ELSnA are all cleared. This configures all TPM channels for input capture operation and the associated pins are not controlled by TPM.

25.6 Interrupts

25.6.1 General

The TPM generates an optional interrupt for the main counter overflow and an interrupt for each channel. The meaning of channel interrupts depends on each channel's mode of operation. If the channel is configured for input capture, the interrupt flag is set each time the selected input capture edge is recognized. If the channel is configured for output compare or PWM modes, the interrupt flag is set each time the main timer counter matches the value in the 16-bit channel value register.

All TPM interrupts are listed in Table 25-7.

Interrupt	Local Enable	Source	Description
TOF	TOIE	Counter overflow	Set each time the TPM counter reaches its terminal count (at transition to its next count value)
CHnF	CHnIE	Channel event	An input capture event or channel match took place on channel n

Table 25-7. Interrupt Summary

The TPM module provides high-true interrupt signals.

25.6.2 Description of Interrupt Operation

For each interrupt source in the TPM, a flag bit is set upon recognition of the interrupt condition such as timer overflow, channel input capture, or output compare events. This flag is read (polled) by software to determine that the action has occurred, or an associated enable bit (TOIE or CHnIE) can be set to enable the interrupt generation. While the interrupt enable bit is set, the interrupt is generated whenever the associated interrupt flag is set. Software must perform a sequence of steps to clear the interrupt flag before returning from the interrupt-service routine.

TPM interrupt flags are cleared by a two-step process including a read of the flag bit while it is set followed by a write of zero to the bit. If a new event is detected between these two steps, the sequence is reset and the interrupt flag remains set after the second step to avoid the possibility of missing the new event.

25-20 Freescale Semiconductor

25.6.2.1 Timer Overflow Interrupt (TOF) Description

The meaning and details of operation for TOF interrupts varies slightly depending upon the mode of operation of the TPM system (general purpose timing functions versus center-aligned PWM operation). The flag is cleared by the two step sequence described above.

25.6.2.1.1 Normal Case

When CPWMS is cleared, TOF is set when the timer counter changes from the terminal count (the value in the modulo register) to 0x0000. If the TPM counter is a free-running counter, the update is made when the TPM counter changes from 0xFFFF to 0x0000.

25.6.2.1.2 Center-Aligned PWM Case

When CPWMS is set, TOF is set when the timer counter changes direction from up-counting to down-counting at the end of the terminal count (the value in the modulo register).

25.6.2.2 Channel Event Interrupt Description

The meaning of channel interrupts depends on the channel's current mode (input capture, output compare, edge-aligned PWM, or center-aligned PWM).

25.6.2.2.1 Input Capture Events

When a channel is configured as an input capture channel, the ELSnB:ELSnA bits select if channel pin is not controlled by TPM, rising edges, falling edges, or any edge as the edge that triggers an input capture event. When the selected edge is detected, the interrupt flag is set. The flag is cleared by the two-step sequence described in Section 25.6.2, "Description of Interrupt Operation."

25.6.2.2.2 Output Compare Events

When a channel is configured as an output compare channel, the interrupt flag is set each time the main timer counter matches the 16-bit value in the channel value register. The flag is cleared by the two-step sequence described in Section 25.6.2, "Description of Interrupt Operation."

25.6.2.2.3 PWM End-of-Duty-Cycle Events

When the channel is configured for edge-aligned PWM, the channel flag is set when the timer counter matches the channel value register that marks the end of the active duty cycle period. When the channel is configured for center-aligned PWM, the timer count matches the channel value register twice during each PWM cycle. In this CPWM case, the channel flag is set at the start and at the end of the active duty cycle period when the timer counter matches the channel value register. The flag is cleared by the two-step sequence described in Section 25.6.2, "Description of Interrupt Operation."

Chapter 26 Trans-Impedance Amplifier (TRIAMP)

26.1 Introduction

The Trans-Impedance Amplifier (TRIAMP) block is a CMOS single-supply, low-input offset voltage, low-input offset and bias current amplifier that is designed for low-voltage, low-power operation over an input voltage range of 0 V to 1.2 V. The TRIAMP block also has control settings that can be software configured depending on the applications requirements. Timing and control consists of registers and control logic for:

• operation in low-power modes

In addition, the TRIAMP block requires two low-leakage PAD, and PCB leakage need to be considered.

The MCF51MM256 series devices contain two (2) TRIAMP modules.

Figure 26-1 shows the block diagram with the TRIAMP highlighted.

26.1.1 TRIAMP Clock Gating

The bus clock to the TRIAMPx can be gated on and off using the TRIAMPx bit in SCGC3. These bits are set after any reset which enables the bus clock to this module. To conserve power, these bits can be cleared to disable the clock to this module when not in use. See Section 5.6, "Peripheral Clock Gating," for details.

Trans-Impedance Amplifier (TRIAMP)

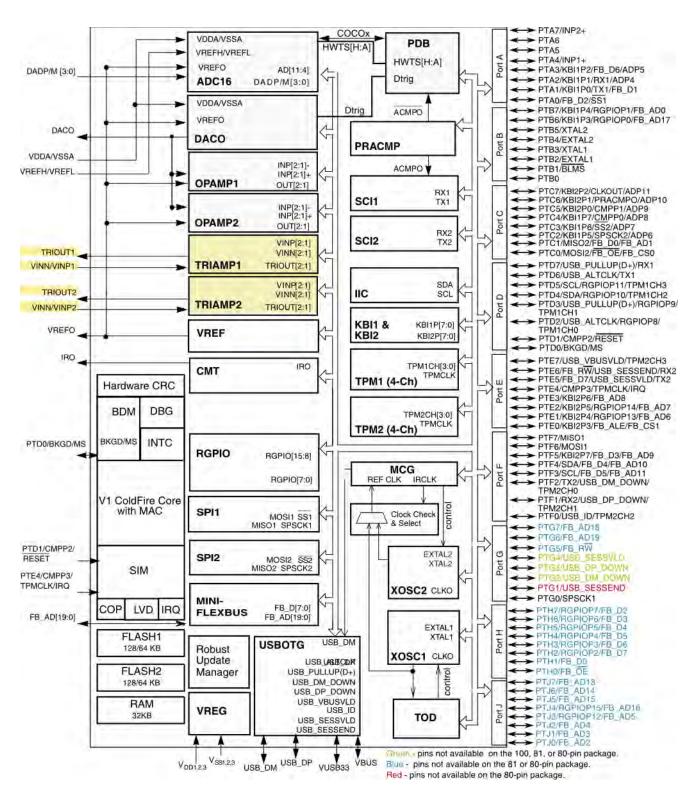


Figure 26-1. Block Diagram Highlighting the TRIAMP Blocks and Pins

26-2 Freescale Semiconductor

26.1.2 Features

The Trans-Impedance Amplifier module features include:

- 1.8 V-3.6 V V_{DD} operation
- Input common mode range: $-0.2 \text{ V} \sim \text{V}_{DD} 1.4 \text{ V}$
- On-chip generation of bias voltages
- Low-power, low voltage CMOS technology
- Low-input offset voltage¹
- Low-input offset current¹
- Low-input bias current¹
- Low-current consumption¹

26.1.3 Modes of Operation

The Trans-Impedance Amplifier module supports the following operation modes:

- Stop2 is disabled and not powered.
- Stop3 is disabled when the TIAMPEN is low.
- Wait operated as normal.

26.1.4 Block Diagram

Figure 26-2 is a block diagram of the Trans-Impedance Amplifier module.

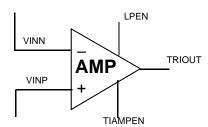


Figure 26-2. Trans-Impedance Amplifier Block Diagram

26.1.5 Signal Description

The Trans-Impedance Amplifier module has total of three external pins.

Table 26-1.	Signal	Properties
-------------	--------	-------------------

Name	Port	Function	Terminal Type	Reset State
VINP	PAD	Amplifier positive input terminal.	Analog input terminal	N/A
VINN	PAD	Amplifier negative input terminal	Analog input terminal	N/A
TRIOUT	PAD	Amplifier output terminal	Analog output terminal	N/A

^{1.} Please refer to data sheet for latest characterization data.

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor 26-3

Trans-Impedance Amplifier (TRIAMP)

26.2 Register Definitions

This section provides a detailed description of all registers.

26.2.1 TIAMP Control Register 0 (TIAMPxC0)

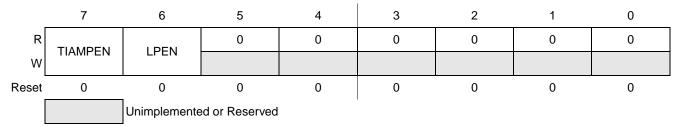


Figure 26-3. TIAMP Control Register 0 (TIAMPxC0)

Table 26-2. TIAMPxCR0 Field Descriptions

Field	Description
7 TIAMPEN	 Trans-Impedance Amplifier Enable — The TIAMPEN bit enable Trans-Impedance Amplifier. The amplifier is disabled and not powered. This mode of operation is available in any of the modes the MCU operates. Trans-Impedance Amplifier system is enabled. In this mode, the amplifier is powered and enabled. This mode of operation is available when the MCU is in modes other than stop2 mode.
6 LPEN	Low-Power Enable — The LPEN bit is the power-level control bit. 0 High-speed mode 1 Low-power mode

26.3 Functional Description

This section provides a complete functional description of the Trans-Impedance Amplifier block, detailing the operation of the design from the end-user perspective.

26.3.1 Trans-Impedance Amplifier Configuration

The following figure shows the typical application diagram of the Trans-Impedance Amplifier module.

Figure 26-4 shows one application diagram of the Trans-Impedance Amplifier module.

26-4 Freescale Semiconductor

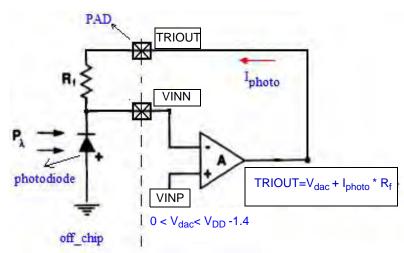


Figure 26-4. Trans-Impedance Amplifier Typical Application Diagram

Table 26-3. TRIAMP Module¹

I _{photo}	R _f	V _{dac} (V)	$0.15 < TRIOUT(V) < V_{DD}-0.15$ TRIOUT = $I_{photo} X R_f + V_{dac}$
1 n	1 M	0.2	0.201 V
10 n	1 M	0.2	0.210 V
100 n	1 M	0.2	0.3 V
1 u	1 M	0.2	1.2 V
10 n	100 K	0.2	0.201 V
100 n	100 K	0.2	0.21 V
1 u	100 K	0.2	0.3 V
10 u	100 K	0.2	1.2 V
100 n	10 K	0.2	0.201 V
1 u	10 K	0.2	0.21 V
10 u	10 K	0.2	0.3 V
100 u	10 K	0.2	1.2 V

Values in this table are based upon an ideal operational amplifier model. Please account for a non-ideal model in your actual circuit design.

Figure 26-5 shows another application (supply is 3 V) diagram of the Trans-Impedance Amplifier module.

Trans-Impedance Amplifier (TRIAMP)

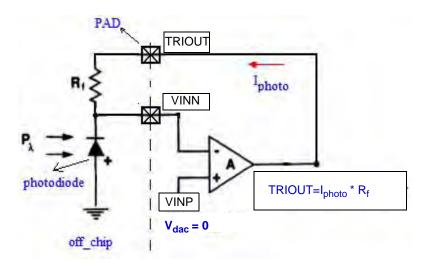


Figure 26-5. Trans-Impedance Amplifier Reverse Biased Alternate Application

Chapter 27 USB On-the-GO (USBOTG)

NOTE

Portions of Chapter 27, "USB On-the-GO (USBOTG)," relating to the EHCI specification are Copyright © Intel Corporation 1999-2001. The EHCI specification is provided as is with no warranties whatsoever, including any warranty of merchantability, non-infringement, fitness for any particular purpose, or any warranty otherwise arising out of any proposal, specification or sample. Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to use of information in the EHCI specification. Intel may make changes to the EHCI specifications at any time, without notice.

For OTG operations, external circuitry is required to manage the host negotiation protocol (HNP) and session request protocol (SRP). External ICs that are capable of providing the OTG VBUS with support.

For HNP and SRP, as well as support for programmable pullup and pulldown resistors on the USB DP and DM lines are available from various manufacturers.

USB On-the-GO (USBOTG)



Figure 27-1. Block Diagram with the USB Module highlighted

27-2 Freescale Semiconductor

27.0.1 Module Configuration

A subset of USBOTG module pins, can be repositioned via software-control using USBPS in SOPT3 as as shown in the following table. USB in SOPT3 selects which general-purpose I/O ports are associated with USB operation.

USB_PULLUP(D+) **USBPS in SOPT3** DP_DOWN USB_DM_DOWN SESSEND USB SESSVLD USB 0 (default) PTG4 PTG1 PTD3 PTG2 PTG3 PTD2 PTF5 PTF6 PTD7 PTF1 PTF2 PTD6

Table 27-1. USB Position Options

27.0.2 USB Clock Gating

The bus clock to the USB can be gated on and off using the USB bit in SCGC2. This bit is set after any reset, which enables the bus clock to this module. To conserve power, the USB bit can be cleared to disable the clock to this module when not in use. See Section 5.6, "Peripheral Clock Gating," for details.

27.1 Overview

This chapter describes the USB On The Go dual role Controller (USB-FS), which implements many industry standards. However, it is beyond the scope of this document to document the intricacies of these standards. Instead, it is left to the reader to refer to the governing specifications.

The following documents are available from the USB Implementers Forum web page at http://www.usb.org/developers/docs:

- Universal Serial Bus Specification, Revision 1.1
- On-The-Go Supplement to the USB 2.0 Specification, Revision 1.0a

27.2 Introduction

This section describes the USB On The Go dual role controller (USB-FS). The OTG implementation in this module provides limited host functionality as well as full-speed device solutions for implementing a USB 2.0 full-speed/low-speed compliant peripheral. The OTG implementation supports the On-The-Go (OTG) addendum to the USB 2.0 Specification. Only one protocol can be active at any time. A negotiation protocol must be used to switch to a USB host functionality from a USB device. This is known as the Host Negotiation Protocol (HNP).

27.2.1 USB

The USB is a cable bus that supports data exchange between a host computer and a wide range of simultaneously accessible peripherals. The attached peripherals share USB bandwidth through a

MCF51MM256 Series Devices Reference Manual, Rev. 3

host-scheduled, token-based protocol. The bus allows peripherals to be attached, configured, used, and detached while the host and other peripherals are in operation.

USB software provides a uniform view of the system for all application software, hiding implementation details making application software more portable. It manages the dynamic attach and detach of peripherals.

There is only one host in any USB system. The USB interface to the host computer system is referred to as the Host Controller.

There may be multiple USB devices in any system such as joysticks, speakers, printers, etc. USB devices present a standard USB interface in terms of comprehension, response, and standard capability.

The host initiates transactions to specific peripherals, while the device responds to control transactions. The device sends and receives data to and from the host using a standard USB data format. USB 2.0 full-speed /low-speed peripherals operate at 12Mb/s or 1.5 MB/s.

For additional information, refer to the USB2.0 specification [2].

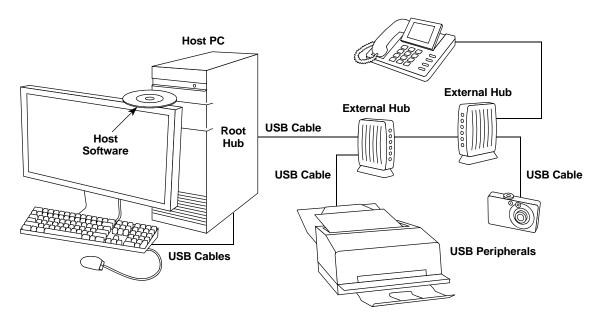


Figure 27-2. Example USB 2.0 System Configuration

27-4 Freescale Semiconductor

27.2.2 USB On-The-Go

USB (Universal Serial Bus) is a popular standard for connecting peripherals and portable consumer electronic devices such as digital cameras and hand-held computers to host PCs. The On-The-Go (OTG) Supplement to the USB Specification extends USB to peer-to-peer application. Using USB OTG technology consumer electronics, peripherals and portable devices can connect to each other (for example, a digital camera can connect directly to a printer, or a keyboard can connect to a Personal Digital Assistant) to exchange data.

With the USB On-The-Go product, you can develop a fully USB-compliant peripheral device that can also assume the role of a USB host. Software determines the role of the device based on hardware signals, and then initializes the device in the appropriate mode of operation (host or peripheral) based on how it is connected. After connecting the devices can negotiate using the OTG protocols to assume the role of host or peripheral based on the task to be accomplished.

For additional information, refer to the *On-The-Go Supplement to the USB 2.0 Specification* [3].

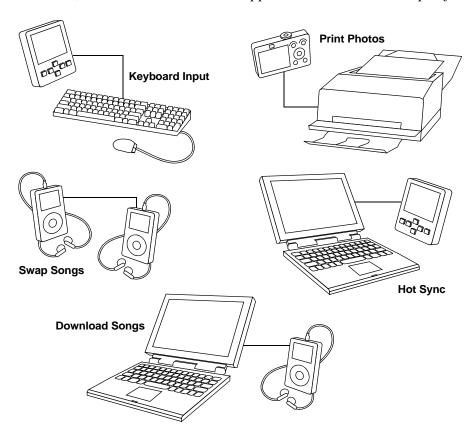


Figure 27-3. Example USB 2.0 On-The-Go Configurations

27.2.3 USB-FS Features

- USB 1.1 and 2.0 compliant full-speed device controller
- 16-Bidirectional end points
- DMA or FIFO data stream interfaces
- Low-power consumption
- On-The-Go protocol logic

27.2.4 Modes of Operation

For details on low-power mode operation, refer to Table 3-2.

USB functions in three modes: run, wait, and stop.

27.2.4.1 Run Mode

This is the basic mode of operation.

27.2.4.2 Wait Mode

The system wakes up from wait mode when USB asserts an interrupt.

27.2.4.3 Stop Mode

When USB detects that there is no activity on the USB bus for more than 3 ms, the sleep bit in the INT_STAT register gets set. This bit can cause an interrupt. After clearing the interrupt, you can choose whether to have the device go into STOP4/STOP3 mode.

Before having the device go into the STOP3/STOP4 mode, the following programming is recommended:

- 1. Program the USBRESMEN bit in the USBTRC0 register to 1 to wake up the system through an asynchronous interrupt because of activity on the USB bus.
- 2. Program the SUSP bit in the USB_CTL register so that the receive and transmit control signals are disabled on the transceiver for low-power consumption.

When the Sync Interrupt corresponding to this Async interrupt occurs (bit 0 of the USBTRC0 register), you must clear the SUSP bit in the USB_CTRL register, so that the state machine in the USB controller can detect RESUME signaling on USB.

27.3 External Signal Description

27.3.1 USB Pull-up/Pull-down Connections

Figure 27-4 depicts the USB Pull-up/Pull-down control signals and the DPlus and DMinus lines.

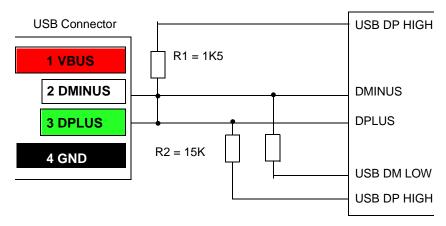


Figure 27-4. Pull-up/Pull-down Connections for USB

27.3.2 USB OTG Connections

Figure 27-5 depicts the USB OTG pin connections.

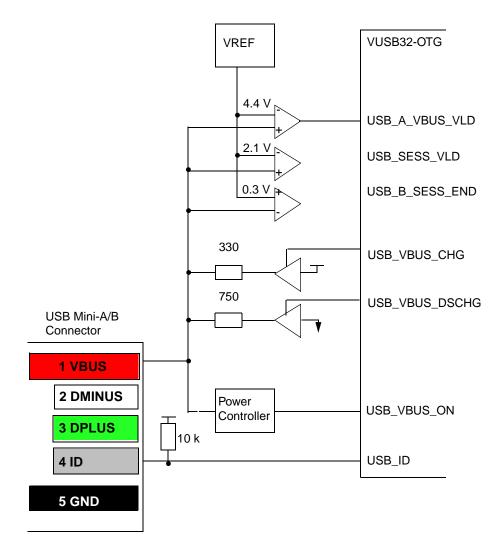


Figure 27-5. OTG connections for USB

As shown in Figure 27-5, USB_VBUS_CHG, USB_VBUS_DSCHG, and USB_VBUS_ON are not controlled through any of the register bits within the USB controller. You should use the GPIOs to control these outputs.

27.4 Functional Description

The USB-FS 2.0 full-speed/low-speed module communicates with the ColdFire processor core through status and control registers, and data structures in memory.

27.4.1 Data Structures

The function of the device operation is to transfer a request in the memory image to and from the Universal Serial Bus. To efficiently manage USB endpoint communications the USB-FS implements a Buffer Descriptor Table (BDT) in system memory. See Figure 27-6.

27.5 Programmers Interface

27.5.1 Buffer Descriptor Table

To efficiently manage USB endpoint communications the USB-FS implements a Buffer Descriptor Table (BDT) in system memory. The BDT resides on a 512 byte boundary in system memory and is pointed to by the BDT Page Registers. Every endpoint direction requires two eight-byte Buffer Descriptor entries. Therefore, a system with 16 fully bidirectional endpoints would require 512 bytes of system memory to implement the BDT. The two Buffer Descriptor (BD) entries allows for an EVEN BD and ODD BD entry for each endpoint direction. This allows the microprocessor to process one BD while the USB-FS is processing the other BD. Double buffering BDs in this way allows the USB-FS to easily transfer data at the maximum throughput provided by USB.

The software API intelligently manages buffers for the USB-FS by updating the BDT when needed. This allows the USB-FS to efficiently manage data transmission and reception, while the microprocessor performs communication overhead processing and other function dependent applications. Because the buffers are shared between the microprocessor and the USB-FS a simple semaphore mechanism is used to distinguish who is allowed to update the BDT and buffers in system memory. A semaphore bit, the OWN bit, is cleared to 0 when the BD entry is owned by the microprocessor. The microprocessor is allowed read and write access to the BD entry and the buffer in system memory when the OWN bit is 0. When the OWN bit is set to 1, the BD entry and the buffer in system memory are owned by the USB-FS. The USB-FS now has full read and write access and the microprocessor should not modify the BD or its corresponding data buffer. The BD also contains indirect address pointers to where the actual buffer resides in system memory. This indirect address mechanism is shown in the following diagram.

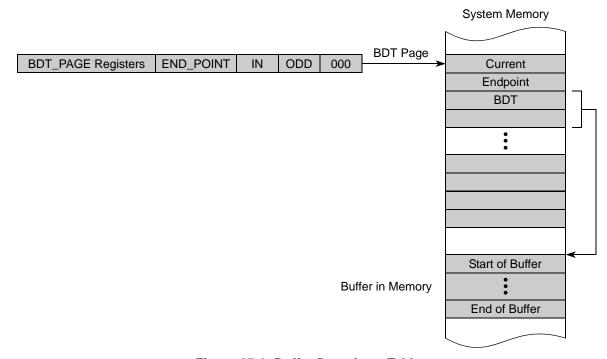


Figure 27-6. Buffer Descriptor Table

MCF51MM256 Series Devices Reference Manual, Rev. 3

27.5.2 Rx vs. Tx as a USB Target Device or USB Host

The USB-FS core can function as a USB target device, or as a USB hosts, and may switch modes of operation between host and target device under software control. In either mode, USB host or USB target device, the same data paths and buffer descriptors are used for the transmission and reception of data. For this reason, a USB-FS core centric nomenclature is used to describe the direction of the data transfer between the USB-FS core and the USB. Rx or receive is used to describe transfers that move data from the USB to memory, and Tx, or transmit is used to describe transfers that move data from memory to the USB. The following table shows how the data direction corresponds to the USB token type in host and target device applications.

Table 27-2. Data Direction for USB Host or USB Target

	Rx	Tx
Device	OUT or Setup	IN
Host	IN	Out or Setup

27.5.3 Addressing Buffer Descriptor Table Entries

To access endpoint data via the USB-FS or microprocessor, the addressing mechanism of the Buffer Descriptor Table must be understood. As stated earlier, the Buffer Descriptor Table occupies up to 512 bytes of system memory. Sixteen bidirectional endpoints can be supported with a full BDT of 512 bytes. Sixteen bytes are needed for each USB endpoint direction. Applications with less than 16 End Points require less RAM to implement the BDT. The BDT Page Registers point to the starting location of the BDT. The BDT must be located on a 512-byte boundary in system memory. All enabled TX and RX endpoint BD entries are indexed into the BDT to allow easy access via the USB-FS or ColdFire Core.

When the USB-FS receives a USB token on an enabled endpoint it uses its integrated DMA controller to interrogate the BDT. The USB-FS must read the corresponding endpoint BD entry and determine if it owns the BD and corresponding buffer in system memory. To compute the entry point in to the BDT, the BDT_PAGE registers is concatenated with the current endpoint and the TX and ODD fields to form a 32-bit address. This address mechanism is shown in the following diagrams:

Figure 27-7. BDT Address Calculation

Table 27-3. BDT Address Calculation Fields

Field	Description
BDT_PAGE	BDT_PAGE registers in the Control Register Block
END_POINT	END POINT field from the USB TOKEN
TX	1 for an TX transmit transfers and 0 for an RX receive transfers

Table 27-3. BDT Address Calculation Fields

ODD	This bit is maintained within the USB-FS SIE. It corresponds to the buffer currently in use. The buffers are
	used in a ping-pong fashion.

27.5.4 Buffer Descriptor Formats

The Buffer Descriptors (BD) provide endpoint buffer control information for the USB-FS and microprocessor. The Buffer Descriptors have different meaning based on who is reading the BD in memory. The USB-FS Controller uses the data stored in the BDs to determine:

- Who owns the buffer in system memory
- Data0 or Data1 PID
- Release Own upon packet completion
- No address increment (FIFO Mode)
- Data toggle synchronization enable
- How much data is to be transmitted or received
- Where the buffer resides in system memory

While the microprocessor uses the data stored in the BDs to determine:

- Who owns the buffer in system memory
- Data0 or Data1 PID
- The received TOKEN PID
- How much data was transmitted or received
- Where the buffer resides in system memory

The format for the BD is shown in the following figure.

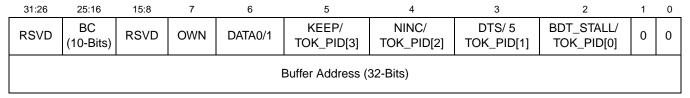


Figure 27-8. Buffer Descriptor Byte Format

Table 27-4. Buffer Descriptor Byte Fields

Field	Description
31 – 26 RSVD	Reserved
25 – 16 BC[9:0]	The Byte Count bits represent the 10-bit Byte Count. The USB-FS SIE changes this field upon the completion of a RX transfer with the byte count of the data received.
15 – 8 RSVD	Reserved

MCF51MM256 Series Devices Reference Manual, Rev. 3

Table 27-4. Buffer Descriptor Byte Fields (Continued)

7 OWN	If OWN=1 USB-FS has exclusive access to the BD. If OWN=0 the microprocessor has exclusive access to the BD. This OWN bit determines who currently owns the buffer. The SIE generally writes a 0 to this bit when it has completed a token, except when KEEP=1. The USB-FS ignores all other fields in the BD when OWN=0. The microprocessor has access to the entire BD when OWN=0. This byte of the BD should always be the last byte the microprocessor updates when it initializes a BD. After the BD has been assigned to the USB-FS, the microprocessor should not change it in any way.
6 DATA0/1	This bit defines if a DATA0 field (DATA0/1=0) or a DATA1 (DATA0/1=1) field was transmitted or received. It is unchanged by the USB-FS.
5 KEEP/ TOK_PID[3]	If KEEP equals 1, after the OWN bit is set it remains owned by the USB-FS forever. KEEP must equal 0 to allow the USB-FS to release the BD when a token has been processed. Typically this bit is set to 1 with ISO endpoints that are feeding a FIFO. The microprocessor is not informed that a token has been processed, the data is simply transferred to or from the FIFO. The NINC bit is normally also set when KEEP=1 to prevent address increment. If KEEP=1 this bit is unchanged by the USB-FS, otherwise bit 3 of the current token PID is written back in to the BD by the USB-FS.
4 NINC/ TOK_PID[2]	The No INCrement bit disables the DMA engine address increment. This forces the DMA engine to read or write from the same address. This is useful for endpoints when data needs to be read from or written to a single location such as a FIFO. Typically this bit is set with the KEEP bit for ISO endpoints that are interfacing to a FIFO. If KEEP=1 this bit is unchanged by the USB-FS, otherwise bit 2 of the current token PID is written back in to the BD by the USB-FS.
3 DTS/ TOK_PID[1]	Setting this bit enables the USB-FS to perform Data Toggle Synchronization. When this bit is 0 no Data Toggle Synchronization is performed. If KEEP=1 this bit is unchanged by the USB-FS, otherwise bit 1 of the current token PID is written back in to the BD by the USB-FS.
2 BDT_STALL TOK_PID[0]	Setting this bit causes the USB-FS to issue a STALL handshake if a token is received by the SIE that would use the BDT in this location. The BDT is not consumed by the SIE (the owns bit remains and the rest of the BDT are unchanged) when a BDT-STALL bit is set. If KEEP=1 this bit is unchanged by the USB-FS, otherwise bit 0 of the current token PID is written back in to the BD by the USB-FS
TOK_PID[n]	Bits [5:2] can also represent the current token PID. The current token PID is written back in to the BD by the USB-FS when a transfer completes. The values written back are the token PID values from the USB specification: 0x1 for an OUT token, 0x9 for and IN token or 0xd for a SETUP token. In host mode this field is used to report the last returned PID or a transfer status indication. The possible values returned are: 0x3 DATA0, 0xb DATA1, 0x2 ACK, 0xe STALL, 0xa NAK, 0x0 Bus Timeout, 0xf Data Error.
1–0 Reserved	Reserved, should read as zeroes
ADDR[31:0]	The Address bits represent the 32 -bit buffer address in system memory. These bits are unchanged by the USB-FS.

27.5.5 USB Transaction

When the USB-FS transmits or receives data, it computes the BDT address using the address generation shown in Table 2. After the BDT has been read and if the OWN bit equals 1, the SIE transfers the data via the DMA to or from the buffer pointed to by the ADDR field of the BD. When the TOKEN is complete, the USB-FS updates the BDT and change the OWN bit to 0 if KEEP is 0. The STAT register is updated and the TOK_DNE interrupt is set. When the microprocessor processes the TOK_DNE interrupt it reads the status register, this gives the microprocessor all the information it needs to process the endpoint. At this point, the microprocessor allocates a new BD so additional USB data can be transmitted or received for that endpoint, and process then the last BD. The following figure shows a time line how a typical USB token would be processed.

27-12 Freescale Semiconductor

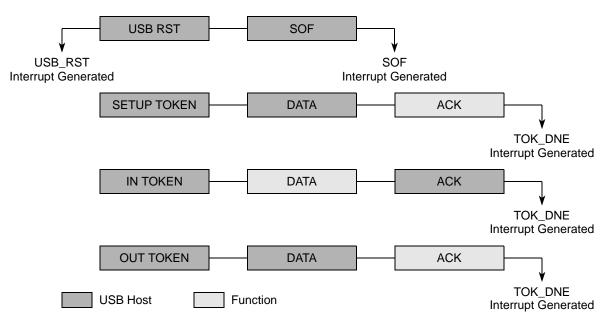


Figure 27-9. USB Token Transaction

The USB has two sources for the DMA overrun error. First, the memory latency on the BVCI initiator interface may be too high and cause the receive FIFO to overflow. This is predominantly a hardware performance issue, usually caused by transient memory access issues. Second, the packet received may be larger than the negotiated *MaxPacket* size. This would be caused by a software bug.

In the first case, the USB responds with a NAK or Bus Timeout (BTO - See bit 4 in Section 27.6.1.11, "Error Interrupt Status Register (ERR_STAT)") as appropriate for the class of transaction. The DMA_ERR bit is set in the ERR_STAT register of the core for host and device modes of operation. Depending on the values of the INT_ENB and ERR_ENB register, the core may assert an interrupt to notify the processor of the DMA error. In device mode, the BDT is not written back nor is the TOK_DNE interrupt triggered because it is assumed that a second attempt is queued and succeed in the future. For host mode, the TOK_DNE interrupt fires and the TOK_PID field of the BDT is 1111 to indicate the DMA latency error. Host mode software can decide to retry or move to another item in its schedule.

In the second case of oversized data packets the USB specification is ambiguous. It assumes correct software drivers on both sides. The overrun is not due to memory latency but due to a lack of space to put the excess data. NAKing the packet may cause another retransmission of the already oversized packet data. In response to oversized packets, the USB core continues ACKing the packet for non-isochronous transfers. The data written to memory is clipped to the MaxPacket size so as not to corrupt system memory. The core asserts the DMA_ERR bit of the ERR_STAT register (which could trigger an interrupt, as above) and a TOK_DNE interrupt fires. The TOK_PID field of the BDT is not 1111 because the DMA_ERR is not due to latency. The packet length field written back to the BDT is the MaxPacket value that represents the length of the clipped data actually written to memory. The software can decide an appropriate course of action from here for future transactions such as stalling the endpoint, canceling the transfer, disabling the endpoint, etc.

27.6 Memory Map/Register Definitions

This section provides the memory map and detailed descriptions of all USB interface registers. The memory map of the USB interface is shown in Table 27-5.

Table 27-5. USB Interface Memory Map

Offset Address	Register	Acronym	Bits
•	USB OTG Registers		•
IPSBAR + 0x1C_0000	Peripheral ID Register	PER_ID	8
IPSBAR + 0x1C_0004	Peripheral ID Complement Register	ID_COMP	8
IPSBAR + 0x1C_0008	Peripheral Revision Register	REV	8
IPSBAR + 0x1C_000C	Peripheral Additional Info Register	ADD_INFO	8
IPSBAR + 0x1C_0010	OTG Interrupt Status Register	OTG_INT_STAT	8
IPSBAR + 0x1C_0014	OTG Interrupt Control Register	OTG_INT_EN	8
IPSBAR + 0x1C_0018	OTG Status Register	OTG_STATUS	8
IPSBAR + 0x1C_001C	OTG Control Register	OTG_CTRL	8
IPSBAR + 0x1C_0080	Interrupt Status Register	INT_STAT	8
IPSBAR + 0x1C_0084	Interrupt Enable Register	INT_ENB	8
IPSBAR + 0x1C_0088	Error Interrupt Status Register	ERR_STAT	8
IPSBAR + 0x1C_008C	Error Interrupt Enable Register	ERR_ENG	8
IPSBAR + 0x1C_0090	Status Register	STAT	8
IPSBAR + 0x1C_0094	Control Register	CTL	8
IPSBAR + 0x1C_0098	Address Register	ADDR	8
IPSBAR + 0x1C_009C	BDT Page Register 1	BDT_PAGE_01	8
IPSBAR + 0x1C_00A0	Frame Number Register Low	FRM_NUML	8
IPSBAR + 0x1C_00A4	Frame Number Register High	FRM_NUMH	8
IPSBAR + 0x1C_00A8	Token Register	TOKEN	8
IPSBAR + 0x1C_00AC	SOF Threshold Register	SOF_THLD	8
IPSBAR + 0x1C_00B0	BDT Page Register 2	BDT_PAGE_02	8
IPSBAR + 0x1C_00B4	BDT Page Register 3	BDT_PAGE_03	8
IPSBAR + 0x1C_00C0	Endpoint Control Register 0	ENDPT0	8
IPSBAR + 0x1C_00C4	Endpoint Control Register 1	ENDPT1	8
IPSBAR + 0x1C_00C8	Endpoint Control Register 2	ENDPT2	8
IPSBAR + 0x1C_00CC	Endpoint Control Register 3	ENDPT3	8
IPSBAR + 0x1C_00D0	Endpoint Control Register 4	ENDPT4	8
IPSBAR + 0x1C_00D4	Endpoint Control Register 5	ENDPT5	8
IPSBAR + 0x1C_00D8	Endpoint Control Register 6	ENDPT6	8
IPSBAR + 0x1C_00DC	Endpoint Control Register 7	ENDPT7	8

27-14 Freescale Semiconductor

Table 27-5. USB Interface Memory Map (Continued)

Offset Address	Register	Acronym	Bits
IPSBAR + 0x1C_00E0	Endpoint Control Register 8	ENDPT8	8
IPSBAR + 0x1C_00E4	Endpoint Control Register 9	ENDPT9	8
IPSBAR + 0x1C_00E8	Endpoint Control Register 10	ENDPT10	8
IPSBAR + 0x1C_00EC	Endpoint Control Register 11	ENDPT11	8
IPSBAR + 0x1C_00F0	Endpoint Control Register 12	ENDPT12	8
IPSBAR + 0x1C_00F4	Endpoint Control Register 13	ENDPT13	8
IPSBAR + 0x1C_00F8	Endpoint Control Register 14	ENDPT14	8
IPSBAR + 0x1C_00FC	Endpoint Control Register 15	ENDPT15	8
IPSBAR + 0x1C_0100	USB Control Register	USB_CTRL	8
IPSBAR + 0x1C_0104	USB OTG Observe Register	USB_OTG_OBSERVE	8
IPSBAR + 0x1C_0108	USB OTG Control Register	USB_OTG_CONTROL	8
IPSBAR + 0x1C_010C	USB Transceiver and Regulator Control Register 0	USBTRC0	8
IPSBAR + 0x1C_0110	OTG Pin Control Register	OTGPIN	8

The following sections provide details about the registers in the USB OTG memory map.

27.6.1 Capability Registers

The capability registers specify the software limits, restrictions, and capabilities of the host/device controller implementation. Most of these registers are defined by the EHCI specification. Registers that are not defined by the EHCI specification are noted in their descriptions.

27.6.1.1 Peripheral ID Register (PER_ID)

The Peripheral ID Register reads back the value of 0x04. This value is defined for the USB Peripheral. Figure 27-10 shows the PER_ID register.

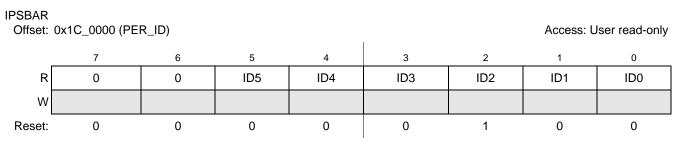


Figure 27-10. Peripheral ID Register (PER_ID)

Table 27-12. PER_ID Field Descriptions

Field	Description
7–6	These bits always read zeros
5–0 ID <i>x</i>	Peripheral identification bits. These bits always read 0x04 (00_0100).

27.6.1.2 Peripheral ID Complement Register (ID_COMP)

The Peripheral ID Complement Register reads back the complement of the Peripheral ID Register. For the USB Peripheral, this is the value 0xFB. Figure 27-11 shows the ID_COMP register.

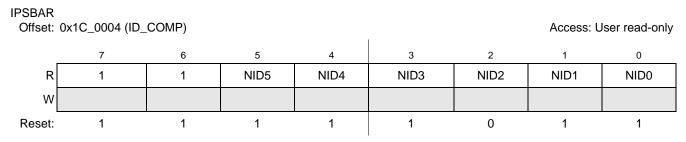


Figure 27-11. Peripheral ID Complement Register

Table 27-13. ID_COMP Field Descriptions

Field	Description
7–6	These bits always read ones
5–0 NID <i>x</i>	Ones complement of peripheral identification bits.

27-16 Freescale Semiconductor

Peripheral Revision Register (REV) 27.6.1.3

This register contains the revision number of the USB Module. Figure 27-12 shows the REV register.

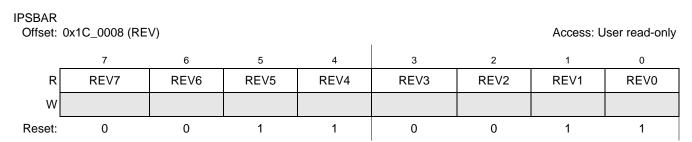


Figure 27-12. Peripheral Revision Register

Table 27-14. REV Field Descriptions

Field	Description
7–0 REV <i>x</i>	REV[7:0] indicate the revision number of the USB Core.

27.6.1.4 Peripheral Additional Info Register (ADD_INFO)

The Peripheral Additional info Register reads back the value of the fixed Interrupt Request Level (IRQ_NUM) along with the Host Enable bit. If set to 1, the Host Enable bit indicates the USB peripheral is operating in host mode. Figure 27-13 shows the ADD INFO register.

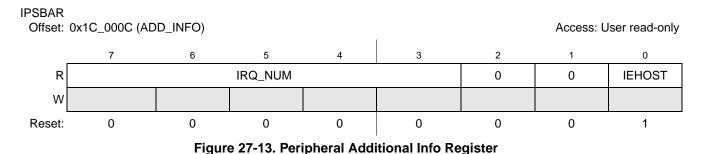


Table 27-15. ADD INFO Field Descriptions

Field	Description
7–3 IRQ_NUM	Assigned Interrupt Request Number.
2–1 Reserved	RESERVED. These bits read back zeros.
0 IEHOST	This bit is set if host mode is enabled.

MCF51MM256 Series Devices Reference Manual, Rev. 3 27-17 Freescale Semiconductor

27.6.1.5 OTG Interrupt Status Register (OTG_INT_STAT)

The OTG Interrupt Status Register records changes of the ID sense and VBUS signals. Software can read this register to determine which event has caused an interrupt. Only bits that have changed since the last software read are set. Writing a one to a bit clears the associated interrupt. Figure 27-14 shows the OTG_INT_STAT register.

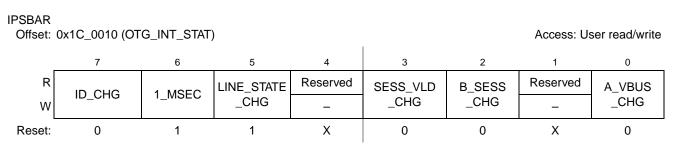


Figure 27-14. OTG Interrupt Status Register

Table 27-16. OTG_INT_STAT Field Descriptions

Field	Description
7 ID_CHG	This bit is set when a change in the ID Signal from the USB connector is sensed.
6 1_MSEC	This bit is set when the 1 millisecond timer expires. This bit stays asserted until cleared by software. The interrupt must be serviced every millisecond to avoid losing 1msec counts.
5 LINE_STAT _CHG	This bit is set when the USB line state changes. The interrupt associated with this bit can be used to detect Reset, Resume, Connect, and Data Line Pulse signals.
4 Reserved	Reserved
3 SESS_VLD _CHG	This bit is set when a change in VBUS is detected indicating a session valid or a session no longer valid
2 B_SESS _CHG	This bit is set when a change in VBUS is detected on a B device.
1 Reserved	Reserved
0 A_VBUS _CHG	This bit is set when a change in VBUS is detected on an A device.

27-18 Freescale Semiconductor

27.6.1.6 OTG Interrupt Control Register (OTG_INT_EN)

The OTG Interrupt Control Register enables the corresponding interrupt status bits defined in the OTG Interrupt Status Register. Figure 27-15 shows the OTG_INT_EN register.

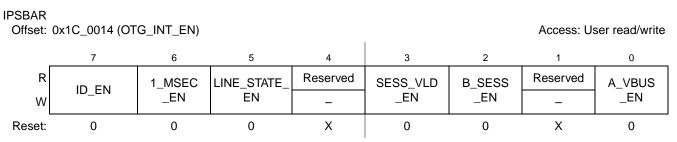


Figure 27-15. OTG Interrupt Control Register

Table 27-17. OTG_INT_EN Field Descriptions

Field	Description
7 ID_EN	ID interrupt enable 0 The ID interrupt is disabled 1 The ID interrupt is enabled
6 1_MSEC_EN	1 millisecond interrupt enable 0 The 1msec timer interrupt is disabled 1 The 1msec timer interrupt is enabled
5 LINE_STATE _EN	Line State change interrupt enable 0 The LINE_STAT_CHG interrupt is disabled 1 The LINE_STAT_CHG interrupt is enabled
4	Reserved.
3 SESS_VLD _EN	Session valid interrupt enable 0 The SESS_VLD_CHG interrupt is disabled 1 The SESS_VLD_CHG interrupt is enabled
2 B_SESS_EN	B Session END interrupt enable 0 The B_SESS_CHG interrupt is disabled 1 The B_SESS_CHG interrupt is enabled
1	Reserved.
0 A_VBUS_EN	A VBUS Valid interrupt enable 0 The A_VBUS_CHG interrupt is disabled 1 The A_VBUS_CHG interrupt is enabled

27.6.1.7 Interrupt Status Register (OTG_STAT)

The Interrupt Status Register displays the actual value from the external comparator outputs of the ID pin and VBUS. Figure 27-16 shows the OTG_STAT register.

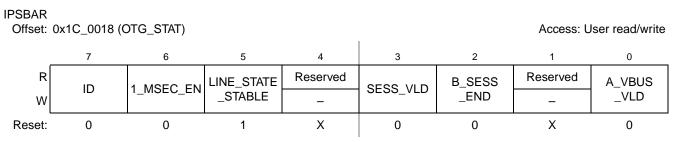


Figure 27-16. Interrupt Status Register

Table 27-18. OTG_STAT Field Descriptions

Field	Description
7 ID	Indicates the current state of the ID pin on the USB connector 0 Indicates a Type A cable has been plugged into the USB connector 1 Indicates no cable is attached or a Type B cable has been plugged into the USB connector
6 1_MSEC_EN	This bit is reserved for the 1msec count, but it is not useful to software.
5 LINE_STATE _STABLE	This bit indicates that the internal signals that control the LINE_STATE_CHG bit (bit 5) of the OTG_INT_STAT register have been stable for at least 1 millisecond. First read the LINE_STATE_CHG bit, and then read this bit. If this bit reads as 1, then the value of LINE_STATE_CHG can be considered stable. 0 The LINE_STAT_CHG bit is not yet stable 1 The LINE_STAT_CHG bit has been debounced and is stable
4	Reserved.
3 SESS_VLD	Session Valid 0 The VBUS voltage is below the B session Valid threshold 1 The VBUS voltage is above the B session Valid threshold
2 B_SESS _END	B Session END 0 The VBUS voltage is above the B session End threshold 1 The VBUS voltage is below the B session End threshold
1	Reserved.
0 A_VBUS _VLD	A VBUS Valid 0 The VBUS voltage is below the A VBUS Valid threshold 1 The VBUS voltage is above the A VBUS Valid threshold

27-20 Freescale Semiconductor

27.6.1.8 OTG Control Register (OTG_CTRL)

The OTG Control Register controls the operation of VBUS and Data Line termination resistors. Figure 27-17 shows the OTG_CTRL register.

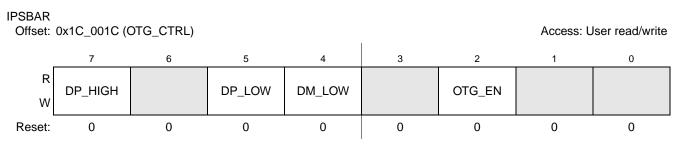


Figure 27-17. OTG Control Register

Table 27-19. OTG_CTRL Field Descriptions

Field	Description
7 DP_HIGH	D+ Data Line pull-up resistor enable 0 D+ pull-up resistor is not enabled 1 D+ pull-up resistor is enabled
6 Reserved	Reserved.
5 DP_LOW	D+ Data Line pull-down resistor enable 0 D+ pull-down resistor is not enabled 1 D+ pull-down resistor is enabled This bit should always be enabled together with bit 4 (DM_LOW)
4 DM_LOW	D- Data Line pull-down resistor enable 0 D- pull-down resistor is not enabled 1 D- pull-down resistor is enabled This bit should always be enabled together with bit 5 (DP_LOW)
3 Reserved	Reserved.
2 OTG_EN	On-The-Go pull-up/pull-down resistor enable 0 If USB_EN is set and HOST_MODE is clear in the Control Register (CTL), then the D+ Data Line pull-up resistors are enabled. If HOST_MODE is set the D+ and D- Data Line pull-down resistors are engaged. 1 The pull-up and pull-down controls in this register are used
1 Reserved	Reserved.
0 Reserved	Reserved.

27.6.1.9 Interrupt Status Register (INT_STAT)

The Interrupt Status Register contains bits for each of the interrupt sources within the USB Module. Each of these bits are qualified with their respective interrupt enable bits (see Section 27.6.1.10, "Interrupt Enable Register (INT_ENB)"). All bits of this register are logically OR'd together along with the OTG Interrupt Status Register (OTG_STAT) to form a single interrupt source for the ColdFire core. After an interrupt bit has been set it may only be cleared by writing a one to the respective interrupt bit. This register contains the value of 0x00 after a reset. Figure 27-18 shows the INT_STAT register.

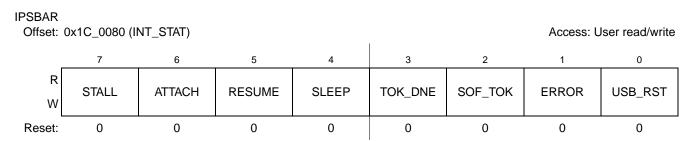


Figure 27-18. Interrupt Status Register

Table 27-20. INT_STAT Field Descriptions

Field	Description
7 STALL	Stall Interrupt In Target mode this bit is asserted when a STALL handshake is sent by the SIE. In Host mode this bit is set when the USB Module detects a STALL acknowledge during the handshake phase of a USB transaction. This interrupt can be use to determine is the last USB transaction was completed successfully or if it stalled.
6 ATTACH	Attach Interrupt This bit is set when the USB Module detects an attach of a USB device. This signal is only valid if HOST_MODE_EN is true. This interrupt signifies that a peripheral is now present and must be configured.
5 RESUME	This bit is set depending upon the DP/DM signals, and can be used to signal remote wake-up signaling on the USB bus. When not in suspend mode this interrupt should be disabled.
4 SLEEP	This bit is set when the USB Module detects a constant idle on the USB bus for 3 milliseconds. The sleep timer is reset by activity on the USB bus.
3 TOK_DNE	This bit is set when the current token being processed has completed. The ColdFire core should immediately read the STAT register to determine the EndPoint and BD used for this token. Clearing this bit (by writing a one) causes the STAT register to be cleared or the STAT holding register to be loaded into the STAT register.
2 SOF_TOK	This bit is set when the USB Module receives a Start Of Frame (SOF) token. In Host mode this bit is set when the SOF threshold is reached, so that software can prepare for the next SOF.
1 ERROR	This bit is set when any of the error conditions within the ERR_STAT register occur. The ColdFire core must then read the ERR_STAT register to determine the source of the error.
0 USB_RST	This bit is set when the USB Module has decoded a valid USB reset. This informs the Microprocessor that it should write 0x00 into the address register and enable endpoint 0. USB_RST is set after a USB reset has been detected for 2.5 microseconds. It is not asserted again until the USB reset condition has been removed and then reasserted.

MCF51MM256 Series Devices Reference Manual, Rev. 3 27-22 Freescale Semiconductor

27.6.1.10 Interrupt Enable Register (INT_ENB)

The Interrupt Enable Register contains enable bits for each of the interrupt sources within the USB Module. Setting any of these bits enables the respective interrupt source in the INT_STAT register. This register contains the value of 0x00 after a reset. Figure 27-19 shows the INT_ENB register.

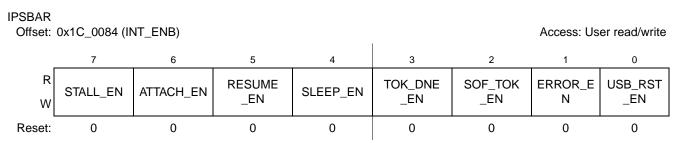


Figure 27-19. Interrupt Enable Register

Table 27-21. INT_ENB Field Descriptions

Field	Description
7 STALL_EN	STALL Interrupt Enable 0 The STALL interrupt is not enabled 1 The STALL interrupt is enabled
6 ATTACH_EN	ATTACH Interrupt Enable 1 The ATTACH interrupt is not enabled 1 The ATTACH interrupt is enabled
5 RESUME_EN	RESUME Interrupt Enable 1 The RESUME interrupt is not enabled 1 The RESUME interrupt is enabled
4 SLEEP_EN	SLEEP Interrupt Enable 0 The SLEEP interrupt is not enabled 1 The SLEEP interrupt is enabled
3 TOK_DNE _EN	TOK_DNE Interrupt Enable 1 The TOK_DNE interrupt is not enabled 1 The TOK_DNE interrupt is enabled
2 SOF_TOK _EN	SOF_TOK Interrupt Enable 1 The SOF_TOK interrupt is not enabled 1 The SOF_TOK interrupt is enabled
1 ERROR_EN	ERROR Interrupt Enable 0 The ERROR interrupt is not enabled 1 The ERROR interrupt is enabled
0 USB_RST _EN	USB_RST Interrupt Enable 0 The USB_RST interrupt is not enabled 1 The USB_RST interrupt is enabled

27.6.1.11 Error Interrupt Status Register (ERR_STAT)

The Error Interrupt Status Register contains enable bits for each of the error sources within the USB Module. Each of these bits are qualified with their respective error enable bits (see Section 27.6.1.12, "Error Interrupt Enable Register (ERR_ENB)"). All bits of this Register are logically OR'd together and the result placed in the ERROR bit of the INT_STAT register. After an interrupt bit has been set it may only be cleared by writing a one to the respective interrupt bit. Each bit is set as soon as the error conditions is detected. Therefore, the interrupt does not typically correspond with the end of a token being processed. This register contains the value of 0x00 after a reset. Figure 27-20 shows the ERR_STAT register.

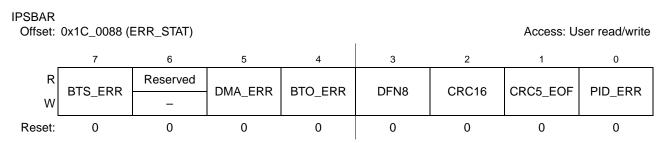


Figure 27-20. Error Interrupt Status Register

Table 27-22. ERR STAT Field Descriptions

Field	Description
7 BTS_ERR	This bit is set when a bit stuff error is detected. If set, the corresponding packet is rejected due to the error.
6	Reserved
5 DMA_ERR	This bit is set if the USB Module has requested a DMA access to read a new BDT but has not been given the bus before it needs to receive or transmit data. If processing a TX transfer this would cause a transmit data underflow condition. If processing a RX transfer this would cause a receive data overflow condition. This interrupt is useful when developing device arbitration hardware for the microprocessor and the USB Module to minimize bus request and bus grant latency. This bit is also set if a data packet to or from the host is larger than the buffer size allocated in the BDT. In this case the data packet is truncated as it is put into buffer memory.
4 BTO_ERR	This bit is set when a bus turnaround timeout error occurs. The USB Module contains a bus turnaround timer that keeps track of the amount of time elapsed between the token and data phases of a SETUP or OUT TOKEN or the data and handshake phases of a IN TOKEN. If more than 16 bit times are counted from the previous EOP before a transition from IDLE, a bus turnaround timeout error occurs.
3 DFN8	This bit is set if the data field received was not 8 bits in length. USB Specification 1.0 requires that data fields be an integral number of bytes. If the data field was not an integral number of bytes, this bit is set.
2 CRC16	This bit is set when a data packet is rejected due to a CRC16 error.
1 CRC5_EOF	This error interrupt has two functions. When the USB Module is operating in peripheral mode (HOST_MODE_EN=0), this interrupt detects CRC5 errors in the token packets generated by the host. If set the token packet was rejected due to a CRC5 error. When the USB Module is operating in host mode (HOST_MODE_EN=1), this interrupt detects End Of Frame (EOF) error conditions. This occurs when the USB Module is transmitting or receiving data and the SOF counter reaches zero. This interrupt is useful when developing USB packet scheduling software to ensure that no USB transactions cross the start of the next frame.
0 PID_ERR	This bit is set when the PID check field fails.

27-24 Freescale Semiconductor

27.6.1.12 Error Interrupt Enable Register (ERR_ENB)

The Error Interrupt Enable Register contains enable bits for each of the error interrupt sources within the USB Module. Setting any of these bits enables the respective interrupt source in the ERR_STAT register. Each bit is set as soon as the error conditions is detected. Therefore, the interrupt does not typically correspond with the end of a token being processed. This register contains the value of 0x00 after a reset. Figure 27-21 shows the ERR_ENB register.

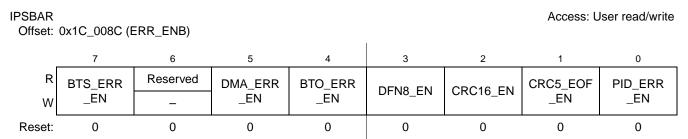


Figure 27-21. Error Interrupt Enable Register

Table 27-23. ERR_ENB Field Descriptions

Field	Description
7 BTS_ERR _EN	BTS_ERR Interrupt Enable 0 The BTS_ERR interrupt is not enabled 1 The BTS_ERR interrupt is enabled
6	Reserved
5 DMA_ERR _EN	DMA_ERR Interrupt Enable 0 The DMA_ERR interrupt is not enabled 1 The DMA_ERR interrupt is enabled
4 BTO_ERR _EN	BTO_ERR Interrupt Enable 0 The BTO_ERR interrupt is not enabled 1 The BTO_ERR interrupt is enabled
3 DFN8_EN	DFN8 Interrupt Enable 0 The DFN8 interrupt is not enabled 1 The DFN8 interrupt is enabled
2 CRC16_EN	CRC16 Interrupt Enable 0 The CRC16 interrupt is not enabled 1 The CRC16 interrupt is enabled
1 CRC5_EOF _EN	CRC5/EOF Interrupt Enable 1 The CRC5/EOF interrupt is not enabled 1 The CRC5/EOF interrupt is enabled
0 PID_ERR _EN	PID_ERR Interrupt Enable 0 The PID_ERR interrupt is not enabled 1 The PID_ERR interrupt is enabled

27.6.1.13 Status Register (STAT)

The Status Register reports the transaction status within the USB Module. When the ColdFire core has received a TOK_DNE interrupt the Status Register should be read to determine the status of the previous endpoint communication. The data in the status register is valid when the TOK_DNE interrupt bit is asserted. The STAT register is actually a read window into a status FIFO maintained by the USB Module. When the USB Module uses a BD, it updates the Status Register. If another USB transaction is performed before the TOK_DNE interrupt is serviced, the USB Module stores the status of the next transaction in the STAT FIFO. Thus the STAT register is actually a four byte FIFO that allows the ColdFire core to process one transaction while the SIE is processing the next transaction. Clearing the TOK_DNE bit in the INT_STAT register causes the SIE to update the STAT register with the contents of the next STAT value. If the data in the STAT holding register is valid, the SIE immediately reasserts to TOK_DNE interrupt. Figure 27-22 shows the STAT register.

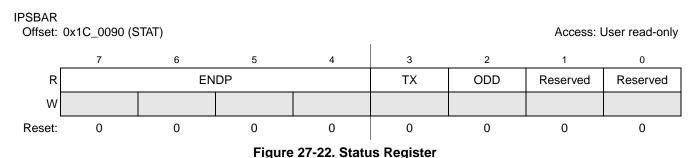


Table 27-24. STAT Field Descriptions

Field	Description
7 - 5 ENDP[3:0]	This four-bit field encodes the endpoint address that received or transmitted the previous token. This allows the ColdFire core to determine which BDT entry was updated by the last USB transaction.
3 TX	Transmit Indicator 0 The most recent transaction was a Receive operation 1 The most recent transaction was a Transmit operation
2 ODD	this bit is set if the last Buffer Descriptor updated was in the odd bank of the BDT.
1 - 0	Reserved

27.6.1.14 Control Register (CTL)

The Control Register provides various control and configuration information for the USB Module. Figure 27-23 shows the CTL register.

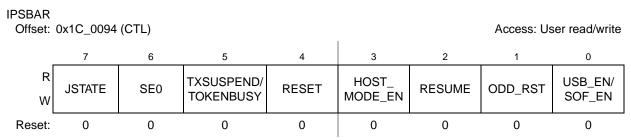
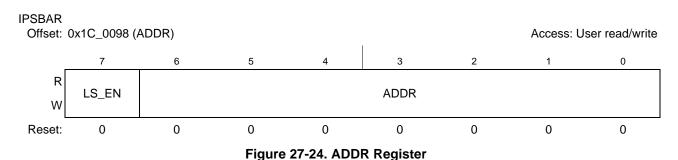


Figure 27-23. Control Register


Table 27-25. CTL Field Descriptions

Field	Description
7 JSTATE	Live USB differential receiver JSTATE signal. The polarity of this signal is affected by the current state of LS_EN (See)
6 SE0	Live USB Single Ended Zero signal
5 TXSUSPEND/ TOKENBUSY	When the USB Module is in Host mode TOKEN_BUSY is set when the USB Module is busy executing a USB token and no more token commands should be written to the Token Register. Software should check this bit before writing any tokens to the Token Register to ensure that token commands are not lost. In Target mode TXD_SUSPEND is set when the SIE has disabled packet transmission and reception. Clearing this bit allows the SIE to continue token processing. This bit is set by the SIE when a Setup Token is received allowing software to dequeue any pending packet transactions in the BDT before resuming token processing.
4 RESET	Setting this bit enables the USB Module to generate USB reset signaling. This allows the USB Module to reset USB peripherals. This control signal is only valid in Host mode (HOST_MODE_EN=1). Software must set RESET to 1 for the required amount of time and then clear it to 0 to end reset signaling. For more information on RESET signaling see Section 7.1.4.3 of the USB specification version 1.0.
3 HOST_ MODE_EN	When set to 1, this bit enables the USB Module to operate in Host mode. In host mode, the USB module performs USB transactions under the programmed control of the host processor.
2 RESUME	When set to 1 this bit enables the USB Module to execute resume signaling. This allows the USB Module to perform remote wake-up. Software must set RESUME to 1 for the required amount of time and then clear it to 0. If the HOST_MODE_EN bit is set, the USB module appends a Low Speed End of Packet to the Resume signaling when the RESUME bit is cleared. For more information on RESUME signaling see Section 7.1.4.5 of the USB specification version 1.0.
1 ODD_RST	Setting this bit to 1 resets all the BDT ODD ping/pong bits to 0, which then specifies the EVEN BDT bank.
0 USB_EN/ SOF_EN	USB Enable 0 The USB Module is disabled 1 The USB Module is enabled. Setting this bit causes the SIE to reset all of its ODD bits to the BDTs. Therefore, setting this bit resets much of the logic in the SIE. When host mode is enabled, clearing this bit causes the SIE to stop sending SOF tokens.

27.6.1.15 Address Register (ADDR)

The Address Register holds the unique USB address that the USB Module decodes when in Peripheral mode (HOST_MODE_EN=0). When operating in Host mode (HOST_MODE_EN=1) the USB Module transmits this address with a TOKEN packet. This enables the USB Module to uniquely address an USB peripheral. In either mode, the USB_EN bit within the control register must be set. The Address Register is reset to 0x00 after the reset input becomes active or the USB Module decodes a USB reset signal. This action initializes the Address Register to decode address 0x00 as required by the USB specification. Figure 27-24 shows the ADDR register.

Table 27-26. ADDR Field Descriptions

Field	Description
7 LS_EN	Low Speed Enable bit. This bit informs the USB Module that the next token command written to the token register must be performed at low speed. This enables the USB Module to perform the necessary preamble required for low-speed data transmissions.
6–0 ADDR	USB address. This 7-bit value defines the USB address that the USB Module decodes in peripheral mode, or transmit when in host mode.

27.6.1.16 BDT Page Register 1 (BDT_PAGE_01)

The Buffer Descriptor Table Page Register 1 contains an 8-bit value used to compute the address where the current Buffer Descriptor Table (BDT) resides in system memory. Figure 27-25 shows the BDT Page Register 1.

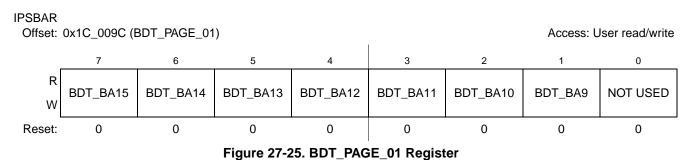


Table 27-27. BDT_PAGE_01 Field Descriptions

Field	Description
7 – 1 BDT_ BA[15:8]	This 7 bit field provides address bits 15 through 9 of the BDT base address, which defines where the Buffer Descriptor Table resides in system memory.
0 NOT USED	This bit is always zero. The 32-bit BDT Base Address is always aligned on 512 byte boundaries in memory.

27.6.1.17 Frame Number Register Low/High (FRM_NUML, FRM_NUMH)

The Frame Number Register contains an 11-bit value used to compute the address where the current Buffer Descriptor Table (BDT) resides in system memory. Figure 27-26 shows the FRM_NUML Register.

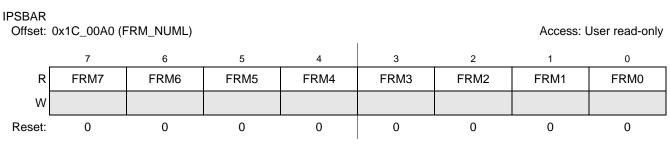


Figure 27-26. FRM_NUML Register

Table 27-28. FRM_NUML Field Descriptions

Field	Description
7–0 FRM[7:0]	These 8 bits represent the low-order bits of the11-bit Frame Number

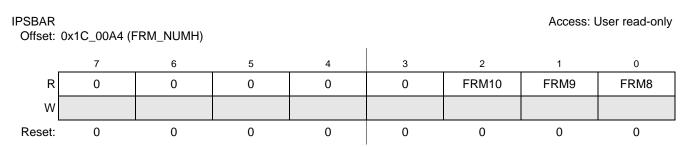
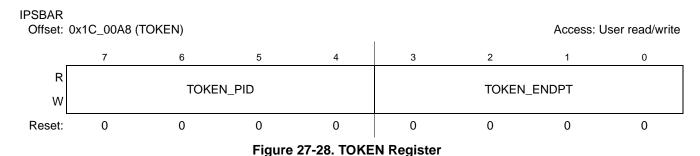


Figure 27-27. FRM_NUMH Register


Table 27-29. FRM_NUMH Field Descriptions

Field	Description
2–0 FRM[10:8]	These 3 bits represent the high-order bits of the11-bit Frame Number
7–3 NOT USED	This bits always read zero.

27.6.1.18 Token Register (TOKEN)

The Token Register is used to perform USB transactions when in host mode (HOST_MODE_EN=1). When the ColdFire core processor wishes to execute a USB transaction to a peripheral, it writes the TOKEN type and endpoint to this register. After this register has been written, the USB module begins the specified USB transaction to the address contained in the address register. The ColdFire core should always check that the TOKEN_BUSY bit in the control register is not set before performing a write to the Token Register. This ensures token commands are not overwritten before they can be executed. The address register and endpoint control register 0 are also used when performing a token command and therefore must also be written before the Token Register. The address register is used to correctly select the USB peripheral address transmitted by the token command. The endpoint control register determines the handshake and retry policies used during the transfer. Figure 27-28 shows the TOKEN Register.

Table 27-30. TOKEN Field Descriptions

Field	Description		
7 – 4 TOKEN _ENDPT	This 4 bit field holds the Endpoint address for the token command. The four bit value written must be a valid endpoint.		
3 – 0 TOKEN_PID	This 4-bit field contains the token type executed by the USB Module. Valid tokens are: TOKEN_PID=0001 OUT Token USB Module performs an OUT (TX) transaction TOKEN_PID=1001 IN Token USB Module performs an In (RX) transaction TOKEN_PID=1101 SETUP Token USB Module performs a SETUP (TX) transaction		

27.6.1.19 SOF Threshold Register (SOF_THLD)

The SOF Threshold Register is used only in Hosts mode (HOST_MODE_EN=1). When in Host mode, the 14-bit SOF counter counts the interval between SOF frames. The SOF must be transmitted every 1msec so the SOF counter is loaded with a value of 12000. When the SOF counter reaches zero, a Start Of Frame (SOF) token is transmitted. The SOF threshold register is used to program the number of USB byte times *before* the SOF to stop initiating token packet transactions. This register must be set to a value that ensures that other packets are not actively being transmitted when the SOF time counts to zero. When the SOF counter reaches the threshold value, no more tokens are transmitted until after the SOF ha been transmitted. The value programmed into the threshold register must reserve enough time to ensure the worst case transaction completes. In general the worst case transaction is a IN token followed by a data packet from the target followed by the response from the host. The actual time required is a function of the maximum packet size on the bus. Typical values for the SOF threshold are: 64-byte packets=74; 32-byte packets=42; 16-byte packets=26; 8-byte packets=18. Figure 27-29 shows the SOF_THLD Register.

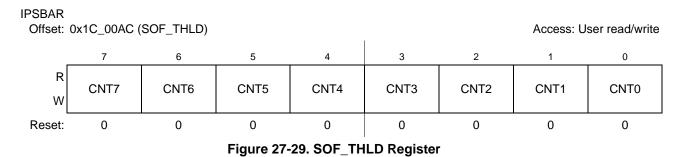


Table 27-31. SOF_THLD Field Descriptions

Field	Description
7 – 0 CNT[7:0]	This 8 bit field represents the SOF count threshold in byte times.

27.6.1.20 BDT Page Register 2 (BDT_PAGE_02)

The Buffer Descriptor Table Page Register 2 contains an 8-bit value used to compute the address where the current Buffer Descriptor Table (BDT) resides in system memory. See Section 27.6.1.16, "BDT Page Register 1 (BDT_PAGE_01)" for more information on the format of the Buffer Descriptor Table. Figure 27-30 shows the BDT Page Register 2.

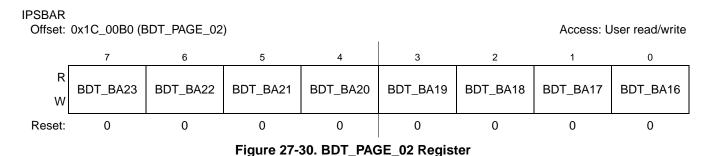


Table 27-32. BDT PAGE 02 Field Descriptions

Field	Description
7 – 0 BDT_ BA[23:16]	This 8 bit field provides address bits 23 through 16 of the BDT base address, which defines where the Buffer Descriptor Table resides in system memory.

27.6.1.21 BDT Page Register 3 (BDT_PAGE_03)

The Buffer Descriptor Table Page Register 3 contains an 8-bit value used to compute the address where the current Buffer Descriptor Table (BDT) resides in system memory. See Section 27.6.1.16, "BDT Page Register 1 (BDT_PAGE_01)" for more information on the format of the Buffer Descriptor Table. Figure 27-31 shows the BDT Page Register 3.

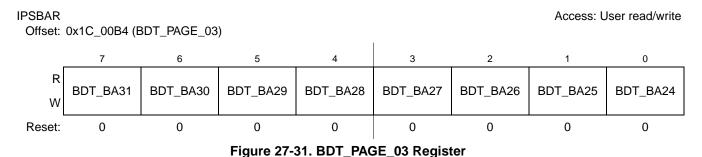


Table 27-33. BDT_PAGE_03 Field Descriptions

Field	Description
7 – 0 BDT_ BA[31:24]	This 8 bit field provides address bits 31through 24 of the BDT base address, which defines where the Buffer Descriptor Table resides in system memory.

27.6.1.22 Endpoint Control Registers 0 – 15 (ENDPT0–15)

The Endpoint Control Registers contain the endpoint control bits for each of the 16 endpoints available within the USB Module for a decoded address. The format for these registers is shown in the following figure. Endpoint 0 (ENDPT0) is associated with control pipe 0, which is required for all USB functions. Therefore, after a USB_RST interrupt occurs the ColdFire core should set the ENDPT0 register to contain 0x0D.

In Host mode ENDPT0 is used to determine the handshake, retry and low speed characteristics of the host transfer. For Host mode control, bulk and interrupt transfers the EP_HSHK bit should be set to 1. Fort Isochronous transfers it should be set to 0. Common values to use for ENDPT0 in host mode are 0x4D for Control, Bulk, and Interrupt transfers, and 0x4C for Isochronous transfers.

Figure 27-32 shows the Endpoint Control Registers.

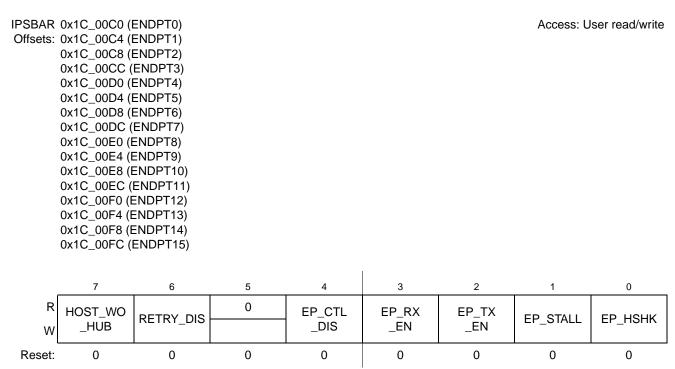


Figure 27-32. Endpoint Control Registers

Table 27-34. Endpoint Control Registers Field Descriptions

Field	Description
7 HOST_WO _HUB	This is a Host mode only bit and is only present in the control register for endpoint 0 (ENDPT0). When set this bit allows the host to communicate to a directly connected low speed device. When cleared, the host produces the PRE_PID then switch to low speed signaling when sending a token to a low speed device as required to communicate with a low speed device through a hub.
6 RETRY_DIS	This is a Host mode only bit and is only present in the control register for endpoint 0 (ENDPT0). When set this bit causes the host to not retry NAK'ed (Negative Acknowledgement) transactions. When a transaction is NAKed, the BDT PID field is updated with the NAK PID, and the TOKEN_DNE interrupt is set. When this bit is cleared NAKed transactions is retried in hardware. This bit must be set when the host is attempting to poll an interrupt endpoint.

MCF51MM256 Series Devices Reference Manual, Rev. 3

27-34 Freescale Semiconductor

Table 27-34. Endpoint Control Registers Field Descriptions (Continued)

Field	Description		
5	Reserved		
4 EP_CTL_DIS	This bit, when set, disables control (SETUP) transfers. When cleared, control transfers are enabled. This applies if and only if the EP_RX_EN and EP_TX_EN bits are also set. SeeTable 27-35		
3 EP_RX_EN	This bit, when set, enables the endpoint for RX transfers. SeeTable 27-35		
2 EP_TX_EN	This bit, when set, enables the endpoint for TX transfers. SeeTable 27-35		
1 EP_STALL	When set this bit indicates that the endpoint is called. This bit has priority over all other control bits in the EndPoint Enable Register, but it is only valid if EP_TX_EN=1 or EP_RX_EN=1. Any access to this endpoint causes the USB Module to return a STALL handshake. After an endpoint is stalled it requires intervention from the Host Controller.		
0 EP_HSHK	When set this bet enables an endpoint to perform handshaking during a transaction to this endpoint. This bit is generally set unless the endpoint is Isochronous.		

Table 27-35. Endpoint Direction and Control

EPL_CTL_DIS	EP_RX_EN	EP_TX_EN	Endpoint Enable / Direction Control
Х	0	0	Disable Endpoint
Х	0	1	Enable Endpoint for TX transfers only
Х	1	0	Enable Endpoint for RX transfers only
1	1	1	Enable Endpoint for RX and TX transfers
0	1	1	Enable Endpoint for RX and TX as well as control (SETUP) transfers

27.6.1.23 USB Control Register (USB_CTRL)

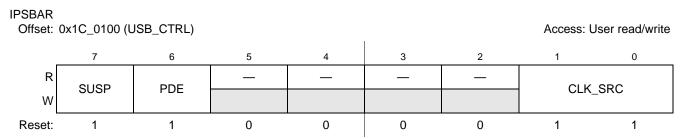


Figure 27-33. USB Control Register

Table 27-36. USB_CTRL Field Descriptions

Field	Description			
7 SUSP	Places the USB transceiver into the suspend state. USB transceiver is not in suspend state. USB transceiver is in suspend state.			
6 PDE	Enables the non-functional weak pulldowns on the USB transceiver 0 Weak pulldowns are disabled on D+ and D- 1 Weak pulldowns are enabled on D+ and D-			
5 –2	Reserved			
1-0 CLK_SRC	Determines the clock source for the USB 48 MHz clock 00 USB_ALT_CLK pin (External clock that can feed in from PTG0) 01 - 11 System clock source (MCGPLLSCLK)			

27.6.1.24 USB OTG Observe Register (USB_OTG_OBSERVE)

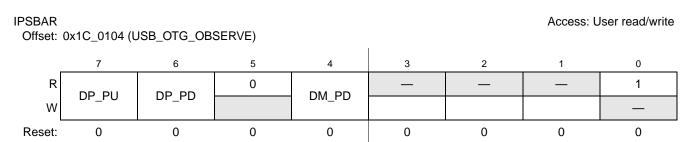


Figure 27-34. USB OTG Observe Register

Table 27-37. USB_OTG_OBSERVE Field Descriptions

Field	Description
7 DP_PU	Provides observability of the D+ Pull Up signal output from the USB OTG module. This bit is useful when interfacing to an external OTG control module via a serial interface. 0 D+ pullup disabled. 1 D+ pullup enabled.
6 DP_PD	Provides observability of the D+ Pull Down signal output from the USB OTG module. Useful when interfacing to an external OTG control module via a serial interface. 0 D+ pulldown disabled. 1 D+ pulldown enabled.
5 Reserved	Reserved. Should always read zero.
4 DM_PD	Provides observability of the D+ Pull Down signal output from the USB OTG module. Useful when interfacing to an external OTG control module via a serial interface. 0 D+ pulldown disabled. 1 D+ pulldown enabled.
3-0 Reserved	Reserved

27.6.1.25 USB OTG Control Register (USB_OTG_CONTROL)

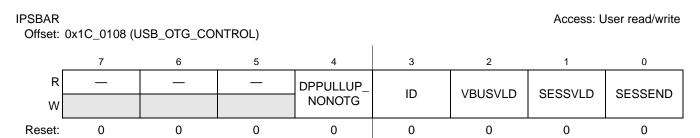


Figure 27-35. USB OTG Control Register

Table 27-38. USB_OTG_CONTROL Field Descriptions

Field	Description		
7 — 5	Reserved		
4 DPPULLUP_ NONOTG	Provides control of the DP PULLUP in the USB OTG module, if USB is configured in non-OTG device mode. 1 DP Pull up in non-OTG device mode is enabled.		
3 ID	Provides control of the USB ID signal into the USB OTG module if a pin has not been configured for this function. Useful when interfacing to an external OTG control module via a serial interface. 0 USB ID input is negated. 1 USB ID input is asserted.		
2 VBUSVLD	Provides control of the VBUS Valid signal into the USB OTG module if a pin has not been configured for this function. Useful when interfacing to an external OTG control module via a serial interface. 0 VBUS Valid input is negated. 1 VBUS Valid input is asserted.		

Table 27-38. USB_OTG_CONTROL Field Descriptions

Field	Description
1 SESSVLD	Provides observability of the Session Valid signal output from the USB OTG module. Useful when interfacing to an external OTG control module via a serial interface. O Session Valid input is negated. Session Valid input is asserted.
0 SESSEND	Provides observability of the Session End signal output from the USB OTG module. Useful when interfacing to an external OTG control module via a serial interface. O Session End input is negated. Session End input is asserted.

27.6.1.26 USB Transceiver and Regulator Control Register 0 (USBTRC0)

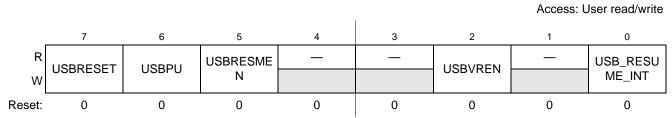


Figure 27-36. USB Transceiver and Regulator Control Register 0 (USBTRC0)

Table 27-39. USBTRC0 Field Descriptions

Field	Description
7 USBRESET	USB reset bit. This bit generates a hard reset to the USB module, including USB PHY and USB VREG enables. After this bit is set and the reset occurs, this bit is automatically cleared. Normal USB module operation Returns the USB module to its reset state
6 USBPU	Pull-up source bit. This bit determines the source of the pull-up resistor on the USBDP line. 0 Internal USBDP pull-up resistor is disabled; the application can use an external pull-up resistor 1 Internal USBDP pull-up resistor is enabled
5 USBRESME N	USB resume event enable bit. This bit, when set, allows the USB module to send an asynchronous wakeup event to the MCU upon detection of resume signaling on the USB bus. The MCU then re-enables clocks to the USB module. It is used for low-power suspend mode when USB module clocks are stopped. This bit should be set only after SLEEPF=1. Async wakeup only works in device mode. 0 USB asynchronous wakeup from suspend mode disabled 1 USB asynchronous wakeup from suspend mode enabled
4–3	Reserved, should be cleared.
2 USBVREN	USB voltage regulator enable bit. This bit enables the on-chip 3.3V USB voltage regulator. 0 On-chip USB voltage regulator is disabled (OFF MODE) 1 On-chip USB voltage regulator is enabled for Active or Standby mode
1	Reserved
0 USB_RESUM E_INT	USB Asynchronous Interrupt — This bit's value is interpreted as follows: 0 No interrupt was generated 1 Interrupt was generated because of the USB asynchronous interrupt

MCF51MM256 Series Devices Reference Manual, Rev. 3

27-38 Freescale Semiconductor

27.6.1.27 OTG Pin Control Register (OTGPIN)

Access: User read/write

Figure 27-37. OTG Pin Control Register (OTGPIN)

Table 27-40. OTGPIN Field Descriptions

Field	Description
7	Reserved, should be cleared.
6 USBID	USB_ID pin enable bit. This bit allows the USB_ID input pin to be provided externally. The USB_ID pin directly affects the ID bit in the OTG_STAT register. 0 USB_ID pin is not connected externally 1 USB_ID is connected to PTF0. The normal port logic and RGPIO functions are disabled.
5 DPDOWN	DPDOWN pin enable bit. This bit allows the DP_DOWN output pin to be provided externally, allowing users to connect a pull-down resistor externally to the D- signal. The DP_DOWN pin works in conjunction with the DP_LOW bit of the OTG_CTRL register. Read Section 27.7.1, "Configuration of External Pull-up/Pull-down for USB," to configure the external pull-up/pull-down. 0 DP_DOWN pin is not connected externally 1 DP_DOWN is connected to PTG3/PTF1. The normal port logic and RGPIO functions are disabled.
4 DMDOWN	DMDOWN pin enable bit. This bit allows the DM_DOWN output pin to be provided externally, allowing users to connect a pull-down resistor externally to the D- signal. The DM_DOWN pin works in conjunction with the DM_LOW bit of the OTG_CTRL register. Read Section 27.7.1, "Configuration of External Pull-up/Pull-down for USB," to configure the external pull-up/pull-down. 0 DM_DOWN pin is not connected externally 1 DM_DOWN is connected to PTG2/PTF2. The normal port logic and RGPIO functions are disabled.
3 PULLUP	PULLUP pin enable bit. The USB_PULLUP pin is an output pin from the USB module. It works in conjunction with the USBPU bit in the USBCTRC0 regsiter. If USBPU is 0 then no internal pull-up resistor is deployed on the D+ signal line. Setting the DP_HI bit in the OTGCTRL register outputs the 3.3V VREG voltage (if enabled) to the USB_PULLUP pin. If DP_HI bit is 0 then USB_PULLUP is tri-stated/high impedance. Read Section 27.7.1, "Configuration of External Pull-up/Pull-down for USB," to configure the external pull-up/pull-down. 0 USB_PULLUP output is connected externally 1 USB_PULLUP output is connected to PTD3/PTD7. This allows the DP_HI bit to control the removal/attaching of an external pull-up resistor. The normal port logic and RGPIO functions are disabled.
2 VBUSVLD	VBUS valid pin enable bit. The VBUS_VLD pin is an input pin to the USB module that works in conjunction with the VBUD_VLD bit in the OTG_STAT register. 0 VBUS_VLD pin is not connected externally 1 VBUS_VLD pin is connected to PTE7. The normal port logic and RGPIO functions are disabled.

USB On-the-GO (USBOTG)

Table 27-40. OTGPIN Field Descriptions (Continued)

Field	Description
1 SESSEND	Session end pin enable bit. The SESS_END pin is an input pin to the USB module that works in conjunction with the SESS_END bit in the OTG_STAT register. 0 SESS_END pin is not connected externally) 1 SESS_END pin is connected to PTG1/PTE6. The normal port logic and RGPIO functions are disabled.
0 SESSVLD	Session valid pin enable bit. The SESS_VLD pin is an input pin to the USB module that works in conjunction with the SESS_VLD bit in the OTG_STAT register. 0 SESS_VLD pin is not connected externally 1 SESS_VLD pin is connected to PTG4/PTE5. The normal port logic and RGPIO functions are disabled.

27.7 OTG and Host Mode Operation

The Host Mode logic allows devices such as digital cameras and palmtop computers to function as a USB Host Controller. The OTG logic adds an interface to allow the OTG Host Negotiation and Session Request Protocols (HNP and SRP) to be implemented in software. Host Mode allows a peripheral such as a digital camera to be connected directly to a USB compliant printer. Digital photos can then be easily printed without having to upload them to a PC. In the palmtop computer application, a USB compliant keyboard/mouse can be connected to the palmtop computer with the obvious advantages of easier interaction.

Host mode is intended for use in handheld-portable devices to allow easy connection to simple HID class devices such as printers and keyboards. It is NOT intended to perform the functions of a full OHCI or UHCI compatible host controller found on PC motherboards. The USB-FS is not supported by Windows 98 as a USB host controller. Host mode allows bulk, Isochronous, interrupt and control transfers. Bulk data transfers are performed at nearly the full USB bus bandwidth. Support is provided for ISO transfers, but the number of ISO streams that can be practically supported is affected by the interrupt latency of the processor servicing the token during interrupts from the SIE. Custom drivers must be written to support Host mode operation.

Setting the HOST_MODE_EN bit in the CTL register enables host Mode. The USB-FS core can only operate as a peripheral device or in Host Mode. It cannot operate in both modes simultaneously. When HOST MODE is enabled, only endpoint zero is used. All other endpoints should be disabled by software.

27.7.1 Configuration of External Pull-up/Pull-down for USB

The OTG_CTL, CTL, and USB_OTG_CONTROL register bit values control the external pull-up and pull-down for the USB controller.

To configure pull-down on the DM line from the USB controller in OTG mode, set these bits:

- OTG_CTL [OTG_EN] = 1
- OTG_CTL [DM_LOW] = 1

To configure pull-down on the DM line from the USB controller in host mode, set these bits:

• OTG_CTL [OTG_EN] = 0

• CTL [Host_Mode_en] = 1

After the USB controller generates the pull-down on the DM line, use the configuration explained in Table 27-41 to route the pull-down to the external pin.

Table 27-41.	DM Line	Pull-down	Configuration
--------------	---------	-----------	---------------

DMDOWN (OTGPIN)	Pull Down on DM from USB Controller	Description
0	х	USB_DM_DOWN stays as normal I/O. The DM line has no internal pull-down connected. Additionally, you can use this configuration to provide a tri-state on the pin when the DM line uses an external pull-down resistor. Configure the pin as input with pull-up disabled in order to get a tri-state on the pin.
1	0	USB_DM_DOWN becomes an external pull-down control (USB_DM_DOWN should output Vdd). The DM line has no internal pull-down connected.
1	1	USB_DM_DOWN becomes an external pull-down control (USB_DM_DOWN should output Vss). The DM line has no internal pull-down connected.

To configure pull-down on the DP line from the USB controller in OTG mode, set these bits:

- OTG_CTL [OTG_EN] = 1
- OTG_CTL [DP_LOW] = 1

To configure pull-down on the DP line from the USB controller in host mode, set these bits:

- OTG_CTL [OTG_EN] = 0
- CTL [Host_Mode_en] = 1

After the USB controller generates the pull-down on the DP line, use the configuration explained in Table 27-42 to route the pull-down to the external pin.

Table 27-42. DP Line Pull-down Configuration

DPDOWN (OTGPIN)	Pull Down on DP from USB Controller	Description
0	х	USB_DP_DOWN stays as normal I/O. The DP line has no internal pull-down connected. Additionally, you can use this configuration to provide a tri-state on the pin when the DP line uses an external pull-down resistor. Configure the pin as input with pull-up disabled in order to get a tri-state on the pin.
1	0	USB_DP_DOWN becomes an external pull-down control (USB_DP_DOWN should output Vdd). The DP line has no internal pull-down connected.
1	1	USB_DP_DOWN becomes an external pull-down control (USB_DP_DOWN should output Vss). The DP line has no internal pull-down connected.

To configure pull-up on the DP line from the USB controller in OTG mode, set these bits:

- OTG_CTL [OTG_EN] = 1
- OTG_CTL [DP_HIGH] = 1

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor 27-41

USB On-the-GO (USBOTG)

To configure pull-up on the DP line from the USB controller in device mode, set these bits:

- USB_OTG_CONTROL [DPPULLUP_NONOTG] = 1
- CTL [USB EN] = 1
- OTG_CTL [OTG_EN] = 0

After the USB controller generates the pull-up on the DP line, use the configuration explained in Table 27-43 to route the pull-up to the internal transceiver or the external pin.

PULLUP (OTGPIN)	USBPU (USBTRC0)	Pull Up on DP from USB Controller	Description
0	0	0	USB_PULLUP(D+) stays as normal I/O. The DP line has no internal pull-up connected. Additionally, you can use this configuration to provide a tri-state on the pin when the DP line uses an external pull-up resistor. Configure the pin as input with pull-up disabled in order to get a tri-state on the pin.
0	1	1	USB_PULLUP(D+) stays as normal I/O. The DP line has an internal pull-up connected
1	0	0	USB_PULLUP(D+) becomes an external pull-up control (USB_PULLUP(D+) should output Vss). The DP line has no internal pull-up connected.
1	0	1	USB_PULLUP(D+) becomes an external pull up-control (USB_PULLUP(D+) should output Vdd). The DP line has no internal pull-up connected.

Table 27-43. DP Line Pull-up Configuration

27.8 Host Mode Operation Examples

The following sections illustrate the steps required to perform USB host functions using the USB-FS core. The following sections are useful to understand the interaction of the hardware and the software at a detailed level, but an understanding of the interactions at this level is not required to write host applications using the API software.

To enable host mode and discover a connected device:

- 1. Enable Host Mode (CTL[HOST_MODE_EN]=1). Pull down resistors enabled, pull-up disabled. SOF generation begins. SOF counter loaded with 12,000. Eliminate noise on the USB by disabling Start of Frame packet generation by writing the USB enable bit to 0 (CTL[USB_EN]=0).
- 2. Enable the ATTACH interrupt (INT ENB[ATTACH]=1).
- 3. Wait for ATTACH interrupt (INT_STAT[ATTACH]). Signaled by USB Target pull-up resistor changing the state of DPLUS or DMINUS from 0 to 1 (SE0 to J or K state).
- 4. Check the state of the JSTATE and SE0 bits in the control register. If the JSTATE bit is 0 then the connecting device is low speed. If the connecting device is low speed then set the low speed bit in the address registers (ADDR[LS_EN]=1) and the host the host without hub bit in endpoint 0 register control (EP_CTL0[HOST_WO_HUB]=1).
- 5. Enable RESET (CTL[RESET]=1) for 10 ms
- 6. Enable SOF packet to keep the connected device from going to suspend (CTL[USB_EN=1])

27-42 Freescale Semiconductor

7. Start enumeration by sending a sequence of Chapter 9, device frame work packets to the default control pipe of the connected device.

To complete a control transaction to a connected device:

- 1. Complete all steps discover a connected device
- 2. Set up the endpoint control register for bidirectional control transfers $EP_CTL0[4:0] = 0x0d$.
- 3. Place a copy of the device framework setup command in a memory buffer. See Chapter 9 of the USB 2.0 specification [2] for information on the device framework command set.
- 4. Initialize current (even or odd) TX EP0 BDT to transfer the 8 bytes of command data for a device framework command (i.e. a GET DEVICE DESCRIPTOR).
 - Set the BDT command word to 0x00080080 Byte count to 8, own bit to 1
 - Set the BDT buffer address field to the start address of the 8 byte command buffer
- 5. Set the USB device address of the target device in the address register (ADDR[6:0]). After the USB bus reset, the device USB address is zero. It is set to some other value (usually 1) by the Set Address device framework command.
- 6. Write the token register with a SETUP to Endpoint 0 the target device default control pipe (TOKEN=0xD0). This initiates a setup token on the bus followed by a data packet. The device handshake is returned in the BDT PID field after the packets complete. When the BDT is written a token done (INT_STAT[TOK_DNE]) interrupt is asserted. This completes the setup phase of the setup transaction as referenced in chapter 9 of the USB specification.
- 7. To initiate the data phase of the setup transaction (i.e., get the data for the GET DEVICE descriptor command) set up a buffer in memory for the data to be transferred.
- 8. Initialize the current (even or odd) TX EP0 BDT to transfer the data.
 - Set the BDT command word to 0x004000C0 Byte count to the length of the data buffer in this case 64, own bit to 1, Data toggle to Data1.
 - Set the BDT buffer address field to the start address of the data buffer
- 9. Write the token register with a IN or OUT token to Endpoint 0 the target device default control pipe, an IN token for a GET DEVICE DESCRIPTOR command (TOKEN=0x90). This initiates an IN token on the bus followed by a data packet from the device to the host. When the data packet completes the BDT is written and a token done (INT_STAT[TOK_DNE]) interrupt is asserted. For control transfers with a single packet data phase this completes the data phase of the setup transaction as referenced in chapter 9 of the USB specification.
- 10. To initiate the Status phase of the setup transaction set up a buffer in memory to receive or send the zero length status phase data packet.
- 11. Initialize the current (even or odd) TX EPO BDT to transfer the status data.
 - Set the BDT command word to 0x00000080 Byte count to the length of the data buffer in this case 0, own bit to 1, Data toggle to Data0.
 - Set the BDT buffer address field to the start address of the data buffer
- 12. Write the token register with a IN or OUT token to Endpoint 0 the target device default control pipe, an OUT token for a GET DEVICE DESCRIPTOR command (TOKEN=0x10). This initiates an OUT token on the bus followed by a zero length data packet from the host to the device. When

Freescale Semiconductor 27-43

USB On-the-GO (USBOTG)

the data packet completes the BDT is written with the handshake form the device and a token done (INT_STAT[TOK_DNE]) interrupt is asserted. This completes the data phase of the setup transaction as referenced in chapter 9 of the USB specification.

To send a Full speed bulk data transfer to a target device:

- 1. Complete all steps discover a connected device and to configure a connected device. Write the ADDR register with the address of the target device. Typically, there is only one other device on the USB bus in host mode so it is expected that the address is 0x01 and should remain constant.
- 2. Write the ENDPT0 to 0x1D register to enable transmit and receive transfers with handshaking enabled.
- 3. Setup the Even TX EP0 BDT to transfer up to 64 bytes.
- 4. Set the USB device address of the target device in the address register (ADDR[6:0]).
- 5. Write the TOKEN register with an OUT token to the desired endpoint. The write to this register triggers the USB-FS transmit state machines to begin transmitting the TOKEN and the data.
- 6. Setup the Odd TX EP0 BDT to transfer up to 64 bytes.
- 7. Write the TOKEN register with an OUT token as in step 4. Two Tokens can be queued at a time to allow the packets to be double buffered to achieve maximum throughput.
- 8. Wait for the TOK_DNE interrupt. This indicates one of the BDTs has been released back to the microprocessor and that the transfer has completed. If the target device asserts NAKs, the USB-FS continues to retry the transfer indefinitely without processor intervention unless the RETRY_DIS retry disable bit is set in the EP0 control register. If the retry disable bit is set, the handshake (ACK, NAK, STALL, or ERROR (0xf)) is returned in the BDT PID field. If a stall interrupt occurs, the pending packet must be dequeued and the error condition in the target device cleared. If a RESET interrupt occurs (SE0 for more than 2.5us), the target has detached.
- 9. After the TOK_DNE interrupt occurs, the BDTs can be examined and the next data packet queued by returning to step 2.

27.9 On-The-Go Operation

The USB-OTG core provides sensors and controls to enable On-The-Go (OTG) operation. These sensors are used by the OTG API software to implement the Host Negotiation Protocol (HNP) and Session Request Protocol (SRP). API calls are provided to give access the OTG protocol control signals, and include the OTG capabilities in the device application. The following state machines show the OTG operations involved with HNP and SRP protocols from either end of the USB cable.

27.9.1 OTG Dual Role A Device Operation

A device is considered the A device because of the type of cable attached. If the USB Type A connector or the USB Type Mini A connector is plugged into the device, he is considered the A device.

A dual role A device operates as the following flow diagram and state description table illustrates.

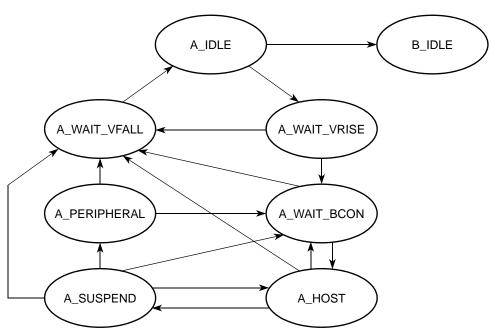


Figure 27-38. Dual Role A Device Flow Diagram

Table 27-44. State Descriptions for Figure 27-38

State	Action	Response
A_IDLE	If ID Interrupt. The cable has been un-plugged or a Type B cable has been attached. The device now acts as a Type B device.	Go to B_IDLE
	If the A application wants to use the bus or if the B device is doing an SRP as indicated by an A_SESS_VLD Interrupt or Attach or Port Status Change Interrupt check data line for 5 –10 msec pulsing.	Go to A_WAIT_VRISE Turn on DRV_VBUS
A_WAIT_VRISE	If ID Interrupt or if A_VBUS_VLD is false after 100 msec The cable has been changed or the A device cannot support the current required from the B device.	Go to A_WAIT_VFALL Turn off DRV_VBUS
	If A_VBUS_VLD interrupt	Go to A_WAIT_BCON
A_WAIT_BCON	After 200 msec without Attach or ID Interrupt. (This could wait forever if desired.)	Go to A_WAIT_FALL Turn off DRV_VBUS
	A_VBUS_VLD Interrupt and B device attaches	Go to A_HOST Turn on Host Mode
A_HOST	Enumerate Device determine OTG Support.	
	If A_VBUS_VLD/ Interrupt or A device is done and doesn't think he wants to do something soon or the B device disconnects	Go to A_WAIT_VFALL Turn off Host Mode Turn off DRV_VBUS
	If the A device is finished with session or if the A device wants to allow the B device to take bus.	Go to A_SUSPEND
	ID Interrupt or the B device disconnects	Go to A_WAIT_BCON

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor 27-45

USB On-the-GO (USBOTG)

State	Action	Response
A_SUSPEND	If ID Interrupt, or if 150 msec B disconnect timeout (This timeout value could be longer) or if A_VBUS_VLD\ Interrupt	Go to A_WAIT_VFALL Turn off DRV_VBUS
	If HNP enabled, and B disconnects in 150 msec then B device is becoming the host.	Go to A_PERIPHERAL Turn off Host Mode
	If A wants to start another session	Go to A_HOST
A_PERIPHERAL	If ID Interrupt or if A_VBUS_VLD interrupt	Go to A_WAIT_VFALL Turn off DRV_VBUS.
	If 3 –200 msec of Bus Idle	Go to A_WAIT_BCON Turn on Host Mode
A_WAIT_VFALL	If ID Interrupt or (A_SESS_VLD/ & b_conn/)	Go to A_IDLE

27.9.2 OTG Dual Role B Device Operation

A device is considered a B device if it connected to the bus with a USB Type B cable or a USB Type Mini B cable.

A dual role B device operates as the following flow diagram and state description table illustrates.

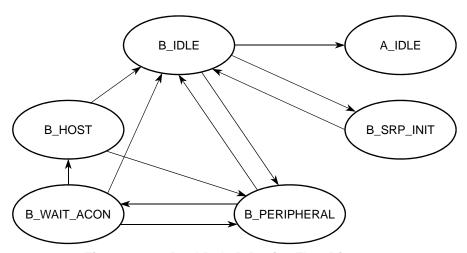


Figure 27-39. Dual Role B Device Flow Diagram

Table 27-45. State Descriptions for Figure 27-39

State	Action	Response
B_IDLE	If ID\ Interrupt. A Type A cable has been plugged in and the device should now respond as a Type A device.	Go to A_IDLE
	If B_SESS_VLD Interrupt. The A device has turned on VBUS and begins a session.	Go to B_PERIPHERAL Turn on DP_HIGH
	If B application wants the bus and Bus is Idle for 2 ms and the B_SESS_END bit is set, the B device can perform an SRP.	Go to B_SRP_INIT Pulse CHRG_VBUS Pulse DP_HIGH 5-10 ms

MCF51MM256 Series Devices Reference Manual, Rev. 3

27-46 Freescale Semiconductor

State	Action	Response
B_SRP_INIT	If ID\ Interrupt or SRP Done (SRP must be done in less than 100 msecs.)	Go to B_IDLE
B_PERIPHERAL	If HNP enabled and the bus is suspended and B wants the bus, the B device can become the host.	Go to B_WAIT_ACON Turn off DP_HIGH
B_WAIT_ACON	If A connects, an attach interrupt is received	Go to B_HOST Turn on Host Mode
	If ID\ Interrupt or B_SESS_VLD/ Interrupt If the cable changes or if VBUS goes away, the host doesn't support us. Go to B_IDLE	Go to B_IDLE
	If 3.125 ms expires or if a Resume occurs	Go to B_PERIPHERAL
B_HOST	If ID\ Interrupt or B_SESS_VLD\ Interrupt If the cable changes or if VBUS goes away, the host doesn't support us.	Go to B_IDLE
	If B application is done or A disconnects	Go to B_PERIPHERAL

27.9.3 **Power**

The USB-FS core is a fully synchronous static design. The power used by the design is dependant on the application usage of the core. Applications that transfer more data or cause a greater number of packets to be sent consumes a greater amount of power.

Because the design is synchronous and static, reducing the transitions on the clock net may conserve power. This may be done in the following ways.

The first is to reduce the clock frequency to the USB module. The clock frequency may not be reduced below the minimum recommended operating frequency of the USB module without first disabling the USB operation and disconnecting (via software disconnect) the USB module from the USB bus.

Alternately, the clock may be shut off to the core to conserve power. Again, this may only be done after the USB operations on the bus have been disabled and the device has been disconnected from the USB.

27.9.4 **USB Suspend State**

USB bus powered devices are required to respond to a 3ms lack of activity on the USB bus by going into a suspend state. Software is notified of the suspend condition via the transition in the port status and control register. Optionally, an interrupt can be generated that is controlled by the interrupt enable register. In the suspend state, a USB device has a maximum USB bus power budget of 500uA. To achieve that level of power conservation, most of the device circuits need to be switched off. When the clock is disabled to the USB-FScore all functions are disabled, but all operational states are retained. The transceiver VP and VM signals can be used to construct a circuit able to detect the resume signaling on the bus and restore the clocks to the rest of the circuit when the USB host takes the bus out of the suspend state.

MCF51MM256 Series Devices Reference Manual, Rev. 3 Freescale Semiconductor 27-47

USB On-the-GO (USBOTG)

Chapter 28 Voltage Reference Module (S08VREFV1)

28.1 Introduction

The Voltage Reference is intended to supply an accurate voltage output that is trimmable by an 8-bit register in 0.5 mV steps. A nominal trim value to achieve the specified VREF voltage is automatically loaded upon a reset into the VREF Trim Register. The voltage reference can be used to provide a reference voltage to external peripherals or as a reference to analog peripherals such as the ADC or ACMP.

Figure 28 shows the block diagram with the VREF highlighted.

Voltage Reference Module (S08VREFV1)

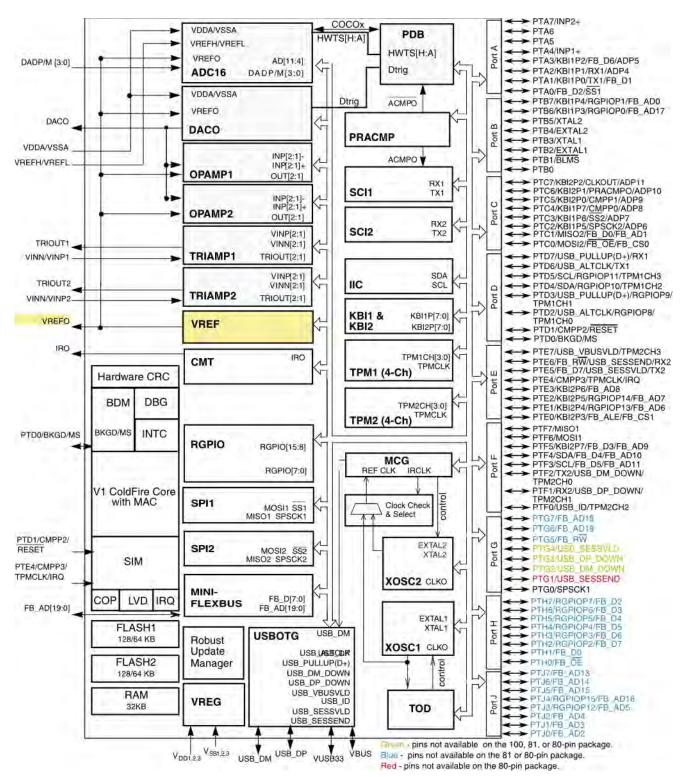


Figure 28-1. Block Diagram with VREF Module Highlighted

28-2 Freescale Semiconductor

28.1.1 VREF Configuration Information

This device uses the VREF module to provide the bandgap signal. The bandgap signal is provided to the following periperhals:

- ADC
- DAC
- OPAMP
- TRIAMP
- ACMP

28.1.2 VREF Clock Gating

The bus clock to the VREF can be gated on and off using the VREF bit in SCGC1. These bits are set after any reset which enables the bus clock to this module. To conserve power, these bits can be cleared to disable the clock to this module when not in use. See Section 5.6, "Peripheral Clock Gating," for details.

28.1.3 Overview

The Voltage Reference optimizes the existing bandgap and bandgap buffer system. Unity gain amplifiers ease the design and keep power consumption low. The 8-bit trim register is user accessible so that the voltage reference can be trimmed in application.

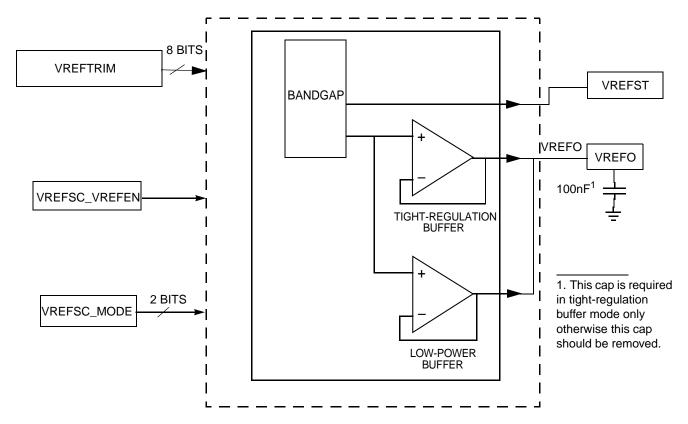


Figure 28-2. Voltage Reference Block Diagram

The voltage reference contains trim resolution of 0.5mV per step. The buffer has modes with improved high-current swing output. In addition, a low-power buffer mode is available for use with ADCs or DACs. The voltage reference can be output on a dedicated output pin¹.

28.1.4 Features

The Voltage Reference module has the following features:

- Programmable trim register with 0.5mV steps, automatically loaded with factory trimmed value upon reset
- Programmable mode selection:
 - Off
 - Bandgap out (or stabilization delay)
 - Low-power buffer mode
 - Tight-regulation buffer mode
- 1.15 V output at room temperature²
- Dedicated output pin VREFO

28-4 Freescale Semiconductor

^{1.} In Tight-Regulation buffer mode, a 100nF capacitor is required to be connected between the VREFO pad and the ground.

^{2.} Please refer to datasheet for details.

28.1.5 Modes of Operation

The Voltage Reference continues normal operation in Run, Wait, LPRun, and LPWait modes. The Voltage Reference module can be enabled to operate in STOP3 mode.

28.1.6 External Signal Description

Table 28-1 shows the Voltage Reference signals properties.

Table 28-1. Signal Properties

Name	Function	I/O	Reset	Pull Up
VREFO	Internally generated voltage reference output	0	-	1

28.2 Memory Map and Register Definition

28.2.1 VREF Trim Register (VREFTRM)

The VREFTRM register contains eight bits that contain the trim data for the Voltage Reference as described in Table 28-2.

Register address: Base + 0x00

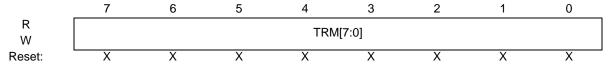


Figure 28-3. VREF Trim Register (VREFTRM)

Table 28-2. VREFTRM Register Field Descriptions

Field	Description
7:0 TRM[7:0]	Trim Bits 7:0 These bits change the resulting VREF output by ± 0.5 mV for each step.

Table 28-3. VREFTRM Register Settings

TRM7	TRM6	TRM5	TRM4	TRM3	TRM2	TRM1	TRM0	VREF (mV)
1	0	0	0	0	0	0	0	max
1	0	0	0	0	0	0	1	max-0.5
1	0	0	0	0	0	1	0	max-1.0
1	0	0	0	0	0	1	1	max-1.5
1								
1	1	1	1	1	1	0	0	mid+1.5
1	1	1	1	1	1	0	1	mid+1.0

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor 28-5

Voltage Reference Module (S08VREFV1)

Table 28-3. VREFTRM Register Settings (Continued)

TRM7	TRM6	TRM5	TRM4	TRM3	TRM2	TRM1	TRM0	VREF (mV)
1	1	1	1	1	1	1	0	mid+0.5
1	1	1	1	1	1	1	1	mid
0	0	0	0	0	0	0	0	mid-0.5
0	0	0	0	0	0	0	1	mid-1.0
0	0	0	0	0	0	1	0	mid-1.5
0	0	0	0	0	0	1	1	mid-2.0
0								
0	1	1	1	1	1	0	0	min+1.5
0	1	1	1	1	1	0	1	min+1.0
0	1	1	1	1	1	1	0	min+0.5
0	1	1	1	1	1	1	1	min

28.2.2 VREF Status and Control Register (VREFSC)

The VREF status and control register contains the control bits used to enable the internal voltage reference and select the buffer mode to be used.

Register address: Base + 0x01

Figure 28-4. Voltage Reference Control Register (VREFSC)

Table 28-4. VREFSC Register Field Descriptions

Field	Description
7 VREFEN	Internal Voltage Reference Enable — This bit is used to enable the Voltage Reference module. 0 the Voltage Reference module is disabled 1 the Voltage Reference module is enabled
2 VREFST	Internal Voltage Reference Stable — This bit indicates that the Voltage Reference module has completed its startup and stabilization. 0 Voltage Reference module is disabled or not stable 1 Voltage Reference module is stable
1:0 MODE[1:0]	Mode selection — These bits are used to select the modes of operation for the Voltage Reference module. 00 Bandgap on only, for stabilization and startup 01 Low-power buffer enabled 10 Tight-regulation buffer enabled 11 RESERVED

28-6 Freescale Semiconductor

28.3 Functional Description

The Voltage Reference is a bandgap buffer system. Unity gain amplifiers are used.

The Voltage Reference can be used in two main cases. It can be used as a reference to analog peripherals such as an ADC channel or analog comparator input. For this case, the low-power buffer can be used. When the tight-regulation buffer is enabled, VREFO can be used both internally and externally.

Table 28-5 shows all possible functional configurations of the Voltage Reference.

VREFEN MODE[1:0] Configuration **Functionality** Voltage Reference Disabled Off Χ Voltage Reference Enabled, Bandgap on Startup and Standby 1 00 Voltage Reference Enabled, Low-Power Can be used for internal peripherals only and 1 01 buffer on VREFO pin should not be loaded Voltage Reference Enabled, Can be used both internally and externally. A 1 10 Tight-Regulation buffer on 100nF capacitor is required on VREFO and 10mA max drive strength is allowed. 1 11 Voltage Reference Disabled RESERVED

Table 28-5. Voltage Reference Functional Configurations

28.3.1 Voltage Reference Disabled, VREFEN=0

When VREFEN=0, the Voltage Reference is disabled, all bandgap and buffers are disabled. The Voltage Reference is in off mode.

28.3.2 Voltage Reference Enabled, VREFEN=1

When VREFEN=1, the Voltage Reference is enabled, and different modes should be set by the Mode[1:0] bits.

28.3.2.1 Mode[1:0]=00

The internal bandgap is on to generate an accurate voltage output that can be trimmed by the bits TRM[7:0] in 0.5 mV steps. The bandgap requires some time for startup and stabilization. The VREFST bit can be monitored to determine if the stabilization and startup is complete.

Both low-power buffer and tight-regulation buffer are disabled in this mode, and there is no buffered voltage output. The Voltage Reference is in standby mode.

28.3.2.2 Mode[1:0]=01

The internal bandgap is on.

The low-power buffer is enabled to generate a buffered internal voltage. It can be used as a reference to internal analog peripherals such as an ADC channel or analog comparator input.

Voltage Reference Module (S08VREFV1)

28.3.2.3 Mode[1:0]=10

The internal bandgap is on.

The tight-regulation buffer is enabled to generate a buffered voltage to VREFO with load regulation less than 100 uV/mA. A 100nF capacitor is required on VREFO pin and it is allowed to drive 10 mA maximum current. VREFO can be used internally and/or externally.

28.3.2.4 Mode[1:0]=11

RESERVED

28.4 Initialization Information

The Voltage Reference requires some time for startup and stabilization. Once the VREFEN bit is set, the VREFST bit can be monitored to determine if the stabilization and startup is complete.

When the Voltage Reference is already enabled and stabilized, changing the Mode selection bits (MODE[1:0]) will not clear the VREFST bit, but there will be some startup time before the output voltage is stabilized when the low-power buffer or tight-regulation buffer is enabled, and there will be some setting time when a step change of the load current occurs.

Chapter 29 Version 1 ColdFire Debug (CF1_DEBUG)

29.1 Introduction

This chapter describes the capabilities defined by the Version 1 ColdFire debug architecture. The Version 1 ColdFire core supports BDM functionality using the HCS08's single-pin interface. The traditional 3-pin full-duplex ColdFire BDM serial communication protocol based on 17-bit data packets is replaced with the HCS08 debug protocol where all communication is based on an 8-bit data packet using a single package pin (BKGD).

An on-chip trace buffer allows a stream of compressed processor execution status packets to be recorded for subsequent retrieval to provide program (and partial data) trace capabilities.

The following sections in this chapter provide details on the BKGD pin, the background debug serial interface controller (BDC), a standard 6-pin BDM connector, the BDM command set as well as real-time debug and trace capabilities. The V1 definition supports revision B+ (DEBUG_B+) of the ColdFire debug architecture.

A simplified block diagram of the V1 core including the processor and debug module is shown in Figure 29-1.

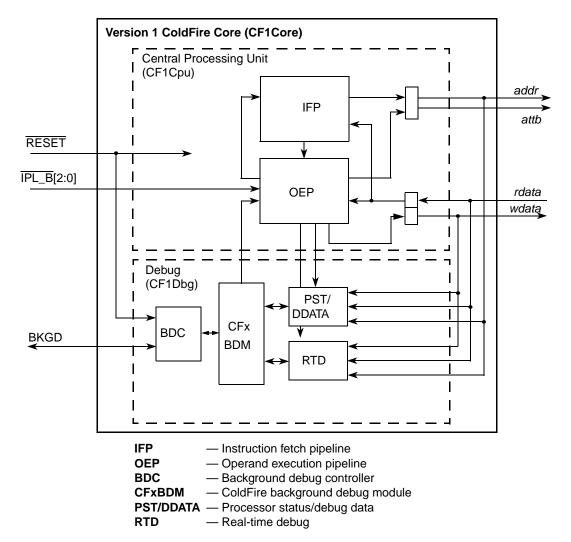


Figure 29-1. Simplified Version 1 ColdFire Core Block Diagram

29.1.1 Overview

Debug support is divided into three areas:

- Background debug mode (BDM)—Provides low-level debugging in the ColdFire processor core. In BDM, the processor core is halted and a variety of commands can be sent to the processor to access memory, registers, and peripherals. The external emulator uses a one-pin serial communication protocol. See Section 29.4.1, "Background Debug Mode (BDM)".
- Real-time debug support—Use of the full BDM command set requires the processor to be halted, which many real-time embedded applications cannot support. The core includes a variety of internal breakpoint registers which can be configured to trigger and generate a special interrupt. The resulting debug interrupt lets real-time systems execute a unique service routine that can quickly save the contents of key registers and variables and return the system to normal operation. The external development system can then access the saved data, because the hardware supports

- concurrent operation of the processor and BDM-initiated memory commands. In addition, the option is provided to allow interrupts to occur. See Section 29.4.2, "Real-Time Debug Support".
- Program trace support—The ability to determine the dynamic execution path through an
 application is fundamental for debugging. The V1 solution implements a trace buffer that records
 processor execution status and data, which can be subsequently accessed by the external emulator
 system to provide program (and optional partial data) trace information. See Section 29.4.3, "Trace
 Support".

There are two fields in debug registers which provide revision information: the hardware revision level in CSR and the 1-pin debug hardware revision level in CSR2. Table 29-1 summarizes the various debug revisions.

Revision	CSR[HRL]	CSR2[D1HRL]	Enhancements
А	0000	N/A	Initial ColdFire debug definition
В	0001	N/A	BDM command execution does not affect hardware breakpoint logic Added BDM address attribute register (BAAR) BKPT configurable interrupt (CSR[BKD]) Level 1 and level 2 triggers on OR condition, in addition to AND SYNC_PC command to display the processor's current PC
B+	1001	N/A	Added 3 PC breakpoint registers PBR1–3
CF1_B+	1001	0001	Converted to HCS08 1-pin BDM serial interface Added PST compression and on-chip PST/DDATA buffer for program trace

Table 29-1. Debug Revision Summary

29.1.2 Features

The Version 1 ColdFire debug definition supports the following features:

- Classic ColdFire DEBUG_B+ functionality mapped into the single-pin BDM interface
- Real time debug support, with 6 hardware breakpoints (4 PC, 1 address pair and 1 data) that can be configured into a 1- or 2-level trigger with a programmable response (processor halt or interrupt)
- Capture of compressed processor status and debug data into on-chip trace buffer provides program (and optional slave bus data) trace capabilities
- On-chip trace buffer provides programmable start/stop recording conditions plus support for obtrusive or PC-profiling modes
- Debug resources are accessible via single-pin BDM interface or the privileged WDEBUG instruction from the core

29.1.3 Modes of Operations

V1 ColdFire devices typically implement a number of modes of operation, including run, wait, and stop modes. Additionally, the operation of the core's debug module is highly dependent on a number of chip configurations which determine its operating state.

When operating in secure mode, as defined by a 2-bit field in the flash memory examined at reset, BDM access to debug resources is extremely restricted. It is possible to tell that the device has been secured, and

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor 29-3

to clear security, which involves mass erasing the on-chip flash memory. No other debug access is allowed. Secure mode can be used in conjunction with each of the wait and stop low-power modes.

If the BDM interface is not enabled, access to the debug resources is limited in the same manner as a secure device.

If the device is not secure and the BDM interface is enabled (XCSR[ENBDM] is set), the device is operating in debug mode and additional resources are available via the BDM interface. In this mode, the status of the processor (running, stopped, or halted) determines which BDM commands may be used.

Debug mode functions are managed through the background debug controller (BDC) in the Version 1 ColdFire core. The BDC provides the means for analyzing MCU operation during software development.

BDM commands can be classified into three types as shown in Table 29-2.

Command Type	Flash Secure?	BDM?	Core Status	Command Set	
Always-available	Secure or Unsecure	Enabled or Disabled	_	Read/write access to XCSR[31–24], CSR2[31–24], CSR3[31–24]	
Non-intrusive	Unsecure	Enabled	Run, Halt	Memory access Memory access with status Debug register access BACKGROUND	
Active background	Unsecure	Enabled	Halt	 Read or write CPU registers (also available in stop mode) Single-step the application Exit halt mode to return to the application program (GO) 	

Table 29-2. BDM Command Types

For more information on these three BDM command classifications, see Section 29.4.1.5, "BDM Command Set Summary."

The core's halt mode is entered in a number of ways:

- The BKGD pin is low during POR
- The BKGD pin is low immediately after a BDM-initiated force reset (see CSR2[BDFR] in Section 29.3.3, "Configuration/Status Register 2 (CSR2)," for details)
- A background debug force reset occurs (CSR2[BDFR] is set) and CSR2[BFHBR] is set
- A computer operating properly reset occurs and CSR2[COPHR] is set
- An illegal operand reset occurs and CSR2[IOPHR] is set
- An illegal address reset occurs and CSR2[IADHR] is set
- A BACKGROUND command is received through the BKGD pin. If necessary, this wakes the device from STOP/WAIT modes.
- A properly-enabled (XCSR[ENBDM] is set) HALT instruction is executed
- Encountering a BDM breakpoint and the trigger response is programmed to generate a halt
- Reaching a PSTB trace buffer full condition when operating in an obtrusive recording mode (CSR2[PSTBRM] is set to 01 or 11)

MCF51MM256 Series Devices Reference Manual, Rev. 3

29-4 Freescale Semiconductor

While in halt mode, the core waits for serial background commands rather than executing instructions from the application program.

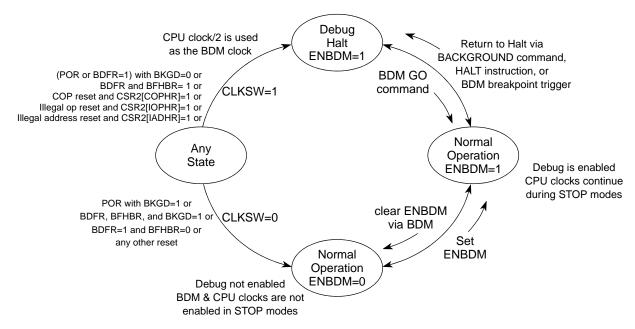


Figure 29-2. Debug Modes State Transition Diagram

Figure 29-2 contains a simplified view of the V1 ColdFire debug mode states. The XCSR[CLKSW] bit controls the BDC clock source. When CLKSW is set, the BDC serial clock frequency is half the CPU clock. When CLKSW is cleared, the BDC serial clock is supplied from an alternate clock source.

The ENBDM bit determines if the device can be placed in halt mode, if the core and BDC serial clocks continue to run in STOP modes, and if the regulator can be placed into standby mode. Again, if booting to halt mode, XCSR[ENBDM, CLKSW] are automatically set.

If ENBDM is cleared, the ColdFire core treats the HALT instruction as an illegal instruction and generates a reset (if CPUCR[IRD] is cleared) or an exception (if CPUCR[IRD] is set) if execution is attempted.

If XCSR[ENBDM] is set, the device can be restarted from STOP/WAIT via the BDM interface.

29.2 External Signal Descriptions

Table 29-3 describes the debug module's 1-pin external signal (BKGD). A standard 6-pin debug connector is shown in Section 29.4.4, "Freescale-Recommended BDM Pinout".

Table 29-3. Debug Module Signals

Signal	Description
Background Debug (BKGD)	Single-wire background debug interface pin. The primary function of this pin is for bidirectional serial communication of background debug mode commands and data. During reset, this pin selects between starting in active background (halt) mode or starting the application program. This pin also requests a timed sync response pulse to allow a host development tool to determine the correct clock frequency for background debug serial communications.

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor 29-5

29.3 Memory Map/Register Definition

In addition to the BDM commands that provide access to the processor's registers and the memory subsystem, the debug module contains a number of registers. Most of these registers (all except the PST/DDATA trace buffer) are also accessible (write-only) from the processor's supervisor programming model by executing the WDEBUG instruction. Thus, the breakpoint hardware in the debug module can be read (certain registers) or written by the external development system using the serial debug interface or written by the operating system running on the processor core. Software is responsible for guaranteeing that accesses to these resources are serialized and logically consistent. The hardware provides a locking mechanism in the CSR to allow the external development system to disable any attempted writes by the processor to the breakpoint registers (setting CSR[IPW]). BDM commands must not be issued during the processor's execution of the WDEBUG instruction to configure debug module registers or the resulting behavior is undefined.

These registers, shown in Table 29-4, are treated as 32-bit quantities regardless of the number of implemented bits and unimplemented bits are reserved and must be cleared. These registers are also accessed through the BDM port by the commands, WRITE_DREG and READ_DREG, described in Section 29.4.1.5, "BDM Command Set Summary." These commands contain a 5-bit field, DRc, that specifies the register, as shown in Table 29-4.

Table 29-4. Debug Module Memory Map

DRc	Register Name	Width (bits)	Access	Reset Value	Section/ Page
0x00	Configuration/status register (CSR)	32	R/W (BDM), W (CPU)	0x0090_0000	29.3.1/29-7
0x01	Extended Configuration/Status Register (XCSR)	32	R/W ¹ (BDM), W (CPU)	0x0000_0000	29.3.2/29-10
0x02	Configuration/Status Register 2 (CSR2)	32	R/W ¹ (BDM), W (CPU)	See Section	29.3.3/29-13
0x03	Configuration/Status Register 3 (CSR3)	32 ²	R/W ¹ (BDM), W (CPU)	0x0000_0000	29.3.4/29-16
0x05	BDM address attribute register (BAAR)	32 ²	W	0x0000_0005	29.3.5/29-17
0x06	Address attribute trigger register (AATR)	32 ²	W	0x0000_0005	29.3.6/29-18
0x07	Trigger definition register (TDR)	32	W	0x0000_0000	29.3.7/29-19
0x08	PC breakpoint register 0 (PBR0)	32	W	Undefined, Unaffected	29.3.8/29-22
0x09	PC breakpoint mask register (PBMR)	32	W	Undefined, Unaffected	29.3.8/29-22
0x0C	Address breakpoint high register (ABHR)	32	W	Undefined, Unaffected	29.3.9/29-24
0x0D	Address breakpoint low register (ABLR)	32	W	0x0000_0000	29.3.9/29-24
0x0E	Data breakpoint register (DBR)	32	W	0x0000_0000	29.3.10/29-25
0x0F	Data breakpoint mask register (DBMR)	32	W	0x0000_0000	29.3.10/29-25

29-6 Freescale Semiconductor

	_	-	- '	•	
DRc	Register Name	Width (bits)	Access	Reset Value	Section/ Page
0x18	PC breakpoint register 1 (PBR1)	32	W	PBR1[0] = 0	29.3.8/29-22
0x1A	PC breakpoint register 2 (PBR2)	32	W	PBR2[0] = 0	29.3.8/29-22
0x1B	PC breakpoint register 3 (PBR3)	32	W	PBR3[0] = 0	29.3.8/29-22
_	PST Trace Buffer n (PSTB n); $n = 0$ –11 (0xB)	32	R (BDM) ³	Undefined,	29.4.1.5.12/29-46

Table 29-4. Debug Module Memory Map (Continued)

NOTE

Debug control registers can be written by the external development system or the CPU through the WDEBUG instruction. These control registers are write-only from the programming model and they can be written through the BDM port using the WRITE_DREG command. In addition, the four configuration/status registers (CSR, XCSR, CSR2, CSR3) can be read through the BDM port using the READ_DREG command.

The ColdFire debug architecture supports a number of hardware breakpoint registers that can be configured into single- or double-level triggers based on the PC or operand address ranges with an optional inclusion of specific data values. The triggers can be configured to halt the processor or generate a debug interrupt exception. Additionally, these same breakpoint registers can be used to specify start/stop conditions for recording in the PST trace buffer.

The core includes four PC breakpoint triggers and a set of operand address breakpoint triggers with two independent address registers (to allow specification of a range) and an optional data breakpoint with masking capabilities. Core breakpoint triggers are accessible through the serial BDM interface or written through the supervisor programming model using the WDEBUG instruction.

29.3.1 Configuration/Status Register (CSR)

CSR defines the debug configuration for the processor and memory subsystem and contains status information from the breakpoint logic. CSR is accessible from the programming model using the WDEBUG instruction and through the BDM port using the READ_DREG and WRITE_DREG commands.

The most significant bytes of the XCSR, CSR2, and CSR3 registers support special control functions and are writeable via BDM using the WRITE_XCSR_BYTE, WRITE_CSR2_BYTE, and WRITE_CSR3_BYTE commands. They can be read from BDM using the READ_XCSR_BYTE, READ_CSR2_BYTE, and READ_CSR3_BYTE commands. These 3 registers, along with the CSR, can also be referenced as 32-bit quantities using the BDM READ_DREG and WRITE_DREG commands, but the WRITE_DREG command only writes bits 23–0 of these three registers.

² Each debug register is accessed as a 32-bit value; undefined fields are reserved and must be cleared.

³ The contents of the PST trace buffer is only read from BDM (32 bits per access) using READ_PSTB commands.

DRc[4:0]: 0x00 (CSR)

Access: Supervisor write-only
BDM read/write

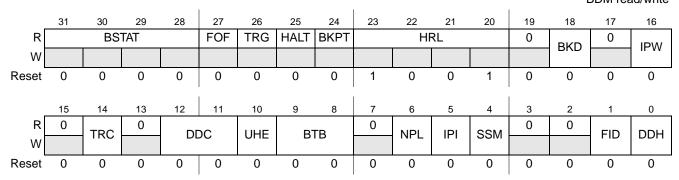


Figure 29-3. Configuration/Status Register (CSR)

Table 29-5. CSR Field Descriptions

Field	Description
31–28 BSTAT	Breakpoint status. Provides read-only status (from the BDM port only) information concerning hardware breakpoints. BSTAT is cleared by a TDR write, by a CSR read when a level-2 breakpoint is triggered, or a level-1 breakpoint is triggered and the level-2 breakpoint is disabled. The PSTB value that follows the PSTB entry of 0x1B is 0x20 + (2 × BSTAT). 0000 No breakpoints enabled 0001 Waiting for level-1 breakpoint 0010 Level-1 breakpoint triggered 0101 Waiting for level-2 breakpoint 0110 Level-2 breakpoint triggered
27 FOF	Fault-on-fault. Indicates a catastrophic halt occurred and forced entry into BDM. FOF is cleared by reset or when CSR is read (from the BDM port only).
26 TRG	Hardware breakpoint trigger. Indicates a hardware breakpoint halted the processor core and forced entry into BDM. Reset, the debug GO command, or reading CSR (from the BDM port only) clears TRG.
25 HALT	Processor halt. Indicates the processor executed a HALT and forced entry into BDM. Reset, the debug GO command, or reading CSR (from the BDM port only) clears HALT.
24 BKPT	Breakpoint assert. Indicates when either: • The BKPT input was asserted, • BDM BACKGROUND command received, or • The PSTB halt on full condition, CSR2[PSTBH], sets. This forces the processor into a BDM halt. Reset, the debug GO command, or reading CSR (from the BDM port only) clears BKPT.
23–20 HRL	Hardware revision level. Indicates, from the BDM port only, the level of debug module functionality. An emulator can use this information to identify the level of functionality supported. 0000 Revision A 0001 Revision B 0010 Revision C 0011 Revision D 1001 Revision B+ (The value used for this device) 1011 Revision D+
19	Reserved, must be cleared.

29-8 Freescale Semiconductor

Table 29-5. CSR Field Descriptions (Continued)

Field	Description
18 BKD	Breakpoint disable. Disables the BACKGROUND command functionality, and allows the execution of the BACKGROUND command to generate a debug interrupt. O Normal operation The receipt of a BDM BACKGROUND command signals a debug interrupt to the ColdFire core. The processor makes this interrupt request pending until the next sample point occurs, when the exception is initiated. In the ColdFire architecture, the interrupt sample point occurs once per instruction. There is no support for nesting debug interrupts.
17	Reserved, must be cleared.
16 IPW	Inhibit processor writes. Inhibits processor-initiated writes to the debug module's programming model registers. IPW can be modified only by commands from the BDM interface.
15	Reserved, must be cleared.
14 TRC	Force emulation mode on trace exception. O Processor enters supervisor mode. 1 Processor enters emulator mode when a trace exception occurs.
13	Reserved, must be cleared.
12–11 DDC	Debug data control. Controls peripheral bus operand data capture for DDATA, which displays the number of bytes defined by the operand reference size (a marker) before the actual data; byte displays 8 bits, word displays 16 bits, and long displays 32 bits (one nibble at a time across multiple PSTCLK clock cycles). See Table 29-26. A non-zero value enables partial data trace capabilities. 00 No operand data is displayed. 01 Capture all write data. 10 Capture all read data. 11 Capture all read and write data.
10 UHE	User halt enable. Selects the CPU privilege level required to execute the HALT instruction. The core must be operating with XCSR[ENBDM] set to execute any HALT instruction, else the instruction is treated as an illegal opcode. 0 HALT is a supervisor-only instruction. 1 HALT is a supervisor/user instruction.
9–8 BTB	Branch target bytes. Defines the number of bytes of branch target address DDATA displays. See Section 29.4.3.1, "Begin Execution of Taken Branch (PST = 0x05)." 00 No target address capture 01 Lower 2 bytes of the target address 1x Lower 3 bytes of the target address
7	Reserved, must be cleared.
6 NPL	Non-pipelined mode. Determines if the core operates in pipelined mode. O Pipelined mode Non-pipelined mode. The processor effectively executes one instruction at a time with no overlap. This typically adds five cycles to the execution time of each instruction. Given an average execution latency of ~2 cycles per instruction, throughput in non-pipeline mode would be ~7 cycles per instruction, approximately 25% - 33% of pipelined performance. Regardless of the NPL state, a triggered PC breakpoint is always reported before the triggering instruction executes. In normal pipeline operation, the occurrence of an address and/or data breakpoint trigger is imprecise.
	executes. In normal pipeline operation, the occurrence of an address and/or data breakpoint trigger is imprecise. In non-pipeline mode, these triggers are always reported before the next instruction begins execution and trigger reporting can be considered precise.

Freescale Semiconductor 29-9

Table 29-5. CSR Field Descriptions (Continued)

Field	Description
5 IPI	Ignore pending interrupts when in single-step mode. O Core services any pending interrupt requests signalled while in single-step mode. Core ignores any pending interrupt requests signalled while in single-step mode.
4 SSM	Single-step mode enable. 0 Normal mode. 1 Single-step mode. The processor halts after execution of each instruction. While halted, any BDM command can be executed. On receipt of the GO command, the processor executes the next instruction and halts again. This process continues until SSM is cleared.
3–2	Reserved, must be cleared.
1 FID	Force <i>ipg_debug</i> . The core generates this output to the device, signaling it is in debug mode. 0 Do not force the assertion of <i>ipg_debug</i> 1 Force the assertion of <i>ipg_debug</i>
0 DDH	Disable <i>ipg_debug</i> due to a halt condition. The core generates an output to the other modules in the device, signaling it is in debug mode. By default, this output signal is asserted when the core halts. 0 Assert <i>ipg_debug</i> if the core is halted 1 Negate <i>ipg_debug</i> due to the core being halted

Extended Configuration/Status Register (XCSR) 29.3.2

The 32-bit XCSR is partitioned into two sections: the upper byte contains status and command bits always accessible to the BDM interface, even if debug mode is disabled. This status byte is also known as XCSR_SB. The lower 24 bits contain fields related to the generation of automatic SYNC_PC commands, which can be used to periodically capture and display the current program counter (PC) in the PST trace buffer (if properly configured).

There are multiple ways to reference the XCSR. They are summarized in Table 29-6.

Table 29-6. XCSR Reference Summary

Method	Reference Details
READ_XCSR_BYTE	Reads XCSR[31–24] from the BDM interface. Available in all modes.
WRITE_XCSR_BYTE	Writes XCSR[31–24] from the BDM interface. Available in all modes.
READ_DREG	Reads XCSR[31-0] from the BDM interface. Classified as a non-intrusive BDM command.
WRITE_DREG	Writes XCSR[23-0] from the BDM interface. Classified as a non-intrusive BDM command.
WDEBUG instruction	Writes XCSR[23—0] during the core's execution of WDEBUG instruction. This instruction is a privileged supervisor-mode instruction.

MCF51MM256 Series Devices Reference Manual, Rev. 3 29-10 Freescale Semiconductor

DRc: 0x01 (XCSR) Access: Supervisor write-only BDM read/write R CPU CPU **CSTAT** SEC CLK ΕN **HALT STOP** SW BDM**ESEQC ERASE** W Reset R APC **APCSC** ENB Reset

Figure 29-4. Extended Configuration/Status Register (XCSR)

Table 29-7. XCSR Field Descriptions

Field	Description							
31 CPUHALT		ndicates that the CPU is in the halt state. The CPU state may be running, stopped, or halted, which is determined by the CPUHALT and CPUSTOP bits as shown below.						
		XCSR [CPUHALT]	XCSR [CPUSTOP]	CPU State				
		0	0	Running				
		0	1	Stopped				
		1	0	Halted				
30 CPUSTOP	Indicates that the CPU is in the by the CPUHALT and CPUS	•		, , , , ,	or halted, which is determined			

Freescale Semiconductor 29-11

Table 29-7. XCSR Field Descriptions (Continued)

Field	Description
29–27 CSTAT (R) ESEQC (W)	During reads, indicates the BDM command status. 000 Command done, no errors 001 Command done, data invalid 01x Command done, illegal 1xx Command busy, overrun
	If an overrun is detected (CSTAT = 1xx), the following sequence is suggested to clear the source of the error: 1. Issue a SYNC command to reset the BDC channel. 2. The host issues a BDM NOP command. 3. The host checks the channel status using a READ_XCSR_BYTE command. 4. If XCSR[CSTAT] = 000
	then status is okay; proceed else Halt the CPU with a BDM BACKGROUND command Repeat steps 1,2,3 If XCSR[CSTAT] ≠ 000, then reset device
	During writes, the ESEQC field is used for the erase sequence control during flash programming. ERASE must also be set for this bit to have an effect. 000 User mass erase Else Reserved Note: See the Memory chapter for a detailed description of the algorithm for clearing security.
26 CLKSW	Select source for serial BDC communication clock. 0 Alternate, asynchronous BDC clock, typically 10 MHz 1 Synchronous bus clock (CPU clock divided by 2)
	The initial state of the XCSR[CLKSW] bit is loaded by the hardware in response to certain reset events and the state of the BKGD pin as described in Figure 29-2.
25 SEC (R) ERASE (W)	The read value of this bit typically defines the status of the flash security field. 0 Flash security is disabled 1 Flash security is enabled
	In addition, the SEC bit is context-sensitive during reads. After a mass-erase sequence has been initiated by BDM, it acts as a flash busy flag. When the erase operation is complete and the bit is cleared, it returns to reflect the status of the chip security. O Flash is not busy performing a BDM mass-erase sequence 1 Flash is busy performing a BDM mass-erase sequence
	During writes, this bit qualifies XCSR[ESEQC] for the write modes shown in the ESEQC field description. 0 Do not perform a mass-erase of the flash. 1 Perform a mass-erase of the flash, using the sequence specified in the XCSR[ESEQC] field.
24 ENBDM	Enable BDM. 0 BDM mode is disabled 1 Active background mode is enabled (assuming the flash is not secure)
23–3	Reserved for future use by the debug module, must be cleared.

29-12 Freescale Semiconductor

Table 29-7. XCSR Field Descriptions (Continued)

Field		Description							
2–1 APCSC	Automatic PC synchronization control. Determines the periodic interval of PC address captures, if XCSR[APCENB] is set. When the selected interval is reached, a SYNC_PC command is sent to the ColdFire CPU. For more information on the SYNC_PC operation, see the APCENB description. The chosen frequency depends on CSR2[APCDIV16] as shown in the equation and table below: $PC \text{ address capture period} = \frac{2^{(APCSC+1)} \times 1024}{16^{APCDIV16}}$ Eqn. 29-1								
		XCSR [APCENB]	CSR2 [APCDIV16]	XCSR [APCSC]	SYNC_PC Interval				
		1	0	00	2048 cycles				
		1	0	01	4096 cycles				
		1	0	10	8192 cycles				
		1	0	11	16384 cycles				
		1	1	00	128 cycles				
		1	1	01	256 cycles				
		1	1	10	512 cycles				
		1	1	11	1024 cycles				
0 APCENB	Automatic PC synchronization enable. Enables the periodic output of the PC which can be used for PST/DDATA trace synchronization and code profiling. As described in XCSR[APCSC], when the enabled periodic timer expires, a SYNC_PC command is sent to the ColdFire CPU which generates a forced instruction fetch of the next instruction. The PST/DDATA module captures the target address as defined by CSR[9] (two bytes if CSR[9] is cleared, three bytes if CSR[9] is set). This produces a PST sequence of the PST marker indicating a 2- or 3-byte address, followed by the captured instruction address. O Automatic PC synchronization disabled 1 Automatic PC synchronization enabled								

29.3.3 Configuration/Status Register 2 (CSR2)

The 32-bit CSR2 is partitioned into two sections. The upper byte contains status and configuration bits always accessible to the BDM interface, even if debug mode is disabled. The lower 24 bits contain fields related to the configuration of the PST trace buffer (PSTB).

There are multiple ways to reference CSR2. They are summarized in Table 29-8.

Table 29-8. CSR2 Reference Summary

Method	Reference Details
READ_CSR2_BYTE	Reads CSR2[31-24] from the BDM interface. Available in all modes.
WRITE_CSR2_BYTE	Writes CSR2[31-24] from the BDM interface. Available in all modes.
READ_DREG	Reads CSR2[31-0] from the BDM interface. Classified as a non-intrusive BDM command.

Freescale Semiconductor 29-13

Table 29-8. CSR2 Reference Summary (Continued)

Method	Reference Details
WRITE_DREG	Writes CSR2[23-0] from the BDM interface. Classified as a non-intrusive BDM command.
WDEBUG Instruction	Writes CSR2[23–0] during the core's execution of WDEBUG instruction. This instruction is a privileged supervisor-mode instruction.

DRc: 0x02 (CSR2)

Access: Supervisor read-only
BDM read/write

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	PSTBP	0	COP	IOP	IAD	0	BFHBR	0	PSTBH	PSTI	BST	0		D1F	HRL	
W			HR	HR	HR		BELIBI	BDFR								
Power-on Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Other Reset	()	0	u	u	u	0	u	0	0	0	0	0	0	0	0	1
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	PSTBWA							0	APC	0	рст	BRM		PSTBSS	2	
W									PSTBR	DIV16		1 31	DIXIVI	'	31030	'
Reset			Unaffe	ected ar	nd Unde	efined			0	0	0	0	0	0	0	0

Figure 29-5. Configuration/Status Register 2 (CSR2)

Table 29-9. CSR2 Field Descriptions

Field	Description
31 PSTBP	PST buffer stop. Signals if a PST buffer stop condition has been reached. 0 A PST trace buffer stop condition has not been reached 1 A PST trace buffer stop condition has been reached
30	Reserved, must be cleared.
29 COPHR	Computer operating properly halt after reset. Determines operation of the device after a COP reset. This bit is cleared after a power-on reset and is unaffected by any other reset. O After a computer operating properly reset, the device immediately enters normal operation mode. A computer operating properly reset immediately halts the device (as if the BKGD pin was held low after a power-on reset). Note: This bit may only be changed if XCSR[ENBDM] is set and the flash is unsecure.
28 IOPHR	Illegal operation halt after reset. Determines operation of the device after an illegal operation reset. This bit is cleared after a power-on reset and is unaffected by any other reset. O After the device has an illegal operation reset, the device immediately enters normal operation mode. An illegal operation reset immediately halts the device (as if the BKGD pin was held low after a power-on reset). Note: This bit may only be changed if XCSR[ENBDM] is set and the flash is unsecure.
27 IADHR	Illegal address halt after reset. Determines operation of the device after an illegal address reset. This bit is cleared after a power-on reset and is unaffected by any other reset. O After the device has an illegal address reset, the device immediately enters normal operation mode. An illegal address reset immediately halts the device (as if the BKGD pin was held low after a power-on reset). Note: This bit may only be changed if XCSR[ENBDM] is set and the flash is unsecure.

29-14 Freescale Semiconductor

Table 29-9. CSR2 Field Descriptions (Continued)

Field	Description							
26	Reserved, must be cleared.							
25 BFHBR	BDM force halt on BDM reset. Determines operation of the device after a BDM reset. This bit is cleared after a power-on reset and is unaffected by any other reset. 0 The device enters normal operation mode following a BDM reset. 1 The device enters in halt mode following a BDM reset, as if the BKGD pin was held low after a power-on-reset or standard BDM-initiated reset. Note: This bit can only change state if XCSR[ENBDM] = 1 and the flash is unsecure.							
24 BDFR	Background debug fo been initiated. 0 No reset initiated. 1 Force a BDM reset		ces a BDM reset to the device. This bit always reads	as 0 after the reset has				
23 PSTBH	PST trace buffer halt. Indicates if the processor is halted due to the PST trace buffer being full when recording in a obtrusive mode. 0 PST trace buffer not full 1 CPU halted due to PST trace buffer being full in obtrusive mode							
22–21 PSTBST	PST trace buffer state. Indicates the current state of the PST trace buffer recording. 00 PSTB disabled 01 PSTB enabled and waiting for the start condition 10 PSTB enabled, recording and waiting for the stop condition 11 PSTB enabled, completed recording after the stop condition was reached							
20	Reserved, must be cl	eared.						
19–16 D1HRL	Debug 1-pin hardware in the ColdFire core. I		Indicates the hardware revision level of the 1-pin debe, this field is 0x1.	ug module implemented				
15–8 PSTBWA	PST trace buffer write address. Indicates the current write address of the PST trace buffer. The most significant bit of this field is sticky; if set, it remains set until a PST/DDATA reset event occurs. As the ColdFire core inserts PST and DDATA packets into the trace buffer, this field is incremented. The value of the write address defines the next location in the PST trace buffer to be loaded. In other words, the contents of PSTB[PSTBWA-1] is the last valid entry in the trace buffer. The msb of this field can be used to determine if the entire PST trace buffer has been loaded with valid data.							
		PSTBWA[7]	PSTB Valid Data Locations (Oldest to Newest)					
		0	0, 1, PSTBWA-1					
	1 PSTBWA, PSTBWA+1,, 0, 1, PSTBWA-1							
	The PSTBWA is unaffected when a buffer stop condition has been reached, the buffer is disabled, or a system reset occurs. This allows the contents of the PST trace buffer to be retrieved after these events to assist in debug. Note: Since this device contains a 64-entry trace buffer, PSTBWA[6] is always zero.							
7 PSTBR	PST trace buffer reset. Generates a reset of the PST trace buffer logic, which clears PSTBWA and PSTBST. The same resources are reset when a disabled trace buffer becomes enabled and upon the receipt of a BDM GO command when operating in obtrusive trace mode. These reset events also clear any accumulation of PSTs. This bit always reads as a zero. 0 Do not force a PST trace buffer reset 1 Force a PST trace buffer reset							

Freescale Semiconductor 29-15

Table 29-9. CSR2 Field Descriptions (Continued)

Field	Description							
6 APCDIV16	Automatic PC synchronization divide cycle counts by 16. This bit divides the cycle counts for automatic SYNC_PC command insertion by 16. See the APCSC and APCENB field descriptions.							
5	Reserved, must be c	leared.						
4–3 PSTBRM	PST trace buffer recording mode. Defines the trace buffer recording mode. The start and stop recording conditions are defined by the PSTBSS field. 00 Non-obstrusive, normal recording mode 01 Obtrusive, normal recording 10 Non-obtrusive, PC profile recording. Automatic PC synchronization must be enabled (see XCSR[APCSC, APCENB], CSR2[APCDIV16], and CSR[BTB]). 11 Obtrusive, PC profile recording. Automatic PC synchronization must be enabled (see XCSR[APCSC, APCENB], CSR2[APCDIV16], and CSR[BTB]). 11 The terms obtrusive and non-obtrusive are defined as: • Non-obtrusive—The core is not halted. The PST trace buffer is overwritten unless a PSTB start/stop combination results in less than or equal to 64 PSTB captures. • Obtrusive—The core is halted when the PSTB trace buffer reaches its full level (full before overwriting). The PSTB trace buffer contents are available by the BDM PSTB_READ commands. The PSTB trace buffer write address resets and the CPU resumes upon a BDM GO command.							
2-0 PSTBSS		art and stop co	 Specifies the start and standitions are defined by the onfigurations. 					
		PSTBSS	Start Condition	Stop Condition				
		000	Trace buffer disab	oled, no recording				
		001	Uncondition	al recording				
		010						
		O11 ABxR{& DBR/DBMR} PBR1						
		100 ABxR{& DBR/DBMR}						
		101 PBR0/PBMR PBR1						
		110 ABxR{& DBR/DBMR}						
		111	. 5	PBR0/PBMR				

29.3.4 Configuration/Status Register 3 (CSR3)

CSR3 contains the BDM flash clock divider (BFCDIV) value in a format similar to HCS08 devices.

There are multiple ways to reference CSR3. They are summarized in Table 29-10.

Table 29-10. CSR3 Reference Summary

Method	Method Reference Details						
READ_CSR3_BYTE	Reads CSR3[31-24] from the BDM interface. Available in all modes.						
WRITE_CSR3_BYTE	Writes CSR3[31-24] from the BDM interface. Available in all modes.						

29-16 Freescale Semiconductor

Method	Reference Details
READ_DREG	Reads CSR3[31-0] from the BDM interface. Classified as a non-intrusive BDM command.
WRITE_DREG	Writes CSR3[23-0] from the BDM interface. Classified as a non-intrusive BDM command.
WDEBUG Instruction	No operation during the core's execution of a WDEBUG instruction

DRc: 0x03 (CSR3) Access: Supervisor write-only BDM read/write **BFC BFCDIV** DIV8 W Reset W Reset

Figure 29-6. Configuration/Status Register 3 (CSR3)

Table 29-11. CSR3 Field Descriptions

Field	Description
31	Reserved, must be cleared.
30 BFCDIV8	BDM flash clock divide by 8. 0 Input to the flash clock divider is the bus clock 1 Input to the flash clock divider is the bus clock divided by 8
29–24 BFCDIV	BDM flash clock divider. The BFCDIV8 and BFCDIV fields specify the frequency of the internal flash clock when performing a mass erase operation initiated by setting XCSR[ERASE]. These fields must be loaded with the appropriate values prior to the setting of XCSR[ERASE] to initiate a mass erase operation in the flash memory. This field divides the bus clock (or the bus clock divided by 8 if BFCDIV8 is set) by the value defined by the BFCDIV plus one. The resulting frequency of the internal flash clock must fall within the range of 150–200 kHz for proper flash operations. Program/erase timing pulses are one cycle of this internal flash clock, which corresponds to a range of 5–6.7 μ s. The automated programming logic uses an integer number of these pulses to complete an erase or program operation.
	if BFCDIV8 = 1, then $f_{FCLK} = f_{Bus} \div (8 \times (BFCDIV + 1))$ where f_{FCLK} is the frequency of the flash clock and f_{Bus} is the frequency of the bus clock.
23–0	Reserved for future use by the debug module, must be cleared.

29.3.5 BDM Address Attribute Register (BAAR)

BAAR defines the address space for memory-referencing BDM commands. BAAR[R, SZ] are loaded directly from the BDM command, while the lower five bits can be programmed from the external

Freescale Semiconductor 29-17

development system. BAAR is loaded any time AATR is written and is initialized to a value of 0x05, setting supervisor data as the default address space. The upper 24 bits of this register are reserved for future use and any attempted write of these bits is ignored.

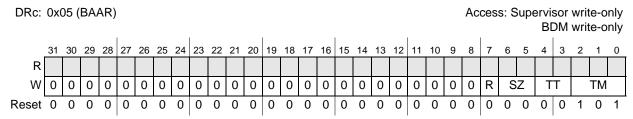


Figure 29-7. BDM Address Attribute Register (BAAR)

Table 29-12. BAAR Field Descriptions

Field	Description
31–8	Reserved for future use by the debug module, must be cleared.
7 R	Read/Write. 0 Write 1 Read
6–5 SZ	Size. 00 Longword 01 Byte 10 Word 11 Reserved
4–3 TT	Transfer type. See the TT definition in the AATR description, Section 29.3.6, "Address Attribute Trigger Register (AATR)".
2-0 TM	Transfer modifier. See the TM definition in the AATR description, Section 29.3.6, "Address Attribute Trigger Register (AATR)".

29.3.6 Address Attribute Trigger Register (AATR)

AATR defines address attributes and a mask to be matched in the trigger. The register value is compared with address attribute signals from the processor's high-speed local bus, as defined by the setting of the trigger definition register (TDR). AATR is accessible in supervisor mode as debug control register 0x06 using the WDEBUG instruction and through the BDM port using the WRITE DREG command.

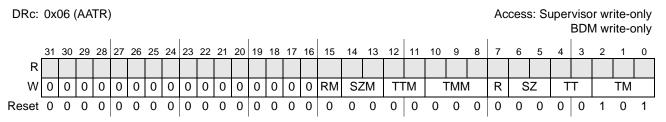


Figure 29-8. Address Attribute Trigger Register (AATR)

29-18 Freescale Semiconductor

Table 29-13. AATR Field Descriptions

Field	Description
31–16	Reserved, must be cleared.
15 RM	Read/write mask. Masks the R bit in address comparisons.
14–13 SZM	Size mask. Masks the corresponding SZ bit in address comparisons.
12–11 TTM	Transfer type mask. Masks the corresponding TT bit in address comparisons.
10–8 TMM	Transfer modifier mask. Masks the corresponding TM bit in address comparisons.
7 R	Read/write. R is compared with the R/W signal of the processor's local bus.
6–5 SZ	Size. Compared to the processor's local bus size signals. 00 Longword 01 Byte 10 Word 11 Reserved
4–3 TT	Transfer type. Compared with the local bus transfer type signals. These bits also define the TT encoding for BDM memory commands. 00 Normal processor access Else Reserved
2–0 TM	Transfer modifier. Compared with the local bus transfer modifier signals, which give supplemental information for each transfer type. These bits also define the TM encoding for BDM memory commands (for backward compatibility). 000 Reserved 001 User-mode data access 010 User-mode code access 011 Reserved 100 Reserved 101 Supervisor-mode data access 110 Supervisor-mode code access 111 Reserved

29.3.7 Trigger Definition Register (TDR)

TDR configures the operation of the hardware breakpoint logic that corresponds with the ABHR/ABLR/AATR, PBR/PBR1/PBR2/PBR3/PBMR, and DBR/DBMR registers within the debug module. TDR controls the actions taken under the defined conditions. Breakpoint logic may be configured as one- or two-level trigger. TDR[31–16] defines the second-level trigger, and TDR[15–0] defines the first-level trigger.

NOTE

The debug module has no hardware interlocks. To prevent spurious breakpoint triggers while the breakpoint registers are being loaded, disable TDR (clear TDR[L2EBL,L1EBL]) before defining triggers.

A write to TDR clears the CSR trigger status bits, CSR[BSTAT]. TDR is accessible in supervisor mode as debug control register 0x07 using the WDEBUG instruction and through the BDM port using the WRITE_DREG command.

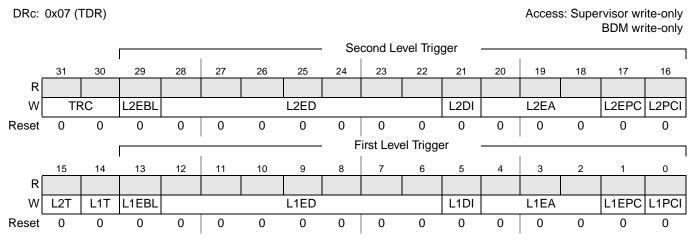


Figure 29-9. Trigger Definition Register (TDR)

Table 29-14. TDR Field Descriptions

Field			Description	
31–30 TRC	Trigger response cor response is displaye 00 Display on PST o 01 Processor halt 10 Debug interrupt 11 Reserved	d on PST.	ermines how the processor responds to a completed trigger cond	lition. The trigger
29 L2EBL	Enable level 2 break 0 Disables all level 2 1 Enables all level 2	2 breakpo		
28–22 L2ED	Enable level 2 data breakpoint. Setting an L2ED bit enables the corresponding data breakpoint condition based on the size and placement on the processor's local data bus. Clearing all ED bits disables data breakpoints.			
		TDR Bit	Description	
		28	Data longword. Entire processor's local data bus.	
		27	Lower data word.	
		26	Upper data word.	
		25	Lower lower data byte. Low-order byte of the low-order word.	
		24	Lower middle data byte. High-order byte of the low-order word.	
		23	Upper middle data byte. Low-order byte of the high-order word.	
		22	Upper upper data byte. High-order byte of the high-order word.	

29-20 Freescale Semiconductor

Table 29-14. TDR Field Descriptions (Continued)

Field	Description			
21 L2DI	Level 2 data breakpoint invert. Inverts the logical sense of all the data breakpoint comparators. This can deve trigger based on the occurrence of a data value other than the DBR contents. O No inversion I Invert data breakpoint comparators.			s. This can develop a
20–18 L2EA	3			eakpoint. Clearing all
		TDR Bit	Description]
		20	Address breakpoint inverted. Breakpoint is based outside the range between ABLR and ABHR.	
		19	Address breakpoint range. The breakpoint is based on the inclusive range defined by ABLR and ABHR.	
		18	Address breakpoint low. The breakpoint is based on the address in the ABLR.	
17 L2EPC	Enable level 2 PC b 0 Disable PC break 1 Enable PC break	kpoint		
16 L2PCI		nt is defin	ed within the region defined by PBR n and PBMR. ed outside the region defined by PBR n and PBMR.	
15 L2T	Data) condition whe creation of single or 0 Level 2 trigger =	ere the inc double-le PC_condi	e logic operation for the trigger between the PC_condition and the lusion of a Data_condition is optional. The ColdFire debug architorel triggers. tion && (Address_range && Data_condition) tion (Address_range && Data_condition)	
14 L1T	Data) condition whe creation of single or 0 Level 1 trigger =	ere the inc double-le PC_condi	e logic operation for the trigger between the PC_condition and the lusion of a Data_condition is optional. The ColdFire debug architorel triggers. tion && (Address_range && Data_condition) tion (Address_range && Data_condition)	
13 L1EBL	Enable level 1 break 0 Disables all level 1 Enables all level	1 breakpo		

Table 29-14. TDR Field Descriptions (Continued)

Field			Description	
12–6 L1ED			t. Setting an L1ED bit enables the corresponding data breakpoint processor's local data bus. Clearing all L1ED bits disables data	
		TDR Bit	Description	
		12	Data longword. Entire processor's local data bus.	
		11	Lower data word.	
		10	Upper data word.	
		9	Lower lower data byte. Low-order byte of the low-order word.	
		8	Lower middle data byte. High-order byte of the low-order word.	
		7	Upper middle data byte. Low-order byte of the high-order word.	
		6	Upper upper data byte. High-order byte of the high-order word.	
L1DI	No inversion Invert data breakp		ce of a data value other than the DBR contents. parators.	
4–2	No inversion Invert data breakp	oint comp	parators. point. Setting an L1EA bit enables the corresponding address bre	akpoint. Clearing a
4–2	No inversion Invert data breakp Enable level 1 addres three bits disables the	oint comp	parators. point. Setting an L1EA bit enables the corresponding address bre	akpoint. Clearing a
4–2	No inversion Invert data breakp Enable level 1 addres three bits disables the	ss breakp	parators. point. Setting an L1EA bit enables the corresponding address bre s breakpoint.	akpoint. Clearing a
4–2	No inversion Invert data breakp Enable level 1 addres three bits disables the	ss breakpe address	parators. point. Setting an L1EA bit enables the corresponding address bress breakpoint. Description Enable address breakpoint inverted. Breakpoint is based	akpoint. Clearing
4–2	No inversion Invert data breakp Enable level 1 addres three bits disables the	ss breakpe address	parators. point. Setting an L1EA bit enables the corresponding address bress breakpoint. Description Enable address breakpoint inverted. Breakpoint is based outside the range between ABLR and ABHR. Enable address breakpoint range. The breakpoint is based on	akpoint. Clearing
	No inversion Invert data breakp Enable level 1 addres three bits disables the	ss breakpe address TDR Bit 4 3 2 eakpoint.	parators. point. Setting an L1EA bit enables the corresponding address bress breakpoint. Description Enable address breakpoint inverted. Breakpoint is based outside the range between ABLR and ABHR. Enable address breakpoint range. The breakpoint is based on the inclusive range defined by ABLR and ABHR. Enable address breakpoint low. The breakpoint is based on the address in the ABLR.	akpoint. Clearing

29.3.8 Program Counter Breakpoint/Mask Registers (PBR0-3, PBMR)

The PBR*n* registers define instruction addresses for use as part of the trigger. These registers' contents are compared with the processor's program counter register when the appropriate valid bit is set (for PBR1–3) and TDR is configured appropriately. PBR0 bits are masked by setting corresponding PBMR bits (PBMR has no effect on PBR1–3). Results are compared with the processor's program counter register, as defined in TDR. The PC breakpoint registers, PBR1–3, have no masking associated with them, but do include a

29-22 Freescale Semiconductor

valid bit. These registers' contents are compared with the processor's program counter register when TDR is configured appropriately.

The PC breakpoint registers are accessible in supervisor mode using the WDEBUG instruction and through the BDM port using the WRITE_DREG command using values shown in Section 29.4.1.4, "BDM Command Set Descriptions".

NOTE

Version 1 ColdFire core devices implement a 24-bit, 16 MB address map. When programming these registers with a 32-bit address, the upper byte must be zero-filled.

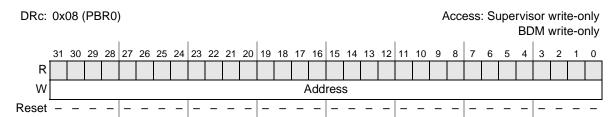


Figure 29-10. Program Counter Breakpoint Register 0 (PBR0)

Table 29-15. PBR0 Field Descriptions

Field	Description
31–0 Address	PC breakpoint address. The address to be compared with the PC as a breakpoint trigger. Because all instruction sizes are multiples of 2 bytes, bit 0 of the address should always be zero.

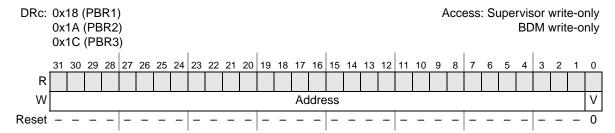


Figure 29-11. Program Counter Breakpoint Register n (PBRn, n = 1,2,3)

Table 29-16. PBRn Field Descriptions

Field	Description
31–1 Address	PC breakpoint address. The 31-bit address to be compared with the PC as a breakpoint trigger.
0 V	Valid bit. This bit must be set for the PC breakpoint to occur at the address specified in the Address field. 0 PBR is disabled. 1 PBR is enabled.

Figure 29-12 shows PBMR. PBMR is accessible in supervisor mode using the WDEBUG instruction and via the BDM port using the WRITE_DREG command. PBMR only masks PBR0.

MCF51MM256 Series Devices Reference Manual, Rev. 3

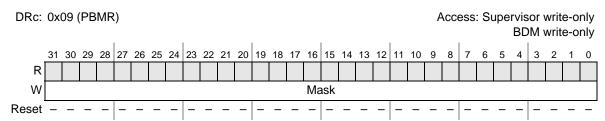


Figure 29-12. Program Counter Breakpoint Mask Register (PBMR)

Table 29-17. PBMR Field Descriptions

Field	Description
	PC breakpoint mask. If using PBR0, this register must be initialized since it is undefined after reset. 0 The corresponding PBR0 bit is compared to the appropriate PC bit. 1 The corresponding PBR0 bit is ignored.

29.3.9 Address Breakpoint Registers (ABLR, ABHR)

The ABLR and ABHR define regions in the processor's data address space that can be used as part of the trigger. These register values are compared with the address for each transfer on the processor's high-speed local bus. The trigger definition register (TDR) identifies the trigger as one of three cases:

- Identical to the value in ABLR
- Inside the range bound by ABLR and ABHR inclusive
- Outside that same range

The address breakpoint registers are accessible in supervisor mode using the WDEBUG instruction and through the BDM port using the WRITE_DREG command using values shown in Section 29.4.1.4, "BDM Command Set Descriptions."

NOTE

Version 1 ColdFire core devices implement a 24-bit, 16 MB address map. When programming these registers with a 32-bit address, the upper byte must be zero-filled.

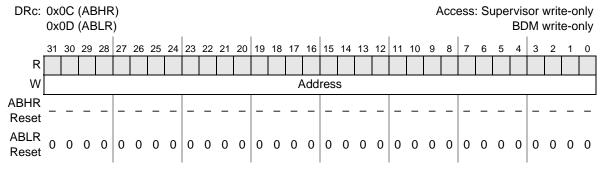


Figure 29-13. Address Breakpoint Registers (ABLR, ABHR)

Table 29-18. ABLR Field Description

Field	Description
31–0 Address	Low address. Holds the 32-bit address marking the lower bound of the address breakpoint range. Breakpoints for specific addresses are programmed into ABLR.

Table 29-19. ABHR Field Description

Field	Description
31–0 Address	High address. Holds the 32-bit address marking the upper bound of the address breakpoint range.

29.3.10 Data Breakpoint and Mask Registers (DBR, DBMR)

DBR specifies data patterns used as part of the trigger into debug mode. DBR bits are masked by setting corresponding DBMR bits, as defined in TDR.

DBR and DBMR are accessible in supervisor mode using the WDEBUG instruction and through the BDM port using the WRITE_DREG commands.

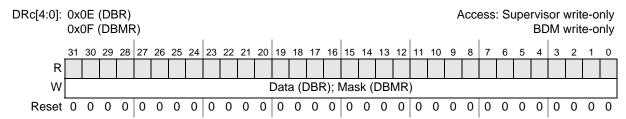


Figure 29-14. Data Breakpoint & Mask Registers (DBR, DBMR)

Table 29-20. DBR Field Descriptions

Field	Description
31–0 Data	Data breakpoint value. Contains the value to be compared with the data value from the processor's local bus as a breakpoint trigger.

Table 29-21. DBMR Field Descriptions

Field	Description
	Data breakpoint mask. The 32-bit mask for the data breakpoint trigger. 1 The corresponding DBR bit is compared to the appropriate bit of the processor's local data bus 2 The corresponding DBR bit is ignored

The DBR supports aligned and misaligned references. Table 29-22 shows the relationships between processor address, access size, and location within the 32-bit data bus.

Table 29-22, Access Size and Operand Data Lo	_ocation
--	----------

Address[1-0]	Access Size	Operand Location
00	Byte	D[31-24]
01	Byte	D[23-16]
10	Byte	D[15-8]
11	Byte	D[7-0]
0 <i>x</i>	Word	D[31-16]
1 <i>x</i>	Word	D[15-0]
xx	Longword	D[31-0]

29.3.10.1 Resulting Set of Possible Trigger Combinations

The resulting set of possible breakpoint trigger combinations consists of the following options where || denotes logical OR, && denotes logical AND, and {} denotes an optional additional trigger term:

One-level triggers of the form:

```
if
         (PC_breakpoint)
if
         (PC_breakpoint | Address_breakpoint { & Data_breakpoint } )
if
         (Address_breakpoint {&& Data_breakpoint})
```

Two-level triggers of the form:

```
if
         (PC_breakpoint)
         then if (Address_breakpoint{&& Data_breakpoint})
if
         (Address_breakpoint {&& Data_breakpoint})
         then if (PC_breakpoint)
```

In these examples, PC breakpoint is the logical summation of the PBR0/PBMR, PBR1, PBR2, and PBR3 breakpoint registers; Address breakpoint is a function of ABHR, ABLR, and AATR; Data breakpoint is a function of DBR and DBMR. In all cases, the data breakpoints can be included with an address breakpoint to further qualify a trigger event as an option.

The breakpoint registers can also be used to define the start and stop recording conditions for the PST trace buffer. For information on this functionality, see Section 29.3.3, "Configuration/Status Register 2 (CSR2)".

PST Buffer (PSTB) 29.3.11

The PST trace buffer contains 64 six-bit entries, packed consecutively into 12 longword locations. See Figure 29-15 for an illustration of how the buffer entries are packed.

The write pointer for the trace buffer is available as CSR2[PSTBWA]. Using this pointer, it is possible to determine the oldest-to-newest entries in the trace buffer.

29-26

MCF51MM256 Series Devices Reference Manual, Rev. 3

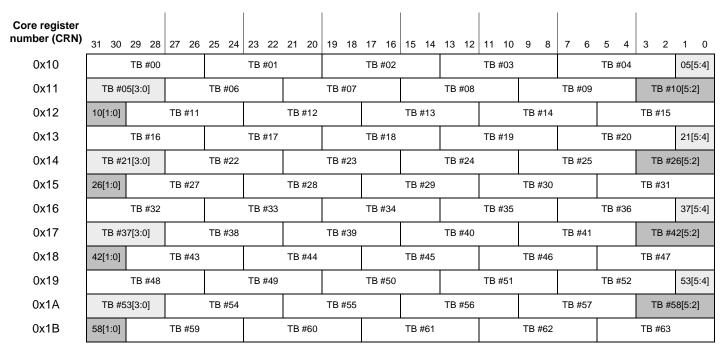


Figure 29-15. PST Trace Buffer Entries and Locations

29.4 Functional Description

29.4.1 Background Debug Mode (BDM)

This section provides details on the background debug serial interface controller (BDC) and the BDM command set.

The BDC provides a single-wire debug interface to the target MCU. As shown in the Version 1 ColdFire core block diagram of Figure 29-1, the BDC module interfaces between the single-pin (BKGD) interface and the remaining debug modules, including the ColdFire background debug logic, the real-time debug hardware, and the PST/DDATA trace logic. This interface provides a convenient means for programming the on-chip flash and other non-volatile memories. The BDC is the primary debug interface for development and allows non-intrusive access to memory data and traditional debug features such as run/halt control, read/write of core registers, breakpoints, and single instruction step.

Features of the background debug controller (BDC) include:

- Single dedicated pin for mode selection and background communications
- Special BDC registers not located in system memory map
- SYNC command to determine target communications rate
- Non-intrusive commands for memory access
- Active background (halt) mode commands for core register access
- GO command to resume execution
- BACKGROUND command to halt core or wake CPU from low-power modes
- Oscillator runs in stop mode, if BDM enabled

Based on these features, BDM is useful for the following reasons:

- In-circuit emulation is not needed, so physical and electrical characteristics of the system are not affected.
- BDM is always available for debugging the system and provides a communication link for upgrading firmware in existing systems.
- Provides high-speed memory downloading, especially useful for flash programming
- Provides absolute control of the processor, and thus the system. This feature allows quick hardware debugging with the same tool set used for firmware development.

29.4.1.1 CPU Halt

Although certain BDM operations can occur in parallel with CPU operations, unrestricted BDM operation requires the CPU to be halted. The sources that can cause the CPU to halt are listed below in order of priority. Recall that the default configuration of the Version 1 ColdFire core (CF1Core) defines the occurrence of certain exception types to automatically generate a system reset. Some of these fault types include illegal instructions, privilege errors, address errors, and bus error terminations, with the response under control of the processor's CPUCR[ARD, IRD] bits.

Table 29-23. CPU Halt Sources

Halt Source	Halt Timing			Description				
Fault-on-fault	Immediate	Refers to the occurrence of any fault while exception processing. For example, a bus error is signaled during exception stack frame writes or while fetching the first instruction in the exception service routine.						
r ddit om iddit	minodiato	CPUCR[ARD] = 1	Immediately enter	s halt.				
		CPUCR[ARD] = 0	Reset event is init	iated.				
Hardware breakpoint trigger	Pending	Halt is made pending in the processor. The processor samples for pending halt and interrupt conditions once per instruction. When a pending condition is asserted, the processor halts execution at the next sample point.						
	ction Immediate	BDM disabled	CPUCR[IRD] = 0	A reset is initiated since attempted execution of an illegal instruction				
		Immediate		CPUCR[IRD] = 1	An illegal instruction exception is generated.			
			Immediate	Immediate	BDM enabled, supervisor mode	Processor immediately halts execution at the next instruction sample point. The processor can be restarted by a BDM GO command. Execution continues at the instruction after HALT.		
HALT instruction					Immediate		CSR[UHE] = 0 CPUCR[IRD] = 0	A reset event is initiated, because a privileged instruction was attempted in user mode.
		BDM enabled,	CSR[UHE] = 0 CPUCR[IRD] = 1	A privilege violation exception is generated.				
		user mode	CSR[UHE] = 1	Processor immediately halts execution at the next instruction sample point. The processor can be restarted by a BDM GO command. Execution continues at the instruction after HALT.				

MCF51MM256 Series Devices Reference Manual, Rev. 3

29-28 Freescale Semiconductor

Table 29-23. CPU Halt Sources (Continued)

Halt Source	Halt Timing			Description	
		BDM disabled or flash secure	Illegal command	response and BACKGROUND command is ignored.	
BACKGROUND	Pending		Processor is running	Halt is made pending in the processor. The processor samples for pending halt and interrupt conditions once per instruction. When a pending condition is asserted, the processor halts execution at the next sample point.	
command	, and the second	BDM enabled and flash unsecure	Processor is stopped	Processing of the BACKGROUND command is treated in a special manner. The processor exits the stopped mode and enters the halted state, at which point all BDM commands may be exercised. When restarted, the processor continues by executing the next sequential instruction (the instruction following STOP).	
PSTB full condition	Pending	PSTB	PSTB obtrusive recording mode pends halt in the processor if the trace buffer reaches its full threshold (full is defined as before the buffer is overwritten). When a pending condition is asserted, the processor halts at the next sample point.		
BKGD held low for ≥2 bus clocks	Immediate	Flash unsecure	BDM commands If the core is rese to the GO comma it was halted. Spe command causes the instruction ad processing. If the	de with XCSR[ENBDM, CLKSW] set. The full set of is available and debug can proceed. It into a debug halt condition, the processor's response and depends on the BDM command(s) performed while ecifically, if the PC register was loaded, the GO is the processor to exit halted state and pass control to dress in the PC, bypassing normal reset exception PC was not loaded, the GO command causes the halted state and continue reset exception processing.	
after reset negated for POR or BDM reset	or BDM		Enters debug mode with XCSR[ENBDM, CLKSW] set. The allowable commands are limited to the always-available group. A GO command to start the processor is not allowed. The only recovery actions in this mode are: • Issue a BDM reset setting CSR2[BDFR] with CSR2[BDHBR] cleared and the BKGD pin held high to reset into normal operating mode • Erase the flash to unsecure the memory and then proceed with debug. • Power cycle the device with the BKGD pin held high to reset into the normal operating mode		

The processor's run/stop/halt status is always accessible in XCSR[CPUHALT,CPUSTOP]. Additionally, CSR[27–24] indicate the halt source, showing the highest priority source for multiple halt conditions. This field is cleared by a read of the CSR. A processor halt due to the PSTB full condition as indicated by CSR2[PSTH] is also reflected in CSR[BKPT]. The debug GO command clears CSR[26–24] and CSR2[PSTBH].

29.4.1.2 Background Debug Serial Interface Controller (BDC)

BDC serial communications use a custom serial protocol first introduced on the M68HC12 Family of microcontrollers and later used in the M68HCS08 family. This protocol assumes that the host knows the

communication clock rate determined by the target BDC clock rate. The BDC clock rate may be the system bus clock frequency or an alternate frequency source depending on the state of XCSR[CLKSW]. All communication is initiated and controlled by the host which drives a high-to-low edge to signal the beginning of each bit time. Commands and data are sent most significant bit (msb) first. For a detailed description of the communications protocol, refer to Section 29.4.1.3, "BDM Communication Details".

If a host is attempting to communicate with a target MCU that has an unknown BDC clock rate, a SYNC command may be sent to the target MCU to request a timed synchronization response signal from which the host can determine the correct communication speed. After establishing communications, the host can read XCSR and write the clock switch (CLKSW) control bit to change the source of the BDC clock for further serial communications if necessary.

BKGD is a pseudo-open-drain pin and there is an on-chip pullup so no external pullup resistor is required. Unlike typical open-drain pins, the external RC time constant on this pin, which is influenced by external capacitance, plays almost no role in signal rise time. The custom protocol provides for brief, actively driven speed-up pulses to force rapid rise times on this pin without risking harmful drive level conflicts. Refer to Section 29.4.1.3, "BDM Communication Details," for more details.

When no debugger pod is connected to the standard 6-pin BDM interface connector (Section 29.4.4, "Freescale-Recommended BDM Pinout"), the internal pullup on BKGD chooses normal operating mode. When a development system is connected, it can pull BKGD and RESET low, release RESET to select active background (halt) mode rather than normal operating mode, and then release BKGD. It is not necessary to reset the target MCU to communicate with it through the background debug interface. There is also a mechanism to generate a reset event in response to setting CSR2[BDFR].

29.4.1.3 BDM Communication Details

The BDC serial interface requires the external host controller to generate a falling edge on the BKGD pin to indicate the start of each bit time. The external controller provides this falling edge whether data is transmitted or received.

BKGD is a pseudo-open-drain pin that can be driven by an external controller or by the MCU. Data is transferred msb first at 16 BDC clock cycles per bit (nominal speed). The interface times-out if 512 BDC clock cycles occur between falling edges from the host. If a time-out occurs, the status of any command in progress must be determined before new commands can be sent from the host. To check the status of the command, follow the steps detailed in the bit description of XCSR[CSTAT] in Table 29-7.

The custom serial protocol requires the debug pod to know the target BDC communication clock speed. The clock switch (CLKSW) control bit in the XCSR[31–24] register allows you to select the BDC clock source. The BDC clock source can be the bus clock or the alternate BDC clock source. When the MCU is reset in normal user mode, CLKSW is cleared and that selects the alternate clock source. This clock source is a fixed frequency independent of the bus frequency so it does change if the user modifies clock generator settings. This is the preferred clock source for general debugging.

When the MCU is reset in active background (halt) mode, CLKSW is set which selects the bus clock as the source of the BDC clock. This CLKSW setting is most commonly used during flash memory programming because the bus clock can usually be configured to operate at the highest allowed bus frequency to ensure the fastest possible flash programming times. Because the host system is in control of

MCF51MM256 Series Devices Reference Manual, Rev. 3

29-30 Freescale Semiconductor

changes to clock generator settings, it knows when a different BDC communication speed should be used. The host programmer also knows that no unexpected change in bus frequency could occur to disrupt BDC communications.

Normally, setting CLKSW should not be used for general debugging because there is no way to ensure the application program does not change the clock generator settings. This is especially true in the case of application programs that are not yet fully debugged.

After any reset (or at any other time), the host system can issue a SYNC command to determine the speed of the BDC clock. CLKSW may be written using the serial WRITE_XCSR_BYTE command through the BDC interface. CLKSW is located in the special XCSR byte register in the BDC module and it is not accessible in the normal memory map of the ColdFire core. This means that no program running on the processor can modify this register (intentionally or unintentionally).

The BKGD pin can receive a high- or low-level or transmit a high- or low-level. The following diagrams show timing for each of these cases. Interface timing is synchronous to clocks in the target BDC, but asynchronous to the external host. The internal BDC clock signal is shown for reference in counting cycles.

Figure 29-16 shows an external host transmitting a logic 1 or 0 to the BKGD pin of a target MCU. The host is asynchronous to the target so there is a 0–1 cycle delay from the host-generated falling edge to where the target perceives the beginning of the bit time. Ten target BDC clock cycles later, the target senses the bit level on the BKGD pin. Typically, the host actively drives the pseudo-open-drain BKGD pin during host-to-target transmissions to speed up rising edges. Because the target does not drive the BKGD pin during the host-to-target transmission period, there is no need to treat the line as an open-drain signal during this period.

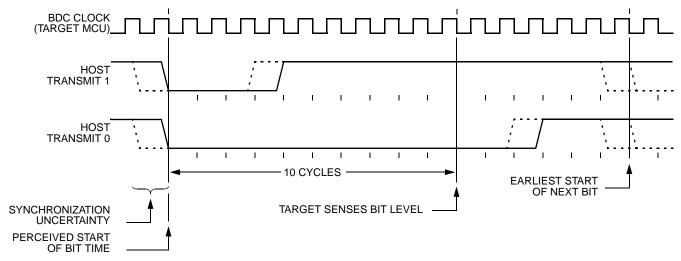


Figure 29-16. BDC Host-to-Target Serial Bit Timing

Figure 29-17 shows the host receiving a logic 1 from the target MCU. Because the host is asynchronous to the target MCU, there is a 0–1 cycle delay from the host-generated falling edge on BKGD to the perceived start of the bit time in the target MCU. The host holds the BKGD pin low long enough for the target to recognize it (at least two target BDC cycles). The host must release the low drive before the target

MCF51MM256 Series Devices Reference Manual, Rev. 3

MCU drives a brief active-high speedup pulse seven cycles after the perceived start of the bit time. The host should sample the bit level about 10 cycles after it started the bit time.

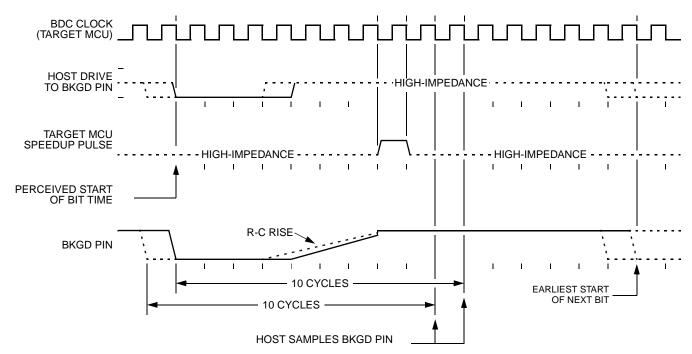


Figure 29-17. BDC Target-to-Host Serial Bit Timing (Logic 1)

Figure 29-18 shows the host receiving a logic 0 from the target MCU. Because the host is asynchronous to the target MCU, there is a 0–1 cycle delay from the host-generated falling edge on BKGD to the start of the bit time as perceived by the target MCU. The host initiates the bit time, but the target MCU finishes it. Because the target wants the host to receive a logic 0, it drives the BKGD pin low for 13 BDC clock cycles, then briefly drives it high to speed up the rising edge. The host samples the bit level about 10 cycles after starting the bit time.

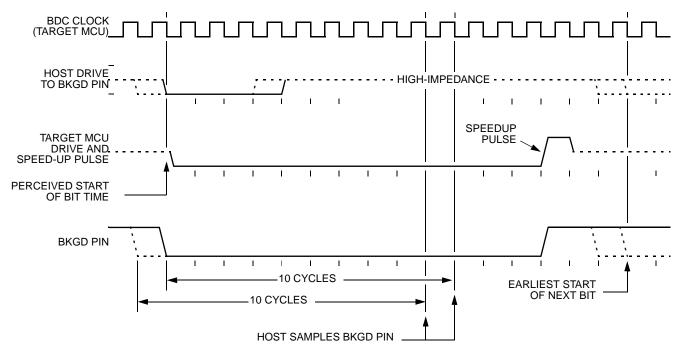
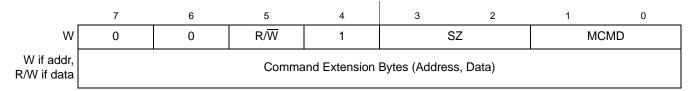
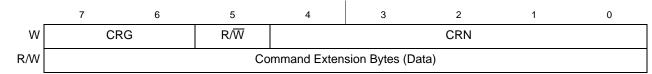


Figure 29-18. BDM Target-to-Host Serial Bit Timing (Logic 0)

29.4.1.4 BDM Command Set Descriptions

This section presents detailed descriptions of the BDM commands.


The V1 BDM command set is based on transmission of one or more 8-bit data packets per operation. Each operation begins with a host-to-target transmission of an 8-bit command code packet. The command code definition broadly maps the operations into four formats as shown in Figure 29-19.


Miscellaneous Commands

	7	6	5	4	3	2	1	0	
W	0	0	R/W	0		MSCMD			
R/W			Option	al Command E	xtension Byte	(Data)			

Memory Commands

Core Register Commands

PST Trace Buffer Read Commands

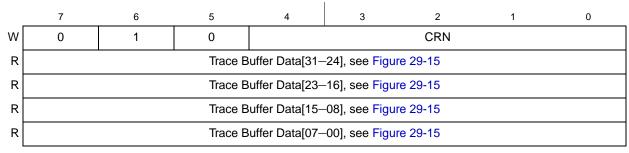


Figure 29-19. BDM Command Encodings

MCF51MM256 Series Devices Reference Manual, Rev. 3

29-34

Freescale Semiconductor

Table 29-24. BDM Command Field Descriptions

Field		Description									
5 R/W		Read/Write. 0 Command is performing a write operation. 1 Command is performing a read operation.									
3-0 MSCMD	0000 No opera 0001 Display t 0010 Enable tl 0011 Disable t 0100 Force a 0 1000 Resume 1101 Read/wr 1110 Read/wr	scellaneous command. Defines the miscellaneous command to be performed. No operation Display the CPU's program counter (PC) plus optional capture in the PST trace buffer Enable the BDM acknowledge communication mode Disable the BDM acknowledge communication mode Porce a CPU halt (background) Resume CPU execution (go) Read/write of the debug XCSR most significant byte Read/write of the debug CSR2 most significant byte Read/write of the debug CSR3 most significant byte									
3–2 SZ	Memory operar 00 8-bit byte 01 16-bit word 10 32-bit long	nd size. Defines the size	e of the memory reference.								
1–0 MCMD	00 Simple write 01 Write + stat 10 Fill if R/W =	and. Defines the type of e if $R/\overline{W} = 0$; simple read tus if $R/\overline{W} = 0$; read + state 0; dump if $R/\overline{W} = 1$ if $R/\overline{W} = 0$; dump + state	atus if $R/\overline{W} = 1$	erformed.							
7–6 CRG	01 CPU's generation 10 Debug's con	eral-purpose registers (A	egister group to be referenced. An, Dn) or PST trace buffer BR, CPUCR,)								
4–0 CRN	Core register n reserved.	umber. Defines the spec	cific core register (its number) t	to be referenced. All other CR	N values are						
		CRG	CRN	Register							
			0x00-0x07	D0-7	-						
		01	0x08-0x0F	A0-7	-						
			0x10-0x1B	PST Buffer 0–11	1						
		10	DRc[4:0] as desc	ribed in Table 29-4							
			0x00	OTHER_A7							
			0x01	VBR							
			0x02	CPUCR							
		11	0x04	MACSR							
			0x05	MASK							
			0x06	ACC							
			0x0E	SR							
			0x0F	PC							

29.4.1.5 BDM Command Set Summary

Table 29-25 summarizes the BDM command set. Subsequent paragraphs contain detailed descriptions of each command. The nomenclature below is used in Table 29-25 to describe the structure of the BDM commands.

Commands begin with an 8-bit hexadecimal command code in the host-to-target direction (most significant bit first)

```
separates parts of the command
d
                  delay 32 target BDC clock cycles
ad24
                  24-bit memory address in the host-to-target direction
rd8
                  8 bits of read data in the target-to-host direction
rd16
                  16 bits of read data in the target-to-host direction
rd32
                  32 bits of read data in the target-to-host direction
rd.sz
                  read data, size defined by sz, in the target-to-host direction
wd8
                  8 bits of write data in the host-to-target direction
wd16
                  16 bits of write data in the host-to-target direction
wd32
                  32 bits of write data in the host-to-target direction
                  write data, size defined by sz, in the host-to-target direction
wd.sz
SS
                  the contents of XCSR[31:24] in the target-to-host direction (STATUS)
sz
                  memory operand size (0b00 = byte, 0b01 = word, 0b10 = long)
                  core register number
crn
WS
                  command suffix signaling the operation is with status
```

Table 29-25. BDM Command Summary

Command Mnemonic	Command Classification	ACK if Enb? ¹	Command Structure	Description
SYNC	Always Available	N/A	N/A ²	Request a timed reference pulse to determine the target BDC communication speed
ACK_DISABLE	Always Available	No	0x03/d	Disable the communication handshake. This command does not issue an ACK pulse.
ACK_ENABLE	Always Available	Yes	0x02/d	Enable the communication handshake. Issues an ACK pulse after the command is executed.
BACKGROUND	Non-Intrusive	Yes	0x04/d	Halt the CPU if ENBDM is set. Otherwise, ignore as illegal command.
DUMP_MEM.sz	Non-Intrusive	Yes	(0x32+4 x sz)/d/rd.sz	Dump (read) memory based on operand size (sz). Used with READ_MEM to dump large blocks of memory. An initial READ_MEM is executed to set up the starting address of the block and to retrieve the first result. Subsequent DUMP_MEM commands retrieve sequential operands.

29-36 Freescale Semiconductor

Table 29-25. BDM Command Summary (Continued)

Command Mnemonic	Command Classification	ACK if Enb? ¹	Command Structure	Description
DUMP_MEM.sz_WS	Non-Intrusive	No	(0x33+4 x sz)/d/ss/rd.sz	Dump (read) memory based on operand size (sz) and report status. Used with READ_MEM{_WS} to dump large blocks of memory. An initial READ_MEM{_WS} is executed to set up the starting address of the block and to retrieve the first result. Subsequent DUMP_MEM{_WS} commands retrieve sequential operands.
FILL_MEM.sz	Non-Intrusive	Yes	(0x12+4 x sz)/wd.sz/d	Fill (write) memory based on operand size (sz). Used with WRITE_MEM to fill large blocks of memory. An initial WRITE_MEM is executed to set up the starting address of the block and to write the first operand. Subsequent FILL_MEM commands write sequential operands.
FILL_MEM.sz_WS	Non-Intrusive	No	(0x13+4 x sz)/wd.sz/d/ss	Fill (write) memory based on operand size (sz) and report status. Used with WRITE_MEM{_WS} to fill large blocks of memory. An initial WRITE_MEM{_WS} is executed to set up the starting address of the block and to write the first operand. Subsequent FILL_MEM{_WS} commands write sequential operands.
GO	Non-Intrusive	Yes	0x08/d	Resume the CPU's execution ³
NOP	Non-Intrusive	Yes	0x00/d	No operation
READ_CREG	Active Background	Yes	(0xE0+CRN)/d/rd32	Read one of the CPU's control registers
READ_DREG	Non-Intrusive	Yes	(0xA0+CRN)/d/rd32	Read one of the debug module's control registers
READ_MEM.sz	Non-Intrusive	Yes	(0x30+4 x sz)/ad24/d/rd.sz	Read the appropriately-sized (sz) memory value from the location specified by the 24-bit address
READ_MEM.sz_WS	Non-Intrusive	No	(0x31+4 x sz)/ad24/d/ss/rd.sz	Read the appropriately-sized (sz) memory value from the location specified by the 24-bit address and report status
READ_PSTB	Non-Intrusive	Yes	(0x40+CRN)/d/rd32	Read the requested longword location from the PST trace buffer
READ_Rn	Active Background	Yes	(0x60+CRN)/d/rd32	Read the requested general-purpose register (An, Dn) from the CPU
READ_XCSR_BYTE	Always Available	No	0x2D/rd8	Read the most significant byte of the debug module's XCSR
READ_CSR2_BYTE	Always Available	No	0x2E/rd8	Read the most significant byte of the debug module's CSR2
READ_CSR3_BYTE	Always Available	No	0x2F/rd8	Read the most significant byte of the debug module's CSR3

Table 29-25. BDM Command Summary (Continued)

Command Mnemonic	Command Classification	ACK if Enb? ¹	Command Structure	Description
SYNC_PC	Non-Intrusive	Yes	0x01/d	Display the CPU's current PC and capture it in the PST trace buffer
WRITE_CREG	Active Background	Yes	(0xC0+CRN)/wd32/d	Write one of the CPU's control registers
WRITE_DREG	Non-Intrusive	Yes	(0x80+CRN)/wd32/d	Write one of the debug module's control registers
WRITE_MEM.sz	Non-Intrusive	Yes	(0x10+4 x sz)/ad24/wd.sz/d	Write the appropriately-sized (sz) memory value to the location specified by the 24-bit address
WRITE_MEM.sz_WS	Non-Intrusive	No	(0x11+4 x sz)/ad24/wd.sz/d/ss	Write the appropriately-sized (sz) memory value to the location specified by the 24-bit address and report status
WRITE_Rn	Active Background	Yes	(0x40+CRN)/wd32/d	Write the requested general-purpose register (An, Dn) of the CPU
WRITE_XCSR_BYTE	Always Available	No	0x0D/wd8	Write the most significant byte of the debug module's XCSR
WRITE_CSR2_BYTE	Always Available	No	0x0E/wd8	Write the most significant byte of the debug module's CSR2
WRITE_CSR3_BYTE	Always Available	No	0x0F/wd8	Write the most significant byte of the debug module's CSR3

¹ This column identifies if the command generates an ACK pulse if operating with acknowledge mode enabled. See Section 29.4.1.5.3, "ACK_ENABLE," for addition information.

29.4.1.5.1 SYNC

The SYNC command is unlike other BDC commands because the host does not necessarily know the correct speed to use for serial communications until after it has analyzed the response to the SYNC command.

To issue a SYNC command, the host:

- 1. Drives the BKGD pin low for at least 128 cycles of the slowest possible BDC clock (bus clock or device-specific alternate clock source).
- 2. Drives BKGD high for a brief speed-up pulse to get a fast rise time. (This speedup pulse is typically one cycle of the host clock which is as fast as the maximum target BDC clock.)
- 3. Removes all drive to the BKGD pin so it reverts to high impedance.
- 4. Listens to the BKGD pin for the sync response pulse.

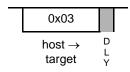
Upon detecting the sync request from the host (which is a much longer low time than would ever occur during normal BDC communications), the target:

1. Waits for BKGD to return to a logic high.

29-38 Freescale Semiconductor

² The SYNC command is a special operation which does not have a command code.

³ If a GO command is received while the processor is not halted, it performs no operation.

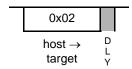

- 2. Delays 16 cycles to allow the host to stop driving the high speed-up pulse.
- 3. Drives BKGD low for 128 BDC clock cycles.
- 4. Drives a 1-cycle high speed-up pulse to force a fast rise time on BKGD.
- 5. Removes all drive to the BKGD pin so it reverts to high impedance.

The host measures the low time of this 128-cycle sync response pulse and determines the correct speed for subsequent BDC communications. Typically, the host can determine the correct communication speed within a few percent of the actual target speed and the serial protocol can easily tolerate this speed error.

29.4.1.5.2 ACK DISABLE

Disable host/target handshake protocol

Always Available



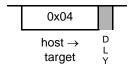
Disables the serial communication handshake protocol. The subsequent commands, issued after the ACK_DISABLE command, do not execute the hardware handshake protocol. This command is not followed by an ACK pulse.

29.4.1.5.3 ACK_ENABLE

Enable host/target handshake protocol

Always Available

Enables the hardware handshake protocol in the serial communication. The hardware handshake is implemented by an acknowledge (ACK) pulse issued by the target MCU in response to a host command. The ACK_ENABLE command is interpreted and executed in the BDC logic without the need to interface with the CPU. However, an acknowledge (ACK) pulse is issued by the target device after this command is executed. This feature can be used by the host to evaluate if the target supports the hardware handshake protocol. If the target supports the hardware handshake protocol, subsequent commands are enabled to execute the hardware handshake protocol, otherwise this command is ignored by the target.


For additional information about the hardware handshake protocol, refer to Section 29.4.1.6, "Serial Interface Hardware Handshake Protocol," and Section 29.4.1.7, "Hardware Handshake Abort Procedure."

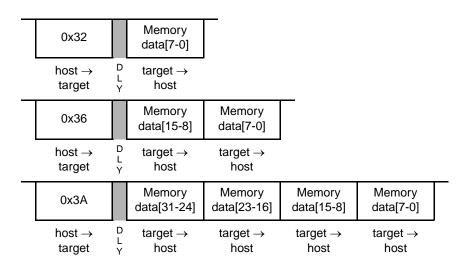
29.4.1.5.4 BACKGROUND

Enter active background mode (if enabled)

Non-intrusive

Provided XCSR[ENBDM] is set (BDM enabled), the BACKGROUND command causes the target MCU to enter active background (halt) mode as soon as the current CPU instruction finishes. If ENBDM is cleared (its default value), the BACKGROUND command is ignored.

A delay of 32 BDC clock cycles is required after the BACKGROUND command to allow the target MCU to finish its current CPU instruction and enter active background mode before a new BDC command can be accepted.

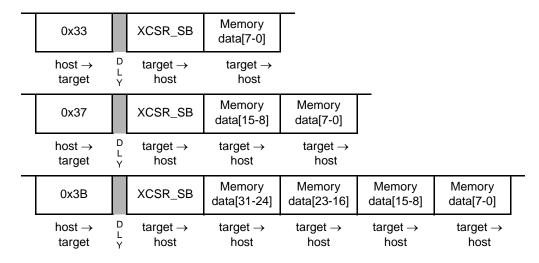

After the target MCU is reset into a normal operating mode, the host debugger would send a WRITE_XCSR_BYTE command to set ENBDM before attempting to send the BACKGROUND command the first time. Normally, the development host would set ENBDM once at the beginning of a debug session or after a target system reset, and then leave the ENBDM bit set during debugging operations. During debugging, the host would use GO commands to move from active background mode to normal user program execution and would use BACKGROUND commands or breakpoints to return to active background mode.

29.4.1.5.5 DUMP MEM.sz, DUMP MEM.sz WS

DUMP_MEM.sz

Read memory specified by debug address register, then increment address

Non-intrusive


29-40 Freescale Semiconductor

DUMP_MEM.sz_WS

Read memory specified by debug address register with status, then increment address

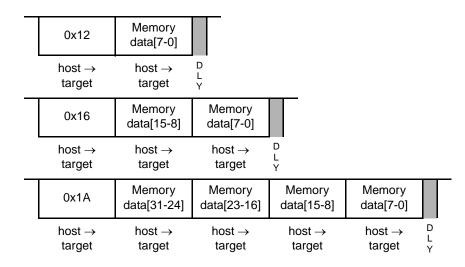
Non-intrusive

DUMP_MEM{_WS} is used with the READ_MEM{_WS} command to access large blocks of memory. An initial READ_MEM{_WS} is executed to set-up the starting address of the block and to retrieve the first result. If an initial READ_MEM{_WS} is not executed before the first DUMP_MEM{_WS}, an illegal command response is returned. The DUMP_MEM{_WS} command retrieves subsequent operands. The initial address is incremented by the operand size (1, 2, or 4) and saved in a temporary register. Subsequent DUMP_MEM{_WS} commands use this address, perform the memory read, increment it by the current operand size, and store the updated address in the temporary register. If the with-status option is specified, the core status byte (XCSR_SB) contained in XCSR[31–24] is returned before the read data. XCSR_SB reflects the state after the memory read was performed.

NOTE

DUMP_MEM{_WS} does not check for a valid address; it is a valid command only when preceded by NOP, READ_MEM{_WS}, or another DUMP_MEM{_WS} command. Otherwise, an illegal command response is returned. NOP can be used for inter-command padding without corrupting the address pointer.

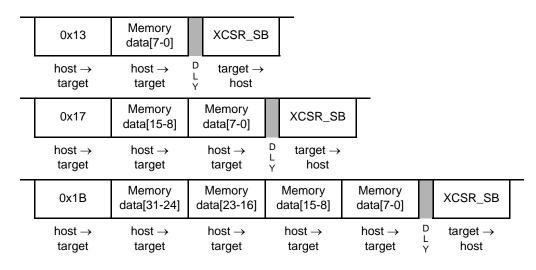
The size field (sz) is examined each time a DUMP_MEM{_WS} command is processed, allowing the operand size to be dynamically altered. The examples show the DUMP_MEM.B{_WS}, DUMP_MEM.W{_WS} and DUMP_MEM.L{_WS} commands.



29.4.1.5.6 FILL_MEM.sz, FILL_MEM.sz_WS

FILL_MEM.sz

Write memory specified by debug address register, then increment address


Non-intrusive

FILL MEM.sz WS

Write memory specified by debug address register with status, then increment address

Non-intrusive

FILL_MEM{_WS} is used with the WRITE_MEM{_WS} command to access large blocks of memory. An initial WRITE_MEM{_WS} is executed to set up the starting address of the block and write the first datum. If an initial WRITE_MEM{_WS} is not executed before the first FILL_MEM{_WS}, an illegal command response is returned. The FILL_MEM{_WS} command stores subsequent operands. The initial address is incremented by the operand size (1, 2, or 4) and saved in a temporary register. Subsequent WRITE_MEM{_WS} commands use this address, perform the memory write, increment it by the current operand size, and store the updated address in the temporary register. If the with-status option is specified,

29-42 Freescale Semiconductor

the core status byte (XCSR_SB) contained in XCSR[31–24] is returned after the write data. XCSR_SB reflects the state after the memory write was performed.

NOTE

FILL_MEM{_WS} does not check for a valid address; it is a valid command only when preceded by NOP, WRITE_MEM{_WS}, or another FILL_MEM{_WS} command. Otherwise, an illegal command response is returned. NOP can be used for intercommand padding without corrupting the address pointer.

The size field (sz) is examined each time a FILL_MEM{_WS} command is processed, allowing the operand size to be dynamically altered. The examples show the FILL_MEM.B{_WS}, FILL_MEM.W{_WS} and FILL_MEM.L{_WS} commands.

29.4.1.5.7 GO

This command is used to exit active background (halt) mode and begin (or resume) execution of the application's instructions. The CPU's pipeline is flushed and refilled before normal instruction execution resumes. Prefetching begins at the current address in the PC and at the current privilege level. If any register (such as the PC or SR) is altered by a BDM command while the processor is halted, the updated value is used when prefetching resumes. If a GO command is issued and the CPU is not halted, the command is ignored.

29.4.1.5.8 NOP

NOP performs no operation and may be used as a null command where required.

29.4.1.5.9 **READ_CREG**

Read CPU control register

Active Background

0xE0+CRN		CREG data [31-24]	CREG data [23-16]	CREG data [15-8]	CREG data [7-0]
host → target	D L Y	target → host	$\begin{array}{c} \text{target} \rightarrow \\ \text{host} \end{array}$	$\begin{array}{c} \text{target} \rightarrow \\ \text{host} \end{array}$	target → host

If the processor is halted, this command reads the selected control register and returns the 32-bit result. This register grouping includes the PC, SR, CPUCR, MACSR, MASK, ACC, VBR, and OTHER_A7. Accesses to processor control registers are always 32-bits wide, regardless of implemented register width. The register is addressed through the core register number (CRN). See Table 29-24 for the CRN details when CRG is 11.

If the processor is not halted, this command is rejected as an illegal operation and no operation is performed.

29.4.1.5.10 READ_DREG

Read debug control register

Non-intrusive

0xA0+CRN		DREG data [31-24]	DREG data [23-16]	DREG data [15-8]	DREG data [7-0]
host → target	D L Y	target → host	target → host	target → host	target → host

This command reads the selected debug control register and returns the 32-bit result. This register grouping includes the CSR, XCSR, CSR2, and CSR3. Accesses to debug control registers are always 32-bits wide, regardless of implemented register width. The register is addressed through the core register number (CRN). See Table 29-4 for CRN details.

29.4.1.5.11 READ_MEM.sz, READ_MEM.sz_WS

READ_MEM.sz

Read memory at the specified address

Non-intrusive

	0x30	Address[23-0]		Memory data[7-0]				
•	host → target	host → target	D L Y	target → host				
	0x34	Address[23-0]		Memory data[15-8]	Memory data[7-0]	_		
•	host → target	host → target	D L Y	target → host	target → host			
	0x38	Address[23-0]		Memory data[31-24]	Memory data[23-16]	Memory data[15-8]	Memory data[7-0]	
•	host → target	host → target	D L Y	target → host	target → host	target → host	target → host	

READ_MEM.sz_WS

Read memory at the specified address with status

Non-intrusive

0x31	Address[23-0]		XCSR_SB	Memory data[7-0]			
host → target	host → target	D L Y	target → host	target → host			
0x35	Address[23-0]		XCSR_SB	Memory data [15-8]	Memory data [7-0]		
host → target	host → target	D L Y	target → host	target → host	target → host		
0x39	Address[23-0]		XCSR_SB	Memory data[31-24]	Memory data[23-16]	Memory data [15-8]	Memory data [7-0]
host → target	host → target	D L Y	target → host	target → host	target → host	target → host	target → host

Read data at the specified memory address. The reference address is transmitted as three 8-bit packets (msb to lsb) immediately after the command packet. The access attributes are defined by BAAR[TT,TM]. The hardware forces low-order address bits to zeros for word and longword accesses to ensure these accesses are on 0-modulo-size alignments. If the with-status option is specified, the core status byte (XCSR_SB) contained in XCSR[31–24] is returned before the read data. XCSR_SB reflects the state after the memory read was performed.

The examples show the READ_MEM.B{_WS}, READ_MEM.W{_WS} and READ_MEM.L{_WS} commands.

29.4.1.5.12 READ_PSTB

Read PST trace buffer at the specified address

Non-intrusive

0x40+CRN		PSTB data [31-24]	PSTB data [23-16]	PSTB data [15-8]	PSTB data [7-0]
host → target	D L Y	target → host	$\begin{array}{c} \text{target} \rightarrow \\ \text{host} \end{array}$	target → host	target → host

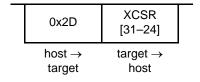
Read 32 bits of captured PST/DDATA values from the trace buffer at the specified address. The PST trace buffer contains 64 six-bit entries, packed consecutively into 12 longword locations. See Figure 29-15 for an illustration of how the buffer entries are packed.

29.4.1.5.13 READ_Rn

Read general-purpose CPU register

Active Background

0x60+CRN		Rn data [31–24]	Rn data [23–16]	Rn data [15–8]	Rn data [7–0]	
host → target	D L Y	target → host	target → host	target → host	target → host	-


If the processor is halted, this command reads the selected CPU general-purpose register (An, Dn) and returns the 32-bit result. See Table 29-24 for the CRN details when CRG is 01.

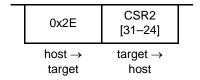
If the processor is not halted, this command is rejected as an illegal operation and no operation is performed.

29.4.1.5.14 READ XCSR BYTE

Read XCSR Status Byte

Always Available

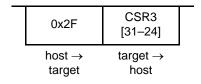
Read the special status byte of XCSR (XCSR[31–24]). This command can be executed in any mode.


29-46 Freescale Semiconductor

29.4.1.5.15 READ_CSR2_BYTE

Read CSR2 Status Byte

Always Available

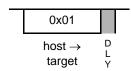


Read the most significant byte of CSR2 (CSR2[31–24]). This command can be executed in any mode.

29.4.1.5.16 READ CSR3 BYTE

Read CSR3 Status Byte

Always Available



Read the most significant byte of the CSR3 (CSR3[31–24]). This command can be executed in any mode.

29.4.1.5.17 SYNC_PC

Synchronize PC to PST/DDATA Signals

Non-intrusive

Capture the processor's current PC (program counter) and display it on the PST/DDATA signals. After the debug module receives the command, it sends a signal to the ColdFire core that the current PC must be displayed. The core responds by forcing an instruction fetch to the next PC with the address being captured by the DDATA logic. The DDATA logic captures a 2- or 3-byte instruction address, based on CSR[9]. If CSR[9] is cleared, then a 2-byte address is captured, else a 3-byte address is captured. The specific sequence of PST and DDATA values is defined as:

- 1. Debug signals a SYNC PC command is pending.
- 2. CPU completes the current instruction.
- 3. CPU forces an instruction fetch to the next PC, generating a PST = 0x5 value indicating a taken branch. DDATA captures the instruction address corresponding to the PC. DDATA generates a PST marker signalling a 2- or 3-byte address as defined by CSR[9] (CSR[9] = 0, 2-byte; CSR[9] = 1, 3-byte) and displays the captured PC address.

This command can be used to provide a PC synchronization point between the core's execution and the application code in the PST trace buffer. It can also be used to dynamically access the PC for performance

monitoring as the execution of this command is considerably less obtrusive to the real-time operation of an application than a BACKGROUND/read-PC/GO command sequence.

29.4.1.5.18 WRITE_CREG

Write CPU control register

Active Background

0xC0+CRN	CREG data [31–24]	CREG data [23–16]	CREG data [15–8]	CREG data [7–0]		
host → target	host → target	host → target	host → target	host → target	D L Y	

If the processor is halted, this command writes the 32-bit operand to the selected control register. This register grouping includes the PC, SR, CPUCR, MACSR, MASK, ACC, VBR, and OTHER_A7. Accesses to processor control registers are always 32-bits wide, regardless of implemented register width. The register is addressed through the core register number (CRN). See Table 29-24 for the CRN details when CRG is 11.

If the processor is not halted, this command is rejected as an illegal operation and no operation is performed.

29.4.1.5.19 WRITE DREG

Write debug control register

Non-intrusive

-	0x80+CRN	DREG data [31–24]	DREG data [23–16]	DREG data [15–8]	DREG data [7–0]	
	host → target	host → target	host → target	host → target	host → target	D L Y

This command writes the 32-bit operand to the selected debug control register. This grouping includes all the debug control registers ({X}CSR*n*, BAAR, AATR, TDR, PBR*n*, PBMR, AB*x*R, DBR, DBMR). Accesses to debug control registers are always 32-bits wide, regardless of implemented register width. The register is addressed through the core register number (CRN). See Table 29-4 for CRN details.

NOTE

When writing XCSR, CSR2, or CSR3, WRITE_DREG only writes bits 23–0. The upper byte of these debug registers is only written with the special WRITE_XCSR_BYTE, WRITE_CSR2_BYTE, and WRITE_CSR3_BYTE commands.

29.4.1.5.20 WRITE_MEM.sz, WRITE_MEM.sz_WS

WRITE_MEM.sz

Write memory at the specified address

Non-intrusive

	0x10	Address[23-0]	Memory data[7–0]				
	host → target	$host \rightarrow target$	host → target	D L Y			
	0x14	Address[23-0]	Memory data[15–8]	Memory data[7–0]			
-	host → target	$host \rightarrow target$	host → target	host → target	D L Y		
	0x18	Address[23-0]	Memory data[31–24]	Memory data[23–16]	Memory data[15–8]	Memory data[7–0]	
-	host → target	$host \to target$	host → target	host → target	host → target	host → target	D L Y

WRITE_MEM.sz_WS

Write memory at the specified address with status

Non-intrusive

0x11	Address[23-0]	Memory data[7–0]	XCSR_SE	3			
host → target	host → target	host → target	$\begin{array}{c} D \\ L \\ Y \end{array} \begin{array}{c} target \rightarrow \\ host \end{array}$				
0x15	Address[23-0]	Memory data[15–8]	Memory data[7–0]	XCSR_SB			
host → target	host → target	host → target	host → target	$\begin{array}{c} D \\ L \\ Y \end{array} \begin{array}{c} target \rightarrow \\ host \end{array}$	_		
0x19	Address[23-0]	Memory data[31–24]	Memory data[23–16]	Memory data[15–8]	Memory data[7–0]		XCSR_SB
host → target	host → target	host → target	host → target	host → target	host → target	D L Y	target → host

Write data at the specified memory address. The reference address is transmitted as three 8-bit packets (msb to lsb) immediately after the command packet. The access attributes are defined by BAAR[TT,TM]. The hardware forces low-order address bits to zeros for word and longword accesses to ensure these accesses are on 0-modulo-size alignments. If the with-status option is specified, the core status byte (XCSR_SB) contained in XCSR[31–24] is returned after the read data. XCSR_SB reflects the state after the memory write was performed.

The examples show the WRITE_MEM.B{_WS}, WRITE_MEM.W{_WS}, and WRITE_MEM.L{_WS} commands.

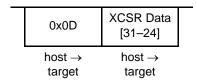
MCF51MM256 Series Devices Reference Manual, Rev. 3

29.4.1.5.21 WRITE_Rn

Write general-purpose CPU register

Active Background

0y40±CRN		Rn data [23–16]	Rn data [15–8]	Rn data [7–0]		
host → target	host → target	host → target	host → target	host → target	D L Y	

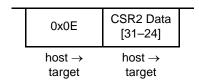

If the processor is halted, this command writes the 32-bit operand to the selected CPU general-purpose register (An, Dn). See Table 29-24 for the CRN details when CRG is 01.

If the processor is not halted, this command is rejected as an illegal operation and no operation is performed.

29.4.1.5.22 WRITE XCSR BYTE

Write XCSR Status Byte

Always Available

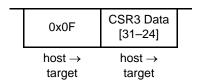


Write the special status byte of XCSR (XCSR[31–24]). This command can be executed in any mode.

29.4.1.5.23 WRITE_CSR2_BYTE

Write CSR2 Status Byte

Always Available



Write the most significant byte of CSR2 (CSR2[31–24]). This command can be executed in any mode.

29.4.1.5.24 WRITE CSR3 BYTE

Write CSR3 Status Byte

Always Available

Write the most significant byte of CSR3 (CSR3[31–24]). This command can be executed in any mode.

MCF51MM256 Series Devices Reference Manual, Rev. 3

29-50 Freescale Semiconductor

29.4.1.5.25 BDM Accesses of the MAC Registers

The presence of rounding logic in the output datapath of the MAC requires special care for BDM-initiated reads and writes of its programming model. In particular, any result rounding modes must be disabled during the read/write process so the exact bit-wise MAC register contents are accessed.

For example, a BDM read of the accumulator (ACC) must be preceded by two commands accessing the MAC status register, as shown in the following sequence:

Likewise, to write an accumulator register, the following BDM sequence is needed:

For more information on saving and restoring the complete MAC programming model, see Section 8.3.1.2, "Saving and Restoring the MAC Programming Model."

29.4.1.6 Serial Interface Hardware Handshake Protocol

BDC commands that require CPU execution are ultimately treated at the core clock rate. Because the BDC clock source can be asynchronous relative to the bus frequency when CLKSW is cleared, it is necessary to provide a handshake protocol so the host can determine when an issued command is executed by the CPU. This section describes this protocol.

The hardware handshake protocol signals to the host controller when an issued command was successfully executed by the target. This protocol is implemented by a low pulse (16 BDC clock cycles) followed by a brief speedup pulse on the BKGD pin, generated by the target MCU when a command, issued by the host, has been successfully executed. See Figure 29-20. This pulse is referred to as the ACK pulse. After the ACK pulse is finished, the host can start the data-read portion of the command if the last-issued command was a read command, or start a new command if the last command was a write command or a control command (BACKGROUND, GO, NOP, SYNC_PC). The ACK pulse is not issued earlier than 32 BDC clock cycles after the BDC command was issued. The end of the BDC command is assumed to be the 16th BDC clock cycle of the last bit. This minimum delay assures enough time for the host to recognize the ACK pulse. There is no upper limit for the delay between the command and the related ACK pulse, because the command execution depends on the CPU bus frequency, which in some cases could be slow compared to the serial communication rate. This protocol allows great flexibility for pod designers, because it does not rely on any accurate time measurement or short response time to any event in the serial communication.

MCF51MM256 Series Devices Reference Manual, Rev. 3

Freescale Semiconductor

29-51

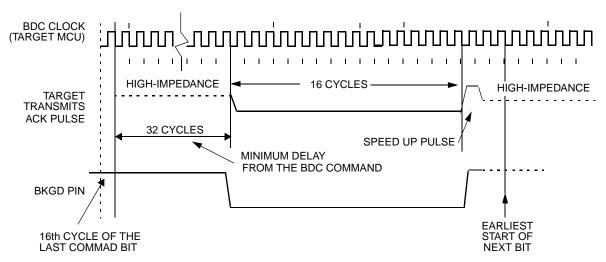


Figure 29-20. Target Acknowledge Pulse (ACK)

NOTE

If the ACK pulse was issued by the target, the host assumes the previous command was executed. If the CPU enters a stop mode prior to executing a non-intrusive command, the command is discarded and the ACK pulse is not issued. After entering a stop mode, the BDC command is no longer pending and the XCSR[CSTAT] value of 001 is kept until the next command is successfully executed.

Figure 29-21 shows the ACK handshake protocol in a command level timing diagram. A READ_MEM.B command is used as an example:

- 1. The 8-bit command code is sent by the host, followed by the address of the memory location to be read.
- 2. The target BDC decodes the command and sends it to the CPU.
- 3. Upon receiving the BDC command request, the CPU schedules a execution slot for the command.
- 4. The CPU temporarily stalls the instruction stream at the scheduled point, executes the READ_MEM.B command and then continues.

This process is referred to as cycle stealing. The READ_MEM.B appears as a single-cycle operation to the processor, even though the pipelined nature of the Operand Execution Pipeline requires multiple CPU clock cycles for it to actually complete. After that, the debug module tracks the execution of the READ_MEM.b command as the processor resumes the normal flow of the application program. After detecting the READ_MEM.B command is done, the BDC issues an ACK pulse to the host controller, indicating that the addressed byte is ready to be retrieved. After detecting the ACK pulse, the host initiates the data-read portion of the command.

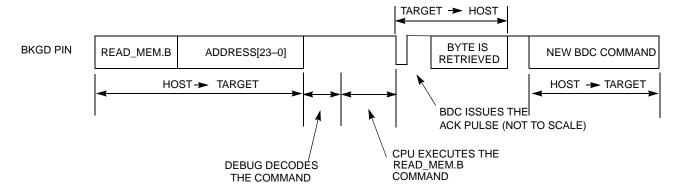


Figure 29-21. Handshake Protocol at Command Level

Unlike a normal bit transfer, where the host initiates the transmission by issuing a negative edge in the BKGD pin, the serial interface ACK handshake pulse is initiated by the target MCU. The hardware handshake protocol in Figure 29-21 specifies the timing when the BKGD pin is being driven, so the host should follow these timing relationships to avoid the risks of an electrical conflict at the BKGD pin.

The ACK handshake protocol does not support nested ACK pulses. If a BDC command is not acknowledged by an ACK pulse, the host first needs to abort the pending command before issuing a new BDC command. When the CPU enters a stop mode at about the same time the host issues a command that requires CPU execution, the target discards the incoming command. Therefore, the command is not acknowledged by the target, meaning that the ACK pulse is not issued in this case. After a certain time, the host could decide to abort the ACK protocol to allow a new command. Therefore, the protocol provides a mechanism where a command (a pending ACK) could be aborted. Unlike a regular BDC command, the ACK pulse does not provide a timeout. In the case of a STOP instruction where the ACK is prevented from being issued, it would remain pending indefinitely if not aborted. See the handshake abort procedure described in Section 29.4.1.7, "Hardware Handshake Abort Procedure."

29.4.1.7 Hardware Handshake Abort Procedure

The abort procedure is based on the SYNC command. To abort a command that has not responded with an ACK pulse, the host controller generates a sync request (by driving BKGD low for at least 128 serial clock cycles and then driving it high for one serial clock cycle as a speedup pulse). By detecting this long low pulse on the BKGD pin, the target executes the sync protocol (see Section 29.4.1.5.1, "SYNC"), and assumes that the pending command and therefore the related ACK pulse, are being aborted. Therefore, after the sync protocol completes, the host is free to issue new BDC commands.

Because the host knows the target BDC clock frequency, the SYNC command does not need to consider the lowest possible target frequency. In this case, the host could issue a SYNC close to the 128 serial clock cycles length, providing a small overhead on the pulse length to assure the sync pulse is not misinterpreted by the target.

It is important to notice that any issued BDC command that requires CPU execution is scheduled for execution by the pipeline based on the dynamic state of the machine, provided the processor does not enter any of the stop modes. If the host aborts a command by sending the sync pulse, it should then read XCSR[CSTAT] after the sync response is issued by the target, checking for CSTAT cleared, before

attempting to send any new command that requires CPU execution. This prevents the new command from being discarded at the debug/CPU interface, due to the pending command being executed by the CPU. Any new command should be issued only after XCSR[CSTAT] is cleared.

There are multiple reasons that could cause a command to take too long to execute, measured in terms of the serial communication rate: The BDC clock frequency could be much faster than the CPU clock frequency, or the CPU could be accessing a slow memory, which would cause pipeline stall cycles to occur. All commands referencing the CPU registers or memory require access to the processor's local bus to complete. If the processor is executing a tight loop contained within a single aligned longword, the processor may never successfully grant the internal bus to the debug command. For example:

```
align 4
label1: nop bra.b label1
or align 4
label2: bra.w label2
```

These two examples of tight loops exhibit the BDM lockout behavior. If the loop spans across two longwords, there are no issues, so the recommended construct is:

```
align 4 label3: bra.l label3
```

The hardware handshake protocol is appropriate for these situations, but the host could also decide to use the software handshake protocol instead. In this case, if XCSR[CSTAT] is 001, there is a BDC command pending at the debug/CPU interface. The host controller should monitor XCSR[CSTAT] and wait until it is 000 to be able to issue a new command that requires CPU execution. However, if the XCSR[CSTAT] is 1xx, the host should assume the last command failed to execute. To recover from this condition, the following sequence is suggested:

- 1. Issue a SYNC command to reset the BDC communication channel.
- 2. The host issues a BDM NOP command.
- 3. The host reads the channel status using a READ_XCSR_BYTE command.
- 4. If XCSR[CSTAT] is 000 then the status is okay; proceed else

 Halt the CPU using a BDM BACKGROUND command Repeat steps 1,2,3

 If XCSR[CSTAT] is 000, then proceed, else reset the device

Figure 29-22 shows a SYNC command aborting a READ_MEM.B. After the command is aborted, a new command could be issued by the host.

NOTE

Figure 29-22 signal timing is not drawn to scale.

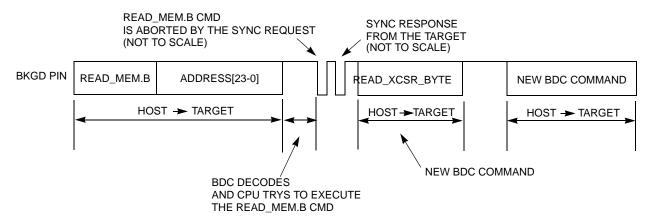


Figure 29-22. ACK Abort Procedure at the Command Level

Figure 29-23 a shows a conflict between the ACK pulse and the sync request pulse. This conflict could occur if a pod device is connected to the target BKGD pin and the target is already executing a BDC command. Consider that the target CPU is executing a pending BDC command at the exact moment the pod is being connected to the BKGD pin. In this case, an ACK pulse is issued at the same time as the SYNC command. In this case there is an electrical conflict between the ACK speedup pulse and the sync pulse. Because this is not a probable situation, the protocol does not prevent this conflict from happening.

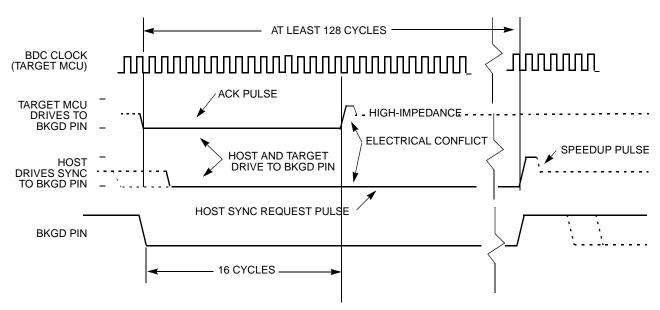


Figure 29-23. ACK Pulse and SYNC Request Conflict

The hardware handshake protocol is enabled by the ACK_ENABLE command and disabled by the ACK_DISABLE command. It also allows for pod devices to choose between the hardware handshake protocol or the software protocol that monitors the XCSR status byte. The ACK_ENABLE and ACK_DISABLE commands are:

ACK_ENABLE — Enables the hardware handshake protocol. The target issues the ACK pulse
when a CPU command is executed. The ACK_ENABLE command itself also has the ACK pulse
as a response.

MCF51MM256 Series Devices Reference Manual, Rev. 3

• ACK_DISABLE — Disables the ACK pulse protocol. In this case, the host should verify the state of XCSR[CSTAT] to evaluate if there are pending commands and to check if the CPU's operating state has changed to or from active background mode via XCSR[31–30].

The default state of the protocol, after reset, is hardware handshake protocol disabled.

The commands that do not require CPU execution, or that have the status register included in the retrieved bit stream, do not perform the hardware handshake protocol. Therefore, the target does not respond with an ACK pulse for those commands even if the hardware protocol is enabled. Conversely, only commands that require CPU execution and do not include the status byte perform the hardware handshake protocol. See the third column in Table 29-25 for the complete enumeration of this function.

An exception is the ACK_ENABLE command, which does not require CPU execution but responds with the ACK pulse. This feature can be used by the host to evaluate if the target supports the hardware handshake protocol. If an ACK pulse is issued in response to this command, the host knows that the target supports the hardware handshake protocol. If the target does not support the hardware handshake protocol the ACK pulse is not issued. In this case, the ACK_ENABLE command is ignored by the target, because it is not recognized as a valid command.

29.4.2 Real-Time Debug Support

The ColdFire family supports debugging real-time applications. For these types of embedded systems, the processor must continue to operate during debug. The foundation of this area of debug support is that while the processor cannot be halted to allow debugging, the system can generally tolerate the small intrusions with minimal effect on real-time operation.

NOTE

The details regarding real-time debug support will be supplied at a later time.

29.4.3 Trace Support

For the baseline V1 ColdFire core and its single debug signal, support for trace functionality is completely redefined. The V1 solution provides an on-chip PST/DDATA trace buffer (known as the PSTB) to record the stream of PST and DDATA values.

As a review, the classic ColdFire debug architecture supports real-time trace via the PST/DDATA output signals. For this functionality, the following apply:

- One (or more) PST value is generated for each executed instruction
- Branch target instruction address information is displayed on all non-PC-relative change-of-flow instructions, where the user selects a programmable number of bytes of target address
 - Displayed information includes PST marker plus target instruction address as DDATA
 - Captured address creates the appropriate number of DDATA entries, each with 4 bits of address
- Optional data trace capabilities are provided for accesses mapped to the slave peripheral bus
 - Displayed information includes PST marker plus captured operand value as DDATA
 - Captured operand creates the appropriate number of DDATA entries, each with 4 bits of data

MCF51MM256 Series Devices Reference Manual, Rev. 3

29-56 Freescale Semiconductor

The resulting PST/DDATA output stream, with the application program memory image, provides an instruction-by-instruction dynamic trace of the execution path.

Even with the application of a PST trace buffer, problems associated with the PST bandwidth and associated fill rate of the buffer remain. Given that there is one (or more) PST entry per instruction, the PSTB would fill rapidly without some type of data compression.

Consider the following example to illustrate the PST compression algorithm. Most sequential instructions generate a single PST = 1 value. Without compression, the execution of ten sequential instructions generates a stream of ten PST = 1 values. With PST compression, the reporting of any PST = 1 value is delayed so that consecutive PST = 1 values can be accumulated. When a PST \neq 1 value is reported, the maximum accumulation count is reached, or a debug data value is captured, a single accumulated PST value is generated. Returning to the example with compression enabled, the execution of ten sequential instructions generates a single PST value indicating ten sequential instructions have been executed.

This technique has proven to be effective at significantly reducing the average PST entries per instruction and PST entries per machine cycle. The application of this compression technique makes the application of a useful PST trace buffer for the V1 ColdFire core realizable. The resulting 5-bit PST definitions are shown in Table 29-26.

Table 29-26. CF1 Debug Processor Status Encodings

PST[4:0]	Definition
0x00	Continue execution. Many instructions execute in one processor cycle. If an instruction requires more processor clock cycles, subsequent clock cycles are indicated by driving PST with this encoding.
0x01	Begin execution of one instruction. For most instructions, this encoding signals the first processor clock cycle of an instruction's execution. Certain change-of-flow opcodes, plus the PULSE and WDDATA instructions, generate different encodings.
0x02	Reserved
0x03	Entry into user-mode. Signaled after execution of the instruction that caused the ColdFire processor to enter user mode.
0x04	Begin execution of PULSE and WDDATA instructions. PULSE defines triggers or markers for debug and/or performance analysis. WDDATA lets the core write any operand (byte, word, or longword) directly to the DDATA port, independent of debug module configuration. When WDDATA is executed, a value of 0x04 is signaled on the PST port, followed by the appropriate marker, and then the data transfer on the DDATA port. The number of captured data bytes depends on the WDDATA operand size.
0x05	Begin execution of taken branch or SYNC_PC BDM command. For some opcodes, a branch target address may be displayed on DDATA depending on the CSR settings. CSR also controls the number of address bytes displayed, indicated by the PST marker value preceding the DDATA nibble that begins the data output. This encoding also indicates that the SYNC_PC command has been processed.
0x06	Reserved
0x07	Begin execution of return from exception (RTE) instruction.
0x08-0x0B	Indicates the number of data bytes to be loaded into the PST trace buffer. The capturing of peripheral bus data references is controlled by CSR[DDC]. 0x08 Begin 1-byte data transfer on DDATA 0x09 Begin 2-byte data transfer on DDATA 0x0A Reserved 0x0B Begin 4-byte data transfer on DDATA

Table 29-26. CF1 Debug Processor Status Encodings (Continued)

PST[4:0]	Definition
0x0C-0x0F	Indicates the number of address bytes to be loaded into the PST trace buffer. The capturing of branch target addresses is controlled by CSR[BTB]. 0x0C Reserved 0x0D Begin 2-byte address transfer on DDATA (Displayed address is shifted right 1: ADDR[16:1]) 0x0E Begin 3-byte address transfer on DDATA (Displayed address is shifted right 1: ADDR[23:1]) 0x0F Reserved
0x10-0x11	Reserved
0x12	Completed execution of 2 sequential instructions
0x13	Completed execution of 3 sequential instructions
0x14	Completed execution of 4 sequential instructions
0x15	Completed execution of 5 sequential instructions
0x16	Completed execution of 6 sequential instructions
0x17	Completed execution of 7 sequential instructions
0x18	Completed execution of 8 sequential instructions
0x19	Completed execution of 9 sequential instructions
0x1A	Completed execution of 10 sequential instructions
0x1B	This value signals there has been a change in the breakpoint trigger state machine. It appears as a single marker for each state change and is immediately followed by a DDATA value signaling the new breakpoint trigger state encoding. The DDATA breakpoint trigger state value is defined as (0x20 + 2 × CSR[BSTAT]): 0x20 No breakpoints enabled 0x22 Waiting for a level-1 breakpoint 0x24 Level-1 breakpoint triggered 0x2A Waiting for a level-2 breakpoint 0x2C Level-2 breakpoint triggered
0x1C	Exception processing. This value signals the processor has encountered an exception condition. Although this is a multi-cycle mode, there are only two PST = 0x1C values recorded before the mode value is suppressed.
0x1D	Emulator mode exception processing. This value signals the processor has encountered a debug interrupt or a properly-configured trace exception. Although this is a multi-cycle mode, there are only two PST = 0x1D values recorded before the mode value is suppressed.
0x1E	Processor is stopped. This value signals the processor has executed a STOP instruction. Although this is a multi-cycle mode because the ColdFire processor remains stopped until an interrupt or reset occurs, there are only two PST = 0x1E values recorded before the mode value is suppressed.
0x1F	Processor is halted. This value signals the processor has been halted. Although this is a multi-cycle mode because the ColdFire processor remains halted until a BDM go command is received or reset occurs, there are only two PST = 0x1F values recorded before the mode value is suppressed.

29.4.3.1 Begin Execution of Taken Branch (PST = 0x05)

The PST is 0x05 when a taken branch is executed. For some opcodes, a branch target address may be loaded into the trace buffer (PSTB) depending on the CSR settings. CSR also controls the number of address bytes loaded that is indicated by the PST marker value immediately preceding the DDATA entry in the PSTB that begins the address entries.

29-58 Freescale Semiconductor

Multiple byte DDATA values are displayed in least-to-most-significant order. The processor captures only those target addresses associated with taken branches that use a variant addressing mode (RTE and RTS instructions, JMP and JSR instructions using address register indirect or indexed addressing modes, and all exception vectors).

The simplest example of a branch instruction using a variant address is the compiled code for a C language case statement. Typically, the evaluation of this statement uses the variable of an expression as an index into a table of offsets, where each offset points to a unique case within the structure. For such change-of-flow operations, the ColdFire processor loads the PSTB as follows:

- 1. Load PST=0x05 to identify that a taken branch is executed.
- 2. Optionally load the marker for the target address capture. Encodings 0x0D or 0x0E identify the number of bytes loaded into the PSTB.
- 3. The new target address is optionally available in the PSTB. The number of bytes of the target address loaded is configurable (2 or 3 bytes, where the encoding is 0x0D and 0x0E, respectively).

Another example of a variant branch instruction is a JMP (A0) instruction. Figure 29-24 shows the PSTB entries that indicate a JMP (A0) execution, assuming CSR[BTB] was programmed to display the lower two bytes of an address.

PST/DDATA Values	Description
0x05	Taken Branch
0x0D	2-byte Address Marker
{10, Address[4:1]}	Address >> 1
{10, Address[8:5]}	
{10, Address[12:9]}	
{10, Address[16:13]}	

Figure 29-24. Example JMP Instruction Output in PSTB

The PST of 0x05 indicates a taken branch and the marker value 0x0D indicates a 2-byte address. Therefore, the following entries display the lower two bytes of address register A0, right-shifted by 1, in least-to-most-significant nibble order. The next PST entry after the JMP instruction completes depends on the target instruction. See Section 29.4.3.2, "PST Trace Buffer (PSTB) Entry Format," for entry descriptions explaining the 2-bit prefix before each address nibble.

MCF51MM256 Series Devices Reference Manual, Rev. 3 Freescale Semiconductor 29-59

29.4.3.2 PST Trace Buffer (PSTB) Entry Format

As PST and DDATA values are captured and loaded in the trace buffer, each entry is six bits in size therefore, the type of the entry can easily be determined when post-processing the PSTB. See Figure 29-25.

	5	4	3	2	1	0
PSTB[PST]	0			PST[4:0]		
Data PSTB[DDATA]	1	R/W		Data	n[3:0]	
Address PSTB[DDATA]	1	0		Addres	ss[3:0] ¹	
Reset:	_	_	_	_	_	_

Depending on which nibble is displayed (as determined by CSR[9:8]), Address[3:0] sequentially (least-to-most-significant nibble order) displays four bits of the real CPU address [16:1] or [24:1].

Figure 29-25. V1 PST/DDATA Trace Buffer Entry Format

29.4.3.3 PST/DDATA Example

In this section, an example showing the behavior of the PST/DDATA functionality is detailed. Consider the following interrupt service routine that counts the interrupt, negates the IRQ, performs a software IACK, and then exits. This example is presented here because it exercises a considerable set of the PST/DDATA capabilities.

```
_isr:
01074: 46fc 2700
                                   &0x2700,%sr
                                                          # disable interrupts
                           mov.w
01078: 2f08
                           mov.l
                                   %a0,-(%sp)
                                                          # save a0
0107a: 2f00
                           mov.l
                                    %d0,-(%sp)
                                                         # save d0
0107c: 302f 0008
                          mov.w (8,%sp),%d0
                                                       # load format/vector word
01080: e488
                           lsr.l
                                    &2,%d0
                                                         # align vector number
01082: 0280 0000 00ff andi.l &0xff,%d0
01088: 207c 0080 1400 mov.l &int_count,%a0
                                                         # isolate vector number
                                                          # base of interrupt counters
                         _isr_entry1:
0108e: 52b0 0c00
                          addq.l &1,(0,%a0,%d0.l*4) # count the interrupt
                         mov.b
01092: 11c0 a021
                                  %d0,IGCR0+1.w # negate the irq
01096: 1038 a020
                         mov.b
                                    IGCR0.w,%d0
                                                         # force the write to complete
0109a: 4e71 nop # synchronize the pipelines
0109c: 71b8 ffe0 mvz.b SWIACK.w,%d0 # software iack: pending irq?
010a0: 0c80 0000 0041 cmpi.l %d0,&0x41 # level 7 or none pending?
010a6: 6f08 ble.b _isr_exit # yes, then exit
010a8: 52b9 0080 145c addq.l &1,swiack_count # increment the swiack count
010ae: 60de
                           bra.b _isr_entry1
                                                          # continue at entry1
                         _isr_exit:
010b0: 201f
                           mov.l (%sp)+,%d0
                                                          # restore d0
010b2: 205f
                           mov.1
                                  (%sp)+,%a0
                                                          # restore a0
010b4: 4e73
                           rte
                                                          # exit
```

This ISR executes mostly as straight-line code: there is a single conditional branch @ PC = 0x10A6, which is taken in this example. The following description includes the PST and DDATA values generated as this

29-60 Freescale Semiconductor

29-61

code snippet executes. In this example, the CSR setting enables only the display of 2-byte branch addresses. Operand data captures are not enabled. The sequence begins with an interrupt exception:

```
interrupt exception occurs @ pc = 5432 while in user mode
                                                           = 1c, 1c, 05, 0d
                                                   # pst
                                                   # ddata = 2a, 23, 28, 20
                                                             trg addr = 083a << 1
                                                             trg_addr = 1074
                      _isr:
01074: 46fc 2700
                                &0x2700,%sr
                        mov.w
                                                   # pst
01078: 2f08
                        mov.l
                                %a0,-(%sp)
                                                   # pst
                                                           = 01
0107a: 2f00
                        mov.l
                                %d0,-(%sp)
                                                   # pst
                                                           = 01
0107c: 302f 0008
                        mov.w
                                (8,%sp),%d0
                                                   # pst
                                                           = 01
01080: e488
                        lsr.l
                                &2,%d0
                                                   # pst
                                                           = 01
                       andi.l &0xff,%d0
01082: 0280 0000 00ff
                                                   # pst
                                                           = 0.1
01088: 207c 0080 1400 mov.1
                                &int_count,%a0
                                                   # pst
                                                           = 01
                        addq.l &1,(0,%a0,%d0.l*4) # pst
                                                           = 01
0108e: 52b0 0c00
                                                           = 01, 08
01092: 11c0 a021
                        mov.b
                                %d0,IGCR0+1.w
                                                   # pst
                                                   # ddata = 30, 30
                                                             wdata.b = 0x00
01096: 1038 a020
                                IGCR0.w,%d0
                                                   # pst
                                                           = 01, 08
                        mov.b
                                                   # ddata = 28, 21
                                                             rdata.b = 0x18
0109a: 4e71
                                                           = 01
                        nop
                                                   # pst
0109c: 71b8 ffe0
                        mvz.b
                                SWIACK.w,%d0
                                                   # pst
                                                           = 01, 08
                                                   # ddata = 20, 20
                                                             rdata.b = 0x00
010a0: 0c80 0000 0041
                        cmpi.1 %d0,&0x41
                                                   # pst
                                                           = 01
                                                           = 05 (taken branch)
                                _isr_exit
010a6: 6f08
                        ble.b
                                                   # pst
010b0: 201f
                        mov.1
                                (%sp)+,%d0
                                                           = 01
                                                   # pst
010b2: 205f
                        mov.1
                                (%sp)+,%a0
                                                   # pst
                                                           = 01
010b4: 4e73
                                                   # pst
                                                           = 07, 03, 05, 0d
                        rte
                                                   # ddata = 29, 21, 2a, 22
                                                             trg_addr = 2a19 << 1
                                                             trg_addr = 5432
```

As the PSTs are compressed, the resulting stream of 6-bit hexadecimal entries is loaded into consecutive locations in the PST trace buffer:

Architectural studies on the compression algorithm determined an appropriate size for the PST trace buffer. Using a suite of ten MCU benchmarks, a 64-entry PSTB was found to capture an average window of time of 520 processor cycles with program trace using 2-byte addresses enabled.

Freescale Semiconductor

MCF51MM256 Series Devices Reference Manual, Rev. 3

29.4.3.4 Processor Status, Debug Data Definition

This section specifies the ColdFire processor and debug module's generation of the processor status (PST) and debug data (DDATA) output on an instruction basis. In general, the PST/DDATA output for an instruction is defined as follows:

$$PST = 0x01, \{PST = 0x0[89B], DDATA = operand\}$$

where the {...} definition is optional operand information defined by the setting of the CSR, and [...] indicates the presence of one value from the list.

The CSR provides capabilities to display operands based on reference type (read, write, or both). A PST value {0x08, 0x09, or 0x0B} identifies the size and presence of valid data to follow in the PST trace buffer (PSTB) {1, 2, or 4 bytes, respectively}. Additionally, CSR[DDC] specifies whether operand data capture is enabled and what size. Also, for certain change-of-flow instructions, CSR[BTB] provides the capability to display the target instruction address in the PSTB (2 or 3 bytes) using a PST value of 0x0D or 0x0E, respectively.

29.4.3.4.1 User Instruction Set

Table 29-27 shows the PST/DDATA specification for user-mode instructions. Rn represents any {Dn, An} register. In this definition, the y suffix generally denotes the source, and x denotes the destination operand. For a given instruction, the optional operand data is displayed only for those effective addresses referencing memory. The DD nomenclature refers to the DDATA outputs.

Instruction	Operand Syntax	PST/DDATA
add.l	<ea>y,Dx</ea>	PST = 0x01, {PST = 0x0B, DD = source operand}
add.l	Dy, <ea>x</ea>	PST = 0x01, {PST = 0x0B, DD = source}, {PST = 0x0B, DD = destination}
adda.l	<ea>y,Ax</ea>	PST = 0x01, {PST = 0x0B, DD = source operand}
addi.l	# <data>,Dx</data>	PST = 0x01
addq.l	# <data>,<ea>x</ea></data>	PST = 0x01, {PST = 0x0B, DD = source}, {PST = 0x0B, DD = destination}
addx.l	Dy,Dx	PST = 0x01
and.l	<ea>y,Dx</ea>	PST = 0x01, {PST = 0x0B, DD = source operand}
and.l	Dy, <ea>x</ea>	PST = 0x01, {PST = 0x0B, DD = source}, {PST = 0x0B, DD = destination}
andi.l	# <data>,Dx</data>	PST = 0x01
asl.l	{Dy,# <data>},Dx</data>	PST = 0x01
asr.l	{Dy,# <data>},Dx</data>	PST = 0x01
bcc.{b,w,l}		if taken, then PST = 0x05, else PST = 0x01
bchg.{b,l}	# <data>,<ea>x</ea></data>	PST = 0x01, {PST = 0x08, DD = source}, {PST = 0x08, DD = destination}
bchg.{b,l}	Dy, <ea>x</ea>	PST = 0x01, {PST = 0x08, DD = source}, {PST = 0x08, DD = destination}
bclr.{b,l}	# <data>,<ea>x</ea></data>	PST = 0x01, {PST = 0x08, DD = source}, {PST = 0x08, DD = destination}

Table 29-27. PST/DDATA Specification for User-Mode Instructions

MCF51MM256 Series Devices Reference Manual, Rev. 3

29-62 Freescale Semiconductor

Table 29-27. PST/DDATA Specification for User-Mode Instructions (Continued)

Instruction	Operand Syntax	PST/DDATA
bclr.{b,l}	Dy, <ea>x</ea>	PST = 0x01, {PST = 0x08, DD = source}, {PST = 0x08, DD = destination}
bitrev.l	Dx	PST = 0x01
bra.{b,w,l}		PST = 0x05
bset.{b,l}	# <data>,<ea>x</ea></data>	PST = 0x01, {PST = 0x08, DD = source}, {PST = 0x08, DD = destination}
bset.{b,l}	Dy, <ea>x</ea>	PST = 0x01, {PST = 0x08, DD = source}, {PST = 0x08, DD = destination}
bsr.{b,w,l}		PST = 0x05, {PST = 0x0B, DD = destination operand}
btst.{b,l}	# <data>,<ea>x</ea></data>	PST = 0x01, {PST = 0x08, DD = source operand}
btst.{b,l}	Dy, <ea>x</ea>	PST = 0x01, {PST = 0x08, DD = source operand}
byterev.l	Dx	PST = 0x01
clr.b	<ea>x</ea>	PST = 0x01, {PST = 0x08, DD = destination operand}
clr.l	<ea>x</ea>	PST = 0x01, {PST = 0x0B, DD = destination operand}
clr.w	<ea>x</ea>	PST = 0x01, {PST = 0x09, DD = destination operand}
cmp.b	<ea>y,Dx</ea>	PST = 0x01, {0x08, source operand}
cmp.l	<ea>y,Dx</ea>	PST = 0x01, {PST = 0x0B, DD = source operand}
cmp.w	<ea>y,Dx</ea>	PST = 0x01, {0x09, source operand}
cmpa.l	<ea>y,Ax</ea>	PST = 0x01, {PST = 0x0B, DD = source operand}
cmpa.w	<ea>y,Ax</ea>	PST = 0x01, {0x09, source operand}
cmpi.b	# <data>,Dx</data>	PST = 0x01
cmpi.l	# <data>,Dx</data>	PST = 0x01
cmpi.w	# <data>,Dx</data>	PST = 0x01
eor.l	Dy, <ea>x</ea>	PST = 0x01, {PST = 0x0B, DD = source}, {PST = 0x0B, DD = destination}
eori.l	# <data>,Dx</data>	PST = 0x01
ext.l	Dx	PST = 0x01
ext.w	Dx	PST = 0x01
extb.l	Dx	PST = 0x01
illegal		$PST = 0x01^{1}$
jmp	<ea>y</ea>	PST = 0x05, {PST = 0x0[DE], DD = target address} ²
jsr	<ea>y</ea>	PST = 0x05, {PST = 0x0[DE], DD = target address}, {PST = 0x0B, DD = destination operand} ²
lea.l	<ea>y,Ax</ea>	PST = 0x01
link.w	Ay,# <displacement></displacement>	PST = 0x01, {PST = 0x0B, DD = destination operand}
Isl.I	{Dy,# <data>},Dx</data>	PST = 0x01
lsr.l	{Dy,# <data>},Dx</data>	PST = 0x01

Table 29-27. PST/DDATA Specification for User-Mode Instructions (Continued)

Instruction	Operand Syntax	PST/DDATA
mov3q.l	# <data>,<ea>x</ea></data>	PST = 0x01, {PST = 0x0B,DD = destination operand}
move.b	<ea>y,<ea>x</ea></ea>	PST = 0x01, {PST = 0x08, DD = source}, {PST = 0x08, DD = destination}
move.l	<ea>y,<ea>x</ea></ea>	PST = 0x01, {PST = 0x0B, DD = source}, {PST = 0x0B, DD = destination}
move.w	<ea>y,<ea>x</ea></ea>	PST = 0x01, {PST = 0x09, DD = source}, {PST = 0x09, DD = destination}
move.w	CCR,Dx	PST = 0x01
move.w	{Dy,# <data>},CCR</data>	PST = 0x01
movea.l	<ea>y,Ax</ea>	PST = 0x01, {PST = 0x0B, DD = source}
movea.w	<ea>y,Ax</ea>	PST = 0x01, {PST = 0x09, DD = source}
movem.l	#list, <ea>x</ea>	PST = 0x01, {PST = 0x0B, DD = destination},
movem.l	<ea>y,#list</ea>	PST = 0x01, {PST = 0x0B, DD = source},
moveq.l	# <data>,Dx</data>	PST = 0x01
muls.l	<ea>y,Dx</ea>	PST = 0x01, {PST = 0x0B, DD = source operand}
muls.w	<ea>y,Dx</ea>	PST = 0x01, {PST = 0x09, DD = source operand}
mulu.l	<ea>y,Dx</ea>	PST = 0x01, {PST = 0x0B, DD = source operand}
mulu.w	<ea>y,Dx</ea>	PST = 0x01, {PST = 0x09, DD = source operand}
mvs.b	<ea>y,Dx</ea>	PST = 0x01, {0x08, source operand}
mvs.w	<ea>y,Dx</ea>	PST = 0x01, {0x09, source operand}
mvz.b	<ea>y,Dx</ea>	PST = 0x01, {0x08, source operand}
mvz.w	<ea>y,Dx</ea>	PST = 0x01, {0x09, source operand}
neg.l	Dx	PST = 0x01
negx.l	Dx	PST = 0x01
nop		PST = 0x01
not.l	Dx	PST = 0x01
or.l	<ea>y,Dx</ea>	PST = 0x01, {PST = 0x0B, DD = source operand}
or.l	Dy, <ea>x</ea>	PST = 0x01, {PST = 0x0B, DD = source}, {PST = 0x0B, DD = destination}
ori.l	# <data>,Dx</data>	PST = 0x01
pea.l	<ea>y</ea>	PST = 0x01, {PST = 0x0B, DD = destination operand}
pulse		PST = 0x04
rts		PST = 0x01, {PST = 0x0B, DD = source operand}, PST = 0x05, {PST = 0x0[DE], DD = target address}
sats.l	Dx	PST = 0x01
scc.b	Dx	PST = 0x01
sub.l	<ea>y,Dx</ea>	PST = 0x01, {PST = 0x0B, DD = source operand}

29-64 Freescale Semiconductor

Instruction	Operand Syntax	PST/DDATA
sub.I	Dy, <ea>x</ea>	PST = 0x01, {PST = 0x0B, DD = source}, {PST = 0x0B, DD = destination}
suba.l	<ea>y,Ax</ea>	PST = 0x01, {PST = 0x0B, DD = source operand}
subi.l	# <data>,Dx</data>	PST = 0x01
subq.l	# <data>,<ea>x</ea></data>	PST = 0x01, {PST = 0x0B, DD = source}, {PST = 0x0B, DD = destination}
subx.l	Dy,Dx	PST = 0x01
swap.w	Dx	PST = 0x01
tas.b	<ea>x</ea>	PST = 0x01, {0x08, source}, {0x08, destination}
tpf		PST = 0x01
tpf.I	# <data></data>	PST = 0x01
tpf.w	# <data></data>	PST = 0x01
trap	# <data></data>	PST = 0x01 ¹
tst.b	<ea>x</ea>	PST = 0x01, {PST = 0x08, DD = source operand}
tst.l	<ea>y</ea>	PST = 0x01, {PST = 0x0B, DD = source operand}
tst.w	<ea>y</ea>	PST = 0x01, {PST = 0x09, DD = source operand}
unlk	Ax	PST = 0x01, {PST = 0x0B, DD = destination operand}
wddata.b	<ea>y</ea>	PST = 0x04, {PST = 0x08, DD = source operand}
wddata.l	<ea>y</ea>	PST = 0x04, {PST = 0x0B, DD = source operand}
wddata.w	<ea>y</ea>	PST = 0x04, {PST = 0x09, DD = source operand}

During normal exception processing, the PSTB is loaded with two successive 0x1C entries indicating the exception processing state. The exception stack write operands, as well as the vector read and target address of the exception handler may also be displayed.

A similar set of PST/DD values is generated in response to an emulator mode excetion. For these events (caused by a debug interrupt or properly-enabled trace exception), the initial PST values are 0x1D, 0x1D and the remaining sequence is equivalent to normal exception processing.

The PST/DDATA specification for the reset exception is shown below:

```
Exception Processing:
    PST = 0x1C, 0x1C,
    PST = 0x05,{PST = 0x0[DE],DD = target} // initial PC
```

The initial references at address 0 and 4 are never captured nor displayed because these accesses are treated as instruction fetches.

For all types of exception processing, the PST = 0x1C (or 0x1D) value is driven for two trace buffer entries.

MCF51MM256 Series Devices Reference Manual, Rev. 3

² For JMP and JSR instructions, the optional target instruction address is displayed only for those effective address fields defining variant addressing modes. This includes the following <ea>x values: (An), (d16,An), (d8,An,Xi), (d8,PC,Xi).

Table 29-28 shows the PST/DDATA specification for the MAC instructions.

Table 29-28. PST/DDATA Values for Multiply-Accumulate Instructions

Instruction	Operand Syntax	PST/DDATA
mac.I	Ry,Rx	PST = 0x1
mac.l	Ry,Rx, <ea>y,Rw</ea>	PST = 0x1, {PST = 0xB, DD = source operand}
mac.w	Ry,Rx	PST = 0x1
mac.w	Ry,Rx,ea,Rw	PST = 0x1, {PST = 0xB, DD = source operand}
move.l	{Ry,# <data>},ACC</data>	PST = 0x1
move.l	{Ry,# <data>},MACSR</data>	PST = 0x1
move.l	{Ry,# <data>},MASK</data>	PST = 0x1
move.l	ACC,Rx	PST = 0x1
move.l	MACSR,CCR	PST = 0x1
move.l	MACSR,Rx	PST = 0x1
move.l	MASK,Rx	PST = 0x1
msac.l	Ry,Rx	PST = 0x1
msac.l	Ry,Rx, <ea>y,Rw</ea>	PST = 0x1, {PST = 0xB, DD = source}, {PST = 0xB, DD = destination}
msac.w	Ry,Rx	PST = 0x1
msac.w	Ry,Rx, <ea>y,Rw</ea>	PST = 0x1, {PST = 0xB, DD = source}, {PST = 0xB, DD = destination}

29.4.3.4.2 Supervisor Instruction Set

The supervisor instruction set has complete access to the user mode instructions plus the opcodes shown below. The PST/DDATA specification for these opcodes is shown in Table 29-29.

Table 29-29. PST/DDATA Specification for Supervisor-Mode Instructions

Instruction	Operand Syntax	PST/DDATA
halt		PST = 0x1F, PST = 0x1F
move.l	Ay,USP	PST = 0x01
move.l	USP,Ax	PST = 0x01
move.w	SR,Dx	PST = 0x01
move.w	{Dy,# <data>},SR</data>	PST = 0x01, {PST = 0x03}
movec.l	Ry,Rc	PST = 0x01

MCF51MM256 Series Devices Reference Manual, Rev. 3

29-66 Freescale Semiconductor

Instruction	Operand Syntax	PST/DDATA
rte		PST = 0x07, {PST = 0x0B, DD = source operand}, {PST = 0x03}, {PST = 0x0B, DD = source operand}, PST = 0x05, {PST = 0x0[DE], DD = target address}
stldsr.w	#imm	PST = 0x01, {PST = 0x0B, DD = destination operand, PST = 0x03}
stop	# <data></data>	PST = 0x1E, PST = 0x1E
wdebug.l	<ea>y</ea>	PST = 0x01, {PST = 0x0B, DD = source, PST = 0x0B, DD = source}

Table 29-29. PST/DDATA Specification for Supervisor-Mode Instructions (Continued)

The move-to-SR, STLDSR, and RTE instructions include an optional PST = 0x3 value, indicating an entry into user mode.

Similar to the exception processing mode, the stopped state (PST = 0x1E) and the halted state (PST = 0x1F) display this status for two entries when the ColdFire processor enters the given mode.

29.4.4 Freescale-Recommended BDM Pinout

Typically, a relatively simple interface pod is used to translate commands from a host computer into commands for the custom serial interface to the single-wire background debug system. Depending on the development tool vendor, this interface pod may use a standard RS-232 serial port, a parallel printer port, or some other type of communications such as a universal serial bus (USB) to communicate between the host PC and the pod. The pod typically connects to the target system with ground, the BKGD pin, $\overline{\text{RESET}}$, and sometimes V_{DD} . An open-drain connection to reset allows the host to force a target system reset, useful to regain control of a lost target system or to control startup of a target system before the on-chip nonvolatile memory has been programmed. Sometimes V_{DD} can be used to allow the pod to use power from the target system to avoid the need for a separate power supply. However, if the pod is powered separately, it can be connected to a running target system without forcing a target system reset or otherwise disturbing the running application program.

Figure 29-26. Recommended BDM Connector

Appendix A Revision History

This appendix lists the major changes between versions of the MCF51MM256 reference manual.

A.1 Changes Between Rev. 0 and Rev. 1

Table A-1. Rev. 0 to Rev. 1 Changes

Chapter	Description
All	Cleaned up miscellaneous typos, non-standard formats, incorrectly-applied conditions, and ill-defined variables.
4	Identified previously blank memory address 0x(FF)FF_805E as RESERVED.
4	Corrected memory address 0x(FF)FF_98C1 register from PDBCTRL1 to PDBC1.
4	Corrected memory address 0x(FF)FF_98C2 register from PDBCTRL2 to PDBC2.
4	Corrected memory address 0x(FF)FF_98C8 register from PDBIDELAYAH to PDBIDLYH.
4	Corrected memory address 0x(FF)FF_98C9 register from PDBIDELYAL to PDBIDLYL.
4	Corrected memory address 0x(FF)FF_98CA register from DACINTVH to DACINTH.
4	Corrected memory address 0x(FF)FF_98CB register from DACINTVL to DACINTL.
4	Corrected memory address 0x(FF)FF_9920 register from FTSR1FCDIV to F1CDIV.
4	Corrected memory address 0x(FF)FF_9921 register from FTSR1FOPT to F1OPT.
4	Corrected memory address 0x(FF)FF_9923 register from FTSR1FCNG to F1CNG.
4	Corrected memory address 0x(FF)FF_9924 register from FTSR1FPROT to F1PROT.
4	Corrected memory address 0x(FF)FF_9925 register from FTSR1FSTAT to F1STAT.
4	Corrected memory address 0x(FF)FF_9926 register from FTSR1FCMD to F1CMD.
4	Corrected memory address 0x(FF)FF_9930 register from FTSR2FCDIV to F2CDIV.
4	Corrected memory address 0x(FF)FF_9931 register from FTSR2FOPT to F2OPT.
4	Corrected memory address 0x(FF)FF_9933 register from FTSR2FCNG to F2CNG.
4	Corrected memory address 0x(FF)FF_9934 register from FTSR2FPROT to F2PROT.
4	Corrected memory address 0x(FF)FF_9935 register from FTSR2FSTAT to F2STAT.
4	Corrected memory address 0x(FF)FF_9936 register from FTSR2FCMD to F2CMD.
4	Changed the names of all Mini-FlexBus registers in Table 4-5 to be prefixed with MB.
4	Corrected Table 4.6 Reserved Flash Memory Addresses so that 0x(00)00_0408 is FCHKSH and 0x(00)00_0409 is FCHKSL.
4	Added FLASHAS register description and note.

Table A-1. Rev. 0 to Rev. 1 Changes (Continued)

Chapter	Description
5	Changed SOFT3_MB_DATA description fo that 0 now reads MB_Data = 0 and 1 now reads MB_DATA = 1.
19	Updated the PDB block guide to the latest version.
19	Added new sections to the PDB introduction: 19.1.2. PDB Trigger Inputs and 19.1.3 Trigger Acknowledgement Inputs.
19	Corrected Table 19-2 Signal Properties so that names matched the description (swapped INP _x - with INP _x +).
21	Added missing SCI chapter.
26	Updated the USB chapter to be ColdFire V1 version.

A.2 Changes Between Rev. 1 and Rev. 2

Table A-2. Rev. 1 to Rev. 2 Changes

Chapter	Description
All	Cleaned up miscellaneous typos, non-standard formats, incorrectly-applied conditions, and ill-defined variables.
	Made some global changes: INP1+ -> IN2+, INP1> INP2-, OUT1 -> OUT2, INP0+ -> INP1+, INP0> INP1-, OUT0 -> OUT1, VINP1 -> VINP2, VINP1> VINP2-, TRIOUT1 -> TRIOUT2, VINN1 -> VINN2, VINN1> VINN2-, and TRIOUT0 -> TRIOUT1.
	Updated the block diagram to: Removed VREFH and VREFL from the DAC module. Cleaned up some of the OPAMP/TRIAMP lines. Connected Ports F, G, H, and J to the bus. Highlighted the appropriate modules as appropriate to the chapter. Corrected the PTE4/CMPP3/TPMCLK/IRQ text.
2	Corrected Figure 2-9. Recommended System Connections so that the oscillator resistors are on the XTAL instead of EXTAL lines.
5	SOPT1 Bit MBSL description revised so that it states: 0 All off-chip access (opcode and data) via the Mini-FlexBus is disallowed.
5	SOTPT5 Register and Bit 7 of the SIMCO register are reserved for Freescale Internal testing.
5	Added note to identify that the LVD and LVW Trip Point Typical values were preliminary and should refer to the DC Characteristics table in the data sheet for the actual values.
11	Revised VDD in Features section to be VREFO, a diagram label from Internal VDD to be Internal VREFO, and ACOPEN to ACOPE. Also changed accompanying diagram text to "Enable ACMP output pin" instead of "input pins." Also added footnote to PRACMPxC0 to caution against configuring ACPSEL and ACNSEL to use the same channel for the comparator.
12	Revised the Differential Channel Assignments so that: • ADCH 11011 Input reads PMC Bandgap. • ADCH 11100 Channel reads R and Input reads Reserved.

A-2 Freescale Semiconductor

Table A-2. Rev. 1 to Rev. 2 Changes (Continued)

Chapter	Description
12	Added Time of Day module as a hardware trigger. Changed Reserved to ACMP_OUT in the single-ended channel assignment table. Also, adjusted the Typical Conversion Time example to have the ADHSC bit set, corrected the resulting values for the Long Conversion example, and removed the Short Conversion as not appropriate as maximum f _{ADCK} is 8 MHz.Revised Signle-Ended Channel Assignments so that the: Input column for Channels AD14-AD24 reads "Reserved." ADCH 11011 Input reads PMC Bandgap. ADCH 11100 Channel reads R and Input reads Reserved.
15	Updated the DAC block guide.
16	Revised so that the IIC module includes information on Digital Filter (IIC_SMBUSV3).
17	Added TOD information to the CCS[SEL] bit description.
19	Updated the OPAMP block guide.
20	Revised Table 20-1 Selecting the PDB Input Trigger Source so that PDBC1 Register Value for TRIGSEL bits is 0b001 in row 1 and 0b000 in row 2.
20	Added table explaining the ADC Hardware Triggers and Selects.
20	Removed the TwoShot mode paragraphs and accompanying figure.
20	Revised the two Registers Update with LDMOD bit figures to be more comprehensive.
20	Added several notes to PDB sections to identify that this device has eight (8) PDB channels where n is mentioned as 0 to 7 in this chapter. However, the corresponding PDBDLYn registers are labeled as PDBDLYA to PDBDLYH in the memory map.
21	Removed extraneous On-Chip Signal Conditioning figure. Corrected Table 21-1. SCI1 Position Options so that: • 0 (Default) > PTA1 > PTA2 • 1 > PTD6 > PTD7
26	Updated the TRIAMP block guide. Corrected GRAMPEN reference to TIAMPEN.
27	Revised so that the USB OTG module is now the DM Controller version. Edited USB_CTRL[CLK_SRC] bit descriptions.

Changes Between Rev. 2 and Rev. 3 **A.3**

Table A-3. Rev. 2 to Rev. 3 Changes

Chapter	Description
All	Cleaned up miscellaneous typos, non-standard formats, incorrectly-applied conditions, and ill-defined variables.
11	Revised VDD in Features section to be VREFO, a diagram label from Internal VDD to be Internal VREFO, and ACOPEN to ACOPE. Also changed accompanying diagram text to "Enable ACMP output pin" instead of "input pins." Also added footnote to PRACMPxC0 to caution against configuring ACPSEL and ACNSEL to use the same channel for the comparator.

MCF51MM256 Series Devices Reference Manual, Rev. 3 Freescale Semiconductor A-3

Revision History

Table A-3. Rev. 2 to Rev. 3 Changes (Continued)

Chapter	Description
12	Changed Reserved to ACMP_OUT in the single-ended channel assignment table. Also, adjusted the Typical Conversion Time example to have the ADHSC bit set, corrected the resulting values for the Long Conversion example, and removed the Short Conversion as not appropriate as maximum f _{ADCK} is 8 MHz.
17	Added TOD information to the CCS[SEL] bit description.
27	Added a note to the beginning of the USB chapter. Edited USB_CTRL[CLK_SRC] bit descriptions.

How to Reach Us:

Home Page:

www.freescale.com

E-mail:

support@freescale.com

USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH **Technical Information Center** Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center http://compass.freescale.net/go/168063291 1-800-441-2447 or 1-303-675-2140 Fax: 1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2009-2010. All rights reserved.

