

freescale.com/powerarchitecture

Power Architecture™
Technology Primer
Power Architecture™ technology addresses a wide range of implementations from high-performance general
purpose processors to revolutionary communication processors and highly integrated embedded microcontrollers.
This book offers an introduction to Power Architecture technology as it applies to the amazingly diverse world of
Freescale microprocessors and microcontrollers.

Power Architecture™
Technology Primer

PWRARCPRMRM
Rev. 1

05/2007

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners. The
Power Architecture and Power.org word marks and the Power and Power.org logos and
related marks are trademarks and service marks licensed by Power.org.

© Freescale Semiconductor, Inc., 2006, 2007. All rights reserved.

Information in this document is provided solely to enable system and software

implementers to use Freescale Semiconductor products. There are no express or

implied copyright licenses granted hereunder to design or fabricate any integrated

circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to

any products herein. Freescale Semiconductor makes no warranty, representation or

guarantee regarding the suitability of its products for any particular purpose, nor does

Freescale Semiconductor assume any liability arising out of the application or use of

any product or circuit, and specifically disclaims any and all liability, including without

limitation consequential or incidental damages. “Typical” parameters which may be

provided in Freescale Semiconductor data sheets and/or specifications can and do

vary in different applications and actual performance may vary over time. All operating

parameters, including “Typicals” must be validated for each customer application by

customer’s technical experts. Freescale Semiconductor does not convey any license

under its patent rights nor the rights of others. Freescale Semiconductor products are

not designed, intended, or authorized for use as components in systems intended for

surgical implant into the body, or other applications intended to support or sustain life,

or for any other application in which the failure of the Freescale Semiconductor product

could create a situation where personal injury or death may occur. Should Buyer

purchase or use Freescale Semiconductor products for any such unintended or

unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor

and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of,

directly or indirectly, any claim of personal injury or death associated with such

unintended or unauthorized use, even if such claim alleges that Freescale

Semiconductor was negligent regarding the design or manufacture of the part.

Document Number: PWRARCPRMRM
Rev. 1, 05/2007

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor

Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
+1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor

@hibbertgroup.com

Power Architecture™ Technology Primer, Rev. 1

Freescale Semiconductor iii

Contents

Section Title Page

Coevolution—Power Architecture™ Technology and its Environments..1
The Power.org Community ..2
History: The PowerPC Architecture ..2

The PowerPC Architecture Matures ..3
Architectural Extensibility—Alternatives to Book III’s Hardware-Based MMU Model......................4
Architectural Extensibility—AltiVec Technology...4
Architectural Extensibility, Phase II—Book E, APUs, and Freescale’s EIS ...5

Auxiliary Processing Units (APUs) ...5
The Freescale Book E Implementation Standards (EIS) ...5

Architectural Extensibility Phase III—The Power ISA Definition ...6
Stability, Flexibility, Familiarity ..7

What’s New?..9
What Has Changed?...9

Book I Changes and Extensions ..9
Book II Changes ..11
Book III Changes ...11

Power Architecture Details ..12
The Common User Instruction Set Architecture ...12
An Overview of Categories ...13

The Embedded Category ...13
AltiVec Technology (Category.Vector) ..15
Floating-Point Categories—Floating-Point (FP) and Floating-Point with Record (FP.R)15
Move Assist (Category.MA)..16
Signal Processing Engine (Category.SPE)...16
Embedded Vector and Scalar Single-Precision Floating-Point Categories16
Book VLE Category ..17
Wait (Category WT) ..17

Instruction Model...18
Simplified Mnemonics...19
Instruction Set Overview ...19

Integer Instructions ..19
Floating-Point Instructions (Category FP, FP.R) ...21
Branch and Flow Control Instructions (Base Category)..22
Processor Control Instructions (Base Category)..23
Memory Synchronization Instructions...24
Memory Control Instructions...24

Register Model...25
Register Files ...28
Instruction-Accessible Registers..29

Power Architecture™ Technology Primer, Rev. 1

iv Freescale Semiconductor

Contents

Section Title Page

Time Base Registers...31
MMU Control and Status Registers ...32
L1 Cache Registers (EIS) ..34
Interrupt Registers..34
Configuration Registers ...36
Performance Monitor Registers (PMRs) ...37
Debug Registers ...38
Implementation-Specific Registers..39

Interrupt Model ..40
Memory Management Unit (MMU) Model...44

MMU Features in the Embedded Category Definition..45
MMU Features in the PowerPC Architecture 1.10 Definition ..46
Differences between the MMU Models...47

Power Architecture™ Technology Primer, Rev. 1

Freescale Semiconductor 1

Coevolution—Power Architecture™ Technology and
its Environments
When computing first slipped beyond the corporate mainframes and into small businesses and homes, the
focus was mainly on making processors smaller and faster. In 1975, the first computers billed as ‘portable’
weighed in at a svelte 50 pounds, a twenty-fold reduction over the PC’s half-ton ancestor of the 1960s.
Desktop computing begat personal computing, which ever since has grown persistently more and more
personal.

What had been a cloistered domain of tapes and mainframes vaulted in an inner sanctum and tended by an
inner circle of gnostics in white labcoats, evolved into style-challenged beige office appliances, and now
entertaining and useful techno-bling that fits into our kids’ pockets and grandmothers’ purses. Typewriters,
floppies, adding machines, and the plain old telephone have become extinct; they are replaced by whole
systems on chips—digital minotaurs, sphinxes, jackalopes, and the other fantastic electronic chimeras.

When Alan Turing was trying to get an understanding of what was computable, he probably wasn’t
thinking of such a proliferation of computing niches, microniches, and milliniches of the taxonomy—
family: computing; genus: network, personal, scientific, enterprise, and distributed; species: massively
parallel, pervasive, palpable, ubiquitous, nomadic, wearable, and so on.

Although miniaturization of processes and efficient designs made it possible to get more chips per die, it
also made room first for on-chip caches, memory controllers, and additional coprocessors to move
on-board. As the computing environment has capitalized on the new possibilities for further integration,
processors have responded with a continual speciation and hybridization that has made the buzzword
'ecosystem' unavoidably apt for a market where the system is now on the chip.

Essential to such a dynamic ecosystem that offers so many possibilities is a comprehensive, adaptable, and
coevolving computing architecture—Power Architecture™ technology. The Power Architecture
technology, which has undergone thoughtful evolution over the past 15 years, is taking another significant
step forward on the evolutionary path.

Through the work of the Power.org™ Power Architecture Advisory Council (PAAC), the Power
Architecture specification, released in 2006, represents a merging of the previous PowerPC™ architecture
specifications, structured in a way that preserves the consistency of the base user-level programming
model across the environments—desktop computing, embedded, and server—yet provides the flexibility
to adapt to changes in computing environments and in process technologies.

The name change reflects the formal broadening of the architecture’s scope. The Power Architecture
technology maintains the original PowerPC architecture 1.10, and adds the Power ISA™ technology,
which defines equivalent resources for both embedded and server devices. Details about the structure of
the architecture are provided in “Stability, Flexibility, Familiarity” on page 7.

To more effectively address the persistent need for multiple, niche-specific architectural components, the
Power Architecture technology extends the modularity built into the original layered architecture
specification (Books I through III) by breaking the functionality of the architecture into components called
“categories.”

Power Architecture™ Technology Primer, Rev. 1

2 Freescale Semiconductor

The Power.org Community

The broadest categories define basic functionality common across computing environments, as follows:

• The Base category defines all of those elements common to all Power Architecture processors.
Although it includes functionality defined in all three books, the Base category preserves almost
all of the user application-level resources defined in the original PowerPC Book I, the user
instruction set architecture (UISA). Other features from the original UISA, such as the
floating-point and move assist instructions, are preserved as separate categories.

• The Embedded and Server categories define mutually exclusive resources appropriate for those
environments. This document focuses on the functionality defined for Freescale’s embedded
processors.

Other categories address more specific features, such as the AltiVec technology (referred to as the Vector
Category in the architecture) and the signal processing engine (SP category).

Some of these special features were optional in the PowerPC architecture. Others were previously defined
as auxiliary processing units, or APUs, and were not part of the architecture. Many of those former APUs,
began life as part of Freescale’s embedded implementation standards (EIS), a layer of architecture for
features common to Freescale processors, but outside of the formal architecture specification. The EIS
continues to define such features, many of which are described in this document.

Allowing such special-purpose categories makes it possible to further extend the Power Architecture
programming model to support new ecosystems for the new species of computing that may just now be
bubbling around in the back of your mind.

The original PowerPC UISA remains at the center of the architecture. And it is the ability to extend its
efficient, RISC-based application-level programming model into new computing spaces where much of
the architecture’s power resides.

The Power.org Community
The Power.org community, announced in 2004, is the open standards organization for developing,
enabling, and promoting Power Architecture technology and specifications. It represents an international
cross-section of semiconductor and electronics organizations including SoC firms, tool vendors, foundries,
OS vendors, OEMs, independent hardware vendors, independent software vendors, and service providers;
as well as individual developers, educational institutions, and government organizations.

The Power.org community’s objectives are to develop standards and specifications, validate
implementations, drive adoption of Power Architecture technology, and enable a complete design and
manufacturing infrastructure that will resolve many of the technology and business issues hindering
hardware development and innovation.

History: The PowerPC Architecture
The original PowerPC architecture developed by architects from Apple, IBM, and Motorola was rooted in
IBM POWER™ architecture. It is notably RISC-based—a load-store, register-to-register architecture.
Memory accesses are decoupled from computational instructions, which use on-chip registers to hold
source and destination operands.

History: The PowerPC Architecture

Power Architecture™ Technology Primer, Rev. 1

Freescale Semiconductor 3

Although the first PowerPC architecture specification was crafted specifically for desktop systems, it was
written as three books, to distinguish the application- and system-level programming models:

• Book I, the user instruction set architecture (UISA), defined the application-level programming
model for all PowerPC devices. The PowerPC UISA represents the unchanging mitochondrial
DNA, defining the application-level instruction set and programming model common across all
architectural variants and preserved by the Power ISA definition.

• Book II, the virtual environment architecture (VEA), defined resources that support the time-base
aspects of the memory model, and features for multiprocessor implementations; it is preserved by
the Power Architecture definition.

• Book III, the operation environment architecture (OEA), defined operating system–level facilities
such as memory translation and interrupts for desktop implementation.

The modular structure made it possible for other architecture-compliant devices, such as the first
embedded PowerPC processors, to leverage the PowerPC UISA without being constrained to Book III’s
desktop-oriented operating system features.

The PowerPC Architecture Matures
The PowerPC architecture set aside ample register and opcode space both for implementation-specific
resources and for formal extensions to the architecture. The very first processors, such as the MPC601 in
1993, implemented registers and register fields that were not defined in the architecture.

Every design since has had implementation-specific, special-purpose registers (SPRs) such as the
hardware-implementation dependent (HID) registers used for configuration, or unique SPRs for
diagnosing errors or optimizing software and hardware designs.

Some of these features have gradually become part of the architecture. For example, the MPC604
introduced a performance monitor facility that made it possible to characterize instruction and data traffic
by counting cache misses, interrupts, page faults, and other events. Capturing such information made it
possible to fine-tune software and hardware designs. The Power Architecture specification includes
separate performance monitor categories for embedded and server devices.

The Book III interrupt model left some details up to the implementation as to whether hardware would
automatically handle exception conditions, such as misalignment, or whether those conditions would take
an interrupt. Additions to the programming model, such as the performance monitor and the AltiVec™
technology (Vector category), added interrupts.

Many implementation features were passed on to subsequent processors to become family traits, some of
which are now part of the architecture, as is the case with many Freescale-defined APUs, such as the
performance monitor and cache-locking categories.

All of this made it easy for the architecture to respond and improve, and for the Power.org community to
put the UISA to use in different environments. The following sections trace how the original PowerPC
architecture met the needs of computing trends and evolved into today’s Power Architecture technology.

Power Architecture™ Technology Primer, Rev. 1

4 Freescale Semiconductor

History: The PowerPC Architecture

Architectural Extensibility—Alternatives to Book III’s
Hardware-Based MMU Model

As the MPC601 and MPC603 were drawing attention as the processors for Apple’s Macintosh®
computers based on PowerPC technology, Freescale designers were using the PowerPC UISA as the
application-level programming model for its 5xx family of embedded cores, which were integrated into
automotive processors and the first generation of PowerQUICC™ devices. Instead of the block-address
translation (BAT) and the hardware-driven, fixed-page address translation prescribed by Book III, the 5xx
cores provided a software-driven translation mechanism that supported variable page sizes.

The MPC603 processor, used in the Apple G2 Macintosh computers and still thriving as Freescale’s e300
embedded cores, retained block and page memory structure, but forwent the Book III hardware translation
model by defining instructions for accessing the TLBs directly—Load Data TLB (tlbld) and Load
Instruction TLB (tlbli) instructions.

Although the e600 family continues to implement the PowerPC 1.10 Book III MMU, the software page
address translation begun in the 5xx and MPC603 was refined and systematically described by Book E and
by Freescale’s EIS (Book E implementation standards), which now comprise the Freescale MMU
component (category.Embedded.MMU Type FSL) of the Power ISA definition.

Architectural Extensibility—AltiVec Technology
While PowerPC technology proved itself to be a workhorse architecture in the scientific, workstation, and
embedded environments, it also proved to be a playful one. As computer games, 3D animation, and video
processing placed a new set of demands on personal computing, the architects responded with the AltiVec
SIMD (single-instruction/multiple-data) instruction set. This first major extension to the PowerPC
architecture came with the introduction of the MPC74xx processors that powered Apple’s G4 Macintosh
computers.

It is worth noting that AltiVec technology was never formally a part of the PowerPC architecture, although
it used PowerPC instruction formats and syntax and occupied the opcode space expressly allocated for
such purposes. AltiVec extended the PowerPC programming model to provide 128-bit, multi-element,
vector operations. In the Power ISA definition, the AltiVec technology is referred to as the Vector category.
For details, see “AltiVec Technology (Category.Vector).”

The fourfold, parallel replication allows execution of the same computational operation across four
parallel data elements. Here, computational logic of scalar execution units is replicated, but the resulting
performance increases have proven to greatly outweigh the increase in die size and microarchitectural
complexity for those environments that need such improved performance.

The AltiVec programming model provided a prototype for the concept of the auxiliary processing unit
(APU), a concept central to Book E, in that it made it possible to create special-purpose extensions to the
base PowerPC architecture without permanently committing limited architectural resources, such as
opcode and register space. After the concept of APUs was introduced, the AltiVec technology became a
Freescale APU and part of Freescale’s EIS.

History: The PowerPC Architecture

Power Architecture™ Technology Primer, Rev. 1

Freescale Semiconductor 5

Architectural Extensibility, Phase II—Book E, APUs, and
Freescale’s EIS

The sustained growth of the embedded market drove a need for an alternative architecture to the
desktop-oriented PowerPC architecture. This took the form of Book E, which, unlike the three-book
structure of the PowerPC desktop architecture, was a single book, making it possible to define
functionality with both user- and supervisor-level components in a single place.

Book E also provided alternatives to the MMU model defined in Books II and III, specifically to address
those issues that guided the 5xx cores to use a software-oriented, page-based translation mechanism that
strayed from Book III, and similarly gave rise to the MPC603’s definition of new instructions for
configuring TLBs directly via software.

Where the PowerPC 1.10 architecture supports hardware-based page address translation with fixed
4-Kbyte pages, the Book E MMU, which is now part of the Power Architecture Book III-E definition, is
strictly software managed and supports fixed and variable page sizes. Where the PowerPC 1.10
architecture defined block address translation (BAT) SPRs that could provide a single translation for large
blocks of memory space, in Book E processors this is done with variable sized pages. For more
information, see “Memory Management Unit (MMU) Model” on page 44.

Auxiliary Processing Units (APUs)

The ability to extend the ISA systematically became a greater consideration in the PowerPC Book E
architecture design philosophy. Book E defined reusable opcode space that can be used by multiple APUs.
For example, opcodes for instructions defined by the signal-processing engine (SPE) implemented on the
e500 and e200 cores overlap the opcode space defined by the AltiVec extension.

In Book E, APUs could be as simple as a single instruction or register, or a set of fields within a register
defined by the PowerPC architecture. They could also be as rich as the SPE APU, which defines new
instructions, new registers, new fields within existing registers, and new interrupts. Many APUs have
become part of the Power ISA as special-purpose categories.

The Freescale Book E Implementation Standards (EIS)

The PowerPC 1.10 architecture was broken into three books to allow devices to implement the
application-level features of Book I UISA common across the spectrum of computing environments,
without having to adhere strictly to the desktop-specific features defined in Book III. Likewise, leaving
space in the opcode and SPR maps for implementation-specific purposes was to provide a platform for
extending the program model.

Book E formally addressed the need for consistency among such devices, defining a framework for a
non-segmented, page-based MMU and defining allocated space for programming model extensions such
that consistency and reuse could be enforced without restricting innovation. Book E defined many features
in a more general way, leaving many details to the implementation. For example, the Book E MMU model
defined the TLB Read Entry and TLB Write Entry instructions (tlbre and tlbwe) for reading and writing
the TLBs in software. However, details of how this is accomplished are defined as implementation
dependent. Rather than leaving this up to individual implementations, the Freescale architects defined

Power Architecture™ Technology Primer, Rev. 1

6 Freescale Semiconductor

History: The PowerPC Architecture

more specifically that these instructions transfer the contents of a set of MMU assist (MAS) SPRs into the
TLBs. This definition became part of the Freescale Book E Implementation Standards (EIS).

These EIS-defined MAS registers provide the translation, protection, byte-ordering, and cache
characteristics for the relevant pages, and the exact behavior of the tlbre and tlbwe instructions was
defined by the Freescale Book E implementation standards (EIS). These registers are now part of the
Embedded.MMU Type FSL.

The following EIS-defined features are now categories in the Power ISA definition:

• The MMU model, in particular the use of MAS registers (Embedded.MMU Type FSL)

• The cache-locking APU (Embedded.Cache Locking)

• Major extensions to the ISA

— The AltiVec APU (Vector category)

— Signal-processing engine APU (Signal Processing Engine category)

— Embedded floating-point APUs (Now the Single-Precision Vector and Scalar categories
(SP.FV and SP.FS) and the Double-Precision Scalar category (SP.FD)

Although much of the EIS defined under Book E is now part of the Power Architecture definition, the EIS
continues to evolve, allowing Freescale to define its own categories that address the continually
diversifying needs of the embedded ecosystem. As new features are added to the EIS, many will be
submitted to the Power Architecture Advisory Council for consideration for inclusion in future releases of
the Power ISA.

Architectural Extensibility Phase III—The Power ISA
Definition

While Book E and Freescale’s EIS were putting a finer point on the PowerPC architecture to allow the
UISA to provide more detailed programming options within the variety of embedded niches, IBM was
extending the architecture into higher-end server devices by developing an alternative to the
desktop-oriented resources of the PowerPC 1.10 architecture, Book III. The merging of those two versions
of the architecture into a broader and much more modular architecture based around the UISA ensures
architectural hardiness and vitality.

The Power ISA retains the three-book structure of the original PowerPC architecture, further organizing
the common functionality into general-purpose categories. More significantly, the Power ISA now
incorporates those extensions defined in Book E and the EIS as special-purpose categories.

The architectural components common to all Power ISA–compliant devices comprise the broadest of these
categories, the Base category. For example, load and store instructions and standard integer computational
instructions defined in the original PowerPC Book I definition are now part of the Base category, along
with most other UISA features, such as the GPRs, condition register (CR), and link register (LR). These
particular features of the Base category are defined in Book I, but the Base category defines some features
outside of Book I, such as the Book II time base.

History: The PowerPC Architecture

Power Architecture™ Technology Primer, Rev. 1

Freescale Semiconductor 7

Because of the very different requirements for memory management and interrupt handling in embedded
and server environments, the Power ISA defines a separate Book III for each category—Book III-E for
Embedded category processors and Book III-S, for Server category processors.

Many special-purpose categories include features defined across multiple books. For example, user
instructions defined by the Vector and Signal Processing Engine categories extend Book I, while the
interrupt resources associated with these categories are defined in Book III-E.

Some of these special-purpose categories are specific to either the Server or Embedded environments. For
example, the Embedded Performance Monitor category (E.PM) can be implemented only in Embedded
category devices. Embedded-specific categories are described in the section, “The Embedded Category,”
on page 13.

The Power Architecture technology of today is the product of the vision of the PowerPC architects of
1990—an architecture with a sound, reliable, and pervasive application base; an architecture well
positioned to adapt as the computing environment broadens into even more diverse ecosystems; an
architecture that is stable, flexible, and familiar.

Stability, Flexibility, Familiarity

Although there is very little in the way of newly architected features in the embedded environment of the
Power ISA, the reorganization makes the specification quite different from both the PowerPC 1.10 and
Book E architecture specifications. The resources that are now part of this merged architecture are not new
to the thousands of software and hardware designers and tool vendors who have been familiar with
PowerPC devices for the past 16 years.

Book I and Book II have been reorganized and amended, with features essentially unchanged from
Book E, the EIS, and IBM’s PowerPC 2.02 specification for server processors. Although Book III-E and
Book III-S still bear a family resemblance to the original PowerPC Book III definition, they differ in very
significant ways both from one another and from the PowerPC 1.10 specification.

The Power ISA definition organizes the specification into shared Books I and II (what the Power
Architecture definition refers to as the Base category because these resources are common to both), and
separate Book IIIs, as shown in Figure 1.

Power Architecture™ Technology Primer, Rev. 1

8 Freescale Semiconductor

History: The PowerPC Architecture

The PowerPC architecture is the grandfather to the latest generation of the Power Architecture technology.
Figure 2 shows the relationship between the different environments.

The definitions that comprise the Power Architecture technology are as follows:

• The PowerPC instruction set architecture (ISA) 1.10. The original architecture defined in the 1990s
by Apple, IBM, and Motorola’s semiconductor products sector (SPS) (now Freescale). This mature
architecture continues to form the basis for developing PowerPC processors that use Freescale’s
G2, e300, and e600 processor cores.

• The Power ISA 2.04 specification (April 2007). The Power ISA 2.04 specification It brings
together the embedded features defined in Book E and the Freescale EIS with the server and
desktop resources defined by IBM’s PowerPC architecture 2.02 definition.

Power ISA Version (2.04)

Server Environment
(formerly PowerPC
architecture, 2.02)

Embedded Environment
(formerly Book E/EIS)

Book I (UISA) restructured and extended
Book VLE
(extends
Books
I–III)

Book II (VEA) restructured and extended

Book III-S:
(Category: Server)

Book III-E:
(Category: Embedded)

Figure 1. Power ISA Version (2.04)

Power Architecture

Power ISA Version (2.04)

Desktop Environment
(PowerPC

Architecture 1.10)

Server Environment
(formerly PowerPC
architecture, 2.02)

Embedded Environment
(formerly Book E/EIS)

User ISA Book I Book I (UISA) restructured and extended
Book VLE
(extends
Books
I–III)

VEA Book II Book II (VEA) restructured and extended

OEA Book III: (Desktop) Book III-S:
(Category: Server)

Book III-E:
(Category: Embedded)

Implementations
G2/e300
G4/e600

G5
IBM 970

P5

e500
IBM 4xx

e200

Indicates application-level features that have remained unchanged across all environments

Figure 2. Power Architecture Relationships

History: The PowerPC Architecture

Power Architecture™ Technology Primer, Rev. 1

Freescale Semiconductor 9

The first published version of this merged architecture (version 2.03) mostly reflects functionality
that has become familiar through the Book E–based devices such as the Freescale e200 and e500
cores and the IBM 970 processor. It includes newly architected features that will appear in
forthcoming processors. Subsequent versions of the architecture will include additional features.
The Power ISA 2.04 specification differs from Power ISA 2.03 specification with the addition of
several Server category features.

As Figure 2 shows, processors designed under the Book E/EIS and PowerPC advanced server 2.02
architectures remain compliant with the restructured Power ISA architecture.

A modular specification based around the UISA’s sturdy and stable foundation makes the Power
Architecture model poised to respond and adapt to, as well as to drive, innovation in a computing
environment that continues to grow more diverse.

What’s New?
The PowerPC Book E architecture, Freescale’s EIS, and the PowerPC 2.02 architecture are merged and
reorganized, with several additional extensions (categories) that are described in Power ISA 2.04, which
is available for download from power.org.

What Has Changed?
Few of the features in the merged architecture are truly new; rather, most were defined by the PowerPC
(AIM), PowerPC 2.02, PowerPC Book E, Freescale EIS architectures, and IBM 4xx designs.

In particular, the EIS-defined MMU model, many APUs, and the VLE extension to the architecture defined
by Freescale’s EIS have gone from being Freescale-specific architecture to becoming categories within the
Power Architecture model. What is new is how these different architectures have been joined under a new
name that reflects the expansive reach of the diversified architecture. This section describes how these
features are incorporated into the Power Architecture model as categories. Detailed descriptions of these
categories are described in “An Overview of Categories” on page 13.

Book I Changes and Extensions

In the Power Architecture model, Book I has been extended with the incorporation of the following
categories that were formerly EIS APUs:

• The Integer Select (isel) instruction. Analogous to the Floating-Point Select (fsel) instruction
defined by the PowerPC architecture, isel is used to eliminate short conditional branch code
segments by specifying two source registers and one destination register for a comparison. Under
the control of a specified condition code bit, isel copies one or the other source operand to the
destination. isel reduces program latency and code footprint.

Power Architecture™ Technology Primer, Rev. 1

10 Freescale Semiconductor

History: The PowerPC Architecture

• Signal processing engine (SPE). A comprehensive set of 64-bit, two-element, SIMD instructions
that share the Book I–defined GPRs extended by the SPE to 64 bits, as shown in Figure 3.

• The SPE defines three dependent embedded floating-point categories:

— SPE.Embedded float scalar double (SP.FD)

— SPE.Embedded float scalar single (SP.FS)

— SPE.Embedded float vector (SP.FV)

The Signal Processing Engine category also extends Book III–defined features, in particular, the
interrupt model.

This category is implemented in the e200 and e500 cores.

• Variable length encoding (VLE). Variable-length encoding facility that reencodes opcodes from
other categories to fit into 16 bits. Although it extends the UISA programming model, the VLE
category is specified in a separate book, Book VLE.

This category is implemented in some e200 cores. See “Book VLE Category” on page 17.

• Vector. AltiVec technology was introduced in 1998 as an extension to (but not formally a part of)
the PowerPC architecture. This comprehensive 128-bit, four-operand SIMD ISA consists of 168
instructions, a set of 32, 128-bit vector registers (VRs), the vector save register (VRSAVE), and the
vector status and control register (VSCR), which is analogous to the FPSCR. Like VLE and SPE,
the Vector category also extends the Book III interrupt model. For more information, see
“Architectural Extensibility—AltiVec Technology” on page 4.

The following resources, defined as part of the PowerPC UISA, have been identified as distinct categories
and, as such, are not part of the required Base category:

• Floating-point (FP). Consists of the floating-point instructions, registers, and interrupt resources
defined in the PowerPC architecture. In the Power Architecture model, the floating-point record
forms are defined as a dependent category, Floating-point.Record (FP.R). See the section,
“Floating-Point Categories—Floating-Point (FP) and Floating-Point with Record (FP.R),” on
page 15.

• Sixty-four bit (64). The 64-bit portion of the PowerPC architecture 1.10 definition has been carried
forth as a separate category (64). For Embedded category devices, this moded address mechanism
replaces the non-moded 64-bit component of the Book E architecture. This document does not
describe features of the 64-bit category.

• Move assist (MA). Consists of the four load store string instructions lswi, lswx, stswi, and stswx.
Because these instructions duplicate functionality otherwise defined in the architecture, and

0 31 32 63

(upper) GPR0 (lower)

General-purpose registers (The Base category defines only the lower half (bits
32-63).

(The 64-bit category defines the GPRs as single-element, 64-bit GPRs.)

GPR1

GPR2

• • •
GPR31

The Signal Processing Engine category defines the upper 32 bits of the GPRs
for use with 64-bit operands

Figure 3. Extended GPRs

History: The PowerPC Architecture

Power Architecture™ Technology Primer, Rev. 1

Freescale Semiconductor 11

because in some environments they may present additional latency problems, they have not been
implemented on recent Freescale devices.

Book II Changes
• Alternate time base (ATB). An additional time base analogous to the PowerPC time base (Book II).

Implemented on the e500v2.

• External control (EXC). Consists of the External Control In Word Indexed (eciwx) and External
Control Out Word Indexed (ecowx) instructions and the external access register (EAR) defined in
the PowerPC Book II definition.

• Support for true little-endian byte ordering, replacing the original little-endian byte ordering,
which remains only as part of the PowerPC architecture 1.10. The Embedded category defines the
per-page specification of endianness defined in Book E; in the Server category, endianness is
specified by a mode, as it was in the PowerPC architecture, 1.10.

• The Book E–defined msync instruction has reverted to being the Synchronize instruction sync
defined by the PowerPC architecture. In the Embedded category, msync is a simplified mnemonic
for the sync instruction to ensure compatibility with the Book E msync. The mbar instruction,
defined in Book E, remains as part of the Embedded category; the equivalent PowerPC architecture
1.10 instruction eieio, which shares the opcode, is defined as part of the Server category.

Book III Changes
• The following categories are dependent categories of the Embedded category (abbreviated as E).

For example, E.MF identifies that the embedded memory management model, originally defined
by Book E and the EIS, are now a category that can only be implemented as part of an Embedded
category device. These categories in particular indicate functional characteristics specific to the
existing families of Power Architecture processors.

— Embedded.MMU type FSL (E.MF). Inherited from Book E and Freescale’s EIS. Defines
MMU assist (MASn) SPRs (from the EIS) for loading and storing configuration information
into the TLBs using the Book E–defined TLB write and read entry instructions (tlbwe and
tlbre) (Book III-E). Implemented in the e500 cores. The section, “Memory Management Unit
(MMU) Model,” on page 44, compares the PowerPC architecture 1.10 MMU with the
Book III-E category.

— Embedded.cache locking (E.CL). Defines a set of instructions for locking and clearing cache
lines. Implemented in the e500 cores.

— Embedded.enhanced debug (E.ED). Defines a separate set of interrupt save and restore to
provide greater responsiveness for debug interrupts. Implemented in e200 and e500 cores.

— Embedded.performance monitor (E.PM). Consists of the instructions, registers, and interrupt
model defined by the EIS performance monitor APU. Includes definition of separate
performance monitor registers (PMR) (Book III-E). Implemented in the e200 and e500 cores.

Power Architecture™ Technology Primer, Rev. 1

12 Freescale Semiconductor

Power Architecture Details

— Interrupt-related features associated with non-base categories such as vector, SPE, VLE, and
performance monitor.

• Additional software-use SPRs (XSR). Extends the number of software-use SPRs
(SPRG8–SPRG9). The Base category defines SPRG0–SPRG3; the Embedded category defines
SPRG4–SPRG7.

The Server category includes additional categories not described here.

Power Architecture Details
This section provides an overview of the programming, interrupt, cache, and MMU models as they are
defined by the PowerPC architecture and Power ISA architecture, noting any differences either in how the
resources are defined in the different versions of the architecture or in how those definitions are structured.

The Common User Instruction Set Architecture
The original UISA, Book I, as it was defined in the PowerPC architecture, was consistent with the Book E
user-level programming model and now comprises most of the Base category. This ensures binary
compatibility across the 15-year legacy of applications and across the many families of desktop,
embedded, and server processors.

Users can rely on the foundation laid down by the UISA. Book I remains as part of the Power ISA
definition, with the few additions and structural adjustments described in “Book I Changes and
Extensions” on page 9. This new Book I fosters the development of further extensions as SoC-specific
features, with the incorporation of categories such as SPE and Vector.

The UISA’s integer and floating-point register files—32 GPRs and 32 FPRs—have provided a model for
expanding the ISA for AltiVec’s 128-bit vector registers (VRs) and the SPE’s 64-bit, two-element GPRs.

Likewise, the original PowerPC architecture defined special-purpose registers (SPRs) and the Move to
Special-Purpose Register (mtspr) and Move from Special-Purpose Register (mfspr) to access them.
Book E defined device control registers (DCRs) accessed by mtdcr and mfdcr instructions. The EIS
defined the performance monitor register file (PMRs) and mtpmr and mfpmr instructions, now part of
the Embedded.Performance Monitor category.

All Power Architecture instructions have the following characteristics:

• Data organization in memory and data transfers—Bytes in memory are numbered consecutively
starting with 0. Each number is the address of the corresponding byte.

Memory operands can be bytes, half words, words, double words, or, for the load/store multiple
instruction type and load/store string instructions, a sequence of bytes or words. The address of a
memory operand is the address of its first byte (that is, of its lowest numbered byte). Operand
length is implicit for each instruction.

• Alignment and misaligned accesses—The operand of a single-register memory-access instruction
has an alignment boundary equal to its length. An operand’s address is misaligned if it is not a
multiple of its width.

Power Architecture Details

Power Architecture™ Technology Primer, Rev. 1

Freescale Semiconductor 13

Some instructions require their memory operands to have certain alignment. Also, alignment can
affect performance. For single-register memory access instructions, the best performance is
obtained when memory operands are aligned.

The VLE category, described in “Book VLE Category” on page 17 introduces 16-bit encodings of some
UISA-defined instructions; these instructions are defined in a separate book, Book VLE.

An Overview of Categories
This section provides an overview of the categories as they are defined by the Power ISA.

Note that some categories are defined as dependent; that is, they can be implemented only if the category
they are dependent on is also implemented. Dependent categories are identified by a dot (.) in their
category name. For example, a processor cannot implement the Floating-Point.Record category (FP.R)
without the Floating-Point category (FP).

An implementation that supports a facility or instruction in a given category supports all facilities and
instructions in that category.

All devices implement the facilities defined by the Base category. This is the largest category,
encompassing all of the components common across the computing environments; for example, these
include the integer computational and load store instructions, and the GPRs that are essential to the
user-level programming model for all devices. Although the Base category largely consists of the features
defined in Book I (the user ISA), like many categories, it extends beyond Book I to include those Book II
and Book III features common to all Power Architecture devices, such as the machine state register (MSR),
the time base, the interrupt model’s save and restore registers, and the instructions required for accessing
them.

The next largest categories are those that support the two computing environments to which the Power ISA
is written, the server and embedded environments. The following section gives a high-level description of
the Embedded category; the remaining categories are defined in the sections that follow.

The Embedded Category

As described above, the Embedded category largely consists of features formerly defined by the PowerPC
Book E architecture and the Freescale EIS. This section describes the components as they are defined in
the Power ISA definition. Note that the high-level Embedded category passes on resources defined as part
of Book E, including the following:

• Write MSR External Enable instructions (wrtee[i]), which can be used to update only MSR[EE].

• The software-use SPRs (SPRG4–SPRG7).

• Device control registers (DCRs), which are used in e200 cores.

Other categories are dependent categories of the Embedded category. These include the following:

• Embedded.Cache Locking—Category E.CL. Originally defined by the EIS and implemented in the
e500 and e200 cores, cache locking allows instructions and data to be locked into their respective
caches on a cache line basis. Locking is performed by a set of touch and lock set instructions.

Power Architecture™ Technology Primer, Rev. 1

14 Freescale Semiconductor

Power Architecture Details

• Embedded.Enhanced Debug—Category E.ED. The enhanced debug definition is drawn from the
EIS and is implemented in the e200 and e500 cores. It defines a separate set of save and restore
resources—DSRR0 and DSRR1 and the Return from Debug Interrupt instruction (rfdi).

• Embedded.MMU Type FSL—Category E.MF. The embedded MMU consists primarily of the
storage architecture defined by Book E and the Freescale EIS. It includes the following SPRs, all
of which are supervisor registers:

— MMU assist registers MAS0–MAS4 and MAS6–MAS7.

— Process identification registers PID1 and PID2. PID0 is defined (as PID) in Book III-E.

— The TLB configuration registers, TLB0CFG–TLB3CFG

— The MMU control and status register, MMUCSR0

— The MMU configuration register MMUCFG

• Embedded.Performance Monitor—Category E.PM. The performance monitor facility is used for
characterizing behavior within the microarchitecture of the core and is especially useful in system
bring-up and debugging and for optimizing task-scheduling and data-distribution algorithms.

The events that are monitored are specific to each device. They typically characterize traffic within
the instruction pipeline (counts of instructions of different types that are fetched, decoded, or
finished; number of cycles of inactivity due to stalls at various points in the pipeline) and
operations at the cache and memory interface (hits, reloads, and retries).

The performance monitor had traditionally been a standard implementation-specific feature on
Freescale PowerPC devices using SPRs to configure the facility and to hold the event counters. The
performance monitor became a formal part of the EIS with the introduction of Book E, at which
point SPRs were replaced with performance monitor registers (PMRs), which function
analogously to SPRs. The PMRs are accessed explicitly with the Move to PMR and Move From
PMR instructions.

Note that the Power ISA technology defines an alternate performance monitor model for Server
category devices. Note also that many devices that integrate a PowerPC or Power ISA core also
implement an additional performance monitor that can be used to characterize and optimize
SoC-level behavior.

For more information, see the “Performance Monitor Registers (PMRs)” on page 37.

• Embedded.Processor Control—Category E.PC. Provides a way for processors within a coherency
domain to send messages to all devices in that domain. It also provides a way to send interrupts
that are not dependent on the interrupt controller to processors, and it allows message filtering by
the processors that receive the message. It can be used to send messages to a device that provides
specialized services such as secure boot operations controlled by a security device.

• Embedded.Process ID—Category E.PD. Provides capabilities for loading and storing GPRs and
performing cache management operations using a supplied context other than the context normally
used by translation.

The subcategories of the Embedded category cannot be implemented by Server category devices.
However, there are other former EIS-defined APUs that are not categories and that are not restricted to
either the Server or Embedded categories, for example, the isel instruction.

Power Architecture Details

Power Architecture™ Technology Primer, Rev. 1

Freescale Semiconductor 15

AltiVec Technology (Category.Vector)

The AltiVec technology provided a prototype for the APUs that were developed in conjunction with
Book E, in that it added to the programming and interrupt models. It is primarily an extension of Book I,
but it identifies some resources for interrupt handling in Book III-E.

The Vector category not only makes use of architecture-defined resources; it creates a 32-entry vector
register (VR) file, similar to the GPRs and FPRs, but widened to 128 bits to accommodate
multiple-element vector operands. The AltiVec extension was developed to provide the following:

• The ability to equip a single high-performance RISC microprocessor with DSP-like computing
power for controller and signal-processing functions

• Highly parallel computational operations, allowing simultaneous execution of up to 16 operations
per clock cycle

• Wide data paths and wide field operations that can accelerate a broad array of traditional computing
and embedded processing operations

• A programmable solution that can easily migrate by using software upgrades to respond to
changing standards and customer requirements

• An integrated solution, 100% compatible with the PowerPC architecture

Although AltiVec technology initially targeted high-intensity graphics and scientific calculations, the
ability to perform mathematical computation, logical operations, and bit manipulation simultaneously
provided a competitive edge in realms of computing far removed from those envisioned by the AltiVec
architects.

AltiVec technology defines the following:

• 162 instructions that are an extension to the PowerPC definition

• Four-operand, non-destructive instructions

— Up to three source operands and a single destination operand

— Support for advanced “multiply-add/sum” and permute primitives

• Simplified load/store architecture

— Simple byte, half-word, word and quad-word loads and stores

— Virtually no misaligned accesses—software managed via permute instruction

The AltiVec technology introduced an important concept—the value of making architectural extensions
that provide a powerful suite of special-purpose functionality critical to certain computing segments. This
concept has provided a framework for an architecture that can broaden its diversity to support niche
computing without sacrificing consistency across its many environments.

Floating-Point Categories—Floating-Point (FP) and Floating-Point with Record (FP.R)

The Floating-Point categories consist of the instructions, registers, and interrupt resources originally
defined by the PowerPC architecture to support single- and double-precision floating-point instructions.

Power Architecture™ Technology Primer, Rev. 1

16 Freescale Semiconductor

Power Architecture Details

The definition of these resources has not changed. Defining these resources as a separate category
underscores the advantages of providing a modular architecture, providing greater leeway in balancing
power, thermal, size, and price constraints for very specific environments.

Move Assist (Category.MA)

The move assist instructions (load and store string instructions lswi, lswx, stswi, and stswx) are defined
as part of the integer instruction set in the UISA. These instructions have typically not been supported on
recent Freescale devices.

Signal Processing Engine (Category.SPE)

The SPE is a 64-bit, two-element, single-instruction multiple-data (SIMD) ISA, originally designed to
accelerate signal processing applications normally suited to digital signal processing (DSP) operations.
The two-element vectors fit within GPRs extended to 64 bits. SPE also defines an accumulator register
(ACC) to allow for back-to-back operations without loop unrolling. Like the Vector category, SPE is
primarily an extension of Book I but identifies some resources for interrupt handling in Book III-E.

In addition to add- and subtract-accumulate operations, the SPE supports a number of multiply-accumulate
operations, including negative-accumulate forms; as summarized in Table 1. The SPE supports signed,
unsigned, and fractional forms. For these instructions, the fractional form does not apply to unsigned
forms, because integer and fractional forms are identical for unsigned operands.

Mnemonics for SPE instructions generally begin with the letters ‘ev’ (embedded vector).

Embedded Vector and Scalar Single-Precision Floating-Point Categories

The embedded floating-point categories are dependent categories of the Signal Processing Engine
category. These include the following:

• Single-precision scalar (SP.FS)

• Single-precision vector (SP.FV)

• Double-precision scalar (SP.FD)

Table 1. SPE Vector Multiply Instruction Mnemonic Structure

Prefix Multiply Element Data Type Element Accumulate Element

evm

ho
he
hog
heg
wh
wl
whg
wlg
w

half odd (16x16->32)

half even (16x16->32)

half odd guarded (16x16->32)

half even guarded (16x16->32)

word high (32x32->32)

word low (32x32->32)

word high guarded (32x32->32)

word low guarded (32x32->32)

word (32x32->64)

usi
umi
ssi
ssf1

smi
smf1

1 Low word versions of signed saturate and signed modulo fractional instructions are not supported. Attempting to execute an
opcode corresponding to these instructions causes boundedly undefined results.

unsigned saturate integer

unsigned modulo integer

signed saturate integer

signed saturate fractional

signed modulo integer

signed modulo fractional

a
aa
an
aaw
anw

write to ACC

write to ACC & added ACC

write to ACC & negate ACC

write to ACC & ACC in words

write to ACC & negate ACC in words

Power Architecture Details

Power Architecture™ Technology Primer, Rev. 1

Freescale Semiconductor 17

The embedded floating-point categories provide IEEE-compatible floating-point operations to power- and
space-sensitive embedded applications. As is true for all Signal Processing Engine categories, rather than
implementing the FPRs defined by the PowerPC architecture, these categories share the GPRs used for
integer operations, extending them to 64 bits to accommodate vector single-precision and scalar
double-precision categories. These extended GPRs are described in “Register Files” on page 28.

Book VLE Category

There is perhaps no clearer evidence of the breadth and adaptability of the Power Architecture model than
the variable length encoding (VLE) category. VLE redefines encodings for many UISA-based instructions
to fit into 16-bit opcodes, which allows the UISA to be presented into environments where there is a
driving need for a small code footprint. Like the Vector and Signal Processing Engine categories, the VLE
category extends Book I–, II–, and III–level resources, although it is defined separately as Book VLE.

The option of using 16-bit encodings offers more efficient binary representations of applications for the
embedded processor spaces where code density plays a major role in overall system cost. This alternate
encoding can also improve performance. The purpose of the VLE extension is neither to define an entirely
different ISA nor to supplant the PowerPC ISA; instead, the VLE extension is a supplement that can
improve code density to an application or to part of an application.

The VLE set of alternate encodings is selected on an instruction-page basis. A single page-attribute bit
selects between standard instruction encodings and VLE instructions for that page of memory. Pages of
either configuration can be intermixed freely, allowing a mixture of both types of encodings in an
application.

Instruction encodings in instruction pages marked as using the VLE extension are either 16 or 32 bits long
and are aligned on 16-bit boundaries. Therefore, all pages marked as VLE must use big-endian byte
ordering.

The programming model uses the same register set with both instruction encodings, although certain
registers are not accessible by VLE instructions using the 16-bit formats, and not all condition register
(CR) fields are used by condition setting or conditional branch instructions executing from a VLE
instruction page. Furthermore, immediate fields and displacements differ in size and use, due to more
restrictive encodings imposed by VLE instructions.

Other than the requirement of big-endian byte ordering for instruction pages and the additional page
attribute to identify whether the instruction page corresponds to a VLE section of code, VLE complies with
the Embedded category memory model. Likewise, the VLE extension complies with the Book III–E
definitions of the exception and interrupt models, timer facilities, debug facilities, and SPRs.

Wait (Category WT)

The Wait category, defined in Book II, provides an ordering function for the effects of all instructions
executed by the processor executing the wait instruction. The wait instruction ensures that all previous
instructions complete before it does and that no subsequent instructions are initiated until an interrupt
occurs. Any prefetched instructions are discarded and instruction fetching is suspended until an interrupt
occurs.

Power Architecture™ Technology Primer, Rev. 1

18 Freescale Semiconductor

Instruction Model

Instruction Model
This section describes the instructions and instruction classes as they are defined as part of the Power
ISA 2.04 definition. Features that are defined only for the PowerPC architecture are indicated as such.
These instructions are grouped by function, as follows:

• Integer instructions—These include arithmetic, logical, and integer load/store instructions. See
“Integer Instructions” on page 19.

• Floating-point instructions—These include the floating-point instructions defined by the PowerPC
architecture and the floating-point vector and scalar arithmetic instructions defined as part of the
Signal Processing Engine category. See “Floating-Point Instructions (Category FP, FP.R)” on
page 21.

• Branch and flow control instructions—These include branching instructions, CR logical
instructions, trap instructions, and other instructions that affect instruction flow. See “Branch and
Flow Control Instructions (Base Category)” on page 22.

• Processor control instructions—These instructions are used for accessing architecturally defined
registers, such as SPRs, the condition register (CR), and the machine state register (MSR). See
“Processor Control Instructions (Base Category)”on page 23.

• Memory synchronization instructions—These ensure that accesses to memory and memory
resources occur in correct order with respect to memory operations generated by other instructions
or by other memory devices. See “Memory Synchronization Instructions” on page 24.

• Memory control instructions—These instructions provide control of caches and TLBs. See
“Memory Control Instructions” on page 24.

Integer instructions operate on word operands and use the GPRs. Floating-point instructions operate on
single- and double-precision floating-point operands. Floating-Point category instructions use FPRs, while
SP.FP, SP.FD, and SP.FV category instructions use the GPRs. Instructions are 4 bytes (one word) long and
must be word-aligned. The architecture provides byte, half-word, word, and double-word operand loads
and stores between memory and a set of 32 GPRs and provides for word and double-word operand loads
and stores between memory and a set of 32 floating-point registers (FPRs). When data is loaded from
memory to an FPR, the architecture requires that both double-precision and single-precision data be
internally kept in double-precision format.

Arithmetic and logical instructions do not read or modify memory. To use the contents of a memory
location in a computation and then modify the same or another location, the memory contents must be
loaded into a register, modified, and then written to the target location using load and store instructions.

Note that the PowerPC architecture allows out-of-order, parallel execution but requires in-order
completion. Some operations, especially those that update the processor state, must be performed in an
order that guarantees that adjacent instructions complete execution and make results available in the proper
context. Such serialization is handled by the instruction pipeline microarchitecture.

Similarly, it is sometimes necessary to insert synchronization instructions into the program flow to
guarantee that accesses to memory and memory resources such as TLBs complete in order. These memory
synchronization instructions control the order in which memory operations complete with respect to
asynchronous events, and the order in which memory operations are seen by other mechanisms that access
memory.

Instruction Model

Power Architecture™ Technology Primer, Rev. 1

Freescale Semiconductor 19

Simplified Mnemonics
The description of each instruction in the architecture includes the mnemonic and a formatted list of
operands. To simplify assembly language programming, a set of simplified mnemonics and symbols is
provided for some of the frequently used instructions such as branch conditional, compare, trap, and rotate
and shift instructions. These simplified mnemonics redefine the mnemonics to incorporate numerical
information provided in operands. For example, there are simplified mnemonics for the mtspr and mfspr
instructions that, instead of requiring the SPR number as operand, incorporate the name of the SPR into
the mnemonic. To load a value from a GPR into the count register, mtctr rS can be used instead of
mtspr 9,rS. The Power ISA definition extends the set of simplified mnemonics to include new SPRs that
are being phased in.

Simplified mnemonics for individual processors are listed in each reference manual.

Instruction Set Overview
This section provides a brief overview of the Power ISA defined for Embedded category devices.

Architected instructions occupy specifically defined spaces in the opcode space. Because they are defined
for a variety of specific environments, some categories are mutually exclusive, so their opcodes may
overlap. For example, the Vector and Signal Processing Engine categories are both SIMD instruction sets
that target distinctly different markets and so they have many overlapping opcodes. An implementation
that attempts to execute a reserved instruction, or any other instruction that is not implemented, generates
an interrupt.

Integer Instructions

This section describes the integer instructions, all of which are defined in Book I. All are part of the Base
category except for the load/store string and multiple instructions, which make up the move assist
category. and load/store double word instructions defined as part of the 64-bit category.

These integer instructions are grouped as follows:

• Integer arithmetic instructions

• Integer compare instructions

• Integer logical instructions

• Integer rotate and shift instructions

• Integer select instruction (formerly the EIS integer select APU)

Power Architecture™ Technology Primer, Rev. 1

20 Freescale Semiconductor

Instruction Model

Integer instructions use GPRs for source operands and place results into GPRs and the XER and CR fields.
Integer instructions are shown in Table 2.

Integer load and store instructions, shown in Table 3, are issued and translated in program order; however,
the accesses can occur out of order. Synchronizing instructions (see Table 8) are defined in Book II and
are provided to enforce strict ordering.

Table 2. Integer Computational Instructions

Instructions Instruction Name Options

Integer arithmetic (addx, divx, mulx, negx,
subx)

Add Carrying, extended, immediate, shifted, minus one, zero

Divide Word, unsigned

Multiply High word, low word, unsigned, immediate

Negate —

Subtract From, carrying, extended, immediate, minus one, zero

Integer compare (cmpx) Compare Immediate, logical

Integer logical (andx, cnt, eqv, extx, nand, norx,
orx, xorx)

AND Immediate, shifted, with complement

Count Leading zeros, word

Equivalent —

Extend Sign, byte, half word

NAND —

NOR —

OR Immediate, shifted, complement

XOR Immediate, shifted

Integer rotate and shift (rlwx, slwx, srwx, srawx) Rotate left word Immediate, then AND with mask, then mask insert

Shift Left word, right word, algebraic word, immediate

Integer select (isel) Integer Select —

Table 3. Integer Load/Store Instructions

Instruction Instruction Name Options/Comments

Integer load (lbx, lhx, lwx, ldx1)

1 Category 64-bit only

Load Byte, word, double word1, half word, algebraic (half word), byte
reverse, and zero, with update, indexed

Integer load multiple/string word: lmw,
lswi

Load multiple word Base category

Load string word Move Assist category

Integer store (stbx, sthx, stwx, stdx1) Store Byte, word, half word, double word1, byte-reverse, with update,
indexed

Integer store multiple/string word:
stmw, stswi

Store multiple word Base category

Store string word Move Assist category

Instruction Model

Power Architecture™ Technology Primer, Rev. 1

Freescale Semiconductor 21

Floating-Point Instructions (Category FP, FP.R)

The floating-point model is written to the IEEE® Std. 754™, which defines conventions for single- and
double-precision arithmetic. The standard requires that single-precision arithmetic be provided for
single-precision operands.

The instructions follow these IEEE-754 guidelines:

• Double-precision arithmetic instructions can have single-precision operands but always produce
double-precision results.

• Single-precision arithmetic instructions require all operands to be single-precision and always
produce single-precision results.

• Conversion from double- to single-precision must be done explicitly by software; conversion from
single- to double-precision is done implicitly by the processor.

The floating-point computational, move, and select instructions operate on data kept in FPRs and, except
for the compare instructions whose results are reported to the condition register (CR), place the result value
into a target FPR specified as part of the instruction syntax. Instruction forms with Rc=1 place additional
status information into the CR and are part of the dependent Floating-Point.Record category.

The signal processing engine (SPE) category defines an alternative floating-point instruction set that uses
GPRs rather than FPRs. See “Embedded Vector and Scalar Single-Precision Floating-Point Categories” on
page 16.

Table 4 provides an overview of the floating-point computational instructions.

Table 4. Floating-Point Computational Instructions

Instructions Instruction Name Options

Floating-point elementary arithmetic
(faddx, fdivx, fmulx, fsubx, fsqrtx,
fresx, fabs, fmr, fnabs, fneg)

Add Single, double

Divide Single, double

Multiply Single, double

Reciprocal Estimate single, square root estimate

Square root Single, double

Subtract Single, double

Absolute value —

Move register —

Negative absolute value —

Negate —

Floating-point multiply-add (fmaddx) Multiply-add Single, double

Multiply-subtract Single, double

Negative multiply-add Single, double

Negative multiply-subtract Single, double

Power Architecture™ Technology Primer, Rev. 1

22 Freescale Semiconductor

Instruction Model

The floating-point load and store instructions are required to transfer operands between memory and the
FPRs.

Branch and Flow Control Instructions (Base Category)

Branch instructions are used to redirect program flow. Usually, this is done conditionally based on CR bit
values. If a previous instruction in progress may affect the particular CR bit, the branch is considered
unresolved. The direction of the branch may be predicted either using the static branch prediction that can
be encoded as part of the branch syntax, or through some hardware mechanism specific to the device.
Implementations can begin executing instructions fetched according to the prediction, but the results of
this execution cannot update architected registers or memory unless and until the value of the CR bits
determines a prediction is correct, at which point results can be committed. If the prediction is incorrect,
the fetched instructions and any of their results are purged, and the instruction fetching continues along the
alternate path.

Branch instruction functions include the following:

• Branch instructions redirect instruction execution conditionally based on the value of bits in the
CR. For branch conditional instructions, the BO operand specifies the conditions under which the
branch is taken.

• CR logical instructions perform logical operations on CR contents that help determine branching
conditions.

• Trap instructions test for a specified set of conditions. If any of the tested conditions is met, a
system trap type interrupt is taken.

• Executing a System Call (sc) instruction lets a user program call on the system to perform a service
by invoking a system call interrupt. System Call instructions can be either user- or supervisor-level.

Floating-point rounding and conversion
(fctix, frx)

Convert from integer Double word

Convert to integer Word, double word, round to zero

Round to single-precision —

Floating-point compare and select (fcmx) Compare Ordered, unordered

Select —

Floating-point status and control register
(mtfx, mffx)

Move from FPSCR —

Move to FPSCR Bit 0, Bit 1, fields, immediate

Table 5. Floating-Point Load and Store Instructions

Instructions Instruction Name Options

Floating-point load (lfx) Load floating-point Double, single, with update, extended, indexed

Floating-point store (stfx) Store floating-point Double, single, with update, extended, indexed, as
integer word

Table 4. Floating-Point Computational Instructions (continued)

Instructions Instruction Name Options

Instruction Model

Power Architecture™ Technology Primer, Rev. 1

Freescale Semiconductor 23

For branch conditional instructions, the BO operand specifies the conditions under which the branch is
taken. The BI operand specifies which of the 32 CR bits to test.

Because it can be cumbersome for a programmer to remember the various meanings of BO and BI
encodings, the architecture provides simplified mnemonics that allow conditions specified by BO and BI
to be incorporated into the mnemonic. For example, the Branch Conditional instruction, whose syntax is
bc BO,BI, target address, can be coded to decrement the count register (CTR) and branch as long as the
CTR is not zero (closure of a loop controlled by a count loaded into CTR). To specify this condition, the
BO field must be coded as 16. Alternatively, a simplified mnemonic is available, bdnz, that indicates
“branch while the decremented value is non-zero.” Using the simplified mnemonic eliminates the BO and
BI operands, simplifying ‘bc 16,0,target’ to the more easily remembered ‘bdnz target’, which generates
identical machine code.

The supervisor-level rfi instruction is used for returning from a standard interrupt handler. The rfci
instruction is used for critical interrupts and rfmci is used for machine-check interrupts (Embedded
category), and rfdi is used for debug interrupts (Embedded.Enhanced Debug category). See the “Interrupt
Model” section on page 40.

Branch and flow control instructions are shown in Table 6.

Processor Control Instructions (Base Category)

Processor control instructions are used to read from and write to registers other than GPRs and FPRs that
can be accessed specifically. These include CR, XER, MSR, and SPRs. The time base register and some
SPRs are accessible at both the user and supervisor levels; separate SPR numbers are used for each.

Note that the Embedded category defines the Write MSR External Enable instructions (wrtee[i]), which
can be used instead of mtmsr to update only MSR[EE], which enables or disables external interrupt
exception conditions. The wrtee instruction has fewer serialization requirements, and therefore shorter
latency, than mtmsr.

Table 6. Branch and Flow Control Instructions

Instruction Name Options

Branch (bx, bcx) Branch Address, and link, conditional, conditional to link register, conditional to count register, if
less than, if not less than, if less than or equal to, if equal to, if not greater than, if greater
than, if greater than or equal to, if summary overflow, if not summary overflow, if
unordered, if not unordered, and LR update

CR logical (crx, mcrx) Condition
register

AND/AND with complement, OR/OR with complement, XOR, NAND, NOR, Equivalent

Trap (tx, twx) Trap Word, immediate, less than, not less than, equal, less than or equal, not equal, not
greater than, greater than, greater than or equal, logically less than, logically not less
than, logically less than or equal, logically not greater than, logically greater than,
logically greater than or equal

System call (sc) System call —

Return (rfx) Return from Interrupt (Base category), critical and machine-check interrupts (Embedded category),
debug (embedded.enhanced debug category

Power Architecture™ Technology Primer, Rev. 1

24 Freescale Semiconductor

Instruction Model

Table 7 summarizes processor control instructions.

Memory Synchronization Instructions

Memory synchronization instructions control the order in which memory operations execute with respect
to asynchronous events and the order in which operations are seen by other mechanisms that access
memory. Memory synchronization instructions are user-level instructions and are shown in Table 8.

Memory Control Instructions

Memory control instructions, categorized below, include instructions for cache management and TLB
management:

• Cache instructions—Help programs manage on-chip caches if they are implemented. The effects
of the cache management instructions on memory are weakly ordered. If the programmer needs to
ensure that cache or other instructions have been performed with respect to all other processors and
system mechanisms, a sync or msync (a simplified mnemonic in the Power ISA definition) must
be placed in the program following those instructions.

• Segment register instructions—Defined by the PowerPC architecture 1.10 and not part of the
embedded environment.

• TLB management instructions—Among the resources that the Embedded category defines to
support software address translation are the tlbwe and tlbre instructions, which are used to directly
configure the TLBs with translation and memory protection information. Additional instructions
are provided for searching and invalidating entries and for synchronizing TLB accesses.

Table 7. Processor Control Instructions

Instructions Name Options

Move (mtx, mfx) Move to SPR, CR fields, CR from XER, DCR, time base, MSR, PMR (Embedded.Performance Monitor
category)

Move from SPR, DCR, CR, TB, MSR, PMR

Table 8. Memory Synchronization Instructions

Instructions Instruction Name Comments

Load word and reserve index Load word lwarx

Store word conditional index Store word stwcx.

Synchronize (sync, eieio,
isync, msync, mbar)

Synchronize (Memory
Synchronize)

Book E recast PowerPC architecture–defined sync as
msync. The Power ISA version defines msync as a
simplified mnemonic, configured to function as the
Book E–defined msync for Embedded category devices.

Enforce In-Order Execution of I/O PowerPC architecture 1.10/Server category

Memory Barrier Embedded category. The Server category defines this
opcode as eieio, as in the PowerPC architecture, 1.10.

Instruction Synchronize isync synchronizes instruction stream

Register Model

Power Architecture™ Technology Primer, Rev. 1

Freescale Semiconductor 25

For performance reasons, many processors implement one or more TLBs on-chip. These are caches
of portions of the page table. As changes are made to the address translation tables, it is necessary
to maintain coherency between the TLB and the updated tables. This is done by invalidating TLB
entries, or occasionally by invalidating the entire TLB and allowing the translation caching
mechanism to refetch from the tables.

Memory control instructions are listed in Table 9.

Register Model
The Power Architecture model defines register-to-register operations for all computational instructions.
Source data for these instructions is accessed from the on-chip registers or is provided as immediate values
embedded in the opcode. The Power Architecture model allows specification of a target register distinct
from the two source registers, preserving the original data for use by other instructions and reducing the
number of instructions for some operations. Data is transferred between memory and registers with
explicit load and store instructions only. Registers hold the source or destination of an instruction, or they
are accessed as a by-product of execution.

Most registers defined in the PowerPC architecture 1.10 are unchanged in the Power Architecture 2.04
model. A few have been replaced by other registers, and in some cases new fields are defined, primarily
to support functionality defined by categories that have been added to the architecture.

Table 9. Memory Control Instructions

Instructions Name Options

User-level cache (dcbx, icbx) Data cache block Touch, touch for store, allocate, clear, zero, store, flush (Embedded
category)

Instruction cache block Invalidate, touch (Embedded category)

Supervisor-level cache (dcbi) Data cache block Invalidate (Embedded category)

Supervisor-level cache (dcbx) Data cache block Invalidate

dcbtls, dcbtstls, icbtls
dcblc, icblc

Data/instruction cache
block touch (for store)
and lock set

Embedded.Cache Locking category

dcbxls, icbxls Data/instruction cache
block lock touch and set

TLB management (tlbx) TLB invalidate Entry, all, virtual address indexed (Note that Embedded category
versions of these instructions differ from the Server category
versions).

TLB synchronize —

TLB read entry Embedded category

TLB search indexed Embedded category

TLB write entry Embedded category

Power Architecture™ Technology Primer, Rev. 1

26 Freescale Semiconductor

Register Model

Registers include the following:

• Register files—General-purpose registers (GPRs) and floating-point registers (FPRs) are accessed
as either the source or destination of an instruction. Likewise, the Vector category uses vector
registers (VRs), and the SPE uses the 32-bit GPRs extended to 64-bits. GPRs are often used to
generate the effective address for instructions that access memory (because GPRs are used to hold
addresses, 64-bit implementations require 64-bit GPRs).

• Instruction-accessible registers—Registers such as the condition register (CR), the floating-point
status and control register (FPSCR), and some SPRs are accessed as by-products of executing
certain instructions.

• Special-purpose registers (SPRs)—On-chip registers that are part of the processor core. They
control the use of the debug facilities, timers, interrupts, memory management unit, and other
processor resources. They include the hardware implementation-dependent registers (HIDs), not
defined by the architecture, that are used for configuration and control. SPRs are accessed with the
Move to SPR (mtspr) and Move from SPR (mfspr) instructions.

• Performance monitor registers, or PMRs (Embedded.Performance Monitor category), and device
control registers, or DCRs (Embedded category), offer large sets of on-chip registers similar to
SPRs.

Figure 4 shows the Power ISA 2.04 register model for the embedded environment.

Register Model

Power Architecture™ Technology Primer, Rev. 1

Freescale Semiconductor 27

Figure 4. Power ISA 2.04 Register Model (Embedded Environment)

User-Level Registers
Register Files Instruction-Accessible Registers General SPRs (Read-Only)

0 31 32 63 0 31 32 63 0 31 32 63

(upper) GPR01 (lower)

1 On 32-bit implementations, only category SPE instructions can access the upper word of the 64-bit GPRs.

General-
purpose
registers

CR Condition spr 259 SPRG3 SPR general
(4–7 Category E)GPR1 spr 260 –263 SPRG4–78

spr 9 CTR Count
GPR2

Time-Base Registers (Read-Only)
. . . spr 8 LR Link

GPR31 spr 268 (TB) TBL Time base
lower/upperFPSCR2 Floating-point

status/control spr 269 TBU
FPR02

2 Floating-point category (FP)

Floating-point

spr 1 XER Integer exception
FPR1 spr 526 (ATB) ATBL3

3 Alternate time-base category (ATB)

Alternate time base
lower/upperFPR2 spr 512 SPEFSCR4

4 Signal Processing Engine category

SPE FP status/control spr 527 ATBU 3

. . .

ACC4 Accumulator Vector
FPR31

0 127 spr 256 VRSAVE5,6

5 Vector category (VEC), formerly AltiVec technology
6 Formerly USPRG0

Vector save

VR05

Vector registers

VSCR 5 Vector status and
controlVR1

. . .

VR31

Supervisor-Level Registers
Interrupt Registers MMU Registers Timer/Decrementer Registers

0 31 32 63 0 31 32 63 0 31 32 63

spr 63 IVPR 8 Interrupt vector
prefix

spr 1012 MMUCSR0 7

7 Embedded.Freescale MMU Type FSL (E.MF)

MMU control and status
register 0

 spr 22 DEC Decrementer

Decrementer
auto-reloadInterrupt Vector Offsets (Read/Write) spr 624–625 MAS0–1 7

MMU assist
registers
0–4 and 6–7

 spr 54 DECAR 8

8 Embedded category (E)

spr 400 IVORn 8 IVOR 0–15 spr 626 MAS2
 spr 284 (TB) TBL Time base

lower/upper spr 528–531 IVORn 4,9

9 Embedded.Performance Monitor category (E.PM)

IVOR 32–35 spr 630 MAS67

 spr 285 TBU
spr 944 MAS77

Save Restore Registers (Read/Write)
 spr 340 TCR 8 Timer control

spr 26–27 SRRn SRR 0/1 spr 48 PID0 8 Process ID
registers 0–2spr 58–50 CSRRn 8 Critical 0/1 spr 633–634 PID1–27 spr 336 TSR 8 Timer status

spr 570–571 MCSRRn 8 Machine check 0/1
spr 1015 MMUCFG7 MMU configuration Performance Monitor Registers

spr 574–575 DSRRn10

10 Embedded.Enhanced Debug category

Debug 0/1

spr 688–691 TLBnCFG7 TLB configuration 0–3 pmr 400 PMGC0 9 Global control register Exception Support Registers (Read/Write)

 spr 62 ESR 8 Exception syndrome Debug (Read/Write) pmr 16–19 PMC0–3 9 Counter registers 0–3

spr 572 MCSR 8 Machine check
syndrome

 spr 308-310 DBCRn 8 Debug control 0–2 pmr 144–147 PMLCa0–3 9 Local control a0–a3

pmr 272–275 PMLCb0–3 9 Local control b0–b3
spr 61 DEAR 8 Data exception

address
spr 304 DBSR 8 Debug status register

Miscellaneous Registers
Configuration Registers spr 312–315 IACn 8 Instruction address

compare 1–4
spr 1008 HID011

11 Defined by the EIS.

Hardware
implementation
dependent 0–1

MSRMSR Machine state spr 316–317 DACn 8 Data address compare
1–2 spr 1009 HID111

spr 287 PVR Processor version spr 318–319 DVCn 8 Data value compare
1–2 spr 272–279 SPRGn General SPRs 0–7

spr 286 PIR Processor ID

Ranges marked in gray are supported only by 64-bit processors.

Power Architecture™ Technology Primer, Rev. 1

28 Freescale Semiconductor

Register Model

Power Architecture user instruction and register models are fully binary-compatible with those of the
PowerPC architecture 1.10 UISA.

The UISA registers, shown in Figure 4, can be accessed by user- or supervisor-level instructions; the VEA
introduces the time base facility as user-level registers, also shown in Figure 4. The OEA defines the
registers that an operating system uses for memory management, configuration, and interrupt handling.
The OEA register model includes only supervisor-level registers. The following describes specific
registers for both PowerPC architecture 1.10 and the Power Architecture 2.04 register model.

Register Files
Figure 5 shows a comparison of PowerPC architecture 1.10 and Power Architecture register files.

PowerPC architecture 1.10 and the Power Architecture 2.04 model both include GPR and FPR files
necessary for instruction computation:

• General-purpose registers (GPRs)—GPRs serve as the data source or destination for all integer and
non-floating-point load/store instructions and provide data for generating addresses. The PowerPC
architecture 1.10 and Book E define a GPR file that consists of thirty-two GPRs designated as
GPR0–GPR31. Instructions defined by the Base category for 32-bit implementations use GPRs
that are 32 bits wide.

The Signal Processing Engine category defines a set of thirty-two 64-bit GPRs for use with 64-bit
instructions; scalar double-precision embedded floating-point instructions treat the 64 bits as a

Register Files

PowerPC Architecture 1.10 Power ISA 2.04

0 31 0 31 32 63

GPR0

General-purpose
registers

(upper) GPR0 (lower)

General-purpose registers (The Base category defines only the
lower half (bits 32-63).

(The 64-bit category defines the GPRs as single-element, 64-bit
GPRs.)

GPR1 GPR1

GPR2 GPR2

• • • • • •
GPR31 GPR31

The Signal Processing Engine category defines the upper 32
bits of the GPRs for use with 64-bit operands

The 64-bit Category defines the upper 32 bits for use with 64-bit
scalar integer (fixed -point) operands

 0 63 0 63

FPR0

Floating-point
registers

FPR0

Floating-point registers (Floating-point category)

FPR1 FPR1

FPR2 FPR2

• • • • • •
FPR31 FPR31

 0 127

VR0

Vector registers (Vector category)

VR1

VR2

• • •
VR31

Figure 5. Register File Comparison

Register Model

Power Architecture™ Technology Primer, Rev. 1

Freescale Semiconductor 29

single operand; SPE vector instructions break the 64-bit registers into two 32-bit elements, which
for some instructions are broken into half-word elements.

The 64-bit category, drawn from the PowerPC architecture 1.10, defines 64-bit addressing modes
and instructions for loading and storing double-word operands. Because many registers have to be
wide enough to hold an address, the sizes of some register resources, including the GPRs, save
restore register 0 (SRR0), and the data address register (DAR), are defined to be 32 bits wide in
32-bit implementations and 64 bits wide in 64-bit implementations.

• Floating-point registers (FPRs)—The floating-point category, drawn from the PowerPC
architecture 1.10, defines an FPR file that consists of thirty-two 64-bit FPRs, FPR0–FPR31. The
FPRs use double-precision operand format for both single- and double-precision data. See
“Floating-Point Instructions (Category FP, FP.R)” on page 21.

• Vector registers (VRs)—VRs act as either the source or destination of vector (AltiVec) instructions.
The Power Architecture 2.04 model defines a VR file that consists of thirty-two 128-bit VRs, which
typically are configured to hold four 32-bit operands to support SIMD operations.

Instruction-Accessible Registers
Figure 6 shows a comparison of PowerPC architecture 1.10 and Power Architecture instruction-accessible
registers.

PowerPC architecture 1.10 and the Power Architecture 2.04 registers contain instruction-accessible
registers that can be accessed as the by-product of executing certain instructions:

• Condition register (CR). Reflects the results of testing and branching. It is used to record conditions
such as overflows and carries. A specified CR field can be set as the result of either an integer or a
floating-point compare instruction.

• Integer exception register (XER). Indicates overflow and carries for integer operations. XER status
bits overflow, summary overflow, and carry are set based on the operation of an instruction
considered as a whole, not on intermediate results. For example, the subtract from carrying

Instruction-Accessible Registers

PowerPC Architecture 1.10 Power ISA 2.04

0 31 0 31 32 63

CR Condition register CR Condition register

Base category
spr 1 XER Integer exception register spr 1 XER Integer exception register

spr 8 LR Link register spr 8 LR Link register

spr 9 CTR Count register spr 9 CTR Count register

FPSCR Floating-point status
and control register

VSCR Vector status
and control register

Vector category

FPSCR Floating-point status
and control register

Floating-point category

spr 512 SPEFSCR SPE FP status
and control register Signal Processing Engine category

ACC Accumulator

Figure 6. Instruction-Accessible Registers Comparison

Power Architecture™ Technology Primer, Rev. 1

30 Freescale Semiconductor

Register Model

instruction, which produces a result specified as the sum of three values, sets XER bits based on
the entire operation, not on an intermediate sum.

• Link register (LR). Provides the branch target address for the branch conditional to link register
(bclrx) instructions and can be used to hold the logical address (also called the effective address)
of the instruction that follows a branch and link instruction, typically used for linking to
subroutines.

• Count register (CTR). Can be used to hold a loop count, which can be decremented during
execution of branch instructions. The entire count register can also be used to provide the branch
target address for the branch conditional to count register (bcctrx) instruction.

• Floating-point status and control register (FPSCR). Controls the handling of floating-point
exceptions and records status resulting from the floating-point operations. The register includes
status bits and control bits needed for compliance with the IEEE 754 floating-point standard.

The following registers support SPE and embedded floating-point instructions:

• SPE floating-point status and control register (SPEFSCR). Used for status and control of SPE and
embedded floating-point instructions. It controls the handling of floating-point exceptions and
records status resulting from the floating-point operations.

• Accumulator register (ACC). Holds the results of the multiply accumulate (MAC) forms of SPE
integer instructions. The ACC allows back-to-back execution of dependent MAC instructions,
something that is found in the inner loops of DSP code such as finite impulse response (FIR) filters.
The accumulator is partially visible to the programmer in that its results do not have to be explicitly
read to use them. Instead, they are always copied into a 64-bit destination GPR specified as part of
the instruction. Based upon the type of instruction, this register can hold either a single 64-bit value
or a vector of two 32-bit elements.

Register Model

Power Architecture™ Technology Primer, Rev. 1

Freescale Semiconductor 31

Time Base Registers
Figure 7 shows a comparison of PowerPC architecture 1.10 and Book E PowerPC architecture time base
registers.

The following hardware and software timer registers are derived from PowerPC architecture 1.10 and
Book E:

• Time base (TBU and TBL). Provides timing functions for the system. TB is composed of two
32-bit registers, the time base upper (TBU) concatenated on the right with the time base lower
(TBL). The two 32-bit TB registers count at an implementation-specific rate like a 64-bit counter.
User-level applications have read-only access to the TB while supervisor-level applications have
read/write access. The time base count is used, among other functions, to trigger interrupts.

• Decrementer register (DEC). Typically used as a general-purpose software timer. It is updated at
the same rate as the TB and provides a way to signal a decrementer interrupt after a specified
period.

The Book E definition provides registers that incorporate timing mechanisms for the fixed-interval and
watchdog timer interrupts defined in Book E:

• Decrementer auto-reload register (DECAR). Used to automatically reload a programmed value
into DEC. In the PowerPC architecture 1.10, a value has to be explicitly programmed into DEC.

• Timer control register (TCR). Provides control information for the decrementer. It controls features
such as auto-reload enable and decrementer interrupt enable.

• Timer status register (TSR). Contains status on timer events and the most recent watchdog
timer-initiated processor reset. It controls features such as watchdog timer, fixed-interval interrupt
enable, and watchdog timer interrupt status.

Timer/Decrementer Registers

PowerPC Architecture 1.10 Power ISA 2.04

0 31 32 63

spr 268 TBL User-level time base
lower/upper
(read-only)

spr 268 TBL User-level time base
lower/upper (read-only)

Base category

spr 269 TBU spr 269 TBU

 spr 284 TBL Supervisor-level time
base lower/upper

 spr 284 TBL Supervisor-level time
base lower/upper spr 285 TBU spr 285 TBU

 spr 22 DEC Decrementer spr 22 DEC Decrementer

 spr 54 DECAR Decrementer auto-reload

Embedded category spr 340 TCR Timer control

 spr 336 TSR Timer status

 spr 526 ATBL Alternate time base
lower/upper

Alternate
Time-Base
category) spr 527 ATBU

Figure 7. Time/Decrementer Registers Comparison

Power Architecture™ Technology Primer, Rev. 1

32 Freescale Semiconductor

Register Model

MMU Control and Status Registers
Because the PowerPC architecture MMU specification was cumbersome for embedded applications, many
embedded processors were designed with alternate features, such as variable-sized pages and
software-managed page tables. These features are now part of the Power ISA 2.04 definition.

The complexity of the modal 32-/64-bit MMU model in the PowerPC architecture 1.10 was replaced in
Book E by additional supervisor mode registers and instructions in the UISA. The Book E definition
resulted in a more embedded-friendly MMU architecture that is simpler and more flexible while
implementing software-driven TLBs and per-page properties. Translation lookaside buffers (TLBs) keep
recently-used page address translations on-chip. See “Memory Management Unit (MMU) Model” on
page 44 for more information on the MMU.

Figure 8 compares the MMU registers defined by the PowerPC architecture 1.10 with those defined by the
Power ISA category Embedded.MMU Type FSL version and the Freescale EIS to support embedded
devices.

MMU Registers

PowerPC Architecture 1.10 Power ISA 2.04/Freescale EIS

a MMU Control and Status (Read/Write)
0 31 0 31 32 63

spr 528 IBAT0U

Instruction
block-address
translation
registers

spr 48 PID0
Process ID
registers 0–2

Embedded category

spr 529 IBAT0L spr 633 PID1

Embedded.MMU Type FSL

spr 530 IBAT1U spr 634 PID2

spr 531 IBAT1L MMU control and
status register 0spr 1012 MMUCSR0

spr 532 IBAT2U

spr 533 IBAT2L spr 624 MAS0

MMU assist registers
0–4 and 6

spr 534 IBAT3U spr 625 MAS1

spr 535 IBAT3L spr 626 MAS2

spr 627 MAS3
 spr 25 SDR1 SDR1

spr 628 MAS4

spr 536 DBAT0U

Data block-address
translation
registers

spr 630 MAS6

spr 537 DBAT0L spr 944 MAS7

spr 538 DBAT1U
MMU Control and Status (Read Only)

spr 539 DBAT1L

spr 540 DBAT2U spr 1015 MMUCFG MMU configuration

spr 541 DBAT2L
spr 688 TLB0CFG

TLB configuration 0/1spr 542 DBAT3U
spr 689 TLB1CFG

spr 543 DBAT3L

SR0

Segment registers

SR1

SR2

• • •

SR31

 spr 25 SDR1 SDR1

Figure 8. MMU Registers Comparison

Register Model

Power Architecture™ Technology Primer, Rev. 1

Freescale Semiconductor 33

The PowerPC architecture definition includes SPRs that are used for address translation:

• Block address translation registers. The PowerPC architecture 1.10 MMU defines BAT registers
(BATs) to maintain address translation information for blocks of memory. For each block, a pair of
registers is defined, upper and lower, which contain the base address and size of the block, as well
as the value of the WIMG bits used to describe cache coherency attributes.

The architecture defines these BATs as two four-entry fully associative arrays: one array of four
pairs for instruction memory (IBATs) and one array of four pairs for data memory (DBATs).
Effective addresses are compared simultaneously with all four pairs of registers in the BAT array
during block translation.

The BATs are maintained by the system software and are implemented as eight pairs of SPRs. Each
block is defined by a pair of BATs. For example, IBAT0U and IBAT0L provide translation and
protection for one block. BAT registers are not part of the PowerPC Book E specification. A more
detailed discussion of how BATs function can be found in the section, “Memory Management Unit
(MMU) Model” on page 44.

• SDR1 register. SDR1 is a PowerPC 1.10 register that specifies the base address and the size of the
page tables in memory. When a table search operation commences, a primary hashing function is
performed on the virtual address. The output of the hashing function is then concatenated with bits
programmed into SDR1 by the operating system to create the physical address of the primary page
table entry group.

The Embedded category implements a register to identify TLB entries used in address translation:

• Process ID register (PID). Provides an identifier value associated with each effective address
(instruction or data) generated by the processor. The MMU Type FSL category defines additional
PIDs.

The MMU Type FSL category includes MMU assist (MAS) registers, among others, to provide MMU
control:

• Process ID registers (PID1–PID2). Provide identifier values associated with each effective address
(instruction or data) generated by the processor.

• MMU control and status register 0 (MMUCSR0). Used for general MMU control, for example, to
invalidate TLBs.

• MMU assist registers (MAS0–MAS7). Used to configure and manage pages through translation
lookaside buffers (TLBs). These registers are used to configure and control MMU read/write and
replacement, descriptor configuration, effective page number and page attributes, real page number
and access, and hardware replacement assist configuration.

• MMU configuration register (MMUCFG). Provides configuration information for the particular
MMU supplied with a version of the core. It is a read-only register that provides information on
PID register size and the number of TLBs.

• TLB configuration registers (TLB0CFG–TLB1CFG). These read-only registers provide
information about each TLB that is visible to the programming model. They provide configuration
information for TLBs and describe aspects such as the associativity, minimum and maximum page
sizes of the TLBs, and the number of entries in the TLBs.

Power Architecture™ Technology Primer, Rev. 1

34 Freescale Semiconductor

Register Model

L1 Cache Registers (EIS)
The Freescale EIS defines L1 cache configuration and status registers, shown in Figure 9. Neither the
PowerPC architecture 1.10 nor the Power Architecture 2.04 specification defines L1 cache registers.

The registers in Figure 9 are described as follows:

• L1 cache configuration registers (L1CFG0–L1CFG1). Read-only registers that provide
configuration information for the particular L1 data and instruction caches supplied with a version
of the core. They include a description of the cache block size, the number of ways, the cache size,
and the cache replacement policy, among other features.

• L1 cache control and status registers (L1CSR0–L1CSR1). L1CSRs are used for general control and
status of the L1 data and instruction caches and are read/write accessible by supervisor-level
programs. They allow the programmer to enable features such as cache parity and the cache itself.
They provide status on information such as cache locking and cache locking overflow.

Interrupt Registers
When interrupts occur, information about the state of the processor is saved to certain registers and the
processor begins execution at an address (interrupt vector) predetermined for each interrupt. In the
PowerPC architecture 1.10 architecture, this interrupt vector consists of a fixed offset prepended with a
value as determined by MSR[IP]. Processing of interrupts begins in supervisor mode.

Cache Registers

PowerPC Architecture 1.10/Power
Architecture 2.04 Freescale EIS

None

L1 Cache (Read/Write)
32 63

spr 1010 L1CSR0
L1 cache control/status 0/1

spr 1011 L1CSR1

L1 Cache (Read Only)

spr 515 L1CFG0
L1 cache control/status 0/1

spr 516 L1CFG1

Figure 9. Cache Registers Comparison

Register Model

Power Architecture™ Technology Primer, Rev. 1

Freescale Semiconductor 35

Figure 10 compares the PowerPC architecture 1.10 with the Embedded category interrupt registers.

Save/restore registers are automatically updated with machine state information and the return address
when an interrupt is taken. The PowerPC architecture 1.10 architecture defines only SRR0 and SRR1. The
Embedded category includes Book E–defined critical interrupts and additional interrupt types defined by
the EIS that use similar resources. These registers are described below.

• Save/restore registers (SRR0 and SRR1)

— SRR0 holds the address of the instruction where an interrupted process should resume. For
instruction-caused interrupts, it is typically the address of the instruction that caused the
interrupt. When rfi executes, instruction execution continues at the address in SRR0. In
Embedded category devices, SRR0 is used for non-critical interrupts.

— SRR1 holds machine state information. When an interrupt is taken, MSR contents are placed
in SRR1. When rfi executes, SRR1 contents are placed into MSR. In Embedded category
devices, SRR1 is used for non-critical interrupts.

Interrupt Registers

PowerPC Architecture 1.10 Power ISA 2.04/Freescale EIS

0 31 0 31 32 63

spr 26 SRR0 Save/restore
registers 0/1

spr 26 SRR0 Save/restore
registers 0/1 Base category

spr 27 SRR1 spr 27 SRR1

Data address
registerspr 19 DAR spr 58 CSRR0

Critical SRR 0/1

Embedded category

spr 59 CSRR1
spr 18 DSISR DSISR

spr 570 MCSRR0
Machine check SRR 0/1

spr 571 MCSRR1

spr 574 DSRR0 Debug SRR 0/1
(Embedded.enhanced
debug category)spr 575 DSRR1

spr 572 MCSR Machine check syndrome
register

spr 62 ESR Exception syndrome register

spr 61 DEAR Data exception address
register

spr 63 IVPR Interrupt vector
prefix

spr 400 IVOR0

Interrupt vector offset
registers 0–15

spr 401 IVOR1

• • •

spr 415 IVOR15

spr 528 IVOR32

Interrupt vector offset
registers 32–35

Signal Processing Engine categoryspr 529 IVOR33

spr 530 IVOR34

spr 531 IVOR35 Embedded.Performance Monitor category

spr 58 MCARU Machine check address
upper/lower Freescale EIS

spr 59 MCAR

Figure 10. Interrupt Register Comparison

Power Architecture™ Technology Primer, Rev. 1

36 Freescale Semiconductor

Register Model

The PowerPC architecture accounts for DSI (data storage interrupt) and alignment exceptions in its
register model:

• Data address register (DAR). The effective address generated by a memory access instruction is
placed in the DAR if the access causes an exception (for example, an alignment exception). This
register is not supported in Embedded category devices.

• DSISR. The DSISR identifies the cause of DSI and alignment exceptions. It is not supported in
Embedded category implementations, although much of its functionality is supported in the ESR.

The Embedded category provides greater flexibility in specifying vectors through the implementation of
the interrupt vector prefix register (IVPR) and interrupt-specific interrupt vector offset registers (IVORs):

• Critical save/restore registers (CSRR0 and CSRR1). Defined to save and restore machine state on
critical interrupts (critical input, machine check, watchdog timer, and debug) and are analogous to
SRR0 and SRR1.

• Exception syndrome register (ESR). The ESR provides a way to differentiate between exceptions
that can generate an interrupt type.

• Data exception address register (DEAR). Loaded with the effective address of a data access
(caused by a load, store, or cache management instruction) that results in an alignment, data TLB
miss, or DSI exception.

• Interrupt vector prefix register (IVPR). Used with IVORs to determine the vector address. The
12-bit vector offsets are concatenated to the right of IVPR to form the address of the interrupt
routine.

• Interrupt vector offset registers (IVOR0–IVOR31). IVORs provide the index from the base address
provided by the IVPR for its respective interrupt type. IVORs provide storage for specific
interrupts. The Power ISA definition allows implementations to define IVORs to support category-
and implementation-specific interrupts. For example, the SPE defines IVOR32–IVOR35. Such
IVORs are listed at the bottom of Table 11.

The machine check interrupt model, part of the Embedded category, defines the following registers:

• Machine check save/restore registers (MCSRR0 and MCSRR1). Analogous to SRR0 and SRR1.

• Machine check syndrome register (MCSR). When the core complex takes a machine-check
interrupt, it updates MCSR to differentiate between machine-check conditions. The MCSR
indicates whether a machine-check condition is recoverable.

• Machine check address register (MCAR). When the core complex takes a machine-check interrupt,
it updates MCAR to indicate the address of the data associated with the machine check.

Configuration Registers
The PowerPC architecture defines registers that provide control, configuration, and status information of
the machine state and process IDs. Figure 11 shows a comparison of PowerPC architecture 1.10 and the
PowerPC architecture 2.04/EIS configuration registers.

Register Model

Power Architecture™ Technology Primer, Rev. 1

Freescale Semiconductor 37

PowerPC architecture 1.10 and the Power Architecture 2.04 specification both include a versatile register
that provides control and configuration of interrupts:

• Machine state register (MSR). Defines the state of the processor (that is, enabling and disabling of
interrupts and debugging exceptions, enabling and disabling some features, and specifying whether
the processor is in supervisor or user mode).

The PowerPC architecture 1.10 MSR supports bits that enable data address translation (IR and DR)
and modal big/little endian byte ordering (LE and ILE). Embedded category devices support
configuration of byte ordering as a page attribute through the MAS registers.

The MSR provides enable bits for machine-check, external, and critical interrupts. MSR contents
are automatically saved, altered, and restored by the interrupt-handling mechanism. If an interrupt
is taken, MSR contents are automatically copied into the appropriate save/restore register, for
example, SRR1. When the corresponding Return from Interrupt instruction, (for example, rfi) is
executed, MSR contents are restored.

• Processor ID register (PIR). Contains a value that can be used to distinguish the processor from
other processors in the system. Note that the PowerPC architecture 1.10 and Embedded category
PIR SPR numbers differ.

• Processor version register (PVR). Contains a value identifying the version and revision level of the
processor. The PVR distinguishes between processors whose attributes may affect software.

The EIS defines the system version register (SVR), which identifies the integrated device in which the core
is implemented.

Performance Monitor Registers (PMRs)
The set of registers shown in Figure 12 are used exclusively by the Embedded.Performance Monitor
category. PMRs are similar to the SPRs and are accessed by mtpmr and mfpmr instructions, which are
also part of this category.

The counter registers, global controls, and local controls have alias names that cause the assembler to use
different PMR numbers. The names PMC0–PMC15, PMGC0, PMLCa0–PMLCa15, and
PMLCb0–PMLCb15 cause the assembler to use the supervisor-level PMR number, and the names
UPMC0.–UPMC15, UPMGC0, UPMLCa0–UPMLCa15, and UPMLCb0–UPMLCb15 cause the
assembler to use the user-level PMR number. User-level access to these PMRs is read-only.

Configuration Registers

PowerPC Architecture 1.10 Power Architecture 2.04

0 31 32 63 0 31 32 63

Machine state Machine state

Base categoryspr 1023 PIR Processor ID spr 286 PIR Processor ID

spr 287 PVR Processor version spr 287 PVR Processor version

System version spr 1023 SVR Freescale EIS

Figure 11. Configuration Registers Comparison

MSR MSR

Power Architecture™ Technology Primer, Rev. 1

38 Freescale Semiconductor

Register Model

Although the PowerPC architecture 1.10 does not define performance monitor registers, most PowerPC
processors implemented a performance monitor using implementation-specific SPRs rather than PMRs.

The following describes the PMRs:

• Global control register (PMGC0/UPMGC0). PMGC0 controls all performance monitor counters
and is a supervisor-level register. The contents of PMGC0 are reflected to UPMGC0, which is read
by user-level software.

• Performance monitor counter registers (PMC0–PMC3/UPMC0–UPMC3). PMC0–PMC3 are
32-bit counters that can be programmed to generate interrupt signals when they overflow. Each
counter is enabled to count 128 events. The contents of PMC0–PMC3 are reflected to
UPMC0–UPMC3, which are read by user-level software.

• Local control registers facilitate software control of the PMRs:

— PMLCa0–PMLCa3/UPMLCa0–UPMLCa3. PMLCa registers function as event selectors and
give local control for the corresponding performance monitor counters. Each PMLCa works
with the corresponding PMLCb register.

The contents of PMLCa0–PMLCa3 are reflected to UPMLCa0–UPMLCa3, which are read by
user-level software and are read-only.

— PMLCb0–PMLCb3/UPMLCb0–UPMLCb3. PMLCb registers specify a threshold value and a
multiple to apply to a threshold event selected for the corresponding performance monitor
counter. Each PMLCb works with the corresponding PMLCa.

The contents of PMLCb0–PMLCb3 are reflected to UPMLCb0–UPMLCb3, which are read by
user-level software.

Debug Registers
Debug registers are accessible to software running on the processor. These registers are intended for use
by special debug tools and debug software, and not by general application or operating system code.
Figure 13 shows a comparison of PowerPC architecture 1.10 and the Power ISA debug registers.

Performance Monitor Registers

PowerPC Architecture 1.10 Power Architecture 2.04, Performance Monitor Category

None defined

Supervisor PMRs User PMRs (Read-Only)

32 63 32 63

pmr 400 PMGC0 Global control register pmr 384 [U]PMGC0 Global control register

pmr 16–19 PMC0–3 Counter registers 0–3 pmr 0–3 [U]PMC0–3 Counter registers 0–3

pmr 144–147 PMLCa0–3 Local control a0–a3 pmr 128–131 [U]PMLCa0–3 Local control registers a0–a3

pmr 272–275 PMLCb0–3 Local control b0–b3 pmr 256–259 [U]PMLCb0–3 Local control registers b0–b3

Figure 12. Performance Monitor Registers Comparison

Register Model

Power Architecture™ Technology Primer, Rev. 1

Freescale Semiconductor 39

The PowerPC architecture 1.10 definition provides one register to facilitate debugging:

• Data address breakpoint register (DABR). The data address breakpoint facility provides a means
to detect accesses to a designated word. A data address breakpoint match is detected for a load or
store instruction and a match generates a DSI exception. The address comparison is done on an
effective address, and it applies to data accesses only.

The Embedded category definition provides debugging support at data and instruction addresses:

• Debug control registers (DBCR0–DBCR1). Enable debug events, reset the processor, control timer
operation during debug events, and set the debug mode of the processor.

• Debug status register (DBSR). Provides status information for debug events and for the most recent
processor reset. The DBSR is set through hardware but is read and cleared through software.

• Instruction and data address compare registers (IAC1–IAC4, DAC1–DAC2). A debug event may
be enabled to occur upon an attempt to execute an instruction or access a data location from an
address specified in an IAC/DAC, inside or outside a range specified by the IACs/DACs, or to
blocks of addresses specified by the combination of the IACs/DACs.

Note that the embedded.enhanced debug category defines additional interrupt resources, described in
“Interrupt Registers” on page 34.

Implementation-Specific Registers
To handle special functions, implementations typically have additional SPRs not defined by the
architecture, and some of these registers may appear on multiple implementations with similar
functionality. In particular, implementations define hardware implementation-dependent registers (HIDs)
that typically control hardware-related functionality.

Debug Registers

PowerPC Architecture 1.10 Power ISA 2.04—Embedded Category

0 31 0 31 32 63

spr 1013 DABR Data address
breakpoint register

 spr 308 DBCR0

Debug control registers 0–2spr 309 DBCR1

spr 310 DBCR2

spr 304 DBSR Debug status register

spr 312 IAC1

Instruction address compare
registers 1 and 2

spr 312 IAC2

spr 314 IAC3

spr 315 IAC4

Data address compare
registers 1 and 2

spr 316 DAC1

spr 317 DAC2

Figure 13. Debug Registers Comparison

Power Architecture™ Technology Primer, Rev. 1

40 Freescale Semiconductor

Interrupt Model

Interrupt Model
To meet the demands on embedded processors in highly integrated devices, the Embedded category
defines an interrupt model that is more agile and responsive. In a real-time OS in which the core supports
a complex, integrated system-on-a-chip, system performance is to a large part measured by the efficiency
of the response to interrupt requests generated through peripheral logic. To reduce interrupt response time
to crucial interrupts, Book E defined a second interrupt type, the critical interrupt, with separate save and
restore resources, CSSR0 and CSRR1 the Return from Critical Interrupt instruction (rfci). These resources
allowed critical-type interrupts to be taken without having to save state of any concurrent non-critical
interrupts. The EIS extended this notion by defining similar interrupt types for debug and machine-check
interrupts. These are now part of the Embedded category, as shown in Table 10.

Most of the features of the interrupt model are common to all architecture versions. The PowerPC interrupt
mechanism allows the processor to change to supervisor state as a result of external signals, errors, or
unusual conditions arising in the execution of instructions. When interrupts occur, information about the
state of the processor is saved to certain registers and the processor begins execution at an address
(interrupt vector) predetermined for each interrupt. Processing of interrupts begins in supervisor mode.

Exception conditions may be defined at non-supervisor levels of the architecture. For example, the user
instruction set architecture defines conditions that may cause floating-point exceptions; the OEA defines,
at the supervisor level, the mechanism by which the interrupt is taken.

The Power Architecture model differentiates between the terms ‘exception’ and ‘interrupt’. Use of these
terms in this document are as follows:

• An exception is the event that, if enabled, causes the processor to take an interrupt. The architecture
describes exceptions as being generated by signals from internal and external peripherals,
instructions, the internal timer facility, debug events, or error conditions.

• An interrupt is the action a processor takes in response to an exception. The processor saves its
context (typically the MSR settings and return instruction address) and begins execution at a
predetermined interrupt handler address with a modified MSR.

The architecture requires that interrupts be taken in program order; therefore, although a particular
implementation may recognize exception conditions out of order, they are handled strictly in order with
respect to the instruction stream. When an instruction-caused interrupt is recognized, any unexecuted

Table 10. Further Differentiation of the Book E Critical Interrupt Model

Interrupt
Book E/EIS

Power ISA 2.04
Book E EIS

Critical input (analogous to the non-critical
external interrupt)

Critical interrupt — Embedded category

Machine check Critical interrupt Machine-check APU Embedded category

Watchdog timer (analogous to non-critical
fixed-interval timer interrupt defined in Book E)

Critical interrupt — Embedded category

Debug Critical interrupt Debug APU Embedded.enhanced debug category

Interrupt Model

Power Architecture™ Technology Primer, Rev. 1

Freescale Semiconductor 41

instructions that appear earlier in the instruction stream, including any that have not yet entered the execute
state, are required to complete before the interrupt is taken.

Interrupts can occur while an interrupt handler routine is executing, and multiple interrupts can become
nested. It is up to the interrupt handler to save the appropriate machine state if it is desired to allow control
to ultimately return to the interrupting program.

In many cases, after the interrupt handler handles an interrupt, there is an attempt to execute the instruction
that caused the interrupt. Instruction execution continues until the next exception condition is encountered.
This method of recognizing and handling interrupts sequentially guarantees that the machine state is
recoverable and processing can resume without losing instruction results.

To prevent the loss of state information, soon after the interrupt is taken, interrupt handlers must save the
information stored in save/restore registers (the return address and the MSR settings) as well as other
registers (such as the ESR and DBSR) that might be affected by an interrupt to prevent this information
from being lost due to another interrupt being taken.

All interrupts except some machine-check interrupts are recoverable. The conditions that cause a machine
check may prohibit recovery.

Because multiple exception conditions can map to a single interrupt, a more specific condition may be
determined by examining a register associated with the exception—for example, the exception syndrome
register (ESR) and the floating-point status and control register (FPSCR). Additionally, certain exception
conditions can be explicitly enabled or disabled by software.

Interrupts, their offsets, and conditions that cause them for the PowerPC architecture 1.10 and the Power
Architecture 2.04 specification are summarized in Table 11. The Embedded category includes the
Book E–defined interrupt vector offset registers (IVORs) to handle each interrupt type, whereas the
PowerPC architecture 1.10 implementation uses fixed-location vector offsets. Unless otherwise specified,
MSR settings and the return address for every interrupt are stored in save/restore registers.

• Interrupts in the PowerPC architecture 1.10 definition—The PowerPC interrupt model uses fixed
addresses as vector offsets to map to physical memory locations with the base address determined
by the MSR[IP]. If IP is zero, vector offsets are added to the physical address 0x000n_nnnn. If IP
is set, vector offsets are added to the physical address 0xFFFn_nnnn. Table 11 shows the vector
offsets associated with each interrupt type. Finally, the PowerPC architecture includes the system
reset, trace, and floating-point assist interrupts as part of its definition.

• Interrupts in the Power ISA 2.04 Embedded category. Defines interrupt vector offset registers
(IVORs), interrupt vector prefix registers (IVPRs), and critical interrupts. An IVOR is assigned to
each interrupt type. The IVPR provides the base address location to which the offset in the IVORs
is added. Table 11 shows the IVORs associated with each interrupt type.

The save and restore resources are part of the Base and Embedded categories and are largely
identical to those defined by the OEA. Save and restore registers (shown in Figure 10) save the
return address and machine state when they are taken. A return from interrupt instruction (rfi, rfci,
rfdi, or rfmci) restores state at the end of the interrupt routine.

• In addition to the critical type interrupt originally defined by Book E, the Embedded category
defines analogous resources for machine-check and debug interrupts. The Power ISA resources are
defined as follows:

Power Architecture™ Technology Primer, Rev. 1

42 Freescale Semiconductor

Interrupt Model

— Critical interrupts (Base category)—Higher-priority interrupts that use separate save/restore
resources analogous to those defined for non-critical interrupts. These consist of the critical
save and restore registers (CSRR0/CSRR1) and the Return from Critical Interrupt instruction
rfci instruction to restore state.

The Power ISA version defines the critical input, watchdog timer, and debug interrupts as
critical interrupts (although debug interrupts may be implemented as separate interrupt types).

— Machine-check interrupt (Embedded category)—Implements save and restore registers
(MCSRR0/MCSRR1) used to save the return address and machine state when machine-check
interrupts are taken. The rfmci instruction is used to restore state.

— Debug interrupt (embedded.enhanced debug category)—implements save and restore registers
(DSRR0/DSRR1) used to save the return address and machine state when debug interrupts are
taken. The rfdi instruction is used to restore state.

• Other categories, such as the SPE and performance monitor, define non-critical interrupts to handle
category-specific program interrupts.

Table 11 shows a comparison of the PowerPC architecture 1.10 and Power ISA 2.04 interrupt models.

Table 11. Interrupts and Conditions—Overview

Interrupt
Type

Vector Offset

Causing Conditions
Power

ISA PowerPC

Power ISA 2.04 Embedded Category Interrupts

Critical input IVOR0 — Typically caused by assertion of an asynchronous signal; presented to the interrupt
mechanism. Similar to external interrupts.

System reset — 0x100 Caused by implementation-defined asynchronous conditions.

Machine
check

IVOR1 0x200 Causes are implementation-dependent but typically related to conditions such as bus parity
errors or attempts to access an invalid physical address. Typically, these interrupts are
triggered by an input signal to the processor. Disabled when MSR[ME] = 0; if a
machine-check interrupt condition exists, the processor goes into checkstop.

Machine-check interrupts have separate resources MCSRR0 and MCSRR1 and the Return
from Machine Check Interrupt instruction (rfmci). An address related to the machine check
may be stored in MCAR. MCSR reports the cause of the machine check.

DSI IVOR2 0x300 A data memory access cannot be performed. Such accesses can be generated by
load/store instructions and by certain memory control and cache control instructions. The
ESR reports the cause; DEAR holds the effective address of the data access.

PowerPC architecture 1.10: DSISR reports the cause; DAR is set based on DSISR
settings.

Interrupt Model

Power Architecture™ Technology Primer, Rev. 1

Freescale Semiconductor 43

ISI IVOR3 0x400 Instruction fetch cannot be performed. Causes include the following:

 • The effective address cannot be translated. For example, when there is a page fault for
this portion of the translation, an ISI must be taken to retrieve the page (and possibly the
translation), typically from a storage device.

 • An attempt is made to fetch an instruction from a no-execute memory region or from
guarded memory when MSR[IR] = 1.

 • The fetch access violates memory protection.
Embedded category devices use ISI to assist implementations that cannot dynamically
switch byte ordering between consecutive accesses, do not support the byte order for a
class of accesses, or do not support misaligned accesses using a specific byte order. ESR
reports the cause.

The VLE category defines additional misaligned, mismatched, and byte-ordering storage
exceptions.

External
interrupt

IVOR4 0x500 Generated only when an external interrupt is pending (typically signaled by a signal
specified by the implementation) and the interrupt is enabled (MSR[EE]=1).

Alignment IVOR5 0x600 The processor cannot perform a memory access because of one of the following:

 • The operand of a load or store is not aligned.
 • a dcbz instruction referenced storage that is write-through required or cannot be

established in the data cache.
Embedded category devices use ESR to report the interrupt cause; DEAR holds the
effective address of the data access.

PowerPC architecture 1.10: DSISR reports the cause; DAR is set based on DSISR.

Floating-point
unavailable

IVOR7 0x800 Caused by an attempt to execute a floating-point instruction (including floating-point load,
store, and move instructions) when the floating-point available bit is cleared, MSR[FP] = 0.

Decrementer IVOR10 0x900 The most-significant DEC bit changes from 0 to 1 and the interrupt is enabled
(MSR[EE] = 1). If it is not enabled, the interrupt remains pending until it is taken.

In Embedded category devices, TSR records status on timer events. An auto-reload value
in the DECAR is written to DEC when it decrements from 0x0000_0001 to 0x0000_0000.

System call IVOR8 0xC00 Occurs when a System Call (sc) instruction is executed.

Trace — 0xD00 Optional. Either MSR[SE] = 1, almost any instruction successfully completed, or
MSR[BE] = 1, and a branch instruction is completed.

Floating-
point assist

— 0xE00 Optional. Can be used to provide software assistance for infrequent and complex
floating-point operations such as denormalization.

Auxiliary
processor

unavailable

IVOR9 — An attempt is made to execute an auxiliary processor instruction (including loads, stores,
and moves), the target auxiliary processor is implemented, but is configured as unavailable.

Fixed interval
timer

IVOR11 — A fixed-interval timer exception exists (TSR[FIS] = 1), and the interrupt is enabled
(TCR[FIE] = 1 and MSR[EE] = 1).

Watchdog
timer

IVOR12 — Critical interrupt. Occurs when a watchdog timer exception exists (TSR[WIS] = 1), and the
interrupt is enabled (TCR[WIE] = 1 and MSR[CE] = 1).

Data TLB
error

IVOR13 — A virtual address associated with an instruction fetch does not match any valid TLB entry.

Table 11. Interrupts and Conditions—Overview (continued)

Interrupt
Type

Vector Offset

Causing ConditionsPower
ISA

PowerPC

Power Architecture™ Technology Primer, Rev. 1

44 Freescale Semiconductor

Memory Management Unit (MMU) Model

Memory Management Unit (MMU) Model
The MMU, together with the exception-processing mechanism, make it possible for an operating system
to implement a paged virtual-memory environment and to define and enforce characteristics of that
memory space, such as cache coherency and memory protection. Virtual memory management permits
execution of programs larger than the size of physical memory; the term ‘demand-paged’ implies that
individual pages are loaded into physical memory from backing storage only as they are accessed by an
executing program.

Generally, the address translation mechanism is defined in terms of mapping an effective-to-physical
address for memory accesses. The effective address is converted to an interim virtual address and a page
table is used to translate the virtual address to a physical address.

In addition to instruction accesses and data accesses generated by load and store instructions, addresses
specified by cache instructions also require address translation. This section describes how such
translations are managed on a per-page basis using the resources defined in a general way by the Power
ISA, and more specifically in the category.Embedded.MMU Type FSL.

Instruction
TLB error

IVOR14 — A virtual address associated with a fetch does not match any valid TLB entry.

Debug IVOR15 — Critical interrupt. A debug event causes a corresponding DBSR bit to be set and debug
interrupts are enabled (DBCR0[IDM] = 1 and MSR[DE] = 1).

Reserved IVOR16–
IVOR31

— Additional IVORs not listed below are reserved for future architectural use.

SPE Category Interrupts

Vector
unavailable

IVOR32 — MSR[VEC] is cleared and a Vector category instruction is executed.

SPE Category Interrupts

SPE
unavailable

IVOR32 — MSR[SPE] is cleared and an SPE or embedded floating-point instruction is executed.

Embedded
floating-point

data

IVOR33 — Embedded floating-point invalid operation, underflow or overflow exception

Embedded
floating-point

round

IVOR34 — Embedded floating-point inexact or rounding error

Performance Monitor Category Interrupts

Performance
monitor

IVOR35 — An interrupt-enabled event defined by the performance monitor occurred. Embedded
performance monitor category.

Table 11. Interrupts and Conditions—Overview (continued)

Interrupt
Type

Vector Offset

Causing ConditionsPower
ISA

PowerPC

Memory Management Unit (MMU) Model

Power Architecture™ Technology Primer, Rev. 1

Freescale Semiconductor 45

Translation lookaside buffers (TLBs) are commonly implemented to keep recently used page address
translations on-chip. Although their exact characteristics are not specified in the architecture, the general
concepts pertinent to the system software are described.

The model described here shares some general characteristics of the MMU model definition in the
PowerPC architecture 1.10, particularly those related to memory protection and cache coherency and the
general concepts of pages as TLBs. Differences are described in “MMU Features in the PowerPC
Architecture 1.10 Definition,” on page 46.

MMU Features in the Embedded Category Definition
The simplicity and flexibility of the category.Embedded.MMU Type FSL is suited especially for
embedded applications. It supports demand-paged virtual memory as well as a variety of management
methods that depend on precise control of effective-to-real address translation and configurable memory
protection. Address translation misses and protection faults cause precise exceptions. Sufficient
information is available to correct the fault and restart the faulting instruction.

Each program on a 32-bit implementation can access 232 bytes of effective address space, subject to
limitations imposed by the operating system. In a typical system, each program’s EA space is a subset of
a larger virtual address (VA) space managed by the operating system.

Each effective (logical) address is translated to a real (physical) address before being used to access
physical memory or an I/O device. The operating system manages the physically addressed resources of
the system by setting up the tables used by the address translation mechanism.

The effective address space is divided into pages. The page represents the granularity of effective address
translation, permission control, and memory/cache attributes. Multiple page sizes may be simultaneously
supported. They can be as small as 1 Kbyte. The maximum size depends on the implementation. For an
effective-to-real address translation to exist for a page, a valid entry containing the effective address must
be in a translation lookaside buffer (TLB). Addresses for which no TLB entry exists cause TLB miss
exceptions (instruction or data TLB error interrupts).

The MMU model defines a set of MMU assist (MAS) registers that can be programmed via the mtspr
instructions to update the TLBs directly with translation and configuration information. The configuration
data in the MAS registers is written to the TLBs on the execution of a TLB Write Entry (tlbwe) instruction.
Likewise, when a TLB needs to be reprogrammed, the contents can be saved back to the MAS registers
by executing a TLB Read Entry (tlbre) instruction.

The instruction addresses generated by a program and the addresses used by load, store, and cache
management instructions are effective addresses. However, in general, the physical memory space may not
be large enough to map all the virtual pages used by the active applications. With support provided by
hardware, the operating system can attempt to use the available real pages to map a sufficient set of virtual
pages for an application. If a sufficient set is maintained, paging activity is minimized, improving
performance.

The operating system can restrict access to virtual pages on a per-page basis by selectively granting
permissions for user state read, write, and execute; and supervisor state read, write, and execute. These
permissions can be set up for a particular system (for example, program code might be execute-only, data
structures may be mapped as read/write/no-execute) and can also be changed by the operating system
based on application requests and operating system policies.

Power Architecture™ Technology Primer, Rev. 1

46 Freescale Semiconductor

Memory Management Unit (MMU) Model

MMU Features in the PowerPC Architecture 1.10 Definition
The PowerPC architecture 1.10 supports three types of address translation: page-address translation, block
address translation and real mode (where the hardware translation mechanism is turned off and the
effective address is used as the physical address).

Page address translation is defined in terms of segment descriptors. The segment information translates the
effective address to an interim virtual address, and the page-table information translates the virtual address
to a physical address. Effective address spaces are divided into 256-Mbyte segments. Segments that
correspond to memory-mapped areas are divided into 4-Kbyte pages.

The definition of the segment and page-table data structures provides significant flexibility for a wide
range of computing environments. Therefore, the methods for storing segment or page-table information
on-chip vary from implementation to implementation.

The segment information, used to generate the interim virtual addresses, is stored in on-chip,
software-accessible segment registers. The MMU then uses these descriptors to generate the physical
address, the protection information, and other access-control information each time an address within the
page is accessed. Address descriptors for pages reside in tables (as PTEs) in physical memory; for faster
accesses, the MMU often caches on-chip copies of recently used PTEs in an on-chip TLB.

The PowerPC architecture 1.10 also defines the block address translation (BAT) mechanism. Simpler than
page-translation, block-address translation allows the operating system to configure attributes for blocks
of memory through a set of 16 SPRs. As Figure 8 shows, there are four pairs of BAT SPRs for instruction
memory (IBATs) and four pairs for data memory (DBATs). The BAT registers include fields for
configuring the size (128 Kbytes to 256 Mbytes) and location of the blocks. Some implementations extend
the number of BAT registers beyond those defined by the architecture.

Memory Management Unit (MMU) Model

Power Architecture™ Technology Primer, Rev. 1

Freescale Semiconductor 47

Differences between the MMU Models
The flow diagram in Figure 14 describes the address translation mechanisms of the Power ISA 2.03 and
PowerPC architecture 1.10.

Figure 14. Address Translation Types

Differences between the PowerPC architecture 1.10 and the Power Architecture 2.04 embedded category
MMU models are outlined in Table 12.

Table 12. PowerPC Architecture 1.10 and Power Architecture 2.04 Embedded MMU Models

PowerPC Architecture 1.10 Power ISA 2.04 Embedded Category

Support for block address translation, page address
translation, and real mode

Enhanced page address translation, no block address translation or real
mode

Fixed 4-Kbyte pages Support for both fixed and variable-sized page address translation
mechanisms

Segmented memory model No segments defined

0 31

Effective Address

0 51

Virtual Address

Segment descriptor
located

0 31

Physical Address

0 31

Physical Address

0 31

Physical Address

Look up in
page table

Page address
translation

Block address
translation

PowerPC 1.10
Translations

Match with
BAT registers

Address space | PID | byte address

Real addressing mode
Effective address = physical address

Address translation disabled
(MSR[IR] = 0, or MSR[DR] = 0)

Embedded Category
Translations

Power Architecture™ Technology Primer, Rev. 1

48 Freescale Semiconductor

Memory Management Unit (MMU) Model

For example, the Embedded category defines the TLB Read Entry and TLB Write Entry instructions (tlbre
and tlbwe) for reading and writing the TLBs in software but does not specify how this is to be
accomplished. Freescale processors execute these instructions by reading or writing the contents of a set
of MMU assist (MAS) SPRs into the TLBs. These MAS registers, which provide the translation,
protection, byte-ordering, and cache characteristics for the relevant pages, and the exact behavior of the
tlbre and tlbwe instructions, are defined by the Freescale embedded MMU category. Table 13 shows how
the Power ISA 2.04 MMU features are defined.

Hardware page address translation definition with
little architected support for software management

Hardware table hashing is not defined. Additional features are defined
that support management of page translation and protection in TLBs in
software. Two instructions, TLB Read Entry (tlbre) and TLB Write Entry
(tlbwe), are defined that provide direct software access to page
translation and configuration.

Byte ordering. Modal, big- endian and (munged)
little-endian support provided through the MSR

Support for big- and true little-endian byte ordering provided on a
per-page basis, programmed through the TLBs

DSI and ISI interrupts taken when an address
cannot be translated or a protection violation occurs

In addition to the DSI and ISI interrupts, data and instruction TLB error
interrupts are taken if there is a TLB miss.

Table 13. Embedded and Freescale Embedded MMU Categories

PowerPC ISA Embedded Category PowerPC ISA Embedded MMU Category

TLB Read Entry (tlbre) and TLB Write Entry
(tlbwe) give software direct access to page
translation, protection, and configuration.

MMU assist registers (MASn) defined as SPRs that hold translation,
configuration, and protection information copied to and from the TLBs by
executing tlbwe and tlbre.

A single process ID register (PID) used by system
software to identify TLB entries used by the
processor to accomplish address translation for
loads, stores, and instruction fetches.

The Freescale embedded MMU category defines additional PID registers.
(the Power ISA Embedded category–defined PID is treated as PID0). An
implementation may choose to provide any number of PIDs up to a
maximum of 15. The number of PIDs implemented is indicated by the
value of MMUCFG[NPIDS].

Additional MMU registers:

 • MMU configuration register (MMUCFG). Identifies the number of bits in
a real address supported by the implementation, the number and size
of PID registers, and the number of TLBs.

 • TLBnCFG registers (one for each implemented TLB array). Indicates
the number of ways of associativity, minimum and maximum page size,
page-size availability, number of entries, and invalidate protection
capability in each TLB array.

 • MMUCFG0 used for general control of the MMU including flash
invalidation of the TLB arrays and page sizes for programmable fixed
size arrays

Table 12. PowerPC Architecture 1.10 and Power Architecture 2.04 Embedded MMU Models (continued)

PowerPC Architecture 1.10 Power ISA 2.04 Embedded Category

Power Architecture™ technology
is incredibly efficient for general-
purpose computing as well as an ideal
platform for embedded applications.
The minimal silicon requirements of
the instruction set architecture enable
high levels of integration, making it
possible to pack RISC processor core
and multiple peripheral functions on
a single chip with low levels of power
consumption and heat generation.
Microprocessors built on Power
Architecture technology also offer
a compelling price/performance
ratio, extended temperature options,
multiprocessing capabilities, instruction
set compatibility across the entire
product line and a broad selection of
development tools. Take a look
inside Power Architecture technology
and discover how it can open
up possibilities for your designs.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
The Power Architecture and Power.org word marks and the Power and Power.org logos
and related marks are trademarks and service marks licensed by Power.org.
© Freescale Semiconductor, Inc. 2006, 2007. All rights reserved.

Document Number: PWRARCPRMRM
Rev. 1

