I.MX Linux Reference Manual

Document Number: IMXLXRM
Rev. L5.4.24 _2.1.0, 06/2020

h
V"

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

NXP Semiconductors

Contents
Section number Title Page
Chapter 1
Introduction
| B 0 1< 4 1<) OO PU SRRSO 31
LILT SOTEWATE BASE..c..eiuiiiiiiiiiiieieetete ettt ettt et a e et b e et s bt e st bt eab e sb et e bt et e ebe et sbeeeeeae 31
Lo1L2 0 FRATUTES. ..ottt ettt ettt e a et s bt et s ae e s a e e e s as et ea et e e saeesn e eae et sate bt sanenneeanens 32
L N 14§ 3 1 Lol SO OSSO ORRPOSRPRTRR 35
L.2.1 COMVEITIONS. ¢ttt ettt sttt ettt e bttt b et eb et eh et ehe et e atesbe e st sbeeaee s bt eat e e bt esb e bt enbeebe et e ebeenbeebeeneeeaee 35
1.2.2 Definitions, Acronyms, and ADDIEVIAIONS.eiiuiiiiiiriiiiieiiierieet ettt ettt et e st sbeesaee e 35
| B) £ (<) 1 1TSS PRSP SRR PSRRR 38
Chapter 2
System
2.1 Machine-Specific Layer (IMISLL)......couiioiiiieie ettt ettt ettt et et e bt s ae e be s st e bt estesbeen s e beentesneeneene 41
2 101 INEFOAUCTION. ¢ttt ettt ettt ettt et a e et b e e bt s bt ea e b e ea b e bt e et e eb e e st e eb e et e ebee et eutenbeeatenbeeanenbeas 41
2.1.2 INtEITUPLS (OPETALION)..c.ueiiriiiitieeiieitte et etee sttt et e et e et e e bt et e sabe e bt e sttt ebeeesbeeabeesabeenbeesabeebeesateenstesabeebaesnseenseess 41
2.1.2.1 Interrupt Hardware OPEIation.........c.ceeeruiruiertirienteeienteete st ete st etesteetesteebe st eeteeseeteeaeeseeeneesaeeneenees 41
2.1.2.2 Interrupt SOftWare OPETAtiON......c..coceiruiriiriirieiieniteteeit ettt ettt st ettt et sbtebests et ebs et eesesbeenee 42
2.1.2.3 INEETTUPL FALUTES. ..c.utieiieiitieiieeit ettt ettt et ettt e a e st e s bt e sabeesbbeeabe e bt e sabeenseesateas 42
2.1.2.4 Interrupt SOUrce COde STIUCTUIE.cuteuiitieiieitieieetierte ettt eite st ete bt etesteente st eesteesee bt et e saeeneesaeeneesneas 43
2.1.2.5 Interrupt Programming INterface.coeriiriiiiiiiiiiiiiciiciecteeet ettt 43
20130 TIMICT ettt ettt a et a et s a et e ae bt s a e e a bt e as et eas ettt eae e nae 43
2.1.3.1 Timer SOftWare OPEIatiON........cc.eeuerueeuiertieiiertieteetterteette st et esteete st e et e steentesseenbeeseebeeseesbeeneesaeeneesnean 44
2.1.3.2 TIMET FRATUIES.eveenieiiiieeit ettt ettt sttt ettt b e ettt ebe et sbteeesbeeaesaeen 44
2.1.3.3 Timer Source Code SIIUCIUTE.c.c.ccueuiriertirietietenie ettt ettt ettt sttt e saeesnesaeeaesaeenaesaeen 44
2.1.3.4 Timer Programming INtIfaCE.c.eiuieiuiiiieiieieit ettt s 45
2. 1.4 MEIMOTY MIAP..ccutiiieiieitet ettt ettt ettt et b et s b et s bttt e bt e bt e bt e bt et bt et bttt e be et bt e naeeaeen 45
2.1.4.1 Memory Map HardwWare OPeration.........c.cecueeiieeriieriieniienieeniieeeeeite e eiee st et e st esbeesaseebeesaseesee s 45
2.1.4.2 Memory Map Software Operation (only for i.MX 6 or i.MX 7)....cccceriiniiiiniiieieieieeeieeeene 45
2.1.4.3 MemoOry Map FEALUIES.......cc.eeiiriiiiiiiitiieee sttt sttt st st 45

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

NXP Semiconductors 3

Section number Title Page
2.1.44 Memory Map Source Code SIUCTUIE.coteruirieriirtenieitenteeiterteeit ettt ettt sbeeeesbeeee bt enaesaees 46
215 TOMUX .ottt ettt h e a et sttt ettt e et 46
2.1.5.1 TOMUX HardWare OPEIation...........ccueeueeuerueeruerueenierieeneesieentesseenteeseenseeseenseeseesseeneesseeneesaeesesaeensesseas 47
2.1.5.2 TOMUX SOftWare OPEIAtiON.c..eeuvirtieieriieiiritetieitenie et rte et st ettt etesttebesteeteebeenteeseesaeeneesaeeneesieen 47
2.1.5.3 TOMUX FRALUIES.couiiuiiiiiiiiiiiiiie ittt s 47
2.1.54 TOMUX S0UICE COAE SITUCTUIE.c.uiitietieiietieiienteeie et eee st e et etesteete st ebeeseebeeseesteeneesaeeneesaeeneenees 48
2.1.5.5 IOMUX Programming INTEIfaCe.......c..ccouiriiriiriiniiiiiniiiieneete sttt e 48
2.1.5.6 IOMUX Control Through GPIO MOdUIE........ccccoriiriiiiniiiiiiiieeiteieeeeee et 48
2.1.5.6.1 GPIO Hardware OPeration........c.cccecueeeieireruiniesienienseiententeseteseeseesesiesuessesseseessensennens 49
2.1.5.6.1.1 MUuxXing COntrol......cccooievieriinieniiienicieeeeteeitee ettt 49
2.1.5.6.1.2 PULLUP CONUIOL.....c.couiiiiiiriiieiiieienieieseeieseeeseee ettt 49
2.1.5.6.2 GPIO Software Operation (ZENEral)............ceceeeriruirrerenienieieieeeieteeeeee e 49
2.1.5.6.3 GPIO IMplementation....c...ccueeuteriieieniirienieetenieete sttt ettt ettt ettt et sae e s 50
2.1.6 General Purpose Input/Output (GPIO).......coiiiiiiiiiiiiieeieee ettt 50
2.1.6.1 GPIO SOftWare OPEration..........cceeiueruieruieientieienteeie st etesteestesttestesteestesseebeeseenteeseenseeneesaeeneesaeensenees 50
2.1.6.1.1 APIOT GPIO ..ottt s 50
2.1.6.2 GPIO FeatUres......c.cciiuiiiiiiiiiiiiiiiiiiiie e s 51
2.1.6.3 GPIO Module Source Code SITUCTUIE.ccueetertieieniieieriteie st et eteeteetee st e eteesteeseeseeeneesaeeeesaeeaesaeas 51
2.1.6.4 GPIO Programming INEIfaCe 2..........cceeiiriiiiniiiiniiiiesitcicst ettt sttt 51
21T CLOCK ittt ettt s n e 51
2.1.7.1 ClocK SOFtWAIE OPEIALION. ... ccueetieutetieieetieteettettetee st testeeatesteete s bt e beeseebeeseeteenee st eneesseeneesneeneesnean 52
2,172 ClOCK FEALUIES.cviiiiiiiiiiiiieecce et e 52
2.1.7.3 Source Code SIUCTULE.........c.ocuiiiiiiiiiiiiiiiiie et 52
2 LT ettt bbbt bbbt bbbt bbbt b et 53
2.2 SYSEIM CONIIOIIRT.eiutitiiiiiitieteeit ettt ettt et b et b et eb e bt e st e sbe et e sbe et e sb e esbe s bt et e e bt et e e bt e bt eneenaeene 53
22,1 INEOAUCTION.uiiiiiiiiiiiiiiiiicc e s sttt sa b b st 53
2.3 BOOt IMAZE....c ettt ettt ekttt ettt e h et e a e bt e a e e bt e et e bt et e bt e at e bt en bt eh e et e ehe e bt eaee bt eatenneenteanean 56
2301 INEEOAUCHION.uiiiiieiiiieiiet et et b e sttt ettt et et et b e sa e b b sa e b aenen 56
2.4 ANALOP REGUIALOT DITTVET....eutiiiiiiiiiitie ettt ettt ettt et e s bt e e bt e sbe e e b e e shb e s e bt e sab e et e e sbbeeabeenaeeebeesateeates 57

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

NXP Semiconductors

Section number Title Page
241 INEOAUCTION.uiiiiiiiiiiiiiiet ettt et b e sttt s a ettt ettt et b e aesa et besaesaeaenens 57
2,42 HArdWare OPETATION. ...cueerutietieriieetteeiteestte sttt e bt e sttt e bt e e bt ebeesateesstesateesbteeaseebtesabeasstesabeesbseeabeenbbeenseenstesnseennnenane 57
2.4.3 SOTEWAIE OPCIATION. ...cutitieutietietiet ettt et ettt ete s bt et e et e e be et e e bt es e e et e st e bt eseeeaeeneeseeenseeseebeeseenbeessenbeensenteeneenseenes 58
244 DIIVET FEALUIES.eiuiiiiiiiiiiiiiitiiicie ettt sttt ettt et et eb b s eb e e 58
2.4.5 Driver Interface DEtails..........ccociiiiiiiiiiiiiiiiiiiiiic e 58
24,6 ReZUIALOT APITS. ...ttt ettt ettt ettt st b e et nen 59
247 SOUICE COAE SIIUCLUIE. ...ttt ettt st sttt e s e b b et b b saeanes 59
2.4.8 Menu Configuration OPLIONS.eevueerrteriterieeitee et etee st estte sttt esteesttesbeessteebeesateebeesbtesbeesseesabeesstesaseesssesseenses 60

2.5 POWET IMANAZEIMENL. . ..eutieuiitieiieiteete ettt ettt ettt et e ea e bt eaee s bt e aeesbeemeesbeeaeesbeeateeseenbeeseenteeseenteeneenaeeneenbeeneesaeensesbeensennean 60
2.5.1 Low Level Power Management (PIM).......c..cocuiiiiiiiiiiinieieitene ettt ettt et 60

2511 INEOAUCTION. ...ttt 60
2.5.1.2 SOFEWAIE OPETALION.ecueiiieiiiitieie ettt ettt ettt ettt et e et e eaee st e e et saeeaess e e bt ese e beeseebeeneenseensenseenes 61
2.5.1.3 SoUrce Code SIUCTUIE........c.iouiiiiiiiiiiiieiei ettt sttt ettt 62
2.5.1.4 Menu Configuration OPLIONS.cccueerurirriieriieiieeniteeteeste ettt et esbte e bt esieesabeesatesabeesbbesneesbeesseenseenas 63
2.5.1.5 Programming INtEITACE.cceeitiiiiitieiieiiee ettt ettt ettt et s aaean 63
2.5.2 PMIC PF REGUIALOT....c..coutiitiiiiiiiiititesteet sttt sttt sttt st sttt e et e st sbe et sbeenaeeaeen 64
2521 INEOAUCTION. ...ttt s 64
2.5.2.2 HardwWare OPEIAtiON........ceoueiueeruertietiatieteetteteette et estesteeatesteeseesteesesbeensesseenteaseenteeseeseeseenseeneesseeneennes 64
2.5.2.3 SOftWAre OPETAtiON......cc.eiriiiiiriiiiirieiteitt ettt ettt ettt ettt ettt et sbeeaesbt e bt sbte bt eb s e bt ebsenbeestenbeenee 65
2.5.2.4 DIIVET FEAUIES.c.oiuiiiiiiiiiiiiiiiiicitcc e 65
2.5.2.5 ReEZUIALOT APIS... oottt ettt ettt sttt st e h et e e e b a ettt e et e e e et et eae 65
2.5.2.6 DIIVEr ATCRITECTUTIR.cuviuiiiiiiiiiieiiitiiti sttt st sttt e 66
2.5.277 Driver Interface Details...........ccooiiiiiiiiiiiiiiiiiiiiiiii e 68
2.5.2.8 SOUICE COUE STIUCLUIR.ceteiuietieiieteeiiettette et et et et et e steeatesteeste s b e eateebeesbeeseenteeseebeeneesaeeneesaeensesnean 68
2.5.2.9 Menu Configuration OPHONS.ccuereiriirieriertenteritent ettt et eteetesteestesieestesbtesbesasenbeeesenbeessenbeensesreenee 68
2.5.3 CPU Frequency Scaling (CPUFREQ)......c..c.coittiitiiiiiiiee ettt ettt sttt et ettt 69
2.5.3.1 TIEEOQUCHION. ...ttt ettt ettt ettt et e bt et e e et e b e sa e et e e st e besb e e beesee bt esee bt entenbeeneesneeneennie 69
2.5.3.2 SOftWAre OPETAtiON......ecutiriiiiiriiiierieiterit ettt ettt ettt et sa et sbeeaesbt e bt sbee bt eb s et e essenbeeatenbeenee 69
2.5.3.3 Source Code SIUCIULE.........c.ocuiiiiiiiiiiiiiiieiec e 70

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

NXP Semiconductors 5

Section number Title Page
2.5.3.4 Menu Configuration OPHONS.ccouerueiruiriererterieeitenteeet et ettt ettt et saeestesbtesbe st e bt essesbeessesbeensesbeenee 70
2.5.4 Dynamic Bus FIEQUEINCYcccuuiiiiiiiiiiiiiieeteee ettt ettt et et et st e s st e et esab e e bt e sabeebeesanesane 71
2.5.4.1 TIEEOQUCHION. ...ntteiiiitieiie ettt ettt ettt ettt et et e e e et et e s et et e eae e bess e et e es e e bt ente bt entesaeeneesneeneennie 71
2.5.4.2 OPCTALION. ..c..eiutieiieiieiteie ettt ettt ettt ettt ettt ae et s et et s bt et b et e bttt h et ebt ettt bttt sbeenbeebeen 71
2.5.4.3 SOFtWATE OPETALION. ..c..ueiuiiiiiiiieetteitte ettt ettt et e st e et esbteeabeesbee s bt ebeesabeesbtesabeenbbesaseenbeesaseeseenas 71
2.5.4.4 SOUICE COUE STIUCLUIR.eetiitietieiieteeitet ettt ettt e et et esteettesteeste s bt eateebeenbeeseenteeseeseeneenbeeneesaeeneesnean 72
2.5.4.5 Menu Configuration OPHONS. . ..ccuertiruiriererterteeitenteeit et et ettt et sbeesaesbtesbe st e bt eese bt essesbeensenbeenee 73
2.5.5 BaAttery CRATZING......eiiiiiiieiiieiie ettt ettt ettt e bttt e bt e st e e sbtesab e e bt e e bt e bteeabe e btesabeesbbesabeenbbesabeenaees 73
2.5.5.1 TIEFOQUCHION. ...ttt ettt ettt ettt et et e e s et e bt s a e et e ss e e bess e e bt es e e bt enee st eneenaeeneeeneeneenaie 73
2.5.5.2 SOftWAre OPETAtiON......cctiriiiiiriiiiinitiierit ettt ettt ettt ettt sa et sbe et sb e e bt sbe et ebs e bt ebsenbeeatenbeenee 73
2.5.5.3 S0UICE COAE STIUCLUIR.......ccuiruieririreiieiretieiteett et ette e ettt esae et e st eesesbe e s e eteesseeneeaeeaeesaeennesaeennenuees 73
2.5.54 Menu Configuration OPHOMS.ccueeueeruerierteeitesteeitesteeteeteeste et etestee et saeenbesste bt eseesbeensenbeensesseensesseenes 74
2.0 OPTOFIC. ..ttt ettt bttt a ettt b e e bbbt bt et h et e be et e b bt et sheenaenbean 74
2.0.1 INEFOAUCTION.eiiiiieiiieieeic ettt ettt e a et sa et s at e s et e e s ae e e e as e bt ean e st easesaeennesaeennenae 74
2.0. 1.1 OVEIVIBW ..ttt ettt et e et e et et e it e e bt e at e e et e e e sa e e b e e bt e beeb e et e es e et e en e et e eneeeaeeneeeneenteens 74
2.0.1.2 FRALUIES. ...ttt ettt ettt s b et bttt st e b bt e a e bt e et bt ea e s bttt sbe et e e nbeeanen 74
2.60.1.3 HardwWare OPETaAtION........c.ceeueerueeriieriteeniteeteestteeteesteesteesteesiteesbtesaseebeesstesbeessbeesseesaseesseesseesbeesssennne 75
2.6.1.4 Architecture-specific COMPONENLS.c..eeutertiriertieierteeie st ete et et et eteetee st e eseesteesee st eneesaeeneesaeeneesnean 75
2.6.1.5 oprofilefs PSeudo FIleSYSteIM.cc.cotiriiiiiniiiiiiiiiieieetceceecete et 76
2.6.1.6 Generic Kernel DITVET........cc.cocuiiiiiiiiiiiieriieieetet ettt ettt e 76
2.6.1.7 OPIOfile DACINOMN.....cuuiiuiiiieiietieiieteee ettt ettt ettt ettt et e st e bt en b e et e et e eae e et saeeeesaeenaeenean 76
2.6.1.8 POSt PrOfiling TOOIS...ccuiiutiriiiiiiniiiienieeteeteteete ettt sttt sttt ettt st eaesaeen 77
2.6.1.9 INerrupt REQUITEIMENLS. ..ccuviiiiiiiieiieeite ettt ettt ettt ettt et s it e bt e st e e b e e eabeebeesabeenaaesanes 77
2.7 Pulse-Width Modulator (PWM).........oi oot e ettt e e et e e et e e et e e eeaaeeeeaeeeeteeeeeneeeeeaneeans 77
2701 INEEOAUCTION. ...ttt ettt ettt e b e bt et sb et sb e et e s bt et e e b e et et b e bt eb s e bt ebtenbeentesbeeneenae 77
2.7.2 HArdWare OPETATION. ...c.ueeruiietieriteeite it ertte ettt e it e ettt esbee e bt ebeesabeesteesuteesbteeabeenbeesabeesstesabeesstesabeenbbeenbeenssesnbeenasesane 77
273 CLOCKS. ..ttt h et e a ettt h e et bt e st e bt et e e bt e a b e e bt e n b e e bt e te e st et e ehe e bt ente bt entenneeneas 78
274 SOFEWAIE OPCIATION. ...ccutirtiiuiirtiitietiete ettt ettt ettt ettt et ettt e at et bt e bt e bt sbe e et sbeetesb e e bt sbbenbesb b et e eaae bt entenbeenee 79
275 DIIVET FRATUIES. ..ottt ettt ettt ettt ettt et a e et s ae e s he e e e b et eeas et e eseeseesnesaeennesaeennesaeen 79

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

6 NXP Semiconductors

Section number Title Page
2.7.0 SOUTCE COAL SIIUCTUIE. ...c..tiutieiiitieitinteete ettt ettt ettt eet et ettt ea et ea b e bt ea e s bt estesbeenaesbe e bt sbee bt ebtebeebbenbeeanenbeeas 79
27777 Menu Configuration OPLIONS.eevueerttertterieetee et etee st eriee sttt e bt esttesbeessteebeesuteebeesbtesbeesseesabeesstesaseesssesseenses 80
2.8 ReEMOte ProCESSOr IMESSAZINE. .. .eeueeteruietieiietieiteet ettt ettt e et eateste et e sbees e e ebeea e ebeenbeebeenteeaeenbeesee bt eneesaeeneesbeenseaneansesseans 80
2.8.1 INETOAUCTION. ...ttt ettt e b e bt et s b et s bt et e s bt e bt s bt e bt e bt e bt eb s et e ebtesbeentesbeemeenae 80
2.8.2 FRAIUTES. ..ottt ettt ettt ettt ettt et et e a et s a et s h et e h e b e st e as bt ettt et e e st eaeea e sae e besanenneeanent 82
2.8.3 SOUICE COUE.... ettt ettt ettt ettt e e et ea e e e bt et e eh e e eesh e et e eb e e bt es e e bt em e e bt eneeebeenteehe e bt ene e besneenaeennens 82
2.8.4 Menu Configuration OPLIONS.c..eoueeiirieiriirtenieritente ettt ettt ettt ettt ettt e st sbtesaesbtestesbeenbesesenbeesnenbeensenbeenee 83
2.8.5 Running i.MX RPMSZ TeSt PrOZIAMS. ...c...eciuiiiiiiiieiiieiteeie ettt sttt ettt ettt et e st esaaesareens 83
B8 U1 1<) v - | OO 84
2.9.1 INEEOAUCTION. ...ttt ettt et e a et eb e bt st sb e st s bt et e s bt e bt e bt e bt e bt e bt ebt et e ebbesbeentesbeeneenaee 84
2.9.2 SOFtWATE OPEIALION. ...cc.utiiiieiiiiiieiteeite ettt ettt et ettt et e sbt e e bt e bt e s bt e sateeabeesbbesabeeabaesabeebeesabeenstesabeenbeesaseenses 85
2.9.3 SOUICE COAE SIITUCTUTIE.......eitieuiitienieeteete ettt ettt et e bt et et e st e bt ea e bt es e e et e eatesaeenteeseeneesaeenbesseeseemtenbeeneenbeensenseans 85
2.9.4 Menu Configuration OPLIONS.c..eoueetireiriirterieritete ettt ettt ettt e et e bt e tesbtestesbtesbesbsenbesesenbeesnesbeessenbeenee 86
20100 SEIISOTS. ..ttt ettt ettt et ettt a e e bt et h e bRt a et e a e ea e et sh e e e ae s h e e s h et eh e et et enn e et e sa e e naeennen 86
B2 (020 B 13 (T L ot o) s FO OO OO U RSP 86
2.10.2 Sensor Driver SOftware OPETation.........ccc.cieeieriiiiriieriinieieettente ettt ettt ettt et sttt ettt bt e st et e saeeneenaes 87
2.10.3 S0UTCE COAE SIIUCTUTE....c..eetieiiiiieitiniieiti ettt ettt ettt ettt ettt et ess e sae e st saeesaesatesaesaeenaesenebeeanebeeanenreeas 87
2.10.4 Menu Configuration OPLIONS.ceueetirierieriieieatterteeteerte et e bt eete et eseeeteeseeetee st sseesseeseesbesseesbeessenseensenseensenseenes 87
211 WatchdOZ (WDOG).....couiiiiiitiieeiteee ettt sttt ettt et et b e ea e h et e bt et s bt e bt ebtenbeeatenbeeabesbeesneebeenee 88
2.11T INEEOAUCTION. ...ttt ettt et a et sa et s ae e s et e s as e e eas e bt eas et e ease bt ennesaeennenaie 88
2.11.2 HardWare OPETaAtiON.ceeeruieuiertieierteeteattete et eeteetee e eteesteestenteeseesteeseesseenseaseenbesbeenseeseenteeseenteeneenseeneenseeneennes 88
2.11.3 SOFEWAIE OPEIATION. c..ccutitiiiiieiietiettete ettt ettt ettt ettt et at et bt e bt e bt s bt et sbeete s bt e bt s bt e besb b et e ebae bt entenbeenee 88
2.11.4 Generic WIDOG.........coiiiiiiiieee ettt ettt et h et h et b et ae ettt eanen 88
2.11.5 DIIVET FRATUIES.eutitieiiietiett ettt ettt ettt et e e et e s te e st e e bt e st e e bt eate s bt emtees e en b e ese et e enee bt eneeeaeentesaeensesaean 89
2.11.6 SOUTCE COAL SIITUCTUIE....c..eiutiiiitieitirteeit ettt ettt ettt ettt ettt et et b e ea e s bt et e sbeesaesae e bt sbe e bt ebtebeebbenbeeanenbeeas 89
2.11.7 Menu Configuration OPLIONS.eeeueertterieerieeitee et etee sttt estte sttt esteesttesbeessteebeesateebeesbtesbeesstesabeesstesaseessaessseenses 89
2.11.8 Programming INEITACE.ccccoviiiiiiiiiiiiiie ettt ettt st 89
Chapter 3
Storage

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

NXP Semiconductors 7

Section number Title Page
3.1 AHB-to-APBH Bridge with DMA (APBH-B1idZe-DMA)......c..ccoviimiiimiiiniiinicieenieteneetene ettt sneeereseeneneen 91
BULiL OVEIVIBW ..ttt s b e e 91
3111 Hardware OPEIation.......ccceieuieueruerueteteieteiteiteiteutete st et e te s st et s se s ess et et eueesteaeebeebesae st sesaeneennenne 91
3.1.1.2 SOftWAre OPETAtiON......couviriiiiiniiiiirieiteeit ettt ettt ettt ettt et st e e bttt sb e bt sbe et eb s et ebsenbeestenbeenee 92
3113 Source Code SIUCIULE........ccuiiuiiiiiiiiiiiiiiie e 92
3.1.1.4 Menu Configuration OPtIONS........cceeuiriruireriertintenienieieteteteat ettt ettt st se st ee e ese et ese s e e 93
3.1.1.5 Programming INtEITaCe.coceeriiiiiiiiriiiiiieicee ettt et 93
3.2 EIM NOR ..ottt h et h et h e s b e a ettt ettt b et se e 93
TN B Y (0T 11 (01§ OO RO 93
3.2.2 HAardware OPEIAtiON......c..coueruertiriiritinieeiteetteiteete ettt ettt entesbt et e stt e bt ebse bt ett et e eatesbeeatesbeentesbeenaesbeenaesbtenbesanenbens 93
3.2.3 SOFtWATE OPETALION. ..ccueiieuiiiiieeitietie ettt ettt et sbt e et ettt e bt e s ateeabeesateeabeesbteaabeesaeeeabeesaseeabeesabeenbeesaseebeensseenses 93
324 SOUICE COUC. ...ttt ettt ettt ettt et e bt e e e e bt e et e bt ea b e bt e a e e eb e em bt eh e e bt sateebeemteabeemeeabeenbeabeenteebeenseeneenee 93
3.2.5 Enabling the EIM NORccccoitiiiiiiteetet ettt ettt sttt et ettt et sbe et ebeeaesbeenaeeaees 94
3.3 MMC/SD/SDIO HOSL. ...ttt ettt sttt ettt et et e beneene 94
TG T8 B Y (0T 11 (01§ OSSPSR 94
3.3.2 HAardware OPEIAtiON......c..couerueriiriiritinieeteetteite et etesttete bt ete st e st e sat et e ebse bt ees et e eat e st e eatesbeestesbeentesbeenaesbeenbesanenbens 94
3.3.3 DIIVEI FRATUIES. ...ttt st 95
3.3.4 SOUICE COE SIIUCLUIE.eieetieiietieiieete ettt et ettt e ste et e s bt et e ebe e teeb e et e es e e bt es e e bt eaeeeaeenbesaeensesmeenseeseebeeneanseans 96
3.3.5 Menu Configuration OPHIONS.cocuerueiiiriiiiirietentteteett ettt ettt st ettt st et bt et s bt ea bt e bt ebeebee bt ebeesaeeneenaeeneen 96
3.3.6 Device Tree BINAING.......cocuiiiiiiiiiiiieiieeiteete ettt ettt ettt e st e et e e s bt e e bt e satesabeesatesabeesanesaneennee 97
3.3.7 Programming INETTACE.coceruiriiiiiriiriitiieteeet ettt ettt et b e st 98
3.3.8 Loadable ModUle OPErations..........ccccreeruiriiereriiniintenieeiteteeite sttt sttt st ste st be sttt eite bt eatesbeeabesbeentesneeneenae 98
3.4 NAND GPMI FLaSH.......cuiiiiiiiiiiieieee ettt 99
T B Y (0T 11 (01§ OO SURRR 99
3.4.2 HAardware OPEIAtiON......c..couerueriiriirtintieteett ettt ettt ettt e sttt et e sbt e bt et s e bt eet et e eat e st e eaeesbeestesbeeaesbeenaesbeenbesanenbens 99
3.4.3 SOFtWATE OPETALION. ..ceuuiiruiiitieeitietie ettt ettt ettt e e bt e sttt s bt e sateeabeeshteeabeesbeeeabeeeabeeabeessbeeabeesabeenbeesaseenbeenaseenses 100
3.4.4 Basic Operations: REAA/WIIL.cc.ueiuiiuiiiiieiiiieie ettt ettt ettt et sa et e st e sbe st e beeseenbeensenaeans 100
3.4.5 Backward COmPatiDIlITY......coueriiiiriiiiriiiieitieteeiteteee ettt sttt ettt sttt b et be et ebe e e et nae e 101
3.4.6 EITOT COITECIION. ...ttt s b e sa e s eaea 102

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020

8 NXP Semiconductors

Section number Title Page
3.4.7 Boot Control BIoCK Mana@emEnt..........c..eecuerieiiriieiiiniiiieeitenie ettt sttt st ettt ettt ettt sttt ebee e eneenaeenees 102
3.4.8 Bad BIOCK HanAIING.......coiiiiiiiiiiieiiteieeee ettt sttt sttt e e bt e e st e eabe e st e e bt e sabeesbbesabeenne 102
3.4.9 SOUICE COE SIIUCLUIE.euieutiiuietieiteet ettt te ettt ettt et e st e et e e bt e te s bt et e es e e bt es e e bt emeeeaeeneesaeenaeaseenseeneebeeneenseans 102
3.4.10 Menu Configuration OPLIONS.cccuerueitiriieiinieteniteteett ettt ettt et st et sb et s bt et s bt ea b e st e enbesbee bt ebeesaeeneenaeennen 103
3.5 Quad Serial Peripheral Interface (QUAadSPI)cc.cooiiiiiiiiiiie ettt e 103
70 T8 B 1 (0T 11 (o)1 OO OURS USRS 103
3.5.2 HAardware OPEIAtiON......c..cocuerueriiriertintieteetteiteete et et ettt e et e st e sbt et e ebs et e eus et e eat e st eeaeesbeestesbeenaesbeenaesbeenbesanenbens 104
3.5.3 SOFtWATE OPETALION. ..ccuuiieuiiiiiieitietie ettt ettt et ettt et e sttt s bt e s at e et e e sateeabeesbteeabeesaeeeabeeeaseeabeesabeenbeesaeeebeesnneenses 104
354 DIIVET FRATUIES.eeueetieieittete ettt ettt ettt e a et e h et e st e bt e et et e ea e et e enteeaeentesaeeneeeseenbesmtenbeemeenbeensenaeans 105
3.5.5 S0UICE COAE STIUCTUIE......eouiiuiiiiiiieiieitetetet ettt sttt sttt ettt et et es e sae et e b saesaeanes 105
3.5.6 Menu Configuration OPLIONS.ccc.uterueerieriiienieetee st ettt et e sttt e st e ebeesate e bt e eabe e beesabeebeesabeesseesabeenseesaseenses 105
300 SAT A ettt b b et bttt a e a e a e a e bbbttt be e a et ettt ettt eae bt 106
36,1 INEFOQUCLION. c..cuiuiiiiiiiciieieicic et et b bbbttt ettt et eb e sa e st sa e 106
3.6.2 Board Configuration OPLIONS.eeeueteuteriertienieette sttt estee sttt esttesiteebeesbeeteesateesseesateesbeessseebeesabeesseesabeesssesseense 106
3.6.3 SOTEWATE OPEIALION.eeeeuiiriieieeiieite ettt ettt ettt ettt eate et e bt eaee bt eseesbeeseesbeeseeabeemee st anseeseenseeseenseeseebesneenseeneas 106
3.6.4 S0UICE COUE STIUCTUIE......eouiiuiiiiiiieiteitiiet ettt ettt sttt bbbttt et eae s e e sae et e b saesae s 106
3.6.5 Menu Configuration OPLIONS.cccuuterueerieriienieetee sttt ettt e sttt e st e ebeesateesbeesabeenbeeeaseebeesabeesstesaseenseesaseenses 107
3.6.6 Programming INEITACE.oouiiiiitieietietee ettt ettt ettt e sttt e bt et e sbeebesbeebeeseebeeneenneens 107
3.6.7 USAZE EXAMPIE....cueiiiiiiiiiiiiiiiitett ettt ettt b et bttt et et bttt b et st b e nre e 107
3.60.8 USAZE EXAMIPIC.eeiiiiiiiiiiieiieet ettt ettt et b e st e bt e s a bt e bt e a bt e bt e et e e bt e s bt e bt e sateenbaeeabeenne 108
3.7 Smart Direct Memory Access (SDIMA) APL......o.o ettt sttt et e e e 109
BUT.1 OVEIVIBW ..ttt e e h e s bbbttt ettt et ea e bt b e sa et 110
3.7.2 HArdWAare OPETAtION.cevueeritietieeteeitte et eettesteestteeteestteease ettt eabeesstesabeesstesabeessteeabeenbteeabeenstesabeessbesabeesbseenbeenaees 110
3.7.3 SOFEWATE OPEIALION.eeeeuiieeieieeiiete ettt ettt ettt e et eate et e e bt esee bt eaeeabeesee bt esee bt emteeseanseeseenseeseenseeneebesneenseeneas 110
374 SoUICE COUE STIUCTUIE......eouiiuiiiiiiieiieetetet ettt ettt sttt et et e eb e b saeebe b saesaesnes 111
3.8 SPI NOR Flash Memory Technology Device (IMTD)........cocuiiiiiriiiiieiieeteeieeteeit ettt sttt 111
381 INIOQUCTION. ¢ttt ettt ettt e a e bt e e et e e st e e bt e s e e e bt em e e bt em s e b e embeeb e emteeseenteesee bt eneenbeeneenbeensenbean 111
3.8.2 HArdwWare OPEIAtiON......c..coueruiriiriiritintieiteett ettt ettt ettt ettt et e sbt e bt et s e bt ee s et e eatesbeeateebeentesbeenaesbeenaesbeenbesanenbens 112
3.8.3 SOFtWATE OPETALION. ..ccuuiieuiiiiiieiieetit ettt ettt stt e et e sttt bt e s at e et e e shbeeabeesbteeabeesaeeeabeesaseeabeesabeenbeesabeebeesaeeenses 112

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

NXP Semiconductors 9

Section number Title Page
3.8.4 S0OUICE COUE SIIUCLUIE.c..eiutetiriiitieitenti ettt ettt ettt et st ea e st e e s bt et et e bt e bt e bt ebt e e bt estesbeenaesbeenbesbsebeeanenbeeas 113

3.8.5 Menu Configuration OPLIONS.ccc.eouiiiiriiiiiriieteeitete ettt ettt ettt et st et ene s ese st e et esnesseesaeeaeesaeeanesaeennes 113

Chapter 4
Connectivity

A1 ADC et h bt et b ettt et h e a e h e bbbt h e bbbt bt ettt ea et ebe et eres 115
411 ADC INEEOQUCTION. 1.ttt ettt ettt ettt ettt et e e et eate e bt et e s bt eaeesheeaaeebeenbeebeen b e eseenteeseeseeneeeseeneesseenseseeensennean 115

4.1.2 ADC EXtEINal STZNAIS.....ccuiiiiiitiiiiiieieeitee ettt ettt ettt ettt et sb e bt s he et bbbt et et et e 115

4.1.3 ADC DIIVET OVEIVIBW.....oiuiiniiiieiiiiienieeitete ettt ettt ettt ettt e et st e st et sae e s e bt easesbe e e s e ebe e s e saeenseeneessesatenaeennenaes 116

414 SOUICE COAR STITUCTUIE.eutetieiieiteenteetieete et et et et e et e bt eetesteeateeteeseesseemseebeenbeeseenteeseenteeseenseeneesbeensesseeneesaeensennean 116

4.1.5 Menu Configuration OPtIONS.c..eeveruietertietentteteeteente ettt ettt ete st et sbe et sbe e bt ebt e bt eaeesbeeseesbeeneesbeensesbeensesanens 116

4.1.6 Programming INEITACE.coviiiiiiiiieie et sttt sttt e st b e st be e st sats 117

4.2 ENET IEEE-1588..... ettt ettt ettt ettt ettt e et e st e st ea e e st es e es e es e eaeeb e beese s ensenseneenseneeneeneeseeneeaeesennenes 117
421 INEFOAUCTION. ..c..eentiiieieiit ettt ettt ettt b e et bt e et bt et eb e et ebt et eatesbeeatesbeestesbeenbesbeentesbeenteeee 117
4.2.1.1 Transmit TIMESTAMPING....cc.eeeruiiriiiiieiie ittt ettt et e ettt e st et esabeesbeesateebeesbeenbeesabeenseenane 118

4.2.1.2 Receive TIMESIAMPING......ccerererteteieieieteteitet ettt ettt sttt se ettt a ettt ese st et ebeebesbesaeere b e 119

4.2.2 SOTEWAIE OPETALION. .. .eeutiiiiiiiriieteeitete ettt ettt ettt eb ettt et e eate s bt et e bt e et eb e et e sbe et e ebeenteebeenbeemtesbeenbesbeennenanens 119
4.2.2.1 SoUTCe COE SIIUCLUTE.eoueeutiriiitieiietieiterte ettt ettt ettt sttt ettt eee et e eaeesaeesnesaeennesaeennenaeen 119

4.2.2.2 Menu Configuration OPLONS.........ceeeuiruerierierterienteteteteiteitet et ettt st see st saesaeae s esse e eseeneeneeuesresaeas 119

4.2.2.3 Programming INEITACE.c...couiriiiiiiiiiiiice ettt ettt st 119

423 1588 Stack INrOAUCHION.couiiiiiiiiiieiicteitet ettt ettt st ettt e s e st eaeesae e e saeennenaee 120
4.2.3.1 Linuxptp Stack FRATUIES.ccouiiiiiiiiieieietee ettt sttt ettt sae e 120

4.2.3.2 USING LINMUXPED. cuterttenteriteieetteteeitet ettt ettt sttt ettt et ettt ebt et e st e sbe et sbeeneesbeenaesaeen 120

4.3 Enhanced Configurable Serial Peripheral Interface (ECSPI).........coooiiiiiiiiiiiiiiiicieeete e 120
L T T 51 L3 (0 Yo L Te1 5 o) 1 DO OSSOSO PRRSRRPON 121

4.3.2 SOTEWAIE OPETALION. .. .ceutiitiiiiiiiiieeitete ettt ettt ettt eb ettt s bt et sb e et e bt et e sbe et e s bt et e ebe e bt ebtesbeentesbeenbesbeennenanens 121

4.3.3 SPI Sub-System in LANUX OS.....couiiiiiiiieeieete ettt ettt s e e b ettt e bt e st e et e e sabesabeesateebeenaeen 121

4.3.4 SOTEWAIE LIMIEATIONS. c..eeueiitieiiitieit ettt ettt ettt et ea e te e s e bt e st e s bt e st e bt ea b e ebeen e e eseenteeseebeeneenbeeneesneensennean 123

4.3.5 Standard OPETatiONS........co.eeuerteetertietinieeteettete ettt ettt ettt et b e st e eat e s bt et e ebe et e ebtentesatesbesbtesbeeabesbeenbesbeenbesbeeteeae 123

4.3.6 ECSPI SyNChronoUs OPETAtION.cevuuteriieriertieniieeteeniteeteestteeteesitesiteesitesateesbeeebeebeesaseeseesaseenseessseenseessesnne 124

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

10

NXP Semiconductors

Section number Title Page
437 SOUICE COUR STIUCTUIE.eutiniieiiitteitetteiteett ettt ettt ebtesaeeatesbeeatesbeestesbees b e sbeesbeebt et e ebeenbeebeenbeeatesbeestenbeensenaeen 124

4.3.8 Menu Configuration OPLOMNS.eeeuertierieeieesteet ettt et et te et esate et e e stte s bt esbtesbeesstesabeesstesabeessaesnseenbeesseesseenns 125

4.3.9 Programming INEEITACE.c.ccoeiiiiiiiiiiiiiist ettt ettt st s 125
4.3.10 INterrupt REQUITEIMENTS. ...cc..oiutiiiiiiiiirtieiteeitet ettt ettt ettt et ettt sbe et s bt et e ebe et ebeenbe et e sbeestesbeensenueen 125

4.4 Fast Ethernet Controller (FEQC).........ooo ittt e e e e ettt e e e e eeeataeeeeeeetaaeeeeeenasreeeeenans 125
o T 51 L3 (0 Ta L Te15 o) 1 DO OSSOSO PRRRSRRPON 126

4,42 HardWare OPEIatiON........cc.eeuierieeteriieiinieeteeteete ettt sttt st et et et e ett e s bt e st eebeesteebeeaesbeenbesbtenbeeabenbeessenbeeasenbeentenne 126

443 SOFEWATE OPETALION.eeutieuiieiieiteeetie et et et e e stt e et e e bt e e bt e steesabeesbteeat e e baeeabeeabtesabeeabtesabeenstesaseebeesaseebeesabeeseenas 128

444 SOUICE COUC STITUCTUIE.euteteeiieitteteetiete et ettt tet e et ee bt eatesteeateeteeaeesheemaeebeenbeeseenteeseenseeseeneeeneeaseeneesseensesaeensennean 129

445 Menu Configuration OPLIONS.c..eeverueetertieteettetiet ettt ettt ettt et sbe et esbe e bt ebe e bt ebeesbeestesbeenaesbeensesbeensesanens 129

4.4.6 Programming INEITACE.coviiiiiiiiiiitiee et ettt ettt et b e bbbt es 129
4.4.6.1 Getting @ MAC AQAIESS. .. .eeouieiiieieieeiieie ettt ettt ettt ettt ettt e sae et e sbe et e s bt ente e bt enteeseenbeeaeenseenes 130

4.5 FIEXC AN ..ottt ettt b ettt bttt et a et e st ea b eh e e bt eh e e bt e bt e h e b e H e e et et et e Rt e et e a e e h e eh e e bt e bt eh e bbb e b et et et enee 130
451 INEFOAUCTION. ..c..couiiiieieeieeieet ettt ettt et et h e e b et ea et e eate et eaeesaeeanesaeesnesueeanesunenneeunennens 130
4.5.1.1 SOFtWATE OPEIAtION. ...cu.iiuiitieuiitieiteetieie ettt ettt te st ete bt e e s bt et e et e e st e eate bt eseenaeemeesbeentesseenaesneenbesseans 131

4.5.1.2 SoUICE COAE STIUCTUIR.erutiutiriiitieiteteeitente ettt sttt sttt ettt et ebt et ebt et eatesae et e sbeentesaeeneesueen 131

4.5.1.3 Menu Configuration OPLIONS.cecueeeueerueeriieerienitentte et esiteete et e sbeesttesibeesaeessseesbaeebeesseesbeesseesaseas 132

N I 11 1(S o (G 12) TSSOSO 132
4101 INETOAUCTION. ..c..eeniiiiinieiiteteeet ettt ettt ettt et b et h et b et eb e et ebt et eatesbeeatesbeesbesbeenbesbeentesbeenteene 132

4.6.2 LPI2C BUS DITVET OVEIVIEW....coruiiiiiiiiiiiniieieiteieeie ettt ettt ettt ettt et st st st eae e be e b easen e ennesaeenne 133

4.0.3 I2C DeVICe DITIVET OVEIVIEW. .. .eeiuiiuiiitieieitieieeiteteette it este bt esteeteeeestte et saee st eseesbeeatesbeentesbeenteeneenteeneenseeneenseeneas 133

4.0.4 SOTEWAIE OPETALION. .. .ceutiiiiiiiitiieritete ettt ettt et eb ettt e st e e st e sb e et e bt e et eb e e et e ebe et e ebee bt ebeenbeemtesbeentesbeennenaeens 134

4.6.5 12C Bus Driver SOftWare OPETatiON.......cccueerureiiuierieeiienieetee sttt etee sttt et e sitesbeesstesbeesiteebeessbeebeesasesbeesasesseenns 134

4.6.6 12C Device Driver SOftWare OPEIatiOn.c.ce.eeuireeruerienieeienteetesteeie st etesteeteeteenteeseenteeseesteeeesbeeseesaeensennean 134

4.0.7 DIIVEE FEALUIES. ..c..eiitiiiiiiiiieiitet ettt sttt ettt e a e e bt b e e et e b e bbbt e et e bt e st e sbe e st e sbeentesbeeneesaeen 134

4.6.8 SOUICE COUC STIUCTULE.cueetieiieiieiteetieiteettet ettt eteet et esae et e saeesaesaeesaesueebesbe e b eeueenteeseesseeasesseennesaeennesueennenueen 135

4.6.9 Menu Configuration OPLIONS.........c.eeuieuiririirtietirtentet ettt ettt ettt ettt sttt s s et s et et ese s et eseeseeaeeueereenes 135
4.6.10 Programming INTETTACE.cc.eiiiiiiiiiiiiiiiiiicteete ettt et ettt ettt ettt sbe e saeenaesaeen 135

4T Media LoCAl BUS...coiiiiiiiie ettt et ettt st b e bt et ae 135

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

NXP Semiconductors 11

Section number Title Page
471 INETOAUCTION. ...ttt ettt ettt ettt b e et b e et b e et e eb e et ebt et eatesbeeatesbeesbesbeenbesbeensesbeenteane 136

472 MLB DIIVET OVEIVIEW....coouiiiiiiiiiiiieieiiteteeetete ettt ettt ettt e sttt e s bt ettt e asesbeesaesae et e saeesaeseeeaeeanenaeennenuees 137

4.7.3 SOTEWAIE OPETALION.cueiuiiiieiieiiitiiit ittt sttt ettt et et ettt ettt sttt bt et et e b a et e et et ese e e et ebe e bt ebesaeereenes 139

474 SOUICE COUR STIUCTUIE.eouteriiiiiiteeitenttetteett ettt ettt eate st e eate s bt este s bt estesbees b esbeesbesbeeabeebeenbeebeenbeeatesbeesaesbeensenuean 140

4.7.5 Menu Configuration OPLOMNS.eeeieitierieeiterte ettt et e stte st esate et e e stte e bt esbteebeesbtesabeesstesabeessaesnseenbeesseenseenas 140

4.8 PCIL EXPIess ROOE COMPLEX.......ciuieiiriiaiiitieie ittt ettt ettt ettt et et e e eae e te e st e ste e st esbeeseesbeemte bt enbeebeenteeseenteeseenseeneenaeeneas 140
4.8.1 Terminology and CONVENTIONS.c..eerirtirtirtirtietentt ettt ettt ettt et st et st e eate s bt e bt e bt et e ebeebeebeesaeentesbeensenbeen 140

4.8.2 PCIe TOPOIoZY ON 1.IMX ... ittt ettt sttt sttt s it e b e s a bt e bt e sabe e bt e sabe e bt esabeebeesnseeseenas 142

8.3 FBALUTES.eeutieiieete ettt et h et h ettt e bttt e e bt et e e bt e bt e bt et e e bt sa bt e eb e e e et e e nb bt et e e nbe e e beenneeeanean 144

4.8.4 Linux OS PCI Subsystem and RC AriVer.........coeeiiiiiiiiriiiiiiencitenieetereeese ettt s 144

4.8.5 PCIe DIIVETr SOUICE FIIES......couiiiiiiiiiiiiiiiiieceece ettt et ettt 145

4.8.6 System Resource: MemoOry LaAYOUL.........ociuiiiiitiriiiieieeieee ettt ettt ettt et e bt eneesbeeneesneas 145

4.8.7 System Resource: INTEITUPE TINES.c.eoiiriiiiiriiieieeterieeteete ettt sttt sttt et et e e 147

4.9 USB. ettt e h e h et a et a et s a e bt e at e bt e e e bt e s e bt e a e naesae e eaee 147
49,1 INEFOAUCTION. ...ttt ettt ettt ettt e st e et e bt e et e bt es e bt ea e eb e e at e ea e et e eaee bt emeenbeemeeebeembesbeenbesbeanseeneenteane 147

4.9.2 ArCRItECTUIAl OVETVIBW. ...ouiiuiiiiiiiiiitiieeit ettt ettt sttt st b e et b et b et e bt e bt s bt et sbeenaeeatenbeeanenbees 148

4.9.3 HardwWare OPEIAtION.ceeuuiriueeiuieeteenite st eette et e st e ettt esbeeebeebeesabeebeesate e stesabeebeeeabesabeesabeenbeesaseeseenssesbeennsenane 149

4.9.4 SOFEWATE OPETATION.cueiuiiuieiieiiitiiit ittt sttt ettt ettt ettt ettt st b e bt et e b st et et et ene e e eaeebeebeebesaeereenes 149

4.9.5 SOUICE COUR STIUCTUIE.coutiiiiutitieitenttetteett et ettt et et ebte st e eate s bt estesbe et e sbees b esbees b eebeent e et e et e ebeenbeeaeesbeesaesbeensenueen 150

4.9.6 Menu Configuration OPLOMNS.eeeueitierieeieerte ettt et et te st esite et e estteebeesbtesbeesbtesabeesstesabeessaesaseesbeesseenseenas 150

4.9.7 USB WaKEUP USAZE....c..evemiiuiiieiieiieiieiteitettete sttt sttt ettt et ettt sae et b e ettt e et et et eaeeaeebeebesaesaeas 151

4.9.8 How to Close the USB Child Device POWET.........cccccoiiiiiiiriiiiiiinieeteneee ettt 151

4.9.9 Changing the Controller Operation IMOGE............c.eeiuiiriiiiiiiiiieieeie ettt ettt e e s 151
4.9.10 Loadable MOAUIE SUPPOTL......c..ccueciiiiiiiriiieiieeniestestest ettt ettt ettt ettt st ettt et ebe b ebesae et sbe e 152
4.9.11 USB Charger DEECHION.cc.eiiiitiitiniiitentieteettet ettt ettt ettt et st e e sb et s bt et e sbt et e et e e bt ebtesbeeatesbeesaesbeensenaeen 152
4.9.12 Embeded HOSt CertifiCatION.ccueiuieriiiieiieieiietetteteete ettt ettt ettt ettt ettt n e st ae e saeennesaeen 152
4.9.12.1 Adding TPL-SUPPOIt PrOPEITY.....coveotiiiieieiiiieieiieitet sttt ettt 152

4.9.12.2 VBUS CONUIOL..c..eiuiiiiiiiiiiieieetetet ettt ettt ettt ettt ettt et eb et e e sae e e e saeenaesaeen 153

10 USB3.. ettt ettt et h et a bt e a e a et a et sa e e bt e ae bt e e s bt as e bt e h e e nneeae et eae 153

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

12

NXP Semiconductors

Section number Title Page
4101 INEFOAUCTION. ..c..eeniiiienieeiteteeet ettt ettt ettt ettt b e e bbbt et e eb e et ebe et eatenbeeatesbeesbesbeenbesbeensesbeenteene 153
4.10.2 SOUICE COAR STIUCTULE.c.eeuieireieeitentteiteettetee et ettt et este et e saeessesaeesnesueesesteesseeueesseessenseesne st ennesaeennesaeennenueen 154

4.11 Low Power Universal Asynchronous Receiver/Transmitter (LPUART)......cccooiiiiiiiiiiiee e 154
ATT.T INEFOAUCTION. ...ttt ettt ettt ettt et b et b e et b et e eb e et ebt et eatenbeeatesbeesbesbeenbesbeenteebeenneeee 154
4.11.2 Hardware OPEIALION.ceiuuiiiuieriieeteentteeteeeit e et e st e eiteesbteesbeesteesabeebtesate e stesate e bt eesbeeabeesabeanbeesaseeseesssesnbeennsennne 155
4.11.3 SOTEWAIE OPETALION. ... eeueiuienieitieteei ettt et et e e etee et esee bt eseesbeestesbeesteebeenteebeenbeeseenteeaee st eneesseeneesbeensesbeansenseans 155
4114 DIIVEE FEALUIES. ..c..eiiiiiiiiiiiieiiieteett ettt ettt sttt sttt et e b e bt bt e b e bt et e st e bt e st e sbe e st e sbeentesbeeneesaeen 156
4115 SOUICE COAR STIUCTULE.cueeniieiieiieitentteiteettet et ettt ettt e sae et e saeesaesaeesaesueessesbee b e eaeenteeasenseesnesaeennesaeessesaeennenaeen 156
4.11.6 Menu Configuration OPIONS.ee.ueiuteuertieteeteeteeteesteettesteetesteetesteese st eenseaseenbeeseanseeseesseeneesseesesseesesseensesseens 157
4.11.7 Programming INTETTACE.cc.eiiiiiiiiriiiieriteteeet ettt ettt ettt et ettt ettt et esbe s saeenaesaees 157
4.11.8 INterrupt REQUITEIMENLS.eiutiiiiieitieiite ettt ettt ettt ettt et e sttt e bt e eabe et eesabe e bt e sat e e bt e sabeebaessbeebeesabeebeesases 157

L B 2 1< 010 1 o OO OO OO P TSRS 157
4.12.1 Bluetooth Wireless Technology INtrOdUCHION..........cc.eeuiriiriiriiriiiineeteeetee ettt 157
4.12.2 BlUuetOOth DITVET OVEIVIEW......ccuiiiiiiiiiiiiieiietieiieettete sttt sttt ettt ettt be e saeesnesatesnesaeennesaeen 158
4.12.3 BlUCtOOth DIIVET FILES.eiiiiiiiiiiiieeet et ettt et b ettt et e st e e bt e tesseebesneenbeeneas 159
4124 BIUCTOOTI STACK...c..eitiiiiiiieiiiete ettt et sttt ettt b et e bt et ebe e bt et e saeemee e 159
4.12.5 Menu Configuration OPLOMNS.eeeueitierieeiterteet ettt et e stte st esateebeestteebeesbeesbeesstesabeesstesabeessaesnseesbeesseenseenns 159

A3 Wi ettt ettt ettt ettt ettt a e a e e Rt Rt Rt Rt ehe ekt eke R e es et et et entententeRteR e eheene ekt beeteesebesensentenes 160
41301 INETOAUCTION. ..c..eeniiiieieeiteteeet ettt ettt ettt b et b et b et e eb e et ebt et e atesbeeatesbeestesbeenbesbeensesbeenteene 160
4.13.2 SOFEWATE OPETALION.....cetteeuiieiieettette et et et e st e et e bt e e bt e steesabeesbteeabe e baeeabeebtesabeeabeesabeenstesateebeesaseebeesabeeseenas 160
4.13.3 DIIVEE TRATUIES. ... eeuteetieieetiett ettt ettt ettt ettt et e b et et ettt e et e ea e e bt e st e et e emeeebeemeesheenseebeembeeseenbeessenteeneeseeneenseenes 160
4.13.4 SOUICE COUR STIUCTUIE.cvteniiiititteitenttetteett et ettt et et ebte st eate s bt eatesbe et e sbees b esbeesbeebe et e ebe et e ebeenbeeatesbeestesbeensenuean 160
4.13.5 Menu Configuration OPLOMNS.eeeierieerieriterteet ettt e stte st esiteebeesbteebeesbtesbeesstesabeesstesabeessaesnseenbeesseenseenas 161
4.13.6 Device Tree BiNAINg........cccuoiuiiiiiiiiieiiee ettt ettt e e et et e bt s e s bt e e bt e s e e bt et e ene et e eneenbeeneesaeeneas 161
4.13.7 Configuring WLAN from USEI SPACE.....c..cecuiruiiiiriiiiiitireitenteeteste ettt sttt sttt st sbe et s enesanens 162

4.13.7.1 Connecting AP in Station MOGE.........ceeuiiriiiiiiiiiiiieeieeie ettt sttt sttt ebee e 162
4.13.7.2 Obtaining an IP address.......ccueiuieiiriiiieiieeeete ettt sttt ettt ae e 162
Chapter 5
Graphics

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

NXP Semiconductors 13

Section number Title Page
5.1 Graphics Processing Unit (GPU).......cocoiiiiiiiiiiiiiieteeeet ettt ettt ettt ettt sbe et st ae st nae e 163
S.101 INEFOAUCTION. ...ttt a et sa e st s et e b s as et eas et e ean et e eas e bt e s e saeennenae 163

5.1.2 DIIVET FRATUIES.......eutetieiiietiett ettt ettt ettt e e e a e bt e s e bt e st e s bt et e e bt emteeseem bt es e et e eneebeeneesaeeneesaeensesnean 164

5.1.3 Hardware OPETatiON..........cecueruirieruerieriiienitetente ettt et ettt ettt stesae et e saeeste s bt et e sbeesbesbt et e ebeenbeebeenaesaeenbeeneenaes 164

5.1.4 SOFtWATE OPEIALION. ...ccuuiiiiiiiiieriiieiieeite ettt ettt ettt et e sttt e bt e bt e s bt e sate et e e sbbesab e e beesabeebeesabeenstesaseenbeesaneenses 165

5.1.5 SOUICE COAE SIITUCTUIEeiutieiiitieiiieteet ettt ettt ettt ettt et e bt e e et e e st et e es e e steeneeesee bt s st ebesseenseestenbeessenbeensensens 165

5.1.0 LIDIATY SEIUCIUIE ..cuveiiiiiiiiiiieitteteeit ettt ettt ettt et st ettt b bbbt eb et e bt e bt eatesaeestesbeemaesbeeaesbeenbesbnenbens 166

517 AP REIEIEICES. ..couteiieiiieiiiiieett ettt ettt et sae et st e e sae e aesase b eane b e eanenne e 167

5.1.8 Menu Configuration OPLIONS.c..eeueetirierierierieetente et tete et et eete bt esteeteestesaeeaesseesseestenbesseenbeesseabeensenseensenseenes 167

5.2 WAYLANG. ¢t bbbt et et h e e a e bt et bttt b bbbt bt et ente e et 168
5.2.1 INEEOAUCTION. ...ceiiiiieitieii ettt et a et sa et sae et s et e b s ae e eeas e bt eas et e easesae e s e saeennenae 168

5.2.2 SOFEWAIE OP@IATION. ...ceutitieutietietiettett ettt ettt ettt e sttt e te et e bt es e e bt e st e et e emeeeaeeneeseeenseeseebeeseenbeessenbeeneenseeneenseenes 168

5.2.3 YOCtO BUIlA INSIIUCHIONS. c..cenveiiiiiiiiiiteteeit ettt ettt et b et bttt sbe et et sbe et sbeesnesbeennen 168

5.2.4 CUSLOMIZING WESLOM....eeuutiiitietieeiteeitte et et te et et e et e e stt e et e ettt eab e e atesabeesatesabeenbaeeabeesbteeabe e seesabeessbesabeesbbesnbeenaees 169
5.2.4.1 Multi display supported in WESTON.........coeruirriririirieieiereietetet ettt ae e eaeas 169

5.2.4.2 Multi buffer supported in WESTOM.c..eeruiriiriiriintieiereete ettt 169

5.2.5 RUNNMINGZ WESTOM...cutiiuiiiiiiiiiieiiit ettt ettt ettt et et e st e bt e sat e e bt e eabeeabeesabeeabtesab e e bt esateeabeesateeabeesabeenbeesateenseenaeean 170

5.3 X WINAOWS ACCEIETALION.cutiiuiitieiieetietie ettt ettt ettt et et e et e e bt ea e e bt este et e eaeeebeeneeeseenbesseebeemee bt emtenbeemseabeensenbeensesseansene 170
5.3.1 INEEOAUCTION. ...ttt ettt ettt e b e bt st sb et sb et e s bt et e b e et et b e bt ea s e bt ebtesbeentesbeemeenae 170

5.3.2 HardWare OPETATION.eerutieiieriteetteiiteesite ettt esttesite e bt e et e ebeesate e btesateesbteeabeebtesabeestesabeesssesabeenbteenseenstesnbeennsesane 170

5.3.3 SOFEWAIE OPEIATION. ...ceutitieuiietietietiete ettt ettt ettt e e st e b e et e et e ese e bt e st e bt eseeebeeneesaeenseeseebeeseenbeestenbeensenseeneenseenes 171

5.3.4 X-Windows Acceleration ATCHIIECTUIE.eetirtiriiriietirieeieet ettt ettt ettt sae e i 171

5.3.5 1. MX Driver for X-WindOWS SYSEIMN......ccccutiititiiiritieniiieitienteette sttt e st etee sttt e bt esate s bt e satesabeesabeesseessseeseenaeeas 173

5.3.6 1.MX Direct Rendering Infrastructure (DRI) for X-Windows SyStem.........ccccccerieririiiriiienieeieeieseeieeens 174

5.3 7 EGL- X LIDIATY..cuttiitiiiiitiiitett ettt ettt ettt et b e et s b et s h et s bt et e bt et e bt et e bt e nbe et e sbeeneenbeen 176

5.3.8 XOTZ.CONT FOT T.IMX ..ottt ettt e b e st e s bt e e ab e e b e e et e e bt e et e e bt e sabeesbtesabeenbaesabeenees 176

5.3.9 Setting Up X-Windows System Acceleration 0N YOCLO.......c.ccoieuereriirrerienienieieieteeeteieereeseereseessesseseessenennens 178
5.3.10 Setting Up X Window System ACCEIEIAtIONco.eevuiriiriiiiiniiiieneeterte ettt s 179
5.3.11 TTOUDIESNOOUING «..eeviiiiiieiiiieiie ittt ettt et e b e bt et e s st e et e esbbeeab e e bt e sabeesbeesabeesstesabeenbneenseensee 180

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

14

NXP Semiconductors

Section number Title Page
Chapter 6
Video

6.1 CAPLUIE OVEIVIEW.....e.eiiutiiientteeieett et et ette et et stt e bt e aee bt e s ee bt ea s et e en e e bt em e e eaeem bt es e e et eaee bt emee bt emte b e enteebeenteeseenseenee st eneenaeeneas 183
6.1.1 INEEOAUCTION.uiiiiiiiiiiiiiiiiii ettt sttt ettt et e b e b st b e b saesneaenens 183

6.1.2 OMNiVISION CAMETA......coiiiiiiiiiiiiii e st en s 184

6.1.3 Paralle]l CSLu....uiiiiiiieiee ettt ettt sttt b et bbbt 186

6.1.4 MIPI Camera Serial Interface (IMIPI CSI)........cccouiiiiiiiiiiiie ettt e 187

6.1.5 HDMIL ..ottt 188

6.1.0 SOTEWAIE OPEIATION. ...ccutitieitietietietiett ettt ettt ettt et et e et e et e e bt et e e et e st e et e eseeebeemeeseeenseeseebeeseenbeestenbeeneenseeneenseenes 188

0.1.7 VAL CAPIULE..c..eenteititieiteeieett ettt ettt ettt ettt b e et s bt et s bt et e bt et e e bt et e e bt e bt estesbeentesbeeneesueen 189

6.1.8 S0UICE COAE SIIUCTULE. ...ttt et e 190

6.2 DISPIAY OVEIVIEW...uiuiiiiiieiieiieiieit ettt sttt ettt ettt et et ettt et eb et be s a e e b b a ettt e s et et eateseebeebeebe et e s besaente b e 191
6.2.1 INEOAUCTION ..viiiiiiiiiiiiiiieiiciice et sttt ettt et e b e bbb saesneaenens 191

6.2.2 Frame BUFTer........cccooiiiiiiiiii s 192

6.2.3 Direct Render MoOdel (DRIM).......ccouiiiiiiiiiiieiieeieesite et eettesveeseesteesaeeseessaessaesssessseessseesseessseeseessseenseesssesnse 193

6.2.4 DiISPlay RESOIUIION.coutiiieiiiiieiiiicee ettt sttt sttt sttt b et eat e st e st e sbe e e nae 193

6.2.5 AUNENTICALION. ...c.eiuiiiiiiiiiiiiicc e st 193

0.2.0 THIN c.eieititeteee ettt ettt bbb b ettt ettt e b et ae et b e b et nenens 194

0.3 DISPIAY CONTIOLLETS. ...ttt ettt b et b et eb et e bt et e et e sbeeate s bt e st e sb e e st e sb e et e e bt et e ebeenbeesaenaeenees 194
6.3.1 Display Processing Unit (DPU)cooiiiiiiiiiiiiie ettt ettt ettt sttt et e sia e sbeesaeeens 194
0.3.1.1 TIEFOQUCTION ...ntiiiiitieiie ettt ettt ettt st e bt s a e et e s ae e be s s e e bees e e bt enee bt entesaeeneesneeneenaie 194

0.3.1.2 DRM ..otttk ettt ettt ea et 196

6.3.1.3 Source Code SIUCIUIE...........ccuiiiiiiiiiiiiiiiii et 196

6.3.1.4 Menu Configuration OPtIONS........cceeiruiruirerentinteienietetet ettt ettt se et eseeae et ene s e e 197

6.3.2 Image Processing Unit (TPU)........cccoiiiiiiiiiiiniiiitceeee ettt ettt s ae bbb sanens 197
6.3.2.1 INIrOAUCTION.cuiiiiiiiiiiiiiiiii e s 197

6.3.2.2 Hardware OPEIatiON.........coieuieuerieriirteteieteiieiteie ettt st ettt sae sttt st ess st et eueeseeae bt besaeste s sae e ennenne 198

6.3.2.3 SOftWAIre OPETALION......ecutiriiiiiriiiiirititertt ettt ettt ettt ettt et sttt sb e e ae bttt eb et ebt et e entenbeenee 199

6.3.2.4 IPU Frame Buffer Drivers OVEIVIEW.........ccccciiiiiiiiiiiiiiiiiicicccicic s 200

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

NXP Semiconductors 15

Section number Title Page
6.3.2.5 IPU Frame Buffer Hardware Operation........c..ccc.cieeueriierienieiiinieieeeenicetesieete ettt 201

6.3.2.6 IPU Frame Buffer SOftware Operation...........cccueecuierieriieniienieeniee sttt sttt ettt e s esiee e s 201

6.3.2.7 Synchronous Frame Buffer DITVeT..........cccoooiiiiiiiiiiiieeee e 202

6.3.2.8 TPU BaCKIIGNt DITVET......coouiiiiiiiiiiiiieiteeet ettt sttt ettt 203

6.3.2.9 TPU DeVICE DIIVET ...ttt 203
6.3.2.10 SOUICE COUE STIUCLUIR .. .eeueeiietieiieteeiieteeite ettt te sttt e ste e et e sbeeate b e eateebeenbeebeenteeseebeeneesaeeneesaeeneesnean 204
6.3.2.11 Menu Configuration OPHONS.ccueeeiriirierertenieeitent ettt ettt ettt este st e bt st e bt esse bt essenbeeasesbeenee 205

6.3.3 PixXel PIPEINE (PXP)...oouiiiiiiiiiieee ettt ettt e bt et e bt s bt e it e sate e sateeaneenee 208
0.3.3.1 TIETOAUCHION. ...ttt ettt et ettt s ae e bt s a e et e s ae e be e s e e bees e et e ense st entenaeeneesneeneenaie 208

6.3.3.2 SOftWAre OPETALION......ccutiriiiiiiriieiiriteterit ettt ettt ettt et et sttt sb e besbs et eb s et e ebtenbeeatenbeenee 209

6.3.3.3 KEY DAt@ SIUCES. c...eiiiiiiieiie ettt et ettt e bt e et e bt e st e e bt e sabe e bt e sabeebeesaneeabes 209

6.3.3.4 Channel Manag@ement...........cceeiuiiieiuieientieieeteete et te sttt ettt e steeste bt eatesbeente et eenteeseenbeeneesaeeneesaeeneesnean 210

6.3.3.5 DeScriptor ManQ@EIMENL......c..ccoueruieriiriitieiteteeitente et sttt ettt ete st ebe st e be sttt e ebee bt e bt esbeeneesaeeneenaee 210

6.3.3.6 Completion NOUFICAION. c....eetiiriiiiieeie ettt st et sab e s bt e et e sbeesbeesaeeeares 210

0.3.3.7 LIMIEATIONS. 1.t eeuteteeiteeteete ettt ettt ettt et et e s e b e es ekt ea e et e es e e eseenbe e s e e bt saeenbeesee bt emeenbeensenbeenseeseanseeseenes 211

6.3.3.8 Menu Configuration OPHONS.cccuereiriirtererteniert ettt ettt ettt e sttt et sbtesae st e bt eesenbeessesbeeasesbeenee 211

6.3.3.9 Source Code SIUCIULE...........ccuiiiiiiiiiiiiiiiie e 211

6.3.4 ELCDIF Frame BUTErcouoiiiiiiiiiieet ettt ettt et ee et st e b et e saesse e beeneenneas 212
6.3.4. 1 INIOQUCTION.couiiiiiiiiiiiiiiiiit ettt ettt s b s s 212

0.3.4.2 SOFtWATE OPETALION. ..c.uueiiieitiiiieeiteitte ettt ettt st et e et esbt e e bt esbee s bt ebeesabeesbeesabeenbaesnseebeesaseeseenas 212

6.3.4.3 Menu Configuration OPHOMS.ccueeueeruerierteeierteetient et etees et etestee et saeentesstesbeeseesbeessesbeensesseensesseenes 213

6.3.4.4 SoUrce Code SIIUCIUIE........c.oouiiiiiiiiiiiiieiet ettt ettt 213

6.3.5 Display Control SUbSYStEM (DCSS) ..eeiuiiiiiiiiieiieette ettt ettt et et st e st st e sibeebeenaees 213
0.3.5.1 TIEFOAUCTION ..ntiiiiiieiie ittt ettt ettt ettt e bt s a et e s a e e be e st e bees e et e enee bt entesaeeneesneensennie 213

6.3.5.2 SoUIce Code SIIUCTUIE........ccuiiiiiiiiiiiiieieiet ettt et 214

0.4 DISPIAY INLETTACES. ..o eutiiiieiiietie ettt e b e et e b e st e et esht e e bt e sh bt et e e bt e ea bt e e st e eabeesateeabeenbbeenbeenaee s 214
6.4.1 Parallel LCD INEEITACE.cccueetieiietieie ettt ettt ettt et e et et s et et e s st ebe s st et e es e et e ese e teeneenseenes 214
6.4. 1.1 INIOQUCTION. ...c.ouiiiiiiiiiiiiiiiiii ettt ettt s 215

6.4.2 MIPIDSIINEEITACE.c..iiiiiiiiiiiiiiiiic e 215

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

16

NXP Semiconductors

Section number Title Page
6.4.2.1 SOftWArE OPETALION......eoutiriiiiiiriiiiiriteterit ettt ettt ettt ettt ettt sb e e bt sbt et eb s enbeebtenbeeasenbeenee 215

6.4.2.2 SOUICE COAE STIUCLUIR.......ccuiruieririieiieitetieiteete ettt ettt ettt et st eese st e b e st et e eseesaeeaeesaeennesaeennesaeen 216

6.4.2.3 Menu Configuration OPHOMS.cccueeueeruerieitieieiteeiesteeiteeteeste et etesteestesaeentesstenbeeseesbeeseenbeensesseensesseenes 216

0.4.3 LVDS INEEITACE.couiiiiiiiiitieieit ettt sttt e b et e ettt e at e sa e st sbe et sbeenbesbe e besbnennens 217
6.4.3.1 INITOAUCHION. ...c..eeiiiiieiiiiitete ettt ettt ettt st st s s b e ettt esae e e saeennenae 217

6.4.3.2 SOFtWAIE OPETALIONeouiiiieiieiiieie ettt ettt ettt ettt et e e st e e et saee b e ss e e besse e beeseebeeneeebeensenseenes 218

6.4.3.3 SOUICE COUE STIUCLUIR.......cotirtieiiriiitieiteteeit ettt ettt ettt et ettt b et sb et sbe et ebe et ebeesaeeaeesaeeneesaeen 218

6.4.3.4 Menu Configuration OPLIONS.cccueeriiriuierieiieeriie et eeete ettt et et e e bt esieesbeesatesabeesbbesaseesbeesbeenseenas 218

6.4.4 LVDS Display Bridge (LDB).......cccootiiiiiiiirieiiteresteeeeeet ettt ettt sttt saea 219
0.4.4.1 TNITOQUCTION. ...cueiiiiiiiiieiitete ettt ettt et ettt s b et s be e bt s b et e bbbt et e bt e bt e sbe et e sbeeneenaie 219

0.4.4.2 SOFtWATE OPETALION. ..c.uuieiieiiiiiteeiteitte ettt ettt et e st e et esbteebeesbee s bt ebeesabeesbtesabeebtesaseebeesabeeseenas 219

6.4.4.3 SOUICE COUE STIUCLUIR.eeteitieiieiietieiiet ettt ettt ettt e ste et e sbeeste s bt eateebeenbeebeenteesee bt eneenaeeneesaeeneesnean 220

6.4.4.4 Menu Configuration OPHONS.cccuereiriiriererterieritent ettt ettt ettt et sbeestesbte bt st esbeeesenbeessesbeenseseeenee 220

6.4.5 Electrophoretic Display Controller (EPDC) INterface............coouieiiiiiiiiiiiiniiiiieieceeeeeeteeeesee e 220
0.4.5.1 TIITOAUCTION. ...ttt ettt ettt et ettt e et e bt s a e e bt s a e e bees e et e es e et e enee bt entesaeeneesneensenaie 220

6.4.5.2 EPDC Frame Buffer DIiver OVEIVIEW.........cocciciiriiriiniiiiiniieiieieeie ettt sttt 221

6.4.5.3 EPDC Frame Buffer Driver EXteNnSIONS........c..ccceiiiiiirieiiinieiieieiteeericeeene et 222

6.4.5.4 EPDC Panel ConfigUuration..........c..cccuerteiirieiinieiieeieeniesieeste et eite st eite st eteseeentesaeentesneeseeeeesbeennens 222

6.4.5.5 Boot Command Line Parameters...........cccevieriiriiiiniiniiicient ettt 223

6.4.5.6 EPDC Waveform LOAdINgG........coooutiiiirieiiieeieeite ettt st ettt et sbe e sbeesaee e 223

6.4.5.7 Using a Default Waveform File...........cccoooioiiiiiiiiiieeeee e 224

6.4.5.8 Using a Custom Waveform File..........cocoiiniiiiiiiiiniiiieeeee e 224

6.4.5.9 EPDC Panel InitialiZation.cccccouiiiiniiiiinieiiiieie ettt 225
6.4.5.10 Grayscale Framebuffer SEIECtiON.cceiiiiiiiiiieieeiieeeee et 225
6.4.5.11 SOftWAre OPETAtiON......ccutiriiiiiriiiiiritiieit ettt ettt ettt et e e sttt sbt bt sbt et eb s e bt ebtenbeeatenbeenee 226
6.4.5.12 Structures and Defines.........ccccocieiiiriiiiiiiiiiiieee e 229
6.4.5.13 SOUICE COUE STIUCLUIReeuvitietiiiietieiiet ettt ettt te sttt ettt e s bt et e s b e et e sbeenbe et eenteeseebeeneesbeeneesaeeneesnean 230
6.4.5.14 Menu Configuration OPHONS.ccuereiriirierierterieet ettt ettt ettt e sttt estesbte st st esbeeesenbeesbesbeennesbeenee 230

6.4.6 High-Definition Multimedia Interface (HDMI) and Display Port (DP) OVerview..........ccceevveeveenvernieeneennne 231

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

NXP Semiconductors 17

Section number Title Page
6.4.6.1 INIFOQUCTION.uiiiiiiiiiiiiiiiii ettt ettt e s s s s 231

0.4.6.2 SOFtWATE OPETALION. ..c.uueiiieiiiiiieeiteiite ettt ettt et e st e et esbte e bt e bt e e bt ebeesabeesbeesabeenbbesaseenbeesabeeseenas 232

LT S B G) (< OSSPSR 232

6.4.6.4 Display Device Registration and Initialization............coccoeeveriiiiniininiiiniiiceccec e 233

6.4.6.5 Hotplug Handling and Video Mode Changes...........coceeriieriieiiieniieiieeiie sttt s 233

0.4.0.0 ATAIO. ... eeneitiee ettt a ettt et h bt h e e bt eh e e bt ea e et e en e e bt et e he e et eaeeteenean 234

6.4.6.7 1.MX 8 DISPLAY POTt....c.uiiiiiiiiiiiiiiiiee ettt sttt 235
6.4.6.7.1 SOftWare OPEIAtiON.......eevivieriiiiiieiieriteiteete ettt ettt st et e et e b e e sbeesbeesbeenaeesarees 235

6.4.6.7.2 SOUICE COUE STITUCTUIE.evteuiitieiiertieie ettt sttt ettt te et et et esbeeseesbeeneeseeeneesaeenesnean 235

6.4.6.7.3 Menu Configuration OPtONS.eereeiirierierteienietenit ettt ettt s eseesieenaesieenaesenens 236

6.4.6.8 1.MX 6 On Chip High-Definition Multimedia Interface (HDMI)..........cccccooviiniiiiinniiiniiniieeene, 237
60.4.0.8.1 TNIIOAUCHION.eitieiiieiieit ettt ettt ettt et be et bt et e sbeebesseebeeseeeeens 237

6.4.6.8.2 SOftWAre OPETAtiON......coueeuiriieiiiriiiniiiienieetentt ettt ettt ettt ettt esee st etesbeenaesanens 239

6.4.0.8.3 CEC ...t 240

6.4.6.8.4 S0OUICE COUE STITUCTUIE.etieuietieieetieie ettt ettt ettt et te et et eae et e et esbe et e sbeeneesaeenesnean 241

6.4.6.8.5 Menu Configuration OPtONS.uerueeiirierierierierieteeit ettt ettt s eseesieestesieesiesinens 241

6.4.6.9 External HDMIL.......ccoccooiiiiiiiiiiiie ettt 242
0.4.0.9.1 TNIOAUCHION.eitieiiiitieti ettt ettt ettt et ettt s be et e s bt e be s bt ebeeseebeeneeteens 242

6.4.6.9.2 SOftWare OPETAtiON......cc.eeuiriiiriiriiiniiiientetenit ettt ettt ettt et eee st etesbeenaesanens 243

6.4.6.9.3 Source Code SIrUCLUIE. ..ot 243

6.4.6.9.4 Menu Configuration OPLIONS........ccueoveieieieiriiietieeee ettt ettt ettt eaeas 243

6.5 Video fOr LINUX 2 (VAL2).c.oouiiiiiiiiieieieiee ettt ettt ettt b et b et be e 244
6.5.1 INEOAUCTIONviiiiiiiiiiiiiiiic ettt sa b st 244
6.5.1.1 LMX 8 DPU VAL ...ttt ettt sttt b et 244

0.5.1.2 PXP VAL oottt 244

6.5.1.3 1MX 6 With IPU VAL2.....oooiiiiiiicee et 245

6.5.1.4 TPU VAL2 CaPture DEVICE.ccueruieiiriieiieiietteee sttt ettt sttt st et sttt se et eaee st et e sae e e e saeeneeeees 245

6.5.2 VAL CaPUIe DIEVICE.....eeuiiriiiiiiiieieeiteteeit ettt ettt ettt sttt sttt ettt ea et e st s bt et e sbeentesbeenaesaeen 246
6.5.2.1 VAL2 Capture IOCTLS.......coriiiriiiicieieeeeceseee ettt 246

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

18

NXP Semiconductors

Section number Title Page
6.5.2.2 Use of the VAL Capture APIS......c..cooiiiiiiiiiiiieieet ettt 248

60.5.3 VAL2 OULPUL DBVICE.eeeiiiiiieeiieeite ettt ettt ettt sttt et e s e et e bt e et e e st e s bt e ssbeeabeesbbeebeessbeebeesnsesnne 249
6.5.3.1 VAL2 OULPUL IOCTLS....cueiuiiiieiirieriiteteteteetee ettt sttt ettt et ee 249

6.5.3.2 Use of the VAL OULPUL APIS.....coiiiiiiiiiiiiiiieiesieeee ettt sttt et sttt nae e 250

60.5.4 SOFtWATE OPETALOINSeeuviiuiieriiiiitieeite et te ettt ettt e sttt e bt e sttt e bt e sabe e bt e sateeabeesbbeeabeeaseeeabeesateeabeesabeenbeensteenseenaeean 250
6.5.4.1 SOUICE COUE STIUCLUIReeuviitieiieiietieiiet ettt ettt ettt e ste et e steeste b e ee e sbeenbeebeenbeeseebeeneesbeeneesaeeneesnean 250

6.5.4.2 Menu Configuration OPHONS.cccuereiriirierierieriertente ettt ettt ettt et sbeestesbtesbe st esbeeese bt essesbeensesbeenee 251

6.6 Video Analog-to-Digital ConVerter (VADC).....cocuii ittt ettt ettt sttt st e sbeesabeebeesbeebee e 251
(OO R U113 (o T L ot (o) s FO OO OO RS RPRP 251

6.0.2 SOFEWAIE OPCIATION. c..ceutitieuiietiitietiete ettt sttt ettt ettt e at et b e bt e bt s bt eseesbeetesb e e bt s bt e besb s et e ebne bt entenbeenee 252

6.6.3 SOUICE COAE SIIUCTULE. ...ttt sttt sa e s 252

6.6.4 Menu Configuration OPLIONS.c..eeueeiirierieiieieettente et te ittt e bt eet et esteeteestesae e tesseesseeseenbesseesbeessenseensenseensenseenes 252

6.0.5 DTS CONFIGUIATION ..eoutiiiiiiiiiiiititeeit ettt ettt ettt et b et sb et s bttt ebs e bt e et et e e st e bt e st e sbeentesbeeneesaeen 253

6.7 Video Processing Unit (VPU)...coo.ie oottt sttt st ettt e b e st e bt e s bt e bt e sabeesbbeeabeesbaesnbeenseeas 253
(O T U113 (o T L1 ot (o) s FO OO SRR RPSP 253

6.7.2 SOFEWAIE OPCIATION. c..ccutitiiiiietietiettete ettt ettt ettt ettt et bttt b et e bt sbe et sbe et e s bt e bt s bt e b e sb b et e ebae bt entenbeenee 253

6.7.3 Menu Configuration OPLIONS.eeeueerrtertterieeteeeteeitee sttt et e sttt esteesite et e e ssbeebeeshbeesbeenbtesbeesseesabeesstesabeesssessseenses 257

6.8 JPEG ENCOder and DECOEToiuiiiiiiiiiiitieteetet ettt sttt st e b ettt e bt e e e bt e st e sb e et e eaeenbesaeenbeeneenaeeneenneas 257
6.8.1 INEIOAUCTION.ueiiiiiiiiiiiiiiiiii ettt sttt ettt et et eb e b bbb saesneaenens 257

6.8.2 Overview of the JPEG Encoder and Decoder DITVeT...........cccccoiiiiiiiiiiiiiiiii i 258

6.8.3 Limitations of the JPEG Encoder/Decoder DITVET...........ccoiuiiiiiiiieieiieiesie ettt 259

Chapter 7
Audio

7.1 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Soundccecevirinirieninienieeseeeeee 261
7.1.1 ALSA Sound Driver INtrodUCHION.cceiuiriiiiiiiiiiiiicicieee et s 261

T.12 0 SOC SOUNA CAId ..o et s 264
T.1.2.1 Stere0 CODEC FEAUIES. ...c.utiriiiriiiiieeieette ettt ettt ettt sttt sae e e beesateebeesanesnee e 264

7.1.2.2 7.1 Audio Codec FEAUIES........coueiuiiiiiiiiiiiiiicicc ettt s 265

7.1.2.3 AM/FM Codec FEALULES.......ccoiiiiiiiiiiiiiiiiiicicc e 265

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

NXP Semiconductors 19

Section number Title Page
7.1.2.4 Sound Card INfOrmation..........coceeriiiiriiiiiiiitceetee ettt sttt ettt 265

713 HArdWare OPETATION.eeruiieiieriieeieeiiteesite ettt estt e sttt et e et e eteesabeesbtesabeesbteeaseenbtesabeestesabeesstesabeenbbeenbeenstesnbeenanenane 266
7.1.3.1 Stereo AUdio CODECcuiiiiiiiei ettt ettt ettt et s be et e bt enbesb e e beebeeneeens 266

To1.3.2 0 7.1 AUAIO COUCC. ...ttt ettt ettt ettt b et e be bt et ebesbesbe b e 267

T.1.3.3 0 AMIEM COUEC...c. ittt ettt ettt ettt b et a e bbbt et et n e eneeae 267

T 1.4 SOTEWAIE OP@IATION. ...ceutitieiieetietieti ettt ettt ettt et et e et e et e e bt es e e bt e st e bt eseeebeeneesaeenseeseebeeseenbeestenbeensenseeneenseenes 267
7.1.4.1 ASOC Driver SOUICE ATCHILECTUIR. ...cc.uivuiitirtietintietiettete ettt ettt sttt et ettt ettt 268

7.1.4.2 Sound Card REZISIAION.eeiutiriiiiiieriie ettt ettt ettt et e sabe e bt e st e bt e sateebeessbeenbeesabeenneenane 268

T 143 DEVICE OPCIN..uuiiniieuiieiietieiieett ettt ettt ettt et b et e et et e st e eae et e s st e et es e e bt e et e bt emeeabeemte bt enseeseenseeneeneeenes 268

7.1.4.4 Device Tree BINAINZ......ccoiriiriiiiiiiiiieteietet ettt sttt et 269

T.1.4.5 SoUrce COde SIIUCLUTE.couviutiriieiieiietieit ettt ettt ettt sttt ettt eaeesaeesnesaeennesaeennesaeen 269

7.1.4.6 Menu Configuration OPLIOMS.cc.eeuieruirierieeierteeteeteete st ete et eteeteeteeaee st eseesaeeneesseensesseensesseensesneens 271

7.2 Asynchronous Sample Rate Converter (ASRC).....cc.couiiiiiiiiiiiiieitetee ettt ettt st 271
T 2.1 INEEOAUCTION. ...ttt ettt a et sa e s ae e s ae e b s as e e e as e bt eas et e easesaeennesaeennenae 271
T.2.1.1 HAardWare OPETAtION.........eeueeuieuiriieitetieteeitesteettesteeete bt eatesteesteeseenteesee bt sseessesstessesnsesbeensenseensesseenseans 272

72,2 SOFEWAIE OPEIATION. c..ceutitiiiiietietiettete ettt ettt sttt ettt ettt e at et b et e bt sb e e e sbeete s bt e bt s bt et e sbs et e ebae bt entenbeenee 272
7.2.2.1 Sequence for Memory t0 ASRC t0 MEMOTY.......cccueriiiriiiiiiiiienie ettt st 273

7.2.2.2 Sequence for Memory to ASRC to Peripheral............coccoiiiiiiiiiiiieiiieeee e 274

7.2.2.3 SoUICE COAE STIUCTUIR.eouiiutiriiiiieiteteeitente ettt sttt sttt ettt ettt eat et ebt et eaeesaeestesaeeneesbeenaesbeen 274

7.2.2.4 Menu Configuration OPLIONS.cecueeeueeriterieeriieritesite et estte et esteesbeesitesateesbtessbeesbaeebeesbeesabeesseesaseas 275

7.2.2.5 DeviCe Tree BINING......ccceoieriiiieiiiieiteeet ettt ettt eb et et e e e b et e sae s 275

7.2.2.6 Programming Interface (Exported API and IOCTLS).......cocceveeviiniiriiniiniinieienicicetcieeeeceee e 276

7.3 HDMI AUGIO. .ttt ettt et et et b et h e e bbbt sttt et et ettt e bt e bt e bt e bt bbbt et be et et enee 277
75 0 T U113 (o L1 ot (o) s FO OSSR U TR 277

7.4 The Sony/Philips Digital Interface (S/PDIF)........ccccooiiriiiiiiiiiieieesteeetet ettt sttt 277
T4l INEEOQUCTION. ...ttt ettt et et a et sa e sat e s e s ae e b s as e e eas e b e eas e st easenaeennesaeennenaie 277

T4 L1 S/PDIF OVEIVIBW. ..c..ieutitieutietiettettesteeite it eteste et e e bt ea e st e enteebeenteese e bt eseeabeeaeesbeensesbeemseaseansesseenbesneenseans 277

TA4.1.2 HAardWare OVEIVIBW....c..ceuiruieriiriieieniienteeit ettt ettt ettt ettt ettt bt et e s be et e bt esbesbe et e ebee et eaeenaeenees 278

TA.1.3 SOFtWATE OVEIVIEW.....iiuiiiiiiiiiiieiieiieiett ettt sttt et sttt ettt e esaeeanesae e saeennenaeen 279

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

20

NXP Semiconductors

Section number Title Page
T LA ASOC LAYET ...ttt ettt et sttt et bttt sb e e bt et e b et e bt et e bt et e b enee 279

TA2 SIPDIF TX DIIVET ...ttt sttt ettt st sttt ettt ettt eatebe bt bt sbe bt benaeneeneen 279
TA2. 1 DIIVET DIESIZI ...ttt ettt ettt ettt e s b e st e eh e e bt eat e bt eaeesbeenbesbeembeebeensesbeenbeeneeneeans 280

7.4.2.2 Provided User INEITaCe.ccueriiiiiiiiiiiiiiceiencee sttt st 280

743 S/PDIF RX DITVET ...ttt ettt sttt ettt ettt e b e bt b et sttt et ettt e bt e bt ebeebeebeebenee 281
R B B B) 4 A< o B 1SS £ FO OO PTUSRRPROSRRPONt 282

7.4.3.2 Provided User INEITaCe.ccueriiiiiiiiiiiiiiiiiiecctre ettt st 282

T4.4 SOUTCE COUE SIIUCTUTE ...c..eeutieiiiiieiiintieite ettt ettt ettt ettt ettt e s bt e st saeesaesatesaesaeenaesasebeeasenbeeanenneas 284
7.4.4.1 Menu Configuration OPLIOMS.ccueeuieruirierteeierteeteeteete st et e et ettt e teette bt eseeseeeneesseesesseensesseensesneans 285

T.4.42 Device Tree BINAINZS.......cooieriiiiriiieieriiiieet ettt ettt sttt sttt ettt sae e 285

7.4.4.3 Interrupts and EXCEPHOMNS. ...cocutiitiiiiieiie ettt ettt et e st st e st esabeesabeeaeesaeean 285

745 UNIt TSt PIEPATATION. ¢ .e.eeutietietietiett ettt ettt ettt ettt eat et et e e bt e st e sae e et saeebesseebe e st ebeeseenbeeneenseensenseenes 285
TS5 1 TR ST STOP - eeueeeueeteeitet ettt ettt ettt ettt ea et e e s bt et sb e e st e s bt e st e e bt et eb e e bt eatesaeea e e sbe e st e sbeenae s bt ebesanen 286

TA.5.2 RE ST SEEP.eeeutteuieeteeitte et teet ettt e st eit e stt e ettt e bt e et e e bt e sabe e bt e shbe e bt e eate e bee e st e eabeesabe e bt e sabe e bt e nhteenbeennneeane 286

7.5 AUdio MIXer (AUDMIX)......eiiiiiieieiet ettt ettt sttt et et et et e st e st eseeseeseeseeseesees e et e beaaeasensensensensesseneeneeseeseeseeseasesseesennan 286
T.5.1 INEEOAUCTION. ...ttt ettt ettt e b e bttt sb et sb e et e s bt et s bt et ebt e bt ebt et e ebtenbeentesbeemeenae 286

T.5.2 BIOCK QIAZTAIMN. ¢ .ttt ettt ettt et e h e et e bt et e e bt e sab e e sbeesab e e bbeeabeeabeeeabe e btesabeessbesabeenbbesaseeaees 287

7.5.3 HATAWAre OVEIVIEW....ccuiiuiiiiiuieitieiteite et tet e et e et et e et ea e e steesteebeeaeeabeemteeb e e bees e e bt eseanteeae e bt eneesaeensesseenbesneaseeneans 287

T.5.4 SOFEWATE OVEIVIEW...c..eiiieiiiiieiiitieiteete ettt ettt ettt ettt ettt e a et ea e s bt e st e s bt eate s bt e bt sbeeaeebtenbeebbenbesanenbeeas 288
T.5.4. 1 USET INTEITACE.ceiieiieiiiiieiie ettt ettt st ettt et saeene e 289

T7.5.4.2 SOUICE COE SIIUCTUIR.eotieutietietieiiete ettt ettt e e st e et e e et e e e bt et e e st e bt esee bt eneeabeeneesaeeneesaeensesnean 290

7.5.43 Menu Configuration OPLIONS.......cc.eeieriirieririinieeterie ettt ettt ettt ettt este st etesbeesaesieenbesanens 290

7.6 PDM Microphone Interface (IMICEFIL).........cooutiiiiiiiiiieiieeitece ettt ettt sttt sab et eabe e baeenbeenaees 290
70 B U113 (o L1 ot (o) s FO OO USRS 290

7.6.2 BIOCK QIAZIAM. ...ttt ettt ettt ettt b et eb et e et e bt e st e eb e e st e sbe et sbeeae s bt e besanenbens 291

7.6.3 HArdWare OVEIVIEW.....c..coveriiiiiriiiieiieieettete ettt ettt ettt ettt et st e s e sbe et sae e bt eae et e eae e st esnesaeennesaeensesanenesanens 291

T.6.4 SOTEWAIE OVEIVIEW.....eetieuiitieiietieite et ettt ettt e te st e et e e et e bt e st et e eaee bt es e e bt en e e eseeneeeseeneeeaeenbesseebeastenbeensebeeneenseans 292
T.0.4. 1 USET INTEITACE.evtiiieitiieeiieee ettt ettt sttt ettt b e b sbe e e eae 292

7.6.4.2 SoUICE COE SIIUCLUTE.couveutieiietieiietieitertt ettt sttt ettt ettt ettt e e st eaeesaeesnesaeennesaeennenaeen 294

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

NXP Semiconductors 21

Section number Title Page
7.6.4.3 Menu Configuration OPLIONS.......ccueeieriirieriiriinieeterie ettt ettt ettt ettt et e bt etesbeesaesieenbesanens 294
Chapter 8
Security

8.1 Cryptographic Acceleration and Assurance Module (CAAM)......cccoceeiiriiririinenieeeteeeteste ettt 295
8.1.1 CAAM DeViICe DITVET OVEIVIEW.....cuiiiiniiiiiiieieiiteie sttt ettt st sttt e ae e e b 295

8.1.2 Configuration and Job EXECUtion LeVel........c..cocoiiiiiiiiiiiiiiiiciiiteerc ettt e 295

8.1.3 Control/Configuration DITVET...........cccoiiiiiriiiiiiieniteteneete sttt ettt ettt ettt sttt st sae s enbeeenenieeas 296

81,4 JOD RING DIIVET....eiuiiiiiiiiieeeee ettt ettt e b e s et et e s at e e bt e s ht e e bt e st e eabeesabeeabeesabeeseenaees 296

8 1.5 APTINEEITACE LEVEL...c..iiiiiiiiiiiiieeee ettt ettt ettt et e e et e et e eate bt saeenbeeseenbeeneenbeas 297

8.1.6 DIIVETr CONTIZUIALION.eotiiiiiiieiiittite ittt ettt ettt et sb e bt e e bt e bt e bt ebb e s bt eat et e eabesbe et e sbeeneenae 300

8 17 LAMITALIONS.cviiiiiiiiititiie ettt e b b st st 301

8.1.8 Limitations in the Existing Implementation OVEIVIEW...........ccueeiertirieriirierieeienieeie st ete st et eeeenee e eeesaeeneeens 302

8.1.9 Initialize Keystore Management INteITaCe..........cooueriiriiiiiriiiiiiiiicietceetc ettt 302
8.1.10 Detect Available Secure Memory StOrage UNILS......c.coivieriieriienienieeieesiteeiee sttt e st sbeesiee st e siaeeeeenee 303
8.1.11 Establish Keystore in Detected URit..........cooiiieriiiieiiiieiieeste ettt ettt st b et s eeeenee 303
81,12 REICASE KEYSTOTE. ... cuiiiiniieiiiieeiieeieete sttt ettt ettt st sbt et bt bt s bbbt ebt e bt e bt e bt eatesbe et e sbeeneenae 304
8.1.13 Allocate a S1ot from the KEYSTOTE.........coviiiiiiiiiiiieiieeitete ettt ettt sttt e st e e sbeesaseeane 304
8.1.14 Load Data into @ KEYSTOIE SIOT......ccueiiiiiiiiiitieieitieie ettt ettt ettt ettt et e st et et e sbe et e saeeaesbeebeseeeneeas 304
8.1.15 Demo IMAge UPAALE....c..cocuiriiiiiriiiiieiietietete ettt ettt ettt ettt ettt e bt e et et saeebeesaeestesbeesbesbeeanenbeeas 305
8.1.16 Decapsulate Data in the KEYSTOTE.........cccuuiiiiiiiiiiiiiiierte ettt ettt ettt et ettt st esaneeaneenee 306
8.1.17 Read Data From a KeYStOre SIOt........cc.eeiiiiiiiiieiieietieese ettt sttt ettt et sa et et ete s eneeeneas 306
8.1.18 Release a S1ot back t0 the KEYSTOTE......cc.eetiriiriiriiiiirieieetee ettt ettt st 307
8.1.19 CAAM/SNVS - Security Violation Handling Interface OVErvieW.........coocueevueeriiiiiieniiiiienieeieeseeeieesieeeeeee 309
81,20 OPETALION. ...ttt sttt ettt ettt et et ea e a e ae bt e b e bt et et b e s et ettt e et eat e bt eueeaeeae bt b saesaenen 309
8.1.21 Configuration INTEITACE.c..eoruiiiiiiiieieet ettt ettt et sae e st sbe b 310
8.1.22 InsStall @ HANAIET.......cocoiiiiiiii ettt et ettt a e st s s 310
8.1.23 Remove an INStalled DITVET.......cc.ooiuiiiiiieie ettt et b e ettt e s bt et esbeesbesbeensesneens 310
8.1.24 Driver Configuration CAAMY/SINVS ...ttt ettt ettt st sae st beeine e eas 311

8.2 Display Content Integrity ChecKer (DCIC).......iiuiiiiiiiieiieeieeete ettt ettt ettt st ettt e st e st e saaesabeeaee 311

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

22

NXP Semiconductors

Section number Title Page
821 INETOQUCHION. ...t e b bbbttt et et ea e eb e b saesb e s sa e 311
8.2.2 S0UICE COAE STIUCTUIE......ooviiuiiiiiiiiiiiitete et s r e s ea s ene s sa s 311
8.2.3 Menu Configuration OPLIONS.ceueiuieiiitieieitieieetiete et ettt ee st e etteste e testeestesbeeseesbeeateeseenbeeseenseaseenbeeneesseeneenseenees 312
8.2.4 DTS CONTIGUIALION.coriiiiiiiiiiiitieiteteeit ettt ettt sttt et b e et s bt ea et e et ebe et sbeeteeseenbeeatenbeeanenbeeanenbeens 312
8.2.5 TOCTLS FUNCHONS.uoiuiiiiiiiiiiiiiiii ittt 312
8.2.0 SHITICTUIES.eetieueeetiete ettt ettt ettt et et et et e bt et e e bt ea e e eaeemeesbeeateeheem b e es e em bt es e et e es e e bt eneeeaeemeesseenseeneenbeeneenbeensenseans 312
8.2.7 DCIC CRC Calculation FUNCLONS.c.ccciiiiiiiiiiiiiiiicieieict ettt st 313

8.3 Smart Card Interface - Subscriber Identification Module (SIM).........cooiiiuiiiiiiiiiiiiiiee et 313
TG T8 B Y (0T 11 ()1 OO SPRRS RIS 313
8.3.2 MOAES Of OPCIATION. ...c.eeimiiiiiitieiteteeiteett ettt ettt ettt ettt s bt et be et eb et e bt et e bt e s bt estesbeentesbeenbesbsenbeesnenbeeas 313
8.3.3 EXternal SigNal DESCIIPIION. ...cc..tiitiiiiieiieitteiteet ettt ettt st et e sttt e s it e e bt e st e eabeesabeebeesateenbeesaneenses 313
8.3.4 SOUICE COUE SIIUCLUIE.eueetiiiietieiteet ettt ettt ettt et s et et e e bt e e s bt et e es e bt es e e bt eaeeeaeeneesaeensesseenbeeseenbeeneenseans 314
8.3.5 Menu Configuration OPLIONS.cccuerueiiiriiriiriieieeitete ettt ettt ettt ettt ettt et s bt et s bt et e s bt ebe s bt esteebeesaeebeenaeennen 314
8.3.6 Software FramewWOrK.........cccccoiiiiiiiiiiiiiiii e 314

8.4 Secure Non-Volatile Storage (SINVS).. .o ittt ettt ettt e et e bt es e e bt st e sbeeneenbeeneennean 316
Al INTFOQUCTION. ...ttt ettt s s b ettt et et ea e eb e b sae st besaesa e 316

8.5 SNVS Real Time CLOCK (SRTC)....couiiiiiieiiieiiieicrceee ettt e 317
T T B Y (0T 11 (01§ OO OSSPSR 317
8.5.2 HAardwWare OPEIAtION......c..coutiruiriiiriiritinieeiteett ettt ettt ettt et sbt et sbt et e ebt e bt eat et e eat e bt eatesbeestesbeentesbeenaesbeenbesanenbens 317
8.5.3 SOFtWATE OPETALION. ..ccuuiiiuiiitieeitietie ettt ettt ettt et ettt et e sttt e bt e s abe e bt e sbt e e bt esbeeeabeesabeaabeesabeenbeesaseenbeesnseenbes 317
8.5:4 DIIVET FRATUIES.cueeitieieieteie ettt ettt ettt et e e e st e bt e st et e ea e et e en e e ebeentesae e bt emeebeestenbeeneenbeensenaeans 317
8.5.5 S0UICE COUE SLIUCTUIE......ccuiiuiiiiiiieiieitetetet ettt sttt ettt e eb e sae et b saesaesnes 317
8.5.6 Menu Configuration OPLIONS.cccuuteruieriieriierieeiee sttt ettt ettt e sateebeesateesbeesabe e beesabeebeesabeesseesabeenseesaseenses 318

Chapter 9
NXP elQ Machine Learning

9.1 Overview of NXP elQ Machine Learning............cocueeruiiriieiiiiiiieiiesit ettt sttt sttt ste st sabeesbeesabeesaeesaneas 319
O.1.1 INtrodUCHON (IML) .ouviiiiieiieiieeieeiee sttt et e e te et e et eeteestaeeteesaaeesseeeseeeaseesssaesseesssaessaessseansaessesnsaesaessseensseesseenses 319
012 OPLNCV .ttt ekttt h bkttt a bt b et ens 319
9.1.3 ATTI COMPULE vttt ittt ettt ettt e st e e s a bt e bt e e ate e bt e eabeeabeesabeeabeesab e e bt esaeeea bt esabeeabeesabeenbeesateenseenaeean 320

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020

NXP Semiconductors 23

Section number Title Page
9.1.4 TenSOTFIOW LITE......ooiiiiiiiiiiiiiiiiiiiici ettt ettt e 320
0.1.5 AT NN .ottt ettt ettt 321
9.1.60 ONNX RUNEIITIC. c...c.teeuieitteiie ettt ettt ettt et e bt e e et e e bt e st e bt ss e e bt es e e bt eseebeemee bt emse st eneeeseenseeseensesneeseenean 321

Chapter 10
Unit Tests

FOU T SYSTEIM ettt ettt ettt et e b e e st e b et st e bt e s et e e bt e e a bt e b et e at e e b et sab e e bt e sat e e bt e ea bt e bt e et e e bt sabe e bt e nateenbeeeate et 323

LO. LT OPTOFIIE ...ttt ettt ettt n et et ne 323

JO1.1.1 TeSEINAIMIC. ... et 323
(20 P O O 5 o 1 T 1 DO OSSOSO PSSR SRPRI 323

10.1.1.1.2 FUNCHONAIIEY ..cueitiiiiiiieitetieteeee ettt ettt ettt st 323

TO.1.1.1.3 CONTIGUIATION. ..ceutiiiiiieiieeiieeite ettt ettt et e st e st e et e e bt e ebeesbeesabeenaeesareas 323

10.1.1.1.4 Use Case and EXpected OULPUL.ccueeiiiiieiiniieieeiieie ettt ee 323

LO. 1.2 OWIT. ettt ettt etttk et b et bt ekt b e e a s ettt e bttt eb et e bttt e ettt euesa st st st ntenea 323
JO.1.2.1 TeSEINAIMIC. ..o e st 324

LO L2 101 LIOCALION. ...ttt ettt ettt ettt e bt e bt e e es et es et e esteeaeeneesaeensesaeenseenean 324

10.1.2.1.2 FUNCHONAIIEY ..cueitiiiiiiieitetieteeee ettt ettt ettt et 324

T0.1.2.1.3 CONTIGUIATION. ..ccuviiiiiieiieeieeiee ettt ettt ettt ettt et e st et e st e e sbbeeabeesbeesabeesaeesareas 324

10.1.2.1.4 Use Case and EXpected OULPUL.........ccueeiiiiieiiiriieieeiieie ettt 324

10.1.3 POWET MANAZEIMENL......ccutiiiiiiieiieieeitente ettt ettt ettt ettt et bt et e eat e s bt estesbeemaesbe e bt eb s et e ea b e bt esbesbeentesbeenteebeenaeennen 324
JO.1.3.1 TeSEINAIMC. ...t e s 324

LO L3101 LIOCALION. ...ttt ettt ettt ettt et e et e bt e e ee et es et e esteeaeeneesaeensesaeenseenean 324

10.1.3.1.2 FUNCHONAIIEY ..cueitiiiiiiieitetieteeeet ettt ettt ettt et 324

10.1.3.1.3 CONTIGUIALION. ..ccutiiiiiieiieeieeiie ettt ettt sttt e st et st e e bt e e b e e btesabeesaeesareas 324

10.1.4 Remote ProcesSOr MESSAZING.eeruiiuietirtietieiieteette et ettt e e et ete et e be s et eteeseesbeesee bt esee bt enseebeenteeseensesaeenseenean 325
LO.1.A.T TSt INAIME. ...ttt et sttt en e b e 325
10.1.4.1.1 LOCAHON.cuiiiiiiiiiiiictiietc et s 325

10.1.4. 1.2 FUNCHONALIEYcouiiiieiiiteeie ettt sttt sttt et ene et eneesbeenes 325

10.1.4.1.3 Use Case and EXpected OULPUL........cc.eeiiririiriiienieieriteniesieete ettt 325

10.1.5 WatchdOg (WDOG)........cuiriiiiiiiiiiieieieteeeteeeee sttt st sttt ene e 325

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
24 NXP Semiconductors

Section number Title Page
LO.L.5.T TSt INAIME. ...ttt sttt en e 325
LO.1.5.1.1 LOCAHON.cviiiiiiiiiciictcietce e 325

10.1.5. 1.2 FUNCHONALIEY ...coueiiieiiiiteee ettt sttt b e sttt e st e b et e st eneeseeenes 325

10.1.5.1.3 CONFIGUIALION. ..c..eitiiiiiiiiiiteteeit ettt ettt et et sbe e 326

10.1.5.1.4 Use Case and EXpected OULPUL.......ccc.eeriiiriieriiiiienie ettt sttt ettt 326

LO.2 SEOTAZE. ... eeueeeueeteeie ettt ettt ettt et e e e a e et e a e s bt e a e e e bt e et e e bt e a b e e b e em b e eh e em et es e em bt ea e e bt e a e e eheea e e ehe e et e ehe et e eheenteeh e et e ente bt eneenteenes 326
10.2.1 Media Local BUS......cc.iiiiiiiiiiiiiiciiieccieee ettt sttt 326
JO.2.1.1 TeSEINAIMIC. ... e st 326
LO.2 1 101 LIOCALION. ...ttt ettt et st e e e et e e e bt e e ea et es et e esteeaeeneesaeenaesaeenseenean 326

10.2.1.1.2 FUNCHONAIIEY ..cueitiiiiiiieitetieteeeeeetee ettt ettt et 326

10.2.1.1.3 CONTIGUIATION. ..ccutiiiiiieiieeieeiie ettt ettt st et e st e st e st e e bt e ebeesbeesabeesaeesareas 326

10.2.1.1.4 Use Case and EXpected OULPUL.........ccueeiiriieiiniieieeiieie ettt 327

10.2.2 MMOC/SD/SDIO HOSE..c.cveieiiieiinieiinicititetetet ettt sttt sttt sttt ettt eb e et e et se et esesa et et saeseeteneas 327
10.2.2.1 TeSEINAIMC. ...t et 327
LO.2.2. 1.1 LIOCALION. ...ttt ettt ettt st e bt eb e e es et e es e bt esteeaeeneesaeenaesaeenseenean 327

10.2.2.1.2 FUNCHONAIIEY ..c.ueitiiiiiiieitetieteeeet ettt ettt ettt st 327

10.2.2.1.3 CONTIGUIATION. ..cutiiiiiiiiieeiieeiie ettt ettt ettt e st e s bt e st e e sbbeebeebeesabeesaeesaneas 327

10.2.2.1.4 Use Case and EXpected OULPUL.ccueeiiiieiiiniieieeiieie ettt ene 328

10.2.3 MMDC ..ottt ettt b ekt ekttt eaes 328
10.2.3.1 TeSEINAIMIC. ...t e st 328
LO.2.3. 1.1 LLOCALION. ...ttt ettt ettt st e e s e e ae e bt e e ea et es e bt e st e eaeeneeseeeneesaeenseenean 328

10.2.3.1.2 FUNCHONAIIEY ..cueitiiiiiiiiietieteeee ettt ettt ettt et 328

10.2.3.1.3 CONTIGUIATION. ..ccuttiiiiieiieeiieeite ettt ettt ettt sttt e st e s st e st e esbbeebeesbeesabeesaeesareas 328

10.2.3.1.4 Use Case and EXpected OULPUL.........ccueeiiiuieiiriieieeiieie ettt ene 328

LO.2:4 SATA oottt ettt h ettt 329
10.2.4.1 TeSEINAIMC. ..ottt st st 329
LO.2.4. 1.1 LLOCALION. ...ttt ettt ettt ettt e e bt e b et eea et e es e bt esteeaeeneesaeenaesaeenseenean 329

10.2.4.1.2 FUNCHONAIIEY ..cueitiiiiiiieitetieteet ettt ettt ettt ettt st nae e 329

10.2.4.1.3 CONTIGUIATION. ..ceutiiiiiieiieeieeite ettt ettt ettt sttt e st e s bt e st e esbbeeabeenbeesnbeesaeesareas 329

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 25

Section number Title Page
10.2.4.1.4 Use Case and EXpected OULPUL........cc.eeiiririiriirienieienteicsie ettt 329

1.3 COMMECTIVILY c.teitteiteeiie ettt ettt ettt ettt e et b e eab e e bt e s ab e e bt e sat e e bt e sat e eab b e e abeeabeesabeeabeesabeeabeeeab e e b tesabeeabeesabeenbeesaseenseenanes 329
10.3.1 Enhanced Configurable Serial Peripheral Interface (ECSPI)........cccccivvirininineniniiiiicicieecceteeneseeeneane 329
TO3.10T TSt INAIME. ...ttt bbbttt en e 329
10.3.1.1.1 LOCAHON.ciiiiiiiiicciictt e 329

10.3.1. 1.2 FUNCHONAIIEY ...ttt ettt et sttt e st e b et e b eneesbeenes 330

10.3.1.1.3 CONFIGUIALION. ..c..eiiiiiiiiieiiiitee ettt ettt sttt sttt et sbe e 330

10.3.1.1.4 Use Case and EXpected OULPUL.......ccc.eeriiiriieniiiiienie ettt sttt sttt et 330

TO.3.2 ETM ettt h et bbbt b st h et b e e bt a et h bbbt h et bt b et b et a et 330
TO.3.2.1 TSt INAIME. ...ttt e b e sttt eae b e 330
10.3.2.1.1 LOCAHON.ccuiiiiiiiiiiiictiici e 330

10.3.2. 1.2 FUNCHONALIEY ...couiiiieiiiiteeie ettt st st sttt e e b ente b eneesbeenes 330

10.3.2.1.3 CONFIGUIALION. ..c..eiiiiiiiiiiiiiitete ettt ettt sttt sttt et be et sbe e 331

10.3.2.1.4 Use Case and EXpected OULPUL.......ccc.eeriiiriieriieiiieeieeite ettt ettt 331

10.3.3 TEET-TC (I2C) .ttt ettt ettt b et bbbt b e st bt st bt st st st et st et et et ebe e ebe e 331
TO.3.3.1 TSt INAIME. ...ttt e st s et en e b e 331
10.3.3.1.1 LOCAHON.ccuiiiiiiiiiiiictiieic e 331

10.3.3.1.2 FUNCHONALIEYcouiiiiiiiiteee ettt sttt et sttt e b e st et eneesbeenes 331

10.3.3.1.3 CONFIGUIALION. ..c..eiriiiiiiiieiiiteiecit ettt ettt sttt st ettt sbe e 331

10.3.3.1.4 Use Case and EXpected OULPUL.......ccc.eeriiiriieriieiienie ettt sttt 331

TO.3:4 TIMu ittt h e bbb bt h et h bbbt h e bbbt h bbb st b et bea e bt b et bt enn 332
LO.3.4.1 TSt INAIME. ...ttt ettt e st ene b e 332
10.3.4.1.1 LOCAHON.ccuiiiiiiiiiiiii ittt s 332

10.3.4. 1.2 FUNCHONALILY ...ccuiiiiiiiiteeie ettt ettt st ettt st e bt et e st ene et enee b enes 332

10.3.4.1.3 CONFIGUIALION. ..c..eiriiiiiiiiiiiiteteeit ettt sttt sttt et e be et sbe e 332

10.3.4.1.4 Use Case and EXpected OULPUL.......ccc.eeriiiriieriiiiienie ettt sttt sttt 332

10.3.5 KEYDOAI. ...ttt bttt a et e a et e e s e e bt eae e e bt et e e bt e b e eh e e bt e bt e bt en e et e ent e bt enteeneenteses 332
LO.3.5.1 TSt INAIME.cviiiiiiiiieietceet ettt et e b e sttt ea e 332
10.3.5.1.1 LOCAHON.cuiiiiiiiiiiiictiiei e 333

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
26 NXP Semiconductors

Section number Title Page
10.3.5.1.2 FUNCHONAIIEY ..cueitiiiiiiiititieieeectee ettt ettt et 333

10.3.5. 1.3 CONTIGUIATION. ..ccuviiiiiiiiieeiieeite ettt ettt sttt e st e st e st e e bt e eabe e bt e sabeesaeesareas 333

10.3.5.1.4 Use Case and EXpected OULPUL.ccueeiiiuieiiniieieeiieieeiceie et 333

10.3.6 Low Power Universal Asynchronous Receiver/Transmitter (LPUART)......cccccoeviiniiiiininiiniiiiceceeceen 333
10.3.6.1 TeSEINAIMC. ..ottt ettt 333

LO.3.6. 1.1 LLOCALION. ...ttt ettt ettt st ettt e e et ea et es e bt e st e eaeeneeseeenaesaeenseenean 333

10.3.6.1.2 FUNCHONAIIEY ..cueitiiiiiiiiitetieieeieeteecet ettt sttt ettt st 333

10.3.6.1.3 CONTIGUIATION. ..cutiiiiiieiieeieeiie ettt ettt sttt e st e st st e e bt e eabeesbeesabeesaeesareas 334

10.3.6.1.4 Use Case and EXpected OULPUL.........ccueeiiiuieiiriieieeiieie ettt 334

LO.3.7 USBocee ettt h et b e bt a et b et et ene 334
1O.3.7.1 TeSEINAIMC. ...ttt e st 334

LO.3.7. 101 LLOCALION. ...ttt ettt ettt se e bt b et ea et es e bt ese e e st eneesaeenaesaeeneeenean 334

10.3.7.1.2 FUNCHONAIIEY ..cueitiiiiiiieiteetieteeiccteece ettt ettt et 334

10.3.7.1.3 CONTIGUIATION. ..ccuttiiiiieiieeiieeiie ettt ettt ettt st et e st e st e st e e bt e eabeesbtesabeesaeesareas 334

10.3.7.1.4 Use Case and EXpected OULPUL.ccueeiiitieiiiniieieeiieie ettt 335

LO.4 GIAPRICS. .ttt et h et h et ea e sb e e st h e et e bt et e e bttt h bbbt e bt eu b eb e eat e ebe et sbe e bt sbe et eenen 335
10.4.1 Graphics Processing Unit (GPU).......coouiiiiiiiiiiieeieeite ettt ettt sttt e s b e st e e sbaeenbeenbeeens 335

LOA 1.1 TESE INAIMC. ..ttt ettt ettt ettt ettt et e e et e s bt e st e e bt et e e bt em b e ebeenbeebeenteese e bt emeeeseeneeseeenaesseensesneans 335

JOA. 11T LOCALION. ...ttt sttt 335

10.4.1.1.2 FUNCHONAIILY...cutiiiiiiiieiieeie ettt ettt ettt st et e sat e e beesabeebeesabeenbee e 335

10.4.1.1.3 CONFIGUIATION. c..eutetieiietieie ettt ettt ettt sttt ettt e e et e b e e st e bt et e sbeeaesseebesaeenbeeneans 335

10.4.1.1.4 Use Case and EXpected OULPUL........cc.eviirieiiriiienieieiteniesieeteeit ettt 335

LO.5 VIAEO0. .tttk a ettt s ekttt a et h et 337
LO.5. T DISPIAY -ttt ettt ettt et h et s h et e bt et e b e bt e h e bt en e e bt e at e eh e en et eh e e bt eh e e bt e et e bt ente bt ente bt et e neenes 337
LO.5.1.T TSt INAIME. ...ttt ettt sttt ea e 337

JO.5.1.1.1 LOCAHON.cviiiiiiiiiiiictcce e s 337

10.5.1. 1.2 FUNCHONALIEY ...couiiiieiieiteee ettt sttt st st sttt et e b et e b et e sbeenes 337

10.5.1.1.3 CONFIGUIALION. ..c..eiriiiiiiiieiiiteteeit ettt ettt ettt ettt 338

10.5.1.1.4 Use Case and EXpected OULPUL.......ccc.eeriiiriieriiiiierie ettt sttt 338

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 27

Section number Title Page
10.5.2 High-Definition Multimedia Interface (HDMI) and Display Port (DP) Overview.........cccceceeveeveneencneencnnne. 341
JO.5.2.1 TeSEINAIMC. ...ttt 341
LO.5.2. 1.1 LLOCALION. ...ttt ettt ettt et st s e et b et ea et es e bt esteeaeeneesaeenaesaeenseenean 341

10.5.2.1.2 FUNCHONAIIEY ..c.ueitiiiiiiiiietieiteeee ettt sttt et 341

10.5.2.1.3 CONTIGUIATION. ..ccuviiiiiieiieeieeite ettt ettt ettt sttt e st e st e st e e sbbeebeesbeesabeenaeesareas 341

10.5.2.1.4 Use Case and EXpected OULPUL.ccueeiiiuieriiriieiieiieie ettt 342

10.5.3 Video Processing Unit (VPU)......cociiiiiiiiiiieiieeeteeete ettt sttt ettt sttt s 342
10.5.3.1 TSt FOr T.IMX O..eieiieicteee ettt 342
LO.5.3. 101 LLOCALION. ...ttt ettt ettt et sttt st be bt e e ea et ese et e eseeeaeeneesaeenaesaeenseenean 342

10.5.3.1.2 FUNCHONAIIEY ..cueitiiiiiiieiteiieieeteet ettt ettt et nbe e 342

10.5.3. 1.3 CONTIGUIATION. ..ccuuiiiiiiiiieeieetie ettt ettt et e st e st e st e e sbbeebeesbeesabeesaeesareas 342

10.5.3.1.4 Use Case and EXpected OULPUL.........ccueeiiiiieiiiniieieeiieie ettt ee 342

10.5.3.2 Test for i.MX 8M QUAG......c.coviiriiiriiieiiietieterte ettt ettt ettt ettt sttt saeaesaenea 344
10.5.3.2.1 LOCAHON.ccuiiiiiiiiiiiiiitiiet e s 344

10.5.3.2.2 FUNCHONALIEYcouiiiiiiiiiteeie ettt sttt e st esee b eneesbeenes 344

10.5.3.2.3 Use Case and EXpected OULPUL........cc.eriiririiriiienieicnteiesie ettt 344

10.5.3.3 Test for i.MX 8IM MMlceiuiuiiiiiiiiieiiieieteieieiereee ettt 344
1O.5.3.3.1 LLOCALION. ...ttt ettt ettt ettt et e e bt eb et ea et ese e bt e st e eaeeneesaeenbesaeeseenean 344

10.5.3.3.2 FUNCHONAIIEY ..c.ueitiiiiiiieitetieteeeet ettt ettt 344

10.5.3.3.3 Use Case and EXpected OULPUL.......ccc.eeriiiriieriieiiieeie ettt sttt ettt 344

10.5.3.4 Test for i.MX 8QuadXPlus and 8QUAdMAX...........cccueeeiuireeieieeeiie et eeeee et et e e e e e ereeeeaneas 345
10.5.3.4.1 LOCALION.cueiuiiiiiiiiiiitiiti ittt sttt et 345

10.5.3.4.2 FUNCHONAIILY...cuttiiiiiiiieiieiie ettt ettt ettt ettt et e st e e bt e sateebeesabeenbee e 345

10.5.3.4.3 Use Case and EXpected OULPUL.........ccueeiiiieiiniieieeiieie ettt 345

10.5.4 JPEG Encoder and DECOET...........ccoouiriiiiiiiiiiiiiiieieietet ettt st s st 345
1O.5.4.1 TeSEINAMC......oiiiiiiiiiiiiiiccc e et 345
LO.5.4. 1.1 LLOCALION. ...ttt ettt ettt ettt et st e e e e e bt e b et eea et e es e sbeesteeaeeneesaeenaesaeenseenean 345

10.5.4.1.2 FUNCHONAIIEY ..cueitiiiiiiieitetieieet ettt ettt ettt st 345

10.5.4.1.3 CONTIGUIATION. ..ceuttiiiiiiiieeieette ettt ettt st e st e st e s st e st e esbbeebeesbeesnbeesaeesareas 346

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
28 NXP Semiconductors

Section number Title Page
10.5.4.1.4 Use Case and EXpected OULPUL........cc.eeiiririiriiiiinieieiteiesiteteeitee ettt 346

LO.6 AUGIO. ..ttt a et ettt 347
10.6.1 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Soundccceevirieiinieninienenee. 347
LO.6.1.1 TSt INAIME.cviiiieieiieieteieet ettt st s et en e e 347

10.6.1.1.1 LOCAION.ccuiiiiiiiiiiiiciiieiec s 347

10.6.1.1.2 FUNCHONALIEY ...coueiiiiiiiteeie ettt ettt sttt st sttt e e b e e st enee b enes 347

10.6.1.1.3 CONFIGUIALION. ..c..eiriiiiiiiiieiiiieeeit ettt sttt sttt ettt sbe e 347

10.6.1.1.4 Use Case and EXpected OULPUL.......ccc.eeriiiriieriieiiieeie ettt ettt 347

10.6.2 Asynchronous Sample Rate Converter (ASRC).......coouiiiiiiieiee et 347
LO.6.2.1 TSt INAIME.cviiiiiiiieieieieee ettt a et en e b e 347

10.6.2.1.1 LOCAHON.ccuiiiiiiiiiiiiiiitiieic e s 348

10.6.2.1.2 FUNCHONALILY ...cuiiiiiiiitieie ettt ettt sttt et sttt et e b st e be e st e saeenes 348

10.6.2.1.3 CONFIGUIALION. ..c..eirtiiiiiiieiiiiiete ettt ettt sttt sttt sttt ettt sbe e 348

10.6.2.1.4 Use Case and EXpected OULPUL.......ccc.eeriiirieriieiienieeite ettt ettt 348

LO.7 SECUITEY ..ottt ettt ettt e a et b et a e et et e et e st eb e e bt e bt sb e e bt b s e et et et et et eaneneeneebeeaeeae et e ebenae 349
10.7.1 Display Content Integrity Checker (DCIC).........couiiiiriiiiniiiiieieetee ettt 349
TO.7.1.1 TeSEINAIMC. ... e st 349

LO.7. 1 101 LIOCALION. ...ttt ettt et sttt e bt eb et ea et es e bt esteeaeeneesaeeneesaeenseenean 349

10.7.1.1.2 FUNCHONAIIEY ..cueitiiiiiiieitetieteeee ettt ettt et e 349

10.7.1.1.3 CONTIGUIATION. ..ccutteiiiieiieeiieeiie ettt ettt ettt sttt e st e st e et e e bt e ebeesbeesabeesaeesareas 349

10.7.1.1.4 Use Case and EXpected OULPUL..........coeeirierierrenienienieieieieteieie ettt st saenenens 349

LO.7.2 0 SIMuciiicticee ettt h b ekttt ekttt a e bbbttt n et eaes 350
TO.7.2.1 TeSEINAIMIC. ...t et 350

LO.7.2. 1.1 LLOCALION. ...ttt ettt ettt sttt s e et bt e e ea et es e bt esteeaeeneesaeenaesaeenseenean 350

10.7.2.1.2 FUNCHONAIIEY ..cueitiiiiiiieitetieteeet ettt ettt ettt et 350

10.7.2.1.3 CONTIGUIATION. ..ccuttiiitieiieeieeite ettt ettt ettt et e st e st e et e e bt e e beesbeesabeesaeesareas 350

10.7.2.1.4 Use Case and EXpected OULPUL.........ccueeiiiiieiiriieiieiieie et 350

10.7.3 SNVS Real Time ClOCK (SRTC).....c.corieiriiiriiinieieieieienietenteiestee ettt sttt ettt ettt sttt sae e saenea 350
JO.7.3.1 TeSEINAIMIC. ..ottt et 350

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 29

Section number Title Page
LO.7.3. 1.1 LOCALION. ...uiiiiiiieiiciieic sttt sttt s 351
10.7.3.1.2 FUNCHONAIILY ...cuviiiieiiieiieeie ettt ettt ettt ettt et e st e bt e sateebeesabeenbee e 351
10.7.3.1.3 CONFIGUIATION. c..eutetieiietieiteet ettt ettt sttt et ettt e e ea et et e bt et e sbe e et seeebesaeenbeeneans 351
Chapter 11

Revision History

L1.1T REVISION HISTOTY ..ottt ettt ettt ettt et b et e b et eh e e bt e st e bt eaeesbeemeesheemseebeenseebeenteeseenbeeseenseeneenseenes 353

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
30 NXP Semiconductors

Chapter 1
Introduction

1.1 Overview

The 1.MX family Linux Board Support Package (BSP) supports the Linux Operating
System (OS) on the 1.MX application processors.

The purpose of this software package is to support Linux OS on the i.MX family of
Integrated Circuits (ICs) and their associated platforms. It provides the necessary
software to interface the standard open-source Linux kernel to the 1.MX hardware. The
goal is to enable 1.MX customers to rapidly build products based on i.MX devices that
use the Linux OS.

The BSP is not a platform or product reference implementation. It does not contain all of
the product-specific drivers, hardware-independent software stacks, Graphical User
Interface (GUI) components, Java Virtual Machine (JVM), and applications required for
a product. Some of these are made available in their original open-source form as part of
the base kernel.

The BSP is not intended to be used for silicon verification. While it can play a role in
this, the BSP functionality and the tests run on the BSP do not have sufficient coverage to
replace traditional silicon verification test suites.

1.1.1 Software Base

The 1.MX BSP is based on version 5.4.24 of the Linux kernel from the official Linux
kernel website (www.kernel.org). It is enhanced with the features provided by NXP.

On Linux to change the configuration using the menu configuration with a Yocto Project
environment, use bitbake like this:

bitbake linux-imx -c¢ menuconfig

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 31

http://www.kernel.org/

Overview

1.1.2 Features

The table below describes the features supported by the BSP for specific platforms.
Table 1-1. BSP Supported Features

Feature Description Chapter Source Applicable
Platform

Machine-Specific Layer

MSL Machine-Specific Layer (MSL) supports Machine-Specific Layer (MSL) All
interrupts, Timer, Memory Map, GPIO/IOMUX, SPBA,
SDMA.

* Interrupts GIC: The Linux kernel contains
common Arm GIC interrupts handling code.

e Timer (GPT): The General Purpose Timer (GPT)
is set up to generate an interrupt as programmed
to provide OS ticks. Linux OS facilitates timer use
through various functions for timing delays,
measurement, events, alarms, high-resolution
timer features, and so on. Linux OS defines the
MSL timer API required for the OS-tick timer and
does not expose it beyond the kernel tick
implementation.

e GPIO/EDIO/IOMUX: The GPIO and EDIO
components in the MSL provide an abstraction
layer between the various drivers and the
configuration and utilization of the system,
including GPIO, IOMUX, and external board I/O.
The |10 software module is board-specific, and
resides in the MSL layer as a self-contained set
of files. I/O configuration changes are centralized
in the GPIO module so that changes are not
required in the various drivers.

e SPBA: The Shared Peripheral Bus Arbiter
(SPBA) provides an arbitration mechanism
among multiple masters to allow access to the
shared peripherals. The SPBA implementation
under MSL defines the API to allow different
masters to take or release ownership of a shared
peripheral.

General Drivers

Thermal Driver | The thermal driver will monitor the SoC's temperature in| Thermal Driver All
a certain frequency to protect the SoC. It defines three
trip points: critical, hot, and active.

OProfile OProfile is a system-wide profiler for Linux systems, OProfile All
capable of profiling all running code at low overhead.

Pulse Width The pulse-width modulator (PWM) has a 16-bit counter |Pulse-Width Modulator (PWM) All

Modulator and is optimized to generate sound from stored sample

audio images and generate tones.

Sensors Sensors cover accelerometer, ambient light and Sensors All
magnetometer sensors.

Table continues on the next page...

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
32 NXP Semiconductors

Chapter 1 Introduction

Table 1-1. BSP Supported Features (continued)

Feature Description Chapter Source Applicable
Platform
Watchdog The Watchdog Timer module protects against system |Watchdog All
failures by providing an escape from unexpected hang
or infinite loop situations or programming errors.
DMA Engine
SDMA API The Smart Direct Memory Access (SDMA) API driver | Smart Direct Memory Access All
controls the SDMA hardware and provides an API to (SDMA) API
other drivers for transferring data between MCU, DSP
and peripherals.
APBH-Bridge- Both AHB-to-APBH and AHB-to-APBX DMA support AHB-to-APBH Bridge with DMA All
DMA configurable DMA descript chain. (APBH-Bridge-DMA)
Power Management Drivers
Low-level Power |The low-level power management driver implements Low-level Power Management All
Management hardware-specific operations to meet power (PM) Driver
requirements and conserves power. Driver
implementations are often different for different
platforms. It is used by the DPM layer.
Dynamic Bus The bus frequency driver dynamically manages the Dynamic Bus Frequency Driver i.MX 6 and
Frequency various system frequencies to improve power i.MX 7
consumption.
CPU Freq The CPU frequency scaling allows the clock speed of |CPUFreq All
CPU to be changed.
PMIC PF PF regulator driver provides the low-level control of the |PF_Regulator All
Regulator power supply regulators, selection of voltage levels,
and enabling/disabling of regulators.
Anatop Regulator [The Anatop regulator drive provides low-level control of | Anatop Regulator i.MX 6 and
power supply regulators. i.MX7
Connectivity Drivers
ENET 1588 Implementation of the Precision Time Protocol (PTP) Fast Ethernet Controller (FEC) All
Stack according to IEEE standard 1588. Driver
Fast Ethernet The ENET Driver performs the full set of IEEE 802.3/ Fast Ethernet Controller (FEC) All
Controller Ethernet CSMA/CD media access control and channel |Driver
interface functions.
FlexCAN The FlexCAN driver provides the interfaces to send and | FlexCAN Driver i.MX 6Quad,
receive CAN messages. i.MX 6Dual,
i.MX
6DualLite,
i.MX 6Solo,
i.MX
6UltraLite,
i.MX 6SoloX
MedialLB MediaLB is an on-PCB or inter-chip communication bus | MedialLB i.MX 6SoloX
allowing applications to access the MOST Network data i.MX 6Quad
or communicate with other applications. i.MX 6Dual
PCle PCI Express hardware module can either be configured |PCle All
to act as a Root Complex or a PCle Endpoint.
Video
Capture Camera Overview for Camera and capture interfaces. |Capture Overview All

Table continues on the next page...

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020

NXP Semiconductors

33

Overview
Table 1-1. BSP Supported Features (continued)
Feature Description Chapter Source Applicable
Platform
Display Display Overview. Display Overview All
VPU The Video Processing Unit (VPU) is a multistandard Video Processing Unit (VPU) i.MX
video decoder and encoder that can perform decoding |Driver 6QuadPlus/
and encoding of various video formats. Quad/Dual/
Solo and
i.MX 8
JPEGENC/ The JPEG-E-X and JPEG-D-X cores are standalone JPEG Encoder and Decoder i.MX
JPEGDEC and high-performance 8-bit and 12-bit JPEG encoder 8QuadXPlus
and respectively decoder for still image and video , 8QuadMax
compression/decompression applications.
Audio Drivers
ALSA Sound The Advanced Linux Sound Architecture (ALSA) is a ALSA Sound Driver All
sound driver that provides ALSA and OSS compatible
applications with the means to perform audio playback
and recording functions.
ASRC The Asynchronous Sample Rate Converter (ASRC) Asynchronous Sample Rate All
driver provides the interfaces to access the Converter (ASRC)
asynchronous sample rate converter module.
S/PDIF The S/PDIF driver is designed under the Linux ALSA | The Sony/Philips Digital Interface | All
subsystem. It implements one playback device for Tx | (S/PDIF) Driver
and one capture device for Rx.
Storage MTD Drivers
SPI NOR MTD The SPI NOR MTD driver provides the support to the | SPI NOR Flash Memory All
Atmel data Flash using the SPI interface. Technology Device (MTD) Driver
NAND MTD The NAND MTD driver interfaces with the integrated NAND GPMI Flash Driver i.MX 6Quad,
NAND controller supporting UBIFS, CRAMFS and i.MX 6Dual,
JFFS2UBI and UBIFSCRAMFS and JFFS2 file i.MX
systems. 6DuallLite,
i.MX 6Solo,
i.MX
6UltralLite,
i.MX 7Dual
SATA The SATA AHCI driver is based on the LIBATA layer of | SATA Driver i.MX
the block device infrastructure of the Linux kernel. 6QuadPlus,
i.MX 6Quad,
i.MX 6Dual,
i.MX
8QuadMax,
i.MX
8QuadXPlus
Bus Drivers
12C The Lower Power I12C bus driver interfaces with the 12C |Inter-IC (I12C) Driver All
bus to transfer data over the 12C bus.
eCSPI The low-level Enhanced Configurable Serial Peripheral |Enhanced Configurable Serial All
Interface (ECSPI) driver interfaces a custom, kernel- Peripheral Interface (ECSPI) Driver
space API to both ECSPI modules.
MMC/SD/SDIO - |The MMC/SD/SDIO Host driver implements the MMC/SD/SDIO Host Driver All
uSDHC standard Linux driver interface to eSDHC.
Table continues on the next page...
i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
34 NXP Semiconductors

Chapter 1 Introduction

Table 1-1. BSP Supported Features (continued)

Feature Description Chapter Source Applicable
Platform

Connectivity Drivers

UART The Universal Asynchronous Receiver/Transmitter Universal Asynchronous Receiver/ |All
(UART) driver interfaces the serial driver API to all Transmitter (UART) Driver
UART ports.

uSB The USB driver interfaces to the ARC USB-OTG CHIPIDEA USB All
controller.

1.2 Audience

This document is targeted to individuals who will port the i. MX Linux® OS Board
Support Package (BSP) to customer-specific products.

The audience is expected to have a working knowledge of the Linux kernel internals,
driver models, and 1.MX processors.

1.2.1 Conventions
This document uses the following notational conventions:

» Courier monospaced type indicate commands, command parameters, code examples,
and file and directory names.

* [talic type indicates replaceable command or function parameters.

* Bold type indicates function names.

1.2.2 Definitions, Acronyms, and Abbreviations

The following table defines the acronyms and abbreviations used in this document.

Table 1-2. Definitions and Acronyms

Term Definition
ADC Asynchronous Display Controller
address Address conversion from virtual domain to physical domain
translation
API Application Programming Interface
Arm® Advanced RISC Machines processor architecture

Table continues on the next page...

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 35

Audience
Table 1-2. Definitions and Acronyms (continued)
Term Definition

AUDMUX Digital audio MUX-provides a programmable interconnection for voice, audio, and synchronous data routing
between host serial interfaces and peripheral serial interfaces

BCD Binary Coded Decimal

bus A path between several devices through data lines

bus load The percentage of time a bus is busy

CODEC Coder/decoder or compression/decompression algorithm-used to encode and decode (or compress and
decompress) various types of data

CPU Central Processing Unit-generic term used to describe a processing core

CRC Cyclic Redundancy Check-Bit error protection method for data communication

(O] Camera Sensor Interface

DFS Dynamic Frequency Scaling

DMA Direct Memory Access-an independent block that can initiate memory-to-memory data transfers

DPM Dynamic Power Management

DCSS Display controller sub system

DP Display Port - similiar IP as HDMI

DPU Display Processor Unit

DSI Display Serial Interface

DRM Display Rendering Manager or Digital Rights Manager

DRAM Dynamic Random Access Memory

DVFS Dynamic Voltage Frequency Scaling

EMI External Memory Interface-controls all IC external memory accesses (read/write/erase/program) from all the
masters in the system

Endian Refers to byte ordering of data in memory. Little endian means that the least significant byte of the data is
stored in a lower address than the most significant byte. In big endian, the order of the bytes is reversed.

EPDC Electrophoretic Display Controller

EPIT Enhanced Periodic Interrupt Timer-a 32-bit set and forget timer capable of providing precise interrupts at
regular intervals with minimal processor intervention

FCS Frame Checker Sequence

FIFO First In First Out

FIPS Federal Information Processing Standards-United States Government technical standards published by the
National Institute of Standards and Technology (NIST). NIST develops FIPS when there are compelling
Federal government requirements such as for security and interoperability but no acceptable industry
standards.

FIPS-140 Security requirements for cryptographic modules-Federal Information Processing Standard 140-2(FIPS 140-2)
is a standard that describes US Federal government requirements that IT products should meet for Sensitive,
but Unclassified (SBU) use.

Flash A non-volatile storage device similar to EEPROM, where erasing can be done only in blocks or the entire chip.

Flash path Path within ROM bootstrap pointing to an executable Flash application

Flush Procedure to reach cache coherency. Refers to removing a data line from cache. This process includes
cleaning the line, invalidating its VBR and resetting the tag valid indicator. The flush is triggered by a software
command.

GPIO General Purpose Input/Output

GPU Grapics Processor Unit

Table continues on the next page...
i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
36 NXP Semiconductors

Chapter 1 Introduction

Table 1-2. Definitions and Acronyms (continued)

Term Definition
hash Hash values are produced to access secure data. A hash value (or simply hash), also called a message
digest, is a number generated from a string of text. The hash is substantially smaller than the text itself, and is
generated by a formula in such a way that it is extremely unlikely that some other text produces the same hash
value.
HDMI High-Definition Multimedia Interface
I/O Input/Output
ICE In-Circuit Emulation
IP Intellectual Property
IPU Image Processing Unit -supports video and graphics processing functions and provides an interface to video/
still image sensors and displays
IrDA Infrared Data Association-a nonprofit organization whose goal is to develop globally adopted specifications for
infrared wireless communication.
ISR Interrupt Service Routine
JTAG JTAG (IEEE® Standard 1149.1) A standard specifying how to control and monitor the pins of compliant
devices on a printed circuit board
Kill Abort a memory access
KPP KeyPad Port-16-bit peripheral used as a keypad matrix interface or as general purpose input/output (I/0)
LDB LVDS Display Bridge
line Refers to a unit of information in the cache that is associated with a tag
LRU Least Recently Used-a policy for line replacement in the cache
LVDS Low Voltage Differential Signalling
MIPI Mobile Industry Process Interface
MMU Memory Management Unit-a component responsible for memory protection and address translation
MPEG Moving Picture Experts Group-an ISO committee that generates standards for digital video compression and
audio. It is also the name of the algorithms used to compress moving pictures and video.
MPEG Several standards of compression for moving pictures and video:
standards ¢ MPEG-1 is optimized for CD-ROM and is the basis for MP3
* MPEG-2 is defined for broadcast video in applications such as digital television set-top boxes and DVD
* MPEG-3 was merged into MPEG-2
* MPEG-4 is a standard for low-bandwidth video telephony and multimedia on the World-Wide Web
MQSPI Multiple Queue Serial Peripheral Interface-used to perform serial programming operations necessary to
configure radio subsystems and selected peripherals
MSHC Memory Stick Host Controller
NAND Flash |Flash ROM technology-NAND Flash architecture is one of two flash technologies (the other being NOR) used
in memory cards such as the Compact Flash cards. NAND is best suited to flash devices requiring high-
capacity data storage. NAND flash devices offer storage space up to 512-Mbyte and offers faster erase, write,
and read capabilities over NOR architecture
NOR Flash |See NAND Flash
PCMCIA Personal Computer Memory Card International Association-a multicompany organization that has developed a
standard for small, credit card-sized devices, called PC Cards. There are three types of PCMCIA cards that
have the same rectangular size (85.6 by 54 millimeters), but different widths
physical The address by which the memory in the system is physically accessed
address
PLL Phase Locked Loop-an electronic circuit controlling an oscillator so that it maintains a constant phase angle (a
lock) on the frequency of an input, or reference, signal.

Table continues on the next page...

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020

NXP Semiconductors

37

References
Table 1-2. Definitions and Acronyms (continued)
Term Definition
PxP Pixel Pipeline
RAM Random Access Memory

RAM path Path within ROM bootstrap leading to the downloading and the execution of a RAM application

RGB The RGB color model is based on the additive model in which Red, Green, and Blue light are combined to
create other colors. The abbreviation RGB comes from the three primary colors in additive light models

RGBA RGBA color space stands for Red Green Blue Alpha. The alpha channel is the transparency channel, and is
unique to this color space. RGBA, like RGB, is an additive color space, so the more of a color placed, the
lighter the picture gets. PNG is the best known image format that uses the RGBA color space

RNGA Random Number Generator Accelerator-a security hardware module that produces 32-bit pseudo random
numbers as part of the security module.

ROM Read Only Memory

ROM Internal boot code encompassing the main boot low as well as exception vectors

bootstrap

RPMSG Remote Processor Messaging

RTIC Real-Time Integrity Checker-a security hardware module

SC System Controller

SCC SeCurity Controller-a security hardware module

SCFW System Controller Firmware

SDMA Smart Direct Memory Access

SDRAM Synchronous Dynamic Random Access Memory

SoC System on a Chip

SPBA Shared Peripheral Bus Arbiter-a three-to-one IP-Bus arbiter, with a resource-locking mechanism

SPI Serial Peripheral Interface-a full-duplex synchronous serial interface for connecting low-/medium-bandwidth

external devices using four wires. SPI devices communicate using a master/slave relationship over two data
lines and two control lines: Also see SS, SCLK, MISO, and MOSI/

SRAM Static Random Access Memory

SSI Synchronous-Serial Interface-standardized interface for serial data transfer

TBD To Be Determined

UART Universal Asynchronous Receiver/Transmitter-asynchronous serial communication to external devices
uiD Unique ID-a field in the processor and CSF identifying a device or group of devices

uUSB Universal Serial Bus-an external bus standard that supports high-speed data transfers. The USB 1.1

specification supports data transfer rates of up to 12 Mb/s and USB 2.0 has a maximum transfer rate of 480
Mbps. A single USB port can be used to connect up to 127 peripheral devices, such as mice, modems, and
keyboards. USB also supports Plug-and-Play installation and hot plugging

USBOTG USB On The Go-an extension of the USB 2.0 specification for connecting peripheral devices to each other.
USBOTG devices, also known as dual-role peripherals, can act as limited hosts or peripherals themselves
depending on how the cables are connected to the devices, and they also can connect to a host PC

VADC Video analaog to Digital Converter
VPU Video Processing Unit
word A group of bits comprising 32-bits

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
38 NXP Semiconductors

Chapter 1 Introduction
1.3 References

1.MX has multiple families supported in software. The following are the listed families
and SoCs per family. The i.MX Linux® Release Notes describes which SoC is supported
in the current release. Some previously released SoCs might be buildable in the current
release but not validated if they are at the previous validated level.

* 1.MX 6 Family: 6QuadPlus, 6Quad, 6DualLite, 6SoloX, 6SLL, 6UltralLite, 6ULL,
6ULZ

1.MX 7 Family: 7Dual, 7ULP

1.MX 8 Family: 8QuadMax

1.MX 8M Family: 8M Plus, 8M Quad, 8M Mini, 8M Nano

1.MX 8X Family: 8QuadXPlus, DXL, 8DualX

This release includes the following references and additional information.

e i.MX Linux® Release Notes IMXLXRN) - Provides the release information.

e i.MX Linux® User's Guide IMXLUG) - Contains the information on installing U-
Boot and Linux OS and using i.MX-specific features.

* i.MX Yocto Project User's Guide IMXLXYOCTOUG) - Describes the board
support package for NXP development systems using Yocto Project to set up host,
install tool chain, and build source code to create images.

* i.MX Reference Manual IMXLXRM) - Contains the information on Linux drivers
for 1.MX.

* i.MX Graphics User's Guide (IMXGRAPHICUG) - Describes the graphics features.

* i.MX Porting Guide (IMXXBSPPG) - Contains the instructions on porting the BSP
to a new board.

* i.MX VPU Application Programming Interface Linux® Reference Manual
(IMXVPUAPI) - Provides the reference information on the VPU API on i.MX 6
VPU.

The quick start guides contain basic information on the board and setting it up. They are
on the NXP website.

* SABRE Platform Quick Start Guide (IMX6QSDPQSG)

SABRE Board Quick Start Guide (IMX6QSDBQSG)

1.MX 6UltraLite EVK Quick Start Guide IMX6ULTRALITEQSG)

1.MX 6ULL EVK Quick Start Guide (IMX6ULLQSG)

SABRE Automotive Infotainment Quick Start Guide (IMX6SABREINFOQSG)
1.MX 7Dual SABRE-SD Quick Start Guide (SABRESDBIMX7DUALQSG)
1.MX 8M Quad Evaluation Kit Quick Start Guide IMX8MQUADEVKQSG)
1.MX 8M Mini Evaluation Kit Quick Start Guide (SMMINIEVKQSG)

1.MX 8M Nano Evaluation Kit Quick Start Guide (SMNANOEVKQSG)

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 39

http://www.nxp.com/files/32bit/doc/quick_start_guide/SABRESDP_IMX6_QSG.pdf?fpsp=1
https://www.nxp.com/webapp/sps/download/preDownload.jsp?render=true
http://cache.nxp.com/files/32bit/doc/quick_start_guide/IMX6ULTRALITEQSG.pdf
http://www.nxp.com/iMX6ULLEVK/QSG
https://www.nxp.com/webapp/sps/download/preDownload.jsp?render=true
http://www.nxp.com/docs/en/user-guide/SABRESDBIMX7DUALQSG.pdf
https://www.nxp.com/docs/en/user-guide/IMX8MQUADEVKQSG.pdf
https://www.nxp.com/docs/en/quick-reference-guide/8MMINIEVKQSG.PDF
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/evaluation-kit-for-the-i-mx-8m-nano-applications-processor:8MNANOD4-EVK

A
References
* 1.MX 8QuadXPlus Multisensory Enablement Kit Quick Start Guide
(IMXS8QUADXPLUSQSG)
* i.MX 8QuadMax Multisensory Enablement Kit Quick Start Guide
(IMX8QUADMAXQSG)
* 1.MX 8M Plus Evaluation Kit Quick Start Guide (IMX8MPLUSQSG)
* i.MX 8DXL Multisensory Enablement Kit Quick Start Guide (IMX8DXLUSQSG)

Documentation is available online at nxp.com.

* i.MX 6 information is at nxp.com/iMX6series

* 1.MX SABRE information is at nxp.com/imxSABRE
* 1.MX 6UltraLite information is at nxp.com/iMX6UL
* i.MX 6ULL information is at nxp.com/iMX6ULL

e 1.MX 7Dual information is at nxp.com/iMX7D

* 1.MX 7ULP information is at nxp.com/imx7ulp

* i.MX 8 information is at nxp.com/imx8

* 1.MX 6ULZ information is at nxp.com/imx6ulz

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
40 NXP Semiconductors

https://www.nxp.com/webapp/sps/download/preDownload.jsp?render=true
https://www.nxp.com/webapp/sps/download/preDownload.jsp?render=true
https://www.nxp.com/docs/en/quick-reference-guide/IMX8QUADMAXQSG.pdf
https://www.nxp.com/docs/en/quick-reference-guide/IMX8QUADMAXQSG.pdf
https://www.nxp.com/docs/en/quick-reference-guide/IMX8MPLUSXQSG.pdf
https://www.nxp.com/docs/en/quick-reference-guide/IMX8DXLQSG.pdf
http://www.nxp.com
http://www.nxp.com/iMX6series
http://www.nxp.com/imxSABRE
http://www.nxp.com/imx6ul
http://www.nxp.com/imx6ull
http://www.nxp.com/imx7d
http://www.nxp.com/imx7ulp
http://www.nxp.com/imx8
http://www.nxp.com/imx6ulz

Chapter 2
System

2.1 Machine-Specific Layer (MSL)

2.1.1 Introduction

The Machine-Specific Layer (MSL) provides the Linux kernel with the following
machine-dependent components.

e Interrupts including GPIO and EDIO (only on certain platforms)

* Timer

* Memory map

* General Purpose Input/Output (GPIO) including IOMUX on certain platforms
* Clock

e Shared Peripheral Bus Arbiter (SPBA)

* Smart Direct Memory Access (SDMA)

2.1.2 Interrupts (Operation)

This section describes the hardware and software operation of interrupts on the device.

2.1.2.1 Interrupt Hardware Operation

The Interrupt Controller controls and prioritizes all internal and external interrupt
sources.

The Interrupt Controller controls and prioritizes all interrupt sources, by default, all
interrupts have the same priority.

Each interrupt source can be enabled or disabled by configuring the interrupt controller’s
registers.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 41

Machine-Specific Layer (MSL)
There are three types of interrupts in GIC: PPI, SGI, and SPI.

» PPI is private peripheral interrupts of each CPU. It can only be handled by each
CPU.

* SGI is software generated interrupts. It can be triggered by software operation, and it
also can only be handled by each CPU.

» SPI is shared peripheral interrupts, which are normally external interrupt sources
from SoC platform. It can be handled by all CPUs.

2.1.2.2 Interrupt Software Operation

For the Arm architecture-based processors with GIC-400 of 1.MX 6 and i.MX 7 SoCs,
normal interrupt and fast interrupt are two different exception types. The exception vector
addresses can be configured to start at low address (0x0) or high address (OxFFFF0000)
for 1.MX 6 and 1.MX 7 platforms. The Linux OS implementation running on the Arm
architecture chooses the high-vector address model.

For Arm architecture-based processors with GIC-500 of 1.MX 8 SoCs, the exception
vector addresses are defined as VBAR_ELn + offset. The offset depends on which
exception level the interrupt exception is taken. The file Documentation/arm/Interrupts
has a description of the Arm interrupt architecture.

The software provides a processor-specific interrupt structure with callback functions
defined in the irqchip structure and exports one initialization function, which is called
during system startup.

Table 2-1. Interrupt Files

File Description
drivers/irqchip/irg-gic.c i.MX 6/7 SoCs with GIC-400
drivers/irqchip/irg-gic-v3.c i.MX 8 SoCs with GIC-500
drivers/irqchip/irg-imx-irgsteer.c Interrupt functions with CONFIG_IMX_IRQSTEER
configuration
drivers/irqchip/irg-imx-intmux.c Interrupt functions with CONFIG_IMX_INTMUX configuration
irg-imx-gpcv2.c Interrupt functions with CONFIG_IMX_GPCV2 configuration

2.1.2.3 Interrupt Features

The interrupt implementation supports the following features:

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
42 NXP Semiconductors

Chapter 2 System

e Interrupt Controller interrupt disable and enable
* Functions required by the Linux interrupt architecture as defined in the standard Arm
interrupt source code

2.1.2.4 Interrupt Source Code Structure
The interrupt module is located in drivers/irqchip.

The table below lists the source files for interrupts.

Table 2-2. Interrupt Files

File Description
drivers/irqchip/irg-imx-irgsteer.o.c Interrupt functions with CONFIG_IMX_IRQSTEER
configuration.
drivers/irqchip/irg-imx-gpcv2.c Interrupt functions with CONFIG_IMX_GPCV2 configuration.
drivers/irqchip/irg-imx-intmux.c Interrupt functions for with CONFIG_IMX_INTMUX

configuration.

2.1.2.5 Interrupt Programming Interface
The machine-specific interrupt implementation exports a single function.

This function initializes the Interrupt Controller hardware and registers functions for
interrupt enable and disable from each interrupt source.

This is done with the global structure irq_desc of type struct irqdesc. After the
initialization, the interrupt can be used by the drivers through the request_irq() function to
register device-specific interrupt handlers.

In addition to the native interrupt lines supported from the Interrupt Controller, the
number of interrupts is also expanded to support GPIO interrupt and (on some platforms)
EDIO interrupts. This allows drivers to use the standard interrupt interface supported by
Arm device running Linux OS, such as the request_irq() and free_irq() functions.

2.1.3 Timer

The Linux kernel relies on the underlying hardware to provide support for both the
system timer (which generates periodic interrupts) and the dynamic timers (to schedule
events).

After the system timer interrupt occurs, it does the following:

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 43

Machine-Specific Layer (MSL)

e Updates the system uptime

» Updates the time of day

» Reschedules a new process if the current process has exhausted its time slice
* Runs any dynamic timers that have expired

» Updates resource usage and processor time statistics

The following tables describes the different timers used.

Table 2-3. Timers

Timer Description

General Purpose Timer (GPT) GPT is configured to generate a periodic interrupt at a certain
interval (every 10 ms). Used by i.MX 6 to go into WFI mode.
Used by i.MX 6 and i.MX 7.

Enhanced Periodic Interrupt Timer (EPIT) Available on i.MX 6 and i.MX 7.
Arm Arch Timer i.MX 8 usage instead of GPT
System Counter Timer i.MX 8M and i.MX 8X usage instead of GPT

2.1.3.1 Timer Software Operation

The timer software implementation provides an initialization function that initializes the
GPT with the proper clock source, interrupt mode and interrupt interval.

The timer then registers its interrupt service routine and starts timing. The interrupt
service routine is required to service the OS for the purposes mentioned in the previous
Section Timer. Another function provides the time elapsed as the last timer interrupt.

2.1.3.2 Timer Features
The timer implementation supports the following features:

* Functions required by Linux OS to provide the system timer and dynamic timers.
* Generates an interrupt every 10 ms for .MX6 and i.MX 7 and every 4 ms for i.MX
8. This is based on CONFIG_HZ_XXX.

2.1.3.3 Timer Source Code Structure
Table 2-4. Timer Files

File Description

arch/arm/mach-imx/epit.c Enhanced Periodic Interrupt Timer

Table continues on the next page...

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
44 NXP Semiconductors

Chapter 2 System

Table 2-4. Timer Files (continued)

File Description
driver/clocksource/timer-imx-sysctr.c System Controller Timer
driver/clocksource/timer-imx-tpm.c TPM Timer
drivers/clocksource/timer-imx-gpt.c General Purpose Timer
drivers/clocksource/arch-arm-timer.c Arm arch Timer

2.1.3.4 Timer Programming Interface

The timer module utilizes four hardware timers, to implement clock source and clock
event objects.

This is done with the clocksource_mxc structure of struct clocksource type and
clockevent_mxc structure of struct clockevent_device type. Both structures provide
routines required for reading current timer values and scheduling the next timer event.
The module implements a timer interrupt routine that services the Linux OS with timer
events for the purposes mentioned in the beginning of this chapter.

2.1.4 Memory Map

A predefined virtual-to-physical memory map table is required for the device drivers to
access to the device registers since the Linux kernel is running under the virtual address
space with the Memory Management Unit (MMU) enabled.

2.1.4.1 Memory Map Hardware Operation

The MMU, as part of the Arm core, provides the virtual to physical address mapping
defined by the page table. For more information, see the Arm Technical Reference
Manual (TRM) from Arm Limited.

2.1.4.2 Memory Map Software Operation (only for i.MX 6 or i.MX 7)

A table mapping the virtual memory to physical memory is implemented for i.MX 6 and
1.MX 7 platforms as defined in the arch/arm/mach-imx/pm-imx*.c file.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 45

Machine-Specific Layer (MSL)
2.1.4.3 Memory Map Features

The Memory Map implementation programs the Memory Map module to creates the
physical to virtual memory map for all the I/O modules.

2.1.4.4 Memory Map Source Code Structure

The Memory Map module implementation is used for .MX 6 and 7 in arch/arm/mach-
1mx.

Table below lists the source file for the memory map for .MX 6 and i.MX 7.
Table 2-5. Memory Map Files

File Description
arch/arm/mach-imx/mx6.h Header files for the i.MX 6 1/0 module physical addresses
arch/arm/mach-imx/mx7.h Header file for the i.MX 7Dual I/0O module physical addresses
arch/arm/mach-imx/mx7ulp.h Header file for the i.MX 7ULP I/O module physical addresses
arch/arm/mach-imx/hardware.h Memory map definition file and macros for the following:

¢ 1/O module physical and virtual base addresses
* Physical to virtual virtual mapping macros.

arch/arm/mach-imx/pm-imx6.c Memory Map module for i.MX 6
arch/arm/mach-imx/pm-imx7.c Memory Map module for i.MX 7Dual
arch/arm/mach-imx/pm-imx7ulp.c Memory Map module for i.MX 7ULP
arch/arm/mach-imx/pm-rpmsg.c Memory Map RPMSG

2.1.5 IO0MUX

The limited number of pins of highly integrated processors can have multiple purposes.

The IOMUX module controls a pin usage so that the same pin can be configured for
different purposes and can be used by different modules.

This is a common way to reduce the pin count while meeting the requirements from
various customers. Platforms that do not have the IOMUX hardware module can do pin
muxing through the GPIO module.

The IOMUX module provides the multiplexing control so that each pin may be
configured either as a functional pin or as a GPIO pin. A functional pin can be subdivided
into either a primary function or alternate functions. The pin operation is controlled by a
specific hardware module. A GPIO pin, is controlled by the user through software with
further configuration through the GPIO module. For example, the TXD1 pin might have
the following functions:

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
46 NXP Semiconductors

.4
Chapter 2 System
e TXD1-internal UART1 Transmit Data. This is the primary function of this pin.
e UART2 DTR-alternate mode 3
 LCDC_CLS-alternate mode 4
* GPIO4[22]-alternate mode 5
e SLCDC_DATA[8]-alternate mode 6

If the hardware modes are chosen at the system integration level, this pin is dedicated
only to that purpose and cannot be changed by software. Otherwise, the [IOMUX module
needs to be configured to serve a particular purpose that is dictated by the system (board)
design. If the pin is connected to an external UART transceiver and therefore to be used
as the UART data transmit signal, it should be configured as the primary function. If the
pin is connected to an external Ethernet controller for interrupting the Arm core, then it
should be configured as GPIO input pin with interrupt enabled. Again, be aware that the
software does not have control over what function a pin should have. The software only
configures pin usage according to the system design.

2.1.5.1 IOMUX Hardware Operation

The following discussion applies only to those processors that have an IOMUX hardware
module.

The IOMUX controller registers are briefly described in this section.
For detailed information, see the pin multiplexing section of the IC Reference Manual.

e SW_MUX_CTL-Selects the primary or alternate function of a pin. Also enables
loopback mode when applicable.

 SW_SELECT_INPUT-Controls pin input path. This register is only required when
multiple pads drive the same internal port.

* SW_PAD_CTL-Control pad slew rate, driver strength, pull-up/down resistance, and
SO on.

2.1.5.2 IOMUX Software Operation

The IOMUX software implementation provides an API to set up pin functionality and
pad features.

2.1.5.3 IOMUX Features

The IOMUX implementation programs the [IOMUX module to configure the pins that are
supported by the hardware.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 47

Machine-Specific Layer (MSL)

21.5.4

IOMUX Source Code Structure

Table below lists the source files for the IOMUX module. The files are in the drivers/

princtrl/freescale folder.

Table 2-6.

IOMUX Files

File

Description

drivers/pinctrl/freescale/pinctrl-imx.c

i.MX pinctrl core driver

drivers/pinctrl/freescale/pinctrl-imx6q.c

i.MX 6Quad/DualLite pinctrl driver

drivers/pinctrl/freescale/pinctrl-imx6sx.c

i.MX 6SoloX pinctrl driver

drivers/pinctrl/freescale/pinctrl-imx6sll.c

i.MX 6SLL pinctrl driver

drivers/pinctrl/freescale/pinctrl-imx6ul.c

i.MX 6UltraLite and 6ULL pinctrl driver

drivers/pinctrl/freescale/pinctrl-imx7d.c

i.MX 7Dual pinctrl driver

drivers/pinctrl/freescale/pinctrl-imx7ulp.c

i.MX 7ULP pinctrl driver

drivers/pinctrl/freescale/pinctrl-imx8gm.c

i.MX 8QuadMax pinctrl driver

drivers/pinctrl/freescale/pinctrl-imx8gxp.c

i.MX 8QuadXPlus pinctrl driver

drivers/pinctrl/freescale/pinctrl-imx8mq.c

i.MX 8M Quad pinctrl driver

drivers/pinctrl/freescale/pinctrl-imx8mm.c

i.MX 8M Mini pinctrl driver

drivers/pinctrl/freescale/pinctrl-imx8mn.c

i.MX 8M Nano pinctrl driver

2.1.5.5

IOMUX Programming Interface

See pinctrl binding documents Documentation/devicetree/bindings/pinctrl/fsl.

e imx-pinctrl.txt

* imx6q-pinctrl.txt

e imx6dI-pinctrl.txt
e imx6sll-pinctrl.txt
* imx6sx-pinctrl.txt
e imx6ul-pinctrl.txt
e imx7d-pinctrl.txt

* imx7ulp-pinctrl.txt
* imx8gm-pinctrl.txt
* imx8gxp-pinctrl.txt
* imx8mg-pinctrl.txt
* imx8mm-pinctrl.txt
e imx8mn-pinctrl.txt

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

48

NXP Semiconductors

4
Chapter 2 System

2.1.5.6 IO0MUX Control Through GPIO Module

For a multipurpose pin, the GPIO controller provides the multiplexing control so that
each pin may be configured either as a functional pin, or a GPIO pin.

The operation of the functional pin, which can be subdivided into either major function or
one alternate function, is controlled by a specific hardware module. If it is configured as a
GPIO pin, the pin is controlled by the user through software with further configuration
through the GPIO module. In addition, there are some special configurations for a GPIO
pin (such as output based A_IN, B_IN, C_IN or DATA register, but input based A_OUT
or B_OUT).

The following discussion applies to those platforms that control the muxing of a pin
through the general purpose input/output (GPIO) module.

If the hardware modes are chosen at the system integration level, this pin is dedicated
only to that purpose which cannot be changed by software. Otherwise, the GPIO module
needs to be configured properly to serve a particular purpose that is dictated with the
system (board) design. If this pin is connected to an external UART transceiver, it should
be configured as the primary function or if this pin is connected to an external Ethernet
controller for interrupting the core, then it should be configured as GPIO input pin with
interrupt enabled. The software does not have control over what function a pin should
have. The software only configures a pin for that usage according to the system design.

2.1.5.6.1 GPIO Hardware Operation

The GPIO controller module is divided into MUX control and PULLUP control sub
modules. The following sections briefly describe the hardware operation. For detailed
information, see the relevant device documentation.

2.1.5.6.1.1 Muxing Control
The GPIO In Use Registers control a multiplexer in the GPIO module.

The settings in these registers choose if a pin is utilized for a peripheral function or for its
GPIO function. One 32-bit general purpose register is dedicated to each GPIO port.
These registers may be used for software control of [OMUX block of the GPIO.

2.1.5.6.1.2 PULLUP Control

The GPIO module has a PULLUP control register (PUEN) for each GPIO port to control
every pin of that port.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 49

A ————
Machine-Specific Layer (MSL)

2.1.5.6.2 GPIO Software Operation (general)

The GPIO software implementation provides an API to setup pin functionality and pad
features.

2.1.5.6.3 GPIO Implementation

The GPIO implementation programs the GPIO module to configure the pins that are
supported by the hardware.

2.1.6 General Purpose Input/Output (GPIO)

The GPIO module provides general-purpose pins that can be configured as either inputs
or outputs.

When configured as an output, the pin state (high or low) can be controlled by writing to
an internal register. When configured as an input, the pin input state can be read from an
internal register.

2.1.6.1 GPIO Software Operation

The general purpose input/output (GPIO) module provides an API to configure the . MX
processor external pins and a central place to control the GPIO interrupts.

The GPIO utility functions should be called to configure a pin instead of directly
accessing the GPIO registers. The GPIO interrupt implementation contains functions,
such as the interrupt service routine (ISR) registration/un-registration and ISR
dispatching once an interrupt occurs. All driver-specific GPIO setup functions should be
made during device initialization in the MSL layer to provide better portability and
maintainability. This GPIO interrupt is initialized automatically during the system
startup.

If a pin is configured as GPIO by the IOMUX, the state of the pin should also be set since
it is not initialized by a dedicated hardware module. Setting the pad pull-up, pull-down,
slew rate and so on, with the pad control function may be required as well.

2.1.6.1.1 API for GPIO
API for GPIO lists the features supported by the GPIO implementation.

The GPIO implementation supports the following features:

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
50 NXP Semiconductors

L __4
Chapter 2 System
* An API for registering an interrupt service routine to a GPIO interrupt. This is made
possible as the number of interrupts defined by NR_IRQS is expanded to
accommodate all the possible GPIO pins that are capable of generating interrupts.
 Functions to request and free an IOMUX pin. If a pin is used as GPIO, another set of
request/free function calls are provided. The user should check the return value of the
request calls to see if the pin has already been reserved before modifying the pin
state. The free function calls should be made when the pin is not needed. See the API
document for more details.
 Aligned parameter passing for both IOMUX and GPIO function calls. In this
implementation the same enumeration for iomux_pins is used for both IOMUX and
GPIO calls and the user does not have to figure out in which bit position a pin is

located in the GPIO module.
e Minimal changes required for the public drivers such as Ethernet and UART drivers

as no special GPIO function call is needed for registering an interrupt.

2.1.6.2 GPIO Features
This GPIO implementation supports the following features:

e Implements the functions for accessing the GPIO hardware modules
* Provides a way to control GPIO signal direction and GPIO interrupts

2.1.6.3 GPIO Module Source Code Structure

All of the GPIO module source code is in the GPIO framework, in the following files,
located in the directories indicated at the beginning of this chapter:

Table 2-7. GPIO Files

File Description

drivers/gpio/gpio-mxc.c Function implementation

2.1.6.4 GPIO Programming Interface 2

For more information, see the Documentation/gpio/gpio.txt under Linux source code
directory for the programming interface.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 51

Machine-Specific Layer (MSL)

2.1.7 Clock

The Linux clock framework relies on the underlying hardware to provide support for

clock tree management.

The following table describes different clock hardware used.

File

Description

Clock controller module (CCM)

i.MX 6Quad/DualLite/SoloX/UltraLite/ULL/SLL, i.MX 7Dual,
i.MX 8M Quad, i.MX 8M Mini, and i.MX 8M Nano

Peripheral clock control (PCC) and System clock generator i.MX 7ULP
(SCG)
Distributed slave system controller (DSC) i.MX 8QuadMax/8QuadXPlus

2.1.7.1 Clock Software Operation

The clock software implementation provides an initialization function that initializes the
clock tree according to hardware clock type and settings, and then provides clock
operation callbacks to operate the hardware clock module.

2.1.7.2 Clock Features

The clock implementation supports the following features according to different clock

types:

 Prepare/Unprepare a clock.
* Enable/Disable a clock.

* Get/Set the clock rate.

» Get/Set the clock parent.

2.1.7.3 Source Code Structure

The source code structure is as follows.

File

Description

drivers/clk/imx/clk-imx6q.c

i.MX 6Quad/6DuallLite clock driver

drivers/clk/imx/clk-imx6sx.c

i.MX 6SoloX clock driver

drivers/clk/imx/clk-imx6ul.c

i.MX 6UltraLite and 6ULL clock driver

drivers/clk/imx/clk-imx6sll.c

i.MX 6SLL clock driver

Table continues on the next page...

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

52

NXP Semiconductors

Chapter 2 System

File Description
drivers/clk/imx/clk-imx7d.c i.MX 7Dual clock driver
drivers/clk/imx/clk-imx7ulp.c i.MX 7ULP clock driver
drivers/clk/imx/clk-imx8gm.c i.MX 8QuadMax clock driver
drivers/clk/imx/clk-imx8gxp.c i.MX 8QuadXPlus clock driver
drivers/clk/imx/clk-imx8mgq.c i.MX 8MQuad clock driver
drivers/clk/imx/clk-imx8mm.c i.MX 8M Mini clock driver
drivers/clk/imx/clk-imx8mn.c i.MX 8M Nano clock driver

21.7.4

Different clock types provide different clock operation callbacks. Device drivers call
standard clock APIs to clock framework and eventually call into platform clock driver,
and the corresponding clock node’s operation callback is executed.

2.2 System Controller

2.2.1 Introduction

The System Controller is provided on 1.MX 8 and i.MX 8X families and provides an
abstraction to many underlying features of the hardware and runs on a Cortex-M
processor which executes SC firmware (SCFW). This overview describes the features of
the SCFW and APIs exposed to other software components.

The System Controller features include:

» System Intiialization and Boot - The SC firmware runs on the SCU immediately after
the SCU Read-only-memory (ROM) finishes loading code/data images from the first
container. It is responsible for initializing many aspects of the system. This includes
additional power and clock configuration and resource isolation hardware
configuration. By default, the SC firmware configures the primary boot core to own
most of the resources and launches the boot core. Additional configuration can be
done by boot code.

» System Controller Communication - Other software components in the system
communicate to the SC via an exposed API library. This library is implemented to
make Remote Procedure Calls (RPC) via an underlying Inter-Processor
Communication (IPC) mechanism. The IPC is facilitated by a hardware-based
mailbox system. Software components (Linux, QNX, FreeRTOS, MCUXpresso

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 53

System Controller

SDK) delivered for .M X8 already include ports of the client API. Other 3rd parties
will need to first port the API to their environment before the API can be used. The
porting kit release includes archives of the client API for existing SW. These can be
used as reference for porting the client API. All that needs to be implemented is the
IPC layer which will utilize messaging units (MU) to communicate with the SCFW.

* Power Management - All aspects of power management including power control,

bias control, clock control, reset control, and wake-up event monitoring are grouped
within the SC Power Management service.

* Power Control - The SC firmware is responsible for centralized management of
power controls and external power management devices. It manages the power
state and voltage of power domains as well as bias control. It also resets
peripherals as required due to power-state transitions. This is immplemented
with the API by communicating power state needs for individual resources.

* Clock Control - The SC firmware is responsible for centralized management of
clock controls. This includes clock sources such as oscillators and PLLs as well
as clock dividers, muxes, and gates. This is implemented with the API by
communicating clocking needs for individual resources.

* Reset Control - The SC firmware is responsible for reset control. This includes
booting/rebooting a partition, obtaining reset reasons, and starting/stopping of
CPUs.

Before any hardware in the SoC can be used, SW must first power up the resource
and enable any clocks that it requires, otherwise access will generate a bus error.

» Resource Management - SC firmware is responsible for managing ownership and

access permissions to system resources. The features of the resource management
service supported by SC firmware include:
* Management of system resources such as SoC peripherals, memory regions, and
pads
» Allows resources to be partitioned into different ownership groupings that are
associated with different execution environments including multiple operating
systems executing on different cores, TrustZone, and hypervisor
» Associates ownership with requests from messaging units within a resource
partition
* Allows memory to be divided into memory regions that are then managed like
other resources
» Allows owners to configure access permissions to resources
* Configures hardware components to provide hardware enforced isolation
* Configures hardware components to directly control secure/nonsecure attribute
driven on bus fabric

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

54

NXP Semiconductors

L __4
Chapter 2 System

* Provides ownership and access permission information to other system controller
functions (e.g., pad ownership information to the pad muxing functions)

* Protection of resources is provided in two ways. First, the SCFW itself checks
resource access rights when API calls are made that affect a specific resource.
Depending on the API call, this may require that the caller be the owner, parent
of the owner, or an ancestor of the owner. Second, any hardware available to
enforce access controls is configured based on the RM state. This includes the
configuration of IP such as XRDC2, XRDC, or RDC, as well as management
pages of IP like CAAM.

 Pad Configuration - Pad configuration is managed by SC firmware. The pad
configuration features supported by the SC firmware include:

* Configuring the mux, input/output connection, and low-power isolation mode.

 Configuring the technology-specific pad setting such as drive strength, pullup/
pulldown, etc.

* Configuring compensation for pad groups with dual voltage capability.

e Timers - Many timer oriented services are grouped within the SC Timer service. This
includes watchdogs, RTC, and system counter.

* Watchdog - The SC firmware provides "virtual" watchdogs for all execution
environments. Features include update of the watchdog timeout, start/stop of the
watchdog, refresh of the watchdog, return of the watchdog status such as
maximum watchdog timeout that can be set, watchdog timeout interval, and
watchdog timeout interval remaining.

* Real-Time-Clock - The SC firmware is responsible for providing access to the
RTC. Features include setting the time, getting the time, and setting alarms.

» System Counter - The SC firmware is responsible for providing access to the
SYSCTR. Features incude setting an absolute alarm or a relative, periodic alarm.
Reading is done directly via local hardware interfaces available for each CPU.

* Interrupts - The System Controller needs a method to inform users about
asynchronous notification events. This is done via the Interrupt service. The service
provides APIs to enable/disable interrupts to the user and to read the status of
pending interrupts. Reading the status automatically clears any pending state.

* Miscellaneous - On previous 1.MX 6 and 7 devices, miscellaneous features were
controlled using IOMUX GPR registers with signals connected to configurable
hardware. This functionality is being replaced with DSC GPR signals. SC firmware
1s responsible for programming the GPR signals to configure these subsystem
features. The SC firmware also responsible for monitoring various temperature,
voltage, and clock sensors.

* Controls - The SC firmware provides access to miscellaneous controls. Features
include software request to set (write) miscellaneous controls and software
request to get (read) miscellaneous controls.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 55

A
Boot Image
* Security - The SC firmware provides access to several security functions
including image loading and authentication.
* DMA - The SC firmware provides access to DMA channel grouping and priority
functions.
* Temp - The SC firmware provides access to temperature sensors.

With this abstraction some hardware described in the SoC Reference Manual that 1s used
by the SCFW is not directly accessible to other cores. This includes the following

 All resources in the SCU subsystem (SCU M4, SCU LPUART, SCU LPI2C, etc.).

 All resource accessed via MSI links from the SCU subsystem (inc. pads, DSC,
XRDC2, eCSR)

e OCRAM controller, CAAM MP, eDMA MP and LPCG

* DB STC and LPCG, IMG GPR

* GIC/IRQSTR LPCG, IRQSTR.SCU and IRQSTR.CTI

* Any other resources reserved by the port of the SCFW to the board

The System Controll firmware known as SCFW provided with each release works with
associated i.MX reference boards and a porting kit is provided that provides a subset of
source that can be customized for new boards. This porting kit is avaiable on nxp.com
and includes a porting guide.

2.3 Boot Image

2.3.1 Introduction

For 1.MX 6 and 1.MX 7, the boot image uses only the U-Boot bootloader. For the SoC in
the 1.MX 8 series, the boot image is more complex and includes U-Boot as well various
firmware required for a successful boot. This chapter describes the additional components
for an 1.MX 8 series boot loader.

For 1.MX 7ULP, the boot partition requires the Arm Cortex M-4 SDK flash since the
Arm Cortex M-4 boots the U-Boot boot loader, but other 1.MX 6 and 1.MX7 with Arm
Cortex M-4 cores do not require this for succesful boot.

The 1.MX 8 bootloader is created using imx-mkimage tool available on imx-mkimage on
code aurora forum/ and all i.MX 8 Series require Arm trusted firmware available on imx-
atf on code aurora forum/.

For details on how to use the imx-mkimage tool to create an i.MX boot partition, refer to
the i.MX Linux User's Guide. This tool for execution requires the following components.

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
56 NXP Semiconductors

https://source.codeaurora.org/external/imx/imx-mkimage/
https://source.codeaurora.org/external/imx/imx-mkimage/
https://source.codeaurora.org/external/imx/imx-atf/
https://source.codeaurora.org/external/imx/imx-atf/

4
Chapter 2 System

For 1.MX 8M Quad, i.MX 8M Mini, and i.MX 8M Nano, the following firmware is
needed:

e Synopys DDR frimware.

* Signed HDMI firmware - that integrates with the DCSS driver. HDMI firmware is
for 1.MX 8MQuad only.

e Arm Trusted firmware - bl31-*soc*.

For 1.MX 8QuadMax, the following firmware is needed:

» System Controller Firmware (SCFW)
* Arm Trusted firmware - bl31-*soc*
* SECO firmware container image (ahab-container.img) for BO

For 1.MX 8QuadXPlus, the following firmware is needed:

* System Controller Firmware (SCFW)
e Arm Trusted firmware - bl31-*soc*
* SECO firmware container image (ahab-container.img)

All the i.MX series require Arm trusted firmware and U-boot. Also i.MX SoC supporting
OP-TEE (all i.MX 6, 7 and 8M families) enabled with OP-TEE boot need the tee.bin
created from building optee_ox.

Type 1 hypervisors like Xen are part of the boot loader. However, Type 2 hypervisors
such as jailhouse and kvm are not.

2.4 Anatop Regulator Driver

2.4.1 Introduction

The Anatop regulator driver provides the low-level control of the power supply
regulators, and selection of voltage levels.

This device driver makes use of the regulator core driver to access the Anatop hardware
control registers and is only supported on i.MX 6 and i.MX 7.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 57

Anatop Regulator Driver

2.4.2 Hardware Operation

The Power Management Unit on the die is built to simplify the external power interface
and allow the die to be configured in a power appropriate manner. The power system
consists of the input power sources and their characteristics, the integrated power
transforming and controlling elements, and the final load interconnection and
requirements.

Utilizing 7 LDO regulators, the number of external supplies is greatly reduced. If the
backup coin and USB inputs are neglected, then the number of external supplies is
reduced to two. Missing from this external supply total are the necessary external
supplies to power the desired memory interface. This will change depending on the type
of external memory selected. Other supplies might also be necessary to supply the
voltage to the different I/O power segments if their I/O voltage needs to be different than
what is provided above.

Some internal regulator can be bypassed, so that the external PMIC can supply power
directly to decrease power number, such as VDD_SOC and VDD_ARM.

2.4.3 Software Operation

The Anatop regulator client driver performs operations by reconfiguring the Anatop
hardware control registers. This is done by calling regulator core APIs with the required
register settings.

2.4.4 Driver Features

The Anatop regulator driver is based on regulator core driver. A list of services provided
for regulator control can be found here.

» Switch ON/OFF all voltage regulators.
* Set the value for all voltage regulators.
 Get the current value for all voltage regulators.

2.4.5 Driver Interface Details

Access to the Anatop regulator is provided through the API of the regulator core driver.
The Anatop regulator driver provides the following regulator controls:

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
58 NXP Semiconductors

Chapter 2 System

e Seven LDO regulators

 All of the regulator functions are handled by setting the appropriate Anatop hardware
register values. This is done by calling the regulator core APIs to access the Anatop
hardware registers.

2.4.6 Regulator APIs

The regulator power architecture is designed to provide a generic interface to voltage and
current regulators within the Linux kernel. It is intended to provide voltage and current
control to client or consumer drivers and also provide status information to user space
applications through a sysfs interface. The intention is to allow systems to dynamically
control regulator output to save power and prolong battery life. This applies to both
voltage regulators (where voltage output is controllable) and current sinks (where current
output is controllable).

For more details visit opensource.wolfsonmicro.com/node/15

Under this framework, most power operations can be done by the following unified API
calls:

* regulator_get Used to lookup and obtain a reference to a regulator:

e Struct regulator *regulator get (struct device *dev, const char *id);

* regulator_put Used to free the regulator source:

e void regulator put (struct regulator *regulator, struct device *dev);

* regulator_enable USed to enable regulator output:
e 1int regulator_ enable(struct regulator *regulator) ;

* regulator_disable USed to disable regulator output:

e 1nt regulator disable(struct regulator *regulator);

* regulator_is_enabled 1S the regulator output enabled:

e 1int regulator is enabled(struct regulator *regulator) ;

* regulator_set_voltage USed to set regulator output voltage:
e 1nt regulator_set voltage(struct regulator *regulator, int uv);

* regulator_get_voltage USed to get regulator output voltage:

e 1nt regulator get voltage (struct regulator *regulator);

For more APIs and details in the regulator core source code inside the Linux kernel see:
drivers/regulator/core.c.

2.4.7 Source Code Structure

The Anatop regulator driver is located in the drivers/regulator directory:

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 59

http://opensource.wolfsonmicro.com/node/15

Power Management

Table 2-8. Anatop Power Management Driver Files

File Description

drivers/regulator/core.c Regulator interface

drivers/regulator/anatop-regulator.c Anatop regulator client driver

The Anatop regulators are registered in each SoC-specific dts file in arch/arm/boot/dts.

2.4.8 Menu Configuration Options
In menu configuration enable the following module:

* Device Drivers > Voltage and Current regulator support > Anatop Regulator
Support.
* System Type > Freescale 1.MX on-chip ANATOP LDO regulators.

2.5 Power Management

2.5.1 Low Level Power Management (PM)

2.5.1.1 Introduction

Information found here describes the low-level Power Management (PM) driver which
controls the low-power modes.

The following describes the differences between how power management is handled for
each supported 1.MX family.

Table 2-9. Power Management Modes

i.MX Family Supported Low Power Modes
i.MX 6 RUN, WAIT, STOP, and DORMANT
i.MX 7 RUN, WAIT, STOP, DORMANT, and LPSR
i.MX 8M RUN, IDLE, SUSPEND, and SNVS
i.MX 8 and i.MX 8X None - handled by the System Controller

Table below lists the detailed clock information for the different low power modes.

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
60 NXP Semiconductors

4
Chapter 2 System

Table 2-10. Low Power Modes

Mode Core Modules PLL CKIH/FPM CKIL
RUN Active Active, Idle or Disable On On On
WAIT Disable Active, Idle or Disable On On On
STOP Disable Disable Off On On
LPSR Power off Disable Off Off On
DORMANT Power off Disable Off Off On
SNVS Power off Disable Off Off On

For detailed information about low power modes, see the Applications Processor
Reference Manual associated with SoC.

2.5.1.2 Software Operation

The 1.MX 6 and i.MX 7 power management driver maps the low-power modes to the
kernel power management states as listed below:

e Standby-maps to STOP mode, which offers significant power saving, as all blocks in
the system are put into a low-power state, except for Arm® core, which is still
powered on, and memory is placed in self-refresh mode to retain its contents.

e Mem (suspend to RAM) maps to DORMANT mode, which offers most significant
power saving, as all blocks in the system are put into a low-power state, except for
memory, which is placed in self-refresh mode to retain its contents. If there is
"fsl,enable-lpsr" defined in DTB ocrams node, mem is mapped to LPSR mode
instead of DORMANT, and all the blocks in the system are put into power off state,
except the LPSR, SNVS, and DRAM power domains.

e System idle maps to WAIT mode.

o If Arm Cortex®-M4 processor is alive together with Arm Cortex-A processor before
the kernel enters standby/mem mode, and if Arm Cortex-M4 processor is not in its
low-power idle mode, Arm Cortex-A processor triggers the SOC to enter WAIT
mode instead of STOP mode to make sure that Arm Cortex-M4 processor can
continue running.

The 1.MX 6 and i.MX 7 power management driver performs the following steps to enter
and exit low power mode:

1. Allow the Cortex-A platform to issue a deep sleep mode request.
2. If STOP or DORMANT mode:
e Program 1.MX 6 CCM_CLPCR or 1.MX 7 GPC_LPCR_A7_BSC and
GPC_SLPCR registers to set low-power control register.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 61

A
Power Management
e If DORMANT mode, request switching off CPU power when pdn_req is
asserted.
* Request switching off embedded memory peripheral power when pdn_req is
asserted.
* Program GPC mask register to unmask wakeup interrupts.
Call cpu_do_idle to execute WFI pending instructions for wait mode.
Execute imx6_suspend or imx7_suspend in IRAM.
In DORMANT mode, save Arm context, and change the drive strength of DDR
PADs as "low" to minimize the power leakage in DDR PADs. Execute WFI pending
instructions for stop mode.
6. Generate a wakeup interrupt and exit low-power mode. In DORMANT mode, restore
Arm core and DDR drive strength.

bl

In DORMANT mode, the i.MX 6 and 1.MX 7 can assert the PMIC_STBY_REQ pin to
the PMIC and request a voltage change. The U-Boot or Machine-Specific Layer (MSL)
usually sets the standby voltage in STOP mode according to 1.MX 6 and 1.MX 7 data
sheet.

On i.MX 8M Family the power management driver uses the following modes.

* RUN Mode: In this mode, the Quad-A53 CPU core is active and running. Some
portions can be shut off for power saving.

* IDLE Mode: This mode is defined as a mode which CPU can automatically enter
when there is no thread running and all high-speed devices are not active. The CPU
can be put into power gated state but with L2 data retained, DRAM and bus clock are
reduced, and most of the internal logics are clock gated but still remain powered.

e SUSPEND Mode: This mode is defined as the most power saving mode where all the
clocks are off and all the unnecessary power supplies are off. Cortex-A53 CPU
platform is fully power gated. All the internal digital logics and analog circuits that
can be powered down will be off.

* SNVS Mode: This mode is also called RTC mode. In this mode, only the power for
the SNVS domain remains on to keep RTC and SNVS logic alive.

On 1.MX 8 and 1.MX 8X:

* No hardware low-power mode is available.

* All low-power modes are implemented in system controller firware (SCFW) using
software method.

* SCFW powers off clusters/CPUs when the system is suspended.

2.5.1.3 Source Code Structure

Table below shows Power Management driver source files.

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
62 NXP Semiconductors

4
Chapter 2 System

Table 2-11. Power Management Driver Files

File

Description

¢ arch/arm/mach-imx/pm-imx6.c
¢ arch/arm/mach-imx/suspend-imx6.S
arch/arm/mach-imx/cpuidle-imx6q.c

Supports i.MX 6 QuadPlus/Quad/Dual/Solo power
management operation

arch/arm/mach-imx/pm-imx6.c
arch/arm/mach-imx/suspend-imx6.S
arch/arm/mach-imx/cpuidle-imx6sll.c
arch/arm/mach-imx/imx6sll_low_power_idle.S

Supports i.MX 6 SLL power management operation

arch/arm/mach-imx/pm-imx6.c
arch/arm/mach-imx/suspend-imx6.S
arch/arm/mach-imx/cpuidle-imx6ul.c
arch/arm/mach-imx/imx6ul_low_power_idle.S

Supports i.MX 6 UltraLite power management operation

arch/arm/mach-imx/pm-imx6.c
arch/arm/mach-imx/suspend-imx6.S
arch/arm/mach-imx/cpuidle-imx6ul.c
arch/arm/mach-imx/imx6ull_low_power_idle.S

Supports i.MX 6 ULL power management operation

arch/arm/mach-imx/pm-imx6.c
arch/arm/mach-imx/suspend-imx6.S
arch/arm/mach-imx/cpuidle-imx6sx.c
arch/arm/mach-imx/imx6sx_low_power_idle.S

Supports i.MX 6 SoloX power management operation

arch/arm/mach-imx/pm-imx7.c
arch/arm/mach-imx/suspend-imx7.S
arch/arm/mach-imx/cpuidle-imx7d.c
arch/arm/mach-imx/imx7d_low_power_idle.S

Supports i.MX 7Dual power management operation

arch/arm/mach-imx/pm-imx7ulp.c
* arch/arm/mach-imx/suspend-imx7ulp.S
 arch/arm/mach-imx/cpuidle-imx7.c

Supports i.MX 7ULP power management operation

¢ drivers/soc/pm-domain-imx8.h

Supports i.MX 8, 8X and 8M power domains

ARM Trusted firmware exists in imx-atf on code aurora
forum/.

Supports i.MX 8, 8X, and 8M use arm trusted firmware for
power management operation

2.5.1.4 Menu Configuration Options
In menu configuration enable the CONFIG_PM: CONFIG_PM builds support for power

management. By default, this option is Y In menuconfig, this option is available under:

Power management options > Power Management support.

In menu configuration enable the CONFIG_SUSPEND. CONFIG_SUSPEND builds

support for suspend. In menuconfig, this option is available under: Power management
options > Suspend to RAM and standby

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

NXP Semiconductors

63

https://source.codeaurora.org/external/imx/imx-atf/
https://source.codeaurora.org/external/imx/imx-atf/

Power Management

2.5.1.5 Programming Interface

Look in the cpu_idle for each SoC as shown in the source code structure table and search
for Ipm. This will be the API for lower power mode. This implements all the steps
required to put the system into WAIT and STOP modes.

2.5.2 PMIC PF Regulator

2.5.2.1 Introduction
PF100/200/300 is a PMIC chip.

PF200/PF3000 is based on PF100 with little change, since they share the same PF100
driver. PF100 regulator driver provides the low-level control of the power supply
regulators, selection of voltage levels, and enabling/disabling of regulators. This device
driver makes use of the PF100 regulator driver to access the PF100 hardware control
registers. PF100 regulator driver is based on regulator core driver and it is attached to

kernel 12C bus.

PF8100/8200 PMIC is designed for 1.MX 8 and 1.MX 8X families and is controlled by
system controller firmware (SCFW) since it is a system-level device. SCFW creates some
specific power resource for the Linux touch, such as "SC_R_BOARD_RO0".

2.5.2.2 Hardware Operation

PMIC PF regulator provides reference and supply voltages for the application processor
and peripheral devices.

Four buck (step down) converters (up to 6 independent output) and one boost (step up)
converter are included. The buck converters provide the power supply to processor cores
and to other low voltage circuits such as memory. Dynamic voltage scaling is provided to
allow controlled supply rail adjustments for the processor cores and/or other circuitry.

Linear regulators are directly supplied from the battery or from the switchers and include
supplies for I/O and peripherals, audio, camera, BT, WLAN, and so on. Naming
conventions are suggestive of typical or possible use case applications, but the switchers
and regulators may be utilized for other system power requirements within the guidelines
of specified capabilities.

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
64 NXP Semiconductors

L __4

Chapter 2 System
The only power on event of PF100 is PWRON is high, and the only power off event of
PF100 is PWRON is low. PMIC_ON_REQ pin of i.MX 6, which is controlled by SNVS
block of 1.MX 6, will connect with PWRON pin of PF100 to control PF100 on/off, so
that system can power off.

2.5.2.3 Software Operation

PMIC PF regulator client driver performs operations by reconfiguring the PMIC
hardware control registers.

Some of the PMIC power management operations depend on the system design and
configuration. For example, if the system is powered by a power source other than the
PMIC, then turning off or adjusting the PMIC voltage regulators has no effect.
Conversely, if the system is powered by the PMIC, then any changes that use the power
management driver and the regulator client driver can affect the operation or stability of
the entire system.

2.5.2.4 Driver Features

PMIC PF regulator driver is based on regulator core driver. It provides the following
services for regulator control of the PMIC component:

e Switch ON/OFF all voltage regulators.
 Set the value for all voltage regulators.
* Get the current value for all voltage regulators.

2.5.2.5 Regulator APIs

The regulator power architecture is designed to provide a generic interface to voltage and
current regulators within the Linux kernel.

It is intended to provide voltage and current control to client or consumer drivers and to
provide status information to user space applications through a sysfs interface. The
intention is to allow systems to dynamically control regulator output to save power and
prolong battery life. This applies to both voltage regulators (where voltage output is
controllable) and current sinks (where current output is controllable).

For more details, see opensource.wolfsonmicro.com/node/15

Under this framework, most power operations can be done by the following unified API
calls:

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 65

http://opensource.wolfsonmicro.com/node/15

Power Management
* regulator_get 1S an unified API call to lookup and obtain a reference to a regulator:

struct regulator *regulator get (struct device *dev, const char *id);

* regulator_put 1S an unified API call to free the regulator source:

void regulator_put (struct regulator *regulator, struct device *dev);

* regulator_enable 1S an unified API call to enable regulator output:

int regulator enable(struct regulator *regulator) ;

* regulator_disable 1S an unified API call to disable regulator output:

int regulator disable(struct regulator *regulator);
* regulator_is_enabled 1S the regulator output enabled:

int regulator is enabled(struct regulator *regulator);

* regulator_set_voltage 1S an unified API call to set regulator output voltage:

int regulator set voltage(struct regulator *regulator, int uV);

* regulator_get voltage 1S an unified API call to get regulator output voltage:

int regulator get voltage(struct regulator *regulator) ;

You can find more APIs and details in the regulator core source code inside the Linux
kernel at:

drivers/regulator/core.c

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
66 NXP Semiconductors

2.5.2.6 Driver Architecture

The following figure shows the basic architecture of the PMIC PF regulator driver.

Device drivers

o

PF100 driver

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

Regulator core driver

l

PF100 regulator driver

|2C or SPI driver

Chapter 2 System

NXP Semiconductors

67

Power Management

2.5.2.7 Driver Interface Details
Access to PFUZE100 regulator is provided through the API of the regulator core driver.
PFUZE100 regulator driver provides the following regulator controls:

* 4 buck switch regulators on normal mode (up to 6 independent rails): SW1AB,
SWI1C, SW2, SW3A, SW3B, and SW4.

* Buck switch can be programmed to a state of standby with specific register

(PFUZE100_SWxSTANDBY) in advance.

6 Linear Regulators: VGEN1, VGEN2, VGEN3, VGEN4, VGENS, and VGENG®6.

1 LDO/Switch supply for VSNVS support on 1.MX processors.

I Low current, high accuracy, voltage reference for DDR Memory reference voltage.

1 Boost regulator with USB OTG support.

Most power rails from PFUZE100 have been programmed properly according to the

hardware design. Therefore, you can't find the kernel using PFUZE100 regulators.

PFUZE100 regulator driver has implemented these regulators so that customers can

use it freely if default PFUZE100 value can't meet their hardware design.

2.5.2.8 Source Code Structure

The PFUZE regulator driver is located in the drivers/regulator directory:

Table 2-12. PFUZE Driver Files

File Description
drivers/regulator/pfuze100-regulator.c Implementation of the PFUZE100 regulator client driver.
drivers/regulator/pf1550.c Implementation of the PFUZE1550 regulator client driver.
drivers/regulator/pf1550-regulator-rpmsg.c Implementation of the PFUZE150 regulator RPMSG code.

There is no board file related to PMIC. Some PFUZE driver code was moved to U-Boot,
such as standby voltage setting. Some code is implemented by DTS file. Search for
PFUZE100 in Uboot source and pfuze in device trees dtsi files in 1.MX 6 and 1.MX7 in
arch/arm/boot/dts and for i.MX 8M in arch/arm64/boot/dts.

2.5.2.9 Menu Configuration Options

In menu configuration enable the following module:

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
68 NXP Semiconductors

4
Chapter 2 System

Device Drivers > Voltage and Current regulator support > Freescale
PFUZE100/200/3000 regulator driver.

2.5.3 CPU Frequency Scaling (CPUFREQ)

2.5.3.1 Introduction

The CPU frequency scaling device driver allows the clock speed of the CPU to be
changed on the fly. Once the CPU frequency is changed, the voltage of the necessary
power supplies are changed to the voltage value defined in device tree scripts (DTS).
This method can reduce power consumption (thus saving battery power), because the
CPU uses less power as the clock speed is reduced.

2.5.3.2 Software Operation

The CPUFREQ device driver is designed to change the CPU frequency and voltage on
the fly.

If the frequency is not defined in DTS, the CPUFREQ driver changes the CPU frequency
to the nearest higher frequency in the array. The frequencies are manipulated using the
clock framework API, while the voltage is set using the regulators API. The CPU
frequencies in the array are based on the boot CPU frequency. Interactive CPU frequency
governor is used which cannot be changed manually. To change CPU frequency
manually, the userspace CPU frequency governor can be used. By default, the
conservative CPU frequency governor is used.

See the API document for more information on the functions implemented in the driver.

To view what values the CPU frequency can be changed to in KHz (the values in the first
column are the frequency values), use this command:

cat /sys/devices/system/cpu/cpul/cpufreq/stats/time in state

To change the CPU frequency to a value that is given by using the command above (for
example, to 792 MHz) use this command:

echo 792000 > /sys/devices/system/cpu/cpul/cpufreq/scaling setspeed

The frequency 792000 is in KHz, which is 792 MHz.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 69

Power Management

The maximum frequency can be checked using this command:
cat /sys/devices/system/cpu/cpul/cpufreq/scaling max freqg
Use the following command to view the current CPU frequency in KHz:
cat /sys/devices/system/cpu/cpu0/cpufreq/cpuinfo cur freg
Use the following command to view available governors:
cat /sys/devices/system/cpu/cpu0/cpufreq/scaling available governors
Use the following command to change to interactive CPU frequency governor:

echo interactive > /sys/devices/system/cpu/cpu0/cpufreq/scaling governor

2.5.3.3 Source Code Structure

Table below shows the source files and headers available in the following directory:

Table 2-13. CPUFREQ Driver Files

File Description
drivers/cpufreq/imx6qg-cpufreq.c i.MX 6 CPUFREQ functions
drivers/cpufreq/imx7-cpufreq.c i.MX 7 CPUFREQ functions
drivers/cpufreq/imx7ulp-cpufreq.c i.MX 7ULP CPUFREQ functions
drivers/cpufreq/imx8-cpufreq.c i.MX 8 and i.MX 8X CPUFREQ functions
drivers/cpufreq/imx8mq-cpufreq.c i.MX 8M CPUFREQ functions

For CPU frequency working point settings, see the SOC corresponding dtsi file in
arch/arm/boot/dts for 1.MX 6 and 1.MX7 and arch/arm64/boot/dts for 1.MX 8, 1. MX 8X
and 1.MX 8M.

2.5.3.4 Menu Configuration Options
The following Linux kernel configuration is provided for this module:
e CONFIG_CPU_FREQ; In menuconfig, this option is located under:

* CPU Power Management > CPU Frequency scaling
» The following options can be selected:

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
70 NXP Semiconductors

L __4
Chapter 2 System
e CPU Frequency scaling
* CPU frequency translation statistics
* Default CPU frequency governor (conservative)(interactive)
 Performance governor
* Powersave governor
» Userspace governor for userspace frequency scaling
e Interactive CPU frequency policy governor
* Conservative CPU frequency governor
 Schedutil CPU frequency governor
e CPU frequency driver for 1.MX CPUs

2.5.4 Dynamic Bus Frequency

2.5.4.1 Introduction

To improve power consumption, the Bus Frequency driver dynamically manages the
various system frequencies for .MX 6, 1.MX 7, and 1.MX 8M families.

The frequency changes are transparent to the higher layers and require no intervention
from the drivers or middleware. Depending on activity of the peripheral devices and CPU
loading, the bus frequency driver varies the DDR frequency between 24 MHz and its
maximum frequency. Similarly, the AHB frequency is varied between 24 MHz and its
maximum frequency.

2.5.4.2 Operation

The Bus Frequency driver is part of the power management module in the Linux BSP.
The main purpose of this driver is to scale the various operating frequency of the system
clocks (like AHB, DDR, AXI etc.) based on peripheral activity and CPU loading.

2.5.4.3 Software Operation

The bus frequency depends on the request and release of device drivers for its operation.
Drivers will call bus frequency APIs to request or release the bus setpoint they want. The
bus frequency will set the system frequency to highest frequency setpoint based on the
peripherals that are currently requesting.

To enable the bus frequency driver, use the following command:

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 71

Power Management

echo 1 > /sys/bus/platform/drivers/imx busfreqg/soc\:busfreqg/enable
To disable the bus frequency driver, use the following command:
echo 0 > /sys/bus/platform/drivers/imx busfreqg/soc\:busfreq/enable

If Arm Cortex-M4 processor is alive with Arm Cortex-A processor together, Arm
Cortex-M4 processor also requests or releases bus frequency high setpoint for its
operation. This means that Arm Cortex-A processor treats Arm Cortex-M4 processor as
one of its high-speed devices.

The setpoint modes do the following:

* High Frequency Setpoint mode is used when most peripherals that need higher
frequency for good performance are active. For example, video playback and
graphics processing.

* Audio Playback setpoints mode is used in audio playback mode.

* Low Frequency setpoint mode is used when the system is idle waiting for user input
(display is off). For 8M, this mode is used when no peripheral device request high
mode or audio mode.

The following table explains the software setpoints for each Family.

Table 2-14. BusFrequency Set Points

SoC Setpoints

MX6 * High Frequency Setpoint: AHB is at 132 MHz, AXI is at 264 MHz.

* Audio Playback setpoints: On i.MX 6, AHB is at 25 MHz, AXI is at 50 MHz, and DDR is at 50
MHz for DDR3 and 100 MHz for LPDDR2..

* Low Frequency setpoint: AHB is at 24 MHz, AXI is at 24 MHz, and DDR is at 24 MHz.

MX 7Dual * High Frequency Setpoint: AHB is at 135 MHz, AXI is at 332 MHz, and DDR is at the maximum
frequency.

¢ Audio Playback setpoints: AHB is at 24 MHz, AXl is at 24 MHz, and DDR is at 100 MHz.

* Low Frequency setpoint: AHB is at 24 MHz, AXI is at 24 MHz, and DDR is at 24 MHz.

MX8M * High bus frequency mode: The DDRC core clock is set to 800 MHz. The DDRC APB clock is
set to 200 MHz. The NOC clock is set to 800 MHz. The main AXI cock is set to 333 MHz, and
the AHB clock is set to 133 MHz.

¢ Audio bus frequency mode: The DDRC core clock is set to 25 MHz, The DDRC APB clock is
set to 20 MHz, the NOC clock is set to 100 MHz. Tthe main AXI clock is set to 25 MHz, and
the AHB clock is set to 20 MHz. The DDR PLL is powered down for power saving.

¢ Low bus frequency mode: The DDRC core clock is set to 25 MHz. The DDRC APB clock is
set to 20 MHz. The NOC clock is set to 100 MHz. The main AXI clock is set to 25 MHz. The
AHB clock is set to 20MHz. The DDR PLL is powered down for power saving.

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
72 NXP Semiconductors

4
Chapter 2 System

2.5.4.4 Source Code Structure

The following table lists the source files and headers:

Table 2-15. BusFrequency Driver Files

File

Description

arch/arm/mach-imx/busfreg-imx.c

i.MX 6 and i.MX 7 Bus Frequency functions

include/linux/busfreqg-imx.h

i.MX Bus Frequency API Definitions

arch/arm/mach-imx/busfreq_ddr3.c

i.MX 6 and i.MX 7 DDR3 Bus Frequency functions

arch/arm/mach-imx/busfreq_lpddr2.c

i.MX 6 and i.MX 7 LPDDR2 Bus Frequency functions

arch/arm/mach-imx/lpddr2_freq_imx6.S

i.MX 6 LPDDR2 Bus Frequency functions

arch/arm/mach-imx/lpddr2_freq_imx6q.S

i.MX 6 QuadPlus/Quad/Dual/Solo LPDDR2 Bus Frequency functions

arch/arm/mach-imx/lpddr2_freq_imx6sll.S

i.MX 6 SLL LPDDR2 Bus Frequency functions

arch/arm/mach-imx/lpddr2_freq_imx6sx.S

i.MX 6 SoloX LPDDR2 Bus Frequency functions

arch/arm/mach-imx/lpddr3_freq_imx.S

i.MX 6 and i.MX 7 LPDDR3 Bus Frequency functions

arch/arm/mach-imx/ddr3_freq_imx6.S

i.MX 6 Bus Frequency functions

arch/arm/mach-imx/ddr3_freq_imx6sx.S

i.MX 6 SoloX Bus Frequency functions

arch/arm/mach-imx/ddr3_freq_imx7d.S

i.MX 7 Dual DDR3 Bus Frequency functions

drivers/doc/imx/busfreg-imx8mg.c

i.MX 8M Bus Frequency functions

Bus frequency modes are defined in the SoC dtsi files in arch/arm/boot/dts for i.MX 6
and 1.MX 7 and arch/arm64/boot/dts for 1.MX 8M.

2.5.4.5 Menu Configuration Options

There are no menu configuration options for this driver. The Bus Frequency drivers are
included and enabled by default for the SoC that support bus frequency drivers.

2.5.5 Battery Charging

2.5.5.1

Battery Charging is supported by the max8903-charger for the 1.MX 6 SABRE SD
boards.

Introduction

2.5.5.2 Software Operation

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 73

A
OProfile

2.5.5.3 Source Code Structure

The battery charging source is based in drivers/power/supply/sabresd_battery.c

2.5.5.4 Menu Configuration Options
In menu configuration enable the following module:

Device Drivers > Power supply class support > Sabresd Board Battery DC-DC Charger
for USB and Adapter Power.

2.6 OProfile

2.6.1 Introduction
OProfile is a system-wide profiler capable of profiling all running code at low overhead.

OProfile consists of a kernel driver, a daemon for collecting sample data, and several
post-profiling tools for turning data into information.

2.6.1.1 Overview

OProfile leverages the hardware performance counters of the CPU to enable profiling of
a wide variety of interesting statistics, which can also be used for basic time-spent
profiling.

All code is profiled: hardware and software interrupt handlers, kernel modules, the
kernel, shared libraries, and applications.

2.6.1.2 Features
OProfile has the following features.

* Unobtrusive-No special recompilations or wrapper libraries are necessary. Even
debug symbols (-g option to gcc) are not necessary unless users want to produce
annotated source. No kernel patch is needed; just insert the module.

* System-wide profiling-All code running on the system is profiled, enabling analysis
of system performance.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
74 NXP Semiconductors

L __4
Chapter 2 System

e Performance counter support-Enables collection of various low-level data and
association for particular sections of code.

* Call-graph support-OProfile can provide gprof-style call-graph profiling data.

* Low overhead-OProfile has a typical overhead of 1-8% depending on the sampling
frequency and workload.

* Post-profile analysis-Profile data can be produced on the function-level or
instruction-level detail. Source trees, annotated with profile information, can be
created. A hit list of applications and functions that utilize the most CPU time across
the whole system can be produced.

 System support-Works with any 1.MX supported kernel.

2.6.1.3 Hardware Operation
OProfile is a statistical continuous profiler.

Profiles are generated by regularly sampling the current registers on each CPU (from an
interrupt handler, the saved PC value at the time of interrupt is stored), and converting
that runtime PC value into something meaningful to the programmer.

OProfile achieves this by taking the stream of sampled PC values, along with the detail of
which task was running at the time of the interrupt, and converting the values into a file
offset against a particular binary file. Each PC value is thus converted into a tuple (group
or set) of binary-image offset. The userspace tools can use this data to reconstruct where
the code came from, including the particular assembly instructions, symbol, and source
line (through the binary debug information if present).

Regularly sampling the PC value like this approximates what actually was executed and
how often and, more often than not, this statistical approximation is good enough to
reflect reality. In common operation, the time between each sample interrupt is regulated
by a fixed number of clock cycles. This implies that the results reflect where the CPU is
spending the most time. This is a very useful information source for performance
analysis.

The ARM CPU provides hardware performance counters capable of measuring these
events at the hardware level. Typically, these counters increment once per each event and
generate an interrupt on reaching some pre-defined number of events. OProfile can use
these interrupts to generate samples and the profile results are a statistical approximation
of which code caused how many instances of the given event.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 75

A
OProfile

2.6.1.4 Architecture-specific Components

OProfile supports the hardware performance counters available on a particular
architecture. Code for managing the details of setting up and managing these counters can
be located in the kernel source tree in the relevant arch/arm/oprofile directory. The
architecture-specific implementation operates through filling in the oprofile_operations
structure at initialization. This provides a set of operations, such as setup(), start(), stop(),
and so on, that manage the hardware-specific details the performance counter registers.

The other important facility available to the architecture code is oprofile_add_sample().
This is where a particular sample taken at interrupt time is fed into the generic OProfile
driver code.

2.6.1.5 oprofilefs Pseudo Filesystem

OProfile implements a pseudo-filesystem known as oprofilefs, which is mounted from
userspace at /dev/oprofile. This consists of small files for reporting and receiving
configuration from userspace, as well as the actual character device that the OProfile
userspace receives samples from. At setup() time, the architecture-specific code may add
further configuration files related to the details of the performance counters. The
filesystem also contains a stats directory with a number of useful counters for various
OProfile events.

2.6.1.6 Generic Kernel Driver

The generic kernel driver resides in drivers/oprofile, and forms the core of how OProfile
operates in the kernel. The generic kernel driver takes samples delivered from the
architecture-specific code (through oprofile_add_sample()), and buffers this data (in a
transformed configuration) until releasing the data to the userspace daemon through

the /dev/oprofile/buffer character device.

2.6.1.7 OProfile Daemon

The OProfile userspace daemon takes the raw data provided by the kernel and writes it to
the disk. It takes the single data stream from the kernel and logs sample data against a
number of sample files (available in /var/lib/oprofile/samples/current/). For the benefit of
the separate functionality, the names and paths of these sample files are changed to
reflect where the samples were from. This can include thread IDs, the binary file path, the
event type used, and more.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
76 NXP Semiconductors

4
Chapter 2 System

After this final step from interrupt to disk file, the data is now persistent (that is, changes
in the running of the system do not invalidate stored data). This enables the post-profiling
tools to run on this data at any time (assuming the original binary files are still available
and unchanged).

2.6.1.8 Post Profiling Tools

The collected data must be presented to the user in a useful form. This is the job of the
post-profiling tools. In general, they collate a subset of the available sample files, load
and process each one correlated against the relevant binary file, and produce user
readable information.

2.6.1.9 Interrupt Requirements

The number of interrupts generated with respect to the OProfile driver are numerous. The
latency requirements are not needed.

The rate at which interrupts are generated depends on the event.

2.7 Pulse-Width Modulator (PWM)

2.7.1 Introduction

The pulse-width modulator (PWM) has a 16-bit counter and is optimized to generate
sound from stored sample audio images and generate tones. The PWM also provides
control for the back light.

The PWM has 16-bit resolution and uses a 4x16 data FIFO to generate sound. The
software module is composed of a Linux driver that allows privileged users to control the
backlight by the appropriate duty cycle of the PWM Output (PWMO) signal.

2.7.2 Hardware Operation
The figure below shows the PWM block diagram.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 77

Pulse-Width Modulator (PWM)

Clack off 5}:"‘:1'1!'111
Peripheral
ipg_l:]l-: = 12 bit Bus
—_—
pz_clk_ighireq Prescaler
- Prescaler Clock
ipg_clk_32k - Outpur (FCLE)
IRQ B

CLESRC
I¢ 16-bit Counter
f——
-—— P lmtenmpn R&gisrer

|« CMPIE <:
= CMP <L_ | 16-bit Period
* CMIP Register
PO s |-
I - /’C/":I:/ 16-11
£ -bit Sample
'ﬂ'l ROV \\4: Register
POUTC - —_ __I__ _ — —
- - ———
e 27
— ROVIE T T T T N
- Iyl axiseaFrFo |l
| | | L - = |_|
=~— [RQEN | - —— — — —— - - _IJ
L — — _|

Figure 2-2. PWM Block Diagram

The PWM follows IP Bus protocol for interfacing with the processor core. It does not
interface with any other modules inside the device except for the clock and reset inputs
from the Clock Control Module (CCM) and interrupt signals to the processor interrupt
handler. The PWM includes a single external output signal, PMWO. The PWM includes
the following internal signals:

* Three clock inputs

* Four interrupt lines

* One hardware reset line

* Four low power and debug mode signals
* Four scan signals

 Standard IP slave bus signals

2.7.3 Clocks

The clock that feeds the prescaler can be selected from:

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
78 NXP Semiconductors

Chapter 2 System

* High frequency clock-provided by the CCM. The PWM can be run on this clock in

low power mode.
» Low reference clock - 32 KHz low reference clock provided by the CCM. The PWM

can be run on this clock in the low power mode.
* Global functional clock - for normal operations. In low power modes this clock can

be switched off.

The clock input source is determined by the CLKSRC field of the PWM control register.
The CLKSRC value should only be changed when the PWM is disabled.

2.7.4 Software Operation

The PWM device driver reduces the amount of power sent to a load by varying the width
of a series of pulses to the power source. One common and effective use of the PWM is
controlling the backlight of a QVGA panel with a variable duty cycle.

Table below provides a summary of the interface functions in source code.

Table 2-16. PWM Driver Summary

Function Description

struct pwm_device *pwm_get(struct device *dev, const char *con_id) Look up and request a PWM device
void pwm_put(struct pwm_device *pwm) Release a PWM device

int pwm_config(struct pwm_device *pwm, int duty_ns, int period_ns) Change a PWM device configuration
int pwm_enable(struct pwm_device *pwm) Start a PWM output toggling

int pwm_disable(struct pwm_device *pwm) Stop a PWM output toggling

The function pwm_config() includes most of the configuration tasks for the PWM
module, including the clock source option, period and duty cycle of the PWM output
signal. It is recommended to select the peripheral clock of the PWM module, rather than
the local functional clock, as the local functional clock can change.

2.7.5 Driver Features
The PWM driver includes the following software and hardware support:

* Duty cycle modulation
e Varying output intervals
* Two power management modes - full on and full off

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 79

Remote Processor Messaging

2.7.6 Source Code Structure
Table 2-17. PWM Driver Files

File Description

drivers/pwm/pwm.h Functions declaration

drivers/pwm/pwm-imx.c i.MX Pulse Width modulation Functions

2.7.7 Menu Configuration Options
In menu configuration enable the following module:

* Device Drivers > Pulse-Width Modulation (PWM) Support > i.MX PWM support
* Select the following option to enable the Backlight driver:

Device Drivers > Graphics support > Backlight & LCD device support > Generic
PWM based Backlight Driver

2.8 Remote Processor Messaging

2.8.1 Introduction

With the newest multicore architecture designed by using the Arm Cortex®-A series
processors and the ArmCortex-M series processors, industrial applications can achieve
greater power efficiency for a reduced carbon footprint. This reduces power consumption
without performance deterioration.

A homogeneous SoC would traditionally run a single operating system (OS) that controls
all the memory. The OS or a hypervisor would handle task management among available

cores to maximize system utilization. Such a system is called Symmetric MultiProcessing
(SMP).

A heterogeneous multicore chip where different processing cores running different
instruction sets and different OSs. Each processing core handles a specific task as
required. Such a system is called Asymmetric Multiprocessing (AMP). To understand the
distinction between the SMP and AMP systems, it is possible for a homogeneous
multicore SoC to be an AMP system but a heterogeneous multicore SoC cannot be an
SMP system.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
80 NXP Semiconductors

L __4

Chapter 2 System
A multicore architecture brings new challenges to the system design, because the
software must be rewritten to distribute tasks across the available cores. In addition, all
the peripheral resources need to be properly allocated to avoid resource contention and
achieve efficient sharing of the data spaces between the cores. A multicore SoC also
needs mechanisms for reliable communication and synchronization among tasks running
on different processing cores.

RPMsg is a virtio-based messaging bus, which allows kernel drivers to communicate
with remote processors available on the system. In turn, drivers could then expose
appropriate user space interfaces if needed. Every RPMsg device is a communication
channel with a remote processor (so the RPMsg devices are called channels). Channels
are identified by a textual name and have a local ("source") RPMsg address, and remote
("destination") RPMsg address. For more information, see www.kernel.org/doc/
Documentation/rpmsg.txt.

As shown in the following figure, the messages pass between endpoints through
bidirectional connection-less communication channels.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 81

https://www.kernel.org/doc/Documentation/rpmsg.txt
https://www.kernel.org/doc/Documentation/rpmsg.txt

Remote Processor Messaging

Core 0 Core 1
(Linux) (FreeRTOS)

IPC API

Datapath

Transport
Layer
OS Specitic
Driver

Transport
Layer
OS Specitic
Driver

Figure 2-3. New multicore, multiOS architecture

2.8.2 Features

* Designed for low-latency and low overhead operation, and compliant with the Linux
RPMsg framework.

* Optimized for embedded environments with constrained CPU and memory
resources.

* Implementation by using shared memory without data translation or message
headers.

* Application communication by using a client-server methodology.

* Dynamic allocation of the RPMsg channels.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
82 NXP Semiconductors

Chapter 2 System

2.8.3 Source Code

RPMSG driver software is in drivers/rpmsg
Table 2-18. RPMSG Source

File Description
drivers/rpmsg/virtio_rpmsg_bus.c Common code
drivers/rpmsg/imx_rpmsg.c i.MX platform-related code
drivers/rpmsg/imx_rpmsg_pingpong.c i.MX RPMsg ping-pong tests
drivers/rpmsg/imx_rpmsg_tty.c i.MX RPMsg TTY driver

2.8.4 Menu Configuration Options
In menu configuration enable the following module:

* Device Drivers > IMX RPMSG pingpong driver -- loadable modules only
* Device Drivers > IMX RPMSG tty driver -- loadable modules only

2.8.5 Running i.MX RPMsg Test Programs

To run the .MX RPMsg test program, perform the following operations:
1. Make sure that the proper Cortex-M4 processor RTOS and Linux images are used.
For example on the i.MX 7Dual platforms:
* rpmsg_pingpong_sdk_7dsdb.bin -> ping-pong test used on the i.MX 7Dual SDB
board
* rpmsg_str_echo_sdk_7dsdb.bin -> tty string echo test used on the i.MX 7Dual
SDB board
* rpmsg_pingpong_sdk_7dval.bin -> ping-pong test used on the .MX 7Dual
12x12 LPDDR3 Arm2 board
e rpmsg_str_echo_sdk_7dval.bin -> tty string echo test used on the 1.MX 7Dual
12x12 LPDDR3 Arm2 board
2. Load the Cortex-M4 processor RTOS image, and kick it off in U-Boot.
Load the Cortex-M4 processor RTOS image by the TFTP server or by the bootable
SD card in U-Boot.
* Load the Cortex-M4 processor RTOS image by the TFTP server. For example,
1. Boot into U-Boot and stop.
2. Use the following command to TFTP the responding Cortex-M4 processor
RTOS image and boot it.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 83

AR
Thermal

dhcp 0x7e0000 10.192.242.53:rpmsg_pingpong sdk 7dval.bin; bootaux 0x7e0000
* Load the Cortex-M4 processor RTOS image by the SD card. For example,

1. Created A bootable SD card by the MFGtools. Then, copy the Cortex-M4
processor RTOS files to the first partition formatted by the VFAT file
system.

2. Change the default Cortex-M4 processor RTOS name of the U-Boot.

setenv m4image '<The name of the M4/RTOS images>';save

3. Set up a boot args used by the Cortex-M4 processor.

setenv run m4 tcm 'if run loadm4image; then cp.b ${loadaddr} 0x7e0000 0x8000;
bootaux 0x7e0000; fi'; save

4. Modify the original bootcmd by adding run run_ma_tcm’”.

setenv bootcmd "run run m4 tcm; <original contents of the bootcmds>"; save

NOTE
“uart_from_osc” is mandatory required by 1.MX 6SoloX
when the Cortex-M4 processor RTOS image is running.

Therefore, the mmcargs of U-Boot should be modified on
1.MX 6SoloX.

setenv mmcargs 'setenv bootargs console:${console},$
{baudrate} root=${mmcroot}, uart from osc';save

3. Run the RPMsg test program.
a. Make sure that imx_rpmsg pingpong.ko and imx_ rpmsg tty.ko dre built out.
b. Use insmoa imx_rpmsg_pingpong.ko O insmod imx rpmsg tty.ko tO run the test program.

NOTE

Do not run different test programs at the same time.

c. Run the following command and ensure that the RPMsg TTY receiving program
is running at backend when starting RPMsg TTY tests.

/unit_tests/mxc_mcc_tty test.out /dev/ttyRPMSG30 115200 R 100 1000 &

Logs at the Linux OS side:

insmod imx rpmsg_ tty.ko

imx rpmsg_tty rpmsg0: new channel: 0x400 -> Ox1!
Install rpmsg tty driver!

echo deadbeaf > /dev/ttyRPMSG30

imx rpmsg tty rpmsg0: msg(<- src 0xl) deadbeaf len 8

2.9 Thermal

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
84 NXP Semiconductors

4
Chapter 2 System

2.9.1 Introduction

Thermal driver is a necessary driver for monitoring and protecting the SoC. The thermal
driver monitors the SoC temperature in a certain frequency from an internal thermal
Sensor.

It defines two trip points: critical and passive. Cooling device will take actions to protect
the SoC according to the different trip points that SoC has reached:

* When reaching critical point, cooling device will shut down the system.

* When reaching passive point, cooling device will lower CPU frequency and notify
GPU/VPU to run at a lower frequency.

* When the temperature drops to 10 °C below passive point, cooling device will
release all the cooling actions.

Thermal driver has two parts:

* Thermal zone defines trip points and monitors the SoC's temperature.
* Cooling device takes the actions according to the different trip points.

The critical and passive points threshold are confiugured in the following files.

* i.MX 6 and .MX 7 SoCs configure this in drivers/thermal/imx_thermal.c

* i.MX 8M SoCs configure this in their dtsi file and specify
CONFIG_IMX8M_THERMAL in defconfig.

* i.MX 8 and i.MX 8X SoCsconfigure this in their dtsi file and specify
CONFIG_IMX_SC_THERMAL in defconfig.

2.9.2 Software Operation

The thermal driver registers a thermal zone and a cooling device. A
structure,thermal_zone_device ops, describes the necessary interface that the thermal
framework needs. The framework will call the related thermal zone interface to monitor
the SoC temperature and do the cooling protection.

The thermal driver can be accessed through the following interface:

* /sys/bus/platform/drivers/imx_thermal for i.MX 6 and i.MX 7.
* /sys/class/thermal/thermal_zoneX for i.MX 8 and i.MX 8X.

* /sys/bus/platform/drivers/qoriq_thermal for .MX 8M Quad.

* /sys/class/thermal/thermal_zone(O/temp for i.MX 8M Mini.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 85

Sensors
2.9.3 Source Code Structure
Table below shows the driver source files available in drivers/thermal:

Table 2-19. Thermal Driver Files

File Description
imx_thermal.c, device_cooling.c Thermal zone driver source file for i.MX 6 or i.MX 7.
goriq_thermal.c, device_cooling.c Thermal zone driver source files for i.MX 8M.
imx_sc_thermal.c, device_cooling.c Thermal zone driver source files for i.MX 8 and i.MX 8X.

2.9.4 Menu Configuration Options
In menu configuration enable the following module:

e For 1.MX6 and 1.MXT7: Device Drivers > Generic Thermal sysfs driver >
Temperature sensor driver for 1.MX SoCs.

e For 1.MX 8QuadMax and 1.MX 8QuadXPlus: Device Drivers > Generic Thermal
sysfs driver > thermal sensor driver for NXP 1.MX8 SoCs

2.10 Sensors

2.10.1 Introduction

Sensors include a group of drivers for Accelerometer, Pressure, Gyroscope, Ambient
Light, and Magnetometer.

Sensors are configured in the device trees for each board.
1.MX supports accelerometers for the following SoC:

* 1.MX 6SABRE-SD, 6SABRE-AI, and 6SoloX use the MMA®&451 sensor

* i.MX 6UltraLite and 6ULL EVK use the FXLS8571Q sensor.

* .MX 7Dual SABRE-SD and i. MX 8QuadMax and i.MX 8QuadXPlus use the
FX0S8700 sensor.

1.MX Supports pressure sensor MPL3115 for the following SoC:

* i.MX 7 Dual SABRE-SD
* .MX 8 QuadMax
* 1.MX 8 QuadXPlus

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
86 NXP Semiconductors

4
Chapter 2 System

1.MX Supports gyroscope sensor FXAS2100 for the following SoC:
e 1.MX 7 Dual SABRE-SD

1.MX Supports ambient light sensor ISL29023 for the following SoC:

1.MX 6 SABRE-SD and 6 SABRE-AI
1.MX 6 SoloX

1.MX 8 QuadMax

1.MX 8 QuadXPlus.

1.MX supports magnetometer sensors MAG3110 for the following SoC:

* 1.MX 6 SABRE-SD
* .MX 6 UL EVK

e .MX 6 ULL EVK
* 1.MX 6SoloX

2.10.2 Sensor Driver Software Operation

2.10.3 Source Code Structure

Table below shows the driver source files available in the directory:

Table 2-20. Sensor Driver Files

File Description
drivers’/hwmon/mxc_mma8451.c Acceleromater Sensor
drivers/misc/fxos8700.c Acceleromater and Magnetometer Sensor
drivers/misc/fxls8471.c Acceleromater and MagnetometerLight Sensor
drivers/input/misc/isl29023.c Ambient Light Sensor
drivers/input/misc/fxas2100x.c MagnetometerLight Sensor
drivers/hwmon/mag3110.c Magnetometer Sensor

2.10.4 Menu Configuration Options
In menu configuration enable the following module:

* Device Drivers > Misc devices > Intersil ISL.29020 ambient light sensor
* Device Drivers > Misc devices > Freescale FXOS8700 M+G combo sensor
* Device Drivers > Misc devices > Freescale FXAS2100X gyroscope sensor

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 87

A ————
Watchdog (WDOG)

e Device Drivers > Hardware Monitoring support > Freescale MAG3110 e-compass
sensor
* Device Drivers > Hardware Monitoring support > MMAS8451 device driver

2.11 Watchdog (WDOG)

2.11.1 Introduction

The Watchdog Timer module protects against system failures by providing an escape
from unexpected hang or infinite loop situations or programming errors.

Some platforms may have two WDOG modules with one of them having interrupt
capability. 1.MX 6 and 7Dual share the same watch dog driver with i.MX 8M. . MX
7TULP has a separate watchdog driver. .MX 8 and 1.MX 8X share a virtual watchdog
driver interface through system controller firmware.

2.11.2 Hardware Operation
After the WDOG timer is activated, it must be serviced by software on a periodic basis.

If servicing does not take place in time, the WDOG times out. Upon a time-out, the
WDOG either asserts the wdog_b signal or a wdog_rst_b system reset signal, depending
on software configuration. The watchdog module cannot be deactivated after it is
activated.

2.11.3 Software Operation

The Linux OS has a standard WDOG interface that allows support of a WDOG driver for
a specific platform.

WDOG can be suspended/resumed in STOP/DOZE and WAIT modes independently.
Since some bits of the WDOG registers are only one-time programmable after booting,
ensure these registers are written correctly.

2.11.4 Generic WDOG

The generic WGOD driver is implemented in the drivers/watchdog/imx2_wdt.c file.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
88 NXP Semiconductors

Chapter 2 System

It provides functions for various IOCTLs and read/write calls from the user level program
to control the WDOG.

2.11.5 Driver Features
This WDOG implementation includes the following features:

* Generates the reset signal if it is enabled but not serviced within a predefined timeout
value (defined in milliseconds in one of the WDOG source files)

* Does not generate the reset signal if it is serviced within a predefined timeout value

* Provides IOCTL/read/write required by the standard WDOG subsystem

2.11.6 Source Code Structure

Table below shows the source files for watchdog WDOG drivers that are in drivers/
watchdog.

Table 2-21. Watchdog Driver Files

File Description

driveers/watchdog/imx2_wdt.c i.MX 6, i.MX 7Dual and i.MX 8M watchdog function
implementations. For i.MX 6 and i.MX 7, the watchdog system
reset function is located under arch/arm/mach-imx/system.c.

drivers/watchdog/imx7ulp_wdt.c i.MX 7ULP watchdog function implementations

drivers/watchdog/imx8_wdt.c On i.MX 8 and i.MX 8X, the software watchdog used in
system controller firmware (SCFW) and kernel call those
interfaces by virtual watchdog driver imx8_wadt.c. This is not
used for i.MX 8M.

2.11.7 Menu Configuration Options

In menu configuration enable the following module:

Device Drivers > Watchdog Timer Support > IMX2+ Watchdog
Device Drivers > Watchdog Timer Support > IMX7ULP Watchdog
Device Drivers > Watchdog Timer Support > IMX8 Watchdog

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 89

A ————
Watchdog (WDOG)

2.11.8 Programming Interface
The following IOCTLs are supported in the WDOG driver:

* WDIOC_GETSUPPORT

« WDIOC_GETSTATUS

« WDIOC_GETBOOTSTATUS
« WDIOC_KEEPALIVE

« WDIOC_SETTIMEOUT

« WDIOC_GETTIMEOUT

For detailed descriptions about these IOCTLS, se€ pocumentation/watchdog.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
90 NXP Semiconductors

Chapter 3
Storage

3.1 AHB-to-APBH Bridge with DMA (APBH-Bridge-DMA)

3.1.1 Overview

The AHB-to-APBH bridge provides the processor with an inexpensive peripheral
attachment bus running on the AHB's HCLK. The H in APBH denotes that the APBH is
synchronous to HCLK.

The AHB-to-APBH bridge includes the AHB-to-APB PIO bridge for a memory-mapped
I/O to the APB devices, as well as a central DMA facility for devices on this bus and a
vectored interrupt controller for the Arm core. Each one of the APB peripherals,
including the vectored interrupt controller, is documented in their own chapters elsewhere
in this document.

There is no separate DMA bus for these devices. Contention between the DMA's use of
the APBH bus and the AHB-to-APB bridge functions' use of the APBH is mediated by an
internal arbitration logic. For contention between these two units, the DMA is favored
and the AHB slave will report "not ready" through its HREADY output until the bridge
transfer can complete. The arbiter tracks repeated lockouts and inverts the priority,
guaranteeing the Arm platform every fourth transfer on the APB.

3.1.1.1 Hardware Operation

The SDMA controller is responsible for transferring data between the MCU memory
space and peripherals and includes the following features.

e Multichannel DMA supporting up to 32 time-division multiplexed DMA channels
* Powered by a 16-bit Instruction-Set micro-RISC engine

» Each channel executes a specific script

* Very fast context-switching with two-level priority based preemptive multitasking

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 91

AR
AHB-to-APBH Bridge with DMA (APBH-Bridge-DMA)

* 4 Kbytes ROM containing startup scripts (that is, boot code) and other common
utilities that can be referenced by RAM-located scripts

» 8 Kbyte RAM area is divided into a processor context area and a code space area
used to store channel scripts that are downloaded from the system memory.

3.1.1.2 Software Operation

The DMA supports sixteen channels of DMA services, as shown in the following table.
The shared DMA resource allows each independent channel to follow a simple chained
command list. Command chains are built up using the general structure.

Table 3-1. APBH DMA Channel Assignments

APBH DMA CHANNEL # USAGE
GPMIO
GPMI1
GPMI2
GPMI3
GPMI4
GPMI5
GPMI6
GPMI7
EMPTY
EMPTY
EMPTY
EMPTY
EMPTY
EMPTY
EMPTY
EMPTY

Ol N d|lW|INMD| =] O

—_
o

'y
—_

—_
N

—_
w

—
N

—_
(&)

3.1.1.3 Source Code Structure

The table below shows the source files available in drivers/dma/

Table 3-2. APBH DMA Source Files

File Description

mxs-dma.c APBH DMA implement driver

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
92 NXP Semiconductors

4
Chapter 3 Storage

3.1.1.4 Menu Configuration Options
In menu configuration enable the following module:

e Device Drivers > DMA Engine support > MXS DMA support.

3.1.1.5 Programming Interface

The module implements standard DMA API. See the API documents, which are located
in the Linux documentation package, for more information on the functions implemented
in the driver such as GPMI NAND driver.

3.2 EIM NOR

3.2.1 Introduction
The External Interface Module (EIM) NOR driver supports the Parallel NOR flash.

3.2.2 Hardware Operation

By default, there is a parallel NOR in the i.MX 6Quad/6Dual SABRE-AI boards. The
parallel NOR has more pins than the SPI NOR. On some boards, the
M29W256GL7ANGE is equipped. Refer to the datasheet for details on the parallel NOR.

3.2.3 Software Operation

Similar to the SPI NOR, the parallel NOR uses the MTD subsystem. Because the parallel
NOR is very small, you may only use the jffs2 but cannot use the UBIFS for it.

3.2.4 Source Code
Table 3-3. WEIM-NOR Driver Files

File Description

drivers/bus/imx-weim.c Timing only changes for Parallel NOR WEIM-NOR source

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 93

A
MMC/SD/SDIO Host

3.2.5 Enabling the EIM NOR

Refer to the DTS file to enable the EIM NOR: imx6q-sabreauto-gpmi-weim.dts or
imx6dl-sabreauto-gpmi-weim.dts.

3.3 MMC/SD/SDIO Host

3.3.1 Introduction

The MultiMediaCard (MMC)/ Secure Digital (SD)/ Secure Digital Input Output (SDIO)
Host driver implements a standard Linux driver interface to the ultra MMC/SD host
controller (uSDHC).

The host driver is part of the Linux kernel MMC framework.
The MMC driver has the following features:

e 1-bit or 4-bit operation for SD3.0 and SDIO 2.0 cards (so far we support SDIO v2.0
(AR6003 is verified)).

* Supports card insertion and removal detections.

 Supports the standard MMC commands.

e PIO and DMA data transfers.

* Supports power management.

 Supports 1/4 8-bit operations for MMC cards.

* For 1.MX 6, USDHC supports eMMC4.4 SDR and DDR modes.

* For i.MX 7Dual, USDHC supports eMMCS5.0, which includes HS400 and HS200.

* Supports SD3.0 SDR50 and SDR104 modes.

3.3.2 Hardware Operation

The MMC communication is based on an advanced 11-pin serial bus designed to operate
in a low voltage range. The uSDHC module supports MMC along with SD memory and
I/O functions. The uSDHC controls the MMC, SD memory, and I/O cards by sending
commands to cards and performing data accesses to and from the cards. The SD memory
card system defines two alternative communication protocols: SD and SPI. The uSDHC
only supports the SD bus protocol.

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
94 NXP Semiconductors

4

Chapter 3 Storage
The uSDHC command transfer type and uSDHC command argument registers allow a
command to be issued to the card. The uSDHC command, system control, and protocol
control registers allow the users to specify the format of the data and response and to
control the read wait cycle.

There are four 32-bit registers used to store the response from the card in the uSDHC.
The uSDHC reads these four registers to get the command response directly. The uSDHC
uses a fully configurable 128x32-bit FIFO for read and write. The buffer is used as
temporary storage for data being transferred between the host system and the card, and
vice versa. The uSDHC data buffer access register bits hold 32-bit data upon a read or
write transfer.

For receiving data, the steps are as follows:

1. The uSDHC controller generates a DMA request when there are more words
received in the buffer than the amount set in the RD_WML register

2. Upon receiving this request, DMA engine starts transferring data from the uSDHC
FIFO to system memory by reading the data buffer access register.

For transmitting data, the steps are as follows:

1. The uSDHC controller generates a DMA request whenever the amount of the buffer
space exceeds the value set in the WR_WML register.

2. Upon receiving this request, the DMA engine starts moving data from the system
memory to the uSDHC FIFO by writing to the Data Buffer Access Register for a
number of pre-defined bytes.

The read-only uSDHC Present State and Interrupt Status Registers provide uSDHC
operations status, application FIFO status, error conditions, and interrupt status.

When certain events occur, the module has the ability to generate interrupts as well as set
the corresponding Status Register bits. The uSDHC interrupt status enable and signal-
enable registers allow the user to control if these interrupts occur.

3.3.3 Driver Features
The MMC driver supports the following features:

* Supports multiple uSDHC modules.

* Provides all the entry points to interface with the Linux MMC core driver.

* MMC and SD cards.

» SDIO cards.

e SD3.0 cards.

* Recognizes data transfer errors such as command time outs and CRC errors.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 95

MMC/SD/SDIO Host

* Power management.
* [t supports to be built as loadable or builtin module

3.3.4 Source Code Structure

Table below shows the uSDHC source files available in drivers/mmc/host.

Table 3-4. uSDHC Driver Files MMC/SD Driver Files

File Description
drivers/mmc/host/sdhci.c sdhci standard stack code
driers/mmc/host/sdhci-pltfm.c sdhci platform layer
drivers/mmc/host/sdhci-esdhc-imx.c uSDHC driver
drivers/mmc/host/sdhci-esdhc.h uSDHC driver header file

3.3.5 Menu Configuration Options
The following Linux kernel configuration options are provided for this module.

* CONFIG_MMC builds support for the MMC bus protocol. In menuconfig, this
option is available under:

* Device Drivers > MMC/SD/SDIO Card support

* By default, this option is Y.

* CONFIG_MMC_BLOCK builds support for MMC block device driver which can be
used to mount the file system. In menuconfig, this option is available under:

* Device Drivers > MMC/SD Card Support > MMC block device driver

e By default, this option is Y.

* CONFIG_MMC_SDHCI_ESDHC_IMX is used for the .MX USDHC ports. In
menuconfig, this option is found under:

* Device Drivers > MMC/SD Card Support > Secure Digital Host Controller
Interface support > SDHCI support on the platform-specific bus > SDHCI
platform support for the eSDHC i.MX controller

To compile SDHCI driver as a loadable module, several options should be selected
as indicated below:

e CONFIG_MMC_SDHCI=m, it can be found at Device Drivers > MMC/SD Card
Support > Secure Digital Host Controller Interface support

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
96 NXP Semiconductors

Chapter 3 Storage

e CONFIG_MMC_SDHCI_PLTFM=m, it can be found at Device Drivers >
MMC/SD Card Support > Secure Digital Host Controller Interface support >
SDHCI support on the platform-specific bus.

* CONFIG_MMC_SDHCI_ESDHC_IMX=y, it can be found at Device Drivers >
MMC/SD Card Support > Secure Digital Host Controller Interface support >
SDHCI support on the platform-specific bus > SDHCI platform support for the
Freescale eSDHC 1.MX controller

To compile SDHCI driver as a builttin module, several options should be selected as
indicated below:

* CONFIG_MMC_SDHClI=y, it can be found at Device Drivers > MMC/SD Card
Support > Secure Digital Host Controller Interface support

* CONFIG_MMC_SDHCI_PLTFM=y, it can be found at Device Drivers >
MMC/SD Card Support > Secure Digital Host Controller Interface support >
SDHCIT support on the platform-specific bus.

 CONFIG_MMC_SDHCI_ESDHC_IMX=y, it can be found at Device Drivers >
MMC/SD Card Support > Secure Digital Host Controller Interface support >

SDHCIT support on the platform-specific bus > SDHCI platform support for the
Freescale eSDHC i.MX controller

* CONFIG_MMC_UNSAFE_RESUME is used for embedded systems which use a
MMC/SD/SDIO card for rootfs. In menuconfig, this option is found under:

3.3.6 Device Tree Binding
Required properties:

» compatible : Should be "fsl,<chip>-esdhc"
* reg : Should contain eSDHC registers location and
* interrupts : Should contain eSDHC interrupt

Optional properties:

* non-removable : Indicate the card is wired to host permanently

e fsl,cd-internal : Indicate to use controller internal card detection

e fsl,wp-internal : Indicate to use controller internal write protection
* cd-gpios : Specify GPIOs for card detection

» wp-gpios : Specify GPIOs for write protection

« fsl,delay-line : Specify delay line value for emmc ddr mode

Example:usdhc@02194000 { /* uSDHC2 */
compatible = "fsl, imx6g-usdhc";
reg = <0x02194000 0x4000>;
interrupts = <0 23 0x04>;
clocks = <&clks 164>, <&clks 164>, <&clks 164>;

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 97

A
MMC/SD/SDIO Host

clock-names = "ipg", "ahb", "per";
pinctrl-names = "default";
pinctrl-0 = <&pinctrl usdhc2 1>;
cd-gpios = <&gpio2 2 0>;

wp-gpios <&gpio2 3 0>;
bus-width = <8>;
no-1-8-v;

keep-power-in-suspend;
enable-sdio-wakeup;
status = "okay";

}i
Reference:

* Documentation/devicetree/bindings/mmc/fsl-imx-esdhc.txt
e arch/arm/boot/dts/imx6*.dtsi

3.3.7 Programming Interface

This driver implements the functions required by the MMC bus protocol to interface with
the 1.MX uSDHC module. See the Linux document generated from build: make
htmldocs.

3.3.8 Loadable Module Operations
The SDHCI driver can be built as loadable or builtin module.

1. How to build SDHCI driver as loadable module.

e CONFIG_MMC_SDHCI=m, it can be found at Device Drivers > MMC/SD Card
Support > Secure Digital Host Controller Interface support

e CONFIG_MMC_SDHCI_PLTFM=m, it can be found at Device Drivers >
MMC/SD Card Support > Secure Digital Host Controller Interface support >
SDHCI support on the platform-specific bus.

* CONFIG_MMC_SDHCI_ESDHC_IMX=y, it can be found at Device Drivers >
MMC/SD Card Support > Secure Digital Host Controller Interface support >
SDHCI support on the platform-specific bus > SDHCI platform support for the
1.MX eSDHC 1.MX controller

2. How to load and unload SDHCI module.

Due to dependency, load or unload the module following the module sequence
shown below.

run the following commands to load module:
* load modules via insmod command, assuming the files of sdhci.ko and sdhci-
platform.ko exist in current directory.

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
98 NXP Semiconductors

4
Chapter 3 Storage

$> insmod sdhci.ko
$> insmod sdhci-platform.ko

* load modules via modprobe command, make sure the files of sdhci.ko and sdhci-
platform.ko exist in corresponding kernel module lib directory.

$> modprobe sdhci.ko
$> modprobe sdhci-platform.ko

run the following commands to unload module.:
* unload modules via insmod command.

$> rmsmod sdhci-platform
$> rmsmod sdhci

* unload modules via modprobe command.

$> modprobe -r sdhci-platform
$> modprobe -r sdhci

3.4 NAND GPMI Flash

3.4.1 Introduction

The NAND Flash Memory Technology Devices (MTD) driver is used in the Generic-
Purpose Media Interface (GPMI) controller on the 1.MX 6 series and .MX 7Dual.

Only the hardware-specific layer has to be implemented for the NAND MTD driver to
operate.

The rest of the functionality such as Flash read/write/erase is automatically handled by
the generic layer provided by the Linux MTD subsystem for NAND devices.

The NAND MTD driver interfaces with the integrated NAND controller supporting file
systems, such as UBIFS, CRAMEFS and JFFS2UBI and UBIFSCRAMES and JFFS2. The
driver implementation supports the lowest level operations on the external NAND Flash
chip, such as block read, block write and block erase as the NAND Flash technology only
supports block access. Because blocks in a NAND Flash are not guaranteed to be good,
the NAND MTD driver is also able to detect bad blocks and feed that information to the
upper layer to handle bad block management.

3.4.2 Hardware Operation

NAND Flash is a nonvolatile storage device used for embedded systems.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 99

A
NAND GPMI Flash

Driver does not support random accesses of memory as in the case of RAM or NOR
Flash. Reading or writing to NAND Flash must be done through the GPMI. NAND Flash
is a sequential access device appropriate for mass storage applications. Code stored on
NAND Flash cannot be executed from there. Code must be loaded into RAM memory
and executed from there. The 1.MX 6 contains a hardware error-correcting block.

3.4.3 Software Operation

MTDs in Linux covers all memory devices such as RAM, ROM, and different kinds of
NOR/NAND Flashes.

The MTD subsystem provides uniform access to all such devices. Above the MTD
devices there could be either MTD block device emulation with a Flash file system
(JFFS2) or a UBI layer. The UBI layer in turn, can have either UBIFS above the volumes
or a Flash Translation Layer (FTL) with a regular file system (FAT, Ext2/3) above it. The
hardware-specific driver interfaces with the GPMI module on the 1.MX 6. It implements
the lowest level operations such as read, write and erase. If enabled, it also provides
information about partitions on the NAND device-this information has to be provided by
platform code.

The NAND driver is the point where read/write errors can be recovered if possible.
Hardware error correction is performed by BCH blocks and is driven by NAND drivers
code.

Detailed information about NAND driver interfaces can be found at www.linux-
mtd.infradead.org.

3.4.4 Basic Operations: Read/Write
The NAND driver exports the following callbacks:

gpmi_ecc_read page (with ECC)
gpmi_ecc_write page (with ECC)
gpmi_read byte (without ECC)
gpmi_read buf (without ECC)
gpmi write buf (without ECC)
gpmi_ecc_read oob (with ECC)
gpmi_ecc write oob (with ECC)

Since Kernel 4.1, the GPMI driver provides raw read/write modes, which exports these
callbacks:

* gpmi_ecc_read_page_raw (without ECC)

* gpmi_ecc_write_page_raw (without ECC)

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
100 NXP Semiconductors

http://www.linux-mtd.infradead.org
http://www.linux-mtd.infradead.org

4
Chapter 3 Storage

» gpmi_ecc_read_oob_raw (without ECC)

* gpmi_ecc_write_oob_raw (without ECC)

These functions read the requested amount of data, with or without error correction. In
the case of read, the gpmi_read_page() function is called, which creates the DMA chain,
submits it to execute, and waits for completion. The write case is a bit more complex: the
data to be written is mapped and flushed out by calling gpmi_send_page().

3.4.5 Backward Compatibility

Users should know several major GPMI NAND driver changes in kernel 4.1, which may
cause incompatibility in Kernel upgrade.

* Exported necessary information to user space application (kobs-ng) through debugfs
e New BCH layout algorithm
* New raw read/write mode

In Kernel 4.1, the NAND GPMI driver exports necessary information to the upper layer
through debugfs. The most common case is for the NAND burning tool, kobs-ng.
Without enabling debugfs, kobs-ng may not fully use the new feature or may use
inappropriate parameters. The user needs to provide the correct BCH geometry
information and raw access mode to kobs-ng, if debugfs is not enabled in the customized
kernel.

BCH layout in the previous kernel may not meet the NAND chip minimum ECC
requirement. Since Kernel 4.1, the BCH layout algorithm, by default, uses the NAND
required ECC strength and step size, which are acquired from ONFI parameters, if it is
accessible. The change may not be compatible with the BCH layout settings in the
previous kernel. For backward compatibility, Kernel and U-boot provide switches to use
legacy BCH layout.

 For Kernel, add "fsl,legacy-bch-geometry" in the device tree file.

e For U-Boot, add "CONFIG_NAND MXS BCH_LEGACY_GEQO" in the board

configuration file.

BCH legacy layout setting must be turned on/off simultaneously in both Kernel and U-
boot for alignment.

Kobs-ng checks either the Kernel version or raw mode flag in debugfs to determine
whether to use new raw mode to access the NAND chip. New kobs-ng fully backward is

compatible with the previous Kernel, while the old version kobs-ng cannot work on
Kernel 4.1.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 101

A
NAND GPMI Flash

3.4.6 Error Correction

When reading or writing data to Flash, some bits can be flipped. This is normal behavior,
and NAND drivers utilize various error correcting schemes to correct this. It could be
resolved with software or hardware error correction. The GPMI driver uses only a
hardware correction scheme with the help of an hardware accelerator-BCH.

For BCH, the page laylout of 2K page is (2k + 64), the page layout of 4K page is (4k +
218) the page layout of 8K page is (8K + 448).

3.4.7 Boot Control Block Management

During startup, the NAND driver scans the first block for the presence of a NAND
Control Block (NCB). Its presence is detected by magic signatures. When a signature is
found, the boot block candidate is checked for errors using Hamming code. If errors are
found, they are fixed, if possible. If the NCB is found, it is parsed to retrieve timings for
the NAND chip.

All boot control blocks are created when formatting the medium using the user space
application kobs-ng .

3.4.8 Bad Block Handling

When the driver begins, by default, it builds the bad block table. It is possible to
determine if a block is bad, dynamically, but to improve performance it is done at boot
time. The badness of the erase block is determined by checking a pattern in the beginning
of the spare area on each page of the block. However, if the chip uses hardware error
correction, the bad marks falls into the ECC bytes area. Therefore, if hardware error
correction is used, the bad block mark should be moved.

3.4.9 Source Code Structure
The NAND driver is located in drivers/mtd/nand/gpmi-nand.

Table below lists the source files for the NAND Driver.
Table 3-5. NAND Driver Files

File Description

e drivers/mtd/nand/gpmi-nand/bch-regs.h Functions declaration
Table continues on the next page...
i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
102 NXP Semiconductors

4
Chapter 3 Storage

Table 3-5. NAND Driver Files (continued)

File Description

e drivers/mtd/nand/gpmi-nand/gpmi-nand.h
drivers/mtd/nand/gpmi-nand/gpmi-regs.h

e drivers/mtd/nand/gpmi-nand/gpmi-lib.c GPMI NAND Functions
e drivers/mtd/nand/gpmi/nand/gpmi-nand.c

3.4.10 Menu Configuration Options
To enable the NAND driver, the following options must be set:

* Device Drivers > Memory Technology Device (MTD) support > GPMI NAND Flash
Controller driver

In addition, these MTD options must be enabled:

» CONFIG_MTD_NAND = [y | m]
« CONFIG_MTD =y
« CONFIG_MTD_BLOCK =y

In addition, these UBI options must be enabled:

« CONFIG_MTD_UBI=y
« CONFIG_UBIFS_FS=y

3.5 Quad Serial Peripheral Interface (QuadSPI)

3.5.1 Introduction

The Quad Serial Peripheral Interface (QuadSPI) block acts as an interface to one single or
two external serial flash devices, each with up to four bidirectional data lines.

It supports the following features:

* Flexible sequence engine to support various flash vendor devices.

* Single, dual, quad and octal mode of operation.

* DDR/DTR mode wherein the data is generated on every edge of the serial flash
clock.

» Support for flash data strobe signal for data sampling in DDR and SDR mode.

* DMA support to read RX Buffer data via AMBA AHB bus (64-bit width interface)
or IP registers space (32-bit access).

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 103

A ————
Quad Serial Peripheral Interface (QuadSPI)

3.5.2 Hardware Operation

On some boards, the Quad SPI NOR - N25Q256A is equipped, while on some other
boards S25FL128S is equipped. Check the Quad SPI NOR type on the boards and then
configure it properly.

The N25Q256A is a high-performance multiple input/output serial Flash memory device.
The innovative, high-performance, dual and quad input/output instructions enable double
or quadruple the transfer bandwidth for READ and PROGRAM operations. The memory
1s organized as 512 (64 KB) main sectors and can be erased 64 KB sectors at a time. The
device features 3-byte or 4-byte address modes to access memory beyond 128 MB. When
4-byte address mode is enabled, all commands requiring an address must be entered and
exited with a 4-byte address mode command: ENTER 4-BYTE ADDRESS MODE
command and EXIT 4-BYTE ADDRESS MODE command. The 4-byte address mode
can also be enabled through the nonvolatile configuration register. The memory can be
operated with three different protocols:Extended SPI (standard SPI protocol upgraded
with dual and quad operations), Dual I/O SPI and Quad I/O SPI. Each protocol contains
unique commands to perform READ operations in DTR mode. This enables high data
throughput while running at lower clock frequencies.

The S25FL128S device is flash non-volatile memory product. It connects to a host
system via a Serial Peripheral Interface (SPI). Traditional SPI single bit serial input and
output (SIngle I/O or SIO) is supported as well as optional two bit (Dual I/O or DIO) and
four bit (Quad I/0 or QIO) serial commands. It also adds support for Double Data Rate
(DDR) read commands for SIO, DIO, and QIO that transfer address and read data on
both edges of the clock.

3.5.3 Software Operation

In a Flash-based embedded Linux system, a number of Linux technologies work together
to implement a file system. The following figure illustrates the relationships between
some of the standard components.

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
104 NXP Semiconductors

Chapter 3 Storage

c
@
m
P
£
i
E

r
RAMFS |

E.
=

Figure 3-1. Components of a Flash-Based File System

The MTD subsystem for Linux OS is a generic interface to memory devices, such as
Flash and RAM, providing simple read, write, and erase access to physical memory
devices. Devices called mtdblock devices can be mounted by JFFS, JFFS2, and
CRAMES file systems. The Quad SPI NOR MTD driver is based on the MTD data Flash
driver in the kernel by adding SPI access. In the initialization phase, the Quad SPI NOR
MTD driver detects a data Flash by reading the JEDEC ID. Then the driver adds the
MTD device. The SPI NOR MTD driver also provides the interfaces to read, write, and
erase NOR Flash.

3.5.4 Driver Features
This Quad NOR driver implementation supports the following feature:

* Provides necessary information for the upper-layer MTD driver.

3.5.5 Source Code Structure
Table 3-6. QuadSPI Driver File

File Description

drivers/mtd/spi-nor/spi-nor.c SPI-NOR framework

drivers/mtd/spi-nor/fsl-quadspi.c Quad SPI Driver

3.5.6 Menu Configuration Options
To enable the Quad SPI driver, the following options must be set:

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 105

A
SATA

e Device Drivers >Memory Technology Device (MTD) support > Freescale Quad SPI
controller

For the configuration have these set to enable Quad Spi.

* CONFIG_MTD_SPI_NOR: Framework for the SPI NOR which can be used by the
SPI device drivers and the SPI-NOR device driver.

e CONFIG_SPI_FSL_QUADSPI: Enables support for the Quad SPI controller in
master mode.

3.6 SATA

3.6.1 Introduction

The SATA AHCI driver is based on the LIBATA layer of the block device infrastructure
of the Linux kernel. The detailed hardware operation of SATA is detailed in the

Synopsys DesignWare Cores SATA AHCI documentation, named
SATA_Data_Book.pdf.

3.6.2 Board Configuration Options
With the power off, install the SATA cable and hard drive.

3.6.3 Software Operation
The details about the libata APIs, see the ibATA Developer's Guide.

The SATA AHCI driver is based on the LIBATA layer of the block device infrastructure
of the Linux kernel. 1.MX integrated AHCI linux driver combined the standard AHCI
drivers handle the details of the integrated .MX SATA AHCI controller, while the
LIBATA layer understands and executes the SATA protocols. The SATA device, such as
a hard disk, is exposed to the application in user space by the /dev/sda* interface.
Filesystems are built upon the block device. The AHCI specified integrated DMA engine,
which assists the SATA controller hardware in the DMA transfer modes.

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
106 NXP Semiconductors

Chapter 3 Storage

3.6.4 Source Code Structure

The source code of the .MX AHCI SATA driver is located in drivers/ata The standard
AHCI and AHCI platform drivers are used to do the actual SATA operations.

Table 3-7. SATA Driver Files

File Description
drivers/ata/ahci_imx.c i.MX AHCI SATA Driver
drivers/ata/ahci.c Standard AHCI drivers
drivers/ata/ahci-platform.c Standard AHCI platform drivers

3.6.5 Menu Configuration Options

The following Linux kernel configurations are provided for SATA driver:

Symbol: AHCI IMX
[=y]

Type
tristate

Prompt: Freescale i.MX AHCI SATA
support

Location:

-> Device
Drivers

-> Serial ATA and Parallel ATA drivers (ATA

[=v])
-> Platform AHCI SATA support (SATA_AHCI_PLATFORM

[=y])

In busybox, enable "fdisk" under "Linux System Utilities".

3.6.6 Programming Interface

The application interface to the SATA driver is the standard POSIX device interface (for
example: open, close, read, write, and ioctl) on /dev/sda*.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 107

A
SATA

3.6.7 Usage Example

NOTE
There may be a known error message when few kinds of SATA
disks are initialized, such as:

atal.00: serial number mismatch '090311PB0300QKG3TB1A"!

atal.00: revalidation failed (errno=-19)
This should be ignored.

1. After building the kernel and the SATA AHCI driver and deploying, boot the target,
and log in as root.

2. Make sure that the AHCI and AHCI platform drivers are built in the kernel or loaded
into the kernel.

You should see messages similar to the following:

ahci: SSS flag set, parallel bus scan disabled

ahci ahci: AHCI 0001.0300 32 slots 1 ports 3 Gbps 0x1l impl platform mode
ahci ahci: flags: ncqg sntf stag pm led clo only pmp pio slum part ccc apst
scsi0 : ahci platform

atal: SATA max UDMA/133 mmio [mem 0x02200000-0x02203fff] port 0x100 irg 71
atal: SATA link up 3.0 Gbps (SStatus 123 SControl 300)

atal.00: ATA-8: SAMSUNG HM100UI, 2AM10001, max UDMA/133

atal.00: 1953525168 sectors, multi 0: LBA48 NCQ (depth 31/32)

atal.00: configured for UDMA/133

scsi 0:0:0:0: Direct-Access ATA SAMSUNG HM100UI 2AM1 PQ: 0 ANSI: 5

sd 0:0:0:0: [sda] 1953525168 512-byte logical blocks: (1.00 TB/931 GiB)

sd 0:0:0:0: [sdal] 4096-byte physical blocks

sd 0:0:0:0: [sdal Write Protect is off

sd 0:0:0:0: [sda] Write cache: enabled, read cache: enabled, doesn't support DPO or FUA
sda: sdal

sd 0:0:0:0: [sda] Attached SCSI disk

You may use standard Linux utilities to partition and create a file system on the drive (for
example: fdisk and mke2fs) to be mounted and used by applications.

The device nodes for the drive and its partitions appears under /dev/sda*. For example, to
check basic kernel settings for the drive, execute hdparm /dev/sda.

3.6.8 Usage Example
Create Partitons

The following command can be used to find out the capacities of the hard disk. If the
hard disk is pre-formatted, this command shows the size of the hard disk, partitions, and
filesystem type:

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
108 NXP Semiconductors

4
Chapter 3 Storage

$fdisk -1 /dev/sda

If the hard disk is not formatted, create the partitions on the hard disk using the following
command:

$fdisk /dev/sda

After the partition, the created files resemble /dev/sda[1-4].

Block Read/Write Test: The command, dd, is used for for reading/writing blocks. Note
this command can corrupt the partitions and filesystem on Hard disk.

To clear the first 5 KB of the card, do the following:
$dd if=/dev/zero of=/dev/sdal bs=1024 count=5

The response should be as follows:

5+0 records in

5+0 records out

To write a file content to the card enter the following text, substituting the name of the
file to be written for file_name, do the following:

$dd if=file name of=/dev/sdal

To read 1KB of data from the card enter the following text, substituting the name of the
file to be written for output_file, do the following:

$dd if=/dev/sdal of=output file bs=1024 count=1
Files System Tests
Format the hard disk partitons using mkfs.vfat or mkfs.ext2, depending on the filesystem:

Smkfs.ext2 /dev/sdal
$mkfs.vfat /dev/sdal

Mount the file system as follows:

Smkdir /mnt/sdal
$Smount -t ext2 /dev/sdal /mnt/sdal

After mounting, file/directory, operations can be performed in /mnt/sdal.

Unmount the filesystem as follows:

Sumount /mnt/sdal

3.7 Smart Direct Memory Access (SDMA) API

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 109

A ————
Smart Direct Memory Access (SDMA) API

3.7.1 Overview
The Smart Direct Memory Access (SDMA) API driver controls the SDMA hardware.

It provides an API to other drivers for transferring data between MCU memory space and
the peripherals. It supports the following features:

* Loading channel scripts from the MCU memory space into SDMA internal RAM
» Loading context parameters of the scripts

* Loading buffer descriptor parameters of the scripts

* Controlling execution of the scripts

* Callback mechanism at the end of script execution

3.7.2 Hardware Operation

The SDMA controller is responsible for transferring data between the MCU memory
space and peripherals and includes the following features:

* Multichannel DMA supporting up to 32 time-division multiplexed DMA channels.

* Powered by a 16-bit Instruction-Set micro-RISC engine.

* Each channel executes specific script.

* Very fast context-switching with two-level priority based preemptive multitasking.

» 4 Kbytes ROM containing startup scripts (that is, boot code) and other common
utilities that can be referenced by RAM-located scripts.

» 8 Kbyte RAM area is divided into a processor context area and a code space area
used to store channel scripts that are downloaded from the system memory.

3.7.3 Software Operation

The driver provides an API for other drivers to control SDMA channels. SDMA channels
run dedicated scripts according to peripheral and transfer types. The SDMA API driver is
responsible for loading the scripts into SDMA memory, initializing the channel
descriptors, and controlling the buffer descriptors and SDMA registers.

The table below provides a list of drivers that use SDMA and the number of SDMA
physical channels used by each driver. A driver can specify the SDMA channel number
that it wishes to use, static channel allocation, or can have the SDMA driver provide a
free SDMA channel for the driver to use, dynamic channel allocation. For dynamic
channel allocation, the list of SDMA channels is scanned from channel 32 to channel 1.
When a free channel is found, that channel is allocated for the requested DMA transfers.

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
110 NXP Semiconductors

Chapter 3 Storage

Table 3-8. SDMA Channel Usage

Driver Name Number of SDMA Channel Used
SDMA Channels
SDMA CMD 1 Static Channel allocation-uses SDMA channels 0
SSI 2 per device Dynamic channel allocation
UART 2 per device Dynamic channel allocation
SPDIF 2 per device Dynamic channel allocation
ESAI 2 per device Dynamic channel allocation

3.7.4 Source Code Structure
The dmaengine.h (header file for SDMA API) is available in the directory linux/include/

linux

The following table shows the source files available in the directory drivers/dma.

Table 3-9. SDMA API Source Files

File

Description

drivers/dma/dmaengine.c

SDMA management routine

drivers/dma/imx-sdma.c

SDMA implement driver

drivers/dma/imx-dma.c

i.MX DMA driver

The following table shows the image files available in the directory firmware/imx/sdma
for 4.1 and 4.9 kernels. For 4.14 kernel, the sdma firmware is provided with the

firmware-imx package and not in the kernel source tree.

Table 3-10. SDMA Script Files

File

Description

sdma-imx6q.bin

SDMA RAM scripts for i.MX 6

sdma-imx7d.bin

SDMA RAM scripts for i.MX 7 and i.MX 8M

3.8 SPI NOR Flash Memory Technology Device (MTD)

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

NXP Semiconductors

111

A ————
SPI NOR Flash Memory Technology Device (MTD)

3.8.1 Introduction

The SPI NOR Flash Memory Technology Device (MTD) driver provides the support to
the data Flash though the SPI interface.

By default, the SPI NOR Flash MTD driver creates static MTD partitions to support data
Flash.

3.8.2 Hardware Operation

On some boards, the SPI NOR - AT45DB321D is equipped, while on some boards
M25P32 is equipped. Check the SPI NOR type on the boards and then configure it

properly.

The AT45DB321D is a 2.7 V, serial-interface sequential access Flash memory. The
AT45DB321D serial interface is SPI compatible for frequencies up to 66 MHz. The
memory is organized as 8,192 pages of 512 bytes or 528 bytes. The AT45DB321D also
contains two SRAM buffers of 512/528 bytes each which allow receiving of data while a
page in the main memory is being reprogrammed, as well as writing a continuous data
stream.

The M25P32 is a 32 Mbit (4M x 8) Serial Flash memory, with advanced write protection
mechanisms, accessed by a high-speed SPI-compatible bus up to 75 MHz. The memory
is organized as 64 sectors, each containing 256 pages. Each page is 256 bytes wide.
Therefore, the whole memory can be viewed as consisting of 16384 pages, or 4,194,304
bytes. The memory can be programmed 1 to 256 bytes at a time using the Page Program
instruction. The whole memory can be erased using the Bulk Erase instruction, or a sector
at a time, using the Sector Erase instruction.

Unlike conventional Flash memories that are accessed randomly, these two SPI NOR
access data sequentially. They operate from a single 2.7-3.6 V power supply for program
and read operations. They are enabled through a chip select pin and accessed through a
three-wire interface: Serial Input, Serial Output, and Serial Clock.

3.8.3 Software Operation

In a Flash-based embedded Linux system, a number of Linux technologies work together
to implement a file system. The figure below illustrates the relationships between some of
the standard components.

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
112 NXP Semiconductors

Figure 3-2. Components of a Flash-Based File System

c
@
m
P
g
i
E

r
RAMFS |

E.
=

Chapter 3 Storage

The MTD subsystem for Linux OS is a generic interface to memory devices, such as
Flash and RAM, providing simple read, write, and erase access to physical memory
devices. Devices called mtdblock devices can be mounted by JFFS, JFFS2 and CRAMEFS
file systems. The SPI NOR MTD driver is based on the MTD data Flash driver in the
kernel by adding SPI access. In the initialization phase, the SPI NOR MTD driver detects
a data Flash by reading the JEDEC ID. Then the driver adds the MTD device. The SPI
NOR MTD driver also provides the interfaces to read, write, and erase NOR Flash.

3.8.4 Source Code Structure

The following table shows the driver files:

Table 3-11. SPI NOR MTD Driver Files

File

Description

drivers/mtd/devices/m25p80.c

Source file

drivers/mtd/spi-nor/spi-nor.c

Source file

3.8.5 Menu Configuration Options

In menu configuration enable the following module:

* CONFIG_MTD_M25P80: This config enables access to most modern SPI flash
chips, used for program and data storage.

* Device Drivers > Memory Technology Device (MTD) support >Self-contained MTD
device drivers > Support most SPI Flash chips (AT26DF, M25P, W25X, and so on)

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

NXP Semiconductors

113

A ————
SPI NOR Flash Memory Technology Device (MTD)

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
114 NXP Semiconductors

Chapter 4
Connectivity

41 ADC

4.1.1 ADC Introduction

The features of the ADC-Digital are as follows:

* Two 12-bit ADCs
* Linear successive approximation algorithm with up to 12-bit resolution with 10/11
bit accuracy
* Up to 1 MS/s sampling rate
* Up to 8 single-ended external analog inputs
* Single or continuous conversion (automatic return to idle after single conversion)
* Output Modes: (in right-justified unsigned format)
e 12-bit
e 10-bit
* 8-bit
* Configurable sample time and conversion speed/power
* Conversion complete and hardware average complete flag and interrupt
* Input clock selectable from up to four sources
» Asynchronous clock source for lower noise operation with option to output the clock
* Selectable asynchronous hardware conversion trigger with hardware channel select
» Selectable voltage reference, Internal, External, or Alternate
* Operation in low power modes for lower noise operation
* Hardware average function
* Self-calibration mode

4.1.2 ADC External Signals
* ADC_VREFH: Voltage reference high

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 115

A

ADC
 ADC_VREHL.: Voltage reference low
* ADCI_INO: Analog channel 1 input 0
* ADCI_INI1: Analog channel 1 input 1
* ADCI1_IN2: Analog channel 1 input 2
* ADCI_IN3: Analog channel 1 input 3
* ADC2_INO: Analog channel 2 input 0
 ADC2_IN1: Analog channel 2 input 1
* ADC2_IN2: Analog channel 2 input 2
* ADC2_IN3: Analog channel 2 input 3

The ADC pin settings should be done in the ADCx_PCTL register. No other extra
IOMUX settings are required.

4.1.3 ADC Driver Overview

The ADC driver is developed under the Linux IO (Industrial I/O) driver frame. The
ADC driver only provides the basic functions. The following features are supported:

 Four external inputs for each ADC controller channel
* 12 bit ADC

* Single conversion

» Hardware average

* Low power mode of ADC

» Sample rate changes in the available sample rate group

4.1.4 Source Code Structure
Table 4-1. ADC Driver Files

File Description
drivers/iio/adc/vf610_adc.c i.MX 6UltraLite and i.MX 6SoloX ADC functions.
drivers/iio/adc/imx7d_adc.c i.MX 7Dual ADC functions.
drivers/iio/adc/imx8qxp_adc.c i.MX 8QXP ADC functions.

4.1.5 Menu Configuration Options
Configure the kernel option to enable the module by menuconfig:

Device Drivers > Industrial I/O support > Analog to digital converters > Freescale vi610
ADC driver

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
116 NXP Semiconductors

4
Chapter 4 Connectivity

Device Drivers > Industrial I/O support > Analog to digital converters > 1.MX 7Dual
ADC driver

Device Drivers > Industrial I/O support > Analog to digital converters > i.MX 8QXP
ADC driver

4.1.6 Programming Interface

Linux IIO provides some system interface to get the raw ADC data from the related
input. Users can also set the sample rate in the available sample rate group. The ADC
controllers system interface is located:

/sys/devices/soc0/soc.1/2200000.aips-bus/2280000.adc/iio:deviceO:
/sys/devices/soc0/soc.1/2200000.aips-bus/2284000.adc/iio:devicel:
The following table lists the software interfaces.

Table 4-2. Software Interfaces

Software interface Description

in_voltageO_raw~ in_voltage3_raw cat in_voltage0_raw to get raw ADC data

sampling_frequency_available cat sampling_frequency_available to get available sample
rate group

in_voltage_sampling_frequency cat in_voltage_sampling_frequency to show current
sample rate
echo value > in_voltage_sampling_frequency to set the
sample rate

4.2 ENET IEEE-1588

4.2.1 Introduction

ENET IEEE-1588 driver performs a set of functions that enabling precise
synchronization of clocks in network communication.

The driver requires a protocol stack to complete IEEE-1588 full protocol. It complies
with the LinuxPTP stack.

To allow for IEEE 1588 or similar time synchronization protocol implementations, the
ENET MAC is combined with a time-stamping module to support precise time stamping
of incoming and outgoing frames.

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 117

ENET IEEE-1588

MAC with 1588

Frame Data | 10/100/1000 MAG
— (mac) < » PHY

L Adjustable 1PPS
Control/ Timin Timer Module Events ;

Status
(tsm) gen
1 controv
Status
' L 3
[Data Control

User Application

Figure 4-1. IEEE 1588 Functions Overview

4.2.1.1 Transmit Timestamping

On transmit, only 1588 event frames need to be time-stamped. The Client application (for
example, the MAC driver) should detect 1588 event frames and set the signal
ff_tx_ts_frm together with the frame.

For every transmitted frame, the MAC returns the captured timestamp on tx_ts (31:0)
with the frame sequence number (tx_ts_id(3:0)) and the transmit status. The transmit
status bit tx_ts_stat (5) indicates that the application had the ff_tx_ts_frm signal asserted
for the frame.

If ff_tx_ts_frm is set to '1', the MAC additionally memorizes the timestamp for the frame
in the register TS_ TIMESTAMP. The interrupt bit EIR (TS_AVAIL) is set to indicate
that a new timestamp is available.

Software would implement a handshaking procedure by setting the ff_tx_ts_frm signal
when it transmits the frame it needs a timestamp for and then waits on the EIR
(TS_AVAIL) interrupt bit to know when the timestamp is available. It then can read the
timestamp from the TS_TIMESTAMP register. This is done for all event frames; other
frames do not use the ff tx_ts_frm indicator and hence do not interfere with the
timestamp capture.

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
118 NXP Semiconductors

Chapter 4 Connectivity

4.2.1.2 Receive Timestamping

When a frame is received, the MAC latches the value of the timer when the frame SFD
field is detected and provides the captured timestamp on ff_rx_ts(31:0). This is done for
all received frames.

The DMA controller has to ensure that it transfers the timestamp provided for the frame
into the corresponding field within the receive descriptor for software access.

4.2.2 Software Operation
The 1588 Driver has the functions listed below:

* Module initialization-Initializes the module with the device-specific structure, and
registers a character driver.

* Interrupt servicing routine-Supports events, such as TS_AVAIL, TS_TIMER. The
driver shares interrupt servicing routine with FEC driver.

4.2.2.1 Source Code Structure

Table below lists the source files in drivers/net/ethernet/freescale directory.

Table 4-3. ENET 1588 File List

File Description
drivers/net/ethernet/frescale/fec.h Header file defining registers
drivers/net/ethernet/freescale/fec_ptp.c ENET 1588 timer

4.2.2.2 Menu Configuration Options
By default, ENET 1588 is enabled.

4.2.2.3 Programming Interface
The 1588 driver complies with the Linuxptp protocol stack interface.

Stack-specific defines are added to the header file (fec.h).

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 119

A ————
Enhanced Configurable Serial Peripheral Interface (ECSPI)

4.2.3 1588 Stack Introduction

This release supports the following type of the 1588 Stack:
* Linuxptp stack

This software is an implementation of the Precision Time Protocol (PTP) according
to IEEE standard 1588 for Linux OS. The dual design goals are to provide a robust
implementation of the standard and to use the most relevant and modern Application
Programming Interfaces (API) offered by the Linux OS kernel. Supporting legacy
APIs and other platforms is not a goal. The software is copyrighted by the authors
and is licensed under the GNU General Public License.

The software development is hosted at Source Forge: sourceforge.net/projects/linuxptp/

4.2.3.1 Linuxptp Stack Features
Linuxptp support the following features:

* Ordinary/Boundary Clock

* Best master clock algorithm

* Transport over UDP/IPv4, UDP/IPv6, and IEEE 802.3

* Transparent clock (E2E/P2P)

 Slave only

» Supporting IEEE 802.1AS-2011 in the role of end station

4.2.3.2 Using Linuxptp

Run ptp4 1588 stack binary with the following commands.

Linuxptp:
Transport on UDP IPV4 with E2E delay mechanism: ptp4l -A -4 -H -m -i ethoO
Transport on UDP IPV4 with P2P delay mechanism: ptp4l -P -A -4 -H -m -i ethoO
Transport on UDP IPV6 with E2E delay mechanism: ptp4l -A -6 -H -m -i ethoO
Transport on UDP IPV6 with P2P delay mechanism: ptp4l -P -A -6 -H -m -1 ethO

Transport on IEEE 802.3 with E2E delay mechanism: ptp4l -A -2 -H -m -i ethO
Transport on IEEE 802.3 with P2P delay mechanism: ptp4l -P -A -2 -H -m -i ethoO

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
120 NXP Semiconductors

https://sourceforge.net/projects/linuxptp/

-4
Chapter 4 Connectivity
4.3 Enhanced Configurable Serial Peripheral Interface
(ECSPI)

4.3.1 Introduction
The ECSPI driver implements a standard Linux driver interface to the ECSPI controllers.
It supports the following features:

e Interrupt-driven transmit/receive of bytes
* Multiple master controller interface

* Multiple slaves select

* Multiclient requests

ECSPI is used for fast data communication with fewer software interrupts than
conventional serial communications. >Each ECSPI is equipped with a data FIFO and 1s a
master/slave configurable serial peripheral interface module, allowing the processor to
interface with external SPI master or slave devices.

The primary features of the ECSPI includes:

» Master/slave-configurable

* Four chip select signals to support multiple peripherals

e Up to 32-bit programmable data transfer

e 64 x 32-bit FIFO for both transmit and receive data

» Configurable polarity and phase of the Chip Select (SS) and SPI Clock (SCLK)

The ECSPI module supports the following features:

* Implements each of the functions required by a ECSPI module to interface to Linux
OS

e Multiple SPI master controllers

e Multiclient synchronous requests

4.3.2 Software Operation

The following sections describe the ECSPI software operation.

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 121

Enhanced Configurable Serial Peripheral Interface (ECSPI)

4.3.3 SPI Sub-System in Linux OS

The ECSPI driver layer is located between the client layer (SPI-NOR Flash are examples
of clients) and the hardware access layer. The figure below shows the block diagram for
SPI subsystem in Linux OS.

The SPI requests go into I/O queues. Requests for a given SPI device are executed in
FIFO order and they complete asynchronously through completion callbacks. There are
also some simple synchronous wrappers for those calls including the ones for common
transaction types such as writing a command and then reading its response.

SPI-NOR Client #2 driver | Client #3 driver
mtd driver
SPI Subsystem
ECSPI Hardware
v A4 ¥
SPI-NOR Flash Client #2 Client #3

Figure 4-2. SPI Subsystem

All SPI clients must have a protocol driver associated with them and they all must be
sharing the same controller driver. Only the controller driver can interact with the
underlying SPI hardware module. The figure below shows how the different SPI drivers
are layered in the SPI subsystem.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
122 NXP Semiconductors

Chapter 4 Connectivity

SPI client Driver SPI slave driver
Client Driver Interface {}
SPI Core Driver SPI core driver
Controller Driver Interace {\r
FSL Eici%F;(I driver ECSPI host
(spl_imx.c) ECSPI Controller Driver controller driver
SPI Bus Interface: {}
ECSPI Controller
Electrical Interface. @
SPI slave device
SPI Slave
(SPI-NOR Flash)

Figure 4-3. Layering of SPI Drivers in SPI Subsystem

4.3.4 Software Limitations
The ECSPI driver limitations are as follows:

* Does not currently have SPI slave logic implementation

* Does not support a single client connected to multiple masters

* Does not currently implement the user space interface with the help of the device
node entry but supports sysfs interface

4.3.5 Standard Operations

The ECSPI driver is responsible for implementing standard entry points for init, exit, chip
select, and transfer. The driver implements the following functions:

* Init function spi_imx_init() registers the device_driver structure.

* Probe function spi_imx_probe() performs initialization and registration of the SPI
device-specific structure with SPI core driver. The driver probes for memory and
IRQ resources. Configures the IOMUX to enable ECSPI I/0 pins, requests for IRQ
and resets the hardware.

 Chip select function spi_imx_chipselect() configures the hardware ECSPI for the
current SPI device. Sets the word size, transfer mode, data rate for this device.

 SPI transfer function spi_imx_transfer() handles data transfers operations.

 SPI setup function spi_imx_setup() initializes the current SPI device.

» SPI driver ISR spi_imx_isr() is called when the data transfer operation is completed
and an interrupt is generated.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 123

Enhanced Configurable Serial Peripheral Interface (ECSPI)

4.3.6 ECSPI Synchronous Operation

The figure below shows how the ECSPI provides synchronous read/write operations.

Client Driver SPI Core SPI Controller ECSP|
Driver Driver Hardware
spi_readfwrite
F
spi transfer
> spi_enable_r_intr
=
spi_load_TxFifo
-
spi_init_exchange
Rx_Data_Ready_intr
-
spi_getRxData
PI_g >
callback after
= 4
return transfer completion

Figure 4-4. ECSPI Synchronous Operation

4.3.7 Source Code Structure

Table below shows the source files available in the drivers/spi directory:

Table 4-4. ECSPI Driver Files

File Description

driveers/spi/spi-imx.c SPI Master Controller driver

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
124 NXP Semiconductors

4
Chapter 4 Connectivity

4.3.8 Menu Configuration Options
In menu configuration enable the following module:

e CONFIG_SPI build support for the SPI core. In menuconfig, this option is available
under:
* Device Drivers > SPI Support.
* CONFIG_BITBANG is the Library code that is automatically selected by drivers
that need it. SPI_IMX selects it. In menuconfig, this option is available under:
* Device Drivers > SPI Support > Ultilities for Bitbanging SPI masters.
* CONFIG_SPI_IMX implements the SPI master mode for ECSPI. In menuconfig, this
option is available under:
* Device Drivers > SPI Support > Freescale 1.MX SPI controllers.

4.3.9 Programming Interface

This driver implements all the functions that are required by the SPI core to interface
with the ECSPI hardware.

For more information, see the Linux document generated from build: make htmldocs.

4.3.10 Interrupt Requirements
The SPI interface generates interrupts.

ECSPI interrupt requirements are listed in table below.

Table 4-5. ECSPI Interrupt Requirements

Parameter Equation Typical Worst Case
BaudRate/ Transfer Length (BaudRate/(TransferLength)) * (1/Rxtl) 31250 1500000

The typical values are based on a baud rate of 1 Mbps with a receiver trigger level (Rxtl)
of 1 and a 32-bit transfer length. The worst-case is based on a baud rate of 12 Mbps (max
supported by the SPI interface) with a 8-bits transfer length.

4.4 Fast Ethernet Controller (FEC)

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 125

A ————
Fast Ethernet Controller (FEC)

4.4.1 Introduction

The Fast Ethernet Controller (FEC) driver performs the full set of IEEE 802.3/Ethernet
CSMA/CD media access control and channel interface functions.

The FEC requires an external interface adapter and transceiver function to complete the
interface to the Ethernet media. It supports half or full-duplex operation on 10 Mbps, 100
Mbps, and 1000 Mbps-related Ethernet networks.

The FEC driver supports the following features:

 Full/Half duplex operation

 Link status change detect

* Auto-negotiation (determines the network speed and full or half-duplex operation)

* Transmits features such as automatic retransmission on collision and CRC generation
» Obtaining statistics from the device such as transmit collisions

The network adapter can be accessed through the ifconfig command with interface name
ethx. The driver auto-probes the external adaptor (PHY device).

4.4.2 Hardware Operation
The FEC is an Ethernet controller that interfaces the system to the LAN network.

The FEC supports different standard MAC-PHY (physical) interfaces for connection to
an external Ethernet transceiver. The FEC supports the 10/100 Mbps MII, 10/100 Mbps
RMII, and 10/100/1000 Mbps RGMII. In addition, the FEC supports 1000 Mbps RGMII,
which uses 4-bit reduced GMII operating at 125 MHz.

A brief overview of the device functionality is provided here. For details, see the FEC
chapter of the Applications Processor Reference Manual

In MII mode, there are 18 signals defined by the IEEE 802.3 standard and supported by
the EMAC. MII, RMII and RGMII modes uses a subset of the 18 signals. These signals
are listed in table below.

Table 4-6. Pin Usage in MIl, RMIl and RGMII Modes

Direction EMAC Pin Name RMII Usage RGMII Usage(not supported by i.MX 6UltraLite)
In/Out FEC_MDIO Management Data Input/ |Management Data Input/Output
output
Out FEC_MDC General output Management Data Clock
Out FEC_TXDI[O0] Data out, bit 0 Data out, bit 0

Table continues on the next page...

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
126 NXP Semiconductors

4
Chapter 4 Connectivity

Table 4-6. Pin Usage in Mil, RMIl and RGMII Modes (continued)

Direction EMAC Pin Name RMIl Usage RGMII Usage(not supported by i.MX 6UItraLite)

Out FEC_TXD[1] Data out, bit 1 Data out, bit 1

Out FEC_TXD[2] Not Used Data out, bit 2

Out FEC_TXDI[3] Not Used Data out, bit 3

Out FEC_TX_EN Transmit Enable Transmit Enable

Out FEC_TX_ER Not Used Not Used

In FEC_CRS Not Used Not Used

In FEC_COL Not Used Not Used

In FEC_TX_CLK Not Used Synchronous clock reference (REF_CLK, can connect
from PHY)

In FEC_RX_ER Receive Error Not Used

In FEC_RX_CLK Not Used Synchronous clock reference (REF_CLK, can connect
from PHY)

In FEC_RX_DV Receive Data Valid and RXDV XOR RXERR on the falling edge of

generate CRS FEC_RX_CLK.

In FEC_RXDI[0] Data in, bit 0 Data in, bit 0

In FEC_RXDI[1] Data in, bit 1 Data in, bit 1

In FEC_RXD[2] Not Used Data in, bit 2

In FEC_RXDI[3] Not Used Data in, bit 3

The MII management interface consists of two pins, FEC_MDIO, and FEC_MDC. The
FEC hardware operation can be divided in the parts listed below. For details, see the
Applications Processor Reference Manuals.

* Transmission-The Ethernet transmitter is designed to work with almost no

intervention from software. Once ECR[ETHER_EN] is asserted and data appears in
the transmit FIFO, the Ethernet MAC is able to transmit onto the network. When the
transmit FIFO fills to the watermark (defined by the TFWR), the MAC transmit logic
asserts FEC_TX_EN and starts transmitting the preamble (PA) sequence, the start
frame delimiter (SFD), and then the frame information from the FIFO. However, the
controller defers the transmission if the network is busy (FEC_CRS asserts).

Before transmitting, the controller waits for carrier sense to become inactive, then
determines if carrier sense stays inactive for 60 bit times. If the transmission begins
after waiting an additional 36 bit times (96 bit times after carrier sense originally
became inactive), both buffer (TXB) and frame (TXF) interrupts may be generated as
determined by the settings in the EIMR.

Reception-The FEC receiver is designed to work with almost no intervention from
the host and can perform address recognition, CRC checking, short frame checking,
and maximum frame length checking. When the driver enables the FEC receiver by
asserting ECR[ETHER_EN], it immediately starts processing receive frames. When
FEC_RX_ DV asserts, the receiver checks for a valid PA/SFD header. If the PA/SFD

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020

NXP Semiconductors 127

A ————

Fast Ethernet Controller (FEC)
1s valid, it is stripped and the frame is processed by the receiver. If a valid PA/SFD is
not found, the frame is ignored. In MII mode, the receiver checks for at least one
byte matching the SFD. Zero or more PA bytes may occur, but if a 00 bit sequence is
detected prior to the SFD byte, the frame is ignored.

 After the first six bytes of the frame have been received, the FEC performs address

recognition on the frame. During reception, the Ethernet controller checks for various
error conditions and once the entire frame is written into the FIFO, a 32-bit frame
status word 1s written into the FIFO. This status word contains the M, BC, MC, LG,
NO, CR, OV, and TR status bits, and the frame length. Receive Buffer (RXB) and
Frame Interrupts (RXF) may be generated if enabled by the EIMR register. When the
receive frame is complete, the FEC sets the L bit in the RxBD, writes the other frame
status bits into the RxBD, and clears the E bit. The Ethernet controller next generates
a maskable interrupt (RXF bit in EIR, maskable by RXF bit in EIMR), indicating that
a frame has been received and is in memory. The Ethernet controller then waits for a
new frame.

* Interrupt management-When an event occurs that sets a bit in the EIR, an interrupt is
generated if the corresponding bit in the interrupt mask register (EIMR) is also set.
The bit in the EIR is cleared if a one is written to that bit position; writing zero has
no effect. This register is cleared upon hardware reset. These interrupts can be
divided into operational interrupts, transceiver/network error interrupts, and internal
error interrupts. Interrupts which may occur in normal operation are GRA, TXF,
TXB, RXF, RXB. Interrupts resulting from errors/problems detected in the network
or transceiver are HBERR, BABR, BABT, LC, and RL. Interrupts resulting from
internal errors are HBERR and UN. Some of the error interrupts are independently
counted in the MIB block counters. Software may choose to mask off these interrupts
as these errors are visible to network management through the MIB counters.

* PHY management-phylib was used to manage all the FEC PHY -related operation
such as PHY discovery, link status, and state machine.MDIO bus will be created in
FEC driver and registered into the system. See Documentation/networking/phy.txt
under the Linux OS source directory for more information.

4.4.3 Software Operation

The FEC driver supports the following functions:

* Module initialization-Initializes the module with the device-specific structure
e Rx/Tx transmition

* Interrupt servicing routine

* PHY management

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
128 NXP Semiconductors

4
Chapter 4 Connectivity

e FEC management such init/start/stop
* 1.MX 6 FEC module use little-endian format

4.4.4 Source Code Structure
The table below shows the source files.

They are available at the drivers/net/ethernet/freescale directory.

Table 4-7. FEC Driver Files

File Description
drivers/net/ethernet/freescale/fec.h Header file defining registers
drivers/net/ethernet/freescale/fec_main.c Linux driver for Ethernet LAN controller
drivers/net/ethernet/freescale/fec_fixup.c Linux driver for SoC and PHY special implement

4.4.5 Menu Configuration Options
Configure the kernel to provide for this module:

* CONFIG_FEC is provided for this module. This option is available under:
* Device Drivers > Network device support > Ethernet (10, 100 or 1000 Mbit) >
FEC Ethernet controller.
e To mount NFS-rootfs through FEC, disable the other Network config in the
menuconfig if need.

4.4.6 Programming Interface

Device-specific defines are added to the header file (fec.h) and they provide common
board configuration options.

fec.h defines the struct for the register access and the struct for the buffer descriptor. For
example,

/*
* Define the buffer descriptor structure.
*/
struct bufdesc ({
unsigned short cbd _datlen; /* Data length */
unsigned short cbd_sc; /* Control and status info */
unsigned long cbd bufaddr; /* Buffer address */

struct bufdesc_ex
struct bufdesc desc;

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 129

A
FlexCAN

unsigned long cbd_esc;
unsigned long cbd prot;
unsigned long cbd bdu;
unsigned long ts;

unsigned short reso0[4];

Vi

/*

* Define the register access structure.

*

/
#define FEC_ IEVENT 0x004 /* Interrupt event reg */
#define FEC_ IMASK 0x008 /* Interrupt mask reg */
#define FEC_R DES_ACTIVE 0x010 /* Receive descriptor reg */
#define FEC X DES ACTIVE 0x014 /* Transmit descriptor reg */
#define FEC_ ECNTRL 0x024 /* Ethernet control reg */
#define FEC_MII_DATA 0x040 /* MII manage frame reg */
#define FEC_MII_SPEED 0x044 /* MII speed control reg */
#define FEC MIB CTRLSTAT 0x064 /* MIB control/status reg */
#define FEC R CNTRL 0x084 /* Receive control reg */
#define FEC_X_ CNTRL 0x0c4 /* Transmit Control reg */
#define FEC_ADDR LOW 0x0e4 /* Low 32bits MAC address */
#define FEC ADDR_HIGH 0x0e8 /* High 16bits MAC address */
#define FEC_OPD 0x0ec /* Opcode + Pause duration */
#define FEC HASH TABLE HIGH 0x118 /* High 32bits hash table */
#define FEC HASH TABLE LOW 0x1llc /* Low 32bits hash table */

#define FEC_GRP_HASH TABLE HIGH 0x120 /* High 32bits hash table */
#define FEC_GRP_HASH TABLE LOW 0x124 /* Low 32bits hash table */

#define FEC_X WMRK 0x144 /* FIFO transmit water mark */
#define FEC_R_BOUND O0xl4c /* FIFO receive bound reg */
#define FEC _R_FSTART 0x150 /* FIFO receive start reg */
#define FEC_R_DES_ START 0x180 /* Receive descriptor ring */
#define FEC_X DES_START 0x184 /* Transmit descriptor ring */
#define FEC_R_BUFF_SIZE 0x188 /* Maximum receive buff size */
#define FEC _MIIGSK CFGR 0x300 /* MIIGSK config register */
#define FEC_MIIGSK ENR 0x308 /* MIIGSK enable register */

4.4.6.1 Getting a MAC Address

The MAC address can be set through the kernel command line, kernel device tree DTS
file, OCOTP, or MAC registers set by bootloader, such as U-Boot. The FEC driver uses it
to configure the MAC address for the network device. In general, use kernel command
line in a form of fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 to set the MAC address.
Due to certain pin conflicts (FEC RMII mode needs to use GPIO_16 or RGMII_TX_CTL
pin as reference clock input/output channel), the one of the both pins cannot connect to
branch lines for other modules use because the branch lines have serious influence on
clock.

4.5 FlexCAN

4.5.1 Introduction

FlexCAN is a communication controller implementing the CAN protocol according to
the CAN 2.0B protocol specification.

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
130 NXP Semiconductors

L __4

Chapter 4 Connectivity
The CAN protocol was primarily designed to be used as a vehicle serial data bus meeting
the specific requirements of this field such as real-time processing, reliable operation in
the EMI environment of a vehicle, cost-effectiveness, and required bandwidth. The
standard and extended message frames are supported. The maximum message buffer is
64. The driver is a network device driver of PF_CAN protocol family.

For detailed information, see lwn.net/Articles/253425 or Documentation/networking/
can.txt in Linux source directory.

The FlexCAN on the 1.MX 8QuadMax/8QuadXPlus supports CAN FD protocol.

4.5.1.1 Software Operation

The CAN driver is a network device driver. For the common information on software
operation, refer to the documents in the kernel source directory Documentation/
networking/can.txt.

The CAN network device driver interface provides a generic interface to setup, configure
and monitor CAN network devices. The user can then configure the CAN device, like
setting the bit-timing parameters, via the netlink interface using the program "ip" from
the "IPROUTE2" utility suite.

Starting and stopping the CAN network device.

A CAN network device is started or stopped as usual with the command "ifconfig canX
up/down" or "ip link set canX up/down". Be aware that you *must* define proper bit-
timing parameters for real CAN devices before you can start it to avoid error-prone
default settings:

* ip link set canX up type can bitrate 125000

The iproute? tool also provides some other configuration capbilities for can bus such as
bit-timing setting. For details, see kernel doc: Documentation/networking/can.txt

4.5.1.2 Source Code Structure
Table below shows the driver source file available in drivers/net/can

Table 4-8. FlexCAN Driver Files

File Description

drivers/net/can/flexcan.c FlexCAN driver

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 131

http://lwn.net/Articles/253425

A ————
Inter-IC (12C)

4.5.1.3 Menu Configuration Options
The following kernel configuration options are provided for this module.

e CONFIG_CAN - Build support for PF_CAN protocol family. In menuconfig, this
option is available under

Networking > CAN bus subsystem support.

* CONFIG_CAN_RAW - Build support for Raw CAN protocol. In menuconfig, this
option is available under

Networking > CAN bus subsystem support > Raw CAN Protocol (raw access with
CAN-ID filtering).

* CONFIG_CAN_BCM - Build support for Broadcast Manager CAN protocol. In
menuconfig, this option is available under

Networking > CAN bus subsystem support > Broadcast Manager CAN Protocol
(with content filtering).

* CONFIG_CAN_VCAN - Build support for Virtual Local CAN interface (also in
Ethernet interface). In menuconfig, this option is available under

Networking > CAN bus subsystem support > CAN Device Driver > Virtual Local
CAN Interface (vcan).

 CONFIG_CAN_DEBUG_DEVICES - Build support to produce debug messages to
the system log to the driver. In menuconfig, this option is available under

Networking > CAN bus subsystem support > CAN Device Driver > CAN devices
debugging messages.

* CONFIG_CAN_FLEXCAN - Build support for FlexCAN device driver. In
menuconfig, this option is available under

Networking > CAN bus subsystem support > CAN Device Driver > Freescale
FlexCAN.

4.6 Inter-IC (12C)

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
132 NXP Semiconductors

4
Chapter 4 Connectivity

4.6.1 Introduction

LPI2C is a bidirectional serial bus that provides a simple, efficient method of data
exchange, minimizing the interconnection between devices.

The LPI2C driver for Linux OS has two parts:

e Bus driver-low level interface that is used to communicate with the LPI2C bus
 Chip driver-interface between other device drivers and the LPI2C bus driver

The I2C bus driver is a low-level interface that is used to interface with the I2C bus. This
driver is invoked by the I2C chip driver and it is not exposed to the user space. The
standard Linux kernel contains a core [2C module that is used by the chip driver to access
the bus driver to transfer data over the I2C bus. This bus driver supports:

» Compatibility with the 12C bus standard

* Bit rates up to 400 Kbps

» Standard I2C master mode

* Power management features by suspending and resuming 12C.

4.6.2 LPI2C Bus Driver Overview

The LPI2C bus driver is invoked only by the chip driver and is not exposed to the user
space. The standard Linux kernel contains a core I2C module that is used by the chip
driver to access the LPI2C bus driver to transfer data over the LPI2C bus. The chip driver
uses a standard kernel space API that is provided in the Linux kernel to access the core
I2C module. The standard I2C kernel functions are documented in the files available
under Documentation/i2c in the kernel source tree. This bus driver supports the following
features:

* Compatible with the I2C bus standard
* Interrupt-driven, byte-by-byte data transfer
e Standard I2C master mode

4.6.3 12C Device Driver Overview

The 12C device driver implements all the Linux I12C data structures that are required to
communicate with the LPI2C bus driver. It exposes a custom kernel space API to the
other device drivers to transfer data to the device that is connected to the LPI2C bus.
Internally, these API functions use the standard I2C kernel space API to call the I12C core

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 133

A
Inter-IC (12C)

module. The I2C core module looks up the LPI2C bus driver and calls the appropriate
function in the LPI2C bus driver to transfer data. This driver provides the following
functions to other device drivers:

» Read function to read the device registers
» Write function to write to the device registers

4.6.4 Software Operation
The I2C driver for Linux OS has two parts: an I2C bus driver and an I2C chip driver.

4.6.5 12C Bus Driver Software Operation

The I2C bus driver is described by a structure called i2c_adapter. The most important
field in this structure is struct i2c_algorithm *algo. This field is a pointer to the
12c_algorithm structure that describes how data is transferred over the 12C bus. The
algorithm structure contains a pointer to a function that is called whenever the 12C chip
driver wants to communicate with an I2C device.

During startup, the I2C bus adapter is registered with the I2C core when the driver is
loaded. Certain architectures have more than one I2C module. If so, the driver registers
separate 12c_adapter structures for each I2C module with the 12C core. These adapters are
unregistered (removed) when the driver is unloaded.

During normal communication, it times out and returns an error when the transfer has
some error condition, such as NACK is detected. When error condition occurs, 12C driver
should stop current transfer.

4.6.6 12C Device Driver Software Operation

The I2C driver controls an individual I2C device on the I2C bus. A structure, 12¢_driver,
describes the I12C chip driver. The fields of interest in this structure are flags and
attach_adapter. The flags field is set to a value [2C_DF_NOTIFY so that the chip driver
can be notified of any new I2C devices, after the driver is loaded. When the I12C bus
driver is loaded, this driver stores the i2c_adapter structure associated with this bus driver
so that it can use the appropriate methods to transfer data.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
134 NXP Semiconductors

Chapter 4 Connectivity
4.6.7 Driver Features
The LPI2C driver supports the following features:

e [2C communication protocol
* 12C master mode of operation

NOTE
The LPI2C driver does not support the slave mode.

4.6.8 Source Code Structure
Table below shows the driver source file available in drivers/i2c/busses

Table 4-9. 12C Driver Files

File Description
drivers/i2c/busses/imx-Ipi2c.c LPI12C Bus Driver for i.MX 8 and i.MX 8X
drivers/i2c/busses/imx-i2c.c 12C Bus Driver for i.MX 6, i.MX 7 and i.MX 8M

4.6.9 Menu Configuration Options
Configure the kernel option to enable the module by menuconfig:

For 1.MX 6, 1.MX 7 and 1.MX 8M select Device Drivers > I2C support > [2C Hardware
Bus support > IMX I2C interface.

For i.MX 8 and i.MX 8X select Device Drivers > I2C support > 12C Hardware Bus
support > IMX Low Power I12C interface.

4.6.10 Programming Interface

The LPI2C device driver can use the standard SMBus interface to read and write the
registers of the device connected to the LPI2C bus. For more information, see include/
linux/i2c.h.

4.7 Media Local Bus

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 135

Media Local Bus

4.7.1 Introduction

MedialLB is an on-PCB or inter-chip communication bus specifically designed to
standardize a common hardware interface and software API library.

This standardization allows an application or multiple applications to access the MOST
Network data or to communicate with other applications with minimum effort. MedialLB
supports all the MOST Network data transport methods: synchronous stream data,
asynchronous packet data, and control message data. MedialLB also supports an
1sochronous data transport method. For detailed information about the MedialLB, see the
Media Local Bus Specification.

The MediaLB module implements the Physical Layer and Link Layer of the MedialLB
specification, interfacing the 1.MX to the MedialLB controller.

System | | |Customer Data Buffer | |Channel Table
Implementad RAM
Interface RAM RAM
. F
MedialLB
Analog
Configuration | Customer
Interiace | Implemented
+ i Analog
4) Data Buffer Channel Table Interface
Bus Interface Bus Interface
M
‘ rf_top
AHE ¢ _
ahb_top C
- . ustomer
Interface 4_—_" hb|_TopH Medial B &-pin
il Intertace | IMplemented
mib_top| |, Differential
» and
wite ¢ -+ v Bi-Directional
Strobe Pads
iﬂtif_top m|f_top
MedialLB 3-pin
i Interiace Customer
APB ¢ apb_top ¢ I \ ¢ Implemented
Interface - ¥ Tri-State
cpr_top Pads
Hosthus II'O
Interface Interface

(unconnected) (unconnected)

Figure 4-5. MLB Device Top-Level Block Diagram

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
136 NXP Semiconductors

L __4

Chapter 4 Connectivity
The MLB implements the 3-pin MediaLB mode and can run at speeds up to 1024Fs. It
does not implement MedialLB controller functionality. All MedialLB devices support a set
of physical channels for sending data over the MedialLB. Each physical channel is 4 bytes
in length (quadlet) and grouped into logical channels with one or more physical channels
allocated to each logical channel. These logical channels can be any combination of
channel type (synchronous, asynchronous, control, or isochronous) and direction
(transmit or receive).

The MLB provides support for up to 64 logical channels and up to 64 physical channels.
Each logical channel is referenced using an unique channel address and represents a
unidirectional data path between a MedialLB device transmitting the data and the
MedialLB device(s) receiving the data.

The supported features are the following.

* Synchronous, asynchronous, control, and isochronous channel.
» Up to 64 logical channels and 64 physical channels running at a maximum speed of
1024Fs.
* Transmission of commands and data and reception of receive status when
functioning as the transmitting device associated with a logical channel address.
* Reception of commands and data and transmission as receive status responses when
functioning as the receiving device associated with a logical channel address.
e MedialLB lock detection.
e System channel command handling.
e 256Fs, 512Fs and 1024Fs frame rates.
* Asynchronous, control, synchronous, and isochronous channel types.
 The following configurations to MLB device module:
* Frame rate
* Device address
e Channel address
* MLB channel exception get interface. All the channel exceptions are sent and
handled by the application.

4.7.2 MLB Driver Overview

The MLB driver is designed as a common Linux OS character driver. It implements one
asynchronous and one control channel device with Ping-Pong buffering operation mode.
The supported frame rates are 256, 512, and 1024Fs. The MLB driver uses common read/
write interfaces to receive/send packets and uses the ioctl interface to configure the MLB
device module.

The MLB driver architecture is shown in the figure below.

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 137

Media Local Bus

JOCTI) o e 1 wirit e palld read(
)

I User space

MLB zsttings:

Epeed]
[device ad dress] 1

[zhannel add ress] i
Ehannel start'zhuotdown] em::gmnn TH status

ISR

— MLB DI pemean IRAM

I . =

"""""""""""

Figure 4-6. MLB Driver Architecture Diagram

The MLB driver creates four minor devices. These four devices support control Tx/Rx
channel, asynchronous Tx/Rx channel, synchronous Tx/Rx channel, and isochronous
Tx/Rx channel. Their device files are /dev/ctrl, /dev/async, /dev/sync, and /dev/isoc. Each
minor device has the same interfaces, and handle both Tx and Rx operation. The
following description is for both control and asynchronous device.

The driver uses IRAM as MLB device module Tx/Rx buffer. All the data transmission
and reception between module and IRAM is handled by the MLB module DMA. The
driver is responsible for configuring the buffer start and end pointer for the MLB module.

For reception, the driver uses a ring buffer to buffer the received packet for read. When a
packet arrives, the MLB module puts the received packet into the IRAM Rx buffer, and
notifies the driver by interrupt. The driver then copy the packet from the IRAM to one
ring buffer node indicated by the write position, and updates the write position with the
next empty node. Finally the packet reader application is notified, and it gets one packet
from the node indicated by the read position of ring buffer. After the read is completed, it
updates the read position with the next available buffer node. There is no received packet
in the ring buffer when the read and write position is the same.

For transmission, the driver writes the packet given by the writer application into the
IRAM Tx buffer, updates the Tx status and sets MLB device module Tx buffer pointer to
start transmission. After transmission completes, the driver is notified by interrupt and
updates the Tx status to accept the next packet from the application.

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
138 NXP Semiconductors

4
Chapter 4 Connectivity

The driver supports NON BLOCK I/O. User applications can poll to check if there are
packets or exception events to read, and also they can check if a packet can be sent or not.
If there are exception events, the application can call ioctl to get the event. The ioctl also
provides the interface to configure the frame rate, device address, and channel address.

4.7.3 Software Operation
The MLB driver provides a common interface to application.

 Packet read/write-BLOCK and NONBLOCK Packet I/O modes are supported. Only
one packet can be read or written at once. The minimum read length must be greater
or equal to the received packet length, meanwhile the write length must be shorter
than 1024 Bytes.
* Polling-The MLB driver provide polling interface which polls for three status,
application can use select to get current I/O status:
» Packet available for read (ready to read)
* Driver is ready to send next packet (ready to write)
» Exception event comes (ready to read)
* ioctl-MLB driver provides the following ioctl:

MLB_SET_FPS
Argument type: unsigned int

Set frame rate, the argument must be 256, 512 or 1024.

MLB_GET_VER

Argument type: unsigned long

Get MLB device module version, which is 0x02000202 by default on the 1.MX35.
MLB_SET_DEVADDR

Argument type: unsigned char

Set MLB device address, which is used by the system channel MlbScan command.
MLB_CHAN_SETADDR

Argument type: unsigned int

Set the corresponding channel address [8:1] bits. This ioctl combines both tx and rx
channel address, the argument format is: tx_ca[8:1] << 16 | rx_ca[8:1].

MLB_CHAN STARTUP
Startup the corresponding type of channel for transmit and reception.

MLB_CHAN SHUTDOWN

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 139

PCI Express Root Complex

Shutdown the corresponding type of channel.
MLB_CHAN GETEVENT

Argument type: unsigned long

Get exception event from MLB device module, the event is defined as a set of
enumeration:

MLB_EVT TX_ PROTO ERR_CUR
MLB_EVT TX BRK DETECT CUR
MLB_EVT RX PROTO ERR CUR
MLB_EVT_RX_ BRK_DETECT CUR

4.7.4 Source Code Structure

The table below lists the MLB Driver source files.
Table 4-10. MLB Driver Source Files

File Description
drivers/mxc/mlb/mxc_milb.c Source file for MLB driver
include/linux/mxc_mlb.h Include file for MLB driver

4.7.5 Menu Configuration Options
In menu configuration enable the following module:

Device Drivers > MXC support drivers > MXC Media Local Bus Driver > MLB support.

4.8 PCI Express Root Complex

4.8.1 Terminology and Conventions
The following terminologies and conventions are used in this document:
* Bridge

A Function that virtually or actually connects a PCI/PCI-X segment or PCI Express
Port with an internal component interconnect or with another PCI/PCI-X bus
segment or PCI Express Port.

e Downstream

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
140 NXP Semiconductors

L __4
Chapter 4 Connectivity
 The relative position of an interconnect/System Element (Port/component) that is
farther from the Root Complex. The Ports on a Switch that are not the Upstream
Port are Downstream Ports. All Ports on a Root Complex are Downstream Ports.
The Downstream component on a Link is the component farther from the Root
Complex.
* A direction of information flow where the information is flowing away from the
Root Complex.
* Endpoint

One of several defined System Elements. A Function that has a Type 00h
Configuration Space header.
* Host

The entity comprising of one (or more) Central Processing Unit(s) (CPU) and
resources, such as Memory (RAM) that can be shared across multiple PCle nodes
connected through a Root Complex.

* Lane
A set of differential signal pairs, one pair for transmission and one pair for reception.
e Link

The collection of two Ports and their interconnecting Lanes. A Link is a dual simplex
communications path between two components.

e PCle Fabric

A topology comprised of various PCI Express nodes, also referred as devices. A
device in the fabric can be Root Complex, Endpoint, PCle-PCI/PCI-X Bridge or a
Switch.

* Port
 Logically, an interface between a component and a PCI Express Link.
* Physically, a group of Transmitters and Receivers located on the same chip that
define a Link.
* Root Complex

RC A defined System Element that includes a Host Bridge, zero or more Root
Complex Integrated Endpoints, zero or more Root Complex Event Collectors, and
one or more Root Ports.

e Root Port

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 141

A
PCI Express Root Complex
A PCI Express Port on a Root Complex that maps a portion of the Hierarchy through
an associated virtual PCI-PCI Bridge.

e Upstream
 The relative position of an interconnect/System Element (Port/component) that is
closer to the Root Complex. The Port on a Switch that is closest topologically to
the Root Complex is the Upstream Port. The Port on a component that contains
only Endpoint or Bridge Functions is an Upstream Port. The Upstream
component on a Link is the component closer to the Root Complex.

Any element of the fabric which is relatively closer towards RC is treated as 'Upstream'.
All PCIe Endpoint ports (including termination points for bridges) and Switch ports,
which are closer to RC are called Upstream Ports on that device. An Upstream Flow is
the communication moving towards RC.

4.8.2 PCle Topology on i.MX

There is one PCle port on the i.MX. Currently, only the RC mode is enabled in the Linux
BSP.

The following figure describes the diagram of the PCIe RC port on i.MX.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
142 NXP Semiconductors

4
Chapter 4 Connectivity

1.MX CPU, Memary and so an
Platform :
BUS #0 Virtual PCI-PCI bridge

PCle RC downstream Port

BUS#1

PCle EP upstream Port

PCle EP devices

Figure 4-7. diagram of the PCle RC port on i.MX
PCI Enumeration Mapping

As PCI Express is point to point topology, to maintain compatibility with legacy PCI Bus
- Device notion used for Software Enumeration, we introduce the following concepts
which allow various nodes and their internals to be identified (e.g., PCle Switches) in
terms of PCI devices/functions:

* Host Bridge: A bridge, integrated into RC to have PCI compatible connection to
Host. The PCI side of this bridge is Bus #0 always. This means, the device on this
bus will be the host itself.

e Virtual PCI-PCI Bridge: Each PCI Express port which is part of RC or a Switch is
treated as a virtual PCI-PCI bridge. This means each port has a primary and
secondary PCI bus and the downstream is mapped into the remote configuration
space.

* Root port associated virtual bridge has Bus #0 on the primary side with secondary
bus on the downstream.

e Each PClIe Switch is viewed as collection of as many virtual PCI-PCI bridges as
number of downstream ports, connected to a virtual PCI bus which is actually
secondary bus of another PCI-PCI bridge forming the upstream port of the switch.

* The upstream port of each EP can either be part of the secondary bus segment of
virtual PCI-PCI Bridge representing downstream port of a switch or of the root port.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 143

A ————
PCI Express Root Complex

4.8.3 Features

The following are the various features supported by 1.MX as a PCI Express Root
Complex driver.

* Express Base Specification Revision 2.0-compliant.

* Gen2 operation with x1 link supporting 5 GT/s raw transfer rate in single direction.

* Support Legacy Interrupts (INTx) and MSL.

* Max_Payload_Size size (128 bytes).

e It fits into Linux PCI Bus framework to provide PCI compatible software
enumeration support.

* In addition, it provides interface to Endpoint Drivers to access the respective devices
detected downstream.

* The same interface can be used by the PCI Express Port Bus Driver framework in
Linux OS to handle AER, ASP, and so on.

* Interrupt handling facility for EP drivers either as Legacy Interrupts (INTX).

» Access to EP I/O BARs through generic 1/0 accessories in Linux PCI subsystem.

e Seamless handling of PCle errors.

* Supports the LO, LOs, L1, and L1.1 ASPM power management.

4.8.4 Linux OS PCI Subsystem and RC driver

In Linux OS, the PCI implementation can roughly be divided into the following main
components: PCI BIOS architecture-specific Linux OS implementation, Host Controller
(RC) Module, and Core.

» PCI BIOS Architecture-specific Linux OS implementation to kick off PCI bus
initialization. It interfaces with PCI Host Controller code as well as the PCI Core to
perform bus enumeration and allocation of resources such as memory and interrupts.
The successful completion of BIOS execution assures that all the PCI devices in the
system are assigned parts of available PCI resources and their respective drivers
(referred as Slave Drivers). PCI can take control of them using the facilities provided
by PCI Core. It is possible to skip resource allocation (if they were assigned before
Linux OS was booted, for example PC scenario).

* Host Controller (RC) Module handles hardware (SoC + Board) specific initialization
and configuration and it invokes PCI BIOS. It should provide callback functions for
BIOS as well as PCI Core, which will be called during PCI system initialization and
accessing PCI bus for configuration cycles. It provides resources information for
available memory/IO space, INTX interrupt lines, MSI. It should also facilitate 10

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
144 NXP Semiconductors

4
Chapter 4 Connectivity

space access (as supported) through in _x_ () out _x_ () You may need to provide
indirect memory access (if supported by h/w) through read _x_ () write _x_ ().

» Core creates and initializes the data structure tree for bus devices as well as bridges
in the system, handles bus/device numberings, creates device entries and proc/sysfs
information, provides services for BIOS and slave drivers and provides hot plug
support (optional/as supported by h/w). It targets (EP) driver interface query and
initializes corresponding devices found during enumeration. It also provides MSI
interrupt handling framework and PCI express port bus support. It provides Hot-Plug
support (if supported), advanced error reporting support, power management event
support, and virtual Channel support to run on PCI express ports (if supported).

4.8.5 PCle Driver Source Files
Table 4-11. Source Files

File Description

drivers/pci/controller/dwc/pci-imx6.c i.MX 6 PCle source

4.8.6 System Resource: Memory Layout

PCle Host configuration space
Ox01ff c000 - Ox01ff_ffff (16 KB)

0x0D1f8_0000 — 0x01fb_ffff (64 KB)

Figure 4-8. Memory Layout (i.MX 6Quad/6DualLite/6Solo)

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 145

A ————
PCI Express Root Complex

PCle Host configuration space
Bff_c000 - Ox08ff_fff (16 KB)

PCle I/O space: :
0x08f8_ 0000 — Ox08fb_ffff (64 KB)

Figure 4-9. Memory Layout (i.MX 6SoloX)

PCle host configuration space
' 0x3380_3ffff (16 KB)

PCle 1/0 space
£8_0000 - OxAff3_ffff (64 KB)

Figure 4-10. Memory Layout (i.MX 7Dual)

* 10 and memory spaces are two address spaces used by the devices to communicate
with their device driver running in the Linux kernel on CPU.
e The upper 16 KB PCle host configuration space.
» This memory segment is used to map the configuration space of PCle RC. SW
can access PCle RC core configuration space through the DBI interface.
» PCle device configuration space.
» Used to map the configuration spaces of PCle EP devices that are inserted to the
RC downstream port.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
146 NXP Semiconductors

4
Chapter 4 Connectivity

1.MX 8QuadMax/8QuadXPlus:
1.MX 8QuadMax has both PCIeA and PCleB, while i.MX 8QuadXPlus has only PCleB.
* PCIeA

* PClIe host configuration space: 0x5f00_0000 — Ox5f00_ffff (64K bytes)
» PCle device configuration space: 0x6ff0_0000 — Ox6ff7_ffff (512K bytes)
* PClIe 10 space: 0x6ff8_0000 — 0x6ff8_ffff (64K bytes)
* PCIe memory space: 0x6000_0000 — Ox6fef_ffff (255M bytes)
* PCleB

* PClIe host configuration space: 0x5f01_0000 — Ox5f01_ffff (64K bytes)

* PCle device configuration space: 0x7{f0_0000 — Ox7{f7_ffff (512K bytes)
* PCle IO space: 0x7{f8_0000 — Ox7{f8_ffff (64K bytes)

* PCIe memory space: 0x7000_0000 — Ox7fef_ffff (255M bytes)

1.MX 8M Quad:
* PCle0

* PCle host configuration space: 0x3380_0000 — 0x33bf_ffff (4Mbytes)
» PCle device configuration space: Ox1{f0_0000 — Ox 1{f7_ffff (512K bytes)
* PCle IO space: Ox1ff8_0000 — Ox1{f8_{fff (64K bytes)
* PCle memory space: 0x1800_0000 — Ox 1fef_ffff (127M bytes)
* PCIE1

* PClIe host configuration space: 0x33c0_0000 — Ox33ff_ffff (4Mbytes)

* PCle device configuration space: 0x27f0_0000 — 0x27{7_{fff (512K bytes)
* PCle IO space: 0x27f8_0000 — 0x27f8_ffff (64K bytes)

* PCle memory space: 0x2000_0000 — 0x27ef_{fff (127M bytes)

4.8.7 System Resource: Interrupt lines

1.MX Root Complex driver uses interrupt line 152 for MSI INT on 1.MX 6 platforms, and
154 for MSI INT on 1.MX 7Dual platforms.

4.9 USB

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 147

usB
4.9.1 Introduction

The universal serial bus (USB) driver implements a standard Linux driver interface to the
CHIPIDEA USB-HS OTG controller.

The USB provides a universal link that can be used across a wide range of PC-to-
peripheral interconnects. It supports plug-and-play, port expansion, and any new USB
peripheral that uses the same type of port.

The CHIPIDEA USB controller is Enhanced Host Controller Interface (EHCI)-
compliant. This USB driver has the following features:

* High-speed OTG core supported

* High-speed Host Only core (Host1), high-speed, full speed, and low devices are
supported

* High-speed Inter-Chip core (Host2 & Host3)

* High-speed Host Only core (OTG2), high-speed, full speed, and low devices are
supported. A USB2Pci bridge is connected to OTG2 by default. Therefore, users may
not be able to connect other USB devices on this port.

* High-speed Inter-Chip core (Host2)

* Host mode-Supports HID (Human Interface Devices), MSC (Mass Storage Class)

* Peripheral mode-Supports MSC, and CDC (Communication Devices Class) drivers,
which include Ethernet and serial support

* Embedded DMA controller

4.9.2 Architectural Overview
The USB host system is composed of a number of hardware and software layers.

The figure below shows a conceptual block diagram of the building block layers in a host
system that support USB 2.0.

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
148 NXP Semiconductors

Chapter 4 Connectivity

Host Interconnect Physical Device
-

Client SW | Function Function Layer

USB Loglcal
USE:HELsiam ; Devige USE Device

I Layer
USE Bus

LUSE Host H USE Bus

Controller : Interface Interface Layer

Actual communications flow
Loglcal communlcations flow

Implementation Focus Area

Figure 4-11. USB Block Diagram

4.9.3 Hardware Operation
For information on hardware operations, refer to the EHCI spec.ehci-r10.pdf.

The spec is available at Enhanced Host Controller Interface for USB 2.0: Specification

4.9.4 Software Operation

The Linux OS contains a USB driver, which implements the USB protocols. For the USB
host, it only implements the hardware specified initialization functions. For the USB
peripheral, it implements the gadget framework. For OTG, ID dynamic switch host/
device modes are supported. Currently, the runtime suspend for USB is supported, that is
to say when the USB is not in use (both for host and peripheral mode), the USB will enter
low power mode.

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020

NXP Semiconductors 149

http://www.intel.com/content/www/us/en/io/universal-serial-bus/ehci-specification-for-usb.html

usB

4.9.5 Source Code Structure

The table below describes the USB source in drivers/usb.

Table 4-12. Chipidea USB Driver Files

File

Description

drivers/usb/chipidea/core.c

Chipidea IP core driver

drivers/usb/chipidea/udc.c

Chipidea peripheral driver

drivers/usb/chipidea/host.c

Chipidea host driver

drivers/usb/chipidea/otg.c

Chipidea OTG driver

drivers/usb/chipidea/otg_fsm.c

Chipidea OTG HNP and SRP driver

drivers/usb/chipidea/ci_hdrc_imx.c

i.MX glue layer

drivers/usb/chipidea/usbmisc_imx.c

i.MX SoC abstract layer

drivers/usb/phy/phy-mxs-usb.c

i.MX 6 USB physical driver

4.9.6 Menu Configuration Options

In menu configuration enable the following modules.

Device Drivers > [*] USB support > EHCI HCD (USB 2.0) support and Chipldea

Highspeed Dual Role Controller [*] USB Physical Layer drivers --->

Device Drivers > USB Physical Layer drivers > Freescale MXS USB PHY support
Device Drivers > USB Gadget Support

1. CONFIG_USB-Build Support for Host-side USB
2. CONFIG_USB_EHCI_HCD EHCI HCD (USB 2.0) support

Default y

3. CONFIG_USB_CHIPIDEA- Chipldea high-speed Dual Role Controller

Default y

4. CONFIG_USB_CHIPIDEA_UDC - Chipldea device controller

Default y

5. CONFIG_USB_CHIPIDEA_HOST - Chipldea host controller

Default y

6. CONFIG_USB_GADGET - USB Gadget Support

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020

150

NXP Semiconductors

4
Chapter 4 Connectivity

Default y
7. CONFIG_USB_MXS_PHY - Freescale MXS USB PHY support
Default y

4.9.7 USB Wakeup Usage
The following example is for the OTG port and the first EHCI device.

Controller wakeup setting, after the following settings, the VBUS and ID will be wakeup
source.

echo enabled > /sys/bus/platform/devices/20c9000.usbphy/power/wakeup
echo enabled > /sys/bus/platform/devices/2184000.usb/power/wakeup
echo enabled > /sys/bus/platform/devices/ci_hdrc.0/power/wakeup

EHCI wakeup setting, after the following settings, the host will have wakeup ability, such
as remote wakeup and connect/disconnect wakeup

echo enabled > /sys/bus/usb/devices/usbl/power/wakeup
echo enabled > /sys/bus/usb/devices/1-1/power/wakeup

NOTE
When the OTG mode switches from the host to the device, it
will delete the EHCI wakeup, and the user needs to set it again
before the system suspending.

4.9.8 How to Close the USB Child Device Power

The following code string outlines how to close the USB child device power:

echo auto > /sys/bus/usb/devices/1-1/power/control
echo auto > /sys/bus/usb/devices/1-1.1/power/control (If there is a hub at USB device)

4.9.9 Changing the Controller Operation Mode

To change the default settings, the use can modify the DTS file as follows:

dr_mode = T"host" /* Set controller as gadget-only mode */
dr mode = ‘'"peripheral" /* Set controller as host-only mode */
dr mode = ‘'"otg" /* Set controller as otg mode */

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 151

usB

4.9.10 Loadable Module Support

The modprobe utility will automatically load the modules which have dependency among
all modules.

The loading command is as follows:

modprobe phy mxs usb
modprobe ci_hdrc_ imx

The unloading command is as follows:

modprobe -r ci_hdrc_imx
modprobe -r phy mxs usb

4.9.11 USB Charger Detection

1.MX SoC has USB charger detection ability, but it has no charging ability. The user can
use the /sys entry to know the USB charger type, charging current, and whether the
charger exists, as shown in the following three lines:

cat /sys/class/power supply/imx6 usb charger/type
cat /sys/class/power supply/imxé6 usb charger/current max
cat /sys/class/power_ supply/imx6 usb_ charger/present

Currently, the 1.MX 6 Sabre-SD board does not support the USB charger detection
function. .MX 6 Sabre-Auto supports the function.

4.9.12 Embeded Host Certification

4.9.12.1 Adding TPL-Support Property

To pass embeded host USB certification, "tpl-support" should be added in DTS to enable
Targeted Peripheral List (TPL). For example, to enable TPL on the Host port of 1.MX
6UltraLite EVK board (imx6ul-14x14-evk.dts):

susbotg2 {
dr_mode = "host";
disable-over-current;
tpl-support;
status = "okay";

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
152 NXP Semiconductors

4
Chapter 4 Connectivity

4.9.12.2 VBUS Control

The VBUS should be kept off until the Linux USB host function is ready. For example,
on the 1.MX 6UltraLite EVK board, because the pin is multiplexed with the touch
function, you need to rework the board to make the GPIO (GPIO1_I002) selected for
VBUScontrol.

Disable the touch function in its DTS file (imx6ul-14x14-evk.dts) as follows:

&tsc
pinctrl-names = "default";
pinctrl-0 = <&pinctrl tscs;
xnur-gpio = <&gpiol 3 0>;

measure_delay time = <Oxffffs>;
pre charge time = <Oxfffs>;
status = "disabled";

}i
Add VBUS GPIO pinctrl and its regulator node:

pinctrl usb otg2: usbotg2grp {
fsl,pins = <
MX6UL_PAD GPIO1 IO02 GPIOl1 IO02 0xb0
>;

}i

reg_usb otg2 vbus: regulatore2 {

compatible = "regulator-fixed";

reg = <2>;

pinctrl-names = "default";

pinctrl-0 = <&pinctrl usb otg2s;
regulator-name = "usb otg2 vbus";
regulator-min-microvolt = <5000000>;
regulator-max-microvolt = <5000000>;

gpio = <&gpiol 2 GPIO_ACTIVE HIGH>;
enable-active-high;

}i

susbotg2 {
vbus-supply = <® usb otg2 vbuss>;
dr mode = "host";

disable-over-current;
tpl-support;
status = "okay";

4.10 USB3

4.10.1 Introduction

For 1.MX 8 and i.MX 8X families, a super-speed USB IP from Cadence is provided
supporting USB 3.0 which includes a new transfer rate referred to as Super Speed (SS)
USB with higher transfer rates and significantly faster than the USB 2.0 standard.

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 153

Low Power Universal Asynchronous Receiver/Transmitter (LPUART)

The supported features the following.

* Host mode is implemented with a Linux OS standard XHCI driver with super-speed
supported and tested.

* For Device Mode only single queue is supported. Mass storage, ether, and serial are
supported.

4.10.2 Source Code Structure
Table 4-13. USB3 Driver Source Files

File Description
drivers/usb3/cdns3/cdns3-nxp-reg-def.h Register definitions
drivers/usb3/cdns3/core.c USB3 core driver
drivers/usb3/cdns3/core.h USB3 Core header
drivers/usb3/cdns3/dev-regs-macro.h USB3 Macros
drivers/usb3/cdns3/dev-regs-map.h USBS3 Register mapping
drivers/usb3/cdns3/gadget.c USB3 Gadget
drivers/usb3/cdns3/gadget.h USB3 Gadget header
drivers/usb3/cdns3/gadget-export.h USB3 Gadget Export header
drivers/usb3/cdns3/host.c USBS3 Host
drivers/usb3/cdns3/host-export.h USBS3 Host Export header
drivers/usb3/cdns3/io.h USB3 10

4.11 Low Power Universal Asynchronous Receiver/
Transmitter (LPUART)

4.11.1 Introduction
The low-level UART driver interfaces the Linux serial driver API to all the UART ports.
It has the following features:

* Interrupt-driven and eDMA-driven transmit/receive of characters

e Standard Linux baud rates up to 4 Mbps

* Transmit and receive characters with 7-bit, 8-bit, 9-bit, or 10-bit character length

* Transmits one or two stop bits

e Supports TIOCMGET IOCTL to read the modem control lines. Only supports the
constants TIOCM_CTS and TIOCM_CAR, plus TIOCM_RI in DTE mode only

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
154 NXP Semiconductors

L __4
Chapter 4 Connectivity
 Supports TIOCMSET IOCTL to set the modem control lines. Supports the constants
TIOCM_RTS and TIOCM_DTR only
* Odd and even parity
* XON/XOFF software flow control. Serial communication using software flow
control is reliable when communication speeds are not too high and the probability of
buffer overruns is minimal
e CTS/RTS hardware flow control-both interrupt-driven software-controlled hardware
flow and hardware-driven hardware-controlled flow
» Send and receive break characters through the standard Linux serial API
* Recognizes frame and parity errors
* Ability to ignore characters with break, parity and frame errors
* Get and set UART port information through the TIOCGSSERIAL and
TIOCSSERIAL TTY IOCTL. Some programs like setserial and dip use this feature
to make sure that the baud rate was set properly and to get general information on the
device. The UART type should be set to 52 as defined in the serial_core.h header
file.
* Power management feature by suspending and resuming the UART ports
e Standard TTY layer IOCTL calls

All the UART ports can be accessed from the device files /dev/ttyLPO to /dev/ttyLP1.

4.11.2 Hardware Operation

To determine the number of UART modules available on the device see the Applications
Processor Reference Manual associated with SoC.

Each UART hardware port is capable of standard RS-232 serial communication.

Each UART contains a 64-byte transmitter FIFO and a 32-half-word deep receiver FIFO.
Each UART also supports a variety of maskable interrupts when the data level in each
FIFO reaches a programmed threshold level and when there is a change in state in the
modem signals.

4.11.3 Software Operation

The Linux OS contains a core UART driver that manages many of the serial operations
that are common across UART drivers for various platforms.

The low-level UART driver is responsible for supplying information such as the UART
port information and a set of control functions to the core UART driver. These functions
are implemented as a low-level interface between the Linux OS and the UART hardware.

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 155

A
Low Power Universal Asynchronous Receiver/Transmitter (LPUART)

They cannot be called from other drivers or from a user application. The control
functions used to control the hardware are passed to the core driver through a structure
called uart_ops, and the port information is passed through a structure called uart_port.
The low level driver is also responsible for handling the various interrupts for the UART
ports, and providing console support if necessary.

Each UART can be configured to use DMA for the data transfer by enabling the DMA
channel in the DTS file.

The driver requests two DMA channels for the UARTSs that need DMA transfer. On a
receive transaction, the driver copies the data from the DMA receive buffer to the TTY
Flip Buffer.

While using DMA to transmit, the driver copies the data from the UART transmit buffer
to the DMA transmit buffer and sends this buffer to the DMA system. For more
information, see the Linux documentation on the serial driver in the kernel source tree.

4.11.4 Driver Features
The UART driver supports the following features:

* Baud rates up to 4 Mbps

* Recognizes frame and parity errors only in interrupt-driven mode; does not recognize
these errors in DMA-driven mode

 Sends, receives, and appropriately handles break characters

* Recognizes the modem control signals

* Ignores characters with frame, parity, and break errors if requested to do so

e Implements support for hardware flow control

* Get and set the UART port information; certain flow control count information is not
available in hardware-driven hardware flow control mode

* Power management

* Interrupt-driven and DMA-driven data transfer

4.11.5 Source Code Structure

Table below shows the UART driver source files.
Table 4-14. UART Driver Files

File Description

drivers/tty/serial/fsl_lpuart.c LP UART driver

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
156 NXP Semiconductors

Chapter 4 Connectivity

For the 1.MX 8, 1.MX 8X and 1.MX 8M configuration options are specified in the device
trees located in arch/arm64/boot/dts directory.

4.11.6 Menu Configuration Options
The UART driver is enabled by default.
The menu configuration option is located at:

Device Drivers > Character devices > Serial drivers > Freescale LPUART serial port
support [*] Console on Freescale LPUART serial port

4.11.7 Programming Interface

The UART driver implements all the methods required by the Linux serial API to
interface with the UART port and provides a set of control methods to the Linux core
UART driver. For more information about the methods implemented in the driver, see the
API document.

4.11.8 Interrupt Requirements
The UART driver interface generates only one interrupt.

The status is used to determine which kinds of interrupt occurs, such as RX or TX.

4.12 Bluetooth

4.12.1 Bluetooth Wireless Technology Introduction

Bluetooth technology is low-cost, low-power, short-range wireless technology. It was
designed as a replacement for cables and other short-range technologies like IrDA.
Bluetooth wireless technology operates in personal area range that typically extends up to
10 meters. For more information about Bluetooth wireless technology, see
www.bluetooth.com/.

For 1.MX, bluetooth is supported with multiple vendors listed below:

* 1.MX 7Dual supports Wi-Fi chip BCM4339 on the board.
* 1.MX 6 supports Wi-Fi chip Murata module based on BCM4339.

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 157

http://www.bluetooth.com/

AR
Bluetooth

* 1.MX 7ULP supports Wi-Fi chip:

e Murata 1DX module based on Cypress CYW43430. The CYW434301s a
combination solution to support IEEE802.11b/g/n W-LAN + Bluetooth® v4.2
(BR/EDR/BLE).

* Murata 1PJ module based on Qualcomm QCA9377-3. The QCA9377-3 1s a
single-die wireless local area network (WLAN) and Bluetooth (BT) combination
solution to support 1 x 1 IEEE 802.11a/b/g/n/fac WLAN standards and BT 4.1 +
HS, enabling seamless integration of LAN/BT and lowenergy technology.

* i.MX 8M Quad, 8QuadMax, and 8QuadXPlus support:

e Murata 1CX module based on Cypress CYW4356. The CYW4356 integrated
IEEE 802.11 a/b/g/n/ac MAC/baseband/radio, Bluetooth 5.0, and Alliance for
Wireless Power (A4WP) support.

e Murata 1FD module based on Cypress CYW4359. The CYW4359 integrated
IEEE 802.11ac, dual-band 5G WiFi, 2x2 MIMO MAC/PHY/Radio, and
Bluetooth 4.2.

e Murata 1CQ module based on Qualcomm QCA6174. The QCA6174 is a single-
die wireless local area network (WLAN) and Bluetooth combo solution to
support 2 x 2 multi-user multiple input, multiple output (MU-MIMO) with two
spatial streams IEEE802.11 a/b/g/n/fac WLAN standards and Bluetooth 4.2 + HS,
designed to deliver superior integration of WLAN/Bluetooth and low energy
technology.

* 1.MX 8M Mini supports Wi-Fi chip with Murata IMW based on Cypress
CYW43455, 1CX based on Cypress CYW4356, and 1PJ based on Qualcomm
QCA9377.

QCA supports Wi-Fi through firmware provided with firmware-imx software and BCM
supports firmware provided with imx-firmware at imx-firmware github

4.12.2 Bluetooth Driver Overview

1.MX uses the open source Bluetooth driver. The Bluetooth software is divided into four
parts as follows:

* 4-wire UART and TTY driver: It is the communication interface with the Bluetooth
module.

* Bluetooth HCI device driver: UART (H4) is a serial protocol for communication
between the Bluetooth device and host. This protocol is required for most Bluetooth
devices with the UART interface.

 Bluetooth kernel stack: Bluetooth framework and protocols implementation.

* Bluetooth user stack: Supplies several user-space utilities and integrate many profiles
for use cases.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
158 NXP Semiconductors

https://github.com/nxp/imx-firmware

Chapter 4 Connectivity

4.12.3 Bluetooth Driver Files

The Bluetooth driver source files are available in the kernel source directory.
e Bluetooth HCI device driver:
e drivers/bluetooth/hci_h4.c
e drivers/bluetooth/hci_ldisc.c
* Bluetooth kernel stack:
 net/bluetooth/*

4.12.4 Bluetooth Stack

BlueZ is the official Linux standard Bluetooth protocol stack, it is the latest version of 5.x
and it is a Bluetooth stack for Linux kernel-based family of operating systems. Its goal is
to program an implementation of the Bluetooth wireless standards specifications for
Linux. To use Linux Bluetooth subsystem, you need several user-space utilities like
hciconfig and bluetoothd. These utilities and updates to Bluetooth kernel modules are
provided in the BlueZ packages. For more information, see www.bluez.org/.

BlueZ source code are available in the git: git://git.kernel.org/pub/scm/bluetooth/
bluez.git. The current BSP package tests pass with BlueZ 5.49.

4.12.5 Menu Configuration Options

The following Linux kernel configuration option is provided for this module:
* UART interface:
* CONFIG_SERIAL_IMX
* CONFIG_TTY
* HCI interface:
* CONFIG_BT_HCIUART
« CONFIG_BT_HCIUART_H4
* CONFIG_BT_HCIUART_QCA
* CONFIG_BT_HCIUART_BCM
* Bluetooth Stack:
* CONFIG_BT
* CONFIG_BT_RFCOMM
« CONFIG_BT_RFCOMM_TTY
* CONFIG_BT_BNEP
 CONFIG_BT_BNEP_MC_FILTER

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 159

http://www.bluez.org/

A
Wi-Fi

« CONFIG_BT_BNEP_PROTO_FILTER

 CONFIG_BT_HIDP

4.13 Wi-Fi

4.13.1 Introduction
WiFi on 1.MX is supported by Qualcomm QCA and Broadcom BCRM

* For i.MX 7Dual the Broadcom BCRM is supported on the reference board

e For 1.MX 6 1.MX 8 the Broadcom BCRM is supported with a Murata plugin module.

* For 1.MX 8 and 1.MX 8X use the M.2 interface to connect with the Cypress
CYW4346/CYW4359 and QCA 1CQ Wi-Fi modules.

e For 1.MX 7ULP had the CYW43430 and QCA9377 chips on the reference board.

* For 1.MX 8M the CYW4356 and QCA6174 chips are supported on the reference
board.

e For 1.MX 8M Mini, the CYW43455 and QCA9377 chips are supported on the
reference board.

4.13.2 Software Operation
The BSP supports:

* Cypress FMAC driver supports all cypress chips. BCMDHD driver is not supported
since L4.14.
* QCA CLD LEA2.0 Wi-Fi driver, which is released by Qualcomm, and the firmware

and binaries are limited to LA_OPT_BASE_LICENSE and Qualcomm Atheros
License.

4.13.3 Driver features

The FMAC and QCA CLD wireless drivers are CFG80211 driver, which supports both
the station and AP mode of operation.

The driver requires firmware that runs on the chip's network processor. The following
directory designates the firmware location in rootfs: /lib/firmware/.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
160 NXP Semiconductors

Chapter 4 Connectivity
4.13.4 Source Code Structure

The Cypress FMAC driver source files are available at drivers/net/wireless/broadcom/
brem80211/bremfmac/.

The QCA CLD driver source files are available at codeaurora.org.

4.13.5 Menu Configuration Options

The following Linux kernel configuration option is provided for this module:
 CONFIG_MAC80211=y
* COCONFIG_NLS80211_TESTMODE=y
* CONFIG_CFG80211_WEXT=y
* CONFIG_HOSTAP=y
« CONFIG_CFG80211_INTERNAL_REGDB=y
 CONFIG_WLAN_VENDOR_BROADCOM=y
* CONFIG_BRCMUTIL=m
 CONFIG_BRCMFMAC=m
* CONFIG_BRCMFMAC_PROTO_BCDC=y
* CONFIG_BRCMFMAC_PROTO_MSGBUF=y
 CONFIG_BRCMFMAC_SDIO=y
 CONFIG_BRCMFMAC_PCIE=y

4.13.6 Device Tree Binding

For device tree, the ATHI0K driver requires the following nodes to be defined in the
device tree. For example,

&pcieof
pinctrl-names = "default";
pinctrl-0 = <&pinctrl pciels>;
clkreg-gpio = <&gpio5 20 GPIO _ACTIVE LOW>;
disable-gpio = <&gpio5 29 GPIO ACTIVE LOW>;
reset-gpio = <&gpio5 28 GPIO ACTIVE LOW>;

ext _osc = <1>;
hard-wired = <1>;
status = "okay";

}i

regulators {
compatible = "simple-bus";
#address-cells = <1>;
#size-cells = <0>;

epdev_on: fixedregulator@100 {
compatible = "regulator-fixed";
regulator-min-microvolt = <3300000>;
regulator-max-microvolt = <3300000>;
regulator-name = "epdev_on'";
gpio = <&gpioc4 9 0>;

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 161

https://source.codeaurora.org/quic/la/platform/vendor/qcom-opensource/wlan/qcacld-2.0

enable-active-high;

4.13.7 Configuring WLAN from User Space

4.13.7.1 Connecting AP in Station Mode
The following command group is used to connect WLAN to a given SSID.

head -n 4 /etc/wpa_supplicant.conf > /etc/wpa_supplicant.conf.tmp
wpa_passphrase ssid password >> /etc/wpa_ supplicant.conf.tmp

mv /etc/wpa_supplicant.conf /etc/wpa_ supplicant.conf.bak

mv /etc/wpa_supplicant.conf.tmp /etc/wpa supplicant.conf
wpa_supplicant -B -1 wlplsO -c /etc/wpa_supplicant.conf -D nl80211

Here is an example of wpa_supplicant.conf:

ctrl interface=/var/run/wpa_ supplicant

ctrl interface group=0

update config=1

networks={
ssid="NETGEAR73"
#psk="freshbutter"
psk=eb0376fcl4ee5dle6cel29ad54dal38adab....

4.13.7.2 Obtaining an IP address

The following command is used to get an IP address for wlanO:

udhcpc -i wlanO

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

162

NXP Semiconductors

Chapter 5
Graphics

5.1 Graphics Processing Unit (GPU)
1.MX 8M Plus VPU Encoder Library is imx-hantro-vc.so.

5.1.1 Introduction

The Graphics Processing Unit (GPU) is a graphics accelerator targeting embedded 2D/3D
graphics applications.

The 3D graphics processing unit (GPU3D) is an embedded engine that accelerates user
level graphics Application Programming Interface (APIs) such as OpenGL ES 1.1,
OpenGL ES 2.0, and OpenGL ES 3.0 and OpenCL 1.1EP. The 2D graphics processing
unit (GPU2D) is an embedded 2D graphics accelerator targeting graphical user interfaces
(GUD) rendering boost. The VG graphics processing unit (GPUVGQG) is an embedded
vector graphic accelerator for supporting the OpenVG 1.1 graphics API and feature set.
The GPU driver kernel module source is in the kernel source tree, but the libraries are
delivered as binary only.

Graphics Processing Unit Hardware Applicable Platform

3D Vivante dual- 8QuadMax
GC7000XSVX

3D Vivante GC7000Lite 8QuadXPlus/8M Quad

3D Vivante GC7000 Nano 7ULP and 8M Mini
Ultra

3D Vivante GC7000 UltraLite |8M Plus

3D Vivante GC7000 Ultra Lite |8M Nano

3D Vivante GC2000 6Quad/6Dual

3D Vivante GC2000+ 6QuadPlus/6DualPlus

3D Vivante GC880 6DualLite/6Solo

3D/2D Vivante GC400T 6SoloX

Table continues on the next page...

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 163

A ————
Graphics Processing Unit (GPU)

Graphics Processing Unit Hardware Applicable Platform
2D Vivante GC320 6Quad/6Dual/6DuallLite/6Solo
Vector Vivante GC355 6Quad/6Dual
2D Vivante GC328 7ULP
NOTE

* GC400T does not support OpenGL ES 3.0.

» GC880/GC400T does not support OpenCL 1.1EP. GC2000
and GC2000+ support OpenCL 1.1 EP.

* GC7000XSVX supports OpenCL 1.2 FP, OpenVX 1.0.1,
and Vulkan 1.0.

5.1.2 Driver Features

The GPU driver enables this board to provide the following software and hardware
support:

* EGL (EGL is an interface between Khronos rendering APIs such as OpenGL ES or
OpenVG and the underlying native platform window system) 1.5 API defined by
Khronos Group.

* OpenGL ES (OpenGL® ES is a royalty-free, cross-platform API for full-function 2D
and 3D graphics on embedded systems) 1.1 API defined by Khronos Group.

e OpenGL ES 2.0 API defined by Khronos Group.

* OpenGL ES 3.0/3.1/3.2 API defined by Khronos Group.

* OpenVG (OpenVG is a royalty-free, cross-platform API that provides a low-level
hardware acceleration interface for vector graphics libraries such as Flash and SVG)
1.1 API defined by Khronos Group.

* OpenCL (OpenCL is the first open, royalty-free standard for cross-platform, parallel
programming of modern processors.) 1.1 EP API defined by Khronos Group.

* OpenGL 2.1 API defined by Khronos Group.

* Automatic 3D core slowing down, when hot notification from thermal driver is
active, 3D core will run at 1/64 clock.

e OpenCL1.1/1.2FP API defined by Khronos Group.

* OpenVX 1.0.1 API defined by Khronos Group.

* Vulkan 1.0 API defined by Khronos Group.

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
164 NXP Semiconductors

4
Chapter 5 Graphics

5.1.3 Hardware Operation

For detailed hardware operations, see the GPU chapters in the Applications Processor
Reference Manual specific to SoC.

5.1.4 Software Operation

The GPU driver is divided into two layers. The first layer is running in kernel mode and
acts as the base driver for the whole stack. This layer provides the essential hardware
access, device management, memory management, command queue management,
context management and power management. The second layer is running in user mode,
implementing the stack logic and providing the following APIs to the upper layer
applications:

* OpenGL ES 1.1, 2.0, and 3.0 API
« EGL 1.5 API

* OpenGL ES11/20/30/31/32

* OpenCL 1.1/1.2 FP

* OpenVX 1.0.1

e Vulkan 1.0

* OpenGL 4.0

* WebGL 1.0.2

* OpenVG 1.1 API

* OpenCL 1.1 EP API

5.1.5 Source Code Structure

Table below lists GPU driver kernel module source structure:

drivers/mxc/gpu-viv

Table 5-1. GPU Driver Files

File Description
Kconfig Kbuild config Kernel configure file and makefile
hal/kernel/arch Hardware-specific driver code for GC2000, GC880, GC400T, and
GC320
hal/kernel/archvg Hardware-specific driver code for GC355
hal/kernel Kernel mode HAL driver
hal/os/linux/kernel OS layer HAL driver

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 165

Graphics Processing Unit (GPU)

NOTE

If you replace the whole content in this directory, the GPU
kernel driver can be upgraded.

5.1.6 Library Structure

Table below lists GPU driver user mode library structure:

<ROOTFS>/usr/lib
Table 5-2. GPU Library Files
File Description

libCLC.so OpenCL frontend compiler library
libEGL.so** EGL1.4 library
libGAL.so GAL user mode driver
libGLES_CL.so OpenGL ES 1.1 common lite library

(without EGL API, no float point support API)
libGL.so** OpenGL 2.1 common library
libGLES_CM.so OpenGL ES 1.1 common library

(without EGL API, include float point support API)
libGLESv1_CL.so** OpenGL ES 1.1 common lite library

(with EGL API, no float point support API)
libGLESv1_CM.so** OpenGL ES 1.1 common library

(with EGL AP, include float point support API)
libGLESv2.s0** OpenGL ES 2.0/3.0/3.1/3.2 library
libGLSLC.so OpenGL ES shader language compiler library
libVSC.so OpenGL front-end compiler library
libVivanteOpenCL.so Vivante
libOpenCL.so OpenCL ICD wrapper library
libOpenVG.so* OpenVG 1.1 library
libVDK.so VDK wrapper library.
libVIVANTE.so Vivante user mode driver.
xorg/modules/drivers/vivante_drv.so EXA library for X11 acceleration.
libwayland-viv.so Wayland server-side library for Vivante's EGL driver
libgc_wayland_protocol.so Vivante Wayland Protocol Extension Library
libOpenVX.so* OpenVX 1.0 library
libvulkan..so* Vulkan 1.0 library

**SONAME is used for ibEGL.so, libGLESv2.so, ibGLESv1_CM.so,
libGLESv1_CL.so, libGL.so.

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
166 NXP Semiconductors

4
Chapter 5 Graphics
*For 1ibOpenVG.so, there are two libraries for the OpenVG feature. libOpenVG.3d.so is
the GC7000XSVX/GC2000+/GC2000/GC880/GC400T-based OpenVG library.
libOpenVG.2d.so is the gc355 based OpenVG library.
* For 1.MX 6DualPlus/QuadPlus and i.MX 6Dual/Quad, both libOpenVG.3d.so and
libOpenVG.2d.so can be used.
* For i.MX 6DualLite, and i.MX 6SoloX, only libOpenVG.3d.so can be used.
e If no SOC limitation, for the x11 backend, libOpenVG.3d.so is linked by default.
 If no SOC limitation, for framebuffer, directFB, and Wayland backends, the default
openVG library is linked to libOpenVG.2d.so.

This can be done by using the following sequence of commands:

cd <ROOTFS>/usr/lib
sudo 1n -s 1libOpenvVG 355.so 1libOpenVG.so

5.1.7 API References

See the following web sites for detailed specifications:

* OpenGL ES 1.1, 2.0, and 3.0 API: www.khronos.org/opengles/
* OpenCL 1.1 EP www.khronos.org/opencl/

* EGL 1.4 API: www.khronos.org/egl/

* OpenVG 1.1 API: www.khronos.org/openvg/

* OpenGL ES API: www.khronos.org/opengles/

e OpenCL API: www.khronos.org/opencl/

* OpenVX API: www.khronos.org/openvx/

e Vulkan API: www khronos.org/vulkan/

e OpenGL API: www.khronos.org/opengl/

* WebGL API: www.khronos.org/webgl/

5.1.8 Menu Configuration Options
In menu configuration enable the following module for the GPU driver:

CONFIG_MXC_GPU_VIV is a configuration option for GPU driver. In the menuconfig
this option is available under Device Drivers > MXC support drivers > MXC Vivante
GPU support > MXC Vivante GPU support.

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 167

http://www.khronos.org/opengles/
http://www.khronos.org/opencl/
http://www.khronos.org/egl/
http://www.khronos.org/openvg/
https://www.khronos.org/opengles/
http://www.khronos.org/opencl/
http://www.khronos.org/openvx/
http://www.khronos.org/vulkan/
http://www.khronos.org/opengl/
http://www.khronos.org/webgl/

A ————
Wayland

On the screen displayed, select Configure the kernel, select Device Drivers > MXC
support drivers > MXC Vivante GPU support > MXC Vivante GPU support, and then
exit. When the next screen appears, select the following options to enable the GPU
driver:

» Package list > imx-gpu-viv
 This package provides proprietary binary libraries, and test code built from the GPU
for framebuffer

5.2 Wayland

5.2.1 Introduction

Wayland is a protocol for a compositor to talk to its clients as well as a C library
implementation of that protocol. The compositor can be a standalone display server
running on Linux kernel modesetting and evdev input devices, an X application, or a
Wayland client itself. The clients can be traditional applications, X servers or other
display servers.

Part of the Wayland project is also the Weston reference implementation of a Wayland
compositor. The Weston compositor is a minimal and fast compositor and is suitable for
many embedded and mobile use cases.

This chapter describes how to enable Wayland/Weston support on an i.MX series device.

5.2.2 Software Operation

This release is based on the Wayland 1.16 version and Weston 5.0.0 version.

5.2.3 Yocto Build Instructions
The instructions for Yocto Project build are as follows:

1. Prepare a Yocto build directory and follow the setup instructions in the i. MX Yocto
Project User's Guide (IMXLXYOCTOUG) for DISTRO Wayland.
2. Set up Yocto for Wayland in the build directory:

$ MACHINE = <your-machine> DISTRO=fsl-imx-xwayland source imx-setup-release.sh -b build-
wayland

3. Build an image.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
168 NXP Semiconductors

Chapter 5 Graphics

$ bitbake imx-image-multimedia

5.2.4 Customizing Weston

The 1.MX Weston includes two compositors. One is the EGL3D compositor, which is
accelerated by the 3D core. The other is G2D compositor accelerated by the 2D BLT
engines.

Weston options can be updated in the file “/etc/init.d/weston”.

Table 5-3. Common options for Weston

Weston option Description
tty default to current tty.
device "/dev/fb0", default frame buffer , Multi display supported in
G2D compositor.
use-gl EGL accelerated, defaults to be “1”.
use-g2d G2D accelerated, defaults to be “0”.
idle-time Idle time in seconds.

5.2.4.1 Multi display supported in Weston
Multi display was supported in G2D compositor only. Add these options to start Weston:

weston --tty=1 --device=/dev/fb0,/dev/fb2 --use-g2d=1 &

5.2.4.2 Multi buffer supported in Weston

The Weston server supports both single buffering and multi buffering. In single
buffering, the damage area is rendered to the offscreen surface and blits to front
buffer.The offscreen surface is used to avoid flickering. By default, the Weston server
starts with single buffering.

In multi buffering, instead of rendering to offscreen, the damage area is rendered to back
buffer and does the flip, but the frame rate will be restricted to the display rate. A
maximum of three buffers are supported.

Before starting the Weston server, export FB_MULTI_BUFFER to control the number of
buffers to be used.

Environment variables for single buffering:

export FB MULTI BUFFER=1

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 169

X Windows Acceleration
Environment variables for double buffering:

export FB MULTI_ BUFFER=2

5.2.5 Running Weston
Perform the following operations to run Weston:

1. Boot the 1.MX device.

2. To run clients, the second button in the top bar will run weston-terminal, from which
you can run clients. There are a few demo clients available in the Weston build
directory, but they are all pretty simple and mostly for testing specific features in the
Wayland protocol:

* 'weston-terminal' is a simple terminal emulator, not very compliant, but works
well enough for bash.

 'weston-flower' draws a flower on the screen, testing the frame protocol.

 'weston-smoke' tests SHM buffer sharing.

* 'weston-image' loads the image files passed on the command line and shows
them.

5.3 X Windows Acceleration

5.3.1 Introduction

X-Windows System (aka X11 or X) is a portable, client-server based, graphics display
system. X11 is only supported for 1.MX 6.

X-Windows system can run with a default frame buffer driver which handles all drawing
operations to the main display. As there is a 2D GPU (graphics processing unit) available,
then some drawing operations can be accelerated. High-level X operations may get
decomposed into low level drawing operations which are accelerated for X-Windows
System.

5.3.2 Hardware Operation

X-Windows System acceleration on 1.MX with GPU utilizes the Vivante GC320 2D
GPU.

Acceleration is also dependent on the frame buffer memory.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
170 NXP Semiconductors

4
Chapter 5 Graphics

5.3.3 Software Operation

X-Windows acceleration is supported for X.org X Server version 1.11.x and later
versions supporting the EXA interface version 2.5.

The following list summarizes the types of operations that are accelerated for X11. All
operations involve frame buffer memory which may be on screen or off screen:

* Solid fill of a rectangle.
e Upload image in system memory into video memory.
* Copy of a rectangle with same pixel format with possible source-target rectangle
overlap.
e Copy of a rectangle supporting most XRender compositing operations with these
options:
* Pixel format conversion.
* Repeating pattern source.
 Porter-Duff blending of source with target.
* Source alpha masking.

The following list includes additional features supported as part of the X-Windows
acceleration:

* Allocation of X pixmaps directly in frame buffer memory.
* EGL swap buffers where the EGL window surface is an X-window.

» X-window can be composited into an X pixmap which can be used directly as any
EGL surface.

5.3.4 X-Windows Acceleration Architecture

The following block diagram shows the components that are involved in the acceleration
of X-Windows System:

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 171

X Windows Acceleration

Application

FB Memory GPU 2r

Figure 5-1. X Driver Architecture

The components shown in green are those provided as part of the Vivante 2D/3D GPU
driver support which includes OpenGL/ES and EGL. The components shown in light
gray are the standard components in the X-Windows System without acceleration. The
components shown in orange are those added to support X-Windows System acceleration
and briefly described here.

The 1.MX X Driver library module (vivante-arv.so) is loaded by the X server and
contains the high-level implementation of the X-Windows acceleration interface for 1.MX
platforms containing the GC320 2D GPU core. The entire linearly contiguous frame
buffer memory in /qev/sbo 1s used for allocating pixmaps for X both on screen and off
screen. The driver supports a custom X extension which allows X clients to query the
GPU address of any X pixmap stored in frame buffer memory.

The libGAL.so library module (1ivcar.so) contains the register level programming
interface to the GC320 GPU module. This includes the storing of register programming
commands into packets which can be streamed to the device. The functions in the
libGAL.so library are called by the .MX X Driver code.

The EGL-X library module (1ibecr.so) contains the X-Windows implementation of the
low level EGL platform-specific support functions. This allows X-window and X pixmap
objects to be used as EGL window and pixmap surfaces. The EGL-X library uses Xlib
function calls in its implementation along with the 1.MX X Driver module's X extension
for querying the GPU address of X pixmaps stored in frame buffer memory.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
172 NXP Semiconductors

Chapter 5 Graphics

5.3.5 i.MX Driver for X-Windows System

The 1.MX X Driver, referred to as vivante-drv.so, implements the EXA interface of the X
server in providing acceleration.

The Vivante X Driver, referred to as vivante-drv.so, implements the EXA interface of the
X server to provide acceleration.

The following list describes details particular to this implementation:

* The implementation builds upon the source from the fbdev frame buffer driver for X
so that it can be the fallback when the acceleration is disabled.

» The implementation is based on X server EXA version 2.5.0.

» The EXA solid fill operation is accelerated, except for source/target drawables
containing less than 300x300 pixels in which case fallback is to software rendering.

» The EXA copy operation is accelerated, except for source/target drawables
containing less than 400x120 pixels in which case fallback is to software rendering.

* EXA putimage (upload into video memory) is accelerated, except for source
drawables containing less than 400x400 pixels in which case fallback is to software
rendering. For EXA solid fill and copy operations, only solid plane masks and only
GXcopy raster-op operations are accelerated.

» For EXA copy operation, the raster-op operations (GXandInverted, GXnor,
GXorReverse, GXorInverted, and GXnand) are not accelerated.

* EXA composite allows for many options and combinations of source/mask/target for
rendering.

* Most of the (commonly used) EXA composite operations are accelerated.

The following types of EXA composite operations are accelerated:

» Composite operations for source/target drawables containing at least 640 pixels. If
less than 640 pixels, the composite path falls to software.

» Simple source composite operations are used when source/target drawables contain
more than 200x200 pixels (operations with mask not supported).

* Constant source (with or without alpha mask) composite with target.

» Repeating pattern source (with or without alpha mask) composite with target.

* Only these blending functions: SOURCE, OVER, IN, IN-REVERSE, OUT-
REVERSE, and ADD (some of these are needed to support component-alpha
blending which is accelerate).

* In general, the following types of (less commonly used) EXA composite operations
are not accelerated:

e Transformed (that is, scaled, rotated) sources and masks

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 173

A ——
X Windows Acceleration

¢ (Gradient sources

* Alpha masks with repeating patterns

The implementation handles all pixmap allocation for X through the EXA callback
interface. A first attempt is made to allocate the memory where it can be accessed by a
physical GPU address. This attempt can fail if there is insufficient GPU accessible
memory remaining, but it can also fail when the bits per pixel being requested for the
pixmap is less than eight (8). If the attempt to allocate from the GPU accessible memory
fails, then the memory is allocated from the system. If the pixmap memory is allocated
from the system, then this pixmap cannot be involved in a GPU accelerated option. The
number of pitch bytes used to access the pixmap memory may be different depending on
whether it was allocated from GPU accessible memory or from the system. Once the
memory for an X pixmap has been allocated, whether it is from GPU accessible memory
or from the system, the pixmap is locked and can never migrate to the other type of
memory. Pixmap migration from GPU accessible memory to system memory is not
necessary since a system virtual address is always available for GPU accessible memory.
Pixmap migration from system memory to GPU accessible memory is not currently
implemented, but would only help in situations where there was insufficient GPU
accessible memory at initial allocation but more memory becomes available (through de-
allocation) at a later time. The GPU accessible memory pitch (horizontal) alignment for
Vivante 2D GPUs is 8 pixels. Because the memory can be allocated from GPU accessible
memory, these pixels could be used in EGL for OpenGL/ES drawing operations. All of
the memory allocated for /dev/fb0 is made available to an internal linear offscreen
memory manager based on the one used in EXA. The portion of this memory beyond the
screen memory is available for allocation of X pixmap, where this memory area is GPU
accessible. The amount of memory allocated to /dev/fb0 needs to be several MB more
than the amount needed for the screen. The actual amount needed depends on the number
of X-Windows and pixmaps used, the possible usage of X pixmaps as textures, and
whether X-Windows are using the XComposite extension. An X extension, i.e., VIVEXT
shown in Fig. 1, is provided so that X clients can query the physical GPU address
associated with an X pixmap, if that X pixmap was allocated in the GPU accessible
memory.

5.3.6 i.MX Direct Rendering Infrastructure (DRI) for X-Windows
System

The Direct Rendering Infrastructure, also known as the DRI, is a framework for allowing
direct access to graphics hardware under the X Window System in a safe and efficient
manner. It includes changes to the X server, to several client libraries, and to the kernel
(DRM, Direct Rendering Manager). The most important activity for the DRI is to create

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
174 NXP Semiconductors

L __4

Chapter 5 Graphics
fast OpenGL and OpenGL ES implementations that render to framebuffer memory
directly. Without DRI, the OpenGL driver has to depend on X server for final rendering
(indirect rendering), which degrades the overall performance significantly.

The components of Vivante’s DRI OpenGL implementation include:

* The Direct Rendering Manager (DRM) is a kernel module that provides APIs to
userland to synchronize access to hardware and to manage different classes of video
memory buffers. Vivante’s DRI implementation uses selected DRM APISs for
opening/closing DRI device, and locking/unlocking FB. Most other buffer
management and DMA management functions are handled by Vivante’s specific
kernel module: galcore.ko.

e The EXA driver is a DRI-enabled DDX 2D driver which initializes the DRM when X
server starts. As all X Window pixmap buffers are allocated by the EXA driver from
GPU memory, the GPU can render directly into these buffers if the buffer
information is passed from the X server process to the X client processes (GL or
GLES applications) properly.

e The Vivante-specific X extension “vivext” passes buffer information from X server
to X clients. This Vivante X extension includes the following three interfaces:

» DrawableFlush, which enables X clients to notify X server to flush the GPU
cache for a drawable surface.

* Drawablelnfo, which enables X clients to query the drawable information
(position, size, physical address, stride, cliplist, etc.) from the X server.

e PixmapPhysAddr, which enables X clients to query the physical address and
stride of a pixmap buffer from X server.

The integration of GL/GLES application windows with Ubuntu Unity2D desktop is
achieved by following steps:

* GL/GLES applications render a frame into the pixmap buffers that are allocated in
the EXA driver.

* In the SwapBuffers implementation, the driver notifies X server that the pixmap
buffer region is damaged through Xdamage and Xfixes APIs.

e Then the X server will present the latest pixmap buffer to the Unity2D desktop while
maintaining the proper window overlap characteristics relative to the other windows
on the desktop.

On a compositing X desktop, such as Ubuntu Unity 2D, GLES/GL applications always
render into the full rectangular back buffer of a window. There is no window clipping
required. So the Vivante DRI implementation can take advantage of the GPU’s resolve
function and render into the window back buffer directly.

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 175

A
X Windows Acceleration

On a legacy X window desktop, such as Gnome, Xwin, etc., GLES/GL applications have
to render onto the frame buffer surface directly. Thus, the DRI driver uses the
Drawablelnfo interface in the VIVEXT extension to obtain the cliplist of the window,
then copies the sub-regions of the render target to the frame buffer according to the
cliplist. This will ensure that the GLES/GL windows overlap with other windows on the
desktop properly. However, the copying of the render target sub-regions to the frame
buffer has to be done by the CPU as the sub-regions’ starting address and alignment may
not meet GPU copy requirements.

The Vivante DRI implementation can detect the type of X window manager (compositing
desktop manager or legacy desktop manager) at run-time, and use appropriate DRI
rendering paths for GLES/GL applications.

5.3.7 EGL- X Library

The EGL-X library implements the low level EGL interface when used in X Window
System. The following list describes details particular to this implementation:

» The eglDisplay native display type is “Display*” in X.
e The eglWindowSurfacenative window surface type is “Window” in X.
* The eglPixmapSurface native pixmap surface type is “Pixmap” in X.

When an eglWindowSurface is created, the back buffers used for double-buffering can
have different representations from the window surface (based on the selected
eglConfig). An attempt is made to create each back buffer using the representation which
provides the most efficient blit of the back buffer contents to the window surface when
eglSwapBuffers is called.

The back buffer is allocated by creating an X pixmap of the necessary size. Use the X
extension for the Vivante X Driver module to query the physical frame buffer address for
this X pixmap if it was allocated in the offscreen frame buffer memory.

5.3.8 xorg.conf for i.MX
The /etc/x11/x0rg.cont file must be properly configured to use the .MX 6 X Driver.

The /etc/X11/xorg.conf file must be properly configured to use the Vivante X Driver.
This configuration appears in a “Device” section of the file which contains some required
entries and some entries that are optional. The following example shows a preferred
configuration for using the Vivante X Driver:

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
176 NXP Semiconductors

Chapter 5 Graphics

Section "ServerLayout"

Identifier "Default Layout"
Screen "Default Screen"
EndSection

Section "Module"

Load "dbe"

Load "extmod"

Load "freetype"

Load "glx"

Load "dri"
EndSection

Section "InputDevice"

Identifier "Generic Keyboard"

Driver "kbd"

Option "XkbLayout" "us"

Option "XkbModel" "pcl05"

Option "XkbRules" "xorg"
EndSection

Section "InputDevice"

Identifier "Configured Mouse"

Driver "mouse"

Option "CorePointer"
EndSection

Section "Device"

Identifier "Your Accelerated Framebuffer Device"
Driver "vivante"
Option "fhdev" "/dev/fbo"
Option "vivante fbdev" "/dev/fbo"
Option "HWcursor" "false"
EndSection

Section "Monitor™
Identifier "Configured Monitor"
EndSection

Section "Screen"

Identifier "Default Screen"
Monitor "Configured Monitor"
Device "Your Accelerated Framebuffer Device"
DefaultDepth 24
EndSection

Section "DRI"
Mode 0666
EndSection

Mandatory Strings
Some important entries recognized by the Vivante X Driver are described as follows.
Device Identifier and Screen Device String

The mandatory Identifier entry in the Device section specifies the unique name to
associate with this graphics device.

Section "Device"
Identifier "Your Accelerated Framebuffer Device"

The following entry ties a specific graphics device to a screen. The Device Identifier
string must match the Device string in a Screensection of the xorg.conf file. For example:

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 177

X Windows Acceleration

Section "Screen"
Identifier "Default Screen"
<other entries>
Device "Your Accelerated Framebuffer Device"
<other entriess
EndSection

Device Driver String

The mandatory Driver entry specifies the name of the loadable Vivante X driver.
Driver "vivante"

Device fbdevPath Strings

The mandatory entries fbdev and vivante_dev specify the path for the frame buffer device
to use.

Section "Device"

Identifier "Your Accelerated Framebuffer Device"
Driver "vivante"
Option "fhdev" "/dev/fbo"
Option "vivante fbdev" "/dev/fbo"
<other entries>
EndSection

5.3.9 Setting Up X-Windows System Acceleration on Yocto
Prerequisites:

* xserver-xorg-video-imx-viv-(ver).tar.gz, which is Vivante EXA plugin source code
based on GPU driver

* drm-update-arm.patch, which is a patch with adding the Arm lock implementation
for libdrm xf86drm.h. Note that the original xh86drm.h header file from libdrm does
not have lock for supporting Arm architecture. This patch is located in the
community Yocto Project layers Yocto_build/sources/meta-freescale/recipes-
graphics/drm/libdrm/mx6, and shown below: drm-update-arm.patch:

+#elif defined(__arm_)

+ #undef DRM DEV_ MODE

+ #define DRM DEV_MODE (S_IRUSR|S_IWUSR|S_ IRGRP|S IWGRP|S IROTH|S IWOTH)
+

+ #define DRM_CAS (lock,old,new, ret) \
+ do { \
+ __asm__ _ volatile (\
+ "l: ldrex %0, [%1]1\n" \
+ " teqg %0, %2\n" \
+ " strexeq %0, %3, [%1]1\n" \
+ nyn (_ret) \

+ "r' (lock), "r" (old), "r" (new) \
+ : "ce", "memory") ; \
+ } while (0)

+

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
178 NXP Semiconductors

4
Chapter 5 Graphics

#endif /* architecture */
#endif /* _ GNUC__ >= 2 */

Build and install instructions:

* Install the prerequisites modules or patches in the appropriate locations and with
right recipes in Yocto environment.

Build XServer with correct drm header file (xf86drm.h). The purpose is to create
correct dri module

Build GPU EXA module with the command ‘bitbake xf86-video-imxfb-vivante’.
vivante_drv.so will be generated with successful build, and then install it together
with xorg and libdri library in target board rootfs in /usr/lib/xorg/modules/

Install the pre-Yocto-built imx-gpu-viv binary in target board rootfs. For accelerating
X11, the X11 backend is required

Now ready to run the X11 applications in target board.

NOTE
x11 applications are down if the Arm core version xf86drm.h is
not used.

5.3.10 Setting Up X Window System Acceleration

Install any packages appropriate for your platform.

Verify that the device file /dev/galcore is present.

Verify that the file /etc/X11/xorg.conf contains the correct entries as described in the
previous section.

Assuming the above steps have been performed, do the following to verify that X
Window System acceleration is indeed operating.

Examine the log file /var/log/Xorg.0.log and confirm that the following lines are
present.

[41.752] (II) Loading /usr/lib/xorg/modules/drivers/vivante drv.so
[41.752] (II) VIVANTE(O): using default device

[

41.

7521

(I1)

VIVANTE (0) :

Creating default Display subsection in Screen

section "Default Screen" for depth/fbbpp 24/32

[41.752] (**) VIVANTE(O): Depth 24, (--) framebufferbpp 32

[41.752] (==) VIVANTE(0): RGB weight 888

[41.752] (==) VIVANTE(0): Default visual is TrueColor

[41.753] (==) VIVANTE(O0): Using gamma correction (1.0, 1.0, 1.0)

[41.753] (II) VIVANTE(O): hardware: DISP3 BG (video memory: 8100kB)

[41.753] (II) VIVANTE(O0): checking modes against framebuffer device...

[41.753] (II) VIVANTE(O): checking modes against monitor...

[41.753] (--) VIVANTE(O0): Virtual size is 1920x1080 (pitch 1920)

[41.753] (**) VIVANTE(O) : Built-in mode "current": 148.5 MHz, 67.5 kHz,
60.0 Hz

[41.753] (II) VIVANTE(O): Modeline "current"x0.0 148.50 1920 2008 2052
2200 1080 1084 1089 1125 +hsync +

vsync -csync (67.5 kHz)

[41.753] (==) VIVANTE(O0): DPI set to (96, 96)

[41.753] (II) Loading sub module "fb"

[41.753] (II) LoadModule: "fb"

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020

NXP Semiconductors 179

X Windows Acceleration

41.754] (II) Loading /usr/lib/xorg/modules/libfb.so

41.755] (II) Module fb: vendor="X.Org Foundation"

41.755] compiled for 1.10.4, module version = 1.0.0

41.755] ABI class: X.Org ANSI C Emulation, version 0.4

41.755] (II) Loading sub module "exa"

41.755] (II) LoadModule: "exa"

41.756] (II) Loading /usr/lib/xorg/modules/libexa.so

41.756] (II) Module exa: vendor="X.Org Foundation"

41.756] compiled for 1.10.4, module version = 2.5.0

41.756] ABI class: X.Org Video Driver, version 10.0

41.756] (--) Depth 24 pixmap format is 32 bpp

41.797]1 (II) VIVANTE(O): FB Start = 0x33142000 FB Base = 0x33142000 FB
Offset = (nil)

[41.797] (II) VIVANTE(O): test Initializing EXA

[41.798] (II) EXA(0): Driver allocated offscreenpixmaps
[41.798]
n

(IT) EXA(0): Driver registered support for the following

operations:

[41.798] (II) Solid

[41.798] (II) Copy

[41.798] (II) Composite (RENDER acceleration)

[41.798] (II) UploadToScreen

[42.075] (==) VIVANTE(O0): Backing store disabled

[42.084] (==) VIVANTE(O): DPMS enabled

5.3.11 Troubleshooting

1. Framebuffer devices can be specified by environment variable. This is especially
useful when there are multiple framebuffer devices.

export FB_FRAMEBUFFER_O:/dev/fb2
2. If the above does not resolve the issue:

 If DRM booted up properly, check the /var/log/X11.n log file (n will represent
instance number) for more information.
 If DRM did not boot properly, check your kernel mode driver installation. (See
sections 6.4.2 and 6.4.3 above).
3. Window is created, but nothing is drawn
* If you run an OpenGL application and find a window was created, but nothing
was drawn, try to export the ${__ GL_DEV_FB} environment variable:

export _ GL DEV_FB=$FB FRAMEBUFFER 0.
4. Cannot open Display message

* If you have a message similar to “Cannot open Display,” use the following
command to check whether X is running at :0 or at :1 instance, use:

$ ps -ef|grep X
* Then depending on the returned instance number, add the following environment
variable

export DISPLAY=:n
* Then run it again.

5. UART terminal cannot run GPU application with lightdm
 Use ssh terminal instead.
6. EXA build script failure

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
180 NXP Semiconductors

L __4
Chapter 5 Graphics
e Check the log file and make sure your system time is set correctly.
7. Invalid MIT-MAGIC-COOKIE-1 Key error message
* Some GPU applications are not permitted to run using root. Use an alternate
account instead.
8. Segment fault occurs while running GPU application
* Check the attribute for dev/galcore should be updated to 666.
* To update this attribute automatically on system boot,
* Locate and edit file /etc/udev/rules.d/<bsp-specific.rules>.
e Add: “KERNEL=="galcore”, MODE="0666""
 Lastly, make sure your kernel and GPU drivers are matched.
9. Check whether Compiz is running
* If your host or target has issues after installing the OpenGL Development
Packages in Table 6, check whether compiz is running with the following
command:

$ ps -ef|grep compiz
e If compiz is running, then Ubuntu is using Unity3D by default. To set the default
window manager to Unity2D:
* Locate and edit file /var/lib/AccountsService/users/<username>.
e Change ubuntu to ubunto-2d.

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 181

X Windows Acceleration

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
182 NXP Semiconductors

Chapter 6
Video

6.1 Capture Overview

6.1.1 Introduction

The 1.MX capture driver support is through the V4L2 interface with camera sensor
controllers and interfaces. Applications cannot use the camera driver directly. Instead, the
applications use the V412 capture driver to open and close the camera for preview and
image capture, controlling the camera, getting images from camera, and starting the
camera preview.

The list of capture controllers are the following:

e Camera Serial Interface - CSI
» [PU-CSI

* Video Interface Unit - VIU

e Image Sensor Interface - ISI

* Image Sensor Processing - ISP

The list of capture interfaces for transfering image data are the following

e Parallel-CSI
e MIPI-CSI2
e HDMI RX
e TV Deocder

This chapter will explain the differences between the various controllers and interfaces.

NOTE
The 1.MX 6 with IPU uses internaldev for V4L.2 interface while
all others use subdev for V4L2 interface.

The following table describes the different controllers and interfaces combinations.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 183

Capture Overview

Table 6-1. Camera Controllers and Interfaces

SoC Controller Interface

6SLL CsSl Parallel CSI

6SoloX ViU Parallel CSl and TV Decoder

6UltraLite/6ULL CsSi Parallel CSI

6DualLite/Solo IPU-CSI Parallel CSl internaldev IPU

6QuadPlus/Quad/Dual IPU-CSI Parallel CSl internaldev IPU

7Dual/Solo CSl MIPI-CSI2 using Samsung and Parallel
Csl

7ULP ViU MIPI-CSI2 using Mixel

8QuadMax ISI MIPI-CSI2 using Mixel and HDMI
Receiver using Cadence

8QuadXPlus ISI MIPI-CSI2 using Mixel and Parallel CSI
using IMX8

8M Quad (O] MIPI-CSI2 using Mixel and Parallel CSI

8M Mini CsSl MIPI-CSI2 using Samsung

Some additional details are listed below:

* The ISP is a new controller used for the 1.MX 8M Plus.

* The ISI controller is a new controller used for 1.MX 8M Quad and 8M Mini but not
with the 8M family.

e The 1. MX 6 SoC without IPU, 1.MX 7Dual and 1.MX 8M use the same CSI controller
driver.

e The i.MX 8 and i.MX 8X families use a newer IMX8 CSI driver.

* The 1.MX 6 with IPU use a customized CSI that interfaces with IPU hardware.

» Each SoC can support one or more interfaces as described in the previous table. The
interfaces align with Video for Linux V4L2 APIs.

 In some cases the capture controller is not interfacing to a camera but a video input
unit. Some also interface to HDMI Receivers

6.1.2 Omnivision Camera

The Omnivision Camera supports multiple interfaces and types of cameras. The
Omnivision camera is a small camera sensor and lens module with low power
consumption.

The Omnivision camera uses the serial camera control bus (SCCB) interface to control
the sensor operation working as an I2C client for control operations. This camera supports
transfer modes of CSI, MIPI-CSI2 and Parallel-CSI interfaces. When using MIPI mode,
OV5640 connects to 1.MX chip through the MIPI CSI-2 interface. MIPI receives the
sensor data and transfers them to CSI.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
184 NXP Semiconductors

4
Chapter 6 Video

Below the table lists the differnt Omnivision cameras and which interface is supported.

Table 6-2. Camera Controllers and Interfaces

Camera Controller Interface
OV5640 CSl controller/MIPI-CSI2/Parallel CSI
oVv5642 Parallel CSI
OV10635 MIPI-CSI2/Parallel CSI

The Omnivision menu configuration has multiple options based on the support
Top level selection is the following:

Device Drivers > Multimedia support (MEDIA_SUPPORT [=y]) > V4L platform devices
(V4L_PLATFORM_DRIVERS)

The next level selections are based on the different interfaces for each SoC

* For MX6 wiith IPU select both > MXC Camera/V4L2 PRP Features support and >
OmniVision ov5640 camera support (MXC_CAMERA_0OV5640)

* For MX6 without IPU select > OmniVision ov5640 camera support
(MXC_CAMERA_OV5640_V2)

* For MX7 select > OmniVision ov5640 camera support using mipi
(MXC_CAMERA_OV5640_MIPI_V2)

* For MX8 select > IMX8 Camera ISI/MIPI Features support
(VIDEO_MXS8_CAPTURE) > IMX8 Camera Controller
(IMX8_CAPTURE_DRIVER) and Maxim OV5640_V3 driver support
(MXC_CAMERA_OV5640_V3)

* For MX8M select > OmniVision ov5640 camera support
(MXC_CAMERA_OV5640_V2) and OmniVision ov5640 camera support using
mipi MXC_CAMERA_OV5640_MIPI_V2)

The following table describes the supported camera features for each interface.

Table 6-3. Capture Interface Features

Interface Features

Parallel CSI with 2 Ports, 20 bits+ 8 bits

Playback 1080i/p + D1@30fps @ 30fps

Record 1080p @ 30fps

2-way 720@30fps

De-interlacing high quality motion adaptive algorithm.
Resizing - fully flexible

Rotation/inversion support

Color conversion-fully flexibl

Memory interface - AXI split transaction 64-bit 266Mhz
Memory Bus - selective read for combining

IPU-CSI

Table continues on the next page...

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 185

Capture Overview

Table 6-3. Capture Interface Features (continued)

Interface Features

¢ Control capabilities - display and dma controller,
internal synchronization

* Synchronization - double/triple buffering, frame-by-
frame or tight sub-frame with internal memory

MIPI-CSI-2 with 2 ports, 4 lanes x 1.5 Gbps
Playback - two 1080p30

Record - 1080p30x2

2-way - 1080p30x2

Deinterlacing-simple bob and weave
Memory interface throughput - 64-bit
Controller capabilities - DMA
Synchronizaton - double buffer

Parallel CSI - one port 24 bits

MIPI-CSI-2 with 2 ports, 4 lanes x 1.5 Gbps
Playback - 1080p30x2

Record - 1080p30x2

2-way - 1080p30x2

Deinterlacing-simple bob and weave
Resizing

JPEG Encode/Decode

Memory interface throughput - 124-bit, 400MHz
Controller capabilities - DMA
Synchronizaton - double buffer

MIPI-CSI-2 with 2 ports, 4 lanes x 1.5 Gbps
HDMI Receiver - 1 port HDMI 2.0 4K60
Playback - 4K60x1, 4K30x1, or 1080px30x4
Record - 4K30x1 or 1080px30x4

2-way - 4K30x1 or 1080px30x4
Deinterlacing-simple bob and weave
Resizing

JPEG Encode/Decode

Memory interface throughput - 124-bit, 400MHz
Controller capabilities - DMA
Synchronizaton - double buffer

Csl

ISI-8QuadXPlus

ISI-8QuadMax

6.1.3 Parallel CSI

The Parallel CSI driver enables a direct connection to external CMOS sensors and
CCIR656 video sources. The CSI and sensor drivers are implemented in the Video for
Linux Two (V4L2) driver framework consisting of the image capture driver and the
video output driver.

The driver initializes the CSI interface and configures and operates with the hardware
registers for the CSI module. The following features are supported:

* Configurable interface logic to support most commonly available CMOS sensors.
* Full control of 8-bit/pixel, 10-bit/pixel or 16-bit/pixel data format to 32-bit receive
FIFO packing.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
186 NXP Semiconductors

4
Chapter 6 Video
* 128x32 FIFO to store received image pixel data.
» Receive FIFO overrun protection mechanism.
* Embedded DMA controllers to transfer data from receive FIFO or statistic FIFO
through AHB bus.
* Support for double buffering two frames in the external memory.
* Single interrupt source to interrupt controller from maskable interrupt sources: Start
of Frame, End of Frame and so on.
* Configurable master clock frequency output to sensor.

The V4L2 CSI capture device includes two interfaces: the capture and overlay interfaces.
The capture and overlay interface use the CSI embedded DMA controller to implement
the function using V4L.2 APIs. The following is the data flow of capture and overlay.

1. The camera sends the data to the CSI receive FIFO, through the 8-bit/10-bit data
port.

2. The embedded DMA controllers transfer data from the receive FIFO to external
memory through the AHB bus.

3. The data is save to user space memory or output to the frame buffer directly.

1.MX 6 with IPU use a IPU-CSI driver that interfaces with the IPU directly. 1.MX Quad
Plus/Quad/Dual have support for two IPU-CSI senaros. 1.MX 6 without IPU and 1.MX
7Dual/Solo use a separate CSI sensor driver that interfaces directly to the sensor.

6.1.4 MIPI Camera Serial Interface (MIPI CSI)

There are four blocks in the MIPI CSI-2 D-PHY: PHY adaptation layer, packet analyzer,
image date interface, and register bank.

MIPI CSI-2 is a MIPI-Camera Serial Interface Host Controller with a high performance
serial interconnect bus for mobile application which connects camera sensors to the host
system. The CSI-2 Host Controller is a digital core that implements all protocol functions
defined in the MIPI CSI-2 Specification. In doing so, it provides an interface between the
system and the MIPI D-PHY and allows communication with MIPI CSI-2-compliant
Camera Sensor.

The MIPI CSI2 driver is used to manage the MIPI D-PHY and lets it work with both
MIPI sensor and IPU CSI. MIPI CSI2 driver implements functions as follows:

* MIPI CSI-2 low-level interface for managing the mipi D-PHY register and clock
* MIPI CSI-2 common API for communication between MIPI sensor and MIPI D-
PHY

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 187

A
Capture Overview

By calling MIPI common APIs, MIPI sensor can set certain information about sensor
(such as datatype, lanes number, etc.) to MIPI CSI2 driver to configure D-PHY. In order
for the IPU CSI module driver to have the correct configuration, receive appropriate data,

and process it correctly, it is necessary for it to receive information about sensor (such as
datatype, virtual channel, IPU ID, CSI ID, etc.) from the MIPI CSI2 driver.

Functions and operations are listed as follows:

* PHY Adaptation Layer is responsible for managing the D-PHY interface including
PHY error handling;

» Packet Analyzer is responsible for data lane merging if required, together with
header decoding, error detection and correction, frame size error detection and CRC
error detection;

* Image Date Interface separates CSI-2 packet header information and reorders data
according to memory storage format. It also generates timing accurate video
synchronization signals. Several error detections are also performed at frame-level
and line-level;

» Register Bank is accessible through a standard AMBA-APB slave interface and
provides access to the CSI-2 Host Controller register for configuration and control.
There is also a fully programmable interrupt generator to inform the system upon
certain events;

MIPI CSI2 driver for Linux OS has two parts: MIPI CSI2 driver initialize operation
which initializes mipi_csi2_info struct, and MIPI CSI2 common APIs which exports
APIs for CSI module driver and MIPI sensor driver.

6.1.5 HDMI
HDMI video interfaces with the Image Sensor Inerface (ISI).

On 1.MX 8QuadMax, the HDMI receiver video interface support one port HDMI 2.0
4K30.

6.1.6 Software Operation

The V4L2 opteratons for capture support modes, picture formats and picture sizes
varying for each capture interface.

The imx-test repo has unit tests for these interfaces in the mxc_v412_test. See README
for details on how to run tests.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
188 NXP Semiconductors

https://source.codeaurora.org/external/imx/imx-test

4
Chapter 6 Video

6.1.7 VA4L2 Capture

Video for Linux Two (V4L2) is a Linux standard. The API specification is available at
https://linuxtv.org/downloads/v4l-dvb-apis/uapi/v4l/v412.html.

The V4L2 capture device includes two interfaces: the capture and overlay interfaces
using the V4L2 API for capture and overlay devices.

The following are some sample use cases for the V4L.2 capture APIs:

Sets the capture pixel format and size using [IOCTL VIDIOC_S_FMT.
Sets the control information using IOCTL VIDIOC_S_CTRL, for rotation.
Requests a buffer using [OCTL VIDIOC_REQBUFS.
Memory maps the buffer to its user space.
Executes the IOCTL VIDIOC_DQBUF.
Passes the data that requires post-processing to the buffer.
Queues the buffer using the IOCTL command VIDIOC_QBUF.
Starts the stream by executing IOCTL VIDIOC_STREAMON.
e VIDIOC_STREAMON and VIDIOC_OVERLAY cannot be enabled
simultaneously.

A ol .

The following tables lists the V4L2 capture ioctls used in the i.MX Capture Drivers. For
more information see the V412 Chaper.

Table 6-4. V4L2 Capture API IOCTLs

I0CTL

Description

VIDIOC_QUERYCAP

Query Device Capabiities

VIDIOC_G_FMT VIDIOC_S_FMT

Get or Set Data format

VIDIOC_S_DEST_CROP

Set cropping rectange

VIDIOC_REQBUFS

Initiate Memory Mapping

VIDIOC_QueryBUF

Query status of buffer

VIDIOC_QBUF,VIDIOC_DQBUF

Exchange buffer with driver

VIDIOC_STREAMON,VIDIOC_STREAMOFF

Start or stop streaming

VIDIOC_G_CTRL,VIDIOC_S_CTRL

VIDIOC_CROPCAP

Query cropping capabilities

VIDIOC_G_CROP,VIDIOC_S_CROP

Get or set Cropping

VIDIOC_OVERLAY

Start or stop video overlay

VIDIOC_G_FBUF, VIDIOC_S_FBUF

Get or set frame buffer ovrelay parameters

VIDIOC_G_PARM,VIDIOC_S_PARM

Get or set streaming parameters

VIDIOC_G_STD,VIDIOC_S_STD

Get or Set the video standard

VIDIOC_G_OUTPUT,VIDIOC_S_OUTPUT

Get or Set the video output

Table continues on the next page...

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

NXP Semiconductors

https://linuxtv.org/downloads/v4l-dvb-apis/uapi/v4l/v4l2.html

Capture Overview

Table 6-4. V4L2 Capture API IOCTLs (continued)

I0CTL

Description

VIDIOC_G_INPUT,VIDIOC_S_INPUT

Get or set the video input

VIDIOC_ENUMSTD

Enumerate video standards

VIDIOC_ENUMOUTPUT,VIDIOC_ENUMINPUT

Enumerate output and inputs

VIDIOC_ENUM_FMT

Enumerate image formats

VIDIOC_ENUM_FRAMESIZE,VIDIOC_ENUM_FRAMEINTE
RVALSS

Enumerate frame sizes and intervals

VIDIOC_DBG_G_CHIP_IDENT

Chip Identification

6.1.8 Source Code Structure

The table below shows the capture driver source files. For .MX 6 and i.MX 7 the source
files are in drivers/media/platform/mxc/capture. For i.MX 8 series the source files are in
drivers/media/platform/imx8. For MIPI-CSI the source files are in drivers/mxc/mipi.

Table 6-5. Omnivision V4L2 Camera Driver Files

File

Description

* drivers/media/platform/imx8/mipi-csi2.c
* drivers/media/platform/imx8/mipi-csi2.h
e drivers/media/platform/imx8/mipi-csi2-yav.c

i.MX 8 MIPI-CSI2 Capture Interface driver

* drivers/media/platform/imx8/parallel-csi.c
* drivers/media/platform/imx8/parallel-csi.h

i.MX 8 MIPI-CSI2 Parallel-CSI Interface driver

e drivers/media/platform/imx8/mxc-isi-core.c
¢ drivers/media/platform/imx8/mxc-isi-cap.c
e drivers/media/platform/imx8/mxc-isi-hw.c

i.MX 8 ISI Capture Controller driver

* drivers/media/platform/imx8/ov5640_v3.c
* drivers/media/platform/imx8/max9286.c

i.MX 8 Omnivision Camera V3 Camera interface

e drivers/media/platform/imx8/mxc-jpeg-hw.c
e drivers/media/platform/imx8/mxc-jpeg-hw.c

i.MX 8 JEPG hardware interface

e drivers/mxc/mipi/mipi-csi2.c
e drivers/mxc/mipi-csi2.h

MX6 and MX7 MIPI-CSI2 interface core driver

* drivers/media/platform/mxc/capture/
ipu_bg_overlay_sdc.c

* drivers/media/platform/mxc/capture/ipu_csi_enc.c

e drivers/media/platform/mxc/capture/
ipu_fg_overlay_sdc.c

¢ drivers/media/platform/mxc/capture/ipu_prp_enc.c

* drivers/media/platform/mxc/capture/
ipu_prp_vf_sdc_bg.c

* drivers/media/platform/mxc/capture/ipu_prp_vf_sdc.c

e drivers/media/platform/mxc/capture/ipu_still.c

¢ drivers/media/platform/mxc/capture/v4l2-int-device

i.MX 6 IPU V4L2 plugin

e drivers/media/platform/mxc/capture/mx6s_capture.c

CSI Omnivision Camera V4L2 plugin

Table continues on the next page...

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

190

NXP Semiconductors

Table 6-5. Omnivision V4L2 Camera Driver Files (continued)

Chapter 6 Video

File

Description

drivers/media/platform/mxc/capture/ov5640.c
drivers/media/platform/mxc/capture/
ov5640_camera_int.c

drivers/media/platform/mxc/capture/ov5640_v2.c
drivers/media/platform/mxc/capture/
ov5640_camera_v2.c

Paralllel CSI Omnivision Camera V4L2 plugin

drivers/media/platform/mxc/capture/ov5640_mipi.c
drivers/media/platform/mxc/capture/
ov5640_camera_mipi_int.c

MIPI-CSI Omnivision Camera V4L2 plugin

drivers/media/platform/mxc/capture/ov5640_mipi_v2.c
drivers/media/platform/mxc/capture/
ov5640_camera_mipi_v2.c

MIPI-CSI2 Omnivision Camera V4L2 plugin

drivers/media/platform/mxc/capture/adv7180.c
drivers/media/platform/mxc/capture/adv7180_tvin.c

TV Decoder ADV7180 V4L2

6.2 Display Overview

6.2.1 Introduction

The 1.MX Display systems uses display controllers to optimize video data movement to
display interfaces and graphics processing. Each display controller is implemented
through a Linux driver and into a display framework either framebuffer or DRM. In some
cases a display controller includes authentication ensuring a secure video pipeline. In
others the display controller will include additional features for scaling, de-interlacing,
tiling and color conversion during tranfers. For i.MX 8 supporting multiple displays is
done with use of two controllers working together. This chapter provides a high level
overview of 1.MX display controllers and interfaces and the difference between
framebuffer and DRM display drivers. The following display controllers are used.

IPU

PXP

eLCDIF

DPU

DCSS - on i.MX 8M only

A display interface will interface to the display controller, display panel and in some
cases encoders display bridges. The following display interfaces are supported.

EPDC - supporting Elnk displays
Parallel - supporting LCD displays

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

NXP Semiconductors

191

A
Display Overview

e LVDS - supporting LVDS displays

e HDMI - supporting both on chip and external HDMI

* Display Port - supporting eDP panels

e MIPI-DSI - supporting MIPI displays

NOTE
Analog display is no longer supported. Analog interface was
used 1.MX 37 and 1.MX 5 families.

The following HDMI display bridges/encoder are supported.

e Parallel to HDMI - using Silicon Image s1902x
* LVDS to HDMI - using ITE it6263
» MIPI-DSI to HDMI - using Analog Devices adv7535

Each SOC supports different display features. Some of these are configured in the device
trees located at arch/arm/boot/dts and arch/arm64/boot/dts. Go to the hardware reference
manual for more details on the following.

* Throughput
* Number of outputs
* Pixel clock rate
e Max number of displays and corresponding resolution
e Resolution at 60 Hz.
* Interface
* Parallel - number of ports and bit size
e LVDS - number of lanes and channels.
e MIPI-DSI - number of ports, lanes channels and speed
* Processing
* On the fly combining including high resolution displays
 Off-line combining speed

6.2.2 Frame Buffer

Frame buffer drivers are supported for 1.MX 6 and 1.MX 7 but not for 1.MX 8. The frame
buffer drivers are supported using the the imxfb driver in drivers/video/fbdev. The frame
buffer kernel fbdev structure is defined here or here on kernel.org. For more information
on i.MX V4LS go the V4L2 chapter.

The panels are supported with the framebuffer driver for the TRULY and Elnk panels in
the video/fbdev/mxc folder. See the panels supported by seaching for PANEL in the
imx_v7_defconfig. The Trully panels are only supported with the MIPI DSI interface.
The Eink panels are only supported with the EPDC interface.

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
192 NXP Semiconductors

https://www.kernel.org/doc/Documentation/fb/framebuffer.txt
https://www.kernel.org/doc/html/latest/driver-api/frame-buffer.html?highlight=fbdev

4
Chapter 6 Video

6.2.3 Direct Render Model (DRM)

Direct Render Model (DRM)) is the new display driver use for 1.MX. The i.MX DRM
driver is in drivers/gpu/drm/imx. Other components have DRM interfaces such as GPU
and DCSS. The DRM framework is documented here on kernel.org.

The 1.MX DRM drivers are implemented with the following drivers.

» Hardware library support files

* Core DRM drivers

» Hardware dependent DRM drivers

 HDMI DRM drivers supporting hdp HDMI/Display Port

The DRM driver uses the DPU on the 1. MX 8QuadMax and 1.MX 8QuadXPlus and uses
LCDIF for the i.MX 8M Quad and i.MX 8M Mini.

The 1.MX DRM framework also includes panel drivers which exist in driver/gpu/panel.
The supported drm panels are Simple and Raydium RM67191.

6.2.4 Display Resolution
The display resoluton calculation uses the following factors.

e Frame Width

* Frame Height

* Frame rate (fps)

* Blanking Interval - provided in the display's DS up to 35% (1.35) - use minn values

The pixel clock [MHZz] is calculated according to Frame Width x Frame Height x Frames
Rate x Blanking Interval

Things to consider are the following

* Data format (pixel per clock)

* Display's source clock (DI#_CLK_EXT bit
» The load on the display controller (DC)

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 193

https://www.kernel.org/doc/html/latest/gpu/introduction.htm

Display Controllers

6.2.5 Authentication

Display authentication allows hardware processing to ensure display content is not
compromised. This is done through a display authentication CRC using the authentication
hardware This hardware is the DCIC integrated through the frame buffer display
framework on i.MX 6 and the DPU implemented in the DRM display framework for
1.MX 8.

Display authentication CRC is supported on the following SoC.

* 1.MX 6 Solox supports authentication using DCIC for 1 display.

* i.MX 6 QuadPlus/Quad/Dual support authentication using DCIC with 2 displays.
* i.MX 8 8QuadXPlus can authenticate 2 display using the DPU.

* 1.MX 8QuadPlus can authenticate 4 displays for 1.MX 8QuadMax using DPU.

6.2.6 Tiling

Tiling through hardware provides optimized video data display. This is implemented
through different hardware blocks. The newest feature is the Display Prefetch Resolve
(DPR) which increases performance on the i.MX 6 QuadPlus, . MX 8QuadMax and 1.MX
8QuadXPlus.

Tile support is enabled on the following

* 1.MX 6Quad/Dual supports tiling using Video Data Order Adapter (VDOA).

* 1.MX 6QuadPlus supports both tiling VDOA and Display Prefetch Resolve (DPR)
version 1

* 1.MX 8QuadXPlus and . MX 8QuadMax supports tiling using Display Prefetch
Resolve (DPR) version2

6.3 Display Controllers

6.3.1 Display Processing Unit (DPU)

6.3.1.1 Introduction

The display processing unit (DPU) is designed to support video and graphics processing
functions and to interface with video and still display sensors and displays. The DPU
driver provides internel kernel-level APIs to manipulate logical channels. A logical

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
194 NXP Semiconductors

L __4

Chapter 6 Video
channel represents a complete DPU processing flow. For example, a complete DPU
processing flow (logical channel) might consist of reading a YUV buffer from memory
and displaying it to an external interface. The DPU API consists of a set of common
functions for all channels. Its functions are to initialize channels, set up buffers, enable
and disable channels and set up interrupts.

Typical logical channels include:

e CSI direct to memory
* Memory to synchronous frame buffer background
* Memory to synchronous frame buffer foreground

The higher level drivers are responsible for memory allocation and providing user-level
API. DPU interfaces are available for capture in the V4L2 framework and for display
using the DRM display framework. DPU interfaces with LVDS, MIPI-DSI, HDMI and
Parallel display interfaces.

The DPU display controller supports a 32bit display composition engine that includes the
following:

* 2 Display output streams on independent panels.

* Two layer composition

* Automatic safety stream panic plus detection using CRC matching using a Region
CRC checker

The DPU display controller supports a 2D composition engine which provides efficiency,
performance and safety. The DPU 2D graphics engine support reduces the burden on the
GPU so it only does 3D GPU. Video efficiency with overlay native video and graphics
uses minimal access to system memory. Power efficiencies allow the 3D engine to be off
for windowing GUI's like the Android Hardware Composer.

The DPU also supports the following for authentication.

e CRC checker with 8 stackable regions maskable, exclusive top-to-bottom priority

* CRC check can be inserted after any stage in the post-processing pipe

* CRC failure can generate SW interrupt, or switch the Frame Gen to either Safety
Stream or Constant Plane

The DPU display interfacce cache supports the following.

» Each display plane has a multi line cache

 This contains 8 lines of pixels for each plane

* RGB, YUV etc formats supported

 Supports Video and GPU tile formats

* Contents are fetched from memory to fill cache ahead of time

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 195

Display Controllers

» Horizontal and vertical fetches supported
* Warp fetches not supported, require bypass

6.3.1.2 DRM

The display processing unit (DPU) interfaces with the DRM driver supporting video

display.

6.3.1.3 Source Code Structure

The DPU drivers are separating into DRM, blitting and main processing. Common
functions are provided in the drivers/gpu/drm/imx/dpu and drivers/gpu/imx/dpu-blit
while the main driver exists in drivers/gpu/imx/dpu. The following table lists the source

files.

Table 6-6. DPU Driver source

File

| Description

DRM Source

drivers/gpu/drm/imx/dpu/dpu-plane.

DRM DPU Plane

drivers/gpu/drm/imx/dpu/dpu-crtc

DRM DPU CRTC

drivers/gpu/drm/imx/dpu/dpu-blit

DRM DPU blitter

drivers/gpu/drm/imx/dpu/dpu-kms DRM DPU KMS
DPU Blitter Source
drivers/gpu/imx/dpu-blit/dpu-blit DPU Bliter

drivers/gpu/imx/dpu-blit/dpu-blit-registers.h

DPU Blit registers

DRM Core Source

drivers/gpu/imx/dpu/dpu-vscaler.c

DPU VScaler

drivers/gpu/imx/dpu/dpu-fetchwarp.c

DPU Fetchwarp

drivers/gpu/imx/dpu/constframe.c

DPU Const Frame

drivers/gpu/imx/dpu/dpu-prv.h

DPU Private headers

drivers/gpu/imx/dpu/dpu-disengcfg.c

DPU Display Configurations

drivers/gpu/imx/dpu/dpu-fetchunit.c

DPU Fetch Unit

drivers/gpu/imx/dpu/dpu-framegen.c

DPU Frame Generator

drivers/gpu/imx/dpu/dpu-hscaler.c DPU HScaler
drivers/gpu/imx/dpu/dpu-extdst.c DPU External Destination
drivers/gpu/imx/dpu/dpu-common.c DPU Common
drivers/gpu/imx/dpu/dpu-fetchlayer.c DPU Fetch Layer
drivers/gpu/imx/dpu/dpu-tcon.c DPU TCon

drivers/gpu/imx/dpu/dpu-layerblend.c

DPU Layer Blend

drivers/gpu/imx/dpu/dpu-fetcheco.c

DPU Fetch Encode

Table continues on the next page...

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

196

NXP Semiconductors

4
Chapter 6 Video

Table 6-6. DPU Driver source (continued)

File Description

drivers/gpu/imx/dpu/dpu-fetchdecode.c DPU Decode

6.3.1.4 Menu Configuration Options
The following Linux kernel configuration options are provided for the DPU module.

Device Drivers ->1.MX DPU core support

6.3.2 Image Processing Unit (IPU)

6.3.2.1 Introduction

The image processing unit (IPU) is designed to support video and graphics processing
functions and to interface with video and still image sensors and displays. The IPU driver
provides a kernel-level API to manipulate logical channels. A logical channel represents
a complete [PU processing flow. For example, a complete IPU processing flow (logical
channel) might consist of reading a YUV buffer from memory, performing post-
processing, and writing an RGB buffer to memory. A logical channel maps one to three
IDMA channels and maps to either zero or one IC tasks. A logical channel can have one
input, one output, and one secondary input IDMA channel. The IPU API consists of a set
of common functions for all channels. Its functions are to initialize channels, set up
buffers, enable and disable channels, link channels for auto frame synchronization, and
set up interrupts.

The IPU is a display controller and supports the following display interfaces which are
supported through the framebuffer display framework. The access is only exposed
through the framebuffer fbdev application framework.

e Parallel

e LVDS

« HDMI

e MIPI-DSI

Typical logical channels include:

e CSI direct to memory
» CSI to viewfinder pre-processing to memory

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 197

A
Display Controllers
* Memory to viewfinder pre-processing to memory
* Memory to viewfinder rotation to memory
* Previous field channel of memory to video deinterlacing and viewfinder pre-
processing to memory
 Current field channel of memory to video deinterlacing and viewfinder pre-
processing to memory
 Next field channel of memory to video deinterlacing and viewfinder pre-processing
to memory
» CSI to encoder pre-processing to memory
* Memory to encoder pre-processing to memory
* Memory to encoder rotation to memory
e Memory to post-processing rotation to memory
* Memory to synchronous frame buffer background
* Memory to synchronous frame buffer foreground
e Memory to synchronous frame buffer DC
* Memory to synchronous frame buffer mask

The IPU API has some additional functions that are not common across all channels, and
are specific to an IPU sub-module. The types of functions for the IPU sub-modules are as
follows:

* Synchronous frame buffer functions

* Panel interface initialization

* Set foreground positions

* Set local/global alpha and color key

e Set gamma

 CSI functions

 Sensor interface initialization

* Set sensor clock

* Set capture size

* Enable or disable prefetching linear frames by using PRE/PRG
* Enable or disable resolving tiled frames by using PRE/PRG

The higher level drivers are responsible for memory allocation, chaining of channels, and
providing user-level APL

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
198 NXP Semiconductors

Chapter 6 Video

6.3.2.2 Hardware Operation

The detailed hardware operation of the IPU is discussed in the Applications Processor
Reference Manual. The following figure shows the IPU hardware modules.

D EpaEYy
SENSH e o MHIFIFD
il — Sengor — Control ——
p— |y e A e Bt (OM FCo
— s +
Image SHIE1P 00, |——
(18 P !
Wideo De-Interiacer d
| D h ==
DISFB Olsp By
i — Inte mMace
f— on i I 2) Im age
CowUerter oma
(e Contro e M E M B
(DM AT p—
O kplay
Processar
DEpl
D IE{B[ER - (ord e I.IlItIpFI;Irl:I
':E'D'g;'l Coaktnol g~
el (OM FC
Contral ||TIEgE
Madule Rotator e —
CH) (IR TY

Figure 6-1. IPUV3EX/IPUvV3H IPU Module Overview

6.3.2.3 Software Operation
The IPU driver is a self-contained driver module in the Linux kernel.
It consists of a custom kernel-level API for the following blocks:

* Synchronous frame buffer driver

* Display Interface (DI)

 Display Processor (DP)

* Image DMA Controller IDMAC)

* CMOS Sensor Interface (CSI)

* Image Converter (IC)

 Prefetch/Resolve Engine/Gasket (PRE/PRG)

The figure below shows the interaction between the different graphics/video drivers and
the TIPU.

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 199

Display Controllers

— PR = Lypplication
era fpp o ConfApp | IEPPE'!.EF ——p Oher Data Flow (LITjspe]i Ivbde)

e Comitrol Calls

¥ ¥ r Biiddk ware
[hutimedia Framework] i User Ivbde)

¥ ¥ “wPU Plugin J
AL WL Wideo Sink ¥
Capurz Augin Plgin

. | WP Library
L= Cri
¥ ¥ L N r
WALE Output Cher |3y Syme Syne Liall
Diriver FrameBuf | FRmeBuf | FrameBuf kamel
DCriver Driwer Mrinier

(ol (Ol
r L

e sl [IFU Common AP | IPL Display AF|
{ e | FRRENC J_FRF'U'FJ PP | ORDCTI] driver
i & J

& | [IPU 1 WP Hatrbarare
.l

Figure 6-2. Graphics/Video Drivers Software Interaction for IPUv3

Ipua
DYOCESSInE
drirer

Camera Sensor
Criver

Eerrel Ivode

The drivers for [IPUv1 are named simply ipu. Drivers for IPUv3 contain 3 or v3 in the
name. The IPU drivers are sub-divided as follows:

* Device drivers-include the frame buffer driver for the synchronous frame buffer, the
frame buffer driver for the displays, V4L2 capture drivers for IPU pre-processing, the
V4L2 output driver for IPU post-processing, and the ipu processing driver which
provide system interface to user space or V4L2 drivers. The frame buffer device
drivers are available in drivers/video/mxc. The V4L2 device drivers are available in
drivers/media/platform/mxc.

e The MXC display driver is introduced as a simple framework to manage interaction
between IPU and display device drivers (e.g., LCD, LVDS, HDMI, MIPI, etc.)

* Low-level library routines-interface to the IPU hardware registers. They take input
from the high-level device drivers and communicate with the IPU hardware. The
low-level libraries are available in the directory of the Linux kernel.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
200 NXP Semiconductors

4
Chapter 6 Video

6.3.2.4 IPU Frame Buffer Drivers Overview

The frame buffer device provides an abstraction for the graphics hardware. It represents
the frame buffer video hardware, and allows application software to access the graphics
hardware through a well-defined interface, so that the software is not required to know
anything about the low-level hardware registers.

The driver is enabled by selecting the frame buffer option under the graphics parameters
in the kernel configuration. To supplement the frame buffer driver, the kernel builder
may also include support for fonts and a startup logo. This device depends on the virtual
terminal (VT) console to switch from serial to graphics mode. The device is accessed
through special device nodes, located in the /dev directory, as /dev/fb*. fb0 is generally
the primary frame buffer.

Other than the physical memory allocation and LCD panel configuration, the common
kernel video API is utilized for setting colors, palette registration, image blitting, and
memory mapping. The IPU reads the raw pixel data from the frame buffer memory and
sends it to the panel for display.

6.3.2.5 IPU Frame Buffer Hardware Operation

The frame buffer interacts with the IPU hardware driver module.

6.3.2.6 IPU Frame Buffer Software Operation

A frame buffer device is a memory device, such as /dev/mem, and it has features similar
to a memory device. Users can read it, write to it, seek to some location in it, and mmap()
it (the main use). The difference is that the memory that appears in the special file is not
the whole memory, but the frame buffer of some video hardware.

/dev/fb* also interacts with several IOCTLs, which allows users to query and set
information about the hardware. The color map is also handled through IOCTLs. For
more information on what IOCTLs exist and which data structures they use, see inciude/
uapi/linux/fb.h. The following are a few of the IOCTLs functions:

* Request general information about the hardware, such as name, organization of the
screen memory (planes, packed pixels, and so on), and address and length of the
screen memory.

* Request and change variable information about the hardware, such as visible and
virtual geometry, depth, color map format, timing, and so on. The driver suggests

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 201

A
Display Controllers
values to meet the hardware capabilities (the hardware returns EINVAL if that is not
possible) if this information is changed.

* Get and set parts of the color map. Communication is 16 bits-per-pixel (values for
red, green, blue, transparency) to support all existing hardware. The driver does all
the calculations required to apply the options to the hardware (round to fewer bits,
possibly discard transparency value).

The hardware abstraction makes the implementation of application programs easier and
more portable. The only thing that must be built into the application programs is the
screen organization (bitplanes or chunky pixels, and so on), because it works on the
frame buffer image data directly.

The MXC frame buffer driver (drivers/video/mxc/mxc_ipuv3_fb.c) interacts closely with
the generic Linux frame buffer driver (darivers/video/fbdev/core/fbmem.c).

6.3.2.7 Synchronous Frame Buffer Driver

The synchronous frame buffer screen driver implements a Linux standard frame buffer
driver API for synchronous LCD panels or those without memory. The synchronous
frame buffer screen driver is the top level kernel video driver that interacts with kernel
and user level applications. This is enabled by selecting the Synchronous Panel Frame
buffer option under the graphics support device drivers in the kernel configuration. To
supplement the frame buffer driver, the kernel builder may also include support for fonts
and a startup logo. This depends on the VT console for switching from serial to graphics
mode.

Except for physical memory allocation and LCD panel configuration, the common kernel
video API is utilized for setting colors, palette registration, image blitting, and memory
mapping. The IPU reads the raw pixel data from the frame buffer memory and sends it to
the panel for display.

The frame buffer driver supports different panels as a kernel configuration option.
Support for new panels can be added by defining new values for a structure of panel
settings.

The frame buffer interacts with the IPU driver using custom APIs that allow:

* Initialization of panel interface settings
* Initialization of IPU channel settings for LCD refresh
e Changing the frame buffer address for double buffering support

The following features are supported:

 Configurable screen resolution

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
202 NXP Semiconductors

L __4
Chapter 6 Video
e Configurable RGB 16, 24, or 32 bits per pixel frame buffer
* Configurable panel interface signal timings and polarities
* Palette/color conversion management
* Power management
* LCD power off/on
* Enable/disable PRE/PRG features

User applications utilize the generic video API (the standard Linux frame buffer driver
API) to perform functions with the frame buffer. These include the following:

 Obtaining screen information, such as the resolution or scan length
» Allocating user space memory using mmap for performing direct blitting operations

A second frame buffer driver supports a second video/graphics plane.

6.3.2.8 IPU Backlight Driver

IPU drivers also control the backlight. The IPU backlight driver implements IPU PWM
backlight control for panels. It exports a sys control file under /sys/class/backlight/pwm-
backlight.0/brightness to user space. The default backlight intensity value is 128.

6.3.2.9 IPU Device Driver

IPU (processing) device driver provide image processing features: resizing/rotation/CSC/
combination/deinterlacing based on IC/IRT modules in IPUv3.

The IPU device driver is task based, user just need prepare task setting, queue task, then
block wait task finish. The driver now supports only blocking method, and the non-block
method will be added in the future. The task structures are as follows:

struct ipu_ task {
struct ipu input input;
struct ipu output output;

bool overlay en;
struct ipu overlay overlay;

#define IPU TASK PRIORITY NORMAL O
#define IPU TASK PRIORITY HIGH 1
us priority;

#define IPU TASK ID ANY 0
#define IPU TASK ID VF 1
#define IPU TASK ID PP 2
#define IPU TASK ID MAX 3

us8 task _id;

int timeout;

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 203

Display Controllers

struct ipu input {
u32 width;
u32 height;
u32 format;
struct ipu crop crop;
dma_addr t paddr;

struct ipu deinterlace deinterlace;
dma_addr t paddr n; /*valid when deinterlace enable*/

bi

struct ipu overlay {
u32 width;
u32 height;
u32 format;
struct ipu crop crop;
struct ipu alpha alpha;
struct ipu colorkey colorkey;
dma_addr_t
paddr;

bi

struct ipu output

u32 width;

u32 height;

u32 format;

u8 rotate;

struct ipu crop crop;

dma_addr_t paddr;
}i
To prepare the task, the user just needs to fill task.input, task.overlay (if need combine)
and task.output parameters, and then queue task either by int ipu queue task (struct
ipu_task *task); if from the kernel level (V4L2 driver for example), or by

IPU_QUEUE_TASK ioctl under /dev/mxc_ipu if from the application level.

6.3.2.10 Source Code Structure

The source files associated with the IPU, Sensor, V4L2, and Panel drivers are available in
the following folders.

e drivers/mxc/ipu3
drivers/video/mxc
drivers/video/fbdev/mxc
drivers/video/backlight

See the V4L2 chapter for more information on the IPU V4L2 driver files

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
204 NXP Semiconductors

Chapter 6 Video

Table 6-7.

IPU Driver Files

File

Description

driveers/mxc/ipud/ipu_common.c

IPU common library functions

driveers/mxc/ipu3/ipu_common.c

IPU common library functions

drivers/mxc/ipu3/ipu_ic.c

IPU IC base driver

drivers/mxc/ipu8/ipu_device.c

IPU driver device interface and fops functions.

drivers/mxc/ipu3/ipu_capture.c

IPU CSI capture base driver

drivers/mxc/ipu8/ipu_disp.c

IPU display functions

drivers/mxc/ipu3/ipu_calc_stripes_sizes.c

Multistripes method functions for ipu_device.c

drivers/mxc/ipu3/pre.c

i.MX 6 QuadPlus Prefetch/Resolve the engine driver

drivers/mxc/ipu3/prg.c

i.MX 6 QuadPlus Prefetch/Resolve the Gasket driver

drivers/mxc/ipu3/mxc_ipuv3_fb.c

Driver for synchronous frame buffer

drivers/mxc/ipu3/vdoa.c

VDOA post-processing driver, used by ipu_device.c

drivers/video/fbdev/mxc/mxc_lcdif.c

Display Driver for CLAA-WVGA and SEIKO-WVGA LCD
support

drivers/video/fbdev/mxc/mxc_hdmi.c

Display Driver for HDMI interface

drivers/video/fbdev/mxc/Ildb.c

Driver for synchronous frame buffer for on chip LVDS

drivers/video/fbdev/mxc/mxc_dispdrv.c

Display Driver framework for synchronous frame buffer

drivers/video/fbdev/mxc/mxc_edid.c

Driver for EDID

Table 6-8 lists the header files associated with the IPU and Panel drivers.

Table 6-8.

IPU Global Header Files

File

Description

drivers/mxc/ipu3/ipu_param_mem.h

Hellper functions for IPU parameter memory access

drivers/mxc/ipu8/ipu_prv.h

Header file for Pre-processing drivers

drivers/mxc/ipu3/ipu_regs.h

IPU register definitions

drivers/mxc/ipu3/pre-regs.h

Prefetch/Resolve Engine register definitions

drivers/mxc/ipu3/prg-regs.h

Prefetch/Resolve Gasket register definitions

drivers/mxc/ipu3/vdoa.h

Header file for VDOA drivers

drivers/video/fbdev/mxc/mxc_dispdrv.h

Header file for display driver

include/linux/uapi/mxcfb.h

Header file for the synchronous framebuffer driver

include/linux/uapi/ipu.h

Header file for IPU APIs

6.3.2.11 Menu Configuration Options

The following Linux kernel configuration options are provided for the IPU module.

In menu configuration enable the following module:

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

NXP Semiconductors

Display Controllers

* CONFIG_MXC_IPU_V3 - Includes support for the Image Processing Unit. In
menuconfig, this option is available under:

Device Drivers > MXC support drivers > Image Processing Unit Driver
By default, this option is Y for all architectures.
If ARCH_MXC is true, CONFIG_MXC _IPU_V3 will be set.

* CONFIG_MXC_IPU_V3_PRG - This enables support for the [PUv3 prefetch gasket
engine to support double buffer handshake control between IPUv3 and prefetch
engine (PRE), snoop the AXI interface for display refresh requests to memory, and
modify the request address to fetch the double buffered row of blocks in OCRAM.

Device Drivers > MXC support drivers > 1.MX [PUv3 prefetch gasket engine

This option depends on CONFIG_MXC_IPU_V3 and
CONFIG_MXC_IPU_V3_PRE.

* CONFIG_MXC_IPU_V3_PRE - This enables support for the IPUv3 prefetch engine
to improve the system memory performance. The engine has the capability to resolve
framebuffers in tile pixel format to linear.

Device Drivers > MXC support drivers > 1.MX [PUv3 prefetch engine

This option depends on CONFIG_MXC_IPU_V3. Enabling this option selects
CONFIG_MXC_IPU_V3_PRG.

* CONFIG_MXC_CAMERA_0OV5640_MIPI - Option for both the OV 5640 mipi
sensor driver and the use case driver. This option is dependent on the
VIDEO_MXC_CAPTURE option. In menuconfig, this option is available under:

Device Drivers > Multimedia support > V4L platform devices > MXC Video For
Linux Video Capture > MXC Camera/V4L2 PRP Features support > OmniVision
5640 Camera support using mipi

* CONFIG_MXC_CAMERA_OV5640 - Option for both the OV5640 sensor driver
and the use case driver. This option is dependent on the VIDEO_MXC_CAPTURE
option. In menuconfig, this option is available under:

Device Drivers > Multimedia platform > V4L platform devices > MXC Video For
Linux Video Capture > MXC Camera/V4L2 PRP Features support > OmniVision
ov5640 camera support

Only one sensor should be installed at a time.

* CONFIG_MXC_IPU_PRP_VF_SDC - Option for the IPU (here the > symbols
illustrates data flow direction between HW blocks):

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
206 NXP Semiconductors

4
Chapter 6 Video

CSI > IC > MEM MEM > IC (PRP VF) > MEM

Use case driver for dumb sensor or

CSI > IC(PRP VF) > MEM

for smart sensors. In menuconfig, this option is available under:

Multimedia devices > Video capture adapters > MXC Video For Linux Camera >
MXC Camera/V4L2 PRP Features support > Pre-Processor VF SDC library

By default, this option is M for all.
* CONFIG_MXC_IPU_PRP_ENC - Option for the IPU:
Use case driver for dumb sensors
CSI>IC > MEM MEM > IC (PRP ENC) > MEM
or for smart sensors
CSI > IC(PRP ENC) > MEM.
In menuconfig, this option is available under:

Device Drivers > Multimedia Devices > Video capture adapters > MXC Video For
Linux Camera > MXC Camera/V4L2 PRP Features support > Pre-processor Encoder
library

By default, this option is set to M for all.

* CONFIG_VIDEO_MXC_CAMERA - This is configuration option for V4L2 capture
Driver. This option is dependent on the following expression:

VIDEO_DEV && MXC_IPU && MXC_IPU_PRP_VF_SDC &&
MXC_IPU_PRP_ENC

In menuconfig, this option is available under:

Device Drivers > Multimedia devices > Video capture adapters > MXC Video For
Linux Camera

By default, this option is M for all.

* CONFIG_VIDEO_MXC_OUTPUT - This is configuration option for V4L2 output
Driver. This option is dependent on VIDEO_DEV & & MXC_IPU option. In
menuconfig, this option is available under:

Device Drivers > Multimedia devices > Video capture adapters > MXC Video for
Linux Video Output

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 207

Display Controllers

By default, this option is Y for all.

* CONFIG_FB - This is the configuration option to include frame buffer support in the
Linux kernel. In menuconfig, this option is available under:

Device Drivers > Graphics support > Support for frame buffer devices
By default, this option is Y for all architectures.

* CONFIG_FB_MXC - This is the configuration option for the MXC Frame buffer
driver. This option is dependent on the CONFIG_FB option. In menuconfig, this
option is available under:

Device Drivers > Graphics support > MXC Framebuffer support
By default, this option is Y for all architectures.

* CONFIG_FB_MXC_SYNC_PANEL - This is the configuration option that chooses
the synchronous panel framebuffer. This option is dependent on the

CONFIG_FB_MXC option. In menuconfig, this option is available under:

Device Drivers > Graphics support > MXC Framebuffer support > Synchronous
Panel Framebuffer

By default this option is Y for all architectures.

* CONFIG_FB_MXC_LDB - This configuration option selects the LVDS module on
1.MX 6 chip. This option is dependent on CONFIG_FB_MXC_SYNC_PANEL and
CONFIG_MXC_IPUV3 |l FB_MXS options. In menuconfig, this option is available
under:

Device Drivers > Graphics support > MXC Framebuffer support > Synchronous
Panel Framebuffer > MXC LDB

* CONFIG_FB_MXC_SII9022 - This configuration option selects the SI19022 HDMI
chip. This option is dependent on CONFIG_FB_MXC_SYNC_PANEL option. In
menuconfig, this option is available under:

Device Drivers > Graphics support > MXC Framebuffer support > Synchronous
Panel Framebuffer > Si Image SI19022 DVI/HDMI Interface Chip

6.3.3 Pixel Pipeline (PxP)

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
208 NXP Semiconductors

4
Chapter 6 Video

6.3.3.1 Introduction

The PxP is a display controller that works wtih the EPDC display interface. The Pixel
Pipeline (PxP) DMA engine driver provides a unique API, which are implemented as a
dmaengine client that smooths over the details of different hardware offload engine
implementations. Typically, the users of PxP DMA-ENGINE driver include EPDC
driver, V4L2 Output driver, and the PxP user-space library.

The PxP driver uses PxP registers to interact with the hardware. For detailed hardware

operations, see the Applications Processor Reference Manual document associated with
SoC.

6.3.3.2 Software Operation

There are different versions of PxP IP. To ease the maintenance for the new version of
PxP used on 1.MX 7Dual, which has new features mainly for EPDC like hardware
collision detection, E Ink Gen-II waveform algorithm (REAGL/-D) processing in
hardware, and hardware dithering support, there are different drivers (drivers/dma/pxp/
pxp_dma_v3.c). However, each version uses the DMA Engine framework.

6.3.3.3 Key Data Structs

The PxP DMA Engine driver implementation depends on the DMA Engine Framework.
There are three important structs in the DMA Engine Framework which are extended by
the PxP driver: struct dma_device, struct dma_chan, struct dma_async_tx_descriptor. The
PxP driver implements several callback functions which are called by the DMA Engine
Framework (or DMA slave) when a DMA slave (client) interacts with the DMA Engine.

The PxP driver implements the following callback functions in struct dma_device:
device_alloc_chan_resources /* allocate resources and descriptors */
device_free_chan_resources /* release DMA channel's resources */
device_tx_status /* poll for transaction completion */

device_issue_pending /* push pending transactions to hardware */

and,

device_prep_slave_sg /* prepares a slave DMA operation */

device_terminate_all/* manipulate all pending operations on a channel, returns zero or
error code */

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 209

A
Display Controllers

The first four functions are used by the DMA Engine Framework, the last two are used
by the DMA slave (DMA client). Notably, device_issue_pending is used to trigger the
start of a PxP operation.

The PxP DMA driver also implements the interface tx_submit in struct
dma_async_tx_descriptor, which is used to prepare the descriptor(s) which will be
executed by the engine. When tasks are received in pxp_tx_submit, they are not
configured and executed immediately. Rather, they are added to a task queue and the
function call is allowed to return immediately.

6.3.3.4 Channel Management

Although ePxP does not have multiple channels in hardware, the virtual channels are
supported in the driver. This provides flexibility in the multiple instance/client design. At
any time, a user can call dma_request_channel() to get a free channel, and then configure
this channel with several descriptors. A descriptor is required for each input plane and for
the output plane. When the PxP is no longer being used, the channel should be released
by calling dma_release_channel(). Detailed elements of channel management are
handled by the driver and are transparent to the client.

6.3.3.5 Descriptor Management

The DMA Engine processes the task based on the descriptor. One DMA channel is
usually associated with several descriptors. Descriptors are recycled resources, under
control of the offload engine driver, to be reused as operations complete. The extended
TX descriptor packet (pxp_tx_desc), allows the user to pass PxP configuration
information to the driver. This includes everything that the PxP needs to execute a
processing task.

6.3.3.6 Completion Notification

There are two ways for an application to receive notification that a PxP operation has
completed.

* Call dma_wait_for_async_tx(). This call causes the CPU to spin while it polls for the
completion of the operation.
* Specify a completion callback.

The latter method is recommended. After the PxP operation completes, the PxP output

buffer data can be retrieved.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
210 NXP Semiconductors

L __4

Chapter 6 Video
For general information for DMA Engine Framework, seeDocumentation/dmaengine.txt
in the Linux kernel source tree.

6.3.3.7 Limitations

* The driver currently does not support scatterlist objects in the way they are
traditionally used. Instead of using the scatterlist parameter object to provide a chain
of memory sources and destinations, the driver currently uses it to provide the input
and output buffers (and overlay buffers, if needed) for one transfer.

» The PxP driver may not properly execute a series of transfers that is queued in rapid

sequence. It is recommended to wait for each transfer to complete before submitting

a new one.

6.3.3.8 Menu Configuration Options

The following Linux kernel configuration option is provided for this module:

For 1.MX 7Dual select Device Drivers > DMA Engine support > [*] MXC PxP V3

support > [*] MXC PxP Client Device

For 1.MX 6 select Device Drivers > DMA Engine support > [*] MXC PxP V2 support >

[*] MXC PxP Client Device

6.3.3.9 Source Code Structure

The PxP driver source code is located in drivers/dma/pxp.

Table 6-9. Pxp source

File

Description

drivers/dma/pxp/pxp_device.c

PxP Device

drivers/dma/pxp/pxp_dma_v2.c

PxP DMA for i.MX 6

drivers/dma/pxp/pxp_dma_v3.c

PxP DMA for i.MX 7

drivers/dma/pxp/regs-pxp_v2.h

PxP registers for i.MX 6

drivers/dma/pxp/regs-pxp_v3.h

Pxp registers for i.MX 7

drivers/dma/pxp/regs-pxp_v3.h

Pxp registers for i.MX 7

include/linux/drivers/dma/pxp/pxp_dma_v3.c

PxP Device for i.MX 7

include/linux/pxp_dma.h

PxP DMA kernel header

include/linux/pxp_device.h

PxP Device kernel header

include/linux/uapi/pxp_dma.h

PxP DMA user space header

include/linux/uapi/pxp_device.h

PxP Device user space header

Table continues on the next page...

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

NXP Semiconductors

211

Display Controllers

Table 6-9. Pxp source (continued)

File Description
drivers/media/platform/mxc/output/mxc_pxp_v4l2.c PxP V4L2
drivers/media/platform/mxc/output/mxc_pxp_v4l2.c PxP V4L2 header
drivers/media/platform/mxc/output/mxc_vout.c i.MX V4L2 Output driver

6.3.4 ELCDIF Frame Buffer

6.3.4.1 Introduction

The eLCDIF is a display controller that works with the Parallel LCD interface. The driver
1s implemented as a display subsystem driver either frame buffer or DRM which controls
generic LCD low-level operations allowing low level hardware control. Only DOTCLK
mode of the ELCDIF is tested, so theoretically the ELCDIF frame buffer driver can work
with a sync LCD panel driver to support a frame buffer device. The sync LCD driver is
organized in a flexible and extensible manner and is abstracted from any specific sync
LCD panel support. To support another sync LCD panel, the user can write a sync LCD
driver by referring to the existing ones.

6.3.4.2 Software Operation

For the eLCDIF implemented as a framebuffer driver the frame buffer device is a
memory device similar to /dev/mem. It can be read from, written to, or some location in it
can be sought and mapped using mmap(). The difference is that the memory available to
the user is not the entire allocated memory, but only the frame buffer of the video
hardware. The device is accessed through special device nodes, usually located in

the /dev directory, /dev/fb*. /dev/fb* also has several IOCTLs which act on it and
through which information about the hardware can be queried and set. The color map
handling operates through IOCTLs as well. See linux/fb.h for more information on which
IOCTLs there are and which data structures are used.

The 1.MX ELCDIF frame buffer driver implementation is abstracted from the actual
hardware. The default panel driver is picked up by video mode defined in platform data
or passed in with 'video=mxc_elcdif_fb:resolution, bpp=bits_per_pixel' kernel bootup
command during probing. The resolution should be in the common frame buffer video
mode pattern and bits_per_pixel should be the frame buffer's color depth.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
212 NXP Semiconductors

Chapter 6 Video

6.3.4.3 Menu Configuration Options

The following menu options will configure the MXC ELCDIF frame buffer driver. This
option depends on FB and (ARCH_MXS Il ARCH_MXC).

Frame buffer Devices > MXS LCD framebuffer support (CONFIG_FB_MXS)

6.3.4.4 Source Code Structure

The source for frame buffer is in drivres/video/fbdev/mxc and the drm driver is in
drivers/gpu/drm/imx/lcdif.

Table 6-10. ELCIF source

File Description
drivers/video/fbdev/mxsfb.c ELCDIF frame buffer driver
drivers/video/fbdev/mxc/mxc_lcdif.c ELCDIF frame buffer driver
drivers/gpu/drm/imx/Icdif/Icdif-crtc.c ELCDIF DRM Authentication
drivers/gpu/drm/imx/Icdif/lcdif-kms.c ELCDIF DRM KMS
drivers/gpu/drm/imx/Icdif/lcdif-kms.h ELCDIF DRM KMS Header
drivers/gpu/drm/imx/Icdif/Icdif-plane.c ELCDIF DRM Plane
drivers/gpu/drm/imx/Icdif/lcdif-plane.h ELCDIF DRM Plane header

6.3.5 Display Control Subsystem (DCSS)

6.3.5.1 Introduction

The Display control subsystem (DCSS) is a display control for . MX 8M Quad that
integrates through the DRM display framework. The DCSS provides a mechanism to
display frame buffers in memory out to UltraHD or HDTVs with the capability to
combine up to 3 layers of graphics or video overlay to the HDMI output. The key
featuers of the DCSS controller include:

» Supports up to 3 layers of graphics or video

* Arbitrary offset

* One plane can be graphics with 8 bit alpha support

e Upscale 1920x1080p60 video or graphics to 3840x2160p60

* Downscale 3840x2160p30 video to 1920x1080p30 or 1280x720p30
* HDR support:

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 213

Display Interfaces

e HDR10 with 2084 and 2020 color spaces
* Dolby Vision single and dual layer formats

« HLG

e HDMI 2.0a supporting one display:
* Resolutions of: 640x480p60, 720x480p60, 1280x720p60,
1920x1080p60,3840x2160p60, 4096x2160p60
« HDCP 2.2 and HDCP 1.4
* Pixel clock up to 596 MHz
* QOutput can also go to MIPI DSI output
e Frame Buffer Compression — Lossless compression of buffers

6.3.5.2 Source Code Structure
The DCSS drm driver is located in drivers/gpu/drm/imx/dcss and the DCSS core driver is

in drivers/gpu/imx/dcss

Table 6-11. DCSS Driver source

File Description
drivers/gpu/drm/dcss/dcss-plane DRM DCSS Plane
drivers/gpu/drm/dcss/dcss-kms DRM DCSS KMS
drivers/gpu/drm/dcss/dcss-cric DRM DCSS CRTC header
drivers/gpu/imc/dcss/dcss-dec400d.c DCSS dec400d
drivers/gpu/imx/dcss/dcss-scaler DCSS Scaler
drivers/gpu/imx/dcss/dcss-ss.c DCSS ss
drivers/gpu/imx/dcss/dcss-hdr10.c DCSS hdr10
drivers/gpu/imx/dcss/dcss-wtsc1.c DCSS wtsct
drivers/gpu/imx/dcss/dcss-dtg.c DCSS dtg
drivers/gpu/imx/dcss/dcss-common.c DCSS common
drivers/gpu/imx/dcss/dcss-ctx1d.c DCSS ctx1d
drivers/gpu/imx/dcss/dcss-dtrc.c DCSS DTRC
drivers/gpu/imx/dcss/dcss-dpr.c DCSS cix1d
drivers/gpu/imx/dcss/dcss-blkctr.c DCSS ctx1d

6.4 Display Interfaces

6.4.1 Parallel LCD Interface

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

214

NXP Semiconductors

4
Chapter 6 Video

6.4.1.1 Introduction

The Parallel interface supports display to LCDs. The Parallel Display interface is
supported through the display controllers and implemented using the display framework
which is fbdev framework on 1.MX 6 and 1.MX 7 and drm framework for . MX8. .

The following controllers support the parallel interface

e [PU on 1.MX with IPU
e DPU on all . MX8
e EICDIF on 1.MX with PxP

The Parallel interface supports at least one port on 1.MX SoC that enable the parallel
interface and supports two ports for i.MX with [PU. The enabled SoC have varying
bitrates from 18bit to 24 bits per port. On 1.MX 6 with IPU the Parallel interface also
supports a synchronous mode for display refresh and asynchronous mode to memory and
is very flexible with a glue-less connection to RAM-less displays, display controllers and
TV encoders.

6.4.2 MIPI DSI Interface

6.4.2.1 Software Operation

The MIPI DSI driver has two parts: MIPI DSI IP driver and MIPI DSI display panel
driver.

The MIPI DSI IP driver has a private structure called mipi_dsi_info. The instance to
which the MIPI DSI IP is attached is described in field int dev_id while the DI instance
inside IPU is described in the field int disp_id.

During startup, the MIPI DSI IP driver is registered with the framebuffer driver through
the field struct mxc_dispdrv_handle when the driver is loaded. It also registers a
framebuffer event notifier with framebuffer core to perform the display panel blank/
unblank operation. The field struct fb_videomode *mode and struct mipi_Ilcd_config
*lcd_config are received from the display panel callback. The MIPI DSI IP needs this
infomation to configure the MIPI DSI hardware registers.

After initializing the MIPI DSI IP controller and the display module, the MIPI DSI IP
gets the pixel streams from IPU through DPI-2 interface and serializes pixel data and
video event through high-speed data links for display. When there is an framebuffer
blank/unblank event, the registered notifier will be called to enter/leave low power mode.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 215

Display Interfaces

The MIPI DSI IP driver provides 3 APIs for MIPI DSI display panel driver to configure
display module.

The drivers uses the APIs provided by the MIPI DSI IP driver to read/write the display
module registers. Usually, there is a MIPI DSI slave controller integrated on the display
panel. After power on reset, the MIPI DSI display panel needs to be configured through
standard MIPI DCS command or MIPI DSI Generic command according to the

manufacturer's specification.

6.4.2.2 Source Code Structure

Table below shows the MIPI DSI driver source files available in drivers/video/fbdev/
mxc.

Table 6-12. MIPI DSI Driver Files

File Description

MIPI DSI IP Frame buffer driver source file
MIPI DSI IP Frame bufferdriver header file

drveirs/video/fbdev/mxc/mipi_dsi.c

drivers/video/fbdev/mxc/mipi_dsi.h

drivers/video/fbdev/mxc/mxcfb_hx8369_wvga.c

MIPI DSI Frame bufferDisplay Panel driver source file

drivers/video/fbdev/mxc/mipi_dsi_samsung.c

MIPI DSI Frame buffer Samsung source file

drivers/video/fbdev/mxc/mipi_dsi_northwest.c

MIPI DSI Frame buffer Northwest source file

drivers/video/fbdev/mxc/mxcfb_hx8363_wvga.c

i.MX 7 Frame buffer Truly WVGA Panel TFT3P5581E

drivers/video/fbdev/mxc/mxcfb_hx8369_wvga.c

i.MX 6 Frame buffer Truly WVGA sync panel

drivers/video/fbdev/mxc/mxcfb_otm808b_wvga.c

Truly Frame buffer WVGA Panel TFT3P5079E

Samsung DRM driver
Northwest DRM driver

drivers/gpu/drm/imx/sec_mipi_dsmi-imx.c

drivers/gpu/drm/imx/nwl_dsi-imx.c

6.4.2.3 Menu Configuration Options
In menu configuration enable the following module:

Device Drivers > Graphics support > MXC Framebuffer support > Synchronous Panel
Framebuffer > MXC MIPI_DSI

Device Drivers > Graphics support > MXC Framebuffer support > Synchronous Panel
Framebuffer > MXC MIPI_DSI SAMSUNG

Device Drivers > Graphics support > DRM Support for Freescale i.MX > Support for
Northwest Logic MIPI DSI displays

Device Drivers > Graphics support > DRM Support for Freescale 1.MX > Support for
Samsung MIPI DSIM displays

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
216 NXP Semiconductors

4
Chapter 6 Video

6.4.3 LVDS Interface

6.4.3.1 Introduction

Low Voltage Differential Signalling (LVDS) supports high bandwidth and high
definitiion graphics and fast frame rate with lower power consumption. The implentation
uses paris of wires where each wire in the pair carries inverse signal of the other. This
creates less interference and noise. The LVDS interferace uses four, six or eight paris of
wirse with additional ones carrying clock and ground wires.

The purpose of the LVDS interface is to support the flow of synchronous RGB data from
the display controller to external display devices through the LVDS interface.

This support covers all aspects of these activities:

1. Connectivity to relevant devices - Displays with LVDS receivers.

2. Data arrangement required by the external display receiver and by LVDS display
standards.

3. Synchronization and control capabilities.

The LVDS interface supports multiple controllers listed below.

* LDB - double on i.MX 6 with IPU
e Mixel on 1.MX 8QuadMax
e Mixel Combo on i.MX 8QuadXPlus

The LVDS drivers works with the supported display framework which is framebuffer for
1.MX 6 and 1.MX 7 and drm for i.MX 8.

The LVDS interface has the following structure of support

* Channels - usually 2 channels

» Each channel supports a number of data pairs
 Data pixel rate which can vary on each data pair
* Control signals for HSYNC,VSYNC, DE

The LVDS interface supports the following displays.

* [T6263 LVDS to HDMI bridge - implemented with our LDB driver
* LVDS dual channel panel

The relevant standards for LVDS are the following.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 217

A
Display Interfaces
* PHY Standard: ANSI EIA-644A
* Display Protocol Standards:
* SPWG Standard Panel Working Group Specification 3.8 (May 2007)
* VESA PSWG - Panel Standardization Working Group — set of standards for
panels using LVDS.
* JEIDA/JEITA DISM Standard JEIDA-59-1999
e OpenLDI (National) — Revision 0.95 13/May/1999. *Only* Unbalanced
operating mode supported (aligned with vast majority of LCD vendors).

The LVDS interface is supported through the framebuffer framework on 1.MX 6 and
1.MX 7 and the drm framework on 1.MX 8.

6.4.3.2 Software Operation

The LVDS driver 1s functional if the driver i1s built-in and the device tree status is set to
"Okay" .

When the LVDS device driver is probed properly, the driver configures the clocks for the
LVDS. The LVDS driver probe function sets the default mode to 1080p60. The LVDS
channel mapping mode and bit mapping mode are set to use 30-bit JEIDA mode.

The driver takes the following steps to enable an LVDS channel:

Enable the power to the LVDS.

Set Idb_di_clk's parent clk and the parent clk's rate.

Set 1db_di_clk's rate.

Enable both 1db_di_clk and its parent clk.

Set the LVDS in a proper mode including display signals' polarities, channel
mapping mode, and bit mapping mode.

Enable related .MX LVDS channels.

SNk w =

=

6.4.3.3 Source Code Structure
Table 6-13. LVDS Source

File Description

drivers/video/fbdev/mxc/imx_Ivds.c LVDS driver

drivers/gpu/drm/imx-ldb.c LDB driver with Mixel information

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
218 NXP Semiconductors

4
Chapter 6 Video

6.4.3.4 Menu Configuration Options
In menu configuration enable the following module:

Device Drivers > Graphics support > DRM Support for Freescale i.MX > Support for
LVDS displays

6.4.4 LVDS Display Bridge (LDB)

6.4.4.1 Introduction

This section describes the LVDS Display Bridge (LDB) driver which controls the LDB
module to connect with the external display devices with the LVDS interface. The
purpose of the LDB is to support flow of synchronous RGB data from IPU or LCDIF to
external display devices through LVDS interface.

This support covers the following:

» Connectivity to relevant devices - Displays with LVDS receivers.

* Arranging data as required by the external display receiver and by LVDS display
standards.

* Synchronization and control capabilities.

6.4.4.2 Software Operation
The LDB driver is functional if the driver is built-in.

When the LDB device is probed properly, the driver configures the LDB reference
resistor mode and the LDB regulator by using platform data information. The LDB driver
probe function tries to match video modes for external display devices to LVDS
interface. The display signal polarities control bits of the LDB are set according to the
matched video modes. LVDS channel mapping mode and bit mapping mode of the LDB
are set according to the LDB device tree node set by the user. The LDB is fully enabled
in probe function if the driver identifies a display device with LVDS interface as the
primary display device.

The steps the driver takes to enable an LVDS channel are:

1. Set 1db_di_clk's parent clk and the parent clk's rate.
2. Set 1db_di_clk's rate.
3. Enable both Idb_di_clk and its parent clk.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 219

Display Interfaces

4. Set the LDB in a proper mode including display signals' polarities, LVDS channel
mapping mode, bit mapping mode, and reference resistor mode.
5. Enable related LVDS channels.

6.4.4.3 Source Code Structure
Table 6-14. LDB Source

File Description

drivers/video/fbdev/mxc/Idb.c LDB Framebuffer driver

6.4.4.4 Menu Configuration Options
The following Linux kernel configuration options are provided for this module.
In menu configuration enable the following module:

Device Drivers -> Graphics support -> MXC Framebufer support ->Synchronous Panel
Framebuffer -> MXC LDB

6.4.5 Electrophoretic Display Controller (EPDC) Interface

6.4.5.1 Introduction

The Electrophoretic Display Controller (EPDC) is a direct-drive active matrix EPD
controller designed to drive E Ink EPD panels supporting a wide variety of TFT
backplanes. The EPDC framebuffer driver acts as a standard Linux frame buffer device.
This driver supports a set of custom API extensions, accessible from user space (via
IOCTL) or another kernel module (via direct function call) in order to provide the user
with access to EPD-specific functionality. The EPDC driver is abstracted from any
specific E Ink® panel type, providing flexibility to work with a range of E Ink panel types
and specifications.

The EPDC driver supports the following features:

» EPDC driver as a loadable or built-in module.

e RGB565, RGB24, RGB32 and Y8 frame buffer formats.
 Full and partial EPD screen updates.

» Up to 256 panel-specific waveform modes.

» Automatic optimal waveform selection for a given update.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
220 NXP Semiconductors

L __4
Chapter 6 Video
» Synchronization by waiting for a specific update request to complete.
* Screen updates from an alternate (overlay) buffer.
e Automated collision handling.
e 64 simultaneous update regions.
 Ppixel inversion in a Y8 frame buffer format.
* 90, 180, and 270 degree HW-accelerated frame buffer rotation.
* Panning (y-direction only).
* Automated full and partial screen updates through the Linux fb_deferred_io
mechanism.
e Three EPDC driver display update schemes: Snapshot, Queue, and Queue and
Merge.
* Setting the ambient temperature through either a one-time designated API call or on
a per-update basis.
» User control of the delay between completing all updates and powering down the
EPDC.

6.4.5.2 EPDC Frame Buffer Driver Overview

The frame buffer device provides an abstraction for the graphics hardware. It represents
the frame buffer video hardware and allows application software to access the graphics
hardware through a well-defined interface, abstracting from software how to manage the
low-level hardware registers. The EPDC driver supports this model with one key caveat:
the contents of the frame buffer are not automatically updated to the E Ink display.
Instead, a custom API function call is required to trigger an update to the E Ink display.
The details of this process are explained in the EPDC Frame Buffer Driver Extensions.

The frame buffer driver is enabled by selecting the frame buffer option under the graphics
parameters in the kernel configuration. To supplement the frame buffer driver, the kernel
builder may also includes support for fonts and a startup logo. The frame buffer device
depends on the virtual terminal (VT) console to switch from serial to graphics mode. The
device is accessed through special device nodes, located in the /dev directory, as /dev/fb*.
b0 is generally the primary frame buffer.

A frame buffer device is a memory device, such as /dev/mem, and has features similar to

a memory device. Users can read it, write to it, seek to some location in it, and mmap() it

(the main use). The difference is that the memory that appears in the special file is not the
whole memory, but the frame buffer of some video hardware.

The EPDC frame buffer driver (drivers/video/fbdev/mxc/mxc_epdc_fb.c on i.MX
6DualLite or drivers/video/fbdev/mxc/mxc_epdc_v2_fb.c for generation-II EPDC on
1.MX 7Dual) interacts closely with the generic Linux frame buffer driver (drivers/video/
fbmem.c).

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 221

AR
Display Interfaces

For additional details on the frame buffer device, see documentation in the Linux kernel
found in Documentation/fb/framebuffer.txt.

6.4.5.3 EPDC Frame Buffer Driver Extensions

E Ink display technology, in conjunction with the EPDC, has several features that
distinguish it from standard LCD-based frame buffer devices. These differences
introduce the need for API extensions to the frame buffer interface. The EPDC refreshes
the E Ink display asynchronously and supports partial screen updates. Therefore, the
EPDC requires notification from the user when the frame buffer contents have been
modified and which region needs updating. Another unique characteristic of EPDC
updates to the E Ink display is the long screen update latencies (between 300-980 ms),
which introduces the need for a mechanism to allow the user to wait for a given screen
update to complete.

The custom API extensions to the frame buffer device are accessible both from user
space applications and from within kernel space. The standard device IOCTL interface
provides access to the custom API for user space applications. The IOCTL extensions,
along with relevant data structures and definitions, can be found in include/linux/
mxcfb_epdc.h. A full description of these IOCTLs can be found in the Programming
Interface section Software Operation.

For kernel mode access to the custom API extensions, the IOCTL interface should be
bypassed in favor of direct access to the underlying functions.

6.4.5.4 EPDC Panel Configuration

The EPDC driver is designed to flexibly support E Ink panels with a variety of panel
resolutions, timing parameters, and waveform modes. The EPDC driver is kept panel-
agnostic through the use of an EPDC panel mode structure, imx_epdc_fb_mode, which
can be found in include/linux/mxcfb_epdc.h.

struct imx_epdc_fb mode {
struct fb_videomode *vmode;
int vscan holdoff;
int sdoed width;
int sdoed_delay;
int sdoez_width;
int sdoez delay;
int gdclk hp offs;
int gdsp_ offs;
int gdoe_offs;
int gdclk offs;
int num ce;

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
222 NXP Semiconductors

L __4

Chapter 6 Video
The imx_epdc_fb_mode structure consists of an fb_videomode structure reference and a
set of EPD timing parameters. The fb_videomode structure defines the panel resolution
and the basic timing parameters (pixel clock frequency, hsync and vsync margins) and
the additional timing parameters in imx_epdc_fb_mode define EPD-specific timing
parameters, such as the source and gate driver timings. For details on how to configure E
Ink panel timing parameters, see the EPDC programming model section in the i. MX
6DualLite Applications Processor Reference Manual IMX6DLRM), or i. MX 7Dual
Applications Processor Reference Manual (IMX7DRM).

In addition to the EPDC panel mode data, functions may be passed to the EPDC driver to
define how to handle the EPDC pins when the EPDC driver is enabled or disabled. These
functions should disable the EPDC pins for purposes of power savings.

6.4.5.5 Boot Command Line Parameters

Additional configuration for the EPDC driver is provided through boot command line
parameters. The format of the command line option is

epdc video=mxcepdcfb: [panel name] ,h bpp=16

The EPDC driver parses these options and tries to match panel_name to the name of
video mode specified in the imx_epdc_fb_mode panel mode structure. If no match is
found, then the first panel mode provided in the platform data is used by the EPDC
driver. The bpp setting from this command line sets the initial bits per pixel setting for
the frame buffer. A setting of 32 or 24 selects the RGB888 pixel format, one of 16 selects
RGB565 pixel format, while a setting of 8 selects 8-bit grayscale (Y8) format.

6.4.5.6 EPDC Waveform Loading

The EPDC driver requires a waveform file for proper operation. This waveform file
contains the waveform information needed to generate the waveforms that drive updates
to the E Ink panel. A pointer to the waveform file data is programmed into the EPDC
before the first update is performed.

There are two options for selecting a waveform file:

1. Select one of the default waveform files included in this BSP release.
2. Use a new waveform file that is specific to the E Ink panel being used.

The waveform file is loaded by the EPDC driver using the Linux firmware APIs.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 223

Display Interfaces

6.4.5.7 Using a Default Waveform File

The quickest and easiest way to get started using an E Ink panel and the EPDC driver is
to use one of the default waveform files provided in the Linux BSP. This should enable
updates to several different types of E Ink panel without a panel-specific waveform file.
The drawback is that optimal quality should not be expected. Typically, using a non-
panel-specific waveform file for an E Ink panel results in more ghosting artifacts and
overall poorer color quality.

The following default waveform files included in the BSP reside in /lib/firmware/imx/
epdc:

e epdc_E60_V110.fw - Default waveform for the 6.0 inch V110 E Ink panel.

e epdc_E60_V220.fw - Default waveform for the 6.0 inch V220 E Ink panel (supports
animation mode updates).

e epdc_E97_V110.fw - Default waveform for the 9.7 inch V110 E Ink panel.

* epdc_E060SCM.fw - Default waveform for the 6.0 inch Pearl E Ink panel (supports
animation mode updates).

e epdc_EDO060XH2C1.fw - Default waveform for the 6.0 inch E Ink panel (No Reagl/-
D Support by default. For Reagl/-D support, contact NXP support.)

The EPDC driver attempts to load a waveform file with the name
"epdc_[panel_name].fw" under the directory /lib/firmware/imx/epdc in rootfs, where
panel_name refers to the string specified in the fb_videomode name field. This
panel_name information should be provided to the EPDC driver through the kernel
command line parameters described in the preceding chapter. For example, to load the
epdc_EO060SCM.fw default firmware file for a Pearl panel, set the EPDC kernel
command line paratmeter to the following:

video=mxcepdcfb:E060SCM, bpp=16

6.4.5.8 Using a Custom Waveform File

To ensure the optimal E Ink display quality, use a waveform file specific to E Ink panel
being used. The raw waveform file type (.wbf) requires conversion to a format that can
be understood and read by the EPDC. This conversion script is not included as part of the
BSP. Therefore, contact NXP to acquire this conversion script.

Once the waveform conversion script has been run on the raw waveform file, the
converted waveform file should be renamed so that the EPDC driver can find it and load
it. The driver is going to search for a waveform file with the name
"epdc_[panel_name].fw" under the directory /lib/firmware/imx/epdc in rootfs, where

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
224 NXP Semiconductors

L __4
Chapter 6 Video
panel_name refers to the string specified in the tb_videomode name field. For example, if

the panel is named "E60_ABCD", then the converted waveform file should be named
epdc_E60_ABCD.fw.

NOTE
If the EPDC driver searches for a firmware waveform file that
matches the names of one of the default waveform files (see
preceding chapter), it will choose the default firmware files that
are built into the BSP over any firmware file that has been
added in the firmware search path. Therefore, if you leave the
BSP so that it uses the default firmware files, make sure to use
a panel name other than those associated with the default
firmware files, as those default waveform files will be preferred
and selected over a new waveform file placed in the firmware
search path.

6.4.5.9 EPDC Panel Initialization

The framebuffer driver will not typically (see note below for exceptions) go through any
hardware initialization steps when the framebuffer driver module is loaded. Instead, a
subsequent user mode call must be made to request that the driver initialize itself for a
specific EPD panel. To initialize the EPDC hardware and E Ink panel, an
FBIOPUT_VSCREENINFO ioctl call must be made, with the xres and yres fields of the
fb_var_screeninfo parameter set to match the X and Y resolution of a supported E Ink
panel type. To ensure that the EPDC driver receives the initialization request, the activate
field of the fb_var_screeninfo parameter should be set to FB_ACTIVATE_FORCE.

NOTE
The exception is when the FB Console driver is included in the
kernel. When the EPDC driver registers the framebuffer device,
the FB Console driver will subsequently make an
FBIOPUT_ VSCREENINFO ioctl call. This will in turn
initialize the EPDC panel.

6.4.5.10 Grayscale Framebuffer Selection

The EPDC framebuffer driver supports the use of 8-bit grayscale (Y8) and 8-bit inverted
grayscale (Y8 inverted) pixel formats for the framebuffer (in addition to the more
common RGB565 pixel format). In order to configure the framebuffer format as 8-bit
grayscale, the application would call the FBIOPUT_VSCREENINFO framebuffer ioctl.
This ioctl takes an fb_var_screeninfo pointer as a parameter. This parameter specifies the

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 225

Display Interfaces

attributes of the framebuffer and allows the application to request changes to the
framebuffer format. There are two key members of the fb_var_screeninfo parameter that
must be set in order to request a change to 8-bit grayscale format: bits_per_pixel and
grayscale. bits_per_pixel must be set to 8 and grayscale must be set to one of the 2 valid
grayscale format values: GRAYSCALE_8BIT or GRAYSCALE_8BIT_INVERTED.

The following code snippet demonstrates a request to change the framebuffer to use the
Y8 pixel format:

fb_screen info screen info;

screen_info.bits per pixel = 8;

screen_info.grayscale = GRAYSCALE 8BIT;

retval = ioctl(fd_fb0, FBIOPUT VSCREENINFO, &screen info);

6.4.5.11 Software Operation

The EPDC Frame Buffer is accessible from user space and from kernel space. A single
set of functions describes the EPDC Frame Buffer driver extension. There are two modes
for accessing these functions with user space using the IOCTL interface and kernel space
using funcions directly. Each IOCTL and function combination is described next.

MXCFB_SET_WAVEFORM_MODES / mxc_epdc_fb_set_waveform_modes()
Description:

Defines a mapping for common waveform modes.

Parameters:

mxcfb_waveform_modes *modes

Pointer to a structure containing the waveform mode values for common waveform
modes. These values must be configured in order for automatic waveform mode selection
to function properly.

MXCFB_SET_TEMPERATURE / mxc_epdc_fb_set_temperature
Description:

Set the temperature to be used by the EPDC driver in subsequent panel updates.
Parameters:

Int32_t temperature

Temperature value, in degrees Celsius. Note that this temperature setting may be
overridden by setting the temperature value parameter to anything other than
TEMP_USE_AMBIENT when using the MXCFB_SEND_UPDATE ioctl.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
226 NXP Semiconductors

4
Chapter 6 Video

MXCFB_SET_AUTO_UPDATE_MODE / mxc_epdc_fb_set_auto_update
Description:

Select between automatic and region update mode.

Parameters:

_u32 mode

In region update mode, updates must be submitted via the MXCFB_SEND_UPDATE
IOCTL.

In automatic mode, updates are generated automatically by the driver by detecting pages
in frame buffer memory region that have been modified.

MXCFB_SET_UPDATE_SCHEME / mxc_epdc_fb_set_upd_scheme
Description:

Select a scheme that dictates how the flow of updates within the driver.
Parameters:

_ u32 scheme

Select of the following updates schemes:

UPDATE_SCHEME_SNAPSHOT - In the Snapshot update scheme, the contents of the
framebuffer are immediately processed and stored in a driver-internal memory buffer. By
the time the call to MXCFB_SEND_UPDATE has completed, the framebuffer region is
free and can be modified without affecting the integrity of the last update. If the update
frame submission is delayed due to other pending updates, the original buffer contents
will be displayed when the update is finally submitted to the EPDC hardware. If the
update results in a collision, the original update contents will be resubmitted when the
collision has cleared.

UPDATE_SCHEME_QUEUE - The Queue update scheme uses a work queue to
asynchronously handle the processing and submission of all updates. When an update is
submitted via MXCFB_SEND_UPDATE, the update is added to the queue and then
processed in order as EPDC hardware resources become available. As a result, the
framebuffer contents processed and updated are not guaranteed to reflect what was
present in the framebuffer when the update was sent to the driver.

UPDATE_SCHEME_QUEUE_AND_MERGE - The Queue and Merge scheme uses the
queueing concept from the Queue scheme, but adds a merging step. This means that,
before an update is processed in the work queue, it is first compared with other pending
updates. If any update matches the mode and flags of the current update and also overlaps

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 227

Display Interfaces

the update region of the current update, then that update will be merged with the current
update. After attempting to merge all pending updates, the final merged update will be
processed and submitted.

MXCFB_SEND_UPDATE / mxc_epdc_fb_send_update
Description:

Request a region of the frame buffer be updated to the display.
Parameters:

mxcfb_update_data *upd_data

Pointer to a structure defining the region of the frame buffer, waveform mode, and
collision mode for the current update. This structure also includes a flags field to select
from one of the following update options:

EPDC_FLAG_ENABLE_INVERSION - Enables inversion of all pixels in the update
region.

EPDC_FLAG_FORCE_MONOCHROME - Enables full black/white posterization of all
pixels in the update region.

EPDC_FLAG_USE_ALT_BUFFER - Enables updating from an alternate (non-
framebuffer) memory buffer.

If enabled, the final upd_data parameter includes detailed configuration information for
the alternate memory buffer.

MXCFB_WAIT_FOR_UPDATE_COMPLETE /
mxc_epdc_fb_wait_update_complete

Description:

Block and wait for a previous update request to complete.
Parameters:

mxfb_update_marker_data marker_data

The update_marker value used to identify a particular update (passed as a parameter in
MXCFB_SEND_UPDATE IOCTL call) should be re-used here to wait for the update to
complete. If the update was a collision test update, the collision_test variable will return
the result indicating whether a collision occurred.

MXCFB_SET_PWRDOWN_DELAY / mxc_epdc_fb_set_pwrdown_delay

Description:

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
228 NXP Semiconductors

4
Chapter 6 Video

Set the delay between the completion of all updates in the driver and when the driver
should power down the EPDC and the E Ink display power supplies.

Parameters:
int32_t delay

Input delay value in milliseconds. To disable EPDC power down altogether, use
FB_POWERDOWN_DISABLE (defined below).

MXCFB_GET_PWRDOWN_DELAY / mxc_epdc_fb_get_pwrdown_delay
Description:

Retrieve the driver's current power down delay value.

Parameters:

int32_t delay

Output delay value in milliseconds.

6.4.5.12 Structures and Defines

#define GRAYSCALE_ 8BIT 0x1
#define GRAYSCALE 8BIT INVERTED 0x2
#define AUTO UPDATE_MODE_REGION_MODE 0
#define AUTO UPDATE MODE AUTOMATIC MODE 1
#define UPDATE SCHEME_SNAPSHOT 0
#define UPDATE SCHEME QUEUE 1
#define UPDATE SCHEME QUEUE AND MERGE 2
#define UPDATE MODE_PARTIAL 0x0
#define UPDATE MODE FULL 0x1
#define WAVEFORM MODE_AUTO 257
#define TEMP_USE_ AMBIENT 0x1000
#define EPDC_FLAG_ENABLE_ INVERSION 0x01
#define EPDC_FLAG_FORCE_MONOCHROME 0x02
#define EPDC_FLAG USE ALT BUFFER 0x100
#define EPDC_FLAG TEST COLLISION 0%200
#define FB_ POWERDOWN DISABLE -1

struct mxcfb rect
__u32 left; /* Starting X coordinate for update region */
__u32 top; /* Starting Y coordinate for update region */
__u32 width; /* Width of update region */
__u32 height; /* Height of update region */

Vi

struct mxcfb waveform modes {
int mode_init; /* INIT waveform mode */

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 229

Display Interfaces

int mode_du; /* DU waveform mode */

int mode gc4; /* GC4 waveform mode */
int mode gc8; /* GC8 waveform mode */
int mode gclé6; /* GCl6 waveform mode */
int mode_gc32; /* GC32 waveform mode */

Vi

struct mxcfb alt buffer data {
__u32 phys _addr; /* physical address of alternate image buffer */
__u32 width; /* width of entire buffer */
__u32 height; /* height of entire buffer */
struct mxcfb_rect alt update region; /* region within buffer to update */

Vi

struct mxcfb update data

struct mxcfb_rect update region; /* Rectangular update region bounds */

__u32 waveform mode; /* Waveform mode for update */

__u32 update mode; /* Update mode selection (partial/full) */

__u32 update marker; /* Marker used when waiting for completion */

int temp; /* Temperature in Celsius */

uint flags; /* Select options for the current update */

struct mxcfb_alt buffer data alt buffer data; /* Alternate buffer data */
bi

struct mxcfb update marker data { _ u32 update marker; _ u32 collision test; };

6.4.5.13 Source Code Structure

The table below lists the source files associated with the EPDC driver and headers for
programming access.

Table 6-15. EPDC Source

File Description
drivers/video/fbev/mxc/mxc_epdc_v2_fb.c EPDC Generation-1l V2 frame buffer driver for i.MX 7Dual
drivers/video/fbdev/mxc/epdc_v2_regs.h EPDC Generation-1l Register definition
drivers/video/fbdev/mxc/mxc_epdc_fb.c Generation-l EPDC frame buffer driver for i.MX 6Sololite,

6SLL, and 6DualLite
drivers/video/fbdev/mxc/epdc_regs.h EPDC Generation-IRegister definitions
drivers/video/fbdev/mxc/epdc_v2_regs.h Generation-Il EPDC v2 register definitions
include/linux/uapi/mxcfb.h Header file for the EPDC IOCTLs and frame buffer driver
include/linux/mxcfb_epdc.h Header file for direct kernel access to the EPDC API
extension

6.4.5.14 Menu Configuration Options
The following Linux kernel configuration options are provided for the EPDC module:

* CONFIG_FB_MXC_EINK_PANEL - support for the Electrophoretic Display
Controller. In menuconfig, select Device Drivers > Graphics Support > E-Ink Panel
Framebuffer

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
230 NXP Semiconductors

L __4
Chapter 6 Video
* CONFIG_FB_MXC_EINK_V2_PANEL - support for v2 Electrophoretic Display
Controller. In menuconfig, this option is available with Device Drivers > Graphics
support > E-Ink Panel Framebuffer based on EPDC V2
* CONFIG_FB - includes frame buffer support and is enabled by default. In
menuconfig select Device Drivers > Graphics support > Support for frame buffer
devices
* CONFIG_MXC_PXP_V2 - support for the PxP and required by the EPDC driver for
processing (color space conversion, rotation, auto-waveform selection) framebuffer
update regions. In menuconfig select Device Drivers > DMA Engine support > MXC
PxP support
* CONFIG_MXC_PXP_V3 - support for next level PxP and required by Generation-II
EPDC driver for processing framebuffer update regions. In menuconfig select Device
Drivers > DMA Engine support > MXC PxP V3 support

6.4.6 High-Definition Multimedia Interface (HDMI) and Display
Port (DP) Overview

6.4.6.1 Introduction

High-Definition Multimedia Interface (HDMI) and Display Port (DP) present high
defintion video. The HDMI module is supported on some 1.MX chips either with on chip

solutions or external solutions. The Display Port DP provides an embedded Display Port
(eDP) Transmitter including HDMI Tranmit (TX) Controller and PHY.

The following are compliance versions.

e HDMI 1.4 and 2.0
* DVI 1.0

«DP1.3

*eDP 14

« HDCP 1.4/2.2

Each SoC HDMI solution is presented in separate chapters. Display Port on 1.MX uses
the same IP block but has a different specification. The following table lists which SOC
support HDMI and Display Port and its supported version.

Table 6-16. HDMI Support

SoC Features
i.MX 6QuadPlus/Quad/Dual HDMI 1.4 on chip
i.MX 7ULP HDMI 1.4 external chip

Table continues on the next page...

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 231

Display Interfaces

Table 6-16. HDMI Support (continued)

SoC Features
i.MX 8M Quad HDMI 2.0/Display Port 1.3 on chip
i.MX 8QuadMax HDMI 2.0/Display Port 1.3 on chip

HDMI Audio data source comes from S/PDIF TX.

6.4.6.2 Software Operation

The HDMI driver is divided into sub-components based on its two primary purposes:
providing video and audio to an HDMI sink device.

The video display driver component and audio driver component require an additional
core driver component to manage common HDMI resources, including the HDMI
registers, clocks, and IRQ.

6.4.6.3 Core

The onchip HDMI i.MX solutions support a core driver that manages resources that must
be shared between the HDMI audio and video drivers. The HDMI audio and video
drivers depend on the HDMI core driver, and the HDMI core driver should always be
loaded and initialized before audio and video. The core driver serves the following
functions:

* Map the HDMI register region and provide APIs for reading and writing to HDMI
registers.

* Perform one-time initialization of key HDMI registers.

e Initialize the HDMI IRQ and provide shared APIs for enabling and disabling the
IRQ.

* Provide a means for sharing information between the audio and video drivers (e.g.,
the HDMI pixel clock).

* Provide a means for synchronization between HDMI video and HDMI audio while
blank/unblank, plug in/plug out events happen. HDMI audio cannot start work while
HDMI cable is in the state of plug out or HDMI is in state of blank. Every time
HDMI audio starts a playback, HDMI audio driver should register its PCM into core
driver and unregister PCM when the playback is finished. Once HDMI video blank
or cable plug out event happens, core driver would pause HDMI audio DMA
controller if its PCM is registered. When HDMI is unblanked or cable plug in event
happens, core driver would firstly check if the cable is in the state of plug in, the

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
232 NXP Semiconductors

4
Chapter 6 Video

video state is unblank and the PCM is registered. If items listed above are all yes,
core driver would restart HDMI audio DMA.

6.4.6.4 Display Device Registration and Initialization

The following sequence of software activities occurs in the OS boot flow to connect the
HDMI display device to the 1.MX Frame Buffer driver through the MXC Display Driver
system:

1. During the HDMI video driver initialization, mxc_dispdarv_register () is called to
register the HDMI module as a display device and to set the mxc_ndmi_disp_init ()
function as the display device init callback.

2. When the 1. MX Frame Buffer driver is initialized, mxc_aispdrv_init () 18 called. This
results in an init call to all registered display devices.

3. The mxc_nami_disp_init () callback is executed. The HDMI driver receives a structure
from the 1. MX Frame Buffer driver containing frame buffer information (fbi). The
HDMI driver registers itself to receive notifications for FB driver events. Finally, the
HDMI driver completes initialization by configuring the HDMI to receive a hotplug
mterrupt.

NOTE
All display device drivers must be initialized before the 1.MX
Frame Buffer driver in order for all display devices to be
registered as MXC Display Driver devices.

6.4.6.5 Hotplug Handling and Video Mode Changes

Once the connection between the 1.MX frame buffer driver and the HDMI has been
established through the MXC Display Driver interface, the HDMI video driver waits for a
hotplug interrupt indicating that a valid HDMI sink device is connected and ready to
receive HDMI video data. Subsequent communications between the HDMI and 1.MX
Frame Buffer Driver are conducted through the Linux Frame Buffer APIs. The following
list demonstrates the software flow to recognize a HDMI sink device and configure the
ELCDIF FB driver to drive video output:

1. The HDMI video driver receives a hotplug interrupt and reads the EDID from the
HDMI sink device constructing a list of video modes from the retrieved EDID
information. Using either the video mode string from the Linux kernel command line
(for the initial connection) or the most recent video mode (for a later HDMI cable
connection), the HDMI driver selects a video mode from the mode list that is the
closest match.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 233

A
Display Interfaces

2. The HDMI video driver calls tb_set_var() to change the video mode in the .MX
Frame Buffer driver. The 1.MX Frame Buffer driver completes its reconfiguration for
the new mode.

3. As aresult of calling fb_set_var(), a Frame Buffer notification is sent back to the
HDMI driver indicating that an FB_EVENT_MODE_CHANGE has occurred. The
HDMI driver configures the HDMI hardware for the new video mode.

4. Finally, the HDMI module is enabled to generate output to the HDMI sink device.

The 1.MX Frame Buffer Driver will align to the display interface specific to each SoC as
noted for each SoC HDMI chapter.

6.4.6.6 Audio

Since the HDMI Tx audio driver uses the ALSA SoC framework, it is broken into several
files as listed in the source code structure sections of each hdmi chapter. Most of the code
is in the platform DMA driver (sound/soc/imx/imx-hdmi-dma.c) and the CODEC driver
(sound/soc/codecs/mxc_hdmi.c). The machine driver (sound/soc/imx/imx-hdmi.c)
allocates the SoC audio device and links all the SoC components together. The DAI
driver (sound/soc/imx/imx-hdmi-dai.c) is a SoC requirements. It is primarily used to get
the platform data.

The HDMI CODEC driver does most of the initialization of the HDMI audio sampler.
Note that the HDMI Tx block only implements the AHB DMA audio and not the other
audio interfaces (SSI, S/PDIF, etc). The other main function of the HDMI CODEC driver
1s to set up a struct of the IEC header information which needs to go into the audio
stream. Since the struct is hooked into the ALSA layer, IEC settings will be accessible in
userspace using the ‘iecset’ utility.

The platform DMA driver handles the HDMI Tx block DMA engine. Note that HDMI
audio uses the HDMI block DMA as well as SDMA. SDMA is used to implement the
multi-buffer mechanism. Since the HDMI Tx block does not automatically merge the
IEC audio header information into the audio stream, the plattorm DMA driver does the
merging by using hdmi_dma_copy() (for no memory map use) or
hdmi_dma_mmap_copy() (for memory map mode use) function before sending the
buffers out. Note that, due to IEC audio header adding operation, it is possible that the
user space application may not be able to get enough CPU periods to feed the data into
HDMI audio driver in time, especially when system loading is high. In this case, some
spark noise will be heard. In a different audio framework (ALSA LIB, or PULSE
AUDIO), a different log about this noise may be printed. For example, in ALSA LIB,
logs like "underrung!!! at least * ms is lost" are printed.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
234 NXP Semiconductors

L __4

Chapter 6 Video
HDMI audio playback depends on HDMI pixel clock. Therefore, while in the state of
HDMI blank and cable plug out, HDMI audio is either stopped or can't be played. See
detailed information in software_operation_core.

Note that, because HDMI audio driver needs to add the IEC header, the driver needs to
know the amount of data already written into the HDMI audio driver. If application is not
able to decipher the amount of data written, for example DMIX plugin in ALSA LIB, the
HDMI audio driver is not able to work properly. There will be no sound heard.

The HDMI audio supports the features below:

 Playback sample rate
» 32k, 44.1k, 48k, 88.2k, 96k, 176.4k, 192k
* HDMI sink capability
 Playback Channels:
©2,4,6,8
* HDMI sink capability
 Playback audio formats:
« SNDRV_PCM_FMTBIT_S16_LE

6.4.6.7 i.MX 8 Display Port

6.4.6.7.1 Software Operation

The HDMI driver is divided into sub-components based on its two primary purposes:
providing HDP DRM driver and Core API driver.

The HDP DRM driver require a Core API driver component to the configurated HDMI
FW.

6.4.6.7.2 Source Code Structure

The HDMI driver has three software components: HDP core API driver, HDP display
driver, and HDMI audio driver.

The Core API source code is available in the drivers/mxc/hdp directory.

Table 6-17. HDP Core API Driver File List

Files Description

drivers/mxc/hdp/API_HDCP.c HDMI Display Port Driver
drivers/mxc/hdp/API_HDMITX.c
drivers/mxc/hdp/API_HDMIRX.c

drivers/mxc/hdp/API_Infoframe.c
drivers/mxc/hdp/API_AVI.c

Table continues on the next page...

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 235

Display Interfaces
Table 6-17. HDP Core API Driver File List (continued)

Files Description

¢ drivers/mxc/hdp/API_General.c
e drivers/mxc/hdp/API_DPTX.c

e drivers/mxc/hdp/API_HDMI_Audio.c HDMI Display Port Audio Driver
e drivers/mxc/hdp/API_HDMI_RX_Audio.c

e drivers/gpu/drm/imx/hdp/API_AFE_t28hpc_hdmitx.c HDMI DRM driver
* drivers/gpu/drm/imx/hdp/
API_AFE_ss28fdsoi_kiran_hdmitx.c
drivers/gpu/drm/imx/hdp/imx-hdp-audio.c
drivers/gpu/drm/imx/hdp/imx-hdp.c
drivers/gpu/drm/imx/hdp/imx-hdmi.c
drivers/gpu/drm/imx/hdp/t28hpc_hdmitx_table.c
drivers/gpu/drm/imx/hdp/ss28fdsoi_hdmitx_table.c
drivers/gpu/drm/imx/hdp/imx-arc.c

drivers/mxc/hdp-cec/imx-hdp-cec.c HDMI Display port CEC authentiation

sound/soc/fsl/fsl_hdmi.c HDMI Sound Driver
sound/soc/fsl/imx-hdmi.c
sound/soc/fsl/hdmi_pcm.S
sound/soc/fsl/imx-hdmi-dma.c
sound/soc/fsl/imx-cdnhdmi.c

6.4.6.7.3 Menu Configuration Options

There are three main Linux kernel configuration options used to select and include HDMI
driver functionality in the Linux OS image.

There are four main Linux kernel configuration options used to select and include HDMI
driver functionality in the Linux OS image.

The CONFIG_MXS8_HDP option provides support for the HDP Core API driver, and can
be selected in menuconfig at the following menu location:

Device Drivers > MXC support drivers > IMX8 HDP API

The CONFIG_DRM_IMX_HDP option provides support for the HDP DRM video
driver, and can be selected in menuconfig at the following menu location:

Device Drivers > Graphics support > IMX8 HD Display Controller

The CONFIG_IMX_HDP_CEC option provides support for the HDMI CEC driver, and
can be selected in menuconfig at the following menu location:

Device Drivers > Graphics support > IMX8 HD Display Controller > Enable IMX HDP
CEC support

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
236 NXP Semiconductors

4

Chapter 6 Video
The CONFIG_SND_SOC_IMX_CDNHDMI option provides support for HDMI audio
through the ALSA/SoC subsystem, and can be found in menuconfig at the following
location:

Device Drivers > Sound card support > Advanced Linux Sound Architecture > ALSA for
SoC audio support > SoC Audio support for CDN - HDMI

6.4.6.8 i.MX 6 On Chip High-Definition Multimedia Interface (HDMI)

6.4.6.8.1 Introduction

The High-Definition Multimedia Interface (HDMI) driver supports the on-chip
DesignWare HDMI hardware module on the 1.MX 6QuadPlus, 6Quad and 6Dual SoC,
This driver provides the capability to transfer uncompressed video, audio, and data using
a single cable.

The HDMI driver is divided into four sub-components:

* Video display device driver that integrates with the Linux Frame Buffer API

 Audio driver that integrates with the ALSA/SoC sub-system

* CEC driver

* Multifunction device (MFD) driver which manages the shared software and hardware
resources of the HDMI driver.

The HDMI driver supports the following features:

e Integration with the MXC Display Device framework (for managing display device
connections with the IPU(s))

* HDMI video output up to 1080p60 resolution

* Support for reading EDID information from an HDMI sink device

* Hotplug detection

e Support CEC

* Automated clock management to minimize power consumption

* Support for system suspend/resume

* HDMI audio playback (2, 4, 6, or 8 channels, 16-bit, for sample rates 32-KHz to 192-
KHz)

* [EC audio header information exposed through ALSA using ‘iecset’ utility

The HDMI module receives video data from the Image Processing Unit (IPU), audio data
from the external memory interface, and control data from the CPU, as shown in the
figure below. Output data is transmitted via three Transition-Minimized Differential
Signaling (TMDS) channels to an HDMI sink device external to the SoC. The HDMI also
carries a VESA Data Display Channel (DDC). The DDC is an I2C interface which allows

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 237

Display Interfaces

the HDMI source to query the HDMI sink for Extended Displa-y Identification Data
(EDID). A CEC channel provides optional high-level control functions between the
source and sink device.

w HDMI
Image Parallel I/F = X
Processing > 5
Unit &
TMDS _DATA
External AHB master % H_?;;M 7 >
Memory (e ° > Bl TMDS_CLK o
Interface =
< HDMI
T
Controller CEC -
‘. DDG(I’C)
AHB Slave 2 2
» 5
=
<]
5]
J
4]
m
2
» —P & HDCP
Clocks —]
> z A A
Inferrupts
Y
HDCP HDCP
Keys Revocation
Storage RAM

Figure 6-3. HDMI HW Integration

The video input to the HDMI is configurable and may come from either of the two IPU
modules in the 1.MX 6 serials and from either of the two Display Interface (DI) ports of
the IPU, DIO or DII. This configuration is controlled through the IOMUX module using
the HDMI_MUX_CTRL register field. See the figure below for an illustration of this
interconnection.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
238 NXP Semiconductors

Chapter 6 Video

Memory

IPU #1 IPU #2

Do DN DIO DI

——hs

HDMI MUX [e——HDMI_MUX_CTRL

= Y

Parallel LCD,
LVDS, MIPI DPI, HDOMI
etc.
: \
Y

HDMI Out

Figure 6-4. IPU-HDMI Hardware Interconnection

6.4.6.8.2 Software Operation

The HDMI driver is divided into sub-components based on its two primary purposes:
providing video and audio to an HDMI sink device.

The video display driver component and audio driver component require an additional
core driver component to manage common HDMI resources, including the HDMI
registers, clocks, and IRQ. The following diagram illustrates both the interconnection
between the various HDMI sub-drivers and the interconnection between the HDMI video
driver and the Linux Frame Buffer subsystem.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 239

Display Interfaces

MX 6x Framebuffer and Display Device Software Architecture

[Registration/
Applications D Kernel Core Software unregistration requests
l] Freescale BSP Software from display device
Display device initialization
D Hardware trigger and capture of
Framebuffer Core display device settings

Display device initialization
7 {driven by trigger from IPL
FB driver)

FB notifications (blank,
l unblank, video mode change)
to HOMI driver

FB video mode change
requests from HOM| driver

Software
Hardware Y

Parallel LCD

IPU HDMI MIP| DPI devices LDB

Figure 6-5. HDMI Video SW Architecture

The 1.MX 6Dual/6Quad/6QuadPlus/6Solo/6DuallLite supports many different types of
display output devices (e.g., LVDS, LCD, HDMI and MIPI displays) connected to and
driven by the IPU modules. The MXC Display Driver API provides a system for
registering display devices and configuring how they should be connected to each of the
IPU DIs. The HDMI driver registers itself as a display device using this API in order to
receive the correct video input from the IPU.

6.4.6.8.3 CEC

HDMI CEC is a protocol that provides high-level control functions between all of the
various audiovisual products is a user’s environment. The HDMI CEC driver implements
software part of HDMI CEC low Level protocol. It includes getting Logical address,
CEC message sending and receiving, error handle, message re-transmitting, etc.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
240 NXP Semiconductors

Chapter 6 Video

Application

1123 uorung

P e

e T g
== 1 5 :
I 2 1 | E] §
TR I -
y o g ! g
R] .
CEC user space driver
e
=
I S
I : I
DB
|____I
CECkernel space driver

Figure 6-6. HDMI CEC SW Architecture

6.4.6.8.4 Source Code Structure

The HDMI source code is provided in the HDMI core driver, the HDMI display driver,
and the HDMI audio driver.

Table 6-18. HDMI Source

File Description
drivers/mfd/mxc-hdmi-core.c HDMI core driver implemention
include/linux/mfd/mxc-hdmi-core.h HDMI core driver header file
drivers/video/fbdev/mxc/mxc_hdmi.c HDMI display driver implemention
sound/soc/fsl/fs|_hdmi.c HDMI Audio SoC DAI driver implementation
sound/soc/fsl/imx-hdmi-dma.c HDMI Audio SoC platform DMA driver implementation
drivers/mxc/hdmi-cec/hdmi-cec.c HDMI CEC driver implemention. The HDMI CEC library files

are provided in imx-lib repo on codeaurraforum.
drivers/mxc/hdmi-cec/hdmi-cec.c HDMI CEC driver implemention. The HDMI CEC library files
are provided in imx-lib on code aurora forum.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 241

https://source.codeaurora.org/external/imx/imx-lib/tree/hdmi-cec

Display Interfaces

6.4.6.8.5 Menu Configuration Options

There are three main Linux kernel configuration options used to select and include HDMI
driver functionality in the Linux OS image.

HDMI video support is dependent on support for the Synchronous Panel Framebuffer and
also on the inclusion of IPUv3 support.

CONFIG_FB_MXC_HDMI provides support for the HDMI video driver and can be
selected with Device Drivers > Graphics support > Support for frame buffer devices >
MXC HDMI driver support

CONFIG_SND_SOC_IMX_HDMI provides support for HDMI audio through the
ALSA/SoC subsystem, and can be selected with Device Drivers > Sound card support >
Advanced Linux Sound Architecture > ALSA for SoC audio support > SoC Audio
support for IMX - HDMI

Selecting either of the previous two configuration options will cause the MXC HDMI
Core configuration option, CONFIG_MFD_MXC_HDM]I, to be selected. This option can
be selected wtih Device Drivers > Multifunction device drivers > MXC HDMI Core

CONFIG_MXC_HDMI_CEC option provides support for the HDMI CEC driver, and
can be selected with Device Drivers > MXC support drivers > MXC HDMI CEC
(Consumer Electronic Control) support

6.4.6.9 External HDMI

6.4.6.9.1 Introduction

The High Definition Multimedia Interface (HDMI) driver supports the external Si19022
HDMI hardware module providing capability to transfer uncompressed video, audio, and
data using a single cable.

The HDMI driver is divided into two sub-components: a video display device driver that
integrates with the Linux Frame Buffer API and an S/PDIF audio driver that transfers S/
PDIF audio data to Si19022 HDMI hardware module.

The HDMI driver is only for demo application and supports the following features:

* HDMI video output supports 1080p60 and 720p60 resolutions.

* Support for reading EDID information from an HDMI sink device for video.
* Hotplug detection

 HDMI audio playback (2 channels, 16/24 bit, 44.1 KHz sample rate)

External HDMI is supported on i.MX 6 7ULP SoC.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
242 NXP Semiconductors

Chapter 6 Video

Output data is transmitted via three Transition-Minimized Differential Signaling (TMDS)
channels to an HDMI sink device external to the SoC. Additionally, the HDMI carries a
VESA Data Display Channel (DDC). DDC is an I2C interface which allows the HDMI
source to query the HDMI sink for Extended Display Identification Data (EDID). A CEC
channel provides optional high-level control functions between the source and sink
devices.

6.4.6.9.2 Software Operation

The HDMI driver is divided into sub-components based on its two primary purposes:
providing video and audio to an HDMI sink device.

The audio output depends on video display.

6.4.6.9.3 Source Code Structure

The source code for the HDMI driver is divided into the HDMI display driver and HDMI
audio driver.

The HDMI display driver source is available in drivers/video/fbdev/mxc. The HDMI
Audio driver source is in sound/soc/fsl

Table 6-19. HDMI Source

File Description
drivers/video/fbdev/mxc/mxsfb_sii902x.c HDMI display driver implementation.
sound/soc/fsl/imx-spdif.c S/PDIF Audio SoC Machine driver implementation.
sound/soc/fsl/fsl_spdif.c S/PDIF Audio SoC DAI driver implementation.

6.4.6.9.4 Menu Configuration Options

There are two main Linux kernel configuration options used to select and include HDMI
driver functionality in the Linux OS image.

The following configuration options are required to enable HDMI support.

The CONFIG_FB_MXS_SII902X option provides support for the S11902x HDMI video
driver and can be selected with Device Drivers > Support for frame buffer devices > Si
Image S119022 DVI/HDMI Interface Chip.

HDMI video on 1.MX 6Sololite is dependent on MXC ELCDIF Framebuffer.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 243

A ————
Video for Linux 2 (V4L2)

The CONFIG_SND_SOC_IMX_SII902X option provides support for the HDMI Audio
driver and can be selected with Device Drivers > Sound card support > ALSA for SoC
audio support > ommon SoC Audio options for Freescale CPUs: > SoC Audio support
for 1.MX boards with s11902x

6.5 Video for Linux 2 (V4L2)

6.5.1 Introduction

The Video for Linux Two (V4L2) driver is plug-in for the V4L2 framework that enables
support for camera capture and display.

Some 1.MX SoC support V4L2 based on the associated images processing units and
capture hardware.

For more information on V4L2 go to the API specification for Linux Video for Linux 2
available at Linux Media Subsystem Documentation.

The V4L2 APIs enable camera and display controls but .MX 8 only supports V4L2
capture and not display using the DPU instead for display control. 1.MX 6 and 1.MX 7 use
both capture and display V4L2.

6.5.1.1 i.MX 8 DPU V4L2

The Video for Linux Two (V4L2) driver on 1.MX 8 is plug-in for the V4L2 framework
that enables support for camera capture only with the Display Processing Unit (DPU).

The V4L2 DPU camera driver supports only basic capture. The V412 capture device takes
incoming video images, either from a camera or a TV decoder, and captures the images
to memory. The features supported by the V4L2 driver are as follows:

* RGB 24-bit and YUV 4:2:2 interleaved formats for capture interface
* Plug-in of different sensor drivers
» Streaming (queued) input buffer

* Programmable input and output pixel format and size
* RGB 16, 24, and 32-bit, YUV 4:2:0, and 4:2:2 interleaved input formats

The command modprobe mxc_v412_capture must be run before using V4L2 camera
functions.

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
244 NXP Semiconductors

http://linuxtv.org/downloads/v4l-dvb-apis

4
Chapter 6 Video

6.5.1.2 PxP V4L2
The Video for Linux Two (V4L2) drivers for PxP are used for dsiplay output only.

6.5.1.3 i.MX 6 with IPU V4L2

The Video for Linux Two (V4L2) drivers are plug-ins to the V4L2 framework that enable
support for camera and preprocessing functions, as well as video and post-processing
functions. The V4L2 camera driver implements support for all camera-related functions.
The V412 capture device takes incoming video images, either from a camera or a stream,
and manipulates them. The output device takes video and manipulates it, then sends it to
a display or similar device.

The features supported by the IPU V4L2 driver are the follows:

* Direct preview and output to SDC foreground overlay plane (with synchronized to
LCD refresh)

* Direct preview to graphics frame buffer (without synchronized to LCD refresh)

* Color keying or alpha blending of frame buffer and overlay planes

e Streaming (queued) capture from IPU encoding channel

* Direct (raw Bayer) still capture (sensor dependent)

* Programmable pixel format, size, frame rate for preview and capture

* Programmable rotation and flipping using custom API

* RGB 16-bit, 24-bit, and 32-bit preview formats

* Raw Bayer (still only, sensor dependent), RGB 16, 24, and 32-bit, YUV 4:2:0 and
4:2:2 planar, YUV 4:2:2 interleaved, and JPEG formats for capture

» Control of sensor properties including exposure, white-balance, brightness, contrast,
and so on

* Plug-in of different sensor drivers

* Link post-processing resize and CSC, rotation, and display IPU channels

» Streaming (queued) input buffer

* Double buffering of overlay and intermediate (rotation) buffers

* Configurable 3+ buffering of input buffers

e Programmable input and output pixel format and size

* Programmable scaling and frame rate

* RGB 16, 24, and 32-bit, YUV 4:2:0 and 4:2:2 planar, and YUV 4:2:2 interleaved
input formats

e TV output

The command modprobe mxc_v412_capture must be run before V4L2 functions.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 245

A ————
Video for Linux 2 (V4L2)

6.5.1.4 IPU V4L2 Capture Device

The V4L2 capture device includes two interfaces:

 Capture interface-uses IPU pre-processing ENC channels to record the YCrCb video
stream

* Overlay interface-uses the IPU device driver to display the preview video to the SDC
foreground and background panel.

V4L.2 capture support can be selected during kernel configuration. The driver includes
two layers. The top layer is the common Video for Linux driver, which contains chain
buffer management, stream API and other ioctl interfaces. The files for this device are
located in

drivers/media/platform/mxc/capture/

The V4L2 capture device driver is in the mxc_v412_capture.c file. The low level overlay
driver is in the ipu_fg_overlay_sdc.c, ipu_bg_overlay_sdc.c

This code (ipu_prp_enc.c) interfaces with the IPU ENC hardware, and ipu_still.c
interfaces with the IPU CSI hardware. Sensor frame rate control is handled by
VIDIOC_S_PARM ioctl. Before the frame rate is set, the sensor turns on the AE and
AWB turn on. The frame rate may change depending on light sensor samples.

Drivers for specific cameras can be found in

drivers/media/platform/mxc/capture/

6.5.2 V4L2 Capture Device

The V4L2 capture device includes two interfaces:

» Capture interface-uses .MX processing engine to record the YCrCb video stream
* Overlay interface-uses 1.MX processing engine to display the preview video to the
SDC foreground and background panel.

The driver includes two layers. The top layer is the common Video for Linux driver,
which contains chain buffer management, stream API and other ioctl interfaces. The low
level layer is the 1.MX SoC implementation for the display engine associated with the
SoC detailed in each V412 SoC chapter.

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
246 NXP Semiconductors

4
Chapter 6 Video

6.5.2.1 VA4L2 Capture IOCTLs

Currently, the memory map stream API is supported. Supported V4L2 IOCTLs include
the following:

e VIDIOC_QUERYCAP
e VIDIOC_G_FMT

e VIDIOC_S_FMT

e VIDIOC_REQBUFS

e VIDIOC_QUERYBUF
* VIDIOC_QBUF

e VIDIOC_DQBUF

e VIDIOC_STREAMON
e VIDIOC_STREAMOFF
e VIDIOC_OVERLAY
e VIDIOC_G_FBUF

e VIDIOC_S_FBUF

e VIDIOC_G_CTRL

e VIDIOC_S_CTRL

e VIDIOC_CROPCAP

e VIDIOC_G_CROP

e VIDIOC_S_CROP

e VIDIOC_S_PARM

e VIDIOC_G_PARM

e VIDIOC_ENUMSTD
e VIDIOC_G_STD

e VIDIOC_S_STD

e VIDIOC_ENUMOUTPUT
e VIDIOC_G_OUTPUT
e VIDIOC_S_OUTPUT

V4L2 control code has been extended to provide support for rotation. The ID is
V4L2_CID_PRIVATE_BASE. Supported values include:

* 0-Normal operation

* 1-Vertical flip

» 2-Horizontal flip

 3-180° rotation

* 4-90° rotation clockwise

* 5-90° rotation clockwise and vertical flip

* 6-90° rotation clockwise and horizontal flip
 7-90° rotation counter-clockwise

The figure below shows a block diagram of V4L2 Capture API interaction.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 247

Video for Linux 2 (V4L2)

Application
User Space

Femel Space

Common Yideo for inus 2 Drver

Poallwait | mec_vwdl_camera_ops

iohain of buffers

I singnal the _
Setup the EBA of IDMA Polling function Stream On/Off, Open/Close
Channels acconding o the when frame
buter Queuad ready
ISF mxc_vdl cameara_ops

Lowwer level MXC Driver

Figure 6-7. Video4Linux2 Capture API Interaction

6.5.2.2 Use of the V4L2 Capture APIs

This section describes a sample V4L2 capture process. The application completes the
following steps:

1.
2.
3.

AN

Sets the capture pixel format and size by IOCTL VIDIOC_S_FMT.

Sets the control information by IOCTL VIDIOC_S_CTRL for rotation usage.
Requests a buffer using IOCTL VIDIOC_REQBUFS. The common V4L2 driver
creates a chain of buffers (currently the maximum number of frames is 3).
Memory maps the buffer to its user space.

Queues buffers using the IOCTL command VIDIOC_QBUF.

Starts the stream using the IOCTL VIDIOC_STREAMON. This IOCTL enables the
1.MX Processing Enginee tasks and the IDMA channels. When the processing is
completed for a frame, the driver switches to the buffer that is queued for the next
frame. The driver also signals the semaphore to indicate that a buffer is ready.
Takes the buffer from the queue using the IOCTL VIDIOC_DQBUF. This IOCTL
blocks until it has been signaled by the ISR driver.

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020

248

NXP Semiconductors

4
Chapter 6 Video
8. Stores the buffer to a YCrCb file.
9. Replaces the buffer in the queue of the V4L2 driver by executing VIDIOC_QBUF
again.

For the V412 still image capture process, the application completes the following steps:

1. Sets the capture pixel format and size by executing the [OCTL VIDIOC_S_FMT.
2. Reads one frame still image with YUV422.

FOr the V412 overlay support use case, the application completes the following steps:

1. Sets the overlay window by IOCTL VIDIOC_S_FMT.
2. Turns on overlay task by IOCTL VIDIOC_OVERLAY.
3. Turns off overlay task by IOCTL VIDIOC_OVERLAY.

6.5.3 V4L2 Output Device

The driver implements the standard V4L2 API for output devices. V4L2 output device
support can be selected during kernel configuration. The driver is available at

drivers/media/platform/mxc/output/mxc_vout.c

6.5.3.1 V4L2 Output IOCTLs

Currently, the memory map stream API is supported. Supported V4L.2 IOCTLs include
the following:

e VIDIOC_QUERYCAP
e VIDIOC_REQBUFS

e VIDIOC_G_FMT

e VIDIOC_S_FMT

e VIDIOC_QUERYBUF
e VIDIOC_QBUF

e VIDIOC_DQBUF

e VIDIOC_STREAMON
e VIDIOC_STREAMOFF
e VIDIOC_G_CTRL

e VIDIOC_S_CTRL

e VIDIOC_CROPCAP

e VIDIOC_G_CROP

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 249

A ————
Video for Linux 2 (V4L2)

* VIDIOC_S_CROP

* VIDIOC_ENUM_FMT

The V4L2 control code has been extended to provide support for de-interlace motion. For
this use, the ID is V4L2_CID_MXC_MOTION. Supported values include the following:

¢)-Medium motion
e 1-Low motion
» 2-High motion

6.5.3.2 Use of the V4L2 Output APIs

This section describes a sample V412 output process that uses the V4L2 output APIs.
The application completes the following steps:

1. Sets the input pixel format and size using IOCTL VIDIOC_S_FMT.

2. Sets the control information using IOCTL VIDIOC_S_CTRL, for rotation, de-
interlace motion(if needed).

Sets the output information using IOCTL VIDIOC_S_CROP.

Requests a buffer using [OCTL VIDIOC_REQBUFS. The common V4L.2 driver
creates a chain of buffers (not allocated yet).

Memory maps the buffer to its user space.

Executes the IOCTL VIDIOC_QUERYBUF to query buffers.

Passes the data that requires post-processing to the buffer.

Queues the buffer using the IOCTL command VIDIOC_QBUF.

Executes the IOCTL VIDIOC_DQBUF to dequeue buffers.

Starts the stream by executing IOCTL VIDIOC_STREAMON.

Stop the stream by excuting [OCTL VIDIOC_STREAMOFF.

W

SN S e R

o

6.5.4 Software Operatoins

6.5.4.1 Source Code Structure
The following table lists the source and header files associated with the V4L2 drivers.

These files are available in drivers/media/platform/mxc

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
250 NXP Semiconductors

4
Chapter 6 Video

Table 6-20. V4L2 Driver Files

File

Description

drivers/media/platform/mxc/output/mxc_vout.c

MX6 and MX7 V4L2 output device driver

drivers/media/platform/mxc/output/mxc_pxp_v4l2.c

V4L2 PxP output device driver

drivers/media/platform/mxc/output/mxc_pxp_v4i2.h

V4L2 PxP output device driver header

drivers/media/platform/mxc/capture/mxc_v4l2_capture.c

V4L2 capture device driver

drivers/media/platform/mxc/capture/mxc_v4l2_capture.h

Header file for V4L2 capture device driver

drivers/media/platform/mxc/capture/ipu_bg_overlay_sdc.c

IPU synchronous background driver

drivers/media/platform/mxc/capture/ipu_fg_overlay_sdc.c

IPU synchronous forground driver

drivers/media/platform/mxc/capture/ipu_prp_sw.h

IPU Pre-processing header

drivers/media/platform/mxc/capture/ipu_still.c

IPU Pre-processing still image capture driver

drivers/media/platform/mxc/capture/ipu_prp_vf_sdc_bg.c

IPU Pre-processing view finder (synchronous background)

drivers/media/platform/mxc/capture/ipu_prp_enc.c

IPU Pre-processing Encoder driver

drivers/media/platform/mxc/capture/ipu_csi_enc.c

IPU CSl interface driver

Drivers for V412 cameras can be found in divers/media/platform/mxc/capture.

Drivers for V4L2 output can be found in drivers/media/platform/mxc/output

6.5.4.2 Menu Configuration Options

The kernel configuration options are provided below.

Device Drivers > V4L platform devices > MXC Video For Linux Video Capture

Device Drivers > V4L platform devices > MXC Video For Linux Video Output

6.6 Video Analog-to-Digital Converter (VADC)

6.6.1 Introduction

The video analog-to-digital converter (VADC) consists of an analog video front end
(AFE), and a digital video decoder. The AFE accepts NTSC or PAL input from a device,

such as an analog camera.

The two parts are configured in the VADC driver. The video decoder outputs the

YUV444-formatted data.

The Video ADC has the following features:

* Internal voltage and current reference generator

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

NXP Semiconductors

A ————
Video Analog-to-Digital Converter (VADC)

* 10-bit resolution (9.5 bit ENOB at 66.5 Msps)

* 4 analog inputs, with all inputs available for CVBS

* Programmable anti-aliasing filter, gain, and clamp

The video decoder has the following features:

e NTSC/PAL decoder

* Direct data path (no complex resampling)

e Automatic standards detection

2D adaptive comb filter

 Datapath/clocking architecture encompasses a time base corrector for VCR signals
* Luma passband is flat to > 6 MHz

6.6.2 Software Operation

The VADC driver is located under the Linux V4L2 architecture and it implements the
V4L2 capture interfaces. Applications cannot use the camera driver directly. Instead, the
applications use the V4L2 capture driver to open and close the camera for image capture.

The V4L2 capture supports the following operation:
 Capture stream mode

The following picture format is supported:
* YUV444

The following picture sizes are supported:
 PAL
* NTSC

6.6.3 Source Code Structure

Table below shows the VADC driver source files available in the drivers/media/
platform/mxc/capture.

Table 6-21. VADC Driver Files

File Description
drivers/media/platform/mxc/capture/mxc_vadc.c VADC driver source code
drivers/media/platform/mxc/capture/mxc_vadc.h VADC driver Header

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
252 NXP Semiconductors

4
Chapter 6 Video

6.6.4 Menu Configuration Options
In menu configuration enable the following module:

Device Drivers > Multimedia devices > Video capture adapters > MXC Video For Linux
Camera > MXC VADC support

6.6.5 DTS Configuration

VADC analog inputs can choose [0-3]. CSI1 or CSI2 can be used to capture the VADC
data. They can be configured in the DTS file.

For example:

vadc_in = <0>; /* VADC input select */
csi _id = <1>; /* CSI select */

The VADC input selected to vinl and CSI2 is used to capture the VADC data.

6.7 Video Processing Unit (VPU)

6.7.1

The VPU hardware performs all of the codec computation and most of the bitstream
parsing/packeting. Therefore, the software takes advantage of less control and effort to
implement a complex and efficient multimedia codec system.

Different VPUs are supported on 1.MX 6 and 1.MX 8 SoC. The following table lists the
different VPUs.

Introduction

Table 6-22. VPU
SoC VPU Library

i.MX 6

Chips and Media

imx-vpu.so

i.MX 8M Quad and 8M Mini

Hantro

imx-hantro.so

i.MX 8QuadMax, i.MX 8QuadXPlus, and
8M Plus

Malone

no library

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

NXP Semiconductors

253

Video Processing Unit (VPU)
6.7.2 Software Operation

The VPU software can be divided into two parts: the kernel driver and the user-space
library as well as the application in user space. The kernel driver takes responsibility for
system control and reserving resources (memory/IRQ). It provides an IOCTL interface
for the application layer in user-space as a path to access system resources. The
application in user-space calls related IOCTLs and codec library functions to implement a
complex codec system.

The VPU kernel driver includes the following functions:

* Module initialization which initializes the module with the device-specific structure

* Device initialization which initializes the VPU clock and hardware and request the
IRQ

* Interrupt servicing routine which supports events that one frame has been finished

* File operation routine which provides the following interfaces to user space:

* File open

* File release

* File IOCTL to provide interface for memory allocating and releasing

* Memory map for register and memory accessing in user space

The VPU user space driver has the following functions:

* Codec lib

* Initializes codec system

* Sets codec system configuration

* Controls codec system by command

» Reports codec status and result

* System I/O operation

* Requests and frees memory

* Maps and unmaps memory/register to user space
* Device management

User space application for simple verification:

* Read video raw data
* YUV file dump
* General options to configure the codec behavior

The following figure shows a simple workflow shown in the H.264 example.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
254 NXP Semiconductors

Chapter 6 Video
H.264 H.264
Application Decoder
H264Declnit(&declnst, 0, 0, 0) 4
Initialize H.264
decoder
-4 H264DEC_OK
Receive H.264
stream start
H264DecDecode(declnst, &declnput, &decOutput}——»|
Decode H.264
parameter sets
- H264DEC_STRM_PROCESSED
Receive first H.264
coded data slice
H264DecDecode(decinst, &declnput, &decOutput)}——p
Activate parameter
sets based on

information contained
in first picture slice

(IDR picture)
- H264DEC_HDRS_RDY
T H264DecGetlnfo(declnst, &declnfo) >
-« H264DEC_OK

Call H264DecGetlnfo to
\ | obtain information about
decoded stream:; picture
dimensions, cropping
info etc.

Figure 6-8. Simple Workflow Shown in the H.264 Example

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

NXP Semiconductors

255

A
Video Processing Unit (VPU)

H.264 H.264
Application Decoder
H264 DecNextPicture(decinst, &decPicture, 0y——»=
Get next picture
for display
e status
4
I‘Q&IDECJ’:IE_RDY
NO
NO YES
Stream
buffer YES—¢
empty?
Receive H.264
decoding unit
o |
v
Display picture ————————H264DecDecode(declnst, &declnput, &decOutput)——=
NO Decode H.264
decoding unit
- —— stalug—— ———-——————————-
e
4
Aeam
ended?
H264DecNextPicture(declnst, &decPicture, 1)}——
YES Get next picture
Display picture from bﬂﬂer
YES
H2G4DEC_PIC_RDY
H264DecRelease(decinst) =
Ralease
Nf resources

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
256 NXP Semiconductors

L __4

Chapter 6 Video
There is only a user-space programming interface for the VPU module. A user in the
application layer cannot access the kernel driver interface directly. The VPU library
accesses the kernel driver interface for users.

There 1s one unified interface to wrap all different video formats. The following are the
related APIs:

CODEC_STATE decoder decode xxx (CODEC_PROTOTYPE * arg,STREAM BUFFER * buf, OMX U32 *
consumed, FRAME * frame) ;

CODEC_STATE decoder getinfo xxx (CODEC PROTOTYPE * arg,STREAM INFO * pkg) ;

CODEC_STATE decoder setppargs xxx (CODEC_PROTOTYPE * codec,PP_ARGS * args);

CODEC_STATE decoder setframebuffer xxx(CODEC PROTOTYPE * arg, BUFFER *buff,OMX U32
available buffers);

CODEC_STATE decoder pictureconsumed xxx (CODEC_PROTOTYPE * arg, BUFFER *buff) ;
CODEC_STATE decoder getframe mpeg4 (CODEC PROTOTYPE * arg, FRAME * frame,OMX BOOL eos) ;
FRAME BUFFER_ INFO decoder getframebufferinfo xxx(CODEC PROTOTYPE * arg) ;

CODEC_STATE decoder endofstream xxx (CODEC_PROTOTYPE * arg)

OMX_ S32 decoder scanframe xxx(CODEC_PROTOTYPE * arg, STREAM BUFFER * buf,OMX U32 * first,
OMX U32 * last);

CODEC_STATE decoder_abort_xxx (CODEC_PROTOTYPE * arg) ;

CODEC_STATE decoder_ abortafter xxx (CODEC PROTOTYPE * arg) ;

CODEC_STATE decoder setnoreorder xxx (CODEC PROTOTYPE * arg, OMX BOOL no_reorder) ;
static void decoder destroy xxx (CODEC_PROTOTYPE * arg)

6.7.3 Menu Configuration Options
In menu configuration enable the following module for the VPU driver:

For 1.MX 6 with VPU select Device Drivers > MXC support drivers > Support for MXC
VPU(Video Processing Unit)

For .MX 8M select Device Drivers > MXC support drivers > MXC HANTRO (Video
Processing Unit) support

For 1.MX 8QuadMax and 1.MX 8QuadXPlus select Device Drivers > MXC support
drivers > Support for MXC VPU(Video Processing Unit) DECODER

6.8 JPEG Encoder and Decoder

6.8.1 Introduction

The JPEG Encoder consists of a JPEG-E-X core and a JPEG Encoder Wrapper
(JPGENCWRP). Similarly, the JPEG Decoder consists of a JPEG decoder core (JPEG-D-
X) and its corresponding wrapper.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 257

A ————
JPEG Encoder and Decoder

The JPEG cores are compliant with the industry standards Baseline and Extended
ISO/IEC 10918-1 JPEG, with some limitations documented in the i. MX 8DualXPlus
Applications Processor Reference Manual IMX8DQXPRM).

The JPEG encoder wrapper (JPGENCWRP) is used to work with the Cast JPEG Encoder
Core. It has a configuration mode and an encoding mode.

* In configuration mode, it can fetch the configuration bitstream from the system
memory and feed it to the encoder.

* In encoding mode, it can fetch the image pixel data through the AXI bus interface
and feed to the Encoder Core for encoding.

Similarly, the JPEG Decoder Wrapper provides the interface for Cast JPEG Decoder
core.

The JPEG wrappers supports multiple image encoding through context switching, by the
encoding descriptors. There are four bitstream slots. Each one can be enabled
independently by chained descriptors.

The JPEG encoder and decoder support a maximum horizontal resolution of 8K (0x2000)
pixels. The horizontal resolution needs to be integer times of 8. It is the same for the
vertical resolution. For YUV422 and YUV420, the resolution must be multiple of 16. The
image size may be up to 64K x 64K.

6.8.2 Overview of the JPEG Encoder and Decoder Driver
The driver relies on the V4L2 framework.

The JPEG encoder and decoder driver implements a subset of the IOCTLs exposed by the
V4L2 framework, namely the following v412_ioctl_ops:

e VIDIOC_QUERYCAP

e VIDIOC_ENUM_FMT_VID_CAP
e VIDIOC_ENUM_FMT_VID_OUT
e VIDIOC_TRY_FMT_VID_CAP

e VIDIOC_TRY_FMT_VID_OUT

e VIDIOC_S_FMT_VID_CAP

e VIDIOC_S_FMT_VID_OUT

e VIDIOC_G_FMT_VID_CAP

e VIDIOC_G_FMT_VID_OUT

e VIDIOC_QBUF

* VIDIOC_DQBUF

e VIDIOC_CREATE_BUFS

e VIDIOC_PREPARE_BUF

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
258 NXP Semiconductors

4
Chapter 6 Video
* VIDIOC_REQBUFS
* VIDIOC_QUERYBUF
* VIDIOC_STREAMON
e VIDIOC_STREAMOFF

User applications may interact with the driver through the supported V4L.2 IOCTLs.

The JPEG driver supports streaming I/O through memory mapping. This capability is
exposed through the V4L2_CAP_STREAMING flag, when the VIDIOC_QUERYCAP is
used. Streaming is an I/O method where only pointers to buffers are exchanged between
the application and driver, but the data itself is not copied. Memory mapping is primarily
intended to map buffers in the device memory into the application’s address space.

The JPEG driver supports buffers memory-mapping through the single-planar API.

For more information on streaming I/O, see Streaming I/O (Memory Mapping).

6.8.3 Limitations of the JPEG Encoder/Decoder Driver

The hardware, namely the JPEG wrappers, supports multiple-image encoding through
context switching. The driver does not use context switching, and only one of the
available four slots is used. The hardware supports bitstream buffer half/full and returns
features for bitstream buffer management, but the driver does not use them.

The hardware supports the following formats: YUV444, YUV420, YUV422, RGB,
ARGB, and Gray.

The driver supports the following formats: YUV444, YUV420 (same as NV12),
YUV422 (same as YUYV or YUY2), RGB (with some limitations), and Gray. The
ARGB format is not supported.

The driver supports JPEG images encoding and decoding through gstreamer, but it does
not yet support MJPEG videos.

The hardware has the limitation that the decoded image resolution should be larger than
64x64.

The hardware has the limitation that the decoded image should have at least a default
Huffman table (DHT marker section should be present in the jpeg input stream).

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 259

https://linuxtv.org/downloads/v4l-dvb-apis/uapi/v4l/mmap.html

A
JPEG Encoder and Decoder

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
260 NXP Semiconductors

Chapter 7
Audio

7.1 Advanced Linux Sound Architecture (ALSA) System on a
Chip (ASoC) Sound

7.1.1 ALSA Sound Driver Introduction

The Advanced Linux Sound Architecture (ALSA), now the most popular architecture in
Linux system, provides audio and MIDI functionality to the Linux operating system.

ALSA has the following significant features:

* Efficient support for all types of audio interfaces, from consumer sound cards to
professional multichannel audio interfaces.

* Fully modularized sound drivers.

e SMP and thread-safe design.

» User space library (alsa-lib) to simplify application programming and provide higher
level functionality.

* Support for the older Open Sound System (OSS) API, providing binary compatibility
for most OSS programs.

ALSA System on Chip (ASoC) layer is designed for SoC audio. The overall project goal
of the ASoC layer provides better ALSA support for embedded system on chip
processors and portable audio CODEC:s.

The ASoC layer also provides the following features:
* CODEC independence. Allows reuse of CODEC drivers on other platforms and
machines.
e Easy I2S/PCM audio interface setup between CODEC and SoC. Each SoC interface
and CODEC registers its audio interface capabilities with the core.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 261

A
Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound

* Dynamic Audio Power Management (DAPM). DAPM is an ASoC technology
designed to minimize audio subsystem power consumption no matter what audio-use
case is active. DAPM guarantees the lowest audio power state at all times and is
completely transparent to user space audio components. DAPM is ideal for mobile
devices or devices with complex audio requirements.

* Pop and click reduction. Pops and clicks can be reduced by powering the CODEC
up/down 1n the correct sequence (including using digital mute). ASoC signals the
CODEC when to change power states.

* Machine-specific controls. Allow machines to add controls to the sound card, for
example, volume control for speaker amp.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
262 NXP Semiconductors

Chapter 7 Audio

Native ALSA Application [aplay, arecord...)

)

Device Driver

ALSA Library
User Space
Kernel Space
ALSA Driver
PCM Control
P 1 I """""""""""" @ """""""""""" ﬁ """" i
: i
1 "
' Codec ,1 - Machine [EE——— Platform i
i Driver s —— Driver h v Driver E
i i
i i
1 1
; :

Audio Software

i; Audio Hardware i?

MXE& Series
Control Interface Data Transfer
(12¢) System DMA Interface(SSI/EASI...)
F Y F Y

— Audio Codec f——

Figure 7-1. ALSA SoC Software Architecture

ASoC basically splits an embedded audio system into 3 components:

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 263

A ————
Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound
* Machine driver-handles any machine-specific controls and audio events, such as
turning on an external amp at the beginning of playback.
* Platform driver-contains the audio DMA engine and audio interface drivers (for
example, %S, AC97, PCM) for that platform.
* CODEC driver-platform independent and contains audio controls, audio interface
capabilities, the CODEC DAPM definition, and CODEC 1/O functions.

More detailed information about ASoC can be found in the Linux kernel documentation
in the Linux OS source tree at linux/Documentation/sound/alsa/soc and at www.alsa-
project.org/main/index.php/ASoC.

7.1.2 SoC Sound Card

Currently, the stereo CODEC (WM8958, WM8960, WM8962, and WM8524), 7.1
CODEC (cs42888), and AM/FM CODEC (514763) drivers are implemented using ASoC
architecture.

These sound card drivers are built in independently. The stereo sound card supports
stereo playback and capture. The 7.1 sound card supports up to eight channels of audio
playback. While enabling ASRC, 7.1 sound card only supports 2 or 6 channels audio
playback. The AM/FM sound card supports radio PCM capture.

NOTE

The 7.1 CODEC is only supported on the 1.MX 6Quad and
1.MX 6Solo SABRE Auto platform.

The AM/FM CODEC is only supported on the 1.MX 6Quad and
1.MX 6Solo SABRE Auto platform.

7.1.2.1 Stereo CODEC Features
The stereo CODEC supports the following features:

» Sample rates for playback and capture are 8 KHz, 32 KHz, 44.1 KHz, 48 KHz, and
96 KHz

e Channels:

* Playback: supports two channels.

 Capture: supports two channels.
e Audio formats:

 Playback:

« SNDRV_PCM_FMTBIT_S16_LE

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
264 NXP Semiconductors

http://www.alsa-project.org/main/index.php/ASoC
http://www.alsa-project.org/main/index.php/ASoC

4
Chapter 7 Audio
« SNDRV_PCM_FMTBIT_S20_3LE
e SNDRV_PCM_FMTBIT_S24_LE
e Capture:
« SNDRV_PCM_FMTBIT_S16_LE
e SNDRV_PCM_FMTBIT_S20_3LE
e SNDRV_PCM_FMTBIT_S24_LE

7.1.2.2 7.1 Audio Codec Features

» Sample rates for playback and record:
* 48 KHz, 96 KHz, 192 KHz
* Playback: 5.512k, 8k, 11.025k, 16 k, 22 k, 32 k, 44.1 k, 48 k, 64 k, 88.2 k, 96
k, 176.4 k, 192 k (ASRC enabled)
e Channels:
* Playback: 2, 4, 6, 8 channels
» Playback(ASRC enabled): 2, 6 channels
e Capture: 2, 4 channels
* Audio formats:
* Playback:
« SNDRV_PCM_FMTBIT_S16_LE
* SNDRV_PCM_FMTBIT_S20_3LE
e SNDRV_PCM_FMTBIT_S24_LE
* Playback(ASRC enabled):
* SNDRV_PCM_FMTBIT_S16_LE
e SNDRV_PCM_FMTBIT_S24_LE
 Capture:
« SNDRV_PCM_FMTBIT_S16_LE
e SNDRV_PCM_FMTBIT_S20_3LE
* SNDRV_PCM_FMTBIT_S24_LE

7.1.2.3 AM/FM Codec Features

 Supported sample rate for Capture: 48 KHz
* Supported channels:

» Capture: supports two channels.
 Supported audio formats:

* Capture: SNDRV_PCM_FMTBIT_S16_LE

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 265

A ————
Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound

7.1.2.4 Sound Card Information

The registered sound card information can be listed as follows using the commands aplay
-1 and arecord -1. For example, the stereo sound card is registered as card 0.

root@ /$ aplay -1

***%%x T,igt of PLAYBACK Hardware Devices ***x*

card 0: wm8962audio [wm8962-audio], device 0: HiFi wm8962-0 []

Subdevices: 1/1
Subdevice #0: subdevice #0

7.1.3 Hardware Operation

The following sections describe the hardware operation of the ASoC driver.

7.1.3.1 Stereo Audio CODEC

The stereo audio CODEC is controlled by the I2C interface. The audio data is transferred
from the user data buffer to/from the SSI FIFO through the DMA channel. The DMA
channel is selected according to the audio sample bits. AUDMUX is used to set up the
path between the SSI port and the output port which connects with the CODEC. The
CODEC works in master mode and provides the BCLK and LRCLK. The BCLK and
LRCLK can be configured according to the audio sample rate.

The WM8958, WM8960, and WM8962 ASoC CODEC driver exports the audio record/
playback/mixer APIs according to the ASoC architecture.

The CODEC driver is generic and hardware independent code that configures the
CODEC to provide audio capture and playback. It does not contain code that is specific
to the target platform or machine. The CODEC driver handles:

* CODEC DAI and PCM configuration
« CODEC control I/O-using I>’C
* Mixers and audio controls

* CODEC audio operations
* DAC Digital mute control

The WM8958, WM8960, and WM8962 CODEC are registered as an I2C client when the
module initializes. The APIs are exported to the upper layer by the structure
snd_soc_dai_ops .

Headphone insertion/removal can be detected through a GPIO interrupt signal.

SSI dual FIFO features are enabled by default.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
266 NXP Semiconductors

4
Chapter 7 Audio

7.1.3.2 7.1 Audio Codec

The 7.1 audio codec includes 8-channel DAC and 4-channel ADC, which are controlled
by the I2C interface. The audio data is transferred from the user data buffer to the ESAI
fifo, through a DMA channel. The DMA channel is selected according to audio sample
bits. The codec works in slave mode as the ESAI provides the BCLK and LRCLK. The
BCLK and LRCLK can be configured according to the audio sample rate. The ESAI
supports up to eight audio output ports. While enabling ASRC, 7.1 audio codec supports
2 or 6 channel playback through ASRC. On the i.MX 6 Sabre ARD board, a CS42888
codec with 4 audio in port is used, each port receive two channels of data in the I2S
format(network mode), providing 8-channel of playback functionality. This codec also
has 2 audio output port connected with ESAI, providing 4-channel of recording
functionality.

The codec driver is generic and hardware independent code that configures the codec to
provide audio capture and playback. It does not contain code that is specific to the target
platform or machine. The codec driver handles:

* Codec DAI and PCM configuration
* Codec control I/O-using 12C

* Mixers and audio controls

* Codec audio operations

* DAI Digital mute control

The CS42888 codec is registered as an I2C client when the module initializes. The APIs
are exported to the upper layer by the structure snd_soc_dai_ops.

7.1.3.3 AM/FM Codec

The AM/FM codec is a virtual codec, it only has a PCM interface connected to the Tuner
device. The audio data is transferred from the user data buffer to or from the SSI FIFO
through the DMA channel. The DMA channel is selected according to the audio sample
bits. AUDMUX is used to set up the path between the SSI port and the output port which
connects with the codec. The codec works in master mode as it provides the BCLK and
LRCLK. The BCLK and LRCLK can be configured according to the audio sample rate.

7.1.4 Software Operation

The following sections describe the software operation of the ASoC driver.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 267

A ————
Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound

7.1.4.1 ASoC Driver Source Architecture

File imx-pcm-dma.c is shared by the stereo ALSA SoC driver, the 7.1 ALSA SoC driver
and other CODEC driver. This file is responsible for preallocating DMA buffers and
managing DMA channels.

The stereo CODEC is connected to the CPU through the SSI interface. fsl_ssi.c registers
the CPU DAI driver for the stereo ALSA SoC and configures the on-chip SSI interface.
wmg8962.c registers the stereo CODEC and hifi DAI drivers. The direct hardware
operations on the stereo codec are in wm8994.c, wm8960.c, and wm8962.c. imx-
wmg8958.c, imx-wm8960.c and imx-wm8962.c are the machine layer codes, which create
the driver device and register the stereo sound card.

The multichannel codec is connected to the CPU through the ESAI interface. fsl_esai.c
registers the CPU DAI driver for the stereo ALSA SoC and configures the on-chip ESAI
interface. cs42888.c registers the multichannel CODEC and hifi DAI drivers. The direct
hardware operations on the multichannel CODEC are in cs42888.c. imx-cs42888.c is the
machine layer code which creates the driver device and registers the stereo sound card.

The AM/FM CODEC is connected to the CPU through the SSI interface. fsl_ssi.c
registers the CPU DAI driver for the stereo ALSA SoC and configures the on-chip SSI
interface. s1476x.c registers the Tuner CODEC and Tuner DAI drivers. The direct
hardware operations on the CODEC are in si476x.c. imx-si476x.c is the machine layer
code which creates the driver device and registers the sound card.

7.1.4.2 Sound Card Registration
The codecs have the same registration sequence:

1. The codec driver registers the codec driver, DAI driver, and their operation
functions.

2. The platform driver registers the PCM driver, CPU DAI driver and their operation
functions, pre allocates buffers for PCM components and sets playback and capture
operations as applicable.

3. The machine layer creates the DAI link between codec and CPU registers the sound
card and PCM devices.

7.1.4.3 Device Open
The ALSA driver performs the following functions:

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
268 NXP Semiconductors

Chapter 7 Audio

* Allocates a free substream for the operation to be performed.

* Opens the low level hardware device.

 Assigns the hardware capabilities to ALSA runtime information (the runtime
structure contains all the hardware, DMA, and software capabilities of an opened

substream).

* Configures DMA read or write channel for operation.
e Configures CPU DAI and CODEC DALI interface.

* Configures CODEC hardware.

 Triggers the transfer.

After triggering for the first time, the subsequent DMA read/write operations are
configured by the DMA callback.

7.1.4.4 Device Tree Binding

See the following documents:

e Documentation/devicetree/bindings/sound/fsl,ssi.txt

* Documentation/devicetree/bindings/sound/fsl-sai.txt

* Documentation/devicetree/bindings/sound/fsl,esai.txt

e Documentation/devicetree/bindings/sound/fsl,asrc.txt

* Documentation/devicetree/bindings/sound/wmg8962.txt

* Documentation/devicetree/bindings/sound/wm8960.txt

e Documentation/devicetree/bindings/sound/wm8994.txt

* Documentation/devicetree/bindings/sound/cs42xx8.txt

* Documentation/devicetree/bindings/sound/imx-audmux.txt

e Documentation/devicetree/bindings/sound/imx-audio-wm8962.txt
* Documentation/devicetree/bindings/sound/imx-audio-cs42888.txt
* Documentation/devicetree/bindings/sound/imx-audio-si476x.txt

7.1.4.5 Source Code Structure

The following table shows the stereo codec SoC driver source in sound/soc/fsl.

Table 7-1. Stereo Codec SoC Driver Files

File

Description

sound/soc/fsl/imx-wm8958.c
sound/soc/fsl/imx-wm8960.c

sound/soc/fsl/imx-wm8962.c

Machine layer for stereo CODEC ALSA SoC (CODEC as 12S
Master)

sound/soc/fsl/imx-pcm-dma.c

Platform layer for stereo CODEC ALSA SoC

Table continues on the next page...

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

NXP Semiconductors

269

A ————
Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound

Table 7-1. Stereo Codec SoC Driver Files (continued)

File

Description

sound/soc/fsl/imx-pcm.h

Header file for PCM driver and AUDMUX register definitions

sound/soc/fsl/fsl_ssi.c

SSI CPU DAI driver for stereo CODEC ALSA SoC

sound/soc/fsl/fsl_ssi.h

Header file for SSI CPU DAI driver and SSI register
definitions

sound/soc/fsl/fsl_sai.c

SAIl CPU DAI driver for stereo CODEC ALSA SoC

sound/soc/fsl/fsll_sai.h

Header file for SAI CPU DAI driver and SAI register
definitions

codecs/wm8994.c
codecs/wm8960.c

codecs/wm8962.c

CODEC layer for stereo CODEC ALSA SoC

codecs/wm8994.h
codecs/wm8960.h
codecs/wm8962.h

Header file for stereo CODEC driver

Table below lists the AM/FM codec SoC driver source files. These files are under sound/

SOcC.

Table 7-2. AM/FM Codec SoC Driver Source Files

File

Description

sound/soc/fsl/imx-si476x.c

Machine layer for stereo CODEC ALSA SoC (CODEC as I12S
Slave)

sound/soc/fsl/imx-pcm-dma.c

Platform layer for stereo CODEC ALSA SoC

sound/soc/fsl/imx-pcm.h

Header file for pcm driver and AUDMUX register definitions

sound/soc/fsl/fsl_ssi.c

SSI CPU DAI driver for stereo CODEC ALSA SoC

sound/soc/fsl/fsl_ssi.h

Header file for SSI CPU DAI driver and SSI register
definitions

sound/soc/codecs/si476x.c

Codec layer for stereo CODEC ALSA SoC

Table below shows the multiple-channel ADC SoC driver source files.

Table 7-3. CS42888 ASoC Driver Source File

File

Description

sound/soc/fsl/imx-cs42888.c

Machine layer for multiple-channel CODEC ALSA SoC

sound/soc/fsl/imx-pcm-dma.c

Platform layer for multiple-channel CODEC ALSA SoC

sound/soc/fsl/imx-pcm.h

Header file for pcm driver

sound/soc/fsl/fsl_esai.c

ESAI CPU DAI driver for multiple-channel CODEC ALSA SoC

sound/soc/fsl/fsl_esai.h

Header file for ESAI CPU DAI driver

sound/soc/codecs/cs42xx8.c

CODEC layer for multiple-channel codec ALSA SoC

sound/soc/>codecs/cs42xx8.h

Header file for multiple-channel CODEC driver

Table continues on the next page...

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

270

NXP Semiconductors

4
Chapter 7 Audio

Table 7-3. CS42888 ASoC Driver Source File (continued)

File Description

CPU DAl driver of ASRC P2P
Header file for CPU DAl driver of ASRC P2P
Platform layer for ASRC P2P

sound/soc/fsl/fsl_asrc.c
sound/soc/fsl/fsl_asrc.h

sound/soc/fsl/fsl_asrc_pcm.c

7.1.4.6 Menu Configuration Options
The following Linux kernel configuration options are provided for this module.

* SoC Audio supports for WM8958, WM8960, and WM8962 CODEC. In menuconfig,
this option is available:

-> Device Drivers
-> Sound card support
-> Advanced Linux Sound Architecture
-> ALSA for SoC audio support
-> SoC Audio for Freescale CPUs
-> SoC Audio support for i.MX boards with wm8962 (or

wm8958, wm8960)

* SoC Audio supports for .MX cs42888. In menuconfig, this option is available:

-> Device Drivers
-> Sound card support
-> Advanced Linux Sound Architecture
-> ALSA for SoC audio support
-> SoC Audio for Freescale CPUs
-> SoC Audio support for i.MX boards with cs42888

e SoC Audio supports for AM/FM. In menuconfig, this option is available:

-> Device Drivers
-> Sound card support
-> Advanced Linux Sound Architecture
-> ALSA for SoC audio support
-> SoC Audio for Freescale CPUs
-> SoC Audio support for i.MX boards with si476x

7.2 Asynchronous Sample Rate Converter (ASRC)

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

NXP Semiconductors 271

A ————
Asynchronous Sample Rate Converter (ASRC)

7.2.1 Introduction

The Asynchronous Sample Rate Converter (ASRC) converts the sampling rate of a signal
to a signal of different sampling rate. The ASRC supports concurrent sample rate
conversion of up to 10 channels. The sample rate conversion of each channel is
associated to a pair of incoming and outgoing sampling rates. The ASRC supports up to
three sampling rate pairs simultaneously.

7.2.1.1 Hardware Operation
ASRC includes the following features:

* Supports ratio (Fsin/Fsout) range between 1/24 to 8.

* Designed for rate conversion between 44.1 KHz, 32 KHz, 48 KHz, and 96 KHz.

* Other input sampling rates in the range of 8 KHz to 100 KHz are also supported, but
with less performance (see IC spec for more details).

* Other output sampling rates in the range of 30 KHz to 100 KHz are also supported,
but with less performance.

* Automatic accommodation to slow variations in the incoming and outgoing sampling
rates.

* Tolerant to sample clock jitter.

* Designed mainly for real-time streaming audio usage. Can be used for non-realtime
streaming audio usage when the input sampling clocks are not available.

* In any usage case, the output sampling clocks must be activated.

* In case of real-time streaming audio, both input and output clocks need to be
available and activated.

* In case of non-realtime streaming audio, the input sampling rate clocks can be
avoided by setting ideal-ratio values into ASRC interface registers.

The ASRC supports polling, interrupt and DMA modes, but only DMA mode is used in
the platform for better performance. The ASRC supports following DMA channels:

* Peripheral to peripheral, for example: ASRC to ESAI
* Memory to peripheral, for example: memory to ASRC
* Peripheral to memory, for example: ASRC to memory

For more information, see the ASRC chapter in the Applications Processor
documentation associated with the SoC.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
272 NXP Semiconductors

4
Chapter 7 Audio

7.2.2 Software Operation

As an assistant component in the audio system, the ASRC driver implementation depends
on the use cases in the platform.

Currently, ASRC is used in two scenarios.

* Memory > ASRC > Memory, ASRC is controlled by the user application or ALSA
plug-in.
* Memory > ASRC > peripheral, ASRC is controlled directly by other ALSA drivers.

Application/Mliddleware

ATSA liblplugin 1
F Y F Y F Y
h 4
¥ ¥ ¥ AREC Streamn
Alza driver Alza driver Alza driver Interface
for spdif' f tor stereo for 5.1 codec 4 ¥
y 3 y 3 y 3 » M ASEC
driver
¥ ¥ ¥
SPIDEMLE Stereo codec 51 codec
driver driver driver

Figure 7-2. Audio Driver Interactions

As illustrated in the figure above, the ASRC stream interface provides the interface for
the user space. The ASRC registers itself under /dev/mxc_asrc and creates proc file /proc/
driver/asrc when the module is inserted. proc is used to track the channel number for each
pair. If all the pairs are not used, users can adjust the channel number through the proc
file. The number of the total channels should be ten, or else the adjusted value cannot be
saved properly.

7.2.2.1 Sequence for Memory to ASRC to Memory
* Open /dev/mxc_asrc device
* Request ASRC pair - ASRC_REQ_PAIR
* Configure ASRC pair - ASRC_CONIFG_PAIR
e Start ASRC - ASRC_START_CONV
» Write the raw audio data (to be converted) into the user maintained input buffer. Fill
asrc_convert_buffer struct with input/output buffer length and address. Driver would

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 273

A ————
Asynchronous Sample Rate Converter (ASRC)

copy output data to user maintained output buffer address according to the output
buffer size. Repeat this step until all data is converted. -ASRC_CONVERT

» Stop ASRC conversion - ASRC_STOP_CONV

» Release ASRC pair - ASRC_RELEASE_PAIR

e Close /dev/mxc_asrc device

7.2.2.2 Sequence for Memory to ASRC to Peripheral

Memory to ASRC to peripheral audio path is involved in 7.1 audio codec driver. In 7.1
audio sound card, a new device with the name "cs42888audio [cs42888-audio], device 1:
HiFi-ASRC-FE (*)" is specified for playback and capture with ASRC. The steps below
show the flow of calling ASRC to memory to peripheral:

* The sound device(PCM) has been registered and start to enable the DMA channel in
ALSA driver

* Request ASRC pair - fsl_asrc_request_pair

* Configure ASRC pair - fsl_asrc_config_pair

* Enable the DMA channel from Memory to ASRC and from ASRC to Memory

 Start DMA channel and start ASRC conversion - fsl_asrc_start_pair

e When audio data playback complete, stop DMA channel and ASRC -
fsl_asrc_stop_pair

* Release ASRC pair - fsl_asrc_release_pair

7.2.2.3 Source Code Structure
The table below lists the source files available in sound/soc/fsl.

Table 7-4. ASRC Source File List

File Description
sound/soc/fsl/fs|_asrc_m2m.c ASRC M2M driver implementation codes
sound/soc/fsl/imx-cs42888.c Memory to ASRC to ESAI TX implementation in 7.1 audio
codec machine driver

sound/soc/fsl/imx-pcm-dma.c Memory to ASRC to ESAI TX implementation in 7.1 audio
codec platform driver

sound/soc/fsl/fsl_esai.c Memory to ASRC to ESAI TX implementation in 7.1 audio
codec CPU driver

sound/soc/fsl/cs42xx8 Memory to ASRC to ESAI TX implementation in 7.1 audio
codec codec driver

sound/soc/fsl/fsl_asrc.c ALSA CPU DAI driver of ASRC P2P

sound/soc/fsl/fsl_asrc.h Header file for ALSA CPU DAI driver of ASRC P2P

sound/soc/fsl/fsl_asrc_dma.c ALSA platform layer for ASRC P2P

Table continues on the next page...

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
274 NXP Semiconductors

Chapter 7 Audio

Table 7-4. ASRC Source File List
(continued)

File Description

sound/soc/fsl/sound/soc/fsl/fs|_asrc_dma.c ALSA platform layer for ASRC M2M

7.2.2.4 Menu Configuration Options

The menu configuration options are as follows:

-> Device Drivers
-> Sound card support
-> Advanced Linux Sound Architecture
-> ALSA for SoC audio support
-> SoC Audio for Freescale i.MX CPUs
-> Asynchronous Sample Rate Converter (ASRC) module support

Then the ASRC driver can only be configured with the build-in module.

7.2.2.5 Device Tree Binding
The functions of device tree bindings for ASRC M2M are as follows:

» compatible: Compatible list, must contain "fsl,imx6q-asrc".

* reg: Offset and length of the register set for the device.

* interrupts: Contains the asrc interrupt.

* clocks: Contains an entry for each entry in clock-names.

* clock-names: Must contain "mem", "ipg", "asrck", and "dma". (Generally, "dma" is
used for SPBA clock.)

* dmas: Generic dma devicetree binding as described in Documentation/devicetree/
bindings/dma/dma.txt.

e dma-names: Six dmas have to be defined, "txa", "rxa", "txb", "rxb", "txc", "rxc".

* fsl,clk-map-version: the mapping relationship in dlfferent SOC is different. This
version number can be used to indicate clock map information.

 fs],clk-channel-bits: indicates the channel bit information.

The functions of device tree bindings for ASRC P2P are as follows:

» compatible: Compatible list, must contain "fsl,imx6q-asrc-p2p".

e fsl,p2p-rate: A valid sample rate for Back-End (I2S) playback and record.

* fsl,p2p-width: A valid sample width for Back-End (I12S) playback and record.
e fsl,asrc-dma-rx-events: Contains three SDMA event numbers for ASRC Rx.
* fsl,asrc-dma-tx-events: Contains three SDMA event numbers for ASRC Tx.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 275

A ————
Asynchronous Sample Rate Converter (ASRC)

7.2.2.6 Programming Interface (Exported APl and IOCTLSs)

The ASRC Exported API allows the ALSA driver to use ASRC services.

The ASRC IOCTLSs below are used for user space applications:

ASRC_REQ_PAIR:

Apply a pair from ASRC driver. Once a pair is allocated, ASRC core clock is enabled.
ASRC_CONFIG_PAIR:

Configure ASRC pair allocated. User is responsible for providing parameters defined in
struct asrc_config. [tems in asrc_config is listed below:

e pair: ASRC pair allocated by the IOCTL(ASRC_REQ_PAIR).

e channel num: channel number.

* buffer_num: buffer number need for input and output buffer use.The input/output
buffers are allocated inside ASRC driver. User is responsible for remap it into user
space.

» dma_buffer_size: buffer size for input and output buffers. The buffer size should be
in the unit of page size. Usually, 4k bytes is used.

* input_sample_rate: input sampling rate. Input sample rate should be in 5.512k, 8k,
11.025k, 16k, 22k, 32k, 44.1k, 48k, 64k, 88.2k 96k, 176.4k, 192k.

 output_sample_rate: output sampling rate. Output sampling rate should be in 32k,
44.1k, 48k, 64k, 88.2k, 96k, 176.4k 192k.

* input_word_width: word width of input audio data. The input data word width can be
16 bit or 24 bit.

* output_word_width: word width of output audio data. The output data word width
can be 16 bit or 24 bit.

* inclk: the input clock source can be ESAI RX clock, SSI1 RX clock, SSI2 RX clock,
SPDIF RX clock, MLB_clock, ESAI TX clock, SSI1 TX clock, SSI2 TX clock,
SPDIF TX clock, ASRCLKI clock, NONE. If using clock except NONE, user
should make sure that the clock is available.

* outclk: the output clock source is the same as the input clock source.

ASRC_CONVERT:

Convert the input data into output data according to the parameters set by
ASRC_CONFIG_PAIR. Driver would copy input_buffer_length bytes data from the
input_buffer_vaddr for convert. After convert, driver fill the output_buffer_length
according to data number generated by ASRC and copy output_buffer_length to
output_buffer_vaddr. However, before calling ASRC_CONVERT, User is responsible
for filling the output_buffer_length according to the ratio of input sample rate and output

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
276 NXP Semiconductors

4
Chapter 7 Audio

sample rate. If the generated buffer size is larger than user filled output_buffer_size,
driver would only copy user filled output_buffer_size to output_buffer_vaddr. If the
generated buffer size is smaller than user filled output_buffer_size(the difference should
be less than 64 bytes.), calling ASRC_CONVERT would fail.

* input_buffer_vaddr: virtual address of input buffer.

* output_buffer_vaddr: virtual address of output buffer.
* input_buffer_length: length of input buffer(bytes).
 output_buffer_length: length of output buffer(bytes).

ASRC_START_CONYV:
Start ASRC pair convert.
ASRC_STOP_CONYV:
Stop ASRC pair convert.
ASRC_STATUS:

Query ASRC pair status.

7.3 HDMI Audio

7.3.1 Introduction

HDMI Audio is covered in the HDMI overview chapter in video. See HDMI Audio for
more details.

7.4 The Sony/Philips Digital Interface (S/PDIF)

7.4.1 Introduction

The Sony/Philips Digital Interface (S/PDIF) audio module is a stereo transceiver that
allows the processor to receive and transmit digital audio. The S/PDIF transceiver allows
the handling of both S/PDIF channel status (CS) and User (U) data. The frequency
measurement block allows the S/PDIF RX section to derive the receive clock from the
incoming S/PDIF stream.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 277

A ————
The Sony/Philips Digital Interface (S/PDIF)

7.4.1.1 S/PDIF Overview
The figure below shows the block diagram of the S/PDIF interface.

IP BLIE

L~
=1 32-Bit
24-Bit

—— | CChannal H Rrx Rsg

SRCSH
24-Eit

. l
SPDIF | Ec"""";“R'E'-E F" Reg [
SPDIFIN[_] REUEIVEER 24-Bil

BLOCK —————#=| UChannal Rx Reg | =
=GU

24-Bil
4-1 CChannal Fx Rag

5RO 24-Eil

Y

| FXFIFOLEFT) RxFIFO RIGHT
Az g (124

o

EPDIFQUT

SELECT

/r‘“ &

SPOIFOUT |eg— |-—— SPDIF OFF

—

SRL |Left Rex Diata Reg Reight Fox Data Reg| SRR
4Bt

‘_| CChannelCona_H Tx Req |_..-_‘_r,..f"_

3TC3CGH 24.B

-¢—| CChanne|Cons_L Te Reg |q+

&POIF STLE0L

24-Bit
TRANSMITTER Ty FIFG LEFT i[T:TFTFIh‘F{rGFP’"_

BLOCK [16x2d) Y {1Bx24)

3TL Lafl Tu Darla RBeg Left T Data Reg | 3TR

Figure 7-3. S/PDIF Transceiver Data Interface Block Diagram

7.4.1.2 Hardware Overview
The S/PDIF is composed of two parts:

» The S/PDIF receiver extracts the audio data from each S/PDIF frame and places the
data in the S/PDIF Rx left and right FIFOs. The Channel Status and User Bits are
also extracted from each frame and placed in the corresponding registers. The S/
PDIF receiver provides a bypass option for direct transfer of the S/PDIF input signal
to the S/PDIF transmitter.

* For the S/PDIF transmitter, the audio data is provided by the processor through the
SPDIFTxLeft and SPDIFTxRight registers. The Channel Status bits are provided

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
278 NXP Semiconductors

4
Chapter 7 Audio
through the corresponding registers. The S/PDIF transmitter generates a S/PDIF
output bitstream in the biphase mark format (IEC958), which consists of audio data,
channel status and user bits.

In the S/PDIF transmitter, the IEC958 biphase bit stream is generated on both edges of
the S/PDIF Transmit clock. The S/PDIF Transmit clock is generated by the S/PDIF
internal clock dividers and the sources are from outside of the S/PDIF block. The S/PDIF
receiver can recover the S/PDIF Rx clock from the S/PDIF stream. Figure 7-3 shows the
clock structure of the S/PDIF transceiver.

7.4.1.3 Software Overview

The S/PDIF driver is designed under ALSA System on Chip (ASoC) layer. The ASoC
driver for S/PDIF provides one playback device for Tx and one capture device for Rx.
The playback output audio format can be linear PCM data or compressed data with 16-
bit, 20-bit, and 24-bit audio. The allowed sampling bit rates are 44.1, 48 or 32 KHz. The
capture input audio format can be linear PCM data or compressed 24-bit data and the
allowed sampling bit rates are from 16 to 96 KHz. The driver provides the same interface
for PCM and compressed data transmission.

7.4.1.4 ASoC Layer

The ASoC layer divides audio drivers for embedded platforms into separate layers that
can be reused. ASoC divides an audio driver into a codec driver, a machine layer, a DAI
(digital audio interface) layer, and a platform layer. The Linux kernel documentation has
some concise description of these layers in linux/Documentation/sound/alsa/soc. In the
case of the S/PDIF driver, we are able to reuse the platform layer (imx-pcm-dma.c) that is
used by the ssi stereo codec driver and also the generic dummy codec driver useful for
DAI links creation without a real codec.

7.4.2 S/PDIF Tx Driver

The S/PDIF Tx driver supports the following features.
* 32,44.1 and 48 KHz sample rates.

* Signed 16 and 24-bit little Endian sample format. Due to S/PDIF SDMA feature, the
24-bit output sample file must have 32-bits in each channel per frame. Only the 24
LSBs are valid.

* In the ALSA subsystem, the supported format is defined as S16_LE and S24_LE.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 279

A ————
The Sony/Philips Digital Interface (S/PDIF)

* Stereo playback.

* Information query through iecset or amixer.

* The device ID can be determined by using the 'aplay -1' utility to list out the playback
audio devices.

For example:

root@ ~$ aplay -1

x% Tist of PLAYBACK Hardware Devices ****

card 0: imxspdif [imx-spdif], device 0: S/PDIF PCM snd-soc-dummy-dai-0 []
Subdevices: 1/1

Subdevice #0: subdevice #0

NOTE
The number at the beginning of the IMX_SPDIF line is the
card ID. The string in the square brackets is the card name.

e The ALSA utility provides a common method for user spaces to operate and use
ALSA drivers

#aplay -Dplughw:0,0 audio.wav

NOTE
The -D parameter of aplay indicates the PCM device with
card ID and PCM device ID: hw:[card id],[pcm device id]

The "iecset" utility provides a common method to set or dump the IEC958 status bits.

#iecset -c 0

7.4.2.1 Driver Design

Before S/PDIF playback, the configuration, interrupt, clock and channel registers are
initialized. During S/PDIF playback, the channel status bits are fixed. The DMA and
interrupts are enabled. S/PDIF has 16 TX sample FIFOs on Left and Right channel
respectively. When both FIFOs are empty, an empty interrupt is generated if the empty
interrupt is enabled. If no data are refilled in the 20.8 ps (1/48000), an underrun interrupt
is generated. Overrun is avoided if only 16 sample FIFOs are filled for each channel
every time. If auto re-synchronization is enabled, the hardware checks if the left and right
FIFO are in sync, and if not, it sets the filling pointer of the right FIFO to be equal to the
filling pointer of the left FIFO and an interrupt is generated.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
280 NXP Semiconductors

Chapter 7 Audio

7.4.2.2 Provided User Interface

The S/PDIF transmitter driver provides one ALSA mixer sound control interface to the
user besides the common PCM operations interface. It provides the interface for the user
to write S/PDIF channel status codes into the driver so they can be sent in the S/PDIF
stream. The input parameter of this interface is the IEC958 digital audio structure shown
below, and only status member is used:

struct snd_aes_iec958 {

unsigned char status([24]; /* AES/IEC958 channel status bits */
unsigned char subcode[147]; /* AES/IEC958 subcode bits */
unsigned char pad; /* nothing */

unsigned char dig subframe[4]; /* AES/IEC958 subframe bits */

7.4.3 S/PDIF Rx Driver
The S/PDIF Rx driver supports the following features:

* 16,32, 44.1, 48, 64 and 96 KHz receiving sample rate
* Signed 24-bit little endian sample format. Due to S/PDIF SDMA feature, each

channel bit length in PCM recorded frame is 32 bits, and only the 24 L.SBs are valid
In ALSA subsystem, the supported format is defined as S24_LE.

Stereo record.
The device ID can be determined by using the 'arecord -1' to list out record devices.

For example:

root@ ~$ arecord -1

**** Tigst of CAPTURE Hardware Devices ****

card 0: cs42888audio [cs42888-audio], device 0: HiFi CS42888-0 []
Subdevices: 1/1
Subdevice #0: subdevice #0

card 1: imxspdif [imx-spdif], device 0: S/PDIF PCM snd-soc-dummy-dai-o0 []
Subdevices: 1/1

Subdevice #0: subdevice #0

The ALSA utility provides a common method for user spaces to operate and use
ALSA drivers.

#tarecord -Dplughw:1,0" -c 2 -r 44100 -f S24 LE record.wav

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

NXP Semiconductors 281

A ————
The Sony/Philips Digital Interface (S/PDIF)
NOTE
The -D parameter of the arecord indicates the PCM device
with card ID and PCM device ID: hw:[card id],[pcm device
1d]
The "iecset" utility provides a common method to set or dump the IEC958 status bits.

#iecset -c 1

7.4.3.1 Driver Design

Before the driver can read a data frame from the S/PDIF receiver FIFO, it must wait for
the internal DPLL to be locked. Using the high-speed system clock, the internal DPLL
can extract the bit clock (advanced pulse) from the input bit stream. When this internal
DPLL is locked, the LOCK bit of PhaseConfig Register is set and the driver configures
the interrupt, clock and SDMA channel. After that, the driver can receive audio data,
channel status, user bits and valid bits concurrently.

For channel status reception, a total of 48 channel status bits are received in two registers.
The driver reads them out when a user application makes a request.

For user bits reception, there are two modes for User Channel reception: CD and non-CD.
The mode is determined by the USyncMode (bit 1 of CDText_Control register). User can
call the sound control interface to set the mode (see Table 7-5), but no matter what the
mode is, the driver handles the user bits in the same way. For the S/PDIF Rx, the
hardware block copies the Q bits from the user bits to the QChannel registers and puts the
user bits in UChannel registers. The driver allocates two queue buffers for both U bits
and Q bits. The U bits queue buffer is 96x2 bytes in size, the Q bits queue buffer is 12x2
bytes in size, and queue buffers are filled in the U/Q Full, Err and Sync interrupt
handlers. This means that the user can get the previous ready U/Q bits while S/PDIF
driver is reading new U/Q bits.

For valid bit reception, S/PDIF Rx hardware block triggers an interrupt and set interrupt
status upon reception. A sound control interface is provided for the user to get the status
of this valid bit.

7.4.3.2 Provided User Interface

The S/PDIF Rx driver provides interfaces for user application as shown in table below.

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
282 NXP Semiconductors

Chapter 7 Audio

Table 7-5. S/PDIF Rx Driver Interfaces

Interface Type | Mode' Parameter Comment
Common PCM |PCM - - PCM open/close
prepare/trigger
hw_params/sw_params
Rx Sample Sound r Integer Get sample rate. It is not accurate due to DPLL
2
Rate Control Range: [16000, 96000] frquengy measure module. _So the user
application must do a correction to the get
value.
USyncMode Sound rw Boolean Set 1 for CD mode
Control Value: O or 1 Set 0 for non-CD mode
Channel Status | Sound r struct snd_aes_iec958 -
Control .
Only status [6] array member is used
User bit Sound r Byte array -
Control 96 bytes for U bits
12 bytes for Q bits
No good V bit |Sound r Boolean An interrupt is associated with the valid flag.
Control Value: 0 or 1 (interrupt 16 - SPDIFValNoGood). This interrupt

is set every time a frame is seen on the SPDIF
interface with the valid bit set to invalid.

1. The mode column shows the interface attribute: r (read) or w (write)
2. The sound control type of interface is called by the snd_ctl_xxx() alsa-lib function

The user application can follow the program flow from Figure 7-4 to use the S/PDIF Rx
driver. First, the application opens the S/PDIF Rx PCM device, waits for the DPLL to
lock the input bit stream, and gets the input sample rate. If the USyncMode needs to be
set, set it before reading the U/Q bits. Next, set the hardware parameters, including
channel number, format and capture sample rate which is obtained from the driver. Then,
call prepare and trigger to startup S/PDIF Rx stream read. Finally, call the read function
to get the data. During the reading process, applications can read the U/Q bits and
channel status from the driver and valid the no good bit.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

NXP Semiconductors

283

The Sony/Philips Digital Interface (S/PDIF)

pom open snd ctl
_! get *RX Sample Rate”
1e B BN _BR BB BE 3R 3B 3§ _FB _FN _¥FN _¥N _EN _YX _ETE 3 '
1r* i"'
s
set channel = 2 A
-
A
¥ A0
- -
set format = S24_LE . |
.ll"- -
l o 1
F'F.-'
set rate = gotten rate fM==—=="" snd cfl
* set *USyncMode COText™ On Off
porm
prepare
[r——— S——— snd ctl }
L I
read !
| P
— — — — — — i — 1 — — i — 1 — — + Snd Dtl
Yy T . Ir . . n L et RIII‘II’:I‘II"F!.'"GRII"I
L |
rlnse I i
snd ctl
""" * and control

—* Prooram flow tnom likh

Figure 7-4. S/PDIF Rx Application Program Flow

7.4.4 Source Code Structure

Table below lists the source files for the driver.

Table 7-6. S/PDIF Driver Files

File Description
sound/soc/soc-utils.c Dummy ALSA SOC codec driver
sound/soc/fsl/imx-spdif.c S/PDIF ALSA SOC machine layer
sound/soc/fsl/fsl_spdif.c S/PDIF ALSA SOC DAl layer
sound/soc/fsl/imx-pcm-dma.c ALSA SOC platform layer
sound/soc/fsl/imx-pcm.h ALSA SOC platform layer header

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
284 NXP Semiconductors

4
Chapter 7 Audio

7.4.4.1 Menu Configuration Options
The following Linux kernel configurations are provided for this module:
In menu configuration enable the following module:

* CONFIG_SND_IMX_SPDIF - Configuration option for the S/PDIF driver:

* Device Drivers -> Sound card support -> Advanced Linux Sound Architecture ->
ALSA for SoC audio support -> SoC Audio for Freescale .MX CPUs -> SoC Audio
support for 1.MX boards with S/PDIF

7.4.4.2 Device Tree Bindings
See the following documents:

* Documentation/devicetree/bindings/sound/fsl,spdif.txt
* Documentation/devicetree/bindings/sound/imx-audio-spdif.txt

7.4.4.3 Interrupts and Exceptions

S/PDIF Tx/Rx hardware block has many interrupts to indicate the success, exception and
event.

The driver handles the following interrupts:

* DPLL Lock and Loss Lock-Saves the DPLL lock status; this is used when getting the
Rx sample rate

* U/Q Channel Full and overrun/underrun-Puts the U/Q channel register data into
queue buffer, and update the queue buffer write pointer

e U/Q Channel Sync-Saves the ID of the buffer whose U/Q data is ready for read out

* U/Q Channel Error-Resets the U/Q queue buffer

7.4.5 Unit Test Preparation
In order to prepare to run a unit test, perform the following actions:

e Setup M-Audio Transit USB sound card by installing M-Audio Transit driver on
your PC.
* Install WaveLab tools on your PC.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 285

AR
Audio Mixer (AUDMIX)

7.4.51 Tx test step
* Plug optical line into [lineloptical] port of M-Audio transit.

NOTE
Make sure the [optical out] port of M-Audio transit has no
output (red light off) after plugging the optical line.

* Start up WaveLab, press the record button on the toolbar, set up the record file name,
sample rate, and channel number, and then record.
* Meanwhile, on board use following command to play one wave file:

#aplay -D hw: [card id], [pcm id] audioXXkYYS.wav

» After aplay finishes, stop recording in WaveLab.
* Play the recorded WAV file in wavelab to check.

7.4.5.2 Rxtest step
* Plug optical line into [optical port] of M-Audio transit
 Startup WaveLab, open a test WAV file: audioXXkY'YS.wav to play in loop
* Meanwhile, on board use the following command to record one WAV file. After

finishing recording, you may playback the record WAV file on other audio card on
the board or PC.

#arecord -D hw: [card id], [pcm id] -c 2 -d 20 -r [sample rate in Hz] -f S24 LE record.wav

NOTE
The sample rate argument in the arecord command must be
consistent with the WAV file playing on WaveLab.

7.5 Audio Mixer (AUDMIX)

7.5.1 Introduction

Many applications require mixing of two or more audios to take different effects. Mixing
of two audio streams into a single stream can be done with Audio Mixer. Audio Mixer
has two input serial audio interfaces. These are driven by two Synchronous Audio
Interface (SAI) modules. Each input serial interface carries 8 audio channels in its frame
in TDM manner. Mixer mixes audio samples of corresponding channels from two
interfaces into a single sample. Before mixing, audio samples of two inputs can be

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
286 NXP Semiconductors

L __4

Chapter 7 Audio
attenuated based on configuration. The output of the Audio Mixer is also a serial audio
interface. Like input interfaces, it has the same TDM frame format. This output is used to
drive the serial DAC TDM interface of audio codec and also sent to the external pins
along with the receive path of normal audio SAI module for readback by the CPU.

The output of Audio mixer can be selected from any of the three streams:
* Serial audio input 1
e Serial audio input 2
e Mixed audio

Mixing operation is independent of audio sample rate, but the two audio input streams
must have the same audio sample rate with the same number of channels in TDM frame
to be eligible for mixing.

7.5.2 Block diagram
The following figure shows the high-level view of Audio Mixer block.

Seral Audio TDM Senal Audio TDM
imput 1 imput 2
0 P
AUDIO MIXER U
Attenuator 1 Aftenuator 2
Omlgumim
..-*l——Bl‘-»h
= AccessBus > and
host access Mixing Adder -
Sarial Audio TDM
output

-~

Figure 7-5. Audio Mixer block diagram

7.5.3 Hardware Overview

The Mixer block has two serial audio input interfaces for two audio streams. One of them
is used for normal audio and the other is for safety tone. The serial audio TDM frame can
contain eight samples of 32 bit each. First six samples are for three stereo DACs. Each

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 287

AR
Audio Mixer (AUDMIX)

DAC takes two samples for left and right channels. The last two samples are extra and
kept for future use. In audio mixing application, the two audio input streams must have
the same number of channels and frame rate. The frame format is shown in the following
figure.

B N A e
SYNC_| | []

DATA [6b Jmsb| [isb Jmsb| [sb [ms] [i& [mb] [0 Jmsb| [sb [m| [0 [msb]|

channel 1 channel 2 channel 3 channel4 channel5 channel6 channel7 channel®
data data data data data data data data

Figure 7-6. Audio TDM serial interface frame

Input TDM frame is de-serialized as 32 bit samples starting from frame pulse in its own
interface bit clock. Each sample passes through the attenuator. Attenuator reduces the
level of audio signal. This process is called attenuation. Attenuation of signal is done by
multiplying the audio sample with an attenuation value. The attenuation value defines the
level of audio signal at the output of attenuator. Attenuation can be enabled or disabled. If
disabled, the audio sample is passed without modification. If enabled, attenuation is done
as per the configuration that defines the attenuation value at different time (called as
attenuation profile).

There are two independent attenuators for two audio streams. Output of two attenuators
are used for mixing. Mixing is done by adding samples of corresponding channels from
two attenuators. The result gives the mixed sample value. It is then quantized to get the
desired width of audio sample. The quantized sample is rounded to form the output
sample. Rounding is done on LSB of quantized sample. The final sample is then
serialized and transmitted in the same frame format like input interfaces with selected bit
clock.

7.5.4 Software Overview

The Audio Mixer driver is designed under ALSA System on Chip (ASoC) layer. The
ASoC driver for Audio Mixer provides two playback devices for AudioMixer inputs and
one capture device to capture the Audio Mixer output. The playback audio format is
liniar PCM 16-bit, 24-bit, or 32-bit wide audio. The captured audio format is linear PCM
audio data, 16-bit, 18-bit, 20-bit, 24-bit, or 32-bit wide.

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
288 NXP Semiconductors

4
Chapter 7 Audio

7.5.4.1 User Interface

Audio Mixer interface is accessible from user space by using the amixer -c <audio mixer
card> tool. The following Audio Mixer controls are exposed to user space.

Table 7-7. Audio Mixer controls

ID Name Type Access Value Default
1 Mixing Clock enum r/w #0 'TDM1', #1 #0 ‘TDM1’
Source "TDM2'
2 Output Source enum r'w #0 'Disabled', #1 #0 'Disabled'
'TDM1', #2 'TDM2',
#3 'Mixed'
3 Output Width enum r/'w #0 '16b', #1 '18b', |#4 '32b'
#2 '20b', #3 '24b',
#4 '32b'
4 Output Clock enum r/w #0 'Positive edge’, |#1 'Negative edge'
Polarity #1 'Negative edge'
5 Frame Rate Diff enum r'w #0 'Unmask’, #1 #0 'Unmask’
Error ‘Mask'
6 Clock Freq Diff enum r/w #0 'Unmask’, #1 #0 'Unmask’
Error ‘Mask'
7 Sync Mode Config |enum r'w #0 'Disabled', #1 #0 'Disabled'
‘Enabled'
8 Sync Mode Clk enum r/'w #0 'TDM1', #1 #0 'TDM1'
Source ‘TDM2'
9 TDM1 Attenuation |[enum r/'w #0 'Disabled', #1 #0 'Disabled'
‘Enabled'
10 TDM1 Attenuation |[enum r/'w #0 'Downward', #1 |#0 'Downward'
Direction ‘Upward'
11 TDM1 Attenuation |int r/'w min=0, max=4095 |0
Step Divider
12 TDM1 Attenuation |int r'w min=0, 262143
Initial Value max=262143
13 TDM1 Attenuation |int r/'w min=0, 174762
Step Up Factor max=262143
14 TDM1 Attenuation |int r'w min=0, 196608
Step Down Factor max=262143
15 TDM1 Attenuation |int A min=0, 16
Step Target max=262143
16 TDM2 Attenuation |enum r/'w #0 'Disabled’, #1 #0 'Disabled'
‘Enabled'
17 TDM2 Attenuation |[enum r’w #0 'Downward', #1 |#0 'Downward'
Direction ‘Upward'
18 TDM2 Attenuation |int r/'w min=0, max=4095 |0
Step Divider
19 TDM2 Attenuation |int r/'w min=0, 262143
Initial Value max=262143

Table continues on the next page...

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 289

PDM Microphone Interface (MICFIL)
Table 7-7. Audio Mixer controls (continued)

ID Name Type Access Value Default

20 TDM2 Attenuation |int r'w min=0, 174762
Step Up Factor max=262143

21 TDM2 Attenuation |int r/w min=0, 196608
Step Down Factor max=262143

22 TDM2 Attenuation |int r'w min=0, 16
Step Target max=262143

7.5.4.2 Source Code Structure

The following table lists the source files for the driver.

Table 7-8. Audio Mixer Driver Files
File Description

Includes file with common defines
Audio Mixer DAI Driver
Audio Mixer Machine Driver

sound/soc/fsl/fsl_amix.h

sound/soc/fsl/fsl_amix.c

sound/soc/fsl/imx-amix.c

Documentation/devicetree/bindings/sound/fsl,amix.txt Audio Mixer device tree bindings documentation

7.5.4.3 Menu Configuration Options
The following Linux kernel configurations are provided for this module:
* CONFIG_SND_IMX_AMIX - Configuration option for the Audio Mixer Driver
* Device Drivers -> Sound card support -> Advanced Linux Sound Architecture ->
ALSA for SoC audio support -> SoC Audio for Freescale .MX CPUs -> SoC Audio
support for 1.MX boards with AMIX

7.6 PDM Microphone Interface (MICFIL)

7.6.1 Introduction

PDM is a popular way to deliver audio from microphones to the processor in several
applications, such as mobile telephones. However, current digital-audio systems use
multibit audio signal (also known as multibit PCM) to represent the signal. For this

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
290 NXP Semiconductors

4
Chapter 7 Audio

purpose, a set of FIR, CIC or/and Half Band filters are usually implemented on DSPs or
software. This module implements the required digital interface to provide a 16-bit audio
signal from a PDM microphone bitstream in a configurable output sampling rate.

7.6.2 Block diagram
The following figure shows the high-level view of the PDM Microphone Interface block.

Hardware Vodce Activity Detector 0

—
Hardware Voice Actily Detector1 |
(—

Al

Al

Hardware Volcs Activity Detector M

i :
: H
: H
L E channal 8 <:> IR |

H 3=

PDM Mic 0 : - Decimation Filter = FIFD Interfacs : Fagate

[P oty s i i
| Input :
R : Intertace | . . '

|rner A
POM Mic 1 : = Decimation Filter = FIFO <:>
L : DMA —.—p—i AR Fquast
i a2 Interace [E——— M4 doe
PDM Mic 2 POM it sim - Decimation Filter ! FIFO <:> i
o i
R : Interface | gumeis :
FOM Mic 3 : = Decimation Filler = FIFO <:> :
| ke e
i - Interface [
L] - :
i vV :
F[.E‘}Qﬂ.
Time Ganeraior

PDM Microphone Interface

Figure 7-7. PDM Microphone Interface block

7.6.3 Hardware Overview

The implementation of this module is based on the application of digital signal
processing techniques in hardware. The PDM Microphone Interface architecture was
designed to gate saving and minimal power consumption. It implements a bunch of filters
to transform a 1-bit PDM bitstream to a 16-bit PCM signal in the audio band.

To avoid aliasing frequencies in passband, the overall filter has 80 dB stopband
attenuation and passband ripple less than 0.2dB. The whole module is implemented to
work in a multichannel mode. All channels have the same configuration but each input
channel could be turned on/off independently.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 291

A ————
PDM Microphone Interface (MICFIL)
The PDM Microphone Interface module is composed by the following:

* An input interface for each pair of PDM microphones

A decimation filter by channel

* A FIFO by channel

* A time generation unit

» Shared interfaces to DMA, interrupts and SoC

* One or more Hardware Voice Activity Detectors (HWVAD).

The Decimation Filter implements a low-pass filter in the audio band (20Hz-22.5KHz
@48KHz output sampling rate by default) with a configurable decimation rate. It is
implemented using an arrange of a CIC, a Half Band, a FIR, and a DC remover filter.

The Time Generator unit generates the PDM clock to the microphones. This clock is the
same for all the PDM microphones and it is active for all the microphones, i.e. there is
not possibility to turn off the PDM clock for one microphone only. It also generates the
timing signals and controls for all the filter blocks. The decimation in the filters is also
controlled by this block. It activates each block and channel and gives the start signal to
FIR FSM and Half Band FSM.

Finally, the output of each Decimation Filter is stored in a FIFO buffer. Each FIFO is
mapped in the DATACHn registers. It is possible to generate either an interrupt or a
DMA request, when in each FIFO of all enabled channels, the number of data stored
surpasses a configured watermark.

7.6.4 Software Overview

The PDM Microphone driver is designed under the ALSA System on Chip (ASoC) layer.
The ASoC driver for PDM Microphone provides one capture device to capture the PDM
Microphone output. The captured audio format is 8-channels 32-bit wide linear PCM
audio data @ 48kHz or 44.1kHz rate.

7.6.4.1 User Interface

PDM Microphone interface is accessible from user space by using the amixer -c¢ <pdm mic
card> tool. Controls are listed in the following table.

Table 7-9. PDM Microphone controls

ID Name Type Access Value Default
CHO Gain int r’w min=0, max=15 15
CH1 Gain int r/'w min=0, max=15 15
CH2 Gain int A min=0, max=15 15

Table continues on the next page...

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
292 NXP Semiconductors

Chapter 7 Audio
Table 7-9. PDM Microphone controls (continued)
ID Name Type Access Value Default
4 CH3 Gain int r’w min=0, max=15 15
5 CH4 Gain int r/'w min=0, max=15 15
6 CH5 Gain int A min=0, max=15 15
7 CH®6 Gain int r/'w min=0, max=15 15
8 CH7 Gain int r/'w min=0, max=15 15
9 MICFIL Quality enum r/w #0 'Medium’, #1 #0 'Medium'
Select 'High', #2 'N/A', #3
‘N/A', #4 'VLow2',
#5 'VLow1', #6
'VLowO', #7 'Low'
10 HWVAD enum r/w #0 'Envelope #0 'Envelope mode'
Initialization Mode mode', #1 'Energy
mode'
11 HWVAD High-Pass |enum r/w #0 'Filter bypass', |#0 'Filter bypass'
Filter #1 'Cut-off
@1750Hz, #2 'Cut-
off @215Hz', #3
'Cut-off @102HZ'
12 HWVAD Zero- enum r/w #0 'OFF', #1 'ON' |#0 'OFF'
Crossing Detector
Enable
13 HWVAD Zero- enum r/'w #0 'OFF', #1 'ON' |#0 'OFF'
Crossing Detector
Auto Threshold
14 HWVAD Noise OR |enum r/'w #0 'Disabled’, #1 #0 'Disabled'
Enable ‘Enabled'
15 HWVAD Sampling |enum riw #0 '48KHZz', #1 #0 '48KHZ'
Rate ‘44 A1KHZ'
16 Clock Source enum r/'w #0 'Auto’, #1 #0 'Auto’
'‘AudioPLL1", #2
‘AudioPLL2', #3
'ExtCIk3'
17 HWVAD Input Gain |int riw min=0, max=15
18 HWVAD Sound int r’w min=0, max=15
Gain
19 HWVAD Noise int r/'w min=0, max=15 0
Gain
20 HWVAD Detector |int r'w min=1, max=64 1
Frame Time
21 HWVAD Detector |int r/'w min=1, max=32 1
Initialization Time
22 HWVAD Noise int r/'w min=1, max=32 1
Filter Adjustment
23 HWVAD Zero- int r'w min=1, max=1024 |1
Crossing Detector
Threshold

Table continues on the next page...

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

NXP Semiconductors

293

PDM Microphone Interface (MICFIL)
Table 7-9. PDM Microphone controls (continued)

ID Name Type Access Value Default
24 HWVAD Zero- int r'w min=1, max=16 1
Crossing Detector
Adjustment

7.6.4.2 Source Code Structure

The following table lists the source files for the driver.

Table 7-10. Audio Mixer Driver Files

File

Description

sound/soc/fsl/fsl_micfil.h

Includes file with common defines

sound/soc/fsl/fsl_micfil.c

PDM Microphone DAI Driver

sound/soc/fsl/imx-micfil.c

PDM Microphone Machine Driver

Documentation/devicetree/bindings/sound/fsl,micfil.txt

PDM Microphone device tree bindings documentation

7.6.4.3 Menu Configuration Options

The following Linux kernel configurations are provided for this module:

* CONFIG_SND_IMX_MICFIL - Configuration option for PDM Microphone Driver
* Device Drivers -> Sound card support -> Advanced Linux Sound Architecture >
ALSA for SoC audio support -> SoC Audio for Freescale .MX CPUs -> SoC Audio

support for 1.MX boards with micfil

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

294

NXP Semiconductors

Chapter 8
Security

8.1 Cryptographic Acceleration and Assurance Module
(CAAM)

8.1.1 CAAM Device Driver Overview

This section discusses implementation specifics of the kernel driver components
supporting CAAM (Cryptographic Acceleration and Assurance Module) within the Linux
kernel.

CAAM's base driver packaging can be categorized on two distinct levels:

» Configuration and Job Execution Level
* API Interface Level

Configuration and Job Execution Level consists of:

* A control and configuration module which maps the main register page and writes
global or system required configuration information.
* A module that feeds jobs through job rings, and reports status.

API Interface Level consists of:

* An interface to the Sctterlist Crypto API supporting asynchronous single-pass
authentication-encryption operations, and common blockciphers - caamaig.

 An interface to the Scatterlist Crypto API supporting asynchronous hashes - caamhasn.

* An interface to the hwrng API supporting use of the Random Number Generator -

caamrng.

8.1.2 Configuration and Job Execution Level

This section has two parts:

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 295

A ————
Cryptographic Acceleration and Assurance Module (CAAM)

 Control/Configuration Driver

* Job Ring Driver

8.1.3 Control/Configuration Driver

The control and configuration driver is responsible for initializing and setting up the
master register page, initializing early-on feature initialization, providing limited debug
and monitoring capability, and generally ensuring that all other dependent driver
subsystems can connect to a correctly-configured device.

Step by step, it performs the following actions at startup:

» Allocates a private storage block for this level.

* Maps a virtual address to the full CAAM register page.

* Maps a virtual address for the SNVS register page.

e Maps a virtual (cache coherent) address for Secure Memory.

» Registers the security violation interrupt.

* Selects the correct DMA address size for the platform, and sets DMA address masks
to match.

* Identifies other pertinent interrupt connections.

* Initializes all job ring instances.

* If the system configuration includes a DPAA Queue Interface, that interface has
frame-pop enabled.

NOTE

1.MX 6 configurations do not contain this logic.

* If the instance contains a TRNG, it's oscillator/entropy configuration is set and then
"kickstarted".

 Configuration information is sent to the system console to indicate that the driver is
alive, and what configuration it has assumed.

» If CONFIG_DEBUG_FS is selected in the kernel configuration, then entries are
added to enable debugfs views to useful registers in the performance monitor.
Register views are accessible under the caam/ctl directory at the debugfs root entry.

8.1.4 Job Ring Driver

The Job Ring driver is responsible for providing job execution service to higher-level
drivers. It takes care of overall management of both input and output rings and interrupt
service driving the output ring.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
296 NXP Semiconductors

4
Chapter 8 Security

One driver call 1s available for higher layers to use for queueing jobs to a ring for
execution:

int caam jr enqueue (struct device *dev, u32 *desc, void (*cbk) (struct device
*dev, u32 *desc, u32 status, void *areq), void *areq) ;

Arguments:

dev Pointer to the struct device associated with the job ring for use. In the current
configuration, one or more struct device entries exist in the controller's private data block,
one for each ring.

gesc Pointer to a CAAM job descriptor to be executed. The driver will map the descriptor
prior to execution, and unmap it upon completion. However, since the driver can't
reasonably know anything about the data referenced by the descriptor, it is the caller's
responsibility to map/flush any of this data prior to submission, and to unmap/invalidate
data after the request completes.

bk Pointer to a callback function that will be called when the job has completed
processing.

areq Pointer to metadata or context data associated with this request. Often, this can
contain referenced data mapping information that request postprocessing (via the
callback) can use to clean up or release resources once complete.

Callback Function Arguments:
dev Pointer to the struct device associated with the job ring for use.
desc Pointer to the original descriptor submitted for execution.

status Completion status received back from the CAAM DECO that executed the request.
Nonzero only if an error occurred. Strings describing each error are enumerated in
error.c.

areq Metadata/context pointer passed to the original request.
Returns:

 Zero on successful job submission
e -EBUSY if the input ring was full
* -EIO if driver could not map the job descriptor

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 297

A ————
Cryptographic Acceleration and Assurance Module (CAAM)

8.1.5 API Interface Level

CAAM module provides a connection through the Scatterlist Crypto API both for
common symmetric blockciphers, and for single-pass authentication-encryption services.
This table lists all installed authentication-encryption algorithms by their common name,

driver name, and purpose. Note that certain platforms, such as 1.MX 6, contain a low-
power MDHA accelerator, which cannot support SHA384 or SHAS512.

Name

Driver Name

Purpose

authenc(hmac(md>5),cbc(aes))

authenc-hmac-md5-cbc-aes-caam

Single-pass authentication/encryption
using MD5 and AES-CBC

authenc(hmac(sha1),cbc(aes))

authenc-hmac-shai-cbc-aes-caam

Single-pass authentication/encryption
using SHA1 and AES-CBC

authenc(hmac(sha224),cbc(aes))

authenc-hmac-sha224-cbc-aes-caam

Single-pass authentication/encryption
using SHA224 and AES-CBC

authenc(hmac(sha256),cbc(aes))

authenc-hmac-sha256-cbc-aes-caam

Single-pass authentication/
encryptionusing SHA256 and AES-CBC

authenc(hmac(sha384),cbc(aes))

authenc-hmac-sha384-cbc-aes-caam

Single-pass authentication/encryption
using SHA384 and AES-CBC

authenc(hmac(sha512),cbc(aes))

authenc-hmac-sha512-cbc-aes-caam

Single-pass authentication/encryption
using SHA512 and AES-CBC

authenc(hmac(md5),cbc(des3_ede))

authenc-hmac-md5-cbcdes3_ede-caam

Single-pass authentication/encryption
using MD5 and Triple-DES-CBC

authenc(hmac(sha1),cbc(des3_ede))

authenc-hmac-sha1-cbc-des3_ede-
caam

Single-pass authentication/encryption
using SHA1 and Triple-DES-CBC

authenc(hmac(sha224),cbc(des3_ede))

authenc-hmac-sha224-cbc-des3_ede-
caam

Single-pass authentication/encryption
using SHA224 and Triple-DES-CBC

authenc(hmac(sha256),cbc(des3_ede))

authenc-hmac-sha256-cbc-des3_ede-
caam

Single-pass authentication/encryption
using SHA256 and Triple-DES-CBC

authenc(hmac(sha384),cbc(des3_ede))

authenc-hmac-sha384-cbc-des3_ede-
caam

Single-pass authentication/encryption
using SHA384 and Triple-DES-CBC

authenc(hmac(sha512),cbc(des3_ede))

authenc-hmac-sha512-cbc-des3_ede-
caam

Single-pass authentication/encryption
using SHA512 and Triple-DES-CBC

authenc(hmac(md>5),cbc(des))

authenc-hmac-md5-cbc-des-caam

Single-pass authentication/encryption
using MD5 and Single-DES-CBC

authenc(hmac(sha1),cbc(des))

authenc-hmac-shai-cbc-des-caam

Single-pass authentication/encryption
using SHA1 and Single-DES-CBC

authenc(hmac(sha224),cbc(des))

authenc-hmac-sha224-cbc-des-caam

Single-pass authentication/encryption
using SHA224 and Single-DES-CBC

authenc(hmac(sha256),cbc(des))

authenc-hmac-sha256-cbc-des-caam

Single-pass authentication/encryption
using SHA256 and Single-DES-CBC

authenc(hmac(sha384),cbc(des))

authenc-hmac-sha384-cbc-des-caam

Single-pass authentication/encryption
using SHA384 and Single-DES-CBC

authenc(hmac(sha512),cbc(des))

authenc-hmac-sha512-cbc-des-caam

Single-pass authentication/encryption
using SHA512 and Single-DES-CBC

This table lists all installed symmetric key blockcipher algorithms by their common
name, driver name, and purpose.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

298 NXP Semiconductors

ecb-3des-caam

Triples DES with a ECB mode wrapper

Chapter 8 Security
Name Driver Name Purpose

cbc(aes) cbc-aes-caam AES with a CBC mode wrapper
cbc(des3_ede) cbc-3des-caam Triple DES with a CBC mode wrapper
cbc(des) cbc-des-caam Single DES with a CBC mode wrapper
ecb(aes) ecb-aes-caam AES with a ECB mode wrapper

(

(

ecb(des) ecb-des-caam Single DES with a ECB mode wrapper
ecb(arc4) ecb-arc4-caam ARC4 with a ECB mode wrapper
ctr(aes) ctr-aes-caam AES with a CTR mode wrapper

Use of these services through the API is exemplified in the common conformance/
performance testing module in the kernel's crypto subsystem, known as tcrypt, visible in
the kernel source tree at crypto/tcrypt.c.

The caamhashmodule provides a connection through the Scatterlist Crypto API both for
common asynchronous hashes.

This table lists all installed asynchronous hashes by their common name, driver name,
and purpose. Note that certain platforms, such as i.MX 6, contain a low-power MDHA

accelerator, which cannot support SHA384 or SHAS512.

Name Driver Name Purpose
sha1 shal-caam SHA1-160 Hash Computation
sha224 sha224-caam SHA224 Hash Computation
sha256 sha256-caam SHA256 Hash Computation
sha384 sha384-caam SHA384 Hash Computation
shab512 shab512-caam SHA512 Hash Computation
md5 md5-caam MD5 Hash Computation
hmac(sha1) hmac-sha1-caam SHA1-160 Hash-based Message
Authentication Code
hmac(sha224) hmac-sha224-caam SHA224 Hash-based Message
Authentication Code
hmac(sha256) hmac-sha256-caam SHA256 Hash-based Message
Authentication Code
hmac(sha384) hmac-sha384-caam SHA384 Hash-based Message
Authentication Code
hmac(sha512) hmac-sha512-caam SHA512 Hash-based Message
Authentication Code
hmac(md>5) hmac-md5-caam MD5 Hash-based Message

Authentication Code

Use of these services through the API is exemplified in the common conformance/
performance testing module in the kernel's crypto subsystem, known as tcrypt, visible in
the kernel source tree at crypto/tcrypt.c.

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020

NXP Semiconductors

299

A
Cryptographic Acceleration and Assurance Module (CAAM)

The caamrng module installs a mechanism to use CAAM's random number generator to
feed random data into a pair of buffers that can be accessed through /dev/hw_random.

/dev/hw_random 18 commonly used to feed the kernel's own entropy pool, which can be used
internally, as an entropy source for other random data "devices".

For more information regarding support for this service, see rng-too1s available in
sourceforge.net/projects/gkernel/files/rng-tools.

8.1.6 Driver Configuration

Configuration of the driver is controlled by the following kernel confguration parameters
(found under Cryptographic API -> Hardware Crypto Devices):

CRYPTO _DEV_FSI, CAAM

Enables building the base controller driver and the job ring backend.

CRYPTO_DEV_FSL_CAAM RINGSIZE

Selects the size (e.g., the maximum number of entries) of job rings. This is selectable as a
power of 2 in the range of 2-9, allowing selection of a ring depth ranging from 4 to 512
entries.

The default selection is 9, resulting in a ring depth of 512 job entries.

CRYPTO_DEV_FSL_CAAM INTC

Enables the use of the hardware's interrupt coalescing feature, which can reduce the
amount of interrupt overhead the system incurs during periods of high utilization.
Leaving this disabled forces a single interrupt for each job completion, simplifying
operation, but increasing overhead.

CRYPTO DEV_FSL_CAAM INTC COUNT THLD

If coalescing is enabled, selects the number of job completions allowed to queue before
an interrupt is raised. This is selectable within the range of 1 to 255. Selecting 1
effectively defeats the coalescing feature. Any selection of a size greater than the job ring
size forces a situation where the interrupt times out before ever raising an interrupt.

The default selection 1s 255.

CRYPTO DEV_FSL_CAAM INTC TIME THLD

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
300 NXP Semiconductors

http://sourceforge.net/projects/gkernel/files/rng-tools

L __4

Chapter 8 Security
If coalescing is enabled, selects the count of bus clocks (divided by 64) before a
coalescing timeout where, if the count threshold has not been met, an interrupt is raised at
the end of the time period. The selection range is an integer from 1 to 65535.

The default selection 1s 2048.

CRYPTO DEV_FSL,_CAAM CRYPTO API

Enables Scatterlist Crypto API support for asynchronous blockciphers and for single-pass
autentication-encryption operations through the API using CAAM hardware for
acceleration.

CRYPTO DEV_FSL CAAM AHASH API

Enables Scatterlist Crypto API support for asynchronous hashing through the API using
CAAM hardware for acceleration.

CRYPTO DEV_FSI, CAAM RNG APT

Enables use of the CAAM Random Number generator through the hwrng API. This can
be used to generate random data to feed an entropy pool for the kernels pseudo-random
number generator.

CRYPTO DEV_FSL_CAAM RNG TEST

Enables a captive test to ensure that the CAAM RNG driver is operating and buffering
random data.

8.1.7 Limitations

* Components of the driver do not currently build and run as modules. This may be
rectified in a future version.

* Interdependencies exist between the controller and job ring backends, therefore they
all must run in the same system partition. Future versions of the driver may separate
out the job ring back-end as a standalone module that can run independently (and
support independent API and SM instances) in its own system partition.

* The full CAAM register page is mapped by the controller driver, and derived
pointers to selected subsystems are calculated and passed to higher-layer driver
components. Partition-independent configurations will have to map their own
subsystem pointers instead.

» Upstream variants of this driver support only Power architecture. This Arm
architecture-specific port is not upstreamed at this time, although portions may be
upstreamed at some point.

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 301

A
Cryptographic Acceleration and Assurance Module (CAAM)

e TRNG kickstart may need to be moved to the bootloader in a future release, so that
the RNG can be used earlier.

* The Job Ring driver has a registration and de-registration functions that are not
currently necessary (and may be rewritten in future editions to provide for shutdown
notifications to higher layers.

* The full CAAM function is exclusive with the Mega/Fast mix off feature in DSM. If
CAAM is enabled, the Mega/Fast mix off feature needs to be disabled, and the user
should "echo enabled > /sys/bus/platform/devices/2100000.aips-bus/2100000.caam/
2101000.jr0/power/wakeup" after the kernel boots up, and then Mega/Fast mix will
keep the power on in DSM.

8.1.8 Limitations in the Existing Implementation Overview

This chapter describes a prototype of a Keystore Management Interface intended to
provide access to CAAM Secure Memory.

Secure memory provides a controlled and access-protected area where critical system
security parameters can be stored and processed in a running system without bus-level
exposure of clear secrets. Secrets can be imported into and exported from secure
memory, but never exported from secure memory in their cleartext form. Instead, secrets
may be exported from secure memory in a covered form, using keys never visible to the
outside.

This driver, with its kernel-level API, exposes a basic interface to allow kernel-level
services access to secure memory functionality. It is split into two pieces:

» Keystore Initialization and Maintenance Interfaces
» Keystore Access Interface

The initialization and maintenance services exist to initialize and define the instance of a
keystore interface. Likewise, the access interface allows kernel-level services to use the
API for management of security parameters.

8.1.9 Initialize Keystore Management Interface

Installs a set of pointers to functions that implement an underlying physical interface to
the keystore subsystem.

In the present release, a default (and hidden) suite of functions implement this interface.
Future implementations of this API may provide for the installation of an alternate
interface. If this occurs, an alternate to this call can be provided.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
302 NXP Semiconductors

4
Chapter 8 Security

void sm _init keystore(struct device *dev);
Arguments:

dev PoOINts to a struct device established to manage resources for the secure memory
subsystem.

8.1.10 Detect Available Secure Memory Storage Units

Returns the number of available units ("pages") that can be accessed by the local instance
of this driver. Intended for use as a resource probe.

u32 sm _detect keystore units(struct device *dev);

Arguments:

dev Points to a struct dgevice established to manage resources for the secure memory
subsystem.

Returns: Number of detected units available for use, O through n - 1 may be used with
subsequent calls to all other API functions.

8.1.11 Establish Keystore in Detected Unit

Sets up an allocation table in a detected unit that can be used for the storage of keys (or
other secrets). The unit will be divided into a series of fixed-size slots, each one of which
i1s marked available in the allocation table. The size of each slot is a build-time selectable
parameter.

No calls to the keystore access interface can occur until sm_estabiish keystore () has been
called.

sm_establish keystore () should follow a call to sm_detect keystore units().

int sm _establish keystore(struct device *dev, u32 unit);

Arguments:

dev Points to a struct device established to manage resources for the secure memory
subsystem.

unit One of the units detected with a call to sm_detect_keystore_units().

Returns:

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 303

A ————
Cryptographic Acceleration and Assurance Module (CAAM)

» Zero on successful return

» -EINVAL if the keystore subsystem was not initialized

» -ENOSPC if no memory was available for the allocation table and associated context
data.

8.1.12 Release Keystore

Releases all resources used by this keystore unit. No further calls to the keystore access
interface can be made.

void sm release keystore(struct device *dev, u32 unit);
Arguments:

dev Points to a struct device established to manage resources for the secure memory
subsystem.

unit One of the units detected with a call to sm_detect_keystore_units().

8.1.13 Allocate a Slot from the Keystore

Allocate a slot from the keystore for use in all other subsequent operations by the
keystore access interface.

int sm keystore slot alloc(struct device *dev, u32 unit, u32 size, u32*slot);

Arguments:

dev Points to a struct device established to manage resources for the secure memory
subsystem.

unit One of the units detected with a call to sm_detect_keystore_units().

size Desired size of data for storage in the allocated slot.

s1ot Pointer to the variable to receive the allocated slot number, once known.
Returns:

» Zero for successful completion.
* -EKEYREJECTED if the requested size exceeds the selected slot size.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
304 NXP Semiconductors

4
Chapter 8 Security

8.1.14 Load Data into a Keystore Slot

Load data into an allocated keystore slot so that other operations (such as encapsulation)
can be carried out upon it.

int sm _keystore slot load(struct device *dev, u32 unit, u32 slot, constu8 *key data, u32
key length) ;

Arguments:

dev Points to a struct device established to manage resources for the secure memory
subsystem.

unit One of the units detected with a call to sm_detect_keystore_units().
xey_length Length (in bytes) of information to write to the slot.

xey_data Pointer to buffer with the data to be loaded. Must be a contiguous buffer.
Returns:

e Zero for successful completion.
» -EFBIG if the requested size exceeds that which the slot can hold.

8.1.15 Demo Image Update

Encapsulate data written into a keystore slot as a Secure Memory Blob.

int sm keystore slot encapsulate(struct device *dev, u32 unit, u32
inslot, u32 outslot, ulé secretlen, u8 *keymod, ulé keymodlen) ;

Arguments:

dev Points to a struct device established to manage resources for the secure memory
subsystem.

unit One of the units detected with a call to sm_detect_keystore_units().

ins1ot Slot holding the input secret, loaded into that slot by sm_keystore_slot_load().
Note that the slot containing this secret should be overwritten or deallocated as soon as
practical, since it contains cleartext at this point.

outsiot Allocated slot to hold the encapsulated output as a Secure Memory Blob.

secretlen Length of the secret to be encapsulated, not including any blob storage overhead
(blob key, MAC, etc.).

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 305

A ————
Cryptographic Acceleration and Assurance Module (CAAM)

xeymod Key modifier component to be used for encapsulation. The key modifier allows an
extra secret to be used in the encapsulation process. The same modifier will also be
required for decapsulation.

xeymodlen Lenth of key modifier in bytes.
Returns:

e Zero on success
 CAAM job status if a failure occurs

8.1.16 Decapsulate Data in the Keystore

Decapsulate data in the keystore into a Black Key Blob for use in other cryptographic
operations. A Black Key Blob allows a key to be used "covered" in main memory
without exposing it as cleartext.

int sm _keystore_slot_decapsulate(struct device *dev, u32 unit, u32
inslot, u32 outslot, ulé secretlen, u8 *keymod, ulé keymodlen) ;

Arguments:

dev Points to a struct device established to manage resourcesfor the secure memory
subsystem.

unit One of the units detected with a call to sm_detect_keystore_units().

ins1ot Slot holding the input data, processed by a prior call to
sm_keystore_slot_encapsulate(), and Containing a Secure Mernory Blob.

outslot Allocated slot to hold the decapsulated output data in the form of a Black Key
Blob.

secretlen Length of the secret to be decapsulated, without any blob storage overhead.
xeymod Key modified component specified at the time of encapsulation.

xeymodlen Lenth of key modifier in bytes.

Returns:

e Zero on success
* CAAM job status if a failure occurs

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
306 NXP Semiconductors

4
Chapter 8 Security

8.1.17 Read Data From a Keystore Slot

Extract data from a keystore slot back to a user buffer. Normally to be used after some
other operation (e.g., decapsulation) occurs.

int sm keystore slot read(struct device *dev, u32 unit, u32 slot, u32
key length, u8 *key data);

Arguments:

dev Points to a struct device established to manage resources for the secure memory
subsystem.

unit One of the units detected with a call to sm_detect_keystore_units().

s1ot Allocated slot to read from.

xey_length Length (in bytes) of information to read from the slot.

xey data Pointer to buffer to hold the extracted data. Must be a contiguous buffer.
Returns:

» Zero for successful completion.
* -EFBIG if the requested size exceeds that which the slot can hold.

8.1.18 Release a Slot back to the Keystore

Release a keystore slot back to the available pool. Information in the store is wiped clean
before the deallocation occurs.

int sm _keystore slot dealloc(struct device *dev, u32 unit, u32 slot);

Arguments:

dev Points to a struct device established to manage resources for the secure memory
subsystem.

unit One of the units detected with a call to sm detect keystore units().
s1ot Number of the allocated slot to be released back to the store.
Returns:

 Zero for successful completion.
* -EINVAL if an unallocated slot is specified.

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 307

A
Cryptographic Acceleration and Assurance Module (CAAM)

Configuration of the Secure Memory Driver / Keystore API is dependent on the
following kernel configuration parameters:

CRYPTO DEV_FSL_CAAM SM

Turns on the secure memory driver in the kernel build.

CRYPTO DEV_FSL_CAAM SM SLOTSIZE

Configures the size of a secure memory "slot".

Each secure memory unit is block of internal memory, the size of which is
implementation dependent. This block can be subdivided into a number of logical "slots
of a size which can be selected by this value. The size of these slots needs to be set to a
value that can hold the largest secret size intended, plus the overhead of blob parameters
(blob key and MAC, typically no more than 48 bytes).

"

The values are selectable as powers of 2, limited to a range of 32 to 512 bytes. The
default value is 7, for a size of 128 bytes.

CRYPTO DEV_FSL_CAAM SM TEST

Enables operation of a captive test / example module that shows how one might use the
API, while verifying its functionality. The test module works along this flow:

* Creates a number of known clear keys (3 sizes).

* Allocated secure memory slots.

* Inserts those keys into secure memory slots and encapsulates.

» Decapsulates those keys into black keys.

* Enrcrypts DES, AES128, and AES256 plaintext with black keys. Since this uses
symmetric ciphers, same-key encryption/decryption results will be equivalent.

* Decrypts enciphered buffers with equivalent clear keys.

* Compares decrypted results with original ciphertext and compares. If they match, the
test reports OK for each key case tested.

Normal output is reported at the console as follows:

platform caam sm.0: caam sm test: 8-byte key test match OK platform
caam_sm.0: caam_sm test: 1l6-byte key test match OK platform caam sm.0:
caam_sm_test: 32-byte key test match OK

* The secure memory driver is not implemented as a kernel module at this point in
time.
* Implementation is presently limited to kernel-mode operations.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
308 NXP Semiconductors

L __4
Chapter 8 Security
* One instance is possible at the present time. In the future, when job rings can run
independently in different system partitions, a multiple instance secure memory
driver should be considered.
 All storage requests are limited to the storage size of a single slot (which is of a
build-time configurable length). It may be possible to allow a secret to span multiple
slots so long as those slots can be allocated contiguously.
* Slot size is fixed across all pages/partitions.
» Encapsulation/Decapsulation interfaces could allow for authentication to be
specified; the underlying interface does not request it.
* Encapsulation/Decapsulation interfaces return a job status; this status should be
translated into a meaningful error from errno.n

8.1.19 CAAM/SNVS - Security Violation Handling Interface
Overview

This chapter describes a prototype of a driver component and control interface for SNVS
Security Violations. It provides a means of installing, managing, and executing
application defined handlers meant to process security violation events as a response to
their occurrence in a system.

SNVS allows for the continuous monitoring of a number of possible attack vectors in a
running system. If the occurrence of one of these attach vectors is sensed, (e.g., a Security
Violation has been detected), SNVS can, along with erasing critical security parameters
and transitioning to a failure state. generate an interrupt indicating that the violation has
occurred. This interrupt can dispatch an application-defined routine to take cleanup action
as a consequence of the violation, such that an orderly shutdown of security services
might occur.

Therefore, the purpose of this interface is to allow system-level services to install
handlers for these types of events. This allows the system designer to select how he wants
to respond to specific security violation causes using a simple function call written to his
system-specific requirements.

8.1.20 Operation

For existing platforms, 6 security violation interrupt causes are possible within SNVS. 5
of these violation causes are normally wired for use, and these causes are defined as:

e SECVIO_CAUSE_CAAM_VIOLATION - Violation detected inside CAAM/SNVS
* SECVIO_CAUSE JTAG_ALARM - JTAG activity detected
* SECVIO_CAUSE_WATCHDOG - Watchdog expiration

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 309

A ————
Cryptographic Acceleration and Assurance Module (CAAM)

 SECVIO_CAUSE_EXTERNAL_BOQOT - External bootload activity
* SECVIO_CAUSE_TAMPER_DETECT - Tamper detection logic triggered

Each of these causes can be associated with an application-defined handler through the
API provided with this driver. If no handler is specified, then a default handler will be
called. This handler does no more than to identify the interrupt cause to the system
console.

8.1.21 Configuration Interface

The following interface can be used to define or remove application-defined violation
handlers from the driver's dispatch table.

8.1.22 Install a Handler

int caam_secvio_install handler (struct device *dev, enum secvio_cause
cause, void (*handler) (struct device *dev, u32 cause, void *ext), u8
*cause description, void *ext);

Arguments:
dev Points to SNVS-owning device.
cause Interrupt source cause from the above list of enumerated causes.

nandler Application-defined handler, gets called with dev, source cause, and locally-
defined handler argument

cause_description Points to a string to override the default cause name, this can be used as
an alternate for error messages and such. If left NULL, the default description string is
used. ext pointer to any extra data needed by the handler.

Returns:

 Zero on success.
e -EINVAL if an argument was invalid or unusable.

8.1.23 Remove an Installed Driver

int caam_secvio_remove_handler (struct device *dev, enum secvio_cause
cause) ;

Arguments:

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
310 NXP Semiconductors

4
Chapter 8 Security

dev Points to SNVS-owning device.
cause Interrupt source cause.
Returns:

 Zero on success.
e -EINVAL if an argument was invalid or unusable.

8.1.24 Driver Configuration CAAM/SNVS

CRYPTO DEV_FSL_CAAM SECVIO

Enables inclusion of Security Violation driver and configuration interface as part of the
build configuration. The driver is not buildable as a module in its present form.

8.2 Display Content Integrity Checker (DCIC)

8.2.1 Introduction

The goal of the DCIC is to verify that a safety-critical information sent to a display is not
corrupted.

The DCIC has the following features:

* Pixel clock up to 148.5 MHz

* Configurable polarity of Display Interface control signals

* 24-bit pixel data bus

* Up to 16 rectangular ROIs with a configurable location and size
* Independent CRC32 signature calculation for each ROI

» External controller mismatch indication signal

8.2.2 Source Code Structure
Table 8-1. DCIC Driver Files

File Description

drivers/video/fbdev/mxc/mxc_dcic.c DCIC driver source code

include/uapi/linux/mxc_dcic.h DCIC User Space Header

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 311

Display Content Integrity Checker (DCIC)

8.2.3 Menu Configuration Options
In menu configuration enable the following module:

Device Drivers -> Graphics support -> MXC DCIC

8.2.4 DTS Configuration

dcic_id = <0>; /* DCIC device index 0-dcicl, i-dcic2 */

dcic_mux = "dcic-lcdifl"; /* DCIC input select */
Table 8-2. DCIC Input Select
Module i.MX 6SoloX i.MX 6Dual/6Quad
DCICA dcic_lIvds dcic-ipu0-di1
dcic_lcdif1 dcic-lvds0
dcic-lvds1
dcic-hdmi
DCIC2 dcic_lvds dcic-ipu0-diO/dcic-ipu1-di0
dcic_lcdif2 dcic-lvds0
dcic-lvds1
dcic-mipi_dpi

8.2.5 I0CTLs Functions
The DCIC driver supports the following IOCTLs:

* DCIC_IOC_CONFIG_DCIC: Configures the DCIC input CLK, VSYNC, HSYNC,
and data signal polarity.

* DCIC_IOC_CONFIG_ROI: Configures the ROI block size and reference signature.

* DCIC_IOC_GET_RESULT: Gets the result of the ROI calculated signature.

8.2.6 Structures

struct roi params {

unsigned int roi n; /* ROI index */

unsigned int ref sig; /* Reference CRC32 */

unsigned int start_y; /* start vertical lines of ROI */
unsigned int start x; /* start horizon lines of ROI */
unsigned int end_ y; /* end vertical lines of ROI */
unsigned int end x; /* end horizon lines of ROI */

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
312 NXP Semiconductors

4
Chapter 8 Security

char freeze; /* state of ROI */

}i

8.2.7 DCIC CRC Calculation Functions

There are four functions in this unit test to calculate reference signature:

crc32 calc 18of24bit () /* CRC calculate 18 bit of 24 */
crc32 _calc 24bit() /* CRC calculate 24 */
crc32 calc 24o0fl6bit() /* CRC calculate 24 bit of 16 */

crc32_calc_18ofl6bit () /* CRC calculate 18 bit of 16 */

DCIC calculates CRC according to the display bus width, but the display bus width does
not always align with bytes per pixel (bpp), and the four functions above can cover
different display bus widths and bpps.

8.3 Smart Card Interface - Subscriber Identification Module
(SIM)

8.3.1 Introduction

The Subscriber Identification Module (SIM) is designed to facilitate communication to
SIM cards or Eurochip prepaid phone cards, and compatible with ISO/IEC 7816-3
standards. The SIM module has one port that can be used to interface with various cards.
The interface with the Micro Controller Unit (MCU) is a 32-bit connection as described
in the reference document IP Bus Specification.

8.3.2 Modes of Operation

The SIM module I/O interface can be operated in one of the three modes of operation
summarized below.
» Two-wire interface: Both the IC pin RX and TX are used to interface to the
SmartCard.
» External one-wire interface: The IC pins RX and TX are tied together externally to
the IC and routed to the SmartCard.

* Internal one-wire interface: The IC pin TX is routed to the SmartCard. The receive
pin RX is connected to the TX pin internally to the IC.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 313

Smart Card Interface - Subscriber Identification Module (SIM)

8.3.3 External Signal Description

e SIM_CLK: clock that the SIM module provides for the SmartCard. Typical
frequencies are 1 MHz to 5 MHz. This clock is 372 times the data rate that is on pin

SIM_TRXD.

* SIM_RST_B: reset signal from the SIM to the SmartCard.

e SIM_SVEN: SmartCard power supply enable control signal.
e SIM_TRXD: transmitted/received date from SIM module to SmartCard.
e SIM_PD: SmartCard insertion detect.

8.3.4 Source Code Structure

Table 8-3. SIM Source

File

Description

drivers/mxc/sim/imx_sim.c

SIM Driver

drivers/mxc/sim/imx_envsim.c

SIM Env

8.3.5 Menu Configuration Options

Configure the kernel option to enable the module by menuconfig:

Device Drivers > MXC support drivers > MXC SIM Support

8.3.6 Software Framework
The following figures show the SIM TX and RX software flows.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

314

NXP Semiconductors

Chapter 8 Security
SIM TOCTL XMT o Set baud rate
¥ ¥
Copy xmt_len from T0:nack enable
user T1l:nack disable

L
Len>XMT_BUFFER

-EINVAL break

Set timer counter

L L4
Copy xmt huffer
from user

Wait for comletion

Clear rx buffer

Int timeout
L L 4
Dl;:l;];w:m Irg hander
L 3 L
Flush RX and TX Copy errval to
fifo user
L L
XMT £ill fifo Set Roving state

Start Tcv

Figure 8-1. SIM transmitting flow

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 315

Secure Non-Volatile Storage (SNVS)

SIM IOCTL RCV

l

LCopy rev_len from
ILSET

l

Lopy to user
rev_len=l, errval=0

|

rov_cntrexpected c
nt goto cp_data

Enahle cwtihwt
Y — State=RCVING
Start rov

Change RV
threshold

Wait for comletion
Int timeout

diszable cwidbwt
—— Irg disable
Errval=-timeocut

Copy data

|

Copy Lo user
rev_ent

|

Copy Lo user rev
buflfer

I

Lopy to user
errval

!

Copy errval to
user

Rev_head4=copy_cnt
Rev_ecnt==copy_cnt

Figure 8-2. SIM receiving flow

8.4 Secure Non-Volatile Storage (SNVS)

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
316 NXP Semiconductors

4
Chapter 8 Security

8.4.1 Introduction

For more information on Secure Non-Volatile Storage (SNVS), see the 1.MX Security
Manual for the associated SoC.

SNVS is a block that interfaces with CAAM and SRTC.
For SNVS services related to CAAM, see Section Driver Configuration CAAM/SNVS.

For SNVS services related to srtc, see Section SRTC Introduction

8.5 SNVS Real Time Clock (SRTC)

8.5.1 Introduction

The Real Time Clock (RTC) module is used to keep the time and date. It provides a
certifiable time to the user and can raise an alarm if tampering with counters is detected.

8.5.2 Hardware Operation

The RTC is a fake timer provided by the system controller firmware. It only supports
basic function of read/set time, read/set alarm.

8.5.3 Software Operation

The following sections describe the software operation of the RTC driver.

8.5.4 Driver Features
The RTC driver includes the following features:

* Implements the functions required by Linux OS to provide the real time clock and
alarm interrupt
* Alarm wakes up the system from low power modes

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 317

SNVS Real Time Clock (SRTC)
8.5.5 Source Code Structure

The RTC module is implemented in drivers/rtc.

Table 8-4. RTC Driver Files

File Description
drivers/rtc/rtc-imxdi.c MX6 RTC driver
drivers/rtc/rtc-imx-sc.c MX8 RTC System Controller driver
drivers/rtc/rtc-imx-rpmsg.c RPMSG RTC driver

8.5.6 Menu Configuration Options
In menu configuration enable the following module:

For 1.MX 6 select Device Drivers > Real Time Clock > Freescale IMX Drylce Real Time
Clock

For 1.MX 8 with SC select Device Drivers > Real Time Clock > NXP SC RTC support
For RPMSG select Device Drivers > Real Time Clock > NXP RPMSG RTC support

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
318 NXP Semiconductors

Chapter 9
NXP elQ Machine Learning

9.1 Overview of NXP elQ Machine Learning

9.1.1 Introduction (ML)

Machine learning (ML) is a computer science domain having its roots in the 1960's. ML
provides algorithms capable of finding patterns and rules in data. ML is a category of
algorithm that allows software applications to become more accurate in predicting
outcomes without being explicitly programmed. The basic premise of ML is to build
algorithms that can receive input data and use statistical analysis to predict an output
while updating outputs as new data becomes available. In 2010, a huge boom started
called Deep Learning - it is a fast-growing subdomain of ML, based on Neural Networks
(NN). Inspired by the human brain, Deep Learning has achieved state of the art results in
various tasks (e.g. computer vision (CV), natural language processing (NLP). Neural
Nets are capable of learning complex patterns from millions of examples. Huge
adaptation in the embedded world is expected — an area where NXP is a leader.
Continuing the effort of enabling its customers, NXP has created NXP® eIQ™ for i. MX,
a set of ML tools which allows developing and deploying ML applications on i.MX 8
QuadMax devices. This chapter contains an overview of specific areas of NXP elQ
machine learning technology. For detailed execution of machine learning commands, see
the 1.MX Linux User's Guide.

9.1.2 OpenCV

OpenCV is an open source computer vision library and one of its modules, called ML,
provides traditional machine learning algorithms. Another important module in OpenCV
1s DNN; it provides support for neural network algorithms.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 319

A
Overview of NXP elQ Machine Learning

OpenCV offers a unified solution for both neural network inference (DNN module) and
classic machine learning algorithms (ML module). By including many computer vision
functions OpenCV makes it easier to build complex machine learning applications in a
short amount of time and without having dependencies on other libraries.

OpenCV has wide adoption in the Computer Vision field and is supported by a strong
and very active community. Key algorithms are specifically optimized for various
devices and instructions sets. For 1.MX, OpenCV uses Arm NEON acceleration. Arm
Neon technology is an advanced SIMD (single instruction multiple data) architecture
extension for the Arm Cortex-A series. Neon technology is intended to improve the
multimedia user experience by accelerating audio and video encoding/decoding, user
interface, 2D/3D graphics or gaming. Neon can also accelerate signal processing
algorithms and functions to speed up applications such as audio and video processing,
voice and facial recognition, computer vision and deep learning.

At its core, the OpenCV DNN module implements an inference engine and does not
provide any functionalities for neural network training. For more details about supported
models and supported layers, check the official OpenCV Deep Learning page.

The OpenCV ML module contains classes and functions for solving machine learning
problems e.g. classification, regression or clustering. It involves algorithms such as
support vector machine (SVM), decision trees, random trees, expectation maximization,
k-nearest neighbors, classic Bayes classifier, logistic regression, and boosted trees.

9.1.3 Arm Compute

The Arm Compute Library is a collection of low-level functions optimized for Arm CPU
and GPU architectures targeted at image processing, computer vision, and machine
learning. Arm computer is a convenient repository of optimized functions that developers
can source individually or use as part of complex pipelines to accelerate algorithms and
applications. Arm compute library also supports NEON acceleration. ARM computer can
be shown with examples using DNN models with random weights and inputs and
AlexNet using the graph APL.

9.1.4 TensorFlow Lite

TensorFlow Lite is a light-weight version of and a next step from TensorFlow.
TensorFlow Lite is an open-source software library focused on running machine learning
models on mobile and embedded devices (available at www.tensorflow.org/lite). It
enables on-device machine learning inference with low latency and small binary size.
TensorFlow Lite also supports hardware acceleration using Android OS Neural Networks

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
320 NXP Semiconductors

https://github.com/opencv/opencv/wiki/Deep-Learning-in-OpenCV
https://www.arm.com/why-arm/technologies/compute-library

L __4

Chapter 9 NXP elQ Machine Learning
API. TensorFlow Lite supports a set of core operators (both quantized and floating point)
tuned for mobile platforms. They incorporate pre-fused activations and biases to further
enhance the performance and quantized accuracy. Additionally, TensorFlow Lite also
supports the use of custom operations in models.

TensorFlow Lite defines a new model file format, based on FlatBuffers. FlatBuffers is an
open-source, efficient, cross-platform serialization library. It is similar to protocol
buffers, but the primary difference is that FlatBuffers does not need a parsing/unpacking
step for a secondary representation before you can access the data, often coupled with
per-object memory allocation. Also, the code footprint of FlatBuffers is an order of
magnitude smaller than protocol buffers.

TensorFlow Lite has a new mobile-optimized interpreter, which has the key goal to keep
apps lean and fast. The interpreter uses static graph ordering and a custom (less-dynamic)
memory allocator to ensure minimal load, initialization, and execution latency.

9.1.5 Arm NN

Arm NN is an open source inference engine framework developed by Arm and
supporting a wide range of neural network model formats:

» Caffe

* TensorFlow

» TensorFlow Lite

 ONNX

For 1.MX 8, Arm NN runs on CPU with NEON and has multicore support. Arm NN does
not currently support the i.MX 8 GPUs due to Arm NN OpenCL requirements which are
not met by .MX8 GPUs. For more details about Arm NN, check the official Arm NN
SDK webpage.

9.1.6 ONNX Runtime

ONNX Runtime is an open source inference engine framework developed by Microsoft
supporting ONNX model format. ONNX Runtime runs on CPU with NEON and has
multicore support and does not currently support the i.MX 8 GPUs due to the lack of
OpenCL support. For more details about ONNX Runtime, check the official ONNX
Runtime project webpage.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 321

https://developer.arm.com/ip-products/processors/machine-learning/arm-nn
https://developer.arm.com/ip-products/processors/machine-learning/arm-nn
http://onnx.ai/
https://github.com/microsoft/onnxruntime
https://github.com/microsoft/onnxruntime

Overview of NXP elQ Machine Learning

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
322 NXP Semiconductors

Chapter 10
Unit Tests

10.1 System

10.1.1 OProfile

10.1.1.1 Test Name

* autorun-oprofile.sh

10.1.1.1.1 Location

/unit_tests/OProfile/

10.1.1.1.2 Functionality

OProfile is a system-wide profiler capable of profiling all running code at low overhead.
OProfile consists of a kernel driver, a daemon for collecting sample data, and several
post-profiling tools for turning data into information.

10.1.1.1.3 Configuration

None

10.1.1.1.4 Use Case and Expected Output

./autorun-oprofile.sh

10.1.2 Owire

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 323

System

10.1.2.1 Test Name

e autorun-owire.sh

10.1.2.1.1 Location

/unit_tests/OWire/

10.1.2.1.2 Functionality
Test EEPROM functionality.

10.1.2.1.3 Configuration

None

10.1.2.1.4 Use Case and Expected Output

./autorun-owire.sh

10.1.3 Power Management

10.1.3.1 Test Name

* /unit_tests/Power_Management/suspend_random_auto.sh
* /unit_tests/Power_Management/suspend_quick_auto.sh

10.1.3.1.1 Location

/unit_ tests/Power Management/

10.1.3.1.2 Functionality

Enables low power mode on and wakes up the different cores on all .MX boards..

10.1.3.1.3 Configuration

None

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
324 NXP Semiconductors

4
Chapter 10 Unit Tests

10.1.4 Remote Processor Messaging

10.1.4.1 Test Name

* mxc_mcc_tty_test.out

10.1.4.1.1 Location

/unit_ tests/Remote Processor Messaging

10.1.4.1.2 Functionality

Test communication between Cortex-A and Cortex-M cores.

10.1.4.1.3 Use Case and Expected Output

Run the following command and ensure that the RPMsg TTY receiving program is
running at the backend when starting RPMsg TTY tests.

./mxc_mcc_tty test.out /dev/ttyRPMSG30 115200 R 100 1000 &

Expected output:

mxc_mcc_tty test.out:

insmod imx rpmsg_tty.ko

imx rpmsg_tty rpmsg0: new channel: 0x400 -> Ox1!
Install rpmsg tty driver!

echo deadbeaf > /dev/ttyRPMSG30

imx rpmsg_tty rpmsg0: msg(<- src 0x1l) deadbeaf len 8

Uy Uy Uy Uy r

10.1.5 Watchdog (WDOG)

10.1.5.1 Test Name

* autorun-wdog.sh
e wdt_driver_test.out

10.1.5.1.1 Location

/unit_tests/Watchdog/

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 325

A ————
Storage

10.1.5.1.2 Functionality

Tests the Watchdog Timer module which protects against system failures by providing an
escape from unexpected hang, infinite loop situations or programming errors.

10.1.5.1.3 Configuration

None

10.1.5.1.4 Use Case and Expected Output

Use case
./autorun-wdog.sh

or
./wdt_driver test.out 1 2 0 &
Expected output

This should generate a reset after 3 seconds (a 1 second time-out and a 2 second sleep).

or
./wdt_driver test.out 2 1 0

The system should keep running without being reset. This test requires the kernel to be
executed
with the "jtag=on" on some platforms. Press "Ctrl+C" to terminate this test program.

10.2 Storage

10.2.1 Media Local Bus

10.2.1.1 Test Name
e mxc_mlb150 test

10.2.1.1.1 Location

/unit_tests/Media Local Bus/

10.2.1.1.2 Functionality

MedialLB is an on-PCB or inter-chip communication bus specifically designed to
standardize a common hardware interface and software API library.

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
326 NXP Semiconductors

L __4
Chapter 10 Unit Tests

10.2.1.1.3 Configuration

In menu configuration enable the following module:

Device Drivers > MXC support drivers > MXC Media Local Bus Driver > MLB support

Test only supported on 1.MX6SX, 1.MX6QP, .MX6Q, .MX6DL

10.2.1.1.4 Use Case and Expected Output

./mxc_mlbl50 test [-v] [-h] [-b] [-f fps] [-t casetype] [-g sync quadlets] [-p isoc
packet length]\n"

-v verbose

-h help

-b block io test

-f FPS, 256/512/1024/2048/3072/4096/6144

-t CASE, CASE can be 'sync', 'ctrl', 'async',6 'isoc'

-g SYNC QUADLETS, quadlets per frame in sync mode, can be 1, 2, or 3

-p Packet length, package length in isoc mode, can be 188 or 196

10.2.2 MMC/SD/SDIO Host

10.2.2.1 Test Name

e autorun-mmc-blockrw.sh
e autorun-mmc-fdisk.sh

e autorun-mmc-fs.sh

e autorun-mmec-mkfs.sh

e autorun-mmc.sh

10.2.2.1.1 Location

/unit_tests/MMC_SD_SDIO/

10.2.2.1.2 Functionality
The conjunction of MMC SD SDIO tests exercise the following instructions:
* MMC/SD read write test.
» MMC/SD block read write test.
* MMC/SD fdisk test.
* MMC/SD file system test.
* MMC/SD mkfs test.

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 327

A ————
Storage

10.2.2.1.3 Configuration

None

10.2.2.1.4 Use Case and Expected Output

All test return "Pass" if successful.

./autorun-mmc-blockrw. sh
./autorun-mmc-fdisk.sh
./autorun-mmc-fs.sh
./autorun-mmc-mkfs.sh
./autorun-mmc.sh

10.2.3 MMDC

10.2.3.1 Test Name

e mmdc?2

10.2.3.1.1 Location

/unit_tests/MMDC/

10.2.3.1.2 Functionality
MMDC profiling utility.

10.2.3.1.3 Configuration
The following parameters allow to customize the mmcd2 test:
» export MMDC_SLEEPTIME - define profiling duration (500ms by default)
» export MMDC_LOOPCOUNT - define profiling times (1 by default, -1 means
infinite loop)
* export MMDC_CUST_MADPCRI1 - customize madpcrl

10.2.3.1.4 Use Case and Expected Output
The expected output will print the profiling results

./mmdc2 [ARM:DSP1:DSP2:GPU2D:GPU2D1 :GPU2D2 : GPU3D: GPU3D2 : GPUVG:VPU: M4 : PXP: USB: SUM]

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
328 NXP Semiconductors

4
Chapter 10 Unit Tests

10.2.4 SATA

10.2.4.1 Test Name

e autorun-ata.sh

10.2.4.1.1 Location

/unit_tests/SATA/

10.2.4.1.2 Functionality

This test writes data to the SATA drive connected to the SATA connector on the 1.MX
board. The data is then read back and compared to what was written.

10.2.4.1.3 Configuration

Module required: pata_fsl.ko. Hardware required: SATA drive. Only i.MX 6 Quad and
QuadPlus have SATA support.

10.2.4.1.4 Use Case and Expected Output

./autorun-ata.sh

Expected output
Test should return "HDD test passes" if successful.

10.3 Connectivity

10.3.1 Enhanced Configurable Serial Peripheral Interface (ECSPI)

10.3.1.1 Test Name

* mxc_spi_testl.out

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 329

Connectivity

10.3.1.1.1 Location

/unit_ tests/ECSPI/

10.3.1.1.2 Functionality

This test sends bytes of the last parameter to a specific SPI device. The maximum transfer
bytes are 4096 bytes for bits per word less than 8(including 8), 2048 bytes for bits per
word between 9 and 16, 1024 bytes for bits per word larger than 17(including 17). SPI
writes data received data from the user into Tx FIFO and waits for the data in the Rx
FIFO. Once the data is ready in the Rx FIFO, it is read and sent to user.

10.3.1.1.3 Configuration

For the i.MX 6QuadPlus/Quad/Dual auto boards this requires the ecspi device tree. This
feature is disabled with default device tree.

10.3.1.1.4 Use Case and Expected Output

./mxc_spi testl.out -D 0 -s 1000000 -b 8 E6E0

./mxc_spi testl.out -D 1 -s 1000000 -b 8 -H -O -C E6EOE6E00001E6E00000
Usage:

./mxc_spi testl.out [-D spi no] [-s speed] [-b bits per word] [-H] [-0] [-C] $1lt;value>
<spi no> - CSPI Module number in [0, 1, 2]

<speed> - Max transfer speed

<bits_per_word> - bits per word

-H - Phase 1 operation of clock

-0 - Active low polarity of clock

-C - Active high for chip select

<value> - Actual values to be sent

10.3.2 ETM

10.3.2.1 Test Name

* ctm

10.3.2.1.1 Location

/unit_tests/ETM/

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
330 NXP Semiconductors

4
Chapter 10 Unit Tests

10.3.2.1.2 Functionality

Embedded Trace Macrocell, The ETM is an optional debug component that enables
reconstruction of program execution. The ETM is designed as a high-speed, low-power
debug tool that only supports instruction trace. This ensures that area is minimized, and
that gate count is reduced.

10.3.2.1.3 Configuration

10.3.2.1.4 Use Case and Expected Output

./etm -h
Usage: ./etm [options]
Options:

--etm-3.3 ETM v3.3 trace data

--etm-3.4-alt-branch ETM v3.4 trace data with alternative branch encoding
--pft-1.1 PFT v1.1 trace data

--cycle-accurate Cycle-accurate tracing was enabled (Default 1)
--contextid-bytes Number of Context ID bytes (Default 4)

--formatter Enable Formatter Unpacking

--sourceid-match Enable Source ID from formatter. Also enables formatter
--print-long-waits Highlight long waits

--print-input Print input data

--print-config Print configuration data

--help Print usage information

10.3.3 Inter-IC (12C)

10.3.3.1 Test Name

* mxc_i2c_slave_test.out

10.3.3.1.1 Location

/unit_tests/I2C/

10.3.3.1.2 Functionality

10.3.3.1.3 Configuration

None

10.3.3.1.4 Use Case and Expected Output

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 331

Connectivity

10.3.4 1IM

10.3.4.1 Test Name

* mxc_1lim_test.out

10.3.4.1.1 Location

/unit_tests/IIM Driver/

10.3.4.1.2 Functionality

This test can read an 1im value from a bank or fuse a value to a bank

10.3.4.1.3 Configuration

None

10.3.4.1.4 Use Case and Expected Output
For both read and fuse test input values should be in hex format.

Below is the usage for the read case.
./mxc_iim test read -d <bank addrs>

<bank addr> - bank address in fuse map file.
read - Indicate that this is a read operation.

Example:
./mxc_iim test.out read -d 0xc30

Below is the usage for the fuse case.

./mxc_iim test fuse -d <bank addr> -v <values>
<bank addr> - bank address in fuse map file.
<value> - Value to be writen to a bank.

fuse - Indicate that this is a write operation.

Example:
./mxc_iim test.out fuse 0xc30 -v 0x40

10.3.5 Keyboard

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
332 NXP Semiconductors

10.3.5.1 Test Name

* autorun-keypad.sh
* mxc_keyb_test.sh

10.3.5.1.1 Location

/unit_tests/Keyboard/

10.3.5.1.2 Functionality

Tests keyboard input via USB.

10.3.5.1.3 Configuration

Connect Keyboard to USB OTG port.

10.3.5.1.4 Use Case and Expected Output

./autorun-keypad.sh

Outputs:
Print "PASS" status

./mxc_keyb test.sh

Output:

An event will occur when a key is pressed

Chapter 10 Unit Tests

10.3.6 Low Power Universal Asynchronous Receiver/Transmitter

(LPUART)

10.3.6.1 Test Name

e autorun-mxc_uart.sh

* mxc_uart_stress_test.out
e mXxc_uart_test.out

* mxc_uart_xmit_test.out

10.3.6.1.1 Location

/unit_tests/UART/

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020

NXP Semiconductors

333

Connectivity

10.3.6.1.2 Functionality

These tests excercise the low-level UART driver whihc is responsible for supplying
information such as the UART port information and a set of control functions to the core
UART driver.

10.3.6.1.3 Configuration

None

10.3.6.1.4 Use Case and Expected Output

./autorun-mxc_uart.sh
./mxc_uart stress test.out /dev/ttymxc#
./mxc_uart_test.out /dev/ttymxc#
./mxc_uart xmit test.out /dev/ttymxc#

10.3.7 USB

10.3.7.1 Test Name

e autorun-usb-gadget.sh
e autorun-usb-host.sh

10.3.7.1.1 Location

/unit_tests/USB/

10.3.7.1.2 Functionality

This tests excerise the universal serial bus (USB) driver which implements a standard
Linux driver interface to the CHIPIDEA USB-HS OTG controller. The USB provides a
universal link that can be used across a wide range of PC-to-peripheral interconnects. It
supports plug-and-play, port expansion, and any new USB peripheral that uses the same
type of port.

10.3.7.1.3 Configuration

Modules required:
* /lib/modules/$(kernel_version)/kernel/drivers/usb/gadget/g_ether.ko
* /lib/modules/$(kernel_version)/kernel/drivers/usb/gadget/arcotg_udc.ko
e /lib/modules/$(kernel_version)/kernel/drivers/usb/host/ehci-hcd. ko

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
334 NXP Semiconductors

10.3.7.1.4 Use Case and Expected Output

./autorun-usb-gadget.sh
or
./autorun-usb-host.sh

10.4 Graphics

10.4.1 Graphics Processing Unit (GPU)

1.MX 8M Plus VPU Encoder Library is imx-hantro-vc.so.

10.4.1.1 Test Name

* gpu.sh
* gpuinfo.sh

10.4.1.1.1 Location

/unit_tests/GPU

10.4.1.1.2 Functionality
GPU function test
* tutorial3: test OpenGL ES 1.1 basic function
* tutorial4_es20: test OpenGL ES 2.0 basic function
e tiger: test OpenVG 1.1 basic function
* tvui: test Raster 2D and LibVivanteDK API

10.4.1.1.3 Configuration

Chapter 10 Unit Tests

For gpu.sh and gpuinfo.sh to work add the following line to the target board defconfig

file:
* CONFIG_MXC_GPU_VIV=y

Hardware required: LVDS Display Panel and i.MX SoC with a GPU

10.4.1.1.4 Use Case and Expected Output

./gpu.sh

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

NXP Semiconductors

335

A ————
Graphics

- Expected output are frames are drawn properly on screen
e tutorial3: a cube with texture rotating in the middle of the screen
* tutorial4_es20: draws a glass sphere inside a big sphere (enviroment mapping). The
glass sphere shows both reflection and refraction effects.
* tiger: a tiger spinning on the screen.
e tvui: draws several movie clips and a tv control panel.

Example output is:

./gpu.sh

---- Running < gpu.sh > test ----

/unit_tests/GPU /unit_tests/GPU

Rendered 100 frames in 624 milliseconds: 160.26 fps

id=43, a,b,g,r=0,8,8,8, d,s=16,0, AA=0,openvgbit=71

frames:100 -- fps:58.997051

press ESC to escape...

./gpu.sh: line 28: cd: /opt/viv_samples/hal/: No such file or directory
/unit_tests/GPU

---- Test < gpu.sh > ended ----

./gpuinfo.sh

- Information about GPU is printed on console.

./gpuinfo.sh

---- Running < gpuinfo.sh > test ----
GPU Info

gpu : O

model : 2000

revision : 5108

product : O

eco : O

gpu : 8

model : 320

revision : 5007

product : O

eco : O

gpu : 9

model : 355

revision : 1215

product : 0

eco : 0

VIDEO MEMORY :

gcvPOOL_SYSTEM:

Free : 134217728 B

Used : 0 B

Total : 134217728 B

gcvPOOL_CONTIGUOUS:

Used : 0 B

gcvPOOL _VIRTUAL:

Used : 0 B

NON PAGED MEMORY:

Used : 0 B

Paged memory Info

lowMem: 0 bytes

highMem: 0 bytes

CMA memory info

cma: 138485760 bytes
SO53>3333333333333332332332323233232323323232332323233232323232332323232>332>3>3>32>3>>>
Idle percentage:0.000.000.000.000.000.00%
SS53333353333535333353333333355333353335333333535333553355353>5>5>>
---- Test < gpuinfo.sh > ended ----

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
336 NXP Semiconductors

4
Chapter 10 Unit Tests

10.5 Video

10.5.1 Display

10.5.1.1 Test Name

 autorun-fb.sh

* mxc_tve_test.sh

* mxc_fb_test.out

* mxc_epdc_fb_test.out

* mxc_epdc_v2_fb_test.out
* mxc_spdc_fb_test.out

* mxc_fb_vsync_test.out

10.5.1.1.1 Location

/unit_tests/Display/

10.5.1.1.2 Functionality

The tests under the display directory test some of the display options that are available
with the 1.MX family of boards. Some of the devices that can be tested include LVDS,
HDMI and EPDC panels.

Specifically the 'mxc_fb_test.out' tests the following features:
* Basic fb operation
 Set background/foreground to 16 bpp fb
 Global alpha blending
* Color key test
e Framebuffer Panning
e Gamma test

Aditionally, the EPDC tests 'mxc_epdc_fb_test.out' and 'mxc_epdc_v2_fb_test.out' test
the following features:

» Basic Updates

* Rotation Updates

 Grayscale Framebuffer Updates

* Auto-waveform Selection Updates

e Panning Updates

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 337

A ————
Video

e Overlay Updates

* Auto-Updates

* Animation Mode Updates

 Fast Updates

* Partial to Full Update Transitions

 Test Pixel Shifting Effect

e Colormap Updates

* Collision Test Mode

* Stress Test

e RGB565, Y8 framebuffer format

* 0, 90, 180, 270 degree framebuffer rotation

e Framebuffer panning

» Use of the alternate framebuffer

e Auto-waveform mode selection

* Automatic update mode

* The force-monochrome update feature and animation mode updates

» Support for using a grayscale colormap

* Snapshot, Queue, and Queue and Merge update schemes

* The EPDC Collision Test mode

10.5.1.1.3 Configuration

In order to run some tests, changes to the defconfig file for the target board are required.
These changes will add functionality in which the following tests depend upon.

For autorun-fb.sh, 'mxc_fb_test.out' and 'mxc_fb_vsync_test.out' add the following to the
target board defconfig file:

CONFIG FB=y
CONFIG_FB_MXC=y
CONFIG_FB_MXC EDID=y
CONFIG_FB_MXC_ SYNC_ PANEL=y
CONFIG_FB | LDB=y

MXC
CONFIG _FB MXC HDMI=y

For 'mxc_epdc_fb_test.out' and 'mxc_epdc_v2_fb_test.out' add the following to the target
board defconfig file:

CONFIG FB=y

CONFIG _FB MXC=y
CONFIG_FB_MXC_EINK PANEL=y
CONFIG _MFD MAX17135=y
CONFIG REGULATOR MAX17135=y
CONFIG MXC PXP=y

CONFIG_DMA ENGINE=y

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
338 NXP Semiconductors

4
Chapter 10 Unit Tests

10.5.1.1.4 Use Case and Expected Output

./autorun-fb.sh

Expected output is:

---- Running < autorun-fb.sh > test ----
Checking for devnode: /dev/fbo
autorun-fb.sh: PASS devnode found: /dev/fbo
FB Blank test

Screen should be off

FB Color test

Setting FB to 16-bpp

Setting FB to 24-bpp

Setting FB to 32-bpp

FB panning test

autorun-fb.sh: Exiting PASS

Exiting PASS.

./mxc_tve_ test.sh

Expected output is:

---- Running < mxc_tve test.sh > test ----

Setting TV to NTSC mode

/unit tests/Display/mxc_tve test.sh: line 9: echo: write error: Invalid argument
/unit_tests/Display/mxc_tve test.sh: line 11: /unit tests/mxc_v412 output.out: No such
file or directory

Blank the display

Unblank the display

Setting TV to PAL mode

/unit_tests/Display/mxc_tve test.sh: line 22: echo: write error: Invalid argument
/unit_tests/Display/mxc_tve_test.sh: line 23: /unit_tests/mxc_v41l2_ output.out: No such
file or directory

Blank the display

Unblank the display

./mxc_fb test.out

Expected Output is shown below. The test should pass without any failure messages, and
the display on panel should be correct. For each test, a sequence of updates should be
reflected on the screen. For almost all tests, the text printed out in the debug console
describes the image that should be observed on the screen. For .MX6Quad b0 and fbl
are used for tests, fb0 is background framebuffer, and fb1 is foreground overlay
framebuffer.

Opened fb: /dev/fb0 (DISP4 BG - DI1)

DISP4 BG - DI1l: screen info: 1024x768 (virtual: 1024x1536) @ 32-bpp

Opened fb: /dev/fbl (DISP4 FG)

DISP4 FG: screen info: 240x320 (virtual: 240x960) @ 16-bpp

@DISP4 BG - DI1l: Set colorspace to 16-bpp

@DISP4 FG: Set colorspace to 16-bpp

Prepared DISP4 BG - DI1 (black) and DISP4 FG (white). Verify the screen and press any
key to continue!

@DISP4 BG - DI1l: Succesfully changed screen to 1024x768 (virtual: 1024x768) @l6-bpp
@DISP4 FG: Succesfully changed screen to 240x320 (virtual: 240x320) @l6-bpp

Testing global alpha blending...

Fill the FG in black (screen is 240x320 @ 16-bpp)

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 339

AR
Video

Fill the BG in white (screen is 1024x768 @ 16-bpp)
Alpha is 0, FG is opaque

Alpha is 255, BG is opaque

Color key enabled

Color key disabled

Global alpha disabled

Pan test start.

@DISP4 FG: Set the colorspace to 16-bpp
Pan test done.

@DISP4 BG - DI1l: Set colorspace to 16-bpp
Pan test start.

@DISP4 BG - DI1l: Set the colorspace to 1l6-bpp
Pan test done.

Gamma test start.

Gamma 0.800000

Gamma 1.000000

Gamma 1.500000

Gamma 2.200000

Gamma 2.400000

Gamma test end.

Test bpp start

@DISP4 BG - DI1l: Set colorspace to 32-bpp
@DISP4 BG - DI1l: Fill the screen in red
@DISP4 BG - DI1l: Set colorspace to 24-bpp
@DISP4 BG - DI1l: Fill the screen in blue
@DISP4 BG - DI1l: Set colorspace to 16-bpp
@DISP4 BG - DI1: Fill the screen in green
Test bpp end

./mxc_epdc fb test.out [-h] [-a] [-n]
EPDC framebuffer driver test program.
Usage: mxc_epdc_fb test [-h] [-a] [-p delay]l [-u s/g/m] [-n <expressions]

-h Print this message

-a Enabled animation waveforms for fast updates (tests 8-9)
-p Provide a power down delay (in ms) for the EPDC driver
0 - Immediate (default)

-1 - Never

<ms> - After <ms> milliseconds

-u Select an update scheme

s - Snapshot update scheme

d - Queue update scheme

m - Queue and merge update scheme (default)

-n Execute the tests specified in expression

Expression is a set of comma-separated numeric ranges

If not specified, all tests except Stress are run
Example:

./mxc_epdc_fb test.out -n 1-3,5,7

EPDC tests:

- Basic Updates

- Rotation Updates

- Grayscale Framebuffer Updates

- Auto-waveform Selection Updates
- Panning Updates

Overlay Updates

- Auto-Updates

- Animation Mode Updates

- Fast Updates

- Partial to Full Update Transitions
11 - Test Pixel Shifting Effect

12 - Colormap Updates

13 - Collision Test Mode

14 - Stress Test

15 - Dithering ¥Y8->Y1 Test

16 - Dithering Y8->Y4 Test

17 - Hardware Dithering Test

18 - Advanced Algorithm Test

P OUwooJould whR
o
1

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
340 NXP Semiconductors

4
Chapter 10 Unit Tests
The full set of tests should pass without any failure messages. For each test, a sequence of
updates should be reflected on the screen. For almost all tests, the text printed out in the
debug console describes the image that should be observed on the screen.
mxc_epdc_v2_fb_test.out: The full set of tests should pass without any failure messages.
For each test, a sequence of updates should be reflected on the screen. For almost all
tests, the text printed out in the debug console describes the image that should be
observed on the screen.

./mxc_spdc fb test.out
---- Running < ./mxc_spdc_fb test.out > test ----
Unable to open /dev/fbs

./mxc_fb vsync test.out

Usage:

/unit_tests/Display# ./mxc_fb vsync test.out <fb #> <counts>
<fb #> the framebuffer number

<count> the frames to be rendered

Example:

/unit_tests/Display# echo 0 > /sys/class/graphics/fb0/blank
/unit_ tests/Display# ./mxc_fb vsync test.out 0 100

Expected output is the following when using 100 for the < count > argument

total time for 100 frames = 1655674 us = 60 fps

10.5.2 High-Definition Multimedia Interface (HDMI) and Display
Port (DP) Overview

10.5.2.1 Test Name

* mMXC_cec_test.out

10.5.2.1.1 Location

/unit_tests/HDMI/

10.5.2.1.2 Functionality
Verify HDMI CEC function and send poweroff command to HDMI sink.

10.5.2.1.3 Configuration
For mxc_cec_test.out to work add the following line to the target board defconfig file:

CONFIG_MXC_HDMI_CEC=y

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 341

AR
Video

The hardware should support HDMI and TV should support HDMI CEC

10.5.2.1.4 Use Case and Expected Output

./mxc_cec_test.out

10.5.3 Video Processing Unit (VPU)

10.5.3.1 Test fori.MX 6

* autorun-vpu.sh
* mxc_vpu_test.out

10.5.3.1.1 Location

/unit_tests/VPU/

10.5.3.1.2 Functionality
The VPU test exercises the following options on the Video Processing Unit (VPU):
* Decode one stream and display on the LCD.
* Decode a stream and save to a file.
* Decode a stream using a config file.
e Encode a YUV stream and save to a file.
* Encode an image from the camera and decode it to display on the LCD.
* Decode multiple streams with different formats simultaneously.
* Decode and encode simultaneously.
* Output to TV out.
* Test VPU with VDI (HW deinterlace via IPU).

10.5.3.1.3 Configuration

This tests require libvpu.so under /ust/lib/ and LCD display. This test requires 1.MX
6QuadPlus/Quad/Dual SoC.

10.5.3.1.4 Use Case and Expected Output

./autorun-vpu.sh
Decode one stream and display on the LCD.

To test MPEG-4 decode and display to screen:

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
342 NXP Semiconductors

4
Chapter 10 Unit Tests

./mxc_vpu_test.out -D "-i /usr/vectors/file.m4v -f£ 0"

To test H.263 decode and display to screen:
./mxc_vpu_test.out -D "-i /usr/vectors/file.263 -f 1"

To test H.264 decode and display to screen:
./mxc_vpu_test.out -D "-1 /usr/vectors/file.264 -f 2"

You can get the mp4 test file from the imx-test.git server.
It is located under test/mxc_vpu_ test/configs/akiyo.mp4.

Decode a stream and save to a file.
To test MPEG-4 decode and save to file:
./mxc_vpu_test.out -D "-1i /usr/vectors/file.m4v -f 0 -o out.yuv"

To test H.263 decode and save to file:
./mxc_vpu_test.out -D "-i /usr/vectors/file.263 -f 1 -o out.yuv"

To test H.264 decode and save to file:
./mxc_vpu_test.out -D "-i /usr/vectors/file.264 -f 2 -o out.yuv"

Decode a stream using a config file.

Change options in config file, e.g, config dec. Input correct input
filename, format,

./mxc_vpu_test.out -C config dec

Encode a YUV stream and save to a file.
To test MPEG-4 encode and save to a file:
./mxc_vpu_test.out -E "-i file.yuv -w 240 -h 320 -f 0 -o file.mpeg4"

To test H.263 encode and save to a file:
./mxc_vpu_test.out -E "-i file.yuv -w 240 -h 320 -f 1 -o file.263"

To test H.264 encode and save to a file:
./mxc_vpu_test.out -E "-1i file.yuv -w 240 -h 320 -f 2 -o file.264"

Encode an image from the camera and decode it to display on the LCD.

filename,

To encode an MPEG4 image from the camera and display on the LCD: that

./mxc_vpu_test.out -L "-f 0 -w 1280 -h 720"

To encode an H263 image from the camera and display on the LCD:
./mxc_vpu_test.out -L "-f 1 -w 1280 -h 720"

To encode an H264 image from the camera and display on the LCD:
./mxc_vpu_test.out -L "-f 2 -w 1280 -h 720"

Decode multiple streams with different formats simultaneously.
Decoder one H264 and one MPEG4 streams.

./mxc_vpu_test.out -D "-i/vectors/file.264 -f 2" -D "-i ./akiyo.mp4 -f 0 -o akiyo.yuv"

Decode and encode simultaneously.
Encode one MPEG-4 stream and decode one H.264 stream simultaneously.

output

./mxc_vpu_test.out -E "-w 176 -h 144 -f 0 -o enc.m4v" -D "-i/vectors/file.264 -f

Test VPU with TV out.

Decoder one stream as normal VPU test. For example, H264 video stream:

./mxc_vpu_test.out -D "-i filename -f 2"

Test VPU with VDI (HW deinterlace via IPU).

Select one stream with top and bottom fields are interlaced.
av_stress2 dsmcc4m 1 Cl V11l A6.mp4_ trackl.h264

To decode the stream and display on LCD:

./mxc_vpu_test.out -D "-1 av_stress2 dsmcc4m 1 Cl V11 A6.mp4 trackl.h264 -f2"

To decode the stream and display on LCD using high motion stream video De Interlacing

algorithm:

./mxc_vpu_test.out -D "-1 av_stress2 dsmcc4m 1 Cl V11l A6.mp4 trackl.h264 -v h -f2"

To decode the stream and display on LCD using low motion stream video De Interlacing

algorithm:

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020

NXP Semiconductors

343

AR
Video

./mxc_vpu_test.out -D "-i av_stress2_dsmcc4m 1_Cl_V11l_A6.mp4_trackl.h264 -v 1 -f2"

To decode the stream and display on LCD having input in NV12 pixel format:
./mxc_vpu_test.out -D "-1 av_stress2 dsmcc4m 1 Cl V11 A6.mp4 trackl.h264 -v

10.5.3.2 Test for i.MX 8M Quad

10.5.3.2.1 Location

/unit_tests/VPU/hantro

10.5.3.2.2 Functionality
The VPU test exercises the following option on the VPU:
* Decode a stream and save to a file.

10.5.3.2.3 Use Case and Expected Output

Example for decoding different codecs:

/unit_tests/VPU/hantro/g2dec -P -b -ibs -Oout.yuv test.hevc
/unit_tests/VPU/hantro/g2dec -P -b -iivf -Oout.yuv test.vp9
/unit_tests/VPU/hantro/hx170dec -P -Oout.yuv test.h264
/unit_tests/VPU/hantro/mx170dec -P -Oout.yuv test.mpeg4
/unit_tests/VPU/hantro/m2x170dec -P -Oout.yuv test.mpeg2
/unit_tests/VPU/hantro/vxl170dec -P -Oout.yuv test.vcl
/unit_tests/VPU/hantro/vp8xl170dec -P -Oout.yuv test.vp$8
/unit_tests/VPU/hantro/vpédec -P -Oout.yuv test.vpé6

/unit_ tests/VPU/hantro/rvxl170dec -P -Oout.yuv test.rv
/unit_tests/VPU/hantro/jx170dec -P -Oout.yuv test.jpg
/unit_tests/VPU/hantro/axl170dec -P -Oout.yuv test.avs

10.5.3.3 Test for i.MX 8M Mini

10.5.3.3.1 Location

/unit_tests/VPU/hantro

10.5.3.3.2 Functionality

The VPU test exercises the following option on the VPU:
e Decode a stream and save to a file.
* Encode a YUV stream and save to a file.

10.5.3.3.3 Use Case and Expected Output
Example for decoder:

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
344 NXP Semiconductors

4
Chapter 10 Unit Tests

/unit_tests/VPU/hantro/g2dec -P -b -ibs -Oout.yuv test.hevc
/unit_ tests/VPU/hantro/g2dec -P -b -iivf -Oout.yuv test.vp9
/unit_tests/VPU/hantro/hx170dec -P -Oout.yuv test.h264
/unit_tests/VPU/hantro/vp8x170dec -P -Oout.yuv test.vp$8

Example for encoder:

/unit tests/VPU/hantro/h264 testenc -wl76 -hl44 -o temp.h264 -1 test.yuv
/unit_tests/VPU/hantro/vp8 testenc -wl76 -hl44 -o temp.h264 -1 test.yuv

10.5.3.4 Test for i.MX 8QuadXPlus and 8QuadMax

10.5.3.4.1 Location

/unit_tests/V4L2 VPU/

10.5.3.4.2 Functionality

The VPU test exercises the following option on the VPU:
e Decode a stream and save to a file.
* Encode a YUV stream and save to a file.

10.5.3.4.3 Use Case and Expected Output
Example for decoder, which helps to list the 'ifmt' value for different codecs:

/unit tests/V4L2 VPU/mxc v412 vpu dec.out ifile test.hevc ifmt 13 ofmt 1 ofile out.yuv
/unit_tests/V4L2 VPU/mxc _v412 vpu dec.out ifile test.h264 ifmt 1 ofmt 1 ofile out.yuv

Example for encoder (H.264 only):

/unit_tests/V4L2_VPU/mxc_v412 vpu_enc.out ifile --key 0 --name input_720p.nv12 --fmt nvl2 --
size 1280 720 --loop 1 encoder --key 1 --source 0 --size 1280
720 --framerate 30 --bitrate 3000000 --lowlatency 1 ofile --key 2 --source 1 --name test.h264

10.5.4 JPEG Encoder and Decoder

10.5.4.1 Test Name

* encoder_test
e decoder_test

10.5.4.1.1 Location

/unit_tests/JPEG

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
NXP Semiconductors 345

AR
Video

10.5.4.1.2 Functionality
The encoder_test receives a raw file in one of the supported formats as input and
produces a JPEG file as output, with the same resolution and pixel format as the input.

The application fills the raw file in one V4L2 output buffer, enqueues it into the driver,
and expects to dequeue the JPEG image in one capture buffer.

The decoder_test receives a JPEG file in one of the supported formats as input and
produces a raw file as output, with the same resolution and pixel format as the input. The
application fills the jpeg file in one V4L2 output buffer, enqueues it into the driver, and
expects to dequeue the raw image in one capture buffer.

10.5.4.1.3 Configuration

No special configuration.

10.5.4.1.4 Use Case and Expected Output

Run the applications to get the usage:

./decoder_test.out

Usage:

./decoder_test.out -d </dev/videoX> -f <INPUT FILENAME> -w <width> -h <heights> -p
<pixel formats>

Supported formats:

yuv420: 2-planes, Y and UV-interleaved, same as NV12
yuv422: packed YUYV

rgb24: packed RGB

yuv444: packed YUV

gray: Y8 or Y12 or Single Component

argb: packed ARGB

The input file has to be a JPEG file that matches the specified width, height, and pixel
format. The output is a raw file called "outfile" in the current folder, with the same width,
height, and pixel format as the input.

./encoder_ test.out

Usage:

./encoder_test.out -d </dev/videoX> -f <INPUT FILENAME> -w <width> -h <height> -p
<pixel formats>

Supported formats:

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
346 NXP Semiconductors

4
Chapter 10 Unit Tests

yuv420: 2-planes, Y and UV-interleaved, same as NV12
yuv422: packed YUYV

rgb24: packed RGB

yuv444: packed YUV

gray: Y8 or Y12 or Single Component

argb: packed ARGB

The input file has to be a raw file that matches the specified width, height, and pixel
format. The output is a JPEG file called "outfile.jpeg" in the current folder, with the same
width, height, and pixel format as the input.

10.6 Audio

10.6.1 Advanced Linux Sound Architecture (ALSA) System on a
Chip (ASoC) Sound

10.6.1.1 Test Name

* mxc_tuner_test.out

10.6.1.1.1 Location

/unit_tests/ALSA/

10.6.1.1.2 Functionality
Test audio capabilities using ALSA.

10.6.1.1.3 Configuration

ALSA is supported on all 1.MX for test aplay, arecord and speaker-test. To use this tuner
test it requires tuner hardware available only on the i.MX 6 auto reference boards

10.6.1.1.4 Use Case and Expected Output

10.6.2 Asynchronous Sample Rate Converter (ASRC)

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 347

A
Audio

10.6.2.1 Test Name

* mMXC_asrc_test.out

10.6.2.1.1 Location

/unit_tests/ASRC

10.6.2.1.2 Functionality
Converts WAV to different sample rates.

10.6.2.1.3 Configuration

None

10.6.2.1.4 Use Case and Expected Output

#/unit tests/ASRC/mxc_asrc_test.out -to 48000 /unit tests/ASRC/audio8kléeS.wav
audio48kléeS.wav

---- Running < /unit_tests/ASRC/mxc_asrc_ test.out > test ----

Pair A requested

All tests passed with success

More usages for mxc_asrc_test.out can be obtained by the following command:

#/unit_tests/ASRC/mxc_asrc_test.out -h

---- Running < /unit_tests/ASRC/mxc_asrc_test.out > test ----
LR R EEE R RS SRR SRS EEEE SRR R R R R R R R R EREEEEEEEREES

* Test aplication for ASRC

* Options

-to <output sample rate> <origin.wav$gt; <converted.wavs>
<input clock source> <output clock sources

input clock source types are:

0 -- INCLK_ NONE
1 -- INCLK_ESAT RX
2 -- INCLK_SSTI1_RX
3 -- INCLK SSI2 RX
4 -- INCLK SPDIF RX
5 -- INCLK MLB_CLK
6 -- INCLK ESAT TX
7 -- INCLK_SSI1_TX
8 -- INCLK SSI2 TX
9 -- INCLK SPDIF TX
10 -- INCLK ASRCK1 CLK

default option for output clock source is 0
output clock source types are:
0 -- OUTCLK NONE
1 -- OUTCLK ESAI TX
-- OUTCLK SSI1 TX
-- OUTCLK_SSI2 TX
-- OUTCLK_SPDIF TX
OUTCLK MLB_CLK
-- OUTCLK_ESAT RX
-- OUTCLK_SSI1 RX
-- OUTCLK_SSI2 RX

W JO0 Uk WN
1
1

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
348 NXP Semiconductors

9 -- OUTCLK SPDIF RX
10 -- OUTCLK_ASRCK1_CLK

default option for output clock source is 10
khkkkkkkkhkkhkkhkkhkhkhkkkkkkkkkkkkk*x*x

10.7 Security

10.7.1 Display Content Integrity Checker (DCIC)

10.7.1.1 Test Name

* mxc_dcic_test.out

10.7.1.1.1 Location

/unit_tests/DCIC/

10.7.1.1.2 Functionality

Chapter 10 Unit Tests

The goal of the DCIC is to verify that a safety-critical information sent to a display is not

corrupted.

10.7.1.1.3 Configuration

None

10.7.1.1.4 Use Case and Expected Output

./mxc_dcic_test.out -bw 18 -dev 1

Expected output for mxc_dcic_test.out:

Opened £fboO

open /dev/dcicl

bpp=16, bus width=18

Config ROI=1

Config ROI=3

Config ROI=5

ROI=0,crcRS=0x0, crcCS=0x0
ROI=1,crcRS=0x6cdé6bl8d, crcCS=0x6cdéebl8d
ROI=2,crcRS=0x0, crcCS=0x0
ROI=3,crcRS=0xc9da7ae6, crcCS=0xc9da7ae6
ROI=4,crcRS=0x0, crcCS=0x0
ROI=5,crcRS=0xb5bal453, crcCS=0xb5bal453
ROI=6,crcRS=0x0, crcCS=0x0
ROI=7,crcRS=0x0, crcCS=0x0

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020

NXP Semiconductors

349

A ————
Security

ROI=8,crcRS=0x0, crcCS=0x0
ROI=9,crcRS=0x0, crcCS=0x0
ROI=10,crcRS=0x0, crcCS=0x0
ROI=11,crcRS=0x0, crcCS=0x0
ROI=12, crcRS=0x0, crcCS=0x0
ROI=13,crcRS=0x0, crcCS=0x0
ROI=14,crcRS=0x0, crcCS=0x0
ROI=15,crcRS=0x0, crcCS=0x0
All ROI CRC check success!

10.7.2 SIM

10.7.2.1 Test Name

* mxc_Sim_test.out

10.7.2.1.1 Location

/unit_ tests/SIM/

10.7.2.1.2 Functionality

Basic testing of SIM card interface.

10.7.2.1.3 Configuration

None

10.7.2.1.4 Use Case and Expected Output

/unit_tests/mxc_sim test.out

Expected output
atr[0]= 0x3b atr[l]l= 0x68 atr[2]= 0x0 atr([3]= 0x0 atr([4]= 0x0 atr[5]= 0x73 atr[6]=
0xc8

atr[7]= 0x40 atr[8]= 0x0 atr[9]= 0x0 atr[1l0]= 0x90 atr[1l1l]= 0xO
rx[0] = 0x6e rx[l] = 0xO0
rx[0] = 0x6d rx[l] = 0xO0
rx[0] = Ox6e rx[1l] = 0x0

10.7.3 SNVS Real Time Clock (SRTC)

10.7.3.1 Test Name

e autorun-rtc.sh

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
350 NXP Semiconductors

Chapter 10 Unit Tests

* rtctest.out
* rtcwakeup.out

10.7.3.1.1 Location

/unit_tests/SRTC/

10.7.3.1.2 Functionality

These tests check the Real Time Clock (RTC) module which is used to keep the time and
date. It provides a certifiable time to the user and can raise an alarm if tampering with
counters is detected.

10.7.3.1.3 Configuration
For autorun-rtc.sh, rtctest.out and rtcwakeup.out to work add the following line to the

target board defconfig file:

CONFIG_RTC_DRV_SNVS=y

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020
NXP Semiconductors 351

Security

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
352 NXP Semiconductors

Chapter 11
Revision History

11.1 Revision History
This table provides the revision history.

Table 11-1. Revision history

Revision number Date Substantive changes

L4.9.51_imx8qgxp-alpha 11/2017 Initial release

L4.9.51_imx8gm-beta1 12/2017 Added i.MX 8QuadMax

L4.9.51_imx8mg-beta 12/2017 Added i.MX 8M Quad

L4.9.51_8gm-beta2/8gxp-beta 02/2018 Added i.MX 8QuadMax Beta2 and i.MX
8QuadXPlus Beta

L4.9.51_imx8mg-ga 03/2018 Added i.MX 8M Quad GA

L4.9.88_2.0.0-ga 05/2018 i.MX 7ULP and i.MX 8M Quad GA
release

L4.9.88_2.1.0_8mme-alpha 06/2018 i.MX 8M Mini Alpha release

L4.9.88_2.2.0_8qgxp-beta2 07/2018 i.MX 8QuadXPlus Beta2 release

L4.9.123_2.3.0_8mm 09/2018 i.MX 8M Mini GA release

L4.14.62_1.0.0_beta 11/2018 i.MX 4.14 Kernel Upgrade, Yocto Project
Sumo upgrade

L4.14.78_1.0.0_ga 01/2019 i.MX6, i.MX7, i.MX8 family GA release

L4.14.98_2.0.0_ga 04/2019 i.MX 4.14 Kernel upgrade and board
updates

L4.19.35_1.0.0 07/2019 i.MX 4.19 Beta Kernel and Yocto Project
Upgrades

L4.19.35_1.1.0 10/2019 i.MX 4.19 Kernel and Yocto Project
Upgrades

L5.4.3_1.0.0 03/2020 i.MX 5.4 Kernel and Yocto Project
Upgrades

L5.4.3_2.0.0 04/2020 i.MX 5.4 Alpha release for i.MX 8M Plus
and 8DXL EVK boards

L5.4.24_2.1.0 06/2020 i.MX 5.4 Beta release for i.MX 8M Plus,
Alpha2 for 8DXL, and GA for
8QuadXPlus CO and 8M Nano LPDDR4

i.MX Linux Reference Manual, Rev. L5.4.24 2.1.0, 06/2020

NXP Semiconductors

353

Revision History

i.MX Linux Reference Manual, Rev. L5.4.24_2.1.0, 06/2020
354 NXP Semiconductors

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

arm

Information in this document is provided solely to enable system and software implementers to use
NXP products. There are no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits based on the information in this document. NXP reserves the right to
make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any
particular purpose, nor does NXP assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets
and/or specifications can and do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for each customer application
by customer’s technical experts. NXP does not convey any license under its patent rights nor the
rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be
found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to unidentified
vulnerabilities. Customers are responsible for the design and operation of their applications and
products to reduce the effect of these vulnerabilities on customer's applications and products, and
NXP accepts no liability for any vulnerability that is discovered. Customers should implement
appropriate design and operating safeguards to minimize the risks associated with their applications
and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, 12C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, Ready Play, SafeAssure,
the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,
Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS
are trademarks of NXP B.V. All other product or service names are the property of their respective
owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink,
CoreSight, Cortex, DesignStart, DynamlQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP,
RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS,
ULINKpro, pVision, Versatile are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of
patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered
trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the
Power and Power.org logos and related marks are trademarks and service marks licensed by
Power.org.

© 2020 NXP B.V.

Document Number IMXLXRM
Revision L5.4.24_2.1.0, 06/2020

r
4\

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Chapter 1​: Introduction
	Overview
	Software Base
	Features

	Audience
	Conventions
	Definitions, Acronyms, and Abbreviations

	References

	Chapter 2​: System
	Machine-Specific Layer (MSL)
	Introduction
	Interrupts (Operation)
	Interrupt Hardware Operation
	Interrupt Software Operation
	Interrupt Features
	Interrupt Source Code Structure
	Interrupt Programming Interface

	Timer
	Timer Software Operation
	Timer Features
	Timer Source Code Structure
	Timer Programming Interface

	Memory Map
	Memory Map Hardware Operation
	Memory Map Software Operation (only for i.MX 6 or i.MX 7)
	Memory Map Features
	Memory Map Source Code Structure

	IOMUX
	IOMUX Hardware Operation
	IOMUX Software Operation
	IOMUX Features
	IOMUX Source Code Structure
	IOMUX Programming Interface
	IOMUX Control Through GPIO Module
	GPIO Hardware Operation
	Muxing Control
	PULLUP Control

	GPIO Software Operation (general)
	GPIO Implementation

	General Purpose Input/Output (GPIO)
	GPIO Software Operation
	API for GPIO

	GPIO Features
	GPIO Module Source Code Structure
	GPIO Programming Interface 2

	Clock
	Clock Software Operation
	Clock Features
	Source Code Structure
	

	System Controller
	Introduction

	Boot Image
	Introduction

	Anatop Regulator Driver
	Introduction
	Hardware Operation
	Software Operation
	Driver Features
	Driver Interface Details
	Regulator APIs
	Source Code Structure
	Menu Configuration Options

	Power Management
	Low Level Power Management (PM)
	Introduction
	Software Operation
	Source Code Structure
	Menu Configuration Options
	Programming Interface

	PMIC PF Regulator
	Introduction
	Hardware Operation
	Software Operation
	Driver Features
	Regulator APIs
	Driver Architecture
	Driver Interface Details
	Source Code Structure
	Menu Configuration Options

	CPU Frequency Scaling (CPUFREQ)
	Introduction
	Software Operation
	Source Code Structure
	Menu Configuration Options

	Dynamic Bus Frequency
	Introduction
	Operation
	Software Operation
	Source Code Structure
	Menu Configuration Options

	Battery Charging
	Introduction
	Software Operation
	Source Code Structure
	Menu Configuration Options

	OProfile
	Introduction
	Overview
	Features
	Hardware Operation
	Architecture-specific Components
	oprofilefs Pseudo Filesystem
	Generic Kernel Driver
	OProfile Daemon
	Post Profiling Tools
	Interrupt Requirements

	Pulse-Width Modulator (PWM)
	Introduction
	Hardware Operation
	Clocks
	Software Operation
	Driver Features
	Source Code Structure
	Menu Configuration Options

	Remote Processor Messaging
	Introduction
	Features
	Source Code
	Menu Configuration Options
	Running i.MX RPMsg Test Programs

	Thermal
	Introduction
	Software Operation
	Source Code Structure
	Menu Configuration Options

	Sensors
	Introduction
	Sensor Driver Software Operation
	Source Code Structure
	Menu Configuration Options

	Watchdog (WDOG)
	Introduction
	Hardware Operation
	Software Operation
	Generic WDOG
	Driver Features
	Source Code Structure
	Menu Configuration Options
	Programming Interface

	Chapter 3​: Storage
	AHB-to-APBH Bridge with DMA (APBH-Bridge-DMA)
	Overview
	Hardware Operation
	Software Operation
	Source Code Structure
	Menu Configuration Options
	Programming Interface

	EIM NOR
	Introduction
	Hardware Operation
	Software Operation
	Source Code
	Enabling the EIM NOR

	MMC/SD/SDIO Host
	Introduction
	Hardware Operation
	Driver Features
	Source Code Structure
	Menu Configuration Options
	Device Tree Binding
	Programming Interface
	Loadable Module Operations

	NAND GPMI Flash
	Introduction
	Hardware Operation
	Software Operation
	Basic Operations: Read/Write
	Backward Compatibility
	Error Correction
	Boot Control Block Management
	Bad Block Handling
	Source Code Structure
	Menu Configuration Options

	Quad Serial Peripheral Interface (QuadSPI)
	Introduction
	Hardware Operation
	Software Operation
	Driver Features
	Source Code Structure
	Menu Configuration Options

	SATA
	Introduction
	Board Configuration Options
	Software Operation
	Source Code Structure
	Menu Configuration Options
	Programming Interface
	Usage Example
	Usage Example

	Smart Direct Memory Access (SDMA) API
	Overview
	Hardware Operation
	Software Operation
	Source Code Structure

	SPI NOR Flash Memory Technology Device (MTD)
	Introduction
	Hardware Operation
	Software Operation
	Source Code Structure
	Menu Configuration Options

	Chapter 4​: Connectivity
	ADC
	ADC Introduction
	ADC External Signals
	ADC Driver Overview
	Source Code Structure
	Menu Configuration Options
	Programming Interface

	ENET IEEE-1588
	Introduction
	Transmit Timestamping
	Receive Timestamping

	Software Operation
	Source Code Structure
	Menu Configuration Options
	Programming Interface

	1588 Stack Introduction
	Linuxptp Stack Features
	Using Linuxptp

	Enhanced Configurable Serial Peripheral Interface (ECSPI)
	Introduction
	Software Operation
	SPI Sub-System in Linux OS
	Software Limitations
	Standard Operations
	ECSPI Synchronous Operation
	Source Code Structure
	Menu Configuration Options
	Programming Interface
	Interrupt Requirements

	Fast Ethernet Controller (FEC)
	Introduction
	Hardware Operation
	Software Operation
	Source Code Structure
	Menu Configuration Options
	Programming Interface
	Getting a MAC Address

	FlexCAN
	Introduction
	Software Operation
	Source Code Structure
	Menu Configuration Options

	Inter-IC (I2C)
	Introduction
	LPI2C Bus Driver Overview
	I2C Device Driver Overview
	Software Operation
	I2C Bus Driver Software Operation
	I2C Device Driver Software Operation
	Driver Features
	Source Code Structure
	Menu Configuration Options
	Programming Interface

	Media Local Bus
	Introduction
	MLB Driver Overview
	Software Operation
	Source Code Structure
	Menu Configuration Options

	PCI Express Root Complex
	Terminology and Conventions
	PCIe Topology on i.MX
	Features
	Linux OS PCI Subsystem and RC driver
	PCIe Driver Source Files
	System Resource: Memory Layout
	System Resource: Interrupt lines

	USB
	Introduction
	Architectural Overview
	Hardware Operation
	Software Operation
	Source Code Structure
	Menu Configuration Options
	USB Wakeup Usage
	How to Close the USB Child Device Power
	Changing the Controller Operation Mode
	Loadable Module Support
	USB Charger Detection
	Embeded Host Certification
	Adding TPL-Support Property
	VBUS Control

	USB3
	Introduction
	Source Code Structure

	Low Power Universal Asynchronous Receiver/Transmitter (LPUART)
	Introduction
	Hardware Operation
	Software Operation
	Driver Features
	Source Code Structure
	Menu Configuration Options
	Programming Interface
	Interrupt Requirements

	Bluetooth
	Bluetooth Wireless Technology Introduction
	Bluetooth Driver Overview
	Bluetooth Driver Files
	Bluetooth Stack
	Menu Configuration Options

	Wi-Fi
	Introduction
	Software Operation
	Driver features
	Source Code Structure
	Menu Configuration Options
	Device Tree Binding
	Configuring WLAN from User Space

	Chapter 5​: Graphics
	Graphics Processing Unit (GPU)
	Introduction
	Driver Features
	Hardware Operation
	Software Operation
	Source Code Structure
	Library Structure
	API References
	Menu Configuration Options

	Wayland
	Introduction
	Software Operation
	Yocto Build Instructions
	Customizing Weston
	Running Weston

	X Windows Acceleration
	Introduction
	Hardware Operation
	Software Operation
	X-Windows Acceleration Architecture
	i.MX Driver for X-Windows System
	i.MX Direct Rendering Infrastructure (DRI) for X-Windows System
	EGL- X Library
	xorg.conf for i.MX
	Setting Up X-Windows System Acceleration on Yocto
	Setting Up X Window System Acceleration
	Troubleshooting

	Chapter 6​: Video
	Capture Overview
	Introduction
	Omnivision Camera
	Parallel CSI
	MIPI Camera Serial Interface (MIPI CSI)
	HDMI
	Software Operation
	V4L2 Capture
	Source Code Structure

	Display Overview
	Introduction
	Frame Buffer
	Direct Render Model (DRM)
	Display Resolution
	Authentication
	Tiling

	Display Controllers
	Display Processing Unit (DPU)
	Introduction
	DRM
	Source Code Structure
	Menu Configuration Options

	Image Processing Unit (IPU)
	Introduction
	Hardware Operation
	Software Operation
	IPU Frame Buffer Drivers Overview
	IPU Frame Buffer Hardware Operation
	IPU Frame Buffer Software Operation
	Synchronous Frame Buffer Driver
	IPU Backlight Driver
	IPU Device Driver
	Source Code Structure
	Menu Configuration Options

	Pixel Pipeline (PxP)
	Introduction
	Software Operation
	Key Data Structs
	Channel Management
	Descriptor Management
	Completion Notification
	Limitations
	Menu Configuration Options
	Source Code Structure

	ELCDIF Frame Buffer
	Introduction
	Software Operation
	Menu Configuration Options
	Source Code Structure

	Display Control Subsystem (DCSS)
	Introduction
	Source Code Structure

	Display Interfaces
	Parallel LCD Interface
	Introduction

	MIPI DSI Interface
	Software Operation
	Source Code Structure
	Menu Configuration Options

	LVDS Interface
	Introduction
	Software Operation
	Source Code Structure
	Menu Configuration Options

	LVDS Display Bridge (LDB)
	Introduction
	Software Operation
	Source Code Structure
	Menu Configuration Options

	Electrophoretic Display Controller (EPDC) Interface
	Introduction
	EPDC Frame Buffer Driver Overview
	EPDC Frame Buffer Driver Extensions
	EPDC Panel Configuration
	Boot Command Line Parameters
	EPDC Waveform Loading
	Using a Default Waveform File
	Using a Custom Waveform File
	EPDC Panel Initialization
	Grayscale Framebuffer Selection
	Software Operation
	Structures and Defines
	Source Code Structure
	Menu Configuration Options

	High-Definition Multimedia Interface (HDMI) and Display Port (DP) Overview
	Introduction
	Software Operation
	Core
	Display Device Registration and Initialization
	Hotplug Handling and Video Mode Changes
	Audio
	i.MX 8 Display Port
	Software Operation
	Source Code Structure
	Menu Configuration Options

	i.MX 6 On Chip High-Definition Multimedia Interface (HDMI)
	Introduction
	Software Operation
	CEC
	Source Code Structure
	Menu Configuration Options

	External HDMI
	Introduction
	Software Operation
	Source Code Structure
	Menu Configuration Options

	Video for Linux 2 (V4L2)
	Introduction
	i.MX 8 DPU V4L2
	PxP V4L2
	i.MX 6 with IPU V4L2
	IPU V4L2 Capture Device

	V4L2 Capture Device
	V4L2 Capture IOCTLs
	Use of the V4L2 Capture APIs

	V4L2 Output Device
	V4L2 Output IOCTLs
	Use of the V4L2 Output APIs

	Software Operatoins
	Source Code Structure
	Menu Configuration Options

	Video Analog-to-Digital Converter (VADC)
	Introduction
	Software Operation
	Source Code Structure
	Menu Configuration Options
	DTS Configuration

	Video Processing Unit (VPU)
	Introduction
	Software Operation
	Menu Configuration Options

	JPEG Encoder and Decoder
	Introduction
	Overview of the JPEG Encoder and Decoder Driver
	Limitations of the JPEG Encoder/Decoder Driver

	Chapter 7​: Audio
	Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound
	ALSA Sound Driver Introduction
	SoC Sound Card
	Stereo CODEC Features
	7.1 Audio Codec Features
	AM/FM Codec Features
	Sound Card Information

	Hardware Operation
	Stereo Audio CODEC
	7.1 Audio Codec
	AM/FM Codec

	Software Operation
	ASoC Driver Source Architecture
	Sound Card Registration
	Device Open
	Device Tree Binding
	Source Code Structure
	Menu Configuration Options

	Asynchronous Sample Rate Converter (ASRC)
	Introduction
	Hardware Operation

	Software Operation
	Sequence for Memory to ASRC to Memory
	Sequence for Memory to ASRC to Peripheral
	Source Code Structure
	Menu Configuration Options
	Device Tree Binding
	Programming Interface (Exported API and IOCTLs)

	HDMI Audio
	Introduction

	The Sony/Philips Digital Interface (S/PDIF)
	Introduction
	S/PDIF Overview
	Hardware Overview
	Software Overview
	ASoC Layer

	S/PDIF Tx Driver
	Driver Design
	Provided User Interface

	S/PDIF Rx Driver
	Driver Design
	Provided User Interface

	Source Code Structure
	Menu Configuration Options
	Device Tree Bindings
	Interrupts and Exceptions

	Unit Test Preparation
	Tx test step
	Rx test step

	Audio Mixer (AUDMIX)
	Introduction
	Block diagram
	Hardware Overview
	Software Overview
	User Interface
	Source Code Structure
	Menu Configuration Options

	PDM Microphone Interface (MICFIL)
	Introduction
	Block diagram
	Hardware Overview
	Software Overview
	User Interface
	Source Code Structure
	Menu Configuration Options

	Chapter 8​: Security
	Cryptographic Acceleration and Assurance Module (CAAM)
	CAAM Device Driver Overview
	Configuration and Job Execution Level
	Control/Configuration Driver
	Job Ring Driver
	API Interface Level
	Driver Configuration
	Limitations
	Limitations in the Existing Implementation Overview
	Initialize Keystore Management Interface
	Detect Available Secure Memory Storage Units
	Establish Keystore in Detected Unit
	Release Keystore
	Allocate a Slot from the Keystore
	Load Data into a Keystore Slot
	Demo Image Update
	Decapsulate Data in the Keystore
	Read Data From a Keystore Slot
	Release a Slot back to the Keystore
	CAAM/SNVS - Security Violation Handling Interface Overview
	Operation
	Configuration Interface
	Install a Handler
	Remove an Installed Driver
	Driver Configuration CAAM/SNVS

	Display Content Integrity Checker (DCIC)
	Introduction
	Source Code Structure
	Menu Configuration Options
	DTS Configuration
	IOCTLs Functions
	Structures
	DCIC CRC Calculation Functions

	Smart Card Interface - Subscriber Identification Module (SIM)
	Introduction
	Modes of Operation
	External Signal Description
	Source Code Structure
	Menu Configuration Options
	Software Framework

	Secure Non-Volatile Storage (SNVS)
	Introduction

	SNVS Real Time Clock (SRTC)
	Introduction
	Hardware Operation
	Software Operation
	Driver Features
	Source Code Structure
	Menu Configuration Options

	Chapter 9​: NXP eIQ Machine Learning
	Overview of NXP eIQ Machine Learning
	Introduction (ML)
	OpenCV
	Arm Compute
	TensorFlow Lite
	Arm NN
	ONNX Runtime

	Chapter 10​: Unit Tests
	System
	OProfile
	Test Name
	Location
	Functionality
	Configuration
	Use Case and Expected Output

	Owire
	Test Name
	Location
	Functionality
	Configuration
	Use Case and Expected Output

	Power Management
	Test Name
	Location
	Functionality
	Configuration

	Remote Processor Messaging
	Test Name
	Location
	Functionality
	Use Case and Expected Output

	Watchdog (WDOG)
	Test Name
	Location
	Functionality
	Configuration
	Use Case and Expected Output

	Storage
	Media Local Bus
	Test Name
	Location
	Functionality
	Configuration
	Use Case and Expected Output

	MMC/SD/SDIO Host
	Test Name
	Location
	Functionality
	Configuration
	Use Case and Expected Output

	MMDC
	Test Name
	Location
	Functionality
	Configuration
	Use Case and Expected Output

	SATA
	Test Name
	Location
	Functionality
	Configuration
	Use Case and Expected Output

	Connectivity
	Enhanced Configurable Serial Peripheral Interface (ECSPI)
	Test Name
	Location
	Functionality
	Configuration
	Use Case and Expected Output

	ETM
	Test Name
	Location
	Functionality
	Configuration
	Use Case and Expected Output

	Inter-IC (I2C)
	Test Name
	Location
	Functionality
	Configuration
	Use Case and Expected Output

	IIM
	Test Name
	Location
	Functionality
	Configuration
	Use Case and Expected Output

	Keyboard
	Test Name
	Location
	Functionality
	Configuration
	Use Case and Expected Output

	Low Power Universal Asynchronous Receiver/Transmitter (LPUART)
	Test Name
	Location
	Functionality
	Configuration
	Use Case and Expected Output

	USB
	Test Name
	Location
	Functionality
	Configuration
	Use Case and Expected Output

	Graphics
	Graphics Processing Unit (GPU)
	Test Name
	Location
	Functionality
	Configuration
	Use Case and Expected Output

	Video
	Display
	Test Name
	Location
	Functionality
	Configuration
	Use Case and Expected Output

	High-Definition Multimedia Interface (HDMI) and Display Port (DP) Overview
	Test Name
	Location
	Functionality
	Configuration
	Use Case and Expected Output

	Video Processing Unit (VPU)
	Test for i.MX 6
	Location
	Functionality
	Configuration
	Use Case and Expected Output

	Test for i.MX 8M Quad
	Location
	Functionality
	Use Case and Expected Output

	Test for i.MX 8M Mini
	Location
	Functionality
	Use Case and Expected Output

	Test for i.MX 8QuadXPlus and 8QuadMax
	Location
	Functionality
	Use Case and Expected Output

	JPEG Encoder and Decoder
	Test Name
	Location
	Functionality
	Configuration
	Use Case and Expected Output

	Audio
	Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound
	Test Name
	Location
	Functionality
	Configuration
	Use Case and Expected Output

	Asynchronous Sample Rate Converter (ASRC)
	Test Name
	Location
	Functionality
	Configuration
	Use Case and Expected Output

	Security
	Display Content Integrity Checker (DCIC)
	Test Name
	Location
	Functionality
	Configuration
	Use Case and Expected Output

	SIM
	Test Name
	Location
	Functionality
	Configuration
	Use Case and Expected Output

	SNVS Real Time Clock (SRTC)
	Test Name
	Location
	Functionality
	Configuration

	Chapter 11​: Revision History
	Revision History

