1. General description

This specification describes the electrical, physical and dimensional properties of Au-bumped sawn wafers on FFC of I-CODE SLI-S Label ICs on an NXP C075EE process and is the base for delivery of tested I-CODE SLI-S Label ICs.

2. Ordering information

Table 1. Ordering information

<table>
<thead>
<tr>
<th>Type number</th>
<th>Package Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL2ICS5311EW/V7</td>
<td>Wafer</td>
<td>Bumped sawn wafer on UV-tape</td>
</tr>
</tbody>
</table>

3. Mechanical specification

3.1 Wafer

- Diameter: 8"
- Thickness: 150 \(\mu m \pm 15 \mu m \)

3.2 Wafer backside

- Material: Si
- Treatment: ground + stress release
- Roughness: \(R_a \max. 0.5 \mu m \)
 \(R_t \max. 5 \mu m \)

3.3 Chip dimensions

- Chip size: 940 x 900 \(\mu m^2 \)
- Scribe lines: 50 / 50 \(\mu m \)

3.4 Passivation

- Type: sandwich structure
- Material: PSG / Nitride (on top)
- Thickness: 500 nm / 600 nm
3.5 Au bump

- Bump material: > 99.9 % pure Au
- Bump hardness: 35 – 80 HV 0.005
- Bump shear strength: > 70 MPa
- Bump height: 18 μm
- Bump height uniformity:
 - within a die: ± 2 μm
 - within a wafer: ± 3 μm
 - wafer to wafer: ± 4 μm
- Bump flatness: ± 1.5 μm
- Bump size:
 - LA, LB 60 x 60 μm²
 - VSS¹, TEST¹ 60 x 60 μm²
- Bump size variation: ± 5 μm
- Under bump metallization: sputtered TiW

¹.Pads VSS and TEST are disconnected when wafer is sawn.
3.6 Reference die definition (SECS II Wafer map format)

- Physical appearance: no chip structure, full die size
- Local coordinates: x=-67, y=-20

Fig 1. Wafer layout with reference die
4. Fail die identification

4.1 Fail die identification

No inkdots are applied to the wafer.

Electronic wafer mapping (SECS II format) covers the electrical test results and additionally the results of mechanical/visual inspection.

4.2 Wafer mapping

Wafer mapping for failed die information is available on floppy-disk.

Format: SECS II format
5. Limiting values

Table 2. Limiting values\(^{[1][2][3][4]}\)

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>T(_{\text{STOR}})</td>
<td>storage temperature range</td>
<td>-55</td>
<td>+140</td>
<td>°C</td>
</tr>
<tr>
<td>T(_{j})</td>
<td>junction temperature</td>
<td>-55</td>
<td>+140</td>
<td>°C</td>
</tr>
<tr>
<td>V(_{\text{ESD}})</td>
<td>electrostatic discharge voltage</td>
<td>-</td>
<td>±2</td>
<td>kV(_{\text{peak}})</td>
</tr>
<tr>
<td>I(_{\text{max LA-LB}})</td>
<td>maximum input peak current</td>
<td>-</td>
<td>±60</td>
<td>mA(_{\text{peak}})</td>
</tr>
<tr>
<td>T(_{\text{JOP}})</td>
<td>operating junction temperature</td>
<td>-25</td>
<td>+85</td>
<td>°C</td>
</tr>
<tr>
<td>I(_{\text{LA-LB}})</td>
<td>input current</td>
<td>-</td>
<td>30</td>
<td>mA(_{\text{rms}})</td>
</tr>
</tbody>
</table>

[1] Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any conditions other than those described in the Operating Conditions and Electrical Characteristics section of this specification is not implied.

[2] This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maxima.

[4] The voltage between LA and LB is limited by the on-chip voltage limitation circuitry (corresponding to parameter I\(_{\text{LA-LB}}\)\)
6. Characteristics

6.1 Electrical characteristics

$T_{op}= -25 \text{ to } 85^\circ C$

Table 3. Characteristics [1]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{LA-LB}</td>
<td>Minimum Supply Voltage for READ/WRITE</td>
<td>-</td>
<td>2.5</td>
<td>2.7</td>
<td>V_{rms}</td>
<td></td>
</tr>
<tr>
<td>C_{res}</td>
<td>Input Capacitance between LA – LB (V_{LA-LB} = 2 V_{rms})</td>
<td>[3]</td>
<td>22.3</td>
<td>23.5</td>
<td>24.7</td>
<td>pF</td>
</tr>
<tr>
<td>P_{min}</td>
<td>Minimum Operating Supply Power</td>
<td>[4]</td>
<td>-</td>
<td>280</td>
<td>-</td>
<td>μW</td>
</tr>
<tr>
<td>m</td>
<td>Modulation of RF Voltage for Demodulator Response (m = \frac{V_{max} - V_{min}}{V_{max} + V_{min}})</td>
<td>[5]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>t_{psm}</td>
<td>Modulation Pulse Length of RF Voltage</td>
<td>[5]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>μs</td>
</tr>
<tr>
<td>t_D</td>
<td>Demodulator Response Time (m \geq 10 %, 100 %)</td>
<td>[5]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>μs</td>
</tr>
<tr>
<td>R_{load}</td>
<td>Load Modulation</td>
<td>[5]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Ω</td>
</tr>
<tr>
<td>t_{ret}</td>
<td>EEPROM Data Retention</td>
<td>(T_{amb} \leq 55 , ^\circ C)</td>
<td>40</td>
<td>-</td>
<td>-</td>
<td>years</td>
</tr>
<tr>
<td>n_{write}</td>
<td>EEPROM Write Endurance</td>
<td></td>
<td>100000</td>
<td>-</td>
<td>-</td>
<td>cycles</td>
</tr>
</tbody>
</table>

[1] Typical ratings are not guaranteed. These values listed are at room temperature.
[2] Bandwidth limitation ($\pm 7 \, kHz$) according to ISM band regulations.
[4] Including losses in resonant capacitor and rectifier
[5] Refer to ISO/IEC 15693-2 and 15693-3 including pulse shapes and tolerances; proper coil design assumed
7. Chip orientation and bond pad locations

- Minimum yield per wafer: 30% of 29941 potential good dies
- Minimum yield per lot: 30%

8. Final wafer test specification
9. References

[1] Data sheet - General specification for 8” wafers on UV-tape
[3] Application note - SECS II wafer map format
10. Revision history

Table 4. Revision history

<table>
<thead>
<tr>
<th>Document ID</th>
<th>Release date</th>
<th>Data sheet status</th>
<th>Change notice</th>
<th>Supersedes</th>
</tr>
</thead>
<tbody>
<tr>
<td>131030</td>
<td>20080508</td>
<td>Product data sheet</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- Initial version
11. Legal information

11.1 Data sheet status

<table>
<thead>
<tr>
<th>Document status</th>
<th>Product status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective [short] data sheet</td>
<td>Development</td>
<td>This document contains data from the objective specification for product development.</td>
</tr>
<tr>
<td>Preliminary [short] data sheet</td>
<td>Qualification</td>
<td>This document contains data from the preliminary specification.</td>
</tr>
<tr>
<td>Product [short] data sheet</td>
<td>Production</td>
<td>This document contains the product specification.</td>
</tr>
</tbody>
</table>

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term ‘short data sheet’ is explained in section “Definitions”.

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

11.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

11.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

11.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I-CODE — is a trademark of NXP B.V.

12. Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com
13. Tables

Table 1. Ordering information 1
Table 2. Limiting values[1][2] 5
Table 3. Characteristics [1] 6
Table 4. Revision history 9

14. Figures

Fig 1. Wafer layout with reference die 3
Fig 2. Chip orientation and bond pad locations 7

15. Contents

1 General description 1
2 Ordering information 1
3 Mechanical specification 1
 3.1 Wafer 1
 3.2 Wafer backside 1
 3.3 Chip dimensions 1
 3.4 Passivation 1
 3.5 Au bump 2
 3.6 Reference die definition (SECS II Wafer map format) 3
4 Fail die identification 4
 4.1 Fail die identification 4
 4.2 Wafer mapping 4
5 Limiting values 5
6 Characteristics 6
 6.1 Electrical characteristics 6
7 Chip orientation and bond pad locations 7
8 Final wafertest specification 7
9 References 8
10 Revision history 9
11 Legal information 10
 11.1 Data sheet status 10
 11.2 Definitions 10
 11.3 Disclaimers 10
 11.4 Trademarks 10
12 Contact information 10
13 Tables 11
14 Figures 11
15 Contents 11