Introduction to Freescale Digital Signal Controllers (DSC)
AMF-IND-T1250

Randy Ryder
Product Manager
Agenda

• What is digital power conversion

• Freescale portfolio

• Target applications

• Enablement
Agenda

• What is digital power conversion

• Freescale portfolio

• Target applications

• Enablement
“Digital Power Conversion” is a power system that is controlled by digital circuits, in much the same way as would be with analog circuits, to monitor, supervise, communicate and control looping.
A fully digitally controlled power system includes both “Digital Control” and “Digital Power Management”

Digital Control
Power switch control feedback or feed forward loop, which is controlled by the digital circuit or programmable controller regulates the output of the power system by driving the power switch duty cycle using pulse width modulation techniques

Advanced adaptive control system, the control circuits combine A/D conversion, pulse width modulation, communication interfaces, operating entirely or mostly in digital mode to gain excellent system performance

Digital Power Management
A digital circuit or programmable controller provides the functions of configuration, diagnosis, monitoring, protection, supply sequencing, and communication with the Environment.
Analog vs. Digital Power Control System

Analog “Control” System With “Digital Management”

Both MCU and Analog PWM controller are replaced by one DSC

Full Digital Control System
“Digital Power Management”
There are strong trends in the Switch Mode Power Supply (SMPS) market to switch to Digital Control from analog.

Disadvantages of Analog Control:

- Analog control circuitry uses many components, resulting in a large footprint.
- Analog components' values fluctuate with age, temperature and other environmental conditions.
- Control response characteristics of analog control are fixed by discrete component values.
- Analog-based systems are very difficult to test and even more difficult to repair.

Advantages of Digital Control:

- Eliminates potential age, temperature and environmental fluctuations from analog values by converting to digital form and then processes these quantities entirely in the digital domain.
- Enables the ability to perform complex control algorithms. For example, control-response characteristics can be changed in real time to optimize supply operation at every given line or load conditions.
- Eliminates need to use external timing and threshold-setting components
- Eliminates manufacturing variances, temperature gradients and component tolerances associated with the passive discrete components.
- Enables cost reductions in the development as well as in the final production stages by eliminating external components and shrinking board space.
- Protects IP and differentiating technology
The Trends of Power Conversion Technology

• **High Efficiency**
 - High efficient from light load to full rated load range
 - Cost effective soft-switching techniques

• **High Power Density**
 - Compact size: high watt per cubic inch

• **High Intelligent Control**
 - Digital controlled power conversion
 - Adaptive control algorithms – nonlinear loads and components drift
 - Fast transient response
 - Intelligent power management and communication

• **High Reliability**
 - Less components usage
 - System monitoring and protection
 - Redundancy – load sharing

• **Quiet Operation**
 - Low harmonics, radiated and conducted EMI

• **Innovative Power Distribution**
 - New intermediate bus architecture – eliminate isolated DC/DC converter

• **Lower Cost**
Digital Power Conversion Applications

- Server Power Supplies
- Uninterruptable Power Supplies
- Board Mounted Power Supplies
- Photovoltaic Power Generation
- Wireless Charging
- Advanced Lighting
- Inductive Cooking
- Electric Vehicles
- & much more
Digital Power Control, Market Drivers

- **Key Parameters:**
 - Core Performance
 - PWM Resolution
 - ADC Conversion Rate
 - Added Value Peripherals

- **Core Performance:**
 - 100MIPS

- **PWM Resolution:**
 - 300ps

- **ADC Conversion Rate:**
 - ~ 300ns

- **Comms:**
 - PMBus; SPI; UART:
Benefits of Digital Power Conversion

- Improves Energy Efficiency
- Simplified Hardware Design
- IP Protection
- Increased Flexibility
- Reduced Components
- Reduced Board Size

Software can accommodate changing temperatures, changing loadings, and aging components

Traditional Offering

Software can accommodate audible noise elimination

86-135W 136-260W 261-500W

Software can accommodate on the fly topology modifications, predictive modelling, autotuning, and much more

Improved Power Density via efficiency improvements reduces costs via smaller heat sinks and smaller board sizes
Benefits of Digital Power Conversion

- Free from the effects of component tolerance, parametric drift, aging, etc.
- Configurable feedback loop structure for specific application requirements
- Advanced control law to improve system performance
- Adaptive control to meet overall efficiency control under all operating conditions
- Flexible PWM outputs control to meet all converter topologies
- Upgrade with new features without hardware changes and cost
- Retainable operational data for diagnostic and record keeping
- Diverse communications capabilities
- Reduced component count and inventory cost
- Higher power density due to overall integration
- Shorter R&D cycle, fewer turns of board prototyping
- Portable projects for faster reuse
- Defendable firmware - protects IP and differentiating technology
Benefits of Using Freescale DSC for Power Conversion

- Eliminate the effects of component tolerance, parametric drift, aging, etc
- Dynamic control loop to adjust for varying environmental conditions
- Software creates adaptive system
- Flexible communication capabilities
- Reduced component count and cost due to the overall integration
- Shorter R&D cycle, prototyping migrated to software
- Improved End System Performance
 - Energy savings
 - Quieter operation
 - Improved EMI performance
 - System Cost savings
 - Enhanced Reliability
- IP protection and technology differentiation
Agenda

• What is digital power conversion

• Freescale portfolio

• Target applications

• Enablement
Traditional Microcontroller

- Designed for Controller Code
- Compact Code Size
- Easy to Program
- Inefficient Signal Processing

Traditional DSP Engine

- Designed for DSP Processing
- Designed for Matrix Operations
- Complex Programming
- Less Suitable for Control

- Instructions Optimized for Controller Code, DSP, Matrix Operations
- Compact Assembly and “C” Compiled Code Size
- Easy to Program
- Additional MIPS Headroom and extended addressing space
Use Case: Hawk V3 Core

Lost cost and low power plus great performance

- **56800E V3 Core 100MHz**
- **JTAG/EOnCE**
- **256kB Program Flash**
- **32kB Program/Data RAM**
- **32kB Boot/Data Flash**
- **8ch 12bit ADCA**
- **8ch 12bit ADCB**
- **8ch High Res PWM**
- **8-ch QUAD DECODERS**
- **1ch 12bit DAC**
- **3 6bit DAC**
- **3 Analog Comparators**
- **2 x QSPI**
- **2x IIC/SMbus**
- **3 x HS QSCI**
- **1 FlexCAN**
- **8Ch 16bit Quad Timer**
- **2 x PIT (RTC)**
- **2 x QSPI**
- **2 x PDB**
- **2 x IIC/SMbus**
- **1 x FlexCAN**
- **3 x HS QSCI**
- **8ch 12bit ADC w/ Temp**
- **DMA Controller**

Use Case Details:

- **32-bit core support all 32-bit arithmetic calculations.**
- **32x32 Instruction increase the accuracy of the control loop and improvement of the floating point calculations.**
- **Enables real time control for applications dependant on the logical correctness of calculations, with the results available in a specific time window.**
- **DSC core supports Parallel move, with no-overhead hardware do loop function, enabling advanced control filter (FIR) tap calculations, making it considerably faster than any MCU.**
- **Performance increase to real time control applications: PID16 & 32, Buck Loop Cycling, Advanced digital filtering.**
- **Enables significant “Maths” processing in addition to general purpose functions, delivering greater system efficiency and precision.**
- **Existing Hawk Core is 30% more efficient, MHz to MHZ, than e200z0 Harvard and ARM Cortex CM3 in typical DSC applications.**
- **Reduced interrupt latency. 40% faster than hawkv2 on fast interrupt. Improved RTOS Support, via 1clk swap on context switch.**
DSP56800E Version 3 Core Improvement

Building on an existing rich 16-bit core instruction set that is ahead of the competition

New Instructions
• 32 x 32 -> 32/64 Multiply and MAC Instructions
 ✓ IMAC32 - Integer Multiply-Accumulate 32 bits x 32 bits -> 32 bits
 ✓ IMPY32 - Integer Multiply 32 bits x 32 bits -> 32 bits
 ✓ IMPY64 - Integer Multiply 32 bits x 32 bits -> 64 bits
 ✓ IMPY64UU - Unsigned Integer Multiply 32 bits x 32 bits -> 64 bits
 ✓ MAC32 - Fractional Multiply-Accumulate 32 bits x 32 bits -> 32 bits
 ✓ MPY32 - Fractional Multiply 32 bits x 32 bits -> 32 bits
 ✓ MPY64 - Fractional Multiply 32 bits x 32 bits -> 64 bits
• Multi-Bit Clear-Set instruction to improve flexibility of peripheral register handling.

Other Features
• Bit Reversed Address Mode For FFT algorithms.
• Swap all address generation Unit Registers with Shadowed registers to reduce Interrupt context switch latency.
Winning with Freescale DSCs in Digital Power

- Ease of use of a microcontroller (MCU) and the processing power of a digital signal processor (DSP)
- Reduced complexity and latency with simplified memory structure, shadowed register set, interrupt prioritization and cache
- 32-bit core improves precision without consuming performance

- Very high speed ADCs capture events real time.
- Accurate PWMs improve switching efficiency and control
- Flexibility with the crossbar to simplify pin out and peripheral communication
- DMA to reduce CPU overhead

- Portfolio scales to exactly fit the applications needs
- Flexible cores scale from 32MHz to 100MHz
- Flash extends from 32kb to 256kb
- Packages range from 28pins to 100pins

- Enhanced customer experience via integrated tools and reference designs
- Code reusable across the complete portfolio
- Extensive SW libraries provide quick project ramp up
DSC Roadmap

Available Now!

MC56F84xx
- 56F8441 – 100MHz 32-bit Core
- 256K Flash
- DMA, UHS ADC, Ultra-Hi Res PWM
- 56F8432/1 – 100MHz 32-bit Core
- 128K Flash
- DMA, UHS ADC, Ultra-Hi Res PWM
- 56F8422/1 – 100MHz
- 64K Flash
- DMA, UHS ADC, Ultra-Hi Res PWM

MC56F82xx
- MC56F824x – 60MHz
- 64K Flash
- Ultra-Hi Res PWM, UHS ADC
- MC56F824x – 60MHz
- 48K Flash
- Ultra-Hi Res PWM, UHS ADC

Available Now!

MC56F85xx
- 100MHz 32-bit Core
- 512K Flash
- FPU

MC56F80xx
- 100/50MHz
- 64K Flash
- Ultra-Hi Res PWM
- UHS ADC

Low power
- Small Flash Blocks
- Hi Res PWM

Available Now!
Freescale DSC Family Compatibility

- 56F827xx
- 56F8246
- 56F827xx
- 56F8256
- 56F8257
- 56F827xx
- 56F827xx
- 56F84xx
- 56F84xx
- 56F84xx
- 56F84xx

PIN COMPATIBLE

Available
Announced
Execution

32 QFN / LQFP
48LQFP
64LQFP
80 / 100LQFP
MC56F82xxx (Market Launch Nov’13)

- 56800EX V3 Core @ 100/50MHz
- 2.7-3.6V Operation
 - 100MHz from cache & RAM
- Up to 64KB Program FLASH, with Flash Security
- Up to 8KB Program/Data RAM
- **Memory Resource Protection Unit**
 - Up to 100 MHz Peripherals – Timers and SCIs
- **Eight Channel Nano Edge PWM (512ps resolution)**
 - Up to four programmable fault protection input
 - Dead-time insertion
 - Input Capture function
- **2 x 12-bit ADCs with total 16 Inputs & PGAs 1x, 2x, 4x**
 - 800ns conversion rate
 - Band-gap reference
- **Four channel DMA controller**
- **Inter Module cross-bar**
- **4 x Comparators with a 6bit Voltage reference**
- **CRC Generator**
- **2 x Windowed Watchdog**
- **External Watchdog Monitor**
- **4 x 16-bit Enhanced Multifunction Programmable Timers**
 - **2 x 12b DAC**
 - **2 x High Speed SCI**
 - **2 x SPI**
- **1x I2C/SMbus Communications Interface**
- **Software Programmable Phase Locked Loop**
- **Multiple Clock sources**
 - External Crystal/Resonator Oscillator
 - 8MHz/200KHz Tunable Internal Relaxation Oscillator
- **32KHz Internal RC relaxation Oscillator**
- **5v Tolerant IO**
- **Error code correction**

Open Items
- Industrial temperature: -40C to 105C @ 50MHz
- Extended temperature: -40C to 125C @ 40MHz

32QFN, 32LQFP, 48LQFP & 64LQFP

Packages are pin compatible with the MC56F824x/5x and MC56F84xx

Breakthrough Features:
- High speed ADC @ 800ns conversion time
- Nano Edge PWM @ 512ps Resolution
- Inter-module Cross bar
- DMA
- Memory Resource Protection Unit

Memory Options
- 2K B SRAM
- 8KB SRAM
- 16KB Flash
- 64KB Flash
- 32QFN, 32LQFP, 48LQFP & 64LQFP
MC56F82xxx Family

<table>
<thead>
<tr>
<th>MC6F</th>
<th>82748</th>
<th>82746</th>
<th>82743</th>
<th>82748</th>
<th>82736</th>
<th>82733</th>
<th>82733</th>
<th>82728</th>
<th>82726</th>
<th>82723</th>
<th>82723</th>
<th>82732</th>
<th>82732</th>
<th>82323</th>
<th>82316</th>
<th>82313</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core MHz</td>
<td>100/50</td>
</tr>
<tr>
<td>Flash Mem (kB)</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>SRAM Mem (kB)</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Memory Resource Protection</td>
<td>Yes</td>
</tr>
<tr>
<td>External WD or Windowed Watchdog</td>
<td>1</td>
</tr>
<tr>
<td>External Osc</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Cyc ADC Chnl</td>
<td>2x8</td>
<td>2x5</td>
<td>2x3</td>
<td>2x3</td>
<td>2x8</td>
<td>2x5</td>
<td>2x3</td>
<td>2x3</td>
<td>2x8</td>
<td>2x5</td>
<td>2x3</td>
<td>2x3</td>
<td>2x3</td>
<td>2x5</td>
<td>2x3</td>
<td></td>
</tr>
<tr>
<td>PWM uE Chanl</td>
<td>1x8</td>
<td>1x6</td>
</tr>
<tr>
<td>PWM stnd Chanl</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12b DAC</td>
<td>Yes</td>
</tr>
<tr>
<td>DMA</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QSCI</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>QSPI</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>I2C</td>
<td>1</td>
</tr>
<tr>
<td>CAN</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GPIO</td>
<td>54</td>
<td>39</td>
<td>26</td>
<td>26</td>
<td>54</td>
<td>39</td>
<td>26</td>
<td>26</td>
<td>54</td>
<td>39</td>
<td>26</td>
<td>26</td>
<td>39</td>
<td>39</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Pkg</td>
<td>64</td>
<td>48</td>
<td>32</td>
<td>32QFN</td>
<td>64</td>
<td>48</td>
<td>32</td>
<td>32QFN</td>
<td>64</td>
<td>48</td>
<td>32</td>
<td>32QFN</td>
<td>64</td>
<td>48</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

@10k units $2.29 $1.49
MC56F824/5x vs MC56F82xxx – Feature Matrix

<table>
<thead>
<tr>
<th>Feature</th>
<th>(MC56F824/5x)</th>
<th>(MC56F82xxx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>56800e V2</td>
<td>56800e V3</td>
</tr>
<tr>
<td>Bus Speed</td>
<td>60MHz</td>
<td>40/50MHz</td>
</tr>
<tr>
<td>Flash</td>
<td>64kB</td>
<td>64kB</td>
</tr>
<tr>
<td>RAM</td>
<td>8kB</td>
<td>6kB</td>
</tr>
<tr>
<td>EEPROM</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>PWM</td>
<td>520ps resolution</td>
<td>512ps</td>
</tr>
<tr>
<td>ADC</td>
<td>500nSsecs conversion</td>
<td>800nSsecs conversion</td>
</tr>
<tr>
<td>PGA’s</td>
<td>x1, x2, x4 magnification</td>
<td>X1, x2, x4 magnification</td>
</tr>
<tr>
<td>DMA</td>
<td>None</td>
<td>4 channel</td>
</tr>
<tr>
<td>Packages</td>
<td>44, 48 & 64 LQFP</td>
<td>32, 48, & 64LQFP</td>
</tr>
<tr>
<td>DACs & CMPs</td>
<td>1x12b + 3x5b with CMP</td>
<td>2x6b with CMP</td>
</tr>
<tr>
<td>Comms Peripherals</td>
<td>2IIC, 2SCI, 1SPI + 1 MSCAN</td>
<td>1IIC, 2SCI, 2SPI + 1 FlexCAN</td>
</tr>
<tr>
<td>Error Code Correction</td>
<td>None</td>
<td>Yes</td>
</tr>
<tr>
<td>Price Point</td>
<td>$3 @ 10k</td>
<td>$1.80 @ 10k</td>
</tr>
</tbody>
</table>
Introducing MC56F84xx

The **MC56F84xx** is the market’s fastest signal-processing microcontroller for the most efficient digital power conversion.

Exceptional Precision Sensing and Control

- Precision control solution using advanced high speed and accurate peripherals.

Market-Leading Performance

- Market’s fastest signal-processing microcontroller effortlessly handles demanding control loops and complex math.

Easy Implementation

- Flexible architecture, plus a wide array of on-demand resources, simplifies and speeds system development.

The Ultimate Solution in Performance and Precision for Green Innovation
MC56F84xx Advanced Features and Benefits

Superior Precision:
- High Res PWM with 312 pico-second resolution for accurate adjustment of the control loops
- 2x12-bit High Speed ADCs with 3.3 Msps resolution reducing jitter on current and voltage reads
- 16ch 16b SAR ADC that enables external sensors inputs
- 4 Analog Comparators with integrated 6-bit DACs that can enable emergency shut down of the PWMs
- Integrated PGAs to increase the accuracy of ADCs conversions on small voltages and currents

Performance:
- 100MHz/100 MIPS 32-bit core for fast control loop execution via single-cycle math computations and parallel moves
- Fractional arithmetic supported for greater accuracy
- DMA Controller for reduced core intervention when shifting data from peripherals

Easy Implementation:
- 5 volt tolerant I/O for lower cost board design
- Memory resource protection unit to ease safety certification
- Freescale’s FlexMemory for simplified data storage
- Market-focused software components, reference designs, and development tools for fast knowledge ramp up
MC56F84xx Advanced Features and Benefits

<table>
<thead>
<tr>
<th>Features</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Res PWM with 312 pico-second resolution</td>
<td>Provides precise and stable control across extended temperatures</td>
</tr>
<tr>
<td>Dual, low-power 12-bit ADC with built-in PGA sampling up 3.3 mega samples per second (Msps)</td>
<td>Improves real-time control for an environmentally more efficient design</td>
</tr>
<tr>
<td>100MHz/100MIPS 32-bit core, optimized for digital signal processing</td>
<td>Increases the execution of the control loop</td>
</tr>
<tr>
<td>Program flash memory scales from 64 KB to 256 KB</td>
<td>Enables flexibility</td>
</tr>
<tr>
<td>Direct memory access (DMA)</td>
<td>Helps ensure fast data transfers without core interruption</td>
</tr>
<tr>
<td>Market-focused software components, reference designs and development tools designed by our experts, deployed via software tools and made available through our online experience</td>
<td>Simplifies and speeds system development</td>
</tr>
<tr>
<td>5 volt tolerant I/O</td>
<td>Offers flexibility and system cost reduction</td>
</tr>
<tr>
<td>Memory protection features</td>
<td>Restricts access to key modules, helping to ensure reliable solutions</td>
</tr>
<tr>
<td>Freescale FlexMemory EEPROM capability</td>
<td>Supports frequent event captures</td>
</tr>
</tbody>
</table>

Freescale Solution – Highly Integrated controllers

• High performance Nonvolatile Memory – Flash memory
 - Fast access speed, small page size enables user to designate a flash page as EEPROM
 - Longer Data retention and higher program erase cycles
 - Wide operating temperature range (-40°C to 125°C ambient operating temperature)

• High speed/flexible PWM module
 - Improved PWM resolution on both duty cycle and frequency – Resonant converter applications
 - Arbitrary PWM pulse generation which can be used for any power stage topology

• High speed, 12-14 bits Analog-to-Digital Converter
 - High input impedance
 - Various power operating modes

• High performance On-chip Analog Modules - DACs, Comparators, Programmable Gain Amplifiers – Allowing analog designer to work in digital control world
 - Low offset, lifetime drift and gain error
 - Programmable comparator hysteresis
 - Adaptive slope compensation for peak current mode control

• Low Cost
 - System cost lower than the existing analog plus MCU system
Agenda

• What is digital power conversion

• Freescale portfolio

• Target applications

• Enablement
Today’s typical digital control topology of SMPS

Primary Controller
- Fan
- LEDs
- AC sensing
- Power Factor Correction
- A/D
- PWM

Isolation
- SPI or SCI

Secondary Controller
- Fan
- Thermal
- Current sharing
- RS485 / I2C (communication)
- Status report
- System info / control
- A/D
- PWM

Isolated DC/DC
- OV/OC detection
- reset

AC sensing
- OV/OC detection
- reset

Vout
Typical Photovoltaic System – Freescale Focus Areas

Smart Metering
- MCF51EM, Kinetis, S08GW, MCF5441x

Solar panel array

DC/DC

Inverter / controller

Utility meter

Monitor System

PLM

Power bus

Control bus

Micro Inverters
- 56F82xxx

Surge Protection
- 56F82xxxx
- S08 MCU

DC / AC Inverters
- 56F824x / 827xxx

Battery Chargers
- 56F827xxx
- S08 MCU

Sensor/Analog
- CAN i/f
- Pwr Mgmt

Local storage

Local loads

DC/DC

DC/DC

DC/DC

DC/DC
C56F84xx Use case – Solar Inverter

- Multi Language Display Storage
- 56800E V3 Core 100MHz
- JTAG/EOnCE
- System Integration Module (SIM)
- Interrupt Controller
- GPIO
- Enhanced Control and Measurement Block (eCMB)
- 256kB Program Flash
- 32kB Program/Data RAM
- 32kB Boot/Data Flash
- 8ch 12bit ADCA
- Prog Gain Amp A1, A2, A4
- 8ch 12bit ADCB
- Prog Gain Amp B1, B2, B4
- 8-ch High Res PWM
- 8-ch PWM /W Capture
- 1 Quadrature Decoders
- 3 6bit DAC
- 1ch 12bit DAC
- 3 Analog Comparators
- 2 x PDB
- 8Ch 16bit Quad Timer
- 2 x QSPI
- 2x IIC/SMbus
- 1 x CAN
- 3 xHS SCI
- 8ch 12bit ADC /w temp
- DMA controller
- Fast Access memory (2CLK cycle) for fast execution control algorithms.
- Harmonic control
- Power factor compensation
- MPPT tracking
- Space vector PWM Modulation
- Sophisticated harmonic analysis
- Single Chip Solution
- Serial Interface LCD and Memory
- Communicate to other solar Inverter
- Communicate To UPS System
- Opto Isolated enable RS232 & RS485
- External Thermal; Photovoltaic sensors
- Solar Inverter
- Multi Language Display Storage
- Enhanced Control and Measurement Block (eCMB)
- Fast Access memory (2CLK cycle) for fast execution control algorithms.
- Harmonic control
- Power factor compensation
- MPPT tracking
- Space vector PWM Modulation
- Sophisticated harmonic analysis
- Single Chip Solution
- Serial Interface LCD and Memory
- Communicate to other solar Inverter
- Communicate To UPS System
- Opto Isolated enable RS232 & RS485
- External Thermal; Photovoltaic sensors
- Solar Inverter
Digital Dimming Ballast Application Example

- Feature
 - One hardware can be used for different tubes
 - Control Algorithms and functionalities implemented in software
 - Low number of components usage which means low manufacturing cost
C56F84xx Use case – UPS

Enhanced Control and Measurement Block (eCMB)
- 256kB Program Flash
- 32kB Program/Data RAM
- 32kB Boot/Data Flash
- PLL
- Relaxation OSC-8Mhz
- Internal 32KHz Clock
- 2 x PIT (RTC)
- Inter-Module Xbar

Control Power Supply
- 8ch 12bit ADC
- 8ch 12bit ADCB
- Prog Gain Amp Ax1,2,4
- Prog Gain Amp Bx1,2,4
- 8-ch High Res PWM
- 8-ch PWM /W Capture
- 1 Quadrature Decoders
- 3 6bit DAC
- 1ch 12bit DAC
- 3 Analog Comparators
- 2 x PDB
- 8Ch 16bit Quad Timer
- 2 x QSPI
- 2x IIC/SMbus
- 1 x CAN
- 3 xHS SCI
- 8ch 12bit ADC /w temp
- DMA controller

System Integration Module (SIM)
- Voltage Regulator
- COP
- POR
- LVI
- GPIO

RTOS support

Multi Configuration Storage

Sensors:
- Temperature
- Flow

Harmonic control
- Power factor compensation
- Battery management
- Support Multi language HMI
- RTOS support

Single Chip Solution

UPS Network

Serial Interface Memory

Isolated RS485 & RS232 communication

High Res PWM for battery management

Enhancements
- RTOS support
- Enhanced Control and Measurement Block (eCMB)
- 56800E V3 Core 100MHz
- JTAG/EOnCE
- GPIO

Features
- Multi Configuration Storage
- Enhanced Control and Measurement Block (eCMB)
- Control Power Supply
- System Integration Module (SIM)
- Interrupt Controller
- GPIO
- RTOS support

Diagram:
- Block diagram of the C56F84xx chip with various components labeled.
- UPS network diagram with sensors indicated.

Title:
- C56F84xx Use case – UPS

Subtitles:
- Enhanced Control and Measurement Block (eCMB)
- Control Power Supply
- System Integration Module (SIM)
- Interrupt Controller
- GPIO
- Multi Configuration Storage
- Harmonic control
- Power factor compensation
- Battery management
- Support Multi language HMI
- RTOS support

Features:
- 256kB Program Flash
- 32kB Program/Data RAM
- 32kB Boot/Data Flash
- PLL
- Relaxation OSC-8Mhz
- Internal 32KHz Clock
- 2 x PIT (RTC)
- Inter-Module Xbar
- Voltage Regulator
- COP
- POR
- LVI
- 8ch 12bit ADC
- 8ch 12bit ADCB
- Prog Gain Amp Ax1,2,4
- Prog Gain Amp Bx1,2,4
- 8-ch High Res PWM
- 8-ch PWM /W Capture
- 1 Quadrature Decoders
- 3 6bit DAC
- 1ch 12bit DAC
- 3 Analog Comparators
- 2 x PDB
- 8Ch 16bit Quad Timer
- 2 x QSPI
- 2x IIC/SMbus
- 1 x CAN
- 3 xHS SCI
- 8ch 12bit ADC /w temp
- DMA controller

Diagram Components:
- UPS network
- Isolated RS485 & RS232 communication
- High Res PWM for battery management
- Sensors: 1) Temperature 2) Flow

Other Elements:
- UPS Network connections
- Isolated RS485 & RS232 communication diagram
- Sensors diagram

Additional Notes:
- High Res PWM for battery management
- RTOS support
- Enhanced Control and Measurement Block (eCMB)
- 56800E V3 Core 100MHz
- JTAG/EOnCE
- GPIO
- Multi Configuration Storage
- Harmonic control
- Power factor compensation
- Battery management
- Support Multi language HMI
- RTOS support
Agenda

- What is digital power conversion
- Freescale portfolio
- Target applications
- Enablement
Tools and Software

FreeMASTER
- Modular, expandable and cost-effective development platform
- TWR-56F84789-KIT
- Allows control of an application remotely from a graphical environment running on a PC

CodeWarrior
- Comprehensive IDE that provides a highly visual, automated framework to accelerate development of some of the most complex embedded applications

Math / DSP Libraries
- Market-focused software components increasing ease of use and helping decrease time to market

QEDesign
- Complimentary filtering tool ideal for designing FIR and IIR filters

Processor Expert
- Rapid application design tool that combines easy-to-use component-based application creation with an expert knowledge system

Reference Designs
- Complimentary gerbers, code and schematics for:
 - LLC resonant converter
 - Solar power conversion

Accelerate design success with complimentary RTOS that is simple to fine-tune for custom applications and scalable to fit requirements
Freescale Embedded Software Libraries

Target Devices/Platforms:
- MCF56F8xxx

Range of Applications:
- Digital Control Systems
- Motor Control (BLDC, PMSM, AC)

Highlights/Description:
- Software modules implemented in assembly
- Optimized for speed
- C-callable interface
- Easy to use
- Fully documented

Public Deliverables:
- **General Function Library (GFLIB)** contains math, trigonometric, look-up table and control functions. These software modules are basic building blocks.
- **Motor Control Library (MCLIB)** contains vector modulation, transformation and specific motor related functions to build digitally controlled motor drives.
- **General Digital Filter Library (GDFLIB)** contains filter functions for signal conditioning.
- **Advanced Control Library (ACLIB)** will contain functions to enable building the variable speed AC motor drive systems with field oriented control techniques without position or speed transducer (will be available soon).

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=FSLESL&fsrc=1
The Freescale Tower System

- Modular development platform for 8/16/32-bit MCUs & MPUs
 - Quickly combine Tower Modules to build a prototype of your application
 - Modules sold individually or in kits
 - Open Source: Build your own Tower Module to integrate your IP
 - Cost-optimized hardware
 - Software support from Freescale and Third Parties
 - Growing community of Third Party hardware support
 - On-line community: www.towergeeks.org

Rapidly build a prototype of your end application
Target Devices/Platforms:
- DSC controlled DC to AC Inverters
- Solar Energy Harvesting
- UPS

Applications Usage:
- As DEMO application for the solar energy to power line conversion
- Small power line source for home usage
- Functions as UPS when battery connected

Application Features:
- DC to AC Inverter for solar panel is DSC controlled inverter with battery charger option
- Nominal input voltage is 36V – it represents one 36V panel, or two 18V panels in series, or three lead-acid batteries in series – each of 12V
- Output power is max 400VA / 230V AC / 50Hz
- Can work as grid connected or no
- The MPPT algorithm is implemented to maximize output power from the solar panel
- High frequency power transformer is used to maintain isolation between solar panels and grid connected power line
- The switching frequency is up to 50kHz
- The DC-DC up-converter and full bridge topology is used for the AC voltage generation
- Fault protection implemented – over-current, short-circuit and input under-voltage
- Isolated serial link RS-485 used for connection to whole system
AC to DC SMPS Demo

Target Devices/Platforms:
• Switch Mode Power Supply
• DSC:
 - MC56F80xx Family
 - MC56F82xx Family

Applications Usage:
• As DEMO application for AC/DC conversion
• Communication power supply
• Server power supply
• Digital power supply

Application Features:
• General:
 - 1-phase 500W SMPS with MC56F8013 and MC!
• Input:
 - 45-65 Hz Operating Frequency Range
 - 85V - 265V Operating Voltage Range
 - Power factor at input > 0.9
 - Conversion efficiency > 90%
 - Total Harmonic Distortion < 10%
• Output:
 - Output voltage 12V/41A
 - Output voltage 5V/25A
• Communications:
 - serial communication (SCI) between controllers with opto-isolation
 - serial communication (SCI) of sec. side controller(MC56F82xx) with host PC with opto-isolation
 - serial communication (IIC) of sec. side controller(MC56F82xx) via PM Bus
FreeMaster Monitoring Tool

- Application control and monitor
- Live graphs, variable watches, and graphical control page
- Real-time operation monitor
- Supports:
 - HCS08, HC12, HCS12 and HCS12X BDM
 - 56F8000, 56F8100 and 56F8300 JTAG
 - SCI driver (FMASTERSCIDRV) for all platforms

www.freescale.com/webapp/sps/site/prod_summary.jsp?code=FREEMASTER
Processor Expert Features

- Available across DSC product lines
- Rapid application development
- Expert configuration system
- Instant functionality of generated code
- Two Peripheral programming levels
 - Embedded Components
 - PESL
- Application Specific Algorithm Libraries
 - All SDK algorithm libraries ported
- Tested and ready-to-use code
Free Filter Design Tool

- Launch QED Filter Design Package.

- Select Equiripple FIR Design, Lowpass.

- Input filter parameters, select Next, get 31 taps, select Next.

This filter has same normalized trans. bandwidth as prior example:

\[f'_\Delta = 0.0625 \]

\[N_{taps} \approx 45 \]

Only need 31 taps because of 1 dB passband ripple
Links for further information

- www.freescale.com/digitalpower -- Digital Power Homepage

- www.freescale.com/dsc -- Digital Signal Controllers Homepage

- www.freescale.com/codewarrior -- Code Warrior Development Homepage

- www.freescale.com/tower -- Tower Development Systems Information

- www.towergeeks.org – Tower Development Community Page
Nano edge PWM

- 16 bits of resolution for centre, edge aligned, and asymmetrical PWMs
- Fractional delay for enhanced resolution of the PWM period and edge placement
- Dithering to simulate enhanced resolution when fine edge placement is not available
- PWM can operate as complementary pairs or independent channels
- Ability to accept signed numbers for PWM generation
- Independent control of both edges of each PWM output
- Support for synchronization to external hardware or other PWM
- Double buffered PWM registers
- Half cycle reload capability
- Support for double switching PWM outputs
- Fault inputs can be assigned to control multiple PWM outputs
- Programmable filters for fault inputs
- Independently programmable PWM output polarity
- Independent top and bottom dead time insertion
- Each complementary pair can operate with its own PWM frequency and dead time values
- All outputs can be programmed to change simultaneously via a FORCE_OUT event
- PWM_X pin can optionally output a third PWM signal from each submodule
- Channels not used for PWM generation can be used for buffered output compare or input capture functions
- External ADC input, taking into account values set in ADC high and low limit registers
eFlexPWM Benefits: Power Conversion

• Independent control of TOP & BOT deadtime control – for high voltage IGBT of half bridge stages the on/off times can differ, so having different deadtime insertions timings for top/bot can ultimately increase electric power efficiency.

• Independent counter for each of 4 submodules (3 PWMs) – each complimentary pair of PWMs generally require to be independent of each other. (control of secondary and primary) Mandatory for SMPS. FTM: all PWMs are synchronised to same 16bit counter, OK for 3 phase motor control and low freq solar inverters.

• GHz resolution is mandatory for switched mode power supplies, lower freq solar inverters could get away without this. Dithering without GHz resolution may introduce on output voltage of SMPS.

• half cycle reload – manage control algorithm more efficiently pre-loading values prior to next edge of PWM, allowing less tasks to be performed on a PWM transition.

• output triggering very flexible and programmable delay capability, mandatory need for SMPS and solar inverters. FTM triggers only on a channel compare and re-init of counter. FTM requires additional PDB to create delayed triggering to ADC modules.

• fault inputs – SMPS require optional/alternative force out state dependent on the individual fault.
ADC Channel Scan Modes

- **Once**
 - The ADC starts to sample just one time whether you use the START bit or by a sync pulse. This mode must be re-armed by writing to the ADCR1 register again if you want to go capture another scan.

- **Triggered**
 - Sampling begins with every recognized START command or sync pulse.

- **Loop**
 - The ADC continuously take samples as long as power is on and the STOP bit has not been set.

- **Sequential Mode**
 - Sequential will sample SampleN one after another. Channel ANAx are sampled by ADCA and Channel ANBx are sampled by ADCB.

- **Parallel Mode**
 - Simultaneous: Parallel can sample SampleN from Group1 and SampleN from Group 2 at the same time.
 - Independent: ADCA and ADCB can operate independently. At end of scan of each ADC, they generate separate interrupt request.
Add 4 more if we want all PWMX[N]