[image: image1.png]





      The IBM PC 6800/01/04/05/09/11 cross assemblers

GENERAL


The assemblers are named as*.exe where '*' is  any


of 0,1,h1,4,5,9 or 11 depending on which one you're using.  Command


line arguments specify the filenames to assemble.


The assemblers accept options from the command line to be


included in the assembly.  These options are the following:


    l
   enable output listing.


    nol    disable output listing (default).


    cre    generate cross reference table.


    s
   generate a symbol table.


    c
   enable cycle count.


    noc    disable cycle count.


The command line looks like this :


       as* file1 file2 ... [ - option1 option2 ...]


If this method of passing commands to the assembler is


used rather than the OPT pseudo op code, a space should


separate the minus sign from the last file name and the


first option.  Example:


   as5 program -l cre


This command assembles file 'program' with an output


listing and a cross reference table.


The `S1' formatted object file is placed in file


`filename.S19', the listing and error messages are


written to  the standard output.  If multiple files are


assembled, the 'S1' file will be placed under the first


file's name.S19.


The listing file contains the address and bytes assembled for each


line of input followed by the original input line (unchanged, but


moved over to the right some).
If an input line causes more than 6


bytes to be output (e.g. a long FCC directive), additional bytes


(up to 64) are listed on succeding lines with no address preceding


them.


Equates cause the value of the expression to replace the address


field in the listing.


Equates that have forward references cause Phasing Errors in Pass


2.


Expressions may consist of symbols, constants or the character
'*'


(denoting the current value of the program counter) joined together


by one of the operators: +-*/%&|^.  The operators are the same as


in C:



+
add



-
subtract



*
multiply



/
divide



%
remainder after division



&
bitwise and



|
bitwise or



^
bitwise exclusive-or

          {    bitwise shift left

          }    bitwise shift right


Expressions are evaluated left to right and there is no provision


for parenthesized expressions.
Arithmetic is carried out in signed


twos-complement integer precision (16 bits on the IBM PC)


Constants are constructed with the same syntax as the Motorola MDOS


assembler:



'       followed by ASCII character



$
followed by hexadecimal constant  (trailing 'H' also works)



@
followed by octal constant        (trailing 'Q' also works)



%
followed by binary constant       (trailing 'B' also works)



digit
decimal constant

ERRORS


Error diagnostics are placed in the listing file just before the


line containing the error.  Format of the error line is:



Line_number: Description of error




or



Line_number: Warning --- Description of error


Errors of the first type in pass one  cause  cancellation  of  pass


two.  Warnings
do  not  cause
cancellation of pass two but should


cause you to wonder where they came from.


Error messages are meant to be self-explanatory.


If more than one file is being assembled, the  file  name  precedes


the error:



File_name,Line_number: Description of error


Finally, some errors are classed as fatal and  cause  an  immediate


termination  of  the assembly.
Generally these errors occur when a


temporary file cannot be created or is lost  during  the  assembly.


Consult your local guru if this happens.

DIFFERENCES


For indexed addressing, the comma is required before the  register;


`inc x' and `inc ,x' are not the same.



Macros are not supported.  (try M4 or M6)


The force size operators ('>' and  '<')  are  implemented  for  all


assemblers.



The only pseudo-ops supported are:




ORG, FCC, FDB, FCB, EQU, RMB, BSZ, ZMB, FILL




PAGE, DB,DW, DS and OPT.



The OPT pseudo-op allows the following operands:




nol
Turn off output listing




l
Turn on output listing (default)




noc
Disable cycle counts in listing (default)




c
Enable cycle counts in listing (clear total cycles)




contc
Re-enable cycle counts (don't clear total cycles)




cre
Enable printing of a cross reference table




s
generate a symbol table



Some of the more common pseudo-ops are not present:




SPC
Use blank lines instead




END
The assembly ends when there is no more input




TTL
use `pr' to get headings and page numbers




NAM[E]
Did you ever use this one anyway?



The above 4 pseudo-ops are recognized, but ignored.


    ZMB (Zero Memory Bytes) is equivalent to BSZ (Block Store  Zeroes).



FILL can be used to initialize memory to something other than zero:



FILL val,nbytes.

TARGET MACHINE SPECIFICS

 (as0)
6800:
Use for 6802 and 6808 too.

 (as1)
6801:
You could use this one for  the  6800  and  avoid



LSRD, ASLD, PULX, ABX, PSHX, MUL, SUBD, ADDD, LDD



and STD.

 (as4)
6804:
The symbols 'a', 'x' and 'y'  are  predefined  as



$FF, $80 and $81 respectively.
Also  defined  as



'A',   'X'   and   'Y'.    Because  of  the  6804



architecture, this means that 'clr x'  will  work



since  the  x register is just a memory location.



To  use  short-direct  addressing,   the   symbol



involved  must
not  be a forward reference (i.e.



undefined) and must be in the range $80-$83.



Remember  that
bytes  assembled  in  the   range



$10-$7F  will go into the data space; There is no



program space ROM for these locations.



The syntax for Register indirect addressing is as



follows:




  menmonic [<x>or<y>]



an example is:




    lda [x]



the comma ',' is not allowed.



The MVI instruction (move immediate) has its own



format :




 mvi address,#data   where address is



   an 8-bit address in page zero, and data is



   the value to be written to specified location.

 (as5)
6805:
There is no 'opt cmos' pseudo, so be careful  not



to use STOP or WAIT in a program that is destined



for  an  NMOS  version
of  the  6805.
 The  MUL



instruction   should   also  be  avoided  on  all



versions of the 6805 except the C4.  Cycle  times



are for the NMOS versions.

 (as9)
6809:
The SETDP pseudo-op is not implemented.



Use the '>' and '<` operators to force the size of



operands.




For compatibility, CPX is equal to CMPX.

 (as11) 68HC11: Bit manipulation operands are separated by  blanks  instead



of commas since the 'HC11 has bit manipulation instructions



that operate on indexed addresses.

DETAILS


Symbol:  A string of  characters  with
a  non-initial
digit.
The



string of characters may be from the set:




   [a-z][A-Z]_.[0-9]$



( . and _ count as non-digits ).  The `$' counts as a digit



to   avoid   confusion
with  hexadecimal  constants.
All



characters of a symbol
are  significant,  with  upper
and



lower  case  characters being distinct.  The maximum number



of characters in a symbol is currently set at 15.



The symbol table has room for  at  least  2000
symbols  of



length 8 characters or less.


Label:
A symbol starting in the first column is a  label  and
may



optionally  be
ended  with a ':'.  A label may appear on a



line by itself and is then interpreted as:




Label
EQU
*


Mnemonic:  A symbol preceded by at least one whitespace  character.



Upper  case characters in this field are converted to lower



case before being checked as a legal mnemonic.
Thus `nop',



`NOP' and even `NoP' are recognized as the same mnemonic.



Note that register names that sometimes appear at  the
end



of  a  mnemonic (e.g. nega or stu) must not be separated by



any  whitespace  characters.   Thus  `clra'   means   clear



accumulator A, but that `clr a' means clear memory location



`a'.


Operand:  Follows mnemonic, separated by at  least  one  whitespace



character.   The   contents   of   the
 operand  field  is



interpreted by each instruction.


Whitespace: A blank or a tab


Comment:  Any text after all operands for  a  given  mnemonic  have



been  processed or, a line beginning with '*' up to the end



of line or, an empty line.

          Now comments may begin with either a '*' or a ';' character and

          if a ';' is used they may begin in any column.  Not just the first.


Continuations:
If a line ends with a backslash (\) then  the  next



line  is  fetched  and
added to the end of the first line.



This continues until a line is seen which doesn't end in  \



or  until  MAXBUF characters have been collected (MAXBUF >=



256 ).

FILES


filename.S19
S-record output file


STDOUT

listing and errors (use redirection for listing file)


Fwd_refs
Temporary file for forward references.

IMPLEMENTATION NOTES


This is a classic 2-pass assembler.  Pass 1 establishes the  symbol


table and pass 2 generates the code.








12/11/84 E.J.Rupp


This version of the cross assemblers ported to the IBM PC 4/13/87

                                   03/29/90 B.L.Olney

     The following fixes/enhancements have been made during 1988 and 1989.

     - Version number displayed.  Current version at this writing is 1.03.

     - Fixed lost cluster problem.

     - Semicolon allowed as comment character.

     - Comments may begin on any column if prefixed with a semicolon.

     - db is a synonymn for fcb.

     - dw is a synonymn for fdb.

     - ds is a synonymn for rmb.

     - New operators for shift left '{' and shift right '}'.  The left operand

       is the word to be shifted and the right operand is the number of bit

       positions to shift.

     - Trailing radix specifiers are now allowed.  



Trailing 'H' or 'h' is same as leading $ for hexadecimal constants.



Trailing 'Q' or 'q' is same as leading @ for octal constants.



Trailing 'B' or 'b' is same as leading % for binary constants.

     - Error reporting for constants improved.

     - Line number of errors now is relative to beginning of file.

     - Formatting of symbol table enhanced.

     - Number of errors found is reported at end of assembly.










[image: image1.png]