
CodeTEST® Software
Analysis Tools for

FreescaleTM StarCoreTM
MSC8100 Family

Getting Started Guide

924-75525
Rev B
April 2006

Freescale� and the Freescale logo are trademarks of Freescale Semiconductor, Inc. CodeTEST and CodeWarrior are
trademarks or registered trademarks of Freescale Semiconductor, Inc. in the United States and/or other countries. All
other product or service names are the property of their respective owners.
Freescale Semiconductor�s CodeTEST product is protected under U.S. Patent 5,748,848.
Copyright © 2005-2006 by Freescale Semiconductor, Inc. All rights reserved.
Information in this document is provided solely to enable system and software implementers to use Freescale Semicon-
ductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any inte-
grated circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale
Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any partic-
ular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product
or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental dam-
ages. �Typical� parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and
do vary in different applications and actual performance may vary over time. All operating parameters, including �Typ-
icals�, must be validated for each customer application by customer's technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not de-
signed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semi-
conductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

How to Contact Us

Corporate Headquarters Freescale Semiconductor, Inc.

7700 West Parmer Lane

Austin, TX 78729

U.S.A.

World Wide Web http://www.freescale.com/codewarrior

Technical Support http://www.freescale.com/support

http://www.freescale.com/codewarrior
http://www.freescale.com/support

Table of Contents

1 Introduction 5
About the Documentation . 5

Software Manuals . 5
Hardware Manual . 6
Online Help . 6

What is CodeTEST for StarCore?. 6
The Process for Monitoring Applications with CodeTEST Tools 9
How Do You Set Up CodeTEST Tools?. 10

2 Setting up the Tools 11
Before You Begin . 11
What You Will Do in this Chapter . 12
Preparing Your Environment . 13
Validating the Probe Connection . 14
Setting up Data Collection . 19

Setting Up for Instrumentation in the CodeWarrior IDE 19
Collecting Data . 24

Viewing Data . 29
At this Point... 32
What to Do Next . 32

A CodeTEST Plugin for CodeWarrior IDE Reference 39
Before You Begin . 39
Configuring a Project for Instrumentation . 40

Targets . 40
CodeTEST File Mappings Panel. 40
CodeTEST Instrumentation Settings Panel. 42

Troubleshooting . 44

B Instrumenting for Memory Analysis 45

Index 53
3Getting Started Guide

Table of Contents
4 Getting Started Guide

1
Introduction

This manual shows how to get started with CodeTEST® Software Analysis Tools for a
FreescaleTM StarCoreTM DSP target. It contains the following sections:

� �Setting up the Tools� on page 11

� �CodeTEST Plugin for CodeWarrior IDE Reference� on page 39

This chapter covers concepts that will help you understand how to set up applications for
the CodeTEST Tools. It contains the following sections:

� �About the Documentation� on page 5

� �What is CodeTEST for StarCore?� on page 6

� �The Process for Monitoring Applications with CodeTEST Tools� on page 9

� �How Do You Set Up CodeTEST Tools?� on page 10

About the Documentation

NOTE For important information available after publication of the document set,
please refer to the product Release Notes and README file included with
your CodeTEST software.

In addition to this document, you should be familiar with the related materials in the
CodeTEST document set, which are provided in PDF format in the installation doc
directory.

Software Manuals
� CodeTEST Software Analysis Tools Quick Start Guide: CodeTEST software

installation procedures and licensing information.

� CodeTEST Software Analysis Tools User’s Guide: how to use the CodeTEST
Manager to capture and display data.

� CodeTEST Instrumenter Reference Manual: Instrumenter components, switches, and
supported functions.

� CodeTEST Software Analysis Tools Scripting Guide: how to write CodeTEST
scripts. Also includes the CodeTEST Manager API.
5Getting Started Guide

Introduction
What is CodeTEST for StarCore?
Hardware Manual
� Setup and Installation Guide for the CodeTEST Probe: installation and configuration

procedures for the CodeTEST Hardware Probe.

Online Help
� CodeTEST Online Help: context-sensitive, quick reference, and procedural

information.

What is CodeTEST for StarCore?
CodeTEST Tools for embedded developers and test engineers provide visibility into an
application as it runs on a target.

You can use the CodeTEST Tools to trace code execution and measure performance and
coverage. For more information about using the CodeTEST Tools, see the CodeTEST
Tools User’s Guide.

The Trace Tool � displays software execution history in three synchronized views.

� The Trace view displays branch points, function entries and exits.

� The Execution History view graphically displays the relationship between task
context and function calls.

� The Source Code view displays the source code.

The Performance Tool � tracks function entries and exits as your application executes.

� The Performance view displays the amount of CPU time consumed by each
function.

� The Call Pair view dynamically identifies the relationships between the program
functions.

� The A/B Timers view displays the timing relationship between two selected events.

The Coverage Tool � tracks which statements of each function actually execute.
CodeTEST Tools measure the following three coverage levels.

� Statement Coverage (SC)

� Decision Coverage (DC)

� Modified Condition/Decision Coverage (MC/DC)

The Memory Tool � displays memory activity in two views.

� The Memory view tracks your program�s dynamic allocation and deallocation of
memory.

� The Memory Errors view displays memory allocation errors.
6 Getting Started Guide

Introduction
What is CodeTEST for StarCore?
If you are using CodeTEST for StarCore with an RTOS, see also the Getting Started
Guide for that RTOS.

See �CodeTEST Tools Capability Specifications� in the CodeTEST Tools User’s Guide
for additional information.

NOTE Source view coverage color highlighting may be incorrect due to
incompatibilities with the preprocessor. The instrumentation process and
analysis of coverage data is correct.

CodeTEST Probe
CodeTEST Tools require a Probe to collect data from an embedded application as it runs
on a target.

The Hardware Probe sends the data to the CodeTEST Manager on a workstation. The
Manager generates data views that can be used to:

� Analyze performance

� Analyze coverage

� Trace code execution

Figure 1.1 shows a typical system using a CodeTEST Hardware Probe.
7Getting Started Guide

Introduction
What is CodeTEST for StarCore?
Figure 1.1 Typical Hardware Probe Installation

Firewire

Ethernet

Target Processor Board

CodeTEST Probe

Data
Collection
Unit

Probe
Adapter

CodeTEST Manager on
Host Workstation

Data
Processing
Unit
8 Getting Started Guide

Introduction
The Process for Monitoring Applications with CodeTEST Tools
The Process for Monitoring Applications
with CodeTEST Tools

The process that you will use to monitor your application with CodeTEST Tools is
shown below.

Figure 1.2 Monitoring Applications with CodeTEST Tools

You will modify your environment to insert a CodeTEST utility called the Instrumenter
into the preprocessing phase of your compiler. When you compile your code, the
Instrumenter inserts test point instructions, called tags, into the executable. It also creates
an Instrumentation Database (IDB) file that CodeTEST Tools use to resolve this tag data
with source code. You use the CodeWarriorTM Development Studio for StarCore DSP
IDE to set up instrumentation.

After you build your executable and download it to the target, you can start collecting
data. As the executable runs on the target, it sends data to the CodeTEST Probe.

You can use the CodeTEST Manager to control data collection from the Probe and to view
the data, trace code execution, and analyze coverage, performance, and memory.

CodeTEST Manager

Executable

Source

.C

Instrumentation

IDB

LAN

1

3

2

Target
Probe

1

2

3

9Getting Started Guide

Introduction
How Do You Set Up CodeTEST Tools?
How Do You Set Up CodeTEST Tools?
Chapter 2 provides instructions that show how to use a demo application that we provide.

We will show you how to:

� Set up the environment.

� Connect the CodeTEST Manager to the Probe and run a simple application called
taskwalk to verify the Probe connection.

� Instrument a sample application called CT_DEMO using the CodeWarrior IDE, and
set up the CodeTEST Manager to collect and view coverage, trace, and performance
data.

Appendix B provides instructions on setting up an application to collect memory data.

NOTE Be sure to read �Before You Begin� on page 11 to make sure that your
environment is set up for CodeTEST Tools.
10 Getting Started Guide

2
Setting up the Tools

This chapter shows how to prepare your environment, validate your Probe connection, and
instrument and monitor a sample application called CT_DEMO. The instructions show how
the CodeTEST Tools and the CodeWarriorTM Development Tools are used together to
provide application visibility.

This chapter has the following sections:

� �Before You Begin� on page 11

� �What You Will Do in this Chapter� on page 12

� �Preparing Your Environment� on page 13

� �Validating the Probe Connection� on page 14

� �Setting up Data Collection� on page 19

� �Viewing Data� on page 29

� �What to Do Next� on page 32

For instructions that show how to use more advanced options, see the CodeTEST
Instrumenter Reference Manual and the CodeTEST Tools User’s Guide.

Before You Begin
Before you begin, make sure that:

Your development environment has... You know how to...

Freescale CodeWarrior StarCore compiler.
Application code can be successfully built (compiled
and linked).
A project configured to not include pre-compiled
headers.

Build your application and modify the
compiler definition and build sequence.

A connection (e.g., JTAG) established with the target
processor that is used to run the application code.

Load images to the target processor.

A target processor that boots correctly and can run
application code independent of CodeTEST Tools.

Start applications on the target processor.
11Getting Started Guide

Setting up the Tools
What You Will Do in this Chapter

What You Will Do in this Chapter
This chapter shows how to validate your Probe connection and set up CodeTEST Tools to
monitor a sample application called CT_DEMO. The process is shown below. This basic
process applies to any environment, regardless of its level of complexity.

NOTE We will be using the CodeWarrior StarCore stationery to set up sample
projects. Additional information is provided for your existing projects.

These steps have been performed... Who does this?

The “core” CodeTEST Tools v4.2 are installed on the
workstation or network and a license file is installed on a
license server.

A system administrator or someone who can
obtain IP addresses, install the license
server, and resolve network issues.
Reference: CodeTEST Tools Quick Start
Guide

The CodeWarrior Development Studio for StarCore
v2.6 is installed.

A system administrator or software engineer.
Reference: CodeWarrior Tools
documentation

The CodeTEST Probe is connected to the workstation
through a TCP/IP network. The Probe has an IP
address and responds to a ping command from the
workstation.

A system administrator or software engineer.
Reference: Setup and Installation Guide for
the CodeTEST Probe

The CodeTEST Probe is connected to the target board.
The location for the CodeTEST tag port is identified in
the target memory map.

A hardware engineer or someone who has
knowledge of the target, including the
memory map, schematics, pinouts, signal
timing, and peripheral setup.
Reference: Installation Instructions: Nexus
Adapters

You know or have... Where do you find this?

Your target processor type (e.g., StarCore). A hardware engineer.

The compiler you are using (e.g., CodeWarrior). A build engineer.

The network protocol you are using (TCP/IP). A hardware or software engineer.

The directory where the core CodeTEST product was
installed. (This is CT_HOME.)

A system administrator.
12 Getting Started Guide

Setting up the Tools
Preparing Your Environment
Figure 2.1 Setup Steps

� Preparing Your Environment

Copy the required files to your CodeWarrior installation and make sure that your
environment variables are set correctly.

� Validating the Probe Connection

Use the CodeTEST Manager to configure the Probe and connect to the Probe. Then
build, load, and run the taskwalk application to verify that the CodeTEST
Manager can receive data from the Probe.

� Setting up Data Collection

Instrument the CT_DEMO application.When you compile the application, the
CodeTEST Instrumenter inserts test point instructions (�tags�) in the code. It also
creates an instrumentation database (IDB) file that maps these tags to the code. Set
up the data source in the CodeTEST Manager for data collection.

� Viewing Data

Verify the data collection results in the Trace, Coverage, Memory, and Performance
views.

Preparing Your Environment
Make sure that you have installed the core CodeTEST Tools before performing the
additional steps here. See the CodeTEST Tools Quick Start Guide for instructions.

NOTE Please read the Release Notes for information regarding installation
requirements for your operating system.

To install the CodeTEST Instrumenter plugin files

1. In the CodeTEST installation, locate the file starcore.zip in the CodeTEST
installation directory %CT_HOME%\lib\cw-plugins.

2. starcore.zip consists of file: starcore-CodeWarrior.zip. Unzip the
contents of starcore-CodeWarrior.zip to the top of your CodeWarrior for

Prepare
your

Environment

Validate
Probe

Connection

Set up
Data

Collection

View
Data
13Getting Started Guide

Setting up the Tools
Validating the Probe Connection
StarCore installation directory, using the folder names specified in the zip file. These
files add support for CodeTEST instrumentation to the CodeWarrior IDE.

To set up the environment

1. Set the CT_TARGET environment variable to mwerks-starcore. CT_TARGET is
used by the CodeTEST Tools to identify your compiler and CPU.

2. Add the path to the CodeWarrior command line tools to your path:
CodeWarrior_Install_Dir\StarCore_Support\compiler\bin

Validating the Probe Connection
To validate the Probe connection and configuration, build the uninstrumented
taskwalk application, configure the Probe, and monitor taskwalk as shown in the
following instructions.

To build taskwalk

1. Start the CodeWarrior IDE for StarCore.

2. Select File > New.

3. Select StarCore Stationery. Enter taskwalk for Project name, and click OK.

4. In the New Project dialog box, select MSC8101ADS, and click OK.

If you are not using the MSC8101ADS variant, select the stationery for your variant,
and click OK.

5. When the project opens, in the target field, select C for MSC8101 Hardware

.

6. Add the file %CT_HOME%\lib\utils\taskwalk.c to the project by right-
clicking on the code directory on the Files tab, selecting Add Files, and browsing to
the file. In the Add Files dialog box that appears, be sure the C for MSC8101
Hardware target is selected, and click OK.

7. Remove the default main.c file from the project by right-clicking on the filename in
the code directory on the Files tab and selecting Remove.
14 Getting Started Guide

Setting up the Tools
Validating the Probe Connection
8. In the file %CT_HOME%\lib\utils\taskwalk.c, add the following lines in the
#define section at top of the file:

#define TAG_DEST 2

#define CT_PORT 0x21000000

This definition of the CodeTEST tag port (CT_PORT) typically works for a
CodeWarrior build of taskwalk. You can change this value to the tag port address
for your system, however the address must be writable by target code and must not
interfere with other code symbols.

NOTE For guidance on selecting the port address, see the Setup and Installation
Guide for the CodeTEST Probe and the CodeTEST application note for the
processor.

9. Save and close taskwalk.c.

10. Click the Make button to build taskwalk. You will run taskwalk after

configuring the Probe in the next section.

To configure the Probe

1. Start the CodeTEST Manager.

� From the Start menu or run %CT_HOME%\bin\ctmgr.

The Manager window has three �panes� that we will refer to in the rest of this section:

� The Info pane provides configuration information about the data.

� The Logs pane shows error, warning, and debug messages.

� The Workspace pane is used to manage data sources and open or close data sets.

For information about the CodeTEST Manager, see the CodeTEST Tools User’s Guide
and online Help.

NOTE A data source refers to any CodeTEST monitor or source of data (e.g., a Probe
is a data source). Data sets are the result of gathering data from a data source.
15Getting Started Guide

Setting up the Tools
Validating the Probe Connection
Figure 2.2 CodeTest Manager Window

When a data source is highlighted, the toolbar at the top of the window is used to
control data collection.

Button Description

Connect Establishes the connection to the Hardware Probe data source.

Disconnect Disconnects the CodeTEST Manager from the Hardware Probe. Disconnecting
does not shut down the Probe. It can continue to gather data from instrumented
applications.

Places the data source in Continuous mode. Continuous mode allows the data
source to track the instrumented application performance and coverage
performance.

Puts the data source in Trace mode. Trace mode allows you to track the
instrumented application(s) detailed execution until the trace buffer is filled.

Workspace Pane

Logs Pane

Information Pane
16 Getting Started Guide

Setting up the Tools
Validating the Probe Connection
2. From the DataSource menu, select Hardware Probe to open the Config & Control
window DataSource tab.

The fields within the tabs configure the Manager. For more about the Config &
Control window, see �Step 2: Set up the Manager for your application� on page 32,
the Online Help, and the CodeTEST Tools User’s Guide.

3. Type a name for the data source in the Data Source ID field.

4. Type the host name or IP address of your Probe in the Hostname field.

5. Under Update Methods, select Automatic to load data from the Probe every 30
seconds.

6. Click Apply to apply the settings.

 or Alt-s
Starts the data source and collect data.

 or Alt-x
Stops the data source.

 or Alt-c
Continues operation from stopped state, without clearing continuous mode data.

Cancel Stops trace data collection, without uploading the trace buffer.
Stopping, whether automatically (because the trace buffer is full), or manually
(using the Stop button), causes the Manager to upload and process the entire trace
buffer. If you want to stop execution trace and do not want to upload and process
the trace buffer, use the Cancel button.

Update or Alt-u Uploads continuous mode data on demand. If update is used while the data source
is collecting data, then the resulting data sets may be inconsistent. For consistent
data sets, stop the data source before updating. This button is disabled if the
update method is set to automatic.

Button Description
17Getting Started Guide

Setting up the Tools
Validating the Probe Connection
Figure 2.3 HWIC Config & Control Window

7. Click Probe Config Utility to open the Probe Utility window.

8. From the Probe menu, select Universal and fill in the fields on the Probe Utility
window. See the CodeTEST application note for the MSC8101ADS for guidance on
required settings.

9. Click Apply to save the Probe configuration file and apply it to the Probe.

10. On the Config & Control window, click Apply All.

11. On the Manager File menu, select Save > Workspace File As and save the workspace
as ct_demo.ctwsp.
18 Getting Started Guide

Setting up the Tools
Setting up Data Collection
To monitor taskwalk

1. Click the CodeTEST Manager Connect button to connect to the CodeTEST Probe.

2. Click the CodeWarrior IDE Run button to download and start the taskwalk

application.

3. Click the Diagnostic tab on the CodeTEST Manager Config & Control window.

4. Enter taskwalk.data in the Output File field and click Start .
Diagnostic data collection and analysis will begin.

NOTE The CodeTEST Probe collects data as the taskwalk application runs on your
target. The collected data is compared to a known good file and the results are
displayed in the Diagnostic tab.

5. Observe the results.

� If the green check is highlighted, your Probe is connected and configured
correctly.

� If the red X is highlighted, there is a problem with your connection or

configuration or taskwalk is not running. Verify the hardware connections and the
configuration settings (you may need to change the frequency or phase shift). If you
cannot find the problem, contact Customer Support.

6. Reboot your target to return it to a known, clean state.

Setting up Data Collection
Follow the procedures in this section to instrument a demonstration application
(CT_DEMO) using the CodeWarrior IDE. Then set up the CodeTEST Manager for data
collection.

Setting Up for Instrumentation in the
CodeWarrior IDE
The general configuration steps listed below for instrumenting a project are expanded in
this section.

1. Open an existing project or create a new project.
19Getting Started Guide

Setting up the Tools
Setting up Data Collection
2. Configure a target for instrumentation.

3. Map source file extensions to the CodeTEST Instrumenter and instrumented file
extensions to the CodeWarrior Compiler.

4. Specify Instrumenter options.

5. Build the project.

To create a CT_DEMO project

TIP For your application, either open the project for which you want to add
instrumentation, or create a new one appropriate for your system.

1. Start the CodeWarrior IDE for StarCore.

2. Select File > New.

3. Select StarCore Stationery, enter taskwalk for Project name, and click OK.

4. In the New Project dialog box, select MSC8101ADS, and click OK.

If you are not using the MSC8101ADS variant, select the stationery for your variant,
and click OK.

 To configure a target for instrumentation

TIP You may want to have two targets for your application - one that is set up for
instrumentation and one that is not. To create a CodeTEST target, click on the
project Targets tab, and from the Project menu select Create Target, enter a
name, and click OK.

Add CT_DEMO source files to the project and configure the CodeTEST target for your
hardware:

1. When the project opens, in the project target field, select C for MSC8101 Hardware

.

2. Add the three .c files from %CT_HOME%\cttarget\dcu\demo\ct_demo\src
to the project by right-clicking on the code directory on the File tab, selecting Add
Files, and browsing to the files. In the Add Files dialog box that appears, be sure the C
for MSC8101 Hardware target is selected, and click OK.
20 Getting Started Guide

Setting up the Tools
Setting up Data Collection
3. In the file main.c, add a declaration for the CT_DEMO entry point after the include
lines:

extern void AppMain(void);

4. Rewrite the main() function as follows:

int main(void)

{

AppMain();

return 0;

}

NOTE For CT_DEMO, the CodeTEST tag port format used is an address, and is
specified to the Instrumenter by -tags-to-address=addr in the
CodeTEST StarCore Options panel in a later step. You will need to decide
on a tag format appropriate for your system. If you choose to use the default
format, -tags-to-port, use of the ct_port[0] array is assumed and
you need to define a ct_port symbol in your linker command file, as
described in �To define the tag port� on page 46.

5. Save and close main.c.

6. If you want to debug the application, be sure that debug mode is selected for the
taskwalk.c file on the project Files tab. A black dot will be displayed in the

column when you click the space in the column under the icon.

To map source file extensions for CodeTEST instrumen-
tation

Associate your source file settings with the CodeTEST instrumentation process.

1. Select the CodeTEST target and click the project settings icon .

2. Select Target > File Mappings.

3. For each source file type (e.g., .c) that you want to instrument, select CodeTEST
STARCORE Compiler and click Change.

4. Define a new file type:

� File Type: Text

� Extension: ._i
21Getting Started Guide

Setting up the Tools
Setting up Data Collection
� Compiler: Enterprise Compiler

Click Add.

5. Click Apply to apply the settings.

To specify CodeTEST instrumentation options

Specify the instrumentation options for the project in the Target Settings Panel for
CodeTEST instrumentation. For extensive information about instrumentation options, see
the �CodeTEST Instrumentation Settings Panel� on page 42 and the CodeTEST
Instrumenter Reference Manual.

1. In the Target Settings Panel, select Language Settings > CodeTEST STARCORE
Options.

2. Verify the options are set as follows:

� Tag Level: Statement

� IDB File: codetest.idb

� Check Display generated command lines.
22 Getting Started Guide

Setting up the Tools
Setting up Data Collection
� CodeTEST Instrumenter Options: -tags-to-address=0x21000000
-mwcw

The option -tags-to-address=0x21000000 sets the value of the CodeTEST
tag port to 0x21000000, which typically works for a CodeWarrior build of ct_demo.
You can change this value to the tag port address for your system, however the address
must be writable by target code and must not interfere with other code symbols. See
�The CodeTEST Tag Format� in the CodeTEST Instrumenter Reference Manual for
more information.

The option -mwcw specifies the StarCore Enterprise compiler to the CodeTEST
Instrumenter.

3. Click OK to apply the settings and close the window.

NOTE Instrumenting for memory analysis is not covered in this chapter; see for
instructions.
23Getting Started Guide

Setting up the Tools
Setting up Data Collection
NOTE When you set up instrumentation for your application, see �CodeTEST Plugin
for CodeWarrior IDE Reference� on page 39 for additional information about
the options panel.

To build the project

NOTE If you previously imported your project with a different version of the
CodeTEST plugin, �Unable to load include paths� error messages may be
reported. Delete the project files (e.g., proj_name_emul.mcp) and
directory (e.g., proj_name_Data), re-import the project, and repeat the
steps in the instrumentation section.

Click the Make button to build the CT_DEMO project.

NOTE All CodeTEST Instrumenter messages will display in the Errors & Warnings
window.

NOTE After you build the application, the instrumented files will be added to the
project. If you want to debug your instrumented source code, be sure that
debug mode is selected for each instrumented file on the project Files tab and
build again. A black dot will be displayed in the column when you
click the space in the column under the icon.

Collecting Data
Use the CodeTEST Manager to control data collection and view the application data.

To set up the Manager
1. If you closed the Manager after validating the Probe, open it, select File > Recent

Workspaces, and open the ct_demo.ctwsp workspace that you saved when you
configured the Probe.

2. In the workspace, select the data source for your Probe and right-click on it to open a
context menu.

3. From the context menu, select Configuration to open the Config & Control window.
24 Getting Started Guide

Setting up the Tools
Setting up Data Collection
The fields within the tabs configure the Manager. For more information on the Config
& Control tabs, see �Step 2: Set up the Manager for your application� on page 32, the
Online Help, and the CodeTEST Tools User’s Guide.

For CT_DEMO, we will perform the minimum configuration and use many default
settings. When you configure the Manager for your application, you may want to
change these default settings.

To specify the IDB and source files

1. In the Config & Control window, click the IDB/Source tab.

Figure 2.4 IDB/Source Tab

2. Browse to the codetest.idb file that was created when you instrumented the
CT_DEMO application:

Project_directory\output\codetest.idb

Click to add
path to source

Click Browse

code directory

to locate
25Getting Started Guide

Setting up the Tools
Setting up Data Collection
For more information on IDB files, see the section �The CodeTEST Instrumenters� in
the CodeTEST Instrumenter Reference Manual.

3. Select the file and click Open.

4. In the Source Code Directories group, click the Add button to add a new
directory path.

5. Double-click the highlighted box that appears, and click the ... button . Browse to
the directory path for the application source code:

%CT_HOME%\cttarget\dcu\demo\ct_demo\src

6. Click Open to select the path.

This pane allows you to specify any directories that contain source code for the
instrumented program, so that you can browse to that code from the data windows. The
src directory is all that is needed for CT_DEMO.

7. Click Apply.

To set the data set options

1. Click the Data Collection tab.

2. Under Data Type, select the Coverage and Performance options.

3. Under Coverage Level, select SC and Block (Default).

NOTE You cannot select a coverage level unless you have specified an IDB file and
applied that setting. How you instrumented your code is reflected in the IDB
file, which determines the coverage level selections you can make on the Data
Collection tab.

4. Click Apply All.

For more information on setting coverage levels, see the online Help or �Instrumentation
Levels� in the CodeTEST Instrumenter Reference Manual.
26 Getting Started Guide

Setting up the Tools
Setting up Data Collection
NOTE If you do not select a coverage level, the default will be the coverage level
present in the IDB. If the IDB has files which have been instrumented at
different levels, the default is the lowest coverage level present in the IDB.
The instrumentation level applied to a source file determines the level of
coverage that can be displayed on the screen and in the coverage report. When
files or functions have been instrumented at different levels, those at the
selected level will display; the others will show �NA.� Change the Manager�s
coverage configuration to view files at other levels. The coverage level must
also be consistent with available licenses.

Figure 2.5 Data Collection Tab
27Getting Started Guide

Setting up the Tools
Setting up Data Collection
To save your workspace

1. In the Manager window, select File > Save Workspace File As... .

2. Browse to the %CT_HOME%\cttarget\dcu\demo\ct_demo directory, and type
ct_demo.ctwsp to name the workspace. Click Save.

This name will appear in the title bar of the CodeTEST Manager window. The
workspace and configuration data for any defined data sources will be saved.

After you have configured a data source, it is a good idea to save your workspace
configuration so you can use it later.

NOTE Saving the configuration in the Config & Control window saves only the
settings that have been applied from that window.

To start data collection

1. Click the CodeTEST Manager Connect button to connect to the Probe.

2. Click the CodeTEST Manager C button to set Continuous mode.

3. Click the CodeTEST Manager Start button to start data collection.

4. Click the CodeWarrior IDE Run button to download and start the CT_DEMO

application.

TIP Start CodeTEST data collection before you start your application to get
information about how your application starts.

NOTE You must have a valid CodeTEST license for the type of data you want to
collect.
28 Getting Started Guide

Setting up the Tools
Viewing Data
Viewing Data
You can view the results of data collection by double-clicking on the data sets that appear
in the Manager workspace pane. Note that when you select one, information about it is
shown in the Info pane.

Viewing coverage results
Double-click the Coverage data set in the Manager workspace to open the Coverage
Data view. Nothing displays until the Manager has updated at least once. This may take
up to 30 seconds. The results should look similar to the following:

Figure 2.6 Function Coverage View

In the Function Coverage view, you can view function coverage as well as file coverage.
You can sort data by clicking on column headings and you can filter the display from the
View menu, or from a single toolbar button. From the Coverage view, you can export the
data as text, as HTML, or XML.

For more information, see the section �Verifying Code Coverage� in the CodeTEST Tools
User’s Guide.
29Getting Started Guide

Setting up the Tools
Viewing Data
Viewing performance results
Double-click the Performance data set in the Manager workspace to open the
Performance view. The results should look similar to the following.

Figure 2.7 Function Performance View

The Function Performance view presents timing and counts information for each
function that executes during the measurement, enabling you to compare the relative
efficiencies of various portions of your target program.

For more information, see the section �Performance Measurement� in the CodeTEST
Tools User’s Guide.
30 Getting Started Guide

Setting up the Tools
Viewing Data
Viewing trace results

1. From the Config & Control toolbar, click to stop the Probe.

2. Click to set Trace mode and to start the Probe data collection.

After a few seconds, the Trace data set should appear in the workspace. Data
collection stops when the trace buffer fills.

3. Double-click the Trace data set to open the Trace Data view. The results should look
similar to the following.

Figure 2.8 Trace Data View

The Trace Data view shows the application's flow of execution.

Select the Source button to show each statement executed. You can view a graphical
version of the trace data that make it easier to identify the relationships between task
context and function calls by selecting the Execution History button. All the

trace views are synchronized. When you click on a line in the Trace Data or Execution
History view, the focus changes in the other trace views. You can also synchronize the
data between different trace views.
31Getting Started Guide

Setting up the Tools
At this Point...
For more information, see the section �Execution Trace� in the CodeTEST Tools User’s
Guide.

To configure trace acquisition

1. Open the Config & Control window, and click the Event System tab.

2. Experiment with the following:

� Set Trigger position. It determines whether data is gathered before or after the
Trigger Event.

� Set Trigger Event. It is the event (for example, function entry) that controls which
data is gathered from the trace buffer.

� Set Trigger Context. It is the execution context (for example, task) within which
the CodeTEST Manager recognizes the trigger event.

At this Point...
Now that you have successfully instrumented the CT_DEMO application, you can use the
same basic process to set up your own application for your environment. At this point, you
have confirmed that:

� The CodeTEST Tools and support files are installed properly.

� The CodeTEST Probe is connected properly.

� The instrumentation setup for CT_DEMO worked for your environment.

� The CodeTEST Manager can communicate with the application and receive data
from the Probe.

What to Do Next
We suggest that you perform the following steps to set up your application for the
CodeTEST Tools.

Step 1: Instrument your application

Follow the instructions provided for the CT_DEMO application in �Setting Up for
Instrumentation in the CodeWarrior IDE� on page 19 to set up your project for the
CodeTEST Instrumenter and specify instrumenter options.

Step 2: Set up the Manager for your application

1. Open the Manager. select File > Load Workspace, and load the ct_demo.ctwsp
workspace.
32 Getting Started Guide

Setting up the Tools
What to Do Next
2. In the workspace pane, select and right-click the data source that you created for
CT_DEMO. On the context menu, select Configuration to open the Config & Control
window.

3. Click the IDB/Source tab and browse to the IDB file that was created when you
instrumented your code.

4. Browse to and select each of your source code directories.

This pane allows you to specify any directories that contain source code for the
instrumented program, so that you can browse to that code from data windows.

5. Click Apply All.

For the CT_DEMO example, we used the default settings for many of the tabs in the Config
& Control window. When you set up your application, you may want to change these
settings. Each tab is described in the following table.

More detailed information is provided in �CodeTEST Data Acquisition� in the CodeTEST
Tools User’s Guide and in the online Help.

Use the DataSource tab to:

• Define and configure the data
source.

• Set the Comm Timeout Interval (the
interval after which CodeTEST
“times out” if it does not receive a
response from the Probe).

• Browse to the Probe Configuration
File (the tip file generated by your
Probe in “Validating the Probe
Connection” on page 14).

• Open the Probe Utility to create a
Probe tip file.

• Set Update Methods for
automatically or manually gathering
data from the Probe.

• Set Update Policies to keep or
override existing data.
33Getting Started Guide

Setting up the Tools
What to Do Next
Use the IDB/Source tab to:

• Specify the IDB that was generated
when the target program was
instrumented.

• Specify the directories that contain
your application source code.

Use the Map Files tab to:

• Identify the User Defined Tag file if
you have defined your own tags.

• Identify the Memory Map file to
display memory. function names
(always identify this file if you are
monitoring memory).

• Identify the Memory Errors Map file
to display specific error names.
34 Getting Started Guide

Setting up the Tools
What to Do Next
Use the Memory Config tab to:

• Allocate the memory usage of the
Data Reduction Processor data
bases that are used to process
continuous data.

• Configure the maximum size of the
trace buffer.

Note: You may need to configure these
settings if your application has items that
exceed the default CodeTEST limits. (In most
cases, the default values will work for your
application.) Use these options after
connecting to the data source when you are
first setting up CodeTEST Tools to monitor
your application.

Use the Data Collection tab to:

• Select the data types that you want
to view.

• Select Coverage levels, including
SC (Statement Coverage), DC
(Decision Coverage), and MC/DC
(Modified Condition Decision
Coverage).

• Set Continuous mode setup. This
specifies a task to trigger data
acquisition of performance data.
35Getting Started Guide

Setting up the Tools
What to Do Next
Use the Event System tab to:

• Set Trigger Events. This is an event
(for example, function entry) that
controls which data is gathered from
the trace buffer or drives an external
trigger signal.

• Set Trigger Context. This is the
execution context (for example,
task) within which CodeTEST
recognizes the trigger event.

• Set Storage Context. This is the
execution context (task) within which
the data source stores events in the
trace buffer.

• Set Trigger position. This
determines whether data is gathered
before or after the Trigger Event.

Use the A/B Timer tab to:

• Define timers to measure the time
between two events:
Set a start event and a stop event.
Set the events in the context of a
specific task or for any task.
Set timers to measure absolute time
or relative (includes only the
execution time that is within the
context of a specific task) time.

• Turn timers off or on before a
measurement.
36 Getting Started Guide

Setting up the Tools
What to Do Next
Step 3: Start data collection and run your application

1. Connect to the Probe.

2. Load your application onto your target.

3. Start data collection.

4. Start your application.

5. After the Manager has updated the display at least once, open the Coverage,
Performance, or Trace data sets to view the results and verify that your application is
set up for using CodeTEST Tools.

Step 4: Customize the instrumenting process for your environment

After you have successfully instrumented your code, you may want to use some of the
available instrumenting options.

Use the User Defined Events tab to:

• Define events corresponding to
function calls you add to your source
code. Events can be used in Event
System for triggering trace collection
and for timing.

For information about how to... Go to the following chapters in the
CodeTEST Instrumenter Reference
Manual...

Customize the files that configure the instrumenter. “Configuring Compiler Drivers”

Instrument for SC, DC, and MC/DC Coverage. “Instrumentation Levels”

Instrument for Performance. “Instrumentation Levels”

Selectively exclude functions, classes, namespaces,
or source files from instrumentation.

“Selective Instrumentation”
37Getting Started Guide

Setting up the Tools
What to Do Next
For More Information
For information about using CodeTEST Trace, Performance, and Coverage tools, see the
CodeTEST Tools User’s Guide. For more information about using the CodeTEST
Manager interface, see the online Help.

Use CTPrintf and CTPuts to insert statements similar
to printfs into your code or create your own user-
defined tags. Use CtUserDef to create events that can
be used in the Event System and A/B Timers.

“Instrumenting Specific Points of Interest”

Instrument when there are multiple executables
sharing common code.

“Instrumenting Multiple Modules”

Instrument in an environment where the components
of large software builds are compiled on separate
machines or at different times.

“Parallel Builds”

Filter source code before and after instrumentation. “The CodeTEST Instrumenters”

Use the CodeWarrior IDE to specify instrumentation
options.

“CodeTEST Plugin for CodeWarrior IDE
Reference” on page 39 of this manual.

For information about how to... Go to the following chapters in the
CodeTEST Instrumenter Reference
Manual...
38 Getting Started Guide

A
CodeTEST Plugin for
CodeWarrior IDE Reference

This appendix provides information on using the CodeWarrior Development Tools to set
up CodeTEST instrumentation.

� �Before You Begin� on page 39

� �Configuring a Project for Instrumentation� on page 40

� �Troubleshooting� on page 44

You can use the CodeTEST Instrumenter command (ctci or ctcixx) within a makefile
to instrument your code or use the CodeTEST compiler drivers (ctcc and ctcxx) to
control the entire build process and instrument your code. These tools are documented in
the CodeTEST Instrumenter Reference Manual.

The instrumentation process is simplified when you use the CodeTEST Tools with the
CodeWarrior IDE. You can use the Target Settings Panel for CodeTEST Instrumentation
(see �CodeTEST Instrumentation Settings Panel� on page 42) to specify instrumentation
options. The plugin compiler controls the preprocessing and compiling steps and sends the
instrumentation options to the CodeTEST Instrumenter.

Before You Begin
� Install CodeWarrior Development Studio for StarCore v2.6.

� Install the CodeTEST Tools (see �Before You Begin� on page 11) and set up the
environment including the CT_TARGET environment variables and the path to the
CodeWarrior command-line tools (see �Preparing Your Environment� on page 13).

� Install any patches, files, or updates provided.

� Configure your project so that it does not use precompiled headers; they are not
supported by the CodeTEST Instrumenter.
39Getting Started Guide

CodeTEST Plugin for CodeWarrior IDE Reference
Configuring a Project for Instrumentation
Configuring a Project for Instrumentation

Targets
To simplify the process of building both uninstrumented and instrumented versions of
your project, you may want to create both a standard, uninstrumented target and a target
with CodeTEST instrumentation settings.

CodeTEST File Mappings Panel
Associate your source file settings with the CodeTEST instrumentation process.

1. Select the CodeTEST target and click the project settings icon .

2. Select Target > File Mappings.

3. For each source file type (e.g., .c) that you want to instrument, select CodeTEST
STARCORE Compiler and click Change.

4. Define a new file type:

� File Type: Text

� Extension: ._i

� Compiler: Enterprise Compiler

Click Add.

5. Click Apply to apply the settings.
40 Getting Started Guide

CodeTEST Plugin for CodeWarrior IDE Reference
Configuring a Project for Instrumentation
41Getting Started Guide

CodeTEST Plugin for CodeWarrior IDE Reference
Configuring a Project for Instrumentation
CodeTEST Instrumentation Settings Panel
Specify the instrumentation options for your project in the Target Settings Panel for
CodeTEST instrumentation.

1. After you open your project, click the project settings icon and select Language

Settings > CodeTEST STARCORE Options.

2. Use this panel to select instrumentation options for your project.

The following options are provided in the CodeTEST STARCORE Options panel.

See the CodeTEST Instrumenter Reference Manual for more information on each option.
The text in parentheses after the option name is the Instrumenter command-line
equivalent.

Tag Level (-tag-level=level)
This option controls the number of instrumentation tags inserted into an application and
the type of data gathered. (See also: �Instrumentation Levels� in the CodeTEST
Instrumenter Reference Manual.)

� Disabled: disables instrumentation.

� Performance: instruments for Performance and Trace data.
42 Getting Started Guide

CodeTEST Plugin for CodeWarrior IDE Reference
Configuring a Project for Instrumentation
� Statement: instruments for Performance, Trace, and Statement Coverage data.

� Decision: instruments for Decision Coverage data.

� Extended Decision: instruments for extended Decision Coverage data.

� MC/DC: instruments for Decision Coverage and Modified Condition/Decision
Coverage data.

� Extended MC/DC: instruments for Decision Coverage, and extended Modified
Condition/Decision Coverage data.

Instrumented Files
This option preserves instrumented files in the named directory. The named directory is
located in the same directory as the source files.

Keep Preprocessed Files
This option preserves temporary preprocessed files in the directory named in the
Instrumented Files field.

IDB File (idb=file)
This option specifies the instrumenter database (IDB) name. If left blank, the file is named
codetest.idb and written to the target output directory. You can enter either a
filename or a path and a filename. If you change the filename after it is created, a new IDB
file is created the next time you compile. The old file is retained in case you need to use it
again.

Environment Variables
This option lets you define CodeTEST environment variables, CT_HOME and
CT_TARGET, for this target build. Syntax: ENV_VAR=path.

Preprocessor Arguments
This option lets you specify command-line arguments for the preprocessor for files
mapped to the CodeTEST Instrumenter.

CodeTEST Instrumenter Options
This option lets you specify additional command-line arguments for the CodeTEST
Instrumenter. They are passed at the end of the command line, before the final source file
and destination file arguments, to allow overrides of options implied by the Target
Settings Panel. The string must not be more than 256 characters. You can specify a
command file, using response file syntax: @arguments.txt. You must fully specify
the file, either with a full path or a source tree. For extensive information about
43Getting Started Guide

CodeTEST Plugin for CodeWarrior IDE Reference
Troubleshooting
instrumentation options, see the CodeTEST Instrumenter Reference Manual. See also the
Instrumenter Command Quick Reference Guide.

Use the option -mwcw to specify the StarCore Enterprise compiler to the CodeTEST
Instrumenter.

Troubleshooting

Compiler errors
Failure to find a current CodeWarrior license can result in compiler error warnings. Verify
that the license.dat file exists and can be found by the license manager.

Instrumenter Not Found Message
Verify that your environment is set up correctly. See �Preparing Your Environment� on
page 13.

Warning during DC and MC/DC instrumentation
When instrumenting for DC and MC/DC, the compiler may generate the following
warning:

Warning:C5909: Assignment in Condition.

You can safely ignore this warning can if it appears only when you compile instrumented
code, but not when you compile the same uninstrumented code.

Syntax errors on long long types
Should the compiler generate a syntax error regarding the long long type, such as:

Error : declaration syntax error
main._i line 342 long long quot;

you can use this workaround. In the CodeTEST STARCORE Options panel, add the
following in the Preprocessor Arguments field:

-D_MSL_LONGLONG=0
44 Getting Started Guide

B
Instrumenting for Memory
Analysis

This appendix provides instructions on instrumenting for memory analysis.

You will need to build a CodeTEST support library and add it to your project. You will
also need to define the CodeTEST tag ports.

To build the support files

1. Start the CodeWarrior IDE for StarCore.

2. Select File > New.

3. In the New dialog box, select StarCore Stationery.

4. Enter CTMem (or another name of your choice) for Project name and click OK.

5. Select the options appropriate for your target hardware and click OK.

6. When the project opens, select the target appropriate for your system.

7. Click the project settings icon .

8. Select Linker > Enterprise Linker.

9. Change the Output File Name to ctMem.elb.

10. Click OK.

11. Copy %CT_HOME%\cttarget\common\include\cttagport.h and
%CT_HOME%\cttarget\common\src\ctwrpc.c into the CTMem project src
directory.

12. On the project Files tab, remove all filenames listed.

13. In the project Files tab, under Sources, add cttagport.h and ctwrpc.c to the
project.

14. Modify cttagport.h as follows, and save the file. After the line #define
TAG_TO_PTR 3 add #define TAG_DEST 4:

...

#define TAG_TO_PTR 3
45Getting Started Guide

Instrumenting for Memory Analysis
#define TAG_DEST 4

15. Ensure that all other target settings match those for your application.

16. Click the Make button to build the project.

ctMem.a is built in the project bin directory.

To use the library

1. In the project you are instrumenting select the appropriate target and click the project

settings icon .

2. Select Linker > Enterprise Linker.

3. In the Additional Options edit box, add the following: -lctmem.elb

4. Make sure that the ctmem.elb library is in your Library Path.

5. Select Language Settings > CodeTEST STARCORE Options.

6. In the CodeTEST Instrumenter Options edit box, add the following to the existing
entries:

-tag-allocator=%CT_HOME%\cttarget\common\map\ctwrap.map

Substitute the path to the CodeTEST Tools installation for CT_HOME.

To define the tag port

In your linker command file, add the following:

.provide _ct_port, 0x21000000

Change the address specified to one appropriate for your target hardware.

See �The CodeTEST Tag Format� in the CodeTEST Instrumenter Reference Manual for
more information on tag port options.
46 Getting Started Guide

Instrumenting for Memory Analysis
NOTE If you are using the ct_demo application, it is still instrumented using the
-tags-to-address mode for the tag port format, but the ctMem library
usse the ct_port variable to write the tags. Therefore, ct_port needs to be
defined. The address of ct_port must be the same as the one used for
-tags-to-address instrumentation. If you choose to not use -tags-to-
address to instrument ct_demo or your application, but you choose to use
tags-to-port default instrumentation, then the ct_port definition in
the lcf file will be used by both the application and the ctMem library.

Figure B.1 CodeTEST STARCORE Options Panel

 -tag-allocator=C:\CodeTEST\cttargett\common\map\ctwrap.map
47Getting Started Guide

Instrumenting for Memory Analysis
To build the project

1. Ensure that the file mappings are set appropriately for CodeTESTinstrumentation, as
described in �To map source file extensions for CodeTEST instrumentation� on
page 21.

2. Click the Make button to build the project.

Now when you collect data using the CodeTEST Probe, a memory data set will be
created.

To configure the CodeTEST Manager

When configuring your CodeTEST data source for memory analysis, perform the
following steps.

1. In the Config & Control window for your data source, click the Data Collection tab.

2. Select Memory and Memory Errors.

3. Click Apply.

4. Click the Map Files tab.

5. In the Memory Map File field, browse to the default memory map file,
%CT_HOME%\cttarget\common\map\ctwrap.map, and select it.

This enables display of the names of the original memory functions (malloc, etc.), as
well as the function names that called the memory allocation/deallocation. If a map file
is not specified, the Type column of the Memory Data view displays hex numbers
instead of memory function names.

6. In the Memory Errors Map File field, browse to the memory errors map file,
%CT_HOME%\cttarget\common\map\cterr.map, and select it.

7. Click Apply.
48 Getting Started Guide

Instrumenting for Memory Analysis
Figure B.2 Data Collection Tab
49Getting Started Guide

Instrumenting for Memory Analysis
Figure B.3 Map Files Tab
50 Getting Started Guide

Instrumenting for Memory Analysis
To view memory results

After collecting data, in the CodeTEST Manager, double-click the Memory data set in the
Manager workspace to open the Memory Data view. See the following sample Memory
Data view and Memory Errors Data view.

Figure B.4 Memory Data Views

The Memory Data view tracks your application�s dynamic allocation and deallocation of
memory. Each row in the Memory Allocation table represents an allocation caller (that is,
a specific location in your target code where a memory allocation routine is called).

This view provides a number of options for presenting the data. From the View menu
select Columns and check desired columns; from the View menu select Function Name
and then click Short name or Long name.

For more information, see �Measuring Memory Usage� in the CodeTEST Tools User’s
Guide.
51Getting Started Guide

Instrumenting for Memory Analysis
52 Getting Started Guide

Index

A
A/B Timer tab 36
A/B Timers view 6

C
Call Pair view 6
Cancel button 17
CodeTEST

driver messages 24
features 6
setting up 9
toolbar 16
Tools 6
using 9

CodeTEST compiler driver 39
CodeTEST Instrumenter 39
CodeTEST Instrumenter Options 43
CodeTEST Manager 15, 24
CodeTEST StarCore Compiler 21
codetest.zip 13
CodeWarrior

instrumenting 19, 40
plugins 13
project 19, 40
Tools 11, 39
using with CodeTEST 11, 39
version 39

CodeWarrior Development Studio for
StarCore 12

CodeWarrior IDE 10
CodeWarrior StarCore compiler 11
command-line arguments

Instrumenter 43
compiler 11
compiler driver 39
Config & Control window 16
configuration

system 8
connect

to Probe 28
Connect button 16

connection method 14
Continue button 17
Continuous mode 28
Continuous mode button 16
coverage 29

Decision (DC) 6
levels 43
Modified Condition/Decision Coverage

(MC/DC) 6
specifying level 26, 42
Statement(SC) 6

Coverage Level 26
coverage tool 6
Create HWIC Data Source 17
CT_DEMO 10, 11, 12

instrumenting 19
CT_HOME 12
ct_port 15, 21, 23, 47
CT_TARGET 14
ctcc 39
ctci 39
ctcixx 39
ctcxx 39
cterr.map 48
ctMem library 47
cttagport.h 45
ctwrap.map 46
ctwrpc.c 45
Customer Support 2

D
data

viewing 29
data collection 9
Data Collection tab 26, 35, 48
data sets 15
data source 15
data types 26
database

instrumenter 43
DataSource tab 33
debug mode 24
53Getting Started Guide

Decision Coverage 43
decision instrumentation level 43
demo application 12
development environment 11
diagnostics 19
Disabled instrumentation level 42
Disconnect button 16

E
environment

setup 13, 14
environment variable 14, 43
Event System tab 36
Execution History 31
execution history 6
Execution History button 31
Execution History view 6
Extended Decision Coverage 43
Extended Modified Condition/Decision

Coverage 43

F
features 6
File Mappings Panel 21, 40
file types 21, 40
Freescale Support 2
Function Coverage view 29
Function Performance view 30

H
Hardware Probe 7
Hostname 17

I
IDB

coverage 27
specifying in Manager 25

IDB file 43
IDB/Source tab 25, 34
idb=file 43
Info pane 15
installation

requirements 11

instrumentation levels 42
Instrumentation Settings Panel 22, 42
Instrumenter 9, 39

command-line arguments 43
instrumenter database 43
Instrumenter options 22, 23, 42
Instrumenter plugin files 13
IP addresses 12

K
Keep Preprocessed Files 43

L
lcf 46
Library Path 46
linker command file 46
Logs pane 15

M
Manager 15, 24
manuals 5
Map Files tab 34, 48
mapping files 21
MC/DC instrumentation level 43
measurements

coverage 6
memory 6
performance 6
trace 6

memory
displaying results 51

memory analysis
instrumenting for 45

Memory Config tab 35
Memory Errors Map File 48
Memory Errors view 6
Memory Map File 48
memory support files 45
memory tool 6
memory usage 35
Memory view 6, 51
Modified Condition/Decision Coverage 43
54 Getting Started Guide

N
no instrumentation 42

O
online help 6
overview 5

P
patches 39
path 14
performance 6, 29
performance data 30
Performance instrumentation level 42
Performance view 6
plugins 13
port address 15, 21, 47
port options 46
precompiled headers 39
preprocessor arguments 43
prerequisites 11
Probe 7
Probe configuration 18
Probe connection 19

Hardware Probe 14
Probe Utility 18
procedure

overview 13
product introduction 5
project

configuring for instrumentation 19, 40
instrumentation options 22, 42
requirements 39

S
saving a workspace 28
setup

environment 13
requirements 11
steps 13

software manuals 5
Source Code view 6
source file types 21, 40
source files

specifying 26
StarCore compiler 11
StarCore family support 5
StarCore stationery 12
starcore.zip 13
starcore-CodeWarrior.zip 13
Start button 17
Statement Coverage + Performance 43
stationery 12
Stop button 17
support files

memory 45
system

diagram 8

T
tag port 15, 21, 23, 47
tag port options 46
-tag-level=level 42
Target Settings Panel 39
taskwalk 14
Technical Support 2
timers 36
toolbar buttons

Cancel 17
Connect 16
Continue 17
Continuous 16
Disconnect 16
Start 17
Stop 17
Trace 16
Update 17

tools 6
trace data 29

collecting 32
Trace Data view 31
Trace mode 31
Trace mode button 16
trace tool 6
Trace view 6
troubleshooting

instrumenter not found 44
55Getting Started Guide

U
Update button 17
Update Methods 17
updates 39
User Defined Events tab 37
using the Manager 24

V
validating the Probe connection 14

W
web address 2
workspace

saving 28
Workspace pane 15
56 Getting Started Guide

	Introduction
	About the Documentation
	Software Manuals
	Hardware Manual
	Online Help

	What is CodeTEST for StarCore?
	The Process for Monitoring Applications with CodeTEST Tools
	How Do You Set Up CodeTEST Tools?

	Setting up the Tools
	Before You Begin
	What You Will Do in this Chapter
	Preparing Your Environment
	Validating the Probe Connection
	Setting up Data Collection
	Setting Up for Instrumentation in the CodeWarrior IDE
	Collecting Data

	Viewing Data
	At this Point...
	What to Do Next

	CodeTEST Plugin for CodeWarrior IDE Reference
	Before You Begin
	Configuring a Project for Instrumentation
	Targets
	CodeTEST File Mappings Panel
	CodeTEST Instrumentation Settings Panel

	Troubleshooting

	Instrumenting for Memory Analysis
	Index

