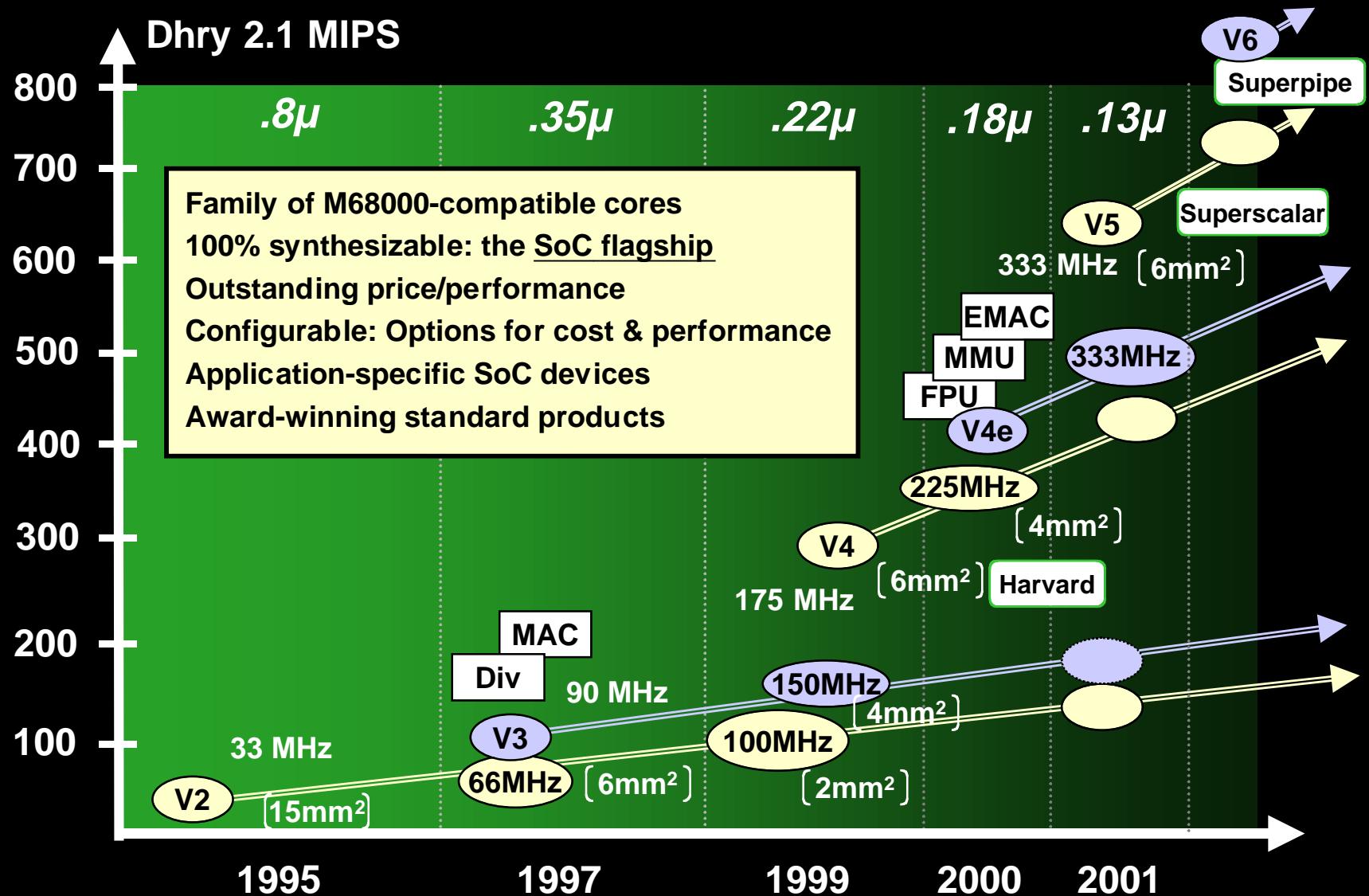


dCF4/dt - The First Derivatives of the Version 4 *ColdFire*® Integrated Core

Joe Circello

Chief ColdFire Architect

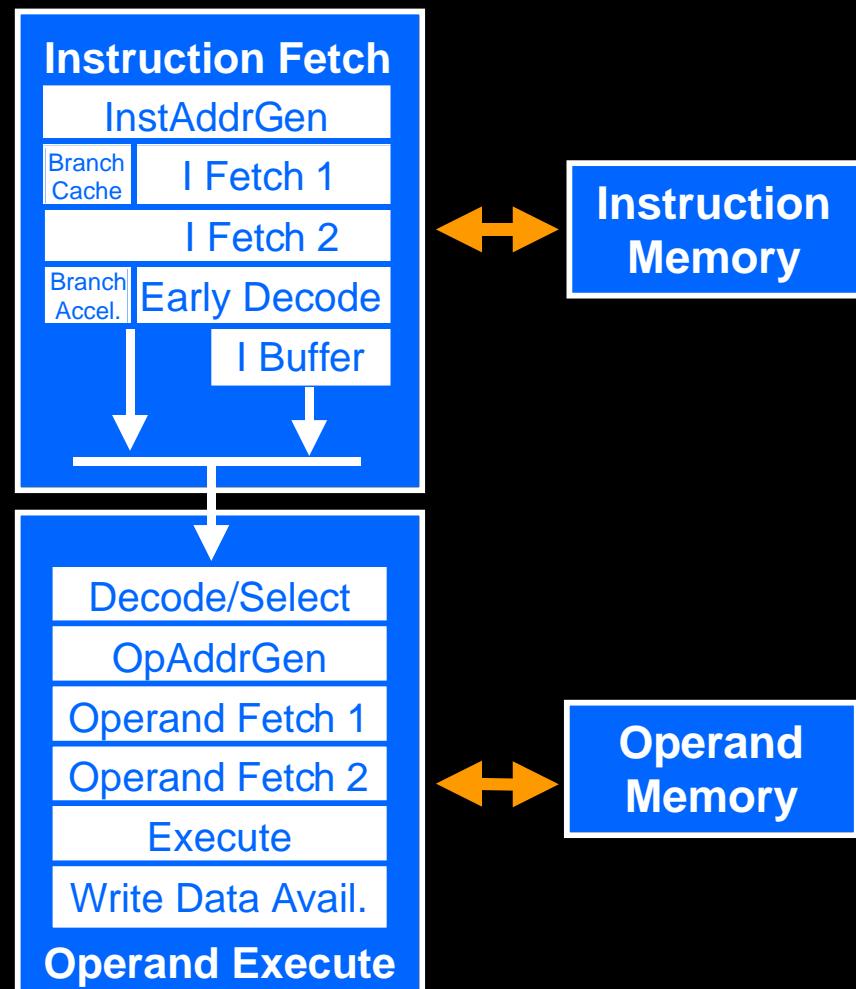
Microprocessor Forum


October 11, 2000

Motorola General Business Use

 Digital DNA[™]
from Motorola
THE HEART OF SMART.

ColdFire® Core Performance Roadmap


V4 ColdFire® Core Microarchitecture

- Independent, decoupled pipelines
 - 4-stage Instruction Fetch Pipeline (IFP)
 - 5-stage Operand Execution Pipeline (OEP)
 - FIFO I-Buffer
- Limited superscalar execution via instruction folding
 - Cost-effective dual instruction per cycle implementation

V4 ColdFire® Core Microarchitecture

- Harvard memory architecture
- Outstanding performance/size
 - Most instructions execute in 1 cycle
 - CPI performance = 1.35 cycles/inst
 - Dhrystone 2.1 = 1.54 MIPS/MHz
 - 350 MIPS @ 225 MHz, 4.0 mm² in 0.18µ
 - 510 MIPS @ 333 MHz, 2.1 mm² in 0.13µ

Increasing System Demands Drive New Requirements

Increasingly complex embedded 32-bit applications demand higher system performance:

- Process isolation for better reliability and security; expanded use of protected-mode RTOS, such as Linux
 - Response = Memory Management Unit
- Much higher performance levels on complex applications
 - Response = Floating Point Unit

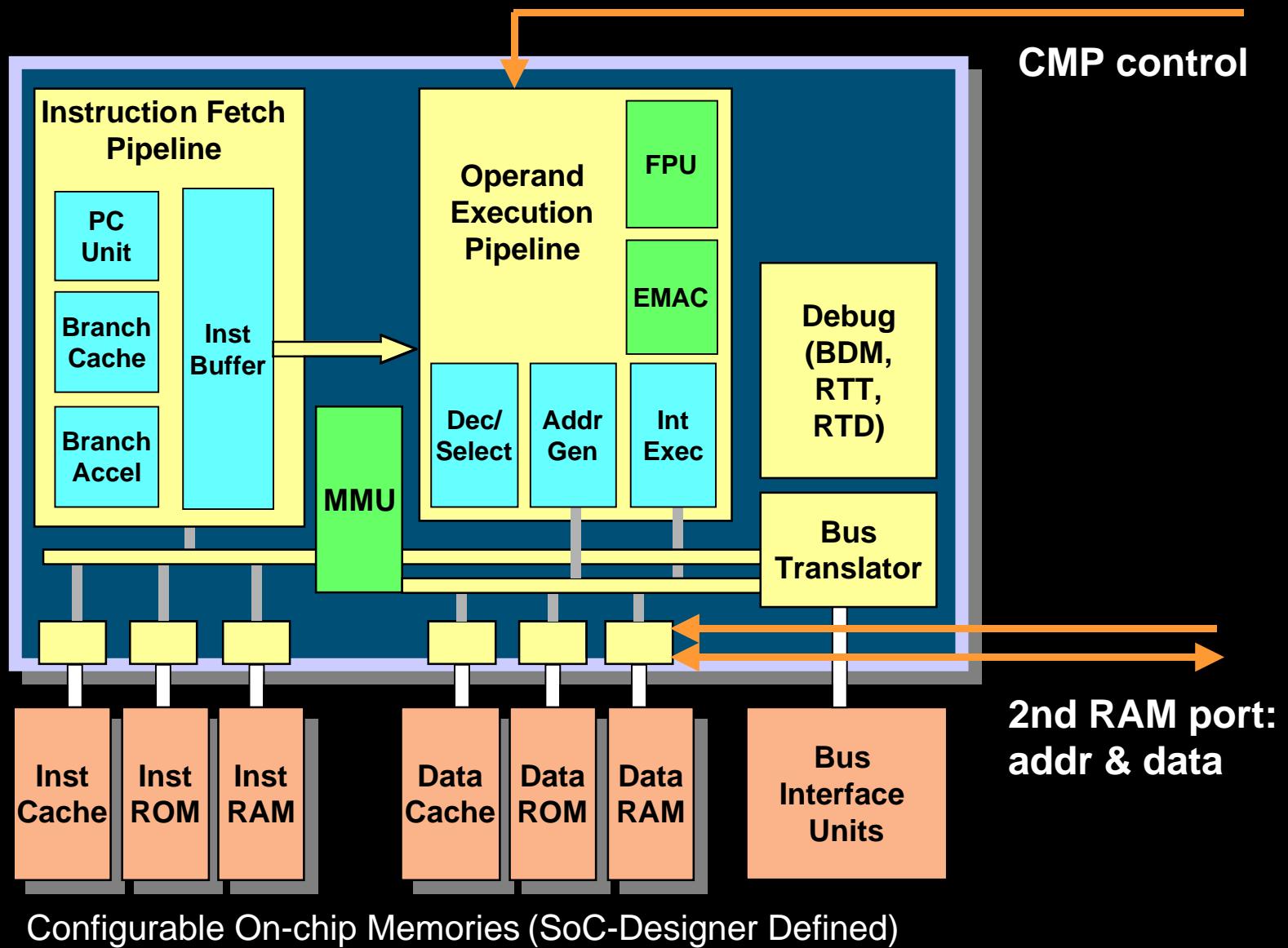
Increasing System Demands Drive New Requirements

Increasingly complex embedded 32-bit applications demand higher system performance:

- DSP functionality on a MPU with a single, unified code stream
 - Response = Enhanced Multiply-Accumulate Unit, Dual-Ported Processor RAMs and User-Defined Address Permutation
- Numerically-intensive algorithms as well as general-purpose control processing
 - Response = On-Chip Multiprocessing

What's New on the V4e

- Virtual memory management unit (MMU)
 - Address translation inside the core complex
 - Process partitioning
 - Expanded debug capabilities
 - Harvard, dual 32-entry, fully-associative TLBs
- Floating point unit (FPU)
 - Double-precision implementation of the MC68060 FP ISA
 - Concurrent execution between Operand Execution Pipeline & FPU
 - IEEE-754 compliant



What's New on the V4e

- Enhanced multiply accumulate unit (MAC)
 - Single-cycle issue, optimized for 32x32 MACs
 - Four 48-bit accumulators
 - Expanded programming model
- Dual-port RAM with user-defined address permutation
- Hardware support for on-chip multiprocessing

V4e ColdFire® Core

ColdFire® Virtual MMU

- Virtual-to-physical address translation inside the core complex
- Software-managed translation look-aside buffer (TLB) with hardware address translation acceleration
 - Support for 1K, 4K, 8K and 1M page sizes
 - Hardware assists for determining entry to be replaced

ColdFire® Virtual MMU

- 8-bit Address Space Identification register (ASID)
 - Expand virtual address to 40 bits: ASID + 32-bit address
 - ASID allows partitioning of user processes
- Expanded debug capabilities
 - Add ASID in ownership trace display; included in breakpoints
 - Complete visibility of user processes in debug

ColdFire® Virtual MMU

- Initial implementation
 - Harvard, dual 32-entry, fully-associative TLBs
 - 65K gates
- Optional use for V4 and beyond

ColdFire® Floating-Point Unit

- Tightly coupled execution unit within OEP
- 64-bit implementation of the MC68060 FP ISA
 - Operand formats can be byte, word, or longword integer, single or double precision, but all internal calculations are done in DP
 - Concurrent execution between Operand Execution Pipeline & FPU
- IEEE-754 compliant
 - Denormalized numbers not supported in hardware
 - Full IEEE compliance with software assist

ColdFire® Floating-Point Unit

- Analysis demonstrates potential large performance impact
 - Estimated large image processing execution by using data from MC68060 with 1 OEP enabled (similar to V4 microarchitecture)
 - 1.4x - 1.9x depending on exact image being processed
- 80K gates
- Optional FPU for V4 and beyond

ColdFire® Enhanced Multiply-Accumulate

- 4-stage execution pipeline optimized for 32x32 MACs
 - Single-cycle issue
 - Word/longword, signed/unsigned, integer/fractional operands
 - Accumulator results stored back into integer register file
 - Four 48-bit accumulators

ColdFire® Enhanced Multiply-Accumulate

- Expanded programming model
 - Load/store/copy accumulator instructions
 - MAC, MSAC opcodes with optional shift (<<1, >>1) on integer products
 - Single-cycle execution of M{S}AC + 32-bit LOAD instruction
 - Independent control of product rounding, rounding on store operations
 - Programmable control of saturation arithmetic

ColdFire® Enhanced Multiply-Accumulate

- Performance improvement: 1.5x on JPEG, 2.3x on 128-pt complex FFT
- 22K gates
- Optional acceleration module for all ColdFire cores
 - Deployed in mid-1999 with V2 application-specific device

ColdFire® Dual-Ported RAMs

- Back-door port into processor-local RAM memories
 - DMA transfers directly into RAM
 - 2 halves with full concurrent accessibility
 - User-defined arbitration priority: CPU or DMA
 - Ideal for double-buffer schemes
 - Overlap CPU processing with DMA data movement

ColdFire® Dual-Ported RAMs

- User-defined address permutation
 - Maximize performance of DSP functions needing non-sequential complex addressing, without modifications to the existing pipeline or addressing modes
 - Three user-defined address permutation functions create multiple RAM address space maps
 - Can be used on addresses from both CPU and DMA
 - Allows any address bit “x” to be specified as: 0, 1, or any address bit “y”
 - Creates a 1-cycle pipeline stall on permuted address
 - Stall only on 1st access of a string of permuted references

ColdFire® On-Chip Multiprocessing (CMP)

- Architectural Enhancements to Support CMP
 - Hardware extensions to support basic multiprocessing needs
 - CPU run/halt control
 - CPU-to-CPU communication mechanism
 - Interrupt steering, debug control, etc.
 - User-mode processor instruction to read CPU number
 - Memory coherency maintained by explicit software control

ColdFire® On-Chip Multiprocessing (CMP)

- Application-specific processor for consumer electronics
 - Dual V4 cores, each with EMAC + dual-ported RAMs
 - Software architecture is a master/slave configuration
 - Master controls system tasks; slave is algorithm engine
 - Implemented in 0.18 um process
 - > 600 aggregate MIPS @ 200 MHz

Version 4e ColdFire Core Summary

- Innovative architectural solutions meeting varied customer demands and achieving superior system performance through optional processor integration
- Continues to reap the benefits of 100% synthesizability -easily moving to new, higher performance technologies
- Builds on the ColdFire Family legacy of low-cost, high performance solutions with first silicon in 2Q01

Microprocessor Forum - 2000

Motorola General Business Use

* **DigitalDNA**
from Motorola
THE HEART OF SMART.