Ethernet Audio Video Bridging (AVB) Overview

AMF-AUT-T1064

Rebeca Delgado
Field Applications Engineer
Motivation for reuse of Ethernet in Automotive

Telecommunication
Circuit Switched Networks

Automation
Field bus technology

Aerospace
Avionic field busses

Voice over IP (VoIP) / Paket Orientated Solutions
Ethernet Real Time Solutions
Avionic Fieldbusses (AFDX / AIRBUS)

Ethernet & IP-Technology is growing
Ethernet in the Automobile

- Ethernet has growing potential in automotive networking applications

Today/Near Future

- Gateway
- ECU
- Infotainment Gateway/Centerstack
- Ethernet Cameras

Future (2018+)

- Vehicle Dynamics & Safety
- Torque Management
- Gateway
- Driver Interface (HMI)
- Body, Security, Lighting
- Multimedia/Telematics Entertainment
- Navigation
- Instruments
- Driver Controls
- Multimedia/Telematics
- Entertainment
- Dynamics Sensors
- Brakes
- Steering
- Dampers (Radar, Camera)
- Airbags Tensioners
- Ped. Protection

Potential Applications:
- Vehicle diagnostics
- Vehicle programming
- Interface to infotainment space
- Communications within infotainment space (MLB replacement)
- Ethernet based cameras
- Etc.

- As Today but also as a vehicle networking architecture backbone
Ethernet in the Body/Gateway Domain
Ethernet in Body/Gateway Domain

• Freescale’s products today support current automotive Ethernet applications
 - MPC5668G (Fado) – FEC - Fast Ethernet Controller, 10/100Mbps
 ▪ Ethernet primarily for diagnostics, programming and use in infotainment gateways
 - MPC5748G (Calypso) – Enhanced Ethernet, 10/100Mbps, 1588, AVB support
 ▪ As above but with improved support for interfacing to/acting as an infotainment gateway

• Freescale’s future products will address emerging Ethernet needs
 - Next generation Gateway products (2016+) will likely include an Ethernet Switch to help support an automotive Ethernet networking backbone
 - Feature set of next generation Gateway MCUs with Ethernet Switch is to be defined as it remains to be seen where this Gateway will reside; will it be in the infotainment domain or will it be a standalone gateway.
Applications:
- High end Gateway and Body Modules

Key Characteristics:
- 2x e200z4 + 1x z2 cores, FPU on z4 cores
- 160 MHz max for z4s and 80 MHz on z2
- HSM Security Module option supports both SHE and EVITA low/medium standard
- Media Local Bus supports MOST communication
- USB 2.0 support interfacing to 3G modem and infotainment domain
- Ethernet 10/100 Mbps RMII, MII, +1588, AVB
- SDHC provides standard SDIO interface
- Low Power Unit provides reduced CAN, LIN, SPI, ADC functionality in low power mode
- Designed to ISO26262 process for use in ASIL B
- -40 to +125C (ambient)
- 3.0V to 5.5V

Packages:
- 176 LQFP, 256 BGA, 324 BGA

* Mixture of internal and external channels
MPC5746C Block Diagram – Mid End BCM/Gateway

Applications:
- Mid End Gateway and Body Modules

Key Characteristics:
- 1x e200z4 with FPU, z2
- Target up to 160 MHz maximum operation
- HSM Security Module option supports both SHE and EVITA low/medium standard
- FlexRay 2.1, 128 message buffers
- Ethernet option 10/100 Mbps RMII, MII, +1588, AVB
- Low Power Unit provides reduced CAN, LIN, SPI, ADC functionality in low power mode
- Low power modes STOP and StandBY
- -40 to +125C (ambient)
- 3.0V to 5.5V

Package:
- 100/144 LQFP (TBD)
- 176 LQFP
- 256 BGA (Development and Production)
Protocol Layers

<table>
<thead>
<tr>
<th>Layer</th>
<th>Protocol/Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 1</td>
<td>Automotive Ethernet Physical Layer</td>
</tr>
<tr>
<td>Layer 2</td>
<td>IEEE Ethernet MAC + VLAN</td>
</tr>
<tr>
<td>Layer 3</td>
<td>TCP and/or UDP</td>
</tr>
<tr>
<td>Layer 4</td>
<td>DoIP</td>
</tr>
<tr>
<td>Layer 5-7</td>
<td>IEEE 802.1AS (PTPv2) AVB</td>
</tr>
<tr>
<td></td>
<td>IEEE 1722 AVB</td>
</tr>
</tbody>
</table>

- **Audio Video Transport**
- **Time Sync**
- **Diagnosis and Flash Update**
- **Control Communication**
- **Address Configuration**

Layer Descriptions
- **Application Layer**
- **Presentation Layer**
- **Session Layer**
- **Transport Layer**
- **Network Layer**
- **Data Layer**
- **Physical Layer**
Ethernet AVB

- **Ethernet Audio Video Bridging** is set of **technical standards** that allow **time-synchronized low latency** streaming services through **IEEE 802** networks

- **Specifications required:**
 - IEEE 1722 Layer 2 Transport Protocol
 - IEEE 802.1AS Timing and Synchronization

- **Further Specifications, that can either be optional or will not be used**
 - IEEE 802.1Qat: Stream Reservation Protocol (SRP)
 - IEEE 802.1Qav: Forwarding and Queuing for Time-Sensitive Streams (FQTSS)
 - IEEE 802.1BA: Audio Video Bridging Systems
 - IEEE 1722.1 Device Discovery, Enumeration, Connection Management and Control Protocol (DECC)
IEEE 1722 Layer 2 Transport Protocol

- Layer 2 Transport Protocol for encapsulation of streaming data
- Implementation at Layer 2 allows for efficient HW implementation
- This protocol is implemented in the Ethernet Streaming Software from Freescale
IEEE 802.1AS Timing and Synchronization

- Subset of IEEE 1588 Precision Time Protocol
- Common "application clock" between the sources and sinks
- IEEE 802.1 AS adds a time stamp for the Ethernet packages. The actual protocol is implemented in SW!

- System clock accuracy requirements determine, whether time stamping needs to be implemented in HW
 - Clock requirements of less than hundreds of µs accuracy do NOT require any time stamping HW
 - Clock requirements of sub 1 µs (down to something between 50-200 ns) do require dedicated time stamping HW.
 - Available on MPC5604E, MPC574xG, Vybrid, i.MX53, i.MX6x
EE 802.1Qav: Forwarding and Queuing for Time-Sensitive Streams - generic

- A common **Misconception** is, that any AVB or AVA application would require dedicated traffic shaping HW in the Ethernet controller.

- The System Requirements need to be analyzed, how those can be most efficiently implemented.

- "Does your MCU / MPU support AVB?"
EE 802.1Qav: Forwarding and Queuing for Time-Sensitive Streams – Streaming Sinks

- Streaming sinks do not do policing of AVB incoming traffic.
 - Sink endpoint do not have to have different queues for the received traffic classes.

- Requirement for HW receive queues is application specific,
 - A single streaming format endpoint will not want to use multiple class queues.
 - A multi function infotainment box might want to have HW receiving queues.
EE 802.1Qav: Forwarding and Queuing for Time-Sensitive Streams – Streaming Sources

• Again, requirement for HW source queues is application specific
 – A synchronous stream source does not need to queue the stream data
 ▪ Best effort traffic should be artificially throttled to ensure minimum latency
 – An asynchronous stream source would ideally have a HW traffic shaper to control the rate of the decoding process by back pressuring.
What Ethernet AVB is NOT

• A physical layer discussion, e.g. OPEN Alliance BroadRReach technology

• A monolithic approach – one stop shop from one vendor (e.g. SMSC in MOST)
AVB Software Stack
Alan Devine
IEEE 802 Ethernet Driver
- Low level driver needed for multi queue ENET. Needs to support new features added to ENET

IEEE 802.1AS (PTP)
- Used to synchronise network nodes to a common time reference by defining clock master selection (BMCA) and negotiation algorithms, link delay measurement, and compensation, and clock rate matching and adjustment mechanisms. It specifies use of IEE 1588

IEEE 802.1 QAT (Bandwidth reservation)
- Stream reservation protocol (SRP). Used to guarantee QoS by ensuring end to end bandwidth availability before an AV stream starts. SRP uses IEEE 802.1ak (multiple registration protocol) to pass stream descriptors and resource reservation request/results

AVB Ethernet stack summary

- IEEE 802.1 QAV (Shaping)
 - Queuing and forwarding protocol to ensure asynchronous Ethernet traffic does not interfere with steaming AVB traffic. This standard allows bridges to provide guarantees for time-sensitive (i.e. bounded latency and delivery variation), loss-sensitive real-time audio video (AV) data transmission (AV traffic). It specifies per priority ingress metering, priority regeneration, and timing-aware queue draining algorithms. This standard uses the timing derived from IEEE 802.1AS

- IEEE 1722 AVTP (Time sensitive streaming)
 - AVTP specifies methods to transport audio/video data and timing information so that audio/video content sent by a Talker can be reproduced.

IEEE 1722.1

- IEEE P1722.1 defines the higher layer protocol for IEEE P1722 based devices. It specifies an application procedure for the AVB network systems. This standard covers
 - Service discovery – Identifies other 1722.1 capable nodes
 - device enumeration – Finds capability of other nodes?
 - connection management - Connects/disconnects virtual links between media sources/sinks

- TCP/IP?

Freescale Proposals
Ethernet Freescale Products

- MPC56xx/MPC57xx MCUs
 - Highest integration
 - MCU is intended as a „network interface“ to a standard processing solution (e.g. DSP or Smart Codec) with little or no data processing
 - e200z0 or e200z2 core based MCUs – NO data processing
 - e200z4 or e200z6 core based MCUs – little data processing

- Vybrid VFxxxR

- Mid level integration
 - Up to 400 Mhz Cortex A5 core with NEON SIMD engine and integrated ASRC (Asynchronous Sample Rate Converter) HW allow for medium level data processing throughput
 - i.MX6 family of applications Processors

- Lowest integration
 - Up to 4 x Cortex A9 core @ 1 GHz with NEON SIMD engine and integrated ASRC (Asynchronous Sample Rate Converter) HW allow for very high data processing throughput
MPC5xxx MCUs for Ethernet Endpoint Solutions
Salsa 512K - MPC5604E

Core
- up to 64 MHz PowerPC ISA e200 zen0h core

Memory
- 512k byte Program Flash with ECC
- 4x16k byte Data Flash with ECC
- 96 kbyte SRAM with ECC

I/O
- 1 x MJPEG video encoder with image sensor interface
- 1 x 10/100 Ethernet MAC incl. IEEE 1588 PTP support
- 2 x LinFlex
- 1 x FlexCAN
- 2 x I2C interface
- multichannel Serial Audio interface
 - up to 3 asynchronous clock rates
 - up to 6 data channels
 - I2S and AC97 support
- 3 x DSPI
- 1 x eTimer (6 channels for general purpose)
- 1 x ADC (3.3V capable)
 - 7 Ch, 10bit, conversion time <1μsec
 - 4 ext channels, 3 internal channels

System
- PLL
- 16MHz internal RC OSC
- JTAG / Nexus Class 2+
- 3.3V single supply or externally supplied core voltage
- 64 pin LQFP package (100 pins for development)
Surround Camera Application

- Application is latency sensitive
- Physical Space
- Cost target
- Rough Environment
Ethernet Audio Amplifier Application

• Mixing of audio sources done at the sink
• Network is asynchronous
 – Audio sources and sinks synchronize using PTP (IEEE 1588, 802.1AS, …)

*DSP not required for pure audio amplifier function, only shown for completeness, since Audio Mixer and ASRC for different sample rate Audio sources will likely be required.