

Optimally Configuring DDR for Custom Boards

AMF-NET-T1021

Jacques Landry

FAE, Digital Networking - Freescale

October 2013

Presents, the Presental logs, ARANIC, C.S., Cost/EST, Cost/Martin, Cathrian, Cathrian, Cost/Martin, Edition Cost/Martin, Cathrian, Cathrian, Cathrian, Cathrian, Cathrian, Edition Cost, Cathrian, Say, Cathrian, Installed T. Ridi, Present/ALCC, President Departs, Gend Costron, Statisferiore, the Jafa-Nassen legis, Statis, Cathrian, Cath

Session Outline

AMF-NET-T1021
Optimally Configuring DDR for Custom Boards

 An overview of QorlQ processor's memory controller capabilities, configuration and testing for your board. Learn how to use QCS Configuration and DDRv tools to generate a customized configuration, run memory tests, and validate functionality on your board in a matter of hours. Will include a demo of these tools running memory tests on a QorlQ processor board.

Agenda

- Introduction and Industry Trends
- Memory Organization and Operation
- Features and Capabilities
- Overview and Demo of DDR Tools
 - DDR configuration using QorIQ Configuration Suite (QCS)
 - DDR validation using QorIQ Optimization Suite (QOS) DDRv plug-in to QCS

DDR SDRAM Memories Introduction and Industry Trends

Introduction

- The current industry mainstream DRAM product is DDR3/3L. It is expected for this trend to continue till 2015 when the pricing cross-over is expected to occur.
- Almost all Freescale networking devices offer and support DDR3/3L.
- DDR4 has been introduced and DRAM vendors are expected to ramp production in 2014.
- The first Freescale device with DDR3L/DDR4 support is expected by end of 2013 (QorlQ T1040 family) followed by LS102x family products shortly after in Q1 2014.

DDR3 and DDR4 - Major Vendors

Supported by all major memory vendors

DRAM Migration Roadmap

	2011	2012	2013	2014	2015
DDR	7%	5%	2%	1%	1%
DDR2	23%	18%	13%	9%	7%
DDR3	70%	75%	75%	70%	45%
DDR4	0%	2%	10%	20%	47%

DDR3L vs DDR4 DRAM differences

Prescrib, the Prescrib Rop., AltaNot. C. S., Colok TST, Cold March Cold Pays, Cold Pays, Collinson, C. West, the Image Platfest Color and Rop., March, color ST, Power (SHC) C., Prescrib Color Depart, David, Countries, Safekhasov, the Jadekusson logic. Starting, Symptomy and NatiOs, are trademate of Prescrib Color. Red. Color Starting, Post Starting,

DDR SDRAM Highlights and Comparison

Feature/Category	DDR3L	DDR4	
Package	BGA only	BGA only	
Densities	512Mb -8Gb	2Gb -16Gb	
Voltage	1.35V Core 1.35V I/O	1.2V Core 1.2V I/O	
Data I/O CMD, ADDR I/O	Center Tab Termination (CTT) CTT	Pseudo Open Drain (POD) CTT	
Internal Memory Banks	8	16 for x4/x8 8 for x16	
Data Rate	800–1866 Mbps	1600–3200 Mbps	
VREF	VREFCA & VREFDQ external	VREFCA external VREFDQ internal	
Data Strobes/Prefetch/Burst Length/Burst Type	Differential/8-bits/BC4, BL8/ Fixed, OTF	Same as DDR3L	
Additive/read/write Latency	0, CL-1, CL-2/AL+CL/AL+CWL	Same as DDR3L	

Continued)

Feature/Category	DDR3L	DDR4
CRC Data Bus	No	Yes
Boundary Scan/Connectivity test (TEN pin)	No	Yes
Bank Grouping	No	Yes
Data Bus Inversion (DBI_n pin)	No	Yes
Write Leveling / ZQ	Yes	Yes
ACT_n new pin & command	No	Yes
Low power Auto self-refresh	No	Yes

DR3/DDR3L/DDR4 Power Saving

- DDR3 DRAM provides 25% power savings over DDR2
- DDR3L DRAM provides 20% to 27% power saving over DDR3
- DDR4 DRAM provides 37% power saving over DDR3L

Figure 4. Reduced operating voltage requirements of DDR4 compared to DDR3L

[Normalized power consumption]

Figure 5. Reduced normalized power consumption requirements of DDR4 compared to DDR3L

DDR3L vs. DDR4 DRAM pinouts

- DDR4 Pins added
 - VDDQ (2): 1.2V pins to DRAM
 - VPP: 2.5V external voltage source for DRAM internal word line driver
 - Bank Group (2): pins to identify the bank groups
 - DBI_n: Data Bus Inversion
 - ACT n: Active command
 - PAR: Parity error signal for address bus
 - Alert_n: Both, Parity error on C\A and CRC error on data bus
 - TEN: Connectivity test mode
- DDR3 Pins eliminated
 - VREFDQ
 - Bank Address (1): one less BA pin
 - VDD (1), VSS (3), VSSQ (1)

Basic DDR SDRAM Structure Memory Organization and Operation

Presention, the Presence is ogn. Allahor, C. S., Colok (15), Codelman Coloffan, Coloff

Single Transistor Memory Cell

Memory Arrays

ROW ADDRESS DECODER

SENSE AMPS & WRITE DRIVERS

Row Buffer

COLUMN ADDRESS DECODER

Internal Memory Banks

- Multiple arrays organized into banks
- Multiple banks per memory device
 - DDR3 8 banks, and 3 bank address (BA) bits
 - DDR4 -16 banks with 4 banks in each of 4 sub bank groups
 - Can have one active row in each bank at any given time
- Concurrency
 - Can be opening or closing a row in one bank while accessing another bank

	Bank 0	Bank 1	Bank 2	Bank 3
Row 0 Row 1 Row 2 Row 3 Row				
Row Buffers				

Memory Access

- A requested row is ACTIVATED and made accessible through the bank's row buffer
- READ and/or WRITE are issued to the active row
- The row is PRECHARGED and is no longer accessible through the bank's row buffer

DDR2-533 Read Timing Example

Example – DDR2/3 SDRAM

- Micron MT47H32M8
- 32M x 8 (8M x 8 x 4 banks)
- 256 Mb total
- 13-bit row address
 - -8K rows
- 10-bit column address
 - 1K bits/row (8K total when you take into account the x8 width)
- 2-bit bank address
- Data bus: DQ, DQS, /DQS, DM
- ADD bus: A, BA, /CS, /RAS, /CAS, /WE, ODT, CKE, CK, /CK

Example – DDR2/3 DIMM

- Micron MT9HTF3272A
- 9 each 32M x 8 memory devices
- 32M x 72 overall
- 256 MB total, single "rank"
- 9 "byte lanes"

Two Signal Bus

- 1- Address, command, control, and clock signals are shared among all 9 DRAM devices
- 2- Data, strobe, data mask not shared

DRAM Module Type

UDIMM: Unbuffered Desktop standard

SODIMM: Notebook standard

MiniDIMM:

Computing and Networking

VLP MiniDIMM:

Computing and Networking

RDIMM: Registered Server standard

VLP RDIMM: Very Low Profile Computing and Networking

Fly-By Routing Topology

- Introduction of "fly-by" architecture
 - Address, command, control & clocks
 - Data bus (not illustrated below) remains unchanged, ie, direct 1-to-1 connection between the Controller bus lanes and the individual DDR devices.
 - Improved signal integrity...enabling higher speeds
 - On module termination

Fly-By Routing Improved SI

DDR2 Matched Tree Routing

DDR3 Fly By Routing

What Is Write Leveling?

 During a write cycle, the skew between the clock and strobes is increased due to the fly-by topology. The write leveling will delay the strobe (and the corresponding data lanes) for each byte lane to reduce/compensate for this delay

What Is Write Leveling?

Write Adjustment

 Write leveling sequence during the initialization process will determine the appropriate delays to each strobe/data byte lane and add this delay for every write cycle

Address, Command & Clock Bus

Read Adjustment

 Instead of JEDEC's MPR method, Freescale controllers use a proprietary method of read adjust method. Auto CPO will provide the expected arrival time of preamble for each strobe line of each byte lane during the read cycle to adjust for the delays cased by the fly-by topology

 Automatic CAS to preamble calibration

 Data strobe to data skew adjustment

Address, Command & Clock Bus

CLK_ADJ - Clock Adjust

 CLK_ADJ defines the timing of the address and command signals relative to the DDR clock.

DDR3 Initialization Flow

Register Configuration

- Two general type of registers to be configured in the memory controller
- First register type is set to the DRAM related parameter values that are provided via SPD or DRAM datasheet
- Second register type is the non-SPD values that are set based on customer's application. For example:
 - On-die-termination (ODT) settings for DRAM and controller
 - Driver impedance setting for DRAM and controller
 - Clock adjust, write data delay, Cast to preamble override (CPO)
 - 2T or 3T timing
 - Burst type selection (fixed or on-the-fly burst chop mode)
 - Write-leveling start value (WRLVL_START)
- Freescale's Processor Expert QorlQ Configuration Suite includes a DDR configuration tool for many devices. For other devices, Freescale support resources can help generate or analyze DDR settings.

QorlQ Layerscape Family DDR Controllers

Features and Capabilities DDR3L and DDR4

Presention, the Presental Rosp, Allahor, C.S., Clark TST, Dobblivanis, Caldhira, Caldhira, C.Whou, the Immigrative and Caldhira, Caldhir

Common DDR3L & DDR4 Controller Features

- Supports most JEDEC standard x8, x16 DDR3L & DDR4 devices
- Memory device densities from 1Gb through 8Gb
- Data rates up to: 1600 MT/s DDR3L and DDR4
- Devices with 12-16 row address bits, 8-11 column address bits, 2-3 logical bank address bits
- Data mask signals for sub-doubleword writes
- Up to four physical banks (ranks / chip selects)
- Physical bank (rank) sizes up to 8GB, total memory up to 32GB per controller
- Physical bank interleaving between 2 or 4 chip selects
- Memory controller interleaving when more than 2 controllers are available
- Un-buffered or registered DIMMs

Common DDR3L /4 Controller Features (continued)

- Up to 32 open pages (DDR3L only), 64 open pages for DDR4
 - Open row table
 - Amount of time rows stay open is programmable
- Auto-precharge, globally or by chip select
- Self-refresh
- Up to 8 posted refreshes
- Automatic or software-controlled memory device initialization
- ECC: 1-bit error correction, 2-bit error detection, detection of all errors within a nibble
- ECC error injection
- Read-modify-write for sub-doubleword writes when using ECC
- Automatic data initialization for ECC
- Dynamic power management

Common DDR3L /4 Controller Features (continued)

- Partial array self refresh
- Address and command parity for Registered DIMM (DDR3 only)
- Independent driver impedance setting for data, address/command, and clock
- Synchronous and Asynchronous clock-in option
- Write-leveling
- Automatic CPO
- Asynchronous RESET
- Automatic ZQ calibration
- Mirrored DIMM supported

DDR4 only Controller Features

- Internal DQa Vref supply & calibration, both controller & DRAM
- Data write CRC (not available in LS1)
- Data Inversion bus
- Address bus parity error
- 16 banks for more concurrency
- Connectivity test mode
- ODT park and buffer disable
- DRAM mode register readout capability
- Low power auto self refresh
- Pseudo open drain (POD) driver and termination
- Command Address latency (CAL)

DDR4 Output Driver / Termination

- Center tap termination is used in DDR3 receiver
- POD termination or pull up is used in DDR4 receiver
- Push-Pull driver in DDR3 and POD driver in DDR4
- Less power is consumed using POD driver & termination.

In Muxing in Layerscape LS102x memory controller

- DDR4 support up to 16Gb vs. 8Gb in DDR3
- DDR4 uses A0-A13 for column accesses (i.e. MA[14] & MA[15] not used for column access)
- DDR4 has 4 banks within each group (i.e. MBA[2] not used)

DDR3	DDR4
MRAS	MRAS/ MA[16]
MCAS	MCAS/ MA[15]
MWE	MWE/ MA[14]
MA[15]	ACT_n
MA[14]	BG1
MBA[2]	BG0
MDM[0-8]	MDM / DBI
MAPAR_ERR	Alert_n
MAPAR_OUT	PAR

New pin: ACT_n

- ACT_n is a single pin for Active command input
- When ACT_n is low:
 - ACT Command is asserted
 - WE/CAS/RAS pins will be treated as address pins (A14:A16)

- When ACT_n is high
 - WE/CAS/RAS pins will be treated as command pins

New pin: DBI_n

- Active low input/output for data bus inversion mode
- As an input to DRAM, a low on DBI_n indicates that the DRAM inverts write data received on the DQ inputs
- As an output from the DRAM, a low on DBI_n indicates that the DRAM has inverted the data on its DQ outputs.
- Maximum of half of the bits driven low including DBI_n pin
- Available only on x8 and x 16 DRAM
- Fewer bits driven low means less noise, better data eye and lower power consumption.

Data Bus Inversion - DBI

- If more than 4-bits of a byte lane are low, invert the data and drive the DBI_n pin low
- If 4 or less bits of a byte lane are low, do not invert the data and drive the DBI_n pin high

		Cont	roller	
DQ0	0	1	0	0
DQ1	1	1	0	0
DQ2	0	0	0	0
DQ3	0	1	1	0
DQ4	0	1	0	0
DQ5	1	0	1	0
DQ6	1	1	1	0
DQ7	0	0	1	0
DBI_n				
# low bits	5	3	4	8

	Data	Bus	
1	1	0	1
0	1	0	1
1	0	0	1
1	1	1	1
1	1	0	1
0	0	1	1
0	1	1	1
1	0	1	1
0	1	1	0
4	3	4	1

	Memory										
0	1	0	0								
1	1	0	0								
0	0	0	0								
0	1	1	0								
0	1	0	0								
1	0	1	0								
1	1	1	0								
0	0	1	0								

New pin: BGn Bank Group Address

- Different timing within a group and between groups
 - Active to active
 - Write to read
 - CAS to CAS
- Controller to maintain
 Timing requirements for both
 Within a group (Long) and
 Between groups (short)

New pin: Parity

- C/A Parity signal (PAR) covers ACT_n, RAS_n, CAS_n, WE_n and the address bus. Control signals CKE, ODT, CS_n are not included.
- Even parity, i.e. valid parity is defined as an even number of ones across the inputs used for parity computation combined with the parity signal. The parity bit is chosen so that the total number of '1's in the transmitted signal, including the parity bit is even.
- Commands must be qualified by CS_n.
- Alert_n used to flag error to memory controller.

Data Write CRC

- Example data mapping with CRC for 8-bit, 4-bit and 16-bit devices
- Note: not the same as ECC

The following figure shows detailed bit mapping for a x8 device.

	0	1	2	3	4	5	6	7	8	9
DQ0	d0	d1	d2	d3	d4	d5	d6	d7	CRC0	1
DQ1	d8	d 9	d10	d11	d12	d13	d14	d15	CRC1	1
DQ2	d16	d17	d18	d19	d20	d21	d22	d23	CRC2	1
DQ3	d24	d25	d26	d27	d28	d29	d30	d31	CRC3	1
DQ4	d32	d33	d34	d35	d36	d37	d38	d39	CRC4	1
DQ5	d40	d41	d42	d43	d44	d45	d46	d47	CRC5	1
DQ6	d48	d49	d50	d51	d52	d53	d54	d55	CRC6	1
DQ7	d56	d57	d58	d59	d60	d61	d62	d63	CRC7	1
DBI_n	d64	d65	d66	d67	d68	d69	d70	d71	1	1

The following figure shows detailed bit mapping for a x4 device.

		1								
DQ0	d0 d8 d16	d1	d2	d3	d4	d5	d6	d7	CRC0	CRC4
DQ1	d8	d 9	d10	d11	d12	d13	d14	d15	CRC1	CRC5
DQ2	d16	d17	d18	d19	d20	d21	d22	d23	CRC2	CRC6
DQ3	d24	d25	d26	d27	d28	d29	d30	d31	CRC3	CRC7

Data Write CRC (continued)

A x16 device is treated as two x8 devices. x16 device will have two identical CRC trees implemented. CRC(0-7) covers data bits d(0-71). CRC(8-15) covers data bits d(72-143).

	0	1	2	3	4	5	6	7	8	9
DQ0	d0	d1	d2	d3	d4	d5	d6	d7	CRC0	1
DQ1	d8	d9	d10	d11	d12	d13	d14	d15	CRC1	1
DQ2	d16	d17	d18	d19	d20	d21	d22	d23	CRC2	1
DQ3	d24	d25	d26	d27	d28	d29	d30	d31	CRC3	1
DQ4	d32	d33	d34	d35	d36	d37	d38	d39	CRC4	1
DQ5	d40	d41	d42	d43	d44	d45	d46	d47	CRC5	1
DQ6	d48	d49	d50	d51	d52	d53	d54	d55	CRC6	1
DQ7	d56	d57	d58	d59	d60	d61	d62	d63	CRC7	1
DBIL_n	d64	d65	d66	d67	d68	d69	d70	d71	1	1
DQ8	d72	d73	d74	d75	d76	d77	d78	d79	CRC8	1
DQ9	d80	d81	d82	d83	d84	d85	d86	d87	CRC9	1
DQ10	d88	d89	d90	d91	d92	d93	d94	d95	CRC10	1
DQ11	d96	d97	d98	d99	d100	d101	d102	d103	CRC11	1
DQ12	d104	d105	d106	d107	d108	d109	d110	d111	CRC12	1
DQ13	d112	d113	d114	d115	d116	d117	d118	d119	CRC13	1
DQ14	d120	d121	d122	d123	d124	d125	d126	d127	CRC14	1
DQ15	d128	d129	d130	d131	d132	d133	d134	d135	CRC15	1
DBIU_n	d136	d137	d138	d139	d140	d141	d142	d143	1	1

New pin Alert_n

- Alert_n Active low output signal that indicates an error event for both the C/A Parity Mode and the CRC Data Mode
- CRC Data mode. Not ECC. The DRAM device generates a checksum per byte lane for both READ and WRITE data and returns the checksum to the controller. Based on the checksum, the controller can decide if the data or the returned CRC was transmitted in error and take appropriate measures, details TBD.

Low power auto self-refresh

- While DRAM is in self-refresh mode, four refresh mode options available:
 - Manual mode, normal temperature (0 85C)
 - Manual mode, extended temperature (0 95C)
 - Manual mode, reduced temperature (0 45C)
 - Automatic mode: automatically switches between modes based on temperature sensor measurements
- · Power savings by reducing refresh rate when possible

Command Address Latency (CAL)

 DDR4 supports Command Address Latency, CAL, function as a power savings feature. CAL is the delay in clock cycles between CS_n and CMD/ADDR. CAL gives the DRAM time to enable the CMD/ADDR receivers before a command is issued. Once the command and the address are latched the receivers can be disabled.

Figure 34 — Definition of CAL

DRAM Receiver data eye mask and BER

- Bit error rate (similar to serdes) is defined for DRAM receiver measurement
- DRAM receiver data mask is defined for random and deterministic Jitter as data rates approaching 3GT/s.
- For LS1 (i.e. data rates of 1600MT/s or less) we will continue with the conventional setup and hold time measurements.

Summary

- DDR3/3L is mainstream now
- DDR4 is expected to start gaining market share by 2014
- Next generation QorlQ Layerscape and QorlQ T Series devices families support DDR3L & DDR4
- DDR4 low power consumption is suitable for next generation devices
- Follow JEDEC recommended topologies for discrete parts
- Using QCS and DDRv tool, configuration and initialization of memory controller can be easily achieved

Useful References

- Books:
 - DRAM Circuit Design: A Tutorial, Brent Keeth and R. Jacob Baker, IEEE Press, 2001
- Freescale Application Notes:
 - AN2582 Hardware and Layout Design Considerations for DDR Memory Interfaces
 - AN2910 Hardware and Layout Design Considerations for DDR2 Memory Interfaces
 - AN2583 Programming the PowerQUICCIII / PowerQUICCII Pro DDR SDRAM Controller
 - AN3369 PowerQUICC DDR2 SDRAM Controller Register Setting Considerations
 - AN3939 PQ & QorlQ Interleaving
 - AN3940 Layout Design Considerations for DDR3 Memory Interface
 - AN4039 PowerQUICC DDR3 SDRAM Controller Register Setting Considerations
- Micron Application Notes:
 - TN-46-05 General DDR SDRAM Functionality
 - TN-47-02 DDR2 Offers New Features and Functionality
 - TN-47-01 DDR2 Design Guide
 - TN-41-07 DDR3 Power-Up, Initialization, and Reset
 - TN-41-08 DDR3 Design Guide
- JEDEC Specifications:
 - JESD79E Double Data Rate (DDR) SDRAM Specification
 - JESD79-2F DDR2 SDRAM Specification
 - JESD79-3D DDR3 SDRAM Specification
- Tools
 - QorlQ Configuration Suite
 - QorlQ Optimization Suite

DDR Configuration and Validation Tools

QorlQ Configuration Suite – Now Available!

- QorIQ Configuration Suite v3.0 is NOW AVAILABLE!!!
 - Supports all QorlQ and Qorivva devices
 - Works with Eclipse 3.5, Eclipse 3.6, Eclipse 3.7 development tools
 - Pure Java solution for maximum choice of host system support
 - Add-in to CodeWarrior Development Studio for PA, v10.1 or later
 - Available from www.freescale.com/QCS FREE DOWNLOAD*
- Includes the following configuration tools all designed to collaborate on consistent configuration:
 - PBL tool to define the Reset Control Word bit values and PBI data for the pre-boot
 - BOOTROM generator for those QorIQ without RCW functionality
 - DDR configuration supports setting the controller to a working state for any DDR
 - Data path graphical view helps to define data path configuration for the DPAA.
 - Hardware Device Tree editor supports references, synchronous GUI and XML editing, node validation based on specification bindings
 - Packaged as a separate product with installer and wizard functionality

Actual URL is http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=PE_QORIQ_SUITE&tid=PEH

^{*} Must be a QorlQ customer or under QorlQ NDA for download permission

Installing Processor Expert for QorlQ

You need CodeWarrior for PA 10.1 or later

OR, you download an Eclipse version for free

OR, you use an existing Eclipse workbench you have installed (Wind River, QNX, GNU, etc.)

- Processor Expert for QorlQ Configuration Suite installs using the Eclipse updater's "Add new software..." capability
- The Configuration Suite is 100% pure Java so it should run on any Eclipse 3.6.1 or later host environment (Windows, Linux, Solaris, Mac OS, 32-bit/64-bit, ...)

DDR Configuration Creating New DDR Configuration

Create New QCS project

Select device and DDR component

Get DRAM information – P2020RDB-PCA

P2020RDB-PCA

700-26831

From back of RDB box

CPU:P2020NSE2MHC 1200MHz

DDR3:MICRON MT41J128M16HA-15E

1333MHz

DDR3 SDRAM

MT41J512M4 - 64 Meg x 4 x 8 Banks

MT41J256M8 - 32 Meg x 8 x 8 Banks

MT41J128M16 – 16 Meg x 16 x 8 Banks

From DRAM datasheet

How about rest of the timing parameters?

Table 1: Key Timing Parameters

Speed Grade	Data Rate (MT/s)	Target ^t RCD- ^t RP-CL	^t RCD (ns)	tRP (ns)	CL (ns)
-0931, 2, 3, 4	2133	14-14-14	13.09	13.09	13.09
-107 ^{1, 2, 3}	1866	13-13-13	13.91	13.91	13.91
-125 ^{1, 2,}	1600	11-11-11	13.75	13.75	13.75
-15E ^{1,}	1333	9-9-9	13.5	13.5	13.5
-187E	1066	7-7-7	13.1	13.1	13.1

Features

- V_{DD} = V_{DDO} = 1.5V ±0.075V
- . 1.5V center-terminated push/pull I/O
- · Differential bidirectional data strobe
- · 8n-bit prefetch architecture
- . Differential clock inputs (CK, CK#)
- · 8 internal banks
- Nominal and dynamic on-die termination (ODT) for data, strobe, and mask signals
- Programmable CAS READ latency (CL)
- · Posted CAS additive latency (AL)
- Programmable CAS WRITE latency (CWL) based on ¹CK
- Fixed burst length (BL) of 8 and burst chop (BC) of 4 (via the mode register set |MRS|)
- · Selectable BC4 or BL8 on-the-fly (OTF)
- · Self refresh mode
- . Tc of 0°C to 95°C
- 64ms, 8192 cycle refresh at 0°C to 85°C
- 32ms, 8192 cycle refresh at 85°C to 95°C
- · Self refresh temperature (SRT)
- · Write leveling
- · Multipurpose register
- · Output driver calibration

Options¹ Marking

 Configuration 	
- 512 Meg x 4	512M4
- 256 Meg x 8	256M8
- 128 Meg x 16	128M16
 FBGA package (Pb-free) – x4, x8 	
 78-ball (8mm x 10.5mm) Rev. H,M,J,K 	DA
 78-ball (9mm x 11.5mm) Rev. D 	HX
 FBGA package (Pb-free) – x16 	
 96-ball (9mm x 14mm) Rev. D 	HA
- 96-ball (8mm x 14mm) Rev. K	JT

- . Timing cycle time
- 938ps @ CL = 14 (DDR3-2133) -093 - 1.071ns @ CL = 13 (DDR3-1866) -107 - 1.25ns @ CL = 11 (DDR3-1600) -125 - 1.5ns @ CL = 9 (DDR3-1333) -15E
- 1.87ns @ CL = 7 (DDR3-1066)
- Operating temperature
 Commercial (0°C ≤ T_C ≤ +95°C)
- Industrial (-40°C ≤ T_C ≤ +95°C)
 Revision
- Note: 1. Not all options listed can be combined to define an offered product. Use the part
 - catalog search on http://www.micron.com for available offerings.

- Tool automatically computes tRCD, tRP, and CL!
 - User can
 change these
 values if
 required.

-187E

None

IT

:D/:H/:J/:K/

:M

DDR New Project Wizard

- From memory data sheet:
 - Maximum speed rating
 - Capacity

QCS project explorer

operties Import Export Validati	on	
Name	Value	Details
Device	DDR_Controller_1	DDR_Controller_1
Memory type	DDR 3	
DDR Bus Clock	400 MHz	DDR Data Rate: 800 MT/s
Type of DIMM	Unbuffered DIMMs	
Bus mode	64-bit bus	
■ SDRAM Control Configuration		
> SDRAM Timing Configurations		
Auto-adjust chip select addressin	yes	
	Enabled	
Start Address	0 H	
Size	1 GB	
■ Configuration		
Auto Precharge Always	no	
Internal Banks Number	8 internal banks	
Number of row bits	14 row bits	
Number of column bits	10 column bits	
ODT for writes configurati	Assert ODT only during writes to C	
ODT for reads configuration	Never assert ODT for reads	
Partial array self refresh	Full Array	
Chip Select 1	Disabled	
Chip Select 2	Disabled	
	Disabled	

Review DDR registers values

Review DDR registers values – contd.

DDR_Controller_1 DDR_Controller_1											
Reg. name	Init. value	After reset									
■ Peripheral registers											
DDR1_CS0_BNDS	0000003F	00000000									
DDR1_CS1_BNDS	00000000	00000000									
DDR1_CS2_BNDS	00000000	00000000									
DDR1_CS3_BNDS	00000000	00000000									
DDR1_CS0_CONFIG	80014202	00000000									
DDR1_CS1_CONFIG	00000000	00000000									
DDR1_CS2_CONFIG	00000000	00000000									
DDR1_CS3_CONFIG	00000000	00000000									
DDR1_CS0_CONFIG_2	00000000	00000000									
DDR1_CS1_CONFIG_2	00000000	00000000									
DDR1_CS2_CONFIG_2	00000000	00000000									
DDR1_CS3_CONFIG_2	00000000	00000000									
DDR1_TIMING_CFG_3	00030000	00000000									
DDR1_TIMING_CFG_0	00330104	00110105									
DDR1_TIMING_CFG_1	6E6B8846	00000000									
DDR1_TIMING_CFG_2	0FA8D0CC	00000000									
DDR1_SDRAM_CFG	47000008	03000000									
DDR1_SDRAM_CFG_2	24401050	00000000									
DDR1_SDRAM_MODE	00061421	00000000									

Generate DDR configuration

Generated files – CW, uboot, ddrinit.c

```
DDR Controller 1 Registers
 # DDR SDRAM CFG
 mem [0xFF702110] = 0x47000008
 # CSO BNDS
 mem [0xFF702000] = 0x3F
 # CSO CONFIG
 mem [0xFF702080] = 0x80014202
 # CSO CONFIG 2
 mem [0xFF7020C0] = 0x00
 # TIMING CFG 3
 mem [0xFF702100] = 0x00030000
 # TIMING CFG 0
 mem [0xFF702104] = 0x00330104
 # TIMING CFG 1
 mem [0xFF702108] = 0x6E6B8846
 # TIMING CFG 2
 mem [0xFF70210C] = 0x0FA8D0CC
 # DDR SDRAM CFG 2
 mem [0xFF702114] = 0x24401050
 # DDR SDRAM MODE
 mem [0xFF702118] = 0x00061421
```

```
#define DDR 1 INIT EXT ADDR ADDR
                                     0xFF70214C
#define DDR 1 SDRAM RCW 1 ADDR
                                     0xFF702180
#define DDR 1 SDRAM RCW 2 ADDR
                                     0xFF702184
#define DDR 1 DATA INIT ADDR
                                     0xFF702128
#define DDR 1 SDRAM MD CNTL ADDR
                                     0xFF702120
#define DDR 1 DDRCDR 1 ADDR
                                     0xFF702B28
#define DDR 1 DDRCDR 2 ADDR
                                     0xFF702B2C
#define SDRAM CFG MEM EN MASK
                                     0x80000000
#define SDRAM CFG2 D INIT MASK
                                     0 \times 000000010
/* DDR Controller configured registers' values */
#define DDR 1 CS0 BNDS VAL
                                    0x3F
#define DDR 1 CS1 BNDS VAL
                                    0x00
#define DDR 1 CS2 BNDS VAL
                                    0x00
#define DDR 1 CS3 BNDS VAL
                                    0x00
#define DDR 1 CS0 CONFIG VAL
                                    0x80014202
#define DDR 1 CS1 CONFIG VAL
```

```
#define PEX CONFIG DDR1 INIT EXT ADDR
                                         0x00000000
                                         0x00220001
#define PEX CONFIG DDR1 TIMING 4
#define PEX CONFIG DDR1 TIMING 5
                                         0x02401400
#define PEX CONFIG DDR1 ZQ CNTL
                                         0x89080600
#define PEX CONFIG DDR1 WRLVL CNTL
                                         0x8655F614
#define PEX CONFIG DDR1 RCW 1
                                         0x00000000
#define PEX CONFIG DDR1 RCW 2
                                         0x00000000
/* DDR Controller 1 configuration global structures */
fsl ddr cfg regs t ddr cfg regs 0 = {
  .cs[0].bnds = PEX CONFIG DDR1 CS0 BNDS,
  .cs[1].bnds = PEX CONFIG DDR1 CS1 BNDS,
  .cs[2].bnds = PEX CONFIG DDR1 CS2 BNDS,
  .cs[3].bnds = PEX CONFIG DDR1 CS3 BNDS,
  .cs[0].config = PEX CONFIG DDR1 CS0 CONFIG,
  .cs[1].config = PEX CONFIG DDR1 CS1 CONFIG,
  .cs[2].config = PEX CONFIG DDR1 CS2 CONFIG,
```


Leps to adapt DDR configuration file in CodeWarrior

Open the CW config file you want to adapt

D:\Program Files\Freescale\CW PA v10.1\PA\PA_Support\Initialization_Files\QorIQ_P4\ P4080DS_init_core0.cfg

Replace DDR1 config section with the one from

D:\Profiles\b08844\workspace\p4080\Generated_Code\ddrCtrl_1.cfg

Use this new config file with your stationary project

DDR Validation Tool

Prescrib, the Prescrib Rop., Allahoc, C.A., Coskit Edit, Dodolferins, Costiftino, C., Www., the Immig-IEC entrichations stops, Minest, modaline T. P.O., Provincial C.D., Prescrib Copert, David, Counko, Saldelerano, the Jadelesson logic Selection, Symptomy and NeroCa are trademants of Pressonal Selections. Lonlogic U.S. Pat. & Tw. Cell. Antor, Develt, Sericias C. Carrier, Televis, symmotic Propriet Selections in the Publish, Charles Coverago, GUISC Circino, Bussyl Pige, SAMATMATS, Town, Turbullah, Vigint and Normal Jan Carrier, Selection Committee, Committee Committee, Committee Committe

DDR Validation Tool - Activate

License file:

<QCS Install directory>/eclipse/Optimization/license.dat

DDRv Connection Setup

DDRv Basic Connection Test

 Run basic test to confirm target connection

Configure DDR scenarios and tests

Centering of the clock results

Click "cell" to choose Write level start and CLK ADJ values.

DDR read ODT and driver strength – test results

Click "cell" to choose optimized ODT value.

DDR write ODT and drive strength – test results

Click "cell" to choose optimized ODT value.

Centering of the clock - after ODT optimization

			CLK_ADJ										
		0 clocks	1/8 clocks	1/4 clocks	3/8 clocks	1/2 clocks	5/8 clocks	3/4 clocks	7/8 clocks	1 clocks			
	0 clock delay	0/3	3/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3			
	1/8 clock delay	0/3	3/3	3/3	3/3	0/3	0/3	0/3	0/3	0/3			
	1/4 clock delay	0/3	3/3	3/3	3/3	0/3	0/3	0/3	0/3	0/3			
	3/8 clock delay	0/3	3/3	3/3	3/3	3/3	3/3	0/3	0/3	0/3			
	1/2 clock delay	0/3	3/3	3/3	3/3	3/3	3/3	0/3	0/3	0/3			
	5/8 clock delay	0/3	3/3	3/3	3/3	3/3	3/3	3/3	3/3	0/3			
	3/4 clock delay	0/3	0/3	3/3	3/3	3/3	3/3	3/3	3/3	0/3			
	7/8 clock delay	0/3	0/3	0/3	3/3	3/3	3/3	2/3	3/3	0/3			
	1 clock delay	0/3	0/3	0/3	0/3	3/3	3/3	3/3	3/3	0/3			
START	9/8 clock delay	0/3	0/3	0/3	0/3	0/3	3/3	3/3	3/3	0/3			
-	5/4 clock delay	0/3	0/3	0/3	0/3	0/3	0/3	2/3	3/3	0/3			
WRLVL	11/8 clock delay	0/3	0/3	0/3	0/3	0/3	0/3	0/3	3/3	0/3			
5	3/2 clock delay	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3			
	13/8 clock delay	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3			
	7/4 clock delay	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3			
	15/8 clock delay	0/3	3/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3			
	2 clock delay	0/3	3/3	0/3	0/3	0/3	0/3	0/3	0/3	0/3			
	17/8 clock delay	0/3	3/3	3/3	3/3	0/3	0/3	0/3	0/3	0/3			
	9/4 clock delay	0/3	3/3	3/3	3/3	0/3	0/3	0/3	0/3	0/3			
	19/8 clock delay	0/3	3/3	3/3	3/3	3/3	3/3	0/3	0/3	0/3			
	5/2 clock delay	0/3	3/3	3/3	3/3	3/3	3/3	0/3	0/3	0/3			

Centering
 of clock
 scenario
 was re-run
 after
 finding the
 right ODT
 values

Generate optimized DDR configuration

Pricing \$995

License file:

<QCS Install directory>/eclipse/Optimization/license.dat

2020RDB-PCA: Import DDR configuration from existing system running uboot

At uboot prompt

- => md ffe02000
- Save content to a file.

Processor Expert for QorlQ ... For More Info

- Freescale's Processor Expert landing page
 - http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=PROCESSOR-EXPERT&tid=PEH
 - http://www.freescale.com/ProcessorExpert
- QorIQ Configuration Suite
 - http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=PE_QORIQ_SUITE&tid=PEH
 - http://www.freescale.com/QCS
- QorIQ Optimization Suite
 - http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=PE_QORIQ_OPTI_SUITE&tid=PEH
 - http://www.freescale.com/QOS
- Freescale Component Store purchasing embedded software
 - http://www.freescale.com/webapp/sps/site/homepage.jsp?code=BEAN STORE MAIN&tid=SWnT

Pricing & Availability

- Part numbers : CWA-QIQ-OPTP-FL (floating license) & CWA-QIQ-OPTP-NL (node locked)
- Price: \$999 Annual Subscription
- License Duration: 1 year
- Support & Maintenance : Included
- Availability
 - Scenarios Tool Now
 - DDRv Now

FREESCALE TECHNOLOGY FORUM

AMERICAS | APRIL 8-11, 2014

Gaylord Texan Resort & Convention Center | Dallas

Come to FTF for the training and collaboration, leave with the knowledge and inspiration to make the world a smarter place.

Registration opens December 2, 2013

more info at www.freescale.com/FTF

