

Create a Wearable Device Using the WaRP Reference Platform:
Go from Concept to Product as Fast as the Market Is Changing

AMF-CON-T0752

Robert.Thompson@Freescale.com

SEPT.2014

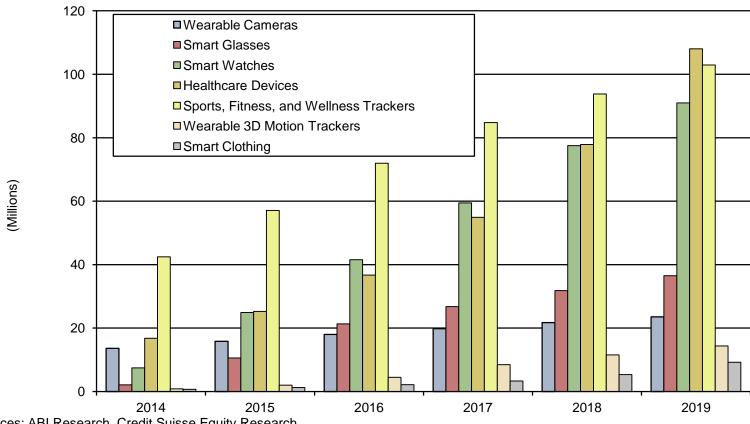
External Use

What Is A Wearable Device?

 Products that enhance the user's experience as a result of being worn through sensing, connectivity and processing of data

Key Technology Market Trends for Wearables:

- Miniaturization
- Low power
- Connectivity
- Multiple sensors



Wearable Market Forecast

By 2019

- 455M devices will be sold generating \$46.5B of revenue
- Healthcare devices will be the biggest category (121 M)
- Smartwatches generate the most revenue, \$21B

Wearable Market: Segmentation

Vertical	Categories
Fitness & Wellness	Sports & Heart Rate Monitors Pedometers, Activity Monitors Smart Sport Glasses Smart Clothing Sleep Monitors Emotional Measurements
Healthcare & Medical	CGM (Continuous Glucose Monitoring) ECG Monitoring Pulse Oximetry Blood Pressure Monitors Drug Delivery (Insulin Pumps) Wearable Patches (ECG, HRM, SpO2)
Infotainment	Smart Watches Augmented Reality Headsets Smart Glasses Wearable Imaging Devices
Industrial & Military	Hand-worn Terminals Augmented Reality Headsets Smart Clothing

Wearable's Challenge

Power, space and usability are key

- **Form Factor**
- **Power Consumption & Charging**
- **Usability**

WaRP – WearAble Reference Platform

Creating Wearable Innovation

Key development challenges

Form factor, battery life, cost & usability

Ecosystem

Over 20 partners

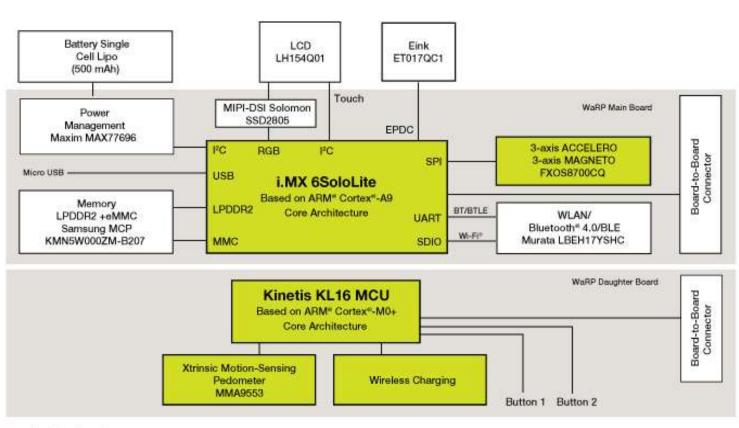
Scalable

 Modular architecture to enable rapid platform evolution

Open Source

Community drives innovation

WaRPboard.org


Wearable Reference Platform (WaRP) with Standard Daughter Board

Main Board PCB 38 mm x 16 mm (1.4"x 0.6")

Daughter Board 42 mm x 42 mm (1.65" x 1.65")

Freescale Technology

Market Segmentation

Multi Function

Type 2

High Performance, multiple usage models

HLOS based Android, Android Wear

Connectivity

BLE 4G

Type 1 Always On, specific usage

RTOS based ThreadX, Free RTOS

Fixed Purpose

WaRP Architecture

Small Form Factor

Main board 38 x16 mm

Battery Life

- Key components selected for power mgmt capabilities
- Hybrid Architecture: ARM® Cortex®A9 main compute engine and Cortex-M0+ sensor hub
- Wireless Charging

Usability

- Hybrid architecture to allow improved user experience
- Flexibility: LCD & E-Ink displays, Wi-Fi & BT 4.0 module
- Android 4.3 for ease of development

Cost

- \$149 sales price for the WaRP kit
- Low cost BOM
- Open Source Hardware & Software

WaRPboard.org

Bill of Materials – Open Source

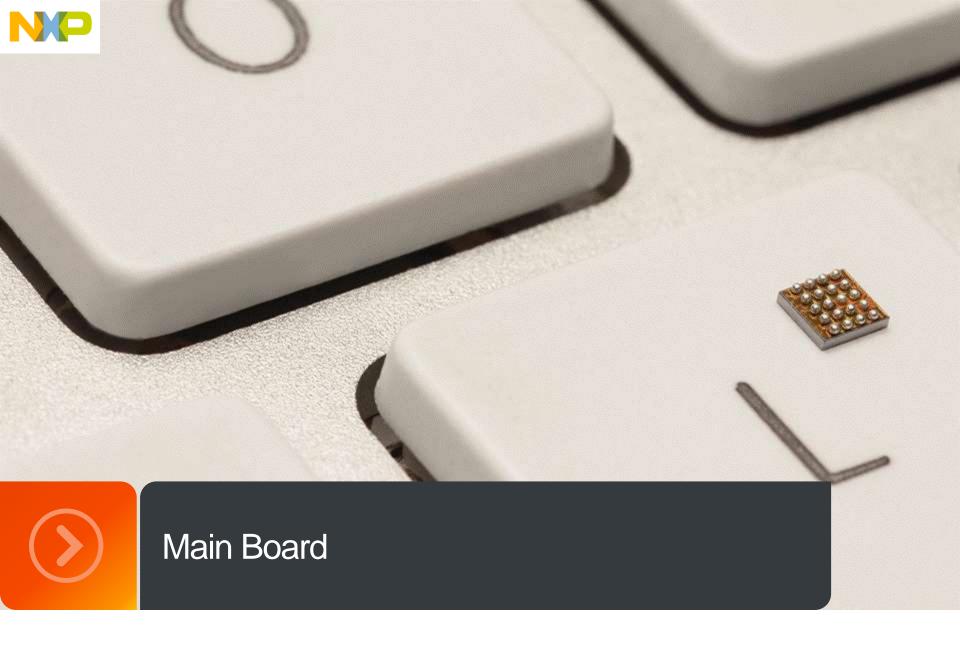
Comment	Description	Designator	LibRef	Qty	Value	Footprint	Part No.
2450AT07A0100	Johanson Technology Inc 1mm x 0.5mm 2.4GHz Ultra Mini	ANT1	2450AT07A0100	1		2450AT07A0100	2450AT07A0100
	Chip Antenna						
Coax RF		ANT2	Coax RF	1		W.FL-R-SMT-1	W.FL-R-SMT-1
Header 2	Header, 2-Pin	BAT	Header 2	1		Small Solder Pads	
CapacitorSM	Capacitor	C1, C4, C7, C11, C15, C56,	CapacitorSM	11	22uF	0603 (1608) Cap High Density	GRM188C80G226MEA0
		C61, C75, C76, C77, C81					D
CanacitorSM	Canacitor	C2 C8 C9 C13 C18 C20	CapacitorSM	22	4 7uF	0402 (1005) Can High Density	C1005X5R01475M050RC

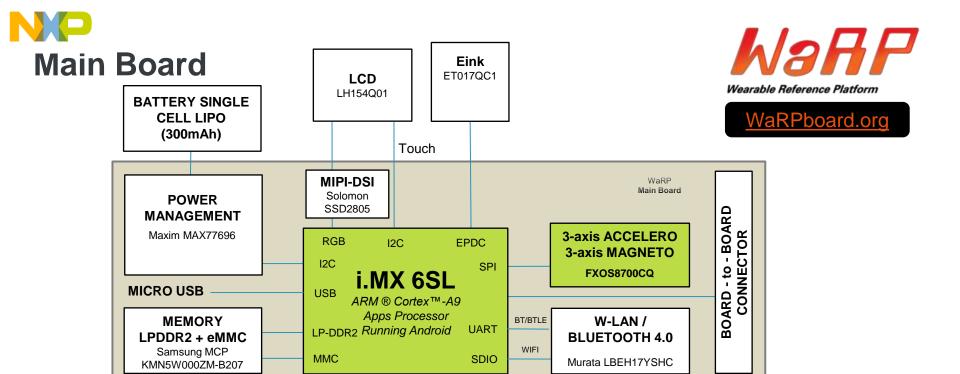
A full bill of materials will be provided on product development

WaRPboard.org for

Сараспотым	Capacitoi	CJ, CJ, CO, C10, C12, C14,	Сараспотэти	110	U.ZZUI	OZOT (OOOS) Cap High Delisity	COOOSASINOSEZATROSODO
,		C16, C17, C19, C22, C23,					
		C25, C26, C28, C29, C30,					
		C31, C37					
Capacitor	Capacitor	C34, C35, C119, C120	Capacitor	4	8pF	0201 (0603) Cap High Density	C0603C0G1E080D030BA
CapacitorSM	Capacitor	C38, C39, C40, C41, C44,	CapacitorSM	31	0.1uF	0201 (0603) Cap High Density	GRM033R60J104ME19D
'	'	C46, C47, C48, C52, C53,	'				
		C54, C57, C58, C59, C62,					
		C63, C64, C65, C68, C70,					
		C91, C94, C95, C109, C110	,				
		C111, C113, C114, C116,					
		C121, C134					
CapacitorSM	Capacitor	C42, C55, C60, C66, C67,	CapacitorSM	7	0.01uF	0201 (0603) Cap High Density	GRM033R70J103KA01D
·		C69, C71	·				
CapacitorSM	Capacitor	C50, C51, C79	CapacitorSM	3	4.7uF	0603 (1608) Cap High Density	GRM188R60J475ME19D
CapacitorSM	Capacitor	C74, C82, C84, C85, C87,	CapacitorSM	15	1uF	0201 (0603) Cap High Density	C0603X5R0J105M030BC
	'	C88, C93, C106, C107,					
		C123, C124, C126, C127,					
		C131, C132					
CapacitorSM	Capacitor	C78, C80, C86, C122, C133	CapacitorSM	5	2.2uF	0402 (1005) Cap High Density	LMK105BJ225MV-F
CapacitorSM	Capacitor	C83, C96, C98, C102, C104	, CapacitorSM	6	1uF	0402 (1005) Cap High Density	C1005X5R1V105M050BC
		C125					

Reference Design Comparison for Wearables




	Raspberry Pi	Arduino Uno	Beagle Bone Black	ToQ	WaRP
Wearable Form Factor	3.4" × 2.2 "	2.7" x 2.1"	3.4" x 2.1"	Yes – Smart Watch	1.4" x 0.6"
Battery Life	DC power	DC or Battery	DC Power or USB	Mirasol Display	300 MhA battery
Scalability	Arduino compatible	Shields	Capes	None	Daughter cards
Cost	\$25	\$110	\$45 -\$89	\$399	\$149
Open Source		Creative Commons	Creative Commons		Creative Commons
Productizable					

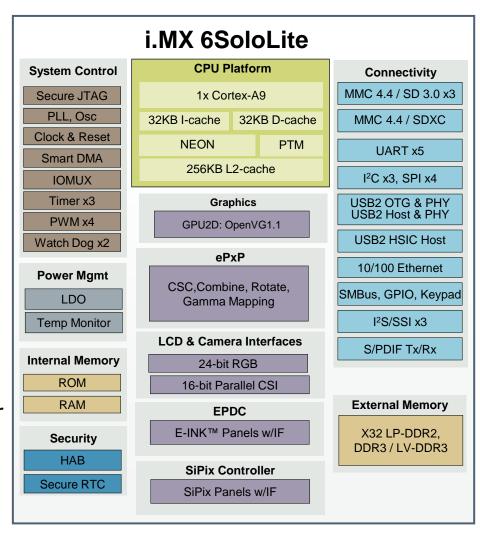
Main Board PCB size: 38 mm x 16 mm (1.49"x 0.55")

Designed to be able to productize

i.MX 6SoloLite Multimedia Processor

Specifications

- CPU: 1x ARM® Cortex®-A9 @ 1GHz


- Core Voltage: 1.1V

- Package: 0.5mm 13x13 MAPBGA

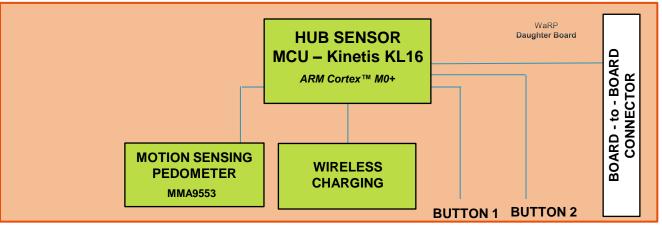
WaRP Use Case

- Idle: 4.9 mW, Suspend 0.93 mW

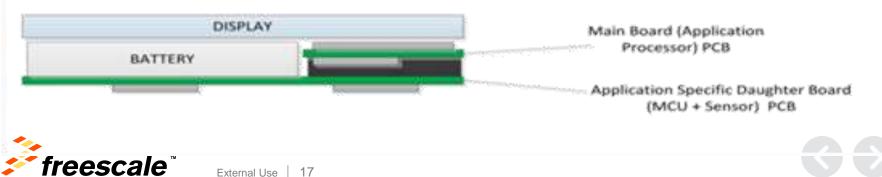
- Clock/power gating
- Dynamic voltage & frequency scaling
- x32 LP-DDR2 & managed NAND
- EPD /LCD Controller & 2D GPU
- Interfaces: UART for BT, SDIO for Wi-Fi, SPI for the accelerometer

WaRP Main Board Components

Component	Use Case	Reason Selected
Freescale MCIMX6L7DVN10AB	Main compute engine – connectivity, data processing, user interface. Runs Android.	Small footprint (13x13mm), elnk display support, low power apps processor
Murata LBEH17YSHC Wireless Module	Wi-Fi® (802.11 b/g/n) – connect to cloud Bluetooth® – tether to smartphone/tablet	Small form factor (7x7mm) single module. market tested (cell phones), low power
Micron MCP	LP-DDR2 – low power system memory 4GB eMMC for storage	Small tightly coupled design, saves up to 40% board space, consumes less energy
Eink EPD (ET017QC1) and LCD (LH154Q01) display options	Graphic User Interface - options for both interactive highly visual displays (LCD) to constant always-on notification displays using monochrome e-ink	E-Ink panel - lowest power display technology, LCD panel – most broadly used 1.5" high density display with touch in wearables
Maxim MAX77696 PMIC	System Power Management IC	Regulators from 2.6V to 5.5V Dual Input Battery Charger Supports both E-Ink and LCD displays
Xtrinsic FXOS8700CQ 6DOF eCompass Sensor	Direction awareness & Motion detection – included on main board to allow it to be a standalone wearable compute platform	Low noise, low offset 3-axis accelerometer + magnetometer eCompass sensor enabling <5° absolute heading accuracy and ±0.1° resolution performance
Single cell lipo battery	Power source	Provides highest energy density



Daughter Board PCB size: 42 mm x 42 mm (1.65" x 1.65")

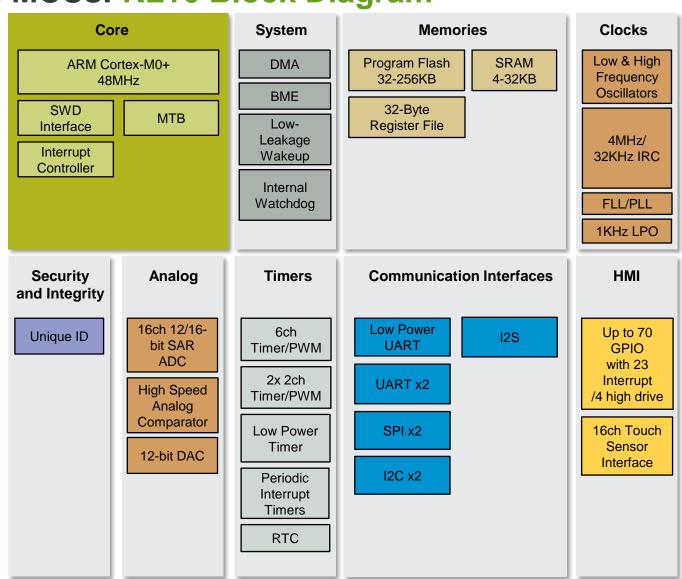


External Use | 17

- · Top view with battery attached
- Bottom View Charging Coil

Daughter Card Components

Component	Use Case	Reason Selected
Kinetis KL16 - MKL16Z128VFT4	Sensor Hub, system power and application manager to maximize battery life and hosts wireless charging.	Always active so needed low power MCU. Scalability to add or change function of daughtercard
Xtrinsic MMA955xL 3-Axis Accelerometer	Pedometer features	Intelligent Motion Platform with embedded libraries for pedometer. Power management features and low power modes
Vishay 5W Charging Coil	Charging	Supports Chi standard, small size and is broadly available
Wireless Charging Software	Innovative charging technologies are critical to the adoption of wearables	Chi compliant wireless charging embedded software for 5Watts – configurable

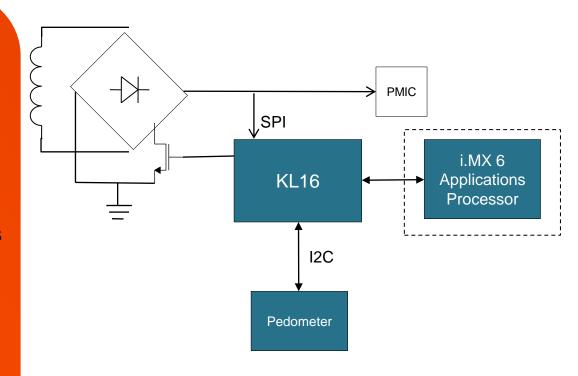

Kinetis L Series MCUs: KL16 Block Diagram

Specifications

- CPU: 1x ARM Cortex-M0+ @ 48MHz
- 32QFN 5x5x1/0.5mm

WaRP Use Case

- UART for communication to the main board
- PWM for buzzer (notifications)
- I2C to motion detector sensor
- SPI to E-Ink display for power management
- GPIO for buttons



Wireless Charging Receiver

- Charge without the bulky micro-USB connector to minimize form factor topology to offer flexibility over ASICs
- Implements a discrete
- Uses commercially available Kinetis
 KL16 & charging coil
- Uses the latest industry standard Chi standard - software provided in library format

WaRP with Medical Daughter Board

WaRPboard.org

Freescale Wearable

Reference Platform

Main Board

BOARD

- to

BOARD

CONNECTOR

BATTERY SINGLE CELL LIPO (500mAh)

EPD DISPLAY LCD DISPLAY ET017QC1 **TOUCH INTERFACE**

MIPI

Main Board PCB target size: 18 mm x 42 mm

POWER MANAGEMENT

MEMORY

LPDDR2 + eMMC

MICRO USB

Solomon Systech SSD2805C Maxim MAX77696

i.MX6SL

RGB

LCD

CONNECTOR

SPI

UART

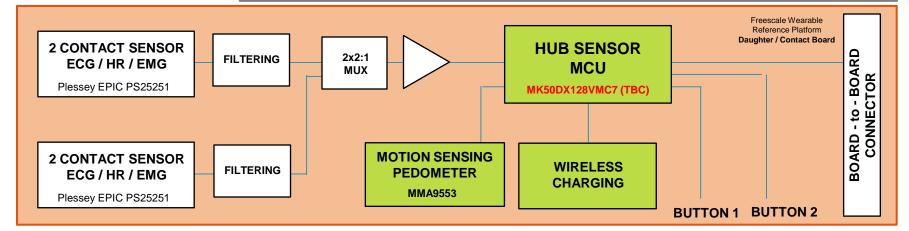
SDIO

WIFI

W-LAN / BT/BTLE **BLUETOOTH 4.0**

EPD

CONNECTOR


Murata LBEH17YSHC

3-axis ACCELERO

3-axis MAGNETO

FXOS8700CQ

Daughter Board PCB target size: 80 mm x 42 mm

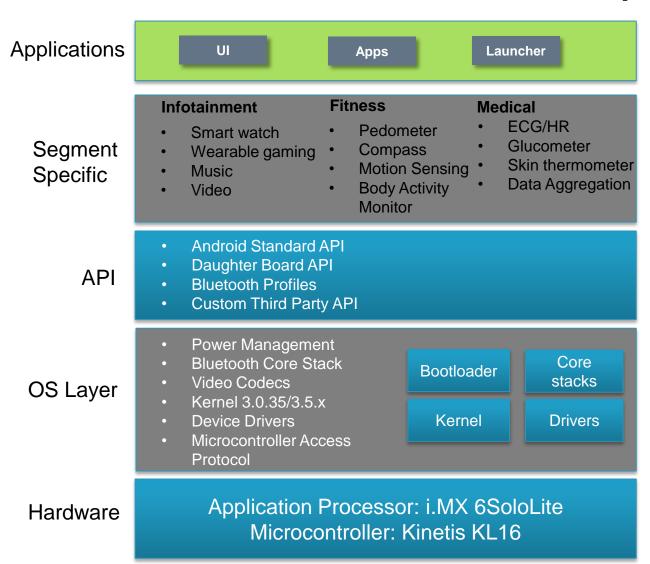
USB

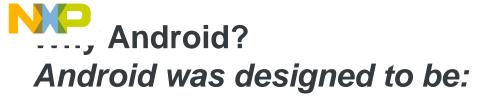
DDR2

SDIO

WaRP

Software Details





WaRP: Software Architecture and Completeness

Connectivity

LTE to NFC On-demand and autonomously

Context Awareness

System capable of higher-level concepts, functions, and behaviors

Interactive and Intelligent

Learn behaviors based on user's response. Natural user interface: Spoken, gestures.

Extensible

Application Framework capable of performing a combinatorial set of tasks

WaRP Android Software Implementation

Connected

Fully connected stack accessible via Java SDK Flexible recovery system for OS updates

Extensible

Large developer community can leverage full standard Android SDK & standard dev tools

Open platform – two BSP versions, full open source & advanced optimized via click through license

Interactive & Intelligent

Android is only OS with an optimized & lightweight surface renderer & advanced touch human interface

Context Awareness

Extension of SDK used simple messaging system to interface with daughter card & access data from sensors

Android Wear – What's The Impact

What it is

- The released SDK includes API libraries & dev tools to build, test & debug apps for devices running Android Wear.
- Similar to the GDK for Google Glass The Glass OS can be installed only on Google Glass and is solely owned by Google
- Google have not released the source code therefore cannot be ported to the WaRP board or any third party platform at this time.

What it's not

- NOT Open Source
- NOT Applicable to all wearable's currently just Smart Watches
- NOT a stand alone OS Android Wear still requires interoperability with phones and tablets

Launch & Community

WaRPboard.org is a nonprofit community based organization providing service and support for the wearables reference platform (WaRP). The solution's hardware and

software will be open sour licensing fees are require

WaRPboard implements wearables market. The p with the ability to add add WaRP community can help you tackle challenges, develop quickly and innovate!

architecture, the guts of the design is done on the main board with Freescale's i.MX 6SoloLite applications processor, and a secondary microcontroller, Freescale's Kinetis KL16 MCU, is implemented on the daughtercard, which is used as a sensor hub as well as a wireless charging MCU.

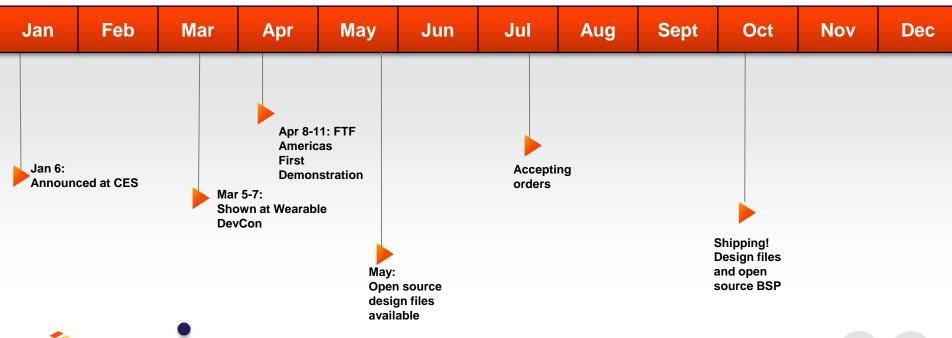
Technical Features

Community driven by CIrcuitco

WaRP Timeline Calendar

Wearable Reference Platform

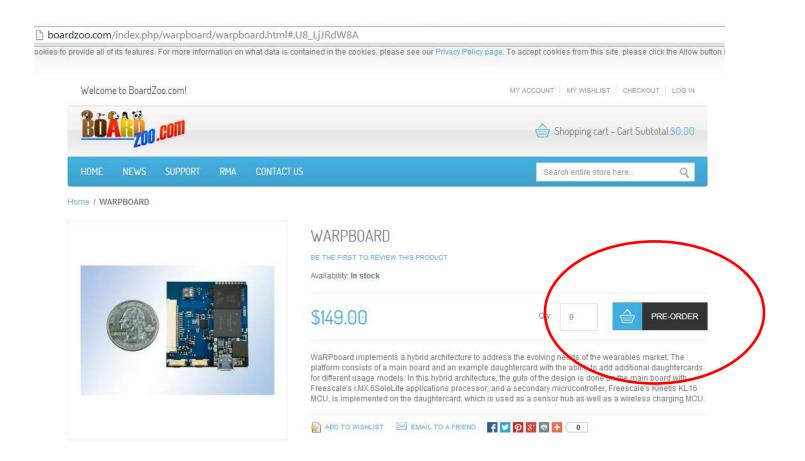
Ordering


WaRPboard.org

- WaRPboard.org Website
- Block Diagram

Available Now

WaRPboard Google Group


- WaRPboard.org
- Distributors Arrow and Avnet

Pre-Order Now http://www.warpboard.org/where-to-buy/

Top Innovative Product

Top Innovative Product of 2014

Embedded Computing Design August 2014 issue, silicon category

Wearables Summary

- **Versatile Applications** More than just smart watches, growth in many diverse markets
- Scalable, Modular and Open Source WaRP is a scalable, modular, and open source reference platform
- **Productizable** Form factor board that can be productized because components are available
- **Available Soon** Shipping October 2014 via warpboard.org as well as our through our global distributors: Arrow and Avnet.

www.Freescale.com