
External Use

TM

Overview of QorIQ Processor

Solutions for Virtualization

Features on T2080-based iNIC

EUF-NET-T0967

J A N . 2 0 1 5

Peter Van Ackeren

TM

External Use 2

Session Introduction

• This session explores the virtualization solutions available for

on QorIQ communication processors

• After completing this session you will have become familiar with :

− General virtualization principles and use cases

− The features, benefits and some details of KVM/QEMU, Linux®

containers and libvirt implementations as supplied in the QorIQ Linux

SDK

− Architecture specific details of Power Architecture and ARM® based

platforms as applicable to virtualization use cases

TM

External Use 3

Introduction

TM

External Use 4

Traditional System Model

• Single OS runs on a single or multi-core hardware system

HW

OS

App

TM

External Use 5

Multi-processing Usage Models

SMP

• SMP = Symmetrical Multi-processing

− multi-processor homogeneous computer architecture

− where two or more identical

processors are connected to globally shared main

memory and I/O

− processors could be separate devices, multiple cores

in a single device or a mix

− a single OS instance runs on and manages the

cores, with shared memory, I/O and interrupt

resources

− Each processor can run independent processes and

threads

− Any idle processor can be assigned any task

MemoryMemoryCPU

CPU

I/OI/O

C
a
c
h

e
C

a
c
h

e

C
a
c
h

e
C

a
c
h

e

CPU

CacheCache

CacheCache

CPU

Single OS

CPU CPU

I/O

Mem
ctrl

TM

External Use 6

Multi-processing Usage Models

AMP

• AMP = Asymmetrical Multi-processing

− Individual CPUs are dedicated to particular tasks, like running an OS

− different software instances run on separate CPUs

e.g. 2 copies of Linux image are loaded at different physical address

locations

• Both CPUs must cooperate to share the resources

− Neither OS can own the whole system

− I/O and interrupts are separated

− Static configuration of resources

TM

External Use 7

What is Virtualization ?

• Virtualization – an abstraction layer that enables running multiple

operating systems on a single system, implemented using

hardware and software technologies

• A hypervisor is a software component that creates and manages

virtual machines which can run operating systems.

RTOS Linux® Linux®

Hardware

Hypervisor

App App App

TM

External Use 8

Types of Virtualization

• Full Virtualization:

− Virtual machine behaves identically to physical hardware

− OS code unchanged

− Advantage: no changes to the GOS

− Disadvantage: can be lower in over-all performance

− Common examples: KVM, VirtualBox

• Para-virtualization:

− Guest is hypervisor-aware and uses defined API for some services

− Guest OS is modified

− Advantage: potentially better performance

− Disadvantage: modifications to Guest OS (e.g. drivers)

− Examples: Freescale Embedded HV

TM

External Use 9

Flexibility and Scalability

Reliability and Protection

Cost Reduction

Virtualization Use Cases

HW

OS

App

HW

OS

App

Multicore

HW

OS

App

OS

App

Multicore

HW

OS

Data

Plane

OS

CTRL

Plane

Split Workload

Multicore

HW

OS

App

OS

App

Multicore

HW

OS

App

OS

App

Multicore

HW

OS

App

OS

App

Sandboxing

Failover

Consolidation

Dynamic Resource

Management

Multicore

HW

OS

App

OS

App

Multicore

HW

OS

App

OS

App

TM

External Use 10

Virtualization Use Cases – Cost Reduction

• Consolidation :

− redeploy multiple discrete systems/domains

onto a single multi-core processor

− Benefits:

Cost effective : bill-of-material, power

Preserve investment : software re-use

 Improved hardware utilization

Flexibility

Multicore

HW

OS

App

OS

App

TM

External Use 11

Virtualization Use Cases – Reliability & Protection

• Sandboxing :

− Add untrusted software to a system,

e.g. operator applications

− Run GPL based software in isolation

− Run test software safely

− Isolate security-sensitive tasks :

access rights control,

rule definitions, key management, …

• High availability

− active/standby configuration

without additional hardware

Multicore

HW

OS

App

OS

App

Multicore

HW

OS

App

OS

App

Multicore

HW

OS

App

OS

App

TM

External Use 12

Virtualization Use Cases – Flexibility & Scalability

• Run legacy software / OS on Linux

• Add functionality to existing system by dropping in a VM

• Use different versions of the Linux kernel

• Better resource management

− Allocation of physical CPUs / control CPU load

− Create/destroy VMs as needed

• Maps well to split workload

− e.g. control plane, data plane

• In-service upgrade

Multicore

HW

OS

Data

Plane

OS

CTRL

Plane

TM

External Use 13

Virtualization & Hypervisors

• Virtualization – Hardware and software technologies that provide an

abstraction layer that enables running multiple operating systems

on a single computer system

• Hypervisor - Software component that creates and manages virtual

machines which can run guest operating systems

• Hypervisor runs “bare metal”

Hypervisor

 HW

Guest

OS

App

Guest

OS

App

Guest

OS

App

• Hypervisor is integrated in Host OS

• Reuses OS infrastructure

• Host OS runs other applications

 HW

Guest

OS

App App

App

Host OS

Guest

OS

TM

External Use 14

Virtualization & Partitioning

Virtualization

I/O

OS OS

CPU

Partitioning

OS OS

I/O I/O

CPU CPU

Full Virtualization

I/O CPU

trap

OS OS

emulation emulation

Paravirtualization

I/O

Modified

OS

Modified

OS

CPU

hypercalls

TM

External Use 15

Para-Virtualized
•Driver in Hypervisor

•Modified Drivers in

Guest

OS

I/O

Custom

Driver

OS

Device Usage in Virtual Environments

Hardware/software access

Hypercalls

Traps

Direct Access

•Best native performance

•Direct access to hardware

I/O

OS OS

I/O

Driver

Emulated
•Driver in Hypervisor

•Emulation in Hypervisor

•Unmodified Drivers in

Guest

OS OS

I/O

Driver

Driver

Emulation

Driver

Driver
Custom

Driver

Partitionable HW
•Hardware partitioned

•One hardware block

OS OS

I/O

Driver Driver

TM

External Use 16

Multi-OS Systems

Enterprise/Datacenter
servers, cloud

computing
Mobile

Aerospace,

military

(separation

kernels)

Embedded

Desktop

TM

External Use 17

Virtualization Technologies for QorIQ

TM

External Use 18

Virtualization Technologies for QorIQ

OS Virtualization (LXC)

• Low Overhead

• Isolation and Resource Control

in Linux ®

• Decreased Isolation (Kernel

sharing)

Cont Cont

Multicore Hardware

Cont

Linux ®

LXC LXC LXC

App App App

Freescale Embedded

Hypervisor

• Lightweight Hypervisor

• Resource Partitioning

• Para-Virtualization

• Failover support

• 3rd Party OSs

VM

Multicore Hardware

VM VM

OS OS OS

Embedded Hypervisor

App App App

KVM

• Linux ® Hypervisor

• Resource Virtualization

• Resource Oversubscription

• 3rd Party OSs

Multicore Hardware

VM

App

OS

Linux

KVM

VM

App

OS

App

TM

External Use 19

Virtualization Technologies for QorIQ

• Linux-based

• Delivered with the QorIQ Linux SDK for Power and ARMv7

architecture based products (ARMv8 : planned 2015)

Linux

LXC KVM/QEMU libvirt

TM

External Use 20

Freescale Embedded Hypervisor – Overview

• Lightweight hypervisor offering partitioning

and isolation

• Only one OS per core

• Combination of full virtualization and para-

virtualization

• OS has direct control on high speed

peripherals

• Provides good performance and minimal

changes to Guest OS

 Multicore Hardware

VM

OS

App

CPU

I/O

Memory

IOMMU

Interrupt

Controller

VM

CPU CPU

OS

I/O

Memory

App

Embedded Hypervisor

TM

External Use 21

KVM / QEMU – Overview

• Open source virtualization technology

based on the Linux kernel

• Boot operating systems in virtual

machines alongside Linux applications

• KVM is a Linux kernel module

• QEMU is a user space emulator that

uses KVM for acceleration

• Run virtual machines alongside Linux

applications

• No or minimal OS changes required

• Virtual I/O capabilities : virtual disk,

network interfaces, serial, etc.

• Direct/pass thru I/O – assign I/O

devices to VMs

Multicore

Hardware

Linux
KVM

App

VM

QEMU

App

OS

VM

QEMU

App

OS

TM

External Use 22

KVM / QEMU – Details

• QEMU is a user space emulator that uses KVM for acceleration

− Uses dedicated threads for vcpus and I/O

− KVM leverages hardware virtualization to run guest with higher privileges

− MPIC virtual chip emulation in kernel

− I/O

 Provides dedicated virtio I/O devices and standard drivers in Linux kernel

 Uses vfio Linux framework to direct assign physical PCI devices

 Direct notifications between I/O threads and KVM using eventfds

 Vhost provides virtio emulation and I/O thread and in kernel

 Multi-queue virtio devices connected to multi-queue tap devices

− Provides services for console, debug, reset, watchdog, etc.

TM

External Use 23

KVM / QEMU

• QEMU provides …

− Virtual machine setup and initialization

− Memory allocation

− Virtual I/O services

− Debug stub

• KVM provides …

− Isolation– using hardware mechanisms and virt extensions

− Virtual CPU services

− API used by QEMU

• Linux Kernel provides …

− Scheduling

− Memory management

TM

External Use 24

KVM / QEMU
Virtual CPUs

• Each vcpu is a Linux thread

− created by QEMU

• Full capabilities of the Linux

scheduler can be used to

manage VCPUs/threads

− CPU affinity

− priority

− isolcpus

− LXC

VM init,

boot

QEMU

Virtual

I/O

debug

OS

App App

Thread I/O Threads

KVM

Linux®

Kernel

Thread

vcpu vcpu

VM

CPU services

cpu cpu cpu cpu

TM

External Use 25

KVM / QEMU
Debugging

• Debug stub in QEMU

allows guest debugging

using GDB

• QEMU monitor shell allows

examining VM state

gdb

Monitor

KVM

Linux®

Kernel

VM init,

boot

QEMU

Virtual

I/O

debug

App App

VM

OS

TM

External Use 26

KVM Status

• KVM on QorIQ P-series and T-series

− available since QorIQ SDK 1.2 (2012)

− upstreamed

• KVM on QorIQ Layerscape 1

− 1st release in QorIQ SDK 1.7 (dec-2014)

• KVM on ARM is available now in upstream Linux since :

− 32-bit : kernel 3.9

− 64-bit : kernel 3.11

• KVM and QEMU have an active open source community

developing the technology– led by ARM and Linaro

TM

External Use 27

I/O and KVM

TM

External Use 28

KVM – I/O Pass Through of PCI Devices

• Assign a physical PCI device to a KVM virtual machine

• Device becomes a private resource of the VM

• OS gets direct access to device registers

• DMA is direct to OS buffers

• QEMU mediates all interrupts from the PCI device

• QEMU presents PCI device on a virtual PCI bus

e1000

Linux

App

VM

QEMU

App

VM

QEMU

App

OS

vfio

OS

TM

External Use 29

KVM – I/O Pass Through of Platform Devices

• Assign a physical SoC device (e.g. UART) to a VM

• Device becomes a private resource of the VM

• OS gets direct access to device registers

• DMA is direct to OS buffers

• Guest sees standard device node in its device tree

• QEMU mediates all interrupts from the device

Linux

App

VM

QEMU

App

VM

QEMU

App

OS

vfio

UART

OS

TM

External Use 30

Pass Through of USB Devices

• Assign a physical USB device or port to a KVM virtual machine

• QEMU mediates device access

• Guest sees a virtual USB controller on a virtual PCI bus

USB Drive

Linux

App

VM

QEMU

App

OS

VM

QEMU

App

OS

libusb

TM

External Use 31

Virtio Networking

• Enables sharing of host network interfaces

• Host : - Bridge (virtual switch) is connected to physical host interface

 - QEMU uses tun/tap device connected to the bridge

• Guest : - Sees a private virtio network device on PCI bus

 - Virtio network driver is needed in guest

Linux

App

VM

QEMU

App

VM

QEMU

App

br0

tap0 tap1

eth0

OS OS

TM

External Use 32

Virtio Block

• Give each virtual machine a private storage device

• Virtual disk could be single binary image on host file system or

logical volume on the host’s disk

• Guest sees a private “virtio” network device on PCI bus

• Virtio block driver is needed in guest

Linux

App

VM

QEMU

App

VM

QEMU

App

OS OS

TM

External Use 33

Linux Containers

TM

External Use 34

Linux Containers (LXC) – Overview

• OS level virtualization

• Guest kernel is the same as the Host

kernel, but OS appears isolated

• Provides low overhead, lightweight,

secure partitioning of Linux

applications into different domains

• Can control resource utilization of

domains– CPU, memory, I/O

bandwidth

• LinuX Containers is based on kernel

components (cgroups, namespaces)

and user-space tools (LXC)

• KVM virtual machines can be

run in containers

1

1 7 12

15 1

4 7

1

3

21

1

4 9

15 17

Container 1

Container 2 Container 3

• close to 0% performance overhead

• process-level virtualization

Container Container

Linux ®

App
App App

TM

External Use 35

Libvirt Overview
http://libvirt.org/

• A toolkit to interact with the virtualization capabilities of OS-es and

hypervisors

• Goal : provide common and stable layer sufficient to securely

manage domains on a node, possibly remote

• Has drivers for KVM/QEMU and Linux containers

• Many management applications supported

http://libvirt.org/
http://libvirt.org/
http://libvirt.org/

TM

External Use 36

Libvirt Overview
http://libvirt.org/

libvirt

protocol

Linux® KVM

Hardware

libvirtd
Management

 Application

VM

QEMU

App

OS

VM

QEMU

App

OS

App

http://libvirt.org/
http://libvirt.org/
http://libvirt.org/

TM

External Use 37

Virtualization Hardware Comparison

TM

External Use 38

Comparison of Processor Virtualization Capabilities

• ARM, Power, x68 architectures all support similar mechanisms to

support virtualization.

Capabilities ARM Power x86

3rd privilege level Yes Yes Yes

Extended Address space Yes Yes Yes

Hardware guest physical address

translation (2-stage)

Yes Yes

(LRAT)

Yes

(EPT/NPT)

Direct guest interrupt management Yes Yes Yes

(x2 APIC)

IOMMU Yes

(SMMU)

Yes

(PAMU)

Yes

(VT-d)

TM

External Use 39

Virtualization Features in QorIQ Silicon

• CPU

− e500mc / e5500

− 3rd privilege level

− Partition ID / extended virtual address space

− Key registers duplicated for guests

− Direct system calls

− Direct external hardware interrupts to guest

− LRAT– gphys -> phys translation in hardware

• SoC

− IOMMU (PAMU) provides isolation from I/O device memory accesses

TM

External Use 40

ARM Hardware Virtualization Extensions

• A7/A15/A53/A57 Core

− New Hypervisor mode

Privileged operations trap to hypervisor

Banked registers

− Two stage address translation

Virtual address (VA) -> Intermediate physical (IPA)

 Intermediate (IPA) -> Physical (PA)

− Direct system calls

− Guest timer in core

− Guest GIC (interrupt controller) interface for ACK, EOI

• SoC

− IOMMU (SMMU) provides isolation from I/O device memory accesses

TM

External Use 41

Networking Virtualization

T-Series 10 GbE iNIC

TM

External Use 42

QorIQ T2080 Power Optimized Multicore Solution

Processor

• 4x e6500, 64b, 1.2 - 1.8 GHz

• Dual threaded, with 128 b AltiVec

• 2MB shared L2; 256 KB per thread

Memory Subsystem

• 512 KB Platform Cache w/ECC

• 1x DDR3/3L Controller up to 2.1
GHz

• Up to 1 TB addressability

− 40-bit physical addressing

• HW Data Prefetching

Switch Fabric

High Speed Serial IO

• 4x PCIe Controllers: Gen1.1/2.0/3.0

− 1 with SR-IOV support

− x8 Gen2

• 2x sRIO Controller

− Type 9 and 11 messaging

− Interworking to DPAA via RMan

• 2 SATA 2.0 3Gb/s

• 2 USB 2.0 with PHY

• SEC- crypto acceleration

• DCE - Data Compression 17.5 Gbps

• PME – Pattern Matching to 10 Gbps

Coherency Fabric

Watchpoint
Cross
Trigger

Perf
Monitor

CoreNet
Trace

Aurora

PAMU PAMU Peripheral Access Mgmt Unit

Real Time Debug

PAMU

Queue

Mgr.

Buffer

Mgr.

Security
5.2

(XoR,

CRC)

DCE

1.0

Parse, Classify,

Distribute

S
A

T
A

2
.0

S
A

T
A

2
.0

HiGig/+ DCB

8-Lane 10GHz SERDES 8-Lane 8GHz SERDES

RMan P
C

Ie

P
C

Ie

P
C

Ie

P
C

Ie

s
R

IO

64-bit

DDR2/3

Memory

Controller

64-bit

DDR3/3L

Memory

Controller

512KB

Platform

Cache

s
R

IO

Security Fuse Processor

Security Monitor

IFC

Power Management

SDXC/eMMC

2x DUART

4x I2C

SPI, GPIO

2x USB2.0 + PHY
PME

2.1

8ch
DMA

8ch
DMA

Frame Manager

P
re

-f
e
tc

h

2MB Banked L2

Power™

e6500

D-Cache I-Cache

32 KB 32 KB

T1 T2

Power™

e6500

D-Cache I-Cache

32 KB 32 KB

T1 T2

Power™

e6500

D-Cache I-Cache

32 KB 32 KB

T1 T2

Power™

e6500

D-Cache I-Cache

32 KB 32 KB

T1 T2

8ch
DMA

4x
1 / 2.5 / 10G

4x
1 / 2.5G

Network IO

• Up to 25Gbps Simple PCD each direction

• 4x1/10 GE, 4x1 GE or 2.5 Gb/s SGMII

• XFI, 10 GBase-KR, XAUI, HiGig, HiGig+, SGMII, RGMII,

1000Base-KX

TM

External Use 43

T2080 RDB System

TM

External Use 44

Target Application: 20 Gb/s iNIC

• Well-balanced device for 20 Gb/s
bi-directional application:

− FMan moves about 25 Gb/s

− 3x DMA engines move about 20 Gb/s

− x4 Gen3 or x8 Gen2 PCIe moves
32 Gb/s

• SR-IOV allows virtual machines on
host to see a private iNIC

• 15.5 W power fits in 30 W slot-
provided power budget

• Improved PCIe Endpoint capabilities
support customization of Device ID,
Class Code, and Vendor ID. Driver
can be stored in Expansion ROM

• Offload accelerators for services
cards: 10 Gb/s IPSEC or Kasumi, 10
Gb/s pattern matching, 17.5 Gb/s
data compression

• PCIe card reference board available

T2080

PCIe EP

with SR-IOV

FMan

1
0

G

1
0

G

1
G

1

G

Data

ports

Mgmt

ports

U
S

B

U
S

B

USB

Debug,

code

upload

2133MT/s

DDR3/3L

x8 Gen2 or

x4 Gen3

TM

External Use 45

User Space Open vSwitch

Openflow

Agent

x86 Xeon Linux Platform

Hypervisor

T2/T4 +c290 iNIC

PF VF1 VF2 VF3 VFn

10G Eth

10G Eth

10G Eth

10G Eth

H/W Accel.Packet

Forwarding Engine

PCIe (SR_IOV) 128VF

* Can be external

VM0 VM1

Veth-port Veth-port

Intel DPDK Intel DPDK

Openflow

Controller*

L4-7

Apps

DCE

SEC

PME

1 2
4

3

Server with Freescale iNIC

T4 iNIC demo Traffic Flow
Enhanced L4-7 Functionality

• NFV/SDN/Firewall/ACL

• IPSEC

• TCP offload

• Data Compression

• Deep Packet Inspection

• Load Balancing

• OpenSSL + record offload

• Vendor defined applications

Benefits

• Offloading of x86 CPU to
increase aggregate with
application performance cost
effectively.

• Increase top end server
performance

• Scalable iNIC platform
performance T2080 to T4240.
Reusable software.

• Hardware acceleration for
Data Path, Pattern Matching,
Security and Decompression
/Compression, PKC/Record
offload.

TM

External Use 46

Freescale iNIC Performance Advantage

• Intel Xeon platforms with a standard NIC require 4 cores of the Xeon CPU to run

OVS (3 cores) and VMM (1 core).

• With a Freescale iNIC, 1 Xeon core continues running the VMM; the 3 cores

running OVS are offloaded to the Freescale CPU.

• Additionally Freescale processors contain network application oriented hardware

accelerators (security, compress/decompress, pattern matching) which accelerate

key iNIC use cases.

Openflow

Agent

X86 Xeon Linux

Platform

Hypervisor
P

F
VF1 VF2 VF3 VFn

Packet

Forwarding

Engine

Open

vSwitch

10G Eth

10G Eth

10G Eth

10G Eth

Openflo

w

Controlle

r*

VM0 VM1

Veth-port Veth-port

Intel

DPDK

Intel

DPDK

User Space Open vSwitch

Openflow

Agent

X86 Xeon Linux Platform

Hypervisor

T2/T4 +c290 iNIC

P

F
VF1 VF2 VF3 VFn

10G Eth

10G Eth

10G Eth

10G Eth

1 2
4

3

H/W

Accel.Packet

Forwarding

Engine

PCIe (SR_IOV) 128VF

VM0 VM1

Veth-port Veth-port

Intel

DPDK

Intel

DPDK

Openflo

w

Controlle

r*
3 Xeon cores

freed up

TM

External Use 47

Q&A

TM

© 2015 Freescale Semiconductor, Inc. | External Use

www.Freescale.com

http://www.freescale.com/
https://twitter.com/Freescale
https://twitter.com/Freescale
https://www.facebook.com/freescale
https://www.facebook.com/freescale

