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Session Introduction 

• This session explores the virtualization solutions available for 

on QorIQ communication processors  

 

• After completing this session you will have become familiar with :  

− General virtualization principles and use cases 

− The features, benefits and some details of KVM/QEMU, Linux® 

containers and libvirt implementations as supplied in the QorIQ Linux 

SDK 

− Architecture specific details of Power Architecture and ARM® based 

platforms as applicable to virtualization use cases 



TM 

External Use       3 

Introduction 
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Traditional System Model 

• Single OS runs on a single or multi-core hardware system 
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Multi-processing Usage Models 

SMP 

• SMP = Symmetrical Multi-processing 

− multi-processor homogeneous computer architecture 

− where two or more identical  

processors are connected to globally shared main 

memory and I/O 

− processors could be separate devices, multiple cores 

in a single device or a mix 

− a single OS instance runs on and manages the 

cores, with shared memory, I/O and interrupt 

resources 

− Each processor can run independent processes and 

threads 

− Any idle processor can be assigned any task  
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Multi-processing Usage Models 

AMP 

• AMP =  Asymmetrical Multi-processing 

− Individual CPUs are dedicated to particular tasks, like running an OS 

− different software instances run on separate CPUs 

e.g. 2 copies of Linux image are loaded at different physical address 

locations 

 

• Both CPUs must cooperate to share the resources 

− Neither OS can own the whole system 

− I/O and interrupts are separated 

− Static configuration of resources 
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What is Virtualization ? 

• Virtualization – an abstraction layer that enables running multiple 

operating systems on a single system, implemented using 

hardware and software technologies 

 

 

 

 

 

 

 

• A hypervisor is a software component that creates and manages 

virtual machines which can run operating systems. 
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Types of Virtualization 

• Full Virtualization:  

− Virtual machine behaves identically to physical hardware 

− OS code unchanged  

− Advantage: no changes to the GOS 

− Disadvantage: can be lower in over-all performance 

− Common examples: KVM, VirtualBox 
 

• Para-virtualization: 

− Guest is hypervisor-aware and uses defined API for some services 

− Guest OS is modified  

− Advantage: potentially better performance 

− Disadvantage: modifications to Guest OS (e.g. drivers) 

− Examples: Freescale Embedded HV 



TM 

External Use       9 

Flexibility and Scalability 
 

Reliability and Protection 
 

 

Cost Reduction 
 

 

Virtualization Use Cases 

HW 

OS 

App 

HW 

OS 

App 

Multicore  

HW 

OS 

App 

OS 

App 

Multicore  

HW 

OS 

Data  

Plane 

OS 

CTRL  

Plane 

Split Workload 

Multicore  

HW 

OS 

App 

OS 

App 

Multicore  

HW 

OS 

App 

OS 

App 

Multicore  

HW 

OS 

App 

OS 

App 

Sandboxing 

Failover 

Consolidation 

Dynamic Resource 

Management 

Multicore  

HW 

OS 

App 

OS 

App 

Multicore  

HW 

OS 

App 

OS 

App 



TM 

External Use       10 

Virtualization Use Cases – Cost Reduction 

• Consolidation : 

− redeploy multiple discrete systems/domains  

onto a single multi-core processor 

− Benefits: 

Cost effective : bill-of-material, power 

Preserve investment : software re-use 

 Improved hardware utilization 

Flexibility 
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Virtualization Use Cases – Reliability & Protection 

• Sandboxing : 

− Add untrusted software to a system,  

e.g. operator applications 

− Run GPL based software in isolation 

− Run test software safely 

− Isolate security-sensitive tasks :  

access rights control,  

rule definitions, key management, … 

 

• High availability  

− active/standby configuration  

without additional hardware 
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Virtualization Use Cases – Flexibility & Scalability  

• Run legacy software / OS on Linux 

• Add functionality to existing system by dropping in a VM 

• Use different versions of the Linux kernel 

• Better resource management 

− Allocation of physical CPUs / control CPU load 

− Create/destroy VMs as needed 

• Maps well to split workload 

− e.g. control plane, data plane 

• In-service upgrade 
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Virtualization & Hypervisors 

• Virtualization – Hardware and software technologies that provide an 

abstraction layer that enables running multiple operating systems 

on a single computer system 

• Hypervisor - Software component that creates and manages virtual 

machines which can run guest operating systems 

 

• Hypervisor runs “bare metal” 
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Virtualization & Partitioning 
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Para-Virtualized 
•Driver in Hypervisor 

•Modified Drivers in 

Guest 
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Multi-OS Systems 

Enterprise/Datacenter 
servers, cloud 

computing 
Mobile 

Aerospace, 
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Virtualization Technologies for QorIQ 
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Virtualization Technologies for QorIQ 

OS Virtualization (LXC) 

 

• Low Overhead 

• Isolation and Resource Control 

in Linux ® 

• Decreased Isolation (Kernel 

sharing) 
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Hypervisor 

• Lightweight Hypervisor 

• Resource Partitioning 

• Para-Virtualization 
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• 3rd Party OSs  
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• Linux ® Hypervisor 

• Resource Virtualization 
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Virtualization Technologies for QorIQ 

• Linux-based 

• Delivered with the QorIQ Linux SDK for Power and ARMv7 

architecture based products (ARMv8 : planned 2015) 

Linux 

LXC KVM/QEMU libvirt 
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Freescale Embedded Hypervisor – Overview 

• Lightweight hypervisor offering partitioning 

and isolation 
 

• Only one OS per core 
 

• Combination of full virtualization and para-

virtualization 

 

• OS has direct control on high speed 

peripherals 

 

• Provides good performance and minimal 

changes to Guest OS 
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KVM / QEMU – Overview 

• Open source virtualization technology 

based on the Linux kernel 

• Boot operating systems in virtual 

machines alongside Linux applications 

• KVM is a Linux kernel module 

• QEMU is a user space emulator that 

uses KVM for acceleration 

• Run virtual machines alongside Linux 

applications 

• No or minimal OS changes required 

• Virtual I/O capabilities : virtual disk, 

network interfaces, serial, etc. 

• Direct/pass thru I/O – assign I/O 

devices to VMs 
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KVM / QEMU – Details 

• QEMU is a user space emulator that uses KVM for acceleration 

− Uses dedicated threads for vcpus and I/O 

− KVM leverages hardware virtualization to run guest with higher privileges 

− MPIC virtual chip emulation in kernel 

− I/O 

 Provides dedicated virtio I/O devices and standard drivers in Linux kernel 

 Uses vfio Linux framework to direct assign physical PCI devices 

 Direct notifications between I/O threads and KVM using eventfds 

 Vhost provides virtio emulation and I/O thread and in kernel 

 Multi-queue virtio devices connected to multi-queue tap devices 

− Provides services for console, debug, reset, watchdog, etc. 
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KVM / QEMU 

• QEMU provides … 

− Virtual machine setup and initialization 

− Memory allocation 

− Virtual I/O services 

− Debug stub 
 

• KVM provides … 

− Isolation– using hardware mechanisms and virt extensions 

− Virtual CPU services 

− API used by QEMU 
 

• Linux Kernel provides … 

− Scheduling 

− Memory management 
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KVM / QEMU 
Virtual CPUs 

• Each vcpu is a Linux thread 

− created by QEMU 

• Full capabilities of the Linux 

scheduler can be used to 

manage VCPUs/threads 

− CPU affinity 

− priority 

− isolcpus 

− LXC 
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KVM / QEMU 
Debugging 

• Debug stub in QEMU 

allows guest debugging 

using GDB 

• QEMU monitor shell allows 

examining VM state 
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KVM Status 

• KVM on QorIQ P-series and T-series 

− available since QorIQ SDK 1.2 (2012) 

− upstreamed 

• KVM on QorIQ Layerscape 1 

− 1st release in QorIQ SDK 1.7 (dec-2014) 

• KVM on ARM is available now in upstream Linux since : 

− 32-bit : kernel 3.9 

− 64-bit : kernel 3.11 

• KVM and QEMU have an active open source community 

developing the technology– led by ARM and Linaro 
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I/O and KVM 
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KVM – I/O Pass Through of PCI Devices 

• Assign a physical PCI device to a KVM virtual machine 

• Device becomes a private resource of the VM 

• OS gets direct access to device registers 

• DMA is direct to OS buffers 

• QEMU mediates all interrupts from the PCI device 

• QEMU presents PCI device on a virtual PCI bus 
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KVM – I/O Pass Through of Platform Devices 

• Assign a physical SoC device (e.g. UART) to a VM 

• Device becomes a private resource of the VM 

• OS gets direct access to device registers 

• DMA is direct to OS buffers 

• Guest sees standard device node in its device tree 

• QEMU mediates all interrupts from the device 
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Pass Through of USB Devices 

• Assign a physical USB device or port to a KVM virtual machine 

• QEMU mediates device access 

• Guest sees a virtual USB controller on a virtual PCI bus 
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Virtio Networking 

• Enables sharing of host network interfaces 

• Host : - Bridge (virtual switch) is connected to physical host interface 

 - QEMU uses tun/tap device connected to the bridge 

• Guest : - Sees a private virtio network device on PCI bus 

 - Virtio network driver is needed in guest  
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Virtio Block 

• Give each virtual machine a private storage device 

• Virtual disk could be single binary image on host file system or 

logical volume on the host’s disk 

• Guest sees a private “virtio” network device on PCI bus 

• Virtio block driver is needed in guest 
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Linux Containers 
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Linux Containers (LXC) – Overview 

• OS level virtualization 

• Guest kernel is the same as the Host 

kernel, but OS appears isolated 

• Provides low overhead, lightweight, 

secure partitioning of Linux 

applications into different domains 

• Can control resource utilization of 

domains– CPU, memory, I/O 

bandwidth 

• LinuX Containers is based on kernel 

components (cgroups, namespaces) 

and user-space tools (LXC) 

• KVM virtual machines can be  

run in containers 
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Libvirt Overview 
http://libvirt.org/ 

• A toolkit to interact with the virtualization capabilities of OS-es and 

hypervisors 

• Goal : provide common and stable layer sufficient to securely 

manage domains on a node, possibly remote 

• Has drivers for KVM/QEMU and Linux containers 

• Many management applications supported 

 

http://libvirt.org/
http://libvirt.org/
http://libvirt.org/
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Libvirt Overview 
http://libvirt.org/ 
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Virtualization Hardware Comparison 
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Comparison of Processor Virtualization Capabilities 

• ARM, Power, x68 architectures all support similar mechanisms to 

support virtualization. 

 
Capabilities ARM Power x86 

3rd privilege level Yes Yes Yes 

Extended Address space Yes Yes Yes 

Hardware guest physical address  

translation (2-stage) 

Yes Yes 

(LRAT) 

Yes 

(EPT/NPT) 

Direct guest interrupt management Yes Yes Yes 

(x2 APIC) 

IOMMU Yes 

(SMMU) 

Yes 

(PAMU) 

Yes 

(VT-d) 
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Virtualization Features in QorIQ Silicon 

• CPU 

− e500mc / e5500 

− 3rd privilege level 

− Partition ID / extended virtual address space 

− Key registers duplicated for guests 

− Direct system calls 

− Direct external hardware interrupts to guest 

− LRAT– gphys -> phys translation in hardware 

• SoC 

− IOMMU (PAMU) provides isolation from I/O device memory accesses 



TM 

External Use       40 

ARM Hardware Virtualization Extensions 

• A7/A15/A53/A57 Core 

− New Hypervisor mode 

Privileged operations trap to hypervisor 

Banked registers 

− Two stage address translation 

Virtual address (VA) -> Intermediate physical (IPA) 

 Intermediate (IPA)  -> Physical (PA) 

− Direct system calls 

− Guest timer in core 

− Guest GIC (interrupt controller) interface for ACK, EOI 

 

• SoC 

− IOMMU (SMMU) provides isolation from I/O device memory accesses 
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Networking Virtualization 

T-Series 10 GbE iNIC 
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QorIQ T2080 Power Optimized Multicore Solution 

Processor 

• 4x e6500, 64b, 1.2 - 1.8 GHz 

• Dual threaded, with 128 b AltiVec 

• 2MB shared L2; 256 KB per thread 

Memory Subsystem 

• 512 KB Platform Cache w/ECC 

• 1x DDR3/3L Controller up to 2.1 
GHz 

• Up to 1 TB addressability  

− 40-bit physical addressing 

• HW Data Prefetching 

Switch Fabric 

High Speed Serial IO 

• 4x PCIe Controllers: Gen1.1/2.0/3.0 

− 1 with SR-IOV support 

− x8 Gen2 

• 2x sRIO Controller 

− Type 9 and 11 messaging 

− Interworking to DPAA via RMan 

• 2 SATA 2.0 3Gb/s 

• 2 USB 2.0 with PHY 

• SEC-  crypto acceleration 

• DCE - Data Compression 17.5 Gbps 

• PME – Pattern Matching to 10 Gbps 
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• Up to 25Gbps Simple PCD each direction 

• 4x1/10 GE, 4x1 GE or 2.5 Gb/s SGMII 

• XFI, 10 GBase-KR, XAUI, HiGig, HiGig+, SGMII, RGMII, 

1000Base-KX 
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T2080 RDB System 
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Target Application: 20 Gb/s iNIC 

• Well-balanced device for 20 Gb/s  
bi-directional application: 

− FMan moves about 25 Gb/s 

− 3x DMA engines move about 20 Gb/s 

− x4 Gen3 or x8 Gen2 PCIe moves         
32 Gb/s 

• SR-IOV allows virtual machines on 
host to see a private iNIC 

• 15.5 W power fits in 30 W slot-
provided power budget 

• Improved PCIe Endpoint capabilities 
support customization of Device ID, 
Class Code, and Vendor ID. Driver 
can be stored in Expansion ROM 

• Offload accelerators for services 
cards: 10 Gb/s IPSEC or Kasumi, 10 
Gb/s pattern matching, 17.5 Gb/s 
data compression  

• PCIe card reference board available  
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User Space Open vSwitch 
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Server with Freescale iNIC 

T4 iNIC demo Traffic Flow 
Enhanced L4-7 Functionality 

• NFV/SDN/Firewall/ACL 

• IPSEC 

• TCP offload 

• Data Compression 

• Deep Packet Inspection 

• Load Balancing 

• OpenSSL + record offload 

• Vendor defined applications 

 

Benefits 

• Offloading of x86 CPU to 
increase aggregate  with 
application performance cost 
effectively.  

• Increase top end server 
performance  

• Scalable iNIC platform 
performance  T2080 to T4240.  
Reusable software.  

• Hardware acceleration for 
Data Path, Pattern Matching, 
Security and Decompression 
/Compression, PKC/Record 
offload.  
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Freescale iNIC Performance Advantage  

• Intel Xeon platforms with a standard NIC require 4 cores of the Xeon CPU to run 

OVS (3 cores) and VMM (1 core). 

• With a Freescale iNIC, 1 Xeon core continues running the VMM; the 3 cores 

running OVS are offloaded to the Freescale CPU.   

• Additionally Freescale processors contain network application oriented hardware 

accelerators (security, compress/decompress, pattern matching ) which accelerate 

key iNIC use cases.  
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Q&A 
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