MCUX Flashloader Reference Manual

Rev. 2, 01/2018

h
V"

MCUX Flashloader Reference Manual, Rev. 2, 01/2018

NXP Semiconductors

Contents
Section number Title Page

Chapter 1

Introduction

O O U1 L3 (o Ta Al Uot 5 o) 1 VOO TSRS S PSRRUI 7
L2 TOIMINOIOZY ...ttt ettt et b et b et bttt e b e e bt e bt s bt e st s bt et e sheea bt eb e enb e eb e et e e bt e bt eat e sbe et e sbeenaenaeen 7
1.3 BIOCK QIAZTAIMN. ¢...tteiiieiiieiie ettt ettt ettt ettt et e s et e bt e ea bt e bt e e ab e eab e e s abeeabtesab e e bt e eabeeabeeeabeeabeesabeenbeesuneenseenaees 8
1.4 FRAtUIES SUPPOITEA. ... ecueieieiietiete ettt ettt ettt e e et e et e e tte et sa e e bt eaee bt eme e beem s e bt em b e s e emtees e e bt eaee bt emteabeemeesbeensesneensenanans 8
1.5 COMPONENLS SUPPOTEA. . ..c.eeimreriietiriietieitiete ettt ettt ettt et st e et s b e eatesb e es e ebt et e eb e e bt eaeesbeeaeesbeenaesbeenbesbeenbeebsebeesaenneenee 9

Chapter 2

Functional description

2.1 TNEOAUCTION. ...ttt ettt ettt et e b bt bbb bbb e ettt et eb et e s 11
B (5511107 o 8 112 o OO OO OO PSP PTUP PR 11
2.3 SEATT-UP PIOCESS . eeuteeurtieuttetterittentteeteestteeuteeabeesabe e st eesateeabeeeatee bt e eabeeb et sabe e bt e sateesbeeeabe e bt e eabe e beesabee bt e sateesbeeeateenbaeeaseenseeas 11

Chapter 3

Kinetis bootloader protocol

T8 B 113 (T4 L1 13 (o) FO OO OO OSSPSR PRSP 13
3.2 Command With NO data PRASE........ccuirtiriiiiiiiieeee ettt st ettt b e st b e et b et sb et sbe ettt nae et naes 13
3.3 Command with INCOMING AALA PRASE.ceecutiitiiiiieiie ittt ettt et e st e sbt e et e e sbee s bt e satesabeessbesabeesbbeenseenaees 14
3.4 Command with OutZOINg data PRASE.......cc.eeiiiiieieii et ettt et e st et e s bt et e sae e b sbe et e e st et eneenteene 15

Chapter 4

Bootloader packet types

L B U111 4016 101110) AT OO 19
4.2 PING PACKET. ...ttt ettt et h e bt h bt h e bt e at e h et h e et e b e bbb e et b it b et sbe e eaee 19
4.3 PING TESPONSE PACKEL. ...ttt ettt ettt et e st e et e e sat e e bt e eab e e bt e sabeeabeesabe e bt essbeebaesabeenbeesaneenbeens 20
4.4 FLaMING PACKET. .. ceutieuietteiieite ettt ettt ettt ettt et e e et e e st e s bt e s ee e bt emt e bt easeeb e em e e e bt emtees e em bt ese et e emeeebeentesbeeneeabeenseebeenneaneans 21
4.5 CRCIO QIOTIERMIL c.cutiiiiiiiititieit ettt ettt bt et b et e bt e st e bt et s bt e et s bt e bt satenbeesbenbeebbenbeesnesbeeneene 22
4.6 COMMEANGA PACKEL.eouiiiitiiiiieiie ettt et ettt e b e e e at e et e e s at e e bt e sbteeabeeeb b e eabeebeesa bt e s st e eabeesbbeenbe e beesabeebeenn 23
4T RESPONSE PACKEL. ... eeeutieiietieiiet ettt ettt ettt ettt et e st e et e s bt et e eb e ea b e es e et e e et e et e emeesaeemtesaeembeeseenbeeseenbees s e bt ensesseeneeseeenneenee 25

Chapter 5

MCUX Flashloader Reference Manual, Rev. 2, 01/2018

NXP Semiconductors 3

Section number Title Page

Kinetis bootloader command API

ST B 13 (e Ta L Te1 5 o 1 OO SORIPPO 29
5.2 GetProperty COMMANM.......cceoiiriiiiriiiteite ettt ettt ettt ettt et ettt e b e bt e s bt ea e st e ea bt bt e st e ebe e bt ebeesbeebtesaeemtesbeesaesbeennenbeens 29
5.3 SetProperty COMIMANG........coouiiiiiiiieiieeitesit ettt ettt ettt et e e et e e bt e e ab e e bt e sab e e bt e sab e e bt e saeeeabtesabeeabeesabeenseesateensaenanes 31
5.4 FIashErase All COMMAN........cccuiiuiiiiiiiieeiiete ettt ettt ettt et eae e bt e ae et e et e sbeeseeebeemseebeenteebeenbeeseenbeeneeneeeneenaeeneas 33
5.5 FlashEraseRegion COMMANM..........cocuiiiiiiriiriiniiiiitete ettt ettt ettt ettt be st be e st s b e ea e sb e et sbe et e sbee e eaee 34
5.6 FlashErase AllUnsecure COMMANQ.........c.ccoioiiiiiiiiiiiiiiiiiiie s 35
5.7 ReadMemOry COMMANG.couteitirieitiiieteetiet ettt et et e e et e et e e at e bt saee bt e st e beasee bt eaee bt emae st enteeseeneeeseenseeneenbeemtenaeensennean 37
5.8 WIiteMemOry COMMANA.couiiiiriiriintieitieieete ettt ettt ettt ettt b ettt et e bt e st e bt et s bt e bt sbeesbeeatenbeesbesbeeabenbeesnesbeentene 39
5.9 FilIMemMOTY COMIMANM.ccc.eiiiiiiiiiiitetieette et ee ettt ettt e ettt e bt e ettt eabeesab e e bt e s abe e bt e eateeabeeeabeeabeesabeenstesabeenseesaseenbaesabeenbeenn 41
5.10 EXECULE COMMEANG.cuietiiiietieiiett ettt ettt ettt e ste st e bt e st e bt eae e bt es e e ebeemteebeemeeestenbeeaeebeeate bt emtenbeemseabeenseabeenseeneentens 43
S.1T Call COMMEANT......cuiiiiiiiiiiiiiiei ettt ettt et et b e b bbb st et b e e e et et ene st eaeeuea 43
5.12 RESEE COMIMANT.ouiiiiiiiiiiiiiiie e e a b et a e bbb b b s a b aens 44
5.13 eFuseProgramONnCe COMMANG.ccueiuiiitieiitieteetiete ettt et e sttt e bt et e st e e st e sbees e b e enteeteenbeeseenbeesee bt emeesaeeneesbeenseabeansenseans 45
5.14 eFuseReadOnce COmMMAN..........ccocouiiiuiiiiiiiiiiiiiiiiieetcete ettt ettt ettt sb e 47
5.15 Configure MemoOTy COMMANG.cc.uerutertiiriieniteettertte et et e et estte et e esbeesabe e atesabeesatesate e btesaseeabeesabeebeesabeenseesaseenseesnseense 48
5.16 ReceiVeSBIIIE COMMEANT.......cc.eiiiiiiiiiiietteet ettt ettt et e bt st e s bt e et e bt emt e e b e e st e eh e et e esee bt eaeesbeemeesaeeneennean 49
Chapter 6
Supported peripherals

0.1 TIEEOAUCTION. ...ttt ettt ettt a et e et e et e et e h e et e e et e bt s et e bt em e e ebeea b e bt emteebeenteeheeneeesee st eneenbeemtesaeensennean 51
6.2 UART PEIIPRETaAL....c..coiiiiiiiiiiiieitetet ettt ettt b et b et b et ebe et e bt e bt ebtesaeeaaesbeesaesbeennenbeens 51

6.2.1 Performance Numbers for UARTccccciiiiiiiiiiiiiiic s 53
6.3 USB HID PeriPREral.........coouiiiiiiiieiiiietiee ettt ettt ettt h et h et e b et e ea e e bt esee s bt emeeeaeemeesbeenaesbeansesseans 55

0.3.1 DEVICE AESCIIPLOT. c...euveitiieeiiinitete sttt ettt ettt ettt et s b et s bttt s bt e bt s bt e bt sbt e bt e bt et e eb b e bt eseesbe et e sbeentesbeenaesueen 55

0.3.2 ENAPOINTS.c...eiutieiieeite ittt ettt st ettt et e b e e et e bt e e bt e bt e sa bt e bt e eab e e bt e eab e e bt e ea bt e bt e eabeeshbeeabeenbbeenbeebee s 57

0.3.3 HIDD T@POITS. ... eeuteieteteeiiet ettt ettt ettt et et ettt e et sae et e eae e bt es e e bt ea s et e eme e st em e e eheemeeeseenseeaeenbeeseebeemtenbeensenbeeneenseans 57
6.4 USB PerIPhEral......c.eoiiiiiiiiiiiiee ettt a ettt a e et sb e et b e b et s h et b ettt ettt nae e 59

0.4, 1 DEVICE AESCIIPLOT..eeuutieuiieiieitie ettt et ettt ee et e bt e bt e et e e bt e s bt e bt e eab e e bt e eabe e bt e sabe e bt e sabeesbbeeabeenbbeenbeenbeesnbeenseesases 59

0.4.2 ENAPOINLS. ...ttt ettt ettt e a et e e e e st e e et e bt ee e e bt ea e e bt em b e ekt en b e ekt en bt eh e et e e et e bt ea e e bt ente bt entenbeentenbeens 63

MCUX Flashloader Reference Manual, Rev. 2, 01/2018

4 NXP Semiconductors

Section number Title Page
Chapter 7
Peripheral interfaces
7% B U1 15 (e Yo L Te1 5 e 1 OO OSSO OO RSP SURR SRR 65
7.2 ADSract CONrol INTEITACE.c..coiiuiiiiiiiiiiiiiii ettt et s s 66
7.3 ADSITACE DYLE INTEITACE. ...eeueieiiiieiieiiieet ettt sttt e s et e b e e e at e e bt e sabeeabeesabeeabeesabe e bt esabeenbeesnseenbeesas 67
T4 ADSIIACE PACKEE TNECITACE. ... e eueetieiiitt ettt ettt et e e bt et e bt et e s bt eatesbeembeebeembeebeenbeebee b e eseenseeneeneeenee 67
7.5 Framing PACKEUIZET. ... cueeuiiiieiiiitieitiete ettt ettt at et e a e sb e e st sa e et e s bt et e sbe et e e be e bt eb e et e et e et e ebte bt ebeenaeenee 68
T.6 USB HID PACKEUZETcciuteiiieiiiieiteeitt ettt ettt ettt e b e et b e st e e s et e e bt e sabe e bt e sab e e bt e sabeeabtesabeenseesnbeenbeesaneennes 68
7T USB HID PACKETZETc..eeuteiiieieeiieite ettt ettt ettt et e sttt e bt s e b e e st e bt es e bt em b e ebeem b e eaeenbeeaee bt emtenaeeneesbeensesbeansenseans 68
7.8 COMMANA/AALA PTOCESSOT ... eevteuiiieenieiiteteeit et ettt ettt et et et sbtestesbeestesbeesbeebtenbeeas e bt eete bt estesbe e st e ebeenbesbeenbeeatenbeensenbeas 69
Chapter 8
External Memory Support

Bl TNHIOUCTION. ...ttt ettt et b bt s st b e s b e st ettt et et eae e bt e bt sa e b b saesn b ene 71
8.2 Serial NOR Flash through FIEXSPL.........c.cooiiiiiiiiiie et ettt ettt et et st e aeesanes 71
8.2.1 FlexSPI NOR Configuration BIOCK........cc.oeiiiiiiiiiiiiiieie ettt sttt st 72
8.2.2 FlexSPI NOR Configuration Option BIOCK........cc.coiiiiiiiiiiiiiiiiiiiiiincce et 76
8.2.2.1 Typical use cases for FlexSPI NOR Configuration BIOCK..........cccccovviiiniiiiiiniiiiiiciieeeeeseeeee 78
8.2.2.2 Program Serial NOR Flash device using FlexSPI NOR Configuration Option...........ccccceveenereenuennen. 78
8.3 Serial NAND Flash through FIEXSPL......c..cooiiiiiiiiiiiee ettt ettt et st s 79
8.3.1 FlexSPI NAND Firmware Configuration BIOCK(FCB)........c.coooiiiiiiiiiiiiiiiinieeeeee e 79
8.3.2 FlexSPI NAND Configuration BLOCK..........ccoiuiiiiiiiiiiieie ettt 80
8.3.3 FlexSPI NAND FCB 0OPtiON DIOCK.......cotiriiiiiiiiiiiiiteeet ettt et s 82
8.3.4 FlexSPI NAND Configuration Option BIOCK.......ccc.coiiiiiiiiiiiiiiieieee et 83
8.3.5 Example usage With FIaShlOAder..........coeiiiiiiiiiieie ettt st 84
8.4 SD/eMMC through USDHCc.couioiiiiiiiiiieieiit ettt ettt ettt ettt b et esennens 85
8.4.1 SD Configuration BIOCK.......cc.coiiiiiiiiiiiiie ettt sttt ettt e et e bt s b e bt e sbeesaeeeateen 85
8.4.2 Example usage With FIaShlOAder..........coiiiiiiiiiiiieiee ettt ettt s 87
8.4.3 eMMC Configuration BIOCK.......cceioiiiiiiiiiiiiiicnte ettt sttt sttt 88
8.4.4 Example usage With FlaShlOader.......ccc.eiiiiiiiiiiiiiiiieieeeee ettt ettt e n 91

MCUX Flashloader Reference Manual, Rev. 2, 01/2018

NXP Semiconductors 5

Section number Title Page
Chapter 9
Security Utilities
0.1 INETOUCTION. ..ttt ettt sttt sttt ettt e st eh e bt s bt st b b sa et e e s e e essemtenteueebeebeebeebesbesaessenennens 93
9.2 Image Encryption and Programming............ccccecieriiiiniiiiniinieiieeeteee ettt ettt sttt sttt 93
9.2.1 Example to generate encrypted image and program to Flash...........c..ccccooiiiiiniiiiniiicceces 94
9.3 KeyBlob Generation and Programming............coccoeeuerierienieienienieieieteteieeie sttt sttt s ettt eve b b saeeae e nee 95
0.3.1 KEYBIOD ...ttt 95
9.3.2 KeyBlob Option BIOCK.........coiiiiiiiiiiiiieetee ettt sttt st et e e bt e st e bt e s bt e bt e sateenbeesateeabes 96
9.3.3 Example to generate and program KeyBlob...........ccccciiiiiiiiiiniiiiicee e 97
Chapter 10
Appendix A: status and error codes
Chapter 11
Appendix B: GetProperty and SetProperty commands
Chapter 12
Revision history
12,1 REVISION HISTOTY ..euttiuiiiieiiiieiie ettt ettt et sttt a e s bt b e bt e bt e bt e bt eat e bt ea et e et e ebe et e sbee et sbeenaesneen 109

MCUX Flashloader Reference Manual, Rev. 2, 01/2018

NXP Semiconductors

Chapter 1
Introduction

1.1 Introduction

The Kinetis bootloader is a configurable flash programming utility that operates over a
serial connection on Kinetis MCUs. It enables quick and easy programming of Kinetis
MCUs through the entire product life cycle, including application development, final
product manufacturing, and beyond. The bootloader is delivered in two ways. The
Kinetis bootloader is provided as full source code that is highly configurable. The
bootloader is also preprogrammed by Freescale into ROM or flash on select Kinetis
devices. Host-side command line and GUI tools are available to communicate with the
bootloader. Users can utilize host tools to upload/download application code via the
bootloader.

1.2 Terminology

target

The device running the bootloader firmware (aka the ROM).
host

The device sending commands to the target for execution.
source

The initiator of a communications sequence. For example, the sender of a command or
data packet.

destination
Receiver of a command or data packet.

incoming

MCUX Flashloader Reference Manual, Rev. 2, 01/2018

NXP Semiconductors 7

Block diagram

From host to target.
outgoing

From target to host.

1.3 Block diagram

This block diagram describes the overall structure of the Kinetis bootloader.

Startup and Initialization |

h

Active Peripheral Detection

CRC Check

Command Handlers
Flash erase all
Flash erase region
Read memory

Write memory
Fill memaory
Execute
Get property
Set property
r i Reset
ST O R ® Flash security disable
12C s Command phase state machine etc
=
SPI)
£
CAN o
UART B
=
USB HID £
USB MSC 2 v
CB0TFS Flash Driver

Serial QuadSPI Flash Driver

Figure 1-1. Block diagram

1.4 Features supported

Here are some of the features supported by the Kinetis bootloader:

* Supports UART, 12C, SPI, CAN, and USB peripheral interfaces.
* Automatic detection of the active peripheral.

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
8 NXP Semiconductors

L __4
Chapter 1 Introduction
* Ability to disable any peripheral.
» UART peripheral implements autobaud.
* Common packet-based protocol for all peripherals.
* Packet error detection and retransmit.
* Flash-resident configuration options.
e Fully supports flash security, including ability to mass erase or unlock security via
the backdoor key.
 Protection of RAM used by the bootloader while it is running.
* Provides command to read properties of the device, such as Flash and RAM size.
» Multiple options for executing the bootloader either at system start-up or under
application control at runtime.
 Support for internal flash, serial QuadSPI and other external memories.
* Support for encrypted image download.

1.5 Components supported

Components for the bootloader firmware:

* Startup code (clocking, pinmux, etc.)
e Command phase state machine
e Command handlers
* GenericResponse
* FlashEraseAll
* FlashEraseRegion
* ReadMemory
* ReadMemoryResponse
* WriteMemory
 FillMemory
* GetProperty
* GetPropertyResponse
* Execute
 Call
* Reset
» SetProperty
* FlashProgramOnce/EfuseProgramOnce
* FlashReadOnce/EfuseReadOnce
* FlashReadOnceResponse
* ConfigureQuadSPI
e ConfigureMemory
» ReliableUpdate

MCUX Flashloader Reference Manual, Rev. 2, 01/2018

NXP Semiconductors 9

A ————
Components supported
» SB file state machine
* Encrypted image support (AES-128)
 Packet interface
* Framing packetizer
* Command/data packet processor

* Memory interface
 Abstract interface
* FlexSPI NOR Memory Interface
e FlexSPI NAND Memory Interface
 SEMC NOR Memory Interface
« SEMC NAND Memory Interface
e SD Card Memory Interface
* eMMC Memory Interface

* Peripheral drivers
e UART
e Auto-baud detector
e USB device
e USB controller driver
e USB framework
e USB HID class

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
10 NXP Semiconductors

Chapter 2
Functional description

2.1 Introduction

The following subsections describe the Kinetis bootloader functionality.

2.2 Memory map

See the Kinetis bootloader chapter of the reference manual of the particular SoC for the
ROM and RAM memory map used by the bootloader.

2.3 Start-up process

It is important to note that the startup process for bootloader in ROM, RAM (flashloader),
and flash (flash-resident) are slightly different. See the chip-specific reference manual for
understanding the startup process for the ROM bootloader and flashloader.

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
NXP Semiconductors 11

Start-up process

4{ Shutdown all Peripherals Jump to user application J

&

—_—

Enter bootloader

—_— Iz Timeout
v Check enabled
e and has Timeout
Init hardware ocourred?
—
ki
—_—
Load user-
config data Was start
S A byte [0x54)
received on
¥ CANR?
—
Configure clocks
—
¥

Was start
byte (0x5A)
received on
5PIn?

Init Flash, Property, Ma

and Memory
interfaces

Init UARTR,
CAMn, S8In, 12Cn

Was start

¥

p
hw:a_lﬂxSA] Shutdown unused

received on Feripherals

12Cn? -

Enter bootloader

state machine

Was a Ping
packet

received on
UARTR?

I= the user
application valid?

Enzble Timeout Chack
and enable Timeout
valus

Disable Timeout
detection

Figure 2-1. Kinetis bootloader start-up flowchart

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
12 NXP Semiconductors

Chapter 3
Kinetis bootloader protocol

3.1 Introduction

This section explains the general protocol for the packet transfers between the host and
the Kinetis bootloader. The description includes the transfer of packets for different
transactions, such as commands with no data phase and commands with incoming or
outgoing data phase. The next section describes various packet types used in a
transaction.

Each command sent from the host is replied to with a response command.
Commands may include an optional data phase.

* [If the data phase is incoming (from the host to Kinetis bootloader), it is part of the
original command.

* If the data phase is outgoing (from Kinetis bootloader to host), it is part of the
response command.

3.2 Command with no data phase

NOTE
In these diagrams, the Ack sent in response to a Command or
Data packet can arrive at any time before, during, or after the
Command/Data packet has processed.

Command with no data phase
The protocol for a command with no data phase contains:

e Command packet (from host)
* Generic response command packet (to host)

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
NXP Semiconductors 13

Command with incoming data phase

Host Target

Command

Figure 3-1. Command with no data phase

3.3 Command with incoming data phase

The protocol for a command with incoming data phase contains:

* Command packet (from host)(kCommandFlag_HasDataPhase set)
* Generic response command packet (to host)

* Incoming data packets (from host)

* Generic response command packet (to host)

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
14 NXP Semiconductors

4
Chapter 3 Kinetis bootloader protocol

Host Targat
Command
ACK -
,‘ _______________________
Process command
Initial Response
I ACK
_______________________ +
Data packet
Process data
ACK
+ _______________________
| |
Final data packet
Process data
ACK
.‘ _______________________
Final Response
ACK
_______________________ _-.

Figure 3-2. Command with incoming data phase
Notes

* The host may not send any further packets while it is waiting for the response to a
command.

» The data phase is aborted if the Generic Response packet prior to the start of the data
phase does not have a status of kStatus_Success.

* Data phases may be aborted by the receiving side by sending the final Generic
Response early with a status of kStatus_AbortDataPhase. The host may abort the
data phase early by sending a zero-length data packet.

» The final Generic Response packet sent after the data phase includes the status for
the entire operation.

3.4 Command with outgoing data phase

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
NXP Semiconductors 15

Command with outgoing data phase

The protocol for a command with an outgoing data phase contains:

e Command packet (from host)

* ReadMemory Response command packet (to host)(kCommandFlag_HasDataPhase
set)

* Outgoing data packets (to host)

* Generic response command packet (to host)

Host Target

Command

Process command

Initial Response

Final dala packet

Figure 3-3. Command with outgoing data phase

Note

» The data phase is considered part of the response command for the outgoing data
phase sequence.

e The host may not send any further packets while the host is waiting for the response
to a command.

» The data phase is aborted if the ReadMemory Response command packet, prior to
the start of the data phase, does not contain the kCommandFlag_HasDataPhase flag.

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
16 NXP Semiconductors

L __4
Chapter 3 Kinetis bootloader protocol
e Data phases may be aborted by the host sending the final Generic Response early
with a status of kStatus_AbortDataPhase. The sending side may abort the data phase
early by sending a zero-length data packet.
 The final Generic Response packet sent after the data phase includes the status for
the entire operation.

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
NXP Semiconductors 17

Command with outgoing data phase

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
18 NXP Semiconductors

Chapter 4
Bootloader packet types

4.1 Introduction

The Kinetis bootloader device works in slave mode. All data communication is initiated
by a host, which is either a PC or an embedded host. The Kinetis bootloader device is the
target, which receives a command or data packet. All data communication between host
and target is packetized.

NOTE
The term "target" refers to the "Kinetis bootloader device".

There are 6 types of packets used:
* Ping packet
* Ping Response packet
* Framing packet
e Command packet
* Data packet
* Response packet

All fields in the packets are in little-endian byte order.

4.2 Ping packet

The Ping packet is the first packet sent from a host to the target to establish a connection
on selected peripheral in order to run autobaud. The Ping packet can be sent from host to
target at any time that the target is expecting a command packet. If the selected peripheral
1s UART, a ping packet must be sent before any other communications. For other serial
peripherals it is optional, but is recommended in order to determine the serial protocol
version.

In response to a Ping packet, the target sends a Ping Response packet, discussed in later
sections.

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
NXP Semiconductors 19

A ————
Ping response packet

Table 4-1. Ping Packet Format

Byte # Value Name
0 Ox5A start byte
1 0xA6 ping
Host Target

Ping Packet 0x5a Oxa6

Target executes UART autobaud if necessary

PingResponse Packet

0Ox5a 0xa7 0x00 0x02 0x01 0x50 0x00 0x00 Oxaa Oxea

Figure 4-1. Ping Packet Protocol Sequence

4.3 Ping response packet

The target sends a Ping Response packet back to the host after receiving a Ping packet. If
communication is over a UART peripheral, the target uses the incoming Ping packet to
determine the baud rate before replying with the Ping Response packet. Once the Ping
Response packet is received by the host, the connection is established, and the host starts
sending commands to the target.

Table 4-2. Ping Response packet format

Byte # Value Parameter
0 Ox5A start byte

0xA7 Ping response code

Protocol bugfix

Protocol minor

Protocol major

Protocol name = 'P' (0x50)

Options low

N|lojoa|h~|[w|ND| =

Options high

Table continues on the next page...

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
20 NXP Semiconductors

Chapter 4 Bootloader packet types

Table 4-2. Ping Response packet format (continued)

Byte # Value Parameter
8 CRC16 low
9 CRC16 high

The Ping Response packet can be sent from host to target any time the target expects a
command packet. For the UART peripheral, it must be sent by host when a connection is
first established, in order to run autobaud. For other serial peripherals it is optional, but
recommended to determine the serial protocol version. The version number is in the same
format at the bootloader version number returned by the GetProperty command.

4.4 Framing packet

The framing packet is used for flow control and error detection for the communications
links that do not have such features built-in. The framing packet structure sits between
the link layer and command layer. It wraps command and data packets as well.

Every framing packet containing data sent in one direction results in a synchronizing
response framing packet in the opposite direction.

The framing packet described in this section is used for serial peripherals including the
UART, I2C, and SPI. The USB HID peripheral does not use framing packets. Instead, the
packetization inherent in the USB protocol itself is used.

Table 4-3. Framing Packet Format

Byte # Value Parameter
0 Ox5A start byte
1 packetType
2 length_low Length is a 16-bit field that specifies the entire
3 length_high command or data packet size in bytes.
4 crc16_low This is a 16-bit field. The CRC16 value covers entire
5 cre16_high framing packet, including the start byte and command
- or data packets, but does not include the CRC bytes.
See the CRC16 algorithm after this table.
6...n Command or Data packet
payload

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
NXP Semiconductors 21

A ————
CRC16 algorithm

A special framing packet that contains only a start byte and a packet type is used for
synchronization between the host and target.

Table 4-4. Special Framing Packet Format

Byte # Value Parameter
0 O0x5A start byte
1 0xAn packetType

The Packet Type field specifies the type of the packet from one of the defined types
(below):

Table 4-5. packetType Field

packetType Name Description

OxA1 kFramingPacketType_Ack The previous packet was received successfully; the sending
of more packets is allowed.

0xA2 kFramingPacketType_Nak The previous packet was corrupted and must be re-sent.

0xA3 kFramingPacketType_AckAbort Data phase is being aborted.

0xA4 kFramingPacketType_Command The framing packet contains a command packet payload.

0xA5 kFramingPacketType_Data The framing packet contains a data packet payload.

0xA6 kFramingPacketType_Ping Sent to verify the other side is alive. Also used for UART
autobaud.

OxA7 kFramingPacketType_PingResponse A response to Ping; contains the framing protocol version
number and options.

4.5 CRC16 algorithm
This section provides the CRC16 algorithm.

The CRC is computed over each byte in the framing packet header, excluding the crc16
field itself, plus all of the payload bytes. The CRC algorithm is the XMODEM variant of
CRC-16.

The characteristics of the XMODEM variant are:

width 16
polynomial 0x1021
init value 0x0000
reflect in false
reflect out false
xor out 0x0000
check result 0x31c3

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
22 NXP Semiconductors

Chapter 4 Bootloader packet types

The check result is computed by running the ASCII character sequence "123456789"
through the algorithm.

uintlé t crclé update(const uint8 t * src, uint32 t lengthInBytes

uint32 t crc = 0;
uint32 t j;
for (j=0; j < lengthInBytes; ++3j)

uint32 t i;
uint32 t byte =
crc *= byte << 8;
for (i = 0; 1 < 8;

src[jl;
++1)

uint32 t temp = crc << 1;
if (crc & 0x8000)

temp *= 0x1021;

crc = temp;

}
}

return crc;

4.6 Command packet
The command packet carries a 32-bit command header and a list of 32-bit parameters.

Table 4-6. Command Packet Format

Command Packet Format (32 bytes)

Command Header (4 bytes) 28 bytes for Parameters (Max 7 parameters)
Tag Flags |Rsvd |Param |Parami Param2 Param3 Param4 Param5 Param6 Param7
Count |(32-bit) (32-bit) (32-bit) (32-bit) (32-bit) (32-bit) (32-bit)
byte 0 |byte1 |byte2 |byte3 |- - - - - - -
Table 4-7. Command Header Format
Byte # Command Header Field
0 Command or Response tag The command header is 4 bytes long, with
1 Flags these fields.
2 Reserved. Should be 0x00.
3 ParameterCount

The header is followed by 32-bit parameters up to the value of the ParameterCount field
specified in the header. Because a command packet is 32 bytes long, only 7 parameters
can fit into the command packet.

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
NXP Semiconductors 23

Command packet

Command packets are also used by the target to send responses back to the host. As
mentioned earlier, command packets and data packets are embedded into framing packets
for all of the transfers.

Table 4-8. Command Tags

Command Tag Name
0x01 FlashEraseAll The command tag specifies one of the
0x03 ReadMemory Kinetis bootloader are listed here.
0x04 WriteMemory
0x05 FillMemory
0x06 FlashSecurityDisable
0x07 GetProperty
0x08 Reserved
0x09 Execute
0x10 FlashReadResource
0x11 Reserved
Ox0A Call
0x0B Reset
0x0C SetProperty
0x0D FlashEraseAllUnsecure
O0xO0E eFuseProgram
OxOF eFuseRead
0x10 FlashReadResource
0x11 ConfigureMemory
0x12 ReliableUpdate

Table 4-9. Response Tags

Response Tag Name

0xA0 GenericResponse The response tag specifies one of the responses

O0xA7 GetPropertyResponse (used for sending EH? K'nﬁct]'s bootloadter (targetl_) :et(;JLns IO NE RO
responses to GetProperty command only) € valid response tags are listed here.

0xA3 ReadMemoryResponse (used for sending
responses to ReadMemory command only)

OxAF FlashReadOnceResponse (used for sending
responses to FlashReadOnce command only)

0xBO FlashReadResourceResponse (used for sending

responses to FlashReadResource command
only)

MCUX Flashloader Reference Manual, Rev. 2, 01/2018

24

NXP Semiconductors

L __4

Chapter 4 Bootloader packet types
Flags: Each command packet contains a Flag byte. Only bit O of the flag byte is used. If
bit 0 of the flag byte is set to 1, then data packets follow in the command sequence. The
number of bytes that are transferred in the data phase is determined by a command-
specific parameter in the parameters array.

ParameterCount: The number of parameters included in the command packet.

Parameters: The parameters are word-length (32 bits). With the default maximum
packet size of 32 bytes, a command packet can contain up to 7 parameters.

4.7 Response packet
The responses are carried using the same command packet format wrapped with framing
packet data. Types of responses include:

* GenericResponse

* GetPropertyResponse

* ReadMemoryResponse

* FlashReadOnceResponse

* FlashReadResourceResponse

GenericResponse: After the Kinetis bootloader has processed a command, the
bootloader sends a generic response with status and command tag information to the host.
The generic response is the last packet in the command protocol sequence. The generic
response packet contains the framing packet data and the command packet data (with
generic response tag = 0xAO0) and a list of parameters (defined in the next section). The
parameter count field in the header is always set to 2, for status code and command tag
parameters.

Table 4-10. GenericResponse Parameters

Byte # Parameter Descripton

0-3 Status code The Status codes are errors encountered during the execution of a
command by the target. If a command succeeds, then a kStatus_Success
code is returned.

4-7 Command tag The Command tag parameter identifies the response to the command sent
by the host.

GetPropertyResponse: The GetPropertyResponse packet is sent by the target in
response to the host query that uses the GetProperty command. The GetPropertyResponse
packet contains the framing packet data and the command packet data, with the
command/response tag set to a GetPropertyResponse tag value (0xA7).

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
NXP Semiconductors 25

Response packet

The parameter count field in the header is set to greater than 1, to always include the
status code and one or many property values.

Table 4-11. GetPropertyResponse Parameters

Byte # Value Parameter
0-3 Status code
4-7 Property value

Can be up to maximum 6 property values, limited to the size of the 32-bit
command packet and property type.

ReadMemoryResponse: The ReadMemoryResponse packet is sent by the target in
response to the host sending a ReadMemory command. The ReadMemoryResponse
packet contains the framing packet data and the command packet data, with the
command/response tag set to a ReadMemoryResponse tag value (0xA3), the flags field
set to kCommandFlag_HasDataPhase (1).

The parameter count set to 2 for the status code and the data byte count parameters shown
below.

Table 4-12. ReadMemoryResponse Parameters

Byte # Parameter Descripton
0-3 Status code The status of the associated Read Memory command.
4-7 Data byte count The number of bytes sent in the data phase.

FlashReadOnceResponse:The FlashReadOnceResponse packet is sent by the target in
response to the host sending a FlashReadOnce command. The FlashReadOnceResponse
packet contains the framing packet data and the command packet data, with the
command/response tag set to a FlashReadOnceResponse tag value (0xAF), and the flags
field set to 0. The parameter count is set to 2 plus the number of words requested to be
read in the FlashReadOnceCommand.

Table 4-13. FlashReadOnceResponse Parameters

Byte # Value Parameter
0-3 Status Code
4-7 Byte count to read

Can be up to 20 bytes of requested read data.

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
26 NXP Semiconductors

L __4

Chapter 4 Bootloader packet types
The FlashReadResourceResponse packet is sent by the target in response to the host
sending a FlashReadResource command. The FlashReadResourceResponse packet
contains the framing packet data and command packet data, with the command/response
tag set to a FlashReadResourceResponse tag value (0xB0), and the flags field set to
kCommandFlag_HasDataPhase (1).

Table 4-14. FlashReadResourceResponse Parameters

Byte # Value Parameter
0-3 Status Code
4-7 Data byte count

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
NXP Semiconductors 27

Response packet

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
28 NXP Semiconductors

Chapter 5
Kinetis bootloader command API

5.1 Introduction

All Kinetis bootloader command APIs follows the command packet format wrapped by
the framing packet as explained in previous sections.

See Table 4-8 for a list of commands supported by Kinetis bootloader.

For a list of status codes returned by Kinetis bootloader see Appendix A.

5.2 GetProperty command

The GetProperty command is used to query the bootloader about various properties and
settings. Each supported property has a unique 32-bit tag associated with it. The tag
occupies the first parameter of the command packet. The target returns a
GetPropertyResponse packet with the property values for the property identified with the
tag in the GetProperty command.

Properties are the defined units of data that can be accessed with the GetProperty or
SetProperty commands. Properties may be read-only or read-write. All read-write
properties are 32-bit integers, so they can easily be carried in a command parameter.

For a list of properties and their associated 32-bit property tags supported by Kinetis
bootloader, see Appendix B.

The 32-bit property tag is the only parameter required for GetProperty command.

Table 5-1. Parameters for GetProperty Command

Byte # Command
0-3 Property tag
4-7 External Memory Identifier (only applies to get property for external memory)

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
NXP Semiconductors 29

GetProperty command

Host Target

GetProperty: Property tag= 0x01
0x5a a4 Oc 00 4b 33 07 00 00 02 01 00 00 00 00 00 00 O#

ACK:
</Ox5a al

Process command

Generic Response:
&——0x5a a4 0c 00 07 7a a7 00 00 02 00 00 00 00 00 00 01 4b

T ACK:
Oxsaal]

Figure 5-1. Protocol Sequence for GetProperty Command

Table 5-2. GetProperty Command Packet Format (Example)

GetProperty Parameter Value

Framing packet start byte Ox5A
packetType 0xA4, kFramingPacketType_Command
length 0x0C 0x00
crc16 0x4B 0x33

Command packet commandTag 0x07 — GetProperty

flags 0x00
reserved 0x00
parameterCount 0x02
propertyTag 0x00000001 - CurrentVersion
Memory ID 0x00000000 - Internal Flash (0x00000001 - QSPI0 Memory)

The GetProperty command has no data phase.

Response: In response to a GetProperty command, the target sends a
GetPropertyResponse packet with the response tag set to OxA7. The parameter count
indicates the number of parameters sent for the property values, with the first parameter
showing status code 0, followed by the property value(s). The next table shows an
example of a GetPropertyResponse packet.

Table 5-3. GetProperty Response Packet Format (Example)

GetPropertyResponse Parameter Value
Framing packet start byte O0x5A
packetType 0xA4, kFramingPacketType_Command

Table continues on the next page...

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
30 NXP Semiconductors

Chapter 5 Kinetis bootloader command API

Table 5-3. GetProperty Response Packet Format (Example) (continued)

GetPropertyResponse Parameter Value

length 0x0c 0x00 (12 bytes)
crc16 0x07 Ox7a

Command packet responseTag 0xA7
flags 0x00
reserved 0x00
parameterCount 0x02
status 0x00000000
propertyValue 0x0000014b - CurrentVersion

5.3 SetProperty command

The SetProperty command is used to change or alter the values of the properties or
options of the bootloader. The command accepts the same property tags used with the
GetProperty command. However, only some properties are writable--see Appendix B. If
an attempt to write a read-only property is made, an error is returned indicating the
property is read-only and cannot be changed.

The property tag and the new value to set are the two parameters required for the
SetProperty command.

Table 5-4. Parameters for SetProperty Command

Byte # Command
0-3 Property tag
4-7 Property value

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
NXP Semiconductors 31

SetProperty command

Host Target

SetProperty. Property tag= 10, Property Value = 1
Ox5a a4 0c 00 67 8d 0c 00 00 02 0a 00 00 00 01 00 00 00 ———p|

ACK:]
¢« OxGaat

Process command

GenericResponse:
¢« 0x5a a4 00 9e 10 a0 00 Oc 02 00 00 00 00 Oc 00 00 00

Figure 5-2. Protocol Sequence for SetProperty Command

Table 5-5. SetProperty Command Packet Format (Example)

SetProperty Parameter Value
Framing packet start byte O0x5A

packetType 0xA4, kFramingPacketType_Command
length 0x0C 0x00
crc16 0x67 0x8D

Command packet commandTag 0x0C — SetProperty with property tag 10
flags 0x00
reserved 0x00
parameterCount 0x02
propertyTag 0x0000000A - VerifyWrites
propertyValue 0x00000001

The SetProperty command has no data phase.

Response: The target returns a GenericResponse packet with one of following status
codes:

Table 5-6. SetProperty Response Status Codes

Status Code

kStatus_Success
kStatus_ReadOnly
kStatus_UnknownProperty

kStatus_InvalidArgument

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
32 NXP Semiconductors

Chapter 5 Kinetis bootloader command API

5.4 FlashEraseAll command

The FlashEraseAll command performs an erase of the entire flash memory. If any flash
regions are protected, then the FlashErase All command fails and returns an error status
code. Executing the FlashErase All command releases flash security if it (flash security)
was enabled, by setting the FTFA_FSEC register. However, the FSEC field of the flash
configuration field is erased, so unless it is reprogrammed, the flash security is re-enabled
after the next system reset. The Command tag for FlashEraseAll command is 0x01 set in
the commandTag field of the command packet.

The FlashEraseAll command requires memory ID. If memory ID is not specified, the
internal flash (memory ID =0) will be selected as default.

Table 5-7. Parameter for FlashEraseAll Command

Byte # Parameter
0-3 Memory ID

0x000 Internal Flash

0x010 Execute-only region in
Internal Flash

0x001 Serial NOR through QuadSPI

0x008 Parallel NOR through SEMC

0x009 Serial NOR through FlexSPI

0x100 SLC Raw NAND through
SEMC

0x101 Serial NAND through FlexSPI

0x110 Serial NOR/EEPROM
through SPI

0x120 SD through uSDHC

0x121 eMMC through uSDHC

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
NXP Semiconductors 33

A ————
FlashEraseRegion command

Host Target

- FlashEraseAll
Ox5a a4 08 000c 22 01 00 00 0100 0606-00—»

ACKe]
¢« Oxbaatl

Process command

Generic Response:
¢ 0x5a a4 Oc 00 66 ce a0 00 00 02 00 00 00 00 01 00 00 00

— ACK:
Oxsaal]

Figure 5-3. Protocol Sequence for FlashEraseAll Command

Table 5-8. FlashEraseAll Command Packet Format (Example)

FlashEraseAll Parameter Value

Framing packet start byte O0x5A
packetType 0xA4, kFramingPacketType_Command
length 0x08 0x00
crc16 0x0C 0x22

Command packet commandTag 0x01 - FlashEraseAll

flags 0x00
reserved 0x00
parameterCount 0x01
Memory ID refer to the above table

The FlashErase All command has no data phase.

Response: The target returns a GenericResponse packet with status code either set to
kStatus_Success for successful execution of the command, or set to an appropriate error
status code.

5.5 FlashEraseRegion command

The FlashEraseRegion command performs an erase of one or more sectors of the flash
memory.

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
34 NXP Semiconductors

L __4
Chapter 5 Kinetis bootloader command API
The start address and number of bytes are the 2 parameters required for the
FlashEraseRegion command. The start and byte count parameters must be 4-byte aligned
([1:0] = 00), or the FlashEraseRegion command fails and returns
kStatus_FlashAlignmentError(101). If the region specified does not fit in the flash
memory space, the FlashEraseRegion command fails and returns
kStatus_FlashAddressError(102). If any part of the region specified is protected, the
FlashEraseRegion command fails and returns kStatus_MemoryRangelInvalid(10200).

Table 5-9. Parameters for FlashEraseRegion Command

Byte # Parameter
0-3 Start address

4-7 Byte count

8- 11 Memory ID

The FlashEraseRegion command has no data phase.

Response: The target returns a GenericResponse packet with one of following error
status codes.

Table 5-10. FlashEraseRegion Response Status Codes

Status Code

kStatus_Success (0)
kStatus_MemoryRangelnvalid (10200)
kStatus_FlashAlignmentError (101)
kStatus_FlashAddressError (102)
kStatus_FlashAccessError (103)
kStatus_FlashProtectionViolation (104)
kStatus_FlashCommandFailure (105)

5.6 FlashEraseAllUnsecure command

The FlashErase AllUnsecure command performs a mass erase of the flash memory,
including protected sectors. Flash security is immediately disabled if it (flash security)
was enabled, and the FSEC byte in the flash configuration field at address 0x40C is
programmed to OxFE. However, if the mass erase enable option in the FSEC field is
disabled, then the FlashErase AllUnsecure command fails.

The FlashErase AllUnsecure command requires no parameters.

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
NXP Semiconductors 35

FlashEraseAllUnsecure command
Host Target

— @@ FlashEraseAllUnsecure
Ox5a a4 04 00f6 61 0d00ccO0———————p

ACKe]
¢« Oxb5aat

Process command

Generic Response:
g 0x5a a4 Oc 00 61 2 a0 00 04 02 00 00 00 00 0d 00 00 00

——— ACK:
Ox5aal — ——————]

Figure 5-4. Protocol Sequence for FlashEraseAll Command

Table 5-11. FlashEraseAllUnsecure Command Packet Format (Example)

FlashEraseAllUnsecure Parameter Value

Framing packet start byte O0x5A
packetType 0xA4, kFramingPacketType_Command
length 0x04 0x00
crc16 0xF6 0x61

Command packet commandTag 0x0D - FlashEraseAllUnsecure

flags 0x00
reserved 0x00
parameterCount 0x00

The FlashErase AllUnsecure command has no data phase.

Response: The target returns a GenericResponse packet with status code either set to
kStatus_Success for successful execution of the command, or set to an appropriate error
status code.

NOTE
When the MEEN bit in the NVM FSEC register is cleared to
disable the mass erase, the FlashEraseAllUnsecure command
will fail. FlashEraseRegion can be used instead skipping the
protected regions.

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
36 NXP Semiconductors

Chapter 5 Kinetis bootloader command API

5.7 ReadMemory command

The ReadMemory command returns the contents of memory at the given address, for a
specified number of bytes. This command can read any region of memory accessible by
the CPU and not protected by security.

The start address and number of bytes are the two parameters required for ReadMemory
command. The memory ID is optional. Internal memory will be selected as default if
memory ID is not specified.

Table 5-12. Parameters for read memory command

Byte Parameter Description
0-3 Start address Start address of memory to read from
4-7 Byte count Number of bytes to read and return to caller
8-11 Memory ID Internal or extermal memory Identifier

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
NXP Semiconductors 37

ReadMemory command

Host

———————readMemory: startAddress = 0x20000400, byteCount = 100
DxSa ad D 00 1d 23 03 00 00 02 00 04 00 20 64 00 00 00 ———0 ¢

—ACK: Ox5a al

genaralc responsa for command:
g ——5a ad Oc 00 27 6 a3 01 00 02 00 00 00 00 64 00 00 00

-ACK: Dx5a al

B

Data packet; —_—

‘_____________._0:-:53 ab 20 00 CRC16 32 byles data Process Data

ACK: Dx5a al

ol

Final Data packet

o 058 ab length16 CRE1G 32 bytes data

ACK: Ox5a a1
Final generic response:
¢ D0%5a &4 Oc D0 Oe 23 a0 00 00 02 00 00 00 00 03 00 00 00
ACHK: Dx5a al .

Figure 5-5. Command sequence for read memory

Target

Process Data

Process command

ReadMemory Parameter Value
Framing packet Start byte Ox5A0xA4,
packetType kFramingPacketType_Command
length 0x10 0x00
crc16 0xF4 0x1B
Command packet commandTag 0x03 - readMemory
flags 0x00
reserved 0x00
parameterCount 0x03
startAddress 0x20000400
byteCount 0x00000064
memoryID 0x0

Data Phase: The ReadMemory command has a data phase. Because the target works in
slave mode, the host needs to pull data packets until the number of bytes of data specified
in the byteCount parameter of ReadMemory command are received by host.

MCUX Flashloader Reference Manual, Rev. 2, 01/2018

38

NXP Semiconductors

L __4

Chapter 5 Kinetis bootloader command API
Response: The target returns a GenericResponse packet with a status code either set to
kStatus_Success upon successful execution of the command, or set to an appropriate
error status code.

5.8 WriteMemory command

The WriteMemory command writes data provided in the data phase to a specified range
of bytes in memory (flash or RAM). However, if flash protection is enabled, then writes
to protected sectors fail.

Special care must be taken when writing to flash.

* First, any flash sector written to must have been previously erased with a
FlashEraseAll, FlashEraseRegion, or FlashErase AllUnsecure command.

* First, any flash sector written to must have been previously erased with a
FlashEraseAll or FlashEraseRegion command.

* Writing to flash requires the start address to be 4-byte aligned ([1:0] = 00).

* The byte count is rounded up to a multiple of 4, and trailing bytes are filled with the
flash erase pattern (0xff).

* If the VerifyWrites property is set to true, then writes to flash also performs a flash
verify program operation.

When writing to RAM, the start address does not need to be aligned, and the data is not
padded.

The start address and number of bytes are the 2 parameters required for WriteMemory
command. The memory ID is optional. Internal memory will be selected as default if
memory ID is not specified.

Table 5-13. Parameters for WriteMemory Command

Byte # Command
0-3 Start address

4-7 Byte count

8- 11 Memory ID

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
NXP Semiconductors 39

WriteMemory command

Host Target

WriteMemory: startAddress = 0x20000400, byteCount= 0x64
0x5a a4 Oc 00 06 5a04 00 00 02 00 04 00 20 64 00 00 00

e e =
ACK: Ox5a a1

.,
Process command

Generic Response:
¢ 0x5a a4 0c 00 a0 Oe 04 01 00 02 00 04 00 20 40 00 00 00

| ————————ACK:0x5aaf

_]
- Data packet:
Ox5a a5 20 00 CRC16 32bytesdata = »

Process Data

ACK: Ox5a a1

«—

- Final Data packet
Ox5a a5length16 CRC16 32 bytesdata =

Process Data

- ACK

Generic Response
¢« 0x5a a4 0c 00 23 72a0 00 00 02 00 00 00 00 04 00 00 00

N

CKoxbaal——]

Figure 5-6. Protocol Sequence for WriteMemory Command

Table 5-14. WriteMemory Command Packet Format (Example)

WriteMemory Parameter Value

Framing packet start byte O0x5A
packetType 0xA4, kFramingPacketType_Command
length 0x10 0x00
crc16 0x97 0xDD

Command packet commandTag 0x04 - writeMemory

flags 0x01
reserved 0x00
parameterCount 0x03
startAddress 0x20000400

Table continues on the next page...

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
40 NXP Semiconductors

Chapter 5 Kinetis bootloader command API

Table 5-14. WriteMemory Command Packet Format (Example) (continued)

WriteMemory Parameter Value
byteCount 0x00000064
memoryID 0x0

Data Phase: The WriteMemory command has a data phase; the host sends data packets
until the number of bytes of data specified in the byteCount parameter of the
WriteMemory command are received by the target.

Response: The target returns a GenericResponse packet with a status code set to
kStatus_Success upon successful execution of the command, or to an appropriate error
status code.

5.9 FillMemory command

The FillMemory command fills a range of bytes in memory with a data pattern. It follows
the same rules as the WriteMemory command. The difference between FillMemory and
WriteMemory is that a data pattern is included in FillMemory command parameter, and
there is no data phase for the FillMemory command, while WriteMemory does have a
data phase.

Table 5-15. Parameters for FillMemory Command

Byte # Command
0-3 Start address of memory to fill
4-7 Number of bytes to write with the pattern

¢ The start address should be 32-bit aligned.

¢ The number of bytes must be evenly divisible by 4. (Note: for a part that
uses FTFE flash, the start address should be 64-bit aligned, and the
number of bytes must be evenly divisible by 8).

8-11 32-bit pattern

* To fill with a byte pattern (8-bit), the byte must be replicated 4 times in the 32-bit
pattern.

 To fill with a short pattern (16-bit), the short value must be replicated 2 times in the
32-bit pattern.

For example, to fill a byte value with OxFE, the word pattern is OxFEFEFEFE; to fill a
short value 0x5AFE, the word pattern is OxXSAFESAFE.

Special care must be taken when writing to flash.

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
NXP Semiconductors 41

A
FillMemory command
* First, any flash sector written to must have been previously erased with a
FlashEraseAll, FlashEraseRegion, or FlashErase AllUnsecure command.
* First, any flash sector written to must have been previously erased with a
FlashEraseAll or FlashEraseRegion command.
» Writing to flash requires the start address to be 4-byte aligned ([1:0] = 00).
« If the VerifyWrites property is set to true, then writes to flash also performs a flash
verify program operation.

When writing to RAM, the start address does not need to be aligned, and the data is not
padded.

Host Target

FillMemory, with word pattern 0x12345678
Ox5a a4 10 00 e4 57 05 00 00 03 00 70 00 00 00 08 00 00 78 SW
ACKe]
¢« Oxbaat

Process command

Generic Response:
4—— 0x5a a4 0c 00 97 04 a0 00 00 02 00 00 00 00 05 00 00 00

————— ACK:
Ox5a a1\>

Figure 5-7. Protocol Sequence for FillMemory Command

Table 5-16. FillMemory Command Packet Format (Example)

FillMemory Parameter Value

Framing packet start byte O0x5A
packetType 0xA4, kFramingPacketType_Command
length 0x10 0x00
crc16 OxE4 0x57

Command packet commandTag 0x05 — FillMemory

flags 0x00
Reserved 0x00
parameterCount 0x03
startAddress 0x00007000
byteCount 0x00000800
patternWord 0x12345678

The FillMemory command has no data phase.

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
42 NXP Semiconductors

Chapter 5 Kinetis bootloader command API

Response: upon successful execution of the command, the target (Kinetis bootloader)
returns a GenericResponse packet with a status code set to kStatus_Success, or to an
appropriate error status code.

5.10 Execute command

The execute command results in the bootloader setting the program counter to the code at
the provided jump address, RO to the provided argument, and a Stack pointer to the
provided stack pointer address. Prior to the jump, the system is returned to the reset state.

The Jump address, function argument pointer, and stack pointer are the parameters
required for the Execute command. If the stack pointer is set to zero, the called code is
responsible for setting the processor stack pointer before using the stack.

If QSPI is enabled, it is initialized before the jump. QSPI encryption (OTFAD) is also
enabled if configured.

Table 5-17. Parameters for Execute Command

Byte # Command
0-3 Jump address

4-7 Argument word

8-11 Stack pointer address

The Execute command has no data phase.

Response: Before executing the Execute command, the target validates the parameters
and return a GenericResponse packet with a status code either set to kStatus_Success or
an appropriate error status code.

5.11 Call command

The Call command executes a function that is written in memory at the address sent in
the command. The address needs to be a valid memory location residing in accessible
flash (internal or external) or in RAM. The command supports the passing of one 32-bit
argument. Although the command supports a stack address, at this time the call still takes
place using the current stack pointer. After execution of the function, a 32-bit return value
is returned in the generic response message.

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
NXP Semiconductors 43

Reset command

QSPI must be 1nitialized prior to executing the Call command if the call address is on
QSPI. The Call command does not initialize QSPI.

Host Target

Call: Address=0x00000¢cd9, arg=0
Ox5a a4 Oc 00 16 5c Oa 00 00 02 d9 Oc 00 00 OO 00O 000 00

ACK:
e (xba al

Generic Response:
~__Ox5a a4 0c 00 79 d0 a0 00 00 02 00 00 0O 00 0a 00 OO OO

T ACK:

Figure 5-8. Protocol sequence for call command

Table 5-18. Parameters for Call Command

Byte # Command
0-3 Call address

4-7 Argument word

8-11 Stack pointer

Response: The target returns a GenericResponse packet with a status code either set to
the return value of the function called or set to kStatus_InvalidArgument (105).

5.12 Reset command
The Reset command results in the bootloader resetting the chip.

The Reset command requires no parameters.

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
44 NXP Semiconductors

Chapter 5 Kinetis bootloader command API
Host Target

@ Reset

Ox5a a4 04 00 646 Ob 00 00 00 P

ACK:]
«— xbaat

Process command

GenericResponse:
&— 0x5a a4 0c 00 f8 Ob a0 00 04 02 00 00 00 00 Ob 00 00 00

[ACK
Oxsaal)]

Figure 5-9. Protocol Sequence for Reset Command

Table 5-19. Reset Command Packet Format (Example)

Reset Parameter Value

Framing packet start byte O0x5A
packetType 0xA4, kFramingPacketType_Command
length 0x04 0x00
crc16 Ox6F 0x46

Command packet commandTag 0x0B - reset

flags 0x00
reserved 0x00
parameterCount 0x00

The Reset command has no data phase.

Response: The target returns a GenericResponse packet with status code set to
kStatus_Success, before resetting the chip.

The reset command can also be used to switch boot from flash after successful flash
image provisioning via ROM bootloader. After issuing the reset command, allow 5
seconds for the user application to start running from Flash.

5.13 eFuseProgramOnce command

The FlashProgramOnce command writes data (that is provided in a command packet) to a
specified range of bytes in the program once field. Special care must be taken when
writing to the program once field.

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
NXP Semiconductors 45

eFuseProgramOnce command

* The program once field only supports programming once, so any attempted to
reprogram a program once field gets an error response.

» Writing to the program once field requires the byte count to be 4-byte aligned or 8-
byte aligned.

The FlashProgramOnce command uses three parameters: index 2, byteCount, data.

Table 5-20. Parameters for FlashProgramOnce Command

Byte # Command
0-3 Index of program once field
4-7 Byte count (must be evenly divisible by 4)
8-11 Data
12-16 Data
Host Target

FlashProgramOnce: index=0, byteCount=4, data=0x12345678
0x5a a4 10 00 7e 89 0e 00 00 03 00 00 00 00 04 00 00 00 78 56 34 12

ACKe]
¢« Ox5aat

Process command

Generic Response:
l¢—— 0Ox5a a4 0c 00 88 1a a0 00 00 02 00 00 00 00 Oe 00 00 00

——————— ACK:
Ox5a a1\,

Figure 5-10. Protocol Sequence for FlashProgramOnce Command

Table 5-21. FlashProgramOnce Command Packet Format (Example)

FlashProgramOnce | Parameter Value
Framing packet start byte O0x5A
packetType 0xA4, kFramingPacketType_Command
length 0x10 0x00
crc16 0x7E4 0x89
Command packet commandTag O0xOE — FlashProgramOnce
flags 0
reserved 0
parameterCount 3
index 0x0000_0000

Table continues on the next page...

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
46 NXP Semiconductors

Chapter 5 Kinetis bootloader command API

Table 5-21. FlashProgramOnce Command Packet Format (Example) (continued)

FlashProgramOnce | Parameter Value
byteCount 0x0000_0004
data 0x1234_5678

Response: upon successful execution of the command, the target (Kinetis bootloader)
returns a GenericResponse packet with a status code set to kStatus_Success, or to an
appropriate error status code.

5.14 eFuseReadOnce command

The FlashReadOnce command returns the contents of the program once field by given
index and byte count. The FlashReadOnce command uses 2 parameters: index and
byteCount.

Table 5-22. Parameters for FlashReadOnce Command

Byte # Parameter Description

0-3 index Index of the program once field (to read from)
4-7 byteCount Number of bytes to read and return to the caller
Host Target

FlashReadOnce: index=0, byteCount=4
Ox5a a4 Oc 00 ¢1 a5 0f 00 00 02 00 000000 04000000]

ACKe]
¢« Oxb5aat

Process command

Generic Response:
«— 0x5a a4 10 00 3f 6f af 00 00 03 00 00 00 00 04 00 00 00 78 56 34 12

T ACK:
Ox5aal — ——————]

Figure 5-11. Protocol Sequence for FlashReadOnce Command

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
NXP Semiconductors 47

Configure Memory command

Table 5-23. FlashReadOnce Command Packet Format (Example)

FlashReadOnce Parameter Value
Framing packet start byte Ox5A
packetType 0xA4
length 0x0C 0x00
crc 0xC1 OxA5
Command packet commandTag 0xOF — FlashReadOnce
flags 0x00
reserved 0x00
parameterCount 0x02
index 0x0000_0000
byteCount 0x0000_0004
Table 5-24. FlashReadOnce Response Format (Example)
FlashReadOnce Parameter Value
Response
Framing packet start byte Ox5A
packetType 0xA4
length 0x10 0x00
crc 0x3F Ox6F
Command packet |commandTag OxAF
flags 0x00
reserved 0x00
parameterCount 0x03
status 0x0000_0000
byteCount 0x0000_0004
data 0x1234_5678

Response: upon successful execution of the command, the target returns a

FlashReadOnceResponse packet with a status code set to kStatus_Success, a byte count
and corresponding data read from Program Once Field upon successful execution of the
command, or returns with a status code set to an appropriate error status code and a byte
count set to 0.

5.15 Configure Memory command

The Configure Memory command configures the external memory device using a pre-
programmed configuration image. The parameters passed in the command are the
memory ID, and then the memory address from which the configuration data can be

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
48 NXP Semiconductors

Chapter 5 Kinetis bootloader command API

loaded from. Options for loading the data can be a scenario where the configuration data
1s written to a RAM or flash location and then this command directs the bootloader to use
the data at that location to configure the external memory devices.

Table 5-25. Parameters for Configure Memory Command

Byte # Command
0-3 Memory ID
4-7 Configuration block address

Response: The target (Kinetis Bootloader) returns a GenericResponse packet with a
status code either set to kStatus_Success upon successful execution of the command, or
set to an appropriate error code.

5.16 ReceiveSBFile command

The Receive SB File command (ReceiveSbFile) starts the transfer of an SB file to the
target. The command only specifies the size in bytes of the SB file that is sent in the data
phase. The SB file is processed as it is received by the bootloader.

Table 5-26. Parameters for Receive SB File Command

Byte # Command

0-3 Byte count

Data Phase: The Receive SB file command has a data phase; the host sends data packets
until the number of bytes of data specified in the byteCount parameter of the Receive SB
File command are received by the target.

Response: The target returns a GenericResponse packet with a status code set to the
kStatus_Success upon successful execution of the command, or set to an appropriate
error code.

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
NXP Semiconductors 49

ReceiveSBFile command

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
50 NXP Semiconductors

Chapter 6
Supported peripherals

6.1 Introduction

This section describes the peripherals supported by the Kinetis bootloader. To use an
interface for bootloader communications, the peripheral must be enabled in the BCA. If
the BCA is invalid (such as all OxFF bytes), then all peripherals are enabled by default.

6.2 UART Peripheral

The Kinetis bootloader integrates an autobaud detection algorithm for the UART
peripheral, thereby providing flexible baud rate choices.

Autobaud feature: If UART# is used to connect to the bootloader, then the UARTn_RX
pin must be kept high and not left floating during the detection phase in order to comply
with the autobaud detection algorithm. After the bootloader detects the ping packet
(0x5A 0xA6) on UARTn_RX, the bootloader firmware executes the autobaud sequence.
If the baudrate is successfully detected, then the bootloader sends a ping packet response
[(0x5A 0xA7), protocol version (4 bytes), protocol version options (2 bytes) and crc16 (2
bytes)] at the detected baudrate. The Kinetis bootloader then enters a loop, waiting for
bootloader commands via the UART peripheral.

NOTE
The data bytes of the ping packet must be sent continuously
(with no more than 80 ms between bytes) in a fixed UART
transmission mode (8-bit data, no parity bit and 1 stop bit). If
the bytes of the ping packet are sent one-by-one with more than
80 ms delay between them, then the autobaud detection
algorithm may calculate an incorrect baud rate. In this instance,
the autobaud detection state machine should be reset.

MCUX Flashloader Reference Manual, Rev. 2, 01/2018

NXP Semiconductors 51

A ————
UART Peripheral

Supported baud rates: The baud rate is closely related to the MCU core and system
clock frequencies. Typical baud rates supported are 9600, 19200, 38400, and 57600. Of
course, to influence the performance of autobaud detection, the clock configuration in
BCA can be changed.

Packet transfer: After autobaud detection succeeds, bootloader communications can
take place over the UART peripheral. The following flow charts show:
* How the host detects an ACK from the target
* How the host detects a ping response from the target
* How the host detects a command response from the target

Report a timeout

r from target

maximum
retries?

Yes

error

Wait
for ACK

Wait for 1 byte
from target

0x5A
received?

Yes—p

Process NAK

«—Ye

Wait for 1 byte
from target

Figure 6-1. Host reads an ACK from target via UART

Wait for
ping response

Wait for 1 byte

Ox5A
received?

End

Wait for
remaining bytes
of ping response
packet

Yes—p

Wait for 1 byte
from target

Ygs

0xA7
received?

Report an error

A

No

0xA2
received?

No

OxA1
received?

Report Error

Figure 6-2. Host reads a ping response from target via UART

MCUX Flashloader Reference Manual, Rev. 2, 01/2018

52

NXP Semiconductors

Chapter 6 Supported peripherals

< Wait >
for response End

Wait for 1 byte

No——»
from target
9 Wait for payload
data from target
¢ O0x5A ?
maximym ><-N received? Yes
Yes

Set payload length
No»{ to maximum
supported length

Payload length
less than supported
length?

Wait for 1 byte
Yes from target

i Waitfor payload Waitfor CRC
Report aé'”c‘jeom reg)éﬁldéd? Yes—»| length part from checksum from
error (End) target (2 bytes) target (2 bytes)

No

Figure 6-3. Host reads a command response from target via UART

6.2.1 Performance Numbers for UART

The table below provides reference to the expected performance of write speeds to Flash
and RAM memories using Kinetis bootloader SPI interface. The numbers have been
measured on a number of platforms running Kinetis bootloader either from ROM or the
RAM (in case of flashloaders).

UART |Flash Average Writing Speed (KB/s) Ram
Baud Avera
Rate ge
Writin
9
Speed
(KB/s)

KL27 |KL28 |KL43 |KL80 (K80 KLO3 |KS22 |[KL27 |KL28 |KL43 |[KL80 |K80 KLO3 |KS22
19200 (1.47 (1.47 (143 |147 (146 (143 |145 |1.51 1.52 |148 (152 (152 |149 ([1.51
38400 |2.81 282 (275 |2.82 |2.79 |2.81 275 (299 |3.03 |295 |3.08 |[3.03 (29 3.00

57600 [4.07 |4.07 |3.97 [4.08 |4.01 - 393 (446 |453 |44 454 |4.51 - 4.47
11520 |7.3 7.31 712 |7.35 |71 - 6.88 (869 (897 |[865 |8.98 |8.85 |- 8.73
0

23040 [12.14 |- 11.83 |12.27 (1142 |- 11.01 |16.57 |- 16.77 |17.58 |16.73 |- 16.65

Table continues on the next page...

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
NXP Semiconductors 53

UART Peripheral
Default|48 |48 |48 |48 |48 |8 48 |48 |48 |48 |48 |48 |8 48
core
Freque
ncy
(MHz)
Default|24 (24 |24 (24 |24 |4 24 |24 |24 |24 |24 |24 |4 24
bus
Freque
ncy
(MHz)
NOTE
1. Every test covers all flash or RAM region with 0x0 - Oxf.
2. Run every test three times and calculate the average.
Flash Average Writing Speed
14
g 12
= 10
T 8
a
wvi 6
&
= 4
o
= 2
0

19200 38400 57600 76800 96000 115200 134400 153600 172300 192000 211200 230400
UART Baud Rate

—8—K| 27 —8—KL28 —®—KL43 KL80) —e—K30 —®—Kl 03 —e—[K522

Figure 6-4. Flash Average Writing Speed

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
54 NXP Semiconductors

.4
Chapter 6 Supported peripherals

Ram Average Writing Speed

20
15
10

5

Writing Speed (KB/s)

]
19200 38400 27600 F6800 86000 115200 134400 153600 172800 192000 211200 230400
UART Baud Rate

—8—KL27 KL28 KL43 KL30 —@—K30 —®—KLO03 —8—K522

Figure 6-5. RAM Average Writing Speed

6.3 USB HID Peripheral

The Kinetis bootloader supports loading data into flash via the USB peripheral. The
target is implemented as a USB HID class.

USB HID does not use framing packets; instead the packetization inherent in the USB
protocol itself is used. The ability for the device to NAK Out transfers (until they can be
received) provides the required flow control; the built-in CRC of each USB packet
provides the required error detection.

6.3.1 Device descriptor
The Kinetis bootloader configures the default USB VID/PID/Strings as below:
Default VID/PID:

e VID = 0x15A2
e PID = 0x0073

Default Strings:

e Manufacturer [1] = "Freescale Semiconductor Inc."
e Product [2] = "Kinetis bootloader"

The USB VID, PID, and Strings can be customized using the Bootloader Configuration
Area (BCA) of the flash. For example, the USB VID and PID can be customized by
writing the new VID to the usbVid(BCA + 0x14) field and the new PID to the

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
NXP Semiconductors 55

A ————
USB HID Peripheral

usbPid(BCA + 0x16) field of the BCA 1n flash. To change the USB strings, prepare a
structure (like the one shown below) in the flash, and then write the address of the
structure to the usbStringsPointer(BCA + 0x18) field of the BCA.

g languages = { USB_STR 0,
sizeof (USB_STR 0),
(uint_16) 0x0409,

(const uint_8 **)g string descriptors,
g _string desc size};

the USB_STR 0, g string descriptors and g string desc size are defined as below.
USB_STR 0[4] = {oxo02,
0x03,

0x09,

0x04

}i

g string descriptors[4] =
{ USB_STR_O,

USB_STR 1,

USB_STR 2,

USB_STR_3};

g string desc _size[4] =

{ sizeof (USB_STR 0),
sizeof (USB_STR 1),

sizeof (USB_STR 2),

sizeof (USB_STR 3)};

e USB_STR_1 is used for the manufacturer string.
 USB_STR_2 is used for the product string.
* USB_STR_3 is used for the serial number string.

By default, the 3 strings are defined as below:

USB_STR_1[] =
{ sizeof (USB_STR 1),
USB_STRING_DESCRIPTOR,

IFI,O,
,r,lol
,e,lol
lellol
ISIIO’
'c',0,
,a,lol
llllol
lel’O’
1 !,O,
!S!IOI
,e,lol
lml’O’
i, 0,
'e',0,
,O,IOI
lnl’O’
!d!,o,
'u', o0,
,C,IOI
ltl’O’
,O,IOI
,r,lol
1 ,IOI
III,O,
'n',0,
,c,lol

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
56 NXP Semiconductors

.4
Chapter 6 Supported peripherals

t.1,0

Vi

USB_STR 2[] =

{ sizeof (USB_STR 2),
USB_STRING_DESCRIPTOR,
IMIIO’

!K!,O,

1 !IOI

IMIIOI

'a'lol

,S,,O,

!silol

1 IIOI

ISIIO’

!t!,o,

,O,IOI

lrllol

'a'lol

!gilol

'e', 0

7

USB_STR 3[] =

{ sizeof (USB _STR 3),
USB_STRING DESCRIPTOR,
'O',O,

!l!,o,

!2![0[

'3',0,

l4l’0’

!5!,0,

!6![0[

'7'101

'8',0,

!9!,0,

!A!IOI

'B',O,

'C',O,

'D',0,

'E', 0,

'F',0

7

6.3.2 Endpoints

The HID peripheral uses 3 endpoints:

e Control (0)
* Interrupt IN (1)
* Interrupt OUT (2)

The Interrupt OUT endpoint is optional for HID class devices, but the Kinetis bootloader
uses it as a pipe, where the firmware can NAK send requests from the USB host.

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
NXP Semiconductors 57

USB HID Peripheral
6.3.3 HID reports

There are 4 HID reports defined and used by the bootloader USB HID peripheral. The
report ID determines the direction and type of packet sent in the report; otherwise, the
contents of all reports are the same.

Report ID Packet Type Direction
1 Command ouT
2 Data ouT
3 Command IN
4 Data IN

For all reports, these properties apply:

'y

Usage Min

Usage Max 1

Logical Min 0
Logical Max 255
Report Size 8
Report Count 34

Each report has a maximum size of 34 bytes. This is derived from the minimum
bootloader packet size of 32 bytes, plus a 2-byte report header that indicates the length (in
bytes) of the packet sent in the report.

NOTE
In the future, the maximum report size may be increased, to
support transfers of larger packets. Alternatively, additional
reports may be added with larger maximum sizes.

The actual data sent in all of the reports looks like:

Report ID
Packet Length LSB
Packet Length MSB
Packet[0]
Packet[1]
Packet[2]

a|p|lOIN| 2| O

N+3-1 |Packet[N-1]

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
58 NXP Semiconductors

L __4

Chapter 6 Supported peripherals
This data includes the Report ID, which is required if more than one report is defined in
the HID report descriptor. The actual data sent and received has a maximum length of 35
bytes. The Packet Length header is written in little-endian format, and it is set to the size
(in bytes) of the packet sent in the report. This size does not include the Report ID or the
Packet Length header itself. During a data phase, a packet size of 0 indicates a data phase
abort request from the receiver.

6.4 USB Peripheral

The Kinetis bootloader supports loading data into flash or RAM using the USB
peripheral. The target is implemented as USB-HID and USB MSC (Mass Storage Class)

composite device classes.

When transfer data through USB-HID device class, USB-HID does not use framing
packets. Instead, the packetization inherent in the USB protocol itself is used. The ability
for the device to NAK Out transfers (until they can be received) provides the required
flow control. The built-in CRC of each USB packet provides the required error detection.

When transfer data through USB MSC device class, USB MSC does not use framing
packets. Instead, the packetization inherent in the USB protocol itself is used. As with
any mass storage class device, a device drive letter appears in the file manager of the
operating system, and the file image can be dragged and dropped to the storage device.
Right now, the USB MSC download only supports SB file drag-and-drop. Reading the
SB file from the MSC device is not supported.

The USB peripheral can work as HID + MSC in Composite device mode. For HID-only
mode or MSC-only mode, this is configured using macros during compile time. If

configured as the HID and MSC composite device, users can either send commands to
the HID interface, or drag/drop SB files to the MSC device.

6.4.1 Device descriptor

uint8 t *g string descriptors[USB_STRING COUNT + 1] { g usb _str o0,

g usb_str 1,
g usb str 2,
g usb str 3,

g usb str n };

{{

usb language t g usb lang[USB_ LANGUAGE COUNT]

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
NXP Semiconductors 59

A ————
USB Peripheral

lFll

'C

'0

'C

'0

M~

a -~

-0 -0 -0 -o -
. Z\

0

’

g _string descriptors, g string desc_size, (uintlé_t) 0x0409,

bt

usb language list t g language list = {

g usb _str O,

sizeof (g usb str 0), g usb lang, USB LANGUAGE COUNT,

uint8 t g usb str 1[USB_STRING DESCRIPTOR 1 LENGTH +
USB_STRING DESCRIPTOR HEADER LENGTH] = {
sizeof (g usb str 1),
USB_DESCRIPTOR TYPE STRING,

uint8 t g usb str 2[USB_STRING DESCRIPTOR 2 LENGTH +
USB_STRING DESCRIPTOR HEADER LENGTH] = {
sizeof (g usb str 2),
USB_DESCRIPTOR TYPE STRING,

lUl ,

MCUX Flashloader Reference Manual, Rev. 2, 01/2018

60

NXP Semiconductors

.4
Chapter 6 Supported peripherals

}i
For HID and MSC composite devices.

uint8 t g usb str 3 [USB_STRING DESCRIPTOR 3 LENGTH +
USB_STRING DESCRIPTOR HEADER LENGTH] = {
sizeof (g usb str 3),
USB_DESCRIPTOR TYPE STRING,
! M ! , - - -
O r
1 C 1 ,
0 1
! ,
0 ’

N ,

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
NXP Semiconductors 61

A ————
USB Peripheral

N ,

'R ,

[AVAl ,

ICI,

For HID-only devices.

uint8 t g usb str 3[USB STRING DESCRIPTOR 3 LENGTH +
USB_STRING DESCRIPTOR HEADER LENGTH] = {
sizeof (g usb str 3),
USB_DESCRIPTOR TYPE STRING,
™! , - - -
0 1
1 C 1 ,
0 ’

N ,

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
62 NXP Semiconductors

.4
Chapter 6 Supported peripherals

'R! ,

lIl,

lEl,

lIl,

lEl,

Vi

For MSC-only devices.

uint8 t g usb str 3 [USB_STRING DESCRIPTOR 3 LENGTH +
USB_STRING DESCRIPTOR HEADER LENGTH] = {
sizeof (g usb str_3),
USB_DESCRIPTOR TYPE STRING,

'M',
0,

e,
0,

g,
0,

lEl’

lIl’

lEl’

6.4.2 Endpoints

USB MSC device uses 2 endpoints,

device

#define USB_MSC_BULK IN ENDPOINT (3), which
#define USB_MSC_BULK OUT ENDPOINT (4)

MCUX Flashloader Reference Manual, Rev. 2, 01/2018

in addition to the default pipe that is required by USB HID

NXP Semiconductors

63

A ————
USB Peripheral

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
64 NXP Semiconductors

Chapter 7

Peripheral interfaces

7.1

Introduction

The block diagram shows connections between components in the architecture of the
peripheral interface.

USBE device HID class

l

Abstract packet
interface

—tFraming packetizer]

:' HID packetizer |

(Abstract cu::rul interface | Abstract btylta interface
[12C slave } [12C byte abstraction
[SPI slave }]l: SPI byte abstraction
[CAN CAN byte abstraction i
[UART | UART byte abstraction]
[1

J

@SE HID + MSC device class

MSC packetizer

Iy

Command/data
packet processor

Figure 7-1. Components peripheral interface

Sb file handler
{Command/Data packet processpr)

Figure 7-2. USB/MSC Peripheral interface

In this diagram, the byte and packet interfaces are shown to inherit from the control

interface.

MCUX Flashloader Reference Manual, Rev. 2, 01/2018

NXP Semiconductors

65

A
Abstract control interface

All peripheral drivers implement an abstract interface built on top of the driver's internal
interface. The outermost abstract interface is a packet-level interface. It returns the
payload of packets to the caller. Drivers which use framing packets have another abstract
interface layer that operates at the byte level. The abstract interfaces allow the higher
layers to use exactly the same code regardless which peripheral is being used.

The abstract packet interface feeds into the command and data packet processor. This
component interprets the packets returned by the lower layer as command or data
packets.

7.2 Abstract control interface

This control interface provides a common method to initialize and shutdown peripheral
drivers. It also provides the means to perform the active peripheral detection. No data
transfer functionality is provided by this interface. That is handled by the interfaces that
inherit the control interface.

The main reason this interface is separated out from the byte and packet interfaces is to
show the commonality between the two. It also allows the driver to provide a single
control interface structure definition that can be easily shared.

struct PeripheralDescriptor {
//! @brief Bit mask identifying the peripheral type.
A
//! See # peripheral types for a list of valid bits.
uint32 t typeMask;

//! @brief The instance number of the peripheral.
uint32 t instance;

//! @brief Configure pinmux setting for the peripheral.
void (*pinmuxConfig) (uint32_t instance, pinmux type t pinmux) ;

//! @brief Control interface for the peripheral.
const peripheral control interface t * controlInterface;

//! @brief Byte-level interface for the peripheral.

[/}
//! May be NULL because not all periperhals support this interface.
const peripheral byte inteface t * bytelInterface;

//! @brief Packet level interface for the peripheral.
const peripheral packet interface t * packetInterface;

Vi

struct PeripheralControlInterface

{

bool (*pollForActivity) (const PeripheralDescriptor * self);
status_t (*init) (const PeripheralDescriptor * self, BoatloaderInitInfo * info);
void (*shutdown) (const PeripheralDescriptor * self);

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
66 NXP Semiconductors

Chapter 7 Peripheral interfaces

void (*pump) (const peripheral descriptor t *self);

Table 7-1. Abstract control interface

Interface

Description

pollForActivity()

Check whether communications has started.

init()

Fully initialize the driver.

shutdown()

Shutdown the fully initialized driver.

pump

Provide execution time to driver.

7.3 Abstract byte interface

This interface exists to give the framing packetizer, which is explained in the later

section, a common interface for the peripherals that use framing packets.

The abstract byte interface inherits the abstract control interface.

struct PeripheralByteInterface

{

status_t (*init) (const peripheral descriptor t * self);

status_t (*write) (const peripheral descriptor t * self, const uint8 t *buffer, uint32 t

byteCount) ;
Table 7-2. Abstract byte interface
Interface Description
init() Initialize the interface.
write() Write the requested number of bytes.

NOTE
The byte interface has no read() member. Interface reads are
performed in an interrupt handler at the packet level.

7.4 Abstract packet interface

The abstract packet interface inherits the abstract control interface.

status_t (*init) (const peripheral descriptor t *self);
status_t (*readPacket) (const peripheral descriptor t *self,

uint8_t **packet,

uint32 t *packetLength,
packet type t packetType) ;
status_t (*writePacket) (const peripheral descriptor t *self,

MCUX Flashloader Reference Manual, Rev. 2, 01/2018

NXP Semiconductors

67

Framing packetizer

const uint8_ t *packet,

uint32 t byteCount,

packet type t packetType) ;
void (*abortDataPhase) (const peripheral descriptor t *self);
status_t (*finalize) (const peripheral_descriptor_t *self);
uint32 t (*getMaxPacketSize) (const peripheral descriptor t *self);
void (*byteReceivedCallback) (uint8 t byte);

Table 7-3. Abstract packet interface

Interface Description
init() Initialize the peripheral.
readPacket() Read a full packet from the peripheral.
writePacket() Send a complete packet out the peripheral.
abortDataPhase() Abort receiving of data packets.
finalize() Shut down the peripheral when done with use.
getMaxPacketSize Returns the current maximum packet size.
byteReceivedCallback Notification of received byte.

7.5 Framing packetizer

The framing packetizer processes framing packets received via the byte interface with
which it talks. It builds and validates a framing packet as it reads bytes. And it constructs
outgoing framing packets as needed to add flow control information and command or
data packets. The framing packet also supports data phase abort.

7.6 USB HID packetizer

The USB HID packetizer implements the abstract packet interface for USB HID, taking
advantage of the USB's inherent flow control and error detection capabilities. The USB
HID packetizer provides a link layer that supports variable length packets and data phase
abort.

7.7 USB HID packetizer

The USB HID packetizer implements the abstract packet interface for USB HID, taking
advantage of the USB's inherent flow control and error detection capabilities.

The below image shows the USB MSC command/data/status flow chart:

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
68 NXP Semiconductors

Chapter 7 Peripheral interfaces

Command Transport - CBW
{Command Block Wrappper)

Data — QOut (from host to device) Data - In (from device to host)

-y

Y
Status Transport CSW
{Command Staus Wrapper)

Figure 7-3. USB MSC status flow chart

* The CBW begins on a packet boundary, and ends as a short packet. Exactly 31 bytes
are transferred.

* The CSW begins on a packet boundary, and ends as a short packet. Exactly 13 bytes
are transferred.

» The data packet begins on a packet boundary, and ends as a short packet. Exactly 64
bytes are transferred.

7.8 Command/data processor

This component reads complete packets from the abstract packet interface, and interprets
them as either command packets or data packets. The actual handling of each command
1s done by command handlers called by the command processor. The command handler
tells the command processor whether a data phase is expected and how much data it is
expected to receive.

If the command/data processor receives a unexpected command or data packet, it ignores
it. In this instance, the communications link resynchronizes upon reception of the next
valid command.

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
NXP Semiconductors 69

Command/data processor

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
70 NXP Semiconductors

Chapter 8
External Memory Support

8.1 Introduction

This section describes the external memory devices supported by the MCU Flashloader.
To use an external memory device correctly, the device must be enabled with
corresponding configuration profile. If the external memory device is not enabled, then it
cannot be accessed by Flashloader. The MCU Flashloader enables specific external
memory device using pre-assigned memory identifier, supported external memory
devices and memory identifiers are shown below.

Table 8-1. Memory ID for external memory devices

Memory Identifier External Memory device
0x01 ‘Serial NOR over QuadSPI module'
0x08 '‘Parallel NOR over SEMC module'
0x09 ‘Serial NOR over FlexSPI module'
0x100 'SLC raw NAND over SEMC module'
0x101 'Serial NAND over FlexSPI module'
0x110 ‘Serial NOR/EEPROM over LPSPI module'
0x120 'SD over uSDHC'
0x121 'eMMC over uSDHC'

8.2 Serial NOR Flash through FlexSPI

The MCU Flashloader supports read, write and erase external Serial NOR Flash devices
via the FlexSPI Module. Before accessing Serial NOR Flash devices, the FlexSPI module
must be configured properly, using a simplified FlexSPI NOR Config option block or a
complete 512-byte FlexSPI NOR Configuration Block. Flashloader can generate the 512-
byte FlexSPI NOR Configuration Block based on the simplified Flash Configuration

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
NXP Semiconductors 71

A ————
Serial NOR Flash through FlexSPI

Option Block for most Serial NOR Flash devices in the market. To protect Intellectual
Property on external Serial NOR Flash, Flashloader also supports image encryption and
programming using OTPMK/SNVS key if the chip supports BEE module. Refer to the

Security Utility chalter for further details.

8.2.1 FlexSPI NOR Configuration Block

Table 8-2. Memory ID for external memory devices

Name

Offset

Size(Bytes)

Description

Tag

0x000

0x42464346, ascii.”"FCFB”

Version

0x004

0x56010000
[07:00] bugfix
[15:08] minor
[23:16] major = 1
[31:24] ascii 'V’

0x008

Reserved

readSampleClkSrc

0x00c

0 — Internal loopback
1 — loopback from DQS pad
3 — Flash provided DQS

csHoldTime

0x00d

Serial Flash CS Hold Time

Recommend default value is
0x03

csSetupTime

0x00e

Serial Flash CS Setup Time

Recommend default value is
0x03

columnAdressWidth

0x00f

3 — For HyperFlash/
HyperRAM

12/13 — For Serial NAND, see
datasheet to find correct value

0 — Other devices

deviceModeCfgEnable

0x010

Device Mode Configuration
Enable feature

0 — Disabled
1 — Enabled

deviceModeType

0x011

Specify the Configuration
command type

0 - Generic Command
1 - Quad Enable
2 - SPI to OPI

Others - Reserved

MCUX Flashloader Reference Manual, Rev. 2, 01/2018

Table continues on the next page...

72

NXP Semiconductors

Chapter 8 External Memory Support

Table 8-2. Memory ID for external memory devices (continued)

Name

Offset

Size(Bytes)

Description

waitTimeCfgCommands

0x012

Wait time for all configuration
commands, unit: 100us.

0 - Use read status command
to determine the busy status
for configuration commands

Others - Delay
"waitTimeCfgCommads" *
100us for configuration
commands

deviceModeSeq

0x014

Sequence parameter for
device mode configuration

[7:0] LUT sequence Id

[15:8] LUT sequence number
for this sequence

[31:16] Reserved for future
use

deviceModeArg

0x018

Device Mode argument,
effective only when
deviceModeCfgEnable = 1

configCmdEnable

Ox01c

Config Command Enable
feature

0 — Disabled
1 — Enabled

configModeType

0x01d

Configure mode type, the
same definition as
"deviceModeType"

configCmdSeqs

0x020

12

Sequences for Config
Command, allow 4 separate
configuration command
sequences

0x02¢c

Reserved

cfgCmdArgs

0x030

Arguments for each separate
configuration command
sequence

0x03c

Reserved

controllerMiscOption

0x040

Bit0 — Enable differential clock
Bit2 — Enable Parallel Mode

Bit3 — Enable Word
Addressable

Bit4 — Enable Safe Config
Freq

Bit5 — Enable Pad Setting
Override

Bit6 — Enable DDR Mode

Others - Reserved

MCUX Flashloader Reference Manual, Rev. 2, 01/2018

Table continues on the next page...

NXP Semiconductors

73

A ————
Serial NOR Flash through FlexSPI

Table 8-2. Memory ID for external memory devices (continued)

Name Offset Size(Bytes) Description
deviceType 0x044 1 1 - Serial NOR
2 - Serial NAND
sflashPadType 0x045 1 1 — Single pad

2 — Dual pads
4 — Quad pads
8 — Octal pads

Others - Invalid value

serialClkFreq 0x046 1 Device specific value, check
System Boot chapter in the
SoC RM for more details

lutCustomSeqEnable 0x047 1 0 - Use pre-defined LUT
sequence index and number

1 - Use LUT sequence
parameters provided in this

block

Reserved 0x048 8 Reserved

sflashA1Size 0x050 4 For SPI NOR, need to fill with
actual size

For SPI NAND, need to fill
with actual size * 2

sflashA2Size 0x054 4 For SPI NOR, need to fill with
actual size

For SPI NAND, need to fill
with actual size * 2
sflashB1Size 0x058 4 For SPI NOR, need to fill with
actual size

For SPI NAND, need to fill
with actual size * 2
sflashB2Size 0x05¢ 4 For SPI NOR, need to fill with
actual size

For SPI NAND, need to fill
with actual size * 2

csPadSettingOverride 0x060 4 Set to 0 if it is not supported
sclkPadSettingOverride 0x064 4 Set to 0 if it is not supported
dataPadSettingOverride 0x068 4 Set to 0 if it is not supported
dgsPadSettingOverride 0x06¢ 4 Set to 0 if it is not supported
timeoutlnMs 0x070 4 Maximum wait time during

read/write

Not used in ROM
commandinterval 0x074 4 Unit: ns

Currently, it is used for SPI
NAND at high working
frequency

Table continues on the next page...

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
74 NXP Semiconductors

Chapter 8 External Memory Support

Table 8-2. Memory ID for external memory devices (continued)

Name

Offset

Size(Bytes)

Description

dataValidTime

0x078

Time from clock edge to data
valid edge, unit ns

This field is used when the
FlexSPI Root clock is less
than 100MHz and the read
sample clock source is device
provided DQS signal without
CK2 support

[31:16] data valid time for
DLLB in terms of 0.1ns

[15:0] data valid time for DLLA
in terms of 0.1ns

busyOffset

0x07¢

busy bit offset, valid range :
0-31

busyBitPolarity

0x07e

0 — busy bit is 1 if device is
busy
1 —busy bit is 0 if device is
busy

lookupTable

0x080

256

Lookup table

lutCustomSeq

0x180

48

Customized LUT sequence,
see below table for details

0x1b0

Reserved

pageSize

0Ox1c0

Flash Page size

sectorSize

Ox1c4

Flash Sector Size

ipCmdSerialClkFreq

Ox1c8

IP Command Clock
Frequency, the same
definition as "serialClkFreq"

isUniformBlockSize

Ox1c9

Sector / Block size is identical
or not

Ox1ca

serialNorType

Ox1cc

Serial NOR Flash Type:
0 - Extended SPI

1 - HyperBus

2 - Octal DDR

needExitNoCmdMode

Ox1cd

Reserved, setto 0

halfClkForNonReadCmd

Ox1ce

Divide the clock for SDR
command by 2

Need to set for the device that
only support DDR read and
other commands are SDR
commands

needrestorNoCmdMode

Ox1cf

Reserved, set 0

blockSize

0x1d0

Flash Block size

Ox1d4

44

Reserved

MCUX Flashloader Reference Manual, Rev. 2, 01/2018

NXP Semiconductors

75

A ————
Serial NOR Flash through FlexSPI

NOTE

To customize the LUT sequence for some specific device, users
need to enable “lutCustomSeqEnable” and fill in
corresponding “lutCustomSeq” field specified by command
index below.

For Serial (SPI) NOR, the pre-defined LUT index is as following:
Table 8-3. Lookup Table index pre-assignment for FlexSPI NOR

Name Index in lookup table Description
Read 0 Read command Sequence
ReadStatus 1 Read Status command
ReadStatusXpi 2 Read Status command under OPI mode
WriteEnable 3 Write Enable command sequence
WriteEnableXpi 4 Write Enable command under OPI mode
EraseSector 5 Erase Sector Command
EraseBlock 8 Erase Block Command
PageProgram 9 Page Program Command
ChipErase 11 Full Chip Erase
ExitNoCmd 15 Exit No Command Mode as needed
Reserved 6,7,10,12,13,14 All reserved indexes can be freely used

for other purpose

8.2.2 FlexSPI NOR Configuration Option Block

The FlexSPI NOR Configuration Option Block is organized by 4-bit unit, and it is
expandable, current definition of the block is as shown in below table.

The Flashloader detects FNORCB using read SFDP command which is supported by
most flash devices those are JESD216(A/B) compliant. However, JESD216A/B only
defines the dummy cycles for Quad SDR read. In order to get the dummy cycles for
DDR/DTR read mode, flashloader supports auto probing by writing test patterns to offset
0x200 on the external memory devices. To get optimal timing, the readSampleClkSrc is

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
76 NXP Semiconductors

4
Chapter 8 External Memory Support

set to 1 in Flashloader for Flash devices that do not support external provided DQS pad
input. It is set to 3 in Flashloader for flash devices that support external provided DQS
pad input such as HyperFLASH. FlexSPI_DQS pad is not used for other purpose.

Table 8-4. FlexSPI NOR Configuration Option Block

Offset Field Description
0 Option0 TAG | Option | Device | Query | CMD | Quad | Misc[7:| Max
[31:28] size Detecti| CMD Pad(s) | Enable 4] Freq
[27:24] | on Type| Pad(s) | [15:12] | Type[11 [3:0]
[23:20] | [19:16] :8]
0x0c Sizein |0- 0-1 0-1 1-QE |3-Byte |Device
bytes = |QuadSPI 5.4 5.4 bit is bit |orderis |specific,
(Option |SDR 6in swapped |see
Size + 1) 1- 3-8 3-8 StatusRe |under System
*4 gl OPI Boot
QuadSPI
DDR 2. QE DDR F;hapter
bit is bit mode in SoC
2- 1in RM for
HyperFL more
ASH 1V8 StatusRe details
g2
3-
o
ASH 3V bit7 in
4 - MXIC StatusRe
OPI g2
DDR 4-QE
6- bit is bit
Micron 1in
OPI StatusRe
DDR 92,
8- enable
comman
Adesto .
oPI d is 0x31
DDR
4 Option1 Optional Reserved [31:8] Dummy Cycle [7:0]
Reserved for future use 0 - Use auto-probing dummy cycle
Others - dummy cycles provided in data
sheet

Tag - Fixed as 0x0C

Option Size - Provide scalability for future use, the option block size equals to
(Option size + 1) * 4 bytes

Device Detection type - SW defined device types used for config block auto
detection

Query Command Pad(s) - Command pads (1/4/8) for the SFDP command

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
NXP Semiconductors 77

A
Serial NOR Flash through FlexSPI
e CMD pad(s) - Commands pads for the Flash device (1/4/8), for device that works
under 1-1-4,1-4-4,1-1-8 or 1-8-8 mode, CMD pad(s) value is always 0x0, for devices
that only support 4-4-4 mode for high performance, CMD pads value is 2, for devices
that only support 8-8-8 mode for high performance, CMD pads value is 3
* Quad Enable Type - Specify the Quad Enable sequence, only applicable for device
that only JESD216 compliant, this field is ignored if device support JESD216A or
later version
* Misc - Specify miscellaneous mode for selected flash type
* Max Frequency - the maximum work frequency for specified Flash device
e Dummy Cycle - user provided dummy cycles for SDR/DDR read command

8.2.2.1 Typical use cases for FlexSPI NOR Configuration Block

* QuadSPI NOR - Quad SDR Read: option0 = 0xc0000006 (100MHz)

* QuadSPI NOR - Quad DDR Read: option0 = 0xc0100003 (60MHz)

e HyperFLASH 1V8: option0 = 0xc0233007 (133MHz)

* HyperFLASH 3VO0: option0 = 0xc0333006 (100MHz)

» MXIC OPI DDR (OPI DDR enabled by default): option=0xc0433006(100MHz)

* Micron Octal DDR: option0=0xc0600006 (100MHz)

* Micron OPI DDR: option0=0xc0603006 (100MHz), SPI->OPI DDR

* Micron OPI DDR (DDR read enabled by default): option0=0xc0633006(100MHz)
* Adesto OPI DDR: option0=0xc0803007(133MHz)

8.2.2.2 Program Serial NOR Flash device using FlexSPI NOR
Configuration Option

The MCU Flashloader supports generating complete FNORCB using configure-memory
command. It also supports programming the generated FNORCB to the start of the flash
memory using a specific option "OxFOOOOOOF". Here is the example for configuring and
accessing HyperFLASH (Assuming it is a blank HyperFLASH device).

blhost -u -- fill-memory 0x2000 0x04 0xc0233007 (write option block to SRAM address 0x2000)
blhost -u -- configure-memory 0x09 0x2000 (configure HyperFLASH using option block)

blhost -u -- fill-memory 0x3000 0x04 0xf000000f (write specific option to SRAM address
0x3000)

blhost -u -- configure-memory 0x09 0x3000 (program FNORCB to the start of HyperFLASH)
blhost -u -- write-memory <addr> image.bin

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
78 NXP Semiconductors

4
Chapter 8 External Memory Support

8.3 Serial NAND Flash through FlexSPI

Some MCU support booting from Serial NAND Flash devices via BootROM, the MCU
Flashloader works as a companion to program the boot image into the Serial NAND, the
Flashloader supports generating corresponding boot data structure like FlexSPI NAND
Firmware Configuration Block (FCB) and Discovered Bad Block Table (DBBT) required
by the BootROM. Please refer to System Boot Chapter in device reference manual for
details regarding FlexSPI NAND boot flow. This chapter only focuses on generating
FCB, DBBT and programming FCB, DBBT and boot images using Flashloader.
Flashloader can configure Serial NAND devices using FCB, or a simplified FCB option
block, Flashloader can generate a complete FCB based on the simplified FCB option
block.

8.3.1 FlexSPI NAND Firmware Configuration Block(FCB)

FCB is a 1024-byte data structure that contains the optimum NAND timings, page
address of Discovered Bad Block Table (DBBT) Search Area and firmware info
(including start page address and page count), etc.

Table 8-5. FlexSPI NAND Firmware Configuration Block Definition

Name Offset Size(Bytes) Description
crcChecksum 0x000 4 Checksum
fingerprint 0x004 4 0x4E46_4342
ASCII: “NFCB”
version 0x008 4 0x0000_0001
DBBTSearchStartPage 0x00c 4 Start Page address for bad
block table search area
searchStride 0x010 2 Search stride for DBBT and
FCB search

Not used by ROM, max value
is defined in Fusemap. See
the Fusemap in SoC RM for
more details.

searchCount 0x012 2 Copies on DBBT and FCB

Not used by ROM, max value
is defined in Fusemap. See
the Fusemap in SoC RM for
more detalils.

firmwareCopies 0x014 4 Firmware copies

Valid range 1-8

Table continues on the next page...

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
NXP Semiconductors 79

Serial NAND Flash through FlexSPI
Table 8-5. FlexSPI NAND Firmware Configuration Block Definition

(continued)

Name Offset Size(Bytes) Description
Reserved 0x018 40 Reserved for future use
Must be set to 0
firmwarelnfoTable 0x40 64 This table consists of (up to 8
entries):
Field | Size(By | Descrip
tes) tion
StartPag |4 Start
e page of
this
firmware
pageCo |4 Pages in
unt this
firmware
Reserved 0x080 128 Reserved
Must be set to 0
spiNandConfigBlock 0x100 512 Serial NAND configuration
block over FlexSPI
Reserved 0x300 256 Reserved
Must be setto 0

8.3.2 FlexSPI NAND Configuration Block

The optimum Serial NAND parameters are defined in FlexSPI NAND Configuration
Block (FNANDCB), FNANDCB is a 512-byte data structure as shown in below table.

Table 8-6. FlexSPI NAND Configuration Block Definition

Name Offset Size (Bytes) Description
memCfg 0x00 480 The same definition as the
first 480 bytes in FlexSPI NOR
Configuration Block
pageDataSize 0x1c0 480 Page size in bytes, in general,
it is 2048 or 4096
pageTotalSize Ox1c4 4 It equals to 2 ~ width of
column address
pagesPerBlock 0x1c8 4 Pages per Block
bypassReadStatus Oxicc 1 0 - Perform Read Status
1 - Bypass Read Status

Table continues on the next page...

MCUX Flashloader Reference Manual, Rev. 2, 01/2018

80

NXP Semiconductors

Chapter 8 External Memory Support

Table 8-6. FlexSPI NAND Configuration Block Definition

(continued)

Name Offset Size (Bytes) Description
bypassEccRead Ox1cd 1 0 - Perform ECC Read
1 - Bypass ECC Read
hasMultiPlanes Ox1ce 1 0 - Device has only 1 plane

1 - Device has 2 planes

- Ox1cf 1 Reserved

eccCheckCustomEnable 0x1d0 1 0 - Use the commonly used
ECC check command and
masks

1 - Use ECC check related
masks provide in this
configuration block

ipCmdSerialClkFreq

Ox1d1 1 Chip specific value, set to 0

readPageTimeUs

0x1d2 2 Wait time during page read,
only effective if
"bypassReadStatus" is set to
1

eccStatusMask 0x1d4 4 ECC status mask, only
effective if
"eccCheckCustomEnable" is
setto 1

eccFailureMask 0x1d8 4 ECC Check Failure mask,

only effective if
"eccCheckCustomEnable" is

setto 1
blocksPerDevice Ox1dc 4 Blocks in a Serial NAND
device
- Ox1e0 32 Reserved

NOTE

For Serial (SPI) NAND, the pre-defined LUT index is as
following:

Table 8-7. Lookup Table index pre-assignment for FlexSPI

Command Index Name Index in lookup table Description
0 ReadFromCache 0 Read From cache
1 ReadStatus 1 Read Status
2 WriteEnable 3 Write Enable
3 BlockErase 5 Erase block
4 ProgramLoad 9 Program Load
5 ReadPage 11 Read page to cache
6 ReadEccStatus 13 Read ECC Status
7 ProgramExecute 14 Program Execute

Table continues on the next page...

MCUX Flashloader Reference Manual, Rev. 2, 01/2018

NXP Semiconductors

81

A ————
Serial NAND Flash through FlexSPI

Table 8-7. Lookup Table index pre-assignment for FlexSPI (continued)

Command Index Name Index in lookup table Description
8 ReadFromCacheOdd 4 Read from Cache while page
in odd plane
9 ProgramLoadOdd 10 -
- Reserved 2,6,7,8,12,15 All reserved indexes can be

freely used for other purposes

8.3.3 FlexSPI NAND FCB option block

FlexSPI NAND FCB option block defines the major parameters required by FCB, such as
image info. The detailed configuration block definition is shown below.

Table 8-8. FlexSPI NAND FCB option block

Offset Field Size Description
0 option0 4 Offset Field Description

31:28 tag Fixed to OxOE

27:24 searchCount |Valid value:
1-4

23:20 searchStride |0 - 64 pages
1 - 128 pages
2 - 256 pages
3 - 32 pages
NOTE: This fig

is
aligned
with
Fuse
definiti

19:12 Reserved -

11:8 Reserved 0 - byte
address
1 - block
address

74 Reserved -

3.0 Reserved Option size in
longword, Min
size is 3, Max
size is 10

4 nandOptionAddr 4 Address of NAND option defined above

Table continues on the next page...

MCUX Flashloader Reference Manual, Rev. 2, 01/2018

82

NXP Semiconductors

Chapter 8 External Memory Support
Table 8-8. FlexSPI NAND FCB option block (continued)

8 imagelnfo 4-32 Image info is a map of below info, maximum
entry size is 8

Field Size Description

blockCount 2 Maximum
allowed blocks
for this image

blockld 2 Start block
index for this
image

NOTE

* “searchCount” should match the one provisioned in eFUSE

* “searchStride” should match the one provisioned in eFUSE

» “addressType” specifies the address type for the start
address of erase, write and read operation in Flashloader

* “Option size” specifies the total size of the option block
size in longwords

* “nandOptionAddr” specifies the address that stores FlexSPI
NAND Configuration Option

* “imagelnfo” is an array that holds each image info used
during boot. For example, 0x00040002 means the block Id
1s 4, maximum allowed block count is 2

8.3.4 FlexSPI NAND Configuration Option Block

Currently, all the Serial NAND devices in the market support the same commands,
differences are the NAND size, page size, etc. This option block will focus on these
differences, the detailed block definitions are shown below

Table 8-9. FlexSPI NAND Configuration Option Block

Offset Field Description
0 option 0 TAG Option |Reserve |Flash Has Pages |Page Max
[31:28] |size d [23:20] |size multipla |Per Size Freq
[27:24] [19:16] |nes Block (Kbytes) |[3:0]
[15:12] |([11:8] [7:4]

Table continues on the next page...

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
NXP Semiconductors 83

A ————
Serial NAND Flash through FlexSPI

Table 8-9. FlexSPI NAND Configuration Option Block
(continued)

Offset Field Description
0x0c Sizein |0 0- 0-1 0-64 2-2KB |NAND
byte§ = 512Mb |plane 1-128 |4 -4KB Freq:
(Option 1-1Gb [1-2 Device
Size + 1) planes 2 - 256 specific
4 2-2Gb 3.3
4 -4Gb
4 option 1 This field is optional, it is effective if option size in option0 is greater than 0
Reserved [31:8] Manufacturer ID [7:0]
Reserved for future use Actual Manufacturer ID provided in Serial
NAND device datasheet
For example, 0x2C is the manufacture 1D
assigned to Micron

8.3.5 Example usage with Flashloader

Flashloader can generate FCB and DBBT based on specified FlexSPI NAND FCB option
block.

Assuming FCB parameters are:

* FCB and DBBT copies are 2

* Firmware copies are 2

e Firmware O starts at block 4, maximum block count is 2
e Firmware 1 starts at block 8, maximum block count is 2

Assuming Serial NAND parameters are:

* Flash size: 1Gbit

* Plane number:1

* Pages Per Block:64

» Page Size: 2KB

e Maximum Frequency: 80MHz

Based on above info, here is an example steps for generating FlexSPI NAND
Configuration Option block. Write FlexSPI NAND Configuration Option Block to
SRAM

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
84 NXP Semiconductors

Chapter 8 External Memory Support

blhost -u -- fill-memory 0x2030 0x4 0xc0010025

Write FlexSPI NAND FCB Option Block to SRAM

blhost - u -- fill-memory 0x2000 0x4 0xc2000104

blhost -u -- fill-memory 0x2004 0x4 0x2030 // nandOptionAddr = 0x2030

blhost -u -- fill-memory 0x2008 0x4 0x00040002 // blockId = 4, blockCount = 2
blhost -u -- fill-memory 0x200c 0x4 0x00080002 // blockId = 8, blockCount = 2

Configure Serial NAND using FCB option and NAND option

blhost -u -- configure-memory 0x101 0x2000

Erase and Program image

blhost -u -- flash-erase-region 0x4 0x2 0x101 // Erase 2 blocks starting from
block 4

blhost -u -- write-memory 0x4 image.bin 0x101 // Program image.bin to block 4
blhost -u -- flash-erase-region 0x8 0x2 0x101 // Erase 2 blocks starting from
block 8

blhost -u -- write-memory 0x8 image.bin 0x101 // Program image.bin to block 8

8.4 SD/eMMC through uSDHC

Some MCU BootROM supports booting from SD/eMMC devices, then the MCU
Flashloader supports to flash the boot image into the SD/eMMC devices. This Charpter
explains the usage of SD/eMMC via Flashloader.

8.4.1 SD Configuration Block

SD Card must be initialized before Flashloader access SD memory. The SD configuration
block is a combination of several necessary SD configurations used by Flashloader to
initialize the card.

Table 8.3.1 Lists the detailed description of each bits in the SD configuration block.
Table 8-10. SD Configuration Block Definition

Word Index Bit Field Name Description

WordO [31:28] TAG SD configuration block tag
used to mark if the block is
valid or not.
0xD: Valid block

Table continues on the next page...

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
NXP Semiconductors 85

SD/eMMC through uSDHC

Table 8-10. SD Configuration Block Definition

(continued)

Others: Invalid

[27:26]

RSV

0x0

[25:24]

PWR_DOWN_TIME

SD power down delay time
before power up the SD card.

Only valid when
PWR_CYCLE_ENABLE is
enable.

0: 20ms
1: 10ms
2:5ms

3:2.5ms

23

PWR_POLARITY

SD power control polarity.

Only valid when
PWR_CYCLE_ENABLE is
enable.

0: Power down when
USDHC.RST set low.

1: Power down when
uSDHC.RST set high.

[22:21]

RSV

0x0

20

PWR_UP_TIME

SD power up delay time to
wait voltage regulator output
stable.

Only valid when
PWR_CYCLE_ENABLE is
enable.

0: 5ms
1:2.5ms

19

PWR_CYCLE_ENABLE

Execute a power cycle before
start the initialization
progress.[1]

0: disable for non-UHSI
timing,[2]

enable for UHSI timing

1: enable

[18:15]

RSV

0x0

[14:12]

TIMING_INTERFACE

SD speed timing selection.
0: Normal/SDR12

1: High/SDR25

2: SDR50

3: SDR104

4: DDR50 (Not support yet)

5-7: Reserved

MCUX Flashloader Reference Manual, Rev. 2, 01/2018

Table continues on the next page...

86

NXP Semiconductors

Chapter 8 External Memory Support

Table 8-10. SD Configuration Block Definition
(continued)

[11:9] RSV 0x0

8 BUS_WIDTH SD bus width selection.
0: 1 bit,
4bit for UHSI timing
1: 4 bit

[7:0] RSV 0x0

Word1 [31:0] RSV 0x0
NOTE

Flashloader toggles the uSDHC.RST pin to execute the power
cycle progress. This needs board-level hardware support. If the
hardware doesn’t support controlling SD power, the power
cycle progress cannot really reset the SD card.

NOTE
UHSI timing includes SDR50, SDR104 and DDRS50.

8.4.2 Example usage with Flashloader

Here uses the SDR25 timing and 4bit bus width as an example. To make sure the SD card
is reset before the initialization progress, it is suggested to enable the power cycle. Here
choose the default settings of power cycle.

So, the hex of the SD configuration block is 0xD0082100.

» Write the configuration block to MCU internal RAM. vihost -u - £ill-memory
0x20000000 ox4 oxcoos2100 RAM address 0x20000000 is selected as an example. User
can select any RAM position which are available to use. User also can select an
address locates at an XIP external memory, such as Flex SPI NOR Flash.

 Execute the initialization progress using configure-memory command. blhost -u -
configure-memory 0x120 0x20000000 0X120 is the memory ID of eMMC card device. If
the eMMC card is initialized successfully, then a “Success” will be received and SD
memory is available to be accessed by Flashloader. If an error occurred, please refer
the Charpter 10 Appendix A: status and error codes for debugging.

» After SD is initialized, user can use get property 25 command to check the SD card
Capacity. blhost -u - get-property 25 0x120

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
NXP Semiconductors 87

SD/eMMC through uSDHC

e To program the boot image, user needs to erase the SD card memory firstly and then
program the image.

blhost -u - flash-erase-region 0x0 0x1000 0x120
blhost -u - write-memory 0x400 C:\Image\bootImage.bin 0x120

0x0 at the flash-erase-region command line and 0x400 at the write-memory
command line is the byte offset of the SD memory, not the sector offset. That means
4K bytes starting from the start address of SD memory will be erased, then the boot
image C:\Image\bootlmage.bin will be written to the space starting from SD second

Block.

* To check if the boot image is programmed successfully, user can read the data out.

blhost -u - read-memory 0x400 0x1000 0x120

In most cases, user won’t need to read the data out to verify if the boot image is
written successfully or not, Flashloader will guarantee it.

8.4.3 eMMC Configuration Block

Similar to SD Card, eMMC also must be initialized before accessing it. The eMMC
configuration block is used to tell Flashloader how to initialize the eMMC device. To use
the fast boot feature offered by BootROM, eMMC also must be pre-configured. The fast
boot configuration is also included in the eMMC configuration block.

Table 8.3.3 Lists the detailed description of each bits in the eMMC configuration block.

Table 8-11. eMMC Configuration Block Definition

MCUX Flashloader Reference Manual, Rev. 2, 01/2018

Word Index Bit Field Name Description
WordO [31:28] TAG eMMC configuration block tag
used to mark if the block is
valid or not.
0xC: Valid block
Others: Invalid
27 RSV 0x0
[26:24] PARTITION_ACCESS Select eMMC partition which

Table continues on the next page...

the Flashloader write the
image or data to

0: User data area
1: Boot partition 1
2: Boot partition 2
3: RPMB

88

NXP Semiconductors

4
Chapter 8 External Memory Support

Table 8-11. eMMC Configuration Block Definition (continued)

4: General Purpose parition 1
5: General Purpose parition 2
6: General Purpose parition 3

7: General Purpose parition 4

23

RSV

0x0

[22:20]

BOOT_PARTITION_ENABLE

Select the boot partition used
for fast boot.

Only valid when
BOOT_CONFIG_ENABLE is
set

0: Not enabled
1: Boot partition 1
2: Boot partition 2
3-6: Reserved

7: User data area

[19:18]

RSV

0x0

[17:16]

BOOT_BUS_WIDTH

Select the bus width used for
fast boot.

0: x1(SDR),
x4(DDR)

1: x4(SDR,DDR)
2: x8(SDR,DDR)

3: Reserved

[15:12]

TIMING_INTERFACE

Select the bus timing when
Flashloader accesses eMMC
memory.

0: Normal

1: HS

2: HS200(Not support yet)
3: HS400(Not support yet)
4-15: Reserved

[11:8]

BUS_WIDTH

Select the bus width when
Flashloader accesses eMMC
memory.

0: x1 SDR

1: x4 SDR

2: x8 SDR

3-4: Reserved
5: x4 DDR

6: x8 DDR
7-15: Reserved

MCUX Flashloader Reference Manual, Rev. 2, 01/2018

Table continues on the next page...

NXP Semiconductors

89

A ————
SD/eMMC through uSDHC

Table 8-11. eMMC Configuration Block Definition (continued)

[7:6]

RSV

0x0

[5:4]

BOOT_MODE

0: Normal
1: HS
2: DDR

3: Reserved

RESET_BOOT_BUS_CONDI
TIONS

Configure eMMC behavior
after exiting fast boot

0: Reset to x1,SDR,Normal

1: Retain boot config

BOOT_ACK

Configure eMMC ACK
behavior at fast boot.

0: NO ACK
1: ACK

RSV

0x0

BOOT_CONFIG_ENABLE

Determine if write fast boot
configurations into eMMC or
not.[2]

0: Boot configuration will be
ignored.

1: Boot configuration will be
written into device

Word1

[31:26]

RSV

0x0

[25:24]

PWR_DOWN_TIME

eMMC power down delay time
before power up the eMMC
card.

Only valid when
PWR_CYCLE_ENABLE is
enable

0: 20ms
1: 10ms
2:5ms

3:2.5ms

23

PWR_POLARITY

eMMC power control polarity.

Only valid when
PWR_CYCLE_ENABLE is
enable

0: Power down when
uSDHC.RST set low.

1: Power down when
uSDHC.RST set high.

[22:21]

RSV

0x0

20

MCUX Flashloader Reference Manual, Rev. 2, 01/2018

PWR_UP_TIME

Table continues on the next page...

eMMC power up delay time to
wait voltage regulator output
stable.

90

NXP Semiconductors

Chapter 8 External Memory Support

Table 8-11. eMMC Configuration Block Definition (continued)

Only valid when
PWR_CYCLE_ENABLE is
enable

0: 5ms
1:2.5ms

19

PWR_CYCLE_ENABLE

Execute a power cycle before
start the SD initialization
progress.

0: disable

1: enable

18

1V8_ENABLE

Select if set
uSDHC.VSELECT pin.

0: not set vselect pin

1: set vselect pin high

[17:0]

RSV

0x0

NOTE
Fast boot configuration includes

BOOT_PARTITION_ENABLE, BOOT_BUS_WIDTH,
BOOT_MODE, RESET_BOOT_BUS_CONDITIONS and

BOOT_ACK.

8.4.4 Example usage with Flashloader

Here uses the 8bit DDR mode as an example, and boot image is written to user data area.
After writing the boot image, user want bootROM to boot the image via fast boot to
decrease the boot time. Fast boot also uses the same mode — 8it DDR mode. ACK is

enabled for fast boot.

So the hex of the eMMC configuration block is 0xC0721625, 0x00000000
* Write the configuration block to MCU internal RAM.

blhost -u - fill-memory 0x20000000 0x4 0xC0721625
blhost -u - fill-memory 0x20000004 0x4 0x00000000

RAM address 0x20000000 is selected as an example. User can select any RAM
position which are available to use. User also can select an address locates at an XIP
external memory, such as Flex SPI NOR Flash.

MCUX Flashloader Reference Manual, Rev. 2, 01/2018

NXP Semiconductors

91

A ————
SD/eMMC through uSDHC
» Execute the initialization progress using configure-memory command. bihost -u -
configure-memory 0x121 0x20000000 0X121 is the memory ID of eMMC card device. If
the eMMC card is initialized successfully, then a “Success” will be recieved. If an
error occurred, please refer the Charpter 10 Appendix A: status and error codes for
debugging.

» After step 2, eMMC is available to access. User can use get property 25 command to
check the eMMC card capacity. bihost -u - get-property 25 0x121

* To program the boot image, user shall erase the eMMC card memory before program
the image.

blhost -u - flash-erase-region 0x0 0x2000 0x121
blhost -u - write-memory 0x400 C:\Image\bootImage.bin 0x121

the address of eMMC memory in the command line is byte address, not sector
address. That means 8K bytes starting from the start address of eMMC memory will
be erased, then the boot image C:\Image\bootlmage.bin will be written to eMMC 1st
Block.

* To check if the boot image is programmed successfully, user can read the data out.

blhost -u - read-memory 0x200 0x2000 0x121

In most cases, user won’t need to read the data out to verify if the boot image is
written successfully or not, Flashloader will guarantee it when user gets a “Success”
status for write-memory command.

If user want to swith to other partitions of the eMMC device, user has to re-configure
the eMMC devices two times.

 Select the Boot partition 1, bus width and speed timing are kept unchanged. Fast boot
configuration is not necessary if user doesn’t want to update it.

blhost -u - fill-memory 0x20000000 0x4 0xC1001600

blhost -u - configure-memory 0x121 0x20000000

blhost -u - flash-erase-region 0x0 0x1000 0x121

blhost -u - write-memory 0x400 C:\Image\bootPartitionOnelImage.bin 0x121

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
92 NXP Semiconductors

Chapter 9
Security Utilities

9.1 Introduction

The MCU Flashloader supports some security utilities that can generate some security
related blocks easily, to enable these security utilities, be aware that the Flashloader itself
must be signed first to enable the security utilities correctly.

9.2 Image Encryption and Programming

For device with BEE module, it supports two encrypted regions using two unique crypto
keys. Each encrypted region can support up to 3 sub-divided FAC regions, totally, 3 FAC
regions are supported by two encrypted regions. See the details of the image decryption
and data structure required for image decryption in System Boot Chapter in SoC’s RM, in
the section, it focuses on encrypted image generation and programming using
Flashloader. Be aware that Flashloader only supports image encryption and programming
for the first encrypted region using OTPMK/SNVS key. Flashloader generates encrypted
image based on a simplified PRDB option block, which is defined as below.

Table 9-1. PRDB option block

Offset Field Size(Byte Description
s)
0 Option 4 Tag Key Mode FAC | Region1| Region2| Region3| LockOpt
[31:28] | source | [23:20] | Region | Protecti | Protecti | Protecti | ion [3:0]
[27:24] Count on on on

[19:16] Mode Mode Mode
[15:12] [11:8] [7:4]

OXE 0- 1-AES [1/2/3 0/1/ 0/1 0/1 0- No
OTPMK/ |CTR Lock
SNVS
[255:128]

Table continues on the next page...

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
NXP Semiconductors 93

Image Encryption and Programming

Table 9-1. PRDB option block (continued)

Offset Field Size(Byte Description
s)
Tag Key Mode FAC Region1| Region2 | Region3| LockOpt
[31:28] | source | [23:20] | Region | Protecti | Protecti | Protecti | ion [3:0]
[27:24] Count on on on

[19:16] Mode Mode Mode
[15:12] [11:8] [7:4]

1-
OTPMK /

SNVS
[127:0]
4 Fac 8-24 Offset Field Description
Region info -
Start Fac Region Start
Size Fac Region Size
NOTE

» Tag is fixed as OxOE

* Key Source can be OTPMK/SNVS [255:128] or OTPMK/
SNVS [127:0]

* Mode: it is recommended to use AES-CTR mode

* FAC Region Count: Maximum allowed FAC region
number is 3 (shared by encrypted region 0 and encrypted
region 1)

* Region n Protection mode: O — No protection, 1 — Debug
disabled

e Lock Option: must be 0

9.2.1 Example to generate encrypted image and program to
Flash

Take HyperFLASH as an example, assuming the encrypted info is:

» Key source: OTPMK/SNVS [255:128]
* FAC region Count:2
* Region Protection mode: 1

Here are the steps to create PRDB option block
Configure HyperFLLASH using FlexSPI NOR Configuration Option Block

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
94 NXP Semiconductors

4
Chapter 9 Security Utilities

blhost -u -- fill-memory 0x2000 0x04 0xc0233007 (133MHz)
blhost -u -- configure-memory 0x9 0x2000

blhost -u -- fill-memory 0x3000 0x04 0xf000000f

blhost -u -- configure-memory 0x09 0x3000

Prepare PRDBO info using PRDB option block

blhost -u -- fill-memory 0x4000 0x04 0xe0121100
blhost -u -- configure-memory 0x09 0x4000
Program HyperFLASH

blhost -u -- write-memory <addr> image.bin

9.3 KeyBlob Generation and Programming

9.3.1 KeyBlob

KeyBIlob is a data structure that wraps the DEK for image decryption using AES-CCM
algorithm. The whole KeyBlob data structure is shown below.

Table 9-2. KeyBlob Data structure

Field Size(Bytes) Description
Header 4 Offset Field Description
0 tag Fixed value: 0x81
1-2 len Length of KeyBlob
block, 16-bit big-
endian order
3 par KeyBlob Version,
set to 0x42 or 0x43
AEAD 4 Offset Field Description
0 mode Fixed to 0x66,
CCM mode
1 alg Fixed to 0x55,
Crypto Algorithm:
AES
mac_bytes Fixed to 16
aad_bytes Fixed to O
EBK 16/32 Blob key is used for DEK encryption, it is a random number
generated by TRNG engine

Table continues on the next page...

MCUX Flashloader Reference Manual, Rev. 2, 01/2018

NXP Semiconductors

95

A ————
KeyBlob Generation and Programming

Table 9-2. KeyBlob Data structure (continued)

Field Size(Bytes) Description

Blob key is encrypted to EBK by a key derived from Security
Engine such as SNVS or CAAM

EDEK 16/24/32 DEK is used for boot image encryption, it is encrypted to
EDEK by the BK with AES algorithm using AES-CCM mode
MAC 16 MAC is generated during DEK encryption

9.3.2 KeyBlob Option Block

The MCU Flashloader supports KeyBlob generation and programming using a simplified
option block called KeyBlob Option Block.

Table 9-3. KeyBlob Data structure

Offset Field Size Description

0 option 4 Offset Field Description
31:28 Tag Fixed to 0x0OB

27:24 type 0 - Update,
used to update
the keyblob
context

1 - Program -
used to notify
memory driver
to program
Keyblob to
destination

23:20 size keyblob_info
size

must equal to 3
if type =0,
ignored if type
=1

19:8 Reserved -
74 dek_size DEK size

0 - 128 bits
1-192 bits
2 - 256 bits

Effective if type
=0, ignored if
type =1

3:0 image_index |Boot image
index

Table continues on the next page...

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
96 NXP Semiconductors

Chapter 9 Security Utilities

Table 9-3. KeyBlob Data structure (continued)

Offset Field Size Description
Offset Field Description
For example,
index for

firmwareTable

effective if type

=1, ignored if
type =0

1 dek_addr 4 Start address for the memory holds DEK

2 keyblob_offset 4 The relative Keyblob offset in the selected image

For example, a signed image that contains IVT,
encrypted application, CSF, Key blob

IVT is at offset 0x400

Encrypted image is at offset 0x2000
CSF is at offset 0xA000

KeyBlob is at offset 0xBO00

NOTE: For NAND device, keyblob_offset must
be page aligned

9.3.3 Example to generate and program KeyBlob

Generate KeyBlob
/l Write DEK to RAM

blhost -u -- write-memory 0x2100 dek.bin

/I Construct KeyBlob option

blhost -u -- fill-memory 0x2080 4 0xb0300000 // tag = 0xO0b, type = 0, size = 3, dek_size = 0
(128bits)

blhost -u -- fill-memory 0x2084 4 0x2100 // dek_addr = 0x2100

blhost -u -- fill-memory 02088 4 0x80000 // keybob offset = 0x80000, keybob is
located at offset 0x80000 in application image

// Update KeyBlob Info

blhost -u -- configure-memory 0x101 0x2080 // Update KeyBlob Info (memory id: 0x101 -

FlexSPI NAND)

// Program KeyBlob

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
NXP Semiconductors 97

KeyBlob Generation and Programming

blhost -u -- fill-memory 0x2088 0xb1000000 // tag = 0x0b, type = 1, image_index = 0
blhost -u -- configure-memory 0x101 0x2080 // Generate KeyBlob and program it into offset
<keyblob offset> in the selected Image <image idex> memory region

MCUX Flashloader Reference Manual, Rev. 2, 01/2018

98 NXP Semiconductors

Chapter 10
Appendix A: status and error codes

Status and error codes are grouped by component. Each component that defines errors
has a group number. This expression is used to construct a status code value.

status_code = (group * 100) + code

Component group numbers are listed in this table.

Table 10-1. Component group numbers
Group Component
0 Generic errors
1 Flash driver
4 QuadSPI driver
5 OTFAD driver
100 Bootloader
101 SB loader
102 Memory interface
103 Property store
104 CRC checker
105 Packetizer
106 Reliable update

The following table lists all of the error and status codes.

Table 10-2. Error and status codes

Name Value Description

kStatus_Success

Operation succeeded without error.

kStatus_Fail

Operation failed with a generic error.

kStatus_ReadOnly

Property cannot be changed because it is read-only.

kStatus_OutOfRange

Requested value is out of range.

kStatus_InvalidArgument

The requested command's argument is undefined.

kStatus_Timeout

alh|lOWIN|=|O

A timeout occurred.

Table continues on the next page...

MCUX Flashloader Reference Manual, Rev. 2, 01/2018

NXP Semiconductors

99

Table 10-2. Error and status codes (continued)

Name Value Description
kStatus_NoTransferlnProgress 6 The current transfer status is idle.
kStatus_FlashSizeError 100 Not used.
kStatus_FlashAlignmentError 101 Address or length does not meet required alignment.
kStatus_FlashAddressError 102 Address or length is outside addressable memory.
kStatus_FlashAccessError 103 The FTFA_FSTAT[ACCERR] bit is set.
kStatus_FlashProtectionViolation 104 The FTFA_FSTAT[FPVIOL] bit is set.
kStatus_FlashCommandFailure 105 The FTFA_FSTAT[MGSTATO] bit is set.
kStatus_FlashUnknownProperty 106 Unknown Flash property.
kStatus_FlashEraseKeyError 107 Error in erasing the key.
kStatus_FlashRegionOnExecuteOnly 108 The region is execute only region.
kStatus_FlashAPINotSupported 115 Unsupported Flash APl is called.
kStatus_QspiFlashSizeError 400 Error in QuadSPI flash size.
kStatus_QspiFlashAlignmentError 401 Error in QuadSPI flash alignment.
kStatus_QspiFlashAddressError 402 Error in QuadSPI flash address.
kStatus_QspiFlashCommandFailure 403 QuadSPI flash command failure.
kStatus_QspiFlashUnknownProperty 404 Unknown QuadSPI flash property.
kStatus_QspiNotConfigured 405 QuadSPI not configured.
kStatus_QspiCommandNotSupported 406 QuadSPI command not supported.
kStatus_QspiCommandTimeout 407 QuadSPI command timed out.
kStatus_QspiWriteFailure 408 QuadSPI write failure.
kStatus_QspiModuleBusy 409 QuadSPI module is busy.
kStatus_OtfadSecurityViolation 500 Security violation in OTFAD module.
kStatus_OtfadLogicallyDisabled 501 OTFAD module is logically disabled.
kStatus_OtfadinvalidKey 502 The key is invalid.
kStatus_OtfadInvalidKeyBlob 503 The Key blob is invalid.
kStatus_SDMMC_NotSupportYet 1800 Not supported this feature.
kStatus_SDMMC_TransferFailed 1801 Failed to communicate with the device.
kStatus_SDMMC_SetCardBlockSizeFail | 1802 Failed to set the block size.
ed
kStatus_SDMMC_HostNotSupport 1803 Host doesn't support this feature.
kStatus_SDMMC_CardNotSupport 1804 The card does not support this feature.
kStatus_SDMMC_AIISendCidFailed 1805 Failed to send CID.
kStatus_SDMMC_SendRelativeAddress | 1806 Failed to send relative address.

Failed

kStatus_SDMMC_SendCsdFailed 1807 Failed to send CSD.
kStatus_SDMMC_SelectCardFailed 1808 Failed to select card.
kStatus_SDMMC_SendScrFailed 1809 Failed to send SCR.
kStatus_SDMMC_SetDataBusWidthFail |1810 Failed to set bus width.
ed

kStatus_SDMMC_GoldleFailed 1811 Go idle failed.

Table continues on the next page...

MCUX Flashloader Reference Manual, Rev. 2, 01/2018

100

NXP Semiconductors

Chapter 10 Appendix A: status and error codes

Table 10-2. Error and status codes (continued)

Name Value Description
kStatus_SDMMC_HandShakeOperation {1812 Failed to send operation condition.
ConditionFailed
kStatus_SDMMC_SendApplicationCom |1813 Failed to send application command.
mandFailed
kStatus_SDMMC_SwitchFailed 1814 Switch command failed.
kStatus_SDMMC_StopTransmissionFail |1815 Stop transmission failed.
ed
kStatus_SDMMC_WaitWriteCompleteFa | 1816 Failed to wait write complete.
iled
kStatus_SDMMC_SetBlockCountFailed |1817 Failed to set block count.
kStatus_SDMMC_SetRelativeAddressF |1818 Failed to set relative address.
ailed
kStatus_SDMMC_SwitchBusTimingFaile | 1819 Failed to switch high speed.

d

kStatus_SDMMC_SendExtendedCsdFai | 1820 Failed to send EXT_CSD.

led

kStatus_SDMMC_ConfigureBootFailed |1821 Failed to configure boot.

kStatus_SDMMC_ConfigureExtendedCs | 1822 Failed to configure EXT_CSD.

dFailed

kStatus_SDMMC_EnableHighCapacityE | 1823 Failed to enable high capacity erase.

raseFailed

kStatus_SDMMC_SendTestPatternFaile | 1824 Failed to send test pattern.

d

kStatus_SDMMC_ReceiveTestPatternF | 1825 Failed to receive test pattern.

ailed

kStatus_SDMMC_InvalidVoltage 1829 Invalid voltage.

kStatus_SDMMC_TuningFail 1833 Tuning failed.

kStatus_SDMMC_SwitchVoltageFail 1834 Failed to switch voltage.

kStatus_SDMMC_SetPowerClassFail 1837 Set power class fail.

kStatus_UnknownCommand 10000 The requested command value is undefined.

kStatus_SecurityViolation 10001 Command is disallowed because flash security is
enabled.

kStatus_AbortDataPhase 10002 Abort the data phase early.

kStatus_Ping 10003 Internal: Received ping during command phase.

kStatus_NoResponse 10004 There is no response for the command.

kStatus_NoResponseExpected 10005 There is no response expected for the command.

kStatusRomLdrSectionOverrun 10100 ROM SB loader section overrun.

kStatusRomLdrSignature 10101 ROM SB loader incorrect signature.

kStatusRomLdrSectionLength 10102 ROM SB loader incorrect section length.

kStatusRomLdrUnencryptedOnly 10103 ROM SB loader does not support plain text image.

kStatusRomLdrEOFReached 10104 ROM SB loader EOF reached

kStatusRomLdrChecksum 10105 ROM SB loader checksum error.

kStatusRomLdrCrc32Error 10106 ROM SB loader CRC32 error.

Table continues on the next page...

MCUX Flashloader Reference Manual, Rev. 2, 01/2018

NXP Semiconductors

101

Table 10-2. Error and status codes (continued)

Name Value Description
kStatusRomLdrUnknownCommand 10107 ROM SB loader unknown command.
kStatusRomLdrldNotFound 10108 ROM SB loader ID not found.
kStatusRomLdrDataUnderrun 10109 ROM SB loader data underrun.
kStatusRomLdrdumpReturned 10110 ROM SB loader return from jump command occurred.
kStatusRomLdrCallFailed 10111 ROM SB loader call command failed.
kStatusRomLdrKeyNotFound 10112 ROM SB loader key not found.
kStatusRomLdrSecureOnly 10113 ROM SB loader security state is secured only.
kStatusRomLdrResetReturned 10114 ROM SB loader return from reset occurred.
kStatusMemoryRangelnvalid 10200 Memory range conflicts with a protected region.
kStatusMemoryReadFailed 10201 Failed to read from memory range.
kStatusMemoryWriteFailed 10202 Failed to write to memory range.
StatusMemoryCumulativeWrite 10203 Failed to write to unerased memory range.
kStatusMemoryAppOverlapWithExecute | 10204 Memory range contains a protected executed only region.
OnlyRegion
kStatusMemoryNotConfigured 10205 Failed to access to un-configured external memory.
kStatusMemoryAlignmentError 10206 Address alignment Error.
kStatusMemoryVerifyFailed 10207 Failed to verify the write operation.
kStatusMemoryWriteProtected 10208 Memory range contains protected memory region.
kStatus_UnknownProperty 10300 The requested property value is undefined.
kStatus_ReadOnlyProperty 10301 The requested property value cannot be written.
kStatus_InvalidPropertyValue 10302 The specified property value is invalid.
kStatus_AppCrcCheckPassed 10400 CRC check passed.
kStatus_AppCrcCheckFailed 10401 CRC check failed.
kStatus_AppCrcChecklnactive 10402 CRC checker is not enabled.
kStatus_AppCrcChecklinvalid 10403 Invalid CRC checker due to blank part of BCA not

present.
kStatus_AppCrcCheckOutOfRange 10404 CRC check is valid but addresses are out of range.
kStatus_NoPingResponse 10500 Packetizer did not receive any response for the ping
packet.
kStatus_InvalidPacketType 10501 Packet type is invalid.
kStatus_InvalidCRC 10502 Invalid CRC in the packet.
kStatus_NoCommandResponse 10503 No response received for the command.
kStatus_ReliableUpdateSuccess 10600 Reliable update process completed successfully.
kStatus_ReliableUpdateFail 10601 Reliable update process failed.
kStatus_ReliableUpdatelnacive 10602 Reliable update feature is inactive.
kStatus_ReliableUpdateBackupApplicati | 10603 Backup application image is invalid.
onlnvalid
kStatus_ReliableUpdateStillinMainApplic | 10604 Next boot will still be with Main Application image.
ation
kStatus_ReliableUpdateSwapSystemNo 10605 Cannot swap flash by default because swap system is not

tReady

ready.

Table continues on the next page...

MCUX Flashloader Reference Manual, Rev. 2, 01/2018

102

NXP Semiconductors

Chapter 10 Appendix A: status and error codes

Table 10-2. Error and status codes (continued)

Name

Value

Description

erNotReady

kStatus_ReliableUpdateBackupBootload | 10606

Cannot swap flash because there is no valid backup
bootloader image.

ddresslnvalid

kStatus_ReliableUpdateSwaplndicatorA | 10607

Cannot swap flash because provided swap indicator is
invalid.

MCUX Flashloader Reference Manual, Rev. 2, 01/2018

NXP Semiconductors

103

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
104 NXP Semiconductors

Chapter 11
Appendix B: GetProperty and SetProperty

commands

Properties are the defined units of data that can be accessed with the GetProperty or
SetProperty commands. Properties may be read-only or read-write. All read-write
properties are 32-bit integers, so they can easily be carried in a command parameter. Not
all properties are available on all platforms. If a property is not available, GetProperty

and SetProperty return kStatus_UnknownProperty.

The tag values shown in the table below are used with the GetProperty and SetProperty

commands to query information about the bootloader.

Table 11-1. Tag values GetProperty and SetProperty

Name Writable Tag value Size Description
CurrentVersion no 0x01 4 The current bootloader
version.
AvailablePeripherals no 0x02 4 The set of peripherals
supported on this chip.
FlashStartAddress no 0x03 4 Start address of
program flash.
FlashSizelnBytes no 0x04 4 Size in bytes of
program flash.
FlashSectorSize no 0x05 4 The size in bytes of
one sector of program
flash. This is the
minimum erase size.
FlashBlockCount no 0x06 4 Number of blocks in
the flash array.
AvailableCommands no 0x07 4 The set of commands
supported by the
bootloader.
CRCCheckStatus no 0x08 4 The status of the
application CRC check.
Reserved n/a 0x09 n/a

MCUX Flashloader Reference Manual, Rev. 2, 01/2018

Table continues on the next page...

NXP Semiconductors

105

Table 11-1. Tag values GetProperty and SetProperty (continued)

Name Writable Tag value Size Description

VerifyWrites yes 0x0a 4 Controls whether the
bootloader verifies
writes to flash. The
VerifyWrites feature is
enabled by default.

0 - No verification is
done

1 - Enable verification

MaxPacketSize no 0x0b 4 Maximum supported
packet size for the
currently active
peripheral interface.

ReservedRegions no 0x0c n List of memory regions
reserved by the
bootloader. Returned
as value pairs (<start-
address-of-
region>,<end-address-
of-region>).
¢ |f HasDataPhase
flag is not set,
then the
Response packet
parameter count
indicates number
of pairs.
¢ |If HasDataPhase
flag is set, then
the second
parameter is the
number of bytes

in the data

phase.
RAMStartAddress no 0x0e 4 Start address of RAM.
RAMSizelnBytes no 0xOf 4 Size in bytes of RAM.
SystemDeviceld no 0x10 4 Value of the Kinetis

System Device
Identification register.

FlashSecurityState no 0x11 4 Indicates whether
Flash security is
enabled.

0 - Flash security is
disabled

1 - Flash security is
enabled

UniqueDeviceld no 0x12 n Unique device
identification, value of
Kinetis Unique
Identification registers

Table continues on the next page...

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
106 NXP Semiconductors

4
Chapter 11 Appendix B: GetProperty and SetProperty commands

Table 11-1. Tag values GetProperty and SetProperty (continued)

Name

Writable

Tag value

Size

Description

(16 for K series
devices, 12 for KL
series devices)

FlashFacSupport

no

0x13

FAC (Flash Access
Control) support flag

0 - FAC not supported
1 - FAC supported

FlashAccessSegmentSi
ze

no

0x14

The size in bytes of 1
segment of flash.

FlashAccessSegmentC
ount

no

0x15

FAC segment count
(The count of flash
access segments
within the flash model.)

FlashReadMargin

yes

0x16

The margin level
setting for flash erase
and program verify
commands.

O=Normal
1=User

2=Factory

QspilnitStatus

no

0x17

The result of the QSPI
or OTFAD initialization
process.

405 - QSPl is not
initialized
0 - QSPI is initialized

TargetVersion

no

0x18

Target build version
number.

ExternalMemoryAttribut
es

no

0x19

24

List of attributes
supported by the
specified memory Id
(O=Internal Flash,
1=QuadSpi0). See
description for the
return value in the
section
ExternalMemoryAttribut
es Property.

ReliableUpdateStatus

Ox1a

Result of last Reliable
Update operation. See
Table 12-2.

MCUX Flashloader Reference Manual, Rev. 2, 01/2018

NXP Semiconductors

107

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
108 NXP Semiconductors

Chapter 12
Revision history

12.1 Revision History

This table shows the revision history of the document.

Table 12-1. Revision history

Revision number Date Substantive changes
0 04/2016 Kinetis Bootloader v2.0.0 release
1 10/2017 Update for Flashloader application for
i.MX RT Series of devices
2 01/2018 Update for Flashloader application for
QuadSPI NOR Flash device that is only
JESD216 compliant

MCUX Flashloader Reference Manual, Rev. 2, 01/2018

NXP Semiconductors

109

Revision History

MCUX Flashloader Reference Manual, Rev. 2, 01/2018
110 NXP Semiconductors

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

arm

Information in this document is provided solely to enable system and software
implementers to use NXP products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based
on the information in this document. NXP reserves the right to make changes
without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of
its products for any particular purpose, nor does NXP assume any liability arising
out of the application or use of any product or circuit, and specifically disclaims
any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in NXP data sheets and/or
specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be
validated for each customer application by customer’s technical experts. NXP
does not convey any license under its patent rights nor the rights of others. NXP
sells products pursuant to standard terms and conditions of sale, which can be
found at the following address: nxp.com/SalesTermsandConditions.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER
WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, 12C BUS, ICODE,
JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE
PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE,
MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTest,
CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo,
Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert,
QorlQ, QorlQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,
Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service
names are the property of their respective owners. ARM, AMBA, ARM Powered,
Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and pVision are
registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or
elsewhere. ARM7, ARM9, ARM11, big.LITTLE, CoreLink, CoreSight,
DesignStart, Mali, mbed, NEON, POP, Sensinode, Socrates, ULINK and
Versatile are trademarks of ARM Limited (or its subsidiaries) in the EU and/or
elsewhere. All rights reserved. Oracle and Java are registered trademarks of
Oracle and/or its affiliates. The Power Architecture and Power.org word marks
and the Power and Power.org logos and related marks are trademarks and
service marks licensed by Power.org.

© 2018 NXP B.V.

Document Number function_description
Revision 2, 01/2018

r
4\

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Chapter 1​: Introduction
	Introduction
	Terminology
	Block diagram
	Features supported
	Components supported

	Chapter 2​: Functional description
	Introduction
	Memory map
	Start-up process

	Chapter 3​: Kinetis bootloader protocol
	Introduction
	Command with no data phase
	Command with incoming data phase
	Command with outgoing data phase

	Chapter 4​: Bootloader packet types
	Introduction
	Ping packet
	Ping response packet
	Framing packet
	CRC16 algorithm
	Command packet
	Response packet

	Chapter 5​: Kinetis bootloader command API
	Introduction
	GetProperty command
	SetProperty command
	FlashEraseAll command
	FlashEraseRegion command
	FlashEraseAllUnsecure command
	ReadMemory command
	WriteMemory command
	FillMemory command
	Execute command
	Call command
	Reset command
	eFuseProgramOnce command
	eFuseReadOnce command
	Configure Memory command
	ReceiveSBFile command

	Chapter 6​: Supported peripherals
	Introduction
	UART Peripheral
	Performance Numbers for UART

	USB HID Peripheral
	USB Peripheral
	Device descriptor
	Endpoints

	Chapter 7​: Peripheral interfaces
	Introduction
	Abstract control interface
	Abstract byte interface
	Abstract packet interface
	Framing packetizer
	USB HID packetizer
	USB HID packetizer
	Command/data processor

	Chapter 8​: External Memory Support
	Introduction
	Serial NOR Flash through FlexSPI
	FlexSPI NOR Configuration Block
	FlexSPI NOR Configuration Option Block
	Typical use cases for FlexSPI NOR Configuration Block
	Program Serial NOR Flash device using FlexSPI NOR Configuration Option

	Serial NAND Flash through FlexSPI
	FlexSPI NAND Firmware Configuration Block(FCB)
	FlexSPI NAND Configuration Block
	FlexSPI NAND FCB option block
	FlexSPI NAND Configuration Option Block
	Example usage with Flashloader

	SD/eMMC through uSDHC
	SD Configuration Block
	Example usage with Flashloader
	eMMC Configuration Block
	Example usage with Flashloader

	Chapter 9​: Security Utilities
	Introduction
	Image Encryption and Programming
	Example to generate encrypted image and program to Flash

	KeyBlob Generation and Programming
	KeyBlob
	KeyBlob Option Block
	Example to generate and program KeyBlob

	Chapter 10​: Appendix A: status and error codes
	Chapter 11​: Appendix B: GetProperty and SetProperty commands
	Chapter 12​: Revision history
	Revision History

