
 
 

 

 

 

RELEASE NOTES 

ZigBee Home Automation/Light Link SDK 
 
 

JN-SW-4168 

Build 2162 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 NXP Semiconductors 
 

For the contact details of your local NXP office or distributor, refer to: 

 

 www.nxp.com  

 

http://www.nxp.com/


 
  ZigBee Home Automation/Light Link SDK 

Release Notes 

 

2 © NXP B.V. 2019 JN-RN-0058 v2162 

CONTENTS 

CONTENTS 2 

RELEASE SUMMARY (v2162) 5 

1. SDK Software Components 5 

2. Supported Products 6 

3. Software Installation 6 

4. Release Details 7 
4.1 ZCL and Profile 7 

4.1.1 New ZCL/Profile Features and Enhancements 7 
4.1.2 ZCL/Profile Bug Fixes 7 
4.1.3 ZCL/Profile Known Issues 7 

4.2 ZigBee Green Power 7 
4.3 ZigBee PRO Stack 8 

4.3.1 New Stack Features and Enhancements 8 
4.3.2 Stack Bug Fixes 8 
4.3.3 Stack Known Issues 9 

4.4 JenOS 9 
4.4.1 Bug Fixes 9 
4.4.2 JenOS Known Issues 9 

4.5 JN516x Integrated Peripherals API 9 
4.5.1 Bug Fixes 9 

4.6 Production Test Libraries 9 
4.6.1 Bug Fixes 9 

4.7 Application Porting Notes 10 
4.7.1 Child Aging 11 

5. Release Details 13 
5.1 ZCL and Profile 13 

5.1.1 New ZCL/Profile Features and Enhancements 13 
5.1.2 ZCL/Profile Bug Fixes 13 
5.1.3 ZCL/Profile Known Issues 14 

5.2 ZigBee Green Power 14 
5.3 ZigBee PRO Stack 15 

5.3.1 New Stack Features and Enhancements 15 
5.3.2 Stack Bug Fixes 15 
5.3.3 Stack Known Issues 16 

5.4 JenOS 16 
5.4.1 Bug Fixes 16 
5.4.2 JenOS Known Issues 16 

5.5 JN516x Integrated Peripherals API 16 
5.5.1 Bug Fixes 16 

5.6 Production Test Libraries 16 
5.6.1 Bug Fixes 16 

5.7 Application Porting Notes 17 
5.7.1 OS Configuration diagram update 17 
5.7.2 Stack configurations 18 

6. Release Details 21 
6.1 ZCL and Profile 21 

6.1.1 New ZCL/Profile Features and Enhancements 21 



ZigBee Home Automation/Light Link SDK 
Release Notes  

  

 
 

JN-RN-0058 v2162 © NXP B.V.  2019 3 

6.1.2 ZCL/Profile Bug Fixes 21 
6.1.3 ZCL/Profile Known Issues 22 

6.2 ZigBee Green Power 22 
6.3 ZigBee PRO Stack 23 

6.3.1 New Stack Features and Enhancements 23 
6.3.2 Stack Bug Fixes 23 
6.3.3 Stack Known Issues 25 

6.4 JenOS 25 
6.4.1 Bug Fixes 25 
6.4.2 JenOS Known Issues 25 

6.5 JN516x Integrated Peripherals API 26 
6.5.1 Bug Fixes 26 

6.6 Production Test Libraries 26 
6.6.1 Bug Fixes 26 

6.7 Application Porting Notes 26 
6.7.1 Makefile Updates 26 

6.8 Bootloader Version 27 

RELEASE HISTORY (v1364) 28 

7. Release Details 28 
7.1 ZCL and Profile 28 

7.1.1 New ZCL/Profile Features and Enhancements 28 
7.1.2 ZCL/Profile Bug Fixes 28 

7.2 ZigBee Green Power 29 
7.3 ZigBee PRO Stack 29 

7.3.1 New Stack Features and Enhancements 29 
7.3.2 Stack Bug Fixes 30 
7.3.3 Stack Known Issues 31 

7.4 JN516x Integrated Peripherals API 31 
7.5 Production Test Libraries 31 
7.6 Application Porting Notes 32 

7.6.1 Within ‘BeyondStudio for NXP’ 32 
7.6.2 Within vAppMain 32 
7.6.3 Setting Minimum Heap and Stack Sizes in Application 33 
7.6.4 Modifying Application Makefile 33 
7.6.5 PDM Additional Notes 36 
7.6.6 Registering an Error Handler (JN516x EEPROM Only) 36 
7.6.7 OS Error Checking 38 
7.6.8 ZigBee PRO Extended Error Status 39 
7.6.9 Beacon Filtering 39 
7.6.10 Removal of PHY Interrupt from OS Diagram 40 
7.6.11 Removal of Management Bind Server from Application 40 

RELEASE HISTORY (v1279) 41 

8. Release Details 41 
8.1 ZCL and Profile 41 

8.1.1 ZCL Changes 41 
8.1.2 Green Power Changes 41 

8.2 ZigBee PRO Stack 41 
8.2.1 New Features and Enhancements 41 
8.2.2 Bug Fixes 41 
8.2.3 Known Issues 42 

8.3 JN516x Integrated Peripherals API 42 



 
  ZigBee Home Automation/Light Link SDK 

Release Notes 

 

4 © NXP B.V. 2019 JN-RN-0058 v2162 

8.4 Production Test Libraries 42 
8.5 Application Porting Notes 43 

8.5.1 Within ‘BeyondStudio for NXP’ 43 
8.5.2 Within vAppMain 43 
8.5.3 Setting Minimum Heap and Stack Sizes in Application 44 
8.5.4 Modifying Application Makefile 44 
8.5.5 PDM Additional Notes 47 
8.5.6 Registering an Error Handler (JN516x EEPROM Only) 47 
8.5.7 OS Error Checking 49 
8.5.8 ZigBee PRO Extended Error Status 50 
8.5.9 Beacon Filtering 50 
8.5.10 Removal of PHY Interrupt from OS Diagram 51 
8.5.11 Removal of Management Bind Server from Application 51 

8.6 Bootloader Version 51 

RELEASE HISTORY (v1270) 52 

9. Release Details 52 
9.1 ZCL and Profile 52 

9.1.1 ZCL Changes 52 
9.1.2 Green Power Changes 55 

9.2 ZigBee PRO Stack 56 
9.2.1 New Features and Enhancements 56 
9.2.2 Known Issues 57 

9.3 Production Test Libraries 57 
9.4 Application Porting Notes 57 

9.4.1 Within ‘BeyondStudio for NXP’ 58 
9.4.2 Within vAppMain 58 
9.4.3 Setting Minimum Heap and Stack Sizes in Application 59 
9.4.4 Modifying Application Makefile 59 
9.4.5 PDM Additional Notes 62 
9.4.6 Registering an Error Handler (JN516x EEPROM Only) 62 
9.4.7 OS Error Checking 64 
9.4.8 ZigBee PRO Extended Error Status 65 
9.4.9 Beacon Filtering 65 
9.4.10 Removal of PHY Interrupt from OS Diagram 66 
9.4.11 Removal of Management Bind Server from Application 66 

9.5 Bootloader Version 66 
 



ZigBee Home Automation/Light Link SDK 
Release Notes  

  

 
 

JN-RN-0058 v2162 © NXP B.V.  2019 5 

RELEASE SUMMARY (v2162) 

1. SDK Software Components 
The JN516x ZigBee HA/ZLL Software Developer’s Kit (JN-SW-4168) comprises the 
ZigBee PRO libraries and ZigBee Cluster Library (ZCL) together with the Home 
Automation (HA) and ZigBee Light Link (ZLL) application profiles, providing support for 
ZigBee PRO application development for HA and ZLL on an NXP JN516x wireless 
microcontroller (JN5169/JN5168 for HA, JN5169/JN5168/JN5164 for ZLL). This SDK 
must be installed on top of the ‘BeyondStudio for NXP’ toolchain (JN-SW-4141), which 
is available via the Wireless Connectivity area of the NXP web site. 

This SDK release provides: 

• ZCL and HA/ZLL profile source code and APIs  

• ZigBee PRO stack and APIs for JN5169, JN5168 and JN5164 

• JenOS (Jennic Operating System) modules 

• Chip support libraries for JN516x 

• 802.15.4 Stack API 

• JN516x Integrated Peripherals API 

• Makefile options for JN516x (JENNIC_CHIP_FAMILY=JN516x, 
JENNIC_CHIP=JN5169, JENNIC_CHIP=JN5168, JENNIC_CHIP=JN5164) 

• PDM (Persistent Data Manager) for JN516x EEPROM  

• Three IEEE802.15.4 MAC libraries: 

 Full MAC with 2006 security 

 MicroMAC – basic initialisation of MAC/PHY 

 MiniMAC – full functionality of the MAC with limited 2006 security 
customised for ZigBee 

• ZPS and JenOS Configuration Editor plug-ins for Eclipse 

• LCD driver updated for DR1174 Carrier Board (changes to LcdDriver.h and 
libBoardLib_JN516x.a) 

• Production Test library for each chip: libJPT_JN5169.a, libJPT_JN5168.a and 
libJPT_JN5164.a 

• Sniffer binaries for JN5168 and JN5169 

  

http://www.nxp.com/products/interface-and-connectivity/wireless-connectivity


 
  ZigBee Home Automation/Light Link SDK 

Release Notes 

 

6 © NXP B.V. 2019 JN-RN-0058 v2162 

2. Supported Products 
The SDK supports the following NXP products: 

Product Type Part Number Version Supported Chips Supported Protocols 

JN516x - - JN5169 
JN5168 
JN5164 
JN5161 
 

802.15.4, ZigBee PRO 
802.15.4, ZigBee PRO 
802.15.4, ZigBee PRO 
802.15.4 

ZCL r04  

HA1.2 + Errata  
ZLL1.0 + Errata 

SDK Toolchain JN-SW-4141  v1308 JN51xx - 

3. Software Installation 
If you already have the earlier version of SDK on your machine, before installing 
this JN516x SDK you should first back up your Applications development 
directory and any user-modified files within the SDK directory. 

This SDK (JN-SW-4168) must be installed on top of the ‘BeyondStudio for NXP’ 
toolchain (JN-SW-4141), available via the Wireless Connectivity area of the NXP web 
site. 

Therefore, before installing JN-SW-4168, you must install the toolchain from: 

JN-SW-4141 Beyond Studio for NXP v1308.exe 

You can then install the JN516x ZigBee HA/ZLL SDK from: 

JN-SW-4168 ZigBee-HA-LL v2162.exe 

For full installation instructions, refer to the BeyondStudio for NXP Installation and 
User Guide (JN-UG-3098), available from the Wireless Connectivity area of the NXP 
web site. This manual also describes how to install the ZPS and JenOS Configuration 
Editor plug-ins for Eclipse (BeyondStudio for NXP), which you must install after the 
SDK. 

Note that the BeyondStudio for NXP toolchain includes a built-in Flash programmer 
that can be used to program JN516x internal Flash memory from BeyondStudio. 

Alternatively, the JN51xx Production Flash Programmer (JN-SW-4107) command-line 
tool can be used to program JN516x internal or external Flash memory. This tool is 
available from the Wireless Connectivity area of the NXP web site and is described in 
the JN51xx Production Flash Programmer User Guide (JN-UG-3099).  

  

http://www.nxp.com/products/interface-and-connectivity/wireless-connectivity
http://www.nxp.com/products/interface-and-connectivity/wireless-connectivity
http://www.nxp.com/products/interface-and-connectivity/wireless-connectivity


ZigBee Home Automation/Light Link SDK 
Release Notes  

  

 
 

JN-RN-0058 v2162 © NXP B.V.  2019 7 

4. Release Details 

4.1 ZCL and Profile 

4.1.1 New ZCL/Profile Features and Enhancements 

None 

4.1.2 ZCL/Profile Bug Fixes 

In this release, the following bugs have been fixed in the ZCL/Profile: 

Reference Description 

artf657054 Issue: OTA cluster cannot be reinitalised after ZCL basic cluster factory reset 
Solution: A guard has been put to prevent this re-initialisation. 

lpsw8538 Issue: Allow ZCL to use the unblocking bound API call 

Solution: Fixed. New enums are present in the ZCL header to select between non-blocking 
and blocking API. This can be configured through the ZCL_Options.h file. This has been 
updated only in the reporting scheduler. The other transmit API require this to be changed 
from the higher layers. 

 

4.1.3 ZCL/Profile Known Issues 

There are no known ZCL/profile issues in this release. 

4.2 ZigBee Green Power 

None. 

  



 
  ZigBee Home Automation/Light Link SDK 

Release Notes 

 

8 © NXP B.V. 2019 JN-RN-0058 v2162 

4.3 ZigBee PRO Stack 

ZigBee PRO libraries are included for the JN5169, JN5168 and JN5164 devices. 

4.3.1 New Stack Features and Enhancements 

None 

4.3.2 Stack Bug Fixes 

In this release, the following bugs have been fixed in the ZigBee PRO stack: 

Reference Description 

artf650742 Issue: Association Packets being buffered in MAC, but being deleted by the stack. 

Solution: Align stack and MAC state machines for association. 

artf656729 Issue: route record frames shouldn't be route discovered on next hop failure 

Solution: Route record next hop failure should result in source route failure network status 
being propagated. 

artf621607 Issue: Stack restrict join distance based on fixed link cost of 4 

Solution: Allow application to control the link cost the device can join with 

artf623261 Issue: zero byte payload generated by the stack and also reception of this causes a fault on 
the stack 

Solution: Shim guards against both situations 

artf621317 Issue: Bound server cannot be reset to IDLE after rejoin 

Solution: If an end device bound transactions were interrupted, rejoin didn’t clear the state 
of the bound server. This has now been corrected. 

lpsw8537 Issue: Provide an API for the application to unlock the bound server. 

Solution:  New API ZPS_vResetBoundServerContext now available 

lpsw8499 Issue: Beacon notification on an active scan on the coordinator can result in trampling of 
memory. 

Solution: Fixed. 

lpsw8491 Issue: NPDU leak happens with fragmentation 

Solution: Fixed. 

lpsw8455 Issue: The PAN ID conflict is declared on the first instance of noticing duplicate short PANs 
and mismatching extended PAN. 

Solution: Default is now changed to do a sample before declaring a PAN ID conflict. 

lpsw8427 Issue: Allocate Address bit on rejoin request is randomly set 

Solution: Fixed. The bit should not be set on rejoin requests. 

lpsw8406 Issue: Rejoin and data poll request are sent to invalid address 

Solution: Fixed. 

lpsw8383 Issue: Provide a better mechanism to join at the lowest depth 

Solution: Fixed. Beacon handler expanded to include depth as a bitmask 



ZigBee Home Automation/Light Link SDK 
Release Notes  

  

 
 

JN-RN-0058 v2162 © NXP B.V.  2019 9 

4.3.3 Stack Known Issues 

There are no known stack issues in this release. 

4.4 JenOS 

4.4.1 Bug Fixes 

None. 

4.4.2 JenOS Known Issues 

In this release, JenOS has the following known issues: 

 

4.5 JN516x Integrated Peripherals API 

4.5.1 Bug Fixes 

None. 

4.6 Production Test Libraries 

4.6.1 Bug Fixes 

None. 

  



 
  ZigBee Home Automation/Light Link SDK 

Release Notes 

 

10 © NXP B.V. 2019 JN-RN-0058 v2162 

 

4.7 Application Porting Notes 

Before porting an existing application to this JN-SW-4168 SDK, it is recommended that 
you go through the ZigBee PRO Stack User Guide (JN-UG-3101) to ensure adherence 
to the recommended settings in the ZPS configuration. 

The libraries supplied in the JN-SW-4168 SDK have been built against the new  
JN-SW-4141 toolchain. The migration guidelines for the new toolchain should be 
followed before using these porting guidelines. Migration to the new toolchain is 
described in the Application Note BeyondStudio Migration Guidelines (JN-AN-1202). 

typedef struct 

{ 

    uint64    *pu64ExtendPanIdList; 

    uint16    u16Panid; 

    uint8    u8FilterMap; 

    uint8     u8ListSize; 

    uint8     u8Lqi; 

    uint8     u8Depth;     

} tsBeaconFilterType; 

 

/* Bit Map - only lower 8 bits assigned */ 

/*|    7      |    6     |      5      |    4        |        3      |      2    |      1        |      0        |*/ 

/*|    Depth  | Short PAN|  PermitJoin |  cap Router | cap EndDevice |    LQI    |  White 
List   |   BlackList   |*/ 

typedef struct 

{ 

    uint64    *pu64ExtendPanIdList; 

    uint16    u16Panid; 

    uint16    u16FilterMap; 

    uint8     u8ListSize; 

    uint8     u8Lqi; 

    uint8     u8Depth;     

} tsBeaconFilterType; 

 

The beacon filter map is 16-bit value. This has been updated to include the depth as 
should in the above Bit map. 

 

w9xpopen.exe is no longer released with the SDK. If running plugins on older 
operating system, It needs to be downloaded separately from the internet. 



ZigBee Home Automation/Light Link SDK 
Release Notes  

  

 
 

JN-RN-0058 v2162 © NXP B.V.  2019 11 

The application supports team should be contacted in case file can no longer be 
found on the internet. 

 

4.7.1 Child Aging 

 
This release of the stack now allows the ability to age children out using the new 
Zigbee 3.0 mechanism of issuing automatic leaves to an unwanted child. 
 
This requires the application to call the following API: 
 
void ZPS_vNwkRegisterDataRequest(uint32 u32TimeoutConstant, uint32 
*pu32ChildTimerValues); 

  
This API registers two values with the stack. 
The first is the maximum timeout constant u32TimeoutConstant. 
This refers to maximum time in seconds the device can check in before it would be 
considered lost. 
The second parameter is an array of 32-bit timer values.  
 
Code snippet below is an example of calling the API for a device with a child table 
size of 10. 
 
#define CHILD_TABLE_SIZE          (10) 

#define MAX_TIMEOUT_IN_SECONDS    (20) 

 

/* array to hold the child entries timeout period */ 

 

uint32 u32ChildTimeout[CHILD_TABLE_SIZE] = { [0 ... 

CHILD_TABLE_SIZE-1] = MAX_TIMEOUT_IN_SECONDS }; 

 

 
ZPS_vNwkRegisterDataRequest(MAX_TIMEOUT_IN_SECONDS, u32ChildTimeout); 

 
It is mandatory that the child table size in the ZPSConfig diagram and the #define 
are the same. 
 
The application must also implement the following function: 
 
PUBLIC void app_vAgeEntries (void) 

{ 

    uint8 u8ChildTableEntries; 

    ZPS_tsNwkNib *psNib; 

    psNib = ZPS_psAplZdoGetNib(); 

 

    for( u8ChildTableEntries = 0; u8ChildTableEntries < psNib-

>sTblSize.u8ChildTable; u8ChildTableEntries++) 

    { 

     /* Only age end device children only */ 

     if( psNib-

>sTbl.psNtActv[u8ChildTableEntries].uAncAttrs.bfBitfields.u1Used && 



 
  ZigBee Home Automation/Light Link SDK 

Release Notes 

 

12 © NXP B.V. 2019 JN-RN-0058 v2162 

      ( ZPS_NWK_NT_AP_RELATIONSHIP_CHILD == psNib-

>sTbl.psNtActv[u8ChildTableEntries].uAncAttrs.bfBitfields.u2Relation

ship ) && 

      ( ZPS_NWK_NT_AP_DEVICE_TYPE_ZED == psNib-

>sTbl.psNtActv[u8ChildTableEntries].uAncAttrs.bfBitfields.u1DeviceTy

pe) && 

      ( TRUE != psNib-

>sTbl.psNtActv[u8ChildTableEntries].uAncAttrs.bfBitfields.u1RxOnWhen

Idle)) 

     { 

      if( u32ChildTimeout[u8ChildTableEntries] == 0 || 

       --u32ChildTimeout[u8ChildTableEntries] == 0 ) 

      { 

       ZPS_vNMPurgeEntry 

(ZPS_u64NwkNibGetMappedIeeeAddr(ZPS_pvAplZdoGetNwkHandle(),psNib-

>sTbl.psNtActv[u8ChildTableEntries].u16Lookup)); 

      } 

     } 

    } 

 

} 

 
The purpose of this function is, to purge any entries out which do not check in with 
the parent i.e. haven’t polled the parent. 
The stack resets the values when the device issues a poll (data request) so the 
application doesn’t need to do this. This function must be called every second. 



ZigBee Home Automation/Light Link SDK 
Release Notes  

  

 
 

JN-RN-0058 v2162 © NXP B.V.  2019 13 

RELEASE HISTORY (v1620) 

5. Release Details 

5.1 ZCL and Profile 

5.1.1 New ZCL/Profile Features and Enhancements 

This release includes the following new ZCL/Profile/Application features: 

• [Ref. 7634] New Fan Control Cluster 

• [Ref. 7635 and 7653] Fan Control Cluster server and Diagnostic cluster server 
have been added as optional clusters to the thermostat device 

5.1.2 ZCL/Profile Bug Fixes 

In this release, the following bugs have been fixed in the ZCL/Profile: 

Reference Description 

lpsw8326 Issue: The OTA state machine causes an exception if the end request is sent with an 
upgrade time of 0xffffffff and subsequently the device is reset. 

Solution: Fixed.  

lpsw7732 Issue: OTA ImageStamp attribute does not have a defined location from where it can be 
read. 

Solution: OTA ImageStamp is now populated by the JET. This location is exported out to 
the ZCL  

lpsw7741 Issue: If the OTA_CLD_ATTR_REQUEST_DELAY is defined the OTA cluster stops 
requesting image  

Solution: When OTA_CLD_ATTR_REQUEST_DELAY is defined the OTA cluster doesn’t 
restart the internal millisecond timer. This means further blocks are requested after the initial 
expiry of the timer. This timer is now restarted to make sure the OTA process continues. 

lpsw7758 Issue: Scenes header file in present in the ZCL source with incorrect case.  

Solution: The header file should be present as “Scenes.h” and not “scenes.h”. 

lpsw7760 Issue: CLD_IDENTIFY_SUPPORT_ZLL_ENHANCED_COMMANDS definition is used in 
the OnOff Cluster instead of CLD_ONOFF_SUPPORT_ZLL_ENHANCED_COMMANDS 

Solution: Fixed. 

lpsw7787 Issue: In a corner case Involving both Recall Scene and Level Control, it is possible that the 
global scene may be set to “OFF” when the expected behaviour would be for it to be set to 
“ON”. 

Solution: Fixed 

lpsw7849 Issue: eZCL_ReportAllAttributes does not send out reports for attributes which have been 
enabled by the application using the SetReportableFlag. 

Solution: Fixed 

lpsw7866 Issue: Attribute report for multiple attributes in different clusters doesn’t work. 

Solution: Fixed. 



 
  ZigBee Home Automation/Light Link SDK 

Release Notes 

 

14 © NXP B.V. 2019 JN-RN-0058 v2162 

lpsw7868 Issue: IAS Zone Sensitivity Attributes code doesn’t have user configurable , number of 
zones and current zone level settings. 

Solution: These are now provided through 
CLD_IASZONE_NUMBER_OF_ZONE_SENSITIVITY_LEVELS and 
CLD_IASZONE_CURRENT_ZONE_SENSITIVITY_LEVEL. 

lpsw7878 Issue: Poll Control Cluster Internal Variable Initialization to track the check in intervals is 
incorrect. 

Solution: Fixed by initializing it properly. 

lpsw7901 Issue: Instantaneous demand attribute is not reportable. 

Solution: Fixed, it has now been made reportable. 

lpsw7967 Issue: OTA_MIN_TIMER_MS_RESOLUTION is not set to 0. 

Solution: Fixed 

lpsw7876 Issue: There is not API in the Poll Control cluster to update the elapsed time when an end 
device comes out of sleep. 

Solution: Fixed, a new API is added. 

lpsw7977 Issue: There is no compile time option to make the ZCL use a non-blocking bound 
transmission call to the stack. 

Solution: Fixed. 

lpsw8061 Issue: The OTA cluster does not validate the Image time stamp prior to activating the 
image. 

Solution: Fixed. 

lpsw8068 Issue: The OTA cluster does not Validate embedded OTA IDs with advertised OTA IDs 

Solution: Fixed. 

lpsw8212 Issue: Zone Enrol Request handler does not initialise default response data 

Solution: Fixed. 

lpsw8215 Issue: Scene Valid attribute is not reset if scene attributes are changed 

Solution: Fixed. 

lpsw8216 Issue: The store scene command processing does not set the bActive flag to True for the 
stored scene, nor does it search the scene table to see if a scene is already active and set 
that scenes flag to False 

Solution: Fixed. 

 

5.1.3 ZCL/Profile Known Issues 

There are no known ZCL/profile issues in this release. 

5.2 ZigBee Green Power 

None. 

  



ZigBee Home Automation/Light Link SDK 
Release Notes  

  

 
 

JN-RN-0058 v2162 © NXP B.V.  2019 15 

5.3 ZigBee PRO Stack 

ZigBee PRO libraries are included for the JN5169, JN5168 and JN5164 devices. 

5.3.1 New Stack Features and Enhancements 

This release includes the following new stack features: 

• [Ref. 6504] Data frames are buffered and autonomously resent after successful 
completion of route discovery.  

• [Ref. 6787] A new debug extended error code is added to indicate lack of BTT 
resources. 

• [Ref. 8031] The stack allows the application to trigger to sleep between waiting 
for APS ack responses. 

5.3.2 Stack Bug Fixes 

In this release, the following bugs have been fixed in the ZigBee PRO stack: 

Reference Description 

lpsw8359 Issue: Stack prefers table routing ahead of a newer source route and the final destination 
packet when sent with source route is corrupted. 

Solution: Fixed. 

lpsw7664 Issue: Remove device API causes the parent also to be removed when the child is 
removed. 

Solution: Fixed. 

lpsw7818 Issue: End device loses its old parent's address map when it joins a new parent. 

Solution: Fixed. The End device maintains the old parent’s address map if a binding for the 
old parent is present. 

lpsw7820 Issue: If the first child of the router device is an end device and it gets removed or aged out 

then the management LQI server stops sending valid neighbour table size. Management LQI 
request returns wrong neighbour table size 

Solution: Fixed. 

lpsw7824 Issue: Management leave request sends leave with remove children always set 

Solution: Fixed. 

lpsw7919 Issue: Receiver-On-When Idle End device responds to Beacon Request. 

Solution: Fixed. 

lpsw7953 Issue: Routers are removed from the local neighbour tables on loss of 3 link status. There 
is no configuration to extend the aging mechanism. 

Solution: Fixed. It is now possible to allow the router age limit to be up-to 255 link status. 

lpsw7956 Issue: The stack is slow in responding to high data volume over the air. 

Solution: Fixed. A new queue to free resources quicker is now added. 

lpsw7954 Issue: Return path to a received packet requires an additional route discovery 

Solution: Fixed. The stack uses the same path to send the response as it received the 
request. 



 
  ZigBee Home Automation/Light Link SDK 

Release Notes 

 

16 © NXP B.V. 2019 JN-RN-0058 v2162 

lpsw8168 Issue: End device route not removed after re-join. 

Solution: Fixed. 

lpsw8228 Issue: The ZDO server is blocked until an APS ack is received for the response sent. This 
makes the server slow in responding. 

Solution: Fixed. 

5.3.3 Stack Known Issues 

There are no known stack issues in this release. 

5.4 JenOS 

5.4.1 Bug Fixes 

None. 

5.4.2 JenOS Known Issues 

In this release, JenOS has the following known issues: 

Reference Description 

lpsw7648 Issue: On a 250+ nodes network, an occasional exception is seen. This normally corrupts 
the stack buffers. This has only been observed when running OTA upgrade. It is believed to 
be timing related. 

Workaround: Software reset on exception allows the node to continue working normally 
after recovering persisted network data. 

 

5.5 JN516x Integrated Peripherals API 

5.5.1 Bug Fixes 

None. 

5.6 Production Test Libraries 

5.6.1 Bug Fixes 

None. 

  



ZigBee Home Automation/Light Link SDK 
Release Notes  

  

 
 

JN-RN-0058 v2162 © NXP B.V.  2019 17 

 

5.7 Application Porting Notes 

Before porting an existing application to this JN-SW-4168 SDK, it is recommended that 
you go through the ZigBee PRO Stack User Guide (JN-UG-3101) to ensure adherence 
to the recommended settings in the ZPS configuration. 

The libraries supplied in the JN-SW-4168 SDK have been built against the new  
JN-SW-4141 toolchain. The migration guidelines for the new toolchain should be 
followed before using these porting guidelines. Migration to the new toolchain is 
described in the Application Note BeyondStudio Migration Guidelines (JN-AN-1202). 

5.7.1 OS Configuration diagram update 

The Zigbee PRO stack requires an additional queue to increase its responsiveness to 
the high amount of traffic over the air. The queue is used to manage the asynchronous 
deferred confirmation of transmitted data requests submitted to the MAC/PHY 
interface. This new queue needs to be configured in the OS configuration diagram 
present in the application source code.  

Figure 1 

A new message queue should be added in the ZBPro stack scope box as shown in 
Figure 1. The properties of the queue should be setup as shown in Figure 2. 

  



 
  ZigBee Home Automation/Light Link SDK 

Release Notes 

 

18 © NXP B.V. 2019 JN-RN-0058 v2162 

 

Figure 2: 

 

 

The relationships of the message queue “zps_msgMcpsDcfm” , to the ISR 
“zps_isrMAC” and the task “zps_task is shown in the Figure 1. 

The ISR “zps_isrMAC” posts the deferred confirm message to the queue 
“zps_msgMcpsDcfm”, The queue “zps_msgMcpsDcfm” then “Notifies” the zps_task, 
The zps_task “Collects” the messages from the message queue “zps_msgMcpsDcfm”. 

 

It is recommended that the queue size should be at least 8. It is further recommended 
that the queue which handles the “Mcps” data indication should be reduced since it no 
longer handles deferred confirms. For example, if the queue for the “Mcps” data 
request was of the size 24 it can now be reduced to a size of 16. 

   

5.7.2 Stack configurations 

 

In a large network, it is possible to miss a substantial number link status and this may 
result in devices ending up removed from the neighbour table. This results in routes 
being purged and a general churn of route discovery. This can be minimised by 
increasing the number missed link status before a router is removed from the 
neighbour table. Due to CCA and generally large amount of traffic over the air in a 
large network the chances of the far end missing transmissions is higher.  

To counter these the stack now allows higher thresholds to be set for the network 
parameters which influence stability of routes. The following values are suggested for 
a general LNT setup: 

 ZPS_tsNwkNib * thisNib = ZPS_psNwkNibGetHandle(thisNet); 
 thisNib->u8RouterAgeLimit = 30; 

 thisNib->u8VsTxFailThreshold = 10; 

 

To support an increase of number of missed link status to greater than the 3-bit value it 
previously was, the age argument is now an 8-bit value.  

The age argument can be found in the neighbour table. The previous location of the 
age argument was as part of the bitfield parameter of the neighbour table structure. 



ZigBee Home Automation/Light Link SDK 
Release Notes  

  

 
 

JN-RN-0058 v2162 © NXP B.V.  2019 19 

The previous definition of the structure was: 

typedef struct 
{ 
    zps_tsNwkSlistNode sNode;  /**< Single linked list node */ 
    uint16 u16Lookup;         /**< Extended address */ 
    uint16 u16NwkAddr;         /**< Network address */ 
    uint8  u8TxFailed;         /**< Transmit failed count */ 
    uint8  u8LinkQuality;      /**< Link Quality indication */ 
    uint8 u8ZedTimeoutindex;    /* index into the timeout const table */ 
    /* 
     * Bitfields are used for syntactic neatness and space saving. May need to 
assess whether 
     * these are suitable for embedded environment 
     */ 
    union 
    { 
        struct 
        { 
            unsigned u1Used:1;           /* Overlays: Alternate PAN coordinator */ 
            unsigned u1DeviceType:1; 
            unsigned u1PowerSource:1; 
            unsigned u1RxOnWhenIdle:1; 
            unsigned u2Relationship:2;   /* Overlays: Reserved */ 
            unsigned u1SecurityMode:1; 
            unsigned u1Authenticated:1;  /* Overlays: Allocate address */ 
            unsigned u1LinkStatusDone:1; /**< Link status has been processed for 
this device */ 
            unsigned u3OutgoingCost:3;     /**< Outgoing cost for sym link = true 
*/ 
            unsigned u3Age:3; 
            unsigned u1ExpectAnnc:1;       /*** Set for newly joined children, 
cleared on hearing their annce **/ 
        } bfBitfields; 
        uint8 au8Field[2]; 
    }  uAncAttrs; 

} ZPS_tsNwkActvNtEntry; 

 

This is now changed to: 

 

typedef struct 
{ 
    zps_tsNwkSlistNode sNode;  /**< Single linked list node */ 
    uint16 u16Lookup;         /**< Extended address */ 
    uint16 u16NwkAddr;         /**< Network address */ 
    uint8  u8TxFailed;         /**< Transmit failed count */ 
    uint8  u8LinkQuality;      /**< Link Quality indication */ 
    uint8  u8Age;    /**< Router age (in link status periods) */ 
    uint8 u8ZedTimeoutindex;    /* index into the timeout const table */ 
    /* 
     * Bitfields are used for syntactic neatness and space saving. May need to 
assess whether 
     * these are suitable for embedded environment 
     */ 
    union 
    { 



 
  ZigBee Home Automation/Light Link SDK 

Release Notes 

 

20 © NXP B.V. 2019 JN-RN-0058 v2162 

        struct 
        { 
            unsigned u1Used:1;           /* Overlays: Alternate PAN coordinator */ 
            unsigned u1DeviceType:1; 
            unsigned u1PowerSource:1; 
            unsigned u1RxOnWhenIdle:1; 
            unsigned u2Relationship:2;   /* Overlays: Reserved */ 
            unsigned u1SecurityMode:1; 
            unsigned u1Authenticated:1;  /* Overlays: Allocate address */ 
            unsigned u1LinkStatusDone:1; /**< Link status has been processed for 
this device */ 
            unsigned u3OutgoingCost:3;     /**< Outgoing cost for sym link = true 
*/ 
            unsigned u3Reserve:3; 
            unsigned u1ExpectAnnc:1;       /*** Set for newly joined children, 
cleared on hearing their annce **/ 
        } bfBitfields; 
        uint8 au8Field[2]; 
    }  uAncAttrs; 

} ZPS_tsNwkActvNtEntry;  

 

All references to     sNtEntry.uAncAttrs.bfBitfields.u3Age 
should now be changed to  sNtEntry.u8Age. 
  



ZigBee Home Automation/Light Link SDK 
Release Notes  

  

 
 

JN-RN-0058 v2162 © NXP B.V.  2019 21 

6. Release Details 

6.1 ZCL and Profile 

6.1.1 New ZCL/Profile Features and Enhancements 

This release includes the following new ZCL/Profile/Application features: 

• [Ref. 6957] Simple Metering cluster added to the Dimmable Light device type as 
an optional cluster for Icontrol certification. 

• [Ref. 7072] Configurable OTA_BLOCK_REQUEST_DELAY_MAX_VALUE 

• [Ref. 7360] Co-processor support for OTA 

• [Ref. 7409] Faster compile and build times for ZCL/Profile/Application 

• [Ref. 7414] OTA cluster (client/server) added into Simple Sensor device 

6.1.2 ZCL/Profile Bug Fixes 

In this release, the following bugs have been fixed in the ZCL/Profile: 

Reference Description 

lpsw6948 Issue: Error in initializing AppProfileVersion attribute in the ZCL. 

Solution: Updated Basic.c for proper initialization of AppProfileVersion attribute. 

lpsw6949 Issue: Basic cluster attribute ApplicationProfileVersion has an ID of 0x0009 which is 
incorrect 

Solution: In Basic.h, 

 E_CLD_BAS_ATTR_ID_APPLICATION_PROFILE_VERSION will have attribute id 
(enum) of 0x0008, according to the HA121(13-0553-40) errata doc 

 E_CLD_BAS_ATTR_ID_APPLICATION_PROFILE_TYPE gets value of 0x0009 (this 
attribute's reference is not available in the documents HAv1.2.1 (05-3520-29), ZCL 
(075123r03ZB) or HA errata doc (13-0553-40)). It is present in the implementation for 
backward compatibility. 

lpsw7064 Issue: OTA ImageType attribute is not changing its value according to the specification. 

Solution: OTA ImageType attribute is updated by the ZCL according to the specification. 

Implementation-specific Note: If ImageUpgradeStatus is “Normal” then the ImageType 
attribute will be 0xFFFF, else it will be the type of the file in download process. 

lpsw7311 Issue: ConfigureReportingResponse for an unreportable/unsupportable attribute is C1 and 
not UNREPORTABLE_ATTRIBUTE/UNSUPPORTED_ATTRIBUTE. 

Solution: Check has been added in the vZCL_HandleConfigureReportingCommand() 
function to give UNREPORTABLE_ATTRIBUTE/UNSUPPORTED_ATTRIBUTE status in 
ConfigureReportingResponse for an unreportable/unsupportable attribute. 

lpsw7370 Issue: When a ReadAttributeResponse command is received, the length and MaxLength of 
the string type attributes are incorrect when reported to the application via the callback 
event E_ZCL_CBET_READ_INDIVIDUAL_ATTRIBUTE_RESPONSE. 

Solution: Fixed. 

Implementation-specific Note: While exporting a string in the 
E_ZCL_CBET_READ_INDIVIDUAL_ATTRIBUTE_RESPONSE event, use 
tsZCL_CharacterString instead of tsZCL_String in uAttribData. 



 
  ZigBee Home Automation/Light Link SDK 

Release Notes 

 

22 © NXP B.V. 2019 JN-RN-0058 v2162 

lpsw7374 Issue: DiscoveryAttributeResponse is dropped if the packet is larger than can be held in 
outgoing buffer. 

Solution: Sending only those attributes which fit in the outgoing buffer and set the 
‘discovery complete’ flag to false. 

lpsw7403 Issue: Attribute reporting does not work if attribute is of the string type. 

Solution: Fixed. 

lpsw7413 Issue: The stack did not allow you to send multiple reports at the same time. 

Solution: The ZCL is using a bound ‘no ack’ transmission function that now allows you to 
send multiple reports. Updated ZCL for non-blocking bound transmissions. For non-blocking 
bound transmission, use E_ZCL_AM_BOUND_NON_BLOCKING or 
E_ZCL_AM_BOUND_NON_BLOCKING_NO_ACK. 

lpsw7418 Issue: Control Bridge sends random status byte to the host due to attribute status not being 
initialized properly in the ZCL. 

Solution: Fixed by initializing it properly. 

lpsw7495 Issue: In the Colour Control cluster, Hue is not updated when ‘Move to Colour Temp’ 
command is used. 

Solution: Fixed 

lpsw7533 Issue: Even though an attribute value is unrepeatable/unsupported/incorrect in the 
ConfigureReporting command, when the ZCL generates the 
E_ZCL_CBET_REPORT_INDIVIDUAL_ATTRIBUTES_CONFIGURE callback event to 
application, the eZCL status value is success. This is causing confusion to the application. 

Solution: E_ZCL_CBET_REPORT_INDIVIDUAL_ATTRIBUTES_CONFIGURE callback 
event has the following status codes for the application: 

 If attribute search failed, callback event with eZCL_Status of 
E_ZCL_ERR_ATTRIBUTE_NOT_FOUND generated 

 If attribute type unsupported, callback event with eZCL_Status of 
E_ZCL_ERR_ATTRIBUTE_TYPE_UNSUPPORTED generated 

 If attribute type is not reportable, callback event with eZCL_Status of 
E_ZCL_ERR_ATTRIBUTE_NOT_REPORTABLE generated 

If reporting interval is not in range, callback event with eZCL_Status of 
E_ZCL_ERR_INVALID_VALUE generated 

 

6.1.3 ZCL/Profile Known Issues 

There are no known ZCL/profile issues in this release. 

6.2 ZigBee Green Power 

In this release, the following bugs have been fixed in the ZigBee Green Power: 

Reference Description 

lpsw7639 Issue: Address conflict is not resolved when a node on the network has the same short 
address as the Green Power Device. 

Solution: Updated GreenPower.c to return the evaluated status of the conflict 
(bAliasMatched). 

  



ZigBee Home Automation/Light Link SDK 
Release Notes  

  

 
 

JN-RN-0058 v2162 © NXP B.V.  2019 23 

6.3 ZigBee PRO Stack 

ZigBee PRO libraries are included for the JN5169, JN5168 and JN5164 devices. 

6.3.1 New Stack Features and Enhancements 

This release includes the following new stack features: 

• [Ref. 7019] New callback for ‘update device’ indication when a device is leaving 

• [Ref. 7261] Check that no circular routes are present when sending data over 
the air 

• [Ref. 7305] API function to prevent parent routing devices from notifying the 
Trust Centre when Orphan notifications are used as a way of rejoining the 
network. This closes a security hole in which the Trust Centre would transport a 
key to the newly joined devices 

• [Ref. 7310] User-defined LQI to Link Cost mappings 

• [Ref. 7426] MAC allows two different values of minBE. One is used when the 
data request is received and the other for everything else. This is useful on a 
routing device, so that it can respond faster for a sleepy child. 

6.3.2 Stack Bug Fixes 

In this release, the following bugs have been fixed in the ZigBee PRO stack: 

Reference Description 

lpsw5870 Issue: MiniMAC for JN5169 does not support all Tx power levels.  

Solution: The MAC now supports the whole range of power levels that the JN5169 can 
support. 

lpsw6907 Issue: Management Leave server incorrectly sent a response of NOT SUPPORTED. 

Solution: Fixed. 

lpsw6938 Issue: When issuing a request to set the User Descriptor on a remote node using the 
ZPS_eAplZdpUserDescSetRequest() function, the length field of the request is always set 
to 16 rather than the actual length of the descriptor set when the request is made. 

Solution: Fixed. 

lpsw7005 Issue: Parent sends poll response with no frame pending but proceeds to send data 
anyway. 

Solution: Fixed. 

lpsw7012 Issue: Extended error status 0x87 due to AMT portion of the IEEE address table is full. 

Solution: Fixed. 

lpsw7016 Issue: Management leave request is not being sent up to the application. 

Solution: Fixed. 

lpsw7017 Issue: The stack parses the rejoin/remove child bits incorrectly (which has been rectified by 
the ZigBee Alliance). 

Solution: Parsing and setting the Leave bytes is now done correctly. 

lpsw7018 Issue: MAC address table mis-management causes Address Map table to fill prematurely. 

Solution: Fixed. 



 
  ZigBee Home Automation/Light Link SDK 

Release Notes 

 

24 © NXP B.V. 2019 JN-RN-0058 v2162 

lpsw7037 Issue: Rejoins happen more frequently with End Devices due to LQI filtering when LQI is 
poor. 

Solution: Removed End Device link cost filtering. 

lpsw7145 Issue: Parameter CTRIM of radio settings for JN5169 has been changed to provide more 
flexibility in crystal choice. Need to re-build JN5169 SDKs with this new lib. 

Solution: Enhanced JN5169 radio settings to extend the range of supported 32MHz 
external crystals. 

lpsw7185 Issue: MiniMAC not setting frame pending bit in outgoing frames. 

Solution: When sending a frame in response to a data request, the MAC now sets the 
header field in the frame to indicate if there are additional frames that are still pending for 
the requestor. 

lpsw7231 Issue: Stack is not checking that the destination address and originator address for network 
status is not the same. 

Solution: Fixed. 

lpsw7300 Issue: Before populating the route record table, stack code was not checking whether the 
table has the capacity to store all the hops. 

Solution: Fixed. 

lpsw7303 Issue: Stack was not persisting the Neighbour table and IEEE Address table after a 
previously aged device becomes part of the network again. 

Solution: Fixed. 

lpsw7337 Issue: Group address table is not persisted correctly if there are more than one endpoint. 

Solution: Fixed. 

lpsw7344 Issue: When declaring an RxOnIdle End Device and after it has joined the network, 
whenever a beacon request is sent by a device, the RxOnIdle End Device will respond with 
a junk beacon packet. 

Solution: No beacon response sent from RxOnIdle End Device. 

lpsw7409 Issue: Application Notes take a long time to compile. 

Solution: Speed of compile time improved (by 6 minutes for the Control Bridge). 

lpsw7412 Issue: In the Bound transmission API function, there is a state machine that does not allow 
you to send multiple bound transmissions at once. This is because it uses the same code as 
Bound with Ack which needs a state machine. 

Solution: Added new function to send non-blocking bound transmission to allow multiple 
bound requests to be sent at the same time. 

lpsw7428 Issue: A sleepy End Device can prematurely turn its receiver off during a data poll if it 
receives a broadcast packet while waiting for buffered data from its parent. 

Solution: Broadcasts are ignored on ‘Rx On When Idle=False’ devices when waiting for 
buffered data and the receiver is turned off only after the buffered data turnaround period 
has elapsed. 

lpsw7518 Issue: Simple descriptor returning 0x81 (invalid device) rather than 0x80 (invalid request) 
return code. 

Solution: Fixed. 

lpsw7520 Issue: A data indication with a security status of ‘security fail’ occurs when application's 
security failure checks are done. To be consistent with network security failure, no APS 
acks should be sent back for security failure. 

Solution: APS acks now suppressed when APS security fails (similar to NWK security fail). 



ZigBee Home Automation/Light Link SDK 
Release Notes  

  

 
 

JN-RN-0058 v2162 © NXP B.V.  2019 25 

lpsw7542 Issue: The stack does not clear the source routing table properly when the next hop in the 
route is aged out. 

Solution: Fixed. 

lpsw7545 Issue: On a rejoin request with invalid address, the stack does not issue the rejoin response 
with a valid address unless the allocate address bit is set. 

Solution: Fixed. 

lpsw7547 Issue: Stack does not issue a new key on request key if after commissioning it has been 
reset. 

Solution: Fixed. 

lpsw7611 Issue: The SDK does not include the library file libAppApi_JN5169.a for the IEEE802.15.4 
Stack API (needed for direct IEEE802.15.4 application coding for the JN5169 chip). 

Solution: File now included. 

6.3.3 Stack Known Issues 

There are no known stack issues in this release. 

6.4 JenOS 

6.4.1 Bug Fixes 

In this release, the following bugs have been fixed in JenOS: 

Reference Description 

lpsw7584 Issue: When saving 320 bytes with multiple bytes changed, the PDM evaluated the 
changes properly but did not write them correctly into the EEPROM. The internal bitmap 
used to track individual segment changes was using the wrong byte mask to isolate the 
correct read bit, yielding spurious results and causing the wrong segments to be updated (if 
they were not in a continuous run in the bitmap).  

Solution: Fixed 

6.4.2 JenOS Known Issues 

In this release, JenOS has the following known issues: 

Reference Description 

lpsw7648 Issue: On a 250+ nodes network, an occasional exception is seen. This normally corrupts 
the stack buffers. This has only been observed when running OTA upgrade. It is believed to 
be timing related. 

Workaround: Software reset on exception allows the node to continue working normally 
after recovering persisted network data. 

 



 
  ZigBee Home Automation/Light Link SDK 

Release Notes 

 

26 © NXP B.V. 2019 JN-RN-0058 v2162 

6.5 JN516x Integrated Peripherals API 

6.5.1 Bug Fixes 

In this release, the following bugs have been fixed in the JN516x Integrated 
Peripherals API: 

Reference Description 

lpsw7429 Issue: The calibration of the wake timer, when using the function 
u32AHI_WakeTimerCalibrateEnhanced(), could terminate prematurely if an interrupt fired 
during the calibration operation. This would cause the reported calibration value to be 
incorrect.  

Solution: Fixed 

6.6 Production Test Libraries 

6.6.1 Bug Fixes 

In this release, the following bugs have been fixed in the Production Test Libraries: 

Reference Description 

lpsw7145 Issue: Parameter CTRIM of radio settings for JN5169 has been changed to provide more 
flexibility in crystal choice. Need to re-build JN5169 SDKs with this new lib. 

Solution: Enhanced JN5169 radio settings to extend the range of supported 32MHz 
external crystals. 

6.7 Application Porting Notes 

Before porting an existing application to this JN-SW-4168 SDK, it is recommended that 
you go through the ZigBee PRO Stack User Guide (JN-UG-3101) to ensure adherence 
to the recommended settings in the ZPS configuration. 

The libraries supplied in the JN-SW-4168 SDK have been built against the new  
JN-SW-4141 toolchain. The migration guidelines for the new toolchain should be 
followed before using these porting guidelines. Migration to the new toolchain is 
described in the Application Note BeyondStudio Migration Guidelines (JN-AN-1202). 

6.7.1 Makefile Updates 

The CPU stack size and minimum heap size are no longer referenced from the linker 
command scripts. The presence of app_stack_size.ld files in the build path of the 
application will now result in an error. Any app_stack_size.ld files in the application 
build folders must be removed. 

The CPU stack size and minimum heap size are referenced from two variables. If CPU 
stack and heap sizes are required that are larger than the defaults of 5K bytes and  
2K bytes respectively, these should now be defined in the application makefiles. 

The variables to be defined in the makefile are: 

STACK_SIZE ?= 6000 
MINIMUM_HEAP_SIZE ?= 2000 



ZigBee Home Automation/Light Link SDK 
Release Notes  

  

 
 

JN-RN-0058 v2162 © NXP B.V.  2019 27 

6.8 Bootloader Version 

The version of the bootloader in the JN5168 device must be either of the following:  

• 0x00080003 

• 0x00080006 

The version of the bootloader in the JN5169 device must be the following:  

• 0x000B0000 

 

  



 
  ZigBee Home Automation/Light Link SDK 

Release Notes 

 

28 © NXP B.V. 2019 JN-RN-0058 v2162 

RELEASE HISTORY (v1364) 

7. Release Details 

7.1 ZCL and Profile 

7.1.1 New ZCL/Profile Features and Enhancements 

This release includes the following new ZCL features: 

• [Ref. 6054] Support for a Mains Power Outlet device 

• [Ref. 6745] New clusters: Analogue Input, Analogue Output, Multistate Input, 
Multistate Output and Binary Output  

7.1.2 ZCL/Profile Bug Fixes 

In this release, the following bugs have been fixed in the ZCL/Profile: 

Reference Description 

6100 To speed up the reporting mechanism, the user needs to provide 
E_ZCL_CBET_TIMER_MS (millisecond) ticks along with E_ZCL_CBET_TIMER (one 
second) ticks. This can speed up ‘report on change’ in terms of milliseconds. The following 
code needs to called from the application: 

 

        sCallBackEvent.eEventType = E_ZCL_CBET_TIMER_MS; 

    vZCL_EventHandler(&sCallBackEvent); 

 

Along with the above changes, E_ZCL_CBET_TIMER ticks still need to be provided, as 
they are used by UTC time and inherently by the ZCL report manager to keep track of time. 

6305 An issue has been fixed relating to the update of the Block Request Delay attribute when an 
OTA client receives a WAIT FOR DATA command from the server. 

6469 A new check has been added in which the user will not be allowed to create a group table if 
the number of groups specified in CLD_GROUPS_MAX_NUMBER_OF_GROUPS (in the 
ZCL) is greater than the value configured in the ZPS config diagram or in the stack. 

6674 An issue has been fixed whereby the range check for the Saturation and Colour 
Temperature attributes was missing, which caused these attributes to go out of their valid 
ranges when a Move to Colour command was received by a Colour Control cluster server. 

6849 The ReportAllAttributes() was exhausting resources with multiple endpoints and reportable 
attributes. A new ZCL function eZCL_ReportAttribute() has been introduced to send out the 
report for an individual reportable attribute. The function is detailed below. 

Function Prototype: 

PUBLIC teZCL_Status eZCL_ReportAttribute( 

                    tsZCL_Address             *psDestinationAddress, 

                    uint16                              u16ClusterID, 

                    uint16                              u16AttributeID, 

                    uint8                                u8SrcEndPoint, 

                    uint8                                u8DestEndPoint, 



ZigBee Home Automation/Light Link SDK 
Release Notes  

  

 
 

JN-RN-0058 v2162 © NXP B.V.  2019 29 

                    PDUM_thAPduInstance hAPduInst) 

 

Returns: 

E_ZCL_SUCCESS 

E_ZCL_ERR_ATTRIBUTE_NOT_FOUND 

E_ZCL_ERR_ATTRIBUTE_NOT_REPORTABLE 

E_ZCL_ERR_ZBUFFER_FAIL 

E_ZCL_ERR_EP_RANGE 

E_ZCL_ERR_CLUSTER_NOT_FOUND 

6970 An issue has been fixed whereby a Get Group Membership command did not return the 
groups having group ID greater than or equal to 0x8000. 

6971 The Remove All Groups command previously removed all scenes associated with groups 
but included the global scene. However, the global scene is not associated with any groups, 
so should not be removed. This issue has been fixed and the global scene is now retained. 

6973 An issue has been fixed whereby the Scenes extension field set was corrupted if the Add or 
Enhanced Add Scene command contained a scene name of length greater than the 
maximum scene length supported by the Scenes cluster server. 

6974 An issue has been fixed whereby the ZCL did not allow to the addition of a manufacturer-
specific cluster having a cluster ID greater than or equal to 0xFC01. 

6975 The ZCL specification indicates that additional bytes found appended to a ZCL frame must 
be ignored, as these may be added as part of an updated frame format. In order to support 
this, the E_ZCL_ACCEPT_MORE flag (which was used to check whether more data than 
expected had been received and, if so, send back a default response with malformed 
command) has been removed from the ZCL. 

6976 Previously, the Add Scene and Enhanced Add Scene commands resulted in a default 
response of malformed command if there were more or fewer bytes than expected in the 
extension field. For forward compatibility, the reception of the Add Scene and Enhanced 
Add Scene command now allows for the possible future addition of other attributes to the 
trailing ends of the scene extension list given in the cluster specifications (by ignoring them). 
Similarly, it allows for one or more attributes to be omitted from the trailing ends of the 
scene extension list. 

 

7.2 ZigBee Green Power 

No changes in addition to those made in v1279, described in Section 8.1.2. 

7.3 ZigBee PRO Stack 

ZigBee PRO libraries are included for the JN5169, JN5168 and JN5164 devices. 

7.3.1 New Stack Features and Enhancements 

This release includes no new stack features in addition to those in v1279, described in 
Section 8.2.1. 

  



 
  ZigBee Home Automation/Light Link SDK 

Release Notes 

 

30 © NXP B.V. 2019 JN-RN-0058 v2162 

7.3.2 Stack Bug Fixes 

In this release, the following bugs have been fixed in the ZigBee PRO stack: 

Reference Description 

4600 ZDO servers reported the storage capacity of a node when responding to ZDP requests like 
management bind, management LQI and management routing requests. This resulted in 
reading empty entries and requiring interrogation of the full capacity. These servers now 
report only the active entries. This makes the discovery process faster and more efficient. 

6171 The management NWK update from the ZDO server did not report the actual energy 
detection value generated by the energy scan for channel 26, but reported it as 0. This 
issue has been resolved and 0 is no longer reported for this channel. 

6499 Local broadcast of permit join and management update requests could previously result in 
the server not accepting any further such requests. This prevented the device from moving 
channels or opening a permit join window. This has now been fixed. 

6601 The ZPS_vTCSetCallback() function scope has been made PUBLIC and exposed to users 
in the zps_apl_af.h public header file. 

6616 Inactive and initialised nodes previously responded to beacon requests by sending a 
beacon response in which the reported PAN ID was 0. This could result in PAN ID conflicts. 
This issue has been fixed and these nodes no longer respond to beacon requests. 

6629 The MAC table was previously holding on to stale entries of devices that had left the 
network, reducing the number of devices that could join the network. This issue has been 
fixed and devices that leave the network are removed from the MAC table. 

6648 The route discovery complete event did not previously report the short address of the device 
for which a route discovery had been initiated. This issue has been fixed and the event now 
reports the short address. This enhances the event usability and improves the application 
interface. 

6677 Certain files were missing for the JN5164 devices. Support for HA and ZLL applications has 
now been extended to JN5164. 

6718 Previously during a route discovery, if a route reply took a routed path, this would cause the 
route reply frame to be rejected and the route discovery to fail. Route reply frames are now 
regenerated at every hop needed to reach the source of the route discovery.  

6732 A routing device could previously initiate a partial link status when a device announce was 
received from a node which was not its immediate neighbour. This was done to make 
routing quicker but could have an undesired effect of causing additional route discoveries 
for itself from other nodes. This issue has been fixed such that no link status is sent in this 
case. 

6741 Additional route record frames for child End Devices from the parent are now suppressed. 

6760 Previously, when a device had been aged out, the address map table was not updated 
correctly, which could result on an address conflict being declared incorrectly. This has now 
been fixed. 

6785 The override profile callback was not being called for bound transmissions Therefore, the 
feature to override the profile ID of a data frame has been extended to bound transmissions. 

6829 As for issue 4600 (above).  

  



ZigBee Home Automation/Light Link SDK 
Release Notes  

  

 
 

JN-RN-0058 v2162 © NXP B.V.  2019 31 

7.3.3 Stack Known Issues 

Reference Description 

6086 Circular Routes:  

It is possible that a unicast packet will not reach its destination because the packet is lost - 
for example, it becomes caught in a circular route. The APS acknowledgement mechanism 
can be used on the source node to monitor sent packets - an event will be generated when 
an acknowledgement is received from the target node. To allow an acknowledgment to be 
received, the source node must remain awake for a time equal to the APS retry timeout 
period.  

On a battery-powered node, the use of APS acknowledgements and retries may not be 
desirable from a power-saving point of view. 

Resolution: 

If the response is not observed within a pre-defined time then the application should take 
one of the following actions, depending on whether the source node is an End Device or 
Router: 

If an End Device, the application should notify the parent node about the routing problem by 
sending it a unicast network status command, ZPS_vNwkSendNwkStatusCommand(), 
with the status as “No Route Available (0x00)” 

If a Router, the application should initiate an explicit route discovery to the destination node 
by calling the function ZPS_eAplZdoRouteRequest() 

The above functions are described in the ZigBee PRO Stack User Guide (JN-UG-3101). 

6169 Discovery Failure Due to Circular Route:  

When a discovery command such as Match Descriptor is broadcast, a matching node will 
unicast the response back to the originator. If the response gets caught in a circular route, 
the discovery will not be successful.  

6133 In a dense network it has been observed that a route reply does not get generated due to a 
CCA failure resulting in a Tx failure of the route reply. This prevents a route discovery from 
completing. 

6134 During route discovery on a LNT, there have been instances where the route reply packet 
gets retried out. This results in a failure to complete the route discovery. The MAC error 
status returned is ‘no ACK’. 

 

7.4 JN516x Integrated Peripherals API 

In this release, there are no changes in addition to those made in v1279, described in 
Section 8.3. 

7.5 Production Test Libraries 

In this release, there are no changes in addition to those made in v1279, described in 
Section 8.4. 

  



 
  ZigBee Home Automation/Light Link SDK 

Release Notes 

 

32 © NXP B.V. 2019 JN-RN-0058 v2162 

7.6 Application Porting Notes 

Before porting an existing application to this JN-SW-4168 SDK, it is recommended that 
you go through the ZigBee PRO Stack User Guide (JN-UG-3101) to ensure adherence 
to the recommended settings in the ZPS configuration. 

The libraries supplied in the JN-SW-4168 SDK have been built against the new  
JN-SW-4141 toolchain. The migration guidelines for the new toolchain should be 
followed before using these porting guidelines. Migration to the new toolchain is 
described in the Application Note BeyondStudio Migration Guidelines (JN-AN-1202). 

First note that: 

• The JN516x device does not support overlays, so any code relating to overlays 
must be removed. 

• The files App_timer_driver.c and App_timer_driver.h must be removed from 
the application source/include folders. 

7.6.1 Within ‘BeyondStudio for NXP’ 

Run BeyondStudio for NXP and follow the instructions below:  

1. Select the project root directory. 

2. Select Properties (in the File menu or pop-up menu obtained by right-clicking). 

3. In the Properties window, select C++ Build. 

4. For each node (selected from the Configuration drop-down list), on the Build 
Settings tab ensure that the Build command field contains a line of the form: 

make JENNIC_CHIP_FAMILY=JN516x JENNIC_CHIP=JN5168 OVERLAY_BUILD=0 

PDM_BUILD_TYPE=_EEPROM 

 

 The above example assumes that the JN5168 chip is used. 

7.6.2 Within vAppMain 

The following changes should be made to the vAppMain code. 

At the start of vAppMain, add the following: 

// Wait until FALSE i.e. on XTAL - otherwise UART data will be at 

wrong speed 

while (bAHI_GetClkSource() == TRUE); 

// Now we are running on the XTAL, optimise the Flash memory wait 

states 

vAHI_OptimiseWaitStates(); 

 

The Get/Release Mutex functions for the Flash mutex should be non-counting: 

PUBLIC void vGetMutex(void) 

{ 

    OS_eEnterCriticalSection(mutexFlash); 

} 

 

PUBLIC void vReleaseMutex(void) 

{ 

    OS_eExitCriticalSection(mutexFlash); 

} 



ZigBee Home Automation/Light Link SDK 
Release Notes  

  

 
 

JN-RN-0058 v2162 © NXP B.V.  2019 33 

 

If there is a call to: 

u32AppApiInit(NULL, NULL, NULL, NULL, NULL, NULL); 

 
it should be removed or replaced with: 

#ifndef JENNIC_MAC_MiniMacShim 

    u32AppApiInit(NULL, NULL, NULL, NULL, NULL, NULL); 

#endif 

 

It is now possible to rejoin a network without performing a discovery. This is achieved 
by calling the function ZPS_eAplZdoRejoinNetwork() and passing a flag of FALSE. 
This requires a parent to be present in the Neighbour table. 

If discovery is still required then the above function should now be called with a flag of 
TRUE - refer to the ZigBee PRO Stack User Guide (JN-UG-3101) for details. 

The stack no longer holds a map of short and long addresses in the NIB. It holds a 
map of short addresses and an index into a global long address. To find the actual 
long address, the following function can be called: 

ZPS_u64NwkNibGetMappedExtendedAddress() 

Refer to the ZigBee PRO Stack User Guide (JN-UG-3101) for details of the above 
function. 

The stack no longer holds the MAC address in individual network tables. This has 
been replaced with a look-up table. The extended address can be found using the 
above function.  

The indexes in the Neighbour table should never be written to by the application. 

7.6.3 Setting Minimum Heap and Stack Sizes in Application 

The minimum heap size can be set to a required value by defining the following in the 
application linker script APP_stack_size.ld located in the application build directory:  

_minimum_heap_size = <required value>; 

 

And the stack size can be set by:  

_stack_size = <required size>; 

7.6.4 Modifying Application Makefile 

In the application makefile, you need to specify the type of IEEE802.15.4 MAC to use. 

For all ZigBee applications, the MiniMAC will be used. It is referenced by setting the 
following in the makefile: 

JENNIC_MAC ?= MiniMacShim 

JENNIC_STACK ?= ZLLHA 

 

The ZigBee Green Power and ZigBee Light Link optional functionality can now be 
controlled through the ZPS Configuration Editor. 

These functionalities are present in the installer as optional libraries. To incorporate 
them, the following lines should be added to the Makefile: 

JENNIC_SDK ?= JN-SW-4168 



 
  ZigBee Home Automation/Light Link SDK 

Release Notes 

 

34 © NXP B.V. 2019 JN-RN-0058 v2162 

          SDK_BASE_DIR   = $(abspath 

../../../../sdk/$(JENNIC_SDK)) 

APP_BASE       = $(abspath ../..) 

 

Include the correct profile source in the application by defining the following flags, as 
required. 

For an HA lighting application:  

APP_CLUSTER_HA_LIGHTING_SRC ?= 1 

 

For a ZLL lighting applications:  

APP_CLUSTER_ZLL_SRC ?= 1  

 

To include appropriate cluster code, enable one or more of the following macros, as 
required  

# OTA Cluster 

#APP_CLUSTERS_OTA_SRC ?=1 

 

# Green Power clusters 

#APP_CLUSTERS_GREENPOWER_SRC ?=1 

 

# Lighting Clusters 

#APP_CLUSTER_LIGHTING_SRC ?=1 

 

# Measurement and sensing clusters  

#APP_CLUSTERS_MEASUREMENT_AND_SENSING ?=1 

 

# Energy at Home clusters 

#APP_CLUSTERS_ENERGY_AT_HOME_SRC ?=1 

 

# HVAC clusters 

#APP_CLUSTERS_HVAC_SRC ?=1 

 

# Smart Energy clusters 

#APP_CLUSTERS_SMART_ENERGY_SRC ?=1 

 

# IAS clusters 

#APP_CLUSTERS_IAS_SRC ?=1 

   

Replace the OSCONFIG , PDUMCONFIG and ZPSCONFIG lines in the makefile with the 

following: 

$(OSCONFIG) -f $< -o $(APP_SRC_DIR) -v $(JENNIC_CHIP) 

$(PDUMCONFIG) -z $(TARGET) -f $< -o $(APP_SRC_DIR) 

$(ZPSCONFIG) -n $(TARGET) -t $(JENNIC_CHIP) -l 

$(ZPS_NWK_LIB) -a   $(ZPS_APL_LIB) -c 

$(TOOL_COMMON_BASE_DIR)/$(TOOLCHAIN_PATH) -f $< -o 

$(APP_SRC_DIR) 

 

OPTIONAL_STACK_FEATURES = $(shell $(ZPSCONFIG) -n $(TARGET) -f 

$(APP_SRC_DIR)/$(APP_ZPSCFG) -y ) 

 

All references to Cygwin paths/shell should be removed. 

All references to TEMPCHP should be replaced with JENNIC_CHIP. 



ZigBee Home Automation/Light Link SDK 
Release Notes  

  

 
 

JN-RN-0058 v2162 © NXP B.V.  2019 35 

Utilities functions (e.g. NumToString) need to be built from source. 

Add the utilities source directory (C:\Jennic\Components\Utilities\Source) to vpath: 

• UTIL_SRC_DIR = $(COMPONENTS_BASE_DIR)/Utilities/Source 

• Add to vpath :$(UTIL_SRC_DIR) 

 

Add the utilities source files: 

• APPSRC += NumToString.c 

• APPSRC += appZpsBeaconHandler.c 

• APPSRC += appZdpExtraction.c 

• APPSRC += pdum_apdu.S 

 

Add the following to the include path: 

INCFLAGS += -I$(COMPONENTS_BASE_DIR)/Random/Include 

INCFLAGS += -I$(COMPONENTS_BASE_DIR)/MAC/Include 

INCFLAGS += -I$(COMPONENTS_BASE_DIR)/NXPLogo/Include 

INCFLAGS += -I$(COMPONENTS_BASE_DIR)/Utilities 

 

Replace the current LDLIBS line with the following lines: 

APPLDLIBS := $(foreach lib,$(APPLIBS),$(if $(wildcard $(addprefix 

$(COMPONENTS_BASE_DIR)/Library/lib,$(addsuffix 

_$(JENNIC_CHIP).a,$(lib)))),$(addsuffix _$( 

JENNIC_CHIP),$(lib)),$(addsuffix _$(JENNIC_CHIP_FAMILY),$(lib)))) 

LDLIBS := $(APPLDLIBS) $(LDLIBS) 

 

Replace the build elf file creation option with: 

$(TARGET)_$(JENNIC_CHIP).elf: $(APPOBJS) $(addsuffix.a,$(addprefix 

$(COMPONENTS_BASE_DIR)/Library/lib,$(APPLDLIBS)))  

               $(info Linking $@ ...)  

               $(CC) -Wl,--gc-sections -Wl,-u_AppColdStart -Wl,-

u_AppWarmStart $(LDFLAGS) -TAppBuildZLLHA_$(JENNIC_CHIP).ld -o $@ 

-Wl,--start-group $(APPOBJS) $(addprefix -l,$(LDLIBS)) -Wl,--end-

group -Wl,-Map,$(TARGET)_$(JENNIC_CHIP)$(BIN_SUFFIX).map  

                $(SIZE) $@ 

 

Replace the bin file creation option with: 

$(TARGET)_$(JENNIC_CHIP)$(BIN_SUFFIX).bin: 

$(TARGET)_$(JENNIC_CHIP)$(BIN_SUFFIX).elf  

              $(info Generating binary ...) 

              $(OBJCOPY) -j .version -j .bir -j .flashheader -j 

.vsr_table -j .vsr_handlers  -j .rodata -j .text -j .data -j .bss 

-j .heap -j .stack -S -O binary $< $@ 

 

In the OS_config diagram, ensure that the chip type is JN516x. 

  



 
  ZigBee Home Automation/Light Link SDK 

Release Notes 

 

36 © NXP B.V. 2019 JN-RN-0058 v2162 

7.6.5 PDM Additional Notes 

This release contains an updated PDM (Persistent Data Manager) library with a new 
API function.  

In vInitialiseApp change: 

PDM_vInit(7, 1, 64 * 1024 , NULL, mutexMEDIA, NULL,&g_sKey); 

 

to 

PDM_eInitialise(63, NULL);  

 

If PDM_eInitialise(0, NULL) already appears in your code, replace it with 

PDM_eInitialise(63, NULL). 

The new function does not use descriptors.  All application variables of type 
PDM_tsRecordDescriptor must be removed.   

Replace all calls to PDM_eLoadRecord() with:  

    PUBLIC PDM_teStatus PDM_eReadDataFromRecord( 

        uint16                      u16IdValue, 

        void                       *pvDataBuffer, 

        uint16                      u16DataBufferLength, 

        uint16                     *pu16DataBytesRead); 

 

Replace all calls to PDM_vSaveRecord() with: 

PUBLIC PDM_teStatus PDM_eSaveRecordData( 

        uint16                      u16IdValue, 

        void                       *pvDataBuffer, 

        uint16                      u16Datalength); 

 

Replace all calls to PDM_vDeleteRecord() with: 

PUBLIC void PDM_vDeleteDataRecord( 

        uint16                      u16IdValue); 

         

The new PDM library uses a different record format to previous versions. It is essential 
that old-format records are erased from the EEPROM before using the new library.  
This must be done from the JN516x Flash Programmer (within BeyondStudio for NXP) 
by selecting Erase EEPROM->Complete PDM.  

The new PDM library does not contain the PDM_vSave() function. If it is required to 
force a save of the ZigBee PRO stack records, a call can be made to 
ZPS_vSaveAllZpsRecords(). 

7.6.6 Registering an Error Handler (JN516x EEPROM Only) 

The internal PDM library allows an error handler to be called to alert the application to 
error conditions. This error handler is registered using the function 
PDM_vRegisterSystemCallback(). 

The application must trap E_PDM_SYSTEM_EVENT_PDM_NOT_ENOUGH_SPACE 
and E_PDM_SYSTEM_EVENT_DESCRIPTOR_SAVE_FAILED callback errors during 
testing. 



ZigBee Home Automation/Light Link SDK 
Release Notes  

  

 
 

JN-RN-0058 v2162 © NXP B.V.  2019 37 

The ZigBee PRO stack uses multiple records. Once an out-of-space error has 
occurred, the records will be in an inconsistent state. In this case, the software should 
be modified to use smaller record sizes or an external SPI Flash device. 

The PDM record sizes for the ZigBee PRO stack are dependent on table sizes set 
in the ZPS Configuration Editor. 

The following example code is provided for the error handler callback function: 

PDM_vRegisterSystemCallback(vPdmEventHandlerCallback); 

PRIVATE void vPdmEventHandlerCallback(uint32 u32EventNumber, 

PDM_eSystemEventCode eSystemEventCode) 

{ 

    switch (eSystemEventCode) { 

        /* 

         * The next three events will require the application to 

take some action 

         */ 

        case E_PDM_SYSTEM_EVENT_WEAR_COUNT_TRIGGER_VALUE_REACHED: 

            DBG_vPrintf(TRACE_APP, "PDM: Segment %d reached 

trigger wear level\n", u32EventNumber); 

            break; 

        case E_PDM_SYSTEM_EVENT_DESCRIPTOR_SAVE_FAILED: 

            DBG_vPrintf(TRACE_APP, "PDM: Record Id %d failed to 

save\n", u32EventNumber); 

            DBG_vPrintf(TRACE_APP, "PDM: Capacity %d\n", 

u8PDM_CalculateFileSystemCapacity() ); 

            DBG_vPrintf(TRACE_APP, "PDM: Occupancy %d\n", 

u8PDM_GetFileSystemOccupancy() ); 

           break; 

        case E_PDM_SYSTEM_EVENT_PDM_NOT_ENOUGH_SPACE: 

            DBG_vPrintf(TRACE_APP, "PDM: Record %d not enough 

space\n", u32EventNumber); 

            DBG_vPrintf(TRACE_APP, "PDM: Capacity %d\n", 

u8PDM_CalculateFileSystemCapacity() ); 

            DBG_vPrintf(TRACE_APP, "PDM: Occupancy %d\n", 

u8PDM_GetFileSystemOccupancy() ); 

            break; 

        /* 

         * The following events are really for information only 

         */ 

        case E_PDM_SYSTEM_EVENT_EEPROM_SEGMENT_HEADER_REPAIRED: 

            DBG_vPrintf(TRACE_APP, "PDM: Segment %d header 

repaired\n", u32EventNumber); 

            break; 

        case 

E_PDM_SYSTEM_EVENT_SYSTEM_INTERNAL_BUFFER_WEAR_COUNT_SWAP: 

            DBG_vPrintf(TRACE_APP, "PDM: Segment %d buffer wear 

count swap\n", u32EventNumber); 

            break; 

        case 

E_PDM_SYSTEM_EVENT_SYSTEM_DUPLICATE_FILE_SEGMENT_DETECTED: 

            DBG_vPrintf(TRACE_APP, "PDM: Segement %d duplicate 

selected\n", u32EventNumber); 

            break; 

        default: 

            DBG_vPrintf(TRACE_APP, "PDM: Unexpected call back Code 

%d Number %d\n", eSystemEventCode, u32EventNumber); 

            break; 

    } 

} 



 
  ZigBee Home Automation/Light Link SDK 

Release Notes 

 

38 © NXP B.V. 2019 JN-RN-0058 v2162 

7.6.7 OS Error Checking 

Errors can be detected by testing the return codes from the calls to OS functions. 
However, this requires application code to test the return code from every OS call. 
Registering an error callback function provides a robust alternative to checking the 
return codes. This function is invoked whenever an OS function returns an error. The 
function is registered as a parameter of OS_vStart(). The error callback option must 
also be enabled in the JenOS Configuration Editor. Many OS errors leave the 
scheduler in an undefined state. For example, nesting a mutex by calling 
OS_eEnterCriticalSection() twice before calling OS_eExitCriticalSection() causes a 
OS_E_BAD_NESTING error. Once an error of this nature has occurred, the OS 
scheduler is in an undefined state. 

The OS scheduler will enter an undefined state if there are inconsistencies between 
the OS configuration diagram (in the JenOS Configuration Editor) and the application 
code. A strict error check option can be enabled in the JenOS Configuration Editor to 
check for inconsistencies between the OS configuration diagram and the software. The 
strict mode has a slight overhead in code space and execution time but it is good 
practice to enable strict checking where possible. For example, calling 
OS_eEnterCriticalSection() from a task which is not in the group for the mutex will 
generate OS_E_CURRENT_TASK_NOT_A_MUTEX_MEMBER with strict checking 
enabled. If strict checks were not enabled, the scheduler operation would be undefined 
and the system may become unstable. 

During testing, an application’s error callback function should stop the application with 
a stack dump and the error should be fixed. The OS passes two parameters to the 
error callback - the status code of the error and a pointer to the handle which caused 
the error. These parameters should be printed out to help determine the cause of the 
error. In production code, the device must be re-started from cold by calling 
vAHI_SwReset(). Data in the PDM module does not normally need to be erased, so 
the device can rejoin a ZigBee PRO network with existing security material. The error 
callback function will be called on some non-fatal errors. Depending on the application 
design, the following errors can be ignored by the error callback function: 

• OS_E_QUEUE_EMPTY 

• OS_E_SWTIMER_STOPPED 

• OS_E_SWTIMER_EXPIRED 

• OS_E_SWTIMER_RUNNING  



ZigBee Home Automation/Light Link SDK 
Release Notes  

  

 
 

JN-RN-0058 v2162 © NXP B.V.  2019 39 

7.6.8 ZigBee PRO Extended Error Status 

The extended error status may be used to obtain further information about an error 
from the ZigBee PRO stack. The extended status information is available via a call-
back function: 

     ZPS_vExtendedStatusSetCallback(vExtendedStatusCb); 

 
This callback function can be registered prior to initialising the stack. 

An example callback function is: 

PUBLIC void vExtendedStatusCb(ZPS_teExtendedStatus 

eExtendedStatus) 

{ 

   DBG_vPrintf(TRUE, "Extended error 0x%x\n", 

eExtendedStatus); 

      if (eExtendedStatus < ZPS_XS_E_RESOURCE) 

      { 

          DBG_vDumpStack(); 

          while(1); 

      } 

} 

 
The extended error codes are defined in zps_nwk_pub.h. They have been 
categorised into fatal (ZPS_XS_E_FATAL) and resource (ZPS_XS_E_RESOURCE) 
errors:  

• Fatal errors typically occur when a bad parameter is passed in a function call. 
Since the function will never complete, it is advisable to halt execution and fix 
the error when debugging.   

• Resource errors typically occur when there are not enough NPDUs available to 
send a frame.  

7.6.9 Beacon Filtering  

It is possible to filter the available networks on a scan so that only those networks 
which match the required criteria are reported to the application. This can be done by 
using the beacon filtering functionality provided in the file 
Components/Utilities/appZpsBeaconHandler.c. 

• To switch the filter ON, ZPS_bAppAddBeaconFilter() should be invoked  

• To switch the filter OFF, ZPS_bAppRemoveBeaconFilter() should be invoked 

For more details, refer to the ZigBee PRO Stack User Guide (JN-UG-3101). 

  



 
  ZigBee Home Automation/Light Link SDK 

Release Notes 

 

40 © NXP B.V. 2019 JN-RN-0058 v2162 

7.6.10 Removal of PHY Interrupt from OS Diagram 

In earlier HA applications, the OS diagram contained a PHY interrupt source that 
stimulated the MAC ISR, as shown in the following example.  

  

 

In the new SDK, the application needs to remove this interrupt source, since it is no 
longer required in the OS diagram. 

7.6.11 Removal of Management Bind Server from Application  

The Management Bind Server can now be configured through the ZPS Configuration 
Editor. The server no longer exists in the application, since it is now part of the stack. 

In earlier releases, the HA application contained the source and callback function 
registration for the Management Bind Server. This is no longer required in the 
application and must be removed. 

The following files that are part of the application need to be removed from the source 
and also from the makefiles: 

 

All the function calls that are related to these file must be removed. 

 

 

  



ZigBee Home Automation/Light Link SDK 
Release Notes  

  

 
 

JN-RN-0058 v2162 © NXP B.V.  2019 41 

RELEASE HISTORY (v1279) 

8. Release Details 

8.1 ZCL and Profile 

8.1.1 ZCL Changes 

No changes in addition to those made in v1270, described in Section 9.1.1. 

8.1.2 Green Power Changes 

No changes in addition to those made in v1270, described in Section 9.1.2. 

8.2 ZigBee PRO Stack 

ZigBee PRO libraries are included for the JN5169, JN5168 and JN5164 devices. 

8.2.1 New Features and Enhancements 

This release includes no new stack features in addition to those in v1270, described in 
Section 9.2.1. 

This release includes one stack enhancement relating to the JN5169 radio settings – 
the default transmission power for the JN5169 device has been changed to 10 dBm.  

8.2.2 Bug Fixes 

In this release, the following stack bugs have been fixed: 

Reference Description 

6166 Issue: In the function ZPS_vNMPurgeEntry(u64MacAddress), the parameter type was 
missed in the function definition. The compiler therefore assumed it to be an int type. This 
had the undesired effect of shifting and setting the lower 32 bits to 0 due to type promotion. 

Solution: The correct parameter type has been added to the function definition. 

6167 Issue: The HA Colour Dimmer Switch did not sleep if a rejoin was unsuccessful because 
the PAN was at full capacity. The sleep activity counter was not decremented in the stack 
when the ‘poll deferred confirm’ arrived in the wrong stack state machine handler.  

Solution: A change has been made to decrement the counter at the source of the event. 

6171 Issue:  The management network update server was not populating the channel energy 
detect value for channel 26. The real issue was that it was not populating the channel 11 
energy detect value. Therefore, values reported for each channel were off by one channel 
(channel 12 value reported for channel 11, channel 13 value reported for channel 12, etc). 

Solution: Energy detect value is now populated for channel 11. 

- The transmit power level for the JN5168-001-M06 high-power module has been corrected 
(at the IEEE802.15.4 level of the stack). 

 

  



 
  ZigBee Home Automation/Light Link SDK 

Release Notes 

 

42 © NXP B.V. 2019 JN-RN-0058 v2162 

8.2.3 Known Issues 

Reference Description 

6086 Circular Routes:  

It is possible that a unicast packet will not reach its destination because the packet is lost - 
for example, it becomes caught in a circular route. The APS acknowledgement mechanism 
can be used on the source node to monitor sent packets - an event will be generated when 
an acknowledgement is received from the target node. To allow an acknowledgment to be 
received, the source node must remain awake for a time equal to the APS retry timeout 
period.  

On a battery-powered node, the use of APS acknowledgements and retries may not be 
desirable from a power-saving point of view. 

Resolution: 

If the response is not observed within a pre-defined time then the application should take 
one of the following actions, depending on whether the source node is an End Device or 
Router: 

If an End Device, the application should notify the parent node about the routing problem by 
sending it a unicast network status command, ZPS_vNwkSendNwkStatusCommand(), 
with the status as “No Route Available (0x00)” 

If a Router, the application should initiate an explicit route discovery to the destination node 
by calling the function ZPS_eAplZdoRouteRequest() 

The above functions are described in the ZigBee PRO Stack User Guide (JN-UG-3101). 

6169 Discovery Failure Due to Circular Route:  

When a discovery command such as Match Descriptor is broadcast, a matching node will 
unicast the response back to the originator. If the response gets caught in a circular route, 
the discovery will not be successful.  

6133 In a dense network it has been observed that a route reply does not get generated due to a 
CCA failure resulting in a Tx failure of the route reply. This prevents a route discovery from 
completing. 

6134 During route discovery on a LNT, there have been instances where the route reply packet 
gets retried out. This results in a failure to complete the route discovery. The MAC error 
status returned is ‘no ACK’. 

6267 Coordinator node does not allow any new nodes to join the network, even if the first slot of 
the child table is available after the previous child has been removed. 

 

8.3 JN516x Integrated Peripherals API 

The function vAHI_RadioSetReducedInputPower() has been added, which reduces 
the maximum radio signal power that the JN5169 device can receive before saturating. 
For more details, refer to the JN516x Integrated Peripherals User Guide (JN-UG-3087) 
v1.3 or higher. 

The Wi-Fi counter measures for the JN5169 device that are described in the JN516x 
Integrated Peripherals User Guide are not yet available on the device. 

8.4 Production Test Libraries 

In this release, there are no changes in addition to those made in v1270, described in 
Section 9.3. 



ZigBee Home Automation/Light Link SDK 
Release Notes  

  

 
 

JN-RN-0058 v2162 © NXP B.V.  2019 43 

8.5 Application Porting Notes 

Before porting an existing application to this JN-SW-4168 SDK, it is recommended that 
you go through the ZigBee PRO Stack User Guide (JN-UG-3101) to ensure adherence 
to the recommended settings in the ZPS configuration. 

The libraries supplied in the JN-SW-4168 SDK have been built against the new  
JN-SW-4141 toolchain. The migration guidelines for the new toolchain should be 
followed before using these porting guidelines. Migration to the new toolchain is 
described in the Application Note BeyondStudio Migration Guidelines (JN-AN-1202). 

First note that: 

• The JN516x device does not support overlays, so any code relating to overlays 
must be removed. 

• The files App_timer_driver.c and App_timer_driver.h must be removed from 
the application source/include folders. 

8.5.1 Within ‘BeyondStudio for NXP’ 

Run BeyondStudio for NXP and follow the instructions below:  

1. Select the project root directory. 

2. Select Properties (in the File menu or pop-up menu obtained by right-clicking). 

3. In the Properties window, select C++ Build. 

4. For each node (selected from the Configuration drop-down list), on the Build 
Settings tab ensure that the Build command field contains a line of the form: 

make JENNIC_CHIP_FAMILY=JN516x JENNIC_CHIP=JN5168 OVERLAY_BUILD=0 

PDM_BUILD_TYPE=_EEPROM 

 

 The above example assumes that the JN5168 chip is used. 

8.5.2 Within vAppMain 

The following changes should be made to the vAppMain code. 

At the start of vAppMain, add the following: 

// Wait until FALSE i.e. on XTAL - otherwise UART data will be at 

wrong speed 

while (bAHI_GetClkSource() == TRUE); 

// Now we are running on the XTAL, optimise the Flash memory wait 

states 

vAHI_OptimiseWaitStates(); 

 

The Get/Release Mutex functions for the Flash mutex should be non-counting: 

PUBLIC void vGetMutex(void) 

{ 

    OS_eEnterCriticalSection(mutexFlash); 

} 

 

PUBLIC void vReleaseMutex(void) 

{ 

    OS_eExitCriticalSection(mutexFlash); 

} 



 
  ZigBee Home Automation/Light Link SDK 

Release Notes 

 

44 © NXP B.V. 2019 JN-RN-0058 v2162 

 

If there is a call to: 

u32AppApiInit(NULL, NULL, NULL, NULL, NULL, NULL); 

 
it should be removed or replaced with: 

#ifndef JENNIC_MAC_MiniMacShim 

    u32AppApiInit(NULL, NULL, NULL, NULL, NULL, NULL); 

#endif 

 

It is now possible to rejoin a network without performing a discovery. This is achieved 
by calling the function ZPS_eAplZdoRejoinNetwork() and passing a flag of FALSE. 
This requires a parent to be present in the Neighbour table. 

If discovery is still required then the above function should now be called with a flag of 
TRUE - refer to the ZigBee PRO Stack User Guide (JN-UG-3101) for details. 

The stack no longer holds a map of short and long addresses in the NIB. It holds a 
map of short addresses and an index into a global long address. To find the actual 
long address, the following function can be called: 

ZPS_u64NwkNibGetMappedExtendedAddress() 

Refer to the ZigBee PRO Stack User Guide (JN-UG-3101) for details of the above 
function. 

The stack no longer holds the MAC address in individual network tables. This has 
been replaced with a look-up table. The extended address can be found using the 
above function.  

The indexes in the Neighbour table should never be written to by the application. 

8.5.3 Setting Minimum Heap and Stack Sizes in Application 

The minimum heap size can be set to a required value by defining the following in the 
application linker script APP_stack_size.ld located in the application build directory:  

_minimum_heap_size = <required value>; 

 

And the stack size can be set by:  

_stack_size = <required size>; 

8.5.4 Modifying Application Makefile 

In the application makefile, you need to specify the type of IEEE802.15.4 MAC to use. 

For all ZigBee applications, the MiniMAC will be used. It is referenced by setting the 
following in the makefile: 

JENNIC_MAC ?= MiniMacShim 

JENNIC_STACK ?= ZLLHA 

 

The ZigBee Green Power and ZigBee Light Link optional functionality can now be 
controlled through the ZPS Configuration Editor. 

These functionalities are present in the installer as optional libraries. To incorporate 
them, the following lines should be added to the Makefile: 

JENNIC_SDK ?= JN-SW-4168 



ZigBee Home Automation/Light Link SDK 
Release Notes  

  

 
 

JN-RN-0058 v2162 © NXP B.V.  2019 45 

          SDK_BASE_DIR   = $(abspath 

../../../../sdk/$(JENNIC_SDK)) 

APP_BASE       = $(abspath ../..) 

 

Include the correct profile source in the application by defining the following flags, as 
required. 

For an HA lighting application:  

APP_CLUSTER_HA_LIGHTING_SRC ?= 1 

 

For a ZLL lighting applications:  

APP_CLUSTER_ZLL_SRC ?= 1  

 

To include appropriate cluster code, enable one or more of the following macros, as 
required  

# OTA Cluster 

#APP_CLUSTERS_OTA_SRC ?=1 

 

# Green Power clusters 

#APP_CLUSTERS_GREENPOWER_SRC ?=1 

 

# Lighting Clusters 

#APP_CLUSTER_LIGHTING_SRC ?=1 

 

# Measurement and sensing clusters  

#APP_CLUSTERS_MEASUREMENT_AND_SENSING ?=1 

 

# Energy at Home clusters 

#APP_CLUSTERS_ENERGY_AT_HOME_SRC ?=1 

 

# HVAC clusters 

#APP_CLUSTERS_HVAC_SRC ?=1 

 

# Smart Energy clusters 

#APP_CLUSTERS_SMART_ENERGY_SRC ?=1 

 

# IAS clusters 

#APP_CLUSTERS_IAS_SRC ?=1 

   

Replace the OSCONFIG , PDUMCONFIG and ZPSCONFIG lines in the makefile with the 

following: 

$(OSCONFIG) -f $< -o $(APP_SRC_DIR) -v $(JENNIC_CHIP) 

$(PDUMCONFIG) -z $(TARGET) -f $< -o $(APP_SRC_DIR) 

$(ZPSCONFIG) -n $(TARGET) -t $(JENNIC_CHIP) -l 

$(ZPS_NWK_LIB) -a   $(ZPS_APL_LIB) -c 

$(TOOL_COMMON_BASE_DIR)/$(TOOLCHAIN_PATH) -f $< -o 

$(APP_SRC_DIR) 

 

OPTIONAL_STACK_FEATURES = $(shell $(ZPSCONFIG) -n $(TARGET) -f 

$(APP_SRC_DIR)/$(APP_ZPSCFG) -y ) 

 

All references to Cygwin paths/shell should be removed. 

All references to TEMPCHP should be replaced with JENNIC_CHIP. 



 
  ZigBee Home Automation/Light Link SDK 

Release Notes 

 

46 © NXP B.V. 2019 JN-RN-0058 v2162 

Utilities functions (e.g. NumToString) need to be built from source. 

Add the utilities source directory (C:\Jennic\Components\Utilities\Source) to vpath: 

• UTIL_SRC_DIR = $(COMPONENTS_BASE_DIR)/Utilities/Source 

• Add to vpath :$(UTIL_SRC_DIR) 

 

Add the utilities source files: 

• APPSRC += NumToString.c 

• APPSRC += appZpsBeaconHandler.c 

• APPSRC += appZdpExtraction.c 

• APPSRC += pdum_apdu.S 

 

Add the following to the include path: 

INCFLAGS += -I$(COMPONENTS_BASE_DIR)/Random/Include 

INCFLAGS += -I$(COMPONENTS_BASE_DIR)/MAC/Include 

INCFLAGS += -I$(COMPONENTS_BASE_DIR)/NXPLogo/Include 

INCFLAGS += -I$(COMPONENTS_BASE_DIR)/Utilities 

 

Replace the current LDLIBS line with the following lines: 

APPLDLIBS := $(foreach lib,$(APPLIBS),$(if $(wildcard $(addprefix 

$(COMPONENTS_BASE_DIR)/Library/lib,$(addsuffix 

_$(JENNIC_CHIP).a,$(lib)))),$(addsuffix _$( 

JENNIC_CHIP),$(lib)),$(addsuffix _$(JENNIC_CHIP_FAMILY),$(lib)))) 

LDLIBS := $(APPLDLIBS) $(LDLIBS) 

 

Replace the build elf file creation option with: 

$(TARGET)_$(JENNIC_CHIP).elf: $(APPOBJS) $(addsuffix.a,$(addprefix 

$(COMPONENTS_BASE_DIR)/Library/lib,$(APPLDLIBS)))  

               $(info Linking $@ ...)  

               $(CC) -Wl,--gc-sections -Wl,-u_AppColdStart -Wl,-

u_AppWarmStart $(LDFLAGS) -TAppBuildZLLHA_$(JENNIC_CHIP).ld -o $@ 

-Wl,--start-group $(APPOBJS) $(addprefix -l,$(LDLIBS)) -Wl,--end-

group -Wl,-Map,$(TARGET)_$(JENNIC_CHIP)$(BIN_SUFFIX).map  

                $(SIZE) $@ 

 

Replace the bin file creation option with: 

$(TARGET)_$(JENNIC_CHIP)$(BIN_SUFFIX).bin: 

$(TARGET)_$(JENNIC_CHIP)$(BIN_SUFFIX).elf  

              $(info Generating binary ...) 

              $(OBJCOPY) -j .version -j .bir -j .flashheader -j 

.vsr_table -j .vsr_handlers  -j .rodata -j .text -j .data -j .bss 

-j .heap -j .stack -S -O binary $< $@ 

 

In the OS_config diagram, ensure that the chip type is JN516x. 

  



ZigBee Home Automation/Light Link SDK 
Release Notes  

  

 
 

JN-RN-0058 v2162 © NXP B.V.  2019 47 

8.5.5 PDM Additional Notes 

This release contains an updated PDM (Persistent Data Manager) library with a new 
API function.  

In vInitialiseApp change: 

PDM_vInit(7, 1, 64 * 1024 , NULL, mutexMEDIA, NULL,&g_sKey); 

 

to 

PDM_eInitialise(63, NULL);  

 

If PDM_eInitialise(0, NULL) already appears in your code, replace it with 

PDM_eInitialise(63, NULL). 

The new function does not use descriptors.  All application variables of type 
PDM_tsRecordDescriptor must be removed.   

Replace all calls to PDM_eLoadRecord() with:  

    PUBLIC PDM_teStatus PDM_eReadDataFromRecord( 

        uint16                      u16IdValue, 

        void                       *pvDataBuffer, 

        uint16                      u16DataBufferLength, 

        uint16                     *pu16DataBytesRead); 

 

Replace all calls to PDM_vSaveRecord() with: 

PUBLIC PDM_teStatus PDM_eSaveRecordData( 

        uint16                      u16IdValue, 

        void                       *pvDataBuffer, 

        uint16                      u16Datalength); 

 

Replace all calls to PDM_vDeleteRecord() with: 

PUBLIC void PDM_vDeleteDataRecord( 

        uint16                      u16IdValue); 

         

The new PDM library uses a different record format to previous versions. It is essential 
that old-format records are erased from the EEPROM before using the new library.  
This must be done from the JN516x Flash Programmer (within BeyondStudio for NXP) 
by selecting Erase EEPROM->Complete PDM.  

The new PDM library does not contain the PDM_vSave() function. If it is required to 
force a save of the ZigBee PRO stack records, a call can be made to 
ZPS_vSaveAllZpsRecords(). 

8.5.6 Registering an Error Handler (JN516x EEPROM Only) 

The internal PDM library allows an error handler to be called to alert the application to 
error conditions. This error handler is registered using the function 
PDM_vRegisterSystemCallback(). 

The application must trap E_PDM_SYSTEM_EVENT_PDM_NOT_ENOUGH_SPACE 
and E_PDM_SYSTEM_EVENT_DESCRIPTOR_SAVE_FAILED callback errors during 
testing. 



 
  ZigBee Home Automation/Light Link SDK 

Release Notes 

 

48 © NXP B.V. 2019 JN-RN-0058 v2162 

The ZigBee PRO stack uses multiple records. Once an out-of-space error has 
occurred, the records will be in an inconsistent state. In this case, the software should 
be modified to use smaller record sizes or an external SPI Flash device. 

The PDM record sizes for the ZigBee PRO stack are dependent on table sizes set 
in the ZPS Configuration Editor. 

The following example code is provided for the error handler callback function: 

PDM_vRegisterSystemCallback(vPdmEventHandlerCallback); 

PRIVATE void vPdmEventHandlerCallback(uint32 u32EventNumber, 

PDM_eSystemEventCode eSystemEventCode) 

{ 

    switch (eSystemEventCode) { 

        /* 

         * The next three events will require the application to 

take some action 

         */ 

        case E_PDM_SYSTEM_EVENT_WEAR_COUNT_TRIGGER_VALUE_REACHED: 

            DBG_vPrintf(TRACE_APP, "PDM: Segment %d reached 

trigger wear level\n", u32EventNumber); 

            break; 

        case E_PDM_SYSTEM_EVENT_DESCRIPTOR_SAVE_FAILED: 

            DBG_vPrintf(TRACE_APP, "PDM: Record Id %d failed to 

save\n", u32EventNumber); 

            DBG_vPrintf(TRACE_APP, "PDM: Capacity %d\n", 

u8PDM_CalculateFileSystemCapacity() ); 

            DBG_vPrintf(TRACE_APP, "PDM: Occupancy %d\n", 

u8PDM_GetFileSystemOccupancy() ); 

           break; 

        case E_PDM_SYSTEM_EVENT_PDM_NOT_ENOUGH_SPACE: 

            DBG_vPrintf(TRACE_APP, "PDM: Record %d not enough 

space\n", u32EventNumber); 

            DBG_vPrintf(TRACE_APP, "PDM: Capacity %d\n", 

u8PDM_CalculateFileSystemCapacity() ); 

            DBG_vPrintf(TRACE_APP, "PDM: Occupancy %d\n", 

u8PDM_GetFileSystemOccupancy() ); 

            break; 

        /* 

         * The following events are really for information only 

         */ 

        case E_PDM_SYSTEM_EVENT_EEPROM_SEGMENT_HEADER_REPAIRED: 

            DBG_vPrintf(TRACE_APP, "PDM: Segment %d header 

repaired\n", u32EventNumber); 

            break; 

        case 

E_PDM_SYSTEM_EVENT_SYSTEM_INTERNAL_BUFFER_WEAR_COUNT_SWAP: 

            DBG_vPrintf(TRACE_APP, "PDM: Segment %d buffer wear 

count swap\n", u32EventNumber); 

            break; 

        case 

E_PDM_SYSTEM_EVENT_SYSTEM_DUPLICATE_FILE_SEGMENT_DETECTED: 

            DBG_vPrintf(TRACE_APP, "PDM: Segement %d duplicate 

selected\n", u32EventNumber); 

            break; 

        default: 

            DBG_vPrintf(TRACE_APP, "PDM: Unexpected call back Code 

%d Number %d\n", eSystemEventCode, u32EventNumber); 

            break; 

    } 

} 



ZigBee Home Automation/Light Link SDK 
Release Notes  

  

 
 

JN-RN-0058 v2162 © NXP B.V.  2019 49 

8.5.7 OS Error Checking 

Errors can be detected by testing the return codes from the calls to OS functions. 
However, this requires application code to test the return code from every OS call. 
Registering an error callback function provides a robust alternative to checking the 
return codes. This function is invoked whenever an OS function returns an error. The 
function is registered as a parameter of OS_vStart(). The error callback option must 
also be enabled in the JenOS Configuration Editor. Many OS errors leave the 
scheduler in an undefined state. For example, nesting a mutex by calling 
OS_eEnterCriticalSection() twice before calling OS_eExitCriticalSection() causes a 
OS_E_BAD_NESTING error. Once an error of this nature has occurred, the OS 
scheduler is in an undefined state. 

The OS scheduler will enter an undefined state if there are inconsistencies between 
the OS configuration diagram (in the JenOS Configuration Editor) and the application 
code. A strict error check option can be enabled in the JenOS Configuration Editor to 
check for inconsistencies between the OS configuration diagram and the software. The 
strict mode has a slight overhead in code space and execution time but it is good 
practice to enable strict checking where possible. For example, calling 
OS_eEnterCriticalSection() from a task which is not in the group for the mutex will 
generate OS_E_CURRENT_TASK_NOT_A_MUTEX_MEMBER with strict checking 
enabled. If strict checks were not enabled, the scheduler operation would be undefined 
and the system may become unstable. 

During testing, an application’s error callback function should stop the application with 
a stack dump and the error should be fixed. The OS passes two parameters to the 
error callback - the status code of the error and a pointer to the handle which caused 
the error. These parameters should be printed out to help determine the cause of the 
error. In production code, the device must be re-started from cold by calling 
vAHI_SwReset(). Data in the PDM module does not normally need to be erased, so 
the device can rejoin a ZigBee PRO network with existing security material. The error 
callback function will be called on some non-fatal errors. Depending on the application 
design, the following errors can be ignored by the error callback function: 

• OS_E_QUEUE_EMPTY 

• OS_E_SWTIMER_STOPPED 

• OS_E_SWTIMER_EXPIRED 

• OS_E_SWTIMER_RUNNING  



 
  ZigBee Home Automation/Light Link SDK 

Release Notes 

 

50 © NXP B.V. 2019 JN-RN-0058 v2162 

8.5.8 ZigBee PRO Extended Error Status 

The extended error status may be used to obtain further information about an error 
from the ZigBee PRO stack. The extended status information is available via a call-
back function: 

     ZPS_vExtendedStatusSetCallback(vExtendedStatusCb); 

 
This callback function can be registered prior to initialising the stack. 

An example callback function is: 

PUBLIC void vExtendedStatusCb(ZPS_teExtendedStatus 

eExtendedStatus) 

{ 

   DBG_vPrintf(TRUE, "Extended error 0x%x\n", 

eExtendedStatus); 

      if (eExtendedStatus < ZPS_XS_E_RESOURCE) 

      { 

          DBG_vDumpStack(); 

          while(1); 

      } 

} 

 
The extended error codes are defined in zps_nwk_pub.h. They have been 
categorised into fatal (ZPS_XS_E_FATAL) and resource (ZPS_XS_E_RESOURCE) 
errors:  

• Fatal errors typically occur when a bad parameter is passed in a function call. 
Since the function will never complete, it is advisable to halt execution and fix 
the error when debugging.   

• Resource errors typically occur when there are not enough NPDUs available to 
send a frame.  

8.5.9 Beacon Filtering  

It is possible to filter the available networks on a scan so that only those networks 
which match the required criteria are reported to the application. This can be done by 
using the beacon filtering functionality provided in the file 
Components/Utilities/appZpsBeaconHandler.c. 

• To switch the filter ON, ZPS_bAppAddBeaconFilter() should be invoked  

• To switch the filter OFF, ZPS_bAppRemoveBeaconFilter() should be invoked 

For more details, refer to the ZigBee PRO Stack User Guide (JN-UG-3101). 

  



ZigBee Home Automation/Light Link SDK 
Release Notes  

  

 
 

JN-RN-0058 v2162 © NXP B.V.  2019 51 

8.5.10 Removal of PHY Interrupt from OS Diagram 

In earlier HA applications, the OS diagram contained a PHY interrupt source that 
stimulated the MAC ISR, as shown in the following example.  

  

 

In the new SDK, the application needs to remove this interrupt source, since it is no 
longer required in the OS diagram. 

8.5.11 Removal of Management Bind Server from Application  

The Management Bind Server can now be configured through the ZPS Configuration 
Editor. The server no longer exists in the application, since it is now part of the stack. 

In earlier releases, the HA application contained the source and callback function 
registration for the Management Bind Server. This is no longer required in the 
application and must be removed. 

The following files that are part of the application need to be removed from the source 
and also from the makefiles: 

 

All the function calls that are related to these file must be removed. 

8.6 Bootloader Version 

The version of the bootloader in the JN5168 device must be either of the following:  

• 0x00080003 

• 0x00080006 

The version of the bootloader in the JN5169 device must be the following:  

• 0x000B0000 

 



 
  ZigBee Home Automation/Light Link SDK 

Release Notes 

 

52 © NXP B.V. 2019 JN-RN-0058 v2162 

RELEASE HISTORY (v1270) 

9. Release Details 

9.1 ZCL and Profile 

9.1.1 ZCL Changes 

The ZCL in this SDK has been optimised in terms of memory usage for Flash memory 
and RAM by making the following changes to the previous ZCL supplied in the former 
HA SDK (JN-SW-4067) and ZLL SDK (JN-SW-4062). 

 

ZCL Change 1: Shadow Structure on Client 

The shadow attributes in the shared ZCL client data structure definition have been 
deprecated. They are not validated in attribute read/write requests and are not filtered 
on the responses. This enables code optimisation and flexibility to originate and 
receive non-profile-specific messages without allocating any storage space for them 
beforehand. 

In the old HA and ZLL SDKs, there was a copy of the attributes structure (as a shared 
structure), and its control bits, in the form of an array at the client instance. This 
shadow structure was used to validate a general cluster command from the client. The 
shadow structure in a client instance was also updated with a new attribute value when 
an attribute read response was received or a report was received. Similarly, for a write 
request to go out, the attribute was first updated locally and then the write request 
issued.  

Example: 

#if (defined CLD_ONOFF) && (defined ONOFF_CLIENT) 

    /* Create an instance of an On/Off cluster as a client */ 

    eCLD_OnOffCreateOnOff(&psDeviceInfo-

>sClusterInstance.sOnOffClient, 

                          FALSE, 

                          &sCLD_OnOff, 

                          &psDeviceInfo->sOnOffClientCluster, 

                          &au8OnOffClientAttributeControlBits[0], 

                          NULL); 

#endif 

 

In this version of the SDK, general ZCL commands (such as read or write requests) 
will not be validated and will be sent to the destination address. 

Similarly, a read response or report for an attribute will be directly passed to the 
application, and the application needs to consume the data. 

In this version of the SDK, while creating a client cluster instance for a device, the 
attribute data structure allocation can be passed as NULL.  

  



ZigBee Home Automation/Light Link SDK 
Release Notes  

  

 
 

JN-RN-0058 v2162 © NXP B.V.  2019 53 

Example: 

In the new SDK, as explained above, the shared structure and the control bits are not 
required for the client, and are hence passed as NULL. 

#if (defined CLD_ONOFF) && (defined ONOFF_CLIENT) 

    /* Create an instance of an On/Off cluster as a client */ 

    eCLD_OnOffCreateOnOff(&psDeviceInfo-

>sClusterInstance.sOnOffClient, 

                          FALSE, 

                          &sCLD_OnOff, 

                          NULL, 

                          NULL, 

                          NULL); 

#endif 

 

The ZCL User Guide (JN-UG-3103) provides more details of the Create function 
parameters for each cluster. 

 

ZCL Change 2: ‘Write Attributes’ Functions 

The following functions have changed: 

 eZCL_SendWriteAttributesRequest() 

 eZCL_SendWriteAttributesUndividedRequest() 

 eZCL_SendWriteAttributesNoResponseRequest() 

In the old SDK, the above write functions at the client instance used the local shared 
structure to update the attribute values before sending them over the air. 

Example: 

eZCL_SendWriteAttributesRequest( 

        uint8                       u8SourceEndPointId, 

        uint8                       u8DestinationEndPointId, 

        uint16                      u16ClusterId, 

        bool_t                      bDirectionIsServerToClient, 

        tsZCL_Address              *psDestinationAddress, 

        uint8                      *pu8TransactionSequenceNumber, 

        uint8                       u8NumberOfAttributesInRequest, 

        bool_t                      bIsManufacturerSpecific, 

        uint16                      u16ManufacturerCode, 

        uint16                     *pu16AttributeRequestList)  

 

In the new SDK, as explained above, there is no shared structure at the client side. 
Hence, the above function has been changed to allow the final input parameter to take 
a structure of type tsZCL_WriteAttributeRecord (instead of a uint16). 

eZCL_SendWriteAttributesNoResponseRequest( 

        uint8                       u8SourceEndPointId, 

        uint8                       u8DestinationEndPointId, 

        uint16                      u16ClusterId, 

        bool_t                      bDirectionIsServerToClient, 

        tsZCL_Address              *psDestinationAddress, 

        uint8                      *pu8TransactionSequenceNumber, 

        uint8                       u8NumberOfAttributesInRequest, 

        bool_t                      bIsManufacturerSpecific, 

        uint16                      u16ManufacturerCode, 

        tsZCL_WriteAttributeRecord  *pu16AttributeRequestList) 



 
  ZigBee Home Automation/Light Link SDK 

Release Notes 

 

54 © NXP B.V. 2019 JN-RN-0058 v2162 

ZCL Change 3: ‘Read All Attributes’ Function 

The eZCL_ReadAllAttributes() function has been deprecated. The recommendation 
is now to discover attributes and read them in turn 

In the old versions of the HA and ZLL SDKs, the above function could be called when 
the client needed to read all the attributes of the server. This function obtained a list of 
attributes from the local shadow structure (as indicated in the above section) and sent 
out a read attribute request for the cluster specified in an argument.  

In the new SDK, since there is no shadow attribute structure at the client side, this 
method is no longer applicable and has been removed. 

The new recommendation is to read the attribute by issuing a read attribute command, 
if the client already knows which attribute it needs to read. If not, it should perform a 
‘discover attributes’ and then start the read if the attribute of interest is supported. 

 

ZCL Change 4: ‘Report All Attributes’ Function 

The behaviour of the eZCL_ReportAllAttributes() function has changed in the new 
SDK. 

In the old HA and ZLL SDKs, this function sent an unsolicited report from the server 
application for all the attributes present in a cluster, irrespective of whether an attribute 
is reportable. It also sent reports for the manufacturer-specific attributes along with the 
other attributes. 

In the new SDK, this function only sends out reports for the attributes that are 
configured as reportable. Also, it does not report the manufacturer-specific attributes 
for the reason that if the server has a manufacturer-specific attribute which the client 
does not recognise (different Manufacturer ID), it may generate a default response, 
causing confusion. Hence, this function no longer reports any manufacture-specific 
attributes. 

The new recommendation is to read a manufacturer-specific attribute from the client 
through a standard ‘read attribute’ function call. 

 

ZCL Change 5: Function Parameter Checks 

Function parameter sanity checks are now optional and can be enabled by defining the 
macro STRICT_PARAM_CHECK in the zcl_options.h file for the application.  

In earlier code, there were a lot of checks in the ZCL code-base for many function calls 
to validate their parameters, but these checks may be only necessary during 
development (it is advisable to have them during the development phase). 

In the new SDK, there is an optional macro STRICT_PARAM_CHECK which, when 
defined, enables the parameter checks. 

Example: 

    #ifdef STRICT_PARAM_CHECK     

        /* Parameter check */ 

        if((psClusterInstance==NULL) || 

           (psClusterDefinition==NULL) || 

           (psCustomDataStructure==NULL)) 

        { 

            return E_ZCL_ERR_PARAMETER_NULL; 

        } 

    #endif 



ZigBee Home Automation/Light Link SDK 
Release Notes  

  

 
 

JN-RN-0058 v2162 © NXP B.V.  2019 55 

The reason for doing this is that many of these checks are in functions that are 
hierarchically called under a top-level root function, such as a data indication for the 
ZCL. Hence, the checks can be performed at the top level. 

  

ZCL Change 6: Cooperative Scheduling 

If cooperative scheduling is to be used then it must be enabled by including the macro 
COOPERATIVE in the zcl_options.h file for the application. 

This release makes an optional compile-time flag COOPERATIVE available to disable 
the mutex events (E_ZCL_CBET_UNLOCK_MUTEX and 
E_ZCL_CBET_LOCK_MUTEX ) in the case when all the tasks are cooperative by the 
nature of the application. This reduces callback events and the CPU load, and speeds 
up other event processing.  

9.1.2 Green Power Changes 

The ZigBee Green Power (GP) code has been optimised in terms of the number of 
times persistence is required and the size of the persistence data. The changes are 
listed and described below. 

GP Change 1: Command Mapping 

A new element u8NoOfCmdInfo has been added to the structure 

tsGP_TranslationTableEntry. This element should be set to the number of 

commands mapped in psGpToZclCmdInfo. This allows multiple commands to be 

mapped to a GP device using a single translation table entry. 

struct tsGP_TranslationTableEntry 

{ 

    zbmap8                        b8Options; 

    tuGP_ZgpdDeviceAddr           uZgpdDeviceAddr; 

    uint8      u8NoOfCmdInfo; 

    tsGP_GpToZclCommandInfo           *psGpToZclCmdInfo; 

}; 

 

GP Change 2: ‘Persisted Data’ Structure  

The structure tsGP_PersistedData has been changed. The previous structure 

members sAttributes, asZgpsSinkTable and asZgppProxyTable have 

become pointers psAttributes, pasZgpsSinkTable and pasZgppProxyTable 

respectively. Also, an enumerated type teGP_ZgpsPersistChange has been added, 

which describes which of the members have changed so that the application need not 
persist all the data when the callback event occurs.  

typedef struct 

{ 

    teGP_ZgpsPersistChange      eGPChangeCause; 

    tsCLD_GreenPower                 *psAttributes; 

#ifdef GP_COMBO_MIN_DEVICE 

    tsGP_ZgpsSinkTable               *pasZgpsSinkTable; 

#endif 

#ifdef GP_PROXY_DEVICE 

    tsGP_ZgppProxyTable              *pasZgppProxyTable; 

#endif 

}tsGP_PersistedData; 

 



 
  ZigBee Home Automation/Light Link SDK 

Release Notes 

 

56 © NXP B.V. 2019 JN-RN-0058 v2162 

GP Change 3: ‘Restore Persisted Data’ Function 

The function vGP_RestorePersistedData() has been changed to restore only the 
requested parameters to their default values. Previously, this function was used to 
restore all the Green Power attributes to their default values. Now the option is 
provided to specify whether to restore sink table, proxy table or other attributes.  

PUBLIC void vGP_RestorePersistedData( 

       tsGP_PersistedData              *psPersistedData, 

       teGP_ResetToDefaultConfig        eSetToDefault); 

 

To restore all attributes to their default values, eSetToDefault can be set as follows: 

eSetToDefault = E_GP_DEFAULT_ATTRIBUTE_VALUE | 

E_GP_DEFAULT_SINK_TABLE_VALUE | E_GP_DEFAULT_PROXY_TABLE_VALUE 

9.2 ZigBee PRO Stack 

ZigBee PRO libraries and APIs are included for the JN5168 and JN5164 devices. 

9.2.1 New Features and Enhancements 

This release includes the following new features and changes: 

Reference Description 

NFR1 New child table configuration to distinguish between child and neighbour relationship. 

NFR2 
Extended error reporting to provide better debugging of errors reported from the ZigBee 
PRO stack. 

NFR3 Allow rejoin to a known parent without the need to perform network scans. 

NFR4 New API function to originate profile-agnostic ZigBee data requests. 

NFR5 
Provides network scalability to support networks larger than 250 nodes and reduce memory 
footprint (RAM, Flash, EEPROM). 

NFR6 Provides a mechanism of beacon filtering to support faster network joins. 

NFR7 Plug-ins updated for Eclipse version Kepler. 

NFR8 New plug-in options to support network and APS frame-counter save thresholds. 

NFR9 Provides a method for filtering beacons on discovery in order to join only relevant networks. 

 

  



ZigBee Home Automation/Light Link SDK 
Release Notes  

  

 
 

JN-RN-0058 v2162 © NXP B.V.  2019 57 

9.2.2 Known Issues 

6086 Circular Routes:  

It is possible that a unicast packet will not reach its destination because the packet is lost - 
for example, it becomes caught in a circular route. The APS acknowledgement mechanism 
can be used on the source node to monitor sent packets - an event will be generated when 
an acknowledgement is received from the target node. To allow an acknowledgment to be 
received, the source node must remain awake for a time equal to the APS retry timeout 
period.  

On a battery-powered node, the use of APS acknowledgements and retries may not be 
desirable from a power-saving point of view. 

Resolution: 

If the response is not observed within a pre-defined time then the application should take 
one of the following actions, depending on whether the source node is an End Device or 
Router: 

If an End Device, the application should notify the parent node about the routing problem by 
sending it a unicast network status command, ZPS_vNwkSendNwkStatusCommand(), 
with the status as “No Route Available (0x00)” 

If a Router, the application should initiate an explicit route discovery to the destination node 
by calling the function ZPS_eAplZdoRouteRequest() 

The above functions are described in the ZigBee PRO Stack User Guide (JN-UG-3101). 

6169 Discovery Failure Due to Circular Route:  

When a discovery command such as Match Descriptor is broadcast, a matching node will 
unicast the response back to the originator. If the response gets caught in a circular route, 
the discovery will not be successful.  

6133 In a dense network it has been observed that a route reply does not get generated due to a 
CCA failure resulting in a Tx failure of the route reply. This prevents a route discovery from 
completing. 

6134 During route discovery on a LNT, there have been instances where the route reply packet 
gets retried out. This results in a failure to complete the route discovery. The MAC error 
status returned is ‘no ACK’. 

 

9.3 Production Test Libraries 

The Production Test libraries for the JN516x device have been updated to 1v48. 

The following updated versions of the PER and CMET Application Notes should be 
used with the JN516x device: JN-AN-1175, JN-AN-1172. 

9.4 Application Porting Notes 

Before porting an existing application to this JN-SW-4168 SDK, it is recommended that 
you go through the ZigBee PRO Stack User Guide (JN-UG-3101) to ensure adherence 
to the recommended settings in the ZPS configuration. 

The libraries supplied in the JN-SW-4168 SDK have been built against the new  
JN-SW-4141 toolchain. The migration guidelines for the new toolchain should be 
followed before using these porting guidelines. Migration to the new toolchain is 
described in the Application Note BeyondStudio Migration Guidelines (JN-AN-1202). 

 

 



 
  ZigBee Home Automation/Light Link SDK 

Release Notes 

 

58 © NXP B.V. 2019 JN-RN-0058 v2162 

First note that: 

• The JN516x device does not support overlays, so any code relating to overlays 
must be removed. 

• The files App_timer_driver.c and App_timer_driver.h must be removed from 
the application source/include folders. 

9.4.1 Within ‘BeyondStudio for NXP’ 

Run BeyondStudio for NXP and follow the instructions below:  

1. Select the project root directory. 

2. Select Properties (in the File menu or pop-up menu obtained by right-clicking). 

3. In the Properties window, select C++ Build. 

4. For each node (selected from the Configuration drop-down list), on the Build 
Settings tab ensure that the Build command field contains a line of the form: 

make JENNIC_CHIP_FAMILY=JN516x JENNIC_CHIP=JN5168 OVERLAY_BUILD=0 

PDM_BUILD_TYPE=_EEPROM 

 

 The above example assumes that the JN5168 chip is used. 

9.4.2 Within vAppMain 

The following changes should be made to the vAppMain code. 

At the start of vAppMain, add the following: 

// Wait until FALSE i.e. on XTAL - otherwise UART data will be at 

wrong speed 

while (bAHI_GetClkSource() == TRUE); 

// Now we are running on the XTAL, optimise the Flash memory wait 

states 

vAHI_OptimiseWaitStates(); 

 

The Get/Release Mutex functions for the Flash mutex should be non-counting: 

PUBLIC void vGetMutex(void) 

{ 

    OS_eEnterCriticalSection(mutexFlash); 

} 

 

PUBLIC void vReleaseMutex(void) 

{ 

    OS_eExitCriticalSection(mutexFlash); 

} 

 

If there is a call to: 

u32AppApiInit(NULL, NULL, NULL, NULL, NULL, NULL); 

 
it should be removed or replaced with: 

#ifndef JENNIC_MAC_MiniMacShim 

    u32AppApiInit(NULL, NULL, NULL, NULL, NULL, NULL); 

#endif 

 



ZigBee Home Automation/Light Link SDK 
Release Notes  

  

 
 

JN-RN-0058 v2162 © NXP B.V.  2019 59 

It is now possible to rejoin a network without performing a discovery. This is achieved 
by calling the function ZPS_eAplZdoRejoinNetwork() and passing a flag of FALSE. 
This requires a parent to be present in the Neighbour table. 

If discovery is still required then the above function should now be called with a flag of 
TRUE - refer to the ZigBee PRO Stack User Guide (JN-UG-3101) for details. 

The stack no longer holds a map of short and long addresses in the NIB. It holds a 
map of short addresses and an index into a global long address. To find the actual 
long address, the following function can be called: 

ZPS_u64NwkNibGetMappedExtendedAddress() 

Refer to the ZigBee PRO Stack User Guide (JN-UG-3101) for details of the above 
function. 

The stack no longer holds the MAC address in individual network tables. This has 
been replaced with a look-up table. The extended address can be found using the 
above function.  

The indexes in the Neighbour table should never be written to by the application. 

9.4.3 Setting Minimum Heap and Stack Sizes in Application 

The minimum heap size can be set to a required value by defining the following in the 
application linker script APP_stack_size.ld located in the application build directory:  

_minimum_heap_size = <required value>; 

 

And the stack size can be set by:  

_stack_size = <required size>; 

9.4.4 Modifying Application Makefile 

In the application makefile, you need to specify the type of IEEE802.15.4 MAC to use. 

For all ZigBee applications, the MiniMAC will be used. It is referenced by setting the 
following in the makefile: 

JENNIC_MAC ?= MiniMacShim 

JENNIC_STACK ?= ZLLHA 

 

The ZigBee Green Power and ZigBee Light Link optional functionality can now be 
controlled through the ZPS Configuration Editor. 

These functionalities are present in the installer as optional libraries. To incorporate 
them, the following lines should be added to the Makefile: 

JENNIC_SDK ?= JN-SW-4168 

          SDK_BASE_DIR   = $(abspath 

../../../../sdk/$(JENNIC_SDK)) 

APP_BASE       = $(abspath ../..) 

 

  



 
  ZigBee Home Automation/Light Link SDK 

Release Notes 

 

60 © NXP B.V. 2019 JN-RN-0058 v2162 

Include the correct profile source in the application by defining the following flags, as 
required. 

For an HA lighting application:  

APP_CLUSTER_HA_LIGHTING_SRC ?= 1 

 

For a ZLL lighting applications:  

APP_CLUSTER_ZLL_SRC ?= 1  

 

To include appropriate cluster code, enable one or more of the following macros, as 
required  

# OTA Cluster 

#APP_CLUSTERS_OTA_SRC ?=1 

 

# Green Power clusters 

#APP_CLUSTERS_GREENPOWER_SRC ?=1 

 

# Lighting Clusters 

#APP_CLUSTER_LIGHTING_SRC ?=1 

 

# Measurement and sensing clusters  

#APP_CLUSTERS_MEASUREMENT_AND_SENSING ?=1 

 

# Energy at Home clusters 

#APP_CLUSTERS_ENERGY_AT_HOME_SRC ?=1 

 

# HVAC clusters 

#APP_CLUSTERS_HVAC_SRC ?=1 

 

# Smart Energy clusters 

#APP_CLUSTERS_SMART_ENERGY_SRC ?=1 

 

# IAS clusters 

#APP_CLUSTERS_IAS_SRC ?=1 

   

Replace the OSCONFIG , PDUMCONFIG and ZPSCONFIG lines in the makefile with the 

following: 

$(OSCONFIG) -f $< -o $(APP_SRC_DIR) -v $(JENNIC_CHIP) 

$(PDUMCONFIG) -z $(TARGET) -f $< -o $(APP_SRC_DIR) 

$(ZPSCONFIG) -n $(TARGET) -t $(JENNIC_CHIP) -l 

$(ZPS_NWK_LIB) -a   $(ZPS_APL_LIB) -c 

$(TOOL_COMMON_BASE_DIR)/$(TOOLCHAIN_PATH) -f $< -o 

$(APP_SRC_DIR) 

 

OPTIONAL_STACK_FEATURES = $(shell $(ZPSCONFIG) -n $(TARGET) -f 

$(APP_SRC_DIR)/$(APP_ZPSCFG) -y ) 

 

All references to Cygwin paths/shell should be removed. 

All references to TEMPCHP should be replaced with JENNIC_CHIP. 

Utilities functions (e.g. NumToString) need to be built from source. 

  



ZigBee Home Automation/Light Link SDK 
Release Notes  

  

 
 

JN-RN-0058 v2162 © NXP B.V.  2019 61 

Add the utilities source directory (C:\Jennic\Components\Utilities\Source) to vpath: 

• UTIL_SRC_DIR = $(COMPONENTS_BASE_DIR)/Utilities/Source 

• Add to vpath :$(UTIL_SRC_DIR) 

 

Add the utilities source files: 

• APPSRC += NumToString.c 

• APPSRC += appZpsBeaconHandler.c 

• APPSRC += appZdpExtraction.c 

• APPSRC += pdum_apdu.S 

 

Add the following to the include path: 

INCFLAGS += -I$(COMPONENTS_BASE_DIR)/Random/Include 

INCFLAGS += -I$(COMPONENTS_BASE_DIR)/MAC/Include 

INCFLAGS += -I$(COMPONENTS_BASE_DIR)/NXPLogo/Include 

INCFLAGS += -I$(COMPONENTS_BASE_DIR)/Utilities 

 

Replace the current LDLIBS line with the following lines: 

APPLDLIBS := $(foreach lib,$(APPLIBS),$(if $(wildcard $(addprefix 

$(COMPONENTS_BASE_DIR)/Library/lib,$(addsuffix 

_$(JENNIC_CHIP).a,$(lib)))),$(addsuffix _$( 

JENNIC_CHIP),$(lib)),$(addsuffix _$(JENNIC_CHIP_FAMILY),$(lib)))) 

LDLIBS := $(APPLDLIBS) $(LDLIBS) 

 

Replace the build elf file creation option with: 

$(TARGET)_$(JENNIC_CHIP).elf: $(APPOBJS) $(addsuffix.a,$(addprefix 

$(COMPONENTS_BASE_DIR)/Library/lib,$(APPLDLIBS)))  

               $(info Linking $@ ...)  

               $(CC) -Wl,--gc-sections -Wl,-u_AppColdStart -Wl,-

u_AppWarmStart $(LDFLAGS) -TAppBuildZLLHA_$(JENNIC_CHIP).ld -o $@ 

-Wl,--start-group $(APPOBJS) $(addprefix -l,$(LDLIBS)) -Wl,--end-

group -Wl,-Map,$(TARGET)_$(JENNIC_CHIP)$(BIN_SUFFIX).map  

                $(SIZE) $@ 

 

Replace the bin file creation option with: 

$(TARGET)_$(JENNIC_CHIP)$(BIN_SUFFIX).bin: 

$(TARGET)_$(JENNIC_CHIP)$(BIN_SUFFIX).elf  

              $(info Generating binary ...) 

              $(OBJCOPY) -j .version -j .bir -j .flashheader -j 

.vsr_table -j .vsr_handlers  -j .rodata -j .text -j .data -j .bss 

-j .heap -j .stack -S -O binary $< $@ 

 

In the OS_config diagram, ensure that the chip type is JN516x. 

  



 
  ZigBee Home Automation/Light Link SDK 

Release Notes 

 

62 © NXP B.V. 2019 JN-RN-0058 v2162 

9.4.5 PDM Additional Notes 

This release contains an updated PDM (Persistent Data Manager) library with a new 
API function.  

In vInitialiseApp change: 

PDM_vInit(7, 1, 64 * 1024 , NULL, mutexMEDIA, NULL,&g_sKey); 

 

to 

PDM_eInitialise(0, NULL);  

 

The new function does not use descriptors.  All application variables of type 
PDM_tsRecordDescriptor must be removed.   

Replace all calls to PDM_eLoadRecord() with:  

    PUBLIC PDM_teStatus PDM_eReadDataFromRecord( 

        uint16                      u16IdValue, 

        void                       *pvDataBuffer, 

        uint16                      u16DataBufferLength, 

        uint16                     *pu16DataBytesRead); 

 

Replace all calls to PDM_vSaveRecord() with: 

PUBLIC PDM_teStatus PDM_eSaveRecordData( 

        uint16                      u16IdValue, 

        void                       *pvDataBuffer, 

        uint16                      u16Datalength); 

 

Replace all calls to PDM_vDeleteRecord() with: 

PUBLIC void PDM_vDeleteDataRecord( 

        uint16                      u16IdValue); 

         

The new PDM library uses a different record format to previous versions. It is essential 
that old-format records are erased from the EEPROM before using the new library.  
This must be done from the JN516x Flash Programmer (within BeyondStudio for NXP) 
by selecting Erase EEPROM->Complete PDM.  

The new PDM library does not contain the PDM_vSave() function. If it is required to 
force a save of the ZigBee PRO stack records, a call can be made to 
ZPS_vSaveAllZpsRecords(). 

9.4.6 Registering an Error Handler (JN516x EEPROM Only) 

The internal PDM library allows an error handler to be called to alert the application to 
error conditions. This error handler is registered using the function 
PDM_vRegisterSystemCallback(). 

The application must trap E_PDM_SYSTEM_EVENT_PDM_NOT_ENOUGH_SPACE 
and E_PDM_SYSTEM_EVENT_DESCRIPTOR_SAVE_FAILED callback errors during 
testing. 

The ZigBee PRO stack uses multiple records. Once an out-of-space error has 
occurred, the records will be in an inconsistent state. In this case, the software should 
be modified to use smaller record sizes or an external SPI Flash device. 



ZigBee Home Automation/Light Link SDK 
Release Notes  

  

 
 

JN-RN-0058 v2162 © NXP B.V.  2019 63 

The PDM record sizes for the ZigBee PRO stack are dependent on table sizes set 
in the ZPS Configuration Editor. 

The following example code is provided for the error handler callback function: 

PDM_vRegisterSystemCallback(vPdmEventHandlerCallback); 

PRIVATE void vPdmEventHandlerCallback(uint32 u32EventNumber, 

PDM_eSystemEventCode eSystemEventCode) 

{ 

    switch (eSystemEventCode) { 

        /* 

         * The next three events will require the application to 

take some action 

         */ 

        case E_PDM_SYSTEM_EVENT_WEAR_COUNT_TRIGGER_VALUE_REACHED: 

            DBG_vPrintf(TRACE_APP, "PDM: Segment %d reached 

trigger wear level\n", u32EventNumber); 

            break; 

        case E_PDM_SYSTEM_EVENT_DESCRIPTOR_SAVE_FAILED: 

            DBG_vPrintf(TRACE_APP, "PDM: Record Id %d failed to 

save\n", u32EventNumber); 

            DBG_vPrintf(TRACE_APP, "PDM: Capacity %d\n", 

u8PDM_CalculateFileSystemCapacity() ); 

            DBG_vPrintf(TRACE_APP, "PDM: Occupancy %d\n", 

u8PDM_GetFileSystemOccupancy() ); 

           break; 

        case E_PDM_SYSTEM_EVENT_PDM_NOT_ENOUGH_SPACE: 

            DBG_vPrintf(TRACE_APP, "PDM: Record %d not enough 

space\n", u32EventNumber); 

            DBG_vPrintf(TRACE_APP, "PDM: Capacity %d\n", 

u8PDM_CalculateFileSystemCapacity() ); 

            DBG_vPrintf(TRACE_APP, "PDM: Occupancy %d\n", 

u8PDM_GetFileSystemOccupancy() ); 

            break; 

        /* 

         * The following events are really for information only 

         */ 

        case E_PDM_SYSTEM_EVENT_EEPROM_SEGMENT_HEADER_REPAIRED: 

            DBG_vPrintf(TRACE_APP, "PDM: Segment %d header 

repaired\n", u32EventNumber); 

            break; 

        case 

E_PDM_SYSTEM_EVENT_SYSTEM_INTERNAL_BUFFER_WEAR_COUNT_SWAP: 

            DBG_vPrintf(TRACE_APP, "PDM: Segment %d buffer wear 

count swap\n", u32EventNumber); 

            break; 

        case 

E_PDM_SYSTEM_EVENT_SYSTEM_DUPLICATE_FILE_SEGMENT_DETECTED: 

            DBG_vPrintf(TRACE_APP, "PDM: Segement %d duplicate 

selected\n", u32EventNumber); 

            break; 

        default: 

            DBG_vPrintf(TRACE_APP, "PDM: Unexpected call back Code 

%d Number %d\n", eSystemEventCode, u32EventNumber); 

            break; 

    } 

} 

 



 
  ZigBee Home Automation/Light Link SDK 

Release Notes 

 

64 © NXP B.V. 2019 JN-RN-0058 v2162 

9.4.7 OS Error Checking 

Errors can be detected by testing the return codes from the calls to OS functions. 
However, this requires application code to test the return code from every OS call. 
Registering an error callback function provides a robust alternative to checking the 
return codes. This function is invoked whenever an OS function returns an error. The 
function is registered as a parameter of OS_vStart(). The error callback option must 
also be enabled in the JenOS Configuration Editor. Many OS errors leave the 
scheduler in an undefined state. For example, nesting a mutex by calling 
OS_eEnterCriticalSection() twice before calling OS_eExitCriticalSection() causes a 
OS_E_BAD_NESTING error. Once an error of this nature has occurred, the OS 
scheduler is in an undefined state. 

The OS scheduler will enter an undefined state if there are inconsistencies between 
the OS configuration diagram (in the JenOS Configuration Editor) and the application 
code. A strict error check option can be enabled in the JenOS Configuration Editor to 
check for inconsistencies between the OS configuration diagram and the software. The 
strict mode has a slight overhead in code space and execution time but it is good 
practice to enable strict checking where possible. For example, calling 
OS_eEnterCriticalSection() from a task which is not in the group for the mutex will 
generate OS_E_CURRENT_TASK_NOT_A_MUTEX_MEMBER with strict checking 
enabled. If strict checks were not enabled, the scheduler operation would be undefined 
and the system may become unstable. 

During testing, an application’s error callback function should stop the application with 
a stack dump and the error should be fixed. The OS passes two parameters to the 
error callback - the status code of the error and a pointer to the handle which caused 
the error. These parameters should be printed out to help determine the cause of the 
error. In production code, the device must be re-started from cold by calling 
vAHI_SwReset(). Data in the PDM module does not normally need to be erased, so 
the device can rejoin a ZigBee PRO network with existing security material. The error 
callback function will be called on some non-fatal errors. Depending on the application 
design, the following errors can be ignored by the error callback function: 

• OS_E_QUEUE_EMPTY 

• OS_E_SWTIMER_STOPPED 

• OS_E_SWTIMER_EXPIRED 

• OS_E_SWTIMER_RUNNING  



ZigBee Home Automation/Light Link SDK 
Release Notes  

  

 
 

JN-RN-0058 v2162 © NXP B.V.  2019 65 

9.4.8 ZigBee PRO Extended Error Status 

The extended error status may be used to obtain further information about an error 
from the ZigBee PRO stack. The extended status information is available via a call-
back function: 

     ZPS_vExtendedStatusSetCallback(vExtendedStatusCb); 

 
This callback function can be registered prior to initialising the stack. 

An example callback function is: 

PUBLIC void vExtendedStatusCb(ZPS_teExtendedStatus 

eExtendedStatus) 

{ 

   DBG_vPrintf(TRUE, "Extended error 0x%x\n", 

eExtendedStatus); 

      if (eExtendedStatus < ZPS_XS_E_RESOURCE) 

      { 

          DBG_vDumpStack(); 

          while(1); 

      } 

} 

 
The extended error codes are defined in zps_nwk_pub.h. They have been 
categorised into fatal (ZPS_XS_E_FATAL) and resource (ZPS_XS_E_RESOURCE) 
errors:  

• Fatal errors typically occur when a bad parameter is passed in a function call. 
Since the function will never complete, it is advisable to halt execution and fix 
the error when debugging.   

• Resource errors typically occur when there are not enough NPDUs available to 
send a frame.  

9.4.9 Beacon Filtering  

It is possible to filter the available networks on a scan so that only those networks 
which match the required criteria are reported to the application. This can be done by 
using the beacon filtering functionality provided in the file 
Components/Utilities/appZpsBeaconHandler.c. 

• To switch the filter ON, ZPS_bAppAddBeaconFilter() should be invoked  

• To switch the filter OFF, ZPS_bAppRemoveBeaconFilter() should be invoked 

For more details, refer to the ZigBee PRO Stack User Guide (JN-UG-3101). 

  



 
  ZigBee Home Automation/Light Link SDK 

Release Notes 

 

66 © NXP B.V. 2019 JN-RN-0058 v2162 

9.4.10 Removal of PHY Interrupt from OS Diagram 

In earlier HA applications, the OS diagram contained a PHY interrupt source that 
stimulated the MAC ISR, as shown in the following example.  

  

 

In the new SDK, the application needs to remove this interrupt source, since it is no 
longer required in the OS diagram. 

9.4.11 Removal of Management Bind Server from Application  

The Management Bind Server can now be configured through the ZPS Configuration 
Editor. The server no longer exists in the application, since it is now part of the stack. 

In earlier releases, the HA application contained the source and callback function 
registration for the Management Bind Server. This is no longer required in the 
application and must be removed. 

The following files that are part of the application need to be removed from the source 
and also from the makefiles: 

 

All the function calls that are related to these file must be removed. 

9.5 Bootloader Version 

The version of the bootloader in the JN5168 device must be either of the following:  

• 0x00080003 

• 0x00080006 

The version of the bootloader in the JN5169 device must be the following:  

• 0x000B0000 

 


