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1 Software Stack Introduction

The NXP elQ Machine Learning Software Development Environment (hereinafter referred to as "NXP

elQ") provides a set of libraries and development tools for machine learning applications targeting NXP
microcontrollers and application processors. The NXP elQ is contained in the meta-imx/meta-ml Yocto layer.
See also the i.MX Yocto Project User's Guide (UG10164) for more information.

The following four inference engines are currently supported in the NXP elQ software stack: TensorFlow Lite,
ONNX Runtime, PyTorch, and OpenCV. The following figure shows the supported elQ inference engines across
the computing units.

elQ inference engine deployment
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Figure 1. NXP elQ supported compute vs. inference engines

The NXP elQ inference engines support multi-threaded execution on Cortex-A cores. Additionally, TensorFlow
Lite also supports acceleration on the GPU or NPU. Generally, the NXP elQ is prepared to support the following
key application domains:
* Vision

— Multi-camera observation

— Active object recognition

— Gesture control
* Voice

— Voice processing

— Home entertainment
* Sound

— Smart sense and control

— Visual inspection
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— Sound monitoring
o LLM

— Text Generation

- ASR

2 TensorFlow Lite

TensorFlow Lite, recently renamed to LiteRT, is an open-source software library focused on running machine
learning models on mobile and embedded devices (available at http://www.tensorflow.org/lite). It enables
on-device machine learning inference with low latency and small binary size. TensorFlow Lite also supports
hardware acceleration:

» Using the VX Delegate on i.MX 8 series.
* Using the Ethos-U Delegate on i.MX 93.
* Using the Neutron Delegate for Neutron-S devices.
Note: Neutron-S devices are i.MX 9 SoC with Neutron-S inside. Currently, it is i.MX 95 and i.MX 943.
* Using the GPU delegate for i.MX 95 Mali GPU.

The TensorFlow Lite source code for this Yocto Linux release is available at this repository, branch
If-6.12.20_2.0.0. This repository is a fork of the mainline https://github.com/tensorflow/tensorflow, and it is
optimized for NXP i.MX 8 and i.MX 9 platforms.

Features:

» TensorFlow Lite v2.18.0

Multithreaded computation with acceleration using Arm Neon SIMD instructions on Cortex-A cores
Parallel computation using GPU/NPU hardware acceleration (on shader or convolution units)

C++ and Python API (supported Python version 3)

* Per-tensor and Per-channel quantized models support

2.1 TensorFlow Lite software stack

The TensorFlow Lite software stack is shown in the following picture. The TensorFlow Lite supports computation
on the following hardware units:

* CPU Arm Cortex-A cores
* GPU/NPU hardware accelerator using the VX Delegate on i.MX 8 Series. See Section 7.1 for details.
* NPU hardware acceleration using Ethos-U Delegate on i.MX 93 NPU. See Section 7.2 for details.

* NPU hardware acceleration using Neutron Delegate on i.MX 9 series with Neutron NPU. See Section 7.4 for
details.

* GPU hardware acceleration using the GPU Delegate on i.MX 95 GPU

See Section 1 for some details about supporting of computation on GPU/NPU hardware accelerator on different
hardware platforms.
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Figure 2. TensorFlow Lite software stack

Note:

The first execution of the model inference using the delegate takes longer, because of the time required for
computational graph compilation and initialization for the hardware accelerator. The following iterations perform
much faster. The computational graph is the representation of the operations and their dependencies to perform
computation specified by the model. The computation graph is built during the model parsing phase. See
Section 7 for details.

The VX Delegate implementations use the OpenVX library for computational graph execution on the GPU/NPU
hardware accelerator. Therefore, OpenVX library support must be available for the selected device to be able
to use the acceleration. For more details on the OpenVX library availability, see the i.MX Graphics User's Guide
(UG10159).

Refer to the i.MX Graphics User's Guide (UG10159) for list GPUs with OpenVX support. Note that the GC7000
Lite and GC7000 Ultra Lite GPUs does not support full OpenVX however still capable to run ML workload.

2.2 Inference backends and delegates

Inference backend is the compute engine that enables efficient execution of machine learning models on edge
devices. Tensorflow Lite comes with the options to enable different backends through the delegate mechanism.
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2.2.1 Built-in kernels

Default inference backend is the CPU with reference kernels from TensorFlow Lite implementation. Built-in
kernels provide full support for TensorFlow Lite operator set.

The built-in kernels are built with RUY matrix multiplication library enabled, which increases the performance of
the kernels for floating point and quantized operations.

2.2.2 XNNPACK Delegate

XNNPACK library is a highly optimized library of floating-point quantize neural network inference operators for
ARM, WebAssembly, and x86 platforms. The XNNPACK library is available through XNNPACK delegate in
TensorFlow Lite. The XNNPACK delegate computation is performed on the CPU.

It provides optimized implementation for a subset of TensorFlow Lite operator set. In general, it provides better
performance than the built-in kernels.

Note: The models are executed via the XNNPACK Delegate by default. XNNPack now also supports quantized
operators (since 2021).

2.2.3 VX Delegate

VX Delegate enables accelerating the inference on on-chip hardware accelerator on i.MX 8 series. The VX
Delegate directly uses the hardware accelerator driver (OpenVX with extension) to fully utilize the accelerator
capabilities.

The VX Delegate is available as external delegate1. The corresponding library is available in /usr/1ib/
libvx delegate.so.

VX Delegate is supported in both C++ and Python API. For using VX Delegate (or any external delegate), see
the external_delegate_provider implementation in C++ and/or label_image.py for Python. List of supported
operators are available in op_status.md.

2.2.4 Ethos-U Delegate

Ethos-U Delegate is an external delegate on i.MX 93 Linux platforms. It enables accelerating the inference on
the on-chip hardware accelerator. The Ethos-U Delegate directly uses the hardware accelerator driver (Ethos-U
driver stack) to fully utilize the accelerator capabilities.

The Ethos-U Delegate is available as external delegate. The corresponding library is available in /usr/1ib/
libethosu delegate.so.

Ethos-U Delegate is supported in both C++ and Python API. For using Ethos-U Delegate (or any external
delegate), see the external delegate provider implementation in C++ and/or label image.py for
Python. List of supported operators are available in SUPPORTED_OPS.md.

2.2.5 Neutron Delegate

Neutron Delegate is an external delegate on i.MX 9 series Linux platform containing Neutron-S NPU. It captures
the operators and aggregates them as a neutron graph node, which can be directly offloaded and accelerated
by the Neutron-S NPU.

The delegate library is available in /usr/1ib/libneutron delegate.so. It can be used in both C+
+ and Python API environments. For using Neutron Delegate, see the external delegate provider
implementation in C++ and/or 1abel image.py for Python usage.

1 An external delegate is a special Tensorflow Lite delegate that is simply initialized from loading a dynamic library which encapsulates
an actual TensorFlow Lite delegate implementation
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Note:

For the offline compilation, the model should be converted through the elQ toolkit first. In the converted model,
the neutronGraph node is already generated. The neutron-delegate only captures the neutronGraph node and
offloads the work to Neutron-S.

2.2.6 GPU Delegate

GPU Delegate is an internal TensorFlow Lite delegate enabled on the i.MX 95 platform to leverage inferences
through the Arm Mali G310 GPU.

The GPU Delegate supports OpenCL as the main backend, and applies a set of optimizations such as accuracy
lowering for performance (FP32 to FP16 lowering) and allows quantize model execution. Further information
about the GPU delegate can be found in https://www.tensorflow.org/lite/performance/gpu.

GPU delegate is supported in C++ API. Refer to gpu_delegate provider.cc in https:/github.com/nxp-imx/
tensorflow-imx/blob/If-6.6.23 2.0.0/tensorflow/lite/tools/delegates/gpu_delegate provider.cc.

Note:

» Even if the GPU Delegate supports quantized models, performance might be degraded when compared to
other delegates such as XNNPACK using 6 cores.

*» As the GPU delegate dynamically loads OpenCL, 1ibOpenCL. so is expected to be present in the system. If
1ibOpenCL. so is missing but 1ibOpenCL. so. 1 exists, issues can be solved by adding a symbolic link:

In -s /usr/lib/1ibOpenCL.so.1 /usr/lib/1ibOpenCL.so

2.3 Delivery package

The TensorFlow Lite is available using Yocto Project recipes.
The TensorFlow Lite delivery package contains:

* TensorFlow Lite shared libraries

» TensorFlow Lite header files

Python Module for TensorFlow Lite

* Image classification example application for C++ (1abel image)and for Python (1abel image.py)
TensorFlow Lite benchmark application (benchmark model)

TensorFlow Lite evaluation tools (coco _object detection run eval, imagenet image
classification run_eval, inference diff run eval), see TensorFlow Lite Delegates for details.

For application development, the TensorFlow Lite shared libraries and header files are available in the SDK.
See Section 2.5 for more details.

There are following delegates available in the TensorFlow Lite delivery package:

* XNNPACK Delegate
VX Delegate
Ethos-U Delegate

* Neutron Delegate
GPU Delegate

2.4 Build details

TensorFlow Lite uses CMake build system for compilation. Notable remarks to package build are:
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* RUY matrix multiplication library is enabled (TFLITE ENABLE RUY=0n). RUY matrix multiplication library
offers better performance compared to kernels build with Eigen and GEMLOWP.

» XNNPACK Delegate support (TFLITE _ENABLE XNNPACK=0n)

* External Delegate support (TFLITE ENABLE EXTERNAL DELEGATE=0On)

* (.MX 95) GPU Delegate support (TFLITE ENABLE GPU=0n)

* The runtime library is built and provided as a shared library (TFLITE BUILD SHARED LIB=On). If static
linking of the TensorFlow Lite library to the application is preferred, keep this switch in off state (default
settings). This might be convenient if the application is built with CMake as described in the Section
Section 2.5.1.

* The package is compiled with the default -O2 optimization level. Some CPU kernels, such as
RESIZE_BILINEAR, are known to perform better with -O3 optimization level. However, some performs better
with -02, such as ARG_MAX. We recommend to adjust the optimization level, based on the application
needs.

Yocto project builds the TensorFlow Lite with these settings. The build configuration can be changed by either
updating the TensorFlow Lite Yocto recipe in the meta-imx layer (located in meta-imx/meta-ml/recipes-
libraries/tensorflow-1lite/), or building the TensorFlow Lite from source code using the CMake and the
Yocto SDK.

2.5 Application development

This section describes how to use TensorFlow Lite C++ API in the application development.

To start with TensorFlow Lite C++ application development, a Yocto SDK must be generated firstly. See the i.MX
Yocto Project User’s Guide (UG10164) for detailed information on how to generate Yocto SDK environment for
cross-compiling.

To build an application that uses the TensorFlow Lite, use the following options:

* Create a CMake project that uses TensorFlow Lite (CMake superbuild pattern).
» Use the Yocto SDK precompiled libraries.

The CMake configuration file of TensorFlow Lite is under tensorflow/lite/CMakelLists. txt from the root
repository.

2.5.1 Create CMake project which uses TensorFlow Lite

The recommended way is to create a CMake project, which uses TensorFlow Lite as described in Build
TensorFlow Lite with CMake. CMake takes care of dependencies preparation, including download, configure
and build steps.

To demonstrate this build option, there is a minimal example project available in tensorflow/lite/
examples/minimal. To build it:

1. Build the Native flat compiler for TensorFlow Lite.

cmake -S tensorflow/lite/tools/cmake/native tools/flatbuffers \
-B native-tools \
-DCMAKE INSTALL PREFIX=native-tools

cmake --build native-tools -- -j 4 --keep-going

cmake --install native-tools

2. Set up the Yocto SDK as described above. To activate this Yocto SDK environment on your host, use the
following command:

S source <Yocto SDK install folder>/environment-setup-aarch64-poky-linux
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3. Configure the project using CMake:

S mkdir build-minimal-example; cd build-minimal-example

$ cmake -DCMAKE TOOLCHAIN FILE=${OE_CMAKE TOOLCHAIN FILE} -
DTFLITE ENABLE XNNPACK=on \

-DTFLITE ENABLE RUY=on \

-DTFLITE HOST TOOLS DIR=native-tools
../tensorflow/lite/examples/minimal

4. Build the project:

$ cmake --build . -j4

5. The minimal example is available in the build directory:

$ file minimal

minimal: ELF 64-bit LSB shared object, ARM aarch64, version 1 (GNU/
Linux), dynamically linked, interpreter /lib/ld-linux-aarch64.so.1,
BuildID[shal]=4a928894439e0b33217€a28790378690ab4ce7cd, for GNU/Linux
3.14.0, with debug info, not stripped

6. Optionally you can strip the final binary:

$ $SSTRIP --remove-section=.comment --remove-section=.note --strip-unneeded
<file>

This build option has several advantages:

» Automatic dependency resolution based on configure options

*» Option to choose between static or dynamic linking (TFLITE BUILD SHARED LIB=on/off)

* Building the whole project (including its dependencies) in the Debug mode (CMAKE BUILD TYPE=Debug/
Release/..), for enhanced debugging experience

2.5.2 Using Yocto SDK precompiled libraries

Another option is to use the precompiled binaries and header files which are directly available in the Yocto SDK.
The TensorFlow Lite artifacts are in the Yocto SDK as follows:

* TensorFlow Lite shared library (libtensorflow-lite.so) in /usr/1ib
* TensorFlow Lite header files in /usr/include

Note: Not all TensorFlow Lite dependencies are installed in the Yocto SDK and it is necessary to download
and optionally build them manually. For the required versions see the tensorflow/lite/tools/cmake/
modules/ folder.

To build the image classification demo (label_image), located in tensorflow/lite/examples/label
image/, follow these steps:

1. Create build directory:

$ mkdir build-manual
$ cd build-manual

2. Download the Abseil library dependency:

$ wget https://github.com/abseil/abseil-cpp/
archive/997aaf3a28308ebalb9l56aa35ab7bca9688e9f6.tar.gz -0 abseil-cpp.tar.gz
S tar -xzf abseil-cpp.tar.gz

S mv abseil-cpp-997aaf3a28308ebalb9156aa35ab7bca9688e9f6 abseil-cpp
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3. Build the label_image example:

$ SCC ../tensorflow/lite/examples/label image/label image.cc ../tensorflow/
lite/examples/label image/bitmap helpers.cc ../tensorflow/lite/tools/
evaluation/utils.cc ../tensorflow/lite/tools/delegates/delegate provider.cc -
Tabseil-cpp -02 -ltensorflow-lite -lstdc++ -lpthread -1lm -1dl1 -1lrt -I../

2.6 Enabling TensorFlow Operators in TensorFlow Lite Runtime

The TensorFlow Lite Operator Set counts more than a hundred of frequently used operators and layers, and
majority of Machine Learning models can fit into it. Still the TensorFlow Lite Operator Set is only a subset of
TensorFlow Operator Set, so not every model is convertible.

To tackle this limitation, TensorFlow offers an option to use TensorFlow operators inside the TensorFlow Lite
runtime. See https://www.tensorflow.org/lite/guide/ops_select. It shows how this feature can be used with NXP
i.MX devices with Yocto Linux platform.

2.6.1 TensorFlow and TensorFlow Lite Operator Set

If the model is not convertible within the standard TensorFlow Lite Operator Set, the TensorFlow Lite converter
raises an error, indicating particular operator is not available in TensorFlow Lite, for example:

Some ops are not supported by the native TFLite runtime, you can enable TF
kernels fallback using TF Select. See instructions: https://www.tensorflow.org/
lite/guide/ops_select

TF Select ops: Roll

Details: tf.Roll (tensor<?x10xf32>, tensor<i32>, tensor<i32>) -> (tensor<?

x10x£32>) : {device = ""}

To Convert such a model, the Select TensorFlow Operators feature needs to be enabled in the Converter:

converter.target spec.supported ops = [
tf.lite.OpsSet.SELECT TF OPS # enable TensorFlow ops.
]

When the model is converted with SELECT TF OPS enabled, TensorFlow operators are transformed into

Flex operators, which are supported by TensorFlow Lite through the Flex Delegate. The Flex Delegate is the
TensorFlow Lite counterpart for the Select TensorFlow Operators feature and bridges the TensorFlow Lite and
TensorFlow runtimes.

2.6.2 Building the TensorFlow Lite Library with the Flex Delegate for i.MX Linux platforms

The library can be built using bazel on any supported host or inside the Docker container. It is recommend to
use Docker because the environment is ready for TensorFlow compilation. Compilation outside of Docker might
fail for multiple reasons. This document focuses on building the TensorFlow Lite Library with Flex Delegate
inside the TensorFlow’s Docker image.

Note:

To build the library outside the Docker image, the bazel build system needs to be installed on the machine.
The TensorFlow requires an exact version of bazel, which is specific to particular TensorFlow version.
Therefore, use bazelisk to handle the bazel version management. Find the bazelisk tool on its GitHub
space https://github.com/bazelbuild/bazelisk, with prebuilt executables for multiple platforms available.

It is recommended to have at least 32 GB RAM to build the Flex Delegate, and ensure that enough inodes are
available in build-related directories, such as /tmp.
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2.6.2.1 Checking out the TensorFlow repository

To build the TensorFlow Lite library, check out the TensorFlow sources:

Clone the tensorflow-imx repository from https://github.com/nxp-imx/tensorflow-imx and check out the
corresponding release branch:

$ git clone https://github.com/nxp-imx/tensorflow-imx.git -b 1£-6.12.20 2.0.0
S cd tensorflow-imx

2.6.2.2 Setting up Docker VM

For more details about the Docker VM setup for TensorFlow, see https://github.com/tensorflow/tensorflow/tree/
master/tensorflow/tools/tf_sig_build_dockerfiles.

Note:

Depending on the host, the Docker may require administrative privileges to run (e.g., sudo in Linux).
Alternatively, the Docker Daemon can run as a non-root user (Rootless mode), as described here https.//docs.
docker.com/engine/security/rootless/.

1. Download the tensorflow/build:2.18-python3.12 Dockerimage. This image is aligned with the
upstream release and contains all the required tools to build Flex Delegate related components.

$ docker pull tensorflow/build:2.18-python3.12

2. Run the Docker VM. During the build process, Bazel downloads various packages from the Internet.
Therefore, Internet access inside the instantiated container is required. In case of conflict, a minimal setup
is to initialize http proxy and https proxy environmental variables when launching the Docker image.
Particular steps depend on the host configuration.

$ docker run -e "http proxy=<your-http-proxy>" \
-e "https proxy=<your-https-proxy>" \
-e "no proxy=localhost,127.0.0.1" \
-it -w /tensorflow -v /<path-to-tensorflow-sources>:/tensorflow

—e HOST_PERMS="\\ ((id -u) :\\) (id -g)" \
tensorflow/build:2.18-python3.12

2.6.2.3 Building the TensorFlow Lite with Flex Delegate

The main CPUs in NXP i.MX 8 and i.MX 9 families are Arm based, implementing AArch64 ISA, and the platform
OS is based in the Embedded Linux BSP release. To build TensorFlow Lite with Flex Delegate, the build system
supports the described environment combination through the elinux aarché64 option.

1. Configure the project using the configure script:

$ ./configure

Note: More details about the configuration can be found in build benchmark flex test.shand

build elinux flex libs from models.sh located inthe tensorflow/lite/tools directory.

The Flex Delegate sources and bazel build recipes are located in /tensorflow/lite/delegates/

flex. There are two libraries defined:

* tensorflowlite flex [full|reduced] — TensorFlow Lite Flex Delegate shared library
(libtensorflowlite flex.so)

* delegate [full|reduced] — special target to be used for static linking of the TensorFlow Lite Flex
Delegate. Similar to object library concept in CMake.
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Additionally Bazel targets for building different variants of the benchmark model binary are provided in the
/tensorflow/lite/delegates/flex/test/BUILD, for evaluation purposes:

benchmark model plus flex [dynamic] [full|reduced]

2. Build the benchmark model plus_ flex target with a full TensorFlow Operator Set:

$ bazel --output base=/tensorflow/docker-build/ build --config=monolithic
--config=elinux aarch64 -c opt --cxxopt='--std=c++17' --

host crosstool top=Gbazel tools//tools/cpp:toolchain //tensorflow/lite/

delegates/flex/test:benchmark model plus flex full

Note: To preserve the Bazel’s cache, use the --output base switch to override the default output base. For
the build outside the Docker, this switch can be omitted. The directory shall be available prior to running Bazel
build.

The output is the benchmark model plus flex binary with statically linked Flex Delegate. This can be
directly used on NXP MPU platforms.

The -c (or --compilation mode) affects code generation option. It can be set to fastbuild, dbg or opt.
See https://bazel.build/docs/user-manual#build-semantics. To build the Flex Delegate for debugging purposes,
use the -c dbg option.

The following table lists the benchmark model plus flex * build configurations.

Table 1. benchmark_model build configurations

Operator set Static linkage Dynamic linkage

Full Flex Delegate benchmark model plus flex full |benchmark model plus flex dynamic full

Reduced Flex Delegate  |benchmark model plus flex benchmark model plus flex dynamic_
reduced reduced

2.6.3 Reducing the size of the Flex Delegate library

The previous section describes how to build a TensorFlow Lite Library with a complete TensorFlow Operator
Set. The approach is useful for quick evaluation, but for practical use, it generates an oversized binary.
Moreover, typically only a small subset of TensorFlow operators are required.

To minimize the size, there is a model-dependent build option which extracts the required operators from the
models, and selectively includes them in the deployed TensorFlow Lite library. For more details, see https://
www.tensorflow.org/lite/guide/reduce_binary_size.

For example, there are targets with the reduced suffix, which builds the TensorFlow Lite library for the /
tensorflow/lite/delegates/flex/test/simple flex model int8.tflite example model. The
model contains a single TensorFlow operation: tf.roll ().

The reduced size binaries are built in the following process:

1. Generate the headers and listings for the Flex operators contained in the provided TensorFlow Lite models.
This is managed by the rule fetch flex files. Note that the command is "run" and executed natively in
the host platform (lack of the elinux aarch64 option).

2. Build the target Flex delegate (using the rules contained in Table 1).

$ bazel --output base=/tensorflow/docker-build/ run //tensorflow/lite/delegates/
flex/test:fetch flex files

$ bazel --output base=/tensorflow/docker-build/ build --config=monolithic
-—config=elinux aarch64 -c opt --cxxopt='--std=c++17' --

host crosstool top=€bazel tools//tools/cpp:toolchain
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//tensorflow/lite/delegates/flex/test:benchmark model plus flex reduced

To build the TensorFlow Lite library for custom model, use a bazel function tflite flex cc library (for
static library) or tflite flex shared library (for shared library), and list the models into the models
attribute. Remember regenerating the headers and listings through the fetch flex files rule for each
additional model containing Flex operators. The kernel headers attribute uses the files generated by

the fetch flex files rule through the load flex kernel header rule. For more details, see the
tensorflow/lite/delegates/flex/test/BUILD file.

tflite flex cc library(
name = "delegate reduced",
models = [
"simple flex model int8.tflite",
1,
visibility = ["//visibility:public"], kernel headers = loaded headers,

)

This library can be used inside the bazel to link to a custom TensorFlow Lite binary, like this:

tf cc binary(
name = "benchmark model plus flex reduced",
srcs = [
"//tensorflow/lite/tools/benchmark:benchmark plus flex main.cc",
1,
copts = tflite copts() + tflite copts warnings(),
linkopts = tflite linkopts(),
deps = [
":delegate reduced",
"//tensorflow/lite/tools/benchmark:benchmark tflite model 1ib",
"//tensorflow/lite/testing:init tensorflow",
"//tensorflow/lite/tools:logging",
1,
)

Note: To ease the build process for Reduced Size Flex Delegate containing user models, refer to build
elinux flex libs from models.sh located inthe tensorflow/lite/tools directory.

2.6.4 Flex Delegate deployment on NXP i.MX Linux platform

For the statically linked binary (in this usecase, benchmark model plus flex [full]|reduced]), copy
the binary to target the device rootfs.

For the dynamically linked binary (in this usecase, benchmark model plus flex dynamic [full|
reduced]), copy both 1ibtensorflowlite flex.so and the binary to target the device rootfs. The
libtensorflowlite flex.so should be copiedto /usr/1ib/, or alternatively the LD LIBRARY PATH
should be set, to load the library by the dynamic linker or loader.

1. Copy the simple flex model int8.tflite example modelon the i.MX platform, e.g.,to /usr/bin/
tensorflow-lite-2.18.0/examples/.

S scp tensorflow/lite/delegates/flex/test/simple flex model int8.tflite
root@<imx-board>:/usr/bin/tensorflow-1lite-2.18.0/examples/

2. Run the example application benchmark model:

$ ./benchmark model plus flex dynamic full --graph=/usr/bin/tensorflow-
lite-2.18.0/examples/simple flex model int8.tflite
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With --enable op profiling=true, the FlexDelegate invocation is displayed:

Summary by node type

[Node typel [count] [avg ms] [avg 5] [cdf %] [mem
KB] [times called]
TfLiteXNNPackDelegate 3 2.821 81.250% 81.250%
0.000 3
TfLiteFlexDelegate 1 0.640 18.433% 99.683%
0.000 1
RESHAPE 1 0.008 0.230% 99.914%
0.000 1
SOFTMAX 1 0.003 0.086% 100.000%
0.000 1

2.6.5 Using hardware accelerators

The TensorFlow Operators are not part of the TensorFlow Lite Operators Set, so the hardware accelerator on
i.MX platforms does not support these operators, though the acceleration of the TensorFlow Lite operators
present in the model is supported.

For the hardware Acceleration on i.MX8 Linux platforms, use the VX Delegate (external delegate).
The benchmark model plus_ flex already includes support for external delegates, so the -
external delegate path CLI option can be used for inference acceleration:

$ ./benchmark model plus flex dynamic full --graph=/usr/bin/tensorflow-
lite-2.15. O/examples/31mple flex model int8.tflite --enable op profiling=true --
external delegate_path—/usr/llblllbvx delegate.so

For the hardware acceleration on the i.MX 9 Linux platform, use the Ethos-U Delegate for i.MX 93 or Neutron
Delegate for i.MX 95.

Alternativelly, convert the model with the Arm Vela Compiler as described in Section 7.2.3, and also use the
Ethos-U Delegate.

$ vela /usr/bin/tensorflow-lite-2.18.0/examples/simple flex model int8.tflite

Run benchmark model plus flex* with the Ethos-u Delegate.

$ ./benchmark model plus flex dynamic full --graph=/usr/bin/tensorflow-
lite-2.18. O/examples/81mple flex model int8.tflite --enable op profiling=true --
external_delegate_path—/usr/11b/11bethosu_delegate so

2.6.6 Flex Delegate limitations

The Flex Delegate has the following limitations:
CPU support only for TensorFlow Operators

Flex Delegate operators are not supported on the hardware accelerators of i.MX platforms. The TensorFlow
Operators fall back to CPU. The acceleration of supported TensorFlow Lite Ops in the model is not impacted.
The model can freely combine TensorFlow Lite and TensorFlow Operators. Supported TensorFlow Lite
operators of the model will be accelerated.
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2.7 Running image classification example

A Yocto Linux BSP image with machine learning layer included by default contains a simple pre-installed
example called ‘label_image’ usable with image classification models. The example binary file is located at:

/usr/bin/tensorflow-lite-2.18.0/examples

Figure 3. TensorFlow image classification input
Demo instructions:

To run the example with mobilenet model on the CPU, use the following command:

$ ./label image -m mobilenet vl 1.0 224 quant.tflite -i grace hopper.bmp -1
labels.txt

The output of a successful classification on the i.MX 8MPlus SoC for the 'grace _hopper.bomp' input image is as
follows:

Loaded model mobilenet vl 1.0 224 quant.tflite
resolved reporter

invoked

average time: 39.271 ms

0.780392: 653 military uniform

.105882: 907 Windsor tie

.0156863: 458 bow tie

.0117647: 466 bulletproof vest

.00784314: 835 suit

O O oo

Note: For floating point layers, the TensorFlow Lite uses XNNPACK delegated by default.

2.7.1 Running the example on the i.MX 8 platform hardware accelerator

To run the example application on the CPU without using the XNNPACK delegate, use the --
use xnnpack=false switch.

To run the example with the same model on the GPU/NPU hardware accelerator, add --external
delegate path=/usr/lib/libvx delegate.so (for VX Delegate) command line argument. To
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differentiate between the 3D GPU and the NPU, use the USE_GPU_INFERENCE environmental variable. For
example, to run the model accelerated on the NPU hardware using VX Delegate, use this command:

$ USE GPU INFERENCE=0 ./label image -m mobilenet vl 1.0 224 quant.tflite
-1 grace hopper.bmp -1 labels.txt --external delegate path=/usr/lib/
libvx delegate.so

The output of the NPU acceleration on the i.MX 8MPlus processor is as follows:

INFO: Loaded model ./mobilenet vl 1.0 224 quant.tflite
INFO: resolved reporter

Vx delegate: allowed builtin code set to O.

Vx delegate: error during init set to 0.

Vx delegate: error during prepare set to 0.

Vx delegate: error during invoke set to 0.

EXTERNAL delegate created.

INFO: Applied EXTERNAL delegate.

W [HandleLayoutInfer:257]0p 18: default layout inference pass.
INFO: invoked

INFO: average time: 2.567 ms

INFO: 0.768627: 653 military uniform

INFO: 0.105882: 907 Windsor tie

INFO: 0.0196078: 458 bow tie

INFO: 0.0117647: 466 bulletproof vest
INFO: 0.00784314: 835 suit

2.7.2 Running the example on the i.MX 93 platform with Ethos-U

To use the hardware acceleration on i.MX 93, convert the model using the Vela compiler first, and run the model
with the Ethos-U delegate. Alternatively, directly run the model with the Ethos-U delegate. The model is then
converted in the delegate. For details, see Section 7.2.3.

To run the example with the model on the NPU hardware accelerator, add the --external delegate
path=/usr/lib/libethosu_delegate.so command line argument. For example, to run the model
accelerated on the NPU hardware using Ethos-U Delegate, use this command:

$ ./label image -m mobilenet vl 1.0 224 quant.tflite
-1 grace hopper.bmp -1 labels.txt --external delegate path=/usr/lib/
libethosu delegate.so

2.7.3 Running the example on the i.MX 9 platform with Neutron-S

To use the hardware Acceleration on i.MX 9 with Neutron-S NPU, convert the model using the neutron-
converter using the elQ Toolkit. For details, see the elQ Toolkit documentation.

* Run the example with option:

--external delegate path=/usr/lib/libneutron delegate.so

* Run the Python example with option:

-e /usr/lib/libneutron delegate.so
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2.7.4 Running the Python example

Alternatively, the example using the TensorFlow Lite interpreter-only Python API can be run. The exampile file is
located at:

/usr/bin/tensorflow-lite-2.18.0/examples

To run the example using the predefined command line arguments, use the following command:

$ python3 label image.py

The output should be as follows:

Warm-up time: 159.1 ms
Inference time: 156.5 ms
0.878431: military uniform

0.027451: Windsor tie
0.011765: mortarboard
0.011765: bulletproof wvest
0.007843: sax

The Python example supports external delegates also. The switch --ext delegate <PATH> and --
ext delegate options <EXT DELEGATE OPTIONS>, can be used to specify the external delegate library
and optionally its arguments.

For example, to run the model accelerated on the NPU hardware using Neutron Delegate on i.MX 95, run this
command:

$ python3 label image.py --ext delegate /usr/lib/libneutron delegate.so

The output should be as follows:

Loading external delegate from /usr/lib/libneutron delegate.so with args: {}
INFO: NeutronDelegate delegate: 29 nodes delegated out of 31 nodes with 1
partitions.

Warm-up time: 1.9 ms
Inference time: 1.7 ms

.850980: military uniform
.058824: Windsor tie
.011765: bulletproof vest
.007843: bow tie

.007843: mortarboard

O O O oo

2.7.5 Running the example on the i.MX 95 platform using GPU

Torun label image using the GPU, execute the following command:

$ ./label image -m mobilenet vl 1.0 224 quant.tflite -i grace hopper.bmp -1

labels.txt --use gpu=true --gpu backend=cl --gpu precision loss allowed=true --
gpu_experimental enable quant=true --gpu inference for sustained speed=false
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2.8 Running benchmark applications

A Yocto Linux BSP image with machine learning layer included by default contains a pre-installed benchmarking
application. It performs a simple TensorFlow Lite model inference and prints benchmarking information. The
application binary file is located at:

/usr/bin/tensorflow-lite-2.18.0/examples

Benchmarking instructions are as follows:

To run the benchmark with computation on CPU, use the following command:

$ ./benchmark model --graph=mobilenet vl 1.0 224 quant.tflite

You can optionally specify the number of threads with the --num threads=X parameter to run the inference
on multiple cores. For highest performance, set X to the number of cores available.

The output of the benchmarking application should be similar to:

STARTING!

Log parameter values verbosely: [0]

Graph: [mobilenet vl 1.0 224 quant.tflite]

Loaded model mobilenet vl 1.0 224 quant.tflite

Going to apply 0 delegates one after another.

The input model file size (MB): 4.27635

Initialized session in 3.051ms.

Running benchmark for at least 1 iterations and at least 0.5 seconds but
terminate if exceeding 150 seconds.

count=4 first=160408 curr=155384 min=155384 max=160408 avg=156869 std=2076

Running benchmark for at least 50 iterations and at least 1 seconds but
terminate if exceeding 150 seconds.

count=50 first=155586 curr=155424 min=155274 max=155622 avg=155443 std=81
Inference timings in us: Init: 3051, First inference: 160408, Warmup (avg) :
156869, Inference (avg): 155443

Note: as the benchmark tool itself affects memory footprint, the following is
only APPROXIMATE to the actual memory footprint of the model at runtime. Take
the information at your discretion.

Peak memory footprint (MB): init=4.49219 overall=10.6133

To run the inference without the XNNPACK delegate, add the --use xnnpack=false switch.
To run the inference using the GPU/NPU hardware accelerator, use the --external delegate path switch:

* For VX Delegate on i.MX 8: -~external delegate path=/usr/lib/libvx delegate.so
* For Ethos-U Delegate on i.MX 93: --external delegate path=/usr/lib/libethosu delegate.so

* For Neutron Delegate on i.MX 95: --external delegate path=/usr/lib/libneutron delegate.
so

To run the inference using the Arm Mali G310 GPU using the GPU Delegate on i.MX 95:

--use gpu=true --gpu backend=cl --gpu precision loss allowed=true --
gpu_experimental enable quant=true --gpu inference for sustained speed=false

The output with GPU/NPU module acceleration enabled (for VX Delegate) should be similar to:

STARTING!
Log parameter values verbosely: [0]
Graph: [mobilenet vl 1.0 224 quant.tflite]
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External delegate path: [/usr/lib/libvx delegate.so]

Loaded model mobilenet vl 1.0 224 quant.tflite

Vx delegate: allowed builtin code set to O.

Vx delegate: error during init set to O.

Vx delegate: error during prepare set to O.

Vx delegate: error during invoke set to 0.

EXTERNAL delegate created.

Going to apply 1 delegates one after another.

Explicitly applied EXTERNAL delegate, and the model graph will be completely
executed by the delegate.

The input model file size (MB): 4.27635

Initialized session in 13.437ms.

Running benchmark for at least 1 iterations and at least 0.5 seconds but
terminate if exceeding 150 seconds.

W [HandleLayoutInfer:257]0p 18: default layout inference pass.

count=1 curr=4586473

Running benchmark for at least 50 iterations and at least 1 seconds but
terminate if exceeding 150 seconds.

count=398 first=2541 curr=2419 min=2419 max=2549 avg=2467.87 std=13

Inference timings in us: Init: 13437, First inference: 4586473, Warmup (avg) :
4.58647e+06, Inference (avg): 2467.87

Note: as the benchmark tool itself affects memory footprint, the following is
only APPROXIMATE to the actual memory footprint of the model at runtime. Take
the information at your discretion.

Peak memory footprint (MB): init=7.24609 overall=34.0117

The delegates are not required to support the full set of operators defined by the TensorFlow Lite runtime. If the
model contains such an operation, which is not supported by the particular delegate, this operation execution
falls back to CPU using the TensorFlow Lite reference kernels. This way the computational graph represented
by the model gets divided into segments and each segment is executed . The graph segmentation or also called
graph partitioning is the process, where the computational graph defined by the model is divided into smaller
segments (or partitions) and each of them is executed via the delegate or on the CPU using reference kernels
(CPU fallback), based on operation supported by the delegate.

The benchmark application is also useful to check the optional segmentation of the models if accelerated on
GPU/NPU hardware accelerator. For this purpose, the combination of the --enable op profiling=true
and --max_delegated partitions=<big number> (e.g., 1000) options can be used

Which generates detailed profiling information, such as:

Profiling Info for Benchmark Initialization:
Run Order

[node type] [start] [first] [avg ms] [%] [cdf%]

ModifyGraphWithDelegate 0.000 4.597 4.597 95.791% 95.791%

AllocateTensors 4.528 0.198 0.101 4.209% 100.000%
Top by Computation Time

[node type] [start] [first] [avg ms] [%] [cdf%]

ModifyGraphWithDelegate 0.000 4.597 4.597 95.791% 95.791%

AllocateTensors 4.528 0.198 0.101 4.209% 100.000%

Number of nodes executed: 2

Summary by node type

[Node type] [count][avg ms] [avg %] [cdf %] [mem KB] [times called]
ModifyGraphWithDelegate 1 4.597 95.791% 95.791% 684.000 1
AllocateTensors 1 0.202 4.209% 100.000% 0.000 2
Timings (microseconds): count=1 curr=4799
Memory (bytes): count=0

2 nodes observed
Operator-wise Profiling Info for Regular Benchmark Runs:
Run Order

[node type] [start] [first] [avg ms] [%] [cdf%]
Vx Delegate 0.000 14.890 14.894 11.349% 11.349%
RESIZE BILINEAR 14.896 1.331 1.331 1.0145% 12.363%
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Vx Delegate 16.227 2.944 2.909 2.216% 14.579%
RESIZE BILINEAR 19.137 0.279 0.277 0.211% 14.790%
RESIZE BILINEAR 19.415 44.316 44.496 33.905% 48.695%
ARG MAX 63.912 67.438 67.332 51.305% 100.000%

Top by Computation Time

[node type] [start] [first] [avg ms] [%] [cdf%]
ARG MAX 63.912 67.438 67.332 51.305% 51.305%
RESIZE BILINEAR 19.415 44,316 44,496 33.905% 85.210%

Vx Delegate 0.000 14.890 14.894 11.349% 96.559%

Vx Delegate 16.227 2.944 2.909 2.216% 98.775%
RESIZE BILINEAR 14.896 1.331 1.331 1.014% 99.789%
RESIZE BILINEAR 19.137 0.279 0.277 0.211% 100.000%

Number of nodes executed: 6
Summary by node type

[Node type] [count] [avg ms] [avg %] [cdf %] [mem KB] [times called]
ARG MAX 1 67.332 51.306% 51.306% 0.000 1
RESIZE BILINEAR 3 46.102 35.129% 86.435% 0.000 3

Vx Delegate 2 17.802 13.565% 100.000% 0.000 2

Timings (microseconds): count=8 first=131198 curr=130580 min=130580 max=132766 avg=131238
std=616

Memory (bytes): count=0

6 nodes observed

Based on section “Number of nodes executed” in the output, it can be determined which part of the computation
graph was executed on GPU/NPU hardware accelerator. Every node except Vx Delegate falls back to CPU. In
the example above, the ARG_MAX and RESIZE_BILINEAR nodes fall back to CPU.

2.9 Post training quantization using TensorFlow Lite converter

TensorFlow offers several methods for model quantization:

» Post training quantization with TensorFlow Lite Converter
* Quantization aware training using Model Optimization Toolkits and TensorFlow Lite Converter
 Various other methods available in previous TensorFlow releases

Note:
The model quantization is also supported by the "elQ Toolkit". See also elQ Toolkit User's Guide (EIQTUG).

Covering all of them is beyond the scope of this documentation. This section describes the approach for the
post training quantization using the TensorFlow Lite Converter.

The Converter is available as a part of standard TensorFlow desktop installation. It is used to convert and
optionally quantize TensorFlow models into TensorFlow Lite model format (* . t£1ite). There are two options
how to use the tool:

* The Python API (recommended)

e Command line script

The post training quantization using the Python APl is described in this chapter. The documentation useful for
model conversion and quantization is available here:

* Python API documentation: https://www.tensorflow.org/versions/r2.15/api_docs/python/tf/lite/ TFLiteConverter
* Guide for model conversion: www.tensorflow.org/lite/convert

* Guide for model quantization: https://www.tensorflow.org/lite/performance/post_training_quantization
* Guide for model optimization: https://www.tensorflow.org/model_optimization

Note:

The guides on TensorFlow page usually covers the most up to date version of TensorFlow, which might be
different from the version available in the NXP elQ. To see what features are available, check the corresponding
API for the specific version of the TensorFlow or TensorFlow Lite.
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The current version of the TensorFlow Lite available in the NXP elQ is 2.15.0. It is recommended to use the
TensorFlow Lite converter from corresponding TensorFlow version. The TensorFlow Lite runtime should be
compatible with models generated by previous version of TensorFlow Lite Converter, however this backward
compatibility is not guaranteed. Usage of successive version of TensorFlow Lite converter shall be avoided.

The 2.15.0 version of the converter has the following properties:

* In the post training quantization regime, the per-channel quantization is the only option. The per-tensor
quantization is available only in connection with quantization aware training.

* Input and output tensors quantization is supported by setting the required data type in
inference input type and inference output type.

* TOCO or MLIR based conversions are available. This is controlled by the experimental new converter
attribute. As TOCO is becoming obsolete, MLIR-based conversion is already set by default in the 2.15.0
version of the converter.

MLIR converter uses dynamic tensor shapes, what means the batch size of the input tensor is unspecified.
Dynamic tensor shapes are not supported by the GPU and NPU hardware accelerators and this shall be
turned off. Standard installation of TensorFlow does not provide API to control the dynamic tensor shape
feature, but can be deactivated in the tensorflow installation, as follows. Locate the <python-install-
dir>/site-packages/tensorflow/lite/python/lite.py file and change the private method
TFLiteConverterBase. is unknown shapes allowed (self) to return False value, as follows:

def is unknown shapes allowed (self):

# Unknown dimensions are only allowed with the new converter.
# Return self.experimental new converter

# Disable unknown dimensions support.

return False

Note:

MLIR is a new NN compiler used by TensorFlow, which supports quantization. Before MLIR, quantization was
performed by TOCO (or TOCO Converter), which is now obsolete. See https://www.tensorflow.org/api_docs/
python/tf/compat/v1/lite/TocoConverter. For details about MLIR, see https.//www.tensorflow.org/mlir.

Note:

Do not use the dynamic range method for models being run on NN accelerators (GPU or NPU). It converts only
the weights to 8-bit integers, but retains the activations in fp32, which results in the inference running in fp32
with an additional overhead for data conversion. In fact, the inference is even slower compared to a fp32 model,
because the conversion is done on the fly.

For the full-integer post training quantization, a representative dataset is needed. The proper choice of samples
in representative dataset highly influences the accuracy of the final quantized model. The best practices for
creating the representative dataset are:

* Use train samples for which the original floating points model has very good accuracy, based on metrics the
model used (e.g., SoftMax score for classification models, 10U for object detection models, etc.).

* There shall be enough samples in representative dataset.

* The size of representative dataset and the specific samples available in it are considered as hyperparameters
to tune, with respect of the required model accuracy.

2.10 TensorFlow Lite for Microcontrollers on Xtensa HiFi4 core

TensorFlow Lite for Microcontrollers (TFLM) is a lightweight re-implementation of the TensorFlow Lite library

for microcontroller CPU cores and NN accelerators (like the Xtensa HiFi4 core on i.MX 8ULP or Arm Ethos-U
on i.MX 93). Compared to TensorFlow Lite, it uses less memory, has no C/C++ library dependencies and uses
only static memory allocation. On the other hand, the list of supported operators is more limited and optimized
kernels are available only for Cortex-M and Xtensa cores or the ARM Ethos-U accelerator. The main purpose of
TFLM on the i.MX platform is low-power applications.
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To use TFLM on the Xtensa HiFi4 core, the DSP firmware has to be rebuilt with the TFLM library and a
TensorFlow Lite model included. As the Xtensa HiFi4 core is also used for audio encoding/decoding, the TFLM
library has to be wrapped into an Xtensa Audio Framework (XAF) component to allow simultaneous audio and
model inference execution. Moreover, the XAF client/server protocol implements input and output buffer passing
to and from the CPU core via the Linux XAF API. The DSP firmware and usage example source codes are
available at https://github.com/NXP/imx-audio-framework. See the DSP User’s Guide in the docs subfolder for
information on toolchain setup and build instructions.

To build the DSP firmware with the TFLM library (after the toolchain is installed), use the following Makefile
options:

make PLATF=imx8ulp TFLM=1 DSP_ FIRMWARE

The command produces a hifi4_tflm_imx8ulp.bin file which has to be copied to the /1ib/firmware/imx/dsp
folder of the Yocto Linux BSP image.

To build the TFLM usage example for Linux, use the following Makefile options:

make PLATF=imx8ulp TFLM=1 UNIT TEST

The command compiles the unit test/src/dsp_tflm test.c source file and produces a
dsp tflm test.out binary executable file which demonstrates a simple keyword detection application
processing a built-in static audio buffer with “yes” and “no” speech command data samples.

By default, TFLM included in the DSP firmware is compiled with reference kernel implementations due to
licensing. To improve the library performance on Xtensa HiFi4 cores, the library has to be built with proprietary
licensed optimized kernel implementations provided by Cadence at https://github.com/foss-xtensa/nnlib-hifi4
(see the license file in the GitHub repository). Add the OPTIMIZED KERNEL DIR=xtensa option into the dsp
framework/tensorflow lite micro.inc file to automatically download the Cadence library and build
TFLM with the optimized kernels:

cd $(SRC_DIR)/tflite-micro && make -f tensorflow/lite/micro/tools/make/
Makefile TARGET=xtensa TARGET_ARCH=hi fi4 OPTIMI ZED KERNEL DIR=xtensa
XTENSA USE LIBC=true microlite

A DSP firmware file with the same name as previously is produced, which has to be copied to the /1ib/
firmware/imx/dsp folder of the Yocto Linux BSP image.

3 ONNX Runtime

ONNX Runtime is an open-source inference engine to run ONNX models, which enables the acceleration of
machine learning models across all of your deployment targets using a single set of API. Source codes are
available at https://github.com/nxp-imx/onnxruntime-imx.

Note:

* For the full list of the CPU supported operators, see the 'operator kernels' documentation section:
OperatorKernels.

* If you encounter an error indicating that the hash value of Eigen has changed during the ONNX Runtime build,
see the patch available here: onnxruntime.

Features:
¢ ONNX Runtime 1.22.0.
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Multithreaded computation with acceleration using Arm Neon SIMD instructions on Cortex-A cores provided
by the CPU execution provider.

Neutron NPU Execution provider on i.MX 95 as an experimental feature.

VSINPU execution provider on i.MX 8 series NPU/GPU.

e C++ and Python API (supported Python version 3).

ONNX Runtime 1.22.0 supports ONNX 1.17 and Opset version 23.

Integrated Arm KleidiAl into ONNX Runtime/MLAS for enhanced performance on Arm architectures.

Added support for MatMulNBits for CPU Execution provider and Neutron Execution provider, enabling matrix
multiplication with weights quantized to 8 bits and 4 bits.

3.1 ONNX Runtime software stack

The following figure shows the ONNX Runtime software stack.

FrontEnd:
ONNX (e.g. from PyTorch)
*.onnx
ONNX runtime
A
In-memory | Graph Registry
graph partitioner provider
Input —»| Parallel distributed graph runner — Output
Execution provider
CPU EP | | VSI NPU EP | | NEUTRON EP

A

i.MX8/9 series | NN RT |

.

| ARM neon | OVX LIB

CPU: Cortex-A

HW: accelerator «+— NPU/GPU
(Neutron NPU unified driver

VIP8000SI, GC7000,  ——
GC7000L, GC7000UL) [ Neutron driver |

Note: Neutron NPU support in onnxruttimble is only available on i.MX 95

aaa-061353

Figure 4. ONNX Runtime software stack

The following are the core components of ONNX Runtime:
Inference Session

The Inference Session is the central class that manages the entire execution pipeline. It loads models, applies
optimizations, partitions the computation graph across available execution providers, and executes inference
requests.

Key responsibilities:

* Loading ONNX models from files, memory, or streams
* Registering and managing execution providers
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* Applying graph optimizations
* Managing memory allocation
» Executing inference requests
* Handling input/output binding

Graph and Model Representation
ONNX Runtime represents the machine learning model using several key abstractions:

* Model: Contains the computational graph and metadata.
* Graph: Represents the computation as a directed graph of operations.

Execution Providers

Execution Providers (EPs) are responsible for executing portions of the computation graph on specific
hardware. ONNX Runtime partitions the graph based on the capabilities of the registered execution providers.

Key execution providers include:

e CPU: Default provider that runs on Arm Cortex-A cores.
* Neutron: Execute operations (Matmul operations) on Neutron NPU.
* VSINPU: Execute operations on VSINPU.

Note: For Neutron NPU, now it is an experimental feature for the LLM model support and is only on the i.MX 95
NPU.

3.2 ONNX model test

ONNX Runtime provides a tool that can run the collection of standard tests provided in the ONNX Model Zoo.
The tool named onnx test runner isinstalled in /usr/bin/onnxruntime-1.22.0. The following table
lists the command line options for onnx_test runner.

Table 2. Command line options

Option Description Default

-3 [models] Number of models to run simultaneously Number of CPU cores

-A Disables memory arena Arena enabled

-M Disables memory pattern Pattern enabled

-c [runs] Number of session runs to invoke simultaneously Number of CPU cores

-r [repeat] Number of times to repeat 1

-I Uses inference mode Disabled

-v Verbose logging Disabled

-n [test case name] Runs a specific test case Run all tests

-e [EXECUTION Specifies execution provider, such as CPU, VsiNPU, CPU

PROVIDER] Neutron

-x Uses parallel executor Sequential executor

-t [value] Custom relative tolerance 1e-5

-a [value] Custom absolute tolerance 1e-5

-0 [level] Optimization level 99 (all)

-C [keyl|value] Session configuration entries None

-i [keyl|value] EP specific runtime options None
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ONNX models are available at https://github.com/onnx/models and consist of models and sample test data.
Because some models require a lot of disk space, it is recommended to store the ONNX test files on a larger
partition, as described in the SD card image flashing section.

3.2.1 Running a CNN model

Here is an example with the steps required to run the mobilenet version 2 test:

1. Download and unpack the mobilenet version 2 test archive to a folder, for example, to /home/root:

$ cd /home/root

$ wget https://github.com/onnx/models/raw/refs/heads/jfowers/bringup/archive/
vision/classification/mobilenet/model/mobilenetv2-7.tar.gz

S tar -xzvf mobilenetv2-7.tar.gz

$ 1s ./mobilenetv2-7

mobilenetv2-7.onnx test data set O

2. Runthe onnx test runner tool providing the mobilenetv2-7 folder and setting the execution provider
as CPU:

S /usr/bin/onnxruntime-1.22.0/onnx test runner -j 1 -¢ 1 -r 1 -e cpu ./
mobilenetv2-7/

result:

Models: 1

Total test cases: 3
Succeeded: 3

Not implemented: O
Failed: 0

Stats by Operator type:
Not implemented(0) :
Failed:

Failed Test Cases:

3. Runthe onnx test runner tool providing the mobilenetv2-7 folder and setting the execution provider
as VsiNPU:

$ /usr/bin/onnxruntime-1.22.0/onnx test runner -j 1 -c¢ 1 -r 1 -e vsinpu ./
mobilenetv2-7/

result:

Models: 1

Total test cases: 3
Succeeded: 3

Not implemented: O
Failed: O

Stats by Operator type:
Not implemented(0) :
Failed:

Failed Test Cases:

3.2.2 Running an LLM model

ONNX Runtime now supports running Quantized Large Language Models (LLMs) using the CPU and
Neutron NPU Execution provider. This enhancement enables efficient inference for LLMs with 8-bit and 4-bit
quantization on selected i.MX SoCs.

ONNX Runtime now supports execution of Large Language Models (LLMs) using quantized formats on
CPU by default. Building on this, it aslo supports running Quantized LLMs using the Neutron Al engine. This
enhancement enables efficient inference for LLMs with 8-bit and 4-bit quantization on selected i.MX SoCs by
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offloading key operator kernels to the Neutron Al engine, and delivering improved performance and power
efficiency for edge Al deployments.

This hybrid execution model allows developers to leverage the full flexibility of ONNX Runtime for LLM
inference, while benefiting from hardware acceleration on supported operators.

Here is an example with steps required to run an LLM model on i.MX 943 with CPU as an execution provider:

1. Download and unpack the LLM compressed files to a folder, for example, to /home/root:

$ mkdir gwen2 5 0 5B W4GS32

$ tar -xzvf gwen2 5 0 5B W4GS32.tar.gz -C gwen2 5 0 5B W4GS32

$ 1s ./gwen2 5 0 5B W4GS32

added tokens.json config.json model dyn.onnx model dyn.onnx.data
special tokens map.json tokenizer.json tokenizer config.json

2. To perform inference on an LLM model, install additional packages:

$ python3 -m pip install onnx
$ python3 -m pip install transformers
$ python3 -m pip install sentencepiece

3. Run the LLM model with CPU as the execution provider as follows:

$ python3 1llm chat randominput.py -m gwen2 5 0 5B W4GS32 -e cpu -p "Once upon
a time"

If no error occurs, the generated text and the output text from the execution provider is printed as follows:

* Generated text: Once upon a time, a man was walking in a street. He saw a man who was sitting on a bench.
The man was sitting on the bench, and he was looking at the man sitting on the bench.

* cpu_output: Once upon a time, a man was walking in a street. He saw a man who was sitting on a bench. The
man was sitting on the bench, and he was looking at the man sitting on the bench.

To run the LLM model on i.MX 95 with Neutron as the execution provider:

1. Use the imx95-19x19/15x5-evk-neutron.dtb dtb to boot up the board.
2. Run the following command:

$ python3 1llm chat randominput.py -m gwen2 5 0 5B W4GS32 -e neutron -p "Once
upon a time"

Note: Use python3 1lm chat randominput.py -h forthe full list of options available.
1lm chat randominput.py Script:

# Copyright (c) Facebook, Inc. and Microsoft Corporation.

Licensed under the Apache License, Version 2.0 (the "License"),
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

He FH R R H B S Hh He

import onnx

import argparse

import time

import onnxruntime as ort
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import numpy as np

from transformers import AutoTokenizer, AutoConfig

import os

import json

provider map = {'cpu':"CPUExecutionProvider",
'neutron':"NeutronExecutionProvider"}

def validate model files (model path) :
onnx file = None
for file in os.listdir (model path) :
1f file.endswith (".onnx") :
return os.path.join (model path, file)
if not onnx file:
return "Error: .onnx file is missing in the model path."

def run inference with decoding (model, model path, provider, prompt,
new tokens, num layers, num heads, head dim) :
‘mnrRun model with random inputs and ‘decode the output text'"""
session options = ort.SessionOptions ()
try:
session = ort.InferenceSession (model,
providers=[provider map[provider]], sess options=session options)
tokenizer = AutoTokenizer.from pretralned(model path)
config = AutoConfig.from pretrained(model path)

is gemma = '"gemma'" in config.model type.lower ()

prompt ids = tokenizer. encode (prompt, return tensors="np") # Shape:
[1, seq len]

batch size = 1

input ids = prompt ids
seq length = input ids.shape[1]
position ids = np.arange (seq length, dtype=np.inté64).reshape (1,-1)
attention mask = np.ones ((batch size, seq length), dtype=np.inté64)
inputs = {
"input ids': input ids,
'attention mask': attention mask
}
if is gemma:
inputs["position ids"]=position ids
for i in range (num layers) :
inputs[f'past key values.{i}.key'] = np.zeros((batch size,
num_heads, 0, head dim), dtype=np.float32)
inputs[f'past key values.{i}.value'] = np.zeros((batch size,
num heads, 0, head dim), dtype=np.float32)
all generated ids = input ids[0].tolist()
for i in range (new_tokens) :
outputs = session.run (None, inputs)
logits = outputs[0] #[batch size, seqg len, vocab size]
last token logits = logits[0, -1, :] # Get the last token's
logits and find the most likely next token
next token id = np.argmax (last token logits)
all generated ids.append (int (next token id)) # Add to generated

text
1f next token id == tokenizer.eos token id: # Check if we've hit
the end of sequence token
break

# Update inputs for next iteration

input ids = np.array ([[next token id]], dtype=np.int64)

attention mask = np.ones ((batch size, seq length + i + 1),
dtype=np.inté64)

position ids = np.array([[seq length + i]], dtype=np.inté64)
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inputs = {
"input ids': input ids,
'attention mask': attention mask
}
if is gemma:
inputs["position ids"]=position ids
# Extract KV cache from outputs
output idx = 1 # Start index for KV cache outputs
for j in range (num_ layers) :
inputs[f'past key values.{j}.key'] = outputs[output idx]
output idx += 1
inputs[f'past key values.{j}.value'] = outputs[output idx]
output idx += 1
# Decode the full generated sequence
generated text = tokenizer.decode (all generated ids,
skip special tokens=True)
print (f"\nGenerated text: {generated text}")
return generated text
except Exception as e:
print (f"Error: {e}")
import traceback
traceback.print exc()
return None

def main():
parser = argparse.ArgumentParser ()
parser.add argument ("--model path","-m", type=str, required=True,
help="Input your Onnx model path.")
parser.add argument ("--execution provider",'"-e",
choices=["cpu', 'neutron'], type=str, default="cpu")
parser.add argument ("--prompt","-p", type=str, default="Once upon a
time')
parser.add argument ("--new output tokens","-t'", type=int, default=40)
args = parser.parse args()
model = validate model files (args.model path)
config path = os.path.join(args.model path, "config.json'")
config = {}
if os.path.isfile(config path) :
with open (config path) as f:
config = json.load(f)
num layers = config.get ("num hidden layers",16)
num_heads = config.get ("num key value heads",8)
head dim = config.get ("head dim",64)
results = run inference with decoding (model,
args.model path,args.execution provider,args.prompt, args.new output tokens,
num_layers, num_ heads, head dim)
print (f'{args.execution provider} output: {results}')

if name == " main ":
main ()

The following table provides the current list of supported LLM models.

Table 3. Current list of supported LLM models

LLM Model Quantization Download link
Danube_500m INT4 Group Size Quantization - Group Size 32 -

Gemma3_1B INT4 Group Size Quantization - Group Size 32 -
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Table 3. Current list of supported LLM models...continued
LLM Model Quantization Download link

Llama_3_2_1B INT4 Group Size Quantization - Group Size 32 & 128, INT4
Per Channel Quantization

Tinyllama_1B INT4 Group Size Quantization - Group Size 32 -

Table 4. Audio models
LLM Model Quantization Download link

Whisper-small INT4 Group Size Quantization - Group Size 32, -
INT8 per-channel quantization

Whisper-medium INT4 Group Size Quantization - Group Size 32 -
INT8 per-channel quantization

3.3 ONNX performance test

To run model benchmarks, ONNX Runtime provides a tool that measures performance. The tool named
onnxruntime perf testisinstalledin /usr/bin/onnxruntime-1.22.0. To run it, the user must provide
an .onnx model file together with test data. To benchmark the SqueezeNet model running a single iteration
using the CPU execution provider, run the following command:

/usr/bin/onnxruntime-1.22.0/onnxruntime perf test /usr/bin/onnxruntime-1.22.0/
squeezenet/model.onnx -r 1 -e [cpu/vsinpu]

4 PyTorch

PyTorch is a scientific computing package based on Python that facilitates building deep learning projects using
power of Graphics Processing Units (GPUs).

Features:

* PyTorch 2.3.0
* Python version 3 supported
* Deep neural networks built on a tape-based autograd system

Note:

Only the CPU is supported. By default, the PyTorch runtime is running with floating point model. To enable
quantized model, the quantized engine should be specified explicitly as follows:

torch.backends.quantized.engine = 'gnnpack'

4.1 Installing PyTorch

PyTorch is available on the PyPI registry. To install PyTorch on the BSP, run the following command:

S pip install "torch>=2.6.0" "torchvision>=0.21.0"
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4.2 Running image classification example

There is an example located in the examples folder, which requires urllib, PIL, and maybe some other Python3
modules depending on your image. You may install the missing modules using pip3.

$ cd /usr/bin/pytorch/examples

To run the example with inference computation on the CPU, use the following command. There are no
arguments and the resources will be downloaded automatically by the script:

$ python3 pytorch mobilenetv2.py

The output should be similar as follows:

File does not exist, download it from

https://download.pytorch.org/models/mobilenet v2-b0353104.pth
100.00%, downloaded size: 13.55 MB

File does not exist, download it from

https://raw.githubusercontent.com/Lasagne/Recipes/master/examples/resnet50/

imagenet classes.txt
100.00%, downloaded size: 0.02 MB

File does not exist, download it from

https://s3.amazonaws.com/model-server/inputs/kitten. jpg
100.00%, downloaded size: 0.11 MB

('tabby, tabby cat', 46.34805679321289)

("Egyptian cat', 15.802854537963867)

('"lynx, catamount', 1.1611212491989136)

('"lynx, catamount', 1.1611212491989136)

('tiger, Panthera tigris', 0.20774540305137634)

5 TVM

Apache TVM is an open source machine learning compiler framework for CPUs, GPUs, and NPUs. It aims to
enable machine learning engineers to optimize and run computations efficiently on any hardware backend.

Features:

* TVM0.7.0

» Compilation of deep learning models into minimum deployable modules

* Infrastructure to automatic generate and optimize models on more backend with better performance
» Support for i.MX 8M Plus platforms with OpenVX library

TVM builder supported for Ubuntu 18.04, x86_64 platform

Note:

For more detailed information, see TVM Documentation.

5.1 TVM software workflow

The pre-trained model will be transformed into the Relay IR and passed through to the TVM model
optimizations like constant-folding, memory planning, and finally passed to a codegen phase. In this phase,
the operators supported by the target device are transformed as intrinsic calls into the offloading library which
connects the model accelerator devices such as GPU/NPU.
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Figure 5. TVM software workflow

5.2 Getting started

5.2.1 Running example with RPC verification

TVM provides the Remote Procedure Call (RPC) capability to run a model on the remote device.

User can run examples at tests/python/contrib/test vsi npu with RPC verification. The model
running result on device will be verified against the result on host with same input.

¢ Launch the RPC server on the device

$ python3 -m tvm.exec.rpc server --host 0.0.0.0 --port=9090

» Export the system variables:

$ export TVM HOME=/path/to/tvm
$ export PYTHONPATH=$TVM_HOME /python

* Run the specified models on the host PC:

$ python3 tests/python/contrib/test vsi npu/test rpc tflite models.py -i
{device ip} -m mobilenet v2 1.0 224 quant

* Run all supported TensorFlow Lite models on the host PC:

$ python3 tests/python/contrib/test vsi npu/test rpc tflite models.py -i
{device ip}

Note: This test will download the model automatically, please be sure the network can access the public
internet. Example scripts may import additional Python libraries. Please check scripts and make sure they are
installed correctly.
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To test pytorch/onnx/keras model, additional python packages needs to be installed on the host PC:

$ python3 -m pip install torch==1.7.0 torchvision==0.8.1
$ python3 -m pip install onnx=1.8.1 onnxruntime==1.8.1
$ python3 -m pip install tensorflow==2.5.0

5.2.2 Running example individually on device

In this mode, the model is compiled on the host offline and saved as model.so. Please refer tests/python/
contrib/test vsi npu/compile tflite models.py to compile a TensorFlow Lite model on the host.

Below script snippet shows how to load and run a compiled model at the device:

ctx = tvm.cpu(0)

# load the compiled model

lib = tvm.runtime.load module (args.model)

m = graph runtime.GraphModule (lib["default"] (ctx))
# set inputs

data = get img data(args.image, (args.input size, args.input size),
args.data type)

m.set input (args.input tensor, data)

# execute the model

m.run ()

# get outputs

tvm output = m.get output (0)

Please refer tests/python/contrib/test vsi npu/label image.py to a complete label image
example with pre-processing of image decoding and post-processing to generate label.

5.3 How to build TVM stack on host

Conceptually, TVM can be split into two parts:

* TVM build stack: compiles the deep learning model at host
* TVM runtime: loads and interprets the model at device

This build stack is using the LLVM to cross-compile the generated source as a deployable dynamic library for
device. Please, follow the LLVM Doc to install LLVM on the host. If installed successfully, llvm-config should be
found under /usr/bin.

To build the tvm, please be sure below dependence packages installed on the host:

* cmake

* python3-dev

* build-essential

e llvm-dev

* g++-aarch64-linux-gnu
* libedit-dev

* libxml2-dev

* python3-numpy

* python3-attrs

* python3-tflite

For Ubuntu 18.04, the user could use below commands to install all dependences:

S sudo apt-get update
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$ sudo apt-get install -y python3 python3-dev python3-setuptools

$ sudo apt-get install -y cmake llvm llvm-dev g++-aarch64-linux-gnu gcc-aarché64-

linux-gnu

$ sudo apt-get install -y libtinfo-dev zliblg-dev build-essential libedit-dev
libxml2-dev

$ python3 -m pip install numpy decorator scipy attrs six tflite

Follow below instructions to build TVM stack on the host:

$ export TOP DIR=pwd’

$ git clone —--recursive https://github.com/nxp-imx/eig-tvm-imx/ tvm-host

$ cd tvm-host

$ mkdir build

$ cp cmake/config.cmake build

$ cd build

$ sed -i 's/USE LLVM\ OFF/USE LLVM\ \/usr\/bin\/llvm-config/' config.cmake
S cmake

$

make tvm -j4 # make tvm build stack

5.4 Supported models
The following models are verified with TVM.

Table 5. TVM models ZOO

Model float32 int8 Input size

mobilenet_v1_0.25_128 mobilenet_v1_0.25_128 mobilenet_v1_0.25_128 128
quant

mobilenet_v1_0.25 224 mobilenet_v1_0.25 224 mobilenet_v1_0.25 224 224
quant

mobilenet_v1_0.5_128 mobilenet_v1_0.5_128 mobilenet_v1_0.5_128 128
quant

mobilenet_v1_0.5_224 mobilenet_v1_0.5_224 mobilenet_v1_0.5_224 224
quant

mobilenet_v1_0.75_128 mobilenet_v1_0.75_128 mobilenet_v1_0.75_128 128
quant

mobilenet_v1_0.75_224 mobilenet_v1_0.75_224 mobilenet_v1_0.75_224 224
quant

mobilenet_v1_1.0_128 mobilenet_v1_1.0_128 mobilenet_v1_1.0_128 128
quant

mobilenet_v1_1.0_224 mobilenet_v1_1.0_224 mobilenet_v1_1.0_224 224
quant

mobilenet_v2_1.0_224 mobilenet_v2_1.0_224 mobilenet_v2_1.0_224 224
quant

inception_v1 N/A inception_v1_224_quant 224

inception_v2 N/A inception_v2_224_quant 224

inception_v3 inception_v3 inception_v3_quant 299

inception_v4 inception_v4 inception_v4_ 299 quant 299

deeplab_v3 257 _mv_gpu deeplab_v3 256_mv_gpu N/A 257

deeplab_v3_mnv2_pascal N/A deeplab_v3_mnv2_pascal 513
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Table 5. TVM models ZOO...continued
Model float32 int8 Input size

ssdlite_mobiledet ssdlite_mobiledet_cpu_ N/A 320
320x320_coco

6 LiteRT (Experimental)

LiteRT (short for Lite Runtime) version v1.2.0, formerly known as TensorFlow Lite, is Google's high-performance
runtime for on-device Al. You can find ready-to-run LiteRT models for a wide range of ML/AI tasks, or convert
and run TensorFlow, PyTorch, and JAX models to the TFLite format using the Al Edge conversion and
optimization tools.

6.1 Migrating to LiteRT from TensorFlow Lite

Applications that use TensorFlow Lite libraries will continue to function, but all new active development and
updates will only be included in LiteRT packages. The LiteRT APIs contain the same method names as the
TensorFlow Lite APls, so migrating to LiteRT does not require detailed code changes.

All new development for Google's high-performance runtime for on-device Al will be exclusively on LiteRT.
Applications that use TensorFlow Lite packages will continue to function, but all new updates will only be
included in LiteRT packages. The LiteRT APIs contain the same method names as the TensorFlow Lite APIs, so
migrating to LiteRT does not require detailed code changes.

For package name changes, to migrate Python code using Tensorflow Lite, replace the PIP package from
tflite-runtime to ai-edge-litert.

Import LiteRT with the following:

from ai edge litert import interpreter as tflite
interpreter = tflite.Interpreter (model path=args.model file)

Note: Only python APl is supported in this release.

6.2 Running the example

In this release, only python API is supported for LiteRT. We can modify the Tensorflow Lite Python example to
run it with LiteRT.

Modify the TensorFlow Lite example 1abel image.py for LiteRT:

$ cd /usr/bin/tensorflow-lite-2.18.0/examples

$ vi label image.py

————————— import tflite runtime.interpreter as tflite
++++++from ai edge litert import interpreter as tflite

Run the example on the CPU:

$ python3 label image.py -m mobilenet vl 1.0 224 quant vela.tflite
-1 grace hopper.bmp -1 labels.txt

6.3 Running the example on the i.MX 8 platform hardware accelerator

To run the Python example with the same model on the GPU/NPU hardware accelerator, add -e /usr/1ib/
liblitert vx delegate.so (for VX Delegate) command line argument. To differentiate between the 3D
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GPU and the NPU, use the USE_GPU_INFERENCE environmental variable. For example, to run the model
accelerated on the NPU hardware using VX Delegate, run this command:

$ USE GPU_ INFERENCE=0 python3 label image.py -m
mobilenet vl 1.0 224 quant.tflite
-1 grace hopper.bmp -1 labels.txt -e /usr/lib/liblitert vx delegate.so

6.4 Running the example on the i.MX 93 platform with Ethos-U

To use the hardware acceleration on i.MX 93, convert the model using the Vela compiler first, and run the model
with the Ethos-U delegate. Alternatively, directly run the model with the Ethos-U delegate. The model is then
converted in the delegate. For details, see Section 7.2.3.

To run the Python example with the model on the NPU hardware accelerator, add the —e /usr/1ib/
liblitert ethosu delegate.so command line argument. For example, to run the model accelerated on
the NPU hardware using Ethos-U Delegate, run this command:

$ python3 label image.py -m mobilenet vl 1.0 224 quant vela.tflite
-1 grace hopper.bmp -1 labels.txt -e /usr/lib/liblitert ethosu delegate.so

6.5 Running the example on the i.MX 9 platform with Neutron-S

To use the hardware Acceleration on i.MX 9 with Neutron-S NPU, convert the model using the neutron
converter using the elQ Toolkit. For details, see the elQ Toolkit documentation. To run the Python example with
the model on the NPU hardware accelerator, add the ~e /usr/lib/liblitert neutron delegate.

so command line argument. For example, to run the model accelerated on the NPU hardware using Neutron
Delegate, run this command:

$ python3 label image.py -m mobilenet vl 1.0 224 quant converted.tflite
-1 grace hopper.bmp -1 labels.txt -e /usr/lib/liblitert neutron delegate.so

7 NN Execution on Hardware Accelerators

7.1 Hardware acceleration on i.MX 8 Series

7.1.1 Hardware accelerator description

The i.MX 8 class devices are deployed with two kind of NN accelerators (see also the figure below):

* Neural Processing Unit (NPU)
* Graphics Processing Unit (GPU)

Neural processing unit is optimized for fixed point arithmetic, in 8-bit and 16-bit width. For optimal performance
on the NPU, quantized models shall be used.

Graphics processing unit is optimized for fixed point arithmetic and half precision floating point arithmetic. For
optimal performance on the GPU, quantized models or floating-point models with half precision shall be used.

Note:

The TensorFlow Lite framework enables to compute the floating-point models directly in 16-bit half precision
arithmetic.
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Figure 6. NN accelerator SW stack

Interface to NPU/GPU HW accelerator is provided via the OpenVX v1.3 with NN Extensions. OpenVX is an
open, royalty-free standard for cross platform acceleration of computer vision applications. It provides:2

* A library of predefined and customizable vision functions
* A graph-based execution model to combine function enabling both task and data independent execution
* A set of memory objects that abstract the physical memory

Open VX defines a C-application programming interface for building, verifying and coordinating graph execution
and accessing memory objects. More information about OpenVX can be find on the OpenVX home page.

Note:

In the current OpenVX driver implementation, the maximum number of nodes supported in OpenVX graph is
2048.

7.1.2 Profiling on hardware accelerators

This section describes how to enable profiler on the GPU/NPU, and how to capture logs.

1. Stop the EVK board in the U-Boot by pressing Enter.
2. Update mmcargs by adding galcore.showArgs=1 and galcore.gpuProfiler=1.

u-boot=> editenv mmcargs

edit: setenv bootargs ${jh clk} ${mcore clk} console=${console} root=
S{mmcroot} galcore.showArgs=1 galcore.gpuProfiler=1

u-boot=> boot

w

Boot the board and wait for the Linux OS prompt.

4. The following environment flags should be enabled before executing the application.

VIV VX DEBUG LEVEL and VIV VX PROFILE flags should always be 1 during the process of profiling.
The CNN_PERF flag enables the driver’s ability to generate per layer profile log. NN EXT SHOW PERF
shows the details of how compiler estimates performance and determines tiling based on it.

export CNN_PERF=1 NN _EXT SHOW PERF=1 VIV VX DEBUG_LEVEL=1 VIV_VX PROFILE=1

5. Capture the profiler log. We use the sample ML example part of standard NXP Linux release to explain the
following section.

¢ TensorFlow Lite profiling

2 OpenVX 1.3 specification: https://registry.khronos.org/OpenVX/specs/1.3/html/OpenVX_Specification_1_3.html
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Run the TensorFlow Lite application with GPU/NPU backend as follows:

$ cd /usr/bin/tensorflow-1lite-2.18.0/examples $ ./label image -

m mobilenet vl 1.0 224 quant.tflite -t 1 -i grace hopper.bmp -1
labels.txt --external delegate path=/usr/lib/libvx delegate.so -v 0 >
viv_test app profile.log 2>&l1

The log captures detailed information of the execution clock cycles and DDR data transmission in each
layer.

Note:

The average time for inference might be longer than usual, as the profiler overhead is added.

7.1.3 Hardware accelerators warmup time

For TensorFlow Lite, the initial execution of model inference takes longer time, because of the model graph
initialization needed by the GPU/NPU hardware accelerator. The initialization phase is known as warmup. This
time duration can be decreased for subsequent application that runs by storing on disk the information resulted
from the initial OpenVX graph processing. The following environment variables should be used for this purpose:

VIV VX ENABLE CACHE GRAPH BINARY: flag to enable/disable OpenVX graph caching
VIV_VX CACHE BINARY GRAPH DIR: setlocation of the cached information on disk

For example, set these variables on the console in this way:

export VIV VX ENABLE CACHE GRAPH BINARY="1"
export VIV VX CACHE BINARY GRAPH DIR="pwd’

By setting up these variables, the result of the OpenVX graph compilation is stored on disk as network binary
graph files (* . nb). The runtime performs a quick hash check on the network and if it matches the * . nb file
hash, it loads it into the NPU memory directly. These environment variables need to be set persistently, for
example, available after reboot. Otherwise, the caching mechanism is bypassed even if the * . nb files are
available.

The iterations following the graph initialization are performed many times faster. When evaluating the
performance of an application running on GPU/NPU, the time should be measured separately for warmup
and inference. Warmup time usually affects only the first inference run. However, depending on the machine
learning model type, it might be noticeable for the first few inference runs. Some preliminary tests must be
done to make a decision on what to consider warmup time. When this phase is well delimited, the subsequent
inference runs can be considered as pure inference and used to compute an average for the inference phase.

Note: OpenVX graph caching is not available on i.MX 8QuadMax platform.

7.1.4 Switching between GPU and NPU

Some platforms are deployed with both 3D GPU and NPU hardware accelerators. Both can be used for
execution of the OpenVX graph (i.e. for ML inference). To differentiate between the GPU and the NPU, there is
an environmental variable USE_GPU_INFERENCE. The variable is directly read by the HW acceleration driver.

The behavior is as follows:

* If USE_GPU_INFERENCE=1, the graph is executed on the GPU
» Otherwise, the graph is executed on the NPU (if available)

By default, the NPU is used for OpenVX graph execution.
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Example with TensorFlow Lite:

$ USE GPU INFERENCE=1 ./label image -m mobilenet vl 1.0 224 quant.tflite
-1 grace hopper.bmp -1 labels.txt --external delegate path=/usr/lib/
libvx delegate.so

7.1.5 Per-tensor vs. per-channel quantization

Both per-tensor and per-channel quantizations are supported by the GPU and NPU hardware accelerators on
i.MX 8 Series.

The NPU on i.MX 8M Plus is optimized for per-tensor quantization. When running per-channel quantized
models, the accelerator must involve additional compute. Therefore, the performance might be lower compared
to per-tensor quantized models. The additional compute might also introduce a small accuracy error. The actual
impact for both accuracy and latency depends on the model used.

7.2 Hardware acceleration with Ethos-U on i.MX 93 platform

Ethos-U65 is a neural processing unit (NPU) designed to accelerate ML inference in area-constrained
embedded and loT devices from Arm. This NPU is integrated with NXP i.MX 93 processor and works in concert
with the Cortex-M core and on-chip SRAM of the SoC. Currently, it provides the following main features:

* Running at 1 GHz and providing 0.5 Tops computation power (256 MAC/cycle).

 Targets quantized Convolutional Neural Networks (CNN) and supports 8 bit weights and 8/16 bit activations.
» Supports TensorFlow Lite (TFLite) inference with fallback to Cortex-A.

» Supports TensorFlow Lite Micro (TFLite-Micro) inference with fallback to Cortex-M.

» Supports inference API to offload the entire model to TFLite-Micro and NPU on Cortex-M.

« Supports TFLite API to offload the customized “ethos-u” operator to NPU on Cortex-M.

* Provides Vela model tool to optimize the model performance and memory usage for the Ethos-U65 target.

7.2.1 Ethos-U subsystem overview

This i.MX 93 machine learning system involves several HW components working collaboratively to support the
acceleration of the tensor computation of an ML model: Cortex-A, Cortex-M, Messaging Unit (MU), and Ethos-U
NPU.

AXI-BUS
Ethos-U system
M33 interconnect
. | Cortex-A55
Cortex-M33 Ethos-U65 SRAM MU — DDR

aaa-053534

Figure 7. Ethos-U subsystem overview

The Cortex-A55 is responsible for loading the ML model, capture and pre-process the inputs with Linux OS
and rich libraries. The Cortex-M is the controller of the attached Ethos-U NPU and it prepares the offloading
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descriptor for the NPU and triggers the NPU execution. It also provides the un-supported kernels execution for
NPU. The MU is the message unit IP to facilitate the core communication between Cortex-A and Cortex-M.

7.2.2 Ethos-U software architecture

The software for Ethos-U support includes three main components, as shown in the following figure.

Model Tool Linux@Cortex-A

_I. . I | Online compile [ Cosdib [ Ne
Quantized TFLite TFLite Interpreter
model

Vela model

Ethos-U SW@Cortex-M

Offline
compile XNNPACK
CPU k |
| CPUkemel | s

X 12
Vela compiled model I l Coretex-A (With NEON) ‘ Ethos-U NPU

Figure 8. Ethos-U software architecture

* Vela model compiler: offline tool to compile the TensorFlow Lite model graph for Ethos-U. The compiler
replaces supported operators in the model with custom “ethos-u” operator containing the command stream
for Ethos-U NPU. The output of the compiler is a modified TensorFlow Lite model graph for TensorFlow Lite/
TensorFlow Lite-Micro inference engines. This is only required for Inference API.

» Cortex-A SW stack for Linux: containing MPU inference engine (TensorFlow Lite), driver library, and Linux
kernel driver.

» Cortex-M SW stack: containing MCU inference engine SW (TensorFlow Lite-Micro, CMSIS-NN) and NPU
driver.

The typical inference workflow is as follows:

1. Converts the TensorFlow Lite model into Vela model using the Vela model compiler and generates the
optimized version for Ethos-U NPU.
Note: For TensorFlow Lite inference engine with Ethos-U delegate, this step is optional. The Ethos-U
delegate supports both TensorFlow Lite model and Vela compiled model. Using the Ethos-U delegate
increases the warm-up time for model execution. The model needs to be compiled at runtime. Models
precompiled with Vela brings warm-up time decrease.
2. The optimized model is inferred either by:
a. TensorFlow Lite Ethos-U delegate, which recognizes the custom "ethos-u" operator in Vela compiled
model, allocates the buffer for input/output feature map (IFM/OFM) and executes the operator via Ethos-
U Linux driver.
b. TensorFlow Lite Ethos-U delegate, which recognizes the supported operators in TensorFlow Lite model,
compiles the operators to "ethos-u" operator and allocates the buffer for input/output feature map (IFM/
OFM) and executes the operator via Ethos-U Linux driver.
c. Inference API, which allocates the buffer for input/output feature map and sends entire model via Ethos-
U driver.
3. The Ethos-U driver composes the inference task message and sends it over RPMSG to Cortex-M.
4. The Ethos-U Runner on Cortex-M dispatches the task to TensorFlow Lite-Micro or Ethos-U driver directly
according to the task type.
a. If the task type is accelerating the “ethos-u” operator (using the TensorFlow Lite), the Runner calls the
Ethos-U driver directly.
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b. If the task type is accelerating the entire model (using the Inference API), the Runner dispatches the
model to TensorFlow Lite-Micro and further calls Ethos-U driver for processing.

5. After the Ethos-U driver completes the inference task, it writes the result into the OFM buffer and sends the
response back to Cortex-A via RPMSG.

Note: The model is loaded from Cortex-A and shared with Cortex-M over RPMSG.

The Cortex-M SW is pre-built with both the model and Ethos-U operator acceleration capabilities in a single-
binary firmware. This firmware is integrated into Yocto rootfs and will be loaded automatically when the user
starts an inference task using the TensorFlow Lite or Inference API by opening the Ethos-U device.

7.2.3 Getting started

In the Yocto rootfs, there are several examples provided to show how to use different APIs to interact with
Ethos-U NPU with an image classification inference.

1. Go to the example folder and copy the 1abel . txt and input picture from TensorFlow.

$ cd /usr/bin/ethosu/examples
S cp ../../tensorflow-lite-2.18.0/examples/labels.txt ./
S cp ../../tensorflow-lite-2.18.0/examples/grace hopper.bmp ./

2. Compile the model for Ethos-U using Vela tool, reusing the model
mobilenet vl 1.0 224 quant.tflite from /usr/bin/tensorflow-lite-2.18.0/examples/.
If running successfully, an optimized vela model mobilenet vl 1.0 224 quant vela.tfliteis
generated in the output folder.

$ vela ../../tensorflow-1lite-2.18.0/examples/
mobilenet vl 1.0 224 quant.tflite

3. Run the model with the Inference API (offloads the entire model to TFLite-Micro).

$ ./inference runner -n ./output/mobilenet vl 1.0 224 guant vela.tflite -i
grace hopper.bmp -1 labels.txt -o output.txt

The following will be printed if no error occurs:

Send capabilities request

Capabilities:
version status:1
version:{ major=0, minor=0, patch=0 }
product:{ major=6, minor=0, patch=0 }
architecture:{ major=1, minor=0, patch=6 }
driver:{ major=0, minor=16, patch=0 }
macs_per cc:8
cmd_stream version:0
custom dma:false

Create network

Create inference

Wait for inferences

Inference status: success

Detected: military uniform, confidence:70

4. Run the converted model with TFLite inference engine using the Ethos-U Delegate (offload the “ethos-u”
operator to Ethos-U NPU).

$ cd /usr/bin/tensorflow-1lite-2.18.0/examples

S ./label image -m
../../ethosu/examples/output/mobilenet vl 1.0 224 quant vela.tflite
--external delegate path=/usr/lib/libethosu delegate.so
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The following is printed if no error occurs:

INFO: Loaded model ../../ethosu/examples/output/

mobilenet vl 1.0 224 quant vela.tflite

INFO: resolved reporter

Ethosu delegate: device name set to /dev/ethosuO.
Ethosu delegate: timeout set to 60000000000.
Ethosu delegate: enable cycle counter set to 0.
Ethosu delegate: pmu_event0 set to 0.

Ethosu delegate: pmu_eventl set to 0.

Ethosu delegate: pmu eventZ set to 0.

Ethosu delegate: pmu event3 set to 0

EXTERNAL delegate created.

INFO: EthosuDelegate delegate: 1 nodes delegated out of 1 nodes with 1
partitions.

INFO: Applied EXTERNAL delegate.
INFO: invoked

INFO: average time: 3.903 ms

INFO: 0.780392: 653 military uniform

INFO: 0.105882: 907 Windsor tie
INFO: 0.0156863: 458 bow tie
INFO: 0.0117647: 466 bulletproof vest
INFO: 0.00784314: 835 suit
7.2.4 Vela tool

The vela tool is used to compile a TensorFlow Lite for Microcontrollers neural network model into an optimized
version that can run on an embedded system containing an Arm Ethos-U NPU. The optimized model contains
TFLite Custom operators for those parts of the model that can be accelerated by the Ethos-U NPU. Parts of
the model that cannot be accelerated are left unchanged and run on CPU (Cortex-A or Cortex-M) using an
appropriate kernel (such as the Arm optimized CMSIS-NN kernels). After compilation, the optimized model can
only be run on an Ethos-U NPU embedded system. The tool also generates performance estimates for the
compiled model.

To deploy the neural network (NN) model on Ethos-U, the first step is to use Vela to compile the prepared
model. To be accelerated by the Ethos-U NPU, the network operators must be quantized to either 8-bit
(unsigned or signed) or 16-bit (signed).

NXP Vela is based on Arm ethos-u-vela. Compared to ethos-u-vela, NXP added more OPs support and
reduced some OP constraints.

Note: A specific version of Vela is tightly coupled with a specific version of the Ethos-U driver. The compatibility
between different Vela versions is not guaranteed.

7.2.4.1 Installing the Vela tool

The Vela tool can be run on the i.MX 93 board or Linux PC. It is already available in NXP Yocto rootfs. This
section describes how to install it on the X86 Linux PC. The steps are as follows.

1. Get the vela source code.

$ git clone https://github.com/nxp-imx/ethos-u-vela.git

2. Install with python pip.

$ cd ethos-u-vela
$ git checkout 1£-6.12.20 2.0.0
S pip3 install

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
40/ 115



https://www.tensorflow.org/lite/microcontrollers
https://www.arm.com/products/silicon-ip-cpu
https://www.arm.com/
https://github.com/ARM-software/CMSIS_5/tree/develop/CMSIS/NN
https://git.mlplatform.org/ml/ethos-u/ethos-u-vela.git
https://git.mlplatform.org/ml/ethos-u/ethos-u-vela.git
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors U G1 01 66

i.MX Machine Learning User's Guide

3. After all the commands are successful, use vela --help to check if Vela is installed successfully.

$ vela --version
4.2.0

7.2.4.2 Compiling the TFLite model

After Vela is installed, the following commands can be used to compile a TFLite model to the optimized version
for Ethos-U NPU. The optimized model is stored into the OUTPUT_DIR ("./output" by default). The output file
has the suffix _vela.tflite. Itis also a TFLite model . After the compilation, Vela outputs the detailed log into
the console.

Note: The Vela expects that the TFLite model is quantized already. Vela supports asymmetric quantization to
8 bit (signed and unsigned) and 16 bit (signed), as defined by TFLite. To accelerate the model operators with
Ethos-U NPU, the input model to Vela has to be quantized. Non-quantized operators will fall back to CPU.

The following provides an example for how to compile a model and shows the corresponding output log:

$ vela mobilenet vl 1.0 224 pb int8.tflite

Output log:
Network summary for mobilenet vl 1.0 224 pb int8
Accelerator configuration Ethos U65 256
System configuration internal-default
Memory mode internal-default
Accelerator clock 1000 MHz
Design peak SRAM bandwidth 16.00 GB/s
Design peak DRAM bandwidth 3.75 GB/s
Total SRAM used 381.08 KiB
Total DRAM used 4293.34 KiB

CPU operators = 0 (0.0%)
NPU operators = 60 (100.0%)

Average SRAM bandwidth 4.28 GB/s

Input SRAM bandwidth 7.95 MB/batch

Weight SRAM bandwidth 12.61 MB/batch

Output SRAM bandwidth 0.00 MB/batch

Total SRAM bandwidth 20.67 MB/batch

Total SRAM bandwidth per input 20.67 MB/inference (batch size 1)
Average DRAM bandwidth 3.00 GB/s

Input DRAM bandwidth 5.53 MB/batch

Weight DRAM bandwidth 3.92 MB/batch

Output DRAM bandwidth 5.06 MB/batch

Total DRAM bandwidth 14.52 MB/batch

Total DRAM bandwidth per input 14.52 MB/inference (batch size 1)
Neural network macs 572406226 MACs/batch

Network Tops/s 0.24 Tops/s

NPU cycles 3937697 cycles/batch

SRAM Access cycles 719415 cycles/batch

DRAM Access cycles 2984386 cycles/batch

On-chip Flash Access cycles 0 cycles/batch

Off-chip Flash Access cycles 0 cycles/batch

Total cycles 4831570 cycles/batch

Batch Inference time 4.83 ms, 206.97 inferences/s (batch size 1)

The following is the computational graph after the model (mobilenet v1 1.0 224 pb int8.tflite)is
compiled. Here, Vela encapsulates all supported OPs into one Ethos-U OP.
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Figure 9. Computational graph
Note:

The Vela tool takes a lot of memory when converting big models, so a swap file is needed when converting big
models to avoid the Out Of Memory issue. Use the following commands to add a swap file:

dd if=/dev/zero of=/swapfile count=2048 bs=1M
mkswap /swapfile

chmod 0600 /swapfile

swapon /swapfile

7.2.5 Inference with Ethos-U inference API

The Ethos-U inference API provides the methods to use the Ethos-U NPU on Linux OS without the TensorFlow
Lite inference engine. It takes the compiled model and IFM/OFM as inputs, composes an inference task, and
dispatches the inferences to the Cortex-M with Ethos-U.

7.2.5.1 Ethos-U driver library

The Ethos-U Driver provides a C++ APIs for dispatching the inference to the Ethos-U Linux kernel driver. The
library and the corresponding header file is available on Yocto rootfs and SDK:

e /usr/include/ethosu.hpp
* /usr/lib/libethosu.so

The following is the component diagram of Ethos-U Driver library:

* The Device class represents the instance of Ethos-U unit.

» The Buffer class is used to store any data, including the model.

* The Network class represents a model instance bind to specific Device.

* The Inference class represents the inference, which is computation of the computation graph (model) on input

data. Notice, the Network class is separated from the Inference class, allowing multiple inferences to share
the same network.
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Figure 10. Component diagram of Ethos-U Driver library

The inference runner demonstrates how to dispatch inferences to the Ethos-U Linux kernel driver. All the steps
described in the sequence diagram below are executed by the inference runner application.

1. The Device class obtains a file descriptor handle for the device node (/dev/ethosu<nr>) using the
open () system call. The Device class uses ioctl () system calls to manipulate with the underlying
device, like buffer and network creation.

2. The Network class uses the Device and buffer handles to create a new network object. The model is stored
in the Buffer that the network parses to discover the input and output shapes of the network model.

3. The Inference class uses the Network object to create an inference. The array of IFM Buffers need to be
populated with data before the inference object is created.

The inference object must poll the file descriptor waiting for the inference to complete.
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Figure 11. Sequence diagram
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7.2.5.2 Ethos-U Linux kernel driver interface

The Ethos-U Linux kernel driver exposes User-space API (UAPI) for Ethos-U subsystem, and to communicate

with the Cortex-M in the Ethos-U subsystem.
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The communication with the Ethos-U subsystem is based on message passing in shared memory, and the
Linux kernel mailbox APIs for triggering IRQs on the remote CPU, what is the Cortex-M in this case.

The address of the message queues is hard coded in the Cortex-M application, and configured in the DTB for
the Ethos-U Linux kernel driver.

When the Linux kernel driver allocates dynamic memory for the Ethos-U subsystem, it must be able to map
a physical address to a bus address. The DTB contains a dma-ranges, which define how to remap physical
addresses to the Cortex-M address space.

7.2.5.3 Device and Buffer class

The device driver creates a device node at /dev/ethosu<nr> that a user space application can open and
issues IOCTL requests to. This is how buffers and networks are created.

Creating a new buffer returns another file descriptor that can be memory mapped for reading and/or writing.

Application Driver library Kernel driver
| Main() | | Device | | Buffer | |Network| | Inference | | Device | | Buffer | |Network| | Inference |
o ) | | | | | | | |
Device
0 | | | | | | |
| : : Open device node : :
1
Open(<device node>) | | | | | |
i I | | | |
File descﬁbtor | | [] | | |
preeTTeeE T T 155 . [ | | |
B | | ! ! | | | |
Buffer(device) | | | | | | |
1 1
| ioctl BUFFER_CREATE) ! : : :
T T
| | | Ll - - |
| | | Create buffer and return file descriptorj |
| | | T T |
| | | | | |
| | | ; - | |
| | | | File descriptor | |
| ! ! | | | |
| | File descriptor Jo-—- - [N | | |
| | | | | | |
| | | | - | |
| | | | | Memory map buffer j | |
| | | | T | |
: Mmap(file'descriptor) ! ! l : :
| SEEELEEE Fresmssss== REEEEEEE - - - - - eosssssscossses D | |
| [ - - - - - Aresssssms - | | | | | |
| Main() | | Device | | Buffer | |Network| | Inference | | Device | | Buffer | |Network| | Inference |
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Figure 12. Device and Buffer class

7.2.5.4 Network class

Creating a network assumes that the device node has already been opened, and that a buffer has been
allocated and populated with the network model.

A new network is created by issuing an IOCTL command on the device node file descriptor. A file descriptor to
a buffer, containing the network model, is passed in the IOCTL data. The network class increases the reference
count on the buffer, preventing the buffer from being freed before the network object has been destructed.
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Figure 13. Network class

7.2.5.5 Inference class

Creating an inference assumes that a network has already been created, IFM buffers have been allocated and
populated with data, and OFM buffers have been allocated.

A new inference is created by issuing an IOCTL command to the network file descriptor. An array of IFM and
OFM buffers are passed in the IOCTL data, which reference counts will be increased.

As the inference object has been created an inference request message is sent to the Cortex-M application.
The inference request message is written to a ring buffer in shared memory, cache maintenance is executed if
necessary, and an IRQ is raised using the Linux mailbox APIs.

On success, a valid file handle is returned to user space. The file handle is used to read the results when the
inference completes. Note this is a blocking call.

Once the inference task has finished on the Ethos-U subsystem, the message process writes an inference
response message into the response queue in shared memory, executes cache maintenance if needed, and
raises an IRQ.

On the Linux side the IRQ is handled and cleared. The IRQ bottom handler is a separate Linux kernel thread
responsible for reading the message queue. When the inference response message is received it updates the
status of the inference and unblocks any waiting user space processes.
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Figure 14. Inference class

7.2.5.6 How to use the inference API

The following steps show how to run a Vela model from Cortex-A:

1. Create the inference device.

device = Device (“/dev/ethosu0”)

2. Load the model into a buffer from the Vela model file.

shared ptr<Buffer> model buf = allocAndFill (device, vela model);

3. Create the Network instance with the model buffer.

shared ptr<Network> network = make shared<Network>(device, model buf) ;

4. Load the input feature map (IFM) from the input file (such as a picture for image classification app) into a
buffer. If there are multiple inputs, create the buffers one by one and push back to a vector.

vector<shared ptr<Buffer>> ifm;

ifm size = network->getIfmDims () [0];

ifm buf = make shared<Buffer>(device, ifm size);
memcpy (i1fm buf ->data (), input data, input size);
ifm.push back (ifm buf)

5. Create the output feature map (OFM) buffers according to the output dimensions in the model. If there are
multiple outputs, create the buffer one by one and push back to a vector.

vector<shared ptr<Buffer>> ofm;
ofm size = network->getOfmDims () [0]
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ofm buf = make shared<Buffer>(device, ofm size);
ofm.push back (ofm buf);

6. Create an inference instance with the Network buffer, IFM buffer, and OFM buffer.

inf = make shared<Inference>(net, ifm.begin(), ifm.end(), ofm.begin(),
ofm.end()) ;

7. Call Inference->invoke () to trigger and wait for the completion of the inference task.

Inf->invoke ()

8. Access the OFM buffers to get the inference result.

Outputs = inf->getOfmBuffers ()

7.2.5.7 Interpreter class

In addition to low-level APIs described above, the Ethos-U driver also provides the Interpreter class. The
Interpreter handles the steps mentioned above (device, network, and buffer initialization) internally with class
Interpreter.

Constructor:

Interpreter (const char *model,
const char *device = "/dev/ethosulO",
int64 t arenaSizeOfMB = 16);

model: vela model file

device: ethos-u device name, default: “/dev/ethosul”

arenaSizeOfMB : shared DDR memory size between Cortex-A and Cortex-M, default:
16 (MB)

Inference blocking API:

void Invoke (int64 t timeoutNanos = 60000000000) ;
timeoutNanos: timeout for the inference, default value is 60s.

Input/Output tensor buffer address helper:

template <typename T>

T* typed input buffer (int index) {
int32 t offset = network->getInputDataOffset (index);
return (T*) (arenaBuffer->data () + offset);

}

template <typename T>

T* typed output buffer (int index) {
int32 t offset = network->getOutputDataOffset (index);
return (T*) (arenaBuffer->data () + offset);

Given the tensor index in a model, returns the tensor address and type information.

Input/Output information query:

std: :vector<TensorInfo> GetInputInfo () ;
std::vector<TensorInfo> GetOutputInfol() ;
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These two provides the interface to query inputs and outputs information from a model, including shape and
type information (int8/uint8/f32...).
7.2.5.8 Interpreter Python wrapper

In addition to C++ API, the Ethos-U Driver also provides the Python API.
It is installed into Yocto rootfs: /usr/lib/python3.10/site-packages/ethosu.

Example usage:

import ethosu.interpreter as ethosu

# loading the vela model file into interpreter
interpreter = ethosu.Interpreter (args.vela model file)

# get the input and output dimensions
inputs = interpreter.get input details()
outputs = interpreter.get output details()

# resize the input according to the model input dimensions
w, h = inputs[0]['shape'][1l], inputs[0]['shape'][2]

img = Image.open (args.image) .resize((w, h))

data = np.expand dims (img, axis=0)

# associcate the input data with interpreter
interpreter.set input (0, data)

# invoke the inference, this is a blocking API, timeout is 60s
interpreter.invoke ()

# get back the inference results, different models have different results.
# Check the model output dimensions and get all the outputs with index.
output data = interpreter.get output (0)

7.2.6 Inference with TensorFlow Lite

7.2.6.1 Ethos-U Delegate
See Section 2.2.4.

7.2.6.2 Delivery package

The Ethos-U support is built into shared library: /usr/1ib/libtensorflow-1lite.so. When the user loads
the Vela model with TFLite API, the engine calls the Ethos-U Linux driver and dispatches the customized Ethos-
U operator to Ethos-U firmware on Cortex-M.

The Ethos-U Delegate shared library: /usr/1ib/libethsou delegate.so.

7.2.6.3 Running image classification example

See Section 7.2.3 to try the example.

See TensorFlow Lite for how to build and use the Tensorflow Lite APl with an application.
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7.2.6.4 Hardware accelerators warmup time

For TensorFlow Lite, the initial execution of model inference takes longer time, because of the model graph
initialization needed by the NPU hardware accelerator. The initialization phase is known as warmup. In this
phase, the delegate calls the Vela tool to compile the TensorFlow Lite models.

» This time duration can be decreased for subsequent application that runs by storing on disk the information
resulted from the initial Vela processing. The Ethos-U delegate option "cache file path" should be used
for this purpose. For example, set this option in your application in this way:

# the external delegate accepts the option "cache file path",
ext delegate = [tflite.load delegate("/usr/lib/libethosu delegate.so",
{"cache file path":"your path"})]
interpreter = tflite.Interpreter (model path=model file,
experimental delegates=ext delegate)

By setting up this option, the result of the Vela compilation is stored on disk. The runtime performs a quick
check on the network. If it matches, it loads it into the NPU memory directly.

* This time duration can also be decreased by compiling the model by Vela beforehand. In this way, you should
compile the model with the Vela tool and pass the Vela optimized model file to the TensorFlow Lite application.

7.2.6.5 Ethos-U performance enhancement with memory zero-copy

In addition to the memory space of TensorFlow Lite, Ethos-U also has its own memory. Therefore, there is

a large number of memory copies in the inference process, which takes a lot of CPU time. To improve the
performance, in Ethos-U delegate, some of TensorFlow Lite memory is mapped into the memory of the NPU to
avoid memory copies.

Note: When doing inference with the Ethos-U delegate, do not modify the TensorFlow Lite Tensor data
pointers. This may cause unpredictable issues.

7.2.7 Building and deploying the Ethos-U firmware

7.2.7.1 Getting the source

The ethos-u-core-software is part of the i.MX 93 Ethos-U NPU machine learning software package, which

is an optional middleware component of MCUXpresso SDK. The ethos-u-core-software is integrated into

the MCUXpresso SDK Builder delivery system available on mcuxpresso.nxp.com. To include Ethos-U NPU
machine learning into the MCUXpresso SDK package, the ethos-u-core-software middleware component is
selected in the software component selector on the SDK Builder page when building a new package. See the
following figure.
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Figure 15. SDK Builder page

Once the MCUXpresso SDK package is downloaded, it can be extracted on a local machine or imported into
the MCUXpresso IDE. For more information on the MCUXpresso SDK folder structure, see the Getting Started
with MCUXpresso SDK User’s Guide (document: MCUSDKGSUG). The package directory structure is similar
as follows.

<MCUXpresso-SDK-root>

| -— boards
| -—- <board>
—-— demo_apps - Example build projects
-— ethosu apps rpmsg - Ethos-U default firmware with rpmsg

|
|
| -— ethosu apps - Ethos-U standalone app example
|
|

-- middleware/ethos-u-core-software
-- applications - The inference process APIs
—-- boards - The board related initialization and configuration files
-- core driver - Ethos-U core driver which includes reading/writing
registers
-—- examples - Ethos-U example applications
-- ethosu apps rpmsg - Ethos-U default firmware with rpmsg
-— ethosu_ apps - Ethos-U standalone app example

7.2.7.2 Ethos-U example applications

7.2.7.2.1 Introduction

There are two Ethos-U apps available:

* ethosu_apps_rpmsg: firmware for Yocto Linux BSP
* ethosu_apps: standalone example for Cortex-M

The ethosu apps_ rpmsg is the firmware for Ethos-U subsystem for Linux OS. It contains core message
handling, inference request processing from Cortex-A core, NPU’s registers configuration, inference execution,
and inference result providing to Cortex-A core. The supported inference engine is TFLite or TFlite-Micro (if
Inference APl is used).

The example ethosu_apps is a Cortex-M standalone application that demonstrates the inference execution
entirely on Cortex-M which can be used in the low power scenario with the Cortex-A sleeping. The example
uses conv2d op model. There is no core message handling and only supports TFLite-Micro.
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The apps are available in the /boards/<board>/demo_apps/ethosu_ apps* folders.

7.2.7.2.2 Toolchains supported

* |AR Embedded Workbench for Arm
When the project is opened in IAR, press the “Make” button to build the project in IAR as follows.

@ ethosu_apps_rpmsg - IAR Embedded Workbench IDE - Arm 9.204
File Edit View [Project | CMSIS-DAP Tools Window Help

DO R@ § L AddFies.. < Q>%2< 0> RGO > il
Workspace B X | ethosu_apps_rpmsg.cpp X
release v
L o/~
~
Files | * Copyright 2021-2022 NXP
B ®ethosu_, *
& board - * SPDX-License-Identifier: BSD-3-Clause
@ & CMsl| O Create New Project.. Loxy
_ Add Bisting Project...
& comp| @ . .
#include <cstring>
S dvicg & Options. A7 #include <vector>
& & doc Version Control System » .
& & driver #include <stdio.h>
5o | © Make [ #include <stdlib.h>
- .fq t B Compile Ctrl+F7 #include <string.h>
=
] = Treerl) @ | Rebuild Al .
& remot #include "app.h”
& & rpms fean #include "board.h"
& sourd &  Batch build, F8 #include "fsl_device_registers.h"
& e me——— #include "fs1_debug_console.h”
B3 #include "ethosu_log.h"

}i D ar C-STAT Static Analysis >

#include "src.h”

#include "ethosu_driver.h"
#include " _interface.h"
#include " hpp”

#include "rpmsg_ns.h

SFR Setup |

Debug Log & CMSIS-Pack Manager ‘

Log
Fri Aug 05, 5.20.4 (CAProgram Files\IAR Systems\Embedded Workbench 9.0 ROC.dl)
Fii Aug 06, 2022 12:08:49; Loading the CMSIS-DAP driver

Figure 16. IAR Embedded Workbench for Arm
* ArmGCC - GNU Tools Arm Embedded
Run the following command to build the project.

$ cd mcu-sdk-2.16/boards/mcimx93evk/demo apps/ethosu apps rpmsg/armgcc

S export ARMGCC DIR=${YOUR TOOLCHAIN LOC}/gcc-arm-none-eabi-10-2020-g4-major
S export PATH=S$PATH:S${YOUR TOOLCHAIN LOC}/gcc-arm-none-eabi-10-2020-g4-major/
bin

$ ./build release.sh

7.2.7.3 Deploy procedure

1. Deploy the ethosu apps rpmsg firmware.
Example ethosu_apps rpmsgis built as .out or .elf and installed in rootfs as the name of
‘ethosu_firmware”. The pre-built binary is integrated in the rootfs and loaded by Linux Ethos-U driver
upon an inference request.
If the user rebuilds the firmware, the rebuilt ethosu _apps rpmsg.out or ethosu apps_ rpmsg.elf
should be copied to /1ib/firmware/ in rootfs and renamed as the name of “ethosu_firmware” as
follows:

S cp ethosu apps rpmsg.elf ./lib/firmware/ethosu firmware

2. Deploy the ethosu_apps with U-Boot.
The ethosu_ apps is built as .bin. In U-Boot terminal, users can run the following command to do
inference for the conv2d op model.

=> tftp 0x80000000 ethosu apps.bin
=> cp.b 0x80000000 0x201e0000 0x20000;
=> bootaux 0x1ffe0000 O
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When the example runs, the log and inference result would be displayed on the Cortex-M terminal as
follows:

Initialize Arm Ethos-U
Inference status: success

Note:

The default firmware ethosu apps rpmsg contains the following operators support with TFLite-micro on
Cortex-M33: Ethos-U, TFLite Detection_PostProcess, and Dequantize. If an operator is supposed to fall back
on Cortex-M33 but not included, rebuild the source code and deploy the firmware.

The ethosu_apps is a standalone Cortex-M application running without Cortex-A interacted, so it is deployed
at the U-Boot stage.

7.2.7.4 Using the Ethos-U on Cortex-M

The Ethos-U NPU on i.MX 93 is accessible by the TFLite-Micro library. The TFLite-Micro interprets the
optimized Vela model and delegates the kernels to different execution providers.

Currently, there are 3 types of execution provider supported:

* NN Kernel: default kernel implementation provided by TFLite-Micro for Cortex-M CPU.

* CMSIS-NN kernel: optimized kernel implementation by Arm using the CMSIS-NN library. The CMSIS-NN
library executes the kernel on the Cortex-M CPU.

* Ethos-U Kernel: kernel implementation for the custom Ethos-U operator. This operator registered in TFLite-
Micro framework and executes the computation on Ethos-U using the NPU driver.

7.2.7.4.1 Running Vela model with TFLite-Micro

The following provides the steps to run the Vela model on Cortex-M directly:
1. Get the flatbuffer Vela model.

const tflite::Model* model = tflite::GetModel (vela model) ;

2. Configure/Allocate the inputs, outputs tensors statically.

constexpr int kTensorArenaSize = 1024 * 1024;
static uint8 t tensorArenal[kTensorArenaSize];

3. Build the TFLite-Micro interpreter for the inference.

static tflite::MicrolInterpreter interpreter (
model, //the flatbuffer model

microOpResolver, //resolve to kernel implementers
tensorArena, // tensor memory address
kTensorArenaSize, //tensor memory length
microErrorReporter); //error reporter

4. Set the input tensors.
// Get access to the input tensor data

TfLiteTensor* inputTensor = interpreter->input (0) ;

// Copy the input tensor data from an application buffer

for (int 1 = 0; i1 < inputTensor->bytes; i++)
inputTensor->data.int8[i] = input datal[i];

5. Run the inference and get the output.
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// Invoke the inference

interpreter->Invoke () ;

// Get access to the output tensor data

TfLiteTensor* outputTensor = interpreter->output (0) ;

// Copy the output tensor data to an application buffer

for (int i = 0; i < outputTensor->bytes / sizeof (float32); i++)
output data[i] = outputTensor->data.f[i];

TFLite-Micro does not depend on dynamic memory allocation, so it requires users (application developers) to
supply a memory arena when an interpreter is created. In practice, the user usually allocates this memory arena
as a static buffer when the program starts, for example:

#define TENSOR ARENA SIZE (1024 * 1024 * 16)
uint8 t tensorArena[TENSOR ARENA SIZE];

TFLite-Micro framework uses this memory arena as inputs/outputs/intermediate tensors store. This memory
size “TENSOR_ARENA_SIZE” must be adjusted according to the practical usage to consider the following
points:

* Model used for the application

 Size of the input/output data

* Memory needed for intermediate result

* Memory arena mapping to SRAM or TCM, considering the effective usage of memory hierarchy

7.2.8 Memory hierarchy for Cortex-M

For Cortex-M, there are several types of memory media with different capacity, speed and cost which can be
accessed by CPU. On i.MX 93, the memory hierarchy looks like below with speed decreasing order:

TCM (128 kB + 128 kB)

OCRAM (256 kB TF - A + 384 kB NPU data)

DRAM (default 16 MB, dynamically allocated from dma pool)

aaa-053541

TCM size is 256 KB, usually used for Cortex-M runtime data. By design, this memory space is not allocated for
system purpose after booting. How to use it effectively is left for user decision.

OCRAM size is 640 KB. By design, the first 256 KB is allocated for ATF (Arm Trusted Firmware) which used to
bootstrap the Cortex-A before the DRAM is available. The rear 384 KB is reserved for NPU data: the weight/
bias of an ML model.

DRAM size is 2 GB on i.MX 93 EVK board. However, only shared DMA region between Cortex-A and Cortex-
M can be used. Ethos-U Linux driver requests DMA buffers for tensorArena dynamically from DMA pool and
passes the buffer address to Ethos-U firmware on Cortex-M. If not explicitly specified, by default 16 MB DMA
buffer is requested.

Ethos-U can only access the DRAM and OCRAM memory by design. The current memory mapping for Ethos-U
firmware is as follows:
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TCM (code, stack)

OCRAM (NPU intermediate data)

DRAM (tensorArena/model weights/bias/IFM/OFM)
aaa-053542

With this configuration, the model data and tensor arena is allocated in DRAM and the OCRAM is used as NPU
cache. “Dedicated_Sram” memory mode has to be used for model compilation with Vela:

vela --accelerator-config ethos-u65-256 --system-config Ethos U65 High End
--memory-mode Dedicated Sram --config vela.ini {tflite-model}

For standalone Cortex-M app, the memory mapping is as follows:

TCM (code, stack)

OCRAM (tensorArena-)

DRAM

aaa-053543

With this configuration, No DRAM is used. All the model data and tensorArena memory for NPU is allocated in
OCRAM. “Sram_Only "memory mode has to be used for model compilation with Vela:

vela --accelerator-config ethos-u65-256 --system-config Ethos U65 High End
—--memory-mode Sram Only --config vela.ini {tflite-model}

7.2.9 Supported ML operators and constraints

See the supported operator list on the Ethos-U NPU. When the operator is not supported by the NPU, the Vela
compiler displays the constraints information on the console. They are left untouched and scheduled on the
CPU. Use the elQ toolkit to view what operators are merged into Ethos-U operator for a model.

7.2.10 Profiling on hardware accelerators

This section describes how to enable profiler on the NPU, and how to capture logs.

The PMU profiling is supported with Ethos-U delegate options. The option is a string to specify what PMU
events will be captured, which includes:

* enable cycle counter:true
Shows the cycle counter values for an inference.

* pmu_event config register mapping
Up to 4 PMU event IDs can be recorded, which is specified by pmu event register mapping.
For example, pmu_event0:1 means the pmu eventO register will record the values of event 1.
pmu_eventO:1;pmu eventl:3 means the pmu event0 register will record the value of event 1, and the
pmu_eventl register will record the value of event 3.

The following table shows all the event IDs supported by Ethos-U.
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Table 6. Event IDs supported by Ethos-U

Event type Event ID
CYCLE 1
NPU_ IDLE 2
CC_STALLED_ON_ BLOCKDEP 3
CC_STALLED ON_ SHRAM RECONFIG 4
NPU_ACTIVE 5
MAC ACTIVE 6
MAC ACTIVE 8BIT 7
MAC ACTIVE 16BIT 8
MAC DPU_ACTIVE 9
MAC STALLED BY WD ACC 10
MAC STALLED BY WD 11
MAC STALLED BY ACC 12
MAC STALLED BY IB 13
MAC ACTIVE 32BIT 14
MAC STALLED BY INT W 15
MAC STALLED BY INT ACC 16
AO ACTIVE 17
AO_ACTIVE 8BIT 18
AO ACTIVE 16BIT 19
AO_STALLED BY OFMP OB 20
AO_STALLED BY OFMP 21
AO_STALLED BY OB 22
AO_STALLED BY ACC IB 23
AO_STALLED BY ACC 24
AO_STALLED BY IB 25
WD ACTIVE 26
WD_STALLED 27
WD_STALLED BY WS 28
WD_STALLED BY WD BUF 29
WD PARSE ACTIVE 30
WD PARSE STALLED 31
WD _PARSE STALLED IN 32
WD_PARSE STALLED OUT 33
WD_TRANS WS 34
WD_TRANS WB 35
WD_TRANS DWO 36
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Event type Event ID
WD_TRANS DWl 37
AXIO RD TRANS ACCEPTED 38
AXIO0 RD TRANS COMPLETED 39
AXIO RD DATA BEAT RECEIVED 40
AXIO RD TRAN REQ STALLED 41
AXIO WR TRANS ACCEPTED 42
AXIO WR_TRANS COMPLETED M 43
AXIO WR_TRANS COMPLETED S 44
AXIO WR DATA BEAT WRITTEN 45
AXIO WR_TRAN REQ STALLED 46
AXIO WR DATA BEAT STALLED 47
AXIO ENABLED CYCLES 48
AXIO RD STALL LIMIT 49
AXIO WR_STALL LIMIT 50
AXT LATENCY ANY 51
AXI LATENCY 32 52
AXI LATENCY 64 53
AXI LATENCY 128 54
AXI LATENCY 256 55
AXI LATENCY 512 56
AXI LATENCY 1024 57
ECC_DMA 58
ECC_SBO 59
AXI1 RD TRANS ACCEPTED 60
AXI1 RD TRANS COMPLETED 61
AXI1 RD DATA BEAT RECEIVED 62
AXI1 RD TRAN REQ STALLED 63
AXI1 WR TRANS ACCEPTED 64
AXI1 WR_TRANS COMPLETED M 65
AXI1 WR_TRANS COMPLETED S 66
AXI1 WR DATA BEAT WRITTEN 67
AXI1 WR_TRAN REQ STALLED 68
AXI1 WR DATA BEAT STALLED 69
AXI1 ENABLED CYCLES 70
AXI1 RD STALL LIMIT 71
AXI1 WR_STALL LIMIT 72
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Table 6. Event IDs supported by Ethos-U...continued
Event type Event ID

ECC_SB1 73

After setting the external delegate options with PMU event capture, you can run the TensorFlow Lite
application. The PMU counter result is displayed on the console.

./label image -m ~/mobilenet vl 1.0 224 int8 vela.tflite --
external delegate path=/usr/lib/libethosu delegate.so -1 labels.txt --
external delegate options="enable cycle counter:true;pmu eventO:1;pmu eventl:3;pmu event2:

Ethos u PMUs : [ 3674981 25689 54788 3667061 ]
Ethos-u cycle counter: 3676058
Ethos u PMUs : [ 3673491 25287 54785 3665621 ]
Ethos-u cycle counter: 3674570
Ethos u PMUs : [ 3680291 25502 54784 3672421 ]
Ethos-u cycle counter: 3681370

7.3 NPU transition guide from i.MX 8M Plus to i.MX 93

This section describes how to port Machine Learning application from i.MX 8M Plus to i.MX 93 with NPU
acceleration.

7.3.1 Tensorflow Lite difference between i.MX 8M Plus and i.MX 93 NPU acceleration

See Figure 3 for Tensorflow Lite software stack. Both i.MX 8M Plus and i.MX 93 support Tensorflow Lite with
NPU acceleration. i.MX 93 also supports TensorFlow Lite external delegate mechanism.

From the development perspective of the Machine Learning application, users can use the same Tensorflow
API to develop the Machine Learning application. The only difference is that users need to use the Ethos-U
Delegate instead of VX Delegate.

7.3.2 NPU supported operator list

While porting the Machine Learning application from i.MX 8M Plus to i.MX 93, check whether the NPU
supported operators in your model are supported on the i.MX 93 NPU. This ensures that you leverage i.MX 93
NPU acceleration.

See supported operator list for i.MX 93 NPU operator support status and Table 14 for i.MX 8M Plus NPU
operator support status.

7.4 Hardware acceleration with elQ Neutron NPU on i.MX 9 series platform

elQ Neutron NPU is a Neural Processing Unit (NPU) developed by NXP. It is designed to accelerate the
Machine Learning inference. The Neutron-S version of the elQ Neutron NPU comprises of 3 main blocks:

* Neutron computation core (Neutron) doing MACs, can be pipelined with multiple instances.
* Neutron controller (RISC-V core) to program Neutron registers and control the Neutron block.
* DMA like memory controller (Data Mover) to exchange data between host DDR and Neutron dedicated TCM.

Neutron-S NPU main features:

 Targets quantized Convolutional Neutral Networks (CNN) and supports 8 bit weights and 8/16 bit activations.
» Supports TensorFlow Lite (TFLite) inference with fallback to Cortex-A for unsupported operations.
» Supports TFLite API to offload a custom TFLite node - neutronGraph, to Neutron-S NPU.
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* Provides model converter tool (through elQ toolkit) to optimize the model performance and memory usage for
Neutron-S NPU target.

7.4.1 Neutron-S NPU overview

The Neutron-S NPU involves several hardware blocks working together to support the acceleration of the tensor
computation defined by the Machine Learning model:

* SoC main CPU (Cortex-A55)
* RISC-V Controller

* Data Mover

* Neutron compute block

The SoC main CPU runs the software under Linux OS, like the TFLite inference engine. It is responsible for
loading the Machine Learning model, capturing and pre-processing the inputs and handing over the tensor
computation to the NPU. The RISC-V controller in the Neutron-S NPU orchestrates the Neutron compute blocks
and Data Mover. The Data Mover is a DMA like engine used for moving data between the SoC DDR and the
NPU TCM.

7.4.2 Neutron-S software architecture

The software for Neutron-S NPU includes three main components, as shown in the following figure.

elQ Toolkit SW@Cortex-A
r==—=== T r===== T
Quantized tflite —! TFLite [ANENN TFLite interpreter -/ Output !
/ model  / / /
model Lo ous g Lo —_ 2
Neutron-FW@RISC-V
TFLite l
model
XNN pack Neutron Neutron
CPU Op delegates delegates interpreter
Neutron convert |
(offline) Neutron
Q kernel lib
L
Neutron Neutron driver §
(userspace) =
model [} Neutron datamover
z services
Converted TFLite
mode
I Neutron Linux driver
(mailbox msg)
| Cortex-A (NEON) | | Neutron-S
aaa-055247
Figure 17. Neutron-S software architecture

* The Neutron model converter is an offline tool to compile the TFLite model for Neutron-S. The converter
replaces supported operators in the model with a custom neut ronOp node containing a model-specific
firmware binary, static data, like weights, and inputs/outputs memory areas for Neutron-S. The output of the
converter is a modified TFLite model graph for TFLite inference engine. For inference, it needs to use the
corresponding TFLite Neutron Delegate.

* The Cortex-A software stack for Linux contains the TFLite inference engine, Neutron delegate library, user
space Neutron driver library, and Neutron device driver for the Linux kernel.
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The Neutron-FW stack contains code for the RISC-V controller, interpreting the microcode in the neutronGraph
node.

7.4.3 NPU performance tuning

NXP Yocto Linux enables power-saving technology by default. To boost Machine Learning Performance on the
i.MX 95 EVK board, perform the following tuning operations:

1. Disable DDR clock gating.
DDR clock gating is the hardware feature applied to the i.MX 9 family. It is enabled by default in Yocto Linux
for maximum power saving with performance trade-off.
On i.MX 95, send the following command on the System Manager console (the serial port right after the
Linux console) to disable DDR clock gating.

>$ mm 0x4e010010 O

2. Set the CPU to performance mode.
In Yocto Linux, the CPU is in ondemand mode by default, which makes the CPU work at low frequency
when there is low workload. Make the CPU in performance mode before elQ benchmarking.

# cpufreg-set -g performance
# cat /sys/devices/system/cpu/*/cpufreq/cpuinfo cur freq
1800000

3. Disable CPU idle in U-Boot.
For the Linux system, when disabling CPU Idle management, it can reduce context switch overhead.

# setenv cpuidle 'cpuidle.off=1"

7.4.4 Neutron NPU power management

Neutron device implements power management techniques to optimize energy consumption: supporting clock
gating and power gating.

It provide different power mode strategies as follows:

» Automatic mode (default): Balance performance and power consumption, automatically clock gate for NPU
compute and suspend (power NPU off) after a period of idleness (default 1 second).

» Performance mode: The Neutron NPU remains power ON and clock ON for a long time.

* Low power mode: Further power savings on top of the automatic mode. Neutron NPU performs clock gating
immediately once inference is completed. Cuts off the clocks for NPU Compute, TCM, and ZenV core.

The default power mode strategy is automatic and the default suspend delay time is 1000 milliseconds. Users
can change them using the following commands:

1. Change the power mode through the Linux model parameters on the U-Boot command line interface:

=> setenv bootargs "neutron.power mode=0|1|2 Sbootargs"

2. Change power gating (suspend) delay time on the Linux command line interface:

# cat /sys/devices/platform/soc/4ab00004.neutron/power/autosuspend delay ms
1000

# echo {time millisecond} > /sys/devices/platform/soc/4ab00004.neutron/power/
autosuspend delay ms
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8 Vision Pipeline with NNStreamer

NNStreamer is an efficient and flexible stream pipeline framework for complex neural network applications. It
was initially developed by Samsung and then transferred to LF Al Foundation as an incubation project.

It is a set of GStreamer plugins that allows both GStreamer developers to adopt neural network models and
neural network developers to manage neural network pipelines and their filters easily and efficiently.

The project is well documented through its dedicated github documentation site, but the main takeaways are
described below for convenience.

In addition to the standard GStreamer data types, NNStreamer adds new data types “other/tensor” and “other/
tensors” using a dedicated converter element. This data type represents a stream of multidimensional array and
a stream of a container of multiple instances of such arrays, respectively.

NNStreamer provides a set of stream filters applying multiple operations on tensors:

* tensor converter converts audio, video, text, or arbitrary binary streams to others/tensor streams.

* tensor_ decoder converts other/tensor (s) to video or text stream with assigned sub-plugins.

* tensor_ filter invokes a neural network model with the given model path and neural network framework
name.

* tensor transform applies various operators to tensors including typecast, add, mul, transpose, and
normalize. For faster processing, it supports SIMD instructions and multiple operators in a single filter.

* tensor_crop crops the regions of incoming tensor.

* tensor_ rate controls a frame rate of tensor streams.

* tensor mux, tensor demux, tensor merge, tensor split, tensor if, and tensor aggregator
support tensor stream path controls.

* tensor sinkis a sink plug-in for making an application to get a buffer of other/tensor (s).

* tensor_source allow non GStreamer standard input sources, such as sensors, to supply other/
tensor (s) stream.

* tensor reposink and tensor reposrc implement recurrent path helpers, cutting GStreamer pipeline
cycle through a dedicated shared repository. The tensor reposink pushes data to the repository, this latter
reinjecting data upstream through a tensor reposrc element.

The following figure shows the general architecture of a NNStreamer pipeline.

Video .| Video .| Tensor ; Normalize ; Neural ; Application
.. Scale ~| convert | Converter Transpose Network (Stream Sink)
Tensor ; Video N
Stream Stream

Figure 18. NNStreamer pipeline
There are two elements allowing adding user created features in run-time: tensor_filter and tensor_decoder:

[ tensor_filter ; tensor_decoder
framework=tensorflow-lite mode=bounding_boxes ’
b T

e el e “bounding_boxes.so”

Figure 19. NNStreamer filter and decoder flow

While instantiating the tensor_filter and tensor_decoder, the framework and mode options respectively specify
the target implementation through a dedicated shared library loaded at runtime. NNStreamer supplies a set of
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filters and decoders which are described briefly below, and APIs to implement customized user sub-plugins.
Hence, it is possible to use a proprietary inference engine sub-plugin as tensor filter, or a specialized NN

decoder.

NNStreamer supports the most popular inference engines (open source or not). On this release, TensorFlow
Lite and TVM engines are supported.

Table 7. NNStreamer supported features

Framework/Tool i.MX 95 i.MX 93 i.MX 8M Plus i.MX 8M Quad/8M i.MX 8M Mini/8
Nano/8QuadMax/8 |ULP
QuadXPlus

TensorFlow Lite CPU/GPU/NPU |CPU/NPU CPU/NPU/GPU CPU/GPU CPU

TVM - - CPU/NPU/GPU - -

Custom C++ CPU CPU CPU CPU CPU

Custom Python CPU CPU CPU CPU CPU

NNShark - - CPU - -

In case an inference engine might be supported on multiple hardware backend, one can specify the device
mapping the neural network.

Even though Tensor decoder element might not be appropriate for building an application which usually does
not consume the neural network outputs for display purpose only, it is especially useful for implementing a
prototype during the development phase which might focus on the neural network model or optimizing the
data path. Indeed, most neural networks topologies are supported for classical computer vision use cases:
classification, object detection, pose estimation or segmentation.

NNStreamer tensor filter element has to be configured to use specific engine and hardware accelerator.
Available options are listed in the following tables.

Table 8. TensorFlow Lite engine

Delegate Tensor filter properties USE_GPU_INFERENCE env variable

framework=tensorflow-lite -
model=<path to .tflite model file>
custom=NumThreads:<cpu cores>
Note:

<cpu core> values:

e 2fori.MX 93 and i.MX 8ULP

* 4 for others

e 6 fori.MX 95

No delegate

XNNPACK Delegate framework=tensorflow-lite -
model=<path to .tflite model file>

custom=Delegate :XNNPACK, NumThreads:<cpu
cores>

Note:

<cpu core> values:

e 2fori.MX 93 and i.MX 8ULP
e 4 for others

e 6 fori.MX 95
Neutron Delegate (i.MX |framework=tensorflow-lite -
95 only) model=<path to .tflite model file>
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Table 8. TensorFlow Lite engine...continued
Delegate Tensor filter properties USE_GPU_INFERENCE env variable

custom=Delegate:External, ExtDelegate
Lib:libneutron delegate.so

VX Delegate (applicable |framework=tensorflow-lite 0: NPU
for supported i.MX 8) model=<path to .tflite model file> 1: GPU

custom=Delegate:External, ExtDelegate
Lib:1libvx delegate.so

Ethos-U Delegate (i.MX |framework=tensorflow-lite -
93 only) model=<path to .tflite model file>
custom=Delegate:External, ExtDelegate
Lib:libethosu delegate.so

Table 9. TVM engine
Tensor filter properties USE_GPU_INFERENCE env variable

framework=tvm model=<path to .so model 0: NPU
library> custom=num input tensors:<number of |4:GPU
input tensors>

Relevant for models compiled to use OpenVX
where <number of input tensors>is typically 1.

8.1 Object detection pipeline example

This section provides implementation details for an object detection pipeline running on i.MX 8M Plus.
Additional pipeline examples targeting more use-cases and i.MX platforms can be found in Section 8.2.

In this example, the following pipeline will be implemented leveraging all the compute backend available on i.MX
8M Plus to build an object detection scenario.

4:20:1:1
20:1:1:1
.200-200- 20:1:1:1
300x300 3:300:300:1
RGB uint8
30 Hz 30 Hz T-Fiter
i -Fi
Video
— Sub-Plugin
TFLITE
[6 ]
640x480)
30 Hz [RGBA
otream lype [ 30H
Stream Type Vldeo_ z )
Compositor
_. > Element Type
Video
Hardware
640x480 streamer
Tensor aoxes ;
S0z 2D-GPU
Hardware nnstreamer
' o [
I.MX
Figure 20. NNStreamer object detection example pipeline

On the target, download the trained neural network from google coral github site, and export the filenames to
bash environment variables:

root:~# wget https://github.com/google-coral/test data/raw/master
ssd mobilenet v2 coco quant postprocess.tflite
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root:~# wget https://github.com/google-coral/test data/raw/master/coco labels.txt
root:~# export MODEL=$ (pwd)/ssd mobilenet v2 coco quant postprocess.tflite
root:~# export LABELS=S (pwd)/coco labels.txt

Then builds and executes the GStreamer pipeline:

root:~# gst-launch-1.0 --no-position v4l2src device=/dev/video3 ! \
video/x-raw,width=640,height=480, framerate=30/1 ! \

tee name=t t. ! queue max-size-buffers=2 leaky=2 ! \
imxvideoconvert g2d ! \
video/x-raw,width=300,height=300, format=RGBA ! \

videoconvert ! video/x-raw, format=RGB ! \

tensor converter ! \

tensor filter framework=tensorflow-lite model=S${MODEL} \
custom=Delegate:External,ExtDelegatelLib:libvx delegate.so ! \
tensor decoder mode=bounding boxes optionl=mobilenet-ssd-postprocess option2=${LABELS} \
option3=0:1:2:3,50 option4=640:480 option5=300:300 ! \

mix. t. ! queue max-size-buffers=2 ! \
imxcompositor g2d name=mix latency=30000000 min-upstream-latency=30000000
sink 0::zorder=2 sink 1::zorder=1 ! waylandsink

Note: Hit CTRL+C keystroke to halt the execution if necessary.

8.2 NXP NNStreamer pipeline examples

Pipelines targeting i.MX platforms are published to provide working examples for different use cases and
implementation options.

Those examples are hosted on the GitHub server in a dedicated tree:

https://github.com/nxp-imx/nxp-nnstreamer-examples

Refer to the included README documentation for pipelines descriptions and instructions for dependencies
download (models, metadata) and execution.

The following table lists the features covered by pipeline examples.

Table 10. Features of NXP NNStreamer examples

Category Engine Platform Implementation

Object detection: MobileNet SSD V2, Yolov4- | TensorFlow Lite i.MX 8M Plus Shell script (gst-launch)

tiny i.MX 93 Python, C++

Image classification: MobileNet V1 i.MX 95 Custom Python tensor_filter

Image segmentation: DeeplLab V3
Pose detection: MoveNet

Face detection: UltraFace

Face recognition: FaceNet512
Emotion detection: DeepFace
Depth estimation: Midas V2

8.3 Pipeline profiling

NNStreamer team developed NNShark, a profiling tool based on GstShark, to monitor several pipeline metrics
useful to assess the SoC hardware usage.

NNShark can be used on the i.MX 8M Plus only, where specific metrics were added:

» 2D GPU (GC520L) utilization load
» 3D GPU (GC7000UL) utilization load
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* NPU (GC8000) utilization load
» SoC masters bandwidth, as reported by Linux kernel perf tool

* Additionally, power domain consumption, as reported by power measurement tool (PMT) if the power
measurement evaluation kit is available to the user.

Considering the complex GPU/NPU architecture involving concurrent stages, their reported utilization loads
shall be considered as an order of magnitude and might not precisely reflect each individual stage's status.

Note:

For the source code demo location see the nnshark repository.

8.3.1 Enable profiling with NNShark

It is recommended to connect to the target through SSH as the NNShark Ul refresh rate might not render well
on the serial console.

Enable NNShark profiling through environment variables:

root:~# export GST DEBUG="GST TRACER:7"
root:~# export GST TRACERS="live"

To get GPU usage measurements, disable power saving in the GPU driver (galcore) using command line Linux
kernel parameters. You can manually edit the bootargs U-Boot variable before executing the boot command.
Add the following parameters:

galcore.gpuProfiler=1 galcore.powerManagement=0

Then run the previous gst-launch command line, and the following screen should now be displayed on your
terminal screen. You can scroll through all the pipeline elements with up/bottom direction key to select the
desired element and display its connections with other pipeline elements.

You can select the element pads with left/right direction keys to highlight its connection to other elements’ pads.

On this example, the tensor filter has an average processing time of 21.64 ms and its sink orange highlighted
pad is connected to source pad of tensorconverterO element (green highlighted).

Press ‘q’ or ‘Q’ to exit the profiling tool and return to the shell terminal. You can quit the application as previously
explained through CTRL+C.
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Figure 21. NNShark i.MX 8M Plus example screenshot

8.3.2 Adding power measurement to NNShark

On the desktop PC connected to the power measurement evaluation kit, execute the power measurement tool
(PMT) in server mode such as the power measurements are collected and available on 65432 TCP/IP port.

user@localhost:pmt# python3 main.py server -b imx8mpevkpwral -p 65432

On the target, export the desktop PC ip address (192.168.1.99 for this example):

root:~# export GST TRACERS PWR SERVER IP=192.168.1.99

Note: The user can run the NNShark without the power measurement kit.

8.3.3 Known issues and limitations

In case perf reports inconsistent high numbers, this means that a perf process is still running in background of
the previous run. If so, you must terminate manually their execution.
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For your convenience, the below command can be used:

root:~# kill -9 $(ps -ef | grep nnshark-perf-ddr.sh | grep -v grep | tr -s ' '
cut -d ' ' -f 2)

9 elQ Demos

9.1 TensorFlow Lite Demos for i.MX 93

This section provides implementation details for several TensorFlow Lite demos running on i.MX 93.
TensorFlow Lite demos (binaries) are located at: /usr/bin/eig-examples-git.

Binary models are not located in the image because of the size. Before running the demos, these files should
be downloaded to the device:

$ cd /usr/bin/eig-examples-git
$ python3 download models.py

Note: This script is downloaded from GitHub and Google drive. Make sure the device network is correctly
configured and can access the Internet.

9.1.1 Image classification demo

Note: All the demos require X11 to display, so use the XWayland distro images.

This demo performs image classification using a pretrained mobilenet-v1 network. Demo dependencies are
from:

/usr/bin/eig-examples-git/image classification

* grace_hopper.bmp
* label image.py
* labels.txt

The demo network model dependencies:
* mobilenet vl 1.0 224 quant.tflite

Run the Python example with the image input from the default location:

$ cd /usr/bin/eig-examples-git/image classification

$ python3 label image.py -i grace hopper.bmp -1 labels.txt
0.874510: military uniform

0.031373: Windsor tie

0.015686: mortarboard

0.011765: bulletproof wvest

0.007843: bow tie

time: 4.126ms

9.1.2 SSD object detection demo

The SSD object detection demo performs object detection using the Single-Shot multibox Detection (SSD)
detector. It detects objects on camera, video, or image. Demo dependencies are from: /usr/bin/eiqg-
examples-git/object detection
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* carsO.bmp
* labels.py
* main.py

The demo network model dependencies:
* ssd mobilenet vl quant.tflite

Run the Python example with the image input from the default location:

$ cd /usr/bin/eig-examples-git/object detection
$ python3 main.py —-i carsO0.bmp

rectangle: (640,493), (1756,881) label:car
rectangle: (1470,466), (1947,694) label:car
rectangle: (803,462), (846,502) label:car
rectangle: (733,451), (788,493) label:car
rectangle: (573,473), (705,565) label:car
rectangle: (608,465), (679,519) label:car
rectangle: (203,455), (271,596) label:person
rectangle: (910,461), (956,500) label:car
rectangle: (1020,453), (1076,497) label:person

Run the Python example with the live camera connected to port 0.

$ python3 main.py -i /dev/videoO

Note: Choose the right port where the camera is currently connected. Use the v412-ctl --1ist-devices
command to check it.

9.1.3 Hand gesture detection demo

This application demonstrates hand detection and gesture detection. It detects objects on camera, video, or
image. Demo dependencies are from: /usr/bin/eig-examples-git/gesture detection.

* anchors.csv
* handQO.bmp

* hand tracker.py
* main.py

The demo network model dependencies:
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* palm detection builtin 256 integer quant.tflite
* hand landmark 3d 256 integer quant.tflite

Run the Python example with the image input from the default location:

$ cd /usr/bin/eig-examples-git/gesture detection
$ python3 main.py -1 handO.bmp

Run the Python example with the live camera connected to port 0.

$ python3 main.py -i /dev/videoO

Note: Choose the right port where the camera is currently connected. Use the v412-ctl --list-devices
command to check it.

9.1.4 Face recognition demo

This application is a demonstration for real-time face recognition. It uses pretrained yoloface model for face
detection, and facenet model to calculate face landmark. The demo supports the live camera input only.

Demo dependencies are from: /usr/bin/eig-examples-git/face recognition.

* face database.py

¢ face detection.py

¢ face recognition.py
* main.py

The demo network model dependencies:

¢ yoloface int8.tflite
e facenet 512 int quantized.tflite

Before running the demo, connect a keyboard to the board.
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1. Run the Python example with the live camera connected to port 0.

$ cd /usr/bin/eig-examples-git/face recognition
S python3 main.py -i /dev/videoO

LN

Note: Choose the right port where the camera is currently connected. Use the v412-ctl --1ist-
devices command to check it.

2. Add a name to the face database.

Face the camera and press ‘a’ on the keyboard, which is connected to the board, and then input a new
name.
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3. Delete the name from the face database.
Press ‘d’ on the keyboard, which is connected to the board, and then input the name.

10 Release Notes

10.1 Known issues and limitations

* Inline model compilation on i.MX 95 is not available.

» Hardware Accelerators on i.MX 8 does not support layers with dynamic shapes.

* The NPU on i.MX 8M Plus is not optimized for models with dynamic weights. The layers with dynamic weights
(for example, in the FullyConnected layer) are computed significantly slower.

» Some of the links for the models in the download models.py script from Section 9.1 are no longer
available.

10.2 Release notes for LF6.12.20_2.0.0

General:

» For Neutron model conversion, elQ Toolkit 1.16 includes newer Neutron converter tool, which optimizes the
model conversion speed.
* LLM model support with ONNX Runtime (CPU EP and Neutron EP) and LiteRT (CPU).

LiteRT:

* v1.2.0 is supported as an experimental feature for all devices, the same feature coverage as TFLite runtime.
* Only Python API is available for example development.
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ONNX Runtime:

* Upgraded to 1.22.0-pre-release (April 1st).
» Supports Neutron EP (MatMul operators) for the LLM model running on i.MX 95 as an experimental feature.
» Supports VsiNPU EP for CNN models running on i.MX 8 series.

» Supports MatMulNBits for CPU Execution provider and Neutron Execution provider, enabling matrix
multiplication with weights quantized to 8 bits and 4 bits.

Integrated KleidiAl library into ONNX Runtime MLAS for enhanced performance on Arm architectures.
i.MX 93:

* Arm Vela Compiler updated to version 4.2.0.
* Ethos-U firmware supports build from source. It is available since MCU SDK25.06.00-pvw2.

i.MX 95:

* Neutron Software Stack upgraded.
* NPU Power Management feature supports clock gating and power gating.

i.MX 943:

* Neutron Software Stack supported.

10.3 Release notes for LF6.6.52_2.2.0
i.MX 95:

* Neutron Software Stack upgraded.
* Not support inline compilation, only the converted TensorFlow Lite model is interpreted by Neutron Runtime.
* Pre-compiled model specific binary in NeutronOp with significant performance improvement for inference.

10.4 Release notes for LF6.6.36_2.1.0

General:
* Arm Compute Library is removed since this release.
TensorFlow Lite:

* Upgraded to 2.16.2.
* Fixed missing PIL module when running the 1abel image Python example (label image.py)
* Modified Flex delegate build onto a 2-stage process.

ONNX Runtime
* Fixed compilation with Yocto SDK.
i.MX 8M Plus:

* VX Delegate update and bug fixes
* TIM-VX update, and internal OVXLIB updated to 1.2.14.

i.MX 93:

* Arm Vela Compiler updated to version 3.12.
» Ethos-U software updated to 24.05.

i.MX 95:
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* Neutron Software Stack upgraded.

10.5 Release notes for LF6.6.23_2.0.0

General:
* Added support for i.MX 91.
TensorFlow Lite:

» Upgraded to 2.15.0.
* Added GPU Delegate for i.MX 95. The GPU delegate is available in the C++ API.

ONNX Runtime

* Upgraded to 1.17.1.

PyTorch

» PyTorch framework not available by default in the BSP. Can be deployed using pip from the PyPI registry.
i.MX 8M Plus:

* VX Delegate update and bug fixes
* TIM-VX update and bug fixes.

i.MX 93:

* Arm Vela Compiler updated to version 3.11.
» Ethos-U software updated to 24.02.

i.MX 95:

* Added support to offload ML workload on the on-chip Arm Mali G310 GPU with TensorFlow Lite, using the
GPU Delegate.
* Added support for elQ Neutron Neural Processing Unit using the inline compilation.

» Full NPU acceleration for mobilenetv1 and mobilenetv2 models or models with similar operators. Expect other
popular CNN models in the upcoming releases.

10.6 Release notes for LF6.6.3_1.0.0

General:
* Initial support for the i.MX 95 platform.
TensorFlow Lite:

» Upgraded to 2.14.0.
* Added helper script to generate reduced-size Flex Delegate Bazel artifacts.

i.MX 8M Plus:

* VX Delegate update and bug fixes
* TIM-VX update and bug fixes.

i.MX 93:

* Arm Vela Compiler updated to version 3.10.
» Ethos-U software updated to 23.11.

i.MX 95:
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* Added elQ for i.MX 95.
» Added support for elQ Neutron Neural Processing Unit using offline compilation. The compiler is available in
the elQ Toolkit.

10.7 Release notes for LF6.1.55_2.2.0

General:

* Model Runner was removed from Linux BSP.
The elQ Toolkit deploys the compatible Model Runner instance automatically.

TensorFlow Lite:
* Upgraded to 2.12.1.
ONNX Runtime:

* Upgraded to 1.16.1.
* NNAPI execution provider support was removed.

i.MX 8M Plus:

* VX Delegate update and bug fixes.
e TIM-VX update and bug fixes.

i.MX 93:

* Arm Vela Compiler updated to version 3.9.
» Ethos-U software updated to 23.08.

elQ Demos:

* Removed the support for AWS end-to-end SageMaker demo.

10.8 Release notes for LF6.1.36_2.1.0

TensorFlow Lite

* Upgraded to 2.11.1.

* Bug fixes.

» Added Flex Delegate support, including the binary size reduction described here: www.tensorflow.org/lite/
guide/reduce_binary_size

VX Delegate

* Synchronized with TensorFlow 2.11.1.
* Bug fixes.

DeepViewRT

» DeepViewRT inference engine was removed.

10.9 Release notes for LF6.1.22_2.0.0
VX Delegate

* Bug fixes.
* Added support for EmbeddingLookup, Cast, and BroadcastTo.
* Fixed performance on MobilenetV1, MobileNetV2, VGG16, VGG19, and NasNet Mobile.
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ONNX Runtime

* Upgraded to 1.13.1.
* VSI-NPU Execution provider is obsolete and was removed from ONNX Runtime.
* Added support to run dynamic-shape models using NNAPI Execution Provider.

PyTorch

* Upgraded to 2.0.0.

DeepViewRT

* DeepViewRT inference engine is deprecated and will be removed in the future.
i.MX 93

* Arm Vela Compiler: Updated to version 3.7.

10.10 Release notes for LF6.1.1_1.0.0

TensorFlow Lite

» Upgraded to 2.10.0.

» Deprecated Ethos-U Custom operator on i.MX 93. The preferred way for models with Ethos-U Operator is
using the Ethos-U Delegate.

VX Delegate

* Bug fixes.

» Added support for UnidirectionalSequenceLSTM, BidirectionalSequenceLSTM, Shape, HashtableLookup
operators.

Updated C++ Standard to C++17.

 Fixed TransposeConv2d operator.

* Known issue: Decreased performance on MobilenetV1, MobileNetV2, VGG16, VGG19, and NasNet Mobile.

i.MX 93

* Arm Vela Compiler: Updated to version 3.6.
* Introduced Ethos-U Delegate for i.MX 93.

elQ Demos

* Added TensorFlow Lite demo application for i.MX 93.

10.11 Release notes for LF5.15.71_2.2.0

TensorFlow Lite

» Added option to inference diff tool to compare the inference to reference model. This enables validation of the
model on i.MX 93 accelerated by Ethos-U NPU.

» Ethos-U: Enables getting PMU counters from the NPU.
» Ethos-U: Uses one flash and Arena buffer for multiple Ethos-U Operators.

VX Delegate

* Bug fixes.
* Fixed failures with TensorFlow Lite kernel tests: expand dims, LRN, strided-slice, resize, maximum,
minimum, and conv3d.

i.MX 93
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* NPU profiling support.
* Ethos-u-driver-stack: Updated to version 22.08.
* Arm Vela Compiler: Updated to version 3.5.

10.12 Release notes for LF5.15.52_2.1.0

* General

— Added support for i.MX 93 platform, including NN acceleration on Ethos-U NPU.

TensorFlow Lite

— TensorFlow Lite updated from version from 2.8.0. to 2.9.1. For details, see RELEASE . md in the source code
repository.

— Added support for Ethos-U HW acceleration for i.MX 93 platform.

VX Delegate

— Added support for ReverseV2, UnidirectionalSequenceLSTM and Unpack operators.

— Fixed bug in reshape for inception vl 224 quant model.

— Fixed Yolo-V4-tiny.

— Other minor bug fixes.

e TIM-VX
— TIM-VX updated from 1.1.42 to 1.1.50.

* Arm Compute Library

— Arm Compute Library updated from 21.08 to 22.05.

DeepViewRT

— DeepViewRT updated from 2.4.42. to 2.4.46.

* elQ Examples

— Resolved dependency issue due to Yocto BSP upgrade: AWS end-to-end SageMaker demo can be built
with latest Yocto BSP (LF5.15.52_2.1.0).

10.13 Release notes for LF5.15.32_2.0.0

* ArmNN inference engine was removed from elQ.
* TensorFlow Lite
— TensorFlow Lite was updated from version 2.6.0 to 2.8.0. For details, see RELEASE .md in the source code
repository.
— Features and improvements:

— Fixed evaluation tools build with Yocto SDK. Prior to build of the evaluation tools with CMake,
it is necessary to build and install the required tooling (protobuf compiler - protoc). Use the
CMakeLists.txt from tensorflow/lite/tools/cmake/native tools/.

¢ ONNX Runtime
— Features and improvements:

— ArmNN and ACL Execution providers were removed from elQ.

— VSI_NPU backend is deprecated and will be removed in the future.

— NNAPI execution provider is experimental feature.

e TIM-VX
— TIM-VX was updated from 1.1.37 to 1.1.42.
* DeepViewRT
— DeepViewRT was updated from 2.4.37 to 2.4.42.
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10.14 Release notes for LF5.15.5-1.0.0

Arm NN inference engine is deprecated in this release and will be removed in the future.
NNAPI Delegate of TensorFlow Lite and NNAPI Execution Provider of ONNX Runtime is deprecated and will
be removed in the future. For leveraging ML model acceleration use VX Delegate instead.
TensorFlow Lite:

— Features and improvements:

Fixed unit test build with TensorFlow Lite static library.

Support FullyConnected layer with implicit bias in VX Delegate.

Fixbugin stride sliceifend dimsetas -1in VX Delegate.

Other minor fixes.

ONNX Runtime:

— Features and improvements:

Version update from 1.8.2 to 1.10.0.

Updated to GCC11 toolchain.

NNAPI Execution Provider is ported from 1.5.3 (does not contain latest 1.10.0 updates) and it is
considered experimental. We do not suggest using it in production.

— Arm NN and ACL Execution providers are deprecated and will be removed in the future
PyTorch upgraded to version 1.9.1.
TIM-VX:
— Features and improvements:

— Version update from 1.1.34 to 1.1.37.

— DMA Buffer support.

— Support for additional operators (SVDF, GlobalPool2D, AdaptivePool2D, Erf, grouped Conv1D, Signal
Frame, RNN Cell, One Hot).

— Support Layout inference for additional operators (Batch Norm, Transpose, Fully Connected with no
explicit bias).
DeepViewRT:
— Features and improvements:
— Version update from 2.4.36 to 2.4.37
— C and Python API for NPU support are available.
— Align modelrunner plugin with TFLite/Arm NN/ONNX Runtime inference engine.
— Issues and limitations:
— Bug fix for deepview-rt library and example codes.

10.15 Release notes for LF5.10.72-2.2.0

TensorFlow Lite:
— Upgraded to version 2.6.0.
— VX Delegate changed to external delegate.
— Optimization of the PCQ Transpose Convolution operator on the NPU hardware accelerator.
— Python API support external Delegates:
— With this change, the 1abel image.py Python example support the use of external delegates with
arguments. See the help for more information.
— Python API supports using external delegate via the tflite.load delegate () call.
— NNAPI delegate not available in Python API. For the model acceleration on the HW accelerator, the VX
delegate can be used:

ext delegate = [ tflite.load delegate("/usr/lib/libvx delegate.so") ]
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interpreter
= tflite.Interpreter (model path=args.model file,
experimental delegates=ext delegate, num threads=args.num threads)

* Arm Compute Library:
— Features and improvements:
— Major version update from 21.02 to 21.08.
— Issues and limitations:

— Only the CPU-accelerated NEON backend is being built. Use Arm NN with the VSI NPU backend to

leverage acceleration on the GPU or the NPU.
e Arm NN:
— Features and improvements:

— Major version update from 21.02 to 21.08.

— TensorFlow Parser, Caffe Parser and Quantizer were removed and are no longer available. Only ONNX
Parser, TensorFlow Lite Parser and Arm NN Delegate for TF Lite are now available to load .tflite and
.onnx models.

— See full list of changes added by the community.

— Issues and limitations:

— Only ACL NEON backend is being built. Use the VSI NPU Backend instead of ACL OpenCL to leverage
acceleration on the GPU or the NPU.

— There are significant performance optimizations for the NPU to TransposeConv2D which are not
supported in the VSI NPU backend. If your model uses TransposeConv2D heavily try to use TF Lite with
VXDelegate instead.

* ONNX Runtime:
— Features and improvements:

— Minor version update from 1.8.1 to 1.8.2.

— Experimental Python API enablement including support for all available Execution Providers (CPU, ACL,
Arm NN, NNAPI, VSI NPU).

— Added /usr/bin/onnxruntime-1.8.2/onnxruntime peft test. Use this instead of
onnx_test runner to measure performance of your model.

— Fixed verbose logging during inference on NPU.

— Updated ACL and Arm NN Backends to leverage ACL and Arm NN 21.08.

— All ONNX Runtime artifacts are being installer to /usr/bin/onnxruntime-1.8.2 instead of /usr/
bin.

— See full list of changes added by the community.

— Issues and limitations:

— There are significant performance optimizations for the NPU to TransposeConv2D which are not
supported in the VSI NPU Execution Provider. If your model uses TransposeConv2D heavily try to use
TF Lite with VXDelegate instead.

— Running SqueezeNet with the NNAPI execution provider produces incorrect results.

* DeepViewRT:
— Features and improvements:

— Minor version update from 2.4.30 to 2.4.36.

— C API for NPU support is available.

— Performance optimization for DeepViewRT CPU.

— Bug fix for shuffle layer.

— Issues and limitations:
— nn tensor load file exis one convenience function and not well optimized.

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
781115



https://arm-software.github.io/ComputeLibrary/v21.02/index.xhtml#S2_2_changelog
https://github.com/ARM-software/ComputeLibrary/releases/tag/v21.08
https://github.com/ARM-software/armnn/releases
https://github.com/microsoft/onnxruntime/releases
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors

UG10166

11 List of Used Variables

i.MX Machine Learning User's Guide

The following table provides the summary of used variables described in this document for the particular
inference engine. Use the export command to apply these variables.

Table 11. System variables summary

Variable name

Description

CNN_PERF

0: Disable (default)

1: Prints the execution time for each operation (requires VIV_VX_
DEBUG_LEVEL=1). If VIV_VX_PROFILE=1 is set, the default value is
1.

NN_EXT_SHOW_PERF

0: Disable (default)
1: Shows more profiling details (requires VIV_VX_DEBUG_LEVEL=1)

PATH_ASSETS

Sets the export path for user assets.

USE_GPU_INFERENCE

Selection between the 3D GPU (1) and the NPU (otherwise).

VIV_VX_CACHE_BINARY_GRAPH_DIR

Specifies the path of the cached NBG. Default is the current work
directory.

VIV_VX_DEBUG_LEVEL

0: Disable (default)

1: Prints the debug information of driver on the console. Generally,
this environment variable is used together with other environment
variables to print logs.

VIV_VX_ENABLE_CACHE_GRAPH_BINARY

0: Disable (default)

1: Enables graph cache mode. The network loads the NBG file to run
if the cached NBG file exists. Otherwise, it generates an NBG file. It
can save the time for the verification stage.

VIV_MEMORY_PROFILE

0: Disable (default)

1: Prints the memory footprint of the system (CPU) and GPU (VIP)
(requires VIV_VX_DEBUG_LEVEL=1)

VIV_VX_PROFILE

0: Disable (default)

1: Prints the DDR read and write bandwidth, AXI_SRAM read and
write bandwidth, and the cycle count of VIP execution. The counter is
per-node-process (requires VIV_VX_DEBUG_LEVEL=1).

2: Prints the DDR read and write bandwidth, AXI_SRAM read and
write bandwidth, and the cycle count of VIP execution. The counter is
per-graph-process (requires VIV_VX_DEBUG_LEVEL=1).

12 Neural Network API Reference

The neural-network operations and corresponding supported API functions are listed in the following table. See
also Section 2.2.3 for details about supported operators.

Table 12. Neural-network operations and supported API functions

Op Category/Name TensorFlow Lite 2.8.0 ONNX 1.22.0

Activation

elu ELU Elu

gelu - Gelu

floor Floor Floor
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Table 12. Neural-network operations and supported API functions...continued

Op Category/Name TensorFlow Lite 2.8.0 ONNX 1.22.0
leakyrelu - LeakyRelL
prelu PRELU PreLu

relu RELU RelLu
relul RELU1 -

relu6 RELUG -
Hard_swish HARD_SWISH -

rsqrt RSQRT -

selu - Selu
sigmoid LOGISTIC Sigmoid
softplus - Softplus
softmax SOFTMAX Softmax
softrelu - -

sqrt SQRT Sqrt

tanh TANH TanH
bounded - -

linear - -

Dense Layers

dense - -

Element Wise

abs ABS Abs

add ADD Add
clip_by_value - Clip

div DIV Div

equal EQUAL Equal

exp EXP Exp

log LOG Log
greater GREATER Greater
greater_equal GREATER_EQUAL -

less LESS Less
less_equal LESS_EQUAL -
logical_and LOGICAL_AND And
logical_or LOGICAL_OR Or
minimum MINIMUM Min
maximum MAXIMUM Max
multiply MUL Mul
negative NEG Neg
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Table 12. Neural-network operations and supported API functions...continued

Op Category/Name TensorFlow Lite 2.8.0 ONNX 1.22.0
not_equal NOT_EQUAL -

pow POW POW

select SELECT -

square - -

sub SuB Sub

where - Where
Image Processing

resize_bilinear RESIZE_BILINEAR Unsample
resize_nearest_neighbor RESIZE_NEAREST_NEIGHBOR |Resize

Matrix Multiplication

fullconnect

FULLY_CONNECTED

matrix_mul

MatMulinteger

MatMulinteger

MatMulintegerToFloat

MatMulintegerToFloat

MatMulNBits

MatMulNBits

QLinearMatMul

QLinearMatMul

Normalization

batch_normalize

BatchNormalization

instance _normalize

InstanceNormalization

I2normalize L2_NORMALIZATION -
localresponsenormalization LOCAL_RESPONSE_ LRN
NORMALIZATION
Reshape
batch2space BATH_TO_SPACE_ND -
concat CONCATENATION Concat
depth_to_space DEPTH_TO_SPACE DepthToSpace
expanddims EXPAND_DIMS -
flatten - -
gather GATHER Gather
pad PAD Pad
permute TRANSPOSE Transpose
reducemean MEAN ReduceMean
reducesum REDUCE_SUM ReduseSum
gathernd - GatherND
reducemax REDUCE_MAX ReduceMax
reducemin REDUCE_MIN ReduceMin
reduceproduct - -
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Table 12. Neural-network operations and supported API functions...continued

Op Category/Name TensorFlow Lite 2.8.0 ONNX 1.22.0

reshape RESHAPE Reshape

reverse - ReverseSequence

slice SLICE Slice

space2batch SPACE_TO_BATCH_ND -

split SPLIT Split

squeeze SQUEEZE Squeeze

transpose - Transpose

strided_slice STRIDED_SLICE -

unstack - -

RNN

gru - GRU

Istm UNIDIRECTIONAL_ -
SEQUEENCE_LSTM

Istmunit LSTM LSTM

rnn RNN -

Sliding Window

avg_pool AVERAGE_POOL_2D AveragePool

convolution CONV_2D Conv

deconvolution TRANSPOSE_CONV ConvTranspose

depthhwise_convolution DEPTHWISE_CONV_2D -

Log_softmax LOG_SOFTMAX Logsoftmax

I2pooling L2 POOL_2D -

max_pool MAX_POOL_2D MaxPool

Others

argmax ARGMAX ArgMax

argmin ARGMIN ArgMin

dequantize DEQUANTIZE DequantizeLinear

quantize QUANTIZE QuantizeLinear

roi_pool - -

shuffle_channel - -

tile TILE Tile

svdf SVDF -

embedding_lookup EMBEDDING_LOOKUP -

cast CAST Cast

ssd - -
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This section provides a summary of the neural network OVXLIB operations supported by the NXP Graphics
Processing Unit (GPU) IP with hardware support for OpenVX and OpenCL and a compatible Software stacks.

OVXLIB operations are listed in the following table.

The following abbreviations are used for format types:

* asym-u8: asymmetric_affine-uint8

* asym-i8: asymmetric_affine-int8

* fp32: float32

* pc-sym-i8: perchannel_symmetric_int8

fp16: float16
bool8: bool8
int16: int16
int32: int32

Table 13. OVXLIB operation support with GPU

OVXLIB Operations Tensors Execution Engine
Input Kernel Output OpenVX OpenCL

Basic Operations

VSI_NN_OP_CONV2D asym-u8 asym-u8 asym-u8 v v
asym-i8 pc-sym-i8 asym-i8 v v
fp32 fp32 fp32 v v
fp16 fp16 fp16 v v

VSI_NN_OP_CONV1D asym-u8 asym-u8 asym-u8 v v
asym-i8 pc-sym-i8 asym-i8 v v
fp32 fp32 fp32 v v
fp16 fp16 fp16 v v

VSI_NN_OP_DEPTHWISE_ asym-u8 asym-u8 asym-u8 v

CONVID asym-i8 asym-i8 asym-i8 v

VSI_NN_OP_DECONVOLUTION1D |asym-u8 asym-u8 asym-u8 v v
asym-i8 pc-sym-i8 asym-i8 v v
fp32 fp32 fp32 v v
fp16 fp16 fp16 v v

VSI_NN_OP_DECONVOLUTION asym-u8 asym-u8 asym-u8 v v
asym-i8 pc-sym-i8 asym-i8 v v
fp32 fp32 fp32 v v
fp16 fp16 fp16 v v

VSI_NN_OP_FCL asym-u8 asym-u8 asym-u8 v v
asym-i8 pc-sym-i8 asym-i8 v v
fp32 fp32 fp32 v v
fp16 fp16 fp16 v v
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i.MX Machine Learning User's Guide

OVXLIB Operations Tensors Execution Engine
Input Kernel Output OpenVX OpenCL
VSI_NN_OP_GROUPED_CONV1D |asym-u8 asym-u8 asym-u8 v v
asym-i8 pc-sym-i8 asym-i8 v v
fp32 fp32 fp32 v v
fp16 fp16 fp16 v v
VSI_NN_OP_GROUPED_CONV2D |asym-u8 asym-u8 asym-u8 v v
asym-i8 pc-sym-i8 asym-i8 v v
fp32 fp32 fp32 v v
fp16 fp16 fp16 v v
Activation Operations
VSI_NN_OP_ELU asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_HARD_SIGMOID asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_SWISH asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_LEAKY_RELU asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_PRELU asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_RELU asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_RELUN asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
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Table 13. OVXLIB operation support with GPU...continued

i.MX Machine Learning User's Guide

OVXLIB Operations Tensors Execution Engine
Input Kernel Output OpenVX OpenCL
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_RSQRT asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_SIGMOID asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_SOFTRELU asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_SQRT asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_TANH asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_ABS asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_CLIP asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_EXP asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_LOG asym-u8 asym-u8 v v
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Table 13. OVXLIB operation support with GPU...continued

i.MX Machine Learning User's Guide

OVXLIB Operations Tensors Execution Engine
Input Kernel Output OpenVX OpenCL
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_NEG asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_MISH asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_LINEAR asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_ERF asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_SOFTMAX asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_LOG_SOFTMAX asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_SQUARE asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_SIN asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
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Table 13. OVXLIB operation support with GPU...continued

i.MX Machine Learning User's Guide

OVXLIB Operations Tensors Execution Engine
Input Kernel Output OpenVX OpenCL
Elementwise Operations
VSI_NN_OP_ADD asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_SUBTRACT asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_MULTIPLY asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_DIVIDE asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_MAXIMUN asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_MINIMUM asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_POW asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_FLOORDIV asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_MATRIXMUL asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
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Table 13. OVXLIB operation support with GPU...continued

i.MX Machine Learning User's Guide

OVXLIB Operations Tensors Execution Engine
Input Kernel Output OpenVX OpenCL
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_RELATIONAL_OPS asym-u8 bool8 v v
asym-i8 bool8 v v
fp32 bool8 v v
fp16 bool8 v v
bool8 bool8 v v
VSI_NN_OP_LOGICAL_OPS bool8 bool8 v v
VSI_NN_OP_LOGICAL_NOT bool8 bool8 v v
VSI_NN_OP_SELECT asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
bool8 bool8 v v
VSI_NN_OP_ADDN asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
Normalization Operations
VSI_NN_OP_BATCH_NORM asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_LRN asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_LRN2 asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_L2 NORMALIZE asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
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Table 13. OVXLIB operation support with GPU...continued

i.MX Machine Learning User's Guide

OVXLIB Operations Tensors Execution Engine
Input Kernel Output OpenVX OpenCL
VSI_NN_OP_L2NORMALZESCALE |asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_LAYER_NORM asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_INSTANCE_NORM asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_GROUP_NORM asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_BATCHNORM_SINGLE |asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_MOMENTS asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
Reshape Operations
VSI_NN_OP_EXPAND _ asym-u8 asym-u8 v v
BROADCAST asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_SLICE asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_SPLIT asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
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Table 13. OVXLIB operation support with GPU...continued

i.MX Machine Learning User's Guide

OVXLIB Operations Tensors Execution Engine
Input Kernel Output OpenVX OpenCL
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_CONCAT asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_STACK asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_UNSTACK asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_RESHAPE asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_SQUEEZE asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_PERMUTE asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_REORG asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_SPACE2DEPTH asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_DEPTH2SPACE asym-u8 asym-u8 v v
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Table 13. OVXLIB operation support with GPU...continued

i.MX Machine Learning User's Guide

OVXLIB Operations Tensors Execution Engine
Input Kernel Output OpenVX OpenCL
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_BATCH2SPACE asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_SPACE2BATCH asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_PAD asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_REVERSE asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_STRIDED_SLICE asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_CROP asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_REDUCE asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_ARGMX asym-u8 asym-u8/int16/ v v
int32
asym-i8 asym-u8/int16/ v v
int32
fp32 int32 v v
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Table 13. OVXLIB operation support with GPU...continued

i.MX Machine Learning User's Guide

OVXLIB Operations Tensors Execution Engine
Input Kernel Output OpenVX OpenCL
fp16 asym-u8/int16/ v v
int32
VSI_NN_OP_ARGMIN asym-u8 asym-u8/int16/ v v
int32
asym-i8 asym-u8/int16/ v v
int32
fp32 int32 v v
fp16 asym-u8/int16/ v v
int32
VSI_NN_OP_SHUFFLECHANNEL asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
RNN Operations
VSI_NN_OP_LSTMUNIT_OVXLIB asym-u8 asym-u8 asym-u8 v v
asym-i8 pc-sym-i8 asym-i8 v v
fp32 fp32 fp32 v v
fp16 fp16 fp16 v v
VSI_NN_OP_LSTM_OVXLIB asym-u8 asym-u8 asym-u8 v v
asym-i8 pc-sym-i8 asym-i8 v v
fp32 fp32 fp32 v v
fp16 fp16 fp16 v v
VSI_NN_OP_GRUCELL_OVXLIB asym-u8 asym-u8 asym-u8 v v
asym-i8 pc-sym-i8 asym-i8 v v
fp32 fp32 fp32 v v
fp16 fp16 fp16 v v
VSI_NN_OP_GRU_OVXLIB asym-u8 asym-u8 asym-u8 v v
asym-i8 pc-sym-i8 asym-i8 v v
fp32 fp32 fp32 v v
fp16 fp16 fp16 v v
VSI_NN_OP_SVDF asym-u8 asym-u8 asym-u8 v v
asym-i8 pc-sym-i8 asym-i8 v v
fp32 fp32 fp32 v v
fp16 fp16 fp16 v v
Pooling Operations
VSI_NN_OP_ROI_POOL asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
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Table 13. OVXLIB operation support with GPU...continued

i.MX Machine Learning User's Guide

OVXLIB Operations Tensors Execution Engine
Input Kernel Output OpenVX OpenCL
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_POOLWITHARGMAX |asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_UPSAMPLE asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
Miscellaneous Operations
VSI_NN_OP_PROPOSAL asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_VARIABLE asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_DROPOUT asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_RESIZE asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_INTERP asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_DATACONVERT asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
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Table 13. OVXLIB operation support with GPU...continued

i.MX Machine Learning User's Guide

OVXLIB Operations Tensors Execution Engine
Input Kernel Output OpenVX OpenCL
VSI_NN_OP_A TIMES_B_PLUS_C |asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_FLOOR asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_EMBEDDING_ asym-u8 asym-u8 v v
LOOKUP asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_GATHER asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_GATHER_ND asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_SCATTER_ND asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_TILE asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_RELU_KERAS asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_ELTWISEMAX asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
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Table 13. OVXLIB operation support with GPU...continued

i.MX Machine Learning User's Guide

OVXLIB Operations Tensors Execution Engine
Input Kernel Output OpenVX OpenCL
fp16 fp16 v v
VSI_NN_OP_INSTANCE_NORM asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_FCL2 asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_POOL asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_SIGNAL_FRAME asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_CONCATSHIFT asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_UPSAMPLESCALE asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp16 fp16 v
VSI_NN_OP_ROUND asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_CEIL asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_SEQUENCE_MASK asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
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Table 13. OVXLIB operation support with GPU...continued

OVXLIB Operations Tensors Execution Engine
Input Kernel Output OpenVX OpenCL
fp16 fp16 v v
VSI_NN_OP_REPEAT asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_ONE_HOT asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v
VSI_NN_OP_CAST asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v v
fp16 fp16 v v

14 OVXLIB Operation Support with NPU

This section provides a summary of the neural network OVXLIB operations supported by the NXP Neural
Processor Unit (NPU) IP and a compatible Software stacks. OVXLIB operations are listed in the following table.

The following abbreviations are used for format types:

* asym-u8: asymmetric_affine-uint8

* asym-i8: asymmetric_affine-int8

* fp32: float32

* pc-sym-i8: perchannel_symmetric-int8
fp16: float16

bool8: bool8

* int16: int16

* int32: int32

The following abbreviations are used to reference key Execution Engines (NPU) in the hardware:
* NN: Neural-Network Engine
* PPU: Parallel Processing Unit

e TP: Tensor Processor

Table 14. OVXLIB operation support with NPU

OVXLIB Operations Tensors Execution Engine (NPU)
Input Kernel Output NN ‘ TP ‘ PPU
Basic Operations
VSI_NN_OP_CONV2D asym-u8 asym-u8 asym-u8 v
asym-i8 pc-sym-i8 asym-i8 v v
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Table 14. OVXLIB operation support with NPU...continued
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OVXLIB Operations Tensors Execution Engine (NPU)
Input Kernel Output NN TP PPU
fp32 fp32 fp32 v
fp16 fp16 fp16 v
VSI_NN_OP_CONV1D asym-u8 asym-u8 asym-u8 v
asym-i8 pc-sym-i8 asym-i8 v v
fp32 fp32 fp32 v
fp16 fp16 fp16 v
VSI_NN_OP_CONV3D asym-u8 asym-u8 asym-u8 v
asym-i8 pc-sym-i8 asym-i8 v v
fp32 fp32 fp32 v
fp16 fp16 fp16 v
VSI_NN_OP_DEPTHWISE_CONV1D |asym-u8 asym-u8 asym-u8 v
asym-i8 asym-i8 asym-i8 v
VSI_NN_OP_DECONVOLUTION asym-u8 asym-u8 asym-u8 v
asym-i8 pc-sym-i8 asym-i8 v v
fp32 fp32 fp32 v
fp16 fp16 fp16 v
VSI_NN_OP_DECONVOLUTION1D |asym-u8 asym-u8 asym-u8 v
asym-i8 pc-sym-i8 asym-i8 v v
fp32 fp32 fp32 v
fp16 fp16 fp16 v
VSI_NN_OP_FCL asym-u8 asym-u8 asym-u8 v
asym-i8 pc-sym-i8 asym-i8 v v
fp32 fp32 fp32 v
fp16 fp16 fp16 v
VSI_NN_OP_GROUPED_CONV1D |asym-u8 asym-u8 asym-u8 v
asym-i8 pc-sym-i8 asym-i8 v v
fp32 fp32 fp32 v
fp16 fp16 fp16 v
VSI_NN_OP_GROUPED_CONV2D |asym-u8 asym-u8 asym-u8
asym-i8 pc-sym-i8 asym-i8 v
fp32 fp32 fp32 v
fp16 fp16 fp16 v
Activation Operations
VSI_NN_OP_ELU asym-u8 asym-u8 v
asym-i8 asym-i8 v
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Table 14. OVXLIB operation support with NPU...continued

i.MX Machine Learning User's Guide

OVXLIB Operations Tensors Execution Engine (NPU)

Input Kernel Output NN TP PPU

fp32 fp32 v

fp16 fp16 v
VSI_NN_OP_HARD_SIGMOID asym-u8 asym-u8 v

asym-i8 asym-i8 v

fp32 fp32 v

fp16 fp16 v
VSI_NN_OP_SWISH asym-u8 asym-u8 v

asym-i8 asym-i8 v

fp32 fp32 v

fp16 fp16 v
VSI_NN_OP_LEAKY_RELU asym-u8 asym-u8 v

asym-i8 asym-i8 v

fp32 fp32 v

fp16 fp16 v
VSI_NN_OP_PRELU asym-u8 asym-u8 v

asym-i8 asym-i8 v

fp32 fp32 v

fp16 fp16 v
VSI_NN_OP_RELU asym-u8 asym-u8 v

asym-i8 asym-i8 v

fp32 fp32 v

fp16 fp16 v
VSI_NN_OP_RELUN asym-u8 asym-u8 v

asym-i8 asym-i8 v

fp32 fp32 v

fp16 fp16 v
VSI_NN_OP_RSQRT asym-u8 asym-u8 v

asym-i8 asym-i8 v

fp32 fp32 v

fp16 fp16 v
VSI_NN_OP_SIGMOID asym-u8 asym-u8 v

asym-i8 asym-i8 v

fp32 fp32 v

fp16 fp16 v
VSI_NN_OP_SOFTRELU asym-u8 asym-u8 v
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Table 14. OVXLIB operation support with NPU...continued

i.MX Machine Learning User's Guide

OVXLIB Operations Tensors Execution Engine (NPU)
Input Kernel Output NN TP PPU
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_SQRT asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_TANH asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_ABS asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_CLIP asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_EXP asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_LOG asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_NEG asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_MISH asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
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Table 14. OVXLIB operation support with NPU...continued

i.MX Machine Learning User's Guide

OVXLIB Operations Tensors Execution Engine (NPU)
Input Kernel Output NN TP PPU
VSI_NN_OP_SOFTMAX asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_LOG_SOFTMAX asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_SQUARE asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_SIN asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_LINEAR asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_ERF asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v
fp16 fp16 v v
Elementwise Operations
VSI_NN_OP_ADD asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_SUBTRACT asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_MULTIPLY asym-u8 asym-u8 v
asym-i8 asym-i8 v

UG10166

All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User guide

Rev. LF6.12.20_2.0.0 — 26 June 2025

Document feedback
100/115


https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors

UG10166

Table 14. OVXLIB operation support with NPU...continued

i.MX Machine Learning User's Guide

OVXLIB Operations Tensors Execution Engine (NPU)
Input Kernel Output NN TP PPU
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_DIVIDE asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_MAXIMUN asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_MINIMUM asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_POW asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_FLOORDIV asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_MATRIXMUL asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_RELATIONAL_OPS asym-u8 bool8 v
asym-i8 bool8 v
fp32 bool8 v
fp16 bool8 v
bool8 bool8 v
VSI_NN_OP_LOGICAL_OPS bool8 bool8 v
VSI_NN_OP_LOGICAL_NOT bool8 bool8 v
VSI_NN_OP_SELECT asym-u8 asym-u8 v
asym-i8 asym-i8 v

UG10166

All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User guide

Rev. LF6.12.20_2.0.0 — 26 June 2025

Document feedback

101/115


https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors

UG10166

Table 14. OVXLIB operation support with NPU...continued

i.MX Machine Learning User's Guide

OVXLIB Operations Tensors Execution Engine (NPU)
Input Kernel Output NN TP PPU
fp32 fp32 v
fp16 fp16 v
bool8 bool8 v
VSI_NN_OP_ADDN asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
Normalization Operations
VSI_NN_OP_BATCH_NORM asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_LRN asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_LRN2 asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_L2 NORMALIZE asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_L2NORMALZESCALE |asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_LAYER_NORM asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_INSTANCE_NORM asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
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Table 14. OVXLIB operation support with NPU...continued

i.MX Machine Learning User's Guide

OVXLIB Operations Tensors Execution Engine (NPU)

Input Kernel Output NN TP PPU

fp16 fp16 v
VSI_NN_OP_BATCHNORM_SINGLE |asym-u8 asym-u8 v

asym-i8 asym-i8 v

fp32 fp32 v

fp16 fp16 v
VSI_NN_OP_MOMENTS asym-u8 asym-u8 v

asym-i8 asym-i8 v

fp32 fp32 v

fp16 fp16 v
VSI_NN_OP_GROUP_NORM asym-u8 asym-u8 v

asym-i8 asym-i8 v

fp32 fp32 v

fp16 fp16 v
Reshape Operations
VSI_NN_OP_EXPAND _ asym-u8 asym-u8 v
BROADCAST asym-i8 asym-i8 v

fp32 fp32 v

fp16 fp16 v
VSI_NN_OP_SLICE asym-u8 asym-u8 v

asym-i8 asym-i8 v

fp32 fp32 v

fp16 fp16 v
VSI_NN_OP_SPLIT asym-u8 asym-u8 v

asym-i8 asym-i8 v

fp32 fp32 v

fp16 fp16 v
VSI_NN_OP_CONCAT asym-u8 asym-u8 v

asym-i8 asym-i8 v

fp32 fp32 v

fp16 fp16 v
VSI_NN_OP_STACK asym-u8 asym-u8 v

asym-i8 asym-i8 v

fp32 fp32 v

fp16 fp16 v
VSI_NN_OP_UNSTACK asym-u8 asym-u8 v
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Table 14. OVXLIB operation support with NPU...continued

i.MX Machine Learning User's Guide

OVXLIB Operations Tensors Execution Engine (NPU)

Input Kernel Output NN TP PPU

asym-i8 asym-i8 v

fp32 fp32 v

fp16 fp16 v
VSI_NN_OP_RESHAPE asym-u8 asym-u8 v

asym-i8 asym-i8 v

fp32 fp32 v

fp16 fp16 v
VSI_NN_OP_SQUEEZE asym-u8 asym-u8 v

asym-i8 asym-i8 v

fp32 fp32 v

fp16 fp16 v
VSI_NN_OP_PERMUTE asym-u8 asym-u8 v

asym-i8 asym-i8 v

fp32 fp32 v

fp16 fp16 v
VSI_NN_OP_REORG asym-u8 asym-u8 v

asym-i8 asym-i8 v

fp32 fp32 v

fp16 fp16 v
VSI_NN_OP_SPACE2DEPTH asym-u8 asym-u8 v

asym-i8 asym-i8 v

fp32 fp32 v

fp16 fp16 v
VSI_NN_OP_DEPTH2SPACE asym-u8 asym-u8 v

asym-i8 asym-i8 v

fp32 fp32 v

fp16 fp16 v

bool8 bool8
VSI_NN_OP_BATCH2SPACE asym-u8 asym-u8 v

asym-i8 asym-i8 v

fp32 fp32 v

fp16 fp16 v
VSI_NN_OP_SPACE2BATCH asym-u8 asym-u8 v

asym-i8 asym-i8 v

fp32 fp32 v
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Table 14. OVXLIB operation support with NPU...continued

i.MX Machine Learning User's Guide

OVXLIB Operations Tensors Execution Engine (NPU)
Input Kernel Output NN TP PPU
fp16 fp16 v
VSI_NN_OP_PAD asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_REVERSE asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_STRIDED_SLICE asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_CROP asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_REDUCE asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_ARGMAX asym-u8 asym-u8/int16/ v
int32
asym-i8 asym-u8/int16/ v
int32
fp32 int32 v
fp16 asym-u8/int16/ v
int32
VSI_NN_OP_ARGMIN asym-u8 asym-u8/int16/ v
int32
asym-i8 asym-u8/int16/ v
int32
fp32 int32 v
fp16 asym-u8/int16/ v
int32
VSI_NN_OP_SHUFFLECHANNEL asym-u8 asym-u8 v
asym-i8 asym-i8 v

UG10166

All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User guide

Rev. LF6.12.20_2.0.0 — 26 June 2025

Document feedback
105/115


https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors

UG10166

Table 14. OVXLIB operation support with NPU...continued

i.MX Machine Learning User's Guide

OVXLIB Operations Tensors Execution Engine (NPU)
Input Kernel Output NN TP PPU
fp32 fp32 v
fp16 fp16 v

RNN Operations

VSI_NN_OP_LSTMUNIT_OVXLIB asym-u8 asym-u8 asym-u8 v v
asym-i8 pc-sym-i8 asym-i8 v v
fp32 fp32 fp32 v
fp16 fp16 fp16 v v

VSI_NN_OP_LSTM_OVXLIB asym-u8 asym-u8 asym-u8 v v
asym-i8 pc-sym-i8 asym-i8 v v
fp32 fp32 fp32 v
fp16 fp16 fp16 v v

VSI_NN_OP_GRUCELL_OVXLIB asym-u8 asym-u8 asym-u8 v v
asym-i8 pc-sym-i8 asym-i8 v v
fp32 fp32 fp32 v
fp16 fp16 fp16 v v

VSI_NN_OP_GRU_OVXLIB asym-u8 asym-u8 asym-u8 v v
asym-i8 pc-sym-i8 asym-i8 v v
fp32 fp32 fp32 v
fp16 fp16 fp16 v v

VSI_NN_OP_SVDF asym-u8 asym-u8 asym-u8 v v
asym-i8 pc-sym-i8 asym-i8 v v
fp32 fp32 fp32 v
fp16 fp16 fp16 v v

Pooling Operations

VSI_NN_OP_ROI_POOL asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v
fp16 fp16 v v

VSI_NN_OP_POOLWITHARGMAX |asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v

VSI_NN_OP_UPSAMPLE asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
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Table 14. OVXLIB operation support with NPU...continued

OVXLIB Operations Tensors Execution Engine (NPU)
Input Kernel Output NN TP PPU
fp16 fp16 v
Miscellaneous Operations
VSI_NN_OP_PROPOSAL asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_VARIABLE asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_DROPOUT asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_RESIZE asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_INTERP asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_DATACONVERT asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_A TIMES_B_PLUS_C |asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_FLOOR asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_EMBEDDING_ asym-u8 asym-u8 v
LOOKUP
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Table 14. OVXLIB operation support with NPU...continued

OVXLIB Operations Tensors Execution Engine (NPU)
Input Kernel Output NN TP PPU
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_GATHER asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_GATHER_ND asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_SCATTER_ND asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_TILE asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_RELU_KERAS asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_ELTWISEMAX asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_INSTANCE_NORM asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_FCL2 asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
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Table 14. OVXLIB operation support with NPU...continued

OVXLIB Operations Tensors Execution Engine (NPU)
Input Kernel Output NN TP PPU
VSI_NN_OP_POOL asym-u8 asym-u8 v v
asym-i8 asym-i8 v v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_SIGNAL_FRAME asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_CONCATSHIFT asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_UPSAMPLESCALE asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp16 fp16 v
VSI_NN_OP_ROUND asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_CEIL asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_SEQUENCE_MASK asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_REPEAT asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
VSI_NN_OP_ONE_HOT asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v
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Table 14. OVXLIB operation support with NPU...continued

OVXLIB Operations Tensors Execution Engine (NPU)
Input Kernel Output NN TP PPU

VSI_NN_OP_CAST asym-u8 asym-u8 v
asym-i8 asym-i8 v
fp32 fp32 v
fp16 fp16 v

15 Note About the Source Code in the Document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2025 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS I1S" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

16 Revision History

This table provides the revision history.

Revision history

Document ID Release date Description

UG10166 v.LF6.12.20_2.0.0 26 June 2025 Upgraded to the 6.12.20 kernel.

UG10166 v.LF6.12.3_1.0.0 30 April 2025 Updated the command in Section 4.1.

UG10166 v.LF6.12.3_1.0.0 31 March 2025 Upgraded to the 6.12.3 kernel.

UG10166 v.LF6.6.52_2.2.0 16 December 2024 |Upgraded to the 6.6.52 kernel.

UG10166 v.LF6.6.36_2.1.0 30 September Upgraded to the 6.6.36 kernel.

2024

IMXMLUG_6.6.23_2.0.0 28 June 2024 Upgraded to the 6.6.23 kernel, U-Boot v2024.04, TF-A
v2.10, OP-TEE 4.2.0, Yocto 5.0 Scarthgap, and added the
i.MX 91 as Alpha quality, i.MX 95 as Beta quality.
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