
RM00293
i.MX Linux Reference Manual
Rev. LF6.12.20_2.0.0 — 26 June 2025 Reference manual

Document information
Information Content

Keywords i.MX, Linux, LF6.12.20_2.0.0

Abstract The i.MX family Linux Board Support Package (BSP) supports the Linux Operating System (OS)
on the i.MX application processors.

https://www.nxp.com

NXP Semiconductors RM00293
i.MX Linux Reference Manual

1 Introduction

1.1 Overview
The i.MX family Linux Board Support Package (BSP) supports the Linux Operating System (OS) on the i.MX
application processors.

The purpose of this software package is to support Linux OS on the i.MX family of Integrated Circuits (ICs)
and their associated platforms. It provides the necessary software to interface the standard open-source Linux
kernel to the i.MX hardware. The goal is to enable i.MX customers to rapidly build products based on i.MX
devices that use the Linux OS.

The BSP is not a platform or product reference implementation. It does not contain all of the product-specific
drivers, hardware-independent software stacks, Graphical User Interface (GUI) components, Java Virtual
Machine (JVM), and applications required for a product. Some of these are made available in their original
open-source form as part of the base kernel.

The BSP is not intended to be used for silicon verification. While it can play a role in this, the BSP functionality
and the tests run on the BSP do not have sufficient coverage to replace traditional silicon verification test suites.

1.1.1 Software Base

The i.MX BSP is based on version 6.12.20 of the Linux kernel from the official Linux kernel website
(www.kernel.org). It is enhanced with the features provided by NXP.

On Linux to change the configuration using the menu configuration with a Yocto Project environment, use
bitbake like this:

bitbake linux-imx -c menuconfig

1.1.2 Features

The table below describes the features supported by the BSP for specific platforms.

Feature Description Chapter Source Applicable Platform

Machine-Specific Layer

MSL Machine-Specific Layer (MSL) supports
interrupts,Timer, Memory Map, GPIO/IOMUX,
SPBA, SDMA.
• Interrupts GIC: The Linux kernel contains

common Arm GIC interrupts handling code.
• Timer (GPT): The General Purpose Timer

(GPT) is set up to generate an interrupt
as programmed to provide OS ticks. Linux
OS facilitates timer use through various
functions for timing delays, measurement,
events, alarms, high-resolution timer features,
and so on. Linux OS defines the MSL timer
API required for the OS-tick timer and
does not expose it beyond the kernel tick
implementation.

• GPIO/EDIO/IOMUX: The GPIO and EDIO
components in the MSL provide an abstraction
layer between the various drivers and the

Machine-Specific Layer
(MSL)

All

Table 1. BSP Supported Features

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
2 / 301

http://www.kernel.org/
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Feature Description Chapter Source Applicable Platform
configuration and utilization of the system,
including GPIO, IOMUX, and external board
I/O. The IO software module is board-
specific, and resides in the MSL layer as a
self-contained set of files. I/O configuration
changes are centralized in the GPIO module
so that changes are not required in the various
drivers.

• SPBA: The Shared Peripheral Bus Arbiter
(SPBA) provides an arbitration mechanism
among multiple masters to allow access to the
shared peripherals. The SPBA implementation
under MSL defines the API to allow different
masters to take or release ownership of a
shared peripheral.

General Drivers

Thermal Driver The thermal driver will monitor the SoC's
temperature in a certain frequency to protect the
SoC. It defines three trip points: critical, hot, and
active.

Thermal Driver All

OProfile OProfile is a system-wide profiler for Linux
systems, capable of profiling all running code at
low overhead.

OProfile All

Pulse Width
Modulator

The pulse-width modulator (PWM) has a 16-bit
counter and is optimized to generate sound from
stored sample audio images and generate tones.

Pulse-Width Modulator
(PWM)

All

Sensors Sensors cover accelerometer, ambient light and
magnetometer sensors.

Sensors All

Watchdog The Watchdog Timer module protects against
system failures by providing an escape from
unexpected hang or infinite loop situations or
programming errors.

Watchdog All

DMA Engine

SDMA API The Smart Direct Memory Access (SDMA) API
driver controls the SDMA hardware and provides
an API to other drivers for transferring data
between MCU, DSP and peripherals.

Smart Direct Memory
Access (SDMA) API

All

APBH-Bridge-
DMA

Both AHB-to-APBH and AHB-to-APBX DMA
support configurable DMA descript chain.

AHB-to-APBH Bridge with
DMA (APBH-Bridge-DMA)

All

Power Management Drivers

Low-level
Power
Management

The low-level power management driver
implements hardware-specific operations to meet
power requirements and conserves power. Driver
implementations are often different for different
platforms. It is used by the DPM layer.

Low-level Power
Management (PM) Driver

All

Dynamic Bus
Frequency

The bus frequency driver dynamically manages
the various system frequencies to improve power
consumption.

Dynamic Bus Frequency
Driver

i.MX 6 and i.MX 7

Table 1. BSP Supported Features...continued

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
3 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Feature Description Chapter Source Applicable Platform

CPU Freq The CPU frequency scaling allows the clock
speed of CPU to be changed.

CPUFreq All

PMIC PF
Regulator

PF regulator driver provides the low-level
control of the power supply regulators, selection
of voltage levels, and enabling/disabling of
regulators.

PF_Regulator All

Anatop
Regulator

The Anatop regulator drive provides low-level
control of power supply regulators.

Anatop Regulator i.MX 6 and i.MX 7

Connectivity Drivers

ENET 1588
Stack

Implementation of the Precision Time Protocol
(PTP) according to IEEE standard 1588.

Fast Ethernet Controller
(FEC) Driver

All except for i.MX 95 and
i.MX 943

Fast Ethernet
Controller

The ENET Driver performs the full set of IEEE
802.3/Ethernet CSMA/CD media access control
and channel interface functions.

Fast Ethernet Controller
(FEC) Driver

All except for i.MX 95 and
i.MX 943

FlexCAN The FlexCAN driver provides the interfaces to
send and receive CAN messages.

FlexCAN Driver i.MX 6Quad, i.MX 6Dual, i.
MX 6DualLite, i.MX 6Solo,
i.MX 6UltraLite, i.MX
6SoloX, i.MX 7Dual, i.MX
8M Plus, i.MX 8QuadMax,
i.MX 8DXL, i.MX 8Quad
XPlus, i.MX 9

MediaLB MediaLB is an on-PCB or inter-chip
communication bus allowing applications to
access the MOST Network data or communicate
with other applications.

MediaLB i.MX 6SoloX i.MX 6Quad i.
MX 6Dual

PCIe PCI Express hardware module can either be
configured to act as a Root Complex or a PCIe
Endpoint.

PCIe All

EtherNet
Controller

The NIC functionality in NETC is known as Ether
NET Controller (ENETC). ENETC supports
virtualization/isolation based on PCIe Single Root
IO Virtualization (SR-IOV), advanced QoS with 8
traffic classes and 4 drop resilience levels, and
a full range of TSN standards and NIC offload
capabilities.

Section 4.13 i.MX 95, i.MX 943

NETC 1588
Timer

NETC 1588 Timer provides current time with
nanosecond resolution, precise periodic pulse,
pulse on timeout (alarm), and time capture on
external pulse support. This blocks capabilities
support implementing time synchronization as
required for IEEE 1588 and IEEE 802.1AS-2020.

Section 4.14 i.MX 95, i.MX 943

NETC Switch NETC provides full 802.1Q Ethernet switch
functionality, advanced QoS with 8 traffic classes
and 4 drop resilience levels, and a full range of
TSN standards capabilities.

Section 4.15 i.MX 943

Ethernet
Controller with
TSN (ENET_
QoS)

The EQoS driver supports RMII/RGMII in
compliance with the IEEE 802.3-2015. Also
supports TSN/AVB.

Section 4.16 i.MX 8DXL, i.MX 8M Plus,
i.MX 91/93

Table 1. BSP Supported Features...continued

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
4 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Feature Description Chapter Source Applicable Platform

Video

Capture Camera Overview for Camera and capture
interfaces.

Capture Overview All

Display Display Overview. Display Overview All

VPU The Video Processing Unit (VPU) is a
multistandard video decoder and encoder that
can perform decoding and encoding of various
video formats.

Video Processing Unit
(VPU) Driver

i.MX 6QuadPlus/Quad/
Dual/Solo, i.MX 8, and
i.MX 95

JPEGENC/
JPEGDEC

The JPEG-E-X and JPEG-D-X cores are
standalone and high-performance 8-bit and 12-bit
JPEG encoder and respectively decoder for still
image and video compression/decompression
applications.

JPEG Encoder and
Decoder

i.MX 8QuadXPlus, 8Quad
Max, and i.MX 95

Audio Drivers

ALSA Sound The Advanced Linux Sound Architecture (ALSA)
is a sound driver that provides ALSA and OSS
compatible applications with the means to
perform audio playback and recording functions.

ALSA Sound Driver All

ASRC The Asynchronous Sample Rate Converter
(ASRC) driver provides the interfaces to access
the asynchronous sample rate converter module.

Asynchronous Sample
Rate Converter (ASRC)

All

S/PDIF The S/PDIF driver is designed under the Linux
ALSA subsystem. It implements one playback
device for Tx and one capture device for Rx.

The Sony/Philips Digital
Interface (S/PDIF) Driver

All

Storage MTD Drivers

SPI NOR MTD The SPI NOR MTD driver provides the support to
the Atmel data Flash using the SPI interface.

SPI NOR Flash Memory
Technology Device (MTD)
Driver

All

NAND MTD The NAND MTD driver interfaces with the
integrated NAND controller supporting UBIFS,
CRAMFS and JFFS2UBI and UBIFSCRAMFS
and JFFS2 file systems.

NAND GPMI Flash Driver i.MX 6Quad, i.MX 6Dual, i.
MX 6DualLite, i.MX 6Solo,
i.MX 6UltraLite, i.MX
7Dual

SATA The SATA AHCI driver is based on the LIBATA
layer of the block device infrastructure of the
Linux kernel.

SATA Driver i.MX 6QuadPlus, i.MX
6Quad, i.MX 6Dual, i.MX
8QuadMax, i.MX 8Quad
XPlus

Bus Drivers

I2C The Lower Power I2C bus driver interfaces with
the I2C bus to transfer data over the I2C bus.

Inter-IC (I2C) Driver All

eCSPI The low-level Enhanced Configurable Serial
Peripheral Interface (ECSPI) driver interfaces
a custom, kernel-space API to both ECSPI
modules.

Enhanced Configurable
Serial Peripheral Interface
(ECSPI) Driver

i.MX 6, i.MX 7, i.MX 8

LPSPI LPSPI provides an efficient interface (either as a
controller or peripheral) to an SPI bus, which is a
synchronous serial communication interface used
in embedded systems.

Section 4.18 i.MX 7ULP i.MX 8ULP,
i.MX 8X, i.MX 93, i.MX 95,
i.MX 943

Table 1. BSP Supported Features...continued

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
5 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Feature Description Chapter Source Applicable Platform

MMC/SD/SDIO
-uSDHC

The MMC/SD/SDIO Host driver implements the
standard Linux driver interface to eSDHC.

MMC/SD/SDIO Host
Driver

All

Connectivity Drivers

UART The Universal Asynchronous Receiver/
Transmitter (UART) driver interfaces the serial
driver API to all UART ports.

Universal Asynchronous
Receiver/Transmitter
(UART) Driver

All

USB The USB driver interfaces to the ARC USB-OTG
controller.

CHIPIDEA USB All

USB3 The USB driver interfaces to ARC/Cadence/
DWC3 USB controller.

Section 4.10 All

Table 1. BSP Supported Features...continued

1.2 Audience
This document is targeted to individuals who will port the i.MX Linux OS Board Support Package (BSP) to
customer-specific products.

The audience is expected to have a working knowledge of the Linux kernel internals, driver models, and i.MX
processors.

1.2.1 Conventions

This document uses the following notational conventions:

• Courier monospaced type indicate commands, command parameters, code examples, and file and directory
names.

• Italic type indicates replaceable command or function parameters.
• Bold type indicates function names.

1.2.2 Definitions, Acronyms, and Abbreviations

The following table defines the acronyms and abbreviations used in this document.

Term Definition

ADC Asynchronous Display Controller

address
translation

Address conversion from virtual domain to physical domain

API Application Programming Interface

Arm Advanced RISC Machines processor architecture

AUDMUX Digital audio MUX: provides a programmable interconnection for voice, audio, and synchronous data routing
between host serial interfaces and peripheral serial interfaces

BCD Binary Coded Decimal

bus A path between several devices through data lines

bus load The percentage of time a bus is busy

CODEC Coder/decoder or compression/decompression algorithm-used to encode and decode (or compress and
decompress) various types of data

Table 2. Definitions and Acronyms

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
6 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Term Definition

CPU Central Processing Unit: generic term used to describe a processing core

CRC Cyclic Redundancy Check: Bit error protection method for data communication

CSI Camera Sensor Interface

DCNANO Display Controller Nano: a high-performance graphics core that can be used for reading rendered images
from the frame buffer

DFS Dynamic Frequency Scaling

DMA Direct Memory Access: an independent block that can initiate memory-to-memory data transfers

DPM Dynamic Power Management

DCSS Display controller sub system

DP Display Port: similiar IP as HDMI

DPU Display Processor Unit

DSI Display Serial Interface

DRM Display Rendering Manager or Digital Rights Manager

DRAM Dynamic Random Access Memory

DVFS Dynamic Voltage Frequency Scaling

EMI External Memory Interface: controls all IC external memory accesses (read/write/erase/program) from all the
masters in the system

Endian Refers to byte ordering of data in memory. Little endian means that the least significant byte of the data is
stored in a lower address than the most significant byte. In big endian, the order of the bytes is reversed.

EPDC Electrophoretic Display Controller

EPIT Enhanced Periodic Interrupt Timer: a 32-bit set and forget timer capable of providing precise interrupts at
regular intervals with minimal processor intervention

FCS Frame Checker Sequence

FIFO First In First Out

FIPS Federal Information Processing Standards-: United States Government technical standards published by
the National Institute of Standards and Technology (NIST). NIST develops FIPS when there are compelling
Federal government requirements such as for security and interoperability but no acceptable industry
standards.

FIPS-140 Security requirements for cryptographic modules: Federal Information Processing Standard 140-2 (FIPS
140-2) is a standard that describes US Federal government requirements that IT products should meet for
Sensitive, but Unclassified (SBU) use.

Flash A non-volatile storage device similar to EEPROM, where erasing can be done only in blocks or the entire
chip.

Flash path Path within ROM bootstrap pointing to an executable Flash application

Flush Procedure to reach cache coherency. Refers to removing a data line from cache. This process includes
cleaning the line, invalidating its VBR and resetting the tag valid indicator. The flush is triggered by a
software command.

GPIO General Purpose Input/Output

GPU Grapics Processor Unit

hash Hash values are produced to access secure data. A hash value (or simply hash), also called a message
digest, is a number generated from a string of text. The hash is substantially smaller than the text itself, and

Table 2. Definitions and Acronyms...continued

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
7 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Term Definition
is generated by a formula in such a way that it is extremely unlikely that some other text produces the same
hash value.

HDMI High-Definition Multimedia Interface

I/O Input/Output

ICE In-Circuit Emulation

IP Intellectual Property

IPU Image Processing Unit: supports video and graphics processing functions and provides an interface to
video/still image sensors and displays

IrDA Infrared Data Association: a nonprofit organization whose goal is to develop globally adopted specifications
for infrared wireless communication.

ISR Interrupt Service Routine

JTAG JTAG (IEEE Standard 1149.1) A standard specifying how to control and monitor the pins of compliant
devices on a printed circuit board

Kill Abort a memory access

KPP KeyPad Port: 16-bit peripheral used as a keypad matrix interface or as general purpose input/output (I/O)

LDB LVDS Display Bridge

line Refers to a unit of information in the cache that is associated with a tag

LRU Least Recently Used: a policy for line replacement in the cache

LVDS Low Voltage Differential Signalling

MIPI Mobile Industry Process Interface

MMU Memory Management Unit: a component responsible for memory protection and address translation

MPEG Moving Picture Experts Group: an ISO committee that generates standards for digital video compression
and audio. It is also the name of the algorithms used to compress moving pictures and video.

MPEG
standards

Several standards of compression for moving pictures and video:
• MPEG-1 is optimized for CD-ROM and is the basis for MP3
• MPEG-2 is defined for broadcast video in applications such as digital television set-top boxes and DVD
• MPEG-3 was merged into MPEG-2
• MPEG-4 is a standard for low-bandwidth video telephony and multimedia on the World-Wide Web

MQSPI Multiple Queue Serial Peripheral Interface: used to perform serial programming operations necessary to
configure radio subsystems and selected peripherals

MSHC Memory Stick Host Controller

NAND Flash Flash ROM technology: NAND Flash architecture is one of two flash technologies (the other being NOR)
used in memory cards such as the Compact Flash cards. NAND is best suited to flash devices requiring
high-capacity data storage. NAND flash devices offer storage space up to 512-Mbyte and offers faster erase,
write, and read capabilities over NOR architecture

NOR Flash See NAND Flash

PCMCIA Personal Computer Memory Card International Association-a multicompany organization that has developed
a standard for small, credit card-sized devices, called PC Cards. There are three types of PCMCIA cards
that have the same rectangular size (85.6 by 54 millimeters), but different widths

physical
address

The address by which the memory in the system is physically accessed

Table 2. Definitions and Acronyms...continued

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
8 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Term Definition

PLL Phase Locked Loop-an electronic circuit controlling an oscillator so that it maintains a constant phase angle
(a lock) on the frequency of an input, or reference, signal.

PxP Pixel Pipeline

RAM Random Access Memory

RAM path Path within ROM bootstrap leading to the downloading and the execution of a RAM application

RGB The RGB color model is based on the additive model in which Red, Green, and Blue light are combined to
create other colors. The abbreviation RGB comes from the three primary colors in additive light models

RGBA RGBA color space stands for Red Green Blue Alpha. The alpha channel is the transparency channel, and
is unique to this color space. RGBA, like RGB, is an additive color space, so the more of a color placed, the
lighter the picture gets. PNG is the best known image format that uses the RGBA color space

RNGA Random Number Generator Accelerator-a security hardware module that produces 32-bit pseudo random
numbers as part of the security module.

ROM Read Only Memory

ROM
bootstrap

Internal boot code encompassing the main boot low as well as exception vectors

RPMSG Remote Processor Messaging

RTIC Real-Time Integrity Checker: a security hardware module

SC System Controller

SCC SeCurity Controller: a security hardware module

SCFW System Controller Firmware

SDMA Smart Direct Memory Access

SDRAM Synchronous Dynamic Random Access Memory

SoC System on a Chip

SPBA Shared Peripheral Bus Arbiter: a three-to-one IP-Bus arbiter, with a resource-locking mechanism

SPI Serial Peripheral Interface: a full-duplex synchronous serial interface for connecting low-/medium-bandwidth
external devices using four wires. SPI devices communicate using a master/slave relationship over two data
lines and two control lines: Also see SS, SCLK, MISO, and MOSI

SRAM Static Random Access Memory

SSI Synchronous-Serial Interface: standardized interface for serial data transfer

TBD To Be Determined

UART Universal Asynchronous Receiver/Transmitter-asynchronous serial communication to external devices

UID Unique ID: a field in the processor and CSF identifying a device or group of devices

USB Universal Serial Bus-an external bus standard that supports high-speed data transfers. The USB 1.1
specification supports data transfer rates of up to 12 Mbps and USB 2.0 has a maximum transfer rate of 480
Mbps. A single USB port can be used to connect up to 127 peripheral devices, such as mice, modems, and
keyboards. USB also supports Plug-and-Play installation and hot plugging

USBOTG USB On The Go: an extension of the USB 2.0 specification for connecting peripheral devices to each other.
 USBOTG devices, also known as dual-role peripherals, can act as limited hosts or peripherals themselves
depending on how the cables are connected to the devices, and they also can connect to a host PC

VADC Video analaog to Digital Converter

VPU Video Processing Unit

Table 2. Definitions and Acronyms...continued

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
9 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Term Definition

word A group of bits comprising 32-bits

Table 2. Definitions and Acronyms...continued

1.3 References
i.MX has multiple families supported in software. The following are the listed families and SoCs per family. The
i.MX Linux Release Notes describes which SoC is supported in the current release. Some previously released
SoCs might be buildable in the current release but not validated if they are at the previous validated level.

• i.MX 6 Family: 6QuadPlus, 6Quad, 6DualLite, 6SoloX, 6SLL, 6UltraLite, 6ULL, 6ULZ
• i.MX 7 Family: 7Dual, 7ULP
• i.MX 8 Family: 8QuadMax, 8QuadPlus, 8ULP
• i.MX 8M Family: 8M Plus, 8M Quad, 8M Mini, 8M Nano
• i.MX 8X Family: 8QuadXPlus, 8DXL, 8DXL OrangeBox, 8DualX
• i.MX 9 Family: i.MX 91, i.MX 93, i.MX 95, and i.MX 943

This release includes the following references and additional information.

• i.MX Linux Release Notes (RN00210) - Provides the release information.
• i.MX Linux User's Guide (UG10163) - Provides the information on installing U-Boot and Linux OS and using

i.MX-specific features.
• i.MX Yocto Project User's Guide (UG10164) - Describes the board support package for NXP development

systems using Yocto Project to set up host, install tool chain, and build source code to create images.
• i.MX Porting Guide (UG10165) - Provides the instructions on porting the BSP to a new board.
• i.MX Machine Learning User's Guide (UG10166) - Provides the machine learning information.
• i.MX DSP User's Guide (UG10167) - Provides the information on the DSP for i.MX 8.
• i.MX 8M Plus Camera and Display Guide (UG10168) - Provides the information on the ISP Independent

Sensor Interface API for the i.MX 8M Plus.
• i.MX Digital Cockpit Hardware Partitioning Enablement for i.MX 8QuadMax (UG10169) - Provides the i.MX

Digital Cockpit hardware solution for i.MX 8QuadMax.
• i.MX Graphics User's Guide (UG10159) - Describes the graphics features.
• Harpoon User's Guide (UG10170) - Presents the Harpoon release for i.MX 8M device family.
• i.MX Linux Reference Manual (RM00293) - Provides the information on Linux drivers for i.MX.
• i.MX VPU Application Programming Interface Linux Reference Manual (RM00294) - Provides the reference

information on the VPU API on i.MX 6 VPU.
• EdgeLock Enclave Hardware Security Module API (RM00284) - This document is a software reference

description of the API provided by the i.MX 8ULP, i.MX 93, and i.MX 95 Hardware Security Module (HSM)
solutions for the EdgeLock Enclave (ELE) Platform.

The quick start guides contain basic information on the board and setting it up. They are on the NXP website.

• SABRE Platform Quick Start Guide (IMX6QSDPQSG)
• i.MX 6UltraLite EVK Quick Start Guide (IMX6ULTRALITEQSG)
• i.MX 6ULL EVK Quick Start Guide (IMX6ULLQSG)
• i.MX 7Dual SABRE-SD Quick Start Guide (SABRESDBIMX7DUALQSG)
• i.MX 8M Quad Evaluation Kit Quick Start Guide (IMX8MQUADEVKQSG)
• i.MX 8M Mini Evaluation Kit Quick Start Guide (8MMINIEVKQSG)
• i.MX 8M Nano Evaluation Kit Quick Start Guide (8MNANOEVKQSG)
• i.MX 8QuadXPlus Multisensory Enablement Kit Quick Start Guide (IMX8QUADXPLUSQSG)
• i.MX 8QuadMax Multisensory Enablement Kit Quick Start Guide (IMX8QUADMAXQSG)
• i.MX 8M Plus Evaluation Kit Quick Start Guide (IMX8MPLUSQSG)
RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
10 / 301

https://www.nxp.com/doc/SABRESDP_IMX6_QSG
https://www.nxp.com/doc/IMX6ULTRALITEQSG
https://www.nxp.com/doc/IMX6ULLQSG
https://www.nxp.com/doc/SABRESDBIMX7DUALQSG
https://www.nxp.com/doc/IMX8MQUADEVKQSG
https://www.nxp.com/doc/8MMINIEVKQSG
https://www.nxp.com/document/guide/i-mx-8m-nano-evk-board-getting-started-guide:GS-8MNANOLPD4-EVK
https://www.nxp.com/doc/IMX8QUADXPLUSQSG
https://www.nxp.com/doc/IMX8QUADMAXQSG
https://www.nxp.com/doc/8MPLUSEVKQSG
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• i.MX 8ULP EVK Quick Start Guide (IMX8ULPQSG)
• i.MX 8ULP EVK9 Quick Start Guide (IMX8ULPEVK9QSG)
• i.MX 93 EVK Quick Start Guide (IMX93EVKQSG)
• i.MX 93 9x9 QSB Quick Start Guide (93QSBQSG)

Documentation is available online at nxp.com.

• i.MX 6 information is at nxp.com/iMX6series.
• i.MX SABRE information is at nxp.com/imxSABRE.
• i.MX 6UltraLite information is at nxp.com/iMX6UL.
• i.MX 6ULL information is at nxp.com/iMX6ULL.
• i.MX 7Dual information is at nxp.com/iMX7D.
• i.MX 7ULP information is at nxp.com/imx7ulp.
• i.MX 8 information is at nxp.com/imx8.
• i.MX 6ULZ information is at nxp.com/imx6ulz.
• i.MX 91 information is at nxp.com/imx91.
• i.MX 93 information is at nxp.com/imx93.
• i.MX 95 information is at nxp.com/imx95.
• i.MX 943 information is at nxp.com/imx94.

2 System

2.1 Machine-Specific Layer (MSL)

2.1.1 Introduction

The Machine-Specific Layer (MSL) provides the Linux kernel with the following machine-dependent
components.

• Interrupts including GPIO and EDIO (only on certain platforms)
• Timer
• Memory map
• General Purpose Input/Output (GPIO) including IOMUX on certain platforms
• Clock
• Shared Peripheral Bus Arbiter (SPBA)
• Smart Direct Memory Access (SDMA)

2.1.2 Interrupts (Operation)

This section describes the hardware and software operation of interrupts on the device.

2.1.2.1 Interrupt Hardware Operation

The Interrupt Controller controls and prioritizes all internal and external interrupt sources. By default, all
interrupts have the same priority.

Each interrupt source can be enabled or disabled by configuring the interrupt controller’s registers.

There are three types of interrupts in GIC: PPI, SGI, and SPI.

• PPI is private peripheral interrupts of each CPU. It can only be handled by each CPU.
• SGI is software generated interrupts. It can be triggered by software operation, and it also can only be

handled by each CPU.
RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
11 / 301

https://www.nxp.com/doc/IMX8ULPQSG
https://www.nxp.com/doc/IMX8ULPEVK9QSG
https://www.nxp.com/doc/IMX93EVKQSG
https://www.nxp.com/doc/IMX93QSBQSG
http://www.nxp.com
http://www.nxp.com/iMX6series
http://www.nxp.com/imxSABRE
http://www.nxp.com/imx6ul
http://www.nxp.com/imx6ull
http://www.nxp.com/imx7d
http://www.nxp.com/imx7ulp
http://www.nxp.com/imx8
http://www.nxp.com/imx6ulz
http://www.nxp.com/imx91
http://www.nxp.com/imx93
http://www.nxp.com/imx95
http://www.nxp.com/imx94
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• SPI is shared peripheral interrupts, which are normally external interrupt sources from SoC platform. It can be
handled by all CPUs.

2.1.2.2 Interrupt Software Operation

For the Arm architecture-based processors with GIC-400 of i.MX 6 and i.MX 7 SoCs, normal interrupt and fast
interrupt are two different exception types. The exception vector addresses can be configured to start at low
address (0x0) or high address (0xFFFF0000) for i.MX 6 and i.MX 7 platforms. The Linux OS implementation
running on the Arm architecture chooses the high-vector address model.

For Arm architecture-based processors with GIC-500 of i.MX 8 SoCs, the exception vector addresses are
defined as VBAR_ELn + offset. The offset depends on which exception level the interrupt exception is taken.
The file Documentation/arm/Interrupts has a description of the Arm interrupt architecture.

The software provides a processor-specific interrupt structure with callback functions defined in the irqchip
structure and exports one initialization function, which is called during system startup.

File Description

drivers/irqchip/irq-gic.c i.MX 6/7 SoCs with GIC-400

drivers/irqchip/irq-gic-v3.c i.MX 8 SoCs with GIC-500
i.MX 93 and i.MX 91 with GIC-600
i.MX 95 and i.MX 943 with GIC-700

drivers/irqchip/irq-imx-irqsteer.c Interrupt functions with CONFIG_IMX_IRQSTEER
configuration

drivers/irqchip/irq-imx-intmux.c Interrupt functions with CONFIG_IMX_INTMUX
configuration

irq-imx-gpcv2.c Interrupt functions with CONFIG_IMX_GPCV2 configuration

Table 3. Interrupt Files

2.1.2.3 Interrupt Features

The interrupt implementation supports the following features:

• Interrupt Controller interrupt disable and enable
• Functions required by the Linux interrupt architecture as defined in the standard Arm interrupt source code

2.1.2.4 Interrupt Source Code Structure

The interrupt module is located in drivers/irqchip.

The table below lists the source files for interrupts.

File Description

drivers/irqchip/irq-imx-irqsteer.c Interrupt functions with CONFIG_IMX_IRQSTEER
configuration.

drivers/irqchip/irq-imx-gpcv2.c Interrupt functions with CONFIG_IMX_GPCV2 configuration.

drivers/irqchip/irq-imx-intmux.c Interrupt functions for with CONFIG_IMX_INTMUX
configuration.

Table 4. Interrupt Files

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
12 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

2.1.2.5 Interrupt Programming Interface

The machine-specific interrupt implementation exports a single function. This function initializes the Interrupt
Controller hardware and registers functions for interrupt enable and disable from each interrupt source. This is
done with the global structure irq_desc of type struct irqdesc. After the initialization, the interrupt can be used by
the drivers through the request_irq() function to register device-specific interrupt handlers.

In addition to the native interrupt lines supported from the Interrupt Controller, the number of interrupts is also
expanded to support GPIO interrupt and (on some platforms) EDIO interrupts. This allows drivers to use the
standard interrupt interface supported by Arm device running Linux OS, such as the request_irq() and free_irq()
functions.

2.1.3 Timer

The Linux kernel relies on the underlying hardware to provide support for both the system timer (which
generates periodic interrupts) and the dynamic timers (to schedule events).

After the system timer interrupt occurs, it does the following:

• Updates the system uptime
• Updates the time of day
• Reschedules a new process if the current process has exhausted its time slice
• Runs any dynamic timers that have expired
• Updates resource usage and processor time statistics

The following tables describes the different timers used.

Timer Description

General Purpose Timer (GPT) GPT is configured to generate a periodic interrupt at a
certain interval (every 10 ms). Used by i.MX 6 to go into WFI
mode. Used by i.MX 6 and i.MX 7.

Enhanced Periodic Interrupt Timer (EPIT) Available on i.MX 6 and i.MX 7.

Arm Arch Timer i.MX 8 and i.MX 9 usage instead of GPT

System Counter Timer i.MX 8M, i.MX 8X, and i.MX 9 usage instead of GPT

Table 5. Timers

2.1.3.1 Timer Software Operation

The timer software implementation provides an initialization function that initializes the GPT with the proper
clock source, interrupt mode and interrupt interval.

The timer then registers its interrupt service routine and starts timing. The interrupt service routine is required to
service the OS for the purposes mentioned in the previous Section Section 2.1.3. Another function provides the
time elapsed as the last timer interrupt.

2.1.3.2 Timer Features

The timer implementation supports the following features:

• Functions required by Linux OS to provide the system timer and dynamic timers.
• Generates an interrupt every 10 ms for i.MX6 and i.MX 7, and every 4 ms for i.MX 8 and i.MX 9. This is based

on CONFIG_HZ_XXX.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
13 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

2.1.3.3 Timer Source Code Structure

File Description

arch/arm/mach-imx/epit.c Enhanced Periodic Interrupt Timer

driver/clocksource/timer-imx-sysctr.c System Controller Timer

driver/clocksource/timer-imx-tpm.c TPM Timer

drivers/clocksource/timer-imx-gpt.c General Purpose Timer

drivers/clocksource/arch-arm-timer.c Arm arch Timer

Table 6. Timer Files

2.1.3.4 Timer Programming Interface

The timer module utilizes four hardware timers, to implement clock source and clock event objects.

This is done with the clocksource_mxc structure of struct clocksource type and clockevent_mxc structure of
struct clockevent_device type. Both structures provide routines required for reading current timer values and
scheduling the next timer event. The module implements a timer interrupt routine that services the Linux OS
with timer events for the purposes mentioned in the beginning of this chapter.

2.1.4 Memory Map

A predefined virtual-to-physical memory map table is required for the device drivers to access to the device
registers since the Linux kernel is running under the virtual address space with the Memory Management Unit
(MMU) enabled.

2.1.4.1 Memory Map Hardware Operation

The MMU, as part of the Arm core, provides the virtual to physical address mapping defined by the page table.
For more information, see the Arm Technical Reference Manual (TRM) from Arm Limited.

2.1.4.2 Memory Map Features

The Memory Map implementation programs the Memory Map module to create the physical to virtual memory
map for all the I/O modules.

2.1.5 IOMUX

The limited number of pins of highly integrated processors can have multiple purposes. The IOMUX module
controls a pin usage so that the same pin can be configured for different purposes and can be used by
different modules. This is a common way to reduce the pin count while meeting the requirements from various
customers. Platforms that do not have the IOMUX hardware module can do pin muxing through the GPIO
module.

The IOMUX module provides the multiplexing control so that each pin may be configured either as a functional
pin or as a GPIO pin. A functional pin can be subdivided into either a primary function or alternate functions.
The pin operation is controlled by a specific hardware module. A GPIO pin, is controlled by the user through
software with further configuration through the GPIO module. For example, the TXD1 pin might have the
following functions:

• TXD1-internal UART1 Transmit Data. This is the primary function of this pin.
• UART2 DTR-alternate mode 3
• LCDC_CLS-alternate mode 4

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
14 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• GPIO4[22]-alternate mode 5
• SLCDC_DATA[8]-alternate mode 6

If the hardware modes are chosen at the system integration level, this pin is dedicated only to that purpose and
cannot be changed by software. Otherwise, the IOMUX module needs to be configured to serve a particular
purpose that is dictated by the system (board) design. If the pin is connected to an external UART transceiver
and therefore to be used as the UART data transmit signal, it should be configured as the primary function. If
the pin is connected to an external Ethernet controller for interrupting the Arm core, then it should be configured
as GPIO input pin with interrupt enabled. Again, be aware that the software does not have control over what
function a pin should have. The software only configures pin usage according to the system design.

2.1.5.1 IOMUX Hardware Operation

The following discussion applies only to those processors that have an IOMUX hardware module. The IOMUX
controller registers are briefly described in this section. For detailed information, see the pin multiplexing section
of the IC Reference Manual.

• SW_MUX_CTL-Selects the primary or alternate function of a pin. Also enables loopback mode when
applicable.

• SW_SELECT_INPUT-Controls pin input path. This register is only required when multiple pads drive the
same internal port.

• SW_PAD_CTL-Control pad slew rate, driver strength, pull-up/down resistance, and so on.

2.1.5.2 IOMUX Software Operation

The IOMUX software implementation provides an API to set up pin functionality and pad features.

2.1.5.3 IOMUX Features

The IOMUX implementation programs the IOMUX module to configure the pins that are supported by the
hardware.

2.1.5.4 IOMUX Source Code Structure

Table below lists the source files for the IOMUX module. The files are in the drivers/princtrl/freescale folder.

File Description

drivers/pinctrl/freescale/pinctrl-imx.c i.MX pinctrl core driver

drivers/pinctrl/freescale/pinctrl-imx6q.c i.MX 6Quad/DualLite pinctrl driver

drivers/pinctrl/freescale/pinctrl-imx6sx.c i.MX 6SoloX pinctrl driver

drivers/pinctrl/freescale/pinctrl-imx6sll.c i.MX 6SLL pinctrl driver

drivers/pinctrl/freescale/pinctrl-imx6ul.c i.MX 6UltraLite and 6ULL pinctrl driver

drivers/pinctrl/freescale/pinctrl-imx7d.c i.MX 7Dual pinctrl driver

drivers/pinctrl/freescale/pinctrl-imx7ulp.c i.MX 7ULP pinctrl driver

drivers/pinctrl/freescale/pinctrl-imx8qm.c i.MX 8QuadMax pinctrl driver

drivers/pinctrl/freescale/pinctrl-imx8qxp.c i.MX 8QuadXPlus pinctrl driver

drivers/pinctrl/freescale/pinctrl-imx8mq.c i.MX 8M Quad pinctrl driver

drivers/pinctrl/freescale/pinctrl-imx8mm.c i.MX 8M Mini pinctrl driver

Table 7. IOMUX Files

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
15 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

File Description

drivers/pinctrl/freescale/pinctrl-imx8mn.c i.MX 8M Nano pinctrl driver

drivers/pinctrl/freescale/pinctrl-imx8ulp.c i.MX 8ULP pinctrl driver

drivers/pinctrl/freescale/pinctrl-imx93.c i.MX 93 pinctrl driver

drivers/pinctrl/freescale/pinctrl-imx-scmi.c i.MX 943 and i.MX 95 pinctrl driver.

Table 7. IOMUX Files...continued

2.1.5.5 IOMUX Programming Interface

See pinctrl binding documents Documentation/devicetree/bindings/pinctrl/fsl,imx*.
[yaml,txt].

2.1.5.6 IOMUX Control Through GPIO Module

For a multipurpose pin, the GPIO controller provides the multiplexing control so that each pin may be configured
either as a functional pin, or a GPIO pin. The operation of the functional pin, which can be subdivided into either
major function or one alternate function, is controlled by a specific hardware module. If it is configured as a
GPIO pin, the pin is controlled by the user through software with further configuration through the GPIO module.
In addition, there are some special configurations for a GPIO pin (such as output based A_IN, B_IN, C_IN or
DATA register, but input based A_OUT or B_OUT).

The following discussion applies to those platforms that control the muxing of a pin through the general purpose
input/output (GPIO) module.

If the hardware modes are chosen at the system integration level, this pin is dedicated only to that purpose
which cannot be changed by software. Otherwise, the GPIO module needs to be configured properly to serve a
particular purpose that is dictated with the system (board) design. If this pin is connected to an external UART
transceiver, it should be configured as the primary function or if this pin is connected to an external Ethernet
controller for interrupting the core, then it should be configured as GPIO input pin with interrupt enabled. The
software does not have control over what function a pin should have. The software only configures a pin for that
usage according to the system design.

2.1.5.6.1 GPIO Hardware Operation

The GPIO controller module is divided into MUX control and PULLUP control sub modules. The following
sections briefly describe the hardware operation. For detailed information, see the relevant device
documentation.

2.1.5.6.1.1 Muxing Control

The GPIO In Use Registers control a multiplexer in the GPIO module.

The settings in these registers choose if a pin is utilized for a peripheral function or for its GPIO function. One
32-bit general purpose register is dedicated to each GPIO port. These registers may be used for software
control of IOMUX block of the GPIO.

2.1.5.6.1.2 PULLUP Control

The GPIO module has a PULLUP control register (PUEN) for each GPIO port to control every pin of that port.

2.1.5.6.2 GPIO Software Operation (general)

The GPIO software implementation provides an API to setup pin functionality and pad features.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
16 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

2.1.5.6.3 GPIO Implementation

The GPIO implementation programs the GPIO module to configure the pins that are supported by the hardware.

2.1.6 General Purpose Input/Output (GPIO)

The GPIO module provides general-purpose pins that can be configured as either inputs or outputs. When
configured as an output, the pin state (high or low) can be controlled by writing to an internal register. When
configured as an input, the pin input state can be read from an internal register.

2.1.6.1 GPIO Software Operation

The general purpose input/output (GPIO) module provides an API to configure the i.MX processor external pins
and a central place to control the GPIO interrupts.

The GPIO utility functions should be called to configure a pin instead of directly accessing the GPIO registers.
The GPIO interrupt implementation contains functions, such as the interrupt service routine (ISR) registration/
un-registration and ISR dispatching once an interrupt occurs. All driver-specific GPIO setup functions should
be made during device initialization in the MSL layer to provide better portability and maintainability. This GPIO
interrupt is initialized automatically during the system startup.

If a pin is configured as GPIO by the IOMUX, the state of the pin should also be set since it is not initialized
by a dedicated hardware module. Setting the pad pull-up, pull-down, slew rate and so on, with the pad control
function may be required as well.

2.1.6.1.1 API for GPIO

API for GPIO lists the features supported by the GPIO implementation.

The GPIO implementation supports the following features:

• An API for registering an interrupt service routine to a GPIO interrupt. This is made possible as the number of
interrupts defined by NR_IRQS is expanded to accommodate all the possible GPIO pins that are capable of
generating interrupts.

• Functions to request and free an IOMUX pin. If a pin is used as GPIO, another set of request/free function
calls are provided. The user should check the return value of the request calls to see if the pin has already
been reserved before modifying the pin state. The free function calls should be made when the pin is not
needed. See the API document for more details.

• Aligned parameter passing for both IOMUX and GPIO function calls. In this implementation the same
enumeration for iomux_pins is used for both IOMUX and GPIO calls and the user does not have to figure out
in which bit position a pin is located in the GPIO module.

• Minimal changes required for the public drivers such as Ethernet and UART drivers as no special GPIO
function call is needed for registering an interrupt.

2.1.6.2 GPIO Features

This GPIO implementation supports the following features:

• Implements the functions for accessing the GPIO hardware modules
• Provides a way to control GPIO signal direction and GPIO interrupts

2.1.6.3 GPIO Module Source Code Structure

All of the GPIO module source code is in the GPIO framework, in the following files, located in the directories
indicated at the beginning of this chapter:

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
17 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

File Description

drivers/gpio/gpio-mxc.c Function implementation on i.MX 6, i.MX 7Dual, i.MX 8M Nano, i.MX 8M
Mini, i.MX 8M Quad, i.MX 8QuadXPlus, i.MX 8QuadMax, and i.MX 8DXL

drivers/gpio/gpio-vf610.c Function implementtation on i.MX 7ULP, i.MX 8ULP, and i.MX 9

Table 8. GPIO Files

2.1.6.4 GPIO Programming Interface 2

For more information, see the Documentation/gpio/gpio.txt under Linux source code directory for the
programming interface.

2.1.7 Clock

The Linux clock framework relies on the underlying hardware to provide support for clock tree management.

The following table describes different clock hardware used.

File Description

Clock controller module (CCM) i.MX 6Quad/DualLite/SoloX/UltraLite/ULL/SLL, i.MX 7Dual,
i.MX 8M Quad, i.MX 8M Mini, i.MX 8M Nano, i.MX 8M Plus,
and i.MX 93

Peripheral clock control (PCC) and System clock generator
(SCG)

i.MX 7ULP, i.MX 8ULP

Distributed slave system controller (DSC) i.MX 8QuadMax/8QuadXPlus

2.1.7.1 Clock Software Operation

The clock software implementation provides an initialization function that initializes the clock tree according to
hardware clock type and settings, and then provides clock operation callbacks to operate the hardware clock
module.

2.1.7.2 Clock Features

The clock implementation supports the following features according to different clock types:

• Prepare/Unprepare a clock.
• Enable/Disable a clock.
• Get/Set the clock rate.
• Get/Set the clock parent.

2.1.7.3 Source Code Structure

The source code structure is as follows.

File Description

drivers/clk/imx/clk-imx6q.c i.MX 6Quad/6DualLite clock driver

drivers/clk/imx/clk-imx6sx.c i.MX 6SoloX clock driver

drivers/clk/imx/clk-imx6ul.c i.MX 6UltraLite and 6ULL clock driver

drivers/clk/imx/clk-imx6sll.c i.MX 6SLL clock driver

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
18 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

File Description

drivers/clk/imx/clk-imx7d.c i.MX 7Dual clock driver

drivers/clk/imx/clk-imx7ulp.c i.MX 7ULP clock driver

drivers/clk/imx/clk-imx8qm.c i.MX 8QuadMax clock driver

drivers/clk/imx/clk-imx8qxp.c i.MX 8QuadXPlus clock driver

drivers/clk/imx/clk-imx8mq.c i.MX 8M Quad clock driver

drivers/clk/imx/clk-imx8mm.c i.MX 8M Mini clock driver

drivers/clk/imx/clk-imx8mn.c i.MX 8M Nano clock driver

drivers/clk/imx/clk-imx8ulp.c i.MX 8ULP clock driver

drivers/clk/imx/clk-imx93.c i.MX 93 clock driver

drivers/clk/clk-scmi.c i.MX 95 and i.MX 943

2.1.7.4

Different clock types provide different clock operation callbacks. Device drivers call standard clock APIs to clock
framework and eventually call into platform clock driver, and the corresponding clock node’s operation callback
is executed.

2.2 System Controller

2.2.1 Introduction

The System Controller is provided on i.MX 8 and i.MX 8X families and provides an abstraction to many
underlying features of the hardware and runs on a Cortex-M processor which executes SC firmware (SCFW).
This overview describes the features of the SCFW and APIs exposed to other software components.

The System Controller features include:

• System Intiialization and Boot - The SC firmware runs on the SCU immediately after the SCU Read-only-
memory (ROM) finishes loading code/data images from the first container. It is responsible for initializing many
aspects of the system. This includes additional power and clock configuration and resource isolation hardware
configuration. By default, the SC firmware configures the primary boot core to own most of the resources and
launches the boot core. Additional configuration can be done by boot code.

• System Controller Communication - Other software components in the system communicate to the SC via an
exposed API library. This library is implemented to make Remote Procedure Calls (RPC) via an underlying
Inter-Processor Communication (IPC) mechanism. The IPC is facilitated by a hardware-based mailbox
system. Software components (Linux, QNX, FreeRTOS, MCUXpresso SDK) delivered for i.MX8 already
include ports of the client API. Other 3rd parties will need to first port the API to their environment before the
API can be used. The porting kit release includes archives of the client API for existing SW. These can be
used as reference for porting the client API. All that needs to be implemented is the IPC layer which will utilize
messaging units (MU) to communicate with the SCFW.

• Power Management - All aspects of power management including power control, bias control, clock control,
reset control, and wake-up event monitoring are grouped within the SC Power Management service.
– Power Control - The SC firmware is responsible for centralized management of power controls and

external power management devices. It manages the power state and voltage of power domains as well as
bias control. It also resets peripherals as required due to power-state transitions. This is immplemented with
the API by communicating power state needs for individual resources.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
19 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

– Clock Control - The SC firmware is responsible for centralized management of clock controls. This includes
clock sources such as oscillators and PLLs as well as clock dividers, muxes, and gates. This is implemented
with the API by communicating clocking needs for individual resources.

– Reset Control - The SC firmware is responsible for reset control. This includes booting/rebooting a
partition, obtaining reset reasons, and starting/stopping of CPUs.

Before any hardware in the SoC can be used, SW must first power up the resource and enable any clocks
that it requires, otherwise access will generate a bus error.

• Resource Management - SC firmware is responsible for managing ownership and access permissions to
system resources. The features of the resource management service supported by SC firmware include:
– Management of system resources such as SoC peripherals, memory regions, and pads
– Allows resources to be partitioned into different ownership groupings that are associated with different

execution environments including multiple operating systems executing on different cores, TrustZone, and
hypervisor

– Associates ownership with requests from messaging units within a resource partition
– Allows memory to be divided into memory regions that are then managed like other resources
– Allows owners to configure access permissions to resources
– Configures hardware components to provide hardware enforced isolation
– Configures hardware components to directly control secure/nonsecure attribute driven on bus fabric
– Provides ownership and access permission information to other system controller functions (e.g., pad

ownership information to the pad muxing functions)
– Protection of resources is provided in two ways. First, the SCFW itself checks resource access rights when

API calls are made that affect a specific resource. Depending on the API call, this may require that the caller
be the owner, parent of the owner, or an ancestor of the owner. Second, any hardware available to enforce
access controls is configured based on the RM state. This includes the configuration of IP such as XRDC2,
XRDC, or RDC, as well as management pages of IP like CAAM.

• Pad Configuration - Pad configuration is managed by SC firmware. The pad configuration features supported
by the SC firmware include:
– Configuring the mux, input/output connection, and low-power isolation mode.
– Configuring the technology-specific pad setting such as drive strength, pullup/pulldown, etc.
– Configuring compensation for pad groups with dual voltage capability.

• Timers - Many timer oriented services are grouped within the SC Timer service. This includes watchdogs,
RTC, and system counter.
– Watchdog - The SC firmware provides "virtual" watchdogs for all execution environments. Features include

update of the watchdog timeout, start/stop of the watchdog, refresh of the watchdog, return of the watchdog
status such as maximum watchdog timeout that can be set, watchdog timeout interval, and watchdog
timeout interval remaining.

– Real-Time-Clock - The SC firmware is responsible for providing access to the RTC. Features include
setting the time, getting the time, and setting alarms.

– System Counter - The SC firmware is responsible for providing access to the SYSCTR. Features incude
setting an absolute alarm or a relative, periodic alarm. Reading is done directly via local hardware interfaces
available for each CPU.

• Interrupts - The System Controller needs a method to inform users about asynchronous notification events.
This is done via the Interrupt service. The service provides APIs to enable/disable interrupts to the user and to
read the status of pending interrupts. Reading the status automatically clears any pending state.

• Miscellaneous - On previous i.MX 6 and 7 devices, miscellaneous features were controlled using IOMUX GPR
registers with signals connected to configurable hardware. This functionality is being replaced with DSC GPR
signals. SC firmware is responsible for programming the GPR signals to configure these subsystem features.
The SC firmware also responsible for monitoring various temperature, voltage, and clock sensors.
– Controls - The SC firmware provides access to miscellaneous controls. Features include software request

to set (write) miscellaneous controls and software request to get (read) miscellaneous controls.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
20 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

– Security - The SC firmware provides access to several security functions including image loading and
authentication.

– DMA - The SC firmware provides access to DMA channel grouping and priority functions.
– Temp - The SC firmware provides access to temperature sensors.

With this abstraction some hardware described in the SoC Reference Manual that is used by the SCFW is not
directly accessible to other cores. This includes the following

• All resources in the SCU subsystem (SCU M4, SCU LPUART, SCU LPI2C, etc.).
• All resource accessed via MSI links from the SCU subsystem (inc. pads, DSC, XRDC2, eCSR)
• OCRAM controller, CAAM MP, eDMA MP and LPCG
• DB STC and LPCG, IMG GPR
• GIC/IRQSTR LPCG, IRQSTR.SCU and IRQSTR.CTI
• Any other resources reserved by the port of the SCFW to the board

The System Controll firmware known as SCFW provided with each release works with associated i.MX
reference boards and a porting kit is provided that provides a subset of source that can be customized for new
boards. This porting kit is avaiable on nxp.com and includes a porting guide.

2.3 Boot Image

2.3.1 Introduction

For i.MX 6 and i.MX 7, the boot image uses only the U-Boot bootloader. For the SoC in the i.MX 8 and i.MX 9
series, the boot image is more complex and includes U-Boot as well various firmware required for a successful
boot. This chapter describes the additional components for an i.MX 8 series boot loader.

For i.MX 7ULP, the boot partition requires the Arm Cortex M-4 SDK flash since the Arm Cortex M-4 boots the U-
Boot boot loader, but other i.MX 6 and i.MX 7 with Arm Cortex M-4 cores do not require this for succesful boot.

The i.MX 8 and i.MX 9 bootloaders are created using imx-mkimage tool available on imx-mkimage on
github.com/nxp-imx/ and all i.MX 8 Series require Arm trusted firmware available on imx-atf on github.com/nxp-
imx/.

For details on how to use the imx-mkimage tool to create an i.MX boot partition, refer to the i.MX Linux User's
Guide. This tool for execution requires the following components.

For i.MX 8M Quad, i.MX 8M Mini, and i.MX 8M Nano, the following firmware is needed:

• Synopys DDR frimware
• Signed HDMI firmware - that integrates with the DCSS driver. HDMI firmware is for i.MX 8M Quad only
• Arm Trusted firmware - bl31-*soc*

For i.MX 8QuadMax, the following firmware is needed:

• System Controller Firmware (SCFW)
• Arm Trusted firmware - bl31-*soc*
• SECO firmware container image (ahab-container.img) for B0

For i.MX 8QuadXPlus, i.MX 8DualX, and i.M 8DualXLite, the following firmware is needed:

• System Controller Firmware (SCFW)
• Arm Trusted firmware - bl31-*soc*
• SECO firmware container image (ahab-container.img)

For i.MX 93 and i.MX 91, the following firmware is needed:

• Synopsys DDR firmware

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
21 / 301

https://github.com/nxp-imx/imx-mkimage/
https://github.com/nxp-imx/imx-mkimage/
https://github.com/nxp-imx/imx-atf/
https://github.com/nxp-imx/imx-atf/
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• Arm Trusted firmware - bl31-*soc*
• ELE firmware container

For i.MX 95 and i.MX 943, the following firmware is needed:

• Synopsys DDR firmware
• Arm Trusted firmware
• OEI firmware
• ELE firmware container
• System manager firmware

All the i.MX series require Arm trusted firmware and U-boot. Also i.MX SoC supporting OP-TEE (all i.MX 6, 7
and 8M families) enabled with OP-TEE boot need the tee.bin created from building optee_ox.

Type 2 hypervisors such as Jailhouse and kvm are not part of the boot loader. Type 1 hypervisors are part of the
loader however xen and only support i.MX 95 19x19 EVK.

2.4 Anatop Regulator Driver

2.4.1 Introduction

The Anatop regulator driver provides the low-level control of the power supply regulators, and selection of
voltage levels. This device driver makes use of the regulator core driver to access the Anatop hardware control
registers and is only supported on i.MX 6 and i.MX 7.

2.4.2 Hardware Operation

The Power Management Unit on the die is built to simplify the external power interface and allow the die to be
configured in a power appropriate manner. The power system consists of the input power sources and their
characteristics, the integrated power transforming and controlling elements, and the final load interconnection
and requirements.

Utilizing 7 LDO regulators, the number of external supplies is greatly reduced. If the backup coin and USB
inputs are neglected, then the number of external supplies is reduced to two. Missing from this external supply
total are the necessary external supplies to power the desired memory interface. This will change depending
on the type of external memory selected. Other supplies might also be necessary to supply the voltage to the
different I/O power segments if their I/O voltage needs to be different than what is provided above.

Some internal regulator can be bypassed, so that the external PMIC can supply power directly to decrease
power number, such as VDD_SOC and VDD_ARM.

2.4.3 Software Operation

The Anatop regulator client driver performs operations by reconfiguring the Anatop hardware control registers.
This is done by calling regulator core APIs with the required register settings.

2.4.4 Driver Features

The Anatop regulator driver is based on regulator core driver. A list of services provided for regulator control can
be found here.

• Switch ON/OFF all voltage regulators.
• Set the value for all voltage regulators.
• Get the current value for all voltage regulators.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
22 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

2.4.5 Driver Interface Details

Access to the Anatop regulator is provided through the API of the regulator core driver. The Anatop regulator
driver provides the following regulator controls:

• Seven LDO regulators
• All of the regulator functions are handled by setting the appropriate Anatop hardware register values. This is

done by calling the regulator core APIs to access the Anatop hardware registers.

2.4.6 Regulator APIs

The regulator power architecture is designed to provide a generic interface to voltage and current regulators
within the Linux kernel. It is intended to provide voltage and current control to client or consumer drivers and
also provide status information to user space applications through a sysfs interface. The intention is to allow
systems to dynamically control regulator output to save power and prolong battery life. This applies to both
voltage regulators (where voltage output is controllable) and current sinks (where current output is controllable).

For more details visit opensource.wolfsonmicro.com/node/15

Under this framework, most power operations can be done by the following unified API calls:

• regulator_get used to lookup and obtain a reference to a regulator:
– struct regulator *regulator_get(struct device *dev, const char *id);

• regulator_put used to free the regulator source:
– void regulator_put(struct regulator *regulator, struct device *dev);

• regulator_enable used to enable regulator output:
– int regulator_enable(struct regulator *regulator);

• regulator_disable used to disable regulator output:
– int regulator_disable(struct regulator *regulator);

• regulator_is_enabled is the regulator output enabled:
– int regulator_is_enabled(struct regulator *regulator);

• regulator_set_voltage used to set regulator output voltage:
– int regulator_set_voltage(struct regulator *regulator, int uV);

• regulator_get_voltage used to get regulator output voltage:
– int regulator_get_voltage(struct regulator *regulator);

For more APIs and details in the regulator core source code inside the Linux kernel see: drivers/regulator/
core.c.

2.4.7 Source Code Structure

The Anatop regulator driver is located in the drivers/regulator directory:

File Description

drivers/regulator/core.c Regulator interface

drivers/regulator/anatop-regulator.c Anatop regulator client driver

Table 9. Anatop Power Management Driver Files

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
23 / 301

http://opensource.wolfsonmicro.com/node/15
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

The Anatop regulators are registered in each SoC-specific dts file in arch/arm/boot/dts.

2.4.8 Menu Configuration Options

In menu configuration enable the following module:

• Device Drivers > Voltage and Current regulator support > Anatop Regulator Support.
• System Type > Freescale i.MX on-chip ANATOP LDO regulators.

2.5 Power Management

2.5.1 Low Level Power Management (PM)

2.5.1.1 Introduction

Information found here describes the low-level Power Management (PM) driver which controls the low-power
modes.

The following describes the differences between how power management is handled for each supported i.MX
family.

i.MX Family Supported Low Power Modes

i.MX 6 RUN, WAIT, STOP, and DORMANT

i.MX 7 RUN, WAIT, STOP, DORMANT, and LPSR

i.MX 8M RUN, IDLE, SUSPEND, and SNVS

i.MX 8, i.MX 8X None - handled by the System Controller

i.MX 8ULP ACTIVE, SLEEP, Power Down, and Deep Power Down

i.MX 91, i.MX 93, i.MX 95,
i.MX 943

RUN, IDLE, SUSPEND, and BBSM

Table 10. Power Management Modes

Note: i.MX 8ULP has additional low power modes: Partial Active and Deep Sleep modes. The two modes are
not used in Linux OS, because no typical software power mode can be used to support them.

Table below lists the detailed clock information for the different low power modes.

Mode Core Modules PLL CKIH/FPM CKIL

RUN Active Active, Idle or Disable On On On

WAIT Disable Active, Idle or Disable On On On

STOP Disable Disable Off On On

LPSR Power off Disable Off Off On

DORMANT Power off Disable Off Off On

SNVS Power off Disable Off Off On

Table 11. Low Power Modes

For detailed information about low power modes, see the Applications Processor Reference Manual associated
with SoC.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
24 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

2.5.1.2 Software Operation

The i.MX 6 and i.MX 7 power management driver maps the low-power modes to the kernel power management
states as listed below:

• Standby-maps to STOP mode, which offers significant power saving, as all blocks in the system are put into a
low-power state, except for Arm core, which is still powered on, and memory is placed in self-refresh mode to
retain its contents.

• Mem (suspend to RAM) maps to DORMANT mode, which offers most significant power saving, as all blocks
in the system are put into a low-power state, except for memory, which is placed in self-refresh mode to retain
its contents. If there is "fsl,enable-lpsr" defined in DTB ocrams node, mem is mapped to LPSR mode
instead of DORMANT, and all the blocks in the system are put into power off state, except the LPSR, SNVS,
and DRAM power domains.

• System idle maps to WAIT mode.
• If Arm Cortex-M4 processor is alive together with Arm Cortex-A processor before the kernel enters standby/

mem mode, and if Arm Cortex-M4 processor is not in its low-power idle mode, Arm Cortex-A processor
triggers the SoC to enter WAIT mode instead of STOP mode to make sure that Arm Cortex-M4 processor can
continue running.

The i.MX 6 and i.MX 7 power management driver performs the following steps to enter and exit low power
mode:

1. Allow the Cortex-A platform to issue a deep sleep mode request.
2. If STOP or DORMANT mode:

• Program i.MX 6 CCM_CLPCR or i.MX 7 GPC_LPCR_A7_BSC and GPC_SLPCR registers to set low-
power control register.

• If DORMANT mode, request switching off CPU power when pdn_req is asserted.
• Request switching off embedded memory peripheral power when pdn_req is asserted.
• Program GPC mask register to unmask wakeup interrupts.

3. Call cpu_do_idle to execute WFI pending instructions for wait mode.
4. Execute imx6_suspend or imx7_suspend in IRAM.
5. In DORMANT mode, save Arm context, and change the drive strength of DDR PADs as "low" to minimize

the power leakage in DDR PADs. Execute WFI pending instructions for stop mode.
6. Generate a wakeup interrupt and exit low-power mode. In DORMANT mode, restore Arm core and DDR

drive strength.

In DORMANT mode, the i.MX 6 and i.MX 7 can assert the PMIC_STBY_REQ pin to the PMIC and request a
voltage change. The U-Boot or Machine-Specific Layer (MSL) usually sets the standby voltage in STOP mode
according to i.MX 6 and i.MX 7 data sheet.

On i.MX 8M Family the power management driver uses the following modes.

• RUN Mode: In this mode, the Quad-A53 CPU core is active and running. Some portions can be shut off for
power saving.

• IDLE Mode: This mode is defined as a mode which CPU can automatically enter when there is no thread
running and all high-speed devices are not active. The CPU can be put into power gated state but with L2
data retained, DRAM and bus clock are reduced, and most of the internal logics are clock gated but still
remain powered.

• SUSPEND Mode: This mode is defined as the most power saving mode where all the clocks are off and all
the unnecessary power supplies are off. Cortex-A53 CPU platform is fully power gated. All the internal digital
logics and analog circuits that can be powered down will be off.

• SNVS Mode: This mode is also called RTC mode. In this mode, only the power for the SNVS domain remains
on to keep RTC and SNVS logic alive.

On i.MX 8 and i.MX 8X:

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
25 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• Low-power mode management is not controlled by a dedicated hardware block.
• All low-power modes are implemented in system controller firware (SCFW) using software method.
• SCFW powers off clusters/CPUs when the system is suspended.

On i.MX 8ULP:

• uPower is responsible for controlling the power mode transition, Power switch, and mem ON/OFF.
• For detailed power mode description, see the Applications Processor Reference Manual associated with SoC.

On i.MX 9 family:

• RUN Mode: In this mode, the Cortex-A55 CPU core is active and running. Some portions can be shut off for
power saving.

• IDLE Mode: This mode is defined as a mode which CPU can automatically enter when there is no thread
running and all high-speed devices are not active. The CPU can be put into power gated state but with L3
memory retained. DDR can be put into auto clock gating, power switchable MIX can be power off and most of
the internal logics are clock gated but still remain powered.

• SUSPEND Mode: This mode is defined as the most power saving mode where all the clocks are off and all
the unnecessary power supplies are off. Cortex-A55 CPU platform is power gated. All the internal digital logics
and analog circuits that can be powered down will be off.

• BBSM Mode: This mode is also called RTC mode. In this mode, only the power for the BBSM domain remains
on to keep RTC and BBSM logic alive.

2.5.1.3 Source Code Structure

Table below shows Power Management driver source files.

File Description

• arch/arm/mach-imx/pm-imx6.c
• arch/arm/mach-imx/suspend-imx6.S
• arch/arm/mach-imx/cpuidle-imx6q.c

Supports i.MX 6QuadPlus/Quad/Dual/Solo power
management operation

• arch/arm/mach-imx/pm-imx6.c
• arch/arm/mach-imx/suspend-imx6.S
• arch/arm/mach-imx/cpuidle-imx6sll.c
• arch/arm/mach-imx/imx6sll_low_power_idle.S

Supports i.MX 6SLL power management operation

• arch/arm/mach-imx/pm-imx6.c
• arch/arm/mach-imx/suspend-imx6.S
• arch/arm/mach-imx/cpuidle-imx6ul.c
• arch/arm/mach-imx/imx6ul_low_power_idle.S

Supports i.MX 6UltraLite power management operation

• arch/arm/mach-imx/pm-imx6.c
• arch/arm/mach-imx/suspend-imx6.S
• arch/arm/mach-imx/cpuidle-imx6ul.c
• arch/arm/mach-imx/imx6ull_low_power_idle.S

Supports i.MX 6ULL power management operation

• arch/arm/mach-imx/pm-imx6.c
• arch/arm/mach-imx/suspend-imx6.S
• arch/arm/mach-imx/cpuidle-imx6sx.c
• arch/arm/mach-imx/imx6sx_low_power_idle.S

Supports i.MX 6SoloX power management operation

• arch/arm/mach-imx/pm-imx7.c
• arch/arm/mach-imx/suspend-imx7.S
• arch/arm/mach-imx/cpuidle-imx7d.c

Supports i.MX 7Dual power management operation

Table 12. Power Management Driver Files

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
26 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

File Description
• arch/arm/mach-imx/imx7d_low_power_idle.S

• arch/arm/mach-imx/pm-imx7ulp.c
• arch/arm/mach-imx/suspend-imx7ulp.S
• arch/arm/mach-imx/cpuidle-imx7.c

Supports i.MX 7ULP power management operation

• drivers/soc/imx/imx8m_pm_domains.c Supports i.MX 8M power domains

• driver/soc/imx/imx8ulp_lpm.c Supports i.MX 8ULP system level voltage and frequency
scaling

• driver/soc/imx/imx93_lpm.c Supports i.MX 93 and i.MX 91 system level voltage and
frequency scaling, and DDR auto clock gating control

Arm Trusted firmware exists in imx-atf on github.com/nxp-
imx/.

Supports i.MX 8, 8X, 8M, 8ULP, i.MX 93, i.MX 91, i.MX
95, and i.MX 943 to use Arm trusted firmware for power
management operation

Table 12. Power Management Driver Files...continued

2.5.1.4 Menu Configuration Options

In menu configuration enable the CONFIG_PM: CONFIG_PM builds support for power management. By
default, this option is Y In menuconfig, this option is available under: Power management options > Power
Management support.

In menu configuration enable the CONFIG_SUSPEND. CONFIG_SUSPEND builds support for suspend. In
menuconfig, this option is available under: Power management options > Suspend to RAM and standby

2.5.1.5 Programming Interface

Look in the cpu_idle for each SoC as shown in the source code structure table and search for lpm. This will be
the API for lower power mode. This implements all the steps required to put the system into WAIT and STOP
modes.

2.5.2 PMIC PF Regulator

2.5.2.1 Introduction

PF100/200/300 is a PMIC chip.

PF200/PF3000 is based on PF100 with little change, since they share the same PF100 driver. PF100 regulator
driver provides the low-level control of the power supply regulators, selection of voltage levels, and enabling/
disabling of regulators. This device driver makes use of the PF100 regulator driver to access the PF100
hardware control registers. PF100 regulator driver is based on regulator core driver and it is attached to kernel
I2C bus.

PF8100/8200 PMIC is designed for i.MX 8 and i.MX 8X families and is controlled by system controller firmware
(SCFW) since it is a system-level device. SCFW creates some specific power resource for the Linux touch,
such as "SC_R_BOARD_R0".

2.5.2.2 Hardware Operation

PMIC PF regulator provides reference and supply voltages for the application processor and peripheral devices.

Four buck (step down) converters (up to 6 independent output) and one boost (step up) converter are included.
The buck converters provide the power supply to processor cores and to other low voltage circuits such as

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
27 / 301

https://github.com/nxp-imx/imx-atf/
https://github.com/nxp-imx/imx-atf/
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

memory. Dynamic voltage scaling is provided to allow controlled supply rail adjustments for the processor cores
and/or other circuitry.

Linear regulators are directly supplied from the battery or from the switchers and include supplies for I/O and
peripherals, audio, camera, BT, WLAN, and so on. Naming conventions are suggestive of typical or possible
use case applications, but the switchers and regulators may be utilized for other system power requirements
within the guidelines of specified capabilities.

The only power on event of PF100 is PWRON is high, and the only power off event of PF100 is PWRON is low.
PMIC_ON_REQ pin of i.MX 6, which is controlled by SNVS block of i.MX 6, will connect with PWRON pin of
PF100 to control PF100 on/off, so that system can power off.

2.5.2.3 Software Operation

PMIC PF regulator client driver performs operations by reconfiguring the PMIC hardware control registers.

Some of the PMIC power management operations depend on the system design and configuration. For
example, if the system is powered by a power source other than the PMIC, then turning off or adjusting the
PMIC voltage regulators has no effect. Conversely, if the system is powered by the PMIC, then any changes
that use the power management driver and the regulator client driver can affect the operation or stability of the
entire system.

2.5.2.4 Driver Features

PMIC PF regulator driver is based on regulator core driver. It provides the following services for regulator control
of the PMIC component:

• Switch ON/OFF all voltage regulators.
• Set the value for all voltage regulators.
• Get the current value for all voltage regulators.

2.5.2.5 Regulator APIs

The regulator power architecture is designed to provide a generic interface to voltage and current regulators
within the Linux kernel.

It is intended to provide voltage and current control to client or consumer drivers and to provide status
information to user space applications through a sysfs interface. The intention is to allow systems to dynamically
control regulator output to save power and prolong battery life. This applies to both voltage regulators (where
voltage output is controllable) and current sinks (where current output is controllable).

For more details, see opensource.wolfsonmicro.com/node/15

Under this framework, most power operations can be done by the following unified API calls:

• regulator_get is an unified API call to lookup and obtain a reference to a regulator:

struct regulator *regulator_get(struct device *dev, const char *id);

• regulator_put is an unified API call to free the regulator source:

void regulator_put(struct regulator *regulator, struct device *dev);

• regulator_enable is an unified API call to enable regulator output:

int regulator_enable(struct regulator *regulator);

• regulator_disable is an unified API call to disable regulator output:

int regulator_disable(struct regulator *regulator);

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
28 / 301

http://opensource.wolfsonmicro.com/node/15
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• regulator_is_enabled is the regulator output enabled:

int regulator_is_enabled(struct regulator *regulator);

• regulator_set_voltage is an unified API call to set regulator output voltage:

int regulator_set_voltage(struct regulator *regulator, int uV);

• regulator_get_voltage is an unified API call to get regulator output voltage:

int regulator_get_voltage(struct regulator *regulator);

You can find more APIs and details in the regulator core source code inside the Linux kernel at:

drivers/regulator/core.c

2.5.2.6 Driver Architecture

The following figure shows the basic architecture of the PMIC PF regulator driver.

aaa-053504

Device drivers

PF100 driver Regulator core driver

PF100 regulator driver

I2C or SPI driver

Figure 1. PMIC PF Regulator Driver Architecture

2.5.2.7 Driver Interface Details

Access to PFUZE100 regulator is provided through the API of the regulator core driver.

PFUZE100 regulator driver provides the following regulator controls:

• 4 buck switch regulators on normal mode (up to 6 independent rails): SW1AB, SW1C, SW2, SW3A, SW3B,
and SW4.

• Buck switch can be programmed to a state of standby with specific register (PFUZE100_SWxSTANDBY) in
advance.

• 6 Linear Regulators: VGEN1, VGEN2, VGEN3, VGEN4, VGEN5, and VGEN6.
• 1 LDO/Switch supply for VSNVS support on i.MX processors.
• 1 Low current, high accuracy, voltage reference for DDR Memory reference voltage.
• 1 Boost regulator with USB OTG support.
• Most power rails from PFUZE100 have been programmed properly according to the hardware design.

Therefore, you can't find the kernel using PFUZE100 regulators. PFUZE100 regulator driver has implemented
these regulators so that customers can use it freely if default PFUZE100 value can't meet their hardware
design.

2.5.2.8 Source Code Structure

The PFUZE regulator driver is located in the drivers/regulator directory:

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
29 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

File Description

drivers/regulator/pfuze100-regulator.c Implementation of the PFUZE100 regulator client driver.

drivers/regulator/pf1550.c Implementation of the PFUZE1550 regulator client driver.

drivers/regulator/pf1550-regulator-rpmsg.c Implementation of the PFUZE150 regulator RPMSG code.

Table 13. PFUZE Driver Files

There is no board file related to PMIC. Some PFUZE driver code was moved to U-Boot, such as standby
voltage setting. Some code is implemented by DTS file. Search for PFUZE100 in Uboot source and pfuze in
device trees dtsi files in i.MX 6 and i.MX7 in arch/arm/boot/dts and for i.MX 8M in arch/arm64/boot/dts.

2.5.2.9 Menu Configuration Options

In menu configuration enable the following module:

Device Drivers > Voltage and Current regulator support > Freescale PFUZE100/200/3000 regulator driver.

2.5.3 CPU Frequency Scaling (CPUFREQ)

2.5.3.1 Introduction

The CPU frequency scaling device driver allows the clock speed of the CPU to be changed on the fly. Once
the CPU frequency is changed, the voltage of the necessary power supplies are changed to the voltage value
defined in device tree scripts (DTS). This method can reduce power consumption (thus saving battery power),
because the CPU uses less power as the clock speed is reduced.

2.5.3.2 Software Operation

The CPUFREQ device driver is designed to change the CPU frequency and voltage on the fly.

If the frequency is not defined in DTS, the CPUFREQ driver changes the CPU frequency to the nearest higher
frequency in the array. The frequencies are manipulated using the clock framework API, while the voltage is set
using the regulators API. The CPU frequencies in the array are based on the boot CPU frequency. Interactive
CPU frequency governor is used which cannot be changed manually. To change CPU frequency manually, the
userspace CPU frequency governor can be used. By default, the conservative CPU frequency governor is used.

See the API document for more information on the functions implemented in the driver.

To view what values the CPU frequency can be changed to in KHz (the values in the first column are the
frequency values), use this command:

cat /sys/devices/system/cpu/cpu0/cpufreq/stats/time_in_state

To change the CPU frequency to a value that is given by using the command above (for example, to 792 MHz)
use this command:

echo 792000 > /sys/devices/system/cpu/cpu0/cpufreq/scaling_setspeed

The frequency 792000 is in KHz, which is 792 MHz.

The maximum frequency can be checked using this command:

cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
30 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Use the following command to view the current CPU frequency in KHz:

cat /sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_cur_freq

Use the following command to view available governors:

cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_governors

Use the following command to change to interactive CPU frequency governor:

echo interactive > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

2.5.3.3 Source Code Structure

Table below shows the source files and headers available in the following directory.

File Description

drivers/cpufreq/imx6q-cpufreq.c i.MX 6 CPUFreq functions

drivers/cpufreq/imx-cpufreq-dt.c i.MX 7 and 8 CPUFreq functions

Table 14. CPUFREQ Driver Files

For CPU frequency working point settings, see the SoC corresponding DTSI file in arch/arm/boot/dts for
i.MX 6 and i.MX7 and arch/arm64/boot/dts for i.MX 8, i.MX 8X, and i.MX 8M. For i.MX 95 and i.MX 943,
the CPUFreq OPP information is provided through the SCMI performance protocol dynamically. No static OPP
is defined in DTS.

2.5.3.4 Menu Configuration Options

The following Linux kernel configuration is provided for this module:

• CONFIG_CPU_FREQ; In menuconfig, this option is located under:
– CPU Power Management > CPU Frequency scaling

• The following options can be selected:
– CPU Frequency scaling
– CPU frequency translation statistics
– Default CPU frequency governor (conservative)(interactive)
– Performance governor
– Powersave governor
– Userspace governor for userspace frequency scaling
– Interactive CPU frequency policy governor
– Conservative CPU frequency governor
– Schedutil CPU frequency governor
– CPU frequency driver for i.MX CPUs

2.5.4 Dynamic Bus Frequency

2.5.4.1 Introduction

To improve power consumption, the Bus Frequency driver dynamically manages the various system frequencies
for i.MX 6, i.MX 7, and i.MX 8M families.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
31 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

The frequency changes are transparent to the higher layers and require no intervention from the drivers or
middleware. Depending on activity of the peripheral devices and CPU loading, the bus frequency driver varies
the DDR frequency between 24 MHz and its maximum frequency. Similarly, the AHB frequency is varied
between 24 MHz and its maximum frequency.

2.5.4.2 Operation

The Bus Frequency driver is part of the power management module in the Linux BSP. The main purpose of
this driver is to scale the various operating frequency of the system clocks (like AHB, DDR, AXI, etc.) based on
peripheral activity and CPU loading.

2.5.4.3 Software Operation

The bus frequency depends on the request and release of device drivers for its operation. Drivers will call
bus frequency APIs to request or release the bus setpoint they want. The bus frequency will set the system
frequency to highest frequency setpoint based on the peripherals that are currently requesting.

To enable the bus frequency driver, use the following command:

echo 1 > /sys/bus/platform/drivers/imx_busfreq/soc\:busfreq/enable

To disable the bus frequency driver, use the following command:

echo 0 > /sys/bus/platform/drivers/imx_busfreq/soc\:busfreq/enable

If Arm Cortex-M4 processor is alive with Arm Cortex-A processor together, Arm Cortex-M4 processor also
requests or releases bus frequency high setpoint for its operation. This means that Arm Cortex-A processor
treats Arm Cortex-M4 processor as one of its high-speed devices.

The setpoint modes do the following:

• High Frequency Setpoint mode is used when most peripherals that need higher frequency for good
performance are active. For example, video playback and graphics processing.

• Audio Playback setpoints mode is used in audio playback mode.
• Low Frequency setpoint mode is used when the system is idle waiting for user input (display is off). For i.MX

8M, this mode is used when no peripheral device request high mode or audio mode.

The following table explains the software setpoints for each Family.

SoC Setpoints

i.MX 6 • High Frequency Setpoint: AHB is at 132 MHz, AXI is at 264 MHz.
• Audio Playback setpoints: On i.MX 6, AHB is at 25 MHz, AXI is at 50 MHz, and DDR is at 50

MHz for DDR3 and 100 MHz for LPDDR2..
• Low Frequency setpoint: AHB is at 24 MHz, AXI is at 24 MHz, and DDR is at 24 MHz.

i.MX 7Dual • High Frequency Setpoint: AHB is at 135 MHz, AXI is at 332 MHz, and DDR is at the maximum
frequency.

• Audio Playback setpoints: AHB is at 24 MHz, AXI is at 24 MHz, and DDR is at 100 MHz.
• Low Frequency setpoint: AHB is at 24 MHz, AXI is at 24 MHz, and DDR is at 24 MHz.

i.MX 8M • High bus frequency mode: The DDRC core clock is set to 800 MHz. The DDRC APB clock is
set to 200 MHz. The NOC clock is set to 800 MHz. The main AXI cock is set to 333 MHz, and
the AHB clock is set to 133 MHz.

Table 15. BusFrequency Set Points

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
32 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

SoC Setpoints
• Audio bus frequency mode: The DDRC core clock is set to 25 MHz, The DDRC APB clock is

set to 20 MHz, the NOC clock is set to 100 MHz. Tthe main AXI clock is set to 25 MHz, and the
AHB clock is set to 20 MHz. The DDR PLL is powered down for power saving.

• Low bus frequency mode: The DDRC core clock is set to 25 MHz. The DDRC APB clock is set
to 20 MHz. The NOC clock is set to 100 MHz. The main AXI clock is set to 25 MHz. The AHB
clock is set to 20 MHz. The DDR PLL is powered down for power saving.

Table 15. BusFrequency Set Points...continued

2.5.4.4 Source Code Structure

The following table lists the source files and headers.

File Description

arch/arm/mach-imx/busfreq-imx.c i.MX 6 and i.MX 7 Bus Frequency functions

include/linux/busfreq-imx.h i.MX Bus Frequency API Definitions

arch/arm/mach-imx/busfreq_ddr3.c i.MX 6 and i.MX 7 DDR3 Bus Frequency functions

arch/arm/mach-imx/busfreq_lpddr2.c i.MX 6 and i.MX 7 LPDDR2 Bus Frequency functions

arch/arm/mach-imx/lpddr2_freq_imx6.S i.MX 6 LPDDR2 Bus Frequency functions

arch/arm/mach-imx/lpddr2_freq_imx6q.S i.MX 6 QuadPlus/Quad/Dual/Solo LPDDR2 Bus Frequency functions

arch/arm/mach-imx/lpddr2_freq_imx6sll.S i.MX 6 SLL LPDDR2 Bus Frequency functions

arch/arm/mach-imx/lpddr2_freq_imx6sx.S i.MX 6 SoloX LPDDR2 Bus Frequency functions

arch/arm/mach-imx/lpddr3_freq_imx.S i.MX 6 and i.MX 7 LPDDR3 Bus Frequency functions

arch/arm/mach-imx/ddr3_freq_imx6.S i.MX 6 Bus Frequency functions

arch/arm/mach-imx/ddr3_freq_imx6sx.S i.MX 6 SoloX Bus Frequency functions

arch/arm/mach-imx/ddr3_freq_imx7d.S i.MX 7 Dual DDR3 Bus Frequency functions

drivers/soc/imx/busfreq-imx8mq.c i.MX 8M Bus Frequency functions

driver/soc/imx/imx8ulp_lpm.c i.MX 8ULP system level voltage and frequency scaling

driver/soc/imx/imx93_lpm.c i.MX 93 and i.MX 91 system level voltage and frequency scaling

Table 16. BusFrequency Driver Files

Bus frequency modes are defined in the SoC dtsi files in arch/arm/boot/dts for i.MX 6 and i.MX 7 and arch/
arm64/boot/dts for i.MX 8M and i.MX 9.

On i.MX 8ULP, there is a simple interface to change the APD-side voltage and frequency scaling.

To enabled the system level voltage and frequency scaling, use the following command:

echo 1 > /sys/device/platform/imx8ulp-lpm/enable

Note: Before enabling this mode, the FEC and the display must be off, and the system is idle.

To disable the system level voltage and frequency scaling, use the following command:

echo 0 > /sys/device/platform/imx8ulp-lpm/enable

For i.MX93 and i.MX 91 platforms, several dynamic power saving features can be supported with the flexible
HW architecture. All these features can be used case by case to maximum dynamic power saving.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
33 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• OD/ND/LD mode
Unlike the previous i.MX 8M family, there is no separate VDD_ARM power rail for Cortex-A platform. A single
VDD_SOC power rail is used for the whole digital logic in the SoC. The VDD_SOC can be nominal (ND) or
overdrive (OD) or a “low drive” (LD) voltage. Fine-grained DVFS is theoretically supported by the hardware
(but not customer-exposed). In general, it is expected that many customers will choose to statically operate at
either nominal or low drive voltage (for lowest power) or overdrive voltage (for highest performance). However,
dynamic voltage scaling is supported on a system-level “mode change” (such as if the entire chip goes into a
low power standby mode while the display is updating a clock, but the system is otherwise idle and waiting for
input).

• DDR frequency scaling
On i.MX 93 and i.MX 91, the DDR subsystem has multiple frequency setpoints support. DDR can change
the frequency dynamically to reduce the power consumption. There are two methods to change the DDR
frequency dynamically: The HWFFC and SWFFC. The HWFFC switching flow is faster than the SWFFC. It
has a very short latency. Normally, it can be used for DDR frequency scaling on the fly with display on. But it
can only be used when switching the frequency to half of the highest frequency. SWFFC may need to be used
to switch the target frequency to a setpoint that is lower than half of the highest frequency.

• DDRC auto clock gating
When the bus is idle after the number of cycles configured in the ‘ssi_idle_strap’ field in the DDR BLK_CTRL
module, the DDRC will do auto clock gating to save power. This feature can be used to balance DDR
subsystem performance and power significantly. The number of idle cycles before clock gating can be
adjusted dynamically based on the actual use case to fine tuning the power saving.

• Software implementation
On i.MX 93 and i.MX 91, the whole digital logic is supplied by a single VDD_SOC power rails. It is not that
good to support conventional cortex-A platform DVFS through Linux cpufreq framework. Too many clock
constraints need to be considered when changing the VDD_SOC voltage. To simplify the case, the voltage
scaling is supported by a system wide mode switching (OD/ND/LD) to force all the clocks and voltage
constrains. This is supported by using an NXP specific linux kernel side module: drivers/soc/imx/
imx93_lpm.c. This driver will export two user space control nodes through /sys interface. The following
figure shows the design details.

User space

/sys/devices/platform
/imx93-lpm/mode

Kernel space

driver/soc/imx/imx93_lpm.c

DDRMIX(DDRC, DDR_BLK_CTRL), CCM

DDR
HWFFC/SWFFC

aaa-053529

ATF

HW

/sys/devices/platform
/imx93-lpm/auto_clk_gating

Figure 2. Software implementation
– mode

The mode control node is used for system wide OD/ND/LD mode switching. For system wide mode
switching, DDR frequency also needs to change dynamically to meet the voltage requirement, so when
doing OD/ND mode switching, DDR frequency also needs to be changed. For i.MX 93, the maximum
DDR frequency that can be supported is 3733 MTS. With HWFFC, the half speed is 1866 MTS. This half
speed frequency can meet OD, ND, and even LD mode clock/voltage requirement. That means we can
use the HWFFC flow in OD/ND/LD mode switching to scaling the DDR frequency. DDR frequency can also

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
34 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

be changed with SWFFC to other frequency lower than the half speed of the max frequency. If the DDR
frequency has been changed to half speed through HWFFC, there is no way to directly change to other
frequency through SWFFC and vice versa. DDR frequency must be changed back to the highest frequency,
and then be changed to the target frequency with HWFFC or SWFFC. See the following figure.

0: OD (DDR full speed)
1: ND (DDR half speed)
2: LD (DDR half speed)
3: LD (DDR SWFFC: like 625 mts or 100 mts)

0

aaa-053522

3

HWFFC HWFFCSWFFC

21

Figure 3. Mode control node
LD mode is only available when the i.MX 93 ld.dtb is used. For OD and ND modes, we can switch
between the two modes freely even with the default DTB.
Valid parameters: 0 - 3
– 0: OD
– 1: ND
– 2: LD
– 3: LD (DDR swffc)
Example:

echo 1 > /sys/devices/platform/imx93-lpm/mode // change to nd mode, ddr to
 half speed
echo 0 > /sys/devices/platform/imx93-lpm/mode // back to od mode, ddr to
 full speed
echo 2 > /sys/devices/platform/imx93-lpm/mode // change to ld mode, ddr to
 half speed
echo 3 > /sys/devices/platform/imx93-lpm/mode // change to ld mode ddr to
 lowest speed with SWFFC

Limitation:
High resolution display like 1080P 60fsp can not be supported when doing system wide mode switching.
The display may occur flicker when changing the DDR frequency. Users should turn off the display or use a
lower resolution.
High resolution display like 1080P 60fsp can not be supported in LD mode, so if user want to change to LD
mode, the display should be off or with a lower resolution.

– auto_clk_gating
This control node is used to enable the DDRC auto clock gating to save power when there is no access to
the DDR after the programed idle count expires. Writing ‘0’ will disable the auto clock gating, and writing a
non-zero value will set ssi_idle_strip to this non-zero value and enable the auto clock gating. A value
< 256 has some significant side effort for DDR performance, so it is recommended to set a value >=256 to
enable it.
Valid parameters: 0 or 256 to 2^16 -1
Example:

echo 0 > /sys/devices/platform/imx93-lpm/auto_clk_gating // disable ddrc
 auto clock gating

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
35 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

echo 512 > /sys/devices/platform/imx93-lpm/auto_clk_gating // enable ddrc
 auto clock gating

Limitation:
When the auto clock gating is enabled, high resolution display like 1080P 60fps may flicker at lower DDR
frequency.

2.5.4.5 Menu Configuration Options

There are no menu configuration options for this driver. The Bus Frequency drivers are included and enabled by
default for the SoC that support bus frequency drivers.

2.5.5 Battery Charging

2.5.5.1 Introduction

Battery Charging is supported by the max8903-charger for the i.MX 6 SABRE SD boards.

2.5.5.2 Software Operation

None.

2.5.5.3 Source Code Structure

The battery charging source is based in drivers/power/supply/sabresd_battery.c

2.5.5.4 Menu Configuration Options

In menu configuration enable the following module:

Device Drivers > Power supply class support > Sabresd Board Battery DC-DC Charger for USB and Adapter
Power.

2.6 OProfile

2.6.1 Introduction

OProfile is a system-wide profiler capable of profiling all running code at low overhead.

OProfile consists of a kernel driver, a daemon for collecting sample data, and several post-profiling tools for
turning data into information.

2.6.1.1 Overview

OProfile leverages the hardware performance counters of the CPU to enable profiling of a wide variety of
interesting statistics, which can also be used for basic time-spent profiling.

All code is profiled: hardware and software interrupt handlers, kernel modules, the kernel, shared libraries, and
applications.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
36 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

2.6.1.2 Features

OProfile has the following features.

• Unobtrusive-No special recompilations or wrapper libraries are necessary. Even debug symbols (-g option to
gcc) are not necessary unless users want to produce annotated source. No kernel patch is needed; just insert
the module.

• System-wide profiling-All code running on the system is profiled, enabling analysis of system performance.
• Performance counter support-Enables collection of various low-level data and association for particular

sections of code.
• Call-graph support-OProfile can provide gprof-style call-graph profiling data.
• Low overhead-OProfile has a typical overhead of 1-8% depending on the sampling frequency and workload.
• Post-profile analysis-Profile data can be produced on the function-level or instruction-level detail. Source

trees, annotated with profile information, can be created. A hit list of applications and functions that utilize the
most CPU time across the whole system can be produced.

• System support-Works with any i.MX supported kernel.

2.6.1.3 Hardware Operation

OProfile is a statistical continuous profiler.

Profiles are generated by regularly sampling the current registers on each CPU (from an interrupt handler,
the saved PC value at the time of interrupt is stored), and converting that runtime PC value into something
meaningful to the programmer.

OProfile achieves this by taking the stream of sampled PC values, along with the detail of which task was
running at the time of the interrupt, and converting the values into a file offset against a particular binary file.
Each PC value is thus converted into a tuple (group or set) of binary-image offset. The userspace tools can use
this data to reconstruct where the code came from, including the particular assembly instructions, symbol, and
source line (through the binary debug information if present).

Regularly sampling the PC value like this approximates what actually was executed and how often and, more
often than not, this statistical approximation is good enough to reflect reality. In common operation, the time
between each sample interrupt is regulated by a fixed number of clock cycles. This implies that the results
reflect where the CPU is spending the most time. This is a very useful information source for performance
analysis.

The Arm CPU provides hardware performance counters capable of measuring these events at the hardware
level. Typically, these counters increment once per each event and generate an interrupt on reaching some pre-
defined number of events. OProfile can use these interrupts to generate samples and the profile results are a
statistical approximation of which code caused how many instances of the given event.

2.6.1.4 Architecture-specific Components

OProfile supports the hardware performance counters available on a particular architecture. Code for
managing the details of setting up and managing these counters can be located in the kernel source tree in
the relevant arch/arm/oprofile directory. The architecture-specific implementation operates through filling in the
oprofile_operations structure at initialization. This provides a set of operations, such as setup(), start(), stop(),
and so on, that manage the hardware-specific details the performance counter registers.

The other important facility available to the architecture code is oprofile_add_sample(). This is where a
particular sample taken at interrupt time is fed into the generic OProfile driver code.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
37 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

2.6.1.5 oprofilefs Pseudo Filesystem

OProfile implements a pseudo-filesystem known as oprofilefs, which is mounted from userspace at /dev/
oprofile. This consists of small files for reporting and receiving configuration from userspace, as well as the
actual character device that the OProfile userspace receives samples from. At setup() time, the architecture-
specific code may add further configuration files related to the details of the performance counters. The
filesystem also contains a stats directory with a number of useful counters for various OProfile events.

2.6.1.6 Generic Kernel Driver

The generic kernel driver resides in drivers/oprofile, and forms the core of how OProfile operates in the
kernel. The generic kernel driver takes samples delivered from the architecture-specific code (through
oprofile_add_sample()), and buffers this data (in a transformed configuration) until releasing the data to the
userspace daemon through the /dev/oprofile/buffer character device.

2.6.1.7 OProfile Daemon

The OProfile userspace daemon takes the raw data provided by the kernel and writes it to the disk. It takes the
single data stream from the kernel and logs sample data against a number of sample files (available in /var/lib/
oprofile/samples/current/). For the benefit of the separate functionality, the names and paths of these sample
files are changed to reflect where the samples were from. This can include thread IDs, the binary file path, the
event type used, and more.

After this final step from interrupt to disk file, the data is now persistent (that is, changes in the running of
the system do not invalidate stored data). This enables the post-profiling tools to run on this data at any time
(assuming the original binary files are still available and unchanged).

2.6.1.8 Post Profiling Tools

The collected data must be presented to the user in a useful form. This is the job of the post-profiling tools. In
general, they collate a subset of the available sample files, load and process each one correlated against the
relevant binary file, and produce user readable information.

2.6.1.9 Interrupt Requirements

The number of interrupts generated with respect to the OProfile driver are numerous. The latency requirements
are not needed. The rate at which interrupts are generated depends on the event.

2.6.2 Software Operation

For Cortex-A7 i.MX, Oprofile requires adding Cortex-A7 Event Monitor

2.6.2.1 Source Code Structure

Oprofile platform-specific source files are available in arch/arm/oprofile.

File Description

common.c Source file with the implementation required for all platforms

Table 17. OProfile Source Files

The generic kernel driver for Oprofile is located under drivers/oprofile

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
38 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

2.6.2.2 Menu Configuration Options

The following Linux kernel configurations are provided for this module.

In menu configuration enable the following module:

• CONFIG_OPROFILE-configuration option for the oprofile driver. In the menuconfig this option is available
under

• General Setup > Profiling support (EXPERIMENTAL) > OProfile system profiling (EXPERIMENTAL)

2.6.2.3 Programming Interface

This driver implements all the methods required to configure and control PMU and L2 cache EVTMON counters.

More information, see the Linux document generated from build: make htmldocs.

2.6.2.4 Example Software Configuration

The following steps show and example of how to configure the OProfile:

1. Use the command bitbake linux-imx -c menuconfig. On the screen, first, go to Package list and select
Oprofile.

2. Then, return to the first screen and select Configure Kernel, follow the instruction from Section 2.6.2.2, to
enable Oprofile in the kernel space.

3. Save the configuration and start to build.
4. Copy Oprofile binaries to target rootfs. Copy vmlinux to /boot directory and run Oprofile

root@ubuntu:/boot# opcontrol --separate=kernel --vmlinux=/boot/vmlinux
root@ubuntu:/boot# opcontrol --reset
Signalling daemon... done
root@ubuntu:/boot# opcontrol --setup --event=CPU_CYCLES:100000
root@ubuntu:/boot# opcontrol --start
Profiler running.
root@ubuntu:/boot# opcontrol --dump
root@ubuntu:/boot# opreport
Overflow stats not available
CPU: ARM V7 PMNC, speed 0 MHz (estimated)
Counted CPU_CYCLES events (Number of CPU cycles) with a unit mask of 0x00 (No un
it mask) count 100000
CPU_CYCLES:100000|
samples| %|

 4 22.2222 grep
 CPU_CYCLES:100000|
 samples| %|

 4 100.000 libc-2.9.so
 2 11.1111 cat
 CPU_CYCLES:100000|
 samples| %|

 1 50.0000 ld-2.9.so
 1 50.0000 libc-2.9.so
...
root@ubuntu:/boot# opcontrol --stop
Stopping profiling.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
39 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

2.7 Pulse-Width Modulator (PWM)

2.7.1 Introduction

The pulse-width modulator (PWM) has a 16-bit counter and is optimized to generate sound from stored sample
audio images and generate tones. The PWM also provides control for the back light.

The PWM has 16-bit resolution and uses a 4x16 data FIFO to generate sound. The software module is
composed of a Linux driver that allows privileged users to control the backlight by the appropriate duty cycle of
the PWM Output (PWMO) signal.

2.7.2 Hardware Operation

The figure below shows the PWM block diagram.

S

POUTC

PWM interrupts

CMPIE

PWMO

POUTC
ROV

CLKSRC

ipg_clk_32k

ipg_clk_highfreq

ipg_clk

Clock off

R

aaa-053524

ROVIE

4 x 16-bit FIFO
IRQEN

16-bit period
register

16-bit counter
register

12-bit
prescaler

16-bit sample
register

IRQ_B

System
peripheral bus

Prescaler clock
output (PCLK)

CMP

CMP

CMP

Figure 4. PWM Block Diagram

The PWM follows IP Bus protocol for interfacing with the processor core. It does not interface with any other
modules inside the device except for the clock and reset inputs from the Clock Control Module (CCM) and
interrupt signals to the processor interrupt handler. The PWM includes a single external output signal, PMWO.
The PWM includes the following internal signals:

• Three clock inputs
• Four interrupt lines
• One hardware reset line
• Four low power and debug mode signals
• Four scan signals
• Standard IP slave bus signals

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
40 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

2.7.3 Clocks

The clock that feeds the prescaler can be selected from:

• High frequency clock-provided by the CCM. The PWM can be run on this clock in low power mode.
• Low reference clock - 32 KHz low reference clock provided by the CCM. The PWM can be run on this clock in

the low power mode.
• Global functional clock - for normal operations. In low power modes this clock can be switched off.

The clock input source is determined by the CLKSRC field of the PWM control register. The CLKSRC value
should only be changed when the PWM is disabled.

2.7.4 Software Operation

The PWM device driver reduces the amount of power sent to a load by varying the width of a series of pulses to
the power source. One common and effective use of the PWM is controlling the backlight of a QVGA panel with
a variable duty cycle.

Table below provides a summary of the interface functions in source code.

Function Description

struct pwm_device *pwm_get(struct device *dev, const char *con_id) Look up and request a PWM device

void pwm_put(struct pwm_device *pwm) Release a PWM device

int pwm_config(struct pwm_device *pwm, int duty_ns, int period_ns) Change a PWM device configuration

int pwm_enable(struct pwm_device *pwm) Start a PWM output toggling

int pwm_disable(struct pwm_device *pwm) Stop a PWM output toggling

Table 18. PWM Driver Summary

The function pwm_config() includes most of the configuration tasks for the PWM module, including the clock
source option, period and duty cycle of the PWM output signal. It is recommended to select the peripheral clock
of the PWM module, rather than the local functional clock, as the local functional clock can change.

2.7.5 Driver Features

The PWM driver includes the following software and hardware support:

• Duty cycle modulation
• Varying output intervals
• Two power management modes - full on and full off

2.7.6 Source Code Structure

File Description

drivers/pwm/pwm.h Functions declaration

drivers/pwm/pwm-imx.c i.MX Pulse Width modulation Functions

Table 19. PWM Driver Files

2.7.7 Menu Configuration Options

In menu configuration enable the following module:

• Device Drivers > Pulse-Width Modulation (PWM) Support > i.MX PWM support

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
41 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• Select the following option to enable the Backlight driver:
Device Drivers > Graphics support > Backlight & LCD device support > Generic PWM based Backlight Driver

2.8 Remote Processor Messaging

2.8.1 Introduction

With the newest multicore architecture designed by using the Arm Cortex-A series processors and the
ArmCortex-M series processors, industrial applications can achieve greater power efficiency for a reduced
carbon footprint. This reduces power consumption without performance deterioration.

A homogeneous SoC would traditionally run a single operating system (OS) that controls all the memory. The
OS or a hypervisor would handle task management among available cores to maximize system utilization. Such
a system is called Symmetric MultiProcessing (SMP).

A heterogeneous multicore chip where different processing cores running different instruction sets and
different OSs. Each processing core handles a specific task as required. Such a system is called Asymmetric
Multiprocessing (AMP). To understand the distinction between the SMP and AMP systems, it is possible for
a homogeneous multicore SoC to be an AMP system but a heterogeneous multicore SoC cannot be an SMP
system.

A multicore architecture brings new challenges to the system design, because the software must be rewritten to
distribute tasks across the available cores. In addition, all the peripheral resources need to be properly allocated
to avoid resource contention and achieve efficient sharing of the data spaces between the cores. A multicore
SoC also needs mechanisms for reliable communication and synchronization among tasks running on different
processing cores.

RPMsg is a virtio-based messaging bus, which allows kernel drivers to communicate with remote processors
available on the system. In turn, drivers could then expose appropriate user space interfaces if needed.
Every RPMsg device is a communication channel with a remote processor (so the RPMsg devices are called
channels). Channels are identified by a textual name and have a local ("source") RPMsg address, and remote
("destination") RPMsg address. For more information, see www.kernel.org/doc/Documentation/rpmsg.txt.

As shown in the following figure, the messages pass between endpoints through bidirectional connection-less
communication channels.

Core 0
(linux)

aaa-053515

IPC API

D
at

ap
at

h

D
at

ap
at

h

Transport
layer

OS specific
driver

Core 1
(freeRT0S)

IPC API

Transport
layer

OS specific
driver

Shared memory

Figure 5. New multicore, multiOS architecture

2.8.2 Features

• Designed for low-latency and low overhead operation, and compliant with the Linux RPMsg framework.
• Optimized for embedded environments with constrained CPU and memory resources.
• Implementation by using shared memory without data translation or message headers.
• Application communication by using a client-server methodology.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
42 / 301

https://www.kernel.org/doc/Documentation/rpmsg.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• Dynamic allocation of the RPMsg channels.

2.8.3 Source Code

RPMSG driver software is in drivers/rpmsg

File Description

drivers/rpmsg/virtio_rpmsg_bus.c Common code

drivers/rpmsg/imx_rpmsg.c i.MX platform-related code

drivers/rpmsg/imx_rpmsg_pingpong.c i.MX RPMsg ping-pong tests

drivers/rpmsg/imx_rpmsg_tty.c i.MX RPMsg TTY driver

Table 20. RPMSG Source

2.8.4 Menu Configuration Options

In menu configuration enable the following module:

• Device Drivers > IMX RPMSG pingpong driver -- loadable modules only
• Device Drivers > IMX RPMSG tty driver -- loadable modules only

2.8.5 Running i.MX RPMsg Test Programs

To run the i.MX RPMsg test program, perform the following operations:

1. Make sure that the proper Cortex-M4 processor RTOS and Linux images are used.
For example on the i.MX 7Dual platforms:
• rpmsg_pingpong_sdk_7dsdb.bin -> ping-pong test used on the i.MX 7Dual SDB board
• rpmsg_str_echo_sdk_7dsdb.bin -> tty string echo test used on the i.MX 7Dual SDB board
• rpmsg_pingpong_sdk_7dval.bin -> ping-pong test used on the i.MX 7Dual 12x12 LPDDR3 Arm2 board
• rpmsg_str_echo_sdk_7dval.bin -> tty string echo test used on the i.MX 7Dual 12x12 LPDDR3 Arm2 board

2. Load the Cortex-M4 processor RTOS image, and kick it off in U-Boot.
Load the Cortex-M4 processor RTOS image by the TFTP server or by the bootable SD card in U-Boot.
• Load the Cortex-M4 processor RTOS image by the TFTP server. For example,

a. Boot into U-Boot and stop.
b. Use the following command to TFTP the responding Cortex-M4 processor RTOS image and boot it.

dhcp 0x7e0000 10.192.242.53:rpmsg_pingpong_sdk_7dval.bin; bootaux
 0x7e0000

• Load the Cortex-M4 processor RTOS image by the SD card. For example,
a. Created A bootable SD card by the MFGtools. Then, copy the Cortex-M4 processor RTOS files to the

first partition formatted by the VFAT file system.
b. Change the default Cortex-M4 processor RTOS name of the U-Boot.

setenv m4image '<The name of the M4/RTOS image>';save

c. Set up a boot args used by the Cortex-M4 processor.

setenv run_m4_tcm 'if run loadm4image; then cp.b ${loadaddr} 0x7e0000
 0x8000; bootaux 0x7e0000; fi'; save

d. Modify the original bootcmd by adding run run_m4_tcm”.

setenv bootcmd "run run_m4_tcm; <original contents of the bootcmd>"; save

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
43 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Note:
“uart_from_osc” is mandatory required by i.MX 6SoloX when the Cortex-M4 processor RTOS image is
running. Therefore, the mmcargs of U-Boot should be modified on i.MX 6SoloX.

setenv mmcargs 'setenv bootargs console=${console},${baudrate} root=
${mmcroot}, uart_from_osc';save

3. Run the RPMsg test program.
a. Make sure that imx_rpmsg_pingpong.ko and imx_rpmsg_tty.ko are built out.
b. Use insmod imx_rpmsg_pingpong.ko or insmod imx_rpmsg_tty.ko to run the test program.

Note: Do not run different test programs at the same time.
c. Run the following command and ensure that the RPMsg TTY receiving program is running at backend

when starting RPMsg TTY tests.

/unit_tests/mxc_mcc_tty_test.out /dev/ttyRPMSG30 115200 R 100 1000 &

Logs at the Linux OS side:

insmod imx_rpmsg_tty.ko
imx_rpmsg_tty rpmsg0: new channel: 0x400 -> 0x1!
Install rpmsg tty driver!
echo deadbeaf > /dev/ttyRPMSG30
imx_rpmsg_tty rpmsg0: msg(<- src 0x1) deadbeaf len 8

2.9 Thermal

2.9.1 Introduction

Thermal driver is a necessary driver for monitoring and protecting the SoC. The thermal driver monitors the SoC
temperature in a certain frequency from an internal thermal sensor.

It defines two trip points: critical and passive. Cooling device will take actions to protect the SoC according to
the different trip points that SoC has reached:

• When reaching critical point, cooling device will shut down the system.
• When reaching passive point, cooling device will lower CPU frequency and notify GPU/VPU to run at a lower

frequency.
• When the temperature drops to 10 °C below passive point, cooling device will release all the cooling actions.

Thermal driver has two parts:

• Thermal zone defines trip points and monitors the SoC's temperature.
• Cooling device takes the actions according to the different trip points.

The critical and passive points threshold are confiugured in the following files.

• i.MX 6 and i.MX 7 SoCs configure this in drivers/thermal/imx_thermal.c
• i.MX 8M SoCs configure this in their dtsi file and specify CONFIG_IMX8M_THERMAL in defconfig.
• i.MX 8 and i.MX 8X SoCsconfigure this in their dtsi file and specify CONFIG_IMX_SC_THERMAL in defconfig.

2.9.2 Software Operation

The thermal driver registers a thermal zone and a cooling device. A structure,thermal_zone_device_ops,
describes the necessary interface that the thermal framework needs. The framework will call the related thermal
zone interface to monitor the SoC temperature and do the cooling protection.

The thermal driver can be accessed through the following interface:

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
44 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• /sys/bus/platform/drivers/imx_thermal for i.MX 6 and i.MX 7.
• /sys/class/thermal/thermal_zoneX for i.MX 8 and i.MX 8X.
• /sys/bus/platform/drivers/qoriq_thermal for i.MX 8M Quad.
• /sys/class/thermal/thermal_zone0/temp for i.MX 8M Mini.

2.9.3 Source Code Structure

Table below shows the driver source files available in drivers/thermal:

File Description

imx_thermal.c, device_cooling.c Thermal zone driver source file for i.MX 6 or i.MX 7.

qoriq_thermal.c, device_cooling.c Thermal zone driver source files for i.MX 8M and i.MX 93.

imx_sc_thermal.c, device_cooling.c Thermal zone driver source files for i.MX 8 and i.MX 8X.

imx91_thermal.c, device_cooling.c Thermal zone driver source files for i.MX 91.

scmi-hwmon.c, device_cooling.c Thermal zone driver source files for i.MX 8ULP, i.MX 95, and i.MX 943.

Table 21. Thermal Driver Files

2.9.4 Menu Configuration Options

In menu configuration enable the following module:

• For i.MX6 and i.MX7: Device Drivers > Generic Thermal sysfs driver > Temperature sensor driver for i.MX
SoCs.

• For i.MX 8QuadMax and i.MX 8QuadXPlus: Device Drivers > Generic Thermal sysfs driver > thermal sensor
driver for NXP i.MX8 SoCs

2.10 Sensors

2.10.1 Introduction

Sensors include a group of drivers for Accelerometer, Pressure, Gyroscope, Ambient Light, and Magnetometer.

Sensors are configured in the device trees for each board.

i.MX supports accelerometers for the following SoC:

• i.MX 6SABRE-SD, 6SABRE-AI, and 6SoloX use the MMA8451 sensor
• i.MX 6UltraLite and 6ULL EVK use the FXLS8571Q sensor.
• i.MX 7Dual SABRE-SD and i.MX 8QuadMax and i.MX 8QuadXPlus use the FX0S8700 sensor.

i.MX Supports pressure sensor MPL3115 for the following SoC:

• i.MX 7Dual SABRE-SD
• i.MX 8QuadMax
• i.MX 8QuadXPlus

i.MX Supports gyroscope sensor FXAS2100 for the following SoC:

• i.MX 7Dual SABRE-SD

i.MX Supports ambient light sensor ISL29023 for the following SoC:

• i.MX 6 SABRE-SD and 6 SABRE-AI
• i.MX 6SoloX

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
45 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• i.MX 8QuadMax
• i.MX 8QuadXPlus.

i.MX supports magnetometer sensors MAG3110 for the following SoC:

• i.MX 6 SABRE-SD
• i.MX 6UL EVK
• i.MX 6ULL EVK
• i.MX 6SoloX

i.MX supports accelerometer and gyroscope sensor LSM6DSO for the following SoC:

• i.MX 93

i.MX supports temperature sensor P3T1085 for the following SoC:

• i.MX 93
• i.MX 95
• i.MX 943

2.10.2 Sensor Driver Software Operation

2.10.3 Source Code Structure

Table below shows the driver source files available in the directory.

File Description

drivers/iio/accel/mma8452.c Acceleromater sensor

drivers/iio/imu/fxos8700_i2c.c
drivers/iio/imu/fxos8700_core.c

Acceleromater and Magnetometer sensor

drivers/iio/light/isl29018.c Ambient Light sensor

drivers/iio/gyro/fxas21002c_i2c.c
drivers/iio/gyro/fxas21002c_core.c

Gyroscope sensor

drivers/iio/magnetometer/mag3110.c Magnetometer sensor

drivers/iio/imu/st_lsm6dsx/st_lsm6dsx_i2c.c
drivers/iio/imu/st_lsm6dsx/st_lsm6dsx_core.c

Accelerometer and gyroscope sensor

drivers/iio/temperature/p3t/p3t1085_i2c.c
drivers/iio/temperature/p3t/p3t1085_core.c
drivers/iio/temperature/p3t/p3t1085_i3c.c

Temperature sensor

Table 22. Sensor Driver Files

2.10.4 Menu Configuration Options

In menu configuration, enable the following modules:

• Drivers -> Industrial I/O -> Accelerometers -> Freescale/NXP MMA8452Q
• Drivers -> Industrial I/O -> Inertial measurement units -> NXP FXOS8700 I2C driver
• Drivers -> Industrial I/O -> Light sensors -> Intersil 29018 light and proximity sensor
• Drivers -> Industrial I/O -> Digital gyroscope sensors -> NXP FXAS21002C Gyro Sensor
• Drivers -> Industrial I/O -> Freescale MAG3110 3-Axis Magnetometer
• Drivers -> Industrial I/O -> Inertial measurement units -> ST_LSM6DSx driver for STM 6-axis IMU MEMS

sensors

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
46 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• Drivers -> Industrial I/O support -> Temperature sensors -> NXP P3T1085 temprature sensor

2.11 Watchdog (WDOG)

2.11.1 Introduction

The Watchdog Timer module protects against system failures by providing an escape from unexpected hang or
infinite loop situations or programming errors.

Some platforms may have two WDOG modules with one of them having interrupt capability. i.MX 6 and 7Dual
share the same watch dog driver with i.MX 8M. i.MX 7ULP has a separate watchdog driver. i.MX 8 and i.MX 8X
share a virtual watchdog driver interface through system controller firmware.

2.11.2 Hardware Operation

After the WDOG timer is activated, it must be serviced by software on a periodic basis.

If servicing does not take place in time, the WDOG times out. Upon a time-out, the WDOG either asserts the
wdog_b signal or a wdog_rst_b system reset signal, depending on software configuration. The watchdog
module cannot be deactivated after it is activated.

2.11.3 Software Operation

The Linux OS has a standard WDOG interface that allows support of a WDOG driver for a specific platform.

WDOG can be suspended/resumed in STOP/DOZE and WAIT modes independently. Since some bits of the
WDOG registers are only one-time programmable after booting, ensure these registers are written correctly.

2.11.4 Generic WDOG

The generic WGOD driver is implemented in the drivers/watchdog/imx2_wdt.c file.

It provides functions for various IOCTLs and read/write calls from the user level program to control the WDOG.

2.11.5 Driver Features

This WDOG implementation includes the following features:

• Generates the reset signal if it is enabled but not serviced within a predefined timeout value (defined in
milliseconds in one of the WDOG source files)

• Does not generate the reset signal if it is serviced within a predefined timeout value
• Provides IOCTL/read/write required by the standard WDOG subsystem

2.11.6 Source Code Structure

Table below shows the source files for watchdog WDOG drivers that are in drivers/watchdog.

File Description

driveers/watchdog/imx2_wdt.c i.MX 6, i.MX 7Dual, and i.MX 8M watchdog function
implementations. For i.MX 6 and i.MX 7, the watchdog
system reset function is located under arch/arm/mach-
imx/system.c.

drivers/watchdog/imx7ulp_wdt.c i.MX 7ULP, i.MX 8ULP, and i.MX 9 watchdog function
implementations

Table 23. Watchdog Driver Files

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
47 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

File Description

drivers/watchdog/imx8_wdt.c On i.MX 8 and i.MX 8X, the software watchdog used in
system controller firmware (SCFW) and kernel call those
interfaces by virtual watchdog driver imx8_wdt.c. This is
not used for i.MX 8M.

Table 23. Watchdog Driver Files...continued

2.11.7 Menu Configuration Options

In menu configuration enable the following module:

Device Drivers > Watchdog Timer Support > IMX2+ Watchdog

Device Drivers > Watchdog Timer Support > IMX7ULP Watchdog

Device Drivers > Watchdog Timer Support > IMX8 Watchdog

2.11.8 Programming Interface

The following IOCTLs are supported in the WDOG driver:

• WDIOC_GETSUPPORT
• WDIOC_GETSTATUS
• WDIOC_GETBOOTSTATUS
• WDIOC_KEEPALIVE
• WDIOC_SETTIMEOUT
• WDIOC_GETTIMEOUT

For detailed descriptions about these IOCTLs, see Documentation/watchdog.

3 Storage

3.1 AHB-to-APBH Bridge with DMA (APBH-Bridge-DMA)

3.1.1 Overview

The AHB-to-APBH bridge provides the processor with an inexpensive peripheral attachment bus running on the
AHB's HCLK. The H in APBH denotes that the APBH is synchronous to HCLK.

The AHB-to-APBH bridge includes the AHB-to-APB PIO bridge for a memory-mapped I/O to the APB devices,
as well as a central DMA facility for devices on this bus and a vectored interrupt controller for the Arm core.
Each one of the APB peripherals, including the vectored interrupt controller, is documented in their own
chapters elsewhere in this document.

There is no separate DMA bus for these devices. Contention between the DMA's use of the APBH bus and
the AHB-to-APB bridge functions' use of the APBH is mediated by an internal arbitration logic. For contention
between these two units, the DMA is favored and the AHB slave will report "not ready" through its HREADY
output until the bridge transfer can complete. The arbiter tracks repeated lockouts and inverts the priority,
guaranteeing the Arm platform every fourth transfer on the APB.

3.1.1.1 Hardware Operation

The SDMA controller is responsible for transferring data between the MCU memory space and peripherals and
includes the following features.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
48 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• Multichannel DMA supporting up to 32 time-division multiplexed DMA channels
• Powered by a 16-bit Instruction-Set micro-RISC engine
• Each channel executes a specific script
• Very fast context-switching with two-level priority based preemptive multitasking
• 4 Kbytes ROM containing startup scripts (that is, boot code) and other common utilities that can be referenced

by RAM-located scripts
• 8 Kbyte RAM area is divided into a processor context area and a code space area used to store channel

scripts that are downloaded from the system memory.

3.1.1.2 Software Operation

The DMA supports sixteen channels of DMA services, as shown in the following table. The shared DMA
resource allows each independent channel to follow a simple chained command list. Command chains are built
up using the general structure.

APBH DMA CHANNEL # USAGE

0 GPMI0

1 GPMI1

2 GPMI2

3 GPMI3

4 GPMI4

5 GPMI5

6 GPMI6

7 GPMI7

8 EMPTY

9 EMPTY

10 EMPTY

11 EMPTY

12 EMPTY

13 EMPTY

14 EMPTY

15 EMPTY

Table 24. APBH DMA Channel Assignments

3.1.1.3 Source Code Structure

The table below shows the source files available in drivers/dma/

File Description

mxs-dma.c APBH DMA implement driver

Table 25. APBH DMA Source Files

3.1.1.4 Menu Configuration Options

In menu configuration enable the following module:

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
49 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• Device Drivers > DMA Engine support > MXS DMA support.

3.1.1.5 Programming Interface

The module implements standard DMA API. See the API documents, which are located in the Linux
documentation package, for more information on the functions implemented in the driver such as GPMI NAND
driver.

3.2 EIM NOR

3.2.1 Introduction

The External Interface Module (EIM) NOR driver supports the Parallel NOR flash.

3.2.2 Hardware Operation

By default, there is a parallel NOR in the i.MX 6Quad/6Dual SABRE-AI boards. The parallel NOR has more pins
than the SPI NOR. On some boards, the M29W256GL7AN6E is equipped. Refer to the datasheet for details on
the parallel NOR.

3.2.3 Software Operation

Similar to the SPI NOR, the parallel NOR uses the MTD subsystem. Because the parallel NOR is very small,
you may only use the jffs2 but cannot use the UBIFS for it.

3.2.4 Source Code

File Description

drivers/bus/imx-weim.c Timing only changes for Parallel NOR WEIM-NOR source

Table 26. WEIM-NOR Driver Files

3.2.5 Enabling the EIM NOR

Refer to the DTS file to enable the EIM NOR: imx6q-sabreauto-gpmi-weim.dts or imx6dl-sabreauto-gpmi-
weim.dts.

3.3 MMC/SD/SDIO Host

3.3.1 Introduction

The MultiMediaCard (MMC)/ Secure Digital (SD)/ Secure Digital Input Output (SDIO) Host driver implements a
standard Linux driver interface to the ultra MMC/SD host controller (uSDHC).

The host driver is part of the Linux kernel MMC framework.

The MMC driver has the following features:

• 1-bit or 4-bit operation for SD3.0 and SDIO 2.0 cards (so far we support SDIO v2.0 (AR6003 is verified)).
• Supports card insertion and removal detections.
• Supports the standard MMC commands.
• PIO and DMA data transfers.
• Supports power management.
• Supports 1/4 8-bit operations for MMC cards.
RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
50 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• For i.MX 6, USDHC supports eMMC4.4 SDR and DDR modes.
• For i.MX 7Dual, USDHC supports eMMC5.0, which includes HS400 and HS200.
• Supports SD3.0 SDR50 and SDR104 modes.

3.3.2 Hardware Operation

The MMC communication is based on an advanced 11-pin serial bus designed to operate in a low voltage
range. The uSDHC module supports MMC along with SD memory and I/O functions. The uSDHC controls the
MMC, SD memory, and I/O cards by sending commands to cards and performing data accesses to and from the
cards. The SD memory card system defines two alternative communication protocols: SD and SPI. The uSDHC
only supports the SD bus protocol.

The uSDHC command transfer type and uSDHC command argument registers allow a command to be issued
to the card. The uSDHC command, system control, and protocol control registers allow the users to specify the
format of the data and response and to control the read wait cycle.

There are four 32-bit registers used to store the response from the card in the uSDHC. The uSDHC reads these
four registers to get the command response directly. The uSDHC uses a fully configurable 128x32-bit FIFO for
read and write. The buffer is used as temporary storage for data being transferred between the host system
and the card, and vice versa. The uSDHC data buffer access register bits hold 32-bit data upon a read or write
transfer.

For receiving data, the steps are as follows:

1. The uSDHC controller generates a DMA request when there are more words received in the buffer than the
amount set in the RD_WML register

2. Upon receiving this request, DMA engine starts transferring data from the uSDHC FIFO to system memory
by reading the data buffer access register.

For transmitting data, the steps are as follows:

1. The uSDHC controller generates a DMA request whenever the amount of the buffer space exceeds the
value set in the WR_WML register.

2. Upon receiving this request, the DMA engine starts moving data from the system memory to the uSDHC
FIFO by writing to the Data Buffer Access Register for a number of pre-defined bytes.

The read-only uSDHC Present State and Interrupt Status Registers provide uSDHC operations status,
application FIFO status, error conditions, and interrupt status.

When certain events occur, the module has the ability to generate interrupts as well as set the corresponding
Status Register bits. The uSDHC interrupt status enable and signal-enable registers allow the user to control if
these interrupts occur.

3.3.3 Software Operation

The Linux OS contains an MMC bus driver which implements the MMC bus protocols. The MMC block driver
handles the file system read/write calls and uses the low level MMC host controller interface driver to send the
commands to the uSDHC.

The MMC driver is responsible for implementing standard entry points for init, exit, request, and
set_ios. The driver implements the following functions:

For uSDHC:

• The init function esdhc_pltfm_init() initializes the platform hardware and set platform dependant flags
or values to sdhci_host structure.

• The exit function esdhc_pltfm_exit() deinitializes the platform hardware and frees the memory
allocated.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
51 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• The function esdhc_pltfm_get_max_clock() gets the maximum SD bus clock frequency supported by
the platform.

• The function esdhc_pltfm_get_min_clock() gets the minimum SD bus clock frequency supported by the
platform.

• esdhc_pltfm_get_ro() gets the card read only status.
• esdhc_execute_tuning() handles the preparation for tuning. It's only used for SD3.0 UHS-I mode.
• esdhc_set_clock() handles the clock change request.

The figure below shows how the MMC-related drivers are layered.

aaa-053521

File system (ext2fs/FAT driver)

Application/server interface

Host controller driver interface

Client driver interfaceBlock client driver (storage)

SDIO APP

Etc sd, mmc,
sdio, ce-ata and
so on

MMC/SD/SD
IO/CE-ATA
devices

Local bus interface

Kinds of bus protocol driverscore.c, sd.c,

Host controller driversdhci.c/sdhci-pltfm.c
sdhci-esdhc-imx.c

block.c: block
driver for
peripheral media

Host controller

Slot electrical interface

MMC/SD/SDIO/CE-ATA devices

......

Figure 6. MMC Drivers Layering

3.3.4 Driver Features

The MMC driver supports the following features:

• Supports multiple uSDHC modules.
• Provides all the entry points to interface with the Linux MMC core driver.
• MMC and SD cards.
• SDIO cards.
• SD3.0 cards.
• Recognizes data transfer errors such as command time outs and CRC errors.
• Power management.
• It supports to be built as loadable or builtin module

3.3.5 Source Code Structure

Table below shows the uSDHC source files available in drivers/mmc/host.

File Description

drivers/mmc/host/sdhci.c sdhci standard stack code

Table 27. uSDHC Driver Files MMC/SD Driver Files

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
52 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

File Description

driers/mmc/host/sdhci-pltfm.c sdhci platform layer

drivers/mmc/host/sdhci-esdhc-imx.c uSDHC driver

drivers/mmc/host/sdhci-esdhc.h uSDHC driver header file

Table 27. uSDHC Driver Files MMC/SD Driver Files...continued

3.3.6 Menu Configuration Options

The following Linux kernel configuration options are provided for this module.

• CONFIG_MMC builds support for the MMC bus protocol. In menuconfig, this option is available under:
– Device Drivers > MMC/SD/SDIO Card support
– By default, this option is Y.

• CONFIG_MMC_BLOCK builds support for MMC block device driver which can be used to mount the file
system. In menuconfig, this option is available under:
– Device Drivers > MMC/SD Card Support > MMC block device driver
– By default, this option is Y.

• CONFIG_MMC_SDHCI_ESDHC_IMX is used for the i.MX USDHC ports. In menuconfig, this option is found
under:
– Device Drivers > MMC/SD Card Support > Secure Digital Host Controller Interface support > SDHCI

support on the platform-specific bus > SDHCI platform support for the eSDHC i.MX controller
To compile SDHCI driver as a loadable module, several options should be selected as indicated below:
– CONFIG_MMC_SDHCI=m, it can be found at Device Drivers > MMC/SD Card Support > Secure Digital

Host Controller Interface support
– CONFIG_MMC_SDHCI_PLTFM=m, it can be found at Device Drivers > MMC/SD Card Support > Secure

Digital Host Controller Interface support > SDHCI support on the platform-specific bus.
– CONFIG_MMC_SDHCI_ESDHC_IMX=y, it can be found at Device Drivers > MMC/SD Card Support >

Secure Digital Host Controller Interface support > SDHCI support on the platform-specific bus > SDHCI
platform support for the Freescale eSDHC i.MX controller

To compile SDHCI driver as a builttin module, several options should be selected as indicated below:
– CONFIG_MMC_SDHCI=y, it can be found at Device Drivers > MMC/SD Card Support > Secure Digital Host

Controller Interface support
– CONFIG_MMC_SDHCI_PLTFM=y, it can be found at Device Drivers > MMC/SD Card Support > Secure

Digital Host Controller Interface support > SDHCI support on the platform-specific bus.
– CONFIG_MMC_SDHCI_ESDHC_IMX=y, it can be found at Device Drivers > MMC/SD Card Support >

Secure Digital Host Controller Interface support > SDHCI support on the platform-specific bus > SDHCI
platform support for the Freescale eSDHC i.MX controller

• CONFIG_MMC_UNSAFE_RESUME is used for embedded systems which use a MMC/SD/SDIO card for
rootfs. In menuconfig, this option is found under:

3.3.7 Device Tree Binding

Required properties:

• compatible: Should be "fsl,<chip>-esdhc"
• reg: Should contain eSDHC registers location
• interrupts: Should contain eSDHC interrupt

Optional properties:

• non-removable: Indicate the card is wired to host permanently

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
53 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• fsl, wp-internal: Indicate to use controller internal write protection
• cd-gpios: Specify GPIOs for card detection
• wp-gpios: Specify GPIOs for write protection
• fsl, delay-line: Specify delay line value for eMMC DDR mode

Example:usdhc@02194000 { /* uSDHC2 */
compatible = "fsl,imx6q-usdhc";
reg = <0x02194000 0x4000>;
interrupts = <0 23 0x04>;
clocks = <&clks 164>, <&clks 164>, <&clks 164>;
clock-names = "ipg", "ahb", "per";
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_usdhc2_1>;
cd-gpios = <&gpio2 2 0>;
wp-gpios = <&gpio2 3 0>;
bus-width = <8>;
no-1-8-v;
keep-power-in-suspend;
enable-sdio-wakeup;
status = "okay";
};

Reference:

• Documentation/devicetree/bindings/mmc/fsl-imx-esdhc.txt
• arch/arm/boot/dts/imx6*.dtsi

3.3.8 Programming Interface

This driver implements the functions required by the MMC bus protocol to interface with the i.MX uSDHC
module. See the Linux document generated from build: make htmldocs.

3.3.9 Loadable Module Operations

The SDHCI driver can be built as loadable or builtin module.

1. How to build SDHCI driver as loadable module.
• CONFIG_MMC_SDHCI=m, it can be found at Device Drivers > MMC/SD Card Support > Secure Digital

Host Controller Interface support
• CONFIG_MMC_SDHCI_PLTFM=m, it can be found at Device Drivers > MMC/SD Card Support > Secure

Digital Host Controller Interface support > SDHCI support on the platform-specific bus.
• CONFIG_MMC_SDHCI_ESDHC_IMX=y, it can be found at Device Drivers > MMC/SD Card Support >

Secure Digital Host Controller Interface support > SDHCI support on the platform-specific bus > SDHCI
platform support for the i.MX eSDHC i.MX controller

2. How to load and unload SDHCI module.
Due to dependency, load or unload the module following the module sequence shown below.
run the following commands to load module:
• load modules via insmod command, assuming the files of sdhci.ko and sdhci-platform.ko exist in current

directory.

$> insmod sdhci.ko
$> insmod sdhci-platform.ko

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
54 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• load modules via modprobe command, make sure the files of sdhci.ko and sdhci-platform.ko exist in
corresponding kernel module lib directory.

$> modprobe sdhci.ko
$> modprobe sdhci-platform.ko

run the following commands to unload module.:
• unload modules via insmod command.

$> rmsmod sdhci-platform
$> rmsmod sdhci

• unload modules via modprobe command.

$> modprobe -r sdhci-platform
$> modprobe -r sdhci

3.4 NAND GPMI Flash

3.4.1 Introduction

The NAND Flash Memory Technology Devices (MTD) driver is used in the Generic-Purpose Media Interface
(GPMI) controller on the i.MX 6 series and i.MX 7Dual.

Only the hardware-specific layer has to be implemented for the NAND MTD driver to operate.

The rest of the functionality such as Flash read/write/erase is automatically handled by the generic layer
provided by the Linux MTD subsystem for NAND devices.

The NAND MTD driver interfaces with the integrated NAND controller supporting file systems, such as UBIFS,
CRAMFS and JFFS2UBI and UBIFSCRAMFS and JFFS2. The driver implementation supports the lowest level
operations on the external NAND Flash chip, such as block read, block write and block erase as the NAND
Flash technology only supports block access. Because blocks in a NAND Flash are not guaranteed to be good,
the NAND MTD driver is also able to detect bad blocks and feed that information to the upper layer to handle
bad block management.

3.4.2 Hardware Operation

NAND Flash is a nonvolatile storage device used for embedded systems.

Driver does not support random accesses of memory as in the case of RAM or NOR Flash. Reading or writing
to NAND Flash must be done through the GPMI. NAND Flash is a sequential access device appropriate for
mass storage applications. Code stored on NAND Flash cannot be executed from there. Code must be loaded
into RAM memory and executed from there. The i.MX 6 contains a hardware error-correcting block.

3.4.3 Software Operation

MTDs in Linux covers all memory devices such as RAM, ROM, and different kinds of NOR/NAND Flashes.

The MTD subsystem provides uniform access to all such devices. Above the MTD devices there could be either
MTD block device emulation with a Flash file system (JFFS2) or a UBI layer. The UBI layer in turn, can have
either UBIFS above the volumes or a Flash Translation Layer (FTL) with a regular file system (FAT, Ext2/3)
above it. The hardware-specific driver interfaces with the GPMI module on the i.MX 6. It implements the lowest
level operations such as read, write and erase. If enabled, it also provides information about partitions on the
NAND device-this information has to be provided by platform code.
RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
55 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

The NAND driver is the point where read/write errors can be recovered if possible. Hardware error correction is
performed by BCH blocks and is driven by NAND drivers code.

Detailed information about NAND driver interfaces can be found at www.linux-mtd.infradead.org.

3.4.4 Basic Operations: Read/Write

The NAND driver exports the following callbacks:

gpmi_ecc_read_page (with ECC)
gpmi_ecc_write_page (with ECC)
gpmi_read_byte (without ECC)
gpmi_read_buf (without ECC)
gpmi_write_buf (without ECC)
gpmi_ecc_read_oob (with ECC)
gpmi_ecc_write_oob (with ECC)

Since Kernel 4.1, the GPMI driver provides raw read/write modes, which exports these callbacks:

• gpmi_ecc_read_page_raw (without ECC)
• gpmi_ecc_write_page_raw (without ECC)
• gpmi_ecc_read_oob_raw (without ECC)
• gpmi_ecc_write_oob_raw (without ECC)

These functions read the requested amount of data, with or without error correction. In the case of read,
the gpmi_read_page() function is called, which creates the DMA chain, submits it to execute, and waits for
completion. The write case is a bit more complex: the data to be written is mapped and flushed out by calling
gpmi_send_page().

3.4.5 Error Correction

When reading or writing data to Flash, some bits can be flipped. This is normal behavior, and NAND drivers
utilize various error correcting schemes to correct this. It could be resolved with software or hardware error
correction. The GPMI driver uses only a hardware correction scheme with the help of an hardware accelerator-
BCH.

For BCH, the page laylout of 2K page is (2k + 64), the page layout of 4K page is (4k + 218) the page layout of
8K page is (8K + 448).

3.4.6 Boot Control Block Management

During startup, the NAND driver scans the first block for the presence of a NAND Control Block (NCB). Its
presence is detected by magic signatures. When a signature is found, the boot block candidate is checked for
errors using Hamming code. If errors are found, they are fixed, if possible. If the NCB is found, it is parsed to
retrieve timings for the NAND chip.

All boot control blocks are created when formatting the medium using the user space application kobs-ng .

3.4.7 Bad Block Handling

When the driver begins, by default, it builds the bad block table. It is possible to determine if a block is bad,
dynamically, but to improve performance it is done at boot time. The badness of the erase block is determined
by checking a pattern in the beginning of the spare area on each page of the block. However, if the chip uses
hardware error correction, the bad marks falls into the ECC bytes area. Therefore, if hardware error correction is
used, the bad block mark should be moved.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
56 / 301

http://www.linux-mtd.infradead.org
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

3.4.8 Source Code Structure

The NAND driver is located in drivers/mtd/nand/gpmi-nand.

Table below lists the source files for the NAND Driver.

File Description

• drivers/mtd/nand/gpmi-nand/bch-regs.h
• drivers/mtd/nand/gpmi-nand/gpmi-nand.h
• drivers/mtd/nand/gpmi-nand/gpmi-regs.h

Functions declaration

• drivers/mtd/nand/gpmi-nand/gpmi-lib.c
• drivers/mtd/nand/gpmi/nand/gpmi-nand.c

GPMI NAND Functions

Table 28. NAND Driver Files

3.4.9 Menu Configuration Options

To enable the NAND driver, the following options must be set:

• Device Drivers > Memory Technology Device (MTD) support > GPMI NAND Flash Controller driver

In addition, these MTD options must be enabled:

• CONFIG_MTD_NAND = [y | m]
• CONFIG_MTD = y
• CONFIG_MTD_BLOCK = y

In addition, these UBI options must be enabled:

• CONFIG_MTD_UBI=y
• CONFIG_UBIFS_FS=y

3.5 Quad/Flexible/External Serial Peripheral Interface (QuardSPI/FlexSPI/XSPI)

3.5.1 Introduction

The Quad Serial Peripheral Interface (QuadSPI) block acts as an interface to one single or two external serial
flash devices, each with up to four bidirectional data lines. The Flexible Serial Peripheral Interface (FlexSPI)
host controller supports two SPI channels and up to 4 external devices. Each channel supports Single/Dual/
Quad/Octal mode data transfer (1/2/4/8 bidirectional data lines). XSPI is a memory controller IP, designed to
support serial flash or RAM memories. The controller includes a programmable sequence engine providing
flexibility to support existing and future memory devices. XSPI supports single, dual, quad, and octal modes of
operation.

It supports the following features:

• Flexible sequence engine to support various flash vendor devices.
• Single, dual, quad, and octal modes of operation.
• DDR/DTR mode wherein the data is generated on every edge of the serial flash clock.
• Support for flash data strobe signal for data sampling in DDR and SDR mode.
• DMA support to read RX Buffer data via AMBA AHB bus (64-bit width interface) or IP registers space (32-bit

access).

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
57 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

3.5.2 Hardware Operation

On some boards, the Quad SPI NOR - N25Q256A is equipped, while on some other boards S25FL128S is
equipped. Check the Quad SPI NOR type on the boards and then configure it properly.

The N25Q256A is a high-performance multiple input/output serial Flash memory device. The innovative, high-
performance, dual and quad input/output instructions enable double or quadruple the transfer bandwidth for
READ and PROGRAM operations. The memory is organized as 512 (64 KB) main sectors and can be erased
64 KB sectors at a time. The device features 3-byte or 4-byte address modes to access memory beyond
128 MB. When 4-byte address mode is enabled, all commands requiring an address must be entered and
exited with a 4-byte address mode command: ENTER 4-BYTE ADDRESS MODE command and EXIT 4-
BYTE ADDRESS MODE command. The 4-byte address mode can also be enabled through the nonvolatile
configuration register. The memory can be operated with three different protocols:Extended SPI (standard SPI
protocol upgraded with dual and quad operations), Dual I/O SPI and Quad I/O SPI. Each protocol contains
unique commands to perform READ operations in DTR mode. This enables high data throughput while running
at lower clock frequencies.

The S25FL128S device is flash non-volatile memory product. It connects to a host system via a Serial
Peripheral Interface (SPI). Traditional SPI single bit serial input and output (SIngle I/O or SIO) is supported as
well as optional two bit (Dual I/O or DIO) and four bit (Quad I/O or QIO) serial commands. It also adds support
for Double Data Rate (DDR) read commands for SIO, DIO, and QIO that transfer address and read data on
both edges of the clock.

3.5.3 Software Operation

In a Flash-based embedded Linux system, a number of Linux technologies work together to implement a file
system. The following figure illustrates the relationships between some of the standard components.

aaa-053502

User Root file system

Kernel

Hardware

CRAMFS RAMFSJFFS2

MTD drivers

NOR flash RAM

Figure 7. Components of a Flash-Based File System

The MTD subsystem for Linux OS is a generic interface to memory devices, such as Flash and RAM, providing
simple read, write, and erase access to physical memory devices. Devices called mtdblock devices can be
mounted by JFFS, JFFS2, and CRAMFS file systems. The SPI NOR MTD driver is based on the MTD data
Flash driver in the kernel by adding SPI access. In the initialization phase, the SPI NOR MTD driver detects
a data Flash by reading the JEDEC ID. Then the driver adds the MTD device. The SPI NOR MTD driver also
provides the interfaces to read, write, and erase NOR Flash.

3.5.4 Driver Features

This NOR driver implementation supports the following feature:

• Provides necessary information for the upper-layer MTD driver.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
58 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

3.5.5 Source Code Structure

File Description

drivers/mtd/spi-nor/core.c SPI-NOR framework

drivers/spi/spi-fsl-qspi.c Quad SPI Driver

drivers/spi/spi-nxp-fspi.c FlexSPI Driver

drivers/spi/spi-nxp-xspi.c XSPI Driver

Table 29. Driver File

3.5.6 Menu Configuration Options

To enable the SPI-NOR driver, set the follwoing options:

Device Drivers -> memory Technology Device (MTD) support -> SPI NOR device support

Select QuadSPI:

Device Drivers -> SPI support -> Freescale QSPI controller

Select FlexSPI:

Device Drivers -> SPI support -> NXP Flex SPI controller

Select XSPI:

Device Drivers -> SPI support -> NXP xSPI controller

3.6 SATA

3.6.1 Introduction

The SATA AHCI driver is based on the LIBATA layer of the block device infrastructure of the Linux kernel.
The detailed hardware operation of SATA is detailed in the Synopsys DesignWare Cores SATA AHCI
documentation, named SATA_Data_Book.pdf.

3.6.2 Board Configuration Options

With the power off, install the SATA cable and hard drive.

3.6.3 Software Operation

The details about the libata APIs, see the libATA Developer's Guide.

The SATA AHCI driver is based on the LIBATA layer of the block device infrastructure of the Linux kernel. i.MX
integrated AHCI linux driver combined the standard AHCI drivers handle the details of the integrated i.MX SATA
AHCI controller, while the LIBATA layer understands and executes the SATA protocols. The SATA device, such
as a hard disk, is exposed to the application in user space by the /dev/sda* interface. Filesystems are built upon
the block device. The AHCI specified integrated DMA engine, which assists the SATA controller hardware in the
DMA transfer modes.

3.6.4 Source Code Structure

The source code of the i.MX AHCI SATA driver is located in drivers/ata The standard AHCI and AHCI platform
drivers are used to do the actual SATA operations.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
59 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

File Description

drivers/ata/ahci_imx.c i.MX AHCI SATA Driver

drivers/ata/ahci.c Standard AHCI drivers

drivers/ata/ahci-platform.c Standard AHCI platform drivers

Table 30. SATA Driver Files

3.6.5 Menu Configuration Options

The following Linux kernel configurations are provided for SATA driver:

Symbol: AHCI_IMX [=y]
Type : tristate
Prompt: Freescale i.MX AHCI SATA support
 Location:
 -> Device Drivers
 -> Serial ATA and Parallel ATA drivers (ATA [=y])
 -> Platform AHCI SATA support (SATA_AHCI_PLATFORM [=y])

In busybox, enable "fdisk" under "Linux System Utilities".

3.6.6 Programming Interface

The application interface to the SATA driver is the standard POSIX device interface (for example: open, close,
read, write, and ioctl) on /dev/sda*.

3.6.7 Usage Example

Note: There may be a known error message when few kinds of SATA disks are initialized, such as:

ata1.00: serial number mismatch '090311PB0300QKG3TB1A' != ''

ata1.00: revalidation failed (errno=-19)

This should be ignored.

1. After building the kernel and the SATA AHCI driver and deploying, boot the target, and log in as root.
2. Make sure that the AHCI and AHCI platform drivers are built in the kernel or loaded into the kernel.

You should see messages similar to the following:

ahci: SSS flag set, parallel bus scan disabled
ahci ahci: AHCI 0001.0300 32 slots 1 ports 3 Gbps 0x1 impl platform mode
ahci ahci: flags: ncq sntf stag pm led clo only pmp pio slum part ccc apst
scsi0 : ahci_platform
ata1: SATA max UDMA/133 mmio [mem 0x02200000-0x02203fff] port 0x100 irq 71
ata1: SATA link up 3.0 Gbps (SStatus 123 SControl 300)
ata1.00: ATA-8: SAMSUNG HM100UI, 2AM10001, max UDMA/133
ata1.00: 1953525168 sectors, multi 0: LBA48 NCQ (depth 31/32)
ata1.00: configured for UDMA/133
scsi 0:0:0:0: Direct-Access ATA SAMSUNG HM100UI 2AM1 PQ: 0 ANSI: 5
sd 0:0:0:0: [sda] 1953525168 512-byte logical blocks: (1.00 TB/931 GiB)
sd 0:0:0:0: [sda] 4096-byte physical blocks
sd 0:0:0:0: [sda] Write Protect is off
sd 0:0:0:0: [sda] Write cache: enabled, read cache: enabled, doesn't support DPO
 or FUA

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
60 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

sda: sda1
sd 0:0:0:0: [sda] Attached SCSI disk

You may use standard Linux utilities to partition and create a file system on the drive (for example: fdisk and
mke2fs) to be mounted and used by applications.

The device nodes for the drive and its partitions appears under /dev/sda*. For example, to check basic kernel
settings for the drive, execute hdparm /dev/sda.

3.6.8 Usage Example

Create Partitons

The following command can be used to find out the capacities of the hard disk. If the hard disk is pre-formatted,
this command shows the size of the hard disk, partitions, and filesystem type:

$fdisk -l /dev/sda

If the hard disk is not formatted, create the partitions on the hard disk using the following command:

$fdisk /dev/sda

After the partition, the created files resemble /dev/sda[1-4].

Block Read/Write Test: The command, dd, is used for for reading/writing blocks. Note this command can
corrupt the partitions and filesystem on Hard disk.

To clear the first 5 KB of the card, do the following:

$dd if=/dev/zero of=/dev/sda1 bs=1024 count=5

The response should be as follows:

5+0 records in

5+0 records out

To write a file content to the card enter the following text, substituting the name of the file to be written for
file_name, do the following:

$dd if=file_name of=/dev/sda1

To read 1KB of data from the card enter the following text, substituting the name of the file to be written for
output_file, do the following:

$dd if=/dev/sda1 of=output_file bs=1024 count=1

Files System Tests

Format the hard disk partitons using mkfs.vfat or mkfs.ext2, depending on the filesystem:

$mkfs.ext2 /dev/sda1
$mkfs.vfat /dev/sda1

Mount the file system as follows:

$mkdir /mnt/sda1

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
61 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

$mount -t ext2 /dev/sda1 /mnt/sda1

After mounting, file/directory, operations can be performed in /mnt/sda1 .

Unmount the filesystem as follows:

$umount /mnt/sda1

3.7 Smart Direct Memory Access (SDMA) API

3.7.1 Overview

The Smart Direct Memory Access (SDMA) API driver controls the SDMA hardware. It provides an API to other
drivers for transferring data between MCU memory space and the peripherals. It supports the following features:

• Loading channel scripts from the MCU memory space into SDMA internal RAM
• Loading context parameters of the scripts
• Loading buffer descriptor parameters of the scripts
• Controlling execution of the scripts
• Callback mechanism at the end of script execution

3.7.2 Hardware Operation

The SDMA controller is responsible for transferring data between the MCU memory space and peripherals and
includes the following features:

• Multichannel DMA supporting up to 32 time-division multiplexed DMA channels.
• Powered by a 16-bit Instruction-Set micro-RISC engine.
• Each channel executes specific script.
• Very fast context-switching with two-level priority based preemptive multitasking.
• 4 Kbytes ROM containing startup scripts (that is, boot code) and other common utilities that can be referenced

by RAM-located scripts.
• 8 Kbyte RAM area is divided into a processor context area and a code space area used to store channel

scripts that are downloaded from the system memory.

3.7.3 Software Operation

The driver provides an API for other drivers to control SDMA channels. SDMA channels run dedicated scripts
according to peripheral and transfer types. The SDMA API driver is responsible for loading the scripts into
SDMA memory, initializing the channel descriptors, and controlling the buffer descriptors and SDMA registers.

The table below provides a list of drivers that use SDMA and the number of SDMA physical channels used by
each driver. A driver can specify the SDMA channel number that it wishes to use, static channel allocation, or
can have the SDMA driver provide a free SDMA channel for the driver to use, dynamic channel allocation. For
dynamic channel allocation, the list of SDMA channels is scanned from channel 32 to channel 1. When a free
channel is found, that channel is allocated for the requested DMA transfers.

Driver Name Number of
SDMA Channels

SDMA Channel Used

SDMA CMD 1 Static Channel allocation-uses SDMA channels 0

SSI 2 per device Dynamic channel allocation

Table 31. SDMA Channel Usage

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
62 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Driver Name Number of
SDMA Channels

SDMA Channel Used

UART 2 per device Dynamic channel allocation

SPDIF 2 per device Dynamic channel allocation

ESAI 2 per device Dynamic channel allocation

ASRC 6 per device Dynamic channel allocation

AUD2HTX 1 per device Dynamic channel allocation

EASRC 8 per device Dynamic channel allocation

ECSPI 2 per device Dynamic channel allocation

MICFIL 1 per device Dynamic channel allocation

XCVR 2 per device Dynamic channel allocation

Table 31. SDMA Channel Usage...continued

Note:

This table contains the functions currently supported by SDMA scripts, but the specific implementation may be
different in each platform. The peripherals supported by SDMA are subject to the DTS configuration of each
platform.

3.7.4 Source Code Structure

The dmaengine.h (header file for SDMA API) is available in the directory linux/include/linux

The following table shows the source files available in the directory drivers/dma.

File Description

drivers/dma/dmaengine.c SDMA management routine

drivers/dma/imx-sdma.c SDMA implement driver

drivers/dma/imx-dma.c i.MX DMA driver

Table 32. SDMA API Source Files

The following table shows the image files available in the directory firmware/imx/sdma for 4.1 and 4.9 kernels.
For 4.14 kernel, the sdma firmware is provided with the firmware-imx package and not in the kernel source tree.

File Description

sdma-imx6q.bin SDMA RAM scripts for i.MX 6

sdma-imx7d.bin SDMA RAM scripts for i.MX 7 and i.MX 8M

Table 33. SDMA Script Files

3.7.5 Special peripheral with SDMA cases

3.7.5.1 I2C in i.MX 6/7Dual/8M

In the current release, the I2C controller and SDMA script in i.MX 6/7Dual/8M either do not support SDMA.

There are two limitations:
RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
63 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• I2C uses DMA mode when the frame length is greater than 16 bytes, because I2C itself still needs to use the
CPU to process the first few and last few bytes when sending and receiving a frame. Therefore, when the
data being sent is not long, using DMA to send data does not improve efficiency.

• The SDMA script is loaded in rootfs stage, so any use of I2C DMA transfer in kernel boot stage will fail.
It is strongly recommended not to use I2C SDMA mode when sending small amounts of data. If there is a
special case that needs to send a large amount of I2C data, contact NXP Pro-support to get the patchset.

3.8 SPI NOR Flash Memory Technology Device (MTD)

3.8.1 Introduction

The SPI NOR Flash Memory Technology Device (MTD) driver provides the support to the data Flash though the
SPI interface.

By default, the SPI NOR Flash MTD driver creates static MTD partitions to support data Flash.

3.8.2 Hardware Operation

On some boards, the SPI NOR - AT45DB321D is equipped, while on some boards M25P32 is equipped. Check
the SPI NOR type on the boards and then configure it properly.

The AT45DB321D is a 2.7 V, serial-interface sequential access Flash memory. The AT45DB321D serial
interface is SPI compatible for frequencies up to 66 MHz. The memory is organized as 8,192 pages of 512
bytes or 528 bytes. The AT45DB321D also contains two SRAM buffers of 512/528 bytes each which allow
receiving of data while a page in the main memory is being reprogrammed, as well as writing a continuous data
stream.

The M25P32 is a 32 Mbit (4M x 8) Serial Flash memory, with advanced write protection mechanisms, accessed
by a high-speed SPI-compatible bus up to 75 MHz. The memory is organized as 64 sectors, each containing
256 pages. Each page is 256 bytes wide. Therefore, the whole memory can be viewed as consisting of 16384
pages, or 4,194,304 bytes. The memory can be programmed 1 to 256 bytes at a time using the Page Program
instruction. The whole memory can be erased using the Bulk Erase instruction, or a sector at a time, using the
Sector Erase instruction.

Unlike conventional Flash memories that are accessed randomly, these two SPI NOR access data sequentially.
They operate from a single 2.7-3.6 V power supply for program and read operations. They are enabled through
a chip select pin and accessed through a three-wire interface: Serial Input, Serial Output, and Serial Clock.

3.8.3 Software Operation

In a Flash-based embedded Linux system, a number of Linux technologies work together to implement a file
system. The figure below illustrates the relationships between some of the standard components.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
64 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

aaa-053502

User Root file system

Kernel

Hardware

CRAMFS RAMFSJFFS2

MTD drivers

NOR flash RAM

Figure 8. Components of a Flash-Based File System

The MTD subsystem for Linux OS is a generic interface to memory devices, such as Flash and RAM, providing
simple read, write, and erase access to physical memory devices. Devices called mtdblock devices can be
mounted by JFFS, JFFS2 and CRAMFS file systems. The SPI NOR MTD driver is based on the MTD data
Flash driver in the kernel by adding SPI access. In the initialization phase, the SPI NOR MTD driver detects
a data Flash by reading the JEDEC ID. Then the driver adds the MTD device. The SPI NOR MTD driver also
provides the interfaces to read, write, and erase NOR Flash.

3.8.4 Source Code Structure

The following table shows the driver files:

File Description

drivers/mtd/devices/m25p80.c Source file

drivers/mtd/spi-nor/core.c Source file

Table 34. SPI NOR MTD Driver Files

3.8.5 Menu Configuration Options

In menu configuration enable the following module:

• CONFIG_MTD_M25P80: This config enables access to most modern SPI flash chips, used for program and
data storage.

• Device Drivers > Memory Technology Device (MTD) support >Self-contained MTD device drivers > Support
most SPI Flash chips (AT26DF, M25P, W25X, and so on)

4 Connectivity

4.1 ADC

4.1.1 ADC Introduction

The features of the ADC-Digital are as follows:

• Two 12-bit ADCs
• Linear successive approximation algorithm with up to 12-bit resolution with 10/11 bit accuracy
• Up to 1 MS/s sampling rate
• Up to 8 single-ended external analog inputs
RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
65 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• Single or continuous conversion (automatic return to idle after single conversion)
• Output Modes: (in right-justified unsigned format)

– 12-bit
– 10-bit
– 8-bit

• Configurable sample time and conversion speed/power
• Conversion complete and hardware average complete flag and interrupt
• Input clock selectable from up to four sources
• Asynchronous clock source for lower noise operation with option to output the clock
• Selectable asynchronous hardware conversion trigger with hardware channel select
• Selectable voltage reference, Internal, External, or Alternate
• Operation in low power modes for lower noise operation
• Hardware average function
• Self-calibration mode

4.1.2 ADC External Signals

• ADC_VREFH: Voltage reference high
• ADC_VREHL: Voltage reference low
• ADC1_IN0: Analog channel 1 input 0
• ADC1_IN1: Analog channel 1 input 1
• ADC1_IN2: Analog channel 1 input 2
• ADC1_IN3: Analog channel 1 input 3
• ADC2_IN0: Analog channel 2 input 0
• ADC2_IN1: Analog channel 2 input 1
• ADC2_IN2: Analog channel 2 input 2
• ADC2_IN3: Analog channel 2 input 3

The ADC pin settings should be done in the ADCx_PCTL register. No other extra IOMUX settings are required.

4.1.3 ADC Driver Overview

The ADC driver is developed under the Linux IIO (Industrial I/O) driver frame. The ADC driver only provides the
basic functions. The following features are supported:

• Four external inputs for each ADC controller channel
• 12 bit ADC
• Single conversion
• Hardware average
• Low power mode of ADC
• Sample rate changes in the available sample rate group

4.1.4 Source Code Structure

File Description

drivers/iio/adc/vf610_adc.c i.MX 6UltraLite and i.MX 6SoloX ADC functions.

drivers/iio/adc/imx7d_adc.c i.MX 7Dual ADC functions.

drivers/iio/adc/imx8qxp_adc.c i.MX 8QuadXPlus ADC functions.

Table 35. ADC Driver Files

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
66 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

File Description

drivers/iio/adc/imx93_adc.c i.MX 93 ADC functions.

Table 35. ADC Driver Files...continued

4.1.5 Menu Configuration Options

Configure the kernel option to enable the module by menuconfig:

Device Drivers > Industrial I/O support > Analog to digital converters > Freescale vf610 ADC driver

Device Drivers > Industrial I/O support > Analog to digital converters > i.MX 7Dual ADC driver

Device Drivers > Industrial I/O support > Analog to digital converters > i.MX 8QXP ADC driver

Device Drivers > Industrial I/O support > Analog to digital converters > i.MX 93 ADC driver

4.1.6 Programming Interface

Linux IIO provides some system interface to get the raw ADC data from the related input. Users can also set the
sample rate in the available sample rate group. The ADC controllers system interface is located:

/sys/devices/soc0/soc.1/2200000.aips-bus/2280000.adc/iio:device0:

/sys/devices/soc0/soc.1/2200000.aips-bus/2284000.adc/iio:device1:

The following table lists the software interfaces.

Software interface Description

in_voltage0_raw~ in_voltage3_raw cat in_voltage0_raw to get raw ADC data

sampling_frequency_available cat sampling_frequency_available to get available sample
rate group

in_voltage_sampling_frequency cat in_voltage_sampling_frequency to show current
sample rate
echo value > in_voltage_sampling_frequency to set the
sample rate

Table 36. Software Interfaces

4.2 ENET IEEE-1588

4.2.1 Introduction

ENET IEEE-1588 driver performs a set of functions that enabling precise synchronization of clocks in network
communication.

The driver requires a protocol stack to complete IEEE-1588 full protocol. It complies with the LinuxPTP stack.

To allow for IEEE 1588 or similar time synchronization protocol implementations, the ENET MAC is combined
with a time-stamping module to support precise time stamping of incoming and outgoing frames.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
67 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

aaa-053511

10/100/1000 MAC
(mac)

User application

Adjustable
timer module

(tsm)

ControlData

Events
gen

PHY

Timing 1PPS

MAC with 1588

Control/status

Control/status

Frame data

Figure 9. IEEE 1588 Functions Overview

4.2.1.1 Transmit Timestamping

On transmit, only 1588 event frames need to be time-stamped. The Client application (for example, the MAC
driver) should detect 1588 event frames and set the signal ff_tx_ts_frm together with the frame.

For every transmitted frame, the MAC returns the captured timestamp on tx_ts (31:0) with the frame sequence
number (tx_ts_id(3:0)) and the transmit status. The transmit status bit tx_ts_stat (5) indicates that the
application had the ff_tx_ts_frm signal asserted for the frame.

If ff_tx_ts_frm is set to '1', the MAC additionally memorizes the timestamp for the frame in the register
TS_TIMESTAMP. The interrupt bit EIR (TS_AVAIL) is set to indicate that a new timestamp is available.

Software would implement a handshaking procedure by setting the ff_tx_ts_frm signal when it transmits the
frame it needs a timestamp for and then waits on the EIR (TS_AVAIL) interrupt bit to know when the timestamp
is available. It then can read the timestamp from the TS_TIMESTAMP register. This is done for all event frames;
other frames do not use the ff_tx_ts_frm indicator and hence do not interfere with the timestamp capture.

4.2.1.2 Receive Timestamping

When a frame is received, the MAC latches the value of the timer when the frame SFD field is detected and
provides the captured timestamp on ff_rx_ts(31:0). This is done for all received frames.

The DMA controller has to ensure that it transfers the timestamp provided for the frame into the corresponding
field within the receive descriptor for software access.

4.2.2 Software Operation

The 1588 Driver has the functions listed below:

• Module initialization-Initializes the module with the device-specific structure, and registers a character driver.
• Interrupt servicing routine-Supports events, such as TS_AVAIL, TS_TIMER. The driver shares interrupt

servicing routine with FEC driver.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
68 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

4.2.2.1 Source Code Structure

Table below lists the source files in drivers/net/ethernet/freescale directory.

File Description

drivers/net/ethernet/frescale/fec.h Header file defining registers

drivers/net/ethernet/freescale/fec_ptp.c ENET 1588 timer

Table 37. ENET 1588 File List

4.2.2.2 Menu Configuration Options

By default, ENET 1588 is enabled.

4.2.2.3 Programming Interface

The 1588 driver complies with the Linuxptp protocol stack interface.

Stack-specific defines are added to the header file (fec.h).

4.2.3 1588 Stack Introduction

This release supports the following type of the 1588 Stack:

• Linuxptp stack
This software is an implementation of the Precision Time Protocol (PTP) according to IEEE standard 1588 for
Linux OS. The dual design goals are to provide a robust implementation of the standard and to use the most
relevant and modern Application Programming Interfaces (API) offered by the Linux OS kernel. Supporting
legacy APIs and other platforms is not a goal. The software is copyrighted by the authors and is licensed
under the GNU General Public License.

The software development is hosted at Source Forge: sourceforge.net/projects/linuxptp/

4.2.3.1 Linuxptp Stack Features

Linuxptp support the following features:

• Ordinary/Boundary Clock
• Best master clock algorithm
• Transport over UDP/IPv4, UDP/IPv6, and IEEE 802.3
• Transparent clock (E2E/P2P)
• Slave only
• Supporting IEEE 802.1AS-2011 in the role of end station

4.2.3.2 Using Linuxptp

Run ptp4 1588 stack binary with the following commands.

Linuxptp:

Transport on UDP IPV4 with E2E delay mechanism: ptp4l -A -4 -H -m -i eth0
Transport on UDP IPV4 with P2P delay mechanism: ptp4l -P -A -4 -H -m -i eth0
Transport on UDP IPV6 with E2E delay mechanism: ptp4l -A -6 -H -m -i eth0
Transport on UDP IPV6 with P2P delay mechanism: ptp4l -P -A -6 -H -m -i eth0
Transport on IEEE 802.3 with E2E delay mechanism: ptp4l -A -2 -H -m -i eth0

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
69 / 301

https://sourceforge.net/projects/linuxptp/
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Transport on IEEE 802.3 with P2P delay mechanism: ptp4l -P -A -2 -H -m -i eth0

4.3 Enhanced Configurable Serial Peripheral Interface (ECSPI)

4.3.1 Introduction

The ECSPI driver implements a standard Linux driver interface to the ECSPI controllers.

It supports the following features:

• Interrupt-driven transmit/receive of bytes
• Multiple master controller interface
• Multiple slaves select
• Multiclient requests

ECSPI is used for fast data communication with fewer software interrupts than conventional serial
communications. >Each ECSPI is equipped with a data FIFO and is a master/slave configurable serial
peripheral interface module, allowing the processor to interface with external SPI master or slave devices.

The primary features of the ECSPI includes:

• Master/slave-configurable
• Four chip select signals to support multiple peripherals
• Up to 32-bit programmable data transfer
• 64 x 32-bit FIFO for both transmit and receive data
• Configurable polarity and phase of the Chip Select (SS) and SPI Clock (SCLK)

The ECSPI module supports the following features:

• Implements each of the functions required by a ECSPI module to interface to Linux OS
• Multiple SPI master controllers
• Multiclient synchronous requests

4.3.2 Software Operation

The following sections describe the ECSPI software operation.

4.3.3 SPI Sub-System in Linux OS

The ECSPI driver layer is located between the client layer (SPI-NOR Flash are examples of clients) and the
hardware access layer. The figure below shows the block diagram for SPI subsystem in Linux OS.

The SPI requests go into I/O queues. Requests for a given SPI device are executed in FIFO order and they
complete asynchronously through completion callbacks. There are also some simple synchronous wrappers for
those calls including the ones for common transaction types such as writing a command and then reading its
response.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
70 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

SPI-NOR
mtd driver

Client #2 driver
....

Client #3 driver

SPI Subsystem

ECSPI Hardware

SPI-NOR Flash Client #2 Client #3....

Figure 10. SPI Subsystem

All SPI clients must have a protocol driver associated with them and they all must be sharing the same
controller driver. Only the controller driver can interact with the underlying SPI hardware module. The figure
below shows how the different SPI drivers are layered in the SPI subsystem.

SPI client Driver

SPI Core Driver

ECSPI Controller Driver

ECSPI Controller

SPI Slave
(SPI-NOR Flash)

Client Driver Interface

Controller Driver Interace

FSL ECSPI driver
(spi_imx.c)

SPI Bus Interface

Electrical Interface

SPI slave driver

SPI core driver

ECSPI host
controller driver

SPI slave device

Figure 11. Layering of SPI Drivers in SPI Subsystem

4.3.4 Software Limitations

The ECSPI driver limitations are as follows:

• Does not currently have SPI slave logic implementation
• Does not support a single client connected to multiple masters
• Does not currently implement the user space interface with the help of the device node entry but supports

sysfs interface

4.3.5 Standard Operations

The ECSPI driver is responsible for implementing standard entry points for init, exit, chip select, and transfer.
The driver implements the following functions:

• Init function spi_imx_init() registers the device_driver structure.
• Probe function spi_imx_probe() performs initialization and registration of the SPI device-specific structure with

SPI core driver. The driver probes for memory and IRQ resources. Configures the IOMUX to enable ECSPI I/
O pins, requests for IRQ and resets the hardware.

• Chip select function spi_imx_chipselect() configures the hardware ECSPI for the current SPI device. Sets the
word size, transfer mode, data rate for this device.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
71 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• SPI transfer function spi_imx_transfer() handles data transfers operations.
• SPI setup function spi_imx_setup() initializes the current SPI device.
• SPI driver ISR spi_imx_isr() is called when the data transfer operation is completed and an interrupt is

generated.

4.3.6 ECSPI Synchronous Operation

The figure below shows how the ECSPI provides synchronous read/write operations.

aaa-053505

Client driver

spi_read/write

spi transfer

SPI core driver

spi_enable_rx_intr

spi_load_TxFifo

spi_init_exchange

Rx_Data_Ready_intr

Callback after

Return

spi_getRxData

SPI controller
driver

ECSPI
hardware

transfer completion

Figure 12. ECSPI Synchronous Operation

4.3.7 Source Code Structure

Table below shows the source files available in the drivers/spi directory:

File Description

driveers/spi/spi-imx.c SPI Master Controller driver

Table 38. ECSPI Driver Files

4.3.8 Menu Configuration Options

In menu configuration enable the following module:

• CONFIG_SPI build support for the SPI core. In menuconfig, this option is available under:
– Device Drivers > SPI Support.

• CONFIG_BITBANG is the Library code that is automatically selected by drivers that need it. SPI_IMX selects
it. In menuconfig, this option is available under:
– Device Drivers > SPI Support > Utilities for Bitbanging SPI masters.

• CONFIG_SPI_IMX implements the SPI master mode for ECSPI. In menuconfig, this option is available under:
– Device Drivers > SPI Support > Freescale i.MX SPI controllers.

4.3.9 Programming Interface

This driver implements all the functions that are required by the SPI core to interface with the ECSPI hardware.

For more information, see the Linux document generated from build: make htmldocs.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
72 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

4.3.10 Interrupt Requirements

The SPI interface generates interrupts.

ECSPI interrupt requirements are listed in table below.

Parameter Equation Typical Worst Case

BaudRate/ Transfer Length (BaudRate/(TransferLength)) * (1/Rxtl) 31250 1500000

Table 39. ECSPI Interrupt Requirements

The typical values are based on a baud rate of 1 Mbps with a receiver trigger level (Rxtl) of 1 and a 32-bit
transfer length. The worst-case is based on a baud rate of 12 Mbps (max supported by the SPI interface) with a
8-bits transfer length.

4.4 Fast Ethernet Controller (FEC)

4.4.1 Introduction

The Fast Ethernet Controller (FEC) driver performs the full set of IEEE 802.3/Ethernet CSMA/CD media access
control and channel interface functions.

The FEC requires an external interface adapter and transceiver function to complete the interface to the
Ethernet media. It supports half or full-duplex operation on 10 Mbps, 100 Mbps, and 1000 Mbps-related
Ethernet networks.

The FEC driver supports the following features:

• Full/Half duplex operation
• Link status change detect
• Auto-negotiation (determines the network speed and full or half-duplex operation)
• Transmits features such as automatic retransmission on collision and CRC generation
• Obtaining statistics from the device such as transmit collisions

The network adapter can be accessed through the ifconfig command with interface name ethx. The driver auto-
probes the external adaptor (PHY device).

4.4.2 Hardware Operation

The FEC is an Ethernet controller that interfaces the system to the LAN network.

The FEC supports different standard MAC-PHY (physical) interfaces for connection to an external Ethernet
transceiver. The FEC supports the 10/100 Mbps MII, 10/100 Mbps RMII, and 10/100/1000 Mbps RGMII. In
addition, the FEC supports 1000 Mbps RGMII, which uses 4-bit reduced GMII operating at 125 MHz.

A brief overview of the device functionality is provided here. For details, see the FEC chapter of the Applications
Processor Reference Manual

In MII mode, there are 18 signals defined by the IEEE 802.3 standard and supported by the EMAC. MII, RMII
and RGMII modes uses a subset of the 18 signals. These signals are listed in table below.

Direction EMAC Pin Name RMII Usage RGMII Usage(not supported by i.MX 6UltraLite)

In/Out FEC_MDIO Management Data Input/
output

Management Data Input/Output

Out FEC_MDC General output Management Data Clock

Table 40. Pin Usage in MII, RMII and RGMII Modes

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
73 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Direction EMAC Pin Name RMII Usage RGMII Usage(not supported by i.MX 6UltraLite)

Out FEC_TXD[0] Data out, bit 0 Data out, bit 0

Out FEC_TXD[1] Data out, bit 1 Data out, bit 1

Out FEC_TXD[2] Not Used Data out, bit 2

Out FEC_TXD[3] Not Used Data out, bit 3

Out FEC_TX_EN Transmit Enable Transmit Enable

Out FEC_TX_ER Not Used Not Used

In FEC_CRS Not Used Not Used

In FEC_COL Not Used Not Used

In FEC_TX_CLK Not Used Synchronous clock reference (REF_CLK, can connect
from PHY)

In FEC_RX_ER Receive Error Not Used

In FEC_RX_CLK Not Used Synchronous clock reference (REF_CLK, can connect
from PHY)

In FEC_RX_DV Receive Data Valid and
generate CRS

RXDV XOR RXERR on the falling edge of FEC_RX_
CLK.

In FEC_RXD[0] Data in, bit 0 Data in, bit 0

In FEC_RXD[1] Data in, bit 1 Data in, bit 1

In FEC_RXD[2] Not Used Data in, bit 2

In FEC_RXD[3] Not Used Data in, bit 3

Table 40. Pin Usage in MII, RMII and RGMII Modes...continued

The MII management interface consists of two pins, FEC_MDIO, and FEC_MDC. The FEC hardware operation
can be divided in the parts listed below. For details, see the Applications Processor Reference Manuals.

• Transmission-The Ethernet transmitter is designed to work with almost no intervention from software. Once
ECR[ETHER_EN] is asserted and data appears in the transmit FIFO, the Ethernet MAC is able to transmit
onto the network. When the transmit FIFO fills to the watermark (defined by the TFWR), the MAC transmit
logic asserts FEC_TX_EN and starts transmitting the preamble (PA) sequence, the start frame delimiter
(SFD), and then the frame information from the FIFO. However, the controller defers the transmission if the
network is busy (FEC_CRS asserts).

• Before transmitting, the controller waits for carrier sense to become inactive, then determines if carrier
sense stays inactive for 60 bit times. If the transmission begins after waiting an additional 36 bit times (96 bit
times after carrier sense originally became inactive), both buffer (TXB) and frame (TXF) interrupts may be
generated as determined by the settings in the EIMR.

• Reception-The FEC receiver is designed to work with almost no intervention from the host and can perform
address recognition, CRC checking, short frame checking, and maximum frame length checking. When the
driver enables the FEC receiver by asserting ECR[ETHER_EN], it immediately starts processing receive
frames. When FEC_RX_DV asserts, the receiver checks for a valid PA/SFD header. If the PA/SFD is valid, it
is stripped and the frame is processed by the receiver. If a valid PA/SFD is not found, the frame is ignored. In
MII mode, the receiver checks for at least one byte matching the SFD. Zero or more PA bytes may occur, but
if a 00 bit sequence is detected prior to the SFD byte, the frame is ignored.

• After the first six bytes of the frame have been received, the FEC performs address recognition on the frame.
During reception, the Ethernet controller checks for various error conditions and once the entire frame is
written into the FIFO, a 32-bit frame status word is written into the FIFO. This status word contains the M, BC,
MC, LG, NO, CR, OV, and TR status bits, and the frame length. Receive Buffer (RXB) and Frame Interrupts
(RXF) may be generated if enabled by the EIMR register. When the receive frame is complete, the FEC sets

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
74 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

the L bit in the RxBD, writes the other frame status bits into the RxBD, and clears the E bit. The Ethernet
controller next generates a maskable interrupt (RXF bit in EIR, maskable by RXF bit in EIMR), indicating that
a frame has been received and is in memory. The Ethernet controller then waits for a new frame.

• Interrupt management-When an event occurs that sets a bit in the EIR, an interrupt is generated if the
corresponding bit in the interrupt mask register (EIMR) is also set. The bit in the EIR is cleared if a one is
written to that bit position; writing zero has no effect. This register is cleared upon hardware reset. These
interrupts can be divided into operational interrupts, transceiver/network error interrupts, and internal error
interrupts. Interrupts which may occur in normal operation are GRA, TXF, TXB, RXF, RXB. Interrupts resulting
from errors/problems detected in the network or transceiver are HBERR, BABR, BABT, LC, and RL. Interrupts
resulting from internal errors are HBERR and UN. Some of the error interrupts are independently counted
in the MIB block counters. Software may choose to mask off these interrupts as these errors are visible to
network management through the MIB counters.

• PHY management-phylib was used to manage all the FEC PHY-related operation such as PHY discovery,
link status, and state machine.MDIO bus will be created in FEC driver and registered into the system. See
Documentation/networking/phy.txt under the Linux OS source directory for more information.

4.4.3 Software Operation

The FEC driver supports the following functions:

• Module initialization-Initializes the module with the device-specific structure
• Rx/Tx transmition
• Interrupt servicing routine
• PHY management
• FEC management such init/start/stop
• i.MX 6 FEC module use little-endian format

4.4.4 Source Code Structure

The table below shows the source files. They are available at the drivers/net/ethernet/freescale
directory.

File Description

drivers/net/ethernet/freescale/fec.h Header file defining registers

drivers/net/ethernet/freescale/fec_main.c Linux driver for Ethernet LAN controller

Table 41. FEC Driver Files

4.4.5 Menu Configuration Options

Configure the kernel to provide for this module:

• CONFIG_FEC is provided for this module. This option is available under:
– Device Drivers > Network device support > Ethernet (10, 100 or 1000 Mbit) > FEC Ethernet controller.
– To mount NFS-rootfs through FEC, disable the other Network config in the menuconfig if need.

4.4.6 Programming Interface

Device-specific defines are added to the header file (fec.h) and they provide common board configuration
options.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
75 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

fec.h defines the struct for the register access and the struct for the buffer descriptor. For example,

/*
* Define the buffer descriptor structure.
*/
struct bufdesc {
 unsigned short cbd_datlen; /* Data length */
 unsigned short cbd_sc; /* Control and status info
 */
 unsigned long cbd_bufaddr; /* Buffer address */
};
struct bufdesc_ex {
 struct bufdesc desc;
 unsigned long cbd_esc;
 unsigned long cbd_prot;
 unsigned long cbd_bdu;
 unsigned long ts;
 unsigned short res0[4];
};
/*
* Define the register access structure.
*/
#define FEC_IEVENT 0x004 /* Interrupt event reg */
#define FEC_IMASK 0x008 /* Interrupt mask reg */
#define FEC_R_DES_ACTIVE 0x010 /* Receive descriptor reg */
#define FEC_X_DES_ACTIVE 0x014 /* Transmit descriptor reg */
#define FEC_ECNTRL 0x024 /* Ethernet control reg */
#define FEC_MII_DATA 0x040 /* MII manage frame reg */
#define FEC_MII_SPEED 0x044 /* MII speed control reg */
#define FEC_MIB_CTRLSTAT 0x064 /* MIB control/status reg */
#define FEC_R_CNTRL 0x084 /* Receive control reg */
#define FEC_X_CNTRL 0x0c4 /* Transmit Control reg */
#define FEC_ADDR_LOW 0x0e4 /* Low 32bits MAC address */
#define FEC_ADDR_HIGH 0x0e8 /* High 16bits MAC address */
#define FEC_OPD 0x0ec /* Opcode + Pause duration */
#define FEC_HASH_TABLE_HIGH 0x118 /* High 32bits hash table */
#define FEC_HASH_TABLE_LOW 0x11c /* Low 32bits hash table */
#define FEC_GRP_HASH_TABLE_HIGH 0x120 /* High 32bits hash table */
#define FEC_GRP_HASH_TABLE_LOW 0x124 /* Low 32bits hash table */
#define FEC_X_WMRK 0x144 /* FIFO transmit water mark */
#define FEC_R_BOUND 0x14c /* FIFO receive bound reg */
#define FEC_R_FSTART 0x150 /* FIFO receive start reg */
#define FEC_R_DES_START 0x180 /* Receive descriptor ring */
#define FEC_X_DES_START 0x184 /* Transmit descriptor ring */
#define FEC_R_BUFF_SIZE 0x188 /* Maximum receive buff size */
#define FEC_MIIGSK_CFGR 0x300 /* MIIGSK config register */
#define FEC_MIIGSK_ENR 0x308 /* MIIGSK enable register */

4.4.6.1 Getting a MAC Address

The MAC address can be set through the kernel command line, kernel device tree DTS file, OCOTP, or MAC
registers set by bootloader, such as U-Boot. The FEC driver uses it to configure the MAC address for the
network device. In general, use kernel command line in a form of fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
to set the MAC address. Due to certain pin conflicts (FEC RMII mode needs to use GPIO_16 or
RGMII_TX_CTL pin as reference clock input/output channel), the one of the both pins cannot connect to branch
lines for other modules use because the branch lines have serious influence on clock.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
76 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

4.5 FlexCAN

4.5.1 Introduction

FlexCAN is a communication controller implementing the CAN protocol according to the CAN 2.0B protocol
specification.

The CAN protocol was primarily designed to be used as a vehicle serial data bus meeting the specific
requirements of this field such as real-time processing, reliable operation in the EMI environment of a vehicle,
cost-effectiveness, and required bandwidth. The standard and extended message frames are supported. The
maximum message buffer is 64. The driver is a network device driver of PF_CAN protocol family.

For detailed information, see lwn.net/Articles/253425 or Documentation/networking/can.txt in Linux source
directory.

The FlexCAN on the i.MX 8QuadMax/8QuadXPlus supports CAN FD protocol.

4.5.1.1 Software Operation

The CAN driver is a network device driver. For the common information on software operation, refer to the
documents in the kernel source directory Documentation/networking/can.txt.

The CAN network device driver interface provides a generic interface to setup, configure and monitor CAN
network devices. The user can then configure the CAN device, like setting the bit-timing parameters, via the
netlink interface using the program "ip" from the "IPROUTE2" utility suite.

Starting and stopping the CAN network device.

A CAN network device is started or stopped as usual with the command "ifconfig canX up/down" or "ip link set
canX up/down". Be aware that you *must* define proper bit-timing parameters for real CAN devices before you
can start it to avoid error-prone default settings:

• ip link set canX up type can bitrate 125000

The iproute2 tool also provides some other configuration capbilities for can bus such as bit-timing setting. For
details, see kernel doc: Documentation/networking/can.txt

4.5.1.2 Source Code Structure

Table below shows the driver source file available in drivers/net/can

File Description

drivers/net/can/flexcan/ FlexCAN driver

Table 42. FlexCAN Driver Files

4.5.1.3 Menu Configuration Options

The following kernel configuration options are provided for this module.

• CONFIG_CAN - Build support for PF_CAN protocol family. In menuconfig, this option is available under
Networking > CAN bus subsystem support.

• CONFIG_CAN_RAW - Build support for Raw CAN protocol. In menuconfig, this option is available under
Networking > CAN bus subsystem support > Raw CAN Protocol (raw access with CAN-ID filtering).

• CONFIG_CAN_BCM - Build support for Broadcast Manager CAN protocol. In menuconfig, this option is
available under
Networking > CAN bus subsystem support > Broadcast Manager CAN Protocol (with content filtering).

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
77 / 301

http://lwn.net/Articles/253425
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• CONFIG_CAN_VCAN - Build support for Virtual Local CAN interface (also in Ethernet interface). In
menuconfig, this option is available under
Networking > CAN bus subsystem support > CAN Device Driver > Virtual Local CAN Interface (vcan).

• CONFIG_CAN_DEBUG_DEVICES - Build support to produce debug messages to the system log to the
driver. In menuconfig, this option is available under
Networking > CAN bus subsystem support > CAN Device Driver > CAN devices debugging messages.

• CONFIG_CAN_FLEXCAN - Build support for FlexCAN device driver. In menuconfig, this option is available
under
Networking > CAN bus subsystem support > CAN Device Driver > Freescale FlexCAN.

4.6 Inter-IC (I2C)

4.6.1 Introduction

LPI2C is a bidirectional serial bus that provides a simple, efficient method of data exchange, minimizing the
interconnection between devices.

The LPI2C driver for Linux OS has two parts:

• Bus driver-low level interface that is used to communicate with the LPI2C bus
• Chip driver-interface between other device drivers and the LPI2C bus driver

The I2C bus driver is a low-level interface that is used to interface with the I2C bus. This driver is invoked by
the I2C chip driver and it is not exposed to the user space. The standard Linux kernel contains a core I2C
module that is used by the chip driver to access the bus driver to transfer data over the I2C bus. This bus driver
supports:

• Compatibility with the I2C bus standard
• Bit rates up to 1 Mbps
• Standard I2C master mode and slave mode
• Power management features by suspending and resuming I2C.

4.6.2 LPI2C Bus Driver Overview

The LPI2C bus driver is invoked only by the chip driver and is not exposed to the user space. The standard
Linux kernel contains a core I2C module that is used by the chip driver to access the LPI2C bus driver to
transfer data over the LPI2C bus. The chip driver uses a standard kernel space API that is provided in the Linux
kernel to access the core I2C module. The standard I2C kernel functions are documented in the files available
under Documentation/i2c in the kernel source tree. This bus driver supports the following features:

• Compatible with the I2C bus standard
• Interrupt-driven, byte-by-byte data transfer
• Standard I2C master mode and slave mode

4.6.3 I2C Device Driver Overview

The I2C device driver implements all the Linux I2C data structures that are required to communicate with the
LPI2C bus driver. It exposes a custom kernel space API to the other device drivers to transfer data to the device
that is connected to the LPI2C bus. Internally, these API functions use the standard I2C kernel space API to call
the I2C core module. The I2C core module looks up the LPI2C bus driver and calls the appropriate function in
the LPI2C bus driver to transfer data. This driver provides the following functions to other device drivers:

• Read function to read the device registers
• Write function to write to the device registers

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
78 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

4.6.4 Software Operation

The I2C driver for Linux OS has two parts: an I2C bus driver and an I2C chip driver.

4.6.5 I2C Bus Driver Software Operation

The I2C bus driver is described by a structure called i2c_adapter . The most important field in this structure
is struct i2c_algorithm *algo . This field is a pointer to the i2c_algorithm structure that describes how data is
transferred over the I2C bus. The algorithm structure contains a pointer to a function that is called whenever the
I2C chip driver wants to communicate with an I2C device.

During startup, the I2C bus adapter is registered with the I2C core when the driver is loaded. Certain
architectures have more than one I2C module. If so, the driver registers separate i2c_adapter structures for
each I2C module with the I2C core. These adapters are unregistered (removed) when the driver is unloaded.

During normal communication, it times out and returns an error when the transfer has some error condition,
such as NACK is detected. When error condition occurs, I2C driver should stop current transfer.

4.6.6 I2C Device Driver Software Operation

The I2C driver controls an individual I2C device on the I2C bus. A structure, i2c_driver, describes the I2C
chip driver. The fields of interest in this structure are flags and attach_adapter. The flags field is set to a value
I2C_DF_NOTIFY so that the chip driver can be notified of any new I2C devices, after the driver is loaded. When
the I2C bus driver is loaded, this driver stores the i2c_adapter structure associated with this bus driver so that it
can use the appropriate methods to transfer data.

4.6.7 Driver Features

The LPI2C driver supports the following features:

• I2C communication protocol
• I2C master mode and slave mode of operation

4.6.8 Source Code Structure

Table below shows the driver source file available in drivers/i2c/busses

File Description

drivers/i2c/busses/i2c-imx-lpi2c.c LPI2C Bus Driver for i.MX 7ULP, i.MX 8ULP, i.MX 8X, i.MX 93, i.MX 94, and i.MX
95

drivers/i2c/busses/i2c-imx.c I2C Bus Driver for i.MX 6, i.MX 7, and i.MX 8M

Table 43. I2C Driver Files

4.6.9 Menu Configuration Options

Configure the kernel option to enable the module by menuconfig:

For i.MX 6, i.MX 7 and i.MX 8M, select Device Drivers > I2C support > I2C Hardware Bus support > IMX I2C
interface.

For i.MX 8, i.MX 8X, i.MX 93, and i.MX 95, select Device Drivers > I2C support > I2C Hardware Bus support >
IMX Low Power I2C interface.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
79 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

4.6.10 Programming Interface

The LPI2C device driver can use the standard SMBus interface to read and write the registers of the device
connected to the LPI2C bus. For more information, see include/linux/i2c.h.

4.7 Media Local Bus

4.7.1 Introduction

MediaLB is an on-PCB or inter-chip communication bus specifically designed to standardize a common
hardware interface and software API library.

This standardization allows an application or multiple applications to access the MOST Network data or to
communicate with other applications with minimum effort. MediaLB supports all the MOST Network data
transport methods: synchronous stream data, asynchronous packet data, and control message data. MediaLB
also supports an isochronous data transport method. For detailed information about the MediaLB, see the
Media Local Bus Specification.

The MediaLB module implements the Physical Layer and Link Layer of the MediaLB specification, interfacing
the i.MX to the MediaLB controller.

rf_top

Data buffer
Bus interface

Data buffer
RAM

Customer
implemented RAM

aaa-053519

Channel table
Bus interface

ahb_topAHB
interface

System
interface

Write strobe

Customer
implemented

analog
interface

MediaLB
analog

configuration
interface

Customer
implemented
differential

and
bi-directional

pads

MediaLB
6-pin

interface

MediaLB
3-pin

interface Customer
implemented

tri-state
pads

apb_topAPB
interface

hbi_topHBI

intif_top

I/O interface

Host bus
interface

(unconnected)

I/O
interface

(unconnected)

mif_top

cpr_top

mlb_top

Channel table
RAM

Figure 13. MLB Device Top-Level Block Diagram

The MLB implements the 3-pin MediaLB mode and can run at speeds up to 1024Fs. It does not implement
MediaLB controller functionality. All MediaLB devices support a set of physical channels for sending data over
the MediaLB. Each physical channel is 4 bytes in length (quadlet) and grouped into logical channels with one

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
80 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

or more physical channels allocated to each logical channel. These logical channels can be any combination of
channel type (synchronous, asynchronous, control, or isochronous) and direction (transmit or receive).

The MLB provides support for up to 64 logical channels and up to 64 physical channels. Each logical channel
is referenced using an unique channel address and represents a unidirectional data path between a MediaLB
device transmitting the data and the MediaLB device(s) receiving the data.

The supported features are the following.

• Synchronous, asynchronous, control, and isochronous channel.
• Up to 64 logical channels and 64 physical channels running at a maximum speed of 1024Fs.
• Transmission of commands and data and reception of receive status when functioning as the transmitting

device associated with a logical channel address.
• Reception of commands and data and transmission as receive status responses when functioning as the

receiving device associated with a logical channel address.
• MediaLB lock detection.
• System channel command handling.
• 256Fs, 512Fs and 1024Fs frame rates.
• Asynchronous, control, synchronous, and isochronous channel types.
• The following configurations to MLB device module:

– Frame rate
– Device address
– Channel address

• MLB channel exception get interface. All the channel exceptions are sent and handled by the application.

4.7.2 MLB Driver Overview

The MLB driver is designed as a common Linux OS character driver. It implements one asynchronous and one
control channel device with Ping-Pong buffering operation mode. The supported frame rates are 256, 512, and
1024Fs. The MLB driver uses common read/write interfaces to receive/send packets and uses the ioctl interface
to configure the MLB device module.

The MLB driver architecture is shown in the figure below.

TX status

aaa-053520

Exception
event

MLB DIM

MLB settings:
[speed]

[device address]
[channel address]

[channel start/shutdown]

Poll

poll0write0ioctl0 read0

Read pos

ISR

Tx Rx IRAM
drna tx/rx

Write pos
KernelISR mem cpy

MX35

User space

Figure 14. MLB Driver Architecture Diagram

The MLB driver creates four minor devices. These four devices support control Tx/Rx channel, asynchronous
Tx/Rx channel, synchronous Tx/Rx channel, and isochronous Tx/Rx channel. Their device files are /dev/ctrl, /
RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
81 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

dev/async, /dev/sync, and /dev/isoc. Each minor device has the same interfaces, and handle both Tx and Rx
operation. The following description is for both control and asynchronous device.

The driver uses IRAM as MLB device module Tx/Rx buffer. All the data transmission and reception between
module and IRAM is handled by the MLB module DMA. The driver is responsible for configuring the buffer start
and end pointer for the MLB module.

For reception, the driver uses a ring buffer to buffer the received packet for read. When a packet arrives, the
MLB module puts the received packet into the IRAM Rx buffer, and notifies the driver by interrupt. The driver
then copy the packet from the IRAM to one ring buffer node indicated by the write position, and updates the
write position with the next empty node. Finally the packet reader application is notified, and it gets one packet
from the node indicated by the read position of ring buffer. After the read is completed, it updates the read
position with the next available buffer node. There is no received packet in the ring buffer when the read and
write position is the same.

For transmission, the driver writes the packet given by the writer application into the IRAM Tx buffer, updates
the Tx status and sets MLB device module Tx buffer pointer to start transmission. After transmission completes,
the driver is notified by interrupt and updates the Tx status to accept the next packet from the application.

The driver supports NON BLOCK I/O. User applications can poll to check if there are packets or exception
events to read, and also they can check if a packet can be sent or not. If there are exception events, the
application can call ioctl to get the event. The ioctl also provides the interface to configure the frame rate, device
address, and channel address.

4.7.3 Software Operation

The MLB driver provides a common interface to application.

• Packet read/write-BLOCK and NONBLOCK Packet I/O modes are supported. Only one packet can be read or
written at once. The minimum read length must be greater or equal to the received packet length, meanwhile
the write length must be shorter than 1024 Bytes.

• Polling-The MLB driver provide polling interface which polls for three status, application can use select to get
current I/O status:
– Packet available for read (ready to read)
– Driver is ready to send next packet (ready to write)
– Exception event comes (ready to read)

• ioctl-MLB driver provides the following ioctl:

MLB_SET_FPS

Argument type: unsigned int

Set frame rate, the argument must be 256, 512 or 1024.

MLB_GET_VER

Argument type: unsigned long

Get MLB device module version, which is 0x02000202 by default on the i.MX35.

MLB_SET_DEVADDR

Argument type: unsigned char

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
82 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Set MLB device address, which is used by the system channel MlbScan command.

MLB_CHAN_SETADDR

Argument type: unsigned int

Set the corresponding channel address [8:1] bits. This ioctl combines both tx and rx channel address, the
argument format is: tx_ca[8:1] << 16 | rx_ca[8:1].

MLB_CHAN_STARTUP

Startup the corresponding type of channel for transmit and reception.

MLB_CHAN_SHUTDOWN

Shutdown the corresponding type of channel.

MLB_CHAN_GETEVENT

Argument type: unsigned long

Get exception event from MLB device module, the event is defined as a set of enumeration:

MLB_EVT_TX_PROTO_ERR_CUR
MLB_EVT_TX_BRK_DETECT_CUR
MLB_EVT_RX_PROTO_ERR_CUR
MLB_EVT_RX_BRK_DETECT_CUR

4.7.4 Source Code Structure

The table below lists the MLB Driver source files.

File Description

drivers/mxc/mlb/mxc_mlb.c Source file for MLB driver

include/linux/mxc_mlb.h Include file for MLB driver

Table 44. MLB Driver Source Files

4.7.5 Menu Configuration Options

In menu configuration enable the following module:

Device Drivers > MXC support drivers > MXC Media Local Bus Driver > MLB support.

4.8 PCI Express Root Complex

4.8.1 Introduction

PCI Express hardware module, contained in i.MX SoC, can either be configured to act as a Root Complex or a
PCIe Endpoint. This document is used to describe the PCI Express Root Complex implementation on i.MX SoC
families.It also describes the drivers needed to be configured and operated on i.MX PCI Express device as Root
Complex.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
83 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

PCI Express (PCIe) is Third Generation I/O Interconnect, targeting low cost, high volume, multiplatform
interconnection usages. It has the concepts with earlier PCI and PCI-X and offers backwards compatibility for
existing PCI software with following differences:

• PCIe is a point-to-point interconnect
• Serial link between devices
• Packet based communication
• Scalable performance via aggregated Lanes from X1 to X16
• Need PCIe switch to have connection between more than two PCIe devices

4.8.2 Terminology and Conventions

The following terminologies and conventions are used in this document:

• Bridge
A Function that virtually or actually connects a PCI/PCI-X segment or PCI Express Port with an internal
component interconnect or with another PCI/PCI-X bus segment or PCI Express Port.

• Downstream
– The relative position of an interconnect/System Element (Port/component) that is farther from the Root

Complex. The Ports on a Switch that are not the Upstream Port are Downstream Ports. All Ports on a Root
Complex are Downstream Ports. The Downstream component on a Link is the component farther from the
Root Complex.

– A direction of information flow where the information is flowing away from the Root Complex.
• Endpoint

One of several defined System Elements. A Function that has a Type 00h Configuration Space header.
• Host

The entity comprising of one (or more) Central Processing Unit(s) (CPU) and resources, such as Memory
(RAM) that can be shared across multiple PCIe nodes connected through a Root Complex.

• Lane
A set of differential signal pairs, one pair for transmission and one pair for reception.

• Link
The collection of two Ports and their interconnecting Lanes. A Link is a dual simplex communications path
between two components.

• PCIe Fabric
A topology comprised of various PCI Express nodes, also referred as devices. A device in the fabric can be
Root Complex, Endpoint, PCIe-PCI/PCI-X Bridge or a Switch.

• Port
– Logically, an interface between a component and a PCI Express Link.
– Physically, a group of Transmitters and Receivers located on the same chip that define a Link.

• Root Complex
RC A defined System Element that includes a Host Bridge, zero or more Root Complex Integrated Endpoints,
zero or more Root Complex Event Collectors, and one or more Root Ports.

• Root Port
A PCI Express Port on a Root Complex that maps a portion of the Hierarchy through an associated virtual
PCI-PCI Bridge.

• Upstream
– The relative position of an interconnect/System Element (Port/component) that is closer to the Root

Complex. The Port on a Switch that is closest topologically to the Root Complex is the Upstream Port. The
Port on a component that contains only Endpoint or Bridge Functions is an Upstream Port. The Upstream
component on a Link is the component closer to the Root Complex.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
84 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Any element of the fabric which is relatively closer towards RC is treated as 'Upstream'. All PCIe Endpoint ports
(including termination points for bridges) and Switch ports, which are closer to RC are called Upstream Ports on
that device. An Upstream Flow is the communication moving towards RC.

4.8.3 PCIe Topology on i.MX

There is one PCIe port on the i.MX. Currently, only the RC mode is enabled in the Linux BSP.

The following figure describes the diagram of the PCIe RC port on i.MX.

CPU, memory and so oni.MX
platform

BUS#0

aaa-053503

Virtual PCI-PCI bridge

PCIe RC downstream port

BUS#1 PCIe EP upstream port

PCIe EP devices

Figure 15. diagram of the PCIe RC port on i.MX

PCI Enumeration Mapping

As PCI Express is point to point topology, to maintain compatibility with legacy PCI Bus - Device notion used for
Software Enumeration, we introduce the following concepts which allow various nodes and their internals to be
identified (e.g., PCIe Switches) in terms of PCI devices/functions:

• Host Bridge: A bridge, integrated into RC to have PCI compatible connection to Host. The PCI side of this
bridge is Bus #0 always. This means, the device on this bus will be the host itself.

• Virtual PCI-PCI Bridge: Each PCI Express port which is part of RC or a Switch is treated as a virtual PCI-PCI
bridge. This means each port has a primary and secondary PCI bus and the downstream is mapped into the
remote configuration space.

• Root port associated virtual bridge has Bus #0 on the primary side with secondary bus on the downstream.
• Each PCIe Switch is viewed as collection of as many virtual PCI-PCI bridges as number of downstream

ports, connected to a virtual PCI bus which is actually secondary bus of another PCI-PCI bridge forming the
upstream port of the switch.

• The upstream port of each EP can either be part of the secondary bus segment of virtual PCI-PCI Bridge
representing downstream port of a switch or of the root port.

4.8.4 Features

The following are the various features supported by i.MX as a PCI Express Root Complex driver.

• Express Base Specification Revision 2.0-compliant.
• Gen2 operation with x1 link supporting 5 GT/s raw transfer rate in single direction.
• Support Legacy Interrupts (INTx) and MSI.
• Max_Payload_Size size (128 bytes).
• It fits into Linux PCI Bus framework to provide PCI compatible software enumeration support.
• In addition, it provides interface to Endpoint Drivers to access the respective devices detected downstream.
• The same interface can be used by the PCI Express Port Bus Driver framework in Linux OS to handle AER,

ASP, and so on.
• Interrupt handling facility for EP drivers either as Legacy Interrupts (INTx).
RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
85 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• Access to EP I/O BARs through generic I/O accessories in Linux PCI subsystem.
• Seamless handling of PCIe errors.
• Supports the L0, L0s, L1, and L1.1 ASPM power management.

4.8.5 Linux OS PCI Subsystem and RC driver

In Linux OS, the PCI implementation can roughly be divided into the following main components: PCI BIOS
architecture-specific Linux OS implementation, Host Controller (RC) Module, and Core.

• PCI BIOS Architecture-specific Linux OS implementation to kick off PCI bus initialization. It interfaces with PCI
Host Controller code as well as the PCI Core to perform bus enumeration and allocation of resources such as
memory and interrupts. The successful completion of BIOS execution assures that all the PCI devices in the
system are assigned parts of available PCI resources and their respective drivers (referred as Slave Drivers).
PCI can take control of them using the facilities provided by PCI Core. It is possible to skip resource allocation
(if they were assigned before Linux OS was booted, for example PC scenario).

• Host Controller (RC) Module handles hardware (SoC + Board) specific initialization and configuration
and it invokes PCI BIOS. It should provide callback functions for BIOS as well as PCI Core, which will be
called during PCI system initialization and accessing PCI bus for configuration cycles. It provides resources
information for available memory/IO space, INTx interrupt lines, MSI. It should also facilitate IO space access
(as supported) through in _x_ () out _x_ () You may need to provide indirect memory access (if supported by
h/w) through read _x_ () write _x_ ().

• Core creates and initializes the data structure tree for bus devices as well as bridges in the system, handles
bus/device numberings, creates device entries and proc/sysfs information, provides services for BIOS and
slave drivers and provides hot plug support (optional/as supported by h/w). It targets (EP) driver interface
query and initializes corresponding devices found during enumeration. It also provides MSI interrupt handling
framework and PCI express port bus support. It provides Hot-Plug support (if supported), advanced error
reporting support, power management event support, and virtual Channel support to run on PCI express ports
(if supported).

4.8.6 PCIe Driver Source Files

File Description

drivers/pci/controller/dwc/pci-imx6.c i.MX 6 PCIe source

Table 45. Source Files

4.8.7 System Resource: Memory Layout

PCle host configuration space
0x01ff_c000 - 0x01ff_ffff (16 KB)

PCle device configuration space
0x01f0_0000 - 0x01f7_ffff (512 KB)

PCle I/O space:
0x01f8_0000 - 0x01fb_ffff (64 KB)

PCle memory space:
0x0100_0000 - 0x01ef_ffff (15 MB)

aaa-053516

Figure 16. Memory Layout (i.MX 6Quad/6DualLite/6Solo)

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
86 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

PCle host configuration space
0x08ff_c000 - 0x08ff_ffff (16 KB)

PCle device configuration space
0x08f0_0000 - 0x08f7_ffff (512 KB)

PCle I/O space:
0x08f8_0000 - 0x08fb_ffff (64 KB)

PCle memory space:
0x0800_0000 - 0x08ef_ffff (15 MB)

aaa-053518

Figure 17. Memory Layout (i.MX 6SoloX)

PCle host configuration space
0x3380_0000 - 0x3380_3ffff (16 KB)

PCle device configuration space
0x4ff0_0000 - 0x4ff7_ffff (512 KB)

PCle I/O space
0x4ff8_0000 - 0x4ff8_ffff (64 KB)

PCle memory space
0x4000_0000 - 0x4fef_ffff (255 MB)

aaa-053517

Figure 18. Memory Layout (i.MX 7Dual)

• IO and memory spaces are two address spaces used by the devices to communicate with their device driver
running in the Linux kernel on CPU.

• The upper 16 KB PCIe host configuration space.
– This memory segment is used to map the configuration space of PCIe RC. SW can access PCIe RC core

configuration space through the DBI interface.
• PCIe device configuration space.

– Used to map the configuration spaces of PCIe EP devices that are inserted to the RC downstream port.

i.MX 8QuadMax/8QuadXPlus:

i.MX 8QuadMax has both PCIeA and PCIeB, while i.MX 8QuadXPlus has only PCIeB.

• PCIeA
– PCIe host configuration space: 0x5f00_0000 – 0x5f00_ffff (64K bytes)
– PCIe device configuration space: 0x6ff0_0000 – 0x6ff7_ffff (512K bytes)
– PCIe IO space: 0x6ff8_0000 – 0x6ff8_ffff (64K bytes)
– PCIe memory space: 0x6000_0000 – 0x6fef_ffff (255M bytes)

• PCIeB
– PCIe host configuration space: 0x5f01_0000 – 0x5f01_ffff (64K bytes)
– PCIe device configuration space: 0x7ff0_0000 – 0x7ff7_ffff (512K bytes)
– PCIe IO space: 0x7ff8_0000 – 0x7ff8_ffff (64K bytes)
– PCIe memory space: 0x7000_0000 – 0x7fef_ffff (255M bytes)

i.MX 8M Quad:

• PCIe0
– PCIe host configuration space: 0x3380_0000 – 0x33bf_ffff (4Mbytes)

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
87 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

– PCIe device configuration space: 0x1ff0_0000 – 0x1ff7_ffff (512K bytes)
– PCIe IO space: 0x1ff8_0000 – 0x1ff8_ffff (64K bytes)
– PCIe memory space: 0x1800_0000 – 0x1fef_ffff (127M bytes)

• PCIE1
– PCIe host configuration space: 0x33c0_0000 – 0x33ff_ffff (4Mbytes)
– PCIe device configuration space: 0x27f0_0000 – 0x27f7_ffff (512K bytes)
– PCIe IO space: 0x27f8_0000 – 0x27f8_ffff (64K bytes)
– PCIe memory space: 0x2000_0000 – 0x27ef_ffff (127M bytes)

4.8.8 System Resource: Interrupt lines

i.MX Root Complex driver uses interrupt line 152 for MSI INT on i.MX 6 platforms, and 154 for MSI INT on i.MX
7Dual platforms.

4.9 USB

4.9.1 Introduction

The universal serial bus (USB) driver implements a standard Linux driver interface to the CHIPIDEA USB-HS
OTG controller.

The USB provides a universal link that can be used across a wide range of PC-to-peripheral interconnects. It
supports plug-and-play, port expansion, and any new USB peripheral that uses the same type of port.

The CHIPIDEA USB controller is Enhanced Host Controller Interface (EHCI)-compliant. This USB driver has the
following features:

• High-speed OTG core supported
• High-speed Host Only core (Host1), high-speed, full speed, and low devices are supported
• High-speed Inter-Chip core (Host2 & Host3)
• High-speed Host Only core (OTG2), high-speed, full speed, and low devices are supported. A USB2Pci bridge

is connected to OTG2 by default. Therefore, users may not be able to connect other USB devices on this port.
• High-speed Inter-Chip core (Host2)
• Host mode-Supports HID (Human Interface Devices), MSC (Mass Storage Class)
• Peripheral mode-Supports MSC, and CDC (Communication Devices Class) drivers, which include Ethernet

and serial support
• Embedded DMA controller

4.9.2 Architectural Overview

The USB host system is composed of a number of hardware and software layers.

The figure below shows a conceptual block diagram of the building block layers in a host system that support
USB 2.0.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
88 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Client SW

aaa-053497

Function

Physical
device

Host Interconnect

USB
system SW

USB
logical device

USB host
controller

Logical communications flow

Implementation focus area

Actual communications flow

USB bus
interface

Function
layer

USB device
layer

USB bus
interface layer

Figure 19. USB Block Diagram

4.9.3 Hardware Operation

For information on hardware operations, refer to the EHCI spec.ehci-r10.pdf.

The spec is available at Enhanced Host Controller Interface for USB 2.0: Specification

4.9.4 Software Operation

The Linux OS contains a USB driver, which implements the USB protocols. For the USB host, it only
implements the hardware specified initialization functions. For the USB peripheral, it implements the gadget
framework. For OTG, ID dynamic switch host/device modes are supported. Currently, the runtime suspend for
USB is supported, that is to say when the USB is not in use (both for host and peripheral mode), the USB will
enter low power mode.

4.9.5 Source Code Structure

The table below describes the USB source in drivers/usb.

File Description

drivers/usb/chipidea/core.c Chipidea IP core driver

drivers/usb/chipidea/udc.c Chipidea peripheral driver

drivers/usb/chipidea/host.c Chipidea host driver

drivers/usb/chipidea/otg.c Chipidea OTG driver

drivers/usb/chipidea/otg_fsm.c Chipidea OTG HNP and SRP driver

drivers/usb/chipidea/ci_hdrc_imx.c i.MX glue layer

drivers/usb/chipidea/usbmisc_imx.c i.MX SoC abstract layer

Table 46. Chipidea USB Driver Files

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
89 / 301

http://www.intel.com/content/www/us/en/io/universal-serial-bus/ehci-specification-for-usb.html
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

File Description

drivers/usb/phy/phy-mxs-usb.c i.MX 6/i.MX 7ULP/i.MX 8ULP USB physical driver

Table 46. Chipidea USB Driver Files...continued

4.9.6 Menu Configuration Options

In menu configuration, enable the following modules:

> Device Drivers > USB support
 <*> ChipIdea Highspeed Dual Role Controller
 [*] ChipIdea device controller
 [*] ChipIdea host controller

> Device Drivers > USB support > USB Physical Layer drivers
 <*> NOP USB Transceiver Driver
 <*> Freescale MXS USB PHY support

> Device Drivers > USB support > USB Gadget Support

1. CONFIG_USB - Build support for Host-side USB
2. CONFIG_USB_EHCI_HCD EHCI HCD (USB 2.0) support

Default y
3. CONFIG_USB_CHIPIDEA - ChipIdea high-speed Dual Role Controller

Default y
4. CONFIG_USB_CHIPIDEA_UDC - ChipIdea device controller

Default y
5. CONFIG_USB_CHIPIDEA_HOST - ChipIdea host controller

Default y
6. CONFIG_USB_GADGET - USB Gadget Support

Default y
7. CONFIG_USB_MXS_PHY - Freescale MXS USB PHY support

Default y
8. CONFIG_NOP_USB_XCEIV - NOP USB Transceiver Driver

Default y

Note: Some platforms, such as i.MX 6UL, i.MX 7ULP, and i.MX 8ULP, need the Freescale MXS USB
PHY driver. Other platforms, such as i.MX 7Dual, i.MX 8M Mini, i.MX 93, and i.MX 95, need the NOP USB
Transceiver Driver.

4.9.7 USB Wakeup Usage

The following example is for the OTG port and the first EHCI device.

Controller wakeup setting, after the following settings, the VBUS and ID will be wakeup source.

echo enabled > /sys/bus/platform/devices/20c9000.usbphy/power/wakeup
echo enabled > /sys/bus/platform/devices/2184000.usb/power/wakeup
echo enabled > /sys/bus/platform/devices/ci_hdrc.0/power/wakeup

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
90 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

EHCI wakeup setting, after the following settings, the host will have wakeup ability, such as remote wakeup and
connect/disconnect wakeup

echo enabled > /sys/bus/usb/devices/usb1/power/wakeup
echo enabled > /sys/bus/usb/devices/1-1/power/wakeup

Note: When the OTG mode switches from the host to the device, it will delete the EHCI wakeup, and the user
needs to set it again before the system suspending.

4.9.8 How to Close the USB Child Device Power

The following code string outlines how to close the USB child device power:

echo auto > /sys/bus/usb/devices/1-1/power/control
echo auto > /sys/bus/usb/devices/1-1.1/power/control (If there is a hub at USB
 device)

4.9.9 Changing the Controller Operation Mode

To change the default settings, the use can modify the DTS file as follows:

dr_mode = "host" /* Set dr_mode = "host" /* Set controller as host only mode
 */
dr_mode = "peripheral" /* Set controller as peripheral only mode*/
dr_mode = "otg" /* Set controller as dual role mode */ as gadget-only mode */
dr_mode = "peripheral" /* Set controller as host-only mode */
dr_mode = "otg" /* Set controller as otg mode */

4.9.10 Loadable Module Support

The modprobe utility will automatically load the modules which have dependency among all modules.

The loading command is as follows:

modprobe phy-generic
modprobe phy_mxs_usb
modprobe ci_hdrc_imx

The unloading command is as follows:

modprobe -r ci_hdrc_imx
modprobe -r phy_mxs_usb
modprobe -r phy-generic

4.9.11 USB Charger Detection

i.MX SoC has USB charger detection ability, but it has no charging ability. The user can use the /sys entry to
know the USB charger type, charging current, and whether the charger exists, as shown in the following three
lines:

cat /sys/class/power_supply/imx6_usb_charger/type
cat /sys/class/power_supply/imx6_usb_charger/current_max

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
91 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

cat /sys/class/power_supply/imx6_usb_charger/present

Currently, the i.MX 6 Sabre-SD board does not support the USB charger detection function. i.MX 6 Sabre-Auto
supports the function.

4.9.12 Embeded Host Certification

4.9.12.1 Adding TPL-Support Property

To pass embeded host USB certification, "tpl-support" should be added in DTS to enable Targeted Peripheral
List (TPL). For example, to enable TPL on the Host port of i.MX 6UltraLite EVK board (imx6ul-14x14-evk.dts):

&usbotg2 {
dr_mode = "host";
disable-over-current;
tpl-support;
status = "okay";
};

4.9.12.2 VBUS Control

The VBUS should be kept off until the Linux USB host function is ready. For example, on the i.MX 6UltraLite
EVK board, because the pin is multiplexed with the touch function, you need to rework the board to make the
GPIO (GPIO1_IO02) selected for VBUScontrol.

Disable the touch function in its DTS file (imx6ul-14x14-evk.dts) as follows:

&tsc {
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_tsc>;
xnur-gpio = <&gpio1 3 0>;
measure_delay_time = <0xffff>;
pre_charge_time = <0xfff>;
status = "disabled";
};

Add VBUS GPIO pinctrl and its regulator node:

pinctrl_usb_otg2: usbotg2grp {
 fsl,pins = <
 MX6UL_PAD_GPIO1_IO02__GPIO1_IO02 0xb0
 >;
};
reg_usb_otg2_vbus: regulator@2 {
 compatible = "regulator-fixed";
 reg = <2>;
 pinctrl-names = "default";
 pinctrl-0 = <&pinctrl_usb_otg2>;
 regulator-name = "usb_otg2_vbus";
 regulator-min-microvolt = <5000000>;
 regulator-max-microvolt = <5000000>;
 gpio = <&gpio1 2 GPIO_ACTIVE_HIGH>;
 enable-active-high;
};
&usbotg2 {
 vbus-supply = <®_usb_otg2_vbus>;
 dr_mode = "host";

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
92 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

 disable-over-current;
 tpl-support;
 status = "okay";
};

4.10 USB3

4.10.1 Introduction

For i.MX 8 and i.MX 8X families, a super-speed USB IP from Cadence, and for i.MX 8M Plus and i.MX 95, a
super-speed USB IP (DWC3) from Synopsys are provided supporting USB 3.0, which includes a new transfer
rate referred to as Super Speed (SS) USB with higher transfer rates and significantly faster than the USB 2.0
standard.

The supported features the following.

• Host mode is implemented with a Linux OS standard XHCI driver with super-speed supported and tested.
• For Device Mode only single queue is supported. Mass storage, ether, and serial are supported.

4.10.2 Source Code Structure

File Description

drivers/usb3/cdns3/cdns3-nxp-reg-def.h Register definitions

drivers/usb3/cdns3/core.c USB3 core driver

drivers/usb3/cdns3/core.h USB3 Core header

drivers/usb3/cdns3/dev-regs-macro.h USB3 Macros

drivers/usb3/cdns3/dev-regs-map.h USB3 Register mapping

drivers/usb3/cdns3/gadget.c USB3 Gadget

drivers/usb3/cdns3/gadget.h USB3 Gadget header

drivers/usb3/cdns3/gadget-export.h USB3 Gadget Export header

drivers/usb3/cdns3/host.c USB3 Host

drivers/usb3/cdns3/host-export.h USB3 Host Export header

drivers/usb3/cdns3/io.h USB3 IO

Table 47. CDNS3 USB3 Driver Source Files

File Description

drivers/usb/dwc3/core.c USB3 Core driver

drivers/usb/dwc3/core.h USB3 Core header

drivers/usb/dwc3/drd.c USB3 Dual-role switch driver

drivers/usb/dwc3/host.c USB3 Host

drivers/usb/dwc3/gadget.c USB3 gadget

drivers/usb/dwc3/gadget.h USB3 gadget header

drivers/usb/dwc3/io.h USB3 IO

Table 48. DWC3 USB3 Driver Source Files

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
93 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

File Description

drivers/usb/dwc3/dwc3-imx8mp.c NXP IMX specific Glue driver for i.MX 8M Plus and i.MX 95

drivers/usb/dwc3/debugfs.c For Debug purposes

drivers/usb/dwc3/trace.c For Trace purposes

drivers/usb/dwc3/trace.h Trace header

Table 48. DWC3 USB3 Driver Source Files...continued

4.11 Low Power Universal Asynchronous Receiver/Transmitter (LPUART)

4.11.1 Introduction

The low-level UART driver interfaces the Linux serial driver API to all the UART ports.

It has the following features:

• Interrupt-driven and eDMA-driven transmit/receive of characters
• Standard Linux baud rates up to 4 Mbps
• Transmit and receive characters with 7-bit, 8-bit, 9-bit, or 10-bit character length
• Transmits one or two stop bits
• Supports TIOCMGET IOCTL to read the modem control lines. Only supports the constants TIOCM_CTS and

TIOCM_CAR, plus TIOCM_RI in DTE mode only
• Supports TIOCMSET IOCTL to set the modem control lines. Supports the constants TIOCM_RTS and

TIOCM_DTR only
• Odd and even parity
• XON/XOFF software flow control. Serial communication using software flow control is reliable when

communication speeds are not too high and the probability of buffer overruns is minimal
• CTS/RTS hardware flow control-both interrupt-driven software-controlled hardware flow and hardware-driven

hardware-controlled flow
• Send and receive break characters through the standard Linux serial API
• Recognizes frame and parity errors
• Ability to ignore characters with break, parity and frame errors
• Get and set UART port information through the TIOCGSSERIAL and TIOCSSERIAL TTY IOCTL. Some

programs like setserial and dip use this feature to make sure that the baud rate was set properly and to get
general information on the device. The UART type should be set to 52 as defined in the serial_core.h header
file.

• Power management feature by suspending and resuming the UART ports
• Standard TTY layer IOCTL calls

All the UART ports can be accessed from the device files /dev/ttyLP0 to /dev/ttyLP1.

4.11.2 Hardware Operation

To determine the number of UART modules available on the device see the Applications Processor Reference
Manual associated with SoC.

Each UART hardware port is capable of standard RS-232 serial communication.

Each UART also supports a variety of maskable interrupts when the data level in each FIFO reaches a
programmed threshold level and when there is a change in state in the modem signals.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
94 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

4.11.3 Software Operation

The Linux OS contains a core UART driver that manages many of the serial operations that are common across
UART drivers for various platforms.

The low-level UART driver is responsible for supplying information such as the UART port information and a set
of control functions to the core UART driver. These functions are implemented as a low-level interface between
the Linux OS and the UART hardware. They cannot be called from other drivers or from a user application. The
control functions used to control the hardware are passed to the core driver through a structure called uart_ops,
and the port information is passed through a structure called uart_port. The low level driver is also responsible
for handling the various interrupts for the UART ports, and providing console support if necessary.

Each UART can be configured to use DMA for the data transfer by enabling the DMA channel in the DTS file.

The driver requests two DMA channels for the UARTs that need DMA transfer. On a receive transaction, the
driver copies the data from the DMA receive buffer to the TTY Flip Buffer.

While using DMA to transmit, the driver copies the data from the UART transmit buffer to the DMA transmit
buffer and sends this buffer to the DMA system. For more information, see the Linux documentation on the
serial driver in the kernel source tree.

4.11.4 Driver Features

The UART driver supports the following features:

• Baud rates up to 4 Mbps
• Recognizes frame and parity errors
• Recognizes the modem control signals
• Ignores characters with frame, parity, and break errors if requested to do so
• Implements support for hardware flow control
• Get and set the UART port information; certain flow control count information is not available in hardware-

driven hardware flow control mode
• Power management
• Interrupt-driven and DMA-driven data transfer

4.11.5 Source Code Structure

Table below shows the UART driver source files.

File Description

drivers/tty/serial/fsl_lpuart.c LP UART driver

Table 49. UART Driver Files

For the i.MX 8, i.MX 8X and i.MX 8M configuration options are specified in the device trees located in arch/
arm64/boot/dts directory.

4.11.6 Menu Configuration Options

The UART driver is enabled by default.

The menu configuration option is located at:

Device Drivers > Character devices > Serial drivers > Freescale LPUART serial port support [*] Console on
Freescale LPUART serial port

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
95 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

4.11.7 Programming Interface

The UART driver implements all the methods required by the Linux serial API to interface with the UART port
and provides a set of control methods to the Linux core UART driver. For more information about the methods
implemented in the driver, see the API document.

4.11.8 Interrupt Requirements

The UART driver interface generates only one interrupt.

The status is used to determine which kinds of interrupt occurs, such as RX or TX.

4.12 Bluetooth

4.12.1 Bluetooth Wireless Technology Introduction

Bluetooth technology is low-cost, low-power, short-range wireless technology. It was designed as a replacement
for cables and other short-range technologies like IrDA. Bluetooth wireless technology operates in personal
area range that typically extends up to 10 meters. For more information about Bluetooth wireless technology,
see www.bluetooth.com/.

For i.MX, Bluetooth is supported with multiple vendors. For details, see the Section "Connectivity for Bluetooth
wireless technology and Wi-Fi" in the i.MX Linux User's Guide (UG10163).

4.12.2 Bluetooth Driver Overview

i.MX uses the open source NXP Bluetooth driver. The Bluetooth software is divided into four parts as follows:

• 4-wire UART and TTY driver: It is the communication interface with the Bluetooth module.
• Bluetooth HCI device driver: NXP Bluetooth driver based on serdev driver for the NXP BT serial protocol

based on running H:4. It is used for communication between Bluetooth device and host.
• Bluetooth kernel stack: Bluetooth framework and protocols implementation.
• Bluetooth user stack: Supplies several user-space utilities and integrate many profiles for use cases.

4.12.3 Bluetooth Driver Files

The Bluetooth driver source files are available in the kernel source directory.

• Bluetooth HCI device driver:
– drivers/bluetooth/btnxpuart.c

• Bluetooth kernel stack:
– net/bluetooth/*

4.12.4 Bluetooth Stack

BlueZ is the official Linux standard Bluetooth protocol stack, it is the latest version of 5.x and it is a Bluetooth
stack for Linux kernel-based family of operating systems. Its goal is to program an implementation of the
Bluetooth wireless standards specifications for Linux. To use Linux Bluetooth subsystem, you need several
user-space utilities like hciconfig and bluetoothd. These utilities and updates to Bluetooth kernel modules are
provided in the BlueZ packages. For more information, see www.bluez.org/.

BlueZ source code are available in the git: git://git.kernel.org/pub/scm/bluetooth/bluez.git. The current BSP
package tests pass with BlueZ 5.79.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
96 / 301

http://www.bluetooth.com/
http://www.bluez.org/
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

4.12.5 Menu Configuration Options

The following Linux kernel configuration option is provided for this module:

• UART interface:
– CONFIG_SERIAL_FSL_LPUART
– CONFIG_SERIAL_IMX
– CONFIG_TTY

• HCI interface:
– CONFIG_BT_HCIUART
– CONFIG_BT_NXPUART

• Bluetooth Stack:
– CONFIG_BT
– CONFIG_BT_RFCOMM
– CONFIG_BT_RFCOMM_TTY
– CONFIG_BT_BNEP
– CONFIG_BT_BNEP_MC_FILTER
– CONFIG_BT_BNEP_PROTO_FILTER
– CONFIG_BT_HIDP

4.13 ENETC

4.13.1 Introduction

The NIC functionality in NETC is known as EtherNET Controller (ENETC). ENETC supports virtualization/
isolation based on PCIe Single Root IO Virtualization (SR-IOV), advanced QoS with 8 traffic classes and 4 drop
resilience levels, and a full range of TSN standards and NIC offload capabilities. For more details, see Section
"NET Controller (NETC) Domain" in the i.MX Applications Processor Reference Manual for i.MX 95 and i.MX
943.

4.13.2 Software Operation

The ENETC PF driver supports the following features:

• 10 Mbps, 100 Mbps, 1 Gbps, 2.5 Gbps, and 10 Gbps port speeds: Full range of standard 802.3 Ethernet
speeds.

• Half-duplex support at 10 Mbps and 100 Mbps speeds.
• EEE support: Energy Efficient Ethernet.
• Pause support: Recognizes and generates PAUSE frames with timing support for both receive and transmit.
• One-step and two-step timestamping support for PTP/IEEE1588/IEEE802.1AS-2020.
• Comprehensive statistics support enables system management and debugging.
• MAC and VLAN filtering: Filtering for multiple MAC addresses and VLANs.
• Virtualization: Hardware-supported isolation/virtualization through SR-IOV.
• Transmits and receives buffer descriptor rings to transfer packets to and from the host.
• XDP support (Both XDP copy mode and zero copy mode).
• Receives Side Scaling (RSS): Load balancing across multiple receive descriptor rings (multiple cores)

implemented within an SI.
• Large Send Offload (LSO): Segmenting large TCP/UDP transmit units into multiple Ethernet frames.
• Receive Segment Coalesce (RSC): Coalescing multiple receive TCP segments into a single frame.
• VLAN tag extraction/insertion: Inserts predetermined tag on TX and removes expected tag on RX as seen by

the SI.
RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
97 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• SI-Based VLAN: Removal and addition of SI-based VLAN.
• Checksum offload: IP and TCP/UDP checksum offload for transmit.
• Interrupt coalescing control: Interrupt coalescing can be set for each interrupt source.
• Time Specific Departure (TSD): Enables to specify the time when a frame is to be transmitted.
• TSN capabilities: Full range of TSN standards.

– 802.1Qav: Credit-Based Shaper (CBS) support
– 802.1Qci: Per Stream Filtering and Policing (PSFP) support
– 802.1Qbv: Enhancements for Scheduled Traffic (EST) support
– 802.1Qbu: Preemption support

• Wake-on-LAN (WOL) support.
• System suspend/resume support.

The ENETC VF driver supports the following features:

• Two-step timestamping support for PTP/IEEE1588/IEEE802.1AS-2020.
• MAC and VLAN filtering: Filtering for multiple MAC addresses and VLANs.
• Transmits and receives buffer descriptor rings to transfer packets to and from the host.
• XDP support (Both XDP copy mode and zero copy mode).
• Receive Side Scaling (RSS): Load balancing across multiple receive descriptor rings (multiple cores)

implemented within an SI.
• Large Send Offload (LSO): Segmenting large TCP/UDP transmit units into multiple Ethernet frames.
• Receive Segment Coalesce (RSC): Coalescing multiple receive TCP segments into a single frame.
• VLAN tag extraction/insertion: Inserts predetermined tag on TX and removes expected tag on RX as seen by

the SI.
• SI-Based VLAN: Removal and addition of SI-based VLAN.
• Checksum offload: IP and TCP/UDP checksum offload for transmit.
• Interrupt coalescing control: Interrupt coalescing can be set for each interrupt source.

4.13.3 Source Code Structure

The table below shows the source files.

File Description

include/linux/fsl/enetc_mdio.h
include/linux/fsl/netc_*.h
include/linux/fsl/ntmp.h

Generic header files for multiple drivers to use

drivers/net/ethernet/freescale/enetc/* ENETC PF and VF driver, EMDIO driver

Table 50. ENETC source

4.13.4 Menu Configuration Options

The following kernel configuration options are provided for this module:

• CONFIG_ NXP_NETC_BLK_CTRL: Build support for NETCMIX, IERB, and PRB, which provides pre-
configuration for ENETC. In menuconfig, this option is available under Device Drivers -> Network device
support -> Ethernet driver support -> Freescale devices -> NETC blocks control driver.

• CONFIG_ FSL_ENETC_MDIO: Build support for EMDIO driver, which provides MDIO bus to manage the
external PHYs. In menuconfig, this option is available under Device Drivers -> Network device support ->
Ethernet driver support -> Freescale devices -> ENETC MDIO driver.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
98 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• CONFIG_PTP_1588_CLOCK_NETC: Build support for NETC 1588 Timer driver. This module is needed if the
ENETC driver wants to support PTP synchronization. In menuconfig, this option is available under Device
Drivers -> PTP clock support -> NXP NETC Timer as PTP clock.

• CONFIG_FSL_ENETC4: Build support for ENETC PF driver. In menuconfig, this option is available under
Device Drivers -> Network device support -> Ethernet driver support -> Freescale devices -> ENETC4 PF
driver.

• CONFIG_FSL_ENETC_VF: Build support for ENETC VF driver. In menuconfig, this option is available under
Device Drivers -> Network device support -> Ethernet driver support -> Freescale devices -> ENETC VF
driver.

4.14 ENETC 1588 Timer

4.14.1 Introduction

NETC 1588 Timer provides current time with nanosecond resolution, precise periodic pulse, pulse on timeout
(alarm), and time capture on external pulse support. This block capabilities support implementing time
synchronization as required for IEEE 1588 and IEEE 802.1AS-2020. For more details, see Section "NET
Controller (NETC) Domain" in the i.MX Applications Processor Reference Manual for i.MX 95 and i.MX 943.

4.14.2 Software Operation

The NETC 1588 Timer driver supports the following features:

• PTP synchronization supports for ENETC and NETC Switch.
• PPS support.
• Generates pulses at a specific future time.
• External Trigger Timestamping support (EXTTS) support.

4.14.3 Source Code Structure

The table below shows the source files.

File Description

include/linux/fsl/netc_global.h Generic header file for multiple drivers to use

drivers/ptp/ptp_netc.c NETC 1588 Timer driver

Table 51. ENETC 1588 Timer source

4.14.4 Menu Configuration Options

CONFIG_PTP_1588_CLOCK_NETC is used to build the support for this driver. In menuconfig, this option is
available under Device Drivers -> PTP clock support -> NXP NETC Timer as PTP clock.

4.15 ENETC Switch

4.15.1 Introduction

NETC provides full 802.1Q Ethernet switch functionality, advanced QoS with 8 traffic classes and 4 drop
resilience levels, and a full range of TSN standards capabilities. Switch CPU/host ENETC is fully integrated
with the switch and does not require a back-to-back MAC, instead a light weight "pseudo MAC" provides the
delineation between switch and Ethernet Controller. This translates to lower power (less logic and memory) and

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
99 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

lower delay (as there is no serialization delay across this link). For more details, see Section "NET Controller
(NETC) Domain" in the i.MX Applications Processor Reference Manual for i.MX 95 and i.MX 943.

4.15.2 Software Operation

The NETC Switch driver follows the DSA framework. Currently, it supports the following features:

• Single port mode and bridge mode.
• FDB and VLAN filtering support.
• NXP switch tag support.
• 10 Mbps, 100 Mbps, 1 Gbps, and 2.5 Gbps port speeds: Full range of standard 802.3 Ethernet speeds.
• Half-duplex support at 10 Mbps and 100 Mbps speeds: Enables use of various low power PHYs.
• EEE support: Energy Efficient Ethernet.
• Pause support: Recognizes and generates PAUSE frames with timing support for both receive and transmit.
• One-step and two-step timestamping support for PTP/IEEE1588/IEEE802.1AS-2020

– One-step: Updates PTP Correction field based on the current time and passed in timestamp value.
– Two-step: Captures and reports the time of SFD.

• Comprehensive statistics support enables system management and debugging.
• TSN capabilities: Full range of TSN standards.

– 802.1Qav: Credit-Based Shaper (CBS) support.
– 802.1Qci: Per Stream Filtering and Policing (PSFP) support.
– 802.1Qbv: Enhancements for Scheduled Traffic (EST) support.
– 802.1Qbu: Preemption support.

• Flow actions support, such as TRAP, REDIRECT, and POLICE.

4.15.3 Source Code Structure

The table below shows the source files.

File Description

include/linux/fsl/enetc_mdio.h
include/linux/fsl/netc_*.h
include/linux/fsl/ntmp.h

Generic header file for multiple drivers to use

include/linux/dsa/tag_netc.h Header file for NETC Switch tag driver

net/dsa/tag_netc.c NETC Switch tag driver

drivers/net/dsa/netc/* NETC Switch driver

Table 52. ENETC Switch source

4.15.4 Menu Configuration Options

The following kernel configuration options are provided for this module:

• CONFIG_ NXP_NETC_BLK_CTRL: Build support for NETCMIX, IERB, and PRB, which provides pre-
configuration for switch. In menuconfig, this option is available under Device Drivers -> Network device
support -> Ethernet driver support -> Freescale devices -> NETC blocks control driver.

• CONFIG_ FSL_ENETC_MDIO: Build support for EMDIO driver, which provides MDIO bus to manage the
external PHYs. In menuconfig, this option is available under Device Drivers -> Network device support ->
Ethernet driver support -> Freescale devices -> ENETC MDIO driver.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
100 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• CONFIG_PTP_1588_CLOCK_NETC: Build support for NETC 1588 Timer driver. This module is needed if the
ENETC driver wants to support PTP synchronization. In menuconfig, this option is available under Device
Drivers -> PTP clock support -> NXP NETC Timer as PTP clock.

• CONFIG_NET_DSA_TAG_NETC: Build support for NETC Switch tag driver. In menuconfig, this option is
available under Networking support -> Networking options -> Distributed Switch Architecture -> Tag driver for
NXP NETC switches.

• CONFIG_ NET_DSA_NETC_SWITCH: Build support for NETC Switch driver. In menuconfig, this option is
available under Device Drivers -> Network device support -> Distributed Switch Architecture drivers -> NXP
NETC Ethernet switch support.

4.16 Ethernet Controller with TSN (ENET_QoS, EQoS)

4.16.1 Introduction

The EQoS-TSN module is designed to support 10/100/1000 Mbps applications in full compliance with the IEEE
802.3-2015 specifications. It can support advanced networking capabilities, including Time-Sensitive Networking
(TSN) and Audio Video Bridging (AVB). Additionally, the MAC core incorporates several features, such as a
flexible receive parser, media clock recovery and generation, and safety.

The following figure shows the block diagram of this module. The module has four main blocks to perform all
functions. The AHB interface is connected to all DMA channels. The DMA arbiter helps in arbitration of all paths
(transmit and receive) in channels. Each channel has a separate set of control and status registers (CSR) for
managing the transmit and receive functions, descriptor handling, and interrupt handling.

Optional
PHY

interface
(RGMII/RTBI/

TBI/SGMII/
RMII/SMII/

RevMll)

aaa-061316

EQOS-AXI or EQOS-AHB
EQOS-DMA

EQOS-MTL
EQOS-CORE

D
M

A
ar

bi
te

r

Se
le

ct

Tx DMA
channel

AHB/AXI
master

interface

AHB/AXI/
APB/APB

slave
interface

Rx DMA
channel

DMA
channel

CSR

TSO engine

MTL Tx FIFO
controller

MTL Rx FIFO
controller

MTL CSR MAC
CSR

MAC
Tx

Tx memory

GCL memory

Rx memory

Rx parser memory

TSO memory

Descriptor pre-fetch
cache

MAC
Rx

(G)MII

Figure 20. EQoS-TSN module

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
101 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

4.16.2 Software Operation

The EQoS driver has the following functions:

• RMII (10/100 Mbps), RGMII (10/100/1000 Mbps)
• Time aware shaper (IEEE802.1Qbv), Time synchronization (IEEE1588-2008), and Frame pre-emption

(IEEE802.1Qbu) for Time-Sensitive Networking (TSN)
• Media clock recovery and generation for AVB
• Full-duplex flow control operations (IEEE 802.3x pause packet and priority flow control)
• Flexibility to control the Pulse per second (PPS) output signal
• MDIO (clause 22 and Clause 45) interface for configuration and management of PHY device
• VLAN insertion, replacement, and deletion in transmitted packets

4.16.3 Source Code Structure

The table below shows the source files.

File Description

drivers/net/ethernet/stmicro/stmmac/stmmac_*.c The common logic part driven by different versions of EQoS.

drivers/net/ethernet/stmicro/stmmac/dwmac4_*.c
drivers/net/ethernet/stmicro/stmmac/dwmac5_*.c

The implementation of register read and write operations based on
various versions of hardware for a shared API.

drivers/net/ethernet/stmicro/stmmac/dwmac-imx.c Special handling related to i.MX integration/specific functions, as
well as controller probing.

Table 53. EQoS source

4.16.4 Menu Configuration Options

For the EQoS controller on the i.MX platform, it is controlled by CONFIG_STMMAC_ETH.

Note: In NXP's release, CONFIG_STMMAC_ETH has been set to be built-in by default. However, in the Linux
upstream, this CONFIG is built as a module by default. This may affect the NFS boot.

4.17 Wi-Fi

4.17.1 Introduction

Bluetooth and Wi-Fi are supported on i.MX through on-board chip solutions and external hardware. For various
on-board chips and external solutions, see the Section "Connectivity for Bluetooth wireless technology and Wi-
Fi" in the i.MX Linux User's Guide (UG10163).

4.17.2 Software Operation

The BSP supports:

• The NXP Wi-Fi driver module is supported on all i.MX chipsets available in the Linux BSP, starting from
release 5.4.47-2.2.0. For a list of the supported Wi-Fi chipsets, refer to the Release Notes for each i.MX Linux
BSP release.

4.17.3 Driver features

The NXP Wi-Fi driver supports the CFG80211, and NL80211 kernel interfaces. The driver supports AP mode,
STA mode, and Wi-Fi direct mode.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
102 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

The NXP Wi-Fi SoCs require a firmware image to be loaded on power-up/reset. The firmware images for the
supported Wi-Fi SoCs are located in the following rootfs directory: /lib/firmware/nxp.

4.17.4 Source Code Structure

The NXP Onedriver source code files are available at github.com/nxp-imx.

4.17.5 Menu Configuration Options

The following Linux kernel configuration option is provided for this module:

• CONFIG_MAC80211=y
• COCONFIG_NL80211_TESTMODE=y
• CONFIG_CFG80211_WEXT=y
• CONFIG_HOSTAP=y
• CONFIG_CFG80211_INTERNAL_REGDB=y

4.17.6 Configuring WLAN from User Space

4.17.6.1 Connecting AP in Station Mode

The following command group is used to connect WLAN to a given SSID.

modprobe moal mod_para=nxp/wifi_mod_para.conf
head -n 4 /etc/wpa_supplicant.conf > /etc/wpa_supplicant.conf.tmp
wpa_passphrase ssid password >> /etc/wpa_supplicant.conf.tmp
mv /etc/wpa_supplicant.conf /etc/wpa_supplicant.conf.bak
mv /etc/wpa_supplicant.conf.tmp /etc/wpa_supplicant.conf
wpa_supplicant -B -i mlan0 -c /etc/wpa_supplicant.conf -D nl80211

Here is an example of wpa_supplicant.conf:

ctrl_interface=/var/run/wpa_supplicant
ctrl_interface_group=0
update_config=1
network={
 ssid="NETGEAR73"
 #psk="freshbutter"
 psk=eb0376fc14ee5d1e6ce129ad54da038adab……
}

4.17.6.2 Obtaining an IP address

The following command is used to get an IP address for wlan0:

udhcpc -i mlan0

4.18 Low Power Serial Peripheral Interface (LPSPI) Driver

4.18.1 Introduction

LPSPI provides an efficient interface (either as a controller or peripheral) to an SPI bus, which is a synchronous
serial communication interface used in embedded systems. It is typically used to perform short distance

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
103 / 301

https://github.com/nxp-imx/mwifiex/
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

communications between microcontrollers and peripheral devices, on printed circuit boards. Typical applications
include interfacing with secure digital cards and LCD displays.

4.18.2 Driver Features

The LPSPI driver supports the following features:

• SPI communication protocol
• SPI master mode and slave mode of operation

4.18.3 Source Code Structure

The table below shows the source files.

File Description

drivers/spi/spi-fsl-lpspi.c LPSPI Bus Driver for i.MX 7ULP, i.MX 8ULP, i.MX 8X, i.MX 93, i.MX
95, i.MX 943

Table 54. LPSPI source

4.18.4 Menu Configuration Options

Configure the kernel option to enable the module by menuconfig:

Device Drivers -> SPI support -> Freescale i.MX LPSPI controller

5 Graphics

5.1 Graphics Processing Unit (GPU)

5.1.1 Introduction

The Graphics Processing Unit (GPU) is a graphics accelerator targeting embedded 2D/3D graphics
applications.

The 3D graphics processing unit (GPU3D) is an embedded engine that accelerates user level graphics
Application Programming Interface (APIs) such as OpenGL ES 1.1, OpenGL ES 2.0, and OpenGL ES 3.0 and
OpenCL 1.1EP. The 2D graphics processing unit (GPU2D) is an embedded 2D graphics accelerator targeting
graphical user interfaces (GUI) rendering boost. The VG graphics processing unit (GPUVG) is an embedded
vector graphic accelerator for supporting the OpenVG 1.1 graphics API and feature set. The GPU driver kernel
module source is in the kernel source tree, but the libraries are delivered as binary only.

Graphics Processing Unit Hardware Applicable Platform

3D Mali G310 i.MX 95

2D PXP Blitter i.MX 93

3D GC7000 NanoUltra31 8ULP

2D GC520L 8ULP

3D Vivante dual-
GC7000XSVX

8QuadMax

3D Vivante GC7000Lite 8QuadXPlus/8M Quad

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
104 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Graphics Processing Unit Hardware Applicable Platform

3D Vivante GC7000 Nano
Ultra

7ULP and 8M Mini

3D Vivante GC7000 UltraLite 8M Plus

3D Vivante GC7000 Ultra Lite 8M Nano

3D Vivante GC2000 6Quad/6Dual

3D Vivante GC2000+ 6QuadPlus/6DualPlus

3D Vivante GC880 6DualLite/6Solo

3D/2D Vivante GC400T 6SoloX

2D Vivante GC320 6Quad/6Dual/6DualLite/6Solo

Vector Vivante GC355 6Quad/6Dual

2D Vivante GC328 7ULP

Note:

• GC400T does not support OpenGL ES 3.0.
• GC880/GC400T does not support OpenCL 1.1EP. GC2000 and GC2000+ support OpenCL 1.1 EP.
• GC7000XSVX supports OpenCL 1.2 FP, OpenVX 1.0.1, and Vulkan 1.0.

5.1.2 Driver Features

The GPU driver enables this board to provide the following software and hardware support:

• EGL (EGL is an interface between Khronos rendering APIs such as OpenGL ES or OpenVG and the
underlying native platform window system) 1.5 API defined by Khronos Group.

• OpenGL ES (OpenGL ES is a royalty-free, cross-platform API for full-function 2D and 3D graphics on
embedded systems) 1.1 API defined by Khronos Group.

• OpenGL ES 2.0 API defined by Khronos Group.
• OpenGL ES 3.0/3.1/3.2 API defined by Khronos Group.
• OpenVG (OpenVG is a royalty-free, cross-platform API that provides a low-level hardware acceleration

interface for vector graphics libraries such as Flash and SVG) 1.1 API defined by Khronos Group.
• OpenCL (OpenCL is the first open, royalty-free standard for cross-platform, parallel programming of modern

processors.) 1.1 EP API defined by Khronos Group.
• OpenGL 2.1 API defined by Khronos Group.
• Automatic 3D core slowing down, when hot notification from thermal driver is active, 3D core will run at 1/64

clock.
• OpenCL1.1/1.2FP API defined by Khronos Group.
• OpenVX 1.0.1 API defined by Khronos Group.
• Vulkan 1.0 API defined by Khronos Group.

5.1.3 Hardware Operation

For detailed hardware operations, see the GPU chapters in the Applications Processor Reference Manual
specific to SoC.

5.1.4 Software Operation

The GPU driver is divided into two layers. The first layer is running in kernel mode and acts as the base
driver for the whole stack. This layer provides the essential hardware access, device management, memory
RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
105 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

management, command queue management, context management and power management. The second
layer is running in user mode, implementing the stack logic and providing the following APIs to the upper layer
applications:

• OpenGL ES 1.1, 2.0, and 3.0 API
• EGL 1.5 API
• OpenGL ES11/20/30/31/32
• OpenCL 1.1/1.2 FP
• OpenVX 1.0.1
• Vulkan 1.0
• OpenGL 4.0
• WebGL 1.0.2
• OpenVG 1.1 API
• OpenCL 1.1 EP API

5.1.5 Source Code Structure

Table below lists GPU driver kernel module source structure:

drivers/mxc/gpu-viv

File Description

Kconfig Kbuild config Kernel configure file and makefile

hal/kernel/arch Hardware-specific driver code for GC2000, GC880, GC400T, and
GC320

hal/kernel/archvg Hardware-specific driver code for GC355

hal/kernel Kernel mode HAL driver

hal/os/linux/kernel OS layer HAL driver

Table 55. GPU Driver Files

Note:

If you replace the whole content in this directory, the GPU kernel driver can be upgraded.

5.1.6 Library Structure

Table below lists GPU driver user mode library structure:

<ROOTFS>/usr/lib

File Description

libCLC.so OpenCL frontend compiler library

libEGL.so** EGL1.4 library

libGAL.so GAL user mode driver

libGLES_CL.so OpenGL ES 1.1 common lite library
(without EGL API, no float point support API)

libGL.so** OpenGL 2.1 common library

libGLES_CM.so OpenGL ES 1.1 common library

Table 56. GPU Library Files

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
106 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

File Description
(without EGL API, include float point support API)

libGLESv1_CL.so** OpenGL ES 1.1 common lite library
(with EGL API, no float point support API)

libGLESv1_CM.so** OpenGL ES 1.1 common library
(with EGL API, include float point support API)

libGLESv2.so** OpenGL ES 2.0/3.0/3.1/3.2 library

libGLSLC.so OpenGL ES shader language compiler library

libVSC.so OpenGL front-end compiler library

libVivanteOpenCL.so Vivante

libOpenCL.so OpenCL ICD wrapper library

libOpenVG.so* OpenVG 1.1 library

libVDK.so VDK wrapper library.

libVIVANTE.so Vivante user mode driver.

xorg/modules/drivers/vivante_drv.so EXA library for X11 acceleration.

libwayland-viv.so Wayland server-side library for Vivante's EGL driver

libgc_wayland_protocol.so Vivante Wayland Protocol Extension Library

libOpenVX.so* OpenVX 1.0 library

libvulkan.so* Vulkan 1.0 library

Table 56. GPU Library Files ...continued

**SONAME is used for libEGL.so, libGLESv2.so, libGLESv1_CM.so, libGLESv1_CL.so, libGL.so.

*For libOpenVG.so, there are two libraries for the OpenVG feature. libOpenVG.3d.so is the GC7000XSVX/
GC2000+/GC2000/GC880/GC400T-based OpenVG library. libOpenVG.2d.so is the gc355 based OpenVG
library.

• For i.MX 6DualPlus/QuadPlus and i.MX 6Dual/Quad, both libOpenVG.3d.so and libOpenVG.2d.so can be
used.

• For i.MX 6DualLite, and i.MX 6SoloX, only libOpenVG.3d.so can be used.
• If no SOC limitation, for the x11 backend, libOpenVG.3d.so is linked by default.
• If no SOC limitation, for framebuffer, directFB, and Wayland backends, the default openVG library is linked to

libOpenVG.2d.so.

This can be done by using the following sequence of commands:

cd <ROOTFS>/usr/lib
sudo ln -s libOpenVG_355.so libOpenVG.so

5.1.7 API References

See the following web sites for detailed specifications:

• OpenGL ES 1.1, 2.0, and 3.0 API: www.khronos.org/opengles/
• OpenCL 1.1 EP www.khronos.org/opencl/
• EGL 1.4 API: www.khronos.org/egl/
• OpenVG 1.1 API: www.khronos.org/openvg/

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
107 / 301

http://www.khronos.org/opengles/
http://www.khronos.org/opencl/
http://www.khronos.org/egl/
http://www.khronos.org/openvg/
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• OpenGL ES API: www.khronos.org/opengles/
• OpenCL API: www.khronos.org/opencl/
• OpenVX API: www.khronos.org/openvx/
• Vulkan API: www.khronos.org/vulkan/
• OpenGL API: www.khronos.org/opengl/
• WebGL API: www.khronos.org/webgl/

5.1.8 Menu Configuration Options

In menu configuration enable the following module for the GPU driver:

CONFIG_MXC_GPU_VIV is a configuration option for GPU driver. In the menuconfig this option is available
under Device Drivers > MXC support drivers > MXC Vivante GPU support > MXC Vivante GPU support.

On the screen displayed, select Configure the kernel, select Device Drivers > MXC support drivers > MXC
Vivante GPU support > MXC Vivante GPU support, and then exit. When the next screen appears, select the
following options to enable the GPU driver:

• Package list > imx-gpu-viv
• This package provides proprietary binary libraries, and test code built from the GPU for framebuffer

5.2 Wayland

5.2.1 Introduction

Wayland is a protocol for a compositor to talk to its clients as well as a C library implementation of that protocol.
The compositor can be a standalone display server running on Linux kernel modesetting and evdev input
devices, an X application, or a Wayland client itself. The clients can be traditional applications, X servers or
other display servers.

Part of the Wayland project is also the Weston reference implementation of a Wayland compositor. The Weston
compositor is a minimal and fast compositor and is suitable for many embedded and mobile use cases.

This chapter describes how to enable Wayland/Weston support on an i.MX series device.

5.2.2 Software Operation

This release is based on the Wayland 1.23.1 and Weston 14.0.2 for i.MX 8 and i.MX 9, Weston 10.0.5 for i.MX 6
and i.MX 7.

5.2.3 Yocto Build Instructions

The instructions for Yocto Project build are as follows:

1. Prepare a Yocto build directory and follow the setup instructions in the i.MX Yocto Project User's Guide
(IMXLXYOCTOUG) for DISTRO Wayland.

2. Set up Yocto for Wayland in the build directory:

$ MACHINE = <your-machine> DISTRO=fsl-imx-xwayland source imx-setup-
release.sh -b build-wayland

3. Build an image.

$ bitbake imx-image-full

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
108 / 301

https://www.khronos.org/opengles/
http://www.khronos.org/opencl/
http://www.khronos.org/openvx/
http://www.khronos.org/vulkan/
http://www.khronos.org/opengl/
http://www.khronos.org/webgl/
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

5.2.4 Customizing Weston

The i.MX Weston includes two compositors. One is the EGL3D compositor, which is accelerated by the 3D core.
The other is G2D compositor accelerated by the 2D BLT engines.

Weston options can be updated in the file “/etc/init.d/weston”.

Weston option Description

tty default to current tty.

device "/dev/fb0", default frame buffer , Multi display supported in
G2D compositor.

use-gl EGL accelerated, defaults to be “1”.

use-g2d G2D accelerated, defaults to be “0”.

idle-time Idle time in seconds.

Table 57. Common options for Weston

5.2.4.1 Multi display supported in Weston

Multi display was supported in G2D compositor only. Add these options to start Weston:

weston --tty=1 --device=/dev/fb0,/dev/fb2 --use-g2d=1 &

5.2.4.2 Multi buffer supported in Weston

The Weston server supports both single buffering and multi buffering. In single buffering, the damage area is
rendered to the offscreen surface and blits to front buffer.The offscreen surface is used to avoid flickering. By
default, the Weston server starts with single buffering.

In multi buffering, instead of rendering to offscreen, the damage area is rendered to back buffer and does the
flip, but the frame rate will be restricted to the display rate. A maximum of three buffers are supported.

Before starting the Weston server, export FB_MULTI_BUFFER to control the number of buffers to be used.

Environment variables for single buffering:

export FB_MULTI_BUFFER=1

Environment variables for double buffering:

export FB_MULTI_BUFFER=2

5.2.5 Running Weston

Perform the following operations to run Weston:

1. Boot the i.MX device.
2. To run clients, the second button in the top bar will run weston-terminal, from which you can run clients.

There are a few demo clients available in the Weston build directory, but they are all pretty simple and
mostly for testing specific features in the Wayland protocol:
• 'weston-terminal' is a simple terminal emulator, not very compliant, but works well enough for bash.
• 'weston-flower' draws a flower on the screen, testing the frame protocol.
• 'weston-smoke' tests SHM buffer sharing.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
109 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• 'weston-image' loads the image files passed on the command line and shows them.

6 Video

6.1 Capture Overview

6.1.1 Introduction

The i.MX capture driver support is through the V4L2 interface with camera sensor controllers and interfaces.
Applications cannot use the camera driver directly. Instead, the applications use the V4L2 capture driver to open
and close the camera for preview and image capture, controlling the camera, getting images from camera, and
starting the camera preview.

6.1.2 Capture Controllers and Interfaces

The list of capture controllers are as follows:

• Camera Serial Interface - CSI
• IPU-CSI
• Video Interface Unit - VIU
• Image Sensor Interface - ISI
• Image Sensor Processing - ISP

The list of capture interfaces for transfering image data are as follows:

• Parallel-CSI
• MIPI-CSI2
• HDMI RX
• TV Decoder

This chapter describes the differences between the various controllers and interfaces.

Note: The i.MX 6 with IPU uses internaldev for V4L2 interface while all others use subdev for V4L2 interface.

The following table describes the different controllers and interfaces combinations.

SoC Controller Interface

6SLL CSI Parallel CSI.

6SoloX VIU Parallel CSI and TV Decoder.

6UltraLite/6ULL CSI Parallel CSI.

6DualLite/Solo IPU-CSI Parallel CSI internaldev IPU.

6QuadPlus/Quad/Dual IPU-CSI Parallel CSI internaldev IPU.

7Dual/Solo CSI MIPI-CSI2 using Samsung and Parallel CSI.

8M Plus/8M Nano ISI MIPI-CSI2 using Samsung.

8M Plus ISP MIPI-CSI2 using Samsung.

8QuadMax ISI MIPI-CSI2 using Mixel and HDMI Receiver using
Cadence.

8QuadXPlus ISI MIPI-CSI2 using Mixel and Parallel CSI using i.MX 8.

8M Quad CSI MIPI-CSI2 using Mixel.

Table 58.  Camera Controllers and Interfaces

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
110 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

SoC Controller Interface

8M Mini CSI MIPI-CSI2 using Samsung.

8ULP ISI MIPI-CSI2 using Mixel.

i.MX 93 and i.MX 91 ISI i.MX 93 supports MIPI CSI and Parallel camera
interface, but i.MX 91 only supports Parallel
interface.

i.MX 95 ISI and NEO ISP MIPI-CSI2 using Synopsys.

Table 58.  Camera Controllers and Interfaces...continued

Some additional details are listed below:

• The NEO ISP is a new controller used for the i.MX 95.
• The ISP is a new controller used for the i.MX 8M Plus.
• The ISI controller is a new controller used for some of the i.MX 8 series.
• The i.MX 6 SoC without IPU, i.MX 7Dual and i.MX 8M use the same CSI controller driver.
• The i.MX 8 and i.MX 8X families use a newer i.MX 8 CSI driver.
• The i.MX 6 with IPU use a customized CSI that interfaces with IPU hardware.
• Each SoC can support one or more interfaces as described in the previous table. The interfaces align with

Video for Linux V4L2 APIs.
• In some cases the capture controller is not interfacing to a camera but a video input unit. Some also connect

to HDMI Receivers or TV Decoders.

6.1.2.1 IPUv3

The Image Processing Unit version 3 (IPUv3) controller integrates the capture DMA Controller and the capture
interface as well as the display controller and interface. The following features are supported on SoCs that use
the IPUv3 controller.

• Parallel CSI with 2 Ports, 20 bits+ 8 bits
• Playback 1080i/p + D1@30fps @ 30fps
• Record 1080p @ 30fps
• 2-way 720@30fps
• De-interlacing high quality motion adaptive algorithm
• Resizing - fully flexible
• Rotation/inversion support
• Color conversion - fully flexible
• Memory interface - AXI split transaction 64-bit 266 MHz
• Memory bus - selective read for combining
• Control capabilities - display and DMA controller, internal synchronization
• Synchronization - double/triple buffering, frame-by-frame or tight sub-frame with internal memory

For i.MX 6 with IPU kernel configuration, use the following configurations:

• Device Drivers -> Multimedia support (MEDIA_SUPPORT=y]) -> Media drivers -> Media platform devices
(MEDIA_PLATFORM_DRIVERS [=y]) -> MXC Video For Linux Video Capture (VIDEO_MXC_CAPTURE
[=m]) -> MXC Camera/V4L2 PRP Features support -> OmniVision OV5640 camera support
(MXC_CAMERA_OV5640_V2 [=m])

• Device Drivers -> Multimedia support (MEDIA_SUPPORT [=y]) -> Media drivers -> Media platform devices
(MEDIA_PLATFORM_DRIVERS [=y]) -> MXC Video For Linux Video Capture (VIDEO_MXC_CAPTURE
[=m]) -> MXC Camera/V4L2 PRP Features support -> OmniVision OV5640 camera support using MIPI
(MXC_CAMERA_OV5640_MIPI_V2 [=m])

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
111 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

These are driver files for the IPUv3:

• drivers/media/platform/mxc/capture/ipu_bg_overlay_sdc.c
• drivers/media/platform/mxc/capture/ipu_csi_enc.c
• drivers/media/platform/mxc/capture/ipu_fg_overlay_sdc.c
• drivers/media/platform/mxc/capture/ipu_prp_enc.c
• drivers/media/platform/mxc/capture/ipu_prp_vf_sdc_bg.c
• drivers/media/platform/mxc/capture/ipu_prp_vf_sdc.c
• drivers/media/platform/mxc/capture/ipu_still.c
• drivers/media/platform/mxc/capture/v4l2-int-device

6.1.2.2 CSI Controllers

• MIPI-CSI-2 with 2 ports, 4 lanes x 1.5 Gbps (2.5 Gbps on i.MX 95)
• Playback - two 1080p30
• Record - 1080p30x2
• 2-way - 1080p30x2
• Deinterlacing - simple bob and weave
• Memory interface throughput - 64-bit
• Controller capabilities - DMA
• Synchronization - double buffer

6.1.2.3 ISI

The Image Sensor Interface (ISI) handles the DMA and image formatting operations for most the i.MX 8 and all
of the i.MX 9 SoCs. The ISI uses a pixel link to attach to the capture interfaces. The number and type of capture
interfaces depends on the SoC. The ISI has the following common features:

• Deinterlacing-simple bob and weave
• Resizing
• Controller capabilities: DMA
• Synchronization: double buffer

SoC specific features are as follows:

i.MX 8QuadXPlus:

• Parallel CSI: one port 24 bits
• MIPI-CSI-2 with 1 port, 4 lanes x 1.5 Gbps
• Playback: 1080p30x2
• Record: 1080p30x2
• 2-way: 1080p30x2
• Memory interface throughput: 128-bit, 400 MHz

i.MX 8QuadMax:

• MIPI-CSI-2 with 2 ports, 4 lanes x 1.5 Gbps
• HDMI Receiver: 1 port HDMI 1.4 4K30
• Playback: 4K60x1, 4K30x1, or 1080px30x4
• Record: 4K30x1 or 1080px30x4
• 2-way: 4K30x1 or 1080px30x4
• Memory interface throughput - 128-bit, 400 MHz

i.MX 8M Plus:

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
112 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• MIPI-CSI-2 with 2 ports, 4 Lanes x 1.5 Gbps
• Supports one source of 4K resolution at 30 fps (24 bpp)
• Supports two sources up to 2K resolution at 60 fps (24 bpp) on each channel

i.MX 8M Nano

• MIPI-CSI-2 with 1 port, 4 Lanes x 1.5 Gbps
• Supports one source up to 2K resolution at 60 fps (24 bpp)

i.MX 93/91

• MIPI-CSI-2 with 1 port, 2 lanes
• Supports one source up to 2K resolution at 60 fps (24 bpp)

i.MX MX 95

• MIPI-CSI-2 with 2 ports, 4 Lanes x 2.5 Gbps
• Supports one source of 4K resolution at 60 fps (24 bpp)
• Supports two sources up to 2K resolution at 60 fps (24 bpp) on each channel
• Supports eight sources up to 2K resolution at 30 fps (24 bpp) on each channel

For i.MX 8M Nano, 8ULP, 8QuadXPlus, 8QuadMax, 8DualX, and i.MX 93/91/95, use the following kernel
configurations and driver files:

• Device Drivers -> Multimedia support (MEDIA_SUPPORT [=y]) -> Media drivers -> Media platform devices
(MEDIA_PLATFORM_DRIVERS [=y]) -> i.MX 8 Image Sensor Interface (ISI) driver (VIDEO_IMX8_ISI
[=y])
Select: MEDIA_CONTROLLER [=y] && V4L2_FWNODE [=y] && V4L2_MEM2MEM_DEV [=y] &&
VIDEO_V4L2_SUBDEV_API [=y] && VIDEOBUF2_DMA_CONTIG [=y]
– imx8-isi-core.c
– imx8-isi-crossbar.c
– imx8-isi-gasket.c
– imx8-isi-hw.c
– imx8-isi-pipe.c
– imx8-isi-video.c
– imx8-isi-m2m.c

• Device Drivers -> Multimedia support (MEDIA_SUPPORT [=y]) -> Media drivers -> Media
platform devices (MEDIA_PLATFORM_DRIVERS [=y]) -> NXP i.MX 95 CSI Pixel Formatter Driver
(VIDEO_IMX_CSI_FORMATTER [=y])
Select: MEDIA_CONTROLLER [=y] && V4L2_FWNODE [=y] && VIDEO_V4L2_SUBDEV_API [=y]
– imx-csi-formatter.c

For all the other platforms, use the following kernel configurations and driver files:

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
113 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• Device Drivers -> Staging drivers (STAGING [=y]) -> Media staging drivers (STAGING_MEDIA [=y]) ->
i.MX V4L2 media core driver (VIDEO_IMX_CAPTURE [=y]) -> i.MX 8QXP/QM Camera ISI/MIPI Features
support -> i.MX 8 Image Sensor Interface hardware driver (IMX8_ISI_HW [=y])
– imx8-isi-hw.c

• Device Drivers -> Staging drivers (STAGING [=y]) -> Media staging drivers (STAGING_MEDIA [=y]) ->
i.MX V4L2 media core driver (VIDEO_IMX_CAPTURE [=y]) -> i.MX 8QXP/QM Camera ISI/MIPI Features
support -> i.MX 8 Image Sensor Interface Core Driver (IMX8_ISI_CORE [=y])
– imx8-isi-core.c

• Device Drivers -> Staging drivers (STAGING [=y]) -> Media staging drivers (STAGING_MEDIA [=y]) ->
i.MX V4L2 media core driver (VIDEO_IMX_CAPTURE [=y]) -> i.MX 8QXP/QM Camera ISI/MIPI Features
support -> i.MX 8 Image Sensor Interface Capture Device Driver (IMX8_ISI_CAPTURE [=y])
– imx8-isi-cap.c
– imx8-isi-fmt.c

• Device Drivers -> Staging drivers (STAGING [=y]) -> Media staging drivers (STAGING_MEDIA [=y]) ->
i.MX V4L2 media core driver (VIDEO_IMX_CAPTURE [=y]) -> i.MX 8QXP/QM Camera ISI/MIPI Features
support -> i.MX 8 Image Sensor Interface Memory to Memory Device Driver (IMX8_ISI_M2M [=y])
– imx8-isi-m2m.c
– imx8-isi-fmt.c

6.1.2.4 Parallel CSI Interface

The Parallel CSI interface driver enables a direct connection to external CMOS sensors and CCIR656 video
sources. The CSI and sensor drivers are implemented in the Video for Linux Two (V4L2) driver framework
consisting of the image capture driver and the video output driver.

The driver initializes the CSI interface and configures and operates with the hardware registers for the CSI
module. The following features are supported:

• Configurable interface logic to support most commonly available CMOS sensors.
• Full control of 8-bit/pixel, 10-bit/pixel or 16-bit/pixel data format to 32-bit receive FIFO packing.
• 128x32 FIFO to store received image pixel data.
• Receive FIFO overrun protection mechanism.
• Embedded DMA controllers to transfer data from receive FIFO or statistic FIFO through AHB bus.
• Support for double buffering two frames in the external memory.
• Single interrupt source to interrupt controller from maskable interrupt sources: Start of Frame, End of Frame

and so on.
• Configurable master clock frequency output to sensor.

The V4L2 CSI capture device includes two interfaces: the capture and overlay interfaces. The capture and
overlay interface use the CSI embedded DMA controller to implement the function using V4L2 APIs. The
following is the data flow of capture and overlay.

1. The camera sends the data to the CSI receive FIFO, through the 8-bit/10-bit data port.
2. The embedded DMA controllers transfer data from the receive FIFO to external memory through the AHB

bus.
3. The data is save to user space memory or output to the frame buffer directly.

i.MX 6 with IPU use a IPU-CSI driver that interfaces with the IPU directly. i.MX Quad Plus/Quad/Dual have
support for two IPU-CSI senaros. i.MX 6 without IPU and i.MX 7Dual/Solo and i.MX 93 9x9 QSB use a separate
CSI sensor driver that interfaces directly to the sensor.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
114 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

6.1.2.5 MIPI Camera Serial Interface (MIPI CSI)

There are four blocks in the MIPI CSI-2 D-PHY: PHY adaptation layer, packet analyzer, image data interface,
and register bank. MIPI CSI-2 is a MIPI-Camera Serial Interface Host Controller with a high-performance serial
interconnect bus for mobile applications, which connects camera sensors to the host system. The CSI-2 Host
Controller is a digital core that implements all protocol functions defined in the MIPI CSI-2 Specification. In doing
so, it provides an interface between the system and the MIPI D-PHY and allows communication with the MIPI
CSI-2-compliant Camera Sensor.

The MIPI CSI2 driver is used to manage the MIPI D-PHY and lets it work with both MIPI sensor and IPU CSI.
MIPI CSI2 driver implements functions as follows:

• MIPI CSI-2 low-level interface for managing the MIPI D-PHY register and clock
• MIPI CSI-2 common API for communication between MIPI sensor and MIPI D-PHY

By calling MIPI common APIs, the MIPI sensor can set certain information about sensor (such as datatype,
lanes number, etc.) to MIPI CSI2 driver to configure D-PHY. For the IPU CSI module driver to have the correct
configuration, receive appropriate data, and process it correctly, it is necessary for it to receive information
about sensor (such as datatype, virtual channel, IPU ID, CSI ID, etc.) from the MIPI CSI2 driver. Functions and
operations are listed as follows:

• PHY Adaptation Layer handles managing the D-PHY interface including PHY error handling.
• Packet Analyzer handles data lane merging if needed, together with header decoding, error detection and

correction, frame size error detection and CRC error detection.
• Image Date Interface separates CSI-2 packet header information and reorders data according to memory

storage format. It also generates timing accurate video synchronization signals. Several error detections are
also performed at frame-level and line-level.

• Register Bank is accessible through a standard AMBA-APB slave interface and provides access to the CSI-2
Host Controller register for configuration and control. There is also a fully programmable interrupt generator to
inform the system upon certain events.

The MIPI CSI2 driver for Linux OS has two parts:

• MIPI CSI2 driver initialization operation, which initializes mipi_csi2_info struct
• MIPI CSI2 common APIs, which exports APIs for the CSI module driver and MIPI sensor driver

6.1.2.6 HDMI Receiver

The HDMI receiver allows capturing video with the Image Sensor Interface (ISI) from the HDMI RX. On i.MX
8QuadMax, the HDMI receiver video interface supports one port up to HDMI 1.4 4K30.

i.MX 8 QuadMax uses the following kernel configurations and driver files:

• Device Drivers -> Multimedia support (MEDIA_SUPPORT [=y]) -> Media drivers -> Media platform devices
(MEDIA_PLATFORM_DRIVERS [=y]) -> Cadence MHDP HDMIRX Controller (VIDEO_MHDP_HDMIRX [=m])
– cdns-hdmirx.c
– cdns-hdmirx-hdcp.c
– cdns-hdmirx-hw.c
– cdns-hdmirx-phy.c
– cdns-mhdp-hdmirx.c

Execute the following commands on U-Boot to enable the HDMI RX driver:

U-Boot > setenv fdt_file imx8qm-mek-hdmi-rx.dtb
U-Boot > setenv hdprx_enable yes
U-Boot > saveenv

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
115 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

The following example is for creating a pipeline manually. The HDMI source must be configured to use 1080p60
in the RGB888 format.

$ media-ctl -d1 -r
$ media-ctl -d1 -R '"crossbar" [4/0 -> 6/0 [1]]'
$ media-ctl -d1 -l '"crossbar":6 -> "mxc_isi.0":0 [1]'
$ media-ctl -d1 -l '"mxc_isi.0":1 -> "mxc_isi.0.capture":0 [1]'
$ media-ctl -d1 -V '"crossbar":4 [fmt:RGB888_1X24/1920x1080 field:none]'
$ media-ctl -d1 -V '"crossbar":6 [fmt:RGB888_1X24/1920x1080 field:none]'
$ media-ctl -d1 -V '"mxc_isi.0":0 [compose:(0,0)/1920x1080]'
$ media-ctl -d1 -V '"mxc_isi.0":1 [fmt:RGB888_1X24/1920x1080 field:none]'

Create a GStreamer pipline to display the captured video.

$ gst-launch-1.0 -v v4l2src device=/dev/video2 '!' video/x-
raw,width=1920,height=1080,format=BGRA '!' waylandsink

6.1.3 Cameras

The i.MX Camera accessories support multiple interfaces and types of cameras. There is a wide range of lens
and sensor resolutions.

The Cameras uses the serial camera control bus (SCCB) interface to control the sensor operation working as
an I2C client for control operations. These cameras support transfer modes of CSI, MIPI-CSI2, and Parallel-
CSI interfaces. When using MIPI mode, the camera connects to the i.MX chip through the MIPI CSI-2 interface.
The MIPI receives the sensor data and transfers it to CSI. Additionally, a few of the MIPI CSI2 cameras use
serializer and de-serializer to extend the physical length on the camera connection from a few inches to several
feet.

The following table lists the different i.MX Camera Accessories, supported interfaces, and pixel format.

Camera Controller Interface Format

OV5640 MIPI-CSI2/Parallel CSI YUV

OV10635 MIPI-CSI2 via Serializer/Deserializer YUV

OS08A20 MIPI CSI2 Raw

OX05B1S MIPI CSI2 Raw + Infrared

OX03C10 MIPI-CSI2 via Serializer/Deserializer Raw

AP1302/AR0144 MIPI CSI2 YUV

Table 59. i.MX Camera Accessories

6.1.3.1 YUV/RGB Cameras

The following sections describe the kernel configurations and list the driver file locations for each of the camera
drivers.

6.1.3.1.1 OV5640

The Omnivision OV5640 is used on multiple versions of i.MX SoCs. There are 4 NXP versions of the OV5640
driver in addition to the upstream kernel driver. Top level selection is as follows:

Device Drivers > Multimedia support (MEDIA_SUPPORT [=y]) > V4L platform devices.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
116 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

The next level selections select the driver based on the different interfaces for each SoC. The source files for
each driver are as follows.

• For i.MX 6 with IPU, select both > MXC Camera/V4L2 PRP Features support and > OmniVision OV5640
camera support (MXC_CAMERA_OV5640).
– drivers/media/platform/mxc/capture/ov5640.c

• For i.MX 6 without IPU, select > OmniVision OV5640 camera support (MXC_CAMERA_OV5640_V2).
– drivers/media/platform/mxc/capture/ov5640_v2.c

• For i.MX 7, select > OmniVision OV5640 camera support using MIPI (MXC_CAMERA_OV5640_MIPI_V2).
– drivers/media/platform/mxc/capture/ov5640_mipi_v2.c

• For i.MX 8, i.MX 8X, and i.MX 8M, select Media ancillary drivers > Camera sensor devices > OmniVision
OV5640 sensor support (VIDEO_OV5640).
Note: This is the upstream driver version for OV5640.
– drivers/media/i2c/ov5640.c

The following are examples for creating pipeline manually.

• On i.MX 8M Quad with dual OV5640, input size: 640x480, output size: 640x480, output format: YUYV

media-ctl -d /dev/media0 -l "'ov5640 1-003c':0 -> 'imx8mq-mipi-csi2
 30a70000.csi':0 [1]"
media-ctl -d /dev/media0 -V "'ov5640 1-003c':0 [fmt:YUYV8_1X16/640x480
 field:none]"
media-ctl -d /dev/media0 -V "'imx8mq-mipi-csi2 30a70000.csi':0
 [fmt:YUYV8_1X16/640x480 field:none]"
media-ctl -d /dev/media0 -V "'csi':0 [fmt:YUYV8_1X16/640x480 field:none]";

media-ctl -d /dev/media1 -l "'ov5640 0-003c':0 -> 'imx8mq-mipi-csi2
 30b60000.csi':0 [1]"
media-ctl -d /dev/media1 -V "'ov5640 0-003c':0 [fmt:YUYV8_1X16/640x480
 field:none]"
media-ctl -d /dev/media1 -V "'imx8mq-mipi-csi2 30b60000.csi':0
 [fmt:YUYV8_1X16/640x480 field:none]"
media-ctl -d /dev/media1 -V "'csi':0 [fmt:YUYV8_1X16/640x480 field:none]";

• On i.MX 8M Mini, input size: 1920x1080, output size: 1920x1080, output format: YUYV

media-ctl -l "'ov5640 2-003c':0 -> 'csis-32e30000.mipi-csi':0 [1]"
media-ctl -V "'ov5640 2-003c':0 [fmt:YUYV8_1X16/1920x1080 field:none]"
media-ctl -V "'csis-32e30000.mipi-csi':0 [fmt:YUYV8_1X16/1920x1080 field:none]"
media-ctl -V "'csi':0 [fmt:YUYV8_1X16/1920x1080 field:none]";

• On i.MX 8M Nano, input size: 1920x1080, output size: 1920x1080, out format: UYVY

media-ctl -l "'ov5640 2-003c':0 -> 'csis-32e30000.mipi-csi':0 [1]"
media-ctl -V "'ov5640 2-003c':0 [fmt: UYVY8_1X16/1920x1080 field:none]"
media-ctl -V "'csis-32e30000.mipi-csi':0 [fmt: UYVY8_1X16/1920x1080
 field:none]"
media-ctl -V "'crossbar':0 [fmt: UYVY8_1X16/1920x1080 field:none]"
media-ctl -V "'mxc_isi.0':0 [fmt: UYVY8_1X16/1920x1080 field:none]"

• On i.MX 8ULP, input size: 1920x1080, output size: 1920x1080, out format: UYVY

media-ctl -l "'ov5640 0-003c':0 -> 'imx8mq-mipi-csi2 2daf0000.csi':0 [1]"
media-ctl -V "'ov5640 0-003c':0 [fmt: UYVY8_1X16/1920x1080 field:none]"
media-ctl -V "'imx8mq-mipi-csi2 2daf0000.csi':0 [fmt: UYVY8_1X16/1920x1080
 field:none]"
media-ctl -V "'crossbar':0 [fmt: UYVY8_1X16/1920x1080 field:none]"
media-ctl -V "'mxc_isi.0':0 [fmt: UYVY8_1X16/1920x1080 field:none]"

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
117 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

6.1.3.1.2 OV10635

The Omnivison OV10635 camera is supported on i.MX 8QuadX/QuadXPlus. The camera is connected through
a Maxim MAX9271 Serializer and a Maxim MAX9286 Deserializer. Up to four OV10635 cameras may be
connected simultaneously per MIPI CSI2 port.

• To select the kernel configuration, Device Drivers > Multimedia support > Media ancillary drivers > Video
decoders > Maxim MAX9286 GMSL deserializer support (VIDEO_MAX9286) and Device Drivers >
Multimedia support > Media ancillary drivers > Camera sensor devices > IMI RDACM20 camera support
(VIDEO_RDACM20).
– drivers/media/i2c/max9286.c
– drivers/media/i2c/rdacm20.c

6.1.3.1.3 AP1302/AR0144

The Onsemi AR0144 camera is supported on the i.MX 9 family. The AR0144 is a raw camera, but it uses an
external ISP, Onsemi AP1302, to process the raw image and provide an sRGB image.

• For i.MX 93 and 95, select Media ancillary drivers > Camera sensor devices > ON Semiconductor's Advanced
Image Coporcessor AP1302 support (VIDEO_AP1302).
– drivers/media/i2c/ap1302.c

Support V4L2 controls as follows:

• V4L2_CID_AUTO_N_PRESET_WHITE_BALANCE
• V4L2_CID_GAMMA
• V4L2_CID_CONTRAST
• V4L2_CID_BRIGHTNESS
• V4L2_CID_SATURATION
• V4L2_CID_EXPOSURE
• V4L2_CID_EXPOSURE_METERING
• V4L2_CID_GAIN
• V4L2_CID_ZOOM_ABSOLUTE
• V4L2_CID_COLORFX
• V4L2_CID_SCENE_MODE
• V4L2_CID_POWER_LINE_FREQUENCY
• V4L2_CID_LINK_FREQ

A firmware named ap1302_ar0144_single_fw.bin is needed. Put it under the /lib/firmware folder.

Configure the pipeline manually, for example:

1. YUV color space.
a. Set up the link:

$ media-ctl -l "'ap1302 2-003c':2->'csidev-4ad30000.csi':0 [1]"
$ media-ctl -l "'csidev-4ad30000.csi':1 ->
 '4ac10000.syscon:formatter@20':0 [1]"

b. Set up the formats.

$ media-ctl -V "'ap1302 2-003c':2 [fmt: UYVY8_1X16/1920x1080 field:none]"
$ media-ctl -V "'csidev-4ad30000.csi':0 [fmt: UYVY8_1X16/1920x1080
 field:none]"
$ media-ctl -V "'4ac10000.syscon:formatter@20':0 [fmt:
 UYVY8_1X16/1920x1080 field:none]"
$ media-ctl -V "'crossbar':2 [fmt: UYVY8_1X16/1920x1080 field:none]"

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
118 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

$ media-ctl -V "'mxc_isi.0':0 [fmt: UYVY8_1X16/1920x1080 field:none]"
$ media-ctl -V "'mxc_isi.1':0 [fmt: UYVY8_1X16/1920x1080 field:none]"
$ media-ctl -V "'mxc_isi.2':0 [fmt: UYVY8_1X16/1920x1080 field:none]"
$ media-ctl -V "'mxc_isi.3':0 [fmt: UYVY8_1X16/1920x1080 field:none]"
$ media-ctl -V "'mxc_isi.4':0 [fmt: UYVY8_1X16/1920x1080 field:none]"
$ media-ctl -V "'mxc_isi.5':0 [fmt: UYVY8_1X16/1920x1080 field:none]"
$ media-ctl -V "'mxc_isi.6':0 [fmt: UYVY8_1X16/1920x1080 field:none]"
$ media-ctl -V "'mxc_isi.7':0 [fmt: UYVY8_1X16/1920x1080 field:none]"

c. Set the YUV colorspace output (i.MX 93 only supports one).

$ media-ctl -V "'mxc_isi.0':1 [fmt: YUV8_1X24/1920x1080 field:none]"
$ media-ctl -V "'mxc_isi.1':1 [fmt: YUV8_1X24/1920x1080 field:none]"
$ media-ctl -V "'mxc_isi.2':1 [fmt: YUV8_1X24/1920x1080 field:none]"
$ media-ctl -V "'mxc_isi.3':1 [fmt: YUV8_1X24/1920x1080 field:none]"
$ media-ctl -V "'mxc_isi.4':1 [fmt: YUV8_1X24/1920x1080 field:none]"
$ media-ctl -V "'mxc_isi.5':1 [fmt: YUV8_1X24/1920x1080 field:none]"
$ media-ctl -V "'mxc_isi.6':1 [fmt: YUV8_1X24/1920x1080 field:none]"
$ media-ctl -V "'mxc_isi.7':1 [fmt: YUV8_1X24/1920x1080 field:none]"

2. RGB color space (i.MX 93 only supports one).

$ media-ctl -V "'mxc_isi.0':1 [fmt: RGB888_1X24/1920x1080 field:none]"
$ media-ctl -V "'mxc_isi.1':1 [fmt: RGB888_1X24/1920x1080 field:none]"
$ media-ctl -V "'mxc_isi.2':1 [fmt: RGB888_1X24/1920x1080 field:none]"
$ media-ctl -V "'mxc_isi.3':1 [fmt: RGB888_1X24/1920x1080 field:none]"
$ media-ctl -V "'mxc_isi.4':1 [fmt: RGB888_1X24/1920x1080 field:none]"
$ media-ctl -V "'mxc_isi.5':1 [fmt: RGB888_1X24/1920x1080 field:none]"
$ media-ctl -V "'mxc_isi.6':1 [fmt: RGB888_1X24/1920x1080 field:none]"
$ media-ctl -V "'mxc_isi.7':1 [fmt: RGB888_1X24/1920x1080 field:none]"

3. Down scaling (resize), 1920x1080 -> 640x480 YUYV output (i.MX 93 only supports one).

$ media-ctl -V "'mxc_isi.0':0 [fmt:UYVY8_1X16/1920x1080 field:none compose:
(0,0)/640x480]"
$ media-ctl -V "'mxc_isi.1':0 [fmt:UYVY8_1X16/1920x1080 field:none compose:
(0,0)/640x480]"
$ media-ctl -V "'mxc_isi.2':0 [fmt:UYVY8_1X16/1920x1080 field:none compose:
(0,0)/640x480]"
$ media-ctl -V "'mxc_isi.3':0 [fmt:UYVY8_1X16/1920x1080 field:none compose:
(0,0)/640x480]"
$ media-ctl -V "'mxc_isi.4':0 [fmt:UYVY8_1X16/1920x1080 field:none compose:
(0,0)/640x480]"
$ media-ctl -V "'mxc_isi.5':0 [fmt:UYVY8_1X16/1920x1080 field:none compose:
(0,0)/640x480]"
$ media-ctl -V "'mxc_isi.6':0 [fmt:UYVY8_1X16/1920x1080 field:none compose:
(0,0)/640x480]"
$ media-ctl -V "'mxc_isi.7':0 [fmt:UYVY8_1X16/1920x1080 field:none compose:
(0,0)/640x480]"

4. Stream duplicated (only supported by i.MX 95), eight 1080P streams.
If the user does not change the default route table, it does not need to configure the route table.

$ gst-launch-1.0 v4l2src device=/dev/video0 ! video/x-
raw,width=1920,height=1080,format=YUY2 ! waylandsink window-width=480 window-
height=540 &
$ gst-launch-1.0 v4l2src device=/dev/video1 ! video/x-
raw,width=1920,height=1080,format=YUY2 ! waylandsink window-width=480 window-
height=540 &
$ gst-launch-1.0 v4l2src device=/dev/video2 ! video/x-
raw,width=1920,height=1080,format=YUY2 ! waylandsink window-width=480 window-
height=540 &

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
119 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

$ gst-launch-1.0 v4l2src device=/dev/video3 ! video/x-
raw,width=1920,height=1080,format=YUY2 ! waylandsink window-width=480 window-
height=540 &
$ gst-launch-1.0 v4l2src device=/dev/video4 ! video/x-
raw,width=1920,height=1080,format=YUY2 ! waylandsink window-width=480 window-
height=540 &
$ gst-launch-1.0 v4l2src device=/dev/video5 ! video/x-
raw,width=1920,height=1080,format=YUY2 ! waylandsink window-width=480 window-
height=540 &
$ gst-launch-1.0 v4l2src device=/dev/video6 ! video/x-
raw,width=1920,height=1080,format=YUY2 ! waylandsink window-width=480 window-
height=540 &
$ gst-launch-1.0 v4l2src device=/dev/video7 ! video/x-
raw,width=1920,height=1080,format=YUY2 ! waylandsink window-width=480 window-
height=540 &

5. Set the route table.

$ media-ctl -R "'crossbar' [2/0->5/0 [1], 2/0->6/0 [1], 2/0->7/0 [1], 2/0-
>8/0 [1], 2/0->9/0 [1], 2/0->10/0 [1], 2/0->11/0 [1], 2/0->12/0 [1]]"

6.1.3.1.4 MT9M114

The Onsemi MT9M114 is supported on i.MX 91 and i.MX 93.

• To select the kernel configuration, Device Drivers -> Multimedia support (MEDIA_SUPPORT [=y]) ->
Media ancillary drivers -> Camera sensor devices (VIDEO_CAMERA_SENSOR [=y]) -> MT9M114x support
(VIDEO_MT9M114X [=y])
– drivers/media/i2c/mt9m114x.c

The following is an example for creating a pipeline manually.

input size: 1280x720, Output size: 1280x720 out format: UYVY
media-ctl -l "'mt9m114 7-0048':0 -> 'parallel-4ac10070.pcsi':0 [1]"
media-ctl -V "'mt9m114 7-0048':0 [fmt: UYVY8_2X8/1280x720 field:none]"
media-ctl -V "'parallel-4ac10070.pcsi':0 [fmt: UYVY8_2X8/1280x720 field:none]"
media-ctl -V "'crossbar':0 [fmt: UYVY8_2X8/1280x720 field:none]"
media-ctl -V "'mxc_isi.0':0 [fmt: UYVY8_2X8/1280x720 field:none]"

6.1.3.2 Raw Cameras

6.1.3.2.1 OX05B1S

The Omnivision OX05B1S is an 1/2.5-inch optical format, 2592x1944, stacked-chip, low power, CMOS, 2.2 µm,
RGB-IR raw output sensor. It outputs data on the MIPI-CSI2 interface, up to 4 lanes, 10-bit, with a maximum
image transfer rate of 1944 @ 60 fps.

The Omnivision OX05B1S sensor is supported on i.MX 95 on the MIPI-CSI port using an NXP adapter board
(SCH-89961 Rev. B).

To activate the OX05B1S sensor, the following kernel modules need to be selected in the Linux kernel
configuration:

• Device Drivers > Multimedia support > Media ancillary drivers > Video decoders > OmniVision raw sensor
support OX05B1S (CONFIG_VIDEO_OX05B1S)
– drivers/media/i2c/ox05b1s/ox05b1s_mipi.c

The formats supported for this sensor are:

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
120 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• 2592 x 1944, GRBG10 @ 30 fps

The driver is V4L2 compliant, using common V4L2 controls:

• V4L2_CID_VBLANK
• V4L2_CID_HBLANK
• V4L2_CID_PIXEL_RATE
• V4L2_CID_ANALOGUE_GAIN
• V4L2_CID_EXPOSURE

The media controller graph for OX05B1S may look like as shown in the following figure.

aaa-061278

0
mxc_isi.0

/dev/v41-subdev5

mxc_isi.0.capture
/dev/video0

1

0
mxc_isi.1

/dev/v41-subdev6

mxc_isi.1.capture
/dev/video1

1

0
mxc_isi.2

/dev/v41-subdev7

mxc_isi.2.capture
/dev/video2

1

0
mxc_isi.3

/dev/v41-subdev8

mxc_isi.3.capture
/dev/video3

1

0
mxc_isi.4

/dev/v41-subdev9

mxc_isi.4.capture
/dev/video4

mxc_isi.4.output

1

crossbar
/dev/v41-subdev4

11 121098765

4

4ac10000.syscon:formatter@20
/dev/v41-subdev14

1

0

csidev-4ad30000.csi
/dev/v41-subdev15

1

0

ox05b1s 2-0036
/dev/v41-subdev16

0

1 2

3210

0
mxc_isi.5

/dev/v41-subdev11

mxc_isi.5.capture
/dev/video5

1

0
mxc_isi.6

/dev/v41-subdev12

mxc_isi.6.capture
/dev/video6

1

0
mxc_isi.7

/dev/v41-subdev13

mxc_isi.7.capture
/dev/video7

1

Figure 21. Media controller graph for OX05B1S

The pipeline may be configured manually like this, for example, for SGRBG10/2592x1944:

• Set links:
– media-ctl -d /dev/media1 -l "ox05b1s 2-0036":0 -> "csidev-4ad30000.csi":0[1]
– media-ctl -d /dev/media1 -l "csidev-4ad30000.csi":1 ->
"4ac10000.syscon:formatter@20":0[1]

– media-ctl -d /dev/media1 -l "4ac10000.syscon:formatter@20":1 -> "crossbar":2[1]
– media-ctl -d /dev/media1 -l "crossbar":5 -> "mxc_isi.0":0[1]

• Set routes:
– media-ctl -d /dev/media1 -R "crossbar" [2/0 -> 5/0 [1], 2/1 -> 6/0 [0], 2/2 ->
7/0 [0], 2/3 -> 8/0 [0]]

– media-ctl -d /dev/media1 -R "csidev-4ad30000.csi" [0/0 -> 1/0 [1], 0/1 -> 1/1
[0], 0/2 -> 1/2 [0], 0/3 -> 1/3 [0]]

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
121 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

– media-ctl -d /dev/media1 -R "4ac10000.syscon:formatter@20" [0/0 -> 1/0 [1], 0/1
-> 1/1 [0], 0/2 -> 1/2 [0], 0/3 -> 1/3 [0]]

• Set formats:
– media-ctl -d /dev/media1 -V "ox05b1s 2-0036":0/0 [fmt:SGRBG10/2592x1944
field:none]

– media-ctl -d /dev/media1 -V "csidev-4ad30000.csi":0/0 [fmt:SGRBG10/2592x1944
field:none]

– media-ctl -d /dev/media1 -V "4ac10000.syscon:formatter@20":0/0
[fmt:SGRBG10/2592x1944 field:none]

– media-ctl -d /dev/media1 -V "crossbar":2/0 [fmt:SGRBG10/2592x1944 field:none]
– media-ctl -d /dev/media1 -V "mxc_isi.0":0/0 [fmt:SGRBG10/2592x1944 field:none]

• Frames then may be captured from the /dev/video0 node:
– v4l2-ctl --device /dev/video0 --set-fmt-
video=width=2592,height=1944,pixelformat=BA10 --stream-mmap --stream-count=5

6.1.3.2.2 OS08A20

The Omnivision OS08A20 is an 1/1.8-inch optical format, 3840 x 2160, CMOS, 2.2 µm, raw RGB sensor. The
OS08A20 has an 8-megapixel array image capable of operating at up to 60 fps in 10-bit resolution. It outputs
data on the MIPI-CSI2 interface, up to 4 lanes, 10/12-bit.

The Omnivision OS08A20 sensor is supported on i.MX 95 on the MIPI-CSI port using an NXP adapter board
(SCH-89961 Rev. B), same as the OX05B1S. The kernel module is also the same as for OX05B1S, so follow
the same steps to activate the OS08A20 sensor:

• Device Drivers -> Multimedia support -> Media ancillary drivers -> Video decoders -> OmniVision raw sensor
support OX05B1S (CONFIG_VIDEO_OX05B1S)
– drivers/media/i2c/ox05b1s/ox05b1s_mipi.c

The formats supported for this sensor are:

• 1920 x 1080, BGGR10, no HDR @ 60 fps
• 1920 x 1080, BGGR10, HDR @ 30 fps
• 3840 x 2160, BGGR12, no HDR @ 30 fps
• 3840 x 2160, BGGR10, HDR @ 15 fps
• 3840 x 2160, BGGR12, HDR @ 15 fps
• 3840 x 2160, BGGR10, no HDR @ 30 fps

The driver is V4L2 compliant, using common V4L2 controls:

• V4L2_CID_VBLANK
• V4L2_CID_HBLANK
• V4L2_CID_PIXEL_RATE
• V4L2_CID_ANALOGUE_GAIN
• V4L2_CID_EXPOSURE

The HDR mode can be enabled or disabled by enabling the short exposure stream and route (on VC1). In this
case, the the standard V4L2 control V4L2_CID_HDR_SENSOR_MODE will be automatically enabled and the
sensor will operate in staggered HDR mode.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
122 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

aaa-061319

0
mxc_isi.0

/dev/v41-subdev1

mxc_isi.0.capture
/dev/video0

1

0
mxc_isi.1

/dev/v41-subdev2

mxc_isi.1.capture
/dev/video1

1

0
mxc_isi.2

/dev/v41-subdev3

mxc_isi.2.capture
/dev/video2

1

0
mxc_isi.3

/dev/v41-subdev4

mxc_isi.3.capture
/dev/video3

1

0
mxc_isi.4

/dev/v41-subdev5

mxc_isi.4.capture
/dev/video4

mxc_isi.output

1

crossbar
/dev/v41-subdev0

11 121098765

4

4ac10000.syscon:formatter@20
/dev/v41-subdev9

1

0

csidev-4ad30000.csi
/dev/v41-subdev10

1

0

os08a20 2-0036
/dev/v41-subdev11

0

1 2

3210

0
mxc_isi.5

/dev/v41-subdev6

mxc_isi.5.capture
/dev/video5

1

0
mxc_isi.6

/dev/v41-subdev7

mxc_isi.6.capture
/dev/video6

1

0
mxc_isi.7

/dev/v41-subdev8

mxc_isi.7.capture
/dev/video7

1

Figure 22. Media controller graph for OS08A20

The pipeline may be configured manually like this, for example, for SGRBG10/3840x2160 with HDR enabled:

Set links:

./media-ctl -d /dev/media0 -l "os08a20 2-0036":0 -> "csidev-4ad30000.csi":0[1]

./media-ctl -d /dev/media0 -l "csidev-4ad30000.csi":1 ->
 "4ac10000.syscon:formatter@20":0[1]
./media-ctl -d /dev/media0 -l "4ac10000.syscon:formatter@20":1 ->
 "crossbar":2[1]
./media-ctl -d /dev/media0 -l "crossbar":5 -> "mxc_isi.0":0[1]
./media-ctl -d /dev/media0 -l "mxc_isi.0":1 -> "mxc_isi.0.capture":0[1]
./media-ctl -d /dev/media0 -l "crossbar":7 -> "mxc_isi.2":0[1]
./media-ctl -d /dev/media0 -l "mxc_isi.2":1 -> "mxc_isi.2.capture":0[1]

Set routes:

./media-ctl -d /dev/media0 -R "os08a20 2-0036" [1/0 -> 0/0 [1], 2/0 -> 0/1 [1]]

./media-ctl -d /dev/media0 -R "crossbar" [2/0 -> 5/0 [1], 2/1 -> 7/0 [1]]

./media-ctl -d /dev/media0 -R "csidev-4ad30000.csi" [0/0 -> 1/0 [1], 0/1 -> 1/1
 [1]]
./media-ctl -d /dev/media0 -R "4ac10000.syscon:formatter@20" [0/0 -> 1/0 [1],
 0/1 -> 1/1 [1]]

Set formats for stream 0 (long exposure):

./media-ctl -d /dev/media0 -V "os08a20 2-0036":0/0 [fmt:SBGGR10/3840x2160
 field:none]
./media-ctl -d /dev/media0 -V "csidev-4ad30000.csi":0/0 [fmt:SBGGR10/3840x2160
 field:none]
./media-ctl -d /dev/media0 -V "4ac10000.syscon:formatter@20":0/0
 [fmt:SBGGR10/3840x2160 field:none]

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
123 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

./media-ctl -d /dev/media0 -V "crossbar":2/0 [fmt:SBGGR10/3840x2160 field:none]

./media-ctl -d /dev/media0 -V "mxc_isi.0":0/0 [fmt:SBGGR10/3840x2160 field:none]

Set formats for stream 1 (short exposure):

./media-ctl -d /dev/media0 -V "os08a20 2-0036":0/1 [fmt:SBGGR10/3840x2160
 field:none]
./media-ctl -d /dev/media0 -V "csidev-4ad30000.csi":0/1 [fmt:SBGGR10/3840x2160
 field:none]
./media-ctl -d /dev/media0 -V "4ac10000.syscon:formatter@20":0/1
 [fmt:SBGGR10/3840x2160 field:none]
./media-ctl -d /dev/media0 -V "crossbar":2/1 [fmt:SBGGR10/3840x2160 field:none]
./media-ctl -d /dev/media0 -V "mxc_isi.2":0/0 [fmt:SBGGR10/3840x2160 field:none]

The Omnivision OS08A20 sensor is supported on i.MX 95 (using the OX05B1S driver) in conjunction with the
NEO ISP, but it is also supported on i.MX 8M Plus, in which case the VSI ISP is used, and there is another
sensor driver, which is built outside the kernel.

6.1.3.2.3 0X03C10

The Omnivision OX03C10 sensor is supported on i.MX 95 using serializer/deserializer solutions from the
following vendors:

• Analog Devices: MAX96717/MAX96724
• Texas Instruments: DS0UB953/DS0UV960

Up to 4 sensors are supported by each SerDes solution. The following subsections provide a brief overview of
each solution. Both solutions share the same OX03C10 driver and custom controls.

6.1.3.2.3.1 Analog Devices SerDes

The Analog Devices SerDes solution is made up of one deserializer board having a MAX96724 chip and up to 4
sensor modules, each having an Omnivision OX03C10 sensor and one MAX96717 serializer chip. The modules
are connected by Gigabit Multimedia Serial Links (GMSLs) over coax cables.

To activate the Analog Devices solution, the following kernel modules need to be selected in the Linux kernel
configuration:

• max96724: Device Drivers -> Multimedia Support -> Media ancillary drivers -> Video decoders -> Maxim
MAX96724 GMSL deserializer support
– drivers/media/i2c/max96724.c

• mx95mbcam: Device Drivers -> Multimedia Support -> Media ancillary drivers -> Video decoders -> NXP
OX03C10 + MAX961717 combo GMSL2 camera support
– drivers/media/i2c/mx95mbcam.c
– drivers/media/i2c/max96717.c
– drivers/media/i2c/ox03c10.c

The drivers are V4L2 compliant, using common V4L2 controls (documented in Section 6.1.5), with a few custom
controls added to the OX03C10 sensor driver to be able to set exposure, analog gain, digital gain, and white
balance gain for each mode of operation in one single-system call. The custom controls UAPI (user-space API)
is documented in the following header:

• Include/uapi/linux/ox03c10.h

The following is a list of the custom controls added. For the full description of the data structures needed to be
passed to each control, see the UAPI header files:

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
124 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• V4L2_CID_OX03C10_EXPOSURE – set exposure parameters for SPD, LCG, and VS modes.
• V4L2_CID_OX03C10_ANALOGUE_GAIN – set analog gains for HCG, LCG, SPD, and VS modes.
• V4L2_CID_OX03C10_DIGITAL_GAIN – set digital gains for HCG, LCG, SPD, and VS modes.
• V4L2_CID_OX03C10_WB_GAIN – set white B, Gb, Gr and R gains for HCG, LCG, SPD, and VS modes.
• V4L2_CID_OX03C10_PWL_EN – enable/disable PWL (piecewise linear) compression.
• V4L2_CID_OX03C10_PWL_CTRL – change PWL mode.
• V4L2_CID_OX03C10_PWL_KNEE_POINTS_LUT – set the PWL knee points.
• V4L2_CID_OX03C10_OTP_CORRECTION – read OTP correction parameters.

6.1.3.2.3.2 Texas Instruments SerDes

The Texas Instruments SerDes solution is made up of one deserializer board having a DSOUV960 chip and up
to 4 sensor modules, each having an Omnivision OX03C10 sensor and one DSOU953 a serializer chip. The
modules are connected by FPD-Link III (Flat Panel Display Link) over coax cables.

To activate the Texas Instruments solution, the following kernel modules need to be selected in the Linux kernel
configuration:

• mx95mbcam: Device Drivers -> Multimedia support -> Media ancillary drivers -> Camera sensor devices ->
OmniVision OX03C10 sensor support

• ds90ub960-q1: Device Drivers -> Multimedia support -> Media ancillary drivers -> Video serializers and
deserializers -> TI FPD-Link III/IV Deserializers

6.1.4 Software Operation

The V4L2 opteratons for capture support modes, picture formats and picture sizes varying for each capture
interface.

The imx-test repo has unit tests for these interfaces in the mxc_v4l2_test. See README for details on how to
run tests.

6.1.4.1 Pipeline Operation

6.1.5 V4L2 Capture

Video for Linux Two (V4L2) is a Linux standard. The API specification is available at https://www.kernel.org/doc/
html/latest/userspace-api/media/v4l/v4l2.html.

The V4L2 capture device includes two interfaces: the capture and overlay interfaces using the V4L2 API for
capture and overlay devices.

The following are some sample use cases for the V4L2 capture APIs:

1. Sets the capture pixel format and size using IOCTL VIDIOC_S_FMT.
2. Sets the control information using IOCTL VIDIOC_S_CTRL, for rotation.
3. Requests a buffer using IOCTL VIDIOC_REQBUFS.
4. Memory maps the buffer to its user space.
5. Executes the IOCTL VIDIOC_DQBUF.
6. Passes the data that requires post-processing to the buffer.
7. Queues the buffer using the IOCTL command VIDIOC_QBUF.
8. Starts the stream by executing IOCTL VIDIOC_STREAMON.

• VIDIOC_STREAMON and VIDIOC_OVERLAY cannot be enabled simultaneously.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
125 / 301

https://github.com/nxp-imx/imx-test
https://www.kernel.org/doc/html/latest/userspace-api/media/v4l/v4l2.html
https://www.kernel.org/doc/html/latest/userspace-api/media/v4l/v4l2.html
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

The following tables lists the V4L2 capture ioctls used in the i.MX Capture Drivers. For more information see the
V4l2 Chaper.

IOCTL Description

VIDIOC_QUERYCAP Query Device Capabiities

VIDIOC_G_FMT VIDIOC_S_FMT Get or Set Data format

VIDIOC_S_DEST_CROP Set cropping rectange

VIDIOC_REQBUFS Initiate Memory Mapping

VIDIOC_QueryBUF Query status of buffer

VIDIOC_QBUF,VIDIOC_DQBUF Exchange buffer with driver

VIDIOC_STREAMON,VIDIOC_STREAMOFF Start or stop streaming

VIDIOC_G_CTRL,VIDIOC_S_CTRL Get or set the value of a control

VIDIOC_CROPCAP Query cropping capabilities

VIDIOC_G_CROP,VIDIOC_S_CROP Get or set Cropping

VIDIOC_OVERLAY Start or stop video overlay

VIDIOC_G_FBUF, VIDIOC_S_FBUF Get or set frame buffer ovrelay parameters

VIDIOC_G_PARM,VIDIOC_S_PARM Get or set streaming parameters

VIDIOC_G_STD,VIDIOC_S_STD Get or Set the video standard

VIDIOC_G_OUTPUT,VIDIOC_S_OUTPUT Get or Set the video output

VIDIOC_G_INPUT,VIDIOC_S_INPUT Get or set the video input

VIDIOC_ENUMSTD Enumerate video standards

VIDIOC_ENUMOUTPUT,VIDIOC_ENUMINPUT Enumerate output and inputs

VIDIOC_ENUM_FMT Enumerate image formats

VIDIOC_ENUM_FRAMESIZE,VIDIOC_ENUM_
FRAMEINTERVALSS

Enumerate frame sizes and intervals

VIDIOC_DBG_G_CHIP_IDENT Chip Identification

Table 60.  V4L2 Capture API IOCTLs

6.1.6 Source Code Structure

The table below shows the capture driver source files. For i.MX 6 and i.MX 7 the source files are in drivers/
media/platform/mxc/capture. For i.MX 8 series the source files are in drivers/media/platform/
imx8. For MIPI-CSI the source files are in drivers/mxc/mipi.

File Description

• drivers/media/platform/nxp/dwc-mipi-csi2.c
• drivers/phy/freescale/phy-fsl-imx9-dphy-rx.c

i.MX 93/95 MIPI CSI Interface driver

• drivers/media/platform/nxp/imx8mq-mipi-csi2.c
• drivers/staging/media/imx/imx8-mipi-csi2-sam.c
• drivers/media/platform/nxp/imx-mipi-csis.c

i.MX 8 MIPI-CSI2 Capture Interface driver

• drivers/media/platform/nxp/imx-parallel-csi.c i.MX 8 Parallel-CSI Interface driver

• drivers/staging/media/imx/imx8-isi-core.c i.MX 8M Plus ISI Capture Controller driver

Table 61.  Omnivision V4L2 Camera Driver Files

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
126 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

File Description
• drivers/staging/media/imx/imx8-isi-cap.c
• drivers/staging/media/imx/imx8-isi-hw.c
• drivers/staging/media/imx/imx8-isi-m2m.c
• drivers/staging/media/imx/imx8-isi-fmt.c

• drivers/media/platform/nxp/imx8-isi/ i.MX 8, i.MX 8M (except for i.MX 8M Plus), and
i.MX 8X ISI Capture Controller driver

• drivers/media/platform/nxp/imx8- isi/imx8-isi-core.c
• drivers/media/platform/nxp/imx8-isi/imx8-isi-video.c
• drivers/media/platform/nxp/imx8-isi/imx8-isi-crossbar.c
• drivers/media/platform/nxp/imx8-isi/imx8-isi-m2m.c
• drivers/media/platform/nxp/imx8-isi/imx8-isi-pipe.c

i.MX 8 ISI Capture Controller driver

• drivers/media/i2c/ov5640.c
• drivers/media/i2c/max9286.c
• drivers/media/i2c/rdacm20.c

i.MX 8 Omnivision Camera V3 Camera interface

• drivers/media/platform/nxp/imx-jpeg/ i.MX 8 JPEG hardware interface

• drivers/mxc/mipi/mxc_mipi_csi2.c
• drivers/mxc/mipi/mxc_mipi_csi2.h

i.MX 6 and i.MX 7 MIPI-CSI2 interface core driver

• drivers/media/platform/mxc/capture/ipu_bg_overlay_sdc.c
• drivers/media/platform/mxc/capture/ipu_csi_enc.c
• drivers/media/platform/mxc/capture/ipu_fg_overlay_sdc.c
• drivers/media/platform/mxc/capture/ipu_prp_enc.c
• drivers/media/platform/mxc/capture/ipu_prp_vf_sdc_bg.c
• drivers/media/platform/mxc/capture/ipu_prp_vf_sdc.c
• drivers/media/platform/mxc/capture/ipu_still.c
• drivers/media/platform/mxc/capture/v4l2-int-device.c

i.MX 6 IPU V4L2 plugin

• drivers/media/platform/mxc/capture/mx6s_capture.c
• drivers/media/platform/mxc/capture/ov5640.c

CSI Omnivision Camera V4L2 plugin

• drivers/media/platform/mxc/capture/ov5640_v2.c Paralllel CSI Omnivision Camera V4L2 plugin

• drivers/media/platform/mxc/capture/ov5640_mipi.c
• drivers/media/platform/mxc/capture/ov5640_camera_mipi_int.c

MIPI-CSI Omnivision Camera V4L2 plugin

• drivers/media/platform/mxc/capture/ov5640_mipi_v2.c MIPI-CSI2 Omnivision Camera V4L2 plugin

• drivers/media/platform/mxc/capture/adv7180.c TV Decoder ADV7180 V4L2

• drivers/staging/media/imx/hdmirx/cdns-hdmirx-audio.c
• drivers/staging/media/imx/hdmirx/cdns-hdmirx-hdcp.c
• drivers/staging/media/imx/hdmirx/cdns-hdmirx-hw.c
• drivers/staging/media/imx/hdmirx/cdns-hdmirx-phy.c
• drivers/staging/media/imx/hdmirx/cdns-hdmirx-phy.h
• drivers/staging/media/imx/hdmirx/cdns-hdmirx.c
• drivers/staging/media/imx/hdmirx/cdns-mhdp-hdmirx.c
• drivers/staging/media/imx/hdmirx/cdns-mhdp-hdmirx.h

i.MX 8 HDMI RX

Table 61.  Omnivision V4L2 Camera Driver Files...continued

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
127 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

6.2 Display Overview

6.2.1 Introduction

The i.MX Display systems uses display controllers to optimize video data movement to display interfaces and
graphics processing. Each display controller is implemented through a Linux driver and into a display framework
either framebuffer or DRM. In some cases a display controller includes authentication ensuring a secure video
pipeline. In others the display controller will include additional features for scaling, de-interlacing, tiling and
color conversion during tranfers. For i.MX 8 supporting multiple displays is done with use of two controllers
working together. This chapter provides a high level overview of i.MX display controllers and interfaces and the
difference between framebuffer and DRM display drivers. The following display controllers are used.

• IPU
• PXP
• eLCDIF
• DPU
• DCSS - on i.MX 8M only

A display interface will interface to the display controller, display panel and in some cases encoders display
bridges. The following display interfaces are supported.

• EPDC - supporting EInk displays
• Parallel - supporting LCD displays
• LVDS - supporting LVDS displays
• HDMI - supporting both on chip and external HDMI
• Display Port - supporting eDP panels
• MIPI-DSI - supporting MIPI displays

Note: Analog display is no longer supported. Analog interface was used i.MX 37 and i.MX 5 families.

The following HDMI display bridges/encoder are supported.

• Parallel to HDMI - using Silicon Image si902x
• LVDS to HDMI - using ITE it6263
• MIPI-DSI to HDMI - using Analog Devices adv7535

Each SOC supports different display features. Some of these are configured in the device trees located at arch/
arm/boot/dts and arch/arm64/boot/dts. Go to the hardware reference manual for more details on the following.

• Throughput
– Number of outputs
– Pixel clock rate
– Max number of displays and corresponding resolution
– Resolution at 60 Hz.

• Interface
– Parallel - number of ports and bit size
– LVDS - number of lanes and channels.
– MIPI-DSI - number of ports, lanes channels and speed

• Processing
– On the fly combining including high resolution displays
– Off-line combining speed

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
128 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

6.2.2 Frame Buffer

Frame buffer drivers are supported for i.MX 6 and i.MX 7 but not for i.MX 8. The frame buffer drivers are
supported using the the imxfb driver in drivers/video/fbdev. The frame buffer kernel fbdev structure is defined
here or here on kernel.org. For more information on i.MX V4LS go the V4L2 chapter.

The panels are supported with the framebuffer driver for the TRULY and EInk panels in the video/fbdev/mxc
folder. See the panels supported by seaching for PANEL in the imx_v7_defconfig. The Trully panels are only
supported with the MIPI DSI interface. The Eink panels are only supported with the EPDC interface.

6.2.3 Direct Rendering Model (DRM)

Direct Rendering Model (DRM) is the new display driver use for i.MX. The i.MX DRM driver is in drivers/
gpu/drm/imx. Other components have DRM interfaces such as GPU and DCSS. The DRM framework is
documented here on kernel.org.

The i.MX DRM drivers are implemented with the following drivers.

• Hardware library support files
• Core DRM drivers
• Hardware dependent DRM drivers
• HDMI DRM drivers supporting hdp HDMI/Display Port

The DRM driver uses the DPU for the i.MX 8QuadMax and i.MX 8QuadXPlus, uses LCDIF for the i.MX 8M
Quad and i.MX 8M Mini, uses DCNANO for the i.MX 8ULP, and uses LCDIFv3 for i.MX 8M Plus, i.MX 93, and
i.MX 91.

The i.MX DRM framework also includes panel drivers which exist in driver/gpu/panel. The supported DRM
panels are Simple panel, Raydium RM67191, Raydium RM68200, and Raydium RM67199.

6.2.4 Display Resolution

The display resoluton calculation uses the following factors.

• Frame Width
• Frame Height
• Frame rate (fps)
• Blanking Interval - provided in the display's DS up to 35% (1.35) - use minn values

The pixel clock [MHz] is calculated according to Frame Width x Frame Height x Frames Rate x Blanking Interval

Things to consider are the following

• Data format (pixel per clock)
• Display's source clock (DI#_CLK_EXT bit
• The load on the display controller (DC)

6.2.5 Authentication

Display authentication allows hardware processing to ensure display content is not compromised. This is done
through a display authentication CRC using the authentication hardware This hardware is the DCIC integrated
through the frame buffer display framework on i.MX 6 and the DPU implemented in the DRM display framework
for i.MX 8.

Display authentication CRC is supported on the following SoC.

• i.MX 6 Solox supports authentication using DCIC for 1 display.
• i.MX 6 QuadPlus/Quad/Dual support authentication using DCIC with 2 displays.
RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
129 / 301

https://www.kernel.org/doc/Documentation/fb/framebuffer.txt
https://www.kernel.org/doc/html/latest/driver-api/frame-buffer.html?highlight=fbdev
https://www.kernel.org/doc/html/latest/gpu/introduction.html
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• i.MX 8QuadXPlus can authenticate 2 display using the DPU.
• i.MX 8QuadMax can authenticate 4 displays using DPU.

6.2.6 Tiling

Tiling through hardware provides optimized video data display. This is implemented through different hardware
blocks. The newest feature is the Display Prefetch Resolve (DPR) which increases performance on the i.MX 6
QuadPlus, i.MX 8QuadMax and i.MX 8QuadXPlus.

Tile support is enabled on the following

• i.MX 6Quad/Dual supports tiling using Video Data Order Adapter (VDOA).
• i.MX 6QuadPlus supports both tiling VDOA and Display Prefetch Resolve (DPR) version 1
• i.MX 8QuadXPlus and i.MX 8QuadMax supports tiling using Display Prefetch Resolve (DPR) version2

6.3 Display Controllers

6.3.1 Display Processing Unit (DPU)

6.3.1.1 Introduction

The display processing unit (DPU) is designed to support video and graphics processing functions and to
interface with video and still display sensors and displays. The DPU driver provides internel kernel-level APIs
to manipulate logical channels. A logical channel represents a complete DPU processing flow. For example,
a complete DPU processing flow (logical channel) might consist of reading a YUV buffer from memory and
displaying it to an external interface. The DPU API consists of a set of common functions for all channels. Its
functions are to initialize channels, set up buffers, enable and disable channels and set up interrupts.

Typical logical channels include:

• CSI direct to memory
• Memory to synchronous frame buffer background
• Memory to synchronous frame buffer foreground

The higher level drivers are responsible for memory allocation and providing user-level API. DPU interfaces are
available for capture in the V4L2 framework and for display using the DRM display framework. DPU interfaces
with LVDS, MIPI-DSI, HDMI and Parallel display interfaces.

The DPU display controller supports a 32bit display composition engine that includes the following:

• 2 Display output streams on independent panels.
• Two layer composition
• Automatic safety stream panic plus detection using CRC matching using a Region CRC checker

The DPU display controller supports a 2D composition engine which provides efficiency, performance and
safety. The DPU 2D graphics engine support reduces the burden on the GPU so it only does 3D GPU. Video
efficiency with overlay native video and graphics uses minimal access to system memory. Power efficiencies
allow the 3D engine to be off for windowing GUI's like the Android Hardware Composer.

The DPU also supports the following for authentication.

• CRC checker with 8 stackable regions maskable, exclusive top-to-bottom priority
• CRC check can be inserted after any stage in the post-processing pipe
• CRC failure can generate SW interrupt, or switch the Frame Gen to either Safety Stream or Constant Plane

The DPU display interfacce cache supports the following.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
130 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• Each display plane has a multi line cache
• This contains 8 lines of pixels for each plane
• RGB, YUV etc formats supported
• Supports Video and GPU tile formats
• Contents are fetched from memory to fill cache ahead of time
• Horizontal and vertical fetches supported
• Warp fetches not supported, require bypass

6.3.1.2 DRM

The display processing unit (DPU) interfaces with the DRM driver supporting video display.

6.3.1.3 Source Code Structure

The DPU drivers are separating into DRM, blitting and main processing. Common functions are provided in the
drivers/gpu/drm/imx/dpu and drivers/gpu/imx/dpu-blit while the main driver exists in drivers/gpu/imx/dpu. The
following table lists the source files.

File Description

DRM Source

drivers/gpu/drm/imx/dpu/dpu-plane. DRM DPU Plane

drivers/gpu/drm/imx/dpu/dpu-crtc DRM DPU CRTC

drivers/gpu/drm/imx/dpu/dpu-blit DRM DPU blitter

drivers/gpu/drm/imx/dpu/dpu-kms DRM DPU KMS

DPU Blitter Source

drivers/gpu/imx/dpu-blit/dpu-blit DPU Bliter

drivers/gpu/imx/dpu-blit/dpu-blit-registers.h DPU Blit registers

DRM Core Source

drivers/gpu/imx/dpu/dpu-vscaler.c DPU VScaler

drivers/gpu/imx/dpu/dpu-fetchwarp.c DPU Fetchwarp

drivers/gpu/imx/dpu/constframe.c DPU Const Frame

drivers/gpu/imx/dpu/dpu-prv.h DPU Private headers

drivers/gpu/imx/dpu/dpu-disengcfg.c DPU Display Configurations

drivers/gpu/imx/dpu/dpu-fetchunit.c DPU Fetch Unit

drivers/gpu/imx/dpu/dpu-framegen.c DPU Frame Generator

drivers/gpu/imx/dpu/dpu-hscaler.c DPU HScaler

drivers/gpu/imx/dpu/dpu-extdst.c DPU External Destination

drivers/gpu/imx/dpu/dpu-common.c DPU Common

drivers/gpu/imx/dpu/dpu-fetchlayer.c DPU Fetch Layer

drivers/gpu/imx/dpu/dpu-tcon.c DPU TCon

drivers/gpu/imx/dpu/dpu-layerblend.c DPU Layer Blend

drivers/gpu/imx/dpu/dpu-fetcheco.c DPU Fetch Encode

Table 62. DPU Driver source

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
131 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

File Description

drivers/gpu/imx/dpu/dpu-fetchdecode.c DPU Decode

Table 62. DPU Driver source...continued

6.3.1.4 Menu Configuration Options

The following Linux kernel configuration options are provided for the DPU module.

Device Drivers -> i.MX DPU core support

6.3.2 Image Processing Unit (IPU)

6.3.2.1 Introduction

The image processing unit (IPU) is designed to support video and graphics processing functions and to
interface with video and still image sensors and displays. The IPU driver provides a kernel-level API to
manipulate logical channels. A logical channel represents a complete IPU processing flow. For example, a
complete IPU processing flow (logical channel) might consist of reading a YUV buffer from memory, performing
post-processing, and writing an RGB buffer to memory. A logical channel maps one to three IDMA channels and
maps to either zero or one IC tasks. A logical channel can have one input, one output, and one secondary input
IDMA channel. The IPU API consists of a set of common functions for all channels. Its functions are to initialize
channels, set up buffers, enable and disable channels, link channels for auto frame synchronization, and set up
interrupts.

The IPU is a display controller and supports the following display interfaces which are supported through
the framebuffer display framework. The access is only exposed through the framebuffer fbdev application
framework.

• Parallel
• LVDS
• HDMI
• MIPI-DSI

Typical logical channels include:

• CSI direct to memory
• CSI to viewfinder pre-processing to memory
• Memory to viewfinder pre-processing to memory
• Memory to viewfinder rotation to memory
• Previous field channel of memory to video deinterlacing and viewfinder pre-processing to memory
• Current field channel of memory to video deinterlacing and viewfinder pre-processing to memory
• Next field channel of memory to video deinterlacing and viewfinder pre-processing to memory
• CSI to encoder pre-processing to memory
• Memory to encoder pre-processing to memory
• Memory to encoder rotation to memory
• Memory to post-processing rotation to memory
• Memory to synchronous frame buffer background
• Memory to synchronous frame buffer foreground
• Memory to synchronous frame buffer DC
• Memory to synchronous frame buffer mask

The IPU API has some additional functions that are not common across all channels, and are specific to an IPU
sub-module. The types of functions for the IPU sub-modules are as follows:

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
132 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• Synchronous frame buffer functions
• Panel interface initialization
• Set foreground positions
• Set local/global alpha and color key
• Set gamma
• CSI functions
• Sensor interface initialization
• Set sensor clock
• Set capture size
• Enable or disable prefetching linear frames by using PRE/PRG
• Enable or disable resolving tiled frames by using PRE/PRG

The higher level drivers are responsible for memory allocation, chaining of channels, and providing user-level
API.

6.3.2.2 Hardware Operation

The detailed hardware operation of the IPU is discussed in the Applications Processor Reference Manual. The
following figure shows the IPU hardware modules.

aaa-053514

Image DMA
controller
(IDMAC)

Display multi
FIFO control

(DMFC)

CMOS
sensor interface

(CSI)

SENSB

Image signal proc.
(ISP)

Video de-interlacer
(VDI)

Image converter
(IC)

Display processor
(DP)

Display
control
(DC)

Display
interface

(DI)

Display multi
FIFO control

(DMFC)

Image rotator
(IRT)

Control module
(CM)

CNTB

DISPB
MEMB

Figure 23.  IPUv3EX/IPUv3H IPU Module Overview

6.3.2.3 Software Operation

The IPU driver is a self-contained driver module in the Linux kernel.

It consists of a custom kernel-level API for the following blocks:

• Synchronous frame buffer driver
• Display Interface (DI)
• Display Processor (DP)
• Image DMA Controller (IDMAC)

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
133 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• CMOS Sensor Interface (CSI)
• Image Converter (IC)
• Prefetch/Resolve Engine/Gasket (PRE/PRG)

The figure below shows the interaction between the different graphics/video drivers and the IPU.

aaa-053506

Camera app Video conf app

Multimedia framework

Media player app
Other data flow
Control calls

Application
(user mode)

Middleware
(user mode)

Kernel mode

Hardware

V4L2
capure plugin

I2C
driver CSI

IPU common API IPU display API

DP/DC/DIPRPENC PRPVF PP

MXC
display driver

VPUIPU
I2C

Camera

Epson
VGA

mxc_ipu

V4L2 video sink
plugin

VPU
kernel driverOverlay

frame
buf

Sync
frame buf

driver
(DI0)

Sync
frame buf

driver
(DI1)

V4L2
output driver

V4L2
capture driver

Ipu
processing

driver

Camera
sensor
driver

VPU library
(userspace driver)

VPU plugin

Figure 24.  Graphics/Video Drivers Software Interaction for IPUv3

The drivers for IPUv1 are named simply ipu. Drivers for IPUv3 contain 3 or v3 in the name. The IPU drivers are
sub-divided as follows:

• Device drivers-include the frame buffer driver for the synchronous frame buffer, the frame buffer driver for the
displays, V4L2 capture drivers for IPU pre-processing, the V4L2 output driver for IPU post-processing, and the
ipu processing driver which provide system interface to user space or V4L2 drivers. The frame buffer device
drivers are available in drivers/video/mxc. The V4L2 device drivers are available in drivers/media/
platform/mxc.

• The MXC display driver is introduced as a simple framework to manage interaction between IPU and display
device drivers (e.g., LCD, LVDS, HDMI, MIPI, etc.)

• Low-level library routines-interface to the IPU hardware registers. They take input from the high-level device
drivers and communicate with the IPU hardware. The low-level libraries are available in the directory of the
Linux kernel.

6.3.2.4 IPU Frame Buffer Drivers Overview

The frame buffer device provides an abstraction for the graphics hardware. It represents the frame buffer video
hardware, and allows application software to access the graphics hardware through a well-defined interface, so
that the software is not required to know anything about the low-level hardware registers.

The driver is enabled by selecting the frame buffer option under the graphics parameters in the kernel
configuration. To supplement the frame buffer driver, the kernel builder may also include support for fonts and

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
134 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

a startup logo. This device depends on the virtual terminal (VT) console to switch from serial to graphics mode.
The device is accessed through special device nodes, located in the /dev directory, as /dev/fb*. fb0 is generally
the primary frame buffer.

Other than the physical memory allocation and LCD panel configuration, the common kernel video API is
utilized for setting colors, palette registration, image blitting, and memory mapping. The IPU reads the raw pixel
data from the frame buffer memory and sends it to the panel for display.

6.3.2.5 IPU Frame Buffer Hardware Operation

The frame buffer interacts with the IPU hardware driver module.

6.3.2.6 IPU Frame Buffer Software Operation

A frame buffer device is a memory device, such as /dev/mem, and it has features similar to a memory device.
Users can read it, write to it, seek to some location in it, and mmap() it (the main use). The difference is that the
memory that appears in the special file is not the whole memory, but the frame buffer of some video hardware.

/dev/fb* also interacts with several IOCTLs, which allows users to query and set information about the
hardware. The color map is also handled through IOCTLs. For more information on what IOCTLs exist and
which data structures they use, see include/uapi/linux/fb.h. The following are a few of the IOCTLs
functions:

• Request general information about the hardware, such as name, organization of the screen memory (planes,
packed pixels, and so on), and address and length of the screen memory.

• Request and change variable information about the hardware, such as visible and virtual geometry, depth,
color map format, timing, and so on. The driver suggests values to meet the hardware capabilities (the
hardware returns EINVAL if that is not possible) if this information is changed.

• Get and set parts of the color map. Communication is 16 bits-per-pixel (values for red, green, blue,
transparency) to support all existing hardware. The driver does all the calculations required to apply the
options to the hardware (round to fewer bits, possibly discard transparency value).

The hardware abstraction makes the implementation of application programs easier and more portable. The
only thing that must be built into the application programs is the screen organization (bitplanes or chunky pixels,
and so on), because it works on the frame buffer image data directly.

The MXC frame buffer driver (drivers/video/mxc/mxc_ipuv3_fb.c) interacts closely with the generic Linux frame
buffer driver (drivers/video/fbdev/core/fbmem.c).

6.3.2.7 Synchronous Frame Buffer Driver

The synchronous frame buffer screen driver implements a Linux standard frame buffer driver API for
synchronous LCD panels or those without memory. The synchronous frame buffer screen driver is the top
level kernel video driver that interacts with kernel and user level applications. This is enabled by selecting the
Synchronous Panel Frame buffer option under the graphics support device drivers in the kernel configuration.
To supplement the frame buffer driver, the kernel builder may also include support for fonts and a startup logo.
This depends on the VT console for switching from serial to graphics mode.

Except for physical memory allocation and LCD panel configuration, the common kernel video API is utilized for
setting colors, palette registration, image blitting, and memory mapping. The IPU reads the raw pixel data from
the frame buffer memory and sends it to the panel for display.

The frame buffer driver supports different panels as a kernel configuration option. Support for new panels can
be added by defining new values for a structure of panel settings.

The frame buffer interacts with the IPU driver using custom APIs that allow:

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
135 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• Initialization of panel interface settings
• Initialization of IPU channel settings for LCD refresh
• Changing the frame buffer address for double buffering support

The following features are supported:

• Configurable screen resolution
• Configurable RGB 16, 24, or 32 bits per pixel frame buffer
• Configurable panel interface signal timings and polarities
• Palette/color conversion management
• Power management
• LCD power off/on
• Enable/disable PRE/PRG features

User applications utilize the generic video API (the standard Linux frame buffer driver API) to perform functions
with the frame buffer. These include the following:

• Obtaining screen information, such as the resolution or scan length
• Allocating user space memory using mmap for performing direct blitting operations

A second frame buffer driver supports a second video/graphics plane.

6.3.2.8 IPU Backlight Driver

IPU drivers also control the backlight. The IPU backlight driver implements IPU PWM backlight control for
panels. It exports a sys control file under /sys/class/backlight/pwm-backlight.0/brightness to user space. The
default backlight intensity value is 128.

6.3.2.9 IPU Device Driver

IPU (processing) device driver provide image processing features: resizing/rotation/CSC/combination/deinterlaci
ng based on IC/IRT modules in IPUv3.

The IPU device driver is task based, user just need prepare task setting, queue task, then block wait task finish.
The driver now supports only blocking method, and the non-block method will be added in the future. The task
structures are as follows:

struct ipu_task {
struct ipu_input input;
struct ipu_output output;
bool overlay_en;
struct ipu_overlay overlay;
#define IPU_TASK_PRIORITY_NORMAL 0
#define IPU_TASK_PRIORITY_HIGH 1
u8 priority;
#define IPU_TASK_ID_ANY 0
#define IPU_TASK_ID_VF 1
#define IPU_TASK_ID_PP 2
#define IPU_TASK_ID_MAX 3
u8 task_id;
int timeout;
};
struct ipu_input {
u32 width;
u32 height;
u32 format;

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
136 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

struct ipu_crop crop;
dma_addr_t paddr;
struct ipu_deinterlace deinterlace;
dma_addr_t paddr_n; /*valid when deinterlace enable*/
};
struct ipu_overlay {
u32 width;
u32 height;
u32 format;
struct ipu_crop crop;
struct ipu_alpha alpha;
struct ipu_colorkey colorkey;
dma_addr_t paddr;
};
struct ipu_output {
u32 width;
u32 height;
u32 format;
u8 rotate;
struct ipu_crop crop;
dma_addr_t paddr;
};

To prepare the task, the user just needs to fill task.input, task.overlay (if need combine) and task.output
parameters, and then queue task either by int ipu_queue_task(struct ipu_task *task); if
from the kernel level (V4L2 driver for example), or by IPU_QUEUE_TASK ioctl under /dev/mxc_ipu if from the
application level.

6.3.2.10 Source Code Structure

The source files associated with the IPU, Sensor, V4L2, and Panel drivers are available in the following folders.

• drivers/mxc/ipu3
• drivers/video/mxc
• drivers/video/fbdev/mxc
• drivers/video/backlight

See the V4L2 chapter for more information on the IPU V4L2 driver files

File Description

driveers/mxc/ipu3/ipu_common.c IPU common library functions

driveers/mxc/ipu3/ipu_common.c IPU common library functions

drivers/mxc/ipu3/ipu_ic.c IPU IC base driver

drivers/mxc/ipu3/ipu_device.c IPU driver device interface and fops functions.

drivers/mxc/ipu3/ipu_capture.c IPU CSI capture base driver

drivers/mxc/ipu3/ipu_disp.c IPU display functions

drivers/mxc/ipu3/ipu_calc_stripes_sizes.c Multistripes method functions for ipu_device.c

drivers/mxc/ipu3/pre.c i.MX 6 QuadPlus Prefetch/Resolve the engine driver

drivers/mxc/ipu3/prg.c i.MX 6 QuadPlus Prefetch/Resolve the Gasket driver

drivers/mxc/ipu3/mxc_ipuv3_fb.c Driver for synchronous frame buffer

drivers/mxc/ipu3/vdoa.c VDOA post-processing driver, used by ipu_device.c

Table 63. IPU Driver Files

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
137 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

File Description

drivers/video/fbdev/mxc/mxc_lcdif.c Display Driver for CLAA-WVGA and SEIKO-WVGA LCD
support

drivers/video/fbdev/mxc/mxc_hdmi.c Display Driver for HDMI interface

drivers/video/fbdev/mxc/ldb.c Driver for synchronous frame buffer for on chip LVDS

drivers/video/fbdev/mxc/mxc_dispdrv.c Display Driver framework for synchronous frame buffer

drivers/video/fbdev/mxc/mxc_edid.c Driver for EDID

Table 63. IPU Driver Files...continued

Table 64 lists the header files associated with the IPU and Panel drivers.

File Description

drivers/mxc/ipu3/ipu_param_mem.h Hellper functions for IPU parameter memory access

drivers/mxc/ipu3/ipu_prv.h Header file for Pre-processing drivers

drivers/mxc/ipu3/ipu_regs.h IPU register definitions

drivers/mxc/ipu3/pre-regs.h Prefetch/Resolve Engine register definitions

drivers/mxc/ipu3/prg-regs.h Prefetch/Resolve Gasket register definitions

drivers/mxc/ipu3/vdoa.h Header file for VDOA drivers

drivers/video/fbdev/mxc/mxc_dispdrv.h Header file for display driver

include/linux/uapi/mxcfb.h Header file for the synchronous framebuffer driver

include/linux/uapi/ipu.h Header file for IPU APIs

Table 64. IPU Global Header Files

6.3.2.11 Menu Configuration Options

The following Linux kernel configuration options are provided for the IPU module.

In menu configuration enable the following module:

• CONFIG_MXC_IPU_V3 - Includes support for the Image Processing Unit. In menuconfig, this option is
available under:
Device Drivers > MXC support drivers > Image Processing Unit Driver
By default, this option is Y for all architectures.
If ARCH_MXC is true, CONFIG_MXC_IPU_V3 will be set.

• CONFIG_MXC_IPU_V3_PRG - This enables support for the IPUv3 prefetch gasket engine to support double
buffer handshake control between IPUv3 and prefetch engine (PRE), snoop the AXI interface for display
refresh requests to memory, and modify the request address to fetch the double buffered row of blocks in
OCRAM.
Device Drivers > MXC support drivers > i.MX IPUv3 prefetch gasket engine
This option depends on CONFIG_MXC_IPU_V3 and CONFIG_MXC_IPU_V3_PRE.

• CONFIG_MXC_IPU_V3_PRE - This enables support for the IPUv3 prefetch engine to improve the system
memory performance. The engine has the capability to resolve framebuffers in tile pixel format to linear.
Device Drivers > MXC support drivers > i.MX IPUv3 prefetch engine
This option depends on CONFIG_MXC_IPU_V3. Enabling this option selects CONFIG_MXC_IPU_V3_PRG.

• CONFIG_MXC_CAMERA_OV5640_MIPI - Option for both the OV 5640 mipi sensor driver and the use case
driver. This option is dependent on the VIDEO_MXC_CAPTURE option. In menuconfig, this option is available
under:

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
138 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Device Drivers > Multimedia support > V4L platform devices > MXC Video For Linux Video Capture > MXC
Camera/V4L2 PRP Features support > OmniVision 5640 Camera support using mipi

• CONFIG_MXC_CAMERA_OV5640 - Option for both the OV5640 sensor driver and the use case driver. This
option is dependent on the VIDEO_MXC_CAPTURE option. In menuconfig, this option is available under:
Device Drivers > Multimedia platform > V4L platform devices > MXC Video For Linux Video Capture > MXC
Camera/V4L2 PRP Features support > OmniVision ov5640 camera support
Only one sensor should be installed at a time.

• CONFIG_MXC_IPU_PRP_VF_SDC - Option for the IPU (here the > symbols illustrates data flow direction
between HW blocks):
CSI > IC > MEM MEM > IC (PRP VF) > MEM
Use case driver for dumb sensor or
CSI > IC(PRP VF) > MEM
for smart sensors. In menuconfig, this option is available under:
Multimedia devices > Video capture adapters > MXC Video For Linux Camera > MXC Camera/V4L2 PRP
Features support > Pre-Processor VF SDC library
By default, this option is M for all.

• CONFIG_MXC_IPU_PRP_ENC - Option for the IPU:
Use case driver for dumb sensors
CSI > IC > MEM MEM > IC (PRP ENC) > MEM
or for smart sensors
CSI > IC(PRP ENC) > MEM.
In menuconfig, this option is available under:
Device Drivers > Multimedia Devices > Video capture adapters > MXC Video For Linux Camera > MXC
Camera/V4L2 PRP Features support > Pre-processor Encoder library
By default, this option is set to M for all.

• CONFIG_VIDEO_MXC_CAMERA - This is configuration option for V4L2 capture Driver. This option is
dependent on the following expression:
VIDEO_DEV && MXC_IPU && MXC_IPU_PRP_VF_SDC && MXC_IPU_PRP_ENC
In menuconfig, this option is available under:
Device Drivers > Multimedia devices > Video capture adapters > MXC Video For Linux Camera
By default, this option is M for all.

• CONFIG_VIDEO_MXC_OUTPUT - This is configuration option for V4L2 output Driver. This option is
dependent on VIDEO_DEV && MXC_IPU option. In menuconfig, this option is available under:
Device Drivers > Multimedia devices > Video capture adapters > MXC Video for Linux Video Output
By default, this option is Y for all.

• CONFIG_FB - This is the configuration option to include frame buffer support in the Linux kernel. In
menuconfig, this option is available under:
Device Drivers > Graphics support > Support for frame buffer devices
By default, this option is Y for all architectures.

• CONFIG_FB_MXC - This is the configuration option for the MXC Frame buffer driver. This option is
dependent on the CONFIG_FB option. In menuconfig, this option is available under:
Device Drivers > Graphics support > MXC Framebuffer support
By default, this option is Y for all architectures.

• CONFIG_FB_MXC_SYNC_PANEL - This is the configuration option that chooses the synchronous panel
framebuffer. This option is dependent on the CONFIG_FB_MXC option. In menuconfig, this option is available
under:
Device Drivers > Graphics support > MXC Framebuffer support > Synchronous Panel Framebuffer
By default this option is Y for all architectures.

• CONFIG_FB_MXC_LDB - This configuration option selects the LVDS module on i.MX 6 chip. This option
is dependent on CONFIG_FB_MXC_SYNC_PANEL and CONFIG_MXC_IPUV3 || FB_MXS options. In
menuconfig, this option is available under:

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
139 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Device Drivers > Graphics support > MXC Framebuffer support > Synchronous Panel Framebuffer > MXC
LDB

• CONFIG_FB_MXC_SII9022 - This configuration option selects the SII9022 HDMI chip. This option is
dependent on CONFIG_FB_MXC_SYNC_PANEL option. In menuconfig, this option is available under:
Device Drivers > Graphics support > MXC Framebuffer support > Synchronous Panel Framebuffer > Si Image
SII9022 DVI/HDMI Interface Chip

6.3.3 Pixel Pipeline (PxP)

6.3.3.1 Introduction

The PxP is a display controller that works wtih the EPDC display interface. The Pixel Pipeline (PxP) DMA
engine driver provides a unique API, which are implemented as a dmaengine client that smooths over the
details of different hardware offload engine implementations. Typically, the users of PxP DMA-ENGINE driver
include EPDC driver, V4L2 Output driver, and the PxP user-space library.

The PxP driver uses PxP registers to interact with the hardware. For detailed hardware operations, see the
Applications Processor Reference Manual document associated with SoC.

6.3.3.2 Software Operation

There are different versions of PxP IP. To ease the maintenance for the new version of PxP used on i.MX 7Dual,
which has new features mainly for EPDC like hardware collision detection, E Ink Gen-II waveform algorithm
(REAGL/-D) processing in hardware, and hardware dithering support, there are different drivers (drivers/dma/
pxp/pxp_dma_v3.c). However, each version uses the DMA Engine framework.

6.3.3.3 Key Data Structs

The PxP DMA Engine driver implementation depends on the DMA Engine Framework. There are three
important structs in the DMA Engine Framework which are extended by the PxP driver: struct dma_device,
struct dma_chan, struct dma_async_tx_descriptor. The PxP driver implements several callback functions which
are called by the DMA Engine Framework (or DMA slave) when a DMA slave (client) interacts with the DMA
Engine.

The PxP driver implements the following callback functions in struct dma_device:

device_alloc_chan_resources /* allocate resources and descriptors */

device_free_chan_resources /* release DMA channel's resources */

device_tx_status /* poll for transaction completion */

device_issue_pending /* push pending transactions to hardware */

and,

device_prep_slave_sg /* prepares a slave DMA operation */

device_terminate_all/* manipulate all pending operations on a channel, returns zero or error code */

The first four functions are used by the DMA Engine Framework, the last two are used by the DMA slave (DMA
client). Notably, device_issue_pending is used to trigger the start of a PxP operation.

The PxP DMA driver also implements the interface tx_submit in struct dma_async_tx_descriptor, which is used
to prepare the descriptor(s) which will be executed by the engine. When tasks are received in pxp_tx_submit,
they are not configured and executed immediately. Rather, they are added to a task queue and the function call
is allowed to return immediately.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
140 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

6.3.3.4 Channel Management

Although ePxP does not have multiple channels in hardware, the virtual channels are supported in
the driver. This provides flexibility in the multiple instance/client design. At any time, a user can call
dma_request_channel() to get a free channel, and then configure this channel with several descriptors. A
descriptor is required for each input plane and for the output plane. When the PxP is no longer being used, the
channel should be released by calling dma_release_channel(). Detailed elements of channel management are
handled by the driver and are transparent to the client.

6.3.3.5 Descriptor Management

The DMA Engine processes the task based on the descriptor. One DMA channel is usually associated with
several descriptors. Descriptors are recycled resources, under control of the offload engine driver, to be reused
as operations complete. The extended TX descriptor packet (pxp_tx_desc), allows the user to pass PxP
configuration information to the driver. This includes everything that the PxP needs to execute a processing
task.

6.3.3.6 Completion Notification

There are two ways for an application to receive notification that a PxP operation has completed.

• Call dma_wait_for_async_tx(). This call causes the CPU to spin while it polls for the completion of the
operation.

• Specify a completion callback.

The latter method is recommended. After the PxP operation completes, the PxP output buffer data can be
retrieved.

For general information for DMA Engine Framework, seeDocumentation/dmaengine.txt in the Linux kernel
source tree.

6.3.3.7 Limitations

• The driver currently does not support scatterlist objects in the way they are traditionally used. Instead of using
the scatterlist parameter object to provide a chain of memory sources and destinations, the driver currently
uses it to provide the input and output buffers (and overlay buffers, if needed) for one transfer.

• The PxP driver may not properly execute a series of transfers that is queued in rapid sequence. It is
recommended to wait for each transfer to complete before submitting a new one.

6.3.3.8 Menu Configuration Options

The following Linux kernel configuration option is provided for this module:

• For i.MX 7Dual, i.MX 8ULP, and i.MX93, select Device Drivers > DMA Engine support > [*] MXC PxP V3
support > [*] MXC PxP Client Device.

• For i.MX 6, select Device Drivers > DMA Engine support > [*] MXC PxP V2 support > [*] MXC PxP Client
Device.

6.3.3.9 Source Code Structure

The PxP driver source code is located in drivers/dma/pxp.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
141 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

File Description

drivers/dma/pxp/pxp_device.c PxP Device

drivers/dma/pxp/pxp_dma_v2.c PxP DMA for i.MX 6

drivers/dma/pxp/pxp_dma_v3.c PxP DMA for i.MX 7, i.MX 8ULP, i.MX 93, i.MX
943

drivers/dma/pxp/regs-pxp_v2.h PxP registers for i.MX 6

drivers/dma/pxp/regs-pxp_v3.h Pxp registers for i.MX 7, i.MX 8ULP, i.MX 93,
i.MX 943

include/linux/pxp_dma.h PxP DMA kernel header

include/linux/pxp_device.h PxP Device kernel header

include/uapi/linux/pxp_dma.h PxP DMA user space header

include/uapi/linux/pxp_device.h PxP Device user space header

drivers/media/platform/mxc/output/mxc_pxp_v4l2.c PxP V4L2 driver for i.MX 6 and i.MX 7

drivers/media/platform/mxc/output/mxc_pxp_v4l2.h PxP V4L2 header

Table 65. PxP source

6.3.4 eLCDIF Frame Buffer

6.3.4.1 Introduction

The eLCDIF is a display controller that works with the Parallel LCD interface. The driver is implemented as a
display subsystem driver either frame buffer or DRM which controls generic LCD low-level operations allowing
low level hardware control. Only DOTCLK mode of the ELCDIF is tested, so theoretically the ELCDIF frame
buffer driver can work with a sync LCD panel driver to support a frame buffer device. The sync LCD driver is
organized in a flexible and extensible manner and is abstracted from any specific sync LCD panel support. To
support another sync LCD panel, the user can write a sync LCD driver by referring to the existing ones.

6.3.4.2 Software Operation

For the eLCDIF implemented as a framebuffer driver the frame buffer device is a memory device similar to
/dev/mem. It can be read from, written to, or some location in it can be sought and mapped using mmap().
The difference is that the memory available to the user is not the entire allocated memory, but only the frame
buffer of the video hardware. The device is accessed through special device nodes, usually located in the /dev
directory, /dev/fb*. /dev/fb* also has several IOCTLs which act on it and through which information about the
hardware can be queried and set. The color map handling operates through IOCTLs as well. See linux/fb.h for
more information on which IOCTLs there are and which data structures are used.

The i.MX ELCDIF frame buffer driver implementation is abstracted from the actual hardware. The default panel
driver is picked up by video mode defined in platform data or passed in with 'video=mxc_elcdif_fb:resolution,
bpp=bits_per_pixel' kernel bootup command during probing. The resolution should be in the common frame
buffer video mode pattern and bits_per_pixel should be the frame buffer's color depth.

6.3.4.3 Menu Configuration Options

The following menu options will configure the MXC ELCDIF frame buffer driver. This option depends on FB and
(ARCH_MXS || ARCH_MXC).

Frame buffer Devices > MXS LCD framebuffer support (CONFIG_FB_MXS)

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
142 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

6.3.4.4 Source Code Structure

The source for frame buffer is in drivres/video/fbdev/mxc and the DRM driver is in drivers/gpu/drm/imx/lcdif and
drivers/gpu/drm/imx/lcdifv3.

File Description

drivers/video/fbdev/mxsfb.c ELCDIF frame buffer driver

drivers/video/fbdev/mxc/mxc_lcdif.c ELCDIF frame buffer driver

drivers/gpu/drm/imx/lcdif/lcdif-crtc.c ELCDIF DRM Authentication

drivers/gpu/drm/imx/lcdif/lcdif-kms.c ELCDIF DRM KMS

drivers/gpu/drm/imx/lcdif/lcdif-kms.h ELCDIF DRM KMS Header

drivers/gpu/drm/imx/lcdif/lcdif-plane.c ELCDIF DRM Plane

drivers/gpu/drm/imx/lcdif/lcdif-plane.h ELCDIF DRM Plane header

drivers/gpu/drm/lcdifv3/lcdifv3-crtc.c LCDIFv3 DRM CRTC

drivers/gpu/drm/lcdifv3/lcdifv3-kms.c LCDIFv3 DRM KMS

drivers/gpu/drm/lcdifv3/lcdifv3-kms.h LCDIFv3 DRM KMS Header

drivers/gpu/drm/lcdifv3/lcdifv3-plane.c LCDIFv3 DRM Plane

drivers/gpu/drm/lcdifv3/lcdifv3-plane.h LCDIFv3 DRM Plane header

Table 66.  ELCIF source

6.3.5 Display Control Subsystem (DCSS)

6.3.5.1 Introduction

The Display control subsystem (DCSS) is a display control for i.MX 8M Quad that integrates through the DRM
display framework. The DCSS provides a mechanism to display frame buffers in memory out to UltraHD or
HDTVs with the capability to combine up to 3 layers of graphics or video overlay to the HDMI output. The key
featuers of the DCSS controller include:

• Supports up to 3 layers of graphics or video
– Arbitrary offset
– One plane can be graphics with 8 bit alpha support
– Upscale 1920 x 1080p60 video or graphics to 3840 x 2160p60
– Downscale 3840 x 2160p30 video to 1920 x 1080p30 or 1280 x 720p30

• HDR support:
– HDR10 with 2084 and 2020 color spaces
– Dolby Vision single and dual layer formats
– HLG

• HDMI 2.0a supporting one display:
– Resolutions of: 640 x 480p60, 720 x 480p60, 1280 x 720p60, 1920 x 1080p60, 3840 x 2160p60
– HDCP 2.2 and HDCP 1.4

• Pixel clock up to 596 MHz
• Output can also go to MIPI DSI output
• Frame Buffer Compression – Lossless compression of buffers

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
143 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

6.3.5.2 Source Code Structure

The DCSS drm driver is located in drivers/gpu/drm/imx/dcss and the DCSS core driver is in drivers/gpu/imx/
dcss

File Description

drivers/gpu/drm/imx/dcss/dcss-plane DRM DCSS Plane

drivers/gpu/drm/imx/dcss/dcss-kms DRM DCSS KMS

drivers/gpu/drm/imx/dcss/dcss-crtc DRM DCSS CRTC header

drivers/gpu/drm/imx/dcss/dcss-dec400d.c DCSS dec400d

drivers/gpu/drm/imx/dcss/dcss-scaler DCSS Scaler

drivers/gpu/drm/imx/dcss/dcss-ss.c DCSS ss

drivers/gpu/drm/imx/dcss/dcss-hdr10.c DCSS hdr10

drivers/gpu/drm/imx/dcss/dcss-wtsc1.c DCSS wtsc1

drivers/gpu/drm/imx/dcss/dcss-dtg.c DCSS dtg

drivers/gpu/drm/imx/dcss/dcss-ctx1d.c DCSS ctx1d

drivers/gpu/drm/imx/dcss/dcss-dtrc.c DCSS DTRC

drivers/gpu/drm/imx/dcss/dcss-dpr.c DCSS ctx1d

drivers/gpu/drm/imx/dcss/dcss-blkctr.c DCSS ctx1d

Table 67. DCSS Driver source

6.3.6 DCNANO

6.3.6.1 Introduction

The LCDIF is a high-performance graphics core that can be used for reading rendered images from the frame
buffer. In addition

to providing hardware cursor patterns, the display controller performs format conversions, dithering, and gamma
corrections.

Display controller key features are:

• Video Timing Generation
– HSYNC, VSYNC, DE signals
– Programmable timers

• MIPI Display Protocols
– Display Pixel Interface-2 (DPI-2) formats
– DPI 24-bit, 18-bit (2 configs) and 16-bit support (3 configs)
– (Optional) Display Bus Interface 2.0 (DBI-2)

• Display Interface
– Parallel Pixel Output with 24-bit Data, HSync, VSync, Data enable
– Easily adaptable to external serialization logic, e.g., HDMI

• Display
– Display sizes to 1024x480
– Sync and blank signals

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
144 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

– Gamma and dither tables
• Input Formats

– ARGB2101010/ARGB8888/ARGB1555/RGB565/ARGB4444
– YUV422 packed & semi planar (YUY2, UYVY)

• Format Conversion
– Pixel inputs accepted from multiple RGB formats
– Pixel output is 24 bit RGB in multiple formats

• Output Formats
– RGB888/DPI_D16CFG1/DPI_D16CFG2/DPI_D16CFG3/DPI_D18CFG1/ DPI_D18CFG2/ DPI_D24

• Hardware Cursor
– Supports ARGB888 and Mask cursor formats

• Color
– Overlay with coordinate generator
– Alpha Blending: 8 Porter Duff Blending modes

• Dither and Gamma Correction
– A separate Look Up Table for Dither
– A separate Look Up Table for Gamma Correction

6.3.6.2 Source Code Structure

The DCNANO drm driver is located in drivers/gpu/drm/imx/dcnano.

File Description

drivers/gpu/drm/imx/dcnano/dcnano-crtc.c DRM DCNANO CRTC

drivers/gpu/drm/imx/dcnano/dcnano-drv.c DRM DCNANO core

drivers/gpu/drm/imx/dcnano/dcnano-drv.h DRM DCNANO header

drivers/gpu/drm/imx/dcnano/dcnano-kms.c DRM DCNANO KMS

drivers/gpu/drm/imx/dcnano/dcnano-plane.c DRM DCNANO plane

drivers/gpu/drm/imx/dcnano/dcnano-reg.h DCNANO register header

Table 68. DCNANO driver source

6.4 Display Interfaces

6.4.1 Parallel LCD Interface

6.4.1.1 Introduction

The Parallel interface supports display to LCDs. The Parallel Display interface is supported through the display
controllers and implemented using the display framework which is fbdev framework on i.MX 6 and i.MX 7 and
drm framework for i.MX8. .

The following controllers support the parallel interface

• IPU on i.MX with IPU
• DPU on all i.MX8
• ElCDIF on i.MX with PxP

The Parallel interface supports at least one port on i.MX SoC that enable the parallel interface and supports
two ports for i.MX with IPU. The enabled SoC have varying bitrates from 18bit to 24 bits per port. On i.MX 6

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
145 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

with IPU the Parallel interface also supports a synchronous mode for display refresh and asynchronous mode
to memory and is very flexible with a glue-less connection to RAM-less displays, display controllers and TV
encoders.

6.4.2 MIPI DSI Interface

6.4.2.1 Introduction

The MIPI Display Interface (MIPI DSI) is a driver interface used to communicate with MIPI device controller on
the display panel. MIPI DSI display panel driver provides an interface to configure the display panel through
MIPI DSI.

The MIPI DSI Interface is a digital core accompanied with a multi-lane D-PHY that implements all protocol
functions defined in the MIPI DSI Specification, providing an interface between the System and MIPI DSI
compliant Display The MIPI DSI overview can be found here however specifications are only available to MIPI
members.

The MIPI DSI module provides a high-speed serial interface between a host processor and a display module.
It has higher performance, lower power, less EMI, and fewer pins compared with parallel bus. It is designed
to be compatible with the standard MIPI DSI protocol and is built on the existing MIPI DPI-2, MIPI DBI-2 and
MIPI DCS standards. The module sends pixels or commands to the peripheral and reads back status or pixel
information from the peripheral. MIPI DSI serializes all pixels data, commands and events, and contains two
basic modes: command mode and video mode. It uses command mode to write register and memory to the
display controller while reading display module status information. It also uses video mode to transmit a real-
time pixel streams from the host to peripheral in high-speed mode and generates an interrupt when an error
occurs.

For i.MX MIPI DSI is supported by a variety of drivers which are described in following chapters. The MIPI DSI
drivers support the following features:

• MIPI DSI communication protocol
• MIPI DSI command mode and video mode
• MIPI DCS command operation

The MIPI DSI driver used frame buffer driver for i.MX 6 and i.MX 7, and the DRM driver for i.MX 8 and i.MX 93.
Both drivers support the following.

• Drivers are not exposed to the user interface but through the drm or framebuffer interface.
• MIPI DSI IP driver-low level interface used to communicate with MIPI device controller on the display panel
• MIPI DSI display panel driver provides an interface to configure the display panel through MIPI DSI

The driver enables the platform-related regulators and clock. It requests OS-related system resources and
registers buffer event notifier for blank/unblank operation. The driver initializes MIPI D-PHY and configures the
MIPI DSI IP according to the MIPI DSI display panel.

The MIPI DSI driver supports the following features:

• Compatibility with MIPI Alliance Specification for DSI, Version1.01.0r11
• Compatibility with MIPI Alliance Specification for D-PHY, Version 1.00.00
• Supports 1 to 4 D-PHY data lanes depending on SoC capabilities.
• Bidirectional Communication and Escape Mode Support through Data Lane 0
• Programmable display resolutions
• Video Mode Pixel Formats, 16bpp (565 RGB),18bpp (666 RGB) packed, 18 bpp (666 RGB) loosely, 24bpp

(888 RGB).
• Supports the transmission of all generic commands
• Supports ECC and checksum capabilities

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
146 / 301

http://mipi.org/specifications/display-interface
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• End-of-Transmission Packet(EoTp) support
• Supports ultra low power mode
• Supports PMS control interface for PLL to configure byte clock frequency
• Supports Prescaler to generate escape clock from byte clock

The number of ports and lanes are specified in the device trees located in arch/arm/boot/dts and arch/arm64/
boot/dts.

6.4.2.2 Software Operation

The MIPI DSI driver has two parts: MIPI DSI IP driver and MIPI DSI display panel driver.

The MIPI DSI IP driver has a private structure called mipi_dsi_info. The instance to which the MIPI DSI IP is
attached is described in field int dev_id while the DI instance inside IPU is described in the field int disp_id.

During startup, the MIPI DSI IP driver is registered with the framebuffer driver through the field struct
mxc_dispdrv_handle when the driver is loaded. It also registers a framebuffer event notifier with framebuffer
core to perform the display panel blank/unblank operation. The field struct fb_videomode *mode and struct
mipi_lcd_config *lcd_config are received from the display panel callback. The MIPI DSI IP needs this infomation
to configure the MIPI DSI hardware registers.

After initializing the MIPI DSI IP controller and the display module, the MIPI DSI IP gets the pixel streams from
IPU through DPI-2 interface and serializes pixel data and video event through high-speed data links for display.
When there is an framebuffer blank/unblank event, the registered notifier will be called to enter/leave low power
mode.

The MIPI DSI IP driver provides 3 APIs for MIPI DSI display panel driver to configure display module.

The drivers uses the APIs provided by the MIPI DSI IP driver to read/write the display module registers. Usually,
there is a MIPI DSI slave controller integrated on the display panel. After power on reset, the MIPI DSI display
panel needs to be configured through standard MIPI DCS command or MIPI DSI Generic command according
to the manufacturer's specification.

6.4.2.3 Source Code Structure

Table below shows the MIPI DSI driver source files available in drivers/video/fbdev/mxc.

File Description

drveirs/video/fbdev/mxc/mipi_dsi.c MIPI DSI IP Frame buffer driver source file

drivers/video/fbdev/mxc/mipi_dsi.h MIPI DSI IP Frame bufferdriver header file

drivers/video/fbdev/mxc/mxcfb_hx8369_wvga.c MIPI DSI Frame bufferDisplay Panel driver source file

drivers/video/fbdev/mxc/mipi_dsi_samsung.c MIPI DSI Frame buffer Samsung source file

drivers/video/fbdev/mxc/mipi_dsi_northwest.c MIPI DSI Frame buffer Northwest source file

drivers/video/fbdev/mxc/mxcfb_hx8363_wvga.c i.MX 7 Frame buffer Truly WVGA Panel TFT3P5581E

drivers/video/fbdev/mxc/mxcfb_hx8369_wvga.c i.MX 6 Frame buffer Truly WVGA sync panel

drivers/video/fbdev/mxc/mxcfb_otm808b_wvga.c Truly Frame buffer WVGA Panel TFT3P5079E

drivers/gpu/drm/imx/sec_mipi_dsmi-imx.c Samsung DRM driver

drivers/gpu/drm/imx/nwl_dsi-imx.c Northwest DRM driver

drivers/gpu/drm/imx/dw_mipi_dsi-imx.c Synopsys DesignWare MIPI DSI DRM driver

Table 69. MIPI DSI Driver Files

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
147 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

6.4.2.4 Menu Configuration Options

In menu configuration, enable the following module:

Device Drivers > Graphics support > MXC Framebuffer support > Synchronous Panel Framebuffer > MXC
MIPI_DSI

Device Drivers > Graphics support > MXC Framebuffer support > Synchronous Panel Framebuffer > MXC
MIPI_DSI_SAMSUNG

Device Drivers > Graphics support > DRM Support for Freescale i.MX > Support for Northwest Logic MIPI DSI
displays

Device Drivers > Graphics support > DRM Support for Freescale i.MX > Support for Samsung MIPI DSIM
displays

Device Drivers > Graphics support > DRM Support for Freescale i.MX > Freescale i.MX DRM Synopsys
DesignWare MIPI DSI

6.4.3 LVDS Interface

6.4.3.1 Introduction

Low Voltage Differential Signalling (LVDS) supports high bandwidth and high definitiion graphics and fast frame
rate with lower power consumption. The implentation uses paris of wires where each wire in the pair carries
inverse signal of the other. This creates less interference and noise. The LVDS interferace uses four, six or eight
paris of wirse with additional ones carrying clock and ground wires.

The purpose of the LVDS interface is to support the flow of synchronous RGB data from the display controller to
external display devices through the LVDS interface.

This support covers all aspects of these activities:

1. Connectivity to relevant devices - Displays with LVDS receivers.
2. Data arrangement required by the external display receiver and by LVDS display standards.
3. Synchronization and control capabilities.

The LVDS interface supports multiple controllers listed below.

• LDB - double on i.MX 6 with IPU
• Mixel on i.MX 8QuadMax
• Mixel Combo on i.MX 8QuadXPlus

The LVDS drivers works with the supported display framework, which is framebuffer for i.MX 6 and i.MX 7, and
DRM for i.MX 8 and i.MX 93.

The LVDS interface has the following structure of support

• Channels - usually 2 channels
• Each channel supports a number of data pairs
• Data pixel rate which can vary on each data pair
• Control signals for HSYNC,VSYNC, DE

The LVDS interface supports the following displays.

• IT6263 LVDS to HDMI bridge - implemented with our LDB driver
• LVDS dual channel panel

The relevant standards for LVDS are the following.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
148 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• PHY Standard: ANSI EIA-644A
• Display Protocol Standards:

– SPWG Standard Panel Working Group Specification 3.8 (May 2007)
– VESA PSWG – Panel Standardization Working Group – set of standards for panels using LVDS.
– JEIDA/JEITA DISM Standard JEIDA-59-1999
– OpenLDI (National) – Revision 0.95 13/May/1999. *Only* Unbalanced operating mode supported (aligned

with vast majority of LCD vendors).

The LVDS interface is supported through the framebuffer framework on i.MX 6 and i.MX 7, and the DRM
framework on i.MX 8 and i.MX 93.

6.4.3.2 Software Operation

The LVDS driver is functional if the driver is built-in and the device tree status is set to "okay".

When the LVDS device driver is probed properly, the driver configures the clocks for the LVDS. The LVDS driver
probe function sets the default mode to 1080p60. The LVDS channel mapping mode and bit mapping mode are
set to use 30-bit JEIDA mode.

The driver takes the following steps to enable an LVDS channel:

1. Enable the power to the LVDS.
2. Set ldb_di_clk's parent clk and the parent clk's rate.
3. Set ldb_di_clk's rate.
4. Enable both ldb_di_clk and its parent clk.
5. Set the LVDS in a proper mode including display signals' polarities, channel mapping mode, and bit

mapping mode.
6. Enable related i.MX LVDS channels.

6.4.3.3 Source Code Structure

File Description

drivers/gpu/drm/imx/imx*-ldb.c LDB driver with i.MX SoC information

drivers/gpu/drm/bridge/fsl-imx-ldb.c LDB bridge driver

Table 70.  LVDS Source

6.4.3.4 Menu Configuration Options

In menu configuration, enable the following modules:

Device Drivers > Graphics support > DRM Support for Freescale i.MX > Support for LVDS displays

6.4.4 LVDS Display Bridge (LDB)

6.4.4.1 Introduction

This section describes the LVDS Display Bridge (LDB) driver which controls the LDB module to connect with
the external display devices with the LVDS interface. The purpose of the LDB is to support flow of synchronous
RGB data from IPU or LCDIF to external display devices through LVDS interface.

This support covers the following:

• Connectivity to relevant devices - Displays with LVDS receivers.
• Arranging data as required by the external display receiver and by LVDS display standards.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
149 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• Synchronization and control capabilities.

6.4.4.2 Software Operation

The LDB driver is functional if the driver is built-in.

When the LDB device is probed properly, the driver configures the LDB reference resistor mode and the LDB
regulator by using platform data information. The LDB driver probe function tries to match video modes for
external display devices to LVDS interface. The display signal polarities control bits of the LDB are set according
to the matched video modes. LVDS channel mapping mode and bit mapping mode of the LDB are set according
to the LDB device tree node set by the user. The LDB is fully enabled in probe function if the driver identifies a
display device with LVDS interface as the primary display device.

The steps the driver takes to enable an LVDS channel are:

1. Set ldb_di_clk's parent clk and the parent clk's rate.
2. Set ldb_di_clk's rate.
3. Enable both ldb_di_clk and its parent clk.
4. Set the LDB in a proper mode including display signals' polarities, LVDS channel mapping mode, bit

mapping mode, and reference resistor mode.
5. Enable related LVDS channels.

6.4.4.3 Source Code Structure

File Description

drivers/video/fbdev/mxc/ldb.c LDB Framebuffer driver

Table 71. LDB Source

6.4.4.4 Menu Configuration Options

The following Linux kernel configuration options are provided for this module.

In menu configuration enable the following module:

Device Drivers -> Graphics support -> MXC Framebufer support ->Synchronous Panel Framebuffer -> MXC
LDB

6.4.5 Electrophoretic Display Controller (EPDC) Interface

6.4.5.1 Introduction

The Electrophoretic Display Controller (EPDC) is a direct-drive active matrix EPD controller designed to drive E
Ink EPD panels supporting a wide variety of TFT backplanes. The EPDC framebuffer driver acts as a standard
Linux frame buffer device. This driver supports a set of custom API extensions, accessible from user space
(via IOCTL) or another kernel module (via direct function call) in order to provide the user with access to EPD-
specific functionality. The EPDC driver is abstracted from any specific E Ink panel type, providing flexibility to
work with a range of E Ink panel types and specifications.

The EPDC driver supports the following features:

• EPDC driver as a loadable or built-in module.
• RGB565, RGB24, RGB32 and Y8 frame buffer formats.
• Full and partial EPD screen updates.
• Up to 256 panel-specific waveform modes.
• Automatic optimal waveform selection for a given update.
RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
150 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• Synchronization by waiting for a specific update request to complete.
• Screen updates from an alternate (overlay) buffer.
• Automated collision handling.
• 64 simultaneous update regions.
• Ppixel inversion in a Y8 frame buffer format.
• 90, 180, and 270 degree HW-accelerated frame buffer rotation.
• Panning (y-direction only).
• Automated full and partial screen updates through the Linux fb_deferred_io mechanism.
• Three EPDC driver display update schemes: Snapshot, Queue, and Queue and Merge.
• Setting the ambient temperature through either a one-time designated API call or on a per-update basis.
• User control of the delay between completing all updates and powering down the EPDC.

6.4.5.2 EPDC Frame Buffer Driver Overview

The frame buffer device provides an abstraction for the graphics hardware. It represents the frame buffer video
hardware and allows application software to access the graphics hardware through a well-defined interface,
abstracting from software how to manage the low-level hardware registers. The EPDC driver supports this
model with one key caveat: the contents of the frame buffer are not automatically updated to the E Ink display.
Instead, a custom API function call is required to trigger an update to the E Ink display. The details of this
process are explained in the Section 6.4.5.3.

The frame buffer driver is enabled by selecting the frame buffer option under the graphics parameters in the
kernel configuration. To supplement the frame buffer driver, the kernel builder may also includes support for
fonts and a startup logo. The frame buffer device depends on the virtual terminal (VT) console to switch from
serial to graphics mode. The device is accessed through special device nodes, located in the /dev directory, as /
dev/fb*. fb0 is generally the primary frame buffer.

A frame buffer device is a memory device, such as /dev/mem, and has features similar to a memory device.
Users can read it, write to it, seek to some location in it, and mmap() it (the main use). The difference is that the
memory that appears in the special file is not the whole memory, but the frame buffer of some video hardware.

The EPDC frame buffer driver (drivers/video/fbdev/mxc/mxc_epdc_fb.c on i.MX 6DualLite or drivers/video/
fbdev/mxc/mxc_epdc_v2_fb.c for generation-II EPDC on i.MX 7Dual) interacts closely with the generic Linux
frame buffer driver (drivers/video/fbmem.c).

For additional details on the frame buffer device, see documentation in the Linux kernel found in
Documentation/fb/framebuffer.txt.

6.4.5.3 EPDC Frame Buffer Driver Extensions

E Ink display technology, in conjunction with the EPDC, has several features that distinguish it from standard
LCD-based frame buffer devices. These differences introduce the need for API extensions to the frame
buffer interface. The EPDC refreshes the E Ink display asynchronously and supports partial screen updates.
Therefore, the EPDC requires notification from the user when the frame buffer contents have been modified and
which region needs updating. Another unique characteristic of EPDC updates to the E Ink display is the long
screen update latencies (between 300-980 ms), which introduces the need for a mechanism to allow the user to
wait for a given screen update to complete.

The custom API extensions to the frame buffer device are accessible both from user space applications and
from within kernel space. The standard device IOCTL interface provides access to the custom API for user
space applications. The IOCTL extensions, along with relevant data structures and definitions, can be found
in include/linux/mxcfb_epdc.h. A full description of these IOCTLs can be found in the Programming Interface
section Section 6.4.5.11.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
151 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

For kernel mode access to the custom API extensions, the IOCTL interface should be bypassed in favor of
direct access to the underlying functions.

6.4.5.4 EPDC Panel Configuration

The EPDC driver is designed to flexibly support E Ink panels with a variety of panel resolutions, timing
parameters, and waveform modes. The EPDC driver is kept panel-agnostic through the use of an EPDC panel
mode structure, imx_epdc_fb_mode, which can be found in include/linux/mxcfb_epdc.h.

struct imx_epdc_fb_mode {
struct fb_videomode *vmode;
int vscan_holdoff;
int sdoed_width;
int sdoed_delay;
int sdoez_width;
int sdoez_delay;
int gdclk_hp_offs;
int gdsp_offs;
int gdoe_offs;
int gdclk_offs;
int num_ce;
};

The imx_epdc_fb_mode structure consists of an fb_videomode structure reference and a set of EPD timing
parameters. The fb_videomode structure defines the panel resolution and the basic timing parameters (pixel
clock frequency, hsync and vsync margins) and the additional timing parameters in imx_epdc_fb_mode
define EPD-specific timing parameters, such as the source and gate driver timings. For details on how to
configure E Ink panel timing parameters, see the EPDC programming model section in the i.MX 6DualLite
Applications Processor Reference Manual (IMX6DLRM), or i.MX 7Dual Applications Processor Reference
Manual (IMX7DRM).

In addition to the EPDC panel mode data, functions may be passed to the EPDC driver to define how to handle
the EPDC pins when the EPDC driver is enabled or disabled. These functions should disable the EPDC pins for
purposes of power savings.

6.4.5.5 Boot Command Line Parameters

Additional configuration for the EPDC driver is provided through boot command line parameters. The format of
the command line option is

epdc video=mxcepdcfb:[panel_name],bpp=16

.

The EPDC driver parses these options and tries to match panel_name to the name of video mode specified in
the imx_epdc_fb_mode panel mode structure. If no match is found, then the first panel mode provided in the
platform data is used by the EPDC driver. The bpp setting from this command line sets the initial bits per pixel
setting for the frame buffer. A setting of 32 or 24 selects the RGB888 pixel format, one of 16 selects RGB565
pixel format, while a setting of 8 selects 8-bit grayscale (Y8) format.

6.4.5.6 EPDC Waveform Loading

The EPDC driver requires a waveform file for proper operation. This waveform file contains the waveform
information needed to generate the waveforms that drive updates to the E Ink panel. A pointer to the waveform
file data is programmed into the EPDC before the first update is performed.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
152 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

There are two options for selecting a waveform file:

1. Select one of the default waveform files included in this BSP release.
2. Use a new waveform file that is specific to the E Ink panel being used.

The waveform file is loaded by the EPDC driver using the Linux firmware APIs.

6.4.5.7 Using a Default Waveform File

The quickest and easiest way to get started using an E Ink panel and the EPDC driver is to use one of the
default waveform files provided in the Linux BSP. This should enable updates to several different types of E
Ink panel without a panel-specific waveform file. The drawback is that optimal quality should not be expected.
Typically, using a non-panel-specific waveform file for an E Ink panel results in more ghosting artifacts and
overall poorer color quality.

The following default waveform files included in the BSP reside in /lib/firmware/imx/epdc:

• epdc_E60_V110.fw - Default waveform for the 6.0 inch V110 E Ink panel.
• epdc_E60_V220.fw - Default waveform for the 6.0 inch V220 E Ink panel (supports animation mode updates).
• epdc_E97_V110.fw - Default waveform for the 9.7 inch V110 E Ink panel.
• epdc_E060SCM.fw - Default waveform for the 6.0 inch Pearl E Ink panel (supports animation mode updates).
• epdc_ED060XH2C1.fw - Default waveform for the 6.0 inch E Ink panel (No Reagl/-D Support by default. For

Reagl/-D support, contact NXP support.)

The EPDC driver attempts to load a waveform file with the name "epdc_[panel_name].fw" under the directory /
lib/firmware/imx/epdc in rootfs, where panel_name refers to the string specified in the fb_videomode name
field. This panel_name information should be provided to the EPDC driver through the kernel command line
parameters described in the preceding chapter. For example, to load the epdc_E060SCM.fw default firmware
file for a Pearl panel, set the EPDC kernel command line paratmeter to the following:

video=mxcepdcfb:E060SCM,bpp=16

6.4.5.8 Using a Custom Waveform File

To ensure the optimal E Ink display quality, use a waveform file specific to E Ink panel being used. The raw
waveform file type (.wbf) requires conversion to a format that can be understood and read by the EPDC. This
conversion script is not included as part of the BSP. Therefore, contact NXP to acquire this conversion script.

Once the waveform conversion script has been run on the raw waveform file, the converted waveform
file should be renamed so that the EPDC driver can find it and load it. The driver is going to search for a
waveform file with the name "epdc_[panel_name].fw" under the directory /lib/firmware/imx/epdc in rootfs, where
panel_name refers to the string specified in the fb_videomode name field. For example, if the panel is named
"E60_ABCD", then the converted waveform file should be named epdc_E60_ABCD.fw.

Note: If the EPDC driver searches for a firmware waveform file that matches the names of one of the default
waveform files (see preceding chapter), it will choose the default firmware files that are built into the BSP over
any firmware file that has been added in the firmware search path. Therefore, if you leave the BSP so that it
uses the default firmware files, make sure to use a panel name other than those associated with the default
firmware files, as those default waveform files will be preferred and selected over a new waveform file placed in
the firmware search path.

6.4.5.9 EPDC Panel Initialization

The framebuffer driver will not typically (see note below for exceptions) go through any hardware initialization
steps when the framebuffer driver module is loaded. Instead, a subsequent user mode call must be made to
request that the driver initialize itself for a specific EPD panel. To initialize the EPDC hardware and E Ink panel,
RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
153 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

an FBIOPUT_VSCREENINFO ioctl call must be made, with the xres and yres fields of the fb_var_screeninfo
parameter set to match the X and Y resolution of a supported E Ink panel type. To ensure that the EPDC
driver receives the initialization request, the activate field of the fb_var_screeninfo parameter should be set to
FB_ACTIVATE_FORCE.

Note: The exception is when the FB Console driver is included in the kernel. When the EPDC driver registers
the framebuffer device, the FB Console driver will subsequently make an FBIOPUT_VSCREENINFO ioctl call.
This will in turn initialize the EPDC panel.

6.4.5.10 Grayscale Framebuffer Selection

The EPDC framebuffer driver supports the use of 8-bit grayscale (Y8) and 8-bit inverted grayscale (Y8 inverted)
pixel formats for the framebuffer (in addition to the more common RGB565 pixel format). In order to configure
the framebuffer format as 8-bit grayscale, the application would call the FBIOPUT_VSCREENINFO framebuffer
ioctl. This ioctl takes an fb_var_screeninfo pointer as a parameter. This parameter specifies the attributes of
the framebuffer and allows the application to request changes to the framebuffer format. There are two key
members of the fb_var_screeninfo parameter that must be set in order to request a change to 8-bit grayscale
format: bits_per_pixel and grayscale. bits_per_pixel must be set to 8 and grayscale must be set to one of the 2
valid grayscale format values: GRAYSCALE_8BIT or GRAYSCALE_8BIT_INVERTED.

The following code snippet demonstrates a request to change the framebuffer to use the Y8 pixel format:

fb_screen_info screen_info;
screen_info.bits_per_pixel = 8;
screen_info.grayscale = GRAYSCALE_8BIT;
retval = ioctl(fd_fb0, FBIOPUT_VSCREENINFO, &screen_info);

6.4.5.11 Software Operation

The EPDC Frame Buffer is accessible from user space and from kernel space. A single set of functions
describes the EPDC Frame Buffer driver extension. There are two modes for accessing these functions with
user space using the IOCTL interface and kernel space using funcions directly. Each IOCTL and function
combination is described next.

MXCFB_SET_WAVEFORM_MODES / mxc_epdc_fb_set_waveform_modes()

Description:

Defines a mapping for common waveform modes.

Parameters:

mxcfb_waveform_modes *modes

Pointer to a structure containing the waveform mode values for common waveform modes. These values must
be configured in order for automatic waveform mode selection to function properly.

MXCFB_SET_TEMPERATURE / mxc_epdc_fb_set_temperature

Description:

Set the temperature to be used by the EPDC driver in subsequent panel updates.

Parameters:

int32_t temperature

Temperature value, in degrees Celsius. Note that this temperature setting may be overridden by
setting the temperature value parameter to anything other than TEMP_USE_AMBIENT when using the
MXCFB_SEND_UPDATE ioctl.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
154 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

MXCFB_SET_AUTO_UPDATE_MODE / mxc_epdc_fb_set_auto_update

Description:

Select between automatic and region update mode.

Parameters:

__u32 mode

In region update mode, updates must be submitted via the MXCFB_SEND_UPDATE IOCTL.

In automatic mode, updates are generated automatically by the driver by detecting pages in frame buffer
memory region that have been modified.

MXCFB_SET_UPDATE_SCHEME / mxc_epdc_fb_set_upd_scheme

Description:

Select a scheme that dictates how the flow of updates within the driver.

Parameters:

__u32 scheme

Select of the following updates schemes:

UPDATE_SCHEME_SNAPSHOT - In the Snapshot update scheme, the contents of the framebuffer
are immediately processed and stored in a driver-internal memory buffer. By the time the call to
MXCFB_SEND_UPDATE has completed, the framebuffer region is free and can be modified without affecting
the integrity of the last update. If the update frame submission is delayed due to other pending updates, the
original buffer contents will be displayed when the update is finally submitted to the EPDC hardware. If the
update results in a collision, the original update contents will be resubmitted when the collision has cleared.

UPDATE_SCHEME_QUEUE - The Queue update scheme uses a work queue to asynchronously handle the
processing and submission of all updates. When an update is submitted via MXCFB_SEND_UPDATE, the
update is added to the queue and then processed in order as EPDC hardware resources become available. As
a result, the framebuffer contents processed and updated are not guaranteed to reflect what was present in the
framebuffer when the update was sent to the driver.

UPDATE_SCHEME_QUEUE_AND_MERGE - The Queue and Merge scheme uses the queueing concept
from the Queue scheme, but adds a merging step. This means that, before an update is processed in the work
queue, it is first compared with other pending updates. If any update matches the mode and flags of the current
update and also overlaps the update region of the current update, then that update will be merged with the
current update. After attempting to merge all pending updates, the final merged update will be processed and
submitted.

MXCFB_SEND_UPDATE / mxc_epdc_fb_send_update

Description:

Request a region of the frame buffer be updated to the display.

Parameters:

mxcfb_update_data *upd_data

Pointer to a structure defining the region of the frame buffer, waveform mode, and collision mode for the current
update. This structure also includes a flags field to select from one of the following update options:

EPDC_FLAG_ENABLE_INVERSION - Enables inversion of all pixels in the update region.

EPDC_FLAG_FORCE_MONOCHROME - Enables full black/white posterization of all pixels in the update
region.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
155 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

EPDC_FLAG_USE_ALT_BUFFER - Enables updating from an alternate (non-framebuffer) memory buffer.

If enabled, the final upd_data parameter includes detailed configuration information for the alternate memory
buffer.

MXCFB_WAIT_FOR_UPDATE_COMPLETE / mxc_epdc_fb_wait_update_complete

Description:

Block and wait for a previous update request to complete.

Parameters:

mxfb_update_marker_data marker_data

The update_marker value used to identify a particular update (passed as a parameter in
MXCFB_SEND_UPDATE IOCTL call) should be re-used here to wait for the update to complete. If the update
was a collision test update, the collision_test variable will return the result indicating whether a collision
occurred.

MXCFB_SET_PWRDOWN_DELAY / mxc_epdc_fb_set_pwrdown_delay

Description:

Set the delay between the completion of all updates in the driver and when the driver should power down the
EPDC and the E Ink display power supplies.

Parameters:

int32_t delay

Input delay value in milliseconds. To disable EPDC power down altogether, use FB_POWERDOWN_DISABLE
(defined below).

MXCFB_GET_PWRDOWN_DELAY / mxc_epdc_fb_get_pwrdown_delay

Description:

Retrieve the driver's current power down delay value.

Parameters:

int32_t delay

Output delay value in milliseconds.

6.4.5.12 Structures and Defines

#define GRAYSCALE_8BIT
 0x1
#define GRAYSCALE_8BIT_INVERTED
 0x2
#define AUTO_UPDATE_MODE_REGION_MODE
 0
#define AUTO_UPDATE_MODE_AUTOMATIC_MODE
 1
#define UPDATE_SCHEME_SNAPSHOT
 0
#define UPDATE_SCHEME_QUEUE
 1
#define UPDATE_SCHEME_QUEUE_AND_MERGE
 2
#define UPDATE_MODE_PARTIAL
 0x0

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
156 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

#define UPDATE_MODE_FULL
 0x1
#define WAVEFORM_MODE_AUTO
 257
#define TEMP_USE_AMBIENT
 0x1000
#define EPDC_FLAG_ENABLE_INVERSION
 0x01
#define EPDC_FLAG_FORCE_MONOCHROME
 0x02
#define EPDC_FLAG_USE_ALT_BUFFER
 0x100
#define EPDC_FLAG_TEST_COLLISION
 0x200
#define FB_POWERDOWN_DISABLE
 -1
struct mxcfb_rect {
__u32 left; /* Starting X coordinate for update region */
__u32 top; /* Starting Y coordinate for update region */
__u32 width; /* Width of update region */
__u32 height; /* Height of update region */
};
struct mxcfb_waveform_modes {
int mode_init; /* INIT waveform mode */
int mode_du; /* DU waveform mode */
int mode_gc4; /* GC4 waveform mode */
int mode_gc8; /* GC8 waveform mode */
int mode_gc16; /* GC16 waveform mode */
int mode_gc32; /* GC32 waveform mode */
};
struct mxcfb_alt_buffer_data {
__u32 phys_addr; /* physical address of alternate image buffer */
__u32 width; /* width of entire buffer */
__u32 height; /* height of entire buffer */
struct mxcfb_rect alt_update_region; /* region within buffer to update */
};
struct mxcfb_update_data {
struct mxcfb_rect update_region; /* Rectangular update region bounds */
__u32 waveform_mode; /* Waveform mode for update */
__u32 update_mode; /* Update mode selection (partial/full) */
__u32 update_marker; /* Marker used when waiting for completion */
int temp; /* Temperature in Celsius */
uint flags; /* Select options for the current update */
struct mxcfb_alt_buffer_data alt_buffer_data; /* Alternate buffer data */
};
struct mxcfb_update_marker_data { __u32 update_marker; __u32 collision_test; };

6.4.5.13 Source Code Structure

The table below lists the source files associated with the EPDC driver and headers for programming access.

File Description

drivers/video/fbev/mxc/mxc_epdc_v2_fb.c EPDC Generation-II V2 frame buffer driver for i.MX 7Dual

drivers/video/fbdev/mxc/epdc_v2_regs.h EPDC Generation-II Register definition

drivers/video/fbdev/mxc/mxc_epdc_fb.c Generation-I EPDC frame buffer driver for i.MX 6Sololite,
6SLL, and 6DualLite

Table 72. EPDC Source

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
157 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

File Description

drivers/video/fbdev/mxc/epdc_regs.h EPDC Generation-IRegister definitions

drivers/video/fbdev/mxc/epdc_v2_regs.h Generation-II EPDC v2 register definitions

include/linux/uapi/mxcfb.h Header file for the EPDC IOCTLs and frame buffer driver

include/linux/mxcfb_epdc.h Header file for direct kernel access to the EPDC API
extension

Table 72. EPDC Source...continued

6.4.5.14 Menu Configuration Options

The following Linux kernel configuration options are provided for the EPDC module:

• CONFIG_FB_MXC_EINK_PANEL - support for the Electrophoretic Display Controller. In menuconfig, select
Device Drivers > Graphics Support > E-Ink Panel Framebuffer

• CONFIG_FB_MXC_EINK_V2_PANEL - support for v2 Electrophoretic Display Controller. In menuconfig, this
option is available with Device Drivers > Graphics support > E-Ink Panel Framebuffer based on EPDC V2

• CONFIG_FB - includes frame buffer support and is enabled by default. In menuconfig select Device Drivers >
Graphics support > Support for frame buffer devices

• CONFIG_MXC_PXP_V2 - support for the PxP and required by the EPDC driver for processing (color space
conversion, rotation, auto-waveform selection) framebuffer update regions. In menuconfig select Device
Drivers > DMA Engine support > MXC PxP support

• CONFIG_MXC_PXP_V3 - support for next level PxP and required by Generation-II EPDC driver for
processing framebuffer update regions. In menuconfig select Device Drivers > DMA Engine support > MXC
PxP V3 support

6.4.6 High-Definition Multimedia Interface (HDMI) and Display Port (DP) Overview

6.4.6.1 Introduction

High-Definition Multimedia Interface (HDMI) and Display Port (DP) present high defintion video. The HDMI
module is supported on some i.MX chips either with on chip solutions or external solutions. The Display Port DP
provides an embedded Display Port (eDP) Transmitter including HDMI Tranmit (TX) Controller and PHY.

The following are compliance versions.

• HDMI 1.4 and 2.0
• DVI 1.0
• DP 1.3
• eDP 1.4
• HDCP 1.4/2.2

Each SoC HDMI solution is presented in separate chapters. Display Port on i.MX uses the same IP block
but has a different specification. The following table lists which SOC support HDMI and Display Port and its
supported version.

SoC Features

i.MX 6QuadPlus/Quad/Dual HDMI 1.4 on chip

i.MX 7ULP HDMI 1.4 external chip

i.MX 8M Quad HDMI 2.0/Display Port 1.3 on chip

Table 73.  HDMI Support

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
158 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

SoC Features

i.MX 8QuadMax HDMI 2.0/Display Port 1.3 on chip

Table 73.  HDMI Support...continued

HDMI Audio data source comes from S/PDIF TX.

6.4.6.2 Software Operation

The HDMI driver is divided into sub-components based on its two primary purposes: providing video and audio
to an HDMI sink device.

The video display driver component and audio driver component require an additional core driver component to
manage common HDMI resources, including the HDMI registers, clocks, and IRQ.

6.4.6.3 Core

The onchip HDMI i.MX solutions support a core driver that manages resources that must be shared between
the HDMI audio and video drivers. The HDMI audio and video drivers depend on the HDMI core driver, and the
HDMI core driver should always be loaded and initialized before audio and video. The core driver serves the
following functions:

• Map the HDMI register region and provide APIs for reading and writing to HDMI registers.
• Perform one-time initialization of key HDMI registers.
• Initialize the HDMI IRQ and provide shared APIs for enabling and disabling the IRQ.
• Provide a means for sharing information between the audio and video drivers (e.g., the HDMI pixel clock).
• Provide a means for synchronization between HDMI video and HDMI audio while blank/unblank, plug in/plug

out events happen. HDMI audio cannot start work while HDMI cable is in the state of plug out or HDMI is
in state of blank. Every time HDMI audio starts a playback, HDMI audio driver should register its PCM into
core driver and unregister PCM when the playback is finished. Once HDMI video blank or cable plug out
event happens, core driver would pause HDMI audio DMA controller if its PCM is registered. When HDMI is
unblanked or cable plug in event happens, core driver would firstly check if the cable is in the state of plug in,
the video state is unblank and the PCM is registered. If items listed above are all yes, core driver would restart
HDMI audio DMA.

6.4.6.4 Display Device Registration and Initialization

The following sequence of software activities occurs in the OS boot flow to connect the HDMI display device to
the i.MX Frame Buffer driver through the MXC Display Driver system:

1. During the HDMI video driver initialization, mxc_dispdrv_register() is called to register the HDMI
module as a display device and to set the mxc_hdmi_disp_init() function as the display device init
callback.

2. When the i.MX Frame Buffer driver is initialized, mxc_dispdrv_init() is called. This results in an init call
to all registered display devices.

3. The mxc_hdmi_disp_init() callback is executed. The HDMI driver receives a structure from the i.MX
Frame Buffer driver containing frame buffer information (fbi). The HDMI driver registers itself to receive
notifications for FB driver events. Finally, the HDMI driver completes initialization by configuring the HDMI to
receive a hotplug interrupt.

Note: All display device drivers must be initialized before the i.MX Frame Buffer driver in order for all display
devices to be registered as MXC Display Driver devices.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
159 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

6.4.6.5 Hotplug Handling and Video Mode Changes

Once the connection between the i.MX frame buffer driver and the HDMI has been established through the
MXC Display Driver interface, the HDMI video driver waits for a hotplug interrupt indicating that a valid HDMI
sink device is connected and ready to receive HDMI video data. Subsequent communications between the
HDMI and i.MX Frame Buffer Driver are conducted through the Linux Frame Buffer APIs. The following list
demonstrates the software flow to recognize a HDMI sink device and configure the ELCDIF FB driver to drive
video output:

1. The HDMI video driver receives a hotplug interrupt and reads the EDID from the HDMI sink device
constructing a list of video modes from the retrieved EDID information. Using either the video mode string
from the Linux kernel command line (for the initial connection) or the most recent video mode (for a later
HDMI cable connection), the HDMI driver selects a video mode from the mode list that is the closest match.

2. The HDMI video driver calls fb_set_var() to change the video mode in the i.MX Frame Buffer driver. The
i.MX Frame Buffer driver completes its reconfiguration for the new mode.

3. As a result of calling fb_set_var(), a Frame Buffer notification is sent back to the HDMI driver indicating that
an FB_EVENT_MODE_CHANGE has occurred. The HDMI driver configures the HDMI hardware for the
new video mode.

4. Finally, the HDMI module is enabled to generate output to the HDMI sink device.

The i.MX Frame Buffer Driver will align to the display interface specific to each SoC as noted for each SoC
HDMI chapter.

6.4.6.6 Audio

Since the HDMI Tx audio driver uses the ALSA SoC framework, it is broken into several files as listed in the
source code structure sections of each hdmi chapter. Most of the code is in the platform DMA driver (sound/
soc/imx/imx-hdmi-dma.c) and the CODEC driver (sound/soc/codecs/mxc_hdmi.c). The machine driver (sound/
soc/imx/imx-hdmi.c) allocates the SoC audio device and links all the SoC components together. The DAI driver
(sound/soc/imx/imx-hdmi-dai.c) is a SoC requirements. It is primarily used to get the platform data.

The HDMI CODEC driver does most of the initialization of the HDMI audio sampler. Note that the HDMI Tx
block only implements the AHB DMA audio and not the other audio interfaces (SSI, S/PDIF, etc). The other
main function of the HDMI CODEC driver is to set up a struct of the IEC header information which needs to
go into the audio stream. Since the struct is hooked into the ALSA layer, IEC settings will be accessible in
userspace using the ‘iecset’ utility.

The platform DMA driver handles the HDMI Tx block DMA engine. Note that HDMI audio uses the HDMI block
DMA as well as SDMA. SDMA is used to implement the multi-buffer mechanism. Since the HDMI Tx block does
not automatically merge the IEC audio header information into the audio stream, the platform DMA driver does
the merging by using hdmi_dma_copy() (for no memory map use) or hdmi_dma_mmap_copy() (for memory
map mode use) function before sending the buffers out. Note that, due to IEC audio header adding operation,
it is possible that the user space application may not be able to get enough CPU periods to feed the data into
HDMI audio driver in time, especially when system loading is high. In this case, some spark noise will be heard.
In a different audio framework (ALSA LIB, or PULSE AUDIO), a different log about this noise may be printed.
For example, in ALSA LIB, logs like "underrung!!! at least * ms is lost" are printed.

HDMI audio playback depends on HDMI pixel clock. Therefore, while in the state of HDMI blank and cable plug
out, HDMI audio is either stopped or can't be played. See detailed information in software_operation_core.

Note that, because HDMI audio driver needs to add the IEC header, the driver needs to know the amount of
data already written into the HDMI audio driver. If application is not able to decipher the amount of data written,
for example DMIX plugin in ALSA LIB, the HDMI audio driver is not able to work properly. There will be no
sound heard.

The HDMI audio supports the features below:

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
160 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• Playback sample rate
– 32k, 44.1k, 48k, 88.2k, 96k, 176.4k, 192k
– HDMI sink capability

• Playback Channels:
– 2, 4, 6, 8
– HDMI sink capability

• Playback audio formats:
– SNDRV_PCM_FMTBIT_S16_LE

6.4.6.7 i.MX 8 Display Port

6.4.6.7.1 Introduction

The High-Definition Multimedia Interface (HDMI) driver supports the on-chip Cadence HDTX IP module on
the i.MX 8QuadMax and iMX 8MQuad providing capability to transfer uncompressed video, audio, and data
using a single cable. The HDMI driver is divided into three sub-components: A video display device driver that
integrates with the DPU/DCSS DRM driver, an audio driver that integrates with the ALSA/SoC sub-system, and
a core API driver which manages the shared software and hardware resources of the HDMI driver.

HDTX IP supports the following features:

• Compliant with HDMI 2.0 Specification.
• Supports up to 600 Mhz pixel CLK.
• All video formats are supported, including dual-vide, stereo, and all colorimetry options (RGB, YCbCr444/422,

and YCbCr420).
• These audio formats are supported: PCM, HBR, DST, one-bit-audio, multi-stream, and 3D audio.
• All info-frames are supported.
• APB interface is used to control and read status information.
• Embedded-CPU performs all protocol-specific tasks that simplify SoC integration:

– HDCP 1.4/2.2
– Audio Return Channel (ARC)

The HD Display TX Controller supports one or more of the protocols, such as HDMI, DisplayPort, or eDP. Each
protocol requires a different firmware binaries. The figure below describes this.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
161 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Host processor

HD display FW

HD display controller/PHY HW

aaa-053508

HD display API

Commands over mailbox

SCDC
slave(s)/
master

DP link
policy
maker

AUX
HDCP
auth

statemachine

SAPB
mailbox
handler

APB
mailbox
handler

SAPB commands interface

Control interface manager

APB commands interface

AUX DP
controller HPD/5V SCDC HDMI

controller
APB

mailbox
SAPB

mailbox Timers uCPU

HD display
PHY

HDCP
cipher

Crypto
accelerators Interrupts Memory

Direct
access to
memories/registers

Figure 25. HDMI HW Integration

The HD Display controller integrates a CPP (uCPU) running the embedded Firmware (FW). The firmware
manages the HD Display link and provides side-band channel communication. The firmware is not involved in
the data-path (video, audio, or info-frames).

The host processor interfaces to the HD Display controller over APB-interface. The host processor manages the
HD Display Controller in one or more of the following methods:

• Direct access to the HW registers for debugging purposes.
• Direct access to I-MEM and D-MEM (during boot) for FW download.
• Direct access to the HW registers of designated HW modules during operational mode (modules that are not

controlled by the FW).
• Indirect access to the HW registers of designated HW modules during operational mode, by

communicating with FW over the command interface (using GENERAL_WRITE_REGISTER and
GENERAL_READ_REGISTER commands).

• Communication with different FW modules over a mailbox using the command interface.

6.4.6.7.2 Software Operation

The HDMI driver is divided into sub-components based on its two primary purposes: providing HDP DRM driver
and Core API driver.

The HDP DRM driver require a Core API driver component to the configurated HDMI FW.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
162 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

6.4.6.7.3 Source Code Structure

The HDMI driver has three software components: MHDP DRM Bridge and Core API driver, MHDP i.MX 8
platform driver, and HDMI audio driver.

Files Description

drivers/gpu/drm/bridge/cadence MHDP DRM Bridge and Core API driver

drivers/gpu/drm/imx/mhdp MHDP i.MX 8 platform driver

• sound/soc/fsl/fsl_hdmi.c
• sound/soc/fsl/imx-hdmi.c
• sound/soc/fsl/hdmi_pcm.S
• sound/soc/fsl/imx-hdmi-dma.c
• sound/soc/fsl/imx-cdnhdmi.c

HDMI Sound Driver

Table 74. HDP Core API Driver File List

6.4.6.7.4 Menu Configuration Options

There are three main Linux kernel configuration options used to select and include HDMI driver functionality in
the Linux OS image.

The CONFIG_DRM_CDNS_MHDP option provides support for the MHDP DRM Bridge and Core API driver,
and can be selected in menuconfig at the following menu location:

Device Drivers > Graphics support >Display Interface Bridges > Cadence MHDP COMMON API driver

The CONFIG_DRM_IMX_CDNS_MHDP option provides support for the i.MX 8 HDMI/DP video driver, and can
be selected in menuconfig at the following menu location:

Device Drivers > Graphics support > NXP i.MX MX8 DRM HDMI/DP

The CONFIG_SND_SOC_IMX_CDNHDMI option provides support for HDMI audio through the ALSA/SoC
subsystem, and can be found in menuconfig at the following location:

Device Drivers > Sound card support > Advanced Linux Sound Architecture > ALSA for SoC audio support >
SoC Audio support for CDN - HDMI

6.4.6.8 i.MX 6 On Chip High-Definition Multimedia Interface (HDMI)

6.4.6.8.1 Introduction

The High-Definition Multimedia Interface (HDMI) driver supports the on-chip DesignWare HDMI hardware
module on the i.MX 6QuadPlus, 6Quad and 6Dual SoC, This driver provides the capability to transfer
uncompressed video, audio, and data using a single cable.

The HDMI driver is divided into four sub-components:

• Video display device driver that integrates with the Linux Frame Buffer API
• Audio driver that integrates with the ALSA/SoC sub-system
• CEC driver
• Multifunction device (MFD) driver which manages the shared software and hardware resources of the HDMI

driver.

The HDMI driver supports the following features:

• Integration with the MXC Display Device framework (for managing display device connections with the IPU(s))
• HDMI video output up to 1080p60 resolution

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
163 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• Support for reading EDID information from an HDMI sink device
• Hotplug detection
• Support CEC
• Automated clock management to minimize power consumption
• Support for system suspend/resume
• HDMI audio playback (2, 4, 6, or 8 channels, 16-bit, for sample rates 32-KHz to 192-KHz)
• IEC audio header information exposed through ALSA using ‘iecset’ utility

The HDMI module receives video data from the Image Processing Unit (IPU), audio data from the external
memory interface, and control data from the CPU, as shown in the figure below. Output data is transmitted via
three Transition-Minimized Differential Signaling (TMDS) channels to an HDMI sink device external to the SoC.
The HDMI also carries a VESA Data Display Channel (DDC). The DDC is an I2C interface which allows the
HDMI source to query the HDMI sink for Extended Displa-y Identification Data (EDID). A CEC channel provides
optional high-level control functions between the source and sink device.

aaa-053509

Video I/F

Audio DMA

HDMI TX controller HDMI TX

AHB master

Parallel I/F

Control regs

HDMI
TX PHY

CEC
DDC(I2C)

HDCPRNDGenGasketClocks

Interrupts

HDCP
keys

storage

Image
processing

unit

External
memory
interface

HDCP
revocation

RAM

AHB slave

2

TMDS_DATA 3

TMDS_CLK

Figure 26. HDMI HW Integration

The video input to the HDMI is configurable and may come from either of the two IPU modules in the i.MX
6 serials and from either of the two Display Interface (DI) ports of the IPU, DI0 or DI1. This configuration is
controlled through the IOMUX module using the HDMI_MUX_CTRL register field. See the figure below for an
illustration of this interconnection.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
164 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

aaa-053513

Memory

IPU #1
DI0 DI1

IPU #2
DI0 DI1

Parallel LCD,
LVDS, MIPI DPI,

etc
HDMI

HDMI out

HDMI_MUX HDMI_MUX_CTRL

Figure 27. IPU-HDMI Hardware Interconnection

6.4.6.8.2 Software Operation

The HDMI driver is divided into sub-components based on its two primary purposes: providing video and audio
to an HDMI sink device.

The video display driver component and audio driver component require an additional core driver component
to manage common HDMI resources, including the HDMI registers, clocks, and IRQ. The following diagram
illustrates both the interconnection between the various HDMI sub-drivers and the interconnection between the
HDMI video driver and the Linux Frame Buffer subsystem.

Parallel
LCD devices

Freescale BSP software

Kernel core software

Hardware

IPU FB
driver

Software
Hardware

aaa-053510

IPU HDMI

Registration/unregistration
requests from display device
Display device initialization
trigger and capture of display
device settings

Display device initialization
(driven by trigger from
IPU FB driver)

FB notifications
(blank, unblank, video
mode change) to HDMI driver

FB video mode change
requests from HDMI driver

Applications

i.MX 6 framebuffer and display device software architecture

HDMI audio
driver

HDMI MFD
core

MIPI DPI LDB

Framebuffer core

MXC display driver

Parallel
LCD drivers

LDB driver
(LVDS)

MIPI DPI
driver

HDMI video
driver

Figure 28. HDMI Video SW Architecture

The i.MX 6Dual/6Quad/6QuadPlus/6Solo/6DualLite supports many different types of display output devices
(e.g., LVDS, LCD, HDMI and MIPI displays) connected to and driven by the IPU modules. The MXC Display
Driver API provides a system for registering display devices and configuring how they should be connected to
each of the IPU DIs. The HDMI driver registers itself as a display device using this API in order to receive the
correct video input from the IPU.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
165 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

6.4.6.8.3 CEC

HDMI CEC is a protocol that provides high-level control functions between all of the various audiovisual
products is a user’s environment. The HDMI CEC driver implements software part of HDMI CEC low Level
protocol. It includes getting Logical address, CEC message sending and receiving, error handle, message re-
transmitting, etc.

Application

aaa-053507

Call backFunctional call

CEC lib (high level protocol layer)

CEC user space driver

CEC kernel space driver

Get messageSend message

IOCTL call

Figure 29. HDMI CEC SW Architecture

6.4.6.8.4 Source Code Structure

The HDMI source code is provided in the HDMI core driver, the HDMI display driver, and the HDMI audio driver.

File Description

drivers/mfd/mxc-hdmi-core.c HDMI core driver implemention

include/linux/mfd/mxc-hdmi-core.h HDMI core driver header file

drivers/video/fbdev/mxc/mxc_hdmi.c HDMI display driver implemention

sound/soc/fsl/fsl_hdmi.c HDMI Audio SoC DAI driver implementation

sound/soc/fsl/imx-hdmi-dma.c HDMI Audio SoC platform DMA driver implementation

drivers/mxc/hdmi-cec/hdmi-cec.c HDMI CEC driver implemention. The HDMI CEC library files
are provided in imx-lib repo on codeaurraforum.

drivers/mxc/hdmi-cec/hdmi-cec.c HDMI CEC driver implemention. The HDMI CEC library files
are provided in imx-lib on Github nxp-imx project.

Table 75. HDMI Source

6.4.6.8.5 Menu Configuration Options

There are three main Linux kernel configuration options used to select and include HDMI driver functionality in
the Linux OS image.

HDMI video support is dependent on support for the Synchronous Panel Framebuffer and also on the inclusion
of IPUv3 support.

CONFIG_FB_MXC_HDMI provides support for the HDMI video driver and can be selected with Device Drivers
> Graphics support > Support for frame buffer devices > MXC HDMI driver support

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
166 / 301

https://github.com/nxp-imx/imx-lib/
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

CONFIG_SND_SOC_IMX_HDMI provides support for HDMI audio through the ALSA/SoC subsystem, and can
be selected with Device Drivers > Sound card support > Advanced Linux Sound Architecture > ALSA for SoC
audio support > SoC Audio support for IMX - HDMI

Selecting either of the previous two configuration options will cause the MXC HDMI Core configuration option,
CONFIG_MFD_MXC_HDMI, to be selected. This option can be selected wtih Device Drivers > Multifunction
device drivers > MXC HDMI Core

CONFIG_MXC_HDMI_CEC option provides support for the HDMI CEC driver, and can be selected with Device
Drivers > MXC support drivers > MXC HDMI CEC (Consumer Electronic Control) support

6.4.6.9 External HDMI

6.4.6.9.1 Introduction

The High Definition Multimedia Interface (HDMI) driver supports the external SiI9022 HDMI hardware module
providing capability to transfer uncompressed video, audio, and data using a single cable.

The HDMI driver is divided into two sub-components: a video display device driver that integrates with the Linux
Frame Buffer API and an S/PDIF audio driver that transfers S/PDIF audio data to SiI9022 HDMI hardware
module.

The HDMI driver is only for demo application and supports the following features:

• HDMI video output supports 1080p60 and 720p60 resolutions.
• Support for reading EDID information from an HDMI sink device for video.
• Hotplug detection
• HDMI audio playback (2 channels, 16/24 bit, 44.1 KHz sample rate)

External HDMI is supported on i.MX 6 7ULP SoC.

Output data is transmitted via three Transition-Minimized Differential Signaling (TMDS) channels to an HDMI
sink device external to the SoC. Additionally, the HDMI carries a VESA Data Display Channel (DDC). DDC is
an I2C interface which allows the HDMI source to query the HDMI sink for Extended Display Identification Data
(EDID). A CEC channel provides optional high-level control functions between the source and sink devices.

6.4.6.9.2 Software Operation

The HDMI driver is divided into sub-components based on its two primary purposes: providing video and audio
to an HDMI sink device.

The audio output depends on video display.

6.4.6.9.3 Source Code Structure

The source code for the HDMI driver is divided into the HDMI display driver and HDMI audio driver.

The HDMI display driver source is available in drivers/video/fbdev/mxc. The HDMI Audio driver source is in
sound/soc/fsl

File Description

drivers/video/fbdev/mxc/mxsfb_sii902x.c HDMI display driver implementation.

sound/soc/fsl/imx-spdif.c S/PDIF Audio SoC Machine driver implementation.

sound/soc/fsl/fsl_spdif.c S/PDIF Audio SoC DAI driver implementation.

Table 76.  HDMI Source

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
167 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

6.4.6.9.4 Menu Configuration Options

There are two main Linux kernel configuration options used to select and include HDMI driver functionality in the
Linux OS image.

The following configuration options are required to enable HDMI support.

The CONFIG_FB_MXS_SII902X option provides support for the Sii902x HDMI video driver and can be selected
with Device Drivers > Support for frame buffer devices > Si Image SII9022 DVI/HDMI Interface Chip.

HDMI video on i.MX 6Sololite is dependent on MXC ELCDIF Framebuffer.

The CONFIG_SND_SOC_IMX_SII902X option provides support for the HDMI Audio driver and can be selected
with Device Drivers > Sound card support > ALSA for SoC audio support > ommon SoC Audio options for
Freescale CPUs: > SoC Audio support for i.MX boards with sii902x

6.5 Video for Linux 2 (V4L2)

6.5.1 Introduction

The Video for Linux Two (V4L2) driver is plug-in for the V4L2 framework that enables support for camera
capture and display.

Some i.MX SoC support V4L2 based on the associated images processing units and capture hardware.

For more information on V4L2 go to the API specification for Linux Video for Linux 2 available at Linux Media
Subsystem Documentation.

The V4L2 APIs enable camera and display controls but i.MX 8 only supports V4L2 capture and not display
using the DPU instead for display control. i.MX 6 and i.MX 7 use both capture and display V4L2.

6.5.1.1 i.MX 8 DPU V4L2

The Video for Linux Two (V4L2) driver on i.MX 8 is plug-in for the V4L2 framework that enables support for
camera capture only with the Display Processing Unit (DPU).

The V4L2 DPU camera driver supports only basic capture. The V4l2 capture device takes incoming video
images, either from a camera or a TV decoder, and captures the images to memory. The features supported by
the V4L2 driver are as follows:

• RGB 24-bit and YUV 4:2:2 interleaved formats for capture interface
• Plug-in of different sensor drivers
• Streaming (queued) input buffer
• Programmable input and output pixel format and size
• RGB 16, 24, and 32-bit, YUV 4:2:0, and 4:2:2 interleaved input formats

The command modprobe mxc_v4l2_capture must be run before using V4L2 camera functions.

6.5.1.2 PxP V4L2

The Video for Linux Two (V4L2) drivers for PxP are used for dsiplay output only.

6.5.1.3 i.MX 6 with IPU V4L2

The Video for Linux Two (V4L2) drivers are plug-ins to the V4L2 framework that enable support for camera and
preprocessing functions, as well as video and post-processing functions. The V4L2 camera driver implements
support for all camera-related functions. The V4l2 capture device takes incoming video images, either from a

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
168 / 301

http://linuxtv.org/downloads/v4l-dvb-apis
http://linuxtv.org/downloads/v4l-dvb-apis
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

camera or a stream, and manipulates them. The output device takes video and manipulates it, then sends it to a
display or similar device.

The features supported by the IPU V4L2 driver are the follows:

• Direct preview and output to SDC foreground overlay plane (with synchronized to LCD refresh)
• Direct preview to graphics frame buffer (without synchronized to LCD refresh)
• Color keying or alpha blending of frame buffer and overlay planes
• Streaming (queued) capture from IPU encoding channel
• Direct (raw Bayer) still capture (sensor dependent)
• Programmable pixel format, size, frame rate for preview and capture
• Programmable rotation and flipping using custom API
• RGB 16-bit, 24-bit, and 32-bit preview formats
• Raw Bayer (still only, sensor dependent), RGB 16, 24, and 32-bit, YUV 4:2:0 and 4:2:2 planar, YUV 4:2:2

interleaved, and JPEG formats for capture
• Control of sensor properties including exposure, white-balance, brightness, contrast, and so on
• Plug-in of different sensor drivers
• Link post-processing resize and CSC, rotation, and display IPU channels
• Streaming (queued) input buffer
• Double buffering of overlay and intermediate (rotation) buffers
• Configurable 3+ buffering of input buffers
• Programmable input and output pixel format and size
• Programmable scaling and frame rate
• RGB 16, 24, and 32-bit, YUV 4:2:0 and 4:2:2 planar, and YUV 4:2:2 interleaved input formats
• TV output

The command modprobe mxc_v4l2_capture must be run before V4L2 functions.

6.5.1.4 IPU V4L2 Capture Device

The V4L2 capture device includes two interfaces:

• Capture interface-uses IPU pre-processing ENC channels to record the YCrCb video stream
• Overlay interface-uses the IPU device driver to display the preview video to the SDC foreground and

background panel.

V4L2 capture support can be selected during kernel configuration. The driver includes two layers. The top layer
is the common Video for Linux driver, which contains chain buffer management, stream API and other ioctl
interfaces. The files for this device are located in

drivers/media/platform/mxc/capture/

.

The V4L2 capture device driver is in the mxc_v4l2_capture.c file. The low level overlay driver is in the
ipu_fg_overlay_sdc.c, ipu_bg_overlay_sdc.c

This code (ipu_prp_enc.c) interfaces with the IPU ENC hardware, and ipu_still.c interfaces with the IPU CSI
hardware. Sensor frame rate control is handled by VIDIOC_S_PARM ioctl. Before the frame rate is set, the
sensor turns on the AE and AWB turn on. The frame rate may change depending on light sensor samples.

Drivers for specific cameras can be found in

drivers/media/platform/mxc/capture/

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
169 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

.

6.5.2 V4L2 Capture Device

The V4L2 capture device includes two interfaces:

• Capture interface-uses i.MX processing engine to record the YCrCb video stream
• Overlay interface-uses i.MX processing engine to display the preview video to the SDC foreground and

background panel.

The driver includes two layers. The top layer is the common Video for Linux driver, which contains chain buffer
management, stream API and other ioctl interfaces. The low level layer is the i.MX SoC implementation for the
display engine associated with the SoC detailed in each V4l2 SoC chapter.

6.5.2.1 V4L2 Capture IOCTLs

Currently, the memory map stream API is supported. Supported V4L2 IOCTLs include the following:

• VIDIOC_QUERYCAP
• VIDIOC_G_FMT
• VIDIOC_S_FMT
• VIDIOC_REQBUFS
• VIDIOC_QUERYBUF
• VIDIOC_QBUF
• VIDIOC_DQBUF
• VIDIOC_STREAMON
• VIDIOC_STREAMOFF
• VIDIOC_OVERLAY
• VIDIOC_G_FBUF
• VIDIOC_S_FBUF
• VIDIOC_G_CTRL
• VIDIOC_S_CTRL
• VIDIOC_CROPCAP
• VIDIOC_G_CROP
• VIDIOC_S_CROP
• VIDIOC_S_PARM
• VIDIOC_G_PARM
• VIDIOC_ENUMSTD
• VIDIOC_G_STD
• VIDIOC_S_STD
• VIDIOC_ENUMOUTPUT
• VIDIOC_G_OUTPUT
• VIDIOC_S_OUTPUT

V4L2 control code has been extended to provide support for rotation. The ID is V4L2_CID_PRIVATE_BASE.
Supported values include:

• 0-Normal operation
• 1-Vertical flip
• 2-Horizontal flip
• 3-180° rotation
• 4-90° rotation clockwise

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
170 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• 5-90° rotation clockwise and vertical flip
• 6-90° rotation clockwise and horizontal flip
• 7-90° rotation counter-clockwise

The figure below shows a block diagram of V4L2 Capture API interaction.

Common video for linux 2 driver

 aaa-053530

Application

mxc_v4l_camera_opsPoll wait

Chain of buffers

Setup the EBA of IDMA
channels according to

the buffer queued

Singnal the polling
function when
frame ready

Stream on/off,
open/close

User space

Kernel space

Lower level MXC driver

mxc_v4l_camera_opsISR

Figure 30. Video4Linux2 Capture API Interaction

6.5.2.2 Use of the V4L2 Capture APIs

This section describes a sample V4L2 capture process. The application completes the following steps:

1. Sets the capture pixel format and size by IOCTL VIDIOC_S_FMT.
2. Sets the control information by IOCTL VIDIOC_S_CTRL for rotation usage.
3. Requests a buffer using IOCTL VIDIOC_REQBUFS. The common V4L2 driver creates a chain of buffers

(currently the maximum number of frames is 3).
4. Memory maps the buffer to its user space.
5. Queues buffers using the IOCTL command VIDIOC_QBUF.
6. Starts the stream using the IOCTL VIDIOC_STREAMON. This IOCTL enables the i.MX Processing Enginee

tasks and the IDMA channels. When the processing is completed for a frame, the driver switches to the
buffer that is queued for the next frame. The driver also signals the semaphore to indicate that a buffer is
ready.

7. Takes the buffer from the queue using the IOCTL VIDIOC_DQBUF. This IOCTL blocks until it has been
signaled by the ISR driver.

8. Stores the buffer to a YCrCb file.
9. Replaces the buffer in the queue of the V4L2 driver by executing VIDIOC_QBUF again.

For the V4L2 still image capture process, the application completes the following steps:

1. Sets the capture pixel format and size by executing the IOCTL VIDIOC_S_FMT.
2. Reads one frame still image with YUV422.

FOr the V4L2 overlay support use case, the application completes the following steps:

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
171 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

1. Sets the overlay window by IOCTL VIDIOC_S_FMT.
2. Turns on overlay task by IOCTL VIDIOC_OVERLAY.
3. Turns off overlay task by IOCTL VIDIOC_OVERLAY.

6.5.3 V4L2 Output Device

The driver implements the standard V4L2 API for output devices. V4L2 output device support can be selected
during kernel configuration. The driver is available at

drivers/media/platform/mxc/output/mxc_vout.c

.

6.5.3.1 V4L2 Output IOCTLs

Currently, the memory map stream API is supported. Supported V4L2 IOCTLs include the following:

• VIDIOC_QUERYCAP
• VIDIOC_REQBUFS
• VIDIOC_G_FMT
• VIDIOC_S_FMT
• VIDIOC_QUERYBUF
• VIDIOC_QBUF
• VIDIOC_DQBUF
• VIDIOC_STREAMON
• VIDIOC_STREAMOFF
• VIDIOC_G_CTRL
• VIDIOC_S_CTRL
• VIDIOC_CROPCAP
• VIDIOC_G_CROP
• VIDIOC_S_CROP
• VIDIOC_ENUM_FMT

The V4L2 control code has been extended to provide support for de-interlace motion. For this use, the ID is
V4L2_CID_MXC_MOTION. Supported values include the following:

• 0-Medium motion
• 1-Low motion
• 2-High motion

6.5.3.2 Use of the V4L2 Output APIs

This section describes a sample V4L2 output process that uses the V4L2 output APIs. The application
completes the following steps:

1. Sets the input pixel format and size using IOCTL VIDIOC_S_FMT.
2. Sets the control information using IOCTL VIDIOC_S_CTRL, for rotation, de-interlace motion(if needed).
3. Sets the output information using IOCTL VIDIOC_S_CROP.
4. Requests a buffer using IOCTL VIDIOC_REQBUFS. The common V4L2 driver creates a chain of buffers

(not allocated yet).
5. Memory maps the buffer to its user space.
6. Executes the IOCTL VIDIOC_QUERYBUF to query buffers.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
172 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

7. Passes the data that requires post-processing to the buffer.
8. Queues the buffer using the IOCTL command VIDIOC_QBUF.
9. Executes the IOCTL VIDIOC_DQBUF to dequeue buffers.

10. Starts the stream by executing IOCTL VIDIOC_STREAMON.
11. Stop the stream by excuting IOCTL VIDIOC_STREAMOFF.

6.5.4 Software Operatoins

6.5.4.1 Source Code Structure

The following table lists the source and header files associated with the V4L2 drivers.

These files are available in drivers/media/platform/mxc

File Description

drivers/media/platform/mxc/output/mxc_vout.c MX6 and MX7 V4L2 output device driver

drivers/media/platform/mxc/output/mxc_pxp_v4l2.c V4L2 PxP output device driver

drivers/media/platform/mxc/output/mxc_pxp_v4l2.h V4L2 PxP output device driver header

drivers/media/platform/mxc/capture/mxc_v4l2_capture.c V4L2 capture device driver

drivers/media/platform/mxc/capture/mxc_v4l2_capture.h Header file for V4L2 capture device driver

drivers/media/platform/mxc/capture/ipu_bg_overlay_sdc.c IPU synchronous background driver

drivers/media/platform/mxc/capture/ipu_fg_overlay_sdc.c IPU synchronous forground driver

drivers/media/platform/mxc/capture/ipu_prp_sw.h IPU Pre-processing header

drivers/media/platform/mxc/capture/ipu_still.c IPU Pre-processing still image capture driver

drivers/media/platform/mxc/capture/ipu_prp_vf_sdc_bg.c IPU Pre-processing view finder (synchronous background)

drivers/media/platform/mxc/capture/ipu_prp_enc.c IPU Pre-processing Encoder driver

drivers/media/platform/mxc/capture/ipu_csi_enc.c IPU CSI interface driver

Table 77. V4L2 Driver Files

Drivers for V4L2 cameras can be found in divers/media/platform/mxc/capture.

Drivers for V4L2 output can be found in drivers/media/platform/mxc/output

6.5.4.2 Menu Configuration Options

The kernel configuration options are provided below.

Device Drivers > V4L platform devices > MXC Video For Linux Video Capture

Device Drivers > V4L platform devices > MXC Video For Linux Video Output

6.6 Video Analog-to-Digital Converter (VADC)

6.6.1 Introduction

The video analog-to-digital converter (VADC) consists of an analog video front end (AFE), and a digital video
decoder. The AFE accepts NTSC or PAL input from a device, such as an analog camera.

The two parts are configured in the VADC driver. The video decoder outputs the YUV444-formatted data.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
173 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

The Video ADC has the following features:

• Internal voltage and current reference generator
• 10-bit resolution (9.5 bit ENOB at 66.5 Msps)
• 4 analog inputs, with all inputs available for CVBS
• Programmable anti-aliasing filter, gain, and clamp

The video decoder has the following features:

• NTSC/PAL decoder
• Direct data path (no complex resampling)
• Automatic standards detection
• 2D adaptive comb filter
• Datapath/clocking architecture encompasses a time base corrector for VCR signals
• Luma passband is flat to > 6 MHz

6.6.2 Software Operation

The VADC driver is located under the Linux V4L2 architecture and it implements the V4L2 capture interfaces.
Applications cannot use the camera driver directly. Instead, the applications use the V4L2 capture driver to open
and close the camera for image capture.

The V4L2 capture supports the following operation:

• Capture stream mode

The following picture format is supported:

• YUV444

The following picture sizes are supported:

• PAL
• NTSC

6.6.3 Source Code Structure

Table below shows the VADC driver source files available in the drivers/media/platform/mxc/capture.

File Description

drivers/media/platform/mxc/capture/mxc_vadc.c VADC driver source code

drivers/media/platform/mxc/capture/mxc_vadc.h VADC driver Header

Table 78. VADC Driver Files

6.6.4 Menu Configuration Options

In menu configuration enable the following module:

Device Drivers > Multimedia devices > Video capture adapters > MXC Video For Linux Camera > MXC VADC
support

6.6.5 DTS Configuration

VADC analog inputs can choose [0-3]. CSI1 or CSI2 can be used to capture the VADC data. They can be
configured in the DTS file.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
174 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

For example:

vadc_in = <0>; /* VADC input select */
csi_id = <1>; /* CSI select */

The VADC input selected to vin1 and CSI2 is used to capture the VADC data.

6.7 Video Processing Unit (VPU)

6.7.1 Introduction

The VPU hardware performs all of the codec computation and most of the bitstream parsing/packeting.
Therefore, the software takes advantage of less control and effort to implement a complex and efficient
multimedia codec system.

Different VPUs are supported on i.MX 6, i.MX 8, and i.MX 9 SoC. The following table lists the different VPUs.

SoC VPU Provider Library

i.MX 6 Chips and Media imx-vpu.so

i.MX 8M Quad, 8M Mini, and 8M Plus Hantro imx-hantro.so

i.MX 8QuadMax, i.MX 8QuadXPlus Amphion No library

i.MX 95 Chips and Media No library

Table 79. VPU

Note:

Malone is decoder while Windsor is encoder. Both comes from Amphion.

Hantro stands for the following providers:

• hantro/ (8mq/8mp decoder)
• hantro_845/ (8mini decoder)
• hantro_845_h1/ (8mini encoder)
• hantro_vc8000e (8mp encoder)

6.7.2 Software Operation

The VPU software can be divided into two parts: the kernel driver and the user-space library as well as the
application in user space. The kernel driver takes responsibility for system control and reserving resources
(memory/IRQ). It provides an IOCTL interface for the application layer in user-space as a path to access system
resources. The application in user-space calls related IOCTLs and codec library functions to implement a
complex codec system.

The VPU kernel driver includes the following functions:

• Module initialization which initializes the module with the device-specific structure
• Device initialization which initializes the VPU clock and hardware and request the IRQ
• Interrupt servicing routine which supports events that one frame has been finished
• File operation routine which provides the following interfaces to user space:
• File open
• File release
• File IOCTL to provide interface for memory allocating and releasing
• Memory map for register and memory accessing in user space

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
175 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

The VPU user space driver has the following functions:

• Codec lib
• Initializes codec system
• Sets codec system configuration
• Controls codec system by command
• Reports codec status and result
• System I/O operation
• Requests and frees memory
• Maps and unmaps memory/register to user space
• Device management

User space application for simple verification:

• Read video raw data
• YUV file dump
• General options to configure the codec behavior

The following figure shows a simple workflow shown in the H.264 example.

H.264
Application

aaa-053532

Receive H.264
stream start

H264Declnit(&declnst, 0, 0, 0)

H264DEC_OK

Receive first H.264
coded data slice

H.264
Decoder

Initialize H.264
decoder

Decode H.264
parameter sets

Activate parameter
sets based on

information contained
in first picture

slice (IDR picture)

H264DecDecode(declnst, &declnput, &decOutput)

H264DecDecode(declnst, &declnput, &decOutput)

H264DecGetInfo(declnst, &declnfo)

H264DEC_STRM_PROCESSED

H264DEC_HDRS_RDY

Call H264DecGetInfo to
obtain information about
decoded stream; picture
dimensions, cropping
info etc.

H264DEC_OK

Figure 31. Simple Workflow Shown in the H.264 Example

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
176 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

H.264
Application

aaa-053533

H264DecNextPicture(declnst, &decPicture, 0)

status

H.264
Decoder

Get next picture
for display

Decode H.264
decoding unit

Get next picture
from buffer

Release
resources

Display picture

Receive H.264
decoding unit

Status ==
H264DEC_PIC_RDY

NoYesNo

No

No

H264DecDecode(declnst, &decInput, &decOutput)

Display picture

Yes

Yes

Stream buffer empty?

Stream ended?

No

Yes

Status ==
H264DEC_PIC_RDY

status

status

H264DecRelease(declnst)

H264DecNextPicture(decInst, &decPicture, 1)

There is only a user-space programming interface for the VPU module. A user in the application layer cannot
access the kernel driver interface directly. The VPU library accesses the kernel driver interface for users.

There is one unified interface to wrap all different video formats. The following are the related APIs:

CODEC_STATE decoder_decode_xxx(CODEC_PROTOTYPE * arg,STREAM_BUFFER * buf,
 OMX_U32 * consumed,FRAME * frame);
CODEC_STATE decoder_getinfo_xxx(CODEC_PROTOTYPE * arg,STREAM_INFO * pkg);
CODEC_STATE decoder_setppargs_xxx(CODEC_PROTOTYPE * codec,PP_ARGS * args);
CODEC_STATE decoder_setframebuffer_xxx(CODEC_PROTOTYPE * arg, BUFFER
 *buff,OMX_U32 available_buffers);
CODEC_STATE decoder_pictureconsumed_xxx(CODEC_PROTOTYPE * arg, BUFFER *buff);
CODEC_STATE decoder_getframe_mpeg4(CODEC_PROTOTYPE * arg, FRAME * frame,OMX_BOOL
 eos);
FRAME_BUFFER_INFO decoder_getframebufferinfo_xxx(CODEC_PROTOTYPE * arg);
CODEC_STATE decoder_endofstream_xxx(CODEC_PROTOTYPE * arg)
OMX_S32 decoder_scanframe_xxx(CODEC_PROTOTYPE * arg, STREAM_BUFFER * buf,OMX_U32
 * first, OMX_U32 * last);
CODEC_STATE decoder_abort_xxx(CODEC_PROTOTYPE * arg);
CODEC_STATE decoder_abortafter_xxx(CODEC_PROTOTYPE * arg);

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
177 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

CODEC_STATE decoder_setnoreorder_xxx(CODEC_PROTOTYPE * arg, OMX_BOOL
 no_reorder);
static void decoder_destroy_xxx(CODEC_PROTOTYPE * arg)

6.7.3 Source Code Structure

Table below lists the kernel space source files available drivers/mxc/vpu.

File Description

drivers/mxc/vpu/mxc_vpu.c Chips and Media VPU Driver

include/linux/mxc_vpu.h Chips and Media VPU Header

drivers/media/platform/amphion/* All source code for Amphion malone decoder and windsor
encoder

drivers/mxc/hantro/hantrodec.c Hantro 8M Quad VPU decoder driver

include/linux/hantrodec.h Hantro decoder kernel header

include/uapi/linux/hantrodec.h Hantro decoder user space header

drivers/mxc/hantro_845/hantrodec_845s.c Hantro 8M Mini VPU deocder driver

drivers/mxc/hantro_845_h1/hx280enc.c Hantro 8M Mini HL encodeer driver

drivers/mxc/hantro_845_h1/hx280enc.h Hantro 8M Mini HL encodeer header

drivers/mxc/hantro_vc8000e/hx280enc_vc8000e.c Hantro 8M Plus VC8000E encoder driver

drivers/mxc/hantro_v4l2/* Hantro V4L2 wrapper driver for decoder and encoder

drivers/mxc/vpu/wave6/* WAVE6 i.MX 95 V4L2 driver for decoder and encoder
(temporal directory before upstreaming)

Table 80. VPU Driver Files

Table below lists the user-space library source files available in the i.MX 6

imx-vpu-(version)/vpu

directory:

File Description

vpu_io.c Interfaces with the kernel driver for opening the VPU device
and allocating memory

vpu_io.h Header file for IOCTLs

vpu_lib.c Core codec implementation in user space

vpu_lib.h Header file of the codec

vpu_reg.h Register definition of VPU

vpu_util.c File implementing common utilities

vpu_util.h Header file

Table 81. MX6 VPU Library Files

Table below lists the firmware files available in the following directories:

firmware-imx-(version)/lib/firmware/vpu/ directory

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
178 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

File Description

vpu_fw_imx6xxx.bin i.MX 6 VPU firmware

vpu_fw_imx8xxx.bin i.MX 8 VPU firmware

wave633c_codec_fw.bin i.MX 95 VPU firmware

Table 82. VPU firmware Files

6.7.4 Menu Configuration Options

In menu configuration enable the following module for the VPU driver:

For i.MX 6 with VPU, select Device Drivers > MXC support drivers > Support for MXC VPU (Video Processing
Unit).

For i.MX 8M, select Device Drivers > MXC support drivers > MXC HANTRO (Video Processing Unit) support.

For i.MX 8QuadMax and i.MX 8QuadXPlus, select Device Drivers -> Multimedia support -> Media drivers ->
V4L platform devices -> Amphion VPU (Video Processing Unit) Codec IP.

For i.MX 95 WAVE6, select Device Drivers -> MXC support drivers -> WAVE6 VPU.

6.8 JPEG Encoder and Decoder

6.8.1 Introduction

The JPEG Encoder/Decoder is present on i.MX 8QuadMax/i.MX QuadXPlus and i.MX 95 SoCs. For i.MX 8, the
JPEG is a part of the ISI domain, while for i.MX 9, it is a part of the VPU domain.

The JPEG Encoder consists of a JPEG-E-X core and a JPEG Encoder Wrapper (JPGENCWRP). Similarly, the
JPEG Decoder consists of a JPEG decoder core (JPEG-D-X) and its corresponding wrapper.

The JPEG cores are compliant with the industry standards Baseline and Extended ISO/IEC 10918-1 JPEG,
with some limitations documented in the i.MX 8DualXPlus Applications Processor Reference Manual
(IMX8DQXPRM).

The JPEG encoder wrapper (JPGENCWRP) is used to work with the Cast JPEG Encoder Core. It has a
configuration mode and an encoding mode.

• In configuration mode, it can fetch the configuration bitstream from the system memory and feed it to the
encoder.

• In encoding mode, it can fetch the image pixel data through the AXI bus interface and feed to the Encoder
Core for encoding.

Similarly, the JPEG Decoder Wrapper provides the interface for Cast JPEG Decoder core.

The JPEG wrappers supports multiple image encoding through context switching, by the encoding descriptors.
There are four bitstream slots. Each one can be enabled independently by chained descriptors.

The JPEG encoder and decoder support a maximum horizontal resolution of 8K (0x2000) pixels. The horizontal
resolution needs to be integer times of 8. It is the same for the vertical resolution. For YUV422 and YUV420, the
resolution must be multiple of 16. The image size may be up to 64K x 64K.

The JPEG encoder and decoder support 8-bit and 12-bit precision.

6.8.2 Overview of the JPEG Encoder and Decoder Driver

The driver relies on the V4L2 framework.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
179 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

The JPEG encoder and decoder driver implements a subset of the IOCTLs exposed by the V4L2 framework,
namely the following v4l2_ioctl_ops:

• VIDIOC_QUERYCAP
• VIDIOC_ENUM_FMT_VID_CAP
• VIDIOC_ENUM_FMT_VID_OUT
• VIDIOC_TRY_FMT_VID_CAP
• VIDIOC_TRY_FMT_VID_OUT
• VIDIOC_S_FMT_VID_CAP
• VIDIOC_S_FMT_VID_OUT
• VIDIOC_G_FMT_VID_CAP
• VIDIOC_G_FMT_VID_OUT
• VIDIOC_QBUF
• VIDIOC_DQBUF
• VIDIOC_CREATE_BUFS
• VIDIOC_PREPARE_BUF
• VIDIOC_REQBUFS
• VIDIOC_QUERYBUF
• VIDIOC_STREAMON
• VIDIOC_STREAMOFF

User applications may interact with the driver through the supported V4L2 IOCTLs.

The JPEG driver supports streaming I/O through memory mapping. This capability is exposed through the
V4L2_CAP_STREAMING flag, when the VIDIOC_QUERYCAP is used. Streaming is an I/O method where only
pointers to buffers are exchanged between the application and driver, but the data itself is not copied. Memory
mapping is primarily intended to map buffers in the device memory into the application’s address space.

The JPEG driver supports buffers memory-mapping through the multi-planar API.

For more information on streaming I/O, see Streaming I/O (Memory Mapping).

6.8.3 Limitations of the JPEG Encoder/Decoder Driver

The hardware, namely the JPEG wrappers, supports multiple-image encoding through context switching. The
driver does not use context switching, and only one of the available four slots is used. The hardware supports
bitstream buffer half/full and returns features for bitstream buffer management, but the driver does not use them.

The hardware supports the following formats: YUV444, YUV420, YUV422, RGB, ARGB, and Gray.

The driver supports the same formats as the hardware.

The driver supports JPEG images encoding and decoding through gstreamer, but it does not yet support
MJPEG videos.

The hardware has the limitation that the decoded image resolution should be larger than 64x64.

The hardware has the limitation that the decoded image should have at least a default Huffman table (DHT
marker section should be present in the JPEG input stream).

If the decoded JPEG does not have a DHT, the driver provides a default one.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
180 / 301

https://linuxtv.org/downloads/v4l-dvb-apis/uapi/v4l/mmap.html
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

7 Audio

7.1 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound

7.1.1 ALSA Sound Driver Introduction

The Advanced Linux Sound Architecture (ALSA), now the most popular architecture in Linux system, provides
audio and MIDI functionality to the Linux operating system.

ALSA has the following significant features:

• Efficient support for all types of audio interfaces, from consumer sound cards to professional multichannel
audio interfaces.

• Fully modularized sound drivers.
• SMP and thread-safe design.
• User space library (alsa-lib) to simplify application programming and provide higher level functionality.
• Support for the older Open Sound System (OSS) API, providing binary compatibility for most OSS programs.

ALSA System on Chip (ASoC) layer is designed for SoC audio. The overall project goal of the ASoC layer
provides better ALSA support for embedded system on chip processors and portable audio CODECs.

The ASoC layer also provides the following features:

• CODEC independence. Allows reuse of CODEC drivers on other platforms and machines.
• Easy I2S/PCM audio interface setup between CODEC and SoC. Each SoC interface and CODEC registers its

audio interface capabilities with the core.
• Dynamic Audio Power Management (DAPM). DAPM is an ASoC technology designed to minimize audio

subsystem power consumption no matter what audio-use case is active. DAPM guarantees the lowest audio
power state at all times and is completely transparent to user space audio components. DAPM is ideal for
mobile devices or devices with complex audio requirements.

• Pop and click reduction. Pops and clicks can be reduced by powering the CODEC up/down in the correct
sequence (including using digital mute). ASoC signals the CODEC when to change power states.

• Machine-specific controls. Allow machines to add controls to the sound card, for example, volume control for
speaker amp.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
181 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Native ALSA application (aplay, arecord...)

aaa-053498

ALSA library

User space

Kernel space

PCM Control

Codec driver Machine
driver

Device driver

Platform
driver

Control
interface

(I2C)

System
DMA

Audio codec

Data transfer
interface

(SSI/EASI...)

ALSA driver

Audio software

Audio hardware

i.MX 6 series

Figure 32. ALSA SoC Software Architecture

ASoC basically splits an embedded audio system into 3 components:

• Machine driver-handles any machine-specific controls and audio events, such as turning on an external amp
at the beginning of playback.

• Platform driver-contains the audio DMA engine and audio interface drivers (for example, I2S, AC97, PCM) for
that platform.

• CODEC driver-platform independent and contains audio controls, audio interface capabilities, the CODEC
DAPM definition, and CODEC I/O functions.

More detailed information about ASoC can be found in the Linux kernel documentation in the Linux OS source
tree at linux/Documentation/sound/alsa/soc and at www.alsa-project.org/main/index.php/ASoC.

7.1.2 SoC Sound Card

Currently, the stereo CODEC (WM8958, WM8960, WM8962, and WM8524), 7.1 CODEC (cs42888), and AM/
FM CODEC (si4763) drivers are implemented using ASoC architecture.

These sound card drivers are built in independently. The stereo sound card supports stereo playback and
capture. The 7.1 sound card supports up to eight channels of audio playback. While enabling ASRC, 7.1 sound
card only supports 2 or 6 channels audio playback. The AM/FM sound card supports radio PCM capture.

Note:

The 7.1 CODEC is only supported on the i.MX 6Quad and i.MX 6Solo SABRE Auto platform.

The AM/FM CODEC is only supported on the i.MX 6Quad and i.MX 6Solo SABRE Auto platform.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
182 / 301

http://www.alsa-project.org/main/index.php/ASoC
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

7.1.2.1 Stereo CODEC Features

The stereo CODEC supports the following features:

• Sample rates for playback and capture are 8 KHz, 32 KHz, 44.1 KHz, 48 KHz, and 96 KHz
• Channels:

– Playback: supports two channels.
– Capture: supports two channels.

• Audio formats:
– Playback:

– SNDRV_PCM_FMTBIT_S16_LE
– SNDRV_PCM_FMTBIT_S20_3LE
– SNDRV_PCM_FMTBIT_S24_LE

– Capture:
– SNDRV_PCM_FMTBIT_S16_LE
– SNDRV_PCM_FMTBIT_S20_3LE
– SNDRV_PCM_FMTBIT_S24_LE

7.1.2.2 7.1 Audio Codec Features

• Sample rates for playback and record:
– 48 KHz, 96 KHz, 192 KHz
– Playback: 5.512 k, 8 k, 11.025 k, 16 k, 22 k, 32 k, 44.1 k, 48 k, 64 k, 88.2 k, 96 k, 176.4 k, 192 k (ASRC

enabled)
• Channels:

– Playback: 2, 4, 6, 8 channels
– Playback(ASRC enabled): 2, 6 channels
– Capture: 2, 4 channels

• Audio formats:
– Playback:

– SNDRV_PCM_FMTBIT_S16_LE
– SNDRV_PCM_FMTBIT_S20_3LE
– SNDRV_PCM_FMTBIT_S24_LE

– Playback(ASRC enabled):
– SNDRV_PCM_FMTBIT_S16_LE
– SNDRV_PCM_FMTBIT_S24_LE

– Capture:
– SNDRV_PCM_FMTBIT_S16_LE
– SNDRV_PCM_FMTBIT_S20_3LE
– SNDRV_PCM_FMTBIT_S24_LE

7.1.2.3 AM/FM Codec Features

• Supported sample rate for Capture: 48 KHz
• Supported channels:

– Capture: supports two channels.
• Supported audio formats:

– Capture: SNDRV_PCM_FMTBIT_S16_LE

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
183 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

7.1.2.4 Sound Card Information

The registered sound card information can be listed as follows using the commands aplay -l and arecord -l. For
example, the stereo sound card is registered as card 0.

root@ /$ aplay -l
**** List of PLAYBACK Hardware Devices ****
card 0: wm8962audio [wm8962-audio], device 0: HiFi wm8962-0 []
Subdevices: 1/1
Subdevice #0: subdevice #0

7.1.3 Hardware Operation

The following sections describe the hardware operation of the ASoC driver.

7.1.3.1 Stereo Audio CODEC

The stereo audio CODEC is controlled by the I2C interface. The audio data is transferred from the user data
buffer to/from the SSI FIFO through the DMA channel. The DMA channel is selected according to the audio
sample bits. AUDMUX is used to set up the path between the SSI port and the output port which connects with
the CODEC. The CODEC works in master mode and provides the BCLK and LRCLK. The BCLK and LRCLK
can be configured according to the audio sample rate.

The WM8958, WM8960, and WM8962 ASoC CODEC driver exports the audio record/ playback/mixer APIs
according to the ASoC architecture.

The CODEC driver is generic and hardware independent code that configures the CODEC to provide audio
capture and playback. It does not contain code that is specific to the target platform or machine. The CODEC
driver handles:

• CODEC DAI and PCM configuration
• CODEC control I/O-using I2C
• Mixers and audio controls
• CODEC audio operations
• DAC Digital mute control

The WM8958, WM8960, and WM8962 CODEC are registered as an I2C client when the module initializes. The
APIs are exported to the upper layer by the structure snd_soc_dai_ops .

Headphone insertion/removal can be detected through a GPIO interrupt signal.

SSI dual FIFO features are enabled by default.

7.1.3.2 7.1 Audio Codec

The 7.1 audio codec includes 8-channel DAC and 4-channel ADC, which are controlled by the I2C interface.
The audio data is transferred from the user data buffer to the ESAI fifo, through a DMA channel. The DMA
channel is selected according to audio sample bits. The codec works in slave mode as the ESAI provides
the BCLK and LRCLK. The BCLK and LRCLK can be configured according to the audio sample rate. The
ESAI supports up to eight audio output ports. While enabling ASRC, 7.1 audio codec supports 2 or 6 channel
playback through ASRC. On the i.MX 6 Sabre ARD board, a CS42888 codec with 4 audio in port is used,
each port receive two channels of data in the I2S format(network mode), providing 8-channel of playback
functionality. This codec also has 2 audio output port connected with ESAI, providing 4-channel of recording
functionality.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
184 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

The codec driver is generic and hardware independent code that configures the codec to provide audio capture
and playback. It does not contain code that is specific to the target platform or machine. The codec driver
handles:

• Codec DAI and PCM configuration
• Codec control I/O-using I2C
• Mixers and audio controls
• Codec audio operations
• DAI Digital mute control

The CS42888 codec is registered as an I2C client when the module initializes. The APIs are exported to the
upper layer by the structure snd_soc_dai_ops.

7.1.3.3 AM/FM Codec

The AM/FM codec is a virtual codec, it only has a PCM interface connected to the Tuner device. The audio data
is transferred from the user data buffer to or from the SSI FIFO through the DMA channel. The DMA channel
is selected according to the audio sample bits. AUDMUX is used to set up the path between the SSI port and
the output port which connects with the codec. The codec works in master mode as it provides the BCLK and
LRCLK. The BCLK and LRCLK can be configured according to the audio sample rate.

7.1.4 Software Operation

The following sections describe the software operation of the ASoC driver.

7.1.4.1 ASoC Driver Source Architecture

File imx-pcm-dma.c is shared by the stereo ALSA SoC driver, the 7.1 ALSA SoC driver and other CODEC
driver. This file is responsible for preallocating DMA buffers and managing DMA channels.

The stereo CODEC is connected to the CPU through the SSI interface. fsl_ssi.c registers the CPU DAI driver for
the stereo ALSA SoC and configures the on-chip SSI interface. wm8962.c registers the stereo CODEC and hifi
DAI drivers. The direct hardware operations on the stereo codec are in wm8994.c, wm8960.c, and wm8962.c.
imx-wm8958.c, imx-wm8960.c and imx-wm8962.c are the machine layer codes, which create the driver device
and register the stereo sound card.

The multichannel codec is connected to the CPU through the ESAI interface. fsl_esai.c registers the CPU DAI
driver for the stereo ALSA SoC and configures the on-chip ESAI interface. cs42888.c registers the multichannel
CODEC and hifi DAI drivers. The direct hardware operations on the multichannel CODEC are in cs42888.c.
imx-cs42888.c is the machine layer code which creates the driver device and registers the stereo sound card.

The AM/FM CODEC is connected to the CPU through the SSI interface. fsl_ssi.c registers the CPU DAI driver
for the stereo ALSA SoC and configures the on-chip SSI interface. si476x.c registers the Tuner CODEC and
Tuner DAI drivers. The direct hardware operations on the CODEC are in si476x.c. imx-si476x.c is the machine
layer code which creates the driver device and registers the sound card.

7.1.4.2 Sound Card Registration

The codecs have the same registration sequence:

1. The codec driver registers the codec driver, DAI driver, and their operation functions.
2. The platform driver registers the PCM driver, CPU DAI driver and their operation functions, pre allocates

buffers for PCM components and sets playback and capture operations as applicable.
3. The machine layer creates the DAI link between codec and CPU registers the sound card and PCM

devices.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
185 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

7.1.4.3 Device Open

The ALSA driver performs the following functions:

• Allocates a free substream for the operation to be performed.
• Opens the low level hardware device.
• Assigns the hardware capabilities to ALSA runtime information (the runtime structure contains all the

hardware, DMA, and software capabilities of an opened substream).
• Configures DMA read or write channel for operation.
• Configures CPU DAI and CODEC DAI interface.
• Configures CODEC hardware.
• Triggers the transfer.

After triggering for the first time, the subsequent DMA read/write operations are configured by the DMA
callback.

7.1.4.4 Device Tree Binding

See the following documents:

• Documentation/devicetree/bindings/sound/fsl,ssi.txt
• Documentation/devicetree/bindings/sound/fsl-sai.txt
• Documentation/devicetree/bindings/sound/fsl,esai.txt
• Documentation/devicetree/bindings/sound/fsl,asrc.txt
• Documentation/devicetree/bindings/sound/wm8962.txt
• Documentation/devicetree/bindings/sound/wm8960.txt
• Documentation/devicetree/bindings/sound/wm8994.txt
• Documentation/devicetree/bindings/sound/cs42xx8.txt
• Documentation/devicetree/bindings/sound/imx-audmux.txt
• Documentation/devicetree/bindings/sound/imx-audio-wm8962.txt
• Documentation/devicetree/bindings/sound/imx-audio-cs42888.txt
• Documentation/devicetree/bindings/sound/imx-audio-si476x.txt

7.1.4.5 Source Code Structure

The following table shows the stereo codec SoC driver source in sound/soc/fsl.

File Description

sound/soc/fsl/imx-wm8958.c
sound/soc/fsl/imx-wm8960.c
sound/soc/fsl/imx-wm8962.c

Machine layer for stereo CODEC ALSA SoC (CODEC as
I2S Master)

sound/soc/fsl/imx-pcm-dma.c Platform layer for stereo CODEC ALSA SoC

sound/soc/fsl/imx-pcm.h Header file for PCM driver and AUDMUX register definitions

sound/soc/fsl/fsl_ssi.c SSI CPU DAI driver for stereo CODEC ALSA SoC

sound/soc/fsl/fsl_ssi.h Header file for SSI CPU DAI driver and SSI register
definitions

sound/soc/fsl/fsl_sai.c SAI CPU DAI driver for stereo CODEC ALSA SoC

sound/soc/fsl/fsll_sai.h Header file for SAI CPU DAI driver and SAI register
definitions

Table 83. Stereo Codec SoC Driver Files

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
186 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

File Description

codecs/wm8994.c
codecs/wm8960.c
codecs/wm8962.c

CODEC layer for stereo CODEC ALSA SoC

codecs/wm8994.h
codecs/wm8960.h
codecs/wm8962.h

Header file for stereo CODEC driver

Table 83. Stereo Codec SoC Driver Files...continued

Table below lists the AM/FM codec SoC driver source files. These files are under sound/soc.

File Description

sound/soc/fsl/imx-si476x.c Machine layer for stereo CODEC ALSA SoC (CODEC as
I2S Slave)

sound/soc/fsl/imx-pcm-dma.c Platform layer for stereo CODEC ALSA SoC

sound/soc/fsl/imx-pcm.h Header file for pcm driver and AUDMUX register definitions

sound/soc/fsl/fsl_ssi.c SSI CPU DAI driver for stereo CODEC ALSA SoC

sound/soc/fsl/fsl_ssi.h Header file for SSI CPU DAI driver and SSI register
definitions

sound/soc/codecs/si476x.c Codec layer for stereo CODEC ALSA SoC

Table 84. AM/FM Codec SoC Driver Source Files

Table below shows the multiple-channel ADC SoC driver source files.

File Description

sound/soc/fsl/imx-cs42888.c Machine layer for multiple-channel CODEC ALSA SoC

sound/soc/fsl/imx-pcm-dma.c Platform layer for multiple-channel CODEC ALSA SoC

sound/soc/fsl/imx-pcm.h Header file for pcm driver

sound/soc/fsl/fsl_esai.c ESAI CPU DAI driver for multiple-channel CODEC ALSA
SoC

sound/soc/fsl/fsl_esai.h Header file for ESAI CPU DAI driver

sound/soc/codecs/cs42xx8.c CODEC layer for multiple-channel codec ALSA SoC

sound/soc/>codecs/cs42xx8.h Header file for multiple-channel CODEC driver

sound/soc/fsl/fsl_asrc.c CPU DAI driver of ASRC P2P

sound/soc/fsl/fsl_asrc.h Header file for CPU DAI driver of ASRC P2P

sound/soc/fsl/fsl_asrc_pcm.c Platform layer for ASRC P2P

Table 85. CS42888 ASoC Driver Source File

7.1.4.6 Menu Configuration Options

The following Linux kernel configuration options are provided for this module.

• SoC Audio supports for WM8958, WM8960, and WM8962 CODEC. In menuconfig, this option is available:

-> Device Drivers
 -> Sound card support

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
187 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

 -> Advanced Linux Sound Architecture
 -> ALSA for SoC audio support
 -> SoC Audio for Freescale CPUs
 -> SoC Audio support for i.MX boards with wm8962 (or wm8958,
 wm8960)

• SoC Audio supports for i.MX cs42888. In menuconfig, this option is available:

-> Device Drivers
 -> Sound card support
 -> Advanced Linux Sound Architecture
 -> ALSA for SoC audio support
 -> SoC Audio for Freescale CPUs
 -> SoC Audio support for i.MX boards with cs42888

• SoC Audio supports for AM/FM. In menuconfig, this option is available:

-> Device Drivers
 -> Sound card support
 -> Advanced Linux Sound Architecture
 -> ALSA for SoC audio support
 -> SoC Audio for Freescale CPUs
 -> SoC Audio support for i.MX boards with si476x

7.2 Asynchronous Sample Rate Converter (ASRC) on i.MX 6/i.MX 8QuadMax/i.MX
8QuadXPlust

7.2.1 Introduction

The Asynchronous Sample Rate Converter (ASRC) converts the sampling rate of a signal to a signal of different
sampling rate. The ASRC supports concurrent sample rate conversion of up to 10 channels. The sample
rate conversion of each channel is associated to a pair of incoming and outgoing sampling rates. The ASRC
supports up to three sampling rate pairs simultaneously.

7.2.1.1 Hardware Operation

ASRC includes the following features:

• Supports ratio (Fsin/Fsout) range between 1/24 to 8.
• Designed for rate conversion between 44.1 KHz, 32 KHz, 48 KHz, and 96 KHz.
• Other input sampling rates in the range of 8 KHz to 100 KHz are also supported, but with less performance

(see IC spec for more details).
• Other output sampling rates in the range of 30 KHz to 100 KHz are also supported, but with less performance.
• Automatic accommodation to slow variations in the incoming and outgoing sampling rates.
• Tolerant to sample clock jitter.
• Designed mainly for real-time streaming audio usage. Can be used for non-realtime streaming audio usage

when the input sampling clocks are not available.
• In any usage case, the output sampling clocks must be activated.
• In case of real-time streaming audio, both input and output clocks need to be available and activated.
• In case of non-realtime streaming audio, the input sampling rate clocks can be avoided by setting ideal-ratio

values into ASRC interface registers.

The ASRC supports polling, interrupt and DMA modes, but only DMA mode is used in the platform for better
performance. The ASRC supports following DMA channels:
RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
188 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• Peripheral to peripheral, for example: ASRC to ESAI
• Memory to peripheral, for example: memory to ASRC
• Peripheral to memory, for example: ASRC to memory

For more information, see the ASRC chapter in the Applications Processor documentation associated with the
SoC.

7.2.2 Software Operation

As an assistant component in the audio system, the ASRC driver implementation depends on the use cases in
the platform.

Currently, ASRC is used in two scenarios.

• Memory > ASRC > Memory, ASRC is controlled by the user application or ALSA plug-in.
• Memory > ASRC > peripheral, ASRC is controlled directly by other ALSA drivers.

Application/middleware

aaa-053499

ALSA lib/plugin

ALSA driver
for S/PDIF

ALSA driver
for stereo

ALSA driver
for 5.1 codec

SPIDF/MLB
driver

Stereo codec
driver

5.1 codec
driver

ASRC stream
interface

ASRC diver

Figure 33. Audio Driver Interactions

As illustrated in the figure above, the ASRC stream interface provides the interface for the user space. The
ASRC registers itself under /dev/mxc_asrc and creates proc file /proc/driver/asrc when the module is inserted.
proc is used to track the channel number for each pair. If all the pairs are not used, users can adjust the channel
number through the proc file. The number of the total channels should be ten, or else the adjusted value cannot
be saved properly.

7.2.2.1 Sequence for Memory to ASRC to Memory

• Open /dev/mxc_asrc device.
• Request ASRC pair. - ASRC_REQ_PAIR
• Configure ASRC pair. - ASRC_CONIFG_PAIR
• Start ASRC. - ASRC_START_CONV
• Write the raw audio data (to be converted) into the user maintained input buffer. Fill asrc_convert_buffer struct

with input/output buffer length and address. Driver would copy output data to user maintained output buffer
address according to the output buffer size. Repeat this step until all data is converted. -ASRC_CONVERT

• Stop ASRC conversion. - ASRC_STOP_CONV
• Release ASRC pair. - ASRC_RELEASE_PAIR
• Close /dev/mxc_asrc device.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
189 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

7.2.2.2 Sequence for Memory to ASRC to Peripheral

Memory to ASRC to peripheral audio path is involved in 7.1 audio codec driver. In 7.1 audio sound card, a new
device with the name "cs42888audio [cs42888-audio], device 1: HiFi-ASRC-FE (*)" is specified for playback and
capture with ASRC. The steps below show the flow of calling ASRC to memory to peripheral:

• The sound device(PCM) has been registered and start to enable the DMA channel in ALSA driver
• Request ASRC pair - fsl_asrc_request_pair
• Configure ASRC pair - fsl_asrc_config_pair
• Enable the DMA channel from Memory to ASRC and from ASRC to Memory
• Start DMA channel and start ASRC conversion - fsl_asrc_start_pair
• When audio data playback complete, stop DMA channel and ASRC - fsl_asrc_stop_pair
• Release ASRC pair - fsl_asrc_release_pair

7.2.2.3 Source Code Structure

The table below lists the source files available in sound/soc/fsl.

File Description

sound/soc/fsl/fsl_asrc_m2m.c ASRC M2M driver implementation codes

sound/soc/fsl/imx-cs42888.c Memory to ASRC to ESAI TX implementation in 7.1 audio
codec machine driver

sound/soc/fsl/imx-pcm-dma.c Memory to ASRC to ESAI TX implementation in 7.1 audio
codec platform driver

sound/soc/fsl/fsl_esai.c Memory to ASRC to ESAI TX implementation in 7.1 audio
codec CPU driver

sound/soc/fsl/cs42xx8 Memory to ASRC to ESAI TX implementation in 7.1 audio
codec codec driver

sound/soc/fsl/fsl_asrc.c ALSA CPU DAI driver of ASRC P2P

sound/soc/fsl/fsl_asrc.h Header file for ALSA CPU DAI driver of ASRC P2P

sound/soc/fsl/fsl_asrc_dma.c ALSA platform layer for ASRC P2P

sound/soc/fsl/sound/soc/fsl/fsl_asrc_dma.c ALSA platform layer for ASRC M2M

Table 86. ASRC Source File List

7.2.2.4 Menu Configuration Options

The menu configuration options are as follows:

-> Device Drivers
 -> Sound card support
 -> Advanced Linux Sound Architecture
 -> ALSA for SoC audio support
 -> SoC Audio for Freescale i.MX CPUs
 -> Asynchronous Sample Rate Converter (ASRC) module support

Then the ASRC driver can only be configured with the build-in module.

7.2.2.5 Device Tree Binding

The functions of device tree bindings for ASRC M2M are as follows:

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
190 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• compatible: Compatible list, must contain "fsl,imx6q-asrc".
• reg: Offset and length of the register set for the device.
• interrupts: Contains the asrc interrupt.
• clocks: Contains an entry for each entry in clock-names.
• clock-names: Must contain "mem", "ipg", "asrck", and "dma". (Generally, "dma" is used for SPBA clock.)
• dmas: Generic dma devicetree binding as described in Documentation/devicetree/bindings/dma/dma.txt.
• dma-names: Six dmas have to be defined, "txa", "rxa", "txb", "rxb", "txc", "rxc".
• fsl,clk-map-version: the mapping relationship in different SOC is different. This version number can be used to

indicate clock map information.
• fsl,clk-channel-bits: indicates the channel bit information.

The functions of device tree bindings for ASRC P2P are as follows:

• compatible: Compatible list, must contain "fsl,imx6q-asrc-p2p".
• fsl,p2p-rate: A valid sample rate for Back-End (I2S) playback and record.
• fsl,p2p-width: A valid sample width for Back-End (I2S) playback and record.
• fsl,asrc-dma-rx-events: Contains three SDMA event numbers for ASRC Rx.
• fsl,asrc-dma-tx-events: Contains three SDMA event numbers for ASRC Tx.

7.2.2.6 Programming Interface (Exported API and IOCTLs)

The ASRC Exported API allows the ALSA driver to use ASRC services.

The ASRC IOCTLs below are used for user space applications:

ASRC_REQ_PAIR:

Apply a pair from ASRC driver. Once a pair is allocated, ASRC core clock is enabled.

ASRC_CONFIG_PAIR:

Configure ASRC pair allocated. User is responsible for providing parameters defined in struct asrc_config. Items
in asrc_config are listed below:

• pair: ASRC pair allocated by the IOCTL(ASRC_REQ_PAIR).
• channel_num: channel number.
• buffer_num: buffer number need for input and output buffer use.The input/output buffers are allocated inside

ASRC driver. User is responsible for remap it into user space.
• dma_buffer_size: buffer size for input and output buffers. The buffer size should be in the unit of page size.

Usually, 4k bytes is used.
• input_sample_rate: input sampling rate. Input sample rate should be in 5.512k, 8k, 11.025k, 16k, 22k, 32k,

44.1k, 48k, 64k, 88.2k 96k, 176.4k, 192k.
• output_sample_rate: output sampling rate. Output sampling rate should be in 32k, 44.1k, 48k, 64k, 88.2k, 96k,

176.4k 192k.
• input_word_width: word width of input audio data. The input data word width can be 16 bit or 24 bit.
• output_word_width: word width of output audio data. The output data word width can be 16 bit or 24 bit.
• inclk: the input clock source can be ESAI RX clock, SSI1 RX clock, SSI2 RX clock, SPDIF RX clock,

MLB_clock, ESAI TX clock, SSI1 TX clock, SSI2 TX clock, SPDIF TX clock, ASRCLK1 clock, NONE. If using
clock except NONE, user should make sure that the clock is available.

• outclk: the output clock source is the same as the input clock source.

ASRC_CONVERT:

Convert the input data into output data according to the parameters set by ASRC_CONFIG_PAIR. Driver would
copy input_buffer_length bytes data from the input_buffer_vaddr for conversion. After convertion, the driver fills
the output_buffer_length according to data number generated by ASRC and copies the output_buffer_length
RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
191 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

to output_buffer_vaddr. However, before calling ASRC_CONVERT, the user is responsible for filling the
output_buffer_length according to the ratio of input sample rate and output sample rate. If the generated buffer
size is larger than the user-filled output_buffer_size, the driver would only copy user-filled output_buffer_size to
output_buffer_vaddr. If the generated buffer size is smaller than the user-filled output_buffer_size (the difference
should be less than 64 bytes.), calling ASRC_CONVERT would fail.

• input_buffer_vaddr: virtual address of input buffer.
• output_buffer_vaddr: virtual address of output buffer.
• input_buffer_length: length of input buffer (bytes).
• output_buffer_length: length of output buffer (bytes).

ASRC_START_CONV:

Start ASRC pair convert.

ASRC_STOP_CONV:

Stop ASRC pair convert.

ASRC_STATUS:

Query ASRC pair status.

7.3 HDMI Audio

7.3.1 Introduction

HDMI Audio is covered in the HDMI overview chapter in video. See HDMI Audio for more details.

7.4 The Sony/Philips Digital Interface (S/PDIF)

7.4.1 Introduction

The Sony/Philips Digital Interface (S/PDIF) audio module is a stereo transceiver that allows the processor to
receive and transmit digital audio. The S/PDIF transceiver allows the handling of both S/PDIF channel status
(CS) and User (U) data. The frequency measurement block allows the S/PDIF RX section to derive the receive
clock from the incoming S/PDIF stream.

7.4.1.1 S/PDIF Overview

The figure below shows the block diagram of the S/PDIF interface.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
192 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

aaa-053528

IP BUS

32-Bit
24-BitCChannel_H Rx reg

SRCSH

SPDIF
RECEIVEER

BLOCK
SPDIFIN

24-BitCChannel_L Rx reg
SRCSL

24-BitUChannel Rx reg
SQU

24-BitQChannel Rx reg
SRQ

24-Bit

Rx FIFO RIGHT
(16 x 24)

Right Rx data reg SRR

Rx FIFO LEFT
(16 x 24)

Left Rx data regSRL

SPDIFOUT
SELECT

SPDIF OFF

24-BitCChannelCons_H Tx reg
STCSCH

SPDIF
TRANSMITTER

BLOCK

24-BitCChannelCons_L Tx reg
STCSCL

24-Bit

Tx FIFO RIGHT
(16 x 24)

Left Tx data reg STR

Tx FIFO LEFT
(16 x 24)

Left Tx data regSTL

SPDIFOUT

Figure 34. S/PDIF Transceiver Data Interface Block Diagram

7.4.1.2 Hardware Overview

The S/PDIF is composed of two parts:

• The S/PDIF receiver extracts the audio data from each S/PDIF frame and places the data in the S/PDIF Rx
left and right FIFOs. The Channel Status and User Bits are also extracted from each frame and placed in the
corresponding registers. The S/PDIF receiver provides a bypass option for direct transfer of the S/PDIF input
signal to the S/PDIF transmitter.

• For the S/PDIF transmitter, the audio data is provided by the processor through the SPDIFTxLeft and
SPDIFTxRight registers. The Channel Status bits are provided through the corresponding registers. The S/
PDIF transmitter generates a S/PDIF output bitstream in the biphase mark format (IEC958), which consists of
audio data, channel status and user bits.

In the S/PDIF transmitter, the IEC958 biphase bit stream is generated on both edges of the S/PDIF Transmit
clock. The S/PDIF Transmit clock is generated by the S/PDIF internal clock dividers and the sources are from
outside of the S/PDIF block. The S/PDIF receiver can recover the S/PDIF Rx clock from the S/PDIF stream.
Figure 34 shows the clock structure of the S/PDIF transceiver.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
193 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

7.4.1.3 Software Overview

The S/PDIF driver is designed under ALSA System on Chip (ASoC) layer. The ASoC driver for S/PDIF provides
one playback device for Tx and one capture device for Rx. The playback output audio format can be linear PCM
data or compressed data with 16-bit, 20-bit, and 24-bit audio. The allowed sampling bit rates are 44.1, 48 or
32 KHz. The capture input audio format can be linear PCM data or compressed 24-bit data and the allowed
sampling bit rates are from 16 to 96 KHz. The driver provides the same interface for PCM and compressed data
transmission.

7.4.1.4 ASoC Layer

The ASoC layer divides audio drivers for embedded platforms into separate layers that can be reused. ASoC
divides an audio driver into a codec driver, a machine layer, a DAI (digital audio interface) layer, and a platform
layer. The Linux kernel documentation has some concise description of these layers in linux/Documentation/
sound/alsa/soc. In the case of the S/PDIF driver, we are able to reuse the platform layer (imx-pcm-dma.c) that
is used by the ssi stereo codec driver and also the generic dummy codec driver useful for DAI links creation
without a real codec.

7.4.2 S/PDIF Tx Driver

The S/PDIF Tx driver supports the following features.

• 32, 44.1 and 48 KHz sample rates.

• Signed 16 and 24-bit little Endian sample format. Due to S/PDIF SDMA feature, the 24-bit output sample file
must have 32-bits in each channel per frame. Only the 24 LSBs are valid.

• In the ALSA subsystem, the supported format is defined as S16_LE and S24_LE.
• Stereo playback.
• Information query through iecset or amixer.
• The device ID can be determined by using the 'aplay -l' utility to list out the playback audio devices.

For example:

root@ ~$ aplay -l

**** List of PLAYBACK Hardware Devices ****

card 0: imxspdif [imx-spdif], device 0: S/PDIF PCM snd-soc-dummy-dai-0 []

Subdevices: 1/1

Subdevice #0: subdevice #0

Note: The number at the beginning of the IMX_SPDIF line is the card ID. The string in the square brackets is
the card name.

• The ALSA utility provides a common method for user spaces to operate and use ALSA drivers

#aplay -Dplughw:0,0 audio.wav

Note: The -D parameter of aplay indicates the PCM device with card ID and PCM device ID: hw:[card id],
[pcm device id]
The "iecset" utility provides a common method to set or dump the IEC958 status bits.

#iecset -c 0

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
194 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

7.4.2.1 Driver Design

Before S/PDIF playback, the configuration, interrupt, clock and channel registers are initialized. During S/
PDIF playback, the channel status bits are fixed. The DMA and interrupts are enabled. S/PDIF has 16 TX
sample FIFOs on Left and Right channel respectively. When both FIFOs are empty, an empty interrupt is
generated if the empty interrupt is enabled. If no data are refilled in the 20.8 μs (1/48000), an underrun interrupt
is generated. Overrun is avoided if only 16 sample FIFOs are filled for each channel every time. If auto re-
synchronization is enabled, the hardware checks if the left and right FIFO are in sync, and if not, it sets the filling
pointer of the right FIFO to be equal to the filling pointer of the left FIFO and an interrupt is generated.

7.4.2.2 Provided User Interface

The S/PDIF transmitter driver provides one ALSA mixer sound control interface to the user besides the common
PCM operations interface. It provides the interface for the user to write S/PDIF channel status codes into the
driver so they can be sent in the S/PDIF stream. The input parameter of this interface is the IEC958 digital audio
structure shown below, and only status member is used:

struct snd_aes_iec958 {
unsigned char status[24]; /* AES/IEC958 channel status bits */
unsigned char subcode[147]; /* AES/IEC958 subcode bits */
unsigned char pad; /* nothing */
unsigned char dig_subframe[4]; /* AES/IEC958 subframe bits */
};

7.4.3 S/PDIF Rx Driver

The S/PDIF Rx driver supports the following features:

• 16, 32, 44.1, 48, 64 and 96 KHz receiving sample rate
• Signed 24-bit little endian sample format. Due to S/PDIF SDMA feature, each channel bit length in PCM

recorded frame is 32 bits, and only the 24 LSBs are valid
In ALSA subsystem, the supported format is defined as S24_LE.

• Stereo record.
• The device ID can be determined by using the 'arecord -l' to list out record devices.

For example:

root@ ~$ arecord -l

**** List of CAPTURE Hardware Devices ****

card 0: cs42888audio [cs42888-audio], device 0: HiFi CS42888-0 []

Subdevices: 1/1

Subdevice #0: subdevice #0

card 1: imxspdif [imx-spdif], device 0: S/PDIF PCM snd-soc-dummy-dai-0 []

Subdevices: 1/1

Subdevice #0: subdevice #0

• The ALSA utility provides a common method for user spaces to operate and use ALSA drivers.

#arecord -Dplughw:1,0" -c 2 -r 44100 -f S24_LE record.wav

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
195 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Note: The -D parameter of the arecord indicates the PCM device with card ID and PCM device ID: hw:[card
id],[pcm device id]
The "iecset" utility provides a common method to set or dump the IEC958 status bits.

#iecset -c 1

7.4.3.1 Driver Design

Before the driver can read a data frame from the S/PDIF receiver FIFO, it must wait for the internal DPLL to be
locked. Using the high-speed system clock, the internal DPLL can extract the bit clock (advanced pulse) from
the input bit stream. When this internal DPLL is locked, the LOCK bit of PhaseConfig Register is set and the
driver configures the interrupt, clock and SDMA channel. After that, the driver can receive audio data, channel
status, user bits and valid bits concurrently.

For channel status reception, a total of 48 channel status bits are received in two registers. The driver reads
them out when a user application makes a request.

For user bits reception, there are two modes for User Channel reception: CD and non-CD. The mode is
determined by the USyncMode (bit 1 of CDText_Control register). User can call the sound control interface to
set the mode (see Table 87), but no matter what the mode is, the driver handles the user bits in the same way.
For the S/PDIF Rx, the hardware block copies the Q bits from the user bits to the QChannel registers and puts
the user bits in UChannel registers. The driver allocates two queue buffers for both U bits and Q bits. The U
bits queue buffer is 96x2 bytes in size, the Q bits queue buffer is 12x2 bytes in size, and queue buffers are filled
in the U/Q Full, Err and Sync interrupt handlers. This means that the user can get the previous ready U/Q bits
while S/PDIF driver is reading new U/Q bits.

For valid bit reception, S/PDIF Rx hardware block triggers an interrupt and set interrupt status upon reception. A
sound control interface is provided for the user to get the status of this valid bit.

7.4.3.2 Provided User Interface

The S/PDIF Rx driver provides interfaces for user application as shown in table below.

Interface Type Mode[1] Parameter Comment

Common PCM PCM - - PCM open/close
prepare/trigger
hw_params/sw_params

Rx Sample
Rate

Sound
Control[2]

r Integer
Range: [16000, 96000]

Get sample rate. It is not accurate due to
DPLL frequency measure module. So the user
application must do a correction to the get
value.

USyncMode Sound
Control

rw Boolean
Value: 0 or 1

Set 1 for CD mode
Set 0 for non-CD mode

Channel
Status

Sound
Control

r struct snd_aes_iec958
Only status [6] array member is used

-

User bit Sound
Control

r Byte array
96 bytes for U bits
12 bytes for Q bits

-

No good V bit Sound
Control

r Boolean
Value: 0 or 1

An interrupt is associated with the valid flag.
 (interrupt 16 - SPDIFValNoGood). This
interrupt is set every time a frame is seen on

Table 87. S/PDIF Rx Driver Interfaces

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
196 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Interface Type Mode[1] Parameter Comment
the SPDIF interface with the valid bit set to
invalid.

Table 87. S/PDIF Rx Driver Interfaces...continued

[1] The mode column shows the interface attribute: r (read) or w (write)
[2] The sound control type of interface is called by the snd_ctl_xxx() alsa-lib function

The user application can follow the program flow from Figure 35 to use the S/PDIF Rx driver. First, the
application opens the S/PDIF Rx PCM device, waits for the DPLL to lock the input bit stream, and gets the
input sample rate. If the USyncMode needs to be set, set it before reading the U/Q bits. Next, set the hardware
parameters, including channel number, format and capture sample rate which is obtained from the driver. Then,
call prepare and trigger to startup S/PDIF Rx stream read. Finally, call the read function to get the data. During
the reading process, applications can read the U/Q bits and channel status from the driver and valid the no
good bit.

pcm open

aaa-053527

set channel = 2

set format = S24_LE

pcm

prepare

read snd ctl

close

snd control

snd ctl
get Subcode/OSub

snd ctl
..

set rate = gotten rate

snd ctl
get RX sample rate

snd ctl
set USyncMode CDText

on/off

program flow(pcm lib)

Figure 35. S/PDIF Rx Application Program Flow

7.4.4 Source Code Structure

Table below lists the source files for the driver.

File Description

sound/soc/soc-utils.c Dummy ALSA SOC codec driver

sound/soc/fsl/imx-spdif.c S/PDIF ALSA SOC machine layer

Table 88. S/PDIF Driver Files

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
197 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

File Description

sound/soc/fsl/fsl_spdif.c S/PDIF ALSA SOC DAI layer

sound/soc/fsl/imx-pcm-dma.c ALSA SOC platform layer

sound/soc/fsl/imx-pcm.h ALSA SOC platform layer header

Table 88. S/PDIF Driver Files...continued

7.4.4.1 Menu Configuration Options

The following Linux kernel configurations are provided for this module:

In menu configuration enable the following module:

• CONFIG_SND_IMX_SPDIF - Configuration option for the S/PDIF driver:
• Device Drivers -> Sound card support -> Advanced Linux Sound Architecture -> ALSA for SoC audio support

-> SoC Audio for Freescale i.MX CPUs -> SoC Audio support for i.MX boards with S/PDIF

7.4.4.2 Device Tree Bindings

See the following documents:

• Documentation/devicetree/bindings/sound/fsl,spdif.txt
• Documentation/devicetree/bindings/sound/imx-audio-spdif.txt

7.4.4.3 Interrupts and Exceptions

S/PDIF Tx/Rx hardware block has many interrupts to indicate the success, exception and event.

The driver handles the following interrupts:

• DPLL Lock and Loss Lock-Saves the DPLL lock status; this is used when getting the Rx sample rate
• U/Q Channel Full and overrun/underrun-Puts the U/Q channel register data into queue buffer, and update the

queue buffer write pointer
• U/Q Channel Sync-Saves the ID of the buffer whose U/Q data is ready for read out
• U/Q Channel Error-Resets the U/Q queue buffer

7.4.5 Unit Test Preparation

In order to prepare to run a unit test, perform the following actions:

• Setup M-Audio Transit USB sound card by installing M-Audio Transit driver on your PC.
• Install WaveLab tools on your PC.

7.4.5.1 Tx test step

• Plug optical line into [line|optical] port of M-Audio transit.

Note: Make sure the [optical out] port of M-Audio transit has no output (red light off) after plugging the optical
line.

• Start up WaveLab, press the record button on the toolbar, set up the record file name, sample rate, and
channel number, and then record.

• Meanwhile, on board use following command to play one wave file:

#aplay -D hw:[card id],[pcm id] audioXXkYYS.wav

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
198 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• After aplay finishes, stop recording in WaveLab.
• Play the recorded WAV file in wavelab to check.

7.4.5.2 Rx test step

• Plug optical line into [optical port] of M-Audio transit
• Startup WaveLab, open a test WAV file: audioXXkYYS.wav to play in loop
• Meanwhile, on board use the following command to record one WAV file. After finishing recording, you may

playback the record WAV file on other audio card on the board or PC.

#arecord -D hw:[card id],[pcm id] -c 2 -d 20 -r [sample rate in Hz] -f S24_LE
 record.wav

Note: The sample rate argument in the arecord command must be consistent with the WAV file playing on
WaveLab.

7.5 Audio Mixer (AUDMIX)

7.5.1 Introduction

Many applications require mixing of two or more audios to take different effects. Mixing of two audio streams
into a single stream can be done with Audio Mixer. Audio Mixer has two input serial audio interfaces. These are
driven by two Synchronous Audio Interface (SAI) modules. Each input serial interface carries 8 audio channels
in its frame in TDM manner. Mixer mixes audio samples of corresponding channels from two interfaces into
a single sample. Before mixing, audio samples of two inputs can be attenuated based on configuration. The
output of the Audio Mixer is also a serial audio interface. Like input interfaces, it has the same TDM frame
format. This output is used to drive the serial DAC TDM interface of audio codec and also sent to the external
pins along with the receive path of normal audio SAI module for readback by the CPU.

The output of Audio mixer can be selected from any of the three streams:

• Serial audio input 1
• Serial audio input 2
• Mixed audio

Mixing operation is independent of audio sample rate, but the two audio input streams must have the same
audio sample rate with the same number of channels in TDM frame to be eligible for mixing.

7.5.2 Block diagram

The following figure shows the high-level view of Audio Mixer block.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
199 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Attenuator 1 Attenuator 2

Serial audio TDM
input 1

Serial audio TDM
input 2

aaa-053500

Mixing adder

Serial audio
TDM output

Configuration and
host accessAccess bus

AUDIO MIXER

Figure 36. Audio Mixer block diagram

7.5.3 Hardware Overview

The Mixer block has two serial audio input interfaces for two audio streams. One of them is used for normal
audio and the other is for safety tone. The serial audio TDM frame can contain eight samples of 32 bit each.
First six samples are for three stereo DACs. Each DAC takes two samples for left and right channels. The last
two samples are extra and kept for future use. In audio mixing application, the two audio input streams must
have the same number of channels and frame rate. The frame format is shown in the following figure.

aaa-053501

BCLK

SYNC

DATA msb

channel 1
data

lsb msb lsb msb lsb msb lsb msblsb msb lsb msb lsb msb lsb msb

channel 2
data

channel 3
data

channel 4
data

channel 5
data

channel 6
data

channel 7
data

channel 8
data

Figure 37. Audio TDM serial interface frame

Input TDM frame is de-serialized as 32 bit samples starting from frame pulse in its own interface bit clock.
Each sample passes through the attenuator. Attenuator reduces the level of audio signal. This process is
called attenuation. Attenuation of signal is done by multiplying the audio sample with an attenuation value. The
attenuation value defines the level of audio signal at the output of attenuator. Attenuation can be enabled or
disabled. If disabled, the audio sample is passed without modification. If enabled, attenuation is done as per the
configuration that defines the attenuation value at different time (called as attenuation profile).

There are two independent attenuators for two audio streams. Output of two attenuators are used for mixing.
Mixing is done by adding samples of corresponding channels from two attenuators. The result gives the mixed
sample value. It is then quantized to get the desired width of audio sample. The quantized sample is rounded to
form the output sample. Rounding is done on LSB of quantized sample. The final sample is then serialized and
transmitted in the same frame format like input interfaces with selected bit clock.

7.5.4 Software Overview

The Audio Mixer driver is designed under ALSA System on Chip (ASoC) layer. The ASoC driver for Audio Mixer
provides two playback devices for AudioMixer inputs and one capture device to capture the Audio Mixer output.
The playback audio format is liniar PCM 16-bit, 24-bit, or 32-bit wide audio. The captured audio format is linear
PCM audio data, 16-bit, 18-bit, 20-bit, 24-bit, or 32-bit wide.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
200 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

7.5.4.1 User Interface

Audio Mixer interface is accessible from user space by using the amixer -c <audio mixer card> tool.
The following Audio Mixer controls are exposed to user space.

ID Name Type Access Value Default

1 Mixing Clock
Source

enum r/w #0 'TDM1', #1
'TDM2'

#0 ‘TDM1’

2 Output Source enum r/w #0 'Disabled', #1
'TDM1', #2 'TDM2',
#3 'Mixed'

#0 'Disabled'

3 Output Width enum r/w #0 '16b', #1 '18b',
#2 '20b', #3 '24b',
#4 '32b'

#4 '32b'

4 Output Clock
Polarity

enum r/w #0 'Positive edge',
#1 'Negative edge'

#1 'Negative edge'

5 Frame Rate Diff
Error

enum r/w #0 'Unmask', #1
'Mask'

#0 'Unmask'

6 Clock Freq Diff
Error

enum r/w #0 'Unmask', #1
'Mask'

#0 'Unmask'

7 Sync Mode Config enum r/w #0 'Disabled', #1
'Enabled'

#0 'Disabled'

8 Sync Mode Clk
Source

enum r/w #0 'TDM1', #1
'TDM2'

#0 'TDM1'

9 TDM1 Attenuation enum r/w #0 'Disabled', #1
'Enabled'

#0 'Disabled'

10 TDM1 Attenuation
Direction

enum r/w #0 'Downward', #1
'Upward'

#0 'Downward'

11 TDM1 Attenuation
Step Divider

int r/w min=0, max=4095 0

12 TDM1 Attenuation
Initial Value

int r/w min=0,
max=262143

262143

13 TDM1 Attenuation
Step Up Factor

int r/w min=0,
max=262143

174762

14 TDM1 Attenuation
Step Down Factor

int r/w min=0,
max=262143

196608

15 TDM1 Attenuation
Step Target

int r/w min=0,
max=262143

16

16 TDM2 Attenuation enum r/w #0 'Disabled', #1
'Enabled'

#0 'Disabled'

17 TDM2 Attenuation
Direction

enum r/w #0 'Downward', #1
'Upward'

#0 'Downward'

18 TDM2 Attenuation
Step Divider

int r/w min=0, max=4095 0

19 TDM2 Attenuation
Initial Value

int r/w min=0,
max=262143

262143

Table 89. Audio Mixer controls

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
201 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

ID Name Type Access Value Default

20 TDM2 Attenuation
Step Up Factor

int r/w min=0,
max=262143

174762

21 TDM2 Attenuation
Step Down Factor

int r/w min=0,
max=262143

196608

22 TDM2 Attenuation
Step Target

int r/w min=0,
max=262143

16

Table 89. Audio Mixer controls...continued

7.5.4.2 Source Code Structure

The following table lists the source files for the driver.

File Description

sound/soc/fsl/fsl_amix.h Includes file with common defines

sound/soc/fsl/fsl_amix.c Audio Mixer DAI Driver

sound/soc/fsl/imx-amix.c Audio Mixer Machine Driver

Documentation/devicetree/bindings/sound/fsl,amix.txt Audio Mixer device tree bindings documentation

Table 90. Audio Mixer Driver Files

7.5.4.3 Menu Configuration Options

The following Linux kernel configurations are provided for this module:

• CONFIG_SND_IMX_AMIX - Configuration option for the Audio Mixer Driver
• Device Drivers -> Sound card support -> Advanced Linux Sound Architecture -> ALSA for SoC audio support

-> SoC Audio for Freescale i.MX CPUs -> SoC Audio support for i.MX boards with AMIX

7.6 PDM Microphone Interface (MICFIL)

7.6.1 Introduction

PDM is a popular way to deliver audio from microphones to the processor in several applications, such
as mobile telephones. However, current digital-audio systems use multibit audio signal (also known as
multibit PCM) to represent the signal. For this purpose, a set of FIR, CIC or/and Half Band filters are usually
implemented on DSPs or software. This module implements the required digital interface to provide a 16-bit
audio signal from a PDM microphone bitstream in a configurable output sampling rate.

7.6.2 Block diagram

The following figure shows the high-level view of the PDM Microphone Interface block.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
202 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

L

R

L

R

PDM mic 0

PDM bitstream

PDM clock
Time generator

PDM bitstream

PDM mic 1

aaa-053523

PDM mic 2

PDM mic 3

Channel 2

Input
interface

Input
interface

Decimation filter

Channel 3 Decimation filter

PDM microphone interface

Channel 0 Decimation filter

Channel 1 Decimation filter

FIFO

FIFO

FIFO

FIFO

IRQ
interface

Interrupt
requests

DMA
interface

DMA request
DMA done

SoC busSoC bus
interface

Hardware voice activity detector 0

Hardware voice activity detector 1

Hardware voice activity detector M

Figure 38. PDM Microphone Interface block

7.6.3 Hardware Overview

The implementation of this module is based on the application of digital signal processing techniques in
hardware. The PDM Microphone Interface architecture was designed to gate saving and minimal power
consumption. It implements a bunch of filters to transform a 1-bit PDM bitstream to a 16-bit PCM signal in the
audio band.

To avoid aliasing frequencies in passband, the overall filter has 80 dB stopband attenuation and passband ripple
less than 0.2dB. The whole module is implemented to work in a multichannel mode. All channels have the same
configuration but each input channel could be turned on/off independently.

The PDM Microphone Interface module is composed by the following:

• An input interface for each pair of PDM microphones
• A decimation filter by channel
• A FIFO by channel
• A time generation unit
• Shared interfaces to DMA, interrupts and SoC
• One or more Hardware Voice Activity Detectors (HWVAD).

The Decimation Filter implements a low-pass filter in the audio band (20Hz-22.5KHz @48KHz output sampling
rate by default) with a configurable decimation rate. It is implemented using an arrange of a CIC, a Half Band, a
FIR, and a DC remover filter.

The Time Generator unit generates the PDM clock to the microphones. This clock is the same for all the PDM
microphones and it is active for all the microphones, i.e. there is not possibility to turn off the PDM clock for one
microphone only. It also generates the timing signals and controls for all the filter blocks. The decimation in the
filters is also controlled by this block. It activates each block and channel and gives the start signal to FIR FSM
and Half Band FSM.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
203 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Finally, the output of each Decimation Filter is stored in a FIFO buffer. Each FIFO is mapped in the DATACHn
registers. It is possible to generate either an interrupt or a DMA request, when in each FIFO of all enabled
channels, the number of data stored surpasses a configured watermark.

7.6.4 Software Overview

The PDM Microphone driver is designed under the ALSA System on Chip (ASoC) layer. The ASoC driver for
PDM Microphone provides one capture device to capture the PDM Microphone output. The captured audio
format is 8-channels 32-bit wide linear PCM audio data @ 48kHz or 44.1kHz rate.

7.6.4.1 User Interface

PDM Microphone interface is accessible from user space by using the amixer -c <pdm mic card> tool.
Controls are listed in the following table.

ID Name Type Access Value Default

1 CH0 Gain int r/w min=0, max=15 15

2 CH1 Gain int r/w min=0, max=15 15

3 CH2 Gain int r/w min=0, max=15 15

4 CH3 Gain int r/w min=0, max=15 15

5 CH4 Gain int r/w min=0, max=15 15

6 CH5 Gain int r/w min=0, max=15 15

7 CH6 Gain int r/w min=0, max=15 15

8 CH7 Gain int r/w min=0, max=15 15

9 MICFIL Quality
Select

enum r/w #0 'Medium', #1
'High', #2 'N/A', #3
'N/A', #4 'VLow2',
#5 'VLow1', #6
'VLow0', #7 'Low'

#0 'Medium'

10 HWVAD
Initialization Mode

enum r/w #0 'Envelope
mode', #1 'Energy
mode'

#0 'Envelope
mode'

11 HWVAD High-Pass
Filter

enum r/w #0 'Filter bypass',
#1 'Cut-off @1750
Hz', #2 'Cut-off
@215Hz', #3 'Cut-
off @102Hz'

#0 'Filter bypass'

12 HWVAD Zero-
Crossing Detector
Enable

enum r/w #0 'OFF', #1 'ON' #0 'OFF'

13 HWVAD Zero-
Crossing Detector
Auto Threshold

enum r/w #0 'OFF', #1 'ON' #0 'OFF'

14 HWVAD Noise OR
Enable

enum r/w #0 'Disabled', #1
'Enabled'

#0 'Disabled'

15 HWVAD Sampling
Rate

enum r/w #0 '48KHz', #1 '44.
1KHz'

#0 '48KHz'

Table 91. PDM Microphone controls

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
204 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

ID Name Type Access Value Default

16 Clock Source enum r/w #0 'Auto', #1 'Audio
PLL1', #2 'Audio
PLL2', #3 'ExtClk3'

#0 'Auto'

17 HWVAD Input Gain int r/w min=0, max=15 0

18 HWVAD Sound
Gain

int r/w min=0, max=15 0

19 HWVAD Noise
Gain

int r/w min=0, max=15 0

20 HWVAD Detector
Frame Time

int r/w min=1, max=64 1

21 HWVAD Detector
Initialization Time

int r/w min=1, max=32 1

22 HWVAD Noise
Filter Adjustment

int r/w min=1, max=32 1

23 HWVAD Zero-
Crossing Detector
Threshold

int r/w min=1, max=1024 1

24 HWVAD Zero-
Crossing Detector
Adjustment

int r/w min=1, max=16 1

Table 91. PDM Microphone controls...continued

7.6.4.2 Source Code Structure

The following table lists the source files for the driver.

File Description

sound/soc/fsl/fsl_micfil.h Includes file with common defines

sound/soc/fsl/fsl_micfil.c PDM Microphone DAI Driver

sound/soc/fsl/imx-micfil.c PDM Microphone Machine Driver

Documentation/devicetree/bindings/sound/fsl,micfil.txt PDM Microphone device tree bindings documentation

Table 92. Audio Mixer Driver Files

7.6.4.3 Menu Configuration Options

The following Linux kernel configurations are provided for this module:

• CONFIG_SND_IMX_MICFIL - Configuration option for PDM Microphone Driver
• Device Drivers -> Sound card support -> Advanced Linux Sound Architecture > ALSA for SoC audio support -

> SoC Audio for Freescale i.MX CPUs -> SoC Audio support for i.MX boards with micfil

7.7 Asynchronous Sample Rate Converter (ASRC) on i.MX 8M Nano/i.MX 8M Plus

7.7.1 Introduction

The Asynchronous Sample Rate Converter (ASRC) is a digital module that converts audio from a source
sample rate to a destination sample rate.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
205 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

7.7.2 Hardware Operation

The primary features for the ASRC are as follows:

• 4 Contexts - groups of channels with an independent time base
• Fully independent and concurrent context control
• Simultaneous processing of up to 32 audio channels
• Programmable filter characteristics for each context
• 32, 24, 20, and 16-bit fixed point audio sample support
• 32-bit floating point audio sample support
• 8 kHz to 384 kHz sample rate
• 1/16 to 16x sample rate conversion ratio
• Software control of fine conversion ratio

The ASRC supports polling, interrupt and DMA modes, but only DMA mode is used in the platform for better
performance. The ASRC supports the following DMA channels:

• Peripheral to peripheral, for example: ASRC to SAI
• Memory to peripheral, for example: memory to ASRC
• Peripheral to memory, for example: ASRC to memory

For more information, see the ASRC chapter in the Applications Processor documentation associated with the
SoC.

7.7.3 Software Operation

As an assistant component in the audio system, the ASRC driver implementation depends on the use cases in
the platform.

Currently, ASRC is used in two scenarios:

• Memory > ASRC > Memory: ASRC is controlled by the user application or ALSA plug-in.
• Memory > ASRC > peripheral: ASRC is controlled directly by other ALSA drivers.

Note: The audio driver interaction diagram is the same as Figure 33.

The ASRC stream interface provides the interface for the user space. The ASRC registers itself under /dev/
mxc_asrc.

7.7.3.1 Sequence for Memory to ASRC to Memory

• Open /dev/mxc_asrc device.
• Request ASRC pair. - ASRC_REQ_PAIR
• Configure ASRC pair. - ASRC_CONIFG_PAIR
• Start ASRC. - ASRC_START_CONV
• Write the raw audio data (to be converted) into the user maintained input buffer. Fill asrc_convert_buffer struct

with input/output buffer length and address. Driver would copy output data to user maintained output buffer
address according to the output buffer size. Repeat this step until all data is converted. -ASRC_CONVERT

• Stop ASRC conversion. - ASRC_STOP_CONV
• Release ASRC pair. - ASRC_RELEASE_PAIR
• Close /dev/mxc_asrc device.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
206 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

7.7.3.2 Sequence for Memory to ASRC to Peripheral

Memory to ASRC to peripheral audio path is involved in audio codec driver. In audio sound card, a new device
with the name "wm8960audio [cs42888-audio], device 1: HiFi-ASRC-FE (*)" is specified for playback and
capture with ASRC. The steps below show the flow of calling ASRC to memory to peripheral:

• The sound device (PCM) has been registered and starts to enable the DMA channel in the ALSA driver.
• Request ASRC context. - fsl_easrc_request_context
• Configure ASRC context. - fsl_easrc_config_context
• Enable the DMA channel from Memory to ASRC and from ASRC to Memory.
• Start DMA channel and start ASRC conversion. - fsl_easrc_start_context
• When audio data playback complete, stop DMA channel and ASRC. - fsl_easrc_stop_context
• Release ASRC pair. - fsl_easrc_release_context

7.7.3.3 Source Code Structure

The table below lists the source files available in sound/soc/fsl.

File Description

sound/soc/fsl/fsl_easrc_m2m.c ASRC M2M driver implementation codes

sound/soc/fsl/fsl_easrc.c ALSA CPU DAI driver of ASRC M2P

sound/soc/fsl/fsl_easrc.h Header file for ALSA CPU DAI driver of ASRC P2P

Sound/soc/fsl/fsl_asrc_dma.c ALSA CPU DAI driver of ASRC P2P

Table 93. ASRC Source File List

7.7.3.4 Menu Configuration Options

The menu configuration options are as follows:

• Device Drivers
• Sound card support
• Advanced Linux Sound Architecture
• ALSA for SoC audio support
• SoC Audio for Freescale i.MX CPUs
• Enhanced Asynchronous Sample Rate Converter (EASRC) module support. Then the ASRC driver can only

be configured with the build-in module.

7.7.3.5 Device Tree Binding

The functions of device tree bindings for ASRC M2M are as follows:

• compatible: Compatible list, must contain "fsl,imx8mn-easrc".
• reg: Offset and length of the register set for the device.
• interrupts: Contains the asrc interrupt.
• clocks: Contains an entry for each entry in clock-names.
• clock-names: Must contain "mem".
• dmas: Generic dma devicetree binding as described in Documentation/devicetree/bindings/dma/dma.txt.
• dma-names: Eight dmas have to be defined, " ctx0_rx", " ctx0_tx", " ctx1_rx", " ctx1_tx", " ctx2_rx", " ctx2_tx",

“ctx3_rx”, "ctx3_tx".
• fsl,asrc-rate: A valid sample rate for Back-End (I2S) playback and record.
• fsl,asrc-format: A valid sample width for Back-End (I2S) playback and record.
RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
207 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

7.7.3.6 Programming Interface (Exported API and IOCTLs)

The ASRC Exported API allows the ALSA driver to use ASRC services.

The ASRC IOCTLs below are used for user space applications:

ASRC_REQ_PAIR:

Apply a pair from ASRC driver. Once a pair is allocated, ASRC core clock is enabled.

ASRC_CONFIG_PAIR:

Configure ASRC pair allocated. User is responsible for providing parameters defined in struct asrc_config. Items
in asrc_config are listed below:

• pair: ASRC pair allocated by the IOCTL(ASRC_REQ_PAIR).
• channel_num: channel number.
• dma_buffer_size: buffer size for input and output buffers. The buffer size should be in the unit of page size.

Usually, 4k bytes is used.
• input_sample_rate: input sampling rate. Input sample rate should be in 5.512k, 8k, 11.025k, 16k, 22k, 32k,

44.1k, 48k, 64k, 88.2k 96k, 176.4k, 192k.
• output_sample_rate: output sampling rate. Output sampling rate should be in 32k, 44.1k, 48k, 64k, 88.2k, 96k,

176.4k 192k.
• input_format: word format of input audio data. The input data word width can be 16 bit or 24 bit.
• output_format: word width of output audio data. The output data word width can be 16 bit or 24 bit.
• inclk: none
• outclk: none

ASRC_CONVERT:

Convert the input data into output data according to the parameters set by ASRC_CONFIG_PAIR. Driver would
copy input_buffer_length bytes data from the input_buffer_vaddr for conversion. After convertion, the driver fills
the output_buffer_length according to the data number generated by ASRC and copies output_buffer_length
to output_buffer_vaddr. However, before calling ASRC_CONVERT, the user is responsible for filling the
output_buffer_length according to the ratio of input sample rate and output sample rate. If the generated buffer
size is larger than the user-filled output_buffer_size, the driver would only copy the user-filled output_buffer_size
to output_buffer_vaddr. If the generated buffer size is smaller than user-filled output_buffer_size (the difference
should be less than 64 bytes.), calling ASRC_CONVERT would fail.

• input_buffer_vaddr: virtual address of input buffer.
• output_buffer_vaddr: virtual address of output buffer.
• input_buffer_length: length of input buffer (bytes).
• output_buffer_length: length of output buffer (bytes).

ASRC_START_CONV:

Start ASRC pair convert.

ASRC_STOP_CONV:

Stop ASRC pair convert.

ASRC_STATUS:

Query ASRC pair status.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
208 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

8 Security

8.1 Cryptographic Acceleration and Assurance Module (CAAM)

8.1.1 CAAM Device Driver Overview

This section discusses implementation specifics of the kernel driver components supporting CAAM
(Cryptographic Acceleration and Assurance Module) within the Linux kernel.

CAAM's base driver packaging can be categorized on two distinct levels:

• Configuration and Job Execution Level
• API Interface Level

Configuration and Job Execution Level consists of:

• A control and configuration module which maps the main register page and writes global or system required
configuration information.

• A module that feeds jobs through job rings, and reports status.

API Interface Level consists of:

• An interface to the Sctterlist Crypto API supporting asynchronous single-pass authentication-encryption
operations, and common blockciphers - caamalg.

• An interface to the Scatterlist Crypto API supporting asynchronous hashes - caamhash.
• An interface to the hwrng API supporting use of the Random Number Generator - caamrng.

8.1.2 Configuration and Job Execution Level

This section has two parts:

• Control/Configuration Driver
• Job Ring Driver

8.1.3 Control/Configuration Driver

The control and configuration driver is responsible for initializing and setting up the master register page,
initializing early-on feature initialization, providing limited debug and monitoring capability, and generally
ensuring that all other dependent driver subsystems can connect to a correctly-configured device.

Step by step, it performs the following actions at startup:

• Allocates a private storage block for this level.
• Maps a virtual address to the full CAAM register page.
• Maps a virtual address for the SNVS register page.
• Maps a virtual (cache coherent) address for Secure Memory.
• Registers the security violation interrupt.
• Selects the correct DMA address size for the platform, and sets DMA address masks to match.
• Identifies other pertinent interrupt connections.
• Initializes all job ring instances.
• If the system configuration includes a DPAA Queue Interface, that interface has frame-pop enabled.

Note: i.MX 6 configurations do not contain this logic.
• If the instance contains a TRNG, it's oscillator/entropy configuration is set and then "kickstarted".
• Configuration information is sent to the system console to indicate that the driver is alive, and what

configuration it has assumed.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
209 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• If CONFIG_DEBUG_FS is selected in the kernel configuration, then entries are added to enable debugfs
views to useful registers in the performance monitor. Register views are accessible under the caam/ctl
directory at the debugfs root entry.

8.1.4 Job Ring Driver

The Job Ring driver is responsible for providing job execution service to higher-level drivers. It takes care of
overall management of both input and output rings and interrupt service driving the output ring.

One driver call is available for higher layers to use for queueing jobs to a ring for execution:

int caam_jr_enqueue(struct device *dev, u32 *desc, void (*cbk)(struct device
*dev, u32 *desc, u32 status, void *areq), void *areq);

Arguments:

dev Pointer to the struct device associated with the job ring for use. In the current configuration, one or more
struct device entries exist in the controller's private data block, one for each ring.

desc Pointer to a CAAM job descriptor to be executed. The driver will map the descriptor prior to execution, and
unmap it upon completion. However, since the driver can't reasonably know anything about the data referenced
by the descriptor, it is the caller's responsibility to map/flush any of this data prior to submission, and to unmap/
invalidate data after the request completes.

cbk Pointer to a callback function that will be called when the job has completed processing.

areq Pointer to metadata or context data associated with this request. Often, this can contain referenced data
mapping information that request postprocessing (via the callback) can use to clean up or release resources
once complete.

Callback Function Arguments:

dev Pointer to the struct device associated with the job ring for use.

desc Pointer to the original descriptor submitted for execution.

status Completion status received back from the CAAM DECO that executed the request. Nonzero only if an
error occurred. Strings describing each error are enumerated in error.c.

areq Metadata/context pointer passed to the original request.

Returns:

• Zero on successful job submission
• -EBUSY if the input ring was full
• -EIO if driver could not map the job descriptor

8.1.5 API Interface Level

CAAM module provides a connection through the Scatterlist Crypto API both for common symmetric
blockciphers, and for single-pass authentication-encryption services. This table lists all installed authentication-
encryption algorithms by their common name, driver name, and purpose. Note that certain platforms, such as
i.MX 6, contain a low-power MDHA accelerator, which cannot support SHA384 or SHA512.

Name Driver Name Purpose
authenc(hmac(md5),cbc(aes)) authenc-hmac-md5-cbc-

aes-caam
Single-pass authentication/
encryption using MD5 and AES-CBC

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
210 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Name Driver Name Purpose
authenc(hmac(sha1),cbc(aes)) authenc-hmac-sha1-cbc-

aes-caam
Single-pass authentication/
encryption using SHA1 and AES-
CBC

authenc(hmac(sha224),cbc(aes)) authenc-hmac-sha224-
cbc-aes-caam

Single-pass authentication/
encryption using SHA224 and AES-
CBC

authenc(hmac(sha256),cbc(aes)) authenc-hmac-sha256-
cbc-aes-caam

Single-pass authentication/
encryptionusing SHA256 and AES-
CBC

authenc(hmac(sha384),cbc(aes)) authenc-hmac-sha384-
cbc-aes-caam

Single-pass authentication/
encryption using SHA384 and AES-
CBC

authenc(hmac(sha512),cbc(aes)) authenc-hmac-sha512-
cbc-aes-caam

Single-pass authentication/
encryption using SHA512 and AES-
CBC

authenc(hmac(md5),cbc(des3_ede)) authenc-hmac-md5-
cbcdes3_ede-caam

Single-pass authentication/
encryption using MD5 and Triple-
DES-CBC

authenc(hmac(sha1),cbc(des3_ede)) authenc-hmac-sha1-cbc-
des3_ede-caam

Single-pass authentication/
encryption using SHA1 and Triple-
DES-CBC

authenc(hmac(sha224),cbc(des3_ede)) authenc-hmac-sha224-
cbc-des3_ede-caam

Single-pass authentication/
encryption using SHA224 and Triple-
DES-CBC

authenc(hmac(sha256),cbc(des3_ede)) authenc-hmac-sha256-
cbc-des3_ede-caam

Single-pass authentication/
encryption using SHA256 and Triple-
DES-CBC

authenc(hmac(sha384),cbc(des3_ede)) authenc-hmac-sha384-
cbc-des3_ede-caam

Single-pass authentication/
encryption using SHA384 and Triple-
DES-CBC

authenc(hmac(sha512),cbc(des3_ede)) authenc-hmac-sha512-
cbc-des3_ede-caam

Single-pass authentication/
encryption using SHA512 and Triple-
DES-CBC

authenc(hmac(md5),cbc(des)) authenc-hmac-md5-cbc-
des-caam

Single-pass authentication/
encryption using MD5 and Single-
DES-CBC

authenc(hmac(sha1),cbc(des)) authenc-hmac-sha1-cbc-
des-caam

Single-pass authentication/
encryption using SHA1 and Single-
DES-CBC

authenc(hmac(sha224),cbc(des)) authenc-hmac-sha224-
cbc-des-caam

Single-pass authentication/
encryption using SHA224 and
Single-DES-CBC

authenc(hmac(sha256),cbc(des)) authenc-hmac-sha256-
cbc-des-caam

Single-pass authentication/
encryption using SHA256 and
Single-DES-CBC

authenc(hmac(sha384),cbc(des)) authenc-hmac-sha384-
cbc-des-caam

Single-pass authentication/
encryption using SHA384 and
Single-DES-CBC

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
211 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Name Driver Name Purpose
authenc(hmac(sha512),cbc(des)) authenc-hmac-sha512-

cbc-des-caam
Single-pass authentication/
encryption using SHA512 and
Single-DES-CBC

This table lists all installed symmetric key blockcipher algorithms by their common name, driver name, and
purpose.

Name Driver Name Purpose
cbc(aes) cbc-aes-caam AES with a CBC mode wrapper
cbc(des3_ede) cbc-3des-caam Triple DES with a CBC mode wrapper
cbc(des) cbc-des-caam Single DES with a CBC mode wrapper
ecb(aes) ecb-aes-caam AES with a ECB mode wrapper
ecb(des3_ede) ecb-3des-caam Triples DES with a ECB mode wrapper
ecb(des) ecb-des-caam Single DES with a ECB mode wrapper
ecb(arc4) ecb-arc4-caam ARC4 with a ECB mode wrapper
ctr(aes) ctr-aes-caam AES with a CTR mode wrapper

Use of these services through the API is exemplified in the common conformance/performance testing module
in the kernel's crypto subsystem, known as tcrypt, visible in the kernel source tree at crypto/tcrypt.c.

The caamhashmodule provides a connection through the Scatterlist Crypto API both for common
asynchronous hashes.

This table lists all installed asynchronous hashes by their common name, driver name, and purpose. Note that
certain platforms, such as i.MX 6, contain a low-power MDHA accelerator, which cannot support SHA384 or
SHA512.

Name Driver Name Purpose
sha1 sha1-caam SHA1-160 Hash Computation
sha224 sha224-caam SHA224 Hash Computation
sha256 sha256-caam SHA256 Hash Computation
sha384 sha384-caam SHA384 Hash Computation
sha512 sha512-caam SHA512 Hash Computation
md5 md5-caam MD5 Hash Computation
hmac(sha1) hmac-sha1-caam SHA1-160 Hash-based Message Authentication Code
hmac(sha224) hmac-sha224-caam SHA224 Hash-based Message Authentication Code
hmac(sha256) hmac-sha256-caam SHA256 Hash-based Message Authentication Code
hmac(sha384) hmac-sha384-caam SHA384 Hash-based Message Authentication Code
hmac(sha512) hmac-sha512-caam SHA512 Hash-based Message Authentication Code
hmac(md5) hmac-md5-caam MD5 Hash-based Message Authentication Code

Use of these services through the API is exemplified in the common conformance/performance testing module
in the kernel's crypto subsystem, known as tcrypt, visible in the kernel source tree at crypto/tcrypt.c.

The caamrng module installs a mechanism to use CAAM's random number generator to feed random data into
a pair of buffers that can be accessed through /dev/random.

/dev/random is commonly used to feed the kernel's own entropy pool, which can be used internally, as an
entropy source for other random data "devices".

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
212 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

For more information regarding support for this service, see rng-tools available in sourceforge.net/projects/
gkernel/files/rng-tools.

8.1.6 Driver Configuration

Configuration of the driver is controlled by the following kernel confguration parameters (found under
Cryptographic API -> Hardware Crypto Devices):

CRYPTO_DEV_FSL_CAAM

Enables building the base controller driver and the job ring backend.

CRYPTO_DEV_FSL_CAAM_RINGSIZE

Selects the size (e.g., the maximum number of entries) of job rings. This is selectable as a power of 2 in the
range of 2-9, allowing selection of a ring depth ranging from 4 to 512 entries.

The default selection is 9, resulting in a ring depth of 512 job entries.

CRYPTO_DEV_FSL_CAAM_INTC

Enables the use of the hardware's interrupt coalescing feature, which can reduce the amount of interrupt
overhead the system incurs during periods of high utilization. Leaving this disabled forces a single interrupt for
each job completion, simplifying operation, but increasing overhead.

CRYPTO_DEV_FSL_CAAM_INTC_COUNT_THLD

If coalescing is enabled, selects the number of job completions allowed to queue before an interrupt is raised.
This is selectable within the range of 1 to 255. Selecting 1 effectively defeats the coalescing feature. Any
selection of a size greater than the job ring size forces a situation where the interrupt times out before ever
raising an interrupt.

The default selection is 255.

CRYPTO_DEV_FSL_CAAM_INTC_TIME_THLD

If coalescing is enabled, selects the count of bus clocks (divided by 64) before a coalescing timeout where, if
the count threshold has not been met, an interrupt is raised at the end of the time period. The selection range is
an integer from 1 to 65535.

The default selection is 2048.

CRYPTO_DEV_FSL_CAAM_CRYPTO_API

Enables Scatterlist Crypto API support for asynchronous blockciphers and for single-pass autentication-
encryption operations through the API using CAAM hardware for acceleration.

CRYPTO_DEV_FSL_CAAM_AHASH_API

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
213 / 301

http://sourceforge.net/projects/gkernel/files/rng-tools
http://sourceforge.net/projects/gkernel/files/rng-tools
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Enables Scatterlist Crypto API support for asynchronous hashing through the API using CAAM hardware for
acceleration.

CRYPTO_DEV_FSL_CAAM_RNG_API

Enables use of the CAAM Random Number generator through the hwrng API. This can be used to generate
random data to feed an entropy pool for the kernels pseudo-random number generator.

CRYPTO_DEV_FSL_CAAM_RNG_TEST

Enables a captive test to ensure that the CAAM RNG driver is operating and buffering random data.

8.1.7 Limitations

• Components of the driver do not currently build and run as modules. This may be rectified in a future version.
• Interdependencies exist between the controller and job ring backends, therefore they all must run in the same

system partition. Future versions of the driver may separate out the job ring back-end as a standalone module
that can run independently (and support independent API and SM instances) in its own system partition.

• The full CAAM register page is mapped by the controller driver, and derived pointers to selected subsystems
are calculated and passed to higher-layer driver components. Partition-independent configurations will have to
map their own subsystem pointers instead.

• Upstream variants of this driver support only Power architecture. This Arm architecture-specific port is not
upstreamed at this time, although portions may be upstreamed at some point.

• TRNG kickstart may need to be moved to the bootloader in a future release, so that the RNG can be used
earlier.

• The Job Ring driver has a registration and de-registration functions that are not currently necessary (and may
be rewritten in future editions to provide for shutdown notifications to higher layers.

• The full CAAM function is exclusive with the Mega/Fast mix off feature in DSM. If CAAM is enabled, the
Mega/Fast mix off feature needs to be disabled, and the user should "echo enabled > /sys/bus/platform/
devices/2100000.aips-bus/2100000.caam/2101000.jr0/power/wakeup" after the kernel boots up, and then
Mega/Fast mix will keep the power on in DSM.

8.1.8 Limitations in the Existing Implementation Overview

This chapter describes a prototype of a Keystore Management Interface intended to provide access to CAAM
Secure Memory.

Secure memory provides a controlled and access-protected area where critical system security parameters
can be stored and processed in a running system without bus-level exposure of clear secrets. Secrets can be
imported into and exported from secure memory, but never exported from secure memory in their cleartext
form. Instead, secrets may be exported from secure memory in a covered form, using keys never visible to the
outside.

This driver, with its kernel-level API, exposes a basic interface to allow kernel-level services access to secure
memory functionality. It is split into two pieces:

• Keystore Initialization and Maintenance Interfaces
• Keystore Access Interface

The initialization and maintenance services exist to initialize and define the instance of a keystore interface.
Likewise, the access interface allows kernel-level services to use the API for management of security
parameters.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
214 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

8.1.9 Initialize Keystore Management Interface

Installs a set of pointers to functions that implement an underlying physical interface to the keystore subsystem.

In the present release, a default (and hidden) suite of functions implement this interface. Future
implementations of this API may provide for the installation of an alternate interface. If this occurs, an alternate
to this call can be provided.

void sm_init_keystore(struct device *dev);

Arguments:

dev points to a struct device established to manage resources for the secure memory subsystem.

8.1.10 Detect Available Secure Memory Storage Units

Returns the number of available units ("pages") that can be accessed by the local instance of this driver.
Intended for use as a resource probe.

u32 sm_detect_keystore_units(struct device *dev);

Arguments:

dev Points to a struct device established to manage resources for the secure memory subsystem.

Returns: Number of detected units available for use, 0 through n - 1 may be used with subsequent calls to all
other API functions.

8.1.11 Establish Keystore in Detected Unit

Sets up an allocation table in a detected unit that can be used for the storage of keys (or other secrets). The unit
will be divided into a series of fixed-size slots, each one of which is marked available in the allocation table. The
size of each slot is a build-time selectable parameter.

No calls to the keystore access interface can occur until sm_establish_keystore() has been called.

sm_establish_keystore() should follow a call to sm_detect_keystore_units().

int sm_establish_keystore(struct device *dev, u32 unit);

Arguments:

dev Points to a struct device established to manage resources for the secure memory subsystem.

unit One of the units detected with a call to sm_detect_keystore_units().

Returns:

• Zero on successful return
• -EINVAL if the keystore subsystem was not initialized
• -ENOSPC if no memory was available for the allocation table and associated context data.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
215 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

8.1.12 Release Keystore

Releases all resources used by this keystore unit. No further calls to the keystore access interface can be
made.

void sm_release_keystore(struct device *dev, u32 unit);

Arguments:

dev Points to a struct device established to manage resources for the secure memory subsystem.

unit One of the units detected with a call to sm_detect_keystore_units().

8.1.13 Allocate a Slot from the Keystore

Allocate a slot from the keystore for use in all other subsequent operations by the keystore access interface.

int sm_keystore_slot_alloc(struct device *dev, u32 unit, u32 size, u32*slot);

Arguments:

dev Points to a struct device established to manage resources for the secure memory subsystem.

unit One of the units detected with a call to sm_detect_keystore_units().

size Desired size of data for storage in the allocated slot.

slot Pointer to the variable to receive the allocated slot number, once known.

Returns:

• Zero for successful completion.
• -EKEYREJECTED if the requested size exceeds the selected slot size.

8.1.14 Load Data into a Keystore Slot

Load data into an allocated keystore slot so that other operations (such as encapsulation) can be carried out
upon it.

int sm_keystore_slot_load(struct device *dev, u32 unit, u32 slot, constu8
 *key_data, u32 key_length);

Arguments:

dev Points to a struct device established to manage resources for the secure memory subsystem.

unit One of the units detected with a call to sm_detect_keystore_units().

key_length Length (in bytes) of information to write to the slot.

key_data Pointer to buffer with the data to be loaded. Must be a contiguous buffer.

Returns:

• Zero for successful completion.
• -EFBIG if the requested size exceeds that which the slot can hold.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
216 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

8.1.15 Demo Image Update

Encapsulate data written into a keystore slot as a Secure Memory Blob.

int sm_keystore_slot_encapsulate(struct device *dev, u32 unit, u32
inslot, u32 outslot, u16 secretlen, u8 *keymod, u16 keymodlen);

Arguments:

dev Points to a struct device established to manage resources for the secure memory subsystem.

unit One of the units detected with a call to sm_detect_keystore_units().

inslot Slot holding the input secret, loaded into that slot by sm_keystore_slot_load(). Note that the slot
containing this secret should be overwritten or deallocated as soon as practical, since it contains cleartext at this
point.

outslot Allocated slot to hold the encapsulated output as a Secure Memory Blob.

secretlen Length of the secret to be encapsulated, not including any blob storage overhead (blob key, MAC,
etc.).

keymod Key modifier component to be used for encapsulation. The key modifier allows an extra secret to be
used in the encapsulation process. The same modifier will also be required for decapsulation.

keymodlen Lenth of key modifier in bytes.

Returns:

• Zero on success
• CAAM job status if a failure occurs

8.1.16 Decapsulate Data in the Keystore

Decapsulate data in the keystore into a Black Key Blob for use in other cryptographic operations. A Black Key
Blob allows a key to be used "covered" in main memory without exposing it as cleartext.

int sm_keystore_slot_decapsulate(struct device *dev, u32 unit, u32
inslot, u32 outslot, u16 secretlen, u8 *keymod, u16 keymodlen);

Arguments:

dev Points to a struct device established to manage resourcesfor the secure memory subsystem.

unit One of the units detected with a call to sm_detect_keystore_units().

inslot Slot holding the input data, processed by a prior call to sm_keystore_slot_encapsulate(), and
containing a Secure Memory Blob.

outslot Allocated slot to hold the decapsulated output data in the form of a Black Key Blob.

secretlen Length of the secret to be decapsulated, without any blob storage overhead.

keymod Key modified component specified at the time of encapsulation.

keymodlen Lenth of key modifier in bytes.

Returns:

• Zero on success
• CAAM job status if a failure occurs
RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
217 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

8.1.17 Read Data From a Keystore Slot

Extract data from a keystore slot back to a user buffer. Normally to be used after some other operation (e.g.,
decapsulation) occurs.

int sm_keystore_slot_read(struct device *dev, u32 unit, u32 slot, u32
key_length, u8 *key_data);

Arguments:

dev Points to a struct device established to manage resources for the secure memory subsystem.

unit One of the units detected with a call to sm_detect_keystore_units().

slot Allocated slot to read from.

key_length Length (in bytes) of information to read from the slot.

key_data Pointer to buffer to hold the extracted data. Must be a contiguous buffer.

Returns:

• Zero for successful completion.
• -EFBIG if the requested size exceeds that which the slot can hold.

8.1.18 Release a Slot back to the Keystore

Release a keystore slot back to the available pool. Information in the store is wiped clean before the
deallocation occurs.

int sm_keystore_slot_dealloc(struct device *dev, u32 unit, u32 slot);

Arguments:

dev Points to a struct device established to manage resources for the secure memory subsystem.

unit One of the units detected with a call to sm_detect_keystore_units().

slot Number of the allocated slot to be released back to the store.

Returns:

• Zero for successful completion.
• -EINVAL if an unallocated slot is specified.

Configuration of the Secure Memory Driver / Keystore API is dependent on the following kernel configuration
parameters:

CRYPTO_DEV_FSL_CAAM_SM

Turns on the secure memory driver in the kernel build.

CRYPTO_DEV_FSL_CAAM_SM_SLOTSIZE

Configures the size of a secure memory "slot".

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
218 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Each secure memory unit is block of internal memory, the size of which is implementation dependent. This block
can be subdivided into a number of logical "slots" of a size which can be selected by this value. The size of
these slots needs to be set to a value that can hold the largest secret size intended, plus the overhead of blob
parameters (blob key and MAC, typically no more than 48 bytes).

The values are selectable as powers of 2, limited to a range of 32 to 512 bytes. The default value is 7, for a size
of 128 bytes.

CRYPTO_DEV_FSL_CAAM_SM_TEST

Enables operation of a captive test / example module that shows how one might use the API, while verifying its
functionality. The test module works along this flow:

• Creates a number of known clear keys (3 sizes).
• Allocated secure memory slots.
• Inserts those keys into secure memory slots and encapsulates.
• Decapsulates those keys into black keys.
• Enrcrypts DES, AES128, and AES256 plaintext with black keys. Since this uses symmetric ciphers, same-key

encryption/decryption results will be equivalent.
• Decrypts enciphered buffers with equivalent clear keys.
• Compares decrypted results with original ciphertext and compares. If they match, the test reports OK for each

key case tested.

Normal output is reported at the console as follows:

platform caam_sm.0: caam_sm_test: 8-byte key test match OK platform
caam_sm.0: caam_sm_test: 16-byte key test match OK platform caam_sm.0:
caam_sm_test: 32-byte key test match OK

• The secure memory driver is not implemented as a kernel module at this point in time.
• Implementation is presently limited to kernel-mode operations.
• One instance is possible at the present time. In the future, when job rings can run independently in different

system partitions, a multiple instance secure memory driver should be considered.
• All storage requests are limited to the storage size of a single slot (which is of a build-time configurable

length). It may be possible to allow a secret to span multiple slots so long as those slots can be allocated
contiguously.

• Slot size is fixed across all pages/partitions.
• Encapsulation/Decapsulation interfaces could allow for authentication to be specified; the underlying interface

does not request it.
• Encapsulation/Decapsulation interfaces return a job status; this status should be translated into a meaningful

error from errno.h

8.1.19 CAAM/SNVS - Security Violation Handling Interface Overview

This chapter describes a prototype of a driver component and control interface for SNVS Security Violations. It
provides a means of installing, managing, and executing application defined handlers meant to process security
violation events as a response to their occurrence in a system.

SNVS allows for the continuous monitoring of a number of possible attack vectors in a running system. If the
occurrence of one of these attach vectors is sensed, (e.g., a Security Violation has been detected), SNVS
can, along with erasing critical security parameters and transitioning to a failure state. generate an interrupt
indicating that the violation has occurred. This interrupt can dispatch an application-defined routine to take

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
219 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

cleanup action as a consequence of the violation, such that an orderly shutdown of security services might
occur.

Therefore, the purpose of this interface is to allow system-level services to install handlers for these types of
events. This allows the system designer to select how he wants to respond to specific security violation causes
using a simple function call written to his system-specific requirements.

8.1.20 Operation

For existing platforms, 6 security violation interrupt causes are possible within SNVS. 5 of these violation
causes are normally wired for use, and these causes are defined as:

• SECVIO_CAUSE_CAAM_VIOLATION - Violation detected inside CAAM/SNVS
• SECVIO_CAUSE JTAG_ALARM - JTAG activity detected
• SECVIO_CAUSE_WATCHDOG - Watchdog expiration
• SECVIO_CAUSE_EXTERNAL_BOOT - External bootload activity
• SECVIO_CAUSE_TAMPER_DETECT - Tamper detection logic triggered

Each of these causes can be associated with an application-defined handler through the API provided with this
driver. If no handler is specified, then a default handler will be called. This handler does no more than to identify
the interrupt cause to the system console.

8.1.21 Configuration Interface

The following interface can be used to define or remove application-defined violation handlers from the driver's
dispatch table.

8.1.22 Install a Handler

int caam_secvio_install_handler(struct device *dev, enum secvio_cause
cause, void (*handler)(struct device *dev, u32 cause, void *ext), u8
*cause_description, void *ext);

Arguments:

dev Points to SNVS-owning device.

cause Interrupt source cause from the above list of enumerated causes.

handler Application-defined handler, gets called with dev, source cause, and locally-defined handler argument

cause_description Points to a string to override the default cause name, this can be used as an alternate
for error messages and such. If left NULL, the default description string is used. ext pointer to any extra data
needed by the handler.

Returns:

• Zero on success.
• -EINVAL if an argument was invalid or unusable.

8.1.23 Remove an Installed Driver

int caam_secvio_remove_handler(struct device *dev, enum secvio_cause
cause);

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
220 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Arguments:

dev Points to SNVS-owning device.

cause Interrupt source cause.

Returns:

• Zero on success.
• -EINVAL if an argument was invalid or unusable.

8.1.24 Driver Configuration CAAM/SNVS

CRYPTO_DEV_FSL_CAAM_SECVIO

Enables inclusion of Security Violation driver and configuration interface as part of the build configuration. The
driver is not buildable as a module in its present form.

8.2 Display Content Integrity Checker (DCIC)

8.2.1 Introduction

The goal of the DCIC is to verify that a safety-critical information sent to a display is not corrupted.

The DCIC has the following features:

• Pixel clock up to 148.5 MHz
• Configurable polarity of Display Interface control signals
• 24-bit pixel data bus
• Up to 16 rectangular ROIs with a configurable location and size
• Independent CRC32 signature calculation for each ROI
• External controller mismatch indication signal

8.2.2 Source Code Structure

File Description

drivers/video/fbdev/mxc/mxc_dcic.c DCIC driver source code

include/uapi/linux/mxc_dcic.h DCIC User Space Header

Table 94. DCIC Driver Files

8.2.3 Menu Configuration Options

In menu configuration enable the following module:

Device Drivers -> Graphics support -> MXC DCIC

8.2.4 DTS Configuration

dcic_id = <0>; /* DCIC device index 0-dcic1, i-dcic2 */
dcic_mux = "dcic-lcdif1"; /* DCIC input select */

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
221 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Module i.MX 6SoloX i.MX 6Dual/6Quad

DCIC1 dcic_lvds
dcic_lcdif1

dcic-ipu0-di1
dcic-lvds0
dcic-lvds1
dcic-hdmi

DCIC2 dcic_lvds
dcic_lcdif2

dcic-ipu0-di0/dcic-ipu1-di0
dcic-lvds0
dcic-lvds1
dcic-mipi_dpi

Table 95. DCIC Input Select

8.2.5 IOCTLs Functions

The DCIC driver supports the following IOCTLs:

• DCIC_IOC_CONFIG_DCIC: Configures the DCIC input CLK, VSYNC, HSYNC, and data signal polarity.
• DCIC_IOC_CONFIG_ROI: Configures the ROI block size and reference signature.
• DCIC_IOC_GET_RESULT: Gets the result of the ROI calculated signature.

8.2.6 Structures

struct roi_params {
 unsigned int roi_n; /* ROI index */
 unsigned int ref_sig; /* Reference CRC32 */
 unsigned int start_y; /* start vertical lines of ROI */
 unsigned int start_x; /* start horizon lines of ROI */
 unsigned int end_y; /* end vertical lines of ROI */
 unsigned int end_x; /* end horizon lines of ROI */
 char freeze; /* state of ROI */
};

8.2.7 DCIC CRC Calculation Functions

There are four functions in this unit test to calculate reference signature:

crc32_calc_18of24bit() /* CRC calculate 18 bit of 24 */
crc32_calc_24bit() /* CRC calculate 24 */
crc32_calc_24of16bit() /* CRC calculate 24 bit of 16 */
crc32_calc_18of16bit() /* CRC calculate 18 bit of 16 */

DCIC calculates CRC according to the display bus width, but the display bus width does not always align with
bytes per pixel (bpp), and the four functions above can cover different display bus widths and bpps.

8.3 Smart Card Interface - Subscriber Identification Module (SIM)

8.3.1 Introduction

The Subscriber Identification Module (SIM) is designed to facilitate communication to SIM cards or Eurochip
prepaid phone cards, and compatible with ISO/IEC 7816-3 standards. The SIM module has one port that can be
used to interface with various cards. The interface with the Micro Controller Unit (MCU) is a 32-bit connection as
described in the reference document IP Bus Specification.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
222 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

8.3.2 Modes of Operation

The SIM module I/O interface can be operated in one of the three modes of operation summarized below.

• Two-wire interface: Both the IC pin RX and TX are used to interface to the SmartCard.
• External one-wire interface: The IC pins RX and TX are tied together externally to the IC and routed to the

SmartCard.
• Internal one-wire interface: The IC pin TX is routed to the SmartCard. The receive pin RX is connected to the

TX pin internally to the IC.

8.3.3 External Signal Description

• SIM_CLK: clock that the SIM module provides for the SmartCard. Typical frequencies are 1 MHz to 5 MHz.
This clock is 372 times the data rate that is on pin SIM_TRXD.

• SIM_RST_B: reset signal from the SIM to the SmartCard.
• SIM_SVEN: SmartCard power supply enable control signal.
• SIM_TRXD: transmitted/received date from SIM module to SmartCard.
• SIM_PD: SmartCard insertion detect.

8.3.4 Source Code Structure

File Description

drivers/mxc/sim/imx_sim.c SIM Driver

drivers/mxc/sim/imx_envsim.c SIM Env

Table 96. SIM Source

8.3.5 Menu Configuration Options

Configure the kernel option to enable the module by menuconfig:

Device Drivers > MXC support drivers > MXC SIM Support

8.3.6 Software Framework

The following figures show the SIM TX and RX software flows.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
223 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

SIM I0CTL XMT

aaa-053526

Copy xmt_1en
from user

Len>XMT_BUFFER
-EINVAL break

Copy xmt_buffer
from user

Clear rx buffer

Disable cwt
and bwt

Flush RX and TX fifo

XMT fill fifo

Set baud rate

T0: nack enable
T1: nack disable

Set timer counter

XMT start

Wait for comletion
Int timeout

Irq hander

Copy errval to user

Set rcving state
start rcv

Figure 39. SIM transmitting flow

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
224 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

SIM I0CTL RCV

aaa-053525

Copy rcv_len
from user

Copy to user
rcv_len = 0, erral = 0

Rcv_cnt>expected_c
nt goto cp_data

SIM_STATE_RCVING

Change RCV
threshold

Wait for comletion
Int timeout

Timeout Y Disable cwt and bwt
Irq_disable

Errval = - timeout

Copy data

Y Enable cwt and bwt
State = RCVING

Start rcv

Copy to user rcv_cnt

Copy to user rcv buffer

Copy to user errval

Copy errval to user

Rcv_head + = copy_cnt
Rcv_cnt - = copy_cnt

Figure 40. SIM receiving flow

8.4 Secure Non-Volatile Storage (SNVS)

8.4.1 Introduction

For more information on Secure Non-Volatile Storage (SNVS), see the i.MX Security Manual for the associated
SoC.

SNVS is a block that interfaces with CAAM and SRTC.

For SNVS services related to CAAM, see Section Driver Configuration CAAM/SNVS.

For SNVS services related to srtc, see Section SRTC Introduction

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
225 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

8.5 SNVS Real Time Clock (SRTC)

8.5.1 Introduction

The Real Time Clock (RTC) module is used to keep the time and date. It provides a certifiable time to the user
and can raise an alarm if tampering with counters is detected.

8.5.2 Hardware Operation

The RTC is a fake timer provided by the system controller firmware. It only supports basic function of read/set
time, read/set alarm.

8.5.3 Software Operation

The following sections describe the software operation of the RTC driver.

8.5.4 Driver Features

The RTC driver includes the following features:

• Implements the functions required by Linux OS to provide the real time clock and alarm interrupt
• Alarm wakes up the system from low power modes

8.5.5 Source Code Structure

The RTC module is implemented in drivers/rtc.

File Description

drivers/rtc/rtc-imxdi.c MX6 RTC driver

drivers/rtc/rtc-imx-sc.c MX8 RTC System Controller driver

drivers/rtc/rtc-imx-rpmsg.c RPMSG RTC driver

Table 97. RTC Driver Files

8.5.6 Menu Configuration Options

In menu configuration enable the following module:

For i.MX 6 select Device Drivers > Real Time Clock > Freescale IMX DryIce Real Time Clock

For i.MX 8 with SC select Device Drivers > Real Time Clock > NXP SC RTC support

For RPMSG select Device Drivers > Real Time Clock > NXP RPMSG RTC support

9 NXP eIQ Machine Learning

9.1 Overview of NXP eIQ Machine Learning

9.1.1 Introduction (ML)

Machine learning (ML) is a computer science domain having its roots in the 1960's. ML provides algorithms
capable of finding patterns and rules in data. ML is a category of algorithm that allows software applications
to become more accurate in predicting outcomes without being explicitly programmed. The basic premise

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
226 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

of ML is to build algorithms that can receive input data and use statistical analysis to predict an output while
updating outputs as new data becomes available. In 2010, a huge boom started called Deep Learning - it is a
fast-growing subdomain of ML, based on Neural Networks (NN). Inspired by the human brain, Deep Learning
has achieved state of the art results in various tasks (e.g., computer vision (CV), natural language processing
(NLP). Neural Nets are capable of learning complex patterns from millions of examples. Huge adaptation in the
embedded world is expected – an area where NXP is a leader. Continuing the effort of enabling its customers,
NXP has created NXP eIQ for i.MX, a set of ML tools which allows developing and deploying ML applications
on i.MX 8 QuadMax devices. This chapter contains an overview of specific areas of NXP eIQ machine learning
technology. For detailed execution of machine learning commands, see the i.MX Machine Learning User's
Guide (IMXMLUG).

9.1.2 OpenCV

OpenCV is an open source computer vision library and one of its modules, called ML, provides traditional
machine learning algorithms. Another important module in OpenCV is DNN; it provides support for neural
network algorithms.

OpenCV offers a unified solution for both neural network inference (DNN module) and classic machine learning
algorithms (ML module). By including many computer vision functions OpenCV makes it easier to build complex
machine learning applications in a short amount of time and without having dependencies on other libraries.

OpenCV has wide adoption in the Computer Vision field and is supported by a strong and very active
community. Key algorithms are specifically optimized for various devices and instructions sets. For i.MX,
OpenCV uses Arm NEON acceleration. Arm Neon technology is an advanced SIMD (single instruction
multiple data) architecture extension for the Arm Cortex-A series. Neon technology is intended to improve the
multimedia user experience by accelerating audio and video encoding/decoding, user interface, 2D/3D graphics
or gaming. Neon can also accelerate signal processing algorithms and functions to speed up applications such
as audio and video processing, voice and facial recognition, computer vision and deep learning.

At its core, the OpenCV DNN module implements an inference engine and does not provide any functionalities
for neural network training. For more details about supported models and supported layers, check the official
OpenCV Deep Learning page.

The OpenCV ML module contains classes and functions for solving machine learning problems e.g.
classification, regression or clustering. It involves algorithms such as support vector machine (SVM), decision
trees, random trees, expectation maximization, k-nearest neighbors, classic Bayes classifier, logistic regression,
and boosted trees.

9.1.3 Arm Compute

The Arm Compute Library is a collection of low-level functions optimized for Arm CPU and GPU architectures
targeted at image processing, computer vision, and machine learning. Arm computer is a convenient repository
of optimized functions that developers can source individually or use as part of complex pipelines to accelerate
algorithms and applications. Arm compute library also supports NEON acceleration. ARM computer can be
shown with examples using DNN models with random weights and inputs and AlexNet using the graph API.

9.1.4 TensorFlow Lite

TensorFlow Lite is a light-weight version of and a next step from TensorFlow. TensorFlow Lite is an open-source
software library focused on running machine learning models on mobile and embedded devices (available at
www.tensorflow.org/lite). It enables on-device machine learning inference with low latency and small binary size.
TensorFlow Lite also supports hardware acceleration using Android OS Neural Networks API. TensorFlow Lite
supports a set of core operators (both quantized and floating point) tuned for mobile platforms. They incorporate
pre-fused activations and biases to further enhance the performance and quantized accuracy. Additionally,
TensorFlow Lite also supports the use of custom operations in models.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
227 / 301

https://github.com/opencv/opencv/wiki/Deep-Learning-in-OpenCV
https://www.arm.com/why-arm/technologies/compute-library
www.tensorflow.org/lite
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

TensorFlow Lite defines a new model file format, based on FlatBuffers. FlatBuffers is an open-source, efficient,
cross-platform serialization library. It is similar to protocol buffers, but the primary difference is that FlatBuffers
does not need a parsing/unpacking step for a secondary representation before you can access the data, often
coupled with per-object memory allocation. Also, the code footprint of FlatBuffers is an order of magnitude
smaller than protocol buffers.

TensorFlow Lite has a new mobile-optimized interpreter, which has the key goal to keep apps lean and fast. The
interpreter uses static graph ordering and a custom (less-dynamic) memory allocator to ensure minimal load,
initialization, and execution latency.

9.1.5 ONNX Runtime

ONNX Runtime is an open source inference engine framework developed by Microsoft supporting ONNX model
format. ONNX Runtime runs on CPU with NEON and it also supports GPU/NPU hardware accelerators using
the execution providers. For more details about ONNX Runtime, check the official ONNX Runtime project
webpage.

9.1.6 PyTorch

PyTorch is an open source machine learning library used for applications, such as computer vision and natural
language processing. It is free and open-source software. PyTorch provides a Python package for high-level
features like tensor computation. For more details about PyTorch, check the official webpage www.pytorch.org.

9.1.7 DeepViewRT

DeepViewRT is a proprietary neural network inference engine optimized for NXP microprocessors and
microcontrollers, which not

only implements its own compute engine, but is also able to leverage popular 3rd-party ones.

9.1.8 TVM

TVM is an open deep learning compiler stack for CPUs, GPUs, and specialized accelerators. It aims to
close the gap between the productivity-focused deep learning frameworks, and the performance-oriented or
efficiency-oriented hardware backends.

10 Data Plane Development Kit (DPDK)

10.1 Introduction
Data Plane Development Kit (DPDK) is a user space packet processing framework.

The following section contains instructions for installing and configuring the user space DPDK v22.11 software.
Besides highlighting the applicable platforms, this guide describes steps for compiling and executing sample
DPDK applications in a Linux application (linuxapp) environment over i.MX boards.

10.1.1 Supported Platforms and Platform-Specific Details

DPDK supports i.MX 8M Mini, i.MX 8M Plus, i.MX 8DXL, i.MX 91, i.MX 93, i.MX 95, i.MX 943, and various
Layerscape family of SoCs. This section describes the port layout of their Design Boards. Port layout
information is especially relevant while executing DPDK applications to map DPDK port number to physical
ports.

The following provides the i.MX board-specific information.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
228 / 301

http://onnx.ai/
http://onnx.ai/
https://github.com/microsoft/onnxruntime
https://github.com/microsoft/onnxruntime
http://www.pytorch.org
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

10.1.1.1 i.MX 8M Mini EVK (i.MX 8MM)

8MM refers to the i.MX 8M Mini platform. For more information on i.MX 8MM, see nxp.com/imx8; i.MX 8M Mini |
Arm Cortex A53 | Cortex M4 | NXP Semiconductors.

Figure 41. i.MX 8M Mini Port Layout

Label on Case DPDK vdev Port Names

Eth1 net_enetfec

10.1.1.2 i.MX 8M Plus EVK (i.MX 8MP)

8MP refers to the i.MX 8M Plus platform. For more information on i.MX 8MP, see nxp.com/imx8; i.MX 8M Plus |
Cortex-A53/M7 | NXP Semiconductors.

Figure 42. i.MX 8M Plus Port Layout

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
229 / 301

https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-8-processors:IMX8-SERIES?tid=vanIMX8
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-8-processors/i-mx-8m-mini-arm-cortex-a53-cortex-m4-audio-voice-video:i.MX8MMINI
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-8-processors/i-mx-8m-mini-arm-cortex-a53-cortex-m4-audio-voice-video:i.MX8MMINI
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-8-processors:IMX8-SERIES?tid=vanIMX8
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-8-processors/i-mx-8m-plus-arm-cortex-a53-machine-learning-vision-multimedia-and-industrial-iot:IMX8MPLUS
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-8-processors/i-mx-8m-plus-arm-cortex-a53-machine-learning-vision-multimedia-and-industrial-iot:IMX8MPLUS
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Label on Case DPDK vdev Port Names

Eth1 net_enetfec

Eth2 net_enetqos

10.1.1.3 i.MX 8DXL EVK (i.MX 8DXL)

i.MX 8DXL refers to the NXP i.MX 8DXL EVK platform. For more information, see IMX8-SERIES and IMX8DXL-
EVK.

Figure 43. i.MX 8DXL EVK Port Layout

Label on Case DPDK vdev Port Name

ENET1 net_enetqos

10.1.1.4 i.MX 91 EVK (i.MX 91)

i.MX 91 refers to the NXP i.MX 91 EVK platform. For more information, see i.MX 91 and i.MX 9 Applications
Processors.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
230 / 301

https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-8-applications-processors:IMX8-SERIES
https://www.nxp.com/design/design-center/development-boards-and-designs/i-mx-evaluation-and-development-boards/i-mx-8xlite-evaluation-kit:MCIMX8DXL-WEVK
https://www.nxp.com/design/design-center/development-boards-and-designs/i-mx-evaluation-and-development-boards/i-mx-8xlite-evaluation-kit:MCIMX8DXL-WEVK
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-9-processors/secure-energy-efficient-i-mx-91-family-brings-essential-linux-capabilities-for-thousands-of-edge-applications:i.MX91
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-9-processors:IMX9-PROCESSORS
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-9-processors:IMX9-PROCESSORS
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Figure 44. i.MX 91 EVK Port Layout

Label on Case DPDK vdev Port Name

ENET1 net_enetqos

ENET2 net_enetfec

10.1.1.5 i.MX 93 EVK (i.MX 93)

i.MX 93 refers to the NXP i.MX 93 EVK platform. For more information, see i.MX 93 Evaluation Kit.

Figure 45. i.MX 93 port layout

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
231 / 301

https://www.nxp.com/design/design-center/development-boards/i-mx-evaluation-and-development-boards/i-mx-93-evaluation-kit:i.MX93EVK
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Label on Case DPDK vdev Port Name

ENET1 net_enetqos

ENET2 net_enetfec

10.1.1.6 i.MX 95 EVK (i.MX 95)

i.MX 95 refers to the NXP i.MX 95 EVK platform. For more information, see i.MX 95 Applications Processor
Family.

Figure 46. i.MX 95 port layout

Label on Case DPDK Port Name

ENET1 0002:00:02.0

10g ENET 0002:00:12.0

ENET2 0002:00:0a.0

Note:

• DPDK port names are the PCI addresses for the Ethernet ports and users might see a different name on the
board.

• Users need to use the lspci command to know the PCI addresses on the respective boards.
• TJA1103 or TJA1120 daughter card is required for enablement of the ENET2 port.

10.1.1.7 i.MX 943 EVK (i.MX 943)

i.MX 943 refers to the NXP i.MX 943 EVK platform. For more information, see i.MX 9 Applications Processors
and i.MX 94 Applications Processor.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
232 / 301

https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-9-processors/i-mx-95-applications-processor-family-high-performance-safety-enabled-platform-with-eiq-neutron-npu:iMX95
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-9-processors/i-mx-95-applications-processor-family-high-performance-safety-enabled-platform-with-eiq-neutron-npu:iMX95
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/i-mx-applications-processors/i-mx-9-processors:IMX9-PROCESSORS
http://nxp.com/products/i.MX94
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Label on Case DPDK Port Name

2.5G SGMII5/6 0000:00:00.0

1G RGMII 3 0001:01:08.0

1G RGMII 4 0001:01:10.0

10.1.2 References

Sample Applications DPDK Web Manual Link Description

Layer-2 Forwarding (l2fwd) l2fwd usage Layer 2 Forwarding sample application setup
and usage guide.

Layer-3 Forwarding (l3fwd) l3fwd usage Layer 3 Forwarding sample application setup
and usage guide.

PMD Test Application (testpmd) testpmd_usage Guide for test application which can be used
to test all PMD supported features.

DPDK Web Guide DPDK documentation Link to DPDK Web Manual containing
information about all supported PMD and
Applications.

Table 98. DPDK Application References

Component Base Upstream Release Version

DPDK 22.11

Table 99. Release References

10.2 DPDK Overview
Key goal of the DPDK is to provide a simple, complete framework for fast packet processing in data plane
applications. Using the APIs provided as part of the framework, applications can leverage the capabilities of
underlying network infrastructure.

The framework creates a set of libraries for target environments, layered through an Environment Abstraction
Layer (EAL), which hides all the device glue logic beneath a set of consistent APIs. These environments are
created through the use of configuration files. Once the EAL library is created, the user may link with the library
to create their own applications. Various other libraries, outside EAL, including the Hash, Longest Prefix Match
(LPM) and rings libraries are also available for performing specific operations. Sample applications are also
provided to help understand various features and uses of DPDK framework.

DPDK implements a run-to-completion model for packet processing where all resources must be allocated
prior to calling data plane applications, running as execution units on logical processing cores. In addition, a
pipeline model may also be used by passing packets or messages between cores via rings. This allows work to
be performed in stages, resulting in more efficient use of code on cores.

Data Plane Development Kit (DPDK) is a user space packet processing framework (under the Linux
Foundation), comprised of various user space libraries and drivers for fast packet processing. DPDK uses a
number of techniques to optimize packet throughput, how it works and the key to its performance is based
upon Fast-Path and Poll Mode Driver (PMD).

Fast-Path (Kernel bypass) - A fast-path is created from the NIC to the application within user space, in
turn, bypassing the kernel. This eliminates context switching when moving the frame between user space/
kernel space. Additionally, further gains are also obtained by negating the kernel stack/network driver and the
performance penalties they introduce.
RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
233 / 301

https://doc.dpdk.org/guides-22.11/sample_app_ug/l2_forward_real_virtual.html
https://doc.dpdk.org/guides-22.11/sample_app_ug/l3_forward.html
https://doc.dpdk.org/guides-22.11/testpmd_app_ug/index.html
https://doc.dpdk.org/guides-22.11/index.html
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Poll Mode Driver - Instead of the NIC raising an interrupt to the CPU when a frame is received, the CPU runs a
poll mode driver to constantly poll the NIC for new packets. However, this does mean that a CPU core must be
dedicated and assigned to running PMD.

More information on general working of DPDK can be found through DPDK website.

10.2.1 DPDK Platform Support

This section describes the NXP Data Path Acceleration Architecture. See the diagram below.

DPDK Applications
Customer

DPDK API

Ethernet PMD Event PMD

NICs

ENETQOS

DPAA2

DPAA 1

ENETC

ENETFEC

AESNI

Raw Dev PMD
EAL

Timers

Buffers Sync

Memory Kernel NW
Interface

DPAA2

VFIO

PE
X

Arch/ x86

Arch/ Power8

Arch/ ARMv8

IO & Acceleration Run Time services Network Services

FS
L-

M
C

Bu
s

DP
AA

 B
us

Crypto Drivers

Intel QAT

ARMCE

DPAA-SEC

DPAA2-SEC

DPAA
DPAA2 CMDIF

Resource Mgmt

Ap
pl

ic
at

io
ns

AP
I L

ay
er

Fr
am

ew
or

k
Pl

at
fo

rm
 sp

ec
ifi

c

ENETC4

Figure 47. DPDK architecture with NXP components

10.2.2 Supported DPDK Features

The following is the list of DPDK NIC features on i.MX 8M Mini, i.MX 8M Plus, i.MX 8DXL, i.MX 91, i.MX 93, and
i.MX 943:

• Basic statistics
• Packet type parsing
• Promiscuous mode
• L3/L4 checksum offload
• Linux
• Arm v8

Applications:

• dpdk-l2fwd
• dpdk-l3fwd
• dpdk-testpmd

– RX only, TX only and forward modes
• dpdk-fpr (only for i.MX 93)
• dpdk-pdump (only for i.MX 943)

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
234 / 301

http://dpdk.org/doc
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• dpdk-proc-info (only for i.MX 943)

Limitations:

• Multi-queue is not supported.

10.2.3 Supported DPDK Features on ENETC (i.MX 95)

The following is the list of DPDK NIC features:

• Basic stats
• Packet type parsing
• Promiscuous mode
• Multicast Promiscuous mode
• L3/L4 checksum offload
• Link speed/ status support
• Linux
• Arm v8
• MAC exact filter table filtering
• VLAN exact filter table filtering
• VLAN promiscuous
• Multi-queue supported
• Link status interrupt
• MTCP stack supported
• TSN QBV supported

Applications:

• dpdk-l2fwd
• dpdk-l3fwd
• dpdk-testpmd

– RX only, TX only and forward modes
• dpdk-pdump
• dpdk-proc-info
• dpdk-ip_fragmentation
• dpdk-ip_reassembly
• dpdk-fpr
• dpdk-test
• dpdk-ipsec-secgw
• dpdk-test-crypto-perf

Other Supported Network interfaces:

• PCI 1g card
• Tap and Virtio interfaces

10.3 Build DPDK
This section includes two subsections, which detail:

• Building DPDK binaries (libraries and sample applications) using the Yocto build system.
• Building DPDK binaries as standalone package, through DPDK's own build system.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
235 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

10.3.1 Build DPDK Using Yocto

DPDK is one of the application packages of the Yocto build system. This section describes method to build
DPDK as a standalone package within the Yocto environment. It is assumed that the Yocto environment has
already been configured before executing the commands below. See Download Yocto layers for complete
details of using the Yocto build system.

After the Yocto environment has been set up, the following commands can be used to build DPDK applications
and libraries. Generated files (libraries and binaries) would be available in the <yocto_sdk>/ bld-<Name>/
tmp/work/ <Machine>-poky-linux/dpdk/ folder. After the rootfs (root filesystem) is generated, the
binaries would be merged into it.

bitbake dpdk: It is assumed setup-environment was run before running this command.

See Build Yocto images for packing these binaries into the target rootfs using the Yocto build system. Yocto
environment by default compiles DPDK and place it in the rootfs.

Single image of DPDK binary supports Layerscape and i.MX platforms. Once the DPDK package has been
installed, binaries would be available in /usr/bin folder in the rootfs.

/usr/bin contains the sample applications listed in DPDK Application References.

At various places in this document, above binaries would be referred for representing execution as well as other
information. It is assumed that execution is being done either using the PATH variable set, as explained above,
or with absolute path to the binaries.

The following table lists various DPDK example applications, which are available in the Yocto generated rootfs.

File/Image name related to DPDK Description

/usr/bin/dpdk-l2fwd
/usr/bin/dpdk-l3fwd
/usr/bin/dpdk-testpmd
/usr/bin/dpdk-pdump
/usr/bin/dpdk-proc-info

DPDK Example applications and PMD test
application.

/usr/bin/dpdk-ip_fragmentation
/usr/bin/dpdk-ip_reassembly
/usr/bin/dpdk-fpr
/usr/bin/dpdk-ipsec-secgw
/usr/bin/dpdk-test
/usr/bin/dpdk-test-crypto-perf

Supported for i.MX 95 only.
dpdk-fpr for i.MX 93 and i.MX 95.

Table 100. DPDK Example Applications

10.3.2 Standalone Build of DPDK Libraries and Applications

This section describes the steps required to build DPDK binaries (libraries and example applications) in a
standalone environment. This environment can either be on a host enabled for cross building for Layerscape/
i.MX boards or directly on the Layerscape/i.MX target board.

Note: This section primarily focuses on standalone building of DPDK on a host machine using cross
compilation for Layerscape/i.MX boards as target. Though, necessary notes have been added to enable
compilation directly on target boards. See Download Yocto layers for creating an environment suitable for
building DPDK on Layerscape/i.MX boards.

For instructions on how to build DPDK using Yocto system, see Section 10.3.1.

Obtain the DPDK source code

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
236 / 301

https://docs.nxp.com/bundle/GUID-E5527A77-2F97-4244-BF9C-D08F068EFD16/page/GUID-0FE0ADA3-4DA0-4994-A8CF-424A31BE58FC.html
https://docs.nxp.com/bundle/GUID-E5527A77-2F97-4244-BF9C-D08F068EFD16/page/GUID-1309777B-41FC-491B-85D5-D3D5D29F73E4.html
https://docs.nxp.com/bundle/GUID-E5527A77-2F97-4244-BF9C-D08F068EFD16/page/GUID-0FE0ADA3-4DA0-4994-A8CF-424A31BE58FC.html
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

The DPDK source code contains all the necessary libraries for build example applications as well as test
applications. The source code also includes various configuration and scripts for supporting build and execution.
Obtain the DPDK source code using the link below:

git clone https://github.com/NXPmicro/dpdk.git

Once the above repository has been cloned, DPDK source code is available for compilation. This source is
common for the Layerscape and i.MX platforms.

Prerequisites before compiling DPDK

Before compiling DPDK as a standalone build, following dependencies need to be resolved independently:

• Platform compliant and compiled Linux Kernel source code so that KNI modules can be built.
– This is optional and if KNI module support is not required, this can be ignored.
– For details of compiling platform-compliant Linux kernel, see Download Yocto layers and Build Yocto images
– For disabling KNI module, see notes below

• OpenSSL libraries required for building software crypto driver (OpenSSL PMD).
– This is optional and if the software crypto driver support is not required, this dependency can be ignored.
– OpenSSL package needs to be separately compiled and libraries installed at a known path before DPDK

build can be done.

Follow the steps below to build OpenSSL as a standalone package:

git clone https://github.com/nxp-qoriq/qoriq-components_openssl -b integration
Clone the OpenSSL source code
cd openssl
Change into cloned directory
git checkout LSDK-21.08
Checkout the specific Tag supported by DPDK

Export the Cross Compilation tool chain for building OpenSSL for target. The following step for exporting cross
compilation toolchain is required only when compiling on Host. On a target board, it is assumed default build
toolchain would be used.

export CROSS_COMPILE=<path to uncompressed toolchain archive>/bin/aarch64-linux-
gnu-

Configure the OpenSSL build system with following command. The --prefix argument specifies a path where
OpenSSL libraries would be deployed after build completes. This is also a path which would be provided to
DPDK build system for accessing the compiled OpenSSL libraries.

./Configure linux-aarch64 --prefix=<OpenSSL library path> shared
make depend
make
make install
export OPENSSL_PATH=<OpenSSL library path>

Note:

When building DPDK on target board, it is possible that OpenSSL libraries required by DPDK are already
available as part of the rootfs, in which case external compilation of OpenSSL package would not be required.

To disable OpenSSL PMD support, see notes below.

Compiling DPDK using meson

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
237 / 301

https://docs.nxp.com/bundle/GUID-E5527A77-2F97-4244-BF9C-D08F068EFD16/page/GUID-0FE0ADA3-4DA0-4994-A8CF-424A31BE58FC.html
https://docs.nxp.com/bundle/GUID-E5527A77-2F97-4244-BF9C-D08F068EFD16/page/GUID-1309777B-41FC-491B-85D5-D3D5D29F73E4.html
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Follow the steps below to compile DPDK once the above prerequisites are resolved. These steps are common
for all platforms and are needed only when cross compiling on a host for all boards as target. In case of direct
compilation on target boards, it is assumed that prerequisites would be satisfied using the root filesystem.

1. Set up the environment for compilation:
a. This step is required only in the host environment where default toolchain is not for target boards. When

compiling on a target board, this step can be skipped.

export CROSS_PATH=<path to cross-compile toolchain>
export PATH=$PATH:$CROSS_PATH

b. Set up OpenSSL path for software crypto drivers (OpenSSL PMD). This is optional and can be skipped
in case software crypto driver (OpenSSL PMD) support is not required. These external variables can
also be used to pass other required libraries for example libpcap.

2. Use DPDK build system for compiling DPDK.
Note: DPDK binaries generated using below steps are compatible for Layerscape and i.MX platforms. This
is also valid when DPDK is build through Yocto build system.
a. Execute the following command:

meson arm64-build --cross-file config/arm/<config_file> -Dexamples =
 <list of example applications to be compiled separated by commas> -
Dprefix=<location to install DPDK>
ninja -C arm64-build

Here, -Dprefix and -Dexamples are optional parameters. Dprefix parameter is used to deploy
all the DPDK binaries (libraries and example applications) to a standard Linux package-specific layout
within a directory represented by this parameter. Alternatively, a directory dpdk/arm64-build/ is also
created and binaries and libraries are also available in it. install parameter is also not required in the
ninja command, if installation is not required. Dexamples is used to compile required examples. In
case you need to compile only drivers, this parameter is not needed.
Note: The config_file here should be arm64_imx_linux_gnu_gcc for i.MX 93, i.MX 91, and
i.MX 95 boards (Cortex-A55 platforms).
For other platforms: arm64_dpaa_linux_gnu_gcc should be used.

b. Once the example applications are compiled, the binaries are available in the DPDK build directory with
prefix “dpdk”-:

dpdk/arm64-build/examples/*

Besides the example application above, DPDK also provides some sample test applications, which can
be used for comprehensive verification of the DPDK driver (PMD) features for available and compatible
devices. These sample test applications are compiled by default during the DPDK source compilation.
These are available in the dpdk/arm64-build/app/ directory.

10.4 Flashing the Target board
The Universal Update Utility (UUU) runs on a Windows or Linux OS host and is used to download images to
different devices on an i.MX board.

For how to flash the target board, see the section “Universal update utility” in the i.MX Linux User's Guide
(UG10163).

10.5 Running DPDK

10.5.1 Test environment setup

Various sample application execution steps are described in the following sections. The following figure shows
the setup containing the DUT (Device Under Test) and the Packet Generator (Spirent packet generator). This is
RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
238 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

applicable for the commands provided in following section. The setup includes a one-to-one link between DUT
and Packet generator unit. DPDK application running on the DUT is expected to forward the traffic.

Packet
generator

e.g. spirent Tx
Interface #x

Rx
Interface #x

aaa-053512

Board

DPDK
application

Figure 48. DPDK application setup

10.5.2 Prerequisites to boot the board

The following steps must be performed on the U-Boot for all the i.MX platforms.

10.5.2.1 Update bootargs

Bring up the board with proper images and add the folllowing parameters in mmcargs:

U-Boot> edit mmcargs
edit: <default_board_specific_args> <hugepages> <imx-95-params> <imx-mem-
params>;
U-Boot > saveenv

• default_board_specific_args are the default boot arguments. For example, it can be like:

mmcargs=setenv bootargs ${jh_clk} console=${console} root=${mmcroot}

• hugepages can be used to add the hugepages:

default_hugepagesz=2m hugepagesz=2m hugepages=256

Note:
The number of hugepages can be increased/decreased, which depends on the system memory availablity
and application requirements.
Only 2MB size hugepages are supported on all i.MX SoCs except for i.MX 95. i.MX 95 also supports 1G
size hugepages along with 2MB size pages. It is mandatory to have a few 2MB size hugepages even if the
application needs only 1G size hugepages.
This is because Ethernet RX/TX rings only use 2MB size hugepage memory. Therefore, it need to reserve the
number of RX and TX rings + addtional a few (at least 4) 2MB size hugepages as well as along with 1G size
hugepages. Addtional 2MB hugepages are required for DPDK eal library to reserve the memory from 2MB
size hugepages.
For example, if the application needs to use one 1G hugepage and 6 RX + 6 TX queues, at least one 1G and
16 2MB size pages must be reserved:

default_hugepagesz=1024m hugepagesz=1024m hugepages=1 hugepagesz=2m
 hugepages=16

On the kernel console, to use both hugepages, mount the hugepages as follows:

mkdir /mnt/huge_1G
mkdir /mnt/huge_2M
mount -t hugetlbfs -o pagesize=1G none /mnt/huge_1G
mount -t hugetlbfs -o pagesize=2M none /mnt/huge_2M

• imx-95-params are only for the i.MX 95 platform:

iommu.passthrough=1

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
239 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• imx-mem-params is used to reserve the initial DDR memory from U-Boot through the mem environment
variable. It needs to be set on platforms with FEC/eQoS Ethernet interfaces as the BD ring of FEC/eQoS
interfaces can only accept 32-bit addresses.

mem=2096M

For optimized performance on the i.MX platforms, perform the following steps:

1. Add isolcpus=<core_list> in mmcargs to add the CPUs planned to be used for DPDK applications.

Where <core_list> is:
For i.MX 8MM, 8MP: 1-3
For i.MX 8DXL: 1
For i.MX 93: 1
For i.MX 95: 1-5

Note:
• i.MX 8DXL and i.MX 93 have only 2 cores, but to reserve the core 1 for DPDK, we can provide
core_list=1 for both platforms.

• i.MX 91 has only core 0, so the option isolcpus cannot be used.
2. Add the following parameters in mmcargs to set the CPU not to enter idle mode:

`cpuidle.off=1 cpufreq.off=1`

3. Set the system in performance mode (applicable only if the system does not support the option
cpufreq.off=1 in bootargs):

echo performance | sudo tee /sys/devices/system/cpu/cpu*/cpufreq/
scaling_governor
grep . /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor

Note:

If the governor is not supported, check the lpm-mode. For example, for the i.MX 93 board:

root@imx93evk:~# cat /sys/devices/platform/imx93-lpm/mode
System is in OD mode with DDR 3733 MTS!

You can set it as :
root@:~# echo 0 > /sys/devices/platform/imx93-lpm/mode
System switching to OD mode...
root@:~# cat /sys/devices/platform/imx93-lpm/mode
System is in OD mode with DDR 3733 MTS!

For ENET-FEC and ENET-QOS on all i.MX platforms:

Check the properties such as reset-gpios, reset-assert-us, and reset-deassert-us for the Ethernet
node on U-Boot using the following command:

fdt print

For details of the fdt command, see Section 10.5.2.2.

If these properties are present in the Ethernet node, remove it as it may cause issues in the forwarding. Use the
following command on the U-Boot:

=> fdt rm /<soc>/<bus>/<ethernet>/mdio/<ethernet-phy>/ "property";
 eg. fdt rm /soc@0/bus@42800000/ethernet@42890000/mdio/ethernet-phy@2
 "reset-gpios";

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
240 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

10.5.2.2 Device Tree file

For the i.MX platforms, DPDK-specific Device Tree file should be used to boot up the board. This Device Tree
file is configured to provide user space applications with network interfaces. Once the Device Tree configuration
mentioned above is used, all the Ethernet ports would be available in the user space only except the i.MX 95
platform. Changes to the Device Tree file would be required to assign some of the ports to Linux Kernel.

Users can use the following method to replace the default dtb to support DPDK on the i.MX platforms.

Execute these commands on U-Boot for i.MX 8M Mini:

U-Boot > setenv fdtfile imx8mm-evk-dpdk.dtb
U-Boot > saveenv
U-boot > boot

Execute these commands on U-Boot for i.MX 8M Plus:

U-Boot > setenv fdtfile imx8mp-evk-dpdk.dtb
U-Boot > saveenv
U-boot > boot

Execute these commands on U-Boot for i.MX 8DXL:

U-Boot > setenv fdtfile imx8dxl-evk.dtb; setenv loadkernel 'fatload mmc
 ${mmcdev}:${mmcpart} ${loadaddr} Image';
U-Boot > setenv loadfdt 'fatload mmc ${mmcdev}:${mmcpart} ${fdt_addr}
 ${fdt_file}';
U-Boot > run loadkernel; run loadfdt; fdt addr ${fdt_addr};
U-Boot > fdt set /bus@5b000000/ethernet@5b050000 compatible "fsl,imx-enet-qos"
 "snps,dwmac-5.10a";
U-Boot > setenv bootcmd 'mmc dev ${mmcdev};run mmcargs; booti ${loadaddr} -
 ${fdt_addr};'

Execute these commands on U-Boot for i.MX 91:

U-Boot > setenv fdtfile imx91-11x11-evk.dtb
U-Boot > setenv loadkernel 'fatload mmc ${mmcdev}:${mmcpart} ${loadaddr} Image'
U-Boot > setenv loadfdt 'fatload mmc ${mmcdev}:${mmcpart} ${fdt_addr}
 ${fdtfile}';
U-Boot > run loadkernel; run loadfdt; fdt addr ${fdt_addr};
U-Boot > fdt set /soc@0/bus@42800000/ethernet@42890000 compatible "fsl,imx8mm-
fec-uio";
U-Boot > fdt set /soc@0/bus@42800000/ethernet@428a0000 compatible "fsl,imx-enet-
qos" "snps,dwmac-5.10a";
U-Boot > fdt resize 4096;
U-Boot > fdt set /aliases "ethernet1" "/soc@0/bus@42800000/ethernet@428a0000";
U-Boot > setenv bootcmd 'mmc dev ${mmcdev}; run mmcargs; booti ${loadaddr} -
 ${fdt_addr};'

Execute these commands on U-Boot for i.MX 93:

U-Boot > setenv fdtfile imx93-11x11-evk.dtb
U-Boot > setenv loadkernel fatload mmc ${mmcdev}:${mmcpart} ${loadaddr} Image;
U-Boot > setenv loadfdt 'fatload mmc ${mmcdev}:${mmcpart} ${fdt_addr_r}
 ${fdtfile}';
U-Boot > run loadkernel; run loadfdt; fdt addr ${fdt_addr_r};
U-Boot > fdt set /soc@0/bus@42800000/ethernet@42890000 compatible "fsl,imx8mm-
fec-uio";

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
241 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

U-Boot > fdt rm /soc@0/bus@42800000/ethernet@42890000/mdio/ethernet-phy@2
 "reset-gpios";
U-Boot > fdt rm /soc@0/bus@42800000/ethernet@42890000/mdio/ethernet-phy@2
 "reset-assert-us";
U-Boot > fdt rm /soc@0/bus@42800000/ethernet@42890000/mdio/ethernet-phy@2
 "reset-deassert-us";
U-Boot > fdt set /soc@0/bus@42800000/ethernet@428a0000 compatible "fsl,imx-enet-
qos" "snps,dwmac-5.10a";
U-Boot > fdt resize 4096;
U-Boot > fdt set /aliases "ethernet1" "/soc@0/bus@42800000/ethernet@428a0000";
U-Boot > fdt rm /soc@0/bus@42800000/ethernet@428a0000/mdio/ethernet-phy@1
 "reset-gpios";
U-Boot > fdt rm /soc@0/bus@42800000/ethernet@428a0000/mdio/ethernet-phy@1
 "reset-assert-us";
U-Boot > fdt rm /soc@0/bus@42800000/ethernet@428a0000/mdio/ethernet-phy@1
 "reset-deassert-us";
U-Boot > run mmcargs; sleep 1; booti ${loadaddr} - ${fdt_addr};

Execute these commands on U-Boot for i.MX 95 (Cortex-A core):

U-Boot > setenv fdtfile imx95-19x19-evk.dtb
U-Boot > saveenv
U-boot > boot

Execute these commands on U-Boot for i.MX 95 (Cortex-M7 core):

U-Boot > setenv fdtfile imx95-19x19-evk-netc-rpmsg.dtb
U-Boot > saveenv
U-boot > boot

Execute these commands on U-Boot for i.MX 943 (SGMII ports):

U-Boot > setenv fdtfile imx943-evk-sgmii.dtb
U-Boot > saveenv
U-Boot > boot

10.5.3 Prerequisites for running DPDK applications on Linux OS

When the Linux OS is up, perform the following steps before running the DPDK applications:

1. Load the non-cacheable module.

modprobe kpage_ncache.ko

2. Manually allocate hugepages if required.

echo 448 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

Note: Users may not be required to allocate hugepages if they are already added from the kernel bootargs.
It can be checked using:

cat /proc/cmdline

10.5.4 Executing DPDK applications

This section describes how to execute DPDK sample applications on i.MX platforms.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
242 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

10.5.4.1 Executing DPDK applications on i.MX 8M Mini, i.MX 8M Plus, i.MX 8DXL, i.MX 91, and
i.MX 93 platforms

Note:

• The following command snippets assume that the commands are executed while being present in /usr/bin
or appropriate PATH variable has been set.

• i.MX 8M Mini supports ENETFEC Ethernet interface.
• i.MX 8DXL supports ENETQOS Ethernet interface.
• i.MX 8M Plus, i.MX 93, and i.MX 91 support ENETFEC and ENETQOS Ethernet interfaces.
• User must provide the --vdev argument with the value net_enetfec to enable ENETFEC Ethernet device

and/or --vdev argument with the value net_enetqos to enable ENETQOS Ethernet device for DPDK
applications.

l2fwd– Layer 2 forwarding application

Sample application to show forwarding between multiple ports based on the Layer 2 information:

dpdk-l2fwd -c 0x1 -n 1 --vdev 'net_enetfec' -- -p 0x1
dpdk-l2fwd -c 0x1 -n 1 --vdev 'net_enetqos' -- -p 0x1
dpdk-l2fwd -c 0x3 -n 1 --vdev 'net_enetqos' --vdev 'net_enetfec' -- -p 0x3 -T 0
 -P

In the command above: -c refers to the core mask for the cores to be assigned to DPDK. -p is the port mask
for the ports to be used by the application. Other command line parameters may also be provided. For a
complete list, see L2Forwarding Sample Application (in Real and Virtualized Environments).

Note:

DPDK L2fwd application periodically prints the I/O stats. To avoid CPU core to be interrupted because of these
scheduled prints, the -T 0 option can be appended atthe end of the command line.

l3fwd– Layer 3 forwarding application

Sample application to show forwarding between multiple ports based on the Layer 3 information:

dpdk-l3fwd -c 0x1 --vdev='net_enetfec' -n 1 -- -p 0x1 --config="(0,0,0)" -P --
 parse-ptype
dpdk-l3fwd -c 0x1 --vdev='net_enetqos' -n 1 -- -p 0x1 --config="(0,0,0)" -P --
 parse-ptype
dpdk-l3fwd -c 0x3 -n 1 --vdev 'net_enetqos' --vdev 'net_enetfec' -- -p 0x3 -P --
config="(0,0,1)(1,0,1)" --parse-ptype

In the command above: -c refers to the core mask for the cores to be assigned to DPDK. -p is the port mask
for the ports to be used by application. --config is the (Port, Queue, Core) configuration used by the
application for attaching cores to queues on each port. Other command line parameters may also be provided.
For a complete list, see L3Forwarding Sample Application.

dpdk-testpmd

Sample application used for the functionality test. It ensures that the traffic generator to board connectivity
is proper. You may run dpdk-testpmd in tx_only mode to validate, if the packets are going out on
specific interfaces. For the information about the testpmd application and its supported arguments, see
webdocumentation.

• For TX only:

dpdk-testpmd -c 0x1 -n 1 --vdev='net_enetfec' -- -i --portmask=0x1 --nb-ports=1
 --forward-mode=rxonly

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
243 / 301

https://doc.dpdk.org/guides-22.11/sample_app_ug/l2_forward_real_virtual.html
http://doc.dpdk.org/guides-22.11/sample_app_ug/l3_forward.html
http://doc.dpdk.org/guides-22.11/testpmd_app_ug/index.html
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

dpdk-testpmd -c 0x3 -n 1 --vdev 'net_enetqos' -- -i --portmask=0x2 --nb-ports=1
 --forward-mode=txonly

• For RX only:

dpdk-testpmd -c 0x1 -n 1 --vdev='net_enetfec' -- -i --portmask=0x1 --nb-ports=1
 --forward-mode=txonly
dpdk-testpmd -c 0x1 -n 1 --vdev 'net_enetqos' -- -i --portmask=0x2 --nb-ports=1
 --forward-mode=rxonly

• For IO:

dpdk-testpmd -c 0x1 -n 1 --vdev=’net_enetfec’ -- -i --portmask=0x1 --nb-ports=1
 --forward-mode=io
dpdk-testpmd -c 0x1 -n 1 --vdev 'net_enetqos' -- -i --portmask=0x2 --nb-ports=1
 --forward-mode=io
dpdk-testpmd -c 0x3 -n 1 --vdev 'net_enetqos' --vdev 'net_enetfec' -- -i --
portmask=0x3 --nb-ports=2 --forward-mode=io

10.5.4.2 Executing DPDK applications on i.MX 95 platform

On i.MX 95, DPDK supports VF for both enetc-1g and enetc-10g interfaces.

Note:

Users must provide the --vdev argument with the value net_tap0 for tap interface and virtio_user0 for
the i.MX 95 platform in TAP/Virtio-ENETC use-case.

10.5.4.2.1 Setting up the ENETC Ethernet interfaces

Note: In the following steps, we are creating VF0 and running DPDK on it.

Perform the following steps to set up each ENETC interface:

1. Configure multiple queues (if required as per usecase).
Devlink utilty in Linux OS can be used to configure multiple queues in the initialization process of PF. The
number of rings allocated to each SI is at least 1.
a. Example to set the number of rings of PF to 1, VF0 to 6, and VF1 to 1:

devlink dev param set pci/0002:00:10.0 name si_num_rings cmode driverinit
 value 0106

Note:
Here, 0002:00:10.0 is the PF PCI address. The value is a string type value. Numerically higher VFs
have lower bytes of the string. For example, if one ENETC supports 2 VFs, and the string is set to "304"
or "0304", then the ring allocation for each VF is shown below:

VF0 = 0x04
VF1 = 0x03

The number of rings of PFs is not explicitly presented in the string, because the remaining number of
rings is reserved for PF.

b. Run the devlink reload command to apply the new configuration.

devlink dev reload pci/0002:00:10.0

c. Verify the value of si_num_rings.

devlink dev param show pci/0002:00:10.0 name si_num_rings

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
244 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Example output:

pci/0002:00:10.0:
name si_num_rings type driver-specific
values:
cmode driverinit value 0106

Note: For Arm Cortex-M7, VF0 is configured to support 3 queues and VF1 is configured to support 4
queues and it is not user configurable.

2. Bind VFs to the DPDK.

echo 1 > /sys/bus/pci/devices/0002\:00\:00.0/sriov_numvfs

Note: Use dpdk-devbind.py -s to identify the PCI address of the 1g and 10g ports, like
0002:00:00.0 in the example above.
Check dmesg logs to identify the PCI address of the VF created.
Example kernel logs for VF:

[2002.156985] fsl_enetc_vf 0002:00:12.0: enabling device (0000 -> 0002)
[2002.517997] uio_pci_generic 0002:00:12.0: enabling device (0000 -> 0002)
[2002.543684] uio_pci_generic 0002:00:12.0: No IRQ assigned to device: no
 support
for interrupts?

Use dpdk-devbind.py to bind VF to DPDK:

dpdk-devbind.py -b uio_pci_generic <vf-pci-addr>

Note: Users must use the igb_uio module instead of uio_pci_genric for link status interrupts.
According to the logs above, 0002:00:12.0 is the <vf-pci-addr>.

3. Enable trust for the specified VF user by specifying the PF eth interface. (Not required on the Cortex-
M7.)

ip link set <eth-interface> vf 0 trust on

Check the eth interface using:

eg. ./dpdk-devbind.py -s [In below o/p eth0 is the PF eth interface]
 0002:00:00.0 'Device e101' if=eth0 drv=fsl_enetc4 unused=vfio-
pci,uio_pci_generic

10.5.4.2.2 Running DPDK on i.MX 95

Execute the following command to run the DPDK application on i.MX 95:

./dpdk-l2fwd -c 0x3 -n 1 -- -p 0x1

./dpdk-l3fwd -c 0x2 -n 1 -- -p 0x1 -P --config="(0,0,1)"

./dpdk-testpmd -c 0x3 -n 1 -- -i --portmask=0x1

./dpdk-ip_fragmentation -c 0x2 -n 1 -- -p 0x1

./dpdk-ip_reassembly -c 0x2 -n 1 -- -p 0x1

Examples to run DPDK with multi-queues:

./dpdk-l3fwd -c 0x3f -n 1 -- -p 0x1 -P --config="(0,0,1) (0,1,2) (0,2,3) (0,3,4)
 (0,4,5) (0,5,0)"
./dpdk-testpmd -c 0x3f -n 1 -- -i --portmask=0x1 --rxq=5 --txq=5

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
245 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

10.5.4.2.3 OpenSSL-based applications

OpenSSL-based applications include the following:

• dpdk-test application:
The dpdk-test application is a command-line interface that facilitates running various tests or test suites.
It can be used to do functional testing of the drivers and libraries. The binary is tested for various algos and
protocols in Crypto PMDs.

dpdk-test --vdev 'crypto_openssl' --log-level=6
RTE>> cryptodev_openssl_asym_autotest

For more details, see dpdk-test.
• dpdk-test-crypto-perf application:

The dpdk-test-crypto-perf tool is a DPDK utility that allow to measure the performance parameters of
PMDs available in the Crypto tree. There are two measurement types available: throughput and latency. This
application is tested using the crypto_perf_test.sh script.

crypto_perf_test.sh openssl

For more details, see dpdk-test-crypto-perf.
• IPsec Gateway dpdk-ipsec-secgw application:

General setup:
– For IPsec application, two DUTs need to be configured as endpoint 0 (ep0) and endpoint 1 (ep1).
– Connect Port 1 and Port 1 of the ep0 and ep1 to each other (back-to-back).
– Connect Port 0 and Port 0 of the ep0 and ep1 to packet generator (for example, Spirent).
The sample configurations for both ep0 and ep1 are available at /etc/dpdk/.
Custom port mappings, SA/SP and the routes can be configured in the corresponding configuration file named
ep0.cfg and ep1.cfg for respective endpoint.
– Endpoint 0 command:

dpdk-ipsec-secgw -c 0x8 --vdev 'crypto_openssl' -- -p 0x2 -P --
config="(1,0,3)" -f /etc/dpdk/ep0_64X64.cfg

– Endpoint 1 command:

dpdk-ipsec-secgw -c 0x8 --vdev 'crypto_openssl' -- -p 0x2 -P --
config="(1,0,3)" -f /etc/dpdk/ep1_64X64.cfg

For more details, see dpdk-ipsec-secgw.

10.5.4.2.4 PSI-VSI MBOX messaging

DPDK supports VF to send messages to PF by the VSI-TO-PSI messaging mechanism. It can be used for
supporting features not under VF's control.

Currently, the following features have been supported using this mechanism:

• VF primary MAC based filtering
• Enable/Disable Promiscuous mode
• Enable/Disable Allmulti MAC mode
• Get link status
• Get link speed
• MAC Exact Match filtering
• VLAN Exact Match filtering
• Enable/Disable VLAN promiscous mode
• Link status interrupts

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
246 / 301

https://doc.dpdk.org/guides/contributing/unit_test.html
https://doc.dpdk.org/guides/tools/cryptoperf.html
https://doc.dpdk.org/guides/sample_app_ug/ipsec_secgw.html
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

1. Follow Section 10.5.4.2.1.
2. (Optional) Control the timeout and delay time counters with env. variables.

export ENETC4_VSI_WAIT_DELAY_UPDATE=<val>
export ENETC4_VSI_WAIT_TIMEOUT_UPDATE=<val>

Note: Using these parameters, users have control over the waiting time for PSI to process message sent
by VSI.

3. Enable trust for the specified VF user by specifying the PF eth interface. (Not required on the Cortex-
M7.)

ip link set <eth-interface> vf 0 trust on

Check the eth interface using:

eg. ./dpdk-devbind.py -s [In below o/p eth0 will be the PF eth interface]
0002:00:00.0 'Device e101' if=eth0 drv=fsl_enetc4 unused=vfio-
pci,uio_pci_generic

4. Run the dpdk-testpmd application:

./dpdk-testpmd -c 0x3 -n 1 -- -i --portmask=0x1

5. These features can be tested using dpdk-testpmd using its runtime functions below:

mac_addr set <port_id> <valid_mac_address> /* Set Primary MAC */
set promisc <port_id> off/on /* Enable/Disable promiscuous mode
 */
set allmulti <port_id> off/on /* Enable/Disable allmulti MAC
 mode */
show port info <port_id> /* Get link status/speed */

See webdocumentation for the information on the dpdk-testpmd application runtime functions.

To add the MAC adddress exact match entry:

1. Disable the promiscuous mode to test the MAC entries filtering.

set promisc <port_id> off

2. Run the following command to add the exact match MAC address entry:

mac_addr add <port_id> <valid_mac_address>

To add/remove the VLAN exact match entry:

Run the following commands on the dpdk-testpmd the command line interface to disable the VLAN promisc
mode and set the VLAN filter mode for the port:

vlan set filter on <port_id>

Note: By default, the VLAN promisc mode is enabled.

Once the VLAN promisc is off, add the exact match VLAN entries:

rx_vlan add <vlan_id> <port_id>

If required, the entry can be removed using the following command:

rx_vlan rm <vlan_id> <port_id>

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
247 / 301

http://doc.dpdk.org/guides-22.11/testpmd_app_ug/index.html
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

To enable promisc mode and unset VLAN filter mode for the port:

vlan set filter off <port_id>

Note: Currently, the maximum MAC and VLAN address exact match filter table entries that can be added are 4
per ENETC.

To register link status interrupts:

DPDK is dependant on the igb_uio module instead of uio_pci_genric for interrupts.

Run the following commands to bind the device to igb_uio:

insmod igb_uio.ko or modprobe igb_uio
echo igb_uio > /sys/bus/pci/devices/0002\:00\:12.0/driver_override
echo 0002:00:12.0 > /sys/bus/pci/drivers/fsl_enetc_vf/unbind
echo 0002:00:12.0 > /sys/bus/pci/drivers/igb_uio/bind

Run dpdk-testpmd to check the status interrupts:

./dpdk-testpmd -c 0xc --log-level=*:debug -n 1 -- -i --portmask 0x1

Open a new terminal and try to change the link status using either the following commands or attach and de-
attach the cable:

$ ifconfig eth1 down
$ ifconfig eth1 up

Note: Here, eth1 is the PF interface.

Then users can observe the link change notifications on the console. It may take a few seconds to get the
notification of link up.

10.5.4.2.5 Running DPDK on VF1

i.MX 95 supports maximum two VFs. To test DPDK with second VF, perform the following steps. In this use-
case, two VFs are created, VF0 is owned by the kernel and VF1 is owned by DPDK.

1. Run the devbind.py script for the device ID.

./dpdk-devbind.py -s

2. Create two VFs, one for DPDK and one for the kernel.

echo 2 > /sys/bus/pci/devices/0002\:00\:10.0/sriov_numvfs

3. Check dmesg logs to identify the PCI address of the VF1 created.

Example kernel logs for VF:
[107.122861] pci 0002:00:12.0: [1131:ef00] type 00 class 0x020001
[107.230531] fsl_enetc_vf 0002:00:12.0: enabling device (0000 -> 0002)
[107.232173] pci 0002:00:14.0: [1131:ef00] type 00 class 0x020001
[107.342547] fsl_enetc_vf 0002:00:14.0: enabling device (0000 -> 0002)

4. Use dpdk-devbind.py to bind VF1 to DPDK:

dpdk-devbind.py -b uio_pci_generic <vf1-pci-addr>

As per the logs above, 0002:00:14.0 is the <vf1-pci-addr>.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
248 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

5. Enable trust for the specified VF user by specifying the PF eth interface.

ip link set <eth-interface> vf 1 trust on

Check eth interface using:

eg. ./dpdk-devbind.py -s [In below o/p eth0 is the PF eth interface]
0002:00:00.0 'Device e101' if=eth0 drv=fsl_enetc4 unused=vfio-
pci,uio_pci_generic

6. Run the following commands:

./dpdk-l2fwd -c 0x3 -n 1 -- -p 0x1

./dpdk-l3fwd -c 0x2 -n 1 -- -p 0x1 -P --config="(0,0,1)"

Note:

• i.MX 95 supports the maximum frame size to 2000 Bytes.
• Availability of Multiple queues is dependent on the ENETC PF driver (Arm core kernel driver or Cotex-M7 core

driver).
• RSS is enabled on using multiple queues.

– The RSS secret key is a random key.
– Enabled RSS hash functions are IP source address, IP destination address, UDP/TCP source port, and

UDP/TCP destination port.
• Receive queues are equally configured in the RSS indirection table to receive flows.
• Hardware Packet type parsing for supported packets is enabled by default.
• Checksum validation offload is enabled by default.
• Only 1G Intel Gigabit PCI-E Network Adapter EXPI9301CTBLK is supported.
• Only ENETC 10G interface is supported with the Cortex-M7 image.
• ip_fragmentation and ip_reassembly can receive only up to 2000 bytes.
• Link status change notifications are supported with the igb_uio framework only. It may take a few seconds

to get the link status UP notification.

10.6 Executing DPDK applications on i.MX 943 platform
Note: Only the internal ENETC port supports VF, which is connected to the switch CPU port. External ENETC
ports do not support VF.

1. Create and configure the bridge with two switch ports:

 ip link add name br0 type bridge
 ip link set dev swp0 master br0
 ip link set dev swp1 master br0
 ip link set dev br0 up
 ip link set dev swp0 up
 ip link set dev swp1 up

2. Create 2 Virtual Functions (VFs):

echo 2 > /sys/bus/pci/devices/0000:00:00.0/sriov_numvfs

3. Bind the VFs to the DPDK-compatible driver:

 dpdk-devbind.py -b uio_pci_generic 0000:00:08.0
 dpdk-devbind.py -b uio_pci_generic 0000:00:10.0

4. Enable trusted mode for both VFs:

 ip link set eth0 vf 0 trust on

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
249 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

 ip link set eth0 vf 1 trust on

5. Add static forwarding entries to the bridge's forwarding database (FDB):

bridge fdb add 02:00:00:00:00:00 dev swp0 master static
bridge fdb add 02:00:00:00:00:01 dev swp1 master static

Note: This means that if a packet has destination MAC 02:00:00:00:00:00, the bridge forwards it out swp0.
If the destination is 02:00:00:00:00:01, it goes out through swp1. For dpdk-l2fwd, the destination MAC
address is replaced by 02:00:00:00:00:TX_PORT_ID, hence this is set here. For dpdk-l3fwd, add the
static MAC address through the command line. dpdk-testpmd sets the same MAC when running in MAC
mode.

6. Run the DPDK application:

$ dpdk-l2fwd -c 0x3 -n 1 -- -p 0x3 -T 0
$ dpdk-l3fwd -c 0x2 -n 1 -- -p 0x3 --config="(0,0,1), (1,0,1)"
$ dpdk-testpmd -c 0x3 -n 1 -- -i --portmask=0x3 --forward-mode=mac
 testpmd> set promisc all off
 testpmd> start

Note: Currently, the following test cases are not supported on i.MX 943:

• All multi-promisc mode
• Get Link status of VF
• MAC address exact match filter
• Multi-queue
• Link status interrupts
• Jumbo frame
• DPDK IP fragmentation
• DPDK reassembly

10.7 IEEE 802.1Qbv

10.7.1 Overview

• IEEE 802.1Qbv allows time-based scheduling of network traffic.
• The Gate Control List (GCL) is a fundamental component of the IEEE 802.1Qbv protocol.
• The GCL (Gate C Logic) entries decide the gate open/close timings.
• The queues are allowed to transmit only when the gate is open.
• The GCL operates in a cyclic manner, repeating its sequence of entries periodically.

10.7.2 Steps to test the QBV test case scenario for ENETC

To test the TSN-QBV scenario for ENETC, perform the following steps:

1. Configure multiple queues for VF0.
Use the following commands to configure 5 queues for VF0.

devlink dev param set pci/0002:00:10.0 name si_num_rings cmode driverinit
 value 0105
devlink dev reload pci/0002:00:10.0
devlink dev param show pci/0002:00:10.0 name si_num_rings

Note: Maximum queues for VF0 can be 5 because the minimum 2 is required for PF by using the tc
command to configure gate scheduling and 1 is reserved for VF1.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
250 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

2. Bind VFs to the DPDK.

echo 1 > /sys/bus/pci/devices/0002\:00\:10.0/sriov_numvfs
dpdk-devbind.py -b uio_pci_generic 0002:00:12.0
ip link set eth1 vf 0 trust on

3. Configure the QBV rule using the tc command.
Use the following commands to configure the gate scheduling:

 tc qdisc replace dev eth1 parent root handle 200 taprio num_tc 2 map 0 1
 queues 1@0 1@1 base-time 10000 sched-entry S 1 100000 sched-entry S 0 50000
 sched-entry S 2 100000 sched-entry S 0 50000 sched-entry S 4 100000 sched-
entry S 0 50000 sched-entry S 8 100000 sched-entry S 0 50000 sched-entry
 S 10 100000 sched-entry S 0 50000 sched-entry S 20 100000 sched-entry S 0
 50000 sched-entry S 40 100000 sched-entry S 0 50000 sched-entry S 80 100000
 flags 0x2

• Each queue is configured to a particular TC.
• In this command, gate is configured to open for a particular queue for 100 microsec and then all queue

gates are closed for 50 microsec between every gate scheduling.
• Configuring all gates closed for some time can be beneficial when analyzing the captured data packets.
• The priority for each queue is configured by users in DPDK using the devargs argument.
• Although num_tc and map define only two PF queues, the GCL includes entries for multiple queues,

including VF queues (for example, VF0). This is intentional so that the GCL can be effective for DPDK
applications.

• In the tc command, queue IDs are referenced using the mask values (for example, S 1, S 2, etc.). These
map directly to TX queues in DPDK when the GCL is applied. For example, S 1 corresponds to the txq0 in
DPDK, S 2 maps to txq1, and so on.

Note: For more details on tc qdisc and its usage, see the tc qdisc main page: Run man tc on your
terminal for details.

4. Check if the rule is properly implemented.

tc -d -s qdisc show dev eth1 root

5. Run the test-pmd command.

./dpdk-testpmd -c 0xf -n 1 -a 0002:00:12.0,enetc4_txq_prior="1|2|3|4|5" --
 -i --nb-ports=1 --nb-cores=3 --forward-mode=txonly --txq=3
 --txonly_vlan_multiq_enable --txpkts=1500

• The priority for each queue is configured by users in DPDK using the devargs argument as shown in the
command above.

• The priorities for each queue are separated by '|' in devargs.
In tc qdisc GCL: Queue IDs (S 1, S 2, etc.) are scheduled for specific time slices.
In DPDK: These queue IDs map to transmit queues as follows:
• S 1 -> txq0
• S 2 -> txq1
• S 4 -> txq2, and so on

6. Capture the packets on Spirent and analyze the Wireshark output.
The output should be observed in the way the rule is configured using the tc command.
According to the tc command above, the expected results should be:
VLAN priority 0 packets are displayed for 100 microsec, and then a break of 50 microsec should be
observed. Then again for 100 microsec VLAN priority 1 packets are displayed, and then a break of 50
microsec, and so on.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
251 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

10.8 DPDK-FPR application

10.8.1 Overview

DPDK-FPR is a DPDK-based Fast Path Routing application supported on i.MX 95 and i.MX 93.

The DPDK-FPR application provides the following capabilities:

• Routing between DPDK interfaces using Longest Prefix Match (LPM).
• Supports both IPv4 and IPv6 traffic.
• Learns Routes and Neighbors from the Linux kernel using Netlink, with automatic updates managed by

kernel.
• Forwards non-IPv4 and non-IPv6 packets to kernel.
• Provides IP forwarding and rate limiting to kernel traffic.
• Support 5 tuples ACL based packets drop.
• Provides core-based statistics.
• Includes a Command Line Interface (CLI) based on Unix sockets.
• Configurable through a configuration file.

When running the DPDK-FPR application with an Ethernet interface, an equivalent tap interface (named dtap*)
is created in the kernel.

This tap interface allows the application to send traffic to the kernel in scenarios where DPDK relies on the
kernel or dependencies like routing and neighbor table information.

The MAC address of the dtap interface matches that of the Ethernet interface used by DPDK. Configuration of
the dtap interface is managed through a callback script provided by the user.

10.8.2 DPDK compilation

Perform the following steps:

1. See Section 10.3.2 for Compiling DPDK using meson.
2. To install the DPDK in a particular directory, export the following env. variable for compiling the DPDK.

export DESTDIR=<path to install>

3. Compile and install the DPDK:

meson <params>
ninja -C <build> install

10.8.3 Application compilation

Execute the following commands:

export ARCH=aarch64
export PATH=$PATH:<toolchain path>
export CC=aarch64-linux-gnu-gcc
export AR=aarch64-linux-gnu-ar
export PKG_CONFIG_LIBDIR=$PKG_CONFIG_LIBDIR:<DESTDIR>/usr/local/lib/pkgconfig/
make

Note:

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
252 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

1. Update CC according to the toolchain GCC binary name.
2. Modify the libdpdk.pc file for correct installation path. Perform the following steps:

a. Edit the libdpdk.pc file at the location: <DESTDIR>/usr/local/lib/pkgconfig/libdpdk.pc.
b. Update the first line prefix path to: prefix=<DESTDIR>/usr/local.

10.8.4 Running the application

Perform the following steps to run dpdk-fpr.

Note: For the i.MX 93 platform:

• Use the /etc/dpdk-fpr/fpr_imx93.conf file to run dpdk-fpr on this platform.
• ENET-FEC limitation: Enable promiscuous to resolve arp of IPv6 traffic.

1. Prepare the forwarding setup for the DPDK application. see Section 10.5.1.
2. Update fpr.conf and up files according to the use case. see Section 10.8.6.

Note: All the configuration files are available in the /etc/dpdk-fpr folder in rootfs, and the dpdk-fpr
binary is in the /usr/bin folder in rootfs.

3. Run the dpdk-fpr application.

cd /etc/dpdk-fpr
./dpdk-fpr --configfile ./fpr.conf

4. Open a new shell.
5. Connect to FPR using socat:

- socat - UNIX-CONNECT:/tmp/fpr.sock
- help

6. Resolve the ARP and run traffic.

10.8.5 CLI commands help accessible through socat

Perform the following steps:

1. Show help:

help

2. Show the neighbour table (similar with the ARP table in the Linux kernel, only valid rules):

neigh ipv4/ipv6

3. To look up a route entry in the LPM table:

lpm_lkp <IP>

4. Show the LPM status (Added/Deleted routes):

lpm_stats ipv4/ipv6

5. Show the status:

 # Detailed cores stats
 stats
 # Detailed cores stats in JSON format
 stats -j
 # Display cores stats after every <sec>
 stats -c <sec>

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
253 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

6. Dump the full neighbour table:

dump_neigh ipv4 <filepath e.g. /home/root/temp.txt>
cat /home/root/temp.txt

7. Dump the current log levels and log type IDs:

dumploglevel <filepath e.g. /home/root/level.txt>
cat /home/root/level.txt

8. Set the global log level:

Value can be 0 to 8: 0 is no logs and 8 is debug level
loglevel <level>

9. Enable/Disable the log type levels:

logtype <type_id> <enable/disable>
For type_id: Use "dumploglevel" to see type id of a DPDK component.
For all log types, type_id is 255.
enable/disable: 0 for log disable and 1 for log enable.
Level of enabled log will be global log level which can be set by "loglevel"

10. IP rate limit:

rlimit <IP> <PPS>
0 PPS indicates rate limit is disabled.

Note: FPR limits the rate to approximate PPS value.
11. Add IPv4/IPv6 ACL rules to drop packets:

acl_add ipv4/ipv6 <file_path>

12. Show/Clear the port:

Display port information
show port info <portid>
Display port specific statistics
show port stats <portid>
Display port specific extended statistics
show port xstats <portid>

Note:

• Replace show with clear to clear the statistics.
• These features are available only if the underlying driver supports these features.

10.8.6 Configuration file options

The configuration file options include the following:

• Options defined under the section [EAL]:

 arg = <list of EAL arguments>

Note:
– Refer to DPDK-EAL for DPDK official EAL document arguments.
– Pass the tap interfaces as vdev in the EAL argument list.
– The number of vdev must be equal to the actual number of the Ethernet devices.

• Options defined under the section [fpr]:

 - callback-setup = <script>
Give shell script path to config kernel interfaces.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
254 / 301

https://doc.dpdk.org/guides/linux_gsg/linux_eal_parameters.html
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Script can have commands for IP address, routes and ARPs
 - promiscuous = <0/1>
1 to enable and 0 to disable promiscuous
 - multicast = <0/1>
1 to enable and 0 to disable multicast
 - kni_rate_limit = <PPS>
Rate limit the packets in PPS sent to the kernel interface. 0 value disables
 rate limit.
 - unixsock = <PATH>
Override cmdline unixsock path (default: "/tmp/fpr.sock)
 - rule_ipv4 = <file path>
File path for IPv4 ACL rules. Only packet drop action is supported. Use "/dev/
null" as value to not to configure any ACL rule. Refer: L3FWD-ACL
 - rule_ipv6 = <file path>
File path for IPv6 ACL rules. Only packet drop action is supported. Use "/dev/
null" as value to not to configure any ACL rule. Refer: L3FWD-ACL
 - max-pkt-len = <len>
Increase or decrease the maximum RX length.
max-pkt-len = MTU(Maximum Transmission Unit) + 14(src mac + dst mac) + 4(CRC)
MTU will also be driven from this value.
 - rate_limit = <file path>
Define rate limite for various IP range. FPR will limit the rate to approximate
 PPS value.
 - aclneon = 1
To enable Neon algorithm for ACL

• Options defined under the section [port <portid>]:
Note: <portid> is the ID of the port to be used.

 - eal queues = <queue id> <lcore id>
Only single queue is supported so queue id must be 0
 - kni = <lcore id>
Configuration of equivalent kernel interface.
User will have to create the interface via EAL arguments.

Note: To comment a line in the configuration file, put ";" before the line.

10.8.7 Limitations

The DPDK-FPR application has the following limitations:

• The default gateway for routes is not supported.
• No IPv6 extension headers are supported.

10.9 MTCP

10.9.1 i.MX 95 Setup

• Connect two i.MX 95 boards in back-to-back setup.
• See Section 10.5.2.1, Section 10.5.2.2, and Section 10.5.4.2.1 to prepare the i.MX 95 boards.

10.9.2 "client" Application

Application measures read and write throughput for given number of seconds.

1. Rename the sample files sample_route.conf and sample_arp.conf under /usr/bin/mtcp to
route.conf and arp.conf respectively.

2. Copy route.conf and arp.conf to the ./config directory.
RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
255 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

3. Update the route and arp entries according to the IP addresses and MAC addresses of the interfaces.
Note: The port MAC address and IP address (if not given in the configuration file) are shown on the
application initialization. Therefore, execute the application, get the IP addresses and MAC addresses, fill
the route and arp configuration, and re-run the application.

4. Update client.conf with the required details and correct port names to be used for traffic. The port
names must be separated by commas (,).
Note: For i.MX 95, the PCI address format, for example, 0000.00.10.0, for the port is used instead of the
port name.
For details, see Section 10.9.4.

5. On the first board, run the following command:

 ./client send <destination IP> <port> <time in seconds>

6. On the second board, run the following command:

./client wait <destination IP> <port> <time in seconds>

Where,
• <port>: Any TCP port number
• client send <destination IP>: IP address of the neighbor
• client wait <destination IP>: Destination IP address of the client interface
Take two boards i.MX95_1 and i.MX95_2 as an example.
• i.MX95_1 port (0000:00:12.0) IP address is 16.0.0.80 and MAC address is 00:04:9F:08:9A:AB.
• i.MX95_2 port (0002:00:12.0) IP address is 16.0.0.90 and MAC address is 00:04:9F:08:DA:61.
Update the arp entries in the config/arp.conf file:
• i.MX95_1: 16.0.0.90/32 00:04:9F:08:DA:61
• i.MX95_2: 16.0.0.80/32 00:04:9F:08:9A:AB
Update the route entries in the config/route.conf file:
• i.MX95_1: 16.0.0.90/0 0000:00:12.0
• i.MX95_2: 16.0.0.80/0 0002:00:12.0
Run the client application:
• i.MX95_1: ./client send 16.0.0.90 1025 10
• i.MX95_2: ./client wait 16.0.0.90 1025 10
Note: The application can run on only 1 core.

10.9.3 Webserver

Epserver is the server application. ewget reads the file we write at the server side. It is similar to wget.

1. Rename the sample files sample_route.conf and sample_arp.conf under /usr/bin/mtcp to
route.conf and arp.conf respectively.

2. Copy route.conf and arp.conf to the ./config directory.
3. Update the route and arp entries according to the IP addresses and MAC addresses of the interfaces.

Note: The port MAC address and IP address (if not given in the configuration file) are shown on the
application initialization. Therefore, execute the application, get the IP addresses and MAC addresses, fill
the route and arp configuration, and re-run the application.

4. Update epserver.conf and epwget.conf with the required details and correct port names to be used
for traffic. The port names must be separated by commas (,).
Note: For i.MX 95, the PCI address format, for example, 0000.00.10.0, for the port is used instead of the
port name.
For details, see Section 10.9.4.

5. Create a random txt file (for example, a.txt) on the server board in the /home/www directory. Create a
directory www if it does not exist.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
256 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

6. On the first board, run the following command:

./epserver -p /home/www -f epserver.conf -N 8

7. On the second board, run the following command:

./epwget <Server IP/file name> <number of requests> -N 1 -c 8000 -f
 epwget.conf -o <file name>
e.g. ./epwget 10.0.0.112/a.txt 10 -N 1 -c 8000 -f epwget.conf -o b.txt

Where,
• -p is the path of the server home directory where all the files are present.
• -f is the configuration file name.
• -N is the number of cores.
• -c is the number of concurrent connections.
• -o (optional) is the output file in which the content of a.txt receives.
Note: epwget can work on only 1 core.

10.9.4 MTCP Configuration

The following is the description for the Port, eal_args, and stat_print parameters:

• Port: List of the port names to be used for traffic. Port names must be separated by commas (,).
Note: For i.MX 95, the PCI address format, for example, 0000.00.10.0, for the port is used instead of the port
name.
– Example for multiple-port configuration:

To use ENETC-1G and ENETC-10G ports, the port configuration is like:

port = 0002:00:02.0,0002:00:12.0

– Example for port configuration with IP addresses:
To use ENETC-1G port with the IP address 192.168.1.1 and the netmask value 255.255.255.0, and
ENETC-10G with the IP address 192.168.2.1 and the netmask value 255.255.255.0.

port = 0002:00:02.0@192.168.1.1/24,0002:00:12.0@192.168.2.1/24

Note:
– The IP value must be immediate after the port name and (@) separated.
– The port configuration parameter accepts user's given IP address for each port. If the IP address is not

given for the port, the MTCP stack generates random IP addresses.
• eal_args: List of DPDK EAL library configuration. See EAL for the detailed list of supported parameters.

eal_args = --log-level=8 -b

The parameters must be separated by a space character.
Note: Do not use eal_args for core-mask. num_cores can be used for the number of cores.

• stat_print: List of the port names to be used for statistics. Port names must be separated by space
characters.
– Example to enable statistics for a single DPDK port:

To use only ENETC-1G, stat_print configuration is like:

stat_print = 0002:00:02.0

– Example to enable statistics for multiple DPDK ports:
To use ENETC-1G and ENETC-10G ports, stat_print configuration is like:

stat_print = 0002:00:02.0, 0002:00:12.0

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
257 / 301

https://doc.dpdk.org/guides/linux_gsg/linux_eal_parameters.html
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Note: There are other parameters like:
– Number of memory channels: num_mem_ch
– Receive buffer size: rcvbuf
– Send buffer size: sndbuf
– TCP timeout seconds: tcp_timeout
– TCP timewait seconds: tcp_timewait etc
All parameters can be configured according to use case. Their description is mentioned in respective
configuration files client.conf, epserver.conf, and epwget.conf.

10.10 XDP

aaa-061317

Sprint port 1
IPv4: 1.1.1.1

Gateway: 1.1.1.2
MAC: 00:10:94:00:00:02

i.MX95 board

(IP forwarding enabled)
eth0: 1.1.1.2 eth1: 2.1.1.2

eth0

Sprint port 2
IPv4: 2.1.1.1

Gateway: 2.1.1.2
MAC: 00:10:94:00:00:03

eth1

Figure 49. NAT Flow Setup and Testing Guide

10.10.1 Hardware Requirements

• Device: i.MX 95 board
• Ethernet interfaces: 2 (eth0, eth1)
• Spirent ports: 2

10.10.2 Network Setup

Spirent Port Configuration:

• Spirent Port1
1. Connection: Connect Sprint Port 1 to eth0 on the i.MX 95 board.
2. Configure the connected device:

– IPv4 Address: 1.1.1.2
– IPv4 Gateway: 1.1.1.1

• Spirent Port2
1. Connection: Connect Sprint Port 2 to eth1 on the i.MX 95 board.
2. Configure the connected device:

– IPv4 Address: 4.4.4.1
– IPv4 Gateway: 4.4.4.4

10.10.3 i.MX 95 Board Configuration

1. Assign the IP addresses to Ethernet interfaces:

ifconfig eth0 1.1.1.1 up
ifconfig eth1 4.4.4.4 up

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
258 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

2. Add a static route:

ip route add 8.8.8.0/24 via 4.4.4.1

3. Enable IP forwarding:

echo 1 > /proc/sys/net/ipv4/ip_forward

10.10.4 Verification

Verify the network connectivity:

ping 1.1.1.2
ping 4.4.4.1

10.10.5 NAT Flow Rule Setup

Edit the input.txt file available at /opt/xdp/, and add the following NAT flow rule:

nat_saddr=4.4.4.2
nat_daddr=8.8.8.8
nat_sport=1036
nat_dport=1024
mtu=1500
saddr=1.1.1.2
daddr=8.8.8.8
sport=1024
dport=1024
protocol=17
interface=eth1

10.10.6 Loading XDP

Load the XDP program on both eth0 and eth1.

$ cd /opt/xdp/
$ xdp_fp -D eth0 eth1

Note: xdp_fp, xdp_fp_kern.o, and input.txt must be present in the same directory. Use xdp_fp -h for
help.

10.10.7 Traffic Generation and Packet Capture

1. Generate a traffic stream from Sprint Port 1 towards 8.8.8.8.
2. Capture the packets at Sprint Port 2.

The following is the expected traffic pattern in Wireshark:

 Time Source Destination Protocol Length Info
2 2025-04-28 18:27:24.346281 4.4.4.2 8.8.8.8 UDP 128 1036 ->
 1024 Len=82
3 2025-04-28 18:27:24.346281 4.4.4.2 8.8.8.8 UDP 128 1036 ->
 1024 Len=82
4 2025-04-28 18:27:24.346281 4.4.4.2 8.8.8.8 UDP 128 1036 ->
 1024 Len=82

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
259 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

5 2025-04-28 18:27:24.346281 4.4.4.2 8.8.8.8 UDP 128 1036 ->
 1024 Len=82
6 2025-04-28 18:27:24.346281 4.4.4.2 8.8.8.8 UDP 128 1036 ->
 1024 Len=82

10.11 Troubleshooting
• If DPDK example applications are not found in rootfs, ensure you are using the correct rootfs

(rootfs.wic.zst), which integrates the DPDK.
• If applications are not initialized properly, ensure HugePages are added as mentioned in the sections above.
• If Ethernet port is not found, ensure that you are using the correct DTB.

11 Unit Tests

11.1 System

11.1.1 OProfile

11.1.1.1 Test Name

• autorun-oprofile.sh

11.1.1.1.1 Location

/unit_tests/OProfile/

11.1.1.1.2 Functionality

OProfile is a system-wide profiler capable of profiling all running code at low overhead. OProfile consists
of a kernel driver, a daemon for collecting sample data, and several post-profiling tools for turning data into
information.

11.1.1.1.3 Configuration

None

11.1.1.1.4 Use Case and Expected Output

./autorun-oprofile.sh

11.1.2 Owire

11.1.2.1 Test Name

• autorun-owire.sh

11.1.2.1.1 Location

/unit_tests/OWire/

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
260 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

11.1.2.1.2 Functionality

Test EEPROM functionality.

11.1.2.1.3 Configuration

None

11.1.2.1.4 Use Case and Expected Output

./autorun-owire.sh

11.1.3 Power Management

11.1.3.1 Test Name

• /unit_tests/Power_Management/suspend_random_auto.sh
• /unit_tests/Power_Management/suspend_quick_auto.sh

11.1.3.1.1 Location

/unit_tests/Power_Management/

11.1.3.1.2 Functionality

Enables low power mode on and wakes up the different cores on all i.MX boards..

11.1.3.1.3 Configuration

None

11.1.3.1.4 Use Case and Expected Output

$ /unit_tests/Power_Management/suspend_random_auto.sh
or
$ /unit_tests/Power_Management/suspend_quick_auto.sh

Expected output on i.MX 7D Sabre SD board:

/unit_tests/Power_Management/suspend_random_auto.sh
rtcwakeup.out: wakeup from "mem" using rtc0 at Wed Feb 22 22:55:29 2017
PM: Syncing filesystems ... done.
Freezing user space processes ... (elapsed 0.001 seconds) done.
Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done.
Suspending console(s) (use no_console_suspend to debug)
PM: suspend of devices complete after 632.862 msecs
PM: suspend devices took 0.640 seconds
PM: late suspend of devices complete after 1.258 msecs
PM: noirq suspend of devices complete after 1.198 msecs
Disabling non-boot CPUs ...
CPU1: shutdown

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
261 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Turn off Mega/Fast mix in DSM
Enabling non-boot CPUs ...
CPU1 is up
PM: noirq resume of devices complete after 0.832 msecs
imx-sdma 30bd0000.sdma: loaded firmware 4.2
PM: early resume of devices complete after 0.930 msecs
PM: resume of devices complete after 483.310 msecs
PM: resume devices took 0.480 seconds
Restarting tasks ... done.
=============================
suspend 0 times
=============================
wakeup 7 seconds, sleep 16 seconds
rtcwakeup.out: wakeup from "mem" using rtc0 at Wed Feb 22 22:55:42 2017
PM: Syncing filesystems ... done.
Freezing user space processes ... (elapsed 0.001 seconds) done.
Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done.
Suspending console(s) (use no_console_suspend to debug)
PM: suspend of devices complete after 630.328 msecs
PM: suspend devices took 0.640 seconds
PM: late suspend of devices complete after 1.252 msecs
PM: noirq suspend of devices complete after 1.203 msecs
Disabling non-boot CPUs ...
CPU1: shutdown
Turn off Mega/Fast mix in DSM
Enabling non-boot CPUs ...
CPU1 is up
PM: noirq resume of devices complete after 0.777 msecs
imx-sdma 30bd0000.sdma: loaded firmware 4.2
PM: early resume of devices complete after 0.873 msecs
PM: resume of devices complete after 483.406 msecs
PM: resume devices took 0.480 seconds
Restarting tasks ... done.
=============================
suspend 1 times
=============================
wakeup 11 seconds, sleep 20 seconds
rtcwakeup.out: wakeup from "mem" using rtc0 at Wed Feb 22 22:56:10 2017
37PM: Syncing filesystems ... done.
Freezing user space processes ... (elapsed 0.001 seconds) done.
Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done.
Suspending console(s) (use no_console_suspend to debug)
PM: suspend of devices complete after 651.761 msecs
PM: suspend devices took 0.660 seconds
PM: late suspend of devices complete after 1.245 msecs
PM: noirq suspend of devices complete after 1.193 msecs
Disabling non-boot CPUs ...
CPU1: shutdown
Turn off Mega/Fast mix in DSM
Enabling non-boot CPUs ...
CPU1 is up
PM: noirq resume of devices complete after 0.728 msecs
imx-sdma 30bd0000.sdma: loaded firmware 4.2
PM: early resume of devices complete after 0.859 msecs
PM: resume of devices complete after 483.441 msecs
PM: resume devices took 0.480 seconds
Restarting tasks ... done.
=============================
suspend 2 times
=============================

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
262 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

wakeup 3 seconds, sleep 12 seconds
rtcwakeup.out: wakeup from "mem" using rtc0 at Wed Feb 22 22:56:34 2017
PM: Syncing filesystems ... done.
Freezing user space processes ... (elapsed 0.001 seconds) done.
Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done.
Suspending console(s) (use no_console_suspend to debug)
PM: suspend of devices complete after 641.321 msecs
PM: suspend devices took 0.650 seconds
PM: late suspend of devices complete after 1.258 msecs
PM: noirq suspend of devices complete after 1.195 msecs
Disabling non-boot CPUs ...
CPU1: shutdown
Turn off Mega/Fast mix in DSM
Enabling non-boot CPUs ...
CPU1 is up
PM: noirq resume of devices complete after 0.730 msecs
imx-sdma 30bd0000.sdma: loaded firmware 4.2
PM: early resume of devices complete after 0.857 msecs
PM: resume of devices complete after 483.451 msecs
PM: resume devices took 0.480 seconds
Restarting tasks ... done.
=============================
suspend 3 times
=============================
wakeup 9 seconds, sleep 8 seconds
rtcwakeup.out: wakeup from "mem" using rtc0 at Wed Feb 22 22:56:56 2017
PM: Syncing filesystems ... done.
Freezing user space processes ... (elapsed 0.001 seconds) done.
Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done.
38Suspending console(s) (use no_console_suspend to debug)
PM: suspend of devices complete after 641.492 msecs
PM: suspend devices took 0.650 seconds
PM: late suspend of devices complete after 1.255 msecs
PM: noirq suspend of devices complete after 1.201 msecs
Disabling non-boot CPUs ...
CPU1: shutdown
Turn off Mega/Fast mix in DSM
Enabling non-boot CPUs ...
CPU1 is up
PM: noirq resume of devices complete after 0.731 msecs
imx-sdma 30bd0000.sdma: loaded firmware 4.2
PM: early resume of devices complete after 0.861 msecs
PM: resume of devices complete after 483.476 msecs
PM: resume devices took 0.480 seconds
Restarting tasks ... done.
^c

/unit_tests/Power_Management/suspend_quick_auto.sh
rtcwakeup.out: wakeup from "mem" using rtc0 at Wed Feb 22 23:01:16 2017
PM: Syncing filesystems ... done.
Freezing user space processes ... (elapsed 0.001 seconds) done.
Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done.
Suspending console(s) (use no_console_suspend to debug)
PM: suspend of devices complete after 632.891 msecs
PM: suspend devices took 0.640 seconds
PM: late suspend of devices complete after 1.254 msecs
PM: noirq suspend of devices complete after 1.200 msecs
Disabling non-boot CPUs ...

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
263 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

CPU1: shutdown
Turn off Mega/Fast mix in DSM
Enabling non-boot CPUs ...
CPU1 is up
PM: noirq resume of devices complete after 0.734 msecs
imx-sdma 30bd0000.sdma: loaded firmware 4.2
PM: early resume of devices complete after 0.862 msecs
PM: resume of devices complete after 483.417 msecs
PM: resume devices took 0.480 seconds
Restarting tasks ... done.
===============================
suspend 1 times
===============================
rtcwakeup.out: wakeup from "mem" using rtc0 at Wed Feb 22 23:01:19 2017
PM: Syncing filesystems ... done.
Freezing user space processes ... (elapsed 0.001 seconds) done.
Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done.
Suspending console(s) (use no_console_suspend to debug)
PM: suspend of devices complete after 631.833 msecs
39PM: suspend devices took 0.640 seconds
PM: late suspend of devices complete after 1.253 msecs
PM: noirq suspend of devices complete after 1.242 msecs
Disabling non-boot CPUs ...
CPU1: shutdown
Turn off Mega/Fast mix in DSM
Enabling non-boot CPUs ...
CPU1 is up
PM: noirq resume of devices complete after 0.729 msecs
imx-sdma 30bd0000.sdma: loaded firmware 4.2
PM: early resume of devices complete after 0.862 msecs
PM: resume of devices complete after 483.416 msecs
PM: resume devices took 0.480 seconds
Restarting tasks ... done.
===============================
suspend 2 times
===============================
rtcwakeup.out: wakeup from "mem" using rtc0 at Wed Feb 22 23:01:22 2017
PM: Syncing filesystems ... done.
Freezing user space processes ... (elapsed 0.001 seconds) done.
Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done.
Suspending console(s) (use no_console_suspend to debug)
PM: suspend of devices complete after 633.624 msecs
PM: suspend devices took 0.640 seconds
PM: late suspend of devices complete after 1.252 msecs
PM: noirq suspend of devices complete after 1.204 msecs
Disabling non-boot CPUs ...
CPU1: shutdown
Turn off Mega/Fast mix in DSM
Enabling non-boot CPUs ...
CPU1 is up
PM: noirq resume of devices complete after 0.733 msecs
imx-sdma 30bd0000.sdma: loaded firmware 4.2
PM: early resume of devices complete after 0.853 msecs
PM: resume of devices complete after 483.450 msecs
PM: resume devices took 0.480 seconds
Restarting tasks ... done.
^c

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
264 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

11.1.4 Remote Processor Messaging

11.1.4.1 Test Name

• mxc_mcc_tty_test.out

11.1.4.1.1 Location

/unit_tests/Remote_Processor_Messaging

11.1.4.1.2 Functionality

Test communication between Cortex-A and Cortex-M cores.

11.1.4.1.3 Configuration

To run the i.MX RPMsg test program, perform the following operations: Make sure that the proper Cortex-M4
processor RTOS and Linux images are used. The following are examples for the i.MX7Dual board:

• rpmsg_pingpong_sdk_7dsdb.bin → ping-pong test used on the i.MX7Dual SDB board
• rpmsg_str_echo_sdk_7dsdb.bin → tty string echo test used on the i.MX7Dual SDB board
• rpmsg_pingpong_sdk_7dval.bin → ping-pong test used on the i.MX7Dual 12x12 LPDDR3 ARM2 board
• rpmsg_str_echo_sdk_7dval.bin → tty string echo test used on the i.MX7Dual 12x12 LPDDR3 ARM2 board

Load the Cortex-M4 processor RTOS image, and kick it off in U-Boot. Load the Cortex-M4 processor RTOS
image by the TFTP server or by the bootable SD card in U-Boot.

• Load the Cortex-M4 processor RTOS image by the TFTP server:
– Boot into U-Boot and stop.
– Use the following command to TFTP the responding Cortex-M4 processor RTOS image and boot it.

=> dhcp 0x7f8000 10.192.242.53:rpmsg_pingpong_sdk_7dval.bin; bootaux 0x7f8000

• Load the Cortex-M4 processor RTOS image by the SD card:
– Create a bootable SD card by using MFGtools.
– Copy the Cortex-M4 processor RTOS files to the first partition formatted with the VFAT file system.

• Change the default Cortex-M4 processor RTOS name of the U-Boot.

=> setenv m4image '<The name of the M4/RTOS image>';save

Set up a bootargs used by the Cortex-M4 processor.

=> setenv run_m4_tcm 'if run loadm4image; then cp.b ${loadaddr} 0x7f8000 0x8000;
=> bootaux 0x7f8000; fi'; save

Modify the original bootcmd by adding run run_m4_tcm.

=> setenv bootcmd "run run_m4_tcm; <original contents of the bootcmd>"; save

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
265 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Note: NOTE “uart_from_osc” is required by i.MX 6SoloX when the Cortex-M4 processor RTOS image is
running. Therefore, the mmcargs of U-Boot should be modified on i.MX 6SoloX.

=> setenv mmcargs 'setenv bootargs console=${console},${baudrate} root=
${mmcroot}, uart_from_osc';save

Run the RPMsg test program. * Make sure that imx_rpmsg_pingpong.ko and imx_rpmsg_tty.ko are built out. *
Use insmod imx_rpmsg_pingpong.ko or insmod imx_rpmsg_tty.ko to run the test program.

Note: NOTE Do not run different test programs at the same time.

11.1.4.1.4 Use Case and Expected Output

Run the following command and ensure that the RPMsg TTY receiving program is running at the backend when
starting RPMsg TTY tests.

./mxc_mcc_tty_test.out /dev/ttyRPMSG30 115200 R 100 1000 &
Expected output:
mxc_mcc_tty_test.out:
$ insmod imx_rpmsg_tty.ko
$ imx_rpmsg_tty rpmsg0: new channel: 0x400 -> 0x1!
$ Install rpmsg tty driver!
$ echo deadbeaf > /dev/ttyRPMSG30
$ imx_rpmsg_tty rpmsg0: msg(<- src 0x1) deadbeaf len 8

11.1.5 Watchdog (WDOG)

11.1.5.1 Test Name

• autorun-wdog.sh
• wdt_driver_test.out

11.1.5.1.1 Location

/unit_tests/Watchdog/

11.1.5.1.2 Functionality

Tests the Watchdog Timer module which protects against system failures by providing an escape from
unexpected hang, infinite loop situations or programming errors.

11.1.5.1.3 Configuration

None

11.1.5.1.4 Use Case and Expected Output

Use case
./autorun-wdog.sh
or
./wdt_driver_test.out 1 2 0 &

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
266 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Expected output
This should generate a reset after 3 seconds (a 1 second time-out and a 2 second
 sleep).
or
./wdt_driver_test.out 2 1 0
The system should keep running without being reset. This test requires the
 kernel to be executed
with the "jtag=on" on some platforms. Press "Ctrl+C" to terminate this test
 program.

11.2 Storage

11.2.1 Media Local Bus

11.2.1.1 Test Name

• mxc_mlb150_test

11.2.1.1.1 Location

/unit_tests/Media_Local_Bus/

11.2.1.1.2 Functionality

MediaLB is an on-PCB or inter-chip communication bus specifically designed to standardize a common
hardware interface and software API library.

11.2.1.1.3 Configuration

In menu configuration enable the following module:

Device Drivers > MXC support drivers > MXC Media Local Bus Driver > MLB support

Test only supported on i.MX6SX, i.MX6QP, i.MX6Q, i.MX6DL

11.2.1.1.4 Use Case and Expected Output

./mxc_mlb150_test [-v] [-h] [-b] [-f fps] [-t casetype] [-q sync quadlets] [-p
 isoc
packet length]\n"
-v verbose
-h help
-b block io test
-f FPS, 256/512/1024/2048/3072/4096/6144
-t CASE, CASE can be 'sync', 'ctrl', 'async', 'isoc'
-q SYNC QUADLETS, quadlets per frame in sync mode, can be 1, 2, or 3
-p Packet length, package length in isoc mode, can be 188 or 196

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
267 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

11.2.2 MMC/SD/SDIO Host

11.2.2.1 Test Name

• autorun-mmc-blockrw.sh
• autorun-mmc-fdisk.sh
• autorun-mmc-fs.sh
• autorun-mmc-mkfs.sh
• autorun-mmc.sh

11.2.2.1.1 Location

/unit_tests/MMC_SD_SDIO/

11.2.2.1.2 Functionality

The conjunction of MMC SD SDIO tests exercise the following instructions:

• MMC/SD read write test.
• MMC/SD block read write test.
• MMC/SD fdisk test.
• MMC/SD file system test.
• MMC/SD mkfs test.

11.2.2.1.3 Configuration

None

11.2.2.1.4 Use Case and Expected Output

All test return "Pass" if successful.

./autorun-mmc-blockrw.sh

./autorun-mmc-fdisk.sh

./autorun-mmc-fs.sh

./autorun-mmc-mkfs.sh

./autorun-mmc.sh

11.2.3 MMDC

11.2.3.1 Test Name

• mmdc2

11.2.3.1.1 Location

/unit_tests/MMDC/

11.2.3.1.2 Functionality

MMDC profiling utility.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
268 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

11.2.3.1.3 Configuration

The following parameters allow to customize the mmcd2 test:

• export MMDC_SLEEPTIME - define profiling duration (500ms by default)
• export MMDC_LOOPCOUNT - define profiling times (1 by default, -1 means infinite loop)
• export MMDC_CUST_MADPCR1 - customize madpcr1

11.2.3.1.4 Use Case and Expected Output

The expected output will print the profiling results

./mmdc2 [ARM:DSP1:DSP2:GPU2D:GPU2D1:GPU2D2:GPU3D:GPU3D2:GPUVG:VPU:M4:PXP:USB:SUM]

11.2.4 SATA

11.2.4.1 Test Name

• autorun-ata.sh

11.2.4.1.1 Location

/unit_tests/SATA/

11.2.4.1.2 Functionality

This test writes data to the SATA drive connected to the SATA connector on the i.MX board. The data is then
read back and compared to what was written.

11.2.4.1.3 Configuration

Module required: pata_fsl.ko. Hardware required: SATA drive. Only i.MX 6 Quad and QuadPlus have SATA
support.

11.2.4.1.4 Use Case and Expected Output

./autorun-ata.sh
Expected output
Test should return "HDD test passes" if successful.

11.3 Connectivity

11.3.1 Enhanced Configurable Serial Peripheral Interface (ECSPI)

11.3.1.1 Test Name

• mxc_spi_test1.out

11.3.1.1.1 Location

/unit_tests/ECSPI/

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
269 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

11.3.1.1.2 Functionality

This test sends bytes of the last parameter to a specific SPI device. The maximum transfer bytes are 4096
bytes for bits per word less than 8(including 8), 2048 bytes for bits per word between 9 and 16, 1024 bytes for
bits per word larger than 17(including 17). SPI writes data received data from the user into Tx FIFO and waits
for the data in the Rx FIFO. Once the data is ready in the Rx FIFO, it is read and sent to user.

11.3.1.1.3 Configuration

For the i.MX 6QuadPlus/Quad/Dual auto boards this requires the ecspi device tree. This feature is disabled with
default device tree.

11.3.1.1.4 Use Case and Expected Output

./mxc_spi_test1.out -D 0 -s 1000000 -b 8 E6E0

./mxc_spi_test1.out -D 1 -s 1000000 -b 8 -H -O -C E6E0E6E00001E6E00000
Usage:
./mxc_spi_test1.out [-D spi_no] [-s speed] [-b bits_per_word] [-H] [-O] [-C]
 $lt;value>
<spi_no> - CSPI Module number in [0, 1, 2]
<speed> - Max transfer speed
<bits_per_word> - bits per word
-H - Phase 1 operation of clock
-O - Active low polarity of clock
-C - Active high for chip select
<value> - Actual values to be sent

11.3.2 ETM

11.3.2.1 Test Name

• etm

11.3.2.1.1 Location

/unit_tests/ETM/

11.3.2.1.2 Functionality

Embedded Trace Macrocell, The ETM is an optional debug component that enables reconstruction of program
execution. The ETM is designed as a high-speed, low-power debug tool that only supports instruction trace.
This ensures that area is minimized, and that gate count is reduced.

11.3.2.1.3 Configuration

11.3.2.1.4 Use Case and Expected Output

./etm -h
Usage: ./etm [options]
Options:
--etm-3.3 ETM v3.3 trace data

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
270 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

--etm-3.4-alt-branch ETM v3.4 trace data with alternative branch encoding
--pft-1.1 PFT v1.1 trace data
--cycle-accurate Cycle-accurate tracing was enabled (Default 1)
--contextid-bytes Number of Context ID bytes (Default 4)
--formatter Enable Formatter Unpacking
--sourceid-match Enable Source ID from formatter. Also enables formatter
--print-long-waits Highlight long waits
--print-input Print input data
--print-config Print configuration data
--help Print usage information

11.3.3 Inter-IC (I2C)

11.3.3.1 Test Name

• mxc_i2c_slave_test.out

11.3.3.1.1 Location

/unit_tests/I2C/

11.3.3.1.2 Functionality

11.3.3.1.3 Configuration

None

11.3.3.1.4 Use Case and Expected Output

11.3.4 Keyboard

11.3.4.1 Test Name

• autorun-keypad.sh
• mxc_keyb_test.sh

11.3.4.1.1 Location

/unit_tests/Keyboard/

11.3.4.1.2 Functionality

Tests keyboard input via USB.

11.3.4.1.3 Configuration

Connect Keyboard to USB OTG port.

11.3.4.1.4 Use Case and Expected Output

./autorun-keypad.sh

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
271 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Outputs:
Print "PASS" status
./mxc_keyb_test.sh
Output:
An event will occur when a key is pressed

11.3.5 Low Power Universal Asynchronous Receiver/Transmitter (LPUART)

11.3.5.1 Test Name

• autorun-mxc_uart.sh
• mxc_uart_stress_test.out
• mxc_uart_test.out
• mxc_uart_xmit_test.out

11.3.5.1.1 Location

/unit_tests/UART/

11.3.5.1.2 Functionality

These tests excercise the low-level UART driver whihc is responsible for supplying information such as the
UART port information and a set of control functions to the core UART driver.

11.3.5.1.3 Configuration

None

11.3.5.1.4 Use Case and Expected Output

./autorun-mxc_uart.sh

./mxc_uart_stress_test.out /dev/ttymxc#

./mxc_uart_test.out /dev/ttymxc#

./mxc_uart_xmit_test.out /dev/ttymxc#

11.3.6 USB

11.3.6.1 Test Name

• autorun-usb-gadget.sh
• autorun-usb-host.sh

11.3.6.1.1 Location

/unit_tests/USB/

11.3.6.1.2 Functionality

This tests excerise the universal serial bus (USB) driver which implements a standard Linux driver interface
to the CHIPIDEA USB-HS OTG controller. The USB provides a universal link that can be used across a wide

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
272 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

range of PC-to-peripheral interconnects. It supports plug-and-play, port expansion, and any new USB peripheral
that uses the same type of port.

11.3.6.1.3 Configuration

Modules required:

• /lib/modules/$(kernel_version)/kernel/drivers/usb/gadget/g_ether.ko
• /lib/modules/$(kernel_version)/kernel/drivers/usb/gadget/arcotg_udc.ko
• /lib/modules/$(kernel_version)/kernel/drivers/usb/host/ehci-hcd.ko

11.3.6.1.4 Use Case and Expected Output

./autorun-usb-gadget.sh
or
./autorun-usb-host.sh

11.4 Graphics

11.4.1 Graphics Processing Unit (GPU)

11.4.1.1 Test Name

• gpu.sh
• gpuinfo.sh

11.4.1.1.1 Location

/unit_tests/GPU

11.4.1.1.2 Functionality

GPU function test

• tutorial3: test OpenGL ES 1.1 basic function
• tutorial4_es20: test OpenGL ES 2.0 basic function
• tiger: test OpenVG 1.1 basic function
• tvui: test Raster 2D and LibVivanteDK API

11.4.1.1.3 Configuration

For gpu.sh and gpuinfo.sh to work add the following line to the target board defconfig file:

• CONFIG_MXC_GPU_VIV=y

Hardware required: LVDS Display Panel and i.MX SoC with a GPU

11.4.1.1.4 Use Case and Expected Output

./gpu.sh

- Expected output are frames are drawn properly on screen
RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
273 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• tutorial3: a cube with texture rotating in the middle of the screen
• tutorial4_es20: draws a glass sphere inside a big sphere (enviroment mapping). The glass sphere shows both

reflection and refraction effects.
• tiger: a tiger spinning on the screen.
• tvui: draws several movie clips and a tv control panel.

Example output is:

./gpu.sh
---- Running < gpu.sh > test ----
/unit_tests/GPU /unit_tests/GPU
Rendered 100 frames in 624 milliseconds: 160.26 fps
id=43, a,b,g,r=0,8,8,8, d,s=16,0, AA=0,openvgbit=71
frames:100 -- fps:58.997051
press ESC to escape...
./gpu.sh: line 28: cd: /opt/viv_samples/hal/: No such file or directory
/unit_tests/GPU
---- Test < gpu.sh > ended ----

./gpuinfo.sh

- Information about GPU is printed on console.

./gpuinfo.sh
---- Running < gpuinfo.sh > test ----
GPU Info
gpu : 0
model : 2000
revision : 5108
product : 0
eco : 0
gpu : 8
model : 320
revision : 5007
product : 0
eco : 0
gpu : 9
model : 355
revision : 1215
product : 0
eco : 0
VIDEO MEMORY:
gcvPOOL_SYSTEM:
Free : 134217728 B
Used : 0 B
Total : 134217728 B
gcvPOOL_CONTIGUOUS:
Used : 0 B
gcvPOOL_VIRTUAL:
Used : 0 B
NON PAGED MEMORY:
Used : 0 B
Paged memory Info
lowMem: 0 bytes
highMem: 0 bytes
CMA memory info

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
274 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

cma: 138485760 bytes
>>>
Idle percentage:0.000.000.000.000.000.00%
>>>
---- Test < gpuinfo.sh > ended ----

11.5 Video

11.5.1 Display

11.5.1.1 Test Name

• autorun-fb.sh
• mxc_tve_test.sh
• mxc_fb_test.out
• mxc_epdc_fb_test.out
• mxc_epdc_v2_fb_test.out
• mxc_spdc_fb_test.out
• mxc_fb_vsync_test.out

11.5.1.1.1 Location

/unit_tests/Display/

11.5.1.1.2 Functionality

The tests under the display directory test some of the display options that are available with the i.MX family of
boards. Some of the devices that can be tested include LVDS, HDMI and EPDC panels.

Specifically the 'mxc_fb_test.out' tests the following features:

• Basic fb operation
• Set background/foreground to 16 bpp fb
• Global alpha blending
• Color key test
• Framebuffer Panning
• Gamma test

Aditionally, the EPDC tests 'mxc_epdc_fb_test.out' and 'mxc_epdc_v2_fb_test.out' test the following features:

• Basic Updates
• Rotation Updates
• Grayscale Framebuffer Updates
• Auto-waveform Selection Updates
• Panning Updates
• Overlay Updates
• Auto-Updates
• Animation Mode Updates
• Fast Updates
• Partial to Full Update Transitions
• Test Pixel Shifting Effect
• Colormap Updates

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
275 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• Collision Test Mode
• Stress Test
• RGB565, Y8 framebuffer format
• 0, 90, 180, 270 degree framebuffer rotation
• Framebuffer panning
• Use of the alternate framebuffer
• Auto-waveform mode selection
• Automatic update mode
• The force-monochrome update feature and animation mode updates
• Support for using a grayscale colormap
• Snapshot, Queue, and Queue and Merge update schemes
• The EPDC Collision Test mode

11.5.1.1.3 Configuration

In order to run some tests, changes to the defconfig file for the target board are required. These changes will
add functionality in which the following tests depend upon.

For autorun-fb.sh, 'mxc_fb_test.out' and 'mxc_fb_vsync_test.out' add the following to the target board defconfig
file:

CONFIG_FB=y
CONFIG_FB_MXC=y
CONFIG_FB_MXC_EDID=y
CONFIG_FB_MXC_SYNC_PANEL=y
CONFIG_FB_MXC_LDB=y
CONFIG_FB_MXC_HDMI=y

For 'mxc_epdc_fb_test.out' and 'mxc_epdc_v2_fb_test.out' add the following to the target board defconfig file:

CONFIG_FB=y
CONFIG_FB_MXC=y
CONFIG_FB_MXC_EINK_PANEL=y
CONFIG_MFD_MAX17135=y
CONFIG_REGULATOR_MAX17135=y
CONFIG_MXC_PXP=y
CONFIG_DMA_ENGINE=y

11.5.1.1.4 Use Case and Expected Output

./autorun-fb.sh

Expected output is:

---- Running < autorun-fb.sh > test ----
Checking for devnode: /dev/fb0
autorun-fb.sh: PASS devnode found: /dev/fb0
FB Blank test
Screen should be off
FB Color test

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
276 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Setting FB to 16-bpp
Setting FB to 24-bpp
Setting FB to 32-bpp
FB panning test
autorun-fb.sh: Exiting PASS
Exiting PASS.

./mxc_tve_test.sh

Expected output is:

---- Running < mxc_tve_test.sh > test ----
Setting TV to NTSC mode
/unit_tests/Display/mxc_tve_test.sh: line 9: echo: write error: Invalid argument
/unit_tests/Display/mxc_tve_test.sh: line 11: /unit_tests/mxc_v4l2_output.out:
 No such
file or directory
Blank the display
Unblank the display
Setting TV to PAL mode
/unit_tests/Display/mxc_tve_test.sh: line 22: echo: write error: Invalid
 argument
/unit_tests/Display/mxc_tve_test.sh: line 23: /unit_tests/mxc_v4l2_output.out:
 No such
file or directory
Blank the display
Unblank the display

./mxc_fb_test.out

Expected Output is shown below. The test should pass without any failure messages, and the display on panel
should be correct. For each test, a sequence of updates should be reflected on the screen. For almost all
tests, the text printed out in the debug console describes the image that should be observed on the screen.
For i.MX6Quad fb0 and fb1 are used for tests, fb0 is background framebuffer, and fb1 is foreground overlay
framebuffer.

Opened fb: /dev/fb0 (DISP4 BG - DI1)
DISP4 BG - DI1: screen info: 1024x768 (virtual: 1024x1536) @ 32-bpp
Opened fb: /dev/fb1 (DISP4 FG)
DISP4 FG: screen info: 240x320 (virtual: 240x960) @ 16-bpp
@DISP4 BG - DI1: Set colorspace to 16-bpp
@DISP4 FG: Set colorspace to 16-bpp
Prepared DISP4 BG - DI1 (black) and DISP4 FG (white). Verify the screen and
 press any
key to continue!
@DISP4 BG - DI1: Succesfully changed screen to 1024x768 (virtual: 1024x768) @16-
bpp
@DISP4 FG: Succesfully changed screen to 240x320 (virtual: 240x320) @16-bpp
Testing global alpha blending...
Fill the FG in black (screen is 240x320 @ 16-bpp)
Fill the BG in white (screen is 1024x768 @ 16-bpp)
Alpha is 0, FG is opaque
Alpha is 255, BG is opaque

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
277 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Color key enabled
Color key disabled
Global alpha disabled
Pan test start.
@DISP4 FG: Set the colorspace to 16-bpp
Pan test done.
@DISP4 BG - DI1: Set colorspace to 16-bpp
Pan test start.
@DISP4 BG - DI1: Set the colorspace to 16-bpp
Pan test done.
Gamma test start.
Gamma 0.800000
Gamma 1.000000
Gamma 1.500000
Gamma 2.200000
Gamma 2.400000
Gamma test end.
Test bpp start
@DISP4 BG - DI1: Set colorspace to 32-bpp
@DISP4 BG - DI1: Fill the screen in red
@DISP4 BG - DI1: Set colorspace to 24-bpp
@DISP4 BG - DI1: Fill the screen in blue
@DISP4 BG - DI1: Set colorspace to 16-bpp
@DISP4 BG - DI1: Fill the screen in green
Test bpp end

./mxc_epdc_fb_test.out [-h] [-a] [-n]
EPDC framebuffer driver test program.
Usage: mxc_epdc_fb_test [-h] [-a] [-p delay] [-u s/q/m] [-n <expression>]
-h Print this message
-a Enabled animation waveforms for fast updates (tests 8-9)
-p Provide a power down delay (in ms) for the EPDC driver
0 - Immediate (default)
-1 - Never
<ms> - After <ms> milliseconds
-u Select an update scheme
s - Snapshot update scheme
q - Queue update scheme
m - Queue and merge update scheme (default)
-n Execute the tests specified in expression
Expression is a set of comma-separated numeric ranges
If not specified, all tests except Stress are run
Example:
./mxc_epdc_fb_test.out -n 1-3,5,7
EPDC tests:
1 - Basic Updates
2 - Rotation Updates
3 - Grayscale Framebuffer Updates
4 - Auto-waveform Selection Updates
5 - Panning Updates
6 - Overlay Updates
7 - Auto-Updates
8 - Animation Mode Updates
9 - Fast Updates
10 - Partial to Full Update Transitions
11 - Test Pixel Shifting Effect
12 - Colormap Updates
13 - Collision Test Mode

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
278 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

14 - Stress Test
15 - Dithering Y8->Y1 Test
16 - Dithering Y8->Y4 Test
17 - Hardware Dithering Test
18 - Advanced Algorithm Test

The full set of tests should pass without any failure messages. For each test, a sequence of updates should
be reflected on the screen. For almost all tests, the text printed out in the debug console describes the image
that should be observed on the screen. mxc_epdc_v2_fb_test.out: The full set of tests should pass without any
failure messages. For each test, a sequence of updates should be reflected on the screen. For almost all tests,
the text printed out in the debug console describes the image that should be observed on the screen.

./mxc_spdc_fb_test.out
---- Running < ./mxc_spdc_fb_test.out > test ----
Unable to open /dev/fb5

./mxc_fb_vsync_test.out
Usage:
/unit_tests/Display# ./mxc_fb_vsync_test.out <fb #> <count>
<fb #> the framebuffer number
<count> the frames to be rendered
Example:
/unit_tests/Display# echo 0 > /sys/class/graphics/fb0/blank
/unit_tests/Display# ./mxc_fb_vsync_test.out 0 100

Expected output is the following when using 100 for the < count > argument

total time for 100 frames = 1655674 us = 60 fps

11.5.2 High-Definition Multimedia Interface (HDMI) and Display Port (DP) Overview

11.5.2.1 Test Name

• mxc_cec_test.out

11.5.2.1.1 Location

/unit_tests/HDMI/

11.5.2.1.2 Functionality

Verify HDMI CEC function and send poweroff command to HDMI sink.

11.5.2.1.3 Configuration

For mxc_cec_test.out to work add the following line to the target board defconfig file:

CONFIG_MXC_HDMI_CEC=y

The hardware should support HDMI and TV should support HDMI CEC

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
279 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

11.5.2.1.4 Use Case and Expected Output

./mxc_cec_test.out

11.5.3 Video Processing Unit (VPU)

11.5.3.1 Test for i.MX 6

• autorun-vpu.sh
• mxc_vpu_test.out

11.5.3.1.1 Location

/unit_tests/VPU/

11.5.3.1.2 Functionality

The VPU test exercises the following options on the Video Processing Unit (VPU):

• Decode one stream and display on the LCD.
• Decode a stream and save to a file.
• Decode a stream using a config file.
• Encode a YUV stream and save to a file.
• Encode an image from the camera and decode it to display on the LCD.
• Decode multiple streams with different formats simultaneously.
• Decode and encode simultaneously.
• Output to TV out.
• Test VPU with VDI (HW deinterlace via IPU).

11.5.3.1.3 Configuration

This tests require libvpu.so under /usr/lib/ and LCD display. This test requires i.MX 6QuadPlus/Quad/Dual SoC.

11.5.3.1.4 Use Case and Expected Output

./autorun-vpu.sh
Decode one stream and display on the LCD.
To test MPEG-4 decode and display to screen:
./mxc_vpu_test.out -D "-i /usr/vectors/file.m4v -f 0"
To test H.263 decode and display to screen:
./mxc_vpu_test.out -D "-i /usr/vectors/file.263 -f 1"
To test H.264 decode and display to screen:
./mxc_vpu_test.out -D "-i /usr/vectors/file.264 -f 2"
You can get the mp4 test file from the imx-test.git server.
It is located under test/mxc_vpu_test/configs/akiyo.mp4.
Decode a stream and save to a file.
To test MPEG-4 decode and save to file:
./mxc_vpu_test.out -D "-i /usr/vectors/file.m4v -f 0 -o out.yuv"
To test H.263 decode and save to file:
./mxc_vpu_test.out -D "-i /usr/vectors/file.263 -f 1 -o out.yuv"
To test H.264 decode and save to file:

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
280 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

./mxc_vpu_test.out -D "-i /usr/vectors/file.264 -f 2 -o out.yuv"
Decode a stream using a config file.
Change options in config file, e.g, config_dec. Input correct input filename,
 output filename, format,
./mxc_vpu_test.out -C config_dec
Encode a YUV stream and save to a file.
To test MPEG-4 encode and save to a file:
./mxc_vpu_test.out -E "-i file.yuv -w 240 -h 320 -f 0 -o file.mpeg4"
To test H.263 encode and save to a file:
./mxc_vpu_test.out -E "-i file.yuv -w 240 -h 320 -f 1 -o file.263"
To test H.264 encode and save to a file:
./mxc_vpu_test.out -E "-i file.yuv -w 240 -h 320 -f 2 -o file.264"
Encode an image from the camera and decode it to display on the LCD.
To encode an MPEG4 image from the camera and display on the LCD: that
./mxc_vpu_test.out -L "-f 0 -w 1280 -h 720"
To encode an H263 image from the camera and display on the LCD:
./mxc_vpu_test.out -L "-f 1 -w 1280 -h 720"
To encode an H264 image from the camera and display on the LCD:
./mxc_vpu_test.out -L "-f 2 -w 1280 -h 720"
Decode multiple streams with different formats simultaneously.
Decoder one H264 and one MPEG4 streams.
./mxc_vpu_test.out -D "-i/vectors/file.264 -f 2" -D "-i ./akiyo.mp4 -f 0 -o
 akiyo.yuv"
Decode and encode simultaneously.
Encode one MPEG-4 stream and decode one H.264 stream simultaneously.
./mxc_vpu_test.out -E "-w 176 -h 144 -f 0 -o enc.m4v" -D "-i/vectors/file.264 -f
Test VPU with TV out.
Decoder one stream as normal VPU test. For example, H264 video stream:
./mxc_vpu_test.out -D "-i filename -f 2"
Test VPU with VDI (HW deinterlace via IPU).
Select one stream with top and bottom fields are interlaced.
av_stress2_dsmcc4m_1_C1_V11_A6.mp4_track1.h264
To decode the stream and display on LCD:
./mxc_vpu_test.out -D "-i av_stress2_dsmcc4m_1_C1_V11_A6.mp4_track1.h264 -f2"
To decode the stream and display on LCD using high motion stream video De
 Interlacing algorithm:
./mxc_vpu_test.out -D "-i av_stress2_dsmcc4m_1_C1_V11_A6.mp4_track1.h264 -v h -
f2"
To decode the stream and display on LCD using low motion stream video De
 Interlacing algorithm:
./mxc_vpu_test.out -D "-i av_stress2_dsmcc4m_1_C1_V11_A6.mp4_track1.h264 -v l -
f2"
To decode the stream and display on LCD having input in NV12 pixel format:
./mxc_vpu_test.out -D "-i av_stress2_dsmcc4m_1_C1_V11_A6.mp4_track1.h264 -v

11.5.3.2 Test for i.MX 8M Quad

11.5.3.2.1 Location

/unit_tests/VPU/hantro

11.5.3.2.2 Functionality

The VPU test exercises the following option on the VPU:

• Decode a stream and save to a file.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
281 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

11.5.3.2.3 Use Case and Expected Output

Example for decoding different codecs:

/unit_tests/VPU/hantro/g2dec -P -b -ibs -Oout.yuv test.hevc
/unit_tests/VPU/hantro/g2dec -P -b -iivf -Oout.yuv test.vp9
/unit_tests/VPU/hantro/hx170dec -P -Oout.yuv test.h264
/unit_tests/VPU/hantro/mx170dec -P -Oout.yuv test.mpeg4
/unit_tests/VPU/hantro/m2x170dec -P -Oout.yuv test.mpeg2
/unit_tests/VPU/hantro/vx170dec -P -Oout.yuv test.vc1
/unit_tests/VPU/hantro/vp8x170dec -P -Oout.yuv test.vp8
/unit_tests/VPU/hantro/vp6dec -P -Oout.yuv test.vp6
/unit_tests/VPU/hantro/rvx170dec -P -Oout.yuv test.rv
/unit_tests/VPU/hantro/jx170dec -P -Oout.yuv test.jpg
/unit_tests/VPU/hantro/ax170dec -P -Oout.yuv test.avs

11.5.3.3 Test for i.MX 8M Mini

11.5.3.3.1 Location

/unit_tests/VPU/hantro

11.5.3.3.2 Functionality

The VPU test exercises the following option on the VPU:

• Decode a stream and save to a file.
• Encode a YUV stream and save to a file.

11.5.3.3.3 Use Case and Expected Output

Example for decoder:

/unit_tests/VPU/hantro/g2dec -P -b -ibs -Oout.yuv test.hevc
/unit_tests/VPU/hantro/g2dec -P -b -iivf -Oout.yuv test.vp9
/unit_tests/VPU/hantro/hx170dec -P -Oout.yuv test.h264
/unit_tests/VPU/hantro/vp8x170dec -P -Oout.yuv test.vp8

Example for encoder:

/unit_tests/VPU/hantro/h264_testenc -w176 -h144 -o temp.h264 -i test.yuv
/unit_tests/VPU/hantro/vp8_testenc -w176 -h144 -o temp.h264 -i test.yuv

11.5.3.4 Test for i.MX 8QuadXPlus, 8QuadMax, and i.MX 9

11.5.3.4.1 Location

/unit_tests/V4L2_VPU/

11.5.3.4.2 Functionality

The VPU test exercises the following option on the VPU:

• Decode a stream and save to a file.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
282 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

• Encode a YUV stream and save to a file.

11.5.3.4.3 Use Case and Expected Output

Example for decoder, which helps to list the 'ifmt' value for different codecs:

/unit_tests/V4L2_VPU/mxc_v4l2_vpu_test.out parser --key 0 --name input.h264
 --fmt h264 decoder --key 1 --source 0 convert --key 2 --source 1 --fmt i420
 ofile --key 3 --source 2 --name output.yuv

Example for encoder (H.264 only):

/unit_tests/V4L2_VPU/mxc_v4l2_vpu_test.out ifile --key 0 --name
 input_1920_1080.yuv --fmt i420 --size 1920 1080 convert --key 1 --source 0 --
fmt nv12 encoder --key 2 --source 1 --size 1920 1080 --gop 60 --fmt h264 --qp
 25 --bitrate 5000000 --framerate 30 --profile 0 ofile --key 3 --source 2 --name
 output.h264

Execute /unit_tests/V4L2_VPU/mxc_v4l2_vpu_test.out help for more details.

11.5.4 JPEG Encoder and Decoder

11.5.4.1 Test Name

• encoder_test
• decoder_test

11.5.4.1.1 Location

/unit_tests/JPEG

11.5.4.1.2 Functionality

The encoder_test receives a raw file in one of the supported formats as input and produces a JPEG file as
output, with the same resolution and pixel format as the input, unless cropping is performed. The application fills
the raw file in one V4L2 output buffer, enqueues it into the driver, and expects to dequeue the JPEG image in
one capture buffer.

The decoder_test receives a JPEG file in one of the supported formats as input and produces a raw file as
output, with the same resolution and pixel format as the input. The application fills the jpeg file in one V4L2
output buffer, enqueues it into the driver, and expects to dequeue the raw image in one capture buffer.

11.5.4.1.3 Configuration

No special configuration.

11.5.4.1.4 Use Case and Expected Output

Run the applications to get the usage:

./decoder_test.out

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
283 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Usage:

./decoder_test.out -d </dev/videoX> -f <FILENAME> -w <width> -h <height> -p
 <pixel_format> [-n <iterations>] [-x]
Supported pixel formats:
 yuv420: 2-planes, Y and UV-interleaved, same as NV12M
 yuv420s: 2-planes, Y and UV-interleaved, contiguous, same as NV12
 yuv420-12: 2-planes, Y and UV-interleaved, non-contiguous, 12-bit
 precision
 yuv420s-12: 2-planes, Y and UV-interleaved, contiguous, 12-bit
 precision
 yuv422: packed YUYV
 yuv422-12: packed YUYV, 12-bit precision
 rgb24: packed RGB (obsolete)
 bgr24: packed BGR
 bgr24-12: packed BGR, 12-bit precision
 yuv444: packed YUV
 yuv444-12: packed YUV, 12-bit precision
 gray: Y8 Single Component
 gray-12: Y12 Single Component
 argb: packed ARGB (obsolete)
 abgr: packed ABGR
 abgr-12: packed ABGR, 12-bit precision
Optional arguments:
 -x: print a hexdump of the result
 -n: number of iterations for enqueue/dequeue loop
 -q: quality factor 1..100, for encoder only
 -W <crop width> -H <crop height> (optional, supported only for encoder)

Supported formats:

yuv420: 2-planes, Y and UV-interleaved, same as NV12
yuv422: packed YUYV
rgb24: packed RGB
yuv444: packed YUV
gray: Y8 or Y12 or Single Component
argb: packed ARGB

The input file has to be a JPEG file that matches the specified width, height, and pixel format. The output is a
raw file called "outfile" in the current folder, with the same width, height, and pixel format as the input.

./encoder_test.out

Usage:

./encoder_test.out -d </dev/videoX> -f <FILENAME> -w <width> -h <height> -p
 <pixel_format> [-n <iterations>] [-x]
Supported pixel formats:
 yuv420: 2-planes, Y and UV-interleaved, same as NV12M
 yuv420s: 2-planes, Y and UV-interleaved, contiguous, same as NV12
 yuv420-12: 2-planes, Y and UV-interleaved, non-contiguous, 12-bit
 precision
 yuv420s-12: 2-planes, Y and UV-interleaved, contiguous, 12-bit
 precision
 yuv422: packed YUYV
 yuv422-12: packed YUYV, 12-bit precision
 rgb24: packed RGB (obsolete)
 bgr24: packed BGR

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
284 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

 bgr24-12: packed BGR, 12-bit precision
 yuv444: packed YUV
 yuv444-12: packed YUV, 12-bit precision
 gray: Y8 Single Component
 gray-12: Y12 Single Component
 argb: packed ARGB (obsolete)
 abgr: packed ABGR
 abgr-12: packed ABGR, 12-bit precision
Optional arguments:
 -x: print a hexdump of the result
 -n: number of iterations for enqueue/dequeue loop
 -q: quality factor 1..100, for encoder only
 -W <crop width> -H <crop height> (optional, supported only for encoder)

Supported formats:

yuv420: 2-planes, Y and UV-interleaved, same as NV12
yuv422: packed YUYV
rgb24: packed RGB
yuv444: packed YUV
gray: Y8 or Y12 or Single Component
argb: packed ARGB

The input file has to be a raw file that matches the specified width, height, and pixel format. The output is a
JPEG file called "outfile.jpeg" in the current folder, with the same width, height, and pixel format as the input,
unless cropping is performed.

11.6 Audio

11.6.1 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound

11.6.1.1 Test Name

• mxc_tuner_test.out

11.6.1.1.1 Location

/unit_tests/ALSA/

11.6.1.1.2 Functionality

Test audio capabilities using ALSA.

11.6.1.1.3 Configuration

ALSA is supported on all i.MX for test aplay, arecord and speaker-test. To use this tuner test it requires tuner
hardware available only on the i.MX 6 auto reference boards

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
285 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

11.6.1.1.4 Use Case and Expected Output

11.6.2 Asynchronous Sample Rate Converter (ASRC) on i.MX 6/i.MX 8QuadMax/i.MX
8QuadXPlust

11.6.2.1 Test Name

• mxc_asrc_test.out

11.6.2.1.1 Location

/unit_tests/ASRC

11.6.2.1.2 Functionality

Converts WAV to different sample rates.

11.6.2.1.3 Configuration

None

11.6.2.1.4 Use Case and Expected Output

#/unit_tests/ASRC/mxc_asrc_test.out -to 48000 /unit_tests/ASRC/audio8k16S.wav
audio48k16S.wav
---- Running < /unit_tests/ASRC/mxc_asrc_test.out > test ----
Pair A requested
All tests passed with success

More usages for mxc_asrc_test.out can be obtained by the following command:

#/unit_tests/ASRC/mxc_asrc_test.out -h
---- Running < /unit_tests/ASRC/mxc_asrc_test.out > test ----
**
* Test aplication for ASRC
* Options :
-to <output sample rate> <origin.wav$gt; <converted.wav>
<input clock source> <output clock source>
input clock source types are:
0 -- INCLK_NONE
1 -- INCLK_ESAI_RX
2 -- INCLK_SSI1_RX
3 -- INCLK_SSI2_RX
4 -- INCLK_SPDIF_RX
5 -- INCLK_MLB_CLK
6 -- INCLK_ESAI_TX
7 -- INCLK_SSI1_TX
8 -- INCLK_SSI2_TX
9 -- INCLK_SPDIF_TX
10 -- INCLK_ASRCK1_CLK
default option for output clock source is 0
output clock source types are:
0 -- OUTCLK_NONE
1 -- OUTCLK_ESAI_TX

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
286 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

2 -- OUTCLK_SSI1_TX
3 -- OUTCLK_SSI2_TX
4 -- OUTCLK_SPDIF_TX
5 -- OUTCLK_MLB_CLK
6 -- OUTCLK_ESAI_RX
7 -- OUTCLK_SSI1_RX
8 -- OUTCLK_SSI2_RX
9 -- OUTCLK_SPDIF_RX
10 -- OUTCLK_ASRCK1_CLK
default option for output clock source is 10
**

11.7 Security

11.7.1 Display Content Integrity Checker (DCIC)

11.7.1.1 Test Name

• mxc_dcic_test.out

11.7.1.1.1 Location

/unit_tests/DCIC/

11.7.1.1.2 Functionality

The goal of the DCIC is to verify that a safety-critical information sent to a display is not corrupted.

11.7.1.1.3 Configuration

None

11.7.1.1.4 Use Case and Expected Output

./mxc_dcic_test.out -bw 18 -dev 1

Expected output for mxc_dcic_test.out:

Opened fb0
open /dev/dcic1
bpp=16, bus_width=18
Config ROI=1
Config ROI=3
Config ROI=5
ROI=0,crcRS=0x0, crcCS=0x0
ROI=1,crcRS=0x6cd6b18d, crcCS=0x6cd6b18d
ROI=2,crcRS=0x0, crcCS=0x0
ROI=3,crcRS=0xc9da7ae6, crcCS=0xc9da7ae6
ROI=4,crcRS=0x0, crcCS=0x0
ROI=5,crcRS=0xb5ba1453, crcCS=0xb5ba1453
ROI=6,crcRS=0x0, crcCS=0x0
ROI=7,crcRS=0x0, crcCS=0x0
ROI=8,crcRS=0x0, crcCS=0x0

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
287 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

ROI=9,crcRS=0x0, crcCS=0x0
ROI=10,crcRS=0x0, crcCS=0x0
ROI=11,crcRS=0x0, crcCS=0x0
ROI=12,crcRS=0x0, crcCS=0x0
ROI=13,crcRS=0x0, crcCS=0x0
ROI=14,crcRS=0x0, crcCS=0x0
ROI=15,crcRS=0x0, crcCS=0x0
All ROI CRC check success!

11.7.2 SIM

11.7.2.1 Test Name

• mxc_sim_test.out

11.7.2.1.1 Location

/unit_tests/SIM/

11.7.2.1.2 Functionality

Basic testing of SIM card interface.

11.7.2.1.3 Configuration

None

11.7.2.1.4 Use Case and Expected Output

/unit_tests/mxc_sim_test.out
Expected output
atr[0]= 0x3b atr[1]= 0x68 atr[2]= 0x0 atr[3]= 0x0 atr[4]= 0x0 atr[5]= 0x73
 atr[6]=
0xc8
atr[7]= 0x40 atr[8]= 0x0 atr[9]= 0x0 atr[10]= 0x90 atr[11]= 0x0
rx[0] = 0x6e rx[1] = 0x0
rx[0] = 0x6d rx[1] = 0x0
rx[0] = 0x6e rx[1] = 0x0

11.7.3 SNVS Real Time Clock (SRTC)

11.7.3.1 Test Name

• autorun-rtc.sh
• rtctest.out
• rtcwakeup.out

11.7.3.1.1 Location

/unit_tests/SRTC/

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
288 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

11.7.3.1.2 Functionality

These tests check the Real Time Clock (RTC) module which is used to keep the time and date. It provides a
certifiable time to the user and can raise an alarm if tampering with counters is detected.

11.7.3.1.3 Configuration

For autorun-rtc.sh, rtctest.out and rtcwakeup.out to work add the following line to the target board defconfig file:

CONFIG_RTC_DRV_SNVS=y

11.7.3.1.4 Use Case and Expected Output

./autorun-rtc.sh
or
./rtctest.out $lt;arg>
--full run all tests
--no-periodic don't run periodic interrupt tests
or
./rtcwakeup.out -d rtc0 -m mem -s 10
Expected output
autorun-rtc.sh: Exit with PASS results.
rtctest.out: The program ends with "Test complete" status.
rtcwakeup.out: System is wakeup after 10s.

Expected output for i.MX 7D Sabre SD

• autorun-rtc.sh
•

autorun-rtc.sh
i.MX7D
Checking for devnode: /dev/rtc0
autorun-rtc.sh: PASS devnode found: /dev/rtc0
Running test case: ./rtctest.out --no-periodic
RTC Driver Test Example.
Counting 5 update (1/sec) interrupts from reading /dev/rtc0: 1 2 3 4 5
Again, from using select(2) on /dev/rtc0: 1 2 3 4 5
Current RTC date/time is 21-2-2017, 23:13:07.
Alarm time now set to 23:13:12.
Waiting 5 seconds for alarm... okay. Alarm rang.
*** Test complete ***
Typing "cat /proc/interrupts" will show 1 more events on IRQ rtc.
autorun-rtc.sh: PASS test case: ./rtctest.out --no-periodic
rtc irqs before running unit test: 303
rtc irqs after running unit test: 314
so rtc irqs during test was:
11
checking rtc interrupts PASS
autorun-rtc.sh: Exiting PASS

• rtctest.out --full
•

./rtctest.out --full
RTC Driver Test Example.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
289 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Counting 5 update (1/sec) interrupts from reading /dev/rtc0: 1 2 3 4 5
Again, from using select(2) on /dev/rtc0: 1 2 3 4 5
Current RTC date/time is 21-2-2017, 23:14:48.
Alarm time now set to 23:14:53.
Waiting 5 seconds for alarm... okay. Alarm rang.
Periodic IRQ rate was 1Hz.
Counting 20 interrupts at:
2Hz: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
4Hz: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
8Hz: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
16Hz: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
32Hz: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
64Hz: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
*** Test complete ***
Typing "cat /proc/interrupts" will show 131 more events on IRQ rtc.

• rtctest.out --no-periodic
•

/rtctest.out --no-periodic
RTC Driver Test Example.
Counting 5 update (1/sec) interrupts from reading /dev/rtc0: 1 2 3 4 5
Again, from using select(2) on /dev/rtc0: 1 2 3 4 5
Current RTC date/time is 21-2-2017, 23:16:24.
Alarm time now set to 23:16:29.
Waiting 5 seconds for alarm... okay. Alarm rang.
*** Test complete ***
Typing "cat /proc/interrupts" will show 1 more events on IRQ rtc.

• rtcwakeup.out -d rtc0 -m mem -s 10
•

./rtcwakeup.out -d rtc0 -m mem -s 10
rtcwakeup.out: wakeup from "mem" using rtc0 at Wed Feb 22 23:17:29 2017
PM: Syncing filesystems ... done.
Freezing user space processes ... (elapsed 0.001 seconds) done.
Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done.
Suspending console(s) (use no_console_suspend to debug)
PM: suspend of devices complete after 639.100 msecs
PM: suspend devices took 0.640 seconds
PM: late suspend of devices complete after 1.236 msecs
PM: noirq suspend of devices complete after 1.202 msecs
Disabling non-boot CPUs ...
CPU1: shutdown
Turn off Mega/Fast mix in DSM
Enabling non-boot CPUs ...
CPU1 is up
PM: noirq resume of devices complete after 0.756 msecs
imx-sdma 30bd0000.sdma: loaded firmware 4.2
PM: early resume of devices complete after 0.972 msecs
PM: resume of devices complete after 483.302 msecs
PM: resume devices took 0.480 seconds
Restarting tasks ... done.

12 Note About the Source Code in the Document

Example code shown in this document has the following copyright and BSD-3-Clause license:

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
290 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Copyright 2025 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

13 Revision History

13.1 Revision History
This table provides the revision history.

Document ID Release date Description

RM00293 v.LF6.12.20_2.0.0 26 June 2025 Upgraded to the 6.12.20 kernel, U-Boot v2025.04, TF-A
2.11, OP-TEE 4.6.0, Yocto 5.2 Walnascar, and added the
i.MX 943 as Alpha quality.

RM00293 v.LF6.12.3_1.0.0 31 March 2025 Upgraded to the 6.12.3 kernel.

RM00293 v.LF6.6.52_2.2.0 16 December 2024 Upgraded to the 6.6.52 kernel.

RM00293 v.LF6.6.36_2.1.0 30 September
2024

Upgraded to the 6.6.36 kernel.

IMXLXRM_6.6.23_2.0.0 28 June 2024 Upgraded to the 6.6.23 kernel, U-Boot v2024.04, TF-A
v2.10, OP-TEE 4.2.0, Yocto 5.0 Scarthgap, and added the
i.MX 91 as Alpha quality, i.MX 95 as Beta quality.

IMXLXRM v.LF6.6.3_1.0.0 29 March 2024 Upgraded to the 6.6.3 kernel, removed the i.MX 91, and
added the i.MX 95 as Alpha Quality.

IMXLXRM v.LF6.1.55_2.2.0 12/2023 Upgraded to the 6.1.55 kernel.

IMXLXRM v.LF6.1.36_2.1.0 10/2023 Updated the BCH schemes in Backward Compatibility.

IMXLXRM v.LF6.1.36_2.1.0 09/2023 Upgraded to the 6.1.36 kernel and added the i.MX 91P.

IMXLXRM v.LF6.1.22_2.0.0 06/2023 Upgraded to the 6.1.22 kernel.

IMXLXRM v.LF6.1.1_1.0.0 03/2023 Upgraded to the 6.1.1 kernel.

IMXLXRM v.LF5.15.71_2.2.0 12/2022 Upgraded to the 5.15.71 kernel.

IMXLXRM v.LF5.15.52_2.1.0 09/2022 Upgraded to the 5.15.52 kernel, and added the i.MX 93.

Revision history

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
291 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Document ID Release date Description

IMXLXRM v.LF5.15.32_2.0.0 06/2022 Upgraded to the 5.15.32 kernel, U-Boot 2022.04, and
Kirkstone Yocto.

IMXLXRM v.LF5.15.5_1.0.0 03/2022 Upgraded to the 5.15.5 kernel, Honister Yocto, and Qt6.

IMXLXRM v.LF5.10.72_2.2.0 12/2021 Upgraded the kernel to 5.10.72 and updated the BSP.

IMXLXRM v.LF5.10.52_2.1.0 09/2021 Updated for i.MX 8ULP Alpha and the kernel upgraded to
5.10.52.

IMXLXRM v.LF5.10.35_2.0.0 06/2021 Upgraded to 5.10.35 kernel.

IMXLXRM v.LF5.10.9_1.0.0 03/2021 Upgraded to 5.10.9 kernel.

IMXLXRM v.L5.4.70_2.3.0 01/2021 Updated the command lines in Section "Running the Arm
Cortex-M4 image".

IMXLXRM v.L5.4.70_2.3.0 12/2020 i.MX 5.4 consolidated GA for release i.MX boards including i.
MX 8M Plus and i.MX 8DXL.

IMXLXRM v.L5.4.47_2.2.0 09/2020 i.MX 5.4 Beta2 release for i.MX 8M Plus, Beta for 8DXL, and
consolidated GA for released i.MX boards.

IMXLXRM v.L5.4.24_2.1.0 06/2020 i.MX 5.4 Beta release for i.MX 8M Plus, Alpha2 for 8DXL,
and consolidated GA for released i.MX boards.

IMXLXRM v.L5.4.3_2.0.0 04/2020 i.MX 5.4 Alpha release for i.MX 8M Plus and 8DXL EVK
boards.

IMXLXRM v.LF5.4.3_1.0.0 03/2020 i.MX 5.4 Kernel and Yocto Project Upgrades.

IMXLXRM v.L4.19.35_1.1.0 10/2019 i.MX 4.19 Kernel and Yocto Project Upgrades.

IMXLXRM v.L4.19.35_1.0.0 07/2019 i.MX 4.19 Beta Kernel and Yocto Project Upgrades.

IMXLXRM v.L4.14.98_2.0.0_ga 04/2019 i.MX 4.14 Kernel upgrade and board updates.

IMXLXRM v.L4.14.78_1.0.0_ga 01/2019 i.MX 6, i.MX 7, i.MX 8 family GA release.

IMXLXRM v.L4.14.62_1.0.0_beta 11/2018 i.MX 4.14 Kernel Upgrade, Yocto Project Sumo upgrade.

IMXLXRM v.L4.9.123_2.3.0_8mm 09/2018 i.MX 8M Mini GA release.

IMXLXRM v.L4.9.88_2.2.0_8qxp-beta2 07/2018 i.MX 8QuadXPlus Beta2 release.

IMXLXRM v.L4.9.88_2.1.0_8mm-alpha 06/2018 i.MX 8M Mini Alpha release.

IMXLXRM v.L4.9.88_2.0.0-ga 05/2018 i.MX 7ULP and i.MX 8M Quad GA release.

IMXLXRM v.L4.9.51_imx8mq-ga 03/2018 Added i.MX 8M Quad GA.

IMXLXRM v.L4.9.51_8qm-beta2/8qxp-
beta

02/2018 Added i.MX 8QuadMax Beta2 and i.MX 8QuadXPlus Beta.

IMXLXRM v.L4.9.51_imx8mq-beta 12/2017 Added i.MX 8M Quad.

IMXLXRM v.L4.9.51_imx8qm-beta1 12/2017 Added i.MX 8QuadMax.

IMXLXRM v.L4.9.51_imx8qxp-alpha 11/2017 Initial release.

Revision history...continued

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
292 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

HTML publications — An HTML version, if available, of this document is
provided as a courtesy. Definitive information is contained in the applicable
document in PDF format. If there is a discrepancy between the HTML
document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
293 / 301

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, μVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

Bluetooth — the Bluetooth wordmark and logos are registered trademarks
owned by Bluetooth SIG, Inc. and any use of such marks by NXP
Semiconductors is under license.
EdgeLock — is a trademark of NXP B.V.
eIQ — is a trademark of NXP B.V.

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
294 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

Contents
1 Introduction .. 2
1.1 Overview ..2
1.1.1 Software Base ... 2
1.1.2 Features ...2
1.2 Audience ..6
1.2.1 Conventions ... 6
1.2.2 Definitions, Acronyms, and Abbreviations 6
1.3 References ...10
2 System .. 11
2.1 Machine-Specific Layer (MSL)11
2.1.1 Introduction .. 11
2.1.2 Interrupts (Operation) 11
2.1.2.1 Interrupt Hardware Operation 11
2.1.2.2 Interrupt Software Operation 12
2.1.2.3 Interrupt Features .. 12
2.1.2.4 Interrupt Source Code Structure12
2.1.2.5 Interrupt Programming Interface13
2.1.3 Timer ..13
2.1.3.1 Timer Software Operation13
2.1.3.2 Timer Features .. 13
2.1.3.3 Timer Source Code Structure14
2.1.3.4 Timer Programming Interface 14
2.1.4 Memory Map ..14
2.1.4.1 Memory Map Hardware Operation 14
2.1.4.2 Memory Map Features 14
2.1.5 IOMUX ... 14
2.1.5.1 IOMUX Hardware Operation15
2.1.5.2 IOMUX Software Operation15
2.1.5.3 IOMUX Features ..15
2.1.5.4 IOMUX Source Code Structure 15
2.1.5.5 IOMUX Programming Interface 16
2.1.5.6 IOMUX Control Through GPIO Module 16
2.1.6 General Purpose Input/Output (GPIO)17
2.1.6.1 GPIO Software Operation17
2.1.6.2 GPIO Features .. 17
2.1.6.3 GPIO Module Source Code Structure 17
2.1.6.4 GPIO Programming Interface 2 18
2.1.7 Clock ..18
2.1.7.1 Clock Software Operation18
2.1.7.2 Clock Features .. 18
2.1.7.3 Source Code Structure 18
2.1.7.4 .. 19
2.2 System Controller .. 19
2.2.1 Introduction .. 19
2.3 Boot Image .. 21
2.3.1 Introduction .. 21
2.4 Anatop Regulator Driver 22
2.4.1 Introduction .. 22
2.4.2 Hardware Operation .. 22
2.4.3 Software Operation ..22
2.4.4 Driver Features ..22
2.4.5 Driver Interface Details 23
2.4.6 Regulator APIs .. 23
2.4.7 Source Code Structure 23
2.4.8 Menu Configuration Options24
2.5 Power Management ...24

2.5.1 Low Level Power Management (PM)24
2.5.1.1 Introduction .. 24
2.5.1.2 Software Operation ..25
2.5.1.3 Source Code Structure 26
2.5.1.4 Menu Configuration Options27
2.5.1.5 Programming Interface 27
2.5.2 PMIC PF Regulator ... 27
2.5.2.1 Introduction .. 27
2.5.2.2 Hardware Operation .. 27
2.5.2.3 Software Operation ..28
2.5.2.4 Driver Features ..28
2.5.2.5 Regulator APIs .. 28
2.5.2.6 Driver Architecture ...29
2.5.2.7 Driver Interface Details 29
2.5.2.8 Source Code Structure 29
2.5.2.9 Menu Configuration Options30
2.5.3 CPU Frequency Scaling (CPUFREQ)30
2.5.3.1 Introduction .. 30
2.5.3.2 Software Operation ..30
2.5.3.3 Source Code Structure 31
2.5.3.4 Menu Configuration Options31
2.5.4 Dynamic Bus Frequency 31
2.5.4.1 Introduction .. 31
2.5.4.2 Operation ... 32
2.5.4.3 Software Operation ..32
2.5.4.4 Source Code Structure 33
2.5.4.5 Menu Configuration Options36
2.5.5 Battery Charging ..36
2.5.5.1 Introduction .. 36
2.5.5.2 Software Operation ..36
2.5.5.3 Source Code Structure 36
2.5.5.4 Menu Configuration Options36
2.6 OProfile ..36
2.6.1 Introduction .. 36
2.6.1.1 Overview ..36
2.6.1.2 Features ...37
2.6.1.3 Hardware Operation .. 37
2.6.1.4 Architecture-specific Components 37
2.6.1.5 oprofilefs Pseudo Filesystem38
2.6.1.6 Generic Kernel Driver38
2.6.1.7 OProfile Daemon ... 38
2.6.1.8 Post Profiling Tools ..38
2.6.1.9 Interrupt Requirements 38
2.6.2 Software Operation ..38
2.6.2.1 Source Code Structure 38
2.6.2.2 Menu Configuration Options39
2.6.2.3 Programming Interface 39
2.6.2.4 Example Software Configuration 39
2.7 Pulse-Width Modulator (PWM) 40
2.7.1 Introduction .. 40
2.7.2 Hardware Operation .. 40
2.7.3 Clocks .. 41
2.7.4 Software Operation ..41
2.7.5 Driver Features ..41
2.7.6 Source Code Structure 41
2.7.7 Menu Configuration Options41

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
295 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

2.8 Remote Processor Messaging42
2.8.1 Introduction .. 42
2.8.2 Features ...42
2.8.3 Source Code ..43
2.8.4 Menu Configuration Options43
2.8.5 Running i.MX RPMsg Test Programs 43
2.9 Thermal ..44
2.9.1 Introduction .. 44
2.9.2 Software Operation ..44
2.9.3 Source Code Structure 45
2.9.4 Menu Configuration Options45
2.10 Sensors ..45
2.10.1 Introduction .. 45
2.10.2 Sensor Driver Software Operation46
2.10.3 Source Code Structure 46
2.10.4 Menu Configuration Options46
2.11 Watchdog (WDOG) ..47
2.11.1 Introduction .. 47
2.11.2 Hardware Operation .. 47
2.11.3 Software Operation ..47
2.11.4 Generic WDOG ... 47
2.11.5 Driver Features ..47
2.11.6 Source Code Structure 47
2.11.7 Menu Configuration Options48
2.11.8 Programming Interface 48
3 Storage ..48
3.1 AHB-to-APBH Bridge with DMA (APBH-

Bridge-DMA) .. 48
3.1.1 Overview ..48
3.1.1.1 Hardware Operation .. 48
3.1.1.2 Software Operation ..49
3.1.1.3 Source Code Structure 49
3.1.1.4 Menu Configuration Options49
3.1.1.5 Programming Interface 50
3.2 EIM NOR ... 50
3.2.1 Introduction .. 50
3.2.2 Hardware Operation .. 50
3.2.3 Software Operation ..50
3.2.4 Source Code ..50
3.2.5 Enabling the EIM NOR50
3.3 MMC/SD/SDIO Host .. 50
3.3.1 Introduction .. 50
3.3.2 Hardware Operation .. 51
3.3.3 Software Operation ..51
3.3.4 Driver Features ..52
3.3.5 Source Code Structure 52
3.3.6 Menu Configuration Options53
3.3.7 Device Tree Binding .. 53
3.3.8 Programming Interface 54
3.3.9 Loadable Module Operations54
3.4 NAND GPMI Flash .. 55
3.4.1 Introduction .. 55
3.4.2 Hardware Operation .. 55
3.4.3 Software Operation ..55
3.4.4 Basic Operations: Read/Write 56
3.4.5 Error Correction ... 56
3.4.6 Boot Control Block Management56
3.4.7 Bad Block Handling ... 56
3.4.8 Source Code Structure 57

3.4.9 Menu Configuration Options57
3.5 Quad/Flexible/External Serial Peripheral

Interface (QuardSPI/FlexSPI/XSPI) 57
3.5.1 Introduction .. 57
3.5.2 Hardware Operation .. 58
3.5.3 Software Operation ..58
3.5.4 Driver Features ..58
3.5.5 Source Code Structure 59
3.5.6 Menu Configuration Options59
3.6 SATA .. 59
3.6.1 Introduction .. 59
3.6.2 Board Configuration Options 59
3.6.3 Software Operation ..59
3.6.4 Source Code Structure 59
3.6.5 Menu Configuration Options60
3.6.6 Programming Interface 60
3.6.7 Usage Example ... 60
3.6.8 Usage Example ... 61
3.7 Smart Direct Memory Access (SDMA) API 62
3.7.1 Overview ..62
3.7.2 Hardware Operation .. 62
3.7.3 Software Operation ..62
3.7.4 Source Code Structure 63
3.7.5 Special peripheral with SDMA cases63
3.7.5.1 I2C in i.MX 6/7Dual/8M 63
3.8 SPI NOR Flash Memory Technology Device

(MTD) ...64
3.8.1 Introduction .. 64
3.8.2 Hardware Operation .. 64
3.8.3 Software Operation ..64
3.8.4 Source Code Structure 65
3.8.5 Menu Configuration Options65
4 Connectivity ... 65
4.1 ADC ... 65
4.1.1 ADC Introduction ... 65
4.1.2 ADC External Signals66
4.1.3 ADC Driver Overview 66
4.1.4 Source Code Structure 66
4.1.5 Menu Configuration Options67
4.1.6 Programming Interface 67
4.2 ENET IEEE-1588 ...67
4.2.1 Introduction .. 67
4.2.1.1 Transmit Timestamping 68
4.2.1.2 Receive Timestamping 68
4.2.2 Software Operation ..68
4.2.2.1 Source Code Structure 69
4.2.2.2 Menu Configuration Options69
4.2.2.3 Programming Interface 69
4.2.3 1588 Stack Introduction69
4.2.3.1 Linuxptp Stack Features69
4.2.3.2 Using Linuxptp ...69
4.3 Enhanced Configurable Serial Peripheral

Interface (ECSPI) ...70
4.3.1 Introduction .. 70
4.3.2 Software Operation ..70
4.3.3 SPI Sub-System in Linux OS 70
4.3.4 Software Limitations .. 71
4.3.5 Standard Operations ..71
4.3.6 ECSPI Synchronous Operation 72

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
296 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

4.3.7 Source Code Structure 72
4.3.8 Menu Configuration Options72
4.3.9 Programming Interface 72
4.3.10 Interrupt Requirements 73
4.4 Fast Ethernet Controller (FEC)73
4.4.1 Introduction .. 73
4.4.2 Hardware Operation .. 73
4.4.3 Software Operation ..75
4.4.4 Source Code Structure 75
4.4.5 Menu Configuration Options75
4.4.6 Programming Interface 75
4.4.6.1 Getting a MAC Address76
4.5 FlexCAN ...77
4.5.1 Introduction .. 77
4.5.1.1 Software Operation ..77
4.5.1.2 Source Code Structure 77
4.5.1.3 Menu Configuration Options77
4.6 Inter-IC (I2C) ..78
4.6.1 Introduction .. 78
4.6.2 LPI2C Bus Driver Overview78
4.6.3 I2C Device Driver Overview 78
4.6.4 Software Operation ..79
4.6.5 I2C Bus Driver Software Operation 79
4.6.6 I2C Device Driver Software Operation79
4.6.7 Driver Features ..79
4.6.8 Source Code Structure 79
4.6.9 Menu Configuration Options79
4.6.10 Programming Interface 80
4.7 Media Local Bus ..80
4.7.1 Introduction .. 80
4.7.2 MLB Driver Overview81
4.7.3 Software Operation ..82
4.7.4 Source Code Structure 83
4.7.5 Menu Configuration Options83
4.8 PCI Express Root Complex83
4.8.1 Introduction .. 83
4.8.2 Terminology and Conventions 84
4.8.3 PCIe Topology on i.MX85
4.8.4 Features ...85
4.8.5 Linux OS PCI Subsystem and RC driver 86
4.8.6 PCIe Driver Source Files86
4.8.7 System Resource: Memory Layout86
4.8.8 System Resource: Interrupt lines88
4.9 USB ..88
4.9.1 Introduction .. 88
4.9.2 Architectural Overview88
4.9.3 Hardware Operation .. 89
4.9.4 Software Operation ..89
4.9.5 Source Code Structure 89
4.9.6 Menu Configuration Options90
4.9.7 USB Wakeup Usage ..90
4.9.8 How to Close the USB Child Device Power 91
4.9.9 Changing the Controller Operation Mode 91
4.9.10 Loadable Module Support 91
4.9.11 USB Charger Detection 91
4.9.12 Embeded Host Certification92
4.9.12.1 Adding TPL-Support Property92
4.9.12.2 VBUS Control .. 92
4.10 USB3 ..93

4.10.1 Introduction .. 93
4.10.2 Source Code Structure 93
4.11 Low Power Universal Asynchronous

Receiver/Transmitter (LPUART) 94
4.11.1 Introduction .. 94
4.11.2 Hardware Operation .. 94
4.11.3 Software Operation ..95
4.11.4 Driver Features ..95
4.11.5 Source Code Structure 95
4.11.6 Menu Configuration Options95
4.11.7 Programming Interface 96
4.11.8 Interrupt Requirements 96
4.12 Bluetooth ..96
4.12.1 Bluetooth Wireless Technology Introduction 96
4.12.2 Bluetooth Driver Overview96
4.12.3 Bluetooth Driver Files 96
4.12.4 Bluetooth Stack ... 96
4.12.5 Menu Configuration Options97
4.13 ENETC ...97
4.13.1 Introduction .. 97
4.13.2 Software Operation ..97
4.13.3 Source Code Structure 98
4.13.4 Menu Configuration Options98
4.14 ENETC 1588 Timer ... 99
4.14.1 Introduction .. 99
4.14.2 Software Operation ..99
4.14.3 Source Code Structure 99
4.14.4 Menu Configuration Options99
4.15 ENETC Switch ...99
4.15.1 Introduction .. 99
4.15.2 Software Operation ..100
4.15.3 Source Code Structure 100
4.15.4 Menu Configuration Options 100
4.16 Ethernet Controller with TSN (ENET_QoS,

EQoS) .. 101
4.16.1 Introduction .. 101
4.16.2 Software Operation ..102
4.16.3 Source Code Structure 102
4.16.4 Menu Configuration Options 102
4.17 Wi-Fi ...102
4.17.1 Introduction .. 102
4.17.2 Software Operation ..102
4.17.3 Driver features ... 102
4.17.4 Source Code Structure 103
4.17.5 Menu Configuration Options 103
4.17.6 Configuring WLAN from User Space 103
4.17.6.1 Connecting AP in Station Mode103
4.17.6.2 Obtaining an IP address103
4.18 Low Power Serial Peripheral Interface

(LPSPI) Driver ... 103
4.18.1 Introduction .. 103
4.18.2 Driver Features ..104
4.18.3 Source Code Structure 104
4.18.4 Menu Configuration Options 104
5 Graphics ... 104
5.1 Graphics Processing Unit (GPU) 104
5.1.1 Introduction .. 104
5.1.2 Driver Features ..105
5.1.3 Hardware Operation 105

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
297 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

5.1.4 Software Operation ..105
5.1.5 Source Code Structure 106
5.1.6 Library Structure .. 106
5.1.7 API References ... 107
5.1.8 Menu Configuration Options 108
5.2 Wayland ... 108
5.2.1 Introduction .. 108
5.2.2 Software Operation ..108
5.2.3 Yocto Build Instructions 108
5.2.4 Customizing Weston109
5.2.4.1 Multi display supported in Weston 109
5.2.4.2 Multi buffer supported in Weston 109
5.2.5 Running Weston .. 109
6 Video ... 110
6.1 Capture Overview ..110
6.1.1 Introduction .. 110
6.1.2 Capture Controllers and Interfaces110
6.1.2.1 IPUv3 ... 111
6.1.2.2 CSI Controllers .. 112
6.1.2.3 ISI ...112
6.1.2.4 Parallel CSI Interface114
6.1.2.5 MIPI Camera Serial Interface (MIPI CSI)115
6.1.2.6 HDMI Receiver .. 115
6.1.3 Cameras .. 116
6.1.3.1 YUV/RGB Cameras 116
6.1.3.2 Raw Cameras ..120
6.1.4 Software Operation ..125
6.1.4.1 Pipeline Operation ... 125
6.1.5 V4L2 Capture .. 125
6.1.6 Source Code Structure 126
6.2 Display Overview ...128
6.2.1 Introduction .. 128
6.2.2 Frame Buffer ..129
6.2.3 Direct Rendering Model (DRM) 129
6.2.4 Display Resolution ...129
6.2.5 Authentication .. 129
6.2.6 Tiling .. 130
6.3 Display Controllers ...130
6.3.1 Display Processing Unit (DPU)130
6.3.1.1 Introduction .. 130
6.3.1.2 DRM ...131
6.3.1.3 Source Code Structure 131
6.3.1.4 Menu Configuration Options 132
6.3.2 Image Processing Unit (IPU) 132
6.3.2.1 Introduction .. 132
6.3.2.2 Hardware Operation 133
6.3.2.3 Software Operation ..133
6.3.2.4 IPU Frame Buffer Drivers Overview134
6.3.2.5 IPU Frame Buffer Hardware Operation135
6.3.2.6 IPU Frame Buffer Software Operation 135
6.3.2.7 Synchronous Frame Buffer Driver 135
6.3.2.8 IPU Backlight Driver 136
6.3.2.9 IPU Device Driver ..136
6.3.2.10 Source Code Structure 137
6.3.2.11 Menu Configuration Options 138
6.3.3 Pixel Pipeline (PxP)140
6.3.3.1 Introduction .. 140
6.3.3.2 Software Operation ..140
6.3.3.3 Key Data Structs ... 140

6.3.3.4 Channel Management 141
6.3.3.5 Descriptor Management 141
6.3.3.6 Completion Notification141
6.3.3.7 Limitations ..141
6.3.3.8 Menu Configuration Options 141
6.3.3.9 Source Code Structure 141
6.3.4 eLCDIF Frame Buffer 142
6.3.4.1 Introduction .. 142
6.3.4.2 Software Operation ..142
6.3.4.3 Menu Configuration Options 142
6.3.4.4 Source Code Structure 143
6.3.5 Display Control Subsystem (DCSS) 143
6.3.5.1 Introduction .. 143
6.3.5.2 Source Code Structure 144
6.3.6 DCNANO ... 144
6.3.6.1 Introduction .. 144
6.3.6.2 Source Code Structure 145
6.4 Display Interfaces .. 145
6.4.1 Parallel LCD Interface 145
6.4.1.1 Introduction .. 145
6.4.2 MIPI DSI Interface ... 146
6.4.2.1 Introduction .. 146
6.4.2.2 Software Operation ..147
6.4.2.3 Source Code Structure 147
6.4.2.4 Menu Configuration Options 148
6.4.3 LVDS Interface ...148
6.4.3.1 Introduction .. 148
6.4.3.2 Software Operation ..149
6.4.3.3 Source Code Structure 149
6.4.3.4 Menu Configuration Options 149
6.4.4 LVDS Display Bridge (LDB)149
6.4.4.1 Introduction .. 149
6.4.4.2 Software Operation ..150
6.4.4.3 Source Code Structure 150
6.4.4.4 Menu Configuration Options 150
6.4.5 Electrophoretic Display Controller (EPDC)

Interface ...150
6.4.5.1 Introduction .. 150
6.4.5.2 EPDC Frame Buffer Driver Overview 151
6.4.5.3 EPDC Frame Buffer Driver Extensions151
6.4.5.4 EPDC Panel Configuration 152
6.4.5.5 Boot Command Line Parameters 152
6.4.5.6 EPDC Waveform Loading152
6.4.5.7 Using a Default Waveform File153
6.4.5.8 Using a Custom Waveform File 153
6.4.5.9 EPDC Panel Initialization153
6.4.5.10 Grayscale Framebuffer Selection 154
6.4.5.11 Software Operation ..154
6.4.5.12 Structures and Defines 156
6.4.5.13 Source Code Structure 157
6.4.5.14 Menu Configuration Options 158
6.4.6 High-Definition Multimedia Interface (HDMI)

and Display Port (DP) Overview158
6.4.6.1 Introduction .. 158
6.4.6.2 Software Operation ..159
6.4.6.3 Core ... 159
6.4.6.4 Display Device Registration and

Initialization .. 159

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
298 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

6.4.6.5 Hotplug Handling and Video Mode
Changes ...160

6.4.6.6 Audio ..160
6.4.6.7 i.MX 8 Display Port ..161
6.4.6.8 i.MX 6 On Chip High-Definition Multimedia

Interface (HDMI) .. 163
6.4.6.9 External HDMI ... 167
6.5 Video for Linux 2 (V4L2)168
6.5.1 Introduction .. 168
6.5.1.1 i.MX 8 DPU V4L2 .. 168
6.5.1.2 PxP V4L2 ...168
6.5.1.3 i.MX 6 with IPU V4L2 168
6.5.1.4 IPU V4L2 Capture Device 169
6.5.2 V4L2 Capture Device 170
6.5.2.1 V4L2 Capture IOCTLs 170
6.5.2.2 Use of the V4L2 Capture APIs 171
6.5.3 V4L2 Output Device 172
6.5.3.1 V4L2 Output IOCTLs 172
6.5.3.2 Use of the V4L2 Output APIs 172
6.5.4 Software Operatoins 173
6.5.4.1 Source Code Structure 173
6.5.4.2 Menu Configuration Options 173
6.6 Video Analog-to-Digital Converter (VADC)173
6.6.1 Introduction .. 173
6.6.2 Software Operation ..174
6.6.3 Source Code Structure 174
6.6.4 Menu Configuration Options 174
6.6.5 DTS Configuration ... 174
6.7 Video Processing Unit (VPU)175
6.7.1 Introduction .. 175
6.7.2 Software Operation ..175
6.7.3 Source Code Structure 178
6.7.4 Menu Configuration Options 179
6.8 JPEG Encoder and Decoder 179
6.8.1 Introduction .. 179
6.8.2 Overview of the JPEG Encoder and

Decoder Driver .. 179
6.8.3 Limitations of the JPEG Encoder/Decoder

Driver ... 180
7 Audio ...181
7.1 Advanced Linux Sound Architecture (ALSA)

System on a Chip (ASoC) Sound 181
7.1.1 ALSA Sound Driver Introduction181
7.1.2 SoC Sound Card ... 182
7.1.2.1 Stereo CODEC Features183
7.1.2.2 7.1 Audio Codec Features183
7.1.2.3 AM/FM Codec Features 183
7.1.2.4 Sound Card Information 184
7.1.3 Hardware Operation 184
7.1.3.1 Stereo Audio CODEC184
7.1.3.2 7.1 Audio Codec ..184
7.1.3.3 AM/FM Codec ..185
7.1.4 Software Operation ..185
7.1.4.1 ASoC Driver Source Architecture 185
7.1.4.2 Sound Card Registration 185
7.1.4.3 Device Open ..186
7.1.4.4 Device Tree Binding 186
7.1.4.5 Source Code Structure 186
7.1.4.6 Menu Configuration Options 187

7.2 Asynchronous Sample Rate Converter
(ASRC) on i.MX 6/i.MX 8QuadMax/i.MX
8QuadXPlust ..188

7.2.1 Introduction .. 188
7.2.1.1 Hardware Operation 188
7.2.2 Software Operation ..189
7.2.2.1 Sequence for Memory to ASRC to Memory ...189
7.2.2.2 Sequence for Memory to ASRC to

Peripheral ...190
7.2.2.3 Source Code Structure 190
7.2.2.4 Menu Configuration Options 190
7.2.2.5 Device Tree Binding 190
7.2.2.6 Programming Interface (Exported API and

IOCTLs) ... 191
7.3 HDMI Audio ... 192
7.3.1 Introduction .. 192
7.4 The Sony/Philips Digital Interface (S/PDIF) ... 192
7.4.1 Introduction .. 192
7.4.1.1 S/PDIF Overview ... 192
7.4.1.2 Hardware Overview 193
7.4.1.3 Software Overview ...194
7.4.1.4 ASoC Layer ... 194
7.4.2 S/PDIF Tx Driver ... 194
7.4.2.1 Driver Design ...195
7.4.2.2 Provided User Interface195
7.4.3 S/PDIF Rx Driver ...195
7.4.3.1 Driver Design ...196
7.4.3.2 Provided User Interface196
7.4.4 Source Code Structure 197
7.4.4.1 Menu Configuration Options 198
7.4.4.2 Device Tree Bindings 198
7.4.4.3 Interrupts and Exceptions198
7.4.5 Unit Test Preparation 198
7.4.5.1 Tx test step ..198
7.4.5.2 Rx test step ... 199
7.5 Audio Mixer (AUDMIX) 199
7.5.1 Introduction .. 199
7.5.2 Block diagram ..199
7.5.3 Hardware Overview 200
7.5.4 Software Overview ...200
7.5.4.1 User Interface .. 201
7.5.4.2 Source Code Structure 202
7.5.4.3 Menu Configuration Options 202
7.6 PDM Microphone Interface (MICFIL) 202
7.6.1 Introduction .. 202
7.6.2 Block diagram ..202
7.6.3 Hardware Overview 203
7.6.4 Software Overview ...204
7.6.4.1 User Interface .. 204
7.6.4.2 Source Code Structure 205
7.6.4.3 Menu Configuration Options 205
7.7 Asynchronous Sample Rate Converter

(ASRC) on i.MX 8M Nano/i.MX 8M Plus205
7.7.1 Introduction .. 205
7.7.2 Hardware Operation 206
7.7.3 Software Operation ..206
7.7.3.1 Sequence for Memory to ASRC to Memory ...206
7.7.3.2 Sequence for Memory to ASRC to

Peripheral ...207

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
299 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

7.7.3.3 Source Code Structure 207
7.7.3.4 Menu Configuration Options 207
7.7.3.5 Device Tree Binding 207
7.7.3.6 Programming Interface (Exported API and

IOCTLs) ... 208
8 Security ...209
8.1 Cryptographic Acceleration and Assurance

Module (CAAM) ... 209
8.1.1 CAAM Device Driver Overview209
8.1.2 Configuration and Job Execution Level 209
8.1.3 Control/Configuration Driver 209
8.1.4 Job Ring Driver ..210
8.1.5 API Interface Level .. 210
8.1.6 Driver Configuration213
8.1.7 Limitations ..214
8.1.8 Limitations in the Existing Implementation

Overview .. 214
8.1.9 Initialize Keystore Management Interface 215
8.1.10 Detect Available Secure Memory Storage

Units ...215
8.1.11 Establish Keystore in Detected Unit 215
8.1.12 Release Keystore .. 216
8.1.13 Allocate a Slot from the Keystore 216
8.1.14 Load Data into a Keystore Slot216
8.1.15 Demo Image Update 217
8.1.16 Decapsulate Data in the Keystore 217
8.1.17 Read Data From a Keystore Slot218
8.1.18 Release a Slot back to the Keystore218
8.1.19 CAAM/SNVS - Security Violation Handling

Interface Overview ...219
8.1.20 Operation ... 220
8.1.21 Configuration Interface 220
8.1.22 Install a Handler .. 220
8.1.23 Remove an Installed Driver 220
8.1.24 Driver Configuration CAAM/SNVS221
8.2 Display Content Integrity Checker (DCIC) 221
8.2.1 Introduction .. 221
8.2.2 Source Code Structure 221
8.2.3 Menu Configuration Options 221
8.2.4 DTS Configuration ... 221
8.2.5 IOCTLs Functions ..222
8.2.6 Structures ...222
8.2.7 DCIC CRC Calculation Functions222
8.3 Smart Card Interface - Subscriber

Identification Module (SIM)222
8.3.1 Introduction .. 222
8.3.2 Modes of Operation223
8.3.3 External Signal Description223
8.3.4 Source Code Structure 223
8.3.5 Menu Configuration Options 223
8.3.6 Software Framework223
8.4 Secure Non-Volatile Storage (SNVS) 225
8.4.1 Introduction .. 225
8.5 SNVS Real Time Clock (SRTC) 226
8.5.1 Introduction .. 226
8.5.2 Hardware Operation 226
8.5.3 Software Operation ..226
8.5.4 Driver Features ..226
8.5.5 Source Code Structure 226

8.5.6 Menu Configuration Options 226
9 NXP eIQ Machine Learning226
9.1 Overview of NXP eIQ Machine Learning 226
9.1.1 Introduction (ML) ..226
9.1.2 OpenCV ... 227
9.1.3 Arm Compute .. 227
9.1.4 TensorFlow Lite ... 227
9.1.5 ONNX Runtime ..228
9.1.6 PyTorch ..228
9.1.7 DeepViewRT ..228
9.1.8 TVM ... 228
10 Data Plane Development Kit (DPDK)228
10.1 Introduction .. 228
10.1.1 Supported Platforms and Platform-Specific

Details ..228
10.1.1.1 i.MX 8M Mini EVK (i.MX 8MM)229
10.1.1.2 i.MX 8M Plus EVK (i.MX 8MP) 229
10.1.1.3 i.MX 8DXL EVK (i.MX 8DXL)230
10.1.1.4 i.MX 91 EVK (i.MX 91) 230
10.1.1.5 i.MX 93 EVK (i.MX 93) 231
10.1.1.6 i.MX 95 EVK (i.MX 95) 232
10.1.1.7 i.MX 943 EVK (i.MX 943) 232
10.1.2 References ...233
10.2 DPDK Overview ...233
10.2.1 DPDK Platform Support234
10.2.2 Supported DPDK Features234
10.2.3 Supported DPDK Features on ENETC

(i.MX 95) .. 235
10.3 Build DPDK ..235
10.3.1 Build DPDK Using Yocto 236
10.3.2 Standalone Build of DPDK Libraries and

Applications ..236
10.4 Flashing the Target board238
10.5 Running DPDK .. 238
10.5.1 Test environment setup 238
10.5.2 Prerequisites to boot the board 239
10.5.2.1 Update bootargs .. 239
10.5.2.2 Device Tree file ..241
10.5.3 Prerequisites for running DPDK

applications on Linux OS242
10.5.4 Executing DPDK applications 242
10.5.4.1 Executing DPDK applications on i.MX 8M

Mini, i.MX 8M Plus, i.MX 8DXL, i.MX 91,
and i.MX 93 platforms 243

10.5.4.2 Executing DPDK applications on i.MX 95
platform ..244

10.6 Executing DPDK applications on i.MX 943
platform ..249

10.7 IEEE 802.1Qbv ..250
10.7.1 Overview .. 250
10.7.2 Steps to test the QBV test case scenario for

ENETC ...250
10.8 DPDK-FPR application 252
10.8.1 Overview .. 252
10.8.2 DPDK compilation ..252
10.8.3 Application compilation 252
10.8.4 Running the application 253
10.8.5 CLI commands help accessible through

socat .. 253

RM00293 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

Reference manual Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
300 / 301

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

NXP Semiconductors RM00293
i.MX Linux Reference Manual

10.8.6 Configuration file options 254
10.8.7 Limitations ..255
10.9 MTCP ...255
10.9.1 i.MX 95 Setup ..255
10.9.2 "client" Application ... 255
10.9.3 Webserver ..256
10.9.4 MTCP Configuration 257
10.10 XDP ..258
10.10.1 Hardware Requirements258
10.10.2 Network Setup ... 258
10.10.3 i.MX 95 Board Configuration 258
10.10.4 Verification ... 259
10.10.5 NAT Flow Rule Setup 259
10.10.6 Loading XDP ... 259
10.10.7 Traffic Generation and Packet Capture259
10.11 Troubleshooting ... 260
11 Unit Tests ... 260
11.1 System ...260
11.1.1 OProfile ..260
11.1.1.1 Test Name ... 260
11.1.2 Owire ..260
11.1.2.1 Test Name ... 260
11.1.3 Power Management261
11.1.3.1 Test Name ... 261
11.1.4 Remote Processor Messaging265
11.1.4.1 Test Name ... 265
11.1.5 Watchdog (WDOG) ..266
11.1.5.1 Test Name ... 266
11.2 Storage .. 267
11.2.1 Media Local Bus ..267
11.2.1.1 Test Name ... 267
11.2.2 MMC/SD/SDIO Host 268
11.2.2.1 Test Name ... 268
11.2.3 MMDC ..268
11.2.3.1 Test Name ... 268
11.2.4 SATA .. 269
11.2.4.1 Test Name ... 269
11.3 Connectivity ... 269
11.3.1 Enhanced Configurable Serial Peripheral

Interface (ECSPI) ...269
11.3.1.1 Test Name ... 269
11.3.2 ETM ... 270
11.3.2.1 Test Name ... 270
11.3.3 Inter-IC (I2C) ..271
11.3.3.1 Test Name ... 271
11.3.4 Keyboard ..271
11.3.4.1 Test Name ... 271
11.3.5 Low Power Universal Asynchronous

Receiver/Transmitter (LPUART) 272
11.3.5.1 Test Name ... 272
11.3.6 USB ..272
11.3.6.1 Test Name ... 272
11.4 Graphics ...273
11.4.1 Graphics Processing Unit (GPU) 273
11.4.1.1 Test Name ... 273
11.5 Video ..275

11.5.1 Display ... 275
11.5.1.1 Test Name ... 275
11.5.2 High-Definition Multimedia Interface (HDMI)

and Display Port (DP) Overview279
11.5.2.1 Test Name ... 279
11.5.3 Video Processing Unit (VPU)280
11.5.3.1 Test for i.MX 6 ... 280
11.5.3.2 Test for i.MX 8M Quad 281
11.5.3.3 Test for i.MX 8M Mini 282
11.5.3.4 Test for i.MX 8QuadXPlus, 8QuadMax, and

i.MX 9 .. 282
11.5.4 JPEG Encoder and Decoder 283
11.5.4.1 Test Name ... 283
11.6 Audio ..285
11.6.1 Advanced Linux Sound Architecture (ALSA)

System on a Chip (ASoC) Sound 285
11.6.1.1 Test Name ... 285
11.6.2 Asynchronous Sample Rate Converter

(ASRC) on i.MX 6/i.MX 8QuadMax/i.MX
8QuadXPlust ..286

11.6.2.1 Test Name ... 286
11.7 Security ..287
11.7.1 Display Content Integrity Checker (DCIC) 287
11.7.1.1 Test Name ... 287
11.7.2 SIM ...288
11.7.2.1 Test Name ... 288
11.7.3 SNVS Real Time Clock (SRTC) 288
11.7.3.1 Test Name ... 288
12 Note About the Source Code in the

Document ... 290
13 Revision History .. 291
13.1 Revision History ...291

Legal information ...293

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2025 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com Document feedback

Date of release: 26 June 2025
Document identifier: RM00293

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_RM00293

	1 Introduction
	1.1 Overview
	1.1.1 Software Base
	1.1.2 Features

	1.2 Audience
	1.2.1 Conventions
	1.2.2 Definitions, Acronyms, and Abbreviations

	1.3 References

	2 System
	2.1 Machine-Specific Layer (MSL)
	2.1.1 Introduction
	2.1.2 Interrupts (Operation)
	2.1.2.1 Interrupt Hardware Operation
	2.1.2.2 Interrupt Software Operation
	2.1.2.3 Interrupt Features
	2.1.2.4 Interrupt Source Code Structure
	2.1.2.5 Interrupt Programming Interface

	2.1.3 Timer
	2.1.3.1 Timer Software Operation
	2.1.3.2 Timer Features
	2.1.3.3 Timer Source Code Structure
	2.1.3.4 Timer Programming Interface

	2.1.4 Memory Map
	2.1.4.1 Memory Map Hardware Operation
	2.1.4.2 Memory Map Features

	2.1.5 IOMUX
	2.1.5.1 IOMUX Hardware Operation
	2.1.5.2 IOMUX Software Operation
	2.1.5.3 IOMUX Features
	2.1.5.4 IOMUX Source Code Structure
	2.1.5.5 IOMUX Programming Interface
	2.1.5.6 IOMUX Control Through GPIO Module
	2.1.5.6.1 GPIO Hardware Operation
	2.1.5.6.1.1 Muxing Control
	2.1.5.6.1.2 PULLUP Control

	2.1.5.6.2 GPIO Software Operation (general)
	2.1.5.6.3 GPIO Implementation

	2.1.6 General Purpose Input/Output (GPIO)
	2.1.6.1 GPIO Software Operation
	2.1.6.1.1 API for GPIO

	2.1.6.2 GPIO Features
	2.1.6.3 GPIO Module Source Code Structure
	2.1.6.4 GPIO Programming Interface 2

	2.1.7 Clock
	2.1.7.1 Clock Software Operation
	2.1.7.2 Clock Features
	2.1.7.3 Source Code Structure
	2.1.7.4

	2.2 System Controller
	2.2.1 Introduction

	2.3 Boot Image
	2.3.1 Introduction

	2.4 Anatop Regulator Driver
	2.4.1 Introduction
	2.4.2 Hardware Operation
	2.4.3 Software Operation
	2.4.4 Driver Features
	2.4.5 Driver Interface Details
	2.4.6 Regulator APIs
	2.4.7 Source Code Structure
	2.4.8 Menu Configuration Options

	2.5 Power Management
	2.5.1 Low Level Power Management (PM)
	2.5.1.1 Introduction
	2.5.1.2 Software Operation
	2.5.1.3 Source Code Structure
	2.5.1.4 Menu Configuration Options
	2.5.1.5 Programming Interface

	2.5.2 PMIC PF Regulator
	2.5.2.1 Introduction
	2.5.2.2 Hardware Operation
	2.5.2.3 Software Operation
	2.5.2.4 Driver Features
	2.5.2.5 Regulator APIs
	2.5.2.6 Driver Architecture
	2.5.2.7 Driver Interface Details
	2.5.2.8 Source Code Structure
	2.5.2.9 Menu Configuration Options

	2.5.3 CPU Frequency Scaling (CPUFREQ)
	2.5.3.1 Introduction
	2.5.3.2 Software Operation
	2.5.3.3 Source Code Structure
	2.5.3.4 Menu Configuration Options

	2.5.4 Dynamic Bus Frequency
	2.5.4.1 Introduction
	2.5.4.2 Operation
	2.5.4.3 Software Operation
	2.5.4.4 Source Code Structure
	2.5.4.5 Menu Configuration Options

	2.5.5 Battery Charging
	2.5.5.1 Introduction
	2.5.5.2 Software Operation
	2.5.5.3 Source Code Structure
	2.5.5.4 Menu Configuration Options

	2.6 OProfile
	2.6.1 Introduction
	2.6.1.1 Overview
	2.6.1.2 Features
	2.6.1.3 Hardware Operation
	2.6.1.4 Architecture-specific Components
	2.6.1.5 oprofilefs Pseudo Filesystem
	2.6.1.6 Generic Kernel Driver
	2.6.1.7 OProfile Daemon
	2.6.1.8 Post Profiling Tools
	2.6.1.9 Interrupt Requirements

	2.6.2 Software Operation
	2.6.2.1 Source Code Structure
	2.6.2.2 Menu Configuration Options
	2.6.2.3 Programming Interface
	2.6.2.4 Example Software Configuration

	2.7 Pulse-Width Modulator (PWM)
	2.7.1 Introduction
	2.7.2 Hardware Operation
	2.7.3 Clocks
	2.7.4 Software Operation
	2.7.5 Driver Features
	2.7.6 Source Code Structure
	2.7.7 Menu Configuration Options

	2.8 Remote Processor Messaging
	2.8.1 Introduction
	2.8.2 Features
	2.8.3 Source Code
	2.8.4 Menu Configuration Options
	2.8.5 Running i.MX RPMsg Test Programs

	2.9 Thermal
	2.9.1 Introduction
	2.9.2 Software Operation
	2.9.3 Source Code Structure
	2.9.4 Menu Configuration Options

	2.10 Sensors
	2.10.1 Introduction
	2.10.2 Sensor Driver Software Operation
	2.10.3 Source Code Structure
	2.10.4 Menu Configuration Options

	2.11 Watchdog (WDOG)
	2.11.1 Introduction
	2.11.2 Hardware Operation
	2.11.3 Software Operation
	2.11.4 Generic WDOG
	2.11.5 Driver Features
	2.11.6 Source Code Structure
	2.11.7 Menu Configuration Options
	2.11.8 Programming Interface

	3 Storage
	3.1 AHB-to-APBH Bridge with DMA (APBH-Bridge-DMA)
	3.1.1 Overview
	3.1.1.1 Hardware Operation
	3.1.1.2 Software Operation
	3.1.1.3 Source Code Structure
	3.1.1.4 Menu Configuration Options
	3.1.1.5 Programming Interface

	3.2 EIM NOR
	3.2.1 Introduction
	3.2.2 Hardware Operation
	3.2.3 Software Operation
	3.2.4 Source Code
	3.2.5 Enabling the EIM NOR

	3.3 MMC/SD/SDIO Host
	3.3.1 Introduction
	3.3.2 Hardware Operation
	3.3.3 Software Operation
	3.3.4 Driver Features
	3.3.5 Source Code Structure
	3.3.6 Menu Configuration Options
	3.3.7 Device Tree Binding
	3.3.8 Programming Interface
	3.3.9 Loadable Module Operations

	3.4 NAND GPMI Flash
	3.4.1 Introduction
	3.4.2 Hardware Operation
	3.4.3 Software Operation
	3.4.4 Basic Operations: Read/Write
	3.4.5 Error Correction
	3.4.6 Boot Control Block Management
	3.4.7 Bad Block Handling
	3.4.8 Source Code Structure
	3.4.9 Menu Configuration Options

	3.5 Quad/Flexible/External Serial Peripheral Interface (QuardSPI/FlexSPI/XSPI)
	3.5.1 Introduction
	3.5.2 Hardware Operation
	3.5.3 Software Operation
	3.5.4 Driver Features
	3.5.5 Source Code Structure
	3.5.6 Menu Configuration Options

	3.6 SATA
	3.6.1 Introduction
	3.6.2 Board Configuration Options
	3.6.3 Software Operation
	3.6.4 Source Code Structure
	3.6.5 Menu Configuration Options
	3.6.6 Programming Interface
	3.6.7 Usage Example
	3.6.8 Usage Example

	3.7 Smart Direct Memory Access (SDMA) API
	3.7.1 Overview
	3.7.2 Hardware Operation
	3.7.3 Software Operation
	3.7.4 Source Code Structure
	3.7.5 Special peripheral with SDMA cases
	3.7.5.1 I2C in i.MX 6/7Dual/8M

	3.8 SPI NOR Flash Memory Technology Device (MTD)
	3.8.1 Introduction
	3.8.2 Hardware Operation
	3.8.3 Software Operation
	3.8.4 Source Code Structure
	3.8.5 Menu Configuration Options

	4 Connectivity
	4.1 ADC
	4.1.1 ADC Introduction
	4.1.2 ADC External Signals
	4.1.3 ADC Driver Overview
	4.1.4 Source Code Structure
	4.1.5 Menu Configuration Options
	4.1.6 Programming Interface

	4.2 ENET IEEE-1588
	4.2.1 Introduction
	4.2.1.1 Transmit Timestamping
	4.2.1.2 Receive Timestamping

	4.2.2 Software Operation
	4.2.2.1 Source Code Structure
	4.2.2.2 Menu Configuration Options
	4.2.2.3 Programming Interface

	4.2.3 1588 Stack Introduction
	4.2.3.1 Linuxptp Stack Features
	4.2.3.2 Using Linuxptp

	4.3 Enhanced Configurable Serial Peripheral Interface (ECSPI)
	4.3.1 Introduction
	4.3.2 Software Operation
	4.3.3 SPI Sub-System in Linux OS
	4.3.4 Software Limitations
	4.3.5 Standard Operations
	4.3.6 ECSPI Synchronous Operation
	4.3.7 Source Code Structure
	4.3.8 Menu Configuration Options
	4.3.9 Programming Interface
	4.3.10 Interrupt Requirements

	4.4 Fast Ethernet Controller (FEC)
	4.4.1 Introduction
	4.4.2 Hardware Operation
	4.4.3 Software Operation
	4.4.4 Source Code Structure
	4.4.5 Menu Configuration Options
	4.4.6 Programming Interface
	4.4.6.1 Getting a MAC Address

	4.5 FlexCAN
	4.5.1 Introduction
	4.5.1.1 Software Operation
	4.5.1.2 Source Code Structure
	4.5.1.3 Menu Configuration Options

	4.6 Inter-IC (I2C)
	4.6.1 Introduction
	4.6.2 LPI2C Bus Driver Overview
	4.6.3 I2C Device Driver Overview
	4.6.4 Software Operation
	4.6.5 I2C Bus Driver Software Operation
	4.6.6 I2C Device Driver Software Operation
	4.6.7 Driver Features
	4.6.8 Source Code Structure
	4.6.9 Menu Configuration Options
	4.6.10 Programming Interface

	4.7 Media Local Bus
	4.7.1 Introduction
	4.7.2 MLB Driver Overview
	4.7.3 Software Operation
	4.7.4 Source Code Structure
	4.7.5 Menu Configuration Options

	4.8 PCI Express Root Complex
	4.8.1 Introduction
	4.8.2 Terminology and Conventions
	4.8.3 PCIe Topology on i.MX
	4.8.4 Features
	4.8.5 Linux OS PCI Subsystem and RC driver
	4.8.6 PCIe Driver Source Files
	4.8.7 System Resource: Memory Layout
	4.8.8 System Resource: Interrupt lines

	4.9 USB
	4.9.1 Introduction
	4.9.2 Architectural Overview
	4.9.3 Hardware Operation
	4.9.4 Software Operation
	4.9.5 Source Code Structure
	4.9.6 Menu Configuration Options
	4.9.7 USB Wakeup Usage
	4.9.8 How to Close the USB Child Device Power
	4.9.9 Changing the Controller Operation Mode
	4.9.10 Loadable Module Support
	4.9.11 USB Charger Detection
	4.9.12 Embeded Host Certification
	4.9.12.1 Adding TPL-Support Property
	4.9.12.2 VBUS Control

	4.10 USB3
	4.10.1 Introduction
	4.10.2 Source Code Structure

	4.11 Low Power Universal Asynchronous Receiver/Transmitter (LPUART)
	4.11.1 Introduction
	4.11.2 Hardware Operation
	4.11.3 Software Operation
	4.11.4 Driver Features
	4.11.5 Source Code Structure
	4.11.6 Menu Configuration Options
	4.11.7 Programming Interface
	4.11.8 Interrupt Requirements

	4.12 Bluetooth
	4.12.1 Bluetooth Wireless Technology Introduction
	4.12.2 Bluetooth Driver Overview
	4.12.3 Bluetooth Driver Files
	4.12.4 Bluetooth Stack
	4.12.5 Menu Configuration Options

	4.13 ENETC
	4.13.1 Introduction
	4.13.2 Software Operation
	4.13.3 Source Code Structure
	4.13.4 Menu Configuration Options

	4.14 ENETC 1588 Timer
	4.14.1 Introduction
	4.14.2 Software Operation
	4.14.3 Source Code Structure
	4.14.4 Menu Configuration Options

	4.15 ENETC Switch
	4.15.1 Introduction
	4.15.2 Software Operation
	4.15.3 Source Code Structure
	4.15.4 Menu Configuration Options

	4.16 Ethernet Controller with TSN (ENET_QoS, EQoS)
	4.16.1 Introduction
	4.16.2 Software Operation
	4.16.3 Source Code Structure
	4.16.4 Menu Configuration Options

	4.17 Wi-Fi
	4.17.1 Introduction
	4.17.2 Software Operation
	4.17.3 Driver features
	4.17.4 Source Code Structure
	4.17.5 Menu Configuration Options
	4.17.6 Configuring WLAN from User Space
	4.17.6.1 Connecting AP in Station Mode
	4.17.6.2 Obtaining an IP address

	4.18 Low Power Serial Peripheral Interface (LPSPI) Driver
	4.18.1 Introduction
	4.18.2 Driver Features
	4.18.3 Source Code Structure
	4.18.4 Menu Configuration Options

	5 Graphics
	5.1 Graphics Processing Unit (GPU)
	5.1.1 Introduction
	5.1.2 Driver Features
	5.1.3 Hardware Operation
	5.1.4 Software Operation
	5.1.5 Source Code Structure
	5.1.6 Library Structure
	5.1.7 API References
	5.1.8 Menu Configuration Options

	5.2 Wayland
	5.2.1 Introduction
	5.2.2 Software Operation
	5.2.3 Yocto Build Instructions
	5.2.4 Customizing Weston
	5.2.4.1 Multi display supported in Weston
	5.2.4.2 Multi buffer supported in Weston

	5.2.5 Running Weston

	6 Video
	6.1 Capture Overview
	6.1.1 Introduction
	6.1.2 Capture Controllers and Interfaces
	6.1.2.1 IPUv3
	6.1.2.2 CSI Controllers
	6.1.2.3 ISI
	6.1.2.4 Parallel CSI Interface
	6.1.2.5 MIPI Camera Serial Interface (MIPI CSI)
	6.1.2.6 HDMI Receiver

	6.1.3 Cameras
	6.1.3.1 YUV/RGB Cameras
	6.1.3.1.1 OV5640
	6.1.3.1.2 OV10635
	6.1.3.1.3 AP1302/AR0144
	6.1.3.1.4 MT9M114

	6.1.3.2 Raw Cameras
	6.1.3.2.1 OX05B1S
	6.1.3.2.2 OS08A20
	6.1.3.2.3 0X03C10
	6.1.3.2.3.1 Analog Devices SerDes
	6.1.3.2.3.2 Texas Instruments SerDes

	6.1.4 Software Operation
	6.1.4.1 Pipeline Operation

	6.1.5 V4L2 Capture
	6.1.6 Source Code Structure

	6.2 Display Overview
	6.2.1 Introduction
	6.2.2 Frame Buffer
	6.2.3 Direct Rendering Model (DRM)
	6.2.4 Display Resolution
	6.2.5 Authentication
	6.2.6 Tiling

	6.3 Display Controllers
	6.3.1 Display Processing Unit (DPU)
	6.3.1.1 Introduction
	6.3.1.2 DRM
	6.3.1.3 Source Code Structure
	6.3.1.4 Menu Configuration Options

	6.3.2 Image Processing Unit (IPU)
	6.3.2.1 Introduction
	6.3.2.2 Hardware Operation
	6.3.2.3 Software Operation
	6.3.2.4 IPU Frame Buffer Drivers Overview
	6.3.2.5 IPU Frame Buffer Hardware Operation
	6.3.2.6 IPU Frame Buffer Software Operation
	6.3.2.7 Synchronous Frame Buffer Driver
	6.3.2.8 IPU Backlight Driver
	6.3.2.9 IPU Device Driver
	6.3.2.10 Source Code Structure
	6.3.2.11 Menu Configuration Options

	6.3.3 Pixel Pipeline (PxP)
	6.3.3.1 Introduction
	6.3.3.2 Software Operation
	6.3.3.3 Key Data Structs
	6.3.3.4 Channel Management
	6.3.3.5 Descriptor Management
	6.3.3.6 Completion Notification
	6.3.3.7 Limitations
	6.3.3.8 Menu Configuration Options
	6.3.3.9 Source Code Structure

	6.3.4 eLCDIF Frame Buffer
	6.3.4.1 Introduction
	6.3.4.2 Software Operation
	6.3.4.3 Menu Configuration Options
	6.3.4.4 Source Code Structure

	6.3.5 Display Control Subsystem (DCSS)
	6.3.5.1 Introduction
	6.3.5.2 Source Code Structure

	6.3.6 DCNANO
	6.3.6.1 Introduction
	6.3.6.2 Source Code Structure

	6.4 Display Interfaces
	6.4.1 Parallel LCD Interface
	6.4.1.1 Introduction

	6.4.2 MIPI DSI Interface
	6.4.2.1 Introduction
	6.4.2.2 Software Operation
	6.4.2.3 Source Code Structure
	6.4.2.4 Menu Configuration Options

	6.4.3 LVDS Interface
	6.4.3.1 Introduction
	6.4.3.2 Software Operation
	6.4.3.3 Source Code Structure
	6.4.3.4 Menu Configuration Options

	6.4.4 LVDS Display Bridge (LDB)
	6.4.4.1 Introduction
	6.4.4.2 Software Operation
	6.4.4.3 Source Code Structure
	6.4.4.4 Menu Configuration Options

	6.4.5 Electrophoretic Display Controller (EPDC) Interface
	6.4.5.1 Introduction
	6.4.5.2 EPDC Frame Buffer Driver Overview
	6.4.5.3 EPDC Frame Buffer Driver Extensions
	6.4.5.4 EPDC Panel Configuration
	6.4.5.5 Boot Command Line Parameters
	6.4.5.6 EPDC Waveform Loading
	6.4.5.7 Using a Default Waveform File
	6.4.5.8 Using a Custom Waveform File
	6.4.5.9 EPDC Panel Initialization
	6.4.5.10 Grayscale Framebuffer Selection
	6.4.5.11 Software Operation
	6.4.5.12 Structures and Defines
	6.4.5.13 Source Code Structure
	6.4.5.14 Menu Configuration Options

	6.4.6 High-Definition Multimedia Interface (HDMI) and Display Port (DP) Overview
	6.4.6.1 Introduction
	6.4.6.2 Software Operation
	6.4.6.3 Core
	6.4.6.4 Display Device Registration and Initialization
	6.4.6.5 Hotplug Handling and Video Mode Changes
	6.4.6.6 Audio
	6.4.6.7 i.MX 8 Display Port
	6.4.6.7.1 Introduction
	6.4.6.7.2 Software Operation
	6.4.6.7.3 Source Code Structure
	6.4.6.7.4 Menu Configuration Options

	6.4.6.8 i.MX 6 On Chip High-Definition Multimedia Interface (HDMI)
	6.4.6.8.1 Introduction
	6.4.6.8.2 Software Operation
	6.4.6.8.3 CEC
	6.4.6.8.4 Source Code Structure
	6.4.6.8.5 Menu Configuration Options

	6.4.6.9 External HDMI
	6.4.6.9.1 Introduction
	6.4.6.9.2 Software Operation
	6.4.6.9.3 Source Code Structure
	6.4.6.9.4 Menu Configuration Options

	6.5 Video for Linux 2 (V4L2)
	6.5.1 Introduction
	6.5.1.1 i.MX 8 DPU V4L2
	6.5.1.2 PxP V4L2
	6.5.1.3 i.MX 6 with IPU V4L2
	6.5.1.4 IPU V4L2 Capture Device

	6.5.2 V4L2 Capture Device
	6.5.2.1 V4L2 Capture IOCTLs
	6.5.2.2 Use of the V4L2 Capture APIs

	6.5.3 V4L2 Output Device
	6.5.3.1 V4L2 Output IOCTLs
	6.5.3.2 Use of the V4L2 Output APIs

	6.5.4 Software Operatoins
	6.5.4.1 Source Code Structure
	6.5.4.2 Menu Configuration Options

	6.6 Video Analog-to-Digital Converter (VADC)
	6.6.1 Introduction
	6.6.2 Software Operation
	6.6.3 Source Code Structure
	6.6.4 Menu Configuration Options
	6.6.5 DTS Configuration

	6.7 Video Processing Unit (VPU)
	6.7.1 Introduction
	6.7.2 Software Operation
	6.7.3 Source Code Structure
	6.7.4 Menu Configuration Options

	6.8 JPEG Encoder and Decoder
	6.8.1 Introduction
	6.8.2 Overview of the JPEG Encoder and Decoder Driver
	6.8.3 Limitations of the JPEG Encoder/Decoder Driver

	7 Audio
	7.1 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound
	7.1.1 ALSA Sound Driver Introduction
	7.1.2 SoC Sound Card
	7.1.2.1 Stereo CODEC Features
	7.1.2.2 7.1 Audio Codec Features
	7.1.2.3 AM/FM Codec Features
	7.1.2.4 Sound Card Information

	7.1.3 Hardware Operation
	7.1.3.1 Stereo Audio CODEC
	7.1.3.2 7.1 Audio Codec
	7.1.3.3 AM/FM Codec

	7.1.4 Software Operation
	7.1.4.1 ASoC Driver Source Architecture
	7.1.4.2 Sound Card Registration
	7.1.4.3 Device Open
	7.1.4.4 Device Tree Binding
	7.1.4.5 Source Code Structure
	7.1.4.6 Menu Configuration Options

	7.2 Asynchronous Sample Rate Converter (ASRC) on i.MX 6/i.MX 8QuadMax/i.MX 8QuadXPlust
	7.2.1 Introduction
	7.2.1.1 Hardware Operation

	7.2.2 Software Operation
	7.2.2.1 Sequence for Memory to ASRC to Memory
	7.2.2.2 Sequence for Memory to ASRC to Peripheral
	7.2.2.3 Source Code Structure
	7.2.2.4 Menu Configuration Options
	7.2.2.5 Device Tree Binding
	7.2.2.6 Programming Interface (Exported API and IOCTLs)

	7.3 HDMI Audio
	7.3.1 Introduction

	7.4 The Sony/Philips Digital Interface (S/PDIF)
	7.4.1 Introduction
	7.4.1.1 S/PDIF Overview
	7.4.1.2 Hardware Overview
	7.4.1.3 Software Overview
	7.4.1.4 ASoC Layer

	7.4.2 S/PDIF Tx Driver
	7.4.2.1 Driver Design
	7.4.2.2 Provided User Interface

	7.4.3 S/PDIF Rx Driver
	7.4.3.1 Driver Design
	7.4.3.2 Provided User Interface

	7.4.4 Source Code Structure
	7.4.4.1 Menu Configuration Options
	7.4.4.2 Device Tree Bindings
	7.4.4.3 Interrupts and Exceptions

	7.4.5 Unit Test Preparation
	7.4.5.1 Tx test step
	7.4.5.2 Rx test step

	7.5 Audio Mixer (AUDMIX)
	7.5.1 Introduction
	7.5.2 Block diagram
	7.5.3 Hardware Overview
	7.5.4 Software Overview
	7.5.4.1 User Interface
	7.5.4.2 Source Code Structure
	7.5.4.3 Menu Configuration Options

	7.6 PDM Microphone Interface (MICFIL)
	7.6.1 Introduction
	7.6.2 Block diagram
	7.6.3 Hardware Overview
	7.6.4 Software Overview
	7.6.4.1 User Interface
	7.6.4.2 Source Code Structure
	7.6.4.3 Menu Configuration Options

	7.7 Asynchronous Sample Rate Converter (ASRC) on i.MX 8M Nano/i.MX 8M Plus
	7.7.1 Introduction
	7.7.2 Hardware Operation
	7.7.3 Software Operation
	7.7.3.1 Sequence for Memory to ASRC to Memory
	7.7.3.2 Sequence for Memory to ASRC to Peripheral
	7.7.3.3 Source Code Structure
	7.7.3.4 Menu Configuration Options
	7.7.3.5 Device Tree Binding
	7.7.3.6 Programming Interface (Exported API and IOCTLs)

	8 Security
	8.1 Cryptographic Acceleration and Assurance Module (CAAM)
	8.1.1 CAAM Device Driver Overview
	8.1.2 Configuration and Job Execution Level
	8.1.3 Control/Configuration Driver
	8.1.4 Job Ring Driver
	8.1.5 API Interface Level
	8.1.6 Driver Configuration
	8.1.7 Limitations
	8.1.8 Limitations in the Existing Implementation Overview
	8.1.9 Initialize Keystore Management Interface
	8.1.10 Detect Available Secure Memory Storage Units
	8.1.11 Establish Keystore in Detected Unit
	8.1.12 Release Keystore
	8.1.13 Allocate a Slot from the Keystore
	8.1.14 Load Data into a Keystore Slot
	8.1.15 Demo Image Update
	8.1.16 Decapsulate Data in the Keystore
	8.1.17 Read Data From a Keystore Slot
	8.1.18 Release a Slot back to the Keystore
	8.1.19 CAAM/SNVS - Security Violation Handling Interface Overview
	8.1.20 Operation
	8.1.21 Configuration Interface
	8.1.22 Install a Handler
	8.1.23 Remove an Installed Driver
	8.1.24 Driver Configuration CAAM/SNVS

	8.2 Display Content Integrity Checker (DCIC)
	8.2.1 Introduction
	8.2.2 Source Code Structure
	8.2.3 Menu Configuration Options
	8.2.4 DTS Configuration
	8.2.5 IOCTLs Functions
	8.2.6 Structures
	8.2.7 DCIC CRC Calculation Functions

	8.3 Smart Card Interface - Subscriber Identification Module (SIM)
	8.3.1 Introduction
	8.3.2 Modes of Operation
	8.3.3 External Signal Description
	8.3.4 Source Code Structure
	8.3.5 Menu Configuration Options
	8.3.6 Software Framework

	8.4 Secure Non-Volatile Storage (SNVS)
	8.4.1 Introduction

	8.5 SNVS Real Time Clock (SRTC)
	8.5.1 Introduction
	8.5.2 Hardware Operation
	8.5.3 Software Operation
	8.5.4 Driver Features
	8.5.5 Source Code Structure
	8.5.6 Menu Configuration Options

	9 NXP eIQ Machine Learning
	9.1 Overview of NXP eIQ Machine Learning
	9.1.1 Introduction (ML)
	9.1.2 OpenCV
	9.1.3 Arm Compute
	9.1.4 TensorFlow Lite
	9.1.5 ONNX Runtime
	9.1.6 PyTorch
	9.1.7 DeepViewRT
	9.1.8 TVM

	10 Data Plane Development Kit (DPDK)
	10.1 Introduction
	10.1.1 Supported Platforms and Platform-Specific Details
	10.1.1.1 i.MX 8M Mini EVK (i.MX 8MM)
	10.1.1.2 i.MX 8M Plus EVK (i.MX 8MP)
	10.1.1.3 i.MX 8DXL EVK (i.MX 8DXL)
	10.1.1.4 i.MX 91 EVK (i.MX 91)
	10.1.1.5 i.MX 93 EVK (i.MX 93)
	10.1.1.6 i.MX 95 EVK (i.MX 95)
	10.1.1.7 i.MX 943 EVK (i.MX 943)

	10.1.2 References

	10.2 DPDK Overview
	10.2.1 DPDK Platform Support
	10.2.2 Supported DPDK Features
	10.2.3 Supported DPDK Features on ENETC (i.MX 95)

	10.3 Build DPDK
	10.3.1 Build DPDK Using Yocto
	10.3.2 Standalone Build of DPDK Libraries and Applications

	10.4 Flashing the Target board
	10.5 Running DPDK
	10.5.1 Test environment setup
	10.5.2 Prerequisites to boot the board
	10.5.2.1 Update bootargs
	10.5.2.2 Device Tree file

	10.5.3 Prerequisites for running DPDK applications on Linux OS
	10.5.4 Executing DPDK applications
	10.5.4.1 Executing DPDK applications on i.MX 8M Mini, i.MX 8M Plus, i.MX 8DXL, i.MX 91, and i.MX 93 platforms
	10.5.4.2 Executing DPDK applications on i.MX 95 platform
	10.5.4.2.1 Setting up the ENETC Ethernet interfaces
	10.5.4.2.2 Running DPDK on i.MX 95
	10.5.4.2.3 OpenSSL-based applications
	10.5.4.2.4 PSI-VSI MBOX messaging
	10.5.4.2.5 Running DPDK on VF1

	10.6 Executing DPDK applications on i.MX 943 platform
	10.7 IEEE 802.1Qbv
	10.7.1 Overview
	10.7.2 Steps to test the QBV test case scenario for ENETC

	10.8 DPDK-FPR application
	10.8.1 Overview
	10.8.2 DPDK compilation
	10.8.3 Application compilation
	10.8.4 Running the application
	10.8.5 CLI commands help accessible through socat
	10.8.6 Configuration file options
	10.8.7 Limitations

	10.9 MTCP
	10.9.1 i.MX 95 Setup
	10.9.2 "client" Application
	10.9.3 Webserver
	10.9.4 MTCP Configuration

	10.10 XDP
	10.10.1 Hardware Requirements
	10.10.2 Network Setup
	10.10.3 i.MX 95 Board Configuration
	10.10.4 Verification
	10.10.5 NAT Flow Rule Setup
	10.10.6 Loading XDP
	10.10.7 Traffic Generation and Packet Capture

	10.11 Troubleshooting

	11 Unit Tests
	11.1 System
	11.1.1 OProfile
	11.1.1.1 Test Name
	11.1.1.1.1 Location
	11.1.1.1.2 Functionality
	11.1.1.1.3 Configuration
	11.1.1.1.4 Use Case and Expected Output

	11.1.2 Owire
	11.1.2.1 Test Name
	11.1.2.1.1 Location
	11.1.2.1.2 Functionality
	11.1.2.1.3 Configuration
	11.1.2.1.4 Use Case and Expected Output

	11.1.3 Power Management
	11.1.3.1 Test Name
	11.1.3.1.1 Location
	11.1.3.1.2 Functionality
	11.1.3.1.3 Configuration
	11.1.3.1.4 Use Case and Expected Output

	11.1.4 Remote Processor Messaging
	11.1.4.1 Test Name
	11.1.4.1.1 Location
	11.1.4.1.2 Functionality
	11.1.4.1.3 Configuration
	11.1.4.1.4 Use Case and Expected Output

	11.1.5 Watchdog (WDOG)
	11.1.5.1 Test Name
	11.1.5.1.1 Location
	11.1.5.1.2 Functionality
	11.1.5.1.3 Configuration
	11.1.5.1.4 Use Case and Expected Output

	11.2 Storage
	11.2.1 Media Local Bus
	11.2.1.1 Test Name
	11.2.1.1.1 Location
	11.2.1.1.2 Functionality
	11.2.1.1.3 Configuration
	11.2.1.1.4 Use Case and Expected Output

	11.2.2 MMC/SD/SDIO Host
	11.2.2.1 Test Name
	11.2.2.1.1 Location
	11.2.2.1.2 Functionality
	11.2.2.1.3 Configuration
	11.2.2.1.4 Use Case and Expected Output

	11.2.3 MMDC
	11.2.3.1 Test Name
	11.2.3.1.1 Location
	11.2.3.1.2 Functionality
	11.2.3.1.3 Configuration
	11.2.3.1.4 Use Case and Expected Output

	11.2.4 SATA
	11.2.4.1 Test Name
	11.2.4.1.1 Location
	11.2.4.1.2 Functionality
	11.2.4.1.3 Configuration
	11.2.4.1.4 Use Case and Expected Output

	11.3 Connectivity
	11.3.1 Enhanced Configurable Serial Peripheral Interface (ECSPI)
	11.3.1.1 Test Name
	11.3.1.1.1 Location
	11.3.1.1.2 Functionality
	11.3.1.1.3 Configuration
	11.3.1.1.4 Use Case and Expected Output

	11.3.2 ETM
	11.3.2.1 Test Name
	11.3.2.1.1 Location
	11.3.2.1.2 Functionality
	11.3.2.1.3 Configuration
	11.3.2.1.4 Use Case and Expected Output

	11.3.3 Inter-IC (I2C)
	11.3.3.1 Test Name
	11.3.3.1.1 Location
	11.3.3.1.2 Functionality
	11.3.3.1.3 Configuration
	11.3.3.1.4 Use Case and Expected Output

	11.3.4 Keyboard
	11.3.4.1 Test Name
	11.3.4.1.1 Location
	11.3.4.1.2 Functionality
	11.3.4.1.3 Configuration
	11.3.4.1.4 Use Case and Expected Output

	11.3.5 Low Power Universal Asynchronous Receiver/Transmitter (LPUART)
	11.3.5.1 Test Name
	11.3.5.1.1 Location
	11.3.5.1.2 Functionality
	11.3.5.1.3 Configuration
	11.3.5.1.4 Use Case and Expected Output

	11.3.6 USB
	11.3.6.1 Test Name
	11.3.6.1.1 Location
	11.3.6.1.2 Functionality
	11.3.6.1.3 Configuration
	11.3.6.1.4 Use Case and Expected Output

	11.4 Graphics
	11.4.1 Graphics Processing Unit (GPU)
	11.4.1.1 Test Name
	11.4.1.1.1 Location
	11.4.1.1.2 Functionality
	11.4.1.1.3 Configuration
	11.4.1.1.4 Use Case and Expected Output

	11.5 Video
	11.5.1 Display
	11.5.1.1 Test Name
	11.5.1.1.1 Location
	11.5.1.1.2 Functionality
	11.5.1.1.3 Configuration
	11.5.1.1.4 Use Case and Expected Output

	11.5.2 High-Definition Multimedia Interface (HDMI) and Display Port (DP) Overview
	11.5.2.1 Test Name
	11.5.2.1.1 Location
	11.5.2.1.2 Functionality
	11.5.2.1.3 Configuration
	11.5.2.1.4 Use Case and Expected Output

	11.5.3 Video Processing Unit (VPU)
	11.5.3.1 Test for i.MX 6
	11.5.3.1.1 Location
	11.5.3.1.2 Functionality
	11.5.3.1.3 Configuration
	11.5.3.1.4 Use Case and Expected Output

	11.5.3.2 Test for i.MX 8M Quad
	11.5.3.2.1 Location
	11.5.3.2.2 Functionality
	11.5.3.2.3 Use Case and Expected Output

	11.5.3.3 Test for i.MX 8M Mini
	11.5.3.3.1 Location
	11.5.3.3.2 Functionality
	11.5.3.3.3 Use Case and Expected Output

	11.5.3.4 Test for i.MX 8QuadXPlus, 8QuadMax, and i.MX 9
	11.5.3.4.1 Location
	11.5.3.4.2 Functionality
	11.5.3.4.3 Use Case and Expected Output

	11.5.4 JPEG Encoder and Decoder
	11.5.4.1 Test Name
	11.5.4.1.1 Location
	11.5.4.1.2 Functionality
	11.5.4.1.3 Configuration
	11.5.4.1.4 Use Case and Expected Output

	11.6 Audio
	11.6.1 Advanced Linux Sound Architecture (ALSA) System on a Chip (ASoC) Sound
	11.6.1.1 Test Name
	11.6.1.1.1 Location
	11.6.1.1.2 Functionality
	11.6.1.1.3 Configuration
	11.6.1.1.4 Use Case and Expected Output

	11.6.2 Asynchronous Sample Rate Converter (ASRC) on i.MX 6/i.MX 8QuadMax/i.MX 8QuadXPlust
	11.6.2.1 Test Name
	11.6.2.1.1 Location
	11.6.2.1.2 Functionality
	11.6.2.1.3 Configuration
	11.6.2.1.4 Use Case and Expected Output

	11.7 Security
	11.7.1 Display Content Integrity Checker (DCIC)
	11.7.1.1 Test Name
	11.7.1.1.1 Location
	11.7.1.1.2 Functionality
	11.7.1.1.3 Configuration
	11.7.1.1.4 Use Case and Expected Output

	11.7.2 SIM
	11.7.2.1 Test Name
	11.7.2.1.1 Location
	11.7.2.1.2 Functionality
	11.7.2.1.3 Configuration
	11.7.2.1.4 Use Case and Expected Output

	11.7.3 SNVS Real Time Clock (SRTC)
	11.7.3.1 Test Name
	11.7.3.1.1 Location
	11.7.3.1.2 Functionality
	11.7.3.1.3 Configuration
	11.7.3.1.4 Use Case and Expected Output

	12 Note About the Source Code in the Document
	13 Revision History
	13.1 Revision History

	Legal information
	Contents

