
UG10166
i.MX Machine Learning User's Guide
Rev. LF6.12.20_2.0.0 — 26 June 2025 User guide

Document information
Information Content

Keywords i.MX, Linux, LF6.12.20_2.0.0

Abstract The NXP eIQ Machine Learning Software Development Environment (hereinafter referred to as
"NXP eIQ") provides a set of libraries and development tools for machine learning applications
targeting NXP microcontrollers and applications processors.

https://www.nxp.com

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

1 Software Stack Introduction

The NXP eIQ Machine Learning Software Development Environment (hereinafter referred to as "NXP
eIQ") provides a set of libraries and development tools for machine learning applications targeting NXP
microcontrollers and application processors. The NXP eIQ is contained in the meta-imx/meta-ml Yocto layer.
See also the i.MX Yocto Project User's Guide (UG10164) for more information.

The following four inference engines are currently supported in the NXP eIQ software stack: TensorFlow Lite,
ONNX Runtime, PyTorch, and OpenCV. The following figure shows the supported eIQ inference engines across
the computing units.

eIQ inference engine deployment

Cortex-ACompute engines

i.MX 8M Plus

i.MX 8QuadMax

i.MX 8QuadXPlus

i.MX 8M Quad, Nano

i.MX 8M Mini, 8ULP

i.MX 91

i.MX 93

GPU NPU

NXP eIQ inference
engines and libraries

aaa-056272

i.MX 943

i.MX 95

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NA

NANANANA

NANANA

NA NANANA

NA NANANA

NA

NA

Supported NA (Not applicable)

Figure 1. NXP eIQ supported compute vs. inference engines

The NXP eIQ inference engines support multi-threaded execution on Cortex-A cores. Additionally, TensorFlow
Lite also supports acceleration on the GPU or NPU. Generally, the NXP eIQ is prepared to support the following
key application domains:

• Vision
– Multi-camera observation
– Active object recognition
– Gesture control

• Voice
– Voice processing
– Home entertainment

• Sound
– Smart sense and control
– Visual inspection

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
2 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

– Sound monitoring
• LLM

– Text Generation
– ASR

2 TensorFlow Lite

TensorFlow Lite, recently renamed to LiteRT, is an open-source software library focused on running machine
learning models on mobile and embedded devices (available at http://www.tensorflow.org/lite). It enables
on-device machine learning inference with low latency and small binary size. TensorFlow Lite also supports
hardware acceleration:

• Using the VX Delegate on i.MX 8 series.
• Using the Ethos-U Delegate on i.MX 93.
• Using the Neutron Delegate for Neutron-S devices.

Note: Neutron-S devices are i.MX 9 SoC with Neutron-S inside. Currently, it is i.MX 95 and i.MX 943.
• Using the GPU delegate for i.MX 95 Mali GPU.

The TensorFlow Lite source code for this Yocto Linux release is available at this repository, branch
lf-6.12.20_2.0.0. This repository is a fork of the mainline https://github.com/tensorflow/tensorflow, and it is
optimized for NXP i.MX 8 and i.MX 9 platforms.

Features:

• TensorFlow Lite v2.18.0
• Multithreaded computation with acceleration using Arm Neon SIMD instructions on Cortex-A cores
• Parallel computation using GPU/NPU hardware acceleration (on shader or convolution units)
• C++ and Python API (supported Python version 3)
• Per-tensor and Per-channel quantized models support

2.1 TensorFlow Lite software stack
The TensorFlow Lite software stack is shown in the following picture. The TensorFlow Lite supports computation
on the following hardware units:

• CPU Arm Cortex-A cores
• GPU/NPU hardware accelerator using the VX Delegate on i.MX 8 Series. See Section 7.1 for details.
• NPU hardware acceleration using Ethos-U Delegate on i.MX 93 NPU. See Section 7.2 for details.
• NPU hardware acceleration using Neutron Delegate on i.MX 9 series with Neutron NPU. See Section 7.4 for

details.
• GPU hardware acceleration using the GPU Delegate on i.MX 95 GPU

See Section 1 for some details about supporting of computation on GPU/NPU hardware accelerator on different
hardware platforms.

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
3 / 115

http://www.tensorflow.org/lite
https://github.com/nxp-imx/tensorflow-imx
https://github.com/tensorflow/tensorflow
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

aaa-056273

VX delegate

XNNPACK

Ethos-U
delegate

Neutron
delegate

XNNPACK
delegate

TIM-VX

GPU/NPU
unified driver

Neutron driver
(user space)

GPU delegate

OpenCL

Neutron kernel
driver

Ethos-U
kernel driver

Arm Cortex-A CPU

Ethos-U driver
(user space)

Ethos-U
firmware@CM33

Neutron-S
firmware@Zen-V

i.MX 8 series NPU and
GPU (GC7000,

GC7000L, GC7000UL)

i.MX 8/9 series

i.MX 93 NPU
(Ethos-U65)ARM neon i.MX 95/943 NPU

(eIQ Neutron-S)
i.MX 95 GPU

(Arm Mali G310)

TensorFlow lite
library

Output

*.tflite

Input

Figure 2. TensorFlow Lite software stack

Note:

The first execution of the model inference using the delegate takes longer, because of the time required for
computational graph compilation and initialization for the hardware accelerator. The following iterations perform
much faster. The computational graph is the representation of the operations and their dependencies to perform
computation specified by the model. The computation graph is built during the model parsing phase. See
Section 7 for details.

The VX Delegate implementations use the OpenVX library for computational graph execution on the GPU/NPU
hardware accelerator. Therefore, OpenVX library support must be available for the selected device to be able
to use the acceleration. For more details on the OpenVX library availability, see the i.MX Graphics User's Guide
(UG10159).

Refer to the i.MX Graphics User's Guide (UG10159) for list GPUs with OpenVX support. Note that the GC7000
Lite and GC7000 Ultra Lite GPUs does not support full OpenVX however still capable to run ML workload.

2.2 Inference backends and delegates
Inference backend is the compute engine that enables efficient execution of machine learning models on edge
devices. Tensorflow Lite comes with the options to enable different backends through the delegate mechanism.

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
4 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

2.2.1 Built-in kernels

Default inference backend is the CPU with reference kernels from TensorFlow Lite implementation. Built-in
kernels provide full support for TensorFlow Lite operator set.

The built-in kernels are built with RUY matrix multiplication library enabled, which increases the performance of
the kernels for floating point and quantized operations.

2.2.2 XNNPACK Delegate

XNNPACK library is a highly optimized library of floating-point quantize neural network inference operators for
ARM, WebAssembly, and x86 platforms. The XNNPACK library is available through XNNPACK delegate in
TensorFlow Lite. The XNNPACK delegate computation is performed on the CPU.

It provides optimized implementation for a subset of TensorFlow Lite operator set. In general, it provides better
performance than the built-in kernels.

Note: The models are executed via the XNNPACK Delegate by default. XNNPack now also supports quantized
operators (since 2021).

2.2.3 VX Delegate

VX Delegate enables accelerating the inference on on-chip hardware accelerator on i.MX 8 series. The VX
Delegate directly uses the hardware accelerator driver (OpenVX with extension) to fully utilize the accelerator
capabilities.

The VX Delegate is available as external delegate1. The corresponding library is available in /usr/lib/
libvx_delegate.so.

VX Delegate is supported in both C++ and Python API. For using VX Delegate (or any external delegate), see
the external_delegate_provider implementation in C++ and/or label_image.py for Python. List of supported
operators are available in op_status.md.

2.2.4 Ethos-U Delegate

Ethos-U Delegate is an external delegate on i.MX 93 Linux platforms. It enables accelerating the inference on
the on-chip hardware accelerator. The Ethos-U Delegate directly uses the hardware accelerator driver (Ethos-U
driver stack) to fully utilize the accelerator capabilities.

The Ethos-U Delegate is available as external delegate. The corresponding library is available in /usr/lib/
libethosu_delegate.so.

Ethos-U Delegate is supported in both C++ and Python API. For using Ethos-U Delegate (or any external
delegate), see the external_delegate_provider implementation in C++ and/or label_image.py for
Python. List of supported operators are available in SUPPORTED_OPS.md.

2.2.5 Neutron Delegate

Neutron Delegate is an external delegate on i.MX 9 series Linux platform containing Neutron-S NPU. It captures
the operators and aggregates them as a neutron graph node, which can be directly offloaded and accelerated
by the Neutron-S NPU.

The delegate library is available in /usr/lib/libneutron_delegate.so. It can be used in both C+
+ and Python API environments. For using Neutron Delegate, see the external_delegate_provider
implementation in C++ and/or label_image.py for Python usage.

1 An external delegate is a special Tensorflow Lite delegate that is simply initialized from loading a dynamic library which encapsulates
an actual TensorFlow Lite delegate implementation

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
5 / 115

https://github.com/google/XNNPACK
https://github.com/nxp-imx/tensorflow-imx/blob/lf-6.6.23_2.0.0/tensorflow/lite/tools/delegates/external_delegate_provider.cc
https://github.com/nxp-imx/tensorflow-imx/blob/lf-6.6.23_2.0.0/tensorflow/lite/examples/python/label_image.py
https://github.com/nxp-imx/tflite-vx-delegate-imx/blob/lf-6.6.23_2.0.0/op_status.md
https://github.com/nxp-imx/ethos-u-vela/blob/lf-6.6.23_2.0.0/SUPPORTED_OPS.md
https://github.com/nxp-imx/tensorflow-imx/blob/lf-6.6.23_2.0.0/tensorflow/lite/delegates/external/README.md
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Note:

For the offline compilation, the model should be converted through the eIQ toolkit first. In the converted model,
the neutronGraph node is already generated. The neutron-delegate only captures the neutronGraph node and
offloads the work to Neutron-S.

2.2.6 GPU Delegate

GPU Delegate is an internal TensorFlow Lite delegate enabled on the i.MX 95 platform to leverage inferences
through the Arm Mali G310 GPU.

The GPU Delegate supports OpenCL as the main backend, and applies a set of optimizations such as accuracy
lowering for performance (FP32 to FP16 lowering) and allows quantize model execution. Further information
about the GPU delegate can be found in https://www.tensorflow.org/lite/performance/gpu.

GPU delegate is supported in C++ API. Refer to gpu_delegate_provider.cc in https://github.com/nxp-imx/
tensorflow-imx/blob/lf-6.6.23_2.0.0/tensorflow/lite/tools/delegates/gpu_delegate_provider.cc.

Note:

• Even if the GPU Delegate supports quantized models, performance might be degraded when compared to
other delegates such as XNNPACK using 6 cores.

• As the GPU delegate dynamically loads OpenCL, libOpenCL.so is expected to be present in the system. If
libOpenCL.so is missing but libOpenCL.so.1 exists, issues can be solved by adding a symbolic link:

ln -s /usr/lib/libOpenCL.so.1 /usr/lib/libOpenCL.so

2.3 Delivery package
The TensorFlow Lite is available using Yocto Project recipes.

The TensorFlow Lite delivery package contains:

• TensorFlow Lite shared libraries
• TensorFlow Lite header files
• Python Module for TensorFlow Lite
• Image classification example application for C++ (label_image) and for Python (label_image.py)
• TensorFlow Lite benchmark application (benchmark_model)
• TensorFlow Lite evaluation tools (coco_object_detection_run_eval, imagenet_image_
classification_run_eval, inference_diff_run_eval), see TensorFlow Lite Delegates for details.

For application development, the TensorFlow Lite shared libraries and header files are available in the SDK.
See Section 2.5 for more details.

There are following delegates available in the TensorFlow Lite delivery package:

• XNNPACK Delegate
• VX Delegate
• Ethos-U Delegate
• Neutron Delegate
• GPU Delegate

2.4 Build details
TensorFlow Lite uses CMake build system for compilation. Notable remarks to package build are:

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
6 / 115

https://www.tensorflow.org/lite/performance/gpu
https://github.com/nxp-imx/tensorflow-imx/blob/lf-6.6.23_2.0.0/tensorflow/lite/tools/delegates/gpu_delegate_provider.cc
https://github.com/nxp-imx/tensorflow-imx/blob/lf-6.6.23_2.0.0/tensorflow/lite/tools/delegates/gpu_delegate_provider.cc
https://www.tensorflow.org/lite/performance/delegates#tools_for_evaluation
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

• RUY matrix multiplication library is enabled (TFLITE_ENABLE_RUY=On). RUY matrix multiplication library
offers better performance compared to kernels build with Eigen and GEMLOWP.

• XNNPACK Delegate support (TFLITE_ENABLE_XNNPACK=On)
• External Delegate support (TFLITE_ENABLE_EXTERNAL_DELEGATE=On)
• (i.MX 95) GPU Delegate support (TFLITE_ENABLE_GPU=On)
• The runtime library is built and provided as a shared library (TFLITE_BUILD_SHARED_LIB=On). If static

linking of the TensorFlow Lite library to the application is preferred, keep this switch in off state (default
settings). This might be convenient if the application is built with CMake as described in the Section
Section 2.5.1.

• The package is compiled with the default -O2 optimization level. Some CPU kernels, such as
RESIZE_BILINEAR, are known to perform better with -O3 optimization level. However, some performs better
with -O2, such as ARG_MAX. We recommend to adjust the optimization level, based on the application
needs.

Yocto project builds the TensorFlow Lite with these settings. The build configuration can be changed by either
updating the TensorFlow Lite Yocto recipe in the meta-imx layer (located in meta-imx/meta-ml/recipes-
libraries/tensorflow-lite/), or building the TensorFlow Lite from source code using the CMake and the
Yocto SDK.

2.5 Application development
This section describes how to use TensorFlow Lite C++ API in the application development.

To start with TensorFlow Lite C++ application development, a Yocto SDK must be generated firstly. See the i.MX
Yocto Project User’s Guide (UG10164) for detailed information on how to generate Yocto SDK environment for
cross-compiling.

To build an application that uses the TensorFlow Lite, use the following options:

• Create a CMake project that uses TensorFlow Lite (CMake superbuild pattern).
• Use the Yocto SDK precompiled libraries.

The CMake configuration file of TensorFlow Lite is under tensorflow/lite/CMakeLists.txt from the root
repository.

2.5.1 Create CMake project which uses TensorFlow Lite

The recommended way is to create a CMake project, which uses TensorFlow Lite as described in Build
TensorFlow Lite with CMake. CMake takes care of dependencies preparation, including download, configure
and build steps.

To demonstrate this build option, there is a minimal example project available in tensorflow/lite/
examples/minimal. To build it:

1. Build the Native flat compiler for TensorFlow Lite.

cmake -S tensorflow/lite/tools/cmake/native_tools/flatbuffers \
 -B native-tools \
 -DCMAKE_INSTALL_PREFIX=native-tools
cmake --build native-tools -- -j 4 --keep-going
cmake --install native-tools

2. Set up the Yocto SDK as described above. To activate this Yocto SDK environment on your host, use the
following command:

$ source <Yocto_SDK_install_folder>/environment-setup-aarch64-poky-linux

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
7 / 115

https://www.tensorflow.org/lite/guide/build_cmake#create_a_cmake_project_which_uses_tensorflow_lite
https://www.tensorflow.org/lite/guide/build_cmake#create_a_cmake_project_which_uses_tensorflow_lite
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

3. Configure the project using CMake:

$ mkdir build-minimal-example; cd build-minimal-example
$ cmake -DCMAKE_TOOLCHAIN_FILE=${OE_CMAKE_TOOLCHAIN_FILE} -
DTFLITE_ENABLE_XNNPACK=on \
-DTFLITE_ENABLE_RUY=on \
-DTFLITE_HOST_TOOLS_DIR=native-tools
../tensorflow/lite/examples/minimal

4. Build the project:

$ cmake --build . -j4

5. The minimal example is available in the build directory:

$ file minimal
minimal: ELF 64-bit LSB shared object, ARM aarch64, version 1 (GNU/
Linux), dynamically linked, interpreter /lib/ld-linux-aarch64.so.1,
 BuildID[sha1]=4a928894439e0b33217ea28790378690ab4ce7cd, for GNU/Linux
 3.14.0, with debug_info, not stripped

6. Optionally you can strip the final binary:

$ $STRIP --remove-section=.comment --remove-section=.note --strip-unneeded
 <file>

This build option has several advantages:

• Automatic dependency resolution based on configure options
• Option to choose between static or dynamic linking (TFLITE_BUILD_SHARED_LIB=on/off)
• Building the whole project (including its dependencies) in the Debug mode (CMAKE_BUILD_TYPE=Debug/
Release/…), for enhanced debugging experience

2.5.2 Using Yocto SDK precompiled libraries

Another option is to use the precompiled binaries and header files which are directly available in the Yocto SDK.
The TensorFlow Lite artifacts are in the Yocto SDK as follows:

• TensorFlow Lite shared library (libtensorflow-lite.so) in /usr/lib
• TensorFlow Lite header files in /usr/include

Note: Not all TensorFlow Lite dependencies are installed in the Yocto SDK and it is necessary to download
and optionally build them manually. For the required versions see the tensorflow/lite/tools/cmake/
modules/ folder.

To build the image classification demo (label_image), located in tensorflow/lite/examples/label_
image/, follow these steps:

1. Create build directory:

$ mkdir build-manual
$ cd build-manual

2. Download the Abseil library dependency:

$ wget https://github.com/abseil/abseil-cpp/
archive/997aaf3a28308eba1b9156aa35ab7bca9688e9f6.tar.gz -O abseil-cpp.tar.gz
$ tar -xzf abseil-cpp.tar.gz
$ mv abseil-cpp-997aaf3a28308eba1b9156aa35ab7bca9688e9f6 abseil-cpp

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
8 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

3. Build the label_image example:

$ $CC ../tensorflow/lite/examples/label_image/label_image.cc ../tensorflow/
lite/examples/label_image/bitmap_helpers.cc ../tensorflow/lite/tools/
evaluation/utils.cc ../tensorflow/lite/tools/delegates/delegate_provider.cc -
Iabseil-cpp -O2 -ltensorflow-lite -lstdc++ -lpthread -lm -ldl -lrt -I../

2.6 Enabling TensorFlow Operators in TensorFlow Lite Runtime
The TensorFlow Lite Operator Set counts more than a hundred of frequently used operators and layers, and
majority of Machine Learning models can fit into it. Still the TensorFlow Lite Operator Set is only a subset of
TensorFlow Operator Set, so not every model is convertible.

To tackle this limitation, TensorFlow offers an option to use TensorFlow operators inside the TensorFlow Lite
runtime. See https://www.tensorflow.org/lite/guide/ops_select. It shows how this feature can be used with NXP
i.MX devices with Yocto Linux platform.

2.6.1 TensorFlow and TensorFlow Lite Operator Set

If the model is not convertible within the standard TensorFlow Lite Operator Set, the TensorFlow Lite converter
raises an error, indicating particular operator is not available in TensorFlow Lite, for example:

Some ops are not supported by the native TFLite runtime, you can enable TF
 kernels fallback using TF Select. See instructions: https://www.tensorflow.org/
lite/guide/ops_select
TF Select ops: Roll
Details: tf.Roll(tensor<?x10xf32>, tensor<i32>, tensor<i32>) -> (tensor<?
x10xf32>) : {device = ""}

To Convert such a model, the Select TensorFlow Operators feature needs to be enabled in the Converter:

converter.target_spec.supported_ops = [
 tf.lite.OpsSet.SELECT_TF_OPS # enable TensorFlow ops.
]

When the model is converted with SELECT_TF_OPS enabled, TensorFlow operators are transformed into
Flex operators, which are supported by TensorFlow Lite through the Flex Delegate. The Flex Delegate is the
TensorFlow Lite counterpart for the Select TensorFlow Operators feature and bridges the TensorFlow Lite and
TensorFlow runtimes.

2.6.2 Building the TensorFlow Lite Library with the Flex Delegate for i.MX Linux platforms

The library can be built using bazel on any supported host or inside the Docker container. It is recommend to
use Docker because the environment is ready for TensorFlow compilation. Compilation outside of Docker might
fail for multiple reasons. This document focuses on building the TensorFlow Lite Library with Flex Delegate
inside the TensorFlow’s Docker image.

Note:

To build the library outside the Docker image, the bazel build system needs to be installed on the machine.
The TensorFlow requires an exact version of bazel, which is specific to particular TensorFlow version.
Therefore, use bazelisk to handle the bazel version management. Find the bazelisk tool on its GitHub
space https://github.com/bazelbuild/bazelisk, with prebuilt executables for multiple platforms available.

It is recommended to have at least 32 GB RAM to build the Flex Delegate, and ensure that enough inodes are
available in build-related directories, such as /tmp.

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
9 / 115

https://www.tensorflow.org/lite/guide/ops_select
https://github.com/bazelbuild/bazelisk
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

2.6.2.1 Checking out the TensorFlow repository

To build the TensorFlow Lite library, check out the TensorFlow sources:

Clone the tensorflow-imx repository from https://github.com/nxp-imx/tensorflow-imx and check out the
corresponding release branch:

$ git clone https://github.com/nxp-imx/tensorflow-imx.git -b lf-6.12.20_2.0.0
$ cd tensorflow-imx

2.6.2.2 Setting up Docker VM

For more details about the Docker VM setup for TensorFlow, see https://github.com/tensorflow/tensorflow/tree/
master/tensorflow/tools/tf_sig_build_dockerfiles.

Note:

Depending on the host, the Docker may require administrative privileges to run (e.g., sudo in Linux).
Alternatively, the Docker Daemon can run as a non-root user (Rootless mode), as described here https://docs.
docker.com/engine/security/rootless/.

1. Download the tensorflow/build:2.18-python3.12 Docker image. This image is aligned with the
upstream release and contains all the required tools to build Flex Delegate related components.

$ docker pull tensorflow/build:2.18-python3.12

2. Run the Docker VM. During the build process, Bazel downloads various packages from the Internet.
Therefore, Internet access inside the instantiated container is required. In case of conflict, a minimal setup
is to initialize http_proxy and https_proxy environmental variables when launching the Docker image.
Particular steps depend on the host configuration.

$ docker run -e "http_proxy=<your-http-proxy>" \
 -e "https_proxy=<your-https-proxy>" \
 -e "no_proxy=localhost,127.0.0.1" \
 -it -w /tensorflow -v /<path-to-tensorflow-sources>:/tensorflow
 \
 -e HOST_PERMS="\\((id -u):\\)(id -g)" \
 tensorflow/build:2.18-python3.12

2.6.2.3 Building the TensorFlow Lite with Flex Delegate

The main CPUs in NXP i.MX 8 and i.MX 9 families are Arm based, implementing AArch64 ISA, and the platform
OS is based in the Embedded Linux BSP release. To build TensorFlow Lite with Flex Delegate, the build system
supports the described environment combination through the elinux_aarch64 option.

1. Configure the project using the configure script:

$./configure

Note: More details about the configuration can be found in build_benchmark_flex_test.sh and
build_elinux_flex_libs_from_models.sh located in the tensorflow/lite/tools directory.
The Flex Delegate sources and bazel build recipes are located in /tensorflow/lite/delegates/
flex. There are two libraries defined:
• tensorflowlite_flex_[full|reduced] – TensorFlow Lite Flex Delegate shared library

(libtensorflowlite_flex.so)
• delegate_[full|reduced] – special target to be used for static linking of the TensorFlow Lite Flex

Delegate. Similar to object library concept in CMake.

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
10 / 115

https://github.com/nxp-imx/tensorflow-imx
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/tools/tf_sig_build_dockerfiles
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/tools/tf_sig_build_dockerfiles
https://docs.docker.com/engine/security/rootless/
https://docs.docker.com/engine/security/rootless/
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Additionally Bazel targets for building different variants of the benchmark_model binary are provided in the
/tensorflow/lite/delegates/flex/test/BUILD, for evaluation purposes:

benchmark_model_plus_flex_[dynamic]_[full|reduced]

2. Build the benchmark_model_plus_flex target with a full TensorFlow Operator Set:

$ bazel --output_base=/tensorflow/docker-build/ build --config=monolithic
 --config=elinux_aarch64 -c opt --cxxopt='--std=c++17' --
host_crosstool_top=@bazel_tools//tools/cpp:toolchain //tensorflow/lite/
delegates/flex/test:benchmark_model_plus_flex_full

Note: To preserve the Bazel’s cache, use the --output_base switch to override the default output base. For
the build outside the Docker, this switch can be omitted. The directory shall be available prior to running Bazel
build.

The output is the benchmark_model_plus_flex binary with statically linked Flex Delegate. This can be
directly used on NXP MPU platforms.

The -c (or --compilation_mode) affects code generation option. It can be set to fastbuild, dbg or opt.
See https://bazel.build/docs/user-manual#build-semantics. To build the Flex Delegate for debugging purposes,
use the -c dbg option.

The following table lists the benchmark_model_plus_flex_* build configurations.

Operator set Static linkage Dynamic linkage

Full Flex Delegate benchmark_model_plus_flex_full benchmark_model_plus_flex_dynamic_full

Reduced Flex Delegate benchmark_model_plus_flex_
reduced

benchmark_model_plus_flex_dynamic_
reduced

Table 1. benchmark_model build configurations

2.6.3 Reducing the size of the Flex Delegate library

The previous section describes how to build a TensorFlow Lite Library with a complete TensorFlow Operator
Set. The approach is useful for quick evaluation, but for practical use, it generates an oversized binary.
Moreover, typically only a small subset of TensorFlow operators are required.

To minimize the size, there is a model-dependent build option which extracts the required operators from the
models, and selectively includes them in the deployed TensorFlow Lite library. For more details, see https://
www.tensorflow.org/lite/guide/reduce_binary_size.

For example, there are targets with the _reduced suffix, which builds the TensorFlow Lite library for the /
tensorflow/lite/delegates/flex/test/simple_flex_model_int8.tflite example model. The
model contains a single TensorFlow operation: tf.roll().

The reduced size binaries are built in the following process:

1. Generate the headers and listings for the Flex operators contained in the provided TensorFlow Lite models.
This is managed by the rule fetch_flex_files. Note that the command is "run" and executed natively in
the host platform (lack of the elinux_aarch64 option).

2. Build the target Flex delegate (using the rules contained in Table 1).

$ bazel --output_base=/tensorflow/docker-build/ run //tensorflow/lite/delegates/
flex/test:fetch_flex_files
$ bazel --output_base=/tensorflow/docker-build/ build --config=monolithic
 --config=elinux_aarch64 -c opt --cxxopt='--std=c++17' --
host_crosstool_top=@bazel_tools//tools/cpp:toolchain

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
11 / 115

https://bazel.build/docs/user-manual#build-semantics
https://www.tensorflow.org/lite/guide/reduce_binary_size
https://www.tensorflow.org/lite/guide/reduce_binary_size
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

//tensorflow/lite/delegates/flex/test:benchmark_model_plus_flex_reduced

To build the TensorFlow Lite library for custom model, use a bazel function tflite_flex_cc_library (for
static library) or tflite_flex_shared_library (for shared library), and list the models into the models
attribute. Remember regenerating the headers and listings through the fetch_flex_files rule for each
additional model containing Flex operators. The kernel_headers attribute uses the files generated by
the fetch_flex_files rule through the load_flex_kernel_header rule. For more details, see the
tensorflow/lite/delegates/flex/test/BUILD file.

tflite_flex_cc_library(
 name = "delegate_reduced",
 models = [
 "simple_flex_model_int8.tflite",
],
 visibility = ["//visibility:public"], kernel_headers = loaded_headers,
)

This library can be used inside the bazel to link to a custom TensorFlow Lite binary, like this:

tf_cc_binary(
 name = "benchmark_model_plus_flex_reduced",
 srcs = [
 "//tensorflow/lite/tools/benchmark:benchmark_plus_flex_main.cc",
],
 copts = tflite_copts() + tflite_copts_warnings(),
 linkopts = tflite_linkopts(),
 deps = [
 ":delegate_reduced",
 "//tensorflow/lite/tools/benchmark:benchmark_tflite_model_lib",
 "//tensorflow/lite/testing:init_tensorflow",
 "//tensorflow/lite/tools:logging",
],
)

Note: To ease the build process for Reduced Size Flex Delegate containing user models, refer to build_
elinux_flex_libs_from_models.sh located in the tensorflow/lite/tools directory.

2.6.4 Flex Delegate deployment on NXP i.MX Linux platform

For the statically linked binary (in this usecase, benchmark_model_plus_flex_[full|reduced]), copy
the binary to target the device rootfs.

For the dynamically linked binary (in this usecase, benchmark_model_plus_flex_dynamic_[full|
reduced]), copy both libtensorflowlite_flex.so and the binary to target the device rootfs. The
libtensorflowlite_flex.so should be copied to /usr/lib/, or alternatively the LD_LIBRARY_PATH
should be set, to load the library by the dynamic linker or loader.

1. Copy the simple_flex_model_int8.tflite example model on the i.MX platform, e.g., to /usr/bin/
tensorflow-lite-2.18.0/examples/.

$ scp tensorflow/lite/delegates/flex/test/simple_flex_model_int8.tflite
 root@<imx-board>:/usr/bin/tensorflow-lite-2.18.0/examples/

2. Run the example application benchmark model:

$./benchmark_model_plus_flex_dynamic_full --graph=/usr/bin/tensorflow-
lite-2.18.0/examples/simple_flex_model_int8.tflite

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
12 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

With --enable_op_profiling=true, the FlexDelegate invocation is displayed:

============================== Summary by node type
 ==============================
 [Node type] [count] [avg ms] [avg %] [cdf %] [mem
 KB] [times called]
 TfLiteXNNPackDelegate 3 2.821 81.250% 81.250%
 0.000 3
 TfLiteFlexDelegate 1 0.640 18.433% 99.683%
 0.000 1
 RESHAPE 1 0.008 0.230% 99.914%
 0.000 1
 SOFTMAX 1 0.003 0.086% 100.000%
 0.000 1

2.6.5 Using hardware accelerators

The TensorFlow Operators are not part of the TensorFlow Lite Operators Set, so the hardware accelerator on
i.MX platforms does not support these operators, though the acceleration of the TensorFlow Lite operators
present in the model is supported.

For the hardware Acceleration on i.MX8 Linux platforms, use the VX Delegate (external delegate).
The benchmark_model_plus_flex already includes support for external delegates, so the –
external_delegate_path CLI option can be used for inference acceleration:

$./benchmark_model_plus_flex_dynamic_full --graph=/usr/bin/tensorflow-
lite-2.15.0/examples/simple_flex_model_int8.tflite --enable_op_profiling=true --
external_delegate_path=/usr/lib/libvx_delegate.so

For the hardware acceleration on the i.MX 9 Linux platform, use the Ethos-U Delegate for i.MX 93 or Neutron
Delegate for i.MX 95.

Alternativelly, convert the model with the Arm Vela Compiler as described in Section 7.2.3, and also use the
Ethos-U Delegate.

$ vela /usr/bin/tensorflow-lite-2.18.0/examples/simple_flex_model_int8.tflite

Run benchmark_model_plus_flex* with the Ethos-u Delegate.

$./benchmark_model_plus_flex_dynamic_full --graph=/usr/bin/tensorflow-
lite-2.18.0/examples/simple_flex_model_int8.tflite --enable_op_profiling=true --
external_delegate_path=/usr/lib/libethosu_delegate.so

2.6.6 Flex Delegate limitations

The Flex Delegate has the following limitations:

CPU support only for TensorFlow Operators

Flex Delegate operators are not supported on the hardware accelerators of i.MX platforms. The TensorFlow
Operators fall back to CPU. The acceleration of supported TensorFlow Lite Ops in the model is not impacted.
The model can freely combine TensorFlow Lite and TensorFlow Operators. Supported TensorFlow Lite
operators of the model will be accelerated.

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
13 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

2.7 Running image classification example
A Yocto Linux BSP image with machine learning layer included by default contains a simple pre-installed
example called ‘label_image’ usable with image classification models. The example binary file is located at:

/usr/bin/tensorflow-lite-2.18.0/examples

Figure 3. TensorFlow image classification input
Demo instructions:

To run the example with mobilenet model on the CPU, use the following command:

$./label_image -m mobilenet_v1_1.0_224_quant.tflite -i grace_hopper.bmp -l
 labels.txt

The output of a successful classification on the i.MX 8MPlus SoC for the 'grace_hopper.bmp' input image is as
follows:

Loaded model mobilenet_v1_1.0_224_quant.tflite
resolved reporter
invoked
average time: 39.271 ms
0.780392: 653 military uniform
0.105882: 907 Windsor tie
0.0156863: 458 bow tie
0.0117647: 466 bulletproof vest
0.00784314: 835 suit

Note: For floating point layers, the TensorFlow Lite uses XNNPACK delegated by default.

2.7.1 Running the example on the i.MX 8 platform hardware accelerator

To run the example application on the CPU without using the XNNPACK delegate, use the --
use_xnnpack=false switch.

To run the example with the same model on the GPU/NPU hardware accelerator, add --external_
delegate_path=/usr/lib/libvx_delegate.so (for VX Delegate) command line argument. To

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
14 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

differentiate between the 3D GPU and the NPU, use the USE_GPU_INFERENCE environmental variable. For
example, to run the model accelerated on the NPU hardware using VX Delegate, use this command:

$ USE_GPU_INFERENCE=0 ./label_image -m mobilenet_v1_1.0_224_quant.tflite
 -i grace_hopper.bmp -l labels.txt --external_delegate_path=/usr/lib/
libvx_delegate.so

The output of the NPU acceleration on the i.MX 8MPlus processor is as follows:

INFO: Loaded model ./mobilenet_v1_1.0_224_quant.tflite
INFO: resolved reporter
Vx delegate: allowed_builtin_code set to 0.
Vx delegate: error_during_init set to 0.
Vx delegate: error_during_prepare set to 0.
Vx delegate: error_during_invoke set to 0.
EXTERNAL delegate created.
INFO: Applied EXTERNAL delegate.
W [HandleLayoutInfer:257]Op 18: default layout inference pass.
INFO: invoked
INFO: average time: 2.567 ms
INFO: 0.768627: 653 military uniform
INFO: 0.105882: 907 Windsor tie
INFO: 0.0196078: 458 bow tie
INFO: 0.0117647: 466 bulletproof vest
INFO: 0.00784314: 835 suit

2.7.2 Running the example on the i.MX 93 platform with Ethos-U

To use the hardware acceleration on i.MX 93, convert the model using the Vela compiler first, and run the model
with the Ethos-U delegate. Alternatively, directly run the model with the Ethos-U delegate. The model is then
converted in the delegate. For details, see Section 7.2.3.

To run the example with the model on the NPU hardware accelerator, add the --external_delegate_
path=/usr/lib/libethosu_delegate.so command line argument. For example, to run the model
accelerated on the NPU hardware using Ethos-U Delegate, use this command:

$./label_image -m mobilenet_v1_1.0_224_quant.tflite
-i grace_hopper.bmp -l labels.txt --external_delegate_path=/usr/lib/
libethosu_delegate.so

2.7.3 Running the example on the i.MX 9 platform with Neutron-S

To use the hardware Acceleration on i.MX 9 with Neutron-S NPU, convert the model using the neutron-
converter using the eIQ Toolkit. For details, see the eIQ Toolkit documentation.

• Run the example with option:

--external_delegate_path=/usr/lib/libneutron_delegate.so

• Run the Python example with option:

-e /usr/lib/libneutron_delegate.so

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
15 / 115

https://www.nxp.com/design/design-center/software/eiq-ml-development-environment/eiq-toolkit-for-end-to-end-model-development-and-deployment:EIQ-TOOLKIT
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

2.7.4 Running the Python example

Alternatively, the example using the TensorFlow Lite interpreter-only Python API can be run. The example file is
located at:

/usr/bin/tensorflow-lite-2.18.0/examples

To run the example using the predefined command line arguments, use the following command:

$ python3 label_image.py

The output should be as follows:

Warm-up time: 159.1 ms
Inference time: 156.5 ms
0.878431: military uniform
0.027451: Windsor tie
0.011765: mortarboard
0.011765: bulletproof vest
0.007843: sax

The Python example supports external delegates also. The switch --ext_delegate <PATH> and --
ext_delegate_options <EXT_DELEGATE_OPTIONS>, can be used to specify the external delegate library
and optionally its arguments.

For example, to run the model accelerated on the NPU hardware using Neutron Delegate on i.MX 95, run this
command:

$ python3 label_image.py --ext_delegate /usr/lib/libneutron_delegate.so

The output should be as follows:

Loading external delegate from /usr/lib/libneutron_delegate.so with args: {}
INFO: NeutronDelegate delegate: 29 nodes delegated out of 31 nodes with 1
 partitions.

Warm-up time: 1.9 ms
Inference time: 1.7 ms

0.850980: military uniform
0.058824: Windsor tie
0.011765: bulletproof vest
0.007843: bow tie
0.007843: mortarboard

2.7.5 Running the example on the i.MX 95 platform using GPU

To run label_image using the GPU, execute the following command:

$./label_image -m mobilenet_v1_1.0_224_quant.tflite -i grace_hopper.bmp -l
 labels.txt --use_gpu=true --gpu_backend=cl --gpu_precision_loss_allowed=true --
gpu_experimental_enable_quant=true --gpu_inference_for_sustained_speed=false

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
16 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

2.8 Running benchmark applications
A Yocto Linux BSP image with machine learning layer included by default contains a pre-installed benchmarking
application. It performs a simple TensorFlow Lite model inference and prints benchmarking information. The
application binary file is located at:

/usr/bin/tensorflow-lite-2.18.0/examples

Benchmarking instructions are as follows:

To run the benchmark with computation on CPU, use the following command:

$./benchmark_model --graph=mobilenet_v1_1.0_224_quant.tflite

You can optionally specify the number of threads with the --num_threads=X parameter to run the inference
on multiple cores. For highest performance, set X to the number of cores available.

The output of the benchmarking application should be similar to:

STARTING!
Log parameter values verbosely: [0]
Graph: [mobilenet_v1_1.0_224_quant.tflite]
Loaded model mobilenet_v1_1.0_224_quant.tflite
Going to apply 0 delegates one after another.
The input model file size (MB): 4.27635
Initialized session in 3.051ms.
Running benchmark for at least 1 iterations and at least 0.5 seconds but
 terminate if exceeding 150 seconds.
count=4 first=160408 curr=155384 min=155384 max=160408 avg=156869 std=2076
Running benchmark for at least 50 iterations and at least 1 seconds but
 terminate if exceeding 150 seconds.
count=50 first=155586 curr=155424 min=155274 max=155622 avg=155443 std=81
Inference timings in us: Init: 3051, First inference: 160408, Warmup (avg):
 156869, Inference (avg): 155443
Note: as the benchmark tool itself affects memory footprint, the following is
 only APPROXIMATE to the actual memory footprint of the model at runtime. Take
 the information at your discretion.
Peak memory footprint (MB): init=4.49219 overall=10.6133

To run the inference without the XNNPACK delegate, add the --use_xnnpack=false switch.

To run the inference using the GPU/NPU hardware accelerator, use the --external_delegate_path switch:

• For VX Delegate on i.MX 8: --external_delegate_path=/usr/lib/libvx_delegate.so
• For Ethos-U Delegate on i.MX 93: --external_delegate_path=/usr/lib/libethosu_delegate.so
• For Neutron Delegate on i.MX 95: --external_delegate_path=/usr/lib/libneutron_delegate.
so

To run the inference using the Arm Mali G310 GPU using the GPU Delegate on i.MX 95:

--use_gpu=true --gpu_backend=cl --gpu_precision_loss_allowed=true --
gpu_experimental_enable_quant=true --gpu_inference_for_sustained_speed=false

The output with GPU/NPU module acceleration enabled (for VX Delegate) should be similar to:

STARTING!
Log parameter values verbosely: [0]
Graph: [mobilenet_v1_1.0_224_quant.tflite]

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
17 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

External delegate path: [/usr/lib/libvx_delegate.so]
Loaded model mobilenet_v1_1.0_224_quant.tflite
Vx delegate: allowed_builtin_code set to 0.
Vx delegate: error_during_init set to 0.
Vx delegate: error_during_prepare set to 0.
Vx delegate: error_during_invoke set to 0.
EXTERNAL delegate created.
Going to apply 1 delegates one after another.
Explicitly applied EXTERNAL delegate, and the model graph will be completely
 executed by the delegate.
The input model file size (MB): 4.27635
Initialized session in 13.437ms.
Running benchmark for at least 1 iterations and at least 0.5 seconds but
 terminate if exceeding 150 seconds.
W [HandleLayoutInfer:257]Op 18: default layout inference pass.
count=1 curr=4586473
Running benchmark for at least 50 iterations and at least 1 seconds but
 terminate if exceeding 150 seconds.
count=398 first=2541 curr=2419 min=2419 max=2549 avg=2467.87 std=13
Inference timings in us: Init: 13437, First inference: 4586473, Warmup (avg):
 4.58647e+06, Inference (avg): 2467.87
Note: as the benchmark tool itself affects memory footprint, the following is
 only APPROXIMATE to the actual memory footprint of the model at runtime. Take
 the information at your discretion.
Peak memory footprint (MB): init=7.24609 overall=34.0117

The delegates are not required to support the full set of operators defined by the TensorFlow Lite runtime. If the
model contains such an operation, which is not supported by the particular delegate, this operation execution
falls back to CPU using the TensorFlow Lite reference kernels. This way the computational graph represented
by the model gets divided into segments and each segment is executed . The graph segmentation or also called
graph partitioning is the process, where the computational graph defined by the model is divided into smaller
segments (or partitions) and each of them is executed via the delegate or on the CPU using reference kernels
(CPU fallback), based on operation supported by the delegate.

The benchmark application is also useful to check the optional segmentation of the models if accelerated on
GPU/NPU hardware accelerator. For this purpose, the combination of the --enable_op_profiling=true
and --max_delegated_partitions=<big number> (e.g., 1000) options can be used.

Which generates detailed profiling information, such as:

Profiling Info for Benchmark Initialization:
================================= Run Order ===================================
[node type] [start] [first] [avg ms] [%] [cdf%]
ModifyGraphWithDelegate 0.000 4.597 4.597 95.791% 95.791%
AllocateTensors 4.528 0.198 0.101 4.209% 100.000%
======================== Top by Computation Time ==============================
[node type] [start] [first] [avg ms] [%] [cdf%]
ModifyGraphWithDelegate 0.000 4.597 4.597 95.791% 95.791%
AllocateTensors 4.528 0.198 0.101 4.209% 100.000%
Number of nodes executed: 2
=========================== Summary by node type ==============================
 [Node type] [count][avg ms] [avg %] [cdf %] [mem KB] [times called]
ModifyGraphWithDelegate 1 4.597 95.791% 95.791% 684.000 1
AllocateTensors 1 0.202 4.209% 100.000% 0.000 2
Timings (microseconds): count=1 curr=4799
Memory (bytes): count=0
2 nodes observed
Operator-wise Profiling Info for Regular Benchmark Runs:
================================ Run Order ====================================
 [node type] [start] [first] [avg ms] [%] [cdf%]
Vx Delegate 0.000 14.890 14.894 11.349% 11.349%
 RESIZE_BILINEAR 14.896 1.331 1.331 1.014% 12.363%

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
18 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Vx Delegate 16.227 2.944 2.909 2.216% 14.579%
 RESIZE_BILINEAR 19.137 0.279 0.277 0.211% 14.790%
 RESIZE_BILINEAR 19.415 44.316 44.496 33.905% 48.695%
 ARG_MAX 63.912 67.438 67.332 51.305% 100.000%
========================= Top by Computation Time =============================
 [node type] [start] [first] [avg ms] [%] [cdf%]
 ARG_MAX 63.912 67.438 67.332 51.305% 51.305%
 RESIZE_BILINEAR 19.415 44.316 44.496 33.905% 85.210%
Vx Delegate 0.000 14.890 14.894 11.349% 96.559%
Vx Delegate 16.227 2.944 2.909 2.216% 98.775%
 RESIZE_BILINEAR 14.896 1.331 1.331 1.014% 99.789%
 RESIZE_BILINEAR 19.137 0.279 0.277 0.211% 100.000%
Number of nodes executed: 6
========================== Summary by node type ===============================
 [Node type] [count] [avg ms] [avg %] [cdf %] [mem KB] [times called]
 ARG_MAX 1 67.332 51.306% 51.306% 0.000 1
 RESIZE_BILINEAR 3 46.102 35.129% 86.435% 0.000 3
Vx Delegate 2 17.802 13.565% 100.000% 0.000 2
Timings (microseconds): count=8 first=131198 curr=130580 min=130580 max=132766 avg=131238
 std=616
Memory (bytes): count=0
6 nodes observed

Based on section “Number of nodes executed” in the output, it can be determined which part of the computation
graph was executed on GPU/NPU hardware accelerator. Every node except Vx Delegate falls back to CPU. In
the example above, the ARG_MAX and RESIZE_BILINEAR nodes fall back to CPU.

2.9 Post training quantization using TensorFlow Lite converter
TensorFlow offers several methods for model quantization:

• Post training quantization with TensorFlow Lite Converter
• Quantization aware training using Model Optimization Toolkits and TensorFlow Lite Converter
• Various other methods available in previous TensorFlow releases

Note:

The model quantization is also supported by the "eIQ Toolkit". See also eIQ Toolkit User's Guide (EIQTUG).

Covering all of them is beyond the scope of this documentation. This section describes the approach for the
post training quantization using the TensorFlow Lite Converter.

The Converter is available as a part of standard TensorFlow desktop installation. It is used to convert and
optionally quantize TensorFlow models into TensorFlow Lite model format (*.tflite). There are two options
how to use the tool:

• The Python API (recommended)
• Command line script

The post training quantization using the Python API is described in this chapter. The documentation useful for
model conversion and quantization is available here:

• Python API documentation: https://www.tensorflow.org/versions/r2.15/api_docs/python/tf/lite/TFLiteConverter
• Guide for model conversion: www.tensorflow.org/lite/convert
• Guide for model quantization: https://www.tensorflow.org/lite/performance/post_training_quantization
• Guide for model optimization: https://www.tensorflow.org/model_optimization

Note:

The guides on TensorFlow page usually covers the most up to date version of TensorFlow, which might be
different from the version available in the NXP eIQ. To see what features are available, check the corresponding
API for the specific version of the TensorFlow or TensorFlow Lite.

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
19 / 115

https://www.tensorflow.org/versions/r2.15/api_docs/python/tf/lite/TFLiteConverter
http://www.tensorflow.org/lite/convert
https://www.tensorflow.org/lite/performance/post_training_quantization
https://www.tensorflow.org/model_optimization
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

The current version of the TensorFlow Lite available in the NXP eIQ is 2.15.0. It is recommended to use the
TensorFlow Lite converter from corresponding TensorFlow version. The TensorFlow Lite runtime should be
compatible with models generated by previous version of TensorFlow Lite Converter, however this backward
compatibility is not guaranteed. Usage of successive version of TensorFlow Lite converter shall be avoided.

The 2.15.0 version of the converter has the following properties:

• In the post training quantization regime, the per-channel quantization is the only option. The per-tensor
quantization is available only in connection with quantization aware training.

• Input and output tensors quantization is supported by setting the required data type in
inference_input_type and inference_output_type.

• TOCO or MLIR based conversions are available. This is controlled by the experimental_new_converter
attribute. As TOCO is becoming obsolete, MLIR-based conversion is already set by default in the 2.15.0
version of the converter.
MLIR converter uses dynamic tensor shapes, what means the batch size of the input tensor is unspecified.
Dynamic tensor shapes are not supported by the GPU and NPU hardware accelerators and this shall be
turned off. Standard installation of TensorFlow does not provide API to control the dynamic tensor shape
feature, but can be deactivated in the tensorflow installation, as follows. Locate the <python-install-
dir>/site-packages/tensorflow/lite/python/lite.py file and change the private method
TFLiteConverterBase._is_unknown_shapes_allowed(self) to return False value, as follows:

def _is_unknown_shapes_allowed(self):
Unknown dimensions are only allowed with the new converter.
Return self.experimental_new_converter
Disable unknown dimensions support.
return False

Note:
MLIR is a new NN compiler used by TensorFlow, which supports quantization. Before MLIR, quantization was
performed by TOCO (or TOCO Converter), which is now obsolete. See https://www.tensorflow.org/api_docs/
python/tf/compat/v1/lite/TocoConverter. For details about MLIR, see https://www.tensorflow.org/mlir.

Note:

Do not use the dynamic range method for models being run on NN accelerators (GPU or NPU). It converts only
the weights to 8-bit integers, but retains the activations in fp32, which results in the inference running in fp32
with an additional overhead for data conversion. In fact, the inference is even slower compared to a fp32 model,
because the conversion is done on the fly.

For the full-integer post training quantization, a representative dataset is needed. The proper choice of samples
in representative dataset highly influences the accuracy of the final quantized model. The best practices for
creating the representative dataset are:

• Use train samples for which the original floating points model has very good accuracy, based on metrics the
model used (e.g., SoftMax score for classification models, IOU for object detection models, etc.).

• There shall be enough samples in representative dataset.
• The size of representative dataset and the specific samples available in it are considered as hyperparameters

to tune, with respect of the required model accuracy.

2.10 TensorFlow Lite for Microcontrollers on Xtensa HiFi4 core
TensorFlow Lite for Microcontrollers (TFLM) is a lightweight re-implementation of the TensorFlow Lite library
for microcontroller CPU cores and NN accelerators (like the Xtensa HiFi4 core on i.MX 8ULP or Arm Ethos-U
on i.MX 93). Compared to TensorFlow Lite, it uses less memory, has no C/C++ library dependencies and uses
only static memory allocation. On the other hand, the list of supported operators is more limited and optimized
kernels are available only for Cortex-M and Xtensa cores or the ARM Ethos-U accelerator. The main purpose of
TFLM on the i.MX platform is low-power applications.

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
20 / 115

https://www.tensorflow.org/api_docs/python/tf/compat/v1/lite/TocoConverter
https://www.tensorflow.org/api_docs/python/tf/compat/v1/lite/TocoConverter
https://www.tensorflow.org/mlir
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

To use TFLM on the Xtensa HiFi4 core, the DSP firmware has to be rebuilt with the TFLM library and a
TensorFlow Lite model included. As the Xtensa HiFi4 core is also used for audio encoding/decoding, the TFLM
library has to be wrapped into an Xtensa Audio Framework (XAF) component to allow simultaneous audio and
model inference execution. Moreover, the XAF client/server protocol implements input and output buffer passing
to and from the CPU core via the Linux XAF API. The DSP firmware and usage example source codes are
available at https://github.com/NXP/imx-audio-framework. See the DSP User’s Guide in the docs subfolder for
information on toolchain setup and build instructions.

To build the DSP firmware with the TFLM library (after the toolchain is installed), use the following Makefile
options:

make PLATF=imx8ulp TFLM=1 DSP_FIRMWARE

The command produces a hifi4_tflm_imx8ulp.bin file which has to be copied to the /lib/firmware/imx/dsp
folder of the Yocto Linux BSP image.

To build the TFLM usage example for Linux, use the following Makefile options:

make PLATF=imx8ulp TFLM=1 UNIT_TEST

The command compiles the unit_test/src/dsp_tflm_test.c source file and produces a
dsp_tflm_test.out binary executable file which demonstrates a simple keyword detection application
processing a built-in static audio buffer with “yes” and “no” speech command data samples.

By default, TFLM included in the DSP firmware is compiled with reference kernel implementations due to
licensing. To improve the library performance on Xtensa HiFi4 cores, the library has to be built with proprietary
licensed optimized kernel implementations provided by Cadence at https://github.com/foss-xtensa/nnlib-hifi4
(see the license file in the GitHub repository). Add the OPTIMIZED_KERNEL_DIR=xtensa option into the dsp_
framework/tensorflow_lite_micro.inc file to automatically download the Cadence library and build
TFLM with the optimized kernels:

cd $(SRC_DIR)/tflite-micro && make -f tensorflow/lite/micro/tools/make/
Makefile TARGET=xtensa TARGET_ARCH=hifi4 OPTIMIZED_KERNEL_DIR=xtensa
 XTENSA_USE_LIBC=true microlite

A DSP firmware file with the same name as previously is produced, which has to be copied to the /lib/
firmware/imx/dsp folder of the Yocto Linux BSP image.

3 ONNX Runtime

ONNX Runtime is an open-source inference engine to run ONNX models, which enables the acceleration of
machine learning models across all of your deployment targets using a single set of API. Source codes are
available at https://github.com/nxp-imx/onnxruntime-imx.

Note:

• For the full list of the CPU supported operators, see the 'operator kernels' documentation section:
OperatorKernels.

• If you encounter an error indicating that the hash value of Eigen has changed during the ONNX Runtime build,
see the patch available here: onnxruntime.

Features:

• ONNX Runtime 1.22.0.

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
21 / 115

https://github.com/NXP/imx-audio-framework
https://github.com/foss-xtensa/nnlib-hifi4
https://github.com/nxp-imx/onnxruntime-imx
https://github.com/microsoft/onnxruntime/blob/main/docs/OperatorKernels.md
https://github.com/microsoft/onnxruntime/commit/f57db79743c4d1a3553aa05cf95bcd10966030e6
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

• Multithreaded computation with acceleration using Arm Neon SIMD instructions on Cortex-A cores provided
by the CPU execution provider.

• Neutron NPU Execution provider on i.MX 95 as an experimental feature.
• VSINPU execution provider on i.MX 8 series NPU/GPU.
• C++ and Python API (supported Python version 3).
• ONNX Runtime 1.22.0 supports ONNX 1.17 and Opset version 23.
• Integrated Arm KleidiAI into ONNX Runtime/MLAS for enhanced performance on Arm architectures.
• Added support for MatMulNBits for CPU Execution provider and Neutron Execution provider, enabling matrix

multiplication with weights quantized to 8 bits and 4 bits.

3.1 ONNX Runtime software stack
The following figure shows the ONNX Runtime software stack.

Note: Neutron NPU support in onnxruttimble is only available on i.MX 95

FrontEnd:
ONNX (e.g. from PyTorch)

*.onnx

ONNX runtime

Input

aaa-061353

Graph
partitioner

Registry
provider

i.MX8/9 series

Parallel distributed graph runner

CPU EP

ARM neon

CPU: Cortex-A

HW: accelerator
(Neutron NPU

VIP8000SI, GC7000,
GC7000L, GC7000UL)

Execution provider

VSI NPU EP NEUTRON EP

In-memory
graph

Output

NN RT

OVX LIB

NPU/GPU
unified driver

Neutron driver

Figure 4. ONNX Runtime software stack

The following are the core components of ONNX Runtime:

Inference Session

The Inference Session is the central class that manages the entire execution pipeline. It loads models, applies
optimizations, partitions the computation graph across available execution providers, and executes inference
requests.

Key responsibilities:

• Loading ONNX models from files, memory, or streams
• Registering and managing execution providers

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
22 / 115

https://github.com/onnx/onnx/releases/tag/v1.17.0
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

• Applying graph optimizations
• Managing memory allocation
• Executing inference requests
• Handling input/output binding

Graph and Model Representation

ONNX Runtime represents the machine learning model using several key abstractions:

• Model: Contains the computational graph and metadata.
• Graph: Represents the computation as a directed graph of operations.

Execution Providers

Execution Providers (EPs) are responsible for executing portions of the computation graph on specific
hardware. ONNX Runtime partitions the graph based on the capabilities of the registered execution providers.

Key execution providers include:

• CPU: Default provider that runs on Arm Cortex-A cores.
• Neutron: Execute operations (Matmul operations) on Neutron NPU.
• VSINPU: Execute operations on VSINPU.

Note: For Neutron NPU, now it is an experimental feature for the LLM model support and is only on the i.MX 95
NPU.

3.2 ONNX model test
ONNX Runtime provides a tool that can run the collection of standard tests provided in the ONNX Model Zoo.
The tool named onnx_test_runner is installed in /usr/bin/onnxruntime-1.22.0. The following table
lists the command line options for onnx_test_runner.

Option Description Default

-j [models] Number of models to run simultaneously Number of CPU cores

-A Disables memory arena Arena enabled

-M Disables memory pattern Pattern enabled

-c [runs] Number of session runs to invoke simultaneously Number of CPU cores

-r [repeat] Number of times to repeat 1

-I Uses inference mode Disabled

-v Verbose logging Disabled

-n [test_case_name] Runs a specific test case Run all tests

-e [EXECUTION_
PROVIDER]

Specifies execution provider, such as CPU, VsiNPU,
Neutron

CPU

-x Uses parallel executor Sequential executor

-t [value] Custom relative tolerance 1e-5

-a [value] Custom absolute tolerance 1e-5

-o [level] Optimization level 99 (all)

-C [key|value] Session configuration entries None

-i [key|value] EP specific runtime options None

Table 2. Command line options

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
23 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

ONNX models are available at https://github.com/onnx/models and consist of models and sample test data.
Because some models require a lot of disk space, it is recommended to store the ONNX test files on a larger
partition, as described in the SD card image flashing section.

3.2.1 Running a CNN model

Here is an example with the steps required to run the mobilenet version 2 test:

1. Download and unpack the mobilenet version 2 test archive to a folder, for example, to /home/root:

$ cd /home/root
$ wget https://github.com/onnx/models/raw/refs/heads/jfowers/bringup/archive/
vision/classification/mobilenet/model/mobilenetv2-7.tar.gz
$ tar -xzvf mobilenetv2-7.tar.gz
$ ls ./mobilenetv2-7
mobilenetv2-7.onnx test_data_set_0

2. Run the onnx_test_runner tool providing the mobilenetv2-7 folder and setting the execution provider
as CPU:

$ /usr/bin/onnxruntime-1.22.0/onnx_test_runner -j 1 -c 1 -r 1 -e cpu ./
mobilenetv2-7/
result:
Models: 1
Total test cases: 3
Succeeded: 3
Not implemented: 0
Failed: 0
Stats by Operator type:
Not implemented(0):
Failed:
Failed Test Cases:

3. Run the onnx_test_runner tool providing the mobilenetv2-7 folder and setting the execution provider
as VsiNPU:

$ /usr/bin/onnxruntime-1.22.0/onnx_test_runner -j 1 -c 1 -r 1 -e vsinpu ./
mobilenetv2-7/
result:
Models: 1
Total test cases: 3
Succeeded: 3
Not implemented: 0
Failed: 0
Stats by Operator type:
Not implemented(0):
Failed:
Failed Test Cases:

3.2.2 Running an LLM model

ONNX Runtime now supports running Quantized Large Language Models (LLMs) using the CPU and
Neutron NPU Execution provider. This enhancement enables efficient inference for LLMs with 8-bit and 4-bit
quantization on selected i.MX SoCs.

ONNX Runtime now supports execution of Large Language Models (LLMs) using quantized formats on
CPU by default. Building on this, it aslo supports running Quantized LLMs using the Neutron AI engine. This
enhancement enables efficient inference for LLMs with 8-bit and 4-bit quantization on selected i.MX SoCs by

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
24 / 115

https://github.com/onnx/models
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

offloading key operator kernels to the Neutron AI engine, and delivering improved performance and power
efficiency for edge AI deployments.

This hybrid execution model allows developers to leverage the full flexibility of ONNX Runtime for LLM
inference, while benefiting from hardware acceleration on supported operators.

Here is an example with steps required to run an LLM model on i.MX 943 with CPU as an execution provider:

1. Download and unpack the LLM compressed files to a folder, for example, to /home/root:

$ mkdir qwen2_5_0_5B_W4GS32
$ tar -xzvf qwen2_5_0_5B_W4GS32.tar.gz -C qwen2_5_0_5B_W4GS32
$ ls ./qwen2_5_0_5B_W4GS32
added_tokens.json config.json model_dyn.onnx model_dyn.onnx.data
 special_tokens_map.json tokenizer.json tokenizer_config.json

2. To perform inference on an LLM model, install additional packages:

$ python3 -m pip install onnx
$ python3 -m pip install transformers
$ python3 -m pip install sentencepiece

3. Run the LLM model with CPU as the execution provider as follows:

$ python3 llm_chat_randominput.py -m qwen2_5_0_5B_W4GS32 -e cpu -p "Once upon
 a time"

If no error occurs, the generated text and the output text from the execution provider is printed as follows:

• Generated text: Once upon a time, a man was walking in a street. He saw a man who was sitting on a bench.
The man was sitting on the bench, and he was looking at the man sitting on the bench.

• cpu_output: Once upon a time, a man was walking in a street. He saw a man who was sitting on a bench. The
man was sitting on the bench, and he was looking at the man sitting on the bench.

To run the LLM model on i.MX 95 with Neutron as the execution provider:

1. Use the imx95-19x19/15x5-evk-neutron.dtb dtb to boot up the board.
2. Run the following command:

$ python3 llm_chat_randominput.py -m qwen2_5_0_5B_W4GS32 -e neutron -p "Once
 upon a time"

Note: Use python3 llm_chat_randominput.py -h for the full list of options available.
llm_chat_randominput.py script:

Copyright (c) Facebook, Inc. and Microsoft Corporation.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

import onnx
import argparse
import time
import onnxruntime as ort

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
25 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

import numpy as np
from transformers import AutoTokenizer, AutoConfig
import os
import json
provider_map = {'cpu':"CPUExecutionProvider",
 'neutron':"NeutronExecutionProvider"}

def validate_model_files(model_path):
 onnx_file = None
 for file in os.listdir(model_path):
 if file.endswith(".onnx"):
 return os.path.join(model_path, file)
 if not onnx_file:
 return "Error: .onnx file is missing in the model path."

def run_inference_with_decoding(model, model_path, provider, prompt,
 new_tokens, num_layers, num_heads, head_dim):
 """Run model with random inputs and decode the output text"""
 session_options = ort.SessionOptions()
 try:
 session = ort.InferenceSession(model,
 providers=[provider_map[provider]], sess_options=session_options)
 tokenizer = AutoTokenizer.from_pretrained(model_path)
 config = AutoConfig.from_pretrained(model_path)
 is_gemma = "gemma" in config.model_type.lower()
 prompt_ids = tokenizer.encode(prompt, return_tensors="np") # Shape:
 [1, seq_len]
 batch_size = 1
 input_ids = prompt_ids
 seq_length = input_ids.shape[1]
 position_ids = np.arange(seq_length, dtype=np.int64).reshape(1,-1)
 attention_mask = np.ones((batch_size, seq_length), dtype=np.int64)
 inputs = {
 'input_ids': input_ids,
 'attention_mask': attention_mask
 }
 if is_gemma:
 inputs["position_ids"]=position_ids
 for i in range(num_layers):
 inputs[f'past_key_values.{i}.key'] = np.zeros((batch_size,
 num_heads, 0, head_dim), dtype=np.float32)
 inputs[f'past_key_values.{i}.value'] = np.zeros((batch_size,
 num_heads, 0, head_dim), dtype=np.float32)
 all_generated_ids = input_ids[0].tolist()
 for i in range(new_tokens):
 outputs = session.run(None, inputs)
 logits = outputs[0] #[batch_size, seq_len, vocab_size]
 last_token_logits = logits[0, -1, :] # Get the last token's
 logits and find the most likely next token
 next_token_id = np.argmax(last_token_logits)
 all_generated_ids.append(int(next_token_id)) # Add to generated
 text
 if next_token_id == tokenizer.eos_token_id: # Check if we've hit
 the end of sequence token
 break
 # Update inputs for next iteration
 input_ids = np.array([[next_token_id]], dtype=np.int64)
 attention_mask = np.ones((batch_size, seq_length + i + 1),
 dtype=np.int64)
 position_ids = np.array([[seq_length + i]], dtype=np.int64)

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
26 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

 inputs = {
 'input_ids': input_ids,
 'attention_mask': attention_mask
 }
 if is_gemma:
 inputs["position_ids"]=position_ids
 # Extract KV cache from outputs
 output_idx = 1 # Start index for KV cache outputs
 for j in range(num_layers):
 inputs[f'past_key_values.{j}.key'] = outputs[output_idx]
 output_idx += 1
 inputs[f'past_key_values.{j}.value'] = outputs[output_idx]
 output_idx += 1
 # Decode the full generated sequence
 generated_text = tokenizer.decode(all_generated_ids,
 skip_special_tokens=True)
 print(f"\nGenerated text: {generated_text}")
 return generated_text
 except Exception as e:
 print(f"Error: {e}")
 import traceback
 traceback.print_exc()
 return None

def main():
 parser = argparse.ArgumentParser()
 parser.add_argument("--model_path","-m", type=str, required=True,
 help="Input your Onnx model path.")
 parser.add_argument("--execution_provider","-e",
 choices=['cpu','neutron'], type=str, default="cpu")
 parser.add_argument("--prompt","-p", type=str, default="Once upon a
 time")
 parser.add_argument("--new_output_tokens","-t", type=int, default=40)
 args = parser.parse_args()
 model = validate_model_files(args.model_path)
 config_path = os.path.join(args.model_path, "config.json")
 config = {}
 if os.path.isfile(config_path):
 with open(config_path) as f:
 config = json.load(f)
 num_layers = config.get("num_hidden_layers",16)
 num_heads = config.get("num_key_value_heads",8)
 head_dim = config.get("head_dim",64)
 results = run_inference_with_decoding(model,
 args.model_path,args.execution_provider,args.prompt, args.new_output_tokens,
 num_layers, num_heads, head_dim)
 print(f'{args.execution_provider}_output: {results}')

if __name__ == "__main__":
 main()

The following table provides the current list of supported LLM models.

LLM Model Quantization Download link

Danube_500m INT4 Group Size Quantization - Group Size 32 -

Gemma3_1B INT4 Group Size Quantization - Group Size 32 -

Table 3. Current list of supported LLM models

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
27 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

LLM Model Quantization Download link

Llama_3_2_1B INT4 Group Size Quantization - Group Size 32 & 128, INT4
Per Channel Quantization

-

Tinyllama_1B INT4 Group Size Quantization - Group Size 32 -

Table 3. Current list of supported LLM models...continued

LLM Model Quantization Download link

Whisper-small INT4 Group Size Quantization - Group Size 32,
INT8 per-channel quantization

-

Whisper-medium INT4 Group Size Quantization - Group Size 32
INT8 per-channel quantization

-

Table 4. Audio models

3.3 ONNX performance test
To run model benchmarks, ONNX Runtime provides a tool that measures performance. The tool named
onnxruntime_perf_test is installed in /usr/bin/onnxruntime-1.22.0. To run it, the user must provide
an .onnx model file together with test data. To benchmark the SqueezeNet model running a single iteration
using the CPU execution provider, run the following command:

/usr/bin/onnxruntime-1.22.0/onnxruntime_perf_test /usr/bin/onnxruntime-1.22.0/
squeezenet/model.onnx -r 1 -e [cpu/vsinpu]

4 PyTorch

PyTorch is a scientific computing package based on Python that facilitates building deep learning projects using
power of Graphics Processing Units (GPUs).

Features:

• PyTorch 2.3.0
• Python version 3 supported
• Deep neural networks built on a tape-based autograd system

Note:

Only the CPU is supported. By default, the PyTorch runtime is running with floating point model. To enable
quantized model, the quantized engine should be specified explicitly as follows:

torch.backends.quantized.engine = 'qnnpack'

4.1 Installing PyTorch
PyTorch is available on the PyPI registry. To install PyTorch on the BSP, run the following command:

$ pip install "torch>=2.6.0" "torchvision>=0.21.0"

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
28 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

4.2 Running image classification example
There is an example located in the examples folder, which requires urllib, PIL, and maybe some other Python3
modules depending on your image. You may install the missing modules using pip3.

$ cd /usr/bin/pytorch/examples

To run the example with inference computation on the CPU, use the following command. There are no
arguments and the resources will be downloaded automatically by the script:

$ python3 pytorch_mobilenetv2.py

The output should be similar as follows:

File does not exist, download it from
https://download.pytorch.org/models/mobilenet_v2-b0353104.pth
... 100.00%, downloaded size: 13.55 MB
File does not exist, download it from
https://raw.githubusercontent.com/Lasagne/Recipes/master/examples/resnet50/
imagenet_classes.txt
... 100.00%, downloaded size: 0.02 MB
File does not exist, download it from
https://s3.amazonaws.com/model-server/inputs/kitten.jpg
... 100.00%, downloaded size: 0.11 MB
('tabby, tabby cat', 46.34805679321289)
('Egyptian cat', 15.802854537963867)
('lynx, catamount', 1.1611212491989136)
('lynx, catamount', 1.1611212491989136)
('tiger, Panthera tigris', 0.20774540305137634)

5 TVM

Apache TVM is an open source machine learning compiler framework for CPUs, GPUs, and NPUs. It aims to
enable machine learning engineers to optimize and run computations efficiently on any hardware backend.

Features:

• TVM 0.7.0
• Compilation of deep learning models into minimum deployable modules
• Infrastructure to automatic generate and optimize models on more backend with better performance
• Support for i.MX 8M Plus platforms with OpenVX library
• TVM builder supported for Ubuntu 18.04, x86_64 platform

Note:

For more detailed information, see TVM Documentation.

5.1 TVM software workflow
The pre-trained model will be transformed into the Relay IR and passed through to the TVM model
optimizations like constant-folding, memory planning, and finally passed to a codegen phase. In this phase,
the operators supported by the target device are transformed as intrinsic calls into the offloading library which
connects the model accelerator devices such as GPU/NPU.

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
29 / 115

https://tvm.apache.org/docs/
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

aaa-054079

Models

NNVM

TVM

Backend

Model builder

CodeGen

Computation
graph

Tflite. onnx,
Pytorch ...

Relay IR
(Tensor)

Model/kernel
building

openvxlib
intrinsic call

Model
graph

IR mapping to
openvxlib.so

openvxlib.so

OutputTVM runtime
load model

+

Application
(Python...)

+

Export model

tvm.export_library

tvm.load_library(model graph)

Figure 5. TVM software workflow

5.2 Getting started

5.2.1 Running example with RPC verification

TVM provides the Remote Procedure Call (RPC) capability to run a model on the remote device.

User can run examples at tests/python/contrib/test_vsi_npu with RPC verification. The model
running result on device will be verified against the result on host with same input.

• Launch the RPC server on the device

$ python3 -m tvm.exec.rpc_server --host 0.0.0.0 --port=9090

• Export the system variables:

$ export TVM_HOME=/path/to/tvm
$ export PYTHONPATH=$TVM_HOME/python

• Run the specified models on the host PC:

$ python3 tests/python/contrib/test_vsi_npu/test_rpc_tflite_models.py -i
 {device_ip} -m mobilenet_v2_1.0_224_quant

• Run all supported TensorFlow Lite models on the host PC:

$ python3 tests/python/contrib/test_vsi_npu/test_rpc_tflite_models.py -i
 {device_ip}

Note: This test will download the model automatically, please be sure the network can access the public
internet. Example scripts may import additional Python libraries. Please check scripts and make sure they are
installed correctly.

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
30 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

To test pytorch/onnx/keras model, additional python packages needs to be installed on the host PC:

$ python3 -m pip install torch==1.7.0 torchvision==0.8.1
$ python3 -m pip install onnx=1.8.1 onnxruntime==1.8.1
$ python3 -m pip install tensorflow==2.5.0

5.2.2 Running example individually on device

In this mode, the model is compiled on the host offline and saved as model.so. Please refer tests/python/
contrib/test_vsi_npu/compile_tflite_models.py to compile a TensorFlow Lite model on the host.

Below script snippet shows how to load and run a compiled model at the device:

ctx = tvm.cpu(0)
load the compiled model
lib = tvm.runtime.load_module(args.model)
m = graph_runtime.GraphModule(lib["default"](ctx))
set inputs
data = get_img_data(args.image, (args.input_size, args.input_size),
 args.data_type)
m.set_input(args.input_tensor, data)
execute the model
m.run()
get outputs
tvm_output = m.get_output(0)

Please refer tests/python/contrib/test_vsi_npu/label_image.py to a complete label image
example with pre-processing of image decoding and post-processing to generate label.

5.3 How to build TVM stack on host
Conceptually, TVM can be split into two parts:

• TVM build stack: compiles the deep learning model at host
• TVM runtime: loads and interprets the model at device

This build stack is using the LLVM to cross-compile the generated source as a deployable dynamic library for
device. Please, follow the LLVM Doc to install LLVM on the host. If installed successfully, llvm-config should be
found under /usr/bin.

To build the tvm, please be sure below dependence packages installed on the host:

• cmake
• python3-dev
• build-essential
• llvm-dev
• g++-aarch64-linux-gnu
• libedit-dev
• libxml2-dev
• python3-numpy
• python3-attrs
• python3-tflite

For Ubuntu 18.04, the user could use below commands to install all dependences:

$ sudo apt-get update
UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
31 / 115

https://llvm.org/docs/
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

$ sudo apt-get install -y python3 python3-dev python3-setuptools
$ sudo apt-get install -y cmake llvm llvm-dev g++-aarch64-linux-gnu gcc-aarch64-
linux-gnu
$ sudo apt-get install -y libtinfo-dev zlib1g-dev build-essential libedit-dev
 libxml2-dev
$ python3 -m pip install numpy decorator scipy attrs six tflite

Follow below instructions to build TVM stack on the host:

$ export TOP_DIR=`pwd`
$ git clone --recursive https://github.com/nxp-imx/eiq-tvm-imx/ tvm-host
$ cd tvm-host
$ mkdir build
$ cp cmake/config.cmake build
$ cd build
$ sed -i 's/USE_LLVM\ OFF/USE_LLVM\ \/usr\/bin\/llvm-config/' config.cmake
$ cmake ..
$ make tvm -j4 # make tvm build stack

5.4 Supported models
The following models are verified with TVM.

Model float32 int8 Input size

mobilenet_v1_0.25_128 mobilenet_v1_0.25_128 mobilenet_v1_0.25_128_
quant

128

mobilenet_v1_0.25_224 mobilenet_v1_0.25_224 mobilenet_v1_0.25_224_
quant

224

mobilenet_v1_0.5_128 mobilenet_v1_0.5_128 mobilenet_v1_0.5_128_
quant

128

mobilenet_v1_0.5_224 mobilenet_v1_0.5_224 mobilenet_v1_0.5_224_
quant

224

mobilenet_v1_0.75_128 mobilenet_v1_0.75_128 mobilenet_v1_0.75_128_
quant

128

mobilenet_v1_0.75_224 mobilenet_v1_0.75_224 mobilenet_v1_0.75_224_
quant

224

mobilenet_v1_1.0_128 mobilenet_v1_1.0_128 mobilenet_v1_1.0_128_
quant

128

mobilenet_v1_1.0_224 mobilenet_v1_1.0_224 mobilenet_v1_1.0_224_
quant

224

mobilenet_v2_1.0_224 mobilenet_v2_1.0_224 mobilenet_v2_1.0_224_
quant

224

inception_v1 N/A inception_v1_224_quant 224

inception_v2 N/A inception_v2_224_quant 224

inception_v3 inception_v3 inception_v3_quant 299

inception_v4 inception_v4 inception_v4_299_quant 299

deeplab_v3_257_mv_gpu deeplab_v3_256_mv_gpu N/A 257

deeplab_v3_mnv2_pascal N/A deeplab_v3_mnv2_pascal 513

Table 5. TVM models ZOO

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
32 / 115

https://github.com/nxp-imx/eiq-tvm-imx/
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_0.25_128.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_0.25_128_quant.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_0.25_128_quant.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_0.25_224.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_0.25_224_quant.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_0.25_224_quant.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_0.5_128.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_0.5_128_quant.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_0.5_128_quant.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_0.5_224.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_0.5_224_quant.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_0.5_224_quant.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_0.75_128.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_0.75_128_quant.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_0.75_128_quant.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_0.75_224.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_0.75_224_quant.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_0.75_224_quant.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_128.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_128_quant.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_128_quant.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz
http://download.tensorflow.org/models/mobilenet_v1_2018_08_02/mobilenet_v1_1.0_224_quant.tgz
https://storage.googleapis.com/download.tensorflow.org/models/tflite_11_05_08/mobilenet_v2_1.0_224.tgz
https://storage.googleapis.com/download.tensorflow.org/models/tflite_11_05_08/mobilenet_v2_1.0_224_quant.tgz
https://storage.googleapis.com/download.tensorflow.org/models/tflite_11_05_08/mobilenet_v2_1.0_224_quant.tgz
https://storage.googleapis.com/download.tensorflow.org/models/inception_v1_224_quant_20181026.tgz
https://storage.googleapis.com/download.tensorflow.org/models/inception_v2_224_quant_20181026.tgz
https://storage.googleapis.com/download.tensorflow.org/models/tflite/model_zoo/upload_20180427/inception_v3_2018_04_27.tgz
https://storage.googleapis.com/download.tensorflow.org/models/tflite_11_05_08/inception_v3_quant.tgz
https://storage.googleapis.com/download.tensorflow.org/models/tflite/model_zoo/upload_20180427/inception_v4_2018_04_27.tgz
https://storage.googleapis.com/download.tensorflow.org/models/inception_v4_299_quant_20181026.tgz
https://storage.googleapis.com/download.tensorflow.org/models/tflite/gpu/deeplabv3_257_mv_gpu.tflite
https://github.com/google-coral/edgetpu/raw/master/test_data/deeplabv3_mnv2_pascal_quant.tflite
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Model float32 int8 Input size

ssdlite_mobiledet ssdlite_mobiledet_cpu_
320x320_coco

N/A 320

Table 5. TVM models ZOO...continued

6 LiteRT (Experimental)

LiteRT (short for Lite Runtime) version v1.2.0, formerly known as TensorFlow Lite, is Google's high-performance
runtime for on-device AI. You can find ready-to-run LiteRT models for a wide range of ML/AI tasks, or convert
and run TensorFlow, PyTorch, and JAX models to the TFLite format using the AI Edge conversion and
optimization tools.

6.1 Migrating to LiteRT from TensorFlow Lite
Applications that use TensorFlow Lite libraries will continue to function, but all new active development and
updates will only be included in LiteRT packages. The LiteRT APIs contain the same method names as the
TensorFlow Lite APIs, so migrating to LiteRT does not require detailed code changes.

All new development for Google's high-performance runtime for on-device AI will be exclusively on LiteRT.
Applications that use TensorFlow Lite packages will continue to function, but all new updates will only be
included in LiteRT packages. The LiteRT APIs contain the same method names as the TensorFlow Lite APIs, so
migrating to LiteRT does not require detailed code changes.

For package name changes, to migrate Python code using Tensorflow Lite, replace the PIP package from
tflite-runtime to ai-edge-litert.

Import LiteRT with the following:

from ai_edge_litert import interpreter as tflite
interpreter = tflite.Interpreter(model_path=args.model_file)

Note: Only python API is supported in this release.

6.2 Running the example
In this release, only python API is supported for LiteRT. We can modify the Tensorflow Lite Python example to
run it with LiteRT.

Modify the TensorFlow Lite example label_image.py for LiteRT:

$ cd /usr/bin/tensorflow-lite-2.18.0/examples
$ vi label_image.py
---------import tflite_runtime.interpreter as tflite
++++++from ai_edge_litert import interpreter as tflite

Run the example on the CPU:

$ python3 label_image.py -m mobilenet_v1_1.0_224_quant_vela.tflite
-i grace_hopper.bmp -l labels.txt

6.3 Running the example on the i.MX 8 platform hardware accelerator
To run the Python example with the same model on the GPU/NPU hardware accelerator, add -e /usr/lib/
liblitert_vx_delegate.so (for VX Delegate) command line argument. To differentiate between the 3D

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
33 / 115

http://download.tensorflow.org/models/object_detection/ssdlite_mobiledet_cpu_320x320_coco_2020_05_19.tar.gz
http://download.tensorflow.org/models/object_detection/ssdlite_mobiledet_cpu_320x320_coco_2020_05_19.tar.gz
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

GPU and the NPU, use the USE_GPU_INFERENCE environmental variable. For example, to run the model
accelerated on the NPU hardware using VX Delegate, run this command:

$ USE_GPU_INFERENCE=0 python3 label_image.py -m
 mobilenet_v1_1.0_224_quant.tflite
-i grace_hopper.bmp -l labels.txt -e /usr/lib/liblitert_vx_delegate.so

6.4 Running the example on the i.MX 93 platform with Ethos-U
To use the hardware acceleration on i.MX 93, convert the model using the Vela compiler first, and run the model
with the Ethos-U delegate. Alternatively, directly run the model with the Ethos-U delegate. The model is then
converted in the delegate. For details, see Section 7.2.3.

To run the Python example with the model on the NPU hardware accelerator, add the -e /usr/lib/
liblitert_ethosu_delegate.so command line argument. For example, to run the model accelerated on
the NPU hardware using Ethos-U Delegate, run this command:

$ python3 label_image.py -m mobilenet_v1_1.0_224_quant_vela.tflite
-i grace_hopper.bmp -l labels.txt -e /usr/lib/liblitert_ethosu_delegate.so

6.5 Running the example on the i.MX 9 platform with Neutron-S
To use the hardware Acceleration on i.MX 9 with Neutron-S NPU, convert the model using the neutron
converter using the eIQ Toolkit. For details, see the eIQ Toolkit documentation. To run the Python example with
the model on the NPU hardware accelerator, add the -e /usr/lib/liblitert_neutron_delegate.
so command line argument. For example, to run the model accelerated on the NPU hardware using Neutron
Delegate, run this command:

$ python3 label_image.py -m mobilenet_v1_1.0_224_quant_converted.tflite
-i grace_hopper.bmp -l labels.txt -e /usr/lib/liblitert_neutron_delegate.so

7 NN Execution on Hardware Accelerators

7.1 Hardware acceleration on i.MX 8 Series

7.1.1 Hardware accelerator description

The i.MX 8 class devices are deployed with two kind of NN accelerators (see also the figure below):

• Neural Processing Unit (NPU)
• Graphics Processing Unit (GPU)

Neural processing unit is optimized for fixed point arithmetic, in 8-bit and 16-bit width. For optimal performance
on the NPU, quantized models shall be used.

Graphics processing unit is optimized for fixed point arithmetic and half precision floating point arithmetic. For
optimal performance on the GPU, quantized models or floating-point models with half precision shall be used.

Note:

The TensorFlow Lite framework enables to compute the floating-point models directly in 16-bit half precision
arithmetic.

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
34 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

OpenVX Driver

SW Stack

Neural
Processing

Unit

Graphics
Processing

Unit

i.MX8 Series

Figure 6. NN accelerator SW stack

Interface to NPU/GPU HW accelerator is provided via the OpenVX v1.3 with NN Extensions. OpenVX is an
open, royalty-free standard for cross platform acceleration of computer vision applications. It provides:2

• A library of predefined and customizable vision functions
• A graph-based execution model to combine function enabling both task and data independent execution
• A set of memory objects that abstract the physical memory

Open VX defines a C-application programming interface for building, verifying and coordinating graph execution
and accessing memory objects. More information about OpenVX can be find on the OpenVX home page.

Note:

In the current OpenVX driver implementation, the maximum number of nodes supported in OpenVX graph is
2048.

7.1.2 Profiling on hardware accelerators

This section describes how to enable profiler on the GPU/NPU, and how to capture logs.

1. Stop the EVK board in the U-Boot by pressing Enter.
2. Update mmcargs by adding galcore.showArgs=1 and galcore.gpuProfiler=1.

u-boot=> editenv mmcargs
edit: setenv bootargs ${jh_clk} ${mcore_clk} console=${console} root=
${mmcroot} galcore.showArgs=1 galcore.gpuProfiler=1
u-boot=> boot

3. Boot the board and wait for the Linux OS prompt.
4. The following environment flags should be enabled before executing the application.

VIV_VX_DEBUG_LEVEL and VIV_VX_PROFILE flags should always be 1 during the process of profiling.
The CNN_PERF flag enables the driver’s ability to generate per layer profile log. NN_EXT_SHOW_PERF
shows the details of how compiler estimates performance and determines tiling based on it.

export CNN_PERF=1 NN_EXT_SHOW_PERF=1 VIV_VX_DEBUG_LEVEL=1 VIV_VX_PROFILE=1

5. Capture the profiler log. We use the sample ML example part of standard NXP Linux release to explain the
following section.
• TensorFlow Lite profiling

2 OpenVX 1.3 specification: https://registry.khronos.org/OpenVX/specs/1.3/html/OpenVX_Specification_1_3.html
UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
35 / 115

https://www.khronos.org/openvx
https://registry.khronos.org/OpenVX/specs/1.3/html/OpenVX_Specification_1_3.html
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Run the TensorFlow Lite application with GPU/NPU backend as follows:

$ cd /usr/bin/tensorflow-lite-2.18.0/examples $./label_image -
m mobilenet_v1_1.0_224_quant.tflite -t 1 -i grace_hopper.bmp -l
 labels.txt --external_delegate_path=/usr/lib/libvx_delegate.so -v 0 >
 viv_test_app_profile.log 2>&1

The log captures detailed information of the execution clock cycles and DDR data transmission in each
layer.
Note:
The average time for inference might be longer than usual, as the profiler overhead is added.

7.1.3 Hardware accelerators warmup time

For TensorFlow Lite, the initial execution of model inference takes longer time, because of the model graph
initialization needed by the GPU/NPU hardware accelerator. The initialization phase is known as warmup. This
time duration can be decreased for subsequent application that runs by storing on disk the information resulted
from the initial OpenVX graph processing. The following environment variables should be used for this purpose:

VIV_VX_ENABLE_CACHE_GRAPH_BINARY: flag to enable/disable OpenVX graph caching

VIV_VX_CACHE_BINARY_GRAPH_DIR: set location of the cached information on disk

For example, set these variables on the console in this way:

export VIV_VX_ENABLE_CACHE_GRAPH_BINARY="1"
export VIV_VX_CACHE_BINARY_GRAPH_DIR=`pwd`

By setting up these variables, the result of the OpenVX graph compilation is stored on disk as network binary
graph files (*.nb). The runtime performs a quick hash check on the network and if it matches the *.nb file
hash, it loads it into the NPU memory directly. These environment variables need to be set persistently, for
example, available after reboot. Otherwise, the caching mechanism is bypassed even if the *.nb files are
available.

The iterations following the graph initialization are performed many times faster. When evaluating the
performance of an application running on GPU/NPU, the time should be measured separately for warmup
and inference. Warmup time usually affects only the first inference run. However, depending on the machine
learning model type, it might be noticeable for the first few inference runs. Some preliminary tests must be
done to make a decision on what to consider warmup time. When this phase is well delimited, the subsequent
inference runs can be considered as pure inference and used to compute an average for the inference phase.

Note: OpenVX graph caching is not available on i.MX 8QuadMax platform.

7.1.4 Switching between GPU and NPU

Some platforms are deployed with both 3D GPU and NPU hardware accelerators. Both can be used for
execution of the OpenVX graph (i.e. for ML inference). To differentiate between the GPU and the NPU, there is
an environmental variable USE_GPU_INFERENCE. The variable is directly read by the HW acceleration driver.

The behavior is as follows:

• If USE_GPU_INFERENCE=1, the graph is executed on the GPU
• Otherwise, the graph is executed on the NPU (if available)

By default, the NPU is used for OpenVX graph execution.

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
36 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Example with TensorFlow Lite:

$ USE_GPU_INFERENCE=1 ./label_image -m mobilenet_v1_1.0_224_quant.tflite
 -i grace_hopper.bmp -l labels.txt --external_delegate_path=/usr/lib/
libvx_delegate.so

7.1.5 Per-tensor vs. per-channel quantization

Both per-tensor and per-channel quantizations are supported by the GPU and NPU hardware accelerators on
i.MX 8 Series.

The NPU on i.MX 8M Plus is optimized for per-tensor quantization. When running per-channel quantized
models, the accelerator must involve additional compute. Therefore, the performance might be lower compared
to per-tensor quantized models. The additional compute might also introduce a small accuracy error. The actual
impact for both accuracy and latency depends on the model used.

7.2 Hardware acceleration with Ethos-U on i.MX 93 platform
Ethos-U65 is a neural processing unit (NPU) designed to accelerate ML inference in area-constrained
embedded and IoT devices from Arm. This NPU is integrated with NXP i.MX 93 processor and works in concert
with the Cortex-M core and on-chip SRAM of the SoC. Currently, it provides the following main features:

• Running at 1 GHz and providing 0.5 Tops computation power (256 MAC/cycle).
• Targets quantized Convolutional Neural Networks (CNN) and supports 8 bit weights and 8/16 bit activations.
• Supports TensorFlow Lite (TFLite) inference with fallback to Cortex-A.
• Supports TensorFlow Lite Micro (TFLite-Micro) inference with fallback to Cortex-M.
• Supports inference API to offload the entire model to TFLite-Micro and NPU on Cortex-M.
• Supports TFLite API to offload the customized “ethos-u” operator to NPU on Cortex-M.
• Provides Vela model tool to optimize the model performance and memory usage for the Ethos-U65 target.

7.2.1 Ethos-U subsystem overview

This i.MX 93 machine learning system involves several HW components working collaboratively to support the
acceleration of the tensor computation of an ML model: Cortex-A, Cortex-M, Messaging Unit (MU), and Ethos-U
NPU.

Cortex-M33

aaa-053534

Ethos-U65 SRAM

M33 interconnect

Ethos-U system

AXI-BUS

MU DDR

Cortex-A55

Figure 7. Ethos-U subsystem overview

The Cortex-A55 is responsible for loading the ML model, capture and pre-process the inputs with Linux OS
and rich libraries. The Cortex-M is the controller of the attached Ethos-U NPU and it prepares the offloading

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
37 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

descriptor for the NPU and triggers the NPU execution. It also provides the un-supported kernels execution for
NPU. The MU is the message unit IP to facilitate the core communication between Cortex-A and Cortex-M.

7.2.2 Ethos-U software architecture

The software for Ethos-U support includes three main components, as shown in the following figure.

Quantized TFLite
model

Vela

Vela compiled model

Model Tool

Raw model

Vela model

Linux@Cortex-A

Vela model

TFLite Interpreter

CPU kernel XNNPACK
delegate

Ethos-U
delegate

Ethos-U
driver

RPMSG

Coretex-A (With NEON)

Tensorflow Std lib NXP

Ethos-U SW@Cortex-M

RPMSG Lite Ethos-U Runner

Ethos-U Driver

Ethos-U NPU

Offline
compile

Online compile

Figure 8. Ethos-U software architecture

• Vela model compiler: offline tool to compile the TensorFlow Lite model graph for Ethos-U. The compiler
replaces supported operators in the model with custom “ethos-u” operator containing the command stream
for Ethos-U NPU. The output of the compiler is a modified TensorFlow Lite model graph for TensorFlow Lite/
TensorFlow Lite-Micro inference engines. This is only required for Inference API.

• Cortex-A SW stack for Linux: containing MPU inference engine (TensorFlow Lite), driver library, and Linux
kernel driver.

• Cortex-M SW stack: containing MCU inference engine SW (TensorFlow Lite-Micro, CMSIS-NN) and NPU
driver.

The typical inference workflow is as follows:

1. Converts the TensorFlow Lite model into Vela model using the Vela model compiler and generates the
optimized version for Ethos-U NPU.
Note: For TensorFlow Lite inference engine with Ethos-U delegate, this step is optional. The Ethos-U
delegate supports both TensorFlow Lite model and Vela compiled model. Using the Ethos-U delegate
increases the warm-up time for model execution. The model needs to be compiled at runtime. Models
precompiled with Vela brings warm-up time decrease.

2. The optimized model is inferred either by:
a. TensorFlow Lite Ethos-U delegate, which recognizes the custom "ethos-u" operator in Vela compiled

model, allocates the buffer for input/output feature map (IFM/OFM) and executes the operator via Ethos-
U Linux driver.

b. TensorFlow Lite Ethos-U delegate, which recognizes the supported operators in TensorFlow Lite model,
compiles the operators to "ethos-u" operator and allocates the buffer for input/output feature map (IFM/
OFM) and executes the operator via Ethos-U Linux driver.

c. Inference API, which allocates the buffer for input/output feature map and sends entire model via Ethos-
U driver.

3. The Ethos-U driver composes the inference task message and sends it over RPMSG to Cortex-M.
4. The Ethos-U Runner on Cortex-M dispatches the task to TensorFlow Lite-Micro or Ethos-U driver directly

according to the task type.
a. If the task type is accelerating the “ethos-u” operator (using the TensorFlow Lite), the Runner calls the

Ethos-U driver directly.

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
38 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

b. If the task type is accelerating the entire model (using the Inference API), the Runner dispatches the
model to TensorFlow Lite-Micro and further calls Ethos-U driver for processing.

5. After the Ethos-U driver completes the inference task, it writes the result into the OFM buffer and sends the
response back to Cortex-A via RPMSG.

Note: The model is loaded from Cortex-A and shared with Cortex-M over RPMSG.

The Cortex-M SW is pre-built with both the model and Ethos-U operator acceleration capabilities in a single-
binary firmware. This firmware is integrated into Yocto rootfs and will be loaded automatically when the user
starts an inference task using the TensorFlow Lite or Inference API by opening the Ethos-U device.

7.2.3 Getting started

In the Yocto rootfs, there are several examples provided to show how to use different APIs to interact with
Ethos-U NPU with an image classification inference.

1. Go to the example folder and copy the label.txt and input picture from TensorFlow.

$ cd /usr/bin/ethosu/examples
$ cp ../../tensorflow-lite-2.18.0/examples/labels.txt ./
$ cp ../../tensorflow-lite-2.18.0/examples/grace_hopper.bmp ./

2. Compile the model for Ethos-U using Vela tool, reusing the model
mobilenet_v1_1.0_224_quant.tflite from /usr/bin/tensorflow-lite-2.18.0/examples/.
If running successfully, an optimized vela model mobilenet_v1_1.0_224_quant_vela.tflite is
generated in the output folder.

$ vela ../../tensorflow-lite-2.18.0/examples/
mobilenet_v1_1.0_224_quant.tflite

3. Run the model with the Inference API (offloads the entire model to TFLite-Micro).

$./inference_runner -n ./output/mobilenet_v1_1.0_224_quant_vela.tflite -i
 grace_hopper.bmp -l labels.txt -o output.txt

The following will be printed if no error occurs:

Send capabilities request
Capabilities:
 version_status:1
 version:{ major=0, minor=0, patch=0 }
 product:{ major=6, minor=0, patch=0 }
 architecture:{ major=1, minor=0, patch=6 }
 driver:{ major=0, minor=16, patch=0 }
 macs_per_cc:8
 cmd_stream_version:0
 custom_dma:false
Create network
Create inference
Wait for inferences
Inference status: success
Detected: military uniform, confidence:70

4. Run the converted model with TFLite inference engine using the Ethos-U Delegate (offload the “ethos-u”
operator to Ethos-U NPU).

$ cd /usr/bin/tensorflow-lite-2.18.0/examples
$./label_image -m
../../ethosu/examples/output/mobilenet_v1_1.0_224_quant_vela.tflite
--external_delegate_path=/usr/lib/libethosu_delegate.so

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
39 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

The following is printed if no error occurs:

INFO: Loaded model ../../ethosu/examples/output/
mobilenet_v1_1.0_224_quant_vela.tflite
INFO: resolved reporter
Ethosu delegate: device_name set to /dev/ethosu0.
Ethosu delegate: timeout set to 60000000000.
Ethosu delegate: enable_cycle_counter set to 0.
Ethosu delegate: pmu_event0 set to 0.
Ethosu delegate: pmu_event1 set to 0.
Ethosu delegate: pmu_event2 set to 0.
Ethosu delegate: pmu_event3 set to 0.
EXTERNAL delegate created.
INFO: EthosuDelegate delegate: 1 nodes delegated out of 1 nodes with 1
 partitions.

INFO: Applied EXTERNAL delegate.
INFO: invoked
INFO: average time: 3.903 ms
INFO: 0.780392: 653 military uniform
INFO: 0.105882: 907 Windsor tie
INFO: 0.0156863: 458 bow tie
INFO: 0.0117647: 466 bulletproof vest
INFO: 0.00784314: 835 suit

7.2.4 Vela tool

The vela tool is used to compile a TensorFlow Lite for Microcontrollers neural network model into an optimized
version that can run on an embedded system containing an Arm Ethos-U NPU. The optimized model contains
TFLite Custom operators for those parts of the model that can be accelerated by the Ethos-U NPU. Parts of
the model that cannot be accelerated are left unchanged and run on CPU (Cortex-A or Cortex-M) using an
appropriate kernel (such as the Arm optimized CMSIS-NN kernels). After compilation, the optimized model can
only be run on an Ethos-U NPU embedded system. The tool also generates performance estimates for the
compiled model.

To deploy the neural network (NN) model on Ethos-U, the first step is to use Vela to compile the prepared
model. To be accelerated by the Ethos-U NPU, the network operators must be quantized to either 8-bit
(unsigned or signed) or 16-bit (signed).

NXP Vela is based on Arm ethos-u-vela. Compared to ethos-u-vela, NXP added more OPs support and
reduced some OP constraints.

Note: A specific version of Vela is tightly coupled with a specific version of the Ethos-U driver. The compatibility
between different Vela versions is not guaranteed.

7.2.4.1 Installing the Vela tool

The Vela tool can be run on the i.MX 93 board or Linux PC. It is already available in NXP Yocto rootfs. This
section describes how to install it on the X86 Linux PC. The steps are as follows.

1. Get the vela source code.

$ git clone https://github.com/nxp-imx/ethos-u-vela.git

2. Install with python pip.

$ cd ethos-u-vela
$ git checkout lf-6.12.20_2.0.0
$ pip3 install .

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
40 / 115

https://www.tensorflow.org/lite/microcontrollers
https://www.arm.com/products/silicon-ip-cpu
https://www.arm.com/
https://github.com/ARM-software/CMSIS_5/tree/develop/CMSIS/NN
https://git.mlplatform.org/ml/ethos-u/ethos-u-vela.git
https://git.mlplatform.org/ml/ethos-u/ethos-u-vela.git
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

3. After all the commands are successful, use vela --help to check if Vela is installed successfully.

$ vela --version
4.2.0

7.2.4.2 Compiling the TFLite model

After Vela is installed, the following commands can be used to compile a TFLite model to the optimized version
for Ethos-U NPU. The optimized model is stored into the OUTPUT_DIR ("./output" by default). The output file
has the suffix _vela.tflite. It is also a TFLite model . After the compilation, Vela outputs the detailed log into
the console.

Note: The Vela expects that the TFLite model is quantized already. Vela supports asymmetric quantization to
8 bit (signed and unsigned) and 16 bit (signed), as defined by TFLite. To accelerate the model operators with
Ethos-U NPU, the input model to Vela has to be quantized. Non-quantized operators will fall back to CPU.

The following provides an example for how to compile a model and shows the corresponding output log:

$ vela mobilenet_v1_1.0_224_pb_int8.tflite

Output log:

Network summary for mobilenet_v1_1.0_224_pb_int8
Accelerator configuration Ethos_U65_256
System configuration internal-default
Memory mode internal-default
Accelerator clock 1000 MHz
Design peak SRAM bandwidth 16.00 GB/s
Design peak DRAM bandwidth 3.75 GB/s
Total SRAM used 381.08 KiB
Total DRAM used 4293.34 KiB
CPU operators = 0 (0.0%)
NPU operators = 60 (100.0%)
Average SRAM bandwidth 4.28 GB/s
Input SRAM bandwidth 7.95 MB/batch
Weight SRAM bandwidth 12.61 MB/batch
Output SRAM bandwidth 0.00 MB/batch
Total SRAM bandwidth 20.67 MB/batch
Total SRAM bandwidth per input 20.67 MB/inference (batch size 1)
Average DRAM bandwidth 3.00 GB/s
Input DRAM bandwidth 5.53 MB/batch
Weight DRAM bandwidth 3.92 MB/batch
Output DRAM bandwidth 5.06 MB/batch
Total DRAM bandwidth 14.52 MB/batch
Total DRAM bandwidth per input 14.52 MB/inference (batch size 1)
Neural network macs 572406226 MACs/batch
Network Tops/s 0.24 Tops/s
NPU cycles 3937697 cycles/batch
SRAM Access cycles 719415 cycles/batch
DRAM Access cycles 2984386 cycles/batch
On-chip Flash Access cycles 0 cycles/batch
Off-chip Flash Access cycles 0 cycles/batch
Total cycles 4831570 cycles/batch
Batch Inference time 4.83 ms, 206.97 inferences/s (batch size 1)

The following is the computational graph after the model (mobilenet_v1_1.0_224_pb_int8.tflite) is
compiled. Here, Vela encapsulates all supported OPs into one Ethos-U OP.

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
41 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Figure 9. Computational graph

Note:

The Vela tool takes a lot of memory when converting big models, so a swap file is needed when converting big
models to avoid the Out Of Memory issue. Use the following commands to add a swap file:

dd if=/dev/zero of=/swapfile count=2048 bs=1M
mkswap /swapfile
chmod 0600 /swapfile
swapon /swapfile

7.2.5 Inference with Ethos-U inference API

The Ethos-U inference API provides the methods to use the Ethos-U NPU on Linux OS without the TensorFlow
Lite inference engine. It takes the compiled model and IFM/OFM as inputs, composes an inference task, and
dispatches the inferences to the Cortex-M with Ethos-U.

7.2.5.1 Ethos-U driver library

The Ethos-U Driver provides a C++ APIs for dispatching the inference to the Ethos-U Linux kernel driver. The
library and the corresponding header file is available on Yocto rootfs and SDK:

• /usr/include/ethosu.hpp
• /usr/lib/libethosu.so

The following is the component diagram of Ethos-U Driver library:

• The Device class represents the instance of Ethos-U unit.
• The Buffer class is used to store any data, including the model.
• The Network class represents a model instance bind to specific Device.
• The Inference class represents the inference, which is computation of the computation graph (model) on input

data. Notice, the Network class is separated from the Inference class, allowing multiple inferences to share
the same network.

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
42 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Inference

IFM and OFM Network model

aaa-053536

Network

Buffer Device

Figure 10. Component diagram of Ethos-U Driver library

The inference runner demonstrates how to dispatch inferences to the Ethos-U Linux kernel driver. All the steps
described in the sequence diagram below are executed by the inference_runner application.

1. The Device class obtains a file descriptor handle for the device node (/dev/ethosu<nr>) using the
open() system call. The Device class uses ioctl() system calls to manipulate with the underlying
device, like buffer and network creation.

2. The Network class uses the Device and buffer handles to create a new network object. The model is stored
in the Buffer that the network parses to discover the input and output shapes of the network model.

3. The Inference class uses the Network object to create an inference. The array of IFM Buffers need to be
populated with data before the inference object is created.

The inference object must poll the file descriptor waiting for the inference to complete.

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
43 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Driver library

aaa-053537

Application

BufferMain() Inference

Kernel driver

Device Buffer Network Inference

Device Buffer NetworkMain() Inference Device Buffer Network Inference

Device()
Open(<device node>)

File descriptor

Buffer(device)
ioctl(BUFFER_CREATE)

File descriptor

Network(device, buffer)
ioctl(NETWORK_CREATE)

File descriptor

Parse network model

Walt(file descriptor)
Poll(file descriptor)

Inference(network, ifm, ofm)

ioctl(INFERENCE_CREATE)

File descriptor

Buffer(device)
ioctl(BUFFER_CREATE)

File descriptor

[Allocate and fill (FM buffers]Loop

Buffer(device)
ioctl(BUFFER_CREATE)

File descriptor

[Allocate OFM buffers]Loop

Create and run inference

Allocate and fill network buffer

Create network, parse network model

Create device

Device Network

Figure 11. Sequence diagram

7.2.5.2 Ethos-U Linux kernel driver interface

The Ethos-U Linux kernel driver exposes User-space API (UAPI) for Ethos-U subsystem, and to communicate
with the Cortex-M in the Ethos-U subsystem.

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
44 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

The communication with the Ethos-U subsystem is based on message passing in shared memory, and the
Linux kernel mailbox APIs for triggering IRQs on the remote CPU, what is the Cortex-M in this case.

The address of the message queues is hard coded in the Cortex-M application, and configured in the DTB for
the Ethos-U Linux kernel driver.

When the Linux kernel driver allocates dynamic memory for the Ethos-U subsystem, it must be able to map
a physical address to a bus address. The DTB contains a dma-ranges, which define how to remap physical
addresses to the Cortex-M address space.

7.2.5.3 Device and Buffer class

The device driver creates a device node at /dev/ethosu<nr> that a user space application can open and
issues IOCTL requests to. This is how buffers and networks are created.

Creating a new buffer returns another file descriptor that can be memory mapped for reading and/or writing.

Driver library

aaa-053538

Application

BufferMain() Inference

Kernel driver

Device Buffer Network Inference

Device Buffer NetworkMain() Inference Device Buffer Network Inference

Device()

Open(<device node>)

File descriptor

File descriptor

Buffer(device)

ioctl(BUFFER_CREATE)

Create()

File descriptor

Mmap(file descriptor)

Create buffer and return file descriptor

Memory map buffer

Device Network

Open device node

Figure 12. Device and Buffer class

7.2.5.4 Network class

Creating a network assumes that the device node has already been opened, and that a buffer has been
allocated and populated with the network model.

A new network is created by issuing an IOCTL command on the device node file descriptor. A file descriptor to
a buffer, containing the network model, is passed in the IOCTL data. The network class increases the reference
count on the buffer, preventing the buffer from being freed before the network object has been destructed.

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
45 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Driver library

aaa-053539

Application

BufferMain() Inference

Kernel driver

Device Buffer Network Inference

Device Buffer NetworkMain() Inference Device Buffer Network Inference

File descriptor

Network(device, buffer)

ioctl(NETWORK_CREATE, buffer)

Create(buffer)

File descriptor

Create network and return file descriptor

Create device
Allocate and fill network buffer

Device Network

Figure 13. Network class

7.2.5.5 Inference class

Creating an inference assumes that a network has already been created, IFM buffers have been allocated and
populated with data, and OFM buffers have been allocated.

A new inference is created by issuing an IOCTL command to the network file descriptor. An array of IFM and
OFM buffers are passed in the IOCTL data, which reference counts will be increased.

As the inference object has been created an inference request message is sent to the Cortex-M application.
The inference request message is written to a ring buffer in shared memory, cache maintenance is executed if
necessary, and an IRQ is raised using the Linux mailbox APIs.

On success, a valid file handle is returned to user space. The file handle is used to read the results when the
inference completes. Note this is a blocking call.

Once the inference task has finished on the Ethos-U subsystem, the message process writes an inference
response message into the response queue in shared memory, executes cache maintenance if needed, and
raises an IRQ.

On the Linux side the IRQ is handled and cleared. The IRQ bottom handler is a separate Linux kernel thread
responsible for reading the message queue. When the inference response message is received it updates the
status of the inference and unblocks any waiting user space processes.

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
46 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Driver library

aaa-053540

Application

BufferMain()

Main()

Cortex-M application

Message processInference

Kernel driver

Device Buffer Network Inference

Device Buffer Network

Inference(network, ifm, ofm)
ioctl(INFERENCE_CREATE, network, ifm, ofm)

File descriptor

INFERENCE_RESPONSE

Inference_response()

Mailbox

Message processInference Device Buffer Network Inference Mailbox

Create network, ifm, ofm)

File descriptor

INFERENCE_REQUEST

Inference()

Create device
Create network
Allocate and fill IFM buffers
Allocate OFM buffers

Device Network

Create inference

Write inference request to queue in shared memory
Send IRQ

Wait()
Poll()

Read()

Inference response handler unlocks the polling thread

Inference response is handled by the IRQ bottom handler thread
Message is read from queue in shared memory

Figure 14. Inference class

7.2.5.6 How to use the inference API

The following steps show how to run a Vela model from Cortex-A:

1. Create the inference device.

device = Device(“/dev/ethosu0”)

2. Load the model into a buffer from the Vela model file.

shared_ptr<Buffer> model_buf = allocAndFill(device, vela_model);

3. Create the Network instance with the model buffer.

shared_ptr<Network> network = make_shared<Network>(device, model_buf);

4. Load the input feature map (IFM) from the input file (such as a picture for image classification app) into a
buffer. If there are multiple inputs, create the buffers one by one and push back to a vector.

vector<shared_ptr<Buffer>> ifm;
ifm_size = network->getIfmDims()[0];
ifm_buf = make_shared<Buffer>(device, ifm_size);
memcpy(ifm_buf ->data(), input_data, input_size);
ifm.push_back(ifm_buf)

5. Create the output feature map (OFM) buffers according to the output dimensions in the model. If there are
multiple outputs, create the buffer one by one and push back to a vector.

vector<shared_ptr<Buffer>> ofm;
ofm_size = network->getOfmDims()[0]

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
47 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

ofm_buf = make_shared<Buffer>(device, ofm_size);
ofm.push_back(ofm_buf);

6. Create an inference instance with the Network buffer, IFM buffer, and OFM buffer.

inf = make_shared<Inference>(net, ifm.begin(), ifm.end(), ofm.begin(),
 ofm.end());

7. Call Inference->invoke() to trigger and wait for the completion of the inference task.

Inf->invoke()

8. Access the OFM buffers to get the inference result.

Outputs = inf->getOfmBuffers()

7.2.5.7 Interpreter class

In addition to low-level APIs described above, the Ethos-U driver also provides the Interpreter class. The
Interpreter handles the steps mentioned above (device, network, and buffer initialization) internally with class
Interpreter.

Constructor:

Interpreter(const char *model,
const char *device = "/dev/ethosu0",
int64_t arenaSizeOfMB = 16);

model: vela model file
device: ethos-u device name, default: “/dev/ethosu0”
arenaSizeOfMB : shared DDR memory size between Cortex-A and Cortex-M, default:
 16(MB)

Inference blocking API:

void Invoke(int64_t timeoutNanos = 60000000000);
timeoutNanos: timeout for the inference, default value is 60s.

Input/Output tensor buffer address helper:

template <typename T>
T* typed_input_buffer(int index) {
 int32_t offset = network->getInputDataOffset(index);
 return (T*)(arenaBuffer->data() + offset);
}

template <typename T>
T* typed_output_buffer(int index) {
 int32_t offset = network->getOutputDataOffset(index);
 return (T*)(arenaBuffer->data() + offset);
}

Given the tensor index in a model, returns the tensor address and type information.

Input/Output information query:

std::vector<TensorInfo> GetInputInfo();
std::vector<TensorInfo> GetOutputInfo();

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
48 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

These two provides the interface to query inputs and outputs information from a model, including shape and
type information (int8/uint8/f32…).

7.2.5.8 Interpreter Python wrapper

In addition to C++ API, the Ethos-U Driver also provides the Python API.

It is installed into Yocto rootfs: /usr/lib/python3.10/site-packages/ethosu.

Example usage:

import ethosu.interpreter as ethosu

loading the vela model file into interpreter
interpreter = ethosu.Interpreter(args.vela_model_file)

get the input and output dimensions
inputs = interpreter.get_input_details()
outputs = interpreter.get_output_details()

resize the input according to the model input dimensions
w, h = inputs[0]['shape'][1], inputs[0]['shape'][2]
img = Image.open(args.image).resize((w, h))
data = np.expand_dims(img, axis=0)

associcate the input data with interpreter
interpreter.set_input(0, data)

invoke the inference, this is a blocking API, timeout is 60s
interpreter.invoke()

get back the inference results, different models have different results.
Check the model output dimensions and get all the outputs with index.
output_data = interpreter.get_output(0)

7.2.6 Inference with TensorFlow Lite

7.2.6.1 Ethos-U Delegate

See Section 2.2.4.

7.2.6.2 Delivery package

The Ethos-U support is built into shared library: /usr/lib/libtensorflow-lite.so. When the user loads
the Vela model with TFLite API, the engine calls the Ethos-U Linux driver and dispatches the customized Ethos-
U operator to Ethos-U firmware on Cortex-M.

The Ethos-U Delegate shared library: /usr/lib/libethsou_delegate.so.

7.2.6.3 Running image classification example

See Section 7.2.3 to try the example.

See TensorFlow Lite for how to build and use the Tensorflow Lite API with an application.

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
49 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

7.2.6.4 Hardware accelerators warmup time

For TensorFlow Lite, the initial execution of model inference takes longer time, because of the model graph
initialization needed by the NPU hardware accelerator. The initialization phase is known as warmup. In this
phase, the delegate calls the Vela tool to compile the TensorFlow Lite models.

• This time duration can be decreased for subsequent application that runs by storing on disk the information
resulted from the initial Vela processing. The Ethos-U delegate option "cache_file_path" should be used
for this purpose. For example, set this option in your application in this way:

the external delegate accepts the option "cache_file_path",
ext_delegate = [tflite.load_delegate("/usr/lib/libethosu_delegate.so",
 {"cache_file_path":"your_path"})]
interpreter = tflite.Interpreter(model_path=model_file,
 experimental_delegates=ext_delegate)

By setting up this option, the result of the Vela compilation is stored on disk. The runtime performs a quick
check on the network. If it matches, it loads it into the NPU memory directly.

• This time duration can also be decreased by compiling the model by Vela beforehand. In this way, you should
compile the model with the Vela tool and pass the Vela optimized model file to the TensorFlow Lite application.

7.2.6.5 Ethos-U performance enhancement with memory zero-copy

In addition to the memory space of TensorFlow Lite, Ethos-U also has its own memory. Therefore, there is
a large number of memory copies in the inference process, which takes a lot of CPU time. To improve the
performance, in Ethos-U delegate, some of TensorFlow Lite memory is mapped into the memory of the NPU to
avoid memory copies.

Note: When doing inference with the Ethos-U delegate, do not modify the TensorFlow Lite Tensor data
pointers. This may cause unpredictable issues.

7.2.7 Building and deploying the Ethos-U firmware

7.2.7.1 Getting the source

The ethos-u-core-software is part of the i.MX 93 Ethos-U NPU machine learning software package, which
is an optional middleware component of MCUXpresso SDK. The ethos-u-core-software is integrated into
the MCUXpresso SDK Builder delivery system available on mcuxpresso.nxp.com. To include Ethos-U NPU
machine learning into the MCUXpresso SDK package, the ethos-u-core-software middleware component is
selected in the software component selector on the SDK Builder page when building a new package. See the
following figure.

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
50 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Figure 15. SDK Builder page

Once the MCUXpresso SDK package is downloaded, it can be extracted on a local machine or imported into
the MCUXpresso IDE. For more information on the MCUXpresso SDK folder structure, see the Getting Started
with MCUXpresso SDK User’s Guide (document: MCUSDKGSUG). The package directory structure is similar
as follows.

<MCUXpresso-SDK-root>
|-- boards
| -- <board>
| -- demo_apps - Example build projects
| -- ethosu_apps_rpmsg - Ethos-U default firmware with rpmsg
| -- ethosu_apps - Ethos-U standalone app example
|
|-- middleware/ethos-u-core-software
 -- applications - The inference process APIs
 -- boards - The board related initialization and configuration files
 -- core_driver - Ethos-U core driver which includes reading/writing
 registers
 -- examples - Ethos-U example applications
 -- ethosu_apps_rpmsg - Ethos-U default firmware with rpmsg
 -- ethosu_apps - Ethos-U standalone app example

7.2.7.2 Ethos-U example applications

7.2.7.2.1 Introduction

There are two Ethos-U apps available:

• ethosu_apps_rpmsg: firmware for Yocto Linux BSP
• ethosu_apps: standalone example for Cortex-M

The ethosu_apps_rpmsg is the firmware for Ethos-U subsystem for Linux OS. It contains core message
handling, inference request processing from Cortex-A core, NPU’s registers configuration, inference execution,
and inference result providing to Cortex-A core. The supported inference engine is TFLite or TFlite-Micro (if
Inference API is used).

The example ethosu_apps is a Cortex-M standalone application that demonstrates the inference execution
entirely on Cortex-M which can be used in the low power scenario with the Cortex-A sleeping. The example
uses conv2d op model. There is no core message handling and only supports TFLite-Micro.

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
51 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

The apps are available in the /boards/<board>/demo_apps/ethosu_apps* folders.

7.2.7.2.2 Toolchains supported

• IAR Embedded Workbench for Arm
When the project is opened in IAR, press the “Make” button to build the project in IAR as follows.

Figure 16. IAR Embedded Workbench for Arm
• ArmGCC - GNU Tools Arm Embedded

Run the following command to build the project.

$ cd mcu-sdk-2.16/boards/mcimx93evk/demo_apps/ethosu_apps_rpmsg/armgcc
$ export ARMGCC_DIR=${YOUR_TOOLCHAIN_LOC}/gcc-arm-none-eabi-10-2020-q4-major
$ export PATH=$PATH:${YOUR_TOOLCHAIN_LOC}/gcc-arm-none-eabi-10-2020-q4-major/
bin
$./build_release.sh

7.2.7.3 Deploy procedure

1. Deploy the ethosu_apps_rpmsg firmware.
Example ethosu_apps_rpmsg is built as .out or .elf and installed in rootfs as the name of
“ethosu_firmware”. The pre-built binary is integrated in the rootfs and loaded by Linux Ethos-U driver
upon an inference request.
If the user rebuilds the firmware, the rebuilt ethosu_apps_rpmsg.out or ethosu_apps_rpmsg.elf
should be copied to /lib/firmware/ in rootfs and renamed as the name of “ethosu_firmware” as
follows:

$ cp ethosu_apps_rpmsg.elf ./lib/firmware/ethosu_firmware

2. Deploy the ethosu_apps with U-Boot.
The ethosu_apps is built as .bin. In U-Boot terminal, users can run the following command to do
inference for the conv2d op model.

=> tftp 0x80000000 ethosu_apps.bin
=> cp.b 0x80000000 0x201e0000 0x20000;
=> bootaux 0x1ffe0000 0

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
52 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

When the example runs, the log and inference result would be displayed on the Cortex-M terminal as
follows:

Initialize Arm Ethos-U
Inference status: success

Note:

The default firmware ethosu_apps_rpmsg contains the following operators support with TFLite-micro on
Cortex-M33: Ethos-U, TFLite_Detection_PostProcess, and Dequantize. If an operator is supposed to fall back
on Cortex-M33 but not included, rebuild the source code and deploy the firmware.

The ethosu_apps is a standalone Cortex-M application running without Cortex-A interacted, so it is deployed
at the U-Boot stage.

7.2.7.4 Using the Ethos-U on Cortex-M

The Ethos-U NPU on i.MX 93 is accessible by the TFLite-Micro library. The TFLite-Micro interprets the
optimized Vela model and delegates the kernels to different execution providers.

Currently, there are 3 types of execution provider supported:

• NN Kernel: default kernel implementation provided by TFLite-Micro for Cortex-M CPU.
• CMSIS-NN kernel: optimized kernel implementation by Arm using the CMSIS-NN library. The CMSIS-NN

library executes the kernel on the Cortex-M CPU.
• Ethos-U Kernel: kernel implementation for the custom Ethos-U operator. This operator registered in TFLite-

Micro framework and executes the computation on Ethos-U using the NPU driver.

7.2.7.4.1 Running Vela model with TFLite-Micro

The following provides the steps to run the Vela model on Cortex-M directly:

1. Get the flatbuffer Vela model.

const tflite::Model* model = tflite::GetModel(vela_model);

2. Configure/Allocate the inputs, outputs tensors statically.

constexpr int kTensorArenaSize = 1024 * 1024;
static uint8_t tensorArena[kTensorArenaSize];

3. Build the TFLite-Micro interpreter for the inference.

static tflite::MicroInterpreter interpreter(
model, //the flatbuffer model
microOpResolver, //resolve to kernel implementers
tensorArena, // tensor memory address
kTensorArenaSize, //tensor memory length
microErrorReporter); //error reporter

4. Set the input tensors.
// Get access to the input tensor data

TfLiteTensor* inputTensor = interpreter->input(0);

// Copy the input tensor data from an application buffer

for (int i = 0; i < inputTensor->bytes; i++)
inputTensor->data.int8[i] = input_data[i];

5. Run the inference and get the output.

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
53 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

// Invoke the inference

interpreter->Invoke();

// Get access to the output tensor data

TfLiteTensor* outputTensor = interpreter->output(0);

// Copy the output tensor data to an application buffer

for (int i = 0; i < outputTensor->bytes / sizeof(float32); i++)
 output_data[i] = outputTensor->data.f[i];

TFLite-Micro does not depend on dynamic memory allocation, so it requires users (application developers) to
supply a memory arena when an interpreter is created. In practice, the user usually allocates this memory arena
as a static buffer when the program starts, for example:

#define TENSOR_ARENA_SIZE (1024 * 1024 * 16)
uint8_t tensorArena[TENSOR_ARENA_SIZE];

TFLite-Micro framework uses this memory arena as inputs/outputs/intermediate tensors store. This memory
size “TENSOR_ARENA_SIZE” must be adjusted according to the practical usage to consider the following
points:

• Model used for the application
• Size of the input/output data
• Memory needed for intermediate result
• Memory arena mapping to SRAM or TCM, considering the effective usage of memory hierarchy

7.2.8 Memory hierarchy for Cortex-M

For Cortex-M, there are several types of memory media with different capacity, speed and cost which can be
accessed by CPU. On i.MX 93, the memory hierarchy looks like below with speed decreasing order:

TCM (128 kB + 128 kB)

aaa-053541

OCRAM (256 kB TF - A + 384 kB NPU data)

DRAM (default 16 MB, dynamically allocated from dma pool)

TCM size is 256 KB, usually used for Cortex-M runtime data. By design, this memory space is not allocated for
system purpose after booting. How to use it effectively is left for user decision.

OCRAM size is 640 KB. By design, the first 256 KB is allocated for ATF (Arm Trusted Firmware) which used to
bootstrap the Cortex-A before the DRAM is available. The rear 384 KB is reserved for NPU data: the weight/
bias of an ML model.

DRAM size is 2 GB on i.MX 93 EVK board. However, only shared DMA region between Cortex-A and Cortex-
M can be used. Ethos-U Linux driver requests DMA buffers for tensorArena dynamically from DMA pool and
passes the buffer address to Ethos-U firmware on Cortex-M. If not explicitly specified, by default 16 MB DMA
buffer is requested.

Ethos-U can only access the DRAM and OCRAM memory by design. The current memory mapping for Ethos-U
firmware is as follows:

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
54 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

TCM (code, stack)

aaa-053542

OCRAM (NPU intermediate data)

DRAM (tensorArena/model weights/bias/IFM/OFM)

With this configuration, the model data and tensor arena is allocated in DRAM and the OCRAM is used as NPU
cache. “Dedicated_Sram” memory mode has to be used for model compilation with Vela:

vela --accelerator-config ethos-u65-256 --system-config Ethos_U65_High_End
--memory-mode Dedicated_Sram --config vela.ini {tflite-model}

For standalone Cortex-M app, the memory mapping is as follows:

TCM (code, stack)

aaa-053543

OCRAM (tensorArena...)

DRAM

With this configuration, No DRAM is used. All the model data and tensorArena memory for NPU is allocated in
OCRAM. “Sram_Only ”memory mode has to be used for model compilation with Vela:

vela --accelerator-config ethos-u65-256 --system-config Ethos_U65_High_End
--memory-mode Sram_Only --config vela.ini {tflite-model}

7.2.9 Supported ML operators and constraints

See the supported operator list on the Ethos-U NPU. When the operator is not supported by the NPU, the Vela
compiler displays the constraints information on the console. They are left untouched and scheduled on the
CPU. Use the eIQ toolkit to view what operators are merged into Ethos-U operator for a model.

7.2.10 Profiling on hardware accelerators

This section describes how to enable profiler on the NPU, and how to capture logs.

The PMU profiling is supported with Ethos-U delegate options. The option is a string to specify what PMU
events will be captured, which includes:

• enable_cycle_counter:true
Shows the cycle counter values for an inference.

• pmu_event config register mapping
Up to 4 PMU event IDs can be recorded, which is specified by pmu_event register mapping.
For example, pmu_event0:1 means the pmu_event0 register will record the values of event 1.
pmu_event0:1;pmu_event1:3 means the pmu_event0 register will record the value of event 1, and the
pmu_event1 register will record the value of event 3.

The following table shows all the event IDs supported by Ethos-U.

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
55 / 115

https://github.com/nxp-imx/ethos-u-vela/blob/lf-6.12.3_1.0.0/SUPPORTED_OPS.md
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Event type Event ID

CYCLE 1

NPU_IDLE 2

CC_STALLED_ON_BLOCKDEP 3

CC_STALLED_ON_SHRAM_RECONFIG 4

NPU_ACTIVE 5

MAC_ACTIVE 6

MAC_ACTIVE_8BIT 7

MAC_ACTIVE_16BIT 8

MAC_DPU_ACTIVE 9

MAC_STALLED_BY_WD_ACC 10

MAC_STALLED_BY_WD 11

MAC_STALLED_BY_ACC 12

MAC_STALLED_BY_IB 13

MAC_ACTIVE_32BIT 14

MAC_STALLED_BY_INT_W 15

MAC_STALLED_BY_INT_ACC 16

AO_ACTIVE 17

AO_ACTIVE_8BIT 18

AO_ACTIVE_16BIT 19

AO_STALLED_BY_OFMP_OB 20

AO_STALLED_BY_OFMP 21

AO_STALLED_BY_OB 22

AO_STALLED_BY_ACC_IB 23

AO_STALLED_BY_ACC 24

AO_STALLED_BY_IB 25

WD_ACTIVE 26

WD_STALLED 27

WD_STALLED_BY_WS 28

WD_STALLED_BY_WD_BUF 29

WD_PARSE_ACTIVE 30

WD_PARSE_STALLED 31

WD_PARSE_STALLED_IN 32

WD_PARSE_STALLED_OUT 33

WD_TRANS_WS 34

WD_TRANS_WB 35

WD_TRANS_DW0 36

Table 6. Event IDs supported by Ethos-U

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
56 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Event type Event ID

WD_TRANS_DW1 37

AXI0_RD_TRANS_ACCEPTED 38

AXI0_RD_TRANS_COMPLETED 39

AXI0_RD_DATA_BEAT_RECEIVED 40

AXI0_RD_TRAN_REQ_STALLED 41

AXI0_WR_TRANS_ACCEPTED 42

AXI0_WR_TRANS_COMPLETED_M 43

AXI0_WR_TRANS_COMPLETED_S 44

AXI0_WR_DATA_BEAT_WRITTEN 45

AXI0_WR_TRAN_REQ_STALLED 46

AXI0_WR_DATA_BEAT_STALLED 47

AXI0_ENABLED_CYCLES 48

AXI0_RD_STALL_LIMIT 49

AXI0_WR_STALL_LIMIT 50

AXI_LATENCY_ANY 51

AXI_LATENCY_32 52

AXI_LATENCY_64 53

AXI_LATENCY_128 54

AXI_LATENCY_256 55

AXI_LATENCY_512 56

AXI_LATENCY_1024 57

ECC_DMA 58

ECC_SB0 59

AXI1_RD_TRANS_ACCEPTED 60

AXI1_RD_TRANS_COMPLETED 61

AXI1_RD_DATA_BEAT_RECEIVED 62

AXI1_RD_TRAN_REQ_STALLED 63

AXI1_WR_TRANS_ACCEPTED 64

AXI1_WR_TRANS_COMPLETED_M 65

AXI1_WR_TRANS_COMPLETED_S 66

AXI1_WR_DATA_BEAT_WRITTEN 67

AXI1_WR_TRAN_REQ_STALLED 68

AXI1_WR_DATA_BEAT_STALLED 69

AXI1_ENABLED_CYCLES 70

AXI1_RD_STALL_LIMIT 71

AXI1_WR_STALL_LIMIT 72

Table 6. Event IDs supported by Ethos-U...continued

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
57 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Event type Event ID

ECC_SB1 73

Table 6. Event IDs supported by Ethos-U...continued

After setting the external_delegate_options with PMU event capture, you can run the TensorFlow Lite
application. The PMU counter result is displayed on the console.

./label_image -m ~/mobilenet_v1_1.0_224_int8_vela.tflite --
external_delegate_path=/usr/lib/libethosu_delegate.so -l labels.txt --
external_delegate_options="enable_cycle_counter:true;pmu_event0:1;pmu_event1:3;pmu_event2:4;pmu_event3:5"

Ethos_u PMUs : [3674981 25689 54788 3667061]
Ethos-u cycle counter: 3676058
Ethos_u PMUs : [3673491 25287 54785 3665621]
Ethos-u cycle counter: 3674570
Ethos_u PMUs : [3680291 25502 54784 3672421]
Ethos-u cycle counter: 3681370

7.3 NPU transition guide from i.MX 8M Plus to i.MX 93
This section describes how to port Machine Learning application from i.MX 8M Plus to i.MX 93 with NPU
acceleration.

7.3.1 Tensorflow Lite difference between i.MX 8M Plus and i.MX 93 NPU acceleration

See Figure 3 for Tensorflow Lite software stack. Both i.MX 8M Plus and i.MX 93 support Tensorflow Lite with
NPU acceleration. i.MX 93 also supports TensorFlow Lite external delegate mechanism.

From the development perspective of the Machine Learning application, users can use the same Tensorflow
API to develop the Machine Learning application. The only difference is that users need to use the Ethos-U
Delegate instead of VX Delegate.

7.3.2 NPU supported operator list

While porting the Machine Learning application from i.MX 8M Plus to i.MX 93, check whether the NPU
supported operators in your model are supported on the i.MX 93 NPU. This ensures that you leverage i.MX 93
NPU acceleration.

See supported operator list for i.MX 93 NPU operator support status and Table 14 for i.MX 8M Plus NPU
operator support status.

7.4 Hardware acceleration with eIQ Neutron NPU on i.MX 9 series platform
eIQ Neutron NPU is a Neural Processing Unit (NPU) developed by NXP. It is designed to accelerate the
Machine Learning inference. The Neutron-S version of the eIQ Neutron NPU comprises of 3 main blocks:

• Neutron computation core (Neutron) doing MACs, can be pipelined with multiple instances.
• Neutron controller (RISC-V core) to program Neutron registers and control the Neutron block.
• DMA like memory controller (Data Mover) to exchange data between host DDR and Neutron dedicated TCM.

Neutron-S NPU main features:

• Targets quantized Convolutional Neutral Networks (CNN) and supports 8 bit weights and 8/16 bit activations.
• Supports TensorFlow Lite (TFLite) inference with fallback to Cortex-A for unsupported operations.
• Supports TFLite API to offload a custom TFLite node - neutronGraph, to Neutron-S NPU.

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
58 / 115

https://github.com/nxp-imx/ethos-u-vela/blob/lf-6.12.3_1.0.0/SUPPORTED_OPS.md
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

• Provides model converter tool (through eIQ toolkit) to optimize the model performance and memory usage for
Neutron-S NPU target.

7.4.1 Neutron-S NPU overview

The Neutron-S NPU involves several hardware blocks working together to support the acceleration of the tensor
computation defined by the Machine Learning model:

• SoC main CPU (Cortex-A55)
• RISC-V Controller
• Data Mover
• Neutron compute block

The SoC main CPU runs the software under Linux OS, like the TFLite inference engine. It is responsible for
loading the Machine Learning model, capturing and pre-processing the inputs and handing over the tensor
computation to the NPU. The RISC-V controller in the Neutron-S NPU orchestrates the Neutron compute blocks
and Data Mover. The Data Mover is a DMA like engine used for moving data between the SoC DDR and the
NPU TCM.

7.4.2 Neutron-S software architecture

The software for Neutron-S NPU includes three main components, as shown in the following figure.

aaa-055247

Quantized tflite
model

XNN pack
delegates

Converted TFLite
model

Neutron
delegates

Neutron driver
(userspace)

Neutron
interpreter

N
eu

tro
n

jo
b

Neutron-FW@RISC-V

SW@Cortex-AeIQ Toolkit

Neutron
kernel lib

Neutron datamover
services

Neutron Linux driver
(mailbox msg)

Cortex-A (NEON) Neutron-S

CPU Op

TFLite interpreter OutputTFLite
model

Neutron convert
(offline)

TFLite
model

Neutron
model

Figure 17. Neutron-S software architecture

• The Neutron model converter is an offline tool to compile the TFLite model for Neutron-S. The converter
replaces supported operators in the model with a custom neutronOp node containing a model-specific
firmware binary, static data, like weights, and inputs/outputs memory areas for Neutron-S. The output of the
converter is a modified TFLite model graph for TFLite inference engine. For inference, it needs to use the
corresponding TFLite Neutron Delegate.

• The Cortex-A software stack for Linux contains the TFLite inference engine, Neutron delegate library, user
space Neutron driver library, and Neutron device driver for the Linux kernel.

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
59 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

The Neutron-FW stack contains code for the RISC-V controller, interpreting the microcode in the neutronGraph
node.

7.4.3 NPU performance tuning

NXP Yocto Linux enables power-saving technology by default. To boost Machine Learning Performance on the
i.MX 95 EVK board, perform the following tuning operations:

1. Disable DDR clock gating.
DDR clock gating is the hardware feature applied to the i.MX 9 family. It is enabled by default in Yocto Linux
for maximum power saving with performance trade-off.
On i.MX 95, send the following command on the System Manager console (the serial port right after the
Linux console) to disable DDR clock gating.

>$ mm 0x4e010010 0

2. Set the CPU to performance mode.
In Yocto Linux, the CPU is in ondemand mode by default, which makes the CPU work at low frequency
when there is low workload. Make the CPU in performance mode before eIQ benchmarking.

cpufreq-set -g performance
cat /sys/devices/system/cpu/*/cpufreq/cpuinfo_cur_freq
1800000

3. Disable CPU idle in U-Boot.
For the Linux system, when disabling CPU Idle management, it can reduce context switch overhead.

setenv cpuidle 'cpuidle.off=1'

7.4.4 Neutron NPU power management

Neutron device implements power management techniques to optimize energy consumption: supporting clock
gating and power gating.

It provide different power mode strategies as follows:

• Automatic mode (default): Balance performance and power consumption, automatically clock gate for NPU
compute and suspend (power NPU off) after a period of idleness (default 1 second).

• Performance mode: The Neutron NPU remains power ON and clock ON for a long time.
• Low power mode: Further power savings on top of the automatic mode. Neutron NPU performs clock gating

immediately once inference is completed. Cuts off the clocks for NPU Compute, TCM, and ZenV core.

The default power mode strategy is automatic and the default suspend delay time is 1000 milliseconds. Users
can change them using the following commands:

1. Change the power mode through the Linux model parameters on the U-Boot command line interface:

=> setenv bootargs "neutron.power_mode=0|1|2 $bootargs"

2. Change power gating (suspend) delay time on the Linux command line interface:

cat /sys/devices/platform/soc/4ab00004.neutron/power/autosuspend_delay_ms
1000
echo {time_millisecond} > /sys/devices/platform/soc/4ab00004.neutron/power/
autosuspend_delay_ms

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
60 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

8 Vision Pipeline with NNStreamer

NNStreamer is an efficient and flexible stream pipeline framework for complex neural network applications. It
was initially developed by Samsung and then transferred to LF AI Foundation as an incubation project.

It is a set of GStreamer plugins that allows both GStreamer developers to adopt neural network models and
neural network developers to manage neural network pipelines and their filters easily and efficiently.

The project is well documented through its dedicated github documentation site, but the main takeaways are
described below for convenience.

In addition to the standard GStreamer data types, NNStreamer adds new data types “other/tensor” and “other/
tensors” using a dedicated converter element. This data type represents a stream of multidimensional array and
a stream of a container of multiple instances of such arrays, respectively.

NNStreamer provides a set of stream filters applying multiple operations on tensors:

• tensor_converter converts audio, video, text, or arbitrary binary streams to others/tensor streams.
• tensor_decoder converts other/tensor(s) to video or text stream with assigned sub-plugins.
• tensor_filter invokes a neural network model with the given model path and neural network framework

name.
• tensor_transform applies various operators to tensors including typecast, add, mul, transpose, and

normalize. For faster processing, it supports SIMD instructions and multiple operators in a single filter.
• tensor_crop crops the regions of incoming tensor.
• tensor_rate controls a frame rate of tensor streams.
• tensor_mux, tensor_demux, tensor_merge, tensor_split, tensor_if, and tensor_aggregator

support tensor stream path controls.
• tensor_sink is a sink plug-in for making an application to get a buffer of other/tensor(s).
• tensor_source allow non GStreamer standard input sources, such as sensors, to supply other/
tensor(s) stream.

• tensor_reposink and tensor_reposrc implement recurrent path helpers, cutting GStreamer pipeline
cycle through a dedicated shared repository. The tensor_reposink pushes data to the repository, this latter
reinjecting data upstream through a tensor_reposrc element.

The following figure shows the general architecture of a NNStreamer pipeline.

Video
Scale

Tensor
Converter

Normalize
Transpose

Neural
Network

Application
(Stream Sink)

Tensor
Stream

Video
Stream

Video
convert

Figure 18. NNStreamer pipeline
There are two elements allowing adding user created features in run-time: tensor_filter and tensor_decoder:

tensor_filter
framework=tensorflow-lite

tensor_decoder
mode=bounding_boxes

“tensorflow-lite.so” “bounding_boxes.so”

Figure 19. NNStreamer filter and decoder flow

While instantiating the tensor_filter and tensor_decoder, the framework and mode options respectively specify
the target implementation through a dedicated shared library loaded at runtime. NNStreamer supplies a set of
UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
61 / 115

https://nnstreamer.ai/
https://nnstreamer.github.io/component-description.html#gstreamer-elements-plugins
https://nnstreamer.github.io/index.html
https://nnstreamer.github.io/gst/nnstreamer/README.html
https://nnstreamer.github.io/gst/nnstreamer/tensor_filter/README.html
https://nnstreamer.github.io/gst/nnstreamer/tensor_decoder/README.html
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

filters and decoders which are described briefly below, and APIs to implement customized user sub-plugins.
Hence, it is possible to use a proprietary inference engine sub-plugin as tensor filter, or a specialized NN
decoder.

NNStreamer supports the most popular inference engines (open source or not). On this release, TensorFlow
Lite and TVM engines are supported.

Framework/Tool i.MX 95 i.MX 93 i.MX 8M Plus i.MX 8M Quad/8M
Nano/8QuadMax/8
QuadXPlus

i.MX 8M Mini/8
ULP

TensorFlow Lite CPU/GPU/NPU CPU/NPU CPU/NPU/GPU CPU/GPU CPU

TVM - - CPU/NPU/GPU - -

Custom C++ CPU CPU CPU CPU CPU

Custom Python CPU CPU CPU CPU CPU

NNShark - - CPU - -

Table 7. NNStreamer supported features

In case an inference engine might be supported on multiple hardware backend, one can specify the device
mapping the neural network.

Even though Tensor decoder element might not be appropriate for building an application which usually does
not consume the neural network outputs for display purpose only, it is especially useful for implementing a
prototype during the development phase which might focus on the neural network model or optimizing the
data path. Indeed, most neural networks topologies are supported for classical computer vision use cases:
classification, object detection, pose estimation or segmentation.

NNStreamer tensor filter element has to be configured to use specific engine and hardware accelerator.
Available options are listed in the following tables.

Delegate Tensor filter properties USE_GPU_INFERENCE env variable

No delegate framework=tensorflow-lite
model=<path to .tflite model file>
custom=NumThreads:<cpu cores>
Note:
<cpu core> values:
• 2 for i.MX 93 and i.MX 8ULP
• 4 for others
• 6 for i.MX 95

-

XNNPACK Delegate framework=tensorflow-lite
model=<path to .tflite model file>
custom=Delegate:XNNPACK,NumThreads:<cpu
cores>
Note:
<cpu core> values:
• 2 for i.MX 93 and i.MX 8ULP
• 4 for others
• 6 for i.MX 95

-

Neutron Delegate (i.MX
95 only)

framework=tensorflow-lite
model=<path to .tflite model file>

-

Table 8. TensorFlow Lite engine

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
62 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Delegate Tensor filter properties USE_GPU_INFERENCE env variable
custom=Delegate:External,ExtDelegate
Lib:libneutron_delegate.so

VX Delegate (applicable
for supported i.MX 8)

framework=tensorflow-lite
model=<path to .tflite model file>
custom=Delegate:External,ExtDelegate
Lib:libvx_delegate.so

0: NPU
1: GPU

Ethos-U Delegate (i.MX
93 only)

framework=tensorflow-lite
model=<path to .tflite model file>
custom=Delegate:External,ExtDelegate
Lib:libethosu_delegate.so

-

Table 8. TensorFlow Lite engine...continued

Tensor filter properties USE_GPU_INFERENCE env variable

framework=tvm model=<path to .so model
library> custom=num_input_tensors:<number of
input tensors>
where <number of input tensors> is typically 1.

0: NPU
1: GPU
Relevant for models compiled to use OpenVX

Table 9. TVM engine

8.1 Object detection pipeline example
This section provides implementation details for an object detection pipeline running on i.MX 8M Plus.
Additional pipeline examples targeting more use-cases and i.MX platforms can be found in Section 8.2.

In this example, the following pipeline will be implemented leveraging all the compute backend available on i.MX
8M Plus to build an object detection scenario.

v4l2
src

Video
Convert T-convert

T-Filter

Sub-Plugin
TFLITE

T-Decoder

Sub-plugin
Bounding-Boxes

Video
Compositor

Wayland
Sink

Tensor

Video

Hardware

Stream Type

Hardware

ISI 2D-GPU

NPU CPU

Element Type

gstreamer

nnstreamer

I.MX

640x480
YUY2
30 Hz

300x300
RGB
30 Hz

3:300:300:1
uint8
30 Hz

4:20:1:1
20:1:1:1
20:1:1:1
1:1:1:1
fp32

30 Hz

640x480
RGBA
30 Hz

640x480
BGRA
30 Hz

Figure 20. NNStreamer object detection example pipeline
On the target, download the trained neural network from google coral github site, and export the filenames to
bash environment variables:

root:~# wget https://github.com/google-coral/test_data/raw/master/
ssd_mobilenet_v2_coco_quant_postprocess.tflite

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
63 / 115

https://github.com/google-coral/test_data/raw/master/ssd_mobilenet_v2_coco_quant_postprocess.tflite
https://github.com/google-coral/test_data/raw/master/ssd_mobilenet_v2_coco_quant_postprocess.tflite
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

root:~# wget https://github.com/google-coral/test_data/raw/master/coco_labels.txt
root:~# export MODEL=$(pwd)/ssd_mobilenet_v2_coco_quant_postprocess.tflite
root:~# export LABELS=$(pwd)/coco_labels.txt

Then builds and executes the GStreamer pipeline:

root:~# gst-launch-1.0 --no-position v4l2src device=/dev/video3 ! \
video/x-raw,width=640,height=480,framerate=30/1 ! \
tee name=t t. ! queue max-size-buffers=2 leaky=2 ! \
imxvideoconvert_g2d ! \
video/x-raw,width=300,height=300,format=RGBA ! \
videoconvert ! video/x-raw,format=RGB ! \
tensor_converter ! \
tensor_filter framework=tensorflow-lite model=${MODEL} \
custom=Delegate:External,ExtDelegateLib:libvx_delegate.so ! \
tensor_decoder mode=bounding_boxes option1=mobilenet-ssd-postprocess option2=${LABELS} \
option3=0:1:2:3,50 option4=640:480 option5=300:300 ! \
mix. t. ! queue max-size-buffers=2 ! \
imxcompositor_g2d name=mix latency=30000000 min-upstream-latency=30000000
 sink_0::zorder=2 sink_1::zorder=1 ! waylandsink

Note: Hit CTRL+C keystroke to halt the execution if necessary.

8.2 NXP NNStreamer pipeline examples
Pipelines targeting i.MX platforms are published to provide working examples for different use cases and
implementation options.

Those examples are hosted on the GitHub server in a dedicated tree:

https://github.com/nxp-imx/nxp-nnstreamer-examples

Refer to the included README documentation for pipelines descriptions and instructions for dependencies
download (models, metadata) and execution.

The following table lists the features covered by pipeline examples.

Category Engine Platform Implementation

Object detection: MobileNet SSD V2, Yolov4-
tiny
Image classification: MobileNet V1
Image segmentation: DeepLab V3
Pose detection: MoveNet
Face detection: UltraFace
Face recognition: FaceNet512
Emotion detection: DeepFace
Depth estimation: Midas V2

TensorFlow Lite i.MX 8M Plus
i.MX 93
i.MX 95

Shell script (gst-launch)
Python, C++
Custom Python tensor_filter

Table 10.  Features of NXP NNStreamer examples

8.3 Pipeline profiling
NNStreamer team developed NNShark, a profiling tool based on GstShark, to monitor several pipeline metrics
useful to assess the SoC hardware usage.

NNShark can be used on the i.MX 8M Plus only, where specific metrics were added:

• 2D GPU (GC520L) utilization load
• 3D GPU (GC7000UL) utilization load

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
64 / 115

https://github.com/google-coral/test_data/raw/master/coco_labels.txt
https://github.com/nxp-imx/nxp-nnstreamer-examples
https://nnstreamer.github.io/tools/profiling/README.html#nnshark
https://github.com/RidgeRun/gst-shark
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

• NPU (GC8000) utilization load
• SoC masters bandwidth, as reported by Linux kernel perf tool
• Additionally, power domain consumption, as reported by power measurement tool (PMT) if the power

measurement evaluation kit is available to the user.

Considering the complex GPU/NPU architecture involving concurrent stages, their reported utilization loads
shall be considered as an order of magnitude and might not precisely reflect each individual stage's status.

Note:

For the source code demo location see the nnshark repository.

8.3.1 Enable profiling with NNShark

It is recommended to connect to the target through SSH as the NNShark UI refresh rate might not render well
on the serial console.

Enable NNShark profiling through environment variables:

root:~# export GST_DEBUG="GST_TRACER:7"
root:~# export GST_TRACERS="live"

To get GPU usage measurements, disable power saving in the GPU driver (galcore) using command line Linux
kernel parameters. You can manually edit the bootargs U-Boot variable before executing the boot command.
Add the following parameters:

galcore.gpuProfiler=1 galcore.powerManagement=0

Then run the previous gst-launch command line, and the following screen should now be displayed on your
terminal screen. You can scroll through all the pipeline elements with up/bottom direction key to select the
desired element and display its connections with other pipeline elements.

You can select the element pads with left/right direction keys to highlight its connection to other elements’ pads.

On this example, the tensor filter has an average processing time of 21.64 ms and its sink orange highlighted
pad is connected to source pad of tensorconverter0 element (green highlighted).

Press ‘q’ or ‘Q’ to exit the profiling tool and return to the shell terminal. You can quit the application as previously
explained through CTRL+C.

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
65 / 115

https://github.com/NXPmicro/pmt
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-8m-plus-evaluation-kit-enabling-power-measurement:8MPLUSLPD4-PEVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-8m-plus-evaluation-kit-enabling-power-measurement:8MPLUSLPD4-PEVK
https://github.com/nxp-imx/nnshark/
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Figure 21. NNShark i.MX 8M Plus example screenshot

8.3.2 Adding power measurement to NNShark

On the desktop PC connected to the power measurement evaluation kit, execute the power measurement tool
(PMT) in server mode such as the power measurements are collected and available on 65432 TCP/IP port.

user@localhost:pmt# python3 main.py server -b imx8mpevkpwra0 -p 65432

On the target, export the desktop PC ip address (192.168.1.99 for this example):

root:~# export GST_TRACERS_PWR_SERVER_IP=192.168.1.99

Note: The user can run the NNShark without the power measurement kit.

8.3.3 Known issues and limitations

In case perf reports inconsistent high numbers, this means that a perf process is still running in background of
the previous run. If so, you must terminate manually their execution.

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
66 / 115

https://github.com/NXPmicro/pmt
https://github.com/NXPmicro/pmt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

For your convenience, the below command can be used:

root:~# kill -9 $(ps -ef | grep nnshark-perf-ddr.sh | grep -v grep | tr -s ' ' |
 cut -d ' ' -f 2)

9 eIQ Demos

9.1 TensorFlow Lite Demos for i.MX 93
This section provides implementation details for several TensorFlow Lite demos running on i.MX 93.

TensorFlow Lite demos (binaries) are located at: /usr/bin/eiq-examples-git.

Binary models are not located in the image because of the size. Before running the demos, these files should
be downloaded to the device:

$ cd /usr/bin/eiq-examples-git
$ python3 download_models.py

Note: This script is downloaded from GitHub and Google drive. Make sure the device network is correctly
configured and can access the Internet.

9.1.1 Image classification demo

Note: All the demos require X11 to display, so use the XWayland distro images.

This demo performs image classification using a pretrained mobilenet-v1 network. Demo dependencies are
from:

/usr/bin/eiq-examples-git/image_classification.

• grace_hopper.bmp
• label_image.py
• labels.txt

The demo network model dependencies:

• mobilenet_v1_1.0_224_quant.tflite

Run the Python example with the image input from the default location:

$ cd /usr/bin/eiq-examples-git/image_classification
$ python3 label_image.py -i grace_hopper.bmp -l labels.txt
0.874510: military uniform
0.031373: Windsor tie
0.015686: mortarboard
0.011765: bulletproof vest
0.007843: bow tie
time: 4.126ms

9.1.2 SSD object detection demo

The SSD object detection demo performs object detection using the Single-Shot multibox Detection (SSD)
detector. It detects objects on camera, video, or image. Demo dependencies are from: /usr/bin/eiq-
examples-git/object_detection.

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
67 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

• cars0.bmp
• labels.py
• main.py

The demo network model dependencies:

• ssd_mobilenet_v1_quant.tflite

Run the Python example with the image input from the default location:

$ cd /usr/bin/eiq-examples-git/object_detection
$ python3 main.py -i cars0.bmp
rectangle:(640,493),(1756,881) label:car
rectangle:(1470,466),(1947,694) label:car
rectangle:(803,462),(846,502) label:car
rectangle:(733,451),(788,493) label:car
rectangle:(573,473),(705,565) label:car
rectangle:(608,465),(679,519) label:car
rectangle:(203,455),(271,596) label:person
rectangle:(910,461),(956,500) label:car
rectangle:(1020,453),(1076,497) label:person

Run the Python example with the live camera connected to port 0.

$ python3 main.py -i /dev/video0

Note: Choose the right port where the camera is currently connected. Use the v4l2-ctl --list-devices
command to check it.

9.1.3 Hand gesture detection demo

This application demonstrates hand detection and gesture detection. It detects objects on camera, video, or
image. Demo dependencies are from: /usr/bin/eiq-examples-git/gesture_detection.

• anchors.csv
• hand0.bmp
• hand_tracker.py
• main.py

The demo network model dependencies:

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
68 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

• palm_detection_builtin_256_integer_quant.tflite
• hand_landmark_3d_256_integer_quant.tflite

Run the Python example with the image input from the default location:

$ cd /usr/bin/eiq-examples-git/gesture_detection
$ python3 main.py -i hand0.bmp

Run the Python example with the live camera connected to port 0.

$ python3 main.py -i /dev/video0

Note: Choose the right port where the camera is currently connected. Use the v4l2-ctl --list-devices
command to check it.

9.1.4 Face recognition demo

This application is a demonstration for real-time face recognition. It uses pretrained yoloface model for face
detection, and facenet model to calculate face landmark. The demo supports the live camera input only.

Demo dependencies are from: /usr/bin/eiq-examples-git/face_recognition.

• face_database.py
• face_detection.py
• face_recognition.py
• main.py

The demo network model dependencies:

• yoloface_int8.tflite
• facenet_512_int_quantized.tflite

Before running the demo, connect a keyboard to the board.

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
69 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

1. Run the Python example with the live camera connected to port 0.

$ cd /usr/bin/eiq-examples-git/face_recognition
$ python3 main.py -i /dev/video0

Note: Choose the right port where the camera is currently connected. Use the v4l2-ctl --list-
devices command to check it.

2. Add a name to the face database.
Face the camera and press ‘a’ on the keyboard, which is connected to the board, and then input a new
name.

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
70 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

3. Delete the name from the face database.
Press ‘d’ on the keyboard, which is connected to the board, and then input the name.

10 Release Notes

10.1 Known issues and limitations
• Inline model compilation on i.MX 95 is not available.
• Hardware Accelerators on i.MX 8 does not support layers with dynamic shapes.
• The NPU on i.MX 8M Plus is not optimized for models with dynamic weights. The layers with dynamic weights

(for example, in the FullyConnected layer) are computed significantly slower.
• Some of the links for the models in the download_models.py script from Section 9.1 are no longer

available.

10.2 Release notes for LF6.12.20_2.0.0
General:

• For Neutron model conversion, eIQ Toolkit 1.16 includes newer Neutron converter tool, which optimizes the
model conversion speed.

• LLM model support with ONNX Runtime (CPU EP and Neutron EP) and LiteRT (CPU).

LiteRT:

• v1.2.0 is supported as an experimental feature for all devices, the same feature coverage as TFLite runtime.
• Only Python API is available for example development.
UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
71 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

ONNX Runtime:

• Upgraded to 1.22.0-pre-release (April 1st).
• Supports Neutron EP (MatMul operators) for the LLM model running on i.MX 95 as an experimental feature.
• Supports VsiNPU EP for CNN models running on i.MX 8 series.
• Supports MatMulNBits for CPU Execution provider and Neutron Execution provider, enabling matrix

multiplication with weights quantized to 8 bits and 4 bits.
• Integrated KleidiAI library into ONNX Runtime MLAS for enhanced performance on Arm architectures.

i.MX 93:

• Arm Vela Compiler updated to version 4.2.0.
• Ethos-U firmware supports build from source. It is available since MCU SDK25.06.00-pvw2.

i.MX 95:

• Neutron Software Stack upgraded.
• NPU Power Management feature supports clock gating and power gating.

i.MX 943:

• Neutron Software Stack supported.

10.3 Release notes for LF6.6.52_2.2.0
i.MX 95:

• Neutron Software Stack upgraded.
• Not support inline compilation, only the converted TensorFlow Lite model is interpreted by Neutron Runtime.
• Pre-compiled model specific binary in NeutronOp with significant performance improvement for inference.

10.4 Release notes for LF6.6.36_2.1.0
General:

• Arm Compute Library is removed since this release.

TensorFlow Lite:

• Upgraded to 2.16.2.
• Fixed missing PIL module when running the label_image Python example (label_image.py)
• Modified Flex delegate build onto a 2-stage process.

ONNX Runtime

• Fixed compilation with Yocto SDK.

i.MX 8M Plus:

• VX Delegate update and bug fixes
• TIM-VX update, and internal OVXLIB updated to 1.2.14.

i.MX 93:

• Arm Vela Compiler updated to version 3.12.
• Ethos-U software updated to 24.05.

i.MX 95:

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
72 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

• Neutron Software Stack upgraded.

10.5 Release notes for LF6.6.23_2.0.0
General:

• Added support for i.MX 91.

TensorFlow Lite:

• Upgraded to 2.15.0.
• Added GPU Delegate for i.MX 95. The GPU delegate is available in the C++ API.

ONNX Runtime

• Upgraded to 1.17.1.

PyTorch

• PyTorch framework not available by default in the BSP. Can be deployed using pip from the PyPI registry.

i.MX 8M Plus:

• VX Delegate update and bug fixes
• TIM-VX update and bug fixes.

i.MX 93:

• Arm Vela Compiler updated to version 3.11.
• Ethos-U software updated to 24.02.

i.MX 95:

• Added support to offload ML workload on the on-chip Arm Mali G310 GPU with TensorFlow Lite, using the
GPU Delegate.

• Added support for eIQ Neutron Neural Processing Unit using the inline compilation.
• Full NPU acceleration for mobilenetv1 and mobilenetv2 models or models with similar operators. Expect other

popular CNN models in the upcoming releases.

10.6 Release notes for LF6.6.3_1.0.0
General:

• Initial support for the i.MX 95 platform.

TensorFlow Lite:

• Upgraded to 2.14.0.
• Added helper script to generate reduced-size Flex Delegate Bazel artifacts.

i.MX 8M Plus:

• VX Delegate update and bug fixes
• TIM-VX update and bug fixes.

i.MX 93:

• Arm Vela Compiler updated to version 3.10.
• Ethos-U software updated to 23.11.

i.MX 95:

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
73 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

• Added eIQ for i.MX 95.
• Added support for eIQ Neutron Neural Processing Unit using offline compilation. The compiler is available in

the eIQ Toolkit.

10.7 Release notes for LF6.1.55_2.2.0
General:

• Model Runner was removed from Linux BSP.
The eIQ Toolkit deploys the compatible Model Runner instance automatically.

TensorFlow Lite:

• Upgraded to 2.12.1.

ONNX Runtime:

• Upgraded to 1.16.1.
• NNAPI execution provider support was removed.

i.MX 8M Plus:

• VX Delegate update and bug fixes.
• TIM-VX update and bug fixes.

i.MX 93:

• Arm Vela Compiler updated to version 3.9.
• Ethos-U software updated to 23.08.

eIQ Demos:

• Removed the support for AWS end-to-end SageMaker demo.

10.8 Release notes for LF6.1.36_2.1.0
TensorFlow Lite

• Upgraded to 2.11.1.
• Bug fixes.
• Added Flex Delegate support, including the binary size reduction described here: www.tensorflow.org/lite/

guide/reduce_binary_size

VX Delegate

• Synchronized with TensorFlow 2.11.1.
• Bug fixes.

DeepViewRT

• DeepViewRT inference engine was removed.

10.9 Release notes for LF6.1.22_2.0.0
VX Delegate

• Bug fixes.
• Added support for EmbeddingLookup, Cast, and BroadcastTo.
• Fixed performance on MobilenetV1, MobileNetV2, VGG16, VGG19, and NasNet Mobile.

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
74 / 115

http://www.tensorflow.org/lite/guide/reduce_binary_size
http://www.tensorflow.org/lite/guide/reduce_binary_size
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

ONNX Runtime

• Upgraded to 1.13.1.
• VSI-NPU Execution provider is obsolete and was removed from ONNX Runtime.
• Added support to run dynamic-shape models using NNAPI Execution Provider.

PyTorch

• Upgraded to 2.0.0.

DeepViewRT

• DeepViewRT inference engine is deprecated and will be removed in the future.

i.MX 93

• Arm Vela Compiler: Updated to version 3.7.

10.10 Release notes for LF6.1.1_1.0.0
TensorFlow Lite

• Upgraded to 2.10.0.
• Deprecated Ethos-U Custom operator on i.MX 93. The preferred way for models with Ethos-U Operator is

using the Ethos-U Delegate.

VX Delegate

• Bug fixes.
• Added support for UnidirectionalSequenceLSTM, BidirectionalSequenceLSTM, Shape, HashtableLookup

operators.
• Updated C++ Standard to C++17.
• Fixed TransposeConv2d operator.
• Known issue: Decreased performance on MobilenetV1, MobileNetV2, VGG16, VGG19, and NasNet Mobile.

i.MX 93

• Arm Vela Compiler: Updated to version 3.6.
• Introduced Ethos-U Delegate for i.MX 93.

eIQ Demos

• Added TensorFlow Lite demo application for i.MX 93.

10.11 Release notes for LF5.15.71_2.2.0
TensorFlow Lite

• Added option to inference diff tool to compare the inference to reference model. This enables validation of the
model on i.MX 93 accelerated by Ethos-U NPU.

• Ethos-U: Enables getting PMU counters from the NPU.
• Ethos-U: Uses one flash and Arena buffer for multiple Ethos-U Operators.

VX Delegate

• Bug fixes.
• Fixed failures with TensorFlow Lite kernel tests: expand_dims, LRN, strided-slice, resize, maximum,
minimum, and conv3d.

i.MX 93

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
75 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

• NPU profiling support.
• Ethos-u-driver-stack: Updated to version 22.08.
• Arm Vela Compiler: Updated to version 3.5.

10.12 Release notes for LF5.15.52_2.1.0
• General

– Added support for i.MX 93 platform, including NN acceleration on Ethos-U NPU.
• TensorFlow Lite

– TensorFlow Lite updated from version from 2.8.0. to 2.9.1. For details, see RELEASE.md in the source code
repository.

– Added support for Ethos-U HW acceleration for i.MX 93 platform.
• VX Delegate

– Added support for ReverseV2, UnidirectionalSequenceLSTM and Unpack operators.
– Fixed bug in reshape for inception_v1_224_quant model.
– Fixed Yolo-V4-tiny.
– Other minor bug fixes.

• TIM-VX
– TIM-VX updated from 1.1.42 to 1.1.50.

• Arm Compute Library
– Arm Compute Library updated from 21.08 to 22.05.

• DeepViewRT
– DeepViewRT updated from 2.4.42. to 2.4.46.

• eIQ Examples
– Resolved dependency issue due to Yocto BSP upgrade: AWS end-to-end SageMaker demo can be built

with latest Yocto BSP (LF5.15.52_2.1.0).

10.13 Release notes for LF5.15.32_2.0.0
• ArmNN inference engine was removed from eIQ.
• TensorFlow Lite

– TensorFlow Lite was updated from version 2.6.0 to 2.8.0. For details, see RELEASE.md in the source code
repository.

– Features and improvements:
– Fixed evaluation tools build with Yocto SDK. Prior to build of the evaluation tools with CMake,

it is necessary to build and install the required tooling (protobuf compiler - protoc). Use the
CMakeLists.txt from tensorflow/lite/tools/cmake/native_tools/.

• ONNX Runtime
– Features and improvements:

– ArmNN and ACL Execution providers were removed from eIQ.
– VSI_NPU backend is deprecated and will be removed in the future.
– NNAPI execution provider is experimental feature.

• TIM-VX
– TIM-VX was updated from 1.1.37 to 1.1.42.

• DeepViewRT
– DeepViewRT was updated from 2.4.37 to 2.4.42.

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
76 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

10.14 Release notes for LF5.15.5-1.0.0
• Arm NN inference engine is deprecated in this release and will be removed in the future.
• NNAPI Delegate of TensorFlow Lite and NNAPI Execution Provider of ONNX Runtime is deprecated and will

be removed in the future. For leveraging ML model acceleration use VX Delegate instead.
• TensorFlow Lite:

– Features and improvements:
– Fixed unit test build with TensorFlow Lite static library.
– Support FullyConnected layer with implicit bias in VX Delegate.
– Fix bug in stride_slice if end_dim set as -1 in VX Delegate.
– Other minor fixes.

• ONNX Runtime:
– Features and improvements:

– Version update from 1.8.2 to 1.10.0.
– Updated to GCC11 toolchain.
– NNAPI Execution Provider is ported from 1.5.3 (does not contain latest 1.10.0 updates) and it is

considered experimental. We do not suggest using it in production.
– Arm NN and ACL Execution providers are deprecated and will be removed in the future

• PyTorch upgraded to version 1.9.1.
• TIM-VX:

– Features and improvements:
– Version update from 1.1.34 to 1.1.37.
– DMA Buffer support.
– Support for additional operators (SVDF, GlobalPool2D, AdaptivePool2D, Erf, grouped Conv1D, Signal

Frame, RNN Cell, One Hot).
– Support Layout inference for additional operators (Batch Norm, Transpose, Fully Connected with no

explicit bias).
• DeepViewRT:

– Features and improvements:
– Version update from 2.4.36 to 2.4.37
– C and Python API for NPU support are available.
– Align modelrunner plugin with TFLite/Arm NN/ONNX Runtime inference engine.

– Issues and limitations:
– Bug fix for deepview-rt library and example codes.

10.15 Release notes for LF5.10.72-2.2.0
• TensorFlow Lite:

– Upgraded to version 2.6.0.
– VX Delegate changed to external delegate.
– Optimization of the PCQ Transpose Convolution operator on the NPU hardware accelerator.
– Python API support external Delegates:

– With this change, the label_image.py Python example support the use of external delegates with
arguments. See the help for more information.

– Python API supports using external delegate via the tflite.load_delegate() call.
– NNAPI delegate not available in Python API. For the model acceleration on the HW accelerator, the VX

delegate can be used:

ext_delegate = [tflite.load_delegate("/usr/lib/libvx_delegate.so")]

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
77 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

 interpreter
 = tflite.Interpreter(model_path=args.model_file,
 experimental_delegates=ext_delegate, num_threads=args.num_threads)

• Arm Compute Library:
– Features and improvements:

– Major version update from 21.02 to 21.08.
– Issues and limitations:

– Only the CPU-accelerated NEON backend is being built. Use Arm NN with the VSI NPU backend to
leverage acceleration on the GPU or the NPU.

• Arm NN:
– Features and improvements:

– Major version update from 21.02 to 21.08.
– TensorFlow Parser, Caffe Parser and Quantizer were removed and are no longer available. Only ONNX

Parser, TensorFlow Lite Parser and Arm NN Delegate for TF Lite are now available to load .tflite and
.onnx models.

– See full list of changes added by the community.
– Issues and limitations:

– Only ACL NEON backend is being built. Use the VSI NPU Backend instead of ACL OpenCL to leverage
acceleration on the GPU or the NPU.

– There are significant performance optimizations for the NPU to TransposeConv2D which are not
supported in the VSI NPU backend. If your model uses TransposeConv2D heavily try to use TF Lite with
VXDelegate instead.

• ONNX Runtime:
– Features and improvements:

– Minor version update from 1.8.1 to 1.8.2.
– Experimental Python API enablement including support for all available Execution Providers (CPU, ACL,

Arm NN, NNAPI, VSI NPU).
– Added /usr/bin/onnxruntime-1.8.2/onnxruntime_peft_test. Use this instead of

onnx_test_runner to measure performance of your model.
– Fixed verbose logging during inference on NPU.
– Updated ACL and Arm NN Backends to leverage ACL and Arm NN 21.08.
– All ONNX Runtime artifacts are being installer to /usr/bin/onnxruntime-1.8.2 instead of /usr/

bin.
– See full list of changes added by the community.

– Issues and limitations:
– There are significant performance optimizations for the NPU to TransposeConv2D which are not

supported in the VSI NPU Execution Provider. If your model uses TransposeConv2D heavily try to use
TF Lite with VXDelegate instead.

– Running SqueezeNet with the NNAPI execution provider produces incorrect results.
• DeepViewRT:

– Features and improvements:
– Minor version update from 2.4.30 to 2.4.36.
– C API for NPU support is available.
– Performance optimization for DeepViewRT CPU.
– Bug fix for shuffle layer.

– Issues and limitations:
– nn_tensor_load_file_ex is one convenience function and not well optimized.

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
78 / 115

https://arm-software.github.io/ComputeLibrary/v21.02/index.xhtml#S2_2_changelog
https://github.com/ARM-software/ComputeLibrary/releases/tag/v21.08
https://github.com/ARM-software/armnn/releases
https://github.com/microsoft/onnxruntime/releases
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

11 List of Used Variables

The following table provides the summary of used variables described in this document for the particular
inference engine. Use the export command to apply these variables.

Variable name Description

CNN_PERF 0: Disable (default)
1: Prints the execution time for each operation (requires VIV_VX_
DEBUG_LEVEL=1). If VIV_VX_PROFILE=1 is set, the default value is
1.

NN_EXT_SHOW_PERF 0: Disable (default)
1: Shows more profiling details (requires VIV_VX_DEBUG_LEVEL=1)

PATH_ASSETS Sets the export path for user assets.

USE_GPU_INFERENCE Selection between the 3D GPU (1) and the NPU (otherwise).

VIV_VX_CACHE_BINARY_GRAPH_DIR Specifies the path of the cached NBG. Default is the current work
directory.

VIV_VX_DEBUG_LEVEL 0: Disable (default)
1: Prints the debug information of driver on the console. Generally,
this environment variable is used together with other environment
variables to print logs.

VIV_VX_ENABLE_CACHE_GRAPH_BINARY 0: Disable (default)
1: Enables graph cache mode. The network loads the NBG file to run
if the cached NBG file exists. Otherwise, it generates an NBG file. It
can save the time for the verification stage.

VIV_MEMORY_PROFILE 0: Disable (default)
1: Prints the memory footprint of the system (CPU) and GPU (VIP)
(requires VIV_VX_DEBUG_LEVEL=1)

VIV_VX_PROFILE 0: Disable (default)
1: Prints the DDR read and write bandwidth, AXI_SRAM read and
write bandwidth, and the cycle count of VIP execution. The counter is
per-node-process (requires VIV_VX_DEBUG_LEVEL=1).
2: Prints the DDR read and write bandwidth, AXI_SRAM read and
write bandwidth, and the cycle count of VIP execution. The counter is
per-graph-process (requires VIV_VX_DEBUG_LEVEL=1).

Table 11. System variables summary

12 Neural Network API Reference

The neural-network operations and corresponding supported API functions are listed in the following table. See
also Section 2.2.3 for details about supported operators.

Op Category/Name TensorFlow Lite 2.8.0 ONNX 1.22.0

Activation

elu ELU Elu

gelu - Gelu

floor Floor Floor

Table 12. Neural-network operations and supported API functions

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
79 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Op Category/Name TensorFlow Lite 2.8.0 ONNX 1.22.0

leakyrelu - LeakyReL

prelu PRELU PreLu

relu RELU ReLu

relu1 RELU1 -

relu6 RELU6 -

Hard_swish HARD_SWISH -

rsqrt RSQRT -

selu - Selu

sigmoid LOGISTIC Sigmoid

softplus - Softplus

softmax SOFTMAX Softmax

softrelu - -

sqrt SQRT Sqrt

tanh TANH TanH

bounded - -

linear - -

Dense Layers

dense - -

Element Wise

abs ABS Abs

add ADD Add

clip_by_value - Clip

div DIV Div

equal EQUAL Equal

exp EXP Exp

log LOG Log

greater GREATER Greater

greater_equal GREATER_EQUAL -

less LESS Less

less_equal LESS_EQUAL -

logical_and LOGICAL_AND And

logical_or LOGICAL_OR Or

minimum MINIMUM Min

maximum MAXIMUM Max

multiply MUL Mul

negative NEG Neg

Table 12. Neural-network operations and supported API functions...continued

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
80 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Op Category/Name TensorFlow Lite 2.8.0 ONNX 1.22.0

not_equal NOT_EQUAL -

pow POW POW

select SELECT -

square - -

sub SUB Sub

where - Where

Image Processing

resize_bilinear RESIZE_BILINEAR Unsample

resize_nearest_neighbor RESIZE_NEAREST_NEIGHBOR Resize

Matrix Multiplication

fullconnect FULLY_CONNECTED -

matrix_mul - -

MatMulInteger - MatMulInteger

MatMulIntegerToFloat - MatMulIntegerToFloat

MatMulNBits - MatMulNBits

QLinearMatMul - QLinearMatMul

Normalization -

batch_normalize - BatchNormalization

instance _normalize - InstanceNormalization

l2normalize L2_NORMALIZATION -

localresponsenormalization LOCAL_RESPONSE_
NORMALIZATION

LRN

Reshape

batch2space BATH_TO_SPACE_ND -

concat CONCATENATION Concat

depth_to_space DEPTH_TO_SPACE DepthToSpace

expanddims EXPAND_DIMS -

flatten - -

gather GATHER Gather

pad PAD Pad

permute TRANSPOSE Transpose

reducemean MEAN ReduceMean

reducesum REDUCE_SUM ReduseSum

gathernd - GatherND

reducemax REDUCE_MAX ReduceMax

reducemin REDUCE_MIN ReduceMin

reduceproduct - -

Table 12. Neural-network operations and supported API functions...continued

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
81 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Op Category/Name TensorFlow Lite 2.8.0 ONNX 1.22.0

reshape RESHAPE Reshape

reverse - ReverseSequence

slice SLICE Slice

space2batch SPACE_TO_BATCH_ND -

split SPLIT Split

squeeze SQUEEZE Squeeze

transpose - Transpose

strided_slice STRIDED_SLICE -

unstack - -

RNN

gru - GRU

lstm UNIDIRECTIONAL_
SEQUEENCE_LSTM

-

lstmunit LSTM LSTM

rnn RNN -

Sliding Window

avg_pool AVERAGE_POOL_2D AveragePool

convolution CONV_2D Conv

deconvolution TRANSPOSE_CONV ConvTranspose

depthhwise_convolution DEPTHWISE_CONV_2D -

Log_softmax LOG_SOFTMAX Logsoftmax

l2pooling L2_POOL_2D -

max_pool MAX_POOL_2D MaxPool

Others

argmax ARGMAX ArgMax

argmin ARGMIN ArgMin

dequantize DEQUANTIZE DequantizeLinear

quantize QUANTIZE QuantizeLinear

roi_pool - -

shuffle_channel - -

tile TILE Tile

svdf SVDF -

embedding_lookup EMBEDDING_LOOKUP -

cast CAST Cast

ssd - -

Table 12. Neural-network operations and supported API functions...continued

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
82 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

13 OVXLIB Operation Support with GPU

This section provides a summary of the neural network OVXLIB operations supported by the NXP Graphics
Processing Unit (GPU) IP with hardware support for OpenVX and OpenCL and a compatible Software stacks.
OVXLIB operations are listed in the following table.

The following abbreviations are used for format types:

• asym-u8: asymmetric_affine-uint8
• asym-i8: asymmetric_affine-int8
• fp32: float32
• pc-sym-i8: perchannel_symmetric_int8
• fp16: float16
• bool8: bool8
• int16: int16
• int32: int32

Tensors Execution EngineOVXLIB Operations

Input Kernel Output OpenVX OpenCL

Basic Operations

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔ ✔

VSI_NN_OP_CONV2D

fp16 fp16 fp16 ✔ ✔

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔ ✔

VSI_NN_OP_CONV1D

fp16 fp16 fp16 ✔ ✔

asym-u8 asym-u8 asym-u8 ✔VSI_NN_OP_DEPTHWISE_
CONV1D asym-i8 asym-i8 asym-i8 ✔

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔ ✔

VSI_NN_OP_DECONVOLUTION1D

fp16 fp16 fp16 ✔ ✔

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔ ✔

VSI_NN_OP_DECONVOLUTION

fp16 fp16 fp16 ✔ ✔

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔ ✔

VSI_NN_OP_FCL

fp16 fp16 fp16 ✔ ✔

Table 13. OVXLIB operation support with GPU

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
83 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Tensors Execution EngineOVXLIB Operations

Input Kernel Output OpenVX OpenCL

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔ ✔

VSI_NN_OP_GROUPED_CONV1D

fp16 fp16 fp16 ✔ ✔

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔ ✔

VSI_NN_OP_GROUPED_CONV2D

fp16 fp16 fp16 ✔ ✔

Activation Operations

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_ELU

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_HARD_SIGMOID

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_SWISH

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_LEAKY_RELU

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_PRELU

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_RELU

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔VSI_NN_OP_RELUN

asym-i8 asym-i8 ✔ ✔

Table 13. OVXLIB operation support with GPU...continued

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
84 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Tensors Execution EngineOVXLIB Operations

Input Kernel Output OpenVX OpenCL

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_RSQRT

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_SIGMOID

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_SOFTRELU

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_SQRT

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_TANH

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_ABS

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_CLIP

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_EXP

fp16 fp16 ✔ ✔

VSI_NN_OP_LOG asym-u8 asym-u8 ✔ ✔

Table 13. OVXLIB operation support with GPU...continued

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
85 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Tensors Execution EngineOVXLIB Operations

Input Kernel Output OpenVX OpenCL

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_NEG

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_MISH

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_LINEAR

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_ERF

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_SOFTMAX

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_LOG_SOFTMAX

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_SQUARE

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_SIN

fp16 fp16 ✔ ✔

Table 13. OVXLIB operation support with GPU...continued

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
86 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Tensors Execution EngineOVXLIB Operations

Input Kernel Output OpenVX OpenCL

Elementwise Operations

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_ADD

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_SUBTRACT

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_MULTIPLY

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_DIVIDE

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_MAXIMUN

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_MINIMUM

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_POW

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_FLOORDIV

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔VSI_NN_OP_MATRIXMUL

asym-i8 asym-i8 ✔ ✔

Table 13. OVXLIB operation support with GPU...continued

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
87 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Tensors Execution EngineOVXLIB Operations

Input Kernel Output OpenVX OpenCL

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

asym-u8 bool8 ✔ ✔

asym-i8 bool8 ✔ ✔

fp32 bool8 ✔ ✔

fp16 bool8 ✔ ✔

VSI_NN_OP_RELATIONAL_OPS

bool8 bool8 ✔ ✔

VSI_NN_OP_LOGICAL_OPS bool8 bool8 ✔ ✔

VSI_NN_OP_LOGICAL_NOT bool8 bool8 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

VSI_NN_OP_SELECT

bool8 bool8 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_ADDN

fp16 fp16 ✔ ✔

Normalization Operations

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_BATCH_NORM

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_LRN

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_LRN2

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_L2_NORMALIZE

fp16 fp16 ✔ ✔

Table 13. OVXLIB operation support with GPU...continued

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
88 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Tensors Execution EngineOVXLIB Operations

Input Kernel Output OpenVX OpenCL

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_L2NORMALZESCALE

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_LAYER_NORM

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_INSTANCE_NORM

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_GROUP_NORM

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_BATCHNORM_SINGLE

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_MOMENTS

fp16 fp16 ✔ ✔

Reshape Operations

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_EXPAND_
BROADCAST

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_SLICE

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔VSI_NN_OP_SPLIT

asym-i8 asym-i8 ✔ ✔

Table 13. OVXLIB operation support with GPU...continued

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
89 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Tensors Execution EngineOVXLIB Operations

Input Kernel Output OpenVX OpenCL

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_CONCAT

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_STACK

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_UNSTACK

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_RESHAPE

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_SQUEEZE

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_PERMUTE

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_REORG

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_SPACE2DEPTH

fp16 fp16 ✔ ✔

VSI_NN_OP_DEPTH2SPACE asym-u8 asym-u8 ✔ ✔

Table 13. OVXLIB operation support with GPU...continued

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
90 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Tensors Execution EngineOVXLIB Operations

Input Kernel Output OpenVX OpenCL

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_BATCH2SPACE

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_SPACE2BATCH

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_PAD

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_REVERSE

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_STRIDED_SLICE

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_CROP

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_REDUCE

fp16 fp16 ✔ ✔

asym-u8 asym-u8/int16/
int32

✔ ✔

asym-i8 asym-u8/int16/
int32

✔ ✔

VSI_NN_OP_ARGMX

fp32 int32 ✔ ✔

Table 13. OVXLIB operation support with GPU...continued

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
91 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Tensors Execution EngineOVXLIB Operations

Input Kernel Output OpenVX OpenCL

fp16 asym-u8/int16/
int32

✔ ✔

asym-u8 asym-u8/int16/
int32

✔ ✔

asym-i8 asym-u8/int16/
int32

✔ ✔

fp32 int32 ✔ ✔

VSI_NN_OP_ARGMIN

fp16 asym-u8/int16/
int32

✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_SHUFFLECHANNEL

fp16 fp16 ✔ ✔

RNN Operations

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔ ✔

VSI_NN_OP_LSTMUNIT_OVXLIB

fp16 fp16 fp16 ✔ ✔

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔ ✔

VSI_NN_OP_LSTM_OVXLIB

fp16 fp16 fp16 ✔ ✔

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔ ✔

VSI_NN_OP_GRUCELL_OVXLIB

fp16 fp16 fp16 ✔ ✔

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔ ✔

VSI_NN_OP_GRU_OVXLIB

fp16 fp16 fp16 ✔ ✔

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔ ✔

VSI_NN_OP_SVDF

fp16 fp16 fp16 ✔ ✔

Pooling Operations

asym-u8 asym-u8 ✔ ✔VSI_NN_OP_ROI_POOL

asym-i8 asym-i8 ✔ ✔

Table 13. OVXLIB operation support with GPU...continued

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
92 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Tensors Execution EngineOVXLIB Operations

Input Kernel Output OpenVX OpenCL

fp32 fp32 ✔ ✔

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_POOLWITHARGMAX

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_UPSAMPLE

fp16 fp16 ✔ ✔

Miscellaneous Operations

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_PROPOSAL

fp16 fp16 ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_VARIABLE

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_DROPOUT

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_RESIZE

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_INTERP

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_DATACONVERT

fp16 fp16 ✔ ✔

Table 13. OVXLIB operation support with GPU...continued

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
93 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Tensors Execution EngineOVXLIB Operations

Input Kernel Output OpenVX OpenCL

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_A_TIMES_B_PLUS_C

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_FLOOR

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_EMBEDDING_
LOOKUP

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_GATHER

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_GATHER_ND

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_SCATTER_ND

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_TILE

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_RELU_KERAS

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

VSI_NN_OP_ELTWISEMAX

fp32 fp32 ✔ ✔

Table 13. OVXLIB operation support with GPU...continued

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
94 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Tensors Execution EngineOVXLIB Operations

Input Kernel Output OpenVX OpenCL

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_INSTANCE_NORM

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_FCL2

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_POOL

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_SIGNAL_FRAME

fp16 fp16 ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_CONCATSHIFT

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

VSI_NN_OP_UPSAMPLESCALE

fp16 fp16 ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_ROUND

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_CEIL

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

VSI_NN_OP_SEQUENCE_MASK

fp32 fp32 ✔ ✔

Table 13. OVXLIB operation support with GPU...continued

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
95 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Tensors Execution EngineOVXLIB Operations

Input Kernel Output OpenVX OpenCL

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_REPEAT

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_ONE_HOT

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔ ✔

VSI_NN_OP_CAST

fp16 fp16 ✔ ✔

Table 13. OVXLIB operation support with GPU...continued

14 OVXLIB Operation Support with NPU

This section provides a summary of the neural network OVXLIB operations supported by the NXP Neural
Processor Unit (NPU) IP and a compatible Software stacks. OVXLIB operations are listed in the following table.

The following abbreviations are used for format types:

• asym-u8: asymmetric_affine-uint8
• asym-i8: asymmetric_affine-int8
• fp32: float32
• pc-sym-i8: perchannel_symmetric-int8
• fp16: float16
• bool8: bool8
• int16: int16
• int32: int32

The following abbreviations are used to reference key Execution Engines (NPU) in the hardware:

• NN: Neural-Network Engine

• PPU: Parallel Processing Unit

• TP: Tensor Processor

Tensors Execution Engine (NPU)OVXLIB Operations

Input Kernel Output NN TP PPU

Basic Operations

asym-u8 asym-u8 asym-u8 ✔VSI_NN_OP_CONV2D

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

Table 14. OVXLIB operation support with NPU

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
96 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Tensors Execution Engine (NPU)OVXLIB Operations

Input Kernel Output NN TP PPU

fp32 fp32 fp32 ✔

fp16 fp16 fp16 ✔

asym-u8 asym-u8 asym-u8 ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔

VSI_NN_OP_CONV1D

fp16 fp16 fp16 ✔

asym-u8 asym-u8 asym-u8 ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔

VSI_NN_OP_CONV3D

fp16 fp16 fp16 ✔

asym-u8 asym-u8 asym-u8 ✔VSI_NN_OP_DEPTHWISE_CONV1D

asym-i8 asym-i8 asym-i8 ✔

asym-u8 asym-u8 asym-u8 ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔

VSI_NN_OP_DECONVOLUTION

fp16 fp16 fp16 ✔

asym-u8 asym-u8 asym-u8 ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔

VSI_NN_OP_DECONVOLUTION1D

fp16 fp16 fp16 ✔

asym-u8 asym-u8 asym-u8 ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔

VSI_NN_OP_FCL

fp16 fp16 fp16 ✔

asym-u8 asym-u8 asym-u8 ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔

VSI_NN_OP_GROUPED_CONV1D

fp16 fp16 fp16 ✔

asym-u8 asym-u8 asym-u8

asym-i8 pc-sym-i8 asym-i8 ✔

fp32 fp32 fp32 ✔

VSI_NN_OP_GROUPED_CONV2D

fp16 fp16 fp16 ✔

Activation Operations

asym-u8 asym-u8 ✔VSI_NN_OP_ELU

asym-i8 asym-i8 ✔

Table 14. OVXLIB operation support with NPU...continued

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
97 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Tensors Execution Engine (NPU)OVXLIB Operations

Input Kernel Output NN TP PPU

fp32 fp32 ✔

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_HARD_SIGMOID

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_SWISH

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_LEAKY_RELU

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_PRELU

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_RELU

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_RELUN

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_RSQRT

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_SIGMOID

fp16 fp16 ✔

VSI_NN_OP_SOFTRELU asym-u8 asym-u8 ✔

Table 14. OVXLIB operation support with NPU...continued

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
98 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Tensors Execution Engine (NPU)OVXLIB Operations

Input Kernel Output NN TP PPU

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_SQRT

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_TANH

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_ABS

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_CLIP

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_EXP

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_LOG

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_NEG

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_MISH

fp16 fp16 ✔

Table 14. OVXLIB operation support with NPU...continued

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
99 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Tensors Execution Engine (NPU)OVXLIB Operations

Input Kernel Output NN TP PPU

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_SOFTMAX

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_LOG_SOFTMAX

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_SQUARE

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_SIN

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_LINEAR

fp16 fp16 ✔

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔

VSI_NN_OP_ERF

fp16 fp16 ✔ ✔

Elementwise Operations

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_ADD

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_SUBTRACT

fp16 fp16 ✔

asym-u8 asym-u8 ✔VSI_NN_OP_MULTIPLY

asym-i8 asym-i8 ✔

Table 14. OVXLIB operation support with NPU...continued

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
100 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Tensors Execution Engine (NPU)OVXLIB Operations

Input Kernel Output NN TP PPU

fp32 fp32 ✔

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_DIVIDE

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_MAXIMUN

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_MINIMUM

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_POW

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_FLOORDIV

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_MATRIXMUL

fp16 fp16 ✔

asym-u8 bool8 ✔

asym-i8 bool8 ✔

fp32 bool8 ✔

fp16 bool8 ✔

VSI_NN_OP_RELATIONAL_OPS

bool8 bool8 ✔

VSI_NN_OP_LOGICAL_OPS bool8 bool8 ✔

VSI_NN_OP_LOGICAL_NOT bool8 bool8 ✔

asym-u8 asym-u8 ✔VSI_NN_OP_SELECT

asym-i8 asym-i8 ✔

Table 14. OVXLIB operation support with NPU...continued

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
101 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Tensors Execution Engine (NPU)OVXLIB Operations

Input Kernel Output NN TP PPU

fp32 fp32 ✔

fp16 fp16 ✔

bool8 bool8 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_ADDN

fp16 fp16 ✔

Normalization Operations

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_BATCH_NORM

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_LRN

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_LRN2

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_L2_NORMALIZE

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_L2NORMALZESCALE

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_LAYER_NORM

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

VSI_NN_OP_INSTANCE_NORM

fp32 fp32 ✔

Table 14. OVXLIB operation support with NPU...continued

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
102 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Tensors Execution Engine (NPU)OVXLIB Operations

Input Kernel Output NN TP PPU

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_BATCHNORM_SINGLE

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_MOMENTS

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_GROUP_NORM

fp16 fp16 ✔

Reshape Operations

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_EXPAND_
BROADCAST

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_SLICE

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_SPLIT

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_CONCAT

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_STACK

fp16 fp16 ✔

VSI_NN_OP_UNSTACK asym-u8 asym-u8 ✔

Table 14. OVXLIB operation support with NPU...continued

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
103 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Tensors Execution Engine (NPU)OVXLIB Operations

Input Kernel Output NN TP PPU

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_RESHAPE

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_SQUEEZE

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_PERMUTE

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_REORG

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_SPACE2DEPTH

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

VSI_NN_OP_DEPTH2SPACE

bool8 bool8

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_BATCH2SPACE

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

VSI_NN_OP_SPACE2BATCH

fp32 fp32 ✔

Table 14. OVXLIB operation support with NPU...continued

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
104 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Tensors Execution Engine (NPU)OVXLIB Operations

Input Kernel Output NN TP PPU

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_PAD

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_REVERSE

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_STRIDED_SLICE

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_CROP

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_REDUCE

fp16 fp16 ✔

asym-u8 asym-u8/int16/
int32

✔

asym-i8 asym-u8/int16/
int32

✔

fp32 int32 ✔

VSI_NN_OP_ARGMAX

fp16 asym-u8/int16/
int32

✔

asym-u8 asym-u8/int16/
int32

✔

asym-i8 asym-u8/int16/
int32

✔

fp32 int32 ✔

VSI_NN_OP_ARGMIN

fp16 asym-u8/int16/
int32

✔

asym-u8 asym-u8 ✔VSI_NN_OP_SHUFFLECHANNEL

asym-i8 asym-i8 ✔

Table 14. OVXLIB operation support with NPU...continued

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
105 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Tensors Execution Engine (NPU)OVXLIB Operations

Input Kernel Output NN TP PPU

fp32 fp32 ✔

fp16 fp16 ✔

RNN Operations

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔

VSI_NN_OP_LSTMUNIT_OVXLIB

fp16 fp16 fp16 ✔ ✔

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔

VSI_NN_OP_LSTM_OVXLIB

fp16 fp16 fp16 ✔ ✔

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔

VSI_NN_OP_GRUCELL_OVXLIB

fp16 fp16 fp16 ✔ ✔

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔

VSI_NN_OP_GRU_OVXLIB

fp16 fp16 fp16 ✔ ✔

asym-u8 asym-u8 asym-u8 ✔ ✔

asym-i8 pc-sym-i8 asym-i8 ✔ ✔

fp32 fp32 fp32 ✔

VSI_NN_OP_SVDF

fp16 fp16 fp16 ✔ ✔

Pooling Operations

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔

VSI_NN_OP_ROI_POOL

fp16 fp16 ✔ ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_POOLWITHARGMAX

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

VSI_NN_OP_UPSAMPLE

fp32 fp32 ✔

Table 14. OVXLIB operation support with NPU...continued

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
106 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Tensors Execution Engine (NPU)OVXLIB Operations

Input Kernel Output NN TP PPU

fp16 fp16 ✔

Miscellaneous Operations

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_PROPOSAL

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_VARIABLE

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_DROPOUT

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_RESIZE

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_INTERP

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_DATACONVERT

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_A_TIMES_B_PLUS_C

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_FLOOR

fp16 fp16 ✔

VSI_NN_OP_EMBEDDING_
LOOKUP

asym-u8 asym-u8 ✔

Table 14. OVXLIB operation support with NPU...continued

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
107 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Tensors Execution Engine (NPU)OVXLIB Operations

Input Kernel Output NN TP PPU

asym-i8 asym-i8 ✔

fp32 fp32 ✔

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_GATHER

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_GATHER_ND

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_SCATTER_ND

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_TILE

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_RELU_KERAS

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_ELTWISEMAX

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_INSTANCE_NORM

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_FCL2

fp16 fp16 ✔

Table 14. OVXLIB operation support with NPU...continued

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
108 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Tensors Execution Engine (NPU)OVXLIB Operations

Input Kernel Output NN TP PPU

asym-u8 asym-u8 ✔ ✔

asym-i8 asym-i8 ✔ ✔

fp32 fp32 ✔

VSI_NN_OP_POOL

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_SIGNAL_FRAME

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_CONCATSHIFT

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

VSI_NN_OP_UPSAMPLESCALE

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_ROUND

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_CEIL

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_SEQUENCE_MASK

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_REPEAT

fp16 fp16 ✔

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_ONE_HOT

fp16 fp16 ✔

Table 14. OVXLIB operation support with NPU...continued

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
109 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Tensors Execution Engine (NPU)OVXLIB Operations

Input Kernel Output NN TP PPU

asym-u8 asym-u8 ✔

asym-i8 asym-i8 ✔

fp32 fp32 ✔

VSI_NN_OP_CAST

fp16 fp16 ✔

Table 14. OVXLIB operation support with NPU...continued

15 Note About the Source Code in the Document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2025 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

16 Revision History

This table provides the revision history.

Document ID Release date Description

UG10166 v.LF6.12.20_2.0.0 26 June 2025 Upgraded to the 6.12.20 kernel.

UG10166 v.LF6.12.3_1.0.0 30 April 2025 Updated the command in Section 4.1.

UG10166 v.LF6.12.3_1.0.0 31 March 2025 Upgraded to the 6.12.3 kernel.

UG10166 v.LF6.6.52_2.2.0 16 December 2024 Upgraded to the 6.6.52 kernel.

UG10166 v.LF6.6.36_2.1.0 30 September
2024

Upgraded to the 6.6.36 kernel.

IMXMLUG_6.6.23_2.0.0 28 June 2024 Upgraded to the 6.6.23 kernel, U-Boot v2024.04, TF-A
v2.10, OP-TEE 4.2.0, Yocto 5.0 Scarthgap, and added the
i.MX 91 as Alpha quality, i.MX 95 as Beta quality.

Revision history

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
110 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Document ID Release date Description

IMXMLUG v.LF6.6.3_1.0.0 29 March 2024 Upgraded to the 6.6.3 kernel, removed the i.MX 91P, and
added the i.MX 95 as Alpha Quality.

IMXMLUG v.LF6.1.55_2.2.0 12/2023 Upgraded to the 6.1.55 kernel.

IMXMLUG v.LF6.1.36_2.1.0 09/2023 Upgraded to the 6.1.36 kernel.

IMXMLUG v.LF6.1.22_2.0.0 06/2023 Upgraded to the 6.1.22 kernel.

IMXMLUG v.LF6.1.1_1.0.0 03/2023 Upgraded to the 6.1.1 kernel.

IMXMLUG v.LF5.15.71_2.2.0 12/2022 Upgraded to the 5.15.71 kernel.

IMXMLUG v.LF5.15.52_2.1.0 09/2022 Upgraded to the 5.15.52 kernel, and added the i.MX 93.

IMXMLUG v.LF5.15.32_2.0.0 06/2022 Upgraded to the 5.15.32 kernel, U-Boot 2022.04, and
Kirkstone Yocto.

IMXMLUG v.LF5.15.5_1.0.0 03/2022 Upgraded to the 5.15.5 kernel, Honister Yocto, and Qt6.

IMXMLUG v.LF5.10.72_2.2.0 12/2021 Upgraded the kernel to 5.10.72 and updated the BSP.

IMXMLUG v.LF5.10.52_2.1.0 09/2021 Updated for i.MX 8ULP Alpha and the kernel upgraded to
5.10.52.

IMXMLUG v.LF5.10.35_2.0.0 06/2021 Upgraded to Yocto Project Hardknott and the kernel
upgraded to 5.10.35.

IMXMLUG v.L5.4.70_2.3.2 04/2021 Patch release.

IMXMLUG v.LF5.10.9_1.0.0 03/2021 Kernel upgrade to 5.10.9 and Machine Learning upgrades.

IMXMLUG v.L5.4.70_2.3.0 01/2021 i.MX 5.4 consolidated GA for release i.MX boards including i.
MX 8M Plus and i.MX 8DXL.

IMXMLUG v.L5.4.47_2.2.0 09/2020 Initial release.

Revision history...continued

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
111 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

HTML publications — An HTML version, if available, of this document is
provided as a courtesy. Definitive information is contained in the applicable
document in PDF format. If there is a discrepancy between the HTML
document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
112 / 115

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Amazon Web Services, AWS, the Powered by AWS logo, and FreeRTOS
— are trademarks of Amazon.com, Inc. or its affiliates.
AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, μVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

Cadence — the Cadence logo, and the other Cadence marks found at www.
cadence.com/go/trademarks are trademarks or registered trademarks of
Cadence Design Systems, Inc. All rights reserved worldwide.
eIQ — is a trademark of NXP B.V.
IAR — is a trademark of IAR Systems AB.
PyTorch, the PyTorch logo and any related marks — are trademarks of
The Linux Foundation.
TensorFlow, the TensorFlow logo and any related marks — are
trademarks of Google Inc.

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
113 / 115

https://www.cadence.com/go/trademarks
https://www.cadence.com/go/trademarks
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

Contents
1 Software Stack Introduction 2
2 TensorFlow Lite ... 3
2.1 TensorFlow Lite software stack 3
2.2 Inference backends and delegates4
2.2.1 Built-in kernels ... 5
2.2.2 XNNPACK Delegate .. 5
2.2.3 VX Delegate .. 5
2.2.4 Ethos-U Delegate .. 5
2.2.5 Neutron Delegate .. 5
2.2.6 GPU Delegate ... 6
2.3 Delivery package ... 6
2.4 Build details ... 6
2.5 Application development7
2.5.1 Create CMake project which uses

TensorFlow Lite ... 7
2.5.2 Using Yocto SDK precompiled libraries 8
2.6 Enabling TensorFlow Operators in

TensorFlow Lite Runtime 9
2.6.1 TensorFlow and TensorFlow Lite Operator

Set ... 9
2.6.2 Building the TensorFlow Lite Library with

the Flex Delegate for i.MX Linux platforms 9
2.6.2.1 Checking out the TensorFlow repository10
2.6.2.2 Setting up Docker VM 10
2.6.2.3 Building the TensorFlow Lite with Flex

Delegate ...10
2.6.3 Reducing the size of the Flex Delegate

library ... 11
2.6.4 Flex Delegate deployment on NXP i.MX

Linux platform .. 12
2.6.5 Using hardware accelerators13
2.6.6 Flex Delegate limitations 13
2.7 Running image classification example14
2.7.1 Running the example on the i.MX 8

platform hardware accelerator 14
2.7.2 Running the example on the i.MX 93

platform with Ethos-U 15
2.7.3 Running the example on the i.MX 9

platform with Neutron-S15
2.7.4 Running the Python example 16
2.7.5 Running the example on the i.MX 95

platform using GPU ... 16
2.8 Running benchmark applications17
2.9 Post training quantization using TensorFlow

Lite converter ...19
2.10 TensorFlow Lite for Microcontrollers on

Xtensa HiFi4 core ..20
3 ONNX Runtime ...21
3.1 ONNX Runtime software stack22
3.2 ONNX model test .. 23
3.2.1 Running a CNN model 24
3.2.2 Running an LLM model 24
3.3 ONNX performance test 28
4 PyTorch ...28
4.1 Installing PyTorch ...28
4.2 Running image classification example29

5 TVM ... 29
5.1 TVM software workflow 29
5.2 Getting started ... 30
5.2.1 Running example with RPC verification30
5.2.2 Running example individually on device 31
5.3 How to build TVM stack on host31
5.4 Supported models ..32
6 LiteRT (Experimental)33
6.1 Migrating to LiteRT from TensorFlow Lite 33
6.2 Running the example33
6.3 Running the example on the i.MX 8

platform hardware accelerator 33
6.4 Running the example on the i.MX 93

platform with Ethos-U 34
6.5 Running the example on the i.MX 9

platform with Neutron-S34
7 NN Execution on Hardware Accelerators 34
7.1 Hardware acceleration on i.MX 8 Series34
7.1.1 Hardware accelerator description 34
7.1.2 Profiling on hardware accelerators 35
7.1.3 Hardware accelerators warmup time 36
7.1.4 Switching between GPU and NPU 36
7.1.5 Per-tensor vs. per-channel quantization 37
7.2 Hardware acceleration with Ethos-U on

i.MX 93 platform .. 37
7.2.1 Ethos-U subsystem overview 37
7.2.2 Ethos-U software architecture 38
7.2.3 Getting started ... 39
7.2.4 Vela tool ...40
7.2.4.1 Installing the Vela tool 40
7.2.4.2 Compiling the TFLite model41
7.2.5 Inference with Ethos-U inference API42
7.2.5.1 Ethos-U driver library42
7.2.5.2 Ethos-U Linux kernel driver interface44
7.2.5.3 Device and Buffer class45
7.2.5.4 Network class .. 45
7.2.5.5 Inference class .. 46
7.2.5.6 How to use the inference API47
7.2.5.7 Interpreter class ...48
7.2.5.8 Interpreter Python wrapper49
7.2.6 Inference with TensorFlow Lite 49
7.2.6.1 Ethos-U Delegate .. 49
7.2.6.2 Delivery package ... 49
7.2.6.3 Running image classification example49
7.2.6.4 Hardware accelerators warmup time 50
7.2.6.5 Ethos-U performance enhancement with

memory zero-copy ...50
7.2.7 Building and deploying the Ethos-U

firmware ... 50
7.2.7.1 Getting the source ... 50
7.2.7.2 Ethos-U example applications 51
7.2.7.3 Deploy procedure .. 52
7.2.7.4 Using the Ethos-U on Cortex-M53
7.2.8 Memory hierarchy for Cortex-M54
7.2.9 Supported ML operators and constraints55
7.2.10 Profiling on hardware accelerators 55

UG10166 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
114 / 115

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

NXP Semiconductors UG10166
i.MX Machine Learning User's Guide

7.3 NPU transition guide from i.MX 8M Plus to
i.MX 93 .. 58

7.3.1 Tensorflow Lite difference between i.MX 8M
Plus and i.MX 93 NPU acceleration 58

7.3.2 NPU supported operator list 58
7.4 Hardware acceleration with eIQ Neutron

NPU on i.MX 9 series platform 58
7.4.1 Neutron-S NPU overview 59
7.4.2 Neutron-S software architecture 59
7.4.3 NPU performance tuning 60
7.4.4 Neutron NPU power management60
8 Vision Pipeline with NNStreamer 61
8.1 Object detection pipeline example63
8.2 NXP NNStreamer pipeline examples64
8.3 Pipeline profiling .. 64
8.3.1 Enable profiling with NNShark65
8.3.2 Adding power measurement to NNShark 66
8.3.3 Known issues and limitations 66
9 eIQ Demos ..67
9.1 TensorFlow Lite Demos for i.MX 9367
9.1.1 Image classification demo 67
9.1.2 SSD object detection demo67
9.1.3 Hand gesture detection demo 68
9.1.4 Face recognition demo 69
10 Release Notes .. 71
10.1 Known issues and limitations 71
10.2 Release notes for LF6.12.20_2.0.0 71
10.3 Release notes for LF6.6.52_2.2.0 72
10.4 Release notes for LF6.6.36_2.1.0 72
10.5 Release notes for LF6.6.23_2.0.0 73
10.6 Release notes for LF6.6.3_1.0.0 73
10.7 Release notes for LF6.1.55_2.2.0 74
10.8 Release notes for LF6.1.36_2.1.0 74
10.9 Release notes for LF6.1.22_2.0.0 74
10.10 Release notes for LF6.1.1_1.0.0 75
10.11 Release notes for LF5.15.71_2.2.0 75
10.12 Release notes for LF5.15.52_2.1.0 76
10.13 Release notes for LF5.15.32_2.0.0 76
10.14 Release notes for LF5.15.5-1.0.0 77
10.15 Release notes for LF5.10.72-2.2.0 77
11 List of Used Variables 79
12 Neural Network API Reference 79
13 OVXLIB Operation Support with GPU83
14 OVXLIB Operation Support with NPU 96
15 Note About the Source Code in the

Document ... 110
16 Revision History .. 110

Legal information ...112

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2025 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com Document feedback

Date of release: 26 June 2025
Document identifier: UG10166

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10166

	1 Software Stack Introduction
	2 TensorFlow Lite
	2.1 TensorFlow Lite software stack
	2.2 Inference backends and delegates
	2.2.1 Built-in kernels
	2.2.2 XNNPACK Delegate
	2.2.3 VX Delegate
	2.2.4 Ethos-U Delegate
	2.2.5 Neutron Delegate
	2.2.6 GPU Delegate

	2.3 Delivery package
	2.4 Build details
	2.5 Application development
	2.5.1 Create CMake project which uses TensorFlow Lite
	2.5.2 Using Yocto SDK precompiled libraries

	2.6 Enabling TensorFlow Operators in TensorFlow Lite Runtime
	2.6.1 TensorFlow and TensorFlow Lite Operator Set
	2.6.2 Building the TensorFlow Lite Library with the Flex Delegate for i.MX Linux platforms
	2.6.2.1 Checking out the TensorFlow repository
	2.6.2.2 Setting up Docker VM
	2.6.2.3 Building the TensorFlow Lite with Flex Delegate

	2.6.3 Reducing the size of the Flex Delegate library
	2.6.4 Flex Delegate deployment on NXP i.MX Linux platform
	2.6.5 Using hardware accelerators
	2.6.6 Flex Delegate limitations

	2.7 Running image classification example
	2.7.1 Running the example on the i.MX 8 platform hardware accelerator
	2.7.2 Running the example on the i.MX 93 platform with Ethos-U
	2.7.3 Running the example on the i.MX 9 platform with Neutron-S
	2.7.4 Running the Python example
	2.7.5 Running the example on the i.MX 95 platform using GPU

	2.8 Running benchmark applications
	2.9 Post training quantization using TensorFlow Lite converter
	2.10 TensorFlow Lite for Microcontrollers on Xtensa HiFi4 core

	3 ONNX Runtime
	3.1 ONNX Runtime software stack
	3.2 ONNX model test
	3.2.1 Running a CNN model
	3.2.2 Running an LLM model

	3.3 ONNX performance test

	4 PyTorch
	4.1 Installing PyTorch
	4.2 Running image classification example

	5 TVM
	5.1 TVM software workflow
	5.2 Getting started
	5.2.1 Running example with RPC verification
	5.2.2 Running example individually on device

	5.3 How to build TVM stack on host
	5.4 Supported models

	6 LiteRT (Experimental)
	6.1 Migrating to LiteRT from TensorFlow Lite
	6.2 Running the example
	6.3 Running the example on the i.MX 8 platform hardware accelerator
	6.4 Running the example on the i.MX 93 platform with Ethos-U
	6.5 Running the example on the i.MX 9 platform with Neutron-S

	7 NN Execution on Hardware Accelerators
	7.1 Hardware acceleration on i.MX 8 Series
	7.1.1 Hardware accelerator description
	7.1.2 Profiling on hardware accelerators
	7.1.3 Hardware accelerators warmup time
	7.1.4 Switching between GPU and NPU
	7.1.5 Per-tensor vs. per-channel quantization

	7.2 Hardware acceleration with Ethos-U on i.MX 93 platform
	7.2.1 Ethos-U subsystem overview
	7.2.2 Ethos-U software architecture
	7.2.3 Getting started
	7.2.4 Vela tool
	7.2.4.1 Installing the Vela tool
	7.2.4.2 Compiling the TFLite model

	7.2.5 Inference with Ethos-U inference API
	7.2.5.1 Ethos-U driver library
	7.2.5.2 Ethos-U Linux kernel driver interface
	7.2.5.3 Device and Buffer class
	7.2.5.4 Network class
	7.2.5.5 Inference class
	7.2.5.6 How to use the inference API
	7.2.5.7 Interpreter class
	7.2.5.8 Interpreter Python wrapper

	7.2.6 Inference with TensorFlow Lite
	7.2.6.1 Ethos-U Delegate
	7.2.6.2 Delivery package
	7.2.6.3 Running image classification example
	7.2.6.4 Hardware accelerators warmup time
	7.2.6.5 Ethos-U performance enhancement with memory zero-copy

	7.2.7 Building and deploying the Ethos-U firmware
	7.2.7.1 Getting the source
	7.2.7.2 Ethos-U example applications
	7.2.7.2.1 Introduction
	7.2.7.2.2 Toolchains supported

	7.2.7.3 Deploy procedure
	7.2.7.4 Using the Ethos-U on Cortex-M
	7.2.7.4.1 Running Vela model with TFLite-Micro

	7.2.8 Memory hierarchy for Cortex-M
	7.2.9 Supported ML operators and constraints
	7.2.10 Profiling on hardware accelerators

	7.3 NPU transition guide from i.MX 8M Plus to i.MX 93
	7.3.1 Tensorflow Lite difference between i.MX 8M Plus and i.MX 93 NPU acceleration
	7.3.2 NPU supported operator list

	7.4 Hardware acceleration with eIQ Neutron NPU on i.MX 9 series platform
	7.4.1 Neutron-S NPU overview
	7.4.2 Neutron-S software architecture
	7.4.3 NPU performance tuning
	7.4.4 Neutron NPU power management

	8 Vision Pipeline with NNStreamer
	8.1 Object detection pipeline example
	8.2 NXP NNStreamer pipeline examples
	8.3 Pipeline profiling
	8.3.1 Enable profiling with NNShark
	8.3.2 Adding power measurement to NNShark
	8.3.3 Known issues and limitations

	9 eIQ Demos
	9.1 TensorFlow Lite Demos for i.MX 93
	9.1.1 Image classification demo
	9.1.2 SSD object detection demo
	9.1.3 Hand gesture detection demo
	9.1.4 Face recognition demo

	10 Release Notes
	10.1 Known issues and limitations
	10.2 Release notes for LF6.12.20_2.0.0
	10.3 Release notes for LF6.6.52_2.2.0
	10.4 Release notes for LF6.6.36_2.1.0
	10.5 Release notes for LF6.6.23_2.0.0
	10.6 Release notes for LF6.6.3_1.0.0
	10.7 Release notes for LF6.1.55_2.2.0
	10.8 Release notes for LF6.1.36_2.1.0
	10.9 Release notes for LF6.1.22_2.0.0
	10.10 Release notes for LF6.1.1_1.0.0
	10.11 Release notes for LF5.15.71_2.2.0
	10.12 Release notes for LF5.15.52_2.1.0
	10.13 Release notes for LF5.15.32_2.0.0
	10.14 Release notes for LF5.15.5-1.0.0
	10.15 Release notes for LF5.10.72-2.2.0

	11 List of Used Variables
	12 Neural Network API Reference
	13 OVXLIB Operation Support with GPU
	14 OVXLIB Operation Support with NPU
	15 Note About the Source Code in the Document
	16 Revision History
	Legal information
	Contents

