UG10167

i.MX DSP User's Guide
Rev. LF6.12.20_2.0.0 — 26 June 2025

User guide

Document information

Information Content

Keywords i.MX, Linux, LF6.12.20_2.0.0

Abstract This document provides an overall introduction to the DSP including system architecture, file
organization, DSP-related toolchain, and so on.



https://www.nxp.com

NXP Semiconductors U G1 01 67

i.MX DSP User's Guide

1 Introduction

This document provides an overall introduction to the DSP including system architecture, file organization, DSP-
related toolchain, and so on. This document helps with the overall understanding of the DSP-related code.
Currently, the DSP is used to decode and encode audio streams on the i.MX 8QuadXPlus, i.MX 8QuadMax,
i.MX 8M Plus, and i.MX 8ULP platforms.

The current DSP framework can support several clients. They support these codecs:
Decoder:

* AAC-LC
AAC plus(HE-AAC/HE-AACV2)
BSAC

* DAB+

* MP2

* MP3

* DRM

* SBC

* OGG
AMR-NB
* AMR-WB
+ WMA

« WAV

* OPUS

Encoder:
« SBC

For details on how to harness the power processing of the DSP by running Zephyr RTOS on the DSP, while
running Linux OS on the main Cortex-A core, see the Running Zephyr RTOS on Cadence Tensilica HiFi 4 DSP
(AN13970).

This covers simple and more complex examples, such as hello_world or IPC samples.

In the application note, all examples are explained using the existing drivers and/or frameworks from the Linux
OS and Zephyr RTOS.

2 System Architecture

Figure 1 and Figure 2 provide the overall system architecture of the DSP-related code.

UG10167 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
2/27



https://www.nxp.com/docs/en/application-note/AN13970.pdf
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10167

NXP Semiconductors U G1 01 67

i.MX DSP User's Guide

Application

GStreamer Android

v

DSP
Wrapper

Junit_tests/DSP/dsp_test.out

User

NN NEEEEE RN NEEEEEEEEEEEEEEEREEEEEEEEE

Kernel
space

romsg

/devirpmsg_ framework

ctrlx

/dev/rpmsgx Dma-buf

ssssssssssadusnssnnssndfunnnnnnunnnunnnunnnsnnnnnnnnnnnnnnannnannnannna

Vritio framework

virtio

IYTLETT (YCLLLLLL
A 4

L .

T T Y P T T T PP T PP Y P Y T S

A\ 4

Remote proc
Remoteproc framework

Mailbox

Hardware socC
MU > HIFI4

Figure 1. Software architecture for Cortex-A cores running Linux OS

UG10167 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
3/27



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10167

NXP Semiconductors U G1 01 67

i.MX DSP User's Guide

. DSP Framework/firmware:
Rpmsg-lite (openamp) .

HIF14 Core
Execution
Memory
Library loader
Component - Component
E A A E
Y S .

y y

Dsp codec wrapper Dsp render
y A
A
Dsp codecs SAl/ESAI/DMA > DAC

Figure 2. Software architecture for DSP processor

The DSP-related code includes the DSP framework, DSP remoteproc driver, DSP wrapper, unit test, DSP codec
wrapper, and DSP codec.

* The DSP framework is a firmware code which runs on the DSP core. The DSP driver is used to load the DSP
firmware into the memory and transfer messages between the user space and the DSP framework.

UG10167 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
427



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10167

NXP Semiconductors U G1 01 67

i.MX DSP User's Guide

* The remoteproc and RPMsg framework is used to transfer messages between the Cortex-A cores and the
DSP cores. The Message Unit (MU) is used to trigger interrupts between the Cortex-A cores and DSP cores
when messages are placed into the vring buffer.

» The DSP wrapper and the unit test are the application code in the user space, which uses the rpmsg_char
interface to transfer messages between the DSP remoteproc driver and the user space. In addition, the DSP
wrapper is used to provide unified interfaces for the GStreamer.

* The DSP codec provides the actual decoding and encoding functions.

* The DSP codec wrapper is a wrapping code for the DSP codec and provides unified interfaces for the DSP
framework.

2.1 Remote processor start

To start the firmware, use the following command.

Board $> echo start >/sys/class/remoteproc/remoteprocX/state

Note:

Some platform may have multiple remoteproc devices, so users need to check the name of each remoteproc
device by using cat > /sys/class/remoteproc/remoteprocX/name to find the proper X for DSP. The
name of the DSP is imx-dsp-rproc.

2.2 Remote processor stop

To stop the firmware, use the following command.

Board $> echo stop >/sys/class/remoteproc/remoteprocX/state

2.3 Resource table example

#define NUM VRINGS 0x02
/* Place resource table in special ELF section */

__attribute ((section(".resource table")))
const struct remote resource table resources = {
/* Version */

1,

/* NUmber of table entries */

NO RESOURCE ENTRIES,

/* reserved fields */

{

0,

0,

s

/* Offsets of rsc entries */

{

offsetof (struct remote resource table, user vdev),
b

/* SRTM virtio device entry */

{

RSC VDEV,

7,

0,
RSC_VDEV_FEATURE NS,
0,

0,

UG10167 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
5/27



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10167

NXP Semiconductors U G1 01 67

i.MX DSP User's Guide

0,
NUM VRINGS,

{0, 0},

by

/* Vring rsc entry - part of vdev rsc entry */

{VDEVO VRING DA BASE, VRING ALIGN, RL BUFFER COUNT, 0, 0},

{VDEVO VRING DA BASE + VRING SIZE, VRING ALIGN, RL BUFFER COUNT, 1, O},
}i

3 File Organization

The DSP framework, DSP wrapper, and unit test code are in the https://github.com/NXP/imx-audio-
framework repository. Use the following command to clone the Git repository and check out the branch
matching with the Linux release:

git clone https://github.com/NXP/imx-audio-framework.git --recursive

The DSP remoteproc driver code belongs to the Linux OS kernel.

DSP codecs originated from Cadence are license-restricted: A license authorization is required from NXP
Marketing to access them in binary format.

3.1 DSP remoteproc driver

The driver is under the remoteproc framework. The remote processor (RPROC) framework allows the different
platforms/architectures to control (power on, load firmware, power off) remote processors while abstracting the
hardware differences. For more details, refer to the following link.

https://www.kernel.org/doc/Documentation/remoteproc.txt

The DSP remoteproc driver code is in the Linux OS kernel. It includes the following files:

* drivers/remoteproc/imx _dsp rproc.c
* drivers/rpmsg/rpmsg char.c

* drivers/rpmsg/rpmsg ctrl.c

* drivers/rpmsg/rpmsg ns.c

3.2 DSP framework

The DSP framework code is in this folder:

* imx-audio-framework/dsp framework
* imx-audio-framework/dsp framework/rpmsg-lite

The rpmsg-11ite code is copied from https://github.com/NXPmicro/rpmsg-lite.

3.3 DSP wrapper and unit test

The DSP wrapper and unit test are in these folders:

* imx-audio-framework/dsp wrapper
* imx-audio-framework/unit test

3.4 Interface header files

The DSP-related code includes these four interface header files:

UG10167 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
6/27



https://github.com/NXP/imx-audio-framework
https://github.com/NXP/imx-audio-framework
https://www.kernel.org/doc/Documentation/remoteproc.txt
https://github.com/NXPmicro/rpmsg-lite
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10167

NXP Semiconductors U G1 01 67

i.MX DSP User's Guide

* imx-audio-framework/include/mxc dsp.h

* imx-audio-framework/dsp framework/plugins/audio codec/dsp codec_interface.h
* imx-audio-framework/dsp wrapper/include/uni audio/fsl unia.h

* imx-audio-framework/dsp wrapper/include/uni audio/fsl types.h

The mxc_dsp.h file is the same as the header file in the Linux OS kernel. This file includes the interfaces and
command definitions that are used by the DSP wrapper and unit test. The dsp_codec_interface.h file
wraps the DSP codec’s header files. It includes unified interfaces and command definitions which can be used
by the DSP framework. The £s1 unia.h and £s1 types.h header files include the interfaces and command
definitions which can be used by GStreamer.

4 Building DSP Framework on Linux OS

Before you compile the DSP-related code, set up the DSP-related toolchains. The DSP framework, DSP codec
wrapper, and DSP codec use Xtensa development toolchain.

4.1 Installing Xtensa development toolchain

The Xtensa development toolchain consists of two components, which are installed separately in the Linux OS,
including:

» Configuration-independent Xtensa Tool

» Configuration-specific core files and Xtensa Tool

The configuration-independent Xtensa Tool is released by Cadence. For the current code,

the version of the tool is XtensaTools RI 2023 11 linux.tgz, which is updated from
XtensaTools RI 2020 4 linux.tgz. The two versions are compatible. You can download this package
from the Xtensa Xplorer.

The configuration-specific core files and the Xtensa Tool are released by NXP. The following are the packages
for each platform:

* i.MX 8QuadMax and i.MX 8QuadXPlus:
—hifi4 nxp v5 3 1 prod linux.tgz
—hifi4 nxp v5 3 1 prod win32.tgz
These packages can also be obtained from https://tensilicatools.com/platform/imx8gm/ or https://tensilicatools.
com/platform/imx8gxp/.
* i.MX 8M Plus:
—hifi4 mscale v2 0 2 prod linux.tgz

—hifi4 mscale v2 0 2 prod win32.tgz
These packages can also be obtained from https://tensilicatools.com/platform/i-mx8mp/.
* i.MX 8ULP:

—hifi4 nxp2 s7 v2 la prod linux.tgz

—hifid4d nxp2 s7 v2 la prod win32.tgz

These packages can be obtained from https://tensilicatools.com/platform/i-mx-8ulp/.

When you have these two components, you can set up the toolchain as follows:

e Open the imx-audio-framework folder and execute the command:

mkdir -p ./imx-audio-toolchain/Xtensa Tool/tools mkdir -p ./imx-audio-
toolchain/Xtensa Tool/builds

UG10167 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
7127



https://tensilicatools.com/platform/imx8qm/
https://tensilicatools.com/platform/imx8qxp/
https://tensilicatools.com/platform/imx8qxp/
https://tensilicatools.com/platform/i-mx8mp/
https://tensilicatools.com/platform/i-mx-8ulp/
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10167

NXP Semiconductors U G1 01 67

i.MX DSP User's Guide

* Set up the configuration-independent Xtensa Tool:

cd imx-audio-toolchain/Xtensa Tool
tar zxvf XtensaTools RI 2023 11 linux.tgz -C ./tools

Set up the configuration-specific core files and the Xtensa Tool:

cd imx-audio-toolchain/Xtensa Tool
tar zxvf hifi4 nxp v5 3 1 prod linux.tgz -C ./builds

Install the Xtensa development toolchain:

cd imx-audio-toolchain/Xtensa Tool
./builds/RI-2023.11-1linux/hifi4 nxp v5 3 1 prod/install --xtensa-tools ./tools/

RI-2023.11-linux/XtensaTools --registry ./tools/RI-2023.11-linux/XtensaTools/
config

Set the PATH environment variable:

export PATH=./imx-audio-toolchain/Xtensa Tool/tools/RI-2023.11-linux/
XtensaTools/bin:$PATH

» Setthe LM LICENSE FILE environment variable.

The Xtensa development tools use FLEXIm for license management. The FLEXIm licensing is required for
tools such as the Xtensa Xplorer, TIE Compiler, and Xtensa C and C++ compiler. If you want to use a floating
license, install the FLEXIm license manager and set the LM LICENSE FILE environment variable. If there is
any problem, you can find useful information in the Xtensa Development Tools Installation Guide User’s Guide
document provided by Cadence.

After the above steps, the Xtensa development toolchain is set up successfully. In addition, the Xtensa Tools
and additional tools are provided as 32-bit (x86) binaries. They are supported on 32-bit (x86) systems, and also
on recent 64-bit (x86-64) systems that have appropriate 32-bit compatibility packages installed. If you use a 64-
bit system (for example; Ubuntu 16.04), install the 32-bit compatibility packages first. Use these commands:

sudo apt-get install 1ib32ncurses5 1ib32z1
sudo dpkg --add-architecture 1386
sudo apt-get install 1ibc6:1386 libstdc++6:1386

4.2 Building DSP framework

After installing the DSP-related toolchains on your Linux OS server, you can compile the DSP framework.
Execute the make command in the imx-audio-framework folder to compile the DSP framework. This way
also builds the DSP wrapper and unit test. If you want to compile the DSP framework separately, see the
README file in the imx-audio-framework folder. After the compiling process, you can find the binary files in
the imx-audio-framework/release folder.

For the DSP framework, different commands generate different frameworks for different platforms:

* imx-audio-framework/release/hifi4 imx8qmgxp.bin
* imx-audio-framework/release/hifi4 imx8mp.bin
* imx-audio-framework/release/hifi4 imx8ulp.bin

By default, the command generates the hifi4 imx8qgmgxp.bin file. With the PLATF=imx8m attribute,

it generates the hifi4 imx8mp.bin file. With the PLATF= imx8ulp attribute, it generates the

hifi4 imx8ulp file. With the DEBUG=1 attribute, it generates the firmware with the debug information. You
can see the debug information using UART. For details, see Section Section 4.3.

UG10167 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
81/27



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10167

NXP Semiconductors U G1 01 67

i.MX DSP User's Guide

4.3 DSP DEBUG

Building the DSP framework with the extra DEBUG=1 attribute, the DSP can print the debug information using
the UART console. To enable this feature, do some changes in the kernel and in the DSP side. For a different
platform, prepare a different board and different changes. The following sections describe what need to change
for different platforms.

4.3.1 Enabling DSP debug on i.MX 8M Plus

Enable the UART for DSP print debug information in the i.MX 8M Plus board and add the UART clock in the
DTS file and the UART module driver in the DSP.

1. Add the UART clock and pinctrl in the DTS.
Add the UART clock and pinctrl in the DSP node as follows:

&dsp |

compatible = "fsl, imx8mp-dsp-v1"; memory-region = <&dsp reserved>; reg = <0x0
0x3B6E80000x0 0x88000>;

pinctrl-0 = <&pinctrl uart4d>;

clocks = <gaudiomix clk IMX8MP CLK_AUDIOMIX OCRAMA IPG>,

<gaudiomix clk IMX8MP_ CLK AUDIOMIX ASRC_IPG>,

<&clk IMX8MP CLK UART4 ROOT>,

<&clk IMX8MP CLK UART4 ROOT>;

clock-names =

"ocram", "audio root", "audio axi", "core", "debug", "mu2", "sdma root",
"sai ipg", "sai mclk","asrc ipg", "uart ipg", "uart per";

fsl,dsp-firmware = "imx/dsp/hifi4.bin"; status = "okay";
}i
Then generate the DTB file, replacing the old one.
2. Add the UART driver in the DSP.
By default, the DSP side already supports enabling the UART. Build the DSP firmware with the DEBUG=1
attribute to generate the hifi4 imx8mp.bin file, renameitto hifi4.bin, and copy it to the board.
3. Run the DSP and print the debug information.
Run one instance and the following debug information is printed on the fourth serial COM port:

DSP Start.....

core initialized

Response queue: write = 0x0 / read = 0x0 Command queue: write = 0x10001
read = 0x0 ext msg: [client:0]:(80008004,4,1000) Response queue: write =
0x0 / read = 0x0 Command queue: write = 0x10001 / read

= 0x10001

alloc size out: 943feff8 4104 avail mem: 16773104 Response queue: write
0x0 / read = 0x0

Response([client: 0]:(80048000,4,1000)

Command queue: write = 0x10001 / read
0x10001 / read = 0x10001

Command queue: write = 0x20002 / read = 0x10001 ext msg: [client: 0]:
(80008004,80000001,15) Response

queue: write = 0x10001 / read = 0x10001

S~

0x10001 Response queue: write =

4.3.2 Enabling DSP DEBUG on i.MX QuadXPlus

To enable the DSP DEBUG on the i.MX QuadXPlus platform, you need only one base board, as shown in
Figure 3.
UG10167 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
9/27



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10167

NXP Semiconductors UG1 01 67

i.MX DSP User's Guide

pEzsena |
ll ikd
%

Figure 3. i.MX8-8X-BB
Connect the RS-232 to a PC and connect the base board to the i.MX QuadXPlus board.

1. Add the UART clock and pinctrl in the DTS.
Add the UART clock and pinctrl in the DSP node as follows:

dsp: dsp@596e8000 {

compatible = "fsl, imx8gxp-dsp"; reg = <0x596e8000 0x88000>;
clocks =
<&uart2 lpcg 1>, <&uart2 lpcg 0>; clock-names = ... "uart ipg",

"uart per";
assigned-clocks = <&clk IMX SC R UART 2 IMX SC PM CLK PER>;
assigned-clock-rates = <80000000>;

ééétus = "disabled";
}i
Then build the image instead of the old one.
2. Modify the DSP side.

The DSP supports the LPUART driver in the dsp framework/arch/peripheral.c file. Change the
LPUART BASE from 0x5a090000 to 0x5a080000:

diff --git a/dsp framework/arch/board.h b/dsp framework/arch/
board.h

UG10167 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
10/27



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10167

NXP Semiconductors U G1 01 67

i.MX DSP User's Guide

index 9e04e64e821lc..75al5fd09f0d 100644
--- a/dsp framework/arch/board.h

+++ b/dsp framework/arch/board.h

@@ -138,7 +138,7 @R enum {

#define MUB_BASE (MU_PADDR)

#define SYSTEM CLOCK (600000000UL)
-#define LPUART BASE (0x5a090000)
t#define LPUART BASE (0x5a080000)
#define UART CLK ROOT (80000000)

#endif /*PLATF_8ULP */

Then build the DSP with DEBUG=1 and copy it to the board.
3. Run the DSP and print the debug information.
This part is the same as on the i.MX 8M Plus board. Select the proper serial COM port and you will see the

debug information. The debug information cannot print on the i.MX 8QuadMax board, because the UART is
taken.

4.3.3 Enabling DSP debug on i.MX 8ULP

Enable the LPUART for DSP print debug information on the i.MX 8ULP board and add the UART clock in the
DTS file and the UART module driver in the DSP.

1. Add the LPUART clock and pinctrl in the DSP node as follows (base on L5.10.52_2.1.0).
2. Make sure the LPUART clock rate is 48 MHz.
3. Rework the board, connect the USB interface to “HIFI4 Debug UART” (J3).

diff --git a/arch/armé64/boot/dts/freescale/imx8ulp-evk.dts b/arch/armé64/boot/
dts/freescale/imx8ulp-evk.dts
index 9109e5d7c44c..dae9%ec616234 100644
--—- a/arch/arm64/boot/dts/freescale/imx8ulp-evk.dts
+++ b/arch/arm64/boot/dts/freescale/imx8ulp-evk.dts
@@ -213,6 +213,9 @C mipi dsi out: endpoint {
i

&dsp |
+ pinctrl-names = "default", "sleep";
+ pinctrl-0 = <&pinctrl lpuart6>;
+ pinctrl-1 = <&pinctrl lpuarté6>;

assigned-clocks = <&cgc2 IMX8ULP CLK HIFI SEL>;

assigned-clock-parents = <&cgc2 IMX8ULP CLK PLL4>;

memory-region = <&dsp vdevObuffer>, <&dsp vdevOvring0>,
@@ -364,7 +367,7 @@ &lpuarté6 {

pinctrl-names = "default", "sleep";

pinctrl-0 = <&pinctrl lpuarté6>;

pinctrl-1 = <&pinctrl lpuarté>;

= status = "okay";

+ status = "disabled";
i

&lpuart?7 {

diff --git a/arch/armé64/boot/dts/freescale/imx8ulp.dtsi b/arch/arm64/boot/dts/
freescale/imx8ulp.dtsi
index 2dfac8f7200d..c00051602303 100644
--- a/arch/arm64/boot/dts/freescale/imx8ulp.dtsi
+++ b/arch/arm64/boot/dts/freescale/imx8ulp.dtsi
@@ -271,8 +271,9 @@ dsp: dsp@21170000 ({
clocks = <&cgc2 IMX8ULP_CLK HIFI DIVCORE>,
<&cgc2 IMXS8ULP_CLK LPAV BUS DIV>,
<&cgc?2 IMX8ULP_CLK_HIFI_DIVPLAT>,

UG10167 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
111727



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10167

NXP Semiconductors U G1 01 67

i.MX DSP User's Guide

- <&pcc5 IMXS8ULP CLK MU3 B>;

= clock-names = "dsp clkl", "dsp clk2", "dsp clk3",
"per clkl";
+ <&pccS5 IMX8ULP CLK MU3 B>,
+ <&pccié IMXSULP_CLK_LPUART6>;
s clock-names = "dsp clkl", "dsp clk2", "dsp clk3",
"per clkl", "per clk2";
firmware-name = "imx/dsp/hifi4d.bin";
mbox-names = "tx", "rx", "rxdb";
mboxes = <&mu3 0 0>,
(END)

Then generate the DTB file, replacing the old one. Run the DSP and print the debug information.

Run one instance, and then the following debug information is printed on the serial COM port:

DSP Start.....
core initialized

5 Building DSP Framework on the Windows OS

The DSP framework can also be built on the Windows OS. The Xplorer software can be used to build the DSP
framework on the Windows OS. This section explains how to use Xplorer to build the DSP framework. First,
install the Xtensa Xplorer IDE. You can download the Xplorer IDE and Xplorer license form Cadence.

Note: Log into the XPG Cadence website to download installers for the Xplorer IDE, Xtensa tools, and so
on. For NXP internal use, contact the DSP owner to get the NXP common XPG login credentials. The Xplorer
10.1.11 version is used as an example and its default installation folder is C: \usr\xtensa.

5.1 Adding new configuration packages

Currently, the hifi4 nxp v5 3 1 prod win32.tgz configuration package, which is updated from
thehifi4 nxp v3 3 1 prod win32.tgz configuration package, is used to build the DSP framework
on Windows OS. Add this configuration package into Xplorer before building the code. You can get this
configuration package and the corresponding memory map linker files from NXP. The required files are as

following:

* hifi4d nxp v5 3 1 prod win32.tgz

* memmap/mainsim folder

When you have the DSP configuration package, you can add a new configuration package into Xplorer as
follows:

1. Download and install Xtensa Tools for Xplorer.
If you do not have the Xtensa Tools, download and install it using Xplorer. The currently used Xtensa Tool is
XtensaTools RI 2023 11 win32.tgz. Open the Xplorer software and click the Rl 2023.11 option on
the XPG View panel, and then select tools -> Xtensa Tools -> Xtensa Tools 14.11 for Windows. Then,
click the download button to start the downloading process.

UG10167 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
12/ 27



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10167

NXP Semiconductors U G1 01 67

i.MX DSP User's Guide

1%l Problems ] Tasks ) Console]| T, XPG View 2 Xs¥==0

T Release/Repository % Active Downloads

Release/Repository RI-2023.11 nxp_swiswupgrade_imx 2L, [ [] @, Descriptions

~ [type filter text |

2, Release-Independent

<O s Statusi Mismatch in file size/date. Downlosd it agsin
= @ h - File: XtensaTools_RI_2023_11_win32.tgz
LN [ £ OtherFiles Size: 1216.7 MB (1275843267 bytes)
— [ & Xplorer 10.1.11 Date: 202324HTH F47.44:43
& RI-2022.9 v 0] & Kicac Sovk
Ey— ensa Tools 1411 for Windows
T
= Ri2021a €D daeman 14,11 for Windows
[ 2 0CD daemen 1411 for Linux

g RI-2021.7 [ 5 reference-cores

[ &5 example-cores
£ RI-2021.6 1 2 samples
= [ & docs
2, RI-20205 012 buies
£ RI-20204

o

Figure 4. “XPG View” panel
After the download finishes, right-click Xtensa Tools 14.11 for Windows and select Install Xtensa Tools...
in the new dialog box. The installing process takes some time.
The Xtensa Tool is installed successfully after this step. You can see this folder in the Xplorer’s installation
folder if the operation is successful: C:\usr\xtensa\XtDevTools\install\tools\RI-2023.11-
win32.

2. Add the configuration package into Xplorer.
When you have the hifi4 nxp v5 3 1 prod win32.tgz package from NXP, add it into Xplorer. First,
create a folder named build in Xplorer’s installation path if this folder is not created yet. The path after this
operation is as follows:
C:\usr\xtensa\XtDevTools\downloads\RI-2023.11\build

3. Placethehifi4 nxp v5 3 1 prod win32.tgz package into the new build folder:
C:\usr\xtensa\XtDevTools\downloads\RI-2023.11\build\
hifi4 nxp v5 3 1 prod win32.tgz

4. Click the refresh button on the XPG View panel and find the build option on this panel.

Y System Overview 51 = g gl Problems JjTasks ) Console i XPG View 52 X$¥de =10

5 Release/Repository "% Active Downloads

_prod (RI-2020.4/LX6.0.4) (C:\usrxtensa\Xplorer-10.1.11-w| 3 - o
 prod (RI-2020.4/LX7.1.4) (CAusiwtensa\Xplorer-10.1.11-w|  Release/Repository RI-2023.11 nxp_swiswupgrade_imx 3 [ | Descriptions
od (RI-2020.4/LX6.04) (C: 11-worky A [iypefilter text |
(RI2023.11/LX6.0.4) (C: w011 & — Status: Downloaded
(RI-2023.11/1X7.1.4) (C: — S t_; . ~ e ;nfmépé& z‘,;iﬂm,w]mzzegz
o . example-cores ize: 37 yies)
T ——— O & samples Date: 2023F4F 260 T 54209
2 RI-20229 0 & docs Build type:SW
£ RI-2022.10 lev2.02 prod
scale v2 0.2 pr
£ RI-20218
S RI-2021.7
hifid_nxp_v5 3_1_prod
= RI20216 P33P
& RI-20205
prod_win32.tgz Size: 38831382 "
s L S g e X
o] w

MersM |

Figure 5. The “build” option

5. Right-click the build->hifi4 nxp v5 3 1 prod win32.tgz package and select Install Build... in
the new dialog to start the installation process. This takes some time. You can see the following folder in the
Xplorer’s installation folder if the operation is successful:
C:\usr\xtensa\XtDevTools\install\builds\RI-2023.11-win32\hifi4 nxp v5 3 1 prod

6. Add the new memmap linker files into Xplorer.
After adding the hifi4 nxp v5 3 1 prod win32.tgz configuration package into Xplorer, add the new
memmap linker files.
Then, the new configuration package is successfully added into Xplorer.

5.2 Creating the DSP framework Xplorer project

The DSP framework project must be created before using Xplorer to build it. The DSP framework code is in the
imx-audio-framework package: imx-audio-framework\dsp framework.

UG10167 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
131/27



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10167

NXP Semiconductors

UG10167

You can create the DSP framework as follows:

i.MX DSP User's Guide

1. Open Xplorer and select File -> New -> Xtensa C/C++ project on the menu bar. The following dialog box

appears.

s ) | B New Xtensa C/C++ Project
File Edit Source Refactor Navigate Search Project

v W 3 %a B FBmode: Off ¥ No Active P| Create a Xtensa C/C++ Project

& Project Explorer = =% =10 —
roject Name
€ HelloWorld !

This kind of project is automatically managed by Xplorer - you don't need to write and maintain makefiles

Import Source For Project

X
WEXGEvavres . iyt avYoy
[Quick Access || m |
-5 =
8=
5]
5]

Browse...
Only import source files
Project Type
(® Create an executable image
O Create a static library
O Create a shared data library (for MP subsystems)
Use default location
Ci\usr\xtensa\Xplorer-8.0.13-workspaces\workspace3 Browse...
@ Finish Cancel
% System Overview & = B Tl Problems & Tasks stion & XPG View & X¢dw=1
& Configurations & Release/Repository - % Active Downloads
= Subsyst - PR
BTIUE SSZI:'S Release/Repository  RI-2020.4 nxp_swiswupgrade_imx @ [ & & Descriptions
2 Rel = - A [type filter text ~
_ T I ~ Status: XPG
& RI-2021.8 |_[Sltools Contains:
RI-2021.7 reference-cores Xplorer 8.0.13 with Tools
|| S example-cores Xplorer 8.0.13 Solo
v £ samples v | Xtensa Tanls v

Figure 6. New Xtensa project

dialog box. Then, click the Finish button.

2. Enter the project name and import the DSP framework source code into the New Xtensa C/C++ Project

K C/C++ - Xten

Figure 7. The “Finish” button

X
File Edit Source Refactor Navigate Search Project Run New Xtensa C/C++ Project
i ¥aKY FBmode: Off ¥ No Active Project ¥ N; . viveevoy
g Create a Xtensa C/C++ Project
=
[ Project Explorer B% v=-0O ~ B ZOutline ¥ B Assem... B Loop -8
& HelloWorld Project Name
@rame@ An outline is not available.
Import Source For Project
Z)\audio_hifi\imx-audio-framework -3 HBrcwse...]

Only import source files

Project Type

(®) Create an executable image

(O Create a static library

(O Create a shared data library (for MP subsystems)

Use default location

C\usr\xtensa\Xplorer-8.0.13-workspaces\workspace7\audio_framework Browse...
@ Finish Cancel
9 System Overview & =8
= Configurations
@ Subsystems [£2 Problems 2 C e I Es e Toe
@ TIE Source 0 items
Description - Resource Path Location Type

uG10167

All information provided in this document is subject to legal disclaimers.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025

© 2025 NXP B.V. All rights reserved.
Document feedback
1427


https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10167

NXP Semiconductors U G1 01 67

i.MX DSP User's Guide

Then, the DSP framework project is successfully created. You can see the project as shown in the following

workspace - Xtensa Xplorer - X
File Edt Source Refactor Navigate Search Project Run Tools Window Help
o~ %109 %a B nstruMode None ~ P: audio framework ~ C:hifidrxpys 31 prod v T:Debug v BuldActve v . Run ~ Profie v Debug v Tace ~ O WEI X & v G~ ® 5 - AT -

B%Y & -0 = @

B ulibxa_mp3_dec_shared_lib

Figure 8. DSP framework project

5.3 Building DSP framework

After creating the DSP framework project, build its code. Choose the memmap linker files before the building
process.

1. Right-click the name of the DSP framework project on the Project Explorer panel and select Build
Properties.... The Build Properties for dsp_framework dialog box is displayed, as shown in Figure 9.

File Edit ioulte.RefaCLo\ Navigate Search Project R IS4 Build Properties for audio, framework O « )
(= = (3 %a K4 FBmode: Off ¥ P: audio_fram EXE~Q~-&9~
- v G- - ‘+ = Target: Debug ™ Make default Manage Target... Template: Apply Save ® B
& Project Explorer # 5% v=18 @@iojramewor. timization | Advanced Optimizatio Warnings Languagssembler " ¢ xf-main.c & -8 :
v B audio_framework Additional optiop; A g
* g e ;
# Binaries I DHAVE XOS -DXA_FSL_UNIA_CODEC -DXA PCM_GAIN = ]
@ Includes
& bin
& common
& dsp_framework
& dsp_wrapper
~ = libxa_af_hostless
= algo
& include
& release
~ & rpmsg-lite Variables...
& lib
¥ & testxa af_hostless Compiler additional options .
B?n:testtest All Options: ' Local + Inherited Local only Common target B Common targe | % (’)OLiSIZE + 4095);
oMal:eﬁle Compiler: -g -02 -DHAVE_XOS -DXA_FSL_UNIA_CODEC -DXA_PCM_GAIN o
& HelloWorld < 2
- — @ Apply Revert Cancel ¢ ElER-&IrBEYyOY = O
oS S ay CDT Build Console [audio_framework]
& Configurations n
> Subsystems *kk*k%* Code size summary *****
= TIE Source "C:\\usr\\xtensa\\XtDevTools\\install\\tools\\RI-2020.4-win32\\XtensaTools\\bin\\xt-size" —C C: /usr/xtensa /Xplorer-
TYPE text rodata data bss dec hex filename
code 117757 0 0 0 117757 lcbfd C:/usr/xtensa/Xplorer-8.0.13-workspaces/workspace7/audio_fr
literal 2328 o] 0 0 2328 918 C:/usr/xtensa/Xplorer-8.0.13-workspaces/workspace7/audio fr
Figure 9. “Build Properties” dialog box
2. Click Addl compiler to add options. Add the ~-DPLATF 8M attribute to build the firmware for i.MX 8M
Plus. Add the -DPLATF 8ULP attribute to build the firmware for i.MX 8ULP. Add the -DDEBUG attribute
to build the firmware with the print debug information. The -DHAVE_XOS -DXA_FSL_UNIA_CODEC -
DXA_PCM_GAIN option is required.
3. Select the Linker option and configure the custom LSP path. Select imx8 for i.MX 8QuadMax and i.MX
8QuadXPlus, imx8m for i.MX 8M Plus, and imx8ulp for i.MX 8ULP.
4. Click the “OK” button to finish this process, as shown in Figure 10. The -Ixos -Ixtutil option is required.
UG10167 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback

151/27


https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10167

NXP Semiconductors

UG10167

i.MX DSP User's Guide

File Edit Source Refactor Navigate Search Project Rt

[

% 3 %a B FBmode: Off ¥ P:audio_fram

v ilw

G v

{5 Project Explorer = 8%
v B2 audio_framework
3 Binaries
& Includes
& bin
& common
& dsp_framework
& dsp_wrapper
~ = libxa_af_hostless
& algo
& include
& release
~ & rpmsg-lite
e lib
~ (= testxa_af_hostless
& test
& unit_test
[& Makefile
€ HelloWorld

Build Properties for audio_framework

==

- audioiframeworE >

(O None

All Options:

@

] X
Target: Debug i Make default Manage Target... Template: Apply... Save... ick Access || & |IE
Language Addl compiler | Assembler |Addl assembler | Compiler options for [Linker . Memory | Libraries| Addl linker| -8 :
Linker support package A A B
E]
O sStandard sim
Gstom LSP Path | Z\audio_hifi\imy-audio-framework\dsp_framework\memmap\imxBams» \ Browse...
O Custom LSP Name Select...
Create non-executable object without stdlib for code sizing purposes
[[JEmbed map info in executable
[[] Generate linker map file
[Jomit debugger symbol information from output file
[CJomitall symbol information from output file
[lLink with internracedural anahsis enahled h
Information Area
Local + Inherited () Local only Common target a afarget M Inherited M Local | 2+
Linker: -misp=Z:\audio_hifi\imx-audio-framework\dsp_framework\memmap\in%8 -Ixos -Ixtutil w
Apply Revert Gnd BB -0

% System Overview &

= Configurations
= Subsystems
= TIE Source

Figure 10. “Linker” option

CDT Build Console [audio_framework]

**kxx** Code size summary *****

"C:\\usr\\xtensa\\XtDevTools\\install\\tools\\RI-2020.4-win32\\XtensaTools\\bin\\xt-size" -C C:/usr/xtensa/Xplorer-

TYPE text rodata data bss dec hex filename

code 117757 0 0 0 117757 lcbfd C:/usr/xtensa/Xplorer-8.0.13-workspaces/workspace7/audio_fr
literal 2328 0 0 0 2328 918 C:/usr/xtensa/Xplorer-8.0.13-workspaces/workspace7/audic_fr
other 4127 8224 141896 14656 168903 293c7 C:/usr/xtensa/Xplorer-8.0.13-workspaces/workspace7/audio_fr
Total 124212 8224 141896 14656 288988

<

468dc C:/usr/xtensa/Xplorer-8.0.13-workspaces/workspace7/audio_fr ¥
>

5. After configuring the memmap linker files, choose the dsp framework project and the required DSP
configuration to start the building process. The configuration is shown in the following figure.

workspace - Xtensa Xplorer
Fle Edt Source Refactor Navigate Search Project Run Tools
-
2y Project Explorer 53
B audio_framework =
& Binaries
i) Includes
v bin
= hifid_nxp_v5 3 1_prod
(& Debug
~ (= imc-audio-framework
(= common
(- dsp_framework
(= dsp_voice_process
(= dsp_wrapper
(= ibxa_af_hostless

(& rpmsg-lite
(> testxa_af _hostless
(= unit test
35 audio_framework - [hifid_nxp_v5 3_1_prod/Debug/le]
audio_fi . - [hifi4_nxp_v5_3_1 prod/Debug/le]

audioframework.isaprofxmi
build.log
objfiles.ist
2 templlog

v = imx-audio-framework

& common

& dsp_framework

(= dep_voiee_process

= dep_wrapper

5 libxa_af_hostless

Window  Help

1N 103 % K nstruMode Nw TDebug ~ BuildActive ¥ . Run ~ Profile * Debug * Tace +@ WE N G- Q- ® ¢~ UREIRR
B%YV 8 -0

Figure 11. Build process configuration

- X
Q 8B+
gz0 % =8

There s no active editor that
provides an outline

6. Select Build Active -> Build Active to start building the DSP framework. This takes some time.

a.

In Build -> Exclude, right-click the folder or files to exclude C files.

rpmsg_ lite/lib/rpmsg lite/porting/
rpmsg_lite/lib/rpmsg lite/rpmsg_queue.c

common/
dsp wrapper/
unit test/

testxa af hostless/test/src/

testxa af hostless/test/plugins/cadence/

xa-factory.c C file)
libxa af hostless/algo/host-apf/

libxa af hostless/algo/hifi-dpf/src/xf-main.c
libxa af hostless/algo/hifi-dpf/src/xf-msgqgl.c

uG10167

All information provided in this document is subject to legal disclaimers.

(except "pcm gain" foler and

© 2025 NXP B.V. All rights reserved.

User guide

Rev. LF6.12.20_2.0.0 — 26 June 2025

Document feedback

16 /27


https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10167

NXP Semiconductors U G1 01 67

i.MX DSP User's Guide

dsp_voice process/

b. In Auto Includes Settings -> Manage, right click the folder to exclude headers. Change Auto Includes
to Manual. Remove the following files:
* libxa af hostless/include/sysdeps/freertos/include
* libxa af hostless/include/sysdeps/linux/include
7. After performing the steps above, you get the binary file named audio framework (which is the firmware
of the DSP) in the following folder:
C:\usr\xtensa\Xplorer-10.1l.1ll-workspaces\workspace\audio framework\bin\hifi4
nxp v5 3 1 prod\Debuglaudio framework
To use this binary file to run on a real board, rename the audio framework binary file to hifi4.bin and
place it to the root fs folder.

6 Building DSP Wrapper and Unit Test

Before compiling the DSP wrapper and the unit test, set up the related toolchain. The DSP wrapper and the unit
test use the Linaro compiler toolchain for the Yocto platform.

6.1 Installing Linaro compiler toolchain

Currently, the Yocto toolchain is used to compile the DSP wrapper and the unit test’s code for the Yocto
platform. Use source environment-setup-armv8a-poky-linux to set up the Yocto GCC toolchain. To
build the code, get more information from the Makefile file of the DSP wrapper and the unit test.

6.2 Building the code

When the Linaro toolchain is successfully installed on your server, compile the DSP-related code. You can
execute the make command in the imx-audio-framework folder to compile the DSP wrapper and the unit
test. To compile them separately, see the README file in the imx-audio-framework folder. After the compiling
process, you can find the binary files in the imx-audio-framework/release folder.

For the DSP wrapper:
* imx-audio-framework/release/wrapper/lib dsp wrap arm elinux.so
For the unit test:

* imx-audio-framework/release/exe/dsp test

* imx-audio-framework/release/exe/dsp rend test.out

* imx-audio-framework/release/exe/dsp capturer test.out
* imx-audio-framework/release/exe/dsp voiceproc test.out

6.3 Installing Android toolchain

For building the DSP wrapper for Android, the toolchain used is android-ndk64-r10e-standalone, which
can be downloaded from the Android website.

7 Usage of DSP Binary Files

7.1 Getting DSP binary files

You can get the DSP binary files of the DSP framework, DSP wrapper, and unit test directly from NXP or
compile the source code to produce them by yourself. You can also obtain DSP codec binary files directly from

UG10167 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
17127



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10167

NXP Semiconductors U G1 01 67

i.MX DSP User's Guide

NXP. DSP codecs originated from Cadence are license-restricted: A license authorization is required from NXP
Marketing to access them.

The location for all prebuilt binaries not requiring any NXP Marketing authorization is on the Yocto mirror server.

7.2 Binary files in Linux OS rootfs

To run the binary files, place them into the Linux OS rootfs. The location of the DSP framework is determined
by the DSP remoteproc driver, so keep it in the specified place. The location of the DSP wrapper is determined
by the GStreamer and you shall keep it in the specified place. You can change the location of the unit test. The
binary files are in these folders:

* The unit test is here (default path):
/unit tests/DSP/dsp_ test.out

* The DSP framework is here:
/lib/firmware/imx/dsp/hifid.bin

* The DSP wrapper is here:
/usr/lib/imx-mm/audio-codec/wrap/lib dsp wrap arm elinux.so

* You can keep the DSP codec wrapper and the DSP codec in these folders of the Linux OS rootfs (These
libraries require authorization from NXP Marketing):
/usr/lib/imx-mm/audio-codec/dsp/lib dsp codec wrap.so
/usr/lib/imx-mm/audio-codec/dsp/lib dsp mp3 dec.so
/usr/lib/imx-mm/audio-codec/dsp/lib _dsp aac_dec.so
/usr/lib/imx-mm/audio-codec/dsp/lib dsp bsac dec.so
/usr/lib/imx-mm/audio-codec/dsp/lib dsp dabplus_dec.so
/usr/lib/imx-mm/audio-codec/dsp/lib dsp drm dec.so
/usr/lib/imx-mm/audio-codec/dsp/lib dsp mp2 dec.so
/usr/lib/imx-mm/audio-codec/dsp/lib dsp sbc dec.so
/usr/lib/imx-mm/audio-codec/dsp/lib dsp sbc enc.so

* Add the DSP NXP codec wrapper library (WMA10 library requires authorization from NXP Marketing, and
others are on the Yocto Mirror Server):
/usr/lib/imx-mm/audio-codec/dsp/lib mp3d wrap dsp.so
/usr/lib/imx-mm/audio-codec/dsp/lib aacd wrap dsp.so
/usr/lib/imx-mm/audio-codec/dsp/lib vorbisd wrap dsp.so
/usr/lib/imx-mm/audio-codec/dsp/lib wmalOd wrap dsp.so
/usr/lib/imx-mm/audio-codec/dsp/lib nbamrd wrap dsp.so
/usr/lib/imx-mm/audio-codec/dsp/lib wbamrd wrap dsp.so

7.3 Unit test and playing

7.3.1 dsp_test

After placing the binary files into the correct location of the rootfs, decode or encode audio streams directly
using the unit test binary file. To decode a * .mp3 file, use this command:

./dsp_test -fl -dl6 -itest.mp3 -otest.pcm

dsp test.out -£f3 -r32 -t49 -dl6 -ithetest 48000ps chbr32.nac -
othetest 48000ps chbr32.pcm

dsp test.out -f4 -il2-f111.mp2 -0l2-flll.pcm

For more information about dsp_test, use this command:

./dsp_test

UG10167 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
181727



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10167

NXP Semiconductors U G1 01 67

i.MX DSP User's Guide

To play one music file using the GStreamer and DSP wrapper, use this command:

gplay-1.0 test.mp3

The dsp_rend test.out supports compress playback, and the dsp capturer test.out supports record.
Those features are now usable on the i.MX 8M Plus board. After changing the dtb, whose filename is imx8mp-
evk-dsp.dtb, you can hear the sound by running the command:

dsp _rend test.out -f10 -isyz short.mp3

Record the sound by running the command:

dsp capturer test.out -outfile:out.pcm -samples:300000

Note: To record the sound, connect the i.MX 8M Plus board to the 8MIC-PRI-MX8 board first.

The dsp voiceproc test.out supports dummy voice process by processing the playback and record
stream in the DSP. The test is only a frame and does not realize the function. Test the case by running the
command:

/unit test/DSP/dsp voiceproc test.out -f10 -C2 -isyz short.mp3 -oout.pcm

8 Building Codec Wrapper and Codec Library

The library of the DSP codec wrapper and DSP codec is the loadable library. This section describes how to
make the loadable library for the DSP.

The DSP loadable library is available as two different types: a fixed-location overlay and a position-independent
library.

* For a fixed-location overlay, load the code into a predetermined location in the memory.
* For a position-independent library, load the code at an address determined during runtime.

You can link the loadable library using a special LSP named piload or pisplitload (see the Xtensa Linker
Support Packages (LSPs) Reference Manual). The binary files that are used by the DSP framework belong

to the position-independent library, so this section briefly describes how to generate the position-independent
library. For more detailed information, see Chapter 4 of the Xtensa System Software Reference Manual.

A position-independent library can be loaded and run at any address that supports both code and data, like a
normal system RAM. Alternatively, you can use the pisplitload LSP to load the code and data into separate
memory blocks located in local RAMs. The library location must be decided before the runtime.

The Xtensa development toolchain must be installed before making a loadable library. After that, you can follow
the steps below.

8.1 Finding custom LSPs

The loadable libraries must be linked to a custom linker support package. For the position-independent libraries,
it does not need to generate or edit an LSP. Instead, link your position-independent library using the standard
pisplitload LSP thatis provided as a part of your configuration.

UG10167 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
19/27



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10167

NXP Semiconductors U G1 01 67

i.MX DSP User's Guide

8.2 Source code modifying and compiling

The API only allows the main program to directly access a single symbol (_start) in the library. The library
cannot access any symbols in the main program directly. Any other symbol’s address must be passed to or from
the library as an argument to the start function. This code is an example:

#include <stdio.h>

/* declare a printf function pointer */ int (*printf ptr) (const char *format,

o))

/* replace all calls to printf with calls through the pointer */ #define printf
printf ptr

/* This is the function provided by the library */ char *
interface func(unsigned int input)

{

printf (Yexecuting function interface func\n”); 13

return “this is string returned from interface func”;

}

void * start(int (*printf func) (const char *format, ..))

{

printf ptr = printf func;

/* The main application wants to call the function interface func, but can’t
directly reference it. Therefore, this function returns a pointer to it, and
the main application will be able to call it via this pointer. */

return interface func;

}

The main application calls the start function, passes a pointer to printf, and takes a pointer to
interface func () inreturn. If the library and the main program must communicate a value of more than one
symbol, the start function call can return arrays of pointers, rather than single pointers.

After finishing your source code, use xt-xcc of the Xtensa development toolchain to compile the code.
Because the position-independent libraries can be loaded at any address, make sure that the code in the library
is position-independent using the - fpic flag along with your normal compile options as shown below:

xt-xcc -03 -o library.o -c library.c

8.3 Linking the library code

In this step, link the library code into a loadable library using the appropriate LSP. For position-independent
library, you can use this command:

xt-xcc -mlsp=pisplitload -Wl,--shared-pagesize=128 -Wl,-pie -lgcc -1lc -o
library.so library.o

Then, you can get a position-independent library with the code and data loadable separately. To get a
contiguous position-independent library, use this command:

xt-xcc -mlsp=piload -W1l,--shared-pagesize=128 -Wl,-pie -1lgcc -1lc -o library.so
library.o

After the linking stage, you can get a loadable library, which can be loaded by the DSP framework. The current
DSP framework only supports loading the code and data sections separately.

UG10167 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
20/27



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10167

NXP Semiconductors

UG10167

i.MX DSP User's Guide

9 Memory Allocation for DSP

The DSP firmware is loaded into the memory by the DSP remoteproc driver. The loading address is defined by
the memory map linker files of the Xtensa development toolchain. You may change the loading address based
on the memory map list of i.MX 8QuadXPlus, as shown in Table 1.

Table 1. Memory allocation on i.MX8 QuadXPlus
Cortex-A35/Cortex-M4 DSP Content

0x80000000 - 0x806FFFFF

Reserved (cannot be used)

0x59700000 - 0x5971FFFF

0x80700000 - 0x8071FFFF

DSP OCRAM-system RAM

0x59720000 - 0x5973FFFF

0x80720000 - 0x8073FFFF

DSP OCRAM-system ROM

0x80740000 - 0x80FFFFFF

Reserved (cannot be used)

0x80700000 - 0x8073FFFF

Linux OS kernel (not visible from DSP)

0x81000000 - Ox9FFFFFFF

0x81000000 - Ox9FFFFFFF

SDRAM

Note: 0x80700000 - 0x8071FFFF in the DDR range and without the ocram aliasing, the HiFi4 can have access
to this DDR addresses. Once the aliasing is enabled, the HiFi4 does not access the DDR, but its dedicated
ORCAM is at this address range. (The reason is that every 512 MB in 4 GB space has dedicated cache
attribute).

Currently, the Linux OS kernel reserves the memory for the DSP in the SDRAM separately. The range of the
reserved memory is 0x92400000 - 0x94 3fffff (32 MB). You may set this reserved memory by changing the
imx8x-mek.dtsi fileinthe 1inux-kernel/arch/armé64/boot/dts/freescale folder.

reserved-memory {

reg = <0 0x92400000 0 0x1000000>;
no-map;

bi

dsp reserved heap: dsp reserved heap {
reg = <0 0x93400000 0 0xef0000>;
no-map;

i

dsp _vdevOvring0: vdevOvring0@942£0000 ({
reg = <0 0x942f0000 0 0x8000>;

no-map;

}i

dsp vdevOvringl: vdevOvringl@942£8000 {
reg = <0 0x942f8000 0 0x8000>;

no-map;

bi

dsp_vdevObuffer: vdevObuffer@94300000 ({

compatible = "shared-dma-pool";
reg = <0 0x94300000 0 0x100000>;
no-map;

b

The DSP remoteproc driver splits the current reserved memory into five parts. One part is used to store the
DSP firmware and the other part is a scratch memory for the DSP framework. The detailed information about
these five parts is shown in Table 2.

© 2025 NXP B.V. All rights reserved.
Document feedback
21127

UG10167 All information provided in this document is subject to legal disclaimers.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10167

NXP Semiconductors U G1 01 67

i.MX DSP User's Guide

Table 2. Five memory parts

0x92400000 - 0x933FFFFF DSP firmware (16 MB)
0x93400000 - 0x942EFFFFF Scratch memory (16 MB)
0x942F0000 - Ox942F7FFF vdevOvring0
0x942F8000 - 0x942FFFFF vdevOvring1
0x94300000 - 0x943FFFFF vdevObuffer

Note:

* If you make changes in the memory map linker files of the Xtensadevelopment toolchain, make the related
changes for the DSP remoteproc driver.
* For i.MX 8ULP and i.MX 8M Plus memory allocation, check the DTS of each platform.

10 NatureDSP Library Support

NatureDSP Library is an extensive library, containing the most commonly used signal processing functions:
FFT, FIR, vector, matrix, and common mathematics. APl and programing guide is in hifi4 library/doc/
NatureDSP_Signal Library Reference HiFi4.pdf, and performance dataisin hifi4 library/
doc/NatureDSP Signal Library Performance HiFi4.pdf.

NatureDSP Library package is license restricted on the i.MX platform. License authorization is required from the
NXP marketing for the users to access the source code.

NatureDSP Library supported on the i.MX platform uses the same architecture as DSP framework. It is a
separate firmware.

* Firmware location: rootfs: /lib/firmware/imx/dsp/ hifi4 naturedsp.bin
* Unit test location: rootfs: /unit tests/DSP/naturedsp test

How to test:

Find the remoteproc instance for DSP, because we may have other remoteproc for the Cortex-M core.

root@imx8ulpevk:~# cat /sys/class/remoteproc/remoteprocl/name
imx-dsp-rproc

Change the default firmware for DSP:

root@imx8ulpevk:~# echo imx/dsp/hifi4 naturedsp.bin > /sys/class/remoteproc/
remoteprocl/firmware

Run unit test:

root@imx8ulpevk:~# /unit tests/DSP/naturedsp test -func
root@imx8ulpevk:~# /unit tests/DSP/naturedsp test -mips

11 Note About the Source Code in the Document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2025 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

UG10167 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
2227



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10167

NXP Semiconductors U G1 01 67

i.MX DSP User's Guide

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS I1S" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

12 Revision History

The following table provides the revision history for this document.

Table 3. Revision history

Document ID Release date Description
UG10167 v.LF6.12.20_2.0.0 26 June 2025 Upgraded to the 6.12.20 kernel.
UG10167 v.LF6.12.3_1.0.0 31 March 2025 Upgraded to the 6.12.3 kernel.
UG10167 v.LF6.6.52_2.2.0 16 December 2024 |Upgraded to the 6.6.52 kernel.
UG10167 v.LF6.6.36_2.1.0 30 September Upgraded to the 6.6.36 kernel.
2024
IMXDSPUG_6.6.23_2.0.0 28 June 2024 Upgraded to the 6.6.23 kernel, U-Boot v2024.04, TF-A

v2.10, OP-TEE 4.2.0, Yocto 5.0 Scarthgap, and added the
i.MX 91 as Alpha quality, i.MX 95 as Beta quality.

IMXDSPUG v.LF6.6.3_1.0.0 29 March 2024 Upgraded to the 6.6.3 kernel.

IMXDSPUG v.LF6.1.55_2.2.0 12/2023 Upgraded to the 6.1.55 kernel.

IMXDSPUG v.LF6.1.36_2.1.0 09/2023 Upgraded to the 6.1.36 kernel.

IMXDSPUG v.LF6.1.22_2.0.0 06/2023 Upgraded to the 6.1.22 kernel.

IMXDSPUG v.LF6.1.1_1.0.0 03/2023 Upgraded to the 6.1.1 kernel.

IMXDSPUG v.LF5.15.71_2.2.0 12/2022 Upgraded to the 5.15.71 kernel.

IMXDSPUG v.LF5.15.52_2.1.0 09/2022 Upgraded to the 5.15.52 kernel, and added the i.MX 93.

IMXDSPUG v.LF5.15.32_2.0.0 06/2022 Upgraded to the 5.15.32 kernel, U-Boot 2022.04, and
Kirkstone Yocto.

IMXDSPUG v.LF5.15.5_1.0.0 03/2022 gpdated the Section "File organization" and added Appendix

IMXDSPUG v.LF5.10.72_2.2.0 12/2021 This document is published with the Linux software
document package from this release.

IMXDSPUG v.6 11/2021 * Added OPUS decoder in Section 1

¢ Updated Figure 10

UG10167 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback
23 /27



https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10167

NXP Semiconductors

UG10167

Table 3. Revision history...continued

i.MX DSP User's Guide

Document ID

Release date

Description

Added note in Section 5.3

Added compress playback feature for i.MX 8MP board in
Section 7.3.1

Removed the path of configurable memory map file from
Section 4.1

IMXDSPUG v.5

09/2021

Added i.MX 8ULP support

Removed the cplay and LPA support

Added Section 2.1, Section 2.2, and Section 2.3
Updated Section 2, Section 3.2, Section 3.1,
Section 4.3.1, Section 4.3.2, and Section 9
Updated Figure 1

Added Figure 2

Changed "DSP driver" to "DSP remoteproc driver" in
Section 3

IMXDSPUG v.4

01/2021

Updated the version of the toolchain. Added details about
the firmware generation and the LPA.

IMXDSPUG v.3

09/2020

Added support for the i.MX8 MP board. Added support for
*.wav files playback by the ALSA compressed interface.
Added details about DSP framework building.

IMXDSPUG v.2

05/2020

Updated sections Section 1, Section 4.2, and Section 7.2.

IMXDSPUG v.1

01/2019

Added details about using the sound card feature that allows
users to play .mp3 files over ALSA compressed interface.

IMXDSPUG v.0

06/2018

Initial release.

uG10167

All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide

Rev. LF6.12.20_2.0.0 — 26 June 2025 Document feedback

24127


https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10167

NXP Semiconductors

UG10167

Legal information

i.MX DSP User's Guide

Definitions

Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers

Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to

make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default

in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

uG10167

All information provided in this document is subject to legal disclaimers.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless

this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.

In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

HTML publications — An HTML version, if available, of this document is
provided as a courtesy. Definitive information is contained in the applicable
document in PDF format. If there is a discrepancy between the HTML
document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles

to reduce the effect of these vulnerabilities on customer’s applications

and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and

trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

© 2025 NXP B.V. All rights reserved.

User guide

Rev. LF6.12.20_2.0.0 — 26 June 2025

Document feedback
25/ 27


mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10167

NXP Semiconductors

UG10167

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamlQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-
PLUS, ULINKpro, pVision, Versatile — are trademarks and/or registered
trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or
elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved.

uG10167

All information provided in this document is subject to legal disclaimers.

i.MX DSP User's Guide

Cadence — the Cadence logo, and the other Cadence marks found at www.
cadence.com/go/trademarks are trademarks or registered trademarks of
Cadence Design Systems, Inc. All rights reserved worldwide.

© 2025 NXP B.V. All rights reserved.

User guide

Rev. LF6.12.20_2.0.0 — 26 June 2025

Document feedback
26/ 27


https://www.cadence.com/go/trademarks
https://www.cadence.com/go/trademarks
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10167

NXP Semiconductors

UG10167

i.MX DSP User's Guide

Contents
1 Introduction ..o 2
2 System Architecture ... 2
2.1 Remote processor start ..............ooooeiiiiiiiiinnns 5
2.2 Remote processor stop ......cccccveeeeeeeeeeeeieiiiiinn, 5
2.3 Resource table example ...........ccccooeiviiiiiiinnnnns 5
3 File Organization .........cccooeeiiiiiiccieeeecceeeee 6
3.1 DSP remoteproc driver .........cccocveveeeeeeeeeeeeeeeenn. 6
3.2 DSP framework .........ccccooeeiniiiniieeieeeeeee 6
3.3 DSP wrapper and unit test ...........ccccvviiieiennn.n. 6
3.4 Interface header files ..........ccccooiiiiiiiiicineee 6
4 Building DSP Framework on Linux OS .......... 7
41 Installing Xtensa development toolchain ............ 7
4.2 Building DSP framework .........c.cccccooeveeiicnnenn. 8
43 DSP DEBUG .....ccoooiiieiiieiieeieeee e 9
4.31 Enabling DSP debug on i.MX 8M Plus .............. 9
4.3.2 Enabling DSP DEBUG on i.MX QuadXPlus ....... 9
43.3 Enabling DSP debug on i.MX 8ULP ................ 11
5 Building DSP Framework on the

Windows OS .......ccccciminimrnnie e 12
51 Adding new configuration packages ................ 12
5.2 Creating the DSP framework Xplorer

PrOJECE oo 13
53 Building DSP framework ..........cccccceeeiiiieneenns 15
6 Building DSP Wrapper and Unit Test ........... 17
6.1 Installing Linaro compiler toolchain .................. 17
6.2 Building the code ... 17
6.3 Installing Android toolchain ................ccccceoee 17
7 Usage of DSP Binary Files ..........ccccceiieeenes 17
71 Getting DSP binary files .........ccocciiiiiinnins 17
7.2 Binary files in Linux OS rootfs ..........ccccceeunee. 18
7.3 Unit test and playing ........cccccooeeiiiiiiniieeeee 18
7.3.1 dsp test .o 18
8 Building Codec Wrapper and Codec

[T o] - 1 19
8.1 Finding custom LSPS ........coccooiiiiiiiieeee. 19
8.2 Source code modifying and compiling ............. 20
8.3 Linking the library code .........coccooiiiiiiiiineae 20
9 Memory Allocation for DSP ...........ccccceeeeen. 21
10 NatureDSP Library Support ..........cccceecerennee 22
1" Note About the Source Code in the

Document .......ccccvimviiiminen 22
12 Revision History ... 23

Legal information ..........ccccoooiiiniiiiireeee 25

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2025 NXP B.V. All rights reserved.

For more information, please visit: https://www.nxp.com Document feedback

Date of release: 26 June 2025
Document identifier: UG10167


https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10167

	1  Introduction
	2  System Architecture
	2.1  Remote processor start
	2.2  Remote processor stop
	2.3  Resource table example

	3  File Organization
	3.1  DSP remoteproc driver
	3.2  DSP framework
	3.3  DSP wrapper and unit test
	3.4  Interface header files

	4  Building DSP Framework on Linux OS
	4.1  Installing Xtensa development toolchain
	4.2  Building DSP framework
	4.3  DSP DEBUG
	4.3.1  Enabling DSP debug on i.MX 8M Plus
	4.3.2  Enabling DSP DEBUG on i.MX QuadXPlus
	4.3.3  Enabling DSP debug on i.MX 8ULP


	5  Building DSP Framework on the Windows OS
	5.1  Adding new configuration packages
	5.2  Creating the DSP framework Xplorer project
	5.3  Building DSP framework

	6  Building DSP Wrapper and Unit Test
	6.1  Installing Linaro compiler toolchain
	6.2  Building the code
	6.3  Installing Android toolchain

	7  Usage of DSP Binary Files
	7.1  Getting DSP binary files
	7.2  Binary files in Linux OS rootfs
	7.3  Unit test and playing
	7.3.1  dsp_test


	8  Building Codec Wrapper and Codec Library
	8.1  Finding custom LSPs
	8.2  Source code modifying and compiling
	8.3  Linking the library code

	9  Memory Allocation for DSP
	10  NatureDSP Library Support
	11  Note About the Source Code in the Document
	12  Revision History
	Legal information
	Contents

