
UG10215
i.MX 95 Camera Porting Guide
Rev. 2.0 — 26 June 2025 User guide

Document information
Information Content

Keywords UG10215, i.MX 95, ISP, sensor porting guide, IPA, camera, NEO-ISP

Abstract This guide describes the steps to enable a RAW Bayer camera sensor into the i.MX 95
applications processor internal image signal processing on top of Linux camera software stack.

https://www.nxp.com

NXP Semiconductors UG10215
i.MX 95 Camera Porting Guide

1 Introduction

This guide describes the steps to enable a RAW Bayer camera sensor into the i.MX 95 applications processor
internal image signal processing (ISP) on top of the Linux camera software stack.

2 Overview

This document provides an overview of the i.MX 95 applications processor hardware camera subsystem, and
then describes its corresponding software architecture within the Linux Kernel and User Space. It also describes
the porting instructions and how to configure the 3A algorithms.

3 i.MX 95 applications processor camera domain hardware architecture

The camera subsystem is known as the camera domain in the i.MX 95 Applications Processor Reference
Manual (document IMX95RM1).

The domain provides the following functions:

• Camera interface and capture from two CSI interfaces
• Image signal processing (ISP) on the camera stream

Figure 1 shows the camera domain block diagram.

MIPI camera (4-lane)

ISI

MIPI camera/display (4-lane)

ISP

Camera domain

RX DPHY

CSI-2 Ctrl #0

CSI pixel
formatting

RX/TX DPHY

CSI-2 Ctrl #1

CSI pixel
formatting

DSI Ctrl

DSI pixel
formatting

Pixel link
select

Slave pixel link
DSI 0

Slave pixel link
DSI 1

Slave pixel link
ISI 0

Slave pixel link
ISI 1

Pixel link
select

Camera CSR

Display master
CSR

CAM ID CSR

RX/TX PHY CSR

NoC camera

Pixel link crossbar

CH
N

CH
0

Y U V

OCRAM

TRDC MGR

TRDC components

MU (x9)

Display stream
CSR

LPCAC

Figure 1. Camera domain hardware architecture

For hardware details of the camera domain modules involved in the Linux camera stack, see "Chapter 12
Camera Domain" in the i.MX 95 Applications Processor Reference Manual (document IMX95RM2).

1 Contact a local field applications engineer (FAE) or sales representative.
2 Contact a local field applications engineer (FAE) or sales representative.

UG10215 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.0 — 26 June 2025 Document feedback
2 / 39

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10215

NXP Semiconductors UG10215
i.MX 95 Camera Porting Guide

3.1 i.MX 95 EVK reference camera modules
Table 1 provides NXP reference RAW camera modules used to implement and validate the i.MX 95 applications
processor Linux camera software stack.

Sensor Description Comments

Omnivision OX03C10 • 2.5 Megapixels
• 3 exposure HDR (HDR merge performed inside

the sensor)
• Lenses: 180° H FOV

Connected to i.MX 95 EVK
through a MAXIM deserializer.

Omnivision OX05B1S • 5 Megapixels
• RGB-IR4x4
• Single exposure 10 bit
• Lenses: 160° H FOV

-

Omnivision OS08A20 • 8 Megapixels
• 2 exposure HDR
• Lenses: 120° H FOV to 130° H FOV

-

Table 1. List of camera sensors modules supported

4 i.MX 95 applications processor camera software architecture

A Linux kernel driver is available for each of the hardware domain modules listed in Figure 1.

These drivers follow the Linux V4L2/media controller framework. For more details, see Section 4.1 "Linux kernel
architecture".

To hide the complexity of the subsystem to the end user, the libcamera library has been adopted. It is
responsible for setting up and managing the camera stream pipelines from the sensor to the user application,
through the camera domain hardware modules. For more details, see Section 4.2 "Libcamera architecture".

The i.MX 95 applications processor camera software architecture has been designed with compliance with
modern approaches for managing complex camera subsystems in mind, such as:

• Avoid deviation from the Linux kernel V4L2 API, design, or behavior whenever possible.
• Use of a recognized Linux community library, libcamera.
• Avoid deviation from the libcamera API, design, or behavior.

To achieve the best image quality required for a product, a camera sensor must be tuned and calibrated. A
production quality tuning and calibration toolset is provided to perform such a task. This tool connects to the
libcamera library to exchange data frames and metadata, enabling effective image processing of the final
product.

4.1 Linux kernel architecture
This section describes the drivers for each of the hardware modules involved in the software stack.

This section covers the media controller entities involved in the imaging pipeline. The green boxes, with round
corners, represent the V4L2 media subdevices:

• SINK pads (input) are at the top.
• The subdevice name and node path are in the middle.
• SOURCE pads (output) are at the bottom.

Note:

UG10215 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.0 — 26 June 2025 Document feedback
3 / 39

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10215

NXP Semiconductors UG10215
i.MX 95 Camera Porting Guide

• The V4L2 API uses the notation of SINK and SOURCE, when referring to pad connection. A SINK pad
represents the input pad, relative to the entity. Input pads sink data and are targets of links. A SOURCE pad
represents an output pad, relative to the entity. Output pads the source data and are the origins of links. In
other words, an entity takes its data from a SINK pad and outputs it on a SOURCE pad.

• In addition, when referring to video device nodes, the V4L2 API uses the notation of CAPTURE, OUTPUT,
and M2M. CAPTURE video nodes are nodes that output capture data streams from cameras or other
sources. OUTPUT video nodes are nodes that send streams to the output of the system. M2M video nodes
are nodes that use input streams from the user-space, returning them back to the user-space.

4.1.1 Camera sensor driver

This section describes the camera sensor driver design, when connected and not connected to the EVK through
a GMSL deserializer.

4.1.1.1 V4L2 camera subdevice

Table 2 is the representation of a camera sensor as a Linux kernel media entity.

Type MEDIA_ENT_F_CAM_SENSOR

Flags V4L2_SUBDEV_FL_HAS_DEVNODE

SINK pads 0

SOURCE pads 1 (num: 0)

Table 2. Camera sensor as a Linux kernel media entity

Figure 2 shows a simple representation of a camera sensor. The only pad represents the device entry-point for
connecting with other subdevices. The example above also includes a serializer on the physical camera board,
but for simplicity, this serializer is not included into the V4L2 subsystem representation.

mx95mbcam 8-0040
/dev/v4l-subdev8

0

Figure 2. Camera sensor as a Linux kernel media entity

4.1.2 V4L2 GMSL deserializer subdevice

Gigabit multimedia serial link (GMSL) is the line driver and receiver designed for video applications.

An expansion card has been built to support up to four GMSL2 based OX03C10 cameras to the i.MX 95 EVK,
through a Maxim MAX96724 GMSL2 deserializer.

The MAX96724 deserializer converts four GMSL2 inputs to 1, 2, or 4 MIPI D-PHY or C-PHY outputs.

Table 3 is the representation of the MAX96724 deserializer as a Linux kernel media entity.

Type MEDIA_ENT_F_VID_IF_BRIDGE

Flags V4L2_SUBDEV_FL_HAS_DEVNODE

SINK pads 4 (num: 0..3)

Table 3. Maxim96724 deserializer as a Linux kernel media entity

UG10215 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.0 — 26 June 2025 Document feedback
4 / 39

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10215

NXP Semiconductors UG10215
i.MX 95 Camera Porting Guide

Type MEDIA_ENT_F_VID_IF_BRIDGE

SOURCE pads 1 (num: 4)

Table 3. Maxim96724 deserializer as a Linux kernel media entity...continued

This device is required to obtain multiple streams from various camera sensors using the CSI protocol. A CSI
receiver has only one physical port. However, at protocol level, it can carry up to four streams using Virtual
Channels (VCs). Therefore, the analog serializer/deserializer pairs can stream up to four camera streams.

mx95mbcam 8-0040
/dev/v4l-subdev8

0

0 1 2 3

max96724 2-0027
/dev/v4l-subdev7

4 5

mx95mbcam 9-0040
/dev/v4l-subdev9

0

mx95mbcam 10-0040
/dev/v4l-subdev10

0

mx95mbcam 11-0040
/dev/v4l-subdev11

0

Figure 3. Four OX03C10 and GMSL2 deserializer media topology

The SINK pads connect up to four camera sensor subdevices, while the SOURCE pad connects the
deserializer to its corresponding CSI receiver.

4.1.3 MIPI CSI-2 driver

This section describes the i.MX 95 MIPI CSI-2 Linux kernel driver design.

First, it focuses on describing the hardware block. Then, it focuses on the design choices to represent it as a
Linux kernel V4L2/media controller driver.

4.1.3.1 MIPI CSI-2 hardware block

Figure 4 shows the hardware (HW) description of the MIPI CSI-2 receiver, as described in i.MX 95 Applications
Processor Reference Manual (document IMX95RM3).

3 Contact a local field applications engineer (FAE) or sales representative.
UG10215 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.0 — 26 June 2025 Document feedback
5 / 39

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10215

NXP Semiconductors UG10215
i.MX 95 Camera Porting Guide

MIPI CSI-2 host controller

Synchronizer

Error handler Register bank

De-scrambler

De-scrambler

PPI data

processor

PPI

pattern generator

PHY

adaptation

layer

Packet

analyzer

PPI 0

 ...

PPI 3

PPI0 ... PPI 3

PPI0 ... PPI 3

IDI

controller

De-scrambler

... Image data

interface

APB slave bus

Interrupt

PPI CLK

MIPI D-PHY

RX 4 lanes

 Clock lane4 RX data

lanes

Figure 4. MIPI CSI-2 host controller block diagram

As shown in Figure 5, it outputs the data through the image data interface (IDI) block. After this block, there is
another block, called CSI Pixel Formatter. This formatter converts data from the CSI-2 format to the Pixel Link
(PL) format. This conversion is necessary because PL is the internal data BUS used to transfer camera pixels
through the system.

V/Hsync
generator

CSR CTRL signals

IDI interface PL interface

CSR CTRL signals

Data
formatting

Async
FIFO

Figure 5. CSI-2 pixel formatting block diagram

To understand the capabilities of the CSI Pixel Formatter better, Figure 6 shows three cameras streaming
various data types and formats through a CSI-2 deserializer.

UG10215 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.0 — 26 June 2025 Document feedback
6 / 39

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10215

NXP Semiconductors UG10215
i.MX 95 Camera Porting Guide

aaa-059999

P4

P4

P4

P3

P3

P3

P2

P2

P2

P1

P1

P1

Line data
CSI-2 packet

HDR

Cameras

Data type
Packet header

VC

CSI-2
deserializer

CSI-2
receiver

MIPI CSI-2

Figure 6. MIPI CSI-2 streaming example

As shown in Figure 7, the camera sends the data through a CSI-2 packet. This packet has a header, which
identifies what type of data is carried on that packet. A VC and a data type (DT) help identify the data. All the
packets are deserialized on the same CSI-2 port by the deserializer. Once deserialized, the CSI-2 data is
processed based on the VC and DT. In summary, the function of the CSI Pixel Formatter is to analyze the VC
and DT of a packet. Based on its programming, it can theoretically reroute the packet by altering the VC.

Figure 7 is an example diagram of such rerouting.

aaa-060000

P2

C
SI

 p
ix

el
 fo

rm
at

te
r

VC:2
DT:2C

P2

VC:1
DT:2A

P2

VC:0
DT:2C

P1

VC:2
DT:2C

P1

VC:1
DT:14

P1
CSI-2

receiver

VC:0
DT:2A

P2

PL:3
DT:2C

P2

PL:2
DT:2A

P2

PL:0
DT:2C

P1

PL:3
DT:2C

P1

PL:1
DT:14

P1

PL:0
DT:2A

Figure 7. i.MX 95 MIPI CSI Formatter routing example

The diagram in Figure 7 has a new level of packet representation:

• The camera highlighted in orange is sending RAW16 (DT: 0x2E) interleaved with RAW12 (DT: 0x2C) on VC0.
• The camera highlighted in blue is sending embedded data (DT: 0x14 - user-defined data type) and RAW16

(DT: 0x2A) on VC1.
• The camera highlighted in green is sending RAW12 (DT: 0x2C) only on VC2.

The output from the CSI Pixel Formatter shows the effect of the desired routing:

• RAW16 (DT: 0x2A) and RAW12 (DT: 0x2C) on VC0 goes to Pixel Link VC0 (PL0). In this case, the dual-
exposure frame remains interleaved on VC0.

• Embedded data (DT: 0x14) on VC1 goes to PL VC1.
• RAW16 (DT: 0x2A) on VC1 goes to PL VC2.
• RAW12 (DT: 0x2C) on VC2 goes to PL VC3.

The example above shows how CSI-2 data can be multiplexed or demultiplexed:

• Multiplexed: Multiple data types from multiple CSI-2 virtual channels can go to the same PL virtual channel.
• Demultiplexed: Multiple data types from the same CSI-2 virtual channel can go to another individual PL virtual

channel, demonstrated in the above example.

UG10215 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.0 — 26 June 2025 Document feedback
7 / 39

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10215

NXP Semiconductors UG10215
i.MX 95 Camera Porting Guide

4.1.3.2 V4L2 MIPI CSI-2 subdevice

This driver manages the HW block that handles the CSI-2 D-PHY and CSI-2 receiver interface in the system.

Type MEDIA_ENT_F_VID_IF_BRIDGE

Flags V4L2_SUBDEV_FL_HAS_DEVNODE

SINK pads 1 (num: 0)

SOURCE pads 1 (num: 1)

Table 4. i.MX 95 MIPI CSI-2 Linux kernel media entity

0

imx9-csi2.0
/dev/v4l-subdev5

1

Figure 8. i.MX 95 MIPI CSI-2 Linux kernel media entity

The SINK pad (0) connects to a camera streaming device that is either a camera subdevice or a deserializer
bridge. The SOURCE pad (1) connects to the next pixel processor in the system. The VCs identify the camera
streams, which are treated as streams in the V4L2 subsystem.

4.1.3.3 V4L2 CSI pixel formatter subdevice

This driver manages the CSI Pixel Formatter block, which is placed after the IDI of the CSI-2 receiver. The
CSI-2 pixel formatting module uses packet information, pixel, and non-pixel data from the CSI-2 host controller
and reformat them to match PL definition. It can also optionally route non-pixel data or a pixel data type to
another PL virtual channel.

Type MEDIA_ENT_F_VID_MUX

Flags
V4L2_SUBDEV_FL_HAS_DEVNODE
V4L2_SUBDEV_FL_MULTIPLEXED

SINK pads 1 (num: 0)

SOURCE pads 1 (num: 1)

Table 5. i.MX 95 MIPI CSI-2 Pixel Formatter Linux kernel media entity

UG10215 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.0 — 26 June 2025 Document feedback
8 / 39

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10215

NXP Semiconductors UG10215
i.MX 95 Camera Porting Guide

0

imx9-csi2.0
/dev/v4l-subdev5

1

0

csi-mux.0
/dev/v4l-subdev6

1

Figure 9. i.MX 95 MIPI CSI-2 subsystem media topology

The csi-mux subdevice multiplexes CSI virtual channels from the CSI-2 output to the PL bus. This device can
also split camera streams into multiple streams.

For example:

• Use case 1: CSI-VC0 is routed to PL-VC1
Here, the csi-mux reroutes a camera stream from one virtual channel to another on the PL bus.

• Use case 2: CSI-VC0 is routed to PL-VC0, PL-VC1, and PL-VC2
Here, the csi-mux identifies data types in a camera stream, such as embedded-data, long-exposure frames,
and short-exposure frames. It then reroutes them to individual virtual channels on the PL.

To achieve the example use cases above, use the V4L2 streams API routing operations.

4.1.3.4 V4L2 CSI-2 pipeline topology

Now that all the devices have been explained, Figure 10 shows the media topology. It features four cameras
connected to a deserializer that streams to the CSI-2 receiver.

UG10215 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.0 — 26 June 2025 Document feedback
9 / 39

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10215

NXP Semiconductors UG10215
i.MX 95 Camera Porting Guide

CSI Pipelines

mx95mbcam 8-0040
/dev/v4l-subdev8

0

0 1 2 3

max96724 2-0027
/dev/v4l-subdev7

4 5

mx95mbcam 9-0040
/dev/v4l-subdev9

0

mx95mbcam 10-0040
/dev/v4l-subdev10

0

mx95mbcam 11-0040
/dev/v4l-subdev11

0

0

csidev-4ad30000.csi
/dev/v4l-subdev6

1

0

4ac10000.syscon:formatter@20
/dev/v4l-subdev5

1

Figure 10. i.MX 95 camera sensor and MIPI CSI-2 subsystem media topology

4.1.4 Image sensing interface driver

This section describes the i.MX 95 image sensing interface (ISI) driver design.

First, it focuses on describing the hardware block. Then, it focuses on the design choices to represent it as a
Linux kernel V4L2/media controller driver.

4.1.4.1 i.MX 95 ISI hardware overview

The ISI IP block can process up to 8 pixel streams using eight simultaneous processing channels. Each
processing pipeline or channel can be assigned to the same or different pixel input source.

Input sources supported are as follows:

• Two 4-lane MIPI CSI-2 (CSI-2 #0 and CSI-2 #1 PL interface)
• Display controller 0 output (DC #0 PL interface)
• Display controller 1 output (DC #1 PL interface)
• System memory (AXI master; internally converted to PL interface)

Figure 11 shows the HW diagram of the ISI block.

UG10215 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.0 — 26 June 2025 Document feedback
10 / 39

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10215

NXP Semiconductors UG10215
i.MX 95 Camera Porting Guide

ASYNC
FIFO

MEM
RD CTRL

AXI 2 PL
Bus command read

AXI bus 128 bits

Interrupts

APB select
(per channel)

Pixel link
crossbar

out n

out 2

out 1

out 0in5

in4

in3

in2

in1

AXI - RD

Software memory
read control

Address,
data control

for line buffer
sharing

Memory read control for deinterlace (per channel)

Line buffer management ISI

Configuration
registers

APB bus

Scaler

Clock
enable

Processing clock

CG

Processing pipeline n

OUT BUF

Processing pipeline 2

Clock space
conversion

SCG

Processing pipeline 1

Processing pipeline 0

Pixel clock

AXI bus
128 bits

(Y)
AXI WR_ARB

(Y)

Bus command write

AXI WR
(Y)

AXI bus
128 bits

(U)
AXI WR_ARB

(U)
AXI WR

(U)

AXI bus
128 bits

(V)
AXI WR_ARB

(V)
AXI WR

(V)

Bus command arbitrate and write

SRAM 0

SRAM 1

SRAM 2

SRAM 3

REGFILE n

REGFILE 2

REGFILE 1

REGFILE 0 Blocks that are outside of ISI IP

Sub-blocks that are part of ISI IP

Pixel link
input 4

Pixel link
input 1

Pixel link
input 2

Pixel link
input 3

Figure 11. ISI block diagram

The focus is solely on the MIPI CSI-2 and system memory as input sources, because they are of interest for
using the imaging subsystem.

4.1.4.2 i.MX 95 V4L2 ISI driver

The ISI driver includes an ISI crossbar subdevice and an ISI pipe subdevice, corresponding to the HW ISI
crossbar and ISI processing pipelines.

4.1.4.3 V4L2 ISI crossbar subdevice

The crossbar subdevice is created to allow all the possible connections between input types to an ISI channel.
For input pads, the crossbar can be configured with up to eight inputs (one for each processing pipeline). It also
has one pad for the system memory input.

Type MEDIA_ENT_F_VID_MUX

Flags
V4L2_SUBDEV_FL_HAS_DEVNODE
V4L2_SUBDEV_FL_MULTIPLEXED

SINK pads 5 (num: 0..4)

SOURCE pads 8 (num: 5..12)

Table 6. i.MX 95 ISI crossbar Linux kernel media entity

UG10215 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.0 — 26 June 2025 Document feedback
11 / 39

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10215

NXP Semiconductors UG10215
i.MX 95 Camera Porting Guide

0 1 2 3 4

imx9-isi-crossbar
/dev/v4l-subdev7

5 6 7 8 9 10 11 12

Figure 12. i.MX 95 MIPI ISI crossbar Linux kernel media entity

The SINK/SOURCE pads are used to interpret the HW representation of the ISI crossbar, as defined in the ISI
schematics.

Note: The crossbar is a multiplexer of five inputs and eight outputs. It is possible to configure each output port
to connect to any of the five inputs. The five inputs are numbered from 0 to 4, where input 5 is always a memory
location. A single input can be assigned to multiple outputs on the crossbar.

The ISI block inputs ports connect i.MX95 camera domain physical links to the ISI internal pixel link crossbar,
which are in the following order:

• Pixel Link input 0, connected to display controller (DC) #0
• Pixel Link input 1, connected to DC #1
• Pixel Link input 2, connected to MIPI CSI-2 controller #0
• Pixel Link input 3, connected to MIPI CSI-2 controller #1
• Memory input, connected to AXI bus

Note: The CSI type inputs can carry multiple streams using virtual channels. These streams must be routed to
individual crossbar outputs, so that one ISI pipe can process each stream.

4.1.4.4 V4L2 ISI pipe subdevice

The ISI pipe subdevice represents a physical ISI processing channel and it gets connected to an output of the
ISI crossbar.

Function MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER

Capabilities V4L2_SUBDEV_FL_HAS_DEVNODE

SINK pads 1 (num: 0)

SOURCE pads 1 (num: 1)

Table 7. i.MX 95 ISI pipe Linux kernel media entity

Note: The output gets connected automatically to an ISI video device node.

0

mxc_isi.0
/dev/v4l-subdev8

1

Figure 13. i.MX 95 MIPI ISI pipe Linux kernel media entity

UG10215 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.0 — 26 June 2025 Document feedback
12 / 39

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10215

NXP Semiconductors UG10215
i.MX 95 Camera Porting Guide

4.1.4.5 V4L2 ISI video node

The video subdevice creates V4L2 video device nodes and manages the CAPTURE buffer queue through it.

Function MEDIA_ENT_F_PROC_VIDEO_SCALER

Capabilities V4L2_CAP_STREAMING
V4L2_CAP_VIDEO_CAPTURE_MPLANE
V4L2_CAP_IO_MC

SINK pads 1 (num: 0)

Table 8. i.MX 95 ISI video node Linux kernel media entity

4.1.4.6 V4L2 ISI memory-to-memory node

The memory-to-memory (M2M) subdevices creates V4L2 video device nodes and manages CAPTURE and
OUTPUT buffer queues through it. This subdevice is automatically added to crossbar SINK pad 4 (memory
input).

Function MEDIA_ENT_F_PROC_VIDEO_SCALER

Capabilities
V4L2_CAP_STREAMING
V4L2_CAP_VIDEO_M2M_MPLANE

SOURCE pads 1 (num: 0)

Table 9. i.MX 95 ISI M2M node Linux kernel media entity

4.1.4.7 V4L2 ISI pipeline topology

Now, that all the devices are explained, Figure 14 represents the media topology, with four cameras connected
to a deserializer, streaming to ISI pipeline channels. It represents the physical connection but the streaming
configuration and routing to ISI channels must be done in the user space.

UG10215 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.0 — 26 June 2025 Document feedback
13 / 39

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10215

NXP Semiconductors UG10215
i.MX 95 Camera Porting Guide

CSI Pipelines

ISI Pipelines

mx95mbcam 8-0040
/dev/v4l-subdev8

0

0 1 2 3

max96724 2-0027
/dev/v4l-subdev7

4 5

mx95mbcam 9-0040
/dev/v4l-subdev9

0

mx95mbcam 10-0040
/dev/v4l-subdev10

0

mx95mbcam 11-0040
/dev/v4l-subdev11

0

0

csidev-4ad30000.csi
/dev/v4l-subdev6

1

0

4ac10000.syscon:formatter@20
/dev/v4l-subdev5

1

0 1 2 3 4

crossbar
/dev/v4l-subdev0

5 6 7 8 9 10 11 12

mxc_isi.output

0

mxc_isi.0
/dev/v4l-subdev1

1

0

mxc_isi.1
/dev/v4l-subdev2

1

0

mxc_isi.2
/dev/v4l-subdev3

1

0

mxc_isi.3
/dev/v4l-subdev4

1

mxc_isi.0.capture
/dev/video0

mxc_isi.1.capture
/dev/video1

mxc_isi.2.capture
/dev/video2

mxc_isi.3.capture
/dev/video3

Figure 14. i.MX 95 camera subsystem media topology from camera sensors to ISI video nodes

4.1.4.8 V4L2 ISI camera scenarios

Lets consider a few examples to expose some possible scenarios involving the ISI pipelines.

4.1.4.8.1 Single YUV camera streaming on CSI0:VC0

In this case, the user space:

• Enables and configures the link between csi-mux and isi-crossbar
• Sets the routing in isi-crossbar to route the [input:2, stream:0] from SINK pad 0 to channel 0 on SOURCE pad

5
• From this point, frame buffers can be obtained through the video node of mxc_isi.0

4.1.4.8.2 Two YUV/RGB cameras streaming on CSI0:VC0, VC1

In this case, the user space:

• Enables and configures the link between csi-mux and isi-crossbar
• Sets the routing in isi-crossbar to route the [input:2, stream:0] from SINK pad 0 to channel 0 on SOURCE pad

5
• Sets the routing in isi-crossbar to route the [input:2, stream:1] from SINK pad 0 to channel 1 on SOURCE pad

6
• From this point, frame buffers can be obtained through the video nodes of mxc_isi.0 and mxc_isi.1

UG10215 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.0 — 26 June 2025 Document feedback
14 / 39

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10215

NXP Semiconductors UG10215
i.MX 95 Camera Porting Guide

4.1.4.8.3 Single RAW camera streaming single-exposure on VC0

The RAW data is RAW12.

In this case, the user space:

• Enables and configures the link between csi-mux and isi-crossbar
• Configures the csi-mux to enable data monitors on VC0 for RAW12
• Sets the routing on csi-mux to route [input:0, stream:0] (CSI:VC0) to [output:0, stream:0] (PL:VC0, Pass-

through mode)
• Sets the routing in isi-crossbar to route the [input:2, stream:0] from SINK pad 2 to channel 0 on SOURCE pad

5 (mxc_isi.0)
• Configures the mxc_isi.0 to route RAW12

Note: Frame size is established based on the number of lines sent by the sensor

4.1.4.8.4 Single RAW camera streaming dual-exposure and metadata on same VC

The dual-exposure is represented as:

• Data type 1: RAW16
• Data type 2: RAW12

The metadata is RAW8, a custom user data type. All the data is streamed in CSI:VC0.

In this case, the user space:

• Enables and configures the link between csi-mux and isi-crossbar
• Configures the csi-mux to enable data monitors on VC0 for embedded data, RAW16, and RAW12
• Configures the csi-mux to reroute embedded data to VC0, RAW16 to VC1, and RAW12 to VC2
• Sets the routing on csi-mux to route [input:0, stream:0] (CSI:VC0) to [output:0, stream:0,1,2] (PL:VC0, VC1,

VC2; stream demultiplexing)
• Sets the routing in isi-crossbar to route the [input:2, stream:0] from SINK pad 2 to channel 0, on SOURCE pad

5 (mxc_isi.0)
• Sets the routing in isi-crossbar to route the [input:2, stream:1] from SINK pad 2 to channel 1, on SOURCE pad

6 (mxc_isi.1)
• Sets the routing in isi-crossbar to route the [input:2, stream:2] from SINK pad 2 to channel 2, on SOURCE pad

7 (mxc_isi.2)
• Configures the mxc_isi.0 to process RAW8

Note: Frame size is established based on the number of lines sent by the sensor
• Configures the mxc_isi.1 to process RAW16
• Configures the mxc_isi.2 to process RAW12

This method demultiplexed an interleaved dual-exposure stream with embedded data sent across the same
MIPI-CSI VC. This method simplifies the process by separating each data type sent by the camera sensor,
which allows independent storage in memory. However, a drawback is that for each camera supporting HDR
and embedded data, the three ISI channels are already consumed. As a result, it is evident that too many HDR
cameras cannot be supported simultaneously. The processing of RAW frames involves an ISP block; for more
details on processing of RAW frames using ISP, see Section 4.1.5 "Image signal processing driver".

4.1.4.8.5 Single RAW camera streaming dual-exposure and metadata on several VCs

The dual-exposure is represented as:

• Data type 1: RAW16 sent on VC0
• Data type 2: RAW12 sent on VC1

UG10215 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.0 — 26 June 2025 Document feedback
15 / 39

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10215

NXP Semiconductors UG10215
i.MX 95 Camera Porting Guide

The metadata is RAW8, a custom user data type sent on VC0 as pre-pixel and post-pixel data.

In this case, the user-space:

• Enables and configures the link between csi-mux and isi-crossbar
• Configures the csi-mux to enable data monitors on VC0 for embedded data and RAW16, and on VC1 for

RAW12
• Configures the csi-mux to reroute embedded data to VC0, RAW16 to VC0, and RAW12 to VC0
• Sets the routing on csi-mux to route [input:2, stream:0, 1] (CSI:VC0, VC1) to [output:0, stream:0] (PL:VC0;

stream multiplexing)
• Sets the routing in isi-crossbar to route the [input:2, stream:0] from SINK pad 2 to channel 0 on SOURCE pad

5 (mxc_isi.0)
• Configures the mxc_isi.0 to process RAW8

Note: Frame size is established based on the number of lines sent by the sensor

This use case is a complex theoretical one that implies interleaving multiple data types into the same stream.
It is essential to ensure that the order of the incoming data is correct. Otherwise, it is impossible to determine
which line corresponds to which data type. In this case, the frame looks as follows:

+---+
| Line 0 : Meta-data front line 1 |
| Line 1 : Meta-data front line 2 |
| Line 2 : Data Type 1 (RAW16), Image line 0 |
| Line 3 : Data Type 2 (RAW12), Image line 0 |
| Line 4 : Data Type 1 (RAW16), Image line 1 |
| Line 5 : Data Type 2 (RAW12), Image line 1 |
| : ... |
| Line n-2: Data Type 1 (RAW16), Image line h-1 |
| Line n-1: Data Type 2 (RAW12), Image line h |
| Line n : Meta-data back line 1 |
+---+

Ensure proper handling of this structure and process the frame buffer accordingly. This method is useful when
dealing with multiple HDR cameras, especially when ISI channels are insufficient to process each data type
individually.

4.1.5 Image signal processing driver

This section describes the i.MX 95 image signal processing (ISP) driver design.

It first focuses on describing the hardware block. Then focuses on the design choices to represent it as a Linux
kernel V4L2/media controller driver.

4.1.5.1 ISP IP block

ISP IP Block (NEO-ISP) performs a set of image-processing tasks on the RAW camera stream. The input
camera stream and the NEO-ISP processed output image are stored in DDR or another sufficiently fast system
memory to keep up with NEO-ISP processing.

The NEO-ISP operation is based on frames, where one complete image frame is read and output pixel by pixel,
line by line. The raw pixel processing pipeline can handle up to 500 megapixels per second.

In M2M mode, it processes multiple camera streams in a time-multiplexed manner by switching the ISP
contexts, including register and internal memory content. For example, 2x8MP@30fps, 8x2MP@30fps, or other
sensor combinations.

UG10215 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.0 — 26 June 2025 Document feedback
16 / 39

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10215

NXP Semiconductors UG10215
i.MX 95 Camera Porting Guide

4.1.5.2 V4L2 ISP topology

The ISP subdevice is a standalone media device acting like a STREAMING or M2M device.

4.1.5.2.1 M2M mode

Figure 15 shows the ISP device nodes topology.

NEO-ISP media device (M2M)

0 1 2

neoisp
/dev/v4l-subdev0

3 4 5

neoisp-frame
/dev/video3

type: video_capture

neoisp-ir
/dev/video4

type: video_capture

neoisp-stats
/dev/video5

type: meta_capture

neoisp-input0
/dev/video0

type: video_output

neoisp-input1
/dev/video1

type: video_output

neoisp-params
/dev/video2

type: meta_output

Figure 15. i.MX 95 ISP Linux kernel media entity in M2M mode

In M2M mode, the device takes its data from the special M2M video node.

Function MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER

Capabilities V4L2_SUBDEV_FL_HAS_DEVNODE

SINK pads 3 (num: 0..2)

SOURCE pads 3 (num: 3..5)

Table 10. Description of i.MX 95 ISP Linux kernel media entity in M2M mode

The pads are used as follows:

• Pad 0 (input) to connect to ISP "neoisp-input0" output device for RAW frames to be submitted to the ISP for
processing

• Pad 1 (input) to connect to ISP "neoisp-input1" output device for RAW frames short capture in HDR mode
• Pad 2 (input) to connect to ISP "neoisp-params" output meta device for parameters provided by user space

3A algorithms
• Pad 3 (output) to connect to ISP "neoisp-frame" capture device for processed images
• Pad 4 (output) to connect to ISP "neoisp-ir" capture device for infra-red (IR) image
• Pad 5 (output) to connect to ISP "neoisp-stats" capture meta device for generated image statistics for user

space 3A algorithms

neoisp_input0, neoisp_input1

Images processed by NEO-ISP are queued to the neoisp-input0 and neoisp-input1 (if HDR mode is enabled)
output device nodes. NEO-ISP inputs are limited in width and height to be multiple of 16 and 2 respectively.

neoisp_params

UG10215 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.0 — 26 June 2025 Document feedback
17 / 39

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10215

NXP Semiconductors UG10215
i.MX 95 Camera Porting Guide

The neoisp_params output meta device receives configuration data that is written to NEO-ISP registers
and internal memory for the desired input image processing. This V4L2 device only accepts the
V4L2_META_FMT_NEO_ISP_PARAMS format.

neoisp_frame

The capture device writes the processed image by NEO-ISP to memory.

neoisp_ir

For infrared pixels camera sensors, this capture device provides infrared pixels image processed by NEO-ISP.

neoisp_stats

The neoisp_stats capture meta device provides statistic data generated by NEO-ISP hardware while processing
the input image. This V4L2 device accepts only V4L2_META_FMT_NEO_ISP_STATS format.

The ISP can process up to eight pixel streams sequentially. Therefore, eight instances of the ISP subdevice
are created with each instance managing a one-pixel stream, as shown in Figure 15. When a video device
is opened, the corresponding ISP instance is initialized to handle both video buffers and context buffers. A
dedicated driver called "neoisp" manages the internal operations of the ISP. It handles tasks such as resetting
the ISP, managing streaming nodes, performing IOCTLs, and more.

4.1.5.2.2 Streaming mode

The device is connected directly to a CSI-specific subdevice without going through the ISI.

NEO-ISP Media device (streaming)

0 1

neoisp
/dev/v4l-subdev0

3 4 5

neoisp-frame
/dev/video3

type: video_capture

neoisp-ir
/dev/video4

type: video_capture

neoisp-stats
/dev/video5

type meta_capture

neoisp-params
/dev/video0

type: meta_output

...

csi2-stream
/dev/v4l-subdev1

... n

Figure 16. Representation of i.MX 95 ISP Linux kernel media entity in Streaming mode

Note: This mode is not supported in NXP Linux BSP for i.MX 95 yet.

Now, that all the pieces are in place, see Figure 17 for an overview of all the involved nodes.

UG10215 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.0 — 26 June 2025 Document feedback
18 / 39

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10215

NXP Semiconductors UG10215
i.MX 95 Camera Porting Guide

CSI pipelines

ISI pipelines

ISP pipelines (M2M) #1 ISP pipelines (M2M) #2

ISP pipeline (streaming)

mx95mbcam 8-0040
/dev/v4l-subdev8

0

0 1 2 3

max96724 2-0027
/dev/v4l-subdev7

4 5

mx95mbcam 9-0040
/dev/v4l-subdev9

0

mx95mbcam 10-0040
/dev/v4l-subdev10

0

mx95mbcam 11-0040
/dev/v4l-subdev11

0

0

csidev-4ad30000.csi
/dev/v4l-subdev6

1

0

4ac10000.syscon:formatter@20
/dev/v4l-subdev5

1

0 1 2 3 4

crossbar
/dev/v4l-subdev0

5 6 7 8 9 10 11 12

0 1

neoisp
/dev/v4l-subdev12

3 4 5

mxc_isi.output

0

mxc_isi.0
/dev/v4l-subdev1

1

0

mxc_isi.1
/dev/v4l-subdev2

1

0

mxc_isi.2
/dev/v4l-subdev3

1

0

mxc_isi.3
/dev/v4l-subdev4

1

mxc_isi.0.capture
/dev/video0

neoisp-input0
/dev/video5

type: video_output

mxc_isi.1.capture
/dev/video1

neoisp-input1
/dev/video6

type: video_output

neoisp-input0
/dev/video11

type: video_output

mxc_isi.2.capture
/dev/video2

mxc_isi.3.capture
/dev/video3

neoisp-input1
/dev/video12

type: video_output

0 1 2

neoisp
/dev/v4l-subdev12

3 4 5

neoisp-frame
/dev/video8

type: video_capture

neoisp-ir
/dev/video9

type: video_capture

neoisp-stats
/dev/video10

type: meta_capture

neoisp-params
/dev/video7

type: meta_output

0 1 2

neoisp
/dev/v4l-subdev13

3 4 5

neoisp-frame
/dev/video14

type: video_capture

neoisp-ir
/dev/video15

type: video_capture

neoisp-stats
/dev/video16

type: meta_capture

neoisp-params
/dev/video13

type: meta_output

neoisp-frame
/dev/video6

type: video_capture

neoisp-ir
/dev/video7

type: video_capture

neoisp-stats
/dev/video8

type: meta_capture

neoisp-params
/dev/video5

type: meta_output

Figure 17. i.MX 95 camera subsystem media topology with four camera sensors

Note: The link connections between the CSI multiplexer, ISI crossbar, and ISP are dashed because these links
exist but are disabled. The user enables these links based on its needs.

This topology shows only two instances of M2M ISP media entity for the sake of readability. The green sub-
graph represents the STREAMING mode ISP (not supported yet). Both M2M and STREAMING modes cannot
coexist, as shown in Figure 18.

UG10215 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.0 — 26 June 2025 Document feedback
19 / 39

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10215

NXP Semiconductors UG10215
i.MX 95 Camera Porting Guide

aaa-060004

I2C

CSIDeserializerSerializer
Streaming

ISI DDR

ISP

M2M

i.MX95

DDR DeWarp DDR

Figure 18. Logical representation of i.MX 95 camera capture stream

The links between ISI capture (0 and 1) nodes and ISP output (input0 and input1) nodes depend on the input
type:

• If the input is either single exposure or multiple exposures combined in the sensor, then the input1 pad is not
linked.

• If dual exposure input is used, then both input0 and input1 are used.

The blue dashed links depict the first input type listed above.

4.1.5.3 V4L2 ISP driver formats and events

This section lists the Linux kernel V4L2 video outputs and metadata formats supported by the driver.

4.1.5.3.1 Meta formats

V4L2 pixel format Description

V4L2_META_FMT_NEO_ISP_PARAMS NXP NEO-ISP 3A parameters (new format)

V4L2_META_FMT_NEO_ISP_STATS NXP NEO-ISP 3A statistics (new format)

Table 11. List of ISP driver metadata supported format

4.1.5.3.2 Video output formats

V4L2 pixel format Description

V4L2_PIX_FMT_SRGGB8 8-bit Bayer RGRG/GBGB

V4L2_PIX_FMT_SBGGR8 8-bit Bayer BGBG/RGRG

V4L2_PIX_FMT_SGBRG8 8-bit Bayer GBGB/RGRG

V4L2_PIX_FMT_SGRBG8 8-bit Bayer GRGR/BGBG

V4L2_PIX_FMT_SRGGB10 10-bit Bayer RGRG/GBGB

V4L2_PIX_FMT_SBGGR10 10-bit Bayer BGBG/RGRG

V4L2_PIX_FMT_SGBRG10 10-bit Bayer GBGB/RGRG

V4L2_PIX_FMT_SGRBG10 10-bit Bayer GRGR/BGBG

V4L2_PIX_FMT_SRGGB12 12-bit Bayer RGRG/GBGB

V4L2_PIX_FMT_SBGGR12 12-bit Bayer BGBG/RGRG

V4L2_PIX_FMT_SGBRG12 12-bit Bayer GBGB/RGRG

V4L2_PIX_FMT_SGRBG12 12-bit Bayer GRGR/BGBG

V4L2_PIX_FMT_SRGGB14 14-bit Bayer RGRG/GBGB

V4L2_PIX_FMT_SBGGR14 14-bit Bayer BGBG/RGRG

Table 12. List of ISP driver supported video output formats

UG10215 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.0 — 26 June 2025 Document feedback
20 / 39

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10215

NXP Semiconductors UG10215
i.MX 95 Camera Porting Guide

V4L2 pixel format Description

V4L2_PIX_FMT_SGBRG14 14-bit Bayer GBGB/RGRG

V4L2_PIX_FMT_SGRBG14 14-bit Bayer GRGR/BGBG

V4L2_PIX_FMT_SRGGB16 16-bit Bayer RGRG/GBGB

V4L2_PIX_FMT_SBGGR16 16-bit Bayer BGBG/RGRG

V4L2_PIX_FMT_SGBRG16 16-bit Bayer GBGB/RGRG

V4L2_PIX_FMT_SGRBG16 16-bit Bayer GRGR/BGBG

V4L2_PIX_FMT_GREY 8-bit Greyscale

V4L2_PIX_FMT_Y10 10-bit Greyscale

V4L2_PIX_FMT_Y12 12-bit Greyscale

V4L2_PIX_FMT_Y14 14-bit Greyscale

V4L2_PIX_FMT_Y16 16-bit Greyscale

Table 12. List of ISP driver supported video output formats...continued

4.1.5.3.3 Video capture formats

V4L2 pixel format Description

V4L2_PIX_FMT_BGR24 24-bit BGR 8-8-8

V4L2_PIX_FMT_RGB24 24-bit RGB 8-8-8

V4L2_PIX_FMT_BGRX32 32-bit XBGR 8-8-8-8

V4L2_PIX_FMT_RGBX32 32-bit RGBX 8-8-8-8

V4L2_PIX_FMT_NV12 12-bit Y/CbCr 4:2:0

V4L2_PIX_FMT_NV21 12-bit Y/CrCb 4:2:0

V4L2_PIX_FMT_NV16 16-bit Y/CbCr 4:2:2

V4L2_PIX_FMT_NV61 16-bit Y/CrCb 4:2:2

V4L2_PIX_FMT_YUYV 16-bit YUYV 4:2:2

V4L2_PIX_FMT_UYVY 16-bit UYVY 4:2:2

V4L2_PIX_FMT_VYUY 16-bit VYUY 4:2:2

V4L2_PIX_FMT_YUV24 24-bit YUV 4:4:4 8-8-8

V4L2_PIX_FMT_YUVX32 32-bit YUVX 8-8-8-8

V4L2_PIX_FMT_VUYX32 32-bit VUYX 8-8-8-8

V4L2_PIX_FMT_GREY 8-bit Greyscale

V4L2_PIX_FMT_Y10 10-bit Greyscale

V4L2_PIX_FMT_Y12 12-bit Greyscale

V4L2_PIX_FMT_Y16 16-bit Greyscale

V4L2_PIX_FMT_Y16_BE 16-bit big-endian Greyscale

Table 13. List of ISP driver supported video capture formats

All formats marked as new format have been added to the Linux kernel's common V4L2 API.

UG10215 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.0 — 26 June 2025 Document feedback
21 / 39

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10215

NXP Semiconductors UG10215
i.MX 95 Camera Porting Guide

4.1.5.3.4 V4L2 supported events

V4L2 event type Description

V4L2_EVENT_FRAME_SYNC Frame start notification

Table 14. List of ISP driver supported V4L2 events

4.1.5.4 V4L2 ISP camera scenarios

The i.MX 95 camera subsystem is flexible enough to support a significant number of routing and camera
combinations scenarios.

This section focuses on some of the most common routing and camera combinations scenarios.

4.1.5.4.1 Single RAW camera, streaming on CSI0: VC0

In this use case, the camera stream goes through the ISI, which represents the M2M mode. As the
STREAMING mode is not implemented currently, this path is presented.

ISP

aaa-061341

CSR

Interconnect

RAW CAM1 PD

Streaming
interface

ISI

- - - - -

- - - - -

AXI-WR

U V

Pixel link Xbar

Pixel data on VC0 with PED = 1

Csi-2

C

Raw CAM 1

Pixel data transported
on 1 VC (assuming VC0)

C
H
A
N
N
E
L
-
0

C
H
A
N
N
E
L
-
N

Output
DMA

Input
DMA

Y

CSI2 Ctrl #0

D-PHYRX

CSI pixel
formatting

Figure 19. Single RAW camera capture: i.MX 95 hardware routing options

UG10215 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.0 — 26 June 2025 Document feedback
22 / 39

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10215

NXP Semiconductors UG10215
i.MX 95 Camera Porting Guide

4.1.5.4.2 Three RAW cameras streaming on CSI0: VC0, VC1, VC2

Figure 20 shows that the path to ISP (STREAMING mode) is not enabled currently. Therefore, all camera
streams route through ISI.

aaa-060844

Output
DMA

Streaming
interface

CSR

Pixel link Xbar

C
H
A
N
N
E
L
-
O

ISP ISI

Input
DMA

CSI2 Ctrl #0

Csi-2

D-PHY RX

Interconnect

Bridge

CPixel data (DCG+VS) +
embedded data

transported on VC0

Pixel data DCG on VC2
Pixel data VS on VC3

Embedded data transported on VC4

RAW CAM1 DCG+VS => VC0 - PED = 1
ED => VC0 - PED = 0

RAW CAM2 DCG => VC1 - PED = 1
VS => VC5 - PED = 1
ED => VC1 - PED = 0

RAW CAM3 DCG => VC2 - PED = 1
VS => VC3 - PED = 1
ED => VC4 - PED = 0

Pixel data (DCG+VS) +
embedded data

transported on VC1

RAW CAM3 ED
RAW CAM3 VS
RAW CAM3 DCG

RAW CAM2 ED
RAW CAM2 VS
RAW CAM2 DCG

RAW CAM1 ED
RAW CAM1 DCG+VS

C
H
A
N
N
E
L
-
N

C C

Raw CAM 2Raw CAM 1 Raw CAM 3

VU
AXI-WR

CSI pixel
formatting

Y

Figure 20. Three RAW camera capture data stream in the i.MX 95 camera hardware subsystem

Similar to the steps outlined in the Section 4.1.4.8.4 "Single RAW camera streaming dual-exposure and
metadata on same VC", the user space must follow the same steps for all camera streams.

Lets assume that:

UG10215 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.0 — 26 June 2025 Document feedback
23 / 39

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10215

NXP Semiconductors UG10215
i.MX 95 Camera Porting Guide

• Camera 1 is streaming metadata and interleaved dual-exposure frames on VC0
• Camera 2 is streaming metadata and interleaved dual-exposure frames on VC1
• Camera 3 is streaming DCG (RAW16) pixel data on VC2, VS (RAW12) pixel data on VC3 and metadata on

VC4

In this case, the user space:

• Enables the link between csi-mux and isi-crossbar
• Configures the csi-mux to enable data monitors on VC0 for embedded data, RAW16, and RAW12
• Configures the csi-mux to enable data monitors on VC1 for embedded data, RAW16, and RAW12
• Configures the csi-mux to enable data monitors on VC2 for RAW16
• Configures the csi-mux to enable data monitors on VC3 for RAW12
• Configures the csi-mux to enable data monitors on VC4 for embedded data
• Configures the csi-mux to reroute VC0 embedded data, RAW16, and RAW12 to PL:VC0 (stream pass

through)
• Configures the csi-mux to reroute VC1 embedded data, RAW16 to PL:VC1 (substream pass through), and

RAW12 to PL:VC5 (substream reroute)
• Configures the csi-mux to reroute VC2 RAW16 to PL:VC2 (substream pass through), VC3 RAW12 to PL:VC3

(substream passthrough) and VC4 embedded data to PL:VC4 (substream pass through)
At this point, we have streams on six virtual channels: VC0-5

• Sets the routing in isi-crossbar to route the [input:0, stream:0] from SINK pad 0 to channel 0, on SOURCE pad
5 (mxc_isi.0)

• Sets the routing in isi-crossbar to route the [input:0, stream:1] from SINK pad 0 to channel 1, on SOURCE pad
6 (mxc_isi.1)

• Sets the routing in isi-crossbar to route the [input:0, stream:5] from SINK pad 0 to channel 5, on SOURCE pad
10 (mxc_isi.5)

• Sets the routing in isi-crossbar to route the [input:0, stream:2] from SINK pad 0 to channel 2, on SOURCE pad
7 (mxc_isi.2)

• Sets the routing in isi-crossbar to route the [input:0, stream:3] from SINK pad 0 to channel 3, on SOURCE pad
8 (mxc_isi.3)

• Sets the routing in isi-crossbar to route the [input:0, stream:4] from SINK pad 0 to channel 4, on SOURCE pad
9 (mxc_isi.4)

Clearly, the pipeline is complex enough to cause understanding difficulties, highlighting why the use of
libcamera greatly assists the camera application developers.

4.1.5.5 V4L2 ISP UAPI interface

User space API (UAPI) is the Linux kernel interface to user space applications. The UAPI simplifies the complex
interdependencies between headers that are partly exported to user space. Also, it simplifies and reduces the
size of the kernel-only headers. It helps to track changes to the APIs that the kernel presents to user space.

Moreover, a new UAPI definition must respect the following aspects:

• Portability across different architectures.
• Memory management abstraction such as cache, barriers, and byte and bit order.
• Abstraction of hardware physical address map.
• The same interface must be able to handle multiple device revisions/evolutions (stability).
• Compliant to Linux community coding rules and common usage.

ISP UAPI header file defines metadata structures that are shared between ISP and 3A algorithms operating in
the user space. Metadata consists of statistics generated by the ISP hardware and configuration parameters
fine-tuned by 3A algorithms to be applied to ISP hardware. This UAPI header file must define both metadata
types.
UG10215 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.0 — 26 June 2025 Document feedback
24 / 39

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10215

NXP Semiconductors UG10215
i.MX 95 Camera Porting Guide

In addition to the metadata, this UAPI introduces a "feature update flag" structure designed to minimize the
number of configuration parameters sent to the ISP. This is achieved by setting an "update" flag for each ISP
sub-block. For any given ISP feature block, the ISP driver updates its parameters only if the corresponding
"update" flag is set by the 3A algorithms.

4.1.5.5.1 Metadata flow

ISP metadata includes configuration parameters and statistical data generated by different hardware sub-
blocks.

This metadata shared between the ISP hardware block and the 3A algorithms libraries interface (in user space):

• From ISP to 3A: Only statistics are provided where all buffers are copied.
• From 3A to ISP: Only parameters are involved and not all buffers are copied; only the parameters with the

"update flag" set.

In the worst-case scenario, all parameters can be updated, but typically only some are adjusted in real-world
applications. Update flags are placed at the beginning of the parameter structures, with each feature block of
the ISP pipeline having its own dedicated flag.

aaa-060003

Stats

Params

CTRL

Registers

Stats

Params

Memory

(LUT)

Context

3A → ISP

ISP → 3A

mem

reg (reg: variable to
bitfield copy)
(mem: 1:1 copy)

Params

mem

reg
(1:1 copy)

Stats

UAPI

Figure 21. V4L2 ISP driver internal metadata to UAPI conversion

The context is the concatenation of ISP registers and internal memory snapshots. It is saved under a UAPI
structure, which saves and restores the ISP context without any data handling.

In multi-context use case (for example, multiple cameras), each camera has a dedicated context structure
stored in DDR (saved context).

A dashed arrow for parameters means that not all structures contents are copied; only the ones with "update
flag" enabled are transferred to the ISP.

4.2 Libcamera architecture
For libcamera architecture, see the i.MX Linux Users Guide (document UG10163).

4.2.1 Libcamera overview

Libcamera is an open source camera stack and framework developed by the Linux media community in
collaboration with the industry.

• It is a user space library that relies on the existing Linux kernel drivers and API.
• It aims to abstract the complexity of the camera subsystem and provides the users with a unified and intuitive

interface for the camera operation.
• It supports single and multi-camera use cases. Supported cameras can be either a camera sensor typically

connected through a MIPI CSI bus, or a USB camera exposing a UVC class.
UG10215 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.0 — 26 June 2025 Document feedback
25 / 39

https://www.nxp.com/doc/IMX_LINUX_USERS_GUIDE
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10215

NXP Semiconductors UG10215
i.MX 95 Camera Porting Guide

Native libcamera applications make direct use of the interfaces exported by the library. The framework supports
a GStreamer adapter; it implements a GStreamer plugin available to applications to use as a source element for
a GStreamer pipeline.

aaa-056250

Native
libcamera
application

GStreamer
based

application

Native
V4L2

application

Android
camera

framework

GStreamer
source
plugin

V4L2
compatibility Android HAL

V4L2
SubdeviceVideo device

User space

Kernel

Media device

Applications

Libcamera
adapters

Libcamera
framework Libcamera

Figure 22. Libcamera high-level architecture overview

4.2.2 Libcamera i.MX 95 support overview

The i.MX 95 supports both raw and smart cameras:

• Raw cameras require the use of NEO-ISP, to decode and post process the raw image output by the sensor.
In the libcamera framework, a specific ISP is supported through the dedicated NXP NEO-ISP pipeline handler
and its associated image-processing algorithm (IPA).

• Smart cameras provide a decoded image in various formats. In the libcamera framework, the NXP ISI pipeline
handler aims to handle such cameras.

aaa-056251

Helpers
support classes

Camera devices
managerCamera device

Libcamera library

Libcamera public API

Other
pipeline

handlers...

UVC
pipeline
handler

NXP
ISI pipeline

handler

NXP Neo
IPA

CSICamera ISI ISP USB
UVC class

NXP NEO-ISP
pipeline handler

Figure 23. i.MX 95 libcamera architecture overview

The pipeline handlers implement the platform-specific handling of the media devices from the hardware
pipeline:

• For the NEO-ISP pipeline case, it corresponds to the camera, CSI, ISI, and ISP devices.
• For the ISI pipeline case, it corresponds to the camera, CSI, and ISI devices.

UG10215 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.0 — 26 June 2025 Document feedback
26 / 39

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10215

NXP Semiconductors UG10215
i.MX 95 Camera Porting Guide

Linux user space

aaa-060842

Configuration Camera setup preamble
0. Device configure/start

Single frame capture
1. Sensor control
2. Raw image capture
3. ISP control
4. ISP statistics processing
5. Decoded image capture

1.

0.

2.

3. 4.

5.

Video stream

ISP statistics

ISP/sensor
control parameters

Camera
sensor V4L2

and MC
device

V4L2 and V4L2 media controller subsystem

Libcamera

Raw sensors capture pipeline handler

Image processing algorithm (3A functions)

Linux kernel

MIPI CSI2
V4L2 and MC

device

Pixel
formatter

V4L2 and MC
device

Neo ISP
V4L2 and MC

device

ISI
V4L2 and MC

device

Camera application

Figure 24. Pipeline handler for RAW camera sensors

UG10215 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.0 — 26 June 2025 Document feedback
27 / 39

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10215

NXP Semiconductors UG10215
i.MX 95 Camera Porting Guide

Linux user space

aaa-060843
Configuration Camera setup preamble

0. Device configure/start
Single frame capture
1. RGB/YUV image capture

0.

1.

Video stream

Camera
sensor V4L2

and MC
device

V4L2 and V4L2 media controller subsystem

Libcamera

Smart sensors capture pipeline handler

Linux kernel

MIPI CSI2
V4L2 and MC

device

Pixel
formatter

V4L2 and MC
device

ISI
V4L2 and MC

device

Camera application

Figure 25. Pipeline handler for smart camera sensors

The pipeline handlers are responsible for the enumeration and configuration of those devices and circulating the
image and metadata buffers between the hardware and software parties.

The IPA is the component implementing the camera control algorithms (white balance, auto exposure control,
and so on). Algorithms from the IPA process on a camera frame based on the statistics metatdata output by
the ISP. They compute and reconfigure the necessary parameters in real time to optimize the ISP and camera
operation.

UVC camera support is standard. Its pipeline handler comes with the libcamera framework.

4.2.3 NEO-ISP image-processing algorithm

NEO-ISP libcamera pipeline is used when its pipeline handler is configured as the matching pipeline for
the camera enumeration procedure. See section "libcamera configuration" in the i.MX Linux Users Guide
(document UG10163). During its operation, the NEO-ISP pipeline handler interacts with an IPA relevant to that
specific pipeline and ISP. Such an IPA module embeds the 3A control algorithms in charge of the real-time
programming of the ISP and the sensor configuration.

In the libcamera framework, an IPA module is a shared library and can be built in-tree (open source).

It can be bound to the pipeline handler and executed in the same process, but in a different thread from
libcamera. Alternatively, an IPA implementation can be located out-of-tree giving the option to be licensed as a
closed-source. In that case, IPA can be bound to the pipeline handler but runs in isolation in a separate process.
In both cases, the pipeline handler and IPA interwork through the same interprocessor communication (IPC)
interface. For more details, see libcamera IPA Writer's Guide.

Two IPAs are delivered in the i.MX 95 applications processor libcamera SW stack:

UG10215 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.0 — 26 June 2025 Document feedback
28 / 39

https://www.nxp.com/doc/IMX_LINUX_USERS_GUIDE
https://git.libcamera.org/libcamera/libcamera.git/tree/Documentation/guides/ipa.rst
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10215

NXP Semiconductors UG10215
i.MX 95 Camera Porting Guide

• uGuzzi IPA: A production quality software in closed-source format.
• NXP IPA: An open source IPA implementation, which can be used for enablement and demonstration

purposes.

aaa-059998

Interface code +
uGuzzi headers

/usr/lib/libcamera/nxp-ipa/neo-ipa-uguzzi.so

src/libcamera/pipeline/neo-isp/

uGuzzi
library

Libcamera source tree

NEO IPA uGuzzi source tree

Libcamera core

mojom + uapi

IPA MMS neo uGuzziIPA NXP neo enablement

NEO-ISP IPA interface

NEO-ISP pipeline handler

NXP enablement IPA

Figure 26. i.MX 95 libcamera IPA's architecture overview

4.2.4 Libcamera with uGuzzi IPA

The uGuzzi IPA is based on the imaging algorithms framework delivered by MMS. This framework aims to
achieve good performance and image quality and is provided as a separate library libuguzzi.so dynamically
linked with the interface code of the IPA.

The uGuzzi algorithms apply static and dynamic configuration. This uGuzzi setting writes the whole ISP
configuration exposed by the UAPI. Therefore, the ISP driver setting is overwritten.

aaa-060001

uGuzzi library

uGuzzi
API calls

Interface code DTP file
(tuning data)

Figure 27. i.MX 95 uGuzzi libcamera IPA architecture overview

Tuning data specific to a sensor is available in a dynamic tuning parameters (DTP) file. To get the ISP tuning
data, the IPA extracts the DTP. This file is part of the uGuzzi IPA source tree.

This uGuzzi IPA is built out of the libcamera tree, as it includes a third-party library. As per the libcamera
framework, such IPA execution runs in a separate isolated process.

4.2.5 Libcamera with NXP IPA

IPA consists of several algorithms:

• Some algorithms are used for static configuration. They only execute once at the first frame to configure an
ISP block in a fixed way for the whole duration of the camera stream.

• Some algorithms are used for dynamic configuration. They process the ISP statistics of each camera stream
frame to produce updated configurations for the ISP, or sensor, or both, which are applied to the subsequent
frames.

Table 15 lists the NXP NEO-ISP algorithms currently supported.

UG10215 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.0 — 26 June 2025 Document feedback
29 / 39

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10215

NXP Semiconductors UG10215
i.MX 95 Camera Porting Guide

Algorithm Description Type

Automatic gain/Exposure
control (AGC/AEC)

Controls the sensor’s gain and exposure based on ISP
histograms (STAT unit)

Dynamic

Automatic white balance
(AWB)

Controls the ISP white balance correction (OB WB unit) based
on the color temperature unit statistics.

Dynamic

Black Level Correction
(BLC)

Configures the ISP offset (OB WB unit) to apply to reach the
zero value for the black pixel color.

Static

Color Correction Matrix
(CCM)

Configures the ISP RGB to YUV unit according to the CCM and
to the color temperature.

Dynamic

Dynamic range compression
(DRC)

Configures the DRC unit Global LUT and gain. Static

HDR decompression Configures the HDR decompression unit, necessary with the
sensors companding the data

Static

HDR merge Configures the pixels combination of the two images of line path
0 and line path 1 into a single output.

Static

Pipe Conf Configures the subset of parameters INALIGN and LPALIGN
from the Pipeline Configuration ISP block.

Static

RGBIr Configures the RGBIR and the IR compression units, required
with sensors having a RGBIr matrix

Static

Table 15. List of algorithms supported in NXP open source IPA

Note: For detailed ISP hardware specification information, contact a local field applications engineer (FAE) or
sales representative.

4.2.6 Embedded data support

The sensor configuration is essential for the image algorithms to provide optimized settings for both the ISP and
the sensor.

This sensor configuration is acquired in two ways:

• Embedded data: The embedded data refers to metadata providing information about the sensor settings used
to capture the image, such as sensor exposure and gain.

• Sensor control history: The sensor control history maintains a record of the controls applied on a frame,
according to the specified delay required by the control to take effect. If available, embedded data is used.

Depending on the sensor capability and configuration, embedded data can be transmitted as part of the image,
as pixel data, typically at the top lines of the image. The image buffer size in the camera drivers and at the
kernel space includes the additional lines. ISP does not decode the lines, the libcamera NXP NEO pipeline
handler crops the image buffer to remove the lines and adjust the size accordingly. The libcamera NXP NEO
pipeline handler supports the embedded data of the image, only when embedded data are in the top lines.

Alternatively, embedded data can be provided as a separate data type, or via a virtual channel. Currently, the
camera stack does not support this method.

Figure 28 shows the Ox03c10 sensor, where the embedded data is prepended to the image frame and is in the
top two lines.

UG10215 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.0 — 26 June 2025 Document feedback
30 / 39

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10215

NXP Semiconductors UG10215
i.MX 95 Camera Porting Guide

aaa-060002

2 top lines of embedded data

pixel data

W = 1920

H = 1282

Figure 28. "In-Frame" embedded data representation on OX03C10

4.2.7 Operating libcamera for image capture and video streaming

For instructions to run libcamera on i.MX 95, see i.MX Linux Users Guide (document UG10163).

5 Sensor porting guide

Integrating a new sensor into the i.MX 95 camera software stack consists essentially of the following tasks:

• Writing a Linux kernel V4L2/media controller driver for this sensor.
– Add device tree node for sensor and integration within the board and SoC architecture.

• Implement a CamHelper class for the new sensor.
• Provide a calibration file that the neo IPA consumes to manage IPA algorithms.
• Declare the sensor in the configuration file config_ipa_uguzzi.yaml with its associated configuration.

5.1 Writing a Linux kernel driver for a new sensor
For instructions on writing a capture sensor driver, refer to the The Linux Kernel.

The sensor driver must use the V4L2 sub-device framework, and the media control API. The Linux kernel
provides examples for multiple camera sensor drivers in the <linux_kernel>/drivers/media/i2c folder.

Also, libcamera outlines specific requirements that the kernel driver for the sensor must adhere to. For further
details, see Sensor Driver Requirements.

5.2 Implementing a libcamera CameraHelper for a new sensor
CameraHelper is a helper class used by each IPA to abstract camera specifics.

Each IPA dynamic library is built with a CameraHelper implementation. Therefore, the CameraHelper code must
be part of each IPA source tree.

For the in-tree IPA, the relevant files are in the <libcamera>/src/ipa/nxp/cam_helper source tree
directory.

For the uGuzzi IPA, the relevant files are in the <neo-ipa-uguzzi>/cam_helper source tree directory.

UG10215 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.0 — 26 June 2025 Document feedback
31 / 39

https://www.nxp.com/doc/IMX_LINUX_USERS_GUIDE
https://www.linuxtv.org/downloads/v4l-dvb-apis-new/driver-api/camera-sensor.html
https://libcamera.org/sensor_driver_requirements.html
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10215

NXP Semiconductors UG10215
i.MX 95 Camera Porting Guide

It contains essentially the following:

• The base class definition (camera_helper.h) and implementation (camera_helper.cpp).
• The camera-specific subclasses (camera_helper_<camera model>.cpp) that can override some

methods of the base class for customization purposes.
• The meson configuration file (meson.build) that lists the source files and dependencies to be included for

the build.

Method Description

setControls Configure the camera helper with sensor control values.
This function passes the sensor control list populated with the actual control
values read from the sensor. The usage from CameraHelper can be for
instance to access the sensor calibrated values in OTP.

setCameraMode Configure the camera helper for the current sensor mode of operation (camera
sensor information)

controlListSetAGC This function abstracts the AGC control for sensors with a proprietary
programming model, converting the computed exposure and gain into specific
sensor AGC controls.

controlInfoMapGetExposureRange Retrieve min, max, and default values for exposure.
At least one value is reported in each vector corresponding to the main (long)
exposure.
If it supports multiple captures (short and/or very short), the implementation can
append extra values.

controlInfoMapGetAnalogGainRange Retrieve min, max, and default values for analog gain.
At least one value is reported in each vector corresponding to the main (long)
analog gain.
If it supports multiple captures (short and/or very short), the implementation can
append extra values.

controlListSetAWB Configure the sensor with white balance gain.
This method is an optional that is used when the following conditions are met:
• IPA can control white balance gains in sensors rather than in the ISP and this

option is enabled.
• The sensor driver actually provides a control for white balance gain

configuration.
If the ISP controls the white balance gains, then this method is ineffective.

parseEmbedded To extract metadata, parse the embedded data buffer.

sensorControlsToMetaData The purpose of this function is to build a metadata control list matching a
sensor control list.
It can be used when the sensor does not actually report embedded data to
represent the sensor's state in the metadata format.

lineDuration Line duration is computed by dividing the line length in pixels by the pixel rate.
By default, the line length is configured to its minimum value, so use that value.

gainCode Compute gain code from the analog gain absolute value.

gain Compute the real gain from the V4L2 sub-device control gain code.

Table 16. List of CameraHelper methods

UG10215 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.0 — 26 June 2025 Document feedback
32 / 39

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10215

NXP Semiconductors UG10215
i.MX 95 Camera Porting Guide

Structure member Description

Attributes Structure holding the characteristics of a camera sensor

Attributes::MdParams Metadata parameters describing the optional metadata support of that
sensor.

Attributes::MdParams::topLines Metadata can be prepended as the first lines of the image. This field reports
the number of embedded lines, zero if none.

Attributes::MdParams::controls ControlIdMap of the controls reported by the metadata parser,

Attributes::delayedControlParams The map of (delay, priority) pair definitions for the camera controls handled
by 3A.
It is used to initialize the DelayedControls object instantiated by the pipeline.
The delay corresponds to the latency in the number of frames for the control
value to be applied.
Priority indicates that the control must be applied ahead of, and separately
from other controls.

Table 17. CameraHelper sensor definition structure

To support a new camera sensor, the associated CameraHelper subclass must be implemented. This
implementation typically involves the creation of a dedicated source file and updating the meson.build
accordingly.

An example of a CameraHelper subclass for the OX03C10 can be found here: <ipa_root_dir>/cam_
helper/camera_helper_mx95mbcam.cpp

For tuning a new sensor with a tuning tool, the CameraHelper subclass for this new sensor must be
implemented with at least the following APIs:

• parseEmbedded(): If the sensor-embedded data are available; otherwise
sensorControlsToMetaData()

• controlListSetAGC()
• controlListSetAWB(): Depending on the conditions as described in the list of methods

5.3 Sensor porting guide – calibration file generation

5.3.1 Calibration file generation for NXP IPA

The tuning data of each sensor are described in yaml files located under <libcamera>/src/ipa/nxp/neo/
data/.

The yaml files are:

• Named <sensor>.yaml
• Installed under /usr/share/libcamera/ipa/nxp/neo/

As an example for the Ox03c10 sensor, the associated yaml file is called mx95mbcam.yaml.

5.3.2 Calibration file generation for uGuzzi IPA

The tuning data of each sensor is generated using the MMS tuning tool in a binary DTP file located in the
uGuzzi IPA source tree under <neo-ipa-uguzzi>/data/.

The DTP files are:

• Named as database_<sensor_name>.bin
• Installed under /usr/share/libcamera/ipa/nxp/neo/uguzzi/

UG10215 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.0 — 26 June 2025 Document feedback
33 / 39

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10215

NXP Semiconductors UG10215
i.MX 95 Camera Porting Guide

As an example for the Ox03c10 sensor, the associated DTP file is called database_mx95mbcam.bin.

For optimized calibration/tuning operation, relying on embedded data.

The DTP for Ox03c10 sensor database_mx95mbcam.bin can be used as a template for tuning a new sensor.
Some parameters from this template DTP must be set according to the sensor resolution, pattern, and bit depth.

Note:

This template does not provide an initial setting for HDR and RGB-IR.

The Pipeline configuration PIPE_CONF (except for the subset of parameters INALIGN and LPALIGN) and the
Packetizer configuration available from the tuning tool are not propagated to the ISP driver. Indeed, the ISP
driver sets the appropriate settings to these modules according to the video nodes configuration.

An NXP tuning tool is required to perform tuning and calibration. To access the tools and related document,
contact a local field applications engineer (FAE) or sales representative.

5.4 Adding a new sensor in the configuration file
The new sensor model or entity entry should be defined in the configuration file config_ipa_uguzzi.yaml.
See Section 6.2 for more details.

6 uGuzzi IPA usage details

By default, the IPA executed for the NXP neo pipeline is the NXP enabled IPA.

To run the uGuzzi IPA, set the following environment variable to specify the path where the IPA is located:

$ export LIBCAMERA_IPA_MODULE_PATH="/usr/lib/libcamera/ipa-nxp-neo-uguzzi"

If this environment variable is not set, the default NXP enabled IPA is loaded and executed.

Once the uGuzzi IPA is loaded and initialized, the following logs get displayed:

INFO IPAProxyNxpNeoWorker nxpneo_ipa_proxy_worker.cpp:537 Starting worker for
 IPA module /usr/lib/libcamera/ipa-nxp-neo- uguzzi/neo-ipa-uguzzi.so with IPC fd
 = 42
...
INFO NxpNeoUguzziIPA neo.cpp:946 IPANxpNeo UGUZZI_IPA_v0.2.0+16-9d9936a1

For information on using GStreamer pipelines and the cam application to capture frames while the uGuzzi IPA
is configured, refer to the "GStreamer Pipelines" and "Cam Test Application" sections in the i.MX Linux Users
Guide (document UG10163).

6.1 uGuzzi IPA configuration
The IPA can be configured using the configuration file located in the uGuzzi IPA source tree at data/
config_ipa_uguzzi.yaml. The configuration file is installed under /usr/share/libcamera/ipa/nxp/
neo/uguzzi/config_ipa_uguzzi.yaml. This file provides configuration, such as specific parameters for
each connected camera.

Each camera mode including its resolution and bit depth should be specified in the configuration file with its
associated:

• DTP file
• Tuning ID

UG10215 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.0 — 26 June 2025 Document feedback
34 / 39

https://www.nxp.com/doc/IMX_LINUX_USERS_GUIDE
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10215

NXP Semiconductors UG10215
i.MX 95 Camera Porting Guide

• Tuning mode

If the camera mode entry does not exist, the IPA will fail. Refer to the description from data/
config_ipa_uguzzi.yaml for more details.

6.2 uGuzzi IPA isolation
By default, the uGuzzi IPA runs in Isolated mode. However, for tuning and development purposes (connection
with the tuning tool), disable the Isolation mode by setting the following environment variable:

$ export LIBCAMERA_IPA_DISABLE_ISOLATION="yes"

The "uGuzzi Connect" library is a software component that sits between uGuzzi and the tuning tool.

It acts as a listener on the target, handling protocol communication between the tuning tool and the IPA. It
provides support to populate predefined memory regions to share data with a tuning tool.

In the non-isolated mode, the Live Tuning library can only operate on a single camera, which is, by default, the
first one initialized by libcamera. This single camera can also by changed explicitly by the user.

For that purpose, the IPA configuration file data/config_ipa_uguzzi.yaml can be used to specify:

• The single camera to run: this camera should be used by the application.
• The socket port to use for the IP connection between the uGuzzi IPA and the Tuning Tool: if not specified, the

port 50000 is used by default.

6.3 uGuzzi and tuning tool considerations
It is assumed that the camera sensor tuning and IPA tuning are performed in a lab before the final product is
released to the market. Based on this assumption, the "uGuzzi Connect library" is not optimized for memory
when deployed in the product's final software or firmware.

Therefore, ensure to disable live tuning support in the uGuzzi IPA package prior to building the final product
software. This action removes the "uGuzzi Connect library" from the final software and firmware.

To disable Live Tuning/Control support in the uGuzzi IPA, set the Meson build option "live_control" to "disabled".

6.4 uGuzzi IPA logs
By default, the uGuzzi IPA logs are displayed in the debug console.

To configure the IPA to redirect the logs into a file, set the following environment variable:

$ export LIBCAMERA_IPA_UGUZZI_LOG_DIR=”/tmp/”

With this configuration, the files generated are called with the PID of the IPA <ipa_pid>.log.

7 Limitations

7.1 Camera software stack
Table 18 lists the limitations associated with camera software stack.

Items Description

Ox03c10 support When using Ox03c10 sensors, the four Ox03c10 cameras must be connected to the deserializer.

Table 18. Camera software stack limitations

UG10215 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.0 — 26 June 2025 Document feedback
35 / 39

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10215

NXP Semiconductors UG10215
i.MX 95 Camera Porting Guide

Items Description

HDR merges in the ISP The HDR merge in ISP is not supported; current camera stack limitation.

Embedded data support Embedded data is not available when capturing raw frame concurrently with a decoded stream.

Embedded data support Embedded data is supported as pixel data in the top of the sensor image; a current camera stack
limitation.

Sensor control history Sensor control history is unreliable during frame loss events, especially when no embedded data
is available or when capture is saved to a file.

Color space support The color space supported is sRGB only.

Table 18. Camera software stack limitations...continued

7.2 uGuzzi IPA
Table 19 lists the limitations associated with uGuzzi IPA.

Items Description

uGuzzi IPA Output buffers access is not supported for debug purpose using the Tuning tool. Access to the
RAW bayer input0 buffer is available.

Tuning tool use case The tuning tool requests socket access, therefore, it must run in non-isolated mode. In non-
isolated mode, only a single camera can be operated. As a result, tuning is performed for a
single camera. By default, this single camera is the first one initialized by libcamera. It can also
be changed explicitly with the configuration file config_ipa_uguzzi.yaml.

Multi cameras support Multi cameras are supported only for IPA in Isolated mode. In this mode, a different single
uGuzzi instance operates each camera.

Surround view support Surround view with harmonized-multiple cameras is not supported.

User controls User controls are not supported.

uGuzzi library The "sensor_id" parameter for the uGuzzi initialization is hardcoded to the value "2010" in
the neo IPA. However, the DTP generated for the Ox03c10 sensor allows for any value to be
selected for this parameter, except for the following invalid options:
• 2020
• 2021
These specific values ("2020", "2021") are reserved and must not be used when
generating a DTP with the tuning tool.

Table 19. uGuzzi IPA limitations

8 Known issues

8.1 uGuzzi IPA
Table 20 lists the known issues related to uGuzzi IPA.

Items Description

Ox03c10 and WB gains Saturation issues can be observed when WB gains are not applied before HDR merge in
the sensor due to the LCG exposure of the sensor. This occurs when WB gains location is
configured in the ISP.

Invalid first startup
frames

At capture startup, the first frames can be incorrect due to the uGuzzi algorithms convergence
time and sensor delay applying controls

Table 20. uGuzzi IPA known issues

UG10215 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.0 — 26 June 2025 Document feedback
36 / 39

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10215

NXP Semiconductors UG10215
i.MX 95 Camera Porting Guide

Items Description

Dark artifacts in red
area

Dark artifacts can be observed in the red areas of the image under low light conditions

OS08A20 tuning with
uGuzzi IPA i.MX 95 B0
version

The existing OS08A20 tuning data (DTP) was provided for the i.MX 95 ISP A1 version. However,
for the ISP B0 version, the LPALIGN0/1 setting is disabled for sensor operating in 12-bits and
output data is provided to the ISP 16-bits MSB aligned. Therefore, the OS08A20 DTP for A1
version is not compatible for the OS08A20 operating with the B0 version. For the B0 version, the
OS08A20 DTP should be adapted for the HDR decompression and the OB/WB gain settings.
A workaround is available with the fixed OS08A20 DTP for the B0 version in Github with
the branch lf-6.12.20_2.0.0-os08a20-dtp-fixup, and tag lf-6.12.20-2.0.0-
os08a20-dtp-fixup from neo-ipa-uguzzi.

Table 20. uGuzzi IPA known issues...continued

9 Note About the Source Code in the Document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2025 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

10 Revision history

Table 21 summarizes the revisions to this document.

Document ID Release date Description

UG10215 v.2.0 26 June 2025 First revision to be delivered with the Linux BSP release
LF6.12.20_2.0.0.

UG10215 v.1.0 26 March 2025 Initial NDA release.

Table 21. Revision history

UG10215 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.0 — 26 June 2025 Document feedback
37 / 39

https://github.com/nxp-imx/neo-ipa-uguzzi/tree/lf-6.12.20-2.0.0-os08a20-dtp-fixup
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10215

NXP Semiconductors UG10215
i.MX 95 Camera Porting Guide

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to
make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default
in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless
this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

HTML publications — An HTML version, if available, of this document is
provided as a courtesy. Definitive information is contained in the applicable
document in PDF format. If there is a discrepancy between the HTML
document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles
to reduce the effect of these vulnerabilities on customer’s applications
and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and
trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

UG10215 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 2.0 — 26 June 2025 Document feedback
38 / 39

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10215

NXP Semiconductors UG10215
i.MX 95 Camera Porting Guide

Contents
1 Introduction .. 2
2 Overview ...2
3 i.MX 95 applications processor camera

domain hardware architecture 2
3.1 i.MX 95 EVK reference camera modules3
4 i.MX 95 applications processor camera

software architecture 3
4.1 Linux kernel architecture 3
4.1.1 Camera sensor driver ..4
4.1.1.1 V4L2 camera subdevice 4
4.1.2 V4L2 GMSL deserializer subdevice4
4.1.3 MIPI CSI-2 driver ...5
4.1.3.1 MIPI CSI-2 hardware block 5
4.1.3.2 V4L2 MIPI CSI-2 subdevice 8
4.1.3.3 V4L2 CSI pixel formatter subdevice 8
4.1.3.4 V4L2 CSI-2 pipeline topology9
4.1.4 Image sensing interface driver 10
4.1.4.1 i.MX 95 ISI hardware overview10
4.1.4.2 i.MX 95 V4L2 ISI driver 11
4.1.4.3 V4L2 ISI crossbar subdevice11
4.1.4.4 V4L2 ISI pipe subdevice12
4.1.4.5 V4L2 ISI video node ..13
4.1.4.6 V4L2 ISI memory-to-memory node13
4.1.4.7 V4L2 ISI pipeline topology13
4.1.4.8 V4L2 ISI camera scenarios 14
4.1.5 Image signal processing driver16
4.1.5.1 ISP IP block ...16
4.1.5.2 V4L2 ISP topology ...17
4.1.5.3 V4L2 ISP driver formats and events20
4.1.5.4 V4L2 ISP camera scenarios 22
4.1.5.5 V4L2 ISP UAPI interface 24
4.2 Libcamera architecture 25
4.2.1 Libcamera overview ...25
4.2.2 Libcamera i.MX 95 support overview26
4.2.3 NEO-ISP image-processing algorithm 28
4.2.4 Libcamera with uGuzzi IPA29
4.2.5 Libcamera with NXP IPA 29
4.2.6 Embedded data support 30
4.2.7 Operating libcamera for image capture and

video streaming ... 31
5 Sensor porting guide 31
5.1 Writing a Linux kernel driver for a new

sensor .. 31
5.2 Implementing a libcamera CameraHelper

for a new sensor ... 31
5.3 Sensor porting guide – calibration file

generation ..33
5.3.1 Calibration file generation for NXP IPA 33
5.3.2 Calibration file generation for uGuzzi IPA 33
5.4 Adding a new sensor in the configuration

file .. 34
6 uGuzzi IPA usage details 34
6.1 uGuzzi IPA configuration 34

6.2 uGuzzi IPA isolation ...35
6.3 uGuzzi and tuning tool considerations35
6.4 uGuzzi IPA logs ... 35
7 Limitations ..35
7.1 Camera software stack35
7.2 uGuzzi IPA ...36
8 Known issues .. 36
8.1 uGuzzi IPA ...36
9 Note About the Source Code in the

Document ... 37
10 Revision history ...37

Legal information ...38

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2025 NXP B.V. All rights reserved.
For more information, please visit: https://www.nxp.com Document feedback

Date of release: 26 June 2025
Document identifier: UG10215

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10215

	1 Introduction
	2 Overview
	3 i.MX 95 applications processor camera domain hardware architecture
	3.1 i.MX 95 EVK reference camera modules

	4 i.MX 95 applications processor camera software architecture
	4.1 Linux kernel architecture
	4.1.1 Camera sensor driver
	4.1.1.1 V4L2 camera subdevice

	4.1.2 V4L2 GMSL deserializer subdevice
	4.1.3 MIPI CSI-2 driver
	4.1.3.1 MIPI CSI-2 hardware block
	4.1.3.2 V4L2 MIPI CSI-2 subdevice
	4.1.3.3 V4L2 CSI pixel formatter subdevice
	4.1.3.4 V4L2 CSI-2 pipeline topology

	4.1.4 Image sensing interface driver
	4.1.4.1 i.MX 95 ISI hardware overview
	4.1.4.2 i.MX 95 V4L2 ISI driver
	4.1.4.3 V4L2 ISI crossbar subdevice
	4.1.4.4 V4L2 ISI pipe subdevice
	4.1.4.5 V4L2 ISI video node
	4.1.4.6 V4L2 ISI memory-to-memory node
	4.1.4.7 V4L2 ISI pipeline topology
	4.1.4.8 V4L2 ISI camera scenarios
	4.1.4.8.1 Single YUV camera streaming on CSI0:VC0
	4.1.4.8.2 Two YUV/RGB cameras streaming on CSI0:VC0, VC1
	4.1.4.8.3 Single RAW camera streaming single-exposure on VC0
	4.1.4.8.4 Single RAW camera streaming dual-exposure and metadata on same VC
	4.1.4.8.5 Single RAW camera streaming dual-exposure and metadata on several VCs

	4.1.5 Image signal processing driver
	4.1.5.1 ISP IP block
	4.1.5.2 V4L2 ISP topology
	4.1.5.2.1 M2M mode
	4.1.5.2.2 Streaming mode

	4.1.5.3 V4L2 ISP driver formats and events
	4.1.5.3.1 Meta formats
	4.1.5.3.2 Video output formats
	4.1.5.3.3 Video capture formats
	4.1.5.3.4 V4L2 supported events

	4.1.5.4 V4L2 ISP camera scenarios
	4.1.5.4.1 Single RAW camera, streaming on CSI0: VC0
	4.1.5.4.2 Three RAW cameras streaming on CSI0: VC0, VC1, VC2

	4.1.5.5 V4L2 ISP UAPI interface
	4.1.5.5.1 Metadata flow

	4.2 Libcamera architecture
	4.2.1 Libcamera overview
	4.2.2 Libcamera i.MX 95 support overview
	4.2.3 NEO-ISP image-processing algorithm
	4.2.4 Libcamera with uGuzzi IPA
	4.2.5 Libcamera with NXP IPA
	4.2.6 Embedded data support
	4.2.7 Operating libcamera for image capture and video streaming

	5 Sensor porting guide
	5.1 Writing a Linux kernel driver for a new sensor
	5.2 Implementing a libcamera CameraHelper for a new sensor
	5.3 Sensor porting guide – calibration file generation
	5.3.1 Calibration file generation for NXP IPA
	5.3.2 Calibration file generation for uGuzzi IPA

	5.4 Adding a new sensor in the configuration file

	6 uGuzzi IPA usage details
	6.1 uGuzzi IPA configuration
	6.2 uGuzzi IPA isolation
	6.3 uGuzzi and tuning tool considerations
	6.4 uGuzzi IPA logs

	7 Limitations
	7.1 Camera software stack
	7.2 uGuzzi IPA

	8 Known issues
	8.1 uGuzzi IPA

	9 Note About the Source Code in the Document
	10 Revision history
	Legal information
	Contents

