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In this work we present a practical implementation of a leakage resilient pseudo-
random function (PRF) and analyze its security. The assumed adversary against whom
the scheme is shown secure is able to profile the device and has no bound on the number
of traces to be used in the attack. The construction is based on the one by Goldreich,
Goldwasser and Micali (known as GGM construction [12]) but has two additional steps,
namely input pre-processing (and output post-processing). In the outer layer for the
pre-processing (and post-processing), an attacker might know the input (or output), but
is limited to two such known inputs (or to one such known output) per key. Hence, he
faces a simple power analysis (SPA) scenario. In the inner layer where the actual GGM
tree is processed, no known values are processed, hence an adversary needs to mount an
unknown-input attack. To the best of our knowledge, this is the first practical leakage
resilient construction which can be based on a standard block cipher like AES-128. This
is because we neither need to rely on the number of parallel S-boxes to be as large as 24 or
even 32, nor does our leakage resilient property only hold for the first round of the cipher
like in previous works [3, 20]. Furthermore, this is the first paper to analyze unknown
input attacks. We show that they are easy to conduct against a single S-box, but become
intractable as soon as an adversary faces four and more parallel S-boxes.

1



Contents

1 Side-Channel Foundations 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Background: the CHES 2012 leakage-resilient PRF . . . . . . . . . . . . . 4
1.3 New leakage-resilient PRF construction . . . . . . . . . . . . . . . . . . . 6
1.4 Security analysis w.r.t. basic side-channel attacks . . . . . . . . . . . . . . 7

1.4.1 Security based on carefully chosen plaintexts . . . . . . . . . . . . 8
1.4.2 Security based on unknown plaintexts . . . . . . . . . . . . . . . . 10
1.4.3 Explaining the results: analysis of model errors . . . . . . . . . . . 11

1.5 Implementation and attack issues . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.1 Deviations from the Hamming weight leakage function . . . . . . . 14
1.5.2 Distance-based leakages . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5.3 Bounded template estimation . . . . . . . . . . . . . . . . . . . . . 15

1.6 Alternative attack paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6.1 Advanced attacks and key verification . . . . . . . . . . . . . . . . 16
1.6.2 Attacks on the plaintexts . . . . . . . . . . . . . . . . . . . . . . . 17

1.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Algorithms and Cryptographic services 18
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Key generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Plaintext and key generation . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Plaintext generation . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Updated key generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Get plaintext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Function evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.7.2 Important implementation notes . . . . . . . . . . . . . . . . . . . 22
2.7.3 Note with respect to repeated counter values and fault attacks . . 23

232.8 CBC-MAC and CMAC . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2



Chapter 1

Side-Channel Foundations

1.1 Introduction

Countermeasures against side-channel attacks always imply implementation overheads
and rely on physical assumptions. So designing such countermeasures comes with the
equally important goals of maximizing security, while minimizing the overheads and re-
lying on physical assumptions that are easy to fulfill by cryptographic engineers. Main-
stream masking schemes (i.e. data randomization based on secret sharing) are a typical
example of this tradeoff, where security is exponential in the number of shares, perfor-
mances are quadratic in the number of shares, and implementers need to guarantee that
the leakages of the shares are independent and sufficiently noisy [6, 9, 14, 24]. (Note that
the condition of independent leakages is typically hard to guarantee, both in software and
hardware implementations [1, 7, 17, 18]). Threshold implementations are a specialization
of masking that reduces the independence requirement (by ensuring that glitches do not
harm the security of the masked implementations) [4, 22], which can also lead to some
performance gains with low number of shares [5, 21].

At CHES 2012, a quite different tradeoff was introduced. Namely, and starting from
the observation that leakage-resilience via re-keying alone is not sufficient to efficiently
protect stateless symmetric cryptographic primitives such as block ciphers (later formal-
ized in [2]), Medwed et al. proposed a tweaked construction of AES-based leakage-resilient
PRF, inspired from more formal works such as [8, 10, 26, 29], which additionally requires
that the AES is implemented in parallel and that its S-boxes have similar leakage mod-
els [20]. In this respect, and while the parallel implementation setting is easy to guarantee
(and can even be emulated thanks to shuffling [13]), the “similar leakage assumption”
turned out to be harder to evaluate. Later results showed that despite not easy to attack,
such a solution may not be best suited to the standard AES cipher [3].

In this paper, we aim to improve the tradeoff between security, performance and phys-
ical assumptions for the CHES 2012 construction. For this purpose, our main ingredient
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is to replace the similar leakage assumption by an easier-to-guarantee requirement of un-
known plaintexts. Interestingly, this requirement can be easily satisfied by exploiting a
leakage-resilient stream cipher in order to generate these plaintexts (we use the efficient
construction from [25] for this purpose). As a result, our contributions are as follows. We
first describe our new construction of leakage-resilient PRF based on unknown plaintexts.
Second, we analyze its security in front of standard side-channel attacks where the adver-
sary can observe noisy Hamming weight leakages (and compare it with the CHES 2012
proposal). Third, we evaluate the impact of implementation issues such as deviations
from the Hamming weight leakages and leakages due to transitions between registers.
Finally, we discuss alternative attack paths and put forward the good performances of
our new construction. As part of our investigations, we also highlight the interesting
security guarantees offered by the combination of unknown cipher inputs and parallel
implementations for side-channel resistance, which is of independent interest.

1.2 Background: the CHES 2012 leakage-resilient PRF

We start with the description of the standard GGM PRF [12], depicted in the left part of
Figure 1.1, on which the CHES 2012 PRF is based. Let Fk(x) denote the PRF indexed
by k and evaluated on x. Further, let the building blocks Eki(pij) denote the application

of a block cipher E to a plaintext pij under a key ki (the figure shows the example of E =

AES-128 with 1 ≤ i ≤ 128 and 0 ≤ j ≤ 1). Let also x(i) denote the ith bit of x. The
PRF first initializes k0 = k and then iterates as follows: ki+1 = Eki(pi0) if x(i) = 0 and
ki+1 = Eki(pi1) if x(i) = 1. Eventually, the (n + 1)th intermediate key k128 is the PRF
output as Fk(x).

In this basic version, the execution of the PRF guarantees that any side-channel ad-
versary will at most observe the leakage corresponding to two plaintexts per intermediate
key (pi0 and pi1). This implies 128 executions of the AES-128 to produce a single 128-bit
output. A straightforward solution to trade improved performances for additional leakage
is to increase the number of observable plaintexts per intermediate key. If one has Np

such plaintexts per stage, the number of AES-128 executions to produce a 128-bit output
is divided by log2(Np). However, as already discussed in [20], such a tradeoff scales badly
and very rapidly decreases the side-channel security of an implementation (as it typically
allows DPA with Np observable plaintexts).

To avoid this drawback, an efficient alternative (also proposed in [20]) is illustrated
in the right part of Figure 1.1. It can be viewed as a GGM construction with Np = 256,
but where the same set of 256 carefully chosen plaintexts is re-used in each PRF stage,
excepted for the last stage where Np = 1. In terms of efficiency, this proposal reduces the
number of stages of a PRF based on the AES-128 to 17 (i.e. 16 plus one final whitening).

The security of this second construction is based on the combination of parallelism with
carefully chosen plaintext values, in order to prohibit the application of standard divide-
and-conquer strategies. For this purpose, plaintexts of the form pj = {j − 1}Ns , with
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Figure 1.1: Leakage-resilient PRFs: straight GGM (left) and efficient alternative (right).

1 ≤ j ≤ Np and Np being limited by the S-box input space were considered. Given that all
S-boxes leak in parallel, the effect of this measure is that in a DPA attack, the predictions
corresponding to the Ns key bytes cannot be distinguished anymore, because these key
bytes have to be targeted at the same time. As a result, and even when increasing Np, not
all the Ns key bytes can be highly ranked by the attack. (We will re-detail this effect in
Section 1.4.1, which is reflected by the higher guessing entropy of the targeted key bytes
in Figure 1.3). In [20], it was even shown that slight differences in the implementation –
and therefore in the leakage of the Ns S-boxes – are not easily exploitable. Eventually, if
Ns becomes sufficiently large, ordering the Ns recovered subkeys becomes has a cost of
Ns!, meaning that even after seeing all leakages without noise, the adversary cannot fully
recover the key.

Unfortunately, and despite conceptually appealing, this construction has several draw-
backs which limit its applicability. First, the security parameter Ns is defined by the
number of S-boxes of the underlying block cipher. For some of the currently standardized
block ciphers Ns is not large enough (e.g. Ns = 16 for the AES-128, which corresponds to
an insufficient Ns! ≈ 244). Second, if intermediate values other than the first round’s S-box
outputs are targeted, the leakages might be sufficiently independent such that divide-and-
conquer strategies work again. While this generally requires more computational power,
recent results on multi-target attack DPA show that it is not out of reach [19]. (This is
in fact the reason why attacks on the ciphertext need to be prevented by the whitening
step in the CHES 2012 proposal). Finally, the size of the S-box defines the maximum
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Figure 1.2: Leakage-resilient PRG used to generate the 2m secret plaintexts.

value of Np and hence the maximum throughput.

1.3 New leakage-resilient PRF construction

We now present a new construction which improves over the one in [20] in terms of
performance and security, at the cost of higher memory requirements. For this purpose,
we introduce a pre-computation step in which we generate Np secret, distinct plaintexts.
This step can be seen in Figure 1.2. It essentially uses the leakage resilient PRG from [25]
to generate 2m secret plaintexts p0 . . . p2m−1 as well as an updated key k′. These secret
plaintexts and updated key are then simply used in a tree-based PRF such as in the
right side of Figure 1.1. The output whitening step stays the same. By design, this new
construction has the advantage (compared to the CHES 2012 one) that the plaintexts are
secret and of no particular form. This implies that their number is not bounded by the
S-box size, allowing for smaller trees of depth 128/m + 1. From a security point of view,
it also comes with interesting implications:

1. Since the plaintexts are unknown, a straight-forward unprofiled DPA is ruled out.
Instead, an adversary has to build templates (for instance for the bi-variate variable
made of the plaintext and S-box output leakages).

2. For a similar reason, there is no straightforward way to verify a key candidate: for
this purpose, one would not only need to recover the key but also at least one secret
plaintext. In the worst case where the information leakages are not sufficent (i.e. if
a successful attack requires additional key/plaintext enumeration [28]) this squares
the attack time complexity.

3. As for the CHES 2012 construction using carefully chosen plaintexts, the adversary
has no way of separating the leakages from the different subkeys. But contrary to
this previous work, this feature now applies to any intermediate variable within the
algorithm (not only to the first round leakages).
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1.4 Security analysis w.r.t. basic side-channel attacks

We now detail our security analysis against standard side-channel attacks and use the
following notations. First, k denotes a key, k∗ denotes a key candidate and kj the jth

byte of a key. Next, pi,j is the jth byte of the ith plaintext out of q ones that are available
to an adversary. For p and k, j is assumed to be in the range 1, . . . , Ns where Ns = 16
for AES. Further, ti is a trace (aka leakage) vector, corresponding to the ith plaintext. A
trace may contain several leakage points, denoted by ti,j . L denotes the leakage function,
e.g. the Hamming weight function in our examples below. Finally, L(S(k1⊕p2,1)) denotes
the leakage of the S-box output corresponding to S-box 1 for the 2nd plaintext. The set
of all plaintexts is denoted as P and the set of all traces as T .

In a standard DPA attack, the adversary computes the correct key as:

k̃ = arg max
k∗

Pr(k∗|p1 . . . pq, t1 . . . tq).

The attack is successful if k̃ = k. In a parallel hardware scenario, ti consists of a single
leakage point that we approximate as:

ti,1 =

Ns∑
j=1

L(S(kj ⊕ pi,j)). (1.1)

Nevertheless, even in this parallel scenario, an adversary can always target a single key
byte at a time by computing:

k̃j = arg max
k∗
j

Pr(k∗j |p1,j . . . pq,j , t1 . . . tq).

In this case, by just looking at a specific S-box or byte of the key, an adversary neglects
the other key bytes and their contribution to the leakage is interpreted as (algoirithmic)
noise, which eventually averages out if plaintexts are uniformly distributed. As already
discussed in [20], for carefully chosen plaintexts, p1,1 = p1,j for all j = 1 . . . N . Therefore,
the equation becomes:

k̃j = arg max
k∗
j

Pr(k∗j |p1,1 . . . pq,1, t1 . . . tq) (1.2)

and all k̃j are the same. That is, since the probability condition is no longer dependent
on j, only one joint score vector can be obtained, which contains the information about
all the Ns target key bytes at once. For unknown-plaintext attacks, an adversary finally
faces the problem of finding:

k̃j = arg max
k∗
j

Pr(k∗j |(t1,1, t1,2) . . . (tq,1, tq,2)), (1.3)
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where he has no direct access to plaintext information, and therefore must extract this
information from the traces as well (reflected by the second sample of the traces in the
equation). We assume that this information is separately available and that the traces
take the form:

(ti,1, ti,2) =

 Ns∑
j=1

L(pi,j),

Ns∑
j=1

L(S(kj ⊕ pi,j))

 . (1.4)

This has the following important implications on the attack:

1. The adversary cannot apply a divide-and-conquer brute-force attack anymore. As
in the case of carefully chosen plaintexts, also here the probability’s condition be-
comes independent of j, which results in only a single score vector containing the
information for all the Ns subkeys.

2. Successful attacks have to be bi-variate ones, in which a second-order moment of
the leakage distribution is exploited. This makes them more sensitive to noise.
Furthermore, as for the CHES 2012 construction as well, Ns−1 contributors for each
leakage point represent key-dependent algorithmic noise, and cannot be averaged
out like in the case of masking (as noted in [2]).

In the following we present three experiments. In the first one we recap the security of
the CHES 2012 scheme in order to allow for a later comparison. We do so by estimating
the guessing entropy and the subkey rank distribution as a function of Ns after seeing
all possible traces. In the second experiment, we do the same for our improved proposal.
This allows us to highlight the security improvement. In a third experiment we look at
the model errors which are the reason for the security improvement. All experiments are
carried out based on template attacks as this represents the most powerful side-channel
adversary. We used discrete histograms (instead of continuous distributions) for our
templates since the leakage function (aka power model) used in our experiments is also
discrete and no noise is added. Hence, the number of bins is determined automatically and
the histograms capture all the available information. Finally, we evaluate our metrics for
increasing number of traces (but bounded number of plaintexts in the case of the CHES
2012 and our new construction).

1.4.1 Security based on carefully chosen plaintexts

For the CHES 2012 scheme, the plaintexts are known, the target function is the AES
S-box and the assumed power model is the Hamming weight model. Thus, the leakages
are in the form of Equation (1.1). Knowing this, we can generate a template Di for each
of the subkey candidates, assuming the plaintext to be zero. In our simulations we look
at Ns parallel AES S-boxes and the leaking variables are 8-bit valued. Therefore, each
template is a histogram with 8 · Ns + 1 bins, starting at bin Di(0) which indicates the
probability that for a subkey k = i, the leakage sample has a value of 0. The templates
are built according to Algorithm 8.
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Figure 1.3: Average guessing entropy after attacks with known plaintexts for Ns = 1
(blue,s/), 2 (green,dd/c), 4 (red,d/s), 8 (cyan,dd/), 16 (magenta,d/c), and 32 (yellow,s/s)
with {s=solid,d=dashed,dd=dotted dashed}/{c=circle,s=square}.

During the attack phase, the templates have been permuted according to the plaintext
byte, that is, the probability for a certain leakage given a certain plaintext was calculated
as Pr(t1|p1,j , k∗j ) = Dk∗

j⊕p1,j (t1).
The result of the known plaintext attack can be seen in Fig. 1.3. The left plot repre-

sents a scenario where the plaintexts where not carefully chosen and therefore, the S-boxes
leak independently. This just serves as a reference for the right plot, where the actual
CHES 2012 scheme with carefully chosen plaintexts was analyzed. The y-axes represent
the average key rank of k1 in log2-scale. A random guess would result in an average key
rank of 128 and thus a 7 in log2-scale indicates that no information was retrieved via the
side channel. Zero on the other hand indicates that the correct key was ranked first and
thus it has been recovered with certainty. The x-axis shows the number of required traces
to reach a certain average key rank, again in log2-scale. The different curves represent
different numbers of parallel S-boxes ranging from 1 to 32 in powers of two. Each curve
has been averaged over 10k attacks. On the right side we can observe a stagnation of the
average rank at approximately (Ns+1)/2 for Ns ≤ 8 (in log2 this results in 0, 0.6, 1.3, and
2.2). As the adversary targets all subkeys at the same time, this is what one would expect
intuitively. However, for 16 and 32 S-boxes, the average rank becomes higher, namely
log2(11.2) = 3.5 (instead of 3.1) and log2(27.1) = 4.8 (instead of 4.0). This may look
surprising, since due to the higher probability of collisions (i.e. repetitions within the Ns

subkey values for large values of Ns) the rank could be expected to be below (Ns + 1)/2.
However, as the number of S-boxes increases, the key-depedent algorithmic noise also in-
creases and starts to dominate, implying that incorrect keys start to be ranked amongst
the most likely ones in this case.

Next to the average guessing entropy, it is also insightful to look at the rank distri-
bution after seeing all possible leakages. This is done by analyzing the device’s leakage
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Figure 1.4: Rank distributions for carefully-chosen plaintexts with Ns = 16. Average
rank of subkey k1 (left), average minimum rank amongst all kj ’s (middle) and average
maximum rank amongst all kj (right).

distribution that we denote as D. For instance, given two S-boxes and two subkeys k1 and
k2, the exact leakage distribution of such device can be computed as D = conv(Dk1 ,Dk2)
(using convolutions reduces the complexity of computing D for an 8-bit S-box from 28·Ns

for the naive approach to (8 ·Ns + 1)2). The outcome of this experiment for 1000 random
keys can be seen in Fig. 1.4. The plots show the PMF (in solid blue) and the CDF (in
dotted dashed green) for the rank distribution after seeing all possible traces for Ns = 16
with carefully chosen plaintexts. The x-axis corresponds to the key ranks and the y-axis
corresponds to the probabilities. This figure confirms the previous observations with ad-
ditional intuitions. First for the left plot, since the median is at rank ≈ 8 for each subkey
in this case (as concluded in Fig. 1.3), an adversary would have a success rate of 0.5 to
find the subkey within the ≈ 8 most likely candidates. Next, in the middle plot, we show
the distribution of the minimum rank within the 16 subkeys kj . It can be clearly seen
that the subkey ranked first is almost surely one of the correct ones. This is an important
observation and will allow us to construct an advanced attack in Section 1.6.1. As for the
distribution of the maximum rank within the 16 subkeys kj in the right plot, it can be
seen that below rank 16, the success rate is almost zero since this can only happen (but
is not given) if two subkeys are equal. Finally, in order to have a success rate of 0.5 to see
the lowest ranked kj (and therefore also seeing all other correct subkeys), the adversary
would need to look at the first 37 most likely candidates.

1.4.2 Security based on unknown plaintexts

For the unknown plaintext scenario we targeted leakages in the form of Equation (1.4) and
generated the templates as two-dimensional histograms. Each dimension has 8 · Ns + 1
bins, starting at bin Di(0, 0) which indicates the probability that for key k = i, both
leakage samples have a value of 0. The templates are built according to Algorithm 9.

The left side of Fig. 1.5 again shows a reference result for independent noise. Since, in
the unknown plaintext scenario, we cannot decouple the noise by simply randomizing the
plaintexts, we had to use a trick. Namely, we only fixed k1 and randomly drew q different
values for each kj with j ∈ 2, . . . , Ns. It can be seen that a recovery for Ns = 1 S-boxes

10



Figure 1.5: Average guessing entropy after attacks with unknown plaintexts for Ns =
(blue,s/), 2 (green,dd/c), 4 (red,d/s), 8 (cyan,dd/), 16 (magenta,d/c).

requires around 28 traces, whereas for Ns = 16 around 227 traces can be expected.
The right side of the figure represents the unknown-plaintext scenario where the sub-

keys are constant over all traces within one instance of the experiment. It can be seen that
dependent noise renders the model represented by the templates incorrect and therefore
leads to a stagnation of the correct subkey’s rank. This is similar to the carefully-chosen
plaintext case and expected. However, the important difference compared to the previous
experiment is that the stagnation does not take place at y ≈ log2((Ns + 1)/2) but much
earlier. In order to get the full picture, we again look at the rank distributions in Fig. 1.6.
First, we can observe in the left plot that the subkey ranks (from 40 000 experiments)
look close to uniformly distributed (that would be reflected by a straight line), with a
median rank at ≈ 102 (instead of 128 for the uniform distribution). For the minimum
rank distribution (middle plot), the median rank is at ≈ 6, which has to be compared to
a value of 10 that would be obtained for a uniform distribution with Ns = 16. As for
the median of the maximum rank, it moved to ≈ 240 (whereas it would be at 245 for a
uniform distribution with Ns = 16). In our experiments, the lowest maximum rank value
found was 110. This essentially means that with a search complexity of

(
110
16

)
· 16! ≈ 2107,

the correct key is found with probability ≈ 1/40000 ≈ 2−15. In fact, already for Ns > 4
and even when seeing all possible leakages in a noise free Hamming weight scenario, the
guessing entropy is close to 7 and the rank distribution close to uniform.

1.4.3 Explaining the results: analysis of model errors

Both for the carefully-chosen plaintext scenario as well as for the unknown-input scenario,
we are not able to perfectly model the leakage distribution without knowing the key.
This is because, we have no means of marginalizing the distributions for the not-targeted
subkeys as explained by Equations (1.2) and (1.3). That is, due to the key-dependent
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Figure 1.6: Rank distributions for unknown plaintexts with Ns = 16. Average rank of
subkey k1 (left), average minimum rank amongst all kj ’s (middle) and average maximum
rank amongst all kj (right)

algorithmic-noise, we inevitably build incorrect templates. The question is, how bad our
model errors become. For the carefully-chosen plaintext scenario, we saw that for small
values of Ns (≤ 8), the average rank was at an optimum of (Ns + 1)/2. This suggests
that the model errors were somewhat tolerable as illustrated in the left and middle plot
of Figure 1.7. They show the distance between D∗ and Di for Ns = 4 and Ns = 8. For
measuring the distance we used columns of the mutual information matrix as defined
in [9] and in particular plot the column for the used key.1 That is, the higher the value,
the smaller is the distance. The metric was chosen because it directly reflects what will
happen in a template attack: The key Di which is closest to D∗ will eventually be rated
first. The distances between D∗ and Dk∗

j are circled in red. In particular, it can be seen
in the leftmost and middle plot for Ns = 4 and Ns = 8 that the distributions for the
correct subkeys are closest. This does not hold anymore for Ns = 16 in the rightmost
plot, only seven of the 16 correct subkeys are ranked first. Although these plots only
show the effect for a specific set of subkeys, it already shows that the average rank has
to be higher than (Ns + 1)/2.

In the unknown plaintext scenario, we need to estimate a second-order moment of
a bi-variate distribution. From studies of masking, we know that such distributions are
much more susceptible to noise [27]. Furthermore, in our case the relation between the
leakage samples is not straightforward, similar as for affine or multiplicative masking [11].
Both circumstances suggest that the key dependent noise will cause more severe model
errors and indeed this is what can be observed in Figure 1.8. Be aware that this time, the
leftmost plot depicts the case for Ns = 2 and even there already non of the correct keys
is ranked first. As we move to higher values for Ns, it can also be seen that the distances
themselves become much smaller. As a consequence, measurement noise (remember that
until now all experiments were performed without noise) and the inability to calculate
the templates will make attacks even harder, as will be discussed in Section 1.5.3.

1Be aware that in our case the matrix has 28 rows and 28·Ns columns, however, we only plot the
column for a single key. Would it also have 28·Ns rows, then we would have no model errors, but this
would be equal to exhausting the full key.
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Figure 1.7: Distance between D∗ and Dk∗
j for carefully-chosen plaintexts. The device

holds the subkeys k∗j (marked by the red x). As the distance is measured by the entries of
the mutual information matrix, a higher value on the y-axis indicates a smaller distance.
From left to right the scenarios for Ns = 4, 8, and 16 are depicted.

Figure 1.8: Distance between D∗ and Dk∗
j for unknown plaintexts. From left to right the

scenarios for Ns = 2, 8, and 16 are depicted.
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Figure 1.9: Comparison of different combinations of target functions and power mod-
els: AES+id (yellow,s/s), AES+quad (magenta,d/c), AES+nlhw (cyan,dd/), AES+hw
(blue,s/), ID8+nlhw (green,dd/c), ID8+hw (red,d/s). From left to right the scenarios for
Ns = 2, 4, and 16 are depicted.

1.5 Implementation and attack issues

Until now, we assumed bi-variate noise-free Hamming weight leakage and perfectly cal-
culated templates. In this section we want to address the violation of these assumptions
in a real world implementation and attack.

1.5.1 Deviations from the Hamming weight leakage function

All our previous simulations were based on the Hamming weight model. In this section
we show that this model is appropriate and sufficient to argue about the security, even
if it is not accurately met in a real world application. We do so by exploring different
power models. In particular, we choose power models with low and high resolution and
with low and high non-linearity. As for the resolution we choose the leakage functions
as the Hamming weight function (hw), as the Hamming weight function plus quadratic
terms (quad), and as the identity function (id). As for the non-linear leakage function
we chose the Hamming weight function preceeded by an AES S-box (nlhw). In addition,
we target two kinds of S-boxes, the AES S-box (AES) and an identity function S-box
(ID8). The latter one would correspond to directly attacking the key addition layer of
AES. In Figure 1.9 we compare the rank distributions for various scenarios for Ns = 2, 4
and 16. For Ns = 2 it can be seen that the non-linearity of the target function is of
higher importance than the one of the leakage function. The non-linearity of the leakage
function only helps significantly for linear target functions (ID8), for (AES) the impact
is minor, yet it helps improving slightly. Furthermore, for low noise, the resolution of
the leakage function is of great importance, but is as noise prone as the Hamming weight
function. Especially, for high algorithmic noise scenarios, almost no difference can be seen.
Finally, it is important to note, that the S-box is indeed the best target function to show
the side-channel resistance of the proposed scheme. Note, that due to the computational
complexity ((28 ·Ns)

2 bins per template), the id leakage function was omitted for Ns = 16,
yet, already for Ns = 4 it performs worse than the Hamming weight leakage function.
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Figure 1.10: Comparison of the rank distribution when attacking a standard bi-variate
(red,d), a Hamming distance-based (green,dd) and a normalized product combining
(blue,s) based leakage distribution. From left to right the scenarios for Ns = 2, 4, and 16
are depicted.

1.5.2 Distance-based leakages

In practice, a cryptographic implementation can be flawed because an adversary sees
leakages which are not covered by the theoretical analysis. This can be due to glitches,
early propagation, or most deadly for Boolean masking, unintentional distance-based
leakage. That is, a secret shared as (s⊕m,m) leaks via HD(s⊕m,m). Such leakage can
occur if a register holding the first share is overwritten with the second share. Another
scenario, where the adversary might get an advantage is if he can perform a normalized
product combining before summing up the leakage points. This can be the case for a
weakly shuffled software implementation which handles the key addition and the S-box
operation together. Interestingly, none of these implementation issues represent a threat
in the unknown-input case. From Figure 1.10 we see that the Hamming distance case
already performs badly for small values of Ns, whereas the normalized product combining
still gives a slight advantage due to the reduced noise impact. Yet, the higher the value of
Ns becomes, the more forgiving the scheme becomes w.r.t. implementation weaknesses.

1.5.3 Bounded template estimation

In practice, there is another source of model errors, namely poor template estimation.
Usually, one exhaustively acquires traces for all inputs. In practice, this is not possible
as the number of inputs grows exponentially with Ns, but usually good enough if the
number of traces is sufficiently large.2 In Figure 1.11 we can see that this is not the case
for unknown inputs. We compare the rank distribution for an attack with dependent
noise to an attack with independent noise but with insufficiently sampled templates. For
the left plot with Ns = 2, 226 traces for template building yield a smaller error than key
dependent noise, but still do not allow to recover the key with certainty as in the left

2One could overcome this insufficiency by building the templates for the S-boxes independently and
afterwards combine them like we did in our simulations. However, the errors for the Dis will multiply
when calculating the overall template and therefore the overall error will grow exponentially with Ns.
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Figure 1.11: Rank distribution for calculated templates with dependent noise (blue,s)
and estimated templates with independent noise. For the dotted dashed green line the
templates were estimated using 226 traces, for the dashed red one using 222 traces. Ns = 2
in the left plot and Ns = 4 in the right plot.

plot of Figure 1.5 where the templates where calculated. Using only 222 traces already
leads to a larger model error than dependent noise. Finally, for Ns = 4 the calculated
templates for dependent noise perform already best.

1.6 Alternative attack paths

1.6.1 Advanced attacks and key verification

In [20], an iterative attack was described which allows to recover the 16 subkeys up to their
order by successively removing the dependent noise in an iterative DPA. In this attack
the authors exploited the fact that the first ranked key was always one of the correct ones
and thus could be used to model the key dependent noise in the next iteration. Thus
virtually, the parameter Ns was reduced by one in each iteration.

In the unknown input case we could follow a similar strategy, just that we would
need to construct the templates freshly in every iteration. On top of that we cannot
just take the first subkey candidate but exhaust the lists up to a certain threshold.3 To
estimate the effort of this, we multiply the medians of the ranks for the best ranked k∗j
for Ns = 1 . . . 16. The result is that with a probability of 2−16 we recover the correct
key set after ≈ 227 iterations. Each iteration comprises 16 template building and attack
operations which in turn has a complexity of ≈ 228(at least 220 traces and 28 keys) each.
Thus, investing around 260 one can recover the subkey bytes up to permutation. Ordering
them costs again 16! ≈ 244. Finally, after going through all this effort, one still has no
means of verifying whether the correct key was found as one needs at least one secret
plaintext to verify the key based on a known answer. As recovering a plaintext is as hard
as recovering a key and both need to be jointly verified, the effort squares.

3Be aware that key enumeration algorithms do not work here since the lists are dependent and thus
no full key sorting according to probabilities is possible.
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1.6.2 Attacks on the plaintexts

Attacks on the key are restricted to Np traces in practice. As Np needs to be precomputed,
in practice it will take values between 24 and 216. Although an adversary cannot launch
a meaningful attack on the key with this restriction, he could as well target the plaintexts
(by fixing the plaintext for the last iteration of the tree, hence randomizing the key for
this iteration, and thus switching the role of the key and the plaintext in the attack).
Having sufficient plaintexts, a standard DPA on the key could be mounted.

Even with unlimited traces, one is far from recovering a key or a plaintext. Thus, for
the standard DPA, the plaintext bytes have to be guessed. Let us first assume, that only
one subkey byte is targeted. The adversary then needs to pick the plaintext byte for each
trace from a set. Without side-channel information, this set would have a size of 256.
From Figure 1.6 we know that with a 50% probability, the plaintext byte is contained
in a set of 240 entries after an unbounded attack. Thus, overall in an attack where r
plaintexts are used, 256 · 240r hypotheses have to be built. Even then, the probability
that the correct plaintext bytes are contained is 2−r. Therefore, this seems to be a rather
futile attack path.

1.7 Conclusions

In this work we presented a leakage resilient PRF which makes use of parallel block cipher
implementations with unknown inputs. To the best of our knowledge this is the first work
to study and exploit this form of key dependent algorithmic noise. It turns out that it
renders the problem of side-channel key recovery intractable, even in a noise free setting
and independent of the number of traces and the used power model.

Thanks to this security improvement over the CHES 2012 construction, standardized
algorithms like AES can be used in our construction. Moreover, the analysis suggests that
even localized EM attacks can be tolerated to some degree. That is, even if an EM probe
would only catch the signal of 8 or 4 S-boxes, the attack would not suddenly become
trivial. On top of that, we showed that opposed to the previous construction, the strong
side-channel resistance holds throughout the entire algorithm and not only for the first
round’s S-box layer.

We also showed that in practice, the inability to build perfect templates due to a
limitation in the number of traces and electrical noise, will lead to much worse results
than in our analysis. Finally, we also investigated the impact of effects like unintentional
Hamming distance leakage and multiplicative leakage effects and could confirm that they
only lead to minor advantages or even make things worse.

From a performance point of view it allows to use larger values for Np than the size
of the S-box. In practice, it will be very application specific whether large values for Np

pay off. However, for block ciphers which use small S-boxes, like e.g. PRESENT, the
construction can definitely lead to a performance increase over the CHES 2012 one.
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Chapter 2

Algorithms and Cryptographic
services

In this chapter we will describe the algorithms which have to be used to implement LRP
and the cryptographic services using LRP.

2.1 Notation

In the following we will use the function len(x, 8) to get the byte-length of the operand
x and more generally len(x,m) := dlog2m(x)e.

2.2 Key generation

The key generation is optional and can be used to ensure that a key can generate 2m

distinct plaintexts using Algorithm 2. In practice it has to be judged whether the key
generation is really needed or whether the probability of a random key fulfilling this
requirement is high enough. In our setup, the probability is approximately 2−120. The
check can be done in a non-leaking way by checking that the keystream for 2m blocks
is distinct. Likewise for all keys it can be checked that the keystreams for a constant
counter are the same.

The checksum generated at the end of this function is not defined in this document as
it can be application or platform specific. However, in order to counteract fault attacks,
it must be verified after running Algorithms 2 and 3 on a static key for which a checksum
is available.
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Figure 2.1: Generation of secret plaintexts and updated keys.

Algorithm 1 {k, cs} = keyGen(m)

Require: Parameter m
Ensure: Key k which produces 2m distinct plaintexts and q different updated keys under

Algorithms 2 and 3.
repeat
k ← F2n

{p0, . . . , p2m−1} = generatePlaintexts(m, k)
{k0, . . . , kq−1} = generateUpdatedKeys(q, k)

until isPairwiseDistinct({p0, . . . , p2m−1}) ∧ isPairwiseDistinct({k0, . . . , kq−1})
return {k, checksum(p2m−1, kq−1) }

2.3 Plaintext and key generation

As can be seen in Figure 2.1, the generation of the plaintexts and the updated keys
deviates from the construction in Section 1.3. This design choice was made for two
reasons. First it allows to generate q updated keys for different purposes, as it is often
the case for session keys. Second, if q is small these keys could also be generated on the
fly from k without much performance penalty. That is, theoretically, one would only need
to store one session key root key k from which everything can be generated when needed.

2.3.1 Plaintext generation

During the plaintext generation we choose the vectors {0x55}16 and {0xaa}16 in order to
have different leakages for all S-boxes.
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Algorithm 2 {p0, . . . , p2m−1} = generatePlaintexts(m, k)

Require: Parameter m, key k.
Ensure: Plaintexts {p0, . . . , p2m−1}.
h = k
h = Eh({0x55}n/8)
for i = 0 . . . 2m − 1 do

pi = Eh({0xaa}n/8)

h = Eh({0x55}n/8)
end for
return {p0, . . . , p2m−1}

2.4 Updated key generation

The generation of the updated keys is analogous to the secret plaintext generation with
the only difference being derivation of the inital key h.

Algorithm 3 {k0, . . . , kq−1} = generateUpdatedKeys(q, k)

Require: Parameter q, key k.
Ensure: Updated keys {k0, . . . , kq−1}.
h = k
h = Eh({0xaa}n/8)
for i = 0 . . . q − 1 do

ki = Eh({0xaa}n/8)

h = Eh({0x55}n/8)
end for
return {k0, . . . , kq−1}

2.5 Get plaintext

Simply returns the correct plaintext.

Algorithm 4 p = getPlaintext(c, {p0, . . . , p2m−1})
Require: an input chunk c ∈ F2m , a set of plaintexts {p0, . . . , p2m−1}.
Ensure: A plaintext p ∈ F2n

return pc
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2.6 Function evaluation

The final transformation should always be checked for fault attacks by verifying that the
decryption of the result equals 0n. However, since this is a pure functional description,
this detail was left out here.

Algorithm 5 y = evalLRP(m, {{p0, . . . , p2m−1}, k′}, l, x, final)

Require: The dimension m, a set of plaintexts {p0, . . . , p2m−1}, an updated key k′, the
length l = len(x,m), the input x = x0, · · · , xl−1 with xi ∈ F2m , an indicator for the
final transformation final.

Ensure: Result of (partial) LRP evaluation y
y = k′

for i = 0 to l − 1 do
p = getPlaintext(xi, {p0, . . . , p2m−1});
y = Ey(p)

end for
if final = true then
t = y
y = Ey(0n)

end if
return y

2.7 Encryption

Encryption is done similar as Construction 3.30 from [16]. However, instead of

c := 〈r, Fk(r)⊕m〉 ,

where Fk(r) is the family of pseudo-random functions indexed by key k, we perform

c :=
〈
r, EFk(r)(m)

〉
.

If Fk(r) is instantiated with the previously proposed LRP, we refer to this mode of
operation as leakage resilient indexed codebook (LRICB). Decryption is straight-
forwardly defined as

m :=
〈
r,DFk(r)(c)

〉
.

To keep the overhead of transporting r to a minimum, encryption is done in counter
mode. Running encryption in counter mode also has the advantage that for a w-block
output c1, ..., cw, r1, ..., rw have up to w′ = len(n,m) − len(w,m) equal most signifi-
cant chunks. This means that the tree of Fk(r) can in the first step only be evaluated
until depth w′ which takes w′ encryptions. Then for every ri, the remaining evalua-
tion effort is len(w,m) + 1.Therefore, the effort for encrypting w blocks can be stated
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as w′ + (len(w,m) + 3) ∗ w encryptions. Note, that the value 3 accounts for the ECB
encryption/decryption with a fault protective backwards calculation. To allow such opti-
mizations the counter is assumed to be in big-endian as it is processed from left to right
by evalLRP. However, the optimizations themselves are not included in the depicted al-
gorithm.

2.7.1 Background

For counter mode encryption it is possible to mount a DPA in case the plaintext is
constant. In this scenario the plaintext acts as the key one wishes to recover. In particular,
we assume that the key stream (ks) changes on every encryption but the plaintext (pt) you
encrypt is constant. Encryption works as ct = pt xor ks. The adversary sees the ciphertext
(ct) and can thus build his hypotheses for the key stream as hypo = ct xor pt guess. If one
of his hypothesis correlates with the key stream, he found the plaintext. To counteract
this, we decided to go for Algorithm 6 instead of pure counter mode encryption. Note,
that LRICB relies on full blocks again and therefore potentially needs padding.

Algorithm 6 LRICB encryption: {r, ct} = LRICBEnc(m, {{p0, . . . , p2m−1}, k′}, w, r,
pt, pad)

Require: Parameter m, {p0, . . . , p2m−1}, an updated key k′, the length l = len(r,m),
the least significant l digits of the counter r = rl−1, · · · , r0 with ri ∈ F2m , the plaintext
pt, an indicator whether 0x80 padding is used pad.

Ensure: The ciphertext ct = ct0 . . . ctw−1 and an updated counter r.
if pad = 1 then

Apply padding by adding a 0x80 byte and filling up the block with 0x00
else if len(pt, 8) mod 16 6= 0 then
return FAIL

end if
w = len(pt, 128)
for i = 0 . . . w − 1 do

y = evalLRP(m, {{p0, . . . , p2m−1}, k′}, l, r, true)
cti = Ey(pti)
r = r + 1

end for
return {r, ct}

2.7.2 Important implementation notes

For encryption, the key used in the ECB stage is unique as the counter needs to be unique
to provide IND-CPA. However, if an adversary can decrypt, he will be able to keep the
counter constant and choose the ciphertext to decrypt. This would create a DPA scenario
where the adversary can recover the key (used in the ECB stage) associated with a given
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counter value. To counteract this attack, any ciphertext needs to be authenticated before
decryption using a leakage resilient MAC as presented in Section 2.8.

2.7.3 Note with respect to repeated counter values and fault at-
tacks

Whenever a counter value and a message (plaintext or ciphertext) can be repeated and
the output is seen, LRICB could be subject to DFA.In practice, this rarely applies. This
is because for encryption, the counter has to change. For decryption, it would only apply,
if the result of a decryption is actually seen by the adversary. This neither is the case for
secure messaging, where no plaintexts are transmitted nor for encrypted memory, where
there would be no need for encrypting the memory if the plaintext would afterwards be
transmitted.

2.8 CBC-MAC and CMAC

In general, CBC-MAC and CMAC can be constructed using a PRF as given in Construc-
tion 4.11 from [16]. The mentioned construction shows only CBC-MAC which is only
secure for a fixed length (per key). In order to obtain a variable length construction from
CBC-MAC we either need to perform a prefix-free encoding which increases the number
of blocks to process, or a construction like CMAC is used. CMAC can be seen as an
improvement of CBC-MAC where the last block is padded and xored with one out of two
keys depending on whether the last block is a full one.

The CMAC keys K1 and K2 are generated as follows:

K0 = evalLRP(m, {{p0, . . . , p2m−1}, k′}, l, 0n, final)

K1 = K0 · x mod x128 + x7 + x2 + x + 1

K2 = K0 · x2 mod x128 + x7 + x2 + x + 1
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Algorithm 7 y = CMAC LRP(m, {{p0, . . . , p2m−1}, k′,K1,K2}, l, x)

Require: Parameter m, the plaintexts {p0, . . . , p2m−1}, an updated key k′, the byte
length l = len(x, 8), the input x = x0, · · · , xl−1, the CMAC keys K1 and K2, the block
size BS = len(K1, 8).

Ensure: The CMAC result y.
y = 0n

i = 0
while l > BS do
y = y ⊕ xi . . . xi+BS−1
y = evalLRP(m, {{p0, . . . , p2m−1}, k′}, y, true)
l = l −BS
i = i + BS

end while
y = y ⊕ xi . . . xi+l−10BS−l

if l = BS then
y = y ⊕K1

else
xi+l = 0x80

y = y ⊕K2

end if
y = evalLRP(m, {{p0, . . . , p2m−1}, k′}, y, true)
return y
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