MODEL-BASED DESIGN TOOLBOX
ENABLING FAST PROTOTYPING AND DESIGN

- WHO ARE WE AND WHAT DO WE DO?
- WHAT IS IT?
- WHAT WE DELIVER?
- WHAT WE COVER?
Model-Based Design Team – Who Are We & What Do We Do?

✓ Tools enablement group within AMP

✓ Develop toolboxes to assist automotive customers with rapid prototyping and accelerate algorithm development on NXP MCU

✓ Peripheral initialization through UI configuration from a Model Based Design environment like Simulink™

✓ Supported platforms: MagniV S12ZVMx and S12ZVC, MPC56xx, MPC57xx, ARM S32K, DSC and Kinetis families

✓ Customer support and training: https://community.nxp.com/community/mbdt
What is it? … the Ultimate Abstractization Layer

Model-Based Design Toolboxx – Abstractization Layer

<table>
<thead>
<tr>
<th>Simulink Examples</th>
<th>Peripheral Configuration</th>
<th>Matlab Help</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demos</td>
<td>Applications</td>
<td>Driver Examples</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Middleware & Stacks

- LIN
- SBC
- AMMCLib
- ...

Low-level Drivers

- Analog
 - ADC
 - SBC
 - PDB
- Comms
 - UART
 - FlexIO
 - CAN-FD
 - LIN
 - SPI
 - I2C
- Safety & Security
 - EIM
 - ERM
 - CRC
 - MPU
 - cSEC
- Timers
 - FTM
 - LPIT
 - LPTMR
 - RTC
 - WDOG
 - EWM
- SoC
 - Clocks
 - Interrupts
 - Power
 - Pins
 - GPIO
 - FLASH
 - DMA
 - TRGMUX

FreeRTOS

- OSIF

Headers

- Processor Expert UI
- Config files
- Start-up/Compiler
- linker files

Model-Based Design Features
- Matlab/Simulink oriented
- Drag-drop programming
- Automatic ANSI C-code generation
- Easy to port

SDK Quality Class

- Class B
- Class C
- Class D

SDK Features
- Integrated Non-Autosar SW Prod-grade SW
- Graphical-based Configuration
- Layered Software Architecture
- Documented Source Code and Examples
- Integrated with S32 DS and other IDEs
- Featuring various Middleware
- FreeRTOS integration
- Multiple toolchains supported
- Several examples and demos
Model-Based Design Team – What We Deliver?

Basic/Advanced Building Blocks
- MATLAB integration
- Automatic ANSI C Code Generation
- Abstractionization of peripherals
- Support for: S32K, MPC5744, etc.

Ideas & Designs
- Minimal knowledge about hardware
- Ultra fast development – drag&drop approach
- Simulation environment for validation
- Technical expertise

Easy Prototyping
- Easy migration between NXP solution
- Matching solution for TI, Arduino, Raspberry
What We Cover?

On-Chip Peripherals
- **General**
 - ADC conversion
 - Digital I/O
 - PIT timer
 - ISR
- **Communication Interface**
 - CAN driver
 - SPI driver
 - I2C
 - UART
- **Motor Control Interface**
 - Cross triggering unit
 - PWM
 - eTimer block(s)
 - Sine wave generation
 - ADC Command List
 - GDU (Gate Drive Unit)
 - PTU (Programable Trigger Unit)
 - TIM Hall Sensor Port
 - FTM (Flex Timer Module)
 - PDB (Programmable Delay Block)

Configuration/Modes
- **Compilers Supported**
 - CodeWarrior
 - Wind River DIAB
 - Green Hills
 - Cosmic
 - IAR
 - GCC
 - RAM/FLASH targets
- **Simulation Modes**
 - Normal
 - Accelerator
 - Software in the Loop (SIL)
 - Processor in the Loop (PIL)
- **MCU Option**
 - Multiple packages
 - Multiple Crystal frequencies

Utilities
- **FreeMASTER Interface**
 - Data acquisition
 - Calibration
 - Customize GUI
- **Profiler Function**
 - Exec. time measurement
 - Available in PIL
 - Available in standalone

Embedded MCU Support
- MPC5643L
- MPC567xK
- MPC574xP
- S12ZVM
- KV10Z
- 56F82xx
- KV31/30/40/50
- S32K

NOTE: Peripheral Blocks and compiler support is dependent on MCU use.