Freescale Semiconductor, Inc.

MPC860 Table of Contents

Welcome!

Getting Started

CHAPTER 1:

CHAPTER 2:

CHAPTER 3:

CHAPTER 4:

CHAPTER 5:

CHAPTER 6:

CHAPTER 7:

CHAPTER 8:

CHAPTER 9:

CHAPTER 10:

CHAPTER 11:

CHAPTER 12:

CHAPTER 13:

CHAPTER 14:

CHAPTER 15:

CHAPTER 16:

CHAPTER 17:

CHAPTER 18:

CHAPTER 109:

CHAPTER 20:

MPC860 Architecture, Part 1
EPPC Programming

Accessing Operands in Memory
Using the Caches

Memory Management Unit
EPPC Exception Processing

MPC860 Architecture, Part 2

Serial Communications Controller (SCC), Parameter
RAM, Buffer Descriptors, and a UART Example

More on the UART Protocol

HDLC Protocol

Ethernet Protocol

Serial Interface with Time Slot Assigner
QMC Mode on the 860MH

MPCB860 Serial Management Channel (SMC)

MPCB860 Serial Peripheral Interface (SPI)
12C

Port Configuration

CPM Virtual IDMA

CPM Interrupt Controller

SIU Interrupt Controller

For More Information Contact: www.freescale.com



Freescale Semiconductor, Inc.

CHAPTER 21: Memory Controller

CHAPTER 22: MPC860 Reset Controller

CHAPTER 23: General Purpose Timer and Other Timers
CHAPTER 24: Clocks and Low Power

CHAPTER 25: Bus Control Pins

CHAPTER 26: Development Support

For More Information Contact: www.freescale.com



Freescale Semiconductor, Inc.

Welcome

Slide W-1

Welcome!Freescale

IOTOROLA

TRAINING CDROM

Freescale would like to welcome you to the MPC860 Training CDROM!

It is our hope that this will be a valuable tool in educating yourself on the operation of the MPC860.
Certainly you can use it to train yourself before you begin your design, but it should also prove to be a
handy reference once your design is underway. This training set should introduce a wealth of
information to the new designer as well as serve as a collection of insights to reinforce the knowledge of
the experienced engineer.

For More Information Contact: www.freescale.com 1



Freescale Semiconductor, Inc.

Slide W-2

Go through the training sequentialy
asif you were taking the class

Use it as arandom access reference

Be sure to take advantage of
al the useful functions

Before starting your design
review “Getting Started”

There are many ways in which you might want to use this training. The information has been arranged
in a sequential fashion, so if you desire, you may proceed through the course from start to finish as
though you were actually taking the class. It is also possible to use the Table of Contents or the
Keyword Index to randomly access the material as if you were thumbing through a manual.

As you use this application, be sure to make use of the additional functions such as playback control.
Have you ever sat through a class in which the instructors last comment simply didnt sink in? Now, you
can use the playback control bar to restart the audio for a given slide as many times as you wish. You
may even want to back up the presentation by several slides so you can make sure you fully understand
the subject. Is the lecture moving too slow for you? Jump ahead to the next slide if youte sure the
current one holds no new knowledge for you. s it taking a little while for you to comprehend the current
diagram? Hit the Pause’button and review the slide until you are comfortable with it. Then you can
proceed with the narration.

We also provide reference materials per chapter. If the current slide is discussing something that you
want more detail about, then bringing up a reference file allows you to look over the relevant sections of
the user manuals and application notes

Another useful function is the ability to print the slide you are currently on. PDF files of the script and
slides are also included in this set for you, but perhaps you want a hard copy of what you are looking at
right now, so you can take it into the lab as a reference. Then one option is to print the bitmapped slide
from within the program.

There is more functionality available to you than just the examples we are using here. Please be sure to
review the instructions in the program as well as anyeadme file included with this training to become
familiar with all the functionality available to you.

Before the device training begins, weve included a collection of thoughts that may help guide your
design. The Getting Started with the MPC860'chapter contains information on how to acquire all the

For More Information Contact: www.freescale.com 2



Freescale Semiconductor, Inc.

different resources that are available to engineers of MPC860 applications, and includes step-by-step
tips on factors to consider before you begin your design.

Slide W-3

It is our sincere hope that you will find this training program as beneficial in some ways as attending a
class; perhaps given its random access reference nature, even more so.

We wish you best of luck with your design, and thank you for choosing Freescale.

And now, on to the training!

For More Information Contact: www.freescale.com 3



Freescale Semiconductor, Inc.

GETTING STARTED WITH THE 860

Slide GS-1

GETTING STARTED WITH THE
MPC860

Thanks for choosing the MPC860 PowerQUICC!

We’d like to make you aware of the resources available to you
as you design your MPC86(0 application

Getting Started with the MPC860
Once again, welcome to designing with Freescale's MPC860 PowerQUICC!

We would like to thank you for choosing a Freescale processor. Freescale understands that in the field of
integrated communications controllers, you have a choice. Were proud to have your business.

Before we proceed with the training course, wed like to introduce you to some resources available to

you as an 860 designer. Then well offer a step-by-step guide to developing hardware and software for
the 860, and point out materials that may support your efforts.

For More Information Contact: www.freescale.com 4



Freescale Semiconductor, Inc.

Slide GS-2

O What you never I I
@  thought possible. ™ f@ MOTOROLA

Netumrkingandﬁnmm
The Web

o http://www.mot.com/netcomm

» The best way to keep up with the resources
availble to you!

Product Information

The Web

The World Wide Web has fast become the most efficient way to provide a wide variety of support
materials to customers. We invite you to visit our home on the web at:

http://www.mot.com/netcomm

The main NetComm home page tends to highlight new additions to the page and also contains the links
to the other sections of the site. As a designer, it is more likely that you will find three other areas of our
page most valuable: The Engineer’s Toolbox, the Publications Library, and the Support & FAQ area.
THE ENGINEER’S TOOLBOX

Click on the TOOLBOX for example code, schematics, monitor packages, part models, initialization
tools, and more. Files tend to be provided in a ZIP-compressed format or PDF format for Adobe’s
Acrobat Reader.

PUBLICATIONS LIBRARY

Click on PUBLICATIONS LIBRARY for our collection of users manuals, technical summaries,
application notes (or “appnotes”), and user manual errata (listed as manual addendums). Also in this

section you will find user's manuals for our software, downloadable microcode packages, and our
development systems.

SUPPORT & FAQ

Click on SUPPORT & FAQ to find the latest device errata, as well as find information on how to
subscribe to our Mailing Lists which periodically broadcasts device news.

For More Information Contact: www.freescale.com 5



Freescale Semiconductor, Inc.

The Frequently Asked Questions (FAQ) page provides a search engine that gives you the power to
parse through actual helpline database issues on our products, accumulated over our years of
experience. Why lose valuable time-to-market investigating a bug in your design if someone has
already asked us about the same issue? When in doubt, check it out using the FAQ. Bookmark the link
http://www.mot.com/netcommfaq to go directly to the FAQ search engine.

Slide GS-3

Available Literature

MPC860 User’'s Manual

* The most comprehensive guide to the device
* Document MPC860UM/AD

PowerPC Microprocessor Family:
The Programming Environments for 32-Bit Microprocessors
@ Document MPCFPE32B/AD

The NetComm Genera Information CDROM
e Iltem CDRONETCOM/D

Available Literature
THE MPC860 PowerQUICC USER’S MANUAL

The MPC860 User's Manual provides the most detailed information about the part and its operation.
From I/O capabilities to programming models to interfaces, this is a must-have for anyone working with
the 860.

The manual's document number is MPC860UM/AD and the manual can be obtained in electronic
format from the Publications Area of the web page or through the Literature Distribution Center
(discussed shortly).

We are pleased to announce that at the time of this training CDROM'’s release, we are making available
the new REV 1 edition of the 860 User's Manual. This new edition has updated tables and diagrams,
improved organization of the material, and new sections that better illustrate operation of the part to the
reader.

PowerPC 32-Bit MICROPROCESSOR MANUAL
This manual complements the MPC860 PowerQUICC User’'s Manual by going into great detail on such

topics as the PowerPC register set, exceptions, and the PowerPC instruction set. The document
number is MPCFPE32B/AD.

For More Information Contact: www.freescale.com 6



Freescale Semiconductor, Inc.

THE NETCOMM GENERAL INFORMATION CD-ROM

Tired of downloading large documents from our web-site? We offer user's manuals and large software
packages such as the MCUinit processor initialization tool in a CD-ROM format. While everything that is
contained on this CD-ROM is also located on the web, this disc may be more convenient for those
customers with low-bandwidth access to the internet. This disc may be obtained by contactingFree
Freescale's Literature Distribution Center using the methods described in a moment, and requesting item
CDRONETCOM/D. Use the web for downloading smaller documents, and documents which could
change frequently.

Slide GS-4

The Literature Distribution Center
(LDC)

http://www.mot-sps.com/sps/General/sal es.html

(subject to change)

USA/Europe/L ocations Not L isted
P.O. Box 5405, Denver, Colorado 80217
1-800-441-2447 or 1-303-675-2140

Japan

Nippon Freescale Ltd.: SPD Strategic Planning Office
4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan
81-3-5487-8488

Asia/Pacific

Freescale Semiconductors H.K. Ltd.

8B Tai Ping Industrial park

51 Ting Kok Road, Tai Po, N. T., Hong Kong
852-26629298

The Literature Distribution Center

Hard copies of our manuals and CD-ROMs can be obtained by contacting Freescale Semiconductor
Product Sector’s Literature Distribution Center (LDC). The LDC’s web page can currently be accessed
through the Literature Retrieval area of:

http://www.mot-sps.com/sps/General/sales.html

Additional contact information is shown here.

For More Information Contact: www.freescale.com 7



Freescale Semiconductor, Inc.

Slide GS-5

STEP-BY STEP GUIDE TO DESIGNING WITH THE MPC860
Is the MPCB860 right for your application?

1. Look at the MPC860 variations
@ Usethe“Products’ areaof our webpage

2. Obtain the User Manuals
@ Derivatives of the MPCS860 still need the main

MPC860UM as well as the appropriate supplement
@ Derivatives of the MPC850 should use the main MPC850
manual aswell as the appropropriate supplement

3. Read the introduction section of the UMs
@ Contains overview of featuresets

Step-by-Step Guide to Designing with the MPC860
IS THE 860 RIGHT FOR YOUR APPLICATION? (1 of 5)

With the complexity of chips these days, it can take a lot of time to make sure that a given chip is right
for your board. Here are some steps you can take to make sure the MPCB860 is right for you.

1. Look at the MPC860 variations.

Go to http://www.mot.com/netcomm and click on the PRODUCTS icon. On the PRODUCTS page you
will see a list of MPC860 variations. Click on one of the variations and you will see a table that
illustrates the differences between the versions.

2. Obtain the right user’s manuals.

All the MPC860 family members require the MPC860UM/AD which is available from the web, from our
CD ROM, and from the Literature Distribution Center. If you want information on the MPC860MH,
MPC860DH you will also need the QMC User's Manual supplement. If you need the MPC860SAR, you
will want its supplement. If you want the MPC860T, you will want its supplement that shows the
differences between the base MPC860 and that particular device.

If you are looking at one of the MPC850 family members, you would start with the base MPC850
manual instead of the MPC860 manual.

3. Read the introduction section of the user’s manuals.
This will give you an overview of the features of the chips. If you are looking at the MPC860DC (dual
channel device) or MPC860DE (dual Ethernet) devices, then the MPC860 base manual still applies, but

only SCC1 and SCC2 are available. SCC3 and SCC4 pins can still be used as parallel /O ports, but
the SCC3 and SCC4 are non-functional.

For More Information Contact: www.freescale.com 8



Freescale Semiconductor, Inc.

Slide GS-6

STEP-BY STEP GUIDE TO DESIGNING WITH THE MPC860
Is the MPCB860 right for your application?

4. Choose the right part for your communication functions

@ Let'ssay wewant Ethernet, HDLC and UART
@ Thisrules out the plain MPC860 as it does not have Ethernet

@ If the HDLC is multi-channel we need MPC860MH, the
MPC860DH, or the MPC850DH because these have the
QUICC Multichannel Protocol functionality

@ The MPC860MH does more than we need, and the
MPC850DH may not have the performance

@ Let'susethe MPC860DH for our example
(SCC1=Ethernet,SCC2=QMC, SMC1 or SMC2=UART)

STEP BY STEP: IS THE 860 RIGHT FOR YOUR APPLICATION? (2 of 5)

4. Choose the Right Part for your Communications Functions

The next area to investigate is whether the communications functions on the MPC860 are right for your
application. Decide what serial functions you want to accomplish at the same time. For example you
may want Ethernet, HDLC and UART.

You could assign Ethernet to SCC1, HDLC to SCC2, and UART to SCC3.

Since Ethernet is one of the choices, this rules out the “MPC860”, leaving the MPC860DC, MPC860DE,
MPC860DH, MPC860EN and MPC860MH.

If the HDLC support is multi-channel such as 24/32 time slots on fractional T1/E1 or several ISDN
BRI's, this narrows the choice to the MPC860DH or MPC860MH. This protocol is called Quicc Multi-
channel Controller (QMC) in our documentation.

Now the choices become:

MPC860MH using Ethernet on SCC1, Multi-channel HDLC (also called QMC) on SCC2, and UART on
SCCa3.

But wait, the MPC860DH only has 2 SCCs! Can it be used? Yes, because it has 2 SMCs also, which
are capable of low speed UARTSs! So the MPC860DH is also possible with Ethernet on SCC1, Multi-
channel HDLC on SCC2, and UART on either SMC1 or SMC2.

Finally, it should be noted that the functions on SCC1 and SCC2 can be switched if needed on parts
that offer Ethernet on more than one channel such as the MPC860MH and MPC860DH.

For More Information Contact: www.freescale.com 9



Freescale Semiconductor, Inc.

What about the MPC850? Can it be used. The MPC850DH offers less CPU performance and less
capable communications functions, but the necessary functions can still be mapped similar to the
MPC860DH.

From reading section 1 of the MPC850DH manual, you will see that even though this part has 2 SCCs,
they are actually “SCC2 and SCC3” since SCC1 is replaced with a dedicated USB controller. In
addition the MPC850DH only has one SMC that can be connected to its own set of pins, so only SMC1
is possible.

Conclusion: So far, our most realistic options for this application are the MPC860DH and the
MPCB850DH. Can both be used? It probably depends on the CPU performance required, which is
discussed later. For now, let’s stick with the MPC860DH for our example.

Slide GS-7

STEP-BY STEP GUIDE TO DESIGNING WITH THE MPC860
Is the MPCB860 right for your application?

5. Check the Pinout of the Desired Part

Ethernet requires: QMC requires (where “x” isA or B):
TXD1 L1TXDx

TENA (on RTS1) L1RXDx

TCLK (on an unused pin from CLK1-CLK4) L1TCLKXx

RXD1 L1IRCLKx

RENA (on CD1) LITSYNCx

RCLK (on an unused pin from CLK1-CLK4) L1IRSYNCx

CLSN (on CTS1)
SMC1 requires: SMTXD1, SMRXD1
SMC2 requires: SMTXD2, SMRXD2
e We'lluse TDM A.
@ TDM A requires CLK1 and CLK3 pins
@ Therefore, Ethernet will use CLK2 and CLK4 pins
e We'll arbitrarily pick SMC1

STEP BY STEP: IS THE 860 RIGHT FOR YOUR APPLICATION? (3 of 5)
5. Check the Pinout of the Desired Part

In our example, we need to make sure that the MPC860DH will allow all the pins operating
simultaneously to support our configuration.

A reading of the Ethernet section of the manual shows us that the following pins are required if Ethernet
is used on SCC1:

TXD1

TENA which is mapped onto RTS1

TCLK which must be mapped to CLK1, CLK2, CLK3 or CLK4

RXD1

RENA which is mapped onto CD1

RCLK which must be mapped to CLK1, CLK2, CLK3 or CLK4, but must be a different pin than the one
used for TCLK above

For More Information Contact: www.freescale.com 10



Freescale Semiconductor, Inc.

CLSN which is mapped onto CTS1
Now go to the Signals Description of the Manual and look for those signals and circle them.

Now for the Multi-Channel HDLC support. This requires a time-slot assigner A or time-slot assigner B.
Which one should we use? You can use either -- whichever makes the rest of the pin assignment
easier. For this example, lets assume that the receive and transmit sides are completely independent
and therefore require their own separate clocks and synchronization pins. Then the pins we need are
as follows:

Choice 1 is TDM A and requires
L1TXDA

L1IRXDA

LITCLKA

L1IRCLKA

LITSYNCA

L1IRSYNCA

Choice 2 is TDM B and requires
L1TXDB

L1RXDB

L1TCLKB

L1RCLKB

LITSYNCB

L1RSYNCB

Note that these pins are easily distinguished from other SCC functions because they all start with L1
(Layer 1). If only one clock and one sync was needed then only LIRCLKx and LIRSYNCx would be
used.

Now go to the Signals Description of the manual and look for these signals and circle them. For our
example, we will choose TDM A rather than TDM B.

What you will notice is that LIRCLKA is an alternate function of CLK1 and L1TCLKA is an alternate
function on CLK3. Thus, we should go back to our Ethernet selections above, and choose CLK2 and
CLK4 so there is no conflict.

Another interesting thing to note is that LITSYNCA and LIRSYNCA are available in 2 places on the
device! You can pick either location, and select it later in your software initialization. Why did we do
this? In a few case studies we did, we found that certain key applications required this kind of flexibility,
otherwise we would not have added this extra complication to the device!

Lastly, we need to select an SMC to use for the UART. Either SMC1 or SMC2. Thus our choices are:
SMTXDland SMRXD1, or SMTXD2 and SMRXD?2.

Note that the use of the SMCs means that we do not have RTS, CTS and CD functions. (If you must
have those functions, and software interrupts are not sufficient, then an SCC must be used, putting the
application back to an MPC860MH rather than the MPC860DH.)

An examination of the pinout reveals that indeed, everything fits on the MPC860DH, and it really didn’t
matter which SMC we chose, and which TDM we chose in this case. As you start to use more
channels, and more of the “optional” signals on certain interfaces, the chances of a contention
increases.

For More Information Contact: www.freescale.com 1



Freescale Semiconductor, Inc.

Slide GS-8
STEP-BY STEP GUIDE TO DESIGNING WITH THE MPC860
Is the MPCB860 right for your application?

6. Check the Dual-port RAM of the Desired Part
@ Certain complex protocols use up the DPRAM of other functions
@ Check the web for microcodes that may patch situation

7. Check CPM Performance

@ Usethe CPM Performance spreadsheet on the web!
@ Or use the Performance Appendix in the UM.
@ Example Calculations:

10/22 (Ethernet) +2/8 (HDLC) = ~.70 This will work!
(32* 0.064)/2.1 (QMC) + 2/8 (HDLC) =1.22 This is greater than 1.0 so it definitely will not work!

122* 25/33 =0.92 So at a greater operating speed, you can just squeeze it in

STEP BY STEP: IS THE 860 RIGHT FOR YOUR APPLICATION? (4 of 5)
6. Check the Dual-port RAM of the Desired Part
So now we know that the MPC860DH supports the simultaneous use of all the pins we need.

What is the next resource that could be a problem? The answer is the Dual-port RAM. Each protocol
requires certain parameters that are stored in the dual-port RAM. In the case of certain complicated
protocols like Ethernet and Multi-HDLC the parameter RAM requirement is so large that it actually
overruns the parameter RAM of other protocols. In our example Ethernet on SCC1 overruns the 12C
area, and QMC on SCC2 overruns the SPI area.

To solve this we have several downloadable microcodes that “patch” this problem by moving 12C and
SPI parameter RAM to other locations. This is called the “Microcode Patch for Relocating 12C/SPI
Parameters” and is available from the ENGINEERS TOOLBOX on our web-site.

7. Check the CPM Performance

Now that the pins and dual-port RAM requirements are checked to be OK for our application, we need
to check that the Communications Processor Module (CPM) performance is sufficient for the
application.

The method used to determine this is illustrated in the User's Manual Appendix A, and involves a simple
equation based upon the system clock speed of the 860, as well as the protocols required and their
speeds. This Appendix lists the maximum expected performance of the 860 at 25 MHz for each kind of
functionality the 860 provides. This chart scales linearly, so as an example, if you intend to run the 860
at 50MHz, then these maximum bandwidth numbers also double.

We also offer an Excel spreadsheet called “CPM Performance Spreadsheet” that performs these CPM
loading calculations for you and it is located in the Engineer’s Toolbox of our web page. This is a very
useful tool!

For More Information Contact: www.freescale.com 12



Freescale Semiconductor, Inc.

To perform these calculations by hand, simply divide the intended bandwidth of a certain protocol by the
maximum, repeat for any additional functions you will be using, add all these fractions together, and do
not exceed a sum of 1.

This topic is covered in more detail in the training, but let's do a quick example to illustrate what we are
describing. If the 860 were operating at 25MHz, and would be using a 10Mbit Ethernet channel in half
duplex and a 2Mbit HDLC channel, you would take these bandwidths, divide them by the max for each
protocol, and sum them as follows:

10/22 + 2/8 +=0.70

which comes close to, but does not exceed 1. So the processor would not be overloaded.

If you were to attempt 32 QMC channels at 64 Kbit each and one additional 2Mbit channel with the 860
at 25MHz, the following equation applies:

(32*0.064)/2.1 + 2/8 =1.22

This arrangement will not work. You can, however, keep this arrangement if you increase the operating
speed of the 860 to 33MHz, for example.

1.22 * 25/33 =0.92

Now the CPM is not overloaded.
Slide GS-9

STEP-BY STEP GUIDE TO DESIGNING WITH THE MPC860
Is the MPCB860 right for your application?

8. Check the PowerPC™ CPU Performance
At 66 Mhz, the 860 performed 87 Dhrystone MIPS
At 50 MHz, the 860 performed 66 Dhrystone MIPS
At 40 MHz, the 860 performed 52.8 Dhrystone MIPS
At 33 MHz, the 860 performed 43.56 Dhrystone MIPS
At 25 MHz, the 860 performed 33 Dhrystone MIPS

These numbers were obtained with aDiab Compiler.

9. Price and Availability

For More Information Contact: www.freescale.com 13



Freescale Semiconductor, Inc.

STEP BY STEP: IS THE 860 RIGHT FOR YOUR APPLICATION? (5 of 5)
8. Check the PowerPC CPU Performance

The last main area of concern is the CPU Core Performance. Our CPU offers the following Dhrystone
MIPS performance shown here.

These numbers were obtained with a Diab Compiler.

The good news about the Dhrystone benchmark is that the results for it, are available from a wide
variety of processors. The bad news about the Dhrystone benchmark is that it fits completely in internal
cache of 2K instructions or greater. Thus, the Dhrystone benchmark shows the 4K/4K (instruction
cache/data cache size) MPC860 family to be the same speed as the 2K/1K MPC850 family.

In actuality the performance of the MPC860 is 10-35% greater than the MPC850 family at the same
clock speed.

Another metric commonly used for the MPC860 is that this processor is about 10% faster than the
68040 processor at the same clock speed (which also has 4K/4K cache).

Finally, our TOOLBOX offers a benchmark “shell” which allows you to benchmark your own code on our
processor. This shell of code initializes the chip, turns on the MMU and Caches, and starts a timer for
you. It also shows you where to place your own “test code” to see how long it takes to run. The
example code that is included in this shell is the Dhrystone code.

9. Price and Availability
This information is not available on our web site, so check with your local distributor or Freescale
representative. Freescale's main distributors are Arrow, Future, Hamilton-Hallmark and Wyle. Our web

site does contain press releases which show the “direct from Freescale” pricing at the time of the device
announcement, however pricing does change drastically with volume and with time.

For More Information Contact: www.freescale.com 14



Freescale Semiconductor, Inc.

Slide GS-10
STEP-BY STEP GUIDE TO DESIGNING WITH THE MPC860
Hardware Designers
1. Determine the Memory System Y ou Will Need

25MHz 40MHz 50MHz
SRAM 2-1-1-1 2-1-1-1 2-1-1-1

{15n%) {10ns) (Tns)
SDRAM | 3-1-1-1 | 5-1-1-1 | 6-1-1-1

60ns EDO 4.1, . A
DRAM 3-1-11 4-2-2-2 5-2-2-2

&60ns FPM A0 0 e B
DRAM 3-1-21 4-2-2-2 5-3-2-3

@ Appnote: MPCB860 Interface to Fast Page Mode DRAM
@ Appnote: MPC860 Interface to EDO DRAM
@ Appnote: MPCB860 Interface to Synchronous DRAM

STEP-BY-STEP GUIDE FOR HARDWARE DESIGNERS

Now that you have decided to actually use the MPC860 in a design, the following steps are
recommended.

1. Determine the memory system you will need.

The MPC860 is a bursting device and thus obtains the best performance when the memory it is
connected to is also able to burst. The MPC860 burst is comprised of four 32-bit words. If the length of
the burst is written as 4-2-2-2, then the first 32-bits were read/written in 4 clocks, the next 32-bits in 2
clocks, and so on for a total burst length of 10 clocks. The following table shows some example burst
lengths for a BURST READ operation. (BURST WRITES are usually slightly better).

Note that faster memory can yield better results. Also note that for the 66 Mhz devices (or any device
used in half speed bus mode) the actual bus speed may only be one half of the processor speed. Thus
a 66 Mhz device might only have a 33 Mhz external bus. Whether a 66/33 (internal/external) device is
faster than a 50/50 device will depend on the cache hit rate and the external memory speed.

More information on the various memory types can be obtained in the following collection of appnotes:
MPC860 Interface to Fast Page Mode DRAM

MPCB860 Interface to EDO DRAM

MPC860 Interface to Synchronous DRAM (SDRAM)

For More Information Contact: www.freescale.com 15



Freescale Semiconductor, Inc.

Slide GS-11

STEP-BY STEP GUIDE TO DESIGNING WITH THE MPC860
Hardware Designers

2. Obtain Example Schematics
--Check the Web: MPC860FADS Schematics, MPC860 Part Symbol, BGA Footprint

3. Obtain User's Manual Errataand Device Errata
4. Remember the 5V Tolerance

5. Look at Clocking Issues
--Appnote: Crystal Note for the 302, 360, and 8xx Family

6. Look at Pin Termination
--Pin Termination for the MPC860 white paper

7. Look at Pin Timing Issues
--Electronic Data Book of MPC860 timings

8. Check the Hardware Configuration Register Carefully
9. Read the MPC860 Design Checklist

10. Get the Part Up and Running

11. Having Trouble? Search the FAQ

12. Get on the MPC860 Update List Email Server

STEP-BY-STEP GUIDE FOR HARDWARE DESIGNERS (2 of 2)

2. Obtain Example Schematics

The web site offers several sources of example schematics available in ORCAD format. The most
useful set is probably the SAMBA schematics, which shows how to interface the entire MPC860 family
to memory -- Flash EPROM, DRAM, and SDRAM. In addition, it shows the MPC860T connected to an
external 10/100baseT Transceiver.

In addition, the schematics for our MPC860FADS boards are also available, however, this board is
designed to be very flexible, and may not represent the most efficient system design.

860 PART SYMBOL: An 860 electronic part symbol in ORCAD Capture format is also on the web.

BGA FOOTPRINT: The documents AN1231 and AN1232 are in-depth discussions about factors
regarding the BGA package that the 860 uses and includes a footprint for design purposes.

3. Obtain User’s Manual Errata and Device Errata

This information is available on our web site in the PUBLICATIONS and SUPPORT & FAQ sections
respectively.

4. Remember the 5V Tolerance

Although the MPC860 family is a 3.3V supply device, it is 5V tolerant and can be used with 5V TTL
compatible components.

5. Look at Clocking Issues

For More Information Contact: www.freescale.com 16



Freescale Semiconductor, Inc.

Although the part allows both crystals and oscillators to be used, we recommend oscillators to be used if
possible. Oscillators reduce the risk of process variations or process shrinks from causing the clocking
circuit to cease operation.

For those that must use crystals, we recommend that engineers inquire to their crystal manufacturer to
determine the best capacitor and crystal characteristics. They are in the best position to estimate the
values needed for the circuit.

We do provide the appnote “Crystal Note for the 302, 360 and 8XX Family.” This paper is written to
assist engineers in the production of reliable clock circuits which may be used with devices such as the
MPC860, MC68360 and MC68302 and their derivatives. It discusses in general terms various methods
for the generation of the system clock.

6. Look at Pin Termination

A frequent issue of concern is the proper termination of signal pins. This is the most common reason
why a MPC860 board does not work at power-up. Which pins should be pulled up or down for proper
operation of the 8607 We have produced a white paper on this very subject and it can be found in the
Publications Area of the web.

7. Look at Pin Timing Issues

When designing your circuits involving the 860 you will obviously take care to meet the timing
specifications of the 860. In addition to the timing diagrams in the 860 manual, we also provide some
additional tools to help understand your timing needs.

On the web, in the Publications Area, is the MPC860 Electrical Specifications Spreadsheet. This Excel
document dynamically calculates timing specifications based upon operation speed and capacitive
loading. You can program the exact frequency of your system bus, and this tool will customize the
MPC860 timings for you. In addition, you can program the capacitive loading on the pins, and the tool
will customize the timings.

We also have available an electronic data book of the 860 timings that can be used with Chronology’s
TimingDesigner tool. This software aids in visualizing signal waveforms and timings.

8. Check the Hardware Configuration Register Carefully

The MPC860 has a number of different modes that can be programmed in hardware. You select the
modes by driving certain voltage levels onto the Data Bus pins during reset. Any Data Bus pins that you
do not drive will take on the default configuration. Out of the 15 or so pins, you will probably only need
to drive 4 or 5 -- the rest can use the defaults. Please read this section of the manual very carefully as
you are making very basic decisions about the operation of the part.

9. Read the Design Checklist

When you think you have everything under control, go back and read the MPC860 Design Checklist
which resides in the PUBLICATIONS section of our web site. This gives a number of helpful hints and
lists some common mistakes.

10. Get the part up and running.

When you get the boards back, the first thing you should do is bring the part up in its debug mode. In
the debug mode, you can control the part through the debug port without requiring the device to execute
any software on the board itself. The debug port pins of the MPC860 should be brought to a simple
header that is described in the APPLICATIONS section of the MPC860 User's Manual. This will allow
many standard debuggers to access the device. In fact, if you purchased an MPC860 FADS board,
you can use our MPC8bug on the host PC to control to your target board through the MPC860 FADS
board. See the MPC860FADS manual for more information on this option.

For More Information Contact: www.freescale.com 17



Freescale Semiconductor, Inc.

11. Having Trouble?

Don't forget to check the searchable FAQ at:
http://www.mot.com/netcommfaq

for hints on what might be wrong.

12. Get on the MPC860-Update List Server

See the SUPPORT & FAQ section of our web site to subscribe to get real-time updates of late breaking
news on the MPC860.

SLIDE GS-12

STEP-BY STEP GUIDE TO DESIGNING WITH THE MPC860
Mechanical and Component Engineers

1. Read the Packaging A ppnote
e http://www.mot.com/pbga

2. Look at Thermal Considerations
@ Appnote: Thermal Considerations and M easurements

3. Look at Power Dissipation
@ The MPC860 varies from 0.4W to 0.8W depending on frequency

4. Qualification Data

STEP-BY-STEP GUIDE FOR MECHANICAL AND COMPONENT ENGINEERS

Here are some additional steps to consider.
1. Read the Packaging Appnote

The MPC860 family resides in a 357 lead Plastic Ball Grid Array (PBGA) package. An appnote for the
use of this package and PBGAs in general may be found at:

http://www.mot.com/pbga
2. Look at Thermal Considerations

NetComm has available in the Publications Area a new appnote covering thermal considerations and
measurements for the 860 and its packages.

For More Information Contact: www.freescale.com 18



Freescale Semiconductor, Inc.

If extended temperature (-40 to +85) is required, may not be offered in at all speed grades, and may
require heat sinks at the highest speed grades.

3. Look at Power Dissipation

The MPC860 family tends to vary from 0.4W to 0.8W depending on frequency. The power dissipation
at a given frequency is decreasing as the device undergoes shrinks. Meanwhile the offered frequency
is increasing over time. The end result is that the power dissipation for the highest speed versions tend
to be in the 0.8W range.

The first MPC860 User's Manual showed an option of running the internal circuitry of the MPC860
family at 2.2V (rather than 3.3V) to save power. This option has NOT been productized in the MPC860
or MPC850 family, and is not available.

4. Qualification Data

Qualification reports are available for our devices, however they can only be obtained through aFree
Freescale Sales office.

SLIDE GS-13

STEP-BY STEP GUIDE TO DESIGNING WITH THE MPC860
Software Designers

1. Determine Y our Tool Set
--Visit the MPC860 Third Party Support Page

2. Review the Freescale Application Development System Materials

--MPCB8bug: Freescale'scommand line monitor/debugger

3. Acquire MCUinit
--MCUinit: Freescale's GUI-based initialization code generating package

4. Study Exception Processing and Interrupts
5. Obtain Basic Chip Initialization Code

6. Obtain Device Drivers and Example Code
7. Read the CPU Performance A ppnote

--Appnote: MPC8xx Performance Driven Optimization of Caches and MMUs

8. Scan the Performance Checklist
9. Having Trouble? Search the FAQ

--http://www.freescal e.com/netcommfaq

10. Get on the MPC860 Update List Email Server

STEP-BY-STEP GUIDE FOR SOFTWARE DESIGNERS

1. Determine Your Tool Set

An incredible amount of support is also available in many forms from companies outside of Freescale. A
list of those companies organized by category of support, their contact information and links to their web
sites (if available) are located on our web site. At the top of various pages throughout our web site you
will see links to the 860 Third Party Support Page.

For More Information Contact: www.freescale.com 19



Freescale Semiconductor, Inc.

Categories of support include: Board Test Consultants, Chip Drivers (Software), Generators and Tools,
Companion or Support Chips, Development Systems, Emulators, Hardware Models, Network Software,
Operating Systems, and Package & Socket Adapters.

We highly encourage you to investigate these companies’ products and services in your efforts to get
your product to market.

2. Review the Freescale Application Development System Materials

Among the most important support materials available to our customers is the MPC8xx Family
Application Development System (8xxFADS). This package is meant to serve as a platform for
software and hardware development around the 860 family of devices. Using the on board resource
and the associated MPC8bug debugger/monitor, a developer is able to load their code, run it, set
breakpoints, display memory and registers and connect the developer’'s own proprietary hardware via
the expansion connectors. The FADS is not just effective for testing purposes but can also serve as a
demonstration tool. Contact your local Freescale Sales office for details on how to purchase the
systems. Information on how to find the most appropriate sales channel can be found on the web.

MPC8BUG

Freescale provides its own command line debugger/monitor program called MPC8bug. This package
provides excellent simple methods of observing and debugging your code and performing diagnostics.
You can even write your own diagnostics with the new 1.3 release of the software. This software is
shipped with the 860ADS or 8xxFADS, and is also available on the web.

3. Download MCUinit

Interested in using a graphic interface tool to quickly produce initialization code for the 860? You need
to check out MCUinit, a menu-driven initialization code generating program for 32-bit Windows
compatible computers.  This software package is located both on the web and on the NetComm
General CDROM.

4. Study Exception Processing and Interrupts

There is also the MPC860 EPPC Exception Processing Application Note with deals with exception
processing in more detail.

In addition, two appnotes are provided on interrupts -- one for the SIU and one for the CPM.

5. Obtain Basic Chip Initialization Code

Look in the ENGINEERS TOOLBOX on the web to obtain the latest MPC860 Initialization code. This
shows how to bring the device up from power-up including the programming of clocking modes and chip
selects.

6. Obtain Device Drivers and Example Code

The Engineers’ Toolbox is your best resource for freeware available from Freescale for use with the 860.
On the web you will find both simple tutorial-style examples, and some complex drivers as well, that
demonstrate a wide variety of protocols and modes of operation from setting up timers to running
Ethernet. The list of code available is being updated all the time, so check the web often. We currently
have drivers or example code for HDLC, Ethernet, UART, Transparent, Real-time clock, 12C, the
PowerPC Timebase, ATM SAR for the MPC860SAR.

Drivers are also available for a fee from third parties such as AISYS, Inverness, and Trillium and are
often included with a purchase of an RTOS for the MPC860.

7. Read the CPU Performance Appnote

For More Information Contact: www.freescale.com 20



Freescale Semiconductor, Inc.

The MPC860 core has two Memory Management Units and two caches, one of each for data and for
instructions. We invite you to study our Cache and MMU appnote package, available in the Publications
area of the NetComm web site, which explains how to efficiently use the caches and MMU. It includes
the appnote itself, a special version of the debugger/monitor NetComm offers with cache hit simulation
ability, and some scripts (given as examples in the appnote) that can be used with the debugger. The
appnote is named “MPC8XX Performance Driven Optimization of Caches and MMUs".

8. Scan the Performance Checklist

In the Publications Library is the MPC860 CPU Performance checklist. This document is basically a
quick summary of the most important facets of the Performance Appnote mentioned above. Topics
that are covered include dealing with DRAM, interrupts and their handlers, core operation modes and
more. If you are not getting the performance you expect, this is the place to start.

The MPC860 has so many debug assist modes that it is not uncommon for customers to see a 2x to 3x
performance improvement, after following the guidelines in this checklist.

9. Having Trouble?

If you are having trouble getting your serial protocols to work try looking at the appnote “Hints for
Debugging the CPM”. This shows you how to determine where the problem resides, by showing you
how to trace the flow of data from system memory to the pins, and from the pins back to system
memory.

Also, don't forget to check the searchable Frequently Asked Questions at:
http://www.mot.com/netcommfaq

10. Get on the MPC860-Update List Server

See the SUPPORT & FAQ section of our web site to subscribe to get real-time updates of late breaking
news on the MPC860.

For More Information Contact: www.freescale.com 21



Freescale Semiconductor, Inc.

Chapter 1: MPC860 Architecture, Part 1

SLIDE 1-1

MPC860 Architecture, Part 1

What you e Identify the basic blocks of the MPC860 and their functions
will learn « Describe the function of each component

« Describe how internal data flows

« [dentify the pin groups

« Describe an example application

In this chapter you will learn to:

1. Identify the basic blocks of the MPC860 and their functions
2. Describe the function of each component

3. Describe how internal data flows

4. ldentify pin groups

5. Describe an example application

For More Information Contact: www.freescale.com



Freescale Semiconductor, Inc.

SLIDE 1- 2

What are the Basic Components?

4K <bg%stem Interface Unit
| Cache
B Memory Controller
Core I MMU U-bus y
4KD BIU
Cache | System Functions
< - Real Time clock
D MMU
Powerrc™ (1) PCMCIA Interface
Parallel 1/0 Internal 4 General
Baud Rate Memory (I;Bftrr:)Llle)etr Purpose :
Generators Space Timers 16 Serial >
Parallel Interface | 32-Bit RISC pController DMAs,
Port Internal |_and Program ROM | MA 2 Virtual IDMA
Timers Periphefal Bus
SCC1] [SCC2][SCC3] [SCC4| [SMCI[SMC2|[SPI1] [ I°C | Communications
_ _ Seria Interface Processor
Time Slot Assigner | Module

What are the basic components of the MPC8607?

This is a block diagram of the MPC860. It consists of three major blocks: the PowerPC core, the
System Interface Unit (or SIU), and the Communications Processor Module (or CPM).

The PowerPC is the main processor unit, and is commonly referred to as the Embedded PowerPC
Core (or EPPC for short [pronounced “epic”]). It includes the caches and Memory Management Unit
(also known as the MMU). It has a performance capability of 52 mips with a 40 megahertz clock.

The second major block is the System Interface Unit. One of the primary functions of the SIU is to
provide an interface between the internal Unified bus and the external bus. It also provides a number of
other functions as shown here.

Finally, the third major block is the Communications Processor Module. The CPM sends and receives
data over eight different communication devices, such as the Serial Communication Channels (SCC) or
Serial Management Channels (SMC). All of the devices can be used individually, or the SCCs and
SMCs can be used on a Time Division Multiplexed Bus.

Notice that within the Communications Processor Module, there is a 32-bit RISC micro-controller. The
MPCB860 contains two CPUs: the PowerPC and the 32-bit RISC. The PowerPC executes the code of
the higher layers to maximize throughput. The CPM RISC takes care of the low-level aspects of
communication such as moving characters to and from memory, and handling the actual
communication. Of course, the two processors must have some means of coordinating efforts. The
primary means is via the internal memory space. In this memory area, each processor can set control
bits, and read status bits to which the other processor can then respond.

Also in this diagram, there are 16 serial DMAs or Direct Memory Access units. Each of the eight
communication devices has a transmit DMA and a receive DMA. The 32-bit RISC directs these 16
serial DMAs to transfer data between the communications devices and memory, usually external
memory. When the MPC860 receives data, the serial DMA obtains the data from the communication

For More Information Contact: www.freescale.com 23



Freescale Semiconductor, Inc.

device and moves this data into memory. For data transmission, the sequence occurs in reverse, with
the data originating in memory, and the serial DMA transferring that data to the communication device.
The serial DMAs are used exclusively by the CPM RISC; however, there are two virtual IDMAs available
for user DMA requirements.

SLIDE 1-3

How Data Flows

System >
@ @ Interface
< - Unit -
PowerPCTM A U-bus A
wer
@
16
Internal Serial
Memory DMAs;
Space 2 Virtual
IDMA
Peripheral Bus Communications
Processor
Module

How does data flow?

This diagram shows the major paths for data flow within the 860. The first path as shown is from 1 to 3;
data flows from the PowerPC to the SIU. The core uses this path when executing load and store
instructions that miss in cache, or that are not cacheable. The cache controllers within the PowerPC
also use this path when loading and flushing cache. The MMU processes the addresses used on this
path.

The second path as shown is from 1 to 2; data flows from the PowerPC to the internal memory space;
this path occurs for accesses to registers and to dual-port RAM within the internal memory. The MMU
processes these addresses, but because both processors can write to this memory, this data area
should not be cached.

The third path as shown here is from 4 to 3; data flows from the peripherals to and from the external
bus. This is the path that is used for moving data between external memory and the communications
peripherals. The MMU does not process the addresses, and data should not be cached.

The final path as shown here is from 4 to 2; data flows from the peripherals to the internal memory
space. This path occurs for data transfers between peripherals and dual-port RAM. This path is not
used often, although you may wish to use it occasionally. Normally, the data buffers are placed in
external memory; however, it is possible to place buffers in the dual-port RAM area of the internal
memory space. The limitation is that the internal memory space is not very large. The MMU does not
process the addresses, and data should not be cached.

For More Information Contact: www.freescale.com 24



Freescale Semiconductor, Inc.

SLIDE 1- 4

What are the Pinouts?

Power Pins
VDDSYN, VSSSYN |:> <::.|> Address (0:31) Bus
VDDH,VDDL,VSS,
KAPWR <— > Data (0:31) Bus
Port A
PAO-PA15 <—>> Bus Control
Port B MPC860 <::| Interrupts
PB14-PB31
<> Memory Control
Port C
porcts <> Resn
PortD " < — > Crydta/Oscillator
PD3-PD15
< "> PCMCIA Port A
JTAG/Dev. Supp. < — >
P PCMCIA Port B,
. Dev. Supp.,
Pin Group i
Diagram Program Tracking

What are the pinouts?

Here is a summary diagram of the pin groups of the MPC860. A more detailed diagram is available in
the User Manual. Here is shown a 32-bit address bus, a 32-bit data bus, and the bus control pins. Most
users can support their memory and /O interface requirements with the memory controller pins, since
these pins can provide a direct interface to almost any device. However, if all of the chip select pins are
in use, or if a rare device is in use that the memory controller cannot support, then the user can
implement the bus control pins as an interface to a device. The user will need to provide additional logic
for the interface if they implement the bus control pins.

There are eight interrupt pins, and, as mentioned, the memory controller pins. There are also pins
associated with hard and soft reset. Additionally, there are pins that allow the user to supply a clock. It
is possible to supply a clock with a crystal, an external oscillator, or both.

The MPC860 supports two PCMCIA ports. The pins for PCMCIA Port A are standalone; that is, the
pins for PCMCIA Port A are dedicated to that function. The pins for PCMCIA Port B, however, are
shared with the Development Support capability and the program tracking functions. You might call the
right side of the diagram shown here the system side, while you might call the left side of the diagram
the communications side. For the most part, the communications side consists of four ports: Port A, B,
C and D. Each of these pins can act as a general-purpose I/O or support at least one alternate function
associated with a communications device, such as receive or transmit. Part of the designer's task is to
determine how to use each one of these shared pins. There is also a set of pins associated with JTAG,
and Development Support shares these pins.

For More Information Contact: www.freescale.com 25



Freescale Semiconductor, Inc.

SLIDE1-5

What is an Example Application?

Optional A
(F.)iAM —{ Gluef 8, B16, fggﬁit
00
Ethernet MPC860
EEST
p R Mmcesie0
Power
AUI SCC1 PC
RS-422 Core DRAM SIMM
D-15 [ ] < > SCC2 | — | 16 or 32 - bits
Localtalk = Memory
TUEL ST e
T1EL Line Transceiver RISC
—— =TT | DM-A SCC3
Time - Qspan-860
STIU ISDN-Basic or Primary Slot ;\C/I(éi
——~——1 S/T/IU |TDM-B |AsSigner ., eci
Transcvr IDMA 1 |«—> Peripherd 1 Bus
RS-232 IDMA 2 |« Peripheral 2
Local [ < SMc2 Port A
Terminal PCMCIAT—Z , Port B
Serial EEPROM|MCM2814 spy | [LPPC_|«<—>Peripheral

What is an example application?
This diagram shows a few ideas of how the user might implement some of the devices on the MPC860.

The SCCs are capable of supporting a number of protocols. . Here, for example, in the upper left-hand
corner, SCC1 is shown connected to an Ethernet transceiver on an Ethernet network. Any of the SCCs
support the Ethernet protocol, however. Here, for example, SCC2 supports an interface to a LocalTalk
network.

Furthermore, it is also possible to provide an interface to one or two Time Division Multiplexed buses:
TDM-A and TDM-B. Here connections are shown to a T1/E1 line, and an ISDN interface as examples.
In such a case, a timeslot assigner routes data on the buses to any of the SCCs, or to any of the SMCs
-- for a total of six devices to which data can be routed.

Serial management controllers do not have as much capability as SCCs, but a very common
implementation for one of the SMCs is to use it with a local terminal as shown here.

A Serial Peripheral Interface is available for communicating with a variety of peripheral devices,
including a number of transceivers, which can be programmed through the SPI bus. Here we show the
Serial Peripheral Interface with a double EEPROM.

There is also an Interintegrated Circuit (I°C) controller providing an interface to a number of peripherals.
The I°C is a good device to consider if the user intends to use SIMMs for example, in which the
presence detect function is implemented using an EEPROM with an I°C interface.

Additionally, the PCMCIA controller supports two PCMCIA boards.

External buffers for PCMCIA and bus transceivers must provide electrical isolation between the sockets

and the system bus. The MPCB860 is a 3.3-volt device, but with the exception of the clock input it is 5-
volt friendly; therefore no voltage conversion is required for inputs other than those for the clock.

For More Information Contact: www.freescale.com 26



Freescale Semiconductor, Inc.

We have mentioned previously that there are two IDMA devices; these devices are available to transfer
data from peripherals, as well transfers from memory to memory.

Finally there is the memaory controller. It is possible to program the memory controller to boot up from 8-
, 16-, or 32-bit ROM; likewise, the memory controller can provide an interface to a DRAM SIMM, or a

wide variety of other memory devices. The memory controller can also connect to a PCI bus using
devices available from 3"-party manufacturers.

SLIDE 1-6

What are the Basic PowerPC core Components (1 of 3)?

What are the Basic EPPC Components (1 of 3)?

I-cache/I-MMU interface D-cache/D-MMU interface
A
Sequencer
@ |
Address Branch Instruction
generation __ [< ] unit | queue
@ ® @
control bus K v K v K K K
write back bus + N + + +
(2 slots/clock) 1
\ 2
Special GPR GPR IMUL/| | ALU/ LDST LDST
Regs 32x32 || history | | IDIV BFU address | [fix data
source busses A v | A AR A A A
(4 slots/clock) Y ' '

Let us now turn our attention to the PowerPC core of the MPC860. Here we have a block diagram, and
the focus is on the sequencer. The sequencer provides centralized control of instruction flow to the
execution units, shown in the lower portion of the block diagram. The Address Generation unit supplies
an address to fetch the next instruction based on information from the sequencer and from the Branch
Prediction Unit. The Branch Prediction Unit extracts branch instructions from the sequencer, and uses
static branch prediction on unresolved conditional branches to allow the instruction unit to fetch
instructions. The instruction queue holds the next instructions to be distributed.

The Branch Prediction Unit examines an instruction to determine if it is a branch instruction or not. The
Branch Prediction Unit then passes the instruction on to the instruction queue. The instruction queue
moves the instruction from the Branch Prediction Unit to the head of the queue, and then dispatches it
to the appropriate execution unit.

The Branch Prediction Unit does not take any action if an instruction is not a branch instruction. If an
instruction is a branch instruction, the Branch Prediction Unit makes a static prediction of whether the
branch will be taken or not. Based on the Branch Prediction Unit's decision, the Address Generation
Block obtains the instruction either from the next sequential address, or the instruction at the location to
which the branch will go. Static branch prediction is performed according to how the user programmed

For More Information Contact: www.freescale.com 27



Freescale Semiconductor, Inc.

the branch instruction. For the few times that the prediction is wrong, the instruction queue will have to
be flushed out, and the instructions from the other location will have to be brought into the instruction
queue.

Here are three of the execution units. One of the execution units supports the general-purpose registers.
These are registers for temporary, pointer, and index data. There are thirty-two, 32-bit general-purpose
registers, and they all operate in essentially the same way. The special purpose registers are used for
control and status data, as well as save and restore data. There are actually more special purpose
registers than general-purpose registers.

There is also a history buffer (GPR History). As the core dispatches each instruction, the instruction
enters the history buffer. The core sets various status bits showing the progress of the instruction as it
executes. When the instruction completes, it exits the history buffer. While the instruction is in the
history buffer, and perhaps partially executed, an exception could occur, in which case the MPC860 has
the capability to back up the machine to the instruction that caused the exception, and then handle the
exception.

The Integer Multiply / Divide Unit executes integer multiply and divide instructions. There is an Arithmetic
Logic Unit with Bit Field Logic Unit combined, which executes all other integer and bit instructions. Next,
there are two units associated with load and store, one for address one for data. Both units consist of a
two-entry 32-bit queue. All load / store instructions share the Load / Store Address queue. The Load /
Store Fixed-Point Data Queue holds fixed-point data.

For More Information Contact: www.freescale.com 28



SLIDE 2-1

What you
will learn

Freescale Semiconductor, Inc.

Chapter 2: EPPC Programming

EPPC Programming

Learn how to:

« Write program loops

 Write subroutines

¢ Test and manipulate bits in I/O devices

« Implement signed and unsigned arithmetic algorithms

In this chapter, you will learn how to:

1. Write program loops

2. Write subroutines

3. Test and manipulate bits in 1/0 devices

4. Implement signed and unsigned arithmetic algorithms

For More Information Contact: www.freescale.com

29



Freescale Semiconductor, Inc.

SLIDE 2-2

Overview of Programming Model

/ User Programming Model (same for all EPPC implementations) \
GPRO

. XER
General Purpose GPR1 Special Purpose LR
Registers o Registers QrTBR
GPR30 TBU

GPR31 : \

ICondition Register] . Program Counter

Supervisor Programming Model ( changes for different EPPC implementations)

MSR Standard SPRs Additional SPRs

DSISR SPRG1 | SPR80-82:  SPR560-570:
bit manipulation Icache & Dcache

Machine State Registe

DAR SPRG2 |lof MSR|RI&EE] control/status

DEC SPRG3 SPR144-630: SPR784-826:
- Debug & MMU

SRRO TB(to write) | development  programming

SRR1  [TBU(to write)|__SUPPO™t model

K SPRGO PVR /

Overview of the Programming Model
This slide illustrates a general view of the programming model for the MPC860. It is divided into two

parts: the user programming model, and the supervisor programming model. The user programming
model is essentially a subset of the supervisor model.

For More Information Contact: www.freescale.com

30



Freescale Semiconductor, Inc.

SLIDE 2-3

Overview of Programming Model

User Programming Model (same for all EPPC implementations)

0 31 SPR1 XER [ arithmetic OV,CA,SO\
N
GPRO . Subroutine return
SPRS8 LR | ST address
GPR1 SPRY cTR [ Goto address/loop count
So?tai”d Free running TimeBase
. ata an
addresses SPR268 TB count (read only)
of the - o
. task in
execution SPR269 TBU
GPR30
GPR31 8 fields for
J condition Not directly accessible
evaluation
0 31 -, 0 31, #
Condition Register | # Program Counter

\Z /

User Programming Model

First, let us discuss the user programming model. Note that when we discuss the user model, this is
synonymous with the problem state of operation.

Within the user programming model, there are thirty-two general-purpose registers. Each register is 32
bits wide. All of these registers operate in essentially the same way. EPPC computations are register to
register. Information is saved to, and restored from, registers. On the PowerPC, there is no stacking
mechanism, and therefore no dedicated stack pointer. Although the hardware provides no stacking
mechanism, the user may implement stacking functions through software. While there is no dedicated
stack pointer register, by convention, General Purpose Register (GP(R1)) acts as the stack pointer
register.

Another register in the user programming model is the Condition Register (CR), consisting of eight, 4-bit
fields. We discuss this register in more detail later in this chapter.

Also in the user programming model, there are five special purpose registers. SPR1 is the Integer
Exception Register (XER) register, which is used for multi-precision arithmetic, and has an overflow,
carry, and summary overflow bit.

Next is the Link Register, Special Purpose Register 8 (SPR8). This stores the return address when a
call to subroutine instruction executes.

SPR9 is the counter register. This is commonly used as a counter register in loop programs.
Alternatively, the programmer can also use this register for a GOTO, in which the routine stores an
address, and branches to the location to which the address points.

The remaining two special purpose registers are for the TimeBase - SPR 268 and 269. This is a 64-bit

time value, to be used as a time stamp. It is part of the PowerPC architecture. The user has access to
this TimeBase through these registers on a read-only basis.

For More Information Contact: www.freescale.com 31



Freescale Semiconductor, Inc.

Finally, there is a program counter in the user programming model; however, it is not directly accessible
to the user.

SLIDE 2-4

Overview of Programming Model

Supervisor Programming Model ( changes for different EPPC implementations)

0 31 Standard SPRs Additional SPRs
cause & address
MSR of storage fauit | SPR18 DSISR SPR80-82
) @ exceplion time™ gpn1g DAR SPR80 bit
I\R/I:Cihsltré? State ) SPR81 | manipulation
congtainS' (];reeg’enrjnnenr%rt]egr > SPR22 DEC * o
«State info . MSRIRI&EE]
*Exception enables return address (SPR26 SRRO
+MMU enables . & state @ o SPR144-630:
time of exception| spr27 SRR1 Debug &
) development
SPR272 SPRGO . support
980 e L] e
scratch pa SPR274 | SPRG2 Dcache
) control/status
SPR275 | SPRG3 .
SPR284 | TB(to write) *  |sPR784-826:
— SPR825|  MMU
SPR285 | TBU(to write) SPR826 pro%:?)gner'i]ing
processor version & rev > SPR287 PVR

Supervisor Programming Model

Now let us discuss the supervisor programming model. Note that when we discuss the supervisor
model, this is synonymous with the privileged state of operation.

In the supervisor programming model, there is the Machine State Register, which contains information
about the machine state, such as enabling exceptions, or interrupts.

There is also a set of standard special purpose registers. The first two standard SPRs -- the Data
access exception Source Instruction Service Register (DSISR) and Data Address Register (DAR) --
store information when certain exceptions occur, especially error exceptions.

The next register is the Decrementer register. This register also functions as part of the PowerPC
architecture. The value in this register constantly decrements, and it is possible to set an interrupt to
occur when the value reaches zero.

The next two registers, Save and Restore Registers 0 and 1 (SRRO and SRR1), are always used in
exception processing. The exception service routine saves the Machine State Register and the
program counter into these two registers.

The next four registers are available for the operating system to use, as it requires.

Special purpose registers 284 and 285 are available for the TimeBase. In this case, the supervisor can
access these registers and write a new value to the TimeBase.

Special purpose register 287 contains the processor version and revision number.

For More Information Contact: www.freescale.com 32



Freescale Semiconductor, Inc.

There are quite a few additional special purpose registers, including those that affect the Machine State
Register; others that control debug and development support, and others affecting cache and the MMU.
More detail on these registers is included in the chapters covering the associated subjects.

SLIDE 2-5
Data & Instructions (1 of 2)
« The most significant bit (bit 0) is on the left. Bit numbers increase
toward the least significant bit (LSB). The LSB is bit 7 for byte, bit 15 for
Data sizes halfword, and bit 31 for word.
0 7
byte
0 15
halfword
0 31
word

Instruction size

The instruction size is word for all EPPC processors. Instructions are
word-aligned so that the two low order bits of an instruction address are
not needed, or are zero.

0 31

word

Data and Instructions (1 of 2)

Here are shown the data sizes for the PowerPC. There are three data sizes: byte, half-word, and word.
Also, we'd like to make a quick point about bit numbering in the PowerPC world. Bits are labeled left to
right, most significant to least significant, as 0 to 31. It is strictly a bit labeling convention only and does
not apply at all to significance. Bit 0 is still most significant, and unless in an alternate mode of
operation, PowerPC uses Big Endian byte ordering by default.

The PowerPC architecture does not support dynamic bus sizing; therefore, it does not allow mis-
aligned access.

The instruction size on the PowerPC is always one word. Instructions are word-aligned so that the two
low-order bits of an instruction address are not needed, or are zero.

For More Information Contact: www.freescale.com 33



Freescale Semiconductor, Inc.

SLIDE 2-6

Data & Instructions (2 of 2)

The first instruction format does an operation with a GPR (rA) and 16-bit
immediate data (sign or zero extended to 32bits). The second does an operation
with two GPRs (rA & rB). Both place the results into a destination GPR (rD).
Operations are always 32 hits and write 32 bits to rD.

General Syntax Encoding Examples
0 56 101115162021 3031
Instr rD rArB Opcode| rD | rA | rB | Subopcode|0 :,jd :fGrferGrS
0 561011 1516 31 i
Instr_i rD,rA OxXXXX | Opcode|rD | A | d | 2?idl r?&ffé?gfmo

d=UIMM (16-bit unsigned immediate data), or SIMM (16-bit signed immediate data)

Instruction syntax Algebraic Operation
instr rD,rA rB||rD = rA<opr>rB
add rD,rArBlfD=rA + rB

sub rD,rArBlfrD=rA - rB

mul rD,rArBlfrD=rA * rB

) div rDrArB|fD=rA =+ rB

opr =operation (+,-*, +,lc) subf rDrArB|fD=rB - TrA

Data and Instructions (2 of 2)

There are two primary formats for instructions. One includes the instruction mnemonic, followed by
three operands - rD, rA and rB. rD refers to the destination register, while rA and rB determine the
contents of the source register. Refer to the examples on the right side of the chart. In the case of an
"add r3, r4, and r6", the sum of r4 and r6 is placed in r3. In the case of a logical operation, such as an
"or", r3 is 'OR'd" with r12, and the result is placed in rl16.

A similar format is the ‘instruction immediate’, in which an ‘i follows the instruction mnemonic. In this
case, the third operand is an immediate value of 16 bits. Refer to the examples on the right side of the
chart. Inthe case of an "add immediate", r4 is added to 750, which is sign extended, and the sum is
placed into r3. In the case of a logical operation, r5 is 'OR'd"' with 0x100, zero extended, and the result
is placed into r14.

Remember that operations are always 32 bits, and write 32 bits to rD.

The chart in the lower portion of the diagram clarifies the order of operands and operations. Here is
shown the instruction mnemonic with three operands. In each case, the rD is assigned the results of rB
operating upon the value of rA. For example, in the case of an "add" instruction, rD contains the sum of
rA and rB. In the case of a subtraction operation, rD contains the value of rA minus rB.

Also shown is ‘subf’, which has the effect of reversing the operands rA and rB, so that rD contains the

value of rB minus rA. ‘subf’ is one of a set of simplified mnemonics, described in more detail in
Appendix F of the PowerPC Environments books.

For More Information Contact: www.freescale.com 34



Freescale Semiconductor, Inc.

SLIDE 2-7

Instruction Summary
Arithmetic & Logic

GPRO
add r o_t ate and GPR1
subf shi ft nand 0
[ )
neg cnp or GPR30
mul xor nor GPR31
div eqv ext
cntl zw
0 Memory 31
Load & Store ¥
Store
| bz stb | mwv GPRO
GPRL _|m=u P
| ha sth st mw . .
L]
| hz | sw SPR30 Load
| wz stw St sw [ GPR31
| hbr x st hbr x
| whr x st wbr x

Instruction Summary
Shown here are a number of commonly used instructions in the PowerPC instruction set.

First are shown some arithmetic and logical instructions, which are performed in conjunction with
general-purpose registers. Sources of data are either in GPRs or immediate 16-bit data. The
destination is a GPR. Operations are 32 bits, and update all 32 bits of the destination GPR. Most are
self-explanatory. Note the ‘cntlzw’ instruction, listed last in the set. "Count leading zeros in a word"
obtains in one instruction the number of leading zeros in a word before a one is encountered. This is
particularly useful when determining the highest priority event in an exception register, which is a
concept we discuss in the exception chapters.

Next are shown the load and store instructions. These are important when transferring data between
memory and the general-purpose registers. If the data is less than a word, is a half-word or byte, then
load instructions always make the data 32 bits long, either by filling with zeroes or sign extending.

‘Ibz’ is "load byte zero".

‘Iha’ is "load half word algebraic", meaning that it is sign extended to a word.

‘Ihz’ is "load half word zero extended".

Next is the ‘lwz’ instruction, which is "load word zero extended". The instructions for the PowerPC have
been assembled for potential use with a 64-bit architecture, but it is possible to use the instructions in

conjunction with a 32-bit architecture. The mnemonics remain the same in either case.

There is also a "store byte" instruction, a "store half word", and a "store word".

For More Information Contact: www.freescale.com 35



Freescale Semiconductor, Inc.

Next, we see "load multiple word", "store multiple word", "load string word", and "store string word".

Additionally, shown here are two instructions ending in “brx” - ‘sthbrx’ and ‘stwbrx’. These instructions
are particularly valuable when it is required that the PowerPC access data that is stored in little endian
mode. Perhaps there may be a case in which the PowerPC shares memory with a second processor
using little endian data. In order for the PowerPC to access and manipulate such data, these
instructions permit the storage of data such that, should data arrive from the bus in little endian order, it
is stored in big endian order.

SLIDE 2-8
Instruction Summary
Flow control
b cr and SPR8_LR
SPR9Y
bc cror c d_t_CTRR ”
ondition Register
bcetr crxor 0 4 8 12 16 20 24 2831
bc| r cr eqv [ [ [ [ | | [ [ |
trap ncr f n SIES
SC
rfi “rfi”isaprivileged instruction
Processor control
Here’s how to load a count into the loop counter (spr9 (CTR)):
1.li rl13,count :load countinto a GPR
2.mtspr CTR,r13 ;move GPR to CTR
mfmsr [ GpRO SPRO
0 31 mtmsr
MSR . GERL ) mispr ) | —SERL
0 31 4 ° | °
| Condition Register| ‘mgﬁ GPR30 m&stg)r SER1072
MCrXr GPR31 SPR1023

A “mtspr” or “mfspr” instruction with an SPR other than 1,8,9,268, or 269 is privileged

Instruction Summary

Next are shown a number of instructions supporting flow control, including the branch instructions.

Here we see the branch instruction, and the branch conditional instruction, which makes use of the bits
in the Condition Register. To the right of the illustration is shown the Condition Register, broken into
eight, 4-bit fields. Within each field are bits representing less than, greater than, equal to, and summary
overflow. This register provides a total of eight condition fields supporting conditional branch
instructions.

There is also an instruction to branch to the location pointing to the counter, which is SPR9 in the user
programming model.

It is possible to perform a branch instruction conditionally based on the link register, thereby making use
of special purpose register 8 in the user programming model. SPR8 stores the appropriate address in
the event of a branch to subroutine instruction.

There is also a trap instruction, a system call instruction, and ‘rfi’, which is used with exception service
routines. There are also a number of instructions that directly affect the Condition Register.

For More Information Contact: www.freescale.com 36



Freescale Semiconductor, Inc.

Next we see a listing of processor control instructions. One valuable purpose for these instructions
includes the ability to transfer data between the special purpose registers, and the general-purpose
registers. It is not possible to operate directly upon the values in the special purpose register. Instead, a
value is copied into a general-purpose register prior to manipulating the data. After operating on the
data, the information may be stored in the special purpose register.

The "move from special purpose register" instruction moves data from the special purpose register to
the general-purpose register. Likewise, the "move to special purpose register" instruction moves data
from the general-purpose register to the special purpose register.

As an example, if the user wishes to initialize the counter register, it is necessary to load a general-
purpose register with a value, as is shown here with the "load immediate" instruction operating on the

r13 and counter registers. Next, the "move to special register" instruction moves the value in r13 to the
counter register.

SLIDE 2-9

Instruction Summary

Synchronization

These instructions are used for 1/O control and multiprocessor synchronization

ei ei o; I/O control- next load or store waits until all prior
loads/stores are done

i sync; waits for all prior operations to complete & flushes
instruction queue

Sync; waits for all prior operations to complete

| war x; for multiprocessor synchronization with a shared resource

st wex. ; for multiprocessor synchronization with a shared resource

Instruction Summary

Next are shown the synchronization instructions, for I1/0O control and multiprocessor synchronization. The
first instruction listed is 'eieio’. Let us take a closer look at this instruction in the next diagram.

For More Information Contact: www.freescale.com 37



Freescale Semiconductor, Inc.
SLIDE 2-10

What is the eieio Instruction? (1 of 2)

Example T~

TDR

while (TDRE == 0);
TDR = charl;
asm (“ eieio”);
while (TDRE == 0);
TDR = char?; A

G b wWNPEF

~

TDRE

« Stores followed by loads can be executed out-of-order by the PPC to
allow optimum use of resources. The example, however, would not work
properly if this happened.

e Line 3 - insures that line 2 will be completed before line 4 which is
essential to the correct operation of this program fragment.

What is the ‘eieio’ instruction? (1 of 2)

‘EIEIO’ refers to Enforce In-Order Execution of /0. The ‘eieio’ instruction provides an ordering function
for the effects of load and store instructions that access I/O devices. The programmer should use the
‘eieio’ instruction when accessing an 1/0 device with a store instruction followed by a load instruction.

For example, let us consider an 1/O device located in the external memory space. It includes a transmit
line, and a transmit data register. Also, there is a status bit, shown here as TDRE, that indicates when
the transmit data register is empty. In this example, the user wishes to transmit two characters. First,
the example routine contains an instruction that checks the value in TDRE, and does not proceed further
until the TDRE is equal to a'1l'. When TDRE is equal to a '1', the routine writes a character to the
transmit data register.

For the moment, let us skip line 3 in the example routine, and examine line 4. Again, the routine
observes the status of the TDRE bit, and when this bit equals '1', writes a second character to the
transmit data register.

In general, the PowerPC can execute stores followed by loads out of order to allow for the optimum use
of resources. This particular example would not function properly in such a case. Note that line 2
contains a store instruction, followed by line 4, which contains a load instruction. The PowerPC could
execute line 4 prior to line 2, if that order was more efficient at that time. In that case, two checks of the
TDRE bit would occur, followed immediately by writing two characters to the transmit data register.

To handle such a situation effectively, the programmer inserts line 3, the 'eieio’ instruction, between the

store and the load instructions. This informs the PowerPC that the store must be executed before the
load instruction.

For More Information Contact: www.freescale.com 38



Freescale Semiconductor, Inc.

SLIDE 2-11

What is the eieio Instruction? (2 of 2)

860 Specific Examples

Write Command Get Vector Number
pimm->CPCR = comm; pimm->CIVR.IACK = 1;
asm(“ eieio”); asm(* .e|e|o”);

while ((pimm->CPCR & 1) == 1); vl = pimm->CIVR.VN;

pimm->CPCR = comm2;

Additional Comments

« The 1/0 device must be in a page that is cache-inhibited and write-
through.

« All MPC8xx devices (so far) prohibit reordering of a store followed
by a load if the address is the same; however, this is not part of the
PowerPC architecture. Therefore, to be architecturally compatible,
eieio should be implemented as described.

What is the ‘eieio’ instruction? (2 of 2)

There are some cases specific to the MPC860 in which the use of the 'eieio’ instruction is required. The
first example, shown here to the left, uses the command register. The routine writes a command to the
command register, CPCR. It then monitors the least significant bit to determine when it becomes a '0'.

Then the routine writes another command. In this case, writing the first command constitutes a store
operation, and examining the least significant bit constitutes a load operation. The 'eieio’ instruction
shown ensures that the store and load instructions are executed in order.

The second example, shown to the right, involves getting a vector number. To get a vector number,
the routine writes a '1' to the Interrupt Acknowledge (IACK) field of the CPM Interrupt Vector Register
(CIVR) register, and then performing a read of the VN field of the CIVR register. Again, we see a store
followed by a load, and in between the two instructions there must be an 'eieio’ instruction.

The 1/0 device must be in a page that is cache-inhibited and write through. These are topics that we will
discuss later in the cache section.

For More Information Contact: www.freescale.com 39



SLIDE 2-12

Freescale Semiconductor, Inc.

Instruction Summary

Synchronization

These instructions are used for 1/O control and multiprocessor synchronization

ei ei o;
i sync;
sync;

| war x;
St WeX. ;

I/O control- next load or store waits until all prior
loads/stores are done
waits for all prior operations to complete & flushes

instruction queue
waits for all prior operations to complete

for multiprocessor synchronization with a shared resource
for multiprocessor synchronization with a shared resource

Instruction Summary

The next synchronous instructions from the list are ‘isync’, and then ‘sync’. Let us examine the sync
instruction more closely.

For More Information Contact: www.freescale.com

40



Freescale Semiconductor, Inc.
SLIDE 2-13

What is Execution Synchronizing?

Definition ~ An instruction is execution synchronizing if:
1. It causes instruction dispatching to be halted, and
2. It does not complete until all instructions in execution have completed
to a point at which they have reported all exception they will cause.

Example
1 mtmsrr3 ;copy r3 to the MSR
860 Specific « mtspr to off-core registers
Execution
Synchronizing
Instructions

What is Execution Synchronizing?
An instruction is execution synchronizing if it:

1. Causes instruction dispatching to be halted, and
2. Does not complete until all instructions in execution have completed to a point at which they have
reported all exceptions they will cause.

The most common example is a move to the machine state register. Shown here is "move to machine
state register” r3. When this instruction executes, it first waits until all preceding instructions have
completed execution. Then the new value is put into the machine state register before proceeding to
the next instruction.

Additionally, an MPC860 specific synchronizing instruction is "move to special register", used in
conjunction with off-core registers. This is described in more detail in the User Manual.

For More Information Contact: www.freescale.com 41



Freescale Semiconductor, Inc.

SLIDE 2-14

What is the sync Instruction? (1 of 2)

Example
sync ;wait for all preceding operations
;to complete
/lenter |ow pw ;enter a low power mode

:no instructions to execute after

i sync . ;
y ;low power instruction

860 Specific Examples, 1

Enter L ow Power Mode

asm“ sync”);
pi mm >PLPRCR LPM)_LPML = 2;

asm“ sync”);

What is the ‘sync’ instruction? (1 of 2)
The ‘sync’ instruction is execution synchronizing. In addition it:

1. Waits until all pending memory accesses are complete, and
2. Sends an address-only broadcast cycle, although this is not implemented on the MPC860.

The ‘sync’ instruction should be used when a change of state occurs in a parameter, and:

1. All operations must be complete prior to the parameter change, and /or
2. The parameter change must be complete before proceeding with any other instructions.

An example using the ‘sync’ instruction is entering low power mode. It is preferred if all previous
instructions have completed prior to the system entering low power mode. Then, it is preferred that no
subsequent instructions complete until after the system exits low power mode.

Here we see a general example. First the routine executes the sync instruction, prior to executing the
instructions to enter low power mode. This ensures that all preceding instructions have completed.

The second example is specific to the MPC860. Writing a value to the Low Power Mode (LPMO_1)
field in the PLL, Low Power, and Reset Control Register (PLPRCR) register brings the 860 into low
power mode. (The PLPRCR register is one of the registers located in the internal memory map.)
Again, in this case, the programmer desires that all preceding operations complete prior to entering low
power mode. The ‘sync’ instruction accomplishes this task. The programmer also desires that no
further instructions execute after entering low power mode. A second ‘sync’ instruction accomplishes

For More Information Contact: www.freescale.com 42



Freescale Semiconductor, Inc.

this task, ensuring that the instruction to bring the system into low power mode completes before any
subsequent instructions execute.

SLIDE 2-15

What is the sync Instruction? (2 of 2)
860 Specific Examples, 2

Enter an ISR and Mask Lower Priority Interrupts

sptr++ = pi mm >S| MASK; //save S| MASK

pi mm >SI MASK &= 0xF0000000; //mask intrpts 2-7
asm(“ sync”); /lassure store to SI MASK

asm(“ ntspr 80,0"); //enable interrupts

What is the sync instruction? (2 of 2)

A second example specific to the MPC860 is shown here. This example includes an interrupt service
routine, in which the programmer wishes to mask interrupts by writing to the SIMASK register. The
routine first writes a value to SIMASK, and follows with a ‘sync’ instruction before re-enabling interrupts.
This ensures that the lower priority interrupts have been masked, because the store in memory has
completed prior to enabling interrupts.

For More Information Contact: www.freescale.com 43



Freescale Semiconductor, Inc.

SLIDE 2-16
Instruction Summary

Synchronization

These instructions are used for 1/O control and multiprocessor synchronization

ei ei o; I/O control- next load or store waits until all prior
loads/stores are done

i sync; waits for all prior operations to complete & flushes
instruction queue

sSync; waits for all prior operations to complete

I wzr x; for multiprocessor synchronization with a shared resource

st wex. ; for multiprocessor synchronization with a shared resource

Instruction Summary

Let us now discuss the ‘isync’ instruction, shown here in the original list of synchronizing instructions.

For More Information Contact: www.freescale.com



Freescale Semiconductor, Inc.
SLIDE 2-17

What is the isync Instruction?

Example

1 lis r29, 0x0200
2 mspr I CCST,r29 :enable instruction cache
3 isync

« Instruction Fetches - the sequencer contiuously fetches
instructions. A change in state of the instruction cache with
instructions in the queue under a different context could cause
erratic operation.

e isync - insures that all instructions are brought in under the
present context and that all previous instructions are completed.

Add'l « Additional cases which require an isync instruction are listed on
Comments  pages 2-41 through 2-44

« The instructions, sc, rfi, and most exceptions, are also context
synchronizing.

What is the ‘isync’ instruction?
The ‘isync’ instruction is instruction context synchronizing. It:

1. Performs execution synchronizing, and
2. Reloads the instruction queue under the new context.

The ‘isync’ instruction should be used when a change in context occurs, such as enabling instruction
cache, or when execution synchronizing is needed but not access completion.

In the example, lines 1 and 2 enable instruction cache. At this point, several instructions are in the

instruction queue, but not in the instruction cache, since it was not previously enabled. The user might
desire that these instructions load into cache from the time that it is enabled. To perform this function,
the routine includes an ‘isync’ instruction, causing these instructions to be reloaded in the new context.

The instructions “system call”, ‘rfi’, and most exceptions are also context synchronizing.

For More Information Contact: www.freescale.com 45



Freescale Semiconductor, Inc.

SLIDE 2-18

Instruction Summary

Synchronization

These instructions are used for 1/O control and multiprocessor synchronization

ei ei o; /0 control- next load or store waits until all prior
loads/stores are done

i sync; waits for all prior operations to complete & flushes
instruction queue

Sync; waits for all prior operations to complete

| war x; for multiprocessor synchronization with a shared resource

stwex. ; for multiprocessor synchronization with a shared resource

Instruction Summary

There are two more synchronizing instructions: ‘lwzrx’ and ‘stwcx’. These are both used in conjunction
with the reservation system, which is useful in a multiprocessing application. The PowerPC can reserve
in the shared memory area safely as needed, and there is thus no concern about a second processor
overwriting the area in shared memory. These instructions operate in a similar way to TAS and CAS
on the 68000.

For More Information Contact: www.freescale.com 46



Freescale Semiconductor, Inc.

SLIDE 2-19

Instruction Summary

Memory Control

Here are the cache instructions. They do not broadcast.

Memory
dcbt Dcache o 31

dcbt st <G >
dcbz
dcbst
dcbf Icache
dCbl ( .........
i chi T ]

“dcbi” is a privileged instruction

Instruction Summary
Next are shown memory control instructions, which transfer data between the caches and memory.

There are a number of instructions, many of which concern cache. We discuss cache in more detail in
a later chapter.

For More Information Contact: www.freescale.com 47



Freescale Semiconductor, Inc.

SLIDE 2-20

Instruction Summary

Simplified (Extended) mnemonics

Simplified (Extended) mnemonics are provided to simplify the writing,
and comprehension, of assembly language programs. A few are shown

here.
Simplified Mnemonic Equivalent to:
nop ori r0,r0,0
mr rD,rS or rD,rS,rS
not rD,rS nor rD,rS,rS
bge loop bc 4,0,loop
li rD,0xXXXX addi rD,r0,0xXXXX

D = destination S= source

Instruction Summary

Here are also shown simplified, or extended, mnemonics. Simplified mnemonics are provided to
simplify the writing, and comprehension, of assembly language programs.

As mentioned earlier, there is a set of simplified mnemonics, some of which are illustrated. These
include a 'nop' and a 'move register', and a 'not'.

Simplified mnemonics are particularly useful in branch operations, and here we see a 'branch greater

than or equal'. Itis really a 'bc 4,0,loop' instruction, which is much harder to understand at first glance.

Finally, we see a 'load immediate' into a destination register.

For More Information Contact: www.freescale.com

48



Freescale Semiconductor, Inc.

SLIDE 2-21
Interpreting Condition Codes, 1 of 2
Condition Register
0 4 8 12 16 20 24 2831
[ I I I 1 [ [ [ |
It [gt|eq|so
4-bit CRXx field Explanation of Condition

Bit Condition For Comparisons Computations

0 LT (rA)<(rB), simmor uimm| Negative

1 Gr (rA)>(rB), simmor uinm| Positive &0

2 EQ (rA)=(rB), simnmor uinmm| Zero

3 SO copy of XERso copy of XERso
CRO not CRO
updated updated
add add.
subf subf . ) , , . . .
neg neg. simm = signed 16-bit data uimm = unsigned 16-bit data
mul hw mul hw.
di vw di vw.
and and.
Xor Xor.

Interpreting Condition Codes (1 of 2)

As we have seen, the Condition Register consists of eight, 4-bit fields, CRO-CR7. Each field can
represent Integer Computation or Comparison results. Each condition field can record the conditions of

"less than", "greater than", "equal”, and "summary overflow."

The only instruction that automatically affects the Condition Code Register is the ‘compare' instruction.
Other instructions such as 'add’, 'subtract’, 'divide' and 'multiply’ do not affect the Condition Code
Register, unless the programmer wishes them to do so. The programmer must explicitly indicate with a
period that condition codes are to be recorded, as shown in the chart to the left.

The four conditions are 'less than', where rA is less than rB; or 'greater than', where rA is greater than
rB. These conditions can be implemented on a signed or an unsigned basis. Next, we see the 'equal’
condition, where rA is equal to rB. The fourth bit is 'summary overflow', which is a copy of the summary
overflow bit from the XER register.

For More Information Contact: www.freescale.com 49



Freescale Semiconductor, Inc.

SLIDE 2-22
Interpreting Condition Codes, 2 of 2
syntax: cnp  crx,size,rArB ;comparerA & rB algebraic
(signed)

cnmpl  crx,size,rArB ;comparerA & rB logical
(unsigned)

cnpi  crx,size, rA simm ;comparerA & vaue assigned

cnpli crx,size, rA uinm ;comparerA & vaueasunsigned

examples: Simplified mnemonics: Equivalent to:
cmpw  r13,r14 cnp cr0,0,r13,r14
cmpw  cr5,r13,r14 cnp cr5,0,r13,r14
cnplw cr5,r13,r14 cnpl  c¢r5,0,r13,r14
cnmpwi  cr5,r13, 1234 cnpi  crb5,0,r13,1234
cnplwi crb5,r13,1234 cnpli cr5,0,r13,1234
cnpld cr5,r13,r14 cnpl  cr5,1,r13,r14

Assuming these values: GPR 10 = 0x70000000 and GPR11 =
0x80000000 Determine compare operation and fill in the correct bit
values for the crx field:

It gt eq so
crs | [ [ [ -1

cmpw  crb5,r10,r11

It gt eq so
cnmplw cr2,r10,r11 cr5 | [ | =

Interpreting Condition Codes (2 of 2)
Compare instructions can affect any Condition Register field.

The basic syntax for the compare instruction is the mnemonic, ‘cmp' followed by four fields. The first
field specifies which of the sets of condition bits should be affected -- CRO-CR7. The second field

specifies size. There are two possible sizes: either 32 bits or 64 bits. Only the 32-bit size is possible
with the MPC860. Next, the third and fourth fields specify the registers to be compared -- rA and rB.

A second form of compare is ‘cmpl’, for compare logical. A third form is ‘cmpi’, for compare immediate.
A fourth form is ‘cmpli' for compare logical immediate.

The compare function can also be implemented via simplified mnemonics. The first instance shown
here is '‘cmpw r13, r14." This is equivalent to specifying ‘cmp cr0, 0, r13, r14." Other examples follow in
the chart, indicating how it is possible to specify cr5 instead of crO by including cr5 as one of the
operands.

Two examples are shown at the bottom of the illustration. There are two registers: r10 contains a value
of hex seventy million, and r11 contains a value of hex eighty million. The first example compares r10
and rll, and places the values of the condition bits in cr5. In this case, 'cmpw' is a 'sign compare’,
meaning that the values in registers 10 and 11 are assigned. Hex seventy million is a large positive
number, and hex eighty million is a large negative number. Therefore, r10 is greater than rl11, and so
the 'greater than' bit is set, while 'It' and 'eq' are both zero.

The next instruction is similar, but it is logical. In this case, the values are treated as unsigned numbers.

Therefore, hex eighty million is larger than hex seventy million. Therefore, 11 is greater than 10, and so
the 'less than' bit is set, while 'gt' and 'eq' are both zero.

For More Information Contact: www.freescale.com 50



Freescale Semiconductor, Inc.

SLIDE 2-23

Using & Recording Arithmetic Info, 1 of 2

0 1 2 3 23 24 31

XER SPR1
Register SO|OV| CA|  000000000000000000000 byte count

— |
SO (summary overflow) OV (overflow) CA (carry)

Set whenever an instruction |Set whenever an overflow | Set whenever a carry out of
sets the overflow (OV) bit; occurs, else cleared; multiply msb occurs, else cleared;
once set, it can only be & divide instructions set OV | extended precision

cleared by a mtspr instruction| if result too big for register. |instructions use CA as

an operand.

Using Examples:

XER_ instruction XER usage and/or affect

Register add no usage or recording of info in XER

bits addc  record carry out in CA
adde use CA as an operand and record carry out in CA
addo  record overflow in OV
addco record carry out in CA and record overflow in OV

Using and Recording Arithmetic Information (1 of 2)

Here we learn how to use the XER register with multi-precision arithmetic. The XER register contains
three bits for our use: summary overflow, overflow, and carry.

It is necessary for the programmer to indicate explicitly which XER bits are used or updated by
appending instructions with a 'C', 'E', and/or an 'O'. A 'C' records a carry out in CA. An 'E' uses CA as
an operand in the instruction, and also records a carry out in CA. Finally, an 'O’ records an overflow in
the overflow and summary overflow bits.

As an example, a simple 'add’ instruction does not make use of the XER register. An 'addc' records the

carry out in CA. An 'adde' uses CA as an operand and records carry out in CA. An 'addo’ records
overflow in OV, and 'addco’ records carry out in CA and overflow in OV.

For More Information Contact: www.freescale.com 51



Freescale Semiconductor, Inc.

SLIDE 2-24

Using & Recording Arithmetic Info, 2 of 2

Write the instructions to add two 64-bit operands together.
GPR3||GPR4 and GPR14||GPR15 contain the operands. Store the
result in GPR13||GPR14||GPR15.

Algorithm: 2 L
" [ GPRIZ | [ GPR3 | [ GPR& |
+ + +
| ecPr13 | | oPr14 | | GPrR15 |
Resutss | GPR13 | | GPR14 | | GpRris |

Suggested program steps:

1. Clear GPR13
2. add r4 to r15 and record carry out
3. add r3 and CA to r14 and record carry out

4. add CAtorl3

Using and Recording Arithmetic Information (2 of 2)

As an example, the programmer desires to add two 64-bit operands. One operand is in general-
purpose registers 3 and 4, and the second operand is in general-purpose registers 14 and 15. The
result should be stored in general-purpose registers 13, 14, and 15.

This operation can be performed with the following instructions:

1. The first instruction is to load immediate r13, O to clear out register 13.

2. The nextis to 'addc' rl15 to r15, r4. This puts the sum into r15 and the carry out bit into XER.

3. Then we have an ‘adde’ r14, r14, r3 which sums r3, r14 and the carry out from the XER and stores
the result in r14 and any carry out in the XER.

4. Lastis an 'adde' of r13, r13, r13, which includes the carry bit in r13 and the add is completed.

For More Information Contact: www.freescale.com 52



Freescale Semiconductor, Inc.

SLIDE 2-25
Branch Types & Addressing
Mnemoni Branch Operation Target Address Generation
b branch_always relative 0 56 29 30 31
bl save next instruction addressin Link register opcode:|_0x12 | LI _ [AA[LK]
and branch always relative target = SE 23-bit LI + branch instr addr
range = + 32Mbytes from branchinstr
ba branch always absolute 0 56 29 30 31
bla save next instruction addressin Link register opcode: [ox12 | Ll [AA[LK]
and branch always absolute target = SE 23-hit LI
range = + 32Mbytes from 0x00000000
bectr branch conditional to address contained in target = contents of counter,
Counter.... : — : bits 30:31=00
bectrl save next instruction address in Link register and range = 4 Gigabytes
branch conditional to address contained in Counter|
belr branch conditional to address contained in Link B  link
register.( thisisthe traditional RTS instruction) tb"’_‘r get = contents of link reg,
bclrl save next instruction address in Link register and Its 30_'3}1'3_0 b
branch conditional to address contained in Link range = Igabytes
register
bc branch co_nditiona_\l relative — _ 0 56 29 30 31
bel save next instruction addressin Link register and opcode: [16 [BO[ BI[BD[AA[LK]
branch conditional :
target = SE13-bit BD + branch instr addr
range = + 32kbytes from branchinstr

LI & BD isdistance ( # of words away from branch) SE = sign-extended (to 32 bits)

Branch Types and Addressing

This is a summary of the available branch types. The illustration shows the branch mnemonic, branch
operation, and branch target address generation and range. Each type has an ‘L’ option, which saves
the return address in the Link register.

Conditional branches with the ‘L’ option save the return address in the Link register whether the branch
is taken or not taken.

A'GOTO' is performed by loading the GOTO address into the Counter register (SPR9), and then
executing 'bectr'.

Executing 'belr' performs a 'return from subroutine’'.

The first branch mnemonic shown is 'b', or branch always relative. That allows the programmer to
branch always relative to the location of the program counter.

Similar is 'ba’, which performs a branch always to an absolute address.
Branch conditional relative takes a branch if a certain type of condition exists.

There is also a branch conditional to the location contained in the link register, and a branch conditional
to a location contained in the counter.

Appending an 'I' [lower case L] to most of these branch instructions permits their execution in

conjunction with storing the address of the next instruction in the link register. One exception is the
'‘branch always absolute', which takes the form of 'bla’.

For More Information Contact: www.freescale.com 33



Freescale Semiconductor, Inc.

SLIDE 2-26
Branch Operation
bdnz/bdz Branch / Fail Logic
bdnzt/bdzt

bc/bca b/ba

CNTR = count-1

Next Sequential
Instruction Address

No
bdnztCondition Goto next bi/bel
- c
bdzt Trlﬁ'/ sequential| | poihectr)
Instruction

Yes |bdnz/bdz | Yes

Y 2 '%0 31
SPRI| Count register (CNTR) | |S|gn Extension| BD/LI 0| SPR8| Link register
1

|Current Instruction Address |_’C"S

ba
bcctr\ bc bcalbclr

Branch Target Address Calculation

This diagram does not show
the order of operations. | Branch Target Address |

Branch Operation

This diagram shows the operation of all branch instruction types and all the ways with which branch
target addresses are calculated. A condition code flag, a decremented count, both, or neither can help
control branch instruction program flow.

The diagram is divided into two parts. The top half represents how branch variations determine whether
to branch or to fall through to the next instruction. The lower half represents each of the four possible
methods a branch instruction can use to calculate the target address. Let us first examine the lower
portion of the diagram.

The location to which the routine branches may come from the counter register, or the link register. It is
also possible to branch to an absolute address supplied by the instruction itself, or to a relative address,
which is the sum of the current value in the program counter and a value supplied by the instruction.

Now let us examine the upper half of the diagram. The ‘branch relative’ and ‘branch absolute’
instructions do not require any conditional processing, so they bypass the decision logic and calculate
the target address and branch. The ‘branch conditional’, or ‘branch conditional absolute’ instructions
require a check to determine if the condition is TRUE. If the condition is not true, then the branch
instruction falls through to the next sequential instruction. If the condition is true, the program counter
takes the branch instruction.

Some instructions are dependent on the counter: ‘bdz’, ‘bdnz’, ‘bdnzt’, and ‘bdzt’. When these
instructions are executed, the counter is decremented. For two of these instructions, there is a check to
determine if the counter is not equal to 0, and for the other two instructions, there is a check to
determine if the counter is equal to 0. If the answer is 'yes' in either case, then the branch occurs for
those branch instructions that are not dependent on another condition. If the answer is 'no’, branches
fall to the next instruction.

For More Information Contact: www.freescale.com 4



Freescale Semiconductor, Inc.

If there is another condition involved, that condition must also be checked, and if it is true the branch is
taken.

SLIDE 2-27

Conditional Branch Instructions

Condition Register

O 4 8 12 16 20 24 2831 0 561011516 293031
LI T T I [ T T Jbc opcode [0x12] BOIY[BI| BD [AA[LK]|
Tt (gt [eq[so

SPR9 [ Count register (cntr) |

Syntax: bc BO,Bl,target BI = bit # of condition register (0-31)
BO
Y=0: Y=1 Description

0 1 Decrement cntr, branch if decremented cntr<>0 & condition is false
2 i 3 Decrement cntr, branch if decremented cntr =0 & condition is false
4 ¢ 5 Branchif condition is false

8 | 9 Decrement cntr, branch if decremented cntr<>0 & condition is true
10: 11 Decrement cntr, branch if decremented cntr =0 & condition is true
12 13 Branch if condition is true

16: 17 Decrement cntr, branch if decremented cntr<>0

18: 19 Decrement cntr, branch if decremented cntr =0

20 - Branch always

Conditional Branch Instructions

Here are shown the Conditional Branch instruction types. The mnemonic 'bc' is followed by three
fields: 'BO’, 'Bl', and target address.

The 'BI' field of the opcode determines which bit in the condition register is to be used for evaluating
TRUE or FALSE. The 'BO' field of the opcode consists of one of the numbers in the table shown here,
and controls whether a condition and / or a count determines branching. Each number in the table
describes a particular type of branch, from the very simple - such as, "Branch if condition is true" - to the
more complex, such as, "Decrement counter, branch if decremented counter is not equal to zero and

condition is true."

Notice that in the table there are two sets of values for each condition -- an even and an odd. An even
value provides a default branch prediction. In other words, the prediction is that the branch is taken if
the displacement is negative, and it is not taken if the displacement is positive. An odd value provides

the opposite prediction.

For More Information Contact: www.freescale.com 35



Freescale Semiconductor, Inc.

SLIDE 2-28

Conditional Branch Instructions -- Examples

Conditional branch Simplified mnemonic Description of Operation

bc 12, 2, target beq target branch if EQ istruein CRO
bc 13, 2, target beqg- target branch if EQ istruein CRO
bc 12,14, target beq cr3,target |branchif EQistruein CR3
bc 4, 16, target bnl cr4,target |branchif LT isfasein CR4
same as above bge cr4,target |sameasabove
bc 16, 0, target bdnz target decrement counter & branch if
cntr<>0 _
bc 8, 2, target bdnzt eq, t ar get | decrement counter & branch if
cntr<>0
and EQ istruein CRO

- use opposite prediction (Y=1)

Conditional Branch Instructions -- Examples
Let us examine a few conditional branch examples.

First is shown a branch conditional. A '12'is in the '‘BO' field, indicating that the branch condition is true.
The value of '2' in the 'BI' field indicates that the routine checks bit 2 in the Condition Register, which is
the 'eq' bit of CRO. The location is target. Therefore, a branch occurs if the equal bit is set to the
location target.

If the programmer wished to perform the same instruction with the opposite prediction, he would place a
value of '13"in the 'BO' field. In the simplified mnemonics, this is specified by appending a minus sign to
the instruction mnemonic.

We can perform a similar branch to any bit in the condition register, as exemplified in the 'branch
conditional 12, 14'. '14'is the 'eq' bit in CR3. This is equivalent to the simplified mnemonic 'beq cr3,
target.'

Another example is 'branch conditional 4'. '4' indicates that the branch is taken if the condition is false.
'16' refers to the 'less than' bit of CR4. The corresponding simplified mnemonic is 'branch if not less
than cr4, target'. Alternatively, it can be stated as 'branch if greater than or equal.’

The next example is 'branch conditional 16'. '16' refers to '‘Decrement counter, branch if decremented
counter is not equal to zero'. In this case, there is no condition bit that is tested, and so a zero is placed
in the corresponding field. The corresponding mnemonic is 'branch and decrement, not zero' to target.

Finally is shown 'branch conditional 8'. '8' refers to 'Decrement counter, branch if decremented counter

is not equal to zero and condition is true'. The condition is bit 2, corresponding to 'eq' in CRO, followed
by target. The corresponding simplified mnemonic is 'bdnzt eq, target'.

For More Information Contact: www.freescale.com 56



Freescale Semiconductor, Inc.

SLIDE 2-29
Controlling Program Flow Exercises
Your program: Program steps:
Loop loop: lwz r13,0(r14) 1. Get word from FIFO
control cmpwi r13,0 2. Compare word to zero (update cr0)
by stwu r13,4(r15) 3. store word to memory buffer
condition bne loop 4. Goto 1 if word<>0 else goto 5
b * 5. done
Loo Your program: Program steps:
P li r13,528 1. Initialize counter
control mtspr ctr,r13
by count loop: lwz r13,0(r14) 2. Get word from FIFO
stwu r13,4(r15) 3. store word to memory buffer
bdnz loop 4. Dec cntr, if cntr<>0 goto 2
b * 5. done

Controlling Program Flow Exercises (1 of 2)
Here are shown some examples for controlling program flow. Let us examine the first example.

This routine obtains data words from a FIFO and stores each word to a memory buffer until a data word
whose value is zero is stored to the buffer. The first step is to load a word zero from the location to
which r14 and r13 point. This gets the word from the FIFO. Next is to compare the word to zero. This
can be done with a ‘cmpwi r13, 0' instruction. Then, the routine must store the word to a memory buffer.
Next, there is a branch back to the loop if the word is not equal to zero.

The second example is similar to the first. This routine obtains 528 data words from a FIFO and stores
each word to a memory buffer. The first step is to initialize the counter. Two instructions accomplish
this task: a 'load immediate r13, 528', followed by a 'move to special register CTR, r13'. The next
instruction is a 'load word zero' from the location to which r13 and r14 point. This gets the word from
the FIFO. Next, the routine stores a word to the memory buffer. Step 4 executes the instruction 'bdnz’,
and therefore decrements the counter. If the counter is not equal to zero, the routine goes to line 2, or
else to line 5. The loop executes 528 times.

For More Information Contact: www.freescale.com 57



Freescale Semiconductor, Inc.

SLIDE 2-30 (2 OF 2)

Controlling Program Flow Exercises

Loop control by count & condition

Your program: Program steps:
li r13,528 1. Initialize counter
mtspr ctr,r13
loop: lwz r13,0(r14) 2. Get word from FIFO
cmpwi r13,0 3. Compare word to zero (update cr0)
stwu r13,4(r15) 4. Store word to memory buffer
bdnzf ne,loop 5. Dec cntr, if cntr<>0 & word<>0
goto 2 else goto 6
b * 6. done

Controlling Program Flow Exercises

A third example combines the first two. This routine obtains data words from a FIFO and stores each
word to a memory buffer until a data word with a value of zero is stored to a buffer, or until a maximum
of 528 is reached.

To initialize the counter, the routine performs a 'load immediate' of r13 to the counter register. Next, the
program performs a 'load word zero' from the location to which r13 and r14 point. Next, the instruction
‘cmpwi rl3, 0' compares the word to zero. Then the routine stores the word to the memory buffer. The
next instruction decrements the counter. If the counter is not equal to zero and the word is not equal to
zero, the routine goes to 2, or else it goes to 6. That instruction is a 'bdnzt ne, loop'.

For More Information Contact: www.freescale.com 58



Freescale Semiconductor, Inc.

SLIDE 2-31

Writing Subroutines & 1/0 Manipulation (1 of 2)

Subroutine example

main code
instr.
instr.
instr. PC LR —
bl subl > _subl. Leaf
> instr. subl PC —> instn subroutine
instr. instr.
. instr. /
. mfspr rN,Ir
. stwu rN,-4(r1) PC LR —>
bl sub2 > _sub2
—> lwzrN,0(rl) sub2 PC > instr.
addirl,rl,4 instr.
mtspr Ir,rN instr.
instr. instr.
LR PC instr. instr.
% bclr instr.
LR PC — instr.
bclr

Writing Subroutines and I/0O Manipulation (1 of 2)

A subroutine call instruction saves the return address to a single location, the Link Register (LR). This
requires a subroutine that calls another subroutine to save the Link Register to a stack before the
subroutine call, and restore the Link Register from the stack after a subroutine call. Leaf subroutines --
subroutines that do not call others -- do not need to save or restore the Link Register. GPR register
usage dictates which GPRs must also be saved and restored.

This example shows a subroutine, shown as italicized code, saving and restoring the Link Register to
and from a stack. There are several instructions within the main code, including a branch to subroutine
instruction -- 'bl subl'. When the 'bl subl' instruction is executed, the program counter moves to the
Link Register, and subl moves to the program counter.

The routine subl executes several instructions, after which it calls another subroutine -- sub2. Note that
if subl1 simply calls the second subroutine without any taking additional steps, the contents of the Link
Register are overwritten, thus preventing the ability to return to the main code. Therefore, it is
necessary for the programmer to save the contents of the Link Register on the stack.

Two steps accomplish this task. First, the 'mfspr rN, Ir' instruction moves the Link Register contents to a
general-purpose register. Next, the 'stwu rN, -4(rl)' instruction stores the general-purpose register on to
the stack.

It is now safe to invoke the second subroutine with the ‘bl sub2' instruction. Sub2 executes and returns
to subl. The program then gets the stored value from the stack, and stores it back into the Link
Register. Subl continues executing, and at the end performs a 'bclr' instruction to return to main, using
the value in the Link Register.

For More Information Contact: www.freescale.com 59



Freescale Semiconductor, Inc.

SLIDE 2-32

Writing Subroutines & 1/0 Manipulation (2 of 2)

1/0 testing Manipulation

I/0 device

To access I/0 where: 2 ! 0
device. use: rA = base address of /0O device rA—* control oY
[ bz rD,d(rA) d = offset to register byte +d +2
or status +3

stb rS,d(rA) datal |+4
data2 [+5

example: . +6
| bz r13,5(r14) ;getcontents of data2 umer 1,7

Memory

110
device|

Writing Subroutines and I/0O Manipulation (2 of 2)

Another important function is the ability to access I/O devices. The programmer uses the same
methods to test and change bits in I/O device registers as are required to test and change bits in RAM
and ROM locations. This is because I/O devices are memory mapped. First, a load instruction copies
the data into a GPR. Next, the routine tests or changes the data in that GPR. Finally, a store instruction
moves the data back to the device.

Many I/O devices are 8-bits wide. Freescale advises connecting such devices to data pins 0 through 7.
Many I/O devices require the correct bit order, in which case DO on the device should be connected to
D7 on the 860, and DO on the 860 connected likewise to D7 on the device. Next, the programmer can
set up a pointer that points to the base of the 1/0O device. Then, the individual registers can be accessed
for the displacement.

This example assumes that the memory controller is implemented.

The generic example shows a 'load byte zero' to a destination register from a location being pointed to
by rA with an offset of d.

The more specific example shows a 'load byte zero' from the location pointed to by r14 with an offset of
5. This gets the contents of data2, and puts them into r13.

It is possible to store information in the same way, using a 'store byte' instruction from the source
register to the location pointed to by rA with an offset of d.

For More Information Contact: www.freescale.com 60



Freescale Semiconductor, Inc.

Chapter 3 - Accessing Operands in Memory

SLIDE 3-1

Accessing Operands in Memory

What you will learn
Learn how to:
¢ Access memory with a variable address
¢ Access memory with a constant address
« Access memory with a single pointer
« Increment or decrement a pointer
¢ Push and pull data to and from a stack
 Load a 32-bit value into a register
¢ Access data in little or big endian mode

0 Memory 31

0 31
GPRO Store
GPR1
° Load
4

GPR30

GPR31

In this chapter we will learn how to:

1. Access memory with a variable address
2. Access memory with a constant address
3. Access memory with a single pointer

4. Increment or decrement a pointer

5. Push and pull data to and from a stack
6. Load a 32-bit value into a register

7. Access data in little or big endian mode

For More Information Contact: www.freescale.com



Freescale Semiconductor, Inc.

SLIDE 3-2
Overview of the Addressing Capabilities
rA d
B o O
O, o

N
TA=GPRO?>—> @_j ]

No ﬁ)

0 L] 31| 0 31
‘d| GPR (rA) - | Effective Address |
—Yes

0 31 Store

Memory|
o g
| GPR (rD / rS) | Loa AcCess

These are instructions that use addressing modes:
« load_mnemonic destination register, memory address
-i.e. Ihax rD,rA,rB ;load halfword algebraic from indexed address into rD
lwz rD,d(rA) ;load word zero-extended from immediate address into rD
« store_mnemonic source register,memory address
- i.e. stwurS,d(rA) ;store word inrS to immediate indexed address with update
stbx rS,rA,rB  ;store byte in rS to indexed address
« cache_mnemonic memory address
-i.e. ichi rArB ;invalidate instruction cache block from indexed address
dcbst rA,rB ;store data cache block, if modified, to indexed address

Overview of the Addressing Capabilities
Load, store and cache instructions use addressing modes. There are three basic addressing modes:

The first is Register Indirect with Immediate Index, in which the effective address is the sum of the
register rA plus a displacement, 'd'. The displacement, 'd’, in Register Indirect with Immediate Index is a
16-bit signed value, extended to 32 bits.

The second is Register Indirect with Index, in which the effective address is the sum of two general-
purpose registers.

The third addressing mode is Register Indirect, which is used only for string loads and stores. In this
case, the effective address is a single register. The material presented here focuses on the first two
addressing modes, as the third addressing mode is used less often.

A special case in these effective addresses is where rA is equal to General Purpose Register 0. When
rA is equal to General Purpose Register 0, a literal zero is used, instead of the value of GPRO. This
reduces the effective address to a single variable or constant.

Also, an Update option causes rA to be updated with the calculated effective address. This allows a
pointer to be incremented or decremented.

This diagram illustrates all the addressing mode variations.
First, rA is checked to determine if it is GPRO. If so, the value of zero is used. If not, the value of the
specified register is used. This value is added to rB if the implemented addressing mode is Register

Indirect with Index. Alternatively, this value is added to 'd' if the addressing mode is Register Indirect
with Immediate Index. If the addressing mode is Register Indirect, the specified value is added to zero.

For More Information Contact: www.freescale.com 62



Freescale Semiconductor, Inc.

The sum becomes the effective address, which is used to access memory. If there is an Update option,
then the effective address is put into the general-purpose register specified in rA.

Some examples of instructions that use addressing modes are illustrated in the lower portion of the
diagram.

First is 'load half-word algebraic indexed', with the operands rD, rA, rB. Or, 'load word zero', with the
operands rD, d(rA).

'Store word' and 'store byte' are also examples.

The cache instructions also use this form, specifically the Register Indirect with Index. In this case, there
is no destination register specified in the operands.

SLIDE 3-3
Using (rA|0) + d Addressing
0 576 1011 15 16 31
Instruction Encoding: Opcode [rD/fS | rA d
J 0 1516 31
Sign Extension d
Yes
rA=GPRO? »@_l
0
No
0 31 (0 31
o GPR (rA) Effective Address
' Update?
0 31
Store Memory
GPR (rD / rS) B Load Access

Using (rA|0) + d Addressing

This diagram illustrates the use of the Register Indirect with Immediate Index addressing mode. In this
case, the rA register specified in the instruction is checked to determine if it is equal to r0. If rA is equal
to r0, then the literal value of zero is used. If rA is not equal to r0, then the value of the rA is used.

The resulting value that is used is added to the specified displacement, which is a 16-bit, signed,

extended value. The sum provides an effective address, which is used to access memory, and if
specified, updates the general-purpose register designated in rA.

SLIDE 3-4

For More Information Contact: www.freescale.com 63



Freescale Semiconductor, Inc.

Using (rA|0) + d Addressing -- Examples

Example Instruction: Ibz r6,10(r8)

of 0x0000000A immediate index

rA<>GPRO Memory
+ | 0x00010000 r8
Memory address = 0x0001000A ————> C5
Result:| 0x000000C5 r6
Example Instruction: bz r6,10(r0)

of rA= VvalueinrOis potused 0x0000000A immediate index Memory
GPRO 0x00035Q00 r0 + 0x00000000

Memory address = 0x0O000000A ———> C5
Result: r6
Example  |nstruction: Ibzu r6,-10(r8) Note: EPPC Arch. defines rA=GPRO and
of OXEEEEEEE6 immediate index rA=rD invalid for Update form of address.
Update + Memory
Memory address = 0x00010026 I o

Results: [0x000000C5|r6 | 0x00010026|r8

Using (rA|0) + d Addressing -- Examples
Here are shown some example implementations of the Register Indirect with Immediate Index mode.

First, we see the instruction 'lbz r6,10(r8)". The value '10', which is Ox0A, is added to the value in r8,
which in this example is 0x00010000. The sum is a value of 0x0O001000A. The byte located at 1000A is
then moved into r6.

Let us now use the same example, changing r8 to r0. This means that the routine uses a literal zero,
rather than the value stored in r0. The sum is simply '10', or 0x0A, allowing the program to access the
location from a constant address - in this case, 0xOA. Then the instruction gets the value C5 from
location Ox0A, and puts it into r6.

An example of the Update function shows the instruction, 'load byte zero, updated’, with the operands
ré, -10(r8). To obtain the effective address, the value in r8, which is 0x00010030 is pre-decremented by
10. The result is 0x00010026. The value at 10026 is then placed into r6, and the effective address is
placed into r8.

For More Information Contact: www.freescale.com 64



Freescale Semiconductor, Inc.

SLIDE 3-5
Using (rA|0) +(rB) Addressing
0 56 1011 1516 2021 30 31
Instruction Encoding:|Opcode |rD/rS | rA rB | Subopcode |0
' 0 31
GPR (1B)
(A=GPROD>—E2 @—
0
No
0 31 |0 31
o GPR (rA) — Effective Address
Update?
0 31 Store .| Memory
GPR (rD / rS) B Load Access

Using (rA|0) + (rB) Addressing

This diagram illustrates the use of the Register Indirect with Index addressing mode. In this case, the rA
register specified in the instruction is checked to determine if it is equal to r0. If rA is equal to r0, then the
literal value of zero is used. If rA is not equal to r0, then the value of the specified register is used.

The resulting value that is used is added to the contents of Register B that the instruction specifies. This
produces an effective address, which is then used to access memory, and perhaps update rA with the
effective address.

For More Information Contact: www.freescale.com 65



Freescale Semiconductor, Inc.

SLIDE 3-6

Using (rA|0) +(rB) Addressing -- Examples
Example Instruction: Ibzx r6,r5,r8
of OXABCD0000 |5 Memory
rA<>GPRO +[0x00001000 |r8

Memory address = 0OXxABCD1000 C5
Result: [0x000000C5|(r6
Instruction: 1lbzx r6,r0,r8
Example . | ¢ used
of rA= actualvalue pot use Memory
S i
ﬁ oS 0 0x00000000 literal zero
GPRO MM + [ 0x00001000jr8 o=
Memory address = 0x00001000
Result: |0x000000C5|r6
Example P Note: EPPC Arch. defines rA=GPRO and
of Instruction:  Ihzux r6,r5,r8 rA=rD invalid for Update form of address.
Update OxABCDO0000|r5 Memory
+| 0x00000010|r8
Memory address = 0OXxABCD0010 C5

Results: [ 0x000000C5]r6  [0xABCDO0010]r5

Using (rA|0) + (rB) Addressing
Here are shown some example implementations of the Register Indirect with Index mode.

First, we see the instruction 'lbzx r6,r5,r8'. The value of r5 is added to the value of r8 to form an
effective address, get the contents of that location, and move the data into r6.

Let us now use the same example, changing r5 to r0. r0O is treated as a literal zero in this case, and the
effective address is the value in r8 plus zero, or in this case, 0x00001000. This example, therefore,
accesses data on the basis of a single pointer. The contents of that memory location are then moved to
r6.

Finally, it is also possible to implement an Update function with this addressing mode. Here we have a

'load byte zero updated, indexed'. The sum of r5 and r8 forms the effective address. The contents of
the associated location, OXABCD0010, are placed into r6, and the effective address is placed into r5.

For More Information Contact: www.freescale.com 66



Freescale Semiconductor, Inc.

SLIDE 3-7
Stacking/Unstacking Exercise
. lower
Stack!ng Write the instruction to push the word in GPR3  gddresses
Exercise on the stack: Stack
stwu r3,-4(rl) r1—>|  word0
wordl
higher
addresses
Unstacking |
Exercise Write the instructions to pull word0 from the ower
. addresses
stack into GPR4:

Stack
lwz r4,0(r1) r1—> | word0
addirl,ri,4 wordl

higher
addresses

Stacking / Unstacking Exercise

We now are familiar with the instructions for stacking and unstacking. The EPPC microprocessor family
is not a stack-based family. No stack is maintained in hardware. Software must implement stacks.
GPRL1 is the Application Binary Interface (ABI) standard stack pointer.

Decrementing the stack pointer by the size in bytes of the data, and then storing the data to memory,
pushes data onto the stack. Loading the data from memory and then incrementing the stack pointer by
the size in bytes of the data pulls data off the stack.

First, let us write the instruction to push the word in GPR3 on the stack. This is possible by writing an
'stwu’ instruction -- “store with update” -- with the operands r3, -4(rl1). This writes the value in r3 into the
location to which (r1-4) points, and places the new, effective address into rl.

Next, for unstacking, let us write the instructions to pull wordO from the stack into GPR4. This is
possible with a 'load word zero' instruction, with operands r4, 0(r1). This brings the word on the stack
into General Purpose Register 4.

The next instruction must be an ‘add immediate', with the operands r1,r1,4 to update the stack pointer
itself.

For More Information Contact: www.freescale.com 67



Freescale Semiconductor, Inc.

SLIDE 3-8

Using “lis”” to Load 32-bit Numbers -- addi

Operation of

addi 0 576101 1516 31
Instruction Encoding: |Opcode| D | rA d
‘ 0 1516 31
Sign Extension d
Yes
rA=GPRO? >|E|—
©
No
0 31 |0 31
GPR (rA) ) GPR (rD)

Using 'lis' to Load 32-bit Numbers -- addi

It takes two instructions to load a 32-bit number. 'lis' is the first. To help us understand the 'lis'
instruction, let us first consider the 'add immediate' instruction.

This diagram illustrates the operation of the ‘addi' instruction. In this case, the rA register specified in
the instruction is checked to determine if it is equal to r0. If rA is equal to r0, then the literal value of zero
is used. If rA is not equal to r0, then the value of rA is used.

The resulting value that is used is added to the signed extended value of the specified displacement.
The sum is then placed into the destination, general-purpose register.

For More Information Contact: www.freescale.com 68



Freescale Semiconductor, Inc.

SLIDE 3-9
Using “lis” -- addi Example
Example of addi rA = GPRO
Instruction: addi r6,r0,0x8234  Simplified Mnemonic: li r6,0x8234

— not used
Oxoooo r0 0x00000000 literal zero

Lttt
0xffff8234 r6

0xffff8234 d (sign-extended to 32 bits)

Using 'lis' to Load 32-bit Numbers — addi Example

The example here shows the instruction, ‘addi r6,r0,0x8234'. In this case, r0 is treated as a literal zero.
The displacement, sign extended, is placed into r6. The simplified mnemonic for this instruction is 'li

r6,0x8234'.

For More Information Contact: www.freescale.com

69



Freescale Semiconductor, Inc.

SLIDE 3-10
Using “lis” to Load 32-bit Numbers -- addis

Operation of addis

0 576 10111516 31

Instruction Encoding; |OPcodel D | rA d
j 0 J 1516 31

d 0

Yes

rA=GPRO? »@
4
No

GPR (rA) | GPR (D)

Using 'lis' to Load 32-bit Numbers

Another type of ‘add immediate' instruction is 'addis' -- 'add immediate shifted'. This diagram illustrates

the operation of the 'addis' instruction.

The 'addis' instruction works in a similar way to the 'addi' instruction. The key difference is that the

displacement value is placed into the upper 16 bits, and the lower 16 bits becomes zero in the addition

of the displacement and the register to obtain the final value in the destination register.

For More Information Contact: www.freescale.com

70



Freescale Semiconductor, Inc.

SLIDE 3-11

Using “lis” -- addis Example

Example of addis
rA = GPRO

Instruction: addis r6,r0,0x8234 Simplified mnemonic: lis r6,0x8234

not used . 0x00000000 literal zero

0x82340000 d (shifted to upper halfword)
0x82340000 r6

Using 'lis' to Load 32-bit Numbers -- addis Example
The example here shows the instruction, ‘addis r6,r0,0x8234'". r0 represents a literal zero, while the

displacement is 0x82340000, which is also the result that is put into r6. The simplified mnemonic for this
instruction is 'lis r6,0x8234'.

For More Information Contact: www.freescale.com 71



Freescale Semiconductor, Inc.

SLIDE 3-12

Loading 32-bit Numbers

lis rb5, constantU ;load upper halfword into r5
ori rb5,r5, constantL :load lower hafword into r5

Instruction: addis r5,r0,constantU  Simplified Mnemonic: lis r5,constantU

; q 0x00000000 literal zero
320%% ruose + constantU 0000 Imm data left shifted

constantU_0000 r5

Instruction: ori r5,r5,constantL

constantU_0000 r5
R 0000_constantL Imm data zero padded

constantU_constantL r5

Exercise lis r5, OxDEAD
Write the instructions to store the ori rb5,r5, OxBEEF
immediate data OXDEADBEEF to lis r6, OxABAD
effective address OXABADCAFE. ori r6,r6, OxCAFE

stwr5, 0(r6)

Loading 32-bit Numbers

It takes two instructions to load a 32-bit number. We have just finished discussing the first, which is the
'lis" instruction. If the operand “constant Upper” connected to operand “constant Lower” is a word, the
instruction sequence shown at the top of this slide loads the word into register GPR5.

First is shown a 'load immediate shifted', which places a constant into the upper half-word of r5. Then

an 'or immediate' places a constant into the lower half of r5.

As an exercise, we can write the instructions to store the immediate data OXDEADBEEF to effective
address OXABADCAFE.

This is possible by writing 'load immediate shifted' to r5,0xDEAD, followed by 'or immediate’,

r5,r5,0xBEEF. This is then followed by 'load immediate shifted’, r6,0xABAD, followed again by 'or
immediate’, r6,r6,0xCAFE. This is then followed by 'store word', r5,0(r6), or 'store word', r5,r0,r6.

For More Information Contact: www.freescale.com 72



Freescale Semiconductor, Inc.

SLIDE 3-13

Summarizing the four rA=GPRO special cases

There are only four cases where rA=GPRO results in rO not being used and a
literal zero used instead- address modes:
d(r0) &
ro,rB and
instructions:
addi rD,r0,d &
addis rD,r0,d

Given these values before each instruction, fill in the result for each
instruction:

GPRO
GPR1
GPR2

0x12340000
0xA0000000
0x00010000

1) addi r1,r0,0x1000 rl = 0x00001000
2) addis r1,r0,0x1000 rl = 0x10000000
3) add r1,r0,r2 rl = 0x12350000

Summarizing the Four rA=GPRO Special Cases
There are only four cases where rA=GPRO results in the literal value of zero being used in place of r0.

The first two cases have to do with the addressing modes, and these are address register indirect with
immediate index, and address register indirect with index.

The other two cases occur with ‘add immediate' and 'add immediate shifted', with rO in the rA position.

The first example exercise shows the instruction 'addi r1,r0,0x1000". This is one of the instructions in
which r0 is treated as a literal zero. Upon completion of this instruction, rl1 contains the value 0x1000.

The second example exercise shows another case in which the r0 in the rA position is treated as a literal
zero. The result is a 0x1000 in the upper half word of r1, and 0x0000 in the lower half word.

Finally, the third example exercise shows an ‘add’ instruction. It does not meet any of the four cases,

and does not treat r0 as a literal zero. The result is the sum of rO and r2, 0x12350000, which is then
placed into rl.

For More Information Contact: www.freescale.com 73



Freescale Semiconductor, Inc.

SLIDE 3-14

What are the Endian modes?

Big Endian
This is how data appears to be organized Memory
in memory to the programmer: increasing address— 0 1 2 3
: S MSB LSB
0x12345678 stored in memory big endian =--> [12[34]56] 78 |
0x1234 stored in memory big endian ......c........; » MSB LSB
LSB = least significant byte [12]34] | |
MSB = most significant byte
Little Endian
This is how data appears to be organized Memory

in memory to the programmer: increasing address—0 1 2 3

0x12345678 stored in memory little endian ...... ’MTSJS 56 [34 | 1I£S|B

0x1234 stored in memory little endian - > MSB LSB
[34]12] | |

What are the Endian Modes?

The Endian modes refer to the order in which bytes - not bits - are transferred and stored in memory.
Remember that although bits are labeled left to right as 0 to 31, this does not have anything to do with
significance.

Big Endian is the default endian order of the MPC860. The first diagram illustrates how data appears to
be organized in memory to the programmer. In the example, a value of 0x12345678 is stored in
memory in big endian order. A memory dump would reveal the bytes in the exact order as stated, from
the most significant bit to the least significant bit.

The second diagram shows how data in little endian mode appears to be organized in memory to the
programmer. A memory dump of the same value, 0x12345678, would reveal that the bytes are stored
in reverse order.

For More Information Contact: www.freescale.com 74



Freescale Semiconductor, Inc.

SLIDE 3-15

PowerPC Little Endian

Data Size (# bytes) EA Modification Example:

8 No change access byte using address of 14 =

4 XOR with 0b100 0b1110

2 XOR with 0b110 :

1 XOR with 0b111 XORwith 0Ob 111

munged address 0b1001

Memory
0 1 2 3

0x12345678 stored in memory big endian to address N> N 12134156178
0x12345678 stored in memory PPC LE to address N> N+4 [12134]56]78
0x1234 stored in memory PPC LE to address N+12-=>  N+8 12]34
0x1234 stored in memory big endian to address N+12--» N+12 [12]34

N is a doubleword aligned address (low 3 bits = 000)

PowerPC Little Endian

Finally, PowerPC little endian mode is available. To load and store data in memory using this mode,
address munging occurs. Address munging refers to a process in which, depending on the size, an
exclusive ‘or’ of a binary value occurs with the least significant digit of the address.

For example, if the programmer wished to access a byte at a location ending in 14, or OxOE, then he
would exclusive ‘or’ it with the value of Ob111, producing a munged address of 0b1001. The byte would
be accessed at the address ending in 9.

For example, if the value 0x12345678 is stored in big endian mode to address N, the contents of
memory look as they appear in the first row of the memory chart in the lower right corner of the
illustration.

In contrast, if the value 0x12345678 is stored in PowerPC little endian mode to address N, the value is
actually stored in address N + 4, although it is still stored in big endian order.

Unless you have compelling reasons to do otherwise, Freescale recommends operating the MPC860 in
big endian order.

For More Information Contact: www.freescale.com 75



Freescale Semiconductor, Inc.

Chapter 4: Using the Caches

SLIDE 4-1
What You Learn how to:
Will Learn « Enable/disable the caches
« Invalidate cache entries
« Lock/Unlock critical code segments that need fast and
deterministic execution time.
« Maintain cache coherency in a multi process environment
Prerequisites « Chapter 1: MPC860 Architecture, Part 1 External
Memory

Cache line (block)| Taa | D‘ V| L ‘ ISata Address| Data

Comparator

— Match? (Hit
Current Address atch? (Hiy

A Cache and MMU appnote is available for more information

In this chapter, you will learn to:

1. Enable and disable the caches

2. Invalidate cache entries

3. Lock and unlock critical code segments that need fast and deterministic execution time
4. Maintain cache coherency in a multi-processor environment

Please note that there is also an excellent Cache and MMU appnote available which also discusses this
material and may provide more insights to you.

When requested data is not in the cache, the cache controller performs an external access. Then the
cache controller loads the data into a cache line, tags it with the address of the location origin of the
data, and marks it valid.

The cache controller compares the address of subsequent memory accesses to the tag. If there a
match, or a hit, occurs, the data is sent to the requester in a fraction of the time of an external access.

There is both an instruction and a data cache. Caches have many cache lines.
Cache blocks, or lines (the terms are synonymous) include a tag value and a line of data. Each cache

line contains a status bit to determine whether data has been written to the line, and whether the line is
valid.

For More Information Contact: www.freescale.com 76



Freescale Semiconductor, Inc.

Also, each cache line has a status bit used to lock the entry so that the entry is never swapped out of
cache. A user may wish to lock a cache line entry in the case of an important library or interrupt routine.

Finally, in the data cache, there is also a dirty bit. The instruction cache is read only, but the data cache
is read-write. In some cases, data may have been written to cache, but not to memory. The dirty bit is
set, should this discrepancy occur.

SLIDE 4-2
Cache Organization and Flow
0 20 21 27 28 29
Instruction Pointer | | |
21 | | 2
7 -
word select
wayO0 wayl
set0 | tag0 wo| wil [w2lw3|:: [ |:: [tag0 wo| wl |w2{w3
setl | tagl wO| wl [w2w3 R tagl wOo| wl [w2 w3
== U e
o | o o o
[a) ¥ [a] ¥4
3|9 A | )
£|9 r EE
set126| tag126 wo| wl [w2[w3 5 tag126 wo|wl [w2[w3
setl27| tag127 wo{wl w2|w3|  |y|:: |tagl27 wo|wl w2|w3

L yo X oy /lu

MMU
Lcomp 8 128
hit0 \ 4
Vl Bidirectional Mux 2 -> 1
vy
*128
v
hit to line buffer / from burst buffer

Cache Organization and Flow

The Data and Instruction Caches are both 4 Kbyte, two-way set associative physically addressed
caches. The caches have 128 sets, two lines per set, and a 4-word line (block) size. The instruction
cache is read-only. The data cache is read / write.

First, let us review the operation of the instruction cache.

The cache access cycle begins with an instruction request from the instruction unit in the core. When
the core asserts an address for an instruction, the top 21 bits of that address are asserted to the MMU,
and bits 21 - 27 are used as an index into the 128 sets of the cache.

Two lines of data are selected. The tags from both ways are then compared against bits 0-20 of the
instruction's address. A match constitutes a hit. If neither of the tags match, or the matched tag is
invalid, it is a miss.

If the tag of a way matches, the data associated with that cache hit, consisting of a total of four words,
becomes available. Bits 28 and 29 of the instruction address are used to select one word from the
cache line whose tag matches. The instruction is immediately transferred from the instruction unit to the
core.

For More Information Contact: www.freescale.com "7



Freescale Semiconductor, Inc.

In the case of a cache miss, the address of the missed instruction is driven on the internal bus with a 4-
word burst transfer read request. The cache controller reads a new line into cache, replacing this line in
either Way 0 or Way 1. If there is an invalid entry present in the cache, that entry is replaced. If both
lines are valid, the cache controller replaces the least recently used line. Locked lines are never
replaced.

SLIDE 4-3
Data Cache
20 21 27 28 31
| Effective Address I | |4
2} |
7 7, byte select
d
wayO0 wayl
set0|tag0 wo| wl |w2{w3| | Ll tag0 wO| wl (w2 w3
setl [tagl wO| wl [w2w3 R tagl wOo|wl w2 w3
BB EEE
SEF v Jals
=13l O A [ =1 K]
HEE , HEE
set126| tag126 wO| wi [w2|w3 ; tagl26 w0 |wl [w2|w3
setl27|tagl27 wo|wl w2|w3| :|y|::|tagl27 wO |[wl w2|w3
Y
, A
MMU 121 21
v fizs
hitO| Y
W i Bidirectional Mux 2-> 1
128
X to / from line buffer /
Hit burst buffer
Data Cache

The Data and Instruction Caches are both 4 Kbyte, two-way set associative, physically addressed
caches. The caches have 128 sets, two lines per set, and a 4-word line (block) size. In addition, the
data cache has dirty bits because it is read / write.

The operation of the data cache is essentially the same as that of the instruction cache. The cache
controller uses the same translation mechanism, which involves sending the top 21 bits of the address
to the MMU, and using the next seven bits of the address to select the indexed set.

A read operation is the same as the instruction cache read operation.

A write operation is similar to the read with a hit. The cache operates in either write-through or copy-
back mode, as programmed in the MMU. In copy-back mode, the cache line to which data is written is
changed to the modified-valid state, meaning that both valid and dirty bits are now set, and the
corresponding external memory location remains unmodified.

A write operation with a hit in write-through mode updates both cache and external memory, while the
associated cache line remains in the unmodified-valid state, meaning that the dirty bit does not get set.

A write miss in copy-back mode causes a line to be read from external memory, and put into an empty
or Least Recently Used (LRU) way of the selected set. The write updates the line in cache, and it is
changed to the modified-valid state, so both the valid and dirty bits are set. The external memory
location is not modified.

For More Information Contact: www.freescale.com 78



g |

A write miss in write-through mode writes to external memory and does not affect cache.

SLIDE 4-4

Freescale Semiconductor, Inc.

Controlling Cache Modes (1 of 2)

Write-through

(WT=1)

WRITE CACHE HIT

INTEGER

UNIT

CACHE

MAIN
MEMORY

INTEGER
? ONIT
CACHE
MAIN

MEMORY

Controlling Cache Modes (1 of 2)

Data cache functions in two different modes: either in write-through or copy-back mode.

The user controls the caches with the MMU. The MMU configures memory into pages, and the user
determines whether each page is to be cache inhibited or not. It is also possible to control on a page
basis whether the page is in write-through or copy-back mode.

When WT is equal to 1, the data cache operates write-through and no-allocate. If a write to memory
incurs a hit in cache, then the cache entry is updated, and main memory is updated. Alternatively, if a

WRITE CACHE MISS

[ 6 |

No Memory is
allocated in
cache for the 6
(no-allocate)

write to memory incurs a miss, then only the main memory is updated.

For More Information Contact: www.freescale.com

79



g |

Freescale Semiconductor, Inc.

SLIDE 4-5
Controlling Cache Modes (2 of 2)
Copy-back
(WT=0) o

WRITE CACHE HIT WRITE CACHE MISS (1/2) WRITE CACHE MISS (2/2)

INTEGER INTEGER INTEGER
e e T | Ng [ s ] |NE [ 6 ]
' Cache miss
[TETT] (TTT 1T
o1
CACHE CACHE CACHE
Burst read from
memory
MAIN
MEMORY
wan | OBOOD | o | B
MEMORY, MEMORY

Controlling Cache Modes (2 of 2)

When WT is equal to 0, the data cache operates copy-back and allocate. If a write to memory incurs a
hit in cache, the data is only written to cache, and the dirty bit is set. Alternatively, if a write to memory
incurs a miss, the cache controller loads the line of data from main memory into the cache, the data is

written only to the cache, and the dirty bit is set.

For More Information Contact: www.freescale.com

80



Freescale Semiconductor, Inc.

SLIDE 4-6

Cache Instructions & Operations

Cache Instructions

These are the cache instructions: Operation:
dcbf - Data Cache Block Flush If modified, writes line to memory then

invalidates line (modified or not)

dcbst - Data Cache Block Store Writes the line to memory

dcbt - Data Cache Block Touch Loads the line from memory into cache
dcbtst - Data Cache Block Touch for store Loads the line from memory into cache
dcbz - Data Cache Block set to zero Zeroes the line in cache

dcbi - Data Cache Block Invalidate Invalidates the line (modified or not)
icbi - Instruction Cache Block Invalidate Invalidates the line

These instructions require a memory address to specify the line to be accessed.
The dcbi instruction is privileged because modified data is lost. Tag is compared for dcbf.

Cache Instructions and Operations (1 of 2)

The caches support the PowerPC architecture cache instructions, together with some additional
implementation-specific operations that help control the cache and debug the information stored in it.

Most of the time, the end user prefers to enable cache, and not operate directly upon cache. However,
there are times when the user does wish to operate directly on cache, and perform certain operations.

The 860 offers two different means to operate directly on cache, the first of which is through the cache
instructions listed here. Any PowerPC supports the cache instructions shown here. These instructions
include writing lines to memory, loading lines from memory, invalidating lines, and the like. These
instructions require a memory address to specify the line to be accessed. The ‘dcbi’ instruction is
privileged because modified data is lost. Tag is compared for ‘dcbf’.

For More Information Contact: www.freescale.com 81



Freescale Semiconductor, Inc.

SLIDE 4-7

Cache Instructions & Operations

These are the implementation-specific operations. They are implemented by
writing to one or more of six special purpose control registers:

Operation:
Data Cache Block Lock

Instruction Cache Block Load and Lock
Cache Block Unlock

Cache Invalidate all

Cache Unlock all

Data Cache flush cache line

Cache read tags
Cache read registers

Comments:

Useful for fast and deterministic
accesses

Useful for fast and deterministic
accesses

Locked lines cannot be
flushed/invalidated

Must be done after reset

Must be done after reset

Similar to dcbf but does not compare
tag

Useful for testing and debug
Useful for testing and debug

Six of the special purpose control registers are used in order to control the I-

cache and D-cache:
D-cache |-cache
DC_CST IC_CST
DC_ADR IC_ADR
DC_DAT IC_DAT

Description
D/I-cache control and status register

D/I-cache address register
D/I-cache data port (read only)

Cache Instructions and Operations (20f 2)

Additionally, the MPC860 supports implementation-specific operations as shown here. They are
implemented by writing to one or more of six special purpose control registers. These operations
include load and lock, unlock a block, cache unlock all, and the like.

Six of the special purpose control registers are used to control the Instruction cache and the Data
cache. The programming model consists of a Data Cache Control and Status Register, an Instruction
Cache Control and Status Register, an address register for the data and instruction caches, and a read-
only cache data port for the data and instruction caches.

For More Information Contact: www.freescale.com

82



Freescale Semiconductor, Inc.
SLIDE 4-8

Programming Model (1 of 3)
IC_CST - I-Cache Control and Status Register
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
clccicc

C
IEN| Reserved CMD Reserved ErilEr2IERS Reserved
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Reserved

IC_ADR - I-Cache Address Register
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ADR

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
ADR

IC_DAT - I-Cache Data Register
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
DAT

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
DAT

Programming Model (1 of 3)

Here is shown the programming model with registers supporting the instruction cache.

The first register is the Instruction Cache Control and Status Register. This is a 32-bit register, with
most bits reserved. The remaining bits are read-only, with the exception of the command field. The
command field allows the user to write commands they wish to execute while they are operating directly
on the cache. Such commands include ‘cache enable’, ‘load and lock’, ‘unlock line’, and ‘unlock all’.

The Instruction Cache Address Register allows the user to specify a particular address used in the
command programmed in the Control and Status Register.

Finally, the Instruction Cache Data Port Register supports reading data directly from the instruction
cache.

For More Information Contact: www.freescale.com 83



Freescale Semiconductor, Inc.

SLIDE 4-9
Programming Model (2 of 3)

DC_CST - D-Cache Control and Status Register

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
DF cc|ccj|cc
DEN WT LES|Res CMD Reserved Er1lER2IERS Reserved
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Reserved

DC_ADR - D-Cache Address Register

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ADR

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
ADR

Programming Model (2 of 3)

This slide shows registers supporting the data cache.

First is the Data Control and Status Register, in which all bits are reserved or read-only, with the
exception of the command field. The command field allows the user to write commands they wish to

execute. Such commands include ‘data cache enable’, ‘lock line’, ‘unlock all’, ‘flush data cache line’,
and the like.

The Data Cache Address Register allows the user to specify a particular address used in the command
programmed in the Data Control and Status Register.

For More Information Contact: www.freescale.com 84



Freescale Semiconductor, Inc.

SLIDE 4-10

Programming Model (3 of 3)

DC_ADR - D-Cache Address Register
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Reserved

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
RESERVEDTags Way|Res Set Number Reserved

Regs Register Number

DC_DAT - D-Cache Data Register
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Tag Value

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Tag Value Res |Valid [Locked| LRU|Dirty Reserved

Programming Model (3 of 3)

The Data Cache Address Register also allows the user, in the case of certain operations, to operate
directly on a line in the cache by specifying the set number and tag number for that line.

Finally, the Data Cache Data Register supports reading data directly from the data cache.

For More Information Contact: www.freescale.com

85



SLIDE 5-1

What You
Will Learn

Freescale Semiconductor, Inc.

Chapter 5: Memory Management Unit

Memory Management Unit

* How the 860 MMU operates
* How to initialize the TLBs (Translation Lookaside Buffers) from
reset,
useful for systems requiring 32 pages or less for data and
for instructions.
* How to implement a table lookup and TLB reload for data and
instruction accesses.
- Initialize tables
- Perform tablewalk
« Initialize the MMU for proper operation.
« Configure the MMU for a system.
« Load the reserved TLB entries.

Prerequisites . chapter 1: MPC Architecture, Part 1

« Chapter 4: EPPC Cache

A Cache and MMU appnote is available for more information

In this chapter, you will learn to:

4.
5.
6.

Describe how the 860 MMU operates
. Initialize the Translation Lookaside Buffers (TLB's) from reset. This is useful for systems

32 pages or fewer for data and for instructions.

tables and performing a tablewalk

Initialize the MMU for proper operation
Configure the MMU for a system
Load the reserved TLB entries

requiring

Implement a table lookup and TLB reload for data and instruction accesses, including initializing

Please note that there is also an excellent Cache and MMU appnote available which also discusses this
material and may provide more insights to you.

For More Information Contact: www.freescale.com

86



Freescale Semiconductor, Inc.

SLIDE 5-2

What are the Basic 860 MMU Functions?  vemory Pages

.....) MM U —] Read-only
Multi-Tasking /I:Bs/ 7 _Read/Write T
ask
Operation ¥ Cacheable
< — Cache-inhibited [ A
Task A — Shared
The MMU transparently Access ot aftowed |_Read/Write
monitors all memory )/QHO/ Cacheable Task
accesses. If the access ____—7_Read/Write B
is not defined or not Cache-inhibited
allowed, the MMU Eeaﬂ/wglte
causes an interrupt. acheable

1. Access page not in memory

2. O.S. brings page from Hard Disk
disk to memory Task B Page
3. O.S. defines page
as resident.

What are the Basic 860 MMU Functions?

The MPC860 implements a virtual memory management scheme providing cache control, storage
access protections, and effective to real address translation.

In an embedded application, the 860 MMU primarily provides memory protection, which includes
allowing or inhibiting caching, as well as supporting various protection mechanisms. In turn, these
protection mechanisms include the capability of making a page read-only, or shareable. These
protection mechanisms also include the capability of restricting a page to privileged accesses, or to both
problem and privileged accesses. The MMU transparently monitors all memory access operations. If
the access is not defined or allowed, the MMU causes an interrupt.

The MMU also provides address translation. This gives the operating system the freedom to place a
task wherever free memory space is available at the time. Even if a user implements the 860 MMU for
simplest functions it supports, it is still necessary to perform address translation. Perhaps such address
translation takes the simple form of each logical address remaining equal to its corresponding physical
address. However, even in such a case, the function of address translation must still take place.

Address translation is particularly convenient in the case of a multi-user system. For example, a Task A
and a second Task B could have their respective pages in memory. Even though Task A executes at
address 0x1000, and Task B executes at address 0x1000 at the same time, the MMU translates the
duplicate logical addresses to discrete physical addresses. Both tasks in this case use their own pages.
Or, given the ability of making some pages shareable, the two tasks may share portions of physical
memory if needed.

The MMU also supports a demand paged, virtual memory environment. This means that when a task is
active in the system, not all of its pages must be loaded into physical memory. Some pages can remain
on disk. In this case, if a task requires a page located on disk, the task simply attempts the memory
access. The operating system then retrieves the required pages from disk, and returns control to the
task. The task is unaware of the original, physical location of the memory, although the memory access
takes longer to occur.

For More Information Contact: www.freescale.com 87



Freescale Semiconductor, Inc.

SLIDE 5-3

Exercises - MMU Basics (1 of 7)

MMU Memory Map
Descriptor Legend
EA RA 0x00824 | 0x01596
CI[SH|[PP]ID N NJRW[A 0x159612012345678
0x239135887654321
Effective| [ 000825 | 0x02391
N T N JRIO] A
Addresses
Task A 0x00431 | OxO5DEF Ox3A7904 11223344
Real
Y [N [RW] A Addresses
0x00C2A ] 0x04588
NN [RW] B 0x45889C455667788
Task B 0x00C2B [ 0x03A79
N | Y [RW] B 0x5DEF62024681357
N e e Ox6D5B75826481537
What is the result when: 0x12345678 is read, next
1. Task A asserts a read to 0x8241207? three words also cached

Exercises, MMU Basics (1 of 7)

Let us examine some basic MMU tasks and how these tasks operate when accessing the memory. In
this diagram there are two different tasks, A and B, that are utilizing the MMU. Note the structure of the
entries within the MMU. These are the Effective Address, the Real address, and bits that tell the MMU
whether this area of memory is cache-inhibited, shared, page protected, and which task ID owns this
area.

Let us say that task A is asserting a read to 0x824120. This is going to use the first entry in our MMU,
as the address falls within that entry’s effective address region. This page is not cache inhibited, it is a
read / write page, and task A does own this non-shared page. The lower part of the effective address is
used as the index, along with the real address of the entry. Thus, the read is to real address 1596120.
The value 12345678 is read, and the next three words are also cached.

For More Information Contact: www.freescale.com 88



Freescale Semiconductor, Inc.
SLIDE 5-4

Exercises - MMU Basics (2 of 7)

. MMU
Descriptor Legend
= RA e o 0x159612012345678
Cl[sH[PPTID N I N [RW[ A X
0x239135887654321
Effective| |0X00825 | 0x02391
N [ N [rRIOT A
Task A Addresses
11223344
0x00431 JOXOSDEF | |, 0x3A7904C
v [N IRl A Addresses
0x00C2A | 0x04588
N ] N JrRW][ B 0x45889C455667788
Task B 0x00C2B | 0x03A79
N | Y [RW] B Ox5DEF62(0]24681357
0x06D5B | 0x06D5B
26481537
N] Y |[RW] B 0x6D5B75
What is the result when:
2. Task A asserts a write to 0x825358? TLB Error

Exercises, MMU Basics (2 of 7)

In another access, task A asserts a write to 825358. This would result in a TLB error. Note that the
memory page for hex 825-thousand is read only as determined by the page protection field.

For More Information Contact: www.freescale.com



Freescale Semiconductor, Inc.
SLIDE 5-5

Exercises - MMU Basics (3 of 7)

. MMU
Descriptor Legend
= RA S TR A 0x159612012345678
Cl|SH|PP] ID N N [RW[ A X
0x239135887654321
Effective| [0X00825 | 0x02391
N T N [RIO]T A
Task A Addresses
11223344
0x00431 JOXOSDEF | |, 0x3A7904C
Y [N [Rw] A Addresses
0x00C2A | 0x04588
N[N JrRW[ B 0x45889C455667788
Task B 0x00C2B | 0x03A79
N | Y [RW] B Ox5DEF62(0]24681357
0x06D5B [ 0x06D5B
26481537
N T Y [RW] B 0x6D5B75
What is the result when: 0x24681357 is read, but the area is not

3. Task A asserts a read to 0x43162C? cached because it is cache inhibited. .

Exercises, MMU Basics (3 of 7)

In number 3, A asserts a read to 43162C. This results in a read of the value 24681357, but the area is
not cached because it is cache inhibited.

For More Information Contact: www.freescale.com 90



g |

Freescale Semiconductor, Inc.

SLIDE 5-6

Exercises - MMU Basics (4 of 7)

; MMU
Descriptor L egend
EA RA 0x00824 | 0x01596 B
CI[SHIPP] ID N [ N [RIW] A X
0x239135987654321
Effective| |-0x00825 | 0x02391
N T N JRIO]T A
Task A Addresses
11223344
0x00431 [OXOSDEF] |, 0x3A7904
Y TN Jriw] A Addresses
0x00C2A | 0x04588
NN JrRW[ B 0x45889C455667788
TaskB 0X00C2B | Ox03A79
NTY [rRwW[B 0x5DEF62024681357
0x06D5B [ 0x06D5B
26481537
N Y |RW[ B 0x6D5B75
What is the result when:
TLB Error

4., Task A asserts a read to 0xC2A9C4?

Exercises, MMU Basics (4 of 7)

For number 4, A asserting a read to C2A9C4 yields a TLB error. Task B owns this page and is not
shared.

For More Information Contact: www.freescale.com



Freescale Semiconductor, Inc.

SLIDE 5-7

Exercises - MMU Basics (5 of 7)

. MMU
Descriptor Legend
EA RA 0x00824 | 0x01596
Ci{salPP| D NN IRW[ A 0x159612012345678
0x239135887654321
Effective 0x00825 | 0x02391
N [ N [rRIOT A
Addresses
TaskA OX00431 [ OxO5DEE 0x3A7904C 11223344
Real
Y | N [Rw] A Addresses
0x00C2A | 0x04588
N | N JRW] B 0x45889C455667788
Task B 0x00C2B | 0x03A79
N | Y [RW] B Ox5DEF62(0]24681357
OﬁoﬁDf{B gj‘mD%B Ox6D5B75826481537
What is the result when: 0x11223344 is read, next
5. Task A asserts a read to 0xC2B04C? three words are cached

Exercises, MMU Basics (5 of 7)
If A were to assert a read to an address in the C2B region as in number 5, 11223344 is read, and the

next three words at that location are also cached. Note that although B owns the page, the page is
shared.

For More Information Contact: www.freescale.com



Freescale Semiconductor, Inc.
SLIDE 5-8

Exercises - MMU Basics (6 of 7)

. MMU
Descriptor Legend
EA RA 0x00824 | 0x01596
Cl[SH[PP]ID N [ N [rRW][ A 0x159612012345678
0x239135887654321
Effective| 000825 | 0x02391
N [ N [rRIOT A
Addresses
raskA 0x00431 | Ox05DEF Ox3A7904G11223344
Real
v [N IRl A Addresses
0x00C2A | 0x04588
N ] N JrRW][ B 0x45889C455667788
Task B 0x00C2B | 0x03A79
N | Y [RW] B Ox5DEF62(0]24681357
OEOSIDiB g;(\(z/SIDSBB 0x6D5B75826481537
What is the result when: 0x26481537 is read, next
6. Task B asserts a read to 0x6D5B7587? three words are cached

Exercises, MMU Basics (6 of 7)

If B were to assert a read to 6D5B758, the value 26481537 would be read, and the area would be
cached. Note that the effective address is the same as the real address, but translation is still required.

For More Information Contact: www.freescale.com 93



g |

Freescale Semiconductor, Inc.

SLIDE 5-9

Exercises - MMU Basics (7 of 7)

' MMU
Descriptor Legend
T T N TR RWLA 0x159612012345678
Cl[sH]PP] ID N ] N |RW[] A X
0x239135887654321
Effective| [[9X00825 | 0x02391
N [ N [RIO] A
Task A Addresses
11223344
0x00431 JOXOSDEF] |, 0x3A7904G
v I TRwlA Addresses
Ox00C2A | 0x04588
N | N [rRW] B 0x45889C455667788
TaskB OX00C2B | 0x03A79
NTY[rRW[B OX5DEF620]24681357
Ox06D5B | 0x06D5B
26481537
NTY [RW[B 0x6D5B75

What is the result when:

7. Task A asserts a read to 0OxC2C158? TLB Miss

Exercises, MMU Basics (7 of 7)

Lastly, were task A to assert a read to something in the C2C region, it would result in a TLB miss, as
there is no entry for that region.

For More Information Contact: www.freescale.com



Freescale Semiconductor, Inc.

SLIDE 5-10

What is the 860 MMU?

860 MMU

Instruction
Translation
Lookaside
Buffer
(ITLB)

Effective — > — > Real

Addresses Addresses
Data

Translation
Lookaside
Buffer
(DTLB)

What is the 860 MMU?

The 860 MMU assigns protection attributes to pages in memory, and also implements address
translation. The MPC860 core generates 32-bit effective addresses, and when enabled, the MMU
translates the effective address to a real address that is used for cache or memory access.

The MMU makes use of an Instruction Translation Lookaside Buffer, and a Data Translation Lookaside
Buffer. Tasks supply the MMU with effective addresses, and the MMU converts these to real addresses
using the TLBs.

Each TLB consists of thirty-two entries, and it is fully associative.

Page size entries of 4 Kb, 16 Kb, 512 Kb, and 8 Mb can reside simultaneously in a TLB. This is an
important feature, especially for embedded systems. Without varying page size entries, the user would
have to identify memory strictly in terms of 4 Kb pages.

In addition to page size, each entry specifies attributes such as whether the page may be cached, and
page protection.

TLB entries can be initialized from reset in the case when no more than thirty-two pages are required for
data and instructions. In the case where more than thirty-two pages are required, TLB entries can be
loaded as the result of a tablewalk procedure.

A hit in a TLB requires one clock cycle.

For More Information Contact: www.freescale.com 95



Freescale Semiconductor, Inc.

SLIDE 5-11

Partial MMU Programming Model (1 of 2)

_
Level 1 Descriptor Format

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
I L2BA |

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
| L2BA | Reserved [Access ProtGroug G| PS [wT|V |

Level 2 Descriptor Format
0o 1 2 3 4 5 6 7 8 9101112131415I

I RPN
RPN PP E| C TLBH SPS[SH|CI [ V
Mx_EPN - Effective Page Number Register x=1,P.11-15;x=D
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
[ EPN |

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
EPN [Reserved EV | Reserved | ASID |

Partial MMU Programming Model (1 of 2)

This programming model illustrates what is required to initialize the TLB from reset. Note that we will be
discussing additional MMU registers shortly.

The Level 1 Descriptor Format is really a memory location, and takes the form shown here. The
hardware supports the Level 1 Descriptor Format in order to minimize the software tablewalk routine.
The L2BA field is not used. The value in the Access Protection Group field is used as an index to a
location in the access protection register that defines access control for the translation.

The Level 1 Descriptor Format also includes fields indicating such attributes as guarded, page size,
write through, and validity.

The Level 2 Descriptor Format contains the following:
The real page number

Page protection

The encoding bit

The change bit

TLB protection bits

An additional page size parameter

A shared bit

A cache inhibit bit

A valid bit.

CoNooO~WNE

Further definitions of these bits and their uses can be found in your User Manual.
The Effective Page Number Register, or EPN, is a register that contains the effective page number for

the TLB entry. It also contains the Address Space ID. Additionally, the EV bit must be set indicating that
the TLB entry is valid.

For More Information Contact: www.freescale.com 96



Freescale Semiconductor, Inc.

SLIDE 5-12

Partial MMU Programming Model (2 of 2)

Mx_TWC - Tablewalk Control Register
0O 1 2 3 4 5 6 7 8 9 10

x=1,P.11-15;x=D

[ Reserved

11 12 13 14 15|

16 17 18 19 20 21 22 23 24 25 26

27 28 29 30 31

Reserved Address Prot Grou

G PS

Res/
WT

\Y,

Mx_RPN - Real Page Number Register
0 1 2 3 4 5 6 7 8 9 10

x=1,P.11-16;x=D
11 12 13 14 15

I RPN

16 17 18 19 20 21 22 23 24 25 26

27 28 29 30 31

RPN PP | E Rgls’/ TLBH

LPS

SH

Cl

\Y,

Partial MMU Programming Model (2 of 2)

Next is shown the Tablewalk Control Register, or Mx_TWC. This register contains the Address
Protection Group, as well as the attributes for guarded, page size, write through for a data page, and
valid. Notice that this register is very similar to the Level 1 Descriptor Format. Since the Level 1

Descriptor is a memory location, the user can initialize the Descriptor to act as a prototype to load into

the Mx_TWC register.

The Real Page Number Register, or Mx_RPN, contains the real page number, and other fields that are

also present in the Level 2 Descriptor Format. Since the Level 2 Descriptor is a memory location, the
user can initialize the Descriptor to act as a prototype to load into the Mx_RPN register.

For More Information Contact: www.freescale.com

97



Freescale Semiconductor, Inc.

SLIDE 5-13

How to Initialize a TLB Entry (1 of 2)

Step Action Example
1 Initialize an L1 descriptor Lidesc.fld.PS = 1;

L2BA: level2 table pointer /* page size = 512K */
APG: access protection group
G: guarded attribute

PS: page size

WT: write-through or copy back
V: valid

2 | Initialize L2 descriptor L2desc fld. a = O

RPN: real page /* caches enabled for
number this page */

PP: page
protection

E: encoding
C: changed
TLBH: TLB hit
SPS: small
page size

SH: shareable
Cl: cache
inhibit

V: valid

How to Initialize a TLB Entry (1 of 2)

The first step in initializing a TLB entry is to initialize the L1 descriptor. More information on initializing
the L1 descriptor is available in the User Manual and in the Cache and MMU Appnote. The example
shows a '1' in the page size field, so that the page size is set to 512 Kb.

Step 2: Initialize the L2 descriptor. The example shows enabling the caches for this page.

For More Information Contact: www.freescale.com

98



SLIDE 5-14

Freescale Semiconductor,

How to Initialize a TLB Entry (2 of 2)

Inc.

Initialize Mx_EPN

EPN: EA page number
EV: entry valid

ASID: address space ID
x=lorD

| oadvk_EPN( mx_epn

Lall);

4 | Initialize Mx_TWC
x=1lorD

| oadvk_TWC( L1ldesc

Lall);

5 | Initialize Mx_RPN
x=1lorD

| oadvk_RPN( L2desc

Lall);

Comment

When step 5 is executed, the contents of Mx_EPN, Mx_TWC,
and Mx_RPN are copied to a TLB entry.

How to Initialize a TLB Entry (2 of 2)

Step 3: Initialize the Effective Page Number Register. The user builds a prototype for this register, and
then loads the register with the prototype.

Step 4: Initialize the Mx_TWC. As discussed earlier, the user builds a prototype for the Mx_TWC
register using the L1 descriptor, and then loads the register with the prototype.

Step 5: Initialize the Mx_RPN registers. The user builds a prototype for the Mx_RPN register using the
L2 descriptor, and then loads the register with the prototype. When step 5 executes, the contents of the
Effective Page Number Register, the Tablewalk Control Register, and the Real Page Number Register

are copied to the TLB entry. This means a hardware assist accompanies the instruction.

For More Information Contact: www.freescale.com

99



Freescale Semiconductor, Inc.

SLIDE 5-15

How the 860 MMU Operates

| Effective Address Asserted |

1 Result goes
into TLB
Address t
Match TLB miss » ISR executes
interrupt a tablewalk
l Y
Protection N
Match? — TLB error
interrupt

[ Real Address Asserted |

End

How the 860 MMU Operates
The diagram shown here illustrates the flow of operation for the 860 MMU.

The flow of operation starts with the assertion of an effective address. Next, the MMU determines
whether there is an address match in the TLB. If there is an address match, the MMU determines
whether there is a protection match. If there is a protection match, the MMU asserts the real address.

If the MMU does not encounter an address match, the result is a TLB miss interrupt. The service
routine for a TLB miss interrupt executes a tablewalk, and the result is written into the TLB.
Alternatively, if the MMU does not encounter a protection match, a TLB error results. Such an error can
have severe effects.

For More Information Contact: www.freescale.com 100



Freescale Semiconductor, Inc.

SLIDE 5-16

How the Page Tables are Organized (1 of 4)

1 4K Table
_ 2| 4K
Level 1 s
Table -
Desc # 1021 24K
0| 4™m 1022 4K Level 2
1 4M ] Desc # Table
> —am | 1023 4K Desc #
. 0l 4K
. 1 4K
1021 4M Level 2 2| 4K
1022 4M — Desc # Table .
1023 [ __4M ‘ .
01 4K 1021 2K
1| 4K
2 aK 1022 4K
- 1023 4K
1021 [ 4K
1022 [ 4K
1023 [ 4K

How the Page Tables are Organized (1 of 4)

The MPC860 MMU includes special hardware to assist in a two-level software tablewalk. We are about
to review the details of the two levels of translation table structures supported by the MPC860 special
hardware.

The Level 1 Table consists of 1024 descriptors. At a minimum, it is necessary to have one Level One
Table. These 1024 entries effectively correlate to the entire memory map. Given that the memory map
is four gigabytes, and that 1024 entries correlate to the four gigabytes, each entry in the Level 1 Table
represents four megabytes.

Each valid descriptor in the Level One Table points to the base of a Level Two Table. The Level Two

Table also contains 1024 entries. Therefore, each descriptor in the Level Two Table describes four
kilobytes of memory.

For More Information Contact: www.freescale.com 101



Freescale Semiconductor, Inc.

SLIDE 5-17

How the Page Tables are Organized (2 of 4)

Level 1
Table Level 2
- eve
4K and 16K : Table
Pages
:
'Y L]
L]
L

4K 4K Page Desc
4K 4K Page Desc
4K
4K . .
K —16K Page Desc = 4 identical 4K page descs

4K

[N}

« The table can be a mix of 4K and 16 K page descriptors

How the Page Tables are Organized (2 of 4)

The TLBs can contain any mix of 1 Kb, 4 Kb, 16 Kb, 512 Kb and 8 megabyte page descriptors. This
enhances performance. If, for example, an embedded designer were required to configure the pages in
increments of 4 kilobytes, it could result in a substantial performance hit.

In the example shown, the TLB contains a mix of 4 Kb and 16 Kb page descriptors. A 4Kb page fits the

TLB descriptor model we have just described exactly. However, if the user chooses a 16Kb page, he
must ensure that four of the 4Kb entries in the Level 2 Table are identical.

For More Information Contact: www.freescale.com 102



Freescale Semiconductor, Inc.

SLIDE 5-18

How the Page Tables are Organized (3 of 4)

Level 1
Table
: Level 2
512K Pages . Desc # Table
am o[ 4m S
. _ 512K Page Desc = 128 identical
bd : 4K page decs
127| 4M
128 4M
255| 4M
896| 4M
1023 4M

 The table can consist of up to 8 512K page descriptors

How the Page Tables are Organized (3 of 4)

The table can also consist of up to eight, 512 Kb page descriptors. If the user chooses a 512 Kb page

descriptor, they must ensure that 128 entries in the Level 2 Table are identical.

For More Information Contact: www.freescale.com

103



Freescale Semiconductor, Inc.
SLIDE 5-19

How the Page Tables are Organized (4 of 4)

Level 2 Table
8M Page
Level 2
° Desc # Table
L]
- _
0 4K
4aM 127 4K
[ ) ®
[ ) [ )
[ ) [ ]
Level 1 896 | 4k
Table
4K
1023 4K

« An 8M page requires 2 identical Level 1 descriptors + 1024
identical Level 2 descriptors

How the Page Tables are Organized (4 of 4)

Finally, if the user chooses an 8-megabyte page, all the descriptors in the entire Level Two Table must

be identical, and in addition, two Level One Table entries must be identical.

For More Information Contact: www.freescale.com

104



Freescale Semiconductor, Inc.

SLIDE 5-20

Translation Table Structure 1 . Effective Address N

9 10 19 20
0 M_TWB 19 [ Level 1 Index | Level 2 Index | Page Offset. |
[ Level One Table Pointer] MD EPN [

¢20 10

mfspr rN,M_TWB
[ Level One Table Base | Level 1 Index 00 |

“120 | evel One Table 10

Level One Descriptor 0
Level One Descriptor 1

Each 8M page has 2 identical -
entries in level 1 table for bit 9 Level One Descriptor N
Of EA=0&bit9ofEA=1 [ 29 £ 12 - for 4Kbyte
Level One Descriptor 1023 1 14 -for 16Kb
evel One Descriptor B
Identical entries required 19 - for 512Kb
for level 2 table: ¥ mifspr rN,MD_TWC v 23 - for 8Mb
Page size Number [ Level Two Table Base | Level 2 Index J00 |
‘l& Ez:g 1 20 Level Two Table {10
16K byte 4 Level Two Descriptor 0
512K byte 128 Level Two Descriptor 1
8Mbyte 1024
20 - for 4Kbyte -
Level Two Descriptor N -
18 - for 16Kbyte ve W D
13 - for 512Kbyte .
9 - for 8Mbyte Level Two Descriptor 1023

* Real Address v
[ Real Page Address | Page Offset |

Translation Table Structure 1

This diagram illustrates a two-level translation table in its entirety. As mentioned, the MPC860 MMU
includes special hardware to assist in a two-level software tablewalk.

In order to perform a tablewalk, the software combines three components in order to point to the
appropriate descriptor for this address in the Level One Table. The tablewalk begins at the level one
base address in the M_TWB register, which the end user has initialized to point to the Level One Table.
The second component is the ten most significant bits of the Effective Page Number Register, which is
derived from the effective address. These bits act as an index into the Level 1 Table to obtain the
corresponding level one descriptor. Two zeros form the third component, and are appended to the first
two components.

Next, the software combines the top twenty bits from the Level One Descriptor with the next ten bits of
the effective address, followed by '00". This combination serves as a pointer to the appropriate location
in the Level Two Table, which in turn contains the real page address.

Depending on the page size, the real page address may be as many as twenty bits, or as few as nine.

The remaining page offset bits derive from the effective address. The real page address and the page
offset combine to form the real address.

For More Information Contact: www.freescale.com 105



Freescale Semiconductor, Inc.

SLIDE 5-21

Exercise - Tablewalk: Procedure

1. L1table address=M_TWB << 12

2. L1index = (EA & 0xFFC00000) >>20

3. L1 desc address= L1 tableaddr + L1 index

4. L2 table address = L1 descriptor & OxFFFFFO00

5. L2 index = (EA & 0x003FF000) >> 10

6. L2 desc address = L 2 table addr + L2 index

7. Page size = see How to Determine Page Size

8. 4K Page addr low = L2 descriptor & 0xFFFFF000
16K Page addr low = L2 descriptor & OxFFFFC000
512K Page addr low = L2 descriptor & 0xFFF80000
8M Page addr low = L2 descriptor & 0xFF800000

9. 4K Page addr high = 4K Page addr low + OxFFF
16K Page addr high = 16K Page addr low + Ox3FFF
512K Page addr high = 512K Page addr low + Ox7FFFF
8M Page addr high = 8M Page addr low + Ox7FFFFF

10. Real page address = Page addr low

11. 4K Real offset = EA & O0x00000FFF
16K Real offset = EA & 0x00003FFF
512K Real offset = EA & Ox0007FFFF
8M Real offset = EA + Ox007FFFFF

12. Real address = Real page address + Real offset

13. Cache = see how to determine cacheability

14. Page Protection = se How to Determine Page Protection

15. If L2 descriptor, bit 29=1, then shareable else not

Exercises — Tablewalk Procedure

In a moment we are going to step through an exercise that will illustrate how the MPC860 MMU

This procedure and the charts on
these slides will help you
complete the following exercise.
You may need to pause the
presentation and return to these
slides, or you may want to print
them for easier reference. Note
that these slides are also located
in the reference material for this

chapter.
For # L1 descs| # L2 descs
Page size | required required
4K 1 1
16K 1 4
512K 1 128
8M 2 1024

performs a tablewalk. In order to complete the exercise, you will need to be familiar with the procedure
shown on this page as well as the tables on this slide and the next. Please pause the presentation and

take a moment to review the procedure and the tables, and don't forget that you can return to these
slides later, or print them if necessary. Shown here is the procedure itself and a table describing the

necessary amounts of each descriptor for a given page size.

For More Information Contact: www.freescale.com

106



SLIDE 5-22

Freescale Semiconductor, Inc.

Exercises - Tablewalk: Additional Charts

The procedure and charts will help the student complete the exercise.

For L1 desc, PS | L2 desc, SPS
Page size bits 28-29 bit 28
4K 0 0
16K 0 1
512K 1 -
8M 3 -
If L2 desc, If L1 desc, Cache-
Cl, bit 30 WT, bit 30 ability
0 0 CB
0 1 WT
1 - Inhibited
If L2 desc, PP, Page
bit s 20-21 Protection .
Priv/Prob
0 noacc
1 RW/no acc
2 RW/RO
3 RW/RW

For More Information Contact: www.freescale.com

Exercises — Tablewalk Additional Charts

How to
Determine
Page Size

How to
Determine
Cacheability

How to
Determine
Page
Protection

Here are shown the tables describing how to determine page size, how to determine cacheability, and
how to determine page protection. How the tables are used may become clearer once we begin to
step through the procedure on the next slide. Again, feel free to pause and review, or print the slide.

107



Freescale Semiconductor, Inc.

SLIDE 5-23
Exercise - Tablewalk Memory Map
M_TWB| 00400
If the effective address of 0x0000012C 0x3FD8E4 [ 09000801

is asserted, what are the results in the
following steps of the tablewalk?

0x3FED50 | 06B80C05

1| L1 table addr 400000
21 L1 index 9 0x3FF000 [ 03519C03
3| L1desc addr 400000
4| L2 table addr 3FF000
5 L2 index 0 0x3FF020 | 04264C09
6| L2 desc addr 3FF000 04264C09
7 Page size 4K

8| Pg addr low 03519000
9| Pg addr high | 03519FFF 0x400000 | 003FF001
10 Real pg addr 03519000
1]
12
13
14

Real offset 0000012C
Real address 0351912C

Cache Inhibited 0x400018 | 003FE007

Page Prot. RW/RW
1y Shareable? No 0x400090 [ 003FDOOD
003FDOOD

Additional tablewalk examples are available in the exercise file

Exercises — Tablewalk

Here we are going to walk through the first column of this exercise to demonstrate how the MMU
performs a table walk. The additional columns and their answers will be left in the exercise file. In order
to complete the exercise, you will need to peruse the general table walk procedure, and the guides
demonstrating how to determine page size, cacheability, and page protection. Links to this information
are provided below. Each column entry corresponds with a step in the general procedure. Feel free to
pause and review the general procedure at any time.

In the first column, the effective address of 0x12C is being asserted. The L1 table address is the value
in M_TWB left shifted by 12 which yields 0x400000. Note that this value applies for this entry in all the
columns.

The L1 index is the effective address, ‘ANDed’ with OxFFC00000 and right shifted by 20. This yields an
index of 0.

In step 3, the L1 descriptor address is given by adding the L1 table address and the index, which gives
us 0x400000.

In step 4, the L2 table address is determined to be Ox3FF000. This was arrived at by ‘ANDing’ the L1
descriptor located at 0x400000, which is 0x3FF001, with OxFFFFF00O.

Next we find that the L2 index is 0 because 0x12C has been ‘ANDed’ with Ox3FFO00 and right shifted
10.

The L2 table address plus the L2 index give the L2 descriptor address, which is Ox3FF000.
Now, using the guide to determine page size which you can view by following the link below, we see

that bits 28 and 29 of the value the L1 descriptor are 0. Also, we see that the value of the L2
descriptor’s bit 28 is 0. This tells us that this page size is 4K.

For More Information Contact: www.freescale.com 108



Freescale Semiconductor, Inc.
Using the general procedure, we ‘AND’ the value of the L2 descriptor with OXFFFFFOOQO to find that the
Page address low is 0x3519000.
Using procedure for page address high, we add OxFFF to page address low, which gives 0x3519FFF.
Real page address is the same as the page low address.

The offset for a 4 Kb page is the original effective address ‘ANDed’ with FFF (with leading zeroes). So
the offset is 0x12C.

Finally we arrive at the real address that is generated, which is the real page address plus the real
offset, 0x351912C.

Another feature this page illustrates is cacheability, which in this case is inhibited because the cache-
inhibit bit, bit 30 of the L2 descriptor, is set. Also, in the PP field, bits 20 and 21 of the L2 descriptor
equal 3, and so this page is read/write for both privileged and problem mode. Lastly, the sharing bit of
the L2 descriptor, bit 29, is cleared, so it is not shareable. The procedures to determine these factors
are included in the links below for you to review.

If you need more practice, feel free to fill in the other columns and check your answers against those in
the exercise file.

For More Information Contact: www.freescale.com 109



SLIDE 5-24

Freescale Semiconductor, Inc.

Translation Table Structure 2
Q M_TWB 19

[ Level One Table Pointer|

b

mfspr rN,M_TWB

Effective Address
11 1

31

[ Level 1 Index [ Level 2 Index | Pag

e Offset. |

MD_EPN
12

[ Level One Table Base

[Level 1 Index J00]

Each 8M page has 8 identical
entries in level 1 table for bits
9:110f EA from 000 to 111

Identical entries required
for level 2 table:
Page size Number

1K byte 1
4K byte 4
16K byte 16

512K byte 512
8Mbyte 1024

“1 18 | evel One Table 1

Level One Descriptor 0
Level One Descriptor 1
-
Level One Descriptor N
20 10
Level One Descriptor 4095
¥ mfspr rIN,MD_TWC v

L |

[ Level Two Table Base

20

20 - for 1Kbyte
20 - for 4Kbyte

18 - for 16Kbyte

13 - for 512Kbyte
9 - for 8Mbyte

[Level 2 Index J00]

Level Two Table {10

Level Two Descriptor 0

Level Two Descriptor 1

Level Two Descriptor N

Level Two Descriptor 1023

Translation Table Structure 2

* Real Address v

12 - for 1Kbyte
12 - for 4Kbyte
14 - for 16Kb

19 - for 512Kb
23 - for 8Mb

[ Real Page Address

| Page Offset |

The structure of Translation Table 2 is very similar to that of Translation Table 1. The major difference
between the two translation tables is the size of the Level One Table, which contains 4096 entries. This
additional number of entries allows the user to implement Level Two Table descriptors for 1Kb pages.

The user specifies which of the two translation tables to use in the .TWAM field of the Data Control

Register.

For More Information Contact: www.freescale.com

110



Freescale Semiconductor, Inc.

SLIDE 5-25

MMU System Example (1 of 2)

Address Range Accessed Device Port Width
0x00000000 - Ox003FFFFF | Flash PROM Bank 1 32
0x00400000 - 0Ox007FFFFF | Flash PROM Bank 2 32
0x04000000 - 0x043FFFFF | DRAM 4Mbyte (1Meg x 32-bit)it) 32
0x09000000 - 0x09003FFF | MPC Internal Memory Map 32
0x09100000 - 0x09100003 | BCSR - Board Control & Status Register 32
0x10000000 - Ox17FFFFFF [ PCMCIA Channel 16

PS | # Used for... Address Range Cl |WT|S/U|R/W | SH
8M | 1 | Monitor & trans. tbls| 0x0 - OX7FFFFF NlY|S|RO|Y
512K | 2 | Stack & scratchpad | 0x4000000 - Ox40FFFFF N|N]SI|RW|Y
512K | 1 | CPM data buffers 0x4100000 - 0x417FFFF Y S |[RW[Y
512K | 5 | Prob. prog. & data | 0x4180000 - 0x43FFFFF N | N [SUIRW[ Y
16K | 1 | MPC int mem. map | 0x9000000 - 0x9003FFF Y| -|S|RW|Y
16K | 1 | Board config. regs | 0x9100000 - 0x9103FFF Y| -]|S|RW|Y
8M | 16 | PCMCIA 0x10000000 - OX17FFFFFF| Y | - | S [RIW| Y

WT = writethrough  ClI = cache inhibit R/O =read only R/W = read/write
S/U = supervisor/user  SH = shared

MMU System Example (1 of 2)

This example of a physical memory map illustrates a mix of different devices, and the address range
from which they are accessed.

The first chart portraying the physical memory map shows two banks of Flash PROM from the memory
range of 0x00 to 0x800000. Four megabytes of DRAM occupy the memory range from 0x04000000 to
0x043FFFFF. The internal memory map resides at 0x09000000. Board control and status registers
reside at 0x09100000. Finally, a PCMCIA channel uses memory from 0x10000000 to Ox17FFFFFF.

The second chart summarizes an example of the MMU register settings for the memory map we have
just described.

The first Flash PROM uses a single, 8 megabyte page, with the address range of 0x00 to Ox7FFFFF.
This memory area is used for the monitor program and the translation tables. Cache is not inhibited.
The memory is marked as write-through, and is used in supervisor mode. The memory is read only, and
it is shared.

The RAM area is divided into eight, 512 Kb pages. The first two 512 Kb pages of the RAM area are
used for a stack and scratch pad, ranging from addresses 0x4000000 to Ox40FFFFF. Cache is
enabled, and is in copy-back mode, as opposed to write-through. The memory is used in supervisor
mode, supports reading and writing, and it is shared.

The third 512 Kb page is used for the communications processor data buffers. This page uses an
address range from 0x4100000 to Ox417FFFF. Cache is inhibited. The memory is used in supervisor
mode, supports reading and writing, and it is shared.

The remaining 512 Kb pages in this memory area contain problem, program and data. For example,
the user can load his code in this page. These pages use the address range from 0x4180000 to
O0x43FFFFF. Cache is not inhibited, and is in copy-back mode, and the memory in this range is used in
either supervisor or user mode. The memory also supports read and write operations, and it is shared.

For More Information Contact: www.freescale.com 111



Freescale Semiconductor, Inc.

The internal memory map consists of a single, 16 Kb page, with an address range from 0x9000000 to
0x9003FFF. Cache is inhibited. The memory is used in supervisor mode, supports reading and writing,

and is shared.

The memory for the board configuration registers is allocated identically to the memory for the internal
memory map, with the exception of the discrete memory area.

Finally, the memory for the PCMCIA consists of sixteen, 8-megabyte pages, with an address range of

0x10000000 to 0x17FFFFFF. Cache is inhibited. The memory is used in supervisor mode, supports

reading and writing, and it is shared.

SLIDE 5-26
0x00400... —>{ 0x00401... | 0 L2 table 0&1
X X |
0x0040T-] 1 0x00000.. ] 0
A 0x00000.. | «
2 2 0x00000... | 93
0 L2 table 2
0 L2 table 36 |_> 0x04000... | 0
0 0x09000.. ] 0 [[0x04000... ] .
0 0x....0 | . [0x04000.. ;57
0x 0x09100.. |p56 [0x04080...17%¢
0 0x.....0 |°.° [(0x04080...
0 0X.......0 0x04080... | **
0 1023 75,04100... |255
0 L2 table 64&65 [0x04100.. |256
0x00404. . | 62— —>{ 0x10000.. | 0 [0x04100.. | «
0x00404.... | 63— 0x10000... | » [ 0x04180... |3g3
e 64 e 0x10000... | 0x04180....
0x00414... | 65— 1023 175, 0a180-. 4
0x00414... | .. L2 table 66&67 [0x04200.. | "
0.0 o 0x10800.. ] 0 [0x04200.. 511
0x.......0 0x10800... | . [ 0x04200... |512
0x.....0 ]95 0x10800... g3 [[0x04280... | =
96 N - 0x04280... 1639
o . 0x04280... [g40
1023 L2 table 92893 ;ngg;g--- .
OXI7000.. ] 0 [oxo4300-1767
0x17000... | «  5,04380... | 768
Ox17000... 4023 ["0x04380... | **
L2 table 94&95 [ 0x04380... [895
896
0x17800.. ] 0
MMU System Example (2 of 2) 0x17800... | -
0x17800... | 503 1023

MMU System Example (2 of 2)

This example of MMU register values and translation table descriptor values is based on the physical

memory map and the MMU register settings described in the previous slide.

Here is displayed a complete description of the MMU. The software has initialized all the MMU

registers and all the descriptors in the translation tables to the given values.

Note that M_TWB points to the L1 table. The first two entries in the L1 table are identical to support an

8-megabyte page, and these two identical entries point to the same L2 table. In turn, the L2 table

contains 1024 identical entries.

An area of memory is skipped, as shown in the diagram.

Next, the sixteenth L1 table entry contains a pointer to L2 Table 2, which contains the descriptor for
eight, 512 Kb pages. Each 512 Kb page has 128 identical table entries associated with it.

The internal memory map and the board control and status registers both reside in a single L2 table.

This is possible because both pages are 16 Kb in size.

For More Information Contact: www.freescale.com

112



Freescale Semiconductor, Inc.

Finally, the pages for the PCMCIA reside in a set of sixteen L2 tables.

SLIDE 5-27

What is the Guarded Attribute?

1. “bc loop” enters sequencer
loop: Ibz Rx,0(Ry)
______ 2. Branch unit predicts branch to loop

3. Sequencer pre-fetches Ibz
instruction

bc loop 4. If O(Ry) is not guarded, data is
loaded. If it is guarded, data is not
loaded until the branch is decided.

« A page should be guarded if it is subject to destructive reads.

« If the Ibz instruction is in a guarded page, it is not fetched until the branch
is decided.

«If the guarded instruction or data is in cache, the guarded bit has no effect.

What is the Guarded Attribute?

The guarded attribute prevents out-of-order loading and pre-fetching from the addressed memory
location.

This example shows a loop, in which the CPU executes a sequence of instructions to the end of the
loop. At this point, the "branch conditional back-to-loop" instruction enters the sequencer. The branch
unit predicts the branch-to-loop instruction, and therefore the sequencer pre-fetches the 'lbz' instruction.

If O(Ry) is not guarded, the sequencer next fetches the location to which RY points, and that data is
loaded before the branch is decided. If the branch instruction is not actually going to occur, the CPU
proceeds to the next instruction. This series of actions can cause a problem if RY points to a device
that is subject to destructive reads, such as a FIFO.

In contrast, if the 'lbz" instruction is in a guarded page, it is not fetched until the branch is decided.

Therefore, a page should be guarded if it is subject to destructive reads. Note that if the guarded
instruction or data is in cache, the guarded bit has no effect, so it is best not to cache guarded pages.

Also note that setting the guarded bit has an impact on performance, and therefore should be used with
discretion.

For More Information Contact: www.freescale.com 113



SLIDE 5 -28

Freescale Semiconductor, Inc.

MMU Programming Model (1 of 2)
MI_CTR - MMU Instruction Control Register

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Cl RS

GPM|PPM DEF Res val Res|PPCS Res

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Res ITLB_INDX Reserved

MD_CTR - MMU Data Control Register

0 1 C2 3 4S 5 6 7 8 9 10 11 12 13 14 15
| WT|RS | TW

GPMPPM DEFDEFIVAD| AM PPCS Res

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

| Res | DTLB_INDX | Reserved

M_CASID - Address Space Control Register

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

| Reserved

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved CASID

MMU Programming Model (1 of 2)

We have already seen a portion of the MMU programming model earlier in this chapter, during the

discussion of initializing the TLB from reset. Here are shown five registers in addition to those we have
already covered.

First is shown the MMU Instruction Control Register, or MI_CTR. Very similar in structure is the MMU

Data Control Register, or MD_CTR. These control registers support a number of features associated
with protection. These control registers also contain the index used while loading descriptors. Also note
the Cache Inhibit Default field in both registers. Upon entering an Interrupt Service Routine (ISR), the

MMU is automatically turned off. The user has the option to continue caching data upon entering a

service routine. The user selects this option in the Cache Inhibit Default field.

Following the MMU Instruction and Data Control Registers, is an Address Space Control Register, or

M_CASID. Earlier in this chapter, we described the MMU flow of operations. When the effective
address is asserted, part of the protection match that must occur includes a match between the
Address Space ID and the contents of this register.

For More Information Contact: www.freescale.com

114



Freescale Semiconductor, Inc.

SLIDE 5-29

MMU Programming Model (2 of 2)

Mx_AP - Address Protection Register x=1,P.11-22;x=D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| GPo | eP1 | 6P2 | eP3 | cPa | GoP5 | GP6 | GP7 |

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
| ops | GP9 | GPi0 | GP11 | GP12 | GP13 | GP14 | GP15 |

M_TW - Tablewalk Register
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| M_TW |

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
| M_TW |

MMU Programming Model (2 of 2)

The Address Protection Register, or Mx_AP, consists of sixteen, 2-bit fields. Each of these fields is an
address protection group. Each TLB entry has an APG number which is an index to the relevant field of
this register. The user can assign any page to an address protection group, and the address protection
field content is used according to the group protection mode.

Finally is shown a Tablewalk Register, or M_TW. This is essentially a temporary storage register, used
by the software tablewalk interrupt handlers.

For More Information Contact: www.freescale.com 115



Freescale Semiconductor, Inc.
SLIDE 5-30

How to Reload the TLBs (1 of 2)
Data TLB Reload Interrupt Handler

Data TLB Reload example:

dtlb_swtw  mtspr M_TW, R1 # save R1
mfspr R1, M_TWB #load R1 with address of level one descriptor
lwz R1, (R1) # Load level one page entry
mtspr MD_TWC,R1 # save level two base pointer and level one
# attributes
mfspr R1, MD_TWC # load R1 with level two pointer while
# taking into account the page size
lwz R1, (R1) # Load level two page entry
mtspr MD_RPN, R1 # Write TLB entry
mfspr R1, M_TW # restore R1

rfi

How to Reload the TLBs (1 of 2)

Once a TLB miss occurs, an ISR must execute that loads the descriptors into the MMU. The examples
shown here illustrate code for the Data and Instruction TLB Reload Interrupt Handlers. The two routines
are quite similar.

First, let us examine the Data TLB Reload example.

First, the routine saves R1 into the register M_TW. We mentioned in the previous slide that this is a
temporary register. Note that eventually, the routine restores R1.

Next, the routine executes a "move from special purpose register" R1, M_TWB. This is a hardware-
assisted instruction. When this instruction executes, the routine automatically retrieves the value from
M_TWSB, and the 10 bits from the effective address register, and adds two zeros. When the instruction
completes, the General Purpose Register contains the pointer to a Level 1 descriptor.

Now, R1 points to the correct L1 descriptor.

Next, the routine executes a "load word zero" into R1 of the contents to which R1 is pointing. This
means that the L1 descriptor is now in R1.

Next, the routine executes a "move to special register R1, MD_TWC". MD_TWC is the Tablewalk
Control Register. The routine in this case is taking the data from the L1 descriptor, and writing it to the
Tablewalk Control Register.

Next, the routine executes a "move from special register R1, MD_TWC". In this case, the instruction is
taking the top twenty bits from the L1 descriptor, combining them with the next ten bits of the Effective
Address Register, and adding '00'. Upon completion of this instruction, the General Purpose Register
contains the pointer to a Level 2 descriptor, taking into account the page size.

Next, the routine executes a "load word zero" into R1 of the level 2 descriptor.

For More Information Contact: www.freescale.com 116



Freescale Semiconductor, Inc.

Next, the routine executes a write of R1 into the Real Page Number Register, causing the TLB entry to
get written with the information from Mx_RPN, MD_TWC, and Mx_EPN.

The last two instructions restore R1, and perform a return from interrupt.

SLIDE 5-31

How to Reload the TLBs (2 of 2)

Instruction TLB Reload Interrupt Handler

Instruction TLB Reload Example:

itlb_swtw mtspr
mfspr

mtspr

mfspr
lwz

mtspr
mtspr
mfspr

lwz
mtspr
mfspr
rfi

M_TW, R1 # save R1

R1, SRRO # load R1 with instruction miss effective
# address (the same data may be taken
# from the MI_EPN register)

MD_EPN, R1 # save instruction miss effective address
#in MD_EPN
R1, M_TWO # load R1 with address of level one descriptor
R1, (R1) # Load level one page entry
MI_TWC,R1 # save level one attributes
MD_TWC,R1 # save level two base pointer

R1, MD_TWC # load R1 with level two pointer while
# taking into account the page size

R1, (R1) # Load level two page entry

MI_RPN, RI # Write TLB entry

R1, M_TW # restore R1

How to Reload the TLBs (2 of 2)

Now, let us examine the Instruction TLB Reload example.

The first step is the same as in the first routine; that is, R1 is saved into the register M_TW.

Next, in order to load the Data Effective Page Number Register with the instruction miss effective page

number, the routine executes a "move from special register" SRRO into R1. SRRO contains the

address of the missed instruction.

"move to special register" MD_EPN, R1 saves the instruction miss effective address in MD_EPN.

Next, the routine executes a "move from special register R1, M_TWB", as we saw in the first routine.

This loads R1 with the address of a Level 1 descriptor.

Next is a "load word zero" R1, (R1), which loads the Level 1 page entry.

Next, the routine executes a "move to special register" R1 to MI_TWC, followed by a "move to special

register" R1 to MD_TWC. These two instructions save the Level 1 attributes, and the Level 2 base

pointer.

Next, the routine loads R1 with the L2 descriptor information while taking the page size into account.

For More Information Contact: www.freescale.com

117



Freescale Semiconductor, Inc.

The rest of the routine follows exactly as the first one we examined, with one exception. When the
routine executes a "move to special register” from R1, its destination is the Instruction Real Page
Number Register.

SLIDE 5-32

How to Reserve TLB Entries

ITLB DTLB
0o— 0
1 1
2 2
2 2
27 27
28 Rsv4lZ1 28 RSV4D=1
29 29
30 30
31 RSV4I=0 31 RSV4D=0

How to Reserve TLB Entries

As it is possible to lock instructions and data in cache, it is also possible to lock instructions and data in
TLBs as well.

Setting the RSV4l in the MI_CTR register, or setting the RSV4D in the MD_CTR register, controls the
TLB replacement counter so that it only selects among the first twenty-eight entries in each TLB.

Replacement counters are cleared to zero after execution of the 'tlbia’ instruction. The counters
decrement after a TLB reload; the oldest TLB is the one that is replaced.

The user is restricted to locking four entries per TLB.
The process of loading a single reserved entry in the TLB is as follows:

1. Disable the TLB by clearing MSR(IR) or MSR(DR) as needed.

2. Clear the reserve bit (RSV4l or RSV4D) bit in the data or instruction control register (MI_CTR or
MD_CTR).

3. Invalidate the effective address of the reserved page by using 'TLB invalidate all' (‘tlbia") or 'TLB
invalidate entry' (‘tlbie").

4. Set the index fields (ITLB_INDX or DLTB_INDX) of the control register (MI_CTR or MD_CTR) to the
appropriate value between 28 and 31.

5. Load the Effective Page Number Register (MI_EPN or MD_EPN) with the Effective Page Number,

the Address Space ID of the reserved page, and set '1' as the EV bit.

Run the software tablewalk code to load the appropriate entry in the TLB.

If needed, repeat the three previous steps to load up to four other TLB entries.

Set the reserve bit (RSV4l or RSV4D)in the control register (MI_CTR or MD_CTR).

©~No

For More Information Contact: www.freescale.com 118



Freescale Semiconductor, Inc.

SLIDE 5-33

MMU Interrupts (1 of 2)

Interrupts generated:

« Implementation specific Instruction TLB miss interrupt:
Occurs when MSR; = 1 and an attempted instruction fetch ends in a TLB miss.
« Implementation specific Data TLB miss interrupt:
Occurs when MSR = 1 and an attempted operand access ends in a TLB miss.
« Implementation specific Instruction TLB error interrupt:
Occurs when Segment Valid bit or Page Valid bit of this page are cleared, or
Occurs when instruction fetch violates storage protection, or
Occurs when instruction fetch is to Guarded storage and MSRz = 1
SRR1 contains the exact reason for invocation:
Bit 1 - Set to 1 when attempted access not found in translation tables
Bit 3 - Set to 1 when fetch access was to a Guarded storage and MSR =1
Bit 4 - Set to 1 when the access violates the protection mechanism

MMU interrupts (1 of 2)

This slide and the next show a summary of the MMU interrupts, including types of interrupts and their
causes. Notice the Instruction TLB miss interrupt, and the Data TLB miss interrupt. Notice also that
there are separate interrupts for the Instruction TLB error and the Data TLB error.

In the case of the error interrupts, certain register locations provide extra information about the nature of
the error. For example, in the case of a Data TLB error, the DSISR and the DAR registers provide
additional information. In the case of an Instruction TLB error, SRR1 provides additional information.

For More Information Contact: www.freescale.com 119



Freescale Semiconductor, Inc.

SLIDE 5-34

MMU Interrupts (2 of 2)

« Implementation specific Data TLB error interrupt:
Occurs when Segment Valid bit or Page Valid bit of this page are cleared, or
Occurs when operand access violates storage protection, or
Occurs when an attempt to write is to a page with a negated Change bit
DSISR contains the exact reason for invocation:
Bit 1 - Set to 1 when attempted access not found in translation tables
Bit 4 - Set to 1 when the access violates the protection mechanism
Bit 6 - Set to 1 for a store operation, to a 0 for a load operation
DAR contains the effective address of the data access that caused the interrug
« Software tablewalks - Updates accomplished using:
- Data TLB Miss and Instruction TLB Miss interrupts
- Special Purpose Registers located in the Data MMU

Here are the MMU Interrupt Vector locations:

Offset (hex) Interrupt Type

01100 Implementation Dependent Instruction TLB Miss
01200 Implementation Dependent Data TLB Miss
01300 Implementation Dependent Instruction TLB Error
01400 Implementation Dependent Data TLB Error

MMU interrupts (2 of 2)

Shown here are the remaining MMU interrupts, and the MMU Interrupt Vector locations. You may want
to pause here to review this material.

For More Information Contact: www.freescale.com 120



SLIDE 5-35

Freescale Semiconductor, Inc.

How to Initialize the MMU (1 of 3)

MD_CTR

(11-14)
GPM: group protection mode
PPM: page protection mode
CIDEF: inst cache inhibit default
WTDEF: cache mode when MMU dis
RSV4D: reserve 4 TLBentries
TWAM: table walk assist mode
PPCS: priv/prob compare mode
DTLB_INDX: inst TLB index

Step Action Example
1 asm(“ tlbia”); /*
Invalidate all TLB entries I NVALI DATE ALL TLB
ENTRI ES */
2 | Initialize the MMU Instruction Control Reg, (i ctr.all = 0:
MI_CTR . e 1
GPM: group protection mode m _tcfvlr ' I:ll'g C! DEF B Ill .
PPM: page protection mode tni - (m_ctr.all);
CIDEF: inst cache inhibit default
RSVA4I: reserve 4 TLBentries
PPCS: priv/prob compare mode
ITLB_INDX: inst TLB index (11-13)
3 [Initialize the MMU Data Control Reg,

md_ctr.all = 0;

md_ctr. fld.ClDEF = 1;
md_ctr. fld. TWAM = 1;
initMD CTR(nd_ctr.all);

How to Initi

This procedure shows how to initialize the MMU. It assumes that reset conditions exist.

The first step invalidates all TLB entries. The 'tlbia’ instruction performs this task.

alize the MMU (1 of 3)

Step 2: Initialize the MMU Instruction Control Register. Shown in the slide are various features the user

can enable or disable. A user could use this example to create a prototype for the register, clear the
register, then set the fields of interest, and finally write the prototype to the register.

Step 3: Initialize the MMU Data Control Register. The process we have just described for the
Instruction Control Register also applies to initializing the Data Control Register. The MMU Data

Control Register contains two additional bits. One of these additional bits is the Write-Through Default
Mode bit, used if cache is enabled. The second additional bit is the TWAM bit, which selects between

Table Struct

ures 1 and 2.

For More Information Contact: www.freescale.com

121



Freescale Semiconductor, Inc.

SLIDE 5-36

MMU Interrupts (2 of 2)

« Implementation specific Data TLB error interrupt:
Occurs when Segment Valid bit or Page Valid bit of this page are cleared, or
Occurs when operand access violates storage protection, or
Occurs when an attempt to write is to a page with a negated Change bit
DSISR contains the exact reason for invocation:
Bit 1 - Set to 1 when attempted access not found in translation tables
Bit 4 - Set to 1 when the access violates the protection mechanism
Bit 6 - Set to 1 for a store operation, to a 0 for a load operation
DAR contains the effective address of the data access that caused the
interrupt
« Software tablewalks - Updates accomplished using:
- Data TLB Miss and Instruction TLB Miss interrupts
- Special Purpose Registers located in the Data MMU

Here are the MMU Interrupt Vector locations:

Offset (hex) Interrupt Type

01100 Implementation Dependent Instruction TLB Miss
01200 Implementation Dependent Data TLB Miss
01300 Implementation Dependent Instruction TLB Error
01400 Implementation Dependent Data TLB Error

How to Initialize the MMU (2 of 3)
Step 4: Move the data TLB miss exception service routine to the exception vector table.

Step 5: Move the instruction TLB miss exception service routine to the exception vector table.

For More Information Contact: www.freescale.com 122



Freescale Semiconductor, Inc.

SLIDE 5-37

How to Initialize the MMU (3 of 3)
Step Action Example

6 | Move data TLB error exception service
routine to the exception vector table

7 |Move instruction TLB error exception
service routine to the exception vector table

8 |Initialize L1 table pointer; clear L1 table

9 [Map in each segment desired

10 | Enable the MMU asm(“ nfrsr r3");

asm(“ ori r3,r3,0x0030");
asm(“ mnmsr r3");

asnm(“ isync”);

asm(“ sync”);

11 | Enable the caches

How to Initialize the MMU (3 of 3)

Step 6: Move the data TLB error exception service routine to the exception vector table.

Step 7: Move the instruction TLB error exception service routine to the exception vector table.
Step 8: Initialize the L1 table pointer and to clear the L1 table.

Step 9: Map in each segment desired.

Finally, step 10 enables the MMU, and then enables the caches. The user may also consider enabling

all of the peripherals in use immediately prior to this step.

For More Information Contact: www.freescale.com

123



Freescale Semiconductor, Inc.

Chapter 6: EPPC Exception Processing

EPPC Exception Processing

PowerPC

SIU
Port C4:15 IRQO:7 >

LVLO:7
CPM Sl

\ 4

A4

IREQ

IC

17 Devices —*

532700

What you < What are the types of exceptions?
will learn * How the core processes an exception
* How to access the exception vector table
« How to make an exception service
routine recoverable
* How to write an exception handler

SLIDE 6-1

Before we discuss exception processing, you should be aware that the PowerPC convention is that an
instruction-related interrupt is called an exception and that any other non-instruction-generated interrupt
is still called an interrupt. This may come in handy when reading certain PowerPC based documents,
but for the purposes of this we will generally use exceptions to mean an interrupt-style event
experienced by the core. We will refer to all other events as interrupts.

There are three areas of focus when discussing exceptions or interrupts: the EPPC Core, the CPM and
SIU.

The PowerPC receives an interrupt when its IREQ input is asserted, at which point the PowerPC begins
external interrupt exception processing.

The CPM drives interrupt levels on the SIU. The CPM prioritizes, masks, or unmasks twenty-nine
interrupt sources.

The System Interface Unit interrupt controller drives the IREQ input to the PowerPC. The SIU controller
prioritizes and masks or enables sixteen sources of interrupts, one of which can be the CPM. Later
chapters discuss CPM and SIU interrupt issues.

This chapter is devoted to exception processing in the PowerPC.

The goal of this chapter is to learn to write an exception handler that is recoverable. In this chapter, you
will learn:

1. What are the types of exceptions?

2. How the EPPC core processes an exception

3. How to access the exception vector table

4. How to make an exception service routine recoverable, and

For More Information Contact: www.freescale.com 124



Freescale Semiconductor, Inc.

5. How to write an exception handler

SLIDE 6-2

What is an EPPC Exception?
pc —>] _SRRO pc —>|__ SRRO

MSR —> SRR1 MSR —> SRR1

main esrl esr2

@ ©)

@ @

PC <— SRRO PC <— SRRO
MSR <« SRR]. MSR <« SRR].

Any exception.

Reset, NMI, machine check, debug(2), and synchronous. If MSR.EE
= 1, then external and decrementer.
RFI. User checks SRR1.RI =1.

RFI

OOIOIG)

What is an EPPC Exception?

An exception is an event that causes deviation from normal processing, such as an interrupt, reset, or
bus error. There are two major types of interrupts: instruction-related interrupts, and asynchronous,
non-instruction related interrupts. The PowerPC implements a precise exception model. The core uses
the same mechanism to handle all types of exceptions.

To review the diagram, Path 1 refers to any exception. Path 2 refers to the execution of the ‘rfi’
instruction. Path 3 refers to another exception that occurs while the core is executing Exception Service
Routine 1. Path 4 refers again to the execution of the ‘rfi’ instruction. The user in this case checks to
see if the Recoverable Interrupt bit in the SRR1 register has been set.

Let us now take a closer look at these four potential paths, and their relationships to each other.

First, if the execution flow includes Path 1, followed by Path 2, the exception is ordered, meaning that
no program state is lost. In this case, during the execution of the main code, an exception causes the
core to take Path 1 to Exception Service Routine 1, shown in the diagram as esrl. In the process of
taking this path, the PowerPC saves the program counter in SRRO, and the machine state register in
SRRL1. Also, the core clears many bits in the machine state register, disabling functions such as the
MMU, and interrupts.

Exception Service Routine 1 executes, and upon completion, the PowerPC executes the ‘rfi’ instruction.
This causes program control to take Path 2 and return to the main code where the exception occurred.
While executing Path 2, the core restores the contents of SRRO to the program counter, and SRR1 to
the machine state register.

For More Information Contact: www.freescale.com 125



Freescale Semiconductor, Inc.

Let us now discuss an example of an unordered exception. If the execution flow follows Paths 1, 3 and
4, and if a machine check, NMI or synchronous exception causes Path 3, then the exception is
unordered because the program state for Path 2 is lost. In other words, while exception service routine
1 executes, it is possible to receive a second exception, thereby taking Path 3. In path 3, as with Path
1, the core saves the program counters in SRRO, the machine state register in SRR1, and then clears
the machine state register. If such a sequence occurs, it is not possible for the core to return to the
main code, because the program state for Path 2 is lost.

There are two means to avoid such a sequence. First, it is possible for the core to NOT take Path 3
while esrl is executing, since the machine state register is cleared, and therefore interrupts are
disabled.

As an alternative, the user can program an execution flow that is ordered for interrupt nesting. In the
course of following Path 1, and while the machine state register is cleared, it is possible to re-enable
interrupts, if the user first takes precautions to save the contents of SRRO and SRR1 properly. If
program control takes Path 3, and if it is possible to recover, program control should then take Path 4.
However, if it is not possible to recover, program control should not take Path 4; instead, there should
be a reset, or other appropriate action.

In order to determine whether it is possible to recover, the machine state register maintains a
Recoverable Interrupt Mode bit. While operating in main, the PowerPC is in recoverable interrupt
mode. When program control takes Path 1, the core saves the machine state register in SRR1 and then
clears the Machine State Register including the recoverable interrupt mode bit.

While operating in Exception Service Routine 1, the PowerPC is not in the recoverable interrupt mode.
If program control takes Path 3, and if this routine includes a check on the recoverable interrupt mode
bit, the core can determine if it is possible to return, and take appropriate action.

To summarize, when program control enters into esrl, interrupts are disabled, and it is possible to re-
enable interrupts if desired. The user should re-enable interrupts after having saved the program
counters in SRRO, and the Machine State Register into SRR1. When the user re-enables interrupts, he
can also set the RI bit to indicate that recoverable interrupt mode is in operation, and it is then possible
to take Paths 3 and 4 safely.

The following events could cause Path 3 to be taken:

1. Areset could occur.

2. Next, a Non-Maskable Interrupt (NMI) could occur; keep in mind that interrupts are masked when
esrl executes.

3. Third, a machine check could occur, perhaps from a parity error, or an access to an address that
does not exist.

4. Also, conditions causing exceptions exist in debug mode.

5. Finally, a synchronous exception could occur. This refers to an instruction exception, such as an
alignment interrupt. Once the system has shipped, the debugger should no longer be in operation.
Also, there should not be any synchronous interrupts occurring. Therefore, the only exceptions that
should occur are the NMI or the machine check exceptions. Note there is a list of exceptions and
exception priorities in the User Manual.

For More Information Contact: www.freescale.com 126



SLIDE 6-3

What is the Exception Vector Table?

0 0000
VECTOR (00100
OFFSET 00200

HEX) 50300
00400
00500
00600
00700
00800
00900
0 0A00
0 0B0O
00C00
0 0D00
0 0E00
01000
01100
01200
01300

0 1400
0 1500 -

01BEE
0 1Co00

0 1D00
0 1E00
0 1F00

Freescale Semiconductor, Inc.

EXCEPTION TYPE

RESERVED

SYSTEM RESET/NMI

MACHINE CHECK

DATA STORAGE

INSTRUCTION STORAGE

EXTERNAL INTERRUPT

ALIGNMENT

PROGRAM

FLOATING-POINT UNAVAILABLE

DECREMENTER

RESERVED

RESERVED

SYSTEM CALL

TRACE

FLOATING-POINT ASSIST

IMPLEMENTATION DEPENDENT SOFTWARE EMULATION

IMPLEMENTATION DEPENDENT INSTRUCTION TLB MISS

IMPI EMENTATION DEPENDENT DATA TI B MISS

IMPLEMENTATION DEPENDENT INSTRUCTION TLB ERROR

IMPLEMENTATION DEPENDENT DATA TLB ERROR

RESERVED

IMPLEMENTATION DEPENDENT DATA BREAKPOINT

IMPLEMENTATION DEPENDENT INSTRUCTION BREAKPOINT

IMPLEMENTATION DEPENDENT PERIPHERAL BREAKPOINT

IMPLEMENTATION DEPENDENT NON MASKABLE DEVELOPMENT PORT

What is the Exception Vector Table?

The exception vector table is the location to which program control goes after an exception occurs.
Each interrupt generated in the machine transfers control to a different address in the vector table.

Here are shown some of the types of exceptions that can occur, including system reset, NMI, machine

check, external interrupt, alignment error, program error, and the like. Notice that the Instruction TLB

Miss, the Data TLB Miss, and the Instruction and Data TLB Error vectors are included here. Also notice

the vector offsets. Each of these vector table entries is offset by 100 hexadecimal bytes. When the

core obtains a vector at one of these locations, it begins executing instructions at that point. Therefore,

it is possible for the programmer to include a 64-word exception service routine in each vector table
entry. If the exception service routine exceeds 64 words, it is necessary to branch out to another

memory location and execute the routine there.

For More Information Contact: www.freescale.com

127



Freescale Semiconductor, Inc.

SLIDE 6-4

How the Machine State Register Affects Interrupts

MSR - MACHINE STATE REGISTER

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RESERVED POW| ISF | ILE

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

EE | PR FP | ME | FEO [ SE | BE | FE1 |RESVD IP IR DR |RESVDRESVD RI LE

How the Machine State Register Affects Interrupts

Here we see a diagram of the Machine State Register. The Machine State Register has a number of
important bits, and three of these bits in particular are important when working with interrupts.

One of these bits is associated with the vector table -- the Interrupt Prefix, or IP, bit. The IP bit
determines the location of the exception vector table. There are two possible locations - zero (0x000n -
nnnn) or OxFFFO - 0000. If the IP bit is set to zero, the location of the exception vector table is at zero. If
the IP bit is set to one, the location of the exception vector table is at OXFFFO - 0000.

The EE bit enables or disables external interrupts. The RI bit is the Recoverable Interrupt mode bit,
which we discuss earlier in this chapter.

For More Information Contact: www.freescale.com 128



Freescale Semiconductor, Inc.

SLIDE 6-5

How the Machine State Register Affects Interrupts
MSR AFTER RESET:

POW 0 Power Management Disable

ISF 0 Implementation Specific Function

ILE 0 Interrupt Little Endian Mode Disabled

EE 0 External and DEC Interrupt are disabled

PR 0 Privilege Level is Supervisor.

FP 0 Floating Point Unit not available

ME 0 Machine Check Disabled: If transfer error acknowledge (TEA ) occurs, the
Chip will go to Checkstop State. The SIU may assert reset in order to
recover.

FEO O Floating-Point Exception Mode O(has no effect).

SE 0 Single Step Trace Disabled.

BE 0 Branch Trace Disabled.

FE1 O Floating-Point Exception Mode 1(has no effect).

P * Interrupt Prefix . Vector Table Located
at 0x000n - nnnn or at OxFFFn - nnnn for a value
of a “0” or a “1” respectively.

IR 0 Instruction Relocate

DR 0 Data Relocate

RI 0 Recoverable Interrupt Mode is Disabled.

LE 0 Normal Processing is set for Big Endian Mode.

Machine State Register Fields

This listing describes the various fields in the Machine State Register, including their values after reset.

For More Information Contact: www.freescale.com 129



Freescale Semiconductor, Inc.

SLIDE 6-6
How the EPPC Processes an Exception

Start

4

Copy MSR to SRR1

Load SRRO with the next instruction address or
the address of the instruction that caused the
exception.

4
Change MSR (typically to all zeroes)
including MSR.PR, MSR.EE, and
MSR.RI

4

Point to the exception vector and begin
the service routine

End

How the EPPC Processes an Exception
When an exception occurs, first the EPPC core writes a copy of the Machine State Register to SRR1.

Next, the core loads SRRO with the next instruction address, or the address of the instruction that
caused the exception.

Then, the core changes the Machine State Register to mostly zeros, including the PR bit for privileged,
the EE bit to disable interrupts, and the RI bit to exit the recoverable interrupt mode.

Next, the core points to the exception vector, and begins the service routine at that location. All

exceptions save information in SRRO and SRR1. There are a few exceptions that save information in
DSISR and DAR if needed.

For More Information Contact: www.freescale.com 130



Freescale Semiconductor, Inc.

SLIDE 6-7

How to Make the ESR Recoverable

Making the ESR Recoverable

asm (“ stwu r9,-12(r1)"); /* SAVE R9 x|
asm (" nfspr r9, 26"); /* PUSH SRRO ONTO STACK  */
asm (" stwr9,4(rl1)");
asm (" nfspr r9,27"); /* PUSH SRR1 ONTO STACK  */
asm (" stwr9,8(rl1)");
asm (" ntspr 80,0"); /* ENABLE | NTERRUPTS * |

Before ESR Exit

asm (" ntspr 82,0"); /* MAKE NON- RECOVERABLE — */
asm (" Iwz r9,8(r1)"); /* PULL SRR1 FROM STACK  */
asm (" ntspr 27,r9");
asm (" Iwz r9,4(r1)"); /* PULL SRRO FROM STACK  */
asm (" ntspr 26,r9");
asm (“ Iwz r9,0(r1)"); /* PULL RO FROM STACK */

asm (" addi r1,r1,12");

How to Make the ESR Recoverable

If an interrupt occurs, it is possible to make the exception service routine recoverable, allowing the user
to nest interrupts. This is necessary if it is desirable to use the full capability of the CPM interrupt
controller.

Here we see the code required to make an exception service routine recoverable. The first instruction is
to save R9 onto a stack frame of 12 bytes. R9 in this case is somewhat arbitrary, as a scratch register
is needed.

Next follows the instruction to "move from special register" SRRO into R9, and then to store R9 onto the
second entry of the stack frame.

Next, SRR1 is stored in the third entry of the stack frame.

After these steps, the system is ready to accept another interrupt. In order to accept another interrupt,
however, it is necessary to re-enable interrupts. Re-enabling interrupts is accomplished with the
instruction "move to special register" 80,0. This is actually a special hardware system instruction.
"move to special register” 80,0 sets the EE and the RI bits in the Machine State Register. From that
point, it is possible for the core to respond to interrupts, and the system is in the recoverable interrupt
mode.

Before leaving the exception service routine, it is necessary to take additional steps as shown in the
second procedure. The first instruction in this second procedure is a "move to special register" 82, 0,
which clears the EE and RI bits so that the system is no longer in the recoverable interrupt mode, and
the core will no longer respond to interrupts. Next, the instructions execute that pull SRR1 and SRRO
from the stack. Then, the routine restores R9, and cleans up the stack. At this point, an RFI instruction is
executed.

For More Information Contact: www.freescale.com 131



g |

Freescale Semiconductor, Inc.

SLIDE 6-8

Machine State Register Bits

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RESERVED POW] ISF | ILE

N U 0
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

PR | FP | ME | FEO | SE | BE | FE1 RESVQ IP IR | DR RESVDRESVDQ LE

EE RI

N N 0

Mnemonic MSRge MSRg, Used For

EIE (80) 1 1

External Interrupt Enable

External Interrupt Disable, but other
EID (81) 0 1 .
interrupts are recoverable

NRI(82) 0 0

Non-Recoverable Interrupt

Ports to Machine State Register Bits

This chart summarizes the special ports to Machine State Register bits that we discussed a moment
ago.

For More Information Contact: www.freescale.com 132



Freescale Semiconductor, Inc.

SLIDE 6-9

Example (1 of 3)

1 #include "npc860. h" /* I NTNL MEM MAP EQUATES*/
2 struct inmrbase *pimm /* PNTR TO | NTNL MEM MAP*/
3 min()
4 void esr(); / * EXCEPTI ON SERVI CE RTN */
5 int *ptrs,*ptrd; /* SOURCE & DEST PO NTERS*/
6 pi nm = (struct inmbase *) (getimm() & OxFFFF0000);

/* INIT PNTR TO | MVBASE */
7 ptrs = (int *) esr; /* INIT SOURCE PO NTER  */
8 ptrd = (int *)(getevt() + O0xC00); /* INIT DEST PO NTER */
9 do /* MOVE ESR TO EVT */
10 *ptrd++ = *ptrs; /* MOVE UNTI L */
11 while (*ptrs++ ! = 0x4c000064); /* RFI | NTRUCTI ON */
12 pi mm >PDDAT = O; /* CLEAR PORT D DATA REG */
13 pi mm >PDDI R = Oxff; /* MAKE PORT D8-15 OUTPUT*/
14 asm(" sc"); /* SYSTEM CALL */

15 #pragma interrupt esr
16 void esr()

Example

In this example program, an LED counter on Port D is incremented each time a system call instruction,
‘sc’, is executed. It begins with the inclusion of mpc860.h and the declaration of the pointer pimm, which
will point to the internal memory space. These lines are required only because we are using Port D;
otherwise they could be eliminated.

In line 4, the function esr is declared. This is the function that will be the exception service routine for the
system call instruction.

In line 5, two pointers are declared -- a source pointer and a destination pointer. In this example, rather
than linking in the exception service routine to the proper location in the exception vector table, the
routine executes a block move to put it in the exception vector table. Therefore, the two pointers are
required.

Line 6 is to initialize pimm to point to the internal memory space.

Line 8 initializes the destination pointer with the location of the exception vector table, either O or
O0xFFFO00000 as returned by the function ‘getevt’, plus the offset into the exception vector table for a

system call exception, this offset being 0xCO0O.

Lines 9 through 11 are the block move routine that ends when the opcode for an ‘rfi’ instruction is
moved.

Lines 12 and 13 initialize Port D to a count of zero.

And then line 14 is the “system call” instruction. When it executes, the service routine, esr, now located
in the exception vector table, executes.

For More Information Contact: www.freescale.com 133



Freescale Semiconductor, Inc.

In line 15, the function esr is preceded with #pragma interrupt esr, which indicates to the compiler that
function esr should be terminated in an ‘rfi’ rather than a ‘blr’, as would normally occur. This makes esr

an exception service routine.

SLIDE 6-10

Example (2 of 3)

17 asm (" stwu r9,-12(rl1)");
18 asm (" nfspr r9,26");
19 asm (" stwr9,4(rl1)");
20 asm (" nfspr r9,27");
21 asm (" stwr9,8(rl1)");
22 asm (" ntspr 80,0");
23 pi mm >PDDAT += 1,

24 asm (" ntspr 82,0");
25 asm (" lwz r9,8(r1)");
26 asm (" mspr 27,r9");
27 asm (" lwz r9,4(r1)");
28 asm (" ntspr 26,r9");

29 asm (" lwz r9,0(r1)");

30 asm (" addi r1,r1,12");
}

31 getimmr()

{
32 asm(" nfspr 3,638");

Example, Continued

/*

PUSH GPR9 ONTO STACK
PUSH SRRO ONTO STACK

PUSH SRR1 ONTO STACK

ENABLE | NTERRUPTS

MAKE NON- RECOVERABLE
PULL SRR1 FROM STACK

PULL SRRO FROM STACK

PULL GPR9 FROM STACK

* RESTORE STACK PO NTER

Lines 17-22 are the instructions to make this exception service routine recoverable.

In line 23, the LED counter on Port D is incremented.

*/

*/
*/

*/

*/

*/
*/

Then lines 24-30 restore the save registers from the stack, and program control returns to main where

the routine exits.

For More Information Contact: www.freescale.com

134



Freescale Semiconductor, Inc.

Slide 6-11

Example (3 of 3)

33 getevt () /* GET EVT LOCATI ON *)

34 if ((getmsr() & 0x40) == 0) /* IF MBRIP IS0 *)

35 return (0); /* THEN EVT IS I N LOW MEM/

36 else /* ELSE *)

37 return (0xFFFO0000); /* EVT IS INHGH MEM  */
}

38 getnsr() /* GET MACHI NE STATE REG VALUE */
{

39 asm(" nfmsr 3"); /* LOAD MACHI NE STATE REG TO r3 */
}

Example, Continued

Line 33 declares the function that gets the exception vector table.

In line 34, the machine state register is first read and then "ANDed" with the value 0x40, which is
associated with the IP bit position in the machine state register. If the result is zero, the exception vector

table is located at zero and that value is returned. Otherwise a value of 0xFFF00000 is returned.

In line 39, the ‘getmsr’ function consists only of the move from machine state register instruction.

For More Information Contact: www.freescale.com 135



Freescale Semiconductor, Inc.

Chapter 7: MPC860 Architecture, Part 2

SLIDE7-1

MPC860 Architecture, Part 2

What you . |dentify the basic blocks and their functions, focusing on the
will learn  cpM and SIU
« Describe the function of each component
« Calculate CPM (Communications Processor Module) performance
« Discuss how to locate the internal memory
» How the EPPC sends commands to the CPM RISC

In this chapter you will learn to:

1. Identify the basic blocks of the MPC860 and their functions, focusing on the CPM and SIU
2. Describe the function of each component

3. Calculate CPM (Communication Processor Module) performance

4. Discuss how to locate the internal memory

5. How the EPPC sends commands to the CPM RISC

For More Information Contact: www.freescale.com 136



(O
P

Freescale Semiconductor, Inc.

What are the Basic Components?

%stem Interface Unit

Memory Controller >
U-bus > BIU >
System Functions
Real Time clock
PCMCIA Interface
Parallel 1/0 Internal 4 General
Baud Rate Memory (Izg:]etrrrolff); Purpose :
Generators Space Timers 16 Serial >
Parallel Interface | 32-Bit RISC pController DMAs,
Port Internal |_and Program ROM | MA 2 Virtua IDMA
Times Periphef@l Bus

!
I ®

SCC1] [SCC2][SCC3] [SCC4] [SMCI[SMC2[SPI1]| 1°C | Communications
Seria Interface Processor
Module

Time Slot Assigner |

SLIDE 7-2
What are the basic components?

Chapter 1 concentrated on the PowerPC. In this chapter, we are going to concentrate on the System
Interface Unit (SIU) and the Communications Processor Module.

For More Information Contact: www.freescale.com 137



Freescale Semiconductor, Inc.

SLIDE 7-3
What are the Basic SIU Components?
System Interface Unit
A. System
Memory Controller  j«—> configuration and
protection
’ Bus Interface Unit > B. System reset
- monitoring and
System Functions generation
A B
C D C. Clock synthesizer
E F D. Power management
[  Red-timeClock | E. Debug support
Periodic Intrpt Timer F.JTAG
PCMCIA Interface §

What are the Basic SIU Components?

The first component listed is the Bus Interface Unit. This provides an interface between the internal
Unified bus and the external synchronous, burstable bus.

Next, the SIU supports a number of system functions, shown listed on the right hand side of the
diagram.

1.

4.
5.
6.

First, there are system configuration and protection mechanisms. The User Manual contains a pin
diagram, showing that a number of the SIU pins have more than one function. There are system
configuration registers in the SIU to configure those pins to support either one function or the other.
The protection functions of the SIU include the hardware watchdog and the software watchdog.
Next, there are system reset monitoring and generation functions within the SIU.

Also, there is a clock synthesizer which allows the user to multiply a low input clock frequency,
provided by a crystal or external oscillator, and generate all the clocks for the system from that
frequency.

Power management is also controlled here; the MPC860 works in several low power modes.
This is also where the debug support occurs, and, lastly,

The JTAG support (IEEE 1149.1 test access port).

In addition to the system functions we have just described, the SIU also includes the memory controller,
as shown, which supports eight memory banks of SRAM or SRAM-like devices, as well as DRAM.

There is also a real-time clock, which provides a time of day indication to the operating system and the
application software.

Also shown here is a Periodic Interrupt Timer, which generates periodic interrupts for possible use with
a real-time operating system.

For More Information Contact: www.freescale.com 138



Freescale Semiconductor, Inc.

Finally, the PCMCIA interface is available for both PCMCIA ports A and B. This interface provides all
necessary control logic for the two ports. The designer must provide external analog power and
buffering.

SLIDE 7-4
What is the Bus Monitor (Hardware Watchdog)?

Example

MPC860
@ .| Slave Device
Address >

Data[*
Cs*

_TA* @ I

Mem [TA* TA*
Cntrir | Gen Gen

Tea | ®
Bus TEA*
Monitor Gen

v

4

What is the Bus Monitor (Hardware Watchdog)?

The bus monitor is an internal device, which causes a machine check exception to occur if the response
time of a slave device is too slow. When the MPC860 accesses a slave device, it requires that Transfer
Acknowledge be asserted either internally or by an external device. The Transfer Acknowledge signal
indicates that the 860 can latch the data (in the case of a read access), or that a slave device has
latched the data (in the case of a write access).

If TA* is never asserted, for example if the address does not exist, then Transfer Error Acknowledge
must be asserted for the 860 to terminate the cycle via a machine check exception. To assert TEA*, the
user has two options. The first option is for the user to build external logic that detects when excessive
time has lapsed between the assertion of chip selection and the assertion of TA*; in this case, the
external logic asserts TEA*. The second option is for the user to enable the internal bus monitor, which
the user can configure for a time-out period. In this case, an internal device causes TEA* to be
asserted.

To use the bus monitor, it must be enabled and initialized for the length of the bus monitor time out.
The user enables the bus monitor in a register called SYPCR, or System and Control Register. The
time out is set in the Bus Monitor Timeout field, with an integral number of eight clocks. For example,
the field could be set for eighty clocks with a value of ten. Placing a value of one in the enable bit
enables the bus monitor.

For More Information Contact: www.freescale.com 139



Freescale Semiconductor, Inc.

SLIDE 7-5

What is the Software Watchdog?

Flow
Diagram
General
System
Clock :
l Service SYPCR.SWTC
Logic
Clock » Divide [— 2l Reload
Enable by 2048 ‘ MUX Decrementer
T T Rollover =0
SYPCR.SWE SYPCR.SWP Timeout
SYPCR.FRZ —
NMI
RESET

What is the Software Watchdog?

The 860 has a software watchdog timer to prevent system lockout in case the software becomes
trapped in loops with no controlled exit. If the software watchdog times out, a reset or a non-maskable
interrupt (NMI) occurs, based on what the user has programmed in the SWRI field of SYPCR. This is
the software watchdog reset and interrupt select. A timeout occurs when the value set in
SYPCR.SWTC is decremented to a value of 0 in the decrementer. To prevent a timeout, the software
must write a value of 0x556C followed by OxAA39 to the Software Sevice Register (SWSR). This
causes the service logic to reload the initial value in the decrementer. At what rate does the
decrementer count down? The user has a choice to either drive the decrementer directly from the
general system clock, or from the general system clock divided by 2048. To select the rate, the
programmer sets the appropriate value in the SWTC field of the SYPCR.

There is an enable bit for the software watchdog, and there is also a freeze bit (SYPCR.SWE and
SYPCR.FRZ). Here is shown the freeze function in conjunction with the software watchdog, but the
freeze function is actually more general in scope. All the timers have the ability to freeze, and there is
also an external freeze pin. If there is a transition from normal mode to debug mode, it is likely that the
software watchdog should not continue to time out. In such a case, SYPCR.FRZ should be set to 1.
When the processor makes the transition back to normal mode, the software watchdog timer then
continues counting from its previous value.

The software watchdog is enabled after reset. If it is not needed, the user must clear SYPCR.SWE.
Once a write to the SYPCR occurs, the state of SYPCR.SWE cannot be changed.

For More Information Contact: www.freescale.com 140



Freescale Semiconductor, Inc.

SLIDE 7-6

What is a Timeout Calculation Example?

Assuming a system clock of 25 MHz, initialize the software watchdog for a timeout
of 1ms.

SWTC = Timeout * ClkFreg/[1 or 2048]
=103%*25* 10°/1

= 25000
pi mMm >SWIC = 25000; [* INIT SWI FOR 1 M5 */
pi mm >SYPCR &= OxFFFFFFFE; /* NO PRESCALE */

Calculating the Software Watchdog Timeout

Here we see an example to calculate the software watchdog timeout. We assume a system clock of
25 MHz and that we wish to initialize the software watchdog for a timeout of one millisecond. The value
in SWTC is the timeout value, multiplied by the clock frequency, and divided by either 1, or by 2048. In
this example, we obtain a value of 25000. We write our calculated value of 25000 into SWTC, and then
"AND" SYPCR with all ‘1's, except for least significant bit. The least significant bit is 0, which disables
the pre-scale.

For More Information Contact: www.freescale.com 141



Freescale Semiconductor, Inc.

SLIDE 7-7
What are the Basic CPM Components ?
U-BUS A
A4
Parallel 1/0O 4 16 Serial
ll\;l];%gal Interrupt General DMAS ; >
Baud Rate s acgy Controller Purpose 2 Virtual
Generators P Timers IDMA
Parallel 3
Interface 32-Bit RISC pController
Port and Program ROM
$ Internal MAC
Timers
V‘ A 4
A 4
scct||scez|[sces|[scc4|[sme|[smez|| spit || 1c CPM
| Time Slot Assigner | Serial Interface

What are the Basic CPM Components?
Here we see a diagram of all the blocks within the CPM.

As shown previously, there is a 32-bit RISC in the CPM, and with it is a Program ROM. These two work
together to handle all the serial protocols, the virtual DMA, the DSP and timers.

The Internal Memory Space provides an interface between the RISC and the PowerPC and consists of
registers and dual-port RAM. The RISC and the PowerPC use this area to coordinate their efforts.

There are sixteen serial DMAs, associated with transmit and receive on each one of the communication
devices. lItis not possible for the user to implement the SDMAs directly, but the user can enable the
IDMAs for memory to memory, device to memory, and memory to device transfers.

The CPM also supports an interrupt controller, which prioritizes and masks interrupts as the user
programs it. The interrupt controller processes the twenty-nine interrupt sources for the CPM.

The CPM also has four serial communication controllers (SCC1 through SCC4). These communication
controllers are the most powerful of the eight communications devices, and they transmit data using a
number of different protocols, such as HDLC, UART, and Ethernet.

There are two serial management controllers, or SMCs, that transfer data in UART, Transparent or
General Circuit Interface (GCI).

The Serial Peripheral Interface (SPI) is a 4-wire interface to a variety of transceivers and peripherals for
controlling and providing status information.

The I°C is a 2-wire interface to a variety of peripherals, including SIMMs and DIMMs that support a
presence detect function.

For More Information Contact: www.freescale.com 142



Freescale Semiconductor, Inc.

The serial interface connects the physical layer serial lines to the SCCs and SMCs.

The SCCs and the SMCs can connect to their own pins, or to a time division multiplex bus. If the user
places the communication devices on a TDM bus, the timeslot assigner routes the data to the various
devices.

Parallel I/O is available on Ports A, B, C and D when the designer configures these pins as /0. The
associated pins are illustrated on the left side of the pin diagram in the User Manual.

Next, there are four baud-rate generators, acting as internal clocks for the SCCs and the SMCs.
There is also a parallel interface port, which allows easy connection to Centronics interfaces.
There are sixteen Internal Timers, which are driven and controlled by the RISC processor.

There are four General Purpose Timers, which are clock-driven and used by the RISC. Output
Compare and Input Capture modes are available for these General Purpose Timers.

Finally, there is a Multiply / Accumulate unit. This is DSP hardware used with DSP firmware in the
ROM, which has the functions required for a V.34 modem.
SLIDE 7-8

What is the Performance of the CPM Components?

U-BUS A
A4
Parallel 1/0 4 16 Serial
mgggal Interrupt General DMA:S ; >
Baud Rate S acgy Controller Purpose 2 Virtual
Generators P Timers IDMA
Parallel 3
Interface 32-Bit RISC pController
Port and Program ROM
+ Internal MAC
Timers
V‘ A
A
scct||sccz|[scesl[scc4|[sme|[smez|| spit || 1c CPM
| Time Slot Assigner | Serial Interface

What is the performance of the CPM Components? (1 of 2)
1. The RISC and the ROM execute at one instruction per clock.

2. The RISC accesses the internal memory space in one clock cycle. Accesses outside of the CPM
to external devices require two clock cycles.

For More Information Contact: www.freescale.com 143



Freescale Semiconductor, Inc.

3. The SDMAs transmit data at a rate required by the protocol. The IDMA transfers data a byte, half-
word, word or burst at a time at a rate of up to 10.4 megabytes per second. (This rate occurs with

a 25 MHz clock.) There are two IDMA modes available: auto-buffering and buffer chaining.
4. The Interrupt Controller returns an interrupt vector one clock cycle after the request.
5. The Serial Communications Controller transfers data at a rate required by the protocol, with a

possible rate of up to 10 megabits per second for Ethernet, half-duplex.

6. The Serial Management Controller transfers data at a rate of up to 1.5 megabits per second in

Transparent, and 220 kilobits per second in UART.

7. The Serial Peripheral Interface transfers data up to 3.125 megabits per second.

8. Finally, the Inter-Integrated Circuit transfers data up to 520 kHz.

SLIDE 7-9

What is the Performance of the CPM Components?

U-BUS A
A 4
Parallel 1O 4 16 Serial
ll\;l];%gal Interrupt General DMAS ;
Baud Rate S acgy Controller Purpose 2 Virtual
Generators P Timers IDMA
Parallel 3
Interface 32-Bit RISC pController
Port and Program ROM
$ Internal MAC
Timers
V‘ A
A
scctl|sccz|[scesl[sce4|[sme|[smez|| spit || 1c CPM
| Time Slot Assigner | Serial Interface

What is the performance of the CPM Components? (2 of 2)

Parallel I/O occurs at no specific rate, but toggles as fast as the PowerPC can change the state.

An internal Baud-Rate Generator Clock (BRGCLK), which can be as fast as the system clock, drives
the baud-rate generators.

The Parallel Interface Port transfers data up to 625 kilobytes per second. The system clock divided by

1024 drives the internal timers, which is the maximum rate.
The system clock also drives the General Purpose Timers at the maximum rate.

The Multiply / Accumulate function is documented in the user manual, which states the time for each

function to execute based on the number of tasks and the number of iterations, so that it is possible to
obtain an exact calculation.

For More Information Contact: www.freescale.com

144



Freescale Semiconductor, Inc.
SLIDE 7-10

What is the CPM RISC Performance ? (1 of 2)

Protocol used Max Utilization FD = Full Duplex
of CPM RISC Processor HD = Half Duplex

SCC(Transparent) 8 Mbps FD

SCC(HDLC) 8 Mbps FD

SCC(UART) 24 Mbps FD

SCC(ETHERNET) 22 Mbps HD

SMC (Transparent) 15 Mbps FD

SMC (UART) 220  kbps FD

SCC(BISYNC) 15 Mbps FD

IDMA MemtoMem 5.7 Mbytes/sec

burst aligned source/dest addr 104 Mbytes/sec

What is the CPM RISC Performance? (1 of 2)
This slide and the next display a table for determining the maximum speed of the CPM RISC.

Each line in this table specifies the maximum speed that the CPM RISC can support using a single
channel or a single protocol at 25 MHz.

For example, the first entry shows an SCC in Transparent, at 8 megabits per second, and full-duplex. If
the user programs one SCC to support Transparent, transmitting data at a rate of 8 megabits per
second full duplex, the CPM reaches its performance limit. In comparison, if the user implements two
SCCs transmitting data in Transparent at 4 megabits per second, the CPM also reaches its
performance limit. Likewise the CPM reaches its performance limit with four SCCs transmitting
Transparent at 2 megabits per second.

Similar statements could be made about each of the lines in this chart. Of course, most users do not
want to use the 860 with one patrticular protocol at the maximum rate of the CPM RISC, but instead
would like to use several protocols, each of which is below the maximum rate. The user must then
determine if the CPM RISC can support the total communication requirements, and if so, which clock
frequency for the 860 is required. Note that the numbers that you see represent the maximum
throughput at 25 MHz and that they skill lineally with the system clock.

For More Information Contact: www.freescale.com 145



Freescale Semiconductor, Inc.

SLIDE 7-11

What is the CPM RISC Performance ? (2 of 2)

Protocol used

Max Utilization

of CPM RISC Processor

IDMA Dua Addr Perphto Mem
IDMA Dual Addr Mem to Perph
IDMA Sngl Addr Perph to Mem
IDMA Sngl Addr Mem to Perph
SCC(AHDLC)

12C

SPI-16bit mode

SPI-8bit mode

PIP

22
16
5.0
5.0
3.0
520
3.125
500

625

Mbytes/sec
Mbytes/sec
Mbytes/sec
Mbytes/sec
Mbps

Khz

Mbps

kbps
kbytes/sec

What is the CPM RISC Performance? (2 of 2)

FD = Full Duplex
HD = Half Duplex

FD

HD

FD

FD

HD

This is the second half of the table showing how to determine the maximum speed of the CPM RISC.

For More Information Contact: www.freescale.com

146



SLIDE 7-12

Freescale Semiconductor, Inc.

Performance Calculation Example 1

Calculate the CPM load for the following system:

Serial Channel
the design will
use

SCC1

SCC2

SCC3

SCC4

SMC1

SMC2

Protocol it will
use

ETHERNET 10

HDLC 1
HDLC 1
TRANS 128
UART 9.6
TRANS 64

25 MHz Clock
Example

MBPS
MBPS
MBPS
Kbps
Kbps

Kbps

(10/22) + (1/8) + (1/8) + (.128/8) + (9.6/220) + (64/1500) =

455+ .125+ 125+ .016 + .044 + .043=.808 < 1

40 MHz Clock
Example

808 * (25/40) = 505 < 1

Performance Calculation, Example 1

To illustrate how to determine the functional capacity of the CPM RISC, consider the following system.
A user evaluates a system operating at 25 MHz in which SCC1 supports Ethernet at 10 mbps, SCC2
and 3 support HDLC at 1 mbps, SCC4 supports Transparent at 128 kbps, SMC1 supports UART at 9.6

kbps, and SMC2

supports Transparent at 64 kbps.

To determine if the CPM RISC can handle these system requirements, form ratios of the system rate,
shown in this table, divided by the maximum rate shown in the table of the previous slide. If the sum of
the ratios is less than 1, the CPM RISC will be able to support the load. In this example, SCC1 supports
Ethernet at 10 mbps, and the maximum is 22 mbps, forming a ratio of 10 divided by 22. SCC2 and 3
support HDLC at 1 mbps each, and the maximum is 8 mbps, forming two ratios of 1 divided by 8. The
remaining ratios are formed in the same way. The sum of the ratios shown is .808, which is less than 1;

therefore, this system will function as desired. As a practical matter, since this is not a purely linear

process, recommends that the sum of the ratios be less than .9.

This calculation was done for an operating frequency of 25 MHz, but it is valuable for any frequency.

For example, to calculate for a frequency of 40 MHz, multiply the 25 MHz calculation by the ratio of 25

divided by 40. In this case, only about 51% of the CPM RISC capacity will be required.

For More Information Contact: www.freescale.com

147



Freescale Semiconductor, Inc.
SLIDE 7-13

Performance Calculation Example 2

Calculate the CPM load for the following system:

Serial Channel Protocol it will

the design will use

use

SCC2 HDLC 1 MBPS

SMC1 UART 384 Kbps

IDMA1 512 kbyte blcok, sngl addr, mem to perph
(1/8) + (38.4/220) + (.512/5) =

125+ 175+ .102 = .402< 1

Comment The above calculation is the peak CPM utilization.

Performance Calculation, Example 2
In this second example, an IDMA is included in the design. The process is the same as that which we

have just discussed. However, in many systems, DMA is not an ongoing activity; therefore, calculations
which include IDMA are often regarded as peak calculations.

For More Information Contact: www.freescale.com 148



Freescale Semiconductor, Inc.

SLIDE 7-14

RISC Controller Features

The Risc Controller resident microcode protocols

10 Mbps Ethernet / IEEE802.3
HDLC/SDLC

HDLC Bus

Asynchronous HDLC
AppleTak (Local Tak)

UART

Infra-Red Protocol (SIR,IrDA)
Synchronous UART

BISYNC

Totaly Transparent Operation

Freescale - Supplied RAM Microcode Option Protocols

Signaling System #7 (SS7)
ATOM1

RISC Controller Features
Here is a list of the protocols that the RISC supports.

If you purchase a MPC860, you obtain all of the listed protocols, except for Ethernet. If you wish to use
the Ethernet protocol, you must purchase the MPC860-EN. If you would like to use Signalling System
#7, or ATOML1, which is an ATM protocol, you can purchase them separately as micro-code option
protocols. In either case, you receive a software package. Load the code from the package into dual-
port RAM, and the RISC will execute the protocol out of the dual-port RAM.

For More Information Contact: www.freescale.com 149



Freescale Semiconductor, Inc.

SLIDE 7-15

How to Locate the Internal Memory (1 of 5)

IMMR Internal Memory Map

v

Address of the IMM

Register Base

0x2000
Dual Port RAM BD/Data

0x3000

0x3C00 Page 1

Page 2

Page 3

Page 4

1. If IMMR = 0x96000102, then the internal memory map islocated at
the following address:

0x96000102 & OxFFFFO000 = 0x96000000

How to Locate the Internal Memory (1 of 5)

The internal memory map is part of the overall 4-gigabyte memory space. The Special Purpose
Register, IMMR, is a pointer to the location of the internal memory space. During reset, the IMMR
register is loaded with an initial value; the user can change this value later in software if desired. The first
portion of the internal memory map, from 0 to 0x2000, consists of registers. The address space from
0x2000 to 0x3000 is the dual-port RAM area, which is used for buffer descriptors and data. Next, there
is a blank area. Finally, beginning at 0x3C00, Pages 1, 2, 3 and 4 comprise the device parameter area.

We have provided some examples of locating various parameters. This first example shows that if
IMMR is 0x96000102, then the internal memory space is located at 0xX96000000. The upper half-word
of IMMR is the pointer value. The lower half-word is the part number and the mask number which, for
the purpose of locating the internal memory space, must be zeroed out. To determine the location then,
IMMR must be "ANDed" with OxFFFF000O; in this example, the result is 0x96000000.

For More Information Contact: www.freescale.com 150



Freescale Semiconductor, Inc.

SLIDE 7-16

How to Locate the Internal Memory (2 of 5)

IMMR

Internal Memory Map

Addressof theIMM |[—>

Register Base
0x2000
Dual Port RAM BD/Data

0x3000

0x3C00 Page 1
Page 2
Page 3
Page 4

2. Theregister PBRO is at the following address:

0x96000000 + 0x80 = 0x96000080

How to Locate the Internal Memory (2 of 5)

This second example shows that the register, PBRO, is located at 0xX96000080. This is because PBRO

is at an offset of 0x80 in the register area of the internal memory space.

For More Information Contact: www.freescale.com

151



Freescale Semiconductor, Inc.

SLIDE 7-17

How to Locate the Internal Memory (3 of 5)

IMMR Internal Memory Map

Addressof theIMM | ——*
Register Base
0x2000
Dual Port RAM { BD/Data

0x3000

0x3C00 Page 1

Page 2

Page 3

Page 4

3. The 12C parameter block begins at the following address:

0x96000000 + 0x3C00 + 0x80 = 0x96003C80

How to Locate the Internal Memory (3 of 5)
Example 3 shows that the parameter block for I°C begins at the address 0x96003C80. The I°C

parameter block resides in Page 1, or at 0x3CO00, of the internal memory space and at an offset of 0x80
into Page 1. Therefore the location is 0x96000000 plus 0x3C00 plus 0x80, or 0x96003C80.

For More Information Contact: www.freescale.com 152



Freescale Semiconductor, Inc.

SLIDE 7-18

How to Locate the Internal Memory (4 of 5)

IMMR Internal Memory Map

Addressof theIMM | ——*
Register Base
0x2000
Dual Port RAM { BD/Data

0x3000

0x3C00 Page 1

Page 2

Page 3

Page 4

4. The UART specific parameter RAM for SCC2 begins at the
following address:

0x96000000 + 0x3D00 + 0x30 = 0x96003D30

How to Locate the Internal Memory (4 of 5)

This fourth example shows that UART specific parameter RAM for SCC2 begins at 0x96003D30.

Because SCC2 is in Page 2, offset 0, SCC base is 0x96003D00. UART specific parameter RAM

begins at SCC base plus 0x30. Therefore, the UART specific parameter RAM for SCC2 begins at
0x96000000 plus 0x3DOO0 plus 0x30.

For More Information Contact: www.freescale.com 153



SLIDE 7- 19

How the PPC Sends Commands to the CPM RISC (1 of 2)

Freescale Semiconductor, Inc.

CPCR - CPM Command Register

0 1 2 3 4

5 6

7

8

9 10 11 12 13 14 15

RST

OPCODE

CHNUM

FLG

The commands are described in general in the CPM section and are described
more specifically in the protocol sections.

Enter Hunt Mode

Close Rx Buffer Descriptor

Init Rx Parameters

Reset BCS Calculation (BISYNC only)

Stop Transmit

Graceful Stop Transmit
Restart Transmit

Init Tx Parameters

Init IDMA

Set Timer

Set Group Address
GCI Abort Request
GCI Timeout

How to Locate the Internal Memory (5 of 5)

Finally, the fifth example shows that if an array of buffer descriptors is at 0x96002600, then relative to
the start of dual-port RAM, the array begins at 0x600.

For More Information Contact: www.freescale.com

154



SLIDE 7- 20

How the PPC Sends Commands to the CPM RISC (1 of 2)

Freescale Semiconductor, Inc.

CPCR - CPM Command Register

0

1

2

3 4 5 6

7

8

9 10 11 12 13 14 15

RST

OPCODE

CHNUM

FLG

The commands are described in general in the CPM section and are described
more specifically in the protocol sections.

Enter Hunt Mode
Close Rx Buffer Descriptor
Init Rx Parameters

Reset BCS Calculation (BISYNC only)

Stop Transmit

Graceful Stop Transmit
Restart Transmit

Init Tx Parameters

Init IDMA
Set Timer
Set Group Address
GCI Abort Request
GCI Timeout

How the PowerPC Sends Commands to the CPM RISC (1 of 2)

One of the registers in the internal memory map is the Command Register. The PowerPC can direct
commands to the CPM using this register. The structure of the Command Register is shown here. To

deliver a command to the CPM, the PowerPC must place an operation code (OPCODE) in bits four
through seven of the Command Register.

Shown here is a patrtial list of possible op codes.

For More Information Contact: www.freescale.com

155



Freescale Semiconductor, Inc.

SLIDE 7 -21

How the PPC Sends Commands to the CPM RISC (2 of 2)

CPCR - CPM Command Register

0

1

2 3 4 5 6

7

8

9 10 11 12 13 14 15

RST

OPCODE

CHNUM

FLG

The Risc Command Register is used to issue commands to the following channels:

0000
0001
0100
0101
1000
1001
1100
1101

How the PowerPC Sends Commands to the CPM RISC (2 of 2)

SCC1

12C/IDMA1

SCC2

SPI/IDMA2/Risc Timers
SCC3

SMC1/DSP_R

SCC4

SMC2/DSP_T

The PowerPC must also provide a channel number indicating the device to which the command applies.

Shown here are the channel number codes.

Finally, to issue a command to the CPM, the PowerPC must write a ‘1’ in the flag bit. The ‘1’ in the flag
bit indicates to the CPM RISC that there is a command to be executed that is in the register. When the
flag bit is set, the CPM RISC obtains the command, executes it, and clears flag bit. Clearing the flag bit
indicates to the PowerPC that it can place a new command into the register. It is a good practice for

the PowerPC to check the flag bit before writing a new command.

The PowerPC can command a software reset of the CPM by writing a one into the reset bit and a one

into the flag bit of the command register.

For More Information Contact: www.freescale.com

156



Freescale Semiconductor, Inc.

Chapter 8: Serial Communications Controller (SCC), Parameter RAM, Buffer

Descriptors, and a UART Example

SLIDE 8-1

Serial Communication
Controller (SCC) and UART

What you * What is an SCC?
will learn ¢ What are the SCC pins?
* How an SCC operates
« What is a buffer descriptor?
¢ What is SCC parameter RAM?
« What is protocol specific parameter RAM
« How to select and configure the SCC clocks
* How an SCC transmits and receives in UART
* How to initialize an SCC for UART

In this chapter you will learn:

. What is an SCC?

. What are the SCC pins?

. How an SCC operates

. What is a buffer descriptor?

. What is a SCC parameter RAM?

. What is protocol specific parameter RAM?

. How to select and configure the SCC clocks

. How an SCC transmits and receives in UART
. How to initialize an SCC for UART

O©CoO~NOUTA~,WNBE

For More Information Contact: www.freescale.com

157



Freescale Semiconductor, Inc.

SLIDE 8-2
What is an SCC?

B T

SCCx \' = — 1N
L J
(
Rx —— 7L
FIFQ———>| SDMA |

" F 3] [ H
— - _—?/V l—
‘&I :

[ |
FIFO 7—ISDMA

v

Request Buffer Buffers in
Prioritizer Descriptors External
in Dual Memory
v Port RAM (typically)
CPM |
RISC

What is a SCC?

The Serial Communications Controllers are the most powerful communications devices on the
MPC860. They can communicate data in a number of different protocols, such as UART, HDLC,
Ethernet, and the like.

This diagram shows how the data communication operation proceeds regardless of which protocol is in
use.

Let us first examine the Receive FIFO as it receives incoming data. When the Receive FIFO begins to
fill, the SCC makes a request to a Request Prioritizer, which then passes the request to the CPM RISC.

The CPM RISC writes to SDMA to move the operand from the Receive FIFO to the current receive
buffer; receive buffers typically reside in external memory.

An array of receive buffer descriptors resides in dual-port RAM. Each receive buffer descriptor has a
pointer to a buffer in memory, and only one buffer descriptor is active at any time.

A pointer in the SCC points to the base of the receive buffer descriptor array. Another pointer, the
active buffer descriptor pointer, moves from descriptor to descriptor as each one is processed. When
the active pointer comes to the end of the array, it returns to the beginning.

Only one receive buffer descriptor is active at any one time based on where the pointer currently points.
This buffer is the one into which the SDMA moves the data.

There is a transmit FIFO for transmit data. As the transmit FIFO empties, the SCC makes a request to

the Request Prioritizer. The CPM RISC responds to the request, and writes to the SDMA to move the
operand from the current active transmit buffer to the transmit FIFO.

For More Information Contact: www.freescale.com 158



Freescale Semiconductor, Inc.

Transmit buffer descriptors function in the same way as receive buffer descriptors. There is an array of
transmit buffer descriptors in dual-port RAM, a pointer to the starting descriptor, and an active pointer
that moves from descriptor to descriptor.

Buffer descriptors are always in dual-port RAM, and are initialized by the user.

SLIDE 8-3

What are the SCC Pins?
¢ TXDx - transmit pins

SCC Pin Summary * RXDx - receive pins
« CDx - carrier detect pins

¢ CTSx - clear-to-send pins
¢ RTSx - request-to-send pins

¢ PA[15]/RX
> PA[14]/TX
< PCJ10 /CDl*/ TGATE1
< PCJ[11]/CTS
> PB[19] / RT Sl*/ L1ST1 or PC[15] / RTS1*/ L1ST1 / DREQO
< PA[13]/ RXD2
[ *PA[12]/TX
< PCI8]/ CD2* /TGATE2
< PCJ9]/CTS2*
> PB[18] / RTS2* / L1ST1 or PC[14] / RTS2* / L1ST2 / DREQ1
<« PD[11 /R D3
[ " PD[10]/T
<« PC[6 C 3*/ RSY
¢« PC[Y /CTSB*/ SDACK2 / L1ITSYNCB
———— * PD[7]/RTS3*
4 PDI[9]/RXD4
[ * PD[8]/TXD4
< PC[4]/CD4*/ LIRSYNC.
[« PCI[5] / CTS4* | SDACK1 / LITSYNCA
——— > PD[6]/ RTS4*

What are the SCC pins?

Each SCC connects to 5 pins: Transmit, Receive, Carrier Detect, Clear-to-Send and Request-to-Send.
There are four SCCs, and each has its own set of pins.

As the diagram shows, the SCC pins are located on the various port pins. For some functions, the user
has a choice of two pins; for example, RTS1 is available on PB19 or PC15.

In some cases there are additional functions; for example, with Carrier-Detect 2 (CD2*), there is also
TGATEZ2, which is a timer function. Part of the user's design effort includes choosing which pins
perform which functions.

The request-to-send pin is a transmit control pin; it is asserted when data is loaded into the transmit
FIFO.

The steps the user must take include activating the transmitter, and activating the buffer that is ready to
transmit. The CPM then transfers data from the buffer to the transmit FIFO, and RTS* is asserted.
Transmitting begins when CTS* is asserted.

If the CTS* pin is programmed to general-purpose I/O or an alternate function, then it internally appears
that CTS* is always asserted.

For More Information Contact: www.freescale.com 159



Carrier Detect is a receive control function; receive begins when CD* is asserted. If the CD* pin is

Freescale Semiconductor, Inc.

programmed to general-purpose I/O or an alternate function, then it internally appears that it is always

asserted.

SLIDE 8-4

What are the SCC Pins? -- Example Interface

Example, Interface to Ethernet Transceiver

MPC860

TXD1 Tx  MC68160
RTS1* TENA TPTXS
CLKn TCLK TPTX.
RXD1 RX
CD1* RENA TPRX*
CLKm RCLK TPRX-
CTS1* CLSN

What are the SCC Pins? -- Example Interface

As an example interface, we have shown an example Ethernet transceiver chip, which is connected to
an Ethernet network.

The transmit pins on each device are connected together, and the receive pins are connected together

as well. Request-to-Send on the 860 is connected to Transmit Enable on the transceiver. Carrier
Detect on the 860 is connected to Receive Enable on the transceiver. There is also a pin called
Collision on the transceiver, which is connected to the Clear-to-Send pin on the MPC860.

The transceiver generates the clocks, so in this case, two external clocks are provided to the SCC1. In
other applications, the user might choose to implement a baud rate generator instead.

For More Information Contact: www.freescale.com

160



Freescale Semiconductor, Inc.

SLIDE 8-5

Programming Model (1 of 4)

GSMR_Hx - Global SCC Mode Register
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Reserved IRP [Res|GDH

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RE CT CT X RT | RS
TCRC VD TRX|TTX|CDP sp CDS Ss TFLRFW Sy SYNL sM | YN

GSMR_LXx - Global SCC Mode Register
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
RI| TI TE

SIR| EDGE |TCI| TSNC NV | NV TPL TPP ND TDCR

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

RDCR RENC TENC DIAG [ENRIENT MODE

Programming Model (1 of 4)

The first part of the programming model shown here includes two, 32-bit registers, both called a Global
SCC Mode Register; one is high, and the other low.

These two registers contain a number of functions associated with the physical layer, so it is possible to
determine, for example, the encoding on transmit and receive, such as NRZ, NRZI, Manchester, and
the like.

These registers also allow you to enable transmit and receive, and to select the protocol which will be in
operation.

For More Information Contact: www.freescale.com 161



Freescale Semiconductor, Inc.
SLIDE 8-6

Programming Model (2 of 4)

PSMRXx - Protocol Specific Mode Register (UART)
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FLC| SL CL UM |FRZIRZS|SYNDRT| - |[PEN| RPM TPM

TODRX - Transmit-on-Demand Register
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

TOD Reserved

DSRx - Data Synch Register (UART)
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 FSB i1{1j0(0|2]|2|1}j1|212|1/|0

SCCEXx - SCC Event Register (UART)
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
BR | BR

Reserved |GLr|GLt|Res| AB |IDL |GRA Ke | Ks Res|CCRBSY| TX | RX

Programming Model (2 of 4)

Each SCC has a Protocol Specific Mode Register. The configuration for the Protocol Specific Mode
Register changes for the protocol in use. We have shown UART here, which controls UART-specific
values, such as character length and stop bits.

Each SCC has a Transmit-on-Demand Register. If the user enables a transmit buffer descriptor, it can
take from eight to thirty-two clocks before the RISC polls the buffer to determine if it is ready to
transmit. If the situation is such that this must be done more quickly, the user can write a ‘1" into bit O of
the Transmit-on-Demand Register, in which case the RISC responds within five to six clocks.

Each SCC has a Data Sync Register. This register is probably the most valuable when used with bit-
oriented protocols, as it is possible to place synchronous characters in this register. Nonetheless, the
Data Synch Register has value if UART is implemented, because it allows the user to specify fractional
stop bits.

Each SCC also has an Event Register; the register configuration varies with the protocol. However,

some events are common to all protocols such as Receive Buffer Closed. If enabled, the CPM sets this
event bit when a Receive Buffer closes; an interrupt may occur.

For More Information Contact: www.freescale.com 162



Freescale Semiconductor, Inc.
SLIDE 8-7

Programming Model (3 of 4)

SCCMx - SCC Mask Register (UART)
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
BR| BR

Reserved GLn GLt Res| AB | IDL |GRA Ke | Ks Res|CCRBSY| TX | RX

SCCSx - SCC Status Register (UART)
o 1 2 3 4 5 6 7

Reserved ID

BRGCn - Baud Rate Configuration Register
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Reserved RST|EN

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

DIv
16

EXTC |ATB Cb

Programming Model (3 of 4)

The Mask Register is associated with the Event Register, and is configured in the same way. The Mask
Register enables or disables interrupts from event sources indicated in the Event Register.

There is a Status Register, which in the case of the UART protocol, indicates that idles are occurring on
the receive pin.

Also, there are four baud rate generators. It is possible to use any baud rate generator with any SCC.

If the user implements a baud rate generator, it is necessary to configure the baud rate using the Baud
Rate Configuration Register.

For More Information Contact: www.freescale.com 163



Freescale Semiconductor, Inc.
SLIDE 8-8

Programming Model (4 of 4)

SICR - SI Clock Route Register
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

GR4|SC4 R4CS T4CS GR3|SC3 R3CS T3CS

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
GR2|SC2 R2CS T2CS GR1|SC1 R1CS T1CS
SDCR - SDMA Configuration Register

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Reserved

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Res| FRZ Reserved RAID

Programming Model (4 of 4)

As mentioned, it is possible to connect any baud rate generator to any SCC. The Serial Interface Clock

Route Register is the mechanism for making these connections.

The SDMAs transfer data between the communication device and memory. Note that the SDMAs are
not the only devices on the U-Bus, and therefore there is an option to apply a priority to the SDMA by

setting a value in the RISC Arbitration ID field (RAID) of the SDCR.

For More Information Contact: www.freescale.com

164



Freescale Semiconductor, Inc.

SLIDE 8-9
How an SCC Operates (1 of 3) Baud Rate
U-Bus Genelrator(s)
| A
\ 1 DPLL | o CHKX
" and Clock
Recovery RCLKXx
i ]
SDMA Control Registers v
Clock Generator
Y Peripheral Bus Y Y
1 ‘ Internal Clocks
Y
Receive Receive| [Transmit Transmit|—» RTS*
CDx* Control Data Data Control
Unit FIFO FIFO Unit |« CTS*
A |
RxD v TXD
—>| Decoder|—| Delimiter|—| Shifter| |Shifter|—| Delimiter |—| Encoder |—>

How an SCC Operates (1 of 3)

Here is a block diagram of the elements within an SCC. There are a number of control registers, many
of which are present in the programming model. Part of the user's task is to initialize these registers.

This diagram shows a receive operation. Before the SCC can receive data, a receive clock must be
active, and Carrier Detect must be asserted.

Then:

1. The decoder decodes received data using the encoding specified in the RENC field of the
GSMR_LXx register.

2. The Delimiter eliminates framing bits or octets; in the case of UART, the Delimiter eliminates start
and stop bits.

3. The Shifter shifts serial data, and then transfers the data in parallel to the receive data FIFO.

4. The receive data FIFO holds the data until the SDMA transfers it to a receive buffer.

For More Information Contact: www.freescale.com 165



Freescale Semiconductor, Inc.

SLIDE 8-10

Receive FIFO Size

GSMR_Hx.RFW
Large FIFO Small FIFO
32 bytes 8 bytes
SceCl 4x8 1x8
SCCx 16 bytes 4 bytes
x=2,3,or4 4x4 1x4
L Character-
When used... Bit-oriented oriented
protocols
protocols

Receive FIFO Size

Each SCC can have a large or a small FIFO. In the case of receive, the FIFO size is controlled in
GSMR_Hx.RFW. Normally, the user should implement the large FIFO for the bit-oriented protocols,
and the small FIFO for the character-oriented protocols.

In the case of SCC1, a large FIFO is 32 bytes (4 by 8); in the case of all the other SCCs, the large FIFO
is 16 bytes (4 by 4). A small FIFO is 8 bytes on SCC1 (1 by 8), and 4 bytes on the other SCCs (1 by 4).

For More Information Contact: www.freescale.com 166



Freescale Semiconductor, Inc.

SLIDE 8-11

How an SCC Operates (2 of 3)

U-Bus
\ T DPLL TCLKXx
| and Clock
Y «—
. Recolvery RCLKXx
SDMA Control Registers v
Clock Generator
Y_Peripheral Bus T Intevrnal C'Iocks
Y
CDx* Receive Receive| |Transmit Transmit|—» RTS*
X Control Data Data Control
Unit FIFO FIFO Unit |+ CTS*
A
RxD ' TXD
—>| Decoder|—| Delimiter|—| Shifter| |Shifter|—| Delimiter |—| Encoder |—>

How an SCC Operates (2 of 3)

This slide shows a transmit operation. Before data can be transmitted, a transmit clock must be active
and CTSx* must be asserted.

Then, the SDMA places data into the Transmit FIFO, and RTS* asserts. Next, data is transferred from
the FIFO to the shifter.

The shifter receives parallel data, and shifts the data serially to the Delimiter.

The Delimiter adds framing bits or octets; in the case of UART, the Delimiter adds the stop and start
bits.

The Encoder encodes data as specified in the .TENC field of the GSMR_Lx register.

For More Information Contact: www.freescale.com 167



g |

Freescale Semiconductor, Inc.

SLIDE 8-12

Transmit FIFO Size

GSMR_Hx.TFL
Large FIFO Small FIFO
32 bytes
SCC1 4x8 1 byte
SCCx 16 bytes
x=2,3,or4 4x4 1 byte
L Character-
When used... Bit-oriented oriented
protocols
protocols

Transmit FIFO Size

It is also possible to have a large or a small FIFO for transmit operations. The large FIFO has the same

sizes as were shown for receive operations. Notice that the small FIFO is one byte.

For More Information Contact: www.freescale.com

168



Freescale Semiconductor, Inc.

SLIDE 8-13

How an SCC Operates (3 of 3)

U-Bus

\ A
|

Y

SDMA Control Registers

Y Peripheral Bus

TCLKx

DPLL <«
and Clock

Recovery RCLKx

Y

Clock Ge

nerator

|

Internal Clocks

A |
Y
CDx* Receive Receive| [Transmit Transmit|—» RTS*
X Control Data Data Control
Unit FIFO FIFO Unit |+ CTS*
A
RxD ' TXD
—>| Decoder|—| Delimiter|—| Shifter| |Shifter|—| Delimiter |—| Encoder |—>

How an SCC Operates (3 of 3)

External pins or baud rate generators can supply the input clocks. Then, a Digital Phase Lock Loop

generates a clock based on the input clock and the encoded data. DPLL is automatically enabled if the

encoding is other than NRZ.

For More Information Contact: www.freescale.com

169



Freescale Semiconductor, Inc.
SLIDE 8-14
What is a Buffer Descriptor?

R|IR|w]| 1 ]|cr|A]cm| P [Ns] Reserved cT
Data Length

— Tx Data Buffer Pointer —

« Items in bold print must be initialized.

Field Description

R Ready - the PPC sets to indicate this buffer is ready to transmit.
When the CPM reads this bit set, it begins to transmit the data.

W Wrap - the PPC sets to indicate this buffer descriptor is the last one
in the array of BDs.

| Interrupt - the PPC sets to enable the CPM RISC to set certain
events in the event register as those events occur.

CM Continuous Mode - if set by the PPC, the CPM RISC will not clear
the R bit upon completion of the transmit.

What is a Buffer Descriptor?

A buffer descriptor contains the essential information about each buffer in memory. Buffer descriptors
are located in dual-port RAM and are associated with a particular device, such as an SCC.

As an example, shown here is a UART transmit buffer descriptor. There are three basic fields. One of
them is the 32-bit Transmit Data Buffer Pointer, which is pointing to the transmit buffer in memory.

A second field is the 16-bit data Length field, which specifies the number of characters to be transmitted
for that particular buffer. The PowerPC initializes the transmit buffer descriptor to indicate that number.

The third major field is the status and control field. There are four key control bit descriptions for the
transmit buffer descriptor:

The 'R' bit stands for Ready. Your software run by the PowerPC sets this bit, indicating to the CPM
that the buffer is ready to transmit. When the CPM reads this bit as 1, it starts transmitting data from
this buffer.

The 'W' bit stands for Wrap. Buffer descriptors are structured in arrays. The ‘W’ bit in the last buffer
descriptor of the array is set to 1 to indicate the end of the array to the CPM RISC. All preceding buffer
descriptors must have 0 in the wrap bit.

The 'I' bit stands for Interrupt. The PowerPC sets the interrupt bit in order to enable the CPM RISC to
set certain events in the event register as they occur. For example, if the user wishes an event to occur
after the current transmit buffer is sent, it is necessary to set the 'l' bit in the associated buffer descriptor.

The 'CM' bit stands for Continuous Mode. Normally after transmitting a buffer, the CPM RISC clears
the 'R’ bit, indicating to the PowerPC that the buffer has been transmitted, and it is possible to re-use
the buffer. In contrast, when the 'CM' bit is set, the CPM RISC does not clear the 'R’ bit upon
completion of the transmit operation, so the buffer is automatically ready to be retransmitted.

For More Information Contact: www.freescale.com 170



Freescale Semiconductor, Inc.

The key control bits of the Receive buffer descriptor are the same as the Transmit buffer descriptor,
with one exception. The Receive buffer descriptor has an 'E' bit, or Empty bit, in place of the 'R’ bit.
The PowerPC sets the 'E' bit when it has processed the received data; the CPM RISC can use this
buffer again for receive data. When the receive buffer is closed, the CPM RISC clears the 'E' bit.

SLIDE 8-15

How Buffer Descriptors are Processed

RIRJWI] 1 JCR] AJCM] P JNS] Reserved [CT
Data Length

— Tx Data Buffer Pointer —

CPM Action
(@ 1. Transmits 0x27 chars from the buffer
at 0x12020
2.Clears R

3. W=0; therefore proceeds to next BD
1. Transmits 0x104 chars from the

buffer at 0x554750

2.Clears R

3. Sets TXB in SCCEX, the event
register

4. W=0; therefore proceeds to next BD
1. Transmits 0x35 chars from the buffer

at OxFFO7F000
2. Ris left set
3. W=0; therefore proceeds to next BD
1. Transmits 0x18 chars from the buffer
at 0x89C000
2.Clears R
3. W=1; therefore proceeds to BDO

TBPTR

©
N O (O |0
o O[O0
N O N[O
o - N[O

T MO | OO |
o Mo |INvN O[O
O Ojw |ofjur 01O O
o N0 |ojo u|h o

000

0O oo
o ololo
o ©|wo|o

o |- O

How Buffer Descriptors are Processed

This diagram shows how buffer descriptors are arranged in memory and how the CPM RISC processes
the buffer descriptors. The example shows a UART transmit buffer descriptor.

Here is an array of transmit buffer descriptors. To start, the active pointer is pointing to the first buffer
descriptor - buffer descriptor 0 (zero). When the CPM RISC detects a 1 in the ready bit, indicating that
this buffer is ready to transmit, the CPM RISC transmits 0x27 characters from the buffer at location
0x12020.

Upon completion, the CPM RISC clears the ready bit, and detects that the "W' bit is equal to zero.
Therefore, the CPM RISC proceeds to the next buffer descriptor.

At buffer descriptor 1, the CPM RISC detects that the buffer is ready to transmit, and therefore the
CPM RISC transmits 0x104 characters from the buffer at location 0x554750.

Again, the CPM RISC clears the 'R' bit. Then, it sets the Transmit Buffer Sent bit (TXB) in the event
register (SCCEX) because this buffer descriptor also has the 'l' bit set. Once again, the CPM RISC
detects that the "W bit is equal to zero, and proceeds to the next buffer descriptor.

At buffer descriptor number 2, the CPM RISC transmits 0x35 characters from the buffer at
O0xFFO7F000. Upon completion, the CPM RISC leaves the 'R’ bit set because the Continuous Mode bit

For More Information Contact: www.freescale.com 171



Freescale Semiconductor, Inc.

is set. Again, the CPM RISC detects that the "W' bit is equal to zero, and proceeds to the next buffer
descriptor.

The last buffer descriptor is ready to transmit, and the CPM RISC transmits 0x18 characters from the

buffer at location 0x89C000. The CPM RISC clears the 'R’ bit. In this case, the wrap bit is set to 1, and
therefore the CPM RISC proceeds back to buffer descriptor zero.

SLIDE 8-16

What is SCC Parameter Ram?
SCCx Parameter RAM -

Example Address NAME | Description

SCC Base + 00| RBASE RxBD base, offset from DPR

SCC Base + 02| TBASE TxBD base, offset from DPR

SCC Base + 04| RFCR Rx byte order and channel number

SCC Base + 05| TFCR Tx byte order and channel number

SCC Base + 06| MRBLR | Maximum receive buffer length

[ ]
L]
[ ]

RFCR RFCR,TFCR - Byte Order and Channel Number
TFCR 0 1 2 3 4 5 6 7

Reserved | BO | AT1 3

What is SCC Parameter RAM?

SCC parameter RAM contains information that the CPM RISC uses to properly operate SCCx, where
'X'canbe 1, 2, 3 or 4.

There is parameter RAM for each SCC, and this RAM consists of a number of fields. The first five
fields are the ones of most concern, as the user must initialize them.

The first field is called RBASE, and it contains a pointer to the base of the Receive buffer descriptor
array. Notice that it is a half-word field, and its location is expressed as an offset from the start of dual
port RAM.

The second field is called TBASE, and it contains a pointer to the start of the transmit buffer descriptor
array. Again, it is a half-word field, and we express its location as an offset from the start of dual port
RAM.

The next two fields, RFCR and TFCR, specify the byte order for transmit and receive, and the channel
number. These byte fields have the structure illustrated here.

Within RFCR and TFCR, the byte order bits specify the data to be received or transmitted, in terms of
whether the data is big endian, little endian, or PowerPC little endian.

For More Information Contact: www.freescale.com 172



Freescale Semiconductor, Inc.

Also within RFCR and TFCR, AT1_3 specifies address types. In the User Manual, the AT1_3 is defined
in the Address Types Definition table. If CPM RISC performs an access to memory, ATO is equal to 1,
and AT1, 2 and 3 contain the channel number specified within RFCR or TFCR.

Finally, the fifth parameter in SCC Parameter RAM is the Maximum Receive Buffer Length, or MRBLR

shown on the upper portion of the diagram. This field contains the maximum length of a receive buffer
associated with this SCC.

SLIDE 8-17

What is Protocol-Specific Parameter Ram?
UART Specific Parameter RAM -

Address NAME Description
SCC Base + 30 Reserved
SCC Base + 38 |MAX IDL Maximum number of idle chars between chars
SCC Base + 3A |IDLC Temporary idle counter
SCC Base + 3C |BRKCR Number of breaks to xmit on STOP TRANSMIT
SCC Base + 3E |PAREC Receive parity error counter
SCC Base + 40 |FRMEC Receive Framing Error Counter
SCC Base +42 |NOSEC Receive noise counter
SCC Base +44 |BRKEC Receive break condition counter
SCC Base + 46 |BRKLN Last received break length

SCC Base + 48 |UADDR1 UART address character 1
SCC Base + 4A |UADDR?2 UART address character 2

SCC Base +4C |RTEMP Temp storage
SCC Base + 4E | TOSEQ Transmit out-of-sequence character
SCC Base +50 |CHAR1 Control character 1
. - -
SCC Base + 5E |CHARS Control character 8
SCC Base + 60 |RCCM Receive control character mask
SCC Base + 62 |RCCR Receive reject control character register
SCC Base + 64 |RLBC First word of protocol-specific area

What is Protocol-Specific Parameter RAM?

Protocol-specific parameter RAM contains information that the CPM RISC uses to operate an SCC
properly with a specific protocol.

The example shown here is for UART; other protocols are structured differently. The discussion that
follows emphasizes a subset of the parameters shown. All the highlighted fields shown here must be
initialized.

Note that there are four error counters: a parity error counter, a framing error counter, a noise counter,
and a break condition counter. These counters should be initialized to zero.

One of commands that the PowerPC can send to the CPM is the "stop transmit" command. When the
SCC receives a "stop transmit" command, it stops and transmits the number of break characters that
the BRKCR field specifies.

Also shown is the Max Idle parameter. For example, if the SCC receives a few characters into the
receive buffer, and then does not receive any characters for a long time, the Max Idle parameter
determines the total length of time to wait for additional data. To wait indefinitely, initialize this
parameter with a value of zero. To wait a specific amount of time, initialize this parameter with the
number of character times to wait.

For More Information Contact: www.freescale.com 173



SLIDE 8-18

Freescale Semiconductor, Inc.

How to Select the SCC Clocks

CLK2—* Baud SICR.TXCS SICR.RxCS
Rate
CLK6—*
—>
BRGCLK— Genirator
CLK2—> Baud
CLke—{ Rate —
BRGCLK —*1 Generator
2
—>
CLk2— BRaLt’d ™ | ek — R Rxcik
CLK6— ate Clock |— Clock |—»
BRGCLK —1 Generator Select Select
3 —>
cLke—> Baud
CLKe —] . Rate
Generator CLKa —>»—»
BRGCLK > 4 CLKb ———>»—»
CLKC —>»—»
CLKd —»—»
_ then..
Ifx=.. 3 b c q
1,2 1 2 3 4
3,4 5 6 7 8

How to Select the SCC Clocks

This diagram shows the various options available for selecting a transmit and a receive clock source.

As noted previously, it is necessary to have a clock source both for transmit and receive. There is a

choice of four baud rate generators, or four input clocks. Also, the baud rate generators can be driven
from three different clock sources: BRGCLK, and pins CLK2 and CLKS6.

Here the input clocks are shown as Clocks A through D. If SCC1 and 2 are in use, then Clocks A, B, C
and D are Clock 1, 2, 3 and 4 pins. If SCC3 and 4 are in use, then the Clocks A, B, C and D are Clock
5, 6, 7 and 8 pins.

It is necessary to select one of these four clocks or one of the four baud rate generators. The selection
is made in the SICR register. The TXCS field, where X is 1, 2, 3 or 4, selects the transmit clock source,

and RxCS, the receive clock source.

For More Information Contact: www.freescale.com

174



Freescale Semiconductor, Inc.
SLIDE 8-19

How to Select the SCC Clocks -- Example

then..

a b c d
1,2 1 2 3 4
34 5 6 7 8

Ifx=..

Exercise

Initialize SCC2 so that the transmit clock is CLK4 and the receive clock is BRG3.

pimm->SICR.T2CS = 7;
pimm->SICR.R2CS = 2;

SCC Clock Example

For example, a user would like to initialize SCC2 so that the transmit clock is CLK4 and the receive
clock is BRG3. For transmit, the T2CS field of SICR must be initialized to 7. For receive, the R2CS field
of SICR must be initialized to 2.

For More Information Contact: www.freescale.com 175



Freescale Semiconductor, Inc.
SLIDE 8-20

How to Configure the Baud Rate Generators

Asynchronous

baud rate = (Clock Frequency * [BRGCx.DIV16])/((BRGCx.CDO_CD11 + 1) *
[GSMR_Lx.tDCR])

wherex=1,2,3,0r4
t = Transmit or Receive
[] = use the meaning of, not the literal value, e.g. for [BRGCx.DIV16], use 1
or 16 and not O or 1.

BRGCx.CD0_CD11 = ((Clock Frequency) * [BRGCx.DIV16]/(baud rate *
[GSMR_Lx.tDCR]) - 1

Synchronous

baud rate = (Clock Frequency * [BRGCx.DIV16])/(BRGCx.CD11_CDO + 1)

wherex=1,2,3,0r4
t = Transmit or Receive
[] = use the meaning of, not the literal value, e.g. for [BRGCx.DIV16],
use lor 16 and not O or 1.

How to Configure the Baud Rate Generators

There are two different calculations for initializing a baud rate configuration register: asynchronous and
synchronous.

First, let us examine the calculation for asynchronous communication. In this case, the baud rate equals
the product of the clock frequency multiplied by the field DIV16 in the baud rate configuration register
divided by the product of CDO_CD11 + 1 in the baud rate configuration register multiplied by TDCR or
RDCR of the GSMR_LXx register. If a parameter is in square brackets, then use the meaning of that
parameter rather than the literal value. For example, for the value [BRGCx.DIV16], use 1 or 16, not zero
or one.

As shown in the equation, X' equals 1, 2, 3, or 4.

By rearranging the equation, it is possible to determine the value for the CD field in the baud rate
generator. For example, BRG3 needs to be initialized to transfer data at 1200 baud with a system clock
frequency of 25 MHz and a 16x sampling rate. If the values are substituted as shown, the result is a
value 1301 for the CD field. An alternative way of finding the value is to refer to the Typical Baud Rates
of Asynchronous Communication Table in the User Manual.

Next, let us examine the calculation for synchronous communication. In this case, the formula differs

from asynchronous, because there is no divide clock rate present. If you wish to use HDLC, or another
synchronous protocol, use this formula.

For More Information Contact: www.freescale.com 176



Freescale Semiconductor, Inc.
SLIDE 8-21

How an SCC Transmits UART

* TXDX =1\ Epapled/ ¥ GSMR_LXENT =1

TReStar.E TBPTR.txbdsac.R =1 &
ransmi CTS* =0

Xmit * Move chars from memory
CTS*=1 to FIFO and transmit

\

Move last char

of buffer into TBPTR.txbdsac.R =1 &

FIFO CTs*=0
TBPTR.txbdsac.R =0
orCTS*=1
. /
Xmit
Close

¢ Update txbdsac including R (unless CM=1)
* Increment TBPTR

How an SCC Transmits UART
This state diagram shows how the SCC transmits characters in UART.

The state diagram starts in the Transmit Enable state. Setting the ENT bit in the GSMR_low register
places the SCC into the Transmit Enable state. In this state, the transmit line transmits all ones.

The SCC remains in the Transmit Enable state until there is a transmit buffer descriptor that is ready,
and the CTS* pin is 0. At this point, the SCC passes into the transmit state, the SDMA moves
characters from memory into the FIFO, and the SCC transmits these characters.

The SCC transmits the characters until it moves the last character of the buffer into the transmit FIFO,
thereby putting the SCC into the Transmit Close state.

In the Transmit Close state, the CPM RISC updates the 'R’ bit of the current BD and increments the
pointer to the next buffer descriptor. If the next buffer descriptor has a ready bit equal to a ‘1’, and
CTS* is still ‘0, the SCC transmits that buffer. It is possible for the SCC to reiterate this loop multiple
times.

If the next buffer descriptor is not ready, or CTS* equals ‘1’, then the SCC enters back into Transmit
Enable state.

If the SCC is in the Transmit state, and CTS* changes to a one during transmission, the SCC enters into

the Transmit Stop state. It is not possible to exit the Transmit Stop state until the PowerPC issues a
Restart Transmit command.

For More Information Contact: www.freescale.com 177



Freescale Semiconductor, Inc.

SLIDE 8-22

How an SCC Receives UART

Recv
r/" Enabled/ ¥ GSMR_LXENR=1
RBPTR.rxbdsac.E =1 &
CD*=0

* Receive chars into FIFO and transfer
to memory

RBPTR.rxbdsac.E =0
orCbh*=1 Receive buffer
closing condition RBPTR.rxbdsac.E =1 &
occurs CD*=0
\ v
Recv

Close

¢ Update rxbdsac including E (unless CM=1)
* Increment RBPTR

How an SCC Receives UART

This state diagram shows how the SCC receives characters in UART.

Setting the ENR bit in the GSMR_low register places the SCC into the Receive Enable state.

In the Receive Enable state, if there is an empty buffer, and if the CD* pin is equal to 0, the SCC
receives characters into the Receive FIFO and transfers them into memory. The SCC continues to

receive characters until a receive buffer closing condition occurs.

When a receive buffer closing condition occurs, the SCC enters the Receive Close state, updates the
‘E’ bit, and updates the pointer to the next buffer descriptor.

If the next buffer descriptor has the empty bit equal to a one, and CD* is still zero, the SCC receives into
that buffer. It is possible for the SCC to reiterate this loop multiple times.

If the next buffer is not empty, or CD* is equal to 1, the SCC enters back into the Receive Enabled
state.

For More Information Contact: www.freescale.com 178



Freescale Semiconductor, Inc.

SLIDE 8-23

How to Initialize an 860 SCCx for UART (1 of 8)

Step Action Example
1 Initialize SDCR pi mm >SDCR = 2;
FRZ:SDMAs freeze next bus cycle |/* MAKE SDVA ARB PRI =2 */

RAID: RISC controller arbitration ID

2 | Configure ports as required ;)L EIF\TI}BEP"?"ESZR :&O)&OKE? y

3 [Initialize a Baud Rate Configuration Reg, pi M >BRGC3. CDO_CDL1 = 1040;

BRGCx /* SET BAUD RATE TO 1200 FOR
CDO_CD11:clock divider 20 MHz CLOCK */

DIV16:BRG clk prescalar divide by 16
EXTC1_EXTCO:clock source
EN:enable BRG count

ATB:autobaud

RST:reset BRG

4 lnitialize the Serial Interface Clock Route pi mm >SI CR R2CS = 2;

Reg, SICR /* SCC2 RECElI VE CLK | S BRG&3*/
SCx:select NMSI or TDM for SCCx
RxCS:select recv clk source for SCCx
TxCS:select xmit clk source for SCCx
GRXx:select grant mechanism support

xis1,2,63,0r4d

How to Initialize an 860 SCCx for UART (1 of 8)

Here is shown the procedure for initializing an SCC for UART on the MPC860 using interrupts. Certain
assumptions are made as listed.

Each entry has an example statement for each step. "pimm" refers to the pointer to the internal
memory map.

First, the user initializes SDCR. This is the register in which it is possible to give the SDMAs an
arbitration 1D to provide them with a priority on the U-bus.

Next, the user configures the ports as required. The SCCs have alternate functions on the port pins, so
the user must configure these pins for the desired use.

Step 3: If a baud rate generator is to be used for the clock, the baud rate configuration register needs to
be initialized.

Step 4: Connect the clocks to this SCC using the Serial Interface Clock Route Register (SICR).

For More Information Contact: www.freescale.com 179



Freescale Semiconductor, Inc.
SLIDE 8- 24

How to Initialize an 860 SCCx for UART (2 of 8)

5 Initialize SCCx Parameter RAM pi mm >SCCL. TFCR = 0x15:
RBASE:pointer in DPR to RxBDs /* INNT XM T FUNC CODE TO
TBASE:pointer in DPR to TxBDs SUPER DATA SPACE & MOT*/

RFCR:recv function code & byte order
TFCR:xmit function code & byte order
MRBLR:maximum recv buffer length

6 Initialize Rx and/or Tx parameters via pi mm >CPCR = 0x101;

the Command Register, CPCR /* INIT RECV PARAMETERS

*
OPCODE:operation code FOR SCCL */

CH NUM:channel number
FLG:command semaphore flag
RST:software reset command

How to Initialize an 860 SCCx for UART (2 of 8)
Step 5: Initialize SCC parameter RAM, including RBASE and TBASE.

Step 6: Initialize the receive and transmit parameters by writing the appropriate command to the
command register (CPCR).

For More Information Contact: www.freescale.com 180



Freescale Semiconductor, Inc.

SLIDE 8-25

How to Initialize an 860 SCCx for UART (3 of 8)

Initialize UART parameter RAM

MAX_IDLE:maximum idle chars
BRKCR:break count reg (transmit)
PAREC:recv parity error counter
FRMEC:recv framing error counter
NOSEC:recv noise counter
BRKEC:recv break condition counter
UADDR1:address char 1
UADDRZ2:address char 2
TOSEQ:transmit out-of-sequence char
CHAR1:control char 1
CHAR2:control char 2
CHARS3:control char 3
CHARA4:control char 4
CHARS5:control char 5
CHARG6:control char 6
CHAR7:control char 7
CHARS:control char 8

RCCM:recv contrl char mask

pi
/*

mm >SCC2. UART. CHAR1 = 0x8000;
DI SABLE CNTRL CHAR TABLE*/

For More Information Contact: www.freescale.com

How to Initialize an 860 SCCx for UART (3 of 8)

Step 7: Initialize UART parameter RAM including the error counters and MAX_IDLE.

181



Freescale Semiconductor, Inc.

SLIDE 8-26
How to Initialize an 860 SCCx for UART (4 of 8)

8 Initialize RxBDs pdsc- >r ecvbd2. r xbdsac. E = 1;
rxbdptr:pointer to data buffer /* INIT RxBD2 TO EMPTY */
rxbdcnt:number of chars received
rxbdsac.E:recv buffer empty
rxbdsac.W:last BD (wrap bit)
rxbdsac.l:set event when buf closes
rxbdsac.CM:continuous mode

9 Initialize TxBDs pdsc- >xm t bd2. t xbdsac. R = 1;
txbdptr:pointer to data buffer /* INIT TxBD2 TO READY */
txbdcnt:number of chars xmitted
txbdsac.R:buffer ready to xmit
txbdsac.W:last BD (wrap bit)
txbdsac.l:set event when buf closes
txbdsac.CM:continuous mode
txbdsac.A:addr char(s) in buffer
txbdsac.P:send preamble
txbdsac.NS:no stop bits
txbdsac.CR:clear-to-send report

How to Initialize an 860 SCCx for UART (4 of 8)
Step 8: Initialize the receive buffer descriptors.

Step 9: Initialize the transmit buffer descriptors.

For More Information Contact: www.freescale.com 182



Freescale Semiconductor, Inc.

SLIDE 8-27

How to Initialize an 860 SCCx for UART (5 of 8)

Initialize Mask Reg, SCCMx

RX:recv buffer closed

TX:xmit buffer sent

BSY:busy; lost chars, no buffers
CCR:cntrl char recved, in RCCR
BRKs:break sequence started
BRKe:break sequence ended
GRA:graceful stop complete
IDL:idle sequence status changed
AB:auto baud lock detected
GLt:xmit clock glitch detected
GLr:recv clock glitch detected

10 Initialize Event Reg, SCCEx pi mm >SCCEL = OxXFFFF;
SCCEx will be zero from reset; no /* CLEAR EVENT REG SCCL */
other initialization required.

11

pi mm >SCCML = 9;
/* ENABLE RX & CCR EVENTS TO
| NTRPT */

How to Initialize an 860 SCCx for UART (5 of 8)

Step 10: This step is not really required since reset conditions are assumed. In this case, the event
register is already cleared. Under more general circumstances, however, writing all ones as shown in

the example could clear the event register.

Step 11: Initialize the mask register to enable interrupts to occur for the desired events.

For More Information Contact: www.freescale.com

183



Freescale Semiconductor, Inc.
SLIDE 8-28

How to Initialize an 860 SCCx for UART (6 of 8)

12 Initialize Interrupt Mask Reg, CIMR pi m >Cl MR SCC2 = 1;
SCC1-4 /* ENABLE SCC2 | NTRPTS */
PC4-15
TIMER1-4
IDMA1-2
SMC1-2
SDMA
R-TT

SPI

12C

13 | Initialize General SCCx Mode Reg pi mm >GSMR_H2. TFL = 1;
High, GSMR_Hx /* 1 BYTE XM T FI FO */

FIFO Width
TFL:transmit FIFO length
RFW:Rx FIFO width
NMSI Control
CDP:CD* pulse or envelope
CTSP:CTS* pulse or envelope
CDS:CD* synchronous or asynch
CTSS:CTS* synchronous or asynch
External Clock
GDE:glitch detect enable

How to Initialize an 860 SCCx for UART (6 of 8)
Step 12: Initialize CIMR for those CPM devices to be allowed to cause interrupts.

Step 13: Initialize the General SCCx Mode Register High. The chart lists a few parameters you may
want initialize.

For More Information Contact: www.freescale.com



Freescale Semiconductor, Inc.
SLIDE 8-29

How to Initialize an 860 SCCx for UART (7 of 8)

14 | |nitialize General SCCx Mode Reg| P mm>GSMR L1. MODE = 4;
Low, GSMR_Lx /* INNT SCCl1 TO UART MODE */

Divide Clock Rate
TDCR:xmit divide clock rate
RDCR:recv DPLL clock rate
Diagnostic Mode
DIAG:normal,loopback,echo
Channel Protocol Mode
MODE:UART, etc.

How to Initialize an 860 SCCx for UART (7 of 8)

Step 14: Initialize the General SCCx Mode Register Low. Again, the chart lists a few parameters you
may want to initialize.

For More Information Contact: www.freescale.com 185



Freescale Semiconductor, Inc.

SLIDE 8-30
How to Initialize an 860 SCCx for UART (8 of 8)
15 1 Initialize Protocol Specific Mode Reg pi nm >PSMR2. SL = 1;
PSMRx /* INIT SCC2 FOR 2 STOP
SL:stop length BITS */

CL:character length
UM:normal,multi-drop,automatic
FRZ:freeze transmission
RZS:recv zero stop bits
SYN:synchronous or asynch
DRT:disable recvr while xmitting
PEN:parity enable

RPM:recvr parity mode
TPM:xmittr parity mode
FLC:flow control

16 Turn on transmitter and/or

receiver, GSMR_Lx pimm >GSMR L1 ENT = L

/* ENABLE SCC1 TRANSM TTER */

ENT:enable transmit
ENR:enable receive

How to Initialize an 860 SCCx for UART (8 of 8)

Step 15: Initialize the Protocol Specific Mode Register. This includes character length and number of

stop bits.

Finally, step sixteen: Enable the transmitter and / or the receiver in the General SCCx Mode Register

Low (GSMR_LX).

For More Information Contact: www.freescale.com

186



SLIDE 8-31

Freescale Semiconductor, Inc.

UART Example (1 of 4)

/* This is an exanple of receiving a buffer of data. The */
/* receive buffer closes either if it is filled or if sone */
/* data is received and then no nore is received within 10 */

/* character

times. When the buffer is closed, an LED counter*/

/* on Port D is increnented. */

voi d *const stdout = O; /* STANDARD QUTPUT DEVI CE */
1 #define uvart2 /* SCC2 IS TO BE UART */
2 #include "npc860. h" /* I NTNL MEMORY MAP EQUATES */
3 struct dprbase *pimm /* PO NTER TO | NTNL MEMORY NAP */
4 struct descs {
5 rxbdu recvbdO; /* RECElI VE BUFFER 0O */
6 }
7 struct descs *pdsc; /* PO NTER TO DESCRI PTOR */
8 main()
9 pimm = (struct imbase *) (getimr() & OxFFFF0000);

/* INIT PNTR TO | MVBASE *,

10 clrdpr(); /* CLEAR DUAL PORT RAM *,
11 pi mm >PDDAT = O; /* CLEAR PORT D DATA REG *,
12 pi mm >PDDI R = OxFF; /* MAKE PORT D8-15 QUTPUT *,
13 pi mm >SDCR = 1; /* SDMA U-BUS ARB PRI 5 *
14 pi mm >PAPAR = 4; /* PA13 | S RXD2 *
15 /* PADIR & PACDR are cleared at reset *)
16 /* Port C configuration not required for this lab

UART Exercise

This is an example of receiving a buffer of data. The receive buffer closes either if it is filled or if some
data is received and then no more is received within 10 character times. When the buffer is closed, an
LED counter on Port D is incremented.

In line 1, the parameter ‘vart2’ is defined. The only purpose of this parameter is to indicate to the

compiler that SCC2 is to be configured as UART.

Line 2: the file, mpc860.h, defines a structure that matches the internal memory space.

Line 3: the variable, pimm, will be the pointer to the internal memory space for the PowerPC. It must be
initialized to the pointer value in IMMR.

Line 4: descs is a structure that consists of one receive buffer descriptor.

Line 7: the variable, pdsc, will be the pointer to the receive buffer descriptor for the PowerPC. It must be

initialize to the value associated with the CPM pointer, RBASE, in SCC2 parameter RAM.

Line 9: pimm is initialized to the pointer value in IMMR. The lower half word of IMMR consists of the

mask number and part number. For the purpose of initializing pimm, these fields must be zeroed out.
The function, getimmr, will be seen later in the program.

Line 10: the function, clrdpr, initializes the dual-port RAM to all zeroes. This is good practice because
coming out of reset, the dual port RAM contains random ones and zeroes. To avoid accidentally
enabling a buffer descriptor or indicate an error condition, dual-port RAM needs to be cleared.

Line 11 and 12: port D is initialized and the output register, which is driving the LED counter, is cleared.

For More Information Contact: www.freescale.com

187



Freescale Semiconductor, Inc.

Line 13: this line is step 1 in the procedure. It assigns to the SDMA a priority of 5 on the U-bus.

Line 14, step 2: port A is configured so that PA13 functions as the receive pin for SCC2.

SLIDE 8-32
UART Example (2 of 4)

*

/
17 pi mm >BRGC3. CDO_CD11 = 324; /* 300 BAUD FOR BRG3 */
18 pi mm >BRGC3. DI V16 = 1; /* BRGC3 DI VI DE BY 16 */
19 pi mm >BRGC3. EN = 1; /* ENABLE BRG3 COUNTER */
20 /* BRGC2. RST, EXTC1_0, ATB and DI V16 are zero fromreset. */
21 pi mm >S|I CR. R2CS = 2; /* CONECT SCC2 RECV - BRG3*/
22 /* SICR SC2 is zero fromreset. */

23 /* No data being transmitted in this exanple; therefore, * [
24 /* TBASE, TFCR BRKCR are not initialized.

*/
25 pi Mm >SCC2. RBASE = 0x210; /* rxBD AT DPRBASE+0x2210 */
26 pi Mm >SCC2. RFCR = 0x12; /* SET FUNC CODES TO 0x12 */
27 pi Mm >SCC2. MRBLR = 40; /* NMAX BUF LENGTH IS 40 CH*/
28 pi Mm >CPCR = 0x141; /* INIT Rx PARAMETERS */
29 pi Mm >SCC2. UART. VAX_I DLE = 10; /* MAX TIME NO CHARS | S 10*/
30 pi Mm >SCC2. UART. PAREC = 0; /* CLEAR PARI TY ERR CNTR */

31 pi mm >SCC2. UART. FRVEC
32 pi mm >SCC2. UART. NOSEC

; /* CLEAR FRAME ERR CNTR  */
; /* CLEAR NO SE ERR CNTR  */
33 pi Mm >SCC2. UART. BRKEC ; /* CLEAR RECV BRK CNTR */
34 pi Mm >SCC2. UART. CHARL = 0x8000; /* END OF CHAR TABLE */
35 pi Mm >SCC2. UART. RCCM = O0xCOFF; /* NO CONTROL CHARS MASKED*/

ol

UART Exercise, Continued
Lines 17-19, step 3: configures and enables baud rate generator 3 for 300 baud.
Line 21, step 4: baud rate generator 3 is connected to the SCC2 receive clock input.

Lines 25-27, step 5: SCC2 parameter RAM is initialized. Since the problem calls only for a receive
operation, no transmit parameters are initialized. The receive buffer descriptor is located at 0x2210 in
the internal memory space and 0x210 in the dual-port RAM. The CPM RISC uses the start of dual-port
RAM as a base location. If the value, 0x2210, were assigned to RBASE instead, the program would still
work properly because the CPM RISC ignores the most significant 2. This receiver will operate big
endian and as channel number 2, as specified by RFCR.

Line 28, step 6: the receive parameters are initialized.
Lines 29-35, step 7: UART specific parameter RAM is initialized. MAX_IDLE is set to 10 as specified by

the problem. The error counters are assigned a value of zero. Lines 34-35 define zero control
characters.

For More Information Contact: www.freescale.com 188



Freescale Semiconductor, Inc.

SLIDE 8-33

/*

UART Example (3 of 4)

pdsc = (struct descs *) ((int)pimm+ 0x2210);

/* INIT DESCRI PTOR PNTR  */
/* RECElI VE BUFFER DESCRI PTOR O | NI TI ALI ZATI ON *
pdsc- >recvbdO. rxbdptr = (char *) 0x100000; /*BUF = 0x100000*,
/[* CMis initialized to O fromreset *)
pdsc- >r ecvbdO. r xbdsac. W= 1; /* LAST RECV BD *,

pdsc- >recvbdO. rxbdsac. | = 1; /* SET RXB EVENT ON CLOS*,
pdsc- >r ecvbdO. r xbdsac. E = 1; /* ENABLE RECV BUF DESC *,
SCCE2 and CIMR are zero fromreset */

pi mm >GSMR_H2. RFW = 1; /* SMALL RECEI VE FI FO *
pi mm >GSMR_L2. RDCR = 2; /* 16X RECV SAMPLE RATE *
/* DDAGis initialized to O (normal operation) at reset *)
pi mm >GSMR_L2. MCDE = 4; /* UART MODE *
pi mm >PSMR2. CL = 3; /* 8 BIT CHARACTERS *
pi mm >GSMR _L2. ENR = 1; /* ENABLE RECEI VE *
while ((pimm>SCCE2 & 1) == 0); /* WAIT FOR EVENT *
pi mm >PDDAT+= 1; /* 1 NCREMENT PCRT D *

}

UART Exercise, Continued

Line 36: the pointer to the receive buffer descriptor for PowerPC is initialized.

Lines 37-42, step 8: the receive buffer descriptor is initialized so that it points at a buffer at 0x100000, it
is the last or only buffer in the array, the receive buffer closed bit will set upon closing, and the buffer is
marked empty.

Line 43, step 13: GSMR_H2 is initialized for a small receive FIFO.

Lines 44-46, step 14: GSMR_L2 is initialized for a 16 times receive divide clock rate and for UART.

Line 47, step 15: the PSMR for SCC2 is initialized for a character length of 8 bits.

Line 48, step 16: the receiver is enabled in GSMR_L2

Line 49: the program waits until the receive buffer closes, causing the RX event bit to set.

Line 50: having received a buffer of characters, the LED counter is incremented. The program is ended.

For More Information Contact: www.freescale.com

189



Freescale Semiconductor, Inc.
SLIDE 8-34

UART Example (4 of 4)
52 getimr ()
{

53 asm(" nfspr 3,638");
}

54 clrdpr()
{
55 int *ptri;

56 for ((ptri

|
—~

int*) ((int)pimm+ 0x2000));
int)ptri <= ((int)pimm+ 0x27fc); *ptri++ = 0);
58 /* CLEARS BD AND DATA AREAS BEFORE SMC1 */
59 for ((ptri int*) ((int)pimm+ 0x2820));
int)ptri <= ((int)pim+ 0x3e7c); *ptri++ = 0);
61 /* CLEARS BD AND DATA AREAS AFTER SMC1 */

a1
~
—~

(o]
o
I
—_~

62 for ((ptri = (int*) ((int)pinmnm+ 0x3ec0));
63 (int)ptri <= ((int)pimm+ 0x3ffc); *ptri++ = 0);
64 /* CLEARS PARAMETER RAM */

UART Exercise, Continued

Line 53: the function getimmr was called when initializing pimm. It consists of one assembly language
statement. It moves the contents of special register 638, which is IMMR, to general-purpose register 3,
which is the parameter passing register.

Line 54-64: the function clrdpr was called early in the program. It clears most of dual-port RAM, but not

all of it. This program was run on an 860ADS board with communication through the RS232 port that is
driven by SMCL. In order to maintain communication, those areas that the SMCL1 uses are left alone.

For More Information Contact: www.freescale.com 190



Freescale Semiconductor, Inc.

Chapter 9: More on the UART Protocol

SLIDE 9-1
UART Protocol
What you « Buffer Descriptor Closing Conditions
Will Learn « How are control characters recognized?

« How do control characters operate

Prerequisites  « Chapter 8: Serial Communication Controller

This chapter discusses the UART protocol in some more detail than in the SCC chapter. In this chapter,
you will learn:

1. Buffer Descriptor Closing Conditions
2. How are control characters recognized?
3. How do control characters operate?

Note that how an SCC transmits and receives UART is covered as the main example at the end of the
SCC Chapter.

For More Information Contact: www.freescale.com 191



Freescale Semiconductor, Inc.

SLIDE 9-2

How an SCC Receives UART (1 of 2)

Recv
f/" Enabled/ € GSMR_LXENR=1
RBPTR.rxbdsac.E =1 &
CD*=0

* Receive chars into FIFO and transfer
to memory

RBPTR.rxbdsac.E =0
orCbh*=1 Receive buffer
closing condition RBPTR.rxbdsac.E =1 &
occurs CD*=0
\ v
Recv

Close

¢ Update rxbdsac including E (unless CM=1)
* Increment RBPTR

How an SCC Receives UART (1 of 2)
Remember that in the previous chapters we discussed buffer closing conditions. When a receive buffer

closing condition occurs, the SCC enters the Receive Close state, updating the ‘E’ bit and updating the
pointer to point to the next buffer descriptor.

For More Information Contact: www.freescale.com 192



Freescale Semiconductor, Inc.

SLIDE 9-3

How an SCC Receives UART (2 of 2)

Condition Description Add’l Status/Event Updates
Number of chars in buffer equals
MRBLR in SCC parameter RAM
Overrun || A new char was received and the
Error receive FIFO was full

CD* Lost | CD* changedto 1 rxbdsac.CD =1
rxbdsac.PR =1
Increment PAREC

Buffer full

rxbdsac.OV =1

Parity Error | Char parity bit is incorrect

One or more chars has been

Maximum .
aumber of recelveq followed by a number mbdsac.lD = 1
idles of char idles that exceeds
MAX_IDLE
Framing | The bit in the stop bit position rxbdsac.FR = 1
Error was zero Increment FRMEC

Break A break char was received in
Received | the char stream

How an SCC Receives UART (2 of 2)
When a receive buffer is closed, the following occurs:

1. The 'E' bit in the status and control field is set to zero.
2. rxbdcnt is set to the number of characters in the buffer.
3. If the 'I' bit in the status and control field is set the 'RX' field in the SCC Event register is set as well.

The following chart summarizes the conditions that cause a receive buffer to close, and any additional
status or event updates that occur as a result.

In the course of normal operations, a full receive buffer generates a buffer close event, as we have just
described.

An overrun error occurs when a new character has been receieved but the receive FIFO is full, and in
response, the SCC closes the buffer and sets the OV bit in the receive buffer descriptor. If enabled, the
SCC also generates a corresponding interrupt.

Carrier detect may also be lost during character reception. In this case, the SCC stops reception,
closes the buffer, and sets the CD bit in the receive buffer descriptor. If enabled, the SCC also
generates a corresponding interrupt.

When a parity error occurs, the communications controller closes the buffer, and sets the PR bit in the
receive buffer descriptor. If enabled, the SCC generates a corresponding interrupt. Finally, the SCC
increments the PAREC counter.

The SCC counts the number of consecutive idle characters it receives. If this number reaches the value
programmed into MAX_IDL, the SCC closes the buffer and may generate an interrupt. It then sets the
ID bit in the receive buffer descriptor. The internal idle counter is reset every time a character is
received.

For More Information Contact: www.freescale.com 193



Freescale Semiconductor, Inc.

The SCC detects a framing error when it receives a character with no stop bit. Again, the SCC closes
the buffer, sets the FR bit in the receive buffer descriptor, generates an interrupt if enabled, and
increments FRMEC, the frame error counter.

When the SCC receives a break character, it closes the receive buffer, sets the BR bit in the buffer
descriptor, and generates an interrupt, if enabled.

SLIDE 9-4
Control Character Recognition (1 of 2)

| |RCCR
0 7 8 15 EVENT Register
o[1[- [F[-[-[-]- CHAR1 O 12 15
oI5 cHar2 LI _feerRl | | |
il - === CHAR 3
N CHAR 4
Ol 1|~ == |~ |7 |~ CHAR5 CCR = Control Character Received
(01 0 Bl el CHAR 6 = 1 = A control character was
L0 e e el CHAR 7 received (with the REJECT
(01N il il el el el CHAR 8 character bit = 1) and stored
E R in the RCCR.
0 78 15
[1]1] | |rRCCM

Control Character Recognition (1 of 2)

The UART has the capability to recognize special control characters. The UART Parameter RAM
contains a table allowing the designer to specify eight characters that function as control characters.
Each character can be written to the receive buffer, or rejected. If rejected, the character is written to
the Received Control Character Register, or RCCR, in internal RAM, and a maskable interrupt is
generated.

There are two types of control characters.

The first type of control character is one in which the control character itself is a part of the actual data.
An example is a carriage return. The programmer may wish to be notified of a carriage return, as it
indicates the end of a line; however, a carriage return is also part of the data, and should be preserved
within that data. Such control characters are stored in the receive data buffer.

The second type of control character is not part of the data. An example is XON / XOFF characters,
which are separate commands; nonetheless, they are also incoming characters. The Receive Control
Character Register, or RCCR, stores control characters that are not part of the user data.

It is necessary to identify to the CPM RISC which control characters it should direct to the receive data

buffer, and which it should direct to the RCCR register. Each entry in the table of defined control
characters contains an 'R', or REJECT, field associated with each character.

For More Information Contact: www.freescale.com 194



Freescale Semiconductor, Inc.

If the 'R’ field is set to a '0', the CPM RISC considers the incoming control character as part of the data
stream, and so writes the character into the receive buffer. The CPM RISC then closes the buffer, and
opens a new receive buffer if one is available. It is then possible to generate a maskable interrupt.

In contrast, if the 'R’ field is set to a '1', the incoming control character is not considered part of the data
stream, and so is written into the RCCR register, and a maskable interrupt is generated. The current
buffer is not closed.

Note that although there are eight entries in the table, it is not necessary to use all eight entries. The 'E’,
or END bit, marks the last entry in the control character table if setto a '1'".

The 16-bit Receive Control Character Mask Register permits the user to mask the comparison of an
incoming character and the control character entries in the table. This masking option expands the
number of possible control characters. The lower eight bits of RCCM correspond to the lower eight bits
of the characters in the table. If a given bit is set to a '0', no masking occurs for that bit.

The 'CCR' bit in the EVENT register indicates that the communications device received a control
character with the REJECT bit set, and that this character was stored in the RCCR.

SLIDE 9-5

Control Character Recognition (2 of 2)

E = End Of Table
0 = Valid Entry. The lower 8 bits will be checked against incoming character.
1 = Invalid Entry. This is the end of the table.This must be the last

entry in the control character table.

Note : In tables with 8 control characters this bit will be 0 in all entries.

R = Reject Character

= 0 = This character is not rejected but written into the receive buffer. The
buffer is then closed and a new buffer, if available, is opened. An a
maskable interrupt may be generated.

= 1 = If this character is recognized it will not be written to the receive buffer.
Instead, it is written to the Received Control Character Register and a
maskable interrupt is generated. The current buffer is not closed when a
control character is received and the table entry has the "R" bit set.

RCCM = Receive Control Character Mask
0 = Mask this bit during comparison of the incoming character.
1 = Use this bit during comparison of the incoming character.

Control Character Recognition (2 of 2)

Here are shown the possible values for the ‘E’ bit, the ‘R’ bit, and the Receive Control Character Mask.

For More Information Contact: www.freescale.com 195



Freescale Semiconductor, Inc.

SLIDE 9-6
UART Control Character Operation
Start Character
enters FIFO 000D | CHAR1 I:I RCCR

4009 | CHAR2
2013 | CHAR3
8000] CHAR4 (COFFRCCM

Y

- Interrupt
Set RxB in SCCEx| N occurg

End)<—

control
char entry,

Character goes to
RCCR; -
set CCR in SCCEXx

1. Character goes to

buffer;
2. Buffer is closed; N Interrupt
3. Set rxbdsac.C occurs

UART Control Character Operation
This flow chart summarizes the operation of the reception and processing of UART control characters.

First, let us examine the example of the character table. The first entry contains 0xOD, indicating a
carriage return, and the REJECT bit is cleared. Next, there are two more characters, 0x09 and 0x13,
each with the reject bit set. Last, the fourth entry contains an empty entry with the 'E' bit set, indicating
the end of the table.

In this example, nothing is defined in the RCCR register.

The mask register contains a value of OXCOFF. The 'FF' indicates that the CPM RISC should compare
every bit in the character with the control characters defined in the table. Note that the value of 0x11 in
the most significant bit position is set, due to a specification in the User Manual.

Let us now review the flow of operation as the CPM RISC processes control characters.

First, a character enters the FIFO, and the CPM RISC performs a check to determine if the incoming
character matches any entries in the control character table. If no match occurs, no other processing is
required.

If a match does occur, the CPM RISC determines if the 'R', or REJECT, bit is equal to a '1'. If so, the

character enters the RCCR register. Then the 'CCR' bit is set in the event register. If the 'CCR' bit is
also set in the mask register, an interrupt occurs.

For More Information Contact: www.freescale.com 196



Freescale Semiconductor, Inc.

If, however, the 'R’ bit is not equal to a '1', the character enters the receive data buffer, the buffer is
closed, and the 'C' bit, for Control Character, is set in the status and control field. Next, the CPM RISC
determines if the 'l', or Interrupt, bit is set in the status and control field. If not, processing ends. If the
'I' bit is set in the status and control field, the Receive Buffer Closed bit is set in the event register. If the
corresponding bit is also enabled in the mask register, an interrupt occurs.

For More Information Contact: www.freescale.com 197



Freescale Semiconductor, Inc.
Chapter 10: HDLC Protocol

SLIDE 10-1

HDLC Protocol

What You « What is the structure of the HDLC frame?
Will Learn * What is the MPC860 support for HDLC point-to-point and
multi-drop configurations?
¢ What are the basic HDLC transmit and receive operations?
« What is the programming model for the HDLC protocol
¢ How do you initialize an SCC for HDLC

Prerequisites « Chapter 8: Serial Communication Controller

In this chapter, you will learn:

What is the structure of the HDLC frame?

What is the MPC860 support for HDLC point-to-point and multi-drop configurations?
What are the basic HDLC transmit and receive operations?

What is the programming model for the HDLC protocol?

How do you initialize an SCC for HDLC?

abrwnpE

For More Information Contact: www.freescale.com 198



Freescale Semiconductor, Inc.

SLIDE 10-2
HDL C Frame Format
Opening Dest. Information Closing
Flag Address | control (Optional) CRC | “Flag
8 8orl6 8orl6 8N 16 or 32 8
-~ Stored in transmit buffer ———>

<~ Stored in receive buffer —>

HDLC Frame Format

HDLC is one of the most common data link layer communications protocols. Many other common
protocols are based on HDLC. This diagram shows the framing structure of an HDLC frame.

The HDLC frame begins with an opening flag of at least eight bits. A flag consists of an octet with a
value of OX7E. A destination address of 8 or 16 bits follows the opening flag. Next follows a control field
of 8 or 16 bits. The HDLC controller on the MPC860 does not use the control field, but it is part of the
standard HDLC frame. The Information field is optional, and if present, it must have a length of an
integral number of eight bits. The CRC field follows, with a length of either 16 or 32 bits, and the last
field of the frame is a closing flag of 8 bits.

To transmit an HDLC frame, the information contained within the boundaries of the upper arrow in the

diagram must be stored in the transmit buffer. Likewise, the lower arrow in the diagram delineates data
that is stored in the receive buffer.

For More Information Contact: www.freescale.com 199



Freescale Semiconductor, Inc.

SLIDE 10-3
HDL C Point-to-Point
Station Station
#1Tx Rx#2
RX Tx

» Multiple buffers per frame

» Separate interrupts for frames and buffers (receive and transmit)
* Received frames threshold to reduce interrupt overhead

* Maintenance of five 16-bit error counters

» Flag/Abort/ldle Generation/Detection

» Zero insertion/deletion

* 16-bit or 32-bit CRC-CCITT Generation/Checking

» Detection of nonoctet aligned frames

» Detection of frames that are too long

* Programmable flags (0-15) between successive frames

HDLC Point-to-Point

HDLC supports point-to-point or multi-point transmission. This slide illustrates point-to-point HDLC
transmission support.

The HDLC controller provides multiple buffers per frame.

The HDLC controller supports separate interrupts for frames and buffers. Note that these interrupts
include Transmit Buffer Sent, and Receive Buffer Closed, and Receive Frame. There is no "transmit
frame" status bit.

A receive frame threshold reduces interrupt overhead. It is possible to set this threshold in the event of
many, short incoming frames, so that the controller generates an interrupt after receiving a given
number of frames, rather than after receiving each individual frame.

There are five, 16-bit error counters. Additionally, the controller automatically generates flags, and
aborts, and also automatically generates and detects idles.

The HDLC controller uses a zero insertion and deletion process, commonly known as bit-stuffing, to
ensure that the bit pattern of the delimiter flag does not occur in the fields between flags.

It also can perform 16- or 32-bit CRC generation and checking. Error counters track non-octet aligned
frames, and the controller detects frames that are too long.

Finally, it is possible to program the number of flags between successive frames, with a value of zero

through fifteen. A value of zero means that the closing flag of one frame is to be regarded as the
opening flag of the following frame.

For More Information Contact: www.freescale.com 200



Freescale Semiconductor, Inc.

SLIDE 10-4
HDLC Multi-Drop
Station Station Station Station Station

#1 #2 #3 #4 #5

» Four address comparison registers with mask
» Automatic retransmission in case of collision

HDLC Multi-Drop

As with Ethernet, HDLC configured in multi-drop creates the requirement to handle addressing and
collisions effectively.

The HDLC controller offers four address comparison registers, which provide up to four addresses per
node. If the user implements the mask register accompanying the address comparison registers, it is
possible to support an even greater number of addresses per node.

The HDLC controller also performs auto retransmission in the case of a collision. There are two
retransmit mechanisms in place, and the user selects the mechanism desired.

The first retransmission mechanism is normal mode: if the HDLC controller detects the loss of CTS*

while transmitting the first or second buffer, it will automatically retransmit when CTS* is re-asserted.
The second retransmission mechanism is the HDLC bus mode, which we discuss later in this chapter.

For More Information Contact: www.freescale.com 201



Freescale Semiconductor, Inc.

SLIDE 10-5

Basic HDLC Transmit Operation

Flag appended & no Graceful Stop Transmit pending

8 1s occur or CTS* asserted
CTS* lost or
TxD<>CTS*
(1st or 2nd buffer)
& PSMRx.BUS=1

GSMR_LX.ENT =1

Xmit
enabled

¢ If GSMR_Hx.RTSM=0 . i
xmit idles !jgggtgigd’ - 1f TC=1
else q flag xmit . ?Jp%er:d ggct t
. ate BD status
xmit flags Next | Fetch data|Xmit Transmit| « C|F()ear R*
txbdsac.R=1 pending| « If | bit set,
* 64 bits max set SCCEx.TxB
xmitted
* Xmit abort Graceful
« Clear R* sequence $7F stop
« If I bit set, * Xmit FIFO
et SCCEX TxB flushed + SCCEX.GRA
* Clear R* bit is set

¢ If GSMR_HXx.RTSM=0
xmit idles
else
xmit flags
* PPC may
modify xmit
parameters

Restart Transmit

Restart Transmit

*Assumes txbdsac.CM=0

Basic HDLC Transmit Operation
This state diagram describes how the HDLC controller transmits data.

The HDLC controller enters the Transmit Enabled state when the ENT bit is set in the GSMR_Lx
register. In this state, the controller either transmits idles or flags, depending on the contents of the
RTSM field in the GSMR_Hx register.

The HDLC controller polls the first buffer descriptor in the transmit buffer descriptor table. When the
current transmit buffer descriptor is ready, the HDLC controller enters the Transmit mode, and begins
transmitting, after inserting the user-specified minimum of flags between frames.

Note that a frame can contain multiple buffers. Therefore, the controller may enter a loop, transferring
a buffer with the Last bit equal to zero, closing that buffer, and proceeding to the next buffer descriptor.
If the next buffer descriptor contains a Ready bit equal to one, the controller transmits that buffer, and
SO on.

Ultimately, the controller encounters a transmit buffer in which that buffer descriptor’s Last bit is equal to
one, in which case the controller enters the Close Transmit state. If CRC is enabled, the controller
appends a CRC field, updates the buffer descriptor, clears the Ready bit, and sets the Transmit Buffer
Sent bit in the event register. Next, the controller appends the flag, and re-enters the Transmit Enabled
state.

What we have just described is the standard path for HDLC transmission.

For More Information Contact: www.freescale.com 202



Freescale Semiconductor, Inc.

However, the PowerPC may issue a graceful stop command. In this case, after completing the current
transmission, the controller executes a graceful stop in a fashion similar to the Ethernet transmission
operation. While the controller is in the Graceful Stop state, SCCEX.GRA is set indicating the present
state. Meanwhile, the PowerPC reorganizes its data for transmission, perhaps modifying transmit
parameters.

When the PowerPC is ready to transmit again, it writes a Restart Transmit command into the command
register, and puts the controller back into the Transmit Enable state.

Alternatively, a collision could occur, placing the controller into Standby mode. A collision occurs either
because CTS* is lost, or because the controller is in HDLC bus mode, and the TX* and CTS* pins are
not equal. The controller remains in standby mode until either CTS* is asserted, or until it detects an
idle bus, at which point the controller re-enters the Transmit Enable state.

SLIDE 10-6

Basic HDL C Receive Operation

GSMR_Lx.ENR=1

Frame receive complete

Address
enable

received

rxbdsac. E—
—

enabled

No address Wait for non-flag

« Wait for flag match . « Check CRC
v%i(t)ranaArSSggress * Recv data|Receive |, \yrite frame length
& HMASK and store |buffer to rxbdent
Next full « Set Last-in-Frame
rxbdsac.E=1 bit
Close e Clear E*

¢ Set SCCEX.RxF
if frames recvd >
Flrameh RFTHR & | bit=1
ength |« If frame too long,set
* Clear E* > MFLR |rxbdsac.LG

« If | bit set,
Frame
too long

set SCCEx.RxB
* No more data is

stored, but octet
count is maintained.

receive
buffer

* Assumes rxbdsac.CM=0

Basic HDLC Receive Operation

The HDLC controller enters the Receive Enabled state when the ENR bit is enabled in the GSMR_Lx
register. In this state, the controller waits for a flag.

When a flag arrives, the controller enters the Address Enable state, and waits for a non-flag. A non-flag
must be an address, and the controller compares the address with the addresses in the HADDRx and
HMASK fields.

If no match occurs, the controller re-enters the Receive Enabled state.

For More Information Contact: www.freescale.com 203



Freescale Semiconductor, Inc.

If a match occurs between the incoming address and the HADDRx and HMASK fields, and an empty
buffer is available, the controller enters the Receive state, and receives the incoming data in as many
buffers as is needed.

When the controller receives a second flag, it enters the End Frame state, in which it checks the CRC,
writes the frame length to the count field, sets the Last-in-Frame bit, and clears the Empty bit. The
controller sets the Receive Frame event if the receive frame threshold has been reached and the
Interrupt bit is set. Then, the HDLC controller re-enters the Receive Enabled state.

It is possible that the frame length could exceed the maximum specified value. In this case, the
controller enters the Frame-Too-Long state, in which it does not accept any additional data, but
continues to count the number of octets. When the end flag arrives, the controller enters the End
Frame state, performs the requisite steps, and then sets the LG bit in the status and control field.

SLIDE 10-7
HDL C Bus Configurations (1 of 2)
Station Station Station Station Station
#1 #2 #3 #4 #5

Rx TXC—TS Rx TXC—TS Rx TXC—TS Rx TXC—TS Rx TXC—TS

HDLC Bus LAN

HDLC Bus Configurations (1 of 2)

The MPC860 HDLC controller can operate in a special mode called HDLC bus mode, which is
implemented like the configurations shown here and in the next slide. HDLC bus mode allows an
HDLC-based LAN and other point-to-multipoint configurations to be implemented easily.

In the first configuration diagram, the RX*, TX*, and CTS* pins all operate on a single line. Any two

stations can transmit. HDLC bus mode offers a mechanism to obtain access to the bus automatically,
and perform auto retransmission in the case of a collision.

For More Information Contact: www.freescale.com 204



Freescale Semiconductor, Inc.

SLIDE 10-8
HDL C Bus Configurations (2 of 2)
MASTER SLAVE SLAVE SLAVE SLAVE
Station Station Station Station Station
#1 #2 #3 #H4 #5

RX TXC_TS RX TXC_TS RXx TXC_TS RX TXC_TS RX TXC_TS

LT v v v Y

HDLC Bus LAN

HDLC Bus Configurations (2 of 2)

HDLC bus mode might also function in a configuration such as that shown in this slide. In this example,
the nodes are configured with one master and a number of slaves. Note that on all the slave nodes,
TX* and CTS* both operate on the same line.

Varying implementations of the basic bus mode include its use with a TDM bus, with the serial interface
in non-multiplexed mode (please see the Serial Interface chapter), or in a delayed RTS mode working
with an external buffer. See the User Manual for further information.

For More Information Contact: www.freescale.com 205



Freescale Semiconductor, Inc.

SLIDE 10-9

HDLC Bus Transmit Operation

GSMR_LXx.ENT=1 &
txbdsac.R=1

End of frame Xmit
complete
< 8 ones CTS*=TxD

TXD >< ><

(output)

o X X

(input)

Sampling

HDLC Bus Transmit Operation

This state diagram illustrates HDLC bus transmit operation. When the ENT bit in the GSMR_Lx register
is equal to one, and a transmit buffer is available, the controller enters the Transmit Ready state. The
HDLC controller remains in the Transmit Ready state as long as it cannot detect eight consecutive '1's
on the bus.

HDLC bus uses the CTS* pin to monitor transmitted data; the transmit data is connected to the CTS*
input in a wired-OR fashion, such that 0 has a higher priority than 1. The controller counts the number
of one bits using the CTS* pin. When the controller receives eight consecutive '1's, it enters the
Transmit state, and begins transmission. The controller remains in the Transmit state as long the CTS*
pin maintains the same value that it is transmitting. At the end of the frame, the controller enters the
Transmit Complete state.

If a second station transmits simultaneously, then it is possible that the first station transmits a one while
the CTS* line has a value of zero, because the second station is pulling the signal low. The controller
detects the disparity, identifies it as a collision, leaves the bus, and enters the Transmit Ready state.
When two stations attempt to transmit at the same time, the station with the first unique zero wins the
bus.

To ensure that all stations gain an equal share of the bus, a priority mechanism is implemented in HDLC
bus. Once an HDLC bus node has completed the transmission of a frame it waits for ten consecutive
one bits, rather than just eight, before beginning its next transmission. After detecting ten consecutive
‘1’s, it can transmit and change back to waiting for eight ‘1’s, and the process repeats.

The lower diagram illustrates how the CTS* pin is used. The CTS* sample is taken halfway through the

bit time, using the rising edge of the transmit clock. If the transmitted bit is the same as the received
CTS* sample, the HDLC bus controller continues its transmission. If, however, the CTS* sample is 0,

For More Information Contact: www.freescale.com 206



g |

Freescale Semiconductor, Inc.

but the transmitted bit was 1, the HDLC controller ceases transmission and returns to the active
condition, as we have just described.

SLIDE 10-10
HDLC Specific Parameter RAM (1 of 2)

Address Name Size | Description User Writes
SCC Base + $30| Reserved Word | Reserved
SCC Base + $34| C_MASK Word | CRC Constant
SCC Base + $38| C_PRES Word | CRC Preset
SCC Base + $3C] DISFC Hw | Discard Frame Error 0
SCC Base + $3E| CRCEC Hw | CRC Error Counter 0
SCC Base + $40| ABTSC Hw | Abort Sequence Counter 0
SCC Base + $42| NMARC Hw | Non-matching Address Rx Counter 0
SCC Base + $44| RETRC Hw | Frame Transmission Counter 0
SCC Base + $46| MFLR Hw | Maximum Frame Length Register | No. of octets

HDLC Specific Parameter RAM (1 of 2)
This slide and the following slide summarize values for initializing HDLC parameter RAM.

There are two CRC values: CRC Constant, and CRC Preset. Each field supports two optional values,
based on whether the user implements a 16- or a 32-bit CRC. The User Manual specifies the
appropriate values.

Next are shown five error counters, all of which are initialized with zeros. It is possible to count the
number of discarded frames, CRC errors, frames aborted, non-matching addresses, and the number of
frames retransmitted.

The Maximum Frame Length Register field specifies the maximum number of octets for a received

frame. If an incoming frame exceeds this length, the controller discards the remainder of the frame, and
initiates procedures for the Frame-Too-Long state.

For More Information Contact: www.freescale.com 207



g |

Freescale Semiconductor, Inc.

SLIDE 10-11
HDLC Specific Parameter RAM (2 of 2)
Address Name Size |Description User Writes
SCC Base + $48| MAX_cnt Hw | Max_Length Counter
SCC Base + $4A| RFTHR Hw | Received Frames Threshold No. of frames
SCC Base + $4C| RFCNT Hw | Received Frames Count
SCC Base + $4E| HMASK Hw | User-Defined Address Mask
SCC Base + $50| HADDR1 Hw | User-Defined Frame Address
SCC Base + $52| HADDR2 HwW | User-Defined Frame Address
SCC Base + $54| HADDR3 Hw | User-Defined Frame Address
SCC Base + $56| HADDR4 Hw | User-Defined Frame Address
SCC Base + $58| TMP Word | Temp Storage
SCC Base + $5A| TMP_MB Hw | Temp Storage

HDLC Specific Parameter RAM (2 of 2)

Next is the Received Frames Threshold. Here the user configures the number of frames received
before a Receive Frame event occurs, generating an interrupt. A value of one generates an interrupt
for every incoming frame. The default value of zero generates an interrupt once every 65000 frames.

The fields HADDR1_4 specify up to four addresses to which this station responds.

The HMASK register permits configuration of sets of addresses to which this station responds.

For More Information Contact: www.freescale.com 208



Freescale Semiconductor, Inc.

SLIDE 10-12

HDLC Mode Register (PSMR)

3 5 10 11 12 13 15
NOF | crc |rTe - |Fse|orT|BUS|BRM|MEE | -

« Select Number of Flags Between Frames
- NOF = Minimum number of flags between frames; 0 means no flags.
-FSE =If set, NOF is decremented by 1. If NOF=0, then 1 flag between frames. Useful in
Signaling System #7.

« Select CRC Size
- CRC =16 bits (0) or 32 bits (2).

« Select Retransmission
-RTE = Retransmit if CTS* lost occurs on the 1st or 2nd buffer.

« Select to Disable Receiver While Transmitting
- DRT = Turn off receiver when RTS* is asserted. Useful when the station does want to
receive its own transmission.

« Select HDLC Bus Mode
- BUS

« Select HDLC Bus RTS* Mode
- BRM = Assertion of RTS* is delayed by 1 bit time.

« Select to Enable Multiple Frames in FIFO
- MFF = Allows small frames to be transmitted without delay, but
if CTS* is lost, the status bit may not set in the correct buffer descriptor. MFF=0 is
useful in debugging.

HDLC Mode Register (PMSR)

A protocol-specific mode register is associated with HDLC.

This register allows the user to select the number of flags between frames. The Number of Flags field,
or NOF, specifies the actual number of flags between frames. Flag Sharing Enable, or FSE, selects

flag sharing; that is, the closing flag of one frame acts as the opening flag of the next.

The CRC field selects the CRC size, and can contain two possible values, for either a 16-bit or a 32-bit
CRC.

It is also possible to select retransmission. The RTE field specifies that the controller retransmit if it
encounters a loss of CTS* on the first or second buffer.

If the transmit and receive pins are connected together, as when the HDLC channel is configured onto a
multi-drop line, the user does not wish to receive while transmitting. In this case, the Disable Receiver
While Transmitting, or DRT, field prevents such an occurrence.

The BUS field selects the HDLC bus mode.

In conjunction with the bus mode, the BRM field selects HDLC bus RTS* mode, thereby delaying the
assertion of RTS* by one bit-time. The User Manual contains additional discussion about the use of this
mode.

Finally, the Multiple Frames in FIFO field causes the controller to allow only one frame in the buffer at
any one time. This setting is useful for debugging purposes.

For More Information Contact: www.freescale.com 209



Freescale Semiconductor, Inc.

SLIDE 10-13

HDL C Buffer Descriptors (1 of 2)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
E |Reslw | 1 [ L | F|cMm|Res| DE|Res| LG [NO|AB|cR[OV]|CD
Data Length

— Rx Data Buffer Pointer —

* Select Control Parameters - E, W, | and CM are the only control

bits

» Status Indicators (not errors)
-L = this buffer is the last in a frame
-F = this buffer is the first in a frame

* Error Indicators

-DE =DPLL error

-LG =the length of this frame > MFLR

- NO = nonoctet aligned frame

- AB =a minimum of 7 ones was received during frame
reception

-CR =CRC error

- OV =overrun

-CD = carrier detect was lost

HDLC Buffer Descriptors (1 of 2)
HDLC has both Receive and Transmit buffer descriptors. We discuss in the SCC chapter the empty,

wrap, interrupt, continuous mode, last and first bits, all of which are present in the receive buffer
descriptor. The summary in the illustration describes the various error bits.

For More Information Contact: www.freescale.com 210



Freescale Semiconductor, Inc.

SLIDE 10-14

HDLC Buffer Descriptors (2 of 2)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R [rRes|w | 1 | L [7c|cm] Reserved lov|co
Data Length

— Tx Data Buffer Pointer —

» Select Control Parameters - R, W, | and CM are the standard control bits
-L = this is the last buffer in the frame.
-TC =transmit the CRC sequence after the last data byte.

« Error Indicators

- UN = an underrun occurred.
-CT =CTSlost

HDLC Buffer Descriptors (2 of 2)
The Transmit buffer descriptor includes the ready, wrap and last bits.

The TC bit stands for Transmit CRC, and selects whether a CRC field is appended. Two error fields
indicate underruns and CTS* lost.

For More Information Contact: www.freescale.com 211



Freescale Semiconductor, Inc.

SLIDE 10-15
HDL C Event Reqister (SCCEX)
0 2 3 4 5 6 7 8 9 10 11 12 13 14 15
- GLr| GLt |DCC|FLG| IDL |GRA TXE|RXF | BSY| TXB | RXB

» Events for Normal EPPC Action
- RXF = A frame has been received.

- TXB = A buffer has been transmitted.

- RXB = A buffer was received that was not a complete frame.
- GRA = Graceful Stop is complete; data can be rearranged.

* Error Status

- GLr, GLt = Clock glitch on Receive and/or Transmit.

- TXE = CTS* lost or Transmit underrun occurred.
- BSY = A frame was discarded due to a lack of buffers.

« Status Changes (actual status is in SCCSx)

- DCC = Carrier sense as generated by the DPLL has changed.
- FLG = HDLC controller has stopped or started receiving flags.
- IDL = Serial line has stopped or started idling.

HDLC Event Register (SCCEX)

Four bits in the HDLC event register support normal operation. These include Receive Frame, Buffer

Transmitted, Buffer Received, and Graceful Stop.

Error status bits include two bits associated with the clock, for glitches on receive or transmit; Transmit

Error; and Busy.

There are also status bits specifically associated with HDLC. It is possible to monitor carrier sense,

flags or idles, and the event bits reflect any detected changes.

For More Information Contact: www.freescale.com

212



Freescale Semiconductor, Inc.

SLIDE 10-16

How to Initialize an 860 SCCx for HDLC (1 0of 9)

BRGCx

CD11_CDO:clock divider

DIV16:BRG clk prescalar divide by 16
EXTC1_EXTCO:clock source
EN:enable BRG count

ATB:autobaud

RST:reset BRG

Step Action Example
FRZ:SDMAs freeze next bus cycle /* MAKE SDVA ARB PRI =2 */
RAID: RISC controller arbitration ID
2 | Configure ports as required pi mm >PAPAR = 0x108;
gurep g [*ENBL TxD2, & CLK2 */
3 Initialize a Baud Rate Configuration Reg,

pi mm >BRGC3. CD11_CD0 = 1040;
/* SET BAUD RATE TO 1200 FCR
20 Mz CLOCK */

How to Initialize an SCC Controller for HDLC (1 of 9)

Here is the procedure for initializing an SCC for HDLC on the MPC860 using interrupts. Certain

assumptions are made as listed.

Each entry has an example statement for each step. "pimm" refers to the pointer to the internal

memory map.

First, the user initializes SDCR. This is the register in which it is possible to give the SDMAs an

arbitration 1D to provide them with a priority on the U-bus.

Next, the user configures the ports as required. All the pins for the SCC are alternate functions on the
port pins, so the user must configure these pins for the desired function.

Step 3: If a baud rate generator is to be used for the clock, the baud rate configuration register needs to
be initialized.

For More Information Contact: www.freescale.com

213



Freescale Semiconductor, Inc.

SLIDE 10-17

How to Initialize an 860 SCCx for HDLC (2 0f 9)

4 Initialize the Serial Interface Clock Route
Reg, SICR

SCx:select NMSI or TDM for SCCx

RxCS:select recv clk source for SCCx
TxCS:select xmit clk source for SCCx
GRx:select grant mechanism support

xis1l,2,30r4

pi mm >SI CR. R2CS = 2;
/* SCC2 RECEI VE CLK IS CLK5*/

How to Initialize an SCC Controller for HDLC (2 of 9)

Step 4: Connect the clocks to this SCC using the Serial Interface Clock Route Register (SICR).

SLIDE 10-18

How to Initialize an 860 SCCx for HDL C (3 of 9)

5 Initialize SCCx Parameter RAM

RBASE:pointer in IMM to RxBDs
TBASE:pointer in IMM to TxBDs
RFCR:recv function code & byte order
TFCR:xmit function code & byte order
MRBLR:maximum recv buffer length

pi mm >SCC1. TFCR = 0x15;
/* INIT XM T FUNC CODE TO
SUPER DATA SPACE & MOT*/

6 Initialize Rx and/or Tx parameters via
the Command Register, CPCR

OPCODE:operation code

CH NUM:channel number
FLG:command semaphore flag
RST:software reset command

pi mm >CPCR = 0x101;
/* INIT RECV PARAMETERS
FOR ScC1 */

For More Information Contact: www.freescale.com

214



Freescale Semiconductor, Inc.

How to Initialize an SCC Controller for HDLC (3 of 9)

Step 5: Initialize SCC parameter RAM, including RBASE and TBASE, and the Maximum Receive

Buffer Length.

Step 6: Initialize the receive and transmit parameters by writing the appropriate command to the

command register (CPCR).

SLIDE 10-19

How to Initialize an 860 SCCx for HDLC (4 of 9)

Initialize HDLC parameter RAM

C_MASK: CRC constant

C_PRES: CRCPreset

DISFC: discard frame counter
CRCEC: CRC error counter
ABTSC: abort sequence counter
NMARC: nonmatching address Rx cntr
RETRC: frame transmission counter
MFLR: max frame length reg
RFTHR: received frames threshold
HMASK: frame address mask
HADDRL1: frame address 1
HADDRZ2: frame address 2
HADDRS: frame address 3
HADDRA4: frame address 4

pi
/*

mm >SCC2. HDLC. MFLR = 100;
MAX FRAME LNGTH IS 100 */

How to Initialize an SCC Controller for HDLC (4 of 9)

Step 7: Initialize the HDLC parameter RAM including the error counters, and the frame address fields.

For More Information Contact: www.freescale.com

215



Freescale Semiconductor, Inc.

SLIDE 10-20

How to Initialize an 860 SCCx for HDLC (5 of 9)

Initialize RxBDs

rxbdptr:pointer to data buffer
rxbdcnt:number of chars received
rxbdsac.E:recv buffer empty
rxbdsac.W:last BD (wrap bit)
rxbdsac.l:set event when buf closes
rxbdsac.CM:continuous mode
rxbdsac.L: last in frame

rxbdsac.F: first in frame

pdsc->recvbd2. rxbdsac. E = 1;
/* INIT RxBD2 TO EMPTY */

Initialize TxBDs

txbdptr:pointer to data buffer
txbdcnt:number of chars xmitted
txbdsac.R:buffer ready to xmit
txbdsac.W:last BD (wrap bit)
txbdsac.l:set event when buf closes
txbdsac.CM:continuous mode
txbdsac.L: last in frame
txbdsac.TC: Tx CRC

pdsc->xm t bd2. t xbdsac. R = 1;
/* INIT TxBD2 TO READY */

Step 8: Initialize the receive buffer descriptors.

Step 9: Initialize the transmit buffer descriptors.

How to Initialize an SCC Controller for HDLC (5 of 9)

For More Information Contact: www.freescale.com

216



SLIDE 10-21

Freescale Semiconductor, Inc.

How to Initialize an 860 SCCx for HDL C (6 of 9)

Initialize Mask Reg, SCCMx

RXB:recv buffer closed
TXB:xmit buffer sent

BSY:busy; lost chars, no buffers
RXF: recv frame

TXE:transmit error
GRA:graceful stop complete
IDL:idle sequence status changed
FLG: flag status

DCC: DPLL CS changed
GLt:xmit clock glitch detected
GLr:recv clock glitch detected

10 Initialize Event Reg, SCCEX pi mm >SCCEL = OXFFFF;
SCCEXx will be zero from reset; no /* CLEAR EVENT REG SCCl */
other initialization required.

11

pi rm >SCCML = 3;
/* ENABLE RXB & TXB EVENTS TO
| NTRPT */

How to Initialize an SCC Controller for HDLC (6 of 9)

Step 10: This step is not really required since reset conditions are assumed. In this case, the event

register is already cleared. Under more general circumstances, however, it is possible to clear the event
register by writing a value of OXFFFF, as shown in the example.

Step 11: Initialize the mask register to enable interrupts to occur for the desired events.

For More Information Contact: www.freescale.com

217



Freescale Semiconductor, Inc.

SLIDE 10-22

How to Initialize an 860 SCCx for HDL.C (7 of 9)

SCCl-4 /* ENABLE SCC2 | NTRPTS */

PC4-15
TIMER1-4
IDMA1-2
SMC1-2
SDMA
R-TT

SPI

12C

12 Initialize Interrupt Mask Reg, CIMR pi Mm >Cl MR SCC2 = 1;

13 | Initialize General SCCx Mode Reg pi mm >GSMR_H2. TFL = 1;
High, GSMR_Hx /* 1 BYTE XM T FI FO */
NMSI Control
CDP:CD* pulse or envelope
CTSP:CTS* pulse or envelope
CDS:CD* synchronous or asynch
CTSS:CTS* synchronous or asynch
External Clock
GDE:qglitch detect enable

How to Initialize an SCC Controller for HDLC (7 of 9)
Step 12: Initialize CIMR for those CPM devices to be allowed to cause interrupts.

Step 13: Initialize the General SCCx Mode Register High. The chart lists a few parameters you may
wish initialize.

For More Information Contact: www.freescale.com 218



Freescale Semiconductor, Inc.

SLIDE 10-23

How to Initialize an 860 SCCx for HDLC (8 of 9)

14

Initialize General SCCx Mode Reg
Low, GSMR_Lx

Diagnostic Mode
DIAG:normal,loopback,echo

Channel Protocol Mode
MODE:UART, etc.

pi mm >GSVMR_L1. MODE = O0;
/* INIT SCClL TO HDLC MODE */

How to Initialize an SCC Controller for HDLC (8 of 9)

Step 14: Initialize the General SCCx Mode Register Low.

SLIDE 10-24

How to Initialize an 860 SCCx for HDL.C (9 of 9)

15

Initialize Protocol Specific Mode Reg

PSMRx
NOF: number of flags
CRC: CRC selection
RTE: retransmit enable
FSE: flag sharing enable

DRT: disable receiver while xmitting

BUS: HDLC bus mode
BRM: HDLC bus RTS* mode
MFF: multiple frames in FIFO

pi mrm >PSMR2. SL = 1;
/* INIT SCC2 FOR 2 STOP
BI TS */

16

Turn on transmitter and/or
receiver, GSMR_Lx

ENT:enable transmit
ENR:enable receive

pi mrm >GSMR_L1. ENT = 1;
/* ENABLE SCCl1 TRANSM TTER */

For More Information Contact: www.freescale.com

219



Freescale Semiconductor, Inc.

How to Initialize an SCC Controller for HDLC (9 of 9)

Step 15: Initialize the Protocol Specific Mode Register. This includes Number of Flags, HDLC bus
mode, and Flag Sharing Enable, among others.

Finally, step sixteen: Enable the transmitter and / or the receiver in the General SCCx Mode Register
Low (GSMR_Lx).

For More Information Contact: www.freescale.com 220



Freescale Semiconductor, Inc.
Chapter 11: Ethernet Protocol

SLIDE 11-1

Ethernet Protocol

What You * What is the Ethernet Frame Format?

Will Learn « What is the MPC860 support for Ethernet multi-drop configuration?
« What are the basic Ehternet transmit and receive operations?
« What is the programming model for the Ethernet protocol?
« How do you initialize an SCC for Ethernet?

Prerequisites e« Chapter 8: Serial Communication Controller

In this chapter you will learn:

What is the Ethernet frame format?

What is the MPC860 support for Ethernet multi-drop configurations?
What are the basic Ethernet transmit and receive operations?

What is the programming model for the Ethernet protocol?

How do you initialize an SCC for Ethernet?

abrwnpE

For More Information Contact: www.freescale.com 221



Freescale Semiconductor, Inc.

SLIDE 11-2
Ethernet Frame Format
Start Frame
Pre- Frame| pest. | Source | Type/ Data Check
amble I'D'et_ Address|Address| Length Sequence
imiter

7 bytes 1byte 6 bytes 6 bytes 2 bytes 46 - 1500 bytes 4 bytes

< Stored in transmit buffer

< Stored in receive ——>
buffer

Ethernet Frame Format
The Ethernet IEEE 802.3 protocol is a widely used LAN protocol. Here is shown an Ethernet frame.

Its first field consists of a 7-byte preamble of alternating ones and zeros, followed by a 1-byte start
frame delimiter field.

Next are the destination and source address fields, each six bytes. These refer to the destination and
source station addresses.

The 2-byte Type / Length field follows the address fields. The Ethernet controller supports two
specifications -- DIX Ethernet and IEEE 802.3. Although these specifications are very similar, they
differ in their implementation of the Type / Length field.

A varying amount of transmitted data follows the Type / Length field. The data field must be at least 46
bytes, and no more than 1500 bytes per frame.

A 4-byte frame check sequence follows the data.

Note the two sets of arrows in the illustration. In order to transmit an Ethernet frame, it is necessary to
store the frame data which the first arrow delineates in the transmit buffer. The second arrow shown in
the illustration delineates the data that is stored in the receive buffer when the Ethernet controller is
receiving data.

Prior to actual data transmission, it is necessary to transmit the preamble and the start frame delimiter.

To enable the 48-bit preamble, the user sets the Transmit Preamble Length field of GSMR_L to a value
of '100".

For More Information Contact: www.freescale.com 222



Freescale Semiconductor, Inc.

The Transmit Preamble Pattern field of GSMR_L determines which bit pattern, if any, precedes the
start of each transmit frame. The user sets the Transmit Preamble Pattern field to a value of '01' for
Ethernet operation.

To summarize, enabling the Transmit Preamble Length and Transmit Preamble Pattern fields in the
GSMR generates a six-byte preamble frame with the appropriate pattern.

However, it is still necessary to generate one additional byte of preamble and a delimiter. The
programming model for the SCC includes Data Synch fields. In the case of Ethernet, the user enters
values of 0xD5, and 0x55 in these two fields. The 0x55 value provides the last byte of the preamble,
and the 0xD5 value provides the 1-byte start frame delimiter.

Next the Ethernet controller must generate the destination and source addresses, the Type / Length
field, and the data. It is possible that the data to be included in the frame is less than 46 bytes in length.
The Ethernet controller supports a padding feature. If frame data is less than the required minimum, the
controller supplies the additional octets of data needed.

SLIDE 11-3
Ethernet Multi-Drop
Station Station Station Station Station
#1 #2 #3 #4 #5

* Full Collision Support
- Enforces the Collision (Jamming)
- Truncated Bin Exp Backoff Algorithm for Random Wait
- Two Nonaggressive Backoff Modes
- Automatic Frame Retransmission (Until “Attempt Limit “ is Reached)
- Automatic Discard of Incoming Collided Frames
- Delay Transmission of New Frames for Specified Interframe Gap
- Heartbeat Indication

» Address Support
- One Physical Address or Hash Table for Physical Addresses
- Group Addresses plus Broadcast Address
- Promiscuous Addresses
- External CAM Support on Both Serial & System Bus Interface
- Up to Eight Parallel I/O Lines May Be Sampled and Appended
to Any Frame

Ethernet Multi-Drop

Most Ethernet implementations are multi-drop configurations. In multi-drop configurations, two support
features become very important. The first is the ability to support data collisions, in the case of
simultaneous transmissions from more than one station. The second is the ability to support station
addressing, so that it is possible to send a message to an individual station.

First, let us examine collision support.

For More Information Contact: www.freescale.com 223



The Ethernet controller enforces a collision by writing thirty-two '1's onto the line, which notifies all

Freescale Semiconductor, Inc.

stations that a collision has occurred. After detecting the collision, every station backs off, and executes

a back-off algorithm for a random amount of wait time. The first station that finishes waiting for its
randomly generated time period attempts to retransmit.

The MPCB860 Ethernet controller supports two non-aggressive back-off modes, permitting the user to

configure longer wait times in the back-off algorithm. Additionally, the MPC860 supports automatic
frame retransmission until a maximum limit is reached.

The Ethernet controller automatically discards incoming collided frames. It also delays the transmission
of new frames for a specified inter-frame gap of 9.6 microseconds.

Finally, the controller supports a heartbeat indication, which is a signal the transceiver returns to the 860
indicating that the controller transmitted a frame, the transceiver appears to be functioning properly, and
that the line is back to normal.

SLIDE 11-4
Ethernet Multi-Drop
Station Station Station Station Station
#1 #2 #3 #4 #5

* Full Collision Support

- Enforces the Collision (Jamming)

- Truncated Bin Exp Backoff Algorithm for Random Wait
- Two Nonaggressive Backoff Modes
- Automatic Frame Retransmission (Until “Attempt Limit “ is Reached)

- Automatic Discard of Incoming Collided Frames
- Delay Transmission of New Frames for Specified Interframe Gap

- Heartbeat Indication

» Address Support

- One Physical Address or Hash Table for Physical Addresses
- Group Addresses plus Broadcast Address

- Promiscuous Addresses

- External CAM Support on Both Serial & System Bus Interface
- Up to Eight Parallel I/O Lines May Be Sampled and Appended

to Any Frame

Ethernet Multi-Drop (2 of 2)

Let us now examine address support on the Ethernet controller.

The controller supports one individual, physical address for this station. Or, to support multiple
addresses, the controller also has a hash table for physical addresses. The user can configure an
address filter, and thereby select sets of individual addresses.

For More Information Contact: www.freescale.com

224



Freescale Semiconductor, Inc.

The 860 Ethernet controller also has a group address hash table to support group addresses. It also
supports a broadcast address; it is possible to choose to receive broadcast messages or not.

Additionally, the controller can receive addresses promiscuously; that is, it can choose to accept any
incoming frame. Adding a Content Addressable Memory, or CAM, to the controller provides more
precise address support. In this case, an incoming address is matched with the CAM for an exact
address. When such matches occur, the CAM can supply additional data through eight supplemental
parallel lines. The controller can then sample the additional data, and place it into the receive buffer.

SLIDE 11-5

MPC860 Ethernet Transceiver to EEST

MPCS860 Ethernet P
Transceiver A RJ-45
scci S
TXD > S —
TENA (RTS¥) > PE(,'\DJ A I
TCLK (CLKx) TCLK v TWISTED
RXD RXD E PAIR
RENA (CD¥) RENA
RCLK (CLKXx) RCLK
CLSN (CTS*) CLSN
P
é D-15
PARALLEL /0 > LoOP S
[
U M AUI
20 MHz E

* Carrier Sense is active if either RENA and/or CLSN are asserted.

MPC860 Ethernet Connection To A Transceiver

The Ethernet controller on the MPC860 must connect to an Ethernet network via a transceiver. This
diagram illustrates the basic components and pins required to connect the MPC860 and an example
Ethernet transceiver.

A 20 MHz crystal drives this transceiver, and generates a 10 MHz transmit clock and a 10 MHz receive
clock for the operation of the Ethernet. These clocks drive external pins on the 860.

When the 860 transmits data, it asserts the Transmit Enable pin, which is connected to RTS*. Likewise,
when the transceiver receives data, it asserts the Receive Enable (RENAY) line, which in turn asserts
CD* on the 860.

Finally, there is a collision pin on the transceiver, which drives CTS* on the controller so it can respond
to collisions.

Also, the transceiver can work in loop mode. For testing purposes, the controller can transmit and
receive in a loop through the transceiver.

The illustration shows the loop-back pin on the transceiver connected to a parallel I/O pin on the
MPC860; however, it is also possible to use a jumper instead.

For More Information Contact: www.freescale.com 225



Freescale Semiconductor, Inc.

Carrier Sense is active if either RENA* and / or CLSN* is asserted.

SLIDE 11-6

Basic Ethernet Transmit Operation

TENA negated & no Graceful Stop Transmit pending

Restart Transmit
Elapsed
backoff time # of retries

& # of retries >15
i D
GSMR_ it JAM

* Transmit JA

LX.ENT= pattern (32 ones) . (L;Ipe%a:t;BDstatus
:.'?é&%rr?edg{% Carrier « If | bit set, set
Thdgt Sense SCCEX.TXE
Xm|t txbd ac: "erehdala nactive Late » TENA negate
Collision « |f frame is short
—> _——V _
enabled Carrier Buffer xmit & PAd%‘}j' frame
Sense 3.6 usecs complete & L=1 . I|? 198:18
Active elapses, asserts TENA TENA append FCS

* Xmits preamble o » Update BD status
: gated
* Xmits SFD & Graceful | *ClearR

. * Xmits data (as « If | bit set,
* E)Nalts for CSto  many buffers as Tranitr;l)?c set SCCEx.TxB
V\elchmfe |né;1§t|ve required to com- di * SCCEX.GRA
: rerarl:gsin(i);activtg plete frame) pending bit is set
* PPC Core may
for 6.0 usecs . Gr;geful - modify xmit
Restart Transmit P parameters

Basic Ethernet Transmit Operation

This state diagram illustrates an Ethernet transmission operation. The diagram describes most of the
basic concepts involved in the operation.

The controller enters the Transmit Enable state when GSMR_LxX.ENT is equal to one. Once the Ready
bit is set in the transmit buffer descriptor, the controller moves to the Transmit Preparation state. While
the controller is in the Transmit Preparation state, it determines whether Carrier Sense is active or
inactive. If Carrier Sense is active, the controller enters into the Delay state, and waits for Carrier Sense
to become inactive. Once Carrier Sense becomes inactive, the controller waits for Carrier Sense to
remain inactive for six microseconds, and then waits another 3.6 microseconds before re-entering the
Transmit Preparation state.

Assuming that Carrier Sense remains inactive, the controller enters the Transmit state, and begins to
transmit. It asserts TENA?*, transmits a preamble and the start frame delimiter, and then transmits data,
using as many buffers as are required to complete the frame.

Frames can occupy multiple buffers. Note that the Ethernet controller operates in a similar fashion to
the other protocols that run on the SCC, and that it implements buffers and buffer descriptors. The user
can place the frame in multiple buffers or in single buffers.

If the user places the frame in multiple buffers, the controller simply continues to transmit the buffers as

long as the Last bit in the Status and Control field is equal to zero. A buffer in which the Last bit is equal
to one indicates the end of the frame, and so the controller enters the Close Transmit state.

For More Information Contact: www.freescale.com 226



Freescale Semiconductor, Inc.

While in the Close Transmit state, if the frame is short, and if the user has enabled PAD, the controller
pads the frame. If the user has enabled CRC generation, the controller appends the frame check
sequence. The controller also updates the buffer descriptor, clears the Ready bit, and if the Interrupt bit
is set, it sets SCCEX.TxB.

Then, the controller negates TENA*, and re-enters the Transmit Enable state.
We have just describe a typical path for transmit operations. However, certain deviations could occur.

First, while the Ethernet controller is transmitting a frame, the PowerPC could write a Graceful Stop
Transmit command to the command register. In this case, the controller finishes transmitting, and then
enters the Graceful Stop state. While the controller is in the Graceful Stop state, SCCEX.GRA is set
indicating the present state. Meanwhile, the PowerPC reorganizes its data for transmission, perhaps
modifying transmit parameters.

When the PowerPC is ready to transmit again, it writes a Restart Transmit command into the command
register, and puts the controller back into the Transmit Enable state.

Another deviation that could occur during frame transmission is a normal collision. A collision occurs
when two stations transmit at same time. A collision puts the controller into the Back-off state, where it
remains until the back-off time has elapsed. After the back-off time elapses, the controller re-enters the
Transmit Enable state.

However, the Ethernet controller takes the path to the Back-off state a total of sixteen times. Exceeding
sixteen retries represents a problem on the system. In such a case, the controller enters the Wait for
Restart state. In the Wait for Restart state, the controller updates BD status, clears the Ready bit, sets
SCCEX.TXE to indicate a transmit error, and negates TENA*. The PowerPC must write a Restart
Transmit command to the command register to move the Ethernet controller back into the Transmit
Enable state.

A third deviation from the normal path could occur during transmission -- a late collision. A late collision
occurs when a second station violates the Ethernet specification by transmitting a frame after the period
of time in which a normal collision should occur. In this case, the Ethernet controller passes directly into
the Wait for Restart state.

For More Information Contact: www.freescale.com 227



Freescale Semiconductor, Inc.

SLIDE 11-7

Basic Ethernet Receive Operation

GSMR_Lx.ENR=1 .
\' Frame receive complete

RENA Address
match &
as%el_rtsel\(lzl & rxbdsac.E= RENA negated
Recv 1
enabled negated

» Wait for N clocks  « Recv data and » Check CRC
+ Compare incoming  store (as many * Write frame length
bits to SYN1 buffers as req- to rxbdcent
* After start of frame,  jred to complete » Update BD
do address compare. frame). e ClearE
Late < Set SCCEX.RxF
collision if | bit=1
occurs * If PSMRx.SIP=1,
append tag byte

Normal
collision
occurs

Process
buffer

Normal
Collision

Late
Collision

Ready for
next frame

* Restore all buffers * Set rxbdsac.CL
associated with this ‘ » Set SCCEx.RxB
frame. if | bit=1

Basic Ethernet Receive Operation
This diagram describes the operation of the receiver.

The Ethernet controller enters the Receive Enable state when GSMR_Lx.ENR is equal to one. The
controller remains in the Receive Enable state until RENA* is asserted, and CLSN* is negated, putting
the controller into the Hunt mode. In the Hunt mode, the controller waits for N number of clocks based
on the transceiver in use. Next, the controller compares the incoming bits to SYN1, one of the synch
fields, and identifies the start frame delimiter. Next, the controller performs an address compare. If the
address does not compare, the controller re-enters the Receive Enable State.

If the address does compare, and an empty buffer is available, the controller enters the Receive state,
and stores the incoming data in as many buffers as is necessary.

Receive Enable negated indicates the end of the frame. At this point, the controller checks the CRC,
writes the frame length to the count field of the receive buffer descriptor, updates the buffer descriptor,
clears the Empty bit, and sets the .RXF bit in the Event register, indicating that a frame was received.

Also, if the user is implementing Content Addressable Memory, the controller reads a tag byte from the
input port, and appends it to the end of the frame.

Receive is complete at this point, and the controller re-enters the Receive Enabled state.
If in the course of receiving a normal collision occurs, the controller automatically restores all the receive
buffers associated with this frame, essentially by setting the empty bits in those buffers. The controller

is then ready for the next frame, and re-enters the Receive Enabled state.

If a late collision occurs, the controller sets a bit in the Status and Control field indicating that a late
collision occurred. The controller also sets a Receive Buffer Event bit.

For More Information Contact: www.freescale.com 228



Freescale Semiconductor, Inc.

SLIDE 11-8
Ethernet Specific Parameter RAM (1 of 4)
Address Name Size | Description User Writes
SCC Base + $30 | C_PRES | Word| Preset CRC $FFFFFFFF
SCC Base + $34 | C_MASK | Word| Constant MASK for CRC $DEBB20E3
SCC Base + $38 | CRCEC |Word|CRC Error Counter 0
SCC Base + $3C| ALEC Word | Alignment Error Counter 0
SCCBase +$40 | DISFC | Word|Discard Frame Counter (BSY,0V) 0

SCC Base + $44 | PADS Hw | Short Frame PAD Character Desired char

SCC Base + $46 | RET_Lim|Hw | Retry Limit Threshold 15

SCC Base +$48 | RET_cnt |Hw | Retry Limit Counter

SCC Base + $4A| MFLR Hw | Maximum Frame Length Register| 1518

SCC Base + $4C| MINFLR |Hw | Minimum Frame Length Register 64
SCC Base + $4E| MAXD1 |Hw | Max DMAL Length Register 1520
SCC Base + $50 | MAXD2 |Hw | Max DMA2 Length Register 1520

Ethernet Specific Parameter RAM (1 of 4)

Ethernet operates much like UART, and as with UART, there is protocol-specific parameter RAM.
Again, like UART, the parameter RAM starts at SCC Base plus 30. Highlighted items in the chart must
all be initialized.

The first two parameters, C_PRES and C_MASK, are initialized for the CRC with the values shown.

Note that there are three error counters or CRC errors, alignment errors, and discard frame errors.
These counters should be cleared, with values set to zero.

The PADS field allows the user to specify which characters are used for padding.

The Retry Limit field indicates the number of retransmission attempts, and to meet the Ethernet
specification, the value should be fifteen.

Also, to meet the Ethernet specification, the Maximum Frame Length Register should contain a value of
1518. Likewise, the Minimum Frame Length Register should contain a value of 64.

Two other registers are associated with frame length -- MAXD1 and MAXD2. MAXD1 responds only to

the addresses of this station. In contrast, MAXD2 responds to any frame address. Set both fields to
1520 for the Ethernet specification.

For More Information Contact: www.freescale.com 229



g |

Freescale Semiconductor, Inc.

SLIDE 11-9
Ethernet Specific Parameter RAM (2 of 4)

Address Name Size | Description User Writes
SCC Base + $52 | MAXD Hw | Rx Max DMA
SCC Base + $54 | DMA_cnt Hw | Rx DMA Counter
SCC Base + $56 | MAX_b Hw | Max BD Byte Count
SCC Base + $58 | GADDR1 Hw | Group Address Filter 1 0
SCC Base + $5A | GADDR2 Hw | Group Address Filter 2 0
SCC Base + $5C| GADDR3 Hw | Group Address Filter 3 0
SCC Base + $5E | GADDR4 Hw | Group Address Filter 4 0
SCC Base + $60 | TBUF0.dataO | Word| Save Area O - Current Frame
SCC Base + $64 | TBUFO.datal |Word| Save Area 1- Current Frame
SCC Base + $68 | TBUFO.rba0 | Word
SCC Base + $6C | TBUFO.crc Word
SCC Base + $70 | TBUFO.bcnt | Hw

Ethernet Specific Parameter RAM (2 of 4)

The Group Address hash table fields are all initialized with zeros. To implement the group address hash

table, the programmer enters certain addresses of interest using the SET GROUP ADDRESS

command.

For More Information Contact: www.freescale.com

230



g |

Freescale Semiconductor, Inc.
SLIDE 11-10
Ethernet Specific Parameter RAM (3 of 4)
Address Name Size | Description User Writes
SCC Base + $72 | PADDR1_H |Hw [Physical Address 1 (MSB) | MSW Addr
SCC Base + $74 | PADDR1_M |Hw [ Physical Address 1 Mid Wrd Ad
SCC Base + $76 | PADDR1_L |Hw |Physical Address 1 (LSB) LSW Addr
SCC Base + $78 |P_Per Hw | Persistence 0-9,M-L

SCC Base + $7A | RFBD_ptr Hw [ Rx First BD Pointer

SCC Base + $7C | TFBD_ptr Hw | Tx First BD Pointer

SCC Base + $7E | TLBD_ptr Hw | Tx Last BD Pointer

SCC Base + $80

TBUF1.data0

Word

Save Area 0 - Next Frame

SCC Base + $84

TBUF1.datal

Word

SCC Base + $388

TBUF1.rba0

Word

SCC Base + $8C

TBUFl.crc

Word

SCC Base + $90

TBUF1.bcnt

Hw

Ethernet Specific Parameter RAM (3 of 4)

Three, half-word fields, PADDR1_X, are available for the individual address of this station. The most

significant half-word of the address is followed by the middle half-word, which is followed in turn by the

least significant half-word.

P_Per stands for persistence. Persistence provides one of the mechanisms for the controller to be less

aggressive in the back-off algorithm. Any number from zero through nine is valid, with zero

representing the most aggressive, and nine the least.

For More Information Contact: www.freescale.com

231



Freescale Semiconductor, Inc.

SLIDE 11-11
Ethernet Specific Parameter RAM (4 of 4)

Address Name Size | Description User Write
SCC Base + $92 | TX_len Hw | Tx Frame Length Counter
SCC Base + $94 | IADDR1 Hw | Individual Address Filter 1 0
SCC Base + $96 | IADDR2 Hw | Individual Address Filter 2 0
SCC Base + $98 | IADDR3 Hw | Individual Address Filter 3 0
SCC Base + $9A | IADDR4 Hw | Individual Address Filter 4 0
SCC Base + $9C| BOFF_CNT Hw | Backoff Counter
SCC Base + $9E | TADDR_H Hw | Temp Address (MSB) 0
SCC Base + $A0| TADDR_M Hw | Temp Address 0
SCC Base + $A2| TADDR_L Hw | Temp Address (LSB) 0

Ethernet Specific Parameter RAM (4 of 4)

The fields IADDR1_4 support the individual address hash table. As with the corresponding group
address hash table fields, these are initialized with zeros.

Finally, TADDR_H, TADDR_M, and TADDR_L are also initialized to zeros. In order for the user to
insert or remove an address from the individual address hash tables, he must enter an address into one
of these fields, and then issue the SET GROUP ADDRESS command to add or delete that address.

Notice that this Ethernet specific parameter RAM table uses memory addresses up to the SCC base,
plus xA2. The User Manual provides an overview of parameter RAM. You will notice that if the user
implements SCC1 for Ethernet communications, the parameter RAM in use starts at 0x3C30, and ends
at 0X3CA2. This memory usage conflicts with the I1°C controller, which makes use of parameter RAM at
SCC BASE plus Ox7E.

Likewise, if the user implements SCC2 for Ethernet communications, the SPI controller is no longer
available. In the case of implementing SCC3 for Ethernet, SMC1 is eliminated, and in the case of
SCC4, SMC2 is eliminated.

There is a microcode patch available on the Freescale Web site. The user can install the patch into dual-
port RAM, thereby moving the I°C controller elsewhere.

For More Information Contact: www.freescale.com 232



Freescale Semiconductor, Inc.

SLIDE 11-12
Ethernet Mode Register (PSMR)
0 1 2 3 4 5 6 7 8 9 10 11 12 14 15
HBC| FC[RSH| IAM| CRC [PRO|BRO| SBT|LPB|SIP|[LCW|  NIB FDE

« Select Configuration Parameters

- RSH = Receive short frames.

- SBT = Stop backoff timer when carrier sense is active.

-LCW = Late collision is after 64 bytes from preamble (0) or
56 bytes (1).

-NIB = Determines when the Ethernet controller will begin
looking for the SFD.

- FDE = Full Duplex Ethernet Mode (1).

« Select Addresses of Frames to be Received
-IAM = Use the individual hash table to check incoming individual addresses(1) or use
only PADDR1(0).
- PRO = Receive all frames regardless of address (useful for monitoring stations).
- BRO = Receive (0) or reject (1) frames containing the broadcast address.
- SIP = Append tag byte to receive buffer.

« Dictated CRC Size
-CRC =2 (32-bit CCITT-CRC)

« Select Test and Debug Parameters
-HBC = A heartbeat is to be asserted.

-FC  =Force collision.
-LPB = Loopback operation.

Ethernet Mode Register (PSMR)

In the Ethernet protocol, the PSMR becomes the Ethernet mode register. This diagram shows this
register, which contains a number of configuration parameters.

The first parameter shown, RSH, permits the reception of short frames.

Next, setting the SBT bit, which stands for Stop Backoff Timer, stops the back-off timer when Carrier
Sense is active. This provides one option for the controller to be less aggressive in the back-off
algorithm.

The LCW field determines when a late collision occurs. This field is normally set for 64 bytes to
conform to the Ethernet specification; however, there is an option to configure this field for 56 bytes for
compatibility with certain third-party Ethernet controllers.

The NIB field determines the number of clocks during which the Ethernet controller waits in Hunt mode,
prior to attempting to detect the start frame delimiter.

In multi-drop mode, the user has no need for full duplex operation. However, during testing while
operating in loop-back mode, full duplex is required. In such a case, the Full Duplex Ethernet Mode bit
should be set.

Some fields specify the addresses to which the controller responds.

The IAM, or Individual Address Mode, field specifies that the incoming address must match either the
individual address in PADDL1, or must match an entry in the individual hash table.

The PRO field specifies that the controller receives all frames regardless of address.

For More Information Contact: www.freescale.com 233



Freescale Semiconductor, Inc.

Next, the BRO field specifies that the controller receives the broadcast address.

SIP specifies that the controller appends the tag byte to the Receive Buffer Content Addressable
Memory is in use.

SLIDE 11-13

Ethernet Event Register (SCCEX)

0 7 8 9 10 11 12 13 14 15

- GRA - TXE|RXF|BSY|TXB|RXB

« Events for Normal POWER QUICC Action
- RXF = A frame has been received.
- TXB = A buffer has been transmitted.
- RXB = A buffer was received that was not a complete frame.
- GRA = Graceful Stop is complete; data can be rearranged.

* Error Status
- TXE = A transmit error occurred.
- BSY = A frame was discarded due to a lack of buffers.

Ethernet Mode Register (2 of 2)
The CRC size must be two for a 32-bit CCITT CRC, and this value must be placed in the CRC field.

Test and debug parameters include enabling the heartbeat, forcing a collision, and enabling loop-back.

For More Information Contact: www.freescale.com 234



Freescale Semiconductor, Inc.

SLIDE 11-14

Ethernet Event Register (SCCEX)

0 7 8 9 10 11 12 13 14 15

- GRA - TXE|RXF|BSY|TXB|RXB

« Events for Normal POWER QUICC Action
- RXF = A frame has been received.
- TXB = A buffer has been transmitted.
- RXB = A buffer was received that was not a complete frame.
- GRA = Graceful Stop is complete; data can be rearranged.

« Error Status
- TXE = A transmit error occurred.
- BSY = A frame was discarded due to a lack of buffers.

Ethernet Event Register (SCCEX)

This diagram illustrates the Ethernet event register.

Here are shown a number of events that we have seen earlier in this chapter. These events support
normal PowerPC action, and they include frame received, buffer transmitted, buffer received, and

graceful stop.

Note that if a Receive Buffer is closed that is not also a completion of a frame, then only RXB is set.
contrast, if a Receive Buffer is closed that contains the end of a frame, then only the RXF bit is set.

Two errors are also shown: Transmit Error and Busy.

For More Information Contact: www.freescale.com

In

235



Freescale Semiconductor, Inc.

SLIDE 11-15

Ethernet Rx Buffer Descriptor

11 12 13 14 15
El-Iwlo[o]el-[-] - |LG|NO|SH|CR|OV|CL
Data Length

Rx Data Buffer Pointer

« Select Control Parameters - E, W, | are the only control bits

« Status Indicators (not errors)
-L = this buffer is the last in a frame
-F = this buffer is the first in a frame

« Error Indicators
-LG =the length of this frame > MFLR
-NO =nonoctet aligned frame
- SH = the length of this frame < MINFLR but was accepted
because PSMRx.RSH was set.
-CR =CRCerror
-OV =overrun
-CL =alate collision occurred while receiving this frame

Ethernet Receive Buffer Descriptor
This diagram shows the Ethernet Receive Buffer Descriptor.

The descriptor contains the Empty, Wrap, and Interrupt bits, which we discuss in more detail in the
Serial Communication Controller chapter.

Status indicators include bits specifying the last or first buffer in frame.
Also, there are a number of error indicators. These errors are:

1. The length of this frame is greater than the Maximum Frame Length Register

2. This frame is a non-octet aligned frame

3. The length of this frame is less than the Minimum Frame Length Register, but was accepted
because PSMRx.RSH was set

4. This frame incurred a CRC error

5. This frame incurred an overrun

6. A late collision occurred while receiving this frame

For More Information Contact: www.freescale.com 236



Freescale Semiconductor, Inc.
SLIDE 11-16

Ethernet Tx Buffer Descriptor

1 1 13 14 15
R |PAD|W| [ | L |TC |DEF| HB|LC|RL| RC |UN|CSL
Data Length

Tx Data Buffer Pointer ]

* Select Control Parameters - R, W, | are the standard control bits
-L = this is the last buffer in the frame.
-TC =transmit the CRC sequence after the last data byte.
- PAD =if L=1 and frame is short, pad frame.

« Error Indicators
- DEF = POWER QUICC deferred while transmitting.
-HB = collision was not asserted within 20 transmit clocks.
-LC =alate collision occurred.
-RL =the retransmission limit has been exceeded.
-RC = number of retries executed.
-UN =anunderrun occurred.
- CSL = carrier sense was lost during transmission.

Ethernet Transmit Buffer Descriptor

As with the standard transmit Buffer Descriptor, the Transmit Buffer Descriptor for Ethernet also
includes the Ready, Wrap, and Interrupt bits.

The last buffer to be transmitted in a frame requires that the Last bit is set. Also, the Transmit CRC, or
TC parameter must be set in order to transmit the CRC. The PAD parameter enables padding if this is
the last buffer in the frame, and the frame is short.

Also shown are a number of error indicators.

The Deferred field indicates that at least one retry occurred.

Next, the HB field indicates that the heartbeat did not occur within twenty transmit clocks. Note that the
heartbeat function takes the form of a special collision indicator to the MPC860, and does not refer to
an actual collision on the network.

LC indicates that a late collision occurred.

The RL, or Retry Limit, bit is set if the number of attempted retries exceeds sixteen.

RC indicates the number of retries executed.

UN indicates that an underrun occurred.

CSL indicates that carrier sense was lost during transmission.

For More Information Contact: www.freescale.com 237



Freescale Semiconductor, Inc.

SLIDE 11-17

How to Initialize an 860 SCCx for Ethernet (1 of 9)

Step Action Example
1 Initialize SDCR pi mm >SDCR = 2;
/* MAKE SDVA ARB PRI =2 */

FRZ:SDMAs freeze next bus cycle
RAID: RISC controller arbitration ID

2 | Configure ports as required pi mm >PAPAR = 0x108;
/*ENBL TxD2, & CLK2 */

How to Initialize an 860 SCCx for Ethernet (1 of 9)

Here we describe the steps in initializing an SCC on the MPC860 using interrupts. Certain assumptions
are made as listed.

Each entry has an example statement for each step. "pimm" refers to the pointer to the internal
memory map.

First, the user initializes SDCR. This is the register in which it is possible to give the SDMAs an
arbitration 1D to provide them with a priority on the U-bus.

Next, the user configures the ports as required. All the port pins for the SCC have alternate functions,
so the user must configure these pins for the desired use.

For More Information Contact: www.freescale.com 238



Freescale Semiconductor, Inc.

SLIDE 11-18

How to Initialize an 860 SCCx for Ethernet (2 of 9)

Initialize a Baud Rate Configuration Reg,
BRGCx

CD11_CDO:clock divider

DIV16:BRG clk prescalar divide by 16
EXTC1_EXTCO:clock source
EN:enable BRG count

ATB:autobaud

RST:reset BRG

pi mm >BRGC3. CD11_CDO0 = 1040;
/* SET BAUD RATE TO 1200 FOR
20 MHz CLOCK */

Initialize the Serial Interface Clock Route
Reg, SICR

SCx:select NMSI or TDM for SCCx

RxCS:select recv clk source for SCCx
TxCS:select xmit clk source for SCCx
GRXx:select grant mechanism support

xis1,2,3,and 4

pi mm >SI CR R2CS = 2;
/* SCC2 RECElI VE CLK IS CLK5*/

How to Initialize an 860 SCCx for Ethernet (2 of 9)

Step 3: If a baud rate generator is to be used for the clock, the baud rate configuration register needs to
be initialized. Normally, the only time this is implemented is in loop-back during testing procedures. The

transceiver supplies clocks externally.

Step 4: Connect the clocks to this SCC using the Serial Interface Clock Route Register (SICR).

For More Information Contact: www.freescale.com

239



Freescale Semiconductor, Inc.

SLIDE 11-19

How to Initialize an 860 SCCx for Ethernet (3 of 9)

5 Initialize SCCx Parameter RAM pi Mm >SCCL. TFCR = 0x15:
RBASE:pointer in IMM to RxBDs /* INNT XM T FUNC CODE TO
TBASE:pointer in IMM to TxBDs SUPER DATA SPACE & MOT*/

RFCR:recv function code & byte order
TFCR:xmit function code & byte order
MRBLR:maximum recv buffer length

6 Initialize Rx and/or Tx parameters via pi mm >CPCR = 0x101;
the Command Register, CPCR /* INIT RECV PARAMETERS
FOR SCCL */

OPCODE:operation code

CH NUM:channel number
FLG:command semaphore flag
RST:software reset command

How to Initialize an 860 SCCx for Ethernet (3 of 9)

Step 5: Initialize SCC parameter RAM, including RBASE and TBASE, and the Maximum Receive
Buffer Length.

Step 6: Initialize the receive and transmit parameters by writing the appropriate command to the
command register (CPCR).

For More Information Contact: www.freescale.com 240



SLIDE 11-20

Freescale Semiconductor, Inc.

How to Initialize an 860 SCCx for Ethernet (4 of 9)

Initialize Ethernet parameter RAM

C_PRES: Preset CRC

C_MASK: Constant mask for CRC
CRCEC: CRC error counter

ALEC: alignment error counter
DISFC: discard frame counter
PADS: short frame PAD character
RET_Lim: retry limit threshold
MFLR: max frame length reg
MINFLR: minimum frame length reg
MAXD1: max dmal length register
MAXD2: max dmaz2 length register
GADDR1: group address filter 1
GADDR2: group address filter 2
GADDRS3: group address filter 3
GADDRA4: group address filter 4
PADDR1_H: physical address 1 (MSB)
PADDR1_M: physical address 1
PADDR1_L: physical address 1 (LSB)
IADDR1: individual address filter 1
IADDR2: individual address filter 2
IADDR3: individual address filter 3
IADDRA4: individual address filter 4
TADDR_H: temp address 1 (MSB)
TADDR_M: temp address 1

pi
/*

TADDR_L: temp address 1 (LSB)

mm >SCC2. ETHN. MFLR = 1518;
MAX FRAME LNGTH | S 1518 */

How to Initialize an 860 SCCx for Ethernet (4 of 9)

Step 7: Initialize Ethernet parameter RAM including the error counters, PADS, maximum and minimum
frame length, and the address fields.

For More Information Contact: www.freescale.com

241



Freescale Semiconductor, Inc.

SLIDE 11-21

How to Initialize an 860 SCCx for Ethernet (5 of 9)

8 Initialize RXBDs pdsc->recvbd2. r xbdsac. E = 1;

rxbdptr:pointer to data buffer /* INIT RxBD2 TO ENPTY */
rxbdcnt:number of chars received

rxbdsac.E:recv buffer empty
rxbdsac.W:last BD (wrap bit)
rxbdsac.l:set event when buf closes
rxbdsac.L: last in frame

rxbdsac.F: first in frame

9 Initialize TXBDs pdsc->xmi t bd2. t xbdsac. R = 1;
txbdptr:pointer to data buffer /* INNT TxBD2 TO READY */
txbdent:number of chars xmitted
txbdsac.R:buffer ready to xmit
txbdsac.W:last BD (wrap bit)
txbdsac.l:set event when buf closes
txbdsac.PAD: short frame padding
txbdsac.L: last in frame
txbdsac.TC: Tx CRC

How to Initialize an 860 SCCx for Ethernet (5 of 9)
Step 8: Initialize the receive buffer descriptors.

Step 9: Initialize the transmit buffer descriptors.

For More Information Contact: www.freescale.com 242



Freescale Semiconductor, Inc.

SLIDE 11-22

How to Initialize an 860 SCCx for Ethernet (6 of 9)

10 | Initialize Event Reg, SCCEX pimm->SCCE1 = OXFFFF;

SCCEx will be zero from reset; no| /* CLEAR EVENT REG, SCC1 */
other initialization required.

11 Initialize Mask Reg, SCCMx pimm->SCCM1 = 3;
/* ENABLE RXB & TXB EVENTS TO

RXB:recv buffer closed INTRPT */

TXB:xmit buffer sent

BSY:busy; lost chars, no buffers
RXF: recv frame

TXE:transmit error
GRA:graceful stop complete

How to Initialize an 860 SCCx for Ethernet (6 of 9)

Step 10: This step is not really required since reset conditions are assumed. In this case, the event
register is already cleared. Under more general circumstances, however, the programmer may clear
the event register by writing a value of OXFFFF, as shown in the example.

Step 11: Initialize the mask register to enable interrupts to occur for the desired events.

For More Information Contact: www.freescale.com 243



Freescale Semiconductor, Inc.

SLIDE 11-23

How to Initialize an 860 SCCx for Ethernet (7 of 9)

12 | Initialize Interrupt Mask Reg, CIMR| pi nm >0l MR SCC2 = 1;
SCC1-4 /* ENABLE SCC2 | NTRPTS */
PC4-15
TIMER1-4
IDMA1-2
SMC1-2
SDMA
R-TT

SPI

12C

13 | Initialize General SCCx Mode Reg pi mMm >GSMR_H2. TFL = 1;
High, GSMR_Hx /* 1 BYTE XM T FIFO */
FIFO Width
TFL:transmit FIFO length
RFW:Rx FIFO width
NMSI Control
CDP:CD* pulse or envelope
CTSP:CTS* pulse or envelope
CDS:CD* synchronous or asynch
CTSS:CTS* synchronous or asynch
External Clock
GDE:glitch detect enable

How to Initialize an 860 SCCx for Ethernet (7 of 9)
Step 12: Initialize CIMR for those CPM devices to be allowed to cause interrupts.

Step 13: Initialize the General SCCx Mode Register High. The chart lists a few parameters you may
want initialize.

For More Information Contact: www.freescale.com



Freescale Semiconductor, Inc.

SLIDE 11-24

How to Initialize an 860 SCCx for Ethernet (8 of 9)

14

Initialize General SCCx Mode Reg
Low, GSMR_Lx

Clock
EDGE: clock edge
TCI: transmit clock invert
Preamble
TPP: Tx preamble pattern
TPL: Tx preamble length
Diagnostic Mode
DIAG:normal,loopback,echo
Channel Protocol Mode
MODE:UART, etc.

pI
/*

i mm >GSMR_L1. MODE = O0;

INNT SCC1 TO HDLC MODE */

How to Initialize an 860 SCCx for Ethernet (8 of 9)

Step 14: Initialize the General SCCx Mode Register Low. Again, the chart lists a few parameters you
may want to initialize.

For More Information Contact: www.freescale.com

245



Freescale Semiconductor, Inc.

SLIDE 11-25

How to Initialize an 860 SCCx for Ethernet (9 of 9)

15

Initialize Data Synch Register, DSRx

pi mm >DSR1 = 0xD555;
/* Inl T ETHERNET SYNCH CHARS */

16

Initialize Protocol Specific Mode Reg pi nm >PSMR2. FC = 1;

PSMRx

HBC: heartbeat checking
FC: force collision

RSH: receive short frames
IAM: individual address mode
CRC: CRC selection

PRO: promiscuous

BRO: broadcast address
SBT: stop backoff timer
LPB: loopback operation
SIP: sample input pins
LCW: late collision window
NIB: number of ignored bits
FDE: full duplex ethernet

/* FORCE COLLI SI ON */

17

Turn on transmitter and/or
receiver, GSMR_Lx

pi mm >GSMR_L1. ENT = 1;

ENT:enable transmit /* ENABLE SOCI TRANSM TTER */

ENR:enable receive

How to Initialize an 860 SCCx for Ethernet (9 of 9)

Step 15: Initialize the Data Synch Register. UART does not implement this register, but bit-oriented

protocols require a value.

Step 16: Initialize the Protocol Specific Mode Register. This includes fields discussed earlier in the
chapter, such as CRC selection, the late collision window, and loop-back operation.

Finally, step seventeen: enable the transmitter and / or the receiver in the General SCCx Mode Register
Low (GSMR_Lx).

For More Information Contact: www.freescale.com

246



Freescale Semiconductor, Inc.

Chapter 12: Serial Interface with Time Slot Assigner

SLIDE 12-1

Serial Interface with
Time Slot Assigner

What you ¢ What is TDM (Time Division Multiplex) on the MPC860?
will learn ¢ What are the TDM pins?

* What is SIRAM?

* How to program the SIRAM

» How to initialize the 860 for T1

In this chapter, you will learn to:

Define the TDM (Time Division Multiplex) on the MPC860
Identify the TDM pins

Define SIRAM

Program the SIRAM

Initialize the 860 for T1

abrwnpE

For More Information Contact: www.freescale.com 247



Freescale Semiconductor, Inc.

SLIDE 12-2

What is TDM on the 860?

Data [ ] [T 111 |

Synch
Clock JUUTUUUTUTTIUUTUUTUUTTIIUUUuuuy

» Receive and transmit data, synch, and clock signals are not necessarily the same.

Example, TDM Mode on the 860
MPC860

<>

SCC2
SCC3
SCC4

SMC1
SMC2

‘ > TDMb

What is TDM on the 8607

The Serial Interface on the 860 can be used in a non-multiplexed mode known as NMSI, in which the
various serial channels can communicate directly through each channel’s relevant pins, one set per
channel. However, Time Division Multiplexed channels are available on the 860 via the Time Slot
Assigner in the Sl. This allows any combination of SCCs and SMCs to multiplex their data together on
one or two TDM channels.

TSA programming is completely independent of the protocol that the SCC or the SMC uses. The
purpose of the time slot assigner is to route data from the specified pins to the preferred SCC or SMC
at the correct time. It is the purpose of the SCC or SMC to handle the data it receives. The time slot
assigner can identify each discrete data frame, and a time slot need not be restricted to eight bits; it is
possible for the data to use any format required.

The time slot assigner supports two simultaneous TDM channels, and in the example shown, two TDM
buses are in use, routing data from among the six communications devices.

For More Information Contact: www.freescale.com 248



Freescale Semiconductor, Inc.

SLIDE 12-3

What are the TDM Pins? (1 of 2)

> PA[9]/LITXDA

<—— PA[SJ/LIRXDA

< PA[7)/LIRCLKA/TINI/BRGO1/CLK1

< PA[5)/LITCLKA/TIN2/BRGO2/CLK3

> PB[20]/L1CLKOA/SMRXD2

<—— PC[12J/L1RQA/L1ST4 or PB[16]/L1ST4/L1IRQA
<——— PC[5)/LITSYNCA/CTS4*/SDACK1 or PD[15)/L1ITSYNCA
< PC[4)/L1IRSYNCA/CD4 or PD[14)/L1IRSYNCA
> PA[11]/L1TXDB

«<——— PA[10J/LIRXDB

<———— PA[2)/LIRCLKB/BRGCLK2/TOUT3*CLK6

«<—— PA[0]/L1ITCLKB/TOUT4*/CLK3

> PB[21)/L1CLKOB/SMTXD2

< PC[7)/LITSYNCB/CTS3*SDACK2 or PD[13)/LITSYNCB
< PB[17)/LIRQB/L1ST3 or PC[13)/L1ST3/L1IRQB
< PC[6]/LIRSYNCB/CD3 or PD[12]/LIRSYNCA
> PB[19)/L1STY/RTSI* or PC[15/L1STI/RTS1*DREQO
> PB[18)/L1ST2/RTS2* or PC[14)/L1ST2/RTS2*DREQ1
> PB[17)/L1ST3/L1RQB or PC[13/L1ST3/L1IRQB
> PB[16])/L1ST4/L1IRQA or PC[12/L1ST4/L1RQA

What are the TDM Pins? (1 of 2)

This diagram summarizes the TDM pins.

* L1TXDx -
transmit pins

* LIRXDx -
receive pins

* LITCLKX -
transmit clock pins
* LIRCLKX -
receive clock pins
* L1CLKOX - clock
output pins
sL1ST(1:4) -
strobe pins

* L1IRQx - D-
channel request
pins

* LITSYNCx -
transmit sync pins
* LIRSYNCX -
receive sync pins

The TDM pins include transmit and receive pins, transmit and receive clock pins, and clock output pins
for each TDM. There are four strobe pins available. Additionally, there is a request pin for each TDM,
which is specialized for ISDN, permitting a request to transfer data on the D-channel. Finally, there are

sync pins for both transmit and receive on each TDM.

All the TDM pins are implemented on the port pins, which in some cases support alternate functions, in
particular the sync pins and the strobe pins. The lower portion of the diagram includes the alternate

pins that are available for the sync and strobe pins.

For More Information Contact: www.freescale.com 249



Freescale Semiconductor, Inc.

SLIDE 12-4

What are the TDM Pins? (2 of 2)

L1ITSYNCa TSync
L1RSYNCa RSync
L1TCLKa TCLK
L1RCLKa RCLK

L1TXDa »| RX

L1RXDa | TX

Device X
MPC860 LR RX
L1ST1
| Enable

What are the TDM Pins? (2 of 2)

Here is shown a typical connection between the MPC860 and an arbitrary device. The respective sync
pins are connected, as are the clock pins, and the receive and data pins. In addition, other devices on
the TDM bus need to be notified when they can transmit and receive data during the frame
transmission. This notification is accomplished via the assertion of a strobe signal, which is connected
to these devices, and timed to assert at the appropriate time for these devices to transmit and receive.

For More Information Contact: www.freescale.com 250



Freescale Semiconductor, Inc.

SLIDE 12-5

How the Serial Interface Operates (1 of 2)

Pin Summary To SMC1 To SMC2To SCC1To SCC2 To SCC3To SCC4

[ Mux] [ MUX] [ Mux] [ MUX] [ MUX] [ MUX]
A A A A A A

I T I To SMC1To SMC2 To SCC1To SCC2 To SCC3To SCC4
TX/Rx i pins pins pins pins pins

car ol

Time Slot Assigner

| | 1 I T
Tsync Rsync Tflks R(lzlks TIXIRX
| |

TDMa/b Strobes I
TDMa/b pins

How the Serial Interface Operates (1 of 2)

This diagram shows the operation of the serial interface.

The chapters regarding the SCCs and the SMCs discuss their use in NMSI mode, in which the individual
pins of these devices support their communications needs. However, the serial interface provides a
means to shift the SMC and SCC device inputs and outputs through a multiplexer over to a common
TDM bus, and then communicate over a TDM line.

The SICR, or Sl Clock Route register, controls the switching of this multiplexer for the SCCs. Likewise,
the SIMODE, or serial interface mode register controls the switching of this multiplexer for the SMCs.

For More Information Contact: www.freescale.com 251



Freescale Semiconductor, Inc.

SLIDE 12-6

How the Serial Interface Operates (2 of 2)

Example,
TDM Mode
=S L1RxDa«——
SCC3 L1ITXDar——
oCca] LIRCLKa«—— From
SMC1 L1TCLKa f«— Transceiver
SMGC2 L1IRSYNCa f«—
LITSYNCaA fl«—
MPC860
Example,
NMSI
Mode RXD1 |l<——
TXD1|—  *
SCC1 CD1* |l«<—
CTS1* |[«<——
RTS1* |l<—
MPC860

How the Serial Interface Operates (2 of 2)

These diagrams show examples contrasting the use of TDM mode, with that of NMSI mode. In TDM
mode, the MPCB860 is connected to a transceiver, and communicates through all the pins shown,
routing data to up to six devices simultaneously. Dependent upon how the TSA is programmed, the Sl
routes incoming bits to the proper serial channel. In NMSI mode, the MPC860 transmits data via the
SCC1, using its pins only.

For More Information Contact: www.freescale.com 252



Freescale Semiconductor, Inc.

SLIDE 12-7
What isSI RAM? (1 of 2)

31
S| RAM, 0 0 s1
one TDM, 0 64
static
Rx SI Ram Tx SI Ram
63 127
0 31 0 31
SI RAM, 0 64
two
TDMs, Rx SI Ram TDMa Tx SI Ram
static 31 95
32 96
Rx SI Ram TDMb Tx SI Ram
63 127

What is S| RAM? (1 of 2)

The Serial Interface RAM, or SI RAM, consists of 512 bytes of RAM located in the internal memory
map. Itis divided into a receive RAM and a transmit RAM, of 64 entries each, which are 32 bits wide.
Note that 16 bits of each entry, the lower half word, are reserved. The SI RAM entries are used to
define the routing control. Also,up to four strobe pins can be asserted according to the SI RAM entries.

The two SI RAMs can be configured in four different ways to support various TDM channels.

The first diagram shows the basic configuration for one static TDM. With this configuration, there are
64 entries in the SI RAM for transmit data and strobe routing, and 64 entries for receive data and strobe
routing. This configuration should be chosen only when one TDM is required, and the routing on that
TDM does not need to be dynamically changed.

The second diagram shows twoTDMs in use, in which case there are 32 entries for transmit data and
strobe routing, and 32 entries for receive data and strobe routing in each SI RAM. This configuration
should be chosen when twoTDMs are required and the routing on that TDM does not need to be
dynamically changed.

For More Information Contact: www.freescale.com 253



Freescale Semiconductor, Inc.

SLIDE 12-8

What isSI RAM? (2 of 2)

S| RAM 0 31 0 31
one  J’[RxSTRam 9 X STRam
TDM, (shadow) (shadow)
dynamic 0 0
0 31 64 31
63 127
Rx SI Ram Tx SI Ram
(active) (active)
31 95

Two TDMs, both dynamic, is also possible.

What is S| RAM? (2 of 2)

This third diagram shows a single TDM in use, with whicla shadow RAM and an active RAM allow the
user to change the serial routingdynamically. The active RAM determines the routing at any given time,
while the user programs the shadow RAM with a different routing configuration. After programming the
shadow RAM, the user sets theSCRXx bit of the associated channel in the SICRand when the next
frame sync arrives, the serial interface automatically exchanges the active RAM for the shadow RAM.

It is also possible to implement bothTDMs with dynamic frames.

For More Information Contact: www.freescale.com 24



Freescale Semiconductor, Inc.

SLIDE 12-9

Programming Model (1 of 2)
SIRAM - S| RAM Entry
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LO [ SW |SSE|SSE|SSE|SSE|

oplmrlal izl ol Res CSEL CNT BYT[LST

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved

SIGMR - Sl Global Mode Register
0O 1 2 3 4 5 6 7

Reserved  |ENBENA| RDM |

SIMODE - Sl Mode Register
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SM DS|CR| ST
co SMC2CS SDMB | RFSDB celtelzB CEBFEBGMB TFSDB
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
SM DS|CR| ST
c1 SMC1CS SDMA | RFSDA cal tal za CEAFEAGMA TFSDA

Programming Model (1 of 2)

The first element of the programming model is a S| RAM entry. Note that the lower half word is
reserved. The LOOP field indicates whether this time slot operates in loop-back mode. SWTR
provides the user with the ability to switch the transmit and receive pins. SSEL4 1 assign the strobes to
either receive or transmit RAM. CSEL selects the channel, that is, the destination communication
device, for a bit or byte group. The Count field indicates the number of bits or bytes that the routing and
strobe select of this entry controls. BYT determines whether the TDM is operating with bit or byte

resolution for this particular entry. Finally, the LST field indicates the last entry in this section of the Sl
RAM table.

The next element in the programming model is the S| Global Mode Register. This register allows the
user to enable TDM A and TDM B.

The 32-bit SI MODE Register defines the serial interface operation modes, and allows the user within Sl
RAM to support any or all of the ISDN channels independently. It is in this register that the user can
connect the SMC to the TDM.

For More Information Contact: www.freescale.com 255



Freescale Semiconductor, Inc.

SLIDE 12-10

Programming Model (2 of 2)

SICR - Sl Clock Route Register
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

|GR4|SC4|| R4CS | T4CS |GR3|SC3| R3CS | T3CS |

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
|GR2|SCZ|| R2CS | T2CS |GR1|SCl| R1CS | T1CS |

SICMR - SI Command Register

0 1 2 3 4 5 6 7
CSRICSR|ICSR|CSR
RA|TA |RB | TB

Reserved

SISTR - Sl Status Register

0 1 2 3 4 5 6 7
CRO|CRO|CRO|CRO
RA | TA |RB | TB

Reserved

Programming Model (2 of 2)
The 32-bit SI Clock Route Register allows the user to connect an SCC to the TDM in fields SC1-4.

The 8-bit SI Command Register allows the user to dynamically program the SI RAM, by specifying
when the shadow RAM and the active RAM switch roles.

Finally, the Status Register indicates which area of the SI RAM is the active RAM.

SLIDE 12-11

SI RAM Programming Example (1 of 2)

Data Frame
— w0 s & s}

SCC1
SMC1
SCC2
SCC1
SCC2

WY

For More Information Contact: www.freescale.com 256



Freescale Semiconductor, Inc.

SIRAM Programming Example 1 (1 of 2)

For the purposes of illustrating how to program Sl table entries, let us take a look at this example TDM
stream. Let us say that the first ten bits belong to SCC1, then one bit only to SMC1, followed by eight
bits for SCC2, four more for SCC1, and the last eight bits go to SCC2.

SLIDE 12-12

SI RAM Programming Example (2 of 2)

SIRAM - S| RAM Entry
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LO | SW |SSE|SSE|SSE|SSE
O/P }'R alal 2|1 Res CSEL CNT BYT|LST
ojopypol1p1y0f0[1]0)0J0 0x00640000
Oj1)y0|1J0jO0OfO}[O]O)0OJ1 0x01400000
ojopryo0fjo0}1f1)1}j0)0}|2 0x009C0000
ojopol1jp0[O0f1)1}]0)|0|3 0x004C0000
Ojoy1l0jJ0jO0OfO}O}1)1]4 0x00830000
0 _Ox__ o0o0C
p . pr nm >SI ] = 0x00640000;
rogram: pi nm >SI RAM 1] = 0x01400000;
pi mm >SI RAM 2] = 0x009C0000;
pi mm >SI RAM 3] = 0x004C0000;
pi nm >SI RAM 4] = 0x00830000;
pi mm >SI RAM 64] = 0x00640000;
pi mm >SI RAM 65] = 0x01400000;
pi mm >SI RAM 66] = 0x009C0000;
pi mm >SI RAM 67] = 0x004C0000;
pi mm >SI RAM 68] = 0x00830000;

SIRAM Programming Example 1 (2 of 2)

First, remember that the lower half-word is reserved, so we will not write anything to that area. Also
note that none of the channels is in loop-back modeso that corresponding bit is always zero in this
example. Lastly, we assume that strobes are not used for this example, and so we leave those at zero
as well.

Let us now examine the first entry.

The first 10 bits belong to SCC1. Thus, in the CSEL field of the first entry we have 001, which is the
code for SCC1. The CNT field contains 1001 to represent 10 bits. Do not be confused with the fact
that this is 0x9. In this scheme, a zero in this field represents 1 bit; thus the bit count that the CNT field
represents is its hex value, plus one. We are referring to 1its, not bytes, so the BYT field is 0. This is
not the last field in the TDM stream, so LST is 0.

Let us try the entry for the fifth and last field in the TDM stream. The code for SCC2 is 010, which is the
value we have put in the CSEL field. Because we want to route eight bits to SCC2, we have left the
CNT field at all zeroes and set a 1 in the BYT field. This means: foute one byte.” You may notice that
there is another way to do this, which is to set the CNT field to 0111 and the BYT field to zero, as was
done with the entry for the third TDM field. This is the last field in the TDM stream, so LST is set.

For More Information Contact: www.freescale.com 257



Freescale Semiconductor, Inc.

In this example,the receive and transmit routing are exactly the same. So the same SIRAM entries can
be programmed in boththe receive and transmit areas.

SLIDE 12-13

T1-PowerQUICC
Application
Example

Whatyou  ,\yhatis a T1 frame?

will learn <« How to connect an 860 to a T1 framer
* What are the time-slot assignments?
« How to initialize the MPC860.

T1 - PowerQUICC Application Example

T1 multiplexers and lines offer efficient and economical inter-hub circuits known in the industry as trunks
or backbones to carry large volumes of data. In T1 applications where more than four logical channels
are required, the user will prefer to implement the 860MH In T1 applications that require only four or
fewer logical channels, the regular 860 can be used. In this subsection, you will learn how to implement
the 860 in a T1 application.

For More Information Contact: www.freescale.com 258



Slide 12-14

What isaT1 Frame? (1 of 2)

Freescale Semiconductor, Inc.

Channel 1 Anti- Sample- Analog-
put " liasing hold digal |
Ao filter circuit converter
(o) g (o) (o) >
o o o o .
(o] ° o o >
Total of g ° g g —>
24 ° o ° ° o
channels o o
(o) ° (o) (o) °
o ° o s °
(o) o (o) (o) °
o ° o o —>
o ° o o —>
o z o o >
o o o o —>
Channel 24 Anti- Sample- Analog-
o~ [aliasing hold digital
filter circuit converter

What is a T1 Frame? (1 of 2)

TDM
Multiplexer

—

PCM-TDM
output

T1 technology provides the ability to transmit up to 24 channels of multiplexed digital voice and data
over a conditioned telephone line. The diagram shown here portrays the conversion of 24 channels of
analog input to digital signaling. The TDMmultiplexer accepts these digital channels as input, and
sends them out on a single line as PCM-TDM output.

For More Information Contact: www.freescale.com 259



Freescale Semiconductor, Inc.

Slide 12-15

What isaT1 Frame? (2 of 2)

1234567 8 9101112131415161718192021222324

pata O LTI ITTTIIITTITTIIELT LT ]]

8 bits 24 channels 192 bits 1 framing bit 193 bits

= + = T frmr~
channel X frame frame frame frame

193 bits 8000 frames
X

line speed = = 1.544 Mbps

frame second

What is a T1 Frame? (2 of 2)

This diagram illustrates a T1 frame Note that a bit time correlates to a synch pulse, which identifies the
start of the T1 frame. A series of 24 time slots follows, with 8 bits in each time slot. Each time slot can
contain an individual phone conversation, or a data transfer, and both can occur on different channels at
the same time.

A T1 transmission carries 8 bits per channel. There are 24 channels per frame, for a total of 192 bits
per frame. One additional bit is used for framing, totaling 193 bits. Data is sent at a rate of 8,000
frames per second, requiring a device with the capacity to transfer at a rate of 1.54Mbps. The
MPCB860 supports this transfer rate at 25 MHz.

There is a corresponding European standard called E1 which operates in a very similar fashion with 32
time slots, and which requires a transfer rate of 2.048lbps. The MPC860 also supports this transfer
rate.

The MPC860MH can route each channel to a different buffer using only one SCC, thus accumulating
the data for each channel with no processing required by the PowerPC. The 860 can accumulate data
for only four logical channels, one for each SCCif more channels were necessary, the PowerPC would
need to provide additional processing.

For More Information Contact: www.freescale.com 260



Freescale Semiconductor, Inc.
Slide 1216

How to Connect an 860toa T1 Framer

MPC860 DS2180A
SPIBus[*—* §+5 +—>ISPI Bus
SCC1| LIRSYNCA |« RESYNC
scc2| LIRXDA« RSER
—ces  LiTxDA 251 > TSER
LIRCLKA |[¢—1¢ RCLK
Scca ‘ ‘
SMCY 145532
SMC2 L 145540 RPOS TPOS
SP| | 145480 ‘RI\AIEG TNEG
145480 BUS Il
L1ST1 —| I Receive Transmif]
L1ST2 Line Line
L1ST3 Interface Interface]
DS2187 DS2186
Video : o g3
Codec MC145540= ADPCM Voice CODEC 5 =
MC145532= ADPCM Encoder/Decoder > >
Video MC145480= PCM Voice CODEC
Codec

How to Connect an 860 to a T1 Framer

The 860 cannot be connected directly to a Tlline, but must be interfaced through a framer chip. In the
application shown here, the 860initializes and gathers information from the framer using the SPI. The
framer provides the receive sync pulseas an input to the LIRSYNC pin of the 860. It also provideghe

receive clock input on the LIRCLK pin.

In additionthe transmit and receive pins are connected directly. There are no transmit synch or clock
pins connected; therefore, these pins will have to be connected internally. The interface between the
860 and the framer involves the additional CODEC devices shown. During frame time, each of these
devices need some bit times to transmit and receive. They are enabled to do this through the L1ST1, 2,
and 3 connections. The system involved in this application is not specific, but it does involve two video
codecs that require six timeslots each.

For More Information Contact: www.freescale.com 261



Freescale Semiconductor, Inc.

Slide 12-17

MPC860 T1 Application Timing (1 of 2)
LATCHING DATA
RCLK —
L1IRCLK / / \ /
LITCLK  — }(;
RSER I >< )<

Latch |
Data

-
L1TxDa )< | )<

TSER Latch |
Data

L1RxDa

MPC860 T1 Application Timing (1 of 2)

Transferring data between the framer and the 860 must be done based on data assertion edges and

data latch edges. This application asserts data on the RSER* pin on the rising edge of the clock; the
860 must then latch the data on the falling edge. Similarly, the framer is going to latch data on TSER*
on the falling edge of the clock so the 860 must assert data on the rising edge.

For More Information Contact: www.freescale.com 262



Slide 12-18

Freescale Semiconductor, Inc.

MPC860 T1 Application Timing (2 of 2)

LATCHING SYNCH

RCLK
L1RCLK
L1TCLK

RFSYNC

L1RSYNCa

S S

Latch
Sync

MPC860 T1 Application Timing (2 of 2)

The synch is to be transferred similarly, with the framer asserting the synch on the rising edge and the
860 latching the sync on the falling edge.

For More Information Contact: www.freescale.com

263



Freescale Semiconductor, Inc.

Slide 12-19

MPC860 T1 Application Timing

RCLK —
L1IRCLK - /
L1ITCLK ’(;

RFSYNC
LIRSYNCa Lsa;ﬁrc] —> . "*
RSER X X
L1RxDa Latch —>|

Data

L1TxDa X | ><

TSER Latch —
Data

MPC860 T1 Application Timing

Data is asserted in relation to the sync pulseone clock time after the sync. The 860 will have to be
programmed for this one clock delay.

For More Information Contact: www.freescale.com

264



Freescale Semiconductor, Inc.

Slide 12-20

MPC860 T1 Application
Framing Information (1 of 2)

123456 78 9101112131415161718192021222324

SCC3 <—SCC4 ‘ ‘

L1ST1, 145532 J

L1ST1, 145480
L1ST2, 145540
L1ST3, 145480

<"SCC1™™

NOOW
RPOZW
NOZW

MPC860 T1 Application Framing Information (1 of 2)

This diagram shows how the T1 frame data is to be routed in the 860 devices. The first four timeslots
are for SCC1. Timeslot 5 is not used. Time slot 6 is routed to SCC2. The next six timeslots representing
video codecs data are routed to SCC3. Similarly, the next six timeslots representing the second video
codec are routed to SCC4. The first four bits of timeslot 19 are routed to the 145532 on L1ST1; the
second four are routed to the 145480, also on L1ST1. The first four bits of timeslot 20 are routed to the
145540 on L1ST2; the second four bits are not used. Timeslot 21 is routed to the second 145480 on
L1ST3. Finally, timeslot 22 is routed to SMC1, timeslot 23 to SMC2, and timeslot 24 is not used.

For More Information Contact: www.freescale.com 265



Slide 12-21

Freescale Semiconductor, Inc.

MPC860 T1 Application Framing Information (2 of 2)

SIRAM - SI
0o 1

RAM Entry
2 3 4 5 6 7 8 9

10 11 12 13 14 15

oP

LO | SW|SSE|SSE|SSE|SSE

Res CSEL

L4]L3|L2]L1

CNT BYT|LST

TR
[/

0x004E0000

0x00020000

0x00820000

0x00D60000

0x01160000

0x040C0000

0x040C0000

0x080C0000

0x000C0000

oflojojojo
=l (=] [=] k=] [=]
(=] (=} I (o] [«
oflo|ofjr|r-

© 00N Ul WN PP O

0x10020000

[Eny
o

0x01420000

[EEN
[EEN

0x01820000

(=] I3 Il [=] [=] [=] [«] [«] | ) (o] (o} (o) (=]
(=] |} [=] [«] [«] (o] (] [«] (o) 1) [} [e] (=]
(=] (=} I (o] [e] (o] (o] [«] (o) 1] (o} (o} I
oJojoloolojofoof|oo|lo|o
(e} (o} o] (o] [«] (o] (o] (=] | ] 1] (o} (o) (o)
(=] (=} a] [«} 10 I ] Il =] (=] (=] [=] L

=1=11=1 =] DR R E G E =R
NN EEE RN R R
Rlololoflolololololololo]o

[EnY
N

0x00030000

(e] (o) [o] (o] (o] (o] (o] [«] (o} (o] (o} (o] (o] [«

Ox 0000

MPC860 T1 Application Framing Information (2 of 2)

The SIRAM for this frame routing was filled in as described previously. The receive entries are shown

and 13 entries are required. The transmit entries have the same value, but start at entry 64.

Slide 12-22

How to Initialize MPC860 for T1 (1 of 3)

SMCx:connect to TDM or NMSI
SMCxCS:specify clock source
SDMx:normal,echo, or loopback mode
DSCx:double-speed clock(GCl)
CRTx:common xmit & recv sync & clk
STZx:Set L1TXDx to until serial clks
CEXx:clock edge for xmit

FEx:frame sync edge
RFSDx:Receive Frame Sync Delay
TFSDx:Transmit Frame Sync Delay
GMx:grant mode support

Step Action Example
1 [Initialize SIRAM pi mm >S| RAM 0] = Ox4E;
2 |Initialize the SIMODE register- pi mm >S| MODE. SMZ2 = 1;

For More Information Contact: www.freescale.com

265



Freescale Semiconductor, Inc.

How to Initialize MPC860 for T1 (1 of 3)
Here is the procedure for initializing an MPC860 for T1.

Each entry has an example statement for each step. "pimm" refers to the pointer to the internal
memory map.

First, the user initializes SIRAM as has been described previously.
Next, the user configures the SIMODE register. This register basically affects two things: the SMCs and
the clock and delay parameters for the TDM bus. This register connects the SMCs to the TDM bus or

the NMSI pins. For the TDM buses, this register connects the receive and transmit clocks, selects the
edge for transmit and frame sync, and selects the frame sync delay for transmit and receive.

Slide 12-23

How to Initialize MPC860 for T1 (2 of 3)

3 |Initialize the SICR register- pi Mm >SI CR SCG4 = 1;

SCx:connect SCCx to TDM or NMSI
RXCS:connect SCCx receiveto a clock
TXCS:connect SCCx transmit to a clock
GMx:support SCCx grant mode

4 |Configure Port A B: m zg%ﬁg = 8%830
L1TXDx pi mm >PACDR = 0x10;
L1RXDx
L1TCLKx
L1RCLKx
x=aorb

5 | Configure Port B pi mm >PBPAR = 0x1400;

L1CLKOx pi mm >PBDI R = 0x400;
L1ST1,2,3and 4
x=aorb

How to Initialize MPC860 for T1 (2 of 3)
Step 3: The SICR register connects the desired SCCs to the TDM bus.

Steps 4, 5, and 6 and 7 on the following slide configure the ports for the TDM pins. Additional
information can be found in the Port Configuration chapter.

For More Information Contact: www.freescale.com 266



Slide 12-24

Freescale Semiconductor, Inc.

How to Initialize MPC860 for T1 (3 of 3)

Step Action Example
6 Initialize Port C pi mMm >PCPAR = 0x301;
L1ST1, 2,3, and 4 pi M >PCDI R = 1;
LITSYNCx
L1IRSYNCx
Xx=aorb
7 Initialize Port D pi mm >PDPAR = 8;
L1IRSYNCx
LITSYNCx
Xx=aorb
8 | Initialize the SI Global Mode Reg, pi M >8I GWR ENb = 1;
SIGMR
ENXx: enable TDM channel
RDM: RAM division mode
Xx=aorb
See MPCB60 UM refer to
9 Initialize SCCl, SCCZ, SCC3, course naterial for these
SCC4, SMC1 and SMC2. controll ers.
Enable all transmitters and pi mm >SMCVRL. TEN = 1;
10 receivers.

How to Initialize MPC860 for T1 (3 of 3)

Step 8: Enable the TDM bus.

Step 9: Initialize the SCCs and SMCs that are to be used on the TDM.

Step 10: Enable all transmitters and receivers.

For More Information Contact: www.freescale.com

267



Freescale Semiconductor, Inc.
Chapter 13: QMC Mode on the 860MH

SLIDE 13-1

QMC Mode on the
860MH

What You » How to interface the MPC860MH to a T1 line
Will Learn » How to assign the time slots for T1
» How to initialize the 860MH for T1

Prerequisites «Chapter 8: Serial Communication Controller, SI with TSA

In this chapter, you will learn:

1. How to interface the MPC860MH to a T1 line
2. How to assign the timeslots for T1

For More Information Contact: www.freescale.com 268



SLIDE 13-2

Whatisa T1 Frame? (1 of 2)

Freescale Semiconductor, Inc.

Anti-
aliasing
filter

>

OO0O00O00000O0O00O0O0

o

Anti-
aliasing
filter

Channel 1
analog — 5
input

o

o

o]

o

Total of g
24 °
channels °
o

(o)

o

o

o

o

o

Channel 24
analog 5|
input
What is T1?

Sample- Analog-

and- to-

hold digital

circuit converter
[e] o — >
o o] .
[e] o — >
5 s 7
(o] (o) o
o) o °
o) o o
(o] (o) o
o) o °
o o —>
o o —>
o o >
o o —>

Sample- Analog-

and- to-

hold digital

circuit converter

TDM
Multiplexer

>

PCM-TDM
output

As discussed in the SI TSA chapter, T1 technology provides the ability to transmit up to 24 channels of
multiplexed digital voice and data over a conditioned telephone line. The diagram shown here portrays

the conversion of 24 channels of analog input to digital signaling.

For More Information Contact: www.freescale.com 269



Freescale Semiconductor, Inc.
SLIDE 13-3
Whatisa T1 Frame? (2 of 2)

1234567 8 9101112131415161718192021222324

pata UL ITITITITTITITITITTTITTTITTITTTT]

8 bits 24 channels 192 bits 1 framing bit 193 bits
channel X frame = frame * frame = frame
193 bits 8000 frames
line speed = frame X second = 1.544 Mbps

T1 Frame lllustration

To review, this diagram illustrates a T1 frame. Note that a bit time correlates to a synch pulse, which

identifies the start of the T1 frame. A series of 24 timeslots follows, with 8 bits in each timeslot. A T1

transmission carries 8 bits per channel. There are 24 channels per frame, for a total of 192 bits per

frame. One additional bit is used for framing, totaling 193 bits.

For More Information Contact: www.freescale.com

270



Freescale Semiconductor, Inc.

SLIDE 13-4

What is the 860MH Multichannel Controller (QMC)?

860MH Multichannel Controller Operation Buffer Descriptors
= —>Buffer
S”:iAM Timeslots Channels - o ‘ uffer
TS00 » CHOO °
scci TS01 choll— E !
« . - - —>Buffer
— T2 / Crizz i e
L J
TS23 CH23 \. °
‘ > scc2
‘ > sccs3
¢ > scc4

860 Single-channel Controller Operation
SIRAM

Buffer Descriptors

SCC1 /
< . - —Buffer

«— E F—>Buffer

(N ]

‘ > SCC2
¢ > SCC3
) > SCC4

What is the 860MH Multichannel Controller (QMC)?

To accomplish successful and efficient T1 transmission and reception, it is necessary to have a device
designed for such transfers. The 860MH QUICC Multichannel Controller distributes data associated
with a T1 frame to the buffers of up to 64 channels. To provide an initial contrast, let us examine a
standard MPC860, as illustrated in the lower portion of this slide.

When an MPC860 transfers data to and from an individual SCCL1 via its standard arrangement of
buffers and buffer descriptors, the 860 has one logical channel. Received data enters the buffers, one
byte after the other. If a standard MPC860 were to receive a T1 frame, 24 bytes would accumulate in a
buffer, containing 24 different sources of data transfer and / or telephone conversations. As additional
frames were received, the PowerPC would have to invoke translation software to process and sort the
data, one byte at a time, into individual data transfers or conversations.

In comparison, the 860MH accepts T1 data into the SCC as the MPC860 does, but it is possible to
specify timeslots in relation to the incoming T1 frame. Furthermore, it is possible to name the channel
for each timeslot, identifying in turn a specific set of buffer descriptors and buffers for each logical
channel; in this case, there are 24 logical channels. Therefore, an incoming timeslot is placed into its
assigned buffer, so that the MPC860MH accumulates separate data transfers or conversations into
individual buffers. A single telephone conversation accumulates into a single buffer, and no additional
processing is necessary to sort the various data streams. Note in the illustration that the 860MH
receives these incoming frames not in the NMSI mode, but in the TDM mode. As shown, all the
timeslots are directed to SCC1; however, it is possible to route the timeslots to any combination of the
four SCCs.

For More Information Contact: www.freescale.com 271



Freescale Semiconductor, Inc.

SLIDE 13-5
How to Connect 860MH toa T1 Line
860MH DS2180A
SPI SPI Bus |* > SPI Bus
SCC1
SCC2 L1RSYNCA* RFSYNC
SCC3 L1IRXDA* DS1 RSER
SCC4 L1TXDA * TSER
SMC1 L1IRCLKA RCLK
SMC2
RPOS TPOS
RNEG TNEG
A y
1 | v A
Receive Transmit
Line Line
Interface Interface
DS2187 DS2186

How to Connect the 860MH to a T1 Line

The 860MH connects to a T1 line through a transceiver device such as the DS2180A from Dallas

Semiconductor. This diagram shows the basic connections. Notice the one transmit pin, in combination

with the receive synch, receive data, and receive clock pins. Also note that the transceiver is a semi-
intelligent device; it is possible to connect it to the SPI bus, and program the device to transfer data,

change conditions, read status, and the like. No transmit clock is shown; therefore, the receive clock,
which the Receive Line Interface generates, must be connected internally to the transmit clock. The

same can be said for transmit sync.

For More Information Contact: www.freescale.com

272



Freescale Semiconductor, Inc.

SLIDE 13-6

What are Data Latch and Sync Latch Times? (1 of 2)
Data Latch Times for the 860MH and DS2180A

RCLK SE—

L1RCLKa /
LITCLKa — —
—> }4—
RSER I >< ><

Latch |
L1RxDa Data

i
L1TxDa )< | ><

Latch ___,|
TSER Data

What are Data Latch and Sync Latch Times? (1 of 2)

Data Latch Time is the clock edge at which the receiving device can be assured to be latching good

data. Synch Latch Time is the clock edge at which the receiving device can be assured to be latching a
good sync value.

In the example shown here, the transceiver transmits data on the rising edge of the clock. The
implication for the design is that the 860 must be configured to latch that data on the falling edge of the
clock. Also, this example shows the 860 transmitting data on the rising edge of the clock, and so the
transceiver must be configured to latch data on the falling edge of the clock.

For More Information Contact: www.freescale.com 273



Freescale Semiconductor, Inc.

SLIDE 13-7

What are Data Latch and Sync Latch Times? (2 of 2)

Sync Latch Times for the 860MH and DS2180A

RCLK ———
L1RCLKa
L1TCLKa
—>
RFSYNC
L1IRSYNCa Latch
L1ITSYNCa Sync —¥

What are Data Latch and Sync Latch Times? (2 of 2)

This second example shows the transceiver asserting the synch on the rising edge of the clock, and
therefore the 860 must be configured to latch the data on the falling edge.

For More Information Contact: www.freescale.com 274



Freescale Semiconductor, Inc.

SLIDE 13-8

What is the Frame Sync Delay?

Frame Sync Delay for the 860MH and DS2180A

RCLK — —
L1RCLK _— —
L1TCLK |<—

RFSYNC
Latch —»
L1IRSYNCa e )
RSER

L1RxDa '—S;?Q —>

BN
L1TxDa X 1
TSER Latch —»|

Data

What is the Frame Sync Delay?

The frame sync delay is the number of clocks that occur between synchronization time and the first data
bit. This diagram shows an example implementation of the frame sync delay. As described earlier in
this chapter, a sync pulse marks the start of a T1 frame, and the first data bit arrives on the next clock
signal. It is necessary to program the 860MH for a 1-clock frame sync delay, to ensure the device
latches the incoming data after the appropriate interval.

For More Information Contact: www.freescale.com 275



Freescale Semiconductor, Inc.

SLIDE 13-9

How the 860MH Frames T1 Data

T1 Frame Routing
1 23456 7 8 91011121314151617 18 192021222324

“ SCC1 >

01 23 456 7 8 91011121314151617 1819 20 21 22 23|
< Timeslot >

SIRAM Entries

Description
Bit
position(s) in
15| 14 13-10 | 9 8-6 5-2 1 1 SIRAM

0 0 0 0000 | 0 | o001 1111 1 0 | scci, 16 bytes

1 0 0 0000 | O 001 0111 1 1 | scci, 8 bytes

O
Z
_i
o]
<
_i
—
_i

Entry #{LP | SWTR [SSEL1-4 CSEL

How the 860MH Frames T1 Data

These diagrams show the routing of the T1 frame and how to enable that routing in the Serial Interface
RAM. Note again that there are 24 timeslots, which this diagram designates to be routed to SCC1.
Recall that it is possible to route this data as required to among the four SCCs.

The second diagram displays the SIRAM entries. The programmer configures SIRAM in order to route
the data to SCC1 as shown here, or among any of the SCCs. For this most basic configuration, the
user programs two SIRAM entries, and routes 24 timeslots to SCC1. Note that bit 15 is not used in this
example, but the 860MH implements bit 15 as a loop-back bit, which can be valuable in testing. If the
user wishes to implement loop-back in a timeslot, bit 15 should be set. However, one implication of this
configuration is that it is then necessary to configure the SIRAM to route every timeslot individually.
Then, if the user sets bit 15, that specific timeslot operates in loop-back. Additionally, to use loop-back
in one timeslot, SIRAM must be configured identically for both receive and transmit.

For More Information Contact: www.freescale.com 276



SLIDE 13-10

Freescale Semiconductor, Inc.

What Are the Basic 860MH Structures?

IMMBASE

0x2000

0x3000

0x3C00

What Are the Basic 860MH Structures?

This diagram shows the basic structures involved in transmitting and receiving data with the 860MH.
They reside partly in dual port RAM, and partly in external RAM. Unlike the other data modes, the

Internal
Registers

External Memory

Channel 0 Specific
Parameters

Channel 1 Specific
Parameters

L]
L J

Channel 63 Specific
Parameters

Transmit and Receive
Buffer Descriptors
for each Channel

Global Multichannel
Parameters - Page 1

Global Multichannel
Parameters - Page 2

Global Multichannel
Parameters - Page 3

Global Multichannel
Parameters - Page 4

External Memory

Interrupt
Circular
Table

transmit and receive buffer descriptors reside in external memory.

The left portion of the diagram illustrates IMMBASE, the internal memory map. The right portion of the
diagram describes an area of external memory. The internal memory map contains internal registers up

to the address 0x2000. Next, in the dual port ram area are the channel specific parameters, with a

potential capacity of 64 channels. Next follows an open area of memory. Then, starting at 0x3CO00, are
the global multi-channel parameters for QMC, in pages 1, 2, 3 and 4 as needed for SCC1, 2, 3 and 4.

As mentioned, it is necessary when implementing the 860MH mode to locate the transmit and receive

buffer descriptors in external memory, and to designate a 64 Kb area for that purpose. The designer

also builds an interrupt circular table in external memory. Keep in mind that 24 data channels operating
simultaneously incur frequent instances of buffers closed, transmit buffers sent, and other such events.
Given the frequency of these events, it is an advantage to ensure that the processor is not necessarily

interrupted at each instance. With the implementation of an interrupt circular table, each time an

interrupt occurs, an entry is placed in this external structure. When the processor actually receives an
interrupt, it is then able to provide service to several interrupts as needed.

For More Information Contact: www.freescale.com

277



Freescale Semiconductor, Inc.

SLIDE 13-11
IMMBASE | TBASE ——_CHAMR How the RISC Locates the Data
TSTATE
TBPTR . External Memory —
TUPACK >
L :
INTMSK BDFLAGS >|  Tx Buffer Desc’s
RBASE FVAH
RSTATE
RBPT ] -
RPACK | RxBuffer Desc’s | 84K
ZDSTATE
Res
TRNSYNC | Res
0x3C00 MCBASE T~
QMC STATE MRBLR
Tx S _PIR RxPTR
GRETHR GRECNT 63 add’l CSPs v
INTBASE
INTPTR External Memory
Rx S _PIR_|___TIxPIR .
C_MASK32
TSATRx[00] ]| TSATRx[01] VW) [Channel
- P— Number
TSATRX[30] | TSATRX[31 .
» TSATTX[00] | TSATTX[01
- «— Interrupt
TSATTX[30] || TSATTX[31] Circular
C_MASK16 | m  Teble

How the RISC Locates the Data

This diagram shows the pointers that the RISC uses to locate the transmit and receive buffers. This
diagram is actually based on the previous diagram that you have just seen, but shows the internal
memory map with important areas highlighted and detailed.

Specifically, Page 1 of the Global Multichannel Parameters in the QMC mode is highlighted and
detailed, starting at address 0x3C00. Also, the first channel specific parameter block is highlighted and
detailed.

First, let us discuss the fields in the device parameter area. The user must initialize the highlighted as
shown. The first parameter in the device parameter area is MCBASE, which contains a pointer to the
64 Kb area that stores the receive and transmit buffer descriptors. The RISC uses this pointer to locate
these buffer descriptors.

A second field in the device parameter area is QMC_STATE. The user initializes this field once, and
does not need to write to it again.

MRBLR is the maximum receive buffer length, which defines the maximum number of bytes that the
860MH writes to a receive buffer before moving to the next buffer.

The Tx_S_PTR field is a pointer that points to the timeslot assignment table for transmit, or TSATTX,
shown in the lower portion of the diagram. This table contains 32 entries for 32 timeslots. As the
860MH transmits timeslots, these entries direct the RISC to the channel supplying the next 8 bits for that
timeslot.

While the Tx_S_PTR field points to the start of the timeslot assignment table, TXPTR points to the
current active timeslot. Likewise, the Rx_S_PTR points to the start of the timeslot assignment table for

For More Information Contact: www.freescale.com 278



Freescale Semiconductor, Inc.

receive, and associated with this field is a receive pointer, RXPTR, that points to the current active
timeslot assignment entry.

The GRFTHR is the global receive frames threshold. A receive frame threshold reduces interrupt
overhead. lItis possible to set this threshold in the event of many incoming frames, so that the controller
generates an interrupt after receiving a given number of frames, rather than after receiving each frame.
A global receive frames threshold permits the device to wait until frames are received on a given
number of channels before beginning to process those frames.

GRFCNT works in conjunction with GRFTHR, and includes a count of incoming frames. The
programmer must initialize GRFCNT with the same value as GRFTHR. GRFCNT is decremented for
each frame received, when it decrements to 0, the GRFTHR interrupt occurs.

INTBASE points to the start of the interrupt circular table, and INTPTR is the pointer to the active entry
in the table. Shown in the diagram is a partial interrupt table entry. This entry includes the channel
number causing the interrupt, and a Valid bit indicating whether the entry is valid. When the processor
services the interrupt, the processor marks the entry as invalid so that it may be re-used. Finally, the
interrupt table entry also includes a Wrap bit. When building the table entries, the programmer must
indicate the last entry of the table with a 1 in the Wrap bit.

The C_MASK32 and C_MASKZ16 fields permit the use of either a 32-bit CRC, or a 16-bit CRC. Note
that the channels only operate with two protocols: HDLC or transparent. The CRCs apply to the HDLC
protocol.

We have just finished examining the device parameter area. Now, let us examine a channel parameter
block.

A channel parameter block contains base pointers to the transmit and receive buffer descriptors --
TBASE and RBASE --, along with pointers to the active buffer descriptor - TBPTR and RBPTR.

Other state parameters include TSTATE, RSTATE, ZDSTATE and ZISTATE. The programmer
initializes these fields once with values that are illustrated in the programming model later in this chapter,
and does not need to write to these fields again.

CHAMR is the channel mode register. We discuss this field in more detail later in this chapter.

Another field in the channel parameter block acts either as a maximum frame length register or as a
transparent sync character, based on what the programmer has configured.

Finally, INTMSK serves as an interrupt mask field, permitting the programmer to mask interrupts for a
specific channel.

For More Information Contact: www.freescale.com 279



g |

SLIDE 13-12

Freescale Semiconductor, Inc.

Programming Model - Global Multi-Channel Parameters

Name Size | Description

MCBASE W | pointer to start of 64K buffer descriptor area

OMCSTATE HW |Internal state machine value; initialize to $8000

MRBLR HW | Maximum receive buffer length

Tx_ S PTR HW | pointer to start of TSATTx table.

TXPTR HW | pointer to current time slot of TSATTx table.

Rx S PTR HW | pointer to start of TSATRX table.

RXPTR HW | pointer to current time slot of TSATRXx table.

GRFTHR Hw | Specifies the number of HDLC frames to be received before
interrupting

GRFCNT HW | Down counter for GRFTHR

INTBASE W | pointer to start of interrupt circular table

INTPTR W | pointer to next entry of interrupt circular table

C_MASK16 HW | Constant value used for 16-bit CRC calculation ($FOB8)

C_MASK32 W | Constant value used for 32-bit CRC calculation ($DEBB20E3)

Programming Model - Global Multi-Channel Parameters

This table includes a summary description of the parameters we have just discussed.

For More Information Contact: www.freescale.com

280



SLIDE 13-13

Freescale Semiconductor, Inc.

Timeslot Assignment Table

TSATRX

TSATTX

SCCEX

SCCMx

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

W |mask7_6 channel pointerll_6 mask5 0

W |mask7_6 channel pointerll_6 mask5 0

0 1 2 3 4 5 6 7
IQOV GINT GUN Gov

0 1 2 3 4 5 6 7
IQOV GINT GUN GOV

Timeslot Assignment Table Entries

This chart describes the timeslot assignment table entries for receive and transmit; note that receive and
transmit are structured in exactly the same way.

The ‘V’ bit indicates if the particular entry is valid or not.

The ‘W’ bit is a wrap bit that marks the last timeslot to be executed.

The channel pointer designates the channel specific entry to be used.
And the mask bits allow for masking or enabling bits within a timeslot.

The next portion of the diagram illustrates the event and mask registers for the SCC using the QMC

protocol. These registers contain four possible events: First, IQOV refers to interrupt queue overflow.
An interrupt queue overflow takes place if an interrupt occurs, and INTPTR is not pointing to an empty
entry in the interrupt circular table. Next, there is global interrupt bit, GINT, which indicates that there is

at least one entry in the interrupt circular table requiring service. Finally, there are fields for global

overruns and global underruns.

For More Information Contact: www.freescale.com

281



g |

Freescale Semiconductor, Inc.

Programming Model - Channel Specific Parameters

Name Size| Description

TBASE Hw | Offset to start of Tx buffer descriptors for this channel

TSTATE W | Tx internal state; initialize to $38000000

TBPTR Hw | Offset to current Tx buffer descriptor for this channel

ZISTATE W | Zero insertion state; initialize to $100

RBASE Hw | Offset to start of Rx buffer descriptors for this channel

MFLR HW | Maximum frame length for HDLC

TMRBLR HW | Maximum frame length for transparent

RSTATE W | Rx internal state; initialize to $39000000

RBPTR Hw [ Offset to current Rx buffer descriptor for this channel

ZDSTATE W Zero insertion state; initialize to $80 for HDLC, $18000080 for
transparent

TRNSYNC | \y Defines start slot for single and super channel operation,
transparent

SLIDE 13-14

Programming Model - Channel Specific Parameters

This table summarizes the programming model for the channel specific parameters, as discussed.

Note the initialization values for TSTATE, RSTATE, ZDSTATE and ZISTATE.

For More Information Contact: www.freescale.com

282



Freescale Semiconductor, Inc.
SLIDE 13-15
Channel Specific Parameters - HDLC and Transparent

HDLC
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CHAMR|MODE| 0 [IDLMENT| Reserved |poLlcrcl 0 |Reserved NOF
Interrupt
Entry] ¥V [ W |NID|IDL| - channel number  IMRF| UN |RXF|BSY|TXB|RXB
INTMSK| Reserved | Int Mask Reserved Intrpt Mask Bits
Transparent

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CHAMR|MODE[RD | 1 |ENT|Res|SYNC - [POL| O | O |Reserved) 0 | O | O | O

Interrupt
Entry] ¥V | W |NIDjIDL| - channel number  |MrA UN IRxElBSYITXEBIRXE
INTMSK| Reserved | Int Mask Reserved - Intrpt Mask Bits

Channel Specific Parameters — HDLC and Transparent

These charts show the structure of the channel mode register, an interrupt entry and an interrupt mask
for HDLC and for transparent.

The channel mode registers consist of three basic control bits and some protocol specific bits. The three
control bits are MODE, ENT, and POL. MODE configures the channel for HDLC or transparent. ENT
enables the channel's transmitter. POL is a special bit for polling the buffer descriptors. It enables the
user to turn on or off the polling of the buffer descriptors by the CPM. Since the buffer descriptors are in
external memory, the user can eliminate unnecessary memory cycles for polling if it is known that the
buffer descriptors will not be ready for a significant amount of time.

Protocol specific bits for HDLC are NOF for number of flags; CRC and IDLM which specifies either all
ones or flags as a transmit idle condition. Protocol specific bits for transparent are: RD for specifying a
reverse bit order; and SYNC to specify if synchronization with TRNSYNC is required.

Next in the chart is shown the structure of the interrupt entry, which includes familiar events, such as
receive buffer close, and transmit buffer sent. Other events are NID, which indicates for HDLC that a
non-idle pattern occurred; IDL, which indicates that an idle pattern has occurred; and MRF, which
indicates that a frame was received that exceeded MFLR. Finally, INTMSK contains mask bits for each
corresponding interrupt event.

For More Information Contact: www.freescale.com 283



Freescale Semiconductor, Inc.

SLIDE 13-16

How the 860MH Transmits T1 Data
+ SCC1.TXPTR = TX_S_PTR

« Get channel no. from
SCC1.TSATT1[00].channel_pointer
Frame Sync

GSMR_L1.ENT=1 ’

« Transmit buffers should be ready &

New timeslot CHAMR.POL =1

e Increment
SCC1.TxPTR and
get channel number
SCCLTSATT[xx].W =1
Global

Underrun
occurs
« Three-state L1TXDXx Host Reinitialization

« Transmits abort sequence (at least 16
ones in each timeslot)

* Sets SCCEx.GUN

« Stops reading data from buffer

« Sends idles or flags in all time slots

How the 860MH Transmits T1 Data

This state diagram describes how the 860MH transmits T1 data, assuming that only SCC1 is used .The
860MH enters the Transmit Ready state when Transmit is enabled in the GSMR_L1 register.

Additionally, the TXPTR value must be set. This pointer points to the current active timeslot. Therefore,
TXPTR should point to the beginning of the timeslot assignment table, and contain the same value as
Tx_S_PTR.

At this juncture, the device obtains the channel number for the initial timeslot from the channel pointer
field. Once the 860MH obtains the channel number, it is prepared to transmit.

A receipt of a frame synch moves the device into the Transmit Octet state. The transmit buffers should
be ready at this point, and the poll bit in the channel mode register should be set. The 860MH transmits
an octet, proceeds to the next timeslot, increments TXPTR, and obtains a new channel number. Then it
transmits another octet, continuing through this loop until the device encounters a timeslot element in
which the 'W' bit is equal to 1, indicating the end of the frame transmission.

At the end of the frame transmission, the 860MH tri-states L1TXDx, and re-enters the Transmit Ready
state.

A problem that could occur during this sequence is a global underrun that is, no data is available in the
transmit FIFO. This would normally occur because the CPM became overloaded and was unable to
keep the FIFO filled. In this case, the device enters the Global Underrun Stop state, and transmits an
abort sequence, at least 16 ones in each timeslot. Next, the 860MH sets the GUN event bit, stops
reading data from the buffer, and sends idles or flags in all timeslots. The device remains in this state
until the host reinitializes, which involves preparing all the transmit buffer descriptors, and setting the poll
bit in the channel mode register.

For More Information Contact: www.freescale.com 284



Freescale Semiconductor, Inc.

SLIDE 13-17

How 860MH Transmits a Timeslot

_ Go to

N _, Transm_ltones » change

in this timeslot timeslot

Y

Init Bit Counter
to zero

Shift out bit

|

Increment Bit
Counter

As bits are shifted out, controller
must zero insert, provide for flags,
move buffer data to FIFO, and move
data from FIFO to shift reg. See the
HDLC transmit state diagram.

Go to
change
timeslot

Goto end
transmit

How the 860MH Transmits a Timeslot

This diagram describes how the 860MH transmits a timeslot. First, the 860MH determines whether the
V' bit is set in the timeslot assignment table for transmit for this particular element. If the timeslot is not
valid, the controller transmits ‘1’s in this timeslot. If the timeslot is valid, the device initializes the bit
counter to 0, and then compares the mask bit in the timeslot entry for one.

If the value is equal to a one, the 860MH shifts out the next bit from the transfer buffer. If the value is
not equal to a one, the controller shifts out a one.

Next, the 860MH increments the bit counter, and then determines if the bit counter is equal to 8. If not,
the device continues to process bits until the counter increments to a value of 8. Next, the controller
determines if the wrap bit in the timeslot is equal to 1. If the wrap bit is equal to 1, that indicates the end
of the transmission for the frame. If the wrap bit is not equal to 1, the device proceeds to the next
timeslot. Note that as bits are shifted out, the controller must zero insert, provide for flags, move buffer
data to FIFO, and move data from FIFO to the shift registers.

For More Information Contact: www.freescale.com 285



Freescale Semiconductor, Inc.

SLIDE 13-18

How the 860MH Receives T1 Data
&

*SCC1.TXPTR =RX_S_PTR

* Get channel no. from
SCC1.TSATR1[00].channel_pointer

Frame Sync

GSMR_L1.ENR=1 >

Octet received

New timeslot

¢ Increment

SCC1.RxPTR and

get channel number
SCCL.TSATR[xx].W =1

Global
Overrun

occurs

* Update RSTATE to prevent further
reception.

*Set SCCEx.GOV

«Stops writing data to all channel’s
buffers

Host
Reinitialization

How the 860MH Receives T1 Data

This diagram describes how the 860MH receives a timeslot, assuming that only SCC1 is used. When
receive is enabled in the GSMR_L1 register, the controller enters the Receive Ready state. In the
Receive Ready state, the device gets the first channel number from the channel pointer field of the
QMC's RXTSA.

Receipt of a frame sync moves the controller to the Receive Octet state. When the device receives
each octet, the controller increments RxPTR and obtains the new channel number. This loop continues
until the device encounters a timeslot in which the '"W' bit is set, thereby ending the receive operation.

If a global overrun occurs, the 860MH enters the Global Overrun Stop state. The device updates
RSTATE to prevent further reception, sets the GOV bit in the event register, and stops writing data to all
channel buffers. The 860MH remains in this state until host re-initialization. Setting the ZDSTATE and
RSTATE fields to their initial values re-initializes the host.

For More Information Contact: www.freescale.com 286



Freescale Semiconductor, Inc.

SLIDE 13-19
How 860MH Receives a Timeslot
N Go to
R Ignore data — next
y in this timeslot timeslot
Init Bit Counter
to zero

Shiftinbit |

Increment Bit
Counter

As bits are shifted in, controller
must zero delete, check for flags,
move data to FIFO, and move
data from FIFO to buffer. See the
HDLC receive state diagram.

Go to
next
timeslot
Go to
end
receive

How the 860MH Receives a Timeslot

First, the controller determines whether the 'V' bit is set in the timeslot assignment table for this
particular element. If the timeslot is not valid, the controller ignores data in this timeslot. If the timeslot is
valid, the device initializes the bit counter to 0, and then compares the mask register for that bit to
determine whether it is equal to a one. If the value is equal to a one, the controller shifts in the next bit
from the receive buffer.

Next, the 860MH increments the bit counter, and then determines if the bit counter is equal to 8. If not,
the device continues to process bits until the counter increments to a value of eight.

Next, the controller determines if the wrap bit in the timeslot is equal to one. If the wrap bit is equal to
one, that indicates the end of data reception. If the wrap bit is not equal to one, the device proceeds to
the next timeslot. Note that as bits are shifted in, the controller must zero delete, check for flags, move
data to FIFO, and move data from FIFO to the buffer.

For More Information Contact: www.freescale.com 287



Freescale Semiconductor, Inc.
SLIDE 13-20

How 860MH Processes Channel Interrupts

Interrupt v
Interrupt | ——» masked in End
occurs NTMSK?2
l N
INTPTR;>(|)C’)Tentry.V JN_,| Set SCCEX.IQOV |
l Y
End
Make new entry 1
including V =1,
increment INTPTR
v N
Y Decrement
| GRFCNT ' m
N | ‘ Y

| Set SCCEX.GINT I

How the 860MH Processes Channel Interrupts

This diagram describes how the 860MH processes channel interrupts, but does not include processing
of Global Underrun or Global Overrun.

First, an interrupt occurs. The controller determines whether the interrupt is masked in INTMSK. If so,
processing ends. If the interrupt is not masked, the 860MH determines if the 'V' bit has been cleared in
the corresponding entry in the interrupt circular table. If the 'V' bit is set equal to a one, indicating an
interrupt queue overflow, the device sets the IQOV bit in the event register, and processing ends.

However, if the 'V' bit is equal to a 0, the 860MH creates a new entry in the interrupt circular table,
setting the 'V' bit to one as it does so, and incrementing INTPTR.

Next, the controller determines if the interrupt indicates a receive frame event. If so, the device
decrements GRFCNT. If GRFCNT is then equal to zero, processing ends. If the interrupt does not
indicate a receive frame event, or if GRFCNT is equal to zero, the 860MH sets the global interrupt bit in
the event register.

For More Information Contact: www.freescale.com 288



Freescale Semiconductor, Inc.

SLIDE 13-21

How to Initialize 860MH for T1 (1 of 11)

Step

Action

Example

1

Initialize the SIMODE register-
SMCx:connect to TDM or NMSI
SMCxCS:specify clock source
SDMx:normal,echo, or loopback mode
DSCx:double-speed clock(GCl)
CRTx:common xmit & recv sync & clk
STZx:Set L1TXDx to until serial clks
CEx:clock edge for xmit
FEx:frame sync edge
RFSDx:Receive Frame Sync Delay
TFSDx:Transmit Frame Sync Delay
GMx:grant mode support

pi nm >S|I MODE. CRTa

1

Initialize the SICR register-
SCx:connect SCCx to TDM or NMSI
RxCS:connect SCCx receive to a clock
TxCS:connect SCCx transmit to a clock
GRx:support SCCx grant mode

pi mm >SI CR. SC1 =

1

How to Initialize the 860MH for T1 (1 of 11)

This is the procedure to initialize the 860MH for T1.

Step 1: Initialize the SIMODE register. In this register, the user sets up the timing parameters

mentioned early such as latch time, and sync to data delay time.

Step 2: Initialize the SICR register in the SCx fields to connect the desired SCCs to the TDM.

For More Information Contact: www.freescale.com

289



Freescale Semiconductor,

SLIDE 13-22

How to Initialize 860MH for T1 (2 of 11)

Inc.

3 | Configure Port A for TDMa and/or pi mm >PAPAR = 0x1C0;
TDMb signals L1TXDx, L1IRXDX, pi mm >PADI R = 0xCO;
L1TCLKx, and L1RCLKX.

4 | Configure Port B for TDMa and/or pi mm >PBPAR = 0x1400;
TDMb signals L1ICLKOx and L1ST1, pi mm >PBDI R = 0x400;
2, 3, and/or 4.

5 | Configure Port C for TDMa and/or pi nm >PCPAR = 0x8000;
TDMb signals L1ST1, 2, 3, and/or 4;

L1ITSYNCx and/or LIRSYNCX.

6 | Configure Port D for TDMa and/or pi mm >PDPAR = 3;
TDMb signals LITSYNCx and/or
L1IRSYNCXx.

How to Initialize the 860MH for T1 (2 of 11)

Steps 3 through 6 configure the ports for the TDM signals. Recall that it is possible to implement two

TDMs, A and B.

For More Information Contact: www.freescale.com

290



Freescale Semiconductor, Inc.

SLIDE 13-23

How to Initialize 860MH for T1 (3 of 11)

Step

Action

Example

7

Enable TDMx in S| Global Mode Reg,

SIGMR

pi mm >SI GW\R | = 4;

shadow RAMSs valid.

8 | Write the values to the SIRAM if (pi M >SI STR CRORa ==
locations that will route the timeslots pi mm >SI RAM 0] = Ox7E;
as you require. If shadow RAM is
used, determine first where shadow
RAM is located.

9 | If shadow RAM is used, make the pi nm >SI CVR = 0x30;

How to Initialize the 860MH for T1 (3 of 11)

Step 7: Enable TDMx in the Sl Global Mode Register.

Step 8: Write the values to SIRAM that route the timeslots required.

Step 9: Make the shadow RAMs valid, if shadow RAM is to be used.

For More Information Contact: www.freescale.com

2901



Freescale Semiconductor, Inc.

SLIDE 13-24

How to Initialize 860MH for T1 (4 of 11)

10 | |nitialize General SCCx Mode Reg | pi mm >GSMR_H1. CDP = 1;
High, GSMR_HXx /* INIT SCClL CD* TO PULSE*/
FIFO Width
TFL:transmit FIFO length
RFW:Rx FIFO width
Transparent
TCRC:transparent CRC
REVD:reverse data
TRX:transparent receiver
TTX:transparent transmitter
SYNL:sync length
RSYN:receive sync timing
HDLC
RTSM:RTS* mode
Other
CDP:CD* pulse
CTSP: CTS* pulse
CDS: CD* sampling
CTSS: CTS* sampling

How to Initialize the 860MH for T1 (4 of 11)

Step 10 initializes the General SCC Mode Register High.

For More Information Contact: www.freescale.com 292



Freescale Semiconductor, Inc.

SLIDE 13-25

How to Initialize 860MH for T1 (5 of 11)

Step

Action

Example

11

Initialize General SCCx Mode Reg
Low, GSMR_Lx
Clock
TDCR:xmit divide clock rate
RDCR:recv DPLL clock rate
EDGE:clock edge
TCl:transmit clock invert
HDLC
Tend:transmitter frame ending
Diagnostic Mode
DIAG:normal,loopback,echo
Channel Protocol Mode
MODE:UART, etc.

pi mMm >GSMR_L1. MODE = OxA;
/* INIT SCClL TO QVC MODE */

12

Initialize basic Global Multichannel Para-
meters

MCBASE: multichannel base pointer
INTBASE:intrpt queue base pointer
MRBLR:maximum receive buffer Ingth
GRFTHR:global receive frame threshold
GRFCNT:global receive frame count
C_MASK32:CRC constant, 32-bit
C_MASK16:CRC constant,16-bit

pi mMm >SCC1. GRFTHR = 1;

How to Initialize the 860MH for T1 (5 of 11)

Step 11 initializes the General SCC Mode Register Low.

Step 12: Initialize the global mutlichannel parameters in device parameter RAM.

For More Information Contact: www.freescale.com

293



Freescale Semiconductor, Inc.

SLIDE 13-26

How to Initialize 860MH for T1 (6 of 11)

13 |Copy INTBASE to INTPTR pi mm > NTPTR = pi nm >| NTBASE;

14 | Initialize the Time Slot Assignment

Tables, TSATT[32] and TSATR[32] | P! ™ >TSATTLL].V = 1

V: valid bit

W: wrap bit

CP:data channel id
mask7_6:subchanneling support
mask5_0:subchanneling support

How to Initialize the 860MH for T1 (6 of 11)

Step 13: Copy INTBASE to INTPTR, so the active pointer points to the beginning of the interrupt
circular table.

Step 14: Initialize the timeslot assignment tables. This includes the valid bits, the wrap bits, and the data
channel id.

For More Information Contact: www.freescale.com 294



Freescale Semiconductor, Inc.

SLIDE 13-27

How to Initialize 860MH for T1 (7 of 11)

for HDLC or transparent
TBASE:TxBD descriptors base address
RBASE:RxBD descriptors base address
TSTATE:Tx internal state
RSTATE:Rx internal state
ZISTATE:zero insertion machine state
ZDSTATE:zero deletion machine state
INTMSK:channel’s intrpt mask flags
MFLR/TRNSYNC:max frme Ingth reg

Step Action Example
15 | Initialize the Current Time Slot Entry pi nm >RxPTR = (short *)
Pointers, RxPTR and TXPTR MCBASE + 0x20)
16 | Initialize Multichannel Controller state, | Pi mm >QVC_STATE = 0x8000;
QMC-STATE
17 Initialize Channel Specific Parameters pi nm >TBASE = 0x400;

How to Initialize the 860MH for T1 (7 of 11)

Step 15: Initialize the current timeslot entry pointers. They should point to the beginning of the

respective timeslot tables.

Step 16: Initialize QMC-STATE with the value of 0x8000.

Step 17: Initialize the channel specific parameters for HDLC or transparent for each of the 64 channels

to be used.

For More Information Contact: www.freescale.com

295



Freescale Semiconductor, Inc.

SLIDE 13-28

How to Initialize 860MH for T1 (8 of 11)

18 Copy RBASE to RBPTR and | Pi mm >CHL. RBPTR = pi mm >CH1. RBASE

TBASE to TBPTR for each
channel

19 pdsc- >recvbd2. rxbdsac. E = 1;

Initialize RxBDs
/* INIT RxBD2 TO EMPTY */
rxbdptr:pointer to data buffer
rxbdcnt:number of chars received
rxbdsac.E:recv buffer empty
rxbdsac.W:last BD (wrap bit)
rxbdsac.l:set event when buf closes

rxbdsac.CM:continuous mode

How to Initialize the 860MH for T1 (8 of 11)

Step 18: Copy RBASE to RBPTR, and TBASE to TBPTR for each channel.

Step 19: Initialize the receive buffer descriptors.

For More Information Contact: www.freescale.com 296



SLIDE 13-29

Freescale Semiconductor, Inc.

How to Initialize 860MH for T1 (9 of 11)

Step

Action

| Example

20

Initialize TxBDs
txbdptr:pointer to data buffer
txbdcnt:number of chars xmitted
txbdsac.R:buffer ready to xmit
txbdsac.W:last BD (wrap bit)
txbdsac.l:set event when buf closes
txbdsac.L:last buffer in frame
txbdsac.TC:transmit CRC if L=1
txbdsac.CM:continuous mode

pdsc->xni t bd2. t xbdsac. R = 1;
/* INIT TxBD2 TO READY */

21

Initialize Interrupt Circular Table

pi nt = pi mm >| NTBASE;

for (vl = 0; vl <=8 ;
*pint++ = 0;

*pi nt = 0x4000;

v1++)

22

Initialize Channel Mode Register,
CHAMR
MODE:select hdlc or transparent
RD:bit order for transparent
IDLM:idle mode for hdlc
ENT:enable transmit of data or ones
SYNC: enable TRANSYNC
POL:enable polling by risc
CRC:crc type select for hdlc
NOF:minimum number of flags

pi mm >CHAMR. MODE = 1;
/* SELECT HDLC */

How to Initialize the 860MH for T1 (9 of 11)

Step 20: Initialize the transmit buffer descriptors.

Step 21.: Initialize the interrupt circular table by clearing it, and writing a '1' into the wrap bit of the last

entry.

Step 22: Initialize the channel mode register.

For More Information Contact: www.freescale.com

297



Freescale Semiconductor, Inc.
SLIDE 13-30

How to Initialize 860MH for T1 (10 of 11)

Step Action Example

23 Initialize Event Reg, SCCEX pi mm >SCCE1 = OxFFFF;

/* CLEAR EVENT REG, SCCE1 */
SCCEXx will be zero from reset; no

other initialization required.

24

Initialize Mask Reg, SCCMx pi mm >SCCML = 9;
/* ENABLE GOV & | QOV EVENTS
IQOV:interrupt queue overflow TO I NTRPT */

GINT:global interrupt
GUN:global underrun
GOV:global overrun

How to Initialize the 860MH for T1 (10 of 11)
Step 23: Initialize the event register.

Step 24: Initialize the mask register for the events for which interrupts should be generated.

For More Information Contact: www.freescale.com 298



Freescale Semiconductor, Inc.

SLIDE 13-31

How to Initialize 860MH for T1 (11 of 11)

25 Initialize Interrupt Mask Reg, CIMR| pi mm >Cl MR SCC1 = 1;

/* ENABLE SCC1 | NTRPTS */
SCC1-4
PC4-15
TIMER1-4
IDMA1-2
SMC1-2
SDMA
R-TT

SPI

See MPC860 UM refer to
course material for the
SPI and data sheet for
t ranscei ver.

pi mm >GSMR_L1. ENR
pi mm >GSMR_L1. ENT

26 Initialize the transceiver via the SPI.

1
1

27 | Enable transmitter and receiver.

How to Initialize the 860MH for T1 (11 of 11)
Step 25: Enable the CIMR bits.
Step 26: Initialize the transceiver via the SPI.

Step 27: Enable the transmitter and the receiver.

For More Information Contact: www.freescale.com 299



Freescale Semiconductor, Inc.

Chapter 14: MPC860 Serial Management Channel (SMC)

SLIDE 14-1
MPC860 Serial Management
Channel (SMC)
What You * What is an SMC?
Will Learn ¢ What are the SMC pins?

* How an SMC operates
* How an SMC transmits and receives in UART
* How to initialize an SMC for UART

Prerequisites  « Chapter 8: Serial Communication Controller

In this chapter, you will learn to:

Define an SMC

List the SMC pins

Describe how an SMC operates

Describe how an SMC transmits and receives in UART
Initialize an SMC for UART

abrwnpE

For More Information Contact: www.freescale.com

300



Freescale Semiconductor, Inc.
SLIDE 14-2

What is an SMC?

- = 1y (I N
SMCx - =4 —L
. \ :
Double e 7 M~
Buffer _,| SDMA I )
==l N
< —rE 5 —
\ Y
L3
E — 7
TX [SDMA |«
Double 7_1
lBuffer
Request Buffer Buffers in
Prioritizer Descriptors External
in Dual Memory
P B Port RAM (typically)
RISC

What is an SMC?

The SMCs are two full-duplex ports that the programmer can configure independently to support UART,
Transparent, and GCI. The SMCs are less capable than the SCCs both in terms of supported
protocols, and in service requirements of the CPM RISC.

Here is shown a diagram of SMC operation.

Note that, as with the SCC, the SMCs implement buffer descriptors, as well as buffers in memory.
Like the SCC, the SMC also makes requests to the CPM RISC to cause the SDMAs to transfer data.

One notable difference between the SCC and the SMC is that there are no FIFOs for the receive and
the transmit operations. Instead, the receive and transmit operations are double buffered.

Let us review the SMC receive operation.

First, data is received in the Receive shifter. When the first data arrives, the SMC determines whether
the first receive buffer descriptor is empty.

Next, the SMC requests service from the CPM RISC.

Third, the CPM RISC writes to SDMA to move the operand to the current receive buffer from the
Receive register.

Now, let us review the SMC transmit operation.

First, space must be available in the Transmit register. The SMC polls the first transmit buffer
descriptor, and when there is data to transmit, the SMC requests service from the CPM RISC.

For More Information Contact: www.freescale.com 301



Freescale Semiconductor, Inc.

Next, the CPM RISC writes to SDMA to move the operand from the current transmit buffer to the
Transmit register.

The important features of the SMC are that it:

Transfers data in UART or transparent

Operates in Non-multiplex Serial Interface (NMSI) mode or on a Time Division Multiplex bus
Supports GCI in TDM for ISDN applications

Operates full duplex

Supports testing and debugging with loop-back and echo modes

abrwnhpE

For More Information Contact: www.freescale.com 302



Freescale Semiconductor, Inc.

SLIDE 14-3

What are the SMC Pins?

¢ SMTXDx - transmit pins

*« SMRXDXx - receive pins

¢« SMSYNXx - synch signal pins for
transparent

«  PB[24)/SMRXD1
|, PB[25//SMTXD1
« PB[23)/SMSYN1/SDACK1

«— PB[20J/SMRXD2/L1CLKOA
|, PB[21)/SMTXD2/L1CLKOB
« PB[22/SMSYN2/SDACK2

What are the SMC pins?
The following diagram summarizes the SMC pins.

There are three SMC pins. Each has a transmit pin, a receive pin, and a synch signal pin which is used
only for transparent mode when transmission and reception begin.

The diagram displays the location of these pins on Port B. Some are shareable, and the user must
configure the ports for the functions they require. This is done using the port configuration registers

For More Information Contact: www.freescale.com 303



Freescale Semiconductor, Inc.

SLIDE 14-4

SMC Implementation Example

RS232 Example

MC145707DW
Cl+ C2+
10uF i 1 10uF
—I_— C1- Cc2-
TR Tx1 — RSCD1*

—— | Tx2 — CTS1*
SMTXD1 DI3 Tx3 — TXD1* |RS232
SMRXD1—————-DO1 Rxl — Rxp1* |Connector

Parallel ] 885 Eig ORI
1/0 Pin B
RS232 Enable — STB

SMC Implementation Example
This diagram illustrates an example of an SMC implementation.

The SMC is often used for RS232. It is possible to connect the transmit and receive pins to an RS232
interface, which then may connect to a DB-9 connector, or perhaps directly to a terminal. The device
shown in the diagram can be enabled through a parallel I/O pin. The Data Out 3 (DO3) line is shown
connecting to a parallel /O pin, thus allowing the 860 to read the 1/O pin to determine if the data
terminal is ready.

For More Information Contact: www.freescale.com 304



Freescale Semiconductor, Inc.
SLIDE 14-5

How an SMC Operates

Baud Rate
Generator(s) CLKx
U-Bus Il
A
T v MUX
SDMA Control Registers | v

Clock Generator

v Peripheral Bus v v
Al ] Internal Clocks
v
Receive Transmit Control
4—
Data Data Unit SYNC
Register Register

Bl v
RXD,[Shifter]  [Shifter|—3P

How an SMC Operates
This block diagram describes SMC operation.

Note that, in comparison with the SCCs, the SMC implements double buffers, rather than FIFOs. Also
note the absence of encoders, decoders, delimiters, and the like.

Recall that a sync pin supports transparent transmission, and controls both transmit and receive
operations.

The SMC clock can be derived from one of the four internal baud rate generators, or from an external
clock pin. The SMC uses the same clock for transmit and receive.

For More Information Contact: www.freescale.com 305



Freescale Semiconductor, Inc.
SLIDE 14-6
Programming Model, UART (1 of 4)

SIMODE - Serial Interface Mode Register

1 2 34 5 6 7 8 9 10 11 12 13 14 15
| sMc2| smcacs | sDMB | RFSDB |DSCB| CRTB | STzB |[CEB| FEB | GMB | TFSDB |

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
| SMC1| SMCICS | SDMA | RFSDA | DSCA | CRTA|STZA| CEA| FEA | GMA| TFSDA|

SMCMRXx - SMC Mode Register for UART

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|Res| CLEN | st |[PEN|PM| Reserved | sv | DM |TEN|REN|

Programming Model for SMC, UART (1 of 4)

The first register is the Serial Interface Mode Register, which defines the serial interface operation
modes.

The SMCx fields select the NMSI or TDM modes. Additionally, the SMCXCS fields select the clock
source for the SMC. Many of the remaining fields control functions when TDM mode is in use.

The SMC Mode Register changes configuration depending on the protocol in use. This diagram
illustrates UART. For example, a Character Length field is included. The Stop Length field indicates
whether there are one or two stop bits. Next are the Parity Enable and Parity Mode fields. The SMC
Mode field, or SM, must contain a value of '10' to specify the UART protocol. Receive Enable and
Transmit Enable fields are also included.

For More Information Contact: www.freescale.com 306



Freescale Semiconductor, Inc.
SLIDE 14-7

Programming Model, UART (2 of 4)

SMCx UART Receive Buffer Descriptor

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|E |Res|W| | | Res |CM|ID|Reserved|BR|FR|PR|ReS|OV|ReS|

Data Length

— Rx Data Buffer Pointer —

SMCx UART Transmit Buffer Descriptor

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RIRes|w /| 1| Res [cm| P | Reserved | UN |Res
Data Length

— Tx Data Buffer Pointer —

Programming Model for SMC, UART (2 of 4)

Additionally, the SMC programming model includes Transmit and Receive buffer descriptors, which are
similar in format to the SCC Transmit and Receive buffer descriptors. These descriptors include the
Empty, Wrap, Interrupt, and Continuous Mode bits. Also included are bits indicating framing, parity, and
overrun errors.

For More Information Contact: www.freescale.com 307



Freescale Semiconductor, Inc.

SLIDE 14-8

Programming Model, UART (3 of 4)

SMCEX - SMC Event Register (UART)

0 1 2 3 4 5 6 7
BR
Res KE Res BRK Res BSY TX RX

SMCMx - SMC Mask Register (UART)

0 1 2 3 4 5 6 7
BR
Res KE Res BRK Res BSY TX RX

Programming Model for SMC, UART (3 of 4)

The SMC also has an Event register, and an accompanying Mask register. Possible events include
receiving the end of a break sequence, or the receipt of a break character; busy condition; transmit
buffer sent; and buffer received.

For More Information Contact: www.freescale.com

308



Freescale Semiconductor, Inc.

SLIDE 14-9
Programming Model, UART (4 of 4)

SMC UART Specific Parameter RAM -

Address NAME |Description

SMC Base + 28 |MAX_IDL [Maximum number of idle chars between chars

SMC Base + 2A [IDLC Temporary idle counter

SMC Base + 2C |BRKLN Last received break length

SMC Base + 2E |BRKEC Receive break condition counter

SMC Base + 30 |BRKCR Break count register (transmit)

SMC Base + 32 |R_mask Temporary bit mask

Programming Model for SMC, UART (4 of 4)

Additionally, the programming model includes SMC UART specific parameter RAM.

Within SMC UART specific parameter RAM, MAX_IDL represents the maximum number of idle
characters between characters. If a MAX_IDL number of characters is received before the next data

character is received, an idle timeout occurs and the buffer closes.

IDLC is a temporary idle counter that the RISC uses to store the current counter value in the MAX_IDL
timeout process. The user does not need to initialize or access this counter.

BRKLN stores the length of the last break character received.

BRKEC is the Receive Break Condition counter, which is the single error counter present.

BRKCR is the Break Count register. The SMC UART controller sends a break character sequence
whenever a STOP TRANSMIT command is issued. This counter determines the number of break

characters that the controller sends.

Finally, R_mask is a temporary bit mask.

For More Information Contact: www.freescale.com 309



Freescale Semiconductor, Inc.
SLIDE 14-10
How an SMC Transmits UART

. — Xmit

lTBPTR.tdesac.R =1

¢ Move chars from memory to output
reg and transmit

TBPTR.txbdsac.R =0
Move last char
of buffer into

output reg

¢ Update txbdsac including R (unless CM=1)
* Increment TBPTR

TBPTR.txbdsac.R =1

How an SMC Transmits UART
The state diagram shown here illustrates how the SMC transmits characters in UART.

The SMC begins in the Transmit Enabled state when the .TEN bit is set in the SMC Mode Register.
Once the SMC is enabled, it starts transmitting idles.

The SMC polls the first transmit buffer descriptor to determine if there is data to transmit and if the
buffer is ready. It then begins to transmit. While transmitting, the SMC moves characters from memory
to the register, and proceeds to transmit until the last character of the buffer is reached. At this point,
the SMC enters the Transmit Close state, and closes the buffer.

In the Transmit Close state, the SMC clears the Ready bit unless the Continuous Mode bit has been set,
and then increments the pointer to the next transmit buffer.

If another transmit buffer is ready the SMC re-enters the Transmit state and continue to transmit.

Otherwise, the SMC re-enters the Transmit Enabled state, begins transmitting idles, and waits for the
next transmit buffer descriptor to become ready.

For More Information Contact: www.freescale.com 310



Freescale Semiconductor, Inc.

SLIDE 14-11

How an SMC Receives UART

Recv
—— \Enabled ‘ SMCMRx.REN =1

RBPTR.rxbdsac.E =1 &
character arrives

« Receive chars into receive reg and
transfer to memory

RBPTR.rxbdsac.E =0
Receive buffer RBPTR.rxbdsac.E =1

closing

condition

occurs

¢ Update rxbdsac including E (unless CM=1)
* Increment RBPTR

How an SMC Receives UART
The state diagram shown here illustrates how the SMC receives characters in UART.

The SMC enters the Receive Enable sate when the .REN bit is set in the
SMC Mode Register. The SMC then waits for a character to arrive.

When an empty buffer is available as designated by the 'E' bit, and a character arrives, the SMC enters
the Receive state, and begins to receive characters into the receive buffer.

The SMC continues to receive data until a Receive Buffer closing condition occurs, at which point the
SMC enters the Receive Close state. If the incoming data exceeds the length of the data buffer, the
SMC fetches the next buffer descriptor in the table, and, if it is empty, continues transferring to the
associated data buffer.

In the Receive Close state, the SMC clears the 'E' bit unless the 'CM' bit is equal to one, and increments
the pointer to the next receive buffer. If the 'CM' bit is equal to one, the SMC does not clear the 'E' bit,
thereby allowing the associated buffer to be overwritten the next time the device accesses this data
buffer.

From the Receive Close state, the SMC may re-enter the Receive state, and continue to receive
incoming characters, or it may re-enter the Receive Enable state.

A Receive Buffer Close condition occurs in the following cases:

The receive buffer is full, indicated if the number of characters received is equal to MRBLR.

An idle timeout occurs, indicated if MAX_IDL equals the number of consecutive character idle times.
A break condition occurs, indicated by the reception of a break character.

A framing error occurs, indicated when the SMC receives a character with a no stop bit.

A Receive Buffer Close condition occurs in the event of a parity error.

abrwnpE

For More Information Contact: www.freescale.com 311



Freescale Semiconductor, Inc.

SLIDE 14-12

How to Initialize an 860 SMCx for UART (1 of 6)

Reg, BRGCx
CD11_CDO:clock divider
DIV16:BRG clk prescalar divide
by 16 EXTC1_EXTCO:clock
source EN:enable BRG count
ATB:autobaud
RST:reset BRG

Step Action Example
1 Initialize SDCR pi mm >SDCR = 2;
FRZ:SDMAs freeze next bus cycle 47 MAKE SDVA ARB PRI =2
RAID: RISC controller arbitration 1D
2 | Configure ports as required pi mm >PBPAR | = 0x40;
/ *ENABLE SMTXD1 */
3 Initialize a Baud Rate Configuration pi mm >BRGC3. CD11_CDO

= 1040; /* SET BAUD
RATE TO 1200 FOR
20 MHz CLOCK */

How to Initialize the 860 SMC for UART (1 of 6)

Here is shown a procedure for setting up an SMC for UART using interrupts. Certain assumptions are
made as listed.

First, the user initializes SDCR. This is the register in which it is possible to give the SDMAs an

arbitration 1D to provide them with a priority on the U-bus.

Next, the user configures the ports as required. All the port pins for the SCC have alternate functions,
so the user must configure these pins for the desired use.

Step 3: If a baud rate generator is to be used for the clock, the baud rate configuration register needs to
be initialized.

For More Information Contact: www.freescale.com

312



Freescale Semiconductor, Inc.

SLIDE 14-13

How to Initialize an 860 SMCx for UART (2 of 6)

4 [|Initialize the SIMODE register- pi nm >SI MODE. SMC1CS
= 4:
SMCx:connect to TDM or NMSI * CON
SMCxCS:specify clock source EI_K?NE} NECTED TO

SDMx:normal,echo, or
loopback mode
DSCx:double-speed clock(GCl)
CRTx:common xmit & recv sync
& clk

STZx:Set L1TXDx to until serial
clks

CEXx:clock edge for xmit
FEx:frame sync edge
RFSDx:Receive Frame Sync
Delay

TFSDx:Transmit Frame Sync
Delay

GMx:grant mode support

How to Initialize the 860 SMC for UART (2 of 6)
Step 4: Initialize the SIMODE register. This includes specifying whether to implement TDM or NMSI

mode, specifying the clock source, and setting a diagnostic mode. The remaining bits are specific to
the implementation of TDM only.

For More Information Contact: www.freescale.com

313



Freescale Semiconductor, Inc.

SLIDE 14-14

How to Initialize an 860 SMCx for UART (3 of 6)

5 | Initialize SMCx Parameter RAM pi M >SMCL. TFCR = Ox15;
RBASE:pointer in DPR to RxBDs [* INT XM T FUNC
TBASE:pointer in DPR to TXBDs GODE TO SUPER DATA
RFCR:recv function code & byte SPACE & MOT*/

order TFCR:xmit function code
& byte orderMRBLR:maximum
recv buffer length

6 | Initialize Rx and/or Tx parameters

via the Command Register, CPCR pi mm >CR = 0x181;

/* INIT RECV PARAMETERS

OPCODE:operation code FOR SCC3 */

CH NUM:channel number
FLG:command semaphore flag
RST:software reset command

7 | Initialize UART

parameter RAM pi mm >SMC2. UART. BRKLN

=0;/* INNT LAST
MAX_IDLE:maximum idle chars RECV' D BREAK LENGTH */
BRKLN:last received break length
BRKEC:recv break condition counter
BRKCR:break count reg (transmit)

How to Initialize the 860 SMC for UART (3 of 6)

Step 5: Initialize SMC parameter RAM, including RBASE and TBASE, and the Maximum Receive
Buffer Length Register.

Step 6: Initialize the receive and transmit parameters by writing the appropriate command to the
command register (CPCR).

Step 7: Initialize UART parameter RAM including the error counters and MAX_IDLE.

For More Information Contact: www.freescale.com

314



Freescale Semiconductor, Inc.

SLIDE 14-15

How to Initialize an 860 SMCx for UART (4 of 6)

8 | Initialize RxBDs pdsc- >r ecvbd2. r xbdsac

rxbdptr:pointer to data buffer E=1 /**l NI'T RxBD2
rxbdcnt:number of chars received TO EMVPTY */
rxbdsac.E:recv buffer empty
rxbdsac.W:last BD (wrap bit)
rxbdsac.l:set event when buf closes
rxbdsac.CM:continuous mode

9 Initialize TxBDs pdsc->xmi t bd2. t xbdsac

txbdptr:pointer to data buffer R=1 /**l NI'T TxBD2
txbdcnt:number of chars xmitted TO READY */
txbdsac.R:buffer ready to xmit
txbdsac.W:last BD (wrap bit)
txbdsac.l:set event when buf closes
txbdsac.CM:continuous mode
txbdsac.P:send preamble

How to Initialize the 860 SMC for UART (4 of 6)
Step 8: Initialize the receive buffer descriptors.

Step 9: Initialize the transmit buffer descriptors.

For More Information Contact: www.freescale.com

315



Freescale Semiconductor, Inc.

SLIDE 14-16

How to Initialize an 860 SMCx for UART (5 of 6)

10

Initialize Event Reg, SMCEXx

SMCEXx will be zero from reset; no
other initialization required.

pi mm >SMCE1 = OxFF;
/* CLEAR EVENT REG
SMC1 */

11

Initialize Mask Reg, SMCMx

RX:recv buffer closed
TX:xmit buffer sent

BSY:busy; lost chars, no buffers

BRK:break char received

pi mm >SMCML = 5;
/* ENABLE RX & BUSY
EVENTS TO | NTRPT */

12

Initialize Interrupt Mask Reg, CIMR

SCC1-4
PC4-15
TIMER1-4
IDMA1-2
SMC1-2
SDMA
R-TT

SPI

12C

pi mm >Cl MR SCC2 = 1;
/* ENABLE SCC2
| NTRPTS */

How to Initialize the 860 SMC for UART (5 of 6)

Step 10: This step is not really required since reset conditions are assumed. In this case, the event

register is already cleared. Under more general circumstances, however, the programmer can clear the
event register by writing a value of OxFFFF, as shown in the example.

Step 11: Initialize the mask register to enable interrupts to occur for the desired events.

Step 12: Initialize CIMR for those CPM devices to be allowed to cause interrupts.

For More Information Contact: www.freescale.com

316



Freescale Semiconductor, Inc.

SLIDE 14-17

How to Initialize an 860 SMCx for UART (6 of 6)

13 |Initialize Mode Reg, SMCMx pi mm >SMCMRL. PEN = 1;
CLEN:character length /* ENABLE PARITY */
SL:stop length
PEN:parity enable
PM:odd or even parity
SM:SMC mode
DM:diagnostic mode

14 |Initialize Interrupt Mask Reg, CIMR

pi mm >SMCVRL. REN =
sSCCl-4 /* ENABLE RECEI VER
PC4-15
TIMER1-4
IDMA1-2
SMC1-2
SDMA
R-TT

SPI

12C

1
*/

How to Initialize the 860 SMC for UART (6 of 6)

Step 13: Initialize the SMC Mode Register. The chart lists a few parameters you may wish initialize,
including character length, stop length, and parity enable.

Step 14: Enable the transmitter and / or the receiver in the SMC Mode Register.

For More Information Contact: www.freescale.com

317



Freescale Semiconductor, Inc.

Chapter 15: MPC860 Serial Peripheral Interface (SPI)

SLIDE 15-1
MPCB860 Serial Peripheral
Interface (SPI)
What You * What is the SPI?
Will Learn * What are the SPI pins?

« How the SPI operates

* How the SPI clocks data

* How the SPI transmits and receives data
* How to initialize the SPI

Prerequisites * Chapter 8: Serial Communication Controller

What you will learn in this chapter is:

What is the SPI?

What are the SPI pins?

How the SPI operates

How the SPI clocks data

How the SPI transmits and receives data
How to initialize the SPI

oukwnpE

For More Information Contact: www.freescale.com 318



Freescale Semiconductor, Inc.

SLIDE 15-2
What is the SPI?
—
— — 1 h~
SPI = = 1L
(]
[ ]
Rx =l —71L I
Reqister 1
"~ ——|SDMA]}
==
— — T — 7L
L]
\ .
—l —71 N
e [SDMA J«
Reqister
Request Buffer Buffers in
Prioritizer Descriptors External
in Dual Memory
cemM ] | Port RAM (typically)
RISC

What is the SPI?

The Serial Peripheral Interface is a full-duplex, synchronous, character-oriented channel that supports a
four-wire interface, which includes receive, transmit, clock and slave select.

This diagram illustrates the basic operation of the Serial Peripheral Interface. The SPI receiver and
transmitter are double-buffered, and this corresponds to an effective FIFO size of two characters.

First, the Shift Register receives incoming data, and moves it to the Receive Register. When the
Receive Register fills, the SPI makes a request to a Request Prioritizer, which then passes the request
to the CPM RISC.

The CPM RISC uses SDMA to move the operand to the current receive buffer from the Receive
Register. These receive buffers typically reside in external memory.

An array of Receive Buffer Descriptors resides in dual-port RAM. Each Receive Buffer Descriptor has
a pointer to a buffer in memory and only one buffer descriptor is active at any time.

A pointer in the SPI points to the base of the Receive Buffer Descriptor array. A moving pointer moves
from descriptor to descriptor as each one is processed.

Again, only one Receive Buffer Descriptor is active at any one time based on where the pointer is
currently pointing. This buffer is the one into which the SDMA moves the data.

There is a Transmit Register for transmitting data. The SPI makes a request to the Request Prioritizer.

The CPM RISC responds to the request, and uses SDMA to move the operand from the current active
transmit buffer to the Transmit Register.

For More Information Contact: www.freescale.com 319



Freescale Semiconductor, Inc.

Transmit buffer descriptors function in the same way as Receive Buffer Descriptors. There is an array
of Transmit Buffer Descriptors in dual-port RAM, a pointer to the starting descriptor, and an active
pointer that moves from descriptor to descriptor.

Buffer descriptors are always in dual-port RAM, and the end-user initializes these buffer descriptors.
The data itself tends to reside in external memory.

SLIDE 15-3

What are the SPI Pins?

« SPIMOSI - master out, slave in pin

« SPIMISO - master in, slave out pin

¢ SPICLK - SPI clock pin

¢ SPISEL - SPI slave select pin; used when 860 SPI is in
slave mode

<+ PB[29)/SPIMOSI
<+<—> PB[28]/SPIMISO/BRGO4
<+— PB[30]/SPICLK

<+ PB[31]/SPISEL*/REJECT1*

clock [T UL
SPIMOSI XXX XX
spimiso X XK XO000000C

SPISEL*  \ [\

What are the SPI Pins?
The following diagrams summarize the SPI pins.

The SPI can be configured as a master for the serial channel, or a slave. When the SPI operates as a
master, it generates both the enable and clock signals. When it operates as a slave, the enable and
clock signals are inputs to the SPI.

There are four SPI pins. The first listed is SPI Master Out Slave In, or SPIMOSI*. This pin is an output
in master mode, and an input in slave mode. The second pin is SPI Master In Slave Out, or SPIMISO*.
This pin is an input in master mode and an output in slave mode.

Next is the SPI Clock pin, or SPICLK*. It is always necessary to clock data. If the SPI is operating in
master mode, this device supplies the clock output signal that shifts in the received data from the
SPIMISO* pin, and shifts out the transmitted data to the SPIMOSI* pin. If the SPI is operating in slave
mode, the master device supplies the clock.

The last pin shown in the diagram is the SPI slave select pin, or SPISEL*, which is used when the 860
SPlis in slave mode. The SPISEL* pin is the enable input to the SPI slave. This pin is not used if the
SPI is operating in master mode; in fact, if SPISEL* is asserted while the SPI is working as a master,

the SPI indicates an error, potentially generating an interrupt.

For More Information Contact: www.freescale.com 320



Freescale Semiconductor, Inc.

The four SPI pins are located on Port B on pins [28:31]. Two of the pins are shareable, and so the user
must choose which functions those pins perform.

SLIDE 15-4

Interface Example

Interface
Example

MPC860 MCM2814
EEPROM
SPIMISO [+ SPISO
SPIMOSI > SPISI
SPICLK > SPICK
Port Pin > SPISS

Interface Example

The example shows the MPC860 connected to an MPC2814 EEPROM. SPI Master In Slave Out on
the 860 connects to Slave Out on the 2814. Likewise, Master Out Slave In on the 860 connects to
Slave In on the 2814. The clock pins supply timing appropriately, and a port pin drives the Slave Select

input.

Important functions of the SPI are:

1. Its operation is synchronous and full-duplex

2. Master, slave, and multi-master configurations are supported

3. Continuous transfer mode is available by setting the 'CM' bit in the buffer descriptor. Continuous
transfer mode is useful for auto scanning a peripheral.

4. It supports a programmable baud rate generator

5. There are open drain output pins, which are useful for multi-master mode

6. Local loop-back capability is available, which is useful for testing and debugging

For More Information Contact: www.freescale.com 321



Freescale Semiconductor, Inc.

SLIDE 15-5
How the SPI Operates
U-BUS
A 4 A 4
SDMA Control Registers
v Peripheral Bus
| SPI Mode Reg | | Transmit Reg | | Receive Reg |
@ Counter > @ Shift_Register LD
T RXD
IN_CLK
| 4
Pins Interface N SP| BRG @
BRGCLK

SPISEL* SPIMOSI SPIMISO SPICLK

How the SPI Operates
This diagram shows the operation of the SPI controller.

Here is shown the SDMA, and the serial controller. Also shown are the transmit and receive registers,
along with a shift register. The transmitter and receiver sections use the same clock, which is derived
from the SPI baud rate generator in master mode, and generated externally in slave mode.

During an SPI transfer, data is transmitted and received simultaneously. Receive data enters the shift
register, and at the same time transmit data is shifted out. The SPI writes received data into a receive
buffer. Upon completion of a character, which can be as long as 16 bits, new information can enter the
receive register. Likewise, new transmit information can enter the shift register from a transmit buffer.

The counter, shown as number 3 in the diagram, is programmable, allowing a range of character sizes
from four to sixteen bits.

For More Information Contact: www.freescale.com 322



SLIDE 15-6

Freescale Semiconductor, Inc.

SPI Programming Model (1 of 2)

SPMODE - SPI Mode Register

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
- |Loop| CI | CP Iilg/ Rev| M/S| EN Length PM O|PM1|PM 2|PM 3

SPCOM - SPI Command Register
3 4 5 6

0
STR

1

2

SPIE - SPI Event Register

0

7

| — | — [mme/rxe| — |esv|rxs|rx8|

SPIM - SPI Mask Register

0

1

2

3 4 5 6 7

| — | — Iwvelrxe| — IBsy|rxe|rxs|

SPI Programming Model (1 of 2)

The SPI mode register contains a number of fields, including PM [0:3], which act as the prescaler for
the baud rate generator. Another field configures the SPI to work as a master or a slave.

Next is the command register, or SPCOM. When the SPI is configured as a master, writing a ‘1’ to the

STR field causes the SPI to start the transmission and reception of data to and from the SPI transmit

and receive buffers.

The event register and mask register contain fields for the familiar Transmit Error, Busy Condition,

Buffer Transmitted, and Buffer Received. Additionally, MME stands for multi-master error. This bit is

set when the MPCB860 is operating in master mode, and the slave select pin is asserted externally.

For More Information Contact: www.freescale.com

323



Freescale Semiconductor, Inc.

SLIDE 15-7

SPI Programming Model (2 of 2)

RxBD - SPI Receive Buffer Descriptor

el Jwlitfe] Jom[ | | [ [ | [ Jovime
Data Length

I RX Data Buffer Address I

TxBD - SPI Transmit Buffer Descriptor

R [wlifo] Jem[ T [ [ [ [ [ Jonwe
Data Length

I TX Data Buffer Address I

SPI Programming Model (2 of 2)

The receive and transmit buffer descriptors contain the empty, wrap, interrupt, continuous mode, and
last bits. Additionally, the receive buffer descriptor includes a bit indicating an overrun, while the
transmit buffer descriptor contains a field indicating an underrun. Finally, the Multi-Master Error bit is set
when the SPISEL* pin is asserted while the SPI is operating in master mode.

The buffer address fields in both the receive and transmit buffer descriptors indicate which buffer
encounters the condition described by the status bits.

For More Information Contact: www.freescale.com 324



h
g |

Freescale Semiconductor, Inc.

SLIDE 15-8

How the SPI Clocks Data (1 of 2)

SPICLK _\
(Cl1=0)
SPICLK
(Cl=1)

SPIMOSI
(from master) |
\

(frséfrll'\g:scé) uze) / ] ) ) ) ) LSB )

spiselkMmsel 0 T L0 T 0 0 T )L | )(LsB )fundefijed

SPI Transfer Format with CP =0

How the SPI Clocks Data (1 of 2)

This slide and the next show additional timing diagrams, illustrating the effects of two control bits: Cl and
CP in the mode register.

Cl, or Clock Invert, controls the invert or lack thereof to the clock. CP, or Clock Phase, controls when
data is going to be asserted and latched.

When CP is equal to 0, data is asserted from the master and returned from the slave by the time the
first clock edge occurs.

For More Information Contact: www.freescale.com 325



Freescale Semiconductor, Inc.

SLIDE 15-9

How the SPI Clocks Data (2 of 2)

@zo |0 L
SPICLK
@@= | I | = |—| =

SPIMOSI
(from master)

SPIMISO (msB ) ( ( ( (Lss)
(from slave)

—{undefitemsall_ | )L [k L T U T T K Lse )

SPISEL
TN

SPI Transfer Format with CP =1

How the SPI Clocks Data (2 of 2)

In contrast, when CP is equal to 1, the first clock edge occurs, followed by the data asserted from the
master.

For More Information Contact: www.freescale.com 326



Freescale Semiconductor, Inc.

SLIDE 15-10

How the SPI1 Operates as Master

SPI
SPMODE.EN =1

Close * Move chars from
buffer memory to transmit
reg and from receive

reg to memory;
transmit and receive

at MPC860 SPICLK
rate

Close
buffers

« |f txbdsac.| = 1, then SPIE.TxB is set
* Receive buffer is closed
« |f rxbdsac.l = 1, then SPIE.RxB is set

How the SPI Operates as Master

This diagram shows how the SPI transmits and receives characters as a master. When the SPI
functions in master mode, it transmits messages to the peripheral SPI slave, which in turn sends back a
simultaneous reply. Before the data exchange, the CPU core writes the data to be transmitted into a
data buffer, configures a Transmit Buffer Descriptor with the 'R' bit set, and configures one or more
Receive Buffer Descriptors.

The SPI enters the SPI Enable State, when the 'EN' bit in the SPI Mode Register is set.

The SPI remains in the SPI Enable State until a value of 0x80 is written to the SPI Command register.
The SPI then enters the Transmit and Receive state, and starts transmitting and receiving data by
moving characters from the transmit and receive registers. The SPI controller generates programmable
clock pulses on the SPICLK* pin.

The SPI continues to transmit until the transmit operation is complete, or an error occurs. The SPI then
enters the Close Buffer state, in which it updates the status and control fields, and increments the
transmit pointer.

The status of the 'L' bit determines whether the SPI re-enters the SPI Enabled state, or continues to
transmit the contents of additional buffers.

Note that if SPISEL* is asserted while the SPI is operating in master mode, the SPI generates an error,
and it is necessary to reinitialize the SPI controller.

For More Information Contact: www.freescale.com 327



Freescale Semiconductor, Inc.

SLIDE 15-11

How the SPI Operates as Slave

SPI
SPMODE.EN =1

* Move chars from
memory to transmit
reg and from receive
reg to memory;
transmit and receive
at master SPICLK
rate

G—

« |f txbdsac.| = 1, then SPIE.TxB is set
* Transmit ones

How the SPI Operates as a Slave
This diagram shows how the SPI transmits and receives characters as a slave.

When the SPI functions in slave mode, it receives messages from an SPI master, and, in turn, sends
back a simultaneous reply. Before the data exchange, the CPU core writes the data to be transmitted
into a data buffer, configures a Transmit Buffer Descriptor with the 'R’ bit set, and configures one or
more Receive Buffer Descriptors.

The SPI enters the SPI enabled state when the 'EN' bit in the SPI Mode Register is set to 1. The SPI
remains in the SPI Enable State until a value of 0x80 is written to the SPI Command register. The SPI
then enters the Transmit Start state.

The SPISEL* pin must be asserted before receive clocks are recognized. Once the SPISEL* pin is
asserted, the SPI enters the Transmit and Receive state. It then moves characters from memory to the
transmit register, and from the receive register to memory. The SPI transfers this data at the rate of the
master SPICLK rate.

Data transmission occurs until the end of the transmission, or the reception of a full buffer, or after an
error occurs. Transmission continues until no more data is available, or the SPISEL* pin is negated.

For More Information Contact: www.freescale.com 328



Freescale Semiconductor, Inc.
SLIDE 15-12

How the SPI Responds to Multi-Master Error
Start

4
| SPISEL* is asserted |

v

| 1->SPIEMME |

v

SPI operation and
output drivers are disabled

SPIM.MM
E
=17

v

Interrupt occurs
|

*4

User must:

1. 0 -> SPMODE.EN
2.1->SPI.MME

3. Enable SPI

End

How the SPI Responds to Multi-Master Error

The SPI can operate in a multi-master environment in which some SPI devices are connected on the
same bus. In this environment, only one SPI device can work as a master at a time; all the others must
be slaves.

When the SPI is configured as a master and its SPISEL* input goes active, or low, a multi-master error
has occurred, as another SPI device is attempting to take the bus.

The SPI sets the MME bit in the Event Register, and a maskable interrupt is issued to the CPU core.
Next, the SPI disables SPI operation and the output drivers of the SPI pins. The CPU core should clear
the EN bit in the SPMODE register before using the SPI again.

After the problems are corrected, the MME bit should be cleared, and the SPI should be enabled in the
same procedure as after a reset.

For More Information Contact: www.freescale.com 329



Freescale Semiconductor, Inc.

SLIDE 15-13

SPI Master/Slave Example

Slave #0

SPIMOSI

v

SPIMISO |*—

SPICLK

v

Master SPI

Y

SPIMOSI
SPIMISO
SPICLK

SPISEL

Slave #1

The decoder
can be either
internal or

external logic

SPIMOSI
SPIMISO
SPICLK

SPISEL

Slave #2

MPC860

v

SPIMOSI
SPIMISO

SPICLK

SPI Master / Slave Example

This diagram shows an example with the connections for using the SPI with several slaves.

SPISEL

Note that the slaves are connected in parallel. All master-in-slave-out signals are tied together as are
the master-out-slave-in signals. In this configuration, an individual slave is selected from either parallel

I/O pins on the 860, or in this example, external-decoding logic.

For More Information Contact: www.freescale.com

330



Freescale Semiconductor, Inc.

SLIDE 15-14
SPI Multi-master Example
Master #1
SPIMOSI |* " SPIMOSI
SPIMISO [* > SPIMISO
SPICLK [* > SPICLK
SPISEL » SPISEL
Master #0 Slave #2
SPIMOSI
Assert the
current master's SPIMISO
ISPISEL line and > SPICLK
the following .
events occur in SPISEL
that master:
MPC860 Slave #3
* SPIMOSI
SPIMISO
¥ SPICLK
* SPISEL

SPI Multi-Master Example

This diagram illustrates an example of a multi-master environment in which the 860 is shown as
Master0. Also shown is a Masterl. In order for these two masters to inter-operate successfully, it is

necessary to supply an arbiter of some sort. Such an arbiter selects which device acts as the master at

any one point, thus avoiding problems with multiple master errors.

For More Information Contact: www.freescale.com

331



Freescale Semiconductor, Inc.

SLIDE 15-15
How to Initialize an 860 SPI (1 of 4)
Step Action Example
Initialize SDCR pi mm >SDCR = 2;
1 |FRZ:SDMAs freeze next bus cycle /* MAKE SDVA ARB PRI =2 */

LAID: LCD controller arbitration ID
RAID: RISC controller arbitration ID

2 | Configure ports as required ;)L E]III}BEPE/(F%F K/I géF? aK
& SEL*/ '
Initialize SPI Parameter RAM pi nm >SPI . TFCR = 0x15;
3 RBASE:pointer in DPR to RxBDs /* INNT XM T FUNC CODE TO
TBASE:pointer in DPR to TxBDs CHANNEL 5 & MOT*/

RFCR:recv function code & byte order
TFCR:xmit function code & byte order
MRBLR:maximum recv buffer length

4 |Initialize Rx and/or Tx parameters via | pi nm >CPCR = 0x151;
the Command Register, CPCR /* INIT RECV PARAMETERS

OPCODE:operation code FOR SPI >/
CH NUM:channel number
FLG:command semaphore flag
RST:software reset command

How to Initialize an 860 SPI (1 of 4)

Here we describe the steps in initializing the SPI on the MPC860 using interrupts.

This example also assumes that IMMR has been initialized previously. If not, the user must initialize it.
Next, this example assumes that CICR has been initialized previously. If not, and if interrupts are to be

used, the user must initialize CICR. Reset conditions exist.

First, the user initializes SDCR. This is the register in which it is possible to give the SDMAs an
arbitration ID to provide them with a priority on the Unified bus.

Next, the user configures the ports as required. Two of the four SPI pins are shareable, and so the user
must configure these pins for the desired function.

Third, it is necessary to initialize SPI parameter RAM, where the RBASE and TBASE fields are located.

Step four initializes the receive and transmit parameters via the command register (CPCR).

For More Information Contact: www.freescale.com 332



Freescale Semiconductor, Inc.

SLIDE 15-16
How to Initialize an 860 SPI (2 of 4)
5 [ Initialize RxBDs pdsc->recvbd2. rxbdsac. E = 1;
rxbdptr:pointer to data buffer /* INNT RxBD2 TO EMPTY */

rxbdcnt:number of chars received
rxbdsac.E:recv buffer empty
rxbdsac.W:last BD (wrap bit)
rxbdsac.l:set event when buf closes
rxbdsac.CM:continuous mode

6 [ Initialize TxBDs pdsc- >xm t bd2. t xbdsac. R = 1;
txbdptr:pointer to data buffer /* INIT TxBD2 TO READY */
txbdent:number of chars xmitted
txbdsac.R:buffer ready to xmit
txbdsac.W:last BD (wrap bit)
txbdsac.l:set event when buf closes
txbdsac.CM:continuous mode
txbdsac.L:buffer contains last char

How to Initialize an 860 SPI (2 of 4)

Step five initializes the receive buffer descriptors, and step six is to initialize the transmit buffer
descriptors.

For More Information Contact: www.freescale.com 333



Freescale Semiconductor, Inc.

SLIDE 15-17

How to Initialize an 860 SPI (3 of 4)

7 | Initialize Event Reg, SPIE

SPIE will be zero from reset; no
other initialization required.

pi mm >SPI E = OxFF;
/* CLEAR EVENT REG SPI */

g | Initialize Mask Reg, SPIM

RX:recv buffer closed
TX:xmit buffer sent

TXE:transmit underrun
MME:multi-master error

BSY:busy; lost chars, no buffers

pi mm >SPI M = 0x11;
/* ENABLE RX & TXE EVENTS TO
| NTRPT */

How to Initialize an 860 SPI (3 of 4)

The seventh step involves initializing the event register, or SPIE, if interrupts are to be used.

Next, in step eight it is necessary to initialize the mask register, or SPIM, in order to enable the events

associated with interrupts.

For More Information Contact: www.freescale.com

334



Freescale Semiconductor, Inc.

SLIDE 15-18

How to Initialize an 860 SPI (4 of 4)

9 Initialize Interrupt Mask Reg, CIMR pi mm >Cl MR SCC2 = 1;
SCC1-2 /* ENABLE SCC2 | NTRPTS */
PC4-15
TIMER1-4
IDMA1-2
SMC1-2
SDMA
R-TT

SPI

12C

10 | Initialize SPI Mode Reg, SPMODE pi nm >SPMODE. EN = 1;
LOOP: loop mode /* ENABLE SPI */

Cl: clock polarity invert

CP: clock phase

DIV16: divide BRGCLK by 16

REV: reverse char bit order

M: master or slave

EN: enable SPI

LEN: character length

PMO_PM3: prescale modulus select

11 | If master, start transmit in SPCOM pi mm >SPCOM | = 0x80;
STR: start transmit /* START TRANSM T */

How to Initialize an 860 SPI (4 of 4)
Step nine initializes the interrupt mask register, or CIMR.
Step ten initializes the SPI Mode Register.

Finally, if this device is acing as a master and is ready to transmit, step eleven starts transmission by
writing a value of 0x80 in the SPI Command Register.

For More Information Contact: www.freescale.com 335



Freescale Semiconductor, Inc.

Chapter 16: I°C

SLIDE 16-1
Interintegrated Circuit
(1°C)
Features
WhatYou » Synchronous Two-Wire Interface
Will Learn « Bi-directional Operation

« Master or Slave 12C Modes Supported

¢ Multi-Master Environment Support

« Continuous Transfer Mode for auto scanning of Peripherals

« Support Clock Rates up to 520kHz (using 25Mhz system clock)
« Independent Programmable Baud Rate Generator

¢ Open-Drain Output Pins ( multimaster support)

« Local Loopback Capability for testing

Prerequisites « Chapter 8: Serial Communication Controller

In this chapter, you will learn:

1. What are the features of the 1°C?
2. How does the I°C transfer data in master and slave modes?
3. What is the I°C programming model?

The Inter-Integrated Circuit communications controller is a synchronous, multi-master bus that is used to

connect several integrated circuits on a board.
The features of the Inter-Integrated Circuit communications controller, or I°C, include:

A synchronous, two-wire interface

Bi-directional (full-duplex) operation

Master or slave I°C modes

Multi-master environment support

Continuous transfer mode for auto scanning of peripherals

Support for clock rates up to 520 kHz, assuming a 25 MHz system clock
An independent, programmable baud rate generator

Open-drain output pins for the support of multi-master configuration
Local loop-back capability for testing

CoNooO~WNE

For More Information Contact: www.freescale.com

336



Freescale Semiconductor, Inc.

SLIDE 16-2

12C Block Diagram

peripheral bus u-bus
| rx data register | |tx data register| | mode register
ﬁ| shift register | | shift rew_) SDA
l
control
BRG SCL

I°C Block Diagram
This is a block diagram of the I°C controller operation.

The I°C uses two wires, serial data, or SDA*, and serial clock, or SCL*, to carry information between
the integrated circuits connected to the controller.

The I°C consists of transmitter and receiver sections, an independent baud rate generator, and a control
unit. The I°C receiver and transmitter are double-buffered, as shown in the block diagram.

During data transmission, data passes from the transmit data register, out the shift register, and out the
SDA* line at the clock rate. If the I°C is acting as a master, it must supply the clock; otherwise, if the I1°C
is acting as a slave, the master device must supply the clock.

During data reception, data passes from the SDA* line into the shift register, and then into the receive
register.

For More Information Contact: www.freescale.com 337



Freescale Semiconductor, Inc.

SLIDE 16-3
How 12C Transfers Data, Master/Slave

VDD

S scL Slave

o0 %
Master SDA % SDA (i.e. EEPROM)
VD

D

SCL

SDA

Bus Timing (SCL, SDA 1/0)
Start Condition Stop Condition

How I°C Transfers Data, Master / Slave
The diagrams shown here illustrate how data is transferred from an IC master to a slave.

In order to interface the I1°C with an IC, the clock line and the data line must be appropriately connected.
Both the SDA* and the SCL* are bi-directional pins connected to a positive supply voltage via an
external pull-up resistor of +3.3 or +5 volts.

The I°C controls data transmission by generating start and stop conditions. Here is shown an example
of the start condition, which occurs when SDA* is negative and SCL* is high. Recall that SCL* is the bi-
directional, open drain serial clock. Whenever that combination appears on the line, it is interpreted as
a start condition.

The example also illustrates a stop condition, which is represented by a rising edge on SDA* while SCL*
is high. This terminates communication, and occurs when a character is sent with the L bit equal to one
in its BD.

In between the start and stop conditions, data has to remain stable and valid while the clock is high.
Data can be changed while SCL* is low.

For More Information Contact: www.freescale.com 338



Freescale Semiconductor, Inc.

SLIDE 16-4

How a Data Transfer is Acknowledged

Timing SCL
Diagram m
SDA >< 8thBit \ ACK K

How Data Transfer is Acknowledged
This diagram illustrates how the receiver acknowledges receiving a byte of data.

There can be many bytes of transmitted data. Every time the transmitter completes the transfer of a
byte, the receiver pulls the SDA* line low for the ninth bit-time to acknowledge receipt of a byte.

For More Information Contact: www.freescale.com

339



Freescale Semiconductor, Inc.

SLIDE 16-5
I12C Parameter Ram
-—
- 12C - 0 [ ]
P RBASE Rx BD Base Address
— TBASE Tx BD Base Address
T RFCR Rx Function Code
R.iSL TECR Tx F.unction Coc.|e y
MRBLR Maximum Receive Buffer Length
RSTATE Rx Internal State
Rx Internal Data Pointer
RBPTR Rx BD Pointer L
Rx Internal Byte Count
Rx Temp
TSTATE Tx Internal State
U-Bus Tx Internal Data Pointer
Nod 4+ |_TBPTR Tx BD Pointer
- Tx Internal Byte Count
TX Temp
| | Ilnterfacle I — { BRG] |

I°C Parameter RAM

The I°C parameter RAM memory map looks similar to the SCC general-purpose parameter RAM. The
user must initialize the fields that are bolded in the illustration.

The first field is called RBASE, and it contains a pointer to the start of the Receive Buffer Descriptor
array. Notice that it is a half-word field. The second field is called TBASE, and it contains a pointer to
the start of the Transmit Buffer Descriptor array. Again, it is a half-word field.

The next two fields, RFCR and TFCR, specify the byte order for transmit and receive, and the channel
number. Within RFCR and TFCR, the byte order bits specify the data to be received or transmitted, in
terms of whether the data is big endian, little endian, or PowerPC little endian. Also within RFCR and
TFCR, AT1_3 specifies address types. You may want refer to the User Manual for additional detailed
information on the AT1_3 field. In the User Manual, there is a table entitled Address Types Definition. If
the CPM RISC performs an access to memory, ATO is equal to 1, and AT1, 2 and 3 contain the
channel number specified within RFCR or TFCR.

Finally, the fifth parameter is the Maximum Receive Buffer Length, or MRBLR. This field contains the
maximum length of a receive buffer associated with the I°C.

For More Information Contact: www.freescale.com 340



Freescale Semiconductor, Inc.

SLIDE 16-6

12C Programming Model (1 of 3)

12C Mode Register (I2MOD)

0 1 2 3 4 5 6 7
| _ | _ |REVD| GCD|FLT | PDIV | EN |

REVD = Reverse Data
Determines the RX and TX character bit order (0 = LSB First; 1 = MSB First)

GCD = General Call Disable
Determines if the RX will acknowledge a general call address

FLT = Clock Filter
Determines if the 12C clock will be filtered to prevent spikes in a case of a noisy
environment ( 0 = NOT filtered ; 1 = filtered )

PDIV = Pre Divider
Determines the division factor on the clock before it is fed into the BRG. The BRG
clock (BRGCLK) is divided by ( 00=32; 01=16; 10=8; 11=4) as the input to the 12C BF

EN = Enable I2C
Enable the 12C operation. (0 = Disabled; 1 = Enabled)

I°C programming model (1 of 3)

The I°C programming model consists of a number of registers, one of which is the I°C Mode Register,
or I2MOD. This read / write register is cleared at reset, and controls both the I°C operation mode and
clock source.

The REVD, or Reverse Data field, determines the receive and transmit character bit order. Itis
possible to reverse the bit order of bytes, in which case the least significant bit of a character is
transmitted and received first.

The GCD, or General Call Disable field, determines if the I°C acknowledges a general call address.
Part of the I°C protocol includes a general call address, which functions analogously to a broadcast
address. The GCD field permits the programmer to enable or disable responses to a general call
address.

The FLT bit, or Clock Filter, determines if the I°C input clock is filtered to prevent spikes in case of a
noisy environment.

Next, the PDIV, or Pre-divider, determines the division factor of the clock before it is fed into the baud
rate generator. The SIU generates the BRGCLK, which acts as the clock source for the I°C. Itis
possible to divide BRGCLK by 32, 16, 8, or 4.

Finally, the EN field enables the I°C.

For More Information Contact: www.freescale.com 341



Freescale Semiconductor, Inc.

SLIDE 16-7
I12C Programming Model (2 of 3)

12C Address Register (I2ADD)
0 1 2 3 4 5 6
| SADI[0:6] | — ]

SADO - SAD6 = Slave Address

This bit field holds the slave address for the 12C port.

12C BRG Register (I2BRG)
0 1 2 3 4 5 6 7
| DIV[0:7] |

DIVO - DIV7 = Division Ratio

Specify the divide ratio of the BRG divider in the 12C clock generator. The output of
the prescaler is divided by 2 * ([DIVO-DIV7] + 3) * PDIV. The clock has a 50% duty

cycle.

I°C Programming Model (2 of 3)

First is shown the I°C Address Register, or I2ADD. Every slave I°C device must have an associated
address. In a given data transfer, the I°C address is in the byte immediately following the start
condition. The SAD [0:7] field holds the slave address for the I°C port.

Next is shown a Baud Rate Generator Register, or I2BRG, to further divide the baud rate generator

clock. DIV [0:7] specifies the divide ratio of the BRG divider. The output of the prescaler is divided by 2

* ([DIVO-DIVT] +3), and the clock has a 50% duty cycle.

For More Information Contact: www.freescale.com

342



Freescale Semiconductor, Inc.
SLIDE 16-8

12C Programming Model (3 of 3)

12C Command Register (I2CCOM)
0 1 2 3 4 5 6 7
| STR| Reserved | M/S |

STR = Start Transmit

Master Mode
Setting this bit causes the 12C Controller to start the transmission of the data from

the 12C TX buffers
Slave Mode
Setting this bit (when 12C is idle) causes the 12C to load TX data Register from the

I12C TX buffer and start transmission upon reception of an address byte that matches
the slave address.

M/S = Master or Slave (0 = 12C is slave; 1 = I12C is master )

I°C Programming Model (3 of 3)

Finally, the Command Register, or 2CCOM, is shown. The STR field functions in a way that is similar
to the SPI. In the master mode, setting the STR bit causes the I°C controller to start the transmission

of data from the I°C transmit buffers, if the user has configured those buffers as ready. In the slave

mode, setting this bit while the I°C is idle causes the I°C to load the transmit data register from the I°C

transmit buffer, and start transmission when an address byte is received that matches the slave

address.

Additionally, the M/S bit configures the I°C to operate as a master or a slave.

For More Information Contact: www.freescale.com

343



Freescale Semiconductor, Inc.

SLIDE 16-9

12C RX Buffer Descriptor

12C Receive Buffer Descriptor

E Wl l|L CM (o))
Data Length

RX Data Buffer Address

blanks are reserved

I°C RX Buffer Descriptor

This slide illustrates the receive buffer descriptor.

Using receive buffer descriptors, the communications processor reports information about each buffer
of received data. The communications processor closes the current buffer, generates a maskable

interrupt, and starts receiving data in the next buffer when the current buffer is full.

The 'E' bit indicates if the data buffer associated with this buffer descriptor is empty. The
communications processor does not use this buffer descriptor as long as the 'E' bit is zero.

The 'W' bit, or Wrap bit, indicates whether this buffer descriptor is the final descriptor in the receive
buffer descriptor table. If this bit is set to a '1', the I°C controller returns to the first buffer in the buffer
descriptor ring.

The 'I' bit, or Interrupt bit, indicates whether the I°C controller issues an interrupt when this receive buffer
is closed.

The 'L' bit, or Last bit, indicates whether this buffer contains the last character of the message.
The 'CM' bit indicates whether the I°C controller clears the 'E' bit when it is finished with this buffer. 'CM'
refers to continuous mode. For instance, if a single buffer descriptor is used, this allows continuous

reception from a slave I°C device.

Finally, the OV, or Overrun bit, indicates whether an overrun occurred during data reception.

For More Information Contact: www.freescale.com 344



Freescale Semiconductor, Inc.

SLIDE 16-10
12C TX Buffer Descriptor
12C Transmit Buffer Descriptor
R Wll1]|L[S|CM NAKIUN|CL

Data Length

TX Data Buffer Address

blanks are reserved

I°C TX Buffer Descriptor
This slide illustrates the transmit buffer descriptor.

Data to be transmitted with the 1°C controller is presented to the communications processor by
arranging it in buffers to which the transmit buffer descriptor ring refers. Like the receive buffer
descriptor, the first word contains status and control bits.

The Wrap, Interrupt, Last, and Continuous Mode bits serve the same respective functions as we
discussed for the receive buffer descriptor.

Additionally, the 'R', or Ready bit, indicates whether the buffer associated with this descriptor is ready
for transmission.

The 'S', or Transmit Start Condition bit, indicates whether a start condition is transmitted before
transmitting the first byte of this buffer. If this buffer descriptor is the first one in the frame, the I°C
transmits a start condition regardless of the value of this field. This bit provides the ability to transmit a
start byte, or back-to-back frames.

The NAK bit indicates that the I°C aborted the transmission because the last transmitted byte did not
receive an acknowledgement.

The UN bit indicates that the controller encountered an underrun condition while transmitting the
associated data buffer.

Finally, the CL bit indicates that the I°C controller aborted transmission because the transmitter lost
while arbitrating for the bus.

For More Information Contact: www.freescale.com 345



Freescale Semiconductor, Inc.

SLIDE 16-11

12C Event & Mask Registers

12C Event Register (I2CER)
7
| - | - | - |TXE| — |BSY|TXB|RXB|

TXE = TX Error
An error occurred during transmission (i.e. bus arbitration lost, byte not acknowledge,
or Underrun).

BSY = Busy Condition
Received data is discarded due to a lack of buffers. This bit is set after the first
character is received for which there is no receive buffer available

TXB = TX Buffer

A buffer has been transmitted. This bit is set to one once the last character in the
buffer was written to the TX FIFO. The user must wait two character times to be sure
that the data was completely sent over the transmit pin.

RXB = RX Buffer

A buffer has been received. This bit is set to a one after the last character has been
written to the RX buffer and the RX BD is closed.

I°C Event Register

The I°C Event Register, or I2CER, is used to generate interrupts and report events recognized by the
I°C controller. Interrupts generated by this register can be masked in the I°C Mask Register, or I2CMR.

TXE refers to a transmit error occurring during transmission. Bus arbitration may have been lost, a byte
not acknowledged, or the controller may have encountered an underrun.

During a busy condition, received data is discarded due to a lack of buffers. This bit is set after the first
character is received for which there is no receive buffer available.

TXB is set to indicate that a buffer is transmitted, once the transmit data of the last character in the
buffer is written to the transmit FIFO. The user must wait two character times to be sure that the data is
completely sent over the transmit pin.

Finally, RXB indicates that a buffer is received, and is set after the last character is written to the receive
buffer, and the receive buffer descriptor is closed.

For More Information Contact: www.freescale.com 346



Freescale Semiconductor, Inc.

SLIDE 16-12
12C Event & Mask Registers

12C Mask Register (I2CMR)

1 2 3 4 5 6 7
|_ |_ |_ |TXE| _ |BSY|TXB|RXB|

TXE = TX Error Mask ( 0 = Masked ; 1 = Not Masked )
BSY = Busy Condition Mask ( 0 = Masked ; 1 = Not Masked )
TXB = TX Buffer mask (0 = Masked ; 1 = Not Masked )

RXB = RX Buffer mask ( 0 = Masked ; 1 = Not Masked )

I°C Mask Register

This slide shows the I°C Mask Register. The four bits shown correspond to the TXE, BSY, TXB and
RXB fields in the I°C Event Register. These events are allowed to generate interrupts if the
corresponding bit is set in the mask register.

For More Information Contact: www.freescale.com 347



Freescale Semiconductor, Inc.

Chapter 17: Port Configuration

SLIDE 17-1

General Purpose 1/0,
Configuring the Ports

What you « How to configure the port pins
will learn  « How to configure the port pins for a system.

In this chapter, you will learn to:

1. Describe the General Purpose I/O Pins
2. Describe the port pin registers

Please note that a thorough port configuration exercise is available in the exercise file included with this
training.

For More Information Contact: www.freescale.com 348



Freescale Semiconductor, Inc.

SLIDE 17-2
What are the General Purpose 1/0O Ports?
AF/PAL5 <] AF/PB31 <y
. PORT A . PORT B
[ ] [ ]
[} [ ]
[ ] [}
AF/PAQ < AF/PB14 <
AF/PC15 <, AF/PD15 <,
. PORT C . PORT D
[ ] [}
[ ] [ ]
[} [ ]
AF/PC4 < AF/PD3 <

What are the General Purpose I/0 Ports?

The General Purpose I/0O Ports are sets of multi-purpose pins associated with the communications
capabilities. They may be used literally for General Purpose 1/O or to support the communications
devices such as SCCs, SMCs, and the like.

There are four ports: A, B, C, and D. Each pin can act as a general purpose I/O pin, and all the pins
support at least one alternate function. Therefore, the user must choose which function they would like
each pin to perform.

The characteristics of the port pins include the following:

1. All pins are general purpose inputs at reset.

2. Ports A, B and D have open drain capability.
3. Port C has 12 pins that can also serve as inputs for interrupts to the CPM.

For More Information Contact: www.freescale.com 349



Freescale Semiconductor, Inc.

SLIDE 17-3

Programming Model (1 of 3)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PADAT |D|D|D|(D|D|D|D|D|(D|D|D|D|D|D|D|D

PAODR [OfO|O)JOJO|O]JO|O|O|OD|O|OD|OD| O |OD| O

PADIR |DR|DR|DR|DR|DR|DR|DR|DR|DR|DR|DR|DR|DR|DR|DR|DR

PAPAR |DD|DD|DD|DD|DD|DD|DD|{DD|DD|DD|DD|DD|DD|DD|DD|DD

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

PBDAT | D|D|D|D|D|(D|D|D|D|D|D|D|D|D|D|D|D|D

PBODR |OD|OD|OD|OD|OD|OD|OD|OD|OD|OD|OD|OD|OD|OD|OD|OD|OD|OD

PBDIR |DR|DR|DR|DR|DR|DR|DR|DR|DR|DR|DR|DR|DR|DR|DR|DR|DR|DR

PBPAR |DD|DD|DD|DD|DD|DD|{DD|DD|DD|{DD|DD|{DD|{DD|DD|DD|DD|DD|DD

Programming Model (1 of 3)

The pin functions are determined primarily by the content of the registers associated with each port.
The following diagrams describe the functions of the various registers.

The structure of each port is very similar.
Port A has four memory mapped, read/write, 16-bit control registers.

PAPAR stands for the Port A Pin Assignment Register, and it assigns a pin as general purpose 1/O or
an alternate function.

PADIR is the Port A Direction Register. If a pin is assigned as general purpose 1/0, PADIR configures
the pin as input or output. If, however, a pin is assigned to an alternate function, PADIR has an effect
described in the Port A configuration chart in the user manual, which you can also view in the reference
material for this chapter.

Port A has open drain capability on pins 9, 11, 12, and 14. Four of the Port A Open Drain Register bits
configure a corresponding pin for open drain or active output.

A read of the Port A Data Register returns the data at the pin, independent of whether the pin is defined
as an input or an output.

Port B supports a similar set of registers. Note that there is open drain capability on every pin.

For More Information Contact: www.freescale.com 350



g |

Freescale Semiconductor, Inc.

SLIDE 17-4

Programming Model (2 of 3)

PCDAT D D D D D D D D D D D D

PCDIR |DR| DR | DR |DR | DR | DR | DR | DR | DR | DR | DR | DR

PCPAR | DD | DD | DD | DD | DD | DD | DD | DD | DD | DD | DD | DD

PCSO |cD4|cTs4 cD3|cTS3|CcD2|CcTS2| CD1|CTS]] -

PCINT |EDM|EDM|EDM|EDM|EDM |EDM|EDM|EDM|EDM|EDM |EDM|EDM

Programming Model (2 of 3)

Like Ports A and B, Port C supports a Port C Data Register, a Port C Direction Register, and a Port C
Assignment Register. In addition, Port C has a special options register, which allows Port C pins to
function as SCC signals as well as general purpose I/O. Lastly, Port C has an interrupt register, since
this port responds to edges and can supply interrupts. The PCINT Register allows the user to program
the port to respond to negative edges only, or to both negative and positive edges.

For More Information Contact: www.freescale.com 351



Freescale Semiconductor, Inc.
SLIDE 17-5
Programming Model (3 of 3)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
PDDAT | - - - D|D]|D D| D D|D|D]|D]|D D| D D
PDDIR |opglOD10 - DR|DR|DR|DR|DR|DR|DR|DR|DR|DR|DR|DR|DR
PDPAR| - - - DD |DD|DD |DD|DD|DD|DD|DD|DD | DD |DD | DD | DD

Register Descriptions

PxDAT: port data register; it contains the values on the pins.
PxODR: open drain register; configures a pin for open drain or active output.
PxDIR: data direction register; if a pin is assigned as general purpose /O,
configures the pin as input or output.
PxPAR: pin assignment register; assigns a pin to be general purpose I/O or the

alternate function.
PCSO: port C special options register; allows port C pins to be SCC signals as well
as general purpose I/O.

PCINT: port C interrupt control register; configures the edge for which port C pins

can interrupt.

Programming Model (3 of 3)

Port D has three registers. These include the Port D Pin Assign Register, the Port D Direction Register,
and the Port D Data Register. Port D also supports open drain capability.

For More Information Contact: www.freescale.com

352



Freescale Semiconductor, Inc.

Chapter 18: CPM Virtual IDMA

SLIDE 18-1

CPM Virtual IDMA

What you e« What are the virtual IDMA channels?

will learn  « What are the two address transfer types?
« What are the two transfer methods?
« What are the two buffer handling modes?
« How the IDMA controller operates
« How to write an IDMA routine

In this chapter, you will learn:

1) What are the virtual Independent Direct Memory Access (IDMA) channels?
2) What are the two address transfer types?

3) What are the two transfer methods?

4) What are the two buffer handling modes?

5) How the IDMA controller operates?

6) How to write an IDMA routine

For More Information Contact: www.freescale.com 353



Freescale Semiconductor, Inc.

SLIDE 18-2
What are the Virtual IDMA Channels?
Virtual IDMA
Controller

Input Data Output Data
Buffer or ’ ’ Buffer or
Peripheral Peripheral

DREQh — — SDACKm

What are the Virtual IDMA Channels?

The CPM RISC can be configured to provide a general-purpose Direct Memory Access (DMA)
functionality through the Serial DMA channel. This results in two Independent DMA (IDMA) channels
being available to the user. The IDMA controller takes data from an input data buffer or a peripheral,
and moves this data to another output data buffer or another peripheral at the request of one or more
assertions on the DMA Request or DREQ* pin.

A Serial DMA Acknowledge or SDACK?* pin provides support for acknowledging data transfers when
transferring data to a peripheral. Notice the numbering scheme differs for DREQn* and SDACKm*,
The two DREQ* pins are 0 and 1, while the two SDACK* pins are 1 and 2.

Important functions of IDMA are as follows:

1.

Nogakown

It packs and unpacks operands for dual address transfers using the most efficient packing. In other
words, the user need not be concerned with whether the source or destination addresses are
aligned, odd, or even. The user simply selects the appropriate address, and the IDMA packs the
operands using the most efficient method.

The IDMA provides the DMA handshake — that is, the DREQ / SDACK handshake.

It has 32-bit transfer counters, providing a capacity for up to 4 GB transfers.

The IDMA also has 32-bit address pointers that can either increment or remain constant

There are two address transfer types: dual and single.

The IDMA supports two transfer methods: cycle steal and burst.

The IDMA supports two buffer handling modes: auto buffer and buffer chaining.

For More Information Contact: www.freescale.com 34



Freescale Semiconductor, Inc.

SLIDE 18-3
What are the Single and Dual Address Modes?
Ads(’;ngle DREQX
Mrgjz SDACK Peripheral
A
860 Data
% v
Memory
Dual
Address Address [ peripheral or
Mode ——*| Memory
Data
860
| > Memory
—_—
DREQXx

Comments » The single address mode is often referred to as the flyby mode.

* In the dual address mode, an operand read or write could consist of
several bus cycles depending on port size and address.

What are the Single and Dual Address Modes?

First, the single address mode refers to an operand that is transferred directly from a peripheral to
memory or from memory to peripheral; the memory address is the single address. Operand packing is
not possible.

The dual address mode means an operand is read from a source address and placed in the IDMA
internal storage; the operand is then written to a destination address. Operand packing occurs.

The first diagram shows the single address mode operation. The peripheral makes a request to the 860
to transfer data, the 860 supplies the address, and the data is transferred directly between the
peripheral and the memory. Finally, the 860 responds with a data acknowledge. The single address
mode is often referred to as "fly by mode".

The second mode is the dual address mode, and is shown in the lower diagram. In this mode, an
operand is read from a source address, placed into IDMA internal storage, and then written to a
destination address. The 860 reads a peripheral or a memory, and writes the data back to memory or a
peripheral as appropriate. Operand packing can occur. In the dual address mode, an operand read or
write could consist of several bus cycles, depending on port size and address.

For More Information Contact: www.freescale.com 355



SLIDE 18-4

Freescale Semiconductor, Inc.

What is the Cycle-Steal Transfer Method?

Cycle-Steal
Method

Edge occurs on DREQn

l

- IDMA transfers one operand

l

Another
request pending
?

What is the Cycle-Steal Transfer Method?

The cycle-steal method transfers one operand each time a falling edge is detected on the DREQnN* pin.
The burst transfer method transfers operands whenever the DREQn* pin is asserted. The diagram
illustrates the Cycle-Steal method. When an edge occurs on DREQn*, the IDMA transfers one
operand. If while the IDMA is transferring that operand, another edge occurs, the IDMA transfers
another operand, and actually transfers one operand for each edge. If there are no edges pending, the

transfer operation ends.

For More Information Contact: www.freescale.com 356



Freescale Semiconductor, Inc.

SLIDE 18-5
What is the Burst Method?
Burst Start
Method

DREQn is asserted

|

IDMA transfers a byte, half-
word, word, or a burst (4
— words)

|

DREQn
is asserted
?

N (e

What is the Burst Transfer Method?

This diagram illustrates the Burst transfer method. The burst transfer method transfers operands
whenever the DREQnN* pin is asserted. As long as DREQn* is asserted, the IDMA transfers a byte,
half-word, word or a burst of four words at a time. After transferring, the IDMA determines whether
DREQn* is still asserted, in which case the IDMA continues to transfer, and may stay in this loop for
considerable time. If DREQn* is not asserted, the transfer operation ends.

Note that the word "burst" in this context refers to two different procedures. In the diagram, the IDMA

data transfer of a 4-word burst results from programming the memory controller to perform a burst

access, which always consists of four words. Such a burst memory access always occurs on a modulo

sixteen address. In contrast, the IDMA burst transfer method refers to the ability to simply keep
asserting DREQn*, and therefore to keep transferring data.

For More Information Contact: www.freescale.com

357



Freescale Semiconductor, Inc.
SLIDE 18-6

Programming Model (1 of 3)

RCCR - RISC Controller Configuration Register

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Tivg] - | TIMEP IbR1MDROM| DRQP |EIE [scp| ERAM |

IDMA Parameter RAM
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

IBASE
DCMR

Programming Model (1 of 3)

The first register in the programming model is the RISC Controller Configuration Register. Not all of the
register is used. DROM and DR1M select whether the DREQ* pin implements the cycle-steal or burst
transfer methods. DRQP is the IDMA request priority setting and this allows the user to modify the
priority IDMA code execution in relation to other activities in the CPM. It is possible to give the IDMAs
the lowest priority if you don’t want the IDMA to take control too frequently, an intermediate priority, or a
very high priority if you want to give the IDMA free reign of control over the CPM.

The IDMAs have parameter RAM associated with them. The first field of the IDMA parameter RAM is

IBASE, which points to the location of the IDMA buffer descriptors. In this way, the IBASE field is
similar to the RBASE and TBASE fields of the communications devices.

For More Information Contact: www.freescale.com 358



Freescale Semiconductor, Inc.

SLIDE 18-7

Programming Model (2 of 3)

DCMR - DMA Channel Mode Register

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Reserved SIZE S/D SC

IDSR - IDMA Status Register

0 1 2 3 4 5 6
| Reserved || AD |DONE| OB |

IDMR - IDMA Mask Register

0 1 2 3 4 5 6
| Reserved || AD |DONE| OB |

Programming Model (2 of 3)

The second entry in the IDMA parameter RAM is the DMA channel mode register. The mode register
controls the operation mode of the IDMA channel. It specifies the peripheral port size, single or dual
cycle mode, and whether the source or destination is peripheral or memory.

Next are the IDMA Status Register, and the IDMA Mask Register, which each consist of three bits. The
DONE bit indicates that the entire data transfer has finished. The AD bit, or auxiliary done, is set when
one data buffer has been transferred. The OB bit refers to "out of buffers.” This indicates that while
processing a buffer chain the IDMA channel encountered an invalid buffer descriptor.

For More Information Contact: www.freescale.com 359



Freescale Semiconductor, Inc.

SLIDE 18-8

Programming Model (3 of 3)

IDMA Buffer Descriptor
0 1 5 6 7 8 9 10 11 12 13 14 15

2 3 4
vi-fwliJof-femf -} -J-J-[-F-]-]-7J-
DFCR SECR

T Data Length

Source Data Buffer Pointer

Destination Data Buffer Pointer

SFCR - Source Function Code Register
0 1 2 3 4 5 6 7
Reserved BO AT1_ 3

DFCR - Destination Function Code Register
0 1 2 3 4 5 6 7
Reserved | BO | AT1_3

Programming Model (3 of 3)

Here we see an IDMA buffer descriptor. It contains a destination data buffer pointer, a source data
buffer pointer, and a 32-bit counter for data length. The IDMA buffer descriptor also contains two fields
for the destination function code register, and the source function code register, which are shown in the
lower portion of the illustration. These function code registers contain fields for byte order, and address
types. Additionally, the IDMA buffer descriptor contains a 16-bit status and control field, with bits to
indicate valid data buffers, wrapping, and whether an interrupt is generated after this buffer is serviced.
The ‘L’ bit indicates the last buffer to be transferred in the buffer chaining mode, and the CM bit
indicates that the ‘V’ bit should not be cleared after the buffer descriptor is processed.

For More Information Contact: www.freescale.com 360



Freescale Semiconductor, Inc.

SLIDE 18-9
How the IDMA Controller Operates
) PCSO[14] or [15] = 1
IDMA Y IDMA
Initialization enabled PCSO[14]or [15]=0 | 4isabled

©)

CPM

Reset
Data Transfer

Transfer
Error

Transfer
Complete

Terminate

* IDSR.DONE=1 * IDSR.OB=1 * CIPR.SDMA=1

How the IDMA Controller Operates

The state diagram shown here describes the operation of the IDMA controller. The diagram starts in the
IDMA Disabled state. It is necessary in this state to initialize IDMA, using the registers discussed in the
previous slides.

After the IDMA is initialized, the routine sets the value for the Port C Special Options Register, either 14
or 15, equal to a one. The use of PCS0[14] or PCSO[15] depends upon which DREQ* is involved.
Setting the Port C Special Options Register brings the IDMA controller into the IDMA Enabled state.

The IDMA controller is now ready to respond to edges or levels to transfer data. Re-setting the Port C
Special Options Register to a zero brings the IDMA controller back to the IDMA Disabled state.

However, it is more typical for the controller to take either Path 1 or Path 2 shown in the diagram. Path
1 places the IDMA controller in Burst mode. If the DRnM bit in the RCCR register is equal to one and
the DREQ* pin is asserted, the IDMA controller takes this path. Path 1a represents the situation in
which there are still more operands to transfer after the first burst. If after the first burst, the remaining
count is not yet zero, the controller briefly returns to the ready state before the next burst. This allows
higher priority controllers in the system to intervene in the middle of a block transfer if necessary.

Path 2 places the IDMA controller in the Cycle-Steal mode. If the DRnM bit in the RCCR register is
equal to zero and the DREQ* pin is asserted, the IDMA controller takes this path. Path 2a represents
the same concept as 1a, but for cycle-steal transfers. Briefly returning to the ready state between
transfers allows other higher-priority activity to occur between two cycle-steals of the same transfer.

For More Information Contact: www.freescale.com 361



Freescale Semiconductor, Inc.

It is possible that the IDMA controller could take Path 3 from either the Burst or the Cycle-Steal transfer
modes, thereby entering the IDMA disabled state. However, this is not a typical path.

Path 4 is more typical, in which the IDMA controller enters the Transfer Complete state, and the DONE
bit in the IDSR register is set. The IDMA controller takes Path 4 when the IDMA Count field changes to
'0', and the 'L’ bit is set in the IDMA buffer descriptor; or when the PowerPC sends a STOP IDMA
command through the command register.

The IDMA controller could take Path 5 to the No Buffers state, in which case the OB bit in the status
register is set. If a transfer request is asserted and the 'V' bit in the buffer descriptor is zero and the
buffer descriptor is not the first in the chain, the IDMA enters the No Buffers state. To exit the No
Buffers state, the user must make buffers available, and clear the OB bit.

Another possible path for the IDMA controller is Path 7 to the Transfer Error state. If a transfer error
acknowledge occurs due to non-existent memory location or a parity error, the IDMA enters the
Transfer Error state, causing an SDMA interrupt to occur, and setting the SDMA bit in the CIPR register
equal to ‘1’. The only way to exit the Transfer Error state is via a CPM reset.

From the Transfer Complete state, the IDMA controller may re-enter the IDMA enabled state, taking
Path 6. Path 6 results if the 'V' bit in the next buffer descriptor is equal to one. Note that within the same
buffer chain, either IDSR.DONE or IDSR.OB may set, but not both.

SLIDE 18-10
What is Auto Buffering?
[}
[}
[ ]
V=1 CM=1
|
Source
Buffer D —
Destination
- Buffer
[ ]
[}
[ ]

Note that if more than one buffer descriptor is in the chain used for Auto Buffering mode,
the next BD will be serviced after the current BD is accessed, even if the current BD’s valid
bit remains set. That is, IDMA will not loop on a single BD unless it is the only BD in the
chain.

For More Information Contact: www.freescale.com 362



Freescale Semiconductor, Inc.

What is Auto Buffering?

The Auto Buffer mode is enabled by setting the CM bit in the descriptor. After completing the move for
an Auto Buffer descriptor, the 'V' bit is not cleared; therefore the move is again valid immediately. The
IDMA encounters the buffer descriptor, and transfers the source data to the destination buffer. Upon
completion, normally the 'V' bit is cleared. However, if the CM bit is set, the 'V' bit remains set as well.
This means that the transfer set up in this buffer descriptor is immediately again ready to be executed.

Note that if more than one buffer descriptor is in the chain used for Auto Buffering mode, the next BD
will be serviced after the current BD is accessed, even if the current BD’s valid bit remains set. That is,
IDMA will not loop on a single BD unless it is the only BD in the chain.

SLIDE 18-11
What is Buffer Chaining?

[ J

[ J

[ J

L=0
|
Source
Buffer —
Destination

Buffer

[ J

[ J

[ J

L=1
I
Source
Buffer —
Destination

Buffer

®

®

[ J

What is Buffer Chaining?

The Buffer Chaining mode uses multiple buffer descriptors, which is valuable in moving data to or from
non-contiguous data areas. In this case, the IDMA controller encounters a series of buffer descriptors
transferring from a source to a destination, and each buffer descriptor contains an ‘L' bit equal to ‘0’.
The controller processes each buffer descriptor until it reaches one with the ‘L' bit equal to a ‘1,
indicating the last buffer descriptor in the chain. When the IDMA controller completes processing the
last buffer descriptor, it sets the DONE bit.

For More Information Contact: www.freescale.com 363



Freescale Semiconductor, Inc.

SLIDE 18-12
How to Initialize the IDMA (1 of 2)
Step Action Example
1 |Initialize RISC Controller Configuration| pi mm >RCCR. DROM = 0;

Reg, RCCR

DRQP: IDMA request priority
DROM: IDMA request 0 mode
DR1M: IDMA request 1 mode

/* DREQD EDGE SENSI Tl VE */

Initialize IDMA parameters via the
Command Register, CPCR

OPCODE:operation code

CH NUM:channel number
FLG:command semaphore flag
RST:software reset command

2 Initialize IDMA parameter RAM pi mm > DVAL. | BASE = 0x500;
/* | DVA BD AT | MVBASE+
IBASE: IDMA BD base address 0x2500*/
DCMR: DMA channel mode register
3

pi mm >CPCR = 0x511;
/* INIT | DVAL */

How to Initialize the IDMA (1 of 2)

The following procedures describe the steps in initializing the IDMA. Reset conditions are assumed.

Step 1 initializes the RISC Controller Configuration Register, program for cycle steal or burst, and

request priority.

Next, step 2 is to initialize the IDMA parameter RAM. This includes initializing IBASE and the DMA

channel mode register.

The third step in the procedure is to write the command to initialize IDMA parameters using the

command register, or CPCR.

For More Information Contact: www.freescale.com

364



Freescale Semiconductor, Inc.

SLIDE 18-13

How to Initialize the IDMA (2 of 2)

4 Initialize IDMA BDs pdsc->i dmabd2. i dmasac. V = 1;

. . /* INIT IDVA BD2 TO VALID */
idmasptr:pointer to source data

idmadptr:pointer to destination
idmacnt:number of bytes to transfer
idmasac.V:valid

idmasac.W:last BD (wrap bit)
idmasac.l:interrupt
idmasac.CM:continuous mode
idmasac.L: last buffer to transfer
SFCR: source func code

DFCR: dest func code

5 Initialize IDMA request source

CSO = 1;

6 Initialize Port C pi
/ PC15 TO DREQO */

How to Initialize the IDMA (2 of 2)
Step 4 initializes the IDMA buffer descriptors.
Step 5 initializes the IDMA request source, which drives DREQnN*.

Finally, step 6 initializes Port C so that PCS0[14] or PCSO[15] is equal to a ‘1"

For More Information Contact: www.freescale.com

365



Freescale Semiconductor, Inc.

SLIDE 18-14
Example
1 pimm >RCCR. DROM = 0; /1 DREQD | S EDGE SENSI Tl VE
2 pinmm >| DMAL. | BASE = 0x510; /1 | DMABD AT | MVBASE+0x2510
3 pinm >| DVAL. DCMR = 0xB; /1 CONFI GURE | DVAL FOR
/1 HALF- WORD LENGTH
/1 READ FROM PERI PHERAL
/1 WRI TE TO MEMORY
/1 SINGLE CYCLE MODE
4 pim >CPCR = 0x511 ; [TINIT | DMAL VI A COWWAND REGI STER

5 pidsc = (struct descs *) ((int)pimm+ 0x2510); // INIT DESC PNTR

/1 1 DMA1 BUFFER DESCRI PTOR O | NI TI ALI ZATI ON

6 pidsc->i dmabdO. i dmacnt = 0x400; /1 PUT COUNT I N BD

7 pidsc->i dmabdO. i dmadptr = 0xC000; // INIT DESTI NATI ON PTR

8 pidsc->i dmabd0. DFCR = 0x11; /1 SET DEST FUNC CODE TO 0X11
Il VW I, L, CM are initialized to 0 fromreset

9 pidsc->i dmabd0.idmasac. W= 1; /1 LAST BD | N ARRAY

10 pidsc->i dmabd0.idmasac.L = 1; /1 LAST BD | N BUFFER CHAI NI NG

11 pidsc->i dmabd0O.idmasac.V = 1; // VALID | DMVA BD

/11 NI TIALI ZE PC15 (DREQD) TO BE AN I NPUT PIN FOR | DVAL

12 pi nm >PCPAR &= OXFFFE ; /1 NMAKE

13 pi nm >PCDI R &= OXFFFE ; /1 PCl5

14 pi nm >PCSO |=1 ; /1 DREQD
Example

In this example, IDMAL transfers 0x100 words of data from a peripheral to location 0OxC0O00 in memory.

In line 1, DROM is assigned zero so that DREQO* will be edge sensitive or IDMAL will be in cycle-steal
mode.

In line 2, the IDMA1 buffer descriptor is located at 0x510 in dual-port RAM or 0x2510 in the internal
memory space.

In line 3, the DCMR is assigned a value of 0xB. Bits 11 & 12 are 01 for half-word data size; bits 13 &
14 are 01 for read from peripheral, write to memory; and bit 15 is 1 for single-cycle mode.

Line 4 initializes IDMA1 through the command register.

Line 5 initializes a pointer to the IDMA buffer descriptor.

In line 6, the count field of the buffer descriptor is initialized to 0x400 bytes which is 0x100 words.
The IDMA destination pointer is initialized to OxC000 in line 7.

And the destination function code is set in line 8. Since the source is a peripheral and the IDMA is in
single-cycle mode, there is no necessity to initialize the source parameters.

Lines 9 through 11 initialize the single buffer as the last buffer descriptor in the array, ‘W’ is assigned 1
because it's the last buffer descriptor in the chain; ‘L’ is assigned 1; and the buffer descriptor is valid, ‘V’
is assigned 1.

And finally, lines 12 through 14 initialize PC15 for DREQO.

For More Information Contact: www.freescale.com 366



Freescale Semiconductor, Inc.

Chapter 19: CPM Interrupt Controller

SLIDE 19-1
CPM Interrupt Controller
SIU PowerPC
Port T4:15 IRQO:7 Vi ; S|
CPM_, < ' U m—>IREQ
'\F;I IC
17 Devices — ”

IC

What you ¢ What is the CPIC?
will Learn < What is a sub-block maskable interrupt?
* How the CPIC operates
* How to prioritize the SCCs
» How to set the highest priority interrupt
* How to initialize the CPIC
» How to write a CPIC interrupt service routine

In this chapter, you will learn:

What is the CPIC?

What is a sub-block maskable interrupt?
How the CPIC operates

How to prioritize the SCCs

How to set the highest priority interrupt

How to initialize the CPIC

How to write a CPIC interrupt service routine

NoukwhpE

This chapter is one of three chapters that discusses interrupts. The CPM has twenty-nine interrupt
sources. The CPM drives one of the interrupt levels on the SIU, which will in turn drive the IREQ to the
PowerPC core.

For More Information Contact: www.freescale.com 367



Freescale Semiconductor, Inc.

SLIDE 19-2

What is the CPIC?

CPM
CPIC

v

Port C[4:15]
Timerl —
Timer2 —
Timer3 — >
Timerd —
SCC1 o
scce— >
scc3—* To SIU Interrupt Controller
scca—* >
SMC1 o

SMC2 >
SPI >

2c—*
PIP—*

IDMAL —*
IDMA2 —*
SDMA — *
RISC Timers — *

z<

> ToEPPC

Bolded names are sub-block maskable interrupt sources.

What is the CPIC?

The Communications Processor Interrupt Controller is the focal point for all interrupts associated with
the CPM. It accepts and prioritizes all the internal and external interrupts from all functional blocks
associated with the CPM.

Shown here are all the interrupt sources, including all the devices that can supply an interrupt, and the
twelve pins of Port C. These devices include the four SCCs, two SMCs, the SPI, the I°C, PIP and the
general-purpose timers. The CPIC allows masking of each interrupt source. If one of these interrupts
asserts, and completes processing via the CPIC, it then asserts to the SIU interrupt controller at a
particular level. If this interrupt completes processing via the SIU interrupt controller, it then asserts
IREQ to the Power PC core. If interrupts are enabled, program control passes to an interrupt service
routine.

When the Power PC core starts executing the interrupt service routine, it requests the source of the
interrupt from the SIU controller. A code from the SIVEC register returns, indicating that the interrupt
source is the CPM. Next, the interrupt service routine requests the source of the interrupt from the CPM
Interrupt Controller. The CPIC returns a vector number that is unique to the highest priority interrupt that
is not masked.

For More Information Contact: www.freescale.com 368



Freescale Semiconductor, Inc.

The important features of the CPIC are:

It asserts an interrupt to the SIU interrupt controller at a user-programmable level.

It generates a unique vector number for each interrupt source.

It prioritizes the interrupts for which it is responsible.

The user can program the highest priority interrupt source.

Finally, there are two priority schemes for the SCCs. Notice that bolded names are sub-block
maskable interrupt sources. In fact, all the internal interrupt sources are sub-block maskable.

abrwnpE

SLIDE 19-3

What is a Sub-Block Maskable Interrupt?

SMCEx 3 4 5 6 7 SMCMx 3 4 5 6 7
eeelgre| - [BSY[ TX]Rx] *e<[prk] - [BSY] TX[RX]
| |
— | ]

=

——_* SMCx Interrupt to CPIC

What is a Sub-Block Maskable Interrupt?

If an interrupt source is maskable within the particular sub-block of which it is a part, it is referred to as
sub-block maskable. An example of this is the SMCx. The SMC has an event register and a mask
register, with the bits shown in the upper portion of the diagram. The programmer may wish to mask
an interrupt on any of the corresponding events, to prevent an interrupt request to the CPU core.

For example, a mask bit allows the user to set an interrupt on the Receive Buffer Closed event. In this
case, the signal passes through the AND gate, and the interrupt is supplied to the CPIC.

As another example, if the user does not wish to have an interrupt on Transmit Buffer Sent, a zero can

be written in the mask bit, and then the interrupt does not pass through the AND gate, and therefore is
not supplied to the CPIC.

For More Information Contact: www.freescale.com 369



Freescale Semiconductor, Inc.

SLIDE 19-4

Programming Model (1 of 2)
CICR - CPM Interrupt Configuration Register

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
scdP SCcP SCbP scaP
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
IRLO_IRL2 HPO_HP4 IEN - SPS
CIPR - CPM Interrupt Pending Register
0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
PC15 SCClSCCZSCCSSCC4|P014TiTerPC13PC1ZSDMA|D2AAng/IA - [TMeR_TTl12C
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
pc11pcio| - T";‘ef pco|pPcs|pc7| - TiTef PC6| SPI SMCJS;'\F{'I%ZPcs PC4| -

The Programming Model for the CPIC (1 of 2)

The first register shown in the programming model is the 24-bit CPM Interrupt Configuration Register, or
CICR. This register contains a number of configuration parameters, one of which is the Interrupt
Request Level, or IRL[0:2]. This parameter allows a user to program the priority request level of the
CPM interrupt with any number from zero through seven. Level 0 indicates the highest priority interrupt,
and Level 7 indicates the lowest. We discuss the remaining parameters throughout the rest of this
chapter.

The next register is the 32-bit CPM Interrupt Pending Register, or CIPR. Each bit corresponds to a CPM
interrupt source. When a CPM interrupt is received, then the CPIC sets the corresponding bit in the
CIPR. For example, if PC14 has an interrupt pending, then the CPIC sets bit 5.

For More Information Contact: www.freescale.com 370



Freescale Semiconductor, Inc.
SLIDE 19-5
Programming Model (2 of 2)

CIMR - CPM Interrupt Mask Register
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PClsscc1scczsccas<:C4PCl4TiTerP013P0125DMA'D2"A'D2"A - TirgerR_TT 12C
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
pci1ipcio| - Tirgef Pco| Pcs|PC7| - Tirgef PC6|SPI smc15/'\F’,'|%2 PC5 |PC4 | -

CISR - CPM In-Service Register
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PClSSCClSCCZSCCSSCCA‘PCMTimerPClSPClZSDMAIDMAIDMA - |Timerlp 7 12C

1 1] 2 2
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
pciilpcio| - Tirgef pco|pPcs| Pc7| - TiTef PC6| SPI SMClS/'\FfI%Z pPCs|PC4| -

CIVR - CPM Interrupt Vector Register
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

VN 0 IACK

The Programming Model for the CPIC (2 of 2)

Next is shown the 32-bit CPM Interrupt Mask Register, or CIMR. Each bit corresponds to a CPM
interrupt source, allowing interrupts to be asserted, or masking interrupts from being asserted any
further. For example, if the user wishes PC14 to cause an interrupt, then bit 5 must be set in the CIMR.
When a masked CPM interrupt occurs, the corresponding bit in the CIPR is still set, regardless of the
CIMR bit, but no interrupt request is passed to the CPU core.

The next register is the 32-bit CPM In-Service Register, or CISR. Each bit corresponds to a CPM
interrupt source. This register contains a '1' in those bit positions for which interrupts are presently
being serviced. For example, if PC14 is presently being serviced, bit 5 is setto a '1'. The user's
interrupt service routine must clear this bit after servicing is complete.

Finally, the 16-bit CPM Interrupt Vector Register is shown. Bits 0-4 contain the interrupt vector number.
To update the register with the current interrupt vector number, the CPU must write a '1' to the IACK bit.
The CPM then supplies a vector number one clock cycle later. It is possible to read the vector number
from this field.

For More Information Contact: www.freescale.com 371



SLIDE 19-6

How to Prioritize the SCCs (1 of 2)

Freescale Semiconductor, Inc.

Lowest Highest Priority
SCC Code SCdP SCcP SCbP SCaP CICR
SCC1 00
SCC2 01
SCC3 10
SCC4 11

Lowest Highest Priority
SCC Code SCdP SCcP SChP SCaP CICR
SCC1 00 00
SCC2 01 01
SCC3 10 10
SCC4 11 11

pimm->CICR.SCaP = 0;
pimm->CICR.SCbP = 2;
pimm->CICR.SCcP = 1;
pimm->CICR.SCdP = 3;

How to Prioritize the SCCs (1 of 2)

The SCCs must be prioritized relative to each other. The relative priority between the four SCCs can be
dynamically changed. The programmer controls the order of priority in the CICR fields SCdP, SCcP,
SCbP, and ScaP. Each of the SCCs can be mapped to any of these four fields in the CICR.

The SCaP field specifies the highest priority SCC. The priority becomes lower with each field, from the
SCaP field down to the SCdP field, which is the lowest priority SCC. In order to prioritize the SCCs, it
is necessary to put an associated code for each SCC into the appropriate priority field.

In this example, the user wishes to set the priority so that SCC1 is the highest, SCC3 is the second
highest, SCC2 is the second lowest, and SCC4 the lowest. To prioritize the SCCs accordingly, the user
puts the code for SCC1, the highest, into the SCaP field, which is the highest priority field. The user
then puts the code for SCC3 into the SCbP field; the code for SCC2 into the SCcP field; and the code
for SCC4 into the SCdP field. Note that the SCaP, SCbP, SCcP and SCdP fields should all contain
different values.

For More Information Contact: www.freescale.com 372



Freescale Semiconductor, Inc.

SLIDE 19-7

How to Prioritize the SCCs (2 of 2)

Grouped

Priority Priority|Interrupt Source

Highest| PC15
SCCa
SCChb
SCCc
SCCd

L J
L J
L J

pimm->CICR.SPS = 0;

Spread Priorit
Priority rioritylinterrupt Source
Highest] PC15
SCCa pimm->CICR.SPS = 1,

L ]
-

| | scchb |

How to prioritize the SCCs (2 of 2)

In addition to being prioritized relative to each other, the programmer can group the SCCs together in
the priority list, or spread them throughout the priority list. The priority order of all the sources of
interrupts on the CPM is found in the User Manual.

In the group scheme, the SCCs are all grouped together at the top of the priority table, ahead of most of
the other CPM interrupt sources. This scheme is ideal for applications where all SCCs function at a
very high data rate and interrupt latency is very important. If you examine the User Manual, you will see
that PC15 is the highest priority interrupt, followed by SCCa, SCCb, SCCc and SCCd. However,
SCCb, SCCc and SCCd only follow in this order if they are grouped.

The SCCs are grouped if the SPS field of the CICR register is equal to zero. An alternative is to spread
the SCC priorities throughout the priority list, so that other sources can have lower interrupt latencies
than the SCCs. In this case, SCCa remains with the second highest priority. However, if the priorities
are spread, SCCb obtains a priority of 0x13; SCCc obtains a priority of 0xD, and SCCd obtains a
priority of Ox8.To spread the priority, the user must write a '1" into the SPS field of the CICR register.

For More Information Contact: www.freescale.com 373



Freescale Semiconductor, Inc.

SLIDE 19-8
How to Specify the Highest Priority Interrupt Source

Introduction

The user must specify which interrupt source is to be given top
priority. This is done by writing the 5-bit interrupt vector number to
CICR.HPO_HPA4.

Example

Problem: make the SDMA interrupt the highest priority.

pimm->CICR.HPO_HP4 = 0x16;

How to Specify the Highest Priority Interrupt Source

In addition to the SCC relative priority option, the user must specify which interrupt source is to be given
highest priority. This highest priority interrupt is still within the same interrupt level as the rest of the
CPIC interrupts, but is serviced prior to any others. This highest priority source is dynamically
programmable in the CICR, and allows the user to change a normally low priority source into a high
priority source. Writing the 5-bit interrupt vector number to the HPO_HP4 field of the CICR register
specifies the top priority interrupt source.

The vector numbers are shown in the User Manual. For example, if the user wishes the SDMA interrupt
to have the highest priority, the user must write 0x16 into HPO_HP4.

For More Information Contact: www.freescale.com 374



Freescale Semiconductor, Inc.
SLIDE 19-9

How the CPIC Processes an Interrupt Input

CPM interrupt
occurs

Sub-block
maskable

Set bit In
CIPR

Bit set
in CIMR

N * |s the priority of a new interrupt greater than
the priority of any interrupt in-service?

To the SIU
interrupt controller

How the CPIC Processes an Interrupt Input

The sequence starts with the assertion of a CPM interrupt. The next step depends on whether the
interrupt is sub-block maskable. If the interrupt is sub-block maskable, and if the event is masked,
processing stops. However, if the interrupt is sub-block maskable, and the event is enabled, the CPIC
sets the associated bit in the CIPR register. If the interrupt is not sub-block maskable, the CPIC sets
the bit in the CIPR register directly.

Once the CPIC sets the appropriate bit in the CIPR register, the CPIC checks the associated bit in the
CIMR register. If that bit is not set, then processing ends. Note that in this case, the CIPR is still
available for polling. If, however, the associated bit in the CIMR register is set, the sequence proceeds
to the decision box as shown. The question that is asked at this juncture is the following: "Is the priority
of the new interrupt greater than the priority of any interrupt in service?" If the answer to this question is
'no’, then the process is stalled until such time as the bit or bits in the In-Service register that are of a
higher priority are cleared. If the answer to this question is 'yes', then the CPIC interrupt is allowed to
assert to the SIU interrupt controller.

For More Information Contact: www.freescale.com 375



Freescale Semiconductor, Inc.

SLIDE 19-10

How the SIU Processes an Interrupt Input

SIU interrupt
occurs

A4

Set bit in
SIPEND

l

Bit set in

SIMASK
?

To IREQ of
—* the EPPC Core

How the SIU Processes an Interrupt Input

As will be discussed in the SIU Interrupts chapter, the SIU receives an interrupt from one of eight
external sources, or one of eight internal sources such as the CPM, and, assuming no masking is in
place, asserts the IREQ input to the Power PC core.

To review the diagram shown here in more detail, first, an SIU interrupt occurs. Next, the SIU sets the
associated bit in SIPEND. Next, the SIU verifies whether the corresponding bit is set in SIMASK. If the
corresponding bit is not set in SIMASK, no subsequent steps occur. If the corresponding bit is set in
SIMASK, then the SIU Interrupt Controller asserts IREQ of the Power PC core. Following the assertion
of IREQ, the Power PC core completes the present instruction, and program control proceeds to offset
0x500 in the exception vector table.

For More Information Contact: www.freescale.com 376



SLIDE 19-11

Freescale Semiconductor, Inc.

How to Initialize a CPM for Interrupts (1 of 2)

Step

Action

Example

1

Initialize CPM Intrpt Config Reg, CICR

SCdP: lowest priority SCC

SCcP: 2nd lowest priority SCC

SCbP: 2nd highest priority SCC

SCaP: highest priority SCC
IRLO_IRL2: CPM intrpt level
HPO_HP4: highest priority intrpt source
SPS: spread priority

pi rm >Cl CR. HPO_HP4 = 0x16;

/* SDVA H GHEST PRI ORITY

I NTERRUPT */

Initialize Interrupt Mask Reg, CIMR

SCC1-4
PC4-15
TIMER1-4
IDMA1-2
SMC1-2
SDMA
R-TT

SPI

12C

pi mm >Cl MR SCC2 = 1,

/*

ENABLE SCC2 | NTRPTS */

How to Initialize a CPM for Interrupts (1 of 2)

Here we describe the steps in initializing the CPM on the MPC860 for interrupts. Reset conditions are

assumed.

Step 1 is to initialize the CPM Interrupt Configuration Register, or CICR, which includes setting the

priorities and the interrupt level.

Step 2 is to initialize the Interrupt Mask Register, or CIMR, by setting the bits associated with the

desired interrupt sources in the CIMR register.

For More Information Contact: www.freescale.com

377



Freescale Semiconductor, Inc.

SLIDE 19-12

How to Initialize a CPM for Interrupts (2 of 2)

3 Initialize SI Mask Reg, SIMASK

IRMx:enable external intrpt input
LVMx:enable internal intrpt input

where xis0to 7

pi mm >S| MASK. ASTRUCT. | RMb = 1;
[/ *ENABLE | RQG6 | NTERRUPTS */

4 Enable CPM Interrupts

pimm>CICR | EN = 1;
/* ENABLE CPM | NTERRUPTS */

5 Initialize Enable Interrupts, EIE

asm (“ mspr 80,0");;
/* ENABLE | NTERRUPTS */

How to Initialize a CPM for Interrupts (2 of 2)

Step 3 involves initializing the SI Mask Register, or SIMASK. Initializing SIMASK includes setting the bit
associated with the level that the CPM uses to assert an interrupt.

Step 4 is to enable CPM interrupts, using the Interrupt Enable field in the CICR register. Without this

setting, the SIU Interrupt Controller never receives a CPM interrupt, and so this step is very important.

Step 5 is to enable interrupts with the instruction "mtspr 80,0".

For More Information Contact: www.freescale.com

378



Freescale Semiconductor, Inc.

SLIDE 19-13

How to Handle a CPIC Interrupt (1 of 3)

1 Read the interrupt code in the Sl i f (pim>SIVEC | C == 0x38)
vector register, SIVEC, and go to irqresr();
service routine for that code. /* IF IRQZ, GO TO | RQFESR */

2 Request the vector number via the CPM pi m >0 VR | AKK = 1;
Interrupt Vector Reg, CIVR /* REQUEST VECTCR NUMBER*/

3 Read the interrupt vector in the asm(“ eieio”);
CPM interrupt vector reg, CIVR, | if (pi nm >0 VR WN == 0x10
and go to service routine for that i 2cesr();
vector number. /* 12C VEC NUM GO TO | 2CESR¢/

How to Handle a CPIC Interrupt (1 of 3)
Steps 1 through 7 list the procedure for servicing a CPM interrupt.

The first step is to read the interrupt code in the Sl Vector Register, or SIVEC, and then proceed to the
service routine for that code.

Step 2 is to request the vector number via the CPM Interrupt Vector Register, or CIVR. To request the
vector number, the routine must write a '1' to the interrupt acknowledge, or IACK bit.

Step 3 is to read the interrupt vector in the CIVR register, and proceed to the service routine for that

vector number. Notice in the example that we have inserted an 'eieio' instruction to ensure that the
store, followed by the load will be executed in that order.

For More Information Contact: www.freescale.com 379



Freescale Semiconductor, Inc.

SLIDE 19-14

How to Handle a CPIC Interrupt (2 of 3)

4

Required only if service routine is to
be recoverable and lower priority
interrupts are to be masked.

Save the SI mask reg, SIMASK
Mask lower interrupt levels

sptr++ = pi nm >S| MASK. ASI NT;

/* STACK SI MASK REG */

pi mm >S|I MASK. ASI NT & =
0xF0000000;

/* MASK | NTRPTS 2-7 */

Required only if service routine is to be
recoverable.

Save SRRO & SRR1 on the stack
Enable interrupts

asm (“ stwu r9,-12(rl);
asm (" nfspr r9,26");
asm (" stwr9,4(r1)");
asm (" nfspr r9,27");
asm (" stwr9,8(rl)");
asm (" mspr 80,0");

If this is a submodule maskable event
source, read the event register.

er = pi nm >SCCE2;
/* GET EVENT REGQ STER */

If this is a submodule maskable event
source, clear the known events.

pi mm >SCCE2 = er;
/* CLEAR EVENT REQ STER */

How to Handle a CPIC Interrupt (2 of 3)

If the user wishes the service routine to be recoverable, and for the lower-priority interrupts to be

masked, the routine should include Step 4. This step is to save the SI Mask Register, or SIMASK, and
then mask the lower interrupt levels.

Step 5 is required only if the service routine is to be recoverable. In this case, the routine saves the

SRRO0 and SRRL1 registers on the stack, and enables interrupts.

If this is a sub-module maskable event source, Step 6 is to read the event register. In our example, we

read the event register for SCC2, and put it into a local variable called 'er." All the known events are

now present in the 'er' variable, and it is possible to process these events.

Step 7 applies again if this is a sub-module maskable event source. In this case, the routine clears the
known events. Writing ones to the event register clears the event bits.

For More Information Contact: www.freescale.com

380



Freescale Semiconductor, Inc.

SLIDE 19-15

How to Handle a CPIC Interrupt (3 of 3)

1 Clear the bit in the in-service reg, CISR | Pi M >Cl SR = 1<<(31-6);
/* CLEAR TIMER 1 BIT */

2 | Required only if service routine was made :zm g thzp; 982( ?13 ) :

recoverable. asm (" ntspr 27,r9"):
asm (" Iwz r9,4(r1)");
Disable interrupts asm (" ntspr 26,r9");
Restore SRRO & SRR1 on the stack asm (“ Iwz r9,0(rl1)");
asm (" addi r1,r1,12");
3 |Required only if service routine was made |pi mm >S|I MASK. ASI NT = --sptr;

recoverable and lower priority interrupts /* RESTORE SI MASK REG */
were masked.

Restore the SI mask reg, SIMASK

How to Handle a CPIC Interrupt (3 of 3)

Steps 1 through 3 detail the last steps in servicing a CPM interrupt. Before leaving the interrupt service
routine, it is necessary to clear the bit in the CPM In-service Register, or CISR. Writing a '1' to this bit
clears it.

Step 2 is required only if the service routine is recoverable. In this case, it is necessary to disable
interrupts, and then restore the SRRO and SRR1 registers on the stack.

Step 3 is also required only if the service routine is recoverable, and lower priority interrupts are
masked. In this case, the routine restores the SIMASK register.

For More Information Contact: www.freescale.com 381



Freescale Semiconductor, Inc.

SLIDE 19-16

CPM Interrupt Examples, 1

1. Complete the following initialization routine for interrupts from IDMA2:

1 pimm>CICR.IRLO_IRL2 = (unsigned) 4;

/* CPM | NTERRUPTS LEVEL 4*/
2 pimm >Cl CR. HPO_HP4 = O0x1F; /* MAKE PC15 HI GHEST PRI O*/
3 pimm >Cl MR. | DMA2 = 1; /* ENABLE | DMA2 | NTERRUPT*/
4 pi mm >SI MASK. ASTRUCT. | RM4 = 1; /* ENABLE LVL4 | NTERRUPTS*/
5 pimm >CICR.IEN = 1; /* ENABLE CPM | NTERRUPTS */
6 asm " mspr 80,0"); /* ENABLE | NTERRUPTS */

CPM Interrupt Examples, 1
The first example is an initialization routine for interrupts from IDMA2.
In line 1, the interrupt level is set to 4 by assigning this value to the CICR, field IRLO_IRL2.

In line 2, PC15 is made the highest priority interrupt by assigning its vector number, Ox1F, to CICR, field
HPO_HP4. IDMA2 interrupts are enabled by assigning a value of 1 to CIMR, field IDMA2.

In line 4, the CPM level interrupts, level 4, are enabled in SIMASK.
In line 5, CPM assigning a value of 1 to IEN of the CICR enables interrupts.

Finally, in line 6, Power PC core is enabled for interrupts with the ‘mtspr 80,0’ instruction.

For More Information Contact: www.freescale.com 382



Freescale Semiconductor, Inc.

SLIDE 19-17

CPM Interrupt Examples, 2

2. Complete the following service routine for interrupts from IDMA2 (CPM interrupt level 4):

#pragma interrupt intbrn

1 void intbrn()

2 void cpresr();

~w

5

6 asm ("
7 asm ("
8 asm ("
9 asm ("
10 asm ("
11 br eak;

12 defaul t:;

}
}

13 void cpmesr()
{

CPM Interrupt Examples, 2

asm (" stwu r9,-4(r1)");
switch (pi nm>Sl| VEC. | C)
{

case 0x24: asm (" nfspr r9,8");

/* PUSH GPR9 ONTO STACK */
/* PROCESS | NTERRUPT CODE*/

/* PUSH LR ONTO STACK */
stwu r9,-4(r1)");

bla cprmesr"); [/* PROCESS | DMA2 CODE  */
Iwz r9,0(r1)"); /* PULL LR FROM STACK */
addi r1,r1,4"); /* RESTORE STACK PO NTR*/
ntspr 8,r9");

The second example is the service routine for interrupts from IDMA2 at CPM interrupt level 4. In line 1
the interrupt service routine, ‘intbrn’ is declared,; it is the interrupt service routine.

In line 4, a switch statement using the interrupt code in SIVEC directs execution to the Level 4 case
statement. As can be determined from the user manual, the Level 4 interrupt code is 0x24.

In line 7, a branch is executed to the function ‘cpmesr’. In line 14, a value of 1 is assigned to the IACK

bit in CIVR. After executing an ‘eieio’, the switch statement acts on the vector number field, VN, of

CIVR. The vector number for IDMA2 is 0x14 as can be determined from the user manual.

For More Information Contact: www.freescale.com

383



Freescale Semiconductor, Inc.
SLIDE 19-18

CPM Interrupt Examples,3

14 pi mm >Cl VR. | ACK = 1; /* REQUEST VECTOR NUMBER */
asm (“ eieio”);

15 switch (pi mm >Cl VR VN) /* PROCESS VECTOR NUMBER */
16 case 0x14: /* | DMA2 VECTOR NUMBER  */
17 er = pi mm >| DSR2; /* COPY SR TO SCRATCHPAD */
18 pi mm > DSR2 = er; /* CLEAR STATUS REGQ STER */
19 /* DO | DMA2 SERVI CE HERE */
20 pi mm >Cl SR = 1<<(31-11); /* CLEAR | N- SRVCE BI T*/
21 br eak;

22 defaul t:;

CPM Interrupt Examples, 3

After servicing the interrupt, in line 20 the CISR, writing a 1 to it clears bit position 11 (which is for
IDMA2).

For More Information Contact: www.freescale.com



Freescale Semiconductor, Inc.

Chapter 20: SIU Interrupt Controller

SLIDE 20-1

SIU Interrupt Controller

SIU

Port C4:15 IRQO:7

LVLO:7
CPM

v

v

17 Devices — *

NS

v

Sl

IC

v

PowerPC

IREQ

What you » What is the SIU interrupt controller?
will learn * How the SIU controller processes interrupts
* What are the SIU interrupt sources?

* What is the priority of the SIU interrupt sources?

» How to initialize the SIU interrupt controller

» How to write an SIU interrupt handler

In this chapter, you will learn:

oA WNPE

. What is the SIU interrupt controller?

. How the SIU controller processes interrupts

. What are the SIU interrupt sources?

. What is the priority of the SIU interrupt sources?
. How to initialize the SIU interrupt controller?

. How to write an SIU interrupt handler?

For More Information Contact: www.freescale.com

385



Freescale Semiconductor, Inc.

SLIDE 20-2
What are the SIU Interrupts?
NMI
IRQ[ 0:7] Edge/ IRQ 0| GEN
Level
NMI
DEC Level 7 DEC
Level 6 s
U EPPC
PIT Level5 CORE
[
RTC Level 4 ¥
IREQ
PCNVICIA Level 3
Level 2 c
N
Level 1 T
R
CPM Level 0 Ife
DEBUG DEBUG
System Interface Unit (SIU)

What are the SIU interrupts?

The SIU receives interrupt inputs from eight external pins (IRQ 0 through 7), and eight internal sources
(internal levels 0 through 7), for a total of sixteen possible interrupt sources. The SIU has 15 interrupt
sources that assert just one interrupt request to the PowerPC core. The SIU asserts the IREQ input to
the Power PC core.

The Power PC core responds to the assertion of IREQ with exception processing through vector
location 0x500. The user can assign any of the internal devices to a particular interrupt level. These
internal devices include the periodic interrupt timer, the time base, the real time clock, PCMCIA, and the
CPM.

It is probably best to assign one device to one interrupt level, as in that case, when an interrupt occurs, it
is possible to service the interrupt immediately. The user can assign more than one device to a single
level, but in this case, when an interrupt occurs, it is necessary for the SIU Interrupt Controller to poll the
devices to determine which of them caused the interrupt. Note that the decrementer has its own input
source to the Power PC core, as does the debug. The IRQ pins can be either edge or level sensitive.
IRQO is special because it is the Non-Maskable Interrupt; it passes directly into the Non-maskable
Interrupt Generator (NMI GEN), as does the software watchdog timer, which drives the NMI input.

For More Information Contact: www.freescale.com 386



Freescale Semiconductor, Inc.

SLIDE 20-3

What are the Interrupt Pins?
« IRQ(0:7)

—3— IRQ(0:1,7)*

> IRQ2*/RSV*

o 2 IRQ3*/CR* or IRQ3*/DPO

< IRQ4*KR*RETRY*/SPKROUT or IRQ4*/DP1

> IRQ5*/DP2

R IRQ6*/FRZ or IRQ6*/DP3

Seeetma e [ir. then.

Function ||RQ2* and not RSV* SIUMCR.MPRE =0
IRQ3* and not CR* SIUMCR.MPRE =0
IRQ3* and not DPO SIUMCR.DPC =0
IRQ4* and not KR*RETRY*/SPKROUTSIUMCR.MLRC =0
IRQ4* and not DP1 SIUMCR.DPC =0
IRQ5* and not DP2 SIUMCR.DPC =0
IRQ6* and not FRZ SIUMCR.FRC =1
IRQ6* and not DP3 SIUMCR.DPC =0

What are the interrupt pins?

The interrupt pins are IRQ 0 through 7. IRQ 0, 1 and 7 specifically are standalone pins; these pins
support no other functions. The remaining IRQ pins are all shared pins; the user must therefore decide
whether to use an IRQ pin or its alternate function. Also, three of the IRQs, 3, 4, and 6, have
connections to two pins.

Two major decisions have an impact on the availability of the shared IRQ pins: first, will the user
implement data parity? Next, will the user implement the reservation system? If the user implements
data parity, IRQ5 is no longer available and one of the connections to IRQ3, 4, and 6 are eliminated.
Likewise, if the user implements the reservation system, IRQ2 is no longer available and one of the
connections to IRQ3 and 4 is eliminated. Note also that IRQ6 is shared with the freeze function;
therefore, implementing the freeze function has an impact on whether the user implements IRQ6.

Two pins can be selected for the same interrupt, and, if so, the signal that is asserted to the SIU
controller is the logical "and" of the pins. Any unused pins should be pulled up through a 10 K resistor
to either +5 or +3.3 volts.

IRQ (0:7)* is user-programmable to respond to either an edge or a level. They are asserted
asynchronously according to timing diagrams in the User Manual.

Configuring the SIU Module Configuration Register allows the user to select the desired interrupt pin

function. Shown here is a listing of Interrupt Pin Functions, and their correlating fields in the SIU Module
Configuration Register.

For More Information Contact: www.freescale.com 387



Freescale Semiconductor, Inc.

In order to select the IRQ pin, and not the alternate function, nearly all the fields require a zero, which is
the value coming up from reset. If the pins are used for IRQs no further action need be taken. The one
exception is IRQ6 and freeze where, after reset, the freeze function is selected. Therefore, if the user
wishes to use the pin for IRQ6, the reset initialization code must set this bit.

SLIDE 20-4

Programming Model, 1 of 2
SIPEND - SIU Interrupt Pending Register

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

IRQO|LVLO|IRQ1|LVL1|IRQZ|LVLZ|{IRQ3|LVL3|IRQ4|LVL4|IRQS5|LVL5|IRQ6(LVLG|IRQ7|LVLY

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved

SIMASK - SIU Mask Register
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

IRMOLVMO|IIRM1LVM1|IRM2[LVM2|IRM3|LVM3|IRM4[LVM4{IRM5LVM5(IRM6|ILVM6|IRM7 |LVM7

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved

Programming Model, 1 of 2
Here is the programming model for the SIU Interrupt Controller.

The first register is the SIU Interrupt Pending Register, or SIPEND. This is a 32-bit register, but only the
top sixteen bits are used. This register indicates whether a particular interrupt source has been asserted
and is pending. For example, if IRQ1 has been asserted and is pending, then bit 2 is set.

The second register is the 32-bit SIU Mask Register, or SIMASK. Each bit corresponds to an interrupt
request bit in the SIPEND register. This register controls whether the SIU Interrupt Controller passes an
interrupt to the Power PC core. For example, if Level 1 is pending in the SIPEND register, in order for
the interrupt to occur, the LVM 1 bit in the SIMASK register has to be set.

For More Information Contact: www.freescale.com 388



Freescale Semiconductor, Inc.
SLIDE 20-5

Programming Model, 2 of 2

SIEL - SIU Interrupt Edge Level Mask Register
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

EDO (WMO|ED1 WM1|ED2 WM2(ED3 [WM3|ED4 |\WM4|ED5 WM5|ED6 WM6|(ED7 |WM7

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved

SIVEC - SIU Interrupt Vector Register (read-only)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Interrupt Code 0 0 0 0 0 0 0 0

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Programming Model, 2 of 2

The bits associated with the IRQ pins have a different behavior depending on the sensitivity defined for
them in the 32-bit SIU Interrupt Edge Level Mask Register, or SIEL. Each pair of bits corresponds to an
external interrupt request. It is possible to select the IRQ pins to respond to an edge or a level in each
bit identified as 'EDX', where 'ED' refers to "Edge". All the odd numbered bits in the SIU Interrupt Edge
Level Mask Register are shown here identified as "'WMx', where ‘WM’ stands for Wakeup Mode. The
Wakeup Mode bits allow the user to select whether any particular IRQ will be able to wake up the
MPC860 from a low power mode.

Finally, SIVEC is the SIU Interrupt Vector Register. This is also a 32-bit register; however, only the top
8 bits are used. These eight bits represent an interrupt code to specify the highest priority pending
interrupt that is not masked. In other words, this register allows the Power PC core exception routine to
identify which of the possible sixteen interrupt sources has generated the interrupt.

For More Information Contact: www.freescale.com 389



Freescale Semiconductor, Inc.

SLIDE 20-6

How the SIU Processes an Interrupt

< Start >

v

SIU Interrupt occurs

\ 2
Set bit in SIPEND

}

Bit set in N
SIMASK ?

END

Y

| Y

\4

To IREQ of EPPC

How the SIU Processes an Interrupt

The SIU processes an interrupt as shown here. First, an SIU interrupt occurs. Next, the SIU sets the
associated bit in SIPEND. Next, the SIU verifies if the same bit is set in SIMASK. If the same bit is not
set in SIMASK, no subsequent steps occur. If the same bit is set in SIMASK, then the SIU Interrupt
Controller asserts IREQ of the Power PC core.

For More Information Contact: www.freescale.com 390



Freescale Semiconductor, Inc.

SLIDE 20-7

What are the SIU Interrupt Codes and Priorities?

Definition Each interrupt source has a priority relative to the other interrupt sources
as listed in the User Manual. IRQO* has the highest priority, and Level 7,
the lowest.

Each interrupt source has an assigned code, also listed in the 860 User
Manual, that is in the SIVEC register when it is the highest priority,
unmasked interrupt that is pending.

Example If the interrupt sources IRQ2*, Level 3, and IRQ6* are asserted
simultaneously, and if IRQ2* is masked, then the value in the SIVEC
register is:
0x1C

Integgijpet IRQX Interrupt Code = 8*X
Calculation

Levelx Interrupt Code = 8*X + 4

What are the SIU Interrupt Codes and Priorities?

Each interrupt source has a priority relative to the other interrupt sources, as listed in the User Manual.
The priority levels range from IRQO, which has the highest priority, to Level 7, which has the lowest.
Also, each interrupt source has an assigned code, also listed in the User Manual, that is in the SIVEC
register when it is the highest priority, unmasked interrupt that is pending.

For example, if the interrupt sources IRQ2, Level 3 and IRQ6 are asserted simultaneously, and if IRQ2
is masked, then the value in the SIVEC register is 0x1C. It is 0x1C because IRQZ2, which is normally the
highest priority, is masked. The next highest priority interrupt source is Level 3 and it has a code of
0x1C.

As an alternative to the table of interrupt codes and levels, here is a quick calculation. To calculate the

interrupt code, multiply the IRQ number by eight. To calculate the interrupt level code, multiply the level
number by eight, and add four.

For More Information Contact: www.freescale.com 391



Freescale Semiconductor, Inc.

SLIDE 20-8

How to Mask Lower Priority Interrupts, 1 of 2

Not Masking  * IRQ4 and level

Interrupts 6 are setin
SIMASK

main

IRQ4
interrupt
occur

* esrl is made
recoverable

* No changes
made in
SIMASK

How to Mask Lower Priority Interrupts, 1 of 2

The diagrams shown here and in the next slide describe how to mask lower priority interrupts upon

entering an interrupt service routine.

First, consider the case in which there is no interrupt masking for lower priority interrupts. In this
example, program control is in the main code, and IRQ4 and Level 6 are set in SIMASK. An IRQ4
interrupt then occurs. Program control passes to Exception Service Routine 1, shown here in the

second block of the diagram as esr1.

esrl Level 6
interrupt

esr2

Esrl is made recoverable, but no changes are made in SIMASK. Esrl then begins executing. During

esrl's execution, a Level 6 interrupt occurs. Level 6 is at a lower priority; however, program control

passes to esr2, which then executes.

There is a return from esr2 after its execution and likewise a return to main after the execution of esrl.

For More Information Contact: www.freescale.com

392



Freescale Semiconductor, Inc.

SLIDE 20-9

How to Mask Lower Priority Interrupts, 2 of 2

Masking
Interrupts * IRQ4 and level « esrl is made recoverable
6 are set in * SIMASK &= 0xFF800000
SIMASK
main IRQ4 esrl
interrupt

OCccurs

Level 6 interrupt
occurs but is
ignored until IRQ4
interrupt is
complete.

How to Mask Lower Priority Interrupts, 2 of 2

If the user finds the path we have just described to be acceptable, there is no need to change the
operation. However, if the user wishes to enforce the priority scheme, then the lower priority interrupts
should be masked. In this illustration, IRQ4 and Level 6 are again set in SIMASK, and esrl is made
recoverable. In this case, prior to enabling interrupts in esrl, the user implements a value of
0xFF800000 to "and" the SIMASK register, which masks all interrupts with a priority lower than IRQ4.

As in the first example we saw, an IRQ4 interrupt occurs during the execution of the main code.
Program control then passes to Exception Service Routine 1. Now, if a Level 6 interrupt occurs, it is
ignored until the IRQ4 interrupt service routine is complete. In this way it is possible to maintain the
interrupt priority.

For More Information Contact: www.freescale.com 393



SLIDE 20-10

Freescale Semiconductor, Inc.

How to Initialize and Handle 860 SIU Interrupts (1 of 3)

Step Action Example
1 Initialize SI Edge/Level Reg, SIEL pi mm >SI EL. Wb = 1;
/ *WAKEUP 860 FOR | RQ5
EDx:edge or level interrupt input | NTERRUPT*/
WMx:exit low power mode
where xis0to 7
2 Initialize SI Mask Reg, SIMASK pi mm >S|I MASK. ASTRUCT. | RM6 = 1;
/ * ENABLE | RQ6 | NTERRUPTS */
IRMx:enable external interrupt input
LVMx:enable internal interrupt input
where xis0to 7
3 Initialize Enable Interrupts, EIE asm (“ mspr 80,0");
/* ENABLE | NTERRUPTS */

How to Initialize and Handle 860 SIU Interrupts (1 of 3)

This next section describes the steps in initializing the SIU on the MPC860 for interrupts. Reset
conditions are assumed.

Step 1 is to initialize the SIEL Register to select the edge or level for an IRQ. The user may also set

wakeup mode here.

Step 2 is to initialize the SIMASK register. In this case, the user enables the required interrupts in this
register. Notice in the example that we have organized SIMASK as a union, so it is possible to access
the register either as a bit structure, or as an integer. In this case, we prefer to access SIMASK as a bit
structure in order to enable IRQ6.

Step 3 is to enable interrupts in the PowerPC core with the "mtspr 80,0" instruction.

For More Information Contact: www.freescale.com

394



Freescale Semiconductor, Inc.

SLIDE 20-11

How to Initialize and Handle 860 SIU Interrupts (2 of 3)

* The first step in servicing an SIU interrupt is to clear the bit in the SI Pending Register

1 Read the Sl Vector Register, SIVEC varl = pi nm >S| VEC. | C,

* *
IC: interrupt code (12-7) /* GET I NTERRUPT CCDE */

2 If an IRQX is edge-triggered, then ; - .

X L . pi mm >S| PEND = 1<<(31-6);
clear the service bit in the SI Pending * *
Register, SIPEND. Else clear the source /" CLEAR TR PENDING BI T*/
of the interrupt. (12-6)

3 Required only if service routine is to sptr++ = pi mm >S| MASK. ASI NT:
be recoverable and lower priority /* STACK S| MASK REG *} '
interrupts are to be masked. pi nm >SI MASK. ASI NT & =
Save the Sl mask reg, SIMASK 0xF0000000:
Mask lower interrupt levels (12-6)|/* MASK I NTRPTS 2-7 */

Required only if service routine is to be
g | SANTEC o I Service routine | asm (* stwu r9,-12(r1);
' asm (" nfspr r9,26");
Save SRRO & SRR1 on the stack asm E .o opr 9. 8012 : )
Enable interrupts asm (" stw ro, 8'( r1) )
asm (" ntspr 80,0");

How to Initialize and Handle 860 SIU Interrupts (2 of 3)

Once an interrupt occurs, it is necessary to service that interrupt. The first step to service the interrupt is

to read SIVEC to determine the interrupt code.

In step 2, if the IRQx interrupt is edge-triggered, it is necessary to clear the service bit in the SIPEND
register directly by writing a '1' to the bit to be cleared. However, for level interrupts and for IRQ leve
interrupts, all that is necessary is to clear the source of the interrupt.

Step 3 is required only if the service routine is to be recoverable and lower priority interrupts are to be

masked. In this case, it is necessary to save the SIMASK register, in our example as an integer, and
then "and" SIMASK to mask off the lower priority interrupts.

Step 4 is required only if the service routine is to be recoverable. In this case, it is necessary to save

Save and Restore Registers (SRR0 and SRR1) on to the stack, and then re-enable interrupts in the
exception service routine.

For More Information Contact: www.freescale.com

the

395



Freescale Semiconductor, Inc.

SLIDE 20-12

How to Initialize and Handle 860 SIU Interrupts (3 of 3)

* The last steps in servicing an SIU interrupt:

1 Required only if service routine was made
recoverable.

Disable interrupts
Restore SRRO & SRR1 on the stack

asm (" mspr 82,0");
asm (" lwz r9,8(r1)");
asm (" nmtspr 27,r9");
asm (" lwz r9,4(r1)");
asm (" ntspr 26,r9");
asm (“ lwz r9,0(rl)");
asm (" addi r1l,r1,12");

2 Required only if service routine was made
recoverable and lower priority interrupts
were masked.

Restore the SI mask reg, SIMASK

pi mm >SI MASK. ASI NT = --sptr;
/* RESTORE S| MASK REG */

How to Initialize and Handle 860 SIU Interrupts (3 of 3)

The last steps in servicing an SIU interrupt are the following:

Step 1 is required only if the service routine has been made recoverable. In this case, prior to the

return, it is necessary to first disable interrupts, and then take the contents of SRRO and SRR1 off of the

stack and restore them.

Step 2 is required only if the service routine is recoverable and lower priority interrupts have been

masked. This step restores the SIMASK register.

For More Information Contact:

www.freescale.com

396



Freescale Semiconductor, Inc.

SLIDE 20-13
Interrupt Handling Examples
INTR»ee
reading SIVEC P TRSVEC BASE b Routinel
eading ~ :
as a Byte R4 <-- Base of branch table BASE + 4 b Routine?
" BASE + 8 b Routine3
bz RX,0(R3) #loadasb .
adzd RX, éx, )R4 oad as byte BASE + C b Routine4
MISPICTR, RX BASE +10 .
BASE + n *
INTRs-e BASE [ 1st Instruction of Routinel |
3%"5_ S@tgtSEiVEC BASE + 400 [_1st Instruction of Routine2
Reading SIVEC  p7 - "Bace of branch table > :
as a Halfword BASE + 800 [ 1st Instruction of Routine3 |

BASE + CO00 [_1st Instruction of Routine4 |

lhz RX,0(R3) #load as half

add RX, RX, R4 BASE +1000 | i |
mtsprCTR, RX BASE+n | |
bctr

Interrupt Handling Examples

The two routines shown here illustrate two ways of handling SIU interrupts using assembly language. In
this first case, there is a branch table available to direct us to the various interrupt service routines for
the sixteen sources on the SIU interrupt controller. When an interrupt occurs, the state is saved, and
then R3 is set to point at SIVEC. SIVEC is a register in the internal memory map, so it is easy to set up
a pointer to its location.

R4 is then set to point at the base of the branch table. Later in the routine, there is a "load byte" of the
contents of the location to which R3 is pointing - that is, the interrupt code. This is loaded into a general-
purpose register. Next, the general-purpose register is added to R4. The sum is placed in the general-
purpose register. Then, the general-purpose register is moved into the Counter register. Finally, the
routine branches to the location to which the Counter register points. This location contains the
appropriate branch instruction, and program control branches to the desired service routine.

Another method includes having a set of service routines that are 400 hex bytes or fewer in length. In

this case, it is possible to have the same routine with one difference: loading a half-word zero extended,
rather than a byte. This automatically sets up a pointer to the appropriate service routine in the set.

For More Information Contact: www.freescale.com 397



Freescale Semiconductor, Inc.

SLIDE 20-14

Example (1 of 3)

/*
/*
/*
/*

1
2

g b~

This routine increnments a counter each time an edge occurs*/
on IRQL. The exception vector table is initialized with */

interrupt service routine and the service routine junps to*/
a function based on the interrupt code. */
#i ncl ude "npc860. h" /* INTNL MEM MAP EQUATES */
struct i mbase *pi nm /* PNTR TO | NTNL MEM NAP */
mai n()
void intbrn(); /* EXCEPTI ON SERVI CE RTN */
int *ptrs, *ptrd; /* SOURCE & DEST PA NTERS*/

pi nmm = (struct inmmbase *) (getimr() & OxFFFFO000);
/* INT PNTR TO | MVBASE */

ptrs = (int *) intbrn; /* INT SQURCE PO NTER  */
ptrd = (int *)(getevt() + 0x500); /* INT DEST PQ NTER */
do /* MOVE ESR TO EVT */

*ptrd++ = *ptrs; /* MOVE UNTI L */
while (*ptrs++ ! = 0x4c000064) ; /* RFl | NTSRUCTI ON */
pi mm >PDDAT = 0; /* CLEAR PCRT D DATA REG */
pi m >PDDI R = Oxff; /* MAKE PCORT D8-15 QUTPUT*/
pi M >SI EL. ED1 = 1; /* NMAKE | RQL FALLI NG EDGE*/
pi mm >SI MASK. ASTRUCT. | RML = 1; /* ENABLE | RQL | NTERRUPTS*/
asm(" mspr 80,0"); /* ENABLE | NTERRUPTS */
while (1==1);

Example (1 of 3)

In this example, a counter is incremented each time an edge occurs on IRQ1. The exception vector

table is initialized with the interrupt service routine and the service routine jumps to a function based on
the interrupt code.

Lines 1 through 13 are similar code from previous examples.

Line 14 sets SIEL for IRQ1 to be edge sensitive.

Line 15 accesses SIMASK as a bit structure and sets the mask bit for IRQ1, thereby enabling interrupts
from this source.

And line 16 enables The Power PC core to respond to interrupts as has been discussed previously.

For More Information Contact: www.freescale.com

398



Freescale Semiconductor, Inc.
SLIDE 20-15

Example (2 of 3)

18 #pragma interrupt intbrn
19 void intbrn()

20 void irqglesr();

21 asm (" stwu r9,-4(r1)"); /* PUSH GPRO ONTO STACK */
22 swi tch (pi mm >SI VEC. | /* PROCESS | NTERRUPT CCDE*/
23 case 8: asm (" nfspr r9,8"); /* PUSH LR ONTO STAKK */
24 asm (" stwu r9,-4(r1)");
25 asm (" bla irqglesr"); /* PROCESS | RQL CCDE */
26 asm (" lwz r9,0(r1)"); /* PULL LR FROM STACK */
27 asm (" addi ri1,r1,4"); /* RESTORE STACK PA NTR*/
28 asm (" mspr 8,r9");
29 br eak;
30 defaul t:;
}

31 asm (“ lwz r9,0(r1)"); /* RESTORE r9 */
32 asm (“ addi r1,r1,4"); /* RESTORE STACK PQ NTER*/

}
33 void irqglesr()

{
34 pi mm >S| PEND = 1<<(31-2); /* CLEAR | RQL | NT PENDI NG/
35 asm (" nfspr r9,26"); /* PUSH SRRO ONTO STACK */
36 asm (" stwu r9,-8(r1)");
37 asm (" nfspr r9,27"); /* PUSH SRR1L ONTO STACK */
38 asm (" stwr9,4(rl1)");
39 asm (" mspr 80,0"); /* ENABLE | NTERRUPTS */

Example (2 of 3)

The function, ‘intbrn’, is the exception service routine.

In line 22, the interrupt code in SIVEC is read and, based on that value, the interrupt is serviced. In a
complete example, 16 cases would be handled. For brevity, only the case of interest is shown here, that
of IRQ1. As can be determined from the User Manual, the interrupt code for IRQ1 is 8. The code for
case 8 saves the link register on the stack and, in line 25, branches to the subroutine or function irglesr.
Lines 26 through 32 contain code to take saved registers off the stack upon returning from irqlesr.

The function, irglesr, begins at line 33. In line 34, writing a one to it clears the bit in SIPEND for IRQL.
This is required in this case because the interrupt is edge sensitive. If it were a level sensitive interrupt,
the SIPEND bit would be cleared when the source of the interrupt is cleared.

Lines 35 through 39 make the interrupt service routine recoverable.

For More Information Contact: www.freescale.com 399



Freescale Semiconductor, Inc.

SLIDE 20-16
Example (3 of 3)
40 pi mm >PDDAT += 1; /* | NCREMENT DI SPLAY
41 asm (" mspr 82,0"); /* NAKE NON- RECOVERABLE
42 asm(" Iwz r9,4(r1)"); /* PULL SRR1L FROM STACK
43 asm (" mspr 27,r9");
44 asm(" Iwz r9,0(r1)"); /* PULL SRRO FROM STACK

45 asm (" addi rl1,r1,8");
46 asm (" mspr 26,r9");

getimm()

asm(" nfspr 3,638");

}
getevt () /* GET EVT LCCATI ON */
if ((getnsr() & 0x40) == 0) /* ITF MBRIPISO */
return (0); /* THEN EVT IS I N LON MEM/
el se /* ELSE */
return (OxFFFO0000); /* VT ISINH& MM */

}
get nsr () /* GET MACH NE STATE REG VALUE */
asm(" nfnsr 3"); /* LQAD MACH NE STATE REG TO r3 */

}

Example (3 of 3)

*/
*/
*/

*/

Line 40 increments the LED counter. And lines 41 through 46 restore the registers prior to returning to

the interrupt service routine.

For More Information Contact: www.freescale.com

400



Freescale Semiconductor, Inc.

Chapter 21: Memory Controller

SLIDE 21-1

The Memory Controller

What you <« How the Memory Controller operates
will learn ¢ What are the Memory Controller Pins?
» How the Global (Boot) Chip Select Operates
» How to use the Memory Controller with SRAM and
Peripheral Devices
» How to use the Memory Controller with DRAM devices.

In this chapter, you will learn:

1. How the memory controller operates

2. What are the memory controller pins?

3. How the global (boot) chip select operates

4. How to use the memory controller with SRAM and peripheral devices
5. How to use the memory controller with DRAM devices

For More Information Contact: www.freescale.com 401



Freescale Semiconductor, Inc.

SLIDE 21-2

How the Memory Controller Works
| ADDRESS(0:16),AT(0:2) > Address

{J Latch

{4 c—— {4 E— Multiplexer
| ! and

u—u Base Register (BR) | Base Register (BR) | Incrementor

{J ’ — LL‘?{JJJ — Nl?‘/lx
Option Register (OR) | Option Register (OR) |
I |

-1
U.P.M Access|Request ATTRIBUTES V cs(07)
—————
SCY(03) ¥ Expired | General Purpose | IWE(Q3)
: . | Wait State Counter | . d' CrI:/in St1elect OE
- : Loa achine TA
Machine )§ Mode I?egster(M.X.M.F ) Burst, Read/\N»rite D E—
|_| - - | r| U.P.M Access Request_ ' s (07)
Memory PeriodicTimer  Ju.P.M Access Acknowledgel U p.m 4r
VI . . . User %,
I_ . Turn On Disable Timer |Arbiter Programmable BS_B(0:3)
Memory Disable Timer |~ Enable Machine  |GPL(0:5)
Memory Command Regjister(M.C.R fommand) > 1A
v 9 1 "UP.M Command — | <UPWAIT
. wp Done —— |Memory Data Register (M.D.R) |
Memory Status Register(M.S.R) ™ <e—— PRTY(0:3)
Parity Error| Parity Logict—_, 03D =
. -

How the Memory Controller Works

The memory controller is responsible for the control of up to eight memory banks. It supports a glueless
interface to SRAM, EPROM, flash EPROM, various DRAM devices, and other peripherals. It supports
external address multiplexing, periodic refresh timers, and timing generation for row address and
column address strobes.

The operational flow of the MPC860 memaory controller begins with the assertion of an address. When
a new access to external memory is requested, the memory controller determines whether the
associated address falls into one of the eight address ranges defined by the eight base register and
option register pairs. Each base register specifies a start address, and each option register specifies a
length.

Additionally, the memory controller checks address type bits 0 to 2. An access to a memory bank may
be restricted to certain address type codes for system protection. The address type specifies whether
an address is a CPU or CPM access, a problem state or a privilege state, and an instruction or a data
access. The User Manual contains a table with the address types definition. If the address does not fall
into one of the address ranges, the access must be handled on the bus control pins. However, if the
address falls into one of the appropriate address ranges, the memory controller processes the memory

For More Information Contact: www.freescale.com 402



Freescale Semiconductor, Inc.

access using the General-purpose Chip Select Machine, or one of two User Programmable Machines.
In general, the user will choose the GPCM with static RAM, and the UPMs with dynamic RAM.

First, let us discuss the General-purpose Chip Select Machine. The General-purpose Chip Select
Machine is designed to interface to SRAM, EPROM, Flash EPROM, and other peripherals. The
general-purpose chip selects are available on lines CSO0 through CS7. CSO0 also functions as the global
chip select for accessing the boot EPROM. In the case of a write access, the GPCM asserts one, two,
three or four Write Enables, depending on the number of bytes to be written in this access. In the case
of a read access, the General-purpose Chip Select Machine asserts Output Enable, to enable the data
to be returned from the memory. Also, the General-purpose Chip Select Machine supports a TA* signal.
This machine can generate a Transfer Acknowledge, or the user can choose to generate a Transfer
Acknowledge externally. The General-purpose Chip Select Machine supports a number of methods of
tuning the timing of a memory access. We discuss these methods in more detail later in this chapter.
However, one method includes the wait state counter. If the user wishes the General-purpose Chip
Select Machine to assert TA*, it is possible to insert up to 30 wait states of the proper length to permit
accesses to slow devices.

Let us now discuss the option of implementing one of two User Programmable Machines. The UPM
allows connection to a wide variety of memory devices. Like the GPCM, the User Programmable
Machine asserts a Chip Select, but one which has been programmed into a waveform, and becomes
RAS for a bank of DRAM. Each of the UPM'’s four Byte Selects are likewise programmed into
waveforms to become CAS for the DRAM bank. There are four Byte Selects for Machine A, and four
Byte Selects for Machine B.

Additionally, there are also six General-purpose lines available, which can be programmed into any
needed waveform to within a one clock-cycle resolution. These General-purpose lines are particularly
suited for supporting some of the newer memory technologies, such as synchronous DRAM. The User
Programmable Machine generates TA*. In fact, it must, as there is no option to supply TA* externally
with this machine.

There is also an UPWAIT signal. This signal provides a means for an external device to signal back to
the UPM that more time is required. If the UPWAIT signal is asserted, the UPM essentially freezes until
the signal is negated.

Since there are two UPMs, A and B, each UPM has its own set of the following. A machine mode
register provides each UPM with control of address multiplexing, programming for the DRAM refresh
rate for the Memory Periodic Timer, programming for the Memory Disable Timer, which inserts a hold-
off on back-to-back cycles if needed, and various other controls.

The UPM, as its name implies, requires user programming. The user must program sixty-four, 32-bit
entries, which we will cover later. The UPM is programmed via the Memory Data Register and the
Memory Command Register.

The Memory Status Register reports write-protection errors and parity errors, as desired.

For More Information Contact: www.freescale.com 403



Freescale Semiconductor, Inc.

SLIDE 21-3

What are the Memory Controller Pins?

4

T» CS(0:1,4:5)*

—5—> CS2* plus CS2*/GPL_A2*/GPL_B2*
£, CS3* plus CS3*/GPL_A3*/GPL_B3*
> CS6*/CE(1)_B*

— > CS7*/CE(2)_B*

—Z—» BS_A(0:3)*

> BS_BO0*WEO*/IORD*

- BS_B1*WE1*IOWR*

- BS_B2*WE2*/PCOE*

- BS_B3*WE3*/PCWE*

L » GPL_A0*GPL_BO*

> OE*/GPL_A1*GPL_B1*

<« GPL_A4*UPWAITA

«—— GPL_B4*/UPWAITB

L GPL_A5*

* CS(0:7)* - chip select pins

* BS_A(0:3)* - UPMA byte select
pins

* BS_B(0:3)* - UPMB byte select
pins

* GPL(0:5)* - general purpose pins
» TA* - transfer acknowledge pin
* UPWAITA - UPMA wait pin

* UPWAITB - UPMB wait pin

» AS* - address strobe pin

* BADDR(28:30) - burst address
pins

* WE(0:3)* - write enable pins

» OE* - output enable pin

—» GPL_B5*/BDIP*
«—> TA*

———— AS*

-2, BADDR(28:29)

—— > BADDR30/REG*

What are the Memory Controller Pins?

The diagrams shown here summarize the memory controller pins. CS(0:7)* are the chip select pins. Of
these, Chip Selects 0 through 5 are all standalone, meaning that these pins support only the chip select
function. Chip Selects 6 and 7, however, are shared with two pin functions of PCMCIA Port B.
Therefore, if the user wishes to implement Chip Selects 6 or 7, he must choose which function to use.
Chip Selects 2 and 3 both offer an additional, shareable pin. However, if the user does not need the
shared functions and if the chip selects are heavily loaded the two extra pins can provide the extra drive
for those DRAMSs.

There are Byte Select pins for UPMa and UPMb. The Byte Select pins for UPMa are standalone, while
the Byte Select pins for UPMb are shared with the Write Enables of the GPCM. The Byte Select pins
for UPMb are also shared with the PCMCIA interface signals. It is possible to have one of these pins
connected to DRAM, SRAM and to PCMCIA.

Next, we see the General-purpose pins, some of which support shared functions. GPL_AO0* and
GPL_BO* are the General-purpose Line 0 on each machine. It is possible to connect this pin to both
machines. In this case, when one machine asserts, its signal drives the pin, and when the other
machine asserts, its respective signal drives the pin.

Note also that GPL_A1* and GPL_B1* are shared with the output enable function. The output enable
function is used on the GPCM to connect to an SRAM. UPWAIT is shared with the General-purpose 4
Lines. General-purpose Line A5 is standalone, but GPL_B5* is shared with a function called BDIP*,
which is a bus control function. The bus control function is not used in conjunction with the memory
controller.

Next, we see Transfer Acknowledge as one of the memory controller pins. Next, the AS* pin stands for
"Address Strobe". This pin is useful in a multi-processor application. Another processor can use the
860 memory controller to handle its access to memory. To request this support, the second processor
asserts Address Strobe. Finally, there are three Burst Address pins which provide automatic address

For More Information Contact: www.freescale.com 404



Freescale Semiconductor, Inc.

incrementing of addresses on a burst access whether the burst is from the MPC860 itself or requested
from an external master.

SLIDE 21-4

How to Select the Memory Controller Pin Function

» CS(0:7)* - chip select pins

* BS_A(0:3)* - UPMA byte select
pins

* BS_B(0:3)* - UPMB byte select
pins

* GPL(0:5)* - general purpose pins
» TA* - transfer acknowledge pin
* UPWAITA - UPMA wait pin

* UPWAITB - UPMB wait pin

» AS* - address strobe pin

*« BADDR(28:30) - burst address
pins

* WE(0:3)* - write enable pins

» OE* - output enable pin

If.. then..
CS2* and not GPL_A2*/GPL_B2* SIUMCR.B2DD =1
CS3* and not GPL A3*/GPL B3* SIUMCR.B3DD =1

GPL_A4* and not UPWAITA MAMR.GPL_A4DIS =0
GPL_B4* and not UPWAITB MBMR.GPL_A4DIS =0
GPL_B5* and not BDIP* SIUMCR.GB5E =1

How to Select the Memory Controller Pin Function

Most of shared pins we have just discussed are dynamically shared; that is, whichever device is
connected and asserted drives the pin. For example, if the memory controller bank six is active, and if
the PCMCIA is active, then the pin CS6*/CE(1)_B* is asserted for accesses to bank six memory and for
accesses to the PCMCIA.

However, some shared pins are statically selected. For example, the extra Chip Select 2 and 3 pins are
statically selected. To select between the Chip Select and the General-purpose line, configure the
associated field in the SIU Module Configuration Register, as illustrated in this diagram. As another
example, if the user wishes to use General-purpose line 4 rather than the UPWAIT signal, then GPL_A4
or GPL_B4 in the memory mode register should be selected. Finally, the SIU Module Configuration
Register permits the user to select GPL_B5* versus BDIP*.

For More Information Contact: www.freescale.com 405



SLIDE 21-5

Freescale Semiconductor, Inc.

Memory Controller GPCM to SRAM
Connection Example

A(0:31)
MPC860 D(0:31)

RD/WR*
Cso*

CS1*

cs2*

CS3*

Cs4*

CS5*

CSs6*

CS7+
BS_BO*WEO*
BS_BI1*WEL*
BS_B2*WE2*
BS_B3*WE3*
GPL_AO*
OE*GPL_A1*
GPL_A2*
GPL_A3*
GPL_A4*
GPL_A5*

TA*

TEA*

AS*

Memory Controller GPCM to SRAM Example Connection

A29
Al3
DO
D7
CS1*
Pullup
OE*
WEO*

A29

6]

AO
Al16
DQO
DQ7
E1*
E2
G*
W*

AO
Al16
DQO
DQ7
E1*
E2
G*
W*

MCM6226Bs
A29 A0
A13 _° | A16
D16 ——| DQO
D23 DQ7
cs1 —| El*

Pullu — E2
OE* x
E2* &
AL W*
A29 | A0
A13 A16
D24 DQO
D31 _° | DQ7
cs1r — B
Pulup ——| E2
OE* —| G*
WE3* ——| w*

In this example, four MCM6226Bs are to be connected as 128K by 32 bits of memory. Begin by
connecting the address lines on each memory device to address lines A13 to A29.

Next, connect the data lines so one device is connected to DO to 7, the next to D8 to D15, the next to
D16 to D23, and the remaining device to D24 to D31.

Then, connect one of the chip selects, in this case, CS1, to each of the E1 pins on the 6226Bs. Any chip
select could be used here except that CSO0, the global boot chip select, would not be a good choice.

Each of the E2 pins on the memories should be pulled up. The G pin on each memory should be
connected to OE* on the 860. And finally each W* pin on the memories should be connected to a write

enable pin on the 860.

The memory with data pins, DO-7, should be connected to WEO*. The one with data pins, D8-15, to

WEZ1*. And so on.

Assuming this is not a multi-processor situation, AS* should be pulled up to +3.3 or +5 through a 10K
resistor. Similarly, if the bus monitor is being used, TEA* should be pulled up. And if TA* is never
asserted externally, it should also be pulled up.

For More Information Contact: www.freescale.com

406



SLIDE 21-6

Freescale Semiconductor, Inc.

What is the General Purpose Chip Select Machine?

MPC860
A[12:30]
D[0:7]
CS1*
OE*
WEO*
D[8:15]
WE1*

A(19)

DQ(8)

E*

\ JV Yyvy

G*

A

W*

MCM6946
512K x 8

A

What is the General-purpose Chip Select Machine?

A\

A(19)
DQ(8)
E*
G*
W*

MCM6946
512K x 8

The GPCM allows a glueless and flexible interface between the MPC860 and SRAM, EPROM,
FEPROM, ROM devices, and external peripherals. Some timing tuning parameters are included.

This illustration shows the MPC860 connected to a pair of MCM6946 chips, each 512 K by 8. They

form a one-half word wide SRAM.

SLIDE 21-7

Base and Options Registers

BRx - Base Register

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| BAO - BAL5S |
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
| BA16 | ATO_AT2 | Pso_Ps1 | PARE [WP | MSo_MS1 | Reserved | Vv |
ORX - Option Register
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| AMO - AM15 |
16 17 18 19 20 21 22 2324 25 26 27 28 29 30 31
AM16| ATMO_ATM2 [N T/|ACSO_ACS1|BI| SCYO_SCY3 [SETATRLX|EHTR [Res

For More Information Contact: www.freescale.com

407



Freescale Semiconductor, Inc.

Base and Option Registers

Each memory bank has a base register and an option register. To include a GPCM device in the
memory, the user must initialize the base register, or BRx, and the option register, or ORX.

Shown here is the GPCM programming model for the base and option registers. The first, 17-bit field in
the base register specifies the start address. ATO_AT2 specify the address type. Also shown are
fields specifying port size, parity enable, write protect, machine select, and the valid bit. The first, 17-bit
field of the options register specifies the address mask. The address mask provides masking on any
corresponding bits in the associated base register. Additional fields include a mask of the address type
bits, and a number of other parameters, which we discuss later in this chapter.

Note that in your memory controller initialization code, always write the Option Register first and the

Base Register afterwards, as the Base Register contains the Valid bit. You must not make a bank valid
before the Option Register is written, except in the case of the boot chip select, CS0*.

SLIDE 21-8

How to Locate a Device in the Memory Map

Initializing the Start
Address

Example: Locate. the device connected to CS5* so that the start address is 0x88000000.
pimm->BR5.BA0_BAL16 = 0x8800<<1;
Initializing the Length

0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16

2|1 |512|256|128/64(32(16| 8 | 4 | 2 | 1|512|256/128|64 |32
GIGIM([ M| M| M[M|{M[MIM|M|M| K| K|K|K[K

Procedure to initialize the length:

1. Look up the length on the template above and note the bit position.

2. Into ORx.AMO_AM186, enter ones from bit O to bit position; enter zeroes
into the remaining bits.

Example: Initialize CS5* for a length of 2Mbytes.

pimm->OR5.AMO_AM16 = Ox1FFCO:

How to Locate a Device in the Memory Map

A device is located in the memory map by programming its starting address in the base register, and its
length in the option register. For example, if the user wishes to locate the device connected to Chip
Select 5 so that the start address is 0x88000000, simply write 0x8800, shifted over by 1, into the
BAO_BA16 field of base register five.

The address mask for the Option Register is a fairly typical address masking scheme. You wish to have

zeros in the address bits, which will be within the address range, and ones in the bits which are outside
of the address range.

For More Information Contact: www.freescale.com 1



Freescale Semiconductor, Inc.

We have created this chart to help determine the mask quickly. To use it, locate the bit coorelating to
the size of your memory bank. Enter ‘1’s from bit O up to and including the bit cooresponding to size.
The remaining bits to the right of this will be zeros. For example, to initialize Chip Select 5 for a 2

megabyte memory bank, put ‘1’'s into bits 0 through 10, and zeros in the remaining bits. The mask is 1
1111 1111 1100 0000 or hexidecimal 1FFCO.

SLIDE 21-9

What is Chip Select Negation Time (CSNT)?

CLOCK | | | L | .

Address _X X

TS* -\ /

CSs* _\ /
ORX.CSNT =0

WE* \ ORX.CSNT = 1 —— /¥

Data X )

T
WHDX N ‘

.@—» -«
mustbe> twhox

* If necessary, ORx.CSNT = 1; this negates WE* a quarter of a clock earlier.
* B29 is 8 ns min at 25 MHz and 3 ns min at 40 MHz.

What is the Chip Select Negation Time (CSNT)?

Some older, slower devices have a longer data hold time on write accesses, spec twhdx, than the
MPC860 provides. This spec on the 860 is B29, and is 8 nanoseconds at 25 MHz, and 3 nanoseconds
at 40 MHz. To accommodate these devices, instead of modifying the memory controller to force the
data to linger on the bus, the 860 has the provision of allowing the user to negate WE*, and CS* also if
necessary, one quarter of a clock early.

For example, to write to a slow SRAM, needing a longer data hold time, the user can add wait states if
needed to meet the access time, then implement the CSNT bit to negate the WE* or WE* and CS* as
needed, to create the needed data hold time.

Note, to negate both WE* and CS* a quarter of a clock early, make ORx.ACS0_ACS1 equal to a '2' or
a'3.

For More Information Contact: www.freescale.com 409



Freescale Semiconductor, Inc.

SLIDE 21-10

What is Address to Chip Select Setup (ACS)?

cock || || )
Address :X X

s \_/ ORXACS0_ACS1 = 00

o TR e

OE* \

WE*

Data X > S

What is Address to Chip Select Setup (ACS)?

In the case when the address lines are buffered, it is possible that the assertion of Chip Select reaches
the memory device prior to the address. To correct such a problem, the user can configure ACS to
delay the assertion of Chip Select by a quarter or half clock. As shown in the previous slide, ACS can
be used in conjunction with CSNT to negate CS* a quarter of a clock early as well.

For More Information Contact: www.freescale.com



Freescale Semiconductor, Inc.

SLIDE 21-11

What is Relaxed Timing?

Read Access - ORXx.ACS0O_ACS1 =0b11 and ORX.TRLX =1

cLock | | | | l L | |

Address _X X_
TS T/
TA* \ /
cs* | \«—ORX.ACSO_ACS1=11
R/W ) | \
OE* \ /

OE* & CS* WA\
Data delayed one clock W

cycle

What is Relaxed Timing (TRLX)?

Relaxed timing is another way to tailor the timing required for an SRAM or peripheral. In this instance,
when the TRLX bit is set, strobes Chip Select, Write Enable, and Output Enable will be generated one
clock cycle later than normal. Used in conjunction with other control bits, many cycle types are possible.
For additional TRLX effects, see the user manual.

SLIDE 21-12

What is Extended Hold Time on Read (EHTR)?

ORXx.EHTR =1

cLock | | | | | | | | | |
Address X X
TS* o
TA* \ / \_

CSx* \

——
™~
—
™~

Csy* \

RIW ) \

OE* \ k
Tdt

Data X > X

For More Information Contact: www.freescale.com 3



Freescale Semiconductor, Inc.

Extended Hold Time on Read Accesses (EHTR)
Extended Hold Time on Read Accesses inserts one clock between the end of a read to one bank of
memory and an access to another bank of memory. Note that setting the EHTR bit inserts the extra

cycle only if the access is going to a different bank. This may come in handy when accessing slower
memories.

SLIDE 21-13

How to Program Wait States

CLOCK

Address

TS

Py
3

M ix

=
m

u

LG

Data

How to Program Wait States

When using internal TA* generation, the user may calculate the exact number of wait states needed,
and program this into the SCY bits, making the cycle length as precise as possible. It is possible to
insert up to 31 wait states, if necessary. To implement wait states, determine the timing of the longest
cycle needed by the selected SRAM or peripheral chip relative to the clock, typically a read access.
Two clock cycles would be no wait states. Every additional cycle needed is a wait state. Program this
value into the SCY bits of the Option Register.

For More Information Contact: www.freescale.com



Freescale Semiconductor, Inc.
SLIDE 21-14
Programming Model (1 of 2)

BRx - Base Register

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| BAO - BA15 |

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
| BA16 | ATO_AT2 | PSO_PS1 | PARE | WP | MSO_MS1 | Reserved | V |

ORXx - Option Register
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| AMO - AM15 |

16 17 18 19 20 21 22 2324 25 2627 28 29 30 31

AM16| ATMO_ATM2 [ /| ACSO_ACS1[BI| SCY0_SCY3 |SETAITRLX|EHTR|Res

Programming Model (1 of 2)

The first register in the programming model is the Base Register. The first, 17-bit field is the base
address. Next is the address type field, followed by the port size. The next field is Parity Enable. The
Write Protect field follows Parity Enable. MSO_MS1 is the machine select field. This field selects either
the GPCM, or one of the two UPM's. The final bit is the Valid bit.

The second register is the Option Register. As mentioned earlier, the first, 17-bit field of the options
register specifies the address mask. The address mask provides masking on any corresponding bits in
the associated base register. The next field of interest is called CSNT/SAM. CSNT is the chip select
negation field when the chosen machine is the GPCM. The SAM bit is Start Address Multiplex, when
the chosen machine is a UPM. This bit selects the address at the beginning of a memory access, the
real address, or an address that has been multiplexed per programming of the Mode Register. The
next field, ACSO_ACS1 permits the user to delay chip select by a quarter or a half-clock. The Bl field
stands for Burst Inhibit. When programming the Option Register for using the GPCM, this bit must be
set to a '1' because bursting is not possible with the GPCM. Next, the four bits in SCY0_SCY3 permit
the addition of wait states. Next, SETA specifies whether TA* is generated internally or externally. The
next two fields are the TRLX and EHTR fields which we have already covered.

For More Information Contact: www.freescale.com 413



Freescale Semiconductor, Inc.
SLIDE 21-15
Programming Model (2 of 2)

MAMR - Machine A Mode Register
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

| PTAO_PTA7 | PTAE [AMAO_AMA2 [Res [DSA0_DSA1Res|

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

| coctA | x| RLFAO_RLFA3 | WLFAO_WLFA3 | TLFAO_TLFA3 |
GPL_A4DIS

MBMR - Machine B Mode Register

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| PTBO_PTB7 PTBE| AMBO_AMB2 [Res|psBo_DsB1|Res|

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
| cocteB | ,| RLFBO_RLFB3 | WLFBO_WLFB3 | TLFBO_TLFB3 |

GPL_B4DIS

Programming Model (2 of 2)
Two other registers in the programming model are the mode registers, one for each of the two User
Programmable Machines.

SLIDE 21-16

Programming the Memory Controller for SRAM and
Peripheral Devices (1 of 2)

Example Timing Diagram, Write

Cycle

CLOCK

Address >< >< (use for ACS)
E N/

TA (use for CSNT)

cs B /]
wE \_ =
pata X X

For More Information Contact: www.freescale.com



Freescale Semiconductor, Inc.

Programming the Memory Controller for SRAM and Peripheral Devices (1 of 2)

In this example, two 1M by 18 SRAMs are to be configured into a single bank of memory, 1M by 36.
The configuration is to have the following characteristics:

CoNooO~WNE

Starting address - 0xFF000000
Address type(s) - all types
Read and write memory

Parity enabled

No wait states

Bank 1

Write enable and chip select to be negated 1/4 clock cycle early

Chip select to asserted 1/4 clock cycle late
TA to be asserted by the GPCM

The values for the base register and options register are shown in the next slide as reference.

SLIDE 21-17

Programming the Memory Controller for SRAM and

Peripheral Devices (2 of 2)

BR1 - Base Register

11 12 13 14 15

0 |

16 17 18 19 20 21 22 23 24 25 26

27 28 29 30 31

[o0Jo,0,0]0,0f0f]o0]o0,0

Reserved | 1 |

OR1 - Option Register

11 12 13 14 15

I 0 |

16 17 18 19 20 21 22 23 24 25 26

27 28 29 30 31

([oJo,0,0f1]1,

oJ1lo,0,0,

oJofofo]Jo]

Programming the Memory Controller for SRAM and Peripheral Devices (2 of 2)

Here is shown the values for the base and options registers correlating with the example in the previous
slide.

For More Information Contact: www.freescale.com



SLIDE 21-18

Freescale Semiconductor, Inc.

How the Global (Boot) Chip Select Operates

Interface Example

MPC860 29LVO010
Al5 Al6
[ ]
[ ]
[ ]
o
A31 AO
DO |« DO
[ ]
[ ]
D7 D7
CSO CE*
OE* OE*
WE WE*

How the Global Boot Chip Select Operates

The global boot chip select, CS0*, asserts from reset to allow access to a boot ROM. In this example,
the MPC860 interfaces to a Flash ROM. In this case it is an 8-bit ROM connected to DO-7 on the 860.
When the 860 comes up from reset, CS0* is automatically asserted. At this point, the 860 can access
the Flash ROM, and start executing code on that ROM.

SLIDE 21-19

Booting Sequence

@ From reset:

4 Gbyte memory map

CSo*

»

BR0O.BAO_BA16 =0
ORO0.AMO_AM16 =0

@ During initialization:

4 Gbyte memory map

Cso* T

BR0O.BAO_BA16 = New start address
ORO0.AMO_AM16 = New length

For More Information Contact: www.freescale.com

416



Freescale Semiconductor, Inc.

Booting Sequence

This diagram illustrates the steps in booting. Coming out of reset, CS0* has a starting address of zero,
and a length of the entire, 4 GB memory map. This will normally result in many images of the ROM in
the memory map, so, no matter what address is asserted, a location is accessed. Typically the user
reset code is written for the addresses at which the ROM will be eventually located. At some point in the
reset program, additional memory must be configured in the memory controller. The first step in this
additional memory configuration is to program CS0* so the ROM has a single image in memory. Next, it
is possible to initialize additional banks of memory. This is a simple and easy way to come out of reset.

SLIDE 21-20
Programming the Memory Controller for DRAM
Devices
BS(0:3)
cs1 1 RAS_ JE RAS_
CAS_ CAS_
GPLx W_MCM84256 [T | W_MCZI\QSEZSSG
256k x 8 X
A(21:29) A8 pro7) [TAL8 pros7y
8 8
D(0:31)
8 8
1| RAS_DJ[0:7] T—| RAS_ D[0:7]
CAS_ CAS_
|w_McM84256 | |W_MCM84256
MPC860 A[OZS] 256k x 8 L A[018]256k X 8

Programming the Memory Controller for DRAM Devices

The schematic diagram shown here display 4, 256K by 8 DRAMs connected to the MPC860. Address
lines 21 through 29 are connected to address 0 through 8 on each of the memory devices. The Chip
Select 1 connects to all the RAS pins, and the Byte Selects connect to the individual CAS pins. This
example uses the User Programmable Machine for the DRAMS. The user must still program the base
register and the options register as was done for the GPCM, but additional programming will be
required for a UPM. Notice that a General Purpose line is being used to provide the Write* to the
DRAMs. This is necessary for the user to have complete control over the read and write cycles. Do not
use the R/W* of the 860 for this signal.

For More Information Contact: www.freescale.com 7



Freescale Semiconductor, Inc.

SLIDE 21-21

Memory Controller UPM to DRAM
Connection Example

MPC860
A(0:31)|—— A29
D(0:31)|—— A0 _°

RD/WR* | ™ DO =
CSO*|— D7
Cs1* Cs2*
CS2¥ BS A0* ——
o3 — GPLx_ ——
CS5* |
CSe*|—
cST+|— A29 =3
BS_AO* A20
BS_A1l* D8
BS_A2* ™ 15 _°
BS_A3* |
GPL_A0*|—— €S2~
OE*/GPL_AL1* ™ BS_Al—
GPL_A2*[—— GPLx ——
GPL_A3*|——
GPL_A4*[——
N
CPL (10K ]— +33
TEA* [ 10K ]— +3.3
ASH T a0k J— +33

Memory Controller UPM Pins Example

In this example, four MCM81430s are to be connected as 1M by 32 bits of memory. Begin by

MCM81430s

A0 A29 A0
A9 A20 2| A9
DQO D16 DQO
DQ7 D23 ——| pQ7
RAS* CS2* —| RAS*
CAS* BS_AZ* —| case
W GPLx_ — wr
A0 A29 ——| Ao
A9 A20 A9
DQO D24 ———{ DQO
DQ7 D31 DQ7
RAS* CS2* ——| RAS*
CAS* BS_A3* CAS*
W+ GPLx W+

connecting the address lines on each memory device to address lines A20 to A29 of the 860. Note that

each device has 1 million unique locations and that ten address lines will uniquely access only 1

thousand locations. For this DRAM to be properly accessed, the address lines must be multiplexed in 2
groups of 10, thus enabling access to the one million locations. The MPC860 provides this multiplexing
without any additional logic (except in multi-processor configurations).

Next, connect the data lines so one device is connected to DO to 7, the next to D8 to D15, the next to

D16 to D23, and the remaining device to D24 to D31. Then, connect one of the chip selects, in this

case, CS2, to each of the RAS* pins on the 81430s. Any chip select could be used here except CSO*

which is used for the boot ROM. The CAS* pins on each memory should be connected to BS_A0*
through 3* pins on the 860. The memory with data pins, DO-7, should be connected to BS_AO0*. The

one with data pins, D8-15, to BS_A1*. And so on.

Finally, the W* pin on each memory should be connected to a General purpose line as shown on the

previous slide. Assuming this is not a multi-processor situation, AS* should be pulled up to +3.3 or +5
through a 10K resistor. Similarly, if the bus monitor is being used, TA* should be pulled up. And if TA* is

never asserted externally, it should also be pulled up.

For More Information Contact: www.freescale.com

418



Freescale Semiconductor, Inc.

SLIDE 21-22

The User Programmable Machine

External Memory Access
Request -
Internal Periodic Timer
Request » | Array Pointer - RAM
Generator Array
Software Request
A
Hg!qduest Increment I t' I \
Pointer nierna ;
External Signals
(LAST =0) Signals J
e Latch Timing Generator
UPWAIT a |
— ™ Request |«
. WAEN >
Logic

The User Programmable Machine

The User Programmable Machine is intended to be used with DRAM. The centerpiece of the User
Programmable Machine is the RAM array. The RAM array is internal to the UPM, and specifies the
logical value to be driven on the external memory controller pins for a given clock cycle.

There are sixty-four, 32-bit entries in the RAM array. When a memory access is requested, the Array
Pointer Generator points to the appropriate location in the RAM array which holds the coded 32-bit
words defining this specific type of access. For instance, the ram array words that will be used to
generate the waveforms to perform a Single Beat Read Access is at the internal ram array location hex
00. One by one, the 32-bit words beginning at hex 00 through hex 08 are fetched and fed to the
External Signals Timing Generator. Each zero and one of this 32-bit word corresponds to the state of
an external pin, for a duration of one clock cycle.

While each RAM array entry is asserted on the external pins, the Array Pointer Generator moves to the
next entry in the RAM array. The Array Pointer Generator continues to increment until the User
Programmable Machine reaches an entry in which the LAST bit in a RAM word is equal to a one. This
signifies the end of the access. If the User Programmable Machine encounters an entry in which the
Wait-Enable bit is set, the UPM checks the level on the UPWAIT pin. If it is asserted, the UPM halts
until such time as the UPWAIT signal negates. This provides freezing the memory controller as
required by an external device.

For More Information Contact: www.freescale.com 8



Freescale Semiconductor, Inc.
SLIDE 21-23

UPM Memory Access Types

External Read Single Beat Start Address - RSSA (RAM ADDRESS = 0x’00)
Memory Write Single Beat Start Address - WSSA (RAM ADDRESS = 0x’18)
Access Read Burst Cycle Start Address - RBSA (RAM ADDRESS = 0x’08)

Write Burst Cycle Start Address - WBSA (RAM ADDRESS = 0x'20)

Periodic Periodic Timer Request - (RAM ADDRESS = 0x30)

Timer
Request
BRGCLK T
— 7|PTP Prescaling divide by PTA[ > UPMA Periodic Timer Request
=1 divide by PTB [——> UPMB Periodic Timer Request
Exception Exception Request - (RAM ADDRESS = 0x3C)
Request

Software Write a valid command to the Memory Command Register (MCR).
Request RAM array may be read, or data written into it
(via the Memory Data Register MDR).

UPM Memory Access Types

An external memory access request is one of the most frequent types of memory accesses, and there
are four types: a Read Single Beat Start Address; a Write Single Beat Start Address; a Read Burst
Cycle Start Address; or, a Write Burst Cycle Start Address.

The Array Pointer Generator begins executing entries at 0x00, 0x18, 0x08 or 0x20, based on the type of
external memory access request that is occurring. Another kind of memory access request is the
Periodic Timer Request. The Periodic Timer Request calls for a refresh cycle to be executed. If the
Array Pointer Generator receives a Periodic Timer Request, it begins executing entries at address 0x30.
The Baud Rate Generator clock drives a user-configurable prescaler which then drives a separate
divider for User Programmable Machine A and User Programmable Machine B. It is therefore possible
to implement a different request rate for UPMA and UPMB.

A third type of memory access request is a software request. A software request is probably most
commonly used when the user programs the RAM array. To place data into a RAM array entry, the
user writes the required data into the Memory Data Register, and then writes a command to the
Memory Command Register.

Finally, it is possible for the User Programmable Machine to receive an Exception Request. In the case

of an exception, the UPM accesses location 0x3C, and executes the code in that location. Typically this
code would negate all signals, but there is space for four entries.

For More Information Contact: www.freescale.com 420



Freescale Semiconductor, Inc.

SLIDE 21-24
UPM Clock Scheme

UPM clock
scheme Internal
(for System Clock| | | | | |
System_to |—|—|—|—|—|
CLKOUT CLKOUT I ]
division GCLK1_50 ] ] .
Factor 1- GCLK2 50 | | ] |
EBDF = 00)

UPM clock |nternal
scheme  System Clock| | | | | | | I | I

(for CLKOUT | | I | |
System_to o0 kg 50 1 1

CLKOUT

division GCLK2_50 L ] |

Factor 2 -
EBDF =01)

UPM Clock Scheme

The RAM array words are made up of bits that designate the value for the different external signals at
different clock edges, with a one clock resolution for most bits, but for the CS* that will be RAS* and the
BS* that will be CAS* with a resolution of 1/4 of the System Clock Period. There are two clock schemes
available on the 860.

The first, shown in the upper portion of the illustration, is for System_to CLKOUT division factor 1, which
has an External Bus Division Factor (EBDF = 00). In this case, the internal System Clock and Clock
Out are the same. In addition, two more clocks are generated. One of these is GCLK2_50, which is
same as the System Clock and CLKOUT.

The second is GCLK1_50. GCLK1_50 is ninety degrees out of phase with GCLK2_50. The relative
timing of GCLK1_50 and GCLK2_50 provides the ability to control within a resolution of a quarter cycle
of the System Clock. For example, if the 860 has a 25 MHz clock, then CS* and BS* memory signal
timing can be controlled within 10 nanoseconds.

The second clock scheme for the MPC860 is shown in the lower portion of the illustration. This clock
scheme is for System_to CLKOUT division Factor 2 (EBDF = 01). In this case, CLKOUT is half the
frequency of the internal system clock; GCLK2_50 is the still the same as CLKOUT. GCLK1_50
becomes asymmetrical in this mode, with its falling edge coming a half clock cycle before that of
GCLK2_50

The programmer can change the value of CS* and BS* external signals as specified in the RAM array,
one circuit delay time after any of the edges of GCLK1_50 and GCLK2_50.

The BS lines values also depend on the Port Size, the External Address, and the value of the Transfer
Size (TSIZ) pins.

For More Information Contact: www.freescale.com 9



Freescale Semiconductor, Inc.

SLIDE 21-25
The UPM RAM Array
32 bits ]
Ram Array 64
GCLK1
GCLK2 | External Signals Timing Generator
Y
Curﬂk CS Line Byte Select
Selector Packaging

-

4

A

4

\

A

4

A

/

Dy

CS(0:7) GPLO GPL1 GPL2 GPL3GPL4 GPL5 BS(0:3)

The UPM RAM Array

TSIZ,PS,A(30,31)

e

The RAM array size for each UPM is 64 entries, 32 bits wide. GCLK1 and GCLK2 drive the External
Signals Timing Generator. The RAM array presents an entry to the External Signals Timing Generator.
This timing generator modifies the entry in order to generate the proper timing for the following:

1. a Chip Select used as a RAS* line -- one of eight

2. six General-purpose lines, and

3. four Byte Selects used as CAS* signals.

Whether the Byte Selects actually are asserted is dependent on the size of the access, the port size,

and the values of A30 and A31.

For More Information Contact: www.freescale.com

422



Freescale Semiconductor, Inc.

SLIDE 21-26

The UPM 32-Bit RAM Word Structure
RAS Control CAS Control
)N O\ YO\ O\

0 1 2 3 4 5 6 7
CST4|CST1|CST2|CST3|BST4|BST1|BST2|BST3

8 9 0] 1n 12 13 | 14 15
— [GOLOJGOL1|GOHOJGOH1|G1T4[G1T3[G2T4|G2T3

General Purpose Lines
(Output Enable, etc)

— 16 [ 17 [18 [ 19 [ 20| 21 [ 22 | 23
G3Ta|GaT3(BHA|CATS | G514l G5T3

24 25 26 27 | 28 29 30 31
LOOP EXEN[AMX0|AMX1 NA |UTA |TODT|LAST

Repeats a Pattern / \ / Address T

Exception Increment Last UPM Service
Enabled AiggrEeXsts TA State Requested
Multiplexing Disable Timer On

(Precharge Time)

The UPM 32-Bit RAM Word Structure

The RAM Array word correlates to named bits, and this chart illustrates that these bits take on important
roles.

The most significant four bits in a RAM array entry are used to control the RAS or the Chip Select
signal.

The next four bits are used to control the CAS or the Byte Select signal.

The next sixteen bits, or two bytes, are primarily involved with controlling the General-purpose Lines;
however, there are two alternate functions included also. One alternate function is Wait Enable. As
mentioned earlier, if the User Programmable Machine encounters an entry in which the Wait-Enable bit
is set, the UPM determines whether the UPWAIT signal is asserted. If the UPWAIT signal is asserted,
the UPM halts until such time as the UPWAIT signal negates. The second alternate function is DLT3, or
Data Latch 3, which we discuss later.

Finally, the last byte in a RAM array entry is comprised of a set of control bits.

A loop bit permits looping within the RAM array entries. Two RAM array entries with the loop bit set
designate the beginning and end of a loop. The Array Pointer Generator executes the loop the number
of times specified in the mode register, either MAMR or MBMR. In the case of a read access, the loop
executes the number of times specified in RLFx0_RLFx3. In the case of a write access, the loop
executes the number of times specified in WLFx0_WLFx3. And in the case of a refresh access, the
loop executes the number of times specified in TLFx0_TLFx3.

For More Information Contact: www.freescale.com 423



Freescale Semiconductor, Inc.

When EXEN is set, the UPM will allow exceptions to interrupt the access underway and jump to the ram
array code which defines how you want to terminate the memory cycle before the 860 processes the
interrupt. Typically, the exception ram words merely ensure that all bus signals are released, to avoid
possible bus contention while the interrupt is being serviced.

AMXO0 and AMX1 control the address multiplexing, i.e. the switch from row to column addresses.
The Next Address (NA) bit controls when to assert the next address during a burst.

Bit 29 controls the assertion of Transfer Acknowledge.

Bit 30 is used to turn on the disable timer, that is, the RAS precharge timer.

Finally, the LAST bit indicates with a value of '1' that this entry is the last UPM service requested.

SLIDE 21-27

Example for Calculating RAM Array Words (1 of 2)

cikout [ L L L LI L L L L L LI 1=
GCLK1 50I__I__I__I__I_IJ__I__I__I_ RN RE
A(0:31) X row Xcolumn 1
TS TN /T T
RD/WR __/
D(0:31) X T X
TA T NL/T
/
/

CS1_ \
(RAS)

%%%:320:3))

Example for Calculating RAM Array Words (1 of 2)

The example here shows a Single Beat Read Access. CLKOUT and GCLK1_50 are both shown at the
top of the diagram. Also, we see the address multiplexing taking place, illustrated in the third row from
the top of the diagram. The user has control of the address multiplexing, and could change it if required
with the AMXO0 & 1 bits in the RAM array entry.

The Transfer Start signal is shown next. Transfer Start always asserts for one clock cycle at the
beginning of every access. Read is asserted, since the operation is a read access. Also shown is the
juncture at which data is available. Finally, TA*, CS1* and the Byte Select signals are asserted. The
user has control over the assertion of these last three signal types but not over the RD/WR* signal,
which is why we advise you to either use the Write Enables or use a general purpose line and create
your own write enable, giving you total control of when it asserts and negates.

For More Information Contact: www.freescale.com 424



Freescale Semiconductor, Inc.

SLIDE 21-28

Example for Calculating RAM Array Words (2 of 2)

cst4 0 0 0 Bit 0
cstl 0 0 0

cst2 0 0 1 Bit 2
cst3 (0] (0] 1 Bit 3
bst4 1 1 0 Bit 4
bstl 1 1 0

bst2 1 0 1 Bit 6
bst3 1 0 1 Bit7

(bits 8 - 23 are general purppse ping or “don’t cares, not used in this example)
loop 0 0 0 Bit 24
exen 0 0 0 Bit 25
amx0 0 0 1 Bit 26
amx1 0 0 0 Bit 27
na 0 0 0 Bit 28
uta 1 0 1 Bit 29
todt 0 0 1 Bit 30
last 0 0 1 Bit 31
RSS RSS+1|RSS+2

Example for Calculating RAM Array Words (2 of 2)

This chart portrays the RAM array entries as they correspond to the clock cycles in the wave form
diagram from the previous slide. You may wish to return to the previous slide to compare the two
illustrations.

In this example, the chart displays the significant bits in sequence from left to right, and from top to
bottom. As you may recall, the most significant bits are cst4, cstl, cst2, and cst3. Here, these bits are
shown to be all zeros, which corresponds to fact that the Chip Select line, serving as RAS to the
memory, is all ‘0’s during the first clock cycle. The cst(x) bits are shown on a slant in this diagram to
emphasize that the value in cst4 is asserted on the CS1* pin during the first quarter clock cycle, the
value of cstl during the next quarter clock cycle, and so on.

Next the Byte Selects (bst4, bstl, bst2, and bst3), serving as CAS are shown. Each of these four
entries has a value of one, which corresponds to the fact that in the wave form diagram, the Byte
Selects lines are all high during the first clock cycle. The General-purpose lines are not used, and
therefore not shown. The command bits all have a value of zero, with the exception of UTA, which has
a value of one to keep Transfer Acknowledge from asserting just yet.

The amx0 and amx1 bits are zeros which causes the address switch from row to column in the last
guarter clock of the first clock cycle. This summarizes the first clock cycle, and the first RAM array
entry.

During the second clock cycle, CS1* remains asserted. The Byte Selects are negated for two quarter

clocks, and then asserted for the next two quarter clocks, as shown here. Among the command bits,
UTA changes from a ‘1’ to a ‘0, but not until the third quarter of the second clock cycle. During the third

For More Information Contact: www.freescale.com 425



Freescale Semiconductor, Inc.

clock cycle, CS* is low for two quarter clocks, and then high for the next two, as shown in the wave form
diagram. The Byte Selects are also low for two quarter clocks, and then high for the next two. Among
the command bits, the LAST bit is set, indicating that this is the last RAM array entry. TODT is also set,
turning on the RAS precharge timer. Finally, UTA negates back to a one during the third quarter clock
cycle. This single read cycle is now over after three clocks.

SLIDE 21-29

Multiplexing the Address Lines for DRAM

CLKOUT S I S R
Gelkiso L. | L[ L

A©0:31) X X X
TS /
| |
Address Controlled Address Controlled
by SAM by AMx
Word 1 Word 2

Multiplexing the Address Lines for DRAM

Programming for the type and values of the multiplexed address bits is accomplished in two places. The
Start Address Multiplex (SAM) bit in the Options Register controls the first clock cycle. The SAM bit
determines whether the addresses fall straight through to the bus, or whether the first access begins
with the multiplexed addresses. The Address Multiplex (AMx0_AMx2) bits in the Machine Mode Register
(MxMR) select the scheme of multiplexing used. The Users Manual summarizes how these bits can be
defined to interface with a wide range of DRAM modules. AMx0 & 1 in the RAM array entry control
when the switch from row address to column address, or reverse, occurs.

For More Information Contact: www.freescale.com 426



SLIDE 21-30

Freescale Semiconductor, Inc.

Initialize Memory Controller Example (1 of 4)

# UW and Memory Gontrol lers are set only after a hard reset.
# Menory Control |l er:

Baselnit:
lis
ori
stw

lis
ori
stw

lis
ori
stw

lis
ori
stw

lis
ori
stw

lis
ori
stw

li
sth
lis

ori
stw

Example (1 of 4)

r3, Oxf f e0
r3, r3, 0x0954
r3,aR0(r4)

r3, Oxff e0
r3, r3, 0x0001
r3, BRO(r4)

r3,oxffff
r3,r3,0x8110
r3, RL(r4)

r 3, Oxf 000
r3, r3, 0x0001
r3,BRL(r4)

r 3, Oxf e00
r3, r3, 0x0800
r3,a(r4)

r 3, 0x0000
r3,r3, 0x0081
r3,BR2(r4)

r 3, 0x0800
r3, MPTPR(r 4)

r 3, Oxc0a2
r3,r3,0x1114

r3, MVR(r4)

# QRO = Oxffe00954

# BRO = Oxffe00001 : flash at Oxffe00000
# CRL = Oxffff8110

# BRL = 0xf0000001 : BCSR at Oxf 0000000
# CR2 = Oxf e000800

# BR2 = 0x00000081 : CRAM at Ox0

# MPTPR = 0x0800 (16bit register)

# MAWR = Oxc0a21114

This example initializes the memory controller for:

1. DRAM on chip select 2 from address O
2. Flash on chip select 0 from address OxFFE0O0000
3. and Board control and status registers from address OxF0000000

First the base registers and options registers are initialized. Then the prescalar register, MPTPR, is
initialized for the required refresh timeout. And then the memory mode register for UPMA, MAMR, is

initialized.

For More Information Contact: www.freescale.com

427



Freescale Semiconductor, Inc.

SLIDE 21-31

Initialize Memory Controller Example (2 of 4)

Ii r 3, 0x0800 # MPTPR = 0x0800 (16bit register)
sth r3, MPTPR(r 4)
lis r 3, Oxc0a2 # MAMR = Oxc0a21114
ori r3,r3,0x1114
stw r3, MAMR(r 4)
# UPM proganming by witing to its 64 RAM | ocati ons
UPM ni t:
lis r5, UpnTabl e@a  # point R5 to paranenter table
ori r5,r5, Upnirabl e@
lis r6, UpnTabl eEnd@a # point R6 to end paranenter table
ori r6, r6, Upnirabl eEnd@
sub r7,r6,r5 # Upnirabl eEnd - Upnirabl e
sraw r7,r7,2 # /4
li r6, 0x0000 # Command: OP=Wite, UPMA, MAD=0
UpmA i t eLoop:
| wz r3,0(r5) # get data fromtable
stw r3, MDR(r 4) # store the data to MD register
stw r6, MCR(r4) # issue command to MCR register
addi r5,r5,4 # next entry in the table
addi r6,r6, 1 # next MAD address
cnp ré, r7 # done yet ?
bl t UpnWit eLoop

Example (2 of 4)

This part of the example initializes the UPMA RAM array. First r5 is initialized to the beginning of the
table of values for the RAM array. The values in this table were determined using a software tool,
UPMB860, available on the Freescale Netcomm Web site. Next the length of the table is calculated and
stored in r7. Then, r6, which will be used to supply commands, is cleared. The command represented
by all ‘0’s is: write operation, for UPMA, entry address 0. Then the example goes in the loop. Each
iteration of the loop gets a value from the table, pointed to by r5, and stores it in the Memory Data
Register, MDR. Then the command to write MDR, stored in r6, is written to the Memory Command
Register, MCR. This is done for 64 entries and completes the initialization of the memory controller.

For More Information Contact: www.freescale.com 428



Freescale Semiconductor, Inc.

SLIDE 21-32

Initialize Memory Controller Example (3 of 4)

# UPM contents for the default ADS menory configuration

UpmTabl e:

#

# | * DRAM 70ns - single read. (offset 0 in upm RAM */
.l ong 0xO0fffcc24, 0OxOfffcc04, 0OxOcffccO4
.l ong 0x00f fcc04, 0x00ffcc00, 0x37ffcc4a7

# |* offsets 6-7 not used */
.long oxffffffff, Oxffffffff

# |/ * DRAM 70ns - burst read. (offset 8 in upm RAM */
.l ong 0xO0f ffcc24, OxOfffcc04, 0x08ffcc04, 0x00ffcc04
.l ong 0x00ffcc08, 0xOcffcc44, 0x00ffecOc, 0x03ffec00
.l ong 0x00f fec44, 0x00ffcc08, 0xOcffcc44, 0x00ffec04
.long 0x00f fec00, O0x3fffecd7

# |* offsets 16-17 not used */
.long oxffffffff, Oxffffffff

# /* DRAM 70ns - single wite. (offset 18 in upm RAM) */
.long 0x0f af cc24, 0xOf afcc04, 0x08afcc04, 0x00afcc00

0x37ffccd7
# |/* offsets 1d-1f not used */

.1 ong Oxffffffff, Oxffffffff, Oxffffffff

# /* DRAM 70ns - burst write. (offset 20 in upm RAM) */
.l ong 0x0f af cc24, 0xO0f afcc04, 0x08afcc00, 0xO07afccdc
.l ong 0x08afcc00, 0xO07afccd4c, 0x08afcc00, 0xO07afccdc
.long 0x08afcc00, 0x37afcc47

Example (3 of 4)

This slide shows the contents of the UPM memory array.

SLIDE 21-33
Initialize Memory Controller Example (4 of 4)

# |* offsets 2a-2f not used */

.long Oxffffffff, Oxffffffff, Oxffffffff
.long Oxffffffff, Oxffffffff, Oxffffffff
# /* refresh 70ns. (offset 30 in upm RAM) */
.l ong OxeOf fcc84, 0x00ffcc04, 0x00ffcc04, OxO0fffcc04
.l ong Ox7fffcc04, Oxffffcc86, OxffffccO5
# |* offsets 37-3b not used */
.long oxffffffff, Oxffffffff, Oxffffffff, Oxffffffff
Oxffffffff
# | * exception. (offset 3c in upm RAM */
.l ong 0x33ffcc07
# |* offset 3d-3f not used */
.long oxffffffff, Oxffffffff, Ox40004650

UpnmTabl eEnd:

Example (4 of 4)

Here is the remaining UPM contents table.

For More Information Contact: www.freescale.com 429



Freescale Semiconductor, Inc.

Chapter 22: MPC860 Reset Controller

SLIDE 22-1

MPC860 Reset Controller

What you + What reset sources are available
will Learn  + How each reset response operates
* The effect of the MODCK pins
» Hardware configuration with the data pins
» How to connect the reset sources
* How to initialize for reset

In this chapter, you will learn to:

. Identify what reset sources are available

. Describe how each reset response operates
. Describe the effect of the MODCK pins

. Configure hardware with the data pins

. Connect the reset sources

. Initialize for reset

oA WNPE

Be aware that when you see signals that have either a bar over them or are followed by an asterisk, this
means that the signal being discussed is active low.

For More Information Contact: www.freescale.com 430



Freescale Semiconductor, Inc.

SLIDE 22-2

What is the Reset Controller?

Reset Controller

PORESET &
HRESET < &
SRESET < =

Loss of Lock ——>

Software ___
Watchdog

Checkstop —>

Debug Port
Hard Reset — >

Debug Port
Soft Reset — >

TRST &

What is the Reset Controller?

A reset controller responds to the assertion of a reset source. The action it takes depends on the
source, but typically it executes the routine at location 0x100 in the Exception Vector Table and
initializes particular parameters based on the values of MODCK [0:1] and the data bus pins 0 - 14.

This diagram illustrates the sources of reset. The first three sources illustrated are pins: Power-on-
Reset, Hard Reset, and Soft Reset. Power On causes the hard and soft reset pins to be asserted, and
in this mode the Hard and Soft reset pins are outputs. However, in the case of a system that is already
up and running, it is possible to configure a push button or a similar device to cause an external soft or
hard reset, and in this mode, the pins are inputs.

A loss of lock by the PLL can generate an internal hard reset, if programmed to do so. Likewise, the
software watchdog can generate an internal hard reset, as can a check-stop error, if programmed to do
so. Next, the development tool, which is connected to the debug port, can issue commands to perform
a hard or soft reset.

Finally, on the JTAG port, a pin named TRST* can cause an internal soft reset for testing purposes.
The important functions of the reset controller are first, that it takes a different action, depending on the

source of the reset; and, second, that the Reset Status Register reflects the last source to cause a
reset.

For More Information Contact: www.freescale.com 431



Freescale Semiconductor, Inc.

SLIDE 22-3

How Reset Pin Inputs are Handled (1 of 2)

Power On —( Power On)\. sample MODCK pins and init clocks
Reset /. HRESET* and SRESET* are asserted

PORESET is negated and PLL lock

Internal
Initiated
HRESET

* HRESET* and SRESET* assert
*The time counter is set to 512

Internalor ___,.
External
HRESET

asserted ] ]
l Timer expires (after 512 clocks)

¢ Sample configuration from data pins
¢ Negate HRESET* and SRESET*
» Wait for 16 clocks

16 Clocks expire Test for

HRESET or

SRESET

How the Reset Pin Inputs are Handled (1 of 2)

The two diagrams on this slide and the next show the operation and interactions of
Power-On-Reset, Hard Reset, and Soft Reset. Power-On-Reset should only be activated as a result of
a voltage fail in the KAPWR rail.

First, let us examine the Power-On-Reset and Hard Reset flow of operations, as shown in this state
diagram.

When Power ON is asserted, the MPC860 enters the Power-on-Reset state. In this state, Hard and
Soft Reset are asserted. Next, the 860 samples the MODCK pins, and the system clocks are initialized
accordingly.

The device remains in the Power-On-Reset state until Power-On-Reset is negated, and the PLL locks.
Then the chip enters the Internal Initiated Hard Reset state. Notice that the device can also enter this
state if an internal or external hard reset is asserted. In the Internal Initiated Hard Reset state, a time
counter is set to 512, and hard and soft reset are asserted for the duration of the 512 cycles.

The MPC860 remains in the Internal Initiated Hard Reset state until the timer expires, having
decremented 512 clocks. This delay assures that hard and soft reset outputs are always a minimum of
512 clocks, thereby permitting other devices enough time to reset. After 512 clocks, the device enters
the Wait state.

In the Wait state, the device samples the configuration from the data pins, negates hard and soft reset,

and waits for 16 clocks. During this time, if a hard and soft reset is asserted, it is ignored. After the 16
clocks expire, the device enters a state in which it responds to hard or soft reset.

For More Information Contact: www.freescale.com 432



Freescale Semiconductor, Inc.

SLIDE 22-4

How Reset Pin Inputs are Handled (2 Of 2)

Internal

Internal or Initiated * SRESET* assert
External SRESET *The time counter is set to 512
SRESET
asserted
Timer expires (after 512 clocks)
16 Clocks expire » Sample debug port configuration from
2 DSCK hiah DSDI and DSCK pins
'9 - Negate SRESET*

/ * Wait for 16 clocks
Debug
Mode .
16 Clocks expire

& DSCK low

Test for
HRESET or
SRESET

» DSDI is sampled to determine
clocked or self-clocked mode

How the Reset Pin Inputs are Handled (2 of 2)

An internal or an external assertion of Soft Reset causes the device to enter the Internal Initiated Soft
Reset state. In the Soft Reset state, the Soft Reset pin is asserted, and a time counter is set to 512, as
in the case of a hard reset. After 512 clocks, the MPC860 enters the Wait state.

In the Wait state, the MPC860 samples the debug port configuration from the DSDI* and DSCK* pins.

Then the chip negates Soft Reset, and waits for 16 clocks. Next, depending on the value of the DSCK*
pin, the device either moves into the Test for Hard and Soft Reset state, or it enters the Debug Mode.

For More Information Contact: www.freescale.com 433



Freescale Semiconductor, Inc.

SLIDE 22-5

How MODCK Pin Sampling Affects the Clocks

Start

v
Sample
MODCK pins
PLPRCR.MFO_MF11 =513 O'E) PLPRCR.MFO_MF11 =5
—| pitrtclk division =4 ] /v pitrtclk division = 512 —
tmbclk division = 4 01 tmbclk division = 4
10

PLPRCR.MFO_MF11 =1 / PLPRCR.MFO_MF11 =5
pitrtclk division = 512 pitrtclk division = 512
tmbclk division = 16 tmbclk division = 4

[y
[y
v

How MODCK?* Pin Sampling Affects the Clocks

The MODCK?* pins are sampled at reset to determine the initial clock configuration.

There are four possible values, as displayed in this diagram.

If the user implements a low frequency crystal, perhaps one operating at 32.768 KHz, the value of '00'
might be asserted on the MODCK?* pins. Doing so places the value ‘513" in the Multiplier Frequency
field of the PLPRCR register, and thus the PLL multiplies the frequency by 513. Also, a value of '00'
asserted on the MODCK?* pins results in a Periodic Interrupt Timer clock division of four, and a Time
Base clock division of four.

In contrast, the user may supply an external oscillator, perhaps one operating at 25 MHz. In this case, a
value of '10" asserted on the MDCLK* pins causes the multiplier frequency to be initialized to a value of
1, and the other clocks as shown.

Note that the software can change these values after reset.

For More Information Contact: www.freescale.com 434



SLIDE 22-6

Freescale Semiconductor, Inc.

Programming Model (1 of 2)

RSR - Reset Status Register

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15
EHRS|ESRS |LLRS |SWRS|CSRS|DBH|IDBS|JTRS Reserved
RS | RS
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Reserved
PLPRCR - PLL, Low Power and Reset Control Register
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
MFO_MF11 Reserved
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
SPL|TEX| _ |[T™MI| _ LOL| FIO
ss | ps ST CSRC|LPMO_LPM1|CSR RE | PD Reserved

Programming Model (1 of 2)

The programming model for controlling reset is shown here.

First is shown the Reset Status Register. Although this is a 32-bit register, only the top eight bits are

used. After a reset, the bit associated with the source of the reset is set in this register (external hard
reset, soft reset, etc.). This permits the user to write a reset routine based on the cause of the reset.
Note that after a Power-On-Reset, all the bits in the register are cleared.

In the PLPRCR, or PLL, Low Power and Reset Control Register, the Multiplier Frequency field,

MFO_MF11, determines the value that the PLL uses to multiply the frequency of the clock source.

For More Information Contact: www.freescale.com

435



Freescale Semiconductor, Inc.

SLIDE 22-7

Programming Model (2 of 2)

SIUMCR - SIU Module Configuration Register
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

learB| EARP |  Reserved |pshw| bBec | pepc | R |FRc|DLK]

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
|PNCS|OPAR|DPC|MPRE|MLRC|Reserved|BSC|GBSE|BZDD|B3DD| Reserved |

BRO - Base Register 0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| BAO_16 |

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
| | Ato2 | pso.1|pare|wp| mso 1 Reserved | V|

Programming Model (2 of 2)

The contents of the data pins affect the fields shown bolded in the SIU
Module Configuration Register. We discuss these fields in more detail later in this chapter.

Recall that after reset, Chip Select 0 acts as the global boot chip select. It is necessary to specify the

port size of the boot ROM in the PS0_1 field of Base Register 0. It is also necessary to set the Valid bit
equal to one in the same base register.

For More Information Contact: www.freescale.com 436



Freescale Semiconductor, Inc.

SLIDE 22-8

Reset Basic Configuration Scheme (1 of 2)

MUX
- M
Configuration
Word Dx (Data line T
W L
HRESET T
MPC860 RSTCONF

* While HRESET and RSTCONF are asserted
» MPC860 pulls data bus low through a weak resistor

» User may overwrite this default, by driving high to the appropriate
bit

Reset Basic Configuration Scheme (1 of 2)

When a reset occurs, the MPC860 reconfigures its hardware system as well as the development port
configuration. The chip can sample the data pins to determine the initial configuration parameters, or it
may accept an internal default constant.

While HRESET* and RSTCONF* are asserted, the MPC860 pulls the data bus low through a weak
resistor. The user can install circuitry to force the data pin high, overwriting the internal all zeros default.

Alternatively, the user can implement the default configuration. To use the default configuration, the
user must ensure that the Reset Configuration pin is tied high.

For More Information Contact: www.freescale.com 437



Freescale Semiconductor, Inc.

SLIDE 22-9

Reset Basic Configuration Scheme (2 of 2)

cLkout LUUUL JUTL

PORESET /

/

INtPORESET

HRESET

3

Tsup

RSTCONF

[
. -

Default Rstconf Controlled

Reset Basic Configuration Scheme (2 of 2)

Here is shown a typical timing sequence.

First, Power-On-Reset is asserted. Power-On-Reset must remain asserted for sufficient time to allow
the PLL to lock. After the PLL locks, CLKOUT will start, Power-On reset can be de-asserted and Hard
Reset will continue for 512 clocks. After 512 clocks, the MPC860 samples the data bus pins 0-14, and

based on these values configures the initial hardware system configuration.

For More Information Contact: www.freescale.com

438



SLIDE 22-10

Freescale Semiconductor, Inc.

How to Program the Data Pins (1 of 3)

If.. then..
No external arbitration SIUMCR.EARB =0 DO=0 DO
External arbitration SIUMCR.EARB =1 DO=1
EVT at0 MSR.IP =0 D1=1 D1
EVT at OxFFFO0000 MSR.IP =1 D1=0
memory controler BRO.V =0 D3 =1 D3
Enable CSO* BRO.V =1 D3=0
Boot port size is 32 BRO.PS =00 D4=0,D5=0
Boot port size is 8 BRO.PS =01 D4=0,D5=1 D4
Boot port size is 16 BRO.PS =10 D4=1,D5=0 b5
Reserved BRO.PS =11 D4=1,D5=1

How to Program the Data Pins (1 of 3)

The MPC860 samples the data pins to determine the initial setup parameters. This diagram

summarizes the possible configuration results of the data pin values.

Data pin 0 specifies whether external arbitration or the internal arbiter is to be used.

D1 controls the initial location of the exception vector table, and the IP bit in the machine state register is

set accordingly.

Data pin 3 specifies whether Chip Select 0 is active on reset. If Chip Select 0 is active on reset pins D4

and D5 specify the port size of the boot ROM, with a choice of 8, 16, or 32 bits.

For More Information Contact: www.freescale.com

439



SLIDE 22-11

Freescale Semiconductor, Inc.

How to Program the Data Pins (2 of 3)

DPR at O immr = 0000xxxX D7=0,D8=0

DPR at 0OxO0F00000 immr = 00FOxxxx D7=0,D8=1 D7
D8

DPR at OxFF000000 immr = FFOOxxxx D7=1,D8=0

DPR at OxFFF00000 immr = FFFOxxxx D7=1,D8=1

Select PCMCIA SIUMCR.DBGC=0 |D9=0,D10=0

functions, Port B

Select Development _ _ _

Support functions SIUMCR.DBGC =1 D9=0,D10=1 D9
D10

Reserved SIUMCR.DBGC =2 |[D9=1,D10=0

Select program track- | o, ,McrRDBGC=3 |D9=1,D10=1

ing functions

How to Program the Data Pins (2 of 3)

Data pins 7 and 8 specify the initial value for the IMMR registers. There are four different possible
locations for the internal memory map.

Pins 9 and 10 select the configuration for the debug pins. There are a number of pins with multiple
functions, such as PCMCIA functions, Port B, development support functions, and program tracking
functions. Please refer to the description of the SIU Module Configuration Register in the User Manual
for a description of these pins, and how the configuration settings of DATA bus pins 9 and 10 affect
them.

For More Information Contact: www.freescale.com 440



SLIDE 22-12

Freescale Semiconductor, Inc.

How to Program the Data Pins (3 of 3)

If..

then..

Select as in DBGC +
Dev. Supp. comm pins

SIUMCR.DBPC =0

D11=0,D12=0

Select as in DBGC +

SIUMCR.DBPC =1

D11=0,D12=1

SCCR.EBDF =3

JTAG pins Bi%

Reserved SIUMCR.DBPC =2 D11=1,D12=0

Select Dev. Supp. - - -

oo and JTAG bins SIUMCR.DBPC =3 D11=1,D12=1

CLKOUT is GCLK2 SCCR.EBDF = 0 D13=0, D14 =0

divided by 1

CLKOUT is GCLK2 _ _ _

divided by 2 SCCR.EBDF = 1 D13=0,D14=1 D13
D14

Reserved SCCR.EBDF = 2 D13=1,D14=0

Reserved

D13=1,D14=1

How to Program the Data

Pins (3 of 3)

Data pins 11 and 12 select the configuration of the debug port pins. This selection involves configuring
these pins either as JTAG pins, or development support communication pins.

Pins D13 and 14 determine which clock scheme is in use; one clock scheme implements GCLK2

divided by one, and the second implements GCLK2 divided by two.

For More Information Contact: www.freescale.com

441



Freescale Semiconductor, Inc.

SLIDE 22-13

How to Connect the Reset Sources

ABORT e—4 10K 45 ABRO .
— . . ABR1 NIV I
- +5

SOFT | +5 RSTO

RESET/J7~ K RST1 SRESET[< >

HRESET >

+5

|

4

S-8052ANY-NH-X +§
3-EV K gom RSTCNF[— >

VDD RESET
KAPORO| >
— —— 100uF MODCK1[—
= MODCK2[ >

4

kapyyg SBOBLHN-CD-X +§ 7 MACH220
K
| |vbD RESET i >
KA_PORI
= E_E 100uF

How to Connect the Reset Sources

This example shows how to connect PORESET*, HRESET*, and SRESET*. It is based on the 860ADS
board.

First, let us review some characteristics of this ADS board. One button on the ADS board is an abort
switch. The abort switch asserts NMI, which in turn is connected to IRQO on the 860.

The mach takes all reset sources (except for those coming from the debug port), and concentrates
them into Power-On, Hard and Soft reset options. The SOFT-RESET and ABORT switches, when
depressed together, generate a HARD-RESET.

The RSTO0* and RST1* signals go through a debounce circuit to avoid spikes on SRESET*, as a result
of reset switch ringing. When SW1 is depressed, SRESET* is driven low. When SW1 is released, the
mach goes high impedance and SRESET* is pulled high by the pull-up resistor.

The Keep Alive Power circuit monitors keep alive power and will cause a reset if the keep alive voltage
dips below the minimum operating voltage spec.

R_PORI is asserted when the 3.3V bus is powered on.

For More Information Contact: www.freescale.com 442



Freescale Semiconductor, Inc.

SLIDE 22-14

W hat is the State of the Pins during Reset?

If.. then for PORESET* and HRESET*..
pin can be input or output pin is an input

pin is three-statable pinis in high-impedance

pin is always an output pin is driven to negated logical value

What is the State of the 860 Pins During Reset?

This table describes the state of all of the pins during Power-on RESET*, HRESET*, and
SRESET*.

During Power-On-Reset and Hard Reset, if a pin can function as an input or an output, it is an input. If a
pin is tri-stateable, then it is in high-impedance. If a pin is always an output, then it is driven to its
negated logical value.

Note that Soft Reset does not change pin assignments or their direction.

For More Information Contact: www.freescale.com 443



Freescale Semiconductor, Inc.

SLIDE 22-15

Summary of Other Reset Sources (1 of 2)

Loss of Lock < Occurs if PLL detects a “loss of clock.”
* Reset will occur if PLPRCR.LOLRE =1
* Generates an Internal Hard Reset

Software * Occurs if Software Watchdog times out.
Watchdog . .
* Reset will occur if SYPCR.SWRI =1
* Generates an Internal Hard Reset

Checkstop » Occurs if TEA* is asserted.
Reset
» Reset will occur if PLPRCR.CSR =1
* Generates an Internal Hard Reset

Summary of Other Reset Sources (1 of 2)

When the PLL detects a "loss of lock" this can cause a reset. The source of reset can be optionally
asserted if the LOLRE bit in the PLPRCR register is set equal to one.

The software watchdog timer can cause a reset if the SWRI field is set to a one in the SYPCR register.
The software watchdog timer generates an internal hard reset.

A check-stop reset occurs if TEA* is asserted or a parity error occurs, and if the CSR field in the
PLPRCR register is enabled. The check-stop reset is an internal hard reset.

For More Information Contact: www.freescale.com 444



Freescale Semiconductor, Inc.

SLIDE 22-16
Summary of Other Reset Sources (2 of 2)

Debug Port » Occurs if Development Port receives a Hard reset
Hard Reset request from Development Tool

» Generates an Internal Hard Reset

Debug Port « Occurs if Development Port receives a Soft reset
Soft Reset request from Development Tool

» Generates an Internal Soft Reset

JTAG Reset « Occurs if TRST is asserted.
* Should be tied to Hard Reset

Summary of Other Reset Sources (2 of 2)

The debug port hard reset and soft reset occur if the development port receives a hard or soft reset
request from the development tool, in which case either an internal hard reset, or an internal soft reset is
generated.

Finally, when the JTAG logic asserts the JTAG soft reset signal, an internal soft reset is generated.

SLIDE 22-17

How to Initialize an MPC860 from Reset (1 of 7)

Step Action Example
1 Disable data cache nfspr r3, DC_CST
ori r8,r3,0

lis r 3, 0x0400
m spr DC_CST,r3

2 Initialize MSR and SRR1 lis r 3, 0x0000
ori r3,r3,0x1002
mmsr r3

mspr srrl,r3

3 Initialize Instruction Support Control lis r3, 0x0000
Register, ICTRL ori r3,r3,0x0006
mspr ICTRL, r3
# Core not serialized
# Show cycle for indirect

For More Information Contact: www.freescale.com 445



Freescale Semiconductor, Inc.

How to Initialize an MPC860 from Reset (1 of 7)

Here we describe the steps in initializing an MPC860 from reset. This reset routine is for POR*,
HRESET*, SRESET*, and IRQO*.

The first step is to disable the data cache.

It is possible that the program executing prior to the abort operation may have had cache enabled in
copy-back mode. Given that possibility, it is also possible that writing a line of cache to memory could
generate a machine check error. Disabling the data cache prevents such a scenario.

Step 2: Initialize the Machine State Register and the Save and Restore Register 1 with a value of
0x1002. This step puts the device in the recoverable interrupt mode, and setting the machine check
enabled bit.

Step 3: Initialize the Instruction Support Control Register, or ICTRL, modifying it so that the core is not

serialized. At reset, the core is in serialized operation, executing one instruction at a time, which has an
impact on performance.

SLIDE 22-18

How to Initialize an MPCB860 from Reset (2 of 7)

4 | Initialize Debug Enable lis r3,0x0000
Register, DER ori r3, r3, 0x0000
mspr DER r3

# Exceptions to target

5 | Initialize Interrupt Cause lis r3,0x0000
Register, ICR ori r3, r3, 0x0000
mspr ICRr3

# Clear register

6 | Initialize Internal Memory lis r4, OxFF98
Map Register, IMMR ori r4,r4, 0x0000
mspr MR r4
# Init to power-on val ue
7 | Initialize Memory Controller lis r3, OXFFEO
Base and Options registers ori r3, r3, 0x0001
as required, BRx & ORx stw r3,BRL(r4)

# Locate CS1 at
# OxFFEO00000

How to Initialize an MPC860 from Reset (2 of 7)

Steps 4: Initialize the Debug Enable Register, DER. The Debug Enable Register specifies which
exceptions put the device into debug mode.

For More Information Contact: www.freescale.com 446



Step 5: Initialize the Interrupt Cause Register, ICR. The Interrupt Cause Register acts as a status

Freescale Semiconductor, Inc.

register, showing which interrupts have already occurred. The routines shown for steps 4 and 5 clear
the two associated registers, and do not enable them.

Step 6: Initialize the Internal Memory Map Register, or IMMR. The user may or may not wish to accept
the default settings for this register.

Step 7: Initialize the Memory Controller Base and Options registers as required.

SLIDE 22-19

How to Initialize an MPC860 from Reset (3 of 7)

Step

Action

Example

8

Initialize Memory Periodic
Timer Pre-scalar Register, MPTPR

i r3,0x0800
sth r3, MPTPR(r 4)
# DI VIDE BY 8

Initialize Machine Mode Registers,
MAMR & MBMR

lis r3,0xc0a2

ori r3,r3,0x1114

stw r3, NVAMR(r 4)
# Tl MER PER OD=0xQ0,
# TI MER ENABLED, DI SABLE
# TI MER PER OD=1, SELECT
# UPWAI TA, RFWLOCP
# FI ELDS=1, Tl MER LOCP
# FlI ELD=4

10

Initialize SIU Module
Configuration Reg,SIUMCR

[wz r3,SI UMCR(r4)
oris r3,r3,0x0003

ori r3,r3,0x2640

stw r3, SIUMCR(r4)
# FRZIIRQG 1S | RQB, LOCK
# BI TS 8-15, ENABLE PAR-
# | TY PINS, ENABLE
# SPKROUT, ENABLE
GPL_B(5)

How to Initialize an MPC860 from Reset (3 of 7)

Step 8: Initialize the Memory Periodic Timer Pre-scalar Register, or MPTPR.

Step 9: Initialize the Machine Mode Registers, MAMR and MBMR.

Step 10: Initialize the SIU Module Configuration Register, or SIUMCR. Note that this step configures
many of the pins shown on the right hand side of the main pin diagram in the User Manual.

For More Information Contact: www.freescale.com

447



Freescale Semiconductor, Inc.

SLIDE 22-20

How to Initialize an MPC860 from Reset (4 of 7)

11 Initialize the System
Protection Reg, SYPCR

lis r3,0xffff

ori r3,r3,0xff88

stw r3, SYPCR(r4)

# MAX COUNT FOR SWI & BM
# BME=1, STOP SWI ON

# FREEZE

12 Initialize Time Base Control
and Status Register, TBSCR

i r3,0x00c2

sth r3, TBSCR(r 4)

# CLEAR REFA & REFB,
# STOP TI ME BASE ON
# FREEZE

13 Initialize Real Time Clock
Status and Control Register,
RTCSC

i r3,0x01c2

th r3, RTCSC(r4)

# | NTRPT LVL=7, CLEAR

# STATUS BI TS, STOP RTC
# ON FREEZE

I
s

How to Initialize an MPC860 from Reset (4 of 7)

Step 11: Initialize the System Protection Register, or SYPCR. This register contains settings for the bus

monitor and the software watchdog.

Step 12: Initialize the Time Base Control and Status Register, TBSCR.

Step 13: Initialize the Real Time Clock Status and Control Register, RTCSC.

For More Information Contact: www.freescale.com

448



Freescale Semiconductor, Inc.

SLIDE 22-21

How to Initialize an MPC860 from Reset (5 of 7)

Step Action Example
14 |Initialize Periodic Interrupt Timer Reg, i r3,0x0082
PISCR sth r3, Pl SCR(r4)

# CLEAR STATUS BI T, STOP
# Pl T ON FREEZE

15 [Initialize the UPM RAM arrays using the
Memory Command Reg, MCR, and the
Memory Data Reg, MDR.

16 |[Initialize the PLL, Low Power and Reset | | i s r3, 0x0090
Control Register, PLPRCR stw r 3, PLPRCR
# INNT TO 40vVHZ FROM
# 4 MHZ

17 |Move ROM vector table to RAM vector
table

How to Initialize an MPC860 from Reset (5 of 7)
Step 14: Initialize the Periodic Interrupt Timer Register, PISCR.

Step 15: Initialize the UPM RAM arrays using the Memory Command Register and the Memory Data
Register. We also discuss this routine in the chapter regarding the memory controller.

Step 16: Initialize the PLL Low Power and Reset Control Register, or PLPRCR.

Step 17 is not required, although many programmers implement this step. This step moves the ROM
vector table to the RAM vector table.

For More Information Contact: www.freescale.com 449



Freescale Semiconductor, Inc.

SLIDE 22-22

How to Initialize an MPC860 from Reset (6 of 7)

18

If required, change location of vector
table

nmfrsr r3
andi . r3,r3, Oxffbf
mnsr r3

# set | P exception

# vector |ocation=0

19

Disable instruction cache

lis r3,0x0400
nmspr 1C_CST, r3
i sync

20

Unlock instruction cache

lis r3, 0x0A00
nmspr 1C_CST, r3
i sync

21

Invalidate instruction cache

lis r3,0x0C00
mspr 1C_CST, r3
i sync

How to Initialize an MPC860 from Reset (6 of 7)

If required, step 18 changes the location of the vector table. The example shows this procedure by

getting the Machine State Register, setting or clearing the IP bit, and writing the Machine State Register

back again.

Step 19: Disable the instruction cache.

Step 20: Unlock the instruction cache.

Step 21: Invalidate the instruction cache.

For More Information Contact: www.freescale.com

450



Freescale Semiconductor, Inc.

SLIDE 22-23

How to Initialize an MPC860 from Reset (7 of 7)

22 | Unlock data cache lis r 3, 0x0A00
sync
ntspr DC _CST,r3

# UNLOCK DATA CACHE

23 | If data cache was enabled, then flush the
data cache.

24 | Invalidate the data cache lis r 3, 0x0C00
sync
ntspr DC _CST,r3
# | NVALI DATE DATA CACHE

How to Initialize an MPC860 from Reset (7 of 7)
Step 22: Unlock the data cache.
Step 23: Verify whether the cache was enabled, and if so, flush it.

Finally, the step 24 invalidates the data cache.

For More Information Contact: www.freescale.com 451



Freescale Semiconductor, Inc.
Chapter 23: General-Purpose Timer and Other Timers

SLIDE 23-1

General Purpose Timer
and other
Timers

What You * Describe the features of the general-purpose timers

Will Learn * Describe the contents and functions of the configuration registers
» Configure the clock and prescalar
» Use a general-purpose timer to generate a periodic clock waveform
* Initialize a general-purpose timer

In this chapter, you will learn to:

1. Describe the features of the general-purpose timers

2. Describe the contents and functions of the configuration registers

3. Configure the clock and prescaler

4. Use a general-purpose timer to generate a periodic clock waveform
5. Initialize a general-purpose timer

For More Information Contact: www.freescale.com 452



Freescale Semiconductor, Inc.

SLIDE 23-2

MPC860 GPT Features

Four Identical Timers

Maximum Period of 10.7 Seconds @ 25Mhz
40-ns Resolution @ 25Mhz

Programmable Sources for the Clock Input
Input Capture Capability

Output Compare with Programmable Mode
for the Output Pin

Two Timers Internally or Externally Cascadable
to form a 32-bit Timer

Free-run and Restart Mode

Timer Description

The CPM includes four identical 16-bit general-purpose timers. These have a maximum timeout period
of 10.7 seconds at 25 MHz. This provides 40-nanosecond resolution. Additional features include:

Programmable sources for the Clock Input

Input capture capability

Output compare with programmable mode for the output pin

Two timers which can be cascaded internally or externally to form a 32-bit timer
Free run and restart modes

abrwnpE

For More Information Contact: www.freescale.com 453



Freescale Semiconductor, Inc.

SLIDE 23-3

GPT Timer Block Diagram

TGCR INTERNAL
GLOBAL CONFIGURATION REGISTER[<# General System Clock

' -
TIMER [®
TERL EVENT REGISTER | <9~ | TGATEL
CLOCK
GENERATOR TGATE2
MODE REGISTER - TINL
TMR1 | pRESCALER MODE BITS| % TIN2
DIVIDER CLOCK ' TIN3
‘ TINA
TCN1 |  miMerRcountER | <l capTure
| DETECTION
- I
TRR1 | REFERENCE REGISTER | > TOUTL
> TOUT?
TCR1 [  CAPTURE REGISTER = TouTs
| | <~ > TOUT4
TIMER1
TIMERA

GPT Timer Block Diagram

This illustration shows a block diagram of the general-purpose timer. As noted, there are four general-
purpose timers, each with identical programming models. Each general-purpose timer consists of a
Timer Mode register, a Timer Capture register, a Timer Counter, a Timer Reference register, and a
Timer Event register. Therefore, every register shown in this diagram is repeated four times, with the
exception of the Global Configuration register, of which there is only one instance.

Two sources may drive the timer clock generator -- either the general system clock or the TINX* pin in
conjunction with an external clock. The prescaler divider in the mode register divides the resulting clock
output; the resulting frequency serves as input to the Timer Counter register.

The programmer can configure each timer to count until it reaches a reference by writing a value to the
Reference register. The programmer can then specify a given event to occur when the Timer Counter
reaches the value in the Reference register. This activity is referred to as the ‘output compare’ mode.

It is also possible to use the TINX* pin to detect an edge, by enabling the input capture mode in the
corresponding Timer Mode register. When the edge occurs, the value that is in the timer counter is put
into the Input Capture register. This allows the user to measure pulse widths and frequency.

Each timer has a timer input pin, and a timer output pin. There are also two TGATE?* pins that allow the

user to gate the clock. For example, if the designer wishes the timer to run while a given signal is high,
but not while the signal is low, then they can implement the gating function. The gate function is

For More Information Contact: www.freescale.com 434



Freescale Semiconductor, Inc.

enabled in the Timer Mode register, and the gate operating mode is selected in the Timer Global
Configuration register.

The timers each have a 16-bit Event register, in which there are two active bits: input capture, and
reference reached.

SLIDE 23-4

Timer Global Config Register (TGCR)

0 1 2 3,4,5 6 7;,8;9 10 11, 12 13 14 15

CAS|FRZ|STP|RST|GM |FRZ|STP|RST
21212 1 1 {1

—Timer 1—"

0 = Normal

1 =Timers
1/2 are

cascaded
Cascade Timers Gated Mode(GATE2) Cascade Timers Gated Mode(GATE1)

Timer Global Configuration Register (TGCR)

The timer global configuration register is a 16-bit register containing configuration parameters that all
four timers use. This register is essentially divided into four parts, each with four bits. Three bits out of
each set affect the individual timers.

For example, let us examine the bits for timer one. There is a freeze enable bit which, if enabled, stops
the timer when the CPU enters debug mode and releases the timer to continue after the CPU leaves
the debug mode. Next, timer 1 also has an associated stop enable bit, which, if enabled, stops the timer
and reduces power consumption. Finally, timer 1 supports a reset bit for a software reset of this timer.

The timer global configuration register contains freeze, stop and reset bits for timers 2, 3, and 4 as well.
Let us look now at the remaining bits. Two of the remaining bits, GM1 and GM2, control a gated mode.
Recall that there are two gate input pins, and the programmer controls the mode on each pin -- as
either restart or normal mode. Every time the gate permits the clock to restart clocking, the mode
determines whether the counter starts from zero, or continues from its previous value.

Two more bits permit the user to cascade the timers. It is possible to cascade timers 1 and 2, and /or
timers 3 and 4.

For More Information Contact: www.freescale.com 455



Freescale Semiconductor, Inc.

SLIDE 23-5

Timer Global Configuration Register

0 1 2

11

15

lcasdrrz4sTP drsT4lom2 [FRZ3lsTPs|RS TalcASFRZ 2sTP2lRS T2loM1 [FRZI|STRI|RS T

TGCR Bit 0 TGCR Bit 8
Cascade Timers 3/4 Cascade Timers 1/2
0 = Normal 0 = Normal
1 = Timers are cascaded 1 = Timers are cascaded
0
31 TCN3 %_/ ] TCN4 31 TCN1 §/ I TCN2 O
31 TRR3 ya TRR4 0 31 TRR1 % L TRR2 O
0
TCR4 31  TCR1 Dz " TCR2 O
TMR4 0 TMR2 O
TER4 0 | 31 TERI TERZ 0

Timer Global Configuration Register

If the user cascades timers, then the associated Timer Counters, Reference registers, and the Input

Unused

Capture registers are concatenated together. Also, when the timers are cascaded, the event and mode

registers for timer 4 support the cascaded pair of timers 3 and 4. Likewise, the event and mode

registers for timer 2 support the cascaded pair of timers 1 and 2.

The remaining event and mask registers are not used, nor are the shaded fields in the register field

diagram.

For More Information Contact: www.freescale.com

456



SLIDE 23-6

6
System Clock

System Clock / 16—

TINX Pin

TCN

Clock and Prescaler Configuration

The user can implement three potential clock sources to drive the Timer Counter: the system clock
directly; the system clock divided by 16; and the TINX pin in conjunction with an external clock. The

Freescale Semiconductor, Inc.

Clock & Prescaler Confiquration

0

7

10 11

12

13 14 15

PRESCALER VA
o] o] o] 1| 1] 1]

OM |ORI

FRR

ICLK

GE

K

2

i

Incoming clock / (prescale value) = count pulse out

X

prescaler divides the clock, and the resulting frequency drives the timer counter. For example, if the

system clock supplies an input of 64 pulses, and there is a prescaler of 32, the result is two counts
supplied to increment the timer counter. Notice that the prescale field of the Timer Mode register
contains a value of Ox1F or 31 to obtain a prescale factor of 32. Thus, the prescalar field always

contains 1 less than the desired prescale value.

SLIDE 23-7

40 ns clock

GPT Prescaler and Counter Examples

Counter PS Timeout Counter PS
1 25 1 usec 25 1

1 250 10 usec 250 1

10 250 100 usec 2500 1

100 250 1 msec 25000 1
1000 250 10 msec 25000 10
10000 250 100 msec 25000 100

640 ns clock (+16 clock selection)

Counter PS Timeout Counter PS
1 15 9.6 usec 15 1

1 156 100 usec 156 1

10 156 1 msec 1560 1
100 156 10 msec 15600 1
1000 156 100 msec 15600 10
10000 156 1 sec 15600 100

Timeout = [Clock period] * [Prescalar] * [Counter]

For More Information Contact: www.freescale.com

457



Freescale Semiconductor, Inc.

GPT Prescaler and Counter Examples

This slide shows two tables of values of representative timeouts for a 25 MHz clock using the 40-
nanosecond clock, and the clock divided by 16. The programmer generates the timeout by multiplying
the clock period by the prescaler value, and multiplied again by the counter value.

For example, suppose the user requires a time of 200 microseconds with a 40-nanosecond clock. The
tables show that if the prescaler contains a value of 250, and the counter contains a value of 10, the
result is 100 microseconds. Likewise, if the counter contains a value of 2500 and the prescaler contains
a value of 1, the result is also 100 microseconds.

To obtain 200 microseconds, one could enter a counter of 20 with a prescaler of 250, thereby doubling
the original counter. Likewise, it is possible to use a counter of 2500 and a prescaler of 2, thereby
doubling the original prescaler.

Whatever the value determined for prescaler and the counter according to these tables, the actual value
that the programmer enters into the register should be one less. For example, to obtain the 200-
microsecond timeout, the programmer could use a combination of 19 in the counter and 249 in the
prescalar.

SLIDE 23-8
GPT Output Compare
0 7 8 9 10 11 12 13 14 15
TMRx | PRESCALER VALUE CE OM|ORI|FRR] ICLK |GE
RERERRE
System Cloc
System Clock / 16 Incoming clock / (prescale value) = count pulse out
TINX Pin
ERNRNERENRRNRENE=
TCN
X — |
0 15 16-bits
mrRx L[ LT E T ks
Yo
GPT Output Compare

To perform an output compare, it is necessary to establish the desired timeout value, and place that
counter value in the Timer Reference Register. When the counter reaches the set value, it causes a
match in the comparator shown in the diagram, and the result is an output compare.

Upon reaching the reference value, the corresponding event bit is set in the Timer Event Register, and
an interrupt is issued if the ORI bit is set in the Timer Mode Register. The timers can generate an ouput

For More Information Contact: www.freescale.com 458



Freescale Semiconductor, Inc.

signal on the TOUTx* pin. The signal can be an active-low pulse of one clock, or a toggle of the current
output, as configured with the OM bit in the Timer Mode Register. To output a signal on the TOUTx*
pin, it is necessary to enable TOUTX* via the port configuration.

Finally, once the counter reaches a reference, the user can choose to have the timer implement free
run, in which case it continues to increment; or the timer can restart, in which case the timer resets to
zero immediately after reaching the reference.

SLIDE 23-9
Using GPT Timer to Generate a
Periodic Clock Waveform
0 7 10 11 12 13 14
TMRx PRESCALER VALUE oM| orRI] FRR]  ICLK
00011000 1] 0 1 10

System Clock—m—

System Clock / 16—
TINX Pin —— %

0 15
TeNx | o] o] of o] of o o] of o] of o of o o] o 0‘<_|

16-bits

Incoming clock / (prescale value) = count pulse out

1 pulse every 1.0 Usec

15
TRRx | 0] 0] 0| ol of of o] of o] o] of o] 1] o 1] o |
_ 16—bits
<—20:Usec—> v

10 Usge 10 Usge

Using GPT Timer to Generate a Periodic Clock Waveform

This illustration shows an example with a 40 nanosecond clock, and a prescaler value of 0x18, which is
decimal 24, or the equivalent of the actual value of 25. This multiplies the clock pulse of 40
nanoseconds by 25, for a pulse out every one microsecond. If there is a value of 9, which means 10, in
the reference register, every time a match occurs, it is possible to toggle the TOUTX* pin and generate
a square wave with a 20 microsecond period.

For More Information Contact: www.freescale.com 459



Freescale Semiconductor, Inc.

SLIDE 23-10
GPT Input Capture Confiquration
0 7 9 10 11 12 13 14 15
TMRx| PRESCALERVALUEl CE ||OM|ORI|FRR| ICLK |GE|
NERER
System Clo

Incoming clock / (prescale value) =

System Clock / 1
count pulse out

TINX Pin—————

0 15
tons LTI TR j=—
16-bits
. N ———— Tllé\lx pin| TMR(x) bits 7 6
Terx LA T T T] Disabled 10 {0

Rising Edge| 0 | 1
Falling Edge
< EitherEdge | 1 |1

[N
o

GPT Input Capture Configuration

In the case of the input capture function, the input capture edge detector senses a defined transition of
the associated TINx* pin. When the edge occurs, the contents of the counter register are put into the
capture register. The CE field of the Timer Mode Register, bits 8 and 9, allow the user to configure the

input capture to occur based on a rising edge, a falling edge, or both.

For More Information Contact: www.freescale.com

460



Freescale Semiconductor, Inc.
SLIDE 23-11

GPT Gated Mode Configuration

0 7 8 9 10 11 12 13 14 15

TMRX|PRESCALER VALUE CE |OM|ORIFRR| ICLK |GE

|

System Clock
System Clock / 16
TINX Pin

Incoming clock / (prescale value) = count pulse out

0 15
rer | [ = —

TGATEX pin

GPT Gated Mode Configuration

It is also possible to implement a gating function in conjunction with the timer counter register. Recall
that the user configures a gating mode of restart or normal gating mode using the GMx bits of the
TGCR, thereby affecting whether the counter is reset every time TGATEXx* asserts. The user enables
the gating mode for an individual timer in the 'G' field of the Mode register.

SLIDE 23-12
GPT Gated Mode Example
0 7 8 9 10 11 12 13 14 15
TMRx PRESCALERVALUE | CcE |om|oRI[FRR| ick | GE|

System Clock
System Clock / 16

Incoming clock / (prescale value) = count pulse out

TINX Pin
0 15
tenk LI T T T T T T T T T T T T T Jm—CF
TGATEX pin
Enable
counting
v v v v v
TGATEX pin— m] 4
Disahle
counting

For More Information Contact: www.freescale.com 461



Freescale Semiconductor, Inc.

GPT Gated Mode Example
This diagram shows an example of how the gated mode operates. Every time the TGATE* pin goes

low, it enables counting. Likewise, every time the TGATE* pin goes high, it disables counting.

SLIDE 23-13

GPT Timer Event Reqister (1 of 2)

Timer Event Reqisters (1 per channel)

TER1

The "ORI" bit and the "CE" bits in the TMRx enable/disable the interrupts caused by the timer.

Clear any Previous TIMER reference interrupts

14)/15 (in the timer controller)

REF|CAP| TERx

~r

~r

GPT Timer Event Register (1 of 2)

The event register is a 16-bit register, of which two bits are implemented: input capture and reference
reached.

The REF, or Output Reference Event field, indicates that the counter has reached the value in the Timer
Reference Register. Note that the ORI bit in the Timer Mode Register enables the resulting interrupt
request. The CAP, or Capture Event field, indicates that the counter value has been latched into the
Timer Counter Register. Note that the CE bits in the Timer Mode Register enable the generation of this
event.

For More Information Contact: www.freescale.com 462



Freescale Semiconductor, Inc.

SLIDE 23-14

GPT Timer Event Register (2 of 2)

TIMER 1

S

Communication Processor Interrupt Controller

0

Timer flags

Timer #1 bit6

Timer #2  bit 13
Timer #3  bit 19
Timer #4  bit 24

GPT Timer Event Register (2 of 2)

Also, it is still necessary to implement the CIPR, CIMR, and CISR in the communications processor
interrupt controller to make use of these interrupts.

SLIDE 23-15
How to Initialize a General Purpose Timer (1 of 2)
Step Action Example

1 If a TOUTx* or TINx pin is to be used, | pi mm >PAPAR = 0x800;
initialize Port A as required /* ENABLE TOUT2* */

2 Initialize Timer Reference ;)L mInNI>$R$éRz '2:%%0(2) sEC
Register, TRRx TI NEOUT*/

3 Clear Timer Event Register, TERx pi mm >TERL = OxFF;
/* CLEAR TI MER 1 EVENT REG*/

If reset conditions exist, TERX is
already cleared.

For More Information Contact: www.freescale.com 463



Freescale Semiconductor, Inc.

How to Initialize a General-purpose Timer (1 of 2)

The following procedure describes how to initialize a general-purpose timer.

The first step is to enable TOUT* or TIN?*, if they are to be used, initializing Port A.

Next, step two initializes the Timer Reference register if an output compare is to be implemented.

Next, the procedure clears the Timer Event register. If reset conditions exist, this register is already

cleared.

SLIDE 23-16

How to Initialize a General Purpose Timer (2 of 2)

4 Initialize Timer Mode Register, p'*
TMRx /

PS:prescalar

CE:capture edge and enable intrpt

OM:output mode

ORI:output reference intrpt enable

FRR:free run/restart

ICLK:input clock source for timer

RST:reset timer

i mm >
|

MR2. PS = 25;

T
INIT TI MER 2 PRESCALAR*/

5 Enable the timer in the Timer p
Global Configuration Reg, TGCR /

RSTx: enable timer

i M >TCCR. RST3 = 1;

ENABLE TI MER 3 */

How to Initialize a General-purpose Timer (2 of 2)

Step four initializes the Timer Mode register, including the prescaler, the various output modes, and

other settings, including defining the input clock source.

Finally, it is necessary to enable the timer in the Timer Global Configuration Register.

For More Information Contact: www.freescale.com

464



Freescale Semiconductor, Inc.

SLIDE 23-17
Example (1 of 4)
/* Equi prent : 860ADS Eval uati on Board */
/* (TMRI. O */
voi d *const stdout = O; /* STANDARD QUTPUT DEVI CE */

1 #include "npc860. h" /* I NTNL MEM MAP EQUATES */
2 struct immbase *pi mm /* PO NTER TO | NTNL MEM NMAP */
3 main()
4 void intbrn(); /* EXCEPTI ON SERVI CE RTN */
5 int *ptrs,*ptrd; /* SOURCE & DEST PO NTERS*/
6 char intlvl = 4; /* | NTERRUPT LEVEL */
7 pimm = (struct imbase *) (getimr() & OxFFFF0000);

/* INIT PNTR TO | MVBASE */
8 ptrs = (int *) intbrn; /* INNT SOQURCE PO NTER  */
9 ptrd = (int *)(getevt() + 0x500); /* INIT DEST PO NTER */
10 do /* MOVE ESR TO EVT */
11 *ptrd++ = *ptrs; /* MOVE UNTI L */
12 while (*ptrs++ | = 0x4c000064); /* RFl | NTRUCTI ON */
13 pimm >CICR IRLO_IRL2 = (unsigned) (intlvl);

/* CPM | NTERRUPTS LEVEL 4*/
14 pi mm >Cl CR HPO_HP4 = Ox1F; /* PC15 H GHEST I NT PRI OR*/
15 pi mm >PDDAT = 0; /* CLEAR PORT D DATA REG */
16 pi mm >PDDI R = Oxff; /* MAKE PORT D8-15 QUTPUT*/

Example (1 of 4)

In this example, a timer 1 is initialized and enabled to timeout after 5 seconds. The exception vector

table is initialized with the interrupt service routine and the service routine jumps to a function based on
the interrupt code.

Lines 1 through 16 are similar code from previous examples.

For More Information Contact: www.freescale.com

465



Freescale Semiconductor, Inc.

SLIDE 23-18

Example (2 of 4)

17 pi mm >TRRL = 50000;
18 pi mm >TMRL. PS = 155;

19 pi M >TMRL. ORI
20 pi mm >TMRL. FRR

21 pi mMm >TMRL. | CLK

22 pi M >TCCR. RST1

23 pi mm >C MR Tl MERL

24 pi mm >S|I MASK. ASTRUCT. LVM} = 1;

1
1

2
L

25 pim>C CR | EN = 1;
26 asnm(" ntspr 80,0");

27 whi l e ((pi mm >PDDAT
28 pi mm >TGCR RST1 = 0;

}

1

29 #pragma interrupt intbrn

30 void intbrn()
{

31 voi d cpnesr();

& Oxff) == 0);
. /*

TIMER REF FOR 5 SECS */
PRESCALAR FOR 5 SECS */
ENABLE I NTS QUT REF  */
RESTART AFTER REF REAC*/
MASTER CLOCK DIV BY 16*/
ENABLE TI MER */
ENABLE TI MER 1 | NTRPTS*/
ENABLE LVL4 | NTERRUPTS*/
ENABLE CPM | NTERRUPTS */
ENABLE CPU | NTERRUPTS */

TURN OFF TI MER */

32 switch (pi mm >SI VEC. | C) /* PROCESS | NTERRUPT OCDE*/
33 case 0x24: asnm(" bla cpnesr"); /* PROCESS LVL4 CODE */
34 br eak;
35 defaul t:;
}
}

Example (2 of 4)

Line 17 initializes the timer reference register for 5 seconds as determined from the previous tables.

Similarly, Line 18 initializes the prescalar for 5 seconds.

Output compare interrupts are enabled in line 19.
Following a timeout, line 20 specifies that the timer counter should begin counting again from zero.

To obtain the 5-second timeout, the clock divided by 16 must be used as initialized in line 21.

Timer 1 is enabled in line 22.

Timerl interrupts are enabled in line 23.

Level 4 interrupts are enabled in line 24.

Interrupts are enabled from the CPM in line 25.

Line 26 enables the Power PC core to respond to interrupts.

Line 27 watches for the LED counter to become non-zero, indicating that a 5-second timeout occurred.
After the timeout, timer 1 is disabled in the Timer Global Configuration Register.

The function, ‘intbrn’, is the exception service routine.

For More Information Contact: www.freescale.com

466



In line 32, the interrupt code in SIVEC is read and, based on that value, the interrupt is serviced. In a

Freescale Semiconductor, Inc.

complete example, 16 cases would be handled. For brevity, only the case of interest is shown here, that
of a CPM interrupt. As can be determined from the User Manual, the interrupt code for Level 4 is 0x24.
The code for this case branches to the subroutine or function ‘cpmesr’.

SLIDE 23-19

Example (3 of 4)

36 void cpnesr()
{

37
38
39

40
41
42

pi mm >Cl VR. | ACK = 1,

asm (“ eieio”);

switch (pi mm >Cl VR VN)
case 0x19:

pi nm >TER1 = 2;
pi nm >PDDAT += 1;

Example (3 of 4)

The function, ‘cpmesr’, begins at line 36.

In line 37, an interrupt acknowledge is executed followed by a read of the vector number in line 39.

/*

/*

/~k

/*

REQUEST VECTOR NUMBER
PROCESS VECTOR NUMBER
TIMER 1 VECTOR NUMBER

CLEAR TI MER EVENT REF
| NCREMENT DI SPLAY

*/

*/

*/

*/

Based on the returned value of the vector number, the program handles case 0x19, which is for timer 1.

In line 41, the referenced reached event bit is cleared.

In line 42, the LED counter is incremented.

For More Information Contact: www.freescale.com

467



Freescale Semiconductor, Inc.

SLIDE 23-20

Example (4 of 4)

43 pi M >Cl SR = 1<<(31-6); /* CLEAR I N- SRVCE BI T*/
44 br eak;
45 defaul t:;
}
getimmr ()

asnm(" nfspr 3,638");
}

getevt () /* GET EVT LOCATI ON */
if ((getnsr() & 0x40) == 0) /* IF MBRIP 1S O */
return (0); /* THEN EVT IS I N LOW MEMF/
el se /* ELSE */
return (OxFFFO0000); /* EVT IS IN H GH MEM */

}
get nsr () /* GET MACH NE STATE REG VALUE */
asn(" nfrsr 3"); /* LOAD MACHI NE STATE REG TOr3 */

}

Example (4 of 4)

And in line 43, the timer 1 bit in the CISR is cleared.

SLIDE 23-21
Periodic Interrupt Timer
PTE
pitrtclk —»| Clock »|Modulus | [ ps |—]
Disable Counter —
T PIE
FREEZE PIT

Interrupt

« 16-bit timer with a range of 122 usec to 8 seconds
« Typically used as an OS time-slice clock

* Resides in SIU

For More Information Contact: www.freescale.com

468



Freescale Semiconductor, Inc.

Periodic Interrupt Timer

The periodic interrupt timer, located in the SIU, generates periodic interrupts for use with a real-time
operating system, or the application software. The pitrtclk clock clocks the periodic timer, or PIT,
providing a period from 122 microseconds to 8 seconds, assuming a 32.768 kHz or a 4.192 MHz
crystal.

This diagram illustrates the flow of operation. The Periodic Interrupt Timer Interrupt Status and Control
Register contains the fields to which this diagram refers. The user enables the periodic interrupt timer
with the PTE field. Note that the PIT also supports freeze capability. The periodic interrupt timer
consists of a 16-bit counter clocked by the pitrtclk clock, supplied by the clock module. An initial value
in the PITC loads the 16-bit counter, which proceeds to decrement to zero. After the counter
decrements to zero, the PS status bit is set, and an interrupt is generated if PIE is set.

SLIDE 23-22

PIT Time out Period

The time-out period is calculated as:

PIT . =PTC+1___ PITC+1
period™ Fpitrtclk ~ External Clock
lor128 4

Solving for 32.768 Khz external clock gives:

PITperiod= PLTC +1

8192
Range : PITC = $0000; timeout is 122usec
PITC = $FFFF; time-out is 8.0 sec

PIT Timeout Period

The timeout period is calculated as shown here given a PIT period of PITC + 1, divided by the
frequency of the clock. Or, it is possible to divide the external clock by lor 128, depending on whether
the 32.768 kHz or the 4.192 MHz crystal is in use, and then dividing the resulting value again by 4.
After calculating appropriately based on the crystal in use, the range of possible periods for the two
frequencies is from 122 microseconds to eight seconds.

For More Information Contact: www.freescale.com 469



Freescale Semiconductor, Inc.

SLIDE 23-23
PIT Interrupt Status & Control Reqister
0 7 8 13 14 15
PISCR | PIRQ [ps| Reserved | PiE|piTHPTE]

PIRQ bit = Periodic Interrupt Request Level
The interrupt level asserted when PIT generated
an interrupt

PS bit = Periodic Interrupt Status
0 = PIT did NOT issue an interrupt

1 PIT issues an interrupt
PIE bit = Periodic Interrupt Enable
0 = PIT Timer Interrupt disable
1 = PIT Timer generate interrupt when PS bit is set

PITF bit = Periodic Interrupt Timer Freeze

0 = PIT Timer will NOT STOP

1 = PIT Timer will STOP while FREEZE is asserted
PTE bit = PIT Timer Enable

0 = Disable (maintain old value)

1 = Continue counting

Periodic Interrupt Timer Interrupt Status and Control Register

The PISCR controls the functions of the PIT as we have described. For example, we have mentioned
the PS bit, which is set when the timeout occurs. Also, the PIE field enables the interrupt when the PS
bit is set. Additionally, the periodic interrupt timer can be stopped while the CPU is in debug mode if
PITF is set. There is also the periodic timer enable bit, which controls the counting of the periodic
interrupt timer.

In addition to the functions discussed earlier in this chapter, it is necessary to set the interrupt request
level. You may recall that the SIU supports user-programmable levels for each SIU interrupt source on
any level from zero through seven. The 8-bit PIRQ field allows the user to specify the interrupt request
level when a periodic interrupt is generated. To configure the level, the user sets the bit that
corresponds to the desired interrupt level. For example, if the programmer wishes to interrupt using
level 6, bit 6 in the PIRQ field should be set.

For More Information Contact: www.freescale.com 470



Freescale Semiconductor, Inc.

SLIDE 23-24

PIT Timeout Tables

For 32.768 Khz external clock gives:

PITperiod = %
Period PITC PITC +1
1 msec 7 8
10 msec 81 82
100 msec 818 819
1 sec 8191 8192

PIT Timeout Tables

This table of values for a 32.768 kHz internal clock shows various period values, and the corresponding
values for the PITC, generating the PITC value, plus one. For example, if a system has a 32.768 kHz
internal clock, and the user requires a 20-millisecond periodic interrupt, a value of 163 must be placed
into the PITC.

SLIDE 23-25

How to Initialize the Periodic Interrupt Timer

Step Action Example

1 Initialize Periodic Timer Count Reg,| pimm->PITC = 0x70000;
PITC /* INIT FOR 1 MSEC */

2 Initialize Periodic Interrupt Status &| pimm->PISCR.PTE = 1,
Control Reg, PISCR /* ENABLE PERIODIC TIMER */

PIRQ:periodic intrpt request level
PS:periodic interrupt status

PIE: periodic interrupt enable
PITF: periodic intrpt timer freeze
PTE: periodic timer enable

For More Information Contact: www.freescale.com 471



Freescale Semiconductor, Inc.

How to Initialize the Periodic Interrupt Timer

Here we describe the procedure for initializing the periodic interrupt timer. The underlying assumption is

that reset conditions exist.

The first step is to initialize the value in the PITC.

The second step initializes the Periodic Interrupt Status and Control Register, or PISCR, including

defining and enabling the appropriate interrupts.

SLIDE 23-26
Example (1 of 3)

/* Equi prent : 860ADS Eval uation Board and */
/* UDLP1 Uni versal Devel opnent Lab Board */
/* Pins 2 and 3 of JP2 must be junpered */
/* Connected: P10-D25 of ADS to J4-11 of UDLP1 */
/* (PIT.C */
1 #include "npc860. h" /* I NTNL MEM MAP EQUATES */
2 struct imbase *pimm /* PNTR TO | NTNL MEM MAP */
3 main()
4 void intbrn(); /* EXCEPTI ON SERVI CE RTN */
5 int *ptrs, *ptrd; /* SOURCE & DEST PO NTERS*/
6 pimm = (struct immbase *) (getimr() & OxFFFF0000);

/* INIT PNTR TO | MMBASE */
7 ptrs = (int *) intbrn; /* INIT SOURCE PO NTER  */
8 ptrd = (int *)(getevt() + 0x500); /* INIT DEST PO NTER */
9 do /* MOVE ESR TO EVT */
10 *ptrd++ = *ptrs; /* MOVE UNTI L */
11 while (*ptrs++ ! = 0x4c000064) ; /* RFI | NTRUCTI ON */
12 pi mm >PADAT | = 0x8000; /* INT PAO TO 1 */
13 pi mm >PADI R | = 0x8000; /* PAO IS AN QUTPUT */
14 pi mm >PI TC = 0x510000; /* 10 M5 PERI OD */
15 pi mm >Pl SCR. Pl RQ = 0x10; /* | NTERRUPT LEVEL 3 */
16 pi mm >PI SCR. PTE = 1; /* ENABLE PI'T */
17 pi mm >PI SCR. PI E = 1; /* ENABLE | NTERRUPTS */

Example (1 of 3)

In this example, the periodic interrupt timer is initialized to generate a 50 Hz square wave. The exception

vector table is initialized with the interrupt service routine and the service routine jumps to a function

based on the interrupt code.

Lines 1 through 11 are similar code from previous examples.

Lines 12 and 13 configure pin O of port A to be a general-purpose output; the square wave will be

generated on this pin.

Line 14 initializes the PITC to a 10 ms period. The number, 0x510000, is determined by referring to the

chart shown previously which indicates that a 10 ms timeout requires a count of 81. PITC is a 32-bit

register in which only the upper 16 bits hold the count. So 81, which is 0x51, must be stored in the upper

half of PITC as is done in line 14.

For More Information Contact: www.freescale.com

472



Freescale Semiconductor, Inc.

Line 15 initializes the PIT to interrupt on level 3; by setting bit 3 in PIRQ.

Lines 16 and 17 enable the PIT and PIT interrupts respectively.

SLIDE 23-27

Example (2 of 3)

18 pi mm >S| MASK. ASTRUCT. LWMB = 1; /* ENABLE LVL3 | NTERRUPTS*/
19 asnm(" ntspr 80,0"); /* ENABLE | NTERRUPTS */
20 while (1==1);

21 #pragma interrupt intbrn
22 void intbrn()
{

23 void pitesr();

24 switch (pi nm>SI VEC. | Q) /* PROCESS | NTERRUPT CODE*/
25 case 0x1C. asm(" bla pitesr"); /* PROCESS PIT CODE */
26 br eak;
27 defaul t:;
}
}

28 void pitesr()
{
29 pi mm >PI SCR. PS = 1; /* CLEAR PERDC | NT STATUS*/

Example (2 of 3)

Line 18 enables level 3 interrupts in the SIU interrupt controller.

The function, ‘intbrn’, is the exception service routine.

In line 24, the interrupt code in SIVEC is read and, based on that value, the interrupt is serviced. In a
complete example, 16 cases would be handled. For brevity, only the case of interest is shown here, that
of a level 3 interrupt. As can be determined from the User Manual, the interrupt code for Level 3 is
0x1C. The code for this case branches to the subroutine or function ‘pitesr’.

The function, ‘pitesr’, begins at line 28.

In line 29, writing a one to it clears the periodic interrupt timer status bit.

For More Information Contact: www.freescale.com 473



Freescale Semiconductor, Inc.

SLIDE 23-28

Example (3 of 3)

30 pi mm >PADAT ~= 0x8000;

*/
getimm()

asn(" nfspr 3,638");

/* TOGALE PAO

getevt () /* GET EVT LQCATI CN */
if ((getmsr() & 0x40) == 0) /* IF MBRIPIS O */
return (0); /* THEN EVT IS I N LOV MEMF/

el se /* ELSE */

return (OxFFF0O0000);

}

get nsr ()

asnm(" nfnsr 3");
}

Example (3 of 3)

/* EVT IS INHGHMM */

/* GET MACH NE STATE REG VALUE */

/* LOAD MACH NE STATE REG TO r3 */

Line 30 toggles PAO where the square wave is generated.

For More Information Contact: www.freescale.com

474



Freescale Semiconductor, Inc.

SLIDE 23-29

RISC Timers svscik —[ TIMEP

0 31LRISC
Timer O |Cntr Init| Dwn Cntr|

NOOITAWNE

ADDRESS NAME SIzE|| DESCRIPTION

TIMER BASE + 00| TM BASEffAiw | RISC Timer table base address
TIMER BASE + 02| TM_ptr Hw | RISC Timer table pointer
TIMER BASE+04[R TMR Hw | RISC Timer mode reqister
TIMER BASE + 06| R TMV Hw _#RISC Timer valid register
TIMER BASE + 08| TM_cmd | Wefd| RISC Timer command register
TIMER BASE + 0C| TM_cnt_}ord| RISC Timer internal count

[ARRRRRRRRANNNNN

0 15 Event
RTER | Register
Mask
RTMR | Register
0 2 7 8 15
ccr | 1]- DR| DR DROP |EIElscO Eram | RISC Controller
TIMEP 1M om Q Configuration Register
012 12 15 16 31
P .
. Timer :
VIR V'\\/{ Number TIMER PERIOD ( 16-bit)
RISC Timers

The RISC controller has the ability to control up to 16 timers that are separate from the four general-
purpose timers and baud rate generators in the CPM. These timers are clocked from the system clock
divided by 1024 times a user-programmable factor.

There are three timer modes: one-shot, restart, and pulse width modulation. It is possible to set a
maskable interrupt on timer expiration.

The RISC timers require device parameter RAM, as do other CPM devices, and the organization of this
parameter RAM is shown here.

The first entry, TM_BASE, is the base pointer to the location of the timers, which is a location in dual-
port RAM. This base pointer points to sixteen, 32-bit locations. Each 32-bit location is divided into two
parts: the upper half-word contains the counter initial value, and the lower half-word contains the down
counter.

Every time the system clock, divided by TIMEP, supplies an input to the RISC, the RISC decrements all
the down counters that have been enabled. When these down counters decrement to zero, an event is
set in the event register, and if that event is enabled it in the mask register, an interrupt is generated.
Then, if programmed for restart, the initial value is moved to the down counter and another timeout
begins.

For More Information Contact: www.freescale.com 475



Freescale Semiconductor, Inc.

Note that TIMEP is a tick of 1,024 general system clocks minimum. To create a longer time out period,
the programmer can write a larger number to the TIMEP field of the RISC Controller Configuration
Register, or RCCR. Note that at 25 MHz, the full timeout is 172 seconds.

The programmer also enables timers in the RCCR register. We discuss the RCCR register in the IDMA
section of this training course.

To start a timer, the user must first initialize TM_BASE to locate the timers in dual-port RAM. Next, it is
necessary to clear the tick counter, or TM_cnt. The RISC updates the TM_cnt counter after each tick.
Next, the user must initialize a timer's period in TM_cmd. The structure of TM_cmd is illustrated at the
bottom of the slide.

To initialize a timer's period, it is necessary to specify the desired time period, the timer number,
whether the timer is valid (enabled), and the mode -- one-shot, restart or PWM. Once the user has
initialized a timer's period, he must initialize the timer with the command register. If the user implements
all sixteen RISC timers, this procedure must be used to implement each one. Each pair of timers can be
used to generate a PWM waveform on one of the Port B pins, and a maximum of eight channels is
supported. One timer of each pair is used to determine the frequency, or the period, and the other is
used to determine the high time of the period.

SLIDE 23-30

RISC Timers Time out Examples (1 of 2)
Timer tick period = [General system clock period * 1024] * [TIMEP + 1]

Timeout = [Timer tick period] * [TM_cmd.TIMER PERIOD]

TM_cmd.TIMER PERIOD = Timeout/Timer tick period
40 ns General System Clock Period

TIMEP + 1 Timer tick
1 40.96 us
10 409.6 us
25 1.024 ms
49 2.007 ms
(TIMEP +1) =1 (TIMEP +1) = 10
TM cmd.Timer Period| Timeout TM cmd.Timer Period] Timeout
1 42 us 1 419 us
10 419 us 10 4.19 ms
25 1.049 ms 25 10.48 ms
245 10.3 ms 245 102.7 ms
2450 102.7 ms 2450 1 sec
24500 1 sec 24500 10 sec

RISC Timers Timeout Examples (1 of 2)

This diagram shows some timeout examples for the RISC timers. First, the user must set the timer tick
period, which is equal to the general system clock period multiplied by 1024, and then multiplied by
TIMEP + 1.Then it is possible to determine timeouts by multiplying the timer tick period by the period the
user programs into each counter. The tables shown here and in the next slide include timeout values
based on a 41-microsecond clock, a 410-microsecond clock, a 1-millisecond clock and a 2-millisecond
clock.

First are shown timeout values based on a 41- and a 410-microsecond clock.

For More Information Contact: www.freescale.com 476



g |

Freescale Semiconductor, Inc.

SLIDE 23- 31

RISC Timers Time out Examples (2 of 2)

(TIMEP + 1) = 25

(TIMEP + 1) = 49

TM_cmd.Timer Period | Timeout TM_cmd.Timer Period | Timeout
1 1 ms 1 2.1 ms
10 10.5 ms 10 20.6 ms
100 105 ms 100 206 ms
1000 1 sec 1000 2 sec
10000 10 sec 10000 20 sec

RISC Timers Timeout Examples (2 of 2)

Here are shown time out values based on a 1- and 2- millisecond clock.

SLIDE 23-32

How to Initialize the RISC Timers

Step Action

Example

1 Initialize RISC Timers parameter RAM

TM_BASE:pointer to timers in DPR
TM_cnt:tick counter
TM_cmd: RISC timer command

pscr->Timer. TM_BASE = 0x900;
/* LOCATE TIMERS AT 0x2900
FROM IMMR */

2 Initialize the RISC timers via
the Command Register, CPCR

OPCODE:operation code

CH NUM:channel number
FLG:command semaphore flag
RST:software reset command

pimm->CPCR = 0x101;
/* INIT RECV PARAMETERS
FOR SCC1 */

3 Initialize the RISC timers interrupt
mask register, RTMR

pimm->RTMR = 0x10;
/* ENABLE TIMER 4 INTER-
RUPTS */

For More Information Contact: www.freescale.com

477



Freescale Semiconductor, Inc.

How to Initialize the RISC Timers

Here we describe the procedure for initializing the RISC timers. The underlying assumption is that reset

conditions exist.

Step one is to initialize the device parameter RAM, including the various timers the user wishes to

implement.

Step two initializes the RISC timers by writing to TM_cmd.

Step three is to initialize the RISC timers interrupt mask register, to specify which interrupts are enabled.

SLIDE 23-33

Example (1 of 4)

/* Equi prent : MPC860 Eval uation Board and */
/* UDLP1 Uni versal Devel opnent Lab Board */
/* UDLP1 Settings: SW2 - set to Mode 12 */
/* (RTT.C */

voi d *const stdout = O; /* STANDARD QUTPUT DEVI CE */
1 #include "MPC860. h" /* INTNL MEM MAP EQUATES */
2 struct imbase *pimm /* PO NTER TO | NTNL MEM MAP */
3 main()
4 void intbrn(); /* EXCEPTI ON SERVI CE RTN */
5 int *ptrs,*ptrd; /* SOURCE & DEST PO NTERS*/
6 char intlvl = 4; /* | NTERRUPT LEVEL */
7 pimm = (struct inmmbase *) (getimr() & OxFFFF0000);

/* INIT PNTR TO | MMBASE */

8 ptrs = (int *) intbrn; /* INIT SOURCE PO NTER  */
9 ptrd = (int *)(getevt() + 0x500); /* INIT DEST PO NTER */
10 do /* MOVE ESR TO EVT */
11 *ptrd++ = *ptrs; /* MOVE UNTI L */
12 while (*ptrs++ ! = 0x4c000064) ; /* RFI | NTRUCTI ON */

13 pimm >CICR I RLO_I RL2 = (unsigned) (intlvl);

/* CPM | NTERRUPTS LEVEL 4*/
14 pi nm >Cl CR. HPO_HP4 = Ox1F; /* PC15 H GHEST | NT PRI OR*/

15 pi nm >SDCR = 1; /* SDVA U-BUS ARB PRI

Example (1 of 4)

In this example, the periodic interrupt timer is initialized to generate a 1085 Hz square wave. The

5 */

exception vector table is initialized with the interrupt service routine, and the service routine jumps to a

function based on the interrupt code.

Lines 1 through 15 are similar code from previous examples.

For More Information Contact: www.freescale.com

478



Freescale Semiconductor, Inc.

SLIDE 23-34
Example (2 of 4)
16 pi mm >Ti ner. TM BASE = 0x200; /* LOCATE TI MRS AT 0X2200*/
17 pi mm >Ti mer. TM cnt = 0; /* CLEAR Tl CK COUNTER
18 /* RCCRis zero fromreset; therefore tiner tick is 41 us */

19 pi mm >Ti mer. TM.cnd = 0xC000000A; /* INT TIMER O TO 11

20 pi nm >CPCR = 0x851; /* INNT TIMER O

21 pi M >RTMR = 1, /* ENABLE TI MER O | NTRPTS*/
22 pi nm >RCCR | = 0x8000; /* ENABLE TI MERS

23 pi nm >PADAT | = 0x8000; /* INNT PAO TO 1

24 pi nm >PADI R | = 0x8000; /* PAO |'S AN QUTPUT

25 pimm>C MR R.TT = 1; /* ENABLE R SC TI MER | NTS*/
26 pi nm >S| MASK. ASTRUCT. LVM4 = 1; /* ENABLE LVL4 | NTERRUPTS*/
27 pimm >CI CR | EN = 1; /* ENABLE CPM | NTERRUPTS */
28 asnm(" ntspr 80,0"); /* ENABLE CPU | NTERRUPTS */

29 while (1==1);
}

30 #pragma interrupt intbrn
31 wvoid intbrn()

32 void cpresr();

Example (2 of 4)

Line 16 initializes TM_BASE to locate the timers at 0x200 in the dual port RAM, 0x2200 in the internal

memory space.

Line 17 clears the tick counter.

Line 18 sets timer 0 to a count of 10. Notice that the ‘V’ bit is set to make the timer valid, and the ‘R’ bit

is set for restart.

Line 20 initializes the RISC timer through the command register.

To enable interrupts, bit 0 in the mask register is set in line 21.

In line 22, the RISC timers are enabled.

Lines 23 and 24 configure pin 0 of Port A as general-purpose output.

Line 25 enables interrupts from the RISC timers.

Line 26 enables Level 4 interrupts through the SIU interrupt controller; in line 13, the CPIC was initialized

to generate Level 4 interrupts.
Line 27 enables interrupts from the CPM.

The function, ‘intbrn’, is the exception service routine.

For More Information Contact: www.freescale.com

479



Freescale Semiconductor, Inc.

SLIDE 23-35
Example (3 of 4)
33 swi tch (pi nm>SI VEC. | C) /* PROCESS | NTERRUPT CCDE*/
34 case 0x24: asm(" bla cpnesr"); /* PROCESS LVL4 CCDE */
35 br eak;
36 defaul t:;
}
}
37 void cpnesr ()
{
38 pim>C VR | AKK = 1; /* REQUEST VECTCR NUMBER */
39 asm (“ eieio”);
40 switch (pi mMm>C VR WN) /* PROCESS VECTCR NUMBER */
{
41 case 0x11: /* R SC TI MERS VEC NUVBER*/
42 pi mm >RTER = 1; /* CLEAR TIMER O EVNT BI T*/
43 pi mm >PADAT "= 0x8000; /* TORAE PAO */
44 pi mm >C SR = 1<<(31-14); /* CLEAR | N- SRVCE BI T*/

Example (3 of 4)

In line 33, the interrupt code in SIVEC is read and, based on that value, the interrupt is serviced. In a
complete example, 16 cases would be handled. For brevity, only the case of interest is shown here, that
of a Level 4 interrupt. As can be determined from the User Manual, the interrupt code for Level 4 is
0x24. The code for this case branches to the subroutine or function ‘cpmesr’.

The function, ‘cpmesr’, begins at line 37.

In line 38, an interrupt acknowledge is executed, followed by a read of the vector number in line 40.
Based on the returned value of the vector number, the program handles case 0x11, which is for the
RISC timers.

In line 42, the event bit for RISC timer O is cleared.

In line 43, PAO is toggled which is where the square wave is generated.

And in line 44, the RISC timer bit in the CISR is cleared.

For More Information Contact: www.freescale.com 480



Freescale Semiconductor, Inc.

SLIDE 23-36

Example (4 of 4)

45 br eak;
46 defaul t:;

}
}
getimmr ()

asm(" nfspr 3,638");
}

getevt () /* GET EVT LOCATI ON */
if ((getnsr() & 0x40) == 0) /* ITF MBRIP 1S 0 */
return (0); /* THEN EVT IS I N LON MEM/
el se /* ELSE */
return (O0xFFFO0000); /[* EVT IS IN H GH MEM */
}
get nsr () /* GET MACH NE STATE REG VALUE */
{
asm(" nfnsr 3"); /* LOAD MACH NE STATE REG TO r3 */

}

Example (4 of 4)

This slide shows the remaining code in the example, specifically the GetIMMR, Get EVT and GetMSR
routines.

For More Information Contact: www.freescale.com 481



Freescale Semiconductor, Inc.

Chapter 24: Clocks and Low Power

SLIDE 24-1

Clocks and Low Power

Whatyou * What are the required clock sources?
will learn  « How the internal clocks are generated

» What power modes are available?

» How to enter and exit each power mode

In this chapter, you will learn to:

1. Identify the required clock sources

2. Describe how the internal clocks are generated
3. ldentify the power modes that are available

4. Enter and exit each power mode

For More Information Contact: www.freescale.com

482



Freescale Semiconductor, Inc.

SLIDE 24-2
What is the System Clock Generator?

—— GCLK1C
Crystal — * — GCLK2C

System ——— GCLK1

and/or Clock L GCLK2

Generator

Clock Oscillator — ™| — BRGCLK

— SyncCLK
— CLKOUT

— tmbclk

— pitrtclk

What is the System Clock Generator?

A system clock generator receives an input clock, either a crystal and/or a clock oscillator, and
generates a set of system clocks that are used throughout the system.

This diagram summarizes the list of clocks that the system clock generates.

The first two clocks, GCLK1C and GCLK2C, are the basic clocks supplied to the core, the data and
instruction caches, and MMUs.

The next two clocks, GCLK1 and GCLK2, are the basic clocks supplied to the SIU, the clock module,
the RISC controller, and most other features in the CPM.

The Baud Rate Generator Clock clocks the four baud rate generators and the memory controller
refresh timer. This allows the serial ports to operate at a fixed frequency even when the rest of the
MPC860 is operating at a reduced frequency.

The syncCLK is used by the serial synchronization circuitry in the serial ports of the CPM, and includes
the SlI, SCCs and SMCs. The syncCLK performs the function of synchronizing externally generated
clocks before they are used internally. This clock allows the SI, SCCs, and SMCs to continue operating
at a fixed frequency, even when the rest of the MPC860 is operating at a reduced frequency.

The Clock Out pin is an external clock signal, as is the general system clock. It can drive other devices,
and thus provide the ability to operate synchronously with those devices.

The Time Base Clock clocks the Time Base Counter, which is a 64-bit counter.

Finally, the Periodic Interrupt Timer clocks the periodic interrupt timer and the Real Time Clock.

For More Information Contact: www.freescale.com 483



Freescale Semiconductor, Inc.

For More Information Contact: www.freescale.com

484



Freescale Semiconductor, Inc.

SLIDE 24-3
How the Clocks are Generated
MOD9K1:2 XFC VDDSYN
v v
EXTCLK 2 |gscclk 51
MUX A Y vcoout MUX
> SPLL
> lock gelk2
l 51 l’ SCCR.TBS Low gclkl/gclk2
MUX DF_’Q\&VGF gclkcl/gelke2
wviders
(/4 or /16) (ar2My brgclk
orivers | syncelk
v
cLkouT | CLKOUT
Driver
TMBak | tmbclk
Driver
SCCI}RTSEL
21 RTC/PIT pitrclk
> MUX Cloc_k and
Driver
Ji (/4 or /512)
& Main Clock

EXTAL Oscillator

l[{alal Y ~A~AR ATAn g

How the Clocks are Generated

This diagram shows how each of the individual clocks is generated from either an external oscillator
and/or a crystal.

The MPCB860 clock module consists of the main crystal oscillator (OCSM), the system phase-locked
loop (SPLL), the low power divider, and the clock generator/driver blocks.

As mentioned, the main timing reference for the MPC860 can either be a crystal, or an external clock
oscillator. The selection of either the crystal or the oscillator is based on the values asserted on the
MODCK pins at reset. At reset, the MPC860 reads the MODCK pins, and these pins drive the
Multiplexer shown in the diagram to select the appropriate clock input.

The SPLL multiplies the incoming frequency, thereby generating the system operating frequency.

The time base clock is generated from one of two sources: the same frequency source provided to the
SPLL, or GCLK2. The value of the TBS field in the SCCR register, as processed by the intervening
MUX, determines which of the two sources generates the time base clock. Additionally, the intervening
MUX determines whether the frequency is divided by a value of 4 or 16, depending on the original value
of the MODCK pins.

The RTSEL field of the SCCR register determines whether an external oscillator or a crystal generates

the Periodic Interrupt Timer Clock. Additionally, the RTDIV field of the SCCR register determines
whether the frequency is divided by a value of 4 or 512.

For More Information Contact: www.freescale.com 485



Freescale Semiconductor, Inc.

SLIDE 24-4
What are the Power Modes?
. . Power
Mode Functionality Wake-up Consumption
Normal Full - Most
Doze EPPC disabled RTC, PIT, DEC,
TMB, IRQx
Sleep Clocks not active; RTC, PIT, DEC,
RTC, PIT, TMB TMB, IROX
and DEC enabled ’
Deep SPLL Dot active: RTC, PIT, DEC,
Sleep ' ' T™MB
and DEC enabled
Power SPLL not active; RTC, PIT, TB
Down RTC, PIT, TMB or DEC Least
and DEC enabled; Interrupt plus
KAPWR only Hard Reset

What are the power modes?

Power modes allow the MPCB860 to operate at various power consumption levels based on 1) the
frequency at which the sub-blocks of the 860 operate, and 2) which sub-blocks are turned on or off.

Two basic principles affect the use of power: first, a device should not be turned on if it is not used,;
second, the slower a device runs, less power it requires.

This chart summarizes the five power modes of the MPC860. Note that the Normal mode consumes
the greatest amount of power, while subsequent power modes consume progressively less. Power
Down mode consumes the least amount of power.

In Normal Mode, the entire MPC860 is functional.

In Doze Mode, the entire MPC860 is functional with the exception of the Power PC core, which is
disabled. An interrupt from the real time clock, the periodic interrupt timer, the time base clock, the
decrementer, or IRQx provides wake-up from Doze Mode.

In Sleep Mode, most of the system clocks are not active, with the exception of the real time clock, the
periodic interrupt timer, the time base counter clock, and the decrementer. An interrupt from the real
time clock, the periodic interrupt timer, the time base clock, the decrementer, or IRQx provides wake-up
from Sleep Mode.

In Deep Sleep Mode, the SPLL is not active. The real time clock, the periodic interrupt timer, the time

base counter clock, and the decrementer are still enabled, and likewise, an interrupt from one of these
four devices provides wake-up from Sleep Mode.

For More Information Contact: www.freescale.com 486



Freescale Semiconductor, Inc.

Finally, in Power Down Mode, the SPLL is not active, and the four clocks shown active in the two sleep
modes remain active. However, these four clocks operate using keep-alive power, which is less than
normal power, at 2.2 volts. The intention is to use a battery as a keep-alive power source.

In order to wake up periodically from Power Down mode, it is possible to set a time interval for one of
the available four clock sources shown. When the time interval completes, the device causes an
interrupt. A hard reset in combination with the interrupt wakes the MPC860 from Power Down mode.
The Normal and the Doze modes can operate in Normal High or Low, and Doze High or Low. To
operate "low" means to operate at a lower frequency.

SLIDE 24-5

Programming Model

PLPRCR - PLL, Low Power and Reset Control Register
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

MFO_MF11 Reserved

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ss|ps| - ST - |CSRC|LPMO_LPM1CSR RE | PD

SCCR - System Clock Control Register
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RT | RT |CRQIPRQ|  Rsrvd Res
Res |[COM0O_COM1 Reserved | TBS oiv | seL|l encl EN EBDFO_1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Res [PFSYNCO_| DFBRGO_
L evNCTl DEBReT| DFNLO_DFNL2 | DFNHO_DFNH2| DFLCDO_2 [DFALCDO_1

Programming Model

Two registers control clocks on low power.

The first register is PLPRCR, or the PLL Low Power and Reset Control Register. Within this register,
the multiplier frequency field, MF bits 0 through 11, allows the user to specify the multiplier for the input
frequency. We mention other fields in this register later in this chapter.

Next, the SCCR, or System Clock Control Register, contains a number of different fields. The

discussion that follows concentrates on the DFNH and DFNL fields in the implementation of high and
low frequencies, also known as the "gear method".

For More Information Contact: www.freescale.com 487



Freescale Semiconductor, Inc.

SLIDE 24-6

How to Transition Between Normal High and Normal Low

» General system clock frequency
is divided by DFNH

Transition A Transition B

» General system clock frequency
is divided by DFNL

Transition A occurs if:

PLPRCR.CSRC=1&

((SCCR.CRQEN =1 & CPM inactive) | SCCR.CRQEN = 0) &
((SCCR.PRQEN =1 & no non-SIU interrupts pending) | SCCR.PRQEN = 0) &
(no SIU interrupts pending & PLPRCR.TMIST = 0)

Transition B occurs if:

PLPRCR.CSRC=0|

(SCCR.CRQEN =1 & CPM active) |

(SCCR.PRQEN =1 & (non-SIU interrupt pending | MSR.POW = 0)) |
(SIU interrupt pending)

How to Transition Between Normal High and Normal Low

The Normal High and Normal Low power modes allow automatic power saving when the Power PC
core and the RISC CPM are idle.

The frequency of Normal High derives from the general system clock frequency, divided by the Division
Factor High Frequency, or DFNH, field in the SCCR. It is common for this field to have a divisor of 1.

The frequency of Normal Low derives from the general system clock frequency, divided by the Division
Factor Lowest Frequency, or DFNL field in SCCR. It is possible to implement a divisor as great as 256.
Entering Normal Low mode lowers the frequency, and therefore dissipates less power.

Let us discuss the factors that cause a transition from Normal High to Normal Low, and vice versa.
First, let us discuss the factors that cause transition B - the transition from Normal Low to Normal High.
Transition B occurs if the Clock Source, or CSRC bit in the PLPRCR register becomes a zero. The
CSRC bhit effectively acts as the enable bit for this high-low capability.

A transition from Normal Low to Normal High could also occur if the CPM becomes active, and the
CPM Request Enable, or CRQEN bit is set in the SCCR register.

Additionally, if a non-SIU interrupt is pending, and the Power Management Request Enable, or PRQEN,
field of the SCCR register is set, a transition from Normal Low to Normal High occurs.

For More Information Contact: www.freescale.com 488



Freescale Semiconductor, Inc.

Finally, an SIU interrupt causes a transition from Normal Low to Normal High.
The transition from Normal High to Normal Low, transition A, occurs in the following circumstances:

The CSRC field in the PLPRCR register becomes a one.

The CPM is inactive, and the CRQEN bit is set in the SCCR register.

No non-SIU interrupts are pending, and PRQEN field of the SCCR register is set.

No SIU interrupts are pending, and the Timers Interrupt Status, or TMIST, bit is cleared in the
PLPRCR register.

PobdpE

The operation for the transition between Doze High and Doze Low is very similar to the operation
between Normal High and Normal Low. However, in Doze Mode, an interrupt acts as a wake-up, and
the system enters Normal Mode.

SLIDE 24-7
How to Transition Between Power Modes

Interrupt from Hard Reset
Software > RTC, PIT, DEC,
TB, or IRQXx

* PLPRCR.LPMO_LPM1 =1 Interrupt from

RTC, PIT, DEC,
TB, or IRQXx

Software > Sleep

Interrupt from
RTC, PIT,D
* PLPRCR.LPMOQ_LPM1 =2
* PLPRCR.CSRC =0

RTC/PIT/TB/DEC
interrupt followed by

Software > external hard reset

« PLPRCR.LPMO_LPM1 =3
« PLPRCR.CSRC =0
« PLPRCR.TEXPS = 1 Software ’

* PLPRCR.LPMO_LPM1 =3
* PLPRCR.CSRC =0
* PLPRCR.TEXPS =0

How to Transition Between Power Modes
This state diagram describes the transitions between power modes.
At reset, the system always enters Normal mode.

To enter the Doze mode, the software writes a '1' in the Low Power Mode field of the PLPRCR register.
An interrupt from RTC, PIT, Decr, TB or IRQx provides wake up from Doze mode.

For More Information Contact: www.freescale.com 489



Freescale Semiconductor, Inc.

To enter Sleep mode, the software writes a '2' in the LPM field of the PLPRCR register, and the CSRC
field of the same register should be equal to zero. An interrupt from RTC, PIT, Decr, TB or IRQx
provides wake up from Sleep mode.

To enter the Deep Sleep mode the software writes a '3' in the LPM field of the PLPRCR register, the
CSRC field should be equal to zero, and the Timer Expired Status, or TEXPS bit of the same register
should be equal to one. An interrupt from RTC, PIT, Decr, or TB provides wake up from Deep Sleep

mode.

Note that the only difference between the Deep Sleep and Power Down modes is the value of the
TEXPS field in the PLPRCR register.

Some additional considerations include the following:

1. The value in the TEXPS bit is set from reset, and determines the state of the TEXP pin

2. In Power Down Mode, when an interrupt from RTC, PIT, TB or DEC occurs, the TEXPS bit is set.
Writing a one to TEXPS clears this bit.

3. When an interrupt from RTC, PIT, TB or DEC occurs, the TMIST bit is set. Writing a one to TMIST
clears this bit.

4. Any asynchronous interrupt clears the Low Power Mode bit in PLPRCR.

For More Information Contact: www.freescale.com 490



Freescale Semiconductor, Inc.

Chapter 25: Bus Control Pins

SLIDE 25-1

MPC860 Bus Control Pins

What you e« What are the bus control pins

will learn  « What internal devices drive each pin
» General timing information for each pin
* Typical interface(s) for each pin

In this chapter you will learn:

1. What are the bus control pins?

2. What internal devices drive each pin?
3. General timing information for each pin
4. Typical interfaces for each pin

For More Information Contact: www.freescale.com 491



Freescale Semiconductor, Inc.

SLIDE 25-2

What are the Bus Control Pins?

« A(0:31) - address pins e TS* - transfer start

« RD/WR* - read/write pin * RETRY* - retry cycle

« BURST* - indicates burst *D(0:31) - data bus

transfer in progress * BI* - burst inhibit

« TSIZ(0:1) - indicates the » TA* - transfer acknowledge
transfer size » TEA* -transfer error

* AT(0:3) - address type pins acknowledge

« BDIP* - burst data in * BR* - bus request
progress * BG* - bus grant

* BB* - bus busy

«32 5 A(0:31)

l«——» RD/WR*

«——~—» BURST*

«—2 » TSIZO/REG* and TSIZ1
«—3 » ATO/IP_B6/DSDI and AT1/ALE_B/DSCK and AT2/IP_B2/I0IS16_B
«—» AT3/IP B7/PTR

«—» STS*OP2/MODCK1

. BDIP*/GPL_B(5)

l«—» TS*

«—=5—> RETRY*KR*IRQ4*SPKROUT
<«—32p D(0:31)

l«—» B|*

«— TA*

l«— > TEA*

l«—» BR*

l«———» BG*

«—» BB*

What Are the Bus Control pins?

The MPCB860 system bus signals consist of all the lines that interface with the external bus. The bus
transfers information between the MPC860 and external memory or between the MPC860 and a
peripheral device.

This diagram summarizes the bus control pins. The MPCB860 initiates a bus cycle by driving the address
pins, in addition to the size, address type, cycle type and read/write outputs, all shown here.

First are shown the address pins, A(0-31). This bi-directional tri-state bus provides the address for the
current bus cycle.

Next is shown the Read / Write pin. The bus master drives the signal on this pin to indicate the direction
of the bus' data transfer.

The third pin shown is a Burst pin, which the bus master uses to indicate a burst transfer to the device it
is currently accessing.

The TSIZ* pins indicate the number of bytes waiting to be transferred in the current bus cycle. The
Address Type pins indicate one of 16 address types to which the address applies. These types are
designated as a CPU or CPM cycle, problem or privilege, and instruction or data types.

The Burst Data in Progress, or BDIP* pin, is used in conjunction with a burst to indicate that another
word of data in the next memory cycle follows the current access.

TS*, or Transfer Start, indicates the start of a bus cycle that transfers data.

For More Information Contact: www.freescale.com 492



Freescale Semiconductor, Inc.

The RETRY* pin signals that the slave device cannot accept the transaction, prompting the MPC860 to
re-initiate the same transaction. For example, this action can occur as an alternative to initiating a
machine check in the case of a parity error. Note that RETRY* is only one function of several on this

pin.
The MPCB860 supports a 32-bit data bus, as shown with the D(0:31) pins.

Next, there is a Burst Inhibit pin. This provides a means for the slave device to indicate that it does not
support bursts. The device can assert this pin as a response to a burst request. If there are no
burstable devices on the bus, it is best to pull BI* high.

TA*, or Transfer Acknowledge, indicates that the destination device has accepted the data transfer.
TEA*, or Transfer Error Acknowledge, indicates that a bus error occurred in the current transaction.
Finally, the Bus Request, Bus Grant and Bus Busy pins provide a means for an external processor to

take over the bus. In this case, the external processor asserts Bus Request, the 860 responds with Bus
Grant, and Bus Busy indicates that the MPC860 owns the bus.

SLIDE 25-3
How the TSIZO/REG™* Pin Operates

BIU TSIZO/REG*
PCMCIA
Controller
Memory
TSIZO/REG* Control
= | togie > Memory |
I T External
PCMCIA PCMCIA Master
Buffer Buffer
Port A Port B

How the TSIZO/REG* Pin Operates

The TSIZ0* and TSIZ1* pins indicate the size of a transaction. The TSIZ0* pin is shared with the REG*
function, which is a PCMCIA controller pin. As shown here, the pin is bi-directional, and functions as an
input when an external processor initiates a transaction requiring the memory controller. Either the Bus
Interface Unit or the PCMCIA controller can drive the TSIZO/REG* pin.

The illustration shows an example of an interface. Here, the MPC860 submits TSIZ0* to external
memory control logic supplied by the designer. Again, this pin can also supply the REG* function to
PCMCIA devices. Finally, it is possible to configure an external master to drive TSIZ0*. Note that
TSIZ0* asserts and negates with the same timing as address.

For More Information Contact: www.freescale.com 493



Freescale Semiconductor, Inc.

SLIDE 25-4

How the TS1Z1 Pin Operates

BIU TSIZ1
Memory
TSIZ1 Control
; —
LOgIC External

How the TSIZ1* Pin Operates

Master

TSIZ1* is a standalone pin, and is asserted by the Bus Interface Unit. As with the TSIZO0* pin, it is useful

for external memory control logic. This signal is an input when an external processor initiates a

transaction requiring the memory controller.

SLIDE 25-5

How the RD/WR* Pin Operates

BIU

Memory
Controller

PCMCIA
Controller

RD/WR*

+3.3
10K

L RD/WR*

PCMCIA
Data
Transceivers

I
? % External
Master

G* G*
DRAM SRAM

For More Information Contact: www.freescale.com

494



Freescale Semiconductor, Inc.

How the RD/WR* Pin Operates
The MPCB860 drives the Read / Write pin from the Bus Interface Unit, the Memory controller, and the

PCMCIA controller. It is an input when an external master has the bus. Typically this pin will drive the
data transceivers for a PCMCIA port.

SLIDE 25-6

How the BURST* Pin Operates

Jo
BIU T > BURST*
Memory e
Controller
PCMCIA
Controller
Interface +3.3
Example(s) L BURST* 10K
) v |
Memory _’-Memor External
Control y Master
Logic

How the BURST* Pin Operates

The MPCB860 uses burst transfers to access 16-byte operands. The Bus Interface Unit drives the burst
pin when either a cache controller or an IDMA requests a burst access. The burst pin is an input when
an external master has the bus and requests, via this pin, the memory controller to perform a burst
access. This pin can connect to memory control logic driving memory for accesses not handled by the
memory controller or the PCMCIA, and to an external master for it to do burst requests.

For More Information Contact: www.freescale.com 495



Freescale Semiconductor, Inc.

SLIDE 25-7

How the BDIP*/GPL_B5* Pin Operates

If.. then..

SIUMCR.GB5E=0 BIU > BDIP*

SIUMCR.GB5E=1 Memory > GPL_B5*
Controller -

| BDIP/GPL BS* | Memory _>

Interface | Control
Example(s) Logic

A

How the BDIP*/GPL_B5* Pin Operates

Burst Data in Progress acts as a signal from the master indicating that there is a data beat following the
current data beat. The signal acts as an advanced warning of the remaining data in the burst. BDIP* is
a shared pin with General-purpose Line B5*. The designer statically controls the function of this pin in
the GBES bit of the SIU Module Configuration Register. When the pin functions as BDIP*, it connects
the Bus Interface Unit to external memory control logic.

The user programs GPL_B5* in the UPMA.

For More Information Contact: www.freescale.com 496



Freescale Semiconductor, Inc.

SLIDE 25-8
How the TS* Pin Operates

T TS

Logic

How the TS* Pin Operates

Memory _> Synchronous
Control External

Master

TS* is a tri-state signal asserted by the bus master to indicate the start of a bus cycle. This signal is only
asserted for the first cycle of the transaction. The Bus Interface Unit drives the Transfer Start pin. The

example illustrates the Transfer Start pin with an interface to the memory control logic and a
synchronous external master. The external master also can use the pin to indicate the start of a

transfer.

SLIDE 25-9
How the TA* Pin Operates

[ BIU_ e
GPCM _|+—

UPMA  —
UPMB

PCMCIA
Controller

< > TA*

Memory

For More Information Contact: www.freescale.com

497



Freescale Semiconductor, Inc.

How the TA* Pin Operates

Transfer Acknowledge is connected to the Bus Interface Unit, the GPCM, the two User Programmable

Machines, and the PCMCIA controller. The master terminates data accesses when Transfer

Acknowledge is asserted. If the access is a read, the 860 latches the data on the data bus. If the access
is a write, the 860 considers the slave device to have latched the data. When the access is controlled by

the Bus Interface Unit, TA* must be asserted by the slave.

SLIDE 25-10

How the TEA* Pin Operates

Bus > TEA*
Monitor
EPPC
+3.3
10K
<JEA* |
TS* .| Delay
Generator
I
TA*

How the TEA* Pin Operates

An external device can assert TEA*, or the internal bus monitor can do so. The example shows TEA*
being asserted by an external delay generator. The assertion of TEA* terminates the current bus cycle

with a machine check exception.

For More Information Contact: www.freescale.com

498



Freescale Semiconductor, Inc.

SLIDE 25-11

How the BI* Pin Operates

BIU «—

Memory <
Controller ‘

—» BI*

PCMCIA
Controller

+3.3

| B 10K

«—

Memory - 5
‘ Control Memory

Logic

How the BI* Pin Operates

When the Bus Interface Unit is handling the access, the Burst Inhibit pin is an input. In this case, an
external device can assert the Burst Inhibit pin if a burst access is executing and the device is not
burstable. In this situation, the BIU executes four single cycle accesses. When the memory controller or
the PCMCIA handles the access, the BI* pin is an output, and is asserted to indicate a non-burst access
according to the value programmed in the control registers.

SLIDE 25-12
How the IRQ4*/KR*/RETRY*/SPKROUT Pin Operates (1 of 2)

If.. then..

SIUMCR.MLRC=0
EPPC — SIU [ IRQ4*

SIUMCR.MLRC=1
Retry < *
Logic Retry
SIUMCR.MLRC=2 .
Reservation N
Logic KR
SIUMCR.MLRC=3 PCMCIA N
Controller SPKROUT

For More Information Contact: www.freescale.com 499



Freescale Semiconductor, Inc.

How the IRQ4*/KR*/RETRY*/SPKROUT Pin Operates (1 of 2)

When an external device asserts the RETRY* signal during a bus cycle, the MPC860 enters a
sequence in which it terminates the current transaction, relinquishes the ownership of the bus, and
retries the cycle using the same address, address attributes, and data in the case of a write cycle. The
RETRY pin is shared with three other functions. The programmer selects the function via the SIU
Module Configuration Register in the MLRC field.

SLIDE 25-13

How the IRQ4*/KR*/RETRY*/SPKROUT Pin Operates (2 of 2)

Interface .
Example(s) Retry* v Memory
Error
Detection

How the IRQ4*/KR*/RETRY*/SPKROUT Pin Operates (2 of 2)

This example shows RETRY* used in an error detection application. If the error detection logic detects a
parity error, it asserts the RETRY*, pin and the same cycle is retried.

For More Information Contact: www.freescale.com 500



Freescale Semiconductor, Inc.
SLIDE 25-14

How the BR*, BG*, and BB* Pins Operate

Internal Bus f f BR*
Arbiter D _ BG*
) " BB*
+3.3 +3.3 +33
BR* 10K f] 10K f] 10k
External
BG* >
Bus
- BB* »| Master

How the BR*, BG* and BB* Pins Operate

We have already mentioned bus arbitration earlier in this chapter. The example illustrates these pins
connected directly to an external bus master. It is possible to use the internal arbiter in a small system
of just one external bus master. However, in a system with more than one external bus master, it is
necessary to add external arbitration.

When an external bus master requires control of the bus, it asserts the Bus Request pin. When
configured for external bus arbitration, the MPCB860 drives this signal when it requires bus mastership.
The MPCB860 asserts the Bus Grant pin shortly after the bus request. When configured for external
central arbitration, this is an input signal to the MPC860 from the external arbiter. Finally, when the bus
master takes control of the bus, it asserts the Bus Busy pin, indicating that the current bus master is
using the bus.

For More Information Contact: www.freescale.com 501



Freescale Semiconductor, Inc.

SLIDE 25-15

How the IP_B6/DSDI/ATO Pin Operates

If.. then..

SIUMCR.DBGC=0 &
SIUMCR.DBPC <> 3 PCMCIA -

Port B |‘ IP_B6

SIUMCR.DBPC=3
Development .
Support h DSDI
SIUMCR.DBGC=1 or|3
&
SIUMCR.DBPC <> 3 BIU » ATO

How the IP_B6*/DSDI*/ATO* Pin Operates

The SIU Module Control Register controls the Address Type 0 pin, which is a shared pin. Configuring
the DBGC and DBPC fields of the SIUMCR selects the function required at power up. The Bus
Interface Unit drives ATO*. This pin can be an input to an external memory controller to indicate a CPU
or a CPM access.

For More Information Contact: www.freescale.com 502



Freescale Semiconductor, Inc.

SLIDE 25-16

How the ALE_B/DSCK/AT1 Pin Operates

If.. then..
SIUMCR.DBGC=0 & SCCIA I
SIUMCR.DBPC <> 3 -
Port B |‘ ALE_B
SIUMCR.DBPC=3
Development P
Support ° DSCK
SIUMCR.DBGC=1 or 3
& BIU >
SIUMCR.DBPC <> 3 " AT1
| AT1 Memory
| Controller

How the ALE_B*/DSCK*/AT1* Pin Operates

The SIU Module Control Register controls the Address Type 1 pin, which is a shared pin. Configuring

the DBGC and DBPC fields of the SIUMCR selects the function required at power up. The Bus
Interface Unit drives AT1*. This pin can be an input to an external memory controller to indicate a

SUpervisor or a user access.

For More Information Contact: www.freescale.com

503



Freescale Semiconductor, Inc.

SLIDE 25-17

How the IP_B2/101S16_B*/AT2 Pin Operates

If.. then..
SIUMCR.DBGC=0
PCMCIA
Port B IP_B2/101S16_B*
SIUMCR.DBGC=1 or 3
| AT2 > Memory
| Controller

How the IP_B2*/101S16_B*/AT2*Pin Operates

The SIU Module Control Register controls the Address Type 2 pin, which is a shared pin. Configuring

the DBGC field of the SIUMCR selects the function required at power up. The Bus Interface Unit drives
AT2*. This pin can be an input to an external memory controller to indicate a program or a data access.

For More Information Contact: www.freescale.com

504



Freescale Semiconductor, Inc.

SLIDE 25-18

How the IP_B7/PTR/AT3 Pin Operates

If.. then..
SIUMCR.DBGC=0 & |
PCMCIA B
SIUMCR.DBPC <> 3 Port B |~ IP_B7
SIUMCR.DBPC=3
Development -
Support " PTR
SIUMCR.DBGC=1or 3
& .
BIU >
SIUMCR.DBPC <> 3 AT3
I AT3 —  Memory
Controller

How the IP_B7/PTR/AT3 Operates

The SIU Module Control Register controls the Address Type 3 pin, which is a shared pin. Configuring

the DBGC and DBPC fields of the SIUMCR selects the function required at power up. The Bus
Interface Unit drives AT3*. This pin can be an input to an external memory controller to indicate a

reservation or a program trace access.

For More Information Contact: www.freescale.com

505



Freescale Semiconductor, Inc.
Chapter 26: Development Support

SLIDE 26-1

Development Support

What You * What is the MPC860 development support?
Will Learn * How do you enable debug mode?

» What is the debug mode support?

» What are the watch points and breakpoints?

In this chapter, you will learn:

1. What is the MPC860 development support?
2. How do you enable debug mode?
3. What is the debug mode support?
4. What are the watchpoints and breakpoints?

For More Information Contact: www.freescale.com 506



Freescale Semiconductor, Inc.

SLIDE 26-2

What is the MPC860 Development Support? (1 of 2)

Examples
l<—> IP_B[0:1)/IWP[0:1]/VFLSJ[0:1]
<—> IP_B3/IWP2/VF2
<—> IP_B4/LWPO0/VFO

Watchpoints &
Program Tracking

<—> IP_B5/LWP1/VF1
<—> ALE_B/DSCK/AT1
<> |P_B6/DSDI/ATO
l<—> OP3/MODCK2/DSDO Development
<> TCK/DSCK Port
<—> TDI/DSDI

<—> TDO/DSDO

* SRESET checks TCK/DSCK and TDI/DSDI for debug enable.

What is the MPC860 Development Support? (1 of 2)

The MPC860 development support is that set of features which enhance the user’s ability to develop
and debug a system in conjunction with the development tool.

One development support feature is that of watchpoints. It is possible for the user to set up five
different watchpoints, specifying a particular address or range of addresses. Whenever the particular
address, or any one of the range of addresses is encountered in the course of program execution, the
watchpoint pins on the device assert. The development tool can then monitor the watchpoint pins,
providing the ability to determine when the associated addresses are encountered. These watchpoint
pins share functions with the PCMCIA Port B pins, and with a second feature of development support
called program tracking.

There are five program tracking pins. It is sometimes desirable for the user to monitor the flow of the
code executing on the processor via the show cycle mode. The program instruction flow is visible on
the external bus via a few dedicated pins when the user programs the MPC860 to operate in serialized
mode and to show all fetch cycles on the external bus. Again, the development tool can then monitor
the program tracking pins to determine the instruction flow. The disadvantage of working in the show
cycle mode is that performance on the MPC860 is much lower than when working in regular mode.

The MPCB860 provides many options for tracking program flows that have varying degrees of impact on
performance. The User Manual discusses these options in more detail.

Another feature of development support is the ability to put the processor into debug mode. In debug
mode, the development tool can communicate with the processor through the development port, over
one of two sets of development port pins. The development port pins are DSCK*, DSDI*, and DSDO*.
As shown, these pins can be used in two different places, whichever is most convenient for the user's
system.

For More Information Contact: www.freescale.com 507



Freescale Semiconductor, Inc.

With these three pins, which work in a very similar fashion as the SPI pins, the development tool can
communicate with the Power PC core, providing it instructions to execute, and giving it commands.

SRESET checks the DSCK* and DSDI* pins as shown to determine whether the Power PC core should

enter debug mode from soft reset.

SLIDE 26-3

What is the MPC860 Development Support? (2 of 2)

Debug Port VFLSO (el 2e| SRESET
Connections GND |e3 4e| DSCK
GND |e5 ©6e| VFLS1
HRESET |e7 8e| DSDI
Vo, |#9 100 | DSDO

FRZ |e1 2e| SRESET
GND |e3 4e| DSCK
GND |e5 66| FRZ
HRESET (o7 8e | DSDI
Vop | @9 10e | DSDO

» The development tool is informed that the processor is in debug
mode either by FRZ or VFLS[0:1]

What is the MPC860 Development Support? (2 of 2)

In order to make use of the debug capability and the development port pins on the MPCB860, the user
must provide a 10-pin header. The 10-pin header must be connected to the pins of the MPC860 in one
of the two configurations shown in this diagram. Notice that both configurations are exactly the same,
with the exception of pins one and six.

Let us first examine the second configuration, shown in the lower half of the diagram. In this
configuration, both pins one and six are configured for the freeze function. Every time the Power PC
core enters debug mode, it asserts the FRZ pins. This allows the freeze pins to indicate to the
development tool when the Power PC core has entered debug mode. The freeze function, however,
shares a pin with IRQ6. Therefore, if the user wishes to implement IRQ6, they cannot connect the FRZ
pin to the header.

The alternative is shown in the first configuration, in the upper half of the diagram. In this diagram, pin 1
is connected to VFLSO0*, and pin 6 is connected to VFLS1*. Again, when the Power PC core enters
debug mode, it asserts pins 1 and 6. This indicates to the development tool that the Power PC core
has entered debug mode.

For More Information Contact: www.freescale.com 508



Freescale Semiconductor, Inc.

SLIDE 26-4

How to Enable Debug Mode

N Enter normal mode;
debug mode disabled
v
N
Enter debug mode
Y
: ( (
Enter normal mode; End
debug mode enabled ;]

(1) DSCK high three clocks before the negation of SRESET?
(2) DSCK low within seven clocks after the negation of SRESET?

How to Enable Debug Mode
This diagram illustrates how to enable debug when coming out of reset.

To enable the debug mode, the user must supply the correct values on the DSCK* pin during soft reset.
When soft reset occurs, the first step is for the Power PC core to determine whether DSCK* was high
three clocks before the negation of SRESET*. If DSCK* was not high three clocks before the negation
of SRESET*, the MPC860 enters the normal mode, and the debug mode is disabled. If DSCK* was
high three clocks before the negation of SRESET*, and furthermore, if DSCK* is low within seven
clocks after the negation of SRESET*, the Power PC core enters the normal mode and enables the
debug mode. In this case, if an exception causing condition occurs, the Power PC core then enters
debug mode.

Alternatively, if DSCK* is not low within seven clocks after the negation of SRESET*, the Power PC

core enters the debug mode directly, and the development tool can communicate with the Power PC
core before any action occurs internally.

For More Information Contact: www.freescale.com 509



Freescale Semiconductor, Inc.

SLIDE 26-5

How to Transition Debug - Normal Modes (1 of 2)

rfi

—>>

Debug Normal
Mode Mode

Interrupt / Exception occurs

including:

* Internal breakpoints Reset
Reset « Development port requests

« Peripheral breakpoint request

How to Transition Debug — Normal Modes (1 of 2)
This diagram illustrates how to cause a transition between the debug and normal modes.

As we have seen, after a soft reset, the MPC860 may enter either the normal mode or the debug
mode. To move from the normal mode to the debug mode, an interrupt or exception causing condition
must occur. These conditions could include internal breakpoints, development port requests, and
peripheral breakpoint requests. If one of these conditions occurs, the state changes from normal mode
to debug mode. Once in debug mode, it is possible to return to normal mode by executing an ‘rfi’
instruction.

For More Information Contact: www.freescale.com 510



Freescale Semiconductor, Inc.

SLIDE 26-6

How to Transition Debug - Normal Modes (2 of 2)

Interrupt Cause Register (ICR) Debug Enable Register (DER)

® ®© ® ® ® ® ® 0 00 I.O...“.‘..

® ® ® ® o o ©

g

Reset Set

Q > Freeze
» Internal
Debug Mode

Debug Mode Enable
Signal

How to Transition Debug — Normal Modes (2 of 2)

Not all interrupts and exceptions cause a transition from normal mode to debug mode. The user selects
the desired interrupts and exceptions by configuring the Debug Enable Register. When one of the
selected interrupts or exceptions occurs, the exception causing condition is indicated in the Interrupt
Cause Register. Then the device enters the debug mode, where it remains until an ‘rfi’ instruction
occurs.

For More Information Contact: www.freescale.com 511



Freescale Semiconductor, Inc.

SLIDE 26-7

What is the Debug Mode Support?

SIv/
CPU Core EBI EXT
ICR / BUS
DER 32 Iné(arsnal
32 VFLS,
FRZ
Development Port
/9 Control Logic
Development
TECR
VSYNC / Logic
35
DSCK Development Port DSDO
DSDI Shift Register

What is the Debug Mode Support?

Debug mode is a state in which the CPU fetches all instructions from the development port. This allows

memory and registers to be read and modified by a development tool (emulator) connected to the
development port.

The development tool communicates with the Power PC core over the DSDI*, DSDO* and DSCK* pins.
While in the debug mode, the CPU core fetches instructions from the development port control logic,
rather than fetching instructions from external memory. The development tool provides the
development port control logic with the appropriate instructions. This allows a development tool
connected to the development port to read and modify memory and registers.

For More Information Contact: www.freescale.com 512



How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan

0120 191014 or +81 3 5437 9125
support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center

2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong

+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center
P.O. Box 5405

Denver, Colorado 80217

1-800-521-6274 or 303-675-2140

Fax: 303-675-2150

LDCForFreescaleSemiconductor @ hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use
Freescale Semiconductor products. There are no express or implied copyright licenses granted
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information
in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters
that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating parameters,
including “Typicals”, must be validated for each customer application by customer’s technical experts.
Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized for use as components
in systems intended for surgical implant into the body, or other applications intended to support or
sustain life, or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall
indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was
negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other
product or service names are the property of their respective owners. ARM and the ARM POWERED
logo are the registered trademarks of ARM Limited. ARM9, ARM920T, and ARM9TDMI are the
trademarks of ARM Limited.

© Freescale Semiconductor, Inc. 2005. All rights reserved.

freescale:

semiconductor


rxzb30
freescalecolorjpeg




