

November, 2010

Multicore and More

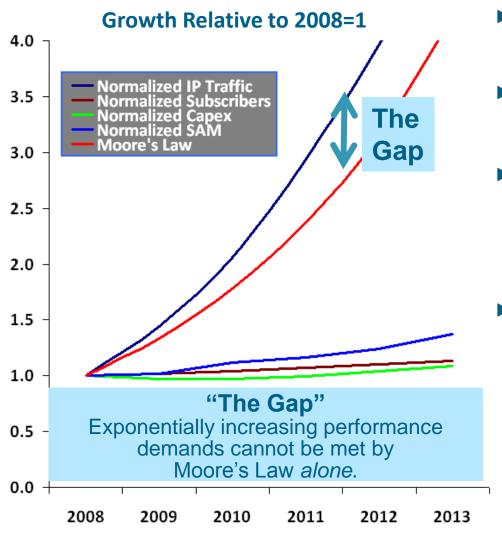
Freescale's Multicore Technologies

Alex Peck

Field Applications Engineering

Agenda

- ► Power Architecture Multicore Roadmap
- ► E5500 64-bit core Architecture
- ▶ Data Path Acceleration Architecture
- ▶ Starcore DSP Roadmap
- Software and Tools
- ▶ Green Hills Presentation
- Don't Miss Jeff Logan's Migration to QorlQ session!


Power Architecture® and Communications Processor Roadmap

Multicore Solutions in the Heart of Our Connected World

- ► Stagnating CapEx drives increased CapEx efficiency
- ► Ability to deliver 'more services' at lower CapEx ...
- ► Service density and data deluge of network traffic drives significant opportunities in *Multicore SoC*
- ► Freescale closes "The Gap" with "Balanced, Application Driven Architecture":
 - Smart multicore devices
 - Targeted application acceleration
 - Hardware assisted virtualization
 - Aggressive process technology
 - Extensive ecosystem and VortiQa multicore optimized software

Freescale – Leader in Embedded Processors

Best performance at a given power for embedded & infrastructure solutions

Continued innovation in hardware architectures

- QorlQ™: Broadest scalable family of processors in the market
 - Evolution from PowerQUICC® family
 - Dual core @ 800 MHz at < 5 Watts
 - Eight cores @ 1.5 GHz/core at 30 Watts
- StarCore® DSP solutions
 - Up to 1.0Ghz in 3-6 core configurations with advanced accelerators
- Industry leading integration and Communication Engines

Increasing software investment

- Optimized Multicore Solutions
- Hybrid software simulation environment and debug tools
 - Production ready software with VortiQa solutions
- Fast time to market
 - Simplified migration to multicore architecture
 - More flexibility to create a uniquely differentiated product

▶ 45nm high-performance technology in production

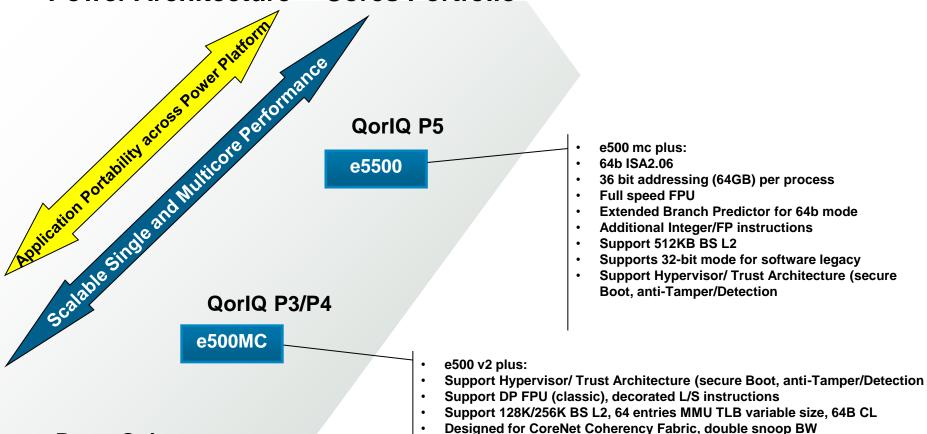
Enterprise

Consumer Access

Industrial and Aerospace

IBM and Freescale Collaboration on Power Architecture within Power.org

- ► Power Architecture Advisory Council PAAC IBM and Freescale
 - Maintain integrity of the ISA over its evolution open architecture
 - Collaboration on technology innovations
- ► Recent Innovations ISA 2.04/2.05/2.06
 - Added support for multi-core, virtualization and hypervisor
 - Additional instructions: Write and pre-fetch instruction for improved performance
- ► Technical Working Groups
 - Common debug methodology single industry wide approach
 - Hypervisor
 - Full Virtual CPU Virtualization
 - Para-virtualization, API H-call interface for embedded PAPR
 - Simulation modeling framework for compatibility between simulation tools
 - ABI Application Binary Interface Ecosystem enablement
- Future Innovations within the Architecture
 - Power management
 - Virtual CPU/Hypervisor
 - 64b Architecture
 - Multi-core



N/P -

rower Architecture™ Cores Portfolio

Core Roadmap

PowerQuicc, QorlQ P2/P1

e500 v2

- 32b PPC-E
- OOO, Dual-Issue, 7-stage pipeline
- Support SPE and EFPU
- Designed for Shared Bus, supports SC/DC

Roadmap: Freescale Processors Built on Power Architecture® Technology

1x

Decreasing Power

High Performance within Embedded Power Budget of 30W

e600 +Soc

Performance at Reasonable Power

Value Priced for Power/Performance **Applications**

PowerQUICC III

Power Sensitive Applications

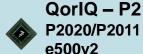
PowerQUICC II Pro

PowerQUICC II

PowerQUICC I

First Generation: 45nm

QorlQ - P5 P5020/P5010 e5500


Performance Increase

Step

QorlQ - P4 P4080/P4040 e500mc

QorlQ - P3 P3041 e500mc

QorIQ - P1 P1020/P1021/P1022 e500v2

Next Generation: 45nm & 28nm

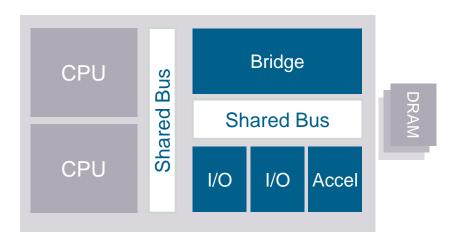
Next Gen - T5 Higher core frequency Increasing # of cores

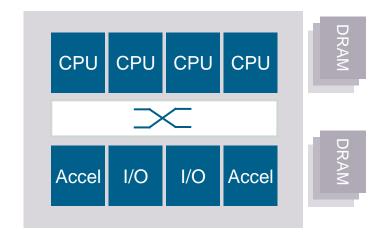
Next Gen - T4 Application H/W accelerators

Next Gen - T3 Increasing # of cores Application performance H/W enhancements

Next Gen - P2 Trust Architecture Increasing # of cores HW accelerators

Next Gen - P1 Power Sensitive Multicore Trust Architecture & H/W Accelerators


Continuous enhancement of application performance

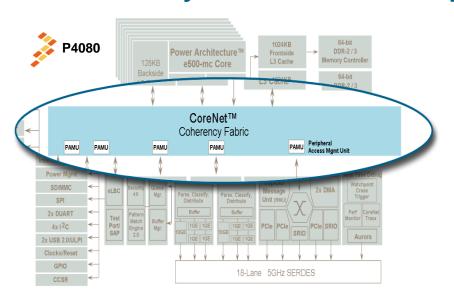

Increasing Performance

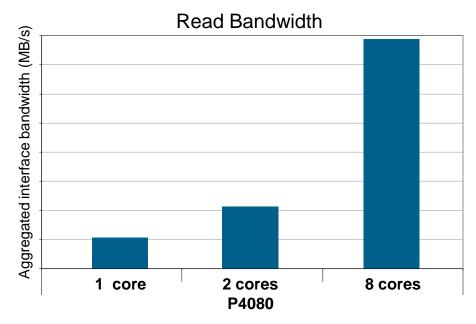
Freescale's Multicore System Architecture

PowerQUICC/QorIQ P1, P2

QorlQ P3, P4

Embedded Challenge	Bus Architecture	Fabric Arch	Comments
Core performance	Power Architecture e500 and e600 cores	Power Architecture e500 core w Front and backside cache	Moving to e500 cores across the family, common ISA from 1 to 8 cores
System Performance	Classic interrupt shared BUS architecture	Point to point Cross-bar Fabric	Balanced architecture between cores/IO/accelerators
Embedded Power Budgets	<4 to 30 Max Power	<4 to 30 Max Power	Year on Year improvement of System Performance within embedded Pwr
Trusted computing and Virtualization	Software based virtualization	Hardware/software Virtualization/Trusted Computing	Highest level of Secure Boot and anti- threat protection in the industry
Quick time to market	Simple debug	The Multicore challenge: Multiple flows with multiple points of failure	Advanced hardware debug support and software modeling capabilities

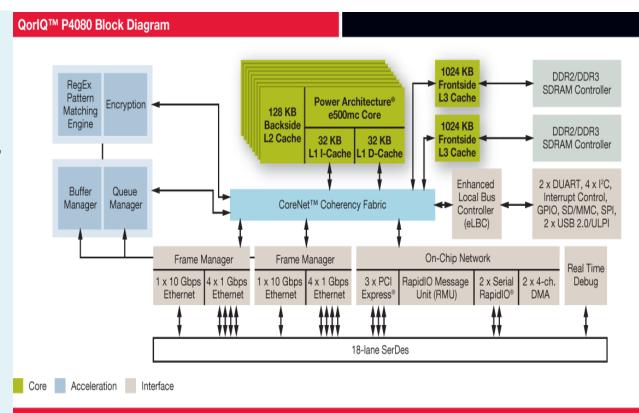



Platform Interconnect is Critical to Delivering Multicore Scalability

► Multicore interconnects must address:

- Scalability of CPU cores, memory and I/O bandwidth
- Flexible inter-processor communication programming models
- QoS differentiation for control/data plane and network traffic
- Efficient memory subsystem including caching and hardware coherency

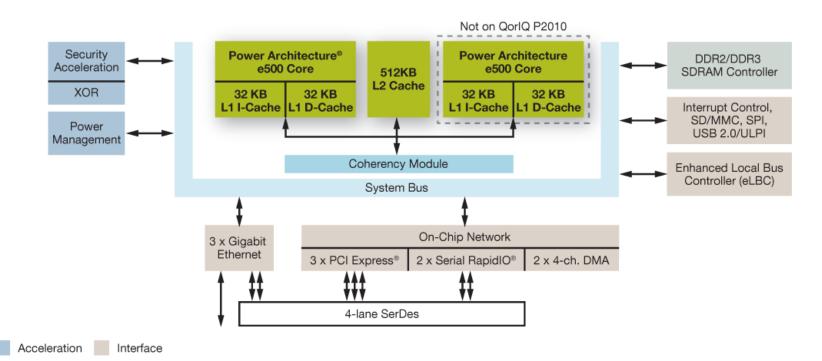
► The CoreNetTM interconnect fabric on the QorlQTM P4080 addresses the scalability needs of multicore processors



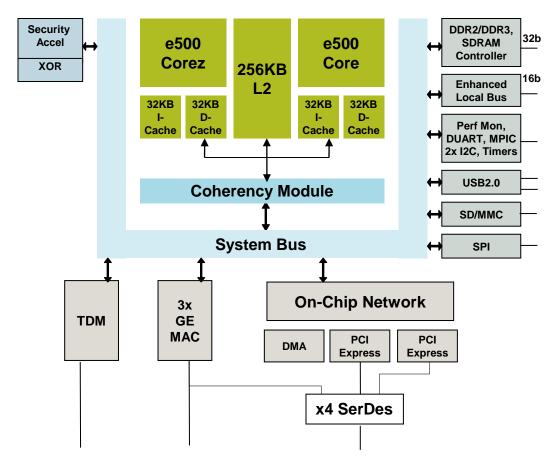
Multicore Communications Processors: QorlQ™ P4080

- ► 8x e500 Superscalar Cores
- ► Tri-level Cache Hierarchy CoreNet On-chip Fabric
 - Eliminates shared bus contention and supports dramatically higher address issue bandwidth to 'feed' multiple cores
- Hardware Virtualization Support
- ► On-demand Application Acceleration – DPAA Data Path Acceleration Architecture
- ► Industry-leading Performance, Process
- ► Advanced 45nm process technology

Application driven, balanced multicore architecture


High performance cores, coupled with on demand application acceleration, on chip fabric interconnect and high speed interconnect.

QorlQ P2 Platform


QorlQ™ P2020 and 2010 Block Diagram

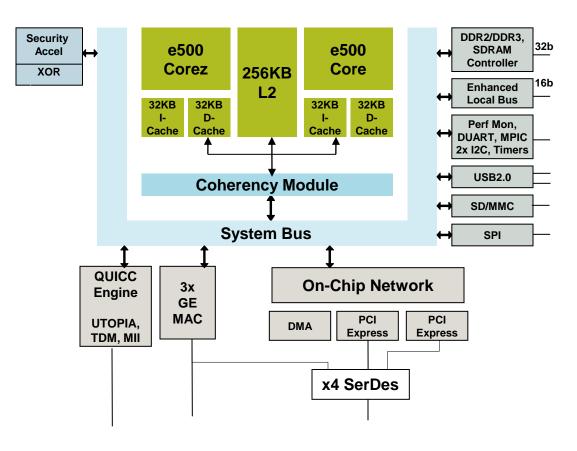
QorlQ P1 Platform – P1020

Dual e500 Power Architecture™ core

- 533 800 MHz
- 256KB Frontside L2 cache w/ECC, HW cache coherent
- · 36 bit physical addressing, DP-FPU

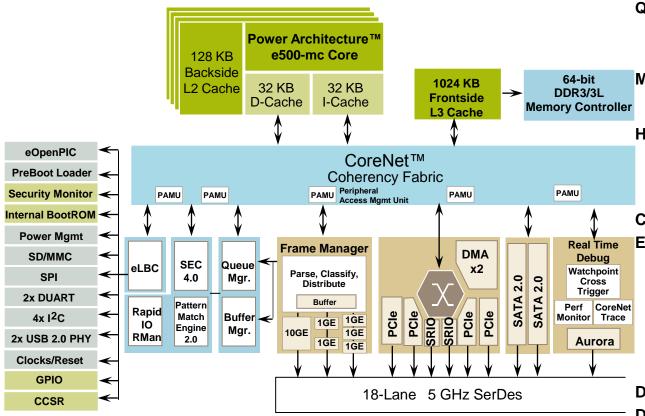
System Unit

- 32-bit DDR2/DDR3 with ECC to 800MHz datarate
- Integrated SEC 3.3 Security Engine
- Open-PIC Interrupt Controller, Perf Mon, 2x I2C, Timers, 16 GPIO's, DUART
- 16-bit Enhanced Local Bus supports booting from NAND Flash
- Two USB 2.0Controllers Host/Device support
- · SPI controller supporting booting from SPI serial Flash
- SD/MMC card controller supporting booting from Flash cards
- · TDM interface
- Three 10/100/1000 Ethernet Controllers (eTSEC) w/ Jumbo Frame support, SGMII interface
 - Enhanced features: Parser/Filer, QOS, IP-Checksum Offload, Lossless Flow Control
 - IEEE1588v2 Support
- Two PCI Express 1.0a Controllers operating at 2.5GHz
- Power Management


Process & Package

- 45nm SOI, XX +/- XX, 0C to 125C Tj
 - with -40C to 125C Tj option
- 689-pin TePBGAII, 31x31mm, 1.0mm pitch

QorlQ[™] P1 First Derivative – P1021



- Dual e500 core; 533 800 MHz
 - · 256KB Frontside L2 cache w/ECC, HW cache coherent
 - 36 bit physical addressing, DP-FPU
- · System Unit
 - 32-bit DDR2/DDR3, 800 MHz data rate w/ECC
 - Integrated SEC 3.3 Security Engine
 - Open-PIC Interrupt Controller, Perf Mon, 2x I2C, Timers, 16 GPIO's, DUART
 - 16-bit Enhanced Local Bus supports booting from NAND Flash
 - USB 2.0Controllers Host/Device support
 - SPI controller supporting booting from SPI serial Flash
 - SD/MMC card controller supporting booting from Flash cards
 - Three 10/100/1000 Ethernet Controllers (eTSEC) w/ Jumbo Frame support, SGMII interface
 - IEEE1588v2 Support
 - QUICC Engine for protocol off load and legacy interfaces
 - TDM interfaces with HDLC support
 - UTOPIA-L2 interface for ATM support
 - Two PCI Express 1.0a Controllers operating up to 2.5Gbps
 - Power Management
- Process & Package
 - 45nm SOI, 0.95V+/-50mV, -40C to 125C Tj
 - 689-pin TePBGAII

What's New? - QorIQ™ P3 Series P3041 Block Diagram

Quad e500mc Power Architecture®

- 4 cores (up to 1.5GHz)
- Each with 128KB backside L2 cache
- 1MB Shared L3 Cache w/ECC

Memory Controller

- DDR3/3L SDRAM up to 1.3 GHz
- 32/64 bit data bus w/ECC

High Speed Interconnect

- 4 PCIe 2.0 Controllers
- 2 sRapidIO 2.1 Controllers
 - Type 9 and 11 messaging
- 2 SATA 2.0

CoreNet Switch Fabric

Ethernet

- 5 x 10/100/1000 Ethernet Controllers
 - Or 4x 2.5Gb/s SGMII
- 1 x 10GE Controllers
- All w/ Classification, H/W Queueing, policing, and Buffer Management, Checksum Offload, QoS, Lossless Flow Control, IEEE 1588
- Up to 1 XAUI, 4 SGMII or 2.5Gb/s SGMII, 2 RGMII

Datapath Acceleration

Device

- 45nm SOI Process
- 1295-pin package, pin compat with P4040
 - 37.5x37.5mm

Freescale QorlQ Platform's - Trust Architecture

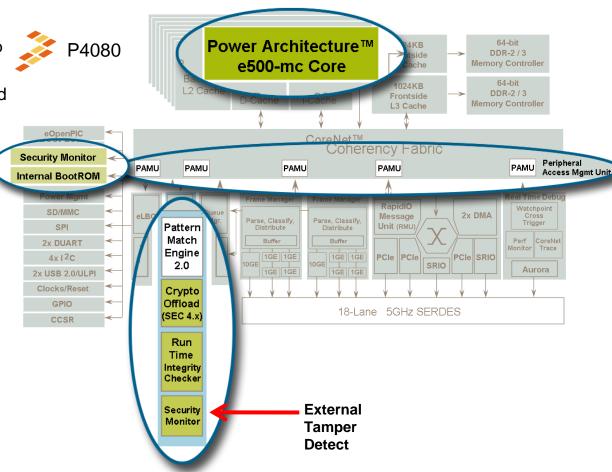
Protection Against

- Theft of Functionality loss of control of the system's functionality
- Theft of Data where a data protection policy exists, loss of data to an unauthorized party
- Theft of Uniqueness loss of product differentiation through reverse engineering, duplication, and unapproved inter-operability.

Relying on

- Secure Boot start from Trusted code base or don't start at all
- Strong Partitioning of the System isolation of cores from each other to provide redundancy and data corruption protection between critical functions
- Threat detection internal and external security event detection
- Secure Debug

Trusted Boot and Hypervisor


► Secure Platform Boot: Configured to boot from on-chip ROM

 CPU#0 begins to boot from on-chip ROM, all other CPUs held in reset

 CPU executing from on-chip trusted boot code (provided by FSL) performs initial SoC configuration and health checks, verifies a signature over the Hypervisor micro-kernel, stored in the NV RAM of OFM's choice

▶ Secure boot insures that the system begins executing trusted code. This trusted code can test the trustworthiness of other system code before allowing it to execute.

Note: 'Trusted' = passes signature check. Don't sign it if you don't trust it!

Power Architecture Growing Market Reach - Single Board Computer Partners

Subset of a comprehensive partner ecosystem

COM Express

ATCA Blades

AMC

Compact PCI

PMC's

	ATCA	AMC	COM- express	Compact- PCI	VME	PMC's	ATX,uATX
Freescale	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark
Curtiss Wright				\checkmark	\checkmark		
KONTRON		\checkmark		\checkmark	\checkmark	\checkmark	
Emerson Network Power	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
EuroTech			\checkmark				
GE Intelligent Platforms				\checkmark	\checkmark	\checkmark	
Interphase		\checkmark			\checkmark		
Mercury	\checkmark	\checkmark					
RadiSys	\checkmark	\checkmark					
TQ Embedded				\checkmark		\checkmark	

What's New? - Easing the "Make vs Buy" Decision

- Freescale Development Systems with **Production ready COMe**
 - **QorlQ products P4080, P2020, P1022**
 - **Linux BSP from Mentor**
 - Code Warrior 90 day license
- Availability \$1499/System
 - P2020COME-DS-PB November, 2010 P4080COME-DS-PB December, 2010

P1022COME-DS-PB P4080 95 x 125 mm

P2020 95 x 95 mm '

> P1022 95 x 95 mm

- Emerson Network Power production ready COMe boards
 - COMX-P2020
 - P2020 dual core @ 1.2GHz/core
 - X4 USB, PCIe and 3 GigE ports
 - 2 GB of DDR3 800 MHz (not Included)
 - 2-3D Graphics Processor Unit
 - **COMX-P4080**
 - P4080 8 cores @1.5GHz/core
 - X8 USB, 3 GigE and PCIe ports
 - Local Bus
 - Dual banks of 2 GB of DDR# 1333MHz (not included)

COMX-P1022

- P1022 Dual core @ 1.067 GHz/core
 - w/Integrated Digital Display Output
- X4 USB, x2 PCle, dual GigE ports
- X2 SATA
- 2 GB DDR3-800 MHz

In the News: Freescale Announced Strategic Alliance

- ► Freescale has signed new strategic partnerships with Enea, Green Hills and Mentor Graphics for Freescale's QorlQ, PowerQUICC and StarCore portfolios
- ► These deep partnerships call for unprecedented levels of collaboration across the entire silicon lifecycle
 - IP sharing
 - Joint investments in technology and product roadmaps
 - · Go-to-market partnership
- Establishes extremely comprehensive enablement support for QorlQ,
 PowerQUICC and StarCore devices
- Plans call for adding more strategic partners over time

The Ecosystem to Enable the Connected World

World Class Alliances Strategic Technology Collaboration

Development and production systems in standard industry form factors

FLEXTRONICS

Hardware

Hardware

Partners

SOC integrated devices Embedded power budgets

Networking life cycles

Networking/security IP Content Aware Packet Processing

Architecture

Alliance

Power **Architecture**®

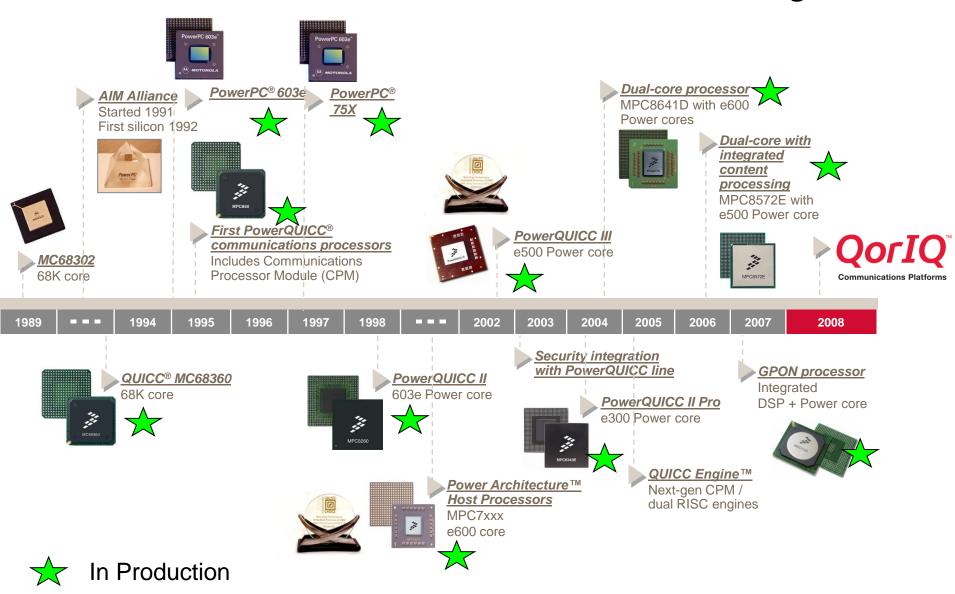
Technology

Networks

Tools/OS

Software

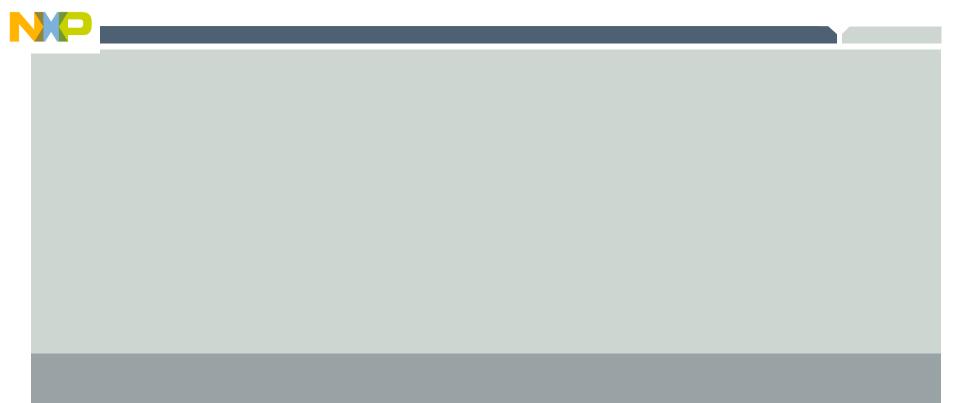
CodeWarrior


Optimize application specific stacks for continual improvement in network security solutions

Value Partners: Enable faster time to market and longer time in market

20 Years of Communications Processing Evolution

Freescale's Product Longevity Program


- ► Freescale has a longstanding track record of **providing long-term production support** for our products
- ► Freescale is pleased to provide a **formal product**longevity program for the market segments we serve
 - For all market segments in which Freescale participates,
 Freescale will make a broad range of devices available for a minimum of 10 years
 - Life cycles begin at the time of launch
- ➤ A list of participating Freescale products is available at: <u>www.freescale.com/productlongevity</u>

e5500 Overview

P5020 Core Architecture

QorIQ™ 64-bit Core

It's a smarter approach to multicore. Freescale's e5500 Core

- Next Generation 64-bit Core Architecture for higher performance, computational intensive applications.
 - 64-bit ISA support (Power Architecture v2.06 compliant)
 - Increased addressable memory space
 - Supports up to 2GHz CPU frequency
- ► High Performance Classic Floating Point Unit (FPU) for Industrial applications.
 - Supports IEEE Std. 754™FPU Double Precision Floating Point
- ► Hybrid 32-bit mode to support legacy software and transition to 64-bit architecture.
 - Register settings allow users to utilize 32-bit mode or 64-bit mode, easing transition to 64-bit architecture

Introducing e5500

- Based on the e500mc
 Architecture with 64-bit ISA
- Core frequency up to 2GHz
- Up to 64GB addressable memory space
- Supports up to 512KB backside L2 cache
- High performance classic
 FPU

e500mc Improvements

► Memory Subsystem

- Double cache line size (32 bytes to 64 bytes)
 - Implicit prefetching
 - Reduces address and snoop bandwidth
- Improved snoop capabilities for multicore systems
 - Snoops require half as many LSU cycle slots compared to e500v2
 - Snoop-misses (common case) can be sustained every other core cycle (every platform cycle) indefinitely
 - Protocol improvements have removed the need for snooping instruction accesses
 - Backside L2 reduces bus traffic relative to no backside L2
- Improved MMU
 - L2 TLB now supports 64 variable size pages (up from 16)
 - L1 TLB now supports 8 variable size pages (up from 4)
 - Maintains 512 4KB entries
 - Most embedded applications will never suffer an MMU miss
- Improved flow of data between datapath subsystem and cores
 - Highly optimal, low-latency method keeps cores busy
- Improved lock/mutex support
 - Removed one bus access for most lock/mutex operations (lwarx/stwcx)
- Improved statistics support
 - "Decorated Storage" APU provides fire-and-forget atomic updates of up to two 64-bit quantities with a single access

e500mc Improvements, continued

►ISA Improvements

- Hypervisor provides protection and partitioning guarantees for multicore systems
- Special purpose "statistics instructions" (a.k.a Decorated stores)
- "Classic" floating point in place of SPE floating point
 - Compatible with e300 and e600 cores

► Private backside L2

- Provides low-latency access to private cache
- Provides up to 4x more private cache resources for locking cache lines into the L2 (as well as L1), to facilitate determinism, fast interrupt handlers, etc
- Flexible allocation modes:
 - Unified: all 8 ways can be used for instruction or data
 - D-only: all 8 ways are reserved for data
 - I-only: all 8 ways are reserved for instructions
 - Per-way: N ways are reserved for data, 8-N ways are reserved for instructions
- Reduces snoop traffic in the system

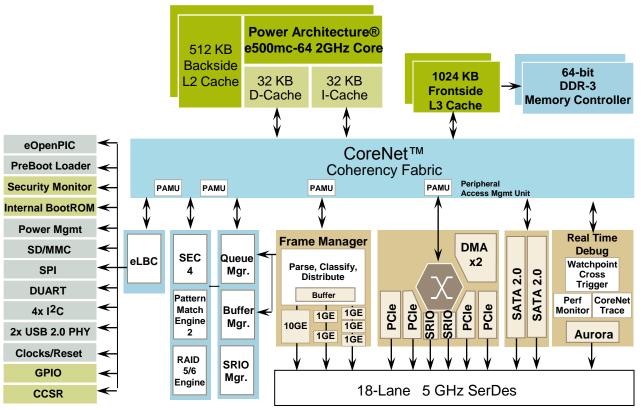
Core Comparison (e500)

	e500v1 and v2	e500mc	e5500 ⁴
Max Frequency	1.5GHz	1.5 GHz	2GHz
Dhrystone	2.4	2.5	3.0
Pipeline depth / Width	7/2	7/2	7/2
Integer Units	3	3	3
GFLOPs	SP FP = 2 OP/cycle ⁵ DP FP = 1 OP/cycle ⁵	SP FP = 1 OP/cycle ² DP FP = 0.5 OP/cycle ²	SP FP = 2 OP/cycle ² DP FP = 2 OP/cycle ²
Floating-Point	Embedded	Classic	Classic
Vector support	SPE	<none></none>	<none></none>
Cache line size	32 bytes	64 bytes	64 bytes
L1 I and D caches	32K 8-way PLRU	32K 8-way PLRU	32K 8-way PLRU
Backside private cache	<none></none>	128KB 8-way backside L2 per core, PLRU replacement	512KB 8-way backside L2 per core, PLRU replacement
Frontside shared cache	256-1024KB 8-way L2	2MB 32-way CPC ¹	2MB 32-way CPC ¹
Branch direction prediction	512-entry, two-bit	512-entry, two-bit	512-entry, two-bit

- 1. P4080 Implementation
- 2. Pre-silicon calculation
- 3. Includes private backside cache
- 4. 64-bit core with 36bit physical addressing
- 5. V2 core with SPE only

Advantages of e5500

Features	Benefits	
64-bit ISA Support	 Provides the ability for the core to utilize twice the amount of data per CPU cycle (64-bit vs 32-bit), which increase performance for computational-intensive applications with large data sets Increased addressable memory space makes programming easier as it allows a single process to have a larger address space, and enables more complex applications that need more memory space. 	
7-stage Pipeline with Out-of-Order Execution	Allows the core to continue to do productive work in the event of a stalled instruction or a wrong branch prediction.	
Floating Point Unit	Classic double precision floating point supported which allows for faster, more accurate computation	
Backside L2 Cache	Provides a lower latency cache with higher bandwidth to the core, enabling higher performance, and Reduces the transactions on the share interconnect and DDR memory	
Up to 2GHz CPU Frequency	Higher frequency provides additional performance for 32-bit & 64-bit applications. Applications with complex numerical algorithms will particularly see a performance improvement due to 64-bit and higher frequency.	


E5500 Ecosystem Overview

Ecosystem Partner	Solution Offering for e5500
ENEA	Real Time Operating System support
Green Hills • s o f t ware, inc.	Complete portfolio of software & hardware development tools, trace tools and real-time operating systems
Graphics	Commercial grade Linux solution
CODESOURCERY	Tool chain support for new core technology
virtutech	Provides Simics model of core technology to enable early 64-bit development.
Power	Power.Org supports the Power Architecture™ core technology using the new ISA v2.06

What's New? - QorIQ™ P5 Series P5020 Block Diagram

▶ Dual e500mc-64 Power Architecture®

- 2x 64-bit e500mc cores (up to 2 GHz)
- Each with 512 KB backside L2 cache
- Dual 1MB Shared L3 Cache w/ECC
- Supports up to 64GB addressability (36 bit physical addressing)

► Memory Controller

- · Dual DDR3, 3L up to 1.3 GHz
- · 32/64 bit data bus w/ECC

► High Speed Interconnect

- 4 PCle 2.0 Controllers
- · 2 SRIO 2.1 Controllers
 - Type 9 and 11 messaging
- · 2 SATA 3Gb/s
- · 2 USB 2.0 with PHY

► CoreNet Switch Fabric

► Ethernet

- 5 x 10/100/1000 Ethernet Controllers
- 1 x 10GE Controller (XAUI)
- All w/ Classification/Policing, H/W Queuing, policing, and Buffer Management, Checksum Offload, QoS, Lossless Flow Control, IEEE 1588v2, 4 SGMII,

► Datapath Acceleration

- SEC 4
- PME 2
- RapidIO Messaging

▶ Device

- 45nm SOI Process
- 1295-pin package: Pin compatible with P4080 and P3041

AltiVec Technology on the e5500 Core

- Moving the AltiVec technology to the QorlQ processor family
 - Aligns with the hardware accelerator strategy offload processing to dedicated functions/applications
 - Utilizing the QorlQ platform power management architecture to manage power of all functions on the device
- ► The initial core will be e5500 + AltiVec
 - 64-bit core with next-generation Floating Point Unit (increase over e500mc)
 - AltiVec 128-bit SIMD unit which operates independent of Scalar Integer and Floating Point Units
 - Improved functionality
 - Vector Absolute Difference function single cycle function which previously was taking multiple lines of code
 - Improved Load and Store instructions which resolve the cumbersome alignment issues and improves performance
 - Gated clocks to minimize dynamic power
- Freescale software enablement support of internally-developed and externallysupplied libraries

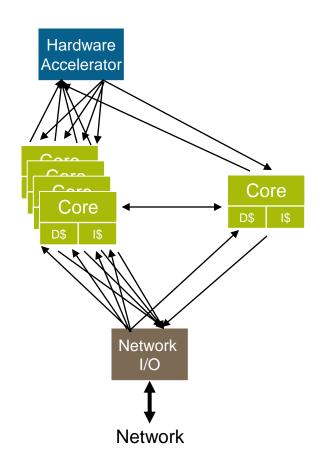
An Introduction to the QorlQ™ Data Path Acceleration Architecture (DPAA)

- ▶ What is DPAA?
- Multicore Data-Path Issues
- ▶ DPAA Components
 - FMAN
 - QMAN
 - BMAN
 - Hardware Accelerators (SEC, PME)
- Use-case scenarios
 - A Day in the Life of a Packet
 - Handling Packets from External I/O
- Leveraging DPAA Performance
- Summary

What is the Datapath Acceleration Architecture (DPAA)?

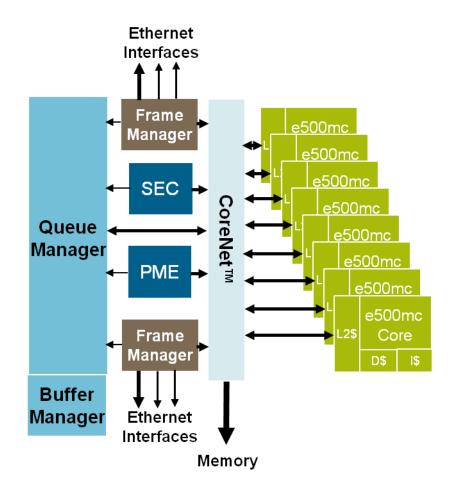
The QorlQ[™] DPAA is a comprehensive architecture which integrates all aspects of packet processing in the SoC, addressing issues and requirements resulting from the multicore nature of QorlQ[™] SoCs.

- ▶ The DPAA includes:
 - Cores
 - Network and packet I/O
 - Hardware offload accelerators
 - The infrastructure required to facilitate the flow of packets between the above

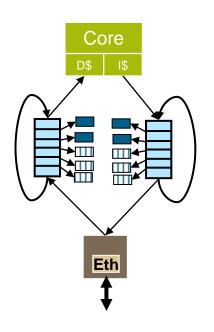

The DPAA also addresses various performance related requirements especially those created by the high speed network I/O found on multicore SoCs such as the P4080

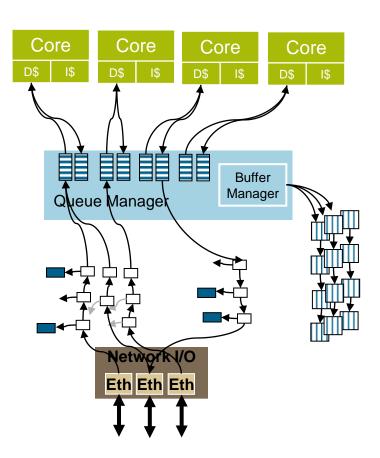
Multicore Datapath Issues and Requirements

- Multicore SoCs, like the P4080, have a number of new requirements related to packet processing when compared to single core SoCs:
 - Load spreading of arriving packets across pools of cores
 - Packet ordering issues after processing
 - Pipelined processing of packets using cores
 - "Virtualization" or sharing of hardware accelerators and network I/O
 - Inter-core communication



QorlQ DPAA Components

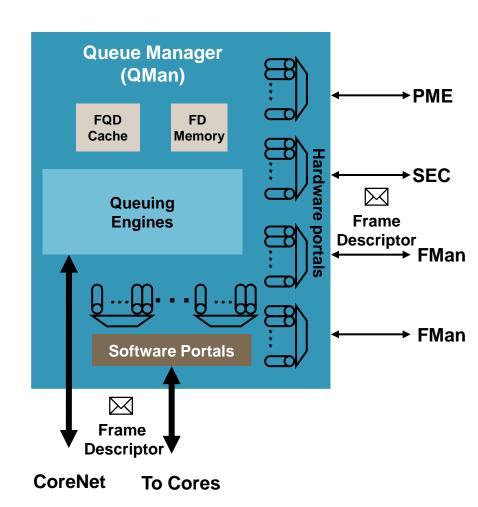

- "Infrastructure" components
 - Queue Manager (QMan)
 - Buffer Manager (BMan)
- ▶ Network I/O
 - Frame Manager (FMan)
- Hardware accelerators
 - SEC cryptographic accelerator
 - PME Pattern matching engine
- Cores
- CoreNet is not part of the DPAA but it provides the interconnect between the cores and the DPAA infrastructure as well as access to memory (DRAM)



DPAA Versus Buffer Descriptor rings

DPAA infrastructure replaces descriptor rings:

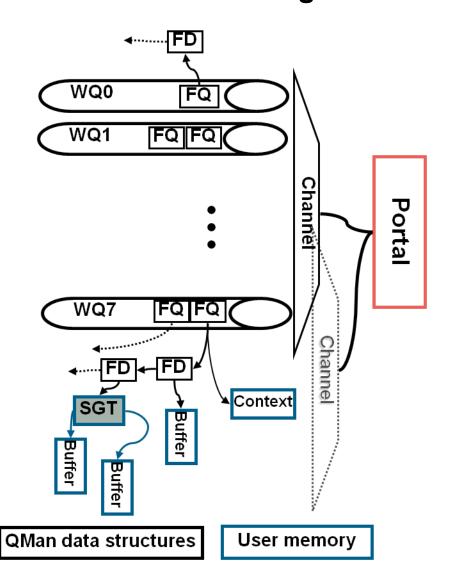
- Queueing is split from buffer management and from the passing of frames to/from cores
- Queues can be shared by multiple cores
- ▶ Data reception is not throttled by how fast software can service ring entries
- ▶ Data can be stashed into cache just before it is processed, not when it is received



DPAA Infrastructure: QMan

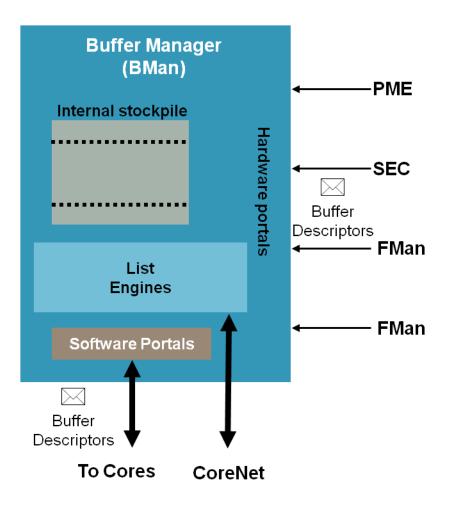
Queue Manager (QMan) supports:

- Low latency, prioritized queuing of descriptors between cores, network I/O and accelerators
- Lockless shared queues for load spreading and device "virtualization"
- Order restoration as well as order preservation through queue affinity
- Active queue management (WRED)
- ▶ Optimized core interface which can pre-position data/context/descriptors in core's cache
- Delivery of per-queue accelerator specific commands and context information to offload accelerators along with dequeued descriptors



Queue "Building Blocks"

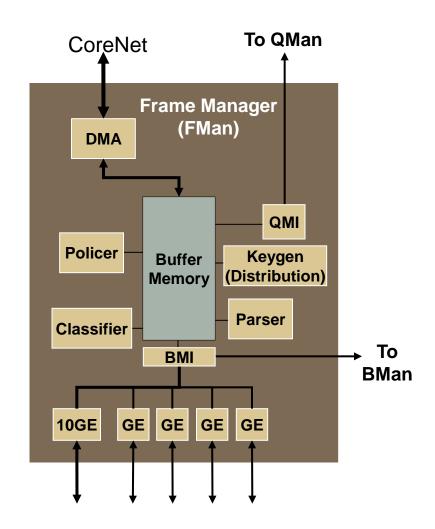
- ► Frame Queues (FQs) are the basic queuing structure supported by QMan
 - FIFO lists of Frame Descriptors (FDs)
 - Each FD describes a frame which is a delineated piece of data (e.g. a packet) in buffer(s) in memory
 - Multi-buffer frames are described using Scatter/Gather Tables
 - FQs are in turn enqueued on Work Queues (WQs)
- ► Channels are a collection of 8 WQs which have priority relative to each other
 - Class scheduling is performed at a channel
 - FQs are an ordered list of frames which need to be processed in the same way
 - WQs are an ordered list of FQs which all have the same priority
- ➤ Portal is a hardware interface used to access QMan facilities (e.g. Enqueue or Dequeue) possibly for multiple channels



DPAA Infrastructure: BMan

Buffer Manager (BMan) supports:

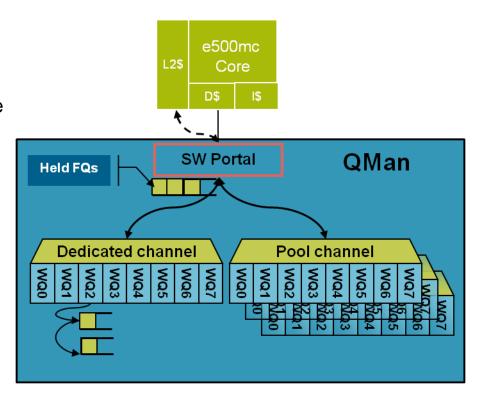
- ▶ 64 pools of buffer pointers
 - All buffers in a pool have "like" characteristics
 - BMan places no restrictions on these characteristics
- Hardware (and software) acquire and release of buffer pointers from/to pools
 - BMan is primarily intended to reduce the buffer management load on SW
- BMan keeps a small per-pool stockpile of buffer pointers in internal memory
 - Absorbs "bursts" of acquire/release without external memory access
 - Reduces acquire latency
- Pools (list of pointers) overflow into DRAM
- Pool depletion thresholds for pool replenishment and lossless flow control
 - All thresholds have hysteresis



Network I/O: FMan

Frame Manager (FMan) supports:

- One 10GE MAC and 4 GE MACs
 - Max 12xGE parse+classify
- L2/L3/L4 protocol parsing and validation
 - · User defined protocols supported
- ► Hash based queue selection
- Exact match classification queue selection
- ▶ IEEE 1588 timestamping
- ► RMON/ifMIB stats
- ▶ Color aware dual rate, 3 color policing
- "Right size" buffer acquisition from BMan buffer pools
 - Picks buffer based on RX'ed frame size
- ▶ Per port egress rate limiting
- ▶ TCP/UDP TX checksum calculation

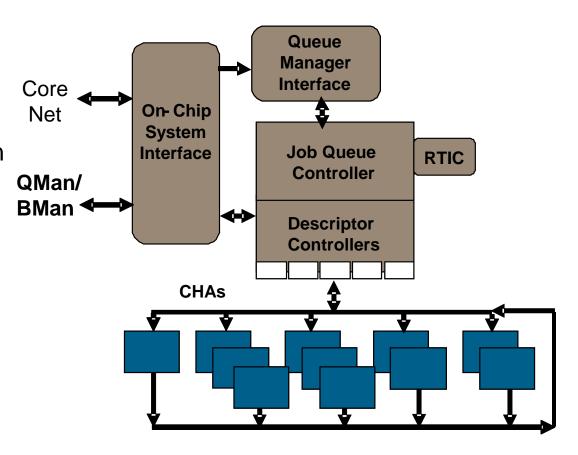


Core Interface: QMan Software Portals

- Software portals provide the DPAA interface to cores and software
 - · Portal per core
 - Can be used by a core to access multiple channels or queues directly
- Low latency lock free dequeue and enqueue of descriptors
- Portals can work closely with a core to (optionally) position:
 - Descriptors
 - Packet data
 - Software defined per queue context or state information

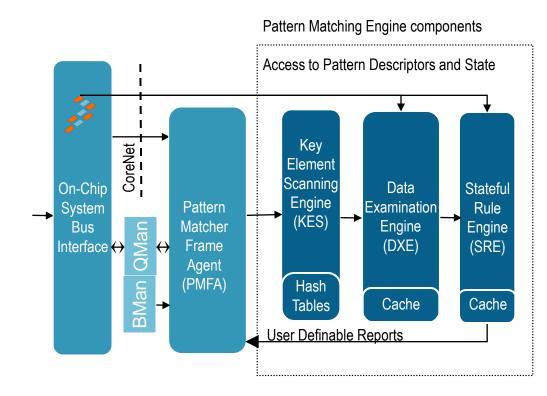
in L1 or L2 cache

 Queues can be "held" on a portal to ensure temporary affinity for order preservation

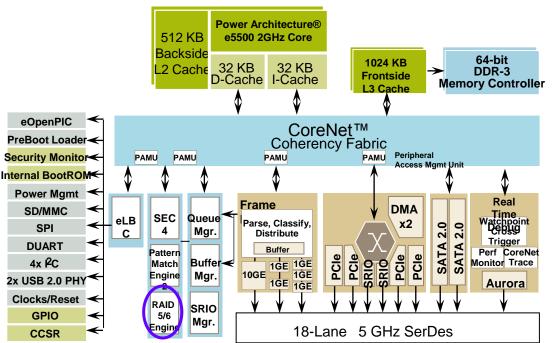


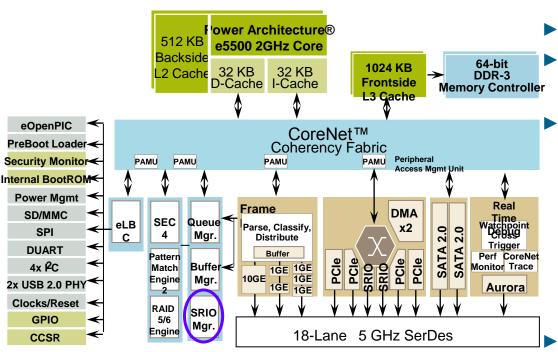
Security Engine SEC 4.0 supports

- Public key cryptography
- ► Random number generation
- Cryptographic authentication
 - SHA-, "SHA-2", MD5
- Encryption and decryption
 - DES, 3DES, ARC, AES, Kasumi, Snow...
- ► From ~2 Gbps to >10 Gbps depending on algorithm
- ► Advanced protocol support
 - IPsec, SSL/TLS, LinkSec/MacSec...
- ► Run time integrity checking

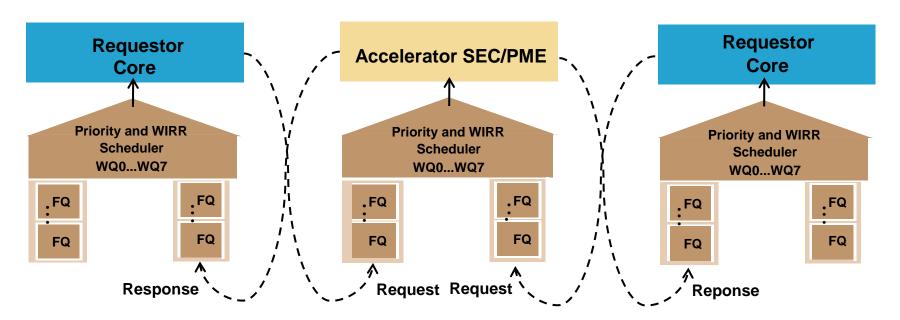


Pattern Matching Engine (PME) 2.x


- Regex support plus significant extensions:
 - Patterns can be split into 256 sets each of which can contain 16 subsets
 - 32K patterns of up to 128B length
 - 9.6 Gbps raw performance
- Combined hash/NFA technology
 - No "explosion" in number of patterns due to wildcards
 - Low system memory utilization
 - Fast pattern database compiles and incremental updates
- Matching across "work units" finds patterns in streamed data
- ► The Pattern Matching Engine utilizes a pipeline of processing blocks to provide a complete pattern matching solution

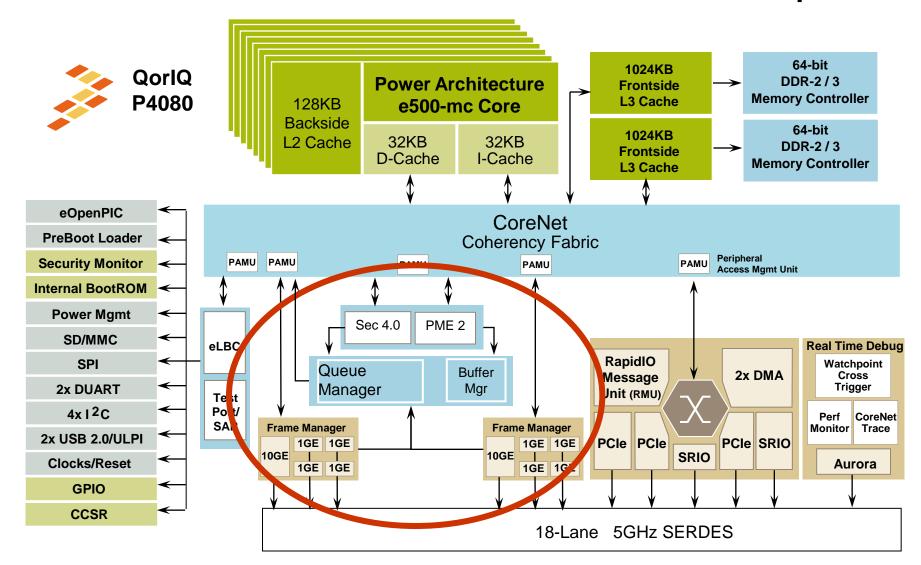

RAID5/6 Engine

- RAID5/RAID6 Parity generation
- Configurable GF polynomial
- Dual parity generation in single pass
- Up to 16 sources
- Scatter gather support
- Descriptor pre-fetch
- Data Integrity Field (DIF) support
 - Called "Protection Information" in T10 SBC-3r17 spec
 - On-the-fly DIF add, check and remove
- Block sizes of 512B, 1K, 2K and 4KB
- Extensive command set
- Supports 2 x 10Gbps host BW for RAID5/6

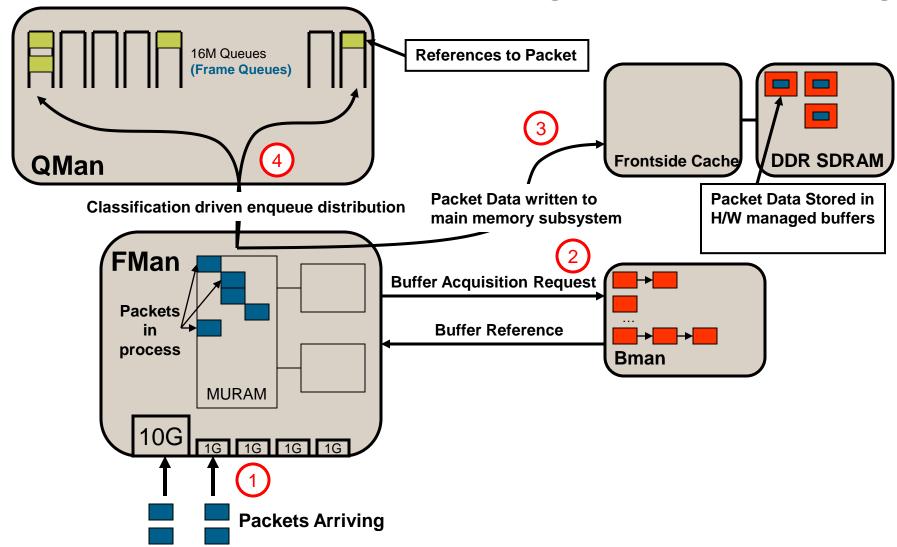

RapidIO Message Manager

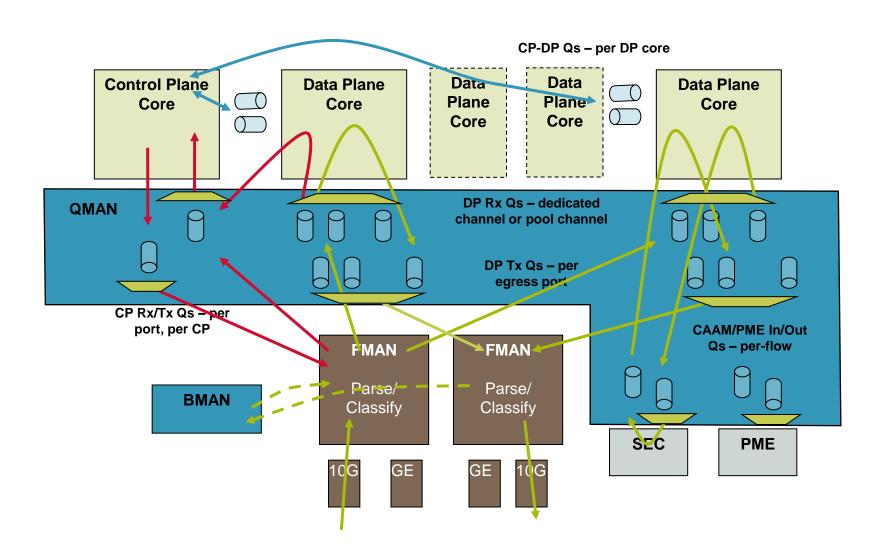
- RapidIO Rev 1.3 Compliant with 2 1 features
 - Dual controllers
 - 1.25/2.5/3.125/5GBaud operation
 - 1x,2x,4x operation
 Extensive Transaction Type support
 - Type 9 Data Streaming
 - Type 10 Doorbells
 - Type 11 messaging
 - NWRITE/SWRITE
 - Port-write
 - Support for hundreds of ingress/egress queues
- Robust QoS
- Direct interworking between
 Ethernet and RapidIO in hardware
 - No runtime CPU intervention required

"Virtualized" Accelerator Interface

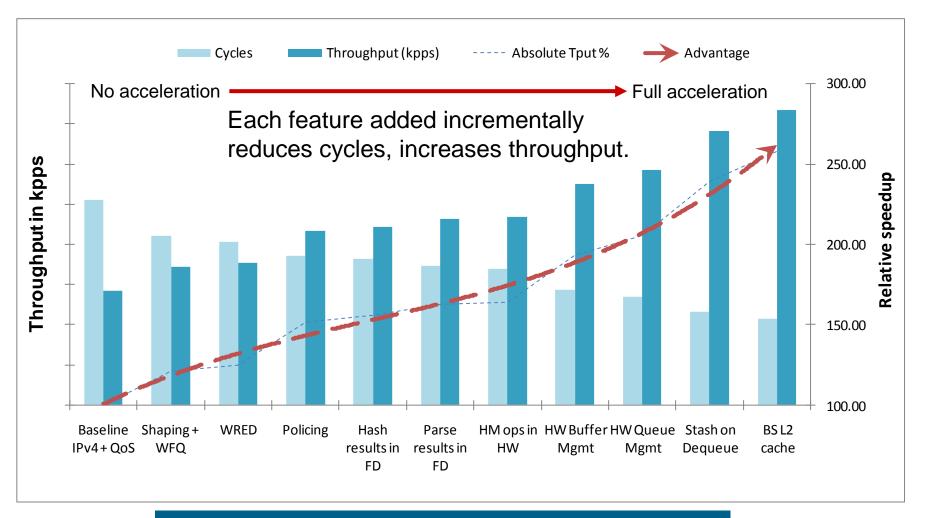


- ► SEC and PME are integrated into the DPAA
 - Acquire/release buffer pointers from/to BMan
 - Dequeue and enqueue frames from QMan
- QMan "virtualizes" these HW accelerators
- QMan provides processing "context" and instructions with dequeued frames
 - · e.g. crypto keys, IVs, ciphersuite
 - Simplifies software's use of accelerators


QorlQ P4080 DPAA Components


FMan/QMan Ingress Packet Processing

A Day in the Life of a Packet


Leveraging Data Path Acceleration Support

Offload	Feature	Advantage
Ingress	Hash calculation	Packet distribution to multiple cores, flow-pinning, table lookup
	Coarse classification	Offload stateless ACL processing
	Packet parsing	Avoid software overhead
Generic	Hardware buffer management	No buffer alloc/free operations in software
	Hardware queue management	Simpler packet Rx/Tx, efficient stashing (to L1/L2), leaves room in cache for other data
Egress	Hardware QoS	Avoid software overhead, mitigate DoS attacks, prioritize CPU cycles
Core	Backside L2 cache	Faster access for multiple flow tables
Look- Aside	Protocol-aware cryptography	Offload protocol encapsulation/decapsulation, sequence tracking etc.

Data Path Acceleration Advantage

Data Path Acceleration provides up to 2x- 3x improvement

Summary

- ► The QorlQ Datapath Acceleration Architecture components include:
 - · Queue Manager
 - Buffer Manager
 - Frame Manager
 - Hardware accelerators such as SEC and PME
- Together these components address multicore requirements including:
 - · Load spreading
 - Packet ordering
 - Device virtualization
 - Inter-core communication
 - HW buffer management

Freescale High Performance Multicore StarCore DSPs

Proven DSP Leadership

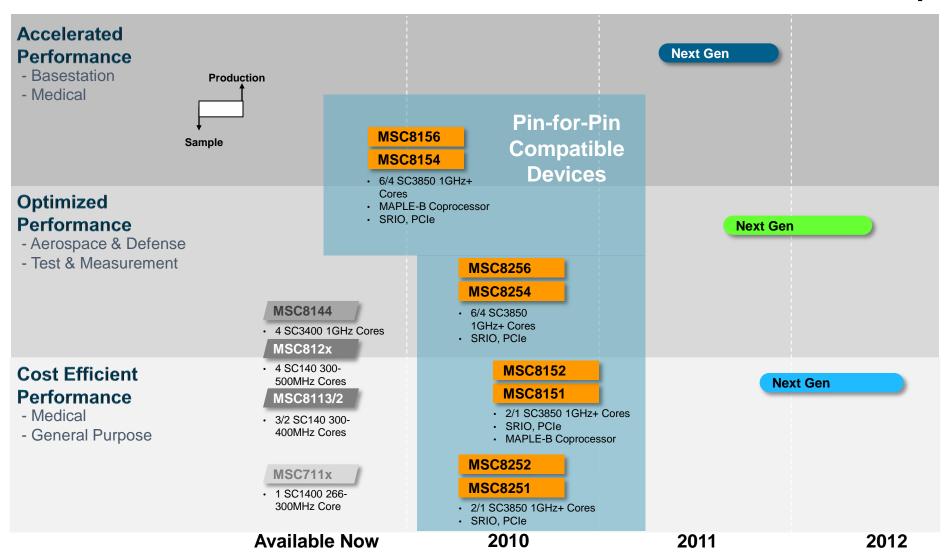
Recognizing Performance

Freescale SC3850 DSP core earns highest BDTImark2000™ score to date

Freescale StarCore® SC3850 core technology used in the MSC8156 multicore DSP has garnered leading benchmark results from independent signal-processing technology analysis firm, Berkeley Design Technology, Inc. (BDTI)

Winning Customers

20+ design Wins at basestation customers in 2009


8 out of the top 10 basestation customers **chose Freescale** in 2009

Beat out Texas Instruments in all cases.

StarCore DSP Devices Public Roadmap

Execution

/Production/

MSC8156 Block Diagram

6x SC3850 Cores Subsystems (6GHz/48GMACS) each with:

- SC3850 DSP core at up to 1GHz (8GMACs 16b or 8b)
- 512 Kbyte unified L2 cache / M2 memory.
- 32 Kbyte I-cache, 32Kbyte D-cache, WBB, WTB, MMU, PIC
- Fully Programmable

Internal/External Memories/Caches

- 1056 KByte M3 shared memory (SRAM)
- Two DDR 2/3 64-bit SDRAM interfaces at up to 800 MHz

CLASS - Chip-Level Arbitration & Switching Fabric

- Non-Blocking, fully pipelined, low latency
- Full fabric 12 masters to 8 slaves, up to 512 Gbps throughput

MAPLE-B - Accelerator Block

- Turbo/Viterbi Decoder up to 200/115 Mbps
- Fourier Transform accelerator up to 350 Msps FFT and 175 Msps DFT

Security Engine (Talitos 3.1) (Optional)

 Data and Code Protection (AES, SHA, RC-4, Kasumi, SNOW)

High Speed Interconnects

- Dual 4x/1x Serial RapidIO at 1.25/2.5/3.125 Gbaud
- PCI-e 4x/1x

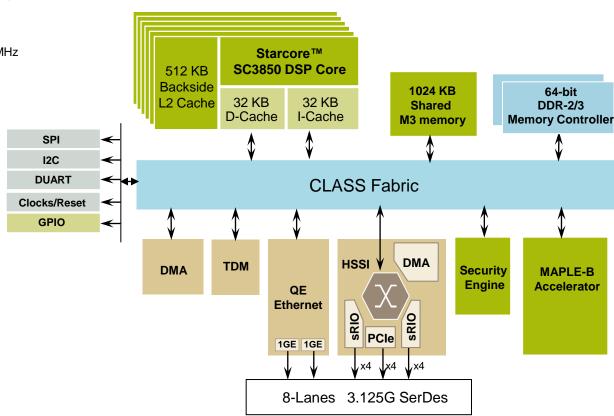
Dual RISC QUICCEngine® supporting

- Dual SGMII/RGMII Gigabit Ethernet ports
- Eth. Protocols, Talitos control and sRIO offload

TDM Highway

• 1024 ch., 400Mbps, divided into 4 ports of 256

DMA Engine 16 bi-directional channels


8 hardware semaphores

Other Peripheral Interfaces

 SPI, UART, I2C, 32 GPIO, 16 Timers, 96KB boot ROM, JTAG/SAP, 8WDT

Technology

- Process: 45nm SOI
- Voltage: 1V core, 2.5, 1.8/1.5V I/O
- · Package: FCBPGA (29x29) 1mm pitch, RoHS

MSC8256 Block Diagram

6x SC3850 Cores Subsystems (6GHz/48GMACS) each with:

- SC3850 DSP core at up to 1GHz (8GMACs 16b or 8b)
- 512 Kbyte unified L2 cache / M2 memory.
- 32 Kbyte I-cache, 32Kbyte D-cache, WBB, WTB, MMU, PIC
- Fully Programmable

Internal/External Memories/Caches

- 1056 KByte M3 shared memory (SRAM)
- Two DDR 2/3 64-bit SDRAM interfaces at up to 800 MHz

CLASS - Chip-Level Arbitration & Switching Fabric

- Non-Blocking, fully pipelined, low latency
- Full fabric 12 masters to 8 slaves, up to 512 Gbps throughput

High Speed Interconnects

- Dual 4x/1x Serial RapidIO at 1.25/2.5/3.125 Gbaud
- PCI-e 4x/1x

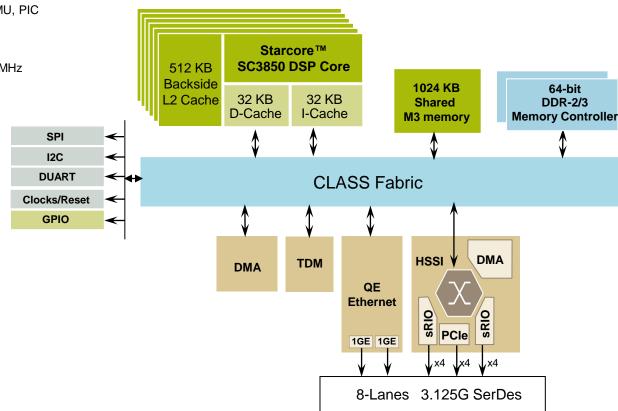
Dual RISC QUICCEngine® supporting

- Dual SGMII/RGMII Gigabit Ethernet ports
- · Eth. Protocols, Talitos control and sRIO offload

Ethernet

• Dual Gigabit Ethernet ports (SGMII/RGMII)

TDM Highway


• 1024 ch., 400Mbps, divided into 4 ports of 256

DMA Engine 16 bi-directional channels Other Peripheral Interfaces

• SPI, UART, I2C, 32 GPIO, 16 Timers, 96KB boot ROM, JTAG/SAP, 8WDT

Technology

- Process: 45nm SOI
- Voltage: 1V core, 2.5, 1.8/1.5V I/O
- Package: FCBPGA (29x29) 1mm pitch, RoHS

New Product Rack and Stack

	Pin for Pin compatible							
Device	8156	8154	8152	8151	8256	8254	8252	8251
SC8350 DSP Cores	6	4	2	1	6	4	2	1
Core Speed (MHz)	1GHz							
Core Performance (16-bit MMACs)	Up to 48000	Up to 32000	Up to 16000	Up to 8000	Up to 48000	Up to 32000	Up to 16000	Up to 8000
Shared M3 Memory	1MB							
I-Cache (per core)	32 KB							
D-Cache (per core)	32 KB							
L2 I-Cache (per core)	512KB							
DDR2/3	2 (800MHz)							
PCle	1	1	1	1	1	1	1	1
GEMAC (RGMII, SGMII)	2	2	2	2	2	2	2	2
sRIO	2	2	2	2	2	2	2	2
TDM	4	4	4	4	4	4	4	4
SPI	1	1	1	1	1	1	1	1
UART	1	1	1	1	1	1	1	1
I ² C	1	1	1	1	1	1	1	1
FFT/DFT Accelerators	1	1	1	1				
Security	AES, SHA, RC- 4, Kasumi, SNOW							
Proc. Tech.	45nm SOI							
Package	783 Ball FC-PBGA							

MSC825x DSP Power Consumption

Device	Power Consumption		
MSC8256@1GHz	6W		
MSC8256@800MHz	5.5W		
MSC8254@1GHz	4.7W		
MSC8254@800MHz	4.4W		
MSC8252@1GHz	3.5W		
MSC8251@1GHz	2.9W		

Typical power values were estimated assuming: DSP cores running at 1V, each at 75% utilization. A single 64 bit DDR3 running at 800MHz, 50% utilization. M3 Memory 50% utilized, TDM Enabled 20% loading, 1 RGMII @ 1Gbps 50% loading with junction temperature of 60°C.

Multicore High Performance DSP comparison

	Freescale m	ulticore parts	TI multicore part	FSL advantage	
Device	MSC8156	MSC8256	C6472-7		
ASP	\$150.94	\$134.77	\$210.00		
Performance (BDTISIM2000TM)	92,520	92,520	79,020		
Performance (GHz)	6 x 1.0GHz	6 x 1.0GHz	6 x 700MHz		
PCI	1	1			
SRIO	2 (4 lanes)	2 (4 lanes)	1 (2 lanes)		
DDR	2xDDR3 (800MHz)	2xDDR3 (800MHz)	DDR2 (500MHz)		
TCP/ VCP	1		1	_	
DFT/ FFT	1				
Process Technology	45nm	45nm	65nm		

Optimized MAPLE-B

- FFT (128-2048)
- DFT (12-1536)
- Virterbi coprocessor &Turbo coprocessor

Scalable solution

- Pin compatible 1,2,4,6 Core versions
- Full code compatibility between all DSPs

CLASS fast switch fabric

- Single module and therefore has uniformity in data transfer
- · Non-blocking, full-fabric interconnect
- Supplemented by dual FAST DDR2/3 (800MHz) controller

Easy-to-use Development Tools and Training

MSC825x/815x ADS Board

- \$3900 (includes 1 Year Free CodeWarrior Tools Subscription)
- On-board Emulation

CodeWarrior Software Development Tools

- New Eclipse IDE
- Trace and Profile, SmartDSP OS, Debugger, C/C++ Compiler

Software Migration Tools

- Texas Instruments C64x+ to FSL SC3850 Migration Tools
- DSP libraries

Documentation and Available Support www.freescale.com/dsp

- Device and Tool Fact Sheets
- Product Data Sheets
- Freescale DSP forums
- System block diagrams on all target end equipments

StarCore Easy to Use Development Tools

CodeWarrior® IDE

· Eclipse-based

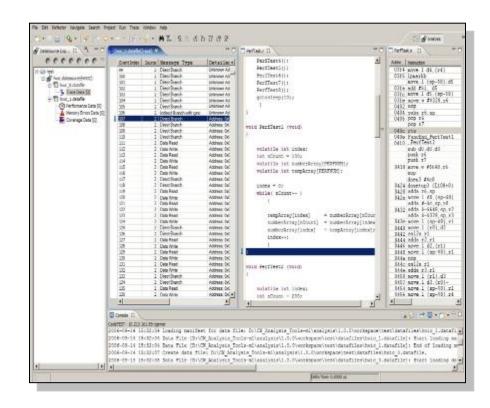
StarCore® Build Tools

 'C' & 'C++' Optimizing Compliers, Linker, ASM, Utilities

Debugger

- Multicore and Multi-DSP support
- Full access and control
- USB and Ethernet TAP probes for silicon debug

Trace & Profile


- Support of advanced debug & profiling capabilities/analysis
- MSC8256 silicon & simulator targets

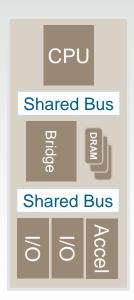
Software Simulators

- · Core Platform Cycle Accurate
- Device Functional Accurate

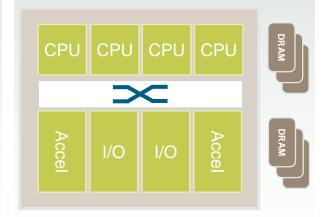
SmartDSP-OS RTOS

- Field deployed
- · Fully pre-emptive
- Royalty free
- Built-in device drivers for MAPLE-V, Serial RapidIO, PCIe, VIC, Eth, TDM, DMA, SPI, I2C

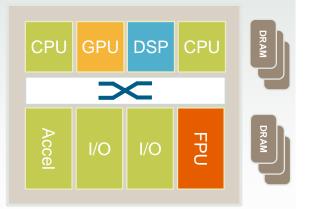
Multicore Software Technology



Hardware Multicore Implementations


Single Core with Hardware Accelerators

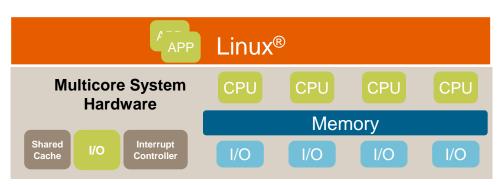
- Sequential Operations that cannot be multi-threaded
- Hardware acceleration provides more power/performance efficiency than software


Homogeneous Multi/Many Core

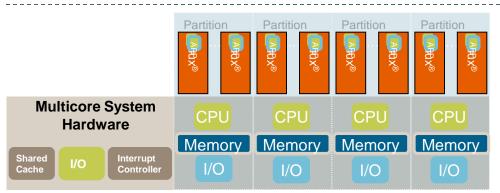
With or Without accelerators
Shared or Distributed Memory

- Easier Programming Environment
- Easier Migration of Legacy Code
- Lack of specialized hardware for differing tasks

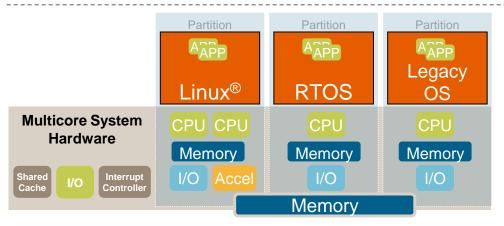
Heterogeneous Multi/Many Core


- Specialized hardware for different tasks
- Most power/performance efficient
- · Software complexity and Portability

Increasing Software Complexity



Varied Multicore Programming Models Required


Symmetric Multi Processing

Single OS on all cores
Applications can run on any core
Common implementation in Desktops

Asymmetric Multi Processing

Many OS instances on a cores Common implementation in Servers Goal – consolidate servers, increase utilization

Asymmetric Multi Processing

Many OS's on dedicated cores
Common implementation in embedded
markets

Multicore Software Solution Model

MC Applications:

- VortiQa security Applications
- SMP And AMP Models
- Component Model For Scalability

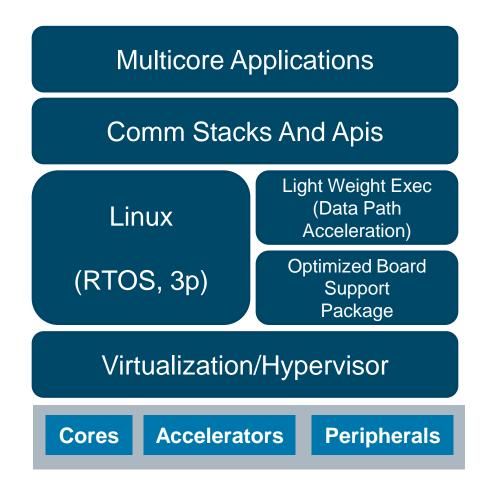
Com Stacks/APIs:

- Si Optimized
- Open And Scalable

► Linux:

- Control Plane Processing
- SMP Support

Light Weight Executive (LWE):

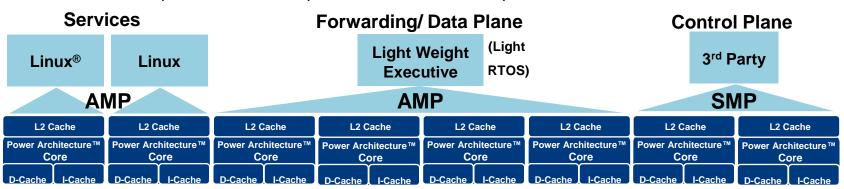

- Data Path Acceleration Library
- Run To Completion

► BSP:

- Si Optimized
- Full Featured
- Open Source

HyperVisor:

- Security & Separation
- Messaging among Cores
- System-level Event Handling
- Debug Support

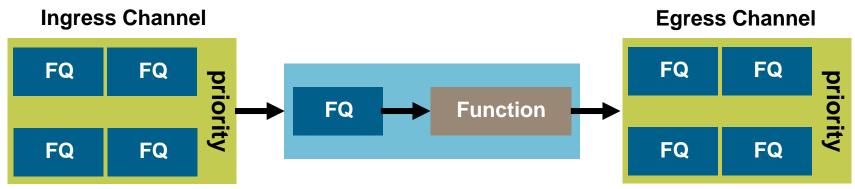

QorlQ™ P4080/4040 Multicore Programming Paradigm

Support a variety of customer use-cases

- Multiple operating systems utilized across cores on a single device
- Proprietary, 3rd party and Open Source multicore operating systems
- Symmetric Multi-Processing (SMP) and Asymmetric Multi-Processing (AMP), often running concurrently
- Often bare-metal, or engineered light-OS, used on forwarding/data plane cores

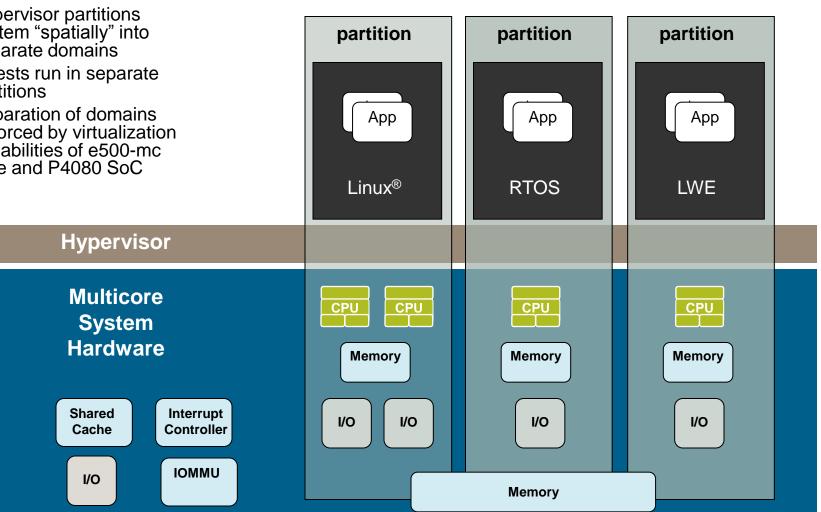
Freescale has developed a reference development platform:

- Freescale embedded reference Hypervisor
- Freescale boot standards, including u-boot
- Leverage open boot protocol and API standards (e.g. Power.org™)
- Freescale Light Weight Executive (LWE) for run to completion data plane processing
- Demonstrate performance and provide reference example for customers



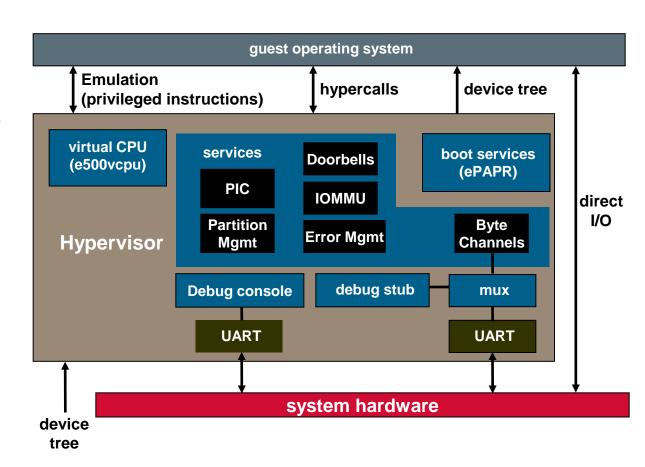
Light Weight Executive Concept

- ▶ Set of C-libraries needed to support data plane applications (C++ planned)
- Run-to-completion software model
 - Processes do not pre-empt each other the process must run to completion before other processes get a chance to run, as scheduled by the QMan (= implicit work scheduler)
 - IRQs are supported, software responsibility to postpone actual processing using SWI or implement proper protection/sharing mechanism
- ▶ Device Trees for LWE configuration
- ► Runs in supervisor state
- Dependency on Hypervisor
- Hypercalls used to access Hypervisor functionality



Hypervisor Architecture Overview

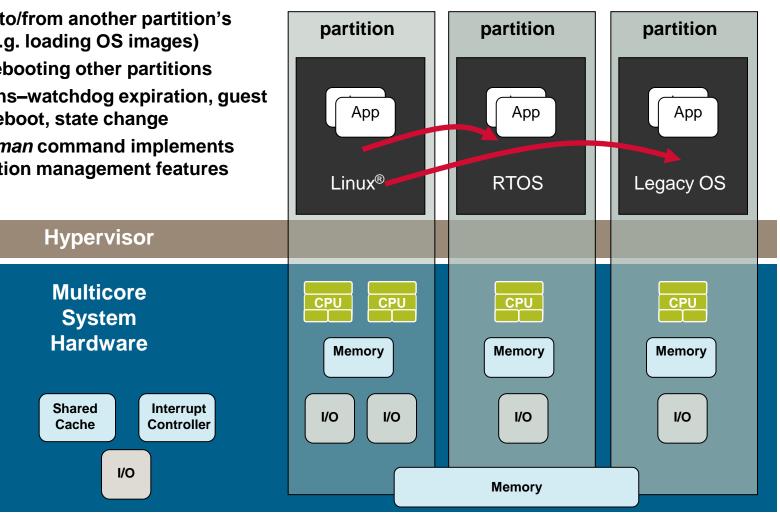
- Hypervisor partitions system "spatially" into separate domains
- Guests run in separate partitions
- Separation of domains enforced by virtualization capabilities of e500-mc core and P4080 SoC



Hypervisor Features

Operating System sees a virtual core plus hypervisor services

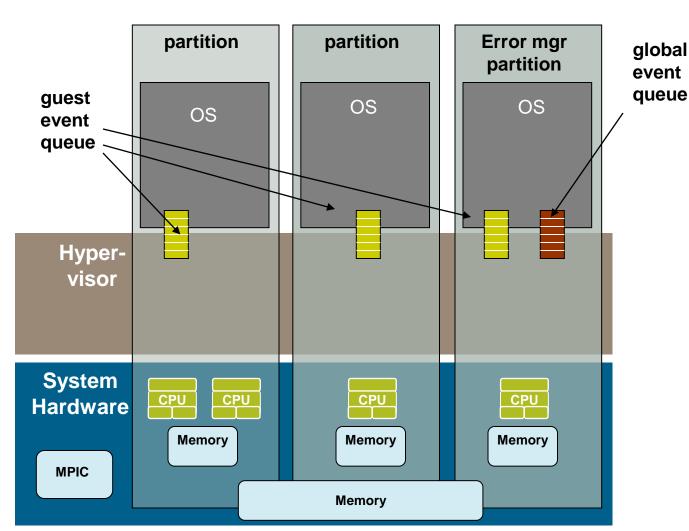
- Virtual CPU (like e500mc minus hypervisor features)
- Services via hypercall
 - ► Interrupt controller
 - ► IOMMU
 - Inter-partition doorbells
 - Partition mangement
 - Byte-channels
 - Power management
 - Error management
 - HA Failover
- Debug stub interface for debugging guest operating systems



▶ Capabilities

Partition Management

- Copy data to/from another partition's memory (e.g. loading OS images)
- Starting, rebooting other partitions
- Notifications-watchdog expiration, guest requests reboot, state change
- Linux partman command implements basic partition management features



Error Management

- Each partition has a guest event queue for partition specific errors
- A global error queue is owned by a partition designated to be an "error manager".
- The guests implement policies specific to their needs

Debugging

partition

OS

stub

CPU

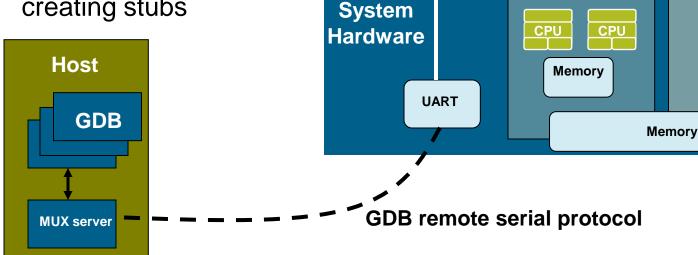
Memory

partition

OS

stub

stub


Debug of guest operating systems is supported using hypervisor-resident debug agents

► Transport over multiplexed serial

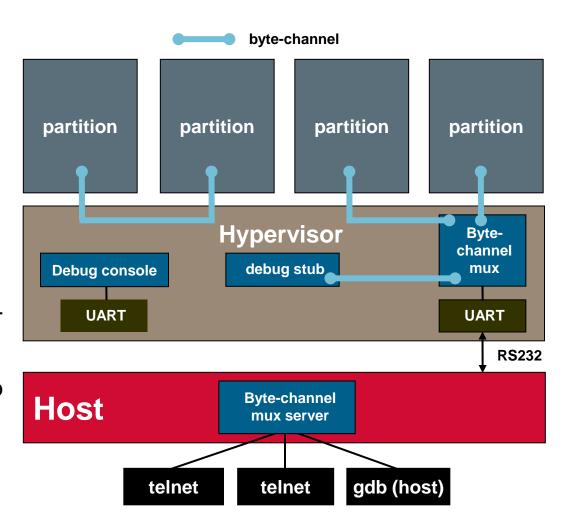
interface

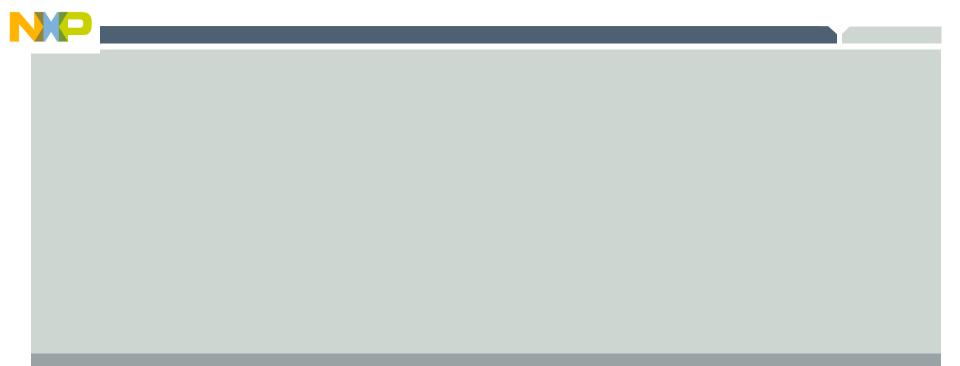
CodeWarrior and GDB supported

Plug-in architecture for creating stubs

Hyper-

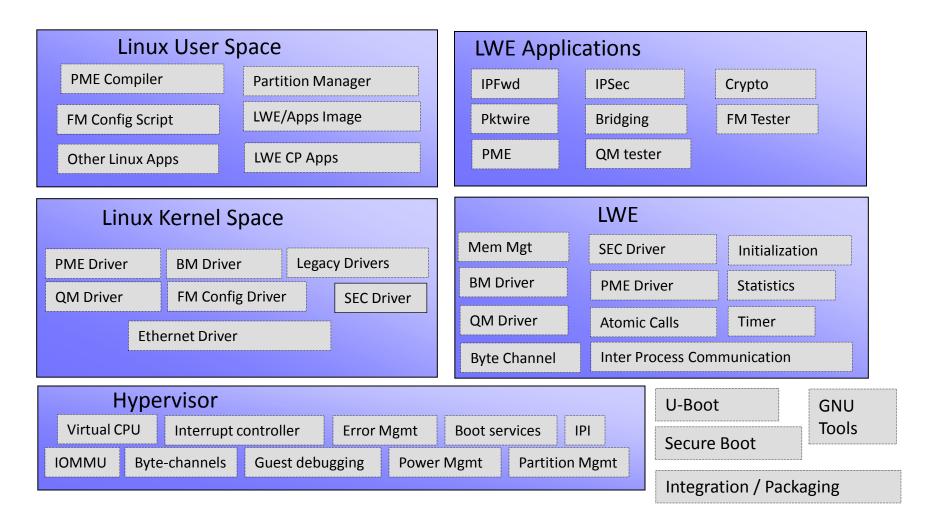
visor

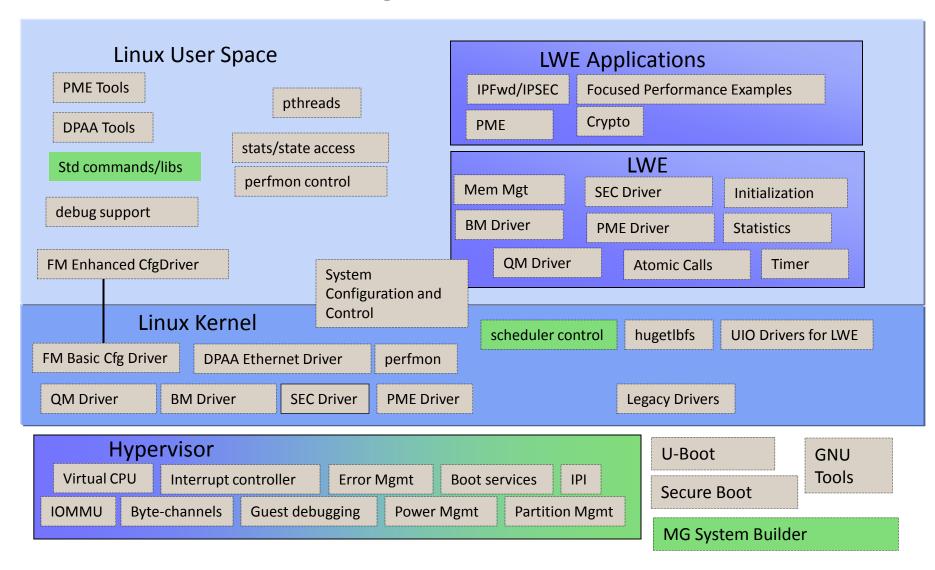

MUX



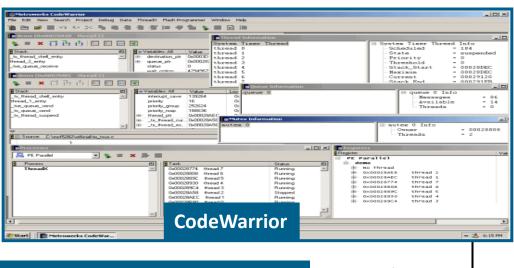
Byte-Channels

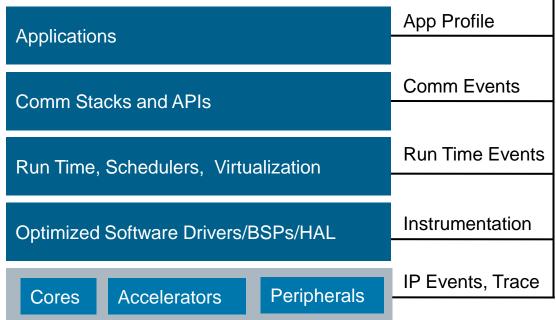
- Byte-channel— a hypercall based character I/O channel
- Flexible endpoint configuration
 - A physical UART on the QorIQ™ P4080
 - Another byte-channel endpoint
 - A byte-channel to UART multiplexer
 - A hypervisor debug stub
 - The hypervisor console


Multicore Software Development Kit (SDK)


P4080 SDK Architecture Today

Future High End Multicore Software Architecture




NSD Software and Enablement Technologies

- Advanced SW Development Tools
- Full Application Visibility/Control

- Si Optimized SW components
- Scalable Robust SW Architectures

- Compiler Friendly Cores
- Advanced Debug IP

- Freescale is focused on developing high performance, full enablement multicore software components
- Freescale's multicore software strategy supports various customer application programming models
- Freescale's multicore software strategy supports both high performance and low cost multicore devices

