
Document Number: 924-76356
 Rev. 2009.12

 dfg 01/20010

W i.MX25 PDK Windows Embedded CE 6.0

 Reference Manual

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-521-6274 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale
Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to any products herein.
Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the
application or use of any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different applications and actual
performance may vary over time. All operating parameters, including “Typicals”, must be validated for each
customer application by customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Freescale
Semiconductor product could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer
shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out
of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or
manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or
service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2008 - 2009. All rights reserved.

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor -iii

Windows Embedded CE 6.0 BSP Reference Manual

-iv Freescale Semiconductor

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor -v

Contents

About This Book

Audience . xvii
Suggested Reading . xvii
Conventions . xvii
Definitions, Acronyms, and Abbreviations . xvii

Chapter 1
Introduction

1.1 Getting Started . 1-1
1.2 Windows Embedded CE 6.0 Architecture . 1-1

Chapter 2
Analog-Digital Converter (ADC) Driver

2.1 ADC Driver Summary . 2-1
2.2 Supported Functionality . 2-1
2.3 Hardware Operation . 2-2
2.3.1 Conflicts with Other Peripherals and Catalog Items . 2-2
2.4 Software Operation . 2-2
2.4.1 ADC Registry Settings . 2-2
2.4.2 Interfacing with the ADC Driver . 2-2
2.5 Power Management . 2-3
2.5.1 ADC_PowerUp. 2-3
2.5.2 ADC_PowerDown . 2-3
2.5.3 IOCTL_POWER_CAPABILITES . 2-3
2.5.4 IOCTL_POWER_SET . 2-3
2.5.5 IOCTL_POWER_GET. 2-3
2.6 Unit Test . 2-3
2.6.1 Unit Test Hardware. 2-3
2.6.2 Unit Test Software . 2-4
2.6.3 Building the Unit Tests . 2-4
2.6.4 Running the Unit Tests . 2-4
2.7 ADC SDK API Reference . 2-5
2.7.1 ADC SDK Functions . 2-5

Chapter 3

Windows Embedded CE 6.0 BSP Reference Manual

-vi Freescale Semiconductor

Audio Driver

3.1 Audio Driver Summary . 3-1
3.2 Supported Functionality . 3-2
3.3 Hardware Operation . 3-2
3.3.1 Audio Hardware Design . 3-2
3.3.2 Audio Playback. 3-2
3.3.3 Audio Recording. 3-3
3.3.4 Required SoC Peripherals . 3-4
3.3.5 Conflicts with SoC Peripherals. 3-4
3.3.6 Conflicts with Board Peripherals . 3-4
3.3.7 Known Issues . 3-4
3.4 Software Operation . 3-5
3.4.1 Audio Playback. 3-5
3.4.2 Audio Recording. 3-5
3.4.3 Audio Driver Compile-Time Configuration Options . 3-5
3.4.4 DMA Support . 3-6
3.4.5 Power Management . 3-7
3.4.6 Audio Driver Registry Settings. 3-8
3.5 Unit Test . 3-9
3.5.1 Unit Test Hardware. 3-9
3.5.2 Unit Test Software . 3-9
3.5.3 Building the Audio Driver CETK Tests . 3-10
3.5.4 Running the Audio Driver CETK Tests . 3-10
3.6 System Level Audio Driver Tests. 3-10
3.6.1 Checking for a Boot-Time Musical Tune . 3-10
3.6.2 Confirming Touchpanel Taps and Keypad Key Presses . 3-10
3.6.3 Playing Back Sample Audio and Video Files Using the Media Player 3-10
3.6.4 Using the SDK Sample Audio Applications for Testing . 3-11
3.7 Audio Driver API Reference . 3-11
3.8 Audio Driver Troubleshooting Guide. 3-11
3.8.1 Checking Build-Time Configuration Options . 3-11
3.8.2 Media Player Application Not Found. 3-11
3.8.3 Media Player Fails to Load and Play an Audio File . 3-11

Chapter 4
Backlight Driver

4.1 Backlight Driver Summary . 4-1
4.2 Supported Functionality . 4-1
4.3 Hardware Operation . 4-2
4.4 Software Operation . 4-2
4.4.1 Backlight Driver Registry Settings . 4-2
4.4.2 Power Management . 4-2
4.5 Unit Test . 4-3
4.5.1 Unit Test Hardware. 4-3

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor -vii

4.5.2 Unit Test Software . 4-3
4.5.3 Running the Backlight Application Test . 4-3
4.6 Backlight API Reference . 4-4

Chapter 5
Battery Driver

5.1 Battery Driver Summary. 5-1
5.2 Supported Functionality . 5-1
5.3 Hardware Operation . 5-1
5.3.1 Conflicts with Other SoC Peripherals. 5-1
5.4 Software Operation . 5-2
5.4.1 Battery Driver Registry Settings. 5-2
5.4.2 Power Management . 5-2
5.5 Unit Test . 5-2
5.6 Battery API Reference . 5-2

Chapter 6
Boot from Secure Digital/MultiMedia Card (SD/MMC)

6.1 Boot from SD/MMC Summary . 6-1
6.2 Supported Functionality . 6-2
6.3 Hardware Operation . 6-2
6.3.1 Conflicts with Other Peripherals and Catalog Items . 6-2
6.4 Software Operation . 6-2
6.4.1 Card Memory Layout . 6-3

Chapter 7
Camera Driver

7.1 Camera Driver Summary . 7-1
7.2 Supported Functionality . 7-2
7.3 Hardware Operation . 7-2
7.3.1 Conflicts with Other Peripherals and Catalog Items . 7-2
7.3.2 Conflicts with 3-Stack Peripherals . 7-2
7.4 Software Operation . 7-2
7.4.1 Communicating with the Camera . 7-3
7.4.2 Registry Settings . 7-3
7.5 Power Management . 7-4
7.5.1 Power Up . 7-4
7.5.2 Power Down . 7-4
7.5.3 IOCTL_POWER_SET . 7-4
7.6 Unit Test . 7-4
7.6.1 Unit Test Hardware. 7-4
7.6.2 Unit Test Software . 7-5
7.6.3 Building the Unit Tests . 7-6

Windows Embedded CE 6.0 BSP Reference Manual

-viii Freescale Semiconductor

7.6.4 Running the Unit Tests . 7-6
7.7 Camera Driver API Reference . 7-7

Chapter 8
Chip Support Package Driver Development Kit (CSPDDK)

8.1 CSPDDK Driver Summary. 8-1
8.2 Supported Functionality . 8-1
8.3 Hardware Operation . 8-2
8.3.1 Conflicts with Other Peripherals and Catalog Items . 8-2
8.4 Software Operation . 8-2
8.4.1 Communicating with the CSPDDK . 8-2
8.4.2 Compile-Time Configuration Options . 8-2
8.4.3 Registry Settings . 8-3
8.4.4 Power Management . 8-3
8.5 Unit Test . 8-4
8.5.1 Unit Test Hardware. 8-4
8.5.2 Unit Test Software . 8-4
8.5.3 Building the Unit Tests . 8-4
8.5.4 Running the Unit Tests . 8-4
8.6 CSPDDK DLL Reference. 8-5
8.6.1 CSPDDK DLL System Clocking (DDK_CLK) Reference . 8-5
8.6.2 CSPDDK DLL GPIO (DDK_GPIO) Reference. 8-8
8.6.3 CSPDDK DLL IOMUX (DDK_IOMUX) Reference . 8-11
8.6.4 CSPDDK DLL SDMA (DDK_SDMA) Reference . 8-14

Chapter 9
Configurable Serial Peripheral Interface (CSPI) Driver

9.1 CSPI Driver Summary . 9-1
9.2 Supported Functionality . 9-1
9.2.1 Conflicts with Other Peripherals and Catalog Items . 9-2
9.2.2 Conflicts with 3-Stack Peripherals . 9-2
9.3 Software Operation . 9-2
9.3.1 Registry Settings . 9-2
9.3.2 Communicating with the CSPI . 9-2
9.3.3 Creating a Handle to the CSPI . 9-3
9.3.4 Data Transfer Operations . 9-3
9.3.5 Closing the Handle to the CSPI . 9-5
9.3.6 Power Management . 9-5
9.4 Restrictions . 9-5
9.5 Unit Test . 9-6
9.5.1 Building the Unit Tests . 9-6
9.6 CSPI Driver API Reference . 9-6
9.6.1 CSPI Driver IOCTLS . 9-6
9.6.2 CSPI Driver SDK Wrapper. 9-7

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor -ix

9.6.3 CSPI Driver Structures . 9-8

Chapter 10
Controller Area Network (CAN) Driver

10.1 CAN Driver Summary . 10-1
10.2 Supported Functionality . 10-1
10.3 Hardware Operation . 10-1
10.3.1 Conflicts with Other Peripherals and Catalog Items . 10-2
10.4 Software Operation . 10-2
10.4.1 Communicating with the CAN . 10-2
10.4.2 Creating a Handle to the CAN . 10-2
10.4.3 Configuring the CAN . 10-3
10.4.4 Data Transfer Operations . 10-3
10.4.5 Closing the Handle to the CAN . 10-5
10.4.6 Power Management . 10-5
10.4.7 CAN Registry Settings . 10-5
10.5 Unit Test . 10-6
10.5.1 Unit Test Hardware. 10-6
10.5.2 Unit Test Software . 10-6
10.5.3 Building the Unit Tests . 10-6
10.5.4 Running the Unit Tests . 10-7

Chapter 11
Dynamic Voltage and Frequency Control (DVFC) Driver

11.1 DVFC Driver Summary . 11-1
11.2 Supported Functionality . 11-1
11.2.1 i.MX25 Supported Functionality . 11-2
11.3 Hardware Operation . 11-2
11.3.1 Conflicts with Other Peripherals and Catalog Items . 11-2
11.3.2 i.MX25 3-Stack Configuration . 11-2
11.4 Software Operation . 11-2
11.4.1 i.MX25 Registry Settings . 11-2
11.4.2 Loading and Initialization . 11-2
11.4.3 Operation . 11-2
11.4.4 DDK Interface. 11-3
11.4.5 Power Management . 11-3
11.5 Unit Test . 11-4
11.5.1 i.MX25 Unit Testing. 11-4

Chapter 12
Enhanced Secure Digital Host Controller (eSDHC) Driver

12.1 eSDHC Driver Summary . 12-1
12.2 Supported Functionality . 12-1

Windows Embedded CE 6.0 BSP Reference Manual

-x Freescale Semiconductor

12.3 Hardware Operation . 12-2
12.3.1 Conflicts with Other Peripherals and Catalog Options. 12-2
12.4 Software Operation . 12-2
12.4.1 Required Catalog Items . 12-3
12.4.2 eSDHC Registry Settings . 12-3
12.4.3 DMA Support . 12-4
12.4.4 Power Management . 12-4
12.5 Unit Test . 12-4
12.5.1 Unit Test Hardware. 12-5
12.5.2 Unit Test Software . 12-5
12.5.3 Building the Unit Tests . 12-5
12.5.4 Running the Unit Tests . 12-6
12.5.5 System Testing . 12-7
12.6 Secure Digital Card Driver API Reference. 12-7

Chapter 13
Enhanced Serial Audio Interface (ESAI) Driver

13.1 ESAI Driver Summary . 13-1
13.2 Supported Functionality . 13-1
13.3 Hardware Operation . 13-2
13.3.1 Conflicts with Other Peripherals and Catalog Items . 13-2
13.3.2 Hardware Limitation. 13-2
13.4 Software Operation . 13-3
13.4.1 Required Catalog Items . 13-3
13.4.2 ESAI Registry Settings . 13-3
13.4.3 Supported Wave Data Format. 13-4
13.4.4 DMA Support . 13-4
13.4.5 Power Management . 13-4
13.5 Unit Test . 13-5
13.5.1 Building the Unit Test. 13-5
13.5.2 Hardware Setup. 13-5
13.5.3 Running the Unit Test. 13-5
13.5.4 Known Issues . 13-6

Chapter 14
General Purpose Timer (GPT) Driver

14.1 GPT Driver Summary. 14-1
14.2 Supported Functionality . 14-1
14.3 Hardware Operation . 14-2
14.3.1 Conflicts with Other Peripherals and Catalog Items . 14-2
14.4 Software Operation . 14-2
14.4.1 GPT Registry Settings . 14-2
14.4.2 Communicating with the GPT . 14-2
14.4.3 DMA Support . 14-4

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor -xi

14.5 Power Management . 14-4
14.5.1 PowerUp . 14-4
14.5.2 PowerDown . 14-5
14.5.3 IOCTL_POWER_SET . 14-5
14.6 Unit Test . 14-5
14.6.1 Unit Test Hardware. 14-5
14.6.2 Unit Test Software . 14-5
14.6.3 Building the Unit Tests . 14-5
14.6.4 Running the Unit Tests . 14-6
14.7 GPT SDK API Reference . 14-6
14.7.1 GPT SDK Functions . 14-6
14.7.2 GPT Driver Structures . 14-9

Chapter 15
Fast Ethernet Controller (FEC) Driver

15.1 Fast Ethernet Driver Summary . 15-1
15.2 Supported Functionality . 15-1
15.3 Hardware Operations . 15-2
15.3.1 Conflicts with Other Peripherals and Catalog Items . 15-2
15.4 Software Operations . 15-2
15.4.1 FEC Driver Registry Settings . 15-2
15.5 Unit Tests . 15-3
15.5.1 Unit Test Hardware. 15-3
15.5.2 Unit Test Software . 15-4
15.5.3 Building the Unit Tests . 15-4
15.5.4 Running the Unit Tests . 15-5
15.6 Fast Ethernet Driver API Reference . 15-7

Chapter 16
Inter-Integrated Circuit (I2C) Driver

16.1 I2C Driver Summary. 16-1
16.2 Supported Functionality . 16-1
16.3 Hardware Operation . 16-2
16.3.1 Conflicts with Other Peripherals and Catalog Items . 16-2
16.4 Software Operation . 16-2
16.4.1 Registry Settings . 16-2
16.4.2 Communicating with the I2C . 16-3
16.4.3 Creating a Handle . 16-3
16.4.4 Configuring the I2C . 16-3
16.4.5 Data Transfer Operations . 16-4
16.4.6 Closing the Handle . 16-6
16.4.7 Power Management . 16-6
16.5 Unit Test . 16-7
16.5.1 Unit Test Hardware. 16-7

Windows Embedded CE 6.0 BSP Reference Manual

-xii Freescale Semiconductor

16.5.2 Unit Test Software . 16-7
16.5.3 Building the Unit Tests . 16-7
16.5.4 Running the Unit Tests . 16-7
16.6 Hardware Limitations . 16-7
16.7 I2C Driver API Reference. 16-7
16.7.1 I2C Driver IOCTLS . 16-7
16.7.2 I2C Driver SDK Encapsulation. 16-10
16.7.3 I2C Driver Structures . 16-15

Chapter 17
Keypad Driver

17.1 Keypad Driver Summary . 17-1
17.2 Supported Functionality . 17-1
17.3 Hardware Operation . 17-2
17.3.1 Conflicts with Other Peripherals and Catalog Items . 17-2
17.3.2 Keypad . 17-2
17.4 Software Operation . 17-2
17.4.1 Keypad Scan Codes and Virtual Keys . 17-3
17.4.2 Power Management . 17-3
17.4.3 Keypad Registry Settings . 17-4
17.5 Unit Test . 17-4
17.5.1 Unit Test Hardware. 17-4
17.5.2 Unit Test Software . 17-4
17.5.3 Building the Unit Tests . 17-5
17.5.4 Running the Unit Tests . 17-5
17.6 Keypad Driver API Reference . 17-5
17.6.1 Keypad PDD Functions . 17-5

Chapter 18
Liquid Crystal Display Controller (LCDC) Driver

18.1 Display Driver Summary . 18-1
18.2 Supported Functionality . 18-1
18.3 Hardware Operation . 18-2
18.3.1 Conflicts with Other SoC Peripherals. 18-2
18.4 Software Operation . 18-2
18.4.1 Communicating with the Display . 18-2
18.4.2 Configuring the Display . 18-2
18.4.3 Rotation Support . 18-3
18.4.4 Display Registry Settings . 18-3
18.4.5 Power Management . 18-3
18.5 Unit Test . 18-4
18.5.1 Unit Test Hardware. 18-4
18.5.2 Unit Test Software . 18-4
18.5.3 Building the Display Tests . 18-5

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor -xiii

18.5.4 Running the Display Tests . 18-5
18.6 Display Driver API Reference . 18-9

Chapter 19
NAND Flash Driver

19.1 Flash Driver Summary . 19-1
19.2 Supported Functionality . 19-2
19.3 Hardware Operation . 19-2
19.3.1 Conflicts with Other Peripherals and Catalog Items . 19-2
19.4 Software Operation . 19-2
19.4.1 MDD/PDD Layer Overview. 19-2
19.4.2 Definitions . 19-4
19.4.3 Adding New Flash Configurations . 19-5
19.4.4 Registry Settings . 19-6
19.4.5 DMA Support . 19-6
19.4.6 Power Management . 19-6
19.5 Unit Test . 19-6
19.5.1 CETK Testing . 19-6
19.5.2 System Testing . 19-7

Chapter 20
Pulse Width Modulator (PWM) Driver

20.1 PWM Driver Summary. 20-1
20.2 Supported Functionality . 20-1
20.3 Hardware Operation . 20-1
20.3.1 Conflicts with Other Peripherals and Catalog Items . 20-2
20.3.2 Conflicts with 3-Stack Peripherals . 20-2
20.4 Software Operation . 20-2
20.4.1 Registry Settings . 20-2
20.4.2 Communicating with the PWM . 20-3
20.4.3 Creating a Handle to the PWM. 20-3
20.4.4 PWM Operations . 20-3
20.4.5 Closing the Handle to the PWM . 20-4
20.4.6 Power Management . 20-4
20.5 Unit Test . 20-4
20.6 PWM Driver API Reference. 20-5
20.6.1 PWM Driver IOCTLS . 20-5
20.6.2 PWM Driver Structures . 20-5

Chapter 21
Serial Driver

21.1 Serial Driver Summary . 21-1
21.2 Supported Functionality . 21-1

Windows Embedded CE 6.0 BSP Reference Manual

-xiv Freescale Semiconductor

21.3 Hardware Operation . 21-2
21.3.1 Conflicts with Other Peripherals and Catalog Items . 21-2
21.4 Software Operation . 21-2
21.4.1 Registry Settings . 21-2
21.4.2 Power Management . 21-3
21.5 Unit Test . 21-3
21.5.1 Unit Test Hardware. 21-3
21.5.2 Unit Test Software . 21-3
21.5.3 Building the Unit Tests . 21-3
21.5.4 Running the Unit Tests . 21-3
21.6 Serial Driver API Reference . 21-4
21.6.1 Serial PDD Functions . 21-4
21.6.2 Serial Driver Structures . 21-5

Chapter 22
Subscriber Identification Module (SIM) Driver

22.1 SIM Driver Summary . 22-1
22.2 Supported Functionality . 22-1
22.3 Hardware Operation . 22-1
22.3.1 Conflicts with Other Peripherals and Catalog Items . 22-2
22.4 Software Operation . 22-2
22.4.1 Power Management . 22-2
22.4.2 SIM Registry Settings . 22-2
22.5 Unit Test . 22-3
22.5.1 Unit Test Hardware. 22-3
22.5.2 Building the SIM Application. 22-3
22.5.3 Running the SIM Application. 22-3
22.6 SIM Driver API Reference . 22-4
22.6.1 SIM PDD Functions . 22-4
22.6.2 SIM Driver Structures. 22-4

Chapter 23
Touch Panel Driver

23.1 Touch Panel Driver Summary . 23-1
23.2 Supported Functionality . 23-1
23.3 Hardware Operations . 23-1
23.4 Software Operations . 23-2
23.4.1 Touch Driver Registry Settings . 23-2
23.5 Unit Tests . 23-2
23.5.1 Unit Test Hardware. 23-2
23.5.2 Unit Test Software . 23-3
23.5.3 Running the Touch Panel Tests . 23-3
23.6 Touch Panel API Reference . 23-3

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor -xv

Chapter 24
Universal Serial Bus (USB) OTG Driver

24.1 USB OTG Driver Summary . 24-1
24.1.1 USB OTG Client Driver Summary. 24-1
24.1.2 OTG Host Driver Summary . 24-2
24.1.3 OTG Transceiver Driver Summary (For High-Speed Only) . 24-3
24.2 USB Host Driver Summary . 24-4
24.2.1 FS Host2 Driver Summary . 24-4
24.3 Supported Functionality . 24-4
24.4 Hardware Operation . 24-5
24.4.1 Conflicts with Other Peripherals and Catalog Items . 24-5
24.5 Software Operation . 24-6
24.5.1 USB OTG Host Controller Driver . 24-6
24.5.2 USB Client Driver . 24-14
24.5.3 USB Transceiver Driver (ID Pin Detect Driver—XCVR) . 24-18
24.5.4 Power Management . 24-23
24.5.5 Function Drivers . 24-25
24.5.6 Class Drivers. 24-28
24.6 Basic Elements for Driver Development . 24-30
24.6.1 BSP Environment Variables . 24-30
24.6.2 Dependencies of Drivers. 24-31

Chapter 25
USB Boot and KITL

25.1 USB Boot and KITL Summary . 25-1
25.2 Supported Functionality . 25-1
25.3 Hardware Operation . 25-1
25.3.1 Conflicts with Other Peripherals and Catalog Items . 25-2
25.4 Software Operation . 25-2
25.4.1 Software Architecture . 25-2
25.4.2 Source Code Layout . 25-3
25.4.3 Power Management . 25-3
25.4.4 Registry Settings . 25-3
25.4.5 DMA Support . 25-3
25.5 Unit Test . 25-4
25.5.1 Building the USB Boot and KITL . 25-4
25.5.2 Testing USB Boot and KITL on i.MX25 3-Stack . 25-4

Windows Embedded CE 6.0 BSP Reference Manual

-xvi Freescale Semiconductor

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor xvii

About This Book
This reference manual describes the requirements, implementation details, and testing for each module
included in the Freescale Board Support Package (BSP) for Windows Embedded CE 6.0.

Audience
This document is intended for device driver developers, application developers, and software test
engineers who are planning to use the product and for anyone who wants to understand more about the
product.

Suggested Reading
The Freescale manuals can be found at the Freescale Semiconductor, Inc. World Wide Web site at
http://www.freescale.com. These manuals may be downloaded directly from the Web site, or printed
versions can be ordered. The Microsoft Platform Builder Help may be viewed from within the Platform
Builder application.

• i.MX25 Applications Processor IC Reference Manual
• i.MX25 3-Stack Release Notes for Windows Embedded CE 6.0
• i.MX25 3-Stack User’s Guide for Windows Embedded CE 6.0
• Microsoft Platform Builder for Windows Embedded CE 6.0 Help

Conventions
This document uses the following notational conventions:

• Courier monospaced type indicates directory or file names and code examples.
• Bold type indicates the menu options or buttons the user can select. Cascaded menu options are

delimited with the > symbol.
• Italic type indicates a reference to another document.

Definitions, Acronyms, and Abbreviations
The following list defines the abbreviations used in this document.
ADS application development system
API application programming interface
BSP board support package
CSP chip support package
CSPI configurable serial peripheral interface
D3DM Direct 3D Mobile

Windows Embedded CE 6.0 BSP Reference Manual

xviii Freescale Semiconductor

DHCP dynamic host configuration protocol
DPTC dynamic power and temperature control
DVFC dynamic voltage and frequency control
DVFS dynamic voltage and frequency scaling
EBOOT Ethernet bootloader
EVB platform evaluation board
FAL flash abstraction layer
FIR fast infrared
FMD flash media driver
GDI graphics display interface
GPT general purpose timer
I2C inter-integrated circuit
IDE integrated development environment
IST interrupt service thread
IPU image processing unit
KITL kernel independent transport layer
LVDS low-voltage differential signaling
MAC media access control
MMC multimedia cards
NLED Notification Light Emitting Diode
OAL OEM adaptation layer
OEM original equipment manufacturer
OS operating system
OTG on-the-go
PMIC power management IC
PQOAL production quality OEM adaptation layer
PWM pulse-width modulator
SD secure digital cards
SDC synchronous display controller
SDHC secure digital host controller
SDIO secure digital I/O and combo cards
SDRAM synchronous dynamic random access memory
SDK software development kit
SIM subscriber identification module
SIR slow infrared

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor xix

SOC system on a chip
UART universal asynchronous receiver transmitter
USB universal serial bus

Windows Embedded CE 6.0 BSP Reference Manual

xx Freescale Semiconductor

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 1-1

Chapter 1
Introduction
This Freescale board support package (BSP) is based on the Microsoft Windows Embedded CE 6.0
operating system. This BSP supports the following Freescale platform(s):

• i.MX25 3-Stack Development System

This kit supports the Microsoft Windows® Embedded CE 6.0 operating system, and requires the use of
Microsoft Platform Builder, which is an integrated development environment (IDE) for building
customized embedded operating system designs. To view feature information, study the Release Notes
included in this release.

NOTE
Use this guide in conjunction with Microsoft Windows Platform Builder
Help (or the identical Platform Builder User Guide).

• To view the Platform Builder Help, click Help from within the Platform
Builder application.

• To view the online Windows Embedded CE 6.0 documentation, visit:
http://msdn2.microsoft.com/en-us/library/bb159115.aspx

1.1 Getting Started
For instructions on installing this software release, building, and downloading and running the OS image
on the hardware board, refer to the appropriate User’s Guide included with this distribution.

1.2 Windows Embedded CE 6.0 Architecture
The Windows Embedded CE 6.0 architecture is a variation of Microsoft's Windows operating system for
minimalistic computers and embedded systems. The architecture of the operating system and sub-systems
(for example, power management, DirectDraw) are described in several locations in the Help. You may
want to begin at the following location in Help:

Welcome to Windows Embedded CE 6.0 > Windows Embedded CE Architecture

Introduction

Windows Embedded CE 6.0 BSP Reference Manual

1-2 Freescale Semiconductor

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 2-1

Chapter 2
Analog-Digital Converter (ADC) Driver
The Analog Digital Converter is a multipurpose module used to measure the voltage applied to dedicated
input pins. Some of the input pins can be used to interface a resistive touchscreen, while other pins can be
used for general purpose inputs. The ADC controller is not used directly by the software. It is controlled
by the Touchscreen Controller (TSC).

2.1 ADC Driver Summary
The ADC driver can be used to measure the voltage of the General Purpose ADC pins and to interface with
a touchscreen. Thus, only one of the driver interfaces is used by the touchscreen driver. The ADC driver
interacts with the TSC to drive the ADC. Table 2-1 provides a summary of source code location, library
dependencies and other BSP information.

Table 2-1. ADC Driver Summary

2.2 Supported Functionality
The ADC driver enables the 3-Stack System to provide the following software support:

1. Configures the Touchscreen conversion queue and items
2. Retrieves of the Touchscreen samples
3. Configures the general conversion queue and items
4. Retrieves the general purpose samples

Driver Attribute Definition

Target Platform iMX25-3DS-PDK1_7

Target SOC MX25_FSL_V2_PDK1_7

SOC Common Path .PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\ADC

 SOC Specific Path ..PLATFORM\COMMON\SRC\SOC\<Target SOC>\ADC

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\ADC

Driver DLL adc.dll

SDK Library adcsdk.lib

Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > ADC > Analog
Digital Converter

SYSGEN Dependency N/A

BSP Environment Variables BSP_ADC=1

Analog-Digital Converter (ADC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

2-2 Freescale Semiconductor

2.3 Hardware Operation
Refer to the chapter on the TSC in the i.MX25 Multimedia Applications Processor Reference Manual for
detailed hardware operation and programming information.

2.3.1 Conflicts with Other Peripherals and Catalog Items
Because the ADC inputs are not multiplexed with other functions, the ADC/TSC module does non conflict
with other peripherals.

2.4 Software Operation
If the touchscreen component is used, the ADC driver should not use the Touchscreen conversion queue
and items for general purpose operations.

2.4.1 ADC Registry Settings
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\ADC]
 "Dll" = "adc.dll"
 "Prefix" = "ADC"
 "Index" = dword:1
 "Order" = dword:0

2.4.2 Interfacing with the ADC Driver

2.4.2.1 Stream Interface

The ADC driver is a stream interface driver, and is thus accessed through the file system APIs. The
functional part of the driver is implemented by IOCTLs as shown in Table 2-2.

Table 2-2. Stream Interface

IOCTL Code Description

IOCTL_CFG_ITEM Configuration of the conversion item. The item configuration is described in the TSC section of
the i.MX25Reference Manual.

IOCTL_CFG_QUEUE Configuration of the conversion queue. The item configuration is described in the TSC section of
the i.MX25Reference Manual.

IOCTL_START_ACQUIRE_SNGL Starts the conversion

IOCTL_STOP_ACQUIRE_SNGL Stops the conversion, is not necessary if the conversion is a single shot conversion

IOCTL_GET_DATA_AND_CLEAR
_QUEUE_STATUS

Used to retrieve the data resulting of the conversion and clear the status of the queue

IOCTL_WAKEUP_SOURCE Used to tell the driver if the Touchscreen is a wakeup source or not. This is necessary because if
the Touchscreen is a wakeup source, then the TSC should not be gated off.

Analog-Digital Converter (ADC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 2-3

2.4.2.2 Using the SDK

The ADC driver includes a wrapper library that simplifies its use. This library is the ADC SDK and is
described in Section 2.7, “ADC SDK API Reference”.

2.4.2.3 DMA Support

The ADC driver currently does not support DMA.

2.5 Power Management

2.5.1 ADC_PowerUp
This function is not implemented for the ADC driver.

2.5.2 ADC_PowerDown
This function is not implemented for the ADC driver.

2.5.3 IOCTL_POWER_CAPABILITES
The power management capabilities are advertised with the power manager through this IOCTL. The
ADC module supports only two power states: D0 and D4.

2.5.4 IOCTL_POWER_SET
This function is implemented for the ADC driver. If the clocks are disabled during the suspend (for
example if the touchscreen is not a wake-up source), then the clocks are re-enabled at this time in the D0
state. If the touchscreen is not a wake-up source, then the clocks are disabled at this time in the D4 state.

2.5.5 IOCTL_POWER_GET
This IOCTL returns the current device power state. By design, the Power Manager knows the device
power state of all power-manageable devices. It does not generally issue an IOCTL_POWER_GET call
to the device unless an application calls GetDevicePower with the POWER_FORCE flag set.

2.6 Unit Test
The ADC CETK provided with the BSP verifies the ADC driver functionality.

2.6.1 Unit Test Hardware
Table 2-3 lists the required hardware to run the unit tests.

Analog-Digital Converter (ADC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

2-4 Freescale Semiconductor

Table 2-3. Hardware Requirements

2.6.2 Unit Test Software
Table 2-4 lists the required software to run the unit tests.

Table 2-4. Software Requirements

2.6.3 Building the Unit Tests
To build the ADC tests, build an OS image for the desired configuration using these steps:

1. Within the Platform Builder, choose Build OS > Open Release Directory.
A DOS prompt is displayed.

2. Change to the ADC Tests directory: \WINCE600\SUPPORT\TEST\ADC
3. Enter set WINCEREL=1 on the command prompt and press return.

This copies the DLL to the flat release directory.
4. Input build -c command to build ADC test.

After the build completes, the ADCTEST.dll file is located in the $(_FLATRELEASEDIR) directory.

2.6.4 Running the Unit Tests
The command line for running the ADC tests is tux –o –d adctest. The ADC tests do not contain any test
specific command line options. Table 2-5 describes the test cases contained in the ADC tests.

Table 2-5. ADC Test Cases

Requirement Description

3-Stack Platform System On the Personality board, R1288 is a variable resistor that can be used to adjust the
voltage input of the pin INAUX0

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device
and the development workstation

ADCTEST.dll Test .dll file

Test Case Description

30001: TST_ADCConfigTest Attempt to configure and make ten conversion/acquisition using the ADC
driver (without using the SDK)

30002:TST_ADCSDKTest Attempt to configure and make one conversion/acquisition using the ADC
driver (using the SDK)

Analog-Digital Converter (ADC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 2-5

2.7 ADC SDK API Reference

2.7.1 ADC SDK Functions

2.7.1.1 AdcInit

This function initializes the SDK internal data (mutex for example) and opens the ADC driver.
BOOL AdcInit(

void
);

Parameters This function accepts no parameters
Return Values TRUE indicates success

FALSE indicates failure

2.7.1.2 AdcDeinit

This function is used to de-initializes the SDK: it closes the ADC driver and the mutex.
void AdcDeinit(

 void
);

Parameters This function accepts no parameters
Return Values This function returns no value

2.7.1.3 AdcConfigureChannel

This function configures a channel with the given settings.
BOOL AdcConfigureChannel(

CHAN_ID id,
DWORD settlingTime,
POS_REF pRef,
DWORD numSamples

);
Parameters
id [in] Identifier of the channel to configure: 0 is for INAUX0, 1 is for INAUX 1,

and so on
settlingTime [in] Settling time used for the conversion (see the chapter on the TSC in the

i.MX25 Multimedia Applications Processor Reference Manual for more details
about the settling time)

pRef [in] Specifies the reference that must be used for the conversion: could be either
EXTREF (for the external reference) or INTREF (for the internal reference)

numSamples [in] Number of samples that must be converted, between 1 and 16
Return Values TRUE on success and FALSE indicates a failure

Analog-Digital Converter (ADC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

2-6 Freescale Semiconductor

2.7.1.4 AdcGetSamples

The function starts a conversion, gets the data and stops the conversion.
BOOL AdcGetSamples(

CHAN_ID id,
UINT16* pBuf
DWORD nbSamples

);

Parameters
id [in] Identifier of the channel to configure: 0 is for INAUX0, 1 is for INAUX 1,

and so on
pBuf [Out] Points to a buffer where the SDK stores the acquired data
nbsamples [in] Number of samples excepted after the conversion is complete
Return Values TRUE on success and FALSE indicates a failure
Remarks This function starts a single-shot conversion and waits for its completion.

nbSamples must be same value as the one used in AdcConfigureChannel

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 3-1

Chapter 3
Audio Driver
The audio driver module provides audio playback and recording functions. For information about
accessing an application with the audio driver using the methods and functions associated with the
WaveOut/WaveIn functionality, see the Platform Builder Help topic:

Windows Embedded CE Features > Audio > Waveform Audio > Waveform Audio Application
Development

3.1 Audio Driver Summary
Table 3-1 provides the source code location, library dependencies, and other BSP information.

NOTE
The selection and use of the Windows Media Player and the various
software codecs is beyond the scope of the audio driver and is not discussed
in this document. For information about these items, see the Platform
Builder Help topic: Windows Embedded CE Features > Audio

Table 3-1. Audio Driver Summary

Driver Attribute Definition

Target Platform iMX25-3DS-PDK1_7

Target SOC MX25_FSL_V2_PDK1_7

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\WAVEDEV2

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\WAVEDEV2

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\WAVEDEV2\SGTL5000

Driver DLL wavedev2_sgtl5000

SDK Library N/A

Catalog Item Third Party > BSP > Freescale i.MX25-3DS:ARMV4I > Device Drivers > Audio > SGTL5000
Stereo Audio

SYSGEN Dependency SYSGEN_AUDIO

BSP Environment Variables BSP_NOAUDIO=

Audio Driver

Windows Embedded CE 6.0 BSP Reference Manual

3-2 Freescale Semiconductor

3.2 Supported Functionality
The audio driver enables the system to provide the following software and hardware support:

1. Conforms to the audio driver architecture as defined for Windows Embedded CE 6.0 and all related
operating systems

2. Double-buffered DMA operations to transfer audio data between memory and the hardware FIFO
3. Two power management modes: full on and full off
4. Full duplex playback and record
5. Minimizes power consumption at all times by using clock gating and by disabling all audio-related

hardware components that are not actively being used
6. 8–96 KHz for both recording and playback
7. Mono and stereo 16-bit sample, and stereo 24-bit sample

3.3 Hardware Operation

3.3.1 Audio Hardware Design
This section describes of the connection between the SoC audio peripherals and the external audio codec,
the access interface of audio codec, and the audio input/output device connections.

3.3.1.1 i.MX25 3-Stack Audio Hardware Design

Since the Synchronous Serial Interface (SSI) is a full-duplex serial port, the i.MX25 uses instance two
(SSI2) for both audio playback and recording. The external stereo codec SGTL5000 is connected to
AUDMUX port 4 (external) and SSI2 is internally connected to AUDMUX port 2 (internal). Both ports
are configured to operate in synchronous 4-wire mode.

The i.MX25 uses the I2C bus interface to access the SGTL5000 control registers to configure the
SGTL5000. The stereo codec SGTL5000 on the i.MX25 3-Stack System supports output to
Headphone/Line Out/Speaker and input from Microphone/Line In.

For operation and programming, see the chapters in the i.MX25 Multimedia Applications Processor
Reference Manual for the SSI, SDMA, AUDMUX, and IOMUX components, and see the SGTL5000
Datasheet for the external audio codec.

3.3.2 Audio Playback
By default, the following hardware configuration options are enabled for the playback operation (based on
the default audio driver configuration):

• The audio driver is configured to use SSI2 for I2S mode and a sampling rate of 44.1 KHz
— The first two time slots transmit the left and right audio channel data words, respectively
— Each audio data word is 16 bits long

Audio Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 3-3

— SSI2 is also configured to operate in slave mode
— The SSI2 transmitter watermark level is set to support SDMA transfers during audio playback

• The stereo codec is also configured for I2S mode using a 44.1 KHz sample rate in master mode
• The Digital Audio MUX is configured to connect internal port 2 (which is assigned to SSI2) with

one external port, which is used to communicate with the Stereo DAC. At the same time, the
appropriate IOMUX pins are configured so that the Audio MUX external port signals can be routed
off-chip to the Stereo Codec. The external port 4 is used to connect the Stereo Codec on the i.MX25
System.

• The SDMA channel supports 16-bit data transfers between the application memory buffers and the
SSI2 TX FIFO0. The SSI2 TX FIFO0 is pre-filled with audio data at this point along with the DMA
buffers.

• Finally, the SSI2 transmitter is enabled, which begins the transmission of the audio data stream.

The hardware repeatedly performs the following functions while audio playback is being performed:
• The SSI2 issues a new DMA request when the transmitter FIFO0 level reaches the empty

watermark level. The SDMA controller then refills FIFO0 using data from the DMA buffers, until
the DMA buffer is empty.

• An interrupt is generated when a DMA buffer is empty and this interrupt is handled by the audio
driver. The audio driver refills the DMA buffer and returns it to the SDMA controller for
processing.

• Due to the double-buffering scheme, the SDMA controller simply uses the other DMA buffer to
continue refilling the SS12 transmitter FIFO0 while the previous DMA buffer is being refilled.

The following hardware changes are made at the completion of each playback operation:
• When the entire audio stream is transmitted, there is no more data available to refill the empty

DMA buffers. Therefore, the output DMA channel is disabled when both output DMA buffers are
empty and there is no additional data available to refill them.

• The audio components that were used for playback are disabled to minimize power consumption.
This step is done before disabling SSI2 to avoid any extraneous noise or “pop” that may be heard
over the headphones.

• Finally, gate SSI2 is disabled and clocked if receiver is not working.

3.3.3 Audio Recording
The following hardware configuration steps are performed just prior to each recording operation (based
upon the default audio driver configuration):

• As SSI2 is used in both playback and recording path, the audio recording shares the SSI
configuration with playback configuration.

• The SDMA channel is fully configured to support 16-bit data transfers between the application
memory buffers and the SSI2 RX FIFO0.

• The SSI2 receiver is enabled and ready to receive data from the stereo codec.

Audio Driver

Windows Embedded CE 6.0 BSP Reference Manual

3-4 Freescale Semiconductor

The hardware repeatedly performs the following functions while audio recording is being performed:
• The SSI2 issues a new DMA request whenever the receive FIFO0 level reaches the full watermark

level. The SDMA controller then transfers the data from the receiver FIFO0 to an input DMA
buffer until the DMA buffer is full.

• The SDMA controller generates an interrupt that is handled by the audio driver. The audio driver
is responsible for copying the data from the full input DMA buffer into application-supplied
buffers and then returning the empty input DMA buffer back to the SDMA controller. Any data
which cannot be transferred to an application-supplied buffer (for example, due to insufficient
space) is simply discarded.

• Since a double-buffering scheme is being used, the SDMA controller simply uses the other DMA
buffer to continue recording the data from the SSI2 receiver FIFO0 while the previous DMA buffer
is being copied to application-supplied buffers.

The following hardware changes are made at the completion of each recording operation:
• Terminate the recording process by having the application close the audio input stream. At this

point, disable audio components that were used for recording to minimize power consumption.
• Disable and clock gate SSI2, if transmitter is not working.
• Disable the input DMA channel to completely terminate the audio recording operation.

3.3.4 Required SoC Peripherals
Table 3-2 shows the SoC hardware components required by the audio driver.

3.3.5 Conflicts with SoC Peripherals
No conflicts.

3.3.6 Conflicts with Board Peripherals
No conflicts.

3.3.7 Known Issues
If both the SGTL5000 stereo audio driver and the S/PDIF driver occur, the default audio device may be
SPDIF. The default audio device can be chosen by the AudioRouting application.

Table 3-2. Required SoC Peripherals

Component Use

SSI2 Playback and recording

Digital Audio MUX Connects the SSI2 to the IO MUX to access off-chip peripherals

IO MUX Pins Connects the Digital Audio MUX external port to the external stereo codec

SDMA Controller Manages the DMA channels that are used for playback and recording

Audio Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 3-5

3.4 Software Operation
The audio driver follows the Microsoft-recommended architecture for audio drivers. For information
about the architecture and operation, see the Platform Builder Help:

Developing a Device Driver > Windows CE Drivers > Audio Drivers > Audio Driver Development
Concepts

3.4.1 Audio Playback
The software operation of the audio driver for playback is similar to the hardware configuration. Once the
hardware components are configured, the audio driver only handles the output DMA buffer empty
interrupts. This is done by the interrupt handler, which refills each of the output DMA buffers with new
audio data that has been supplied by the application, and then returns the DMA buffer to the DMA
controller.

3.4.2 Audio Recording
The operation of the audio driver for recording is similar to the hardware configuration. Once the hardware
components are configured, then the audio driver handles the input DMA buffer full interrupts. This is
done by the interrupt handler, which copies the contents of each input DMA buffer to an
application-supplied buffer, and then returns the empty DMA buffer to the DMA controller. If the
application-supplied buffer does not have enough space for all of the new data, any extra data is discarded.
The application is signaled using a callback function when the application-supplied buffer is full.

3.4.3 Audio Driver Compile-Time Configuration Options
The audio driver can be configured for a wide variety of operating modes depending on the hardware and
software requirements.

NOTE
Do not change the audio driver configuration settings without a detailed
understanding of the platform hardware configuration and operating
characteristics. Selecting invalid or incorrect configuration settings may
result in the audio driver not loading or operating properly. Conversely, the
audio driver performance and resource usage may be fine-tune by adjusting
these configuration settings. For further information about the configuration
options, see the corresponding source files.

3.4.3.1 i.MX25 Audio Driver Configuration Options

Table 3-3 gives the compile-time configuration options of the i.MX25 stereo audio driver.
Table 3-3. i.MX25 Audio Driver Configuration Options (oemsettings.h)

Configuration Setting Name Description

INCHANNELS Defines the number of input/recording channels that are available. Can be set to either 1 or 2. Default is 2.

Audio Driver

Windows Embedded CE 6.0 BSP Reference Manual

3-6 Freescale Semiconductor

3.4.4 DMA Support
The audio driver uses the DMA controller to transfer digital audio data between the audio application and
the audio FIFOs. This minimizes the processing required by the ARM core and can also reduce the power
consumption during audio playback and recording operations. This section describes the audio driver
DMA implementation issues and trade-offs, and the available compile-time DMA-related configuration
options.

To use DMA transfers, the following items must be properly allocated, managed, and deallocated by the
device driver:

• The DMA data buffers where the application data is kept
• The DMA buffer descriptors, which are used by the DMA hardware to manage the state of each

DMA buffer

The DMA data buffers can be allocated from either internal memory (which is provided by on-chip
internal RAM) or external memory (which is provided by off-chip external DRAM). Table 3-4 describes
the issues and considerations for the type of memory to use for the DMA data buffers.

OUTCHANNELS Defines the number of output/playback channels that are available. Can be set to either 1 or 2. Default is
2.

HWSAMPLE A typedef that defines the size of each audio data word. This must match the BITSPERSAMPLE and
AUDIO_SAMPLE_MAX/AUDIO_SAMPLE_MIN values. Default is 16.

USE_MIX_SATURATE Enable a check in the software mixer code to guard against saturation. Default is 1.

AUDIO_SAMPLE_MAX and
AUDIO_SAMPLE_MIN

The valid range of each audio data word. Values that are outside of this range is clipped to the max/min
value by the saturation protection code if USE_MIX_SATURATE is set to 1. Default is 32767 and
-32768.

ENABLE_MIDI If set to 1, MIDI code is included in the driver (~4 Kbytes).

USE_OS_MIXER If set to 1, the driver does not do any internal mixing and relies on the OS mixer.

BITSPERSAMPLE The number of data bits per audio sample. If set to 16, support 16bit sample; If set to 24, support 24bit
sample (in sgtl5000codec.h)

Table 3-3. i.MX25 Audio Driver Configuration Options (oemsettings.h)

Audio Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 3-7

Table 3-5 describes how to configure the build so that the audio driver allocates its DMA data buffers from
either internal or external memory. The DMA buffer descriptors can also be allocated from either internal
or external memory. However, the choice is made automatically through the use of the CSPDDK APIs,
specifically DDKSdmaAllocChain(). See Chapter 8, “Chip Support Package Driver Development Kit
(CSPDDK),” for additional information about the DDKSdmaAllocChain() API.

3.4.4.1 i.MX25 Audio DMA Buffer Use

The i.MX25 audio driver supports both playback and recording. The playback function uses internal
memory for the DMA buffer, while the recording function allocates DMA buffers from external memory.

3.4.5 Power Management
The primary method for limiting power consumption in the audio driver is to gate off all clocks to the SSI
when those clocks are not needed, and to turn off all audio hardware components at the end of each audio
stream. This is accomplished through the DDKClockSetGatingMode function call and the various PMIC
audio APIs. In the BSP, the audio module can be disabled, and its clocks turned off whenever there are no
active audio I/O operations. The clock gating and the disabling of related audio hardware components is
handled automatically within the audio module and requires no additional configuration or code changes.

The audio driver operates correctly when resuming after the power down mode.

Table 3-4. DMA Memory Allocation Issues and Considerations

Memory
Region Memory Usage Issues and Considerations

Internal • Allows the external memory to be placed in a low power mode while the DMA data buffers are being processed to
reduce system power consumption (as long as nothing else on the system requires access to external memory)

 • Less power is required to access the internal RAM
 • The total size of the internal memory region is limited
 • The limited amount of internal memory may have to be shared by multiple device drivers
 • The entire internal memory region must be manually managed with predefined addressed ranges being reserved for

each specific use

External • The total size of the external memory is typically much greater than the size of the internal memory. This provides much
greater flexibility in selecting the size of the DMA data buffers.

 • There is typically no need to worry about the possible impact and memory requirements of any other device driver.
 • Memory allocation is handled using the standard Windows Embedded CE 6.0 system calls
 • The external memory cannot be placed into a low power mode while the DMA is active

Table 3-5. Configuration Options for Internal/External Memory DMA Data Buffer Allocation

Memory
Region Required Configuration Options

Internal Set the BSP_AUDIO_DMA_BUF_ADDR macro in bsp_cfg.h to an address within the internal memory region. Set
BSP_AUDIO_DMA_BUF_SIZE to the total size (in bytes) for all DMA data buffers that is allocated.

External Make sure that the BSP_AUDIO_DMA_BUF_ADDR macro is commented out in bsp_cfg.h

Audio Driver

Windows Embedded CE 6.0 BSP Reference Manual

3-8 Freescale Semiconductor

3.4.5.1 PowerUp

This function resumes an audio I/O operation that was previously terminated by calling the PowerDown()
API. It begins by restoring power and re-enabling all of the required audio hardware components. Then
this function restarts the audio DMA transfers to complete the powerup process for the audio driver.

This function is intended to be called only by the Power Manager and must not block or depend on any
hardware interrupts. Therefore, all required timed delays must be handled by using a polling loop instead
of any of the normal “wait for an event to be signalled” functions. This functionality is currently handled
by IOCTL_POWER_SET and the function is just a stub.

3.4.5.2 PowerDown

This function suspends all currently active audio I/O operations just before the entire system enters the low
power state. This function is intended to be called only by the Power Manager and must not block or
depend on any hardware interrupts. Therefore, the first thing that this function must do is to signal all of
the possible wait events that the normal audio driver thread may currently be waiting on. If this function
does not signal all waiting events, the PowerDown thread may be blocked waiting for a critical section that
is currently being held by the normal audio driver thread. This deadlocks the entire system and prevent it
from properly entering the low power state.

When all waiting events are signalled, the normal audio thread is guaranteed (because of priority
inversion) to run to the point where it releases the required critical section and allows the PowerDown
thread to proceed without the possibility of deadlocking.

When the normal audio thread is not executing inside any critical section, the PowerDown thread can
safely proceed to disable all active audio DMA operations and to power down the associated audio
hardware components. Once this is done, the audio driver remains in a low power state until the PowerUp
function is called by the Power Manager. This functionality is currently handled by IOCTL_POWER_SET
and the function is just a stub.

3.4.5.3 IOCTL_POWER_SET

This Power Manager IOCTL is implemented for the audio driver. All system suspend and resume
functions are handled by the IOCTL, which manages the PowerDown and PowerUp functionality. For all
platforms, the following registry entry must be defined:
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Audio]

"IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}" ; PMCLASS_GENERIC_DEVICE

This registry entry is required for proper power management functionality.

3.4.6 Audio Driver Registry Settings
At least one registry key must be properly defined so that the Device Manager loads the audio driver when
the system is booted. Additional registry keys may also be defined and changed at runtime, to configure
the operation of the audio driver.

Audio Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 3-9

3.4.6.1 i.MX25 Audio Driver Registry Settings

The following registry keys are required for the Device Manager to properly load the i.MX25 audio device
driver during the device normal boot process. These registry settings should typically not be modified. If
these registry settings are missing or incorrectly defined, then the audio driver may not be loaded and all
audio functions may be disabled.
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Audio]

"Prefix"="WAV"
"Dll"="wavedev2_SGTL5000.dll"
"Index"=dword:1
"Order"=dword:10
"IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}" ; PMCLASS_GENERIC_DEVICE

; Override wave API load order to follow audio driver
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\WAPIMAN]

"Order"=dword:11

3.5 Unit Test
The audio driver is tested using the Waveform Audio Driver Test suite included with the Windows
Embedded CE 6.0 Test Kit (CETK). The test suite includes automated and interactive tests used to test
playback and recording functions.

3.5.1 Unit Test Hardware
Table 3-6 identifies the hardware needed to run the unit tests.

3.5.2 Unit Test Software
Table 3-7 lists the software required to run the unit tests.

Table 3-6. Hardware Requirements

Requirement Description

Stereo headphones or
earphones

This is required to confirm that audio playback is working. The headphones or earphones should have
a 3.5 mm jack

Mono microphone —

Table 3-7. Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device and the development
workstation

wavetest.dll Test .dll file

Audio Driver

Windows Embedded CE 6.0 BSP Reference Manual

3-10 Freescale Semiconductor

3.5.3 Building the Audio Driver CETK Tests
The audio driver tests come pre-built as part of the CETK. No steps are required to build these tests. The
wavetest.dll file is included with the CETK files in the following location:

[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4I

3.5.4 Running the Audio Driver CETK Tests
The command line for running the audio driver test is:
tux –o –d wavetest

Alternatively, use the CETK interface in the Platform Builder. If the full-duplex operation is not supported,
the command line is:
tux -o -d wavetest -c “-e”

For detailed information about the audio driver tests, see the Platform Builder Help:

Windows Embedded CE Test Kit > CETK Tests and Test Tools > CETK Tests > Audio Tests >
Waveform Audio Driver Test

3.6 System Level Audio Driver Tests
In addition to running the audio driver tests in the CETK, various system-level tests that involve the use
of the audio driver can be performed. The following sections describe how to test the audio driver without
using the CETK.

3.6.1 Checking for a Boot-Time Musical Tune
The normal Windows Embedded CE 6.0 boot procedure includes playing a short musical tune just before
displaying the touch panel calibration screen. At this point, the audio driver should already have
successfully loaded and the tune should be heard if a headset is attached to the stereo output jack.

3.6.2 Confirming Touchpanel Taps and Keypad Key Presses
The normal Windows Embedded CE 6.0 system configuration includes the ability to playback a short
tapping sound when the stylus makes contact with the touchpanel. These taps should be heard when a
headset is attached to the stereo output jack. A click should also be heard when a key on the keypad is
pressed.

3.6.3 Playing Back Sample Audio and Video Files Using the Media Player
The Microsoft-supplied Media Player application can be used to load and play a variety of audio and video
media files in a number of different formats. The only requirement is to include the software codecs in the
OS image that may be needed to decode the media file. The Media Player includes controls for pausing,
resuming, and stopping playback, and advancing playback to a specific point. Volume and muting controls
are also provided.

Audio Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 3-11

3.6.4 Using the SDK Sample Audio Applications for Testing
The Windows Embedded CE 6.0 SDK that is included as part of the Platform Builder includes two
audio-related sample applications. The wavrec sample application can be used to test the audio recording
function while the wavplay sample application provides a command line-based method of playing back
various media files. For additional information about these sample applications, see the Platform Builder
Help:

Windows Embedded CE Features > Audio > Waveform Audio > Waveform Audio Samples

3.7 Audio Driver API Reference
For detailed reference information for the audio driver, see the Platform Builder Help:

Developing a Device Driver > Windows Embedded CE Drivers > Audio Drivers > Audio Driver
Reference > Waveform Audio Driver Reference

3.8 Audio Driver Troubleshooting Guide
The following sections describe techniques to identify and fix the most common problems involving the
audio driver.

3.8.1 Checking Build-Time Configuration Options
Compile- or link-time errors are probably due to incorrect or invalid configuration settings defined in
hwctxt.h or hwctxt.cpp. See Section 3.4.3.1, “i.MX25 Audio Driver Configuration Options for
information about the device driver build configuration options. Follow the build procedure documented
in the Release Notes to compile and link the audio driver. Confirm that the required Platform Builder
catalog items are included in the OS design. See Table 3-1 for a list of the required and recommended audio
driver-related catalog items.

3.8.2 Media Player Application Not Found
Make sure that the Media Player catalog item is included in the OS design. The Media Player application
is not included in the final system image if the catalog item is not selected. For information about these
items, see the Platform Builder Help topic:

Windows Embedded CE Features > Applications and Services > Windows Media Player for
Windows Embedded CE

3.8.3 Media Player Fails to Load and Play an Audio File
This problem is typically caused by failing to include the appropriate software codec that is required to
handle the audio file format. See the list of recommended audio driver catalog items in Table 3-1 and make
sure that support for the desired audio file format is included.

Audio Driver

Windows Embedded CE 6.0 BSP Reference Manual

3-12 Freescale Semiconductor

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 4-1

Chapter 4
Backlight Driver
The backlight driver uses the hardware provided by the display module on the device to control the
backlight on the LCD display. The backlight driver interfaces with the Windows CE Power Manager to
provide timed control over the display backlight. A timeout interval controls the length of time that the
backlight stays on. The backlight driver is power-manageable, and it meets the requirements of a
power-manageable device by implementing the required IOCTLs. The backlight driver uses its own
defined timer to set the backlight power states.

4.1 Backlight Driver Summary
Table 4-1 provides a summary of source code location, library dependencies and other BSP information.

4.2 Supported Functionality
The backlight driver enables the 3-Stack System to provide the following support:

1. Conforms to the Device Manager streams interface
2. Supports 0–10 level adjustment
3. Supports power management mode full on/full off

Table 4-1. Backlight Driver Summary

Driver Attribute Definition

Target Platform iMX25-3DS -PDK1_7

Target SOC MX25_FSL_V2_PDK1_7

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\BACKLIGHT

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\BACKLIKGHT

Driver DLL backlight.dll

SDK Library N\A

Catalog Item Third Party > BSP > Freescale i.MX25 3DS PDK1_7: ARMV4I > Device Drivers > Backlight >
Backlight LCDC

SYSGEN Dependency SYSGEN_BATTERY=1

BSP Environment Variables BSP_BACKLIGHT=1

Backlight Driver

Windows Embedded CE 6.0 BSP Reference Manual

4-2 Freescale Semiconductor

4.3 Hardware Operation
The hardware consists of a PWM implemented by the LCDC. This PWM is usually dedicated to the
contrast but on the i.MX25 3-Stack Platform System it is used to drive the backlight. It can be configured
by writing the LPCCR register.

4.4 Software Operation
The backlight driver is a stream interface driver and is accessed through the file system APIs. To use the
backlight driver, a handle to the device must first be created using the CreateFile function. Subsequent
commands to the device are issued using the DeviceIoControl function with IOCTL codes specifying the
desired operation.

The control of the backlight operation requires a call to the DeviceIoControl function. The following are
the possible choices available for the user:

• IOCTL_POWER_CAPABILITIES, register and inform the Power Manager of capabilities
• IOCTL_POWER_QUERY, where the new power state is returned
• IOCTL_POWER_SET, interface to the hardware that controls the backlight through the PDD layer
• IOCTL_POWER_GET, where the current power state is returned

4.4.1 Backlight Driver Registry Settings

4.4.1.1 i.MX25 Backlight Driver Registry Setting

The following registry keys are required to properly load the backlight driver:
[HKEY_CURRENT_USER\ControlPanel\Backlight]

"BattBacklightLevel"=dword:7F ; Backlight level settings. 0xFF = Full On
"ACBacklightLevel"=dword:7F ; Backlight level settings. 0xFF = Full On
"UseExt"=dword:0 ; Enable timeout when on external power
"UseBattery"=dword:0 ; Enable timeout when on battery
"AdvancedCPL"="AdvBacklight" ; Enable Advanced Backlight control panel dialog
"BatteryTimeout"=dword:1E ; 30 Seconds
"ACTimeout"=dword:78 ; 2 Minutes

4.4.2 Power Management
The backlight driver consumes power primarily through the operation of the Liquid Crystal Display Panel
backlight. To facilitate management of this module, the backlight driver implements the power
management I/O Control (IOCTL) code IOCTL_POWER_SET.

4.4.2.1 PowerUp

This function is not implemented for the backlight driver.

Backlight Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 4-3

4.4.2.2 PowerDown

This function is not implemented for the backlight driver.

4.4.2.3 IOCTL_POWER_SET

The backlight driver implements the IOCTL_POWER_SET IOCTL API with support for the D0 (Turn
On) and D4 (Set intensity to 0) power states. These states are handled in the following manner:

• D0 – Backlight is enabled for LCD panel and the intensity can be adjusted through the PDD layer
• D4 – Backlight intensity is set to 0 which is the lowest level of backlight

4.5 Unit Test
The backlight driver is tested by the application test.

4.5.1 Unit Test Hardware
Figure 4-2 lists the required hardware to run the backlight application test.

4.5.2 Unit Test Software
Table 4-3 lists the required software to run the backlight application test.

4.5.3 Running the Backlight Application Test

Table 4-4 lists the backlight application test.

Table 4-2. Hardware Requirements

Requirement Description

CHUNGHWA CLAA057VA01CT VGA Panel Display panel required for display of graphics data

Table 4-3. Software Requirements

Requirement Description

backlight.dll The backlight driver to implement the backlight functions

Advbacklight.dll The file implements adding an Advanced button to the Backlight Control Panel application

Backlight Driver

Windows Embedded CE 6.0 BSP Reference Manual

4-4 Freescale Semiconductor

4.6 Backlight API Reference
The API for the backlight driver conforms to the stream interface and exposes the standard functions.
Further information can be found at:

Developing a Device Driver > Windows CE Embedded Drivers > Streams Interface Drivers

Table 4-4. Backlight Application Test

Test Case Entry Criteria/Procedure/Expected Result

Backlight Level Entry Criteria: N/A

Procedure:
1. Go to Setting > Control Panel
2. Double click on the Display icon, then click on the Backlight tab
3. Click on the Advanced… button
4. Modify the backlight level setting for both battery and external power
5. Observe that the backlight level behaves according to the new setting

Expected Result: N/A

Backlight Timeout Entry Criteria: N/A

Procedure:
1. Go to Setting > Control Panel
2. Double click on the Display icon, then click on the Backlight tab
3. Modify the backlight timeout setting for both battery and external power, and then click on OK button

to apply the changes
4. Observe the time it takes for the backlight to go out, make sure it correspond with the new settings

entered in step 3

Expected Result: N/A

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 5-1

Chapter 5
Battery Driver
The battery driver module provides information about the battery level to the OS. As the platform is
lacking hardware support for battery management (monitoring and charging), the battery driver is
essentially a stub.

5.1 Battery Driver Summary
Table 5-1 provides a summary of source code location, library dependencies and other BSP information.

5.2 Supported Functionality
The battery driver enables the system to provide the following support:

1. Conforms to the battery driver interface

5.3 Hardware Operation
The current i.MX25 3-Stack does not support battery monitoring or charging.

5.3.1 Conflicts with Other SoC Peripherals
No conflicts.

Table 5-1. Battery Driver Summary

Driver Attribute Definition

Target Platform iMX25-3DS-PDK1_7

Target SOC N/A

SOC Common Path N/A

SOC Specific Path N/A

Platform Driver Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\BATTDRVR\Fake

Import Library N/A

Driver DLL battdrvr.dll

Catalog Item Third Party > BSP > Freescale i.MX25-EVK PDK1_7:ARMV4I> Device Drivers >Battery > Fake Battery

SYSGEN Dependency SYSGEN_BATTERY

BSP Environment Variables BSP_NOBATTERY=

Battery Driver

Windows Embedded CE 6.0 BSP Reference Manual

5-2 Freescale Semiconductor

5.4 Software Operation
After initialization, the BatteryPDDGetStatus() function is called periodically to get the status of the
battery. This function fills the structure SYSTEM_POWER_STATUS_EX2 and returns it to the system.
The Power Properties window is updated based on the values in this structure.

5.4.1 Battery Driver Registry Settings
The following registry keys are required to properly load battery driver:
; These registry entries load the battery driver. The IClass value must match
; the BATTERY_DRIVER_CLASS definition in battery.h -- this is how the system
; knows which device is the battery driver.

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Battery]
 "Prefix"="BAT"
 "Dll"="battdrvr.dll"
 "Flags"=dword:8 ; DEVFLAGS_NAKEDENTRIES
 "IClass"="{DD176277-CD34-4980-91EE-67DBEF3D8913}"
 "BattFullLiftTime" = dword:8 ;Batt Spec defined: in unit of hr, here 8hr is assumed
 "BattFullCapacity"=dword:320 ;Batt Spec defined: in unit of mAh, here 800mAhr is assumed
 "BattMaxVoltage"=dword:1068 ;Batt Spec defined: in unit of mV, here 4200mV is assumed
 "BattMinVoltage"=dword:BB8 ;Batt Spec defined: in unit of mV, here 3000mV is assumed
 "BattPeukertNumber"=dword:73 ;Batt Spec defined, here 1.15 is assumed
 "BattChargeEff"=dword:50 ;Batt Spec defined, here 0.80 is assumed

[HKEY_LOCAL_MACHINE\System\Events]
 "SYSTEM/BatteryAPIsReady"="Battery Interface APIs"

5.4.2 Power Management
There is no additional power management implementation for battery driver.

5.5 Unit Test

5.6 Battery API Reference
The API for the battery driver conforms to the stream interface and exposes the standard functions. Further
information can be found at:

Developing a Device Driver > Windows Embedded CE Drivers > Battery Drivers

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 6-1

Chapter 6
Boot from Secure Digital/MultiMedia Card (SD/MMC)
Boot support from SD/MMC includes the following components:

• Xloader (XLDR)
• EBOOT (may also be referred to as bootloader in this document)
• Storage for OS binary image (NK)

Xloader, which executes from Internal RAM (IRAM), is a initial loader whose responsibility is to copy the
bootloader from the SD/MMC memory to external RAM (SDRAM) and then pass the execution to
EBOOT.

NOTE
XLDR and EBOOT only support boot from ESDHC1. Boot ROM supports
booting from all ESDHC ports; therefore, XLDR and EBOOT can be
extended to boot from other ports. SD/MMC boot requires a card that is at
least 36 Mbytes.

6.1 Boot from SD/MMC Summary
Table 6-1 provides a summary of source code location, library dependencies and other BSP information.

Table 6-1. Boot from SD/MMC Summary

Driver Attribute Definition

Target Platform (TGTPLAT) iMX25-3DS-PDK1_7

Target SOC N/A

SOC Common Path N/A

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\BOOTLOADER
..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\BOOT\FMD\SDMMC

Driver DLL N/A

SDK Library N/A

Catalog Item(s) N/A

SYSGEN Dependency N/A

BSP Environment Variable(s) N/A

Boot from Secure Digital/MultiMedia Card (SD/MMC)

Windows Embedded CE 6.0 BSP Reference Manual

6-2 Freescale Semiconductor

6.2 Supported Functionality
The boot support from SD/MMC includes:

1. Boot from low or high capacity SD/MMC card at least 36 Mbytes in size on ESDHC1
2. Storing bootloader and SD/MMC Xloader images to SD/MMC flash
3. Storing OS images to SD/MMC flash
4. Loading OS image from SD/MMC flash to RAM
5. File system on bootable SD/MMC card
6. Internal boot (BMOD = 00) from SD/MMC
7. eSD2.1 and eMMC 4.3 boot from boot partition if boot partition can be configured to be at least

36 Mbytes in size; otherwise, boot from user partition on these devices is supported

6.3 Hardware Operation

6.3.1 Conflicts with Other Peripherals and Catalog Items
No conflicts for eSDHC1 with other on-chip peripherals.

6.4 Software Operation
Only ESDHC1 is supported by XLDR and EBOOT as the boot port.

On startup, when booting from SD/MMC, the boot ROM is responsible for initializing and bringing the
SD/MMC memory to a proper working state. It configures the memory only in 1-bit mode and brings it to
transfer state where read/write operation can be done from the memory. The boot ROM then copies the
entire XLDR from the SD/MMC memory to internal RAM and passes the control to the Xloader. The
Xloader initializes the SDRAM, copies the bootloader from a predefined memory location of the
SD/MMC memory to SDRAM, and passes control to the bootloader which in turn brings up the OS.
Xloader reads data in 1-bit mode only. It checks the addressing mode for the card used by the boot ROM
(which is stored in the IRAM at a fixed location), and decides whether to address the card in sector mode
(high capacity) or byte mode (low capacity).

SD/MMC boot does not use any form of DMA. Whether it is the boot ROM, XLDR, or EBOOT, all the
components involved in the boot process utilize the PIO mode. SD/MMC boot supports both secure
(internal boot mode is required for enabling security checks) as well as non-secure boot.

To store and load a boot image to SD/MMC cards using EBOOT, the SDFMD (SD Flash Media Driver)
library is used which exposes functions to perform erase, read and write operations on SD/MMC flash.
The FMD layer provides support for all types of cards (high as well as low capacity SD/MMC cards). It
also supports 1 and 4-bit modes for data transfer that is configurable through the
BSP_MMC4BitSupported() function found in the BSP portion of EBOOT.

For preparing and downloading the SD/MMC bootloader and for usage of the SD/MMC bootloader, refer
to the BSP User'sGuide.

Boot from Secure Digital/MultiMedia Card (SD/MMC)

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 6-3

6.4.1 Card Memory Layout
SD cards that do not meet the v2.1 spec and MMC cards that do not meet the v4.3 spec have only one
physical partition. To allow storage of boot images as well as file system on these card, EBOOT can add
a partition table (MBR) to the card that reserves the initial 36 Mbytes for boot images (XLDR, EBOOT,
NK) and the remaining portion of the card for the file system. The card must then be inserted into a PC to
format the file system partition. Subsequently, it can be used as a boot device as well as to store and load
user files once the OS has loaded. Refer to the BSP User's Guide for details.

eSD v2.1 and eMMC v4.3 both provide the capability of having more than one physical partition, thus
eliminating the need to put an MBR on the device. Reading, writing, and erasing one partition has no effect
on the other partitions. Starting with TO1.0, the ROM is able to boot from the boot partition on these
devices. During boot, the ROM code selects the boot partition #1 on the eSD v2.1 device and either boot
partition #1 or #2 on the eMMC v4.3 device (depending on which partition is enabled in the EXT_CSD
register), and subsequently reads out the data that is flashed to the boot partition and executes it. EBOOT
provides menu options to create and enable/disable boot partitions on both devices using the MMC and
SD Utilities sub-menu. Refer to the BSP User's Guide for details.

Before the NK OS image is launched, EBOOT disables the boot partition, and the user partition, where the
file system can be stored, is activated. As soon as system is reset, the ROM code re-enables the boot
partition and reads out and executes the boot images. The Windows CE 6 R2 SDBus2 Driver, although
capable of supporting high capacity SD cards, is not capable of supporting high capacity MMC cards.
Therefore, high capacity eMMC v4.3 devices are not usable on Windows CE 6 for file system storage.

Boot from Secure Digital/MultiMedia Card (SD/MMC)

Windows Embedded CE 6.0 BSP Reference Manual

6-4 Freescale Semiconductor

6.4.1.1 i.MX25 Card Memory Layout

Figure 6-1 shows the card memory layout for the i.MX25.

Figure 6-1. Card Memory Layout

A Master Boot Record (MBR) is placed by EBOOT (this functionality can be accessed using the EBOOT
menu) at sector 0 of the card to reserve the first 36 Mbytes of the card for boot images, and allocate the
remaining portion to the file system. The XLDR is saved at 0x400 (1 Kbyte) offset, which is sector 2 in
the card. The Boot ROM calculates the entry point of the XLDR from the flash header structure found in
the XLDR.

XLDR

(up to 127 KB reserved,
only using 4 KB)

36 MB

EBOOT

(up to 256 KB)

NK OS Image

(up to 35.5 MB)

Boot Configuration

(up to 128 KB)

0x400
(1KB)

Flash Header
Required by
Boot ROM

(40B)

XLDR
instructions to

initialize
SDRAM, copy
EBOOT from

card to SDRAM,
and jump to it.

4 KB

0x2400000

(36 MB)

Master Boot Record: 1st 36 MB
reserved for boot images, rest

allocated to FAT partition

File System
Partition

(card size – 36
MB)

Boot from Secure Digital/MultiMedia Card (SD/MMC)

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 6-5

The MBR is only required on cards that are older than eSD v2.1 and eMMC v4.3 because these newer
devices can have multiple physical partitions. On these devices, the first 36 Mbytes shown above are
flashed on a separate boot partition (without an MBR at sector 0), and the file system partition referenced
above is another separate physical partition, which should only be active while OS is running.

Boot from Secure Digital/MultiMedia Card (SD/MMC)

Windows Embedded CE 6.0 BSP Reference Manual

6-6 Freescale Semiconductor

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 7-1

Chapter 7
Camera Driver
The camera driver interfaces the low level camera sensor to the Windows CE camera subsystem.

7.1 Camera Driver Summary
The camera driver is based on the Windows CE Camera Device Driver Interface. This interface provides
basic support for video and still image capture devices. The camera driver conforms to the architecture for
Windows CE stream interface drivers. At the lower layer, the camera driver performs several tasks:

• Communicating with and configuring the camera device or other input device through the I2C
interface

• Interfacing with the Camera Sensor Interface (CSI) to perform the tasks on captured images or
preview data

For i.MX25 BSP, this module is compatible with the Omnivision OV2640 camera sensor. Table 7-1
provides a summary of source code location, library dependencies and other BSP information.

Table 7-1. Camera Driver Summary

Driver Attribute Definition

Target Platform iMX25-3DS-PDK1_7

Target SOC MX25_FSL_V2_PDK1_7

SOC Common Path N/A

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\CAMERA

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\CAMERA

Driver DLL camera.dll

SDK Library N/A

Catalog Item Third Party > BSPs > Freescale <Target Platform>:ARMV4I > Device Drivers > Camera

SYSGEN Dependency SYSGEN_IMAGING_BMP_ENCODE
SYSGEN_IMAGING_JPG_ENCODE
SYSGEN_IMAGING_BMP_DECODE
SYSGEN_IMAGING_JPG_DECODE
SYSGEN_DSHOW_DISPLAY
SYSGEN_DSHOW_CAPTURE
SYSGEN_DSHOW_DMO
SYSGEN_DSHOW_VIDREND

BSP Environment
Variables

BSP_CAMERA=1

Camera Driver

Windows Embedded CE 6.0 BSP Reference Manual

7-2 Freescale Semiconductor

7.2 Supported Functionality
The camera driver enables the 3-Stack System to provide the following software and hardware support:

1. Supports the Windows CE Camera Device Driver Interface
2. Supports Preview, Capture, and Still pins for camera application
3. Supports the OV2640 camera sensor for camera used for i.MX25.
4. Supports these resolutions “QQCIF, QQVGA, QCIF, QVGA, CIF, and VGA“ for 30fps Preview,

Caputer and Still pin in i.MX25.
5. Supports these resolutions “QQCIF, QQVGA, QCIF, QVGA, CIF, VGA, 1024*800 “ for 15fps

Preview, Caputer and Still pin in i.MX25.
6. Supports the resolution “1280*960“ for 7fps Preview, Capture and Still pin in i.MX25.
7. Supports these formats “RGB565“ for Preview pin in i.MX25.
8. Supports these formats “RGB565, UYVY, YUY2 and YV12“ for Capture and Still pin in i.MX25.
9. Only support “CSPROPERTY_BUFFER_DRIVER” mode.

7.3 Hardware Operation
The CSI is the only controller involved in the operation of the camera driver. The input device (camera
sensor) captures external image data. The CSI controller retrieves image data from the sensor and transfers
the data to a memory destination using two DMA channels embedded in the CSI controller. The i.MX25
processor does not include a preprocessing controller. For detailed operation and programming
information, refer to the chapter on the CSI in the i.MX25 Multimedia Applications Processor Reference
Manual.

7.3.1 Conflicts with Other Peripherals and Catalog Items

7.3.1.1 Conflicts with SoC Peripherals

All the pins of the CSI controller can be configured for alternate functionality (ESAI, SIM) using the
i.MX25 IOMUX. The configuration is specified by BSP serial driver. Changing this configuration results
in a conflict and prevents proper operation of the ESAI driver.

7.3.2 Conflicts with 3-Stack Peripherals
On i.MX25 3-Stack System, the pins used for communication between CSI and the external camera sensor
are shared with the ESAI and the SIM1 controllers. Do not include the ESAI or SIM1 drivers while
including the camera driver in the image. Also, the i.MX25 3-Stack System has an extra connector (J28)
for connecting an Omnivision OV2640 sensor. Do not connect sensors on J28 and CN14 at the same time,
which could lead to unexpected results and hardware damage.

7.4 Software Operation
The development concepts for camera driver is described in the Windows CE 6.0 Help Documentation
section under the topic

Camera Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 7-3

Developing a Device Driver > Windows Embedded CE Drivers > Camera Drivers.

7.4.1 Communicating with the Camera
Communication with the camera driver is accomplished through Camera APIs defined by Microsoft for
Windows Embedded CE 6.0.

7.4.1.1 Using the Windows CE Video Camera Device Driver Interface

The Windows CE Video Camera Device Driver Interface provides basic support for video and still image
capture devices. For information about using camera APIs, see the Windows Embedded CE 6.0 Help topic:

Developing a Device Driver > Windows Embedded CE Drivers > Camera Drivers > Camera Driver
Reference.

7.4.1.2 Using DirectShow for Video Capture

DirectShow provides support in its architecture for the creation of filter graphs for video capture. For
information about using DirectShow for video capture, see the Windows Embedded CE 6.0 Help:

Windows Embedded CE Features > Encoded Media > DirectShow > DirectShow Application
Development > Audio and Video Capture Support > Video Capture.

7.4.2 Registry Settings
This section describes the registry keys used to select the camera sensor used on the SoC.

7.4.2.1 i.MX25 Registry Settings

The following registry keys are required to properly load the camera driver.
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\Camera]
 "Prefix"="CAM"
 "Dll"="camera.dll"
 "Order"=dword:20
 "Index"=dword:1
 "CameraId"=dword:0 ; Default sensor is Omnivision OV2640
 "IClass"=multi_sz:
"{CB998A05-122C-4166-846A-933E4D7E3C86}","{A32942B7-920C-486b-B0E6-92A702A99B35}"

[HKEY_LOCAL_MACHINE\Software\Microsoft\DirectX\DirectShow\Capture]
 "Prefix"="PIN"
 "Dll"="camera.dll"
 "Order"=dword:20
 "Index"=dword:1
 "PinCount"=dword:3 ;Pin count. Max = 3; default = 2
 "MemoryModel"=dword:1 ; Pin memory mode.
 "IClass"=multi_sz:"{C9D092D6-827A-45E2-8144-DE1982BFC3A8}",
 "{A32942B7-920C-486b-B0E6-92A702A99B35}"

The CameraId registry key identifies the available camera sensor modules. The only value is 0 for the
Omnivision OV2640 camera sensor.

Camera Driver

Windows Embedded CE 6.0 BSP Reference Manual

7-4 Freescale Semiconductor

7.5 Power Management
The camera driver consumes power primarily through the operation of the CSI module, which
synchronizes and receives image data from the camera sensor. The CSI module is enabled when the camera
is set to a running state. Support for transitioning to the Suspend and Resume states if provided through
the IOCTL_POWER_SET IOCTL.

7.5.1 Power Up
This function is not implemented for the camera driver.

7.5.2 Power Down
This function is not implemented for the camera driver.

7.5.3 IOCTL_POWER_SET
The camera driver implements the IOCTL_POWER_SET IOCTL API with support for the D0 (Full on)
and D4 (Off) power states. These states are handled in the following manner:

• D0 – Action is only taken when resuming from the D4 state. If the camera was running when the
transition to the D4 state occurred, the camera returns to a running state, re-enabling the CSI
modules.

• D4 – Action is only taken if the camera is running when the request to transition to the D4 state
occurs.

7.6 Unit Test
Because the Camera Driver API was introduced with Windows Embedded CE 6.0, there are CETK tests
written and provided by Microsoft.

The Camera CETK tests include:
• The Camera Driver Data Structure Verification Test - queries the driver for the various properties

and formats, and verifies that the data structures returned are valid.
• The Camera Driver I/O Test - verifies the functionality of the preview and capture streams on the

camera driver.

Additionally, for Windows Embedded CE 6.0, a Camera Application may be used to preview and capture
images.

7.6.1 Unit Test Hardware
Table 7-2 lists the required hardware to run the unit tests.

Camera Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 7-5

For i.MX25 BSP, the OV2640 camera sensor is used to run the Windows Embedded CE 6.0 Camera CETK
test and the camera application.

7.6.2 Unit Test Software

7.6.2.1 CETK Test

Table 7-3 lists the required software to run the Camera Test.

The configuration file capconfig.ini is required for CameraPerfTests.dll.

7.6.2.2 Custom Camera Application Test

The camapp.exe executable file is needed to run the custom camera application.

7.6.2.3 Camera Application Test

No additional actions are required to include the Windows CE 6.0 Camera Application in an OS image
beyond the required registry keys.

Table 7-2. Hardware Requirements

Requirement Description

Camera Sensor OV2640 CMOS camera sensor

Table 7-3. Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device and the development
workstation

CameraGraphTests.dll Library containing the camera and directshow integration test cases

CamTestProperties.dll Library containing the camera driver data structure verification test cases

CamIOTests.dll Library containing the camera driver I/O test cases

CameraPerfTests.dll Library containing the camera performance test cases

Cameragrabber.dll Filter required by many command-line options to track and output information about media samples

camera.dll Driver.dll file

Camera Driver

Windows Embedded CE 6.0 BSP Reference Manual

7-6 Freescale Semiconductor

7.6.3 Building the Unit Tests

7.6.3.1 CETK Test

The camera tests come pre-built as part of the CETK so no steps are required to build these tests. These
test files can be found with the other required CETK files in the following location:

[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4I

7.6.3.2 Custom Camera Application Test

To build the custom Camera application, complete the following steps.

Build an OS image for the desired Camera configuration:
1. Add a new folder named APP under the folder ..\PLATFORM\<Target Platform>\SRC
2. Create an empty dirs file under the folder ..\PLATFORM\<Target Platform>\SRC\APP
3. Copy the folder of CAMAPP under the folder APP
4. Select the Solution Explorer of the Platform Builder Workspace window
5. Expand Platform > <Target Platform> > Src > App > CAMAPP
6. Right-click on the CAMAPP folder and select Rebuild

The CAMAPP execution file (camapp.exe) is created in the obj\release or obj\debug folder under the
CAMAPP folder. The camapp.exe file is copied to the workspace release directory.

Complete the following steps to build the custom Camera application:
1. Select the Solution Explorer of the Platform Builder Workspace window
2. Select Subprojects in Solution Explorer
3. Right-click Subprojects and select Add Existing Subproject
4. Add the CAMAPP project by selecting the sources file located in

\WINCE600\SUPPORT\APP\CAMAPP folder
5. Right-click on the CAMAPP project and select Rebuild

The CAMAPP execution file (camapp.exe) is created in the workspace release directory.

7.6.4 Running the Unit Tests

7.6.4.1 Running the Camera Unit Tests

7.6.4.1.1 Running the Camera CETK Test

For detailed information about the tests in this section, see the Windows Embedded CE 6.0 Help topic:

Windows Embedded CE Test Kit > CETK Tests and Test Tools > CECETK Tests > Camera Tests

Use this command line to run the Camera and DirectShow integration test:
tux –o –d CameraGraphTests.dll

Camera Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 7-7

Use this command line to run the Camera Driver Data Structure Verification test:
tux –o –d CamTestProperties.dll

Use this command line to run the Camera Driver I/O test:
tux –o –d CamIOTests.dll

Use this command line to run the Camera Performance test:
tux -o -d cameraperftests.dll -c "-p \release\capresults.csv -c
\release\capconfig.ini"

NOTE
The Camera Performance test requires the configuration file capconfig.ini
which specifies what to test, by copying the file under the corresponding
folder such as \release before testing from the following location:
[Drive]:\Program Files\Microsoft Platform
Builder\6.00\cepb\wcetk\ddtk\armv4I

For i.MX25 camera and directshow integration test, there will be some
cases fail:(1)405 and 407 try to allocate 22 buffers the size of an
image (10 CAPTURE + 10 PREVIEW + 2 STILL). The hardware is not able
to provide enough memory when hitting high resolutions (@1280x960x16
=> 1280*960*2*22 = 51,5 Mbytes);(2)508 start a PREVIEW with the first
resolution available, then run a CAPTURE with all the resolutions
available. This causes the driver to return an error as PREVIEW and
CAPTURE should not run at different resolutions (not supported by
hardware).

For i.MX25 camIOtest, 1003 will not pass with resolution 1280x960 at
YV12 format because of lower frame rate. Resolution 1280x960 is only
7fps, and at YV12 format, there is a software arithmatic to change
non-standard YV12 to standard YV12 format, so the frame rate is
lower. Please note that all the other resolutions will pass 1003
successfully, but as there is no way to ban a specific resolution
from a single test case, 1003 will end up failing.

7.6.4.1.2 Running the Custom Camera Application Test

The following command executes the Custom Camera Application: camapp.exe

7.7 Camera Driver API Reference
For the camera driver API reference, see the Windows Embedded CE 6.0 documentation. There is one
additional custom API provided to allow applications to enable direct display of video preview data. For
reference information on basic camera driver functions, methods, and structures, see the Windows
Embedded CE 6.0 Help:

Developing a Device Driver > Windows Embedded CE Drivers > Camera Drivers > Camera Driver
Reference

Camera Driver

Windows Embedded CE 6.0 BSP Reference Manual

7-8 Freescale Semiconductor

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 8-1

Chapter 8
Chip Support Package Driver Development Kit (CSPDDK)
The Chip Support Package Driver Development Kit (CSPDDK) provides an interface to access peripheral
features and SOC configurations shared by the system. The CSPDDK executes as a device driver DLL
and exports functions for the following SCC components:

• System clocking (CCM)
• GPIO
• DMA (SDMA)
• Pin multiplexing and pad configuration (IOMUX)

8.1 CSPDDK Driver Summary
Table 8-1 provides a summary of source code location, library dependencies and other BSP information.

8.2 Supported Functionality
The CSPDDK meets the following requirements:

1. Supports an interface that allows synchronized inter-process access to the following set of shared
SoC resources:
— GPIO (DDK_GPIO)
— SDMA (DDK_SDMA)
— IOMUX (DDK_IOMUX)

Table 8-1. CSPDDK Driver Summary

Driver Attribute Definition

Target Platform iMX25-3DS-PDK1_7

Target SOC MX25_FSL_V2_PDK1_7

SOC Common Path ..\PLATFROM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\CSPDDK

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\CSPDDK

Platform Driver Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\CSPDDK

Driver DLL cspddk.dll

SDK Library N/A

Catalog Item N/A

SYSGEN Dependency N/A

BSP Environment Variables BSP_NOCSPDDK=

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded CE 6.0 BSP Reference Manual

8-2 Freescale Semiconductor

— CCM (DDK_CLK)
2. Exposes exported functions that can be invoked without incurring a system call (for example, not

a stream driver)

8.3 Hardware Operation
Refer to the i.MX25 Applications Processor Reference Manual for detailed operation and programming
information.

8.3.1 Conflicts with Other Peripherals and Catalog Items

8.3.1.1 Conflicts with SoC Peripherals

Refer to the i.MX25 Multimedia Applications Processor Reference Manual for possible conflicts.

8.3.1.2 Conflicts with Board Peripherals

No conflicts.

8.4 Software Operation

8.4.1 Communicating with the CSPDDK
The CSPDDK DLL does not require any special initialization. All of the initialization required by the
CSPDDK is performed when the DLL is loaded into the respective process space. Drivers that want to
utilize the CSPDDK simply need to link to the CSPDDK export library and invoke the exported functions.

8.4.2 Compile-Time Configuration Options
The CSPDDK exposes compile-time options for configuring the SDMA support. In some cases, these
compilation variables are also leveraged by driver code to expose a central point of controlling SDMA
functionality. Table 8-2 describes the available CSPDDK compile options.

Table 8-2. CSPDDK Compile Options

Compilation Variable Header File Description

IMAGE_WINCE_DDKSDMA_IRAM_PA_START image_cfg.h Physical starting address in internal RAM (IRAM) where the shared
SDMA data structures are located.

IMAGE_WINCE_DDKSDMA_IRAM_OFFSET image_cfg.h Offset in bytes from the base of IRAM for the SDMA data
structures.

IMAGE_WINCE_DDKSDMA_IRAM_SIZE image_cfg.h Size in bytes of the IRAM reserved for SDMA data structures.

IMAGE_WINCE_CSPDDK_RAM_PA_START image_cfg.h Physical starting address in external RAM where the shared
CSPDDK data structures are located. The DDK_CLK and
DDK_SDMA uses space from this region. This address must
correspond to the region reserved in config.bib.

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 8-3

The CSPDDK manages the allocation of buffer descriptor chains for drivers and applications. The
allocation scheme first attempts to allocate the buffer descriptor chain from a fixed memory pool within
the region specified by BSP_SDMA_MC0PTR. If the CSPDDK is unable to allocate enough storage from
this fixed pool, it dynamically allocates the necessary storage from external memory.

8.4.3 Registry Settings
There are no registry settings that need to be modified to use the CSPDDK driver. Since most drivers need
to use CSPDDK functionality, the CSPDDK should be one of the first DLLs loaded by Device Manager.

8.4.4 Power Management
The CSPDDK exposes interfaces that allow drivers to self-manage power consumption by controlling
clocking and pin configuration. The CSPDDK executes as a shared DLL and does not implement the
Power Manager driver IOCTLs or the PowerUp/PowerDown stream interface. However, the CSPDDK
functions are invoked by other drivers during power state transitions.

IMAGE_WINCE_CSPDDK_RAM_OFFSET image_cfg.h Offset in bytes from the base of external RAM for the shared
CSPDDK data structures.

IMAGE_WINCE_CSPDDK_RAM_SIZE image_cfg.h Size in bytes of the external RAM reserved for CSPDDK data
structures. This size must correspond to the region reserved in
config.bib.

IMAGE_WINCE_DDKSDMA_RAM_PA_START image_cfg.h Physical starting address in external RAM where the shared
DDK_SDMA data structures are located. This starting address must
fall within the region reserved by the IMAGE_WINCE_CSPDDK
definitions.

IMAGE_WINCE_DDKSDMA_RAM_SIZE image_cfg.h Size in bytes of the external RAM reserved for DDK_SDMA data
structures. This size must fall within the region reserved by the
IMAGE_WINCE_CSPDDK definitions.

IMAGE_WINCE_DDKCLK_RAM_PA_START image_cfg.h Physical starting address in external RAM where the shared
DDK_CLK data structures are located. This starting address must
fall within the region reserved by the IMAGE_WINCE_CSPDDK
definitions.

IMAGE_WINCE_DDKCLK_RAM_SIZE image_cfg.h Size in bytes of the external RAM reserved for DDK_CLK data
structures. This size must fall within the region reserved by the
IMAGE_WINCE_CSPDDK definitions.

BSP_SDMA_MC0PTR bsp_cfg.h Starting address for the shared SDMA data structures. Set to
IMAGE_WINCE_SDMA_PA_START to use external RAM.

BSP_SDMA_CHNPRI_xxx bsp_cfg.h Assigns a SDMA channel priority to the respective peripheral. Refer
to the individual driver chapters for more information on the specific
priorities.

BSP_SDMA_SUPPORT_xxx bsp_cfg.h Boolean to specifies if SDMA-based transfers are enabled for each
respective peripheral. Refer to the individual driver chapters for
more information on the DMA support provided.

Table 8-2. CSPDDK Compile Options (continued)

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded CE 6.0 BSP Reference Manual

8-4 Freescale Semiconductor

8.5 Unit Test
Due to the heavy use of the CSPDDK routines by other drivers on the system, the CSPDDK tests are
currently limited to testing the interface exposed by the DDK_SDMA.

8.5.1 Unit Test Hardware
Table 8-3 lists the required hardware to run the unit tests.

8.5.2 Unit Test Software
Table 8-4 lists the required software to run the unit tests.

8.5.3 Building the Unit Tests
To build the CSPDDK tests, build an OS image for the desired configuration using these steps:

1. Within the Platform Builder, choose Build OS > Open Release Directory.
A DOS prompt is displayed.

2. Change to the SDMA Tests directory: \WINCE600\SUPPORT_PDK1_7\TEST\SDMA
3. Enter set WINCEREL=1 on the command prompt and press return.

This copies the DLL to the flat release directory.
4. Input build -c to build the CSPDDK test.

After the build completes, the SDMATEST.dll file is located in the $(_FLATRELEASEDIR) directory.

8.5.4 Running the Unit Tests
The command line for running the DDK_SDMA tests is tux –o –d SDMATEST -n. The CSPDDK_SDMA
tests do not contain any test-specific command line options. Table 8-5 describes the test cases contained
in the DDK_SDMA tests.

Table 8-3. Hardware Requirements

Requirement Description

No additional hardware required

Table 8-4. Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Ktux.dll Required to run tests in kernel mode

Kato.dll Kato logging engine, which is required for logging test data

Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target
device and the development workstation

SDMATEST.dll Test .dll file

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 8-5

8.6 CSPDDK DLL Reference

8.6.1 CSPDDK DLL System Clocking (DDK_CLK) Reference
The DDK_CLK interface allows device drivers to configure and query system clock settings.

8.6.1.1 DDK_CLK Enumerations

8.6.1.2 DDK_CLK Functions

8.6.1.2.1 DDKClockSetGatingMode

This function sets the clock gating mode of the peripheral.
BOOL DDKClockSetGatingMode(

DDK_CLOCK_GATE_INDEX index,
DDK_CLOCK_GATE_MODE mode)

Parameters
index [in] Index for referencing the peripheral clock gating control bits
mode [in] Requested clock gating mode for the peripheral
Return Values Returns TRUE if successful, otherwise returns FALSE

8.6.1.2.2 DDKClockGetGatingMode

This function retrieves the clock gating mode of the peripheral.

Table 8-5. DDK_SDMA Test Cases

Test Case Description

SDMA Open/Close Channel Tests open/close operation of the SDMA virtual channels. Attempts to open all available channels
and verify that the correct virtual channel ID is returned. All successfully opened channels are
then closed.

SDMA ExtMemory-to-ExtMemory Tests the SDMA ability to perform a external memory to external memory transfer. A virtual
channel is requested and then DMA buffers are used to define a memory transfer. The transfer is
done in both directions and the results are verified. This transfer is interrupt-driven and uses the
standard OAL interrupt registration procedures normally used by device drivers.

Table 8-6. DDK_CLK Enumerations

Programming Element Description

DDK_CLOCK_SIGNAL Clock signal name for querying/setting clock configuration

DDK_CLOCK_GATE_INDEX Index for referencing the corresponding clock gating control bits in the CCM

DDK_CLOCK_GATE_MODE Clock gating modes supported by CCM clock gating registers

DDK_CLOCK_BAUD_SOURCE Input source for baud clock generation

DDK_DVFC_SETPOINT Frequency/voltage setpoints supported by the DVFC driver

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded CE 6.0 BSP Reference Manual

8-6 Freescale Semiconductor

BOOL DDKClockGetGatingMode(
DDK_CLOCK_GATE_INDEX index,
DDK_CLOCK_GATE_MODE *pMode)

Parameters
index [in] Index for referencing the peripheral clock gating control bits
pMode [out] Current clock gating mode for the peripheral
Return Values Returns TRUE if successful, otherwise returns FALSE

8.6.1.2.3 DDKClockGetFreq

This function retrieves the clock frequency in Hz for the specified clock signal.
BOOL DDKClockGetFreq(

DDK_CLOCK_SIGNAL sig,
UINT32 *freq)

Parameters
sig [in] Clock signal
freq [out] Current frequency in Hz
Return Values Returns TRUE if successful, otherwise returns FALSE

8.6.1.2.4 DDKClockConfigBaud

This function configures the input source clock and dividers for the specified CCM peripheral baud clock
output.

BOOL DDKClockConfigBaud(
DDK_CLOCK_SIGNAL sig,
DDK_CLOCK_BAUD_SOURCE src,
UINT32 preDiv,
UINT32 postDiv)

Parameters
sig [in] Clock signal to configure
src [in] Selects the input clock source
preDiv [in] Specifies the value programmed into the baud clock predivider
postDiv [in] Specifies the value programmed into the baud clock postdivider
Return Values Returns TRUE if successful, otherwise returns FALSE

8.6.1.2.5 DDKClockSetCKO

This function configures the clock output source (CKO) signal.
BOOL DDKClockSetCKO(

BOOL bEnable,
DDK_CLOCK_CKO_SRC src,
UINT32 divider)

Parameters
bEnable [in] Set to TRUE to enable CKO output. Set to FALSE to disable CKO output
src [in] Selects the CKO source signal

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 8-7

divider [in] Specifies the CKO, value of divider - 1
Return Values Returns TRUE if successful, otherwise returns FALSE

8.6.1.2.6 DDKClockSetpointRequest

This function requests the DVFC driver to transition to a setpoint that meets or exceeds the voltage and
clocking requirements of the setpoint being requested. This function optionally blocks until the setpoint
request has been granted.

BOOL DDKClockSetpointRequest(
DDK_DVFC_SETPOINT setpoint,
DDK_DVFC_DOMAIN domain,
BOOL bBlock)

Parameters
setpoint [in] Specifies the setpoint to be requested
domain [in] Specifies DVFC domain for which the setpoint is requested
bBlock [in] Set TRUE to block until the setpoint has been granted; set FALSE to return

immediately after the request has been submitted
Return Values Returns TRUE if successful, otherwise returns FALSE

8.6.1.2.7 DDKClockSetpointRelease

This function releases a setpoint previously requested using DDKClockSetpointRequest.
BOOL DDKClockSetpointRelease(

DDK_DVFC_SETPOINT setpoint,
DDK_DVFC_DOMAIN domain)

Parameters
setpoint [in] Specifies the setpoint to be released
domain [in] Specifies DVFC domain for which the setpoint is requested
Return Values Returns TRUE if successful, otherwise returns FALSE

8.6.1.3 DDK_CLK Examples
Example 8-1. CSPDDK Clock Gating

#include “csp.h” // Includes CSPDDK definitions

// Enable I2C1 peripheral clock
DDKClockSetGatingMode(DDK_CLOCK_GATE_INDEX_I2C1, DDK_CLOCK_GATE_MODE_ENABLED_ALL);

// Disable I2C1 peripheral clock
DDKClockSetGatingMode(DDK_CLOCK_GATE_INDEX_I2C1, DDK_CLOCK_GATE_MODE_DISABLED);

Example 8-2. CSPDDK Clock Rate Query

#include “csp.h” // Includes CSPDDK definitions

UINT32 freq;

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded CE 6.0 BSP Reference Manual

8-8 Freescale Semiconductor

// Query the current bus clock
DDKClockGetFreq(DDK_CLOCK_SIGNAL_AHB, &freq);

8.6.2 CSPDDK DLL GPIO (DDK_GPIO) Reference
The DDK_GPIO interface allows device drivers to utilize the GPIO ports. Each GPIO port has a single
interrupt request line that is shared for all port pins. In addition, configuration, status, and data registers
are shared. The DDK_GPIO provides safe access to the shared GPIO resources.

8.6.2.1 DDK_GPIO Enumerations

8.6.2.2 DDK_GPIO Functions

8.6.2.2.1 DDKGpioSetConfig

This function sets the GPIO configuration (direction and interrupt) for the specified pin.
BOOL DDKGpioSetConfig(

DDK_GPIO_PORT port,
UINT32 pin,
DDK_GPIO_DIR dir,
DDK_GPIO_INTR intr)

Parameters
port [in] GPIO module instance
pin [in] GPIO pin [0-31]
dir [in] Direction for the pin
intr [in] Interrupt configuration for the pin
Return Values Returns TRUE if successful, otherwise returns FALSE

8.6.2.2.2 DDKGpioWriteData

This function writes the GPIO port data to the specified pins.
BOOL DDKGpioWriteData(

DDK_GPIO_PORT port,
UINT32 portMask,
UINT32 data)

Parameters
port [in] GPIO module instance

Table 8-7. DDK_GPIO Enumerations

Programming Element Description

DDK_GPIO_PORT GPIO module instance

DDK_GPIO_DIR Direction the GPIO pins

DDK_GPIO_INTR Detection logic used for generating GPIO interrupts

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 8-9

portMask [in] Bit mask for data port pins to be written
data [in] Data to be written
Return Values Returns TRUE if successful, otherwise returns FALSE

8.6.2.2.3 DDKGpioWriteDataPin

This function writes the GPIO port data to the specified pin.
BOOL DDKGpioWriteDataPin(

DDK_GPIO_PORT port,
UINT32 pin,
UINT32 data)

Parameters
port [in] GPIO module instance
pin [in] GPIO pin [0-31]
data [in] Data to be written [0 or 1]
Return Values Returns TRUE if successful, otherwise returns FALSE

8.6.2.2.4 DDKGpioReadData

This function reads the GPIO port data from the specified pins.
BOOL DDKGpioReadData(

DDK_GPIO_PORT port,
UINT32 portMask,
UINT32 *pData)

Parameters
port [in] GPIO module instance
portMask [in] Bit mask for data port pins to be read
pData [out] Points to buffer for data read
Return Values Returns TRUE if successful, otherwise returns FALSE

8.6.2.2.5 DDKGpioReadDataPin

This function reads the GPIO port data from the specified pin.
BOOL DDKGpioReadDataPin (

DDK_GPIO_PORT port,
UINT32 pin,
UINT32 *pData)

Parameters
port [in] GPIO module instance
pin [in] GPIO pin [0–31]
pData [out] Points to buffer for data read; data is shifted to the LSB
Return Values Returns TRUE if successful, otherwise returns FALSE

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded CE 6.0 BSP Reference Manual

8-10 Freescale Semiconductor

8.6.2.2.6 DDKGpioReadIntr

This function reads the GPIO port interrupt status for the specified pins.
BOOL DDKGpioReadIntr(

DDK_GPIO_PORT port,
UINT32 portMask,
UINT32 *pStatus)

Parameters
port [in] GPIO module instance
portMask [in] Bit mask for interrupt status bits to be read
pStatus [out] Points to buffer for interrupt status
Return Values Returns TRUE if successful, otherwise returns FALSE

8.6.2.2.7 DDKGpioReadIntrPin

This function reads the GPIO port interrupt status from the specified pin.
BOOL DDKGpioReadIntrPin(

DDK_GPIO_PORT port,
UINT32 pin,
UINT32 *pStatus)

Parameters
port [in] GPIO module instance
pin [in] GPIO pin [0–31]
pStatus [out] Points to buffer for interrupt status; status is shifted to the LSB
Return Values Returns TRUE if successful, otherwise returns FALSE

8.6.2.2.8 DDKGpioClearIntrPin

This function clears the GPIO interrupt status for the specified pin.
BOOL DDKGpioClearIntrPin(

DDK_GPIO_PORT port,
UINT32 pin)

Parameters
port [in] GPIO module instance
pin [in] GPIO pin [0–31]
Return Values Returns TRUE if successful, otherwise returns FALSE

8.6.2.3 DDK_GPIO Example
Example 8-3. CSPDDK GPIO Configuration

#include “csp.h” // Includes CSPDDK definitions

// Configure GPIO1_3 as a level-sensitive interrupt input
DDKGpioSetConfig(DDK_GPIO_PORT1, 3, DDK_GPIO_DIR_IN, DDK_GPIO_INTR_HIGH_LEV);

// Clear interrupt status for GPIO1_3

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 8-11

DDKGpioClearIntrPin(DDK_GPIO_PORT1, 3);

8.6.3 CSPDDK DLL IOMUX (DDK_IOMUX) Reference
The DDK_IOMUX interface allows device drivers to configure signal multiplexing and pad configuration.
This control resides inside the IOMUX registers and is shared for the entire system. The DDK_IOMUX
support allows drivers to dynamically update and query their signal multiplexing and pad configuration.

8.6.3.1 DDK_IOMUX Enumerations

8.6.3.2 DDK_IOMUX Functions

8.6.3.2.1 DDKIomuxSetPinMux

This function sets the IOMUX configuration for the specified IOMUX pin.
BOOL DDKIomuxSetPinMux(

DDK_IOMUX_PIN pin,
DDK_IOMUX_PIN_MUXMODE muxmode,
DDK_IOMUX_PIN_SION sion)

Parameters
pin [in] Functional pin name used to select the pin that is configured

Table 8-8. DDK_IOMUX Enumerations

Programming Element Description

DDK_IOMUX_PIN Functional pin name used to configure the IOMUX. The enum value corresponds to the index to
the SW_MUX_CTL registers

DDK_IOMUX_PIN_MUXMODE Mux mode for a signal

DDK_IOMUX_PIN_SION Configuration on Software Input On Field to force the selected mux mode Input path no matter of
mux mode functionality. If no SION bit for a PIN, the DDK_IOMUX_PIN_SION_NULL should
be set

DDK_IOMUX_PAD Functional pad name used to configure the IOMUX. The enum value corresponds to the bit offset
within the SW_PAD_CTL registers

DDK_IOMUX_PAD_SLEW Slew rate for a pad; if no SLEW bit for a PAD, the DDK_IOMUX_PAD_SLEW_NULL should be
set

DDK_IOMUX_PAD_DRIVE Drive strength for a pad; if no DRIVE bit for a PAD, the DDK_IOMUX_PAD_DRIVE_NULL
should be set.

DDK_IOMUX_PAD_OPENDRAIN Open drain for a pad; if no ODE bit for a PAD, the DDK_IOMUX_PAD_OPENDRAIN_NULL
should be set

DDK_IOMUX_PAD_HYSTERESIS Hysteresis mode for a pad; if no HYS bit for a PAD, the
DDK_IOMUX_PAD_HYSTERESIS_NULL should be set

DDK_IOMUX_PAD_VOLTAGE Driver voltage for a pad, either 1.8 V or 3.3 V

DDK_IOMUX_PAD_PULL Pull-up/pull-down/keeper configuration for a pad

DDK_IOMUX_SELECT_INPUT Functional pad name to be selected and involved in Daisy Chain

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded CE 6.0 BSP Reference Manual

8-12 Freescale Semiconductor

muxmode [in] Mux mode configuration
sion [in] Sion configuration
Return Values Returns TRUE if successful, otherwise returns FALSE

8.6.3.2.2 DDKIomuxGetPinMux

This function gets the IOMUX configuration for the specified IOMUX pin.
BOOL DDKIomuxGetPinMux(

DDK_IOMUX_PIN pin,
DDK_IOMUX_PIN_MUXMODE *pMuxmode,
DDK_IOMUX_PIN_SION *pSion)

Parameters
pin [in] Functional pin name used to select the pin that is returned
pMuxmode [out] Mux mode configuration
pSion [out] Sion configuration
Return Values Returns TRUE if successful, otherwise returns FALSE

8.6.3.2.3 DDKIomuxSetPadConfig

This function sets the IOMUX pad configuration for the specified IOMUX pin.
BOOL DDKIomuxSetPadConfig(

DDK_IOMUX_PAD pad,
DDK_IOMUX_PAD_SLEW slew,
DDK_IOMUX_PAD_DRIVE drive,
DDK_IOMUX_PAD_OPENDRAIN openDrain,
DDK_IOMUX_PAD_PULL pull,
DDK_IOMUX_PAD_HYSTERESIS hysteresis,
DDK_IOMUX_PAD_VOLTAGE voltage)

Parameters
pad [in] Functional pad name used to select the pad that is configured
slew [in] Slew rate configuration
drive [in] Drive strength configuration
openDrain [in] Open drain configuration
pull [in] Pull-up/pull-down/keeper configuration
hysteresis [in] Hysteresis configuration
voltage [in] Drive voltage configuration
Return Values Returns TRUE if successful, otherwise returns FALSE.

8.6.3.2.4 DDKIomuxGetPadConfig

This function gets the IOMUX pad configuration for the specified IOMUX pad.
BOOL DDKIomuxSetPadConfig(

DDK_IOMUX_PAD pad,
DDK_IOMUX_PAD_SLEW *pSlew,
DDK_IOMUX_PAD_DRIVE *pDrive,

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 8-13

DDK_IOMUX_PAD_OPENDRAIN *pOpenDrain,
DDK_IOMUX_PAD_PULL *pPull,
DDK_IOMUX_PAD_HYSTERESIS *pHysteresis,
DDK_IOMUX_PAD_VOLTAGE *pVoltage)

Parameters
pad [in] Functional pad name used to select the pad that is configured
pSlew [out] Slew rate configuration
pDrive [out] Drive strength configuration
pOpenDrain [out] Open drain configuration
pPull [out] Pull-up/pull-down/keeper configuration
pHysteresis [out] Hysteresis configuration
pVoltage [out] Drive voltage configuration
Return Values Returns TRUE if successful, otherwise returns FALSE.

8.6.3.2.5 DDKIomuxSelectInput

This function writes a daisy value into the IOMUX SELECT_INPUT register to select the pad that is the
input to the port.

BOOL DDKIomuxSelectInput(
DDK_IOMUX_SELEIN port,
UINT32 daisy)

Parameters
port [in] Port to select input
daisy [in] Data to be written
Return Values Returns TRUE if successful, otherwise returns FALSE

8.6.3.3 DDK_IOMUX Examples
Example 8-4. CSPDDK IOMUX Signal Multiplexing

#include “csp.h” // Includes CSPDDK definitions

// Configure the signal multiplexing for GPIO1_5. The ALT0 mux mode is configured
// and the regular sion is assigned for the GPIO1_5 ot the GPIO module.
DDKIomuxSetPinMux(DDK_IOMUX_PIN_GPIO1_5, DDK_IOMUX_PIN_MUXMODE_ALT0,
DDK_IOMUX_PIN_SION_REGULAR);

Example 8-5. CSPDDK IOMUX Pad Configuration

#include “csp.h” // Includes CSPDDK definitions

// Configure the GPIO1_5 pad for the following configuration: fast slew rate,
// high drive strength, no opendrain, no pull, no hysteresis, and 3.3 V drive voltage.
DDKIomuxSetPadConfig(DDK_IOMUX_PIN_GPIO1_5, DDK_IOMUX_PAD_SLEW_FAST,
DDK_IOMUX_PAD_DRIVE_HIGH, DDK_IOMUX_PAD_OPENDRAIN_DISABLE,
DDK_IOMUX_PAD_PULL_NONE, DDK_IOMUX_PAD_HYSTERESIS_DISABLE,
DDK_IOMUX_PAD_VOLTAGE_3V3);

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded CE 6.0 BSP Reference Manual

8-14 Freescale Semiconductor

8.6.4 CSPDDK DLL SDMA (DDK_SDMA) Reference
The DDK_SDMA interface allows device drivers to allocate, configure, and control shared SDMA
resources.

8.6.4.1 DDK_SDMA Enumerations

8.6.4.2 DDK_SDMA Functions

8.6.4.2.1 DDKSdmaOpenChan

This function attempts to find an available virtual SDMA channel that can be used to support a
memory-to-memory, peripheral-to-memory, or memory-to-peripheral transfers.

UINT8 DDKSdmaOpenChan(
DDK_DMA_REQ dmaReq,
UINT8 priority)

Parameters
dmaReq [in] Specifies the DMA request that is bound to a virtual channel
priority [in] Priority assigned to the opened channel
Return Values Returns a non-zero virtual channel index if successful, otherwise returns 0

8.6.4.2.2 DDKSdmaUpdateSharedChan

This function allows a channel that has multiple DMA requests combined into a shared DMA event to be
reconfigured for one of the alternate DMA requests.

BOOL DDKSdmaUpdateSharedChan(
UINT8 chan,
DDK_DMA_REQ dmaReq)

Parameters
chan [in] Virtual channel returned by DDKSdmaOpenChan
dmaReq [in] Specifies the DMA request that is bound to a virtual channel
Return Values Returns TRUE if successful, otherwise returns FALSE

8.6.4.2.3 DDKSdmaCloseChan

This function closes a virtual DMA channel previously opened by DDKSdmaOpenChan.

Table 8-9. DDK_SDMA Enumerations

Programming Element Description

DDK_DMA_ACCESS Width of the data for a peripheral DMA transfer

DDK_DMA_FLAGS Mode flags within the DMA buffer descriptor

DDK_DMA_REQ DMA request used to trigger SDMA channel execution

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 8-15

BOOL DDKSdmaCloseChan(
UINT8 chan)

Parameters
chan [in] Virtual channel returned by DDKSdmaOpenChan function
Return Values Returns TRUE if successful, otherwise returns FALSE

8.6.4.2.4 DDKSdmaAllocChain

This function allocates a chain of buffer descriptors for a virtual DMA channel.
BOOL DDKSdmaAllocChain(

UINT8 chan,
UINT32 numBufDesc)

Parameters
chan [in] Virtual channel returned by DDKSdmaOpenChan
numBufDesc [in] Number of buffer descriptors to be allocated for the chan
Return Values Returns TRUE if successful, otherwise returns FALSE

8.6.4.2.5 DDKSdmaFreeChain

This function frees a chain of buffer descriptors previously allocated with DDKSdmaAllocChain.
BOOL DDKSdmaFreeChain(

UINT8 chan)

Parameters
chan [in] Virtual channel returned by DDKSdmaOpenChan
Return Values Returns TRUE if successful, otherwise returns FALSE

8.6.4.2.6 DDKSdmaSetBufDesc

This function configures a buffer descriptor for a DMA transfer.
BOOL DDKSdmaSetBufDesc(

UINT8 chan,
UINT32 index,
UINT32 modeFlags,
UINT32 memAddr1PA,
UINT32 memAddr2PA,
DDK_DMA_ACCESS dataWidth,
UINT16 numBytes)

Parameters
chan [in] Virtual channel returned by DDKSdmaOpenChan.
index [in] Index of buffer descriptor within the chain to be configured.
modeFlags [in] Specifies the buffer descriptor mode word flags that control the continue,

wrap, and interrupt settings
memAddr1PA [in] For memory-to-memory transfers, this parameter specifies the physical

memory source address for the transfer. For memory-to-peripheral transfers, this
parameter specifies the physical memory source address for the transfer. For

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded CE 6.0 BSP Reference Manual

8-16 Freescale Semiconductor

peripheral-to-memory transfers, this parameter specifies the physical memory
destination address for the transfer

memAddr2PA [in] Used only for memory-to-memory transfers to specify the physical memory
destination address for the transfer. Ignored for memory-to-peripheral and
peripheral-to-memory transfers

dataWidth [in] Used only for memory-to-peripheral and peripheral-to-memory transfers to
specify the width of the data for the peripheral transfer. Ignored for
memory-to-memory transfers

numBytes [in] Virtual channel returned by DDKSdmaOpenChan
Return Values Returns TRUE if successful, otherwise returns FALSE

8.6.4.2.7 DDKSdmaGetBufDescStatus

This function retrieves the status of the done and error bits from a single buffer descriptor within of a chain.
BOOL DDKSdmaGetBufDescStatus(

UINT8 chan,
UINT32 index,
UINT32 *pStatus)

Parameters
chan [in] Virtual channel returned by DDKSdmaOpenChan
index [in] Index of buffer descriptor within the chain
pStatus [in] Points to a buffer that is filled with the status of the buffer descriptor
Return Values Returns TRUE if successful, otherwise returns FALSE

8.6.4.2.8 DDKSdmaGetChainStatus

This function retrieves the status of the done and error bits from all of the buffer descriptors of a chain.
BOOL DDKSdmaGetChainStatus(

UINT8 chan,
UINT32 *pStatus)

Parameters
chan [in] Virtual channel returned by DDKSdmaOpenChan
pStatus [in] Points to an array filled with the status of each buffer descriptor in the chain
Return Values Returns TRUE if successful, otherwise returns FALSE

8.6.4.2.9 DDKSdmaClearBufDescStatus

This function clears the status of the done and error bits within the specified buffer descriptor.
BOOL DDKSdmaClearBufDescStatus(

UINT8 chan,
UINT32 index)

Parameters
chan [in] Virtual channel returned by DDKSdmaOpenChan
index [in] Index of buffer descriptor within the chain

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 8-17

Return Values Returns TRUE if successful, otherwise returns FALSE

8.6.4.2.10 DDKSdmaClearChainStatus

This function clears the status of the done and error bits within all of the buffer descriptors of a chain.
BOOL DDKSdmaClearChainStatus(

UINT8 chan)

Parameters
chan [in] Virtual channel returned by DDKSdmaOpenChan
Return Values Returns TRUE if successful, otherwise returns FALSE

8.6.4.2.11 DDKSdmaInitChain

This function initializes a buffer descriptor chain and the context for a channel. It should be invoked when
before a virtual DMA channel is initially started, and when the DMA channel is stopped and restarted.

BOOL DDKSdmaInitChain(
UINT8 chan,
UINT32 waterMark)

Parameters
chan [in] Virtual channel returned by DDKSdmaOpenChan
waterMark [in] Specifies the watermark level used by the peripheral to generate a DMA

request. This parameter tells the DMA how many transfers to complete for each
assertion of the DMA request. Ignored for memory-to-memory transfers

Return Values Returns TRUE if successful, otherwise returns FALSE

8.6.4.2.12 DDKSdmaStartChan

This function starts the specified channel.
BOOL DDKSdmaStartChan(

UINT8 chan)

Parameters
chan [in] Virtual channel returned by DDKSdmaOpenChan
Return Values Returns TRUE if successful, otherwise returns FALSE

8.6.4.2.13 DDKSdmaStopChan

This function stops the specified channel.
BOOL DDKSdmaStopChan(

UINT8 chan,
BOOL bKill)

Parameters
chan [in] Virtual channel returned by DDKSdmaOpenChan
bKill [in] Set TRUE to terminate the channel if it is actively running. Set FALSE to

allow the channel to continue running until it yields
Return Values Returns TRUE if successful, otherwise returns FALSE

Chip Support Package Driver Development Kit (CSPDDK)

Windows Embedded CE 6.0 BSP Reference Manual

8-18 Freescale Semiconductor

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 9-1

Chapter 9
Configurable Serial Peripheral Interface (CSPI) Driver
The CSPI module provides master functionality of a standard CSPI bus.

9.1 CSPI Driver Summary
Table 9-1 provides a summary of source code location, library dependencies and other BSP information.

9.2 Supported Functionality
The CSPI driver supports the following features:

1. Supports the CSPI master mode of operation
2. Supports CSPI configurable bus feature
3. Supports CSPI multiple channel method
4. Supports configurable access method of polling method and interrupt method
5. Supports DMA exchange mode for 32-bit interface SPI access
6. Supports buffering exchange for asynchronous SPI access
7. Supports stream interface
8. Supports two power management modes, full on and full off

Table 9-1. CSPI Driver Summary

Driver Attribute Definition

Target Platform iMX25-3DS-PDK1_7

Target SOC MX25_FSL_V2_PDK1_7

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\CSPIBUSV2

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\CSPIBUS

Platform Driver Path ..\PLATFORM\<Target Platform>\DRIVERS\CSPIBUS

Import Library cspisdk.lib

Driver DLL cspi.dll

Catalog Item Third Party > BSP > Freescale <TGTPLAT> > Device Drivers > CSPI Bus

SYSGEN Dependency N/A

BSP Environment Variables BSP_CSPIBUS1=1
BSP_CSPIBUS2=1
BSP_CSPIBUS3=1

Configurable Serial Peripheral Interface (CSPI) Driver

Windows Embedded CE 6.0 BSP Reference Manual

9-2 Freescale Semiconductor

9.2.1 Conflicts with Other Peripherals and Catalog Items

9.2.1.1 Conflicts with SoC Peripherals

The i.MX25 platform contains three CSPI modules, but only the CSPI1 module is used on the i.MX25
3-Stack Platform System. No pad is provided to CSPI2 and CSPI3 modules.

9.2.2 Conflicts with 3-Stack Peripherals
The CSPI1 is also used by the OAL to communicate with an external debug device. The transfer is not
handled by the driver itself. Instead the driver calls a dedicated Kernel IOCTL:
IOCTL_HAL_SHARED_CSPI_TRANSFER. This IOCTL does not use DMA or interrupts; therefore, the values
related to this in the CSPI_XCH_PKT_T structure may be set to NULL.

9.3 Software Operation

9.3.1 Registry Settings
The following registry keys are required to properly load the CSPI module.
; CSPI Bus Driver
;
IF BSP_CSPIBUS1
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\CSPI1]
 "Prefix"="SPI"
 "Dll"="cspi.dll"
 "Index"=dword:1
ENDIF ; BSP_CSPIBUS1

IF BSP_CSPIBUS2
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\CSPI1]
 "Prefix"="SPI"
 "Dll"="cspi.dll"
 "Index"=dword:2
ENDIF ; BSP_CSPIBUS2

IF BSP_CSPIBUS3
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\CSPI1]
 "Prefix"="SPI"
 "Dll"="cspi.dll"
 "Index"=dword:3
ENDIF ; BSP_CSPIBUS3

9.3.2 Communicating with the CSPI
The CSPI is a stream interface driver, and is thus accessed through the file system APIs. To communicate
using the CSPI, a handle to the device must first be created using the CreateFile function. Subsequent
commands to the device are issued using the DeviceIoControl function with IOCTL codes specifying the
desired operation. If preferred, the DeviceIoControl function calls can be replaced with macros that hide
the DeviceIoControl call details. The basic steps are detailed below.

Configurable Serial Peripheral Interface (CSPI) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 9-3

9.3.3 Creating a Handle to the CSPI
Call the CreateFile function to open a connection to the CSPI device. A CSPI port must be specified in
this call. The format is “SPIX:”, with X being the number indicating the CSPI port. This number should
not exceed the number of CSPI instances on the platform. If an CSPI port does not exist, CreateFile
returns ERROR_FILE_NOT_FOUND.

To open a handle to the CSPI:
1. Insert a colon after the CSPI port for the first parameter, lpFileName

For example, specify SPI1: as the CSPI port
2. Specify FILE_SHARE_READ | FILE_SHARE_WRITE in the dwShareMode parameter. Multiple

handles to an CSPI port are supported by the driver.
3. Specify OPEN_EXISTING in the dwCreationDisposition parameter. This flag is required.
4. Specify FILE_FLAG_RANDOM_ACCESS in the dwFlagsAndAttributes parameter.

The following code example shows how to open a CSPI port.
 // Open the serial port.
 hSPI = CreateFile (L”SPI1:”, // name of device
 GENERIC_READ | GENERIC_WRITE, // access (read-write) mode
 FILE_SHARE_READ | FILE_SHARE_WRITE, // sharing mode
 NULL, // security attributes (ignored)
 OPEN_EXISTING, // creation disposition
 FILE_FLAG_RANDOM_ACCESS, // flags/attributes
 NULL); // template file (ignored)

9.3.4 Data Transfer Operations
The CSPI driver provides one command, SPIExchange, that facilitates performing both reads and writes
through the CSPI bus. The basic unit of data transfer in the CSPI driver is the CSPI_XCH_PKT, which
contains a RX buffer for reading data, a TX buffer for writing data and a CSPI_BUSCONFIG datum that
specifies the desired bus configuration and XCH method which is used during the SPI transmission. The
steps below detail explain the process of performing write and read operations through the CSPI bus.

Before these actions can be taken, a handle to the CSPI port must already be opened. Each of these steps
requires a call to the DeviceIoControl function. As parameters, the CSPI port handle, appropriate IOCTL
code, and other input and output parameters are required.

To perform an CSPI transfer:
1. Create a CSPI_XCH_PKT object and initialize the fields of the packet as follows:

a) Initialize a CSPI_BUSCONFIG datum to specify the bus parameters as CHANNEL SELECT,
DATA RATE, BURST LENGTH, SSPOL, SSCTL, POL, PHA, DRCTL, and specify the
method parameters for use/not use DMA, use/not use POLLING.

b) Set the pTxBuf field to the user buffer which the data is written.
c) Set the pRxBuf field to the user buffer which receives data, if does not care of the Rx data, set

the field to NULL.
d) Set the xchCnt field, for the 1-8 bit XCH, the xchCnt = bytes, for the 9-16 bit XCH, the xchCnt

= words, for the 17-32 bit XCH, the xchCnt = dwords.

Configurable Serial Peripheral Interface (CSPI) Driver

Windows Embedded CE 6.0 BSP Reference Manual

9-4 Freescale Semiconductor

e) If give the xchEvent parameter, also give the xchEventlength and include the tail Zero character.
Otherwise, set xchEvent to NULL, and xchEventlength to 0. When use xchEvent the XCH data
is queued inside driver.

2. Set the hDevice parameter to the previously acquired CSPI port handle.
3. Set the dwIoControlCode to the SPI_IOCTL_EXCHANGE IOCTL code.
4. Set the lpInBuffer to point to the CSPI_XCH_PKT object created in step 1. Set nInBufferSize to the

size of that packet object.
5. Set lpOutBuffer, lpBytesReturned, and lpOverlapped to NULL. Set nOutBufferSize to 0.

If the CSPI is also used by the OAL to communicate with an external debug device, then the transfer is not
handled by the driver itself. Instead the driver calls a dedicated Kernel IOCTL:
IOCTL_HAL_SHARED_CSPI_TRANSFER. This IOCTL does not use DMA or interrupts, therefore the values
related to this may be set to NULL.

The following code example demonstrates how to perform a XCH transfer.
CSPI_BUSCONFIG_T buscnfg =
{
 0, //use channel 0
 16000000, //XCH speed 16M
 32, //data rate = 32bit
 FALSE, // SSCTL: Only one SPI burst will be transmitted.
 TRUE, // SSPOL: Active HIGH
 FALSE, // POL: Active high polarity
 FALSE, // PHA: Phase 0 operation
 0, // DRCTL: Don’t care SPI_RDY
 FALSE, //Don't use DMA
 FALSE //Don't polling
};

DWORD TxData[11];
DWORD RxData[11];

CSPI_XCH_PKT_T xchPkt =
{
 &buscnfg,
 TxData,
 RxData,
 11, // XCH to target SPI device 11 times
 NULL,
 0
}; // optional asynchronous event, recommended
hEvent = CreateEvent(0, FALSE, FALSE, L"RX_EVENT");
xchpkt.xchEvent = L"RX_EVENT";
xchpkt.xchEventLength = sizeof(L"RX_EVENT");

// Transfer data via CSPI
DeviceIoControl(hCSPI, // file handle to the driver
 CSPI_IOCTL_EXCHANGE, // I/O control code
 (PBYTE) &xchPkt, // in buffer
 sizeof(xchPkt), // in buffer size
 NULL, // out buffer
 0, // out buffer size
 NULL, // number of bytes returned
 NULL); // ignored (=NULL)

Configurable Serial Peripheral Interface (CSPI) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 9-5

As a substitute for the DeviceIoControl call above, a SDK wrap function may be used to simplify the code.
The following is an example:

CSPIExchange(hCSPI, &xchPkt); // optional
WaitForSingleObject(hEvent, INFINITE); // Code for dealing received DATA

9.3.5 Closing the Handle to the CSPI
Call the CloseHandle function to close a handle to the CSPI after an application finishes using it.
CloseHandle has one parameter, which is the handle returned by the CreateFile function call that opened
the CSPI port.

9.3.6 Power Management
The primary method for limiting power consumption in the CSPI module is to gate off the input clock to
the module when the input CSPI clock is not needed. This is accomplished through the
DDKClockSetGatingMode function call. In all of the BSP use cases, the CSPI controller acts as a master
device. As a result, the CSPI clock can be turned off, whenever the module is not processing CSPI packets.

As described in the Data Transfer Operations section, the CSPI driver turns on the CSPI clocks and
enables the CSPI module before processing an CSPI XCH, and then disables and turns off clocks to the
CSPI module after the XCH has been done. This limits the time during which the CSPI module is
consuming power to the time during which the CSPI is actively performing data transfers.

9.3.6.1 PowerUp

This function is not implemented for the CSPI driver. Power to the CSPI module is managed as CSPI
transfer operations are processed. There are no additional power management steps needed for the CSPI.

9.3.6.2 PowerDown

This function is not implemented for the CSPI driver.

9.3.6.3 IOCTL_POWER_SET

This function is implemented for the CSPI driver. When D4 power mode is set, the driver switches its
operating mode to polling mode that does not produce interrupt events to BSP system. When leaving the
D4 power mode, the driver recovers its origin operating mode.

9.4 Restrictions
The following restrictions apply to the DMA XCH:

• The DMA XCH in CSPI only supports 32-bit data size that is DWORD aligned
• The DMA XCH size is restricted to maximum DMA buffer size, up to 5 Kbytes

Configurable Serial Peripheral Interface (CSPI) Driver

Windows Embedded CE 6.0 BSP Reference Manual

9-6 Freescale Semiconductor

9.5 Unit Test
The CSPI driver does not use the CETK for unit testing, but uses the test program described in the
following section for unit tests.

9.5.1 Building the Unit Tests
To build the CSPI tests, build an OS image for the desired configuration using these steps:

1. Within the Platform Builder, choose Build OS > Open Release Directory.
A DOS prompt is displayed.

2. Change to the CSPI Test directory: \WINCE600\SUPPORT_PDK1_7\TEST\CSPI
3. Enter set WINCEREL=1 on the command prompt and press return.

This copies the EXE to the flat release directory.
4. Input build -c to build CSPI test.

After the build completes, the CSPIAPP.EXE file is located in the $(_FLATRELEASEDIR) directory. To
run the application within VS2005, go to the Target menu option and select the Run Programs menu
option. This gives a list of applications that can be run on the OS. Select CSPIAPP.EXE from this list and
click on Run to run this application.

9.6 CSPI Driver API Reference

9.6.1 CSPI Driver IOCTLS
This section consists of descriptions for the CSPI I/O control codes (IOCTLs). These IOCTLs are used in
calls to DeviceIoControl to issue commands to the CSPI device. Only relevant parameters for the IOCTL
have a description provided.

9.6.1.1 CSPI_IOCTL_EXCHANGE

This DeviceIoControl request performs the transfer of data to a target device. An SPI_XCH_PKT object
is required, which contains CSPI bus configuration parameters and TX/RX data buffers. All of the required
information should be stored in the SPI_XCH_PKT passed in the lpInBuffer field.
Parameters
lpInBuffer Pointer to an SPI_XCH_PKT structure containing a pointer to bus configuration

parameters and TX/RX data buffers
nInBufferSize Size in bytes of the SPI_XCH_PKT

9.6.1.2 CSPI_IOCTL_ENABLE_LOOPBACK

This DeviceIoControl request sets the LOOPBACK flag in the CSPI hardware.

Configurable Serial Peripheral Interface (CSPI) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 9-7

9.6.1.3 CSPI_IOCTL_DISABLE_LOOPBACK

This DeviceIoControl request clears the LOOPBACK flag in the CSPI hardware.

9.6.2 CSPI Driver SDK Wrapper

9.6.2.1 CSPIOpenHandle

This function retrieves the CSPI device handle.
HANDLE CSPIOpenHandle(

LPCWSTR lpDevName
);

Parameters
lpDevName The CSPI device name for retrieving handle from CreateFile()
Return Values Returns Handle for CSPI driver; returns INVALID_HANDLE_VALUE if failure

9.6.2.2 CSPICloseHandle

This function closes a handle of the CSPI stream driver.
BOOL CSPICloseHandle(

HANDLE hDev
);

Parameters
hDev The CSPI device handle retrieved from CreateFile()
Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful

9.6.2.3 CSPIEnableLoopback

This function sets the CSPI controller in loopback mode to inspect if data value during XCH is correct.
BOOL CSPIEnbaleLoopback(

HANDLE hDev
);

Parameters
hDev The CSPI device handle retrieved from CreateFile()
Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful

9.6.2.4 CSPIExchange

This function performs XCH operations.
BOOL CSPITransfer(

HANDLE hDev,
PCSPI_XCH_PKT_T pCspiXchPkt

);

Parameters
hDev The CSPI device handle retrieved from CreateFile()
pCspiXchPkt [in] Pointer to XCH packet with bus configuration parameters

Configurable Serial Peripheral Interface (CSPI) Driver

Windows Embedded CE 6.0 BSP Reference Manual

9-8 Freescale Semiconductor

Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful

9.6.3 CSPI Driver Structures

9.6.3.1 CSPI_BUSCONFIG_T

This structure contains the bus configuration information needed during CSPI performs XCH.
// CSPI bus configuration
typedef struct
{
 UINT8 chipselect;
 UINT32 freq;
 UINT8 bitcount;
 BOOL sspol;
 BOOL ssctl;
 BOOL pol;
 BOOL pha;
 UINT8 drctl;
 BOOL usedma;
 BOOL usepolling;
} CSPI_BUSCONFIG_T, *PCSPI_BUSCONFIG_T;

Table 9-2. CSPI_BUSCONFIG_T Structure Members

Member Description

chipselect Select XCH channel, range 0-3

freq DATA band rate

bitcount Define bits used in a single XCH, range 1-32

sspol SPI SS Polarity Select. If FALSE, active low, if TURE, active high

ssctl SPI SS Wave Form Select. This bit controls the output wave form of SS signal
FALSE: Only one SPI bursts is transmitted
TRUE: Negate SS between SPI bursts. Multiple SPI bursts is transmitted

pol SPI Clock Polarity Control
FALSE: Active high polarity (0 = Idle)
TRUE: Active low polarity (1 = Idle)

pha SPI Clock/Data Phase Control
FALSE: Phase 0 operation
TRUE: Phase 1 operation

drctl DRCTL of CSPI XCH operation
00: Do not care SPI_RDY
01: Burst is triggered by failing edge of SPI_RDY
10: Burst is triggered by low level of SPI_RDY
11: RSV

usedma If TRUE, uses DMA mode

usepolling If TRUE, uses polling mode

Configurable Serial Peripheral Interface (CSPI) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 9-9

9.6.3.2 CSPI_XCH_PKT_T

This structure contains an XCH buffer parameters to be used in data exchange to CSPI device.
// CSPI exchange packet
typedef struct
{
 PCSPI_BUSCONFIG_T pBusCnfg;
 LPVOID pTxBuf;
 LPVOID pRxBuf;
 UINT32 xchCnt;
 LPWSTR xchEvent;
 UINT32 xchEventLength;
} CSPI_XCH_PKT_T, *PCSPI_XCH_PKT_T;

Table 9-3. CSPI_XCH_PKT_T Structure Members

Member Description

pBusCnfg A pointer to CSPI bus configuration object

pTxBuf A pointer to Tx data buffer

pRxBuf A pointer to Rx data buffer

xchCnt Amount of XCH operation to SPI device

xchEvent Asynchronous access using the internal exchange queue

xchEventLength Event name length including tailing Zero

Configurable Serial Peripheral Interface (CSPI) Driver

Windows Embedded CE 6.0 BSP Reference Manual

9-10 Freescale Semiconductor

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 10-1

Chapter 10
Controller Area Network (CAN) Driver
The CAN module provides the low level functionality of a CAN protocol according to the CAN 2.0B
protocol spec. The CAN module only supports Message Buffer mode.

10.1 CAN Driver Summary
Table 10-1 provides a summary of source code location, library dependencies and other BSP information.

10.2 Supported Functionality
The CAN driver enables the 3-Stack System to provide the following software and hardware support:

1. Supports the CAN communication protocol
2. Provides a stream interface driver implementing the programming interface defined in this

document
3. Supports two power management modes, full on and full off

10.3 Hardware Operation
Refer to the chapter on CAN in the i.MX25 Multimedia Applications Processor Reference Manual for
detailed operation and programming information.

Table 10-1. CAN Driver Summary

Driver Attribute Definition

Target Platform iMX25-3DS-PDK1_7

Target SOC N/A

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\CANBUS

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\CANBUS

Driver DLL can.dll

SDK Library cansdk.lib

Catalog Item Third Party > BSPs > Freescale <Target Platform> > Device Drivers > CAN Bus

SYSGEN Dependency N/A

BSP Environment Variables BSP_CANBUS1=1
BSP_CANBUS2=1

Controller Area Network (CAN) Driver

Windows Embedded CE 6.0 BSP Reference Manual

10-2 Freescale Semiconductor

10.3.1 Conflicts with Other Peripherals and Catalog Items

10.3.1.1 Conflicts with SoC Peripherals

The CAN1 and CAN2 controller shares the PIO with the FEC controller and conflicts with the GPIOA pin.
The driver configures which controller (FEC or GPIO) the CAN conflicts with. The default conflict value
is GPIO for the CAN1 and CAN2 controller.

10.3.1.2 Conflicts with 3-Stack Peripherals

No conflicts.

10.4 Software Operation

10.4.1 Communicating with the CAN
The CAN driver is a stream interface driver, and is thus accessed through the file system APIs. To
communicate using the CAN, a handle to the device must first be created using the CreateFile function.
Subsequent commands to the device are issued using the DeviceIoControl function with IOCTL codes
specifying the desired operation. If preferred, the DeviceIoControl function calls can be replaced with
macros that hide the DeviceIoControl call details. The basic steps are detailed below.

10.4.2 Creating a Handle to the CAN
Call the CreateFile function to open a connection to the CAN device. A CAN port must be specified in
this call. The format is “CANX”, with X being the number indicating the CAN port. This number should
not exceed the number of CAN instances on the platform. If an CAN port does not exist, CreateFile
returns ERROR_FILE_NOT_FOUND.

To open a handle to the CAN:
1. Insert a colon after the CAN port for the first parameter, lpFileName. For example, specify CAN1:

as the CAN port.
2. Specify FILE_SHARE_READ | FILE_SHARE_WRITE in the dwShareMode parameter. Multiple

handles to an CAN port are supported by the driver.
3. Specify OPEN_EXISTING in the dwCreationDisposition parameter. This flag is required.
4. Specify FILE_FLAG_RANDOM_ACCESS in the dwFlagsAndAttributes parameter.

The following code example shows how to open an CAN1 port.
// Open the CAN port.
hCAN = CreateFile (CAN1_FID, // name of device
 GENERIC_READ | GENERIC_WRITE, // access (read-write) mode
 FILE_SHARE_READ | FILE_SHARE_WRITE, // sharing mode
 NULL, // security attributes (ignored)
 OPEN_EXISTING, // creation disposition
 FILE_FLAG_RANDOM_ACCESS, // flags/attributes

Controller Area Network (CAN) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 10-3

 NULL); // template file (ignored)

Before writing to or reading from an CAN port, the port must be configured. When an application opens
an CAN port, it uses the default configuration settings, which might not be suitable for the device at the
other end of the connection.

10.4.3 Configuring the CAN
Configuring the CAN port for communications involves one main operation: setting the CAN for transmit
or receiver mode. Before this action can be taken, a handle to the CAN port must already be opened. Each
of these steps requires a call to the DeviceIoControl function. As parameters, the CAN port handle,
appropriate IOCTL code, and other input and output parameters are required.

To configure an CAN port:
1. Set the hDevice parameter to the previously acquired CAN port handle.
2. Set the dwIoControlCode to the following IOCTL code: CAN_IOCTL_SET_CAN_MODE
3. Set the lpInBuffer to point to the variable to use for the CAN port setting. Set nInBufferSize to the

size of that variable.
4. Set lpOutBuffer, lpBytesReturned, and lpOverlapped to NULL. Set nOutBufferSize to 0.

The following code example shows how to configure the CAN port.
// Set CAN mode
 DeviceIoControl(hCAN, // file handle to the driver

CAN_IOCTL_SET_CAN_MODE, // I/O control code
&ChangedMode, // in buffer
sizeof(DWORD) // in buffer size
NULL, // out buffer
0, // out buffer size
NULL, // number of bytes returned
NULL); // ignored (=NULL)

As a substitute for the DeviceIoControl calls above, sdk may be used to simplify the code. The following
code shows an example:
CANSetMode(HANDLE hCAN,DWORD index,CAN_MODE mode);

10.4.4 Data Transfer Operations
The CAN driver provides one command, Transfer, that facilitates performing both reads and writes
through the CAN. The basic unit of data transfer in the CAN driver is the CAN_PACKET, which contains
a buffer for reading or writing data and a flag that specifies whether the desired operation is a Read or a
Write. An array of these packets makes up an CAN_TRANSFER_BLOCK object, which is needed to
perform a Transfer operation. The steps below detail the process of performing write and read operations
through the CAN.

Before these actions can be taken, a handle to the CAN port must already be opened. Each of these steps
requires a call to the DeviceIoControl function. As parameters, the CAN port handle, appropriate IOCTL
code, and other input and output parameters are required.

Controller Area Network (CAN) Driver

Windows Embedded CE 6.0 BSP Reference Manual

10-4 Freescale Semiconductor

To perform an CAN transfer:
1. Create an array of CAN_PACKET objects and initialize the fields of each packet as follows:

a) Set the byIndex field to the message buffer index for exchange data, the maximun value is 64.
b) Set the byRW field to CAN_RW_WRITE to specify that the CAN operation is a Write, or

CAN_RW_READ to specify that the CAN operation is a Read.
c) Set the format field to CAN_STANDARD to specify that the CAN frame format is a standard,

or CAN_EXTENDED to specify that the CAN frame format is a extended.
d) Set the frame field to CAN_DATA to specify that the CAN RTR format is a data, or

CAN_REMOTE to specify that the CAN RTR frame format is a remote.
e) Set the ID field to the message buffer ID for exchange data, for standard frame only supports

11 bit frame identification, extended frame can support 29 bit frame identification.
f) Set the wLen field to size, in bytes, of the read or write buffer. This indicates the number of

bytes to write or read.
g) Set the pbybuf field to the read or write buffer.
h) Set the lpiResult field to point to an integer that holds the return value from the write operation.

2. Set the hDevice parameter to the previously acquired CAN port handle.
3. Set the dwIoControlCode to the CAN_IOCTL_TRANSFER IOCTL code.
4. Set the lpInBuffer to point to the CAN_TRANSFER_BLOCK object created in step 1. Set

nInBufferSize to the size of that packet object.
5. Set lpOutBuffer, lpBytesReturned, and lpOverlapped to NULL. Set nOutBufferSize to 0.
6. After calling the DeviceIoControl function, check the lpiResult field to ensure that the operation

was successful. If lpiResult points to the CAN_NO_ERROR value, the operation was successful.
Otherwise, there was an error.

The following code example demonstrates how to perform a transfer that contains one write.
CAN_PACKET cp = {0};
CAN_TRANSFER_BLOCK ctb = {0};

cp.byIndex=(DWORD)lpParameter;
cp.byRW=CAN_RW_READ;
cp.fromat=CAN_EXTENDED;
cp.frame =CAN_DATA;
cp.ID=0x1234456;
cp.wLen=8;
cp.pbyBuf=(PBYTE)data;
cp.lpiResult=&ret;
ctb.pCANPackets=&cp;
ctb.iNumPackets=1;

 // Transfer data via CAN
if (!DeviceIoControl(hCAN, // file handle to the driver
 CAN_IOCTL_TRANSFER, // I/O control code
 pCANTransferBlock, // in buffer
 sizeof(CAN_TRANSFER_BLOCK), // in buffer size
 NULL, // out buffer
 0, // out buffer size
 NULL, // pointer to number of bytes returned

Controller Area Network (CAN) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 10-5

 NULL)) // ignored (=NULL)
 {
 DEBUGMSG(ZONE_ERROR,
 (TEXT("%s: CAN_IOCTL_TRANSFER failed!\r\n"), __WFUNCTION__));
 return FALSE;
 }

As a substitute for the DeviceIoControl call above, the SDK function as following:
CANTransfer(g_hReader, &ctb);

10.4.5 Closing the Handle to the CAN
Call the CloseHandle function to close a handle to the CAN when an application is done using it.
CloseHandle has one parameter, which is the handle returned by the CreateFile function call that opened
the CAN port.

10.4.6 Power Management

10.4.6.1 PowerUp

This function is not implemented for the CAN driver.

10.4.6.2 PowerDown

This function is not implemented for the CAN driver.

10.4.6.3 IOCTL_POWER_CAPABILITIES

The power management capabilities are handled with the Power Manager through this IOCTL. The CA N
module supports only two power states: D0 and D4.

10.4.6.4 IOCTL_POWER_SET

This IOCTL requests a change from one device power state to another. D0 and D4 are the only two
supported CEDEVICE_POWER_STATE in the CAN driver. Any request that is not D0 is changed to a
D4 request and results in the system entering into suspend state, while for a value of D0 the system is
resumed. For all platforms, the following registry entry must be defined:
"IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}"

10.4.6.5 IOCTL_POWER_GET

This IOCTL returns the current device power state. By design, the Power Manager knows the device
power state of all power-manageable devices. It does not generally issue an IOCTL_POWER_GET call
to the device unless an application calls GetDevicePower with the POWER_FORCE flag set.

10.4.7 CAN Registry Settings
The following registry keys are required to properly load the CAN1 and CAN2 module.

Controller Area Network (CAN) Driver

Windows Embedded CE 6.0 BSP Reference Manual

10-6 Freescale Semiconductor

IF BSP_CANBUS1
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\CAN1]
 "Prefix"="CAN"
 "Dll"="can.dll"
 "Index"=dword:1
 "Order"=dword:9
 "IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}"
ENDIF ; BSP_CANBUS1

IF BSP_CANBUS2
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\CAN2]
 "Prefix"="CAN"
 "Dll"="can.dll"
 "Index"=dword:2
 "Order"=dword:9
 "IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}"
ENDIF ; BSP_CANBUS2

10.5 Unit Test
The CAN CETK test cases verify the functionality of the CAN driver with the CAN controller. The CAN
driver can also be used to verify the functionality of the CAN driver.

10.5.1 Unit Test Hardware
The CANBUS2 controller should be connected to the CANBUS2 controller of an other i.MX25 board and
data exchange is tested between the two boards (two controllers). The CANBUSs are not connect directly.
An external transceiver on each board is needed. The i.MX25 Personality board already contains this
transceiver. The two boards must be connected by the CON1 CAN port (using an serial invert male-male).

10.5.2 Unit Test Software
Table 10-2 lists the required software to run the unit tests.

10.5.3 Building the Unit Tests
To build the CAN tests, build an OS image for the desired configuration using these steps:

1. Within the Platform Builder, choose Build OS > Open Release Directory.
A DOS prompt is displayed.

2. Change to the CAN Tests directory: \WINCE600\SUPPORT_PDK1_7\TEST\CANBUS\CANApp

3. Enter set WINCEREL=1 on the command prompt and press return.
This copies the file to the flat release directory.

4. Input build -c to build the CAN test.

Table 10-2. Software Requirements

Requirement Description

CANApp.exe Test file

Controller Area Network (CAN) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 10-7

After the build completes, the CANApp.exefile is located in the $(_FLATRELEASEDIR) directory.

10.5.4 Running the Unit Tests

On the receiver board run the application with this command: CANApp.exe -r

On the sender board run the application with this command: CANApp.exe -s

Controller Area Network (CAN) Driver

Windows Embedded CE 6.0 BSP Reference Manual

10-8 Freescale Semiconductor

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 11-1

Chapter 11
Dynamic Voltage and Frequency Control (DVFC) Driver
The BSP includes the DVFC driver that provides combined support for DVFS (Dynamic Voltage
Frequency Scaling). The DVFC driver plays an important role in the reduction of active power
consumption by dynamically adjusting the voltage and frequency settings of the system. The DVFC driver
responds to DVFC hardware logic or load tracking software that is monitoring CPU loading and
process/temperature performance of the silicon.

11.1 DVFC Driver Summary
Table 11-1 provides a summary of source code location, library dependencies, and other BSP information.

11.2 Supported Functionality
The DVFC driver enables the hardware platform to provide the following software and hardware support:

1. Executes as a device driver and provides synchronized support of the DVFS power management
feature

2. Exposes stream interface for initialization and power management
3. Supports D0 and D4 driver power states and support control of frequency/voltage setpoint based

on Power Manager device power states
4. Supports peripheral setpoint requests initiated by CSPDDK clock management code

Table 11-1. DVFC Driver Summary

Driver Attribute Definition

Target Platform iMX25-3DS-PDK1_7

Target SOC MX25_FSL_V2_PDK1_7

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\DVFC

SOC Specific Path

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\DVFC

Driver DLL dvfc_mc34704.dll

SDK Library N/A

Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > DVFC driver
support using the MC13892

SYSGEN Dependency N/A

BSP Environment Variables BSP_DVFC = 1

Dynamic Voltage and Frequency Control (DVFC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

11-2 Freescale Semiconductor

11.2.1 i.MX25 Supported Functionality
1. Exposes API to application to change setpoint
2. Not support CPU load tracking to control setpoint

11.3 Hardware Operation

11.3.1 Conflicts with Other Peripherals and Catalog Items
No conflicts.

11.3.2 i.MX25 3-Stack Configuration
The DVFC driver is dependent upon the MC34704 PMIC interface for dynamic voltage control via I2C1
port. The I2C driver SDK is needed in the DVFC driver.

11.4 Software Operation

11.4.1 i.MX25 Registry Settings
The following registry keys are required to properly load the i.MX25 DVFC module.
; DVFC Driver
;
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\DVFC]
 "Prefix" = "DVF"
 "Index" = dword:1
 "Dll"="dvfc_MC34704.dll"
 "IClass"="{A32942B7-920C-486b-B0E6-92A702A99B35}" ; PMCLASS_GENERIC_DEVICE
 "order"=dword:1

11.4.2 Loading and Initialization
The DVFC driver is automatically loaded to kernel space by the Device Manager as a stream driver. As
part of the loading procedure of stream drivers, the device manager invokes the corresponding stream
initialization function exported by the DVFC driver. The initialization sequence includes a call to
platform-specific code (BSPDvfcInit) to allow the OEM to configure and tune the DVFC driver operation.

11.4.3 Operation
The DVFC driver is the central point in the BSP for controlling voltage and frequency scaling. The DVFC
communicates with the PMIC and CCM to coordinate the DVFS. The DVFC driver responds to setpoint
requests from DDK_CLK (by driver calling DDKClockSetGatingMode) and Power Manager (by
IOCTL_POWER_SET). A shared global data structure (DDK_CLK_CONFIG) is used to keep track of
reference counts for each setpoint. The DVFC relies on synchronization with the DDK_CLK component
to determine when it is safe to transition to a new setpoint. DVFC integration with the Power Manager
allows drivers and applications direct control of the setpoint by using the SetDevicePower API.

Dynamic Voltage and Frequency Control (DVFC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 11-3

11.4.3.1 i.MX25 Voltage/Frequency Setpoints

The i.MX25 DVFC driver supports three voltage frequency setpoints. Table 11-2 provides the
voltage/frequency characteristics for these setpoints.

The setpoint attributes are controlled by the definitions in the platform-specific DVFS header file (found
in \PLATFORM\<Target Platform>\SRC\INC\dvfs.h). The DVFC driver uses these definitions to
populate a global setpoint array (g_SetPointConfig) that is referenced during setpoint transitions.

11.4.4 DDK Interface
The DVFC driver allows other drivers or applications to control some aspects of the DVFS operation. Due
to the tight coupling with the system clock configuration, this interface is exposed within CSPDDK
clocking support. Refer to the CSPDDK documentation for the following functions:

• DDKClockSetpointRequest, Section 8.6.1.2.6, “DDKClockSetpointRequest.”
• DDKClockSetpointRelease, Section 8.6.1.2.7, “DDKClockSetpointRelease.”

11.4.5 Power Management
The DVFC is an integral part of the power management supported by the BSP. However, since the DVFC
runs as a driver on the system, it also supports the Power Manager device driver interface. This allows the
DVFC driver to be notified of when the system is suspending or resuming and configure the processor
performance accordingly.

11.4.5.1 PowerUp

This stream interface function is not implemented for the DVFC driver.

11.4.5.2 PowerDown

This stream interface function is not implemented for the DVFC driver.

11.4.5.3 IOCTL_POWER_CAPABILITIES

The DVFC driver advertises that D0–D4 device power states are supported.

11.4.5.4 IOCTL_POWER_SET

The DVFC driver supports requests to enter D0–D4 device power state.

Table 11-2. i.MX25 DVFC Setpoints

Setpoint Name CPU/BUS/PER Clock (MHz) Core Voltage (V)

DDK_DVFC_SETPOINT_HIGH 399/133/66.5 1.450

DDK_DVFC_SETPOINT_MEDIUM 266/133/66.5 1.196

DDK_DVFC_SETPOINT_LOW 133/133/66.5 1.196

Dynamic Voltage and Frequency Control (DVFC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

11-4 Freescale Semiconductor

11.4.5.5 IOCTL_POWER_GET

The DVFC driver reports the current device power state (D0, D1, D2 or D4).

11.5 Unit Test

11.5.1 i.MX25 Unit Testing
A stress test application for the DVFC driver is provided for unit testing. This stress test uses the Power
Manager interface (SetDevicePower) to randomly request setpoints for the CPU domain. Follow these
steps to run this unit test.

1. Open <Target Platform>-Mobility workspace and add the DVFC driver catalog item. Build OS
image.

NOTE
Note that modifications to the default workspace may cause additional
drivers to be included and may prevent the system from transitioning
through all possible DVFS setpoints.

2. Build DVFC stress test located in \SUPPORT\TEST\APP\PWRMGMT. The resulting application
pwrmgmt.exe is generated in the flat release directory.

3. Boot the OS image and launch application code such as media player that can perform continuous
playback. WMA audio playback is a good use case since audio playback can be performed across
all supported setpoints.

4. Launch the stress test application. From the CE shell, the stress test can be launched with the
following command line:

s \release\pwrmgmt.exe

5. Board modifications are required to observe voltage setpoints and are not covered in this
document. Debug messages to indicate setpoint transitions can be enabled using the
DVFC_VERBOSE macro found in \PLATFORM\<Target
Platform>\SRC\DRIVERS\DVFC\COMMON\dvfc.c

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 12-1

Chapter 12
Enhanced Secure Digital Host Controller (eSDHC) Driver
The eSDHC module supports Multimedia Cards (MMC), Secure Digital Cards (SD) and Secure Digital
I/O and Combo Cards (SDIO). The eSDHC driver provides the interface between the Microsoft SD Bus
driver and the eSDHC hardware.

12.1 eSDHC Driver Summary
Table 12-1 provides a summary of source code location, library dependencies and other BSP information.

12.2 Supported Functionality

The eSDHC driver enables the hardware to provide the following software and hardware support:
1. Enhanced Secure Digital Host Controllers
2. Designed and implemented as close as possible to Standard Host Controller Driver in CE 6.0 R2
3. Compliant with the SDBUS2 driver provided in CE 6.0 R2
4. Fast Path
5. DMA or PIO modes of data transfers based on value of eSDHC driver registry key, DisableDMA

Table 12-1. eSDHC Driver Summary

Driver Attribute Definition

Target Platform iMX25-3DS-PDK1_7

Target SOC MX25_FSL_V2_PDK1_7

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\ESDHC

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\ESDHC

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\ESDHC

Driver DLL esdhc.dll

SDK Library esdhcbase_common_fsl_v2PDK1_7.lib, esdhcbase_<Target SOC>.lib, sdcardlib.lib, sdhclib.lib,
sdbus.lib

Catalog Item Third Party > BSP > Freescale i.MX25 3DS PDK1_7: ARMV4I > Device Drivers > SD Host
Controller > Enhanced SD Host Controller 1 (ESDHC1) Support

SYSGEN Dependency SYSGEN_SD_MEMORY=1

BSP Environment Variables BSP_NOESDHC=
BSP_ESDHC1=1
IMGSDBUS2

Enhanced Secure Digital Host Controller (eSDHC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

12-2 Freescale Semiconductor

6. SD, SD High Capacity (up to spec v2.1), MMC (up to spec v4.3), and SDIO cards (up to spec v2.0).
High capacity MMC cards are not supported because SDBUS2 in CE 6.0 R2 does not support these
cards

7. One host supports only one card connected to it
8. Two hardware hosts exist, but only host 1 is physically connected with SD card socket on the

3-Stack System
9. DLL supports multiple instances of the eSDHC controller
10. Configuration of the block sizes from 1–4096 bytes in single and multi-block modes
11. Insertion and removal of card, even when system is suspended; when the system resumes, the card

(if present) is remounted
12. Power states on(D0) and off (D4), D1–D3 states are treated as D4
13. Clocks are gated in D4 state, and ungated in D0 state, except for SDIO cards for which clocks are

never gated.
14. Write protect switch on SD cards
15. Combo cards (for example, SD memory + WiFi functionality on same card)
16. MMC cards in 1-bit mode and SD/SDIO cards in 4-bit modes due to limitation in SDBUS2 in CE

6.0 R2

12.3 Hardware Operation
Refer to the chapter on the eSDHC in the i.MX25 Applications Processor Reference Manual for detailed
operation and programming information.

12.3.1 Conflicts with Other Peripherals and Catalog Options

12.3.1.1 Conflicts with SoC Peripherals

All eSDHC1 pads can be configured for their primary function in Alternate Mode 0. However, some
eSDHC1 pads are shared with CSPI2 in ALT Mode1, FEC in ALT Mode 2, GPIO2 pins in ALT 5 and
SLCDC in ALTMode6. eSDHC2 pads can be configured in ATL Mode 1 over FEC pin. Some eSDHC2
pads are conflicts with FEC/ATA/GPIO43/LCDC. Some UART2 pads can be configured as eSDHC1
DATA5~DATA8 for 8-bit mode.

12.3.1.2 Conflicts with Other Board Peripherals

No conflicts.

12.4 Software Operation
The eSDHC driver follows the Microsoft-recommended architecture (standard host controller driver) for
Secure Digital Host Controller drivers, whenever possible. The details of this architecture and its operation
can be found in the Platform Builder Help under the heading Secure Digital Card Driver Development

Enhanced Secure Digital Host Controller (eSDHC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 12-3

Concepts, or in the online documentation at the following URL:
http://msdn2.microsoft.com/en-us/library/aa925967.aspx

12.4.1 Required Catalog Items

12.4.1.1 SD and MMC Memory Card Support

Catalog > Device Drivers > SDIO > SDIO Memory > SD Memory

Additionally, since eSDHC driver supports high capacity cards, it is necessary to define IMGSDBUS2
variable in the workspace. Both SYSGEN_SD_MEMORY and IMGSDBUS2 are set by default in the BSP
workspace.

12.4.2 eSDHC Registry Settings

12.4.2.1 i.MX25 SDHC Registry Settings
; @CESYSGEN IF CE_MODULES_SDBUS

IF BSP_ESDHC1
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\ESDHC1_MX25]
 "Order"=dword:21
 "Dll"="esdhc.dll"
 "Prefix"="SHC"
 "Index"=dword:1
 "DisableDMA"=dword:0 ; Use this reg setting to disable internal DMA
 "MaximumClockFrequency"=dword:3197500 ; 52 MHz max clock speed

;"WakeupSource"=dword:1 ; this will enable system
wakeup when card is inserted or removed during suspend state

[HKEY_LOCAL_MACHINE\Comm\PegasSDN1\Parms]
 "SdioBitMode"=dword:00000001

[HKEY_LOCAL_MACHINE\Comm\PegasSDN1\Parms]
 "DisablePowerManagement"=dword:1
 "ResetOnResume"=dword:0
 "RebindOnResume"=dword:1

[HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\MMC]
 "Name"="MMC Card"
 "Folder"="MMCMemory"

[HKEY_LOCAL_MACHINE\System\StorageManager\Profiles\SDMemory]
 "Name"="SD Memory Card"
 "Folder"="SDMemory"
ENDIF BSP_ESDHC1

; @CESYSGEN ENDIF CE_MODULES_SDBUS

Enhanced Secure Digital Host Controller (eSDHC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

12-4 Freescale Semiconductor

12.4.3 DMA Support

12.4.3.1 DMA Support

DMA mode is supported by the eSDHC driver. The driver does not allocate or manage DMA buffers
internally except for a start buffer and an end buffer for non-aligned buffers that are provided to the driver.
For every request submitted to it, the driver attempts to build a DMA Scatter Gather Buffer Descriptor list
for the buffer passed to it by the upper layer. For cases where this list cannot be built, the driver falls back
to the non-DMA mode of transfer.

12.4.3.1.1 i.MX25 DMA Support

For i.MX25, both DMA mode and non-DMA modes are supported by the driver. DMA mode is used by
default, and user can change the DisableDMA value in registry file esdhc_mx25.reg to enable non-DMA
mode. Internal DMA on eSDHC is used. Two internal DMA modes are supported by the eSDHC
hardware: Simple DMA and Advanced DMA. The driver supports only ADMA mode.

For the driver to attempt to build the Scatter Gather DMA Buffer Descriptors, the upper layer should
ensure that the buffer meets the following criteria.

• Start of the buffer should be a page aligned address (4096 bytes)

Due to cache coherency issues arising due to processor and DMA access of the memory, the above criteria
is further stringent for the read or receive operation (it is not applicable for write or transmit):

• Number of bytes to transfer should be cache line size (32 bytes) aligned

For buffer chain that does not meet the above criteria, the driver uses its own start and end buffers that are
page and cache-aligned. Later, when the DMA completes, a memcpy is done from the temporary start and
end buffers back to the original non-aligned buffers.

12.4.4 Power Management
The eSDHC driver does self-management of the module clocks for power savings during inactivity. Only
two power states are supported by the driver: D0 when all clocks are on, and D4 when all clocks are gated.
The IOCTL_POWER calls are never entered in this driver because it does not register with the CE Power
Manager. Instead, the SHC_powerUp and SHC_PowerDown APIs are the entry points for suspend and
resume functionality.

12.4.4.1 i.MX25 Power Management

Clocks to the eSDHC module are turned off (gated) when there is no card present in the socket. No power
gating is implemented on this platform. The power to the socket is always on.

12.5 Unit Test
The eSDHC driver is tested using the following tests included as part of the Windows CE 6.0 Test Kit
(CETK).

• File System Driver Test

Enhanced Secure Digital Host Controller (eSDHC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 12-5

• Storage Device Block Driver Read/Write Test
• Storage Device Block Driver API Test
• Storage Device Block Driver Performance Test
• Partition Driver Test

12.5.1 Unit Test Hardware
Table 12-2 lists the required hardware to run the unit tests.

12.5.2 Unit Test Software
Table 12-3 lists the required software to run the unit tests.

12.5.3 Building the Unit Tests
All the above mentioned tests come pre-built as part of the CETK. No steps are required to build these
tests. These test files can be found alongside the other required CETK files in the following location:
[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4I

Table 12-2. Hardware Requirements

Requirement Description

SD Cards SanDisk (128MB, 512MB, Extreme III SDHC 4GB)
ATP (SDHC 4GB)
A-DATA Turbo (SDHC 4GB)
Kingston (MiniSD 512MB, MicroSD 1GB)

MMC Cards PQI (128 Mbytes)
Kingmax (RS-MMC: 512MB, 1GB)
Transcend (MMCPlus: 1 Gbytes, 4 Gbytes)

Table 12-3. Software Requirements

Requirement Description

tux.exe Tux test harness, which is needed for executing the test

kato.dll Kato logging engine, which is required for logging test data

tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device and the development
workstation

fsdtst.dll File System Driver Test .dll file

rwtest.dll Storage Device Block Driver Read/Write Test .dll file

disktest.dll Storage Device Block Driver API Test .dll file

disktest_perf.dll Storage Device Block Driver Performance Test

msparttest.dll Partition Driver Test .dll file

Enhanced Secure Digital Host Controller (eSDHC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

12-6 Freescale Semiconductor

12.5.4 Running the Unit Tests
The following sections describe the tests available and the test procedures for each of the tests. For detailed
information on these tests see the relevant subsections under CETK Tests in the Platform Builder Help,
or view the online documentation at the following URL:
http://msdn2.microsoft.com/en-us/library/aa934353.aspx

12.5.4.1 File System Driver Test

Use command line
tux –o –d fsdtst –c “-p SDMemory –z”

to run the tests on an SD card. For MMC cards, use
tux –o –d fsdtst –c “-p MMC –z”

This tests all the cards inserted and requires the cards to be formatted prior to running the test. For higher
capacity cards, the test takes a long time to complete, and hence it is recommended that the system power
management (from control panel) be configured so that the system does not enter suspend state during test
execution.

12.5.4.2 Storage Device Block Driver Read/Write Tests

Use the command line
tux –o –d rwtest –c “-z”

to run the tests. This only tests one card at a time.

12.5.4.3 Storage Device Block Driver API Tests

Use the command line
tux –o –d disktest –c “-z”

to run the tests. This only tests one card at a time.

12.5.4.4 Storage Device Block Driver Performance Tests

Use the command line
tux –o –d disktest_perf –c “-z -disk DSK1:”

to run the tests. This tests only one card at a time.

12.5.4.5 Partition Driver Test

Use command line
tux –o –d msparttest –c “-z”

to run the tests.

Enhanced Secure Digital Host Controller (eSDHC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 12-7

Cards should be of size 256 Mbytes and higher. For higher capacity cards, the test takes a long time to
complete, and hence it is recommended that the system power management (from control panel) be
configured so that the system does not enter suspend state during test execution.

12.5.5 System Testing
The following system tests are performed to verify the operation of the SD and MMC memory cards:

• Use the Start > Settings > Control Panel > Storage Manager to format and create partitions on
the mounted memory cards

• Establish ActiveSync connection over USB and transfer files to and from the memory cards
• Write media files to memory storage and use Windows Media Player to playback media files from

memory storage.

12.6 Secure Digital Card Driver API Reference
Detailed reference information for the Secure Digital Card driver may be found in the Platform Builder
Help under the heading Secure Digital Card Driver Reference or in the online documentation at the
following URL: http://msdn2.microsoft.com/en-us/library/aa912994.aspx

Enhanced Secure Digital Host Controller (eSDHC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

12-8 Freescale Semiconductor

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 13-1

Chapter 13
Enhanced Serial Audio Interface (ESAI) Driver
The Enhanced Serial Audio Interface (ESAI) provides a serial port for serial communication with a variety
of serial devices.

13.1 ESAI Driver Summary
The ESAI consists of independent transmitter and receiver sections, each section with its own clock
generator. It is called synchronous because all serial transfers are synchronized to a clock. Up to six
transmitters and four receivers are supported. Table 13-1 provides a summary of source code location,
library dependencies and other BSP information.

13.2 Supported Functionality
The ESAI audio driver enables the 3-Stack System to provide the following software and hardware
support:

1. Conforms to the audio driver architecture as defined for Windows Embedded CE 6.0 and all related
operating systems

2. Uses double-buffered DMA operations to transfer audio data
3. Supports multi-channel PCM wave data playback function
4. Supports multi-channel PCM wave data record function
5. Supports 16-bit and 24-bit PCM data. (24-bit PCM data is packed in bits 23–0 of the 32 bits)

Table 13-1. ESAI Driver Summary

Driver Attribute Definition

Target Platform iMX25-3DS-PDK1_7

Target SOC MX25_FSL_V2_PDK1_7

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\ESAI

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\ESAI

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\ESAI

Driver DLL esai_wm8580.dll

SDK Library esai_common_fsl_v2_PDK1_7.lib, esai_<Target SOC>.lib

Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > ESAI

SYSGEN Dependency SYSGEN_AUDIO

BSP Environment Variables BSP_ESAI=1

Enhanced Serial Audio Interface (ESAI) Driver

Windows Embedded CE 6.0 BSP Reference Manual

13-2 Freescale Semiconductor

6. Supports 1–6 channel PCM data playback. (Refer to software operation for detail)
7. Supports 1–4 channel PCM data record. (Refer to software operation for detail)
8. Supports playback function with Freescale hardware platforms that include the WM8580

multi-channel audio Codec
9. Supports playback without ASRC support at sample rate: 16KHz,32 KHz, 44.1 KHz, 48 KHz,

64KHz,88.2 KHz, 96 KHz, 128KHz, 176.4KHz, 192KHz (WM8580 Codec) Please note: sample
rate about 48KHz is not supported if the playback audio protocol is configured as network mode,
refer to the registry setting about the protocol setting.

10. Supports record function with Freescale hardware platform that includes the AK5702 Codec
11. Supports record sample rates: 48 KHz, 44.1 KHz, 32 KHz, 24 KHz, 16 KHz, 12 KHz, 8 KHz

(AK5702 Codec)

13.3 Hardware Operation
Refer to the chapter on the ESAI in the i.MX25 Multimedia Applications Processor Reference Manual for
detailed operation and programming information.

13.3.1 Conflicts with Other Peripherals and Catalog Items
All the pins of ESAI can be configured for alternate functionality (CSI, SIM) using the i.MX25 IOMUX.
The configuration is specified by the BSP serial driver. Changing this configuration results in a conflict
and prevents proper operation of the ESAI driver.

13.3.1.1 Conflicts with 3-Stack Peripherals

On i.MX25 3-Stack System, the pins used for communication between ESAI and the external codecs are
shared with the CSI and the SIM1/SIM2 controllers. Do not include the camera, SIM1 or SIM2 drivers
while including ESAI in the image.

13.3.2 Hardware Limitation

13.3.2.1 Channel Order

In the ESAI hardware implementation, all the transmitters share one data FIFO. When multiple
transmitters are used, the audio data from the FIFO is transferred to the different transmitters is sequence,
such as TX0, TX1, TX2, TX0, TX1, TX2, and so on. Since the different transmitters use the same slot
mask, when multiple transmitters are used, the channel mask is not handled well. The channel mask can
only be used when only one transmitter is being used.

Also, the mapping from channel number to the transmitter port changes according to the channel numbers
when multiple transmitters are used.

For example, when three transmitters are used for 1–6 channels of audio playback:

Channel Number = 6: CH0,CH3->TX0, CH1,CH4->TX1, CH2,CH5->TX2

Enhanced Serial Audio Interface (ESAI) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 13-3

Channel Number = 4, CH0,CH2->TX0, CH1,CH3->TX1

Channel Number = 2, CH0,CH1->TX0

For receive, the problem is similar and the channel number should be even for both playback and record.

13.3.2.2 Full Duplex Support

The ESAI module cannot support full duplex. Therefore, playback or record cannot be performed at the
same time.

13.4 Software Operation
The audio driver follows the Microsoft-recommended architecture for audio drivers. For information
about the architecture and operation, see the Platform Builder Help:

Developing a Device Driver > Windows CE Drivers > Audio Drivers > Audio Driver Development
Concepts.

13.4.1 Required Catalog Items
Third Party > BSP > Freescale<Target Platform>:ARMV4I > Device Drivers > CSPI Bus > CSPI Bus1

Third Party > BSP > Freescale<Target Platform>:ARMV4I > Device Drivers >I2C Bus > I2C Bus1

13.4.2 ESAI Registry Settings

13.4.2.1 i.MX25 Registry Settings
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\ESAI]
"Prefix"="WAV"
 "Dll"="esai_wm8580.dll"
 "Index"=dword:3
 "Order"=dword:8
 "Priority256"=dword:95
 "AudioProtocol"=dword:0
 "IClass"=multi_sz:"{E92BC203-8354-4043-A06F-2A170BF6F227}",
 "{37168569-61C4-45fd-BD54-9442C7DBA46F}"

The AudioProtocol key value can be set to 0 (one transmitter with network mode) or 2 (multi-transmitter
with normal mode). When AudioProtocol is set to 0, one transmitter is used and channel mask is well
handled. But since all the audio data is transferred on one serial bus, the frame rate is limited by the bit
clock. Sample rate beyond 48 KHz is not supported. In this mode, the mapping from slot number to the
transmitter port is fixed.

When AudioProtocol is set to 2, multi transmitters are used and 6-channel wave format is supported. To
keep the mapping relationship between slot number and transmitters, the audio data needs to be stuffed to
6-channel format before it is transferred to ESAI audio interface. In this case the channel mask does not
take effect.

Enhanced Serial Audio Interface (ESAI) Driver

Windows Embedded CE 6.0 BSP Reference Manual

13-4 Freescale Semiconductor

The AudioProtocol affects only playback function. For record function, the bus protocol is decided by
driver and is not selectable.

13.4.3 Supported Wave Data Format
To access the ESAI audio interface, the WAVEFORMATEXTENSIBLE data structure must be used:

typedef struct {
 WAVEFORMATEX Format;
 union {
 WORD wValidBitsPerSample;
 WORD wSamplesPerBlock;
 WORD wReserved;
 } Samples;
 DWORD dwChannelMask;
 GUID SubFormat;
} WAVEFORMATEXTENSIBLE, *PWAVEFORMATEXTENSIBLE;

Format.wFormatTag must be set to WAVE_FORMAT_EXTENSIBLE. The dwChannelMask member
does not take effect while AudioProtocol is set to 2 in the registry file. Format.nChannels can be set from
1 to 6, but when AudioProtocol is set to 2 in the registry file, only even number can be used (such as 2, 4,
6). For 24-bit audio data, set Samples.wValidBitsPerSample to 24 and Format.wBitsPerSample to 32. The
SubFormat member is not used since only PCM data is supported.

13.4.4 DMA Support

13.4.4.1 DMA Support

Double-buffer is used for audio data transfer.

13.4.5 Power Management
This function is not implemented for the ESAI driver.

13.4.5.1 PowerUp

This function is not implemented for the ESAI driver.

13.4.5.2 PowerDown

This function is not implemented for the ESAI driver.

13.4.5.3 IOCTL_POWER_CAPABILITIES

This function is not implemented for the ESAI driver.

13.4.5.4 IOCTL_POWER_GET

This function is not implemented for the ESAI driver.

Enhanced Serial Audio Interface (ESAI) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 13-5

13.4.5.5 IOCTL_POWER_SET

This function is not implemented for the ESAI driver.

13.5 Unit Test
The ESAI driver interface supports only wave data that conforms with the WAVEFORMATEXTENSIBLE
structure. Therefore the driver might not be supported by general audio applications.

13.5.1 Building the Unit Test
To build the ESAI tests, build an OS image for the desired configuration using these steps:

1. Within the Platform Builder, choose Build OS > Open Release Directory.
A DOS prompt is displayed.

2. Change to the M_Player Tests directory: \WINCE600\SUPPORT_PDK1_7\TEST\ESAI\M_PLAYER
3. Enter set WINCEREL=1 on the command prompt and press return.

This copies the .exe file to the flat release directory
4. Enter build -c at the prompt and press return
5. Change to the M_Recorder Tests directory: \WINCE600\SUPPORT_PDK1_7\TEST\ESAI\M_RECORDER
6. Enter set WINCEREL=1 on the command prompt and press return.

This copies the .exe file to the flat release directory
7. Enter build -c at the prompt and press return

After the build completes, the m_player.exe and m_recorder.exe files are located in the
$(_FLATRELEASEDIR) directory.

13.5.2 Hardware Setup
The audio extension card is necessary for the ESAI test. The multi-channel audio codec for playback and
record function is located on the audio extension card. Connect the audio card with J6 on the i.MX25
Personality board (refer to the User’s Manual for details).

For playback function, connect the earphone/speaker with J2 on the audio card, and six channels are
supported at most. For record function, connect audio input line with J3 on audio card, and four channels
are supported at most.

13.5.3 Running the Unit Test

13.5.3.1 Playback Function Test

The m_player application is used for the playback function test. Earphone or speakers can be used to hear
the sound.

Usage: m_player wave_file_name channel_number channel_mask

Enhanced Serial Audio Interface (ESAI) Driver

Windows Embedded CE 6.0 BSP Reference Manual

13-6 Freescale Semiconductor

Example: m_player temp\source.wav 6 0x3f

In this example, the source.wav is played through the ESAI in six channels and the channel mask is 0x3f.
The wave file used for testing is a general stereo wave file and the application extends it to multi-channel
wave format. The wave file can be a 16-bit or 24-bit (packed into bits 23–0 of the 32 bits) data file.

To run the application within VS2005, go to the Target menu option and select the Run Programs menu
option. This gives a list of applications that can be run on the OS. Select m_player.exe from this list and
click on Run to run this application.

13.5.3.2 Record Function Test

The m_recorder application is used for the record function test. The sound from the audio input line is
recorded in the destination wave file and can be played later for verification.

Usage: m_recorder wave_file_name seconds_length sample_rate bit_depth channel_number
channel_mask

Example: m_record temp\target.wav 10 48000 16 4 0xf

In this example, the target.wav file is recorded through the ESAI. The file is in wave format: 10 seconds
in length, 48 KHz sample rate, 16-bit depth, 4 channels and the channel mask is 0xf.

To run the application within VS2005, go to the Target menu option and select the Run Programs menu
option. This gives a list of applications that can be run on the OS. Select m_record.exe from this list and
click on Run to run this application.

If the bit depth is set to 32, the recorded data is 24-bit (packed into bits 23–0 of the 32 bits). The channel
number indicates the number of channels in the audio data, and the mask indicates which channel contains
data and which channel contains zero. Zeros should not be present in the data, but there is a limitation in
the hardware conversion process that generates zeros. If a bit in the mask is zero, the corresponding bits
are zeros in the interleaved audio data. The channel number also includes such “zero-data” channel.

NOTE
These applications are mainly used for simple function test and API demo
usage. User might encounter wave file format related failures (like wave
format chunk length and “fact” chunk is not well handled). Edit the source
code to resolve the problem.

13.5.4 Known Issues
On some audio extension cards, the mulit-channel audio codec WM8580 is not stable at
44.1 KHz/88.2 KHz/176.4KHz. Playback with audio files at these sample rates may cause noise.

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 14-1

Chapter 14
General Purpose Timer (GPT) Driver
The GPT is a multipurpose module used to measure intervals or generate periodic output. The GPT counter
value can be captured in a register using an event on an external pin. The GPT can also generate an event
on a chip boundary signal and an interrupt when the timer reaches a programmed value.

14.1 GPT Driver Summary
Table 14-1 provides a summary of source code location, library dependencies and other BSP information.

14.2 Supported Functionality
The GPT driver enables the hardware platform to provide the following software support:

1. Clock source selection including IPG_CLK (microsecond level precision) and GPT_32KCLK
(microsecond level precision)

2. Both reset and free-run mode count operation
3. Two power management modes: power on and power off
4. Exposes the SDK API interface which is used by application

Table 14-1. GPT Driver Summary

Driver Attribute Definition

Target Platform iMX25-3DS-PDK1_7

Target SOC MX25_FSL_V2_PDK1_7

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\GPT

 SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\GPT

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\GPT

Driver DLL gpt.dll

SDK Library gptsdk.lib

Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > GPT > GPTn

SYSGEN Dependency N/A

BSP Environment Variables BSP_GPT=1
BSP_GPT=2
BSP_GPT=3
BSP_GPT=4

General Purpose Timer (GPT) Driver

Windows Embedded CE 6.0 BSP Reference Manual

14-2 Freescale Semiconductor

NOTE
GPT_IPGCLK is adapted for short time period (GPT_IPGCLK is
66.5 MHz, the maximum time period is 64.599 seconds), while the
maximum time period of GPT_32KCLK is approximately 37 hours, 16
minutes, 57 seconds.

14.3 Hardware Operation
Refer to the chapter on GPT in the i.MX25 Applications Processor Reference Manual for detailed hardware
operation and programming information.

14.3.1 Conflicts with Other Peripherals and Catalog Items
Because the external GPT clock source is not used, GPT module does not conflict with other peripherals.

14.4 Software Operation
If the Platform Builder profiling support is to be used, the GPT driver cannot be included in the workspace.

14.4.1 GPT Registry Settings
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\GPTn]

"Prefix"="GPT"
"Dll"="gpt.dll"
"Index"=dword:n ;n is 1,2,3,4

14.4.2 Communicating with the GPT
The GPT driver controls the General Purpose Timer. This timer is used to provide high resolution
(microsecond) timing functionality to other platform modules. The GPT is a stream interface driver and is
thus accessed through the file system APIs. To communicate using the GPT, a handle to the device must
first be obtained using the GptOpenHandle function. Subsequent commands to the device are issued
using various APIs supported by this driver. For more information about the API refer to Section 14.7,
“GPT SDK API Reference.” To use this API, it is necessary to include the gptsdk.lib library.

14.4.2.1 Creating a Handle to the GPT

To communicate with the GPT, a handle to the device must first be created using the GptOpenHandle
API. The default GPT port is 1.

The following code shows how to open a handle to the GPT:
// Global data
// Handle to the GPT device
HANDLE g_hGpt = NULL;

// opening the GPT1 port.
g_hGpt = GptOpenHandle(L"GPT1:");

General Purpose Timer (GPT) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 14-3

14.4.2.2 Create Event for GPT
HANDLE GptCreateTimerEvent(HANDLE hGpt, LPTSTR eventName)
// Function: GptCreateTimerEvent
//
// This method returns a handle triggered
// when the GPT timer period has elapsed.
//
// Parameters:
// hGpt
// [in] Handle to GPT driver.
//
// eventName
// [in] String identifying timer event.
//
// Returns:
// Timer event handle created. Handle is NULL if failure.

The following is an example:
// Name to create the named event for Timer
#define GPT_EVENT_NAME L"GptTest1"

// create an event for the timer interrupt
hGptIntr = GptCreateTimerEvent(hGpt, GPT_EVENT_NAME);

14.4.2.3 Configuring the GPT

Calling the GptStart(g_hGpt, pTimerConfig) function starts the GPT module and enables the timer event
trigger. g_hGpt is valid and opened handle for GPT, and pTimerConfig struct is as follows:

typedef struct
{
 timerMode_c timerMode;
 UINT32 period;
 timerSrc_c timerSrc;
} GPT_Config, *pGPT_Config;

and timerSrc may select GPT_IPGCLK or GPT_32KCLK.

Before this action can be taken, a handle to the GPT port must already be opened.

Call the GptStart API to enable and start the timer:
// configuring and starting the GPT, the second parameter contains timer mode, period and
clock source
GptStart(g_hGpt, pTimerConfig);

Call the GptShowTimerSrc API to show current timer source:
// showing current GPT timer source
GptShowTimerSrc(g_hGpt);

After the GPT starts to time and the timer event handle is created, call the following command to wait the
coming of the predefined time:

// waiting for event triggering
if(WaitForSingleObject(g_hGptIntr, INFINITE) == WAIT_OBJECT_0)
{
}

General Purpose Timer (GPT) Driver

Windows Embedded CE 6.0 BSP Reference Manual

14-4 Freescale Semiconductor

14.4.2.4 Closing the Handle to the GPT

To close the GPT handle, call the GptCloseHandle API. Before performing the close operation, stop the
timer using GptStop API. It is always advised to call GptReleaseTimerEvent to release any pending
timer events before closing the handle.

The following code shows how to close the GPT Handle:
// Name to create the named event for Timer
#define GPT_EVENT_NAME L"GptTest1"

// releasing the Timer Event.
GptReleaseTimerEvent(g_hGpt, eventString);
GptStop(g_hGpt);
GptCloseHandle(g_hGpt);

To pause the timer and then restart for a moment, use the GptStop function, as follows:
GptStop(g_hGpt);
Sleep(sometime);
GptResume(g_hGpt);

BOOL GptResume(HANDLE hGpt)
// Function: GptResume
//
// This method reactivates the GPT(Usually called after a Stop))
//
// Parameters:
// hGpt
// [in] Handle to GPT driver.
//
// Returns:
// TRUE if success.
// FALSE if failure.

14.4.3 DMA Support
The GPT driver does not use the DMA.

14.5 Power Management
The primary method for limiting power consumption in the GPT module is to gate off all clocks to the
module when the GPT is not used. The clock is enabled when an application calls GPT_Open(). This
clock then remains enabled as long device is kept open. The GPT clock is turned off when the application
closes the device using GPT_Close().

14.5.1 PowerUp
This function restores the state of the GPT clocks back to the state before entering suspend. If the GPT was
counting before suspend, GPT continues to count from the place where it was stopped.

General Purpose Timer (GPT) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 14-5

14.5.2 PowerDown
This function disables the clock to the GPT module. If the GPT was counting, then the count value freezes
at the point when the clock is disabled.

14.5.3 IOCTL_POWER_SET
This function is not implemented for the GPT driver.

14.6 Unit Test
The GPT tests verify that the GPT driver properly initializes and controls the general purpose timer.

14.6.1 Unit Test Hardware
Table 14-2 lists the required hardware to run the unit tests.

14.6.2 Unit Test Software
Table 14-3 lists the required software to run the unit tests.

14.6.3 Building the Unit Tests
To build the GPT tests, build an OS image for the desired configuration using these steps:

1. Within the Platform Builder, choose Build OS > Open Release Directory.
A DOS prompt is displayed.

2. Change to the GPT Tests directory: \WINCE600\SUPPORT_PDK1_7\TEST\GPT
3. Enter set WINCEREL=1 on the command prompt and press return.

This copies the DLL to the flat release directory.

Table 14-2. Hardware Requirements

Requirement Description

No additional hardware required

Table 14-3. Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device and the
development workstation

GPTTEST.dll Test .dll file

General Purpose Timer (GPT) Driver

Windows Embedded CE 6.0 BSP Reference Manual

14-6 Freescale Semiconductor

4. Input build -c to build GPT test.

After the build completes, the GPTTEST.dll file is located in the $(_FLATRELEASEDIR) directory.

14.6.4 Running the Unit Tests
To run this test the tux.exe and kato.dll files must be present in the release directory. These files are not
present by default and need to be copied from this location:
\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4i

to the release directory.

To run the test using the Target Control window use the following steps:
1. Within the Platform Builder, go to the Target menu option and select the Target Control menu

option. This opens a Windows CE Command Prompt window
2. Run on the Command Prompt windows this command: s tux -o -d gpttest.dll

The test starts and the results can be viewed in the Output panel in the Visual Studio.

Table 14-4 describes the test cases contained in the GPT tests.

14.7 GPT SDK API Reference

14.7.1 GPT SDK Functions

14.7.1.1 GptOpenHandle

This API creates a handle to the GPT stream driver.
HANDLE GptOpenHandle(

LPCWSTR lpDevName);

Parameters
lpDevName [in] Device name to open
Return Values Open handle to the specified file indicates success INVALID_HANDLE_VALUE

indicates failure

Table 14-4. GPT Test Cases

Test Case Description

1: TST_StartBeforeCfg Attempt to start the GPT timer without setting the timer period (expected failure)

2: TST_OpenMultipleHandle Attempt to open multiple GPT Handles (expected failure)

3: TST_ComparewithSysTick Check timer accuracy with system clock

4:TST_PeriodicMode Periodic mode test

5: TST_FreerunMode Free run mode test

6: TST_StopAndResume Stop and resume test

General Purpose Timer (GPT) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 14-7

Remarks Use the GptCloseHandle function to close the handle returned by
GptOpenHandle()

14.7.1.2 GptCreateTimerEvent

This API is used to create the GPT Timer event.
HANDLE GptCreateTimerEvent(

 HANDLE hGpt,
 LPTSTR eventName);

Parameters
hGpt [in] Handle to the GPT driver returned by GptOpenHandle API
eventName [in] Pointer to a null-terminated string that specifies the name of the object
Return Values Non-null handle to the specified event indicates success. NULL indicates failure
Remarks Use the GptReleaseTimerEvent function to close the event. The system closes

the handle automatically when the process terminates. The event object is
destroyed when its last handle has been closed.

14.7.1.3 GptStart

This API enables the GPT interrupt and starts the GPT timer.
BOOL GptStart(

HANDLE hGpt,
pGPT_Config pTimerConfig);

Parameters
hGpt [in] Handle to the GPT driver returned by GptOpenHandle API
pTimerConfig [in] Object of the pGPT_Config structure
Return Values TRUE on success and FALSE indicates a failure
Remarks Set desired event trigger time and start GPT

14.7.1.4 GptGetCounterValue

This API gets the current counter register value.
BOOL GptGetCounterValue(

HANDLE hGpt,
PDWORD pTimerCount);

Parameters
hGpt [in] Handle to the GPT driver returned by GptOpenHandle API
pTimerCount [in] Pointer to the variable which receives current counter value
Remarks None

14.7.1.5 GptResume

This API reactivates the GPT.
BOOL GptResume(

General Purpose Timer (GPT) Driver

Windows Embedded CE 6.0 BSP Reference Manual

14-8 Freescale Semiconductor

HANDLE hGpt);
Parameters
hGpt [in] Handle to the GPT driver returned by GptOpenHandle API
Remarks Often called after a stop

14.7.1.6 GptStop

This API disables the GPT interrupt and stops the GPT timer.
BOOL GptStop(

HANDLE hGpt);

Parameters
hGpt [in] Handle to the GPT driver returned by GptOpenHandle API
Return Values TRUE on success and FALSE indicates a failure
Remarks None

14.7.1.7 GptReleaseTimerEvent

This API closes the currently open GPT Timer Event.
BOOL GptReleaseTimerEvent(

HANDLE hGpt,
LPTSTR eventName);

Parameters
hGpt [in] Handle to the GPT driver returned by GptOpenHandle API
eventName [in] Pointer to a null-terminated string that specifies the name of the object
Return Values Nonzero indicates success; Zero indicates failure

To get extended error information, call GetLastError()
Remarks None

14.7.1.8 GptCloseHandle

This API closes a handle to the GPT driver.
BOOL GptCloseHandle(

HANDLE hGpt);
Parameters
hGpt [in] Handle to the GPT driver returned by GptOpenHandle API
Return Values Nonzero indicates success; Zero indicates failure

To get extended error information, call GetLastError()
Remarks None

General Purpose Timer (GPT) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 14-9

14.7.2 GPT Driver Structures

14.7.2.1 GPT_Config
typedef struct
{ timerMode_c timerMode;

UINT32 period;
timerSrc_c timerSrc;

} GPT_Config, *pGPT_Config;
Members
timerMode Selects between two supported modes: reset or periodic mode

(timerModePeriodic) and free-running mode (timerModeFreeRunning)
period Counter period (in microsecond)
timerSrc Selects GPT clock source: GPT_IPGCLK or GPT_32KCLK

14.7.2.2 GPT_TIMER_SRC_PKT
typedef struct
{ timerSrc_c timerSrc;
}GPT_TIMER_SRC_PKT, *PGPT_TIMER_SRC_PKT;

Members
timerSrc Select clock source between two supported timer clock sources: GPT_IPGCLK or

GPT_32KCLK

General Purpose Timer (GPT) Driver

Windows Embedded CE 6.0 BSP Reference Manual

14-10 Freescale Semiconductor

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 15-1

Chapter 15
Fast Ethernet Controller (FEC) Driver
The Fast Ethernet driver is used for connectivity with an IEEE 802.3 Ethernet using the on-chip Fast
Ethernet Controller. The driver provides support to communicate with the Ethernet at 10/100 Mbps, using
a MII compatible interface and an external transceiver (SMCS LAN8700 and Am79C874). The Fast
Ethernet driver is NDIS 4.0 compliant miniport driver.

15.1 Fast Ethernet Driver Summary
Table 15-1 provides a summary of source code location, library dependencies and other BSP information.

15.2 Supported Functionality
The FEC driver enables the hardware platform to provide the following software and hardware support:

1. Compliant with the NDIS 4.0 miniport driver
2. 10/100 Mbps network
3. MII PHY or RMII PHY

Table 15-1. FEC Driver Summary

Driver Attribute Definition

Target Platform iMX25-3DS-PDK1_7

Target SOC N/A

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\FEC

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\FEC

Driver DLL fec.dll

SDK Library N/A

Catalog Item Third Party > BSP > Freescale <Target Platform>:ARMV4I > Device Drivers > FEC

SYSGEN Dependency SYSGEN_NDIS=1
SYSGEN_TCPIP=1
SYSGEN_WINSOCK=1

BSP Environment Variables BSP_NOFEC=

Fast Ethernet Controller (FEC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

15-2 Freescale Semiconductor

15.3 Hardware Operations
The Fast Ethernet Controller connects with the external transceiver using standard RMII (Reduced Media
Independent Interface) connection. All the registers in the external transceiver (DP83640) can be accessed
by the RMII compatible management frames. The attached transceiver for the Fast Ethernet Controller
can detect the speed of the ethernet network automatically by the auto-negotiation process. The software
accesses the status register of attached transceiver to determine the speed of the ethernet network (10
Mbps or 100 Mbps)

15.3.1 Conflicts with Other Peripherals and Catalog Items

15.3.1.1 Conflicts with SoC Peripherals

No conflicts.

15.3.1.2 Conflicts with 3-Stack Peripherals

On i.MX25 3-Stack System, the pins used for communication with the FEC external transceiver are shared
with the SD host controller, port 2. This port is used for the communication with the onboard APM6628
WIFI chip. Do not include the FEC and onboard WIFI in the same image.

15.4 Software Operations
The Fast Ethernet driver follows the Microsoft-recommended architecture for NDIS miniport drivers. The
details can be found in the Platform Builder Help at the following location:

Developing a Device Driver > Windows Embedded CE Drivers > Network Drivers > Network Driver
Development Concepts > Miniports, Intermediate Drivers, and Protocol Drivers.

15.4.1 FEC Driver Registry Settings
The following register keys are required to properly load the Fast Ethernet driver and to configure the
TCP/IP for Ethernet interface. To enable dynamic IP address assignment using DHCP, the variable
EnableDHCP should be set to 1.

[HKEY_LOCAL_MACHINE\Comm\FEC]
"DisplayName"="FEC Ethernet Driver"
"Group"="NDIS"
"ImagePath"="fec.dll"
[HKEY_LOCAL_MACHINE\Comm\FEC\Linkage]
"Route"=multi_sz:"FEC1"
[HKEY_LOCAL_MACHINE\Comm\FEC1]
"DisplayName"="FEC Ethernet Driver"
"Group"="NDIS"
"ImagePath"="fec.dll"
[HKEY_LOCAL_MACHINE\Comm\FEC1\Parms]
"BusNumber"=dword:0
"BusType"=dword:0
; DuplexMode: 0:AutoDetect; 1:HalfDuplex; 2:FullDuplex.
"DuplexMode"=dword:0

Fast Ethernet Controller (FEC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 15-3

; The Ethernet Physical Address. For example,

; Ethernet Address 00:24:20:10:bf:03 is MACAddress1=0024,
; MACAddress2=2010,and MACAddress3=bf03.
"MACAddress1"=dword:1213
"MACAddress2"=dword:1728
"MACAddress3"=dword:3121

[HKEY_LOCAL_MACHINE\Comm\FEC1\Parms\TcpIp]
; This should be MULTI_SZ
"DefaultGateway"="" ; This should be SZ... If null it means use LAN, else WAN and
Interface.
"LLInterface"="" ; Use zero for broadcast address? (or 255.255.255.255)
"UseZeroBroadcast"=dword:0 ;Thus should be MULTI_SZ, the IP address list
"IpAddress"="0.0.0.0"; This should be MULTI_SZ, the subnet masks for the above IP
"Subnetmask"="0.0.0.0"
"EnableDHCP"=dword:1

[HKEY_LOCAL_MACHINE\Comm\TcpIp\Parms]
;Set to True to keep the device from entering idle mode if there's network adapter
;;"NoIdleIfAdapter"=dword:1
;Set to True to keep the device from entering idle mode while communicating/loop back
"NoIdleIfConnected"=dword:1

[HKEY_LOCAL_MACHINE\Comm\Tcpip\Linkage]
; This should be MULTI_SZ
; This is the list of llip
"Bind"=multi_sz:"FEC1"

15.5 Unit Tests
The Fast Ethernet driver is tested using the following:

• Network utilities/operations
— Ping to and from the tested device
— FTP transfers (file put and get) with tested device as FTP server
— Internet browsing with Pocket Internet Explorer on the tested device

• Winsock CETK test cases
— Winsock 2.0 Test (v4/v6)
— Winsock Performance Test with tested device as client.

15.5.1 Unit Test Hardware
Table 15-2 lists the required hardware to run the unit tests.

Table 15-2. Hardware Requirements

Requirement Description

HW Platform System —

PC/machine Counterpart for network operation

An Ethernet or a cross Ethernet cable To and from an Ethernet

Fast Ethernet Controller (FEC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

15-4 Freescale Semiconductor

15.5.2 Unit Test Software
Table 15-3 lists the required software to run the unit tests.

15.5.3 Building the Unit Tests

15.5.3.1 Network Utilities Related Tests
• To include the ping utilities, the SYSGEN_NETUTILS = 1 needs to be set. Under Catalog > Core

OS > CEBASE > Communication Services and Networking > Networking General > Network
Utilities, IpConfig, Ping, and Route should be included in the OS design.

• To include FTP, SYSGEN_FTPD = 1 needs to be set. Catalog > Core OS > CEBASE >
Communication Services and Networking > Servers > FTP Server should be included in the
OS design.

• The following registry entry needs to be added to reg to allow get and put of files using the
anonymous FTP login:

[HKEY_LOCAL_MACHINE\COMM\FTPD]
"AllowAnonymousUpload" = dword:1

15.5.3.2 Winsock 2.0 Test (v4/v6)

The Winsock 2.0 Test (v4/v6) comes pre-built as part of the CETK. No steps are required to build these
tests. The Ws2bvt.dll file can be found alongside the other required CETK files in the following location:
[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4I

Table 15-3. Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device and the
development workstation

Ws2bvt.dll Test .dll file for Winsock 2.0 Test (v4/v6)

Perflog.dll Module that contains functions that monitor and log performance for Winsock Performance Test

Perf_winsock2.dll Test .dll file for Winsock Performance Test

Perf_winsockd2.exe Test .exe file (server program) for Winsock Performance Test

Ndt.dll Protocol driver for One-card network card miniport driver test

Ndt_1c.dll Test .dll for One-card network card miniport driver test

Ndp.dll MS_NDP protocol driver for NDIS performance test

Perf_ndis.dll Test .dll file NDIS performance test

Fast Ethernet Controller (FEC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 15-5

15.5.3.3 Winsock Performance Test

The Winsock Performance Test comes pre-built as part of the CETK. No steps are required to build these
tests. The Perf_winsock2.dll and Perf_winsockd2.exe files can be found alongside the other required
CETK files in the following location:

Perf_winsock2.dll in:
[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4I

Perf_winsockd2.exe in:
[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\desktop

15.5.3.4 One-Card Network Card Miniport Driver Test

The One-card network card miniport driver test comes pre-built as part of the CETK. No steps are required
to build these tests. The ndt.dll and ndt_1c.dll files can be found alongside the other required CETK files
in the following location:
[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4I

15.5.3.5 NDIS Performance Test

The NDIS performance test comes pre-built as part of the CETK. No steps are required to build these tests.
The ndp.dll and perf_ndis.dll files can be found alongside the other required CETK files in the
following location:
[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4I

15.5.4 Running the Unit Tests

15.5.4.1 Network Utilities Related Tests

15.5.4.1.1 Ping Tests

The ping tests can be run as usual from the tested device as well as from the PC side.

15.5.4.1.2 Browsing

The network browsing tests can be done after setting the following on the device front panel:

DNS servers in the TCP/IP properties of Fast Ethernet network interface (Control Panel Network and
Dial-up Connections) Proxy server, if used in the test network on the Pocket Internet explorer.

15.5.4.1.3 FTP Tests

For running FTP tests, the FTP service needs to be started on the tested device using the following
command on the DOS prompt:
services start FTP0:

Fast Ethernet Controller (FEC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

15-6 Freescale Semiconductor

15.5.4.2 Winsock 2.0 Test (v4/v6)

The test can be executed by using
tux –o –d Ws2bvt.dl

in the command line on the tested device. For detailed information on the Winsock 2.0 Test (v4/v6) tests,
see the Platform Builder Help:

Windows Embedded CE Test Kit > CETK Test and Test Tools > CETK Tests > Ethernet Tests > Tests
Winsock 2.0 Test(v4/v6).

15.5.4.3 Winsock Performance Test

Start the server on the PC by typing
Perf_winsockd2 - install

at the command line. Then client side test executes on the second device by using
tux –o –d Perf_winsock2.dll –c “-s 10.193.101.41”

in the command line on the tested target device, where 10.193.101.41 denotes PC IP address and needs to
be replaced appropriately. For detailed information on the Winsock Performance tests, see the Platform
Builder Help:

Windows Embedded CE Test Kit > CETK Test and Test Tools > CETK Tests > Performance Test >
Wisock Performance Test.

NOTE
Cases 1007 and 1008 fail. This is a known MSFT CETK issue.

15.5.4.4 One-Card Network Card Miniport Driver Test

This test can be done by including ndt.dll and ndt_1c.dll in the image, and starting the test by entering
tux –o –d ndt_1c.dll –c “-t FEC1”

on the command line on the tested target device. For detailed information on the Winsock Performance
tests, see the Platform Builder Help:

Windows Embedded CE Test Kit > CETK Test and Test Tools > CETK Tests > Ethernet Tests >
One-card Network Card Miniport Driver Test.

15.5.4.5 NDIS Performance Test

This test can be done by including ndp.dll and perf_ndis.dll in the image, and starting the test by
entering
tux –o –d perf_ndis.dll –c “FEC1”

Fast Ethernet Controller (FEC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 15-7

on the command line on the tested target device. For detailed information on the Winsock Performance
tests, see the Platform Builder Help:

Windows Embedded CE Test Kit > CETK Test and Test Tools > CETK Tests > Performance Test >
NDIS Performance Test.

15.6 Fast Ethernet Driver API Reference
The Fast Ethernet driver conforms to NDIS 4.0 specification by Microsoft for the miniport network
drivers. For reference information on basic NDIS driver functions, methods, and structures, see the CE
Help:

Developing a Device Driver > Windows Embedded CE Drivers > Network Drivers > Network Driver
Reference.

Fast Ethernet Controller (FEC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

15-8 Freescale Semiconductor

i.MX51 EVK 1.6 Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 16-1

Chapter 16
Inter-Integrated Circuit (I2C) Driver
The Inter-Integrated Circuit (I2C) module provides the functionality of a standard I2C slave and master.
The I2C module is designed to be compatible with the standard Phillips I2C bus protocol.

16.1 I2C Driver Summary
Table 16-1 provides a summary of source code location, library dependencies and other BSP information.

16.2 Supported Functionality
The I2C driver supports the following features:

1. I2C communication protocol
2. Multiple I2C controllers
3. I2C master mode of operation
4. I2C slave mode of operation
5. Stream interface
6. Two power management modes: full on and full off

Table 16-1. I2C Driver Summary

Driver Attribute Definition

Target Platform iMX25-3DS-PDK1_7

Target SOC MX25_FSL_V2_PDK1_7

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\I2C

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\I2C

Platform Driver Path ..\PLATFORM\Target Platform>\SRC\DRIVERS\I2C

Import Library N/A

Driver DLL i2csdk.dll i2c.dll

Catalog Item Third Party > BSP > Freescale <TGTPLAT> > Device Drivers > I2CBus

SYSGEN Dependency N/A

BSP Environment Variables BSP_I2CBUS1=1

Inter-Integrated Circuit (I2C) Driver

i.MX51 EVK 1.6 Windows Embedded CE 6.0 Reference Manual

16-2 Freescale Semiconductor

16.3 Hardware Operation

16.3.1 Conflicts with Other Peripherals and Catalog Items

16.3.1.1 Conflicts with SoC Peripherals

The i.MX25 platform contains three I2C modules, but only one of these modules may be used on the
i.MX25 3-Stack Platform System. The I2C1 module I2C2 and I2C3 pins are not available in the i.MX25
3-Stack Platform System and the pads are used for LCDC, CSPI, GPIO and FEC.

16.3.1.2 Conflicts with Board Peripherals

No conflicts.

16.4 Software Operation
The I2C APIs should be used to perform any operation on or using the I2C module. Any array of packets
to be transferred to or from the I2C bus finish to completion without preemption by another request to
transfer data.

16.4.1 Registry Settings

16.4.1.1 i.MX25 Registry Settings

The following registry keys are required to properly load the I2C module.
IF BSP_I2CBUS1
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\I2C1]
 "Prefix"="I2C"
 "Dll"="i2c.dll"
 "Index"=dword:1
 "Order"=dword:0
ENDIF ; BSP_I2CBUS1

IF BSP_I2CBUS2
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\I2C2]
 "Prefix"="I2C"
 "Dll"="i2c.dll"
 "Index"=dword:2
 "Order"=dword:0
ENDIF ; BSP_I2CBUS2

IF BSP_I2CBUS3
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\I2C3]
 "Prefix"="I2C"
 "Dll"="i2c.dll"
 "Index"=dword:3
 "Order"=dword:0

ENDIF ; BSP_I2CBUS3

Inter-Integrated Circuit (I2C) Driver

i.MX51 EVK 1.6 Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 16-3

16.4.2 Communicating with the I2C
The I2C is a stream interface driver, and is thus accessed through the file system APIs. To communicate
using the I2C, a handle to the device must first be created using the CreateFile function. Subsequent
commands to the device are issued using the DeviceIoControl function with IOCTL codes specifying the
desired operation. The basic steps are detailed below. The I2C driver is provided to hide all the IOCTL
calls from the calling application.

16.4.3 Creating a Handle
Call the CreateFile function to open a connection to the I2C device. An I2C port must be specified in this
call. The format is I2CX:, with X being the number indicating the I2C port. This number should not exceed
the number of I2C instances on the platform. If an I2C port does not exist, CreateFile returns
ERROR_FILE_NOT_FOUND.

To open a handle to the I2C:
1. Insert a colon after the I2C port for the first parameter, lpFileName. For example, specify I2C1:.
2. Specify FILE_SHARE_READ | FILE_SHARE_WRITE in the dwShareMode parameter. Multiple

handles to an I2C port are supported by the driver.
3. Specify OPEN_EXISTING in the dwCreationDisposition parameter. This flag is required.
4. Specify FILE_FLAG_RANDOM_ACCESS in the dwFlagsAndAttributes parameter.

The following code example shows how to open an I2C port.
 // Open the I2C port.
 hI2C = CreateFile (CAM_I2C_PORT, // name of device
 GENERIC_READ | GENERIC_WRITE, // access (read-write) mode
 FILE_SHARE_READ | FILE_SHARE_WRITE, // sharing mode
 NULL, // security attributes (ignored)
 OPEN_EXISTING, // creation disposition
 FILE_FLAG_RANDOM_ACCESS, // flags/attributes
 NULL); // template file (ignored)

Before writing to or reading from an I2C port, configure the port. When an application opens an I2C port,
it uses the default configuration settings, which might not be suitable for the device at the other end of the
connection.

16.4.4 Configuring the I2C
Configuring the I2C port for communications involves two main operations:

• Setting the master or slave mode
• Setting the I2C clock rate

Before these actions can be taken, a handle to the I2C port must already be opened. Each of these steps
requires a call to the DeviceIoControl function. As parameters, the I2C port handle, appropriate IOCTL
code, and other input and output parameters are required. Use the helper APIs to correctly configure the
port.

Inter-Integrated Circuit (I2C) Driver

i.MX51 EVK 1.6 Windows Embedded CE 6.0 Reference Manual

16-4 Freescale Semiconductor

As an example, the code below configures an I2C port:
HANDLE hI2C = I2COpenHandle(_T("I2C1:"));

if (hI2C == INVALID_HANDLE_VALUE)
{

ERRORMSG(1, (L"Unable to open handle to I2C block\r\n"));
retVal = -1;
goto exit;

}

if (!I2CSetMasterMode(hI2C))
{

ERRORMSG(1, (L"Unable to set master mode\r\n"));
retVal = -1;
goto exit;

}

if (!I2CSetFrequency(hI2C, EEPROM_CLOCK_RATE))
{

ERRORMSG(1, (L"Unable to set frequency\r\n"));
retVal = -1;
goto exit;

}

16.4.5 Data Transfer Operations
The I2C driver provides one command, Transfer, that facilitates performing both reads and writes through
the I2C. The basic unit of data transfer in the I2C driver is the I2C_PACKET, which contains a buffer for
reading or writing data and a flag that specifies whether the desired operation is a read or a write. An array
of these packets makes up an I2C_TRANSFER_BLOCK object, which is needed to perform a Transfer
operation. The steps below detail the process of performing write and read operations through the I2C.

Before these actions can be taken, a handle to the I2C port must already be opened, and it should already
be configured in the correct mode with the correct frequency.

To perform an I2C transfer:
1. Create an array of I2C_PACKET objects and initialize the fields of each packet as follows:

a) Set the byRW field to I2C_RW_WRITE to specify that the I2C operation is a write, or
I2C_RW_READ to specify that the I2C operation is a read.

b) Set the byAddr field to the 7-bit I2C slave address of the device to which the data is written.

NOTE
The byAddr field requires the 7-bit I2C slave address, aligned to the least
significant 7 bits. This address is shifted left one bit and OR-ed with the
read/write bit to compose the 8-bit value sent out during the I2C slave
address cycle. In older versions of this driver, the slave address was entered
as the most significant 7 bits of the 8-bit value.

Inter-Integrated Circuit (I2C) Driver

i.MX51 EVK 1.6 Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 16-5

c) If byRW is set to I2C_RW_WRITE, create a buffer of bytes and fill it with the data to write to
the slave device. Set the pbyBuf field to point to this buffer. If byRW is set to I2C_RW_READ,
create a buffer of bytes to hold the data which is read from the slave device.

d) Set the wLen field to the size, in bytes, of the read or write buffer. This indicates the number of
bytes to write or read.

e) Set the lpiResult field to point to an integer that holds the return value from the write operation.
2. Call the I2CTransfer SDK API to start the I2C transfer.
3. After calling the I2CTransfer function, check the lpiResult field if the function returned FALSE, to

narrow down the type of error that occurred.

The following code example demonstrates how to perform a transfer that contains one write and one read
packet. The write is performed before the read operation.
I2C_TRANSFER_BLOCK I2CXferBlock;
I2C_PACKET I2CPacket[2];
BYTE byAddr = 0x2D; // Slave Address
BYTE byOutData = 0x39; // Data to write
BYTE byInData; // Read buffer

// Packet 0 contains write operation
I2CPacket[0].pbyBuf = (PBYTE) &byOutData;
I2CPacket[0].wLen = sizeof(byOutData);

I2CPacket[0].byRW = I2C_RW_WRITE;
I2CPacket[0].byAddr = byAddr;
I2CPacket[0].lpiResult = lpiResult;

// Packet 1 contains read operation
I2CPacket[1].pbyBuf = (PBYTE) &byInData;
I2CPacket[1].wLen = sizeof(byInData);

I2CPacket[1].byRW = I2C_RW_READ;
I2CPacket[1].byAddr = byAddr;
I2CPacket[1].lpiResult = lpiResult;

I2CXferBlock.pI2CPackets = I2CPacket;
I2CXferBlock.iNumPackets = 2;

// Transfer data via I2C
if (!I2CTransfer(hI2C,&I2CXferBlock))

{
ERRORMSG(1, (_T("Data transfer failed!\r\n")));
retVal = -1;
goto exit; // examine value in lpiResult

}

16.4.5.1 Repeated Start

The array of I2C_PACKET objects passed to the Transfer command is guaranteed to be performed
sequentially, without interruption or preemption by another driver that is attempting to access the I2C
module. A START command of the I2C initiates the transmission of the first packet in the
I2C_TRANSFER_BLOCK array. For subsequent packets, a change in the direction of communication
(from read to write or write to read) or a change in the target slave address triggers a REPEATED START

Inter-Integrated Circuit (I2C) Driver

i.MX51 EVK 1.6 Windows Embedded CE 6.0 Reference Manual

16-6 Freescale Semiconductor

command before the transmission of the packet. Thus, if a REPEATED START is required between data
transfers with a target I2C device, all of those data transfers should be contained within a single
I2C_TRANSFER_BLOCK. The final packet in the I2C_TRANSFER_BLOCK is succeeded by an I2C
STOP command.

16.4.6 Closing the Handle
Call the CloseHandle function to close the handle to the I2C after the transfer task is complete.
CloseHandle has one parameter, which is the handle returned by the CreateFile function call that opened
the I2C port.

16.4.7 Power Management
The power management method used in the I2C module is to gate off all clocks to the module when those
clocks are not needed. This is accomplished through the DDKClockSetGatingMode function call. In
most BSP use cases, the I2C module operates in master mode and never in slave mode. As a result, the I2C
module can be disabled, and its clocks turned off, whenever the module is not processing packets. In
contrast, when the I2C module operates in slave mode, the module has to be enabled, and have its clocks
turned on at all times to properly receive the interrupt that signals the start of a data transfer from another
I2C master device.

As described in the Data Transfer Operations section, the I2C data transfer operations are handled in
I2C_TRANSFER_BLOCK objects, which contain one or more packets of I2C data. The I2C driver turns
on the I2C clocks and enables the I2C module before processing an I2C_TRANSFER_BLOCK, and then
disables and turns off clocks to the I2C module after the block of packets has been processed. This limits
the time during which the I2C module is consuming power to the time during which the I2C is actively
performing data transfers.

16.4.7.1 PowerUp

This function is not implemented for the I2C driver. Power to the I2C module is managed as I2C transfer
operations are processed. There are no additional power management steps needed for the I2C.

16.4.7.2 PowerDown

This function is not implemented for the I2C driver.

16.4.7.3 IOCTL_POWER_SET

This function is implemented for the I2C driver. When D4 power mode is set, the driver switches its
operating mode to polling that does not produce interrupt events to the BSP system. When leaving the D4
power mode, the driver recovers its original operating mode.

Inter-Integrated Circuit (I2C) Driver

i.MX51 EVK 1.6 Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 16-7

16.5 Unit Test

16.5.1 Unit Test Hardware
The unit tests are not supported for this release.

16.5.2 Unit Test Software
The unit tests are not supported for this release.

16.5.3 Building the Unit Tests
The unit tests are not supported for this release.

16.5.4 Running the Unit Tests
The unit tests are not supported for this release.

16.6 Hardware Limitations
For the slave function, the hardware does not distinguish between a START and REPEATED START
signal from the I2C bus. Hence the driver checks the IAAS address cycle start flag to detect a new I2C
transmission.

16.7 I2C Driver API Reference

16.7.1 I2C Driver IOCTLS
This section contains descriptions of the I2C I/O control codes (IOCTLs). These IOCTLs are used in calls
to DeviceIoControl to issue commands to the I2C device. Only relevant parameters for the IOCTL have
a description provided.

16.7.1.1 I2C_IOCTL_GET_CLOCK_RATE

This DeviceIoControl request retrieves the clock rate divisor. The value is not the absolute peripheral clock
frequency. The value retrieved should be compared against the I2C specifications to obtain the true
frequency.
Parameters
lpOutBuffer Pointer to the divisor index. The true clock frequency is platform dependent. Refer

to I2C specification for more information
nOutBufferSize Size in bytes of the divisor index

Inter-Integrated Circuit (I2C) Driver

i.MX51 EVK 1.6 Windows Embedded CE 6.0 Reference Manual

16-8 Freescale Semiconductor

16.7.1.2 I2C_IOCTL_GET_SELF_ADDR

This DeviceIoControl request retrieves the address of the I2C device. This macro is only meaningful if it
is currently in Slave mode.
Parameters
lpOutBuffer Pointer to the current I2C device address, valid range is [0x00–0x7F]
nOutBufferSize Size in bytes of the I2C device address

16.7.1.3 I2C_IOCTL_IS_MASTER

This DeviceIoControl request determines whether the I2C is currently in Master mode.
Parameters
lpOutBuffer Pointer to a BYTE that contains the return value from the Master mode inquiry:

TRUE if currently in Master mode; FALSE if currently in Slave mode
nOutBufferSize Size in bytes of the return value, should be one byte

16.7.1.4 I2C_IOCTL_IS_SLAVE

This DeviceIoControl request determines whether the I2C is currently in Slave mode.
Parameters
lpOutBuffer Pointer to a BYTE that contains the return value from the Slave mode inquiry:

TRUE if currently in Slave mode; FALSE if currently in Master mode
nOutBufferSize Size in bytes of the return value, should be one byte

16.7.1.5 I2C_IOCTL_RESET

This DeviceIoControl request performs a hardware reset. The I2C driver maintains all of the current
information of the device, including all of the initialized addresses.

16.7.1.6 I2C_IOCTL_SET_CLOCK_RATE

This DeviceIoControl request initializes the I2C device with the given clock rate. This IOCTL does not
expect to receive the absolute peripheral clock frequency. Rather, it expects the clock rate divisor index
stated in the I2C specification. If absolute clock frequency must be used, use the macro
I2C_MACRO_SET_FREQUENCY.
Parameters
lpInBuffer Pointer to the divisor index. Refer to the I2C specification to obtain the true clock

frequency
nInBufferSize Size in bytes of the divisor index

Inter-Integrated Circuit (I2C) Driver

i.MX51 EVK 1.6 Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 16-9

16.7.1.7 I2C_IOCTL_SET_FREQUENCY

This DeviceIoControl request estimates the nearest clock rate acceptable for I2C device and initialize the
I2C device to use the estimated clock rate divisor. If the estimated clock rate divisor index is required, refer
to the macro I2C_MACRO_GET_CLOCK_RATE to determine the estimated index.
Parameters
lpInBuffer Pointer to the desired I2C frequency
nInBufferSize Size in bytes of the I2C frequency requested

16.7.1.8 I2C_IOCTL_SET_MASTER_MODE

This DeviceIoControl request sets the I2C device to Master mode.

16.7.1.9 I2C_IOCTL_SET_SELF_ADDR

This DeviceIoControl request initializes the I2C device with the given address.
Parameters
lpInBuffer Pointer to the expected I2C device address, valid range is [0x00–0x7F]
nInBufferSize Size in bytes of the I2C device address
Remarks The device expects to respond when any master on the I2C bus wishes to proceed

with any transfer. This IOCTL has no effect if the I2C device is in Master mode.

16.7.1.10 I2C_IOCTL_SET_SLAVE_MODE

This DeviceIoControl request sets the I2C device to Slave mode.

16.7.1.11 I2C_IOCTL_TRANSFER

This DeviceIoControl request performs the transfer (read or write) of one or more packets of data to a
target device. An I2C_TRANSFER_BLOCK object is expected, which contains an array of I2C_PACKET
objects to be executed sequentially. All of the required information should be stored in the
I2C_TRANSFER_BLOCK passed in the lpInBuffer field.
Parameters
lpInBuffer Pointer to an I2C_TRANSFER_BLOCK structure containing a pointer to an array

of I2C_PACKET objects specifying all of the information required to perform the
requested Read and Write operations

nInBufferSize Size in bytes of the I2C_TRANSFER_BLOCK

16.7.1.12 I2C_IOCTL_ENABLE_SLAVE

This DeviceIoControl request starts the I2C device to work in slave mode.

Inter-Integrated Circuit (I2C) Driver

i.MX51 EVK 1.6 Windows Embedded CE 6.0 Reference Manual

16-10 Freescale Semiconductor

16.7.1.13 I2C_IOCTL_DISABLE_SLAVE

This DeviceIoControl request stops the I2C device to work in slave mode.

16.7.1.14 I2C_IOCTL_GET_SLAVESIZE

This DeviceIoControl request gets the interface buffer size of the I2C device for slave mode.

16.7.1.15 I2C_IOCTL_SET_SLAVESIZE

This DeviceIoControl request sets the interface buffer size of the I2C device for slave mode. The maximum
size for the buffer is configured by I2CSLAVEBUFSIZE.

16.7.1.16 I2C_IOCTL_GET_SLAVE_TXT

This DeviceIoControl request gets the current data from interface buffer of the I2C device for slave mode.
Both slave device or external master can change this data.

16.7.1.17 I2C_IOCTL_SET_SLAVE_TXT

This DeviceIoControl request sets data to interface buffer of the I2C device for slave mode. An external
I2C master can get this data immediately from driver after it connects the slave.

16.7.2 I2C Driver SDK Encapsulation

16.7.2.1 I2COpenHandle

This function retrieves the I2C device handle.
HANDLE I2COpenHandle(

LPCWSTR lpDevName);

Parameters
lpDevName The I2C device name for retrieving handle from CreateFile()
Return Values Returns the handle for I2C driver, returns INVALID_HANDLE_VALUE if failure

16.7.2.2 I2CCloseHandle

This function closes a handle of the I2C stream driver.
BOOL I2CCloseHandle(

HANDLE hDev);

Parameters
hDev The I2C device handle retrieved from CreateFile()
Return Values Returns TRUE or FALSE; if the result is TRUE, the operation is successful

Inter-Integrated Circuit (I2C) Driver

i.MX51 EVK 1.6 Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 16-11

16.7.2.3 I2CSetSlaveMode

This function sets the I2C device in slave mode. This function is for back compatibility. Use
I2CEnableSlave instead.

BOOL I2CSetSlaveMode(
HANDLE hDev);

Parameters
hDev I2C device handle retrieved from CreateFile()
Return Values Returns TRUE or FALSE; if the result is TRUE, the operation is successful

16.7.2.4 I2CSetMasterMode

This function sets the I2C device in master mode. This function is for back compatibility. The default
setting of driver is master.

BOOL I2CSetMasterMode(
HANDLE hDev);

Parameters
hDev I2C device handle retrieved from CreateFile()
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

16.7.2.5 I2CIsMaster

This function determines whether the I2C is currently in Master mode. This function is for back
compatibility.

BOOL I2CIsMaster(
HANDLE hDev,
PBOOL pbIsMaster);

Parameters
hDev I2C device handle retrieved from CreateFile()
pbIsMaster TRUE if the I2C device is in master mode
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

16.7.2.6 I2CIsSlave

This function determines whether the I2C is currently in Slave mode.
BOOL I2CIsSlave(

HANDLE hDev,
PBOOL pbIsSlave);

Parameters
hDev I2C device handle retrieved from CreateFile()
pbIsSlave TRUE if the I2C device is in Slave mode
Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful

Inter-Integrated Circuit (I2C) Driver

i.MX51 EVK 1.6 Windows Embedded CE 6.0 Reference Manual

16-12 Freescale Semiconductor

16.7.2.7 I2CGetClockRate

This function retrieves the clock rate divisor. This value is not the absolute peripheral clock frequency. The
value retrieved should be compared against the I2C specifications to obtain the true frequency.

BOOL I2CGetClockRate(
HANDLE hDev,
PWORD pwClkRate);

Parameters
hDev I2C device handle retrieved from CreateFile()
pwClkRate Pointer of WORD variable that retrieves divisor index. Refer to I2C specification

to obtain the true clock frequency
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

16.7.2.8 I2CSetClockRate

This function initializes the I2C device with the given clock rate. This function does not expect to receive
the absolute peripheral clock frequency. Rather, it expects the clock rate divisor index stated in the I2C
specification. If absolute clock frequency must be used, use the function I2CSetFrequency().

BOOL I2CSetClockRate(
HANDLE hDev,
WORD wClkRate);

Parameters
hDev I2C device handle retrieved from CreateFile()
wClkRate Divisor index. Refer to I2C specification to obtain the true clock frequency
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

16.7.2.9 I2CSetFrequency

This function estimates the nearest clock rate acceptable for I2C device and initializes the I2C device to
use the estimated clock rate divisor. If the estimated clock rate divisor index is required, refer to the macro
I2CGetClockRate to determine the estimated index.

BOOL I2CSetFrequency(
HANDLE hDev,
DWORD dwFreq);

Parameters
hDev I2C device handle retrieved from CreateFile()
dwFreq Desired frequency, unit is Hz
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

16.7.2.10 I2CSetSelfAddr

This function initializes the I2C device with the given address. The device is expected to respond when
any master within the I2C bus wish to proceed with any transfer.

BOOL I2CSetSelfAddr(

Inter-Integrated Circuit (I2C) Driver

i.MX51 EVK 1.6 Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 16-13

HANDLE hDev,
BYTE bySelfAddr);

Parameters
hDev I2C device handle retrieved from CreateFile()
bySelfAddr Expected I2C device address. The valid range of address is [0x00–0x7F]
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

16.7.2.11 I2CGetSelfAddr

This function retrieves the address of the I2C device.
BOOL I2CGetSelfAddr(

HANDLE hDev,
PBYTE pbySelfAddr);

Parameters
hDev I2C device handle retrieved from CreateFile()
pbySelfAddr Pointer to BYTE variable that retrieves I2C device address
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

16.7.2.12 I2CTransfer

This function performs one or more I2C read or write operations. pI2CTransferBlock contains a pointer to
the first of an array of I2C packets to be processed by the I2C. All the required information for the I2C
operations should be contained in the array elements of pI2CPackets.

BOOL I2CTransfer(
HANDLE hDev,
PI2C_TRANSFER_BLOCK pI2CTransferBlock);

Parameters
hDev I2C device handle retrieved from CreateFile()
pI2CTransferBlock
pI2CPackets [in] Pointer to an array of packets to be transferred sequentially
iNumPackets [in] Number of packets pointed to by pI2CPackets (the number of packets to be

transferred)
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

16.7.2.13 I2CReset

This function performs a hardware reset. The I2C driver maintains all the current information of the device,
which includes all the initialized addresses.

BOOL I2CReset(
HANDLE hDev);

Parameters
hDev I2C device handle retrieved from CreateFile()
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

Inter-Integrated Circuit (I2C) Driver

i.MX51 EVK 1.6 Windows Embedded CE 6.0 Reference Manual

16-14 Freescale Semiconductor

16.7.2.14 I2CEnableSlave

This function enables a I2C slave access from the bus. After the I2C slave interface is enabled, the I2C slave
driver waits for an external master access.

BOOL I2CEnableSlave(
HANDLE hDev);

Parameters
hDev I2C device handle retrieved from CreateFile()
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

16.7.2.15 I2CDisableSlave

This function disables I2C slave access from the bus. Note that after the I2C slave interface disabled, I2C
slave module can be turned off.

BOOL I2CDisableSlave(
HANDLE hDev);

Parameters
hDev I2C device handle retrieved from CreateFile()
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

16.7.2.16 I2CGetSlaveSize

This function returns the I2C slave interface buffer length. The I2C slave driver directly returns data to the
master from the interface buffer. The interface buffer can be set at any time, even when the I2C slave
module has been turned off.

BOOL I2CGetSlaveSize(
HANDLE hDev,
PDWORD pdwSize);

Parameters
hDev I2C device handle retrieved from CreateFile()
pdwSize Pointer to DWORD variable that retrieves interface buffer length
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

16.7.2.17 I2CSetSlaveSize

This function sets the I2C slave interface buffer length. The maximum acceptable length is
I2CSLAVEBUFSIZE. If input length is longer than I2CSLAVEBUFSIZE, the operation fails, and the
original buffer length is not changed. The I2C slave driver directly returns data to the master from the
interface buffer. The interface buffer can be set at any time, even when the I2C slave module has been
turned off.

BOOL I2CSetSlaveSize(
HANDLE hDev,
DWORD dwSize);

Parameters
hDev I2C device handle retrieved from CreateFile()

Inter-Integrated Circuit (I2C) Driver

i.MX51 EVK 1.6 Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 16-15

dwSize DWORD variable that sets interface buffer length
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

16.7.2.18 I2CGetSlaveText

This function returns the I2C slave interface buffer text. The I2C slave driver directly returns data to the
master from the interface buffer. The interface buffer can be accessed at any time, even when the I2C slave
module has been turned off.

BOOL I2CGetSlaveText(
HANDLE hDev,
PBYTE pbyTextBuf,
DWORD dwBufSize,
PDWORD pdwTextLen);

Parameters
hDev I2C device handle retrieved from CreateFile()
pbyTextBuf User buffer to store text returned from interface buffer
pdwBufSize User buffer size
pdwTextLen Actual data bytes returned
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

16.7.2.19 I2CSetSlaveText

This function returns the I2C slave interface buffer text. The I2C slave driver directly returns data to the
master from the interface buffer. The interface buffer can be accessed at any time, even when the I2C slave
module has been turned off.

BOOL I2CSetSlaveText(
HANDLE hDev,
PBYTE pbyTextBuf,
DWORD dwTextLen);

Parameters
hDev I2C device handle retrieved from CreateFile()
pbyTextBuf User buffer to store text to interface buffer
dwTextLen Text length in user buffer
Return Values Returns TRUE or FALSE, if the result is TRUE, the operation is successful

16.7.3 I2C Driver Structures

16.7.3.1 I2C_PACKET

This structure contains the information needed to write or read data using an I2C port.
typedef struct {

BYTE byAddr;
BYTE byRW;
PBYTE pbyBuf;
WORD wLen;

Inter-Integrated Circuit (I2C) Driver

i.MX51 EVK 1.6 Windows Embedded CE 6.0 Reference Manual

16-16 Freescale Semiconductor

LPINT lpiResult;
} I2C_PACKET, *PI2C_PACKET;

Members
byAddr 7-bit slave address that specifies the target I2C device to or from which data is read

or written
byRW Determines whether the packet is a read or a write packet. Set to I2C_RW_READ

for reading and I2C_RW_WRITE for writing. Set to I2C_POLLING_MODE to
force polling mode for transfer.

pbyBuf Pointer to a buffer of bytes. For a read operation, this is the buffer into which data
is read. For a write operation, this buffer contains the data to write to the target
device.

wLen If the operation is a read, wLen specifies the number of bytes to read into pbyBuf.
If the operation is a write, wLen specifies the number of bytes to write from
pbyBuf.

lpiResult Pointer to an int that contains the return code from the transfer operation

16.7.3.2 I2C_TRANSFER_BLOCK

This structure contains an array of packets to be transferred using an I2C port.
typedef struct {

I2C_PACKET *pI2CPackets;
INT32 iNumPackets;

} I2C_TRANSFER_BLOCK, *PI2C_TRANSFER_BLOCK;
Members
pI2CPackets Pointer to an array of I2C_PACKET objects
iNumPackets Number of I2C_PACKET objects pointed to by pI2CPackets

i.MX51 EVK 1.6 Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 17-1

Chapter 17
Keypad Driver
The keypad driver converts input from the sensor into keyboard events that the driver enters into the
Graphics, Windowing, and Events Subsystem (GWES).

17.1 Keypad Driver Summary
Table 17-1 provides a summary of source code location, library dependencies and other BSP information.

17.2 Supported Functionality
The Keypad driver enables the hardware platform to provide the following software and hardware support:

1. Conforms to the Microsoft Layout Manager Interface
2. Multiple simultaneous key presses
3. Two power management modes, full on and full off
4. Keypad Port (KPP) module, which is an internal module that can detect, debounce, and decode one

key on the keypad, or two keys pressed simultaneously

Table 17-1. Keypad Driver Summary

Driver Attribute Definition

Target Platform iMX25-3DS-PDK1_7

Target SOC MX25_FSL_V2_PDK1_7

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\KEYBD

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\KEYBD

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\KEYBD

Driver DLL KbdUs.dll

SDK Library N/A

Catalog Item Third Party > BSP > Freescale i.MX25 3DS PDK1_7: ARMV4I > Device Drivers > Input
Devices > Keyboard US/keypad

SYSGEN Dependency N/A

BSP Environment Variables BSP_NOKEYPAD=

Keypad Driver

i.MX51 EVK 1.6 Windows Embedded CE 6.0 Reference Manual

17-2 Freescale Semiconductor

17.3 Hardware Operation

17.3.1 Conflicts with Other Peripherals and Catalog Items
No conflicts.

17.3.2 Keypad
The keypad driver interfaces with the Windows CE Keyboard Driver Architecture to provide key input
support.

17.3.2.1 i.MX25 Keypad Mapping

The 24-key keypad is located on the Personality board and the mapping is shown in Table 17-2.

17.4 Software Operation
The keypad driver follows the Microsoft-recommended architecture for keyboard drivers. The details of
this architecture and its operation can be found in the CE help documentation at the following location:
Developing a Device Driver > Windows Embedded CE Drivers > Keyboard Drivers > Keyboard
Driver Development Concepts

Table 17-2. Keypad Mapping

Label Key

SW13 0

SW14 1

SW29 2

SW38 3

SW9 4

SW10 5

SW30 6

SW37 7

SW40 UP

SW36 DOWN

SW31 LEFT

SW39 RIGHT

SW18 ENTER

SW17 TAB

SW32 SPACE

SW34 BACKSPACE

Keypad Driver

i.MX51 EVK 1.6 Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 17-3

17.4.1 Keypad Scan Codes and Virtual Keys
Each key on the keypad has a unique scan code, which is added to a buffer whenever that key is pressed
or released. These scan codes, which are hardware specific, are converted to intermediate PS/2 keyboard
scan code values and then converted into virtual keys, which are hardware independent numbers that
identify the key. If a key is pressed from the keyboard, the generated scan code is directly converted into
virtual keys.

17.4.1.1 i.MX25 Scan Code Mapping table

Table 17-3 shows the scan code mapping.

17.4.2 Power Management

17.4.2.1 BSPKppPowerOn

This function is used to power up the keypad. This function configures the necessary settings in the
registers to bring up the keypad.

17.4.2.2 BSPKppPowerOff

This function powers down the keypad.

Table 17-3. Scan Code Mapping

Key Keypad Scan Code Virtual Key

UP 0 VK_UP

RIGHT 1 VK_RIGHT

3 2 3

7 3 7

DOWN 4 VK_DOWN

LEFT 5 VK_LEFT

2 6 2

6 7 6

BACKSPACE 8 VK_BACK

ENTER 9 VK_RETURN

1 10 1

5 11 5

SPACE 12 VK_SPACE

TAB 13 VK_TAB

0 14 0

4 15 4

Keypad Driver

i.MX51 EVK 1.6 Windows Embedded CE 6.0 Reference Manual

17-4 Freescale Semiconductor

17.4.2.3 IOCTL_POWER_CAPABILITIES

This function is not implemented for the keypad driver.

17.4.2.4 IOCTL_POWER_SET

This function is not implemented for the keypad driver.

17.4.2.5 IOCTL_POWER_GET

This function is not implemented for the keypad driver.

17.4.3 Keypad Registry Settings
The following registry keys are required to properly load the keypad device layout and input language.
[HKEY_LOCAL_MACHINE\HARDWARE\DEVICEMAP\KEYBD]
 "CalVKey"=dword:0
 "ContLessVKey"=dword:0
 "ContMoreVKey"=dword:0
 "TaskManVKey"=dword:2E
 "Keyboard Type"=dword:4
 "Keyboard SubType"=dword:0
 "Keyboard Function Keys"=dword:0
 "Keyboard Layout"="00000409"
 "DriverName"="KbdUs.dll"

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Layouts\00000409]
 "Layout File"="KbdUs.dll"
 "Layout Text"="US-Keypad"
 "KPPLayout"="KbdUs.dll"

[HKEY_CURRENT_USER\Keyboard Layout\Preload\4]
 @="00000409"

17.5 Unit Test
As keypad only has only 16 keys; it is not a full-key keypad. It cannot pass the Keyboard Test included in
the Windows CE Test Kit (CETK). A manual test to verify the 16-key functionality is described in
following sections.

.

17.5.1 Unit Test Hardware
• i.MX25 3DS board

17.5.2 Unit Test Software
The manual keypad test requires Microsoft WordPad which can be built into the image.

Keypad Driver

i.MX51 EVK 1.6 Windows Embedded CE 6.0 Reference Manual

Freescale Semiconductor 17-5

17.5.3 Building the Unit Tests
No additional steps are required to build the keypad tests.

17.5.4 Running the Unit Tests
The procedure of keyboard tests is as follows:

1. Run Microsoft WordPad application
2. Input Number key
3. Input Tab
4. Input Space
5. Input Del
6. Run the Internet Explorer application
7. Selcet the File menu
8. Input Up Down Left and Right
9. Quit Microsoft WordPad, there is a pop up dialog box, click the Yes button

NOTE
Prior this test, make sure the WordPad items is included in the project
(SYSGEN_PWORD).

17.6 Keypad Driver API Reference
Detailed reference information for the Keypad driver may be found in CE help documentation at the
following location:

Developing a Device Driver > Windows Embedded CE Drivers > Keyboard Drivers > Keyboard
Driver Reference

17.6.1 Keypad PDD Functions
Table 17-4 shows a mapping of the keyboard PDD functions to the functions used in the keypad driver:

Table 17-4. Keypad PPD Functions

PDD Function Pointer Keypad Driver Function

PFN_KEYBD_PDD_ENTRY KPP_Entry

PFN_KEYBD_PDD_GET_KEYBD_EVENT KeybdPdd_GetEventEx2

PFN_KEYBD_PDD_POWER_HANDLER KPP_PowerHandler

Keypad Driver

i.MX51 EVK 1.6 Windows Embedded CE 6.0 Reference Manual

17-6 Freescale Semiconductor

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 18-1

Chapter 18
Liquid Crystal Display Controller (LCDC) Driver
The LCDC display driver is based on the Microsoft DirectDraw Graphics Primitive Engine (DDGPE)
classes. This driver combines the functionality of a standard LCD display with DirectDraw support. The
display driver interfaces with the i.MX25 Liquid Crystal Display Controller (LCDC). This module is
designed to be compatible with the CHUNGHWA CLAA057VA01CT(VGA) LCD panel.

18.1 Display Driver Summary
Table 18-1 provides a summary of source code location, library dependencies and other BSP information.

18.2 Supported Functionality
The Display driver enables the 3-Stack System to provide the following software and hardware support:

1. Derives from the DirectDraw Graphics Primitive Engine (DDGPE) class
2. Supports the DirectDraw Hardware Abstraction Layer (DDHAL)
3. Supports the CHUNGHWA CLAA057VA01CT(VGA) LCD panels
4. Supports two power management modes, full on and full off

Table 18-1. Display Driver Summary

Driver Attribute Definition

Target Platform (TGTPLAT) iMX25-3DS-PDK1_7

Target SOC (TGTSOC) MX25_FSL_V2_PDK1_7

SOC Common Path ..PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\LCDC

SOC Specific Path ..PLATFORM\COMMON\SRC\SOC\<Target SOC>\LCDC

Platform Specific Path ..\PLATFORM\Target Platform>\SRC\DRIVERS\LCDC

Import Library ddgpe.lib, gpe.lib

Driver DLL lcdc.dll

Catalog Items Third Party >BSP > Freescale <TGTPLAT>: ARMV4I > Device Drivers > Display >
CHUNGHWA CLAA057VA01CT(VGA)

SYSGEN Dependency SYSGEN_DDRAW=1

BSP Environment Variables BSP_NODISPLAY=

Liquid Crystal Display Controller (LCDC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

18-2 Freescale Semiconductor

18.3 Hardware Operation
Refer to the chapter on the LCDC in the i.MX25 Multimedia Applications Processor Reference Manual for
detailed operation and programming information.

18.3.1 Conflicts with Other SoC Peripherals
No conflicts.

18.4 Software Operation

18.4.1 Communicating with the Display
Communication with the display driver is accomplished through Microsoft-defined APIs. A framework
for accessing the display driver is provided through the Graphics Device Interface (GDI) and DirectDraw.

18.4.1.1 Using the GDI

The Graphics Device Interface provides basic controls for the display of text and graphics. For instructions
on using the GDI, see the Help:

Windows Embedded CE Features > Shell, GWES and User Interface > Graphics, Windowing and
Events (GWES) > GWES Application Development > Graphics Device Interface (GDI)

18.4.1.2 Using DirectDraw

The DirectDraw API provides support for hardware-accelerated 2-D graphics, offering fast access to
display hardware while retaining compatibility with the GDI. For information on using the DirectDraw
API, see the Help:

Windows Embedded CE Features > Graphics > DirectDraw

18.4.1.3 Using Display Driver Escape Codes

In some cases, applications might need to communicate directly with a display driver. To make this
possible, an escape code mechanism is provided as part of the display driver. For a detailed description of
standard display driver escape codes, see the Platform Builder Help:

Developing a Device Driver > Windows Embedded CE Drivers > Display Drivers > Display Driver
Development Concepts > Display Driver Escape Codes

18.4.2 Configuring the Display
The display is configured based on the PanelType registry key, which is described in Section 18.4.4,
“Display Registry Settings”. The PanelType registry key indicates the display panel that is being used.
There is currently one supported display: Chunghwa VGA LCD panel.

Liquid Crystal Display Controller (LCDC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 18-3

18.4.3 Rotation Support
The DirectDraw display driver may be configured to allow screen rotation, through
[HKEY_LOCAL_MACHINE\SYSTEM\GDI\ROTATION] in the platform.reg file.

NOTE
Due to lack of support for DirectDraw and screen rotation (see the Windows
Embedded CE 6.0 Help, stating that “GDI screen rotation cannot be used
with DirectDraw”), a DirectDraw display driver with rotation support
enabled may yield failures in the GDI CETK test suite.

18.4.4 Display Registry Settings
The following registry keys are included, depending on the display panel catalog item included in the OS
design.
[HKEY_LOCAL_MACHINE\Drivers\Display\LCDC]

"PanelType"=dword:0 ; 0: Chunghwa VGA

18.4.5 Power Management
The display driver consumes power primarily through the operation of the LCDC, which combines and
displays video and graphics data, and through the operation of the display panel. To facilitate management
of these modules, the display driver implements the power management I/O Control (IOCTL) code
IOCTL_POWER_SET.

18.4.5.1 PowerUp

This function is not implemented for the display driver.

18.4.5.2 PowerDown

This function is not implemented for the display driver.

18.4.5.3 IOCTL_POWER_SET

The display driver implements the IOCTL_POWER_SET IOCTL API with support for the D0 (Full On)
and D4 (Off) power states. These states are handled in the following manner:

• D0 – Clock gating is enabled for all clocks to the LCDC. The display panel is enabled. The LCDC
modules are enabled.

• D4 – The LCDC are disabled. The display panel is disabled. Clock gating is disabled for all clocks
to the LCDC.

Liquid Crystal Display Controller (LCDC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

18-4 Freescale Semiconductor

18.5 Unit Test
The display driver is subject to two test suites provided with the Windows Embedded CE 6.0 Test Kit
(CETK): the Graphics Device Interface (GDI) Test and the DirectDraw Test. Additionally, video playback
may be verified by using the Windows Media Player application.

The GDI Test is designed to test a graphics device interface. This test verifies that basic shapes, including
rectangles, triangles, circles, and ellipses, are drawn correctly. The test also examines the color palette of
the display, verifies that the display is correctly divided into multiple regions, and tests whether a device
context can be properly created, stored, retrieved, and destroyed.

The DirectDraw Test analyzes basic DirectDraw functionality including block image transfers (blits),
scaling, color keying, color filling, flipping, and overlaying.

Windows Media Player may be used to play back WMV video files and visually verify correct operation
of video overlays, accelerated color space conversion, and accelerated image resizing.

18.5.1 Unit Test Hardware
Table 18-2 lists the required hardware to run the GDI and DirectDraw tests.

18.5.2 Unit Test Software

18.5.2.1 GDI Tests

Table 18-3 lists the required software to run the GDI tests.

18.5.2.2 DirectDraw Tests

Table 18-4 lists the software required to run the DirectDraw tests.

Table 18-2. Hardware Requirements

Requirement Description

Chunghwa VGA Panel Display panel required for display of graphics data

Table 18-3. Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device and the development
workstation

Gdiapi.dll Main test .dll file

Ddi_test.dll Graphics Primitive Engine (GPE)–based display driver that the GDI API uses to verify the success of each test case.
If Ddi_test.dll is unavailable, run the test with manual verification.

Liquid Crystal Display Controller (LCDC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 18-5

18.5.2.3 Windows Media Player Tests

Table 18-5 lists the software required to perform WMV playback with Windows Media Player.

18.5.3 Building the Display Tests
The GDI and DirectDraw tests come pre-built as part of the CETK. Ensure that the latest CETK suite is
included. No steps are required to build these tests. For information about the tests, see the Help:

Windows Embedded CE Test Kit > Running the CETK

For Windows Media Player testing, there are no build steps required. The Windows Media Player catalog
item must be added to the OS image to ensure that ceplayer.exe is included in the image. Additionally,
sample WMV files must be included in the image to demonstrate playback.

18.5.4 Running the Display Tests

18.5.4.1 Running the GDI Tests

The command line for running the GDI tests is tux –o –d gdiapi.dll -c "NoResize".

For detailed information on the GDI tests and command line options for these tests, see the Platform
Builder Help:

Windows Embedded CE Test Kit > CETK Tests and Test Tools > CETK Tests > Display Tests >
Graphics Deveice Interface Test

Table 18-6 describes the test cases contained in the GDI test suite.

Table 18-4. Direct Draw Software Requirements

Requirements Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target
device and the development workstation

DDrawTK.dll Test .dll file

Table 18-5. Windows Media Player Software Requirements

Requirements Description

Ceplayer.exe Windows Media Player sample application

*.wmv sample video files Sample windows media files

Liquid Crystal Display Controller (LCDC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

18-6 Freescale Semiconductor

NOTE
The GDI test cases may be interfered by the mouse movement. So it is
preferred to remove Shell and User Interface > User Interface > Mouse
catalog from OS workspace before run GDI tests.

18.5.4.2 Running the DirectDraw Tests

The command line for running the DirectDraw tests is tux –o –d ddrawtk.

For detailed information on the DirectDraw tests and command line options for these tests, see the
Platform Builder Help:

Windows EmbeddedCE Test Kit > CETK Tests and Test Tools > CETK Tests > Display Tests >
DirectDraw Test

Table 18-7 describes the test cases contained in the DirectDraw test suite.

Table 18-6. GUI Test Cases

Test Case Description

100–104: Clip Tests the functionality of clipping using different shapes and verifies the functionality of complex clip
regions

200–231: Draw Calls functions that draw and functions that apply complex effects to drawing. These test cases perform
blitting, line drawing, filling, color table manipulation, bitmap type creation, and device attribute
modification
NOTE: Test case 231, AlphaBlend, is skipped, as it is not supported in the image

300–307: Palette Verifies color matching and color conversion for palettes, and modifies associated palettes

500–512: Region Tests region management by calling functions that modify region rectangles

600–608: Brush and pen Assesses the functionality of brushes and brush alignments

700–710: Device attribute Verifies device attributes and exercises functions that modify device attributes

800–808: Device context Creates, retrieves, saves, and restores a device context

900–905: Device object Calls functions that retrieve, modify, and delete GDI objects

1000–1011: Font Verifies font enumeration, selection, and attributes

1100–1108: Text Writes text to various locations on the display. If the font required by the test is not available, some test cases
do not run

1200–1205: Print Passes bad parameters to printing functions

1300–1303: Verify Assesses the functionality of test verification functions such as CheckScreenHalves and CheckAllWhite

1400, 1401: Manual Manually tests font drawing. These test cases can be used to exercise code paths. To step through these test
cases, press the left SHIFT key

Liquid Crystal Display Controller (LCDC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 18-7

Table 18-7. Direct Draw Test Cases

Test Case Description

100: Get Caps Retrieves the capabilities of the hardware abstraction layer (HAL), verifies that the operation is
successful, and then displays all capabilities retrieved. This test case fails if it cannot retrieve the
capabilities of the HAL.

101: Enumerate
Display Modes

Enumerates the DirectDraw display modes, verifies that the enumeration completes, and then displays
the results of the enumeration.

200: Blt
(Windowed Mode)

Executes blits to/from various surfaces. Verifies that the actual destination matches the expected
destination for each blit. This test case fails if any blits are unsuccessful.

210: ColorKey Blt
(Windowed Mode)

Executes a variety of color key blits to/from assorted surfaces. Verifies that the actual destination
matches the expected destination for each test. This test case fails if any color key blits are
unsuccessful.

220: Color Filling Blts
(Windowed Mode)

Executes a variety of color fill blits to assorted surfaces. The test case verifies that the surface is filled
with the specified color. This test case fails if any color fill blits are unsuccessful.

300: Blt
(Exclusive Mode)

Executes a variety of blits to and from assorted surfaces. The test case verifies that the actual
destination matches the expected destination for test. This test case fails if any blits are unsuccessful.

310: ColorKey Blt
(Exclusive Mode)

Executes a variety of color key blits to and from assorted surfaces. The test case verifies that the actual
destination matches the expected destination for each test. This test case fails if any color key blits are
unsuccessful.

320: Color Filling Blts
(Exclusive Mode)

Executes a variety of color fill blits to assorted surfaces. The test case verifies that the surface is filled
with the specified color. This test case fails if any color fill blits are unsuccessful.

330: Flip
(Exclusive Mode)

Executes a variety of blits to a flipping chain and verifies that the flips are successful and that all
surfaces display correctly. This test case fails if any flips or surface verifications fail.

400: CreateVideoPort
(Video Port Container Test)

Enumerates the available video ports and connections for the video ports. This test case then verifies
that each enumerated connection can be created.

410: EnumVideoPorts
(Video Port Container Test)

Enumerates the available video ports and then enumerates the video ports based on specific
capabilities.

420: GetVideoPortConnectInfo
(Video Port Container Test)

Verifies the GetVideoPortConnectInfo function appropriately handles a variety of input conditions.

430: QueryVideoPortStatus
(Video Port Container Test)

Verifies that the QueryVideoPortStatus function appropriately handles each video port.

500: GetBandwidthInfo
(Video Port Test)

Verifies that the GetBandwidthInfo function returns consistent information about each type of video
port available.

502: GetSetColorControls
(Video Port Test)

Verifies that the GetColorControls and SetColorControls functions set and return consistent color
controls if color control is supported.

504: GetInputOutputFormats
(Video Port Test)

Verifies that the GetInputFormats and GetOutputFormats functions return consistent information
under a variety of calling conditions.

506: GetFieldPolarity
(Video Port Test)

Verifies that the GetFieldPolarity function returns consistent information about the field polarity of a
video port.

508: GetVideoLine
(Video Port Test)

Verifies that the GetVideoLine function returns consistent information.

510: GetVideoSignalStatus
(Video Port Test)

Verifies that the GetVideoSignalStatus function returns consistent information.

Liquid Crystal Display Controller (LCDC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

18-8 Freescale Semiconductor

512: SetTargetSurface
(Video Port Test)

Verifies that the SetTargetSurface function appropriately handles improper input.

514: StartVideo
(Video Port Test)

Verifies that calls to the StartVideo function succeed with a variety of flags set.

516: StopVideo
(Video Port Test)

Verifies that a call to the StopVideo function succeeds.

518: UpdateVideo
(Video Port Test)

Verifies that calls to the UpdateVideo function succeed with a variety of flags set.

520: WaitForSync
(Video Port Test)

Verifies that the WaitForSync function behaves consistently with each possible flag.

1200: Blt
(Interactive Windowed Mode)

Executes blits that include color fills and scaling. Each blit must be verified manually.

1240: Overlay Blt
(Interactive Windowed Mode)

Executes blits to an overlay surface. The test cannot verify that the contents of the overlay surface
display correctly, so the output must be verified manually. If the test succeeds, an overlay appears in
the middle of the screen with a blue and yellow checkerboard pattern. This test may run as many as
three times with the same output, testing RGB, YUYV, and VYUY pixel formats on the overlay
surface.

1250: ColorKeyOverlay Blt
(Interactive Windowed Mode)

Executes color key blits to an overlay surface. The test cannot verify that the contents of the overlay
surface display correctly, so the output must be verified manually. If the test succeeds, a blue
checkerboard pattern appears in a variety of locations across the display of the target device. If the
driver enables stretching, the test also stretches the checkerboard pattern. This test may run as many as
three times with the same output, testing RGB, YUYV, and VYUY pixel formats on the overlay
surface.

1260: ColorFill Overlay Blt
(Interactive Windowed Mode)

Executes color fill blits to an overlay surface. The test cannot verify that the contents of the overlay
surface display correctly, so the output must be verified manually. This test case cycles through red,
green and blue on the primary overlay surface. This test may run as many as three times with the same
output, testing RGB, YUYV, and VYUY pixel formats on the overlay surface.

1300: Blt
(Interactive Exclusive Mode)

Executes blits that must be verified when prompted. The test does not contain an automated
mechanism for verifying scaling.

1340: Overlay Blt
(Interactive Exclusive Mode)

Executes blits to an overlay surface. The test cannot verify that the contents of the overlay surface
display correctly, so the output must be verified manually. If the test succeeds, an overlay is located in
the middle of the screen on the target device with blue and yellow horizontal lines. The primary surface
behind the overlay surface should fill the entire display. This test may run as many as three times with
the same output, testing RGB, YUYV, and VYUY pixel formats on the overlay surface.

1350: ColorKeyOverlay Blt
(Interactive Exclusive Mode)

Executes color key blits to an overlay surface. Cannot verify that the contents of the overlay surface
display correctly, so the output must be verified manually. If the test succeeds, blue horizontal bars
appear across the display of the target device. The primary surface behind the overlay surface should
fill the entire display. This test may run as many as three times with the same output, testing RGB,
YUYV, and VYUY pixel formats on the overlay surface.

1360: ColorFill Overlay Blt
(Interactive Exclusive Mode)

Executes color fill blits to an overlay surface. Cannot verify that the contents of the overlay surface
display correctly, so the output must be verified manually. This test case cycles through red, green and
blue on the primary surface and the overlay surface. The color fills on the primary surface should fill
the entire display. This test may run as many as three times with the same output, testing RGB, YUYV,
and VYUY pixel formats on the overlay surface.

Table 18-7. Direct Draw Test Cases (continued)

Test Case Description

Liquid Crystal Display Controller (LCDC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 18-9

NOTE
The following DirectDraw test cases are not supported by the DirectDraw
driver, and are therefore skipped: 400, 410, 420, 430, 500, 502, 504, 506,
508, 510, 512, 514, 516, 518, 520.

18.5.4.3 Running the Windows Media Player tests

The command line for starting playback of a WMV test video clip in Windows Media Player is ceplayer
[wmv test file] (for example, ceplayer motocross_208x160_30fps.wmv). If audio support is not included
in the current BSP, a dialog box reading “Audio hardware is missing or disabled” pops up when the WMV
file is being loaded. Select OK to continue to WMV playback.

Correct operation of this test is confirmed by observing the application and verifying that the video clip is
playing at a smooth rate (it should not be dropping frames or otherwise appear jerky) with a clear image,
normal coloring, and correct image sizing.

NOTE
Because overlay destination color keying is not enabled due to hardware
limitations, Windows Media Player uses GDI memory copy for video
playback. This means that video clip playback usually drops frames and is
not smooth for test videos via WMV.

18.6 Display Driver API Reference
Documentation for the display driver APIs can be found within the Platform Builder Help. No additional
custom API information is required for the features currently supported in the display driver. Reference
information on basic display driver functions, methods, and structures can be found at the following
location in the Platform Builder Help documentation:

Developing a Device Driver > Windows Embedded CE Drivers > Display Drivers > Display Driver
Reference

For reference information on DirectDraw functions, callbacks, and structures, see the Platform Builder
Help:

Windows Embedded CE Features > Graphics > DirectDraw

Liquid Crystal Display Controller (LCDC) Driver

Windows Embedded CE 6.0 BSP Reference Manual

18-10 Freescale Semiconductor

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 19-1

Chapter 19
NAND Flash Driver
The NAND Flash Driver provides the functionality of NAND storage accessing. The flash driver follows
Windows CE 6.0 R2 Flash driver MDD and PDD model.

19.1 Flash Driver Summary
Windows CE provides driver support for flash media devices using MDD/PDD architecture. The MDD
allows NAND flash storage to be exposed as a block driver that is accessed by file system. The PDD wraps
FMD layer(flash driver model before R2) as a stream interface called by MDD. The FMD software layer
ported to the i.MX NAND Flash controller is responsible for the actual communication with the
corresponding NAND Flash devices.

The flash driver supports both SLC and MLC NAND Flash devices. As for page size, 512 byte (small page
size) is not supported. Table 19-1 provides a summary of source code location, library dependencies and
other BSP information.

Table 19-1. Flash Driver Summary

Driver Attribute Definition

Target Platform iMX25-3DS-PDK1_7

Target SOC MX25_FSL_V2_PDK1_7

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\NAND

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\NAND

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\BLOCK\NANDFMD
..\PLATFORM\<Target Platform>\SRC\COMMON\NANDFMD

Driver DLL flashpdd_nand.dll

SDK Library N/A

Catalog Item Device Drivers > Storage Devices > MSFlash Drivers > Flash MDD
Third Party > BSP > Freescale i.MX25 3DS PDK1_7: ARMV4I > Storage Drivers > MSFlash Drivers
> Samsung K9LBG08U0D NAND Flash

SYSGEN Dependency N/A

BSP Environment Variables BSP_NONANDFMD=
BSP_NAND_K9LAG08U0M=1
BSP_NAND_K9LBG08U0M=1
BSP_NAND_K9LBG08U0D=1

NAND Flash Driver

Windows Embedded CE 6.0 BSP Reference Manual

19-2 Freescale Semiconductor

19.2 Supported Functionality
The flash driver enables the 3-Stack System to provide the following software and hardware support:

1. Supports the Windows CE MDD/PDD interface
2. Supports both MLC and SLC NAND
3. Supports both 2 Kbyte and 4 Kbyte page size NAND
4. Supports MLC NAND Flash K9LBG08U0D as default

19.3 Hardware Operation
Refer to the chapter on the NAND Flash Controller (NFC)in the i.MX25 Multimedia Applications
Processor Reference Manual for detailed operation and programming information.

19.3.1 Conflicts with Other Peripherals and Catalog Items

19.3.1.1 Conflicts with SoC Peripherals

No conflicts.

19.4 Software Operation
The development concepts for flash media drivers are described in the Windows CE 6.0 Help
Documentation section under the topic

Developing a Device Driver > Windows Embedded CE Drivers > Flash Drivers.

The flash driver supported in the i.MX BSP implements the required PDD functions for interfacing to
NAND Flash devices.

19.4.1 MDD/PDD Layer Overview
The Microsoft Windows Embedded CE 6.0 Flash Driver component contains two components: the
module device driver (MDD), and the platform-dependent driver (PDD).

The flash driver MDD is responsible for actions such as handling wear-leveling, writing sector
transactions, translating logical sectors to physical sectors, and performing compaction. The flash MDD
can operate regardless of the type of flash media, allowing it to support single-level cell (SLC) NAND,
multi-level cell (MLC) NAND, and NOR media. The operating system provides the MDD component.

The flash driver PDD is responsible for interacting with the flash hardware, and contains the basic
functions necessary to access physical flash. Also, the PDD exposes a stream interface, and the PDD is
where you implement the PDD IOCTLS to meet your specific hardware needs. The PDD component is
platform specific, and the Freescale flash driver provides the functionality of the PDD component.

The block diagram below (Figure 38-1) describes the high level architecture and basic interactions of the
i.MX NAND driver implementation. The i.MX flash driver PDD consists of three major components:

NAND Flash Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 19-3

• Common Logical Layer - this component contains logical part of the PDD layer, including
parameter check, memory management, boot time dynamic detection of installed flash module,
algorithm for using multiple nand chips, etc. This layer is shared by all platforms.

• SOC Operation Layer - this component contains pure hardware operations, including sector
reading, sector writing, block erasing, etc. No additional logic is in this layer, except some simple
necessary ones for doing hardware operations. This layer is SOC specific.

• BSP Configuration Layer - this component is used to report flash chip properties to common
logical layer. No algorithm and no hardware operations are needed in this layer. Only report the
reality situation of the flash property on board. This layer is board specific.

The i.MX flash driver currently supports a limited number of commercially available flash modules.
However, the i.MX flash driver software architecture allows support of new flash modules. The i.MX
flash driver must be modified to support new flash modules that the BSP does not currently support.

The i.MX flash driver is table driven. That is, by appropriately modifing definitions described in this
chapter, the flash driver can be reconfigured to support a different flash module. No other source code
changes are required.

Figure 19-1. PDD Layer Block Diagram

common logical layer

soc operation layer

bsp configuration layer

request hardware
operations from soc layer
based on flash properties

get board configuration
from bsp layer

bsp layer reports nand
properties or set auto
detection mode to let logical
layer scan out the flash
type dynamically based on
NandChipInfo array

DISK layer

PDD

MDD

NAND Flash Driver

Windows Embedded CE 6.0 BSP Reference Manual

19-4 Freescale Semiconductor

19.4.2 Definitions
Flash modules vary between manufacturers, and even between process-technologies or product revisions
by the same manufacturer. Each module is different, and the flash driver must change to support these new
modules. A number of definitions are used to describe flash module characteristics and include the
following:

• Bad block mark
• Block size
• Page size
• Command set

The manufacturer's data sheet describes each of these definitions in detail for the particular flash module.
The manufacturer's data sheet and these definitions are very important to understand when adding new
flash support to the i.MX flash driver.

The i.MX flash driver abstracts the characteristics of the NAND Flash memory device to a single header
file. This header file is named in terms of the NAND device name, could be found in:

\WINCE600\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\NAND\INC

For each NAND flash device, there are two header files, one is .h format used for C language code and
another is .inc format used for assembly language code. The two files are highly similar.

Table 19-2. Nand Property Definitions

Member Description

CMD_READID Command used to read nand flash ID. Default value is 0x90.

CMD_READ Command used as initial command for reading operation. Default value is 0x00.

CMD_READ2 Command used as start command for reading operation. Default value is 0x30.

CMD_RESET Command used to reset nand flash. Default value is 0xFF.

CMD_WRITE Command used as initial command for writing operation. Default value is 0x80.

CMD_WRITE2 Command used as start command for writing operation. Default value is 0x10.

CMD_ERASE Command used as initial command for erasing operation. Default value is 0x60.

CMD_ERASE2 Command used as start command for erasing operation. Default value is 0xD0.

CMD_STATUS Command used to read nand flash status. Default value is 0x70.

NAND_STATUS_BUSY_BIT Bit number in status byte to indicate BUSY/IDLE status of nand flash status. Default value is 6.

NAND_STATUS_ERROR_BIT Bit number in status byte to indicate PASS/FAIL status of nand flash operation. Default value is 0.

NAND_NUM_OF_CS Number of dies per nand flash chip.

NAND_BLOCK_CNT Number of blocks per nand flash die.

NAND_PAGE_CNT Number of pages per block.

NAND_PAGE_SIZE Number of bytes in main data area per page.

NAND_SPARE_SIZE Number of bytes in spare area per page.

NAND Flash Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 19-5

19.4.3 Adding New Flash Configurations
The i.MX flash driver is table driven. That is, by appropriately modifing the definitions described above,
the flash driver can be reconfigured to support a different flash module. No other source code changes are
required.

The flash driver currently supports the flash modules listed in section 38.2. The flash driver does not
dynamically detect which flash module is installed. Instead, the flash driver must be modified and
re-compiled to support a different flash module

To support a flash module that is not currently supported by the BSP, use the following steps:
1. create two new header files (.h and .inc format files) by using one of the existing NAND device

headers as templates
2. update the newly created header file to include device-specific definitions described in 38.4.2
3. update the reference in the nandbsp.h device-specific header located in the following directory:

\WINCE600\PLATFORM\<Target Platform>\SRC\COMMON\NANDFMD

4. recompile the flash driver for the new device

NOTE
The flash driver currently supports 2K+64B page size, 4K+128B page size, and 4K+218B page size with
8 bit ECC. The table configuration method can be used to support these common flash memory types.

NAND_BUS_WIDTH Bit number of nand flash, it should be 8bits or 16bits.

NAND_MAKER_CODE Nand ID defined in terms of manufacturer.

NAND_DEVICE_CODE Nand ID defined in terms of nand type.

BBI_NUM Number of pages, defined by manufacturer, that is used to indicate initial bad block during
manufacturing.

BBMarkPage[BBI_NUM] An array that indicates which pages are used to indicate initial bad block during manufacturing.

BBI_MAIN_ADDR Byte address that is used to swap data with bad block mark to guarantee BBI position is untouched.
For 2K+64B page size nand, define it as 464; For 4K+128B page size nand, define it as 400; For
4K+218B page size nand, define it as 330.

NAND_PAGE_CNT_LSH The power exponent (log2) of NAND_PAGE_CNT. For exsample, it should be 7 if page number is
128 (2^7). The definition is defined in .inc file.

NAND_PAGE_SIZE_LSH The power exponent (log2) of NAND_PAGE_SIZE. For exsample, it should be 12 if page size is
4096 (2^12). The definition is defined in .inc file.

NAND_BLOCK_SIZE_LSH The power exponent (log2) of nand flash block size. The definition is defined in .inc file.

NUM_OF_NAND_DEVICES Number of nand flash dies per nand flash chip. The definition is defined in .inc file.

NUM_OF_NAND_DEVICES_LS
H

The power exponent (log2) of NUM_OF_NAND_DEVICES. The definition is defined in .inc file.

Table 19-2. Nand Property Definitions (continued)

Member Description

NAND Flash Driver

Windows Embedded CE 6.0 BSP Reference Manual

19-6 Freescale Semiconductor

19.4.4 Registry Settings
The registry keys implemented for the flash driver provide basic support for loading and configuring the
NAND as a file system mount. Many more configuration options are available and are discussed in:
Windows CE 6.0 Help Documentation section under the topic

Windows Embedded CE features > File Systems and Storage Management > Storage Management
> Storage Manager Registry Settings

As default, the NAND disk is automatically formatted and a partition created if no NAND partition is
found when booting up. The functionality is implemented by specifying following items:
"AutoPart"=dword:1
"AutoFormat"=dword:1

The two items can be deleted to disable the functionality.

19.4.5 DMA Support
The flash driver does not support DMA.

19.4.6 Power Management
Flash driver handles power requests in MDD layer by default.

19.5 Unit Test
The flash driver is tested using the Windows CE 6.0 Test Kit and additional system used cases. This section
describes the test scenarios that are used to verify the operation of the flash driver.

19.5.1 CETK Testing
NOTE

Depending on the state of the NAND flash memory, it may be necessary to
format and partition the NAND device using Storage Manager prior to
running the CETK tests that do not reformat the device automatically.

Table 19-3. CEKT Tests

CETK Test Command Line

File System Driver Test tux -o -d fsdtst -c "-p MSFlash -z"

Flash Memory Read/Write and Performance Test tux -o -d flshwear -c"/profile MSFlash /store /flash"

Storage Device Block Diver API Test tux -o -d disktest -c"/profile MSFlash /zorch /part /sectors 256"

Storage Device Block Diver Benchmark Test tux -o -d rw_all -c"/profile MSFlash /zorch /part"

Storage Device Block Diver Read/Write Test tux -o -d rwtest -c"/profile MSFlash /zorch /part"

NAND Flash Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 19-7

19.5.2 System Testing
The following system tests verify the operation of the flash driver:

• Use the Start > Settings > Control Panel > Storage Manager to format and create partitions on the
mounted NAND device

• Establish ActiveSync connection over USB and transfer files to/from the NAND storage
• Write media files to NAND storage. Use Windows Media Player to playback media files from

NAND storage

NAND Flash Driver

Windows Embedded CE 6.0 BSP Reference Manual

19-8 Freescale Semiconductor

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 20-1

Chapter 20
Pulse Width Modulator (PWM) Driver
The PWM controller outputs a square wave with a variable duty cycle.

20.1 PWM Driver Summary
Table 20-1 provides a summary of source code location, library dependencies and other BSP information.

20.2 Supported Functionality
The PWM driver enables the 3-Stack System to provide the following software and hardware support:

1. Supports duty cycle modulation
2. Supports varying output intervals
3. Supports two power management modes, full on and full off

20.3 Hardware Operation
The PWM driver outputs the toggling signal whose frequency and duty cycle can be modulated by
programming the appropriate registers.

Table 20-1. PWM Driver Summary

Driver Attribute Definition

Target Platform iMX25-3DS-PDK1_7

Target SOC MX25_FSL_V2_PDK1_7

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\PWM

Platform Driver Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\PWM

Import Library none

Driver DLL pwm.dll

Catalog Item Third Party > BSPs > Freescale <TGTPLAT>: ARMV4I > Device Drivers > PWM

SYSGEN Dependency N/A

BSP Environment Variables BSP_PWM1=1 or BSP_PWM2=1 or BSP_PWM3=1 or BSP_PWM4=1

Pulse Width Modulator (PWM) Driver

Windows Embedded CE 6.0 BSP Reference Manual

20-2 Freescale Semiconductor

20.3.1 Conflicts with Other Peripherals and Catalog Items

20.3.1.1 Conflicts with SoC Peripherals

The i.MX25 platform contains four PWM modules. PWM1 is conflicted with the interrupt from the Debug
board. Therefore, this PWM can be used if the Debug board is not attached. PWM2 is used for USB OTG.
PWM3 is used for USB OTG. PWM4 is conflicted with the LCD and CAN.

20.3.2 Conflicts with 3-Stack Peripherals
PWM1 is used for Debug board interrupts.

20.4 Software Operation

20.4.1 Registry Settings

20.4.1.1 i.MX25 Registry Settings

The following registry keys are required to properly load the PWM module.
IF BSP_PWM1
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\PWM1]
 "Prefix"="PWM"
 "Dll"="pwm.Dll"
 "Order"=dword:1
 "Index"=dword:1
ENDIF ; BSP_PWM1

IF BSP_PWM2
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\PWM2]
 "Prefix"="PWM"
 "Dll"="pwm.Dll"
 "Order"=dword:1
 "Index"=dword:2
ENDIF ; BSP_PWM2

IF BSP_PWM3
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\PWM3]
 "Prefix"="PWM"
 "Dll"="pwm.Dll"
 "Order"=dword:1
 "Index"=dword:3
ENDIF ; BSP_PWM3

IF BSP_PWM4
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\PWM4]
 "Prefix"="PWM"
 "Dll"="pwm.Dll"
 "Order"=dword:1
 "Index"=dword:4
ENDIF ; BSP_PWM4

Pulse Width Modulator (PWM) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 20-3

20.4.2 Communicating with the PWM
The PWM is a stream interface driver, and is thus accessed through the file system APIs. To communicate
using the PWM, a handle to the device must first be created using the CreateFile function. Subsequent
commands to the device are issued using the DeviceIoControl function with IOCTL codes specifying the
desired operation.

20.4.3 Creating a Handle to the PWM
Call the CreateFile function to open a connection to the PWM device. A PWM port must be specified in
this call. The format is “PWMX:”, with X being the number indicating the PWM port. This number should
not exceed the number of PWM instances on the platform. If a PWM port does not exist, CreateFile
returns ERROR_FILE_NOT_FOUND.

To open a handle to the PWM:
1. Insert a colon after the PWM port for the first parameter, lpFileName. For example, specify

PWM1:.
2. Specify OPEN_EXISTING in the dwCreationDisposition parameter. This flag is required.

The following code example shows how to open a PWM port.
 // Open the serial port.
 hPWM = CreateFile (L”PWM1:”, // name of device

GENERIC_READ | GENERIC_WRITE, // desired access
0, // sharing mode (ignored)
NULL, // security attributes (ignored)
OPEN_EXISTING, // creation disposition
0, // flags/attributes
NULL); // template file (ignored)

20.4.4 PWM Operations
The PWM uses the PWM_Write function to output a user defined waveform and the PWM_Read the
registers of the PWM controller.

To read the registers of the PWM, use the ReadFile API as in the following example:
ReadFile (hPWM, // handle returned by CreateFile

lpBuffer, // pointer to open buffer at least count bytes long
NumberOfBytesToRead, // must be at least 24
lpNumberOfBytesRead, // pointer. Will receive number of bytes written
NULL); // lpOverlapped (ignored)

The PWM has two registers that are used to modify the output waveform. These registers are the period
register and the sample register. When an output waveform is started, an internal counter starts counting
from zero and the output is a low. When the internal counter is equal to the sample register, the output
changes to high. When the internal counter is equal to the period register + 1, the counter and output reset
to zero and the counter starts counting again. The duty cycle can be modified by changing the sample
register. If the sample register is greater than the period register + 1, no waveform is generated. For more
detailed information, consult the datasheet for the i.MX25.

To output a waveform use the WriteFile API as in the following example:

Pulse Width Modulator (PWM) Driver

Windows Embedded CE 6.0 BSP Reference Manual

20-4 Freescale Semiconductor

PwmSample_t PwmSample;
PwmSample.duration = 5000; //waveform lasts for 5 secs
PwmSample.period = 0; //period of 1
PwmSample.sample = 1; //output will change when counter reaches 1
WriteFile(hOpen, //handle returned by CreateFile

&PwmSample, //pointer to a PwmSample_t structure
sizeof(PwmSample_t), //size of the PwmSample_t structure
&NumberOfBytesWritten, //pointer to a DWORD
NULL); //ignored

20.4.5 Closing the Handle to the PWM
Call the CloseHandle function to close a handle to the PWM after an application finishes using it.
CloseHandle has one parameter, which is the handle returned by the CreateFile function call that opened
the PWM port.

20.4.6 Power Management
The primary method for limiting power consumption in the PWM module is to gate off the input clock to
the module when the input PWM clock is not needed. This is accomplished through the
DDKClockSetGatingMode function call.

20.4.6.1 PowerUp

This function resets the device.

20.4.6.2 PowerDown

This function is not implemented for the PWM driver.

20.4.6.3 IOCTL_POWER_SET

This function is implemented for the PWM driver. When D4 or D3 power mode is set, the driver turns off
the clocks to the controller.

20.4.6.4 Restrictions
• The DMA XCH size is restrict to maximum DMA buffer size, up to 5 Kbytes bytes
• DMA exchange only supports a bit count of 32
• The maximum transfer size if using SPI1 is 64 Dwords
• Cannot use polling and DMA for the same transaction

20.5 Unit Test
The testing of the PWM requires a hardware modification and therefore is not easy for the user to test.

Pulse Width Modulator (PWM) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 20-5

20.6 PWM Driver API Reference

20.6.1 PWM Driver IOCTLS
This section consists of descriptions for the PWM I/O control codes (IOCTLs). These IOCTLs are used in
calls to DeviceIoControl to issue commands to the PWM device. Only relevant parameters for the IOCTL
have a description provided.

20.6.1.1 PWM_IOCTL_RESET

This DeviceIoControl request performs the transfer of data to a target device. An SPI_XCH_PKT object
is required, which contains PWM bus configuration parameters and TX/RX data buffers. All of the
required information should be stored in the SPI_XCH_PKT passed in the lpInBuffer field.
Parameters None

20.6.2 PWM Driver Structures

20.6.2.1 PWM_BUSCONFIG_T

This structure contains the bus configuration information needed to during PWM performs XCH.
/* struct of pwm play sample */
typedef struct {
 UINT32 sample; // pwm sample value
 UINT32 period; // pwm period
 UINT32 duration; // duration of the sample (msec)
} PwmSample_t, *pPwmSample_t;

Members
sample Count that the output negates
period Period -1 of the waveform in clock cycles
duration Length in milliseconds that the output waveform endures

Pulse Width Modulator (PWM) Driver

Windows Embedded CE 6.0 BSP Reference Manual

20-6 Freescale Semiconductor

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 21-1

Chapter 21
Serial Driver
The serial driver interfaces the low level serial driver hardware to the Windows CE serial subsystem.

21.1 Serial Driver Summary
The serial port driver is implemented as a stream interface driver and supports all the standard I/O control
codes and entry points. The serial port driver handles all the internal UARTs except UART1 which is used
for debugging. In the BSP implementation, the hardware-specific code that corresponds to the serial port
driver lower layer is implemented as the platform-dependent driver (PDD). This PDD is linked with
Microsoft-provided public serial MDD library (com_mdd2.lib) to form the whole serial port driver.
Table 21-1 provides a summary of source code location, library dependencies and other BSP information.

21.2 Supported Functionality
The serial port driver enables the 3-Stack System to provide the following support:

1. Conforms to RS232 protocol standard
2. Supports RTS/CTS hardware flow control function
3. Supports parity check and optional stop bit
4. Supports power management mode full on/full off
5. Supports DMA transfer
6. Supports baudrate up to 4 Mbps

Table 21-1. Serial Driver Summary

Driver Attribute Definition

Target Platform iMX25-3DS-PDK1_7

Target SOC MX25_FSL_V2_PDK1_7

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\SERIAL

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\SERIAL

Driver DLL csp_serial.dll

SDK Library N\A

Catalog Item Third Party −> BSP −> Freescale <Target Platform>: ARMV4I − > Device Drivers −> Serial −>
UART2

SYSGEN Dependency N/A

BSP Environment Variables BSP_SERIAL_UART2 =1

Serial Driver

Windows Embedded CE 6.0 BSP Reference Manual

21-2 Freescale Semiconductor

21.3 Hardware Operation
Refer to the chapter on the UART in the Multimedia Applications Processor Reference Manual for detailed
operation and programming information.

21.3.1 Conflicts with Other Peripherals and Catalog Items

21.3.1.1 Conflicts with SoC Peripherals

All the pins of UART can be configured for alternate functionality (FEC, SDIO, GPT1, EPIT2) using the
i.MX25 IOMUX. The configuration used by the serial driver does not have any conflict with other
peripherals. Changing this configuration results in a conflict and prevents proper operation of the UART.

21.3.1.2 Conflicts with Board Peripherals

No conflicts.

21.4 Software Operation
The serial driver follows the Microsoft-recommended architecture for serial drivers. The details of this
architecture and its operation can be found in the Platform Builder Help at the following location:

Developing a Device Driver > Windows CE Drivers > Serial Drivers > Serial Driver Development
Concepts.

21.4.1 Registry Settings

21.4.1.1 i.MX25 Registry Settings
IF BSP_SERIAL_UART2
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\COM2]
 "DeviceArrayIndex"=dword:0
 "IoBase"=dword:43F94000
 "IoLen"=dword:D4
 "Prefix"="COM"
 "Dll"="csp_serial.dll"
 "Index"=dword:2
 "Order"=dword:4
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\COM2\Unimodem]
 "Tsp"="Unimodem.dll"
 "DeviceType"=dword:0
 "FriendlyName"="i.MX25 COM2 UNIMODEM"
 "DevConfig"=hex: 10,00, 00,00, 05,00,00,00, 10,01,00,00, 00,4B,00,00, 00,00, 08, 00, 00,
00,00,00,00
ENDIF ;BSP_SERIAL_UART2

Serial Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 21-3

21.4.2 Power Management
The serial driver supports full on/full off power management mode through PowerUp() and
PowerDown() functions.

21.5 Unit Test
The serial driver is tested using the Serial Port Driver Test and Serial Communications Test included as
part of the CETK. The Serial Port Test assesses whether the driver supports configurable device
parameters such as baud rate and data bits. The test also assesses additional functionality such as COM
port events, escape functions and time-outs.

21.5.1 Unit Test Hardware
• i.MX25 3DS board

21.5.2 Unit Test Software
Table 21-2 lists the required software to run the unit tests.

21.5.3 Building the Unit Tests
The serial port driver tests come pre-built as part of the CETK. No steps are required to build these tests.
The Pserial.dll file can be found alongside the other required CETK files in the following location:

[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4i

21.5.4 Running the Unit Tests
The Serial Port Driver Test executes the tux –o –d serdrvbvt command line on default execution.

For detailed information on the Serial Port tests, see

Debugging and Testing > Tools for Debugging and Testing > Windows CE Test Kit > CETK Tests >
Serial Port Driver Test > Serial Port Driver Test Cases in the Platform Builder Help.

The serial port tests are designed to test that the serial port driver works properly and the API behaves
correctly, and it should be pass all the test cases. Table 21-3 describes the Serial Port driver test cases.

Table 21-2. Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device and the development
workstation

SerDrvBvt.dll Test .dll file for Serial Port Driver Test

Serial Driver

Windows Embedded CE 6.0 BSP Reference Manual

21-4 Freescale Semiconductor

21.6 Serial Driver API Reference
Detailed reference information for the serial driver may be found in the Platform Builder Help at the
following location:

Developing a Device Driver > Windows CE Drivers > Serial Port Drivers > Serial Port Driver
Reference

21.6.1 Serial PDD Functions
Table 21-4 shows a mapping of Serial PDD functions to the functions used in the serial driver.

Table 21-3. Serial Port Driver Test Cases

Test Case Description

1001 Configures the port and writes data to the port at all possible baud rates, data bits, parities, and stop bits. This test fails if it
cannot send data on the port with a particular configuration.

1002 Tests the SetCommEvent and GetCommEvent functions. This test fails if the driver does not properly support the
SetCommEvent or GetCommEvent functions.

1003 Tests the EscapeCommFunction function. This test fails if the driver does not support one of the Microsoft Win32
EscapeCommFunction functions.

1004 Tests the WaitCommEvent function on the EV_TXEMPTY event. The test creates a thread to send data and waits for the
EV_TXEMPTY event to occur when the thread finishes sending data. This test fails if the WaitCommEvent function
behaves improperly or if the EV_TXEMPTY event does not signal appropriately.

1005 Tests the SetCommBreak and ClearCommBreak functions. This test fails if the driver does not properly support the
SetCommBreak or ClearCommBreak functions.

1006 Makes the WaitCommEvent function return a value when the handle for the current COM port is cleared. This test fails if
the WaitCommEvent function behaves improperly.

1007 Makes the WaitCommEvent function return a value when the handle for the current COM port is closed. This test fails if
the WaitCommEvent function behaves improperly.

1008 Tests the SetCommTimeouts function and verifies that the ReadFile function properly times out when no data is received.
This test fails if the COM timeouts do not function correctly.

1009 Verifies that previous Device Control Block (DCB) settings are preserved when the SetCommState function call fails with
DCB settings that are not valid. This test fails if the serial port driver does not keep previous DCB settings when DCB settings
that are not valid are passed to the driver.

Table 21-4. Serial PDD Functions

PDD Function Pointer Serial Driver Function

HWInit SerSerialInit

HWPostInit SerPostInit

HWDeinit SerDeinit

HWOpen SerOpen

HWClose SerClose

HWGetIntrType SL_GetIntrType

Serial Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 21-5

21.6.2 Serial Driver Structures

21.6.2.1 UART_INFO

This structure contains information about the UART Module.
typedef struct {
 volatile PCSP_UART_REG pUartReg;
 ULONG sUSR1;
 ULONG sUSR2;
 BOOL bDSR;
 uartType_c UartType;
 ULONG ulDiscard;
 BOOL UseIrDA;

HWRxIntrHandler SL_RxIntrHandler

HWTxIntrHandler SL_TxIntrHandler

HWModemIntrHandler SL_ModemIntrHandler

HWLineIntrHandler SL_LineIntrHandler

HWGetRxBufferSize SL_GetRxBufferSize

HWPowerOff SerPowerOff

HWPowerOn SerPowerOn

HWClearDTR SL_ClearDTR

HWSetDTR SL_SetDTR

HWClearRTS SL_ClearRTS

HWSetRTS SL_SetRTS

HWEnableIR SerEnableIR

HWDisableIR SerDisableIR

HWClearBreak SL_ClearBreak

HWSetBreak SL_SetBreak

HWXmitComChar SL_XmitComChar

HWGetStatus SL_GetStatus

HWReset SL_Reset

HWGetModemStatus SL_GetModemStatus

HWGetCommProperties SerGetCommProperties

HWPurgeComm SL_PurgeComm

HWSetDCB SL_SetDCB

HWSetCommTimeouts SL_SetCommTimeouts

Table 21-4. Serial PDD Functions

PDD Function Pointer Serial Driver Function

Serial Driver

Windows Embedded CE 6.0 BSP Reference Manual

21-6 Freescale Semiconductor

 ULONG HwAddr;
 EVENT_FUNC EventCallback;
 PVOID pMDDContext;
 DCB dcb
 COMMTIMEOUTS CommTimeouts;
 PLOOKUP_TBL pBaudTable;
 ULONG DroppedBytes;
 HANDLE FlushDone;
 BOOL CTSFlowOff;
 BOOL DSRFlowOff;
 BOOL AddTXIntr;
 COMSTAT Status;
 ULONG CommErrors;
 ULONG ModemStatus;
 CRITICAL_SECTION TransmitCritSec;
 CRITICAL_SECTION RegCritSec
 ULONG ChipID;
 } UART_INFO, * PUART_INFO;

Members
pUartReg Pointer to UART Hardware registers
sUSR1 This value contains the UART status register
sUSR2 This value contains the UART status register
bDSR This boolean value keeps the DSR state
UartType This value contains the type of UART like DCE or DTE
UlDiscard This is used to discard the echo characters in IrDa Mode
UseIrDA This boolean value determines the driver is in IR mode or not
HwAddr This value contains the hardware address of the UART Module
EventCallback This is a callback to the Model Device Driver
pMDDContext This contains the context of the UART, which is the first parameter to the callback

function
dcb This value contains the copy of Device Control Block
CommTimeouts This contains the copy of CommTimeouts structure used to get and set the

time-out parameters for a communication device
pBaudTable Pointer to baud rate table
DroppedBytes This value contains the number of bytes dropped
FlushDone Handle to the flush done event
CTSFlowOff This boolean value is used to store the CTS flow control state
DSRFlowOff This boolean value is used to Store the DSR flow control state
AddTXIntr This boolean value is used to fake a Tx interrupt
Status This value contains the comm status
CommErrors This value contains Win32 comm error status
ModemStatus This value shows the Win32 Modem status

Serial Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 21-7

TransmitCritSec This value is used as Critical Section for UART registers
RegCritSec This value is used as Critical Section for UART
ChipID This value contains Chip identifier (CHIP_ID_16550 or CHIP_ID_16450)

21.6.2.2 SER_INFO

This is a private structure contains the information about the serial.
typedef struct __SER_INFO {
 UART_INFO uart_info;
 BOOL fIRMode;
 DWORD dwDevIndex;
 DWORD dwIOBase;
 DWORD dwIOLen;
 PCSP_UART_REG pBaseAddress;
 UINT8 cOpenCount;
 COMMPROP CommProp;
 PHWOBJ pHWObj;

BOOL useDMA;
 DDK_DMA_REQ SerialDmaReqTx;
 DDK_DMA_REQ SerialDmaReqRx;
 PHYSICAL_ADDRESS SerialPhysTxDMABufferAddr;
 PHYSICAL_ADDRESS SerialPhysRxDMABufferAddr;
 PBYTE pSerialVirtTxDMABufferAddr;
 PBYTE pSerialVirtRxDMABufferAddr;
 UINT8 SerialDmaChanRx;
 UINT8 SerialDmaChanTx;
 UINT8 currRxDmaBufId;
 UINT8 currTxDmaBufId;
 UINT dmaRxStartIdx;
 UINT availRxByteCount;
 UINT32 awaitingTxDMACompBmp;
 UINT32 dmaTxBufFirstUseBmp;
 UINT16 rxDMABufSize;
 UINT16 txDMABufSize;
} SER_INFO, *PSER_INFO;

Members
uart_info This structure contains information about UART
fIRMode This boolean value determines the module is FIR or serial
dwDevIndex This static value contains the device index value which is read from

registry
dwIOBase This static value contains the I/O Base address of UART module which

is read from registry
dwIOLen This static value contains the I/O length of UART Module which is read

from registry
pBaseAddress Pointer to the start address of the UART registers mapped
cOpenCount Contains count of the concurrent open
CommProp Pointer to CommProp structure

Serial Driver

Windows Embedded CE 6.0 BSP Reference Manual

21-8 Freescale Semiconductor

pHWObj Pointer to PDDs HWObj structure
useDMA This boolean flag indicates if SDMA is to be used for transfers through

this UART
SerialDmaReqTx SDMA request line for Tx
SerialDmaReqRx SDMA request line for Rx
SerialPhysTxDMABufferAddr Physical address of Tx SDMA address
SerialPhysRxDMABufferAddr Physical address of Rx SDMA address
pSerialVirtTxDMABufferAddr Virtual address of Tx SDMA address
pSerialVirtRxDMABufferAddr Virtual address of Rx SDMA address.
SerialDmaChanRx SDMA virtual channel indices for Rx
SerialDmaChanTx SDMA virtual channel indices for Tx
currRxDmaBufId Index of the buffer descriptor next expected to complete its SDMA in

the Rx SDMA buffer descriptor chains
currTxDmaBufId Index of the buffer descriptor next expected to complete its SDMA in

the Tx SDMA buffer descriptor chains
dmaRxStartIdx Keeps the start index of byte to be delivered to MDD for Read
availRxByteCount This variable keeps the remaining bytes in the Rx SDMA buffer
awaitingTxDMACompBmp Indicates if an SDMA request is in progress on Tx SDMA buffer

descriptor
dmaTxBufFirstUseBmp Indicator for first time use of a Tx SDMA buffer descriptor
rxDMABufSize Receive DMA buffer size
txDMABufSize Transfer DMA buffer size

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 22-1

Chapter 22
Subscriber Identification Module (SIM) Driver
The SIM is a 32-bit peripheral used to communicate with the SIM cards. It has one port and can have direct
control over one card. The SIM driver transfers the data between SIM module and the SIM card. These
data transfers follow the smartcard transmission protocol as defined in the ISO-7816 specification.

22.1 SIM Driver Summary
Table 22-1 provides a summary of source code location, library dependencies and other BSP information.

22.2 Supported Functionality
The SIM driver enables the 3-Stack System to provide the following software and hardware support:

1. Implements ISO-7816 protocol specification
2. Supports the SIM module for GSM SIM Cards

22.3 Hardware Operation
Refer to the chapter on the SIM in the i.MX25 Multimedia Applications Processor Reference Manual for
detailed operation and programming information.

Table 22-1. SIM Driver Summary

Driver Attribute Definition

Target Platform iMX25-3DS-PDK1_7

Target SOC MX25_FSL_V2_PDK1_7

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\SIM

SOC Specific Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\SIM

Platform Specific Path ..\PLATFORM\<Target Platform>\DRIVERS\SIM

Driver DLL sim.dll

SDK Library N/A

Catalog Item Third Party > BSP > Freescale <TGTPLAT> > Device Drivers > SIM

SYSGEN Dependency SYSGEN_SMARTCARD=1

BSP Environment Variables BSP_NOSIM=
BSP_SMARTCARD_SIM1=1
BSP_SMARTCARD_SIM2=1

Subscriber Identification Module (SIM) Driver

Windows Embedded CE 6.0 BSP Reference Manual

22-2 Freescale Semiconductor

22.3.1 Conflicts with Other Peripherals and Catalog Items

22.3.1.1 Conflicts with SoC Peripherals

All the pins of SIM1 can be configured for alternate functionality using the i.MX25 IOMUX. Hence SIM1
conflicts with both ESAI and CSI controllers. The configuration is specified by the BSP serial driver.
Changing this configuration results in a conflict and prevents proper operation of the SIM.

22.3.1.2 Conflicts with 3-Stack Peripherals

On i.MX25 3-Stack System, the pins used for communication with the SIM1 external connector is shared
with the ESAI and the CSI controllers. Do not include the camera and ESAI Audio drivers while including
SIM1 in the image.

22.4 Software Operation
The SIM driver uses the APIs of smartcard driver and follows the Microsoft-recommended architecture
for smart card drivers. The details of this architecture and its operation can be found in the Platform Builder
Help at the following location:

Developing a Device Driver > Windows Embedded CE Drivers > Smart Card Drivers > Smart Card
Driver Development Concepts.

22.4.1 Power Management
The power management is currently not implemented for the SIM driver.

22.4.2 SIM Registry Settings
The following registry keys are required to properly load the SIM driver into the image.
IF BSP_SMARTCARD_SIM1
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\SIM1]
 "Prefix"="SCR"
 "Dll"="sim.dll"
 "Index"=dword:1
 "Order"=dword:11
 "DeviceArrayIndex"=dword:1
 "Port"=dword:0
ENDIF ;BSP_SMARTCARD_SIM1

IF BSP_SMARTCARD_SIM2
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\SIM2]
 "Prefix"="SCR"
 "Dll"="sim.dll"
 "Index"=dword:2
 "Order"=dword:11
 "DeviceArrayIndex"=dword:2
 "Port"=dword:0
ENDIF ;BSP_SMARTCARD_SIM2

Subscriber Identification Module (SIM) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 22-3

SIM driver is a variance of the smartcard driver and uses the smartcard layer provided by Microsoft as its
upper layer. Thus, to use the SIM driver, it is required to first include the smartcard layer into the OS design
and then build the image.

22.5 Unit Test
There is no Windows CE 6.0 Test Kit (CETK) available to test the SIM driver. However, the driver can be
tested by running the SIM Application present in the WINCE600\SUPPORT_PDK1_7\APP\SIMApp
folder.

22.5.1 Unit Test Hardware
Table 22-2 lists the required hardware to run the unit tests.

22.5.2 Building the SIM Application
To build the SIM Application, complete the following steps: Build an OS image for the desired
configuration:

1. Within VS2005, go to the Build menu option and select the Open Release Directory in Build
Window menu option.This opens a DOS prompt.

2. Change to the SIM Application directory: \WINCE600\SUPPORT_PDK1_7\APP\SIMApp)
3. Enter set WINCEREL=1 on the command prompt and press return. This copies the built EXE to

the flat release directory.
4. Enter the build command (build -c) at the prompt and press return.

After the build completes, the SIMApp.exe file is located in the $(_FLATRELEASEDIR) directory.

22.5.3 Running the SIM Application
Within VS2005, go to the Target menu option and select the Run Programs menu option. This gives a
list of applications that can be run on the OS. Select SIMApp.exe from this list and click on Run to run this
application.

Once the SIM application is loaded, a screen appears on the display containing three drop down menus in
the tool bar: Tools, About and File. By now, the SIM application has sent three SELECT_FILE commands
to the SIM card to open the Master File (MF), Dedicated File (DF) which contains telecom services
features and an Elementary File (EF). Once the EF is opened, the application can issue commands to parse
through the records in this file.

The user can choose the Tools option from the toolbar and then choose the Phonebook option. Here the
user can parse through the phonebook entry, add a new entry into the phonebook or remove an existing
entry.

Table 22-2. Hardware Requirements

Requirement Description

GSM SIM card Any GSM SIM card

Subscriber Identification Module (SIM) Driver

Windows Embedded CE 6.0 BSP Reference Manual

22-4 Freescale Semiconductor

The user can move to the previous record by clicking on the Previous button, the next record by clicking
on the Next button. If there is no data in a selected record, the application prompts a message referring to
an empty record.

To add/modify an entry into the SIM, it is first required to edit the entry and then click on the Modify button
which saves the modifications. The number entry can only accept number characters, any other character
input causes modification operation failed.

Table 22-3 shows the functions present in the application that are called when user performs any operation
in the Phonebook option in the GUI.

22.6 SIM Driver API Reference
Detailed reference information for the SIM driver API may be found in VS2005 Help at the following
location:

Developing a Device Driver > Windows Embedded CE Drivers > Smart Card Drivers > Smart Card
Driver Reference.

22.6.1 SIM PDD Functions
The SIM driver is developed from the sample PC Card smart card readers namely Bulltlp3.dll, Pscr.dll,
and Stcusb.dll that are included in the Software Development Kit (SDK).

22.6.2 SIM Driver Structures

22.6.2.1 ClockRateFactor

This structure is used to store the Clock Rate Conversion Factor table defined in ISO-7816 specification.
typedef struct {
 UINT8 FI;

INT16 Fi;
INT16 f;

} ClockRateFactor;

Table 22-3. Phonebook Functions

Function Description

SIMParsePBRecord Used to parse the phone book data from the record

SIMAssemblePBRecord Assembles the phone book record

SIMDataExchange Used to exchange data (apdu) between the card reader and the SIM card using T0 protocol

SIMStatus Gets currently selected file’s status, which specifies the allowed operation on that file

SIMSelectFile Uses the SELECT_FILE command to select a file present in the SIM card

SIMReadRecord Uses the READ_BINARY command to read a string of bytes from a selected file

SIMUpdateRecord Uses the UPDATE_RECORD command to update one complete record in the selected file

Subscriber Identification Module (SIM) Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 22-5

Members
FI Bit form representation of Clock Rate Conversion Factor as received from SIM

Answer To Reset (ATR)
Fi Clock Rate Conversion Factor
f Maximum clock frequency in MHz

22.6.2.2 ClockRateFactor
typedef struct {

UINT8 DI;
UINT8 Di;

}BaudRateFactor;

Members
DI Bit form representation of Baud Rate Adjustment Factor as received from SIM

ATR (Answer To Reset)
Di Baud Rate Adjustment Factor

Subscriber Identification Module (SIM) Driver

Windows Embedded CE 6.0 BSP Reference Manual

22-6 Freescale Semiconductor

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 23-1

Chapter 23
Touch Panel Driver
The touch screen interface provides all the circuitry required for a 4-wire resistive touch screen. The touch
screen X plate is connected to TSX1 and TSX2 and the Y plate is connected to TSY1 and TSY2. A local
supply ADREF serves as reference.

23.1 Touch Panel Driver Summary
Table 23-1 provides a summary of source code location, library dependencies and other BSP information.

23.2 Supported Functionality
The touch panel should conform to the standards as explained in documentation under:

Developing a Device Driver > Windows Embedded CE Drivers > Touch Screen Drivers

23.3 Hardware Operations
The hardware consists in a 4-wire touchscreen, an internal ADC controller and an internal touch screen
controller. The touch screen controller configures the ADC driver as required to do the measurement of
the X and Y values of the touch screen.

Table 23-1. Touch Panel Driver Summary

Driver Attribute Definition

Target Platform iMX25-3DS-PDK1_7

Target SOC N/A

SOC Common Path ..\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\TOUCH

SOC Specific Path N/A

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\TOUCH

Driver DLL touch.dll

SDK Library N/A

Catalog Item Third Party > BSP > Freescale i.MX25 3DS PDK1_7:ARMV4I > Device Drivers > TOUCH >
Touchscreen

SYSGEN Dependency SYSGEN_TOUCH = 1

BSP Environment Variables BSP_NOTOUCH=

Touch Panel Driver

Windows Embedded CE 6.0 BSP Reference Manual

23-2 Freescale Semiconductor

For each acquisition, four samples are acquired for X and for Y. The first of each is discarded and the three
remaining samples are filtered (if one of the samples is too far from the mean value of this acquisition, it
is also discarded).

23.4 Software Operations
The touch screen driver reads user input from the touch screen hardware and converts the input to touch
events. The touch screen events are then sent to the Graphics, Windowing, and Events Subsystem
(GWES). The driver also converts un-calibrated coordinates to calibrated coordinates. Calibrated
coordinates compensate for any hardware anomalies, such as skew or nonlinear sequences.

For the touch screen driver to work properly it must submit points while the user’s finger or stylus is
touching the touch screen. When the user’s finger or stylus is removed from the screen, the driver must
submit at least one final event indicating that the user’s finger or stylus tip was removed. The calibrated
coordinates must be reported to the nearest one-quarter of a pixel.

The following steps detail the basic algorithm that are used to sample and calibrate the screen with the
touch screen driver:

1. Call the TouchPanelEnable function to start the screen sampling
2. Call the TouchPanelGetDeviceCaps function to request the number of sampling points

For every calibration point, perform the following steps:
1. Call TouchPanelGetDeviceCaps to get a calibration coordinate, a crosshair appears on the screen,

touching the cross hair starts the calibration
2. Call the TouchPanelReadCalibrationPoint function to get calibration data
3. Call the TouchPanelSetCalibration function to calculate the calibration coefficients

23.4.1 Touch Driver Registry Settings
[HKEY_LOCAL_MACHINE\HARDWARE\DEVICEMAP\TOUCH]
 "DriverName"="touch.dll"
 "MaxCalError"=dword:10

; For double-tap default setting
[HKEY_CURRENT_USER\ControlPanel\Pen]
 "DblTapDist"=dword:18
 "DblTapTime"=dword:637

;For TouchPannel calibration
[HKEY_LOCAL_MACHINE\init]
 "Launch80"="touchc.exe"
 "Depend80"=hex:14,00, 1e,00

23.5 Unit Tests

23.5.1 Unit Test Hardware
Table 23-2 lists the required hardware to run the unit tests.

Touch Panel Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 23-3

23.5.2 Unit Test Software
Table 23-3 lists the required software to run the unit tests.

.

NOTE
The touch driver does work after the CETK Touch Panel Test. This is a
known MSFT CETK issue. The MSFT online help notes that “When you
complete the test, the operating system does not regain control of the touch
panel. You must reset the touch panel to restore normal operation.” Refer to
CETK Tests and Test Tools > CETK Tests > Touch Panel Tests

Cases 8011, 9001–9003 fail. The touch panel shows several lines when a
circle or arc is drawn. This is also a known MSFT CETK issue. All these
points are captured, but are not painted in time.

Case 8011 cannot draw in the right part of screen after a 90° rotation.
ethca.exe works after rotation and the CETK works when the case runs
again.

23.5.3 Running the Touch Panel Tests
The touch panel test cases can be run by typing:

tux -o -n -d touchtest.dll -x <Test case id>

The test case IDs are described in the documentation at:

Windows Embedded CE Test Kit > CETK Tests and Test Tools >CETK Tests > Touch Panel Tests >
Touch Panel Test

23.6 Touch Panel API Reference

The complete API reference is given in the documentation at:

Table 23-2. Hardware Requirements

Requirement Description

 LCD panel Display panel required for display of graphics data

Table 23-3. Software Requirements

Requirement Description

Tux.exe Tux test harness, which is needed for executing the test

Kato.dll Kato logging engine, which is required for logging test data

Ktux.dll Ktux.dll which is required to run in kernel mode

Touchtest.dll The Test.dll File

Touch.dll Touch Panel Driver

Touch Panel Driver

Windows Embedded CE 6.0 BSP Reference Manual

23-4 Freescale Semiconductor

Developing a Device Driver > Windows Embedded CE Drivers > Touch Screen Drivers > Touch
Screen Driver Reference

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 24-1

Chapter 24
Universal Serial Bus (USB) OTG Driver
The OTG USB driver provides High Speed USB 2.0 host and device support for the USB On The Go
(OTG) port of the i.MX. The OTG driver automatically selects either host or device functionality at any
given time, depending on the USB cable/mini-plug configuration. This is achieved by a set of three drivers:
USB OTG host controller driver, USB client driver and/or USB transceiver controller (Full Function)
driver, which performs the host/function client switching.

The USB host driver can be configured for class support for mass storage, HID, printer, and RNDIS
peripherals. The device/client portion can be configured to provide mass storage, serial, or RNDIS
function. The Full Function OTG transceiver driver automatically selects between the host or client driver.
The host or client can also be configured as the only mode for the OTG port, using the Pure Host or Pure
Client catalog item. All the OTG catalog items are exclusive. (See Section 24.1, “USB OTG Driver
Summary.”).

24.1 USB OTG Driver Summary

24.1.1 USB OTG Client Driver Summary
Table 24-1 provides a summary of source code location, library dependencies and other BSP information
for the USB OTG client driver.

Table 24-1. OTG Client Driver Summary

Driver Attribute Definition

Target Platform iMX25-3DS-PDK1_7

Target SOC MX25_FSL_V2_PDK1_7

Common SOC COMMON_FSL_V2

CSP Driver Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\USBD
..\PLATFORM\COMMON\SRC\SOC\<Common Soc>\ms\USBFN

CSP Static Library usb_usbfn_<Target SOC>_PDK1_7.lib
usb_usbfn_os_<Target SOC>_PDK1_7.lib
usb_ufnmddbase_<Common Soc>_PDK1_7.lib

Platform Driver Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\USBD

Import Library N/A

Driver DLL usbfn.dll

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

24-2 Freescale Semiconductor

USB clients require a function driver to be loaded. A client can only present one function. Only one of the
function drivers (described in Section 24.5.5, “Function Drivers,”) should be configured through drag and
drop. If more than one is configured, the serial function is the default unless the registry is manually
modified.

24.1.2 OTG Host Driver Summary
Table 24-2 provides a summary of source code location, library dependencies and other BSP information
for the USB OTG host driver.

Host driver requires a set of class drivers to be loaded. See Section 24.5.6, “Class Drivers,” for class driver
information.

Catalog Item High Speed OTG:
Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > USB Devices > USB High
Speed OTG Device
To support only client/device mode, choose .. > High Speed OTG Port Pure Client Function

SYSGEN Dependency SYSGEN_USBFN=1

BSP Environment
Variable

BSP_NOUSB=
BSP_USB_HSOTG_CLIENT=1

Table 24-2. OTG Host Driver Summary

Driver Attribute Definition

Target Platform (TGTPLAT) iMX25-3DS-PDK1_7

Target SOC (TGTSOC) MX25_FSL_V2_PDK1_7

Common SOC COMMON_FSL_V2

CSP Driver Path ..\PLATFORM\COMMON\SRC\SOC\<Common SOC>\ms\USBH\EHCI
..\PLATFORM\COMMON\SRC\SOC\<Common SOC>\ms\USBH\EHCIPDD
..\PLATFORM\COMMON\SRC\SOC\<Common SOC>\ms\USBH\USB2COM

CSP Static Library usbh_ehcdmdd_<Common SOC>_PDK1_7.lib
usbh_ehcdpdd_<Common SOC>_PDK1_7.lib
usbh_usb2com_<Common SOC>_PDK1_7.lib

Platform Driver Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\USBH\HSOTG

Import Library N/A

Driver DLL hcd_hsotg.dll

Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > USB Devices
> USB High Speed OTG Device
To support only host mode, choose .. >High Speed OTG Port Pure Host Function.

SYSGEN Dependency SYSGEN_USB=1

BSP Environment Variable BSP_NOUSB=
BSP_USB_HSOTG_HOST=1

Table 24-1. OTG Client Driver Summary (continued)

Driver Attribute Definition

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 24-3

24.1.3 OTG Transceiver Driver Summary (For High-Speed Only)
Table 24-3 provides a summary of source code location, library dependencies and other BSP information
for the USB OTG transceiver driver.

Table 24-3. OTG Transceiver Driver Summary

Driver Attribute Definition

Target Platform (TGTPLAT) iMX25-3DS-PDK1_7

Target SOC (TGTSOC) MX25_FSL_V2_PDK1_7

CSP Driver Path ..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\USBXVR

CSP Static Library usb_xvc_<Target SOC>_PDK1_7.lib

Platform Driver Path ..\PLATFORM\<Target Platform>\SRC\DRIVERS\USBXVR

Import Library N/A

Driver DLL imx_xvc.dll

Catalog Item Third Party > BSPs > Freescale <Target Platform>: ARMV4I > Device Drivers > USB Devices
> USB High Speed OTG Device > High Speed OTG Port Full OTG Function Support

SYSGEN Dependency SYSGEN_USBFN=1

BSP Environment Variable BSP_NOUSB=
BSP_USB_HSOTG_CLIENT=1
BSP_USB_HSOTG_HOST=1
BSP_USB_HSOTG_XVC=1

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

24-4 Freescale Semiconductor

24.2 USB Host Driver Summary
Table 52-4 provides a summary of source code location, library dependencies and other BSP information
for the HS host driver.

24.2.1 FS Host2 Driver Summary

Host driver requires a set of class drivers to be loaded. See Section 24.5.6, “Class Drivers for class driver
information.

Notes: The H2 host on MX25 is acturally a FULL SPEED Host controller.

24.3 Supported Functionality
The OTG driver provides the following software and hardware support:

1. High Speed OTG/Host driver supports USB specification 2.0.
2. Configured as client/peripheral by default, with one function driver defined as default. When

nothing is connected to the OTG port, the port does not drive Vbus and awaits attachment to a host
by raising its D+ signal. On attachment of a mini-A plug the driver switches to host mode.

3. When a mini-B plug is connected to the OTG port, and the cable opposite end is connected by a
mini-A (or A-type) plug to a PC, then the OTG initiates operation as peripheral and responds to
USB protocol from the host.

Table 24-4. HS Host2 Driver Summary

Driver Attribute Definition

Target Platform (TGTPLAT) MX25-3DS-PDK1_7

Target SOC (TGTSOC) MX25_FSL_V2_PDK1_7

CSP Driver Path ..\SOC\<Common SOC>\ms\USBH\EHCI
..\SOC\<Common SOC>\ms\USBH\EHCIPDD
..\SOC\<Common SOC>\ms\USBH\USB2COM

CSP Static Library usbh_ehcdmdd_<Common SOC>.lib
usbh_ehcdpdd_<Common SOC>.lib
usbh_usb2com_<Common SOC>.lib

Platform Driver Path \PLATFORM\<Target Platform>\SRC\DRIVERS\USBH\HSH2

Import Library N/A

Driver DLL hcd_hsh2.dll

Catalog Item Third Party > BSP > Freescale <Target Platform>: ARMV4I > Device Drivers > USB Devices
> USB High Speed Host
To support only host mode, choose .. >High Speed Host Function.

SYSGEN Dependency SYSGEN_USB=1

BSP Environment Variable BSP_NOUSB=
BSP_USB_HSH2=1

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 24-5

4. When a mini-A plug is connected to the OTG port and the cable opposite end is connected by a
mini-B plug to another OTG device, then the OTG initializes/re-initializes itself into host mode and
begin to act as a host. The OTG port remains in host mode whenever a mini-A plug is mated to the
OTG socket connector.

5. OTG port as client/peripheral supports mass storage, RNDIS and serial clients
6. OTG port as host or HS Host supports mass storage, HID and RNDIS classes
7. When nothing is attached to the OTG port, the driver configures the controller and transceiver into

a low power state
8. When the system is suspended with nothing attached to the OTG/Host port, the system does not

create a wake condition upon attachment of the port to a host or attachment of a device with mini-A
plug

9. When the system is suspended while the OTG/Host port is connected to a host or to a device with
a mini-A plug, the system remains suspended when the OTG port connection is unplugged

10. When the system resumes after suspend, any attached devices are enumerated and their class
drivers loaded appropriately

11. Data transfer rates on the client port exceeds 40 Mbits/sec in Mass Storage client

24.4 Hardware Operation
The USBOH module contains all of the functionality required to support one USB port, compatible with
the USB 2.0 specification. In addition to the normal USB functionality, the module also provides support
for direct connections to on-board USB peripherals with Serial, UTMI or ULPI protocol, and supports
multiple interface types for ULPI and Serial Transceivers.

In addition to the USB cores, the module provides for Full-Speed Transceiverless Link (TLL) operation
on the host port and the OTG core also supplies the UTMI interface for the internal UTMI PHY.

24.4.1 Conflicts with Other Peripherals and Catalog Items

24.4.1.1 Conflicts with SoC Peripherals

No conflicts.

24.4.1.2 Conflicts with Board Peripherals

The USB OTG Host conflicts with the USB Host only port. The polarity of the USB_VBUS_EN signal is
inverted between the two and there is only one polarity selection bit in the USB controller.

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

24-6 Freescale Semiconductor

24.5 Software Operation

24.5.1 USB OTG Host Controller Driver
This driver enables the USB host functionality for the OTG port. It is part of the standard Windows USB
software architecture as shown in Figure 24-1.

Figure 24-1. Windows USB Driver Architecture

For further details of the Windows CE USB driver architecture and usage, see the Platform Builder
Windows CE 6.0 help topic:

Developing a Device Driver > Windows Embedded CE Drivers > USB Host Drivers

and

Developing a Device Driver > Windows Embedded CE Drivers > USB Host Drivers > USB Host
Controller Drivers > USB Host Controller Driver Development Concepts

When transceiver mode is included, the host driver is activated when a USB Mini-A plug is connected to
the Mini USB OTG socket. When Pure Host mode only is selected, the host driver is always in control of
the relevant USB controller. When a USB device is connected to the Mini USB OTG socket, the host
controller driver enumerates and activates the appropriate class driver (see Section 24.5.1, “USB OTG
Host Controller Driver,”).

Class Driver (e.g.
Mass Storage Class)

USB Host device
driver

Application or user
interface

USB Host controller
driver

MX31 USB
controller hardware
& PHY

device controller and
PHY

Client Device
(controller) Driver

Function controller
(client) driver

Function driver (e.g.
Mass Storage
Function)

Application or e.g.
storage device

USB cable physical
signalling

logical pipes /
endpoints

function/class
specific protocol

(IssueTransfer) (IssueTransfer)

USB packets USB packets

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 24-7

The BSP supports the following USB class drivers:
• Mass Storage—SD cards, CF cards, HDD drive, thumb drive (disk-on-key); some card reader

firmware is not supported by the Microsoft standard Mass Storage class driver
• HID—Keyboard and mouse
• RNDIS—Network Device Interface communication class

Hubs are supported in all configurations with Full and Low Speed peripherals.

24.5.1.1 User Interface

User access to the USB host driver is by class drivers. For further details on these Host Client Drivers refer
to the Windows CE 6.0 Platform Builder help topic:

Developing a Device Driver > Windows Embedded CE Drivers > USB Host Drivers > USB Host
Controller Drivers > USB Host Client Drivers.

Where new class driver code is to be developed, refer to the Host client driver interface functions (for
example IssueBulkTransfer) as documented in:

Developing a Device Driver > Windows Embedded CE Drivers > USB Host Drivers > USB Host
Controller Drivers > USB Host Client Drivers > Host Client Driver Reference.

24.5.1.2 Host Controller Configuration

The driver is configured into the BSP build by dragging and dropping the appropriate catalog item for USB
HS OTG. By default, host support is included along with peripheral/device and transceiver support.
Additional classes to be supported must also be selected from the Core OS catalog. See Section 24.5.1.5,
“Registry Settings,” for details on excluding OTG host support from the build.

The internal i.MX USB OTG signals can be multiplexed to a choice of pins on the IC as described in the
IOMUX chapter of the i.MX25 Applications Processor Reference Manual.

24.5.1.3 Memory Configuration

The USB Host drivers (for all USB host ports) use DMA to perform all USB transfers. The physical
memory for these transfer buffers is allocated as a pool at driver initialization. Unless physical addresses
are specified in API accesses at the class-driver interface, the driver copies data between the
user/class-provided data buffers and the DMA buffer from the driver physical memory pool.

The default DMA physical memory pool size is 128 Kbyte. This value can be altered by registry setting
PhysicalPageSize.

24.5.1.4 Vbus/Configured Power

USB provides a means to monitor the configured power of devices attached to a USB host. The host driver
verifies that each attached device does not exceed the configured power limit.

This power limit is implemented via the platform-specific function BSPUsbhCheckConfigPower() as
described in Section 24.5.1.8.1, “BSPCheckConfigPower,” and located in:

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

24-8 Freescale Semiconductor

\PLATFORM\<Target Platform>\SRC\DRIVERS\USBH\Common\hwinit.c

This function must be modified to correspond with the platform hardware capabilities.

The i.MX system can supply a total of 100 mA to attached devices on the OTG port and the default
behavior does not need to be modified. All bus powered hubs that have been tested require 500 mA and
therefore are not supported for use. Self-powered hubs are required to expand the number of USB sockets
and also to support devices that require greater than 100 mA.

24.5.1.5 Registry Settings

The USB OTG host controller settings are values located under the registry key:
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\HCD_HSOTG]

The values under this registry key are automatically included in the image by platform.reg. They do not
normally require customization. Table 24-5 shows the default values contained in hsotg.reg.

24.5.1.6 Host USB Test Modes

The USB 2.0 specification defines PHY-level test modes for the USB host ports (see definitions in USB
2.0 specification section 7.1.20). The i.MX USB host drivers support packet test mode. The test mode is
configured by compiling the BSP with the compilation flag OTG_TEST_MODE defined within
bsp_cfg.h:

#define OTG_TEST_MODE

This configures the appropriate host controller within the platform-specific hardware initialization
function (ConfigOTG()), located in:

\PLATFORM\<Target Platform>\SRC\DRIVERS\USBH\Common\hwinit.c

Table 24-5. hsotg.reg Default Values

Value Type Content Description

Dll sz hcd_hsotg.dll Driver dynamic link library

OTGSupport dword 01 This value must be set to 1 to enable host driver on the OTG. If no host support
is required (client only) then this value can be set to 0, though the
HCD_HSOTG key is not normally configured in the image at all when pure
Host function is selected.

OTGGroup sz 01 This unique string (example “00” to “99”) is used to combine/correlate
instances of the host, function, and transceiver driver within one USB OTG
instance.

HcdCapability dword 4 HCD_SUSPEND_ON_REQUEST.
Note: HCD_SUSPEND_RESUME is always assumed.

PhysicalPageSize dword 20000 This value represents the number of bytes allocated for the physical memory
pool of the OTG host driver, and defaults to 128 Kbytes. From this buffer, 75%
are allocated for transfer descriptors and the remaining buffer is available for
allocation to simultaneous transfers. In most cases, only one transfer is active
at any time (for example, in the Mass Storage Class). A good value is at least
3x as large as the largest data buffer transferred using IssueTransfer(). This key
is optional, if it does not exists in the registry, it takes the default value,
otherwise a specific value can be assigned.

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 24-9

The test mode is entered upon initialization, and cannot be exited. Normal USB operation is disabled when
test mode support is compiled into the image.

24.5.1.7 Unit Test

The USB driver has many devices to be tested. Tests are performed manually and include connecting the
devices, and confirming the attach, detach (on unplug) re-attach (on subsequent plug in of device), and
transferring and verifying data (and/or functions).

To verify the RNDIS class device, a CEPC containing Netchip 2280 USB function is attached and used to
access a remote file server on the CEPC. To verify the low-level transport for Bulk, Interrupt and
Isochronous transfers, the CETK Host test kit is performed. This requires a CEPC configured with Netchip
2280 USB function and loopback driver.

24.5.1.7.1 USB Host Controller Driver Test

Documentation for the Windows CE 6.0 CETK USB Host tests is normally found under the Platform
Builder Windows CE product documentation:

Debugging and Testing > Windows CE Test Kit > CE Test Kit

24.5.1.7.2 Build the Test Image

The following steps are used to build the image to be tested:
1. Checkout the RTM to be tested or install the MSI provided
2. Add the following components from the catalog:

— Freescale <Target Platform> :ARMV4I-Device Drivers-USB Devices-USB High Speed
Host1-High Speed Host 1

— Core OS > Windows CE devices > Core OS Services > USB HOST Support; and all the
sub-components of this catalog item (Sub-Components like USB Storage Class Driver.)

— Core OS > Windows CE devices > File Systems And Data store > Storage Manager;
(Sub-Components: FAT File System, Partition Driver, Storage Manager Control Panel Applet)

— Device Drivers > USB Function > USB Function Clients-Serial.
3. Sysgen and build the image

24.5.1.7.3 Abstract

This test suite can be used to test USB host controller drivers that provide the same interface as Windows
CE USB host controller driver does (for more information, see Section 24.5.1.1, “User Interface,”). It also
can be used to verify whether a certain USB host controller (either stand alone card or onboard logic) can
operate with Windows CE. The test setup and scenario is shown in Figure 24-2.

This test suite acts as a client driver above the USB bus driver (usbd.dll). It is loaded when a test device
is connected to the host through a USB cable. The test device is a CEPC with a NetChip2280 USB function
controller card in it. After this CEPC is booted up and net2280lpbk.dll is loaded, the CEPC acts as a
generic USB data loopback device. The USB test suite (the test client driver on the host side) can then

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

24-10 Freescale Semiconductor

stream data or issue device requests to or from this data loopback device. This is how the USB host
controller and its corresponding host controller drivers are exercised.

The NetChip2280 USB function PCI controller card is a USB2.0 compatible USB function device. It can
be used to test both USB2.0 and USB1.1 host controllers (EHCI/OHCI/UHCI) and corresponding drivers.

The Netchip2280 controller has six endpoints besides endpoint 0. The data loopback driver
(net2280lpback.dll) configures these endpoints to be three pairs: one bulk IN/OUT pair, one Interrupt
IN/OUT pair, and one Isochronous IN/OUT pair. The data loopback tests are done by sending data from
host side to device side through the OUT pipe, receiving it back through the IN pipe, and then verify the
data.

Figure 24-2. Test Setup

24.5.1.7.4 Unit Test Hardware

• Test platform
• Host Controller Card (if not onboard logic)
• CEPC
• Netchip2280 Card
• USB cable

Test platform with
USB controller

CEPC with
NetChip2280 USB
function controller

Hardware

Software

OHCI/UHCI/EHCI
Host Controller
Driver

USB Bus Driver
(usbd.dll)

USB Function
Bus Driver
(net2280.dll)

USB Test
Client Driver
(usbtest.dll)

Data loopback
Client Driver
(net2280lpbk.dll)

<Bus Level>

<Client Level>

Host Side Device Side

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 24-11

24.5.1.7.5 Unit Test Software

Host side requirements:
• Tux.exe
• Ddlx.dll
• Usbtest.dll
• Tooltalk.dll
• Kato.dll
• USB component (usbd.dll, EHCI/OHCI/UHCI host controller driver(s)) must be included in the

run time image

 Device side requirements:
• Lufldrv.exe
• Net2280lpbk.dll
• NetChip2280 USB function support (net2280.dll) must be included in the CEPC run time image

24.5.1.7.6 Running the Test

The test procedure is as follows:
1. Download the runtime image to the CEPC (Windows Embedded CE PC-based hardware platform)

with the Netchip2280 card on it
2. After the system is booted up, run s lufldrv, the tester should verify that net2280lpbk.dll is

loaded
3. Download the runtime image to the test platform with a USB host controller on it
4. After the system is booted up, make sure there is no connection between the host side and the

device through the USB cable. Then launch command s tux –o –d ddlx –c “usbtest” “–xYYYY”,
where YYYY is the test case(s) to be run

5. The test indicates that there should be no connection between host and device side. Then after
seven seconds, the test asks to connect two sides with a USB cable

6. The test main body starts to run
7. After test(s) is(are) done, and if other tests in the test suite are to be run, do not disconnect the two

sides of the USB cable. Type the next test command, and the tests starts directly. If the USB
connection was disconnected before the next test, the tests asks to make the connection again
before the test begins

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

24-12 Freescale Semiconductor

24.5.1.7.7 Test Cases

Table 24-6 shows the test cases contained in the test suite.

By default, the data loopback device configures the endpoints with some often-used packet sizes that are
DWORD aligned, and neither too big nor too small. By having all tests in Table 24-6 pass under this
configuration is more than sufficient for a BVT-type test pass. However, testers can change the packet sizes
(these values are hard-coded in the source code for net2280lpbk.dll) for each endpoint by themselves and
run these test cases again for more comprehensive testing.

This test suite provides a way to change packet sizes of on NetChip2280 device on the fly. They are:
• Test case 3001—Using very small packet sizes in NetChip2280 device full speed configuration
• Test case 3002—Using very small packet sizes in NetChip2280 device high speed configuration
• Test case 3003—Using irregular packet sizes (like non DWORD-aligned size) in NetChip2280

device full speed configuration
• Test case 3004—Using irregular packet sizes (like non DWORD-aligned size) in NetChip2280

device high speed configuration

Table 24-6. USB Host Controller Driver Test Cases

Test Case ID Test Description

1001-1315,
1501-1515

Data loopback tests:
Concerning the transfer type, there are five categories:
1) Bulk pipe loopback tests (tests with ID end with 1, like xxx1)
2) Interrupt pipe loopback tests (tests with ID end with 2, xxx2)
3) Isochronous pipe loopback tests (tests with ID end with 3, xxx3)
4) All pipe transfer simultaneously (tests with ID end with 4, xxx4)
5) All three types transfers carry on simultaneously (tests with ID end with 5, xxx5) 1

There are five categories for how data is transferred:
1) Normal loopback tests (tests with ID start with 10, like 10)
2) loopback tests using physical memory (tests with ID start with 11, 11xx)
3) loopback tests using a part of allocated physical memory (tests with ID start with 12, 12xx)
4) Normal short transfer loopback tests (tests with ID start with 13, 13xx)
5) Stress short transfer loopback tests (tests with ID start with 15, 15xx)

Also both synchronous and asynchronous transfer methods are exercised (test cases like xx1x using asynchronous
transfer method, test cases like xx0x using synchronous method

There are a total of 5×5×2 = 50 test cases

1 This category of tests is designed for testing some other USB function devices which have more endpoints than host controller driver can
handle. When using Netchip2280, it should be the same as category 4). Tester can just ignore this category.

1401-1413 Additional data loopback tests. that mainly focus on testing APIs like GetTransferStatus(), AbortTransfer() and
CloseTransfer()

2001-2013 Test related to Device requests

9001-9004 Special tests that test APIs such as SuspendDevice(), ResumeDevice() and DisableDevice()

9005 Test that stresses EP0 transfer (Vendor Transfer)

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 24-13

• Test case 3005 (High Speed only)—Using very large packet sizes (like 2×1024 for Isochronous
endpoints) in NetChip2280 device full speed configuration. In the real world, Netchip2280 cannot
handle transfers using such large packet size because its onboard FIFO buffer is small

Run one of the test case above, then after 15–20 seconds, usbtest.dll is unloaded and loaded again
automatically through the Platform Builder. The packets sizes on netchip2280 side have already been
changed. Then those normal tests can be run. Use test case 3011 (for full speed config) and 3012 (for high
speed) to restore the default packet sizes.

Another category test that is important for USB2.0 host controllers and drivers is called the golden bridge
tests, which means USB2.0 host controller is connected with a full speed (USB1.1) device. This is the only
scenario that USB2.0 host controller performs split transfers.

NetChip2280 can be forced to be a full speed device. In the test setup stage, instead of run s lufldrv to
load loopback driver, run s lufldrv –f. This forces the Netchip2280 to be configured as a full speed
device.

Also testers are encouraged to do some manual tests. Here are some examples:
• Plug in real USB devices, suspend system, and then resume; USB devices should still be there
• Plug in real USB devices, suspend system, unplug it, plug in another device, then resume; system

should enumerate that new device properly
• Run one of the data transfer tests, in the middle of transfer stage, suspend the system (host side),

then resume; tests may fail, but system should not crash
• Run one of the data transfer tests, in the middle of transfer stage, disconnect the USB connection;

tests should fail, but system should not crash

24.5.1.8 Platform-Specific API

This section describes the platform-specific API functions.

24.5.1.8.1 BSPCheckConfigPower

This function is used to evaluate whether a device can be supported on the specified USB port.

Parameters
UCHAR bPort [in] Unused. Each USB controller has only one port
DWORD dwCfgPower [in] Power requirement (number of milliamps) requested by the device being

evaluated for attachment support on this port
DWORD dwTotalPower [in] current total power (number of milliamps) used by other previously

attached devices on this port
Return Value Return TRUE if device requesting dwCfgPower can be safely attached

Return FALSE if device can not be attached

24.5.1.8.2 BSPUsbSetWakeUp

This function enables or disables the wakeup on the USB port. This function does not actually enable
wake-up when a device is currently attached to the port.

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

24-14 Freescale Semiconductor

Parameters
BOOL bEnable [in] TRUE to enable wakeup, FALSE to disable wakeup

24.5.1.8.3 BSPUsbCheckWakeUp

This function evaluates the wake-up condition for the relevant USB port, and clears the condition and
interrupt.
Parameters None
Return Value Return TRUE when a wake-up condition was detected

Return FALSE when no wake-up condition was present

24.5.1.8.4 SetPHYPowerMgmt

This function is called by the USB driver when transitioning to or from the suspended state (for example,
during system suspend). The function does what is necessary to place the transceiver hardware into a
suspended (fSuspend = TRUE) or running (fSuspend = FALSE) state.

The standard implementation for a i.MX system uses a ULPI-bus based ISP1504 transceiver for the HS
OTG port, and this function configures the ULPI-bus for sleep state. If platform hardware uses other
transceivers, this function must be modified appropriately.

Parameters
BOOL fSuspend [in] TRUE: system/controller is going to suspend mode. FALSE: resuming

24.5.2 USB Client Driver
This driver enables the USB device functionality for the i.MX device. It is activated when a USB Mini B
connector is connected to the Mini USB OTG socket. When the i.MX System is connected to a USB host
system (for example, high speed or full speed port of PC), it is enumerated according to the current
configuration settings, and the appropriate class driver is loaded on the PC. By default the system is
configured for USB serial class. The system can be configured as one of the following USB functions by
setting the appropriate environment variable during build (drag/drop from the catalog):

• Serial class—Serial ActiveSync
• Mass storage—expose local storage (ATA hard disk, RAMDISK or other store) as USB drive
• RNDIS class—Remote Network Driver Interface Specification

24.5.2.1 User Interface

The USB client driver provides a standard Windows CE USB driver implementation. For an overview see:

Developing a Device Driver > Windows Embedded CE Drivers > USB Function Drivers > USB
Function Controller Drivers.

User access to the USB client driver is through function drivers such as Mass Storage or RNDIS. For
further details on these USB Function drivers, refer to the Windows CE 6.0 Platform Builder help topic:

Developing a Device Driver > Windows Embedded CE Drivers > USB Function Client Drivers.

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 24-15

Where new function driver code is to be developed, refer to the Function controller driver interface
functions (for example, IssueTransfer) as documented in:

Developing a Device Driver > Windows Embedded CE Drivers > USB Function Controller Drivers
> USB Function Controller Driver Reference.

24.5.2.2 Client Driver Configuration

The OTG client driver is configured into the BSP build by dragging and dropping the appropriate catalog
item (see Section 24.1.1, “USB OTG Client Driver Summary,”). When the Pure Client functionality is
selected, the OTG port acts only as a device. When Full OTG functionality is selected, the OTG port can
be either device or host (see transceiver driver configuration).

24.5.2.3 Registry Settings

The USB OTG function/client settings are values located under the registry key:
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\UFN]

The values under this registry key are automatically included in the image through platform.reg. They do
not normally require customization. Table 24-7 shows the USB OTG client registry settings.

24.5.2.4 Device USB Test Modes

The USB 2.0 specification defines PHY-level test modes for USB device ports (see definitions in USB 2.0
specification section 7.1.20). This mechanism allows a host to configure a device into test mode by
commanding the device with a specific SET_FEATURE request. Once test mode is entered, the device is
not able to leave test mode. The device port does not by default support the USB test modes. Sample code
for test mode support (SET_FEATURE on the device) is included in:

..\PLATFORM\COMMON\SRC\SOC\<Target SOX>\MS\USBFN\CONTROLLER\MDD

In addition, USBFN_TEST_MODE_SUPPORT must be defined during compilation of the CSP USBD
device driver library.

24.5.2.5 Unit Test

There is no CETK test case for USB client (function) drivers. The USB function is tested by configuring
the i.MX system as either USB serial function, USB mass storage or RNDIS function and connecting it
directly to a host PC. The test verifies basic USB peripheral/client functionality, including attach, detach,

Table 24-7. USB OTG Client Registry Settings

Value Type Content Description

Dll sz usbfn.dll Driver dynamic link library

OTGSupport dword 01 This value must be set to 1 to enable the function/client on the OTG. If no client support is required
(host only) then this value can be 0, though the UFN key is not normally configured in the image
at all when pure Host function is selected

OTGGroup sz 01 This unique string (example 00 to 99) is used to combine/correlate instances of the host, function,
and transceiver driver within one USB OTG instance

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

24-16 Freescale Semiconductor

and data transfer. Separate images must be built and downloaded for each of the three peripheral function
tests.

24.5.2.5.1 Unit Test Hardware

Table 24-8 lists the required hardware to run the unit tests.

24.5.2.5.2 Unit Test Software

Table 24-9 shows the software requirements for the USB Function controller driver test.

Table 24-8. Hardware Requirements

Requirement Description

Host system To test if control reaches the Host controller driver

USB cable having Mini USB OTG plug A at one end
and Mini USB OTG plug B on the other side

For connecting between the host and the device

ATA drive configured in UDMA mode 2 as DSK1 Required as a storage device when the board is configured as
mass storage class

Table 24-9. Software Requirements

Requirement Description

ActiveSync 4.1 and above Host side software that is required to be available for testing the Serial class functionality

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 24-17

24.5.2.5.3 Running the USB Function Controller Driver Tests

Table 24-10 lists USB function controller driver tests.

24.5.2.6 Platform-Specific API

This section describes the platform-specific API functions.

24.5.2.6.1 InitializeMux

This function is called to initialize the IOMUX connection within i.MX, from the USB controller to the
appropriate device pins for the transceiver. This function is implemented for the Pure Client situation.

Table 24-10. USB Function Controller Driver Tests

Test Cases Entry Criteria/Procedure/Expected Results

Board configured as USB
Serial class and connected
to a host system after the
board boots up
completely

Entry Criteria:
Make sure there is no mini USB OTG plug B is connected and the board is turned on and wait until the board
boots-up completely
Procedure:
1. Connect the mini USB OTG plug B to the mini USB OTG socket
2. Observe that the ActiveSync on the host side gets connected and is synchronized
3. Copy files from Host system to the Mobile Device. Files are copied
4. Copy files from the Mobile Device to the Host system. Files gets copied
5. Unplug the mini USB OTG plug B from the i.MX mini USB OTG socket to unload the Serial class driver
Expected Result:
ActiveSync should get synchronized and copying of files should happen between the Host and the System

Board configured as USB
Mass storage client, with
ATA drive as DSK1
mounted, and connected
to a host system after the
board boots up
completely

Entry Criteria:
Make sure there is no mini USB OTG plug B is connected and the board is turned on and wait until the board
boots-up completely
Procedure:
1. Connect the mini USB OTG plug B to the mini USB OTG socket
2. Observe that a new disk in My Computer having as Removable Disk appearing in it
3. Copy files from Host system to the new disk drive. Files are copied
4. Copy files from the new disk drive to the Host system. Files gets copied
5. Unplug the mini USB OTG plug B from the mini USB OTG socket to unload the mass storage class driver
Expected Result:
Files copied into mass storage client device match those copied out (when compared on Windows XP PC using
file compare utility). Note that files are not visible from within the System until the system has been reset. The
file system should not be used inside the System when it is being accessed via USB as a mass storage client.

Board configured as USB
RNDIS client and
connected to a host
system after the board
boots up completely.
Browsing the Internet

Entry Criteria:
Make sure there is no mini USB OTG plug B is connected and the board is turned on and wait until the board
boots-up completely. See to it that the NIC’s local area connection is not having any IP address
Procedure:
1. Connect the mini USB OTG plug B to the mini USB OTG socket
2. Observe that a new Local area connection in the Network and Dial up connections appears on the Windows
XP machine. Bridge the NIC’s local area connection and the RNDIS’s local area connection
3. Configure the bridge by giving IP address, Subnetmask, Default gateway, DNS
4. On the System, a new Local area connection can be found in the Network and dial up connections. Configure
the local area connection by giving IP address, Subnetmask, Default gateway, DNS
5. In the Internet explorer on the System, configure the Lan settings as per the local area settings
Expected Result:
Browsing the Internet should be possible

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

24-18 Freescale Semiconductor

Parameters
int Speed [in] Unused
Return Value Return TRUE if device requesting dwCfgPower can be safely attached

24.5.2.6.2 HardwarePullupDP

This function is called by the USB client driver when D+ must be pulled-up, in preparation for connection
to a USB host. The standard code configures for ISP1504/ISP1301 transceiver. It is possible to modify this
routine to conditionally soft-disable USB connection.
Parameters
CSP_USB_REGS *pRegs [in] pointer to the registers for the USB controller
Return Value Return TRUE if D+ signal was pulled-up

24.5.3 USB Transceiver Driver (ID Pin Detect Driver—XCVR)
This driver is responsible for detecting the type of USB connector plugged into the Mini USB OTG socket
of the system. Upon detection the driver activates the USB host controller driver or USB function
controller driver.

24.5.3.1 User Interface

There is no user interface to the transceiver driver. This driver merely manages the USB host or client
drivers, which provide the appropriate programming API. The driver can be configured through its
platform-specific routines to provide different behavior for power management (wake-up, D+ soft
connect.).

24.5.3.2 Transceiver Driver Configuration

The transceiver driver is configured into the BSP automatically upon dragging and dropping the USB HS
OTG catalog item. If transceiver functionality is not required, it can be disabled as described below.

24.5.3.3 Registry Settings

The USB OTG transceiver settings are values located under the registry key:
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\XVC]

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 24-19

The values under this registry key are automatically included in the image via platform.reg. They do not
normally require customization. Table 24-11 shows the USB OTG transceiver registry settings.

24.5.3.4 Unit Test

There is no CETK test case for USB transceiver driver. The transceiver driver is tested using the Mini USB
OTG plug A and Mini USB OTG plug B. The test is done by manually plugging in the Mini USB OTG
plug into the Mini USB OTG socket of the system. The test verifies that the USB host or function
controller driver is activated on cable plug-in.

24.5.3.4.1 Unit Test Hardware

Table 24-12 lists the required hardware to run the unit tests.

Table 24-11. USB OTG Transceiver Registry Settings

Value Type Content Description

Dll sz imx_xvc.dll Driver dynamic link library

OTGSupport dword 01 This value must be set to 1 to enable the transceiver-driven mode switching on the OTG. If
no transceiver support is required (host or client only) then this value can be set to 0, though
the XVC key are not normally configured in the image when OTG Pure Host or OTG Pure
Client is configured

OTGGroup sz 01 This unique string (example 00 to 99) is used to combine/correlate instances of the host,
function, and transceiver driver within one USB OTG instance

Table 24-12. Hardware Requirements

Requirement Description

 System to act as a device System is configured as USB Mass storage class

USB LS Mouse To test if control reaches the Host controller driver

USB cable having A-type plug at one end and Mini USB OTG plug B on
the other end. To plug in USB LS mouse, a USB extension cable having

mini-A at one end and USB A-type socket at the other end

For connecting between the host and the device

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

24-20 Freescale Semiconductor

24.5.3.4.2 Running the Transceiver Test

Table 24-13 lists transceiver tests.

24.5.3.5 Platform-Specific API

The transceiver driver library code contains i.MX chip-specific implementation, and is located in:
..\PLATFORM\COMMON\SRC\SOC\<Target SOC>\USBXVR

The transceiver driver operation can be customized through the platform-specific code located in:
..\PLATFORM\<Target Platform>\SRC\Drivers\USBXVR

The standard implementation located in hwinit.c is provided for the System with ISP1504 transceiver
attached to the High Speed OTG port. Customizations permit different power management and wake-up
behavior, including when the device generates soft connect/disconnect (D+ pull-up) or what wake-up
conditions are supported when nothing is attached to the OTG port.

The library USB transceiver code communicates with the platform-specific code by callback functions.
Only one globally-defined specific routine (RegisterCallback) is required for using this interface. Standard
code is supplied for full transceiver operation using the System Platform.

Table 24-13. Transceiver Tests

Test Cases Entry Criteria/Procedure/Expected Results

Idle case when no cable
plugged in

Entry Criteria:
Make sure there is no mini USB OTG plug connected and the board is turned on and wait until the board boots-up
completely
Procedure:
When the board is powered and completely booted-up, the board should be idle (and as mass storage client, not
verifiable)
Expected Result:
Device boots up and is stable

Mass storage client
visible from PC

Entry Criteria:
Make sure there is no mini USB OTG plug connected and the board is turned on and wait until the board boots-up
completely
Procedure:
When the board is powered and completely booted-up, verify that board responds as a mass storage client when
plugged into PC.
Expected Result:
New storage must be visible on PC.

Mini USB OTG plug-A
connected to the mini
USB OTG socket of
System and mouse
plugged into OTG port
via this cable

Entry Criteria:
Unplug board from PC (in previous step)
Procedure:
1. Connect the USB HID device (Mouse) which has a Mini USB OTG plug-A to it. The control goes to the USB
Host controller driver
2. The corresponding device gets enumerated and starts functioning. For example, if a USB mouse is connected,
on movement of the mouse, the pointer in the LCD screen is seen moving
Expected Result:
Device should start functioning

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 24-21

24.5.3.5.1 Structure BSP_USB_CALLBACK_FNS

Structure BSP_USB_CALLBACK_FNS is defined in MX25_usb.h. This is a structure containing all the
USB callback functions as called by the USB CSP drivers. Currently only the transceiver driver
(USBXVR) uses these callback functions. The callback functions are registered using RegisterCallback()
(see Section 24.5.3.6.2, “RegisterCallback,”).
typedef struct {
// pfnUSBPowerDown - function pointer for platform to call during power down.
// pfnUSBPowerUp - function pointer for platform to call during power up.
// Parameter: 1) regs - USB registers
// 2) pUSBCoreClk - pointer to boolean to indicate the status of USB Core Clk
// if it is on or off. Platform is responsible to update this value if they change
// the status of USBCoreClk. [TRUE - USBCoreClk ON, FALSE - USBCoreClk OFF]
// 3) pPanicMode - pointer to boolean to indicate the status of panic mode
// if it is on or off. Platform is responsible to update this value if they change
// the status of panic mode. [TRUE - PanicMode ON, FALSE - PanicMode OFF]
void (*pfnUSBPowerDown)(CSP_USB_REGS *regs, BOOL *pUSBCoreClk);
void (*pfnUSBPowerUp)(CSP_USB_REGS *regs, BOOL *pUSBCoreClk);
// pfnUSBSetPhyPowerMode - function pointer for platform to call when they want to
suspend/resume the PHY
// Parameter: 1) regs - USB registers
// 2) bResume - TRUE - request to resume, FALSE - request suspend
void (*pfnUSBSetPhyPowerMode)(CSP_USB_REGS *regs, BOOL bResume);
} BSP_USB_CALLBACK_FNS;

24.5.3.5.2 pfnUSBPowerDown

This callback function is called during the Windows Embedded CE 6.0 power down sequence. The actual
platform specific power down routine should be registered as this callback function. This function is only
called if the system is in USB transceiver mode only (for example, when nothing is attached to the OTG
port.).

There is no standard implementation for this callback, since by default the transceiver driver automatically
suspends the port when nothing is attached. This enables wake-up on device or host attachment, and
enables the D+ pull-up during the suspended condition.
Parameters
CSP_USB_REGS *regs [in] Mapped pointer to the USB registers in i.MX, from physical address

space to a non-paged, process-dependent address space. This is mapped
during the transceiver initialization routine (XVC_Init).

BOOL *pUSBCoreClock [in/out] Pointer to a Boolean variable in transceiver to indicate whether the
USB Core Clock has been stopped.
The platform-specific callback function must update this flag to reflect the
current USB Core Clock status, if the status of the USB Core Clock is changed
within the platform code (for example using DDKClockSetGatingMode()).
This ensures consistency of the clock status within the CSP transceiver driver.

Return Value TRUE—USB Core Clock is running
FALSE—USB Core Clock is stopped

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

24-22 Freescale Semiconductor

24.5.3.6 pfnUSBPowerUp

Similar to pfnUSBPowerDown, this is called during the Windows Embedded CE 6.0 power up sequence.
The actual platform specific power up (resume) routine should be registered to this pointer. This is only
called when USB is in transceiver mode (when nothing is attached to the OTG port).

There is no standard implementation for this callback, since by default the transceiver driver automatically
suspends the port when nothing is attached and the port need not perform any wake-up activity until a
device or host attachment is detected.
Parameters For parameter details see pfnUSBPowerDown, Section 24.5.3.5.2,

“pfnUSBPowerDown,”

24.5.3.6.1 pfnUSBSetPhyPowerMode

This function is called when the system is in USB transceiver mode with no USB activity. With standard
implementation on the system, if the system is in transceiver mode and there is no activity in USB port for
one second, the transceiver driver suspends the ULPI PHY (in this case, it is ISP1504, disable the USB
Clock gating, and set the system to non-panic mode allowing core voltage to drop).

When there is USB activity (for example, device attach), the transceiver driver sets the system to panic
mode (requiring core voltage to stay high using DDKClockEnablePanicMode(), supported for i.MX),
enables USB Clock gating and puts the ULPI PHY transceiver to resume.

This callback function is responsible for handling the suspend and resume of ULPI PHY transceiver. The
developer must register this pointer with the actual platform specific function for suspend and resume of
ULPI PHY transceiver. Custom wake-up conditions can be enabled here.
Parameters
CSP_USB_REGS *regs [in] Mapped pointer to the USB registers in i.MX, from physical address space

to a non-paged, process-dependent address space. This is mapped during the
transceiver initialization routine (XVC_Init).

BOOL resume [in] This boolean variable indicates whether the callback function must resume
or suspend the ULPI PHY transceiver.

Return Value TRUE—callback function must resume transceiver activity
FALSE—callback function must suspend transceiver activity

24.5.3.6.2 RegisterCallback

This is used to register all the callback functions defined in BSP_USB_CALLBACK_FNS. This function
is called by the USB driver during the initialization process of the transceiver driver (XVC_Init). The
developer must implement a function by this name in their platform directory. A standard implementation
is provided for the ISP1504 transceiver of the System. When no callback function is required, those
elements of the BSP_USB_CALLBACK_FNS structure should be initialized to NULL.

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 24-23

Parameters
BSP_USB_CALLBACK_FNS *pFn

[in/out] Pointer to BSP_USB_CALLBACK_FNS structure for the developer to
register the callback function inside the BSP_USB_CALLBACK_FNS. The
callback functions inside this structure is used by the CSP transceiver code.

24.5.4 Power Management
There are four aspects of power management for the USB device drivers:

• Special i.MX Vcore requirements
• Clock gating to the USB peripheral block within the i.MX
• Setting the transceiver to a lower power mode or suspend
• Transceiver auto-power-down on inactivity

The USB device driver(s) support an On and Off/Standby (low power) state, with wake-up capability. The
On state is entered whenever a host or device is attached to the relevant USB port. The driver enters the
standby state automatically after timeout with no device or host attached to the USB port. As well, the
standby state is entered when the system suspends. (In the latter case, system wake-up capability is enabled
for the port).

24.5.4.1 Special Vcore Requirements

When ULPI-bus transceivers are used with the USB controller (for example, ISP1504 transceivers for
High Speed OTG port and High Speed Host 2 port on the i.MX System), normal DVFS scaling of the i.MX
Vcore must be suspended whenever there is potential of ULPI bus communication. This is the case
whenever a device is connected (in host mode) or the device is connected to a host (in client mode). The
USB OTG transceiver driver, and USB host and client drivers constrain the DVFS behavior by calling
DDKClockEnablePanicMode() whenever a device or host connection is detected, and calling
DDKClockDisablePanicMode() when a timeout period expires with no device or host connected to the
port. No configuration is required, just note the effect on the DVFS (DVFC driver) behavior.

24.5.4.2 Clock Gating

The USB driver(s) for the various USB ports automatically manages clock gating to the i.MX USB
controller cores. The drivers for the ports coordinate their use of the USB core clock, and when nothing is
connected on any of the ports (all drivers are in their lowest power state) the clock is gated on or off using:

DDKClockSetGatingMode(DDK_CLOCK_GATE_INDEX_USBOTG, DDK_CLOCK_GATE_MODE_ENABLED_ALL)
DDKClockSetGatingMode(DDK_CLOCK_GATE_INDEX_USBOTG, DDK_CLOCK_GATE_MODE_DISABLED)

24.5.4.3 Transceiver Auto Power Down

The USB transceivers automatically enter a lower-power/suspended mode when no USB traffic is detected
for several milliseconds. This internally sets a suspended state for the USB port. Software timeout is used
to establish whether the driver power mode can be switched to its lowest power state.

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

24-24 Freescale Semiconductor

24.5.4.4 Transceiver Power Mode

Software timeout is used to establish whether the transceivers and their related bus needs to be set to a
suspended condition. In the lowest-power state, the transceiver is configured to generate wake-up
signalling on attachment of devices or host (to the OTG port). The transceiver driver provides callback
routines to manage this transition.

24.5.4.5 PowerUp

Each of the OTG client, host and transceiver drivers have PowerUp routine associated. (For the host driver,
this is referenced by the MDD to a function PowerMgmtCallback()).

For the host, the routine does the following:
• Ungate the USB peripheral block clock
• Force the port to resume and clear PHCD bit in the portsc register
• Reset and configure USB host controller
• Disable the wake-up conditions
• Set the PHY to normal work mode using SetPHYPowerMgmt(FALSE) platform routine
• Enable the interrupts and start the USB controller

For the client, the routine does the following:
• Ungate the USB peripheral block clock
• Force the port to resume
• Disable the wake-up conditions
• Enable the interrupts and start the USB controller

For the transceiver driver, the PowerUp routine calls the relevant platform-specific callback routine,
pfnUSBPowerUp().

Under normal circumstances there is nothing to be done in this routine, since the OTG port is normally in
a suspended state within the transceiver mode. (It is only in transceiver mode when nothing is connected
to the port, and thus has already been automatically suspended).

24.5.4.6 PowerDown

As for the PowerUp routine, OTG client, host and transceiver drivers have PowerDown routine associated.
(For the host driver, this is referenced via the MDD to a function PowerMgmtCallback()).

For the host, the routine does the following:
• Verify the wake-up conditions using the BSPUsbCheckWakeUp() platform routine
• Stop the host controller
• Suspend the relevant port
• Set the PHY to low power mode using SetPHYPowerMgmt(TRUE) platform routine
• Gate the USB peripheral block clock

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 24-25

For the client, the routine does the following:
• Stop the USB controller
• Clear any outstanding interrupts
• Enable appropriate wake-up condition
• Suspend the relevant port (suspends the PHY)
• Gate the USB peripheral block clock

For the transceiver driver, the PowerDown routine calls the relevant platform-specific callback routine,
pfnUSBPowerDown().

Under normal circumstances there is nothing to be done in this routine, since the transceiver remains in its
suspended state while nothing is connected to the port. Should any attachment have been made, the
transceiver wakes through its wake-up mechanism and launch the appropriate (client or host) driver.

24.5.4.7 Suspend/Resume Operations
• Mass Storage Host/Client—Device is mounted automatically, but any unfinished browse/copy is

terminated
• ActiveSync Client—Once browsing into the content of device. A system suspend/resume causes

device to not be mounted until unplug and plug cable again
• HID Host—Client is recognized again automatically

24.5.5 Function Drivers
The function drivers can be configured into the image using the Windows CE 6.0 Platform Builder catalog,
and are located at:

Device Drivers > USB Function > USB Function Clients

The default function driver is launched when the USB device port is attached to a host. This default
function driver is selected by the registry key (the last instance of this value in reginit.ini applies):

[HKEY_LOCAL_MACHINE\Drivers\USB\FunctionDrivers]
 "DefaultClientDriver"=-; erase previous default
[HKEY_LOCAL_MACHINE\Drivers\USB\FunctionDrivers]
 "DefaultClientDriver"="Mass_Storage_Class"

or
 "DefaultClientDriver"="RNDIS"

or
 "DefaultClientDriver"="Serial_Class"

Unless the BSP is configured with persistent registry storage, it only makes sense to configure a single
function driver into the image, and this one becomes default.

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

24-26 Freescale Semiconductor

NOTE
When no USB client functionality is included in the image (No OTG port,
or OTG Pure Host only), ensure that no function drivers have been
configured. If function drivers are configured, then USB client driver
libraries are also included in the image through logic in:
PUBLIC\CEBASE\OAK\Misc\winceos.bat

24.5.5.1 Mass Storage Function

The Mass Storage function exposes a local data store as a USB peripheral storage device. The device used
can be specified in registry. In platfrom.reg, the following template is provided:

PUBLIC\Common\OAK\Files\common.reg
"DeviceName"=-;
; "DeviceName"="ATA HARD DISK"
; "DeviceName"="SDMEMORY CARD"
; "DeviceName"="MMC CARD"
; "DeviceName"="USB HARD DISK"
; "DeviceName"="NAND FLASH"

Any item from this list can be specified to act as the mass storage medium. Uncomment the corresponding
line and rebuild the BSP to make that item active. If none of the items are specified explicitly, a pre-coded
priority is used to determine what active drive acts as mass storage medium. The priority is described as
the following:

ATA HARD DISK > SDMEMORY CARD (MMC CARD) > USB HARD DISK > NAND FLASH

platform.reg can also over-ride other USBMSFN related default settings. This allows customizing the
following values which must be properly configured for a commercial device:

[HKEY_LOCAL_MACHINE\Drivers\USB\FunctionDrivers\Mass_Storage_Class]
; idVendor must be changed. 045E belongs to Microsoft and is only to be used for
; prototype devices in your labs. Visit http://www.usb.org to obtain a vendor id.
 "idVendor"=dword:045E
 "Manufacturer"="Generic Manufacturer (PROTOTYPE--Remember to change idVendor)"
 "idProduct"=dword:FFFF
 "Product"="Generic Mass Storage (PROTOTYPE--Remember to change idVendor)"
 "bcdDevice"=dword:0

Table 24-14. Mass Storage Function

Driver Attribute Definition

CSP Driver Path ..\PLATFORM\COMMON\SRC\SOC\<Common SOC>\ms\USBFN\CLASS

CSP Static Library N/A

Platform Driver Path N/A

Import Library USBMSFN_LIB_<Common SOC>.lib
UFNCLIENTLIB.LIB

Driver DLL usbmsfn.dll

Catalog Item Device Drivers > USB Function > USB Function Clients > Mass Storage

SYSGEN Dependency SYSGEN_USBFN_STORAGE

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 24-27

24.5.5.2 Serial Function

The primary use for the serial function is ActiveSync.

NOTE
ActiveSync has been tested using connection to a PC with ActiveSync
version 4.1 installed. See Microsoft.com to download the latest ActiveSync
software for the PC. In some cases, DEBUGCHK may be triggered during
attachment to ActiveSync in DEBUG builds.

When SYSGEN_USBFN_SERIAL is defined, the default registry entry is automatically included from:
PUBLIC\Common\OAK\FILES\common.reg

For commercial products, this registry entry must be copied into platform.reg and modified to over-ride
the defaults. This allows customizing the following values which must be properly configured for a
commercial device:

[HKEY_LOCAL_MACHINE\Drivers\USB\FunctionDrivers\Serial_Class]
; idVendor must be changed. 045E belongs to Microsoft and is only to be used for
; prototype devices in your labs. Visit http://www.usb.org to obtain a vendor id.
 "idVendor"=dword:045E
 "Manufacturer"="Generic Manufacturer (PROTOTYPE--Remember to change idVendor)"
 "idProduct"=dword:00ce
 "Product"="Generic Serial (PROTOTYPE--Remember to change idVendor)"
 "bcdDevice"=dword:0

Table 24-15. Serial Function

Driver Attribute Definition

CSP Driver Path N/A

PUBLIC driver path PUBLIC\Common\OAK\Drivers\USBFN\CLASS\SERIAL

CSP Static Library N/A

Platform Driver Path N/A

Export Library serialusbfn.lib

Import Library com_mdd2.lib
serpddcm.lib
ufnclientlib.lib

Driver DLL SerialUsbFn.dll

Catalog Item Device Drivers > USB Function > USB Function Clients > Serial Client

SYSGEN Dependency SYSGEN_USBFN_SERIAL

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

24-28 Freescale Semiconductor

24.5.5.3 RNDIS Function

The RNDIS function allows communication over USB to be supplied to ethernet NDIS interface of
protocol stack.

RNDIS function has been tested using Freescale RNDIS class driver as located at:
Support\RNDIS\ce6_rndis.inf
%WINDIR%\System32\drivers\usb8023x.sys

When SYSGEN_USBFN_ETHERNET is defined, the default registry entry is automatically included
from:

PUBLIC\Common\OAK\FILES\common.reg

For commercial products, this registry entry must be copied into platform.reg and modified to over-ride
the defaults. This allows customizing the following values which must be properly configured for a
commercial device:

[HKEY_LOCAL_MACHINE\Drivers\USB\FunctionDrivers\RNDIS]
; idVendor must be changed. 045E belongs to Microsoft and is only to be used for
; prototype devices in your labs. Visit http://www.usb.org to obtain a vendor id.
"idVendor"=dword:045E
"Manufacturer"="Generic Manufacturer (PROTOTYPE--Remember to change idVendor)"
"idProduct"=dword:0301
"Product"="Generic RNDIS (PROTOTYPE--Remember to change idVendor)"
"bcdDevice"=dword:0

24.5.6 Class Drivers
All host ports (OTG Host, High Speed Host (H2), and Full Speed Host (H1)) support the same class
drivers, and this configuration is common to all host ports. Class drivers must also be configured for the
USB host ports. Class driver configuration is common to all host ports—there is no port-specific
configuration to be completed on any class driver.

Table 24-16. RNDIS Function

Driver Attribute Definition

CSP Driver Path N/A

CSP Static Library N/A

Platform Driver Path N/A

PUBLIC Driver Path PUBLIC\COMMON\OAK\Drivers\USBFN\Class\RNDIS

Import Library ndis.lib

Driver DLL RNDISFN.DLL

Catalog Item Device Drivers > USB Function > USB Function Clients > RNDIS Client

SYSGEN Dependency SYSGEN_USBFN_ETHERNET

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 24-29

Table 24-17 shows the standard Microsoft-supplied drivers that are available by drag and drop from the
catalog.

Drag and drop all the class drivers required for the USB Host class.

NOTE
When no USB host ports are configured in the image, ensure that no class
drivers are selected, otherwise host libraries are included by default from
logic in: PUBLIC\CEBASE\OAK\Misc\winceos.bat

24.5.6.1 HID Mouse

For mouse support, the cursor is required to test and use the mouse as shown in Table 24-18.

24.5.6.2 HID Keyboard

The system keyboard key mapping conflicts with that used for the HID keyboard. When USB keyboard
support is included, remove the System keyboard (Table 24-19) and include the appropriate stub keyboard
and keyboard .dll (Table 24-20)

Table 24-17. Class Drivers

Class Driver Configuration Flag Catalog Item

HID SYSGEN_USB_HID Core OS > Windows CE devices > Core OS Services > USB Host
Support > USB Human Input Device (HID) Class Driver

Printer SYSGEN_USB_PRINTER .. > USB Printer Class Driver1

1 See additional configuration in Section 24.6.2, “Dependencies of Drivers.”

Keyboard SYSGEN_USB_HID_KEYBOARD .. > USB HID Keyboard Only1

SYSGEN_USB_HID_MOUSE .. > USB HID Mouse Only1

RNDIS SYSGEN_ETH_USB_HOST Core OS > Windows CE devices > Core OS Services > USB Host
Support > USB Remote NDIS Class Driver

Storage SYSGEN_USB_STORAGE Core OS > Windows CE devices > Core OS Services > USB Host
Support > USB Storage Class Driver

Table 24-18. HID Mouse Class Driver

Catalog Item Configuration Flag Catalog Item

HID SYSGEN_CURSOR Core OS > Shell and User Interface > User Interface > Mouse

Table 24-19. HID Keyboard Driver to Remove

Remove Item Remove Catalog Item

 Keyboard Third Party > Freescale <Target Platform>: ARMV4I > Device Drivers > Input Devices > Keyboard/Mouse

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

24-30 Freescale Semiconductor

Include stub keyboard:

Also, include the appropriate keyboard .dll. For example, define SYSGEN_KBD_US and add the
following lines in the platform.bib (immediately before the FILES section):

IF BSP_KEYBD_NOP
 kbdmouse.dll $(_FLATRELEASEDIR)\KbdnopUs.dll NK SH
ENDIF; BSP_KEYBD_NOP

24.6 Basic Elements for Driver Development
This section provides details of the basic elements for driver development in the Platform System.

24.6.1 BSP Environment Variables
Table 24-21 shows the system environment variables.

Pin conflicts between default driver implementations for the pin muxing (platform-specific
implementation) mean certain configurations are mutually exclusive, as listed in Table 24-22.

Table 24-20. ID Keyboard Driver to Include

Catalog Item Configuration Flag Catalog Item

NOP Stub
Keyboard

BSP_KEYBD_NOP Device Drivers > Input Devices > Keyboard/Mouse > NOP (Stub)
Keyboard/Mouse English

Table 24-21. System Environment Variables Summary

Name Definition

BSP_USB Set to configure USB in BSP

BSP_USB_HSOTG_XVC Set to enable Full OTG functionality (transceiver host-client switching)
on the High Speed OTG port

BSP_USB_HSOTG_CLIENT Set to include USB client functionality on High Speed OTG port

BSP_USB_HSOTG_HOST Set to include USB host functionality on High Speed OTG port.

Table 24-22. Mutual Exclusive Driver Summary

Functionality1

B
SP

_A
TA

B
SP

_C
SP

IB
U

S

B
SP

_U
SB

B
SP

_U
SB

_H
SO

T
G

_X
V

C

B
SP

_U
SB

_H
SO

T
G

_C
L

IE
N

T

B
SP

_U
SB

_H
SO

T
G

_H
O

ST

ATA disk drive yes no — — — —

High Speed OTG Port full function (Host + Client) — — yes yes yes yes

High Speed OTG Port Pure Host only — — yes — — yes

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 24-31

24.6.2 Dependencies of Drivers
Table 24-23 summarizes the Microsoft-defined environment variables used in the BSP.

High Speed OTG Port Pure Client only — — yes — yes —

Full Speed Host (H1) no no — — — —

High Speed Host (H2) no no — — — —

1 yes = Required, no = Not permitted, – = Do not care

Table 24-23. USB Driver

Name Definition

SYSGEN_USBFN_SERIAL Set to support serial class for USB Function controller

SYSGEN_USBFN_STORAGE Set to support mass storage class for USB Function controller

SYSGEN_USBFN_ETHERNET Set to support RNDIS class for USB Function controller

SYSGEN_CURSOR Set to support mouse cursor

SYSGEN_FATFS Set to support FAT16 file system

SYSGEN_PCL Set to support PCL printing

SYSGEN_PRINTING Set to support printer

SYSGEN_STOREMGR Set to support storage manager

SYSGEN_UDFS Set to support Universal Disc File System

SYSGEN_USB Set to support USB driver

SYSGEN_USB_HID Set to support Human Interface driver (HID) class

SYSGEN_USB_HID_CLIENTS Set to support HID clients

SYSGEN_USB_HID_KEYBOARD Set to support HID keyboards (keyboard stub and associated .dll are required)

SYSGEN_USB_HID_MOUSE Set to support HID mouse

SYSGEN_USB_PRINTER Set to support Printer
(printer driver support, such as PCL (SYSGEN_PCL), may be required)

SYSGEN_USB_STORAGE Set to support storage medium

Table 24-22. Mutual Exclusive Driver Summary (continued)

Universal Serial Bus (USB) OTG Driver

Windows Embedded CE 6.0 BSP Reference Manual

24-32 Freescale Semiconductor

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 25-1

Chapter 25
USB Boot and KITL
USB Boot and KITL are supported by implementing a RNDIS client device over USB on the target board.
This feature configures the USB OTG port as a USB device and implements the RNDIS USB function
driver. The USB RNDIS device acts as a normal ethernet device and connects to the PC over a USB cable.
Eboot and KITL then operate with the RNDIS ethernet device.

25.1 USB Boot and KITL Summary
Table 25-1 identifies the source code location, library dependencies, and other BSP information.

25.2 Supported Functionality
The USB Boot and KITL provides the following software and hardware support:

1. Image downloading over USB RNDIS
2. KITL over USB
3. Provides menu options to determine whether or not to enable USB Boot and/or USB KITL

25.3 Hardware Operation
For detailed operation and programming information of the USB OTG, see the chapter on the High-Speed
USBOTG_UTMI in the corresponding platform Users Guide.

Table 25-1. USB Boot and KITL Summary

Driver Attribute Definition

Target Platform iMX25-3DS-PDK1_7

Target SOC MX25_FSL_V2_PDK1_7

SOC Common Path WINCE600\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\MS\RNE_MDD
WINCE600\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\MS\USBKITL

SOC Specific Path WINCE600\PLATFORM\COMMON\SRC\SOC\<Target SOC>\USBD\KITL

Platform Specific Path ..\PLATFORM\<Target Platform>\SRC\COMMON\USBFN
..\PLATFORM\<Target Platform>\SRC\KITL

Driver DLL fsl_usbfn_rndiskitl_PDK1_7.lib

SDK Library N/A

Catalog Item N/A

SYSGEN Dependency N/A

BSP Environment Variable N/A

USB Boot and KITL

Windows Embedded CE 6.0 BSP Reference Manual

25-2 Freescale Semiconductor

25.3.1 Conflicts with Other Peripherals and Catalog Items
The USB Boot and KITL does not have conflicts with any other module. However, since USB KITL and
USB OTG drivers share the same USB OTG hardware, the USB OTG drivers should be disabled in the
catalog item when USB KITL is enabled. USB boot does not have such limitation.

25.4 Software Operation

25.4.1 Software Architecture
USB Boot and KITL are part of the eboot and KITL subsystem. A RNDIS client device is implemented to
support USB Boot and KITL. Figure 25-1 illustrates the USB Boot and KITL software architecture.

Figure 25-1. USB Boot and KITL Software Architecture Block Diagram

Microsoft has implemented a RNDIS client MDD driver in Windows CE 6.0. The code is in following
location:
%_WINCEROOT%\Public\Common\Oak\Drivers\Ethdbg\Rne_mdd

It generates the static library Rne_mdd.lib.

The USB function controller PDD driver is ported to eboot and KITL to support USB Boot and KITL. For
details of USB function controller PDD driver refer to the Platform Builder for Windows CE 6.0 Help
under the topic:

Developing a Device Driver > Windows Embedded CE Drivers > USB Function Drivers > USB
Function Controller Drivers > USB Function Controller Driver Reference > USB Function
Controller PDD Functions.

Windows CE 6.0 provides an example of USB Boot. It is located at:
%_WINCEROOT%\Platform\MainstoneIII\Src\Common\Usbfn

USB Boot, KITL or other APP

MDD (RNDIS)

PDD
(Porting from USB Function Controller PDD Driver

USB OTG Hardware

USB Boot and KITL

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 25-3

25.4.2 Source Code Layout
Some files are modified or added to support USB Boot and KITL. They are as follows:

• RNDIS PDD driver
%_WINCEROOT%\Platform\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\MS\USBKITL\RNDIS

• USB function controller shared with OS driver
%_WINCEROOT%\Platform\COMMON\SRC\SOC\<Target SOC>\USBD\COMMON

• Add RNDIS device to EBOOT ethernet initialization routines
%_WINCEROOT%\Platform\<Target Platform>\Src\Bootloader\Common\ether.c

• Setup KITL device LogicalLoc and PhysicalLoc to USBOTG physical address if USB KITL
option in EBOOT menu is selected by user
%_WINCEROOT%\Platform\<Target Platform>\Src\Bootloader\Common\main.c

• Implement private OS functions, such as NKCreateStaticMapping(). NKCreateStaticMapping is
defined in OS. It is not defined for EBOOT while USB Boot requires this function. So it is
manually defined. This function just calls OALPAtoUA()
%_WINCEROOT%\Platform\COMMON\SRC\SOC\<Target SOC>\USBD\KITL

• Add USB Boot and KITL options into EBOOT menu
%_WINCEROOT%\Platform\<Target Platform>\Src\Bootloader\Eboot\menu.c

• Add fsl_rne_mdd_$(_COMMONSOCDIR).lib, fsl_rne_pdd_$(_COMMONSOCDIR).lib,
usb_usbfn_$(_SOCDIR).lib, usb_usbfn_eboot_$(_SOCDIR).lib

%_WINCEROOT%\Platform\<Target Platform>\Src\Bootloader\Eboot\sources

• Add USB RNDIS KITL device in KITL initialization routines
%_WINCEROOT%\Platform\<Target Platform>\Src\Kitl\kitl.c

%_WINCEROOT%\Platform\<Target Platform>\Src\Kitl\sources

25.4.3 Power Management
Power management is not implemented in USB Boot and KITL.

25.4.4 Registry Settings
There are no related register settings for the USB Boot and KITL.

25.4.5 DMA Support
Physical contiguous memory is required to support USB DMA. This memory region is hard coded in:
%_WINCEROOT%\Platform\Common\SRC\SOC\<Common Soc>\ms\Usbkitl\Rndis\rndis_pdd.c

It uses the BSP reserved IPL RAM image region (Starting from
IMAGE_USB_KITL_RAM_PA_START). This region is not used by other modules in the BSP, so it can
be used by USB boot and KITL.

USB Boot and KITL

Windows Embedded CE 6.0 BSP Reference Manual

25-4 Freescale Semiconductor

25.5 Unit Test

25.5.1 Building the USB Boot and KITL
There is no special configuration options for building USB Boot and USB KITL. Building the BSP with
default configuration includes the USB Boot and KITL support. The exception is that the USB OTG
drivers should be deselected from the catalog item view before building the NK image to use USB KITL,
because USB KITL and OS USB drivers share the same USB OTG hardware and they can not exist
simultaneously. As a result USB KITL can not used to debug USB OTG drivers.

The USB OTG driver auto unloads when it detects USB KITL enabled.

25.5.2 Testing USB Boot and KITL on i.MX25 3-Stack
There are totally three Ethernet transport devices available on i.MX25 3-Stack for image download with
Boot and KITL connection, LAN9217, FEC and USB RNDIS. LAN9217 is the default. Follow the steps
below to use USB RNDIS for Boot and KITL:

1. Connect target board to PC with USB cable and power on the board
2. Select USB RNDIS as the Ethernet transport device in EBOOT

0) IP address: 192.168.0.2
1) Subnet Mask: 255.255.255.0
3) DHCP: Disabled
6) Set MAC Address: 0-12-34-56-78-12
9) Ethernet Device: USB RNDIS

3. Press ‘d’ to download image over USB. If this is the first time running USB Boot or KITL with the
PC, the PC shows up a Found New Hardware Wizard dialog box and prompt to install the driver
for Windows CE RNDIS virtual adapter on the Windows PC. Refer to
WINCE600\PUBLIC\COMMON\OAK\DRIVERS\ETHDBG\RNDISMINI\HOST\howto.txt for how to install the
driver

4. After the driver is installed successfully, the Windows CE RNDIS virtual adapter should be
displayed in Network Connections on the PC. Configure this network connection properly. Use a
static IP address (such as 192.168.0.3) in the same subnet as the target board.

5. Check the Platform Builder Target > Connectivity options to make sure the target device is
selected.

If KITL is being enabled in the run-time image, the connection is established on USB after the image
downloading is finished.

	About This Book
	Audience
	Suggested Reading
	Conventions
	Definitions, Acronyms, and Abbreviations

	Chapter 1 Introduction
	1.1 Getting Started
	1.2 Windows Embedded CE 6.0 Architecture

	Chapter 2 Analog-Digital Converter (ADC) Driver
	2.1 ADC Driver Summary
	2.2 Supported Functionality
	2.3 Hardware Operation
	2.4 Software Operation
	2.5 Power Management
	2.6 Unit Test
	2.7 ADC SDK API Reference

	Chapter 3 Audio Driver
	3.1 Audio Driver Summary
	3.2 Supported Functionality
	3.3 Hardware Operation
	3.4 Software Operation
	3.5 Unit Test
	3.6 System Level Audio Driver Tests
	3.7 Audio Driver API Reference
	3.8 Audio Driver Troubleshooting Guide

	Chapter 4 Backlight Driver
	4.1 Backlight Driver Summary
	4.2 Supported Functionality
	4.3 Hardware Operation
	4.4 Software Operation
	4.5 Unit Test
	4.6 Backlight API Reference

	Chapter 5 Battery Driver
	5.1 Battery Driver Summary
	5.2 Supported Functionality
	5.3 Hardware Operation
	5.4 Software Operation
	5.5 Unit Test
	5.6 Battery API Reference

	Chapter 6 Boot from Secure Digital/MultiMedia Card (SD/MMC)
	6.1 Boot from SD/MMC Summary
	6.2 Supported Functionality
	6.3 Hardware Operation
	6.4 Software Operation

	Chapter 7 Camera Driver
	7.1 Camera Driver Summary
	7.2 Supported Functionality
	7.3 Hardware Operation
	7.4 Software Operation
	7.5 Power Management
	7.6 Unit Test
	7.7 Camera Driver API Reference

	Chapter 8 Chip Support Package Driver Development Kit (CSPDDK)
	8.1 CSPDDK Driver Summary
	8.2 Supported Functionality
	8.3 Hardware Operation
	8.4 Software Operation
	8.5 Unit Test
	8.6 CSPDDK DLL Reference

	Chapter 9 Configurable Serial Peripheral Interface (CSPI) Driver
	9.1 CSPI Driver Summary
	9.2 Supported Functionality
	9.3 Software Operation
	9.4 Restrictions
	9.5 Unit Test
	9.6 CSPI Driver API Reference

	Chapter 10 Controller Area Network (CAN) Driver
	10.1 CAN Driver Summary
	10.2 Supported Functionality
	10.3 Hardware Operation
	10.4 Software Operation
	10.5 Unit Test

	Chapter 11 Dynamic Voltage and Frequency Control (DVFC) Driver
	11.1 DVFC Driver Summary
	11.2 Supported Functionality
	11.3 Hardware Operation
	11.4 Software Operation
	11.5 Unit Test

	Chapter 12 Enhanced Secure Digital Host Controller (eSDHC) Driver
	12.1 eSDHC Driver Summary
	12.2 Supported Functionality
	12.3 Hardware Operation
	12.4 Software Operation
	12.5 Unit Test
	12.6 Secure Digital Card Driver API Reference

	Chapter 13 Enhanced Serial Audio Interface (ESAI) Driver
	13.1 ESAI Driver Summary
	13.2 Supported Functionality
	13.3 Hardware Operation
	13.4 Software Operation
	13.5 Unit Test

	Chapter 14 General Purpose Timer (GPT) Driver
	14.1 GPT Driver Summary
	14.2 Supported Functionality
	14.3 Hardware Operation
	14.4 Software Operation
	14.5 Power Management
	14.6 Unit Test
	14.7 GPT SDK API Reference

	Chapter 15 Fast Ethernet Controller (FEC) Driver
	15.1 Fast Ethernet Driver Summary
	15.2 Supported Functionality
	15.3 Hardware Operations
	15.4 Software Operations
	15.5 Unit Tests
	15.6 Fast Ethernet Driver API Reference

	Chapter 16 Inter-Integrated Circuit (I2C) Driver
	16.1 I2C Driver Summary
	16.2 Supported Functionality
	16.3 Hardware Operation
	16.4 Software Operation
	16.5 Unit Test
	16.6 Hardware Limitations
	16.7 I2C Driver API Reference

	Chapter 17 Keypad Driver
	17.1 Keypad Driver Summary
	17.2 Supported Functionality
	17.3 Hardware Operation
	17.4 Software Operation
	17.5 Unit Test
	17.6 Keypad Driver API Reference

	Chapter 18 Liquid Crystal Display Controller (LCDC) Driver
	18.1 Display Driver Summary
	18.2 Supported Functionality
	18.3 Hardware Operation
	18.4 Software Operation
	18.5 Unit Test
	18.6 Display Driver API Reference

	Chapter 19 NAND Flash Driver
	19.1 Flash Driver Summary
	19.2 Supported Functionality
	19.3 Hardware Operation
	19.4 Software Operation
	19.5 Unit Test

	Chapter 20 Pulse Width Modulator (PWM) Driver
	20.1 PWM Driver Summary
	20.2 Supported Functionality
	20.3 Hardware Operation
	20.4 Software Operation
	20.5 Unit Test
	20.6 PWM Driver API Reference

	Chapter 21 Serial Driver
	21.1 Serial Driver Summary
	21.2 Supported Functionality
	21.3 Hardware Operation
	21.4 Software Operation
	21.5 Unit Test
	21.6 Serial Driver API Reference

	Chapter 22 Subscriber Identification Module (SIM) Driver
	22.1 SIM Driver Summary
	22.2 Supported Functionality
	22.3 Hardware Operation
	22.4 Software Operation
	22.5 Unit Test
	22.6 SIM Driver API Reference

	Chapter 23 Touch Panel Driver
	23.1 Touch Panel Driver Summary
	23.2 Supported Functionality
	23.3 Hardware Operations
	23.4 Software Operations
	23.5 Unit Tests
	23.6 Touch Panel API Reference

	Chapter 24 Universal Serial Bus (USB) OTG Driver
	24.1 USB OTG Driver Summary
	24.2 USB Host Driver Summary
	24.3 Supported Functionality
	24.4 Hardware Operation
	24.5 Software Operation
	24.6 Basic Elements for Driver Development

	Chapter 25 USB Boot and KITL
	25.1 USB Boot and KITL Summary
	25.2 Supported Functionality
	25.3 Hardware Operation
	25.4 Software Operation
	25.5 Unit Test

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

