I.MX35 3-Stack
Windows Embedded CE 6.0

Reference Manual

Part Number: 924-76370
Rev. 2009.12
02/2010

freescglew

ssssssssss

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road

Tempe, Arizona 85284
+1-800-521-6274 or

+1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064

Japan

0120 191014 or

+81 3 5437 9125
support.japan@freescale.com

AsialPacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F

No. 118 Jianguo Road

Chaoyang District

Beijing 100022

China

+86 010 5879 8000
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor
Literature Distribution Center

P.O. Box 5405

Denver, Colorado 80217

+1-800 441-2447 or

+1-303-675-2140

Fax: +1-303-675-2150

LDCForFreescaleSemiconductor
@hibbertgroup.com

ARM

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

Freescale and the Freescale logo are trademarks or registered trademarks
of Freescale Semiconductor, Inc. in the U.S. and other countries. All other
product or service names are the property of their respective owners. ARM
is the registered trademark of ARM Limited. ARMnnn is the trademark of ARM Limited.
Microsoft and Windows are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

© Freescale Semiconductor, Inc., 2009. All rights reserved.

[=
]
oc
i
=
=)
-
u

freescale"

semiconductor

Contents

About This Book

Chapter 1

Introduction

1.1 Getting Started e 1-1
1.2 Windows Embedded CE 6.0 Architecture 1-1
Chapter 2

Asynchronous Sample Rate Converter (ASRC) Driver

2.1 ASRC DIiver SUMMATYottt ettt e e e e e e e e 2-1
2.2 Supported Functionality 2-1
2.3 Hardware Operation e e 2-2
2.3.1 Conflicts with Other Peripherals and Catalog Items 2-2
2.4 Software Operation.ottt 2-2
24.1 Required Catalog Items i e 2-2
2.4.2 ASRC Registry Settingsottt e e 2-2
243 DMA SUPDPOTt . . .ot e 2-2
244 Power Management 2-2
2.5 Unit Test . ..o 2-3
25.1 Building the Unit Tests.o e 2-3
2.5.2 Running the Unit Tests.ot e et 2-3
2.6 ASRCDriver API Reference 2-4
2.6.1 ASRC SDK FUNCtiONS\ttt e e e et e e 2-4
2.6.2 Example for Using SDK Functions 2-4
2.6.3 Memory->ASRC->Memory->SSIMode 2-5
Chapter 3

ATA/ATAPI Driver

3.1 ATA/ATAPI Driver SUMMATY oottt et e et e et 3-1
3.2 Supported Functionality 3-1
33 Hardware Operationttt e e e 3-2
3.3.1 Conflicts with Other Peripherals and Catalog Options. 3-3
3.3.2 Cabling . . ot 3-4
3.4 Software Operation.ottt e e e e 3-4
34.1 Application/User Interface to ATA/ATAPIdrives., 3-4
342 ATA/ATAPI Driver Configurationttt 3-4

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor -iii

343 Power Management e 3-5

344 Registry Settings.ot e 3-6
345 DMA SUPPOTE . oottt e e e e e 3-9
3.5 Unit TSt . ottt e 3-9
3.5.1 Unit Test Hardware.o e e 3-10
3.5.2 Unit Test Software e 3-10
3.53 Building the Storage Device Tests e 3-11
354 Running the Storage Device Tests e 3-11
3.6 Basic Elements for Driver Development 3-13
3.6.1 BSP Environment Variables. 3-13
3.6.2 Mutual Exclusive Drivers. 3-13
3.6.3 Dependencies of DIivers. e 3-13
3.7 Block Device APT Reference i e 3-14
3.7.1 IOCTL _DISK DEVICE INFO e e 3-14
3.7.2 IOCTL _DISK GET STORAGEID. i 3-14
3.73 IOCTL _DISK GETINFO e e e 3-15
3.74 IOCTL _DISK GETNAME e 3-15
3.7.5 IOCTL _DISK READ ... e e 3-15
3.7.6 IOCTL _DISK SETINFO. e e e 3-16
3.7.7 IOCTL _DISK WRITE. e e 3-16
3.7.8 IOCTL DISK FLUSH CACHE. e 3-16
3.7.9 IOCTL _CDROM DISC INFO e e 3-16
3.7.10 IOCTL _CDROM EJECT MEDIA e 3-17
3.7.11 IOCTL_CDROM_GET SENSE DATA. e 3-17
3.7.12 IOCTL_CDROM _ISSUE INQUIRYttt et 3-17
3.7.13 IOCTL_CDROM PAUSE AUDIO i 3-18
3.7.14 IOCTL_CDROM PLAY AUDIO MSF. i 3-18
3.7.15 IOCTL CDROM READ SG ... e 3-18
3.7.16 IOCTL _CDROM _READ TOC. e e 3-19
3.7.17 IOCTL_CDROM _RESUME AUDIO. i 3-19
3.7.18 IOCTL_CDROM_SEEK AUDIO MSF. i 3-19
3.7.19 IOCTL_CDROM _STOP AUDIO e e i 3-19
3.7.20 IOCTL_CDROM _TEST UNIT READYo 3-20
3.7.21 IOCTL _DVD _GET REGION. e 3-20
Chapter 4

Audio Driver

4.1 Audio Driver SUMmary 4-1
4.2 Supported Functionality 4-2
4.3 Hardware Operation it e e e 4-2
43.1 Audio Hardware Design e 4-2
432 Audio Playback. 4-2
433 Audio Recording. e 4-3
4.3.4 Required SoC Peripherals. 4-4

Windows Embedded CE 6.0 BSP Reference Manual

-iv Freescale Semiconductor

4.3.5 Conflicts with SoC Peripherals. 4-4
4.3.6 Conflicts with Board Peripherals i 4-4
4.3.7 Known ISsues 4-5
4.4 Software Operation.ottt e 4-5
441 Audio Playback. 4-5
4.4.2 Audio Recording. e 4-5
443 Audio Driver Compile-Time Configuration Optionsc.ouviinin ..., 4-5
4.4.4 DM A SUPDOTt . . ottt 4-6
4.4.5 Power Managementttt e 4-7
4.4.6 Audio Driver Registry Settings. 4-8
4.5 Unit Test . oo 4-9
4.5.1 Unit Test Hardware. 4-9
4.5.2 Unit Test Software 4-9
453 Building the Audio Driver CETK Testst 4-10
4.5.4 Running the Audio Driver CETK Tests 4-10
4.6 System Level Audio Driver Tests. e 4-10
4.6.1 Checking for a Boot-Time Musical Tune. 4-11
4.6.2 Confirming Touchpanel Taps and Keypad Key Presses 4-11
4.6.3 Playing Back Sample Audio and Video Files Using the Media Player 4-11
4.6.4 Using the SDK Sample Audio Applications for Testing 4-11
477 MiIxer Driver Testsot e 4-11
4.8 Audio Driver API Reference 4-11
4.9 Audio Driver Troubleshooting Guide. 4-12
4.9.1 Checking Build-Time Configuration Optionsouuiiirinnennenn.. 4-12
492 Media Player Application Not Found. 4-12
493 Media Player Fails to Load and Play an Audio File. 4-12
Chapter 5

Backlight Driver

5.1 Backlight Driver Summary. 5-1
5.2 Supported Functionality 5-1
53 Hardware Operationttt e e 5-2
5.3.1 1.MX35-3DS Hardware Operationottt e, 5-2
5.4 Software Operation.t 5-2
54.1 Backlight Driver Registry Settings. i 5-2
5.4.2 Power Management 5-2
5.5 UNIt Test . o oot 5-3
5.5.1 Unit Test Hardware. 5-3
552 Unit Test Softwareo 5-3
5.5.3 Running the Backlight Application Test it .. 5-3
5.6 Backlight APTReference 5-4
Chapter 6

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor -V

Boot from Secure Digital/MultiMedia Card (SD/MMC)

6.1 Boot from SD/MMC SUMMATYottt ettt et 6-1
6.2 Supported Functionality 6-2
6.3 Hardware Operationttt e e e e 6-2
6.3.1 Conflicts with Other Peripherals and Catalog Items 6-2
6.4 Software Operation.t 6-2
6.4.1 Card Memory Layout e 6-3
Chapter 7
Camera Driver
7.1 Camera Driver SUMMATYottt e e e ettt 7-1
7.2 Supported Functionality 7-2
7.3 Hardware Operation e et 7-2
7.3.1 Conflicts with Other Peripherals and CatalogItems 7-2
7.3.2 Conflicts with 3-Stack Peripherals 7-3
7.4 Software Operation.t e 7-3
7.4.1 Communicating withthe Camera. i 7-3
7.4.2 Registry Settings.ottt 7-3
7.5 Power Management 7-4
7.5.1 POWer Up .. e e 7-4
7.5.2 Power Downo 7-4
7.5.3 IOCTL POWER SET ... e e e 7-5
T.6 Unit Test . .o 7-5
7.6.1 Unit Test Hardware. 7-5
7.6.2 Unit Test Software e 7-6
7.6.3 Building the Unit Tests.ot e e e et 7-6
7.6.4 Running the Unit Tests. e 7-7
7.7 Camera Driver API Reference 7-8
Chapter 8
Configurable Serial Peripheral Interface (CSPI) Driver
8.1 CSPIDIiver SUMMATYttt ettt e e e e e et e et e ettt 8-1
8.2 Supported Functionality 8-1
8.2.1 Conflicts with Other Peripherals and Catalog Items 8-2
8.2.2 Conflicts with 3-Stack Peripherals 8-2
8.3 Software Operation.t e 8-2
8.3.1 Registry Settings.ottt e 8-2
83.2 Communicating with the CSPL. i 8-2
833 Creatinga Handletothe CSPI i 8-2
8.3.4 Data Transfer Operationst e 8-3
8.3.5 Closing the Handle tothe CSPI i 8-4
8.3.6 Power Managementt 8-5
8.4 RESHICHONS . . . ottt ettt et e e e e e 8-5
Windows Embedded CE 6.0 BSP Reference Manual
-Vi Freescale Semiconductor

8.5 UnNIE TSt . o o ettt e e e e e 8-5

8.5.1 Building the Unit Tests.ot e e e e 8-5
8.6 CSPI Driver API Reference e 8-6
8.6.1 CSPIDriver IOCTLSo e e 8-6
8.6.2 CSPI Driver SDK WrIapper.ottt it e e e e e e et 8-6
8.6.3 CSPIDIIVer StrUCTUIES . . . o . oot ittt e et e e e e e e e e e 8-7
Chapter 9

Controller Area Network (CAN) Driver

9.1 CAN DIiver SUMMATYottt e e et e e e ettt et aeas 9-1
9.2 Supported Functionality e 9-1
9.3 Hardware Operation i e e 9-1
9.3.1 Conflicts with Other Peripherals and CatalogItems 9-2
9.4 Software Operation.ttt e e e 9-2
94.1 Communicating with the CAN e 9-2
94.2 Creatinga Handle tothe CAN e 9-2
943 Configuring the CAN 9-3
94.4 Data Transfer Operationsttt e e 9-3
94.5 Closing the Handle to the CAN e 9-5
9.4.6 Power Management 9-5
94.7 CAN Registry Settingso ot ittt e e e e e 9-5
9.5 Unit Test . oo e 9-6
9.5.1 Unit Test Hardware. e e e 9-6
952 Unit Test Softwareo 9-6
9.5.3 Building the Unit Tests.ot e et e e et e 9-6
954 Running the Unit Tests e 9-7
Chapter 10

Chip Support Package Driver Development Kit (CSPDDK)

10.1 CSPDDK Driver SUMMAry. oo ettt et e e et ettt 10-1
10.2 Supported Functionality 10-1
10.3 Hardware Operationttt ittt et ettt et e 10-2
10.3.1 Conflicts with Other Peripherals and CatalogItems 10-2
10.4 Software Operation.ottt e e e e e 10-2
10.4.1 Communicating with the CSPDDK i, 10-2
10.4.2 Compile-Time Configuration Optionsttt 10-2
10.4.3 Registry Settings.ot 10-3
10.4.4 Power Management 10-3
TO.5 Unit TeSt . .ottt e e e e e e e e e 10-4
10.5.1 Unit Test Hardware. e e 10-4
10.5.2 Unit Test Software 10-4
10.5.3 Building the Unit Tests.ot e et e 10-4
10.5.4 Running the Unit Tests.t e 10-4
10.6 CSPDDK DLL Reference.t e e e 10-5

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor -vii

10.6.1 CSPDDK DLL System Clocking (DDK_CLK) Reference 10-5

10.6.2 CSPDDK DLL GPIO (DDK_GPIO) Reference., 10-8
10.6.3 CSPDDK DLL IOMUX (DDK_IOMUX) Reference 10-11
10.6.4 CSPDDK DLL SDMA (DDK_SDMA) Reference 10-14
Chapter 11

Display Driver for IPUv1

11.1 Display Driver Summary e 11-1
11.2 Supported Functionality 11-1
11.3 Hardware Operationttt et et ettt et e 11-2
11.3.1 Conflicts with Other Peripherals and Catalog Items 11-2
11.3.2 Rotation Control 11-2
11.4 Software Operation. u .ttt e e e e 11-3
11.4.1 Communicating withthe Display 11-3
11.4.2 Configuring the Display 11-4
11.4.3 Power Management 11-6
1.5 Unit Test . oottt e e 11-6
11.5.1 Unit Test Hardware.o e e 11-7
11.5.2 Unit Test Software 11-7
11.5.3 Building the Unit Tests. e 11-8
1154 Running the Unit TestS.ot e e 11-8
11.6 Display Driver API Reference i i 11-9
Chapter 12

Dynamic Voltage and Frequency Control (DVFC) Driver

12.1 DVFC Driver SUMMATYo vttt et e e e e ettt 12-1
12.2 Supported Functionality e 12-1
12.3 Hardware Operationttt et e e e 12-2
12.3.1 Conflicts with Other Peripherals and CatalogItems 12-2
12.3.2 1.MX35 3-Stack Configuration.ttt ittt 12-2
12,4 Software Operation.ottt e e e 12-2
12.4.1 LMX35 Registry Settingso vttt e 12-2
12.4.2 Loading and Initialization. e 12-2
12.4.3 OPCIatiON . ..ottt et e e e e 12-3
12.4.4 DDK Interface.o e 12-4
12.4.5 Power Management i e 12-5
12,5 UNIt Test . oottt 12-5
Chapter 13

Enhanced Secure Digital Host Controller (¢SDHC) Driver

13.1 eSDHC Driver SUMMAryttt et e e e 13-1
13.2 Supported Functionality 13-1
13.3 Hardware Operationo ittt e e et e e 13-2

Windows Embedded CE 6.0 BSP Reference Manual

-viii Freescale Semiconductor

13.3.1 Conflicts with Other Peripherals and Catalog Options. 13-2

13.4 Software Operation.ttt ettt e e e 13-2
13.4.1 Required Catalog Items i e 13-3
13.4.2 eSDHC Registry Settingsottt e 13-3
13.4.3 DMA SUPPOTT . . ottt e e 13-4
13.44 Power Management i e 13-4
I3.5 UNIt Test . oottt 13-4
13.5.1 Unit Test Hardware.o e 13-5
13.5.2 Unit Test Software 13-5
13.53 Building the Unit Tests. e 13-5
13.5.4 Running the Unit Tests. e 13-6
13.5.5 System Testingot e 13-7
13.6 Secure Digital Card Driver API Reference. 13-7
Chapter 14

Enhanced Serial Audio Interface (ESAI) Driver

14.1 ESAIDIiver SUMMATYottt ettt e e e et 14-1
14.2 Supported Functionality 14-1
14.3 Hardware Operationttt ittt et ettt 14-2
14.3.1 Conflicts with Other Peripherals and Catalog Items 14-2
14.3.2 Hardware Limitation. 14-2
14.4 Software Operation.ttt e e 14-3
14.4.1 Required Catalog Items 14-3
14.4.2 ESAT Registry Settings. ou it e e 14-3
14.4.3 Supported Wave Data Format. 14-4
14.4.4 DMA SUPDPOIt . . . ot 14-4
14.4.5 Power Management 14-4
T4.5 Unit Test . .o 14-5
14.5.1 Building the Unit Test. 14-5
14.5.2 Hardware Setup. o 14-5
14.5.3 Running the Unit Test. e e 14-5
14.5.4 Known ISsueso 14-6
Chapter 15

Fast Ethernet Controller (FEC) Driver

15.1 Fast Ethernet Driver SUummaryt et et 15-1
15.2 Supported Functionality e 15-1
15.3 Hardware Operationsttt e et ettt e e 15-2
15.3.1 Conflicts with Other Peripherals and CatalogItems 15-2
15.4 Software Operations vttt et e et e e 15-2
15.4.1 FEC Driver Registry Settings oot e 15-2
I5.5 UNIt Tests . ..ottt e e e 15-3
15.5.1 Unit Test Hardware.o e e 15-3
15.5.2 Unit Test Software 15-4

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor -ix

1553 Building the Unit Tests. e 15-4

1554 Running the Unit Tests.ot e 15-5
15.6 Fast Ethernet Driver API Reference. i 15-7
Chapter 16

FM Radio Driver

16.1 Radio Driver SUMMATY.ottt e e e e et 16-1
16.2 Supported Functionality 16-1
16.3 Hardware Operationttt e ettt et e 16-1
16.3.1 Conflicts with Other Peripherals and CatalogItems 16-2
16.4 Software Operation.ottt e e 16-2
16.4.1 Registry Settings.ottt 16-2
16.5 Power Managementttt 16-2
16.5.1 Power Up ..o 16-2
16.5.2 Power Down 16-2
16.5.3 IOCTL _POWER SET ... e e e e 16-2
16.6 Unit Test . ..o 16-3
16.6.1 Unit Test Hardware.o e e 16-3
16.6.2 Unit Test Software e 16-3
16.6.3 Building the Unit Tests. e 16-3
16.6.4 Running the Unit Tests.ot e e 16-4
16.7 Radio Driver API Reference. 16-4
16.7.1 Radio Driver IOCTLS e 16-4
16.7.2 Radio Driver Structuresttt e 16-7
Chapter 17

General Purpose Timer (GPT) Driver

17.1 GPT DIiver SUMMATY oottt ettt e e e e e e e e et et e 17-1
17.2 Supported Functionality 17-1
17.3 Hardware Operationttt et et e e 17-2
17.3.1 Conflicts with Other Peripherals and Catalog Items 17-2
17.4 Software Operation.ttt e e 17-2
17.4.1 GPT Registry Settingsottt et et et et e e 17-2
17.4.2 Communicating with the GPT 17-2
17.4.3 DMA SUPDOTt . . oot 17-4
17.5 Power Managementt 17-4
17.5.1 PowerUp . .o 17-4
17.5.2 PowerDown 17-5
17.5.3 IOCTL _POWER SET e e e e 17-5
17.6 Unit Test . ..o 17-5
17.6.1 Unit Test Hardware.o e 17-5
17.6.2 Unit Test Software e 17-5
17.6.3 Building the Unit Tests.o e e 17-5
17.6.4 Running the Unit Tests. e 17-6

Windows Embedded CE 6.0 BSP Reference Manual

-X Freescale Semiconductor

17.7 GPT SDK APIREferenceo e e e e e i i 17-6

17.7.1 GPT SDK FUNCHONS . . . o oottt et e e e e e e e e e e e 17-6
17.7.2 GPT Driver StrUCtUIESottt et e e e e e e e e e e 17-9
Chapter 18

Global Positioning System (GPS) Driver

I18.1 GPS Driver SUMMAryttt e e e e 18-1
18.1.1 Application Layer. 18-2
18.1.2 GPS Core Driver Layer. 18-3
18.1.3 GPS HAL Driver Layert e e et e 18-3
18.2 Supported Functionality 18-3
18.3 Hardware Operationttt e ettt 18-3
18.3.1 Conflicts with Other Peripherals and CatalogItems 18-3
18.3.2 1.MX35 Hardware Operationuuuientn ittt 18-4
18.4 Software Operation.ottt et e e 18-4
18.4.1 Communicating withthe GPSModule. 18-4
18.4.2 Power Management 18-4
18.4.3 GPS Driver Registry Settingsot e 18-5
I8.5 UNIt Test . o oottt 18-5
Chapter 19

Graphics Processing Unit (GPU)

19.1 GPUDriver SUMmMAryt e e e et e e 19-1
19.2 Supported Functionality 19-1
19.3 Hardware Operationttt e e e 19-2
19.3.1 Conflicts with Other Peripherals and CatalogItems 19-2
19.4 Software Operation.ttt e e 19-2
19.4.1 Communicating withthe GPU 19-2
19.4.2 GPU Driver Files 19-2
19.4.3 Power Managementt e 19-3
19.4.4 GPU Registry Settingsottt e e e e 19-3
19.5 Float Pointing Acceleration using the ARM Vector Floating Point (VFP) Library......... 19-3
19.6 Unit TeSt . .ottt et e e e e e e 19-3
19.6.1 Unit Test Hardware. 19-3
19.6.2 Unit Test Software 19-3
19.7 GPU Driver API Reference e 19-4
Chapter 20

Inter-Integrated Circuit (12C) Driver

20.1 TPCDIVEr SUMMALY. . o v oveee et e e e e e e e e e e e 20-1
20.2 Supported Functionality 20-1
20.3 Hardware Operation vttt ettt e e e e e 20-2
20.3.1 Conflicts with Other Peripherals and CatalogItems 20-2

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor -Xi

20.4 Software Operation.ottt e e e 20-2

20.4.1 Registry Settings.ottt 20-2
204.2 Communicating With the T2Co\ v v ettt e e 20-2
20.4.3 Creatinga Handle 20-2
204.4 Configuring the I2C ...t 20-3
20.4.5 Data Transfer Operations ittt et 20-4
20.4.6 Closingthe Handle o e 20-5
20.4.7 Power Management 20-5
20.5 UNIt TeSt . o oottt 20-6
20.5.1 Unit Test Hardware. e e e 20-6
20.5.2 Unit Test Software 20-6
20.5.3 Building the Unit Tests.ot e e et 20-7
20.5.4 Running the Unit Tests. e 20-7
20.6 Hardware LImitationsottt e e e 20-7
20.7 T2CDriver APTREFErenCe.o oo vttt e e e e e e e e 20-7
20.7.1 PPCDriver IOCTLS ...\ttt ettt 20-7
20.7.2 I2C Driver SDK Encapsulation. 20-10
2073 TPCDIVEr SUCHIIESottt ettt et et et e 20-15
Chapter 21

MedialLB Device Module (MLB)

21,1 MLB SUMMATYot e 21-1
21.2 Supported Functionality 21-1
21.3 Hardware Operationttt ettt e e et e 21-2
21.3.1 Conlflicts with Other Peripherals and CatalogItems 21-2
21.4 Software Operation. ottt e e e 21-2
21.4.1 Compile-Time Configuration Optionsoutitirirennennnn.n 21-2
214.2 Registry Settings.ot e 21-2
2143 DMA SUPDPOTt . . .ot 21-2
21.4.4 LOCT L. . o 21-2
21.5 Power Management e 21-3
21.5.1 1.MX35 Power Management.ttt 21-3
21,6 UNit Test . oottt 21-3
21.6.1 Unit Test Hardware. e e 21-3
21.6.2 Unit Test SOftware e 21-4
21.6.3 Building the Unit Tests.t e et 21-4
21.6.4 Running the Unit Tests. e e 21-4
Chapter 22

Micro Controller Unit (MCU) Driver

22,1 MCU DIIVEr SUIMMATY .« .« ottt et et e e e e e et e e e e e e et et 22-1
22.2 Supported Functionality 22-1
223 Hardware Operationttt et ettt e e et e 22-2
22.3.1 Conflicts with Other Peripherals and CatalogItems 22-2

Windows Embedded CE 6.0 BSP Reference Manual

-Xii Freescale Semiconductor

224 Software Operation.ttt e e 22-2

22.4.1 MCU Driver FUNCHON.ot e e e e e e e 22-3
2242 MCU RTC FUNCHON . . . o ettt ettt e e e e e e e e e e 22-3
2243 Registry Settings.ot 22-3
22.5 Power Management 22-4
22.5.1 POWerUp . . e 22-4
22.5.2 PowerDown 22-4
22.5.3 IOCTL_POWER CAPABILITIES e 22-4
22.5.4 IOCTL _POWER SET e e e e e e 22-4
22.5.5 IOCTL POWER GET. e 22-4
22,6 Unit Test . . oo e 22-4
22.6.1 RTC FUNCHONot e e e e e e e e e 22-4
Chapter 23

NAND Flash Driver

23.1 Flash Driver SUMMAryottt et e e e 23-1
23.2 Supported Functionality 23-2
23.3 Hardware Operation vttt ettt e e et e 23-2
23.3.1 Conlflicts with Other Peripherals and CatalogItems 23-2
234 Software Operation.ttt e e e e 23-2
23.4.1 MDD/PDD Layer OVerVIEW ottt et ettt e e et et e 23-2
23.4.2 Definitions e 23-4
2343 Adding New Flash Configurations 23-5
2344 Registry Settings.ottt 23-6
23.4.5 DMA SUPPOTT . ottt et e e e 23-6
23.4.6 Power Management 23-6
23,5 UNIt TeSt . oottt 23-6
23.5.1 CETK TeSting. . o ottt et e e e e e e e e e et 23-6
23.5.2 System TesStingot 23-7
Chapter 24

Power Management IC (PMIC)

24.1 PMIC SUMMATYottt ettt e e e e e e e e e e e e e e e e 24-1
242 Supported Functionality 24-1
24.3 Hardware Operationttt ettt ettt et e 24-2
24.3.1 Conflicts with Other On-Chip Peripherals 24-2
2432 Conflicts with Other 3-Stack Peripherals. 24-2
244 Software Operation. vttt e et e e 24-2
24.4.1 Configuring the PMIC e 24-2
2442 Creating a Handle to the PMIC. 24-3
2443 WIite OPerations.ottt et e e e e e e e e e 24-3
24.4.4 Read Operations e 24-3
24.4.5 Closing the Handle to the PMIC. i 24-3
24.4.6 Power Management 24-3

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor -Xiii

24477 PMIC Registry Settingsttt e e e e 24-4

24.4.8 DMA SUPPOTT . . ottt e e e 24-4
245 UNit Test . o oottt 24-4
24.5.1 Unit Test Hardware. e e e 24-4
2452 Unit Test Software 24-5
24.5.3 Running the PMIC Tests.ot e e e 24-5
24.6 PMIC Driver APT Reference. i e 24-5
24.6.1 PMIC Driver IOCTLS e e e e e 24-5
24.6.2 Interrupt Handling. e 24-7
24.6.3 Register Access APL 24-10
24.6.4 Power Control Reference i 24-11
24.6.5 Buck Switchers and Linear Regulators. 24-13
24.6.6 Backlightand Led. 24-13
24.6.7 ADC and Touch Controller. e 24-14
24.6.8 Battery Charger. oo 24-15
Chapter 25

Serial Driver

25.1 Serial Driver SUMMATYottt et et e 25-1
25.2 Supported Functionality 25-2
25.3 Hardware Operation uu ittt ettt e e et e 25-2
25.3.1 Conlflicts with Other Peripherals and CatalogItems 25-2
25.4 Software Operation.ttt e e e 25-2
25.4.1 Registry Settings.ottt 25-2
254.2 Power Management 25-3
25,5 UMt TSt . ottt e 25-3
25.5.1 Unit Test Hardware. o e e 25-3
25.5.2 Unit Test Software 25-3
2553 Building the Unit Tests. 25-4
25.5.4 Running the Unit Tests.o e 25-4
25.6 Serial Driver API Reference. 25-5
25.6.1 Serial PDD Functionst e e e e 25-5
25.6.2 Serial Driver StruCtUIesottt e e 25-6
Chapter 26

Sony/Philips Digital Interface (SPDIF) Driver

26.1 SPDIF Driver SUMMATYottt e et et e e e et e e e 26-1
26.2 Supported Functionality e 26-1
26.2.1 Conflicts with Other Peripherals and Catalog Items 26-2
26.2.2 Known [SSUeso e 26-2
26.3 Software Operation. vttt e e 26-2
26.3.1 SPDIF Transmitter (TX). i e e e 26-2
26.3.2 SPDIF Receiver (RX) . ..o e e 26-2
26.3.3 Compile-Time Configuration Optionsuutiterinenn e 26-3

Windows Embedded CE 6.0 BSP Reference Manual

-Xiv Freescale Semiconductor

26.3.4 Registry Settings.ottt 26-3

26.3.5 DMA SUPPOTT . . ottt e e e 26-3
26.4 Power Managementttt e 26-4
26.4.1 PowerUp . ..o 26-5
26.4.2 PowerDown 26-5
26.5 UNit Test . ..ottt 26-5
26.5.1 Unit Test Hardware. e e e e 26-5
26.5.2 Unit Test Software 26-6
26.5.3 Building the Unit Tests.ot e e e et 26-6
26.5.4 Running the Unit Tests. e 26-6
26.6 SyStem TeStINgo vttt e 26-6
26.7 SPDIF Driver API Reference e 26-7
Chapter 27

Touch Panel Driver

27.1 Touch Panel Driver SUMMArYttt ettt 27-1
27.2 Supported Functionality 27-1
27.3 Hardware Operationso.uutntt et ettt e et e e 27-2
27.3.1 Conflicts with SOC Peripherals i, 27-2
27.4 Software OPerationsttt ittt ettt e e e 27-2
27.4.1 Touch Driver Registry Settingsttt 27-2
27.5 UNItTestS . oot e 27-3
27.5.1 Unit Test Hardware. e e 27-3
27.5.2 Unit Test SOftwareo 27-3
27.5.3 Running the Touch Panel Tests i, 27-4
27.6 Touch Panel APTReference i 27-4
Chapter 28

Universal Serial Bus (USB) OTG Driver

28.1 USB OTG Driver SUMMATYo vttt it e e e et e et e e e e e 28-1
28.1.1 USB OTG Client Driver SUMMmary.ottt een s 28-1
28.1.2 OTG Host Driver Summaryt et 28-2
28.1.3 OTG Transceiver Driver Summary (For High-Speed Only) 28-3
28.2 USB Host Driver SUMMArYottt e e e e 28-4
28.2.1 FS Host2 Driver Summary e e 28-4
28.3 Supported Functionality 28-4
28.4 Hardware Operationttt ettt e e e e 28-5
28.4.1 Conlflicts with Other Peripherals and CatalogItems 28-5
28.5 Software Operation. vttt e e 28-6
28.5.1 USB OTG Host Controller Driver e 28-6
28.5.2 USB Clent DIIVerttt e e e et 28-14
28.5.3 USB Transceiver Driver (ID Pin Detect Driver—XCVR). 28-18
28.5.4 Power Management 28-23
28.5.5 Function Drivers 28-25

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor -XV

28.5.6 Class DIIVETLS. . . . oo e e e 28-28

28.6 Basic Elements for Driver Development, 28-30
28.6.1 BSP Environment Variables. 28-30
28.6.2 Dependencies of DIivers. 28-31
Chapter 29

USB Boot and KITL

29.1 USB Bootand KITL Summary e 29-1
29.2 Supported Functionality 29-1
29.3 Hardware Operation vttt ettt e e et e 29-1
29.3.1 Conflicts with Other Peripherals and Catalog Items 29-2
29.4 Software OPeration.ottt e e e e 29-2
29.4.1 Software Architecture. 29-2
294.2 Source Code Layout e 29-3
2943 Power Management 29-3
294.4 Registry Settings.ot e 29-3
29.4.5 DMA SUPDPOIt . . . oo e 29-3
205 UNIt TeSt . o oottt 29-4
29.5.1 Building the USB Bootand KITL 29-4
29.5.2 Testing USB Boot and KITL on i.MX35 3-Stack 29-4

Windows Embedded CE 6.0 BSP Reference Manual

-Xvi Freescale Semiconductor

About This Book

This reference manual describes the requirements, implementation details, and testing for each module
included in the Freescale software development kit (SDK) for Microsoft® Windows® CE 6.0.

Audience

This document is intended for device driver developers, application developers, and software test
engineers who plan to use the product. This document is also intended for people who want to know more
about Freescale’s software development kit (SDK) for Microsoft Windows CE 6.0.

Suggested Reading

The Freescale manuals can be found at the Freescale Semiconductor, Inc. World Wide Web site listed on
the back of the front cover of this document. These manuals can be downloaded directly from the Web site,
or printed versions can be ordered. The Microsoft Platform Builder Help may be viewed from within the
Platform Builder application.

* 1.MX35 Applications Processor Reference Manual

» 1.MX35 3-Stack Release Notes for Windows Embedded CE 6.0

* 1.MX35 3-Stack User’s Guide for Windows Embedded CE 6.0

* Microsoft Platform Builder for Windows Embedded CE 6.0 Help

Conventions

This document uses the following notational conventions:

* courier indicates directory or file names and code examples.

* Bold indicates the menu options or buttons the user can select. Cascaded menu options are
delimited with the > symbol.

» Jtalic indicates a reference to another document.

Definitions, Acronyms, and Abbreviations

Table i contains acronyms and abbreviations used in this document.

Table i. Acronyms and Abbreviated Terms

Term Meaning
API Application programming interface

BSP Board support package

CSP Chip support package

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor

-Xvii

Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning
CSPI Configurable serial peripheral interface
D3DM Direct 3D Mobile
DHCP Dynamic host configuration protocol
DPTC Dynamic power and temperature control
DVFC Dynamic voltage and frequency control
DVFS Dynamic voltage and frequency scaling
EBOOT Ethernet bootloader
EVB Platform evaluation board
FAL Flash abstraction layer
FIR Fast infrared
FMD Flash media driver
GDI Graphics display interface
GPT General purpose timer
12c Inter-integrated circuit
IDE Integrated development environment
IST Interrupt service thread
IPU Image processing unit
KITL Kernel independent transport layer
LVDS Low-voltage differential signaling
MAC Media access control
MMC Multimedia cards
OAL OEM adaptation layer
OEM Original equipment manufacturer
oS Operating system
oTG On-the-go
PMIC Power management IC
PQOAL Production quality OEM adaptation layer
PWM Pulse-width modulator
SD Secure digital cards
SDC Synchronous display controller
SDHC Secure digital host controller
SDIO Secure digital I/O and combo cards
SDRAM Synchronous dynamic random access memory

Windows Embedded CE 6.0 BSP Reference Manual

-XViii

Freescale Semiconductor

Table i. Acronyms and Abbreviated Terms (continued)

Term Meaning
SDK Software development kit
SIM Subscriber identification module
SOC System on a chip
UART Universal asynchronous receiver transmitter
uSB Universal serial bus

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor -XiX

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor

Chapter 1
Introduction

This Freescale board support package (BSP) is based on the Microsoft Windows® Embedded CE 6.0
operating system. This BSP supports the following Freescale platform(s):

* 1.MX35 3-Stack Development System

This kit supports the Microsoft Windows Embedded CE 6.0 operating system, and requires the use of the
Microsoft Platform Builder, which is an integrated development environment (IDE) for building
customized embedded operating system designs. To view feature information, study the BSP Release
Notes.

NOTE
Use this guide in conjunction with the Microsoft Windows Platform Builder
Help (or the identical Platform Builder User Guide).

* To view the Platform Builder Help, click Help from within the Platform
Builder application.

* To view the online Windows Embedded CE 6.0 documentation, visit:
http://msdn2.microsoft.com/en-us/library/bb159115.aspx

1.1 Getting Started

For instructions on installing this software release, building, downloading and running the OS image on
the hardware board, refer to the appropriate User Guide.

1.2 Windows Embedded CE 6.0 Architecture

The Windows Embedded CE 6.0 architecture is a variation of the Windows operating system for
minimalistic computers and embedded systems. The architecture of the operating system and sub-systems
(for example, power management or DirectDraw) are described in several locations in the Help. Begin at
the following location in Help:

Welcome to Windows Embedded CE 6.0 > Windows Embedded CE Architecture

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 1-1

Introduction

Windows Embedded CE 6.0 BSP Reference Manual

1-2 Freescale Semiconductor

Chapter 2
Asynchronous Sample Rate Converter (ASRC) Driver

The Asynchronous Sample Rate Converter (ASRC) converts the sampling rate of as signal associated to
an input clock into a signal associated to a different output clock. The ASRC supports concurrent sample
rate conversion of up to 10 channels. The ASRC supports up to three sampling rate pairs, each pair should
only have even number of channels.

21 ASRC Driver Summary

Table 2-1 provides a summary of source code location, library dependencies and other BSP information.
Table 2-1. ASRC Driver Summary

Driver Attribute Definition
Target Platform iMX35-3DS-PDK1_7
Target SOC MX35_FSL_V2_PDK1_7
SOC Common Path .\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\ASRC
SOC Specific Path .\PLATFORM\COMMON\SRC\SOC\<Target SOC>\ASRC
Platform Specific Path .\PLATFORM\<Target Platform>SRC\DRIVERS\ASRC
Driver DLL asrc.dll
SDK Library asrcbase_common_fsl v2 PDK1_7.lib, asrc_common_fsl_v2 PDK1_7.lib,
asrchbase_<Target SOC>.lib
Catalog Item Third Party > BSP > Freescale <Target Platform>. ARMV4| > Device Drivers > ASRC
SYSGEN Dependency N/A
BSP Environment Variables |BSP_NOAUDIO=
BSP_ASRC=1

2.2 Supported Functionality
The ASRC driver enables the 3-Stack board to provide the following software and hardware support:

1. Supports standard stream interface for application usage.

2. For hardware limitation, supports only 24-bit wave format for both input and output. 24-bit audio
data packed in 32-bit with LSB aligned, bit0—bit 23 are valid and bit24-bit31 are ignored by
hardware.

3. Supports input sample rate range: 8K—96K
Supports output sample rate range: 32K—96K

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 2-1

Asynchronous Sample Rate Converter (ASRC) Driver

5. One conversion pair (with two channels) is available for application usage (only for stereo wave
conversion), other pairs are reserved for further audio driver usage.

2.3 Hardware Operation

ASRC is a 24-bit hardware module. Refer to the chapter on the Asynchronous Sample Rate Converter
(ASRC) in the hardware specification document for detailed operation and programming information.

2.3.1 Conflicts with Other Peripherals and Catalog Items

No conflicts.

2.4 Software Operation

The ASRC driver follows the Microsoft standard stream interface driver architecture.

241 Required Catalog Items
N/A

24.2 ASRC Registry Settings
N/A

243 DMA Support

2431 DMA Support

For the stream interface driver, two SDMA channels are allocated for data transfer: one for data transfer
from memory to ASRC input fifo, and the other for data transfer from ASRC output fifo to memory. For
both the input and output DMA, dual-buffer is used for chain operation.

244 Power Management

No power management is implemented yet in the ASRC driver.

2441 PowerUp

This function is not implemented

2.4.4.2 PowerDown

This function is not implemented

Windows Embedded CE 6.0 BSP Reference Manual

2-2 Freescale Semiconductor

Asynchronous Sample Rate Converter (ASRC) Driver

2443 IOCTL_POWER_CAPABILITIES
N/A

2444 10CTL_POWER_GET
N/A

2445 IOCTL_POWER_SET
N/A

2.5 Unit Test

Because the supported wave format by ASRC is different from general wave file, the wave file used for
ASRC test must be converted to the specified format (24-bit packed in 32-bit package, bit0O—bit23 valid).
The ASRC driver function can be tested by converting the wave file through the ASRC stream interface,
and the output wave file can be verified by stereo audio playback function.

2.5.1 Building the Unit Tests

The source code for the ASRC test case be found under the directory:
\WINCE600\SUPPORT PDK1l 7\TEST\ASRC\

And there are three sub-directory in this directory:

\WINCE600\SUPPORT_PDK1_7\TEST\ASRC\FILE_CONVERT
\WINCE600\SUPPORT PDK1_7\TEST\ASRC\ASRC_TEST
\WINCE600\SUPPORT PDK1 7\TEST\ASRC\ASRC PLAYER

To build each application, select “Open Release Directory in Build Window” in the IDE menu, enter the
source code directory in the command prompt window, and type “build -¢” to build the program.

2.5.2 Running the Unit Tests

Three simple applications are available for ASRC unit test: file convert.exe, asrc_test.exe,
asrc_player.exe.

* File convert.exe can be used to convert general 16-bit wave file to the specific 24-bit wave file
supported by ASRC.

Example: file convert temp\input 1l6bit.wav temp\output 24bit.wav
* Asrc test.exe is used for the ASRC function test.
Example: asrc_test temp\input.wav temp\output.wav 48000

In this case, the test program reads data from the file input.wav, sends the audio data to ASRC
module, reads back the data processed by ASRC and writes the output data to file output.wav. The
sample rate is converted to 48K.

» Asrc_player is used for output wave file verification. This application directly plays back 24-bit
wave file through stereo audio codec.

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 2-3

Asynchronous Sample Rate Converter (ASRC) Driver

2.6

The API follows the standard stream interface API. This section lists the SDK function for ASRC
application interface.

2.6.1

Exanqﬂeiasrc_player temp\output.wav

NOTE

These three applications are mainly used for simple function test and API
demo usage. Users might encounter wave file format related failures (like
wave format chunk length and fact chunk is not well handled). Editing the
source code can resolve these problems.

ASRC Driver API Reference

ASRC SDK Functions

HANDLE ASRCOpenHandle (DWORD* pPairIndex) ;

BOOL ASRCCloseHandle (HANDLE hASRC, DWORD dwPairIndex) ;

BOOL ASRCOpenPair (HANDLE hASRC, PASRC OPEN_ PARAM pOpenParam) ;
BOOL ASRCGetCapability (HANDLE hASRC, PASRC CAP PARAM pCapParam) ;
BOOL ASRCClosePair (HANDLE hASRC, DWORD dwPairIndex);

BOOL ASRCConfig (HANDLE hASRC, PASRC CONFIG PARAM pConfigParam);
BOOL ASRCAddInputBuffer (HANDLE hASRC, PASRCHDR pHdrIn);

BOOL ASRCAddOutputBuffer (HANDLE hASRC, PASRCHDR pHdrOut) ;

BOOL ASRCStart (HANDLE hASRC, DWORD dwPairIndex);

BOOL ASRCStop (HANDLE hASRC, DWORD dwPairIndex) ;

Important note for using the SDK functions:

2.6.2

Both input and output buffer length (number of bytes) must be a multiple of the internal ASRC
DMA buffer size (which can be attained by ASRCGetCapability,

ASRC CAP_PARAM.dwlnputBlockSize and ASRC CAP PARAM.dwOutputBlockSize), or
driver failure may occur.

Do not call ASRCStop until the entire wave file has been processed. Because the ASRC internal
memory might not be cleared, stopping the ASRC and re-starting it introduces noise.

The ASRC hardware module continues procession after it is started. So input buffer under-run
causes noise and more output data numbers than expected.

Example for Using SDK Functions

Below is some sample code for using the SDK functions, refer to the demo test application and design
document for more details.

#include “asrc_sdk.h”
// request the asrc pair first
g_hASRC = ASRCOpenHandle (&g _dwPairIndex) ;

//qurery the capability

ASRCGetCapability (g hASRC, &capParam) ;

// the input buffer size should be multiple of capParam.dwInputBlockSize, same for
output buffer.

Windows Embedded CE 6.0 BSP Reference Manual

2-4

Freescale Semiconductor

Asynchronous Sample Rate Converter (ASRC) Driver

// open the pair for operation

openParam. inputChnNum = 2; // for application usage, set this value as 2 now
openParam.outputChnNum = 2; //for application usage, set this value as 2 now
openParam.pairIndex = (ASRC PAIR INDEX)g dwPairIndex;
openParam.hEventInputDone = g hInputEvent;

openParam.hEventOutputDone = g hOutputEvent;

ASRCOpenPair (g hASRC, &openParam) ;

// config the pair for conversion

configParam.clkMode = ASRC _CLK NONE SRC;
configParam.inputBitClkRate = g dwInputSampleRate*2*24;
configParam.outputBitClkRate= g dwOutputSampleRate*2*24;
configParam.inputSampleRate = g dwInputSampleRate;
configParam.outputSampleRate = g dwOutputSampleRate;
ASRCConfig (g _hASRC, &configParam) ;

//add input buffers
for (1i=0; i<INPUT_ BUF NUM;i++) {
ASRCAddInputBuffer (g hASRC, &g hdrInput[i]);

//add output buffers
for (1=0;i<OUTPUT BUF NUM;i++) {
ASRCAddOutputBuffer (g hASRC, &g_hdrOutput[i]);
}
//start conversion
ASRCStart (g hASRC,g dwPairIndex) ;
// wait for the input event
WaitForSingleObject (g hInputEvent, INFINITE);
// handle the input buffer here
//wait for the output event
WaitForSingleObject (g _hOutputEvent, INFINITE);
//handle the output buffer here
//when all the input data is processed, and output data has been received as expected,
stop it
ASRCStop (g hASRC,g dwPairIndex);
// close pair
ASRCClosePair (g hASRC,g dwPairIndex);
// release the pair
ASRCCloseHandle (g hASRC, g dwPairIndex);

2.6.3 Memory->ASRC->Memory->SSI| Mode

In the general mode, ASRC is used for Memory->ASRC->Memory audio data transfer, which means the
user data from memory buffer (audio file) is send to ASRC, converted and then put back into memory
(audio file). In this mode, ASRC will chose the fast working clock for transfer. But in quite a lot application
cases, users may want to send the data converted by asrc directly to the waveform audio device for
playback instead of store them in files. To do this ,users need to use the Memory->ASRC->Memory->SSI
mode. In this mode ,the ASRC working clock is synchronous to the wave device clock, so during the same
interval, the audio data produced by ASRC can be just comsumed by wave device, and it will be easy for
users to manager the data buffers.

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 2-5

Asynchronous Sample Rate Converter (ASRC) Driver

To use this mode, users need to set different clkMode while config converstion pair, and outputSampleRate
must be set correctly according to the wave device:

configParam.clkMode = ASRC CLK ONE SRC OUTPUT AUTO SEL;
configParam.outputSampleRate = g dwOutputSampleRate;

ASRCConfig (g _hASRC, &configParam) ;

In this mode, clk Mode is set as ASRC CLK ONE SRC OUTPUT AUTO SEL, while in general mode it
is set as ASRC_CLK_NONE_SRC. The others are same.

Also, another two SDK functions are provided to support this working mode:

BOOL ASRCSuspend (HANDLE hASRC, DWORD dwPairIndex) ;
BOOL ASRCResume (HANDLE hASRC, DWORD dwPairIndex);

The suspend function can be used to halt the conversion when there is the risk that the buffers
used to keep the data produced by ASRC might be overrunned. And the resume function is then
called to continue the converstion when the buffer level becomes normal.

Windows Embedded CE 6.0 BSP Reference Manual

2-6 Freescale Semiconductor

Chapter 3
ATA/ATAPI Driver

ATA/ATAPI driver in WinCE 6.0 is a block driver, used as the lower layer for File Systems and USB mass
storage, for example. It is constructed as a stream interface driver that exposes I/O control codes
(IOCTL_DISK XXX, DISK IOCTL XXX, IOCTL_CDROM XXX, IOCTL DVD XXX). The file
system uses these I/O control codes to access the ATA/ATAPI devices.

ATAPI driver uses the ATA bus and interface to send command packets to ATAPI device.

3.1 ATA/ATAPI Driver Summary

Table 3-1 provides a summary of source code location, library dependencies and other BSP information.

Table 3-1. ATA/ATAPI Driver Summary

Driver Attribute Definition
Target Platform iMX35-3DS-PDK1_7
Target SOC MX35_FSL_V2_PDK1_7

SOC Common Path .\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\ATA

SOC Specific Path .\PLATFORM\COMMON\SRC\SOC\<Target SOC>\ATA

Platform Specific Path | .\PLATFORM\<Target Platform>\SRC\DRIVERS\BLOCK\ATA (ATA driver)
.\PLATFORM\<Target Platform>\SRC\DRIVERS\BLOCK\ATAPI (ATAPI driver)

Driver DLL ata.dll (ATA driver)
mxatapi.dil (ATAPI driver)

SDK Library N/A

Catalog Item Third Party > BSP > Freescale i.MX35 3DS PDK1_7: ARMV4I > Storage Drivers > ATA (ATA
driver)
Third Party > BSP > Freescale i.MX35 3DS PDK1_7: ARMV4I > Storage Drivers > ATAPI (ATAPI
driver)

SYSGEN Dependency | SYSGEN_ATADISK,SYSGEN_STOREMGR_CPL,SYSGEN_MSPART,SYSGEN_FATFS,SYSG
EN_EXFAT (ATA driver)
SYSGEN_UDFS (ATAPI driver)

BSP Environment Variable | BSP_NOATA= (for ATA driver)
BSP_NOATAPI= (for ATAPI driver)

3.2 Supported Functionality

The ATA driver enables the 3-Stack board to provide the following software and hardware support:

1. Provides standard Microsoft Block Storage Device API, including disk information management,
formatting, block data read/write with full scatter-gather buffer support

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 3-1

ATA/ATAPI Driver

Supports two power management modes, full on and full off

bl

Driver reuse buffers allocated by upper layer by using DMA scatter/gather list to improve
performance by reducing data copies

Supports FAT file system
Supports exFAT file system
Supports TFAT file system

Supports standard bus timing mode for UDMA mode 5 (optional support other modes such as PIO
modes 0-4, MDMA modes 0-2, and UDMA modes 0-4)

8. Supports full sustained (media) data throughput capacity of Hitachi TravelStar C4K40 (or
equivalent) at UDMA mode 5

N,k

NOTE
UDMAS5 mode requires 80MHz bus clock or above.

This mode can apply to .MX35 (133MHz bus clock).
The ATAPI driver enables the 3-Stack board to provide the following software and hardware support:

1. Provides standard Microsoft Block Storage Device API, including disk information management,
block data read with full scatter-gather buffer support

Supports two power management modes, full on and full off
3. Supports standard bus timing mode for PIO mode 0-4 (currently DMA mode is not supported).

4. Supports full sustained (media) data throughput capacity of SAMSUNG DVD-ROM DRIVE
SH-D162D(TS-H352D) (or equivalent) at PIO mode 4.

3.3 Hardware Operation

The i.MX SOC contains an on-chip ATA controller. Refer to the chapter on the ATA in the hardware
specification document for detailed operation and programming information. Data transfers on the ATA
bus can take place through:

* CPU programmed data transfers via ATA controller registers. (Programmed I/O (PIO) modes
modes 0-4)

* Multi-word DMA (MDMA modes 0-2)

+ Ultra DMA (UDMA modes 0-5)
Within the types of ATA-bus data transfer (PIO or xDMA), the various modes (0-7) refer only to specified
combinations of timing parameters, as supported by industry standard hardware. The ATA DMA modes

transport data between the ATA peripheral (disk) and the system bus, via the i.MX SOC ATA peripheral
data FIFO.

Windows Embedded CE 6.0 BSP Reference Manual

3-2 Freescale Semiconductor

ATA/ATAPI Driver

|
| Host DMA Interrupt ARM CPU
| Controller >
| Memory Management
| 1 Unit
System
Memory | System Bus i *
] v
| ! ¢ Transaction
| ATA Data ATA Control Parameters,
| FIFO . Registers PIO data,
| Interrupts.
| 4 ATA DMA A
| ATA Bus " MDMA UDMA Controller
| il
| -t

Figure 3-1. ATA Hardware Block Diagram

The 1.MX SOC also contains a Host DMA controller which acts as a third-party bus mastering DMA, for
transporting data between the ATA data FIFO and system memory. Host DMA controller support is built
in to the ATA driver, and is automatically configured and used when UDMA or MDMA modes are selected
for data transport on the ATA bus. The default block/sector size is 512 bytes. With these sector sizes, far
greater efficiency in processor/bus usage is gained by setting UDMA or MDMA modes, instead of PIO
modes. The PIO modes are provided for functional compatibility with legacy hardware which may not
support fastest current data rates.

The appropriate ATA-specific mode (PIO, MDMA or UDMA) must be selected based on the capabilities
of the specific attached ATA peripheral.

NOTE

For .MX35, the DMA controller can be Smart DMA controller (SDMA) or
Advanced DMA controller (ADMA).

3.3.1 Conflicts with Other Peripherals and Catalog Options

3.3.11 Conflicts with SoC Peripherals

3.3.1.11 i.MX35 Peripheral Conflicts

» The ATA driver conflicts with ATAPI driver and can not be used together.

* When the ATA driver works in UDMAS by ADMA controller in MX35 TOI, screen flickers due
to memory bus bandwidth.

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 3-3

ATA/ATAPI Driver

3.31.2 Conflicts with 3-Stack Peripherals

3.3.1.21 i.MX35 3-Stack Peripheral Conflicts
An ATAPI daughter board must be used to connect to CD/DVD ATAPI device.

3.3.2 Cabling

The ATA/ATAPI specification requires an 80-conductor cable when used in UDMA modes 3 or greater,
otherwise read/write failures may occur. This requirement may be relaxed for cables shorter than the
maximum defined in the specification.

3.4 Software Operation

3.4.1 Application/User Interface to ATA/ATAPI drives

The ATA/ATAPI device exports a standard streams interface to the Windows File System.
Application-level access to ATA/ATAPI disks is via the Windows File System, using functions such as
CreateFile() and CloseHandle().

The File System, or user software which requires block device access to the ATA/ATAPI, does so through
the standard Windows CE Block Device IOCTLs. These provide functions to acquire disk information and
to read and write blocks (disk sectors) of data.

3.4.2 ATA/ATAPI Driver Configuration

The driver is configured into the BSP build by check the catalog item listed in Table 3-1. This defines the
environment variable/configuration option: BSP__ NOATA for ATA driver, BSP. NOATAPI for ATAPI
driver. Configuration for the ATA/ATAPI is then provided through registry settings imported from
platform.reg. These settings can be modified to select timing and transfer mode, and if necessary the device
prefix and index.

3.4.21 Transfer Mode and Timing

The mode by which data is transported on the ATA bus (TransferMode) is configured by a registry setting
defined in Section 3.4.4, “Registry Settings”.

3.4.211 i.MX35 Timing

The ATA bus timings are based on the AHB bus clock, as defined in the hardware reference manual. The
ATA/ATAPI driver requires a clock period of 7.5 ns (133 MHz).

3.4.2.2 Prefix and Index
The default device prefix is “DSK”.

Windows Embedded CE 6.0 BSP Reference Manual

3-4 Freescale Semiconductor

ATA/ATAPI Driver

When no Index is configured for the ATA/ATAPI block device, the bus enumerator assigns an index
according to the order of block device loading. When removable storage is attached to USB host ports (as
mass storage class), or when RAMDISK is included, the index assigned to these other block devices can
influence any Index automatically assigned by the bus enumerator.

3.4.2.3 IOMUX and Pinout

The internal ATA signals can be multiplexed to a choice of pins on IC, as described for the IOMUX in the
hardware reference manual.

3424 Defaults

3.4.241 i.MX35 Defaults

The following defaults are selected by the default platform.reg file supplied for the build
* The default mode for the ATA driver is transfer mode UDMA mode 5 by ADMA controller.
* The default mode for the ATAPI driver is transfer mode PIO mode 0.

3.4.3 Power Management

The ATA/ATAPI supports two power management modes, ON (D0) and OFF (D4). These modes are
managed via the standard Windows Power Manager. Power Manager uses IOCTL POWER_SET to
switch the disk power state, according to inactivity settings configured in Power Manager. As for standard
block drivers, PowerUp and PowerDown functions are called by the Device Manager.

The primary method for limiting power consumption in the ATA/ATAPI module is to gate off all clocks to
the module when those clocks are not needed. This is accomplished through the
DDKClockSetGatingMode function call. The clock is turned on during initialization process and the clock
is turned off after initialization is completed. Data transfer operations are handled in DSK_IOCTL function
to process the IOCTL calls from the File System. The ATA/ATAPI driver turns ON the clock and enables
the ATA/ATAPI module before processing any data transfer. After the block of data has been processed,
the ATA/ATAPI module is disabled and the clock is turned OFF.

3.4.3.1 PowerUp

This function called by Device Manager sets a flag to indicate power is up.

3.4.3.2 PowerDown

This function called by Device Manager ensures volatile data is stored in RAM and sets a flag to indicate
power is down.

3.43.3 I0CTL_POWER_SET

This IOCTL handles the request to change disk power state (DO or D4), called by Power Manager (or
SetDevicePower() API).

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 3-5

ATA/ATAPI Driver

3.44 Registry Settings
The ATA driver settings are taken from platform.reg, which can be customized for each particular build.
These registry values are located under the registry key:

[HKEY LOCAL MACHINE\Drivers\BuiltIn\ATA]

The values under that registry key should be defined in platform.reg. These can be qualified with the
BSP_ NOATA system variable for configurable catalog item support.

Table 3-2. ATA Driver Registry Setting Values

Value Type Content Description
Dl sz ata.dll | Driver dynamic link library
IClass sz "{AAETEDDA-E575-4252-9D6B-4195D48BB865}" GUID for a power-manageable block device
TransferMode dword 08 PIO mode 0

09 P10 mode 1

oC P1O mode 4

20 MDMA mode 0

21 MDMA mode 1

22 MDMA mode 2

40 UDMA mode 0

45 UDMA mode 5

InterruptDriven dword 01 enable interrupt driven 1/O use for PIO or MDMA/UDMA modes
(00) (disable interrupt; not used normally)
DMA dword 00 disable DMA (always disable for PIO mode)
01 enable DMA (always enable for MDMA or UDMA modes)
IORDYEnable dword 01 enable Host IORDY for PIO mode 3 and 4

As indicated in the above table, the following settings should be combined:

For PIO modes:

"InterruptDriven"=dword:01 ; Ol-enable interrupt driven I/0, 00-disable
"DMA"=dword:00 ; disable DMA

"TransferMode"=dword:0c ; 08-PIO mode 0, ..., O0C-PIO mode 4
"IORDYEnable"=dword:01 ; enable Host IORDY for PIO mode 3, 4

For MWDMA modes:

"InterruptDriven"=dword:01 ; enable interrupt driven I/0

"DMA"=dword:01 ; enable DMA

"TransferMode"=dword: 20 ; 20-MWDMA mode 0, ..., 22-MWDMA mode 2
"TITORDYEnable"=dword:01 ; enable Host IORDY for PIO mode 3, 4

Windows Embedded CE 6.0 BSP Reference Manual

3-6 Freescale Semiconductor

ATA/ATAPI Driver

For UDMA modes:

"InterruptDriven"=dword:01 ;
"DMA"=dword:01 ;
"TransferMode"=dword:43 ;
"IORDYEnable"=dword:01 ;

enable interrupt driven I/0

enable DMA

40-UDMA mode 0, ..., 45-UDMA mode 5
enable Host IORDY for PIO mode 3, 4

Standard registry entries also to be included for the ATA device under the above key are shown in
Table 3-3.

Table 3-3. ATA Driver Registry Setting Values

Value Type Content Description
Prefix sz “DSK” Device identifier (combined with Index for DSK1 for example)
Index dword 1 Instance of ATA drive (if not configured in the registry, autoumatically
assigned when driver loads)
Order dword 10 Early, to allow file system loading
DoubleBufferSize dword 10000 128 sectors
DrgDataBlockSize dword 200 Each data request is one sector, always 512 bytes
WriteCache dword 01 disk internal cache is enabled within drive
LookAhead dword 01 disk read-ahead to internal is enabled within drive
Deviceld dword 00 primary device ID
HDProfile sz “HDProfile” | Storage Manager profile to be used in GetDevicelnfo (see below)

In addition to these values, the ATA makes use of the HDProfile information from the StorageManager
registry keys. Default/sample values are as below:

[HKEY LOCAL MACHINE\System\StorageManager\Profiles\HDProfile]
"Name"="ATA Hard Disk Drive"
"Folder"="Hard Disk"

[HKEY LOCAL MACHINE\System\StorageManager\Profiles\HDProfile\FATFS]
"EnableCacheWarm"=dword: 00000000

3.441 i.MX35 Registry Settings
There are more registry settings for ATA driver SDMA/ADMA selection and for ATAPI driver:

34411 ATA Driver SDMA/ADMA Selection

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\ATA]
Table 3-4. i.MX35 ATA Registry Settings

Value Type Content Description
DMAMode dword 0 SDMA
1 ADMA

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor

ATA/ATAPI Driver

3.44.1.2 ATAPI Driver

The ATAPI driver settings are taken from platform.reg, which can be customized for each particular build.
These registry values are located under the registry key:

[HKEY LOCAL MACHINE\Drivers\BuiltIn\ATAPI]

The values under that registry key should be defined in platform.reg. These can be qualified with the
BSP_NOATAPI system variable for configurable catalog item support.

Table 3-5. i.MX35 ATAPI Registry Settings

Value Type Content Description
DIl sz mxatapi.dil | Driver dynamic link library
IClass sz "{AAE7TEDDA-E575-4252-9D6B-4195D48BB865}"
GUID for a power-manageable block device
TransferMode dword 08 P1O mode 0
09 P10 mode 1
0oC PIO mode 4
InterruptDriven dword 01 enable interrupt driven 1/O use for PIO or MDMA/UDMA modes
(disable interrupt; not used normally)
(00)
IORDYEnable dword 01 enable Host IORDY for PIO mode 3 and 4

As indicated in the above table, the following settings should be combined for PIO modes:

"InterruptDriven"=dword:01 ; Ol-enable interrupt driven I/0, 00-disable
"TransferMode"=dword:0c ; 08-PIO mode 0, ..., 0C-PIO mode 4
"TIORDYEnable"=dword:01 ; enable Host IORDY for PIO mode 3, 4

Standard registry entries also to be included for the ATAPI device under the above key as shown in
Table 3-6.

Table 3-6. ATAPI Registry Settings

Value Type Content Description
Prefix sz “DSK” Device identifier (combined with Index for DSK1 for example)
Index dword 1 Instance of ATAPI drive (if not configured in the registry, autoumatically
assigned when driver loads)
Order dword 10 Early, to allow file system loading
DoubleBufferSize dword 10000 128 sectors
DrgDataBlockSize dword 200 Each data request is one sector, always 512 bytes
WriteCache dword 01 disk internal cache is enabled within drive
LookAhead dword 01 disk read-ahead to internal is enabled within drive
Deviceld dword 00 primary device ID
CDProfile sz “CDProfile” | Storage Manager profile to be used in GetDevicelnfo (see below)

Windows Embedded CE 6.0 BSP Reference Manual

3-8 Freescale Semiconductor

ATA/ATAPI Driver

In addition to these values, the ATAPI makes use of the CDProfile information from the StorageManager
registry keys. Default/sample values are as below:

[HKEY LOCAL MACHINE\System\StorageManager\Profiles\CDProfile]
"Name"="IDE CDROM/DVD Drive"
"Folder"="CDROM Drive"

[HKEY LOCAL MACHINE\System\StorageManager\Profiles\CDProfile\CDRom]
"UseLegacyReadIOCTL"=dword:1

3.4.5 DMA Support

ATA driver supports DMA mode and non-DMA mode of transfer. The driver defaults to DMA mode of
transfer. ATA supports three transfer-types: UDMA, MDMA and PIO mode. PIO mode works in
non-DMA mode of operation while other modes work in DMA mode. To change the mode of transfer,
change the value of Transfermode from the registry. When ATA driver operates by host DMA controller,
it always uses the scatter gather method.

The driver does not allocate or manage DMA buffers internally. All buffers are allocated and managed by
the upper layers, the details of which are given in the request submitted to the driver. For every request
submitted to it, the driver attempts to build a DMA Scatter Gather Buffer Descriptor list for the buffer
passed to it by the upper layer.

For the driver to attempt to build the Scatter Gather DMA Buffer Descriptors, the upper layer should
ensure that the buffer meets the following criteria.

+ Start of the buffer should be a cache-line (32 byte) aligned address.

* Number of bytes to transfer should be cache-line (32 byte) aligned.

3.4.51 i.MX35 DMA Support

* For the ATA driver, the Host DMA controller can be SDMA controller or ADMA controller.
* For the ATAPI driver, DMA mode is not supported.

3.5 Unit Test

The ATA driver is tested using the Storage Device test cases included as part of the Windows Embedded
CE Test Kit (CETK). There are no custom CETK test cases for ATA driver. The Storage Device test cases
used to test ATA driver include:

» File System Driver Test cases
» Storage Device Block Driver API Test cases
» Storage Device Block Driver Read/Write Test cases
» Storage Device Block Driver Benchmark Test cases
» Storage Device Block Driver Performance Test cases
The ATAPI driver is tested using the Storage Device test cases included as part of the Windows Embedded

CE Test Kit (CETK). There are no custom CETK test cases for ATAPI driver. The Storage Device test
cases used to test ATAPI driver include:

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 3-9

ATA/ATAPI Driver

e Audio CD Driver Test cases
« CD/DVD-ROM Block Driver Test cases
« CD/DVD-ROM File System Driver Test cases

3.51 Unit

Test Hardware

Table 3-7 lists the required hardware to run the ATA driver unit tests.

Table 3-7. ATA Driver Hardware Requirements

Requirement Description

i.MX SOC and attached HITACHI hard disk C4K40. | Other drives supporting up to UDMA mode 3 may be used.

Table 3-8 lists the required hardware to run the ATAPI driver unit tests.

Table 3-8. ATAPI Driver Hardware Requirements

Requirement Description

i.MX SOC and attached SAMSUNG DVD-ROM DRIVE Other drives supporting up to PIO mode 4 may be used.
SH-D162D(TS-H352D).

3.5.2 Unit

Test Software

Table 3-9 lists the required software to run the Storage Device Tests.

Table 3-9. Software Requirements

Requirement

Description

Tux.exe Tux test harness, which is needed for executing the test.
Kato.dll Kato logging engine, which is required for logging test data.
Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device and the

development workstation.

Table 3-10. ATA Driver Software Requirements

Requirement

Description

fsdtst.dll Test .dll file used to perform File System Driver Test cases.
disktest.dll Test .dll file used to perform Storage Device Block Driver API Test cases.

rw_all.dll Test .dll file used to perform Storage Device Block Driver Benchmark Test cases.
rwtest.dll Test .dll for various read/write options, including multi-threading and various block sizes.

Disktest_perf.dll

Test .dll file used to perform Storage Device Block Driver Performance Test cases.

Windows Embedded CE 6.0 BSP Reference Manual

3-10

Freescale Semiconductor

ATA/ATAPI Driver

Table 3-11. ATAPI Driver Software Requirements

Requirement Description
cddatest.dll Test .dll file used to perform Audio CD Driver Test cases.
cdromtest.dll Test .dll file used to perform CD/DVD-ROM Block Driver Test cases.
udftest.dll Test .dll file used to perform CD/DVD-ROM File System Driver Test cases.

3.5.3 Building the Storage Device Tests

The Storage Device Tests come pre-built as part of the CETK. No steps are required to build these tests.
All the test .dll files can be found alongside the other required CETK files in the following location:

\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4I

3.54 Running the Storage Device Tests

The tests can be launched from command line or CE Target Control window in Platform Builder.

3.5.4.1 ATA Driver

These CETK tests destroy any information residing on the hard disk.

The command line for running the File System Driver Test is:
tux -o -d fsdtst -x 1001-1010,5001-5031 -c "-p HDProfile -zorch”

This performs file system tests which cover all required File System API functions. Excluded are those
tests which manipulate disk partitions.

The command line option HDProfile refers to the registry setting used to establish storage device profile
information to the Storage Manager:

[HKEY LOCAL MACHINE\System\StorageManager\Profiles\HDProfile]
"Name"="ATA Hard Disk Drive"
"Folder"="Hard Disk"

NOTE

Format and create partition on disk before test. The command line option
“-zorch” is case sensitive (help message within the test .dll is not correct)
and is used to confirm over-writing of all information on the hard disk. Test
cases 5019, 5022 can be safely skipped.

The command line for running the Storage Device Block Driver API Test is:

tux -o -d disktest -c¢ "-p HDProfile -zorch -sectors 65536"

NOTE

The free program memory to be adjusted to be larger than 64 Mbytes in
control panel, CETK cases 4021 can be safely skipped.

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 3-11

ATA/ATAPI Driver

The command line for running the Storage Device Block Driver Read/Write Test is:

tux -o -d rwtest -c "-p HDProfile -zorch"

NOTE

Do not include NANDFlash driver or SD driver in the image, the CETK
open DSK1 as default to test which may be NANDFlash or SD card instead
of hard disk.

The command line for running the Storage Device Block Driver Performance Test is:

tux -o -d disktest perf -c "-profile HDProfile -zorch"

The command line for running the Storage Device Block Benchmark Test is:

tux -o -d rw_all -x 1006 —-c "-p HDProfile -zorch"

NOTE

Do not include NANDFlash driver or SD driver in the image, the CETK
open DSK1 as default to test which may be NANDFlash or SD card instead
of hard disk.

This includes only the benchmark test for 128 contiguous sectors. The test reads and writes all sectors of
the drive in 128 block (64 kByte) chunks. When drive read-ahead is enabled, this allows the drive to
provide maximum sustained data rate from the media, to ensure ATA driver supports the same. It is not
necessary for all drive sectors to be tested, but the pre-compiled test does not have options to limit the
portion tested, and all components are not publicly available for test customization. The test takes
approximately four hours to execute on a 40 Gbyte drive. Tests using smaller contiguous chunks take even
longer, and are not necessary for driver characterization.

For detailed information on the ATA Storage Device CETK test cases, refer to:

* Windows Embedded CE Test Kit > CETK Tests and Test Tools > CETK Tests > Storage
Device Tests > File System Driver Test

* Windows Embedded CE Test Kit > CETK Tests and Test Tools > CETK Tests > Storage
Device Tests > Storage Device Block Driver API Test

* Windows Embedded CE Test Kit > CETK Tests and Test Tools > CETK Tests > Storage
Device Tests > Storage Device Block Driver Read/Write Test

* Windows Embedded CE Test Kit > CETK Tests and Test Tools > CETK Tests > Storage
Device Tests > Storage Device Block Benchmark Test

3.5.4.2 ATAPI Driver

The command line for running the Audio CD Driver Test is:

tux -o -d cddatest
Assesses the functionality of a CD-ROM block driver that supports the audio CD format

NOTE
Put audio CD into the CDROM drive

Windows Embedded CE 6.0 BSP Reference Manual

3-12 Freescale Semiconductor

ATA/ATAPI Driver

The command line for running the CD/DVD-ROM Block Driver Test is:
tux -o -d cdromtest
NOTE

A complete image of the CD or DVD media needs to be used for testing. The
image is stored on the development workstation in a file named
Cdsector.dat. To create Cdsector.dat for media in the CD-ROM drive or
CD/DVD-ROM drive, run test case 6101.

The command line for running the CD/DVD-ROM File System Driver Test is:
tux -o -d udftest
For detailed information on the ATAPI Storage Device CETK test cases, refer to:

¢ Windows Embedded CE Test Kit > CETK Tests and Test Tools > CETK Tests > Other Tests
> Audio CD Driver Test

* Windows Embedded CE Test Kit > CETK Tests and Test Tools > CETK Tests > Other Tests
> CD/DVD-ROM Block Driver Test

e Windows Embedded CE Test Kit > CETK Tests and Test Tools > CETK Tests > Other Tests
> CD/DVD-ROM File System Driver Test

3.6 Basic Elements for Driver Development
This chapter provides details of the basic elements for driver development in the <TGTPLAT> BSP.

3.6.1 BSP Environment Variables

Table 3-12. BSP Environment Variables

Name Definition
BSP_NOATA Set to disable ATA device driver
BSP_NOATAPI Set to disable ATAPI device driver

3.6.2 Mutual Exclusive Drivers

3.6.2.1 i.MX35 Mutual Exclusive Drivers
The ATA driver conflicts with ATAPI driver and they cannot be used together.

3.6.3 Dependencies of Drivers

Table 3-13 summarizes the Microsoft defined environment variables used in the BSP.

Table 3-13. Microsoft Defined Environment Variables

Names Definition

SYSGEN_STOREMGR Set to support storage manager

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 3-13

ATA/ATAPI Driver

Table 3-13. Microsoft Defined Environment Variables

SYSGEN_STOREMGR_CPL Set to support storage manager in control panel

SYSGEN_MSPART Set to support partition driver.

Table 3-14. ATA Driver Environment Variables

Names Definition
SYSGEN_FATFS Set to support FAT32 file system
SYSGEN_EXFAT Set to support EXFAT file system

Table 3-15. ATAPI Driver Environment Variables

Names Definition

SYSGEN_UDFS Set to support CDFS/UDFS file system

3.7 Block Device API Reference

The primary interface to the ATA/ATAPI block device is through the standard Windows CE Block Device
IOCTLs as described in the following sections. Application-level access to ATA/ATAPI disks should be
through the Windows File System.

For reverse compatibility deprecated DISK _IOCTL* are also supported but not documented here. See
CE 6.0 Help for further details.

The driver also supports the standard XXX Init, XXX Deinit, XXX Open and XXX Close routines, as
used by Device Manager and the bus enumerator to load the driver. When the registry settings for
ATA/ATAPI are correct, these functions are handled automatically, and need no further documentation
here.

3.71 IOCTL_DISK_DEVICE_INFO

This DeviceloControl request returns storage information to block device drivers.

Parameters

IpInBuffer [in] Pointer to a STORAGEDEVICEINFO structure.

nInBufferSize [in] Specifies the size of the STORAGEDEVICEINFO structure.
IpBytesReturned [out] Pointer to a DWORD to receive the total number of bytes returned.

3.7.2 IOCTL_DISK_GET_STORAGEID

This DeviceloControl request returns the current STORAGE IDENTIFICATION structure for a particular
storage device.

Parameters

Windows Embedded CE 6.0 BSP Reference Manual

3-14 Freescale Semiconductor

ATA/ATAPI Driver

hDevice [in] Handle to the block device storage volume, which can be obtained by opening
the FAT volume by its file system entry. The following code example shows how
to open a PC Card storage volume.

hVolume = CreateFile(TEXT("\Storage Card\Vol:"),
GENERIC READ|GENERIC WRITE, 0, NULL, OPEN_EXISTING, 0,

NULL);
IpOutBuffer [out] Set to the address of an allocated STORAGE IDENTIFICATION structure.
This buffer receives the storage identifier data when the loControl call returns
nOutBufferSize [out] Set to the size of the STORAGE IDENTIFICATION structure and also

additional memory for the identifiers. For Advanced Technology Attachment
(ATA) disk devices, the identifiers consist of 20 bytes for a manufacturer identifier
string, and also 10 bytes for the serial number of the disk.

IpBytesReturned [out] Pointer to a DWORD to receive the total number of bytes returned.

3.7.3 IOCTL_DISK_GETINFO

This DeviceloControl request returns notifies the block device drivers to return disk information.

Parameters

IpOutBufter [out] Pointer to a DISK_INFO structure.

nOutBufferSize [out] Specifies the size of the DISK INFO structure.

IpBytesReturned [out] Pointer to a DWORD to receive the total number of bytes returned.

3.74 IOCTL_DISK_GETNAME

This DeviceloControl request services the request from the FAT file system for the name of the folder that
determines how users access the block device. If the driver does not supply a name, the FAT file system
uses the default name passed to it by the file system.

Parameters
IpOutBuffer [out] Specifies a buffer allocated by the file system driver. The device driver fills
this buffer with the folder name. The folder name must be a Unicode string.
nOutBufferSize [out] Specifies the size of IpOutBuffer. Always set to MAX PATH where
MAX PATH includes the terminating NULL character.
IpBytesReturned [out] Set by the device driver to the length of the returned string and also the

terminating NULL character.

3.7.5 IOCTL_DISK_READ

This DeviceloControl request services FAT file system requests to read data from the block device.

Parameters
IpInBuffer [in] Pointer to a SG_REQ structure.

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 3-15

ATA/ATAPI Driver

nInBufferSize [in] Specifies the size of the SG_REQ structure.

IpBytesReturned [out] Pointer to a DWORD to receive total bytes returned. Set to NULL if you do
not need to return this value.

3.7.6 IOCTL_DISK_SETINFO

This DeviceloControl request services FAT file system requests to set disk information.

Parameters

IpInBuffer [in] Pointer to a DISK INFO structure.

nInBufferSize [in] Specifies the size of DISK INFO.

IpBytesReturned [out] Pointer to a DWORD to receive total bytes returned.

3.7.7 IOCTL_DISK_WRITE

This DeviceloControl request services FAT file system requests to write data to the block device.

Parameters

IpInBuffer [in] Pointer to an SG_REQ structure.

nInBufferSize [in] Specifies the size of SG_REQ.

IpBytesReturned [out] Pointer to a DWORD to receive total bytes returned.

3.7.8 IOCTL_DISK_FLUSH_CACHE
This DeviceloControl request issues the ATA FLUSH CACHE command to the disk.

Parameters [No parameters]

3.79 IOCTL_CDROM DISC_INFO
This IOCTL retrieves disk information to fill the CDROM_DISCINFO structure.

Parameters

dwloControlCode [in] Set to IOCTL_CDROM_DISC INFO to retrieve disk information and fill the
CDROM_DISCINFO structure.

IpInBuf [in] Set to NULL.
nInBufSize [in] Set to zero.
IpOutBuf [in, out] On input, set to the address of an allocated CDROM_DISCINFO

structure. This is the memory needed for the structure and information storage. On
output, a filled CDROM_DISCINFO structure.

nOutBufSize [in] Set to the size of the CDROM_DISCINFO.

IpBytesReturned [in, out] On input, address of a DWORD that receives the size in bytes of the data
returned. On output, set to the number of bytes written to the supplied buffer.

Windows Embedded CE 6.0 BSP Reference Manual

3-16 Freescale Semiconductor

ATA/ATAPI Driver

3.7.10 IOCTL_CDROM_EJECT_MEDIA
The IOCTL ejects the CD-ROM.

Parameters

dwloControlCode [in] Set to IOCTL _CDROM_EJECT MEDIA to eject the CD-ROM.
IpInBuf [in] Set to NULL.

nlnBufSize [in] Set to zero.

IpOutBuf [in] Set to NULL.

nOutBufSize [in] Set to zero.

IpBytesReturned [in] Set to NULL.

3.7.11 10CTL_CDROM_GET_SENSE_DATA

This IOCTL specifies retrieval of CD-ROM sense information contained in a CD_SENSE DATA
structure.

Parameters

dwloControlCode [in] Set to IOCTL_CDROM_GET SENSE DATA to retrieve CD-ROM sense
information and fill the CD_SENSE DATA structure.

IpInBuf [in] Set to NULL.

nInBufSize [in] Set to zero.

IpOutBuf [in, out] On input, set to the address of an allocated CD SENSE DATA structure.
On output, a filled CD_SENSE DATA structure.

nOutBufSize [in] Set to the size of the CD_SENSE DATA.

IpBytesReturned [in, out] On input, address of a DWORD that receives the size in bytes of the data

returned. On output, set to the number of bytes written to the supplied buffer.

3.7.12 10CTL_CDROM_ISSUE_INQUIRY
This IOCTL retrieves information used in the INQUIRY DATA structure.

Parameters

dwloControlCode [in] Set to IOCTL _CDROM_ISSUE INQUIRY to retrieve information and fill
the INQUIRY DATA structure.

IpInBuf [in] Set to NULL.

nInBufSize [in] Set to zero.

IpOutBuf [in, out] On input, set to the address of an allocated INQUIRY DATA structure.
On output, a filled INQUIRY DATA structure.

nOutBufSize [in] Set to the size of the INQUIRY DATA.

IpBytesReturned [in, out] On input, address of a DWORD that receives the size in bytes of the data

returned. On output, set to the number of bytes written to the supplied buffer.

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 3-17

ATA/ATAPI Driver

3.7.13 I10CTL_CDROM_PAUSE_AUDIO
This IOCTL suspends audio play.

Parameters
dwloControlCode

IpInBuf
nInBufSize
IpOutBuf
nOutBufSize
IpBytesReturned

[in] Set to IOCTL _CDROM_PAUSE_ AUDIO to pause audio playback if it was
playing.

[in] Set to NULL.

[in] Set to zero.

[in] Set to NULL.

[in] Set to zero.

[in] Set to NULL.

3.7.14 10CTL_CDROM_PLAY_AUDIO_MSF
This IOCTL plays audio from the specified range of the medium.

Parameters
dwloControlCode

IpInBuf
nInBufSize
IpOutBuf
nOutBufSize
IpBytesReturned

[in] Set to IOCTL_CDROM_PLAY AUDIO_MSF to play audio based on the
information in the CDROM_PLAY AUDIO MSF structure.

[in] Set to the address of an allocated CDROM_PLAY AUDIO MSF structure.
[in] Set to the size of the CDROM_PLAY AUDIO MSF structure.

[in] Set to NULL.

[in] Set to zero.

[in, out] On input, address of a DWORD that receives the size in bytes of the data
sent. On output, set to the number of bytes written from the supplied buffer.

3.7.15 IOCTL_CDROM_READ_SG
This IOCTL reads scatter buffers from the CD-ROM and the information is stored in the CDROM_READ

structure.
Parameters
dwloControlCode

IpInBuf
nlnBufSize
IpOutBuf

nOutBufSize
IpBytesReturned

[in] Set to IOCTL_CDROM_READ_SG to read scatter buffers from the
CD-ROM and store the information in the CDROM_READ structure.

[in] Set to the address of an allocated SGX BUF structure.
[in] Set to the size of the SGX_ BUF.

[in, out] On input, set to the address of an allocated CDROM_READ structure.
This is the memory needed for the structure and info storage. On output, a filled
CDROM READ structure.

[in] Set to the size of the CDROM_READ.

[in, out] On input, address of a DWORD that receives the size in bytes of the data
returned. On output, set to the number of bytes written to the supplied buffer.

Windows Embedded CE 6.0 BSP Reference Manual

3-18

Freescale Semiconductor

ATA/ATAPI Driver

3.7.16 IOCTL_CDROM_READ_TOC

This I/0 control returns the table of contents of the medium.
Parameters

dwloControlCode [in] Set to IOCTL _CDROM_READ_ TOC to retrieve the table of contents
information and store it into the CDROM_TOC structure.

IpInBuf [in] Set to NULL.

nlnBufSize [in] Set to zero.

IpOutBuf [in, out] On input, set to the address of an allocated CDROM_TOC structure. On
output, a filled CDROM_TOC structure.

nOutBufSize [in] Set to the size of the CDROM_TOC.

IpBytesReturned [in, out] On input, address of a DWORD that receives the size in bytes of the data

returned. On output, set to the number of bytes written to the supplied buffer.

3.717 10CTL_CDROM_RESUME_AUDIO

This IOCTL resumes a suspended audio operation.

Parameters

dwloControlCode [in] Set to IOCTL_CDROM_RESUME AUDIO to resume audio playback if it
was paused.

IpInBuf [in] Set to NULL.

nInBufSize [in] Set to zero.

IpOutBuf [in] Set to NULL.

nOutBufSize [in] Set to zero.

IpBytesReturned [in] Set to NULL.

3.7.18 IOCTL_CDROM_SEEK_AUDIO_MSF

This IOCTL moves the heads to the specified minutes, seconds, and frames on the medium.

Parameters

dwloControlCode [in] Set to [OCTL_CDROM_SEEK AUDIO_ MSF.
IpInBuf [in] Set to NULL.

nInBufSize [in] Set to zero.

IpOutBuf [in] Set to NULL.

nOutBufSize [in] Set to zero.

IpBytesReturned [in] Set to NULL.

3.7.19 I10CTL_CDROM_STOP_AUDIO
This IOCTL stops audio play.

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 3-19

ATA/ATAPI Driver

Parameters

dwloControlCode [in] Set to IOCTL_CDROM_STOP_AUDIO to stop audio playback.
IpInBuf [in] Set to NULL.

nlnBufSize [in] Set to zero.

IpOutBuf [in] Set to NULL.

nOutBufSize [in] Set to zero.

IpBytesReturned [in] Set to NULL.

3.7.20 IOCTL_CDROM_TEST_UNIT_READY
This IOCTL retrieves disc ready information and fills the CDROM_TESTUNITREADY structure.

Parameters

dwloControlCode [in] Set to IOCTL_CDROM_TEST UNIT READY to retrieve disc ready
information and fill the CDROM_TESTUNITREADY structure.

IpInBuf [in] Set to NULL.
nInBufSize [in] Set to zero.
IpOutBuf [in, out] On input, set to the address of an allocated

CDROM _TESTUNITREADY structure. This is the memory needed for the
structure and info storage. On output, a filled CDROM_TESTUNITREADY

structure.
nOutBufSize [in] Set to the size of the CDROM_ TESTUNITREADY.
IpBytesReturned [in, out] On input, address of a DWORD that receives the size in bytes of the data

returned. On output, set to the number of bytes written to the supplied buffer.

3.7.21 10CTL_DVD_GET REGION
This IOCTL returns DVD disk and drive regions.

Parameters

hDevice [in] Set to a handle to a block device.
dwloControlCode [in] Specifies this IOCTL.

IpInBuffer Not used.

nlnBufferSize Not used.

IpOutBuffer [out] Pointer to a DVD REGIONCE structure.
nOutBufferSize Not used.

IpBytesReturned Not used.

IpOverlapped Not used.

Windows Embedded CE 6.0 BSP Reference Manual

3-20 Freescale Semiconductor

Chapter 4
Audio Driver

The audio driver module provides audio playback and recording functions. For information about
accessing an application with the audio driver using the methods and functions associated with the
WaveOut/Waveln functionality, see the Platform Builder Help topic:

Windows Embedded CE Features > Audio > Waveform Audio > Waveform Audio Application

Development

4.1

Audio Driver Summary

Table 4-1 provides the source code location, library dependencies, and other BSP information.

Table 4-1. Audio Driver Summary

Driver Attribute

Definition

Target Platform

iMX35-3DS-PDK1_7

Target SOC

MX35_FSL_V2_PDK1_7

SOC Common Path

.\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\WAVEDEV2

SOC Specific Path

.\PLATFORM\COMMON\SRC\SOC\<Target SOC>\WAVEDEV2

Platform Specific Path

.\PLATFORM\<Target Platform>\SRC\DRIVERS\WAVEDEV2\SGTL5000

Driver DLL wavedev2_sgti5000.dll
SDK Library N/A
Catalog ltem Third Party > BSP > Freescale i.MX35-3DS:ARMV4I > Device Drivers > Audio > SGTL5000

Stereo Audio

SYSGEN Dependency

SYSGEN_AUDIO

BSP Environment Variables

BSP_NOAUDIO=
BSP_AUDIO_SGTL5000=1

NOTE

The selection and use of the Windows Media Player and the various
software codecs is beyond the scope of the audio driver and is not discussed
in this document. For information about these items, see the Platform
Builder Help topic: Windows Embedded CE Features > Audio

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor

4-1

Audio Driver

4.2 Supported Functionality

The audio driver enables the system to provide the following software and hardware support:

1. Conforms to the audio driver architecture as defined for Windows Embedded CE 6.0 and all related
operating systems

Double-buffered DMA operations to transfer audio data between memory and the hardware FIFO
Two power management modes: full on and full off
Full duplex playback and record

ok W

Minimizes power consumption at all times by using clock gating and by disabling all audio-related
hardware components that are not actively being used

8-96 KHz for both recording and playback
7. Mono and stereo 16-bit sample, and stereo 24-bit sample

.°\

4.3 Hardware Operation

431 Audio Hardware Design

This section describes of the connection between the SoC audio peripherals and the external audio codec,
the access interface of audio codec, and the audio input/output device connections.

4311 i.MX35 3-Stack Audio Hardware Design

As the Synchronous Serial Interface is a full-duplex serial port, .MX35 SoC uses instance 2 (SSI2) for
both audio playback and recording. The external stereo codec SGTL5000 is connected to AUDMUX port
4 (external) while SSI2 is internally connected to AUDMUX port 2 (internal) by .MX35 SoC design. Both
ports are configured to operate in synchronous 4-wire mode.

The i.MX35 uses the I2C bus interface to access SGTL5000 control registers, so that SGTL5000 can be
configured by 1.MX35 as per hardware design and software configuration.

The stereo codec SGTL5000 on 1.MX35 3-Stack supports output to Headphone or Line Out, input from
Microphone or Line In. The Line Out is designed to support speaker output, but there is currently no
speaker device available on board, so only Headphone output is supported.

For operation and programming, see the chapters in the 1.MX35 Reference Manual for the SSI, SDMA,
AUDMUX, and IOMUX components, and see SGTL5000 Datasheet for Stereo Audio Codec SGTL5000.

4.3.2 Audio Playback

By default, the following hardware configuration options are enabled for the playback operation (based on
the default audio driver configuration):
* The audio driver is configured to use SSI2 for I°S mode and a sampling rate of 44.1 KHz
— The first two time slots transmit the left and right audio channel data words, respectively

Windows Embedded CE 6.0 BSP Reference Manual

4-2 Freescale Semiconductor

Audio Driver

— Each audio data word is 16 bits long

— SSI2 is also configured to operate in slave mode

— The SSI2 transmitter watermark level is set to support SDMA transfers during audio playback
The stereo codec is also configured for IS mode using a 44.1 KHz sample rate in master mode

The Digital Audio MUX is configured to connect internal port 2 (which is assigned to SSI12) with
one external port, which is used to communicate with the Stereo DAC. At the same time, the
appropriate [IOMUX pins are configured so that the Audio MUX external port signals can be routed
oft-chip to the Stereo Codec. The external port 4 is used to connect the Stereo Codec on the .M X35
System.

The SDMA channel supports 16-bit data transfers between the application memory buffers and the
SSI2 TX FIFOO. The SSI2 TX FIFOO is pre-filled with audio data at this point along with the DMA
buffers.

Finally, the SSI2 transmitter is enabled, which begins the transmission of the audio data stream.

The hardware repeatedly performs the following functions while audio playback is being performed:

The SSI2 issues a new DMA request when the transmitter FIFOO level reaches the empty
watermark level. The SDMA controller then refills FIFOO using data from the DMA bufters, until
the DMA buffer is empty.

An interrupt is generated when a DMA buffer is empty and this interrupt is handled by the audio
driver. The audio driver refills the DMA buffer and returns it to the SDMA controller for
processing.

Due to the double-buffering scheme, the SDMA controller simply uses the other DMA buffer to
continue refilling the SS12 transmitter FIFOO while the previous DMA buffer is being refilled.

The following hardware changes are made at the completion of each playback operation:

43.3

When the entire audio stream is transmitted, there is no more data available to refill the empty
DMA buffers. Therefore, the output DMA channel is disabled when both output DMA buffers are
empty and there is no additional data available to refill them.

The audio components that were used for playback are disabled to minimize power consumption.
This step is done before disabling SSI2 to avoid any extraneous noise or “pop” that may be heard
over the headphones.

Finally, gate SSI2 is disabled and clocked if receiver is not working.

Audio Recording

The following hardware configuration steps are performed just prior to each recording operation (based
upon the default audio driver configuration):

As SSI2 is used in both playback and recording path, the audio recording shares the SSI
configuration with playback configuration.

The SDMA channel is fully configured to support 16-bit data transfers between the application
memory buffers and the SSI2 RX FIFOO.

The SSI2 receiver is enabled and ready to receive data from the stereo codec.

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 4-3

Audio Driver

The hardware repeatedly performs the following functions while audio recording is being performed:

The SSI2 issues a new DMA request whenever the receive FIFOO level reaches the full watermark
level. The SDMA controller then transfers the data from the receiver FIFOO to an input DMA
buffer until the DMA bufter is full.

The SDMA controller generates an interrupt that is handled by the audio driver. The audio driver
is responsible for copying the data from the full input DMA buffer into application-supplied
buffers and then returning the empty input DMA buffer back to the SDMA controller. Any data
which cannot be transferred to an application-supplied buffer (for example, due to insufficient
space) is simply discarded.

Since a double-buffering scheme is being used, the SDMA controller simply uses the other DMA
buffer to continue recording the data from the SSI2 receiver FIFOO while the previous DMA buffer
is being copied to application-supplied buffers.

The following hardware changes are made at the completion of each recording operation:

43.4

Terminate the recording process by having the application close the audio input stream. At this
point, disable audio components that were used for recording to minimize power consumption.

Disable and clock gate SSI2, if transmitter is not working.
Disable the input DMA channel to completely terminate the audio recording operation.

Required SoC Peripherals

Table 4-2 shows the SoC hardware components required by the audio driver.

Table 4-2. Required SoC Peripherals

4.3.5

Component Use
SSI12 Playback and recording
Digital Audio MUX Connects the SSI2 to the |0 MUX to access off-chip peripherals
10 MUX Pins Connects the Digital Audio MUX external port to the external stereo codec
SDMA Controller Manages the DMA channels that are used for playback and recording

Conflicts with SoC Peripherals

No conflicts.

4.3.6

Conflicts with Board Peripherals

4.3.6.1 i.MX35 3-Stack Peripherals Conflicts

The TVIN and FM modules use SGTL5000 loopback mode to support audio output through headphone.
Thus SGTL5000 stereo audio driver stops working when either TVIN or FM application is running.

Windows Embedded CE 6.0 BSP Reference Manual

4-4

Freescale Semiconductor

Audio Driver

4.3.7 Known Issues

4.3.71 i.MX35 Known Issues

If both the SGTL5000 stereo audio driver and S/PDIF driver occurs, the default audio device might be
SPDIF. The default audio device may be chosen by AudioRouting application.

44 Software Operation

The audio driver follows the Microsoft-recommended architecture for audio drivers. For information
about the architecture and operation, see the Platform Builder Help:

Developing a Device Driver > Windows CE Drivers > Audio Drivers > Audio Driver Development
Concepts

441 Audio Playback

The software operation of the audio driver for playback is similar to the hardware configuration. Once the
hardware components are configured, the audio driver only handles the output DMA bufter empty
interrupts. This is done by the interrupt handler, which refills each of the output DMA buffers with new
audio data that has been supplied by the application, and then returns the DMA buffer to the DMA
controller.

4.4.2 Audio Recording

The operation of the audio driver for recording is similar to the hardware configuration. Once the hardware
components are configured, then the audio driver handles the input DMA buffer full interrupts. This is
done by the interrupt handler, which copies the contents of each input DMA buffer to an
application-supplied buffer, and then returns the empty DMA buffer to the DMA controller. If the
application-supplied buffer does not have enough space for all of the new data, any extra data is discarded.
The application is signaled using a callback function when the application-supplied buffer is full.

4.4.3 Audio Driver Compile-Time Configuration Options

The audio driver can be configured for a wide variety of operating modes depending on the hardware and
software requirements.

NOTE

Do not change the audio driver configuration settings without a detailed
understanding of the platform hardware configuration and operating
characteristics. Selecting invalid or incorrect configuration settings may
result in the audio driver not loading or operating properly. Conversely, the
audio driver performance and resource usage may be fine-tune by adjusting
these configuration settings. For further information about the configuration
options, see the corresponding source files.

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 4-5

Audio Driver

4431

i.MX35 Audio Driver Configuration Options

Table 4-3 gives the compile-time configuration options of 1.MX35 stereo audio driver.

Table 4-3. i.MX35 Audio Driver Configuration Options (oemsettings.h)

Configuration Setting

Name Description
INCHANNELS Defines the number of input/recording channels that are available. Can be set to either 1 or 2.
Default is 2.
OUTCHANNELS Defines the number of output/playback channels that are available. Can be set to either 1 or 2.
Default is 2.
HWSAMPLE A typedef that defines the size of each audio data word. This must match the BITSPERSAMPLE

and AUDIO_SAMPLE_MAX/AUDIO_SAMPLE_MIN values. Default is 16.

USE_MIX_SATURATE

Enable a check in the software mixer code to guard against saturation. Default is 1.

AUDIO_SAMPLE_MAX
and AUDIO_SAMPLE_MIN

The valid range of each audio data word. Values that are outside of this range is clipped to the
max/min value by the saturation protection code if USE_MIX_SATURATE is set to 1. Default is
32767 and -32768.

ENABLE_MIDI

If set to 1, MIDI code is included in the driver (~4k).

USE_OS_MIXER

If set to 1, the driver does not do any internal mixing and relies on the OS mixer.

BITSPERSAMPLE

The number of data bits per audio sample. If set to 16, support 16bit sample; If set to 24, support
24bit sample (in sgtl5000codec.h)

444

DMA Support

The audio driver uses the DMA controller to transfer digital audio data between the audio application and
the audio FIFOs. This minimizes the processing required by the ARM core and can also reduce the power
consumption during audio playback and recording operations. This section describes the audio driver
DMA implementation issues and trade-offs, and the available compile-time DMA-related configuration
options.
To use DMA transfers, the following items must be properly allocated, managed, and deallocated by the
device driver:

* The DMA data buffers where the application data is kept

» The DMA buffer descriptors, which are used by the DMA hardware to manage the state of each

DMA buffer

The DMA data buffers can be allocated from either internal memory (which is provided by on-chip
internal RAM) or external memory (which is provided by off-chip external DRAM). Table 4-4 describes
the issues and considerations for the type of memory to use for the DMA data buffers.

Windows Embedded CE 6.0 BSP Reference Manual

4-6 Freescale Semiconductor

Audio Driver

Table 4-4. DMA Memory Allocation Issues and Considerations

Mem_ory Memory Usage Issues and Considerations
Region
Internal * Allows the external memory to be placed in a low power mode while the DMA data buffers are being

processed to reduce system power consumption (as long as nothing else on the system requires access to
external memory)

» Less power is required to access the internal RAM

» The total size of the internal memory region is limited

» The limited amount of internal memory may have to be shared by multiple device drivers

* The entire internal memory region must be manually managed with predefined addressed ranges being
reserved for each specific use

External * The total size of the external memory is typically much greater than the size of the internal memory. This
provides much greater flexibility in selecting the size of the DMA data buffers.

» There is typically no need to worry about the possible impact and memory requirements of any other device
driver.

* Memory allocation is handled using the standard Windows Embedded CE 6.0 system calls

» The external memory cannot be placed into a low power mode while the DMA is active

Table 4-5 describes how to configure the build so that the audio driver allocates its DMA data buffers from
either internal or external memory. The DMA buffer descriptors can also be allocated from either internal
or external memory. However, the choice is made automatically through the use of the CSPDDK APIs,
specifically DDKSdmaAllocChain(). See Chapter 10, “Chip Support Package Driver Development Kit
(CSPDDK),” for additional information about the DDKSdmaAllocChain() API.

Table 4-5. Configuration Options for Internal/External Memory DMA Data Buffer Allocation

Memory

Region Required Configuration Options

Internal | Set the BSP_AUDIO_DMA_BUF_ADDR macro in bsp_cfg.h to an address within the internal memory region.
Set BSP_AUDIO_DMA_BUF_SIZE to the total size (in bytes) for all DMA data buffers that is allocated.

External | Make sure that the BSP_AUDIO_DMA_BUF_ADDR macro is commented out in bsp_cfg.h

4441 i.MX35 Audio DMA Buffer Use

The 1.MX35 audio driver supports both playback and recording. Playback function always uses internal
memory as DMA buffer, while recording function allocates DMA buffer from external memory.

4.4.5 Power Management

The primary method for limiting power consumption in the audio driver is to gate off all clocks to the SSI
when those clocks are not needed, and to turn off all audio hardware components at the end of each audio
stream. This is accomplished through the DDKClockSetGatingMode function call and the various PMIC
audio APIs. In the BSP, the audio module can be disabled, and its clocks turned off whenever there are no
active audio I/O operations. The clock gating and the disabling of related audio hardware components is

handled automatically within the audio module and requires no additional configuration or code changes.

The audio driver operates correctly when resuming after the power down mode.

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 4-7

Audio Driver

4451 PowerUp

This function resumes an audio I/O operation that was previously terminated by calling the PowerDown()
APL. It begins by restoring power and re-enabling all of the required audio hardware components. Then
this function restarts the audio DMA transfers to complete the powerup process for the audio driver.

This function is intended to be called only by the Power Manager and must not block or depend on any
hardware interrupts. Therefore, all required timed delays must be handled by using a polling loop instead
of any of the normal “wait for an event to be signalled” functions. This functionality is currently handled
by IOCTL_POWER_SET and the function is just a stub.

4.45.2 PowerDown

This function suspends all currently active audio I/O operations just before the entire system enters the low
power state. This function is intended to be called only by the Power Manager and must not block or
depend on any hardware interrupts. Therefore, the first thing that this function must do is to signal all of
the possible wait events that the normal audio driver thread may currently be waiting on. If this function
does not signal all waiting events, the PowerDown thread may be blocked waiting for a critical section that
is currently being held by the normal audio driver thread. This deadlocks the entire system and prevent it
from properly entering the low power state.

When all waiting events are signalled, the normal audio thread is guaranteed (because of priority
inversion) to run to the point where it releases the required critical section and allows the PowerDown
thread to proceed without the possibility of deadlocking.

When the normal audio thread is not executing inside any critical section, the PowerDown thread can
safely proceed to disable all active audio DMA operations and to power down the associated audio
hardware components. Once this is done, the audio driver remains in a low power state until the PowerUp
function is called by the Power Manager. This functionality is currently handled by IOCTL_ POWER_SET
and the function is just a stub.

44.5.3 IOCTL_POWER_SET

This Power Manager IOCTL is implemented for the audio driver. All system suspend and resume
functions are handled by the IOCTL, which manages the PowerDown and PowerUp functionality. For all
platforms, the following registry entry must be defined:

[HKEY LOCAL MACHINE\Drivers\BuiltIn\Audio]
"IClass"="{A32942B7-920C-486b-BOE6-92A702A99B35}" ; PMCLASS GENERIC DEVICE

This registry entry is required for proper power management functionality.

4.4.6 Audio Driver Registry Settings

At least one registry key must be properly defined so that the Device Manager loads the audio driver when
the system is booted. Additional registry keys may also be defined and changed at runtime, to configure
the operation of the audio driver.

Windows Embedded CE 6.0 BSP Reference Manual

4-8 Freescale Semiconductor

Audio Driver

4.4.6.1 i.MX35 Audio Driver Registry Settings

The following registry keys are required in order for the Device Manager to properly load the .MX35
audio device driver during the device normal boot process. These registry settings should typically not be
modified. If they are missing or incorrectly defined, then the audio driver may not be loaded and all audio
functions are disabled.
[HKEY LOCAL MACHINE\Drivers\BuiltIn\Audio]
"Prefix"="WAV"

"D11"="wavedev2 sgt15000.d11"

"Index"=dword:1

"Order"=dword: 4

"Priority256"=dword: 95

"IClass"=multi sz:"{A32942B7-920C-486b-BOE6-92A702A99B35}",
"{37168569-61C4-45£fd-BD54-9442C7DBA46F}"

; Override wave API load order to follow audio driver

[HKEY LOCAL MACHINE\Drivers\BuiltIn\WAPIMAN]
"Order"=dword:5

[HKEY LOCAL MACHINE\Drivers\BuiltIn\WAPIMAN ACM]
"Order"=dword:5

4.5 Unit Test

The audio driver is tested using the Waveform Audio Driver Test suite included with the Windows
Embedded CE 6.0 Test Kit (CETK). The test suite includes automated and interactive tests used to test
playback and recording functions.

451 Unit Test Hardware

Table 4-6 identifies the hardware needed to run the unit tests.

Table 4-6. Hardware Requirements

Requirement Description

Stereo headphones or | This is required to confirm that audio playback is working. The headphones or earphones
earphones should have a 3.5 mm jack

Mono microphone —

4.5.2 Unit Test Software

Table 4-7 lists the software required to run the unit tests.

Table 4-7. Software Requirements

Requirement Description
Tux.exe Tux test harness, which is needed for executing the test
Kato.dll Kato logging engine, which is required for logging test data

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 4-9

Audio Driver

Table 4-7. Software Requirements (continued)

Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device and the
development workstation

wavetest.dll Test .dll file

4.5.3 Building the Audio Driver CETK Tests

The audio driver tests come pre-built as part of the CETK. No steps are required to build these tests. The
wavetest.dll file is included with the CETK files in the following location:

[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4I

454 Running the Audio Driver CETK Tests

The command line for running the audio driver test is:

tux -o —-d wavetest

Alternatively, use the CETK interface in the Platform Builder. If the full-duplex operation is not supported,
the command line is:

tux -o -d wavetest -c “-e”

NOTE
Some test cases may fail with default parameters or settings, such as

» Playback Mixing Test (Test ID 6000). The thread number should be
limited or the case fails. This is a known issue from MSFT. Using the
command : tux -o -d wavetest -x 6000 -c “-t 5

» Capture Mixing Test (Test ID 6001). The thread number should be
limited or the case fails. This is a known issue from MSFT. Using the
command : tux -o -d wavetest -x 6001 -c “-t 5

» Verify Device ID Validation Test (Test ID 8001). If SPDIF or ESAI
driver is in the system, the case may fail as this case is not well supported
by these drivers. Test with the image without SPDIF and ESAI driver.

For detailed information about the audio driver tests, see the Platform Builder Help:

Windows Embedded CE Test Kit > CETK Tests and Test Tools > CETK Tests > Audio Tests >
Waveform Audio Driver Test

4.6 System Level Audio Driver Tests

In addition to running the audio driver tests in the CETK, various system-level tests that involve the use
of the audio driver can be performed. The following sections describe how to test the audio driver without
using the CETK.

Windows Embedded CE 6.0 BSP Reference Manual

4-10 Freescale Semiconductor

Audio Driver

4.6.1 Checking for a Boot-Time Musical Tune

The normal Windows Embedded CE 6.0 boot procedure includes playing a short musical tune just before
displaying the touch panel calibration screen. At this point, the audio driver should already have
successfully loaded and the tune should be heard if a headset is attached to the stereo output jack.

4.6.2 Confirming Touchpanel Taps and Keypad Key Presses

The normal Windows Embedded CE 6.0 system configuration includes the ability to playback a short
tapping sound when the stylus makes contact with the touchpanel. These taps should be heard when a
headset is attached to the stereo output jack. A click should also be heard when a key on the keypad is
pressed.

4.6.3 Playing Back Sample Audio and Video Files Using the Media Player

The Microsoft-supplied Media Player application can be used to load and play a variety of audio and video
media files in a number of different formats. The only requirement is to include the software codecs in the
OS image that may be needed to decode the media file. The Media Player includes controls for pausing,
resuming, and stopping playback, and advancing playback to a specific point. Volume and muting controls
are also provided.

4.6.4 Using the SDK Sample Audio Applications for Testing

The Windows Embedded CE 6.0 SDK that is included as part of the Platform Builder includes two
audio-related sample applications. The wavrec sample application can be used to test the audio recording
function while the wavplay sample application provides a command line-based method of playing back
various media files. For additional information about these sample applications, see the Platform Builder
Help:

Windows Embedded CE Features > Audio > Waveform Audio > Waveform Audio Samples

4.7 Mixer Driver Tests

The Stereo Codec SGTL5000 on i.MX35 3-Stack supports loopback mode and input mux between
Microphone and Line In. The loopback mode is used by the TVIN and FM applications. The selection of
these modes is implemented as mixer interface within audio driver. An example application (unit test
program) for the mixer interface use can be found in WINCE600\SUPPORT\TEST\MIXER.

4.8 Audio Driver API Reference

For detailed reference information for the audio driver, see the Platform Builder Help:

Developing a Device Driver > Windows Embedded CE Drivers > Audio Drivers > Audio Driver
Reference > Waveform Audio Driver Reference

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 4-11

Audio Driver

4.9 Audio Driver Troubleshooting Guide

The following sections describe techniques to identify and fix the most common problems involving the
audio driver.

491 Checking Build-Time Configuration Options

Compile- or link-time errors are probably due to incorrect or invalid configuration settings defined in
hwetxt.h OF hwetxt . cpp. See Section 4.4.3.1, “1.MX35 Audio Driver Configuration Options for
information about the device driver build configuration options. Follow the build procedure documented
in the Release Notes to compile and link the audio driver. Confirm that the required Platform Builder
catalog items are included in the OS design. See Table 4-1 for a list of the required and recommended audio
driver-related catalog items.

4.9.2 Media Player Application Not Found

Make sure that the Media Player catalog item is included in the OS design. The Media Player application
is not included in the final system image if the catalog item is not selected. For information about these
items, see the Platform Builder Help topic:

Windows Embedded CE Features > Applications and Services > Windows Media Player for
Windows Embedded CE

4.9.3 Media Player Fails to Load and Play an Audio File

This problem is typically caused by failing to include the appropriate software codec that is required to
handle the audio file format. See the list of recommended audio driver catalog items in Table 4-1 and make
sure that support for the desired audio file format is included.

Windows Embedded CE 6.0 BSP Reference Manual

4-12 Freescale Semiconductor

Chapter 5

Backlight Driver

The backlight driver uses the hardware provided by the display module on the device to control the
backlight on the LCD display. The backlight driver interfaces with the Windows CE Power Manager to
provide timed control over the display backlight. A timeout interval controls the length of time that the
backlight stays on. The backlight driver is power-manageable, and it meets the requirements of a
power-manageable device by implementing the required IOCTLs. The backlight driver uses its own
defined timer to set the backlight power states.

5.1

Backlight Driver Summary

Table 5-1 provides a summary of source code location, library dependencies and other BSP information.

Table 5-1. Backlight Driver Summary

Driver Attribute

Definition

Target Platform

iMX35-3DS-PDK1_7

Target SOC

MX35_FSL_V2_PDK1_7

SOC Common Path

.\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\BACKLIGHT

SOC Specific Path

N/A

Platform Specific Path

.\PLATFORM\<Target Platform>\SRC\DRIVERS\BACKLIKGHT

Driver DLL backlight.dll
SDK Library N\A
Catalog ltem Third Party > BSP > Freescale i.MX35 3DS PDK1_7: ARMV4I| > Device Drivers > Smart

Backlight Control

SYSGEN Dependency

SYSGEN_BATTERY=1

BSP Environment Variables

BSP_NOBACKLIGHT=
BSP_BACKLIGHT_IPU=1

5.2

Supported Functionality

The backlight driver enables the 3-Stack System to provide the following support:

1. Conforms to the Device Manager streams interface

2. Supports 0—10 level adjustment

3. Supports power management mode full on/full off

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor

5-1

Backlight Driver

5.3 Hardware Operation

5.3.1 i.MX35-3DS Hardware Operation

The hardware consists of a PWM implemented by the IPU. This PWM is usually dedicated to the contrast
but on the iMX35-3DS it used to drive the backlight. It can be configured by writing the
SDC CUR_BLINK PWM CTRL register.

5.4 Software Operation

The backlight driver is a stream interface driver and is accessed through the file system APIs. To use the
backlight driver, a handle to the device must first be created using the CreateFile function. Subsequent
commands to the device are issued using the DeviceloControl function with IOCTL codes specifying the
desired operation.

The control of the backlight operation requires a call to the DeviceloControl function. The following are
the possible choices available for the user:
« JOCTL POWER CAPABILITIES, register and inform the Power Manager of capabilities
+ IOCTL_POWER_QUERY, where the new power state is returned
« IOCTL _POWER_SET, interface to the hardware that controls the backlight through the PDD layer
* IOCTL POWER_GET, where the current power state is returned

541 Backlight Driver Registry Settings

5411 i.MX35-3DS Backlight Driver Registry Setting

The following registry keys are required to properly load backlight driver:
[HKEY_CURRENT_USER\ControlPanel\BacklightJ

"BattBacklightLevel"=dword:7F ; Backlight level settings. OxFF = Full On
"ACBacklightLevel"=dword:7F ; Backlight level settings. OxFF = Full On
"UseExt"=dword:0 ; Enable timeout when on external power
"UseBattery"=dword:0 ; Enable timeout when on battery
"AdvancedCPL"="AdvBacklight" ; Enable Advanced Backlight control panel dialog
"BatteryTimeout"=dword:1lE ; 30 Seconds

"ACTimeout"=dword:78 ; 2 Minutes

5.4.2 Power Management

The backlight driver consumes power primarily through the operation of the Liquid Crystal Display Panel
backlight. To facilitate management of this module, the backlight driver implements the power
management I[/O Control (IOCTL) code IOCTL POWER_SET.

Windows Embedded CE 6.0 BSP Reference Manual

5-2 Freescale Semiconductor

Backlight Driver

5.4.2.1 PowerUp

This function is not implemented for the backlight driver.

5.4.2.2 PowerDown

This function is not implemented for the backlight driver.

5.4.2.3 IOCTL_POWER_SET

The backlight driver implements the IOCTL_ POWER _SET IOCTL API with support for the DO (Turn
On) and D4 (Set intensity to 0) power states. These states are handled in the following manner:

» DO — Backlight is enabled for LCD panel and the intensity can be adjusted through the PDD layer
« D4 — Backlight intensity is set to 0 which is the lowest level of backlight

5.5 Unit Test
The backlight driver is tested by the application test.

5.5.1 Unit Test Hardware

5.5.1.1 i.MX35-3DS Unit Test Hardware
Table 5-2 lists the required hardware to run backlight application test.

Table 5-2. Hardware Requirements

Requirement Description

CHUNGHWA 7" WVGA Display With Touch Screen (CLAA070VCO01) | Display panel required for display of graphics data.

5.5.2 Unit Test Software

Table 5-3 lists the required software to run the backlight application test.

Table 5-3. Software Requirements

Requirement Description
backlight.dll The backlight driver to implement the backlight functions
Advbacklight.dll The file implements adding an Advanced button to the Backlight Control Panel application

5.5.3 Running the Backlight Application Test

Table 5-4 lists the backlight application test.

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 5-3

Backlight Driver

Table 5-4. Backlight Application Test

Test Case

Entry Criteria/Procedure/Expected Result

Backlight Level

Entry Criteria: N/A

Procedure:

Expected Result: N/A

Go to Setting > Control Panel

Double click on the Display icon, then click on the Backlight tab

Click on the Advanced... button

Modify the backlight level setting for both battery and external power
Observe that the backlight level behaves according to the new setting

Backlight Timeout

Entry Criteria: N/A

Procedure:
1.
2.
3.

4.

Expected Result: N/A

Go to Setting > Control Panel

Double click on the Display icon, then click on the Backlight tab

Modify the backlight timeout setting for both battery and external power, and then click on OK
button to apply the changes

Observe the time it takes for the backlight to go out, make sure it correspond with the new
settings entered in step 3

5.6

Backlight APl Reference

The API for the backlight driver conforms to the stream interface and exposes the standard functions.
Further information can be found at:

Developing a Device Driver > Windows CE Embedded Drivers > Streams Interface Drivers

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor

Chapter 6

Boot from Secure Digital/MultiMedia Card (SD/MMC)

Boot support from SD/MMC includes the following components:

* Xloader (XLDR)

* EBOOT (may also be referred to as bootloader in this document)

» Storage for OS binary image (NK)

Xloader, which executes from Internal RAM (IRAM), is a initial loader whose responsibility is to copy the
bootloader from the SD/MMC memory to external RAM (SDRAM) and then pass the execution to

EBOOT.

NOTE

XLDR and EBOOT only support boot from ESDHC1. Boot ROM supports
booting from all ESDHC ports; therefore, XLDR and EBOOT can be
extended to boot from other ports. SD/MMC boot requires a card that is at
least 64 Mbytes.

6.1 Boot from SD/MMC Summary

Table 6-1 provides a summary of source code location, library dependencies and other BSP information.

Table 6-1. Boot from SD/MMC Summary

Driver Attribute

Definition

Target Platform (TGTPLAT)

iMX35-3DS-PDK1_7

Target SOC N/A
SOC Common Path N/A
SOC Specific Path N/A

Platform Specific Path

.\PLATFORM\<Target Platform>\SRC\BOOTLOADER
.\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\BOOT\FMD\SDMMC

Driver DLL N/A

SDK Library N/A
Catalog Item(s) N/A
SYSGEN Dependency N/A
BSP Environment Variable(s) | N/A

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor

Boot from Secure Digital/MultiMedia Card (SD/MMC)

6.2 Supported Functionality

The boot support from SD/MMC includes:

Boot from low or high capacity SD/MMC card at least 64 Mbytes in size on ESDHC1
Storing bootloader and SD/MMC Xloader images to SD/MMC flash

Storing OS images to SD/MMC flash

Loading OS image from SD/MMC flash to RAM

File system on bootable SD/MMC card

Internal boot (BMOD = 00) from SD/MMC

eSD2.1 and eMMC 4.3 boot from boot partition if boot partition can be configured to be at least
64 Mbytes in size; otherwise, boot from user partition on these devices is supported

Nk W=

6.3 Hardware Operation

6.3.1 Conflicts with Other Peripherals and Catalog Items
No conflicts for eSDHC1 with other on-chip peripherals.

6.4 Software Operation
Only ESDHCI is supported by XLDR and EBOOT as the boot port.

On startup, when booting from SD/MMC, the boot ROM is responsible for initializing and bringing the
SD/MMC memory to a proper working state. It configures the memory only in 1-bit mode and brings it to
transfer state where read/write operation can be done from the memory. The boot ROM then copies the
entire XLDR from the SD/MMC memory to internal RAM and passes the control to the Xloader. The
Xloader initializes the SDRAM, copies the bootloader from a predefined memory location of the
SD/MMC memory to SDRAM, and passes control to the bootloader which in turn brings up the OS.
Xloader reads data in 1-bit mode only. It checks the addressing mode for the card used by the boot ROM
(which is stored in the IRAM at a fixed location), and decides whether to address the card in sector mode
(high capacity) or byte mode (low capacity).

SD/MMC boot does not use any form of DMA. Whether it is the boot ROM, XLDR, or EBOOT, all the
components involved in the boot process utilize the PIO mode. SD/MMC boot supports both secure
(internal boot mode is required for enabling security checks) as well as non-secure boot.

To store and load a boot image to SD/MMC cards using EBOOT, the SDFMD (SD Flash Media Driver)
library is used which exposes functions to perform erase, read and write operations on SD/MMC flash.
The FMD layer provides support for all types of cards (high as well as low capacity SD/MMC cards). It
also supports 1 and 4-bit modes for data transfer that is configurable through the
BSP_MMC4BitSupported() function found in the BSP portion of EBOOT.

For preparing and downloading the SD/MMC bootloader and for usage of the SD/MMC bootloader, refer
to the BSP User's Guide.

Windows Embedded CE 6.0 BSP Reference Manual

6-2 Freescale Semiconductor

Boot from Secure Digital/MultiMedia Card (SD/MMC)

6.4.1 Card Memory Layout

SD cards that do not meet the v2.1 spec and MMC cards that do not meet the v4.3 spec have only one
physical partition. To allow storage of boot images as well as file system on these card, EBOOT can add
a partition table (MBR) to the card that reserves the initial 64 Mbytes for boot images (XLDR, EBOOT,
NK) and the remaining portion of the card for the file system. The card must then be inserted into a PC to
format the file system partition. Subsequently, it can be used as a boot device as well as to store and load
user files once the OS has loaded. Refer to the BSP User's Guide for details.

eSD v2.1 and eMMC v4.3 both provide the capability of having more than one physical partition, thus
eliminating the need to put an MBR on the device. Reading, writing, and erasing one partition has no effect
on the other partitions. Starting with TO1, the ROM is able to boot from the boot partition on these devices.
During boot, the ROM code selects the boot partition #1 on the eSD v2.1 device and either boot partition
#1 or #2 on the eMMC v4.3 device (depending on which partition is enabled in the EXT CSD register),
and subsequently reads out the data that is flashed to the boot partition and executes it. EBOOT provides
menu options to create and enable/disable boot partitions on both devices using the MMC and SD Ultilities
sub-menu. Refer to the BSP User's Guide for details.

Before the NK OS image is launched, EBOOT disables the boot partition, and the user partition, where the
file system can be stored, is activated. As soon as system is reset, the ROM code re-enables the boot
partition and reads out and executes the boot images. The Windows CE 6 R2 SDBus2 Driver, although
capable of supporting high capacity SD cards, is not capable of supporting high capacity MMC cards.
Therefore, high capacity eMMC v4.3 devices are not usable on Windows CE 6 for file system storage.

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 6-3

Boot from Secure Digital/MultiMedia Card (SD/MMC)

6.4.1.1 i.MX35 Card Memory Layout
Figure 6-1 shows the card memory layout for the 1.MX35.

Master Boot Record: 64 MB -
1KB (starting at 0x400) reserved,
restallocated to FAT partition
0x400 .. = f=..—.. .
(1KB) XLDR RN
(up to 127 KB reserved, \ N
only using 4 KB) \ N
\'-\ Flash Header
B Required by
EBOOT t Boot ROM
A \ (40B)
(up to 256 KB) L
64 MB s
A |
\
NK OS Image | ~ XLDR
- instructions to
] initialize
(up to 47 MB) i SDRAM, copy
\ EBOOT from
4 KB card to SDRAM,
Boot Configuration A .‘.. and jump to it
..... d_.._. (last 128 KB) \"\
0x4000000 \
(64 MB) File System \
(g \
Partition |
\
(card size — 64 \
\
MB) I

Figure 6-1. Card Memory Layout

A Master Boot Record (MBR) is placed by EBOOT (this functionality can be accessed using the EBOOT
menu) at sector 0 of the card to reserve the first 96 Mbytes of the card for boot images, and allocate the
remaining portion to the file system. The XLDR is saved at 0x400 (1 Kbyte) offset, which is sector 2 in

the card. The Boot ROM calculates the entry point of the XLDR from the flash header structure found in
the XLDR.

Windows Embedded CE 6.0 BSP Reference Manual

6-4 Freescale Semiconductor

4
Boot from Secure Digital/MultiMedia Card (SD/MMC)

The MBR is only required on cards that are older than eSD v2.1 and eMMC v4.3 because these newer
devices can have multiple physical partitions. On these devices, the first 96 Mbytes shown above are
flashed on a separate boot partition (without an MBR at sector 0), and the file system partition referenced
above is another separate physical partition, which should only be active while OS is running.

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 6-5

Boot from Secure Digital/MultiMedia Card (SD/MMC)

Windows Embedded CE 6.0 BSP Reference Manual

6-6 Freescale Semiconductor

Chapter 7

Camera Driver

The camera driver interfaces the low level camera sensor to the Windows CE camera subsystem.

71 Camera Driver Summary

The camera driver is based on the Windows CE Camera Device Driver Interface. This interface provides
basic support for video and still image capture devices. The camera driver conforms to the architecture for
Windows CE stream interface drivers, and allows applications to use the middleware layer provided by the
DirectShow video capture infrastructure to communicate with and control the camera. At the lower layer,
the camera driver performs several tasks:

* Communicating with and configuring the camera device or other input device through the I’C

interface

* Interfacing with the Image Processing Unit (IPU) to perform pre-processing tasks on captured

images

* Configuring the IPU Synchronous Display Controller (SDC) for display of video preview data
For i.MX35 BSP, this module is compatible with the camera sensor OV2640. And it is also supported

TVIN device ADV7180.

Table 7-1 provides a summary of source code location, library dependencies and other BSP information.

Table 7-1. Camera Driver Summary

Driver Attribute

Definition

Target Platform

iMX35-3DS-PDK1_7

Target SOC

MX35_FSL_V2_PDK1_7

SOC Common Path

.\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\IPU\CAMERA

SOC Specific Path

.\PLATFORM\COMMON\SRC\SOC\<Target SOC>\CAMERA

Platform Specific Path

.\PLATFORM\<Target Platform>SRC\DRIVERS\CAMERA

Driver DLL camera.dll
SDK Library N/A
Catalog Item Third Party > BSPs > Freescale <Target Platform>:ARMV4| > Device Drivers > Camera

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor

7-1

Camera Driver

Table 7-1. Camera Driver Summary

SYSGEN Dependency | SYSGEN_IMAGING_BMP_ENCODE
SYSGEN_IMAGING_JPG_ENCODE
SYSGEN_IMAGING_BMP_DECODE
SYSGEN_IMAGING_JPG_DECODE
SYSGEN_DSHOW_DISPLAY
SYSGEN_DSHOW_CAPTURE
SYSGEN_DSHOW_DMO
SYSGEN_DSHOW_VIDREND

BSP Environment
Variables BSP_NOCAMERATVIN=

BSP_CAMERA=1 for camera used

BSP_TVIN=1 for TVIN used

7.2 Supported Functionality

The camera driver enables the 3-Stack System to provide the following software and hardware support:
Supports the Windows CE Camera Device Driver Interface

Supports Preview, Capture, and Still pins for camera application

Supports Preview pin for TVIN application.

Supports the OV2640 camera sensors for camera used for . MX35.

Supports the analog device ADV7180 for TVIN used for . MX35.

A e

7.3 Hardware Operation

Several hardware modules are involved in the operation of the Camera driver. The input device (camera
sensor or TVIN device) captures external image data. All other hardware elements of the Camera driver
are within the Image Processing Unit (IPU). The IPU Camera Sensor Interface (CSI) receives data from
the sensor/TVIN and converts the data into a format understood by the IPU. This data subsequently flows
through the IPU Image Converter (IC) module, where it undergoes pre-processing. There are two
pre-processing paths: one for encoding and one for viewfinding. The pre-processed image data is then
transferred by the [IPU DMA module to one of two destinations: system memory (encoding or viewfinding
data) or the IPU Synchronous Display Controller (SDC) for display (viewfinding data).

For detailed operation and programming information, refer to the chapter on the Image Processing Unit
(IPU) in the hardware specification document.

7.3.1 Conflicts with Other Peripherals and Catalog Iltems

7.3.11 Conflicts with SoC Peripherals

For 1.MX35 platform, the camera sensor shares the CSI interface with the TVIN device and they use the
same camera driver. Only one module can be used on the .MX35 3-Stack board at one time.

Windows Embedded CE 6.0 BSP Reference Manual

7-2 Freescale Semiconductor

Camera Driver

7.3.2 Conflicts with 3-Stack Peripherals

No conflicts.

7.4 Software Operation

The development concepts for camera driver is described in the Windows CE 6.0 Help Documentation
section under the topic

Developing a Device Driver > Windows Embedded CE Drivers > Camera Drivers.

7.4.1 Communicating with the Camera

Communication with the camera driver is accomplished through Camera APIs defined by Microsoft for
Windows Embedded CE 6.0. Applications may access these Camera APIs directly or through the
DirectShow video capture support.

7411 Using the Windows CE Video Camera Device Driver Interface

The Windows CE Video Camera Device Driver Interface provides basic support for video and still image
capture devices. For information about using camera APIs, see the Windows Embedded CE 6.0 Help topic:

Developing a Device Driver > Windows Embedded CE Drivers > Camera Drivers > Camera Driver
Reference.

7.41.2 Using DirectShow for Video Capture

DirectShow provides support in its architecture for the creation of filter graphs for video capture. For
information about using DirectShow for video capture, see the Windows Embedded CE 6.0 Help:

Windows Embedded CE Features > Encoded Media > DirectShow > DirectShow Application
Development > Audio and Video Capture Support > Video Capture.

7.4.2 Registry Settings

Two sets of registry settings are important for proper Camera Driver operation. One set is for the camera
driver, and the other is for the DirectShow Capture Pins.

This section describes the registry keys used to select the camera sensor used on the SoC.

7421 i.MX35 Registry Settings

The following registry keys are required to properly load the Camera Driver.

#1f (defined BSP CAMERA || defined BSP TVIN)
[HKEY LOCAL MACHINE\Drivers\BuiltIn\Camera]
"Prefix"="CAM"
"Dll"="camera.dll"
"Order"=dword:20
"Index"=dword:1
IF BSP_CAMERA

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 7-3

Camera Driver

"CameralId"=dword:3
ELSE

"CameralId"=dword:4
ENDIF ;BSP CAMERA

;See c¢si.h,In WinCE6.0,default is 2. CameralnUse: 0=iMagic8803,

2=Magnab21DA, 3=o0ov2640, 4=Adv7180

"IClass"=multi sz:

1=iMagic8201,

"{CB998A05-122C-4166-846A-933E4D7E3C86}", " {A32942B7-920C-486b-BO0E6-92A702A%9B35}"

The Camerald registry key identifies the available camera sensor modules. Valid values:

* 0 to indicate that the camera sensor in use is the iMagic IM8803
* 1 to indicate that the camera sensor in use is the iMagic IM8201.
* 2 to indicate that the camera sensor in use is the Magna521DA.

* 3 to indicate that the camera sensor in use is the OV2640.

* 4 to indicate that the TVIN in use is the ADV7180.

[HKEY LOCAL MACHINE\Software\Microsoft\DirectX\DirectShow\Capture]

"Prefix"="PIN"

"Dll"="camera.dll"

"Order"=dword:20

"Index"=dword:1l

"PinCount"=dword:3 ;Pin count. Max = 3; default = 2

"MemoryModel"=dword:1 ; Pin memory mode.

"IClass"=multi sz:"{C9D092D6-827A-45E2-8144-DE1982BFC3A8}",
"{A32942B7-920C-486b-BOE6-92A702A99B35}"

#endif ; (defined BSP_CAMERA || defined BSP_TVIN)

7.5 Power Management

The camera driver consumes power primarily through the operation of various IPU sub-modules, such as
the CSI (which synchronizes and receives image data from the camera sensor) and the IC (which performs
pre-processing operations on captured image data). The CSI and IC modules are enabled when the camera
or TVIN device is set to a running state.

Support for transitioning to the Suspend and Resume states if provided through the IOCTL POWER SET
IOCTL.

7.51 Power Up

This function is not implemented for the camera driver.

7.5.2 Power Down

This function is not implemented for the camera driver.

Windows Embedded CE 6.0 BSP Reference Manual

7-4

Freescale Semiconductor

Camera Driver

7.5.3 IOCTL_POWER_SET

7.5.31 i.MX35I0CTL_POWER_SET Support

The camera driver implements the IOCTL POWER SET IOCTL API with support for the DO (Full on)
and D4 (Off) power states.
These states are handled in the following manner:

* DO — Action is only taken when resuming from the D4 state. If the camera was running when the
transition to the D4 state occurred, the camera returns to a running state, re-enabling the CSI and
IC modules.

» D4 — Action is only taken if the camera is running when the request to transition to the D4 state
occurs.

7.6 Unit Test

Because the Camera Driver API was introduced with Windows Embedded CE 6.0, there are CETK tests
written and provided by Microsoft.
The Camera CETK tests include:

» The Camera Driver Data Structure Verification Test - queries the driver for the various properties
and formats, and verifies that the data structures returned are valid.

* The Camera Driver I/O Test - verifies the functionality of the preview and capture streams on the
camera driver.

* The Camera and DirectShow Integration Test - verifies the functionality of the camera driver when
used under DirectShow.

* The Camera Performance Test suite - gathers performance data for a number of DirectShow
capture scenarios.

Additionally, for Windows Embedded CE 6.0, a Camera Application may be used to preview and capture
images. A TVIN Application is only used to preview images.

7.6.1 Unit Test Hardware

Table 7-2 lists the required hardware to run the unit tests.

Table 7-2. Hardware Requirements

Requirement Description

Camera Sensor or TVIN device 0OV2640 CMOS camera sensor

The OV2640 camera sensor is used to run the Windows Embedded CE 6.0 Camera CETK test and the
camera application. The TVIN device ADV7180 is used to run the Windows Embedded CE 6.0 Camera
CETK test (only need test preview parts) and the TVIN application.

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 7-5

Camera Driver

7.6.2 Unit Test Software

7.6.2.1 CETK Test

Table 7-3 lists the required software to run the Camera Test.
Table 7-3. Software Requirements

Requirement Description
Tux.exe Tux test harness, which is needed for executing the test
Kato.dll Kato logging engine, which is required for logging test data
Tooltalk.dll Library required by Tux.exe and Kato.dll. Handles the transport between the target device and the

development workstation

CameraGraphTests.dll | Library containing the camera and directshow integration test cases

CamTestProperties.dll | Library containing the camera driver data structure verification test cases

CamlOTests.dll Library containing the camera driver I/O test cases

CameraPerfTests.dll | Library containing the camera performance test cases

Cameragrabber.dl| Filter required by many command-line options to track and output information about media samples

camera.dll Driver.dll file

The configuration file capconfig.ini is required for cameraberfTests.dll.

7.6.2.2 Custom Camera and TVIN Application Test

The camapp.exe executable file is needed to run the custom camera application. The tvinapp.exe
executable file is needed to run the custom TVIN application.

7.6.2.3 Camera and TVIN Application Test

No additional actions are required to include the Windows CE 6.0 Camera/TVIN Application in an OS
image beyond the required registry keys.

7.6.3 Building the Unit Tests

7.6.3.1 CETK Test

The camera tests come pre-built as part of the CETK so no steps are required to build these tests. These
test files can be found with the other required CETK files in the following location:

[Drive]:\Program Files\Microsoft Platform Builder\6.00\cepb\wcetk\ddtk\armv4I

7.6.3.2 Custom Camera and TVIN Application Test
To build the custom Camera/TVIN application, complete the following steps.

Windows Embedded CE 6.0 BSP Reference Manual

7-6 Freescale Semiconductor

Camera Driver

Build an OS image for the desired Camera/TVIN configuration:

1. Add a new folder named arp under the folder ..\PLATFORM\<Target Platform>\SRC
Create an empty dirs file under the folder ..\PLATFORM\<Target Platform>\SRC\APP
Copy the folder of camapp/TvIN under the folder app
Select the Solution Explorer of the Platform Builder Workspace window
Expand Platform > <Target Platform> > Src > App > CAMAPP/TvIn
Right-click on the CAMAPP/TVIN folder and select Rebuild

A

The CAMAPP/TVIN execution file (camapp.exe/tvinapp.exe) is created in the obj\release or
obj\debug folder under the camarp/TvIN folder. The camapp.exe/tvinapp.exe file is copied to the
workspace release directory.

Complete the following steps to build the custom Camera/TVIN application:
1. Select the solution Explorer of the Platform Builder Workspace window
2. Select subprojects in Solution Explorer
3. Right-click subprojects and select Add Existing Subproject
4

. Add the CAMAPP/TVIN project by selecting the sources file located in
\WINCE600\SUPPORT\APP\CAMAPP folder

5. Right-click on the CAMAPP/TVIN project and select Rebuild

The CAMAPP/TVIN execution file (camapp.exe/tvinapp.exe) is created in the workspace release
directory.

7.6.4 Running the Unit Tests

7.6.4.1 Running the Camera Unit Tests

7.6.4.1.1 Running the Camera CETK Test
For detailed information about the tests in this section, see the Windows Embedded CE 6.0 Help topic:
Windows Embedded CE Test Kit > CETK Tests and Test Tools > CECETK Tests > Camera Tests

Use this command line to run the Camera and DirectShow integration test:

tux -o —-d CameraGraphTests.dll

Use this command line to run the Camera Driver Data Structure Verification test:

tux -o —-d CamTestProperties.dll

Use this command line to run the Camera Driver 1/O test:

tux -o —-d CamIOTests.dll

Use this command line to run the Camera Performance test:

tux -o -d cameraperftests.dll -c "-p \release\capresults.csv -c
\release\capconfig.ini"

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 7-7

Camera Driver

NOTE

The Camera Performance test requires the configuration file capconfig.ini
which specifies what to test, by copying the file under the corresponding
folder such as \release before testing from the following location:

[Drive] :\Program Files\Microsoft Platform
Builder\6.00\cepb\wcetk\ddtk\armv4I

For 1.MX35 Case #508 and #510 may fail for CameraGraphTests.dll.

7.6.4.1.2 Running the Custom Camera Application Test

The following command executes the Custom Camera Application: camapp.exe

7.6.4.2 Running the TVIN Unit Tests

7.6.4.2.1 Running the TVIN CETK Test

TVIN only supports preview, so only test related preview CETK. Use this command line to run the Camera
and DirectShow integration test:

tux -o —-d CameraGraphTests.dll -x !400-607

Use this command line to run the Camera Driver Data Structure Verification test:

tux -o —-d CamTestProperties.dll

Use this command line to run the Camera Driver [/O test:

tux -o —-d CamIOTests.dll

Use this command line to run the Camera Performance test:

tux -o -d cameraperftests.dll -c "-p \release\capresults.csv -c
\release\capconfig.ini™ -x !300-401

NOTE

TVIN CETK does not support these cases related to Capture Pin and Still
Pin.

7.6.4.2.2 Running the Custom TVIN Application Test

The following command executes the Custom TVIN Application: tvinapp.exe

7.7 Camera Driver API Reference

For the camera driver API reference, see the Windows Embedded CE 6.0 documentation. There is one
additional custom API provided to allow applications to enable direct display of video preview data. For

reference information on basic camera driver functions, methods, and structures, see the Windows
Embedded CE 6.0 Help:

Windows Embedded CE 6.0 BSP Reference Manual

7-8 Freescale Semiconductor

Camera Driver

Developing a Device Driver > Windows Embedded CE Drivers > Camera Drivers > Camera Driver
Reference

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 7-9

Camera Driver

Windows Embedded CE 6.0 BSP Reference Manual

7-10 Freescale Semiconductor

Chapter 8

Configurable Serial Peripheral Interface (CSPI) Driver

The CSPI module provides master functionality of a standard CSPI bus.

8.1

CSPI Driver Summary

Table 8-1 provides a summary of source code location, library dependencies and other BSP information.

Table 8-1. CSPI Driver Summary

Driver Attribute

Definition

Target Platform

iMX35-3DS-PDK1_7

Target SOC

MX35_FSL_V2_PDK1_7

SOC Common Path

.\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\CSPIBUSV2

SOC Specific Path

.\PLATFORM\COMMON\SRC\SOC\<Target SOC>\CSPIBUS

Platform Driver Path

.\PLATFORM\<Target Platform>\DRIVERS\CSPIBUS

Import Library cspisdk.lib
Driver DLL cspi.dll
Catalog Item Third Party > BSP > Freescale <TGTPLAT> > Device Drivers > CSPI Bus

SYSGEN Dependency

N/A

BSP Environment Variables

BSP_CSPIBUS1=1 or BSP_CSPIBUS2=1

8.2

Supported Functionality

The CSPI driver supports the following features:

© NS kWD

Supports the CSPI master mode of operation

Supports CSPI configurable bus feature

Supports CSPI multiple channel method

Supports configurable access method of polling method and interrupt method
Supports DMA exchange mode for 32-bit interface SPI access

Supports buffering exchange for asynchronous SPI access

Supports stream interface

Supports two power management modes, full on and full off

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor

8-1

Configurable Serial Peripheral Interface (CSPI) Driver

8.2.1 Conflicts with Other Peripherals and Catalog Items

8.2.11 Conflicts with SoC Peripherals

The 1.MX35 platform contains two CSPI modules, but only the CSPI1 module is used on the .MX35 3DS
board. No pad is provided to CSPI2 module.

8.2.2 Conflicts with 3-Stack Peripherals

No conflicts

8.3 Software Operation

8.3.1 Registry Settings
The following registry keys are required to properly load the CSPI module.

; CSPI Bus Driver

IF BSP_CSPIBUSl

[HKEY LOCAL MACHINE\Drivers\BuiltIn\CSPI1]
"Prefix"="SPI"
"Dl1l"="cspi.dll"
"Index"=dword:1l

ENDIF ; BSP _CSPIBUS1

IF BSP_CSPIBUSZ

[HKEY LOCAL MACHINE\Drivers\BuiltIn\CSPI2]
"Prefix"="SPI"
"Dl1"="cspi.dll"
"Index"=dword:2

ENDIF ; BSP_CSPIBUSZ

8.3.2 Communicating with the CSPI

The CSPI is a stream interface driver, and is thus accessed through the file system APIs. To communicate
using the CSPI, a handle to the device must first be created using the CreateFile function. Subsequent
commands to the device are issued using the DeviceloControl function with IOCTL codes specifying the
desired operation. If preferred, the DeviceloControl function calls can be replaced with macros that hide
the DeviceloControl call details. The basic steps are detailed below.

8.3.3 Creating a Handle to the CSPI

Call the CreateFile function to open a connection to the CSPI device. A CSPI port must be specified in
this call. The format is “SPIX:”, with X being the number indicating the CSPI port. This number should
not exceed the number of CSPI instances on the platform. If an CSPI port does not exist, CreateFile
returns ERROR_FILE NOT FOUND.

Windows Embedded CE 6.0 BSP Reference Manual

8-2 Freescale Semiconductor

Configurable Serial Peripheral Interface (CSPI) Driver

To open a handle to the CSPI:
1. Insert a colon after the CSPI port for the first parameter, [pFileName

For example, specify SPI1: as the CSPI port

2. Specify FILE SHARE READ | FILE SHARE WRITE in the dwShareMode parameter. Multiple
handles to an CSPI port are supported by the driver.

3. Specify OPEN EXISTING in the dwCreationDisposition parameter. This flag is required.
Specify FILE FLAG RANDOM ACCESS in the dwFlagsAndAttributes parameter.

The following code example shows how to open a CSPI port.

// Open the serial port.

hSPI = CreateFile (L”SPI1:”, // name of device
GENERIC READ | GENERIC WRITE, // access (read-write) mode
FILE SHARE READ | FILE SHARE WRITE, // sharing mode
NULL, // security attributes (ignored)
OPEN EXISTING, // creation disposition
FILE FLAG_RANDOM ACCESS, // flags/attributes
NULL) ; // template file (ignored)

8.34 Data Transfer Operations

The CSPI driver provides one command, SPIExchange, that facilitates performing both reads and writes
through the CSPI bus. The basic unit of data transfer in the CSPI driver is the CSPI_XCH_PKT, which
contains a RX buffer for reading data, a TX buffer for writing data and a CSPI_BUSCONFIG datum that
specifies the desired bus configuration and XCH method which is used during the SPI transmission. The
steps below detail explain the process of performing write and read operations through the CSPI bus.

Before these actions can be taken, a handle to the CSPI port must already be opened. Each of these steps
requires a call to the DeviceloControl function. As parameters, the CSPI port handle, appropriate [OCTL
code, and other input and output parameters are required.

To perform an CSPI transfer:
1. Create a CSPI_XCH_PKT object and initialize the fields of the packet as follows:

a) Initialize a CSPI_ BUSCONFIG datum to specify the bus parameters as CHANNEL SELECT,
DATA RATE, BURST LENGTH, SSPOL, SSCTL, POL, PHA, DRCTL, and specify the
method parameters for use/not use DMA, use/not use POLLING.

b) Set the pTxBuf field to the user buffer which the data is written.

c) Set the pRxBuf field to the user buffer which receives data, if does not care of the Rx data, set
the field to NULL.

d) Set the xchCnt field, for the 1-8 bit XCH, the xchCnt = bytes, for the 9-16 bit XCH, the xchCnt
= words, for the 17-32 bit XCH, the xchCnt = dwords.

e) If give the xchEvent parameter, also give the xchEventlength and include the tail Zero character.
Otherwise, set xchEvent to NULL, and xchEventlength to 0. When use xchEvent the XCH data
is queued inside driver.

2. Set the hDevice parameter to the previously acquired CSPI port handle.
3. Set the dwloControlCode to the SPI IOCTL _EXCHANGE IOCTL code.

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 8-3

Configurable Serial Peripheral Interface (CSPI) Driver

4. Set the IpInBuffer to point to the CSPI_XCH_PKT object created in step 1. Set n/nBufferSize to the
size of that packet object.

5. Set IpOutBuffer, IpBytesReturned, and I[pOverlapped to NULL. Set nOutBufferSize to 0.

The following code example demonstrates how to perform a XCH transfer.

CSPI _BUSCONFIG T buscnfg =
{

0, //use channel 0

16000000, //XCH speed 16M

32, //data rate = 32bit

FALSE, // SSCTL: Only one SPI burst will be transmitted.
TRUE, // SSPOL: Active HIGH

FALSE, // POL: Active high polarity

FALSE, // PHA: Phase 0 operation

0, // DRCTL: Don’t care SPI _RDY

FALSE, //Don't use DMA

FALSE //Don't polling

b

DWORD TxDatal[l1l];
DWORD RxDatal[ll];

CSPI_XCH PKT T xchPkt =
{
&buscnfg,
TxData,
RxData,
11, // XCH to target SPI device 11 times
NULL,
0
i // optional asynchronous event, recommended
hEvent = CreateEvent (0, FALSE, FALSE, L"RX EVENT") ;
xchpkt.xchEvent = L"RX EVENT";
xchpkt.xchEventLength = sizeof(L"RX_EVENT");
// Transfer data via CSPI

DeviceIoControl (hCSPI, // file handle to the driver
CSPI IOCTL EXCHANGE, // I/0 control code

(PBYTE) &xchPkt, // in buffer

sizeof (xchPkt), // in buffer size

NULL, // out buffer

0, // out buffer size

NULL, // number of bytes returned

NULL) ; // ignored (=NULL)

As a substitute for the DeviceloControl call above, a SDK wrap function may be used to simplify the code.
The following is an example:

CSPIExchange (hCSPI, &xchPkt); // optional
WaitForSingleObject (hEvent, INFINITE) ; // Code for dealing received DATA

8.3.5 Closing the Handle to the CSPI

Call the CloseHandle function to close a handle to the CSPI after an application finishes using it.
CloseHandle has one parameter, which is the handle returned by the CreateFile function call that opened
the CSPI port.

Windows Embedded CE 6.0 BSP Reference Manual

8-4 Freescale Semiconductor

Configurable Serial Peripheral Interface (CSPI) Driver

8.3.6 Power Management

The primary method for limiting power consumption in the CSPI module is to gate off the input clock to
the module when the input CSPI clock is not needed. This is accomplished through the

DDKClockSetGatingMode function call. In all of the BSP use cases, the CSPI controller acts as a master
device. As aresult, the CSPI clock can be turned off, whenever the module is not processing CSPI packets.

As described in the Data Transfer Operations section, the CSPI driver turns on the CSPI clocks and
enables the CSPI module before processing an CSPI XCH, and then disables and turns off clocks to the
CSPI module after the XCH has been done. This limits the time during which the CSPI module is
consuming power to the time during which the CSPI is actively performing data transfers.

8.3.6.1 PowerUp
This function is not implemented for the CSPI driver. Power to the CSPI module is managed as CSPI
transfer operations are processed. There are no additional power management steps needed for the CSPI.

8.3.6.2 PowerDown
This function is not implemented for the CSPI driver.

8.3.6.3 IOCTL_POWER_SET

This function is implemented for the CSPI driver. When D4 power mode is set, the driver switches its
operating mode to polling mode that does not produce interrupt events to BSP system. When leaving the
D4 power mode, the driver recovers its origin operating mode.

8.4 Restrictions

The following restrictions apply to the DMA XCH:
* The DMA XCH in CSPI only supports 32-bit data size that is DWORD aligned
* The DMA XCH size is restricted to maximum DMA buffer size, up to 5 Kbytes

8.5 Unit Test

The CSPI driver does not use the CETK for unit testing, but uses the test program described in the
following section for unit tests.

8.5.1 Building the Unit Tests

To build the CSPI tests, build an OS image for the desired configuration using these steps:
1. Within the Platform Builder, choose Build OS > Open Release Directory.
A DOS prompt is displayed.
2. Change to the CSPI Test directory: \winceeoo\support PDKI1 7\TEsT\cSPI
3. Enter set WINCEREL=1 on the command prompt and press return.

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 8-5

Configurable Serial Peripheral Interface (CSPI) Driver

This copies the EXE to the flat release directory.
4. Input build -c to build CSPI test.
After the build completes, the CSPIAPP.EXE file is located in the $(FLATRELEASEDIR) directory. To
run the application within VS2005, go to the Target menu option and select the Run Programs menu

option. This gives a list of applications that can be run on the OS. Select CSPIAPP.EXE from this list and
click on Run to run this application.

8.6 CSPI Driver API Reference

8.6.1 CSPI Driver IOCTLS

This section consists of descriptions for the CSPI I/O control codes (IOCTLs). These IOCTLs are used in
calls to DeviceloControl to issue commands to the CSPI device. Only relevant parameters for the [OCTL
have a description provided.

8.6.1.1 CSPI_IOCTL_EXCHANGE

This DeviceloControl request performs the transfer of data to a target device. An SPI_ XCH_PKT object
is required, which contains CSPI bus configuration parameters and TX/RX data buffers. All of the required
information should be stored in the SPI XCH_PKT passed in the Ip/nBuffer field.

Parameters

IpInBuffer Pointer to an SPI XCH_PKT structure containing a pointer to bus configuration
parameters and TX/RX data buffers
ninBufferSize Size in bytes of the SPI XCH PKT

8.6.1.2 CSPI_IOCTL_ENABLE_LOOPBACK
This DeviceloControl request sets the LOOPBACK flag in the CSPI hardware.

8.6.1.3 CSPI_IOCTL_DISABLE_LOOPBACK
This DeviceloControl request clears the LOOPBACK flag in the CSPI hardware.

8.6.2 CSPI Driver SDK Wrapper

8.6.2.1 CSPIOpenHandle

This function retrieves the CSPI device handle.

HANDLE CSPIOpenHandle (
LPCWSTR IpDevName
);

Parameters
IpDevName The CSPI device name for retrieving handle from CreateFile()
Return Values Returns Handle for CSPI driver; returns INVALID HANDLE VALUE if failure

Windows Embedded CE 6.0 BSP Reference Manual

8-6 Freescale Semiconductor

Configurable Serial Peripheral Interface (CSPI) Driver

8.6.2.2 CSPICloseHandle

This function closes a handle of the CSPI stream driver.

BOOL CSPICloseHandle (
HANDLE hDev
)

Parameters
hDev The CSPI device handle retrieved from CreateFile()
Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful

8.6.2.3 CSPIEnableLoopback

This function sets the CSPI controller in loopback mode to inspect if data value during XCH is correct.

BOOL CSPIEnbaleLoopback (
HANDLE hDev
);

Parameters
hDev The CSPI device handle retrieved from CreateFile()
Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful

8.6.2.4 CSPIExchange

This function performs XCH operations.

BOOL CSPITransfer (

HANDLE hDev,

PCSPI_XCH _PKT_T pCspiXchPkt
);

Parameters

hDev The CSPI device handle retrieved from CreateFile()

pCspiXchPkt [in] Pointer to XCH packet with bus configuration parameters

Return Values Returns TRUE or FALSE. If the result is TRUE, the operation is successful

8.6.3 CSPI Driver Structures

8.6.31 CSPI_BUSCONFIG T

This structure contains the bus configuration information needed during CSPI performs XCH.

// CSPI bus configuration
typedef struct
{

UINTS8 chipselect;
UINT32 freq;

UINTS8 bitcount;
BOOL sspol;

BOOL ssctl;

BOOL pol;

BOOL pha;

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 8-7

Configurable Serial Peripheral Interface (CSPI) Driver

UINTS
BOOL
BOOL

drctl;
usedma;
usepolling;
} CSPI_BUSCONFIG T,

*PCSPI_BUSCONFIG T;
Table 8-2. CSPI_BUSCONFIG_T Structure Members

Member Description
chipselect Select XCH channel, range 0-3
freq DATA band rate
bitcount Define bits used in a single XCH, range 1-32
sspol SPI SS Polarity Select. If FALSE, active low, if TURE, active high
ssctl SPI SS Wave Form Select. This bit controls the output wave form of SS signal
FALSE: Only one SPI bursts is transmitted
TRUE: Negate SS between SPI bursts. Multiple SPI bursts is transmitted
pol SPI Clock Polarity Control
FALSE: Active high polarity (0 = Idle)
TRUE: Active low polarity (1 = Idle)
pha SPI Clock/Data Phase Control
FALSE: Phase 0 operation
TRUE: Phase 1 operation
drctl DRCTL of CSPI XCH operation
00: Do not care SPI_RDY
01: Burst is triggered by failing edge of SPI_RDY
10: Burst is triggered by low level of SPI_RDY
11: RSV
usedma If TRUE, uses DMA mode
usepolling If TRUE, uses polling mode

8.6.3.2

CSPI_XCH_PKT_T

This structure contains an XCH buffer parameters to be used in data exchange to CSPI device.

// CSPI exchange packet
typedef struct

{

PCSPI BUSCONFIG T pBusCnfg;

LPVOID
LPVOID
UINT32
LPWSTR
UINT32
} CSPI XCH

pTxBuf;
pRxBuf;
xchCnt;
xchEvent;

xchEventLength;
PKT T, *PCSPI XCH PKT T;

Table 8-3. CSPI_XCH_PKT_T Structure Members

Member Description
pBusCnfg A pointer to CSPI bus configuration object
pTxBuf A pointer to Tx data buffer
pRxBuf A pointer to Rx data buffer

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor

Configurable Serial Peripheral Interface (CSPI) Driver

Table 8-3. CSPI_XCH_PKT_T Structure Members

Member Description
xchCnt Amount of XCH operation to SPI device
xchEvent Asynchronous access using the internal exchange queue
xchEventLength | Event name length including tailing Zero

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 8-9

Configurable Serial Peripheral Interface (CSPI) Driver

Windows Embedded CE 6.0 BSP Reference Manual

8-10 Freescale Semiconductor

Chapter 9
Controller Area Network (CAN) Driver

The CAN module provides the low level functionality of a CAN protocol according to the CAN 2.0B
protocol spec. The CAN module only supports Message Buffer mode.

9.1

Table 9-1 provides a summary of source code location, library dependencies and other BSP information.

CAN Driver Summary

Table 9-1. CAN Driver Summary

Driver Attribute

Definition

Target Platform

iIMX35-3DS-PDK1_7

Target SOC

N/A

SOC Common Path

.\PLATFORM\COMMON\SRC\SOC\COMMON_FSL_V2_PDK1_7\CANBUS

SOC Specific Path

N/A

Platform Specific Path

.\PLATFORM\<Target Platform>\SRC\DRIVERS\CANBUS

Driver DLL can.dll
SDK Library cansdk.lib
Catalog Item Third Party > BSPs > Freescale <Target Platform> > Device Drivers > CAN Bus

SYSGEN Dependency

N/A

BSP Environment Variables

BSP_CANBUS1=1
BSP_CANBUS2=1

9.2

Supported Functionality

The CAN driver enables the 3-Stack System to provide the following software and hardware support:

1. Supports the CAN communication protocol

2. Provides a stream interface driver implementing the programming interface defined in this

document

3. Supports two power management modes, full on and full off

9.3

Hardware Operation

Refer to the chapter on CAN in the Multimedia Applications Processor Reference Manual for detailed
operation and programming information.

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor

9-1

Controller Area Network (CAN) Driver

9.3.1 Conflicts with Other Peripherals and Catalog Items

9.3.11 Conflicts with SoC Peripherals

No conflicts.

9.3.1.2 Conflicts with 3-Stack Peripherals

On the 3-Stack board, CAN1 pin conflicts with the USB high speed device. Do not enable the USB host
device driver when CANI1 driver is enabled.

9.4 Software Operation

9.4.1 Communicating with the CAN

The CAN driver is a stream interface driver, and is thus accessed through the file system APIs. To
communicate using the CAN, a handle to the device must first be created using the CreateFile function.
Subsequent commands to the device are issued using the DeviceloControl function with IOCTL codes
specifying the desired operation. If preferred, the DeviceloControl function calls can be replaced with
macros that hide the DeviceloControl call details. The basic steps are detailed below.

9.4.2 Creating a Handle to the CAN

Call the CreateFile function to open a connection to the CAN device. A CAN port must be specified in
this call. The format is “CANX”, with X being the number indicating the CAN port. This number should
not exceed the number of CAN instances on the platform. If an CAN port does not exist, CreateFile
returns ERROR_FILE NOT FOUND.

To open a handle to the CAN:

1. Insert a colon after the CAN port for the first parameter, [pFileName. For example, specity CAN1:
as the CAN port.

2. Specify FILE SHARE READ |FILE SHARE WRITE in the dwShareMode parameter. Multiple
handles to an CAN port are supported by the driver.

3. Specify OPEN _EXISTING in the dwCreationDisposition parameter. This flag is required.
4. Specify FILE FLAG RANDOM ACCESS in the dwFlagsAndAttributes parameter.

The following code example shows how to open an CAN1 port.

// Open the CAN port.

hCAN = CreateFile (CAN1 FID, // name of device
GENERIC READ | GENERIC WRITE, // access (read-write) mode
FILE SHARE READ | FILE SHARE WRITE, // sharing mode
NULL, // security attributes (ignored)
OPEN_EXISTING, // creation disposition
FILE FLAG RANDOM ACCESS, // flags/attributes
NULL) ; // template file (ignored)

Windows Embedded CE 6.0 BSP Reference Manual

9-2 Freescale Semiconductor

Controller Area Network (CAN) Driver

Before writing to or reading from an CAN port, the port must be configured. When an application opens
an CAN port, it uses the default configuration settings, which might not be suitable for the device at the
other end of the connection.

9.4.3 Configuring the CAN

Configuring the CAN port for communications involves one main operation: setting the CAN for transmit
or receiver mode. Before this action can be taken, a handle to the CAN port must already be opened. Each
of these steps requires a call to the DeviceloControl function. As parameters, the CAN port handle,
appropriate IOCTL code, and other input and output parameters are required.

To configure an CAN port:
1. Set the hDevice parameter to the previously acquired CAN port handle.

2. Set the dwloControlCode to the following IOCTL code: CAN _IOCTL _SET CAN MODE

3. Set the IpInBuffer to point to the variable to use for the CAN port setting. Set nInBufferSize to the
size of that variable.

4. Set IpOutBuffer, IpBytesReturned, and [pOverlapped to NULL. Set nOutBufferSize to 0.
The following code example shows how to configure the CAN port.

// Set CAN mode

DeviceIoControl (hCAN, // file handle to the driver
CAN IOCTL_SET CAN MODE, // 1I/O control code
&ChangedMode, // in buffer
sizeof (DWORD) // in buffer size
NULL, // out buffer
0, // out buffer size
NULL, // number of bytes returned
NULL) ; // ignored (=NULL)

As a substitute for the DeviceloControl calls above, sdk may be used to simplify the code. The following
code shows an example:

CANSetMode (HANDLE hCAN, DWORD index,CAN MODE mode) ;

944 Data Transfer Operations

The CAN driver provides one command, Transfer, that facilitates performing both reads and writes
through the CAN. The basic unit of data transfer in the CAN driver is the CAN_PACKET, which contains
a buffer for reading or writing data and a flag that specifies whether the desired operation is a Read or a
Write. An array of these packets makes up an CAN_ TRANSFER BLOCK object, which is needed to
perform a Transfer operation. The steps below detail the process of performing write and read operations
through the CAN.

Before these actions can be taken, a handle to the CAN port must already be opened. Each of these steps
requires a call to the DeviceloControl function. As parameters, the CAN port handle, appropriate [OCTL
code, and other input and output parameters are required.

Windows Embedded CE 6.0 BSP Reference Manual

Freescale Semiconductor 9-3

Controller Area Network (CAN) Driver

To perform an CAN transfer:
1. Create an array of CAN_PACKET objects and initialize the fields of each packet as follows:
a) Set the bylndex field to the message buffer index for exchange data, the maximun value is 64.

b) Set the byRW field to CAN RW_WRITE to specify that the CAN operation is a Write, or
CAN_RW_READ to specify that the CAN operation is a Read.

c) Setthe format field to CAN_STANDARD to specify that the CAN frame format is a standard,
or CAN_EXTENDED to specify that the CAN frame format is a extended.

d) Set the frame field to CAN_DATA to specify that the CAN RTR format is a data, or
CAN_REMOTE to specify that the CAN RTR frame format is a remote.

e) Set the ID field to the message buffer ID for exchange data, for standard frame only