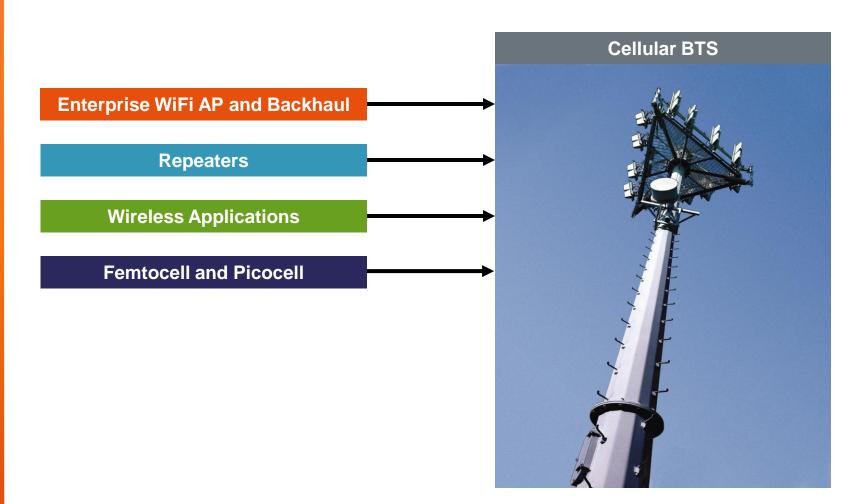


MMIC Low Noise Amplifier Portfolio

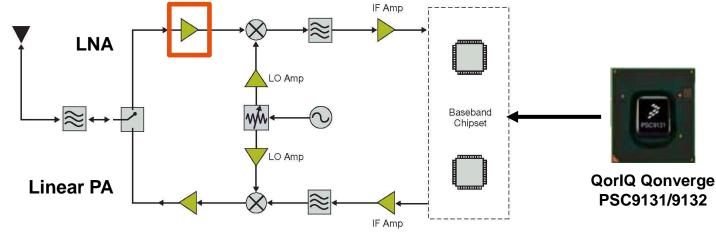
Oct 2012 Rev. 1


Outline

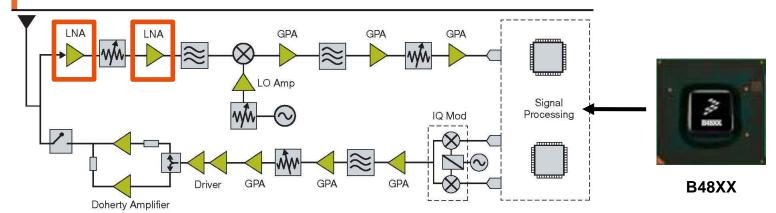
- Markets and applications
- Roadmap and portfolio
- Femtocell reference design
- Competitive matrix
- Support resources and collateral

Low Noise Amplifier Markets and Applications

freescale.com/RFMMIC



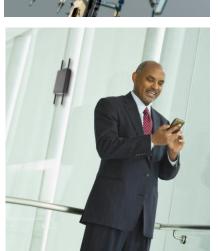
Where Do LNAs Live?


Femtocell

Air Interface:

- LTE FDD/TDD
- WCDMA (HSPA+)
- CDMA2K
- TD-SCDMA
- WiMAX

Macro BTS & Backhaul TXCVR


freescale.com/RFMMIC

Low Noise Amplifier Challenges

Receiver Sensitivity

- Low noise amplification with high gain
- Dynamic range

Multiband and multiprotocol operation with the same device

Bandwidths exceeding 100 MHz

Consistent performance over temperature

• Flat OIP3 over temperature

Robustness

- Ability to handle input overdrive
- Class 1B to 3A ESD HBM

Low Noise Amplifier Portfolio

		700 – 1000 MHz	1800 – 2200 MHz	2300 – 2700 MHz			
	Single Stage	Single Stage: MML09211H NF = 0.52 dB Gain = 21.3 dB	Single Stage: MML20211H NF = 0.65 dB Gain = 18.6 dB	Single Stage: MML20211H NF = 0.85 dB Gain = 18.1 dB			
	Sir	P1dB = 22 dBm OIP3 = 32.6 dBm	P1dB = 21.3 dBm OIP3 = 33 dBm	P1dB = 19.6 dBm OIP3 = 33 dBm			

		700 – 1000 MHz	1800 – 2200 MHz	2300 – 2700 MHz			
ò	Stage	Dual Stage: MML09212H NF = 0.52 dB	Dual Stage: MML20242H NF = 0.57 dB	Dual Stage: MML20242H NF = 0.85 dB			
	Dual	Gain = 37.5 dB	Gain = 34 dB	Gain = 32 dB			
		P1dB = 22.8 dBm	P1dB = 24 dBm	P1dB = 24 dBm			
		OIP3 = 37 dBm	OIP3 = 39.5 dBm	OIP3 = 39.5 dBm			

Low Noise Amplifier Product Selector Guide

Applications

- GSM, LTE, W-CDMA, TD-SCDMA, CDMA base station receivers
- Smart energy (IEEE® 802.15.4 ZigBee®)
- Small cell receivers
- Automotive
- GPS
- WLAN
- Two-way radio

The Freescale low noise amplifier (LNA) portfolio offers solutions to meet future design needs in a wide range of applications. Two technologies serve the LNA portfolio, each with distinct advantages for their applications. Our new GaAs E-pHEMT LNAs serve wireless infrastructure, small cell base station and many general wireless applications. Advanced SiGe technology is utilized in LNAs designed for wireless communication, cellular, consumer, automotive and industrial applications. Combining high performance with unique features and application-specific design tools, Freescale LNAs enable new design opportunities and shorten the design cycle.

GaAs LNA

Part Number	Freq. Range (MHz)	Test Freq. (MHz)	Small Signal Gain (dB)	Noise Figure (dB)	P1dB (dBm)	OIP3 (dBm)	Supply Voltage (V)	Supply Current (mA)	Package
MML20211H	1400-2800	2140	18.6	0.65	21.3	33	5	60	DFN 2 x 2
MML09211H	400-1400	900	21.3	0.52	22	32.6	5	60	DFN 2 x 2
MML09212H	400–1400	900	37.5	0.52	22.8	37	5	150	QFN 3 × 3
MML20242H	1400-2800	2140	34	0.57	24	39.5	5	160	QFN 3 x 3
MMG15241H	500-2800	2600	14.4	1.3	24	40.6	5	85	SOT-89
MMG20271H	1500-2700	2140	16	1.7	27.5	42	5	180*	QFN 3 x 3
MMG20271H9	1500-2700	2140	16	1.7	27.5	43.1	5	215	SOT-89

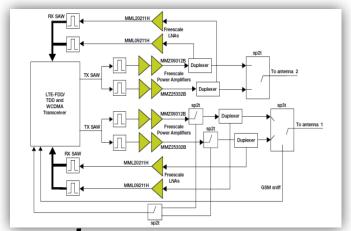
Nominal supply current is fully adjustable

SiGe LNA

Part Number	Freq. Range (MHz)	Test Freq. (MHz)	Gain (dB)	Noise Figure (dB)	P1dB (dBm)	OIP3 (dBm)	Supply Voltage (V)	Supply Current (mA)	Package
MBC13720	400-2500	900	20	1.2	11.5	22	2.3-3	5,11	SOT-363
MBC13916	100-2500	900	19	1.25	2.5	11	2.7-5	4.7	SOT-343R
MBC13917	100-2500	434	27	2.3	2.2	10.9	2.1-3.3	4.7	MLPD-6
MC13850	400-2500	1960	15	1.75	4	24.6	2.3-3	9.9, 4.7	MLPD-8
MC13851	1000-2500	1960	18	1.35	8	17.1	2.3-3	3.8	MLPD-8
MC13852	400-2500	900	18.2	1.2	9.9	13.1	2.3-3	4.4	MLPD-8

Freescale Femtocell Reference Design

- FDD LTE & WCDMA
- Band 1 & 13
- 20 mW average power at antenna



PSC9131 RDB

Baseband to Antenna Reference Design

Dual Band Radio Board(s)

Freescale Low Noise Amplifiers: Features and Competitive Advantages

Features

- Excellent Noise Figures (0.5 0.85 dB)
- Unconditionally stable over temperature
- Single +5 V supply; adjustable bias
- Performance insensitive to temperature
- Trade-offs between gain, NF and IP3 performance are greatly eased
- Inputs tolerant of +20 dBm overdrive
- Very high reverse isolation

Competitive Advantages

- Long established reputation for quality
- Unconditional stability over temperature
- Superior ESD handling and overdrive capability
- Simplified solutions: minimal BOM
- High reliability: proven by intrinsic and extrinsic reliability test data for every product
- Secure supply chain
- World-class global sales and application support
- GaAs E-pHEMT: excellent linearity with the lowest NF
- Single and dual-stage designs

MMIC Designer Kit and MMIC Solutions Binder

5-10 loose samples of each device in anti-static canisters

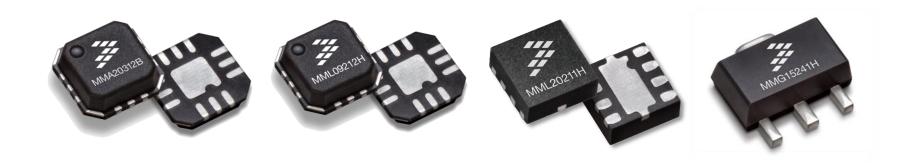
Designer Kit and Solutions Binder are available online at

freescale.com/RFMMIC

Support Resources

Data Sheets and Application Notes: <u>freescale.com/RFMMIC</u>

• S-Parameters: <u>freescale.com/RFMMIC</u> > Design Support


Solutions Brochure: <u>freescale.com/files/rf_if/doc/brochure/BR1609.pdf</u>

Cross Reference: freescale.com/files/rf if/doc/quick ref guide/MMICGPAQRG.pdf

Samples and Kits: <u>freescale.com/RFMMIC</u>

