
Memory Management Unit 9 - 1

Memory Management Unit
What you
will learn

Learn how to:
• Initialize a BAT register
• Set up the MMU for Page Translations

- Invalidate TLBs
- Define size and location of Hashed Page Table
- Configure Segment registers for a task
- Create the initial Hashed Page Table
- Load PTEs into Hashed Page Table

Why have
an MMU?

An MMU has several important uses:
 • Privilege Control - prevents access of Supervisor areas by User (Problem) level
 programs.
 • Cache Control - allows accesses to I/O devices to be non-cacheable while
 allowing other areas to be cacheable.
 • Read Protection - prevents loss of data from speculative destructive reads
 (status flags), while allowing speculative reads from other memory areas
 • Write Protection - allows selected memory areas to be read-only or treated like
 ROM.
 • Memory Protection - restricts programs to accessing only those memory areas
 needed. Prevents one task from erroneously or maliciously disturbing another
 tasks memory area.
 • Address Translation (relocation) - allows multiple programs that may have the
 same logical address range to reside in memory at the same time, by relocating
 them where convenient.

Memory Management Unit 9 - 2

What is the 603e MMU?
Definition The 603e MMU assigns protection attributes to pages in memory and also

implements address translation.

603e MMU

Instruction Translation
Lookaside Buffer

(ITLB)

Data Translation
Lookaside Buffer

(DTLB)

Effective
Addresses

Real
Addresses

Instruction Block Address
Translation (IBAT)

Data Block Address
Translation (DBAT)

Block
Diagram

1. The TLBs are address caches (64 entry, 2-way set associative) that hold
recently used 4K byte page entries.
2. The BATs are for large address ranges whose mappings don’t change often.

TLBs and
BATs

• The core asserts effective addresses which are converted to real addresses
by the MMU.
• The MMU also provides protection such as privilege-only access.
• Depending on the type of access and the way the MMU has been
programmed, the effective address may be handled either by way of a TLB,
page addressing, or a BAT.
• BAT registers are programmed from reset and changed infrequently or not
at all.
• TLBs are loaded from hashed page tables and entries are changed out more
frequently.

MMU
Functions

Memory Management Unit 9 - 3

What is Block Address Translation?
Definition If an effective address matches the corresponding field of a BAT register, the

information in the BAT register is used to generate the physical address.

Effective
Addresses

Real
AddressesBlock

Diagram IBATU0
IBATL0

IBATU1
IBATL1

IBATU2
IBATL2

IBATU3
IBATL3

DBATU0
DBATL0

DBATU1
DBATL1

DBATU2
DBATL2

DBATU3
DBATL3

4 gbyte
Memory Map

• Block address translation defines up to 8 windows in the memory map, four
for instructions and four for data.
• Data and instruction areas may overlap.
• When an effective address is asserted by the task, it is compared against the
eight windows defined by the BAT registers. If there is a match, the associated
real address is asserted. If there is no match, then page translation is executed.
• Blocks can vary in size from a minimum of 128K bytes to 256Mbytes.

Characteristics
of Block
Address

Translation

Memory Management Unit 9 - 4

BAT Programming Model

BEPI Res

Reserved

D or IBATxU - Upper BAT Registers, x=0-3 P. 7-25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
BL VS VP

BRPN Res

Reserved

D or IBATxL - Lower BAT Registers, x=0-3 P. 7-25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
WIMG* PPRes

*Attempts to write one to W and G in the IBAT registers causes
 boundedly-undefined results.

• The complete programming model for Block Address Translation consists
of 8 register pairs, structured as shown, four for instructions and four for data.

Summary

Memory Management Unit 9 - 5

How BAT Operates
Introduction The diagram below shows the flow of BAT operation. It assumes the block

protection bits, PP, are compatible. If not, a DSI or ISI exception occurs.

Start

Compare EA[0:14] with BEPI & ~BL in the IBATU
 registers if a fetch or DBATU registers if a load or store

Match? N BAT array miss

Y

Compare MSR[PR]=0 & VS=1 or MSR[PR]=1 & VP=1

Match? N BAT array miss

Y

Assert Real Address = BRPN plus EA[15:31]

End

Flow
Diagram

1. Operation begins with the assertion of an effective address.
2. The top 15 bits of the effective address is compared with the top bits of the
BEPI field in the upper BAT registers either instruction or data depending on
the type of access. The number of bits that actually are compared is
determined by the BL field in the upper BAT register.
3. If there is no match with any of the four BAT registers, the access is a
BAT miss. Following a BAT miss the MMU attempts to translate the address
using a TLB or page translation.
4. If there is a match, then the protection attributes are checked. If the
protection attributes don’t allow an this access, then the result is again a BAT
miss. In this case, an xSI exception is taken.
5. If the protection matches, then BRPN is concatenated with bits 16-31 are
used to form the real address.

Description
of Flow

Memory Management Unit 9 - 6

How to Locate a Block of Memory (1 of 2)

Hex numbers

Binary numbers

Use the following templates to fill in the individual fields, then convert to
hex register values:Procedure

Introduction This example shows how to locate a block of memory.

0

MIW G

0

IBATU

BEPI BL VS VP

0000

Register
Hex Value

IBATL

BRPN PP

0

Register
Hex Value

0
0

1. Because the bit fields of the BAT registers do not easily line up with the hex boundaries, these
templates can be helpful.
2. The colors identify the fields within the register.
3. Boxes outlining various fields in a register contain bits if the box is outlined with a thick line or
hex digits if outlined with a thin line.
4. Let’s try this out with an example.

Memory Management Unit 9 - 7

0F
011

10011
0F

M

0

I

0

W

0

G

0 0

How to Locate a Block of Memory (2 of 2)

IBATU 0

BEPI

F

BL VS

1

VP

00000 0
0 FFFC0006

Register
Hex Value

IBATL 0

BRPN PP

0
FFFC0003

Register
Hex Value

0

Hex numbers

Binary numbers

Example Locate a block of read-only memory at address 0xFFFC0000. The length
of the memory is 256K. Assume effective address equals real address and
only instructions are in the memory. Block should be accessible by the
supervisor only.

F C 0 6

F F C 0 0
1 1

3

1. The effective address is 0xFFFC0000 so in BEPI, the Block Effective Page Index, is initialized
to 0xFFF followed by binary 110, the 3 most significant bits of 0xC.
2. Since the real address is the same as the effective address, BRPN, the Block Real Page number,
is initialized similarly.
3. According to Table 7-9 on p. 7-26, the value for BL if the memory is 256K bytes is binary all
zeroes except a one in the least significant bit.
4. This block is to be accessible by the supervisor only; therefore VS is 1 and VP is zero.
5. The problem doesn’t state much about the WIMG bits, but since it is instruction-only, W and G
must be zero. Nothing is said about an external master; therefore, M is assigned zero. Finally, since
enabling the cache enhances performance, I is assigned zero.
6. According to Table 7-10 on p. 7-28, read-only permission is x1 so PP is assigned binary 11.
7. The final register values are shown.

Memory Management Unit 9 - 8

How to Initialize the MMU for BAT (1 of 2)
Introduction Here we describe the steps in initializing the MMU for BAT. Reset

conditions are assumed.

Action Here are the steps in initialization:

Step Action Example
Clear BAT registers li r22,0

 mtibatu 0,r22
 -
 mtibatu 3,r22
 mtdbatu 0,r22
 -
 mtdbatu 3,r22

1

Init lower BAT register
BRPN:real page addr[0:14]
WIMG:attribute bits
PP:access protection

(7-25)

2 lis r22,0xFFFC
 ori r22,r22,3
 mtibatl 0,r22

(Continued on next page)

1. First the valid bits of the upper BAT registers must be cleared..
2. Next, any required lower BAT registers are initialized.

Memory Management Unit 9 - 9

How to Initialize the MMU for BAT (2 of 2)

Action Step Action Example
Init upper BAT register

BEPI:effective addr[0:14]
BL:block length
VS:privilege mode valid
VP:problem mode valid

(7-25)

3 lis r22,0xFFFC
 ori r22,r22,6
 mtibatu 0,r22

Repeat steps 2 and 3 for
each required lower-upper
pair BAT registers.

4

Execute isync5 isync

Caution It is the responsibility of the software to insure that an effective address is
translated by only one IBAT and only one DBAT. If this is not done, results
are undefined.

1. Then the lower BAT registers are initialized.
2. After all the registers are initialized, execute an isync instruction. This will insure that all
previous instruction have been completed before proceeding.

Memory Management Unit 9 - 10

Exercise-Initialize MMU for BAT (1 of 2)
A system is to have 2 memory areas for Block Address Translation. The features of each
block are as follows:

Instruction
Block

Data
Block

Block Start Address, Eff 0xC8000000 0xE4000000

Length 4 Mbytes 512 Kbytes
Block Start Address, Real 0xC8000000 0xD2480000

WIMG M WIG
Access Protection R/O R/W
Supervisor/User Supervisor Both

Write the routine to initialize this system. (see next page)

1. Here’s a chance to check your understanding. Here we describe a configuration and on the
next page, please complete the program.

Memory Management Unit 9 - 11

Exercise-Initialize MMU for BAT (2 of 2)
 li r22,0 /* init gpr to zero */
 mtibatu 0,r22 /* invalidate IBAT0 */
 mtibatu 1,r22 /* invalidate IBAT1 */
 mtibatu 2,r22 /* invalidate IBAT2 */
 mtibatu 3,r22 /* invalidate IBAT3 */
 mtdbatu 0,r22 /* invalidate DBAT0 */
 mtdbatu 1,r22 /* invalidate DBAT1 */
 mtdbatu 2,r22 /* invalidate DBAT2 */
 mtdbatu 3,r22 /* invalidate DBAT3 */
 lis r22,______ /* init gpr for upper IBAT0L */
 ori r22,r22,____ /* init gpr for lower IBAT0L */
 mtibatl 0,r22 /* init IBAT0L */
 lis r22,______ /* init gpr for upper IBAT0U */
 ori r22,r22,____ /* init gpr for lower IBAT0U */
 mtibatu 0,r22 /* init IBAT0U */
 lis r22,______ /* init gpr for upper DBAT0L */
 ori r22,r22,____ /* init gpr for lower DBAT0L */
 mtdbatl 0,r22 /* init DBAT0L */
 lis r22,______ /* init gpr for upper DBAT0U */
 ori r22,r22,___ /* init gpr for lower DBAT0U */
 mtdbatu 0,r22 /* init DBAT0U */
 isync /* context synchronize */

Memory Management Unit 9 - 12

How to Assign BAT Protection (1 of 2)
Notation S:U = Supervisor:User

R/W:PT = Supervisor access is R/W:User access is Page Translation

If a block is to
have this

protection...

… then the
BAT register

valid bits
must be...

… and PP in the
 BATL must be...

R/W:R/W or
R/O:R/O or

No access:No access

VS = 1
and

VP = 1

10 for R/W:R/W
X1 for R/O:R/O

00 for No access:No access

PT:PT
VS = 0

and
VP = 0

Reference
Table

R/W:PT or
R/O:PT or

No access:PT

VS = 1
and

VP = 0

10 for R/W:PT
X1 for R/O:PT

00 for No access:PT
PT:R/W or
PT:R/O or

PT:No access

VS = 0
and

VP = 1

10 for PT:R/W
X1 for PT:R/O

00 for PT:No access

1. Here we can learn to assign the protection to a block that we desire. First of all, check the
notation we use. A protection pair consists of protection in the supervisor mode, followed by a
colon, followed by protection in the user mode.
2. So in the left hand column, we find the protection that we would like to give a particular
block, and then use the other two columns to tell us what values go into the valid bits and the PP
field.
3. For example, for a block in which we would like supervisor page translation and user
read/write, we would assigned 0 to VS, 1 to VP, and 10 to PP.
4. No access means the DSI or ISI exception will be taken.

Memory Management Unit 9 - 13

How to Assign BAT Protection (2 of 2)
Example Three blocks are to be protected as follows: BAT0 is to be R/W:R/W, BAT1

is to be PT:R/O, and BAT2 is to be R/O:PT. Fill in the required protection
values in the table below.

Block VS VP PP

0 1 1 10

1 x1

2 x1

Exercise Two blocks are to be protected as follows: BAT0 is to be No access:PT, and
BAT1 is to be R/W:R/W. Fill in the required protection values in the table
below.

0 1

1 0

Block VS VP PP

0

1

1. In the example, BAT0 is to be R/W:R/W. Looking at the table on the previous page, we see
this requires the valid bits to each be one, and the PP bits to be 10.
2. BAT1 is to be PT:R/O. Again, according to the previous table, VS must be zero, VP must be
one, and PP can be 01 or 11.
3. Finally, block 2 is to be R/O:PT requiring VS to be 1, VP to be zero, and PP again to be 01 or
11.
4. Try the exercise to check your understanding.

Memory Management Unit 9 - 14

What Are the WIMG Bits?
Definition The WIMG bits are attributes assigned to blocks and pages.

Attribute 0 1
W
I

M
G

Write-back Write-through
Caching enabled Caching inhibited

Local access Global access
Unguarded Guarded

Snooping
Block

Diagram,
M bit

PowerQUICC 2 Master
RAM

Address Bus

Control Signals

GBL*

If the asserted address is in a page or block with M=1, the GBL* signal is
asserted. This notifies other masters to snoop their data cache(s). If the
page or block has M=0, GBL* is not asserted.

1. Here’s a summary of the WIMG bits. We’re already familiar with W (write-through or write-
back) and I (cache enabled or disabled) from the cache chapter.
2. The diagram explains the M bit. M stands for Memory Coherency bit. It is useful only in
systems which can have more than one bus master. If a page with the M bit set is accessed, the
PowerQUICC 2 asserts the GBL, global, pin. This notifies other bus masters that the
PowerQUICC 2 is accessing data that they all share.
3. If the PowerQUICC is accessing data that the other bus master has cached, and if that data has
been modified, the access of the PowerQUICC 2 must be held off until the other bus master can
write the updated data to memory.

Memory Management Unit 9 - 15

What is the Guarded Bit?
The Guarded attribute prevents out-of-order loading and pre-fetching
from the addressed memory location.

Definition

Example loop: lbz Rx,0(Ry)

 bc loop

1. “bc loop” enters sequencer

2. Branch unit predicts branch to loop

3. Sequencer pre-fetches lbz instruction

4. If 0(Ry) is not guarded, data is
loaded. If it is guarded, data is not
loaded until the branch is decided.

Add’l
Comments

• A page should be guarded if it is subject to destructive reads.

• If the lbz instruction is in a guarded page, it is not fetched until the
branch is decided.

•If the guarded instruction or data is in cache, the guarded bit has no
effect.

Memory Management Unit 9 - 16

TLB

What is Page Translation?
Definition If an effective address matches the corresponding field of a TLB (Translation

Lookaside Buffer) entry, the information in the TLB entry is used to generate the
physical address.
.

Effective
Addresses

Real
Addresses

Block
Diagram

PTEU
PTEL

4 gbyte
Memory Map

PTEU
PTEL
PTEU
PTEL
PTEU
PTEL
PTEU
PTEL
PTEU
PTEL
PTEU
PTEL
PTEU
PTEL

• Page translation allocates memory in 4K blocks.
• Data and instruction areas may overlap.
• When an effective address is asserted by the task, it is compared against the
page entries in the TLB. If there is a match, the associated real address is
asserted. If there is no match, then a page table search occurs.

Characteristics
of Page

Translation

Memory Management Unit 9 - 17

Exercises - Page Translation
Introduction The diagram below shows two tasks accessing the memory map through the

MMU. A descriptor legend is shown along with six descriptors in the MMU.
.

Exercise

Task A

Task B

MMU Memory Map

Effective
Addresses

Real Addresses

EA RA
CI SH PP ID 123456780x1596120

876543210x2391358

112233440x3A7904C

556677880x45889C4

246813570x5DEF62C

264815370x6D5B758

Descriptor Legend

0x00824 0x01596
N N R/W A

0x00825 0x02391
N N R/O A

0x00431 0x05DEF
Y N R/W A

0x00C2A 0x04588
N N R/W B

0x00C2B 0x03A79
N Y R/W B

0x06D5B 0x06D5B
N Y R/W B

TLB
Entries

TLB entries can be either:
1. Initialized directly using the instructions tlbli or tlbld or
2. Loaded with the result of a page table search.

What is the result when:
1. Task A asserts a read to 0x824120? __
________.
2. Task A asserts a write to 0x825358? ___.
3. Task A asserts a read to 0x43162C? _______________________________.
4. Task A asserts a read to 0xC2A9C4? ___
_______.
5. Task A asserts a read to 0xC2B04C? __
_____________.
6. Task B asserts a read to 0x6D5B758? __
___________________.
7. Task A asserts a read to 0xC2C158? ___
________________________.

Memory Management Unit 9 - 18

Load TLB Direct Programming Model (1 of 2)

VSID

PTEU - Page Table Entry Upper P. 7-37
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
APIVSID

RPN

PTEL - Page Table Entry Lower P. 7-37
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
WIMGRPN 0 0 0

H

R C PP0

V

VSID

DCMP - Data PTE Compare Register P. 5-37
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
APIVSID H

V

Introduction The next two pages are the programming model for loading the TLB directly.

PTE, Page
Table Entry

• The PTE consists of two fields: the upper word, PTEU, and the lower word,
PTEL.
• PTEU contains the virtual segment ID which consists of the task number and
the segment number. It also contains the field API which is the most significant
six bits of the page index field of the effective address. The H bit indicates
whether this is a hash primary or hash secondary PTE.
• PTEL contains the real page number and the protection bits, WIMG and PP. In
addition, the R bit is used to record that this page has been accessed and the C bit,
that this page has been changed.

DCMP This register contains the value to be compared with PTEU in searching the TLB
or the page tables for a match. For a load TLB, this register specifies the PTEU to
go into the entry. This is for data accesses only.

Memory Management Unit 9 - 19

Load TLB Direct Programming Model (2 of 2)

VSID

ICMP - Instruction PTE Compare Register P. 5-37
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
APIVSID H

V

RPN

RPA - Required Physical Address Register P. 5-38
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
WIMGRPN 0 0 0 R C PP0

ICMP This register contains the value to be compared with PTEU in searching the TLB
or the page tables for a match. This is for instruction accesses only.

RPA On a TLB load, this register specifies the PTEL value to go into the entry. For a
table search, RPA will be loaded with the real address before returning from the
exception.

Memory Management Unit 9 - 20

How to Load a Page into a TLB (1 of 3)
Assumption - Reset conditions exist.

Action These are the steps in initialization:
Step Action Example

1

Invalidate the TLBs2 for(i=0;i<32;i++)
 invalidate(i<<12);
 .
 .
void invalidate(i)
int i;
{
 asm(“ tlbie r3”);
}

(Continued on next page)

Clear BAT registers li r22,0
 mtibatu 0,r22
 -
 mtibatu 3,r22
 mtdbatu 0,r22
 -
 mtdbatu 3,r22

Introduction Typically a TLB entry is loaded as a result of a miss exception routine doing a
table search, finding the PTE and loading it into the TLB. Sometimes, it may be
advantageous to load an entry prior to execution, perhaps as part of initialization
in a context switch. This procedure shows how to do such a load.

Step 1 Clearing the BAT registers following reset is SOP because any and all of the
BATUs could have their valid buts set.

Step 2 Invalidating the TLBs following reset is SOP because any entry can come up
falsely valid.

Memory Management Unit 9 - 21

How to Load a Page into a TLB (2 of 3)

Action
Step Action Example

Init DCMP with PTEU lis r22,0x8045
 ori r22,r22,0x0009
 mtspr 977,r22

3

Init RPA with PTEL4 lis r22,0x9876
 ori r22,r22,0x0002
 mtspr 982,r22

(Continued on next page)

(5-37)

V: valid bit
VSID:virtual segment ID
H: hash bit
API:upper 6 bits, page index

RPN:real page number
R:reference bit
C:change bit
WIMG:attributes
PP:page protection

(5-38)

1. Next, DCMP (or ICMP) must be initialized with the desired PTEU word.
2. Then RPA must be initialized with the required PTEL word.

Memory Management Unit 9 - 22

How to Load a Page into a TLB (3 of 3)

Action
Step Action Example

Do a TLB load lis r22,0x1234
 ori r22,r22,0x5678
 tlbli r22

5

Enable MMU6 mfmsr r22
 ori r22,r22,0x30
 mtmsr r22
 isync

(2-47)

ea: effective address

1. Step 5, the tlb load instruction must be executed. The operand is the desired effective address.
2. Finally, the MMU must be enabled.
3. Let’s take a look at an example.

Memory Management Unit 9 - 23

Example - Loading a Page into a TLB (1 of 4)

/* THIS PROGRAM CHECKS THE USE OF THE tlbld INSTRUC- */
/* TION. THIS INSTRUCTION AND tlbli ARE USEFUL IN */
/* LOADING TLB ENTRIES DIRECTLY RATHER THAN GOING THRU*/
/* EXCEPTION PROCESSING. THE PROGRAM FIRST INITIALIZES*/
/* A TLB ENTRY AND SUCCESSFULLY WRITES TO THE LOCA- */
/* TION. IT THEN INVALIDATES THE ENTRY, AND TRIES TO */
/* WRITE TO THE LOCATION AGAIN, BUT NOW A DATA STORE */
/* TRANSLATION EXCEPTION OCCURS. */
/* IMPORTANT PARAMETERS ARE: */
/* PTEU=0x80001000,PTEL=0x22082, EFFECTIVE ADDRESS IS */
/* 0x24xxx, REAL ADDRESS IS 0x22xxx. */

main()
{
 int *tptr; /* TEST POINTER */
 void invbat(); /* DECLARE INVBAT FUNCTION */
 void invalidate(); /* DECLARE INVALIDATE FUNC */
 int i; /* GENERAL VARIABLE */

Memory Management Unit 9 - 24

Example - Loading a Page into a TLB (2 of 4)
 invbat(); /* INVALIDATE BAT REGS */
 for(i = 0; i < 32; i++) /* INVALIDATE THE TLBS */
 invalidate(i<<12);
 initDCMP(0x80001000); /* INIT DCMP WITH PTEU */
 initRPA(0x22082); /* INIT RPA WITH PTEL */
 filldataentry(0x24000); /* INIT TLB ENTRY FOR EA */
 tptr = (int *) 0x22100; /* CLEAR TEST LOCATION */
 *tptr = 0;
 asm(" mfmsr r22"); /* ENABLE DATA MMU */
 asm(" ori r22,r22,0x10");
 asm(" mtmsr r22");
 asm(" isync");
 asm(" li r22,0x20"); /*INIT TASK 2,SEG 0,NO PROT */
 asm(" mtsr sr0,r22");
 tptr = (int *) 0x24100; /* ACCESS PAGE */
 *tptr = 0x12345678;
 invalidate(0x24100);
 tptr = 0x9ABCDEF0; / ACCESS PAGE */
}

Memory Management Unit 9 - 25

Example - Loading a Page into a TLB (3 of 4)

void invbat()
{
 asm(" li r22,0"); /* INVALIDATE BAT REGS */
 asm(" mtibatu 0,r22");
 asm(" mtibatu 1,r22");
 asm(" mtibatu 2,r22");
 asm(" mtibatu 3,r22");
// asm(" mtdbatu 0,r22");
 asm(" mtdbatu 1,r22");
 asm(" mtdbatu 2,r22");
 asm(" mtdbatu 3,r22");
}

void invalidate(i)
int i;
{
 asm(" tlbie r3"); /* INV TLB ENTRY FOR EA IN r3*/
}

Memory Management Unit 9 - 26

Example - Loading a Page into a TLB (4 of 4)

initDCMP(pteu)
int pteu;
{
 asm(" mtspr 977,r3"); /* 1ST WORD OF PTE TO DCMP */
}

initRPA(ptel)
int ptel;
{
 asm(" mtspr 982,r3"); /* 2ND WORD OF PTE TO RPA */
}

filldataentry(ea)
int ea;
{
 asm(" tlbld r3"); /* LOAD DATA TLB ENTRY */
}

Memory Management Unit 9 - 27

How an Effective Address is Translated
The diagram below shows the flow in determining how an address will
be translated.

Introduction

Flow
Diagram

Start

Effective address asserted

MSR[xR] = ? Direct Address Translation0

BAT array hit? Y Protection match? N xSI Exception

x = D or I

Y
Real address asserted

N
Generate virtual address

xTLB hit? Y

N
Do table search PTE found?

Load xTLB
Y

N

* BAT and page
translation are actually
started in parallel. If a
BAT hit occurs, page
translation is terminated.

*

1

1. The translation process begins with the assertion of an effective address. If the associated
MMU, instruction or data, is not enabled, then memory is accessed directly.
2. If it is enabled, then BAT and page translation are begun.
3. If a BAT hit occurs, page translation is terminated, and a check is made for protection
compatibility. If there is no compatibility, an xSI exception is taken.
4. If a BAT miss occurs, translation continues with the generation of a virtual address. The
MMU then checks for a TLB hit. If there is a hit, a check is made for protection compatibility. If
there is no compatibility, an xSI exception is taken.
5. If there is no hit, a table search is executed. If the page table entry is found, it is loaded in the
TLB and then a hit occurs. If no PTE is found, execution goes to the xSI vector via a branch.
6. This is the overall picture. Next, we want to learn what virtual address generation is.

Memory Management Unit 9 - 28

How a Virtual Address is Generated
The diagram below shows the flow in determining how a virtual address
is generated.

Introduction

Flow
Diagram

Page Index Byte Offset
0 3 4 19 20 31

Effective Address

Segment
Selection

Protection match? N xSI Exception

Y
Real address asserted

xTLB hit? Y

N Do table
search PTE found?

Load xTLB

xSI Exception

Y

N

Becomes least significant
12 bits of real address

Virtual
Address
Generation

xTLB miss
exception occurs

1. A virtual address is generated by combining the page index, bits 4-19 of the effective address,
and the segment selection.
2. Next, what is segment selection?

Memory Management Unit 9 - 29

What is Virtual Memory?
Virtual memory refers to the ability of the 603e MMU to allocate 4
gigabytes of memory for to up to a million tasks.

Definition

603ev
Virtual

Memory
Map

Task 0
4 gbytes
Task 1

4 gbytes

Task 220-1
4 gbytes

Task 220-2
4 gbytes

Virtual
Memory

• At any point in time, only one task can be running; therefore, only one 4
gbyte memory space is in use.
• The pages of a particular task may reside in physical memory or on disk or
both.
• When a page that is needed is on disk, the OS must move it into memory.

Comments

1. First of all, let’s review the meaning of virtual memory on the 603ev.
2. Virtual memory consists of 1 million 4 gigabyte memory spaces each assigned to a specific
task number.
3. Since there is only one 4 gigabyte memory available, it’s apparent that if all tasks are in
physical memory at once, then probably there are few tasks in the system.
4. Virtual memory operation allows that some pages can be in memory and some on disk.

Memory Management Unit 9 - 30

How a Segment is Selected (1 of 2)
The diagram below shows the flow in determining how a segment is
selected.

Introduction

Flow
Diagram

Task 0
4 gbytes
Task 1

4 gbytes

Task 220-1
4 gbytes

Task 220-2
4 gbytes

Effective Address

SR0
SR1

0:3

SR14
SR15

1

2

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

3

Segment
Registers

Task VM

Selected
Task VM,

4 gbyte

4

Selected
Segment,
256 mbyte

5

The virtual segment ID from the Segment Register determines the selected
4 gbyte space and further, determines the segment within that space.

1. Segment selection begins with bits 0-3 of the effective address being used to select one of 16
segment registers.
2. The segment register, among other things, contains the task ID which selects 1 of 1 million
virtual memory spaces.
3. The virtual memory space is divided into 16 memory segments, 256Mbytes each.
4. The segment register also contains a segment number which selects one of the sixteen
segments.
5. This segment selection then becomes part of the virtual address.

Memory Management Unit 9 - 31

How a Segment is Selected (2 of 2)
Segment

Translation 0 4 19 20
Page Index Byte Offset

3
Effective Address

Task ID Seg No.Protection

Task ID Seg. No.Protection

Virtual Segment ID

0

15

Protection

T KS KP N

0 1 2 3 Prot.
Bit Description

T Must always be 0
KS Supervisor state protection key

KP User state protection key
N No-execute protection bit

• Two sets of segment registers: one for data and a shadow set for instruction
accesses

8 27 28 31

P. 7-35

1. The segment register consists basically of three fields: protection, task ID, and segment
number.
2. It is the job of the operating system to program the segment registers on a task switch. At this
time it will put the task number in a least one segment register.
3. It puts the number of a segment to be used in the segment register. If the task is using only
one segment register, the segment number could be any number 0-15. If the task is using all the
segment registers, then the segment number field might contain the number of the segment
register.
4. There are four protection bits: T, KS, KP, and N.
5. T must always be zero. If it is one, execution gets directed to a feature that is no longer
implemented on PowerPC.
6. There are two protection keys, one for supervisor and one for user.
7. N can specify that a segment be used for data only. In this case the shadow instruction register
is disabled.

Memory Management Unit 9 - 32

What is the 603e Page Table Search?
The 603e page table search is the process of searching through a hashed
table of page entries for a match to a requested effective address.

Definition

Page
Table

Structure

PTE0 PTE1 PTE2 PTE3 PTE4 PTE5 PTE6 PTE7 PTEG0
PTE0 PTE1 PTE2 PTE3 PTE4 PTE5 PTE6 PTE7
PTE0 PTE1 PTE2 PTE3 PTE4 PTE5 PTE6 PTE7
PTE0 PTE1 PTE2 PTE3 PTE4 PTE5 PTE6 PTE7
PTE0 PTE1 PTE2 PTE3 PTE4 PTE5 PTE6 PTE7

PTE0 PTE1 PTE2 PTE3 PTE4 PTE5 PTE6 PTE7
PTE0 PTE1 PTE2 PTE3 PTE4 PTE5 PTE6 PTE7
PTE0 PTE1 PTE2 PTE3 PTE4 PTE5 PTE6 PTE7
PTE0 PTE1 PTE2 PTE3 PTE4 PTE5 PTE6 PTE7
PTE0 PTE1 PTE2 PTE3 PTE4 PTE5 PTE6 PTE7 PTEGn

SDR1
Hash

Primary

Hash
Secondary

HP = ((EA>>12) & 0xFFFF) ^ (getSRn() & 0x7FFFF);
HS = ~HP;
PTEGptr = (int *) 0;
PTEGptr = (int *)((getSDR1() & 0xFE000000) + (((HP>>10) & (getSDR1()
 & 0x1FF)) | (setSDR1() & (0x1FF<<16)) + ((HP &
 0x3FF)<<6)));

Calculations

1. Here we define a page table search.
2. The page table is in memory at a location specified by the register, SDR1 (by the way, there is
no other register SDRn except SDR1).
3. A page table entry (PTE) is located in one of two page table groups (PTEG) which is selected
by one of two hash functions, primary and secondary.
4. The calculations for the hash functions and the PTEGs are shown.

Memory Management Unit 9 - 33

Page Programming Model (1 of 3)

HTABORG

SDR1 - Storage Description Register P. 7-50
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
HTABMASK0 0 0 0 0 0 0

VSID

PTEU - Page Table Entry Upper P. 7-37
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
APIVSID

RPN

PTEL - Page Table Entry Lower P. 7-37
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
WIMGRPN 0 0 0

H

R C PP0

V

1. The next three pages are the programming model for page translation.
2. SDR1 contains an originating address (HTABORG) for the page table and a mask field
(HTABMASK) to specify the length.
3. The PTE consists of two fields: the upper word, PTEU, and the lower word, PTEL.
4. PTEU contains the virtual system ID from the segment register. It also contains the field API
which is the most significant six bits of the page index field of the effective address. The H bit
indicates whether this is a hash primary or hash secondary PTE.
5. PTEL contains the real page number and the protection bits, WIMG and PP. In addition, the R
bit is used to record that this page has been accessed and the C bit, that this page has been
changed.

Memory Management Unit 9 - 34

Page Programming Model (2 of 3)

Effective Page Address

DMISS - Data TLB Miss EA Register P. 5-36
0 31

Effective Page Address

IMISS - Instruction TLB Miss EA Register P. 5-36
0 31

VSID

DCMP - Data PTE Compare Register P. 5-37
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
APIVSID H

V

VSID

ICMP - Instruction PTE Compare Register P. 5-37
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
APIVSID H

V

1. These registers contain information about the miss that can be used in the miss service
routine.
2. The value in ICMP or DCMP is the word to be searched for in the page table.

Memory Management Unit 9 - 35

0

Page Programming Model (3 of 3)

Hashed Page Address

HASH1 - Primary PTEG Address P. 5-37
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Hashed Page Address

HTABORG

0 0 0 0 0

0

Hashed Page Address

HASH2 - Secondary PTEG Address P. 5-37
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Hashed Page Address

HTABORG

0 0 0 0 0

RPN

RPA - Required Physical Address Register P. 5-38
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
WIMGRPN 0 0 0 R C PP0

1. The hash registers are used by the miss routine as pointers to where the search should begin.
2. Once the PTE has been found, PTE1 of the PTE can be moved to RPA and the search is
complete.

Memory Management Unit 9 - 36

How the Page Table is Searched? (1 of 2)

Flow
Diagram

The diagram below shows the flow in searching the page table.Introduction

Start

TLB miss exception occurs

Get primary hash address from HASH1

Init variable n to 0

PTEUn = xCMP? Increment n

Y
Write PTELn to RPA

PTEn[R]=0? Y Set PTEn[R] = 1

End
N

1. PTEUn is the upper word of page table entry n at the PTEG address.
2. PTELn is the lower word.

N n < 8?

N
A

Y

1. The table is searched as shown. After the miss exception occurs, the service routine uses the
pointer in HASH1, which points to the right PTEG, to begin the search.
2. The service routine searches through PTEs until it either finds a match or it has searched all 8
entries in the PTEG.
3. If a match was found, then PTE1 is written to RPA and the R bit is updated.
4. If a match was not found, then a second search is started.

Memory Management Unit 9 - 37

How the Page Table is Searched? (2 of 2)

Flow
Diagram
(cont’d)

Get secondary hash address from HASH2

Init variable n to 0

PTEUn = xCMP?

Y
Write PTELn to RPA

PTEn[R]=0? Y Set PTEn[R] = 1

End
N

1. PTEUn is the upper word of page table entry n at the PTEG address.
2. PTELn is the lower word.

A

xSI Exception

Increment n N n < 8?

N

Y
N

1. The second search is done in the same way, except it uses HASH2.
2. If a match is not found in this search, it is an error, and execution goes to the xSI exception
vector via a branch.

Memory Management Unit 9 - 38

How to Assign Page Protection (1 of 2)
Notation S:U = Supervisor:User

R/W:R/O = Supervisor access is R/W:User access is R/O

If a page is to
have this

protection...

… then the
page

protection
must be...

… and PP in the
 PTE must be...

R/W:R/W
or

R/O:R/O

KS = N/A
and

KP = N/A

10 for R/W:R/W
and

11 for R/O:R/O
R/W:No access

or
R/W:R/O

KS = 0
and

KP = 1

00 for R/W:No access
and

01 for R/W:R/O
No access:R/W

or
R/O:R/W

KS = 1
and

KP = 0

00 for No access:R/W
and

01 for R/O:R/W
No access:No access

or
R/O:R/O

KS = 1
and

KP = 1

00 for No access:No access
and

01 for R/O:R/O

Reference
Table

1. Here we can learn to assign the protection to a page that we desire. Once again, check the
notation we use. A protection pair consists of protection in the supervisor mode, followed by a
colon, followed by protection in the user mode.
2. So in the left hand column, we find the protection that we would like to give a particular
block, and then use the other two columns to tell us what values go into the valid bits and the PP
field.
3. For example, for a page in which we would like supervisor no access and user read/write, we
would assigned 1 to KS, 0 to KP, and 00 to PP.

Memory Management Unit 9 - 39

How to Assign Page Protection (2 of 2)
Example A segment is to have three valid pages as follows: page 1 is to be R/W:R/W,

page 2 is to be R/W:R/O, and page 3 is to be No access:R/W. Fill in the
required protection values in the table below.

PageKS KP PP

10 1 10

2 01

3 *

* Page 3 must be located in another segment.

Exercise A segment is to have two valid pages as follows: page 1 is to be No
access:R/W, and page 2 is to be R/W:R/W. Fill in the required protection
values in the table below.

PageKS KP PP

1

2

1. In the example, page 1 is to be R/W:R/W. Looking at the table on the previous page, we see
this requires only that the PP bits be 10.
2. Page 2 is to be R/W:R/O. Again, according to the previous table, KS must be zero, KP must be
one, and PP must be 01.
3. Finally, page 3 is to be No Access:R/W. This requires KS to be 1, KP to be zero; therefore, this
page must go in another segment.
4. Try the exercise to check your understanding.

Memory Management Unit 9 - 40

What are the TLB Miss Exceptions? (1 of 2)
Definition If a valid PTE is not found in the TLB, a TLB miss exception occurs. Software

must then find and load the PTE into the TLB. Additional registers provide
some hardware assist.

Types of
Miss

Interrupts

When execution begins at the service routine, the following registers
contain useful information:

Type
Instruction TLB Miss
Data Load TLB Miss

Data Store Translation Miss or C=0

Vector
0x1000
0x1100
0x1200

1
2
3

• Exception type 2 occurs if a data load address cannot be translated by the
DTLB
• Exception type 3 occurs if:

1. A data store address cannot be translated by the DTLB or
2. The C bit must be changed.

Hardware
Assist

Registers • D,IMISS = EA that caused the miss
• HASH1 = primary PTEG address; HASH2 = secondary PTEG address
• D,ICMP = word to be compared against first word of PTEs
• RPA = ISR loads with second word of matching PTE

Memory Management Unit 9 - 41

What are the TLB Miss Exceptions? (2 of 2)
• When execution begins at the service routine, MSR[TGPR] = 1 and four,
32-bit, temporary registers, GPR0-3, are available.
• If an access of GPR4-31 is attempted while MSR[TGPR] = 1, results are
undefined.

Temporary
Scratch

Registers

• When execution begins at the service routine, CR0 has been saved in
SRR1[0:3].
• The ISR must restore CR0 from SRR1[0:3] before executing rfi.

CR0

 .
 .
mfspr r3,srr1
mtcrf 0x80,r3
rfi

Service
Routines

The programs for the TLB miss exception service routines are in the 603UM,
p. 5-44.

Memory Management Unit 9 - 42

What are the MMU Error Exceptions?
Definition An MMU error exception occurs if a page search results in: 1) no PTE was

found or 2) the protection associated with the PTE is not compatible.

Data
Storage

Interrupt
(DSI)

• Occurs for an error due to a data access
• Uses exception vector 0x300
• Error information can be found in:

SRR0 - effective address that caused the exception
SRR1 - copy of MSR
DSISR - protection violation and read/write status
DAR - effective address of protected memory byte

Instruction
Storage

Interrupt
(ISI)

• Occurs for an error due to an instruction access
• Uses exception vector 0x400
• Error information can be found in:

SRR0 - effective address of the next instruction
SRR1 - copy of MSR; bit 4 indicates a protection violation

Memory Management Unit 9 - 43

How to Initialize a Page Table Entry (1 of 2)
Assumption - The segment registers and SDR1 have been initialized.

- The page table has been cleared.
- The TLBs have been invalidated.

Action These are the steps in initialization:
Step Action Example

Calculate the primary hash
function

 See earlier page1

Calculate the pointer to
the PTEG

3 See earlier page

(Continued on next page)

Calculate the secondary
hash function

 hs = ~hp;2

Search the primary PTEG
for an unused entry

4 while(((PTEPptr->PTEU<0)
 && (i++ < 8))
 PTEGptr++;

Memory Management Unit 9 - 44

How to Initialize a Page Table Entry (2 of 2)

Action
Step Action Example

If no available entry in
primary PTEG, then
search secondary PTEG

 5

Initialize the entry with the
new page

 PTEGptr->PTEU = pteu;
 PTEGptr->PTEL = ptel;

6

Execute sync asm(“ sync”);7

Memory Management Unit 9 - 45

Exercise - Initializing a Page Table Entry (1 of 9)

/* THIS PROGRAM GENERATES A PAGE TABLE ENTRY AND THEN */
/* ACCESSES THE PAGE TO CHECK THE RESULT. SINCE THE */
/* SERVICE ROUTINE FOR A DATA MISS IS NOT INCLUDED, */
/* WHEN A DATA MISS OCCURS, THE HASHX REGISTER IS */
/* CHECKED TO VERIFY IT HAS THE SAME VALUE AS THE LO- */
/* CATION OF THE PAGE ENTRY. */

struct PTE {
 int PTEU; /* FIRST WORD OF PTE */
 int PTEL; /* SECOND WORD OF PTE */
 };
#define FALSE 0
#define TRUE 1

Memory Management Unit 9 - 46

Exercise - Initializing a Page Table Entry (2 of 9)

main()
{
 int *pt; /* PT POINTER FOR CLEAR */
 void invbat(); /* DECLARE INVBAT FUNCTION */
 void invalidate(); /* DECLARE INVALIDATE FUNC */
 int i; /* GENERAL VARIABLE */

 invbat(); /* INVALIDATE BAT REGS */
 asm(" lis r22,0"); /* INIT SR0 */
 asm(" ori r22,r22,0x20"); /* TASK 2,SEG 0, NO PROT */
 asm(" mtsr SR0,r22");
 asm(" lis r22,0x3"); /* INIT SDR1 */
 asm(" mtsdr1 r22"); /* LOCATE PT AT 0x30000 */
 pt = (int *) 0x30000; /* INIT PNTR TO PAGE TABLE */
 for(i = 0; i < _____; i++) /* CLEAR PT */
 *pt++ = 0;
 for(i = 0; i < 32; i++)
 invalidate(i<<12);

Memory Management Unit 9 - 47

Exercise - Initializing a Page Table Entry (3 of 9)

 add_a_page(0x24000,0x80001000,0x00022082);
 /*ADD A PAGE,EA=0x24000, */
 /*RA=0x22000,TASK 2,SEG 0 */
 pt = (int *) 0x22100; /* CLEAR TEST LOCATION */
 *pt = 0;
 asm(" mfmsr r22"); /* ENABLE DATA MMU */
 asm(" ori r22,r22,____");
 asm(" mtmsr r22");
 asm(" isync");
 pt = (int *) 0x24100; /* ACCESS PAGE */
 *pt = 0x12345678;
 remove_a_page(0x24000,0x80001000,0x00022082);
 /* REMOVE PAGE */
 pt = 0x9ABCDEF0; / ACCESS PAGE */
}

Memory Management Unit 9 - 48

Exercise - Initializing a Page Table Entry (4 of 9)

void invbat()
{
 asm(" li r22,0"); /* INVALIDATE BAT REGS */
 asm(" mtibatu 0,r22");
 asm(" mtibatu 1,r22");
 asm(" mtibatu 2,r22");
 asm(" mtibatu 3,r22");
// asm(" mtdbatu 0,r22");
 asm(" mtdbatu 1,r22");
 asm(" mtdbatu 2,r22");
 asm(" mtdbatu 3,r22");
}

void invalidate(i)
int i;
{
 asm(" _____ r3");
}

Memory Management Unit 9 - 49

Exercise - Initializing a Page Table Entry (5 of 9)

add_a_page(ea,pteu,ptel)
int ea,pteu,ptel;
{
 int hp,hs; /* PRIMARY AND SECONDARY HASH */
 struct PTE *PTEGptr; /* POINTER TO PTEG GROUP */
 int i; /* GENERAL VARIABLE */

 hp = ((ea>>12) & 0xFFFF) ^ (getSR0() & 0x7FFFF);
 /* DETERMIN PRIMARY HASH VALUE*/
 hs = ___; /* DETRMN SECONDARY HASH VALUE*/
 PTEGptr = (struct PTE *) 0; /* INIT POINTER TO ZERO*/
 PTEGptr = (struct PTE *)((getSDR1() & 0xFE000000) +
 (((hp>>10) & (getSDR1() & 0x1FF)) |
 (getSDR1() & (0x1FF<<16)) +
 ((hp & 0x3FF)<<6)));
 i = 0;
 while((PTEGptr->PTEU < 0) && (i++ < 8))
 PTEGptr++;

Memory Management Unit 9 - 50

Exercise - Initializing a Page Table Entry (6 of 9)

 if(PTEGptr->PTEU < 0)
 {
 pteu |= 0x________;
 PTEGptr = (struct PTE *)((getSDR1() & 0xFE000000) +
 (((hs>>10) & (getSDR1() & 0x1FF)) |
 (getSDR1() & (0x1FF<<16)) +
 ((hs & 0x3FF)<<6)));
 i = 0;
 while((PTEGptr->PTEU < 0) && (i++ < 8))
 PTEGptr++;
 }
 if(PTEGptr->PTEU >= 0)
 {
 PTEGptr->PTEU = pteu;
 PTEGptr->PTEL = ptel;
 asm(“ sync”);
 return(0);
 }
 else
 return(1);
}

Memory Management Unit 9 - 51

Exercise - Initializing a Page Table Entry (7 of 9)

remove_a_page(ea,pteu,ptel)
int ea,pteu,ptel;
{
 int hp,hs; /* PRIMARY AND SECONDARY HASH */
 struct PTE *PTEGptr; /* POINTER TO PTEG GROUP */
 int i; /* GENERAL VARIABLE */
 char found; /* BOOLEAN FLAG */

 hp = ((ea>>12) & 0xFFFF) ^ (getSR0() & 0x7FFFF);
 /* DETERMIN PRIMARY HASH VALUE*/
 hs = ~hp; /* DETRMN SECONDARY HASH VALUE*/
 PTEGptr = (struct PTE *) 0; /* INIT POINTER TO ZERO*/
 PTEGptr = (struct PTE *)((getSDR1() & 0xFE000000) +
 (((hp>>10) & (getSDR1() & 0x1FF)) |
 (getSDR1() & (0x1FF<<16)) +
 ((hp & 0x3FF)<<6)));
 i = 0;
 found = FALSE;

Memory Management Unit 9 - 52

Exercise - Initializing a Page Table Entry (8 of 9)

 do
 if(PTEGptr->PTEU == pteu && PTEGptr->PTEL == ptel)
 found = TRUE;
 while (found == FALSE && i++ < 8);
 if(found == FALSE)
 {
 pteu |= 0x00000040;
 PTEGptr = (struct PTE *)((getSDR1() & 0xFE000000) +
 (((hs>>10) & (getSDR1() & 0x1FF)) |
 (getSDR1() & (0x1FF<<16)) +
 ((hs & 0x3FF)<<6)));
 i = 0;
 do
 if(PTEGptr->PTEU == pteu && PTEGptr->PTEL == ptel)
 found = TRUE;
 while (found == FALSE && i++ < 8);
 }

Memory Management Unit 9 - 53

Exercise - Initializing a Page Table Entry (9 of 9)

 if(found == TRUE)
 {
 PTEGptr->PTEU = 0;
 asm(“ sync”);
 return(0);
 }
 else
 return(1);
}

getSDR1()
{
 asm(" mfsdr1 r3");
}

getSR0()
{
 asm(" mfsr r3,0");
}

Memory Management Unit 9 - 54

Example - Configuring the MMU for a System (1 of 4)
Example
Physical
Memory

Map

This is an example of a mix of different devices and the address range from
which they are accessed.

Address Space
0x00000000 - 0x03FFFFFF
0x04000000 - 0x041FFFFF
0x04200000 - 0x045FFFFF
0x04700000 - 0x04700FFF
0x04900000 - 0x04900FFF
0x05000000 - 0x0500FFFF
0xFE000000 - 0xFFFFFFFF

Board config regs

Device Type

ATM PHY
PQ2 internal space
Flash ROM

SDRAM
SRAM
SDRAM - local bus

1
2
3
4
5
6
7

Function AS
EVT in ROM 7
EVT in RAM 1
Internal memory map 6
ATM PHY device 5
Board control & status 4
FCC BDs & buffers 3

Function AS
All other comm dev buffers 1
System stack 2

System program area 1

MMU page table 2
System scratchpad 2

Function
Memory

Area
Assignment

Size
64M
2M
4M
4K
4K

64K
16M

MCC BDs & buffers 3
User program area 1
User data area 1

Memory Management Unit 9 - 55

Example - Configuring the MMU for a System (2 of 4)

Function AS
EVT in ROM 7
EVT in RAM 1
Internal memory map 6
ATM PHY device 5
Board control & status 4
FCC BDs & buffers 3
MCC BDs & buffers 3
All other comm dev buffers 1
System stack 2

Attribute
Assignment W I M G Pr

Instruction

0 0 0 0 R/O:NA
W I M G Pr

Data

0 1 0 0 R/O:NA
0 0 0 0 R/O:R/O 0 1 0 0 R/W:R/W
0 1 0 0 NA:NA 0 1 0 0 R/W:NA
0 1 0 0 NA:NA 0 1 0 1 R/W:NA
0 1 0 0 NA:NA 0 1 0 1 R/W:NA
0 1 0 0 NA:NA 0 1 0 0 R/W:R/W
0 1 0 0 NA:NA 0 1 0 0 R/W:R/W

System program area 1

MMU page table 2
System scratchpad 2

User program area 1
User data area 1

0 1 0 0 NA:NA 0 0 0 0 R/W:R/W
0 1 0 0 NA:NA 0 1 0 0 R/W:NA
0 1 0 0 NA:NA 0 1 0 0 R/W:NA
0 1 0 0 NA:NA 1 0 0 0 R/W:NA
0 0 0 0 R/O:NA 0 1 0 0 NA:NA
0 0 0 0 R/O:R/O 0 1 0 0 NA:NA
0 0 0 0 NA:NA 1 0 0 0 R/W:R/W

Memory Management Unit 9 - 56

Example - Configuring the MMU for a System (3 of 4)

Function AS
EVT in RAM 1

Board control & status 4

Sorting
by

Address
Space

W I M G Pr
Instruction

W I M G Pr
Data

EVT in ROM 7 0 0 0 0 R/O:NA 0 1 0 0 R/O:NA

0 0 0 0 R/O:R/O 0 1 0 0 R/W:R/W

Internal memory map 6 0 1 0 0 NA:NA 0 1 0 0 R/W:NA
ATM PHY device 5 0 1 0 0 NA:NA 0 1 0 1 R/W:NA

0 1 0 0 NA:NA 0 1 0 1 R/W:NA

FCC BDs & buffers 3
MCC BDs & buffers 3

0 1 0 0 NA:NA 0 1 0 0 R/W:R/W
0 1 0 0 NA:NA 0 1 0 0 R/W:R/W

All other comm dev buffers 1 0 1 0 0 NA:NA 0 1 0 0 R/W:R/W

System stack 2
MMU page table 2
System scratchpad 2

0 1 0 0 NA:NA 0 1 0 0 R/W:NA
0 1 0 0 NA:NA 0 1 0 0 R/W:NA
0 1 0 0 NA:NA 1 0 0 0 R/W:NA

System program area 1
User program area 1
User data area 1

0 0 0 0 R/O:NA 0 1 0 0 NA:NA
0 0 0 0 R/O:R/O 0 1 0 0 NA:NA
0 0 0 0 NA:NA 1 0 0 0 R/W:R/W

• AS3 & 7 can be block address translation.
• The system program area and all other commdev buffers can also be blocks.

Memory Management Unit 9 - 57

Example - Configuring the MMU for a System (4 of 4)

Function
EVT in RAM

Board control & status

Sorting
by

Address
Space

EVT in ROM
Internal memory map
ATM PHY device

FCC BDs & buffers
MCC BDs & buffers

All other comm dev buffers

System stack
MMU page table
System scratchpad

System program area
User program area
User data area

• AS3 & 7 can be block address translation.
• The system program area and all other commdev buffers can also be blocks.

AS

1

2

3

4
5
6
7

0x00000000 - 0x003FFFFF
0x00400000 - 0x007FFFFF
0x00800000 - 0x00BFFFFF
0x00C00000 - 0x02FFFFFF
0x03000000 - 0x03FFFFFF
0x04000000 - 0x0407FFFF
0x04080000 - 0x040FFFFF
0x04100000 - 0x041FFFFF
0x04200000 - 0x044FFFFF
0x04500000 - 0x045FFFFF
0x04700000 - 0x04700FFF
0x04900000 - 0x04900FFF
0x05000000 - 0x0500FFFF
0xFE000000 - 0xFFFFFFFF

Address

Memory Management Unit 9 - 58

How to Initialize the MMU (1 of 4)
Assumption - Reset conditions exist.

Action These are the steps in initialization:
Step Action Example

Clear BAT registers li r22,0
 mtibatu 0,r22
 -
 mtibatu 3,r22
 mtdbatu 0,r22
 -
 mtdbatu 3,r22

1

Init lower BAT register
BRPN:real page addr[0:14]
WIMG:attribute bits
PP:access protection

(7-25)

2 lis r22,0xFFFC
 ori r22,r22,3
 mtibatl 0,r22

(Continued on next page)

Memory Management Unit 9 - 59

How to Initialize the MMU (2 of 4)

Action Step Action Example
Init upper BAT register

BEPI:effective addr[0:14]
BL:block length
VS:privilege mode valid
VP:problem mode valid

(7-25)

3 lis r22,0xFFFC
 ori r22,r22,6
 mtibatu 0,r22

Repeat steps 2 and 3 for
each required lower-upper
pair BAT registers.

4

Initialize SR0-155
T: must be 0
KS:Supervisor key
KP:User state key
N:no-execute protection
Task ID:task number
Seg No.:segment number

(7-35)

 lis r22,0x6000
 ori r22,r22,0x0010
 mtsr SR0,r22

Also: mtsrin

Memory Management Unit 9 - 60

How to Initialize the MMU (3 of 4)

Action Step Action Example
Init SDR1
HTABORG: PT base addr
HTABMASK:PT addr mask

(7-50)

6 lis r22,0xE044
 ori r22,r22,1
 mtsdr1 r22

Initialize the PT to all
invalid

7

Invalidate the TLBs8 for (i=0; i < 32; i++)
 invalidate(i<<12);
 .
 .
void invalidate(i)
int i;
{
 asm(“ tlbie r3”);
}

Memory Management Unit 9 - 61

How to Initialize the MMU (4 of 4)

Action Step Action Example
Initialize PT entries8

Enable the MMU9 asm(“ mfmsr r22”);
asm(“ ori r22,r22,0x30”);
asm(“ mtmsr r22”);
asm(“ isync”);

(7-37)

Memory Management Unit 9 - 62

M

0
-
-
0

I

0
-
-
0

W

0
-
-
0

G

0
-
-
0

0
0
0
0

Allocating the Blocks (1 of 2)

IBATU 0
1
2
3

BEPI

008

FE0

BL VS

1
0
0
1

VP

0
0
0
0

000 0000 0 01 11 0x0080007E

Register
Hex Value

--- 0000 - -- -- -
--- 0000 - -- -- -
000 0000 0 0F 11 0xFE0000FE

IBATL 0
1
2
3

BRPN

008

FE0

PP

01
--
--
11

000 0 0x00800001

Register
Hex Value

--- 0 -
--- 0 -
000 0 0xFE000003

00
00
00
00

0
0
0
0

Hex numbers

Binary numbers

Memory Management Unit 9 - 63

Allocating the Blocks (2 of 2)

DBATU 0
1
2
3

BEPI

008
004
042
FE0

BL VS

1
1
1
1

VP

1
1
1
0

000 0000 0 01 11 0x0080001F

Register
Hex Value

000 0000 0 01 11 0x0040001E
000 0000 0 01 11 0x0420001F
000 0000 0 0F 11 0xFE0000FE

M

0
0
0
0

I

1
1
1
1

W

0
0
0
0

G

0
0
0
0

0
0
0
0

DBATL 0
1
2
3

BRPN

008
004
042
FE0

PP

10
10
10
11

000 0 0x00800022

Register
Hex Value

000 0 0x00400022
000 0 0x04200022
000 0 0xFE000023

00
00
00
00

0
0
0
0

Memory Management Unit 9 - 64

Initializing the Segment Registers

Segment
Register

0
1
2
3

Task ID

0 00001 0 0x30000010

Register
Hex Value

0 00000 0
0 00000
0 00000

T

0
0
0
0

KS

0
1
1
1

KP

1
0
0
0

N

1
0
0
0

Seg. No.

4
5
6
7

0 00000
0 00000
0 00000
0 00000

0
0
0
0

1
1
1
1

0
0
0
0

0
0
0
0

8
9
10
11

0 00000
0 00000
0 00000
0 00000

0
0
0
0

1
1
1
1

0
0
0
0

0
0
0
0

12
13
14
15

0 00000
0 00000
0 00000
0 00000

0
0
0
0

1
1
1
1

0
0
0
0

0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0

Memory Management Unit 9 - 65

Initializing SDR1
1. Determine total memory size to be allocated in pages.

Size
8M-BAT

2M
4M
4K
4K

64K
16M

1
2
3
4
5
6
7

AS Allocation

Page
BAT
Page
Page
Page
BAT

64M Memory to be allocated in pages = 58M

2. See page 7-52 to determine required page table size.

Required page table size = 512K; therefore,

HTABORG = x xxxx x000 and HTABMASK = 0 0000 0111

SDR1 0408 0 0 0 0 0 07
HTABMASKHTABORG

0x04080007
Reg Value

