What you
will learn

Why have
an MMU?

Memory M anagement Unit

Learn how to:

* Initialize a BAT register

* Set up the MMU for Page Trangdlations
- Invalidate TLBs
- Define size and location of Hashed Page Table
- Configure Segment registers for atask
- Create theinitial Hashed Page Table
- Load PTEsinto Hashed Page Table

An MMU has severa important uses:

* Privilege Control - prevents access of Supervisor areas by User (Problem) level
programs.

» Cache Control - allows accesses to 1/0 devices to be non-cacheable while
allowing other areas to be cacheable.

* Read Protection - prevents loss of data from speculative destructive reads
(status flags), while allowing speculative reads from other memory areas

 Write Protection - allows selected memory areas to be read-only or treated like

ROM.

» Memory Protection - restricts programs to accessing only those memory areas
needed. Prevents one task from erroneously or maliciously disturbing another
tasks memory area.

 Address Trandation (relocation) - allows multiple programs that may have the
same logical address range to reside in memory at the same time, by relocating
them where convenient.

Memory Management Unit

What isthe 603e MM U?

Definition The 603e MMU assigns protection attributes to pages in memory and also
implements address tranglation.

Block 603e MMU
Diagram

Instruction Tranglation
Lookaside Buffer
(ITLB)

Effective) Real
Addresses — Data Translation > Addresses

Lookaside Buffer
(DTLB)

Instruction Block Address
Trandation (IBAT)

Data Block Address
Trandation (DBAT)

TLBsand 1. The TLBsare address caches (64 entry, 2-way set associative) that hold
BATs recently used 4K byte page entries.
2. The BATs are for large address ranges whose mappings don’t change often.

MMU * The core asserts effective addresses which are converted to real addresses
by the MMU.

» The MMU also provides protection such as privilege-only access.

* Depending on the type of access and the way the MMU has been
programmed, the effective address may be handled either by way of a TLB,
page addressing, or aBAT.

* BAT registers are programmed from reset and changed infrequently or not
at all.

» TLBs are loaded from hashed page tables and entries are changed out more
frequently.

Functions

Memory Management Unit 9-2

Block
Diagram

What is Block Address Translation?

Definition |If an effective address matches the corresponding field of a BAT register, the

information in the BAT register is used to generate the physical address.

Real
Addresses

—»1BATUO
IBATLO

DBATUQ
DBATLO

— IBATU1
IBATL1

DBATU1l

Effective_ | |[DBATL1
Addresses [»/IBATU?2
IBATLZ2

DBATUZ
DBATLZ2

—» IBATU3
IBATL3

DBATUSJ
DBATL3

4 gbyte
Memory Map

NN

Characteristics
of Block
Address

Trandation

* Block address trandlation defines up to 8 windows in the memory map, four
for instructions and four for data.

» Data and instruction areas may overlap.

» When an effective address is asserted by the task, it is compared against the
eight windows defined by the BAT registers. If there is a match, the associated
real addressis asserted. If there is no match, then page trandation is executed.
* Blocks can vary in size from a minimum of 128K bytesto 256M bytes.

Memory Management Unit 9-3

BAT Programming Mode

D or IBATxU - Upper BAT Registers, x=0-3 P. 7-25
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
BEPF Res

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Reserved BL Vgl Vp

D or IBATXL - Lower BAT Registers, x=0-3 P. 7-25

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
BRPN Res

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Reserved WIMG* Res| PP

* Attemptsto write one to W and G in the IBAT registers causes
boundedly-undefined results.

Summary » The complete programming model for Block Address Tranglation consists
of 8 register pairs, structured as shown, four for instructions and four for data.

Memory Management Unit

How BAT Operates
Introduction The diagram below shows the flow of BAT operation. It assumes the block
protection bits, PP, are compatible. If not, aDSI or ISI exception occurs.
Start
Flow
Diagram Compare EA[0:14] with BEPI & ~BL inthe IBATU
registersif afetch or DBATU registersif aload or store
@ Ny BAT array miss]
Y
Compare MSR[PR]=0 & V1 or MSR[PR]=1 & V=1
@ N BAT array miss]
Y
Assert Real Address = BRPN plus EA[15:31]
End
1. Operation begins with the assertion of an effective address.
Descripti 2. Thetop 15 bits of the effective address is compared with the top bits of the
esccn:‘llglg)vc BEPI field in the upper BAT registers either instruction or data depending on

the type of access. The number of bits that actually are compared is
determined by the BL field in the upper BAT register.

3. If there is no match with any of the four BAT registers, the accessisa
BAT miss. Following aBAT missthe MMU attemptsto trandlate the address
using a TLB or page trandation.

4. If there is amatch, then the protection attributes are checked. If the
protection attributes don’t allow an this access, then the result is again aBAT
miss. In this case, an xS exception istaken.

5. If the protection matches, then BRPN is concatenated with bits 16-31 are
used to form the real address.

Memory Management Unit 9-5

How to Locate a Block of Memory (1 of 2)

Introduction This example shows how to locate a block of memory.

Proced Use the following templatesto fill in the individual fields, then convert to
rocedure : .
hex register values:] Hex numbers

[] Binary numbers

Register
— - Vs|Ve| Hex Value
IBATU | | |o]ooo |
Register
BRPN WIIM(G| [PP| Lo Value
IBATL | | |o 0 0| |
0|0

1. Because the bit fields of the BAT registers do not easily line up with the hex boundaries, these

templates can be helpful.

2. The colors identify the fields within the register.

3. Boxes outlining various fields in aregister contain bits if the box is outlined with athick line or
hex digitsif outlined with athin line.

4. Let’ stry this out with an example.

Memory Management Unit

How to Locate a Block of Memory (2 of 2)

Example Locate ablock of read-only memory at address OxFFFC0000. The length
of the memory is 256K. Assume effective address equals real address and
only instructions are in the memory. Block should be accessible by the

supervisor only. [] Hex numbers
[] Binary numbers

Register
BEPI BL |Vs|Ve| HexValue
IBATU |0 1/1]0|o]ooo]0 oj1/1]o0
FIF|IF[C o |0[0 6 FFFC0006
Register
BRPN WIIM(G| [PP| Lo Value
IBATL |0 1{1]0]0 olo]o|o]o|o]1]2
FIF|F[¢ |o|o] o 3 FFFC0003

1. The effective address is OxFFFC0000 so in BEPI, the Block Effective Page Index, isinitialized
to OXFFF followed by binary 110, the 3 most significant bits of OxC.

2. Since the real addressis the same as the effective address, BRPN, the Block Real Page number,
isinitialized similarly.

3. According to Table 7-9 on p. 7-26, the value for BL if the memory is 256K bytesis binary all
zeroes except aone in the least significant bit.

4. This block isto be accessible by the supervisor only; therefore Vgis 1 and V; is zero.

5. The problem doesn’t state much about the WIMG hits, but since it isinstruction-only, W and G
must be zero. Nothing is said about an external master; therefore, M is assigned zero. Finally, since
enabling the cache enhances performance, | is assigned zero.

6. According to Table 7-10 on p. 7-28, read-only permission is x1 so PP is assigned binary 11.

7. The final register values are shown.

Memory Management Unit 9-7

How to Initializethe MMU for BAT (1 of 2)

Introduction Here we describe the stepsin initializing the MMU for BAT. Reset
conditions are assumed.

Action

Here are the steps in initialization:

Step

Action

Example

1

Clear BAT registers

li r22,0
mibatu 0,r22

mibatu 3,r22
nt dbatu O, r22

m dbatu 3,r22

Init lower BAT register
BRPN:real page addr[0:14]

WIMG:attribute bits

PP:access protection
(7-25)

lis r22, OXFFFC
ori r22,r22,3
mibatl 0,r22

(Continued on next page)

1. First the valid bits of the upper BAT registers must be cleared..

2. Next, any required lower BAT registers are initialized.

Memory Management Unit

Action

Caution

How to Initializethe MMU for BAT (2 of 2)

Step

Action

Example

3

Init upper BAT reg

ister

BEPI:effective addr[0:14]

BL:block length

V gprivilege mode valid
V. problem mode valid

(7-25)

lis r22, OXFFFC
ori r22,r22,6
mibatu 0,r22

Repeat steps 2 and

3for

each required lower-upper
pair BAT registers.

Executeisync

i sync

It isthe responsibility of the software to insure that an effective addressis
translated by only one IBAT and only one DBAT. If thisis not done, results

are undefined.

1. Then the lower BAT registers are initialized.

2. After all theregisters are initialized, execute an isync instruction. Thiswill insure that all

previous instruction have been completed before proceeding.

Memory Management Unit

block are as follows:

Exercise-Initialize MMU for BAT (1 of 2)

A systemisto have 2 memory areas for Block Address Trandlation. The features of each

Instruction Data

Block Block
Block Start Address, Eff | 0OxC8000000 | O0XE4000000
Block Start Address, Real| 0xC8000000 | 0xD2480000
Length 4 Mbytes | 512 Kbytes

WIMG M WIG

Access Protection R/O R/W

Supervisor/User Supervisor Both

Write the routine to initialize this system. (see next page)

1. Here' s a chance to check your understanding. Here we describe a configuration and on the

next page, please complete the program.

Memory Management Unit

li r22,0

nibatu 0,r22
nmibatu 1,r22
nmibatu 2,r22
nmibatu 3,r22

nt dbatu 0, r22

nmt dbatu 1,r22

nt dbatu 2,r22

nt dbatu 3,r22
lis r22,

ori r22,r22,
nibatl 0,r22
lis r22,

ori r22,r22,
ntibatu 0,r22
lis r22,

ori r22,r22,
nt dbat!l 0, r22
lis r22,

ori r22,r22,
nt dbatu 0, r22

i sync

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Exercise-Initialize MMU for BAT (2 of 2)

init gpr to zero
i nval i date | BATO
i nval i date | BAT1
i nval i date | BAT2

i nval i date | BAT3

i nval i dat e DBATO

i nval i date DBAT1

i nval i dat e DBAT2

i nval i dat e DBAT3

init gpr for upper |BATOL
init gpr for |ower |BATOL
init |IBATOL

init gpr for upper |BATOU
init gpr for |ower |BATOU
init |BATOU

init gpr for upper DBATOL
init gpr for |ower DBATOL
init DBATOL

init gpr for upper DBATOU
init gpr for |ower DBATOU
init DBATOU

cont ext synchroni ze

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Memory Management Unit

How to Assign BAT Protection (1 of 2)
Notation S:U = Supervisor:User
R/W:PT = Supervisor accessis R/W:User accessis Page Trandlation
Referencethen the
Table Ji ibloci!sm BAT register ...and PP in the
avet. 'S valid bits BATL must be...
protection...
must be...
R/W:R/W or V=1 10 for R/W:R/W
R/O:R/O or and X1 for RIO:R/O
No accessNo access| V=1 00 for No access:No access
R/W:PT or V=1 10 for R/W:PT
R/O:PT or and X1 for RIO:PT
No access.PT V,=0 00 for No access.PT
PT:R/W or Vgs=0 10 for PT:R/W
PT:R/O or and X1 for PT:R/O
PT:No access Vp=1 00 for PT:No access
V=0
PT:PT and
V=

1. Here we can learn to assign the protection to a block that we desire. First of al, check the
notation we use. A protection pair consists of protection in the supervisor mode, followed by a
colon, followed by protection in the user mode.

2. So in the left hand column, we find the protection that we would like to give a particular
block, and then use the other two columns to tell us what values go into the valid bits and the PP
field.

3. For example, for a block in which we would like supervisor page translation and user
read/write, we would assigned O to Vg, 1 to V, and 10 to PP.

4. No access means the DSI or ISl exception will be taken.

Memory Management Unit 9-12

How to Assign BAT Protection (2 of 2)

Three blocks are to be protected as follows: BATO isto be R/'W:R/W, BAT1
isto be PT:R/O, and BAT2 isto be R/O:PT. Fill in the required protection
valuesin the table below.

Example

Block| Vg | Ve | PP
O | 1]1]10
1 |0]1|x1
2 |1]0|x1

Exercise Two blocks are to be protected as follows. BATO isto be No access.PT, and
BAT1isto be R/W:R/W. Fill in the required protection valuesin the table

below.

Block| Vg | Ve | PP
0
1

1. Inthe example, BATO isto be R/W:R/W. Looking at the table on the previous page, we see

this requires the valid bits to each be one, and the PP bitsto be 10.
2. BAT1isto be PT:R/O. Again, according to the previous table, V4 must be zero, V, must be

one, and PP can be 01 or 11.
3. Finally, block 2 isto be R/O:PT requiring Vgto be 1, V to be zero, and PP again to be 01 or

11.
4. Try the exercise to check your understanding.

Memory Management Unit

What Arethe WIM G Bits?
Definition The WIMG hits are attributes assigned to blocks and pages.

Attribute 0 1
W Write-back Write-through
I Caching enabled | Caching inhibited
M Local access Global access
G Unguarded Guarded
Snooping | PowerQUICC 2 Master
Block RAM
Diagram,
M bit r'y
Address Bus R
Control Signals
GBL* R

If the asserted address isin a page or block with M=1, the GBL* signal is
asserted. This notifies other masters to snoop their data cache(s). If the
page or block has M=0, GBL* is not asserted.

1. Here's a summary of the WIMG bits. We're already familiar with W (write-through or write-
back) and | (cache enabled or disabled) from the cache chapter.

2. The diagram explains the M bit. M stands for Memory Coherency bit. It is useful only in
systems which can have more than one bus master. If a page with the M bit set is accessed, the
PowerQUICC 2 asserts the GBL, global, pin. This notifies other bus masters that the
PowerQUICC 2 is accessing data that they all share.

3. If the PowerQUICC is accessing data that the other bus master has cached, and if that data has
been modified, the access of the PowerQUICC 2 must be held off until the other bus master can
write the updated datato memory.

Memory Management Unit 9-14

What isthe Guarded Bit?

Definition The Guarded attribute prevents out-of-order loading and pre-fetching
from the addressed memory location.

Example | oop: 1bz Rx,O0(Ry) 1. “bc loop” enters sequencer

2. Branch unit predicts branch to loop

------ 3. Sequencer pre-fetches Ibz instruction

______ 4. If O(Ry) is not guarded, datais
loaded. If it isguarded, datais not
loaded until the branch is decided.

Add'| * A page should be guarded if it is subject to destructive reads.

Comments If the Ibz instruction isin a guarded page, it is not fetched until the

branch is decided.

«If the guarded instruction or dataisin cache, the guarded bit has no
effect.

Memory Management Unit

Definition

Block
Diagram

What is Page Trandation?

If an effective address matches the corresponding field of aTLB (Trandation

Lookaside Buffer) entry, the information in the TLB entry is used to generate the

physical address.

Real
Addr

TLB

PTEL [

—» PTEU
PTEL

—»_PTEU
PTEL [

> _PTEU | |
Effective | PTEL

Addresses [»| PTEU
PTEL M

—» PTEU
PTEL

—» PTEU
PTEL

—» PTEU
PTEL

4 gbyte
Memory Map

WA

I

Characteristics
of Page
Trandation

* Page trandation allocates memory in 4K blocks.

» Data and instruction areas may overlap.

» When an effective address is asserted by the task, it is compared against the
page entries in the TLB. If there isamatch, the associated real addressis
asserted. If there isno match, then a page table search occurs.

Memory Management Unit

Exercises - Page Trangdlation
Introduction The diagram below shows two tasks accessing the memory map through the
MMU. A descriptor legend is shown along with six descriptors in the MMU.
. Descriptor Legend MMU Memory Map
Exercise | RA |
[0x00824 [0x01596 |
[CIISHIPPIID] TN]NRW AT 0x1596120 | 12345678
Effective| [5x00825 [0x02391] 0x2391358 (87654321
Addresses| [N [N [R/IO] A]
22
Task A »| [Ox00431 [OxOSDEF] | OX3A7904C 11223344
[Y TN IRW[A] Real Addresses
[OxO0C2A | 0x04588 |
[N N RW B] 0x45889C4 | 55667788
[0x00C2B [0x03A79)]
Task B » INTY IRW B] Ox5DEF62C | 24681357
O6DSE ODSB] | 4,55 758 (26481537
TLB TLB entries can be either:
Entries 1. Initialized directly using the instructions tlbli or tibld or
2. Loaded with the result of a page table search.

What istheresult when:
1. Task A asserts aread to 0x8241207

2. Task A asserts awrite to 0x8253587?

3. Task A assertsaread to 0x43162C?

4. Task A asserts aread to OxC2A9C4?

5. Task A assertsaread to 0xC2B04C?

6. Task B asserts aread to Ox6D5B7587?

7. Task A asserts aread to 0xC2C158?

Memory Management Unit

Load TLB Direct Programming Model (1 of 2)

PTEU - Page Table Entry Upper p. 7-37
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
\% VSID

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
VSID H AP

PTEL - Page Table Entry Lower p. 7-37
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
RPN

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
RPN 0/|0|0|R|C WIMG 0 PP

DCMP - Data PTE Compare Register P. 5-37
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
\% VSID

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
VSID H AP

Introduction The next two pages are the programming model for loading the TLB directly.

PTE, Page ° ThePTE consists of two fields: the upper word, PTEU, and the lower word,

TableEntry PTEL.
* PTEU contains the virtual segment ID which consists of the task number and
the segment number. It also contains the field APl which is the most significant
six bits of the page index field of the effective address. The H bit indicates
whether thisis ahash primary or hash secondary PTE.
* PTEL containsthe real page number and the protection bits, WIMG and PP. In
addition, the R bit is used to record that this page has been accessed and the C hit,
that this page has been changed.

DCMP Thisregister contains the value to be compared with PTEU in searching the TLB
or the page tables for amatch. For aload TLB, thisregister specifies the PTEU to
go into the entry. Thisisfor data accesses only.

Memory Management Unit 9-18

Load TLB Direct Programming Model (2 of 2)

ICMP - Instruction PTE Compare Register P. 5-37
O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
\% VSID

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
VSID H AP

RPA - Required Physical Address Register P. 5-38
O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
RPN

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
RPN 0l0|]0|R|C WIMG 0 PP

ICMP Thisregister contains the value to be compared with PTEU in searching the TLB
or the page tables for amatch. Thisisfor instruction accesses only.

RPA OnaTLB load, thisregister specifies the PTEL value to go into the entry. For a
table search, RPA will be loaded with the real address before returning from the
exception.

Memory Management Unit

How to Load a Pageintoa TLB (1 of 3)

Assumption - Reset conditions exist.

Action Thesearethe stepsininitialization:

Step Action Example
1 | Clear BAT registers i r22,0
ntibatu 0,r22

mibatu 3,r22
nt dbatu O, r22

ntdbatu 3,r22
2 | Invalidatethe TLBs for(i=0;i<32;i++)
i nval i dat e(i <<12);

voi d inval i dat e(i)
int i;

{

}
(Continued on next page)

asm“ tlbie r3");

Introduction Typically aTLB entry isloaded as aresult of a miss exception routine doing a
table search, finding the PTE and loading it into the TLB. Sometimes, it may be
advantageous to load an entry prior to execution, perhaps as part of initialization
in acontext switch. This procedure shows how to do such aload.

Step 1 Clearing the BAT registers following reset is SOP because any and all of the
BATUs could have their valid buts set.

Step 2 Invalidating the TLBs following reset is SOP because any entry can come up
falsely valid.

Memory Management Unit 9-20

Action

How to Load a Pageintoa TLB (2 of 3)

Step Action Example
3 | Init DCMP with PTEU lis r22,0x8045
V: valid bit ori r22,r22,0x0009
VSID:virtual segment ID ntspr 977,r22
H: hash bit
API:upper 6 bits, page index
(5-37)
4 | Init RPA with PTEL lis r22, 0x9876

RPN:real page number
R:reference bit
C:change hit
WIMG:attributes
PP:page protection

(5-38)

ori r22,r22,0x0002
ntspr 982,r22

(Continued on next page)

1. Next, DCMP (or ICMP) must be initialized with the desired PTEU word.
2. Then RPA must be initialized with the required PTEL word.

Memory Management Unit

How to Load a Pageintoa TLB (3 of 3)

Acti Step Action Example
ction ™= Do aTLB load lis r22, 0x1234
ea effective address ori r22,r22,0x5678
tlbli r22
(2-47)

ori r22,r22,0x30
mnsr r22
i sync

1. Step 5, thetlb load instruction must be executed. The operand isthe desired effective address.
2. Finally, the MMU must be enabled.
3. Let’stake alook at an example.

Memory Management Unit

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

mai

{

Example- Loading a Pageintoa TLB (1 of 4)

THI S PROGRAM CHECKS THE USE OF THE tlbld | NSTRUC
TION. THI'S I NSTRUCTION AND tlbli ARE USEFUL IN

*/
*/

LOADI NG TLB ENTRI ES DI RECTLY RATHER THAN GO NG THRU*/
EXCEPTI ON PROCESSI NG THE PROGRAM FI RST | NI TI ALI ZES*/

A TLB ENTRY AND SUCCESSFULLY WRI TES TO THE LOCA-
TION. | T THEN | NVALI DATES THE ENTRY, AND TRI ES TO
VWRI TE TO THE LOCATI ON AGAI N, BUT NOW A DATA STORE
TRANSLATI ON EXCEPTI ON OCCURS.

| MPORTANT PARAMETERS ARE:

PTEU=0x80001000, PTEL=0x22082, EFFECTI VE ADDRESS | S
Ox24xxx, REAL ADDRESS | S 0Ox22xXxX.

n()

int *tptr; /* TEST PO NTER

voi d invbat (); / * DECLARE | NVBAT FUNCTI ON
voi d invalidate(); / * DECLARE | NVALI DATE FUNC
int i; / * GENERAL VARI ABLE

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

Memory Management Unit

Example- Loading a Pageintoa TLB (2 of 4)

i nvbat () ; /* | NVALI DATE BAT REGS
for(i =0; i < 32; i++) /* |INVALI DATE THE TLBS

i nval i dat e(i <<12);
i ni t DCOVP(0x80001000); /* INNT DCVP W TH PTEU
i ni t RPA(0x22082) ; /* INNT RPA WTH PTEL
filldataentry(0x24000); /* INIT TLB ENTRY FOR EA

tptr = (int *) 0x22100; /* CLEAR TEST LOCATI ON
*tptr = 0;
asm(" nfmsr r22"); /* ENABLE DATA MWJ

asm" ori r22,r22,0x10");
asm(" mnsr r22");
asm(" isync");

asm" i r22,0x20"); /*INIT TASK 2, SEG 0, NO PROT
asm(" ntsr sr0,r22");
tptr = (int *) 0x24100; /* ACCESS PACE

*tptr = 0x12345678,;
i nval i dat e(0x24100) ;
tptr = Ox9ABCDEFO; / ACCESS PACE

*/
*/
*/
*/
*/
*/

*/

*/

*/

Memory Management Unit

{

Il

}

i nt

{
}

asm("
asm("
asm("
asm("
asm("

Example- Loading a Pageintoa TLB (3 of 4)

voi d invbat ()

li r22,0"); /* 1 NVALI DATE BAT REGS */
ntibatu 0,r22");
nibatu 1,r22");
nibatu 2,r22");
nibatu 3,r22");

asm(" ntdbatu 0,r22");

asm("
asm("
asm("

mtdbatu 1,r22");
mt dbatu 2,r22");
nmtdbatu 3,r22");

voi d invalidate(i)

asm(" tlbie r3"); /* 1INV TLB ENTRY FOR EA I N r3*/

Memory Management Unit

Example- Loading a Pageintoa TLB (4 of 4)

i ni t DCVP(pt eu)
int pteu;

{
asm(" nmtspr 977,r3"); /* 1ST WORD OF PTE TO DCWP

}

init RPA(ptel)
int ptel;

{
asm(" ntspr 982,r3"): /* 2ND WORD OF PTE TO RPA

}

filldataentry(ea)
int ea;

{
}

asm(" tlbld r3"); /* LOAD DATA TLB ENTRY

*/

*/

*/

Memory Management Unit

How an Effective Addressis Translated
Introduction The diagram below shows the flow in determining how an address will

be trandated.
Flow x=Dorl
Diagram
| Effective address asserted |

|Generate virtual address|

<
4

'\
XTLB hit?

N
| Do table search

* BAT and page
trandation are actually
started in parallel. If a
BAT hit occurs, page
trandation isterminated.

Y

1. The trandation process begins with the assertion of an effective address. If the associated
MMU, instruction or data, is not enabled, then memory is accessed directly.

2. If it isenabled, then BAT and page trandlation are begun.

3. If aBAT hit occurs, page trandation isterminated, and a check is made for protection
compatibility. If thereisno compatibility, an xSl exception is taken.

4. If aBAT miss occurs, trandation continues with the generation of avirtual address. The
MMU then checksfor a TLB hit. If thereisahit, a check is made for protection compatibility. If
there is no compatibility, an xSl exception is taken.

5. If thereis no hit, atable search is executed. If the page table entry isfound, it isloaded in the
TLB and then ahit occurs. If no PTE isfound, execution goes to the xSI vector via a branch.

6. Thisisthe overall picture. Next, we want to learn what virtual address generationis.

Memory Management Unit 9-27

How a Virtual Addressis Generated
Introduction The diagram below shows the flow in determining how a virtual address
is generated.
Effective Address
Flow 0O 314 19 20 31
Diagram | | Page Index | Byte fffsa |
v Becomes least significant
Segment 12 bits of real address
Selection
Virtual
Address
Generation | Real address asserted |
v
XTLB hit2>Y Load XTLB
N Do tab N
XTLB miss »{~° he xS| Exception |
exception occurs Searc

1. A virtual address is generated by combining the page index, bits 4-19 of the effective address,

and the segment selection.
2. Next, what is segment selection?

Memory Management Unit

What is Virtual Memory?

Definition Virtual memory refersto the ability of the 603e MMU to allocate 4
gigabytes of memory for to up to a million tasks.

Virtual
Memory
Task 0
4 gbytes
Task 1
4 gbytes
o

Task 220-2
4 gbytes
Task 220-1
4 gbytes

603ev
Virtual
Memory

Map

Comments . At any point in time, only one task can be running; therefore, only one 4
gbyte memory space isin use.
* The pages of a particular task may reside in physical memory or on disk or
both.
» When a page that is needed is on disk, the OS must move it into memory.

1. First of al, let’s review the meaning of virtual memory on the 603ev.

2. Virtual memory consists of 1 million 4 gigabyte memory spaces each assigned to a specific
task number.

3. Since there is only one 4 gigabyte memory available, it’s apparent that if al tasksarein
physical memory at once, then probably there are few tasksin the system.

4. Virtual memory operation allows that some pages can be in memory and some on disk.

Memory Management Unit

Flow
Diagram

How a Segment is Selected (1 of 2)

Introduction The diagram below shows the flow in determining how a segment is

selected.
Effective Address Selected Selected
(03] | Task VM, Segment,
' 4 gbyte 256 mbyte
0
Task VM 1
@ Segment Task 0 2
Registers 4 gbytes 2
SRO Task 1 5
SR1 4 gbytes 6
T T
SR14 hd 8
SR15 Task 220-2 9
4 gbytes 10
Task 220-1 11
12
14
15

The virtual segment ID from the Segment Register determines the selected

4 gbyte space and further, determines the segment within that space.

1. Segment selection begins with bits 0-3 of the effective address being used to select one of 16

segment registers.

2. The segment register, among other things, contains the task ID which selects 1 of 1 million
virtual memory spaces.

3. The virtual memory space is divided into 16 memory segments, 256M bytes each.

4. The segment register also contains a segment number which selects one of the sixteen

segments.

5. This segment selection then becomes part of the virtual address.

Memory Management Unit

How a Segment is Selected (2 of 2)

Segment _
Translation 0 34 Effective Address 19 20
| | Page I ndex | Byte Offset |
P. 7-35
8 27 28 31
0 Protectiod | Task ID [Seq No. |
.
15Protectior] | Task ID [Seg. No. |

I |
Virtual Segment ID
» Two sets of segment registers: one for data and a shadow set for instruction

accesses
Protection
o 1 2 3 Pé?: Description
T [Ks[Kp T | Must always be O

Ks | Supervisor state protection key

Kp | User state protection key
N | No-execute protection bit

1. The segment register consists basically of three fields: protection, task ID, and segment
number.

2. It isthe job of the operating system to program the segment registers on atask switch. At this
time it will put the task number in aleast one segment register.

3. It puts the number of a segment to be used in the segment register. If the task isusing only
one segment register, the segment number could be any number 0-15. If the task isusing all the
segment registers, then the segment number field might contain the number of the segment
register.

4. There are four protection bits: T, K¢, Kp, and N.

5. T must always be zero. If it is one, execution gets directed to afeature that is no longer
implemented on PowerPC.

6. There are two protection keys, one for supervisor and one for user.

7. N can specify that a segment be used for data only. In this case the shadow instruction register
is disabled.

Memory Management Unit 9-31

Definition

Page
Table
Structure

Calculations

What isthe 603e Page Table Search?

The 603e page table search is the process of searching through a hashed
table of page entries for a match to arequested effective address.

PTEO|PTE1|PTE2|PTE3|PTE4|PTES|PTEG|PTE/
PTEO|PTE1|PTE2|PTE3|PTE4|PTES|PTEG|PTE/
HaSh PTEO|PTE1|PTE2|PTE3|PTE4|PTES|PTEG|PTEY
Primary |PTEQ|PTE1|PTE2|PTE3|PTE4|PTES|PTE6G|PTEY
PTEO|PTEL1|PTE2|PTE3|PTE4|PTES|PTEG|PTEY

.
PTEO|PTE1|PTE2|PTE3|PTE4|PTES|PTEG|PTE/
Hash |PTEO|PTE1|PTE2|PTE3|PTE4|PTES|PTE6|/PTEY
Secondary |PTEO|PTE1|PTE2|PTE3|PTE4|PTES|PTEG|PTEY
PTEQ|PTE1|PTE2|PTE3|PTE4|PTES|PTEG|PTE/
PTEO|PTE1|PTE2|PTE3|PTE4|PTES|PTEG|PTEY

PTEGO

PTEGN

HP = ((EA>>12) & OXFFFF) ~ (getSRn() & OX7FFFF);

HS=~HP;
PTEGptr = (int *) O;

PTEGptr = (int *)((getSDR1() & OxFE000000) + (((HP>>10) & (getSDRL()
& OX1FF)) | (setSDR1() & (Ox1FF<<16)) + ((HP &

O0x3FF)<<6)));

1. Here we define a page table search.
2. The page table isin memory at alocation specified by the register, SDR1 (by the way, thereis
no other register SDRn except SDR1).

3. A pagetable entry (PTE) islocated in one of two page table groups (PTEG) which is selected

by one of two hash functions, primary and secondary.
4. The calculations for the hash functions and the PTEGs are shown.

Memory Management Unit

Page Programming M odel (1 of 3)

SDR1 - Storage Description Register P. 7-50
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
HTABORG

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0,0|0]0|0]O0]|O0 HTABMASK

PTEU - Page Table Entry Upper p. 7-37
O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
\% VSID

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
VSID H AP

PTEL - Page Table Entry Lower p. 7-37
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
RPN

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
RPN 0/|0|0|R|C WIMG 0 PP

1. The next three pages are the programming model for page trandlation.

2. SDR1 contains an originating address (HTABORG) for the page table and a mask field
(HTABMASK) to specify the length.

3. The PTE consists of two fields: the upper word, PTEU, and the lower word, PTEL.

4. PTEU contains the virtual system ID from the segment register. It also contains the field AP
which is the most significant six bits of the page index field of the effective address. The H bit
indicates whether thisis a hash primary or hash secondary PTE.

5. PTEL containsthe real page number and the protection bits, WIMG and PP. In addition, the R
bit is used to record that this page has been accessed and the C hit, that this page has been
changed.

Memory Management Unit 9-33

Page Programming M odel (2 of 3)

DMISS- Data TLB Miss EA Register P. 5-36
0 31
Effective Page Address
IMISS - Instruction TLB Miss EA Register P. 5-36
0 31
Effective Page Address
DCMP - Data PTE Compare Register P. 5-37
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

\% VSID

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
VSID H API

ICMP - Instruction PTE Compare Register P. 5-37

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

\% VSID

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
VSID H API

1. These registers contain information about the miss that can be used in the miss service

routine.

2. Thevauein ICMP or DCMP isthe word to be searched for in the page table.

Memory Management Unit

Page Programming M oddl (3 of 3)

HASH1 - Primary PTEG Address P. 5-37
O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
HTABORG Hashed Page Address
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Hashed Page Address 0O|l0|0|0O0]O0]O

HASH2 - Secondary PTEG Address P. 5-37

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
HTABORG Hashed Page Address

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Hashed Page Address 0O|l0|0|0O0]O0]O

RPA - Required Physical Address Register P. 5-38

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RPN
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
RPN OJ]O0|O0O|R|C WIMG 0 PP

1. The hash registers are used by the miss routine as pointers to where the search should begin.
2. Once the PTE has been found, PTEL of the PTE can be moved to RPA and the search is
complete.

Memory Management Unit

How the Page Tableis Searched? (1 of 2)

Introduction The diagram below shows the flow in searching the page table.

| TLB miss exception occurs |

Flow
Diagram | Get primary hash address from HASH1 |

| Init variablento 0 |

|A
<

@ Increment n

Y
| Write PTELnto RPA |

Y Set PTENR] = 1 |
|

1. PTEUn isthe upper word of page table entry n at the PTEG address.
2. PTELnisthe lower word.

1. The table is searched as shown. After the miss exception occurs, the service routine uses the
pointer in HASH1, which points to the right PTEG, to begin the search.

2. The service routine searches through PTEs until it either finds a match or it has searched all 8
entriesin the PTEG.

3. If amatch was found, then PTEL iswritten to RPA and the R bit is updated.

4. If amatch was not found, then a second search is started.

Memory Management Unit

How the Page Tableis Searched? (2 of 2)

| Get secondary hash address from HASH2 |

_ Flow | Init variablento O |
Diagram e
, 2 Y
(cont’d) N
@ Increment n @
Y N
| Write PTELn to RPA | | xSI Exception]

Y Set PTENR] =1 |
|

1. PTEUn isthe upper word of page table entry n at the PTEG address.
2. PTELnisthe lower word.

1. The second search is done in the same way, except it uses HASH2.
2. If amatch is not found in this search, it is an error, and execution goes to the xSI exception
vector viaabranch.

Memory Management Unit

Notation

Reference
Table

S:U = Supervisor:User

How to Assign Page Protection (1 of 2)

R/W:R/O = Supervisor accessis R/W:User accessis R/O

If apageisto ol WED AU .
have this page ...and PP in the
: protection PTE must be...
protection...
must be...
R/IW:R/IW Ks=N/A 10 for R/W:R/W
or and and
R/O:R/O Ko =N/A 11 for RIO:R/O
R/W:No access Ks= 00 for R/W:No access
or and and
R/W:R/O Kp= 01 for R/'W:R/O
No access:R/'W Kg= 00 for No access:R/W
or and and
R/O:R/W Kp= 01 for R/IO:R/W
No access:No access| Kg= 00 for No access:No access
or and and
R/O:R/O Kp= 01 for R/O:R/O

1. Here we can learn to assign the protection to a page that we desire. Once again, check the
notation we use. A protection pair consists of protection in the supervisor mode, followed by a

colon, followed by protection in the user mode.

2. So in the left hand column, we find the protection that we would like to give a particular

block, and then use the other two columns to tell us what values go into the valid bits and the PP

field.

3. For example, for a page in which we would like supervisor no access and user read/write, we

would assigned 1 to K, 0to K, and 00 to PP.

Memory Management Unit

How to Assign Page Protection (2 of 2)

Example A segment isto have three valid pages as follows: page 1 isto be R'W:R/W,
page 2 isto be R/W:R/O, and page 3 isto be No access:R/W. Fill in the
required protection values in the table below.

K| Kp Page | PP
01 1 |10
01
*

* Page 3 must be located in another segment.

Exercise A segment isto have two valid pages as follows: page 1 isto be No
access:R/W, and page 2 isto be R/W:R/W. Fill in the required protection
valuesin the table below.

K| Kp Page | PP
1
2

1. Inthe example, page 1 isto be R/W:R/W. Looking at the table on the previous page, we see
this requires only that the PP bits be 10.

2. Page 2 isto be R/W:R/O. Again, according to the previous table, K4 must be zero, K, must be

one, and PP must be O1.

3. Finally, page 3 isto be No Access:R/W. Thisrequires K4 to be 1, K to be zero; therefore, this

page must go in another segment.
4. Try the exercise to check your understanding.

Memory Management Unit

Types of
Miss
Interrupts

Hardware
Assist
Registers

What arethe TLB Miss Exceptions? (1 of 2)

Definition If avalid PTE isnot found inthe TLB, a TLB miss exception occurs. Software
must then find and load the PTE into the TLB. Additional registers provide

some hardware assist.
Type Vector
1 Instruction TLB Miss 0x1000
2 DatalLoad TLB Miss 0x1100
3 |Data Store Trandation Missor C=0| 0x1200

* Exception type 2 occurs if adataload address cannot be translated by the

DTLB
* Exception type 3 occursif:

1. A data store address cannot be trandlated by the DTLB or

2. The C bit must be changed.

When execution begins at the service routine, the following registers

contain useful information:
* D, IMISS = EA that caused the miss

* HASH1 = primary PTEG address, HASH2 = secondary PTEG address
* D,ICMP = word to be compared against first word of PTES
* RPA = ISR loads with second word of matching PTE

Memory Management Unit

What arethe TLB Miss Exceptions? (2 of 2)

Temporary < When execution begins at the service routine, MSR[TGPR] = 1 and four,
Scratch 32-hit, temporary registers, GPRO-3, are available.
Registers < If an access of GPR4-31 is attempted while MSR[TGPR] = 1, resultsare
undefined.

» When execution begins at the service routine, CRO has been saved in
SRR1[0:3].
* The ISR must restore CRO from SRR1[0:3] before executing rfi.

nfspr r3,srrl
ntcrf 0Ox80,r3
rfi

Service

) The programs for the TLB miss exception service routines are in the 603UM,
Routines

p. 5-44.

Memory Management Unit

What arethe MM U Error Exceptions?

Definition An MMU error exception occurs if a page search resultsin: 1) no PTE was
found or 2) the protection associated with the PTE is not compatible.

Data °* Occursfor an error due to a data access
Storage * Usesexception vector 0x300
Interrupt ~ * Error information can be found in:
(DSI) SRRO - effective address that caused the exception
SRR1 - copy of MSR
DSISR - protection violation and read/write status
DAR - effective address of protected memory byte

» Occursfor an error due to an instruction access

Instruction _
Storage ° Uses exception vector 0x400
Interrupt ~ * ErTOr information can be found in:

(1) SRRO - effective address of the next instruction
SRR1 - copy of MSR; hit 4 indicates a protection violation

Memory Management Unit

How to Initialize a Page Table Entry (1 of 2)

Assumption - The segment registers and SDR1 have been initialized.
- The page table has been cleared.
- The TLBs have been invalidated.

Action Thesearethe stepsininitialization:

Step

Action

Example

1

Calculate the primary hash
function

See earlier page

Calculate the secondary
hash function

hs = ~hp;

Calculate the pointer to
the PTEG

See earlier page

Search the primary PTEG
for an unused entry

whi | e(((PTEPpt r - >PTEU<0)
&& (i++ < 8))
PTEGot r ++;

(Continued on next page)

Memory Management Unit

Action

How to Initialize a Page Table Entry (2 of 2)

Step Action Example
5 |If no available entry in
primary PTEG, then
search secondary PTEG
6 | Initialize the entry with the PTEGot r - >PTEU = pt eu;
new page PTEGot r - >PTEL = ptel ;
7 | Execute sync asm“ sync”);

Memory Management Unit

Exercise - I nitializing a Page Table Entry (1 of 9)

/* ACCESSES THE PAGE TO CHECK THE RESULT. SINCE THE
/* SERVI CE ROUTINE FOR A DATA M SS I'S NOT | NCLUDED,
/* WHEN A DATA M SS OCCURS, THE HASHX REQ STER | S

/* CHECKED TO VERI FY I T HAS THE SAME VALUE AS THE LO
/* CATI ON OF THE PACE ENTRY.

struct PTE {
i nt PTEU; /* FI RST WORD CF PTE
int PTEL; /* SECOND WORD OF PTE
b

#defi ne FALSE O

#define TRUE 1

/* TH S PROGRAM GENERATES A PAGE TABLE ENTRY AND THEN */

*/
*/
*/
*/
*/

*/
*/

Memory Management Unit

Exercise - I nitializing a Page Table Entry (2 of 9)

mai n()

{
int *pt; /* PT PO NTER FOR CLEAR
voi d invbat (); / * DECLARE | NVBAT FUNCTI ON
voi d invalidate(); / * DECLARE | NVALI DATE FUNC
int i; | * GENERAL VARI ABLE
i nvbat () ; /* | NVALI DATE BAT REGS
asm " lis r22,0"); /* INIT SRO

asm" ori r22,r22,0x20"); /* TASK 2, SEG 0, NO PROT
asm(" ntsr SRO,r22");

asm(" lis r22,0x3"); /* INIT SDR1
asm " mtsdrl r22"); /* LOCATE PT AT 0x30000
pt = (int *) 0x30000; /* INIT PNTR TO PAGE TABLE
for(i =0; i < ; 1++) /* CLEAR PT
*pt++ = 0;

for(i =0; i < 32; i++)
i nval i dat e(i <<12);

*/
*/
*/
*/

*/
*/
*/

*/
*/
*/
*/

Memory Management Unit

Exercise - I nitializing a Page Table Entry (3 of 9)

add_a_page(0x24000, 0x80001000, 0x00022082) ;

/*ADD A PAGE, EA=0x24000,

/ * RA=0x22000, TASK 2, SEG 0
pt = (int *) 0x22100; /* CLEAR TEST LQOCATI ON

* —_ .
pt = 0;

asm(" nfrsr r22"); /* ENABLE DATA MW
asm(" ori r22,r22, "),

asm(" nmtnsr r22");

asm(" isync");

pt = (int *) 0x24100; | * ACCESS PAGE

*pt = 0x12345678;

renove_a_page(0x24000, 0x80001000, 0x00022082) ;
/| * REMOVE PAGE

*pt = Ox9ABCDEFO; | * ACCESS PAGE

*/
*/
*/

*/

*/

*/
*/

Memory Management Unit

{

Il

}

i nt

{
}

asm("
asm("
asm("
asm("
asm("

Exercise - I nitializing a Page Table Entry (4 of 9)

voi d invbat ()

li r22,0"); / * 1 NVALI DATE BAT REGS
ntibatu 0,r22");
nibatu 1,r22");
nibatu 2,r22");
nibatu 3,r22");

asm(" mdbatu 0,r22");

asm("
asm("
asm("

asm("

ntdbatu 1,r22");
ntdbatu 2,r22");
ntdbatu 3,r22");

voi d invalidate(i)

13"

*/

Memory Management Unit

Exercise - I nitializing a Page Table Entry (5 of 9)

add_a_page(ea, pteu, ptel)
int ea,pteu, ptel;

{
int hp, hs; /* PRI MARY AND SECONDARY HASH */
struct PTE *PTEGptr ; /* PO NTER TO PTEG GROUP */
int i; / * GENERAL VARI ABLE */

hp = ((ea>>12) & OXFFFF) ~ (get SRO() & OX7FFFF);
/* DETERM N PRI MARY HASH VALUE*/
hs = __; /* DETRVN SECONDARY HASH VALUE*/

PTEGotr = (struct PTE *) O; /* INIT PO NTER TO ZERO*/

PTEGotr = (struct PTE *)((get SDR1() & OxFE0O00000) +
(((hp>>10) & (getSDR1() & Ox1FF)) |
(get SDR1() & (Ox1FF<<16)) +
((hp & Ox3FF)<<6)));

i = 0;

whi | e((PTEGpt r - >PTEU < 0) && (i ++ < 8))

PTEGot r ++;

Memory Management Unit

Exercise - I nitializing a Page Table Entry (6 of 9)

i f (PTEGptr - >PTEU < 0)

{
pteu |= Ox X
PTEGotr = (struct PTE *)((get SDR1() & OxFEO00000) +
(((hs>>10) & (getSDR1() & Ox1FF)) |
(get SDR1() & (Ox1FF<<16)) +
((hs & Ox3FF)<<6)));
i = 0;
whi | e((PTEGptr - >PTEU < 0) && (i++ < 8))
PTEGot r ++;
}
i f (PTEGpt r - >PTEU >= 0)
{
PTEGotr - >PTEU = pt eu;
PTEGot r - >PTEL = ptel ;
asm“ sync”);
return(0);
}
el se
return(l);

Memory Management Unit

- 50

{

Exercise - I nitializing a Page Table Entry (7 of 9)

renove_a_page(ea, pteu, ptel)
int ea,pteu, ptel;

i nt hp, hs; /* PRI MARY AND SECONDARY HASH */
struct PTE *PTEGotr ; /* PO NTER TO PTEG GROUP * [
int i; /* GENERAL VARI ABLE * [
char found; /* BOOLEAN FLAG */

hp = ((ea>>12) & OXFFFF) ~ (get SRO() & OX7FFFF);
/* DETERM N PRI MARY HASH VALUE*/
hs = ~hp; /* DETRVN SECONDARY HASH VALUE*/

PTEGotr = (struct PTE *) O; /* INIT PO NTER TO ZERO*/

PTEGotr = (struct PTE *)((get SDR1() & OxFE0O00000) +
(((hp>>10) & (getSDR1() & Ox1FF)) |
(get SDR1() & (Ox1FF<<16)) +
((hp & Ox3FF)<<6)));

i = 0;

f ound = FALSE;

Memory Management Unit

Exercise - I nitializing a Page Table Entry (8 of 9)

do
i f(PTEGotr - >PTEU == pteu &% PTEGptr - >PTEL == ptel)
found = TRUE;
while (found == FALSE && i ++ < 8);
i f(found == FALSE)

{
pteu | = 0x00000040;
PTEGotr = (struct PTE *)((getSDR1() & OxFEOO0000) +
(((hs>>10) & (getSDR1() & Ox1FF)) |
(get SDR1() & (Ox1FF<<16)) +
((hs & Ox3FF)<<6)));
i = 0;
do
i f (PTEGptr - >PTEU == pteu &% PTEGptr->PTEL == ptel)
found = TRUE;
while (found == FALSE && i ++ < 8);
}

Memory Management Unit

Exercise - I nitializing a Page Table Entry (9 of 9)
i f(found == TRUE)
{
PTEGotr - >PTEU = O;
asm(“ sync”);
return(0);
}
el se
return(l);
}
get SDR1()
{
asm(" nfsdrl r3");
}
get SRO()
{
asm(" nfsr r3,0");
}

Memory Management Unit

-53

Example - Configuring the MMU for a System (1 of 4)

Example Thisisan example of amix of different devices and the address range from
Physical which they are accessed.

Memory Address Space Device Type Size
Map | 1| 0x00000000 - OXO3FFFFFF | SDRAM 64M
2| 0x04000000 - OXO41FFFFF | SRAM 2M
3| 0x04200000 - OX045FFFFF | SDRAM - local bus | 4M
4| 0x04700000 - 0x04700FFF | Board config regs 4K
5| 0x04900000 - 0x04900FFF | ATM PHY 4K
6| 0x05000000 - OxO500FFFF | PQ2 internal space | 64K
7 | OXFEO00000 - OXFFFFFFFF | Flash ROM 16M
_ Function AS Function AS
Function I'ev/T jn ROM All other comm dev buffers
Memory "EyTin RAM System stack
. Area Internal memory map MMU page table
Assignment -
ATM PHY device System scratchpad

Board control & status
FCC BDs & buffers
MCC BDs & buffers

System program area
User program area
User data area

wlw|h|lo|o|k |~
RiRRINININ |-

Memory Management Unit

Example - Configuring the MMU for a System (2 of 4)

Attribute
Assignment

| nstruction Data
Function ASW| | IM|G Pr W[l M|G Pr
EVT in ROM 7/0({0|0|0|R/IONNA|[0]|1|0|0| RIO:NA
EVT inRAM 1/0|{0|0|0|R/IO:R/O|0|1]|0]|0|RW:RIW
Internal memory map 6(0(1{0[{0| NAINA [0|1|0|0|R/W:NA
ATM PHY device 5(0{1|0[0| NA:NA |0[1|0|1|R/W:NA
Board control & status 410({1|0[0| NAINA [0|1]|0|1|R/W:NA
FCC BDs & huffers 3{0[1|0[{0| NA:NA [0|1]|0|0|R/W:RW
MCC BDs & buffers 3[{0[1|0{0| NA:NA [0|1]|0|0|R/W:RIW
All other commdev buffers {1 |0|1|(0|0| NA:NA |[0[{0| 0|0 |[RIW:RIW
System stack 2(0{1|0|0| NA:INA |0[1|0|0|R/W:NA
MMU page table 2(0[1|0|[0| NA:NA |0[1]|0]|0|R/W:NA
System scratchpad 2(0[{1|0|0| NA:INA [1[{0|0|0|R/W:NA
System program area 1/0|0|0|0|RIO:NA|0|1|0|0| NA:NA
User program area 1/0|{0|0|0|R/O:R/IO|0|1|0|0| NA:NA
User dataarea 1/0{0|0|0| NA:NA |1[{0]|0|0 |[RIW:RIW

Memory Management Unit

Example - Configuring the MMU for a System (3 of 4)

Sorting

by
Address
Space

| nstruction Data
Function ASW| | IM|G Pr W[l M|G Pr
EVT inRAM 1/0|{0|0|0|R/IO:R/IO|0|1]|0]|0|RW:RIW
All other commdev buffers |1 |{0|1[{0|[0| NA:NA [0|{1|0]| 0 |R/W:R/W
System program area 1/0|0|0|0|RIO:NA|0|1|0|0| NA:NA
User program area 1/0|{0|0|0|R/O:R/IO|0|1|0|0| NA:NA
User dataarea 1/0{0|0|0| NA:NA |1|{0]|0]|0 |[RIW:RIW
System stack 2(0{1|0|0| NA:INA |0[1|0|0|R/W:NA
MMU page table 2(0[1|0|0| NA:NA |0[1]|0]|0|R/W:NA
System scratchpad 2(0[{1|0|0| NA:INA [1][0|0|0|R/W:NA
FCC BDs & buffers 3[0(1{0({0| NAINA [0|1|0|0|R/W:R/W
MCC BDs & buffers 3[0(1{0({0| NAINA [0|1|0|0|R/W:R/W
Board control & status 410({1|0[0| NAINA [0|1|0|1|R/W:NA
ATM PHY device 5(0{1|0|0| NA:INA |0[1|0|1|R/W:NA
I nternal memory map 6(0(1{0({0| NAINA [0]|1|{0]|0|R/W:NA
EVT in ROM 7/0(0|0|0|R/IONNA[0]|1|0|0| RIO:NA

* AS3 & 7 can be block address trangdation.
* The system program area and all other commdev buffers can also be blocks.

Memory Management Unit

Example - Configuring the MMU for a System (4 of 4)

Sorting
by Function AS Address

Address [EvT in RAM 0x00000000 - OX003FFFFF
Space ["A|l other comm dev buffers 0x00400000 - 0x007FFFFF
System program area 1| 0x00800000 - OXOOBFFFFF

User program area 0x00C00000 - OxO2FFFFFF

User dataarea 0x03000000 - OxO03FFFFFF

System stack 0x04000000 - 0x0407FFFF

MMU page table 2| 0x04080000 - OXO40FFFFF

System scratchpad 0x04100000 - Ox041FFFFF

FCC BDs & buffers 3 0x04200000 - Ox044FFFFF

MCC BDs & buffers 0x04500000 - OxO045FFFFF

Board control & status 4| 0x04700000 - 0x04700FFF

ATM PHY device 5| 0x04900000 - 0x04900FFF

Internal memory map 6| 0x05000000 - OxO500FFFF

EVT in ROM 7| OxFEOO0000O - OXFFFFFFFF

* AS3 & 7 can be block address trangdation.
* The system program area and all other commdev buffers can also be blocks.

Memory Management Unit

How to Initializethe MM U (1 of 4)

Assumption - Reset conditions exist.

Action Thesearethe stepsininitialization:

Step Action

Example

1 | Clear BAT registers

li r22,0
mibatu 0,r22

mibatu 3,r22
nt dbatu O, r22

m dbatu 3,r22

2 | Init lower BAT register
BRPN:real page addr[0:14]

WIMG:attribute bits

PP:access protection
(7-25)

lis r22, OXFFFC
ori r22,r22,3
mibatl 0,r22

(Continued on next page)

Memory Management Unit

How to Initializethe MM U (2 of 4)

Action |Step

Action

Example

3

Init upper BAT register
BEPI:effective addr[0:14]

BL:block length

V gprivilege mode valid

V. problem mode valid
(7-25)

lis r22, OXFFFC
ori r22,r22,6
mibatu 0,r22

Repeat steps 2 and 3 for
each required lower-upper
pair BAT registers.

Initialize SRO-15
T: must beO
K s Supervisor key
Kp-User state key
N:no-execute protection
Task I1D:task number
Seg No.:segment number

(7-35)

lis r22, 0x6000
ori r22,r22,0x0010
nmsr SRO,r22

Also: nt srin

Memory Management Unit

How to Initializethe MM U (3 of 4)

Action |Step Action Example

6 | Init SDR1 lis r22, 0xE044
HTABORG: PT base addr ori r22,r22,1
HTABMASK:PT addr mask| ntsdrl r22

(7-50)

7 | Initialize the PT to all
invalid

8 | Invalidatethe TLBs for (i=0; i < 32; i++)

i nval i dat e(i <<12);

voi d inval i dat e(i)
int i;

{
}

asm“ tlbie r3");

Memory Management Unit

How to Initializethe MM U (4 of 4)

Action |Step Action Example
8 | Initialize PT entries
(7-37)
9 | Enablethe MMU asm(“ nfnsr r227);
asm(“ ori r22,r22,0x30");
asm(“ mnsr r22”);
asm(“ isync”);

Memory Management Unit

Allocating the Blocks (1 of 2)

[] Hex numbers
[] Binary numbers

Register
BEPI BL Vs{Vp| Hex Value
IBATU |O]| 008 | 000 [0]000 01 [11] 1 | O | Ox0080007E
1| --- --- [0]000 - |--]0}0 -
2| - --- [0]000 - |--]0}0 -
3| FEO | 000 [0]000 OF |11| 1 | O | OXFEOOOOFE
Register
BRPN W(l|M PPl HexValue
IBATL |O] 008 | 000 |O] 00 [O]0O|0O|0]0/0O|01| OxO00800001
1| --- --- (0] 00 |O]-|-[-]-]0O]-- -
2| - --- (0] 00 |O =| - |-[0f = -
3| FEO | 000 [O] 00 |0|0O|0f0|0|0f11| OXFEOOOOO3

Memory Management Unit

Allocating the Blocks (2 of 2)

Register
BEPI BL VsIVe| Hex Value
DBATU|O| 008 | 000 |0jO00|0] 01 11| 1| 1 | OxO080001F
1| 004 | 000 |0jO00|0] 01 11| 1| 1 | OxO040001E
2| 042 | 000 [OJOOOJOf 01 |11] 1 | 1 | Ox0420001F
3| FEO | 000 [0]000|Of OF |11| 1 [O | OXFEOOOOFE
Register
BRPN WIHM |G| [PP| Lo Value
DBATL |[O| 008 | 000 |0] 00 [O]0|1]|0]0/0O|10| Ox00800022
1| 004 | 000 |Of OO |O[0O([1]0]0[0]10] 0x00400022
2| 042 | 000 (O] OO |[0{0O|1/0}|0|0{10]| 0x04200022
3| FEO | 000 [O] 00 |O|O|1[0|0]|0f11]| OXFEOD0023

Memory Management Unit

I nitializing the Segment Registers

Task ID

)
n

)
o

&

Register
Hex Value

Segment 00001

0x30000010

Register 00000

0

00000

00000

00000

00000

00000

00000

00000

Olo|N/oO|O|(h|lW[IN|F]|O

00000

=
=

00000

=
=

00000

=
N

00000

=
W

00000

H
N

00000

o|lojo|o|o|o|o|o|o|o|o|o|olo|olo| H
Ol|o|o|ojo|o|o|ojo|o|o|o|o|o|jo|r]| Z2
OO |0O|0O|O|O|O|O|O|O|O|O|O|O|O|O

N [N [N [FSRN PN TR Y T O) e) O e (=)
(o] (o] (o] (o] (o] (o] (o] (o] (o] (o] (o] (o] (o} (o] (e} |

=
U1

00000

OO0 |0O|O|O|O|O|O|O|O|O|O|O|O

OO0 |0O|0O|O|O|O|O|O|O|O|O|O

Memory Management Unit

Initializing SDR1

1. Determine total memory size to be allocated in pages.

2. See page 7-52 to determine required page table size.
Required page table size = 512K; therefore,

AS Size |Allocation
1| 64M [BM-BAT Memory to be allocated in pages = 58M
2| 2M Page
3| 4M BAT
4| 4K Page
5| 4K Page
6| 64K Page
7| 16M BAT

HTABORG = x xxxx X000 and HTABMASK =0 0000 0111

HTABORG HTABMASK

Reg Value

SDR1 0408 ofo|o]o]o] 07

0x04080007

Memory Management Unit

