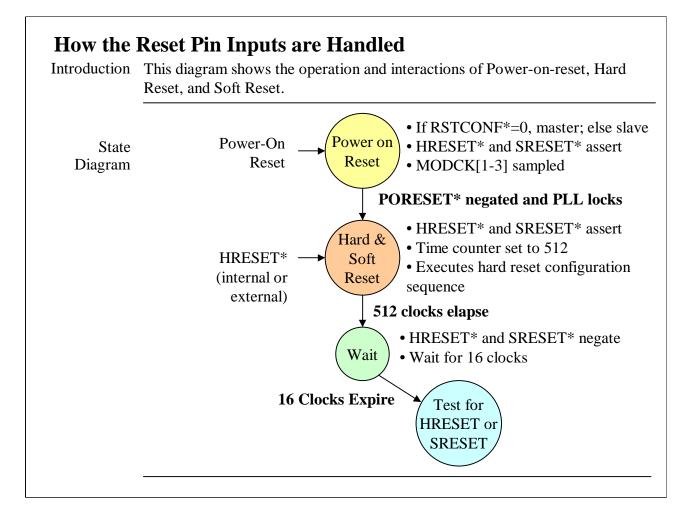


Reset Controller

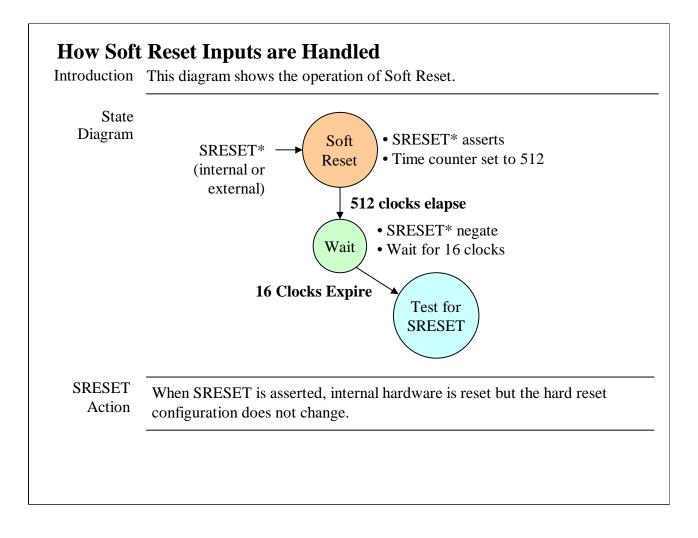
What you will learn

- What reset sources are available?
- How the reset inputs are handled
- How to initialize the clocks
- How to configure from reset
- How to initialize from reset



Features 1. There are eight sources of interrupts. Four are external pins and four are internal sources.
2. HRESET* and SRESET* are bidirectional. They can be asserted by external

2. HRESE1* and SRESE1* are bidirectional. They can be asserted by external devices, therefore, inputs. From PORESET, they will be asserted also, therefore they can be outputs.



Description

When the power-on-reset pin is asserted (for at least 16 clocks after external power is at least 2/3 VCC), the MPC8260 enters the Power on Reset State. If the RSTCONF pin is asserted, this device becomes a master, otherwise a slave.
When PORESET is negated and the PLL locks, the 8260 moves to the Hard and Soft Reset state where assertion of the hard and soft reset pins is assured for 512 clocks and the hard reset configuration occurs.
After 512 clocks elapses, the 8260 moves into the Wait state for 16 clocks. Here HRESET and SRESET are negated.
Finally, the 8260 goes into the Test for HRESET and SRESET state where, if either pin should be asserted, it will again respond.

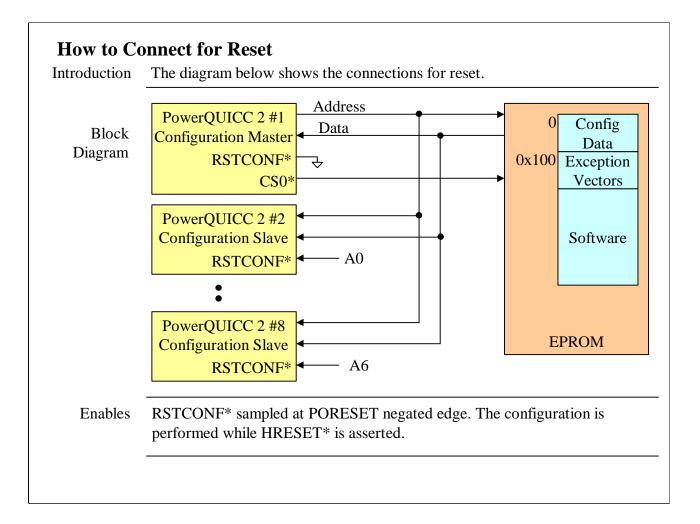
Description
1. When When SRESET is asserted, the 8260 moves into the Soft Reset state.
3. After 512 clocks elapses, the 8260 moves into the Wait state for 16 clocks. Here SRESET are negated.
4. Finally, the 8260 goes into the Test for SRESET state where, if the SRESET pin should be asserted, it will again respond.

How MODCK[1-3] Affect the Clocks

Clock Default Modes	MO	DCK[4-7] - MODCK [1-3]	data from the Input Clock Frequency	e Hard Reset CPM Multiply Factor	CPM Frequency	on Word Core Multiply Factor	Core Frequency	
		000	33 MHz	3	100 MHz	4	133 MHz	
		001	33 MHz	3	100 MHz	5	166 MHz	
		010	33 MHz	4	133 MHz	4	133 MHz	
		011	33 MHz	4	133 MHz	5	166 MHz	
		100	66 MHz	2	133 MHz	2.5	166 MHz	
		101	66 MHz	2	133 MHz	3	200 MHz	
		110	66 MHz	2.5	166 MHz	2.5	166 MHz	
		111	66 MHz	2.5	166 MHz	3	200 MHz	
MODCK[4-7] The defaults are with MODCK[4-7] = 0. Other core and CPM frequencies are available for other values of MODCK[4-7] ranging from 66 MHz to 300 MHz.								

Description 1. Here's a summary of the operating frequency options for all values of MODCK[1-3].
2. Getting some clock information from the pins and some from the configuration word is a compromise between the number of pins used and the flexibility offered. One must roughly select the clock frequencies using pins for the system to start and fetch the reset configuration word. Then a fimer tune is possible.

RSR	Rec	ot St	atuel	Paris	tor									D	. 5-4
	- KCS		3 atus 1	-		6	7	0	0	10	11	10	12		
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	13
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
										JT	CS	SW	BM	ES	EF
					-					RS	RS	RS	RS	RS	RS
	1	2	3	U	5	6	7	8	9	10	11	12	13		5-5 15 CS RE
Hard	Rese	t Cor	nfigur	ation	woi	rd								P	5-7
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
EA RB			EB M	Bl	PS	CI P	IS PS	L20	CPC	DP	PC	-		ISB	
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
BM S	BB D	M	MR	LB	PC	AP	PPC	CS1	0PC	PH E	-	Ν	10D0	CK_F	Η


Description 1. This is the programming model for reset.

2. In the RSR, there are 6 bits, one for each possible reset source (except TRST). These bits can be read to determine the source of the interrupt. Then the bit is cleared by writing a 1 to it.

3. RMR has one bit which determines if a checkstop will cause a reset or if it will allow the processor to stay in the checkstop state.

4. The Hard Reset Configuration Word is initialized from reset providing initial values to a number of parameters such as ISB, the initial internal space base select.

Description
1. The PowerQUICC 2s in the system are setup such that there is one configuration master (RSTCONF always low), amd multiple slaves (RSTCONF connected to A0 to A6 as necessary).
2. Configuration data is located at address 0 of the exception table.
3. To program on-board flash from reset, the user can drive RSTCNF high to select the default configuration, program the flash, then drive RSTCONF low during subsequent resets.

How the Master Configures the PowerQUICC 2s Introduction The diagram below shows the steps in configuration.								
-	Access	R/W	Address	Description				
Configuration	1	R	0xFE000000	D 141 / 1 / /				
Master	2	R	0xFE000008	Read 4 bytes and store to				
Reset	3	R	0xFE000010	Hard Reset Config Word, Master				
Steps	4	R	0xFE000018	1viusioi				
	5	R	0xFE000020					
	6	R	0xFE000028	Read 4 bytes and store to Hard Reset Config Word, 1st slave				
	7	R	0xFE000030					
	8	R	0xFE000038					
	9	W	0x7E000000					
			•					
	35	R	0xFE0000E0					
	36	R	0xFE0000E8	Read 4 bytes and store to				
	37	R	0xFE0000F0	Hard Reset Config Word,				
	38	R	0xFE0000F8	7th slave				
	39	W	0xFC000000					

Description 1. All reads are 1 byte. All writes are 1 word.

2. Because the configuration master has no advance knowledge about the number of slaves, it always executes all accesses coming out of reset.

– PORESET*	HRESET* and SRESET*.	Then for PORESET* and HRESET*
l HRESET* Table	Pin can be input or output	Pin is an input
	Pin is three-statable	Pin is in high-impedance
	Pin is always an output	Pin is driven to negated logical value

Step	Action	Example
1	MSR initialization	lis r3,0 ori r3,r3,0x1002 mtmsr r3
2	IMMR initialization	lis r4,0x0471 lis r3,0x0F01 stw r4,IMMR(r3)
3	Init System Protection Reg, SYPCR (4-33)	<pre>lis r3,0xFFFF ori r3,r3,0xFFC3 stw r3,SYPCR(r4)</pre>
4	Invalidate BATs	
5	Invalidate TLBs	
6	Init Clock Config Reg,SCCR (9-7)	lis r3,0 ori r3,r3,1 stw r3,SCCR(r4)
7	Init Bus Config Reg, BCR (4-25)	lis r3,0x100C stw r3,BCR(r4)

Steps in Initialization (1 of 4)

Comments Step 1:Enables the machine check exception and recoverable interrupt mode.
Step 2: Initializes IMMR to a new value. The original value input to the hardware configuration word at reset must be known. If the original value is satisfactory, this step can be skipped.
Step 3: Sets up the software watchdog and bus monitor (hardware watchdog). Can be written to only one time.
Step 4: The valid bits for the Block Address Translation in the MMU can come up valid from reset. They must be invalidated.
Step 5: The Translation Lookaside Buffer entries in the MMU can come up valid from reset. They must be invalidated.
Step 6: The System Clock Control register affects low power and BRGCLK.
Step 7: Affects various configuration parameters of the 60x bus including External Bus Mode, Secondary Cache, and parity type.

Step	Action	Comment
8	Init 60x Bus Arbiter Config Reg, PPC_ACR (4-27)	li r3,2 stb r3,PPC_ACR(r4)
9	Init 60x Bus Arbitration-Level Regs, PPC_ALRH & L (4-28)	lis r3,0x0126 ori r3,r3,0x7893 stw r3,PPC_ALRH(r4)
10	Init SIU Module Config Reg,SIUMCR(4-30)	lis r3,0x0820 stw r3,SIUMCR(r4)
11	Init 60x Bus Transfer Error Status & Control Reg, TESCR1 (4-34)	li r3,0x4000 stw r3,TESCR1(r4)
12	Init Local Bus Transfer Error Status & Control Reg, LTESCR1 (4-36)	li r3,0x4000 stw r3,LTESCR1(r4)
13	Init Memory Refresh Timer Prescalar Reg, MPTPR (10-32)	li r5,0x4000 sth r5,MPTPR(r4)

Comments Step 8: Defines the arbiter modes and the parking master on 60x bus. Step 9: Defines the arbitration priority of the various bus masters. Step 10: Selects the functionality of many of the "system" pins such as the IRQs, parity pins and L2 cache pins. Step 11: Enables (or disables) parity on 60x bus. Step 12: Enables (or disables) parity on local bus. Step 13: Initializes the refresh prescalar register.

Step	Action	Comment
14	Init the Memory Controller (10-1)	
15	Relocate the EVT from ROM to RAM	<pre>vloop: addic. r3,r3,-1 lwz r6,0(r5) addi r5,r5,4 stw r6,0(r2) addi r2,r2,4 bne vloop</pre>
16	Init BAT Regs	
17	Init Caches	<pre>mfspr r5,HID0 ori r5,r5,0x8800 andi r6,r5,0xF7FF mtspr HID0,r5 isync sync mtspr HID0,r6 isync sync</pre>

Comments Step 14:Initialize the memory contoller for the desired configuration. Step 15: Relocate the exception vector table from ROM to RAM. If necessary, MSR[IP] should be changed. Step 16: Initialize and enable the MMU. In this example, only Block Address Translation is used. If Page Translation is to be used, it should be initialized here also. Step 17: Initialize and enable the caches.

Steps in Initialization (4 of 4)

Step	Action	Comment
18	Init the Stack Pointer	Lis r1,SP_INIT@h ori r1,r1,SP_INIT@l stwu r0,-72(r1)

Comments Step 18: Initialize the stack pointer, r1.