June 22, 2010

RF Amplifiers and RF Heating for Medical Applications
FTF-IND-F0690

Leonard Pelletier, Jeannette Wilson
Application Support, Product Marketing
RF Power for Medical Applications
 • RF Welding of Plastic Materials
 • Non-Surgical Tumor Ablation
 • CO2 Laser Scalpels
 • Fractional Photoablation Skin Resurfacing
 • Magnetic Resonance Imaging

Market Size and Growth Rates

Market Leaders

Freescale Device Solutions for Each Application

Conclusions
RF Welding of Plastic Materials

Radio frequency welding is the process of fusing materials together by applying RF energy to the material in the area to be joined.

The RF dynamic electric field causes the molecules in polar thermoplastics to oscillate.

The molecules translate this oscillatory motion into thermal energy and cause localized heating of the material.
RF Welding of Plastic Materials

► The resulting weld is stronger than the original materials

► By incorporating a cutting edge adjacent to the welding surface, the process can simultaneously weld and cut a welded material. This process is often referred to as tear-seal welding.
Common RF Plastic Welding Examples

► Stationery - Book covers, stationery wallets, zip bags, binders

► Inflatable items - Beach balls, air/water beds, rafts, life jackets

► Large items - Tarpaulins, tents, pool liners, outdoor covers

► Medical items - Blood bags, air bladders, colostomy bags

► Automotive - Air bags, dashboard covers, sun-visors

► Blister packs – Almost everything you buy
RF Welding of Plastic Materials

RF plastic welding is a very mature technology that has been around since the 1940s. There are only a few manufacturers in the business.

Typical RF power requirements are at 27.12 MHz and at power levels ranging from 100W to 40KW.
Current Market Leaders

► TWI Technology Engineering LTD

► Mark Peri International

► Alloy Brands/Tegrant Corporation

► Northwest RF Corporation

► Cosmos Kabar Corporation

► Hall Dielectric Machinery
RF Power Solutions for Plastic Welding Applications

<table>
<thead>
<tr>
<th>Model</th>
<th>Peak Power</th>
<th>Gain</th>
<th>PAE</th>
<th>Key Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRF6V2010N</td>
<td>10W</td>
<td>24 dB</td>
<td>62%</td>
<td>Lowest cost plastic TO package</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>High gain two-stage device</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dual path configuration</td>
</tr>
<tr>
<td>MRF6VP6300H</td>
<td>300W</td>
<td>25 dB</td>
<td>70%</td>
<td>High-performance VHV6 technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50V operation for improved power density</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Highest level of ruggedness</td>
</tr>
<tr>
<td>MRF6VP11KH</td>
<td>1000W</td>
<td>26 dB</td>
<td>71%</td>
<td>High-performance VHV6 technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50V operation for improved power density</td>
</tr>
</tbody>
</table>
Non-Surgical RF Tumor Ablation

► RF energy is used to create heat, in a specific location, at a specific temperature, for a specific period of time, and ultimately results in the death of unwanted tissue

► An ablation probe is placed directly into the target tissue. An array of several small, curved electrodes are deployed from the end of the probe into the unwanted tissue
Non-Surgical RF Tumor Ablation

- RF energy flows through the electrodes, causing ionic agitation and therefore friction and heat in the target tissue.

- Thermocouples in the tips of the electrodes monitor tissue temperatures. Power is adjusted until the target temperature is achieved and all target tissue is destroyed.
Computer models (left) are used for treatment planning, and are superimposed on the medical images (right) to estimate tissue temperature during treatment, RF power requirements and application duration.
The ablation catheter is inserted into the liver tumor through a small incision in the skin. Ultrasound imaging is used to guide the electrode into the tumor and monitor the ablation.
How RF Ablation Works

- Creation of a thermal lesion
 - Tissue desiccation begins at the tips of the array tines

- Ablation zone travels along tines
 - As the tissue near the tips of the tines desiccates, the zone of ablation travels back along the tines toward the center of the array
How RF Ablation Works

► Nearing completion, impedance rises
 • The thermal lesion then moves outward and begins to fill in the gaps between the tines. As lesion ablation nears completion, impedance rises exponentially.

► Complete thermal lesion
 • A compete thermal lesion is achieved once tissue dessication has occurred throughout the target tissue. Once the desired temperature is achieved, the generator is designed to automatically reduce power, signaling completion of the ablation process.
Current Market Leaders

Radiofrequency Ablation Manufacturers

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Product</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACM (Olympus)</td>
<td>Coag</td>
<td>Soft tissue coagulation</td>
</tr>
<tr>
<td>AngioDynamics</td>
<td>Starburst XL</td>
<td>Lung cancer</td>
</tr>
<tr>
<td>ArthroCare</td>
<td>ACD 50 Cobloration</td>
<td>Arthroscopy</td>
</tr>
<tr>
<td>ArthroCare</td>
<td>SpineWand</td>
<td>Nucleoplasty</td>
</tr>
<tr>
<td>Atricure</td>
<td>Coolrail Pen</td>
<td>Atrial arrhythmias</td>
</tr>
<tr>
<td>Bard EP</td>
<td>Stinger catheters</td>
<td>Atrial arrhythmias</td>
</tr>
<tr>
<td>Bard EP</td>
<td>HD Mech Ablation System</td>
<td>Atrial fibrillation</td>
</tr>
<tr>
<td>Boston Scientific</td>
<td>Blazer ablation catheters</td>
<td>Atrial arrhythmias</td>
</tr>
<tr>
<td>Cardima</td>
<td>Revelation catheters</td>
<td>Atrial arrhythmias</td>
</tr>
<tr>
<td>ConMed</td>
<td>Trident</td>
<td>Soft tissue coagulation</td>
</tr>
<tr>
<td>ConMed</td>
<td>Ultrablator</td>
<td>Arthroscopy</td>
</tr>
<tr>
<td>Cytotec/Hologic</td>
<td>NovaSure</td>
<td>Menorrhagia</td>
</tr>
<tr>
<td>Direx</td>
<td>Tempro</td>
<td>BPH</td>
</tr>
<tr>
<td>Gyrus (Olympus)</td>
<td>Tissue Management System</td>
<td>Gynaecological</td>
</tr>
<tr>
<td>Gyrus (Olympus)</td>
<td>Somnus</td>
<td>ENT</td>
</tr>
<tr>
<td>Irvine Biomedical (St Jude)</td>
<td>CoolPath ablation catheter</td>
<td>Atrial arrhythmias</td>
</tr>
<tr>
<td>J&J Biosense Webster</td>
<td>Thermocool</td>
<td>Atrial arrhythmias</td>
</tr>
<tr>
<td>J&J Mitek</td>
<td>VAPR II</td>
<td>Arthroscopy</td>
</tr>
<tr>
<td>Maquet Critical Care (Getinge)</td>
<td>RF 3000</td>
<td>Hepatic cancer</td>
</tr>
<tr>
<td>ProSurg</td>
<td>RF GEL</td>
<td>BPH</td>
</tr>
<tr>
<td>Radionics</td>
<td>Cool-Tip</td>
<td>Soft tissue ablation</td>
</tr>
<tr>
<td>Radiotherapeutics</td>
<td>RF 3000</td>
<td>Soft tissue ablation ?</td>
</tr>
<tr>
<td>RFA</td>
<td>InCircle</td>
<td>Liver tumours</td>
</tr>
<tr>
<td>SenoRx</td>
<td>Shape Select</td>
<td>Breast cancer</td>
</tr>
<tr>
<td>Smith & Nephew</td>
<td>Vulcan</td>
<td>Capsular shrinkage</td>
</tr>
<tr>
<td>Stryker</td>
<td>Neuro N50</td>
<td>Chronic pain</td>
</tr>
<tr>
<td>TissueLink</td>
<td>DS 3.0</td>
<td>Hepatectomy</td>
</tr>
<tr>
<td>Valleylab (Covidien)</td>
<td>Ligator</td>
<td>Soft tissue coagulation</td>
</tr>
<tr>
<td>VNUS Medical Technologies</td>
<td>ClosureFast</td>
<td>Saphenous vein closure</td>
</tr>
</tbody>
</table>
Market Size and Growth Rate

- RF ablations will see significant growth in the next few years

- Other ablation methods include hydromechanical, microwave, thermal, cryotherapy, ultrasound, light, radiation and electrical

- The RF section is a $4 billion dollar business
RF Power Solutions For RF Ablation Applications

MRF6V2010N

Performance
- Peak Power: 10W
- Gain: 24 dB
- PAE: 62%

Key Features
- Lowest cost plastic TO package
- High gain two-stage device
- Dual path configuration

MRF6VP6300H

Performance
- Peak Power: 300 W
- Gain: 25 dB
- Drain Efficiency: 70%

Key Features
- High-performance VHV6 technology
- 50V operation for improved power density
- Highest level of ruggedness

MRF6VP11KH

Performance
- Peak Power: 1000 W
- Gain: 26 dB
- Drain Efficiency: 71%

Key Features
- High-performance VHV6 technology
- 50V operation for improved power density
Lasers Used in Medical Applications

► There are many applications for lasers in medicine, including:
 • Laser scalpels
 • Fractional photothemolysis
 • Lasik eye surgery
Benefits of Laser Scalpels

► Laser scalpels ablate living tissue with the energy of laser light

► The laser vaporizes all soft tissue with a high water content
 • i.e. skin, fat and muscles

► Can be computer-controlled for exact tissue molding, i.e. shaping the cornea in LASIK and LASEK surgery
Laser Skin Resurfacing

► Photo rejuvenation induces controlled wounds on the skin to prompt the creation of new skin cells

► Laser ablation creates microscopic thermal impact sites surrounded by unaffected healthy tissue

► Only 20% of the area is affected at any one time. This speeds healing.
Before and After Examples of Laser Skin Resurfacing

► Turns back the clock on aging and rejuvenates sun-damaged skin

► Here are the results of three to six treatments spaced about one to four weeks apart, with a four-week healing period
Current Market Leaders

► Fraxel

► Matrix Skin

► Palomar Medical

► DEKA Research and Development
<table>
<thead>
<tr>
<th>Model</th>
<th>Performance</th>
<th>Key Features</th>
</tr>
</thead>
</table>
| **MRF6V2010N** | Peak Power: 10W
Gain: 24 dB
PAE: 62% | Lowest cost plastic TO package
High gain two-stage device
Dual path configuration |
| **MRFE6VP6300H** | Peak Power: 300W
Gain: 25 dB
Drain Efficiency: 70% | High-performance VHV6 technology
50V operation for improved power density
Highest level of ruggedness |
| **MRF6VP11KH** | Peak Power: 1000W
Gain: 26 dB
Drain Efficiency: 71% | High-performance VHV6 technology
50V operation for improved power density |
History of Magnetic Resonance Imaging

► Developed in 1977 as a non-invasive cancer detection tool

► ASP for a 3Torr system is $3M

► TAM is $5.5B in 2010

► CARG of 11.6%

► Japan has highest ratio of MRI scanners per person
Amplifier Details for MRI

► RF amplifier is typically located in the equipment room adjacent to the coil location

► Low-loss coaxial cable or Heliax feeds the RF power from the PA to the radio frequency coil (transmit antenna)

► Frequencies typically range from 8 MHz to 130 MHz, but are operated band-specific: less than 1% bandwidth

► Blanking times are less than 1 μS (rise and fall times less than 500nS); emissions have to be close to thermal noise
Amplifier Details for MRI

- Power levels are from 2 KW to 35 KW
- Duty cycle up to 10% and pulse widths to 10 mS (3% and 3 mS typical).
- High linearity and phase noise requirements, linearization techniques are usually used in the PA
- Device reliability is an important parameter. Mean time to failure (MTTF) for the system has to be more than 30,000 hours
Major Components of the MRI Scanner

► Super-conducting magnet, cooled with liquid nitrogen -196°C

► Gradient coils, X, Y, Z

► Radio frequency coil

► Patient transport bed

► RF power amplifier
Major Components of the MRI Scanner

► Software for Fourier transforms, signal processing, image reconstruction, cataloging and patient’s electronic file storage

► Frequency conversion and DSP controller board

► Film printer

► High-resolution display

► Head and surface coils
MRI Sequence of Events

- Magnetic resonance imaging uses the spin of the hydrogen atom

- Half the atoms line up with the magnetic field (N-N and S-S), and the other half line up against the magnetic field

- Upon removal of the RF excitation, the atoms that have switched their orientation go back to their original alignment, giving off oscillating currents (free induction decay)

- Slices of the subject are generated by using gradient coils to modify the magnetic field strength locally around the imaging area
MRI Sequence of Events

► Gradient coils are used to get frequency separation in the X, Y and Z orientation

► Coils (head, body or surface) are used to pick up the currents and convert to a time-varying voltage (microvolts)

► To reduce heating in human tissue, duty cycle is typically only 3%. Pulse width is 3 milliseconds. It can take up to 47 uS to flip the orientation of the H atom.

► A low noise amplifier will boost the signal strength (typically 0.5 to 1.5 dB NF).
Gradient fields can form a slice of tissue in any direction within the scanned subject.
Current Market Leaders

- GE Healthcare
- Philips Medical Systems
- Siemens Medical Solutions
- Hitachi Medical Corp
- Toshiba medical Systems
- Medtronic
RF Power Solutions For MRI Applications

<table>
<thead>
<tr>
<th>Device</th>
<th>Peak Power</th>
<th>Gain</th>
<th>Drain Efficiency</th>
<th>Key Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRF6V2010N</td>
<td>10W</td>
<td>24 dB</td>
<td>62%</td>
<td>Lowest cost plastic TO package</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>High gain two-stage device</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dual path configuration</td>
</tr>
<tr>
<td>MRF6VP6300H</td>
<td>300W</td>
<td>25 dB</td>
<td>70%</td>
<td>High-performance VHV6 technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50V operation for improved power density</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Highest level of ruggedness</td>
</tr>
<tr>
<td>MRF6VP11KH</td>
<td>1000W</td>
<td>26 dB</td>
<td>71%</td>
<td>High-performance VHV6 technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50V operation for improved power density</td>
</tr>
</tbody>
</table>

- **MRF6V2010N**: 10W Rated Driver
- **MRF6VP6300H**: 300W Rated Power
- **MRF6VP11KH**: 1000W Rated Power
Conclusions

► There are plenty of interesting uses of high power RF energy in a wide variety of medical applications

► Each require a slightly different spin on RF power device needs

► Freescale’s RF division is actively pursuing new device designs and technologies to participate in this growing field