
1 Overview
This document describes how to build Android 10.0 platform for the i.MX 8
series devices. It provides instructions for:

• Configuring a Linux® OS build machine.

• Downloading, patching, and building the software components that create
the Android™ system image.

• Building from sources and using pre-built images.

• Copying the images to boot media.

• Hardware/software configurations for programming the boot media and
running the images.

For more information about building the Android platform, see
source.android.com/source/building.html.

2 Preparation

2.1 Setting up your computer
To build the Android source files, use a computer running the Linux OS. The Ubuntu 16.04 64-bit version and openjdk-8-jdk is
the most tested environment for the Android 10.0 build.

After installing the computer running Linux OS, check whether all the necessary packages are installed for an Android build. See
"Setting up your machine" on the Android website source.android.com/source/initializing.html.

In addition to the packages requested on the Android website, the following packages are also needed:

sudo apt-get install uuid uuid-dev
sudo apt-get install zlib1g-dev liblz-dev
sudo apt-get install liblzo2-2 liblzo2-dev
sudo apt-get install lzop
sudo apt-get install git-core curl
sudo apt-get install u-boot-tools
sudo apt-get install mtd-utils
sudo apt-get install android-tools-fsutils
sudo apt-get install openjdk-8-jdk
sudo apt-get install device-tree-compiler
sudo apt-get install gdisk
sudo apt-get install m4
sudo apt-get install libz-dev
sudo apt-get install bison
sudo apt-get install flex
sudo apt-get install libssl-dev

Contents

1 Overview..1

2 Preparation.. 1

3 Building the Android platform for i.MX... 2

4 Running the Android Platform with a
Prebuilt Image..................................... 8

5 Programming Images.......................... 13

6 Booting...18

7 Over-The-Air (OTA) Update.................24

8 Customized Configuration................... 28

9 Revision History...................................42

AUG
Android™ User's Guide
Rev. android-10.0.0_2.0.0 — 20 May 2020 User's Guide

http://source.android.com/source/building.html
http://source.android.com/source/initializing.html

If you have trouble installing the JDK in Ubuntu, see How to install misc JDK in Ubuntu for Android build.

Configure git before use. Set the name and email as follows:

• git config --global user.name "First Last"

• git config --global user.email "first.last@company.com"

 NOTE

2.2 Unpacking the Android release package
After you have set up a computer running Linux OS, unpack the Android release package by using the following commands:

$ cd ~ (or any other directory you like)
$ tar xzvf imx-android-10.0.0_2.0.0.tar.gz

3 Building the Android platform for i.MX

3.1 Getting i.MX Android release source code
The i.MX Android release source code consists of three parts:

• NXP i.MX public source code, which is maintained in the CodeAurora Forum repository.

• AOSP Android public source code, which is maintained in android.googlesource.com.

• NXP i.MX Android proprietary source code package, which is maintained in www.NXP.com

Assume you had i.MX Android proprietary source code package imx-android-10.0.0_2.0.0.tar.gz under ~/. directory. To generate
the i.MX Android release source code build environment, execute the following commands:

$ mkdir ~/bin
$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo
$ export PATH=${PATH}:~/bin
$ source ~/imx-android-10.0.0_2.0.0/imx_android_setup.sh
By default, the imx_android_setup.sh script will create the source code build environemnt in the
folder `pwd`/android_build
${MY_ANDROID} will be refered as the i.MX Android source code root directory in all i.MX Andorid
release documentation.
$ export MY_ANDROID=`pwd`/android_build

3.2 Building Android images
The Android image can be built after the source code has been downloaded (Section 3.1 "Getting i.MX Android release source
code").

Command source build/envsetup.sh to import shell functions first needs to be executed to import shell functions in $
{MY_ANDROID}/build/envsetup.sh.

Commands lunch <BuildName-BuildMode> to set up the build configuration.

After the two commands above are executed, the build process is not started yet. It is at a stage that the next command is
necessary to be used to start the build process. The behaviour of the i.MX Android build system is used to be aligned with the
original Android platform. The make command can start the build process and all images will be built out. There are some
differences. A shell script named "imx-make.sh" is provided and its symlink file can be found under ${MY_ANDROID} directory,
and "./imx-make.sh " should be executed first to start the build process.

The original purpose of this "imx-make.sh" is to build U-Boot/kernel before building Android images.

NXP Semiconductors
Building the Android platform for i.MX

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 2 / 43

https://community.nxp.com/docs/DOC-98441
https://www.codeaurora.org/projects/i-mx
https://android.googlesource.com/

Google started to put a limit on the host tools used when compiling Android code from Android10.0. Some host tools necessary
for building U-Boot/kernel now cannot be used in the Android build system, which is under the control of soong_ui, so U-Boot/
kernel cannot be built together with Android images. Google also recommends to use prebuilt binaries for U-Boot/kernel in Android
build system. It takes some steps to build U-Boot/kernel to binaries and put these binaries in proper directories, so some specific
Android images depending on these binaries can be built without error. "imx-make.sh" is then added to do these steps to simplify
the build work. After U-Boot/kernel are compiled, any build commands in standard Android can be used.

"imx-make.sh" can also start the soong_ui with the "make" function in "${MY_ANDROID}/build/envsetup.sh" to build the Android
images after U-Boot/kernel are compiled, so customers can still build the i.MX Android images with just one command with this
script.

The build configuration command lunch can be issued with an argument <Build name>-<Build mode> string, such as lunch
evk_8mm-userdebug, or can be issued without the argument, which will present a menu of options to select.

The Build Name is the Android device name found in the directory ${MY_ANDROID}/device/fsl/. The following table lists the i.MX
build names.

Table 1. Build names

Build name Description

evk_8mm i.MX 8M Mini EVK Board

evk_8mn i.MX 8M Nano EVK Board

evk_8mq i.MX 8M Quad EVK Board

mek_8q i.MX 8QuadMax/i.MX 8QuadXPlus MEK Board

The "Build mode" is used to specify what debug options are provided in the final image. The following table lists the build modes.

Table 2. Build types

Build mode Description

user Production-ready image, no debug

userdebug Provides image with root access and debug, similar to "user"

eng Development image with debug tools

Android build steps are as follows:

1. Prepare the build environment for U-Boot. This step is optional, if there is still GCC cross-compile tool chain in AOSP
codebase, and this tool chain outputs the following log indicating that this tool chain will be deprecated.

 Android GCC has been deprecated in favor of Clang, and will be removed from
 Android in 2020-01 as per the deprecation plan in:
 https://android.googlesource.com/platform/prebuilts/clang/host/linux-x86/+/master/
GCC_4_9_DEPRECATION.md

An approach is provided to use the self-installed GCC cross-compile tool chain.

a. Download the tool chain for the A-profile architecture on arm Developer GNU-A Downloads page. It is recommended
to use the 8.3 version for this release. You can download the "gcc-arm-8.3-2019.03-x86_64-aarch64-elf.tar.xz" or
"gcc-arm-8.3-2019.03-x86_64-aarch64-linux-gnu.tar.xz". The first one is dedicated for compiling bare-metal
programs, and the second one can also be used to compile the application programs.

b. Decompress the file into a path on local disk, for example, to "/opt/". Export a variable named
"AARCH64_GCC_CROSS_COMPILE" to point to the tool as follows:

 # if "gcc-arm-8.3-2019.03-x86_64-aarch64-elf.tar.xz" is used
 export AARCH64_GCC_CROSS_COMPILE=/opt/gcc-arm-8.3-2019.03-x86_64-aarch64-elf/bin/

NXP Semiconductors
Building the Android platform for i.MX

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 3 / 43

https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-a/downloads

aarch64-elf-
 # if "gcc-arm-8.3-2019.03-x86_64-aarch64-linux-gnu.tar.xz" is used
 export AARCH64_GCC_CROSS_COMPILE=/opt/gcc-arm-8.3-2019.03-x86_64-aarch64-linux-gnu/bin/
aarch64-linux-gnu-

The preceding command can be added to "/etc/profile". When the host boots up, "AARCH64_GCC_CROSS_COMPILE"
is set and can be directly used.

2. Change to the top level build directory.

$ cd ${MY_ANDROID}

3. Set up the environment for building. This only configures the current terminal.

$ source build/envsetup.sh

4. Execute the Android lunch command. In this example, the setup is for the production image of i.MX 8M Mini EVK Board/
Platform device with userdebug type.

$ lunch evk_8mm-userdebug

5. Execute the imx-make.sh script to generate the image.

$./imx-make.sh -j4 2>&1 | tee build-log.txt

The commands below can achieve the same result:

$./imx-make.sh bootloader kernel -j4 2>&1 | tee build-log.txt
Build U-Boot/kernel with imx-make.sh first, but not to build Android images.
$ make -j4 2>&1 | tee -a build-log.txt
Start the process of build Android images with "make" function.

The output of make command will be written to standard output and build-log.txt. If there is any errors when building the image,
error logs can be found in the build-log.txt file for checking.

To change BUILD_ID & BUILD_NUMBER, update build_id.mk in ${MY_ANDROID}/device/fsl/ directory. For details, see the
Android™ Frequently Asked Questions.

The following outputs are generated by default in ${MY_ANDROID}/out/target/product/evk_8mm:

• root/: root file system (including init, init.rc). Mounted at /.

• system/: Android system binary/libraries. Mounted at /system.

• recovery/: root file system when booting in "recovery" mode. Not used directly.

• dtbo-imx8mm.img: Board's device tree binary. It is used to support MIPI-DSI-to-HDMI output and Direct Stream Digital
(DSD) playback on boards.

• dtbo-imx8mm-m4.img: Board's device tree binary. It is used to support MIPI-DSI-to-HDMI output and audio playback
based on Cortex-M4 FreeRTOS on boards with LPDDR4.

• dtbo-imx8mm-mipi-panel: Board's device tree binary. It is used to support MIPI Panel output on boards with LPDDR4.

• vbmeta-imx8mm.img: Android Verify boot metadata image for dtbo-imx8mm.img.

• vbmeta-imx8mm-m4.img: Android Verify boot metadata image for dtbo-imx8mm-m4.img.

• vbmeta-imx8mm-mipi-panel.img: Android Verify boot metadata image for dtbo-imx8mm-mipi-panel.img.

• ramdisk.img: Ramdisk image generated from "root/". Not directly used.

• system.img: EXT4 image generated from "system/" and "root/".

• product.img: EXT4 image generated from "product/".

NXP Semiconductors
Building the Android platform for i.MX

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 4 / 43

https://community.nxp.com/docs/DOC-342877

• partition-table.img: GPT partition table image for single bootloader condition. Used for 16 GB sdcard and eMMC.

• partition-table-dual.img: GPT partition table image for dual bootloader condition. Used for 16 GB sdcard and eMMC.

• partition-table-28GB.img: GPT partition table image for single bootloader condition. Used for 32 GB sdcard.

• partition-table-28GB-dual.img: GPT partition table image for dual bootloader condition. Used for 32 GB sdcard.

• u-boot-imx8mm.imx: U-Boot image without Trusty OS integrated for i.MX 8M Mini EVK on board.

• u-boot-imx8mm-trusty.imx: U-Boot image with Trusty OS integrated for i.MX 8M Mini EVK with LPDDR4 on board.

• u-boot-imx8mm-trusty-secure-unlock.imx: U-Boot image with Trusty OS integrated and demonstration secure unlock
mechanism for i.MX 8M Mini EVK with LPDDR4 on board.

• u-boot-imx8mm-evk-uuu.imx: U-Boot image used by UUU for i.MX 8M Mini EVK on board. It is not flashed to MMC.

• spl-imx8mm-dual.bin: SPL image without Trusty related configuration for i.MX 8M Mini EVK with LPDDR4 on board.

• spl-imx8mm-trusty-dual.bin: SPL image with Trusty related configuration for i.MX 8M Mini EVK with LPDDR4 on board.

• bootloader-imx8mm-dual.img: Bootloader image without Trusty OS integrated for i.MX 8M Mini EVK with LPDDR4 on
board.

• bootloader-imx8mm-trusty-dual.img: Bootloader image with Trusty OS integrated for i.MX 8M Mini EVK with LPDDR4 on
board.

• imx8mm_mcu_demo.img: MCU FreeRTOS image to support audio playback on MCU side.

• vendor.img: Vendor image, which holds platform binaries. Mounted at /vendor.

• super.img: super image that is generated with system.img, vendor.img, and product.img.

• boot.img: A composite image, which includes the kernel Image, ramdisk, and boot parameters.

• rpmb_key_test.bin: Prebuilt test RPMB key. Can be used to set the RPMB key as fixed 32 bytes 0x00.

• testkey_public_rsa4096.bin: Prebuilt AVB public key. It is extracted from the default AVB private key.

• To build the U-Boot image separately, see Building U-Boot images.

• To build the kernel uImage separately, see Building a kernel image.

• To build boot.img, see Building boot.img.

• To build dtbo.img, see Building dtbo.img.

 NOTE

3.2.1 Configuration examples of building i.MX devices
The following table shows examples of using the lunch command to set up different i.MX devices with userdebug build mode.
After the desired i.MX device is set up, the imx-make.sh script is used to start the build.

Table 3. i.MX device lunch examples

Build name Description

i.MX 8M Mini EVK LPDDR4 board $ lunch evk_8mm-userdebug

i.MX 8M Nano EVK board $ lunch evk_8mn-userdebug

i.MX 8M Quad EVK board $ lunch evk_8mq-userdebug

i.MX 8QuadMax/i.MX 8QuadXPlus MEK board $ lunch mek_8q-userdebug

3.2.2 Build mode selection
There are three types of build mode to select: eng, user, and userdebug.

NXP Semiconductors
Building the Android platform for i.MX

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 5 / 43

The userdebug build behaves the same as the user build, with the ability to enable additional debugging that normally violates
the security model of the platform. This makes the userdebug build with greater diagnosis capabilities for user test.

The eng build prioritizes engineering productivity for engineers who work on the platform. The eng build turns off various
optimizations used to provide a good user experience. Otherwise, the eng build behaves similar to the user and userdebug builds,
so that device developers can see how the code behaves in those environments.

In a module definition, the module can specify tags with makefile variable LOCAL_MODULE_TAGS, which can be one or more values
of optional (default), debug, eng, and tests. The values of debug and eng are deprecated. It is recommended to use
PRODUCT_PACKAGES_ENG and PRODUCT_PACKAGES_DEBUG to specify the modules in the appropriate product makefiles.

If a module does not specify a tag with $(LOCAL_MODULE_TAGS), its tag is optional by default. An optional module is installed
only if it is required by product configuration with the makefile variable PRODUCT_PACKAGES.

The main differences among the three modes are listed as follows:

• eng: development configuration with additional debugging tools

— Installs modules tagged with eng and/or debug via LOCAL_MODULE_TAGS, or specified by
PRODUCT_PACKAGES_ENG and/or PRODUCT_PACKAGES_DEBUG.

— Installs modules according to the product definition files, in addition to tagged modules.

— ro.secure=0

— ro.debuggable=1

— ro.kernel.android.checkjni=1

— adb is enabled by default.

• user: limited access; suited for production

— Installs modules tagged with user.

— Installs modules according to the product definition files, in addition to tagged modules.

— ro.secure=1

— ro.debuggable=0

— adb is disabled by default.

• userdebug: like user but with root access and debuggability; preferred for debugging

— Installs modules tagged with debug via LOCAL_MODULE_TAGS, or specified by PRODUCT_PACKAGES_DEBUG.

— ro.debuggable=1

— adb is enabled by default.

To build of Android images, an example for the i.MX 8M Mini EVK LPDDR4 target is:

$ cd ${MY_ANDROID}
$ source build/envsetup.sh #set env
$ lunch evk_8mm-userdebug
$./imx-make.sh -j4

The commands below can achieve the same result.

$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch evk_8mm-userdebug
$./imx-make.sh bootloader kernel -j4
$ make -j4

NXP Semiconductors
Building the Android platform for i.MX

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 6 / 43

Table 4. Android system image production build

i.MX development tool Description Lunch configuration

Evaluation Kit i.MX 8M Mini EVK LPDDR4 evk_8mm-userdebug

Evaluation Kit i.MX 8M Nano EVK evk_8mn-userdebug

Evaluation Kit i.MX 8M Quad EVK evk_8mq-userdebug

Evaluation Kit i.MX 8QuadMax/8QuadXPlus MEK mek_8q-userdebug

For more Android platform building information, see source.android.com/source/building.html.

3.2.3 Building with GMS package
Get the Google Mobile Services (GMS) package from Google. Put the GMS package into ${MY_ANDROID}/vendor/partner_gms
folder. Make sure product.mk* file have the following line:

$(call inherit-product-if-exists, vendor/partner_gms/products/gms.mk)

Then build the images. The GMS package will be installed into the target images.

product.mk means the build target make file. For example, for i.MX 8M Mini EVK Board, the product.mk is named
device/fsl/imx8m/evk_8mm/evk_8mm.mk.

 NOTE

3.3 Building U-Boot images
Use the following command to generate u-boot.imx under the Android environment:

U-Boot image for i.MX 8M Mini EVK LPDDR4 board
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch evk_8mm-userdebug
$./imx-make.sh bootloader -j4

For other platforms, use lunch <buildName-buildMode> to set up the build configuration. For detailed build configuration, see
Section 3.2 "Building Android images".

3.4 Building a kernel image
Kernel image is automatically built when building the Android root file system.

The following are the default Android build commands to build the kernel image:

$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch evk_8mm-userdebug
$./imx-make.sh kernel -c -j4

The kernel images are found in ${MY_ANDROID}/out/target/product/evk_8mm/obj/KERNEL_OBJ/arch/arm64/boot/Image.

3.5 Building boot.img
boot.img and boota are default booting commands.

As outlined in Running the Android Platform with a Prebuilt Image, we use boot.img and boota as default commands to boot the
system.

NXP Semiconductors
Building the Android platform for i.MX

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 7 / 43

http://source.android.com/source/building.html

The following commands are used to generate boot.img under Android environment:

Boot image for i.MX 8M Mini EVK LPDDR4 board
$ source build/envsetup.sh
$ lunch evk_8mm-userdebug
$./imx-make.sh bootimage -j4

The commands below can achieve the same result:

Boot image for i.MX 8M Mini EVK board
$ source build/envsetup.sh
$ lunch evk_8mm-userdebug
$./imx-make.sh kernel -j4
$ make bootimage -j4

For other platforms, use lunch <buildName-buildMode> to set up the build configuration. For detailed build configuration, see
Section 3.2 "Building Android images".

3.6 Building dtbo.img
Dtbo image holds the device tree binary of the board.

The following commands is used to generate dtbo.img under Android environment:

dtbo image for i.MX 8M Mini EVK LPDDR4 board
$ source build/envsetup.sh
$ lunch evk_8mm-userdebug
$./imx-make.sh dtboimage -j4

The commands below can achieve the same result:

dtbo image for i.MX 8M Mini EVK board
$ source build/envsetup.sh
$ lunch evk_8mm-userdebug
$./imx-make.sh kernel -j4
$ make dtboimage -j4

For other platforms, use lunch <buildName-buildMode> to set up the build configuration. For detailed build configuration, see
Section 3.2 "Building Android images".

4 Running the Android Platform with a Prebuilt Image
Table 5. Image packages

Image package Description

android-10.0.0_2.0.0_image_8mmevk.ta
r.gz

Prebuilt-image for i.MX 8M Mini EVK LPDDR4 board, which includes NXP extended
features.

android-10.0.0_2.0.0_image_8mnevk.tar
.gz

Prebuilt-image for i.MX 8M Nano EVK board, which includes NXP extended features.

android-10.0.0_2.0.0_image_8mqevk.tar
.gz

Prebuilt-image for i.MX 8M Quad EVK board, which includes NXP extended features.

android-10.0.0_2.0.0_image_8qmek.tar.
gz

Prebuilt-image for i.MX 8QuadMax/8QuadXPlus MEK board, which includes NXP
extended features.

The following tables list the detailed contents of android-10.0.0_2.0.0_image_8mmevk.tar.gz image package.

NXP Semiconductors
Running the Android Platform with a Prebuilt Image

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 8 / 43

Table 6. Images for i.MX 8M Mini

i.MX 8M Mini EVK image Description

spl-imx8mm-dual.bin Secondary program loader image without Trusty related configurations for i.MX 8M
Mini EVK board with LPDDR4 on board.

spl-imx8mm-trusty-dual.bin Secondary program loader image with Trusty related configurations for i.MX 8M Mini
EVK board with LPDDR4 on board.

bootloader-imx8mm-dual.img An image containing U-Boot proper and ATF. It is for i.MX 8M Mini EVK board with
LPDDR4 on board.

bootloader-imx8mm-trusty-dual.img An image containing U-Boot proper, ATF and Trusty OS. It is for i.MX 8M Mini EVK
board with LPDDR4 on board.

u-boot-imx8mm.imx An image containing U-Boot and ATF for i.MX 8M Mini EVK board with LPDDR4 on
board.

u-boot-imx8mm-trusty.imx An image containing U-Boot, ATF and Trusty OS for i.MX 8M Mini EVK board with
LPDDR4 on board.

u-boot-imx8mm-trusty-secure-
unlock.imx

An image containing U-Boot, ATF and Trusty OS for i.MX 8M Mini EVK board with
LPDDR4 on board. It is a demonstration of secure unlock mechanism.

u-boot-imx8mm-evk-uuu.imx An image containing U-Boot and ATF, used by UUU for i.MX 8M Mini board with
LPDDR4. It is not flashed to MMC.

boot.img Boot image for i.MX 8M Mini EVK board, which contains kernel, ramdisk, and default
kernel commandline.

system.img System image for i.MX 8M Mini EVK board.

vendor.img Vendor image for i.MX 8M Mini EVK board.

product.img Product image for i.MX 8M Mini EVK board.

partition-table.img GPT partition table image for single bootloader condition. Used for 16 GB SD card
and eMMC.

partition-table-dual.img GPT partition table image for dual bootloader condition. Used for 16 GB sdcard and
eMMC.

partition-table-28GB.img GPT partition table image for single bootloader condition. Used for 32 GB sdcard.

partition-table-28GB-dual.img GPT partition table image for dual bootloader condition. Used for 32 GB SD card.

imx8mm_mcu_demo.img The MCU FreeRTOS image for i.MX 8M Mini EVK board.

dtbo-imx8mm.img Device Tree image for i.MX 8M Mini EVK board to support LPDDR4 and MIPI-DSI-
to-HDMI output and DSD playback.

dtbo-imx8mm-m4.img Device Tree image for i.MX 8M Mini EVK board to support LPDDR4, MIPI-DSI-to-
HDMI output, and audio playback based on Cortex-M4 FreeRTOS.

dtbo-imx8mm-mipi-panel.img Device Tree image for i.MX 8M Mini EVK board to support LPDDR4 and MIPI panel
output.

vbmeta-imx8mm.img Android Verify Boot metadata image for i.MX 8M Mini EVK board to support LPDDR4
and MIPI-DSI-to-HDMI output.

vbmeta-imx8mm-m4.img Android Verify Boot metadata image for i.MX 8M Mini EVK board to support
LPDDR4, MIPI-DSI-to-HDMI output, and Cortex-M4 playback.

Table continues on the next page...

NXP Semiconductors
Running the Android Platform with a Prebuilt Image

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 9 / 43

Table 6. Images for i.MX 8M Mini (continued)

i.MX 8M Mini EVK image Description

vbmeta-imx8mm-mipi-panel.img Android Verify Boot metadata image for i.MX 8M Mini EVK board to support LPDDR4
and MIPI panel output.

rpmb_key_test.bin Prebuilt test RPMB key, which can be used to set the RPMB key as fixed 32 bytes
0x00.

testkey_public_rsa4096.bin Prebuilt AVB public key, which is extracted from the default AVB private key.

The following tables list the detailed contents of android-10.0.0_2.0.0_image_8mnevk.tar.gz image package.

Table 7. Images for i.MX 8M Nano

i.MX 8M Nano EVK Images Descriptions

spl-imx8mn-dual.bin Secondary program loader image without Trusty related configurations for i.MX 8M
Nano EVK board.

spl-imx8mn-trusty-dual.bin Secondary program loader image with Trusty related configurations for i.MX 8M
Nano EVK board.

bootloader-imx8mn-dual.img An image containing U-Boot proper and ATF. It is for i.MX 8M Nano EVK board.

bootloader-imx8mn-trusty-dual.img An image containing U-Boot proper, ATF, and Trusty OS. It is for i.MX 8M Nano EVK
board.

u-boot-imx8mn.imx An image containing U-Boot and ATF for i.MX 8M Nano EVK board.

u-boot-imx8mn-trusty.imx An image containing U-Boot, ATF, and Trusty OS for i.MX 8M Nano EVK board with
LPDDR4 on board.

u-boot-imx8mn-trusty-secure-unlock.imx An image containing U-Boot, ATF, and Trusty OS for i.MX 8M Nano EVK board. It
is a demonstration of secure unlock mechanism.

u-boot-imx8mn-evk-uuu.imx An image containing U-Boot and ATF, used by UUU for i.MX 8M Nano board. It is
not flashed to MMC.

boot.img Boot image for i.MX 8M Nano EVK board. It contains kernel, ramdisk, and default
kernel commandline.

system.img System image for i.MX 8M Nano EVK board.

vendor.img Vendor image for i.MX 8M Nano EVK board.

product.img Product image for i.MX 8M Nano EVK board.

partition-table.img GPT partition table image for single-bootloader condition. Used for 16 GB SD card
and eMMC.

partition-table-dual.img GPT partition table image for dual-bootloader condition. Used for 16 GB SD card
and eMMC.

partition-table-28GB.img GPT partition table image for SD single bootloader condition. Used for 32 GB SD
card.

partition-table-28GB-dual.img GPT partition table image for dual-bootloader condition. Used for 32 GB SD card.

imx8mn_mcu_demo.img The MCU demonstration image for i.MX 8M Nano EVK board.

Table continues on the next page...

NXP Semiconductors
Running the Android Platform with a Prebuilt Image

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 10 / 43

Table 7. Images for i.MX 8M Nano (continued)

i.MX 8M Nano EVK Images Descriptions

dtbo-imx8mn.img Device Tree image for i.MX 8M Nano EVK board to support MIPI-DSI-to-HDMI
output.

dtbo-imx8mn-rpmsg.img Device Tree image for i.MX 8M Nano EVK board to support MIPI-DSI-to-HDMI output
and MCU image.

dtbo-imx8mn-mipi-panel.img Device Tree image for i.MX 8M Nano EVK board to support MIPI panel output.

vbmeta-imx8mn.img Android Verify Boot metadata image for i.MX 8M Nano EVK board to support MIPI-
DSI-to-HDMI output.

vbmeta-imx8mn-rpmsg.img Android Verify Boot metadata image for i.MX 8M Nano EVK board to support MIPI-
DSI-to-HDMI output and MCU image.

vbmeta-imx8mn-mipi-panel.img Android Verify Boot metadata image for i.MX 8M Nano EVK board to support MIPI
panel output.

rpmb_key_test.bin Prebuilt test RPMB key. It can be used to set the RPMB key as fixed 32 bytes 0x00.

testkey_public_rsa4096.bin Prebuilt AVB public key. It is extracted from default AVB private key.

The following tables list the detailed contents of android-10.0.0_2.0.0_image_8mqevk.tar.gz image package.

Table 8. Images for i.MX 8M Quad EVK

i.MX 8M Quad EVK image Description

spl-imx8mq-dual.bin Secondary program loader image without Trusty related configurations for i.MX 8M
Quad EVK board.

spl-imx8mq-trusty-dual.bin Secondary program loader image with Trusty related configurations for i.MX 8M
Quad EVK board.

bootloader-imx8mq-dual.img An image containing U-Boot proper and ATF. It is for i.MX 8M Quad EVK board.

bootloader-imx8mq-trusty-dual.img An image containing U-Boot proper, ATF and Trusty OS. It is for i.MX 8M Quad EVK
board.

u-boot-imx8mq.imx An image containing U-Boot and ATF for i.MX 8M Quad EVK board.

u-boot-imx8mq-trusty.imx An image containing U-Boot, ATF and Trusty OS for i.MX 8M Quad EVK board.

u-boot-imx8mq-trusty-secure-unlock.imx An image containing U-Boot, ATF and Trusty OS for i.MX 8M Quad EVK board. It is
a demonstration of secure unlock mechanism.

u-boot-imx8mq-evk-uuu.imx An image containing U-Boot and ATF, used by UUU for i.MX 8M Quad EVK board.
It is not flashed to mmc.

boot.img Boot image for i.MX 8M Quad EVK board.

system.img System image for i.MX 8M Quad EVK board.

vendor.img Vendor image for i.MX 8M Quad EVK board.

product.img Product image for i.MX 8M Quad EVK board.

partition-table.img GPT partition table image for single bootloader condition. Used for 16 GB sdcard
and eMMC.

Table continues on the next page...

NXP Semiconductors
Running the Android Platform with a Prebuilt Image

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 11 / 43

Table 8. Images for i.MX 8M Quad EVK (continued)

i.MX 8M Quad EVK image Description

partition-table-dual.img GPT partition table image for dual bootloader condition. Used for 16GB sdcard and
eMMC.

partition-table-28GB.img GPT partition table image for single bootloader condition. Used for 32 GB sdcard.

partition-table-28GB-dual.img GPT partition table image for dual bootloader condition. Used for 32 GB sdcard.

dtbo-imx8mq.img Device Tree image for i.MX 8M Quad EVK REV A board to support HDMI output and
DSD playback.

dtbo-imx8mq-mipi.img Device Tree image for i.MX 8M Quad EVK REV A board to support MIPI-DSI-to-
HDMI output.

dtbo-imx8mq-dual.img Device Tree image for i.MX 8M Quad EVK REV A board to support HDMI and MIPI-
DSI-to-HDMI dual output.

dtbo-imx8mq-mipi-panel.img Device Tree image for i.MX 8M Quad EVK REV A board to support MIPI panel output.

vbmeta-imx8mq.img Android Verify Boot metadata image for i.MX 8M Quad EVK REV A board to support
HDMI output.

vbmeta-imx8mq-mipi.img Android Verify Boot metadata image for i.MX 8M Quad EVK REV A board to support
MIPI-DSI-to-HDMI output.

vbmeta-imx8mq-dual.img Android Verify Boot metadata image for i.MX 8M Quad EVK REV A board to support
HDMI and MIPI-DSI-to-HDMI dual output.

vbmeta-imx8mq-mipi-panel.img Android Verify Boot metadata image for i.MX 8M Quad EVK REV A board to support
MIPI panel output.

rpmb_key_test.bin Prebuilt test RPMB key, which can be used to set the RPMB key as fixed 32 bytes
0x00.

testkey_public_rsa4096.bin Prebuilt AVB public key. It is extracted from default AVB private key.

The following tables list the detailed contents of android-10.0.0_2.0.0_image_8qmek.tar.gz image package.

Table 9. Images for i.MX 8QuadMax/8QuadXPlus MEK

i.MX 8QuadMax/8QuadXPlus MEK
image

Description

u-boot-imx8qm.imx An image containing U-Boot and ATF for for i.MX 8QuadMax MEK board.

u-boot-imx8qm-trusty.imx An image containing U-Boot, ATF and Trusty OS for for i.MX 8QuadMax MEK board.

u-boot-imx8qxp.imx An image containing U-Boot and ATF for i.MX 8QuadXPlus MEK board.

u-boot-imx8qxp-trusty.imx An image containing U-Boot, ATF and Trusty OS for i.MX 8QuadXPlus MEK board.

u-boot-imx8qm-mek-uuu.imx An image containing U-Boot and ATF, used by UUU for i.MX 8QuadMax MEK board.
It is not flashed to MMC.

u-boot-imx8qxp-mek-uuu.imx An image containing U-Boot and ATF, used by UUU for i.MX 8QuadXPlus MEK
board. It is not flashed to MMC.

boot.img Boot image for i.MX 8QuadMax/8QuadXPlus MEK board.

system.img System image for i.MX 8QuadMax/8QuadXPlus MEK board.

Table continues on the next page...

NXP Semiconductors
Running the Android Platform with a Prebuilt Image

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 12 / 43

Table 9. Images for i.MX 8QuadMax/8QuadXPlus MEK (continued)

i.MX 8QuadMax/8QuadXPlus MEK
image

Description

vendor.img Vendor image for i.MX 8QuadMax/8QuadXPlus MEK board.

product.img Product image for i.MX 8QuadMax/8QuadXPlus MEK board.

partition-table.img GPT partition table image for 16 GB SD card and eMMC.

partition-table-28GB.img GPT partition table image for 32 GB boot sdcard.

vbmeta-imx8qm.img Android Verify Boot metadata image for i.MX 8QuadMax MEK board to support
LVDS-to-HDMI/MIPI-DSI-to-HDMI display.

vbmeta-imx8qm-md.img Android Verify Boot metadata image for i.MX 8QuadMax MEK board to support
multiple displays.

vbmeta-imx8qm-hdmi.img Android Verify Boot metadata image for i.MX 8QuadMax MEK board to support
physical HDMI display.

vbmeta-imx8qm-mipi-panel.img Android Verify Boot metadata image for i.MX 8QuadMax MEK board to support MIPI
panel display.

vbmeta-imx8qxp.img Android Verify Boot metadata image for i.MX 8QuadXPlus MEK board to support
single LVDS-to-HDMI/MIPI-DSI-to-HDMI or dual LVDS-to-HDMI displays with dual
cameras support.

dtbo-imx8qm.img Device Tree image for i.MX 8QuadMax MEK board to support LVDS-to-HDMI/MIPI-
DSI-to-HDMI display.

dtbo-imx8qm-md.img Device Tree image for i.MX 8QuadMax MEK board to support multiple displays.

dtbo-imx8qm-hdmi.img Device Tree image for i.MX 8QuadMax MEK board to support physical HDMI display.

dtbo-imx8qm-mipi-panel.img Device Tree image for i.MX 8QuadMax MEK board to support MIPI panel display.

dtbo-imx8qxp.img Device Tree image for i.MX 8QuadXPlus MEK board to support single LVDS-to-
HDMI/MIPI-DSI-to-HDMI or dual LVDS-to-HDMI display with dual cameras support.

rpmb_key_test.bin Prebuilt test RPMB key, which can be used to set the RPMB key as fixed 32 bytes
0x00.

testkey_public_rsa4096.bin Prebuilt AVB public key. It is extracted from default AVB private key.

boot.img is an Android image that stores Image and ramdisk together. It can also store other information such as
the kernel boot command line and machine name. This information can be configured in android.mk. It can avoid
touching boot loader code to change any default boot arguments.

 NOTE

5 Programming Images
The images from the prebuilt release package or created from source code contain the U-Boot boot loader, system image, GPT
image, vendor image, and vbmeta image. At a minium, the storage devices on the development system (MMC/SD or NAND)
must be programmed with the U-Boot boot loader. The i.MX 8 series boot process determines what storage device to access
based on the switch settings. When the boot loader is loaded and begins execution, the U-Boot environment space is then read
to determine how to proceed with the boot process. For U-Boot environment settings, see Section Booting.

The following download methods can be used to write the Android System Image:

• UUU to download all images to the eMMC/SD card.

NXP Semiconductors
Programming Images

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 13 / 43

• fsl-sdcard-partition.sh to download all images to the SD card.

• fastboot_imx_flashall script to download all images to the eMMC/SD storage.

5.1 System on eMMC/SD
The images needed to create an Android system on eMMC/SD can either be obtained from the release package or be built
from source.

The images needed to create an Android system on eMMC/SD are listed below:

• U-Boot image: u-boot.imx

• GPT table image: partition-table.img

• Android dtbo image: dtbo.img

• Android boot image: boot.img

• Android system image: system.img

• Android verify boot metadata image: vbmeta.img

• Android vendor image: vendor.img

• Android product image: product.img

5.1.1 Storage partitions
The layout of the eMMC card for Android system is shown below:

• [Partition type/index] which is defined in the GPT.

• [Start Offset] shows where partition is started, unit in MB.

The userdata parition is used to put the unpacked codes/data of the applications, system configuration database, etc. In normal
boot mode, the root file system is firstly mounted with ramdisk from boot partition, and then the logical system partition is mounted
and switched as root. In recovery mode, the root file system is mounted with ramdisk from the boot partition.

Table 10. Storage partitions

Partition
type/index

Name Start offset Size File system Content

N/A bootloader0 0 KB (i.MX 8QuadMax
eMMC) or 32 KB (i.MX
8QuadXPlus, i.MX
8QuadMax SD card) or 33
KB (i.MX 8M Quad, i.MX
8M Mini)

4 MB N/A spl.imx/u-boot.imx

(1) bootloader_a 8 MB 4 MB N/A bootloader.img

(2) bootloader_b Following bootloader_a 4 MB N/A bootloader.img

1/(3) dtbo_a 8 MB (following
bootloader_b)

4 MB N/A dtbo.img

2/(4) dtbo_b Follow dtbo_a 4 MB N/A dtbo.img

3 (5) boot_a Follow dtbo_b 64 MB boot.img format, a kernel +
recovery ramdisk

boot.img

4 (6) boot_b Follow boot_a 64 MB boot.img format, a kernel +
recovery ramdisk

boot.img

Table continues on the next page...

NXP Semiconductors
Programming Images

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 14 / 43

Table 10. Storage partitions (continued)

5 (7) misc Follow boot_b 4 MB N/A For recovery storage
bootloader message,
reserve.

6 (8) metadata Follow misc 2 MB N/A For system slide show

7 (9) presistdata Follow metadata 1 MB N/A the option to operate
unlock\unlock

8 (10) super Follow presistdata 7168 MB N/A system.img, vendor.img,
and product.img

9 (11) userdata Follow super Remained
space

EXT4. Mount at /data Application data storage
for system application.
And for internal media
partition, in /mnt/sdcard/
dir.

10 (12) fbmisc Follow userdata 1 MB N/A For storing the state of lock
\unlock

11 (13) vbmeta_a Follow fbmisc 1 MB N/A For storing the verify
boot's metadata

12 (14) vbmeta_b Follow vbmeta_a 1 MB N/A For storing the verify
boot's metadata

For the preceding table, in the "Partition Type/Index" column and "Start offset" column, the contents in brackets
is specific for dual-bootloader condition.

 NOTE

To create these partitions, use UUU described in the Android™ Quick Start Guide (AQSUG), or use format tools in the prebuilt
directory.

The script below can be used to partition an SD Card and download images to them as shown in the partition table above:

$ cd ${MY_ANDROID}/
$ sudo ./device/fsl/common/tools/fsl-sdcard-partition.sh -f <soc_name> /dev/sdX
<soc_name> can be imx8mm,imx8mn,imx8mq,imx8qm,imx8qxp.

• If the SD card is 16 GB, use sudo ./device/fsl/common/tools/fsl-sdcard-partition.sh -f
<soc_name> /dev/sdX to flash images.

• If the SD card is 32 GB, use sudo ./device/fsl/common/tools/fsl-sdcard-partition.sh -f
<soc_name> -c 28 /dev/sdX to flash images.

• /dev/sdX, the X is the disk index from 'a' to 'z', which may be different on each Linux PC.

• Unmount all the SD card partitions before running the script.

• Put related bootloader, boot image, system image, product image, and vbmeta image in your current directory,
or use -D <directory_containing_images> to specify the directory path in which there are the images
to be flashed.

• This script needs simg2img tool to be installed on your PC. The simg2img is a tool that converts sparse system
image to raw system image on the host PC running Linux OS. The android-tools-fsutils package includes the
simg2img command for Ubuntu Linux.

 NOTE

NXP Semiconductors
Programming Images

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 15 / 43

5.1.2 Downloading images with UUU
UUU can be used to download all images into a target device. It is a quick and easy tool for downloading images. See the Android™

Quick Start Guide (AQSUG) for detailed description of UUU.

5.1.3 Downloading images with fastboot_imx_flashall script
UUU can be used to flash the Android system image into the board, but it needs to make the board enter serial down mode first,
and make the board enter boot mode once flashing is finished.

A new fastboot_imx_flashall script is supported to use fastboot to flash the Android system image into the board. It is more flexible.
To use the new script, the board must be able to enter fastboot mode and the device must be unlocked. The table below lists the
fastboot_imx_flashall scripts.

Table 11. fastboot_imx_flashall script

Name Host system to execute the script

fastboot_imx_flashall.sh Linux OS

fastboot_imx_flashall.bat Windows OS

With the help of fastboot_imx_flashall scripts, you do not need to use fastboot to flash Android images one-by-one manually.
These scripts will automatically flash all images with only one command.

fastboot can be built with Android build system. Based on Section 3, which introduces how to build android images, perform the
following steps to build fastboot:

 $ cd ${MY_ANDROID}
 $ make -j4 fastboot

After the build process finishes building fastboot, the directory to find the fastboot is as follows:

• Linux version binary file: ${MY_ANDROID}/out/host/linux-x86/bin

• Windows version binary file: ${MY_ANDROID}/out/host/windows-x86/bin

The way to use these scripts is follows:

• Linux shell script usage: sudo fastboot_imx_flashall.sh <option>

• Windows batch script usage: fastboot_imx_flashall.bat <option>

Options:
 -h Displays this help message
 -f soc_name Flashes the Android image file with soc_name
 -a Only flashes the image to slot_a
 -b Only flashes the image to slot_b
 -c card_size Optional setting: 7 / 14 / 28
 If it is not set, use partition-table.img (default).
 If it is set to 7, use partition-table-7GB.img for 8 GB SD card.
 If it is set to 14, use partition-table-14GB.img for 16 GB SD card.
 If it is set to 28, use partition-table-28GB.img for 32 GB SD card.
 Make sure that the corresponding file exists on your platform.
 -m Flashes the MCU image.
 -u uboot_feature Flashes U-Boot or spl&bootloader images with "uboot_feature" in their names
 For Standard Android:
 If the parameter after "-u" option contains the string of "dual", the
spl&bootloader image will be flashed;
 Otherwise U-Boot image will be flashed.
 For Android Automative:
 Only dual-bootloader feature is supported. By default, spl&bootloader
image will be flashed.

NXP Semiconductors
Programming Images

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 16 / 43

 -d dtb_feature flash dtbo, vbmeta and recovery image file with "dtb_feature" in their names
 If not set, use default dtbo, vbmeta and recovery image
 -e Erases user data after all image files are flashed.
 -l Locks the device after all image files are flashed.
 -D directory Directory of images.
 If this script is execute in the directory of the images, it does not need to
use this option.
 -s ser_num Serial number of the board.
 If only one board connected to computer, it does not need to use this option
 -super Do not generate super.img when flash the images with dynamic partition feature
enabled.
 Use the super.img already existed together with other images.

• -f option is mandatory. SoC name can be imx8mm, imx8mn, imx8mq, imx8qm, or imx8qxp.

• Boot the device to U-Boot fastboot mode, and then execute these scripts. The device should be unlocked first.

 NOTE

Example:

sudo ./fastboot_imx_flashall.sh -f imx8mm -a -e -u trusty -D /imx_android-10.0/evk_8mm/

Options explanation:

• -f imx8mm: flashes images for i.MX 8M Mini EVK Board.

• -a: Only flashes slot a.

• -e: Erases user data after all image files are flashed.

• -D /imx_pi9.0/evk_8mm/: images to be flashed are in the directory of /imx_android-10.0/evk_8mm/.

• -u trusty: Flashes the "u-boot-imx8mm-trusty.imx".

5.1.4 Downloading a single image with fastboot
Sometimes only a single image needs to be flashed again with fastboot for debug purpose.

With dynamic partition feature enabled, fastboot is also implemented in userspace (recovery) in addition to the implementation
in U-Boot. The partitions are categorized into three. Fastboot implemented in U-Boot and userspace can individually recognize
part of the partitions. The relationship between them are listed in the following table.

Table 12. Relationship betwen partitions

Partition category Partition Can be recognized by

U-Boot hard-coded partition bootloader0, gpt, mcu_os U-Boot fastboot

EFI partition boot_a, boot_b, dtbo_a, dtbo_b, vbmeta_a, vbmeta_b, misc,
metadata, presistdata, super, userdata, fbmisc

U-Boot fastboot, userspace
fastboot

Logical partition system_a, system_b, vendor_a, vendor_b, product_a,
product_b

userspace fastboot

To enter U-Boot fastboot mode, for example, make the board enter U-Boot command mode, and execute the following command
on the console:

> fastboot 0

NXP Semiconductors
Programming Images

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 17 / 43

To enter userspace fastboot mode, two commands are provided as follows for different conditions. You may need root permission
on Linux OS:

board in U-Boot fastboot mode, execute the following command on the host
$ fastboot reboot fastboot

board boot up to the Android system, execute the following command on the host
$ adb reboot fastboot

To use fastboot tool on the host to operate on a specific partition, choose the proper fastboot implemented on the device, which
can recoginize the partition to be operated on. For example, to flash the system.img to the partition of system_a, make the board
enter userspace fastboot mode, and execute the following command on the host:

$ fastboot flash system_a system.img

6 Booting
This chapter describes booting from MMC/SD.

6.1 Booting from eMMC/SD

6.1.1 Booting from SD/eMMC on the i.MX 8M Mini EVK board
The following tables list the boot switch settings to control the boot storage for Rev. C boards with LPDDR4.

Table 13. Boot device switch settings

Boot device switch SW1101 (1-10 bit) SW1102 (1-10 bit)

SD boot 0110110010 0001101000

Download mode 1010xxxxxx xxxxxxxxxx

eMMC boot 0110110001 0001010100

For Rev. C boards with LPDDR4:

To test booting from SD, change the board Boot_Mode switch to SW1101 0110110010 (1-10 bit) and SW1102 0001101000 (1-10
bit).

To test booting from eMMC, change the board Boot_Mode switch to SW1101 0110110010 (1-10 bit) and SW1102 0001010100
(1-10 bit).

The default environment is in boot.img. To use the default environment in boot.img, do not set bootargs environment in U-Boot.

To clear the bootargs environment being set and saved before, use the following command:

U-Boot > setenv bootargs
U-Boot > saveenv #Save the environments

bootargs environment is an optional setting for boota. The boot.img includes a default bootargs, which is used if
there is no bootargs defined in U-Boot.

 NOTE

6.1.2 Booting from SD/eMMC on the i.MX 8M Nano board
The following tables list the boot switch settings to control the boot storage.

NXP Semiconductors
Booting

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 18 / 43

Table 14. Boot device switch settings

Boot mode switch SW1101 (from 1-4 bit)

SD boot 1100

eMMC boot 0100

Download mode 1000

• To boot from SD, change the board Boot_Mode switch to SW1101 1100 (from 1-4 bit).

• To boot from eMMC, change the board Boot_Mode switch to SW1101 0100 (from 1-8 bit).

The default environment is in boot.img. To use the default environment in boot.img, do not set bootargs environment in U-Boot.

To clear the bootargs environment being set and saved before, use the following command:

U-Boot > setenv bootargs
U-Boot > saveenv #Save the environments

bootargs environment is an optional setting for boota. The boot.img includes a default bootargs, which is used if
if there is no bootargs defined in U-Boot.

 NOTE

6.1.3 Booting from SD/eMMC on the i.MX 8M Quad EVK board
The following tables list the boot switch settings to control the boot storage.

Table 15. Boot device switch settings

Boot device switch External SDcard eMMC

SW01 (1-2 bit) 1100 0010

Table 16. Boot mode switch settings

Boot mode switch Download Mode (MfgTool mode) Boot mode

SW02 (1-2 bit) 01 10

To test booting from SD, change the board Boot_Mode switch to 10 (1-2 bit) and SW801 1100 (1-4 bit).

To test booting from eMMC, change the board Boot_Mode switch to 10 (1-2 bit) and SW801 0010 (1-4 bit).

The default environment is in boot.img. To use the default environment in boot.img, do not set bootargs environment in U-Boot.

To clear the bootargs environment being set and saved before, use the following command:

U-Boot > setenv bootargs
U-Boot > saveenv # Save the environments

bootargs environment is an optional setting for boota. The boot.img includes a default bootargs, which is used if
if there is no bootargs defined in U-Boot.

 NOTE

6.1.4 Booting from SD/eMMC on the i.MX 8QuadMax MEK board
The following tables list the boot switch settings to control the boot storage.

NXP Semiconductors
Booting

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 19 / 43

Table 17. Boot device switch settings

Boot mode switch SW2 (from 1-6 bit)

SD boot 001100

eMMC boot 000100

Download mode 001000

To test booting from SD, change the board Boot_Mode switch to 001100 (1-6 bit).

To test booting from eMMC, change the board Boot_Mode switch to 000100 (1-6 bit).

The default environment is in boot.img. To use the default environment in boot.img, do not set bootargs environment in U-Boot.

To clear the bootargs environment being set and saved before, use the following command:

U-Boot > setenv bootargs
U-Boot > saveenv # Save the environments

bootargs environment is an optional setting for boota. The boot.img includes a default bootargs, which is used if
if there is no bootargs defined in U-Boot.

 NOTE

6.1.5 Booting from SD/eMMC on the i.MX 8QuadXPlus MEK board
The following tables list the boot switch settings to control the boot storage.

Table 18. Boot device switch settings

Boot mode switch SW2 (from 1-4 bit)

SD boot 1100

eMMC boot 0100

Download mode 1000

To test booting from SD, change the board Boot_Mode switch to 1100 (1-4 bit).

To test booting from eMMC, change the board Boot_Mode switch to 0100 (1-4 bit).

The default environment is in boot.img. To use the default environment in boot.img, do not set bootargs environment in U-Boot.

To clear the bootargs environment being set and saved before, use the following command:

U-Boot > setenv bootargs
U-Boot > saveenv # Save the environments

bootargs environment is an optional setting for boota. The boot.img includes a default bootargs, which is used if
if there is no bootargs defined in U-Boot.

 NOTE

6.2 Boot-up configurations
This section explains some common boot-up configurations such as U-Boot environments, kernel command line, and DM-
verity configuartions.

NXP Semiconductors
Booting

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 20 / 43

6.2.1 U-Boot environment
• bootcmd: the first command to run after U-Boot boot.

• bootargs: the kernel command line, which the bootloader passes to the kernel. As described in Kernel command line
(bootargs), bootargs environment is optional for booti. boot.img already has bootargs. If you do not define the bootargs
environment, it uses the default bootargs inside the image. If you have the environment, it is then used.

To use the default environment in boot.img, use the following command to clear the bootargs environment.

> setenv bootargs

• boota:

boota command parses the boot.img header to get the Image and ramdisk. It also passes the bootargs as needed (it only
passes bootargs in boot.img when it cannot find "bootargs" var in your U-Boot environment). To boot from mmcX, do the
following:

> boota mmcX

To read the boot partition (the partition store boot.img, in this instance, mmcblk0p1), the X is the eMMC bus number, which
is the hardware eMMC bus number. For i.MX 8M Mini EVK, eMMC is is mmc1. For i.MX 8M Quad EVK, i.MX 8QuadMax
MEK, and i.MX 8QuadXPlus MEK, eMMC is mmc0. You can add partition ID after mmcX.

Add partition ID after mmcX.

> boota mmcX boot # boot is default
> boota mmcX recovery # boot from the recovery partition

6.2.2 Kernel command line (bootargs)
Depending on the different booting/usage scenarios, you may need different kernel boot parameters set for bootargs.

Table 19. Kernel boot parameters

Kernel parameter Description Typical value Used when

console Where to output
kernel log by
printk.

console=ttymxc0 i.MX 8M Mini use console=ttymxc1.

init Tells kernel where
the init file is
located.

init=/init All use cases. "init" in the Android platform
is located in "/" instead of in "/sbin".

androidboot.console The Android shell
console. It should
be the same as
console=.

androidboot.console=ttymxc0 To use the default shell job control, such as
Ctrl+C to terminate a running process, set
this for the kernel.

cma CMA memory
size for GPU/VPU
physical memory
allocation.

cma=800M or cma=1280M or
cma=800M@0x960M-0xe00M

• For i.MX 8M Mini and i.MX
8QuadMax, it is 800 MB
by default.

Start address is 0x96000000 and end
address is 0xDFFFFFFFF. The CMA size
can be configured to other value, but
cannot exceed 1184 MB, because the
Cortex-M4 core will also allocate memory

Table continues on the next page...

NXP Semiconductors
Booting

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 21 / 43

Table 19. Kernel boot parameters (continued)

Kernel parameter Description Typical value Used when

• For i.MX 8M Quad, it is
1280 MB by default.

• For i.MX 8QuadXPlus and
8QuadMax, it is 800 MB
by default.

from CMA and Cortex-M4 cannot use the
memory larger than 0xDFFFFFFFF.

androidboot.selinux Argument to
disable selinux
check and enable
serial input when
connecting a host
computer to the
target board’s
USB UART port.
For details about
selinux, see
Security-
Enhanced Linux
in Android.

androidboot.selinux=permissiv
e

Android 10.0 CTS requirement: serial input
should be disabled by default.

Setting this argument enables console serial
input, which will violate the CTS
requirement.

Setting this argument will also bypass all the
selinux rules defined in Android system. It is
recommended to set this argument for
internal developer.

androidboot.primary_displa
y

It is used to chose
and fix primary
display.

androidboot.primary_display=i
mx-drm

androidboot.primary_display=mxsfb-drm is
only used for MIPI display.

androidboot.lcd_density It is used to set
the display
density and over
write
ro.sf.lcd_density
in init.rc for MIPI-
DSI-to-HDMI
display.

androidboot.lcd_density=160 -

androidboot.displaymode It is used to
configure the
kernel/driver work
mode/fps.

• 4k display should be
configured as:
androidboot.displaymode=
4k. The default fps is
60fps. To configure fps,
change this value to
4kp60/4kp50/4kp30.

• 1080p display should be
configured as:
androidboot.displaymode=
1080p. The default fps is
60fps. To configure fps,
change this value to

The system will find out and work at the
best display mode, and display mode can
be changed through this bootargs.

Table continues on the next page...

NXP Semiconductors
Booting

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 22 / 43

http://source.android.com/devices/tech/security/selinux/
http://source.android.com/devices/tech/security/selinux/
http://source.android.com/devices/tech/security/selinux/

Table 19. Kernel boot parameters (continued)

Kernel parameter Description Typical value Used when

1080p60/1080p50/1080p3
0.

• 720p display should be
configured as:
androidboot.displaymode=
720p. The default fps is
60fps. To configure fps,
change this value to
720p60/720p50/720p30.

• 480p display should be
configured as:
androidboot.displaymode=
480p. The default fps is
60fps. To configure fps,
change this value to
480p60/480p50/480p30.

androidboot.fbTileSupport It is used to
enable
framebuffer super
tile output.

androidboot.fbTileSupport=ena
ble

It should not be set when connecting the
MIPI-DSI-to-HDMI display or MIPI panel
display.

firmware_class.path It is used to set
the Wi-Fi firmware
path.

firmware_class.path=/vendor/
firmware

-

androidboot.wificountrycod
e=CN

It is used to set
Wi-Fi country
code. Different
countries use
different Wi-Fi
channels. For
details, see the
i.MX Android
Frequently Asked
Questions.

androidboot.wificountrycode=C
N

-

transparent_hugepage It is used to
change the sysfs
boot time defaults
of Transparent
Hugepage
support.

transparent_hugepage=never/
always/madvise

-

loop.max_part Defines how
many partitions to
be able to
manage per loop
device.

loop.max_part=7 -

NXP Semiconductors
Booting

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 23 / 43

https://community.nxp.com/docs/DOC-342877
https://community.nxp.com/docs/DOC-342877
https://community.nxp.com/docs/DOC-342877

6.2.3 DM-verity configuration
DM-verity (device-mapper-verity) provides transparent integrity checking of block devices. It can prevent device from running
unauthorized images. This feature is enabled by default. Replacing one or more partitions (boot, vendor, system, vbmeta) will
make the board unbootable. Disabling DM-verity provides convience for developers, but the device is unprotected.

To disable DM-verity, perform the following steps:

1. Unlock the device.

a. Boot up the device.

b. Choose Settings -> Developer Options -> OEM Unlocking to enable OEM unlocking.

c. Execute the following command on the target side to make the board enter fastboot mode:

reboot bootloader

d. Unlock the device. Execute the following command on the host side:

fastboot oem unlock

e. Wait until the unlock process is complete.

2. Disable DM-verity.

a. Boot up the device.

b. Disable the DM-verity feature. Execute the following command on the host side:

adb root
adb disable-verity
adb reboot

7 Over-The-Air (OTA) Update

7.1 Building OTA update packages

7.1.1 Building target files
You can use the following commands to generate target files under the Android environment:

$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch evk_8mm-userdebug
$./imx-make.sh bootloader kernel -j4
$ make target-files-package -j4

After building is complete, you can find the target files in the following path:

${MY_ANDROID}/out/target/product/evk_8mm/obj/PACKAGING/target_files_intermediates/evk_8mm-ota-**.zip

7.1.2 Building a full update package
A full update is one where the entire final state of the device (system, boot, product, and vendor partitions) is contained in the
package.

NXP Semiconductors
Over-The-Air (OTA) Update

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 24 / 43

You can use the following commands to build a full update package under the Android environment:

$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch evk_8mm-userdebug
$./imx-make.sh bootloader kernel -j4
$ make otapackage -j4

After building is complete, you can find the OTA packages in the following path:

${MY_ANDROID}/out/target/proudct/evk_8mm/evk_8mm-ota-**.zip

evk_8mm-ota-**.zip includes payload.bin and payload_properties.txt. These two files are used for full update, which is
called full-ota.zip for convenience.

7.1.3 Building an incremental update package
An incremental update contains a set of binary patches to be applied to the data that is already on the device. This can result in
considerably smaller update packages:

• Files that have not changed do not need to be included.

• Files that have changed are often very similar to their previous versions, so the package only needs to contain encoding of
the differences between the two files. You can install the incremental update package only on a device that has the old or
source build used when constructing the package.

Before building an incremental update package, see Section 7.1.1 to build two target files:

• PREVIOUS-target_files.zip: one old package that has already been applied on the device.

• NEW-target_files.zip: the latest package that is waiting to be applied on the device.

Then use the following commands to generate the incremental update package under the Android environment:

$ cd ${MY_ANDROID}
$./build/tools/releasetools/ota_from_target_files -i PREVIOUS-target_files.zip NEW-target_files.zip
incremental-ota.zip

${MY_ANDROID}/incremental-ota.zip includes payload.bin and payload_properties.txt. The two files are used for
incremental update.

7.2 Implementing OTA update

7.2.1 Using update_engine_client to update the Android platform
update_engine_client is a pre-built tool to support A/B (seamless) system updates. It supports update system from a remote
server or board's storage.

To update system from a remote server, perform the following steps:

1. Copy full-ota.zip or incremental-ota.zip (generated on 7.1.2 and 7.1.3) to the HTTP server (for example,
192.168.1.1:/var/www/).

2. Unzip the packages to get payload.bin and payload_properties.txt.

3. Cat the content of payload_properties.txt like this:

• FILE_HASH=0fSBbXonyTjaAzMpwTBgM9AVtlBeyOigpCCgkoOfHKY=

• FILE_SIZE=379074366

• METADATA_HASH=Icrs3NqoglzyppyCZouWKbo5f08IPokhlUfHDmz77WQ=

• METADATA_SIZE=46866

NXP Semiconductors
Over-The-Air (OTA) Update

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 25 / 43

4. Input the following command on the board's console to update:

su
update_engine_client --payload=http://192.168.1.1:10888/payload.bin --update --
headers="FILE_HASH=0fSBbXonyTjaAzMpwTBgM9AVtlBeyOigpCCgkoOfHKY=
FILE_SIZE=379074366
METADATA_HASH=Icrs3NqoglzyppyCZouWKbo5f08IPokhlUfHDmz77WQ=
METADATA_SIZE=46866"

5. The system will update in the background. After it finishes, it will show "Update successfully applied, waiting to reboot" in
the logcat.

To update system from board's storage, perform the following steps:

1. Unzip full-ota.zip or incremental-ota.zip (Generated on 7.1.2 and 7.1.3) to get payload.bin and
payload_properties.txt.

2. Push payload.bin to board's /sdcard dir: adb push payload.bin /sdcard/.

3. Cat the content of payload_properties.txt like this:

• FILE_HASH=0fSBbXonyTjaAzMpwTBgM9AVtlBeyOigpCCgkoOfHKY=

• FILE_SIZE=379074366

• METADATA_HASH=Icrs3NqoglzyppyCZouWKbo5f08IPokhlUfHDmz77WQ=

• METADATA_SIZE=46866

4. Input the following command on the board's console to update:

su
update_engine_client --payload=file:///sdcard/payload.bin --update --
headers="FILE_HASH=0fSBbXonyTjaAzMpwTBgM9AVtlBeyOigpCCgkoOfHKY=
FILE_SIZE=379074366
METADATA_HASH=Icrs3NqoglzyppyCZouWKbo5f08IPokhlUfHDmz77WQ=
METADATA_SIZE=46866"

5. The system will update in the background. After it finishes, it will show "Update successfully applied, waiting to reboot" in
the logcat.

Make sure that the -- header equals to the exact content of payload_properties.txt without "space" or "return"
character.

 NOTE

7.2.2 Using a customized application to update the Android platform
Google has provided a reference OTA application (named as SystemUpdaterSample) under ${MY_ANDROID}/bootable/
recovery/updater_sample, which can do the OTA operations. Perform the following steps to use this application:

1. Generate json configuration file from the OTA package.

PYTHONPATH=$MY_ANDROID/build/make/tools/releasetools:$PYTHONPATH \
bootable/recovery/updater_sample/tools/gen_update_config.py \
--ab_install_type=STREAMING \
--ab_force_switch_slot \
full-ota.zip \
full-ota.json \
http://192.168.1.1:10888/full-ota.zip

NXP Semiconductors
Over-The-Air (OTA) Update

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 26 / 43

And you can use the following command to generate incremental OTA json file:

PYTHONPATH=$MY_ANDROID/build/make/tools/releasetools:$PYTHONPATH \
bootable/recovery/updater_sample/tools/gen_update_config.py \
--ab_install_type=STREAMING \
--ab_force_switch_slot \
incremental-ota.zip \
incremental-ota.json \
http://192.168.1.1:10888/incremental-ota.zip

http://192.168.1.1:10888/full-ota.zip is a remote server address, which can hold the OTA package.

 NOTE

2. Set up the HTTP server (eg., lighttpd, apache).

You need one HTTP server to hold OTA packages.

scp full-ota.zip ${server_ota_folder}
scp incremental-ota.zip ${server_ota_folder}

• server_ota_folder is one folder on your remote server to hold OTA packages.

• full-ota.zip and incremental-ota.zip are built from Building a full update package and Building an
incremental update package.

 NOTE

3. Push json files to the board.

a. Use the following command to push json files to the board:

adb push full-ota.json /data/local/tmp
adb push incremental-ota.json /data/local/tmp

b. Use the following command to move json files to the private folder of the SystemUpdaterSample application:

su
mkdir -m 777 -p /data/user/0/com.example.android.systemupdatersample/files
mkdir -m 777 -p /data/user/0/com.example.android.systemupdatersample/files/configs
cp /data/local/tmp/*.json /data/user/0/com.example.android.systemupdatersample/files/
configs
chmod 777 /data/user/0/com.example.android.systemupdatersample/files/configs/*.json

If you use the Android Automative system, move json files to the user/10 folder as follows:

su
mkdir -m 777 -p /data/user/10/com.example.android.systemupdatersample/files
mkdir -m 777 -p /data/user/10/com.example.android.systemupdatersample/files/
configs
cp /data/local/tmp/*.json /data/user/10/com.example.android.systemupdatersample/
files/configs
chmod 777 /data/user/10/com.example.android.systemupdatersample/files/configs/
*.json

 NOTE

4. Open the SystemUpdaterSample OTA application.

NXP Semiconductors
Over-The-Air (OTA) Update

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 27 / 43

http://192.168.1.1:10888/full-ota.zip

There are many buttons on the UI. The following are their brief description:

Reload - reloads update configs from device storage.
View config - shows selected update config.
Apply - applies selected update config.
Stop - cancel running update, calls UpdateEngine#cancel.
Reset - reset update, calls UpdateEngine#resetStatus, can be called only when update is not
running.
Suspend - suspend running update, uses UpdateEngine#cancel.
Resume - resumes suspended update, uses UpdateEngine#applyPayload.
Switch Slot - if ab_config.force_switch_slot config set true, this button will be enabled after
payload is applied, to switch A/B slot on next reboot.

First, choose the desired json configuration file. Then, click the APPLY button to do the update. After update is complete,
you can see "SUCCESS" in the Engine error text field, and "REBOOT_REQUIRED" in the Updater state text field. Finally,
reboot the board to finish the whole OTA update.

The OTA package includes the DTBO image, which stores the board's DTB. There may be many DTS for one
board. For example, in ${MY_ANDROID}/device/fsl/imx8m/evk_8mm/BoardConfig.mk::

TARGET_BOARD_DTS_CONFIG ?= imx8mm:fsl-imx8mm-trusty-evk.dtb
TARGET_BOARD_DTS_CONFIG += imx8mm-mipi-panel:fsl-imx8mm-evk-rm67191.dtb
TARGET_BOARD_DTS_CONFIG += imx8mm-m4:fsl-imx8mm-evk-m4.dtb

There is one variable to specify which dtbo image is stored in the OTA package:

BOARD_PREBUILT_DTBOIMAGE := out/target/product/evk_8mm/dtbo-imx8mm.img

Therefore, the default OTA package can only be applied for evk_8mm with single MIPI-DSI-to-HDMI display. To
generate an OTA package for evk_8mm with MIPI panel display, modify this BOARD_PREBUILT_DTBOIMAGE
as follows:

BOARD_PREBUILT_DTBOIMAGE := out/target/product/evk_8mm/dtbo-imx8mm-mipi-
panel.img

For detailed information about A/B OTA updates, see https://source.android.com/devices/tech/ota/ab/.

For detailed information about the SystemUpdaterSample application, see https://android.googlesource.com/
platform/bootable/recovery/+/refs/heads/master/updater_sample/.

 NOTE

8 Customized Configuration

8.1 Camera configuration
Camera HAL on running will read the information in /vendor/etc/configs/camera_config_${ro.boot.soc_type}.json to
configure the camera. ${ro.boot.soc_type} is the value of property ro.boot.soc_type. The source of this json file is in the
repository under ${MY_ANDROID}/device/fsl/. To configure the camera, make modifications on this source file.

Some parameters have default values in the camera HAL. It is not necessary to set these parameters in the json file if the default
values can have cameras work normally.

8.1.1 Configuring the rear and front cameras
camera_type and camera_name can be used together in the camera configuration json file to specify the camera used as the
front or rear camera.

The value of camera_type can be "front" and "back". "front" represents the front camera, and "back" represents the rear camera.

NXP Semiconductors
Customized Configuration

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 28 / 43

https://source.android.com/devices/tech/ota/ab/
https://android.googlesource.com/platform/bootable/recovery/+/refs/heads/master/updater_sample/
https://android.googlesource.com/platform/bootable/recovery/+/refs/heads/master/updater_sample/

The value of "camera_name" represents the camer. It should be either v4l2_dbg_chip_ident.match.name returned from v4l2's
VIDIOC_DBG_G_CHIP_IDENT ioctl or v4l2_capability.driver returned from v4l2's VIDIOC_QUERYCAP ioctl.
v4l2_dbg_chip_ident and v4l2_capability are structure types defined in camera HAL. Camera HAL will go through all the
V4L2 device present in the system to find the corresponding camera and output the information to logcat.

OmitFrame is used to skip the first several frames. cam_blit_csc is used to specify the hardware used to do csc in camera HAL.
cam_blit_copy is used to specify the hardware used to do memory copy in camera HAL.

media_profiles_V1_0.xml in /vendor/etc is used to configure the parameters used in the recording video. NXP provides
several media profile examples that help customer align the parameters with their camera module capability and device definition.

Table 20. Media profile parameters

Profile file name Rear camera Front camera

media_profiles_1080p.xml Maximum to 1080P, 30FPS and 8 Mbps
for recording video

Maximum to 720P, 30FPS, and 3 Mbps
for recording video

media_profiles_720p.xml Maximum to 720P, 30FPS, and 3 Mbps
for recording video

Maximum to 720P, 30FPS, and 3 Mbps
for recording video

media_profiles_480p.xml Maximum to 480P, 30FPS, and 2 Mbps
for recording video

Maximum to 480P, 30FPS, and 2 Mbps
for recording video

media_profiles_qvga.xml Maximum to QVGA, 15FPS, and 128
Kbps for recording video

Maximum to QVGA, 15FPS, and 128
Kbps for recording video

Because not all UVC cameras can have 1080P, 30FPS resolution setting, it is recommended that
media_profiles_480p.xml is used for any board's configuration, which defines the UVC as the rear camera
or front camera.

 NOTE

8.1.2 Configuring camera sensor parameters
Camera sensor parameters are used to calculate view angle when doing panorama. The focal length and sensitive element size
should be customized based on the camera sensor being used. The release have the parameters for OV5640 as the rear camera.

The following table lists the parameters for camera sensor. These parameters can be configured in the camera configuration json
file.

Table 21. Camera sensor parameters

Parameter Description

ActiveArrayWidth Maximum active pixel width for camera sensor

ActiveArrayHeight Maximum active pixel height for camera sensor

PixelArrayWidth Maximum pixel width for camera sensor

PixelArrayHeight Maximum pixel height for camera sensor

FocalLength Focal length

MinFrameDuration Minimum FPS

MaxFrameDuration Maximum FPS

MaxJpegSize Maximum JPEG size

PhysicalWidth PixelArrayWidth * siz_of_one_pixel Ffor OV5640, it is 1.4 um; For max9286, it is
4.2 um.)

Table continues on the next page...

NXP Semiconductors
Customized Configuration

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 29 / 43

Table 21. Camera sensor parameters (continued)

PhysicalHeight PixelArrayHeight * siz_of_one_pixel (For OV5640, it is 1.4 um; For max9286, it is
4.2 um.)

8.2 Audio configuration

8.2.1 Enabling low-power audio
The "DirectAudioPlayer" application is provided to support audio playback from DirectOutputThread. The source code is in $
{MY_ANDROID}/vendor/nxp-opensource/fsl_imx_demo/DirectAudioPlayer. After the "vendor.audio.lpa.enable" property is
set to 1, low-power audio can be enabled. In this situation, audio can keey playing even if the system enters suspending mode.

By default, the music stream plays from MixedThread. To make stream play from DirectOutputThread, add the
AUDIO_OUTPUT_FLAG_DIRECT flag to the related tracks. On the Android Application layer, there is no
AUDIO_OUTPUT_FLAG_DIRECT flag to specify DirectOutputThread explicitly. Instead, use FLAG_HW_AV_SYNC when there
is "new AudioTrack" in the application. Then the Android audio framework will add AUDIO_OUTPUT_FLAG_DIRECT for this
track, and this stream will play from DirectOutputThread.

In low-power audio mode, the default audio period time is 1 second, and the whole buffer can hold 60 seconds data. These two
parameters can be configured by the vendor.audio.lpa.period_ms and vendor.audio.lpa.hold_second properties as
follows:

 > setprop vendor.audio.lpa.hold_second 60
 > setprop vendor.audio.lpa.period_ms 1000

To enable low-power audio, perform the following steps:

1. Flash boot-imx8mm-m4.img, imx8mm_m4_demo.img, and vbmeta-imx8mm-m4.img to support audio playback based on
Cortex-M4 FreeRTOS.

2. Add bootmcu to bootcmd in U-Boot command line, see Section 3.4.2 "Booting with Single MIPI-DSI-to-HDMI display and
audio playback based on Cortex-M4 FreeRTOS" in the Android™ Quick Start Guide (AQSUG).

3. Run the following command to enable low-power audio mode:

 > su
 > setprop vendor.audio.lpa.enable 1
 > pkill audioserver

4. Push the .wav audio files to /sdcard/. It is better to use a long duration audio file.

5. Disable the following system sounds:

 Settings -> Sound -> Touch sounds
 Settings -> Sound -> Screen locking sounds
 Settings -> Sound -> Charging sounds

6. Open the DirectAudioPlayer application, and select a file from the spinner. The file selected is listed under the spinner.

7. Click the Play button to play audio.

8. Press the ON/OFF button on the board. The system then enters suspend mode, and the audio can keep playing.

NXP Semiconductors
Customized Configuration

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 30 / 43

• Only the i.MX 8M Mini EVK board supports this feature. The audio is output from the "LPA output" port on

the audio expansion board. See Figure "i.MX 8M Mini EVK with audio board" in the Android™ Quick Start
Guide (AQSUG).

• DirectAudioPlayer supports limited audio files, which is declared in device's audio_policy_configuration.xml
with AUDIO_OUTPUT_FLAG_DIRECT|AUDIO_OUTPUT_FLAG_HW_AV_SYNC flag. Other medias are not
supported. For example, it does not support playing 44100Hz audio.

• DirectAudioPlayer supports 24/32 bits wav file with sampling rates no more than 192000.

 NOTE

8.3 Display configuration

8.3.1 Configuring the logical display density
The Android UI framework defines a set of standard logical densities to help application developers target application resources.

Device implementations must report one of the following logical Android framework densities:

• 120 dpi, known as 'ldpi'

• 160 dpi, known as 'mdpi'

• 213 dpi, known as 'tvdpi'

• 240 dpi, known as 'hdpi'

• 320 dpi, known as 'xhdpi'

• 480 dpi, known as 'xxhdpi'

Device implementations should define the standard Android framework density that is numerically closest to the physical density
of the screen, unless that logical density pushes the reported screen size below the minimum supported.

The default display density value is defined in ${MY_ANDROID}/device/fsl/ as follows:

BOARD_KERNEL_CMDLINE += androidboot.lcd_density=240

The display density value can be changed by modifying the related lines mentioned above in files under ${MY_ANDROID}/
device/fsl/ and recompiling the code or setting in U-Boot command line as bootargs during boot up.

• For i.MX 8M Mini EVK Board, the source folder is ${MY_ANDROID}/device/fsl/imx8m/evk_8mm/

BoardConfig.mk.

• For i.MX 8M Nano EVK Board, source folder is ${MY_ANDROID}/device/fsl/imx8m/evk_8mn/
BoardConfig.mk.

• For i.MX 8MQuad EVK Board, the source folder is ${MY_ANDROID}/device/fsl/imx8m/evk_8mq/
BoardConfig.mk.

• For i.MX 8QuadMax/8QuadXPlus MEK, the source folder is ${MY_ANDROID}/device/fsl/imx8q/mek_8q/
BoardConfig.mk.

 NOTE

8.3.2 Enabling multiple-display function
The following boards support more than one displays.

Table 22. Boards supporting multiple displays

Board Number of displays Display port

Table continues on the next page...

NXP Semiconductors
Customized Configuration

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 31 / 43

Table 22. Boards supporting multiple displays (continued)

i.MX 8QuadMax MEK 4 • If physical HDMI is used:

HDMI_TX, LVDS0_CH0, LVDS1_CH0, MIPI_DSI1

• If physical HDMI is not used:

LVDS0_CH0 and LVDS1_CH0, MIPI_DSI0 and
MIPI_DSI1

i.MX 8QuadXPlus MEK 2 DSI0/LVDSI0, DSI1/LVDSI1

i.MX 8M Quad EVK 2 HDMI, MIPI-DSI-to-HDMI

The two displays on i.MX 8QuadXPlus MEK are enabled by default.

To evaluate the multiple-display feature with phyical HDMI on i.MX 8QuadMax MEK, flash dtbo-imx8qm-md.img.

To evaluate the multiple-display feature on i.MX 8MQuad EVK, flash dtbo-imx8mq-dual.img.

8.3.2.1 Binding the display port with the input port

The display port and input port are bound together based on the input device location and display-id. /vendor/etc/input-port-
associations.xml is used to do this work when the system is running, but the input device location and display-id changes with
the change of connection forms of these ports with corresponding input and display devices, which means the input location and
display-id need to be retrieved before the connection is fixed.

The source file of /vendor/etc/input-port-associations.xml is in the repository under the ${MY_ANDROID}/device/fsl/
directory.

Take i.MX 8QuadMax MEK as an example:

1. Use the following commands to obtain the display port number:

dumpsys SurfaceFlinger --display-id
Display 4693505326422272 (HWC display 0): port=0 pnpId=DEL displayName="DELL P2314T"
Display 4693505326422273 (HWC display 1): port=1 pnpId=DEL displayName="DELL P2314T"
Display 4692921138614786 (HWC display 2): port=2 pnpId=DEL displayName="DELL S2740L"
Display 18309706364381699 (HWC display 3): port=3 pnpId=PHL displayName="PHL 245C5"

2. Use the following commands to obtain the touch input location:

getevent -i | grep location
location: "usb-xhci-cdns3-1.3.4/input0"
location: "usb-xhci-cdns3-1.2.4/input0"

3. Bind the display port and input location as follows and modify the configuration file. This file needs to be modified according
to actual connection. One display port can be bound with multiple input ports.

<ports>
 <port display="0" input="usb-xhci-cdns3-1.1.4/input0" />
 <port display="1" input="usb-xhci-cdns3-1.2.4/input0" />
 <port display="2" input="usb-xhci-cdns3-1.3.4/input0" />
 <port display="3" input="usb-xhci-cdns3-1.4.4/input0" />
 <port display="0" input="usb-xhci-cdns3-1.4/input0" />
 <port display="0" input="usb-ci_hdrc.0-1.4/input0" />
</ports>

To make the modifications take effect, modify the source file under the ${MY_ANDROID}/device/fsl/ directory and re-build the
images. Keep the connection of diplay devices and input devices unchanged and reflash the images. Or you can disable dm-
verity on the board and then use the adb push command to push the file to the vendor partition to overwrite the original one.

NXP Semiconductors
Customized Configuration

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 32 / 43

8.3.2.2 Enabling multi-client input method

Only multi-client IMEs can support typing at the same time with different displays. The following is the way to enable the pre-
installed multi-client IME.

Enable multi-client IME for the side-loaded sample multi-client IME
adb root
adb shell setprop persist.debug.multi_client_ime
com.example.android.multiclientinputmethod/.MultiClientInputMethod
adb reboot

To disable multi-client IME on non-supported devices again, just clear persist.debug.multi_client_ime as follows. Reboot
is still required for this to take effect.

Disable multi-client IME again
adb root
adb shell "setprop persist.debug.multi_client_ime ''"
adb reboot

The pre-installed multi-client IME in the system is just a sample multi-client IME from AOSP. The performance is not as good as
default Google Input Method Editor. If users want to develop multi-client IMEs, see the document in source code (${MY_ANDROID}/
frameworks/base/services/core/java/com/android/server/inputmethod/multi-client-ime.md).

8.3.2.3 Launching applications on different displays

To launch a certain application to certain display, you need to select the Home application (MultiDisplay or Quickstep). The
MultiDisplay is the new launcher for multi-display feature. The Quickstep is the original launcher of Android. If Quickstep is
selected as Home application, you can also tap the "MD Launcher" application to get multi-display home screen. Select different
display ports on the top of the popup menu, the application user selected will show on specific display port.

8.4 Wi-Fi/Bluetooth configuration

8.4.1 Enabling or disabling Bluetooth profile
Default enabled Bluetooth profiles for Android build are configured in this file: ${MY_ANDROID}/packages/apps/Bluetooth/res/
values/config.xml.

For example, <bool name="profile_supported_a2dp">true</bool> indicates that the A2DP profile is enabled. <bool
name="profile_supported_a2dp_sink">false</bool> indicates that A2DP_sink profile is disabled.

To change enabled Bluetooth profiles, add an overlay file in ${MY_ANDROID}/device/fsl/ to overwrite the default Bluetooth
profile configuration.

The following is an example to set A2DP_sink enabled and A2DP disabled for the evk_8mm board.

The file is ${MY_ANDROID}/device/fsl/imx8m/evk_8mm/overlay/packages/apps/Bluetooth/res/values/config.xml.

<resources>
 <bool name="profile_supported_a2dp">false</bool>
 <bool name="profile_supported_a2dp_sink">true</bool>
</resources>

8.5 USB configuration

NXP Semiconductors
Customized Configuration

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 33 / 43

8.5.1 Enabling USB 2.0 in U-Boot for i.MX 8QuadMax/8QuadXPlus MEK
There are both USB 2.0 and USB 3.0 ports on i.MX 8QuadMax/8QuadXPlus MEK board. Because U-Boot can support only one
USB gadget driver, the USB 3.0 port is enabled by default. To use the USB 2.0 port, modify the configurations to enable it and
disable the USB 3.0 gadget driver.

For i.MX 8QuadMax, to enable USB 2.0 for the u-boot-imx8qm.imx, make the following changes under ${MY_ANDROID}/vendor/
nxp-opensource/uboot-imx:

diff --git a/configs/imx8qm_mek_android_defconfig b/configs/imx8qm_mek_android_defconfig
index af6c9e4a87..680d664a7d 100644
--- a/configs/imx8qm_mek_android_defconfig
+++ b/configs/imx8qm_mek_android_defconfig
@@ -115,13 +115,11 @@ CONFIG_DM_USB_GADGET=y
 CONFIG_SPL_DM_USB_GADGET=y
 CONFIG_USB=y
 CONFIG_USB_GADGET=y
-# CONFIG_CI_UDC=y
+CONFIG_CI_UDC=y
 CONFIG_USB_GADGET_DOWNLOAD=y
 CONFIG_USB_GADGET_MANUFACTURER="FSL"
 CONFIG_USB_GADGET_VENDOR_NUM=0x0525
 CONFIG_USB_GADGET_PRODUCT_NUM=0xa4a5
-CONFIG_USB_CDNS3=y
-CONFIG_USB_CDNS3_GADGET=y
 CONFIG_USB_GADGET_DUALSPEED=y

 CONFIG_SPL_USB_GADGET=y
@@ -138,7 +136,7 @@ CONFIG_FSL_FASTBOOT=y
 CONFIG_FASTBOOT_BUF_ADDR=0x98000000
 CONFIG_FASTBOOT_BUF_SIZE=0x19000000
 CONFIG_FASTBOOT_FLASH=y
-CONFIG_FASTBOOT_USB_DEV=1
+CONFIG_FASTBOOT_USB_DEV=0

 CONFIG_BOOTAUX_RESERVED_MEM_BASE=0x88000000
 CONFIG_BOOTAUX_RESERVED_MEM_SIZE=0x01000000
diff --git a/include/configs/imx8qm_mek_android.h b/include/configs/imx8qm_mek_android.h
index 10b334da41..3c62b8b54d 100644
--- a/include/configs/imx8qm_mek_android.h
+++ b/include/configs/imx8qm_mek_android.h
@@ -45,7 +45,6 @@

-#define CONFIG_FASTBOOT_USB_DEV 1
 #define CONFIG_ANDROID_RECOVERY

 #define CONFIG_CMD_BOOTA

For i.MX 8QuadXPlus, to enable USB 2.0 for the u-boot-imx8qxp.imx, make the following changes under ${MY_ANDROID}/
vendor/nxp-opensource/uboot-imx:

diff --git a/configs/imx8qxp_mek_android_defconfig b/configs/imx8qxp_mek_android_defconfig
index b468515014..314c2fcd53 100644
--- a/configs/imx8qxp_mek_android_defconfig
+++ b/configs/imx8qxp_mek_android_defconfig
@@ -114,13 +114,11 @@ CONFIG_DM_USB_GADGET=y
 CONFIG_SPL_DM_USB_GADGET=y
 CONFIG_USB=y
 CONFIG_USB_GADGET=y
-# CONFIG_CI_UDC=y

NXP Semiconductors
Customized Configuration

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 34 / 43

+CONFIG_CI_UDC=y
 CONFIG_USB_GADGET_DOWNLOAD=y
 CONFIG_USB_GADGET_MANUFACTURER="FSL"
 CONFIG_USB_GADGET_VENDOR_NUM=0x0525
 CONFIG_USB_GADGET_PRODUCT_NUM=0xa4a5
-CONFIG_USB_CDNS3=y
-CONFIG_USB_CDNS3_GADGET=y
 CONFIG_USB_GADGET_DUALSPEED=y

 CONFIG_SPL_USB_GADGET=y
@@ -137,7 +135,7 @@ CONFIG_FSL_FASTBOOT=y
 CONFIG_FASTBOOT_BUF_ADDR=0x98000000
 CONFIG_FASTBOOT_BUF_SIZE=0x19000000
 CONFIG_FASTBOOT_FLASH=y
-CONFIG_FASTBOOT_USB_DEV=1
+CONFIG_FASTBOOT_USB_DEV=0

 CONFIG_SYS_I2C_IMX_VIRT_I2C=y
 CONFIG_I2C_MUX_IMX_VIRT=y
diff --git a/include/configs/imx8qxp_mek_android.h b/include/configs/imx8qxp_mek_android.h
index a9542f48d6..1f4cb9be17 100644
--- a/include/configs/imx8qxp_mek_android.h
+++ b/include/configs/imx8qxp_mek_android.h
@@ -37,7 +37,6 @@
 #define CONFIG_SYS_MALLOC_LEN (64 * SZ_1M)
 #endif

-#define CONFIG_FASTBOOT_USB_DEV 1
 #define CONFIG_ANDROID_RECOVERY

 #define CONFIG_CMD_BOOTA

More than one defconfig files are used to build U-Boot images for one platform. Make the same changes on defconfig files as
above to enable USB 2.0 for other U-Boot images. You can use the following command under the ${MY_ANDROID}/vendor/nxp-
opensource/uboot-imx/ directory to list all related defconfig files:

ls configs | grep "imx8q.*android.*"

8.6 Trusty OS/security configuration
Trusty OS firmware is used in i.MX Android 10 release as TEE, which supports security features.

The i.MX Trusty OS is based on the AOSP Trusty OS and supports for i.MX 8M Mini EVK, i.MX 8M Quad EVK, i.MX 8QuadMax
MEK, and i.MX 8QuadXplus MEK Board. This section provides some basic configurations to make Trusty OS work on EVK/MEK
boards. For more configurations about security related features, see the i.MX Android Security User's Guide (ASUG).

Customers can modify the Trusty OS code to make different configurations and enable different features. Firs, use the following
commands to fetch code and build the target Trusty OS binary.

 # firslty create a directory for Trusty OS code and enter into this directory
 $ repo init -u https://source.codeaurora.org/external/imx/imx-manifest.git -b imx-android-10 -m imx-
trusty-android-10.0.0_2.0.0.xml
 $ repo sync
 $ source trusty/vendor/google/aosp/scripts/envsetup.sh
 $ make imx8mm #i.MX 8M Mini EVK Board
 $ cp ${TRUSTY_REPO_ROOT}/build-imx8mm/lk.bin ${MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-
firmware/imx8m/tee-imx8mm.bin

NXP Semiconductors
Customized Configuration

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 35 / 43

Then, build the images, and the tee-imx8mm.bin will be integrated into u-boot-imx8mm-trusty.imx, u-boot-imx8mm-trusty-
secure-unlock.imx, and bootloader-imx8mm-trusty-dual.img.

Flash the u-boot-imx8mm-trusty.imx file to the target device.

• For i.MX 8M Nano EVK, it use the same Trusty target as i.MX 8M Mini EVK. Use make imx8mm to build the

Trusty OS image, and copy the file lk.bin to ${MY_ANDROID}/vendor/nxp/fsl-proprietary/
uboot-firmware/tee-imx8mn.bin.

• For i.MX 8MQuad EVK, use make imx8m to build the Trusty OS image, and copy the final lk.bin to $
{MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware/imx8m/tee-imx8mq.bin.

• For i.MX 8QuadMax MEK, use make imx8qm to build the Trusty OS image, and copy the final lk.bin to $
{MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware/imx8q_car/tee-
imx8qm.bin.

• For i.MX 8QuadXPlus MEK, use make imx8qxp to build the Trusty OS image, and copy the final lk.bin
to ${MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware/imx8q_car/tee-
imx8qx.bin.

• ${TRUSTY_REPO_ROOT} is the root directory of the Trusty OS codebase.

• ${MY_ANDROID} is the root directory of the Android 10 codebase.

 NOTE

8.6.1 Initializing the secure storage for Trusty OS
Trusty OS uses the secure storage to protect userdata. This secure storage is baed on RPMB on the eMMC chip. RPMB needs
to be initialized with a key, and default execution flow of images does not make this initialization.

Initialize the RPMB with a specified key or random key are both supported. Note that the RPMB key cannot be changed once it
is set.

• To set a specified key, perform the following steps:

Make your board enter fastboot mode, enter the following commands on the host side:

— fastboot stage < path-to-your-rpmb-key >

— fastboot oem set-rpmb-key

After the board is rebooted, the RPMB service in Trusty OS is initialized successfully.

— The RPMB key should start with magic "RPMB" and be followed with 32 bytes hexadecimal key.

— A prebuilt rpmb_key_test.bin whose key is fixed 32 bytes hexadecimal 0x00 is provided. It is generated with the following shell commands:

◦ touch rpmb_key.bin

◦ echo -n "RPMB" > rpmb_key.bin

◦ echo -n -e
'\x00'
>> rpmb_key.bin

The '\xHH' means eight-bit character whose value is the hexadecimal value 'HH'. You can replace "00" above with the key you want to set.

 NOTE

• To set a random key, perform the following steps:

Make your board enter fastboot mode, enter the following commands on the host side:

— fastboot oem set-rpmb-random-key

After the board is rebooted, the RPMB service in Trusty OS is initialized successfully.

NXP Semiconductors
Customized Configuration

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 36 / 43

The random key is generated on device and is invisible to anyone. Your device may no longer boot up if the RPMB
key message was destroyed.

 NOTE

8.6.2 Provisioning the AVB key
The AVB key consists of a public key and a private key. The private key is used by the host to sign the vbmeta image, and the
public key is used by AVB to authenticate the vbmeta image. The following figure shows the relationships between the AVB key
and vbmeta. Without Trusty OS, the public key is hard-coded in U-Boot. With Trusty OS, it is saved in the secure storage.

Figure 1. Relationship between AVB key and vbmeta

8.6.2.1 Generating the AVB key to sign images

The OpenSSL provides some commands to generate the private key. For example, you can use the following commands to
generate the RSA-4096 private key test_rsa4096_private.pem:

openssl genpkey -algorithm RSA -pkeyopt rsa_keygen_bits:4096 -outform PEM -out test_rsa4096_private.pem

The public key can be extracted from the private key. The avbtool in ${MY_ANDROID}/external/avb supports such commands.
You can get the public key test_rsa4096_public.bin with the commands:

avbtool extract_public_key --key test_rsa4096_private.pem --output test_rsa4096_public.bin

By default, the Android build system uses the algorithm SHA256_RSA4096 with the private key from ${MY_ANDROID}/
external/avb/test/data/testkey_rsa4096.pem. This can be overwritten by setting the BOARD_AVB_ALGORITHM and
BOARD_AVB_KEY_PATH to use different algorithm and private key:

BOARD_AVB_ALGORITHM := <algorithm-type>
BOARD_AVB_KEY_PATH := <key-path>

Algorithm SHA256_RSA4096 is recommended, so Cryptographic Acceleration and Assurance Module (CAAM) can help
accelerate the hash calculation. The Android build system will sign the vbmeta image with the private key above and will store
one copy of the public key in the signed vbmeta image. During AVB verify, the U-Boot will validate the public key first and then
use the public key to authenticate the signed vbmeta image.

NXP Semiconductors
Customized Configuration

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 37 / 43

8.6.2.2 Storing the AVB public key to a secure storage

The public key must be stored in the Trusty OS backed RPMB for Android if Trusty OS is enabled. Perform the following steps
to set the public key.

Make your board enter fastboot mode and enter the following commands on the host side:

fastboot stage ${your-key-directory}/test_rsa4096_public.bin
fastboot oem set-public-key

The public key test_rsa4096_public.bin should be extracted from the private key you have specified. But if you do not specify any
private key, you should set the public key as prebuilt testkey_public_rsa4096.bin, which is extracted to form the default private
key testkey_rsa4096.pem.

8.6.3 Key attestation
The keystore key attestation aims to provide a way to strongly determine if an asymmetric key pair is hardware-backed, what the
properties of the key are, and what constraints are applied to its usage.

Google provides the attestation "keybox" that contains private keys (RSA and ECDSA) and the corresponding certificate chains
to partners from the Android Partner Front End (APFE). After retrieving the "keybox" from Google, you need to parse the "keybox"
and provision the keys and certificates to secure storage. Both keys and certificates should be Distinguished Encoding Rules
(DER) encoded.

Fastboot commands are provided to provision the attestation keys and certificates. Make sure that the secure storage is properly
initialized for Trusty OS:

• Set RSA private key:

fastboot stage < path-to-rsa-private-key >
fastboot oem set-rsa-atte-key

• Set ECDSA private key:

fastboot stage < path-to-ecdsa-private-key >
fastboot oem set-ec-atte-key

• Append RSA certificate chain:

fastboot stage < path-to-rsa-atte-cert >
fastboot oem append-rsa-atte-cert

Note that this command may need to be executed multiple times to append the whole certificate chain.

• Append ECDSA certificate chain:

fastboot stage < path-to-ecdsa-cert >
fastboot oem append-ec-atte-cert

Note that this command may need to be executed multiple times to append the whole certificate chain.

After provisioning all the keys and certificates, the keystore attestation feature should work properly.

Besides, secure provision provides a way to prevent the plaintext attestation keys and certificates from exposure. For more details,
see the i.MX Android Security User's Guide (ASUG).

8.7 SCFW configuration
SCFW is a binary stored in ${MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware, built into bootloader.

NXP Semiconductors
Customized Configuration

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 38 / 43

To customize SCFW, you need to download the SCFW porting kit on the i.MX Software and Development Tools page. For this
release, choose Linux -> Linux 5.4.3_1.0.0 -> SCFW Porting Kit to download the porting kit. Then decompress the file with the
following commands:

tar -zxvf imx-scfw-porting-kit-1.2.10.1.tar.gz
cd packages
chmod a+x imx-scfw-porting-kit-1.2.10.1.bin
./imx-scfw-porting-kit-1.2.10.1.bin
cd imx-scfw-porting-kit-1.2.10.1/src
tar -zxvf scfw_export_mx8qm_b0.tar.gz # for i.MX 8QuadMax MEK
tar -zxvf scfw_export_mx8qx_b0.tar.gz # for i.MX 8QuadXPlus MEK

The SCFW porting kit contains prebuilt binaries, libraries, and configuration files. For the board configuration file, take i.MX
8QuadXPlus MEK as an example, it is scfw_export_mx8qx_b0/platform/board/mx8qx_mek/board.c. Based on this file, some
changes are made for Android and the file is stored in ${MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware/imx8q/
board-imx8qxp.c.

You can copy board.c in vendor/nxp/fsl-proprietary to SCFW porting kit, modify it, and then build the SCFW.

The following are steps to build Android SCFW (taking i.MX 8QuadXPlus as example):

1. Download GCC tool from the arm Developer GNU-RM Downloads page. It is suggested to download the version of "6-2017-
q2-update" as it is verified.

2. Unzip the GCC tool to /opt/scfw_gcc.

3. Export TOOLS="/opt/scfw-gcc".

4. Copy the board configuration file from ${MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware/imx8q/board-
imx8qxp.c to porting kit.

cp ${MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware/imx8q/board-imx8qxp.c
scfw_export_mx8qx_b0/platform/board/mx8qx_mek/board.c

5. Build SCFW.

cd scfw_export_mx8qx_b0 # enter the directory just uncompressed for i.MX 8QuadXPlus MEK
make clean
make qx R=B0 B=mek

6. Copy the SCFW binary to the uboot-firmware folder.

cp build_mx8qx_b0/scfw_tcm.bin ${MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-firmware/imx8q/
mx8qx-scfw-tcm.bin

7. Build the bootloader.

cd ${MY_ANDROID}
./imx-make.sh bootloader -j4

To build SCFW for i.MX 8QuadMax MEK, use "qm" to replace "qx" in the steps above.

 NOTE

8.8 Miscellaneous configurations

8.8.1 Changing the boot command line in boot.img
After using boot.img, we store the default kernel boot command line inside this image. It will package together during Android build.

NXP Semiconductors
Customized Configuration

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 39 / 43

https://www.nxp.com/imx6tools
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads

You can change this by changing the value of BOARD_KERNEL_CMDLINE in the BoardConfig.mk file under ${MY_ANDROID}/
device/fsl.

• For i.MX 8M Mini EVK Board, the source folder is ${MY_ANDROID}/device/fsl/imx8m/evk_8mm/
BoardConfig.mk.

• For i.MX 8M Nano EVK Board, source folder is ${MY_ANDROID}/device/fsl/imx8m/evk_8mn/
BoardConfig.mk.

• For i.MX 8M Quad EVK Board, the source folder is ${MY_ANDROID}/device/fsl/imx8m/evk_8mq/
BoardConfig.mk.

• For i.MX 8QuadMax/8QuadXPlus MEK, the source folder is ${MY_ANDROID}/device/fsl/imx8q/
mek_8q/BoardConfig.mk.

 NOTE

8.8.2 Modifying the super partition
The partition of super is used to hold logical partitions. The following figure shows the dynamic partitions with a/b slot feature.
The size of the logical partition is dynamically determined by the size of the raw image file. The remaining space is used together
by the partitions in a group, so it can reduce the condition that some partitions cannot hold the new image while other partitions
have a lot of unused space in OTA.

Figure 2. Brief schematic structure in super partition

Now the size of the super partition is 7 GB, 3.5 GB for each slot, and 10 MB reserved in this 3.5 GB for metadata. You can find
code as follows in ${MY_ANDROID}/device/fsl:

BOARD_SUPER_PARTITION_SIZE := 7516192768
BOARD_NXP_DYNAMIC_PARTITIONS_SIZE := 3747610624

Refer to the following patch to change the super partition size to 8 GB:

diff --git a/common/partition/device-partitions-13GB-ab_super.bpt b/common/partition/device-
partitions-13GB-ab_super.bpt
index e6e7f1a..829821c 100644

NXP Semiconductors
Customized Configuration

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 40 / 43

--- a/common/partition/device-partitions-13GB-ab_super.bpt
+++ b/common/partition/device-partitions-13GB-ab_super.bpt
 @@ -39,7 +39,7 @@
 },
 {
 "label": "super",
 - "size": "7168 MiB",
 + "size": "8192 MiB",
 "guid": "auto",
 "type_guid": "c1dedb9a-a0d3-42e4-b74d-0acf96833624"
 },
 diff --git a/imx8m/BoardConfigCommon.mk b/imx8m/BoardConfigCommon.mk
 index 20d65a3..ae42220 100644
 --- a/imx8m/BoardConfigCommon.mk
 +++ b/imx8m/BoardConfigCommon.mk
 @@ -135,8 +135,8 @@ ifeq ($(TARGET_USE_DYNAMIC_PARTITIONS),true)
 BOARD_NXP_DYNAMIC_PARTITIONS_SIZE := 4024434688
 endif
 else
 - BOARD_SUPER_PARTITION_SIZE := 7516192768
 - BOARD_NXP_DYNAMIC_PARTITIONS_SIZE := 3747610624
 + BOARD_SUPER_PARTITION_SIZE := 8589934592
 + BOARD_NXP_DYNAMIC_PARTITIONS_SIZE := 4284481536
 endif
 ifeq ($(IMX_NO_PRODUCT_PARTITION),true)
 BOARD_NXP_DYNAMIC_PARTITIONS_PARTITION_LIST := system vendor
 diff --git a/imx8q/BoardConfigCommon.mk b/imx8q/BoardConfigCommon.mk
 index 85d3561..c7352a2 100644
 --- a/imx8q/BoardConfigCommon.mk
 +++ b/imx8q/BoardConfigCommon.mk
 @@ -164,8 +164,8 @@ ifeq ($(TARGET_USE_DYNAMIC_PARTITIONS),true)
 BOARD_NXP_DYNAMIC_PARTITIONS_SIZE := 4024434688
 endif
 else
 - BOARD_SUPER_PARTITION_SIZE := 7516192768
 - BOARD_NXP_DYNAMIC_PARTITIONS_SIZE := 3747610624
 + BOARD_SUPER_PARTITION_SIZE := 8589934592
 + BOARD_NXP_DYNAMIC_PARTITIONS_SIZE := 4284481536
 endif
 ifeq ($(IMX_NO_PRODUCT_PARTITION),true)
 BOARD_NXP_DYNAMIC_PARTITIONS_PARTITION_LIST := system vendor

You may also need to change the flash script, which can generate super.img when flashing images. The flash scripts include
fastboot_imx_flashall.sh, fastboot_imx_flashall.bat, uuu_imx_android_flash.sh, uuu_imx_android_flash.bat, and
fsl-sdcard-partition.sh. The following is an example on the uuu_imx_android_flash script:

 diff --git a/common/tools/uuu_imx_android_flash.bat b/common/tools/uuu_imx_android_flash.bat
 index 8eecb29..21af031 100755
 --- a/common/tools/uuu_imx_android_flash.bat
 +++ b/common/tools/uuu_imx_android_flash.bat
 @@ -885,8 +885,8 @@ if %support_dualslot% == 1 (
 set lpmake_vendor_image_b=--image vendor_b=%image_directory%%vendor_file%
 set lpmake_product_image_b=--image product_b=%image_directory%%product_file%
)
 - %image_directory%lpmake.exe --metadata-size 65536 --super-name super --metadata-slots 3 --
device super:7516192768 ^
 - --group nxp_dynamic_partitions_a:3747610624 --group nxp_dynamic_partitions_b:3747610624 ^
 + %image_directory%lpmake.exe --metadata-size 65536 --super-name super --metadata-slots 3 --
device super:8589934592 ^

NXP Semiconductors
Customized Configuration

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 41 / 43

 + --group nxp_dynamic_partitions_a:4284481536 --group nxp_dynamic_partitions_b:4284481536 ^
 --partition system_a:readonly:0:nxp_dynamic_partitions_a !lpmake_system_image_a! ^
 --partition system_b:readonly:0:nxp_dynamic_partitions_b !lpmake_system_image_b! ^
 --partition vendor_a:readonly:0:nxp_dynamic_partitions_a !lpmake_vendor_image_a! ^
 diff --git a/common/tools/uuu_imx_android_flash.sh b/common/tools/uuu_imx_android_flash.sh
 index 7872b7a..bfbf501 100755
 --- a/common/tools/uuu_imx_android_flash.sh
 +++ b/common/tools/uuu_imx_android_flash.sh
 @@ -324,8 +324,8 @@ function make_super_image
 fi
 fi

 - ${sym_link_directory}lpmake --metadata-size 65536 --super-name super --metadata-slots 3 --
device super:7516192768 \
 - --group nxp_dynamic_partitions_a:3747610624 --group nxp_dynamic_partitions_b:3747610624
\
 + ${sym_link_directory}lpmake --metadata-size 65536 --super-name super --metadata-slots 3 --
device super:8589934592 \
 + --group nxp_dynamic_partitions_a:4284481536 --group nxp_dynamic_partitions_b:4284481536
\
 --partition system_a:readonly:0:nxp_dynamic_partitions_a ${lpmake_system_image_a} \
 --partition system_b:readonly:0:nxp_dynamic_partitions_b ${lpmake_system_image_b} \
 --partition vendor_a:readonly:0:nxp_dynamic_partitions_a ${lpmake_vendor_image_a} \

9 Revision History
Table 23. Revision history

Revision number Date Substantive changes

P9.0.0_1.0.0-beta 11/2018 Initial release

P9.0.0_1.0.0-ga 01/2019 i.MX 8M, i.MX 8QuadMax, i.MX
8QuadXPlus GA release.

P9.0.0_2.0.0-ga 04/2019 i.MX 8M, i.MX 8QuadMax, i.MX
8QuadXPlus GA release.

P9.0.0_2.0.0-ga 08/2019 Updated the location of the SCFW porting
kit.

android-10.0.0_1.0.0 02/2020 i.MX 8M Mini, i.MX 8M Quad, i.MX
8QuadMax, and i.MX 8QuadXPlus GA
release.

android-10.0.0_1.0.0 03/2020 Deleted the Android 10 image.

android-10.0.0_2.0.0 05/2020 i.MX 8M Mini, i.MX 8M Nano, i.MX 8M
Quad, i.MX 8QuadMax, and i.MX
8QuadXPlus GA release.

NXP Semiconductors
Revision History

Android™ User's Guide, Rev. android-10.0.0_2.0.0, 20 May 2020
User's Guide 42 / 43

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address: nxp.com/
SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, UMEMS, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V.
All other product or service names are the property of their respective owners. AMBA, Arm,
Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex,
DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView,
SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro,
µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered
trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks
and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org.

© NXP B.V. 2018-2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 20 May 2020
Document identifier: AUG

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Overview
	2 Preparation
	2.1 Setting up your computer
	2.2 Unpacking the Android release package

	3 Building the Android platform for i.MX
	3.1 Getting i.MX Android release source code
	3.2 Building Android images
	3.2.1 Configuration examples of building i.MX devices
	3.2.2 Build mode selection
	3.2.3 Building with GMS package

	3.3 Building U-Boot images
	3.4 Building a kernel image
	3.5 Building boot.img
	3.6 Building dtbo.img

	4 Running the Android Platform with a Prebuilt Image
	5 Programming Images
	5.1 System on eMMC/SD
	5.1.1 Storage partitions
	5.1.2 Downloading images with UUU
	5.1.3 Downloading images with fastboot_imx_flashall script
	5.1.4 Downloading a single image with fastboot

	6 Booting
	6.1 Booting from eMMC/SD
	6.1.1 Booting from SD/eMMC on the i.MX 8M Mini EVK board
	6.1.2 Booting from SD/eMMC on the i.MX 8M Nano board
	6.1.3 Booting from SD/eMMC on the i.MX 8M Quad EVK board
	6.1.4 Booting from SD/eMMC on the i.MX 8QuadMax MEK board
	6.1.5 Booting from SD/eMMC on the i.MX 8QuadXPlus MEK board

	6.2 Boot-up configurations
	6.2.1 U-Boot environment
	6.2.2 Kernel command line (bootargs)
	6.2.3 DM-verity configuration

	7 Over-The-Air (OTA) Update
	7.1 Building OTA update packages
	7.1.1 Building target files
	7.1.2 Building a full update package
	7.1.3 Building an incremental update package

	7.2 Implementing OTA update
	7.2.1 Using update_engine_client to update the Android platform
	7.2.2 Using a customized application to update the Android platform

	8 Customized Configuration
	8.1 Camera configuration
	8.1.1 Configuring the rear and front cameras
	8.1.2 Configuring camera sensor parameters

	8.2 Audio configuration
	8.2.1 Enabling low-power audio

	8.3 Display configuration
	8.3.1 Configuring the logical display density
	8.3.2 Enabling multiple-display function
	8.3.2.1 Binding the display port with the input port
	8.3.2.2 Enabling multi-client input method
	8.3.2.3 Launching applications on different displays

	8.4 Wi-Fi/Bluetooth configuration
	8.4.1 Enabling or disabling Bluetooth profile

	8.5 USB configuration
	8.5.1 Enabling USB 2.0 in U-Boot for i.MX 8QuadMax/8QuadXPlus MEK

	8.6 Trusty OS/security configuration
	8.6.1 Initializing the secure storage for Trusty OS
	8.6.2 Provisioning the AVB key
	8.6.2.1 Generating the AVB key to sign images
	8.6.2.2 Storing the AVB public key to a secure storage

	8.6.3 Key attestation

	8.7 SCFW configuration
	8.8 Miscellaneous configurations
	8.8.1 Changing the boot command line in boot.img
	8.8.2 Modifying the super partition

	9 Revision History

