
1 Overview
This document provides the technical information related to
the i.MX 8 devices:

• Instructions for building from sources or using pre-built
images.

• Copying the images to boot media.
• Hardware/software configurations for programming the

boot media and running the images.

This document describes how to configure a Linux build
machine and provides the steps to download, patch, and build
the software components that create the Android system image
when working with the sources.

For more information about building the Android platform,
see source.android.com/source/building.html.

2 Preparation
The minimum recommended system requirements are as
follows:

• 16 GB RAM
• 300 GB hard disk

For any problems on the building process related to the jack
server, see the Android website source.android.com/source/
jack.html.

NXP Semiconductors Document Number: AUG

User's Guide Rev. P9.0.0_1.0.2-AUTO-beta, 01/2019

Android™ User's Guide

Contents

1 Overview..1

2 Preparation................................ 1

3 Building the Android platform for i.MX...................2

4 Running the Android Platform with a
Prebuilt Image... 8

5 Programming Images..................... 9

6 Booting................................ 12

7 Over-The-Air (OTA) Update............... 15

8 Customized Configuration............. 19

9 Revision History......................... 28

http://source.android.com/source/building.html
https://source.android.com/source/jack.html
https://source.android.com/source/jack.html

2.1 Setting up your computer
To build the Android source files, use a computer running the Linux OS. The Ubuntu 16.04 64bit version and openjdk-8-jdk
of Ubuntu are the most tested environment for the Android Pie 9.0 build.

After installing the computer running Linux OS, check whether all the necessary packages are installed for an Android build.
See "Setting up your machine" on the Android website source.android.com/source/initializing.html.

In addition to the packages requested on the Android website, the following packages are also needed:

$ sudo apt-get install uuid uuid-dev
$ sudo apt-get install zlib1g-dev liblz-dev
$ sudo apt-get install liblzo2-2 liblzo2-dev
$ sudo apt-get install lzop
$ sudo apt-get install git-core curl
$ sudo apt-get install u-boot-tools
$ sudo apt-get install mtd-utils
$ sudo apt-get install android-tools-fsutils
$ sudo apt-get install openjdk-8-jdk
$ sudo apt-get install device-tree-compiler
$ sudo apt-get install gdisk
$ sudo apt-get install liblz4-tool
$ sudo apt-get install m4
$ sudo apt-get install libz-dev

NOTE
If you have trouble installing the JDK in Ubuntu, see How to install misc JDK in Ubuntu
for Android build.
Configure git before use. Set the name and email as follows:

• git config --global user.name "First Last"
• git config --global user.email "first.last@company.com"

2.2 Unpacking the Android release package
After you set up a computer running Linux OS, unpack the Android release package by using the following commands:

$ cd ~ (or any other directory you like)
$ tar xzvf imx-p9.0.0_1.0.2-auto-beta.tar.gz

3 Building the Android platform for i.MX

3.1 Getting i.MX Android release source code
The i.MX Android release source code consists of three parts:

• NXP i.MX public source code, which is maintained in the CodeAurora Forum repository.
• AOSP Android public source code, which is maintained in android.googlesource.com.
• NXP i.MX Android proprietary source code package, which is maintained in www.NXP.com

Assume you have i.MX Android proprietary source code package imx-p9.0.0_1.0.2-auto-beta.tar.gz under ~/. directory. To
generate the i.MX Android release source code build environment, execute the following commands:

Building the Android platform for i.MX

Android™ User's Guide, Rev. P9.0.0_1.0.2-AUTO-beta, 01/2019

2 NXP Semiconductors

http://source.android.com/source/initializing.html
https://community.nxp.com/docs/DOC-98441
https://community.nxp.com/docs/DOC-98441

$ mkdir ~/bin
$ curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
$ chmod a+x ~/bin/repo
$ export PATH=${PATH}:~/bin
$ source ~/imx-p9.0.0_1.0.2-auto-beta/imx_android_setup.sh
By default, the imx_android_setup.sh script will create the source code build environemnt
in the folder ~/android_build
${MY_ANDROID} will be refered as the i.MX Android source code root directory in all i.MX
Android release documentation.
$ export MY_ANDROID=~/android_build

3.2 Building Android images
Building the Android image is performed when the source code has been downloaded (Section 3.1 Getting i.MX Android
release source code).

Commands lunch <buildName-buildType> to set up the build configuration and make to start the build process are
executed.

The build configuration command lunch can be issued with an argument <Build name>-<Build type> string, such as lunch
mek_8q_car-userdebug, or can be issued without the argument presenting a menu of selection.

The Build Name is the Android device name found in the directory ${MY_ANDROID}/device/fsl/. The following table lists
the i.MX build names.

Table 1. Build names

Build name Description

mek_8q_car i.MX 8QuadMax/8QuadXPlus MEK Board with EVS function enabled in the Arm
Cortex-M4 CPU core

mek_8q_car2 i.MX 8QuadMax/8QuadXPlus MEK Board without EVS function enabled in the
Arm Cortex-M4 CPU core

The build type is used to specify what debug options are provided in the final image. The following table lists the build types.

Table 2. Build types

Build type Description

user Production ready image, no debug

userdebug Provides image with root access and debug, similar to "user"

eng Development image with debug tools

Android build steps are as follows:
1. Change to the top level build directory.

$ cd ${MY_ANDROID}
2. Set up the environment for building. This only configures the current terminal.

$ source build/envsetup.sh
3. Execute the Android lunch command. In this example, the setup is for the production image of i.MX 8QuadXPlus/

8QuadMax MEK Board/Platform device with user type.

$ lunch mek_8q_car-userdebug
4. Execute the make command to generate the image.

Building the Android platform for i.MX

Android™ User's Guide, Rev. P9.0.0_1.0.2-AUTO-beta, 01/2019

NXP Semiconductors 3

$ make 2>&1 | tee build-log.txt

When the make command is complete, the build-log.txt file contains the execution output. Check for any errors.

For BUILD_ID & BUILD_NUMBER changing, update build_id.mk in your ${MY_ANDROID} directory. For details, see
the Android™ Frequently Asked Questions (AFAQ).

The following outputs are generated by default in ${MY_ANDROID}/out/target/product/mek_8q:

• root/: root file system (including init, init.rc). Mounted at /.
• system/: Android system binary/libraries. Mounted at /system.
• data/: Android data area. Mounted at /data.
• recovery/: root file system when booting in "recovery" mode. Not used directly.
• dtbo-imx8qm.img: board's device tree binary. It is used to support the LVDS-to-HDMI display for i.MX 8QuadMax

MEK.
• dtbo-imx8qm-xen.img: board's device tree binary. It is used to support the LVDS-to-HDMI display for i.MX

8QuadMax MEK on Xen.
• dtbo-imx8qxp.img: board's device tree binary. It is used to support the LVDS-to-HDMI display for i.MX 8QuadXPlus

MEK.
• vbmeta-imx8qm.img: Android Verify boot metadata image for dtbo-imx8qm.img. It is used to support the LVDS-to-

HDMI display for i.MX 8QuadMax MEK.
• vbmeta-imx8qm-xen.img: Android Verify boot metadata image for dtbo-imx8qm-xen.img. It is used to support the

LVDS-to-HDMI display for i.MX 8QuadMax MEK on Xen.
• vbmeta-imx8qxp.img: Android Verify boot metadata image for dtbo-imx8qxp.img. It is used to support the LVDS-to-

HDMI display for i.MX 8QuadXPlus MEK.
• ramdisk.img: Ramdisk image generated from "root/". Not directly used.
• system.img: EXT4 image generated from "system/". Can be programmed to "SYSTEM" partition on SD/eMMC card

with "dd".
• partition-table.img: GPT partition table image. Used for 16 GB SD card.
• partition-table-7GB.img: GPT partition table image. Used for 8 GB SD card.
• partition-table-28GB.img: GPT partition table image. Used for 32 GB SD card.
• u-boot-imx8qm.imx: U-Boot image with no padding for i.MX 8QuadMax MEK.
• u-boot-imx8qm-xen.imx: U-Boot image with no padding for i.MX 8QuadMax MEK on Xen.
• u-boot-imx8qxp.imx: U-Boot image with no padding for i.MX 8QuadXPlus MEK.
• u-boot-imx8qm-mek-uuu.imx: U-Boot image used by UUU for i.MX 8QuadMax MEK. It is not flashed to MMC.
• u-boot-imx8qxp-mek-uuu.imx: U-Boot image used by UUU for i.MX 8QuadXPlus MEK. It is not flashed to MMC.
• vendor.img: vendor image, which holds platform binaries. Mounted at /vendor.
• boot.img: a composite image that includes the kernel Image, ramdisk, and boot parameters.
• rpmb_key_test.bin: prebuilt test RPMB key. It can be used to set the RPMB key as fixed 32 bytes 0x00.
• testkey_public_rsa4096.bin: prebuilt AVB public key. It is extracted from the default AVB private key.

NOTE
• To build the U-Boot image separately, see Building U-Boot images.
• To build the kernel uImage separately, see Building a kernel image.
• To build boot.img, see Building boot.img.
• To build dtbo.img, see Building dtbo.img.

3.2.1 Configuration examples of building i.MX devices
The following table shows examples of using the lunch command to set up different i.MX devices. After the desired i.MX
device is set up, the make command is used to start the build.

Building the Android platform for i.MX

Android™ User's Guide, Rev. P9.0.0_1.0.2-AUTO-beta, 01/2019

4 NXP Semiconductors

Table 3. i.MX device lunch examples

Build name Description

i.MX 8QuadXPlus/8QuadMax MEK Board with EVS function
enabled in the Arm Cortex-M4 CPU core

$ lunch mek_8q_car-userdebug

i.MX 8QuadMax/8QuadXPlus MEK Board without EVS
function enabled in the Arm Cortex-M4 CPU core

$ lunch mek_8q_car2-userdebug

3.2.2 Build mode selection
There are three types of build mode to select: eng, user, and userdebug.

The userdebug build behaves the same as the user build, with the ability to enable additional debugging that normally violates
the security model of the platform. This makes the userdebug build with greater diagnosis capabilities for user test.

The eng build prioritizes engineering productivity for engineers who work on the platform. The eng build turns off various
optimizations used to provide a good user experience. Otherwise, the eng build behaves similar to the user and userdebug
builds, so that device developers can see how the code behaves in those environments.

In a module definition, the module can specify tags with LOCAL_MODULE_TAGS, which can be one or more values of
optional (default), debug, eng.

If a module does not specify a tag (by LOCAL_MODULE_TAGS), its tag defaults to optional. An optional module is
installed only if it is required by product configuration with PRODUCT_PACKAGES.

The main differences among the three modes are listed as follows:
• eng: development configuration with additional debugging tools

• Installs modules tagged with: eng and/or debug.
• Installs modules according to the product definition files, in addition to tagged modules.
• ro.secure=0
• ro.debuggable=1
• ro.kernel.android.checkjni=1
• adb is enabled by default.

• user: limited access; suited for production
• Installs modules tagged with user.
• Installs modules according to the product definition files, in addition to tagged modules.
• ro.secure=1
• ro.debuggable=0
• adb is disabled by default.

• userdebug: like user but with root access and debuggability; preferred for debugging
• Installs modules tagged with debug.
• ro.debuggable=1
• adb is enabled by default.

There are two methods for the build of Android image.

Method 1: Set the environment first and then issue the make command:

Building the Android platform for i.MX

Android™ User's Guide, Rev. P9.0.0_1.0.2-AUTO-beta, 01/2019

NXP Semiconductors 5

$ cd ${MY_ANDROID}
$ source build/envsetup.sh #set env
$ make -j4 PRODUCT-XXX userdebug 2>&1 | tee build-log.txt #XXX depends on different board,
see table below

Table 4. Android system image production build method 1

i.MX development tool Description Image build command

Evaluation Kit i.MX 8QuadMax/8QuadXPlus MEK
with EVS function enabled in the
Cortex-M4 CPU core

$ make -j4 PRODUCT-mek_8q_car-userdebug

Evaluation Kit i.MX 8QuadMax/8QuadXPlus MEK
without EVS function enabled in the
Cortex-M4 CPU core

$ make -j4 PRODUCT-mek_8q_car2-userdebug

Method 2: Set the environment and then use lunch command to configure argument. See table below. An example for the
i.MX 8QuadMax/8QuadXPlus MEK with the EVS function enabled in the Cortex-M4 CPU core is as follows:

$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
$ make -j4

Table 5. Android system image production build method 2

i.MX development tool Description Lunch configuration

Evaluation Kit i.MX 8QuadMax/8QuadXPlus MEK with
EVS function enabled in the Cortex-M4
CPU core

mek_8q_car-userdebug

Evaluation Kit i.MX 8QuadMax/8QuadXPlus MEK
without EVS function enabled in the
Cortex-M4 CPU core

mek_8q_car2-userdebug

To create Android over-the-air, OTA, and package, the following make target is specified:

$ make otapackage -j4

For more Android platform building information, see source.android.com/source/building.html.

3.3 Building U-Boot images
Use the following command to generate u-boot.imx under the Android OS environment:

U-Boot image for 8QuadMax/8QuadXPlus MEK board with EVS function enabled in the Arm Cortex-
M4 CPU core
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
$ make bootloader -j4

Building the Android platform for i.MX

Android™ User's Guide, Rev. P9.0.0_1.0.2-AUTO-beta, 01/2019

6 NXP Semiconductors

http://source.android.com/source/building.html

3.4 Building a kernel image
Kernel image is automatically built when building the Android root file system.

The following are the default Android build commands to build the kernel image:

$ cd ${MY_ANDROID}/vendor/nxp-opensource/kernel_imx
$ echo $ARCH && echo $CROSS_COMPILE

Make sure that you have those two environment variables set. If the two variables are not set, set them as follows:

$ export ARCH=arm64
$ export CROSS_COMPILE=${MY_ANDROID}/prebuilts/gcc/linux-x86/aarch64/aarch64-linux-
android-4.9/bin/aarch64-linux-android-

Generate ".config" according to the default configuration file under arch/arm64/configs/android_car_defconfig.

To build the kernel Image for i.MX 8QuadMax/8QuadXPlus with EVS function enabled in the Arm Cortex-M4 CPU core,
use the following commands:

$ make android_car_defconfig
$ make KCFLAGS=-mno-android

Generate ".config" according to the default configuration file under arch/arm64/configs/android_car2_defconfig.

To build the kernel image for i.MX 8QuadMax/8QuadXPlus without EVS function enabled in the Arm Cortex-M4 CPU core:

$ make android_car2_defconfig
$ make KCFLAGS=-mno-android

With a successful build in either of the above case, the generated kernel images are: ${MY_ANDROID}/out/target/product/
mek_8q/obj/KERNEL_OBJ/arch/arm64/boot/Image.

3.5 Building boot.img
Use this command to generate boot.img under Android environment:

Boot image for i.MX 8QuadMax/8QuadXPlus MEK board with EVS function enabled in the Arm
Cortex-M4 CPU core
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
$ make bootimage -j4

3.6 Building dtbo.img
Dtbo image holds the device tree binary of the board.

To generate dtbo.img under the Android environment, use the following commands:

dtbo image for i.MX 8QuadMax/8QuadXPlus MEK board with EVS function enabled in the Arm
Cortex-M4 CPU core
$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
$ make dtboimage -j4

Building the Android platform for i.MX

Android™ User's Guide, Rev. P9.0.0_1.0.2-AUTO-beta, 01/2019

NXP Semiconductors 7

4 Running the Android Platform with a Prebuilt Image
To test the Android platform before building any code, use the prebuilt images from the following packages and go to
"Programming Images" and "Booting".

Table 6. Image packages

Image package Description

android_p9.0.0_1.0.2-auto-
beta_image_8qmek.tar.gz

Prebuilt-image for i.MX 8QuadXPlus/8QuadMax MEK board with EVS
function enabled in the Arm Cortex-M4 CPU core, which includes NXP
extended features.

android_p9.0.0_1.0.2-auto-
beta_image_8qmek2.tar.gz

Prebuilt-image and UUU script files for i.MX 8QuadMax/8QuadXPlus MEK
board without EVS function enabled in the Arm Cortex-M4 CPU core, which
includes NXP extended features.

The following tables list the detailed contents of android_p9.0.0_1.0.2-auto-beta_image_8qmek.tar.gz image package.
Images are almost the same for i.MX 8QuadMax and i.MX 8QuadXPlus MEK with/without EVS function enabled in the
Arm Cortex-M4 CPU core, except that there is no Xen suppport for android_p9.0.0_1.0.2-auto-beta_image_8qmek.tar.gz.

The table below shows the prebuilt images to support the system boot from eMMC on i.MX 8QuadXPlus MEK boards.

Table 7. Images for i.MX 8QuadXPlus MEK

i.MX 8QuadXPlus/8QuadMax MEK image Description

/u-boot-imx8qm.imx Bootloader (with padding) for i.MX 8QuadMax MEK board

/u-boot-imx8qm-xen.imx The bootloader (with padding) for i.MX 8QuadMax MEK board
on Xen

/u-boot-imx8qxp.imx Bootloader (with padding) for i.MX 8QuadXPlus MEK board

/u-boot-imx8qm-mek-uuu.imx Bootloader used by UUU for i.MX 8QuadMax MEK board. It is
not flashed to MMC.

/u-boot-imx8qxp-mek-uuu.imx Bootloader used by UUU for i.MX 8QuadXPlus MEK board. It
is not flashed to MMC.

/boot.img Boot image to support LVDS-to-HDMI display.

/partition-table.img GPT table image for 16 GB boot storage

/partition-table-7GB.img GPT table image for 8 GB boot storage

/partition-table-28GB.img GPT table image for 32 GB boot storage

/vbmeta-imx8qm.img Android Verify Boot metadata image for i.MX 8QuadMax MEK
board to support LVDS-to-HDMI display

/vbmeta-imx8qm-xen.img Android Verify Boot metadata image for i.MX 8QuadMax MEK
board to support LVDS-to-HDMI display on Xen

/vbmeta-imx8qxp.img Android Verify Boot metadata image for i.MX 8QuadXPlus
MEK board to support LVDS-to-HDMI display

/system.img System Boot image

/vendor.img Vendor image

/dtbo-imx8qm.img Device tree image for i.MX 8QuadMax

/dtbo-imx8qm-xen.img Device tree image for i.MX 8QuadMax on Xen

/dtbo-imx8qxp.img Device tree image for i.MX 8QuadXPlus

Table continues on the next page...

Running the Android Platform with a Prebuilt Image

Android™ User's Guide, Rev. P9.0.0_1.0.2-AUTO-beta, 01/2019

8 NXP Semiconductors

Table 7. Images for i.MX 8QuadXPlus MEK (continued)

/rpmb_key_test.bin Prebuilt test RPMB key. It can be used to set the RPMB key
as fixed 32 bytes 0x00.

/testkey_public_rsa4096.bin Prebuilt AVB public key. It is extracted from the default AVB
private key.

NOTE
boot.img is an Android image that stores kernel Image and ramdisk together. It also
stores other information such as the kernel boot command line, machine name. This
information can be configured in android.mk. It can avoid touching the boot loader code
to change any default boot arguments.

5 Programming Images
The images from the prebuilt release package or created from source code contain the U-Boot boot loader, system image, gpt
image, vendor image, and vbmeta image. At a minium, the storage devices on the development system (eMMC) must be
programmed with the U-Boot boot loader. The i.MX 8 series boot process determines what storage device to access based on
the switch settings. When the boot loader is loaded and begins execution, the U-Boot environment space is then read to
determine how to proceed with the boot process. For U-Boot environment settings, see Section Booting.

The following download methods can be used to write the Android System Image:

• UUU to download all images to the eMMC storage.
• fastboot_imx_flashall script to download all images to the eMMC storage.

5.1 System on eMMC
The images needed to create an Android system on eMMC can either be obtained from the release package or be built from
source.

The images needed to create an Android system on eMMC are listed below:

• U-Boot image: u-boot.imx
• GPT table image: partition-table.img
• Android dtbo image: dtbo.img
• Android boot image: boot.img
• Android system image: system.img
• Android vendor image: vendor.img
• Android Verify boot metadata image: vbmeta.img

5.1.1 Storage partitions
The layout of the eMMC card for Android system is shown below:

• [Partition type/index] which is defined in the GPT.
• [Start Offset] shows where partition is started, unit in MB.

Programming Images

Android™ User's Guide, Rev. P9.0.0_1.0.2-AUTO-beta, 01/2019

NXP Semiconductors 9

The system partition is used to put the built-out Android system image. The userdata parition is used to put the unpacked
codes/data of the applications, system configuration database, etc. In normal boot mode, the root file system is mounted from
the system partition. In recovery mode, the root file system is mounted from the boot partition.

Table 8. Storage partitions

Partition type/index Name Start offset Size File system Content

N/A bootloader 0 KB (i.MX
8QuadMax) or
32 KB (i.MX
8QuadXPlus)

4 MB N/A bootloader

1 dtbo_a 8 MB 4 MB N/A dtbo.img

2 dtbo_b Follow dtbo_a 4 MB N/A dtbo.img

3 boot_a Follow dtbo_b 48 MB boot.img format, a
kernel + recovery
ramdisk

boot.img

4 boot_b Follow boot_a 48 MB boot.img format, a
kernel + recovery
ramdisk

boot.img

5 system_a Follow boot_b 1536 MB EXT4. Mount as /
system

Android system files under /
system/dir

6 system_b Follow
system_a

1536 MB EXT4. Mount as /
system

Android system files under /
system/dir

7 misc Follow
system_b

4 MB N/A For recovery store
bootloader message, reserve

8 metadata Follow
datafootor

2 MB N/A For system slide show

9 presistdata Follow
metadata

1 MB N/A Option to operate unlock
\unlock

10 vendor_a Follow
persistdata

256 MB EXT4. Mount at /
vendor

vendor.img

11 vendor_b Follow
vendor_a

256 MB EXT4. Mount at /
vendor

vendor.img

12 userdata Follow
vendor_b

Remained
space

EXT4. Mount at /data Application data storage for
system application, and for
internal media partition,
in /mnt/sdcard/ dir.

13 fbmisc Follow
userdata

1 MB N/A For storing the state of lock
\unlock

14 vbmeta_a Follow fbmisc 1 MB N/A For storing the verify boot's
metadata

15 vbmeta_b Follow
vbmeta_a

1 MB N/A For storing the verify boot's
metadata

To create these partitions, use UUU described in the Android™ Quick Start Guide (AQSUG), or use format tools in the
prebuilt directory.

Programming Images

Android™ User's Guide, Rev. P9.0.0_1.0.2-AUTO-beta, 01/2019

10 NXP Semiconductors

5.1.2 Downloading images with UUU
UUU can be used to download all the images into the target device. It is a quick and easy tool for downloading images. See
Android™ Quick Start Guide (AQSUG) for a detailed description of UUU.

5.1.3 Downloading images with fastboot_imx_flashall script
UUU can be used to flash the Android system image into the board, but it needs to make the board enter serial down mode
firstly, and make the board enter boot mode once flashing is finished.

A new fastboot_imx_flashall script is supported to use fastboot to flash the Android system image into the board. It is more
flexible. Only require board can enter fastboot mode and the device is unlocked. The table below lists the
fastboot_imx_flashall scripts.

Table 9. fastboot_imx_flashall script

Name Host system to execute the script

fastboot_imx_flashall.sh Linux OS

fastboot_imx_flashall.bat Windows OS

With the help of fasboot_imx_flashall scripts, you do not need to use fastboot to flash Android images one by one manually.
These scripts will automatically flash all images with only one line of command.

The way to use these scripts is follows:
• Linux shell script usage: sudo fastboot_imx_flashall.sh <option>
• Windows batch script usage: fastboot_imx_flashall.bat <option>

Options:
 -h Displays this help message
 -f soc_name Flashes the Android image file with soc_name
 -a Only flashes the image to slot_a
 -b Only flashes the image to slot_b
 -c card_size Optional setting: 7 / 14 / 28
 If it is not set, use partition-table.img (default).
 If it is set to 7, use partition-table-7GB.img for 8 GB SD card.
 If it is set to 14, use partition-table-14GB.img for 16 GB SD card.
 If it is set to 28, use partition-table-28GB.img for 32 GB SD card.
 Make sure that the corresponding file exists on your platform.
 -m Flashes the Cortex-M4 image.
 -d dev Flash dtbo, vbmeta, and recovery image file with dev.
 If it is not set, use default dtbo, vbmeta, and recovery image.
 -e Erases user data after all image files are flashed.
 -l Locks the device after all image files are flashed.
 -D directory Directory of images.
 If this script is execute in the directory of the images, it does not
need to use this option.
 -s ser_num Serial number of the board.
 If only one board connected to computer, it does not need to use this
option

NOTE
• -f option is mandatory. SoC name can be imx8qm or imx8qxp.
• Boot the device to U-Boot fastboot mode, and then execute these scripts. The

device should be unlocked first.

Example:

sudo ./fastboot_imx_flashall.sh -f imx8qm -a -e -D /imx_pi9.0/mek_8q_car/

Programming Images

Android™ User's Guide, Rev. P9.0.0_1.0.2-AUTO-beta, 01/2019

NXP Semiconductors 11

Option explanations:
• -f imx8qm: Flashes images for i.MX 8QuadMax MEK Board.
• -a: Only flashes slot a.
• -e: Erases user data after all image files are flashed.
• -D /imx_pi9.0/mek_8q_car/: Images to be flashed are in the directory of /imx_pi9.0/mek_8q_car/.

6 Booting
This chapter describes booting from MMC.

6.1 Booting from eMMC

6.1.1 Booting from eMMC on the i.MX 8QuadXPlus/8QuadMax MEK
board

The following tables list the boot switch settings to control the boot storage.

Table 10. Boot switch settings for i.MX 8QuadMax

i.MX 8QuadMax boot switch download Mode (MFGTool mode) eMMC boot

SW2 Boot_Mode (1-6 bit) 001000 000100

Table 11. Boot switch settings for i.MX 8QuadXPlus

i.MX 8QuadXPlus boot switch download Mode (MFGTool mode) eMMC boot

SW2 Boot_Mode (1-4 bit) 1000 0100

Boot from eMMC

Change the board Boot_Mode switch to 000100 (1-6 bit) for i.MX 8QuadMax.

Change the board Boot_Mode switch to 0100 (1-4 bit) for i.MX 8QuadXPlus.

The default environment in boot.img is booting from eMMC. To use the default environment in boot.img, use the following
command:

U-Boot > setenv bootargs

To clear the bootargs environment, use the following command:

U-Boot > setenv bootcmd boota mmc0
U-Boot > setenv bootargs console=ttyLP0,115200 earlycon=lpuart32,0x5a060000,115200
androidboot.console=ttyLP0 androidboot.xen_boot=default init=/init consoleblank=0
androidboot.hardware=freescale androidboot.fbTileSupport=enable cma=800M@0x960M-0xe00M
galcore.contiguousSize=33554432 androidboot.primary_display=imx-drm firmware_class.path=/
vendor/firmware transparent_hugepage=never swiotlb=49152 [Optional]
U-Boot > saveenv [Save the environments]

Booting

Android™ User's Guide, Rev. P9.0.0_1.0.2-AUTO-beta, 01/2019

12 NXP Semiconductors

NOTE

bootargs environment is an optional setting for boota. The boot.img includes a default
bootargs, which is used if there is no definition about the bootargs environment.

6.2 Boot-up configurations
This section describes some common boot-up configurations, such as U-Boot environments, kernel command line, and DM-
verity configuartions.

6.2.1 U-Boot environment
• bootcmd: the first variable to run after U-Boot boot.
• bootargs: the kernel command line, which the bootloader passes to the kernel. As described in Kernel command line

(bootargs), bootargs environment is optional for booti. boot.img already has bootargs. If you do not define the bootargs
environment variable, it uses the default bootargs inside the image. If you have the environment variable, it is then
used.

To use the default environment in boot.img, use the following command to clear the bootargs environment variable.

> setenv bootargs

If the environment variable append_bootargs is set, the value of append_bootargs is appended to bootargs
automatically.

• boota:

boota command parses the boot.img header to get the Image and ramdisk. It also passes the bootargs as needed (it only
passes bootargs in boot.img when it cannot find "bootargs" variable in your U-Boot environment). To boot from
mmcX, do the following:

> boota mmcX

To read the boot partition (the partition store boot.img, in this instance, mmcblk0p1), the X is the eMMC bus number,
which is the hardware eMMC bus number, in SABRE-SD boards. eMMC is mmc2 or you can add the partition ID after
mmcX.

Add partition ID after mmcX.

> boota mmcX boot # boot is default
> boota mmcX recovery # boot from the recovery partition

If you have read the boot.img into memory, use this command to boot:

> boota 0xXXXXXXXX

Booting

Android™ User's Guide, Rev. P9.0.0_1.0.2-AUTO-beta, 01/2019

NXP Semiconductors 13

6.2.2 Kernel command line (bootargs)
Depending on the different booting/usage scenarios, you may need different kernel boot parameters set for bootargs.

Table 12. Kernel boot parameters

Kernel parameter Description Typical value Used when

console Where to output
kernel log by
printk.

console=ttymxc0 i.MX 8QuadMax MEK uses console=ttyLP0

init Tells kernel where
the init file is
located.

init=/init All use cases. "init" in the Android platform
is located in "/" instead of in "/sbin".

androidboot.console The Android shell
console. It should
be the same as
console=.

androidboot.console=ttymxc0 To use the default shell job control, such as
Ctrl+C to terminate a running process, set
this for the kernel.

cma CMA memory size
for GPU/VPU
physical memory
allocation.

cma=800M@0x960M-0xe00M Start address is 0x96000000 and end
address is 0xDFFFFFFFF. The CMA size
can be configured to other value, but
cannot exceed 1184 MB, because the
Cortex-M4 core will also allocate memory
from CMA and Cortex-M4 cannot use the
memory larger than 0xDFFFFFFFF.

androidboot.selinux Argument to
disable selinux
check and enable
serial input when
connecting a host
computer to the
target board’s
USB UART port.
For details about
selinux, see
Security-
Enhanced Linux in
Android.

androidboot.selinux=permissiv
e

Android Pie 9.0 CTS requirement: serial
input should be disabled by default.

Setting this argument enables console
serial input, which will violate the CTS
requirement.

Setting this argument will also bypass all
the selinux rules defined in Android system.
It is recommended to set this argument for
internal developer.

androidboot.fbTileSupport It is used to
enable
framebuffer super
tile output.

androidboot.fbTileSupport=ena
ble

-

firmware_class.path It is used to set
the Wi-Fi firmware
path.

firmware_class.path=/vendor/
firmware

-

androidboot.xen_boot It is used to
configure which
environment
automotive works
at, normal
environment or
Xen environment.

Normal environment:
androidboot.xen_boot=default

Xen environment:
androidboot.xen_boot=xen

-

transparent_hugepage It is used to
change the sysfs
boot time defaults
of Transparent

transparent_hugepage=never/
always/madvise

-

Table continues on the next page...

Booting

Android™ User's Guide, Rev. P9.0.0_1.0.2-AUTO-beta, 01/2019

14 NXP Semiconductors

http://source.android.com/devices/tech/security/selinux/
http://source.android.com/devices/tech/security/selinux/
http://source.android.com/devices/tech/security/selinux/

Table 12. Kernel boot parameters (continued)

Kernel parameter Description Typical value Used when

Hugepage
support.

galcore.contiguousSize It is used to
configure the GPU
reserved memory.

galcore.contiguousSize=33554
432

It is 128 MB by default. i.MX 8QuadMax/
8QuadXPlus automatically configures it to
32 MB to shorten the GPU driver
initialization time.

swiotlb It is used to
configure the
swiotlb size. The
kernel default
value is 64 MB.

swiotlb=49152 i.MX 8QuadMax/8QuadXPlus configures it
to 96 MB (swiotlb=49152) to fix the swiotlb
overflow issue from the Wi-Fi driver.

6.2.3 DM-verity configuration
DM-verity (device-mapper-verity) provides transparent integrity checking of block devices. It can prevent device from
running unauthorized images. This feature is enabled by default. Replacing one or more partitions (boot, vendor, system,
vbmeta) will make the board unbootable. Disabling DM-verity provides convience for developers, but the device is
unprotected.

To disable DM-verity, perform the following steps:
1. Unlock the device.

a. Boot up the device.
b. Choose Settings -> Developer Options -> OEM Unlocking to enable OEM unlocking.
c. Enter Fastboot mode on the device. Execute the following command on the target side:

reboot bootloader
d. Unlock the device. Execute the following command on the host side:

fastboot oem unlock
e. Wait until the unlock process is complete.

2. Disable DM-verity.
a. Boot up the device.
b. Disable the DM-verity feature. Execute the following command on the host side:

adb root
adb disable-verity
adb reboot

7 Over-The-Air (OTA) Update
This section provides an example for the i.MX 8QuadMax/8QuadXPlus MEK Board with EVS function enabled in the Arm
Cortex-M4 CPU core to build and implement OTA update.

For other platforms, use "lunch " to set up the build configuration. For detailed build configuration, see Section 3.2 "Building
Android images".

Over-The-Air (OTA) Update

Android™ User's Guide, Rev. P9.0.0_1.0.2-AUTO-beta, 01/2019

NXP Semiconductors 15

7.1 Building OTA update packages

7.1.1 Building target files
You can use the following commands to generate target files under the Android environment:

$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
$ make target-files-package -j4

After building is complete, you can find the target files in the following path:

${MY_ANDROID}/out/target/product/mek_8q_car/obj/PACKAGING/target_files_intermediates/
mek_8q_car-target_files-${date}.zip

7.1.2 Building a full update package
A full update is one where the entire final state of the device (dtbo, system, boot, and vendor partitions) is contained in the
package.

You can use the following commands to build a full update package under the Android environment:

$ cd ${MY_ANDROID}
$ source build/envsetup.sh
$ lunch mek_8q_car-userdebug
$ make otapackage -j4

After building is complete, you can find the OTA packages in the following path:

${MY_ANDROID}/out/target/proudct/mek_8q_car/mek_8q_car-ota-${date}.zip

mek_8q_car-ota-${date}.zip includes payload.bin and payload_properties.txt. The two files are used for full
update.

NOTE
• ${date} is the BUILD_NUMBER in build_id.mk.

7.1.3 Building an incremental update package
An incremental update contains a set of binary patches to be applied to the data that is already on the device. This can result
in considerably smaller update packages:

• Files that have not changed do not need to be included.
• Files that have changed are often very similar to their previous versions, so the package only needs to contain encoding

of the differences between the two files. You can install the incremental update package only on a device that has the
old or source build used when constructing the package.

Before building an incremental update package, see Section 7.1.1 to build two target files:
• PREVIOUS-target_files.zip: one old package that has already been applied on the device.
• NEW-target_files.zip: the latest package that is waiting to be applied on the device.

Then use the following commands to generate the incremental update package under the Android environment:

$ cd ${MY_ANDROID}
$./build/tools/releasetools/ota_from_target_files -i PREVIOUS-target_files.zip NEW-
target_files.zip incremental_ota_update.zip

Over-The-Air (OTA) Update

Android™ User's Guide, Rev. P9.0.0_1.0.2-AUTO-beta, 01/2019

16 NXP Semiconductors

${MY_ANDROID}/incremental_ota_update.zip includes payload.bin and payload_properties.txt. The two
files are used for incremental update.

7.2 Implementing OTA update

7.2.1 Using update_engine_client to update the Android platform
update_engine_client is a pre-built tool to support A/B (seamless) system updates.

• Copy ota_update.zip or incremental_ota_update.zip (generated on 7.1.2 and 7.1.3) to the HTTP server (for
example, 192.168.1.1:/var/www/).

• Unzip the packages to get payload.bin and payload_properties.txt.
• Cat the content of payload_properties.txt like this:

• FILE_HASH=0fSBbXonyTjaAzMpwTBgM9AVtlBeyOigpCCgkoOfHKY=
• FILE_SIZE=379074366
• METADATA_HASH=Icrs3NqoglzyppyCZouWKbo5f08IPokhlUfHDmz77WQ=
• METADATA_SIZE=46866

• Input the following command on the board's console to update:

update_engine_client --payload=http://192.168.1.1:10888/payload.bin --update --
headers="FILE_HASH=0fSBbXonyTjaAzMpwTBgM9AVtlBeyOigpCCgkoOfHKY=
FILE_SIZE=379074366
METADATA_HASH=Icrs3NqoglzyppyCZouWKbo5f08IPokhlUfHDmz77WQ/de8Dgp9zFXt8Fo
+Hxccp465uTOvKNsteWU=
METADATA_SIZE=46866"

NOTE

Make sure to use a new line for every payload_properties parameter here.

• The system will update in the background. After it finishes, it will show "Update successfully applied, waiting to
reboot" in the logcat.

7.2.2 Using a customized application to update the Android platform
There is a reference OTA application under ${MY_ANDROID}/vendor/nxp-opensource/fsl_imx_demo/FSLOta, which
can do the OTA operations:

1. Get payload_properties.txt and payload.bin from a specific address.
2. Use the update_engine service to update the Android platform.

Perform the following steps to use this application:
1. Set up the HTTP server (eg., lighttpd, apache).

You need one HTTP server to hold OTA packages.
• For full OTA update, execute the following commands:

cp ${MY_ANDROID}/out/target/product/mek_8q/system/build.prop ${server_ota_folder}
cp ${MY_ANDROID}/out/target/product/mek_8q/mek_8q_car-ota-${date}.zip $
{server_ota_folder}
cd ${server_ota_folder}
unzip mek_8q_car-ota-${date}.zip

• For incremental OTA update, execute the following commands:

cp ${old_build.prop} ${server_ota_folder}/old_build.prop
cp ${MY_ANDROID}/out/target/product/mek_8q/system/build.prop ${server_ota_folder}/
build_diff.prop

Over-The-Air (OTA) Update

Android™ User's Guide, Rev. P9.0.0_1.0.2-AUTO-beta, 01/2019

NXP Semiconductors 17

mkdir ${server_ota_folder}/diff_ota
cp ${MY_ANDROID}/incremental_ota_update.zip ${server_ota_folder}/diff_ota
cd ${server_ota_folder}/diff_ota
unzip incremental_ota_update.zip
mv payload.bin payload_diff.bin
mv payload_properties.txt payload_properties_diff.txt
mv payload_diff.bin payload_properties_diff.txt ${server_ota_folder}
cd ${server_ota_folder}
echo -n "base." >> build_diff.prop
grep "ro.build.date.utc" old_build.prop >> build_diff.prop

For example, the server_ota_folder content is as follows. Make sure you have at least the following 6 files in $
{server_ota_folder}; otherwise, the OTA application will abort.

build@server:/var/www/mek_8q_car_pie_9$ ls
build.prop build_diff.prop payload.bin payload_diff.bin payload_properties.txt
payload_properties_diff.txt

NOTE
• server_ota_folder: ${http_root}/mek_8q_car_${ota_folder_suffix}_$

{version}.
• ${old_build.prop} is the old image's build.prop.
• mek_8q_car-ota-${date}.zip and incremental_ota_update.zip are built from

Section 7.1.2 "Building a full update package" and Section 7.1.3 "Building an
incremental update package".

• ${ota_folder_suffix} is stored at board's /vendor/etc/ota.conf.
• ${version} can be obtained by the following command on the board's

console: $getprop ro.build.version.release.
• These file and folder names should align with this example, or modify the

OTA application source code correspondingly.

2. Configure the OTA server IP address and HTTP port number.
The OTA configuration file (/vendor/etc/ota.conf) content is like this:

server=192.168.1.100
port=10888
ota_folder_suffix=pie

Modify it to fit the environment.

3. Open the OTA application and click the Update button.
The reference application is a dialogue box activity, and can be enabled through the Settings -> About tablet ->
Additional system Update menu. There are two buttons on the dialogue box:

• Upgrade: Performs full OTA.
• Diff Upgrade: Performs incremental OTA.

Click one button to update the Android platform. After update is complete, click the Reboot button on the dialogue
box.

NOTE
• This application uses the "ro.build.date.utc=1528987645" property to decide

whether it can perform full OTA or incremental OTA.
• local utc = $getprop ro.build.date.utc.
• remote utc = cat ${server_ota_folder}/build.prop | grep "ro.build.date.utc".
• remote diff utc = cat ${server_ota_folder}/build_diff.prop | grep

"ro.build.date.utc".
• remote diff base utc = cat ${server_ota_folder}/build_diff.prop | grep

"base.ro.build.date.utc" (base.ro.build.date.utc should be added manually,
which is the "ro.build.date.utc" value in PREVIOUS-target_files.zip's system/
build.prop).

• Full OTA condition:

Over-The-Air (OTA) Update

Android™ User's Guide, Rev. P9.0.0_1.0.2-AUTO-beta, 01/2019

18 NXP Semiconductors

• local utc < remote utc
• Incremental OTA condition:

• local utc = remote diff base utc
• local utc < remote diff utc

NOTE

The OTA package includes dtbo image, which stores the board's DTB. There may be
many DTS for one board. For example, in ${MY_ANDROID}/device/fsl/imx8q/
mek_8q/BoardConfig.mk: TARGET_BOARD_DTS_CONFIG := imx8qm:fsl-imx8qm-
mek-car.dtb imx8qm-xen:fsl-imx8qm-mek-domu.dtb imx8qxp:fsl-
imx8qxp-mek-car.dtb.

There is one variable to specify which dtbo image is stored in the OTA package:

BOARD_PREBUILT_DTBOIMAGE := out/target/product/mek_8q/dtbo-
imx8qm.img

Therefore, the default OTA package can only be applied to the i.MX 8QuadMax MEK
board. To generate an OTA package for the i.MX 8QuadXPlus MEK board, modify
BOARD_PREBUILT_DTBOIMAGE as follows:

BOARD_PREBUILT_DTBOIMAGE := out/target/product/mek_8q/dtbo-
imx8qxp.img

For detailed information about A/B OTA updates, see https://source.android.com/
devices/tech/ota/ab/.

8 Customized Configuration

8.1 How to change the boot command line in boot.img
When boot.img is used, the default kernel boot command line is stored inside this image. It packages together during Android
build.

You can change this by changing BOARD_KERNEL_CMDLINE's definition in the ${MY_ANDROID}/device/fsl/
imx8q/mek_8q/BoardConfig.mk file.

8.2 How to configure the logical display density
The Android UI framework defines a set of standard logical densities to help application developers target application
resources.

Device implementations must report one of the following logical Android framework densities:
• 120 dpi, known as 'ldpi'
• 160 dpi, known as 'mdpi'
• 213 dpi, known as 'tvdpi'
• 240 dpi, known as 'hdpi'
• 320 dpi, known as 'xhdpi'
• 480 dpi, known as 'xxhdpi'

Device implementations should define the standard Android framework density that is numerically closest to the physical
density of the screen, unless that logical density pushes the reported screen size to be lower than the minimum supported.

Customized Configuration

Android™ User's Guide, Rev. P9.0.0_1.0.2-AUTO-beta, 01/2019

NXP Semiconductors 19

https://source.android.com/devices/tech/ota/ab/
https://source.android.com/devices/tech/ota/ab/

To configure the logical display density for framework, you must define the following line in ${MY_ANDROID}/
device/fsl/imx8q/mek_8q/init_car.rc:

setprop ro.sf.lcd_density <density>

8.3 How to use an application and add it into the launcher
Only some applications that are contained in car_facet_package_filters can be displayed in the launcher. To start a certain
application, use adb install and adb shell am start to start the related application:

 > adb install xxxx.apk
 > adb shell am start xxxx(package of apk, e.g: com.android.cts.verifier)

For example, play video with CactusPlayer.apk:

 > adb install CactusPlayer.apk
 > adb shell am start -n com.freescale.cactusplayer/com.freescale.cactusplayer.VideoPlayer -
d xxx.mp4

To display an application in the launcher, add the application package name (e.g.,
com.freescale.cactusplayer&com.android.cts.verifier) into car_facet_package_filters. ${MY_ANDROID}/packages/
services/Car/car_product/overlay/frameworks/base/packages/SystemUI/res/values/arrays_car.xml:

diff --git a/car_product/overlay/frameworks/base/packages/SystemUI/res/values/arrays_car.xml
b/car_product/overlay/frameworks/base/packages/SystemUI/res/values/arrays_car.xml
index 94a6d45..8d7c71d 100644
--- a/car_product/overlay/frameworks/base/packages/SystemUI/res/values/arrays_car.xml
+++ b/car_product/overlay/frameworks/base/packages/SystemUI/res/values/arrays_car.xml
@@ -57,6 +57,6 @@
 <item>com.android.car.dialer</item>
 <item>com.android.car.overview</item>
 <item></item>
-
<item>com.android.car.hvac;com.android.settings;com.android.car.settings;com.android.vending;
com.google.android.car.bugreport;...;com.google.android.projection.sink</item>
+
<item>com.android.car.hvac;com.android.settings;com.android.car.settings;com.android.vending;
com.google.android.car.bugreport;...;com.google.android.projection.sink;com.freescale.cactusp
layer;com.android.cts.verifier</item>
 </array>
 </resources>

8.4 Trusty OS build and configuration

8.4.1 How to fetch and build the Trusty OS
i.MX Android Automotive Pie uses the Trusty OS firmware as TEE that supports security features. Users can modify the
Trusty OS code to support different configurations and features.

In this release, the i.MX Trusty OS is based on AOSP Trusty OS. NXP adds the i.MX 8QuadXPlus and i.MX 8QuadMax
support on it.

To fetch and build the target Trusty OS binary, use the following commands:

 $repo init -u https://source.codeaurora.org/external/imx/imx-manifest.git -b imx-android-
pie -m imx-trusty-p9.0.0_1.0.2-auto-beta.xml
 $repo sync

Customized Configuration

Android™ User's Guide, Rev. P9.0.0_1.0.2-AUTO-beta, 01/2019

20 NXP Semiconductors

 $source trusty/vendor/google/aosp/scripts/envsetup.sh
 $make imx8qm #for i.MX 8QuadMax
 $cp ${TRUSTY_REPO_ROOT}/build-imx8qm/lk.bin ${MY_ANDROID}/vendor/nxp/fsl-proprietary/
uboot-firmware/imx8q/tee-imx8qm.bin

Then build the images and flash the u-boot-imx8qm.imx file to the target device.

NOTE
• For i.MX 8QuadXPlus, only replace imx8qm with imx8qxp in the commands

above.
• ${TRUSTY_REPO_ROOT} is the root directory of the Trusty OS repository.
• ${MY_ANDROID} is the root directory of the Android Automotive Pie repository.

8.4.2 How to initialize the secure storage for the Trusty OS
Security storage is based on RPMB on the eMMC chip. By default, the RPMB key is not initialized by images.

You can use both the specified RPMB key or random RPMB key. The RPMB key cannot be changed once it is set.
• To set a specified RPMB key, perform the following operations:

Make your board enter fastboot mode. Execute the commands on the host side:

fastboot stage <path-to-your-rpmb-key>
fastboot oem set-rpmb-key

After the board is reboot, the RPMB service in Trusty OS is initialized successfully.

NOTE
• The RPMB key should start with magic "RPMB" and be followed with 32

bytes hexadecimal key.
• A prebuilt rpmb_key_test.bin with the fixed key of 32 bytes hexadecimal

0x00 is provided. It is generated with the following shell commands:

touch rpmb_key.bin
echo -n "RPMB" > rpmb_key.bin
echo -n -e
'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00
\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\
x00\x00\x00\x00' >> rpmb_key.bin

The '\xHH' means 8-bit character whose value is the hexadecimal value 'HH'.
You can replace above "00" with the key you want to set.

• To set a random RPMB key, perform the following operations:
Make your board enter fastboot mode. Execute the commands on the host side:

fastboot oem set-rpmb-random-key

After the board is reboot, the RPMB service in Trusty OS is initialized successfully.

NOTE

The random key is generated on the device and is invisible to anyone. The device
may no longer boot up if the RPMB key message is destroyed.

Customized Configuration

Android™ User's Guide, Rev. P9.0.0_1.0.2-AUTO-beta, 01/2019

NXP Semiconductors 21

8.5 Rearview camera on the i.MX device
Exterior View System (EVS) is supppoted in the i.MX Android auto package. This feature supports fastboot camera that
starts camera within 1 second when the board is powered on. Arm Cortex-M4 takes over the control of the camera/display
before Android OS boot is complete.

The following figure is the sequence chart of EVS.

Figure 1. Sequence chart of EVS

8.5.1 How to demo the rearview camera
To demo the rearview camera, perform the following steps:

1. Connect the camera as quick start.
2. Open the Cortex-M4 console.

• Cortex-M4 console on the i.MX 8QuadXPlus MEK board: The USB-to-UART port has two consoles, one
Cortex-A core console and one Cortex-M4 console.

• Cortex-M4 console on i.MX 8QuadMax MEK board: RS232 port on the base board.
3. Press r on the Cortex-M4 console when the board is powered on. The rearview camera appears on the screen. Press d

when the following log is displayed on the Android console, and the Android UI appears on the screen.

can_rpmsg virtio2.rpmsg-can-channel.-1.1: rpmsg not ack 1!

Customized Configuration

Android™ User's Guide, Rev. P9.0.0_1.0.2-AUTO-beta, 01/2019

22 NXP Semiconductors

4. Press r on the Cortex-M4 console after Android system boot is complete. The rearview camera appears on the screen.
Press d on the Cortex-M4 console, and the Android UI appears on the screen.

NOTE
• Pressing r on the Cortex-M4 console means that the Cortex-M4 core gets the

reverse signal. Pressing d on the Cortex-M4 console means that the Cortex-M4
core gets the drive signal.

8.5.2 How to customize the rearview camera
The Cortex-M4 core runs in TCM on the i.MX board. It provides the following functions:

• Takes over control of the camera/display before Android OS is ready.
• Gets the CAN event and passes this event to the Cortex-A core.

To customize the bootanimation and add the CAN bus event, see the details from the Cortex-M4 source code: https://
mcuxpresso.nxp.com/en/select.

To update the Cortex-M4 image, run the following commands:

Build Cortex-M4 images:
 export ARMGCC_DIR=<path_to_GNUARM_GCC_installation_dir>
 cd sdk_mcu/mek8m_Cortex-M4/boards/mekmimx8qm/demo_apps/rear_view_camera/cCortex-M4_core1/
armgcc/
 ./build_all.sh
The Cortex-M4 image is located in release/Cortex-M4_image.bin.
 cp Cortex-M4_image.bin ${MY_ANDROID}/vendor/nxp/fsl-proprietary/mcu-sdk/imx8q/
imx8qm_Cortex-M4_1_tcm_auto.bin
 make bootloader -j4

To customize EVS in Android OS, use the following commands:

 EVS hal: ${MY_ANDROID}/vendor/nxp-opensource/imx/evs
 EVS service: ${MY_ANDROID}/vendor/nxp-opensource/imx/virtual_can
 EVS kernel driver: ${MY_ANDROID}/vendor/nxp-opensource/kernel_imx/drivers/mxc/can_rpmsg
 EVS application: ${MY_ANDROID}/packages/services/Car/evs/app/

8.6 Boot time tuning

8.6.1 Boot time overview
In this document, the boot time is the duration from the time the hardware is started from cold boot to that the Android
Automotive Launcher UI is showed on the display screen when the hardware is not in the first time boot from factory.
Because the very first successfully boot sets up the accelerating software executing environment, it costs a longer time to
boot.

NXP makes the boot time shorter in U-Boot, Linux kernel, and Android framework. To improve the debug efficiency, some
debug purpose modules and interfaces are kept in the release. Before the product is ready to ship, these modules and
interfaces can be configured to save the boot time and make the boot time performance best in the final product.

8.6.2 What NXP did to tune the boot time
To make Android Automotive boot faster, lots of changes were made on different modules to achieve better performance.
The following changes impact the boot time:

Customized Configuration

Android™ User's Guide, Rev. P9.0.0_1.0.2-AUTO-beta, 01/2019

NXP Semiconductors 23

https://mcuxpresso.nxp.com/en/select
https://mcuxpresso.nxp.com/en/select

• Removed the debug command from U-Boot and Linux kernel to save its initialization time and image size.
• Removed the unused driver from U-Boot and Linux kernel.
• Make some drivers as the kernel module and load them when Android boot is completed. For example, the connectivity

devices and camera driver are initialized after the Android Automotive Launcher UI is showed on the display. This
makes the Android Automotive Launcher UI shown earlier.

• Removed the unused device from the Android Framework, such as Ethernet and Sensors.
• Refined the Android Verify Boot procedure.

All the changes above do not impact any of the functions and the performance except the boot time.

8.6.3 How to get the shorter boot time
For debug and development purpose, the U-Boot boot delay and Linux kernel dmesg are enable by default. The Linux kernel
dmesg is printed by UART. In field measurement, the Linux kernel dmesg costs about 1.15 seconds during the boot process
because UART is the slow device. Therefore, before the final product, remove the U-Boot delay and Linux kernel dmesg by
the following operations:

• Set CONFIG_BOOTDELAY=-2 in the U-Boot defconfig file, imx8qm_mek_androidauto_trusty_defconfig for
i.MX 8QuadMax MEK and imx8qxp_mek_androidauto_trusty_defconfig for i.MX 8QuadXPlus MEK in $
{MY_ANDROID}/vendor/nxp-opensource/uboot-imx/configs.

• Modify the Linux bootargs in build system. See Section 8.1. Appending loglevel=0 to it will prevent the dmesg to be
printed to console during the boot.

NOTE

When setting loglevel=0, the debug message is not displayed directly to the console.
To check it, however, you can use the $dmesg command in the shell to output it.

8.6.4 How to build system.img with squashfs files system type
The default file system of system.img is ext4. After the system.img file system type is changed to squashfs, the system.img
size can be reduced to about 50%. Thus, it can shorten the automotive boot time. To change the default file system type to
squashfs, perform the following steps:

1. Add the following Linux kernel macro in ${MY_ANDROID}/vendor/nxp-opensource/kernel_imx/arch/arm64/configs/
android_car_config:

• CONFIG_SQUASHFS=y
• CONFIG_SQUASHFS_LZ4=y
• CONFIG_SQUASHFS_XATTR=y
• CONFIG_SQUASHFS_DECOMP_MULTI=y

2. Add the following configurationsg in ${MY_ANDROID}/device/fsl/imx8q/mek_8q/BoardConfig.mk:

BOARD_SYSTEMIMAGE_FILE_SYSTEM_TYPE := squashfs

Rebuild the whole images for the mek_8q board. It can shorten the automotive boot time for the i.MX 8QuadMax MEK
Board, but there is no boot time optimization on the i.MX 8QuadXPlus MEK Board.

8.6.5 How to measure the boot time
Per the definition of the boot time described in Section 8.6.1, users need to measure the boot time duration from power-on to
when the display shows the desktop.

Pay attention to the following:
• Keep the device in lock state by $fastboot oem lock.

Customized Configuration

Android™ User's Guide, Rev. P9.0.0_1.0.2-AUTO-beta, 01/2019

24 NXP Semiconductors

• Make sure that the device is powered down safely. $setprop sys.powerctl shutdown makes the device powered
down safely. Or the fsck scans the storage during the booting time and it costs 1 to 2 seconds.

• Make sure the action of Section 8.6.3 has been done.

In this release, according to the measurement above, it takes 18.85 seconds for the i.MX 8QuadXPlus MEK board and 14.45
seconds for the i.MX 8QuadMax MEK board to boot the Android Automotive.

NOTE

As the HDMI monitor is used by the release prebuilt image, the HDMI monitor's
initialization time should be excluded from the measured boot time. Different HDMI
monitors may have different initialization time, which may vary from 1 to 3 seconds.

To get the initialization time of HDMI monitor, perform the following steps:
1. Connect HDMI-1 to the PC.
2. Connect HDMI-2 to the board.
3. Make the PC and board booted and displayed correctly and stop at the display of the board.
4. Use the HDMI monitor input source select menu to switch the current display from "board" to "PC". When pressing the

button to start the "switching" operation, start the stopwatch at the same time.
5. When seeing the PC display on the HDMI monitor, stop the stopwatch.
6. The time from changing the HDMI monitor input source as PC to seeing the PC display on the HDMI monitor is the

response time of this HDMI display.

8.7 How to enable USB 2.0 in U-Boot for i.MX 8QuadMax/
8QuadXPlus

There are both USB 2.0 and USB 3.0 ports on i.MX 8QuadMax/8QuadXPlus MEK board. Because U-Boot can support only
one USB gadget driver, the USB 3.0 port is enabled by default. To use the USB 2.0 port, modify the configurations to enable
it and disable the USB 3.0 gadget driver.

For i.MX 8QuadMax, make the following changes under ${MY_ANDROID}/vendor/nxp-opensource/uboot-imx:

diff --git a/configs/imx8qm_mek_androidauto_trusty_defconfig b/configs/
imx8qm_mek_androidauto_trusty_defconfig
index 955023c..4a4307b 100644
--- a/configs/imx8qm_mek_androidauto_trusty_defconfig
+++ b/configs/imx8qm_mek_androidauto_trusty_defconfig
@@ -29,14 +29,12 @@ CONFIG_CMD_USB=y
 CONFIG_USB=y

 CONFIG_USB_GADGET=y
-#CONFIG_CI_UDC=y
+CONFIG_CI_UDC=y
 CONFIG_USB_GADGET_DOWNLOAD=y
 CONFIG_USB_GADGET_MANUFACTURER="FSL"
 CONFIG_USB_GADGET_VENDOR_NUM=0x18d1
 CONFIG_USB_GADGET_PRODUCT_NUM=0x0d02

-CONFIG_USB_CDNS3=y
-CONFIG_USB_CDNS3_GADGET=y
 CONFIG_USB_GADGET_DUALSPEED=y

 CONFIG_DM_GPIO=y
diff --git a/include/configs/imx8qm_mek_android_auto.h b/include/configs/
imx8qm_mek_android_auto.h
index 6aa19e7..a292dba 100644
--- a/include/configs/imx8qm_mek_android_auto.h
+++ b/include/configs/imx8qm_mek_android_auto.h
@@ -50,7 +50,7 @@
 #define CONFIG_FASTBOOT_FLASH

Customized Configuration

Android™ User's Guide, Rev. P9.0.0_1.0.2-AUTO-beta, 01/2019

NXP Semiconductors 25

 #define CONFIG_FSL_FASTBOOT
-#define CONFIG_FASTBOOT_USB_DEV 1
+#define CONFIG_FASTBOOT_USB_DEV 0
 #define CONFIG_ANDROID_RECOVERY
diff --git a/arch/arm/dts/fsl-imx8qm-mek-auto.dts b/arch/arm/dts/fsl-imx8qm-mek-auto.dts
index 011dd49..9327981 100644
--- a/arch/arm/dts/fsl-imx8qm-mek-auto.dts
+++ b/arch/arm/dts/fsl-imx8qm-mek-auto.dts
@@ -43,10 +43,6 @@
 status = "disabled";
 };

-&usbotg1 {
 - status = "disabled";
 -};
-
 &usb2 {
 status = "disabled";
 };

For i.MX 8QuadXPlus, make the following changes under ${MY_ANDROID}/vendor/nxp-opensource/uboot-imx:

diff --git a/configs/imx8qxp_mek_androidauto_trusty_defconfig b/configs/
imx8qxp_mek_androidauto_trusty_defconfig
index 644e47a..500adb4 100644
--- a/configs/imx8qxp_mek_androidauto_trusty_defconfig
+++ b/configs/imx8qxp_mek_androidauto_trusty_defconfig
@@ -31,14 +31,14 @@ CONFIG_CMD_USB=y
 CONFIG_USB=y

 CONFIG_USB_GADGET=y
-#CONFIG_CI_UDC=y
+CONFIG_CI_UDC=y
 CONFIG_USB_GADGET_DOWNLOAD=y
 CONFIG_USB_GADGET_MANUFACTURER="FSL"
 CONFIG_USB_GADGET_VENDOR_NUM=0x18d1
 CONFIG_USB_GADGET_PRODUCT_NUM=0x0d02

-CONFIG_USB_CDNS3=y
-CONFIG_USB_CDNS3_GADGET=y
 CONFIG_USB_GADGET_DUALSPEED=y

 CONFIG_DM_GPIO=y
diff --git a/include/configs/imx8qxp_mek_android_auto.h b/include/configs/
imx8qxp_mek_android_auto.h
index 97f6487..db9438a 100644
--- a/include/configs/imx8qxp_mek_android_auto.h
+++ b/include/configs/imx8qxp_mek_android_auto.h
@@ -50,7 +50,7 @@

 #define CONFIG_SKIP_RESOURCE_CHECING
 #define CONFIG_FSL_FASTBOOT
-#define CONFIG_FASTBOOT_USB_DEV 1
+#define CONFIG_FASTBOOT_USB_DEV 0
 #define CONFIG_ANDROID_RECOVERY
diff --git a/arch/arm/dts/fsl-imx8qxp-mek-auto.dts b/arch/arm/dts/fsl-imx8qxp-mek-auto.dts
index e105f68..2553422 100644
--- a/arch/arm/dts/fsl-imx8qxp-mek-auto.dts
+++ b/arch/arm/dts/fsl-imx8qxp-mek-auto.dts
@@ -67,10 +67,6 @@
 status = "disabled";
 };

-&usbotg1 {
 - status = "disabled";
 -};
-
 &usb2 {
 status = "disabled";
 };

Customized Configuration

Android™ User's Guide, Rev. P9.0.0_1.0.2-AUTO-beta, 01/2019

26 NXP Semiconductors

To enable USB 2.0 for U-Boot used by UUU, for c language header files, apply the same changes above. For defconfig files,
apply the changes above respectively on imx8qm_mek_android_uuu_defconfig and imx8qxp_mek_android_uuu_defconfig.
The two defconfig files are specially for U-Boot used by UUU.

8.8 AVB key provision
The AVB key consists of a pair of public and private keys. The private key is used by the host to sign the vbmeta image. The
public key is used by AVB to authenticate the vbmeta image. The relationships between the private key, the public key, and
the vbmeta are as follows:

Figure 2. Relationship between AVB key and vbmeta

8.8.1 How to specify the AVB key
The OpenSSL provides some commands to generate the private key. For example, you can use the following commands to
generate the RSA-4096 private key test_rsa4096_private.pem:

openssl genpkey -algorithm RSA -pkeyopt rsa_keygen_bits:4096 -outform PEM -out
test_rsa4096_private.pem

The public key can be extracted from the private key. The avbtool in ${MY_ANDROID}/external/avb supports such
commands. You can get the public key test_rsa4096_public.bin with the following commands:

avbtool extract_public_key --key test_rsa4096_private.pem --output test_rsa4096_public.bin

By default, the Android build system uses the algorithm SHA256_RSA4096 with the private key from ${MY_ANDROID}/
external/avb/test/data/testkey_rsa4096.pem. This can be overridden by setting the BOARD_AVB_ALGORITHM and
BOARD_AVB_KEY_PATH to use different algorithm and private key:

 BOARD_AVB_ALGORITHM := <algorithm-type>
 BOARD_AVB_KEY_PATH := <key-path>

Algorithm SHA256_RSA4096 is recommended for i.MX 8QuadMax/8QuadXPlus whose Cryptographic Acceleration and
Assurance Module (CAAM) can help accelerate the hash calculation.

Customized Configuration

Android™ User's Guide, Rev. P9.0.0_1.0.2-AUTO-beta, 01/2019

NXP Semiconductors 27

You can specify the private key for i.MX 8QuadMax/8QuadXPlus with the following changes under ${MY_ANDROID}/
device/fsl:

diff --git a/imx8q/mek_8q/BoardConfig.mk b/imx8q/mek_8q/BoardConfig.mk
index 8e367bb..e1385f9 100644
--- a/imx8q/mek_8q/BoardConfig.mk
+++ b/imx8q/mek_8q/BoardConfig.mk
@@ -207,7 +207,7 @@ BOARD_AVB_ENABLE := true
 ifeq ($(PRODUCT_IMX_CAR),true)
 BOARD_AVB_ALGORITHM := SHA256_RSA4096
 # The testkey_rsa4096.pem is copied from external/avb/test/data/testkey_rsa4096.pem
-BOARD_AVB_KEY_PATH := device/fsl/common/security/testkey_rsa4096.pem
+BOARD_AVB_KEY_PATH := ${your-key-directory}/test_rsa4096_private.pem
 endif
 TARGET_USES_MKE2FS := true

The Android build system signes the vbmeta image with the private key above and stores one copy of the public key in the
signed vbmeta image. During AVB verification, U-Boot validates the public key first and then uses the public key to
authenticate the signed vbmeta image.

8.8.2 How to set the vbmeta public key
The public key should be stored in Trusty OS backed RPMB for Android Auto. Perform the following steps to set the public
key.

Make your board enter fastboot mode, and enter the following commands on the host side:

 fastboot stage ${your-key-directory}/test_rsa4096_public.bin
 fastboot oem set-public-key

The public key test_rsa4096_public.bin should be extracted from the specified private key. If no private key is specified, set
the public key as prebuilt testkey_public_rsa4096.bin, which is extracted from the default private key testkey_rsa4096.pem.

9 Revision History
Table 13. Revision history

Revision number Date Substantive changes

O8.1.0_1.1.0_AUTO-EAR 02/2018 Initial release

O8.1.0_1.1.0_AUTO-beta 05/2018 i.MX 8QuadXPlus/8QuadMax Beta release

P9.0.0_1.0.2-AUTO-alpha 11/2018 i.MX 8QuadXPlus/8QuadMax Automotive Alpha release

P9.0.0_1.0.2-AUTO-beta 01/2019 i.MX 8QuadXPlus/8QuadMax Automotive Beta release

Revision History

Android™ User's Guide, Rev. P9.0.0_1.0.2-AUTO-beta, 01/2019

28 NXP Semiconductors

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software implementers to use

NXP products. There are no express or implied copyright licenses granted hereunder to design or

fabricate any integrated circuits based on the information in this document. NXP reserves the right to

make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any

particular purpose, nor does NXP assume any liability arising out of the application or use of any

product or circuit, and specifically disclaims any and all liability, including without limitation

consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets

and/or specifications can and do vary in different applications, and actual performance may vary over

time. All operating parameters, including “typicals,” must be validated for each customer application

by customerʼs technical experts. NXP does not convey any license under its patent rights nor the

rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be

found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to unidentified

vulnerabilities. Customers are responsible for the design and operation of their applications and

products to reduce the effect of these vulnerabilities on customer's applications and products, and

NXP accepts no liability for any vulnerability that is discovered. Customers should implement

appropriate design and operating safeguards to minimize the risks associated with their applications

and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,

EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE

CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,

MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,

TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,

ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,

mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure,

the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,

Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS

are trademarks of NXP B.V. All other product or service names are the property of their respective

owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink,

CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP,

RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS,

ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its

subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of

patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered

trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the

Power and Power.org logos and related marks are trademarks and service marks licensed by

Power.org.

© 2019 NXP B.V.

Document Number AUG
Revision P9.0.0_1.0.2-AUTO-beta, 01/2019

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Overview
	Preparation
	Setting up your computer
	Unpacking the Android release package

	Building the Android platform for i.MX
	Getting i.MX Android release source code
	Building Android images
	Configuration examples of building i.MX devices
	Build mode selection

	Building U-Boot images
	Building a kernel image
	Building boot.img
	Building dtbo.img

	Running the Android Platform with a Prebuilt Image
	Programming Images
	System on eMMC
	Storage partitions
	Downloading images with UUU
	Downloading images with fastboot_imx_flashall script

	Booting
	Booting from eMMC
	Booting from eMMC on the i.MX 8QuadXPlus/8QuadMax MEK board

	Boot-up configurations
	U-Boot environment
	Kernel command line (bootargs)
	DM-verity configuration

	Over-The-Air (OTA) Update
	Building OTA update packages
	Building target files
	Building a full update package
	Building an incremental update package

	Implementing OTA update
	Using update_engine_client to update the Android platform
	Using a customized application to update the Android platform

	Customized Configuration
	How to change the boot command line in boot.img
	How to configure the logical display density
	How to use an application and add it into the launcher
	Trusty OS build and configuration
	How to fetch and build the Trusty OS
	How to initialize the secure storage for the Trusty OS

	Rearview camera on the i.MX device
	How to demo the rearview camera
	How to customize the rearview camera

	Boot time tuning
	Boot time overview
	What NXP did to tune the boot time
	How to get the shorter boot time
	How to build system.img with squashfs files system type
	How to measure the boot time

	How to enable USB 2.0 in U-Boot for i.MX 8QuadMax/8QuadXPlus
	AVB key provision
	How to specify the AVB key
	How to set the vbmeta public key

	Revision History

