
1 Preface

1.1 About This Document
This is a guide of how to do customization work on security
features supported by i.MX Android software. It provides an
overview of the i.MX Android security features and it focuses
on how to configure and use these security features.

This guide can be applied to the following platforms:
• i.MX 8QuadMax MEK with Android Auto platform

running on it.
• i.MX 8QuadXPlus MEK with Android Auto platform

running on it.

Trusty OS is not enabled on the released images of other
platforms currently. Content in this document can be partly
used on them.

1.2 Conventions
The following conventions are used in this document:

• Software code is shown in Consolas font.

NXP Semiconductors Document Number: ASUG

User's Guide Rev. P9.0.0_2.1.0-AUTO-ga, 04/2019

i.MX Android™ Security User's
Guide

Contents

1 Preface................................... 1

2 Overview of i.MX Android Security
Features..2

3 Customization work on i.MX Android
Security Features4

4 Revision History......................... 25

• ${MY_ANDROID} is a reference to the i.MX Android source code root directory.
• ${MY_TRUSTY} is a reference to i.MX Trusty OS source code root directory.

2 Overview of i.MX Android Security Features

2.1 Introduction of security-related hardware modules
Security features are based on security-related codes, which needs to do some cryptographic calculation to protect security
data. Exclusively occupying some hardware resources from non-security related code is a basis. Therefore, these hardware
resources is called security-related hardware modules. There are some security hardware modules on the i.MX platform to
co-work with the Trusty OS to guarantee the security:

• CAAM: Cryptographic Acceleration and Assurance Module, is a hardware component of a System on Chip (SoC) that
provides security assurance and hardware acceleration of cryptographic algorithms, packet encapsulation and
decapsulation, and other cryptographic operations.

• TrustZone: ARM TrustZone creates an isolated secure world, which can be used to provide confidentiality and integrity
to the system. It is used to protect high-value code and data for diverse use cases like authentication. It is frequently
used to provide a security boundary for the Trusted Execution Environment, like Trusty OS.

• TZASC: TrustZone Address Space Controller, is an Advanced Microcontroller Bus Architecture (AMBA) compliant
SoC peripheral. It is a high-performance, area-optimized address space controller to protect security-sensitive software
and data in a trusted execution environment against potentially compromised software running on the platform.

• xRDC: On i.MX 8Quad, the eXtended Resource Domain Controller (xRDC) replaces the RDC and TrustZone
components (CSU, TZASC, etc.), which can be found in previous i.MX processors.

i.MX 8Quad SoC contains a mix of Cortex-A and Cortex-M CPUs, which frequently operate in an asymmetric mode
with different software environments executing on them. To keep these software environments from unintentionally
interfering with each other, the SoC contains xRDC to enforce isolation. The xRDC operates in a manner like ARM's
TrustZone. Transactions from masters are annotated with user-side band information to indicate their domain and the
access control logic allow/disallow accesses to peripherals/memory based on this information.

• AHAB/HABv4: The Advanced High Assurance Boot (AHAB) and High Assurance Boot (HABv4) support
authentication on the images by using cryptography operations to prevent unauthorized software from being executed
during device boot sequence. Details about how to verify images with HAB can be found in Chapter 2.1.

• SCU: The System Controller Unit (SCU) is only for i.MX 8Quad platforms. It consists of a Cortex-M4 processor and a
set of peripherals and interfaces to connect to external PMIC and to control internal subsystems. The SCU Cortex-M4
is the first processor to boot the chip. The SCU is dedicated to:

• Boot management
• Power management

• External power management by communicating with external PMIC
• Internal power management of all the subsystems

• Clock and reset management
• I/O configuration and muxing
• Resource partitioning/access control

• SECO: The Security Controller Subsystem (SECO) is only for i.MX 8Quad platforms. It manages several security
hardware modules (CAAM, SNVS, OTP, ADM, etc.) to perform cryptography acceleration and ensure the security of
the whole system.

• eMMC RPMB: RPMB is a separate physical partition in the eMMC device designed for secure data storage. Every
access to RPMB is authenticated and it allows the host to store data to this area in an authenticated and replay protected
manner.

In Trusty OS, the RPMB partition is managed as the secure storage to store all critical data like lock/unlock status,
rollback index, etc.

Overview of i.MX Android Security Features

i.MX Android™ Security User's Guide, Rev. P9.0.0_2.1.0-AUTO-ga, 04/2019

2 NXP Semiconductors

The following table lists the modules on the i.MX 8Quad and i.MX 8M platforms:

Table 1. Modules on the i.MX 8Quad and i.MX 8M platforms

Modules i.MX 8QuadMax and 8QuadXPlus i.MX 8M Quad and 8M Mini

CAAM Y Y

TZASC N Y

xRDC Y N

AHAB Y N

HABv4 N Y

SCU Y N

SECO Y N

eMMC Y Y

2.2 i.MX Android security framework
i.MX Android/Android Automotive security framework includes secure enhanced U-Boot, Android/Android Auto, i.MX
Trusty OS, and the related hardware.

Secure enhanced U-Boot provides the Android Verified Boot module, keys provisioning interface, and secure storage proxy.

Android Verified Boot assures the end user of the integrity of the software loaded and started by secure-enhanced U-Boot.
This is defined by Google, and more details can be found in https://source.android.com/security/verifiedboot/avb.

Key provisioning interface provides the RPMB keys, key attestation, and AVB keys provisioning interface. These interfaces
can be used to inject the keys into the device to make it secure.

Secure Storage Proxy is the client of Secure Storage service from Trusty OS. It helps to access the RPMB secure storage
device by SoC IPs.

Android/Android Auto platform, based on Google’s design, integrates the Keymaster HAL, Gatekeeper HAL, and Secure
Storage proxy.

Keymaster HAL uses trusty-backed one and supports Keymaster V2 and Keymaster V3 APIs. For more details about
keymaster, see https://source.android.com/security/keystore.

Gatekeeper also uses the the Trusty-backed gatekeeper HAL. For more details about gatekeeper, see https://
source.android.com/security/authentication/gatekeeper.

i.MX Trusty OS is based on Trusty OS that is released from Google. Secure TAs and services are integrated in it. Trusty OS
is a very important module for the whole security of i.MX Android/Android Auto platform.

Trusty OS provides a trusty-ipc, which is used to realize communication between secure and non-secure world. Trusty OS
has the hardware driver for CAAM used for keyblob calculation and security algorithm acceleration.

The following figure shows the logic between these components.

Overview of i.MX Android Security Features

i.MX Android™ Security User's Guide, Rev. P9.0.0_2.1.0-AUTO-ga, 04/2019

NXP Semiconductors 3

https://source.android.com/security/verifiedboot/avb
https://source.android.com/security/keystore
https://source.android.com/security/authentication/gatekeeper
https://source.android.com/security/authentication/gatekeeper

Figure 1. i.MX Android security framework

The following figure shows the i.MX Android/Android Auto security trust chain.

Figure 2. i.MX Android security trust chain

Secure root key is programed into the One Time Programmable (OTP) efuse hardware in i.MX chips and work as the root
trust of the solution. It is used by CAAM to generate other keys. In the trust chain, the HAB/AHAB, AVB, and DM-Verity
are used by a different level to verify the specific images or encrypt user data.

After power-on, the boot process begins, U-Boot and Trusty OS are loaded by ROM code. They are the first to be verified by
ROM code with HAB/AHAB. They can only be executed after they pass the verification. U-boot loads the Linux kernel and
uses AVB to verify it before jumping to the Linux kernel. The Linux kernel mounts the Android file system. Data access
from Android file system will be verified by DM-Verity to assure integrity. The security chain is formed by these features.

3 Customization work on i.MX Android Security Features

3.1 How to use HAB to verify images
This part only describes AHAB, which is used in the i.MX 8 family devices. It does not describe verifying images with
HABv4.

Customization work on i.MX Android Security Features

i.MX Android™ Security User's Guide, Rev. P9.0.0_2.1.0-AUTO-ga, 04/2019

4 NXP Semiconductors

Due to the new architecture, multiple firmware and software images are required to boot i.MX 8 family devices. NXP defines
"container" to organize images and store them in one file. AHAB can recognize the format of "container" and verify the
images in a container. The i.MX chip is in open stage by default, so failure of this verification does not block the boot
process. Detailed information about "container" can be found in the Reference Manual of specific chips. From the Reference
Manual, it is known that the hash value of multiple firmwares and softwares is stored in the container header. The container
sign process described below embeds an SRK table in the container and signs the container. The contents introduced in the
signing process are used to verify the container during the boot time.

In Android Auto images for mek_8qm and mek_8qxp, a "container" is used to organize the SECO firmware, SCU firmware,
Cortex-M4 software, Trusty OS, and U-Boot.

SPL is enabled for the U-Boot to be flashed to the board. Three containers are used in this condition. Containers are
distinguished by the their order of being loaded. The first container only has SECO firmware in it, and this container is
provided as a binary file by NXP, It is signed by the key owned by NXP. In the Android build process, the second container
is appended after the first container in one image file. The second container contains SCU firmware, a Cortex-M4 image, and
SPL. The third container has ATF, Trusty OS, and U-Boot proper in it. The second and third containers are constructed when
building the Android platform, and they are not signed by default.

SPL is not enabled for the U-Boot to be used by UUU. It is loaded to the RAM through the USB port by UUU. Before being
executed, it is also verified by AHAB. Two containers are used in this condition. In a similar fashion to the way the images
are flashed to boards, the container containing the SECO firmware is the first one to be loaded and verified. U-Boot is
contained in the second container. By default, the second container is not signed in the Android build process.

To sign the containers constructed in the process of building Android images, perform the following steps:
1. Download Code Signing Tool (CST) from the NXP official website. Decompress the package using the following

command:

$ tar zxvf cst-3.1.0.tgz
2. Generate AHAB PKI tree. After the tool package is decompressed, enter the directory of release/keys/, and execute

the following command:

$./ahab_pki_tree.sh

Then enter some parameters based on the output of this script. An example is as follows:

Do you want to use an existing CA key (y/n)?: n
Do you want to use Elliptic Curve Cryptography (y/n)?: y
Enter length for elliptic curve to be used for PKI tree:
Possible values p256, p384, p521: p384
Enter the digest algorithm to use: sha384
Enter PKI tree duration (years): 5
Do you want the SRK certificates to have the CA flag set? (y/n)?: n

3. Generate AHAB SRK tables and efuse hash.
Enter the directory of release/crts/, and execute the following command:

$../linux64/bin/srktool -a -s sha384 -t SRK_1_2_3_4_table.bin \
 -e SRK_1_2_3_4_fuse.bin -f 1 -c \
 SRK1_sha384_secp384r1_v3_usr_crt.pem,\
 SRK2_sha384_secp384r1_v3_usr_crt.pem,\
 SRK3_sha384_secp384r1_v3_usr_crt.pem,\
 SRK4_sha384_secp384r1_v3_usr_crt.pem

After the command is executed successfully, the SRK table and its SHA512 value are generated and saved respectively
in two files under release/crts/.

The SRK table is embedded in the container in the process of signing that container. Therefore, during the boot time, it
can be used to verify the signature. If the signature is authenticated, the hash value of firmware and software images
can be trusted to verify the corresponding firmware and software. The SRK table SHA512 value will be fused to the
OTP efuse hardware and work as the "secure root key", it is used to verify the SRK table embedded in the container.

Files generated in release/keys/ and /release/crts/ are very important. If the SRK HASH value is fused to the
chip and then the chip is changed from open to close state, the board can only boot with images signed with these files.

Customization work on i.MX Android Security Features

i.MX Android™ Security User's Guide, Rev. P9.0.0_2.1.0-AUTO-ga, 04/2019

NXP Semiconductors 5

4. Build Android images to construct the containers to be signed.
To use AHAB to verify images in SPL, enable "CONFIG_AHAB_BOOT" configurations in the corresponding
defconfig files in U-Boot code. They are not enabled by default. For Android Auto platform, the files are as follows:

imx8qm_mek_androidauto_trusty_defconfig
imx8qm_mek_androidauto2_trusty_defconfig
imx8qm_mek_android_uuu_defconfig
imx8qxp_mek_androidauto_trusty_defconfig
imx8qxp_mek_androidauto2_trusty_defconfig
imx8qxp_mek_android_uuu_defconfig

"mkimage_im8" is used to construct containers. It outputs the layout information of a container on standard output
when constructing it. Android build system redirects it to /dev/null. To remove this redirection, make the following
modification on the repository in the directory of ${MY_ANDROID}/ device/fsl/.

 diff --git a/imx8q/mek_8q/AndroidUboot.mk b/imx8q/mek_8q/AndroidUboot.mk
 index 518af15..f7256e7 100644
 --- a/imx8q/mek_8q/AndroidUboot.mk
 +++ b/imx8q/mek_8q/AndroidUboot.mk
 @@ -127,7 +127,7 @@ define build_imx_uboot
 fi; \
 cp $(UBOOT_OUT)/tools/mkimage $(IMX_MKIMAGE_PATH)/imx-mkimage/$
$MKIMAGE_PLATFORM/mkimage_uboot; \
 $(MAKE) -C $(IMX_MKIMAGE_PATH)/imx-mkimage/ clean; \
 - $(MAKE) -C $(IMX_MKIMAGE_PATH)/imx-mkimage/ SOC=$$MKIMAGE_PLATFORM $
$FLASH_TARGET 1>/dev/null || exit 1; \
 + $(MAKE) -C $(IMX_MKIMAGE_PATH)/imx-mkimage/ SOC=$$MKIMAGE_PLATFORM $
$FLASH_TARGET || exit 1; \
 if ["$(PRODUCT_IMX_CAR)" != "true"] || [`echo $(2) | rev | cut -d
'-' -f1` == "uuu"] || ["$(strip $(2))" == "imx8qm-xen-dom0"]; then \
 cp $(IMX_MKIMAGE_PATH)/imx-mkimage/$$MKIMAGE_PLATFORM/flash.bin $
(PRODUCT_OUT)/u-boot-$(strip $(2)).imx; \
 else \
 @@ -140,7 +140,7 @@ define build_imx_uboot
 cp $(UBOOT_OUT)/spl/u-boot-spl.bin $(PRODUCT_OUT)/spl-$(strip
$(2)).bin; \
 cp $(UBOOT_OUT)/tools/mkimage $(IMX_MKIMAGE_PATH)/imx-mkimage/$
$MKIMAGE_PLATFORM/mkimage_uboot; \
 $(MAKE) -C $(IMX_MKIMAGE_PATH)/imx-mkimage/ clean; \
 - $(MAKE) -C $(IMX_MKIMAGE_PATH)/imx-mkimage/ SOC=$$MKIMAGE_PLATFORM $
$FLASH_TARGET 1>/dev/null || exit 1; \
 + $(MAKE) -C $(IMX_MKIMAGE_PATH)/imx-mkimage/ SOC=$$MKIMAGE_PLATFORM $
$FLASH_TARGET || exit 1; \
 cp $(IMX_MKIMAGE_PATH)/imx-mkimage/$$MKIMAGE_PLATFORM/u-boot-xen-
container.img $(PRODUCT_OUT)/bootloader-$(strip $(2)).img; \
 rm $(PRODUCT_OUT)/u-boot-$(strip $(2)).imx; \
 fi;

When building the Android images, save the log information of the build system. For example, execute the following
command:

$ make –j12 | tee make_android.txt

During the build process, the build system output information is also saved in make_android.txt.

After Android Auto images for i.MX 8QuadMax MEK and i.MX 8QuadXPlus MEK are built, the following image
files need to be signed.

Table 2. Image files for i.MX 8QuadMax and i.MX
8QuadXPlus

Image file Remark

spl-imx8qm.bin Two containers, one is signed by NXP, and one is
not signed.

Table continues on the next page...

Customization work on i.MX Android Security Features

i.MX Android™ Security User's Guide, Rev. P9.0.0_2.1.0-AUTO-ga, 04/2019

6 NXP Semiconductors

Table 2. Image files for i.MX 8QuadMax and i.MX 8QuadXPlus
(continued)

Image file Remark

bootloader-imx8qm.img One container, not signed.

u-boot-imx8qm-mek-uuu.imx Two containers, one is signed by NXP, and one is
not signed.

spl-imx8qxp.bin Two containers, one is signed by NXP, and one is
not signed.

bootloader-imx8qxp.img One container, not signed.

u-boot-imx8qxp-mek-uuu.imx Two containers, one is signed by NXP, and one is
not signed.

bootloader-imx8qm-xen.img One container, not signed.

In preceding files, spl-imx8q* and bootloader-imx8q*.img are flashed to the board. u-boot-imx8q*-mek-
uuu.imx is used by UUU.

For images to be flashed to boards, spl-imx8q*.bin is composed of two containers and one is signed by NXP. The
third container is in bootloader-imx8q*.img, so each file needs to be signed one time.

For images to be used by UUU, u-boot-imx8q*-mek-uuu.imx is composed of two containers and one is signed by
NXP, so it needs to be signed one time.

5. Get the layout information of containers in a file.
For make_android.txt newly generated, execute the following command:

 $ grep "CST: CONTAINER" ./make_android.txt
 CST: CONTAINER 0 offset: 0x0
 CST: CONTAINER 0: Signature Block: offset is at 0x190
 CST: CONTAINER 0 offset: 0x400
 CST: CONTAINER 0: Signature Block: offset is at 0x610
 CST: CONTAINER 0 offset: 0x0
 CST: CONTAINER 0: Signature Block: offset is at 0x190
 CST: CONTAINER 0 offset: 0x400
 CST: CONTAINER 0: Signature Block: offset is at 0x610
 CST: CONTAINER 0 offset: 0x0
 CST: CONTAINER 0: Signature Block: offset is at 0x90
 CST: CONTAINER 0 offset: 0x0
 CST: CONTAINER 0: Signature Block: offset is at 0x190
 CST: CONTAINER 0 offset: 0x400
 CST: CONTAINER 0: Signature Block: offset is at 0x610
 CST: CONTAINER 0 offset: 0x400
 CST: CONTAINER 0: Signature Block: offset is at 0x590
 CST: CONTAINER 0 offset: 0x400
 CST: CONTAINER 0: Signature Block: offset is at 0x610

There are 18 lines of output. Every two lines describe one container constructed in the build process. Nine containers
are constructed when buiding an Android Auto image.

This output is related to the makefile variable "TARGET_BOOTLOADER_CONFIG" defined in ${MY_ANDROID}/
device/fsl/imx8q/mek_8q/BoardConfig.mk. From this file, the final value of this variable for Android Auto
with Cortex-M4 image is:

 imx8qm:imx8qm_mek_androidauto_trusty_defconfig \
 imx8qxp:imx8qxp_mek_androidauto_trusty_defconfig \
 imx8qm-xen:imx8qm_mek_androidauto_xen_dual_defconfig \
 imx8qm-xen-dom0:imx8qm_mek_spl_defconfig \
 imx8qm-mek-uuu:imx8qm_mek_android_uuu_defconfig \
 imx8qxp-mek-uuu:imx8qxp_mek_android_uuu_defconfig

Customization work on i.MX Android Security Features

i.MX Android™ Security User's Guide, Rev. P9.0.0_2.1.0-AUTO-ga, 04/2019

NXP Semiconductors 7

There are six targets. The table below lists the files generated and the number of containers constructed when building
each of these targets. The offset information of containers in these files corresponds to the preceding Android build
system output information except "u-boot-imx8qm-xen-dom0.imx". Other files are direct output of "mkimage_imx8"
while "u-boot-imx8qm-xen-dom0.imx" is not, so the corresponding lines of the offset output does not represent the real
offset of the containers. This has no impact on customers who do not use XEN.

Table 3. Files generated and constructed container
number

Target File(s) generated Constructed container number

imx8qm bootloader-imx8qm.img

spl-imx8qm.bin

2

imx8qxp bootloader-imx8qxp.img

spl-imx8qxp.bin

2

imx8qm-xen bootloader-imx8qm-xen.img

spl-imx8qm-xen.bin

1

imx8qm-xen-dom0 u-boot-imx8qm-xen-dom0.imx 2

imx8qm-mek-uuu u-boot-imx8qm-mek-uuu.imx 1

imx8qxp-mek-uuu u-boot-imx8qxp-mek-uuu.imx 1

Then you can get the container offset information for each file to be signed as listed in the following table.

Table 4. Container offset
information

Files having container to be signed Container offset in the file Container signature block offset

bootloader-imx8qm.img 0x0 0x190

spl-imx8qm.bin 0x400 0x610

bootloader-imx8qxp.img 0x0 0x190

spl-imx8qxp.bin 0x400 0x610

u-boot-imx8qm-mek-uuu.imx 0x400 0x590

u-boot-imx8qxp-mek-uuu.imx 0x400 0x610

6. Sign the image files.

Copy the files to be signed to the directory of release/linux64/bin/ in Code Signing Tool (CST) directory. The
binary file named cst is used to sign these files. This cst needs the CSF description file to be as an input file when it is
executed. CSF examples are in the directory of ${MY_ANDROID}/vendor/nxp-opensource/uboot-
imx/doc/imx/ahab/csf_examples/. We copy one cst_uboot_atf.txt to CST release/linux64/bin/.

Make some changes to cst_uboot_atf.txt just copied based on the image to sign. For example, sign u-boot-
imx8qm-mek-uuu.imx. The modification is as follows:

 @@ -4,9 +4,9 @@ Version = 1.0

 [Install SRK]
 # SRK table generated by srktool
 -File = "../crts/SRK_1_2_3_4_table.bin"
 +File = "../../crts/SRK_1_2_3_4_table.bin"
 # Public key certificate in PEM format on this example only using SRK key

Customization work on i.MX Android Security Features

i.MX Android™ Security User's Guide, Rev. P9.0.0_2.1.0-AUTO-ga, 04/2019

8 NXP Semiconductors

 -Source = "../crts/SRK1_sha384_secp384r1_v3_usr_crt.pem"
 +Source = "../../crts/SRK1_sha384_secp384r1_v3_usr_crt.pem"
 # Index of the public key certificate within the SRK table (0 .. 3)
 Source index = 0
 # Type of SRK set (NXP or OEM)
 @@ -16,6 +16,6 @@ Revocations = 0x0

 [Authenticate Data]
 # Binary to be signed generated by mkimage
 -File = "u-boot-atf-container.img"
 +File = "u-boot-imx8qm-mek-uuu.imx"
 # Offsets = Container header Signature block (printed out by mkimage)
 -Offsets = 0x0 0x110
 +Offsets = 0x400 0x590

Then execute the command below:

 $./cst -i cst_uboot_atf.txt -o signed-u-boot-imx8qm-mek-uuu.imx

With preceding command successfully executed, signed-u-boot-imx8qm-mek-uuu.imx is generated. Copy it back
to the output directory, and change its name as before, since uuu_imx_android_flash script flashes images based on
their names.

Based on the description of signing u-boot-imx8qm-mek-uuu.imx, sign all the other images that need to be signed.

Images are signed now. When booting with signed images, SRK table embedded in the image file is used to verify the
signature. Embedded SRK table is verified based on its hash value. The hash value is programed in OTP efuse in i.MX
chips, so it is not tempered by others. Perform the following steps to fuse the SRK hash value.

7. Dump the SRK hash value.
Change the directory to release/crts/ in Code Signing Tool (CST). Execute the following command to dump the
SRK hash value:

 $ od -t x4 SRK_1_2_3_4_fuse.bin
 0000000 d436cc46 8ecccda9 b89e1601 5fada3db
 0000020 d454114a b6cd51f4 77384870 c50ee4b2
 0000040 a27e5132 eba887cf 592c1e2b bb501799
 0000060 ee702e07 cf8ce73e fb55e2d5 eba6bbd2

8. Use the U-Boot fuse command to fuse the hash value to a chip.

Because the fuse command is removed from U-Boot for Android Auto images to shorten the boot time, we use UUU to
load the U-Boot used by UUU to RAM, and then use the fuse command.

Change the board to serial download mode, and execute the following command to download U-Boot to RAM. It then
enters fastboot mode.

For i.MX 8QuadMax, it is as follows:

 $ sudo ./uuu_imx_android_flash.sh -f imx8qm -i

For i.MX 8QuadXPlus, it is as follows:

 $ sudo ./uuu_imx_android_flash.sh -f imx8qxp -i

With the commands above executed, U-Boot used by UUU under the current working directory is loaded to RAM on
board and it enters fastboot mode.

On the U-Boot console, it shows that U-Boot is in fastboot mode. Press "CTRL+C" to exit fastboot mode and enter U-
Boot command mode.

For i.MX 8QuadMax, execute the following commands on the U-Boot console:

 => fuse prog 0 722 0xd436cc46
 => fuse prog 0 723 0x8ecccda9
 => fuse prog 0 724 0xb89e1601
 => fuse prog 0 725 0x5fada3db
 => fuse prog 0 726 0xd454114a

Customization work on i.MX Android Security Features

i.MX Android™ Security User's Guide, Rev. P9.0.0_2.1.0-AUTO-ga, 04/2019

NXP Semiconductors 9

 => fuse prog 0 727 0xb6cd51f4
 => fuse prog 0 728 0x77384870
 => fuse prog 0 729 0xc50ee4b2
 => fuse prog 0 730 0xa27e5132
 => fuse prog 0 731 0xeba887cf
 => fuse prog 0 732 0x592c1e2b
 => fuse prog 0 733 0xbb501799
 => fuse prog 0 734 0xee702e07
 => fuse prog 0 735 0xcf8ce73e
 => fuse prog 0 736 0xfb55e2d5
 => fuse prog 0 737 0xeba6bbd2

For i.MX 8QuadXPlus, execute the following commands on the U-Boot console:

 => fuse prog 0 730 0xd436cc46
 => fuse prog 0 731 0x8ecccda9
 => fuse prog 0 732 0xb89e1601
 => fuse prog 0 733 0x5fada3db
 => fuse prog 0 734 0xd454114a
 => fuse prog 0 735 0xb6cd51f4
 => fuse prog 0 736 0x77384870
 => fuse prog 0 737 0xc50ee4b2
 => fuse prog 0 738 0xa27e5132
 => fuse prog 0 739 0xeba887cf
 => fuse prog 0 740 0x592c1e2b
 => fuse prog 0 741 0xbb501799
 => fuse prog 0 742 0xee702e07
 => fuse prog 0 743 0xcf8ce73e
 => fuse prog 0 744 0xfb55e2d5
 => fuse prog 0 745 0xeba6bbd2

Now, images are signed and SRK hash value is fused. The images can be flashed to boards. For how to flash i.MX
Android images, see the Android™ Release Notes (ARN).

The chip is now in open stage, and verification failure does not block the boot process. To make sure that SRK hash
value is correctly fused and images are correctly signed, check the SECO event during boot. After
"CONFIG_AHAB_BOOT" is enabled in the defconfig file of U-Boot, use a U-Boot command to check the SECO
events. After images are signed and SRK hash value is programed, boot the board to U-Boot command mode. On the
U-Boot console, execute the following command:

 => ahab_status

If preceding command outputs the SECO event, use the following code to check whether it is related to AHAB
verification.

 0x0087EE00 = The container image is not signed.
 0x0087FA00 = The container image was signed with wrong key that is not matching
the OTP SRK hashes.

For example, if the SRK hash value is programed, but images are not signed, after ahab_status is executed, the
following prompt is displayed on the console:

 => ahab_status

 Lifecycle: 0x0020, NXP closed

 SECO Event[0] = 0x0087EE00
 CMD = AHAB_AUTH_CONTAINER_REQ (0x87)
 IND = AHAB_NO_AUTHENTICATION_IND (0xEE)

 SECO Event[1] = 0x0087EE00
 CMD = AHAB_AUTH_CONTAINER_REQ (0x87)
 IND = AHAB_NO_AUTHENTICATION_IND (0xEE)

After it is confirmed that the SRK hash value is correctly fused, and signed images do not cause AHAB related SECO
events, execute the following command on the U-Boot console to close the chip:

Customization work on i.MX Android Security Features

i.MX Android™ Security User's Guide, Rev. P9.0.0_2.1.0-AUTO-ga, 04/2019

10 NXP Semiconductors

 => ahab_close

Note that this close operation is irreversible to the chips and the closed chips does not boot up if AHAB verification
fails.

3.2 Configurations on TEE

3.2.1 Memory region configuration in ATF
The TEE binary is loaded to DRAM at the address of $BL32_BASE by SPL. By default, the load address $BL32_BASE is
defined as 0xFE000000. It is specified during the process of generating the bootloader image with imx-mkimage. For
example, you can specify the load address as 0xFF000000 for i.MX 8Quad Max and i.MX 8QuadXPlus in ${MY_ANDROID}/
vendor/nxp-opensource/imx-mkimage as follows:

 diff --git a/iMX8QM/soc.mak b/iMX8QM/soc.mak
 index 355851e..fe70191 100644
 --- a/iMX8QM/soc.mak
 +++ b/iMX8QM/soc.mak
 @@ -82,7 +82,7 @@ u-boot-atf-container.img: bl31.bin u-boot-hash.bin
 fi
 if [-f "tee.bin"]; then \
 if [$(shell echo $(ROLLBACK_INDEX_IN_CONTAINER))]; then \
 - ./$(MKIMG) -soc QM -sw_version $(ROLLBACK_INDEX_IN_CONTAINER) -rev B0 -c -
ap bl31.bin a53 0x80000000 -ap u-boot-hash.bin a53 0x80020000 -ap tee.bin a53 0xFE000000 -
out u-boot-atf-container.img; \
 + ./$(MKIMG) -soc QM -sw_version $(ROLLBACK_INDEX_IN_CONTAINER) -rev B0 -c -
ap bl31.bin a53 0x80000000 -ap u-boot-hash.bin a53 0x80020000 -ap tee.bin a53 0xFF000000 -
out u-boot-atf-container.img; \
 else \
 ./$(MKIMG) -soc QM -rev B0 -c -ap bl31.bin a53 0x80000000 -ap u-boot-hash.bin
a53 0x80020000 -ap tee.bin a53 0xFE000000 -out u-boot-atf-container.img; \
 fi; \
 diff --git a/iMX8QX/soc.mak b/iMX8QX/soc.mak
 index 56422e0..d917dc3 100644
 --- a/iMX8QX/soc.mak
 +++ b/iMX8QX/soc.mak
 @@ -73,7 +73,7 @@ u-boot-atf.itb: u-boot-hash.bin bl31.bin
 u-boot-atf-container.img: bl31.bin u-boot-hash.bin
 if [-f tee.bin]; then \
 if [$(shell echo $(ROLLBACK_INDEX_IN_CONTAINER))]; then \
 - ./$(MKIMG) -soc QX -sw_version $(ROLLBACK_INDEX_IN_CONTAINER) -rev B0 -c -
ap bl31.bin a35 0x80000000 -ap u-boot-hash.bin a35 0x80020000 -ap tee.bin a35 0xFE000000 -
out u-boot-atf-container.img; \
 + ./$(MKIMG) -soc QX -sw_version $(ROLLBACK_INDEX_IN_CONTAINER) -rev B0 -c -
ap bl31.bin a35 0x80000000 -ap u-boot-hash.bin a35 0x80020000 -ap tee.bin a35 0xFF000000 -
out u-boot-atf-container.img; \
 else \
 ./$(MKIMG) -soc QX -rev B0 -c -ap bl31.bin a35 0x80000000 -ap u-boot-
hash.bin a35 0x80020000 -ap tee.bin a35 0xFE000000 -out u-boot-atf-container.img; \
 fi; \

After loading the TEE binary to DRAM, the ATF tries to kick it at the address of $BL32_BASE with the size of $BL32_SIZE,
which are defined in ${MY_ANDROID}/vendor/nxp-opensource/arm-trusted-firmware/plat/imx/$(PLAT)/
include/platform_def.h. By default, $BL32_BASE is defined as 0xFE000000 and $BL32_SIZE is 0x02000000, but you
can configure them as needed. For example, $BL32_BASE can be configured as 0xFF000000 and $BASE_SIZE can be
configured as 0x03000000 for i.MX 8Quad Max and i.MX 8QuadXPlus as follows:

 diff --git a/plat/imx/imx8qm/include/platform_def.h b/plat/imx/imx8qm/include/
platform_def.h
 index b305bfc..6f9f7d4 100644

Customization work on i.MX Android Security Features

i.MX Android™ Security User's Guide, Rev. P9.0.0_2.1.0-AUTO-ga, 04/2019

NXP Semiconductors 11

 --- a/plat/imx/imx8qm/include/platform_def.h
 +++ b/plat/imx/imx8qm/include/platform_def.h
 @@ -37,8 +37,8 @@
 #define BL31_LIMIT 0x80020000

 #ifdef TEE_IMX8
 -#define BL32_BASE 0xfe000000
 -#define BL32_SIZE 0x02000000
 +#define BL32_BASE 0xff000000
 +#define BL32_SIZE 0x03000000
 #define BL32_SHM_SIZE 0x00400000
 #define BL32_LIMIT 0x100000000
 #endif
 diff --git a/plat/imx/imx8qxp/include/platform_def.h b/plat/imx/imx8qxp/include/
platform_def.h
 index 24eacc2..cfc0717 100644
 --- a/plat/imx/imx8qxp/include/platform_def.h
 +++ b/plat/imx/imx8qxp/include/platform_def.h
 @@ -33,8 +33,8 @@
 #define BL31_LIMIT 0x80020000

 #ifdef TEE_IMX8
 -#define BL32_BASE 0xfe000000
 -#define BL32_SIZE 0x02000000
 +#define BL32_BASE 0xff000000
 +#define BL32_SIZE 0x03000000
 #define BL32_SHM_SIZE 0x00400000
 #define BL32_LIMIT 0x100000000
 #define PLAT_TEE_IMAGE_OFFSET 0x84000000

The following table lists the recommended $BL32_BASE and $BL32_SIZE for DRAM with different sizes on the i.MX
8Quad platform:

Table 5. Recommended $BL32_BASE and $BL32_SIZE for DRAM

DRAM Size (GB) $BL32_BASE $BL32_SIZE

6 0xFE000000 0x02000000

4 0xFE000000 0x02000000

3 0xFE000000 0x02000000

2 0xFE000000 0x02000000

1 0xBE000000 0x02000000

3.2.2 Basic file and folder construction for Trusty OS
i.MX Trusty OS provides a fully security solution for Android platform and Android Automotive platform. It also provides a
set of development APIs for customer to develop their own TAs.

Trusty OS is based on LittleKernel. i.MX Trusty OS has the following basic file structure.

Table 6. Basic file structure of i.MX Trusty OS

Folder name Folder description

trusty/device/nxp/imx8 This folder contains the script files. Most of the configurations for the build target
are defined in this folder, including project configuration files.

The Makefile configurations, board configurations, and modules need to be built.

Table continues on the next page...

Customization work on i.MX Android Security Features

i.MX Android™ Security User's Guide, Rev. P9.0.0_2.1.0-AUTO-ga, 04/2019

12 NXP Semiconductors

Table 6. Basic file structure of i.MX Trusty OS (continued)

Folder name Folder description

trusty/hardware/nxp/app NXP specific TA source code folder. Currently the hwcrypto TA located in this
folder that provides security functions depends on the i.MX SoC hardware.

trusty/hardware/nxp/target NXP reference board target folder. Only rules.mk for the build target in this
folder, platform name, and UART information are defined in this file.

trusty/hardware/nxp/platform/imx NXP SoC specific source codes for Trusty OS. All i.MX SoCs share these codes. It
includes platform initialization codes, UART drivers, and registers map definitions.

trusty/kernel/lib Trusty OS core codes including secure monitor calls management, TIPC/QL-TIPC
stack.

external/lk LittleKernel codes, including all LittleKernel modules like arch codes, interrupt
management, task management, and SMP support.

trusty/user/app Trusty OS TAs are placed here, including AVB, Gatekeeper, and Keymaster user
space source codes.

For TAs implementation, see Google Trusty OS reference webpage: https://source.android.com/security/trusty/trusty-ref.

3.2.3 Applying new build target in Trusty OS
By default, NXP already provides i.MX 8QuadMax/8QuadXPlus and i.MX 8M Mini/8M Quad series template in the i.MX
Trusty OS. To add a new platform based on i.MX 8QuadMax/8QuadXPlus or i.MX 8M Mini/8M Quad, add or modify the
following file or modules.

In ${MY_TRUSTY}/trusty/device/nxp/imx8/project, imx8-inc.mk contains all common configurations, such as
CPU cores, modules that need to be built. The imx8-inc.mk can be overwritten by the build target mk files, such as
imx8qm.mk.

For example, to add a new build target based on i.MX 8QuadMax SoC called imx8qm-abc, which has six CPUs and 1024
RPMB blocks, write a new .mk file called imx8qm-abc.mk in ${MY_TRUSTY}trusty/device/nxp/imx8/project. The
content is as follows:

 TARGET := imx8q

 # imx8q/x use lpuart for UART IP
 IMX_USE_LPUART := true

 SMP_MAX_CPUS := 6
 STORAGE_RPMB_BLOCK_COUNT := 1024
 include project/imx8-inc.mk

In the root of Trusty OS codes, execute $make list. Then imx8qm-abc is displayed.

3.2.4 Adding unit tests in Trusty OS and adding CAAM self-tests in
Trusty OS

Trusty OS supports two unit tests to test the functionality of Trusty IPC (TIPC) and CAAM. It is only for debug purpose and
should not be released with the open unit tests. For i.MX 8QuadMax and i.MX 8QuadXPlus, to include these unit tests, make
the following changes in ${MY_TRUSTY}/trusty/device/nxp/imx8/project:

 diff --git a/project/imx8-inc.mk b/project/imx8-inc.mk
 index 681a223..e7dcfdb 100644
 --- a/project/imx8-inc.mk

Customization work on i.MX Android Security Features

i.MX Android™ Security User's Guide, Rev. P9.0.0_2.1.0-AUTO-ga, 04/2019

NXP Semiconductors 13

https://source.android.com/security/trusty/trusty-ref

 +++ b/project/imx8-inc.mk
 @@ -70,6 +70,7 @@ GLOBAL_DEFINES += APP_STORAGE_RPMB_BLOCK_COUNT=$
(STORAGE_RPMB_BLOCK_COUNT)

 GLOBAL_DEFINES += \
 WITH_LIB_VERSION=1 \
 + WITH_CAAM_SELF_TEST=1 \

 # ARM suggest to use system registers to access GICv3/v4 registers
 GLOBAL_DEFINES += ARM_GIC_USE_SYSTEM_REG=1
 @@ -98,6 +99,8 @@ TRUSTY_ALL_USER_TASKS := \
 trusty/user/app/keymaster \
 trusty/user/app/gatekeeper \
 trusty/user/app/storage \
 + trusty/user/app/sample/ipc-unittest/main \
 + trusty/user/app/sample/ipc-unittest/srv \

 # This project requires trusty IPC
 WITH_TRUSTY_IPC := true

Rebuild the Trusty OS and copy the output binary to ${MY_ANDROID}/vendor/nxp/fsl-proprietary/uboot-
firmware/imx8q_car. Make the following changes to build out the TIPC test binary:

 diff --git a/imx8q/mek_8q/mek_8q_car.mk b/imx8q/mek_8q/mek_8q_car.mk
 index 6acc89a..19e8e24 100644
 --- a/imx8q/mek_8q/mek_8q_car.mk
 +++ b/imx8q/mek_8q/mek_8q_car.mk
 @@ -59,7 +59,8 @@ PRODUCT_PACKAGES += \
 # Add Trusty OS backed gatekeeper and secure storage proxy
 PRODUCT_PACKAGES += \
 gatekeeper.trusty \
 - storageproxyd
 + storageproxyd \
 + tipc-test

Rebuild the Android project, the TIPC test binary is located at ${MY_ANDROID}/out/target/product/mek_8q/data/
nativetest64/vendor/tipc-test/tipc-test. Flash the images to board, and remount and push the tipc-test binary
to /vendor/bin with ADB commands.

Trusty OS runs the CAAM unit test when initializing the CAAM. The following logs are displayed in U-Boot if the CAAM
is initialized correctly:

 hwcrypto: 222: Initializing
 caam_drv: 728: caam hwrng test PASS!!!
 caam_drv: 761: caam blob test PASS!!!
 caam_drv: 843: caam gen kdf root key test PASS!!!
 caam_drv: 793: caam AES enc test PASS!!!
 caam_drv: 802: caam AES enc test PASS!!!
 caam_drv: 830: caam hash test PASS!!!

If the TIPC unit test is started correctly, the following logs are displayed in U-Boot:

 ipc-unittest-main: 2607: Welcome to IPC unittest!!!
 unittest: 144: added port com.android.ipc-unittest.ctrl handle, 1001, to handleset 1000
 unittest: 148: waiting forever
 ipc-unittest-srv: 318: Init unittest services!!!

Run the following commands to test the TIPC. The correct result is as follows:

 mek_8q:/vendor/bin # tipc-test -t connect
 connect_test: repeat = 1
 connect_test: done
 mek_8q:/vendor/bin # tipc-test -t connect_foo
 connect_foo: repeat = 1
 connect_foo: done
 mek_8q:/vendor/bin # tipc-test -t echo -r 100
 echo_test: repeat 100: msgsz 32: variable false
 echo_test: done

Customization work on i.MX Android Security Features

i.MX Android™ Security User's Guide, Rev. P9.0.0_2.1.0-AUTO-ga, 04/2019

14 NXP Semiconductors

 mek_8q:/vendor/bin # tipc-test -t echo -r 1000
 echo_test: repeat 1000: msgsz 32: variable false
 echo_test: done

3.2.5 Modifying the console port for Trusty OS
Due to different hardware board designs, the debug UART may be different. i.MX Trusty OS supports to configure a
different UART port by modifying the configuration file.

To change the debug UART port, see the SoC reference manual to get the specific UART port base address. The debug
UART address are defined in trusty/hardware/nxp/target/$SOC_NAME/rules.mk.

For example, if LPUART1 is used instead of LPUART0 for i.MX 8QuadMax board, make the following modification on
rules.mk:

 diff --git a/target/imx8q/rules.mk b/target/imx8q/rules.mk
 index e6239e2..8ea3f37 100644
 --- a/target/imx8q/rules.mk
 +++ b/target/imx8q/rules.mk
 @@ -25,4 +25,4 @@
 PLATFORM_SOC := imx8qm
 PLATFORM := imx

 -CONFIG_CONSOLE_TTY_BASE := 0x5A060000
 +CONFIG_CONSOLE_TTY_BASE := 0x5A070000

3.2.6 Configuring the related TA services
The Trusted Application (TA) is the software running in a secure context. There are several TAs running in the Trusty OS.
The following figure shows their relationships.

Figure 3. Relationship between TAs

Customization work on i.MX Android Security Features

i.MX Android™ Security User's Guide, Rev. P9.0.0_2.1.0-AUTO-ga, 04/2019

NXP Semiconductors 15

• AVB TA: It provides tamper proof operations for data used during Android Verified Boot (AVB), such as rollback
index, lock/unlock state, and vbmeta public key.

• Storage TA: It provides encrypted and tamper proof storage to secure applications, such as AVB TA. All operations
that modify the secure storage are transactional.

• Hardware Crypto TA: It provides hardware crypto and accelerates operations based on CAAM, such as RNG
generation and SHA1/SHA256 hash calculation.

• Keymaster TA: It provides all secure Keystore operations, with access to the raw key material, validating all of the
access control conditions on keys.

• Gatekeeper TA: It authenticates user passwords and generates authentication tokens used to prove to the Keymaster TA
that an authentication is done for a particular user at a particular point in time.

3.3 Configurations in U-Boot for security
U-Boot is loaded by SPL and verified with HAB. ATF starts U-Boot. The primary purpose of U-Boot is to load and verify
Android images.

3.3.1 Overview of security features in U-Boot
Android Verified Boot (AVB) is enabled in i.MX Android images. There is an additional vbmeta image used in AVB. This
vbmeta image does not contain any code that the device will execute. It is used by U-Boot to authenticate its own and other
Android images. The other images to be authenticated with the vbmeta image include images for boot, dtbo, system, and
vendor partitions. The hash value of these images is calculated and the metadata is stored in the vbmeta image. The following
figure shows the relationship of these images.

Figure 4. Relationship between vbmeta image and related images

To make sure that the vbmeta image is trusted, it is signed with the RSA key, and the signature of the vbmeta image is
verified at boot time.

To prevent rollback attack, there is a rollback index value stored in the vbmeta image. The value can increase with the release
of images. This rollback index value in the vbmeta image is also saved in the RPMB partition of eMMC after all the images
are verified as bootable. If the rollback index value in the vbmeta image is smaller than the one stored in the RPMB partition
of eMMC, U-Boot does not boot with the related images. With dual bootloader enabled, SPL and U-Boot proper is not in one
file, so there is another rollback index value for U-Boot proper.

To prevent the device from getting bricked during OTA, a/b slot feature is provided. Some partitions used to store images
have two copies in the boot device. They are called "slot a" and "slot b". The image update process only flashes one slot.
Update failure does not affect the other slot.

Customization work on i.MX Android Security Features

i.MX Android™ Security User's Guide, Rev. P9.0.0_2.1.0-AUTO-ga, 04/2019

16 NXP Semiconductors

3.3.2 Generating and fusing the eMMC RPMB key
The RPMB partition of eMMC can be fused with the 256-bit secure key. This secure key also needs to be saved in the format
that only TEE can parse it, so TEE can use this key to communicate with RPMB. This 256-bit secure key is used to sign and
verify data transferred between eMMC RPMB and TEE.

The RPMB key can only be programed one time. The saved copy of RPMB key is encapsulated with CAAM, and CAAM
uses the value in efuse hardware. If the SRK hash value needs to be programmed into efuse hardware and close the chips, do
it first, and only after that can RPMB key be programmed.

Two ways are provided to set the RPMB key:
• Manually specify a 256-bit key and program it.

a. A file contains the key needs to be generated. In the default key file "rpmb_key_test.bin", all 256 bits are zero. It
can be generated with the following commands:

 $ touch rpmb_key.bin
 $ echo –n "RPMB" > rpmb_key.bin
 $ echo –n -e
'\x00\x0
0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' >> rpmb_key.bin

The '\xHH' means 8-bit character whose value is the hexadecimal value 'HH'. You can replace above "00" with
the key you want to set.

b. Program the key with the file just generated.
c. Make the board enter fastboot mode, and then execute the following commands on the host side:

 $ fastboot stage rpmb_key.bin
 $ fastboot oem set-rpmb-key

• Program a random key.
Make the board enter fastboot mode, and then execute the following commands on the host side:

 $ fastboot oem set-rpmb-random-key

After the RPMB key is programed with either of the two ways, reboot the board. The RPMB service in Trusty OS is then
initialized successfully.

The two ways above program the key to eMMC fuse. A key blob is generated base on the key value and the blob is saved for
TEE to use. In the default condition, this key blob is saved in the 16383rd block of BOOT1 partition in eMMC for i.MX
8QuadMax and i.MX 8QuadXPlus. The BOOT1 partition size of eMMC on i.MX 8QuadMax and i.MX 8QuadXPlus is 8
MB. The key blob is in the last block in BOOT1 partition. To prevent key blob from being tampered when the system is
running, BOO1 partition is set with power-on write protection when the board boots up.

The location to store the key blob may need to be changed based on the board design. Two macros are used to control the
location of the key blob. The two macros are the same for i.MX 8QuadMax and i.MX 8QuadXPlus. Their definitions are as
follows:

 #define KEYSLOT_HWPARTITION_ID 2
 #define KEYSLOT_BLKS 0x3FFF

"KEYSLOT_HWPARTITION_ID" represents the eMMC partition. 0 means USERDATA partition, 1 means BOOT0
partition, and 2 means BOOT1 partition. "KEYSLOT_BLKS" represents the block in which the key blob is stored. 0x3FFF
equals to 16383 mentioned above. The definition of "KEYSLOT_BLKS" may need to change based on the eMMC capacity
on customized boards.

For i.MX 8QuadMax, they are in the following file:

 ${MY_ANDROID}/vendor/nxp-opensource/uboot-imx/include/configs/imx8qm_mek_android_auto.h

For i.MX 8QuadXPlus, they are in the following file:

Customization work on i.MX Android Security Features

i.MX Android™ Security User's Guide, Rev. P9.0.0_2.1.0-AUTO-ga, 04/2019

NXP Semiconductors 17

 ${MY_ANDROID}/vendor/nxp-opensource/uboot-imx/include/configs/imx8qxp_mek_android_auto.h

3.3.3 Generating AVB key to sign and verify images
The vbmeta image is signed during the time of building Android platform. By default, it is signed with a test private key as
follows:

 ${MY_ANDROID}/device/fsl/common/security/testkey_rsa4096.pem

Its corresponding public key is:

 ${MY_ANDROID}/device/fsl/common/security/testkey_public_rsa4096.bin.

The default algorithm used to sign the image is "SHA256_RSA4096".

The private key can be generated with openssl. For example, the following command can generate RSA-4096 private key
test_rsa4096_private.pem:

 openssl genpkey -algorithm RSA -pkeyopt rsa_keygen_bits:4096 -outform PEM -out
custom_rsa4096_private.pem

The corresponding public key can be extracted from the private key with avbtool. The avbtool can be found in $
{MY_ANDROID}/external/avb. Execute the following command to extract the public key from the private key:

 avbtool extract_public_key --key custom_rsa4096_private.pem --output
custom_rsa4096_public.bin

"SHA256_RSA4094" is recommended for i.MX 8QuadMax/8QuadXPlus, whose Cryptographic Acceleration and Assurance
Module (CAAM) can help accelerate the hash calculation. We can keep it as default.

To use the private key just generated to sign the vbmeta image, make the following changes on the repository in $
{MY_ANDROID}/device/fsl.

 diff --git a/imx8q/mek_8q/BoardConfig.mk b/imx8q/mek_8q/BoardConfig.mk
 index 8e367bb..e1385f9 100644
 --- a/imx8q/mek_8q/BoardConfig.mk
 +++ b/imx8q/mek_8q/BoardConfig.mk
 @@ -207,7 +207,7 @@ BOARD_AVB_ENABLE := true
 ifeq ($(PRODUCT_IMX_CAR),true)
 BOARD_AVB_ALGORITHM := SHA256_RSA4096
 # The testkey_rsa4096.pem is copied from external/avb/test/data/testkey_rsa4096.pem
 -BOARD_AVB_KEY_PATH := device/fsl/common/security/testkey_rsa4096.pem
 +BOARD_AVB_KEY_PATH := ${your-key-directory}/custom_rsa4096_private.pem
 endif
 TARGET_USES_MKE2FS := true

To enable U-Boot to verify image signature with the public key just generated, save the public key in TEE backed RPMB for
Android Auto platform. Make the board enter fastboot mode, and execute the following commands:

 $ fastboot stage custom_rsa4096_public.bin
 $ fastboot oem set-public-key

custom_rsa4096_public.bin is the public key just generated. If there is no change made to the private key used to sign
vbmeta image, you still need to store the default public key with the following commands:

 $ fastboot oem set-public-key

Customization work on i.MX Android Security Features

i.MX Android™ Security User's Guide, Rev. P9.0.0_2.1.0-AUTO-ga, 04/2019

18 NXP Semiconductors

3.3.4 Bypass vbmeta/lock check for development purpose
Bypass vbmeta/lock check can bring much convenience to development work. To unlock the device after all images are
flashed, boot the board to Android UI, enable "Developer options" in the "Settings" Application, open "OEM unlocking"
under "Developer options", and reboot the board to fastboot mode. Execute the following command:

 $ sudo fastboot oem unlock

After the board is unlocked, images can be flashed with fastboot command. To bypass vbmeta check, use fastboot to flash the
vbmeta image with the "--disable-verity" option. Take i.MX 8QuadMax as an example, execute the following commands:

 $ sudo fastboot flash vbmeta_a vbmeta-imx8qm.img --disable-verity
 $ sudo fastboot flash vbmeta_b vbmeta-imx8qm.img --disable-verity

3.3.5 Changing the value of the rollback index in images
There are two rollback index values in i.MX 8QuadMax and i.MX 8QuadXPlus Android Auto images after the dual-
bootloader feature is enabled. One is for the image that contains U-Boot proper, and one is for vbmeta images and other
images whose hash metadata is stored in the vbmeta image. In default condition, these two rollback index values are both
zero.

When a version of images is to be released to fix a bug in previous version that makes previous images under potential
attacks, it is recommended to increase the rollback index values by one compared to the previous version.

To change the rollback index value for the image that contains U-Boot proper, specify a variable named
"BOOTLOADER_RBINDEX" for the make command to build the images.

To change the rollback index value for vbmeta image and other related images, specify a variable named "AVB_RBINDEX"
for the make command to build the images.

For example, you can execute the following command to build Android images, change that $(avb_rbindex) and $
(bootloader_rbindex) to the value you want to set.

 make AVB_RBINDEX=$(avb_rbindex) BOOTLOADER_RBINDEX=$(bootloader_rbindex)

3.3.6 Programming the attestation key
Attestation key is programmed in U-Boot. The keystore key attestation aims to provide a way to strongly determine if an
asymmetric key pair is hardware-backed, what the properties of the key are, and what constraints are applied to its usage.

Google provides the attestation "keybox", which contains private keys (RSA and ECDSA) and the corresponding certificate
chains to partners from the Android Partner Front End (APFE). After retrieving the "keybox" from Google, you need to parse
the "keybox", provision the keys and certificates to secure storage. Both keys and certificates should be encoded with
Distinguished Encoding Rules (DER).

Fastboot commands are provided to provision the attestation keys and certificates. Make sure that the secure storage is
properly initialized for Trusty OS. Boot the board information fastboot mode and use the following commands:

• Set the RSA private key:

 $ fastboot stage ${path-to-rsa-private-key}
 $ fastboot oem set-rsa-atte-key

• Set the ECDSA private key:

 $ fastboot stage ${path-to-ecdsa-private-key}
 $ fastboot oem set-ec-atte-key

• Append the RSA certificate chain:

Customization work on i.MX Android Security Features

i.MX Android™ Security User's Guide, Rev. P9.0.0_2.1.0-AUTO-ga, 04/2019

NXP Semiconductors 19

 $ fastboot stage ${path-to-rsa-atte-cert}
 $ fastboot oem append-rsa-atte-cert

The second command may need to be executed multiple times to append the whole certificate chain.

• Append the ECDSA certificate chain:

 $ fastboot stage < path-to-ecdsa-cert >
 $ fastboot oem append-ec-atte-cert

The second command may need to be executed multiple times to append the whole certificate chain.

3.3.7 Changing the way to store lock status and/or rollback index
For images with TEE enabled, lock status and rollback index values are stored in RPMB. The rollback index value for AVB
is written/read by TEE into/from RPMB but the write/read process is initiated by U-Boot. For i.MX Android with dual-
bootloader feature, there is a rollback index for bootloader, this rollback index value for bootloader is written/read by SPL
into/from RPMB.

Rollback index values and lock status can be used for many purposes as designed by developers, not limited to the usage in
i.MX Android code. At this point, it is necessary to know how the lock status and rollback index values are stored on board.

For i.MX Android with dual-bootloader feature, the rollback index value for bootloader is read from RPMB to compare with
the one in the bootloader image. If the rollback index value is bigger than the one stored in RPMB and the images are verified
as bootable, rollback index value in bootloader image is written into RPMB. This logic is completed in the following
function:

 static int spl_verify_rbidx(struct mmc *mmc, AvbABSlotData *slot,
 struct spl_image_info *spl_image)

In the following file:

 ${MY_ANDROID}/vendor/nxp-opensource/uboot-imx/lib/avb/fsl/fsl_avb_ab_flow.c

For new boards just flashed with images, at their first time of boot, a default rollback index value is written in RPMB in the
following function:

 int rpmb_init(void)

In the following file:

 ${MY_ANDROID}/vendor/nxp-opensource/uboot-imx/lib/avb/fsl/fsl_avb_ab_flow.c

From the functions listed above, it is known that the rollback index value for bootloader is located by a kblb_hdr_t type
structure variable. This structure has a magic value. A member with the type of kblb_tag_t is used to specify the rollback
index value.

Now in i.MX Android Auto, the offset of the rollback index value for bootloader is controlled by a macro named
"BOOTLOADER_RBIDX_START" as defined in the following two files respectively for i.MX 8QuadMax and i.MX
8QuadXPlus.

 ${MY_ANDROID}/vendor/nxp-opensource/uboot-imx/include/configs/imx8qm_mek_android_auto.h
 ${MY_ANDROID}/vendor/nxp-opensource/uboot-imx/include/configs/imx8qxp_mek_android_auto.h

The value for "BOOTLOADER_RBIDX_START" is 0x3FF000, 4KB offset from the end of the RPMB partition.

The read process of the rollback index value for AVB is initiated by U-Boot in the following function:

 FbLockState fastboot_get_lock_stat(void)

In the following file:

Customization work on i.MX Android Security Features

i.MX Android™ Security User's Guide, Rev. P9.0.0_2.1.0-AUTO-ga, 04/2019

20 NXP Semiconductors

 ${MY_ANDROID}/vendor/nxp-opensource/uboot-imx/drivers/usb/gadget/fastboot_lock_unlock.c

For images with TEE enabled, this function invokes the following function. It uses TIPC to communicate with TEE to get the
value.

 int trusty_read_lock_state(uint8_t *lock_state)

The write process of the rollback index value for AVB is initiated by U-Boot in the following function:

 int fastboot_set_lock_stat(FbLockState lock)

In the following file:

 ${MY_ANDROID}/vendor/nxp-opensource/uboot-imx/drivers/usb/gadget/fastboot_lock_unlock.c

For images with TEE enabled, this function invokes the following function. It uses TIPC to communicate with TEE to save
the value.

 int trusty_write_lock_state(uint8_t lock_state)

Rollback index value for AVB is read to compare with the one in vbmeta image and the one in vbmeta image is saved into
RPMB if necessary. This logic is completed in the following function:

 AvbABFlowResult avb_flow_dual_uboot(AvbABOps* ab_ops,
 const char* const* requested_partitions,
 AvbSlotVerifyFlags flags,
 AvbHashtreeErrorMode hashtree_error_mode,
 AvbSlotVerifyData** out_data)

In the following file:

 ${MY_ANDROID}/vendor/nxp-opensource/uboot-imx/lib/avb/fsl/fsl_avb_ab_flow.c

The following two functions are invoked to read and store the rollback index for vbmeta:

 AvbIOResult fsl_read_rollback_index_rpmb(AvbOps* ops, size_t rollback_index_slot,
 uint64_t* out_rollback_index)

 AvbIOResult fsl_write_rollback_index_rpmb(AvbOps* ops, size_t rollback_index_slot,
 uint64_t rollback_index)

They finally communicate with TEE to finish the work.

3.3.8 Choosing to boot a specific slot
With both slots flashed with images, a specific slot can be chosen to boot manually for development purpose. Boot the board
into fastboot mode, and execute the following command to boot from "slot a" or "slot b":

 $ sudo fastboot set_active a
 $ sudo fastboot set_active b

3.3.9 Disabling development options in U-Boot
To facilitate development, some development options are set in U-Boot, which may bring in potential security holes. Before
shipping the final products, these options must be closed.

• Boot delay
By default, the U-Boot reserves 1 second count-down to help developer stop at U-Boot and run some U-Boot
commands. This can be disabled by setting CONFIG_BOOTDELAY to -2. For i.MX 8QuadMAX and i.MX 8QuadXPlus,
make the following changes:

Customization work on i.MX Android Security Features

i.MX Android™ Security User's Guide, Rev. P9.0.0_2.1.0-AUTO-ga, 04/2019

NXP Semiconductors 21

 diff --git a/configs/imx8qm_mek_androidauto_trusty_defconfig b/configs/
imx8qm_mek_androidauto_trusty_defconfig
 index 0a8c3cb..8150b2b 100644
 --- a/configs/imx8qm_mek_androidauto_trusty_defconfig
 +++ b/configs/imx8qm_mek_androidauto_trusty_defconfig
 @@ -40,7 +40,7 @@ CONFIG_USB_GADGET_DUALSPEED=y

 CONFIG_DM_GPIO=y
 CONFIG_DM_PCA953X=y
 -CONFIG_BOOTDELAY=1
 +CONFIG_BOOTDELAY=-2
 CONFIG_CMD_MMC=y
 CONFIG_DM_MMC=y
 CONFIG_MMC_IO_VOLTAGE=y
 diff --git a/configs/imx8qxp_mek_androidauto_trusty_defconfig b/configs/
imx8qxp_mek_androidauto_trusty_defconfig
 index 0611773..a424e31 100644
 --- a/configs/imx8qxp_mek_androidauto_trusty_defconfig
 +++ b/configs/imx8qxp_mek_androidauto_trusty_defconfig
 @@ -41,7 +41,7 @@ CONFIG_USB_GADGET_DUALSPEED=y

 CONFIG_DM_GPIO=y
 CONFIG_DM_PCA953X=y
 -CONFIG_BOOTDELAY=1
 +CONFIG_BOOTDELAY=-2
 CONFIG_CMD_MMC=y
 CONFIG_DM_MMC=y
 CONFIG_MMC_IO_VOLTAGE=y

• Bootargs appending
The bootargs may need to be changed frequently during development. NXP U-Boot supports appending the U-Boot
variable append_bootargs to the default bootargs, which will be passed to kernel. However, this feature can be used
by hackers to compromise the device and should be disabled in any formal release. To disable the bootargs appending
feature, you need to disable CONFIG_APPEND_BOOTARGS. For i.MX 8QuadMAX and i.MX 8QuadXPlus, make the
following changes:

 diff --git a/configs/imx8qm_mek_androidauto_trusty_defconfig b/configs/
imx8qm_mek_androidauto_trusty_defconfig
 index 0a8c3cb..bc6a97d 100644
 --- a/configs/imx8qm_mek_androidauto_trusty_defconfig
 +++ b/configs/imx8qm_mek_androidauto_trusty_defconfig
 @@ -120,4 +120,3 @@ CONFIG_NOT_UUU_BUILD=y
 CONFIG_SHA256=y
 CONFIG_SPL_MMC_WRITE=y
 CONFIG_DUAL_BOOTLOADER=y
 -CONFIG_APPEND_BOOTARGS=y
 diff --git a/configs/imx8qxp_mek_androidauto_trusty_defconfig b/configs/
imx8qxp_mek_androidauto_trusty_defconfig
 index 0611773..e501c40 100644
 --- a/configs/imx8qxp_mek_androidauto_trusty_defconfig
 +++ b/configs/imx8qxp_mek_androidauto_trusty_defconfig
 @@ -121,4 +121,3 @@ CONFIG_NOT_UUU_BUILD=y
 CONFIG_SHA256=y
 CONFIG_SPL_MMC_WRITE=y
 CONFIG_DUAL_BOOTLOADER=y
 -CONFIG_APPEND_BOOTARGS=y

3.4 Configurations in Linux/Android platform for security
features

Customization work on i.MX Android Security Features

i.MX Android™ Security User's Guide, Rev. P9.0.0_2.1.0-AUTO-ga, 04/2019

22 NXP Semiconductors

3.4.1 DM-Verity relationship with vbmeta
The Device Mapper verity (DM-verity) kernel feature supports transparent integrity checking of block devices. This feature
helps Android users be sure that when booting a device, it is in the same state as when it is flashed. The vbmeta image
contains a kernel command line descriptor for setting up DM-verity for system.img, together with hashtree descriptors for
system.img and vendor.img. The hash tree descriptor in the vbmeta image contains the root hash, salt and the offset of the
hashtree, which are essential to do the DM-verity check for system and vendor partitions.

When the DM-verity is enabled for system and vendor partition, any operations that break the consistency of the system.img,
vendor.img, and vbmeta.img will cause DM-verity check failure, and thus cause the system boot failure.

3.4.2 Configuration of the RSA keys for DM-verity
RSA keys are used to sign the DM_verity table to produce a table signature. When verifying a partition, the table signature is
validated first. This is done against a key on your boot image in a fixed location. Keys are typically included in /
verity_key.

The 2048-bit private RSA key that is used to sign the table is generated by OpenSSL, which is included in ${MY_ANDROID}/
build/target/product/security/verity_private_dev_key.

The RSA public key used for verification needs to be in mincrypt format. Converting an OpenSSL RSA public key to
mincrypt format requires some modular operations and is not simply a binary format conversion. You can convert the PEM
key using the pem2mincrypt tool. The public key is included in ${MY_ANDROID}/build/target/product/security/
verity_key.

You can change the default RSA key using the following commands:

 cd build/target/product/security/
 openssl genrsa -out verity_private_dev_key_tem 2048
 openssl pkcs8 -topk8 -inform PEM -in verity_private_dev_key_tem -
outverity_private_dev_key -outform PEM –nocrypt
 pem2mincrypt verity_private_dev_key_tem verity_key

NOTE
• Install libssl0.9.8 using the following command:

$sudo apt-get install libssl0.9.8
• The tool pem2mincrypt's source code is under https://github.com/nelenkov/verity.

3.4.3 Trusty OS Linux driver configuration
The Trusty OS supports to output the logs to UART or TIPC log channel. The Trusty OS Linux driver supports to carry the
logs from the Trusty OS by TIPC channel. By default, this feature is enabled in the reference image.

In the Trusty OS Linux driver trusty-log, when it is enabled, the Trusty OS shuts down the UART output log port. The
UART driver in the Trusty OS outputs characters synchronously and it costs much IO time.

The trusty-log driver are configured in the device tree as follows:

 trusty-log {
 compatible = "android,trusty-log-v1";
 };

Customization work on i.MX Android Security Features

i.MX Android™ Security User's Guide, Rev. P9.0.0_2.1.0-AUTO-ga, 04/2019

NXP Semiconductors 23

https://github.com/nelenkov/verity

3.4.4 Introductions of trusty based keymaster, gatekeeper, and
secure storage proxy

The trusty backed keymaster HAL is a dynamically loadable library used by the keystore service to provide hardware-backed
cryptographic services. It does not provide any sensitive operations in user space, or even in kernel space. All sensitive
operations are delegated to the keymaster TA in the Trusty OS (secure world). The relationship is shown in the following
figure.

Figure 5. Relationship between keymaster HAL and keymaster TA

The trusty backed keymaster HAL 3.0 is designed for Android Pie 9 or later, which can not work for Android Oreo 8.1.
Instead, the Android Oreo 8.1 is running trusty backed keymaster HAL 2.0.

The Gatekeeper subsystem performs device pattern/password authentication. It enrolls and verifies passwords through an
HMAC with a secret key. Additionally, the Gatekeeper throttles consecutive failed verification attempts and refuses to
service requests based on a given timeout and a given number of consecutive failed attempts. The trusty backed gatekeeper
sends all critical operations to the gatekeeper TA in trusty.

The secure storage proxy is running in the Linux end to communicate with the storage TA in trusty to perform secure storage
read/write operations, for example, reading/writing data from/to RPMB partition of the eMMC device.

Both trusty backed keymaster, gatekeeper, and secure storage proxy depend on secure storage, which can only be accessed by
trusty, but users may not want to set the secure storage properly (like the key of RPMB), because in some instance, security is
not so important and can even be neglected. In this case, both keymaster and gatekeeper fall back to software backed version,
and they are chosen by the androidboot.keystore variable in the kernel command line.

When the trusty and associated trusted applications (such as keymaster TA and storage TA) are initialized properly, U-Boot
sets androidboot.keystore to trusty, otherwise to software, and then passes it to the kernel through the kernel
command line. The androidboot.keystore is translated to ro.boot.keystore Android property, and then the
initialization program chooses the keymaster and gatekeeper version (trusty backed or software backed) and starts the secure
storage proxy according to this property. The following figure shows the workflow.

Customization work on i.MX Android Security Features

i.MX Android™ Security User's Guide, Rev. P9.0.0_2.1.0-AUTO-ga, 04/2019

24 NXP Semiconductors

Figure 6. TEE and TA initialization and workflow

4 Revision History
Table 7. Revision history

Revision number Date Substantive changes

O8.1.0_1.1.0_AUTO-EAR 02/2018 Initial release

O8.1.0_1.1.0_AUTO-beta 05/2018 i.MX 8QuadXPlus/8QuadMax Beta release

P9.0.0_1.0.2-AUTO-alpha 11/2018 i.MX 8QuadXPlus/8QuadMax Automotive Alpha release

P9.0.0_1.0.2-AUTO-beta 01/2019 i.MX 8QuadXPlus/8QuadMax Automotive Beta release

P9.0.0_2.1.0-AUTO-ga 04/2019 i.MX 8QuadXPlus/8QuadMax Automotive GA release

Revision History

i.MX Android™ Security User's Guide, Rev. P9.0.0_2.1.0-AUTO-ga, 04/2019

NXP Semiconductors 25

How to Reach Us:

Home Page:
nxp.com

Web Support:
nxp.com/support

Information in this document is provided solely to enable system and software implementers to use

NXP products. There are no express or implied copyright licenses granted hereunder to design or

fabricate any integrated circuits based on the information in this document. NXP reserves the right to

make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any

particular purpose, nor does NXP assume any liability arising out of the application or use of any

product or circuit, and specifically disclaims any and all liability, including without limitation

consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets

and/or specifications can and do vary in different applications, and actual performance may vary over

time. All operating parameters, including “typicals,” must be validated for each customer application

by customerʼs technical experts. NXP does not convey any license under its patent rights nor the

rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be

found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to unidentified

vulnerabilities. Customers are responsible for the design and operation of their applications and

products to reduce the effect of these vulnerabilities on customer's applications and products, and

NXP accepts no liability for any vulnerability that is discovered. Customers should implement

appropriate design and operating safeguards to minimize the risks associated with their applications

and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,

EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE

CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,

MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,

TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,

ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,

mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure,

the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,

Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS

are trademarks of NXP B.V. All other product or service names are the property of their respective

owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink,

CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP,

RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS,

ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its

subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of

patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered

trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the

Power and Power.org logos and related marks are trademarks and service marks licensed by

Power.org.

© 2019 NXP B.V.

Document Number ASUG
Revision P9.0.0_2.1.0-AUTO-ga, 04/2019

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Preface
	About This Document
	Conventions

	Overview of i.MX Android Security Features
	Introduction of security-related hardware modules
	i.MX Android security framework

	Customization work on i.MX Android Security Features
	How to use HAB to verify images
	Configurations on TEE
	Memory region configuration in ATF
	Basic file and folder construction for Trusty OS
	Applying new build target in Trusty OS
	Adding unit tests in Trusty OS and adding CAAM self-tests in Trusty OS
	Modifying the console port for Trusty OS
	Configuring the related TA services

	Configurations in U-Boot for security
	Overview of security features in U-Boot
	Generating and fusing the eMMC RPMB key
	Generating AVB key to sign and verify images
	Bypass vbmeta/lock check for development purpose
	Changing the value of the rollback index in images
	Programming the attestation key
	Changing the way to store lock status and/or rollback index
	Choosing to boot a specific slot
	Disabling development options in U-Boot

	Configurations in Linux/Android platform for security features
	DM-Verity relationship with vbmeta
	Configuration of the RSA keys for DM-verity
	Trusty OS Linux driver configuration
	Introductions of trusty based keymaster, gatekeeper, and secure storage proxy

	Revision History

