UG10159

i.MX Graphics User's Guide
Rev. 10.3 — 26 June 2025

User guide

Document information

Information Content
Keywords i.MX, Linux, Android, Graphics, UG10159
Abstract The purpose of this document is to provide information on graphic APIs and driver support.

https://www.nxp.com

NXP Semiconductors

UG10159

i.MX Graphics User's Guide

1 Introduction

The purpose of this document is to provide information on graphic APIs and driver support. Each chapter
describes a specific set of APIs or driver integration as well as specific hardware acceleration customization.
The target audiences for this document are developers writing graphics applications or video drivers.

1.1 i.MX full GPU line

The whole family of GPUs are listed in the following table. On i.MX 6 boards, only 6Quad and 6QuadPlus
support OpenCL. The theoretical number of GFLOPS, the key performance indicator of OpenCL, is also shown
in the table. Some benchmarks such as Clpeak, can be used to verify it.

i.MX 8QuadMax supports OpenVX, which will be introduced in later chapter.

5 . i.MX 8X i.MX 8M Quad, -
e e i.MX8M Nano| 8DualXPlus Dual SL;'M:':
8QuadXPlus QuadLite FLELLE
GC355 (VG) GC355 (VG) High Perf High Perf High Perf

GPU 2D GC400T (20) GC320 = e G328 GC520L GC520L N/A tEe N/A GCS20L e e

GC700 GC7000 GC7000 GC7000 x2
GPU 3D GC400T (3D) GC880 GC2000 GC2000+ NanoUltra NanoUltra31 NanoUltra UltraLite GC7000 Lite GC7000 Lite GC7000 UltraLite GC7000 XSVX G310V2
Shaders (Vecd) 1 1 4 4 1 1 1 2 4 4 2 8+8 1
E::)rcek[(sr\l’/\‘:dzir] 360 [720] 264 [528) 528 [594] 594 [720] 400 [400] 317 [317) 1000 500 [600] 700 (850] 800 [800] 1000[1000] 800 [1000] 1000

. X 1600 + 1600 (dual)
Pixel Rate (Mpix/s) 180 264 1056 1188 200 296 500 500 1400 1600 1000 2200 (bridged) 4000
. 36 81 176 198 40 52 50 83 234 267 166 25Zeg2sl(ual o
(MTri/s) 267 (bridged)
GFLOPS (Theoretical)
Wied/High precision 2.9 (high) 4.2 (high) 19 (high) 46/23 3.2/16 4.8/2.4 16/8 19.2/9.6 55.2/27.6 51.2/25.6 32/16 256/128 120/60
+ + OpenVG 1.1 OpenVG 1.1, + OpenVG 1.1, OpenVG 11, OpenVG1.1, OpenVG 11, + OpenVG 1.1, i
2D API OpenVG 1.1, G2D OpenVG 1.1, G2D s o OpenVG 1.1, G2D s R e Al OpenVG 1.1' o OpenVG 1.1, G2D G2D
3D API OGLES 2.0 OGLES 3.0 OGLES 3.0 OGLES 3.0 OGLES 2.0 CaBa4 OGLES 2.0 CELESas, CELEE, e Cal=a, OGLES 3.2, Vulkan OGL ES 3.2, Vulkan
Vulkan Vulkan Vulkan Vulkan Vulkan
Compute N/A N/A OCL1.2EP ocL1.2FP N/A ocL3.0 N/A ocL3.0 ocL3.0 ocL3.0 ocL3.0 ocL3.0 ocL3.0
2D/3D OpenVX 1.2
Other ek N/A N/A N/A N/A N/A N/A N/A N/A N/A (T OpenVX 1.2 No
Figure 1. GPU Scalability across i.MX processors

Note: 1 OpenVG on 3D GPU with software tessellation.

2 i.MX G2D API

2.1 Overview

The G2D Application Programming Interface (API) is designed to be easy to understand and to use the 2D
Bit blit (BLT) function. It allows the user to implement the customized applications with simple interfaces. It is
hardware and platform independent for i.MX 2D Graphics.

G2D API supports the following features but is not limited to these:

« Simple BLT operation from source to destination

16/32bit RGB(alpha) and YUV color format conversions

Alpha blending for source and destination with Porter-Duff rules
* High-performance memory copy from source to destination

* Up-scaling and down-scaling from source to destination

* 90/180/270 degrees rotation from source to destination

UG10159
User guide

All information provided in this document is subject to legal disclaimers.

Rev. 10.3 — 26 June 2025

© 2025 NXP B.V. All rights reserved.
Document feedback
2/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

* Horizontal and vertical flip from source to destination

* Enhanced visual quality with dither for pixel precision-loss (*)
* High performance memory clear for destination

 Pixel-level cropping for source surface

* Global alpha blending for source only

* Asynchronous mode and sync

» Contiguous memory allocator

* Support cacheable memory (*)

* Support VG engine (*)

* Multi source blit (*)

Note: The features with (*) are available on specific devices. Applications can query G2D for available features.
The G2D API document includes a detailed interface description and sample code for reference.

The APl is designed with C-Style coding and can be used in both C and C++ applications.

2.2 Enumerations and structures

This chapter describes all enumerations and structure definitions in G2D.

2.2.1 g2d_format enumeration
This enumeration describes the pixel format for source and destination.

Table 1. g2d_format enumeration

Name Numeric Description

G2D_RGB565 0 RGB565 pixel format

G2D_RGBA8888 1 32-bit RGBA pixel format
G2D_RGBX8888 2 32-bit RGBX without alpha blending
G2D_BGRA8888 3 32-bit BGRA pixel format
G2D_BGRX8888 4 32-bit BGRX without alpha blending
G2D_BGR565 5 16-bit BGR565 pixel format
G2D_ARGB8888 6 32-bit ARGB pixel format
G2D_ABGR8888 7 32-bit ABGR pixel format
G2D_XRGB8888 8 32-bit XRGB without alpha
G2D_XBGR8888 9 32-bit XBGR without alpha

G2D_RGB888 10 24-bit RGB

G2D_BGR888 11 24-bit BGR

G2D_RGBA5551 12 16-bit RGBA5551 pixel format
G2D_RGBX5551 13 16-bit RGBX5551 without alpha
G2D_BGRA5551 14 16-bit BGRA5551 pixel format
G2D_BGRX5551 15 16-bit BGRX5551 without alpha
G2D_RGBA1010102 16 16-bit RGBA1010102 pixel format
G2D_GRAY8 19 8-bit GRAY8 pixel format

G2D_NV12 20 Y plane followed by interleaved U/V plane
UG10159 Allinformation provided in this document is subject to legal disclaimers. ©2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback

3/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

Table 1. g2d_format enumeration...continued

i.MX Graphics User's Guide

Name Numeric Description

G2D_1420 21 Y, U, V are within separate planes
G2D_YV12 22 Y, V, U are within separate planes
G2D_NV21 23 Y plane followed by interleaved V/U plane
G2D_YUYV 24 Interleaved Y/U/Y/V plane

G2D_YVYU 25 Interleaved Y/V/Y/U plane

G2D_UYVY 26 Interleaved U/Y/V/Y plane

G2D_VYUY 27 Interleaved V/Y/U/Y plane

G2D_NV16 28 Y plane followed by interleaved U/V plane
G2D_NV61 29 Y plane followed by interleaved V/U plane

2.2.2 g2d_blend_func enumeration

This enumeration describes the blend factor for source and destination.

Table 2. g2d_blend_func enumeration

Name Numeric Description

G2D_ZERO 0 Blend factor with 0

G2D_ONE 1 Blend factor with 1

G2D_SRC_ALPHA 2 Blend factor with source alpha
G2D_ONE_MINUS_SRC_ALPHA 3 Blend factor with 1 - source alpha
G2D_DST_ALPHA 4 Blend factor with destination alpha
G2D_ONE_MINUS_DST_ALPHA 5 Blend factor with 1 - destination alpha
G2D_PRE_MULTIPLIED_ALPHA 0x10 Extensive blend as pre-multiplied alpha
G2D_DEMULTIPLY_OUT_ALPHA 0x20 Extensive blend as demultiply out alpha

2.2.3 g2d_cap_mode enumeration

This enumeration describes the alternative capability in 2D BLT.

Table 3. g2d_cap_mode enumeration

Name Numeric Description

G2D_BLEND 0 Enable alpha blend in 2D BLT
G2D_DITHER 1 Enable dither in 2D BLT
G2D_GLOBAL_ALPHA 2 Enable global alpha in blend
G2D_BLEND_DIM 3 Enable blend dim effect
G2D_BLUR 4 Enable blur effect
G2D_YUY_BT_601 5 Enable YUV BT.601 mode
G2D_YUY_BT_709 6 Enable YUV BT.709 mode
G2D_YUY_BT_601FR 7 Enable YUV BT.601 full range mode
G2D_YUY_BT_709FR 8 Enable YUV BT.709 full range mode

UG10159

All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User guide

Rev. 10.3 — 26 June 2025

Document feedback
4/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

Table 3. g2d_cap_mode enumeration...continued
Name Numeric Description

G2D_WARPING 9 Enable Warp/Dewarp

Note: G2D_GLOBAL_ALPHA is only valid when G2D_BLEND is enabled.

2.2.4 g2d_rotation enumeration
This enumeration describes the rotation mode in 2D BLT.

Table 4. g2d_rotation enumeration

Name Numeric Description
G2D_ROTATION_O 0 No rotation
G2D_ROTATION_90 Rotation with 90 degrees

-

G2D_ROTATION_180 2 Rotation with 180 degrees
G2D_ROTATION_270 3 Rotation with 270 degrees
G2D_FLIP_H 4 Horizontal flip
G2D_FLIP_V 5 Vertical flip
2.2.5 g2d_cache_mode enumeration
This enumeration describes the cache operation mode.
Table 5. g2d_cache_mode enumeration
Name Numeric Description
G2D_CACHE_CLEAN 0 Clean the cacheable buffer
G2D_CACHE_FLUSH 1 Clean and invalidate cacheable buffer
G2D_CACHE_INVALIDATE 2 Invalidate the cacheable buffer
2.2.6 g2d_hardware_type enumeration
This enumeration describes the supported hardware type.
Table 6. g2d_hardware_type enumeration
Name Numeric Description
G2D_HARDWARE_2D 0 GPU 2D hardware type
G2D_HARDWARE_VG 1 GPU VG hardware type
G2D_HARDWARE_DPU_V1 2 DPU V1 hardware type
G2D_HARDWARE_DPU_V?2 3 DPU V2 hardware type
G2D_HARDWARE_PXP 4 PXP hardware type

2.2.7 g2d_surface structure

This structure describes the surface with operation attributes.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 10.3 — 26 June 2025 Document feedback
5/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

Table 7. g2d_surface structure

g2d_surface member Type Description

format g2d_format Pixel format of surface buffer
planes[3] unsigned int Physical addresses of surface buffer
left Int Left offset in blit rectangle

top Int Top offset in blit rectangle
right Int Right offset in blit rectangle
bottom Int Bottom offset in blit rectangle
stride Int RGBYY stride of surface buffer
width Int Surface width in pixel unit
height Int Surface height in pixel unit
blendfunc g2d_blend_func Alpha blend mode
global_alpha Int Global alpha value 0~255
clrcolor Int Clear color is 32bit RGBA

rot g2d_rotation Rotation mode

Note: RGB and YUV formats conversion, Y(*) means feature available on i.MX 6Quad Plus, i.MX 7ULP and
i.MX 8 family devices.

DST
SRC G2D RGBs |G2D YV12 |G2D 1420 |G2D_NV12 |G2D NV21 |G2D YUYV |G2D NV16 |G2D _NVE1
G2D_RGBs Y N N N N Y(#) N N
G2D_NV12 Y N N N N Y(*) N N
G2D 1420 Y N N N N Y(*) N N
G2D_YV12 Y N N N N Y(*) N N
G2D_NV21 Y N N N N Y(x) N N
G2D YUYV Y N N Y(*) Y(*) Y() Y(*) Y(*)
G2D YVYU Y N N N N Y(*) N N
G2D_UYVY Y N N N N Y(#) N N
G2D_VYUY Y N N N N Y(*) N N
G2D_NV16 Y N N N N Y(*) N N
G2D_NVE1 Y N N N N Y(x) N N

* RGB pixel buffer only uses planes [0], buffer address is with 16 bytes alignment on i.MX 6 (except i.MX 6Quad
Plus), 1 pixel alignment on i.MX 6Quad Plus, i.MX 7ULP and i.MX 8 family devices.

* NV12:Y in planes [0], UV in planes [1], with 64bytes alignment,

* 1420: Y in planes [0], U in planes [1], U in planes [2], with 64 bytes alignment

* The cropped region in source surface is specified with left, top, right and bottom parameters.

* RGB stride alignment is 16 bytes on i.MX 6 (except i.MX 6Quad Plus), 1 pixel alignment on i.MX 6Quad Plus,
i.MX 7ULP and i.MX 8 family devices, both for source and destination surface.

* NV12 stride alignment is 8 bytes for source surface, UV stride =Y stride,
* 1420 stride alignment is 8 bytes for source surface, U stride=V stride = 12 Y stride.

* G2D_ROTATION_0/G2D_FLIP_H/G2D_FLIP_V shall be set in source surface, and the clockwise rotation
degree shall be set in destination surface.

» Application should calculate the rotated position and set it for destination surface.
* The geometry definition of surface structure is described as follows.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
6/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

siriche _
Planes [-
' i '
tog
-y ol -l
bt
negnl
L
- i -
¥

= Wil =
Figure 2. g2d_surface structure
2.2.8 g2d_buf structure
This structure describes the buffer used as G2D interfaces.
Table 8. g2d_buf structure
g2d_buf member Type Description
buf_handle void * The handle associated with buffer
buf_vaddr void * Virtual address of the buffer
buf_paddr unsigned int Physical address of the buffer
buf_size int The actual size of the buffer

2.2.9 g2d_surface_pair structure

This structure binds one source g2d_surface and one destination g2d_surface as a pair. When doing multi-
source blit, they are one-to-one correspondent.

Table 9. g2d_surface_pair structure

g2d_surface_pair member Type Description
s g2d_surface Source g2d_surface
d g2d_surface Destination g2d_surface

2.2.10 g2d_feature enumeration

This enumeration describes the features in G2D BLT.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 10.3 — 26 June 2025 Document feedback
71159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

Table 10. g2d_feature enumeration

i.MX Graphics User's Guide

Name Numeric Description
G2D_SCALING 0 Scaling
G2D_ROTATION 1 Rotation
G2D_SRC_YUV 2 Source YUV format
G2D_DST_YUV 3 Destination YUV format
G2D_MULTI_SOURCE_BLT 4 Multisource blit
G2D_FAST_CLEAR 5 Support fast clear blit
G2D_WARP_DEWARP 6 Warp/Dewarp

2.2.11 g2d_tiling enumeration

This enumeration describes the tiling format for source and destination.

Table 11. g2d_tiling enumeration

Name Numeric Description

G2D_LINEAR 0x1 LINEAR tiling format

G2D_TILED 0x2 TILED tiling format
G2D_SUPERTILED 0x4 SUPERTILED tiling format
G2D_AMPHION_TILED 0x8 AMPHION_TILED tiling format
G2D_AMPHION_INTERLACED 0x10 AMPHION_INTERLACED tiling format
G2D_TILED_STATUS 0x20 TILED_STATUS tiling format
G2D_AMPHION_TILED_10BIT 0x40 AMPHION_TILED_10BIT tiling format

2.2.12 g2d_surfaceEx structure

This enumeration describes the surface with tiling attributes.

Table 12. g2d_surfaceEx structure

g2d_surfaceEx member Type Description

base g2d_surface Base g2d_surface
tiling g2d_tiling Tiling format

ts g2d_tile_status Not used
reserved[8] int Not used

2.213 g2d_warp_map_format enumeration

This enumeration describes the content of the pixel data in the coordinate buffer.

Table 13. g2d_warp_map_format enumeration

Name

Numeric

Description

G2D_WARP_MAP_PNT

0

x and y (sample points)

G2D_WARP_MAP_DPNT

1

dx and dy (vectors between adjacent sample
points)

UG10159

All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User guide

Rev. 10.3 — 26 June 2025

Document feedback
8/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

Table 13. g2d_warp_map_format enumeration...continued

i.MX Graphics User's Guide

Name Numeric

Description

G2D_WARP_MAP_DDPNT 2

ddx and ddy (deltas between adjacent vectors)

2.214 g2d_warp_coordinates structure

This enumeration describes the coordinates buffer with operation attributes.

Table 14. g2d_warp_coordinates structure

g2d_warp_coordinates Type Description

member

addr g2d_phys_addr_t Physical address of the coordinates buffer

format g2d_warp_map_format |Pixel format of of the coordinates buffer

bpp int Bits per pixel of the coordinates buffer

width int Width in pixel unit of the coordinates buffer

height int Height in pixel unit of the coordinates buffer

arb_start_x unsigned int Start point for the sample-point interpolation (X coordinate)

arb_start y unsigned int Start point for the sample-point interpolation (Y coordinate)

arb_delta_xx unsigned int X coordinate of vector between the first and second sample
point

arb_delta_xy unsigned int Y coordinate of vector between the first and second sample
point

arb_delta_yx unsigned int X coordinate of vector between the start and first sample
point

arb_delta_yy unsigned int Y coordinate of vector between the start and first sample
point

2.3 G2D function description

2.3.1 g2d_open

Description Open a G2D device and return a handle.
Syntax

int g2d open (void **handle);
Parameters handle: Pointer to receive G2D device handle
Returns Success with 0, fail with -1

2.3.2 g2d_close

Description Close G2D device with the handle.
Syntax
int g2d close (void *handle);

Parameters .

handle: G2D device handle
Returns Success with 0, fail with -1
UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback

9/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

2.3.3 g2d_make_current

Description Set the specific hardware type for the current context.
Syntax
int g2d make current (void *handle, enum g2d hardware type
type);
Parameters handle: G2D device handle
Returns Success with 0, fail with -1

2.3.4 g2d_clear

Description Clear a specific area.
Syntax
int g2d clear (void *handle, struct g2d surface *area);
Parameters handle: G2D device handle
area: The area to be cleared
Returns Success with 0, fail with -1
2.3.5 g2d_blit
Description G2D blit from source to destination with alternative operation (Blend, Dither, etc.).
Syntax
int g2d blit (void *handle, struct g2d surface *src, struct
g2d_surface *dst);
Parameters handle: G2D device handle
src: source surface
dst: destination surface
Returns Success with 0, fail with -1

2.3.6 g2d_copy

Description G2D copy with specified size.
Syntax
int g2d copy (void *handle, struct g2d buf *d, struct
g2d buf* s, int size);
Parameters .
handle: G2D device handle
d: destination buffer
s: source buffer
size: copy bytes
UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback

10/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

i.MX Graphics User's Guide

Limitations If the destination buffer is cacheable, it must be invalidated before g2d_copy due to
the alignment limitation of G2D driver.
Returns Success with 0, fail with -1

2.3.7 g2d_query_cap

Description Query the alternative capability enablement.
Syntax
int g2d query cap (void *handle, enum g2d cap mode cap, int
*enable) ;

Parameters handle: G2D device handle

cap: G2D capability to query

enable: Pointer to receive G2D capability enablement
Returns Success with 0, fail with -1

2.3.8 g2d_enable

Description Enable G2D capability with the specific mode.
Syntax
int g2d _enable (void *handle, enum g2d cap mode cap);
Parameters handle: G2D device handle
cap: G2D capability to enable
Returns Success with 0, fail with -1

2.3.9 g2d_disable

Description Disable G2D capability with the specific mode.
Syntax
int g2d disable (void *handle, enum g2d cap mode cap);
Parameters handle: G2D device handle
cap: G2D capability to disable
Returns Success with 0, fail with -1

2.3.10 g2d_cache_op

Description Perform cache operations for the cacheable buffer allocated through the G2D driver.
Syntax
int g2d _cache op (struct g2d buf *buf, enum g2d cache mode
op) ;
Parameters . .
buf: the buffer to be handled with cache operations
UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback

11/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

i.MX Graphics User's Guide

op: cache operation type

Returns

Success with 0, fail with -1

2.3.11 g2d_alloc

Description Allocate a buffer through G2D device
Syntax
struct g2d buf *g2d alloc (int size, int cacheable);
Parameters size: allocated bytes
cacheable: 0, non-cacheable; 1, cacheable attribute defined by system
Returns Success with valid G2D buffer pointer, fail with 0

2.3.12 g2d_free

Description Free the buffer through G2D device.
Syntax
int g2d free (struct g2d buf *buf);
Parameters buf: G2D buffer to free
Returns Success with 0, fail with -1

2.3.13 g2d_flush

Description Flush G2D command and return without completing pipeline.
Syntax
int g2d flush (void *handle);
Parameters handle: G2D device handle
Returns Success with 0, fail with -1

2.3.14 g2d_finish

Description Flush G2D command and then return when pipeline is finished.
Syntax
int g2d finish (void *handle);
Parameters handle: G2D device handle
Returns Success with 0, fail with -1

2.3.15 g2d_multi_blit

Description Blit multiple sources to one destination.
Syntax
int g2d multi blit (void *handle, struct g2d surface pair
*spl], int layers);
UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback

12/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

Parameters handle: G2D device handle
sp: array in which elements point to g2d_surface_pair

layers: number of the source layers that need to be blited

Returns Success with 0, fail with -1

Note:
There are some restrictions for this APl that we should be aware of.

* This API only works on the i.MX 6DualPlus/QuadPlus platform.

» The maximum number of the source layers that can be blited one time is 8.

» Although g2d_surface_pair binds one source g2d_surface and one destination g2d_surface as a pair, it only
supports one destination surface. The relationship between the source and destination is many to one, but
each source surface can be set separately and differently, and its dimension, stride, rotation, and format can
differ with that of the destination surface.

» The rotation of the destination surface is set to 0 degrees by default, and cannot be changed.

» The key restriction is that the destination rectangle cannot be set, which means that the destination rectangle
must be the same as the source rectangle. Therefore, if the source rectangle is set to (I, t, r, b), the destination
rectangle should also be set to (I, &, r, b) by hardware. In the chapter on multi source blit (Section 2.5.4), as

it makes no sense to set the destination rectangles, we just set all of them to (0, 0, width, height) for future
extension.

2.3.16 g2d_query_hardware

Description Query whether g2d_hardware_type is available in the current G2D.
Syntax
int g2d query hardware (void *handle, enum g2d hardware type
type, int *available);

Parameters handle: G2D device handle

type: G2D hardware type

available: Pointer to receive G2D hardware type availability
Returns Success with 0, fail with -1

2.3.17 g2d_query_feature

Description Query if the features are available in G2D BLT.
Syntax

int g2d query feature (void *handle, enum g2d feature
feature, int *available);

Parameters handle: G2D device handle
feature: G2D feature in g2d_blit

available: Pointer to receive G2D feature availability

Returns Success with 0, fail with -1

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
13/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

2.3.18 g2d_blitEx

i.MX Graphics User's Guide

Description G2D blit from the source to destination (with g2d_tiling) with alternative operation
(Blend, Dither, etc.).
Syntax
int g2d blitEx(void *handle, struct g2d surfaceEx *srcEx,
struct g2d surfaceEx *dstEx);
Parameters handle: G2D device handle
srcEx: Source surfaceEx
dstEx: Destination surfaceEx
Returns Success with 0, fail with -1

2.3.19 g2d_set_clipping

Description Set a rectangular clipping window for the destination.
Syntax
int g2d set clipping(void *handle, int left, int top, int
right, int bottom) ;
Parameters handle: G2D device handle
left: Left offset of the clipping rectangle
top: Top offset of the clipping rectangle
right: Right offset of the clipping rectangle
bottom: Bottom offset of the clipping rectangle
Returns Success with 0, fail with -1
2.3.20 g2d_set_csc_matrix
Description Set the Color Space Conversion Matrix.
Syntax
int g2d _set csc matrix(void *handle, const unsigned *matrix);
Parameters handle: G2D device handle
matrix: 4x4 matrix
Returns Success with 0, fail with -1

2.3.21 g2d_buf_from_fd

Description . . .
P Get g2d_buf pointer from the buffer file descriptor.
Syntax
struct g2d buf *g2d buf from fd(int £fd);
UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback

14 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

Parameters

i.MX Graphics User's Guide

f£d: Buffer file descriptor

Returns

Success with g2d_buf pointer, fail with NULL

2.3.22 g2d_buf_export_fd

Description Get the buffer file descriptor from the g2d_buf pointer.
Syntax

int g2d buf export fd(struct g2d buf * buf);
Parameters buf: g2d_buf pointer
Returns Success with buffer fd, fail with -EINVAL

2.3.23 g2d_buf_from_virt_addr

D ription . .
escriptio Get the g2d_buf pointer from a virtual address.
Syntax
struct g2d buf *g2d buf from virt addr (void *vaddr, int
size) ;
Parameter .
arameters vaddr: Virtual address
size: Size of the buffer
Returns Success with g2d_buf pointer, fail with NULL
2.3.24 g2d_create_fence_fd
Description Create G2D fence file descriptor.
Syntax
int g2d create fence fd(void *handle) ;
Parameters handle: G2D device handle
Return
eturns Success with valid fence fd (>=0), fail or not supported with -1
2.3.25 g2d_set_warp_coordinates
Description Set the coordinate buffer when doing warping.
Syntax
int g2d_set warp coordinates(void *handle, struct
g2d_warp coordinates *coord) ;
Parameters handle: G2D device handle
UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback

15/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

coord: G2D warp coordinate buffer

i.MX Graphics User's Guide

Returns Success with 0, fail with -1

Note:

There is a restriction for this API:

This API only works on the i.MX 8QuadXPlus/8QuadMax/95 platform.

2.4 Support of new operating system in G2D

G2D code is independent on operating system (OS) except of buffer allocation. Allocating the memory for
buffer is made by mechanism that is offered by each OS differently. The code for allocation is located in [G2D
repository copy]/source/os/[OS name]. Therefore, supporting new OS includes the following steps:

1. Create a new folder in [G2D repository copyl/source/os/ with the name of the new OS and update
implementation in the included source code according to the new OS allocation mechanism.

2. When creating new makefiles for the OS, include the files from the new folder.

3. The test named overlay_test contains the OS dependent code. For supporting the new OS in this test,
create new folder in [G2D repository copy]/test/overlay_test/os and update the code according to the
new OS mechanism for display initialization. Also update makefiles to include code from the new folder.

2.5 Sample code for G2D API usage
This chapter provides the brief prototype code with G2D API.

2.5.1 Color space conversion from YUV to RGB

g2d_open (&handle) ;

src.planes[0] = buf y;
src.planes[1] = buf u;
src.planes[2] = buf v;

src.left = crop.left;
src.top = crop.top;
src.right = crop.right;
src.bottom = crop.bottom;
src.stride = y stride;
src.width = y width;
src.height = y height;

src.rot = G2D_ROTATION O;
src.format = G2D I420;
dst.planes[0] = buf rgba;
dst.left = 0;

dst.top = 0;

dst.right = disp width;

dst.bottom = disp height;

dst.stride = disp width;
dst.width = disp width;
dst.height = disp height;

dst.rot = G2D ROTATION O;

dst.format = G2D RGBA8888;

g2d _blit (handle, &src, é&dst);
g2d finish (handle) ;

g2d_close (handle) ;

UG10159 All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User guide Rev. 10.3 — 26 June 2025

Document feedback
16 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

2.5.2

Alpha blend in source over mode

i.MX Graphics User's Guide

g2d_
src.
src
src.
src
src.
src.
src
src
src.
src.
src.
dst.
dst.
dst.
dst.
dst.
dst.
dst.
dst.
dst.
dst.
dst.
g2d_
g2d_
g2d_
gz2d_
g2d_

open (&handle) ;
planes[0] = src buf;

.left = 0;

top = 0;

.right = test width;

bottom = test height;
stride = test width;

.width = test width;
.height = test height;

rot = G2D_ROTATION 0;
format = G2D RGBA888S8;

blendfunc = G2D ONE;
planes[0] = dst buf;
left = 0;
top = 0;
right = test width;

bottom = test height;
stride = test width;

width = test width;

height = test height;
format = G2D RGBA8888;

rot = G2D_ROTATION 0;
blendfunc = G2D_ONE MINUS SRC_ALPHA;
enable (handle, G2D BLEND) ;
blit (handle, &src, &dst);
finish (handle) ;

disable (handle, G2D_BLEND) ;
close (handle) ;

2.5.3

Source cropping and destination rotation

g2d_
src.
src
src.
src.
src.
src.
src
src.
src.
src.
dst
dst.
dst.
dst.
dst.
dst
dst.
dst
dst.
dst.
g2d

open (&handle) ;
planes[0] = src buf;

.left = crop.left;

top = crop.left;
right = crop.right;
bottom = crop.bottom;

stride = src_stride;
.width = src width;
height = src height;
format = G2D RGBA888S;

rot = G2D_ROTATION 0;//G2D_FLIP H or G2D_FLIP V
.planes[0] = dst buf;

left = 0;

top = 0;

right = dst width;

bottom = dst height;

.stride = dst width;

width = dst width;

.height = dsE_height;
format = G2D RGBA8888;
rot = G2D ROTATION 90;

blit(handle,_&src, sdst) ;

g2d_finish (handle);

UG10159

All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User gu

ide Rev. 10.3 — 26 June 2025

Document feedback
171159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

g2d _close (handle)

i.MX Graphics User's Guide

2.5.4 Multi source blit

const int layers = 8;

struct g2d buf *d buf;

struct g2d buf *mul s buf[layers];
struct g2d surface pair *sp[layers];
g2d_open (&handle)

for(n = 0; n < layers; n++) {

spln] = (struct g2d surface pair *)malloc(sizeof (struct g2d surface pair)):;
}

d buf = g2d alloc(test width * test height * 4, 0);

for(n = 0; n < layers; n++) {

mul s buf[n] =

}

g2d_alloc(test width * test height * 4,

for(n = 0; n < layers; n++) {

spln]->s.left = img info ptr[n]->img left;
spln]->s.top = img info ptr[n]->img top;
spln]->s.right = img info ptr([n]->img right;
spln]->s.bottom = img info ptr[n]->img bottom;
spln]->s.stride = img info ptr([n]->img width;
spln]->s.width = img info ptr[n]->img width;
spln]->s.height = img info ptr[n]->img height;
sp[n]->s.rot = img info ptr[n]->img rot;
spln]->s.format = img info ptr[n]->img format;

spln]->s.planes[0] = mul s buf[n]->buf paddr;

}

spl[0]->d.left = 0;

spl[0]->d.top = 0;

spl[0]->d.right = test width;

sp[0]->d.bottom = test height;

sp[0]->d.stride = test width;

sp[0]->d.width = test width;

sp[0]->d.height = test height;

sp[0]->d.format = G2D RGBA8888;

sp[0]->d.rot = G2D_ROTATION O;

spl[0]->d.planes[0] = d buf->buf paddr;

for(n = 1; n < layers; n++) {

spln]l->d = spl[0]->d;
}
g2d multi blit (handle, sp, layers);

_g2d finish (handle) ;
for(n = 0; n < layers; n++)
g2d free(mul s buf[n]);
g2d free (d buf);
g2d_close (handle) ;

2.5.5 Sharing Buffers between APIs using G2D Buffers:

The G2D buffers can be used to avoid memory copies between APIs. Create a buffer using g2d_alloc and then

map it as an OpenGL ES texture or as an OpenVX buffer or an OpenCV Mat:

Allocate your buffer with:

struct g2d buf * bufferO;
buffer0 = g2d alloc (WIDTH*HEIGHT*4, O0);

UG10159 All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User guide Rev. 10.3 — 26 June 2025

Document feedback
18 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

For OpenCV, you map the buffer to the data field of the cv::Mat

v::Mat bufferOMat;
bufferOMat.create (WIDTH, HEIGHT, CV_8UC4);
bufferOMat.data = (uchar *) ((unsigned long) bufferO->buf vaddr);

For OpenGL ES, you can make use of the DirectVIV extensions:

glGenTextures (1, &textureHandle[0]):;
glBindTexture (GL TEXTURE 2D, textureHandle[O0]);
ngexParameterl(GL TEXTURE 2D, GL TEXTURE MAG FILTER, GL LINEAR)
ngexParameterl(GL TEXTURE 2D GL TEXTURE MIN FILTER, GL LINEAR)
ngexDlrectVIVMap(GL TEXTURE 2D, WIDTH HEIGHT GL RGBA,

&buffer0->buf vaddr, (uint *) &bufferO-
>pbuf paddr) ;
glTexDirectInvalidateVIV (GL TEXTURE 2D);
glBindTexture (GL TEXTURE 2D, O0);

For OpenVX you create vxlmages from the buffer ranges:

vx imagepatch addressing t patchO = { (vx uint32)WIDTH, (vx uint32)HEIGHT,

(vx_int32)4, (vx_int32)HEIGHT*4, VX SCALE UNITY, VX SCALE UNITY, 1, 1 };
void *ptr0 = buffer0->buf vaddr,

vxInputImage = vxCreateImageFromHandle(contextVX,

VX_DF IMAGE RGBX, &patch0, (void **)&ptr0O, VX MEMORY TYPE HOST);

With this scheme you can create a multi API pipeline, where you can post-process your OpenGL ES render
result with CV or VX without the need of copying data.

2.5.6 Warp/Dewarp

g2d_open (&handle) ;

g2d _query feature (handle, G2D WARP DEWARP, &support warp);

if (!support warp) {

fprintf (stderr, "G2D device cannot perform warp/dewarp operations\n")
return -1;

}

s _buf = g2d alloc (s _buf size, 0);
d buf = g2d_ alloc(d buf _size, 0);
coord_buf = g2d_ alloc(coord buf size, 0);

/* read src to s buf
*

*/

// copy warp coord to coord buf
coord buf size = w1dth*he1ght*coord bpp;
memcpy (coord buf->buf vaddr, warp coord, coord buf size);

src.left = 0;

src.top = 0;

src.right = width;
src.bottom = height;
src.width = width;
src.height = height;
src.format in format;
src.stride = width;

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
19/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

src.planes[0] = s buf->buf paddr;

dst.left = 0;

dst.top = 0;

dst.right = width;
dst.bottom = height;
dst.width = width;
dst.height = height;
dst.format = out format;

i.MX Graphics User's Guide

dst.stride = width;

dst.planes[0] = d buf->buf paddr;

dst.planes[l] = d buf->buf paddr + dst planeO size;

dst.planes[2] = d buf->buf paddr + dst planeO size + dst planel size;

coord.addr = coord buf->buf paddr;
coord.width = width;

coord.height = height;
coord.format = coord format;
coord.bpp = coord bpp;

coord.arb start x = start x;
coord.arb start y = start y;
coord.arb delta xx = delta xx;
coord.arb delta xy delta xy;
coord.arb delta yx = delta yx;
coord.arb delta yy delta yy;

g2d_enable (handle, G2D_ WARPING) ;

g2d_set warp coordinates (handle, &coord);
g2d blit (handle, é&src, é&dst);

g2d disable (handle, G2D WARPING) ;
g2d_finish (handle) ;

/* write d buf to dst
*

. o

g2d free(ctx->s buf);

g2d free(ctx->d buf);
g2d_ free (ctx->coord buf);
g2d _close (ctx->handle) ;

Note:

* When doing warping, the RGB SRC format is supported on the i.MX 8QuadXPlus/8QuadMax/95 platform. The

packed YUV422 SRC format is only supported on the i.MX 95 platform.

» Some parameters and initial values are required from the Dewarp Calibretion Tool to do warping. BitsPerPixel
(bpp) of the coordinate buffer and initial values are related to the warp algorithm in the Dewarp Calibretion

Tool.
Table 15. Parameters and initial values for warping
G2D warp map format Warp algorithm BPP of coordinate buffer Initial value required
(coord.format) (coord.bpp)
G2D_WARP_MAP_PNT absolute_32bpp 32 no
G2D_WARP_MAP_DPNT delta_32bpp 32 start_x
delta_16bpp 16 start_y
UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback

20/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

Table 15. Parameters and initial values for warping...continued

G2D warp map format Warp algorithm BPP of coordinate buffer Initial value required
(coord.format) (coord.bpp)
delta_8bpp 8
G2D_WARP_MAP_DDPNT |deltadelta_32bpp 32 start_x
deltadelta_16bpp 16 start_y
delta_xx
deltadelta_8bpp 8 delta_xy
deltadelta_4bpp 4 delta_yx
delta_yy

2.6 Feature list on multiple platforms

This user guide is for multiple platforms, such as i.MX 6 and i.MX 8, and the hardware for the G2D
implementation are different on those platforms, so some G2D features are also different.

For example, the G2D_YVYU and G2D_VYUY formats are not supported on the i.MX 8, and the g2d_multi_blit
function only works on the i.MX 6DualPlus/QuadPlus. Therefore, we list those differences in the following
feature table.

Table 16. Feature list on multiple platforms

Feature i.MX 6 i.MX 7 i.MX 8
6Solo/6Dual/ 6DualPlus/ 7ULP 8M Mini/ 8M 8QuadMax/8Quad
6Quad 6QuadPlus Plus XPlus
G2D_YVYU Yes Yes Yes Yes No
G2D_VYUY Yes Yes Yes Yes No
G2D_HARDWARE_VG Yes Yes No No No
G2D_MULTI_SOURCE_BLT |No Yes Yes Yes No
g2d_cache_op Yes Yes Yes Yes No

2.7 Arbitrary Warping

Arbitrary Warping is useful for the applications like lens distortion removal or windshield correction for head-up
displays. For example, the result of such a lens distortion removal is an image with straightened lines and with
objects that look natural.

Figure 3. Lens distortion removal

Arbitrary sample-points from a coordinate buffer allows any kind of static re-sampling pattern on the dynamic
image content.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 10.3 — 26 June 2025 Document feedback
21/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

In the coordinate buffer, an x and y value for each pixel is stored. These values are used to calculate the
coordinate of the current fetch sample-point.

Sizes from 4 bpp to 32 bpp for one x/y value pair in the coordinate buffer are supported. The values are stored
as a signed fix-point value with integer and fractional part.

The fractional precision corresponds to sub-pixel precision of the sampling points on the source buffer pixel grid.
The coordinate buffer can be interpreted as:

» Coordinate mode: Sample points (x and y coordinate relative to source image).
» Delta mode: Deltas of adjacent sample points.
* Delta increment mode: Increments of adjacent deltas.

Storing deltas and even more storing delta increments allow using much smaller bpp formats for the same
amount of distortion to save memory and bandwidth. On the other side, it results in some limitation on the
sample pattern. Therefore, the recommended setup is delta or delta increment mode with a coordinate format of
8 bpp or below.

3 Vivante EGL and OGL Extension Support

3.1 Introduction

The following tables list the level of support for EGL and OES extensions available with i.MX hardware and
software. Support levels are current as of the date of the document and subject to change.

Two tables are provided. The first table lists the EGL interface extensions. The second table lists extensions for
OpenGL ES 1.1, OpenGL ES 2.0, and OpenGL ES 3.0.

Key:

* Extension Name and Number: Each listed extension is derived from the relevant khronos.org webpage list
and includes the extension number as well as a hyperlink to the khronos description of the extension.
* Yes: Support is currently available.

* No: Support is not available. (Reasons for lack of support may vary: the extension may be proprietary or
obsolete, or not applicable to the specified OES version.)

* N/A: Support is not provided as the extension is not applicable in this and subsequent versions of the
specification.

3.2 EGL extension support

The following table includes the list of all current EGL Extensions and indicates their support level.

(list from www.khronos.org/registry/egl/ as of 1/24/2020)

Table 17. EGL extension support

EGL Extension Number, Name and hyperlink (2020) Linux Android QNX

1. EGL_KHR_config_attribs

2. EGL_KHR _lock_surface YES YES YES

3. EGL_KHR_image YES YES YES

4. EGL_KHR_vg_parent_image

5. EGL_KHR_gl_texture 2D_image YES YES YES
EGL_KHR_gl_texture_cubemap_image YES YES YES
UG10159 Allinformation provided in this document is subject to legal disclaimers. ©2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback

22/159

http://www.khronos.org/registry/egl/
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_config_attribs.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_lock_surface.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_image.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_vg_parent_image.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_gl_image.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_gl_image.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

Table 17. EGL extension support...continued

i.MX Graphics User's Guide

EGL Extension Number, Name and hyperlink (2020)

Linux

Android

QNX

EGL_KHR_gl_texture_3D_image

EGL_KHR_gl_renderbuffer_image

YES

YES

YES

6. EGL_KHR_reusable_sync

YES

YES

YES

7. EGL_KHR_image_base

YES

YES

YES

8. EGL_KHR_image_pixmap

YES

YES

YES

9. EGL_IMG_context_priority

YES

YES

10. EGL_NOK texture from_pixmap

11. EGL_KHR_lock_surface2

12. EGL_NV_coverage_sample

13. EGL_NV_depth_nonlinear

14. EGL_NV_sync

15. EGL_KHR_fence_sync

YES

YES

YES

16. EGL_NOK_ swap_region2

17. EGL_HI_clientpixmap

18. EGL_HI_colorformats

19. EGL_MESA_drm_image

20. EGL_NV_post_sub_buffer

21. EGL_ANGLE_query_surface_pointer

22. EGL_ANGLE_surface_d3d_texture 2d_share_handle

23. EGL_NV_coverage_sample_resolve

24. EGL_NV_system_time

25. EGL_KHR_stream

EGL_KHR_stream_attrib

26. EGL_KHR_stream_consumer_gltexture

27. EGL_KHR_stream_producer_eglsurface

28. EGL_KHR_stream_producer_aldatalocator

29. EGL_KHR_stream_fifo

30. EGL_EXT_create_context_robustness

31. EGL_ANGLE_d3d_share_handle_client_buffer

32. EGL_KHR_create_context

YES

YES

YES

33. EGL_KHR_surfaceless_context

YES

YES

YES

34. EGL_KHR_stream_cross_process_fd

35. EGL_EXT_multiview_window

36. EGL_KHR_wait_sync

YES

YES

YES

37. EGL_NV_post_convert_rounding

38. EGL_NV_native_query

UG10159 All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User guide Rev. 10.3 — 26 June 2025

Document feedback

23/159

https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_gl_image.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_gl_image.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_reusable_sync.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_image_base.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_image_pixmap.txt
https://www.khronos.org/registry/EGL/extensions/IMG/EGL_IMG_context_priority.txt
https://www.khronos.org/registry/EGL/extensions/NOK/EGL_NOK_texture_from_pixmap.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_lock_surface2.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_coverage_sample.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_depth_nonlinear.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_sync.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_fence_sync.txt
https://www.khronos.org/registry/EGL/extensions/NOK/EGL_NOK_swap_region2.txt
https://www.khronos.org/registry/EGL/extensions/HI/EGL_HI_clientpixmap.txt
https://www.khronos.org/registry/EGL/extensions/HI/EGL_HI_colorformats.txt
https://www.khronos.org/registry/EGL/extensions/MESA/EGL_MESA_drm_image.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_post_sub_buffer.txt
https://www.khronos.org/registry/EGL/extensions/ANGLE/EGL_ANGLE_query_surface_pointer.txt
https://www.khronos.org/registry/EGL/extensions/ANGLE/EGL_ANGLE_surface_d3d_texture_2d_share_handle.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_coverage_sample_resolve.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_system_time.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream_consumer_gltexture.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream_producer_eglsurface.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream_producer_aldatalocator.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream_fifo.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_create_context_robustness.txt
https://www.khronos.org/registry/EGL/extensions/ANGLE/EGL_ANGLE_d3d_share_handle_client_buffer.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_create_context.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_surfaceless_context.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream_cross_process_fd.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_multiview_window.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_wait_sync.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_post_convert_rounding.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_native_query.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

Table 17. EGL extension support...continued

EGL Extension Number, Name and hyperlink (2020) Linux Android QNX
39. EGL_NV_3dvision_surface

40. EGL_ANDROID_framebuffer_target YES

41. EGL_ANDROID_blob_cache YES

42. EGL_ANDROID_image_native_buffer YES

43. EGL_ANDROID_native_fence_sync YES

44. EGL_ANDROID_recordable YES

45. EGL_EXT_buffer_age YES YES YES
46. EGL_EXT_image_dma_buf_import YES YES

47. EGL_ARM_pixmap_multisample_discard

48. EGL_EXT_swap_buffers_with_damage YES YES YES
49. EGL_NV_stream_sync

50. EGL_EXT_platform_base YES YES YES
51. EGL_EXT_client_extensions YES YES YES
52. EGL_EXT_platform_x11 YES YES YES
53. EGL_KHR cl_event

54. EGL_KHR_get_all_proc_addresses YES YES YES
EGL_KHR_client_get_all_proc_addresses YES YES YES
55. EGL_MESA_platform_gbm

56. EGL_EXT_platform_wayland YES

57. EGL_KHR _lock_surface3
58. EGL_KHR_cl_event2
59. EGL_KHR_gl_colorspace

60. EGL_EXT_protected_surface YES YES YES
61. EGL_KHR_platform_android YES

62. EGL_KHR_platform_gbm YES YES YES
63. EGL_KHR_platform_wayland YES

64. EGL_KHR_platform_x11 YES

65. EGL_EXT_device_base

66. EGL_EXT_platform_device

67. EGL_NV_device_cuda

68. EGL_NV_cuda_event

69. EGL_TIZEN_image_native_buffer
70. EGL_TIZEN_image_native_surface
71. EGL_EXT_output_base

72. EGL_EXT_device_drm
EGL_EXT_output_drm

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
247159

https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_3dvision_surface.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_framebuffer_target.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_blob_cache.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_image_native_buffer.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_native_fence_sync.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_recordable.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_buffer_age.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_image_dma_buf_import.txt
https://www.khronos.org/registry/EGL/extensions/ARM/EGL_ARM_pixmap_multisample_discard.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_swap_buffers_with_damage.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_sync.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_platform_base.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_client_extensions.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_platform_x11.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_cl_event.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_get_all_proc_addresses.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_get_all_proc_addresses.txt
https://www.khronos.org/registry/EGL/extensions/MESA/EGL_MESA_platform_gbm.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_platform_wayland.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_lock_surface3.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_cl_event2.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_gl_colorspace.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_protected_surface.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_platform_android.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_platform_gbm.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_platform_wayland.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_platform_x11.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_device_base.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_platform_device.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_device_cuda.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_cuda_event.txt
https://www.khronos.org/registry/EGL/extensions/TIZEN/EGL_TIZEN_image_native_buffer.txt
https://www.khronos.org/registry/EGL/extensions/TIZEN/EGL_TIZEN_image_native_surface.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_output_base.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_device_drm.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_device_drm.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

Table 17. EGL extension support...continued

i.MX Graphics User's Guide

EGL Extension Number, Name and hyperlink (2020)

Linux

Android

QNX

73.

EGL_EXT_device_openwf

EGL_EXT_output_openwf

74.

EGL_EXT_stream_consumer_egloutput

75.

EGL_KHR_partial_update

YES

YES

YES

76.

EGL_KHR_swap_buffers_with_damage

YES

YES

YES

77.

EGL_ANGLE_window_fixed_size

78.

EGL_EXT_yuv_surface

79.

EGL_MESA_image_dma_buf_export

80.

EGL_EXT_device_enumeration

81.

EGL_EXT_device_query

82.

EGL_ANGLE_device_d3d

83.

EGL_KHR_create_context_no_error

84.

EGL_KHR_debug

85.

EGL_NV_stream_metadata

86.

EGL_NV_stream_consumer_gltexture_yuv

87.

EGL_IMG_image_plane_attribs

88.

EGL_KHR_mutable_render_buffer

89.

EGL_EXT_protected_content

90.

EGL_ANDROID_presentation_time

91.

EGL_ANDROID_create_native_client_buffer

92.

EGL_ANDROID_front_buffer_auto_refresh

93.

EGL_KHR_no_config_context

YES

YES

YES

94.

EGL_KHR_context_flush_control

95.

EGL_ARM_implicit_external_sync

96.

EGL_MESA_platform_surfaceless

97.

EGL_EXT_image_dma_buf_import_modifiers

YES

YES

98.

EGL_EXT_pixel_format_float

99.

EGL_EXT_gl_colorspace_bt2020_linear

EGL_EXT_gl_colorspace_bt2020_pq

100.

EGL_EXT_gl_colorspace_scrgb_linear

101.

EGL_EXT_surface_ SMPTE2086_metadata

102.

EGL_NV_stream_fifo_next

103.

EGL_NV_stream_fifo_synchronous

104.

EGL_NV_stream_reset

105.

EGL_NV_stream_frame_limits

106.

EGL_NV_stream_remote

UG10159

All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User guide

Rev. 10.3 — 26 June 2025

Document feedback
25/159

https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_device_openwf.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_device_openwf.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_stream_consumer_egloutput.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_partial_update.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_swap_buffers_with_damage.txt
https://www.khronos.org/registry/EGL/extensions/ANGLE/EGL_ANGLE_window_fixed_size.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_yuv_surface.txt
https://www.khronos.org/registry/EGL/extensions/MESA/EGL_MESA_image_dma_buf_export.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_device_enumeration.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_device_query.txt
https://www.khronos.org/registry/EGL/extensions/ANGLE/EGL_ANGLE_device_d3d.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_create_context_no_error.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_debug.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_metadata.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_consumer_gltexture_yuv.txt
https://www.khronos.org/registry/EGL/extensions/IMG/EGL_IMG_image_plane_attribs.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_mutable_render_buffer.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_protected_content.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_presentation_time.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_create_native_client_buffer.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_front_buffer_auto_refresh.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_no_config_context.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_context_flush_control.txt
https://www.khronos.org/registry/EGL/extensions/ARM/EGL_ARM_implicit_external_sync.txt
https://www.khronos.org/registry/EGL/extensions/MESA/EGL_MESA_platform_surfaceless.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_image_dma_buf_import_modifiers.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_pixel_format_float.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_gl_colorspace_bt2020_linear.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_gl_colorspace_bt2020_linear.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_gl_colorspace_scrgb_linear.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_surface_SMPTE2086_metadata.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_fifo_next.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_fifo_synchronous.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_reset.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_frame_limits.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_remote.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

Table 17. EGL extension support...continued
EGL Extension Number, Name and hyperlink (2020) Linux Android QNX

EGL_NV_stream_cross_object

EGL_NV_stream_cross_display

EGL_NV_stream_cross_process

EGL_NV_stream_cross_partition

EGL_NV_stream_cross_system

107. EGL_NV_stream_socket

EGL_NV_stream_socket_unix
EGL_NV_stream_socket_inet

108. EGL_EXT_compositor

109. EGL_EXT_surface_ CTA861_3_metadata
110. EGL_EXT_gl_colorspace_display_p3

111. EGL_EXT_gl_colorspace_display_p3_linear

112. EGL_EXT_gl_colorspace_scrgb (non-linear)

113. EGL_EXT_image_implicit_sync_control
114. EGL_EXT bind_to_front

115. EGL_ANDROID_get_frame_timestamps
116. EGL_ANDROID_get_native_client_buffer

117. EGL_NV_context_priority_realtime

118. EGL_EXT_image_gl_colorspace
119. EGL_KHR_display_reference
120. EGL_NV_stream_flush

121. EGL_EXT_sync_reuse

122. EGL_EXT_client_sync

123. EGL_EXT_gl_colorspace_display_p3_passthrough
124. EGL_MESA query_driver

125. EGL_ANDROID_GLES_layers

126. EGL_NV_n_buffer

127. EGL_NV_stream_origin

128. EGL_NV_stream_dma

129. EGL_WL_bind_wayland_display YES
130. EGL_WL_create_wayland_buffer_from_image YES

3.3 OpenGL ES extension support

The following table includes the list of all current OpenGL ES Extensions and indicates their support level.

(list from www.khronos.org/registry/gles/ as of 6/14/2020)

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
26/159

https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_remote.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_remote.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_remote.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_remote.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_remote.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_socket.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_socket.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_socket.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_compositor.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_surface_CTA861_3_metadata.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_gl_colorspace_display_p3.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_gl_colorspace_display_p3.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_gl_colorspace_scrgb.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_image_implicit_sync_control.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_bind_to_front.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_get_frame_timestamps.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_get_native_client_buffer.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_context_priority_realtime.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_image_gl_colorspace.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_display_reference.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_flush.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_sync_reuse.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_client_sync.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_gl_colorspace_display_p3_passthrough.txt
https://www.khronos.org/registry/EGL/extensions/MESA/EGL_MESA_query_driver.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_GLES_layers.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_n_buffer.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_origin.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_stream_dma.txt
https://www.khronos.org/registry/EGL/extensions/WL/EGL_WL_bind_wayland_display.txt
https://www.khronos.org/registry/EGL/extensions/WL/EGL_WL_create_wayland_buffer_from_image.txt
http://www.khronos.org/registry/gles/
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

Table 18. OpenGL ES extension support

i.MX Graphics User's Guide

Extension Number, Name and hyperlink ES1.1 ES2.0/3.0/3.1/3.2
1. GL_OES_blend_equation_separate YES

2. GL_OES_blend_func_separate YES

3. GL_OES_blend_subtract YES

4. GL_OES_byte_coordinates YES

5. GL_OES_compressed_ETC1_RGB8_texture YES YES
6. GL_OES_compressed_paletted_texture YES YES
7. GL_OES_draw_texture YES

8. GL_OES_extended_matrix_palette YES

9. GL_OES_fixed_point YES

10. GL_OES_framebuffer_object YES

11. GL_OES_matrix_get YES

12. GL_OES_matrix_palette YES

13. GL_OES_point_size_array YES

14. GL_OES_point_sprite YES

15. GL_OES_query_matrix YES

16. GL_OES_read_format YES

17. GL_OES_single_precision YES

18. GL_OES_stencil_wrap YES

19. GL_OES_texture_cube_map YES

20. GL_OES_texture_env_crossbar

21. GL_OES_texture_mirrored_repeat YES

22. GL_OES_EGL_image YES YES
23. GL_OES_depth24 YES YES
24. GL_OES_depth32 YES
25. GL_OES_element_index_uint YES YES
26. GL_OES_fbo_render_mipmap YES YES
27. GL_OES_fragment_precision_high YES
28. GL_OES_mapbuffer YES YES
29. GL_OES_rgb8_rgba8 YES YES
30. GL_OES_stencil1

31. GL_OES_stencil4

32. GL_OES_stencil8 YES

33. GL_OES_texture_3D

34. GL_OES_texture float_linear

GL_OES_texture_half float_linear CORE
35. GL_OES _texture_float CORE

UG10159 All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User guide Rev. 10.3 — 26 June 2025

Document feedback
271159

https://www.khronos.org/registry/OpenGL/extensions/OES/OES_blend_equation_separate.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_blend_func_separate.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_blend_subtract.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_byte_coordinates.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_compressed_ETC1_RGB8_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_compressed_paletted_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_draw_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_extended_matrix_palette.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_fixed_point.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_framebuffer_object.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_matrix_get.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_matrix_palette.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_point_size_array.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_point_sprite.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_query_matrix.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_read_format.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_single_precision.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_stencil_wrap.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_cube_map.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_env_crossbar.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_mirrored_repeat.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_EGL_image.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_depth24.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_depth32.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_element_index_uint.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_fbo_render_mipmap.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_fragment_precision_high.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_mapbuffer.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_rgb8_rgba8.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_stencil1.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_stencil4.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_stencil8.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_3D.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_float_linear.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_float_linear.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_float.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

Table 18. OpenGL ES extension support...continued

i.MX Graphics User's Guide

Extension Number, Name and hyperlink ES1.1 ES2.0/3.0/3.1/3.2
GL_OES_texture_half float CORE
36. GL_OES_texture_npot YES YES
37. GL_OES_vertex_half_float YES YES
38. GL_AMD_compressed_3DC_texture

39. GL_AMD_compressed_ATC_texture

40. GL_EXT _texture_filter_anisotropic CORE CORE
41. GL_EXT_texture_type_2_10_10_10_REV CORE
42. GL_OES_depth_texture YES
43. GL_OES_packed_depth_stencil YES YES
44. GL_OES_standard_derivatives YES
45. GL_OES_vertex_type_10_10_10_2 CORE
46. GL_OES_get_program_binary YES
47. GL_AMD_program_binary_Z400

48. GL_EXT _texture_compression_dxt1 YES
49. GL_AMD_performance_monitor

50. GL_EXT_texture_format BGRA8888 YES YES
51. GL_NV_fence

52. GL_IMG_read_format

53. GL_IMG_texture_compression_pvrtc

54. GL_QCOM_driver_control

55. GL_QCOM_performance_monitor_global_mode

56. GL_IMG_user_clip_plane

57. GL_IMG_texture_env_enhanced_fixed function

58. GL_APPLE_texture 2D _limited npot

59. GL_EXT_texture_lod_bias YES

60. GL_QCOM_writeonly_rendering

61. GL_QCOM_extended_get

62. GL_QCOM_extended_get2

63. GL_EXT_discard_framebuffer YES
64. GL_EXT_blend_minmax YES YES
65. GL_EXT_read_format_bgra YES YES
66. GL_IMG_program_binary

67. GL_IMG_shader_binary

68. GL_EXT_multi_draw_arrays YES YES
GL_SUN_multi_draw_arrays NO

69. GL_QCOM _tiled_rendering

UG10159 All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User guide

Rev. 10.3 — 26 June 2025

Document feedback
28 /159

https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_float.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_npot.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_vertex_half_float.txt
https://www.khronos.org/registry/OpenGL/extensions/AMD/AMD_compressed_3DC_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/AMD/AMD_compressed_ATC_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_filter_anisotropic.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_type_2_10_10_10_REV.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_depth_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_packed_depth_stencil.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_standard_derivatives.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_vertex_type_10_10_10_2.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_get_program_binary.txt
https://www.khronos.org/registry/OpenGL/extensions/AMD/AMD_program_binary_Z400.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_compression_dxt1.txt
https://www.khronos.org/registry/OpenGL/extensions/AMD/AMD_performance_monitor.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_format_BGRA8888.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_fence.txt
https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_read_format.txt
https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_texture_compression_pvrtc.txt
https://www.khronos.org/registry/OpenGL/extensions/QCOM/QCOM_driver_control.txt
https://www.khronos.org/registry/OpenGL/extensions/QCOM/QCOM_performance_monitor_global_mode.txt
https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_user_clip_plane.txt
https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_texture_env_enhanced_fixed_function.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_texture_2D_limited_npot.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_lod_bias.txt
https://www.khronos.org/registry/OpenGL/extensions/QCOM/QCOM_writeonly_rendering.txt
https://www.khronos.org/registry/OpenGL/extensions/QCOM/QCOM_extended_get.txt
https://www.khronos.org/registry/OpenGL/extensions/QCOM/QCOM_extended_get2.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_discard_framebuffer.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_blend_minmax.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_read_format_bgra.txt
https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_program_binary.txt
https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_shader_binary.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_multi_draw_arrays.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_multi_draw_arrays.txt
https://www.khronos.org/registry/OpenGL/extensions/QCOM/QCOM_tiled_rendering.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

Table 18. OpenGL ES extension support...continued

i.MX Graphics User's Guide

Extension Number, Name and hyperlink

ES1.1

ES2.0/3.0/3.1/3.2

70. GL_OES_vertex_array_object

YES

71. GL_NV_coverage_sample

72. GL_NV_depth_nonlinear

73. GL_IMG_multisampled_render_to_texture

74. GL_OES_EGL_sync

YES

YES

75. GL_APPLE_rgb_422

76. GL_EXT_shader_texture lod

77. GL_APPLE_framebuffer_multisample

78. GL_APPLE_texture format BGRA8888

79. GL_APPLE_texture_max_level

80. GL_ARM_mali_shader_binary

81. GL_ARM_rgba8

82. GL_ANGLE_framebuffer_blit

83. GL_ANGLE_framebuffer_multisample

84. GL_VIV_shader_binary

85. GL_EXT_frag_depth

YES

86. GL_OES EGL_image_external

YES

YES

87. GL_DMP_shader_binary

88. GL_QCOM _alpha_test

89. GL_EXT_unpack_subimage

90. GL_NV_draw_buffers

91. GL_NV_fbo_color_attachments

92. GL_NV_read_buffer

93. GL_NV_read_depth_stencil

94. GL_NV_texture_compression_s3tc_update

95. GL_NV_texture_npot_2D_mipmap

96. GL_EXT_color_buffer_half float

CORE

97. GL_EXT_debug_label

98. GL_EXT_debug_marker

99. GL_EXT_occlusion_query_boolean

100. GL_EXT_separate_shader_objects

101. GL_EXT_shadow_samplers

102. GL_EXT_texture_rg

YES

103. GL_NV_EGL_stream_consumer_external

104. GL_EXT_sRGB

YES

105. GL_EXT_multisampled_render_to_texture

YES

UG10159 All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User guide Rev. 10.3 — 26 June 2025

Document feedback
29 /159

https://www.khronos.org/registry/OpenGL/extensions/OES/OES_vertex_array_object.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_coverage_sample.txt
https://www.khronos.org/registry/EGL/extensions/NV/EGL_NV_depth_nonlinear.txt
https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_multisampled_render_to_texture.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_fence_sync.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_rgb_422.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_texture_lod.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_framebuffer_multisample.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_texture_format_BGRA8888.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_texture_max_level.txt
https://www.khronos.org/registry/OpenGL/extensions/ARM/ARM_mali_shader_binary.txt
https://www.khronos.org/registry/OpenGL/extensions/ARM/ARM_rgba8.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_framebuffer_blit.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_framebuffer_multisample.txt
https://www.khronos.org/registry/OpenGL/extensions/VIV/VIV_shader_binary.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_frag_depth.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_EGL_image_external.txt
https://www.khronos.org/registry/OpenGL/extensions/DMP/DMP_shader_binary.txt
https://www.khronos.org/registry/OpenGL/extensions/QCOM/QCOM_alpha_test.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_unpack_subimage.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_draw_buffers.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_fbo_color_attachments.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_read_buffer.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_read_depth_stencil.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_texture_compression_s3tc_update.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_texture_npot_2D_mipmap.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_color_buffer_half_float.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_debug_label.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_debug_marker.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_occlusion_query_boolean.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_separate_shader_objects.gles.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shadow_samplers.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_rg.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_EGL_stream_consumer_external.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_sRGB.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_multisampled_render_to_texture.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

Table 18. OpenGL ES extension support...continued

i.MX Graphics User's Guide

Extension Number, Name and hyperlink

ES1.1

ES2.0/3.0/3.1/3.2

106. GL_EXT_robustness

YES

107. GL_EXT_texture_storage

108. GL_ANGLE_instanced_arrays

109. GL_ANGLE_pack_reverse_row_order

110. GL_ANGLE_texture_compression_dxt3

GL_ANGLE _texture_compression_dxt1

GL_ANGLE _texture_compression_dxt5

111. GL_ANGLE _texture_usage

112. GL_ANGLE_translated_shader_source

113. GL_FJ_shader_binary_GCCSO

114. GL_OES_required_internalformat

YES

115. GL_OES_surfaceless_context

YES

116. GL_KHR_texture_compression_astc_hdr

GL_KHR_texture_compression_astc_Idr

YES

117. GL_KHR_debug

YES

118. GL_QCOM_binning_control

119. GL_ARM_mali_program_binary

120. GL_EXT_map_buffer_range

121. GL_EXT_shader_framebuffer_fetch

CORE

GL_EXT_shader_framebuffer_fetch_non_coherent

122. GL_APPLE_copy_texture_levels

123. GL_APPLE_sync

124. GL_EXT_multiview_draw_buffers

125. GL_NV_draw_texture

126. GL_NV_packed_float

127. GL_NV_texture_compression_s3tc

128. GL_NV_3dvision_settings

129. GL_NV_texture_compression_latc

130. GL_NV_platform_binary

131. GL_NV_pack_subimage

132. GL_NV_texture_array

133. GL_NV_pixel_buffer_object

134. GL_NV_bgr

135. GL_OES_depth_texture_cube_map

YES

136. GL_EXT_color_buffer_float

CORE

137. GL_ANGLE_depth_texture

UG10159 All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User guide Rev. 10.3 — 26 June 2025

Document feedback
30/159

https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_robustness.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_storage.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_instanced_arrays.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_pack_reverse_row_order.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_texture_compression_dxt.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_texture_compression_dxt.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_texture_compression_dxt.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_texture_usage.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_translated_shader_source.txt
https://www.khronos.org/registry/OpenGL/extensions/FJ/FJ_shader_binary_GCCSO.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_required_internalformat.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_surfaceless_context.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_texture_compression_astc_hdr.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_texture_compression_astc_hdr.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_debug.txt
https://www.khronos.org/registry/OpenGL/extensions/QCOM/QCOM_binning_control.txt
https://www.khronos.org/registry/OpenGL/extensions/ARM/ARM_mali_program_binary.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_map_buffer_range.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_framebuffer_fetch.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_framebuffer_fetch.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_copy_texture_levels.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_sync.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_multiview_draw_buffers.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_draw_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_packed_float.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_texture_compression_s3tc.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_3dvision_settings.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_texture_compression_latc.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_platform_binary.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_pack_subimage.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_texture_array.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_pixel_buffer_object.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_bgr.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_depth_texture_cube_map.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_color_buffer_float.txt
https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_depth_texture.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

Table 18. OpenGL ES extension support...continued

i.MX Graphics User's Guide

Extension Number, Name and hyperlink

ES1.1

ES2.0/3.0/3.1/3.2

138. GL_ANGLE_program_binary

139. GL_IMG_texture_compression_pvrtc2

140. GL_NV_draw_instanced

141. GL_NV_framebuffer_blit

142. GL_NV_framebuffer_multisample

143. GL_NV_generate_mipmap_sRGB

144. GL_NV_instanced_arrays

145. GL_NV_shadow_samplers_array

146. GL_NV_shadow_samplers_cube

147. GL_NV_sRGB_formats

148. GL_NV_texture_border_clamp

149. GL_EXT_disjoint_timer_query

150. GL_EXT_draw_buffers

151. GL_EXT_texture_sRGB_decode

YES

152. GL_EXT_sRGB_write_control

153. GL_EXT_texture_compression_s3tc

YES

154. GL_EXT_pvrtc_sRGB

155. GL_EXT_instanced_arrays

156. GL_EXT_draw_instanced

157. GL_NV_copy_buffer

158. GL_NV_explicit_attrib_location

159. GL_NV_non_square_matrices

160. GL_EXT_shader_integer_mix

161. GL_OES_texture_compression_astc

162. GL_NV_blend_equation_advanced

GL_NV_blend_equation_advanced_coherent

163. GL_INTEL_performance_query

164. GL_ARM_shader_framebuffer_fetch

165. GL_ARM_shader_framebuffer_fetch_depth_stencil

166. GL_EXT_shader_pixel_local_storage

167. GL_KHR_blend_equation_advanced

CORE

GL_KHR_blend_equation_advanced_coherent

168. GL_OES_sample_shading

CORE

169. GL_OES_sample_variables

CORE

170. GL_OES_shader_image_atomic

CORE

171. GL_OES_shader_multisample_interpolation

CORE

UG10159 All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User guide Rev. 10.3 — 26 June 2025

Document feedback
31/159

https://www.khronos.org/registry/OpenGL/extensions/ANGLE/ANGLE_program_binary.txt
https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_texture_compression_pvrtc2.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_draw_instanced.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_framebuffer_blit.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_framebuffer_multisample.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_generate_mipmap_sRGB.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_instanced_arrays.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_shadow_samplers_array.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_shadow_samplers_cube.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_sRGB_formats.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_texture_border_clamp.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_disjoint_timer_query.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_draw_buffers.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_sRGB_decode.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_sRGB_write_control.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_compression_s3tc.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_pvrtc_sRGB.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_instanced_arrays.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_draw_instanced.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_copy_buffer.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_explicit_attrib_location.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_non_square_matrices.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_integer_mix.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_compression_astc.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_blend_equation_advanced.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_blend_equation_advanced.txt
https://www.khronos.org/registry/OpenGL/extensions/INTEL/INTEL_performance_query.txt
https://www.khronos.org/registry/OpenGL/extensions/ARM/ARM_shader_framebuffer_fetch.txt
https://www.khronos.org/registry/OpenGL/extensions/ARM/ARM_shader_framebuffer_fetch_depth_stencil.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_pixel_local_storage.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_blend_equation_advanced.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_blend_equation_advanced.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_sample_shading.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_sample_variables.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_shader_image_atomic.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_shader_multisample_interpolation.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

Table 18. OpenGL ES extension support...continued

i.MX Graphics User's Guide

Extension Number, Name and hyperlink ES1.1 ES2.0/3.0/3.1/3.2
172. GL_OES_texture_stencil8 CORE
173. GL_OES_texture_storage_multisample_2d_array CORE
174. GL_EXT_copy_image CORE
175. GL_EXT_draw_buffers_indexed CORE
176. GL_EXT_geometry_shader CORE
GL_EXT_geometry_point_size CORE
177. GL_EXT_gpu_shader5 CORE
178. GL_EXT_shader_implicit_conversions CORE
179. GL_EXT_shader_io_blocks CORE
180. GL_EXT_tessellation_shader CORE
GL_EXT_tessellation_point_size CORE
181. GL_EXT_texture_border_clamp CORE
182. GL_EXT_texture_buffer CORE
183. GL_EXT_texture_cube_map_array CORE
184. GL_EXT_texture_view

185. GL_EXT_primitive_bounding_box CORE
186. GL_ANDROID_extension_pack_es31a CORE
187. GL_EXT_compressed_ETC1_RGB8_sub_texture

188. GL_KHR_robust_buffer_access_behavior YES
189. GL_KHR_robustness YES
190. GL_KHR_context_flush_control

GLX_ARB_context_flush_control

WGL_ARB_context_flush_control

191. GL_DMP_program_binary

192. GL_APPLE_clip_distance

193. GL_APPLE_color_buffer_packed_float

194. GL_APPLE_texture packed_float

195. GL_NV_internalformat_sample_query

196. GL_NV_bindless_texture

197. GL_NV_conditional_render

198. GL_NV_path_rendering

199. GL_NV_image_formats

200. GL_NV_shader_noperspective_interpolation

201. GL_NV_viewport_array

202. GL_EXT_base_instance

203. GL_EXT_draw_elements_base_vertex CORE

UG10159 All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User guide Rev. 10.3 — 26 June 2025

Document feedback
32/159

https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_stencil8.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_storage_multisample_2d_array.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_copy_image.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_draw_buffers_indexed.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_geometry_shader.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_geometry_shader.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_gpu_shader5.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_implicit_conversions.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_io_blocks.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_tessellation_shader.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_tessellation_shader.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_border_clamp.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_buffer.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_cube_map_array.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_view.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_primitive_bounding_box.txt
https://www.khronos.org/registry/OpenGL/extensions/ANDROID/ANDROID_extension_pack_es31a.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_compressed_ETC1_RGB8_sub_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_robust_buffer_access_behavior.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_robustness.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_context_flush_control.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_context_flush_control.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_context_flush_control.txt
https://www.khronos.org/registry/OpenGL/extensions/DMP/DMP_program_binary.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_clip_distance.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_color_buffer_packed_float.txt
https://www.khronos.org/registry/OpenGL/extensions/APPLE/APPLE_texture_packed_float.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_internalformat_sample_query.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_bindless_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_conditional_render.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_path_rendering.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_image_formats.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_shader_noperspective_interpolation.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_viewport_array.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_base_instance.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_draw_elements_base_vertex.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

Table 18. OpenGL ES extension support...continued

i.MX Graphics User's Guide

Extension Number, Name and hyperlink ES1.1 ES2.0/3.0/3.1/3.2
204. GL_EXT_multi_draw_indirect CORE
205. GL_EXT_render_snorm

206. GL_EXT_texture_norm16

207. GL_OES copy_image CORE
208. GL_OES draw_buffers_indexed CORE
209. GL_OES_geometry_shader CORE
210. GL_OES_gpu_shader5 CORE
211. GL_OES_primitive_bounding_box CORE
212. GL_OES_shader_io_blocks CORE
213. GL_OES tessellation_shader CORE
GL_OES_tessellation_point_size CORE
214. GL_OES _texture_border_clamp CORE
215. GL_OES _texture_buffer CORE
216. GL_OES _texture_cube_map_array CORE
217. GL_OES _texture view CORE
218. GL_OES draw_elements_base_vertex CORE
219. GL_OES_EGL_image_external_esslI3 CORE

220. GL_EXT_texture_sRGB_R8

221. GL_EXT_YUV._target

222. GL_EXT_texture_ sRGB_RG8

223. GL_EXT _float_blend

224. GL_EXT_post_depth_coverage

225. GL_EXT_raster_multisample

226. GL_EXT_texture_filter_minmax

227. GL_NV_conservative_raster

228. GL_NV_fragment_coverage to_color

229. GL_NV_fragment_shader_interlock

230. GL_NV_framebuffer_mixed_samples

231. GL_NV _fill_rectangle

232. GL_NV_geometry_shader_passthrough

233. GL_NV_path_rendering_shared_edge

234. GL_NV_sample_locations

235. GL_NV_sample_mask_override_coverage

236. GL_NV_viewport_array?2

237. GL_NV_polygon_mode

238. GL_EXT_buffer_storage

UG10159 All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User guide Rev. 10.3 — 26 June 2025

Document feedback
33/159

https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_multi_draw_indirect.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_render_snorm.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_norm16.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_copy_image.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_draw_buffers_indexed.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_geometry_shader.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_gpu_shader5.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_primitive_bounding_box.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_shader_io_blocks.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_tessellation_shader.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_tessellation_shader.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_border_clamp.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_buffer.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_cube_map_array.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_texture_view.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_draw_elements_base_vertex.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_EGL_image_external_essl3.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_sRGB_R8.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_YUV_target.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_sRGB_RG8.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_float_blend.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_post_depth_coverage.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_raster_multisample.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_texture_filter_minmax.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_conservative_raster.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_fragment_coverage_to_color.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_fragment_shader_interlock.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_framebuffer_mixed_samples.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_fill_rectangle.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_geometry_shader_passthrough.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_path_rendering_shared_edge.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_sample_locations.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_sample_mask_override_coverage.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_viewport_array2.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_polygon_mode.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_buffer_storage.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

Table 18. OpenGL ES extension support...continued

i.MX Graphics User's Guide

Extension Number, Name and hyperlink

ES1.1

ES2.0/3.0/3.1/3.2

239.

GL_EXT_sparse_texture

240.

GL_OVR_multiview

241.

GL_OVR_multiview2

242.

GL_KHR_no_error

243.

GL_INTEL_framebuffer CMAA

244.

GL_EXT_blend_func_extended

245.

GL_EXT_multisample_compatibility

246.

GL_KHR_texture_compression_astc_sliced_3d

247.

GL_OVR_multiview_multisampled_render_to_texture

248.

GL_IMG_texture_filter_cubic

249.

GL_EXT_polygon_offset_clamp

250.

GL_EXT_shader_pixel_local_storage2

251.

GL_EXT_shader_group_vote

252. GL_IMG_framebuffer_downsample
253. GL_EXT_protected_textures
254. GL_EXT_clip_cull_distance
255. GL_NV_viewport_swizzle
256. GL_EXT_sparse_texture2
257. GL_NV_gpu_shader5
258. GL_NV_shader_atomic_fp16_vector
259. GL_NV_conservative_raster_pre_snap_triangles
260. GL_EXT_window_rectangles
261. GL_EXT_shader_non_constant_global_initializers
262. GL_INTEL_conservative_rasterization
263. GL_NVX_blend_equation_advanced_multi_draw_buffers
264. GL_OES_viewport_array
265. GL_EXT_conservative_depth
3.4 Extension GL_VIV_direct_texture
Name VIV_direct_texture
Name strings GL_VIV_direct_texture
IPStatus Contact NXP Semiconductor regarding any intellectual property questions
associated with this extension.
Status Implemented: July, 2011
Version Last modified: 29 July, 2011
Revision: 2
Number Unassigned
UG10159 Al information provided in this document is subject to legal disclaimers. ©2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback

34/159

https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_sparse_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/OVR/OVR_multiview.txt
https://www.khronos.org/registry/OpenGL/extensions/OVR/OVR_multiview2.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_no_error.txt
https://www.khronos.org/registry/OpenGL/extensions/INTEL/INTEL_framebuffer_CMAA.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_blend_func_extended.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_multisample_compatibility.txt
https://www.khronos.org/registry/OpenGL/extensions/KHR/KHR_texture_compression_astc_sliced_3d.txt
https://www.khronos.org/registry/OpenGL/extensions/OVR/OVR_multiview_multisampled_render_to_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_texture_filter_cubic.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_polygon_offset_clamp.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_pixel_local_storage2.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_group_vote.txt
https://www.khronos.org/registry/OpenGL/extensions/IMG/IMG_framebuffer_downsample.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_protected_textures.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_clip_cull_distance.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_viewport_swizzle.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_sparse_texture2.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_gpu_shader5.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_shader_atomic_fp16_vector.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_conservative_raster_pre_snap_triangles.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_window_rectangles.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_shader_non_constant_global_initializers.txt
https://www.khronos.org/registry/OpenGL/extensions/INTEL/INTEL_conservative_rasterization.txt
https://www.khronos.org/registry/OpenGL/extensions/NVX/NVX_blend_equation_advanced_multi_draw_buffers.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_viewport_array.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_conservative_depth.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

Dependencies OpenGL ES 1.1 is required. OpenGL ES 2.0/3.x support is available.

Overview Create a texture with direct access support. This is useful when an application
desires to use the same texture over and over while frequently updating its content.
It could also be used for mapping live video to a texture. A video decoder could write
its result directly to the texture and then the texture could be directly rendered onto
a 3D shape. glTexDirectVIVMap is similar to glTexDirectVIV. The only difference is
that it has two inputs, “Logical” and “Physical,” which support mapping a user space
memory or a physical address into the texture surface.

3.4.1 New Procedures and Functions

glTexDirectVIV
Syntax:

GL API void GL APIENTRY
glTexDirectVIV (

GLenum Target,

GLsizei Width,

GLsizeil Height,

GLenum Format,

GLvoid ** Pixels

) 7

Parameters

Target Target texture. Must be GL_TEXTURE_2D.

Width Size of LOD 0. Width must be 16 pixel aligned. The width and height of LOD 0 of the texture is

Height specified by the Width and Height parameters. The driver may auto-generate the rest of LODs if
the hardware supports high quality scaling (for non-power of 2 textures) and LOD generation. If the
hardware does not support high quality scaling and LOD generation, the texture remains a single-

LOD texture.

Format Choose the format of the pixel data from the following formats: GL_VIV_YV12, GL_VIV_NV12, GL_

VIV_NV21, GL_VIV_YUY2, GL_VIV_UYVY, GL_RGBA, and GL_BGRA_EXT.

* If the format is GL_VIV_YV12, glTexDirectVIV creates a planar YV12 4:2:0 texture and the format
of the Pixels array is as follows: Yplane, Vplane, Uplane.

« |f the format is GL_VIV_NV12, glTexDirectVIV creates a planar NV12 4:2:0 texture and the format
of the Pixels array is as follows: Yplane, UVplane.

* If the format is GL_VIV_NV21, glTexDirectVIV creates a planar NV21 4:2:0 texture and the format
of the Pixels array is as follows: Yplane, VUplane.

¢ If the formatis GL_VIV_YUY2 or GL_VIV_UYVY, glTexDirectVIV creates a packed 4:2:2 texture
and the Pixels array contains only one pointer to the packed YUV texture.

* If Format is GL_RGBA, glTexDirectVIV creates a pixel array with four GL_UNSIGNED_BYTE
components: the first byte for red pixels, the second byte for green pixels, the third byte for blue,
and the fourth byte for alpha.

e If Format is GL_BGRA_EXT, glTexDirectVIV creates a pixel array with four GL_UNSIGNED_BYTE
components: the first byte for blue pixels, the second byte for green pixels, the third byte for red,
and the fourth byte for alpha.

Pixels Stores the memory pointer created by the driver.
Output

If the function succeeds, it returns a pointer, or, for some YUV formats, it returns a set of pointers that directly
point to the texture. The pointer(s) are returned in the user-allocated array pointed to by the Pixels parameter.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
35/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

GITexDirectVIVMap
Syntax:

GL API void GL APIENTRY
glTexDirectVIVMap (
GLenum Target,

GLsizei Width,

GLsizeil Height,

GLenum Format,

GLvoid ** Logical,
const GLuint * Physical
)

Parameters

Target Target texture. Must be GL_TEXTURE_2D.

Width Size of LOD 0. Width must be 16 pixel aligned. See glTexDirectVIV.

Height

Format Same as glTexDirectVIV Format.

Logical Pointer to the logical address of the application-defined texture buffer. Logical address must be 64 bit
(8 byte) aligned.

Physical Pointer to the physical address of the application-defined buffer to the texture, or ~0 if no physical
address has been provided.

GITexDirectinvalidateVIV
Syntax:

GL API void GL APIENTRY
glTexDirectInvalidateVIV (
GLenum Target

)7

Parameters

Target Target texture. Must be GL_TEXTURE_2D.

New Tokens

GL_VIV_YV12 0x8FCO

GL_VIV_NV12 0x8FCA1

GL_VIV_YUY2 0x8FC2

GL_VIV_UYvVY 0x8FC3

GL_VIV_NV21 0x8FC4

Error codes

GL_INVALID_ENUM Target is not GL_TEXTURE_2D, or format is not a valid format.
GL_INVALID_VALUE Width or Height parameter is less than 1.

GL_OUT_OF_MEMORY A memory allocation error occurred.
UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback

36/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

GL_INVALID_OPERATION Specified format is not supported by the hardware, or
no texture is bound to the active texture unit, or
some other error occurs during the call.

Example 1.
First, call glTexDirectVIV to get a pointer.
Second, copy the texture data to this memory address.

Then, call glTexDirectInvalidateVIV to apply the texture before drawing something with that texture.

glTexDirectVIV (GL TEXUTURE 2D, 512, 512, GL VIV YV12, &texels);

GLTexDirectInvalidateVIV (GL TEXTURE 2D);

glDrawArrays (..);

Example 2.
First, call glTexDirectVIVMap to map Logical and Physical address to the texture.
Second, modify Logical and Physical data.

Then, call glTexDirectInvalidateVIV to apply the texture before drawing something with that texture.

char *Logical = (char*) malloc (sizeof (char) *size);

GLuint physical = ~0U;

glTexDirectVIVMap (GL TEXUTURE 2D, 512, 512, GL VIV YV12, (void**)é&Logical,
&physical) ;

GLTexDirectInvalidateVIV (GL TEXTURE 2D) ;

glDrawArrays(..);

Issues

None

3.5 Extension GL_VIV_texture_border_clamp

Name

VIV_texture_border_clamp

Name Strings
GL_VIV_texture_border_clamp
Status

Implemented September 2012.
Version

Last modified: 27 September 2012

Vivante revision: 1

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 10.3 — 26 June 2025 Document feedback
371159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

Number
Unassigned
Dependencies

This extension is implemented for use with OpenGL ES 1.1 and OpenGL ES 2.0.

This extension is based on OpenGL ARB Extension #13: GL_ARB_texture_border_clamp: www.opengl.org/
registry/specs/ARB/texture_border_clamp.txt. See also vendor extension GL_SGIS_texture_border_clamp:
www.opengl.org/registry/specs/SGIS/texture _border_clamp.txt.

Overview

This extension was adapted from the OpenGL extension for use with OpenGL ES implementations. The
OpenGL ARB Extension 13 description applies here as well:

“The base OpenGL provides clamping such that the texture coordinates are limited to exactly the range [0,1].
When a texture coordinate is clamped using this algorithm, the texture sampling filter straddles the edge of the
texture image, taking 1/2 its sample values from within the texture image, and the other 1/2 from the texture
border. It is sometimes desirable for a texture to be clamped to the border color, rather than to an average of the
border and edge colors.

This extension defines an additional texture clamping algorithm. CLAMP_TO_BORDER_[VIV] clamps texture
coordinates at all mipmap levels such that NEAREST and LINEAR filters return only the color of the border
texels.”

The color returned is derived only from border texels and cannot be configured.
Issues

None

New Tokens

Accepted by the <param> parameter of TexParameteri and TexParameterf, and by the <params>
parameter of TexParameteriv and TexParameterfv, when their <pname> parameter is TEXTURE_WRAP_S,
TEXTURE_WRAP_T, or TEXTURE_WRAP_R:

CLAMP_TO_BORDER_VIV 0x812D

Errors

None.

New State

Only the type information changes for these parameters.

See OES 2.0 Specification Section 3.7.4, page 75-76, Table 3.10, “Texture parameters and their values.”

4 Vivante Framebuffer API

4.1 Overview

The graphics software includes i.MX Framebuffer (FB) APl which enables users to easily create and port

their graphics applications by using a framebuffer device without the need to expend additional effort handling
platform-related tasks. i.MX Framebuffer API focuses on providing mechanisms for controlling display, window,
and pixmap render surfaces.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
38/159

http://www.opengl.org/registry/specs/ARB/texture_border_clamp.txt
http://www.opengl.org/registry/specs/ARB/texture_border_clamp.txt
https://www.opengl.org/registry/specs/SGIS/texture_border_clamp.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

The EGL Native Platform Graphics Interface provides mechanisms for creating rendering surfaces onto which
client APIs can draw, creating graphics contexts for client APIs, and synchronizing drawing by client APIs as
well as native platform rendering APIs. This enables seamless rendering using Khronos APIs such as OpenGL
ES and OpenVG for high-performance, accelerated, mixed-mode 2D, and 3D rendering. For further information
on EGL, see www.khronos.org/registry/egl. The API described in this document is compatible with EGL version
1.4 of the specification.

Note:

i.MX 8 and later on Linux OS supports Direct Rendering Manager (DRM) where the Linux framebuffer support is
limited, recommended to use the Graphics Buffer Manager (GBM).

4.2 API data types and environment variables

4.2.1 Data types

The GPU software provides platform independent member definitions for the following EGL types:

typedef struct FBDisplay * EGLNativeDisplayType;
typedef struct FBWindow * EGLNativeWindowType;
typedef struct FBPixmap * EGLNativePixmapType;

r Types [2.1.1] The following types differ based on platform. |
Windows platform:
unsigned int EGLBoolean HDC EGLNativeDisplayType
unsigned int EGLenum HBITMAP EGLNativePixmapType
void *EGLConfi HWND EGLNativeWindowType
g Linux/X11 platform:
void *EGLContext Display *EGLNativeDisplayType
void *EGLDisplay Pixmap EGLNativePixmapType
2 Window EGLNativeWindowType
void *EGLSurface 5
- . - Android platform:
L void EGLClientBuffer | ANativeWindow* EGLNativeWindowType |
> |

Figure 4. Types as listed on EGL 1.4 APl Quick Reference Card

(from www.khronos.org/files/egl-1-4-quick-reference-card.pdf)

4.2.2 Environment variables

Table 19. i.MX FB API environment variables
Environment Variables Description

FB MULTI BUFFER To use multiple-buffer rendering, set the environment variable FB_ MULTI BUFFER
to an unsigned integer value, which indicates the number of buffers required. The
maximum is 8.

Recommended values: 4.
The FB_ MULTI BUFFER variable can be set to any positive integer value.

* If set to 1, the multiple-buffer function is not enabled, and the VSYNC is also
disabled, so there may be tearing on screen, but it is good for benchmark test.

e If setto 2 or 3, VSYNC is enabled and there are double or triple frame buffer.
Because of the hardware limitation of current IPU, there may be tearing on screen.

* If setto 4 or more, VSYNC is enabled and no screen tearing appears.
* If set to a value more than 8, the driver uses 8 as the buffer count.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
39/159

http://www.khronos.org/registry/egl
http://www.khronos.org/files/egl-1-4-quick-reference-card.pdf
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

Table 19. i.MX FB API environment variables...continued

Environment Variables Description

FB_FRAMEBUFFER 0, To open a specified framebuffer device, set the environment variable FB_

FB FRAMEBUFFER 1, FRAMEBUFFER n to a proper value (for example, FB_ FRAMEBUFFER 0 = /dev/
FB_FRAMEBUFFER 2, £b0).

Allowed values for n: any positive integer.

Note: If there are no environment variables set, the driver tries to use the default
framebuffer devices (fb0 for index 0, fb1 for index 1, fb2 for index 2, fb3 for index 3,
and so on).

FB FRAMEBUFFER n

FB_IGNORE DISPLAY SIZE When set to a positive integer and a window’s initial size request is greater than the

display size, the window size is not reduced to fit within the display. Global.

Allowed values: any positive integer.

Note: The drivers read the value from this environment variable as a Boolean to check

if the user wants to ignore the display size when creating a window.

* If the variable is set to value 0, or this environment variable is not set, when creating
window, the driver uses display size to cut down the size of the window to ensure
that the entire window area is inside the display screen.

* If the user sets this variable to 1, or any positive integer value, then the window
area can be partly or entirely outside of the display screen area (see the image
below in which the ignore display size is equal to 1).

GPU_VIV DISABLE CLEAR FB |lt turns off zero fill memory, so the content of FBDEV buffer is not cleared.

FB_LEGACY If the board supports drm-fb, the GPU will render though DRM by default. If the user
wants to render to framebuffer directly instead of through DRM, set this variable to 1.

Below are some usage syntax examples for environment variables:

To create a window with its size different from the display size, use the environment variable
FB IGNORE DISPLAY SIZE.Example usage syntax:

export FB IGNORE DISPLAY SIZE=1

To let the driver use multiple buffers to do swap work, use the environment variable FB MULTI BUFFER.
Example usage syntax:

export FB MULTI BUFFER=2

To specify the display device, use the environment variable FB_ FRAMEBUFFER _n, where n = any positive
integer. Example usage syntax:

export FB FRAMEBUFFER 0=/dev/fb0
export FB_FRAMEBUFFER 1=/dev/fbl
export FB_FRAMEBUFFER 2=/dev/fb2

export FB FRAMEBUFFER 3=/dev/fb3

4.3 API description and syntax

fbGetDisplay:
Description This function is used to get the default display of the framebuffer device.
To open the framebuffer device, set an environment variable FB_ FRAMEBUFFER n to the
framebuffer location.
Syntax
EGLNativeDisplayType
UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback

40/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

fbGetDisplay (
void * context

) 8

Parameters

context: Pointer to the native display instance.

Return Values

The function returns a pointer to the EGL native display instance if successful; otherwise, it
returns a NULL pointer.

fbGetDisplayBylndex:

Description This function is used to get a specified display within a multiple framebuffer environment by
providing an index number.
To use multiple buffers when rendering, set the environment variable FB_ MULTI BUFFER
to an unsigned integer value, which indicates the number of buffers. Maximum is 3.
To open a specific Framebuffer device, set environment variables to their proper values
(e.g., set FB_ FRAMEBUFFER 0 = /dev/fb0). If there are no environment variables set,
the driver tries to use the default fb devices (fb0O for index 0, fb1 for index 1, fb2 for index 2,
fb3 for index 3, and so on).
Syntax EGLNativeDisplayType
fbGetDisplayByIndex (
int DisplayIndex
) i
Parameters DisplayIndex:

An integer value where the integer is associated with one of the following environment
variables for framebuffer devices:

FB_FRAMEBUFFER 0
FB FRAMEBUFFER 1
FB FRAMEBUFFER 2
FB FRAMEBUFFER n

Return Value

The function returns a pointer to the EGL native display instance if successful; otherwise, it
returns a NULL pointer.

fbGetDisplayGeometry:

This function is used to get display width and height information.

Description
Syntax void
fbGetDisplayGeometry (
EGLNativeDisplayType Display,
int * Width,
int * Height
UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback

411/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

)

Parameters Display: [in] Pointer to EGL native display instance created by fbGetDisplay.
width: [out] Pointer that receives the width of the display.

Height: [out] Pointer that receives the height of the display.

fbGetDisplayinfo:

Description This function is used to get display information.
Syntax
void
fbGetDisplayInfo (
EGLNativeDisplayType Display,
int * Width,
int * Height,
unsigned long * Physical,
int * Stride,
int * BitsPerPixel
) ;
Parameters Display: [in] A pointer to the EGL native display instance created by fbGetDisplay.

Width: [out] A pointer to the location that contains the width of the display.
Height: [out] A pointer to the location that contains the height of the display.

Physical: [out] A pointer to the location that contains the physical start address of the
display.

Stride: [out] A pointer to the location that contains the stride of the display.

BitsPerPixel: [out] A pointer to the location that contains the pixel depth of the display.

fbDestroyDisplay:

Description This function is used to destroy a display.
Syntax
void
fbDestroyDisplay (
EGLNativeDisplayType Display
) ;
Parameters Display: [in] Pointer to EGL native display instance created by fbGetDisplay.

fbCreateWindow:

Description This function is used to create a window for the framebuffer platform with the specified
position and size. If width/height is 0, it uses the display width/height as its value.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 10.3 — 26 June 2025 Document feedback

42159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

Note: When either window X + width or the Y + height is larger than the display’s width or
height respectively, the API reduces the window size to force the whole window inside the
display screen limits. To avoid reducing the window size in this scenario, users can set a
value of “1” to the environment variable FB_ IGNORE_DISPLAY SIZE.
Syntax
EGLNativeWindowType
fbCreateWindow (
EGLNativeDisplayType Display,
int XI
int YI
int Width,
int Height
) ;
Parameters Display: [in] Pointer to EGL native display instance created by fbGetDisplay.
X: [in] Specifies the initial horizontal position of the window.
Y: [in] Specifies the initial vertical position of the window.
Width: [in] Specifies the width of the window.
Height: [in] Specifies the height of the window in device units.
Return Value The function returns a pointer to the EGL native window instance if successful; otherwise,
it returns a NULL pointer.
fbGetWindowGeometry:
Description This function is used to get window position and size information.
Syntax
void
fbGetWindowGeometry (
EGLNativeWindowType Window,
e w X,
int * Yr
int * Width,
int * Height
) ;
Parameters Window: [in] Pointer to EGL native window instance created by fbCreateWindow.
X: [out] Pointer that receives the horizontal position value of the window.
v: [out] Pointer that receives the vertical position value of the window.
Width: [out] Pointer that receives the width value of the window.
Height: [out] Pointer that receives the height value of the window.

fbGetWindowlnfo:

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
43 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

Description This function is used to get window position and size and address information.

Syntax

void
fbGetWindowInfo (
EGLNativeWindowType Window,

int * X,
int * Y,
int * Width,
int * Height
e w BitsPerPixel,
unsigned int * Offset
)
Parameters Window: [in] A pointer to the EGL native window instance created by fbCreateWindow.

X: [out] A pointer to the location that contains the horizontal position value of the window.
Y: [out] A pointer to the location that contains the vertical position value of the window.
Width: [out] A pointer to the location that contains the width of the window.

Height: [out] A pointer to the location that contains the height of the window.
BitsPerPixel: [out] A pointer to the location that contains the pixel depth of the window.

Of fset: [out] A pointer to the location that contains the offset of the window.

fbDestroyWindow:
Description This function is used to destroy a window.
Syntax
void
fbDestroyWindow (
EGLNativeWindowType Window
) 5
Parameters Window: [in] Pointer to EGL native window instance created by fbCreateWindow.
fbCreatePixmap:
Description This function is used to create a pixmap of a specific size on the specified framebuffer
device. If either the width or height is 0, the function fails to create a pixmap and return
NULL.
Syntax
EGLNativePixmapType
fbCreatePixmap (
EGLNativeDisplayType Display,
int Width,
int Height
)7
UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback

44159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

Parameters

i.MX Graphics User's Guide

Display: [in] Pointer to the EGL native display instance created by fbGetDisplay.
width: [in] Specifies the width of the pixmap.
Height: [in] Specifies the height of the pixmap.

Return Value

The function returns a pointer to the EGL native pixmap instance if successful; otherwise,
it returns a NULL pointer.

fbCreatePixmapWithBpp:

Description

This function is used to create a pixmap of a specific size and bit depth on the specified
framebuffer device. If either the width or height is 0, the function fails to create a pixmap
and return NULL.

Syntax
EGLNativePixmapType
fbCreatePixmapWithBpp (
EGLNativeDisplayType Display,
int Width,
int Height
int BitsPerPixel
) ;
Parameters Display: [in]A pointer to the EGL native display instance created by fbGetDisplay.

Width: [in] Specifies the width of the pixmap.
Height: [in] Specifies the height of the pixmap.

BitsPerPixel: [in] Specifies the bit depth of the pixmap.

Return Value

The function returns a pointer to the EGL native pixmap instance if successful; otherwise,
it returns a NULL pointer.

fbGetPixmapGeometry:
Description This function is used to get pixmap size information.
Syntax
void
fbGetPixmapGeometry (
EGLNativePixmapType Pixmap,
dmiE Width,
int * Height
)
Parameters Pixmap: [in] Pointer to the EGL native pixmap instance created by fbCreatePixmap.
Width: [out] Pointer that receives a width value for pixmap.
Height: [out] Pointer that receives a height value for pixmap.
UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback

45/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

fbGetPixmaplinfo:

Description This function is used to get pixmap size and depth information.
Syntax

void

fbGetPixmapInfo (

EGLNativePixmapType Pixmap,

int * Width,

int * Height

int * BitsPerPixel

int * Stride,

void ** Bits

) ;
Parameters Pixmap: [in] A pointer to the EGL native pixmap instance created by fbCreatePixmap.

width: [out] A pointer to the location that contains a width value for pixmap.

Height: [out] A pointer to the location that contains a height value for pixmap.
BitsPerPixel: [out] A pointer to the location that contains the pixel depth of the pixmap.
Stride: [out] A pointer to the location that contains the stride of the pixmap.

Bits: [out] A pointer to the location that contains the bit address of the pixmap.

fbDestroyPixmap:
Description This function is used to destroy a pixmap.
Syntax
void
fbDestroyPixmap (
EGLNativePixmapType Pixmap
) ;
Parameters Pixmap: [in] Pointer to the EGL native pixmap instance created by fbCreatePixmap.
5 OpenCL

5.1 Overview

5.1.1 General description

Open Computing Language (OpenCL) is an open industry standard application programming interface (API)
used to program multiple devices including GPUs, CPUs, as well as other devices organized as part of a single
computational platform. The OpenCL standard targets a wide range of devices from mobile phones, tablets,
PCs, and consumer electronic (CE) devices, all the way to embedded applications such as automotive and
image processing functions. The API takes advantage of all resources in a platform to fully utilize all compute
capability and to efficiently process the growing complexity of incoming data streams from multiple 1/0 (input/
output) sources. I/O streams can be camera inputs, images, scientific or mathematical data, and any other form
of complex data that can make use of data or task parallelism.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
46 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

OpenCL uses parallel execution SIMD (single instruction, multiple data) engines found in GPUs to enhance
data computational density by performing massively parallel data processing on multiple data items, across
multiple compute engines. Each compute unit has its own arithmetic logic units (ALUs), including pipelined
floating point (FP), integer (INT) units and a special function unit (SFU) that can perform computations as
well as transcendental operations. The parallel computations and associated series of operations are called a
kernel, and the GPU cores can execute a kernel on thousands of work-items in parallel at any given time.

At a high level, OpenCL provides both a programming language and a framework to enable parallel
programming. OpenCL includes APIs, libraries and a runtime system to assist and support software
development. With OpenCL, it is possible to write general purpose programs that can execute directly on
GPUs, without needing to know graphics architecture details or using 3D graphics APIs like OpenGL or DirectX.
OpenCL also provides a low-level Hardware Abstraction Layer (HAL) as well as a framework that exposes
many details of the underlying hardware layer and thus allows the programmer to take full advantage of the
hardware.

For more details on all the capabilities of OpenCL, see the following specifications from the Khronos Group:
* OpenCL 3.0 Specification
https://registry.khronos.org/OpenCL/specs/3.0-unified/pdf

» OpenCL 3 C Language Specification
https://registry.khronos.org/OpenCL/specs/3.0-unified/pdf/OpenCL_C.pdf

5.1.2 OpenCL framework

The OpenCL framework has two principal parts, similar to OpenGL, the host C API and the device C-based
language runtime. The host in OpenCL terminology corresponds to the client in OpenGL and the device
corresponds to the server. Device programs are called kernels. Execution of an OpenCL program is preceded
by a series of API calls that configure the system and Vivante OCL-compatible IP for execution.

OpenCL abstracts today's heterogeneous architectures using a hierarchical platform model. A host coordinates
the execution and data transfers on, to and from one or several compute devices. Compute devices are
comprised of compute units and each such unit contains an array of processing elements.

5.1.2.1 OpenCL execution model: kernels and work elements

The OpenCL execution model is defined by how the kernels are executed. When a kernel is submitted for
execution by the host, an index space is defined. An instance of the kernel executes for each point in this index
space. This kernel instance is called a work-item. Work-items are identified by their position in the index space
that provides the global ID for the work-item. Each work-item executes the same code but the specific pathway
through the code and the data operated upon varies by work-item.

Work-items are organized into work-groups. Work-groups provide a broader decomposition of the index space.
Work-groups are each assigned a unique work-group ID with the same dimensionality as the index space used
for the work-items. Work-items are assigned a unique local ID within a work-group so that a single work-item
can be uniquely identified by its global ID or by a combination of its local ID and work-group ID. The work-items
in a given work-group execute concurrently on the same compute device.

The index space supported in OpenCL is called an NDRange. An NDRange is an N-dimensional index space,
where N is one (1), two (2) or three (3). An NDRange is defined by an integer array of length N specifying the
extent of the index space in each dimension starting at an offset index F (zero by default). Each work-item’s
global ID and local ID are N-dimensional tuples. The global ID components are values in the range from F, to F
plus the number of elements in that dimension minus one.

Work-groups are assigned IDs using a similar approach to that used for work-item global IDs. An array of length
N defines the number of work-groups in each dimension. Work-items are assigned to a work-group and given

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
471159

https://registry.khronos.org/OpenCL/specs/3.0-unified/pdf
https://registry.khronos.org/OpenCL/specs/3.0-unified/pdf/OpenCL_C.pdf
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

a local ID with components in the range from zero to the size of the work-group in that dimension minus one.
Hence, the combination of a work-group ID and the local-ID within a work-group uniquely defines a work-item.
Each work-item is identifiable in two ways; in terms of a global index, unique through the whole kernel index
space, and in terms of a local index, unique within a work group.

5.1.2.2 OpenCL command queues

OpenCL provides both task and data parallelism. Data movements are coordinated via command queues,
which provide a general means of specifying inter-task relationships and task execution orders that obey

the dependencies in the computation. OpenCL may execute several tasks in parallel, if they are not order
dependent. Tasks are composed of data-parallel kernels which, similarly to shaders, apply a single function to
a range of elements in parallel. Only restricted synchronization and communication is allowed during kernel
execution.

OpenCL kernels execute over a 1, 2 or 3 dimensional index space. All work-items execute the same program
(kernel) but their execution may diverge, with branching dependent on the data or their index. For details
regarding how many work groups are allowed within an index space see “Using clEnqueueNDRangeKernel”.

A kernel or a memory operation is first enqueued onto a command queue. Kernels are executed
asynchronously and the host application execution may proceed right after the enqueue operation. The
application may opt to wait for an operation to complete and an operation (kernel or memory) may be marked
with a list of events that must occur before it executes.

Events are kernel completion and memory operations. OpenCL traverses the dependence graph between the
kernels and memory transfers in a queue and ensures the correct execution order. Multiple command queues
may be constructed, further enhancing parallelism control across platforms and multiple compute devices.

* Command-queue barriers are used to control the commands within the command queue. The command-
queue barrier indicates which commands must be finished before proceeding. This allows for out-of-order
command processing. The command queue barrier ensures that all previously enqueued commands finish
execution before any following commands begin execution.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
48 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

COMMAND QUEUE

COMMAND

S Engueue command sequence may be
im-order or out of order

COMMAND

l Command Queue Bamrier
Command Queue < preventes following commands from
Barrier executing before previously enqueued
i commands finish execution

COMMAND
Fl}:ll:‘.'n'-'ll'lﬂ commands DE‘EIH exefution
gnly after previcusly enqueue commands
finish

COMMAND

Figure 5. Command queue barrier

The work-group barrier built-in function provides control of the work-item flow within work-groups. All work-items
must execute the barrier construct before any can continue execution beyond the barrier.

5.1.2.3 OpenCL memory model

The OpenCL memory model is divided into four different types of memory domains. These are:

* Global Memory: Each compute device has global memory space which can reside off-chip in system memory
(DRAM) or inside the chip at the L1 or temporary register level. Global memory is accessible to all work-items
executing in a context, as well as to the host (read, write, and map commands).

» Constant Memory: is also global memory, but it is read-only. Constant memory can be placed in any level of
memory that the application programmer decides, making it an implementation dependent decision. This is the
region for host-allocated and host-initialized objects that are not changed during kernel execution.

* Local Memory: Each compute unit has local memory which resides very near the processing elements.
Access to local memory is very fast and the size of local memory is much smaller than global memory, making
it a scarce resource that needs to be controlled for optimal communication of work-items inside a work-group.
Local memory is specific to a work-group, and is accessible only by work-items belonging to that work group.

* Private Memory: Each processing element has another level of memory called private memory, which is only
accessible to a single work-item. Private memory is specific to a work-item and is not visible to other work-
items.

During run-time, each processing element is assigned a set of on-chip registers that are used for data storage
of intermediate data. Data that cannot be stored in registers spills over to global memory which can be very
costly in terms of performance and constant data movement to/from temporary registers. Software may emulate
local and private memory using global memory. System Memory is often loaded to L1 cache, Temporary or

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
49 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

Local Storage Registers and the GPGPU reads from those locations. At every level of the application program,
the programmer must be aware of the size and hierarchy of storage elements.

Table 20. Vivante memory structures mapped to Khronos OpenCL memory types

Khronos OpenCL Vivante GPGPU OpenCL Definition
Memory Model Name Memory Structures Utilized
Private Memory Registers, System Memory Accessible only to an individual work-item; not
visible to any other work-items
Local Memory Local Storage Registers, System | Accessible to all work-items within a specific work-
Memory group; accessible only by work-items belonging to
that work-group
Global Memory System Memory Accessible to all-work-items executing in a context,
as well as to the host (read, write, and map
commands).
Constant Memory Constant Registers, System Read only global memory region for host-allocated
Memory and initialized objects that are not changed during
kernel execution
Host (CPU) Memory Host Memory Region for a kernel application’s program data and
structures

The OpenCL concurrent-read /concurrent-write (CRCW) memory model has so-called relaxed consistency
which means that different work-items may see a different view of global memory as the computation proceeds.
Within individual work-items reads and writes to all memory spaces are ordered. Synchronization between
work-items in a work-group is necessary to ensure consistency. No mechanism for synchronization between
work-groups is provided. Such a model assures parallel scalability by requiring explicit synchronization and
communication.

For the highest throughput and computational speed, kernels should use high-speed on-chip memories and
registers as much as possible. Instruction control flow and memory operations, including data gathering /
scattering and direct memory access (DMA) should be automatically reorganized / re-ordered depending on
data dependencies detected by the optimized compiler. The Vivante OpenCL compiler automatically maps
dependencies and re-orders instructions for the best performance.

5.1.2.4 Host to Vivante compute device data transfers

The application running on the host uses the OpenCL API to create memory objects in global memory, and to
enqueue memory commands that operate on these memory objects. The host and OpenCL device memory
models are, for the most part, independent of each other. This is by necessity as the host is defined outside of
OpenCL. They do, however, at times need to interact. This interaction occurs in one of two ways: by explicitly
copying data from the host to the GPU compute device memory, or implicitly, by mapping and unmapping
regions of a memory object.

» Explicit using clEnqueueReadBuffer and clEnqueueWriteBuffer (clIEnqueueReadlmage,
clEnqueueWritelmage.)

To copy data explicitly, the host enqueues commands to transfer data between the memory object and host
memory. These memory transfer commands may be blocking or non-blocking. The OpenCL function call for
a blocking memory transfer returns once the associated memory resources on the host can be safely reused.
For a non-blocking memory transfer, the OpenCL function call returns as soon as the command is enqueued
regardless of whether host memory is safe to use.

* Implicit using clEnqueueMapBuffer and clEnqueueUnMapMemObiject.

The mapping/unmapping method of interaction between the host and OpenCL memory objects allows the host
to map a region from the memory object into its address space. The memory map command may be blocking
UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 10.3 — 26 June 2025 Document feedback
50/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

or non-blocking. Once a region from the memory object has been mapped, the host can read or write to this
region. The host unmaps the region when accesses (reads and/or writes) to this mapped region by the host are
complete.

The OpenCL specification does not explicitly state where each memory space will be mapped to on individual
implementations. This provides great freedom for vendors on the one hand and some uncertainty for
programmers on the other. Fortunately, kernels may be compiled just-in-time and possible differences may be
tackled during run-time.

When using these interfaces, it is important to consider the amount of copying involved to/from system memory
and the various levels within the compute device(s). There is a two-copy process: between host and AXI (or
SoC internal bus), and between AXI (or SoC internal bus) and the Vivante GPGPU compute device. Double
copying lowers overall system memory bandwidth and lowers performance. Because of variations in system
architecture (both internal and external/memory), there is sometimes a large performance delta between

the system or calculated GFLOPS and the kernel or GPGPU GFLOPS. GPGPU GFLOPS are based on the
theoretical computational capability of the ALUs within the GPGPU, assuming the system architecture can
deliver full data to the GPGPU. OpenCL APIs for buffers and images aid in avoiding double copy by allowing
the mapping of host memory to device memory. With proper memory transfer management and the use of host/
CPU memory remapped to the GPGPU memory space, copying between host memory and GPGPU memory
can be skipped so data transfer becomes a one-copy process. The trade-off is that the programmer needs to be
mindful of page boundaries and memory alignment issues.

5.1.3 OpenCL profiles

In addition to Full Profile, the OpenCL specification also includes an Embedded Profile, which relaxes the
OpenCL compliance requirements for mobile and embedded devices. The main commons and differences
between OpenCL 1.1/1.2 EP (Embedded Profile) and FP (Full Profile) come down to:

Commons:

* Both EP and FP significantly offload the CPU of parallel, multi-threaded tasks.
* For both EP and FP double precision and half-precision floating point are optional.

Difference:

* Full Profile is for highly complex, accurate, and real time computations, while Embedded Profile is a small
subset targeting smaller devices (handheld, mobile, embedded) that perform GPGPU/OpenCL processing
with relaxed data type and precision requirements (image processing, augmented reality, gesture recognition,
and more).

* 64-bit integers are required for FP and optional for EP.

» EP requires either RTZ or RTE. FP requires both.

» Computational precision (units in the last place; i.e., ULP) requirements in EP are relaxed.

* Atomic instruction support is not required in EP.

» 3D Image support is not required in EP.

* Minimum requirements for constant buffer size, object allocation size, constant argument counts and local
memory sizes are scaled down in EP.

* And more (in general EP is a scaled down version of FP).

* Die size and power increase with FP because of the higher requirements, features and memory sizes.

5.1.4 Vivante OpenCL embedded compatible IP

As of the date of this document, select Vivante GPGPU cores are compatible with OpenCL Embedded Profile
version 1.1. The following table lists the hardware capability deltas.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
51/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

Table 21. Vivante OpenCL embedded profile hardware

i.MX Graphics User's Guide

Hardware and revision GC2000
Feature 5.1.0.rc8a
Compute Devices (GPGPU cores) 1
Compute Units per device (Shader cores) 4
Processing Elements per compute unit 4
Profile Embedded
Preferred work-group/thread group size 16
Max count global work-items each dim 64K
Max count of work-items each dim per work-group 1K
Local Storage Registers On-chip 64
Instruction Memory 512
Texture Samplers 8PS +4VS
Texture Samplers available to OCL (HW, unlimited via SW) 4
L1 Cache Size 4 KB
L1 Cache Banks 1
L1 Cache Sets/Bank 4
L1 Cache Ways/Set 16
L1 Cache Line Size 64B
L1 Cache MC ports 1

5.1.5 Vivante OpenCL full profile hardware model

As of the date of this document, select Vivante GPGPU cores are compatible with OpenCL Full Profile versions
1.1, 1.2, and 3.0. Hardware capability deltas are subject to change and includes:

Table 22. Vivante OpenCL full profile hardware

Hardware and revision GC2000+ GC7000XSVX GC7000L GC7000UL
. i.MX 6QuadPlus, . i.MX 8M Quad, |i.MX 8M Nano
i.MX SoC i.MX 6DualPlus i.MX 8 QuadMax i.MX 8QuadXPlus | i.MX 8M Plus
Compute Devices (GPGPU cores) 1 1 1 1
Compute Units per device (for sub- 1 1 1 1
device)
Processing Elements per device 16 32 16 8
Profile Full-Lite* Full Full Full
Rreferred work-group/ thread group 16 32 16 8
size
Max count global work-items each 4G
dim
4 4 K 4 4 K 4
(if 3D only 1 dim can be up to 4G, c/e c/e G
the others 64K)
Max count of work-items each dim 1K 1K 1K 1K
per work-group

UG10159 All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User guide Rev. 10.3 — 26 June 2025

Document feedback
52 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

i.MX Graphics User's Guide

Table 22. Vivante OpenCL full profile hardware...continued

Local Storage Registers On-chip 0 2048 (32 K) 16 (KB)

Instruction Memory 1$:512/1 M 8K 8K 8K
Texture Samplers 32 undefined 32 undefined 32 32
Texture Samplers available to OCL 32 32 32 32
L1 Cache Size 4 KB 64 KB 16KB 8 KB
L1 Cache Banks 2 4 2 1
L1 Cache Sets/Bank 2 N/A 8
L1 Cache Ways/Set 16 8 8

L1 Cache Line Size 64 B 64 B 64 B 64 B
L1 Cache MC ports per GPGPU 5 5 2 1
core

5.2 Vivante OpenCL implementation

5.2.1 OpenCL pipeline

Primative SH
Assembly OpenCL
Compute

Unit

Pixel
Engine T

' Texture Unit

4

Figure 6. Vivante OpenCL data pipeline for an OpenCL compute device

| Memory Controller I

UG10159

All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User guide

Rev. 10.3 — 26 June 2025

Document feedback
53 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

i.MX Graphics User's Guide

Instruction
RAM (PS)

Flow
Control
Unit

—

Floating
Point
Execution

Integer
Execution

_— Constant
Memory RAM

Private Memory

Unit

Unit

|L

L
Cache

Figure 7. Vivante OpenCL compute device showing memory scheme

(Temp Registers)

Global Memory

| —

5.2.2 Front end

The front end passes the instructions and constant data as State Loads to the OpenCL Compute Unit
(Shader) block. State Loads program instructions and constant data and work groups initiate execution on the

instructions and the constants loaded.

5.2.3 OpenCL compute unit

All OpenCL executions occur in this block and all work-groups in a compute unit should belong to the same
kernel. Threads from a work-group are grouped into internal “Thread-groups”. All the threads in a thread-group
execute in parallel. Barrier instruction is supported to enforce synchronization within a work-group.

The compute unit contains Local Memory and the L1 Cache and is where the Load/Store instruction to access
global memory originates. The compute unit can accommodate multiple work-groups (based on the temporary
register and local memory usage) simultaneously.

UG10159 All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User guide

Rev. 10.3 — 26 June 2025

Document feedback
54 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

5.2.4 Memory hierarchy

Private Private Private Private
Memory. Memory Memory

Local Memory: Local Memaory.

Workgroup Workgroup

Private Private Private Private
Memory Memory Memory Memory

Local Memory: Local Memory.

Workgroup Workgroup

| Global/Constant Memory |

Computer Device

Host Memory

Figure 8. OpenCL memory hierarchy

5.2.5 CL Extension support

5.2.5.1 CL_DEVICE_EXTENSION support

The following table provides a list of CL_DEVICE_EXTENSIONSs referenced in the OpenCL 1.2 specification
(pp. 46-47). The support level for these device specific extensions is also indicated.

List from OpenCL 1.2 Specification https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf (version 1.2,
document revision 19, revision date 11/14/12)

Table 23. Support level for these device specific extensions (1)

CL_DEVICE_EXTENSIONS
— . . q SW 6.2.x/6.4.x
OpenCL C 1.2 Extensions which must be returned (p. 47)
cl khr byte addressable store YES
cl khr fp64 (for backward compatibility if double precision is
supported)
cl khr global int32 base atomics CORE
UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback

55/159

https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

Table 23. Support level for these device specific extensions (1)...continued

i.MX Graphics User's Guide

CL_DEVICE_EXTENSIONS
OpenCL C 1.2 Extensions which must be returned (p. 47)

SW 6.2.x/6.4.x

cl khr global int32 extended atomics

CORE

cl khr local int32 base atomics

CORE

cl khr local int32 extended atomics

CORE

Table 24. Support level for these device specific extensions (2)

CL_DEVICE_EXTENSIONS
Device specific support for Khronos approved extension names (p.46)

A number after the extension name indicates the extension is also listed in the
numbered extensions on the Khronos website.

SW 6.2.x/6.4.x

cl khr 3d image writes

cl khr context abort

cl khr d3d10_sharing (#6)

cl khr d3dll sharing

cl _khr depth images

cl _khr dx9 media sharing

cl khr fplé

cl _khr gl depth images

cl_khr gl event

cl khr gl msaa sharing

cl khr gl sharing (#1)

YES

cl khr image2d from buffer

cl khr initialize memory

cl khr int64 base atomics

cl khr int64 extended atomics

cl _khr spir

5.2.5.2 Vivante OpenCL extension support

The following table provides a list of all current OpenCL Extensions and indicates their support level in Vivante

software.

Table 25. CL extensions supported by Vivante with 6.2.x SW

OpenCL Extension Number, Name and hyperlink SW 6.2.x

cl khr byte addressable store YES

cl khr external memory dma buf YES (from 6.4.11)

cl khr command buffer YES (from 6.4.11)

cl khr gl sharing YES
cl khr icd YES
UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback

56 /159

https://www.khronos.org/registry/OpenCL/extensions/khr/cl_khr_gl_sharing.txt
https://www.khronos.org/registry/OpenCL/extensions/khr/cl_khr_icd.txt
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

Table 25. CL extensions supported by Vivante with 6.2.x SW...continued

OpenCL Extension Number, Name and hyperlink SW 6.2.x

VIV bitfield extension YES (from 6.2.2, revised in 6.2.3)
VIV cmplx extension YES (from 6.2.3)

VIV _uncached host mem YES (from 6.2.2)
VIV_vx_extension YES, for VX/VIP hw (from 6.2.2)
cl _khr fplé6 YES (from 6.4.7)

cl khr il program YES (from 6.4.8)

5.3 Optimization for OpenCL embedded profile

OpenCL EP (Embedded Profile) is basically a scaled down version of OpenCL FP(Full Profile) and thus may
require extra optimization. The guidelines below help with the optimization of Vivante OpenCL Embedded
Profile GPGPU cores.

When optimizing code on Vivante hardware, it is important to remember a few key points to get the best
performance from the hardware:

* Take advantage of algorithm and data parallelism
» Choose the correct execution configuration (more details below)

» Overlap memory transfer from different levels of the OpenCL memory hierarchy with simultaneous thread
execution

» Maximize memory bandwidth and minimize data transfers (large transfers are more beneficial than many
smaller transfers because of the impact of latency)

» Maximize instruction throughput and minimize instruction count

5.3.1 Using preferred multiple of work-group size

The work-group size should be a multiple of the thread group size. Otherwise, some threads remain idle and
the application does not fully utilize all the compute resources. For example, if the work-group size is 8 and

the Vivante core supports 16, only half the compute resources are used. For example, in some early Vivante
GPGPU revisions, the work-group size limit is 192 and the thread group size is 16. See the Overview section on
OpenCL Compatible IP for IP-specific capabilities.

5.3.2 Using multiple work-groups of reduced size

Multiple work groups need to be set to reduce synchronization penalties. To prevent stalls at barriers, it is
recommended to have at least four (4) work-groups to keep the cores busy or as long as the number of work-
groups is greater than or equal to two (2). One work-group is very inefficient; four or more is preferred and helps
avoid latency.

5.3.3 Packing work-item data

It is important to pack data to extract the optimal performance from the SIMD ALU hardware and align the data
into a format supported by the hardware. Efficient use of the Vivante GPGPU core requires that the kernel
contains enough parallelism to fill all four vector units. Work-items in the same thread group have the same
program counter and execute the same instruction for each cycle. Whenever possible, pack together work-
items that follow the same direction (e.g., on branches) since the granularity is very close and there may be

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
571159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

less divergence and higher performance. If each work-item handles less than or equal to 8 bytes, it is better to
combine two or more work-items into one to improve utilization of the SIMD ALU.

5.3.4 Improving locality

If the input data is an array-of-structs, and each work-item needs to access only a small part of the struct
across many array elements at different stages, it may be better to convert and use a struct-of-arrays or several
different arrays as input to improve data locality and avoid cache thrashing.

If each work-item needs to process a row of data without sharing any data with other work-items, it is better
to check if the algorithm can be converted to make each work-item process a column of data so that data
accessed by adjacent work-items can share the same cache lines.

5.3.5 Minimizing use of 1 KB local memory

The OpenCL Embedded Profile specification defines the minimum requirement for local memory to be

1KB to pass conformance testing. Based on algorithm analysis and profiling different image and computer
vision algorithms, we found that a 1KB local memory size was too small to benefit those algorithms. In most
instances, those algorithms actually slowed down when using 1KB local memory. To increase performance,
we recommend not using local memory since it is more efficient to transfer larger chunks of data from system
memory to keep the OpenCL pipeline full.

Note: If local memory type is CL_GLOBAL, the local memory is emulated using global memory, and the
performance is the same as global memory. There is extra overhead on data copy from global to local, which
slows down the performance.

5.3.6 Using 16 byte memory Read/Write size

When accessing memory, it is important to minimize the read/write count and to ensure L1 cache utilization is
high to reduce outstanding read/write requests. Since the internal GPGPU read-write-request queue has a limit,
if the queue and L1 cache are filled, then the GPGPU remains idle.

5.3.7 Using _RTZ rounding mode

Wherever possible, use _RTZ (round to zero) since it is natively supported in hardware with one instruction.
Support for _RTE (round to nearest even) is optional in OpenCL EP and is only supported in Vivante GPGPU
EP hardware from 2013. This function is handled in software for EP cores if necessary.

5.3.8 Using float4 for better performance on i.MX 8M Quad and i.MX 8QuadXPlus

Since both the i.MX 8M Quad and i.MX 8QuadXPlus boards have new RTL 6214, the CL kernel
compiler generates GPU instructions using more registers on RTL6214. Float4 is recommended for real
applications for better performance.

5.3.9 Using native functions

5.3.9.1 Using native_function() for increased performance

There are two types of runtime math libraries available to developers. Native_function() and regular function().
* Function(): slower, computationally expensive, higher instruction count, and greater accuracy

* Native_function(): faster, computationally inexpensive, lower instruction count (sometimes reduced to one
instruction), and lower accuracy.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
58 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

« If accuracy is not important but speed/performance is, use native math functions that map directly to the
Vivante GPGPU hardware.

For image processing computations that do not require high accuracy, use native instructions to significantly
lower the instruction count and speed up performance. Based on actual analysis and performance profiling
with the Vivante GPGPU, we found that using native_function() instructions such as sin, cos, etc., reduces
the instruction count from many instructions to one or two instructions. Use of native functions also sped
performance by 3x-10x.

5.3.9.2 Using native_divide and native_reciprocal for faster floating point calculations

There are two use cases for floating point division which a user can select:

» Normal use of the division operator (/) in OpenCL has high precision and covers all corner use cases. This
operator generates more instructions and runs slower.

* Native Divide: this use case uses the built-in function native_divide or native_reciprocal, which uses what the
hardware supports. The Vivante OpenCL compiler generates one or two instructions for each native_divide or
native_reciprocal instruction. If there are no corner use cases in applications, such as NaN, INF, or (2*27) /
(2M27), it is better to use native_divide since it is faster.

5.3.9.3 Using compile option for native functions

Both the function() and native_function() methods are supported in the Vivante GPGPUs, so it is up to the
developer to use whichever method makes sense for their application. If the OpenCL program uses the
standard division operator and a developer wants to use native_divide or native_reciprocal without modifying
their program, the Vivante OpenCL compiler has a simple option “-cl-fast-relaxed-math” that uses native built-in
functions during compilation.

5.3.10 Using buffers instead of images

For the following image functions, it is better to use buffers instead of images.
* read_image{f/i/ui/h}
» write_image{f/i/ui/h}

Write_image* functions are implemented by software; it is better to use buffers to reduce the additional
overhead involved in checking for size, format, etc. Since a few formats are not supported by Vivante GPGPU
hardware, some built-in read_image() functions are implemented in software. The software implementation
uses more instructions with many steps of “condition” checking. To improve performance, we recommend using
buffers since it reduces instruction count.

5.4 OpenCL Debug messages

When writing OpenCL applications, it is important to check the code returned by the API. Since the return codes
specified in the OpenCL specification may not be descriptive enough to isolate where the problem is located,
the Vivante OpenCL driver provides an environment variable, VIV_DEBUG, to help debug problems. When
VIV_DEBUG is set to -MSG_LEVEL:ERROR, the Vivante OpenCL driver prints onscreen error messages and
returns the error code to the caller.

The following error code descriptions and suggested workarounds are provided.

5.4.1 OCL-007005: (clCreateKernel) cannot link kernel

One of the following “Not Enough” messages usually precedes this message. Issuer indicates the real reason
for the problem which may be:
UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 10.3 — 26 June 2025 Document feedback
59/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

* Not Enough Register Memory (constant or temp)
* Not Enough Instruction Memory

5.4.2 Not enough register memory

Local variables, including arrays, are implemented using temp registers. If an array is larger than the number of
available temp registers, a link-time failure occurs.

Workarounds:

1. If the array size is more than 64, use an array address to force the compiler to use private memory instead of
temp registers.

2. If there are many variables, use variable addresses to force the compiler to use private memory to reduce
register usage.

Note that there is performance degradation when using private memory instead of registers. It is better to
change the algorithm to use a smaller array or less variables.

5.4.3 Not enough instruction memory

Workarounds:

1. Replace sin/cos/tan/divide/powr/exp/exp2/expl0/log/log2/logl0/sqrt/rsqrt/recip with
native sin/native divide, etc.

2. Convert unrolled-loops back to loops.
3. Use buffer instead of image for write, and for reads which are not linear-filtered.

4. If the program is too long, it should be split into two or more programs with intermediate data saved from one
program to next.

5.4.4 GlobalWorkSize over hardware limit

WORKAROUND:

1. Split one clEnqueueNDRangeKernel into several instances. Change the kernel source to compute real
global/local/group ID using offset as a parameter.

2. Convert one dimension to two dimensions, or two dimensions to three. For example, one dimension of
1M work-items can be converted to a GlobalWorkSize of 64K x16 work-items. The kernel function needs
modification to reflect the change of dimension.

5.5 Zero copy

A buffer object can be created with clCreateBuffer(cl_context context, cl_mem_flags flags, size_t size, void*
host_ptr, cl_int* error_code_ret). If memory flags contain CL_MEM_USE_HOST_PTR, GPU will map the
memory pointed by host ptr for GPU to use to avoid copying data between CPU and GPU.

To make sure the results are correct, the size of buffer, the third parameter of clCreateBuffer(), needs to be
aligned with 64-byte since Arm data cache operations are performed line by line, the unaligned bits will be
cleared with cache line mask. A53, A57, A72 and A73 all have 64-byte cacheline size. If the size of the buffer
doesn’t meet this, GPU will use copy method instead.

Besides, the host_ptr should be aligned with 64-bit to meet the ARM cacheline mechanism.

At last, need to call clEnqueueReadBuffer() to make sure the data has been read back to CPU.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
60 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

5.6 Instruction cache availability for i.MX graphics

This section describes the instruction cache (iCache) available in the Vivante graphics IP included in the
selected i.MX products.

There is hardware support for iCache available for i.MX 6QuadPlus and all later IP including that used in i.MX 8
products. There is no SH (Shader) instruction limit for these newer chips beyond the ISA limitation of 2*20.

Only the older chips have a SH instruction limit.

Table 26. i.MX products with graphics IP with iCache

i.MX Product GPU IP & rev Instruction Limit Description

i.MX 8 Series and later \(/;(r)i;ursev 5450) none HW supports iCache
i.MX 6QuadPlus SaSZFOFOFOFZIA;J;O none HW supports iCache
S32V234 iszi%(i none HW supports iCache

The SH limitation for i.MX products is listed in the following table.

Table 27. i.MX products with instruction limited graphics IP

i.MX Product GPU IP & rev Instruction Limit Description

i.MX 6SoloX GC400 256 for VS, Separate Instruction buffers for Vertex Shader
rev 4645 256 for PS and for Pixel Shader

i.MX 7ULP GCNanoUltra 256 for VS, Separate Instruction buffers for Vertex Shader
rev 4653a 256 for PS and for Pixel Shader

i.MX 6DualLite GC880 512 Instruction buffer shared by Vertex and Pixel
rev 5106 Shaders

i.MX 6Quad GC2000 512 Instruction buffer shared by Vertex and Pixel
rev 5108 Shaders

6 OpenCV

6.1 Overview

OpenCV is a popular open-source computer vision library that provides functions for image and video
processing tasks such as object detection, image segmentation, and feature extraction. It is widely used in
various applications, including robotics, autonomous vehicles, medical imaging, remote sensing, and security
systems.

This section describes how to accelerate OpenCV with Arm and VSI GPUs on the i.MX.
For more details on OpenCV, see the document: OpenCV

6.2 Acceleration with OpenCL
OpenCV is accelerated with GPU using OpenCL.

OpenCL is an open standard for writing code that runs across heterogeneous platforms including CPUs, GPUs,
DSPs, etc. In particular, OpenCL provides applications with an access to GPUs for non-graphical computing
(GPGPU) that in some cases results in significant speed-up. In Computer Vision, many algorithms can run

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 10.3 — 26 June 2025 Document feedback
61/159

https://docs.opencv.org/4.10.0/d1/dfb/intro.html
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

on a GPU much more effectively than on a CPU, such as image processing, matrix arithmetic, computational
photography, and object detection.

If OpenCL is enabled (see Section 6.3.1), OpenCV is executed using OpenCL. If OpenCL is disabled, OpenCV
uses CPU.

The following sections describe how to enable OpenCL acceleration and the functions in OpenCV that can be
accelerated by OpenCL.

6.3 Usages of OpenCV Accelerator

6.3.1 How to enable/disable OpenCV Accelerator

To accelerate OpenCV with OpenCL, set the WITH OPENCL=ON option when building OpenCV.

When the OpenCYV libraries are built with OpenCL, the environment variable export
OPENCV_OPENCL_RUNTIME=0 should be used with runtime to disable OpenCL.

6.3.2 Requirements

When the OpenCL Accelerator is enabled, ensure that the input and output data type is UMat format.

By using UMat objects, OpenCV automatically uses the GPU computing available on the device that supports
OpenCL, and falls back to CPU computing on the devices that do not support OpenCL, and thus avoids
program failure and unifies the interface.

cv:iresize(src, dst, dsize,
inv_scale_x, inv_scale_y,
interpolation)

|

ocl_resize(_src, _dst, dsize, Create an open cl kernel,
inv_scale_x, inv_scale_y, pass in data,
interpolation) and process it on the GPU

Is de input and
outputis in
UMAT format

Display the processing

Processing on the CPU results on the CPU

Display the processing
results on the CPU

aaa-057274

Figure 9. Eg: cv::resize()

Note: In OpenCV, Mat and UMat can be converted to each other.

6.4 OpenCV functions accelerated with OpenCL

This section describes the OpenCV functions that can be accelerated using OpenCL and the conditions for
using them.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
62/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

6.4.1 OpenCYV function list

i.MX Graphics User's Guide

The following table lists the function APIs in OpenCV that can be accelerated using OpenCL.

Table 28. OpenCYV function list

Function name

Functional description

pyrUP Upsamples an image and then blurs it.
warpPerspective Applies a perspective transformation to an image.
warpAffine Applies an affine transformation to an image.

match Template

Compares a template against overlapped image regions.

Resize Resizes an image.

Threshold Applies a fixed-level threshold to each array element.

Sobel Calculates the first, second, third, or mixed image derivatives using an extended
Sobel operator.

filter2D Convolves an image with the kernel. The function applies an arbitrary linear
filter to an image. In-place operation is supported. When the aperture is partially
outside the image, the function interpolates outlier pixel values according to the
specified border mode.

morphologyEX Performs advanced morphological transformations.

Erode Erodes an image by using a specific structuring element.

Dilate Dilates an image by using a specific structuring element.

GaussianBlur

Blurs an image using a Gaussian filter.

Blur

Blurs an image using the normalized box filter.

sqrBoxFilter

Calculates the normalized sum of squares of the pixel values overlapping the
filter.

Remap Applies a generic geometrical transformation to an image.
Laplacian Calculates the Laplacian of an image.

Scharr Calculates the first x- or y- image derivative using Scharr operator.
sepFilter2D Applies a separable linear filter to an image.

calcHist Calculates a histogram of a set of arrays.

accumulate Adds an image to the accumulator image.

accumulateProduct

Adds the per-element product of two input images to the accumulator image.

accumulateWeighted

Updates a running average.

cornerMinEigenVal

Calculates the minimal eigenvalue of gradient matrices for corner detection.

cornerHarris Harris corner detector.

preCornerDetect Calculates a feature map for corner detection.

HoughLines Finds lines in a binary image using the standard Hough transform.

HoughLinesP Finds line segments in a binary image using the probabilistic Hough transform.
goodFeaturesToTrack Determines strong corners on an image.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback

63 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

6.4.2 Conditions to use the accelerator

This section describes the conditions that an OpenCV function must meet to use OpenCL as an accelerator on
the GPU.

6.4.2.1 pyrUpP

Upsamples an image and then blurs it.

void cv::pyrUp (InputArray src, OutputArray dst, const Size & dstsize =
Size(),int borderType = BORDER DEFAULT)

Parameter Requirement

src Datatype: 8UC1/8UC3/8UC4/32FC1/32FC3/32FC4
Sizelimit: 4k (3840 x 2160)
Format: UMat

dst Format: UMat

6.4.2.2 warpPerspective

Applies a perspective transformation to an image.

void cv::warpPerspective (InputArray src, OutputArray dst, InputArray MO,
Size dsize, int flags, int borderType, const Scalar& borderValue)

Parameter Requirement

src Datatype: 8UC1/8UC3/8UC4/32FC1/32FC3/32FC4
Sizelimit: 1080p (1920 x 1080)
Format: UMat

dst Output image that has the size dsize and the same type as SRC .
Format: UMat
flags INTER_NEAREST/INTER_LINEAR

6.4.2.3 warpAffine

Applies an affine transformation to an image.

void cv::warpAffine (InputArray src, OutputArray dst,
InputArray MO, Size dsize,
int flags, int borderType, const Scalaré& borderValue)

Parameter Requirement
src Datatype:8UC3/8UC4
Sizelimit:1080p(1920x1080)
Format:UMat
dst output image that has the size dsize and the same type as src .
Format:UMat
flags INTER_NEAREST/INTER_LINEAR/INTER_CUBIC
UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback

64 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

6.4.2.4 match Template

Compares a template against overlapped image regions.

void cv::matchTemplate (InputArray img, InputArray templ, OutputArray result,
int method, InputArray mask)

Parameter Requirement

_img Datatype: 8UC1/8UC3/32FC1/32FC3
Sizelimit: 1280 x 1024
Format: UMat

_templ Searched template. It must be not greater than the source image and have the same data
type.
Size: (11 x 11)/(41 x 41)

_result If the image is W x H and the templ is w x h, the resultis (W -w + 1) x (H-h + 1).
Format: UMat

method TM_SQDIFF, TM_SQDIFF_NORMED, TM_CCORR, TM_CCORR_NORMED, TM_

CCOEFF, TM_CCOEFF_NORMED

6.4.2.5 resize

Resizes the image SRC down to or up to the specified size.

void cv::resize (InputArray src, OutputArray dst, Size dsize,
double inv scale x, double inv scale y, int interpolation)

Parameter Requirement

src Datatype: 8UC4/32FC4
Sizelimit: 4k (3840 x 2160)
Format: UMat

dst Output image.

It has the size dsize (when it is non-zero) or the size computed from
src.size (), fx,and fy.

The type of dst is the same as of src.

Format: UMat

dsize Output image size.
It is computed as:
dsize = Size (round (fx * src.cols), round (fy * src.rows))

inv_scale_x 0.3/0.5/0.6/2.0
inv_scale_y 0.3/0.5/0.6/2.0
Interpolation INTER_NEAREST/INTER_LINEAR/INTER_AREA

6.4.2.6 Threshold

Applies a fixed-level threshold to each array element.

cv::threshold (InputArray src, OutputArray dst, double thresh, double maxval,
int type)

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
65/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

Parameter Requirement

src Datatype: 32FC4
Sizelimit: 1280 x 720 to 4k (3840 x 2160)
Format: UMat

dst Output array of the same size and type and the same number of channels as src.
Format: UMat

type THRESH_BINARY, THRESH_BINARY_INV, THRESH_TRUNC, THRESH_
TOZERO_INV

6.4.2.7 Sobel

Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator.

void cv::Sobel (InputArray src, OutputArray dst, int ddepth, int dx, int dy,
int ksize, double scale, double delta, int borderType)

Parameter Requirement
src Datatype: 8UC4/32FC4

Sizelimit: 4k (3840 x 2160)
Format: UMat

dst Uutput array of the same size and type and the same number of channels as
src.
Format: UMat

6.4.2.8 filter2D

Convolves an image with the kernel.

void cv::filter2D (InputArray src, OutputArray dst, int ddepth, InputArray

kernel,
Point anchor = Point(-1,-1), double delta = 0, int borderType = BORDER DEFAULT)

Parameter Requirement

src Datatype: 8UC4/32FC4
Sizelimit: 4k (3840 x 2160)
Format: UMat

dst Uutput array of the same size and type and the same number of channels as
src.

Format: UMat
kernel Size: (3 x 3)/(5x5)

6.4.2.9 morphologyEX

Performs advanced morphological transformations.

void morphologyEx (InputArray src, OutputArray _dst, int op,
InputArray kernel, Point anchor, int iterations,
int borderType, const Scalar& borderValue)

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 10.3 — 26 June 2025 Document feedback
66 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

Parameter Requirement

src Datatype: 32FC4
Sizelimit: 4k (3840 x 2160)
Format: UMat

dst Destination image of the same size and type as source image.
Format: UMat

op MORPH_OPEN, MORPH_CLOSE, MORPH_GRADIENT, MORPH_
TOPHAT, MORPH_BLACKHAT

kernel Size: (3 x 3)/(5x5)

6.4.2.10 erode

Erodes an image by using a specific structuring element.

void erode (InputArray src, OutputArray dst, InputArray kernel,
Point anchor, int iterations,
int borderType, const Scalaré& borderValue)

Parameter Requirement

src Datatype: 32FC4
Sizelimit: 4k (3840 x 2160)
Format: UMat

dst Output image of the same size and type as src.
Format: UMat

kernel Size: (3 x 3)/(5 x 5)

6.4.2.11 dilate

Dilates an image by using a specific structuring element.

void dilate (InputArray src, OutputArray dst, InputArray kernel,
Point anchor, int iterations,
int borderType, const Scalar& borderValue)

Parameter Requirement

src Datatype: 32FC4
Sizelimit: 4k (3840 x 2160)
Format: UMat

dst Output image of the same size and type as src.
Format: UMat
kernel Size: (3 x 3)/(5x5)

6.4.2.12 GaussianBlur

Blurs an image using a Gaussian filter.

void GaussianBlur (InputArray src, OutputArray dst, Size ksize,
double sigmaX, double sigma¥Y = 0,

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
67 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

int borderType = BORDER DEFAULT) ;

Parameter Requirement

src Datatype: 32FC4
Sizelimit: 4k (3840 x 2160)
Format: UMat

dst Output image of the same size and type as src.
Format: UMat

ksize Size: (3 x 3)/(5x5)/(7 x7)

6.4.2.13 Blur

Blurs an image using the normalized box filter.

void blur (InputArray src, OutputArray dst,
Size ksize, Point anchor, int borderType)

Parameter Requirement

src Datatype: 8UC1/8UC4/32FC1/32FC4
Sizelimit: 4k (3840 x 2160)

Format: UMat

dst Uutput image of the same size and type as src.
Format: UMat
ksize Size: (3 x 3)/(5x5)

6.4.2.14 sqrBoxFilter

Calculates the normalized sum of squares of the pixel values overlapping the filter.

void sqgrBoxFilter (InputArray src, OutputArray dst, int ddepth,
Size ksize, Point anchor,
bool normalize, int borderType)

Parameter Requirement

src Datatype: 8UC4/32FC1/32FC4
Sizelimit: 4k (3840 x 2160)
Format: UMat

dst Uutput image of the same size and type as src.
Format: UMat
ksize Size: (3, 3)/(20, 3)/(3, 20)/(20, 20))

6.4.2.15 remap

Applies a generic geometrical transformation to an image.

void cv::remap (InputArray src, OutputArray dst,
InputArray mapl, InputArray mapZz,

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 10.3 — 26 June 2025 Document feedback
68 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

int interpolation, int borderType, const Scalar& borderValue)

Parameter Requirement

src Datatype: 8UC3/8UC4/32FC4
Sizelimit: 4k (3840 x 2160)
Format: UMat

dst Destination image. It has the same size as map1 and the same type as
src .
Format: UMat

interpolation INTER_NEAREST, INTER_LINEAR

6.4.2.16 Laplacian

Calculates the Laplacian of an image.

void cv::Laplacian (InputArray src, OutputArray dst, int ddepth, int ksize,
double scale, double delta, int borderType)

Parameter Requirement
src Datatype: 8UC4/32FC4

Sizelimit: 4k (3840 x 2160)
Format: UMat

dst Destination image of the same size and the same number of channels as
src.
Format: UMat

ksize Size:(3 x 3)/(5 x 5)

6.4.2.17 Scharr

Calculates the first x- or y- image derivative using Scharr operator.

void cv::Scharr (InputArray src, OutputArray dst, int ddepth, int dx, int dy,
double scale, double delta, int borderType)

Parameter Requirement
src Datatype: 8UC4/32FC4

Sizelimit: 4k (3840 x 2160)
Format: UMat

dst Destination image of the same size and the same number of channels as
Src.

Format: UMat

6.4.2.18 sepFilter2D

Applies a separable linear filter to an image.

void sepFilter2D (InputArray src, OutputArray dst, int ddepth,
InputArray kernelX, InputArray kernely,

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 10.3 — 26 June 2025 Document feedback
69 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

Point anchor
double delta

i.MX Graphics User's Guide

Point (-1,-1),
0, int borderType = BORDER DEFAULT) ;

Parameter Requirement
src Datatype: 8UC1/8UC4/32FC1/32FC4
Sizelimit: 1080P (1920 x 1080)
Format: UMat
dst Destination image of the same size and the same number of channels as
src.
Format: UMat
kernel (1, ksize, DATATYPE); ksize=3,5,7,9,11
kernelY (1, ksize, DATATYPE); ksize=3,5,7,9,11

6.4.2.19 calcHist

Calculates a histogram of a set of arrays.

void cv::calcHist (InputArrayOfArrays images, const std::vector<int>& channels,
InputArray mask, OutputArray hist,
const std::vector<int>& histSize,
const std::vector<float>& ranges,
bool accumulate)

Parameter Requirement
images Datatype: 8UC1
Sizelimit: 1280 x 720 to 4k (3840 x 2160)
Format: UMat
channels std::vector<int> channels(l, 0) >
hist hist (256, 1, CV_32FCl)
dst Destination image of the same size and the same number of channels as
src.
Format: UMat
histSize std::vector<int> histSize (1, 256);

6.4.2.20 accumulate

Adds an image to the accumulator image.

void cv::accumulate (InputArray src, InputOutputArray dst, InputArray mask)

Parameter Requirement
src Datatype: 32FC4
Sizelimit: 4k (3840 x 2160)
Format: UMat
dst Accumulator image with the same number of channels as input image.
Format: UMat
UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback

70/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

6.4.2.21 accumulateProduct

Adds the per-element product of two input images to the accumulator image.

void cv::accumulateProduct (InputArray srcl, InputArray src2,
InputOutputArray dst, InputArray mask)

Parameter Requirement

src Datatype: 32FC4
Sizelimit: 4k (3840 x 2160)
Format: UMat

src2 Datatype: 32FC4
Sizelimit: 4k (3840 x 2160)
Format: UMat

dst Accumulator image with the same number of channels as input images.
Format: UMat

6.4.2.22 accumulateWeighted

Updates a running average.

void cv::accumulateWeighted (InputArray src, InputOutputArray dst,
double alpha, InputArray mask)

Parameter Requirement
src Datatype: 32FC4

Sizelimit: 4k (3840 x 2160)
Format: UMat

dst Accumulator image with the same number of channels as input image,
32-bit or 64-bit floating-point.
Format: UMat

alpha Weight of the input image.
Value: 2.0

6.4.2.23 cornerMinEigenVal

Calculates the minimal eigenvalue of gradient matrices for corner detection.

void cv::cornerMinEigenVal (InputArray src, OutputArray dst, int blockSize,
int ksize, int borderType)

Parameter Requirement
src Datatype: CV_8UC1, CV_32FC1

Sizelimit: 4k (3840 x 2160)
Format: UMat

dst Accumulator image with the same number of channels as input image,
32-bit or 64-bit floating-point.
Format: UMat

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 10.3 — 26 June 2025 Document feedback
71/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

i.MX Graphics User's Guide

Parameter

Requirement

blockSize

Value: 7

6.4.2.24 cornerHarris

Harris corner detector.

volid cv::cornerHarris

(InputArray src, OutputArray dst, int blockSize, int

ksize, double k, int borderType)

Parameter Requirement
src Datatype: CV_8UC1, CV_32FC1
Sizelimit: 4k (3840 x 2160)
Format: UMat
dst Image to store the Harris detector responses. It has the same type and
the same size as src.
Format: UMat
blockSize Value: 5
ksize Value: 7

6.4.2.25 preCornerDetect

Calculates a feature map for corner detection.

void cv::preCornerDetect (InputArray src, OutputArray dst, int ksize, int
borderType)

Parameter Requirement

src Datatype: CV_8UC1, CV_32FC1
Sizelimit: 4k (3840 x 2160)
Format: UMat

dst Image to store the Harris detector responses. It has the same type and
the same size as src.

Format: UMat

ksize Value: 3

6.4.2.26 HoughLines

Finds lines in a binary image using the standard Hough transform.

void HoughLines (InputArray image, OutputArray lines,
double rho, double theta, int threshold,
double srn, double stn, double min theta, double max theta)

Parameter Requirement

image Datatype: CV_8UCA1
Sizelimit: 4k (3840 x 2160)

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
72/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

i.MX Graphics User's Guide

Parameter Requirement
Format: UMat

lines Datatype: CV_32FC2
Format: UMat

rho Value: 0.1, 1

theta Value: CV_P1/180.0, 0.1

6.4.2.27 HoughLinesP

Finds line segments in a binary image using the probabilistic Hough transform.

void HoughLinesP (InputArray

image, OutputArray lines,

double rho,_double theta, int tHreshold,
double minLineLength, double maxGap)

Parameter Requirement

image Datatype: CV_32SC4
Format: UMat

lines Datatype: CV_32SC4
Format: UMat

rho Value: 0.1, 1

theta Value: CV_P1/180.0, 0.1

6.4.2.28 goodFeaturesToTrack

Determines strong corners on an image.

void cv::goodFeaturesToTrack (InputArray image, OutputArray corners,
int maxCorners, double qualitylLevel, double

minDistance,
InputArray mask, int blockSize, int gradientSize,

bool useHarrisDetector, double k)

Parameter Requirement

image Input 8-bit or floating-point 32-bit, single-channel image.
Format: UMat

corners Datatype: CV_32FC2
Format: UMat

minDistance Value: 0.0, 3.0

harrisDetector Value: True/False

6.5 Performance differences of OpenCV on Arm GPU and VSI GPU

Mali GPU has good performance in OpenCL program building/linking and is more suitable for OpenCV
applications. It is recommended to use OpenCV on i.MX 95.

The way VSI GPU OpenCL program does building/linking, there is poor performance on some OpenCV
applications.
© 2025 NXP B.V. All rights reserved.

Document feedback
731159

UG10159 All information provided in this document is subject to legal disclaimers.

User guide Rev. 10.3 — 26 June 2025

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

7 OpenVX Introduction

7.1 Overview

OpenVX is a low-level programming framework domain to enable software developers to efficiently access
computer vision hardware acceleration with both functional and performance portability. OpenVX has been
designed to support modern hardware architectures, such as mobile and embedded SoCs as well as desktop
systems. Many of these systems are parallel and heterogeneous: containing multiple processor types
including multi-core CPUs, DSP subsystems, GPUs, dedicated vision computing fabrics as well as hardwired
functionality. Additionally, vision system memory hierarchies can often be complex, distributed, and not fully
coherent. OpenVX is designed to maximize functional and performance portability across these diverse
hardware platforms, providing a computer vision framework that efficiently addresses current and future
hardware architectures with minimal impact on applications.

OpenVX defines a C Application Programming Interface (API) for building, verifying, and coordinating graph
execution, as well as for accessing memory objects. The graph abstraction enables OpenVX implementers to
optimize the execution of the graph for the underlying acceleration architecture.

OpenVX also defines the vxu utility library, which exposes each OpenVX predefined function as a directly
callable C function, without the need for first creating a graph. Applications built using the vxu library do not
benefit from the optimizations enabled by graphs; however, the vxu library can be useful as the simplest way to
use OpenVX and as first step in porting existing vision applications.

For more details of programming with OpenVX, see the following specification from Khronos Group,

OpenVX specification (https://www.khronos.org/registry/vx).

7.2 OpenVX extension implementation

VeriSilicon’s VX Extensions for Vision Imaging provide additional functionality for Vision Image processing
beyond the functions provided through the Khronos Group OpenVX API. These enhancements take
advantage of the enhanced Vision capabilities available in VeriSilicon’s Vision-capable hardware. VeriSilicon
software provides a set of extensions which interface with OpenCL 1.2 and support higher level C language
programming of VeriSilicon’s custom EVIS (Enhanced Vision Instruction Set).

The VeriSilicon VX extension and enhancements includes three major components:

* An API level interface to the EVIS (Enhanced Vision Instruction Set)
» Extended C language features for Vision Processing
» Supported for a subset of Vision-compatible OpenCL built-in functions

7.2.1 Hardware requirements
Vision Imaging hardware capabilities are required to support full OpenVX. The following configurations are
supported:

« GC7000XSVX (i.MX 8QuadMax)
« VIP800ONanoSI (i.MX 8M Plus)

7.2.2 EVIS instruction interface

Vivante’s Vision Imaging capable IP have an Enhanced Vision Instruction Set (EVIS), which enhances the
ability of the GPU or VIP (Vision Image Processor) to process complex vision operations. A single EVIS
instruction can do a task which may require tens or even hundreds of normal ISA instructions to finish.

The following table shows the instructions supported as Intrinsic calls.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 10.3 — 26 June 2025 Document feedback
741159

https://www.khronos.org/registry/vx
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

7.2.3 Extended language features

Vivante’s OpenVX C programming Language corresponds closely to the OpenCL C programming language.

* Vivante’s C language extensions for OpenVX C share many language facilities with OpenCL C 1.2. However,
it can be considered a subset of OpenCL C 1.2, as it does not include OCL features which are useless for
OpenVX and other Vision Imaging applications.

* Vivante’s OpenVX C includes specific language facilities like Vision built-ins and data types specific for
OpenVX.

Table 29. OPCODE EVIS instructions supported as intrinsic calls

EVIS OP_CODE Description s\‘;m‘:tt:wy
ABS_DIFF Absolute difference between two values Y
IADD Adds two or three integer values Y
IACC_SQ Squares a value and adds it to an accumulator Y
LERP Linear interpolation between two values Y
FILTER Performs a filter on a 3x3 block Y
MAG_PHASE Computes magnitude and phase of 2 packed data values Y
MUL_SHIFT Multiplies two 8-or 16-bit integers and shifts Y
DP16X1 1 Dot Product from 2 16 component values Y
DP8X2 2 Dot Products from 2 8 component values Y
DP4X4 4 Dot Products from 2 4 component values Y
DP2X8 8 Dot Products from 2 2 component values Y
CLAMP Clamps up to 16 values to a max or min value Y
Bl_LINEAR Computes a bilinear interpolation of 4 pixel values Y
SELECT_ADD Adds a pixel value or increments a counter inside bins Y
ATOMIC_ADD Adds a valid atomically to an address Y
BIT_EXTRACT Extracts up to 8 bitfields from a packed stream Y
BIT_REPLACE Replaces up to 8 bitfields from a packed stream Y
DP32X1 1 Dot Product from 2 32 component values Y
DP16X2 2 Dot Products from 2 16 component values Y
DP8X4 4 Dot Products from 2 8 component values Y
DP4X8 8 Dot Products from 2 4 component values Y
DP2X16 16 Dot Products from 2 2 component values Y

7.2.4 Packed types

Vivante’s OpenCL compiler implements OpenCL C signed and unsigned char and short types in an unpacked
format, such that a normal char4 occupies 128 bits (4 32-bit registers). This is undesirable for Vision
applications, where packed data is the “natural” layout for almost all operations. To fully utilize the computing
power of EVIS instructions, Vivante VX includes additional packed types, which can be identified by their vxc_
prefix.

/* packed char2/4/8/16 */

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
751/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

typedef viv char2 packed vxc char2;
typedef viv char4 packed vxc char4;
typedef viv ~char8 _packed vxc " char8;
typedef viv charlé _packed vxc charlé6;

/* packed uchar2/4/8/16 */

typedef viv uchar2 packed vxc uchar2;
typedef viv “uchar4 _packed vxc “uchar4;
typedef viv ~uchar8 _packed vxc “uchar8;
typedef viv ucharlé _packed vxc ucharl6;
/* packed short2/4/8 */

typedef viv short2 packed vxc short2;
typedef viv ~short4 _packed vxc "~ short4;
typedef viv_short8 packed vxc short8;

/* packed ushort2/4/8 */

typedef viv ushort2 packed vxc ushort2;
typedef viv " ushort4 _packed vxc " ushortd;
typedef viv_ushort8 packed vxc ushort8;

7.2.5 Initializing constants on load

Constant data in OpenCL requires compile-time initialization. There is also a need to initialize the data when
the kernel is loaded/run, so that the application can control the behavior of a program by changing its constants
at load-time. The VeriSilicon VX extended keyword _viv_uniform can be used to define load-time initialization
constant data,

_viv _uniform vxc 512bits ubl2;

An application using VeriSilicon VX needs to set the proper values for _viv_uniform before the kernel program is
run.

7.2.6 Inline assembly

A packed type cannot be used as an unpacked type in expressions or built-in functions. The programmer
needs to convert packed type data to unpacked type data in order to perform these operations. The conversion
negatively impacts performance in terms of both instruction count and register usage, so it is desirable to
perform operations directly on packed data whenever possible. The Vivante Vision compiler accepts inline
assembly for a wide range of operations to speed up packed data calculations.

For example, to add two packed char16 data, the programmer can use following inline assembly:

vxc _ucharl6 a, b, c;
vxc_short8 b;
_viv uniform vxc 512bits ubl12;

viv_asm(ADD, ¢, a, b); /* ¢ =a + b; */
where the syntax of inline assembly is:
_viv_asm(

OP CODE,

dest,

source0,

sourcel

) ;

The following table lists the standard shader instructions that operate on packed data and are supported
through inline assembly, keyword _viv_asm.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
7617159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

Table 30. OPCODES IR instructions supported by inline assembly

i.MX Graphics User's Guide

IR OP_CODE Instruction Description Supported by Vivante VX
ABS Absolute value Y
ADD Add Y
ADD_SAT Integer add with saturation Y
AND_BITWISE Bitwise AND Y
BIT_REVERSAL Integer bit-wise reversal ES31
BITEXTRACT Extract Bits from src to dest ES31
BITINSERT Bit replacement ES31
BITSEL Bitwise Select Y
BYTE_REVERSAL Integer byte-wise reversal ES31
CLAMPOMAX clampOmax dest, value, max Y
CMP Compare each component Y
CONV Convert Y
DIV Divide Y
FINDLSB Find least significant bit ES31
FINDMSB Find most significant bit ES31
LEADZERO Detect Leading Zero Y
LSHIFT Left Shifter Y
MADSAT Integer multiple and add with saturation Y
MOD Modulus Y
MOV Move Y
MUL Multiply Y
MULHI Integer only Y
MULSAT Integer multiply with saturation Y
NEG neg(a) is similar to (0 - (a)) Y
NOT_BITWISE Bitwise NOT Y
OR_BITWISE Bitwise OR Y
POPCOUNT Population Count ES31/0CL1.2
ROTATE Rotate Y
RSHIFT Right Shifter Y
SuB Substract Y
SUBSAT Integer subtraction with saturation Y
XOR_BITWISE Bitwise XOR Y

Note: *ES31 = Supported by VivanteVX, but may not be needed for Vision processing

UG10159

All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User guide

Rev. 10.3 — 26 June 2025

Document feedback
771159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

7.3 OpenCL functions compatible with Vivante vision

Vivante’s VX extensions for Vision Image processing support most of the OpenCL 1.2 built-in functions for
normal OCL data types. Packed types are not supported in these built-in functions.

For image read/write functions, only sample-less 1D/1D array/2D image read/write functions are supported.

7.3.1 Read_lmagef,i,ui

/* OCL image builtins can be used in VX kernel */
float4 read imagef (image2d t image, int2 coord);

int4 read imagei (image2d t image, int2 coord);

uint4 read imageui (image2d t image, int2 coord);
float4 read imagef (imageld t image, int coord);

int4 read imagei (imageld t image, int coord);

uint4 read imageui (imageld t image, int coord);

float4 read imagef (imageld array t image, int2 coord);
int4 read imagei (imageld array t image, int2 coord);
uint4 read imageui (imageld array t image, int2 coord);

7.3.2 Write_Imagef,i,ui

void write imagef (image2d t image, int2 coord, floatd4 color);

void write imagei (image2d t image, int2 coord, int4 color);

void write imageui (image2d t image, int2 coord, uint4 color);

void write imagef (imageld t image, int coord, floatd4 color);

void write imagei (imageld t image, int coord, int4 color);

void write imageui (imageld t image, int coord, uinté4 color);

void write imagef (imageld array t image, int2 coord, float4 color);
void write imagei (imageld array t image, int2 coord, int4 color);
void write imageui (imageld array t image, int2 coord, uint4 color)

7.3.3 Query Image Dimensions

int2 get image dim (image2d t image);

size t get image array size(imageld array t image);
/* Built-in Image Query Functions */

int get image width (imageld t image);

int get image width (image2d t image);

int get image width (imageld array t image);

int get image height (image2d t image);

7.3.4 Channel Data Types Supported

/* Return the channel data type. Valid values are:
CLK_SNORM INTS8

CLK SNORM INT16

CLK UNORM INTS8

CLK_UNORM INT16

CLK_UNORM SHORT 565

CLK_UNORM_SHORT_ 555

CLK_UNORM SHORT 101010

CLK SIGNED INTS8

CLK_SIGNED_ INT16

X% % ok X X ok X %

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
7817159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

CLK SIGNED INT32

CLK_UNSIGNED INTS8

CLK_UNSIGNED INT16

CLK_UNSIGNED_INT32

CLK_HALF FLOAT

* CLK_FLOAT

s

int get image channel data type (imageld t image);

int get image channel data type (image2d t image);

int get image channel data type (imageld array t image);

* % X X X

7.3.5 Image Channel Orders Supported

/* Return the image channel order. Valid values are:
CLK A

CLK R

CLK_Rx

CLK_RG
CLK_RGx
CLK_RA
CLK_RGB
CLK_RGBx
CLK_RGBA

CLK ARGB

CLK BGRA

CLK_ INTENSITY
CLK LUMINANCE

Xk X o o X % ok X X o X

*

*/

int get image channel order (imageld t image);

int get image channel order (image2d t image);

int get image channel order (imageld array t image);

8 Vulkan

8.1 Overview

Vulkan is a new generation graphics and compute API that provides high-efficiency, cross-platform access
to modern GPUs used in a wide variety of devices from PCs and consoles to mobile phones and embedded
platforms.

Vulkan defines as an API (Application Programming Interface) for graphics and compute hardware. The

API consists of many commands that allow a programmer to specify shader programs, compute kernels,
objects, and operations involved in producing high-quality graphical images, specifically color images of three-
dimensional objects.

To the programmer, Vulkan is a set of commands that allow the specification of shader programs or shaders,
kernels, data used by kernels or shaders, and state controlling aspects of Vulkan outside the scope of shaders.
Typically, the data represents geometry in two or three dimensions and texture images, while the shaders

and kernels control the processing of the data, rasterization of the geometry, and the lighting and shading of
fragments generated by rasterization, resulting in the rendering of geometry into the framebuffer.

A typical Vulkan program begins with platform-specific calls to open a window or otherwise prepare a display
device onto which the program will draw. Then, calls are made to open queues to which command buffers

are submitted. The command buffers contain lists of commands which will be executed by the underlying
hardware. The application can also allocate device memory, associate resources with memory and refer to
these resources from within command buffers. Drawing commands cause application-defined shader programs

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
79/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

to be invoked, which can then consume the data in the resources and use them to produce graphical images.
To display the resulting images, further platform-specific commands are made to transfer the resulting image to
a display device or window.

For more details of programming with Vulkan, refer to the following specification from Khronos Group.

https://www.khronos.org/registry/vulkan/

8.2 Vulkan Validation Layers

Vulkan is an explicit API, enabling direct control over how GPUs actually work. By design, minimal error
checking is done inside a Vulkan driver. Applications have full control and responsibility for correct operation.
Any errors in how Vulkan is used can result in a crash. Vulkan validation layers that can be enabled to assist
development by enabling developers to verify their applications correct use of the Vulkan API.

8.3 Window System Integration

Vulkan relies on a new mechanism to interact with the native Windowing System and present the rendered
results to the user. This mechanism is called the Window System Integration and is provided via extensions
outside of the core API.

In the i.MX BSPs where Vulkan is enabled, the default window manager is Weston, a Wayland compositor
reference implementation.

When compiling a Vulkan application for Wayland make sure to define the
VK_USE_PLATFORM_WAYLAND_KHR symbol, so all the proper includes and code paths are enabled.

GLFW and SDL can manage the surface creation and proper extension initializations, but when an application
is newly developed without using any frameworks, require to enable the following instance extensions:

VK_KHR_SURFACE EXTENSION NAME
VK_KHR_WAYLAND SURFACE_EXTENSION NAME

Once there is a display connection to the Wayland server and a surface created, then start to use the wl_display
and wl_surface pointers to populate the info structure required by vkCreateWaylandSurfaceKHR.

A word of advice, when querying the Physical Device Surface capabilities with vkGetPhysicalDeviceSurface
CapabilitiesKHR before having created the Swapchain, the current extent width and height will return a value of
O0xFFFFFFFF, make sure to add checks for this in the code, when this happens, set the swapchain extent to the
actual size of the surface want to render to, or a fallback extent size.

9 Vivante Multiple GPUs and Virtualization

9.1 Overview

Vivante multi-GPU implementations provide a variety of capabilities which can be managed through hardware
and software controls. This chapter intends to summarize the software controls used for Vivante multi-GPU IP
implementations.

Multi-GPU feature can be enabled with dual GC7000XSVX on i.MX 8QuadMax and the derived devices.

9.2 Multi-GPU configurations

Vivante Multi-GPU IP may be configured into one of the following behavior model through software:

* Combined Mode where two (or more) GPU cores in the multi-GPU design behave in concert. Driver presents
multi-GPU to SW application as a single logical GPU. The multiple GPUs work in the same virtual address

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
80/159

https://www.khronos.org/registry/vulkan/
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

space and share the same MMU page table. The multiple GPUs fetch and execute a shared Command
Buffer.

* Independent Mode where each GPU in the multi-GPU design performs independently. The multiple GPUs
work in different virtual address spaces but share the same MMU page table. Each GPU core fetches and
executes its own Command Buffer. This enables different SW applications to run simultaneously on different
GPU cores.

* OpenCL API allows application to handle the multi-GPU Independent Mode directly, as each GPU core in a
multi-GPU design represents an independent OpenCL Compute Device.

9.3 GPU affinity configuration

In the multi-GPU Independent Mode, application can specify to run on a specific GPU among the multiple GPUs
through an environment variable VIV_MGPU_AFFINITY. Once an application’s GPU affinity is specified, the
application will only run on the specified GPU and will not migrate to other GPUs even if those GPUs are idle.

VIV_MGPU_AFFINITY is the environment variable to control the application GPU affinity on multi-GPU platform.
The client drivers will assume they are using a standalone GPU through a gcoHARDWARE object no matter
how this variable is set. The possible values for the environment variable VIV_MGPU_AFFINITY include:

* Not defined or

* Defined as "0" gcoHARDWARE objects work in gcvMULTI_GPU_COMBINED mode (default)
—"1:0" gcoHARDWARE objects work in gcvMULTI_GPU_INDEPENDENT mode and GPUQ is used
—"1:1" gcoHARDWARE objects work in gcvMULTI_GPU_INDEPENDENT mode and GPU1 is used

On a single GPU device, setting VIV_MGPU_AFFINITY to 0 or 1 does not make any difference as all
application processes/threads are bound to GPUOQ. But the application will fail the GPU context initialization if
VIV_MGPU_AFFINITY is set to "1:1" (driver reports error).

9.4 OpenCL on multi-GPU device

OpenCL driver works in bridged mode as single logical compute device. In this configuration, multiple GPUs in
the device operate as individual OpenCL Compute Devices. The OpenCL application is responsible to assign
and dispatch the compute tasks to each GPU (Compute Device).

The following OpenCL APIs return the list of compute devices available on a platform, and the device
information.

cl int clGetDeviceIDs (cl platform id platform, cl device type device type,
cl uint num entries,
cl device id *devices, cl uint *num devices)
cl int clGetDeviceInfo (cl device id device, cl device info param name, size t
param value size,
void *param value, size t *param value size ret)

9.5 GPU virtualization configuration

Multi-GPU also can be used on different OS systems as independent mode separately, this can be configured
by overriding the irq availability n DTS entry for different OS implementation, in arch/arm64 /boot/dts/
freescale/fsl-imx8gmxxx.dts

Guest OS 1 (GPUO only)

&gpu_3dl {
status = "disable";
17

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
81/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

Guest OS 2 (GPU1 only)

&gpu_3d0 {
status = "disable";

157

10 GBM - Generic Buffer Management

The GBM (Graphic Buffer Management) APl is a thin layer over DRM KMS (Linux Direct Rendering Manager
- Kernel ModeSetting API) that provides a mechanism for allocating buffers for graphics rendering. GBM is
intended to be used as a native platform for EGL on DRM. The handle it creates can be used to initialize EGL
and to create render target buffers. This can be resumed as a modern OpenGL ES FBDEYV, because it permits
full usage of the DRM KMS API with OpenGL ES acceleration.

Starting from i.MX 8, the DRM is supported and recommended to use GBM. GBM provides options of allocating
modifier-abiding surfaces too, for Wayland compositors and the X11 server to render to.

10.1 Introduction to DRM Format Modifiers

A DRM format modifier is a 64-bit, vendor-prefixed, semi-opaque unsigned integer. Most modifiers represent a
concrete, vendor-specific tiling format for images. Some exceptions are DRM_FORMAT_MOD_LINEAR (which
is not vendor-specific); DRM_FORMAT_MOD_NONE (which is an alias of DRM_FORMAT_MOD_LINEAR
due to historical accident); and DRM_FORMAT_MOD _INVALID (which does not represent a tiling format).

The modifier’s vendor prefix consists of the 8 most significant bits. The canonical list of modifiers and vendor
prefixes is found in drm_fourcc.h in the Linux kernel source.

One goal of maodifiers in the Linux ecosystem is to enumerate for each vendor a reasonably sized set of
tiling formats that are appropriate for images shared across processes, APls, and/or devices, where each
participating component may possibly be from different vendors. A non-goal is to enumerate all tiling formats
supported by all vendors. Some tiling formats used internally by vendors are inappropriate for sharing; no
modifiers should be assigned to such tiling formats.

Modifier values typically do not describe memory layouts. More precisely, a modifier's lower 56 bits usually
have no structure. Instead, modifiers name memory layouts; they name a small set of vendor-preferred layouts
for image sharing. As a consequence, in each vendor namespace the modifier values are often sequentially
allocated starting at 1.

Each modifier is usually supported by a single vendor and its name matches the pattern
{VENDOR}_FORMAT_MOD_* or DRM_FORMAT_MOD_{VENDOR}_*. Examples are
DRM_FORMAT_MOD_VIVANTE_TILED and DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED. An
exception is DRM_FORMAT_MOD_LINEAR, which is supported by most vendors.

Many APls in Linux use modifiers to negotiate and specify the memory layout of shared images. For

example, a Wayland compositor and Wayland client may, by relaying modifiers over the Wayland

protocol zwp_linux_dmabuf_v1, negotiate a vendor-specific tiling format for a shared wl_buffer. The

client may allocate the underlying memory for the wl_buffer with GBM, providing the chosen modifier to
gbm_bo_create_with_modifiers. The client may then import the wl_buffer into Vulkan for producing image
content, providing the resource’s dma_buf to VkimportMemoryFdinfoKHR and its modifier to VkimageDrm
FormatModifierExplicitCreatelnfoEXT. The compositor may then import the wl_buffer into OpenGL for sampling,
providing the resource’s dma_buf and modifier to eglCreatelmage. The compositor may also bypass OpenGL
and submit the wl_buffer directly to the kernel’s display API, providing the dma_buf and modifier through
drm_mode_fb_cmd2.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
82/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

11 Wayland and Weston

11.1 Overview

Wayland is a protocol for a compositor to talk to its clients as well as a C library implementation of that protocol.
Wayland is intended as a simpler replacement for X, easier to develop and maintain. The compositor can be

a standalone display server running on Linux kernel mode setting and evdev input devices, an X application,

or a Wayland client itself. The clients can be traditional applications, X servers (rootless or full screen) or other
display servers.

11.2 Wayland EGL

Wayland-EGL is the client side implementation of the Wayland that binds the EGL stack and buffer sharing
mechanism to the generic Wayland API. Frontend of the wayland-egl is now part of the wayland and i.MX
graphics driver supports the implementation of buffer sharing mechanism.

11.3 Weston compositor

Weston is reference implementation of a Wayland compositor. The Weston compositor is minimal and
lightweight and is suitable for many embedded and mobile use cases. Weston support multiple renderers and
backends which need to be chosen appropriately based on the processor configurations. This is usually preset
in the i.MX image.

11.3.1 Weston backends

Weston have implementation to support different display APls, which is called backend. i.MX 8 and i.MX 9
support KMS/DRM hence use DRM backend while the i.MX 6/7 uses FBDEV backend. i.MX graphics continues
to support graphics acceleration with FBDEV backends.

11.3.1.1 RDP backend

RDP backend supports acceleration. Now the feature is available as a part of the i.MX release image where
GStreamer is supported. The 1ibrdp library requires GStreamer. Perform the following steps to use RDP on
the i.MX on the target device:

1. Inthe /etc/xdg/weston/weston.ini file, uncomment start-on-startup=true
2. Generate RDP certificates.

mkdir -p /etc/freerdp/keys/
winpr-makecert -rdp -path /etc/freerdp/keys

3. Rename the generated files to server.crt and server. key.
On the Windows PC, use the Remote Desktop Connection application and enter the target IP address.

Similarly, Linux and its tool also can be used.
11.3.2 Weston renderer

11.3.2.1 GL renderer

GL (GLES) renderer implementation is the default with Weston implementation. GL renderer takes the buffer
passed from clone and maps as a texture. After the initial setup, the client only needs to tell the compositor
which buffer to use and when and where it has rendered new content into it.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
83/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

11.3.2.2 G2D renderer

G2D is the 2D API. See Section 2 for full details of G2D APls. G2D renderer provides mechanism to accelerate
Weston with 2D GPU. The 2D Graphics Engine reduces the burden on the 3D GPU, saves power, and
integrates well with the video capabilities of the SoC. G2D compositor can increase system bandwidth
utilization, so the performance is better than the GL compositor in the complex usecase environment.

To enable the G2D compositor, open the file /etc/xdg/weston/weston.ini in the Linux image.

use—-gz2d=1

Note: When running benchmarks, set WESTON FORCE _RENDERER=1 to Weston for Mali GPU.

1. Add WESTON FORCE RENDERER=1 in /etc/environment.
2. systemctl restarts Weston.

11.3.3 Weston shells

Weston supports multiple shells, each of these shells have its own public protocol interface for clients. This
means that a client must be specifically written for a shell protocol. Otherwise, it will not work. Below are the
currently supported shell.

Note: Weston 10 marked w1 _shell as deprecated and has been removed by community since Weston 11,
recommending to covert to xdg-shel 1 for Wayland application developing.

11.3.3.1 Desktop shell

Desktop shell is like a typical X desktop environment, concentrating on traditional keyboard and mouse user
interfaces and the familiar desktop-like window management. Desktop shell consists of the shell plugin desktop-
shell.so and the special client weston-desktop-shell which provides the wallpaper, panel, and screen locking
dialog.

11.3.3.2 Fullscreen shell

Fullscreen shell is intended for a client that needs to take over whole outputs, often all outputs. This is primarily
intended for running another compositor on Weston. The other compositor does not need to handle any
platform-specifics like DRM/KMS or evdev/libinput. The shell consists only of the shell plugin fullscreen-shell.so.

11.3.3.3 IVI-shell

In-vehicle infotainment shell is a special purpose shell that exposes a GENIVI Layer Manager compatible API
to controller modules, and a very simple shell protocol towards clients. IVI-shell starts with loading ivi-shell.so,
and then a controller module which may launch helper clients. This shell provides option of setting windowing
position, which need to be programmed from the client application.

12 X Windowing Acceleration

X11 is accelerated on i.MX 8 through Xwayland. Support on i.MX 6 deprecated.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
84/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

13 Advanced GPU Configuration

13.1 GPU Scaling Governor

i.MX 8QuadMax GPU design supports different running modes: overdrive, nominal, and underdrive. Nominal is
the default, the overdrive is supposed to be performance/benchmark mode, and underdrive mode is expected
as energy saving mode.

Switch among the 3 modes using command line without needing to recompile the GPU driver.

$ echo "overdrive" > /sys/bus/platform/drivers/galcore/gpu_govern
$ echo "nominal" > /sys/bus/platform/drivers/galcore/gpu_govern
$ echo "underdrive" > /sys/bus/platform/drivers/galcore/gpu govern

To check the mode that is currently running, use the command line as follows:

$ cat /sys/bus/platform/drivers/galcore/gpu govern

13.2 GPU Device Cooling

i.MX 6/7/8 devices support the thermal driver, which could signal the overheat event to the GPU driver. When
the GPU driver receives the event, it can enable the GPU DFS feature to reduce the GPU frequency as N/64 of
the original designated clock.

The default N factor is 1 in the original BSP release. The end-user can reconfigure it through the following
command:

echo N >/sys/bus/platform/drivers/galcore/gpu3DMinClock

The user also can check the existing configuration as follows:

cat /sys/bus/platform/drivers/galcore/gpu3DMinClock

13.3 i.MX 95 GPU frequency scaling

The i.MX 95 and later platforms support frequency scaling based on the Linux devfreq framework. The clock
rate varies among [500 MHz, 800 MHz, 1 GHz]. Currently, only simple ondemand governor is supported. The
frequency can be set to a certain clock by changing max fregand min freq. The following command can be
used to make the GPU run at the highest clock rate 1 GHz.

$ echo 1000000000 > /sys/devices/platform/soc/4d900000.gpu/devfreq/4d900000.gpu/
min freg

Or set the GPU to performance mode as follows:

$ echo performance > /sys/class/devfreq/4d900000.gpu/governor

Roll back the default governor simple ondemand with the following command:

$ echo simple ondemand > /sys/class/devfreq/4d900000.gpu/governor

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
85/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

13.3.1 simple_ondemand governor

If the percentage of the busy time/total time exceeds 90% (upthreshold), the frequency jumps to the
maximum frequency. If the percentage fluctuates within 5% (downdifferential) each time, the frequency remains
unchanged. Otherwise, set the desired frequency based on the percentage. More details can be found in
drivers/devfreq/governor simpleondemand.c.

Sometimes, the percent 90 cannot be achieved when running some applications. Consider the producer-
consumer mode in multi-thread programming. Or the upthreshold can be replaced with a small value through
DTS property up threshold and down differential.

Some Al machine learning use cases may require the GPU to handle the compute jobs as soon as possible.
The simple ondemand governor does not meet such demand, but the performance governor can meet such
requirement.

14 Vivante IDE

14.1 VivantelDE overview

The VivantelDE provides a single interface to a set of applications designed to be used by graphics, compute,
vision and neural network application developers to rapidly develop and port applications either stand alone or
as part of an IDE. Vivante IDE is built on the top of Eclipse, CDT

VivantelDE capabilities include the following key features.

* Project Management
The Project Manager supports individual compile options for each file. In addition, workspace options define
project dependencies, removing the need for manual management of file builds.

* Source code smart editing and analysis
The VivantelDE Editor provides timesaving editing features such as type ahead for structures, word
completion and automatic code indentation for a readable, formatted code view.

» Automatic code generation
Kernel development wizard can automatically generate the kernel code basing on simple inputs.

* Performance and bandwidth profiling
The Profile tabbed window provides profiler information. Every time the profiler is suspected accumulated
statistical information is updated. For OGL applications the VPD Analyzer is provided.

* Post-mortem performance analysis
VVPD Analyzer visualized the hardware data recorded at GPU application runtime.

* Texture browse and conversion
Texture browser and converter support texture file preview and format conversion.

* Command line tools for OGL, OCL and OVX compile.

* Command line tools for Vulkan application development.

e Command line tools for Texture compression/decompression and tile/de-tiling.

14.1.1 VivantelDE component overview

VivantelDE provides both command line tools and GUI “Perspective” views for performing different activities.
Some functionality is available through both GUI and command line, while tools such as vCompiler and
vcCompiler are available only using command line syntax.

Table 31. VivantelDE tool overview

Perspective/Tool Key Functionality GUI Command Line

Debug Debug projects Yes

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback

86 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

Table 31. VivantelDE tool overview...continued

Perspective/Tool Key Functionality GUI Command Line

Profile Configure projects Yes

vCompiler Offline OGL compiler No Yes, vCompiler

vcCompiler Offline OCL compiler No Yes, vcCompiler

VPD Analyzer Performance analysis Yes No

vTexture, Texture manipulations and viewing; Yes Yes

vTextureTools Compress, Decompress, Tile, De-Tile Texture Viewer vTextureTools
Texture Browser

SPIR-V Disassembly Debug Vulkan apps Yes No

Shader Assistant Shader programming Yes No

14.2 VivantelDE Requirements

14.2.1 Operating system compatibility

VivantelDE is available for both Linux and Windows environments. VivantelDE has been verified to work in
Windows 7, Windows 10, Ubuntu 18.04, and Ubuntu 16.04. It might work in other Windows or Linux systems
but has not been verified for alternate environments.

Table 32. Operating System Tool Compatibility Summary

Components Linux Windows
VivantelDE GUI and command GUI and command
Tools
vCompiler, veCompiler command command
vProfiler Built part of i.MX Built part of i.MX
unified driver (target) unified in driver(target)
VPD Analyzer GUI GUI
Shader Assistant GUI GUI
Texture Viewer GUI GUI
Texture Browser GUI GUI
vTextureTools GUI and command GUI and command

14.2.2 Hardware requirements

VivantelDE can be used in either a simulation environment or on i.MX processors supporting OpenGL ES,
OpenCL, OpenVX, and Neural Networks capabilities in the tools assume compatible hardware capability in the
running environment, which must be correctly profiled in the tool for accurate results.

14.2.3 VivantelDE license

i.MX supported VivantelDE release package contains with preloaded license and restricted only to use with
NXP processors. For more information, read NXP EULA.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 10.3 — 26 June 2025 Document feedback
871159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

i.MX Graphics User's Guide

14.3 VivantelDE installation

14.3.1 VivantelDE package

Each release of VivantelDE will be compatible with its companion driver version. Forward and backward
compatibility is not tested and use of VivantelDE with any different driver version other than its companion

version is NOT RECOMMENDED.

The package is delivered as a compressed file from nxp.com as
Verisilicon Tool IDE <version>.tgz.

Table 33. VivantelDE package contents

Top level Directory and exe file

Description

VivanteIDE-<version>-Linux-x86
64-**-Install

Installation wizard for Linux 64-bit.

VivanteIDE-<version>-Windows—**-
Setup.exe

Installation wizard for Windows 64-bit/32-bit

README

README with basic installation notes

After installation the following directories will be created in the installation directory

Table 34. VivantelDE tools directory

Files and Directories

Description

ide/ Directory containing IDE executables and plugins

examples/ Directory containing examples (just for Windows)

cmdtools/ Directory containing Vivante command line tools: vCompiler, vcCompiler, v
TextureTools

doc/ Directory containing documents

license/ Directory containing license tools and license files

jre/ Directory containing JRE binaries

mingw32/ Directory containing MinGW (just for Windows)

uninstall.exe

Uninstaller of VivantelDE

14.3.2 Installation

Install the package to run both the GUI and command line tools. You must install the package even if you are

only going to use the command line tools.

14.3.2.1 Linux GUI

Run vivante-<version>-Linux-x86 64-**-Install to launch the installation wizard. Follow the
installation steps guided by the installation wizard to finish the installation.

14.3.2.2 Windows GUI

Run vivante-<version>-Windows-**-Setup.exe to launch the installation wizard. Follow the installation
steps guided by the installation wizard to finish the installation.

UG10159
User guide

All information provided in this document is subject to legal disclaimers.

Rev. 10.3 — 26 June 2025

© 2025 NXP B.V. All rights reserved.
Document feedback
88/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

14.3.2.3 Installation from command line

The VivantelDE installer can also be launched from the command line. Options can be specified as follows:

installer [optionl] [option2] [option3]

Example Usage for Windows:

installer /mode silent /prefix destination location /license license file path

Example Usage for Linux:

installer --mode silent --prefix destination location --license
license file path

Table 35. Command line installer options

Option for Windows Option for Linux Description

/mode silent --mode silent Silent mode (without GUI, without prompting)
llicense license_file_path --license license_file_path Specify a license file to be installed

/prefix destination_location --prefix destination_location Specify the folder where VivantelDE will be installed

14.3.3 VivantelDE launch

14.3.3.1 Linux launch of GUI tool
To launch the GUI tool,

* Double-click the desktop shortcut VivantelIDE<version>.
* Run installation dir/ide/vivanteide<version> in a BASH.

14.3.3.2 Windows launch of GUI tool
To launch the GUI tool:

* Click Start Menu->VeriSilicon->VivantelDE <version>->VivantelDE <version>.
* Double-click the desktop shortcut VivantelDE <version>.
* Run installation dir/ide/vivanteide<version>.bat.

14.3.3.3 Command line tool launch

To launch the command line tools, use the following paths. For Linux OS, launch in a BASH.
Runinstallation_dir/cmdtools/vCompiler, vcCompiler, vTextureTools.
14.3.3.4 Basic launch path summary

Table 36. Basic launch instruction summary

Tool Linux Basic Launch Instruction Windows Basic Launch Instruction
VivanteIDE GUI |Run installation dir/ide/ Run installation dir/ide/
vivanteide<version> vivanteide<version>.bat
in a BASH.
UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback

89/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

Table 36. Basic launch instruction summary...continued

i.MX Graphics User's Guide

vcompilerina BASH.

Compiler.exe

Tool Linux Basic Launch Instruction Windows Basic Launch Instruction

vcCompiler Run installation dir/cmdtools/bin/vec |Runinstallation dir/cmdtools/bin/vc
Compiler in a BASH. Compiler.exe

vCompiler Run installation dir/cmdtools/bin/ Run installation dir/cmdtools/bin/v

vTextureTools

Run installation dir/cmdtools/bin/
vtexturetools in a BASH.

Run installation dir/cmdtools/bin/v
TextureTools.exe

14.4 VivantelDE GUI

The desktop development environment for VivantelDE is referred to as the Workbench. The Workbench

contains panes that may change depending on the current activity. Some key panes are indicated in the figure

below.

- &/Cos

vx_tutorial/sre/vx_tutorialc - VivanteIDE
File Edit Source Refacior Navigate Search Run Project Window Help

Wiritable ‘Smart Insert 1:1

- =le JeCammaRd 18onsT T 0T et IS T BB Re
Project 53 N ttorialsc | [¢) wctutoriake £3 St(Ee 8\ ©OM| =0)
Sz T- AR o %
2 =5 vi_tutonial . # ¢ include directives
np Includes x o main{veid) : int
3 5 vx_tutorial3 rid 1 ., Ansi Debug pane
Editor pane
PrOJeCt #include <stdic.h>
Explorer include <stdlib.h>
int main(void) {
pane e
- A b,
- problems (7] Tasks | B console 23 [Properties - nlO&® | *@ i~ o)\
b tutorials Debug [C/C + Application] vx tutorial3.exe |
Console pane 3
\.1 LA\ IZJJ

Figure 10. VivantelIDE Workbench Key Panes

ﬁane tabs possible:

Project Explorer:
* Project

* Navigator
Editor:

* C/C++Editor
* Qutline
Console:

* Problems

* Tasks

* Console

* Profile

* Properties

* Variables

* Memory

* Expressions

* Breakpoints
* Registers

* Search

* Bookmarks

* Include Browser
Debug

* Call Hierarchy
* Debug

* Make

\ Disassembly

\

J

The following examples provide users with basic simple steps to get started using VivanteIDE. The GUI is

similar but not identical for each tool GUI: VPD Analyzer, Shader Assistant, Texture Browser, Texture Viewer.

14.4.1 Selecting a workspace

When VivantelDE is opened, the Workspace Launcher - Select a workspace dialog box pops up by default.
Click the OK button.

If the workspace is a new empty workspace, the Welcome dialog box is displayed.

UG10159

All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User guide

Rev. 10.3 — 26 June 2025

Document feedback

90 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

If the workspace is not a new empty workspace, the workbench is displayed.

* Workspace Launcher E I

Select a workspace

VivanteIDE stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

ﬂurkspace:IC:WeriSiIin:u:unk‘u‘ivantEIDEl.D.DkexamplE-sl j Browse... |

[T Use this as the default and do not ask again

oK Cancel |

Figure 11. Figure 21. Workspace Launcher

14.4.2 Switching perspective

Click the pull-down menu items or click directly on the visible perspective name to switch perspective views.

Switch to the C/C++ perspective to manage projects and write source code. VivantelDE will switch to the Debug
perspective by default after a program is launched successfully in Debug mode.

[| %5 Debug HgjC/C++
ot DR C/CH+ (= 0]

Other...

Figure 12. Switching perspective

14.4.3 Creating a new project

This section describes how to create an OpenVX project as an example.
New project creation is available from the main menu. Choose File-->New-->Project...

In the New Project - Select a wizard dialog box, open the C/C++ folder in the Wizards list box and select
OpenVX C Project.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 10.3 — 26 June 2025 Document feedback
91/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

i.MX Graphics User's Guide

* CfC++ - vel/wx_examplel.c - VivantelDE

File Edit Source Refactor MNavigate Search Project Run Window Help

New

PATEECH T NI (/| OpenVX C++ Project

Open File... [} OpenVX C Project
I Ctrl+ W % OpenCL C++ If'rcrjecl
: OpenCL C P ct
Close Al Ctrl+Shiftswy o -Pe! s
@ OpenGL C++ Project

Save Ctrl+% [i] OpenGL C Project
[5] Save As... [Native C++ Project

Save All Ctrl+Shift+5 [i| Native C Project

Rewvert Makefile Project with Existing Code

Move.. WPoet- |

Rensarne... Convert to a C/C++ Project
2| Refresh F5 % Source Folder

Convert Line Delimiters To ¥ [Folder

0 .
& Print.- Cirl+P ¢ Source File
i Header File

Switch Workspace “ File from Template

Restart (& Class
iy Import... i Other... Ctrl+N I
n h Fennrt

Figure 13. Creating a new project

14.4.4 Creating an OpenVX kernel wizard

1. To create an OpenVX C(C++) project, in the OpenVX C(C++) Project dialog box, enter the Project name,
select OpenVX Kernel Project(1.1) under Static Library or Shared Library.

UG10159

B New Project B ERC

Select a wizard —l

Create a new OpenVX C project

Wizards:

type filter text

4 (= CfC++ -

Malkefile Project with Existing Code
[i&] Native C Project

[i&] Native C++ Project

[E] OpenCL C Project

[E] OpenCL C++ Project

[E] OpenGL C Project

[6] OpenGL C++ Project

[Open¥X C Project

[Open¥X C++ Project

mn

@

< Back Next = Finish Cancel

All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User guide

Rev. 10.3 — 26 June 2025

Document feedback
92 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

B CpenVX C Project

Open¥X C Project

Project name must be specified

(e ms moms
Use default location
e
default

Project type: Toalchains:

» [= OpenVX Examples o

4 (= Shared Library

@ Empty Project

@ OpenVX Kernel Project(1.01)

@ OpenVX Kernel Project(1.1)
4 = Static Library

@ Empty Project

@ OpenVX Kernel Project(1.1)
> G Makefile project

OpenVX GCC(Win32)

m

Show project types and toolchains only if they are supported on the platform

Cancel

Figure 14. Creating a new project (1)

i.MX Graphics User's Guide

2. Press Next to input Author and Copyright notice, Kernel ENUM offset and Kernel Name prefix

information in the following dialogs, and then add arguments for the kernel.

Bl OpenVX C Project (= .
Basic Settings —
Basic properties of a project
Author
Copyright notice Your copyright notice
Bl OpenVX C Project [
| Definition Settings — |
Definition properties of a project
|
| Kemel ENUM offset 1
Kemnel Name prefix com.vivantecorp.extension.
|
|
|
|
| @ Newt > Cancel
L

Figure 15. Creating a new project (2)

3. Click the Finish button, and the new kernel project will be created.
Refer to the VivanteIDE User Guide for detailed information.

UG10159

All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User guide

Rev. 10.3 — 26 June 2025

Document feedback
93 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

i.MX Graphics User's Guide

B OpenVX C Project =] =
Arguments Settings —
@ Please add at least one kernel argument.

Kernel arguments list:
No. Type B Set parameter info =
Type: |im -
Name: [image2d tiunsigned char) >
- |image2d tiunsigned short) [
Direct; - »ge2d_t(signed short)
©Inplimage2d_t(unsigned int)
image2d_t(signed int) -
o
Bl OpenVX C Project =
Arquments Settings —
Setting Arguments for VIP Kernel
Kernel arguments list:
Ne. Type Name Direction
[] image2d tisigned short) in Input
1 global float "{float) out Cutput
|Append]
Up
Diown
Edit
Remave
@ T T
Figure 16. Creating a new project (3)

14.4.5 Source code smart editing for OpenVX and OpenCL

When a user edits a source file in VivantelDE, the OpenVX/OpenCL keywords and predefined structure will be
automatically highlighted. The Editor also supports keyword completion using keyboard combination "alt"+"/".

In addition, the Outline view tab will provide structured information and quick navigation for the source file

currently being edited.

UG10159

All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User guide

Rev. 10.3 — 26 June 2025

Document feedback
94 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

i.MX Graphics User's Guide

alexnet.export.data ﬂ@ *mainc = 0| g= outline 2 ¢ laz L=} Qs o ¥ ¥ 7C
- 2 sys/ioctlh]
voidx [TTTNTS N PRIESY (char *name, vx enum dat B sysfimeh
£ M linuxib.h
FILE * dataFile; Iy istd.h
size_t faize; L"?‘St ’
vx_uintd* data: lj W windows.h
= ./.f.fcommon/sga_utils.h
dataFile = fopen(name, "rb"): # NN_TENSOR_MAX_DIMENSION_NUMBER
Iseek (dataFile, 0L, SEEK END); # NN_TENSOR_DATA_FORMAT
fsize = ftell(dataFile); # NN_FIXED_POINT POS i
fseek (dataFile, 0L, SEEK_SET); - - -
data = (vx_uinti+®) malloc(fsize); # _CHECK OBJ
fread(data, 1, f=zize, dataFile): # _CHECE_STATUS
return data; ef wcGetTypeSize(vx_enum) : vx_uint32 g
} o 7 FplBtoFp32(const vx_int16) : v float32
void* preparePureDatalnput (char *name, vE_uint32 wi | @ preparePureDataOutput(char®, vx_enum) : void"l
{ S .
vx_uints *data;] prelpalrePureDalalll'lpul(char L wx_uint32, vx_uint32, vx_
FILE * dataFile; - @ main(int, char*[]} : int 4
< m + <] | +

Figure 17. Source code smart editing for OpenVX and OpenCL (1)

float maxErrorRatio = 0.0:
int maxErrorHum = 0;
vx float32 maxErrorltem = 0.0;
M maxErrorGolden = 0.0;
int =
R T vx_action e
int |:|
int] | W wL_array
int| | T wx_bitfield
T wx_bool
dat
- Y@ vx_border_t
inp
gol T vx_char
4 T vx_context E
& Problems| | ® vx_convolution
C-Build [add | T vx_coordinates2d_t
T vx_coordinates3d t
T vx_delay
Tlhw Aslta ractanale i
Press 'Alt+/" to show Template Proposals

r,

Figure 18. Source code smart editing for OpenVX and OpenCL (2)

14.4.6 Creating a Neural Network Inference Project from a model file

New project creation is available from the main menu.

1. Choose File-->New-->Project...

UG10159

All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User guide

Rev. 10.3 — 26 June 2025

Document feedback
95/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

- CfC++ - vl fvx_examplel.c - VivanteIlDE
[m Edit Source Refactor Mavigate Search Run Project Window Help
MNew Alt+Shift+N » Malkefile Project with Existing Code
Open File... % Project...
Close Ctrl+W Convert to a C/C++ Project
Close All Cirl+Shift+W | 8% Source Folder
Save Ctrl+5 C5 Folder
B Save As.. |£<|> Source File
Save Al Cirl+shiftes |] | Header File
Revert [File from Template
& Class
Move...
Rename.. £% Other... Ctrl+MN
Figure 19. Creating a Neural Network Inference Project from a model file (1)

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
96 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

- A
Bl OpenVX C Project uﬂlﬂ

OpenvX C Project —

Create OpenVX C project of selected type

Project name: nnexample

Use default location

Location: | D¥wipws\nnexample Browse...

Choose file system: |default

Project type: Toolchains:

(= Executable | OpenVX GCC(Win32):
@ Empty Project
& OVX NN Inference C Project
= OpenVX Examples

= Shared Library

(= Static Library

= Makefile project

Show project types and toolchains only if they are supported on the platform

@ <Back || Next> || inish

Figure 20. Creating a Neural Network Inference Project from a model file (2)

"

2. In the New Project - Select a wizard dialog box, open the C/C++ folder in the Wizards list box and select
OpenVX C Project.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
97 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

Figure 21. Creating a Neural Network Inference Project from a model file (3)

Bl New Project I. (=] iﬁj

Select a wizard —

Create a new OpenVX C project

Wizards:
type filter text

4 [= CfC++ &
Malkefile Project with Existing Code
[fit] Native C Project
[i¢] Native C++ Project
[Gi] OpenCL C Project
[Gi] OpenCL C++ Project
[&] OpenGL C Project
[Gl] OpenGL C++ Project
(W] OpenVX C Project
[W] OpenVX C++ Project

m

[

3. Click Next to continue.

4. In the OpenVX C Project dialog box, enter the Project name. Check the Use default location checkbox.
This will cause our new directory to be created in our workspace. The directory path is displayed.

5. Select the Project type: Executable -> OVX NN Inference C Project.

6. Once the project name is entered, click Next to continue. The OpenVX C Project - Basic Settings dialog
box is displayed.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 10.3 — 26 June 2025 Document feedback

98 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

"Bl OpenvX C Project D =T)
|

Basic Settings —

Basic properties of a project

Madel File Chtmphalexnet_intB_conv \alexnet_int8.ex
| Data File Chtmphalexnet_int8_conv_\alexnet_int8.ex

[Author
Copyright notice Your copyright notice

Source src

|
| @:‘ I = Back Mext = Finish l I Cancel

ke

Figure 22. Figure 31. Creating a Neural Network Inference Project from a model file (4)

7. Browse or input the information to select a Model file and a Data file.

8. Click Next to continue. The OpenVX C Project - Conversion Settings dialog box is displayed. Make sure
the Add reference main.c checkbox is checked.
Note:
If Add reference main.c is checked, a main.c would be created by this wizard. If it is unchecked, main.c
would not be created.
Function main () locates in main. c, which is just an application for testing the model.
Usually the NN model is a part of an OpenVX application, so writing function main to use the NN model is
still necessary to execute the project if Add reference main.c is not checked.

9. Click Next to continue. The OpenVX C Project - Select Configurations dialog box is now displayed.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
99 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

i.MX Graphics User's Guide

-
Bl OpenVX C Project

| O] |

Select Confiqurations

_‘\4.-"

Select platforms and configurations you wish to deploy on

Project type: Executable
Toolchains: OpenVX GCCWin32)

Configurations:

3 Debug I

Select all
B Release

I Deselect all

Ihdvanced settings...

Use "Advanced settings" button to edit project's properties.

Additional configurations can be added after project creation.
Use "Manage configurations” buttons either on toolbar or on property pages.

e

@ = Back Mext = [Einish] I Cancel

Figure 23. Creating a Neural Network Inference Project from a model file (5)

10. Click the Finish button. The new project is now created. The new Project is viewable in the Project
Explorer pane.

UG10159

All information provided in this document is subject to legal disclaimers. ©

2025 NXP B.V. All rights reserved.

User guide

Rev. 10.3 — 26 June 2025

Document feedback
100/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

Ele Edit Source Refactor Mavigate Search Run Project Window Help
| W < | jgveivdv@~ &8 [H~0 Q- &y [JE D [cre++
J |§| v G' MR A4

[t Project Explorer §3 = 0| [c] main.c (@ wxc_cnn_network.c £3 = O 5= out 2 ~_@ Makw
0® ¥ #include <stdlib.h> | B R e
=S nn #include "vxc cnn priv.h" J <tdlib.h
: #include "vxc cnn.h" .
-l Includes - vxc_cnn_priv.h
-8 sre static void* node info[15]: vxe_cnn.h
- dirent_win.h /* Neural Network Construction */ node_info : void*
- [n] jeonfig.h vx_status vxcCreateNeuralNetwork(vx graph graph, char® data fil vxcCreateMeurall
- [h| jmorecfg.h { wxcReleaseMeural
[]...@ jpeglib.h vE_status status;
- [€ main.c
[]___@ xe_cnn_network vxcNetworkInit (data_ file name);
- [€] vxc_cnn_node.c e ConvolutionRelu (nl2) —-——- .
[]"'@ ve_cnn_priv.h node info[l] = vxcAllocHodeInfo (sizeof (convolution relu poao
- (A vxc_cnnh if (;ode_info[l] == NULL) B B
----- |Z| bwvlc_alexnet.export {
- =] bvlc.data goto error;

({convolution relu pooling info t *)node_info[l])->graph =

((convolution relu pooling info t *)node_info[l])->input =

((convolution relu pooling info t *)node_info[l])->kernel x

({convolution relu pooling info t *)node_info[l])->kernel y

((convolution relu pooling info t *)node_info[l])-»ofm = 96

((convolution relu pooling info t *)node_info[l]) —>weig'nt;d|;|
»

l | 4 |

[g_\ Problems é_'_?,Tasks El console &3 = Properiies} L4 <'===D| '—E Eﬁ |_-'||| el = I A i 4
C-Build [nn]
##%* Compiling the model file /nn/src/bvlc_alexnet.export ****¥

Figure 24. Creating a Neural Network Inference Project from a model file (6)

14.4.7 Building a sample project
1. On the Project tab, select Properties to open the Properties Setting dialog to modify the build settings.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
101/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

i.MX Graphics User's Guide

= C/CH -
File Edit Sowrce Refactor Navigate Sewch Run Froject Window

ve_tutorial3fve_tuteriald. ¢ = VivanteIDE
| &~ &5~ & -

([Brejact E3 % % Hevigate | O|[[8 we_tatorials. e 5
“Sacaheeldeh il I ~

Open in New Tindew

Copy CtrltC
¥ Delete Delete
Renase. .. F2
paglaport. ..
i Export. ..

Build Froject
Clean Froject

2 |Refresh Fs
Close Project

Baild Configarations L4
Muke Targets L3

Index L3

Shew in Ramots Systess view

Corvert Te...

Run Az L3
Debug As »
Profile Az 13
Tass L
Cospare ¥ith L4
b Restore from Local Mistery. ..

| o® | Configure »

Figure 25. Building a sample project (1)

2. There are build tools available that can be set for C or C++ projects.

= Properties for va_tutoriald

% Ressurce
Builders
= C/Ce= Build
Buikd Vaciables
Discowery Options
Environment
Logging
Settings
Toal Chain Editor
5 C/Ce+ General
Project References
Run/Debug Settings

% Tool Settings | 5 Build steps |

[omrmes Setings

Configuration: [Debug [Active]

Build Artfact | 1y Binary Parsers | @3 Emor Parsers |

x| Manage configurations..

Command: [gec

Al aptions: [0 -g3 -Wall -¢ -fmessage-lengthed =]
5 Includes -
{2 Optimization -

Expert ngs:

Command

e pattem:

{5 Librasies

8 Miscellaneous

{5 Shared Librasy Settings
= % VIP VC Compiler

5 Includes
{53 Maeres
S VIP VC Linker

| S1COMMAND) ${FLAGS) $IOUTPUT_FLAGIS{CUTPUT_PREFIS{OUTRUT) $INPUTS)

mmn«msl Apphy
o] me=r|

Figure 26. Building a sample project (2)

3. The sample project 'vx_tutorial3' is ready to build after the build settings are saved.
You can build the 'vx_tutorial3' project by using one of following two methods, with the target project

selected in the left pane:

¢ Choose from the main menu Project->Build Project.
* Right-click the target project and select Build Project.

UG10159

All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User guide

Rev. 10.3 — 26 June 2025

Document feedback
102 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

® CJC++ - wn_tutorial3/vx_tutorial2.c - VivanteIDE

File Edit Source Refactor Mavigate Search Run Proje

J fﬁ - | ! Jiiﬁ‘v as - Jf v‘(E? - J ¢

J = J LENE A A B B b

Tﬁ_‘, Project I3 = EW [€] wvx_tutorial3.c 23 €] vx_tutoris
= <}~==f> = int main(int argc, char

E-1== w_tutorial { crm— . .
H c S5 W variaplegs wf
- O A

Go Into

Open in New Window

= Copy Ctrl+C
Paste]+ g

¥ Delete Delete
lewve...

Rename... F2

g Import...
i Export...

Build Project

Clean Project
| Refresh
Close Project

L= =T

[

Close Unrelated Projects

Figure 27. Building a sample project (3)

4. The build results are displayed on the Console and Problems tabs of the lower right pane of the
application.

K\E, Tasks | Bl Console &3 == F"ru:rpertieﬂ = 0| T‘L Problems @3
C-Build [vx_tutorial3] I l%| m:N: |_'-'||| =% E v % w [|0items
LI Description -
*#%% Tnternal Builder is used for build A
goo —IC:\VeriSilicon\VivanteIDEl.0D.0\vemdtoolshine -00 -g3 -Wall
—-¢ —fmeszage-length=0 -ovz tutorial3.o . .\T.rx_t'.ltnrialﬂ.c
goe —LC:\VeriSilicon\VivanteIDEl.OD.0\vemdtoolsilib
-ovx_tutorial3.exe v tutorial3.o -lopenvi -lopenviu
Euild complete for project vz tutoriall
Time consumed: 358 m=s.
o |{ K

Figure 28. Building a sample project (4)
5. If No error occurs. build was successful, the executable file is displayed in the Project Explorer pane.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
103 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

i.MX Graphics User's Guide

Tﬁ_‘, Project Explorer &3 = B

=S

Figure 29. Building a sample project (5)

F-=5 v_tutorial
B

vi_tutorial3

é--q:f Binaries

ﬁs: wi_tutorial3.exe - [x86/1€]

|ﬂ] Includes
== Debug

| R e B |

ﬁ:}: wi_tutorial3.exe - [x86/1€]
wvi_tutorial3.o - [x86/1€]

2= include
2= liby

[vx_tutoriald.c
|*] lena_gray.bmp

|=| ve_tutorial3.profile

6. Use the Build Steps tab on the Properties > C/C++ Build > Settings dialog to customize the selected
build configuration allowing for the specification of user defined build command steps, as well to enable
displaying of descriptive messages in the build output, immediately before and after, normal build

processing.

14.4.8 Debugging and profiling a project

1. To open the Debug Configurations dialog box, select Run->Debug Configurations... from the main

menu.

2. Set the dialog options, and then click Debug to debug your project.

UG10159 All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User guide

Rev. 10.3 — 26 June 2025

Document feedback
104 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

i.MX Graphics User's Guide

- = X
Create, manage, and run configurations @n_
L ¥ - o u I~ Remate Debug
i t 5. Seares
=[] OpeaV Application
[E] v utoriall Debug Sewrch Froject.. | Brovae. ..
Gl 2 Debug
- frovsa.
T
Veriabler...
Torking divactiery:
Fee n
¥ Use dafuslt
Using GIB (ISF) Creats Process Loncher = Salact sther T
Filtar matchad 13 of 13 items
2 [e=

Name: [vx tutorial3 Debug I Remote Debug B [r_tutoriald Debug ™ Remote Debug
. Wain [P Emirorment | 5+ Debugger | Vdbebugger - - Source| L Main |75 Enviremment |37 Debugger % Véblebugger |1 Seurce
VdbDebugger Options [Stop on stertup at® fuin
Target: m Debugger Options
Instruction st I Wain | Shared Librerias |
Main |prem| DB debugger: [ear Browse. ..
GIB ecommund fila: [gdbinit Browze
Vb detuguen [+db Elenas Warning: Soas commends in thiz file suy interfurs vith the startsp parstion of the debugeer,
VDB Debug port pair: [£000 [6001 o e

I~ Mix Debug Mode

Neural Network Layer Dump | rore B

Figure 30. Debugging and profiling a project

14.5 VivantelDE - Debug and Profiling

14.5.1 Fundamentals of performance optimization

Whenever an application runs on a computer, it makes use of one or more of the available resources. These
compute resources include the CPU, the graphics processor, caches and memory, hard disks, and possibly
even the network. Viewed simplistically, it is always true that one of these resources is the limiting factor in how
quickly the application can finish its tasks. This limiting resource is the performance bottleneck. Remove this
bottleneck, and application performance should be improved. Note, however, that removing one limiting factor
always promotes something else to become the new performance bottleneck.

The goal of optimizing, or tuning application performance is to balance the use of resources so that none of
them holds back the application more than any of the others. In practice, there is no single, simple way to
tune an application. The whole system needs to be considered, including the size and speed of individual
components as well as interactions and dependencies among components.

vProfiler collects information on GPU usage and on calls to Vivante functions within the graphics pipeline. It
provides an excellent view into what is happening on the GCCORE graphics processor at any point in time,
down to the individual frame. When the application performance is GPU-bound, vProfiler and VPD Analyser are
the right tools to help determine why.

Note that the initial determination regarding which component of the computer system is the performance
bottleneck — CPU, GPU, memory, and so on, which is the domain of system performance analyzers and is
outside the scope of the GPU tools. A list of such performance analysis tools can be found at Wikipedia:

en.wikipedia.org/wiki/List_of performance_analysis_tools

© 2025 NXP B.V. All rights reserved.
Document feedback
105/159

UG10159 All information provided in this document is subject to legal disclaimers.

Rev. 10.3 — 26 June 2025

User guide

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

14.5.2 VPD Analyzer for Analyzing Performance Data

vProfiler is a run-time environment for collecting performance statistics of an application and the graphics
pipeline. The VPD Analyzer perspective view is provided to facilitate graphically displaying the data gathered
by vProfiler and aiding in visual analysis of graphics performance. Used together, these tools assist software
developers in optimizing application performance on Vivante enabled platforms.

14.5.3 vProfiler

When building Vivante Graphics Drivers, the driver is built with vProfiler capability. vProfiler gathers data from
these counters during runtime and can track data for a range of frames or a single frame from any graphics,
compute application. vProfiler outputs performance data to binary files with a . vpd extension. These files
can be using the VivanteIDE VPD Analyzer both in text lists and as line graphs. VPD Analyzer gives the user
several ways to inspect any frame in a captured animation sequence.

14.5.4 Enabling vProfiler on Linux OS

When building Vivante Graphics Drivers in a Linux OS environment, the driver is built with vProfiler capability.

* vProfiler functionality can be enabled by export VIV PROFILE=1.
* To enable OpenVX profile, use export VIV VX PROFILE=1.
* To enable OpenCL profile, use export VIV CL PROFILE=1.

Kernel module driver arguments are no longer needed.

14.5.4.1 Setting vProfiler property options for OpenGL ES

vProfiler property options are set using environment variables on Linux. The following table summarizes the
environment variables that vProfiler supports.

Table 37. vProfiler property options

Environment Variable Description
[0] Disable vProfiler (default), [1] Enable vProfiler, [2] Control via application call, [3]
VIV_PROFILE - o)
- Allows control over which frames to profile with vProfiler
VP_OUTPUT Specify the output file name of vProfiler (default is vprofiler.vpd)
VP_FRAME_NUM When VIV_PROFILE=1, specify the number of frames dumped by vProfiler.
VP_FRAME_START When VIV_PROFILE=3, specify the frame to start profiling with vProfiler.
VP_FRAME_END When VIV_PROFILE=3, specify the frame to end profiling with vProfiler.

Enable [1] or disable [0] the use of gIFinish()/gIFlush() APIs as the frame delimiter
in addition to eglSwapBuffers() (default 0). This variable enables application thread
which does not use eglSwapBuffers() to generate useful GPU profiling data for
analysis.

VP_USE_GLFINISH

Enable [1] or disable [0] (default). When enabled, vProfiler will collect a counter for
each draw call.

VP_DISABLE_PROBE Disables PROBE mode and makes vProfiler to use AHB counters for profiling.

VP_PERDRAW_MODE

VP_ENABLE_PRINT Enable vProfiler to print out the counter information to the console.

14.5.5 Setting vProfiler property options for Vision, OpenVX Profiling

vProfiler for OpenVX Profiling (for use with Vision/VIP/VX IP) is similar to vProfiler for OpenGL, except that
fewer environment variables and fewer supported values for those variables are available.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
106 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

Table 38. vProfiler property options

Environment Variable Description
VIV_VX_PROFILE [0] Disable vProfiler for OpenVX(default), [1] Enable vProfiler for OpenVX
VIV_CL_PROFILE [0] Disable vProfiler for OpenCL(default), [1] Enable vProfiler for OpenCL
VP_OUTPUT Specify the output file name of vProfiler (default is vprofiler.vpd)

14.5.6 Enabling vProfiler Option for Android OS

i.MX Android release GPU drivers are built with vProfiler capability. To enable the vProfiler feature, boot the
Android image, and then stop U-Boot by pressing a key on the serial terminal.

setenv append bootargs galcore.powerManagement=0 galcore.gpuProfiler=1
boota

Perform the following steps to capture the VPD file using vProfiler on Android OS.
Note: For Android versions earlier than 11.0.0 2.x.y, remove the "vendor." prefix from the property name.

1. Set application name to be profiled, for example, nenamark2 application.

setprop vendor.VP PROCESS NAME se.nena.nenamark?2

2. Set the profile output file path, for example, nenamark2 application.

setprop vendor.VP OUTPUT /data/data/se.nena.nenamark2/

For Android Automotive, a path to the current user storage has to be used (default user ID is 10): /data/
user/<user_ id>/se.nena.nenamark2/.

3. Start profiling.

setprop vendor.VIV PROFILE 1

4. Run application and check if the * . vpd file is generated in the path indicated by vendor.VvP_OUTPUT, for
example, nenamark2 application.

1ls -1 /data/data/se.nena.nenamark2/*.vpd

5. Stop profiling.

setprop vendor.VIV PROFILE 0

14.5.7 Setting vProfiler property options for OpenGL ES Profiling with Android

The following table summarizes the property options that vProfiler supports through running the command adb
shell setprop [OPTIONS]. These options are similar to the environment variables available for Linux.

Table 39. vProfiler property options

adb shell setprop OPTIONS Description
setprop vendor.VIV PROFILE 0 Run this command in adb shell to disable vProfiler in the drivers
setprop vendor.VIV PROFILE 1 Run this command in adb shell to enable vProfiler in the drivers

Run this command in adb shell to have vProfiler enable/disable controlled
setprop vendor.VIV_ PROFILE 2 in the application by glEnable (GL PROFILE VIV) and glDisable (GL
PROFILE VIV) calls.

Run these commands in adb shell to have vProfiler start-stop at frames
setprop vendor.VIV_PROFILE 3 specified in vendor.VP_FRAME START and vendor.VP FRAME END.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 10.3 — 26 June 2025 Document feedback
107 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

i.MX Graphics User's Guide

Table 39. vProfiler property options...continued

adb shell setprop OPTIONS Description

setprop vendor.VIV_ FRAME START

XXX

setprop vendor.VP FRAME END xxxX
Run this command in adb shell to specify the application you need to profile.
Change the app name as needed to profile another application.

setprop vendor.VP_PROCESS_NAME Note: There may be different sub-case names used by an app. Be sure

appname to accurately specify a case name to match the name that you saw on the
command line when using ps command. This option is only available for
Android, not available for Linux.
Run this command in adb shell to specify a new location for vProfiler output.
By default, the vpd file will created under /sdcard/. If an application has no
access to the SD card, you can specify another path where the application

setprop vendor.VP OUTPUT does have write permission.

newpath Note: For applications which initialize during Android system boot startup,
such as launcher, you need to kill the process after you change to a new path.
When the application automatically restarts, then your vpd will be accessible
where you want it.
Run this command in adb shell to limit the number of frames to analyze. For
example, to make vProfiler dump performance data for the first 100 frames:
setprop vendor.VP FRAME NUM 100.

setprop vendor.VP_FRAME NUM xxx |Note: Only use when vendor.VIV_ PROFILER s set to 1. When this option
is not used, the profile file generated when running an application for a
long time can be very large. This takes up a large amount of disk space
and also makes it hard to view the data in vAnalyzer.

setprop vendor.VP USE GLFINISH Run this command in adb shgll Fo epable 'o.r disable use of g1Finish () /

0 - - glFlush () as the frame delimiter in addition to eglSwapBuffers ()
(default 0). By default, eglSwapBuffers () is used as the frame delimiter.

setprop vendor.VP USE_GLFINISH I1his command will make application thread which does not use eg1Swap

1 Buffers () to generate useful GPU profiling data for analysis.

setprop vendor.VP PERDRAW MODE

0 Run this command in adb shell to enable or disable per draw mode. When

setprop vendor.VP PERDRAW MODE |enabled, vProfiler will collect a counter for each draw call.

1

setprop vendor.VP DISABLE PROBE |Run this command in adb shell to disable PROBE mode and make vProfiler

1 use AHB counters for profiling.

setprop vendor.VP ENABLE PRINT |Run this command in adb shell to enable vProfiler to print out the counter

1 information to the console.

14.5.8 vProfiler Set Property Options for Vision/OVX Profiling with Android

vProfiler for Vision Profiling (for use with Vision/VIP/VX IP) is similar to vProfiler for OpenGL, except that fewer
property options and fewer supported values are available.

Table 40. vProfiler Set Property Options

adb shell setprop

OPTIONS for VIP/VX/OVX

Description

0

setprop vendor.VIV VX PROFILE

Run this command in adb shell to disable vProfiler in the drivers

UG10159

All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User guide

Document feedback
108 /159

Rev. 10.3 — 26 June 2025

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

Table 40. vProfiler Set Property Options...continued

adb shell setprop
OPTIONS for VIP/VX/OVX

Description

setprop vendor.VIV VX PROFILE
1

Run this command in adb shell to enable vProfiler in the drivers

Run this command in adb shell to specify the application you need to profile.
Change the app name as needed to profile another application.

setprop vendor.VP_PROCESS _NAME |Note: There may be different sub-case names used by an app. Be sure
appname to accurately specify a case name to match the name that you saw on the
command line when using ps command. This option is only available for
Android, not available for Linux.

Run this command in adb shell to specify a new location for vProfiler output.

By default, the vpd file will be created under /sdcard/. If an application has
no access to the SD card, you can specify another path where the application
setprop vendor.VP OUTPUT does have write permission.

newpath Note: For applications that initialize during Android system boot startup, such
as launcher, you need to kill the process after you change to a new path. When
the application automatically restarts, then your vpd will be accessible where
you want it.

14.5.9 Enabling vProfiler Option for QNX

When building the Vivante Graphics Drivers for QNX environment, build the driver with the vProfiler capability.

The graphics.conf file contains the configuration information for Screen and is found under the following
directory:

SCREEN-DIR/usr/lib/graphics/TARGET-SPECIFIC
To activate the vProfiler functionality, add the gpu-gpuProfiler=1 option into the khronos section of the

corresponding graphics.conf file:

begin khronos
Bééin wfd device 1
éﬁﬁ—gpuProfiler=l
ééa wfd device

end khronos

14.5.9.1 Setting vProfiler Environment Variables for OGL/OES Profiling
The following table summarizes the environment variables that vProfiler supports.

Table 41. vProfiler Environment Variables

Environment Variable Description
[0] Disable vProfiler (default), [1] Enable vProfiler, [2] Control via application call, [3]
VIV_PROFILE -) .)
Allows control over which frames to profile with vProfiler
VP_OUTPUT Specify the output file name of vProfiler (default is vprofiler.vpd)
VP_FRAME_NUM When VIV_PROFILE=1, specify the number of frames dumped by vProfiler.
VP_FRAME_START When VIV_PROFILE=3, specify the frame to start profiling with vProfiler.
UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback

109 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

Table 41. vProfiler Environment Variables...continued

Environment Variable Description
VP_FRAME_END When VIV_PROFILE=3, specify the frame to end profiling with vProfiler.

Enable [1] or disable [0] the use of gIFinish()/gIFlush() APIs as the frame delimiter
in addition to eglSwapBuffers() (default 0). This variable enables application thread
which does not use eglSwapBuffers() to generate useful GPU profiling data for
analysis.

VP_USE_GLFINISH

Enable [1] or disable [0] (default). When enabled, vProfiler will collect a counter for

VP_PERDRAW_MODE
- - each draw call.

VP_DISABLE_PROBE Disables PROBE mode and makes vProfiler to use AHB counters for profiling.

VP_ENABLE_PRINT Enable vProfiler to print out the counter information to the console.

14.5.9.2 Setting vProfiler Environment Variables for Vision, OpenVX Profiling

vProfiler for OpenVX Profiling (for use with Vision/VIP/VX IP) is similar to vProfiler for OpenGL, except that
fewer environment variables and fewer supported values for those variables are available.

Table 42. vProfiler Environment Variables

Environment Variable Description
VIV_VX_PROFILE [0] Disable vProfiler for OpenVX(default), [1] Enable vProfiler for OpenVX
VIV_CL_PROFILE [0] Disable vProfiler for OpenCL(default), [1] Enable vProfiler for OpenCL
VP_OUTPUT Specify the output file name of vProfiler (default is vprofiler.vpd)

14.5.10 Environment Variable Details

14.5.10.1 VIV_PROFILE

The environment variable VIV_PROFILE can be used to control enable/disable and set profiling modes for
vProfiler.

* VIV_PROFILE=0
By default, vProfiler is disabled in the driver. If vProfiler has been enabled and you wish to disable it, set
VIV_PROFILE to 0:

export VIV _PROFILE=0

* VIV_PROFILE=1
To enable vProfiler, set VIV_PROFILE to 1:

export VIV PROFILE=1

To limit the number of frames to analyze, use the environment variable VP_FRAME_NUM. (This option is
available only when VIV_PROFILE=1.) For example, this setting will make vProfiler dump performance data
for the first 100 frames.

export VP_FRAME NUM=100

* VIV_PROFILE=2
Mode VIV_PROFILE=2 provides support for glEnable(GL_PROFILE_VIV) and gIDisable(GL_PROFILE_VIV),
which are used to choose which frames are to be profiled. In this mode, vProfiler is disabled by default.
It begins to do profiling only after a glEnable(GL_PROFILE_VIV) call from the application. And it will stop

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 10.3 — 26 June 2025 Document feedback
110/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

profiling when gIDisable (GL_PROFILE_VIV) is called. Note that the flag is only checked at every frame end,
i.e., in eglSwapBuffers(). To use this mode, set VIV_PROFILE to 2:

export VIV _PROFILE=2

* VIV_PROFILE=3
Setting VIV_PROFILE to 3 provides support for two environment variables VP_FRAME_START and
VP_FRAME_END, which are used to choose which frames are to be profiled. In this mode, vProfiler is
disabled by default. It begins to do profiling starting at the frame number specified by VP_FRAME_START,
and it ends the profiling after the frame number specified by VP_FRAME_END. For example to use this mode,
set VIV_PROFILE to 3:

export VIV PROFILE=3 export VP FRAME START=10 export VP FRAME END=90

Note:

To get precise profiling data, the IP's Power Management (PM) functions need to be disabled. When kernel
module galcore is inserted with gpuProfiler=1, the PM functions in the driver are not disabled. The PM
functions are disabled when VIV_PROFILE is set to 1, 2, or 3, and the application starts. The PM functions
are enabled when VIV_PROFILE is set to 0, and the application starts again.

14.5.10.2 VP_OUTPUT

The output file of vProfiler is vprofiler.vpd by default. To specify an alternate filename use the environment
variable vP_OUTPUT. For example,

export VP _OUTPUT=sample.vpd

14.5.10.3 VP_USE_GLFINISH

glFinish()/glFlush() will be treated as the frame delimiter in addition to eglSwapBuffers(). By default, vProfiler
only uses eglSwapBuffers() as the delimiter to check hardware counters. The command below will enable
vProfiler to use glFinish()/glFlush() as additional delimiters so an application thread which does not use
eglSwapBuffers() can generate useful profiling data for analysis.

export VP_USE GLFINISH=1

14.5.10.4 VP_DISABLE_PROBE

This variable only applies to IP with the PROBE feature support. It disables PROBE mode and makes vProfiler
use AHB counters for profiling. This variable has no affect on hardware that only supports the AHB counter. The
default value is off.

14.5.10.5 VP_ENABLE_PRINT

This variable provides a convenient way to check some critical profiling information without using the off-line
vAnalyzer to open a VPD file. Once it is enabled, vProfiler prints out the counter information to the console. For
the OpenVX and OpenCL drivers, the default value is on; for GLES and GL drivers, the default value is off.

14.6 VPD Analyzer

VPD Analyzer provides graphic displays of the data gathered by vProfiler and aids in the visual analysis of
graphics, compute and vision performance. vProfiler outputs performance data to binary files with a . vpd
extension. These files can be opened using the VivantelDE VPD Analyzer both in text lists and as line graphs.
VPD Analyzer gives the user several ways to inspect any frame in a captured animation sequence.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 10.3 — 26 June 2025 Document feedback
111 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

i.MX Graphics User's Guide

14.6.1 Loading a VPD File

To open the VPD Analyzer perspective based on a VPD file, click the icon #" from the toolbar or select Tools-
>VPD Analyzer->Load VPD File ...

* ¥PD Analyrer — ¥ivanteIDE

File Edit Navigate Search FProject Eun DSF Examples Tools

|~ = S s

@ Syztem 23 r[\jProjecJL?ad a VIT Filehhart (:: Function C
Hardware Info——— Function Name

{spu Core: [vivente oorr :ll;:i:;;:::?

Tools Windew Help

VED Analyzer

Convert Texture ...

] ~'Load a VED File
[IClose VED File
& Export Current Frame Data

I % o oo Export #11 Frames Data

i 4 =

State Change
The Load a VPD file dialog box appears. Select a VPD (.vpd) file, and click Open.

* Load a VPD file [%]

@(j)v | . v tmp - vpd hd m‘ I Search vpd [_0]
Organize v Mew folder §= E;l u@.
W Favorites £ MName - | Date modified | Type
B Desktop B sample.vpd 8/1/2018 6:58 PM VPD File

4 Downloads
| Recent Places

- Libraries
3 Documents
rJ‘- Music
| Pictures

B videos

1M Computer
&, svstem(c:)

= [T | i
2| fed =
gpen |

File name: Isample.vpd

Cancel |
4

Or, in the Project Explorer view, right-click on a VPD file and select Load VPD.

UG10159 All information provided in this document is subject to legal disclaimers.

Rev. 10.3 — 26 June 2025

© 2025 NXP B.V. All rights reserved.
Document feedback
1127159

User guide

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

L Froject Explorer &3 = d
=

E:%- opengl
|ﬂ-| Includes

@ glfll. frag Open
- = glvl. vertfg Open With

tutoriall e

= tntorialT_e=s20. wpd =|Copy Cirl+C

Faste Ctrl+1

3 Delete Deleta
Mowe. ..
Rename. . . Fz

fegImport. ..

ey Export. ..

|Refresh FS
Make Targets 4

Fun k=
Debug A=
Frofile A=

Team

Clean Selected Filae(s)
Build Selected File (=)

Compare With
Replace With

T ¥ ¥ v v v

Cam

Froperties

Alt+Enter

14.6.2 VPD Analyzer Perspective

i.MX Graphics User's Guide

Once the VPD file is loaded, the VivantelDE workbench switches to the VPD Analyzer perspective view, and
analyze data from the selected VPD file will be displayed on a series of tabs in chart or text format.

Available tabs (left to right) are:

Table 43. Available tabs

VPD Analyzer Tab

Description

System Info

Shows hardware and software version information and Average Frame Rate

Project Explorer

Shows project files

Chart

Shows customizable graph views of various counters

Function Call selected call.

Three panes shows a table of functions called, a graph of Top 5 calls and properties of the

Analysis Summary

Shows data for the current frame

Analysis Detail

Shows analysis detail for the current frame

Program Shows program counters and their value
UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback

113 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

® ¥PD Analyzer — VivanteIDE

File Edit Havigate Search Project Eun DSF Exanples lools RFimdow Help

i.MX Graphics User's Guide

=10l

Total Frame Number 500

[30.238 Frar
256 = 256

Aversge Frame Rate

= [&@ [|- |&as | e [|l VED dnalpzer %5 Debug D Shader Assi...
(@ Systen 52 f(‘:,rn.jm] = B[& Function canfmm.m 52 - K -0 -e 20| Al 2= Anaﬂ :brruﬂ =0
71233
Hardware Info T
GEU Core [Vivents GCTC
60000 -
Driver Utilzation. [20% ﬂl
T o000 GPII tilzation % detail
GEU Driver [OpentL E5 3. e
Shader Utilzation. etai
Triver Config [Formal 40000 l
l,{ l, JF " o e J' " ll Primitive Utilzation: |1, 123 datail
30000 -
Frofiler Infe v ' Vertex Rate 7,369 | detail
[Prafxler Versien 1.3 20000 - Pirel Rate (W | detail
b L m 11 A L) M |
100500 PP b b Mo bt b sy sare Rate =
’—uu. Summ sy ———————————————— oy | |

Screen Size

t t T T T t T
o S0 100 150 200 251 300 350

Elapse time [(mnicrosec)

Trriver time (nicrosec)

t t 1
400 450 499

80000 -
T0000 -
60000 —
50000 -
40000 —
30000 -
20000 -
[T p) |
i \Jrﬁ bbb “Lﬂ‘r"*" [LuT L r et YT W T A——— ,‘w‘, TP WS —
5285 . .
T t f T f t f t t 1
50 100 150 200 251 300 350 400 450 488
| Triangle count Triver time (mieresee)
o 5 o0 5 0 e =0 = o e
[| l l A | | | T | .
-~

AXT Bandifidth,

[r,500 | detail

G Critical (‘\‘j Slow Fra 53 =0

Frame [Elapse time (microsec)
[l 71,233

244 43,225

412 37,615

7 37,137

65 37,058

41 36, 729

3 36, 127

189 35, TBL

145 35,8368

13 35,6831

4] I+

[

14.6.3 System Info View

The left most System Info tab shows the system information related to the VPD data under analysis, such as
hardware, driver and vProfiler versions. The Average Frame Rate is also reported on this tab.

-
(i) System Info 52

I._|'>_‘| Froject Expl-:-rerw

EE-\

rHardware Infa

GFU Core:

IGCEEIEIEI core revizion="5. 1. 0_reod”

lriver Info

Sereen Size:

GFU Driwer: |OpenGL ES 2.0
Driver Config: IH-:-rmal
rProfiler Infa

Frofiler Version: |1.3
rData Summary

Total Frame Humber: [1108

Average Frame BRate:

|108. 790 Frames/Sec

|10z = TBS

UG10159

All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User guide

Rev. 10.3 — 26 June 2025

Document feedback
114 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

14.6.4 Program Counters View

The rightmost tab in the rightmost pane is the Program tab which shows program counter information, such as
Instruction counts and attribute counts.

E Analysis Summa (é hnalysis Detai (t" FProgram @3 = E\
Counter Hama I valua I -
[=- Frame Humber TOO
E| Frogram
N T ;- bction count 51
AL instruction count 51
- Texture instruction count a
3 —
2
u}
Instruction count 1
ALU Instruction count 1
Texture instruction count i]
iohttributes 1
o Ui forms i]
.. Funetions u}

I?I Program
Instruction count

KN Kl

14.6.5 Closing the VPD File

Click the icon I from the toolbar or select Tools->VPD Analyzer->Close VPD File to close the current VPD
file. The analysis data associated with the closed file will be cleared from all views.

= ¥YPI Analyzer — VivanteIDE

File Edit Hawigate Search PFProject Bun DSF Examples Tools Winc

|53~ @ afe] Q-]
G}System &3 %Projectw

Close VFD Filef | &= Function Call &

Function Hame
glTexFarameteri
glAttachShader

"Hardware Infa

GPU Core: I‘.l'iva.nte GLCTC

14.7 SPIR-V Disassembler

A SPIR-V Disassembler tool is provided as an aid in debugging Vulkan applications. If a SPIR_V file is already
located in a project, simply double click on it to disassemble. Otherwise use the main menu File -> Open File...
to locate the SPIR-V. Options can be set via the Window->Preferences dialog box.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 10.3 — 26 June 2025 Document feedback
115/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

i
[spir SPIR-V S i
| Graphics Tocls General szebtings for SPIR-V
SFIE-V dizazsenbly optioms
T -—re—indent
™ =~no~headsr
T ——rev-id
¥ ——offzets
Figure 31. SPIR-V Disassembler

14.7.1 Shader Assistant

Shader Assistant perspective is provided for Shader program development for OpenGL, OpenCL and Vulkan
projects. Shader Assistant provides an environment for editing, previewing, analyzing, and optimizing shader
programs. Shader Assistant includes samples of shader programs, a number of standard meshes (sphere,
cube, tea pot, pyramid, etc.) and a text editor. These extra features will help programmers get a quick start on
creating their shader programs.

There are two ways to switch to the Shader Assistant perspective view. From the main menu, choose Window -
> Open Perspective -> Shader Assistant, or in the C/C++ Project Explorer pane, right click and select Develop
Shader. Using the table in the left pane Preview Settings tab, select items in the Setting column and configure
project as well as header, shaders, attributes, etc.

[Projuct Explorer | % Breview Sattings £3 z =8
Setting | Hame |
project sinple
H header
fizadStates {Dapth={enabla=trus, write mask=true, clear_waln ..
mesh Flare
-] zhaders=
Vertex simple wert
Fr agment simple fraz
El sttribates
aFosition {Wame=aFogzition, Type=floatd, Stresn=FOSITION}
aluCoord {Mame=aTlaxCoord, Type=float?, Sireen=TEXCOORD}

+] textures

Figure 32. Shader Assistant

14.7.2 vTexture

Texture manipulation and viewing is available in four different areas of VivantelDE:

» Texture Editor dialog boxes accessible from the Shader Assistant Preview Settings tab provides for texture
customization, g.v. preceding Section 13.7.1 for launching Shader Assistant.

» vTexture Browser and Viewer panes are available from the main menu Window -> Open Perspective ->
VTexture. It provides thumbnail and detail view of textures as well as the basic properties of the textures,
such as image size and color depth.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
116 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

Figure 33. vTexture (1)

» Convert Texture provides a GUI for texture compression/decompression and tiling/de-tiling. It is accessible
by clicking on the main menu Tools->Convert Texture. Note that vTextureTools is the command line tool
version of this tool. Refer to Section 13.8.4 for details.

* C/C++ - vx1/vx_examplel.c - VivanteIDE

File Edit Source Refactor Navigate Search Run Project DSFExamples | Tools Window Help

| i & | Lo |1 @656 G - gDy)
| @& % |GGl o

Figure 34. vTexture (2)

x

Image Format Transform

Command : ¢ COMPRESS {~ DECOMPRESS ¢ TILE % DE-TILE

- Opticns
[” Enable supertile format
[T Tile/De-tile in multi-format

[~ LayouT Ili] Legacy supertile mode (default) j

I~ RAW type |BGRA333S (default) []

Qutput directary: | E:\waorkspace Browse... |

vtexturetools.exe -dt -t -src SRC -dest DEST

(?) ok | canca |

Figure 35. vTexture (3)

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
117 /1159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

14.8 VivantelDE command line tools

For easy reference, the syntax for the VivanteIDE command line tools are provided on the following pages. You
can also refer to the VivantelDE User Guide or inline -h (help) for syntax for these command line tools.

14.8.1 Preparing the environment

Before running command line tools, prepare the environment as in the examples below.
For Linux OS

* Launch a BASH
* $ source installation dir/ide/setenv-vivanteide<version> # initialize the environment

For Windows OS

e Launch a Command Shell
* > installation dir/ide/setenv-vivanteide<version>.bat # initialize the environment

14.8.2 vCompiler Command Line Syntax for OGL and OGLES

Open a Command prompt. Navigate to the folder, which contains the vTextureTools files (for example,
installation dir/cmdtools/vCompiler, and launch the vCompiler application executable using the
command line syntax described below.

Make sure the configuration file is customized for your target environment.

14.8.2.1 Syntax

Windows and Linux command line syntax is the same.

Optional inputs are indicated by brackets. A fixed order for options in the command is not required.

vCompiler [-f <gpuConfigurationFile>] <shaderInputFileName>
[shaderInputFileName 2]
[—c 1 [-h] [-1] [-o <outputFileName>] [-On] [-v] [-x <shaderType>]

14.8.2.2 Input parameters (required)

shaderlnoutFileName shader input file name, which must contain one of the following file

extensions:

* vert: vertex shader source file

« frag: fragment shader source file

* vgcSL: previously compiled vertex shader input/output file
* pgcSL: previously compiled pixel shader input/output file

14.8.2.3 Input parameters (optional)

shaderinputFileName_2 Up to two shader files can be specified. The second shader file is optional
but must have one of the file extensions described above for shader
InputFileName. If the first shader is a vertex shader, this second shader
should be a fragment shader; conversely if the first shader is a fragment
shader, the second should be a vertex shader.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
118 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

i.MX Graphics User's Guide

Note: Pre-compiled and compiled shaders may be mixed, as long as one is
a vertex shader and the other a fragment shader.

Compile each vertex .vert file into a vgeSL file and/or fragment shader .frag
file into a pgeSL only, with no merged result file of type .gcPGM.

If the —c option is not specified:

* When only one shader is specified, that shader will be compiled into a .
[v/plgcsLfile.

* When two shaders are specified, one is assumed to be a vertex shader
and the other a fragment shader. Each shader can be either a previously
compiled .vgcSL or .pgcSL. file or a .vert or .frag still to be compiled. The
two will be merged into a .gcPGM file after successful compilation.

-f <gpuConfigurationFile>

Specifies a configuration file (from VTK 1.6.2). If —f is not specified, the
file viv_gpu.config in the vCompiler working directory will be used as the
default configuration file. Example syntax:

vCompiler —-f viv gpu 880.config foo.vert bar.frag

Note: vCompiler will not work correctly if the GPU configuration file cannot
be found or contains incorrect content.

Shows a help message on all the command options.

Create a log file. The log file name is created by taking the first input file
name, then replacing its file extension with “.log”. If the input file name does
not have a file extension, .log is appended, e.g.,

myvert.vert => myvert.log
inputfrag => inputfrag.log

-0 <outputFileName>

Specify the output file name. If the path is other than the current directory, it
must also be specified. Any extension can be specified. If the extension is
not specified, the outputFileName supported default types are as follows:

* vgcSL: compiled vertex shader output file, usually compiled from a .vert
input source file (default result for single file compile)

* pgcSL: compiled pixel shader output file, usually compiled from a .frag
source input file.

* gcPGM: compiled file merging vertex shader and fragment/pixel shader
into a single output file

-O<n> Optimization level. Default is —02:
* -00: Disable optimizations
* -O1: Some optimizations are enabled.
» -02 All optimization levels are on (default).
-v Verbose; prints compiler version and diagnostic messages to STDOUT.
UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback

119/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

-x<shaderType> Explicitly specifies the type of shader instead of relying on the file extension.
This option applies to all following input files until the next -x option.

ShaderType: supported values for Shader type include:

* vert: vertex shader source file

* frag: fragment shader source file

* vgcSL: compiled vertex shader input/output file
* pgcSL: compiled pixel shader input/output file

-X hone Revert back to recognizing shader type according to the file name extension.

14.8.2.4 vCompilerOutput

Output files are placed in the current directory, unless another directory is specified with the -o option. The files
can be of the three types described above under outputFileName value of the -o option.

14.8.2.5 vCompiler Syntax examples

vCompiler foo.vert produces foo. vgcSL.

vCompiler bar.frag produces bar.pgcSL.

vCompiler foo.vert bar.frag produces foo.gcPGM.

vCompiler -v -1 -01 foo.ver tbar.frag produces foo.gcPGM and foo.log.

vCompiler -v -1 -0l -o foo bar foo.vert bar.frag produces foo bar.gcPGMand
foo bar.log.

14.8.3 vcCompiler Command Line Syntax for OCL

Open a Command prompt. Navigate to the folder which contains the vTextureTools files (for example,
installation dir/cmdtools/vCompiler, and launch the vCompiler application executable using the
command line syntax described below.

Make sure the configuration file is customized for your target environment.

14.8.3.1 Syntax

Windows and Linux command line syntax is the same.

Optional inputs are indicated by brackets. A fixed order for options in the command is not required.

vcCompiler [-f <gpuConfigurationFile>] [-v] [-1] [-00] [-D <MacroDefinition>] [-
I <IncludeDirectory>]

[-K <KernelName>] [-M] [-B] <OpenCLOrOpenVXFileName>

<OpenCLOrOpenVXFileName 2> . . . [-allkernel]

14.8.3.2 Input parameters (required)

OpenCLOrOpenVXFileName Input file name, which must contain one of the following file

extensions:
* cl: OpenCL source file
UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 10.3 — 26 June 2025 Document feedback
120/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

« vx: OpenVX Vision source file
If an input file extension is not specified, vcCompiler will report a
“wrong file extension” error.

14.8.3.3 Input parameters (optional)

OpenCLOrOpenVXFileName_2, n Multiple input files can be specified. The second and additional
files are optional but must have the appropriate file extension as
described above. All files must be of the same type (.cl or .vx).

-allkernel Allows VX applications to create all kernels in one program and
save them into one package.

-B Support source level intrinsic built-in functions.
-D <MacroDefinition> Predefined inline macro, as referenced in the input file.
-f <gpuConfigurationFile> Specifies a configuration file. If —f is not specified, the file

viv_gpu.config in the vcCompiler working directory will be used as
the default configuration file. Syntax example:

vcCompiler —-f viv _gpu gc7000.config foo.cl

Note: vcCompiler will not work correctly if the GPU configuration
file cannot be found or contains incorrect content.

-h Shows a help message on all the command options.
-l <IncludeDirectory> Specify the directory path for include files.
-K <KernelName> Link with kernel name. Default is main.

-l Create a log file. The log file name is created by taking the input
file name, then replacing its file extension with “.log”. If there are
multiple input files, the filename of the first input file will be used,

inputcl.cl => inputcl.log
myvxl.vx myvx2.vx => myvxl.log

-M Merge all compiled output from each file into one file. The
combined output will have the name of the last input file combined
with the output extension .gcPGM.

Optimization level. Default is —02:

-0O<n>

* -00: Disable optimizations

* -O1: Some optimizations are enabled.

» -02 All optimization levels are on (default).
UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback

121/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

v Verbose; prints compiler version and diagnostic messages to
STDOUT

14.8.3.4 vcCompiler Output

Output files are placed in the current directory. When compiled successfully, the supported output file extensions
for veCompiler are:

* .clgcsL: compiled CL output file, compiled from a . c1 input source file.
* .vxgcSL: compiled VX output file, compiled from a . vx input source file.

14.8.3.5 vcCompiler Syntax Examples

vcCompiler [-f <gpuConfigurationFile>] [-v] [-1] [-00] [-D <MacroDefinition>] [-

I <IncludeDirectory>]

[-K <KernelName>] [-M] [-B] <OpenCLOrOpenVXFileName> <OpenCLOrOpenVXFileName 2>
[-allkernel]

vcCompiler -v -01 foo.cl:produces foo.clgcSL.

vcCompiler -v -1 foo.vx:produces foo.vxgcSL and foo.log.

14.8.4 vTextureTools command line tool

Open a Command prompt. Navigate to the folder which contains the vTextureTools files, for example,
installation dir/cmdtools/vTextureTools, and launch the vTextureTools application executable
using the command line syntax described below.

14.8.4.1 Syntax

The usage of the command line tool is as follows for compression/decompression:

vTextureTools -c TYPE [-s SPEED] -src FILE [-dest FILE]

or

vTextureTools -d TYPE -src FILE [-dest FILE]

The usage of the command line tool is as follows for tiling/de-tiling:

vTextureTools -t|-st [-2] [-r|--raw=FORMAT] [-m LAYOUT] -src FILE [-dest FILE]

or

vTextureTools -dt -t|-st [-2] [-r|-—-raw=FORMAT] [-m LAYOUT] -src FILE [-dest
FILE]

14.8.4.2 General parameters

General parameters:

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
122/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

* -h show help
* —src [FILE] source file - input image path and filename. vTexture will use the file extension type as image
type.
— For option —c compress, the application expects an input filename with a .TGA extension.
— For —d decompression, the application expects .DDS, .KTX or .PKM.
— For -t tile, the application expects .BMP or .TGA.
— For —dt detile, the application expects .BMP or .TGA.
* —dest [FILE] destination file - image path and filename.
— The application expects a filename with a .TGA, .DDS, .KTX or .PKM extension for compress/uncompress
or .BMP or .RAW for tile/detile.

— If the —dest parameter is not set, vTexture will auto generate a name for the newly generated file, using the
source file name as the prefix appending critical parameters and file type information.

14.8.4.3 Compression/Decompression parameters

These parameters are used for compression and decompression:

* -¢c compress a source image of format uncompressed TGA

* [TYPE] specify the target output compression format:

* -DXT1 compress image to DXT1 format (default format).

» -DXT3 compress image to DXT3 format.

* -DXT5 compress image to DXT5 format.

* -ETC1 compress image to ETC1 format

* -ETC2 compress image to ETC2 format

» -d decompress a source image of format specified by the value [TYPE].

The resulting file type will be uncompressed TGA.
This option decompresses DXT1, DXT3, DXT5, ECT1 or ETC2 format image to TGA format.

» -s compression [SPEED] mode for ETCn images:
- slow
— medium
— fast (default)

14.8.4.4 Tile/De-Tile parameters
The parameters listed in the following table are used for tiling and de-tiling between linear and tiled formats.

Table 44. Tile/De-Tile parameters

-t Convert linear data to tiled texture output.
-st Enable supertile format. This option is an alternate to -t. If -st and -t are used together, -st will be
set.
-dt De-tile: Convert tiled texture to linear texture output.
-2 Tile/de-tile in multi-format. Tile format is multi-tiled (when used with -t) or multi-supertiled (with -st).
-m [LAYOUT] : layout mode for supertiled or multi-supertiled textures:
* 0: Legacy supertile mode (default).
e 1: Supertile mode when hardware has HZ.
e 2: Supertile mode when hardware has NEW_HZ or FAST_MSAA.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
123 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

Table 44. Tile/De-Tile parameters...continued

i.MX Graphics User's Guide

-r

Specify output data as raw pixel output instead of BMP. Use --raw=rgb565 to specify raw pixel
[FORMAT] . Supported raw formats (8) are:

rgba8888,

bgra8888,

rgb888,

bgr888,

rgb565, bgr565,

argbl555,

yuy2

14.8.4.5 vTexture Syntax Examples

COMPRESS:

vTextureTools -c dxtl -src d:\myfile.png -dest c:\compress.dds
vTextureTools -c dxtl -src d:\myfile.tga -dest c:\compress.dds
vTextureTools -c etcl -s slow -src d:\myfile.png -dest c:\compress.pkm
vTextureTools -c etcl -s slow -src d:\myfile.tga -dest c:\compress.pkm
vTextureTools -c etc2 -s slow -src d:\myfile.bmp -dest c:\compress.ktx
vTextureTools -c etc2 -s slow -src d:\myfile.tga —-dest c:\compress.ktx
vTextureTools -c etc2 -src d:\myfile.bmp -dest c:\compress.ktx
vTextureTools -c etc2 -src d:\myfile.tga -dest c:\compress.ktx
vTextureTools -c etc2 -src d:\myfile.tga -dest c:\compress.pkm
DECOMPRESS:

vTextureTools -d etcl —-src c:/vtexin/myfile2.pkm —-dest c:/vtextout/myfile2.tga
vTextureTools -d —-src c:/vtexin/myfile3.dds -dest c:/vtextout/myfile3.tga

(assumes DXT1)

vTextureTools -d tga -src d:\myfile.dds -dest c:\decompress.tga
vTextureTools -d tga -src d:\myfile.ktx —-dest c:\decompress.tga

TILE: LINEAR TO TILE CONVERSION:

« Tile linear texture to standard tile texturev

TextureTools.exe -t -src 123.bmp

Tile linear texture to multi-tiled texture

vTextureTools.exe -t -2 -src 123.bmp

« Tile linear texture to supertiled texture

vTextureTools.exe —-st -src 123.bmp

* Tile linear texture to multi-supertiled texture

vTextureTools.exe -2 —-st -src 123.bmp

Tile linear texture to multi-supertiled texture and output rgh565

vTextureTools.exe -2 --raw=rgb565 -src 123.bmp

* Tile linear texture to multi-supertiled texture with layout mode 2

vTextureTools.exe -st -2 -m 2 -src 123.bmp

DE-TILE: TILED TO LINEAR CONVERSION:

¢ De-tile tiled texture to linear texture

vTextureTools.exe —-dt -t -src 123-tiled.bmp

UG10159

All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User guide

Rev. 10.3 — 26 June 2025

Document feedback
124 / 159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

* De-tile supertiled texture to linear texture

vTextureTools.exe —-dt -st -src 123-supertiled.bmp

* De-tile multi-supertiled texture to linear texture

vTextureTools.exe —-dt -t -2 -src 123-tiled-multi-tiled.bmp

* De-tile multi-Super-tiled texture with layout mode 2 to linear texture

vTextureTools.exe —-dt -st -2 -m 2 -src 123-multi-supertiled-2.bmp

15 GPU Tools

Note: All SoCs support this tool if not specified.

15.1 gputop tool

gputop monitors the GPU clients memory, hardware counters, occupancy state load on DMA engines, video
memory, and and DDR memory bandwidth (only under Linux OS).

* The gputop tool is developed to trace the overall memory utilization in classification of memory pools.
* The available memory size is reported for the reserved pool.
e GPU idle time is reported from the last capture.

15.1.1 Synopsis

* gputop [options]

* gputop -m [mode]: Where the mode can be: mem, counter 1, counter 2, occupancy, dma
vidmem, and ddr (under Linux/Android). Use this option to start gputop directly in a mode as required. For
counter 1 and counter 2, acontextis needed. See Section 15.1.5 for why this is necessary.

* gputop -c ctx no: Specifes a context to attach when display context-aware hardware counters.

* gputop -b: Displays in batch mode. For other modes than memory, this only takes an instantaneous
sample. See -f.

* gputop -f: Use it when using gputop from a script.

* gputop -x: Useful to display contexts when used with -b.

* gputop -1i:Ignores warnings about kernel mismatch.

* gputop -h: Displays usage and help.

Note:
Unsupported command options for iMX 95: gputop -m [mode], gputop -c ctx no, and gputop -b.

15.1.2 Interactive mode

Normally, when starting up, gputop starts in interactive mode. The following are a list of useful commands:

* h: Displays the help page.

* 0-6/Left-Right arrows: Switches between viewing pages.

* x: Displays application contexts.

* SPACE: Selects a context that you want to track. Useful for reading counter 1 and counter 2 values.

» r: Useful for hardware-counter pages to display different viewing modes (switches between different modes of
aggregation: MIN/MAX/AVERAGE/TIME).
* g/ESC: Eexits gputop.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
125/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

* p: Stops reading counter values and displays only the current values. Useful to get a instantaneous values of
the counters.

Note: Unsupported command option for i.MX 95: r, p.

15.1.3 Description

gputop can be used to determine the memory usage your application is using, or to read the hardware
counters exposed by the GPU in real-time. Additionally, DMA engines and Occupancy states are displayed.
gputop has multiple viewing pages: a memory usage page, two hardware counter pages, a DMA engine page,
and an Occupancy page. When normally started, gputop is in interactive mode. Type h to get a list of the
current keybindings.

15.1.4 Requirements

15.1.4.1 Linux OS

gputop requires access to debugfs sub-system on Linux OS to display the memory usage, used by clients
submitting commands to the GPU. gputop tries to mount the debugfs pseudo-filesystem if it is not already
mounted. To read hardware counters, the profiler must be activated in the driver. Usually this can be set by
setting the environment variable export VIV PROFILE=1.

15.1.4.2 QNX

Just like in Linux OS, to read the hardware counter values, gpu-gpuProfiler should be set to 1 in the
graphics.conf file under the SGRAPHICS ROOT directory. Other views like occupancy and DMA require
gpu-powerManagement to be set to 0 (disabled).

15.1.5 Notes

15.1.5.1 Sampling hardware-counters

GPUTop samples the driver for hardware counter values. Internally the driver updates the values of the counters
whenever the application submits a special type of command to the GPU. Depending on how fast that happens,
GPUTop cannot foresee/adjust the values of the counters. Therefore, tweaking the amount of sample taken or
the delay time does not really help. For dealing with situations where the application submits either too fast or
too low commands to the GPU, several modes of viewing counters have been added. Cycle between them to
understand or get a bird-eye view of the counter values. Empirically MAX/AVERAGE displays the closest values
to the truth.

15.1.5.2 Context-aware counters

counter 1 and counter 2 are context-aware counters (for example, tied to an application). This is not
supported on the i.MX 95.

Internally, the driver assigns various context IDs to the application submitting commands to the GPU. These
contexts IDs are currently required to read those hardware counter values. Either use -x on the command line
(together with -b option and choosing -m mem viewing mode), or for interactive mode, use x and then SPACE to
show and select a context ID.

If you are getting zero'ed out values for counter 1 and/or counter 2 values, cycle through the available
counter IDs.

Due to the way the driver is built, single-GPU core applications have two context-ids. Empirically the largest
integer values holds the real context ID.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
126 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

15.1.5.3 Unsupported GPUs

For GCV600 (i.MX 7ULP, i.MX 8M Mini, and i.MX 95), the IDLE/LOAD register is not available, so gputop
displays incorrect (inversed) values.

15.1.6 Pages for VSI GPUs

15.1.6.1 Client attached page

When viewing the client attached page, the following head columns are displayed:

PID RES (KB) CONT (KB) VIRT (KB) Non-PGD (KB) Total (KB) CMD

* PID: process ID

* RES: reserved memory

* CONT: contiguous memory

* VIRT: virtual memory

* Non-PGD: Non-paged memory

* Total: sum of all above

* CMD: name of the application (trimmed)

These memory items correspond to memory pools in the driver.

15.1.6.2 Vidmem page

When viewing vidmem page, the following head columns are displayed for each process.

PID IN VE TE RT DE BM TS IM MA SC HZ IC TD FE TFB

e IN:index

* VE: vertex

* TE: texture

* RT: render target
* DE: depth

* BM: bitmap

* TS: tile status

e IM: image

e MA: mask

* SC: scissor

e HZ: hz

e IC:i_cache

e TD: tXx_desc

* FE: fence

» TFB: tfb header

15.1.7 Pages for Mali GPU
GPUTop for i.MX 95 tool has total 6 pages.

0-6/Left-Right arrows: Switches between viewing pages.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
127 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

15.1.7.1 Page0: Main Page

This page is a summary of GPUTop information, including GPU DDR memory read/write bandwidth in mega
bytes based on Linux perf, GPU kernel and user space memory usage summary, and GPU utilization.

15.1.7.2 Page1: GPU INFO

This page lists the GPU kernel, GPU drive architecture information, and performance statistics.

15.1.7.3 Page2: Kernel Memory Usage

This page is memory consumption from kernel mode perspective. This page lists total kernel allocated memory
and memories allocated based on each kernel context.

Note: From the kernel displayed in this page, there is always 7 page memory (28 KB) difference between
the sum of the kernel memory for all kernel contexts and the total GPU Mali memory. This fixed 7 page is for
internal kbase shared device usage.

15.1.7.4 Page3: PID-Based Process Memory Usage

To get the PID based process memory usage, set the environment variable MALI REPORT MEM USAGE=1.

Starting from GPU Mali DDK release r52, the memory profile has been changed from the class memory type to
simple memory profile. The content of this page has been changed as follows since Mali DDK release r52:

This page lists the user space GPU memory allocation and freeing by using MALI CMEM allocators. It also
provides a breakdown of the user space memory usage.

When viewing the client main page, the following head columns are displayed:

PID Total (kB) Explicit (kB) Committed (kB) UnCommitted (kB) Implicit (kB)
Imported (kB) CMD

e PID: Process ID

* Total: Total allocated memory in user space

* Explicit: Total virtual address space that has been allocated explicitly

* Committed: Amount of memory that is physically backed for explicitly allocated memory

* Uncommitted: Amount of memory that has been allocated explicitly but not yet committed
* Tmplicit: Memory thatis committed on the GPU page fault

* Imported: Memory allocated in other processes and imported in this process

» cMD: Name of the application

This is the example for this page:

PID 562 /usr/bin/weston
user space Mem: 60 kB total
user space Explicit VA Mem: 60 kB total
user space Implicit commited Mem: 0 kB total
user space Imported Mem: 0 kB total
Explicitly Committed GPU Memory:

— Allocated VA: 61440

- Committed: 61440

- Wasted for headers: 1184

- Wasted for footers: 2716

- Unused: 17160

- Used: 40380

- Usage Breakdown:

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
128 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

- Base Internal: 4096
- Program: 27096
- Device Internal: 9188
Implicitly Committed GPU Memory:
- Usage Breakdown:
Imported GPU Memory:
- Usage Breakdown:

Before Mali GPU release r52, this page is memory usage statistics from user-mode driver perspective. It lists
the detailed memory consumed including memory mapped to kernel space and memory of each class type for
every application.

When viewing the client attached page, the following head columns are displayed:

PID Class MEM(KB) Allocated GPU MEM (KB) CMD

* PID: Process ID

* Class_ MEM: All types of class memory allocated for this process

* Allocated GPU MEM: All kernel memory allocated for this process
» cMD: Name of the application

15.1.7.5 Page4: GPU Core Utilization

This page lists the GPU last render frequency, total GPU utilization, protect mode utilization, GPU fragment
shader utilization, GPU no-fragment shader utilization, and GPU tiler utilization.

15.1.7.6 Page5: Perf DDR Memory Bandwidth
This page lists the GPU DDR read/write memory bandwidth in mega bytes.

15.1.8 Examples

When using -b option, gputop starts in interactive mode and executes its main loop only once. This is useful
for various reasons, either to get an instantaneous view of a different viewing page or scripting.

* Get a list of processes attached to the GPU.

$ gputop -m mem -b

Get a list of processes attached to the GPU, but also display the contexts IDs.

S gputop -m mem -bx

* Display counters (counter_1) using context id.

$ gputop -m counter 1 -b -c <context id>

* Display counters (counter_2) using context id.

$ gputop -m counter 2 -b -c <context id>

Get IDLE/USAGE

S gputop -m occupancy -b | grep IDLE

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
129/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

15.1.9 See Also

* Under QNX, see graphics.conf for disabling powerManagement and enabling gpuProfiler.
e Under Linux, see /sys/module/galcore/parameters/powerManagement

15.2 GPU clock information and debugging

GPU driver supports dynamic frequency scaling. Users can perform the following steps to query and update the
GPU clock information, which is useful for GPU debugging.

1. Get the GPU clock. This is affected by the system RTC timer. Sometimes it varies between different boards.

root@imx8mpevk:/# mount -t debugfs none /sys/kernel/debug (optional, exec it
only if there is no gc dir)

root@imx8mpevk:/# cat /sys/kernel/debug/gc/clk

gpu0 mc clock: 1000018036 HZ.

gpu0 sh clock: 1000021374 HZ.

gpul mc clock: 1000002214 HZ.

gpul sh clock: 999986723 HZ.

gpu8 mc clock: 499991523 HZ.

2. Change the GPU clock.
Read the gpu3DClockScale as the denominator using the following command:

root@imx8mpevk:/# cat /sys/bus/platform/drivers/galcore/gpu3DClockScale
64

The GPU frequency can be changed to numerator/gpu3DClockScale * clock for different GPU
instances. For example, the gpu0's mc and sh clock can be change to 1/2 and 1/4 of the original frequency.

root@imx8mpevk:/# echo 0 32 16 > /sys/kernel/debug/gc/clk

[2625.977856] Change core:0 MC scale:32 SH scale:16

[2625.982610] Warning: Power management status will be changed forever!
root@imx8mpevk:/# cat /sys/kernel/debug/gc/clk

gpu0 mc clock: 499997481 HZ.

gpu0 sh clock: 249997541 HZ.

gpul mc clock: 999995540 HZ.

gpul sh clock: 999992141 HZ.

gpu8 mc clock: 499998453 HZ.

15.3 Apitrace user guide

15.3.1 Introduction

Apitrace is a set of tools enhanced from open source project apitrace, supported by i.MX 6, i.MX 7, and i.MX 8
with Vivante GPU IP. This tool can dump OpenGL/GLES1.1/GLES2.0/GLES3.0 API calls and replay on a wide
range of other devices.

For more information, see apitrace.github.io/.

15.3.2 Install

15.3.2.1 Yocto

Apitrace source code release is part of the i.MX Yocto Project Linux BSP release. The source code have more
patches added on top of official Apitrace release. The Yocto Project recipes pull the Apitrace source package
and install as needed for supported backend.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
130/159

https://apitrace.github.io/
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

15.3.2.2 PC

Apitrace have set of PC tools. Prebuilt binary packages can be directly downloaded from the Apitrace website.
Currently supports Ubuntu 14.04 LTS, 64-bit.

sudo apt-get install libglesl-mesa libgles2-mesa libgt4d-dev

15.3.3 Usage

15.3.3.1 Trace OpenGL ES1.1/2.0/3.0 application

apitrace trace --api=egl <app name and arguments>

€.g., apitrace trace --api=egl es2gears xl1

It generates trace file (. t race) under the current directory. To specify a new path, use --
output=<path name>

15.3.3.2 Trace OpenGL ES 1.1/2.0/3.0 Java application on the Android platform

On the Android platform, a GLES application can be native (e.g., frameworks/native/opengl/angeles). This type
of application can be traced as normal Linux application. Some other applications involving the Java virtual
machine cannot run in this way. A script apitrace dalvik.sh is provided to run this type of application. This
is an example to trace com.android.settings:

sh /data/apitrace/bin/apitrace dalvik.sh com.android.settings start

To stop tracing, run:

sh /data/apitrace/bin/apitrace dalvik.sh com.android.settings stop

Because there is no “current” directory for a Java application, the trace file is stored under /sdcard/.

If Apitrace is installed in a different directory, update apitrace dalvik.sh manually.

15.3.3.3 Trace OpenGL application

apitrace trace --api=glx <app name and arguments>

Only the X11 backend supports this feature.

15.3.3.4 Replay

This utility is also called retrace. It reads in the trace file and executes OpenGL (ES) APIs one by one. Each
OpenGL (ES) API call is processed by a callback function. In that callback function, a hook can be inserted for
debug or analysis purposes.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
131/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors UG1 01 59

i.MX Graphics User's Guide

40)

Figure 36. Replay

OpenGL ES 1.1/2.0/3.0 applications can be replayed with eglretrace; OpenGL applications can be replayed with
glretrace:

eglretrace <trace file>
glretrace <trace file>

15.3.3.4.1 Analysis

gapitrace provides a detailed look at the trace file. It can only run on a PC. It was verified on Ubuntu 14.04
LTS 64-bit. The command is:

gapitrace <trace file name>

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
132/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

i.MX Graphics User's Guide

QApiTrace - vmware-vmx.trace

File Edit View Trace

Eianks Current State B =
9:3"2;“’"‘:2:::52' :;, {(2)-%015:']:;0-1145281 -0.0389087, 0.29284 ...6]) Parameters | Shaders Surfaces | Uniforms
gluniferm » 1,10,0,0,
glBindBufferARB(GL_ARRAY_BUFFER, 41) .
glVertexAttribPointerARB(0, 3, GL_FLOAT, GL_FALSE, 16, NULL) B
glVertexAttribDivisorARB(0, 0) Variable + Value 2
g:g:;:;':#:;f:a’g[';‘;’g:ﬁ“g:é;én 0 GL_BLEND_SRC_RGB GL_ONE_MINUS_DST_COLOR
BindBufferARB(GL_ELEMENT ARRAY BUFFER, 42 EOBCOEES i
GL GL_COLOR_CLEAR_VALUE [0,0,0,1]
glBindBufferARB(GL_ELEMENT_ARRAY _| : GL_COLOR_WRITEMASK [GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE]
glUniformafvARB(0, 4, [2.00764, -0.114628, -0.0389087, -0.1211 ...6]) GL_CULL_FACE GL_TRUE
glUniformafvARB(4, 1, [0, 0,0, 1]) GL_CURRENT_PROGRAM 49
glBindBuFferARB(GL_ARRAY_BUFFER, 43) GL_DEBUG_LOGGED_ME... 128
T T T — GL_DEBUG_ NEXT_|0GG... 137
glBindBufferARB(GL_ARRAY_BUFFER, 0) GL_DEPTH_FUNC GL_LEQUAL
glBindBuFferARB(GL_ELEMENT ARRAY_BUFFER, 44) N RS CIRCE
glDrawElementsinstanced ARB{GL_TRIANGLES, 8220, GL_UNSIGNED_SHORT, NULL, 1) GL_DITHER GL_FALSE
glBindBuFfer ARB(GL_ELEMENT_ARRAY_BUFFER, 0) GL_DOUBLEBUFFER GL_FALSE
glUniformafvARB(0, 4, [2.00764, -0.114628, -0.0389087, 0.01414 ...5]) GL_DRAW_BUFFER GL_ZERO
gluniformafvARB(4, 1, [0, 0, 0, 1]) GL_DRAW_BUFFERO GL_ZERO
glBindBufferARB(GL_ARRAY_BUFFER, 45) » GL DRAW FRAMEBUFFER
glvertexAttribPointerARB(0, 3, GL_FLOAT, GL_FALSE, 16, NULL) GL DRAW FRAMEBUFFE... 5
glVertexAttribDivisorARB(0, 0) | -
glBindBuFferARB(GL_ARRAY_BUFFER, 0) gt{gﬂi’;&ﬁ?‘;‘ig”‘ zi eI
glBindBufferARB(GL_ELEMENT_ARRAY_BUFFER, 46) -~ it =Sl
glDrawElementsinstanced ARB(GL_TRIANGLES, 2784, GL_UNSIGNED_SHORT, NULL, 1) GL_GPU_MEMORY_INFO... 7928
glBindBufferARB(GL_ELEMENT_ARRAY_BUFFER, 0) GL_GPU_MEMORY_INFO... 28126 .
qlBindBufferARB(GL ARRAY BUFFER, 47) : R
Jetails View. Frame 100, Call 1112334 = @

1112334) glDrawElementsInstanced ARB(mode = GL_TRIANGLES, count = 30045, type = GL_UNSIGNED_SHORT, indices = NULL, primcount =1)

Figure 37. Checking state of every API call

Aia

QApiTrace - Surface at glDrawRangeElementsEXT (895384)

File Edit AETEE

Events

glDrav
glPopl
glPush
glMulk
glScald
glColo
glProg
glProg
glProg
glDrav
glPop!
glPush
glMult
glScaly
glcolo
glProg
& glD
glPopl
glBind
glind
glDisal
glDisal
glDisal
glPush
glMult
glscald
glBind
glBind
glEnak

Details View. |

895384) gl

Lower | 0.00 1.00

Flip

Upper Opaque Alpha

urrent State

Parameters Shaders Surfaces = Uniforms
Thumbnail Description
» Textures

* Framebuffers

GL_BACK, GL_RGB, 1024 x 768

GL_DEPTH_COMPONENT,
GL_DEPTH_COMPONENT,
1024 x 768
GL_STENCIL_INDEX,
GL_STENCIL_INDEX, 1024 x
768

@®

. UNSIGNED_SHORT, indices = NULL)

Figure 38. Checking Framebuffer

UG10159 All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User guide Rev. 10.3 — 26 June 2025

Document feedback
1337159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

File Edit Viev qApiTrace - Surface at glDrawRangeElementsEXT (895384)

urrent State @ @
Events

glDrawRang Parameters Shaders ' Surfaces = Uniforms
glPopMatri;

gt:ﬁﬁ?:::; Thumbnail Description
glScalef(0.2 v Textures

glColoraf(o|
glProgramg
glProgramEg
glProgramE
glDrawRang
glPopMatri|
glPushMatr
glMultMatr
glscalef(0.2
glcColor4f(o|
glProgramg
© glDrawR
glPopMatri|
glBindBuffe
glBindBuff¢
glDisablecl
glDisablecl
glDisablecl
glPushMatr
glMultMatr
glScalef(0.2
glBindBuff¢
glBindBuFf¢
glEnablecli

GL_TEXTUREO, GL_TEXTURE_2D, level
=0, GL_RGB, 256 x 256

GL_TEXTUREO, GL_TEXTURE_2D, level
=1,GL_RGB, 128x 128

GL_TEXTUREO, GL_TEXTURE_2D, level
=2,GL_RGB, 64 x 64

GL_TEXTUREQ, GL_TEXTURE_2D, level
=3,GL_RGB, 32x 32

GL_TEXTUREO, GL_TEXTURE_2D, level
=4,GL_RGB, 16X 16

GL_TEXTURED, GL_TEXTURE_2D, level
=5,GL_RGB,8x 8

retails View. Frame (=R

895384) glDray - R ’ sL._UNSIGNED_SHORT, indices = NULL)
Lower | 0.00 Upper | 1.00 | . Flip Opaque Alpha

- -

Figure 39. Checking Texture

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
134/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

i.MX Graphics User's Guide

Profile Results -

Timeline | Histegram

Frame | 544 |545
CPU gl... |
178
187 | |
151
190
175 |
277
91 | | I I I I
184
226
100 | | [l
85
s8 || [

199
172
154
157
49
112
289
169
139
166
1

163

Program

178
187
151
190
175

277

Calls
98,085

58,375
42,153
24,533
20,116

1,567

Total GPU Time =
7.115s

5.685s
3.006 s
1.9625
1.868 s

1.685

CPU Duration: 6.8

GPU Duratio
Pixels Drawn: 4,497

Total CPU Time
286.667 ms

200.241 ms
218.013 ms
95.706 ms
74.07 ms

8.259 ms

Total Pixels Drawn

1,777,394,032
2,036,329,330
347,420,906
247,806,449
859,602,183

1,372,895,590

Avg GPU Time

72.543 s
97.379 s
71.302 s
79.973 ps
92.857 ps

1.072 ms

Avg CPU Time
2.922 ps

3.43 s
5.171 s
3.901 ps
3.682 ps

5.27 us

Avg Pixels Drawn
18,120

34,883

8,241
10,100
42,732

B76,129 |~

Figure 40. Checking performance

15.3.4 Reference

1. Apitrace introduction: apitrace.qgithub.io/

2. More uses: github.com/apitrace/apitrace/blob/master/README.markdown

15.4 Renderdoc

Renderdoc is a frame-capture based graphics debugger, generally support for Vulkan, D3D11, D3D12,
OpenGL, and OpenGL ES development. On i.MX, support is available only for Vulkan. RenderDoc provides
tools for deep analysis and graphics inspection, as well as detailed examination of APl usage - allowing
developers to locate bugs and problems in their programs.

15.4.1 Renderdoc components

Renderdoc source code release is part of the i.MX Yocto Project Linux BSP release. The source code has more
patches added on top of the official Renderdoc release. The Yocto Project recipes pull the renderdoccmd tool
source package and install it as needed for the supported backend.

Renderdoc has a set of PC tools. Prebuilt binary packages can be directly downloaded from Renderdoc
website.

© 2025 NXP B.V. All rights reserved.
Document feedback
135/159

UG10159
User guide

All information provided in this document is subject to legal disclaimers.

Rev. 10.3 — 26 June 2025

http://apitrace.github.io/
https://github.com/apitrace/apitrace/blob/master/README.markdown
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

The renderdoccmd tool will be available on the i.MX board for capturing frames and replaying locally, as for
debugging purposes grenderdoc needs to be used remotely on a host machine.

15.4.2 Running renderdoccmd on i.MX

renderdoccmd capture <options> <app name> <arguments>

Renderdoccmd usage example:

* For capturing a frame from a graphics application available in the SDK, run

renderdoccmd capture /opt/imx-gpu-sdk/Vulkan/Some example/Some example Wayland

* Press F12 to capture frames:

Frames will be written in /tmp/Renderdoc/ (run renderdoccmd capture to see all the options)

* For replaying a capture run

renderdoccmd replay /path/to/capture/file

(Run renderdoccmd replay for more options).

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
136 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

Vulkan Example - Instanced mesh rendering
49.580ms (20 fps)
Verisilicon

Rendering 1624 instances

* Press F for full screen. Press F again to come back to the default window dimensions. Press ESC to quit
replaying.

15.4.3 Capturing and replaying remotely
Usage:

Download a Renderdoc build from the website on your Windows/Linux host machine.
Set up a connection between the host and the board.

On the i.MX board, run renderdoccmd remoteserver.

On your machine, run grenderdoc. Go to File -> Attach to running instance.

In the Remote Host Manager Window, add the target's IP address. Then grenderdoc on your local
machine should establish a connection with the renderdoccmd server instance.

6. In the left down corner of the screen, select Replay Context and change it from Local to the target’s IP
address.

7. Select File -> Launch Application. On Executable Path, insert the path of your Vulkan example from the
target: /opt/imx-gpu-sdk/Vulkan/Some_example/Some_example_Wayland.

8. Press Launch and then capture. A new capture preview should appear.

9. You can save it by right clicking Save on the preview.

aorODN -

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 10.3 — 26 June 2025 Document feedback
137 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

IEJ RenderDoc Unstabe release (1.5 - 5429100299321 36cbST35 26441 acOeTe228) - a x
Eile_Window Jooks Help

Timebne. x
eo: |

Eventronasr X [resmrevens: X |EJpoerese |Elwevener % | poiatan % |E nogrestetog X | EY 192 15010 - ConputePnces Woyin_ X |
"
Sitn Too

0 [Hame A

Trget 152.168.063 - CanpuicPartices Weyland PID §513)
Comecton Siats: Establshed
P valkan (Active)

Eemimes) s

Coptres olecies

Computefartiies Wayland (Remote)
on

Frame 8281 2019.00 37 145637

[

ek
T o Frevew Open v Swe Dekle

 Replay Content 102168168 Remote seve ready

10. If you close the Vulkan application from the board, grenderdoc will open the capture file.
11. To debug the capture, check the documentation available on the Renderdoc site.

12. To replay remotely, just use renderdoccmd on your local machine. Run renderdoccmd replay --
remote-host <target ip> <capture file on you local machine> and you should see exactly
the same thing as when running on the target locally.

Notes for Android:

» Before starting the remote server and Vukan application, Android HWUI renderer must be set to Vulkan
renderer. In Android console: setprop debug.hwui.renderer skiavk.

* Remote server on the Android platform is started from qrenderdoc application. Connect the board to PC
through the USB-C port. In grenderdoc, go to Tools -> Manages Remote Servers, and select the connected
board. For example, “nxp MEK-MX8Q”, and press the Run Server button.

* On the Android platform, add permission "Allow access to manage all files" to RenderDocCmd when it is
launched for the first time.

* Launch an application from qrenderdoc. Be sure the correct Replay Context is selected in the left bottom
corner. Select a Vulkan application in the Executable path field from the Launch Application tab. Click the
Launch button.

* Capture frame from grenderdoc.
» Capture is replayed automatically on the Android platform when the Vulkan application is closed.

15.4.4 Reference

https://renderdoc.org/
https://github.com/baldurk/renderdoc/blob/v1.x README.md

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
138/159

https://github.com/baldurk/renderdoc/blob/v1.x/README.md
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

16 VSI GPU Memory Introduction

16.1 VSI GPU memory overview

* OpenGL-ES
— Texture buffer
— Vertex buffer
— Index buffer
— PBuffer surface
— Color buffer
— Z/Stencil buffer
— HZ depth buffer
— Tiled status buffer
— 3D Command buffer
— 3D Context buffer
e OpenVG
— Image buffer
— Tessellation buffer
— VG command buffer
— VG context buffer
e 2D buffers
— 2D command buffer
— 2D temporary buffer

16.2 VSI GPU memory pools

* Reserved memory
In the Linux 6.6.y kernel, the memory is reserved from CMA implemented in the GPU kernel driver, the size
can be changed through U-Boot args with galcore.contiguousSize =xxx.
The memory allocation and lock very fast, but cannot support cacheable attribute.
» Contiguous memory
The contiguous memory is from CMA or Normal or Highmem with alloc _pages_exact.
The GPU driver tries the CMA allocator for non-cacheable request first. If CMA memory is used up, it goes to
system allocator.
The CMA allocator does not support the cacheable attribute, the system allocator supports cacheable
attribute, but the memory performance is slow with the additional cache flush operations.
* Virtual memory pool
The virtual memory is from Normal or Highmem with multiple page alloc.
The memory support cacheable attribute, but slow with GPU MMU and cache flush.
The GPU virtual command buffer is allocated from virtual memory pool directly.
* Nonpaged memory pool
In the 5.x GPU driver, this pool is not used any more.

16.3 VSI GPU memory allocators

Two kinds of allocators are implemented in i.MX GPU kernel driver, see drivers/mxc/gpu-viv/.

* The video memory allocator implementation is very complicated. The memory is from the reserved pool,
system contiguous pool (supports CMA), or system virtual pool (enables GPU MMU).

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
139/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

* The CMA allocator supports non-cacheable contiguous memory. It is implemented as a part of contiguous
pool. When the system requests contiguous memory, the allocator tries CMA first. If CMA is used up, it goes
to allocate the system contiguous pages.

* GPU memory-killer is implemented for special requirement of force contiguous GPU memory.

' |
OK when success,
QOM when fail

Y

Y
Texture,
vertex, 3 N) N
index. »| Reserved Pool > UCCess? » Contiguous Pool > »
atc
[gpumem-killer)=

Fig.1 Gpu video memory allocator

orce

contiguous » Virtual Pool

20/3D command buf) OFK when success,
Virtual Pool =5ET when fail

h A
 J

Fig.2 Gpu virtual command allocator

Figure 41. GPU memory allocators

16.4 VSI GPU reserved memory

» The reserved memory is managed by two dual linked lists, one is free list, and another is node list.

* When allocate the reserved memory, the free list is scanned from head to tail until a available node is
selected, it is very fast but makes more memory fragments, under test, 10~20M of 128M is not available to
use after a lot of allocate/free operations.

* When the available node is selected, it is removed from the free list, but it always keeps the dual linked nodes
to merge the conjoint available memory when freed.

* The reserved memory is mapped once when application process is attached, during 3D application running,
the memory map/un-map operations are very fast, the virtual address is just calculated with logical base and
offset.

16.5 VSI GPU memory base address

* GPU support contiguous physical memory within (0-2G) address directly:
— GPU address = CPU Physical address — GPU BaseAddress
* GPU MMU is enabled for two kinds of memory type as below:
— Separated page memory from Virtual memory pool
— Contiguous page memory with address out of (0-2G)
» BaseAddress should be set to RAM start address to achieve the better performance by reducing GPU MMU
mapping.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
140/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

GPU Address CPU Physical Memory Address
N
0 - 0
~
reserved memory ~
\
~
~
~
nonpaged memory ~ -
~
~
] BaseAddress™
contiguous memory
reserved memory
2G
~
N ~ nonpaged memory
~
~
\
~ ~ contiguous memory
~
N
~
BaseAddress+2G-
virtual memory
4G

virtual memory

2G+

Figure 42. GPU memory base address

17 Mali Valhall GPU

i.MX 95 integrates the Mali Vale V2 GPU, a significant change in the graphics from previous i.MX. It performs 32
FP32 FMAs, reads four bilinear filtered texture samples, blends two fragments, and writes two pixels per clock.
For more details about Mali Vale shader core, see https://developer.arm.com/documentation/102203/0100/?

lang=en.
The Vale GPU has a module named Command Stream Front (CSF), which replaces the job management in the

Midgard and Bifrost architecture, and offloads some operation from CPU to GPU, so that the CPU can focus on
general operations to increase the rendering FPS. It is more friendly to the newer graphics API vulkan.

17.1 Features

* Tile-Based Deferred Rendering (TBDR)
* OpenGLES 1.1/2.0/3.0/3.1/3.2
UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 10.3 — 26 June 2025 Document feedback
141 /159

https://developer.arm.com/documentation/102203/0100/?lang=en
https://developer.arm.com/documentation/102203/0100/?lang=en
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

e Vulkan 1.3
* OpenCL 3.0
 AFBC/AFRC

17.2 Mali Shader offline Compiler

malisc is a Mali offline shader compiler to compile the vertex shader and fragment shader. It is only for syntax
checking when you are developping the shader. Its output is not ELF binaries. It is a specific Mali version called
Mali Binaries Specification version2 (MBS2).

#version 320 es

//test.vert to show malisc usage
in vec4 position;

out vec4 color;

void main (void)
{

gl Position = position;

color = vecd4(1.0f, 0.0f, 0.0f, 1.0f);
}

You can modify the shader source above to learn the Malisc usage.

Usage: malisc --util [options] <a.vert> [<a.frag> <b.vert> ...]
local@imx95-19x19-1pddr5-evk:~# malisc test.vert --core=Mali-G310 --
revision=r0p0

More options can be found when the following command is executed:

local@imx95-19x19-1pddr5-evk:~# malisc —--help

17.3 Mali OpenCL Offline Compiler

mali clcc is Mali OpenCL C offline compiler. It can be used for syntax checking, and its output program
binary can be used with c1CreateProgramWithBinary ().

//test.cl
__kernel void vector add(_ global float* a, _ global float* b, _ global float*
c)
{
//get the global ID
const int i = get global id(0);

//run the vector add
c[i] = ali] + b[i];

}

The kernel source file above can be compiled with the following command:

local@imx95-19x19-1pddrS5-evk:~# mali clcc test.cl -o test.bin

More options can be found when the following command is executed:

local@imx95-19x19-1pddr5-evk:~# mali clcc -help

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
1427159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

17.4 Capture the GLES application with patrace

The patrace has been installed into the i.MX 95 BSP rootfs since LF6.6.23_2.0.0. Otherwise, build it from the
source code or copy it from the released BSP.

The patrace is the software for capturing GLES calls of an application and replaying them on a different
device, keeping the GPU workload the same. It is similar to the open source apitrace project, but optimized for
performance measurements. See the User Manual.

Capture Examples
On the Linux OS, some environment variables must be set.

» Set LD_LIBRARY PATH to the path of the built fake driver.

» Set INTERCEPTOR_LIB to the location of the built interceptor libegltrace.so.

* Set TRACE LIBEGL to the location of DDK driver libEGL.so.

* Set TRACE LIBGLES1 to the location of DDK driver ibGLESv1_CM.so.

* Set TRACE LIBGLES2 to the location of DDK driver libGLESvZ2.so.

» Set OUT TRACE FILE variable as the path and filename of the captured trace.

The following are the recommended usages:

Example 1, capture the QT application:

LD PRELOAD=/opt/patrace/lib/libegltrace.so OUT TRACE FILE=gtexample ./gt-bin

Example 2, capture the glmark2-es-wayland:

LD LIBRARY PATH=/opt/patrace/lib/ INTERCEPTOR LIB=/opt/patrace/lib/
libegltrace.so TRACE LIBEGL=/usr/lib/libEGL.so TRACE LIBGLESl=/usr/lib/
1ibGLESv1 CM.so TRACE LIBGLES2=/usr/lib/libGLESv2.so LD_PRELOAD=/opt/patrace/
lib/libegltrace.so OUT TRACE FILE=glmark glmark2-es2-wayland -b build

Replay and check the EGL/GLES calls. The following command can be used to replay the patrace capture:

export PATH=/opt/patrace/bin/:S$SPATH
paretrace [-debugfull] <tracefile.pat>

Note: -debugrfull is optional. Output all of the current invoked GL functons, with callNo, frameNo, and
skipped or discarded information.

17.5 Arm Performance Studio

Arm Performance Studio is the new name for Arm Mobile Studio. If the tool is upgraded to 2024.0 or later from a
previous version of Arm Mobile Studio, its name changes in the download package, the tool installers, the web
content, and the user documentation. There is no reduction in functionality and all the tools are still available for
free. Additionally, it supports capturing from the Linux targets, and you now get RenderDoc for Arm GPUs in the
bundle. Read the blogs for more information. To try the RenderDoc for the Arm GPU in it, choose the 2024.2
version, as the renderdoccmd version on the BSP is v1.33.

17.5.1 Tools included in Arm Performance Studio

Arm Performance Studio includes the following tools that each targets a different stage in the profiling workflow.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
143 /159

https://github.com/ARM-software/patrace
https://github.com/ARM-software/patrace/blob/master/patrace/doc/manual.md
http://libegltrace.so/
http://libegl.so/
http://libglesv1_cm.so/
http://libglesv2.so/
https://developer.arm.com/Tools%20and%20Software/Arm%20Performance%20Studio
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

Table 45. Tools included in Arm Performance Studio
Tool Description

Streamline Captures a performance profile for deep-dive analysis, using all of the CPU, GPU, and
memory system performance data in the system. Identifies the critical path hardware units for
your application, as well as workload efficiency metrics, allowing you to target optimizations
at the areas that matter most.

Performance Advisor Part of the Streamline tool, Performance Advisor generates an easy-to-read performance
report from an annotated Streamline profile. Gets actionable advice about how to optimize
your application. These reports can be generated manually from a Streamline capture, but
they are designed to ease the deployment of automated performance testing workflows.

Frame Advisor Use Frame Advisor to analyze a problem frame from a mobile application. Captures the API
calls and rendering and gets comprehensive geometry metrics to discover what might be
slowing down your application or overheating the device.

Mali Offline Compiler Compiles your shader programs and checks how they will perform across on any Mali
GPUs. Performance reports give you information on the shader register usage and thread
occupancy, an estimated cycle cost breakdown for the target GPU, and other stage-specific
performance feedback.

RenderDoc for Arm GPUs | The industry-standard tool for debugging Vulkan graphics applications, including early
support for Arm GPU extensions and Android features.

More details can be found in the help content or tools user manual, which are delivered in the Arm Performance
Studio.

17.5.2 Streamline offline capture

For Arm Performance Studio 2024.2, the streamline can capture the performance counter in online or offline
mode, but this online mode of streamline tool needs license in previous releases, not certain in the future
release. The GPUTop is a good tool without license issue in our BSP.

The command for streamline offline capture is as follows. gatord can be found in the installation directory of
Arm Performance Studio.

gatord --output ~/output --config-xml /etc/streamline/configuration.xml -s /
etc/streamline/session.xml

session.xml is as follows, and configuration.xml can be generated in the Arm Performance Studio.

<?xml version="1.0" encoding="UTF-8"?>
<session call stack unwinding="yes" filter call stacks="yes"
parse_debug info="yes" exclude kernel events="no" version="1"
high resolution="no" buffer mode="streaming" sample rate="normal" duration="60"
target address="" live rate="100" stop gator="no" capture log="yes">
<energy capture version="1" command path="C:\Program Files\Arm
\Development Studio 2023.1\sw\streamline\bin\win-64\caiman.exe" type="none">
<channel id="0" resistance="20" power="yes"/>
</energy capture>
</session>

17.6 References and Useful links

* Tile-Based Rendering: https://developer.arm.com/documentation/102662/0100/?lang=en
* The Valhall shader core: https://developer.arm.com/documentation/102203/0100/?lang=en
* Arm Mali Offline Compiler User Guide: https://developer.arm.com/documentation/101863/0803/?lang=en

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
144 /159

https://developer.arm.com/tools-and-software/graphics-and-gaming/arm-mobile-studio/components/streamline-performance-analyzer
https://developer.arm.com/tools-and-software/graphics-and-gaming/arm-mobile-studio/components/performance-advisor
https://developer.arm.com/Tools%20and%20Software/Frame%20Advisor
https://developer.arm.com/tools-and-software/graphics-and-gaming/arm-mobile-studio/components/mali-offline-compiler
https://renderdoc.org/
https://developer.arm.com/documentation/102662/0100/?lang=en
https://developer.arm.com/documentation/102203/0100/?lang=en
https://developer.arm.com/documentation/101863/0803/?lang=en
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

18 Application Programming Recommendations

The recommendations listed below take a holistic approach centered on overall system level optimizations that
balance graphics and system resources.

18.1 Understanding the system configuration and target application

Knowing details about the application and use case allows developers to correctly utilize the hardware
resources in an ideal access pattern. For example, an implementation for a 2D or 3D GUI could be rendered in
a single pass instead of multiple passes if the draw call sequence is correctly ordered. In addition, knowing the
most common graphics function calls allow developers to parallelize rendering to maximize performance.

Using Vivante and vendor-specific SoC profiling tools, you can determine bottlenecks in the GPU and CPU and
make changes as needed. For example, in a 3D game, most CPU cycles may be spent on audio processing, Al,
and physics and less on rendering or scene setup for the GPU. In this instance, the application is CPU-bound
and configurations dealing with non-graphics tasks need to be reviewed and modified. If the system is GPU-
bound, the profiler can point out where the GPU programming code bottlenecks are located and which sections
to optimize to remove restrictions.

18.2 Optimizing off-chip data transfer such as accessing off-chip DDR memory/mobile
DDR memory

Any data transfer off-chip takes bandwidth and resources from other functional blocks in the SoC, increases
power, and causes additional cycles of latency and delay as the GPU pipeline needs to wait for data to

return from memory. Using on-chip cache and writing the application to better take advantage of cache

locality and coherency increase performance. In addition, accessing the GPU frame buffer from the CPU (not
recommended) cause the driver to flush all queued render commands in the command buffer, slowing down
performance as the GPU has to wait since the command queue is partially empty (inefficient use of resources)
and CPU-GPU synchronization is not parallelized.

18.3 Avoiding W-clipping issue in the application program

The w-clipping overflow issue typically occurs with these three factors:

* Objects with very large primitives.
In a 3D scene, this is usually the sky, the outer world or a long road that expands far behind the camera and
far in front of the camera. At the same time, the object may also expand far in either the x or y direction.

* Near-plane with a very small value
Usually this value is very close to zero. An example would be 1074,

* Large screen resolution

These three factors can cause the final window coordinate to overflow the 24-bit mantissa precision in IEEE
single precision floating point format.

The following are suggested ways to modify an application to avoid overflow:

1. For draw calls with very large primitives such as sky or world, set the near-plane to 0.99 as an initial value.

2. If this removes the rendering error and the entire scene is rendered correctly, the issue can be considered
resolved.

3. If the rendering error is still there and no desired objects are being culled (or there are no missing objects),
increase the near-plane value until the rendering error disappears.

4. If the near-plane value is large (>10.0) already, the issue persists and some desired objects are being
culled, reduce the near-plane value until the desired objects appear again then go to the next step.

5. Tessellate the large objects into smaller primitives until the rendering error disappears.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 10.3 — 26 June 2025 Document feedback
145/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

Please note that the suggested near plane adjustment can be done on a per draw call basis, and only needs to
be modified for objects with very large primitives. Some applications scale the object by reducing the w value in
vertex shader, as changing w value will finally affect the near plane, which is not recommended. A better way to
scale the object is scale the x, y, z coordinate, not w.

18.4 Avoiding GPU hanging and data corruption when using occlusion query

Description:

On i.MX 6Dual/Quad GPU IP, both Hierarchical Depth (Hz) write and Occlusion Query (OQ) write share the
same port. If HZ Fast Clear (FC) is enabled, and OQ uses the HZ port to perform a write, the HZ FC data may
become corrupted, even leading to GPU hanging unexpectedly.

Software Workaround:

A software workaround is recommended for this issue and is available from L4.9 bsp release. Because the
issue occurs very infrequently, a per-application work around is most efficient. Software will disable HZ with a
per-app detection and also provide a new environment variable control (VIV_DISABLE_HZ).

18.5 Avoiding random cache or memory access

Cache thrashing, misses, and the need to access data in external memory causes performance hits. An
example would be random texture cache access since it is expensive when performing per-pixel texture reads if
the texture units need to access the cache randomly and go off-chip if there is a cache miss.

18.6 Optimizing your use of system memory

Memory is a valuable resource that needs to be shared between the GPU (frame buffer), CPU, system, and
other applications. If you allocate too much memory for your OpenGL ES application, less memory is available
for the rest of the system, which may impact system performance. Claim enough memory as needed for your
application then deallocate it as soon as your application no longer needs it. For example, you can allocate a
depth buffer only when needed or if your application only needs partial resources, load the necessary items
initially and load the rest later.

18.7 Targeting a fixed frame rate that is visibly smooth

Smooth frame rate is achieved from a combination of a constant FPS and the lowest FPS (frames per second)
that is visually acceptable. There is a trade-off between power and frame rates since the graphics engine
loading increases with higher FPS. If the application is smooth at 30 FPS and no visual differences for the
application are perceived at 50 FPS, then the developer should cap the FPS at 30 since the extra 20 FPS do
not make a visual difference. The FPS limit also guarantees an achievable frame rate at all times. The savings
in FPS help lower GPU and system power consumption.

18.8 Minimizing GL state changes

Setting up state values between draw calls adds significant overhead to application performance so they must
be minimized. Most of these call setups are redundant since you are saving / restoring states prior to drawing.
Try to avoid setting up multiple state calls between draw calls or setting the same values for multiple calls.
Sometimes when a specific texture is used, it is better to sort draw calls around that texture to avoid texture
thrashing which inhibits performance. Application developers should also try to group state changes.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
146 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

18.9 Batch primitives to minimize the number of draw calls

When your application submits primitives to be processed by OpenGL ES, the CPU spends time preparing
commands for the GPU hardware to execute. If you batch your draw calls into fewer calls, you reduce the
CPU overhead and increase draw call efficiency. Batch processing allows a group of draw calls to be quickly
executed without any intervention from the CPU (driver or application) in a fire-and-forget method.

Some examples of batching primitives are:

* Branching in shaders may allow better batching since each branch can be grouped together for execution.

* For primitives like triangle strips, the developer can combine multiple strips that share the same state to save
successive draw calls (and state changes) into a single batch call that uses the same state (single setup) for
many triangles.

» Developers can also consolidate primitives that are drawn in close proximity to take advantage of spatial
relationships. If the batched primitives are too far apart, it is more difficult for the application to effectively cull if
they are not visible in the frame.

18.10 Performing calculations per vertex instead of per fragment/pixel

Since the number of vertices is usually much less than the number of fragments/pixels, it is cheaper to do per
vertex calculations to save processing power.

18.11 Enabling early-Z, hierarchical-Z, and back face culling

Hardware support of depth testing to determine if objects are in the user’s field of view are used to save
workload and processing on vertex and pixel processing. If the object is in view, then the vertices are sent
down the pipeline for processing. If the object is hidden or not viewable, the triangles are culled and not sent to
the pipeline. This improves graphics performance since computations are only spent on visible objects. If the
application already knows details about the contents and relative position of objects in the scene or screen, the
developer can use that information to automatically bound areas that never need to be touched (for example
an automotive application that has multiple layers of dials where parts of the underlying dials are occluded can
have the application avoid occluded areas from the beginning). Another optimization is to perform basic culling
on the CPU since the CPU has first-hand information about the scene details and object positions so it knows
what scene data to send to the GPU.

18.12 Using branching carefully

Static branches perform well since states are known but they tend to use many general purpose registers. An
example is a long shader that combines multiple shaders into a single, large shader that reduces state changes
and batch draw calls. Dynamic branching has non-constant overhead since it processes multiple pixels as one
and everything executes whether a branch is taken or not. In other words, dynamic branching goes through
different permutations/branches in parallel to reach the correct results. If all pixels take the same path, then
performance is good. The more pixels processed translates to higher overhead and lower performance. For
dynamic branching, smaller pixel sizes/groups are optimal for throughput. Developers need to be aware of
branching in their code to make sure excessive calculations and branches are efficient. Profiling tools can help
determine if certain parts of code are optimized or not.

18.13 Using VBOs instead of static or stack data as vertex data

A vertex buffer object (VBO) is a buffer object that provides the benefits of vertex array and display list

and allows a substantial performance gain for uploading data (vertex position, color, normals, and texture
coordinates) to the GPU. VBOs create buffer objects in memory and allow the GPU to directly access memory
without CPU intervention (DMA). The memory manager can optimize buffer placement using feedback from the

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
147 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

application. VBOs can also handle static and dynamic data sets and are managed by the Vivante driver. The
benefits of each are:

* A vertex array reduces the number of function calls and allows redundant data to be shared between related
vertices, instead of re-sending all the data each time. Access to data can be referenced by the array index.

* The display list allows commands to be stored for later execution and can be used repeatedly over multiple
frames without re-transmitting data, thus minimizing CPU cycles to transfer data. The display list can also be
shared by multiple OpenGL / OpenGL ES clients so they can access the same buffer with the corresponding
identifier. If you put computationally expensive operations (ex. lighting or material calculations) inside display
lists, then these computations are processed once when the list is created and the final result can be re-used
multiple times without needing to re-calculate again.

If you combine the benefits of both by using VBO, the performance is enhanced over static or stack data sets.

18.14 Using dynamic VBO when the data is changing frame by frame

Locking a static vertex buffer while the GPU is using it can create a performance penalty since the GPU needs
to finish reading the vertex data from the buffer before it can return to the calling application. Locking and
rendering from a static buffer many times per frame also prevents the GPU buffering render commands since it
must finish commands before returning the lock pointer. Without buffered commands the GPU remains idle until
the application finishes filling the vertex buffer and issues the draw commands.

If the scene data never changes from frame to frame then a static buffer may be sufficient. With newer
applications (ex. games, maps) that have dynamic viewports where vertex data changes multiple times per
frame or frame-to-frame, then a dynamic VBO is required to ensure performance is still met. If the current buffer
is being used by the GPU when a lock is called, a pointer to a new buffer location is returned to the application
to ensure updated data is written to the new buffer. The GPU can still access the old data (current buffer)

while the application puts updated data into the new buffer. The Vivante memory management unit and driver
automatically take care of allocating, re-allocating, or destroying buffers.

You can implement dynamic VBO depending on your preference, but one recommendation is to allocate a 1 MB
dynamic VBO block and upload data to using different offsets for each dynamic buffer. If the buffer overflows
you can loop back and use location offset 0 again.

18.15 Tessellating your data to make Hierarchical Z (HZ) work

We can break this into how OpenGL and OpenGL ES handle this use case.

OpenGL only renders simple convex polygons (edges only intersect at vertices with no duplicate vertices and
only two edges meet at any vertex), in addition to points, lines, and triangles. If the application requires concave
polygons (polygons with holes or intersecting edges), those polygons need to be subdivided into simple convex
polygons, which is called tessellation (subdividing a polygon mesh into a bunch of smaller meshes). Once you
have all the meshes in place our HZ hardware can automatically cull hidden polygons to efficiently process the
frame, effectively breaking the frame into smaller chunks that can be processed very fast.

OpenGL ES only renders triangles, lines, and points. The same concepts apply as in OpenGL, which is to
avoid very large polygons by breaking them down into smaller polygons where our internal GPU scheduler can
distribute them into multiple threads to fully parallelize the process and remove hidden polygons.

18.16 Using dynamic textures as a texture cache (texture atlas)

The main reason for using dynamic textures as a cache is the application developer can create one larger
texture that is subdivided into different regions (texture atlas). The application can upload data into each region
and use an application side texture atlas to access the data. Each dynamic texture and sub-region can be
locked, written to, and unlocked each frame, as needed. This method of allocating once is more efficient than
using multiple smaller textures that need to be allocated, generated, and then destroyed each time.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
148 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

18.17 Stiching small triangle strips together

It is better to combine several small, spatially related triangle strips together into a larger triangle stip to
minimize overhead and increase performance. For each triangle strip, there are overhead and start up costs
that are required by the CPU and GPU, including state loads. If there are too many small triangle strips that
need to be loaded, this impacts performance. An application developer can combine multiple triangle strips
by adding a degenerate triangle to join the strips together. The overhead to restart multiple new strips is much
higher than adding the degenerate triangle.

18.18 Specifying EGL configuration attributes precisely

To obtain a 16 bit/pixel window buffer for rendering, the EGL config attributes need to be specified precisely
according to the EGL spec. Specifying inaccurate EGL attributes may result in getting a 32-bit bit/pixel window
buffer which doubles the bandwidth requirement for rendering which in turn leads to lower performance.

18.19 Using aligned texture/render buffers

The GPUs work on buffers with hardware-specific width/height alignment for better efficiency. Use the available
API to query the GPU buffer alignment and allocate the texture / render buffers to satisfy these requirements, to
avoid the cost of copies to aligned shadow memory.

18.20 Disabling MSAA rendering unless high quality is needed

Although MSAA rendering can achieve higher image quality with smoother lines and triangle edges, it requires
much higher (4x, 8x) bandwidth because it has to render a single pixel 4x/8x times. So, if high rendering quality
is not required, MSAA should be disabled.

18.21 Avoiding partial clears

Most GPUs have special hardware logic to do a fast clear of an entire buffer. So it is better to utilize the fast
clear function to clear the entire buffer then render graphics again, instead of doing a partial clear to preserve a
graphics region. If a partial clear is required by the application, make sure the clear area is aligned according to
the GPU-specific requirements. Unaligned partial clears are expensive and should be avoided.

18.22 Avoiding mask operations

Do not use mask unless the mask is 0 (other than when you need a specific render quality). Clearing a surface
with mask (color/depth stencil mask) could have a performance penalty.Pixel mask operations are normally
pretty expensive on some GPUs as the mask operation has to be done on every single pixel.

18.23 Using MIPMAP textures

MIPMAP textures enable the application to sample a lower resolution texture image (1/2, 1/4, 1/8, 1/16, ...
size of the original texture image) when the triangle is rendering further away from the view point. Thus, the
bandwidth required to read the texture image is reduced which leads to better performance.

18.24 Using compressed textures if constricted by RAM/ROM budget

Compressed textures are normally only a fraction (up to 1/8) of the original texture size. Using compressed
textures reduces the storage requirements in memory and can also reduce the required texture upload
bandwidth, when using a format that is supported natively by the hardware.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
149 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

Compressed textures should not be chosen, if only for the purposes of reducing the memory bandwidth required
for sampling of the texture during rendering. This is because due to a fixed read request size from the GPU, the
memory controller load is the same as for an uncompressed texture.

18.25 Drawing objects from near to far if possible

Drawing objects from near to far normally has better performance because the objects in the near foreground
can block entire or partial objects in the background. Most GPUs have early Z rejection logic to reject the pixels
that fail a Z compare. The GPU can skip fragment shader computations on these rejected pixels.

18.26 Avoiding indexed triangle strips

Index triangle strips can usually maximize the vertex cache utilization as each set of vertex data can be used in

two triangles. There is however an errata in the GC2000 and GC880 GPUs which requires a SW conversion of

indexed triangle strips to triangle lists in the driver. For small strips the conversion overhead is negligible, but for
large geometries a different primitive type should be used.

18.27 Limiting vertex attribute stride within 256 bytes

Most Vivante GPUs provide native support for a 256 byte vertex attribute stride. If the vertex attribute stride is
larger than 256 bytes, then the driver has to copy the vertex data around. Hardware versions v55 and higher
(such as the GC7000L v55) support a 2048 byte vertex attribute stride as required in the OES3.1 spec.

18.28 Avoiding binding buffers to mixed index/vertex array

Most of Vivante GPUs do not natively support mixed index/vertex arrays. So the Vivante driver must copy the
index and vertex data around to form separate vertex data streams for the GPU. Avoid mixing index and vertex
data so the driver does not have to incur a performance hit while performing this task.

18.29 Avoiding using CPU to update texture/buffer contexts during render

Do not use the CPU to update texture/buffer contexts in the middle of rendering. Using the CPU to update
texture/buffer causes the rendering pipeline to flush and stall, so that CPU can safely update the buffer
contents. The pipeline flush/stall/resume causes significant performance impact.

18.30 Avoiding frequent context switching

Context switch is an inherently expensive operation as many GPU states need to be reset to start a new
rendering context. Thus, frequent context switching has a negative impact on application performance.

18.31 Optimizing resources within a shader

Most GPUs have optimal support for a limited amount of resources (uniforms, varying, etc.). Using resources
beyond the optimal working set causes the GPU to fetch/store resources from a lower performance memory
pool and shader performance is negatively impacted.

18.32 Avoiding using glScissor Clear for small regions

glScissor Clear for small regions (less than 16x8 aligned window) fall back to CPU so the performance is not
optimal.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback
150 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

18.33 Using PRE to accelerate data transfer

PRE is an optimized hardware that can transform tiled format image to linear framebuffer. With PRE, GPU can
only output tiled render target and has no need to resolve it. To enable the PRE feature, set the environment
GPU_VIV_EXT_RESOLVE variable to 1; otherwise, set it to 0. Its default value on the FB backend is 1, which
means PRE is enabled by default on FB.

Warning:

VG use cases can only output the linear format image. It is impossible to render linear and tiled format target

to the same framebuffer at the same time. Therefore, when running 3D use cases with PRE and VG use cases
together, there is garbage on the display. Besides, when running 3D use cases with PRE, the framebuffer
format is changed from linear to tiled. It is the user’s responsibility to convert the format back after the use cases
end, or the display is abnormal when showing the FB console.

18.34 i.MX 8QuadMax dual-GPU performance

For some legacy applications with small texture/rendering size and less shader complex, dual-GPU
performance may become worse than single GPU mode, because the driver needs to take more CPU effort for
dual-GPU programming, and the driver overhead is more significant than GPU load in the hardware pipeline.

For such kind of legacy case, the users can single-GPU to achieve better performance on the i.MX 8 QuadMax.

19 Demo Framework

For detailed information, see the following links.

Introduction: https://github.com/nxp-imx/gtec-demo-framework/tree/6.3.1

Build guides:

* Yocto: https://github.com/nxp-imx/gtec-demo-framework/blob/6.3.1/Doc/Setup_guide_yocto.md

 Ubuntu: https://github.com/nxp-imx/gtec-demo-framework/blob/6.3.1/Doc/Setup_guide ubuntu22.04.md

* Windows: https://github.com/nxp-imx/gtec-demo-framework/blob/6.3.1/Doc/Setup_guide_windows.md

* Android https://github.com/nxp-imx/gtec-demo-framework/blob/6.3.1/Doc/Setup_guide android_sdk
+ndk_on_windows.md

» Contributing: https://github.com/nxp-imx/gtec-demo-framework/blob/6.3.1/CONTRIBUTING.md

* Known issues: https://github.com/nxp-imx/gtec-demo-framework/blob/6.3.1/Knownlssues.md

» Additional documentation: https://github.com/nxp-imx/gtec-demo-framework/tree/6.3.1/Doc

20 Environment Variables Summary

The table below lists the environment variables (ENV) available in the GPU drivers.

The use of most environment variables remains static from driver version to driver version, but sometimes these
variables need refinements to meet new, advanced conditions not present with the ENV initially introduced.

20.1 Environment variable for drivers and HAL

Table 46. Environment variables for drivers and HAL

ENV name Backends supported Note

FB_IGNORE_DISPLAY_ FB/WLD 0: Clip window to device display size. 1: Do not clip window
SIZE to the device limits for width and height.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.
User guide Rev. 10.3 — 26 June 2025 Document feedback

151/159

https://github.com/nxp-imx/gtec-demo-framework/tree/6.3.1
https://github.com/nxp-imx/gtec-demo-framework/blob/6.3.1/Doc/Setup_guide_yocto.md
https://github.com/nxp-imx/gtec-demo-framework/blob/6.3.1/Doc/Setup_guide_ubuntu22.04.md
https://github.com/nxp-imx/gtec-demo-framework/blob/6.3.1/Doc/Setup_guide_windows.md
https://github.com/nxp-imx/gtec-demo-framework/blob/6.3.1/Doc/Setup_guide_android_sdk+ndk_on_windows.md
https://github.com/nxp-imx/gtec-demo-framework/blob/6.3.1/Doc/Setup_guide_android_sdk+ndk_on_windows.md
https://github.com/nxp-imx/gtec-demo-framework/blob/6.3.1/CONTRIBUTING.md
https://github.com/nxp-imx/gtec-demo-framework/blob/6.3.1/KnownIssues.md
https://github.com/nxp-imx/gtec-demo-framework/tree/6.3.1/Doc
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

i.MX Graphics User's Guide

Table 46. Environment variables for drivers and HAL...continued

ENV name

Backends supported

Note

FB_MULTI_BUFFER

FB/WLD

Number of backend buffers of the framebuffer device. For
WLD, define the multibuffer number of Weston.

FB_FRAMEBUFFER_N FB/WLD Define the Nth framebuffer device.
FB_LEGACY FB If board doesn’t support drm-fb, ignore this variable.
0: GPU render through drm
1: GPU directly render to framebuffer.
VG_APITIME FB/WLD/X11 Enable VG API function execution time print.
VIV_MGPU_AFFINITY FB/WLD/X11 Control the multiple GPUs affinity configuration.
Possible value:
¢ Not defined or defined as "0" GPUs work in GPU_
COMBINED mode.
¢ 1:0 GPUs work in GPU_INDEPEDNENT mode, GPUOQ is
used.
¢ 1:1 GPUs work in GPU_INDEPEDNENT mode, GPU1 is
used.

VIV_DEBUG FB/WLD/X11 Define the user debug message level
(-MSG_LEVEL: ERROR/WARNING).

VIV_FBO_PREFER_MEM FB/WLD/X11 Renderbuffer is not freed after colorbuffer detaches from
FBO (GL ES 2.0)

VIV_DISABLE_HZ FB/WLD/X11 This variable can be specifically enabled for i.mx6d/q to
avoid gpu hang with occlusion query in ES30, because of
gpu hardware problem HBN1246

GPU_VIV_EXT_RESOLVE |FB/WLD/X11 Enable the external resolve mode (1 by default for FB).

GPU_VIV_DISABLE_ FB/WLD/X11 Disable supertiled texture (64x64 tiled texture is not used).

SUPERTILED_TEXTURE

GPU_VIV_DISABLE_ FB/WLD/X11 Enable clear buffer when a new Window surface is created.

CLEAR_FB

GPU_VIV_WL_MULTI_ WLD Define the client multibuffer number.

BUFFER

WL_EGL_SYNC_SWAP WLD 0: Use asynchronous swap for better performance by
default.

1: Enable synchronous swap with some performance
impact.

DRI_IGNORE_DISPLAY_ X1 0: Clip window to device display size. 1: Do not clip window

SIZE/ to the device limits for width and height.

X_IGNORE_DISPLAY_SIZE

__GL_DEV_FB X11 Set the path for framebuffer device like /dev/fb0.

LIBGL_ALWAYS_INDIRECT |X11 Make OGL go into indirect mode. All rendering is done by
XserverSet.

LIBGL_DEBUG X11 Print error messages to stderr if LIBGL_DEBUG env var is
set. Print information messages to stderr if LIBGL_DEBUG
env var is set to “verbose”.

VIV_PROFILE vProfiler Enable profiler. Different level results generate different
results.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 10.3 — 26 June 2025 Document feedback

152/159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors U G1 01 59

i.MX Graphics User's Guide

Table 46. Environment variables for drivers and HAL...continued

ENV name Backends supported Note

VP_COUNTER_FILTER vProfiler Used to control profile different system resource like
memory/CPU time usage.

VP_FRAME_END vProfiler When VIV_PROFILE=3, specify the frame to end profiling
with vProfiler.

VP_FRAME_NUM vProfiler When VIV_PROFILE=1, used to specify the number of
frames dumped by vProfiler.

VP_FRAME_START vProfiler When VIV_PROFILE=3, specify the frame to start profiling
with vProfiler.

VP_OUTPUT vProfiler Specify the output file name of vProfiler (default is
vprofiler.vpd).

VP_PROCESS_NAME vProfiler Choose profiler enable process (This option is only available
for Android platform, not available for Linux OS).

VP_SYNC_MODE vProfiler Enable [1] or disable [0] the synchronous mode of vProfiler
(default is synchronous enabled).

VP_USE_GLFINISH vProfiler Use glFinish as the frameEnd.

VIV_TRACE vTracer Enable tracer. Different levels could generate different logs.

20.2 Environment variable for compiler

Table 47. Environment variables for compiler

ENV NAME Compiler |Note
VC_DUMP_SHADER_SOURCE |GLSLC/ Enable dumping the shader source code.
VSC

21 Note About the Source Code in the Document

Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2025 NXP Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS I1S" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN

ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide Rev. 10.3 — 26 June 2025 Document feedback
1563 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

22 Revision History

i.MX Graphics User's Guide

Revision history

Document ID

Release date

Description

UG10159 v.10.3 26 June 2025 Updated Section 17.5 and Section 15.1.7.

UG10159 v.10.2 31 March 2025 Updated Section 15.1.7.4.

UG10159 v.10.1 16 December 2024 | Updated Section 11, Section 13, and Section 15.

UG10159 v.10 30 September Updated G2D API, Mali Valhall GPU, added OpenCV, RDP

2024 Backend, i.MX 95 GPU frequency scaling, removed gpuinfo
tool, etc.
UG10159 v.9.1 9 August 2024 Removed the subsections from Section 19 and added with

reference links.
Updated the document ID.

IMXGRAPHICUG_9

28 June 2024

Updated the Document ID according to the new convention.

IMXGRAPHICUG v.9

29 March 2024

Added Section "Mali Valhall GPU" and updated some
section titles from "i.MX" to "Vivante".

IMXGRAPHICUG v.8.6

15 December 2023

Updated Figure 1 "GPU Scalability across i.MX processors".

IMXGRAPHICUG v.8.5.1

06/2023

Minor updates for the LF6.1.22_2.0.0 release.

IMXGRAPHICUG v.8.5 03/2023 Updated the OpenCL and Vivante IDE information.

IMXGRAPHICUG v.8.4.1 12/2022 Updated the VivantelDE package name in Section 13.3.1.

IMXGRAPHICUG v.8.4 10/2022 Some minor updates for the android-12.1.0_1.0.0 release.

IMXGRAPHICUG v.8.3 09/2022 Updated Figure 1 and published the document in the new
template.

IMXGRAPHICUG v.8.2 03/2022 Updated the back page (Legal information).

IMXGRAPHICUG v.8.2 10/2021 Added the i.MX 8ULP information to Section 1.1.

IMXGRAPHICUG v.8.1 09/2021 Removed the Section "Designing framework of OpenVX",
and made minor updates for the Linux LF5.10.52_2.1.0
release.

IMXGRAPHICUG v.8 06/2021 Updated for the Linux LF5.10.35_2.0.0 and android-11.0.0_
1.2.1 releases.

IMXGRAPHICUG v.7.1 03/2021 Updated Section 13.5.4 “Enabling vProfiler on Linux” as v
Profiler no longer requires kernel module parameter, and
made abundant changes to context description.

IMXGRAPHICUG v.7 12/2020 Updated for the Linux L5.4.70_2.3.0, android-11.0.0_1.0.0,
and later release.

IMXGRAPHICUG v.6 06/2020 Updated for the Linux L5.4.24-2.1.0 and later release.

IMXGRAPHICUG v.5 04/2020 Updated for the Linux L5.4.3_2.0.0 and android-10.0.0_2.1.
0 releases.

IMXGRAPHICUG v.4 11/2019 Updated the Vivante IDE information.

IMXGRAPHICUG v.3 08/2019 Added the i.MX 8M Nano information.

IMXGRAPHICUG v.2 06/2019 Made some grammatical updates.

IMXGRAPHICUG v.1 11/2018 Updated Chapter "OpenCL" with more precise information

and also covered latest i.MX products.

UG10159

All information provided in this document is subject to legal disclaimers.

© 2025 NXP B.V. All rights reserved.

User guide

Rev. 10.3 — 26 June 2025

Document feedback
154 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

Legal information

i.MX Graphics User's Guide

Definitions

Draft — A draft status on a document indicates that the content is still
under internal review and subject to formal approval, which may result
in modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included in a draft version of a document and shall have no
liability for the consequences of use of such information.

Disclaimers

Limited warranty and liability — Information in this document is believed
to be accurate and reliable. However, NXP Semiconductors does not give
any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to

make changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s own
risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP
Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default

in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all
necessary testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications
and the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

UG10159

All information provided in this document is subject to legal disclaimers.

Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at https://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Suitability for use in non-automotive qualified products — Unless

this document expressly states that this specific NXP Semiconductors
product is automotive qualified, the product is not suitable for automotive
use. It is neither qualified nor tested in accordance with automotive testing
or application requirements. NXP Semiconductors accepts no liability for
inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.

In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards,
customer (a) shall use the product without NXP Semiconductors’ warranty
of the product for such automotive applications, use and specifications, and
(b) whenever customer uses the product for automotive applications beyond
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

HTML publications — An HTML version, if available, of this document is
provided as a courtesy. Definitive information is contained in the applicable
document in PDF format. If there is a discrepancy between the HTML
document and the PDF document, the PDF document has priority.

Translations — A non-English (translated) version of a document, including
the legal information in that document, is for reference only. The English
version shall prevail in case of any discrepancy between the translated and
English versions.

Security — Customer understands that all NXP products may be subject to
unidentified vulnerabilities or may support established security standards or
specifications with known limitations. Customer is responsible for the design
and operation of its applications and products throughout their lifecycles

to reduce the effect of these vulnerabilities on customer’s applications

and products. Customer’s responsibility also extends to other open and/or
proprietary technologies supported by NXP products for use in customer’s
applications. NXP accepts no liability for any vulnerability. Customer should
regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules,
regulations, and standards of the intended application and make the
ultimate design decisions regarding its products and is solely responsible
for compliance with all legal, regulatory, and security related requirements
concerning its products, regardless of any information or support that may be
provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable
at PSIRT@nxp.com) that manages the investigation, reporting, and solution
release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute
or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and

trademarks are the property of their respective owners.
NXP — wordmark and logo are trademarks of NXP B.V.

© 2025 NXP B.V. All rights reserved.

User guide

Rev. 10.3 — 26 June 2025

Document feedback
155/159

mailto:PSIRT@nxp.com
https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

i.MX Graphics User's Guide

Contents
1 Introduction ... 2 3 Vivante EGL and OGL Extension
1.1 LMX full GPU liN€ovvviieiieieieeeeeeeeeeeieees 2 SUPPOIt ... ————- 22
2 IMX G2D API .. 2 3.1 Introductioncooiiii 22
2.1 OVEIVIEW ...t 2 3.2 EGL extension supportcccccveeeeieieeeeeeenennn. 22
2.2 Enumerations and structuresccccuune 3 3.3 OpenGL ES extension supportccccunnnne 26
2.2.1 g2d_format enumerationccccoeiiiiiiennne 3 34 Extension GL_VIV_direct_texture 34
2.2.2 g2d_blend_func enumerationcccccceeee. 4 3.4.1 New Procedures and Functions 35
2.2.3 g2d_cap_mode enumerationccccccoeeeeennn. 4 3.5 Extension GL_VIV_texture border_clamp 37
224 g2d_rotation enumerationcccceiiiiiiienn. 5 4 Vivante Framebuffer APIcccciiieeiirnneee 38
2.2.5 g2d_cache_mode enumeration 5 4.1 OVEIVIEW ...ttt 38
2.2.6 g2d_hardware_type enumeration 5 4.2 API data types and environment variables 39
227 g2d_surface structureccocceeiiiiiienie. 5 421 Data typesooeiiiiiiiee e 39
228 g2d_buf structureccccoeiiiiiiii 7 422 Environment variablesccccocoi. 39
2.2.9 g2d_surface_pair structureccocceeeeiiieeenn. 7 4.3 API description and syntaxcccccceeeiiieeennn. 40
2.2.10 g2d_feature enumerationccccoeiiiieeiennne. 7 5 (0] < T= 1 0 I SRR 46
221 g2d_tiling enumerationccccoiiiiiiiiinen. 8 51 OVEIVIEW ...t 46
2.2.12 g2d_surfaceEx structure ..., 8 5.1.1 General descriptionccccceeeeeeeiiiiiiiiiciiienes 46
2.2.13 g2d_warp_map_format enumeration 8 51.2 OpenCL frameworkcccceeeeeeeeeiiiiiiiiiinienes 47
2.2.14 g2d_warp_coordinates structure 9 5.1.21 OpenCL execution model: kernels and work
2.3 G2D function descriptionccccccoeeiiiiiiiiinnnns 9 elements ... 47
2.3.1 G2d_OPEN ..ot 9 5.1.2.2 OpenCL command QUEUEScccvvrrrveeeennn.. 48
23.2 02d_ClOSE ... 9 5.1.2.3 OpenCL memory modelccccoocoeereeniiiiinnann. 49
2.3.3 g2d_make_currentccccooiiiiiiiieiiee e 10 5.1.2.4 Host to Vivante compute device data
234 92d_Clearccueeieeiie e 10 transfers ... 50
2.35 92d_Dblit e 10 51.3 OpenCL profilescoeeveeeeeiiiiiiiiiiieeeeee 51
2.3.6 [o 1o I o1] o)V 10 514 Vivante OpenCL embedded compatible IP 51
2.3.7 02d_QUETIY_CAP weeeeeeiiiieeeaeiiiee e e e e 11 515 Vivante OpenCL full profile hardware model52
2.3.8 g2d_enable ... 11 52 Vivante OpenCL implementation 53
2.3.9 g2d_disable ... 11 521 OpenCL pipelingccccvveveeieieieeeeeeeee e 53
2.3.10 g2d_cache_0p ...cccceeiiiiiiie e 11 522 Frontend ..., 54
2.3.11 92d_alloC .. 12 523 OpenCL compute unitcccceeeeeeiiiiiiiiiiiiienes 54
2.3.12 02d_free .eeeeeeiieee e 12 524 Memory hierarchycccoiiiiiiiiiiiiee, 55
2.3.13 92d_flushoooii 12 525 CL Extension supportccccceeeeeeeeeeeeeeeieieinn, 55
2.3.14 92d_finisSh ..o 12 5.2.5.1 CL_DEVICE_EXTENSION support 55
2.3.15 g2d_multi_blit ... 12 5.25.2 Vivante OpenCL extension support 56
2.3.16 g2d_query_hardwareccoccieiiiiiiieeeee, 13 5.3 Optimization for OpenCL embedded profile 57
2.3.17 g2d_query_featurecccociiiiiiiiiiiniee, 13 5.3.1 Using preferred multiple of work-group size57
2.3.18 G2d_DBIItEX cooeieiiiee e 14 53.2 Using multiple work-groups of reduced size 57
2.3.19 g2d_set_clippingeoeeeiiiiiieee e 14 5.3.3 Packing work-item dataccccoocoiini. 57
2.3.20 g2d_set_csc_matrixXcccoeiiiiiiiiiiieee e, 14 534 Improving localitycccoocciiiiiieeee 58
2.3.21 g2d_buf from_fdccooiiiii 14 5.3.5 Minimizing use of 1 KB local memory 58
2.3.22 g2d_buf_export_fdccccoiiiiiiii 15 5.3.6 Using 16 byte memory Read/Write size 58
2.3.23 g2d_buf_from_virt_addroccooiiiiiis 15 5.3.7 Using _RTZ rounding modeccccoceeeennne 58
2.3.24 g2d_create_fence fdcccooiiiiiiiiiiii, 15 5.3.8 Using float4 for better performance on i.MX
2.3.25 g2d_set_warp_coordinatesccccceeceeeeneenn. 15 8M Quad and i.MX 8QuadXPlus 58
24 Support of new operating system in G2D 16 5.3.9 Using native functionsc.cccccoiiiiiiiinnnis 58
25 Sample code for G2D APl usage 16 5.3.9.1 Using native_function() for increased
2.5.1 Color space conversion from YUV to RGB 16 Performancecccccccvieiiieiieeee e 58
252 Alpha blend in source over mode 17 5.3.9.2 Using native_divide and native_reciprocal
253 Source cropping and destination rotation 17 for faster floating point calculations 59
254 Multi source blit ... 18 5.3.9.3 Using compile option for native functions 59
255 Sharing Buffers between APIs using G2D 5.3.10 Using buffers instead of images 59
BUFfers: ... 18 5.4 OpenCL Debug messagesccccccueeeeeenennnn. 59
256 Warp/DeWarpcocoocceeeeeaiiiiieeaeeeeeea e 19 541 OCL-007005: (clCreateKernel) cannot link
2.6 Feature list on multiple platforms 21 KEMMNEI oo 59
2.7 Arbitrary Warping ..o 21 54.2 Not enough register memorycccoccoeee. 60
UG10159 All information provided in this document is subject to legal disclaimers. © 2025 NXP B.V. All rights reserved.

User guide

Rev. 10.3 — 26 June 2025

Document feedback
156 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

543
54.4
5.5
5.6

6

6.1
6.2
6.3
6.3.1
6.3.2
6.4

6.4.1
6.4.2
6.4.2.1
6.4.2.2
6.4.2.3
6.4.2.4
6.4.2.5
6.4.2.6
6.4.2.7
6.4.2.8
6.4.2.9
6.4.2.10
6.4.2.11
6.4.2.12
6.4.2.13
6.4.2.14
6.4.2.15
6.4.2.16
6.4.2.17
6.4.2.18
6.4.2.19
6.4.2.20
6.4.2.21
6.4.2.22
6.4.2.23
6.4.2.24
6.4.2.25
6.4.2.26
6.4.2.27
6.4.2.28
6.5

7

71
7.2
7.21
722
723
724
7.2.5
7.2.6
7.3

7.3.1
7.3.2
7.3.3

UG10159

Not enough instruction memory
GlobalWorkSize over hardware limit
ZEIO COPY evveeireeeireiesieeeniree e st e st e e nineeeanee e
Instruction cache availability for i.MX

graphics
(01671 4 103V
OVEIVIEW ..ottt
Acceleration with OpenCLcccccooveeiiieenne
Usages of OpenCV Accelerator
How to enable/disable OpenCV Accelerator
Requirementsccccviiiiiinieceee e
OpenCV functions accelerated with

OpenCL
OpenCV function listccccceeiiiiiiieiiieeee
Conditions to use the accelerator
pyruP
warpPerspectiveccocviiiiiiiiii
WarpPAFfiNeoooviiii e
match Templatecccoocoeiiiiiiiniieee,
resize
Threshold
Sobel
filter2D
mMOrphologyEX ..o
erode
dilate
GaussianBIuUrcccociiiiiii e
BIUF e
SQrBOXFIlteroveieiiee
remap
Laplacian
SCRAIT e
SEPFIter2Doooiiiiiiieee e
CalCHISt ..
ACCUMUIALEveeiiiiiiiiie e
accumulateProductcccccoeeiiiiiiiiiiieeees
accumulateWeightedccooeiiiiiniiceien,
cornerMinEigenVal
COMMErHAITIS ..evviiiiiiiiii e
preCornerDetectccooviiiiiiiiiiie e
HOUGhLINESoooiiiiiiiieeee e
HoughLinesP
goodFeaturesToTrackccccceevvcviereeiiciineennn.
Performance differences of OpenCV on

Arm GPU and VSI GPUccoeeviieeeieee.
OpenVX Introductioncccccemireiiccenrncccnnens
OVEIVIEW ...eiiiiieiiiiee et
OpenVX extension implementation
Hardware requirementsc.cccccoceeeeeinnen..
EVIS instruction interfaceccccceeviiinenn.
Extended language featuresccccveeeennne
Packed typescccceiiiiiiiieiie e
Initializing constants on loadcccccecveeenneen.
Inline assemblycccooiiiiiiiin
OpenCL functions compatible with Vivante
vision
Read_Imagef,iuiccoocviiiiiiiiiieeree
Write_Imagef,i,uiccoooriiiiiii,
Query Image DIimensionsc.ccccceeeeveeennee.

All information provided in this document is subject to legal disclaimers.

734
7.3.5

8.1
8.2
8.3

9.1

9.2

9.3

9.4

9.5

10

10.1

11

1.1
1.2
1.3
11.3.1
11.3.1.1
11.3.2
11.3.2.1
11.3.2.2
11.3.3
11.3.3.1
11.3.3.2
11.3.3.3
12

13

13.1
13.2
13.3
13.3.1
14

14.1
14.1.1
14.2
14.2.1
14.2.2
14.2.3
14.3
14.3.1
14.3.2
14.3.2.1
14.3.2.2
14.3.2.3
14.3.3
14.3.3.1
14.3.3.2
14.3.3.3
14.3.3.4
14.4
14.4.1
14.4.2
14.4.3
14.4.4
14.4.5

i.MX Graphics User's Guide

Channel Data Types Supportedcccueee. 78
Image Channel Orders Supported 79
Vulkan

Overview

Vulkan Validation Layerscccccocoeeviinrennnen.

Window System Integration
Vivante Multiple GPUs and Virtualization 80

OVEIVIEW ...t 80
Multi-GPU configurationsc.cccccoeieeiineennn 80
GPU affinity configurationcccocceeiiinnns 81
OpenCL on multi-GPU devicecccceeen...e. 81
GPU virtualization configuration 81
GBM - Generic Buffer Management 82
Introduction to DRM Format Modifiers 82
Wayland and Westonccccevviniineniiinnnnnns 83
OVEIVIEW ...eiiiiieiiiiie et 83
Wayland EGLcccooiiiiiiiiiiic e, 83
Weston compositorcccevvviiiiiiiiieeiiieene 83
Weston backendscccocceiiiiiiiiiineccne, 83
RDP backendccccoiiiiiiiiiie e 83
Weston renderercccovvviiieniiieiiiee e 83
GL reNAEreroooiiiiieeeeiee et 83
G2D rendererccoooeeiiieeeiee e 84
Weston shells ... 84
Desktop shell ..o 84
Fullscreen shellcccoooiiiiiiiii e 84
IVI-Shell .o 84
X Windowing Accelerationccccceiieenne 84
Advanced GPU Configurationccccceenuee 85
GPU Scaling Governorccccoceeeiieeeneeeenne 85
GPU Device COoOoliNGcceverveerniiiinieeenieenns 85
i.MX 95 GPU frequency scalingcccccouuee.. 85
simple_ondemand governorcc.ccccceeuuee.. 86
Vivante IDE ... 86
VivantelDE overviewcccccccvviiiiiiiineenens 86
VivantelDE component overview 86
VivantelDE Requirementscccocvvviieeinnenn. 87
Operating system compatibility 87
Hardware requirementsccccccoveeeninnennen. 87
VivantelDE licenseccoccoevviiiiiiiiiieeeee 87
VivantelDE installationc.ccccooviiiniiiinnen. 88
VivantelDE packagecccccvoiviniiiiniiccnneenne 88
Installationccocviiiiiiiii e 88
LinuX GUI e 88
WiIndows GUIcoceviiiiiiiiiiiieee e 88
Installation from command line 89
VivantelDE launchcccoociiiiiiiiinin 89
Linux launch of GUI toolcccoceeiiiiviiiiennne 89
Windows launch of GUI toolccccceeeiieene 89
Command line tool launchccccoocieiiinnne 89
Basic launch path summarycccoceenen. 89
VivantelDE GUIccocceeiiiiiiiieiiceeeeee 90
Selecting a workspacecccceveeeinieienieeenne 90
Switching perspective ..., 91
Creating @ new projectccoccevvieeeniencnnen. 91
Creating an OpenVX kernel wizard 92
Source code smart editing for OpenVX and

OPENCL .o 94

© 2025 NXP B.V. All rights reserved.

User guide

Rev. 10.3 — 26 June 2025

Document feedback
157 /1159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

14.4.6 Creating a Neural Network Inference

Project from a model filec.ccccoooiiieiiiis 95
14.4.7 Building a sample projectccccceeevieennnn. 101
14.4.8 Debugging and profiling a project 104
14.5 VivantelDE — Debug and Profiling 105
14.5.1 Fundamentals of performance optimization ... 105
14.5.2 VPD Analyzer for Analyzing Performance

Data .o 106
14.5.3 VPIOfIler ...coiiiiiiii 106
14.5.4 Enabling vProfiler on Linux OS 106
14.5.4.1 Setting vProfiler property options for

OpenGL ES ... 106
14.5.5 Setting vProfiler property options for Vision,

OpenVX Profilingccccveriieiiiiiiiiec e, 106
14.5.6 Enabling vProfiler Option for Android OS 107
145.7 Setting vProfiler property options for

OpenGL ES Profiling with Android 107
14.5.8 vProfiler Set Property Options for Vision/

OVX Profiling with Androidccccoeceernineen. 108
14.5.9 Enabling vProfiler Option for QNX 109
14.5.9.1 Setting vProfiler Environment Variables for

OGL/OES Profilingcocoveviiiiiiiieiieeeiieeens 109
14.5.9.2 Setting vProfiler Environment Variables for

Vision, OpenVX Profilingcccocovvvieiennen. 110
14.5.10 Environment Variable Detailsc........... 110
14.5.10.1 VIV_PROFILEccoiiiiiiiiieiee e 110
14.5.10.2 VP_OUTPUT ...oooiiiiiiiirit e 111
14.5.10.3 VP_USE_GLFINISHccoovviiiiiiiiieeee 111
14.5.10.4 VP_DISABLE_PROBEcccceviiiiieiienne 111
14.5.10.5 VP_ENABLE_PRINTccooiiiiiieiiieieee 111
14.6 VPD ANAIYZETooviiiiiiiiiiiesee e 111
14.6.1 Loading a VPD Filecccccoeeviiiiiiieiiceeeee, 112
14.6.2 VPD Analyzer Perspectivecccccevverennnen. 113
14.6.3 System Info VIEWccooiiiiiiiiiiiiee 114
14.6.4 Program Counters VIiewcccccceviieeiiieenns 115
14.6.5 Closing the VPD Fileccccoiiiiiiiiniiecen. 115
14.7 SPIR-V Disassemblerccccooiinieiiniieennne 115
14.7.1 Shader Assistantccccceiiiiiniinee 116
14.7.2 VTEXEUIE .o 116
14.8 VivanteIDE command line tools 118
14.8.1 Preparing the environmentc.coceeee 118
14.8.2 vCompiler Command Line Syntax for OGL

and OGLES ... 118
14.8.2.1 SYNEAX .eoviiiiieiiiie e s 118
14.8.2.2 Input parameters (required)c.ccocoeeernerene 118
14.8.2.3 Input parameters (optional)cccevceeerneenne 118
14.8.2.4 vCompilerOutputcceeviiiiiiiiiiieeeees 120
14.8.2.5 vCompiler Syntax examplesc.ccccuernee. 120
14.8.3 vcCompiler Command Line Syntax for OCL .. 120
14.8.3.1 SYNEAX .ooviiiiieiiiie e 120
14.8.3.2 Input parameters (required)ccocoeevinerene 120
14.8.3.3 Input parameters (optional)ccccevceeerneenne 121
14.8.3.4 vcCompiler Outputcoceeeviiiiiiiieeeees 122
14.8.3.5 vcCompiler Syntax Examplescccccocueeenee 122
14.8.4 vTextureTools command line tool 122
14.8.4.1 SYNEAX .ooviiiiieiieiie e 122
14.8.4.2 General parameterscccccceeveeiieeinienennee 122
14.8.4.3 Compression/Decompression parameters 123
14.8.4.4 Tile/De-Tile parametersccccevvverivecninnenn. 123
UG10159

All information provided in this document is subject to legal disclaimers.

14.8.4.5
15

15.1
15.1.1
15.1.2
15.1.3
15.1.4
15.1.41
15.1.4.2
15.1.5
15.1.5.1
15.1.5.2
15.1.5.3
15.1.6
15.1.6.1
15.1.6.2
15.1.7
15.1.71
15.1.7.2
15.1.7.3
15.1.7.4
15.1.7.5
15.1.7.6
15.1.8
15.1.9
15.2
15.3
15.3.1
15.3.2
15.3.2.1
15.3.2.2
15.3.3
15.3.3.1
15.3.3.2

15.3.3.3
15.3.34
15.3.4
15.4
15.4.1
15.4.2
154.3
15.4.4
16
16.1
16.2
16.3
16.4
16.5
17
17.1
17.2
17.3
17.4
17.5
17.5.1
17.5.2
17.6

i.MX Graphics User's Guide

vTexture Syntax Examplesc.ccoceeerneenn. 124
(€7 24 U 1o Yo £ 125
gPUtoP 00! ...ooiiiiiiiii 125
SYNOPSIS oot 125
Interactive modeoccvviiiiiiiiiiiiiees 125
Descriptioncceeiiiiii e 126
Requirementsccocoviiiiinii 126
LINUX OS ..o 126
QINX e 126
NOEES oo 126
Sampling hardware-countersc.......... 126
Context-aware countersccccevveeeiienenns 126
Unsupported GPUSccocciviiieiiiieeeiieeee 127
Pages for VSI GPUSccociiiiiiiiiiiiiiees 127
Client attached pageccccoeviiiiniecinnen. 127
Vidmem pagecccceevveeinieiiiiee e 127
Pages for Mali GPUccccociiiiiiineieen, 127
Page0: Main Pagecccceviiiiieiiiecee 128
Page1: GPU INFOccccooiiiiiiieieeeee 128
Page2: Kernel Memory Usagecc..... 128
Page3: PID-Based Process Memory Usage .. 128
Page4: GPU Core Utilizationcccc....... 129
Pageb: Perf DDR Memory Bandwidth 129
EXamplescccoovieiiiiii e 129
S€€ AlSO ..o 130
GPU clock information and debugging 130
Apitrace user guidecccocceeiiiiiieninieens 130
INtroductioncooviiiiiiii 130
Install ... 130
YOCIO it 130
PC 131
USBE .ot 131
Trace OpenGL ES1.1/2.0/3.0 application 131
Trace OpenGL ES 1.1/2.0/3.0 Java

application on the Android platform 131
Trace OpenGL applicationccccceeveeeennnen. 131
REPIAY ...ooiiiiiiii 131
Referenceccccooveiiiiiiii e, 135
Renderdocccoveeiiiiiinie 135
Renderdoc componentsccccoceeeeiniennnen. 135
Running renderdoccmd on i.MX 136
Capturing and replaying remotely 137
Referencecccoooveieiiiiii e, 138
VSI GPU Memory Introduction 139
VS| GPU memory OVErviewccccoecueeennee. 139
VS| GPU memory pooISccccceevveeeneerennnen. 139
VS| GPU memory allocatorsccccceevneeene 139
VS| GPU reserved memoryccccoveeeeninenn. 140
VS| GPU memory base address 140
Mali Valhall GPUccooiiiirrirreeree 141
Featurescccoiveiiiiiii e 141
Mali Shader offline Compilercccevneee. 142
Mali OpenCL Offline Compilercccceeenee. 142
Capture the GLES application with patrace ... 143
Arm Performance Studiocccoceeeiinnenne 143
Tools included in Arm Performance Studio 143
Streamline offline capturecccoeeiinie 144
References and Useful linksccccceenneen. 144

© 2025 NXP B.V. All rights reserved.

User guide

Rev. 10.3 — 26 June 2025

Document feedback
158 /159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

NXP Semiconductors

UG10159

18

18.1

18.2

18.3
18.4
18.5
18.6
18.7

18.8
18.9

18.10

18.11

18.12
18.13

18.14

18.15

18.16

18.17
18.18

18.19
18.20

18.21
18.22
18.23
18.24

18.25
18.26
18.27
18.28
18.29
18.30
18.31
18.32

18.33
18.34

Application Programming

Recommendationscccccmrriiiceenniicinnens 145
Understanding the system configuration
and target applicationcccoccvivieiiiinnennn. 145

Optimizing off-chip data transfer such as
accessing off-chip DDR memory/mobile

DDR MEMOIY oottt 145
Avoiding W-clipping issue in the application
PrOGramcevieieiiiieee et 145
Avoiding GPU hanging and data corruption

when using occlusion queryccccceevneeen. 146
Avoiding random cache or memory access ... 146
Optimizing your use of system memory 146
Targeting a fixed frame rate that is visibly

SMOOLN ..oiiiiiii e 146
Minimizing GL state changescccco...c... 146
Batch primitives to minimize the number of

draw CallSooccveiiiiiiii 147
Performing calculations per vertex instead

of per fragment/pixelccccoviiiiiiiiininn 147
Enabling early-Z, hierarchical-Z, and back

face cullingcccoeviieiiiii 147
Using branching carefullyccccceviinnnn. 147
Using VBOs instead of static or stack data

as vertex data ... 147
Using dynamic VBO when the data is

changing frame by framecccccociiiiens 148
Tessellating your data to make Hierarchical

Z (HZ) WOTK oot 148
Using dynamic textures as a texture cache
(texture atlas)ccocceeeviieeiiic 148
Stiching small triangle strips together 149
Specifying EGL configuration attributes

PreCiSElY ..ovviiiiiiiee e 149
Using aligned texture/render buffers 149
Disabling MSAA rendering unless high

quality is neededccceviiiiiiiiii 149
Avoiding partial clearsccccoeeeineiiniinns 149
Avoiding mask operationscccccceeriineennne 149
Using MIPMAP texturesccccooveieeieene 149
Using compressed textures if constricted by
RAM/ROM budgetccoceviiieniiiiiieereeniene 149
Drawing objects from near to far if possible ... 150
Avoiding indexed triangle stripscccueee. 150
Limiting vertex attribute stride within 256

DYIES oo 150
Avoiding binding buffers to mixed index/

VEMEX @rTAY ..oeeeiiviiiee e 150
Avoiding using CPU to update texture/

buffer contexts during rendercc......... 150
Avoiding frequent context switching 150
Optimizing resources within a shader 150
Avoiding using glScissor Clear for small

FEJIONS .eiiiiie ettt ettt 150
Using PRE to accelerate data transfer 151

i.MX 8QuadMax dual-GPU performance 151

19
20
201
20.2
21

22

i.MX Graphics User's Guide

Demo Frameworkccccooomiiriceicereeeceeenn 151
Environment Variables Summary 151
Environment variable for drivers and HAL 151
Environment variable for compiler 153
Note About the Source Code in the

Documentcoooceccmmriieere e 153
Revision Historyccccvciniininienncienniineen 154
Legal informationcccccciniininieenniieninnns 155

Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section 'Legal information'.

© 2025 NXP B.V.

For more information, please visit: https://www.nxp.com

All rights reserved.

Document feedback

Date of release: 26 June 2025
Document identifier: UG10159

https://www.nxp.com/pages/technical-documentation-feedback:WF-TECHNICAL-DOCUMENTATION-FEEDBACK?tid=pdfwf_UG10159

	1 Introduction
	1.1 i.MX full GPU line

	2 i.MX G2D API
	2.1 Overview
	2.2 Enumerations and structures
	2.2.1 g2d_format enumeration
	2.2.2 g2d_blend_func enumeration
	2.2.3 g2d_cap_mode enumeration
	2.2.4 g2d_rotation enumeration
	2.2.5 g2d_cache_mode enumeration
	2.2.6 g2d_hardware_type enumeration
	2.2.7 g2d_surface structure
	2.2.8 g2d_buf structure
	2.2.9 g2d_surface_pair structure
	2.2.10 g2d_feature enumeration
	2.2.11 g2d_tiling enumeration
	2.2.12 g2d_surfaceEx structure
	2.2.13 g2d_warp_map_format enumeration
	2.2.14 g2d_warp_coordinates structure

	2.3 G2D function description
	2.3.1 g2d_open
	2.3.2 g2d_close
	2.3.3 g2d_make_current
	2.3.4 g2d_clear
	2.3.5 g2d_blit
	2.3.6 g2d_copy
	2.3.7 g2d_query_cap
	2.3.8 g2d_enable
	2.3.9 g2d_disable
	2.3.10 g2d_cache_op
	2.3.11 g2d_alloc
	2.3.12 g2d_free
	2.3.13 g2d_flush
	2.3.14 g2d_finish
	2.3.15 g2d_multi_blit
	2.3.16 g2d_query_hardware
	2.3.17 g2d_query_feature
	2.3.18 g2d_blitEx
	2.3.19 g2d_set_clipping
	2.3.20 g2d_set_csc_matrix
	2.3.21 g2d_buf_from_fd
	2.3.22 g2d_buf_export_fd
	2.3.23 g2d_buf_from_virt_addr
	2.3.24 g2d_create_fence_fd
	2.3.25 g2d_set_warp_coordinates

	2.4 Support of new operating system in G2D
	2.5 Sample code for G2D API usage
	2.5.1 Color space conversion from YUV to RGB
	2.5.2 Alpha blend in source over mode
	2.5.3 Source cropping and destination rotation
	2.5.4 Multi source blit
	2.5.5 Sharing Buffers between APIs using G2D Buffers:
	2.5.6 Warp/Dewarp

	2.6 Feature list on multiple platforms
	2.7 Arbitrary Warping

	3 Vivante EGL and OGL Extension Support
	3.1 Introduction
	3.2 EGL extension support
	3.3 OpenGL ES extension support
	3.4 Extension GL_VIV_direct_texture
	3.4.1 New Procedures and Functions

	3.5 Extension GL_VIV_texture_border_clamp

	4 Vivante Framebuffer API
	4.1 Overview
	4.2 API data types and environment variables
	4.2.1 Data types
	4.2.2 Environment variables

	4.3 API description and syntax

	5 OpenCL
	5.1 Overview
	5.1.1 General description
	5.1.2 OpenCL framework
	5.1.2.1 OpenCL execution model: kernels and work elements
	5.1.2.2 OpenCL command queues
	5.1.2.3 OpenCL memory model
	5.1.2.4 Host to Vivante compute device data transfers

	5.1.3 OpenCL profiles
	5.1.4 Vivante OpenCL embedded compatible IP
	5.1.5 Vivante OpenCL full profile hardware model

	5.2 Vivante OpenCL implementation
	5.2.1 OpenCL pipeline
	5.2.2 Front end
	5.2.3 OpenCL compute unit
	5.2.4 Memory hierarchy
	5.2.5 CL Extension support
	5.2.5.1 CL_DEVICE_EXTENSION support
	5.2.5.2 Vivante OpenCL extension support

	5.3 Optimization for OpenCL embedded profile
	5.3.1 Using preferred multiple of work-group size
	5.3.2 Using multiple work-groups of reduced size
	5.3.3 Packing work-item data
	5.3.4 Improving locality
	5.3.5 Minimizing use of 1 KB local memory
	5.3.6 Using 16 byte memory Read/Write size
	5.3.7 Using _RTZ rounding mode
	5.3.8 Using float4 for better performance on i.MX 8M Quad and i.MX 8QuadXPlus
	5.3.9 Using native functions
	5.3.9.1 Using native_function() for increased performance
	5.3.9.2 Using native_divide and native_reciprocal for faster floating point calculations
	5.3.9.3 Using compile option for native functions

	5.3.10 Using buffers instead of images

	5.4 OpenCL Debug messages
	5.4.1 OCL-007005: (clCreateKernel) cannot link kernel
	5.4.2 Not enough register memory
	5.4.3 Not enough instruction memory
	5.4.4 GlobalWorkSize over hardware limit

	5.5 Zero copy
	5.6 Instruction cache availability for i.MX graphics

	6 OpenCV
	6.1 Overview
	6.2 Acceleration with OpenCL
	6.3 Usages of OpenCV Accelerator
	6.3.1 How to enable/disable OpenCV Accelerator
	6.3.2 Requirements

	6.4 OpenCV functions accelerated with OpenCL
	6.4.1 OpenCV function list
	6.4.2 Conditions to use the accelerator
	6.4.2.1 pyrUP
	6.4.2.2 warpPerspective
	6.4.2.3 warpAffine
	6.4.2.4 match Template
	6.4.2.5 resize
	6.4.2.6 Threshold
	6.4.2.7 Sobel
	6.4.2.8 filter2D
	6.4.2.9 morphologyEX
	6.4.2.10 erode
	6.4.2.11 dilate
	6.4.2.12 GaussianBlur
	6.4.2.13 Blur
	6.4.2.14 sqrBoxFilter
	6.4.2.15 remap
	6.4.2.16 Laplacian
	6.4.2.17 Scharr
	6.4.2.18 sepFilter2D
	6.4.2.19 calcHist
	6.4.2.20 accumulate
	6.4.2.21 accumulateProduct
	6.4.2.22 accumulateWeighted
	6.4.2.23 cornerMinEigenVal
	6.4.2.24 cornerHarris
	6.4.2.25 preCornerDetect
	6.4.2.26 HoughLines
	6.4.2.27 HoughLinesP
	6.4.2.28 goodFeaturesToTrack

	6.5 Performance differences of OpenCV on Arm GPU and VSI GPU

	7 OpenVX Introduction
	7.1 Overview
	7.2 OpenVX extension implementation
	7.2.1 Hardware requirements
	7.2.2 EVIS instruction interface
	7.2.3 Extended language features
	7.2.4 Packed types
	7.2.5 Initializing constants on load
	7.2.6 Inline assembly

	7.3 OpenCL functions compatible with Vivante vision
	7.3.1 Read_Imagef,i,ui
	7.3.2 Write_Imagef,i,ui
	7.3.3 Query Image Dimensions
	7.3.4 Channel Data Types Supported
	7.3.5 Image Channel Orders Supported

	8 Vulkan
	8.1 Overview
	8.2 Vulkan Validation Layers
	8.3 Window System Integration

	9 Vivante Multiple GPUs and Virtualization
	9.1 Overview
	9.2 Multi-GPU configurations
	9.3 GPU affinity configuration
	9.4 OpenCL on multi-GPU device
	9.5 GPU virtualization configuration

	10 GBM - Generic Buffer Management
	10.1 Introduction to DRM Format Modifiers

	11 Wayland and Weston
	11.1 Overview
	11.2 Wayland EGL
	11.3 Weston compositor
	11.3.1 Weston backends
	11.3.1.1 RDP backend

	11.3.2 Weston renderer
	11.3.2.1 GL renderer
	11.3.2.2 G2D renderer

	11.3.3 Weston shells
	11.3.3.1 Desktop shell
	11.3.3.2 Fullscreen shell
	11.3.3.3 IVI-shell

	12 X Windowing Acceleration
	13 Advanced GPU Configuration
	13.1 GPU Scaling Governor
	13.2 GPU Device Cooling
	13.3 i.MX 95 GPU frequency scaling
	13.3.1 simple_ondemand governor

	14 Vivante IDE
	14.1 VivanteIDE overview
	14.1.1 VivanteIDE component overview

	14.2 VivanteIDE Requirements
	14.2.1 Operating system compatibility
	14.2.2 Hardware requirements
	14.2.3 VivanteIDE license

	14.3 VivanteIDE installation
	14.3.1 VivanteIDE package
	14.3.2 Installation
	14.3.2.1 Linux GUI
	14.3.2.2 Windows GUI
	14.3.2.3 Installation from command line

	14.3.3 VivanteIDE launch
	14.3.3.1 Linux launch of GUI tool
	14.3.3.2 Windows launch of GUI tool
	14.3.3.3 Command line tool launch
	14.3.3.4 Basic launch path summary

	14.4 VivanteIDE GUI
	14.4.1 Selecting a workspace
	14.4.2 Switching perspective
	14.4.3 Creating a new project
	14.4.4 Creating an OpenVX kernel wizard
	14.4.5 Source code smart editing for OpenVX and OpenCL
	14.4.6 Creating a Neural Network Inference Project from a model file
	14.4.7 Building a sample project
	14.4.8 Debugging and profiling a project

	14.5 VivanteIDE – Debug and Profiling
	14.5.1 Fundamentals of performance optimization
	14.5.2 VPD Analyzer for Analyzing Performance Data
	14.5.3 vProfiler
	14.5.4 Enabling vProfiler on Linux OS
	14.5.4.1 Setting vProfiler property options for OpenGL ES

	14.5.5 Setting vProfiler property options for Vision, OpenVX Profiling
	14.5.6 Enabling vProfiler Option for Android OS
	14.5.7 Setting vProfiler property options for OpenGL ES Profiling with Android
	14.5.8 vProfiler Set Property Options for Vision/OVX Profiling with Android
	14.5.9 Enabling vProfiler Option for QNX
	14.5.9.1 Setting vProfiler Environment Variables for OGL/OES Profiling
	14.5.9.2 Setting vProfiler Environment Variables for Vision, OpenVX Profiling

	14.5.10 Environment Variable Details
	14.5.10.1 VIV_PROFILE
	14.5.10.2 VP_OUTPUT
	14.5.10.3 VP_USE_GLFINISH
	14.5.10.4 VP_DISABLE_PROBE
	14.5.10.5 VP_ENABLE_PRINT

	14.6 VPD Analyzer
	14.6.1 Loading a VPD File
	14.6.2 VPD Analyzer Perspective
	14.6.3 System Info View
	14.6.4 Program Counters View
	14.6.5 Closing the VPD File

	14.7 SPIR-V Disassembler
	14.7.1 Shader Assistant
	14.7.2 vTexture

	14.8 VivanteIDE command line tools
	14.8.1 Preparing the environment
	14.8.2 vCompiler Command Line Syntax for OGL and OGLES
	14.8.2.1 Syntax
	14.8.2.2 Input parameters (required)
	14.8.2.3 Input parameters (optional)
	14.8.2.4 vCompilerOutput
	14.8.2.5 vCompiler Syntax examples

	14.8.3 vcCompiler Command Line Syntax for OCL
	14.8.3.1 Syntax
	14.8.3.2 Input parameters (required)
	14.8.3.3 Input parameters (optional)
	14.8.3.4 vcCompiler Output
	14.8.3.5 vcCompiler Syntax Examples

	14.8.4 vTextureTools command line tool
	14.8.4.1 Syntax
	14.8.4.2 General parameters
	14.8.4.3 Compression/Decompression parameters
	14.8.4.4 Tile/De-Tile parameters
	14.8.4.5 vTexture Syntax Examples

	15 GPU Tools
	15.1 gputop tool
	15.1.1 Synopsis
	15.1.2 Interactive mode
	15.1.3 Description
	15.1.4 Requirements
	15.1.4.1 Linux OS
	15.1.4.2 QNX

	15.1.5 Notes
	15.1.5.1 Sampling hardware-counters
	15.1.5.2 Context-aware counters
	15.1.5.3 Unsupported GPUs

	15.1.6 Pages for VSI GPUs
	15.1.6.1 Client attached page
	15.1.6.2 Vidmem page

	15.1.7 Pages for Mali GPU
	15.1.7.1 Page0: Main Page
	15.1.7.2 Page1: GPU INFO
	15.1.7.3 Page2: Kernel Memory Usage
	15.1.7.4 Page3: PID-Based Process Memory Usage
	15.1.7.5 Page4: GPU Core Utilization
	15.1.7.6 Page5: Perf DDR Memory Bandwidth

	15.1.8 Examples
	15.1.9 See Also

	15.2 GPU clock information and debugging
	15.3 Apitrace user guide
	15.3.1 Introduction
	15.3.2 Install
	15.3.2.1 Yocto
	15.3.2.2 PC

	15.3.3 Usage
	15.3.3.1 Trace OpenGL ES1.1/2.0/3.0 application
	15.3.3.2 Trace OpenGL ES 1.1/2.0/3.0 Java application on the Android platform
	15.3.3.3 Trace OpenGL application
	15.3.3.4 Replay
	15.3.3.4.1 Analysis

	15.3.4 Reference

	15.4 Renderdoc
	15.4.1 Renderdoc components
	15.4.2 Running renderdoccmd on i.MX
	15.4.3 Capturing and replaying remotely
	15.4.4 Reference

	16 VSI GPU Memory Introduction
	16.1 VSI GPU memory overview
	16.2 VSI GPU memory pools
	16.3 VSI GPU memory allocators
	16.4 VSI GPU reserved memory
	16.5 VSI GPU memory base address

	17 Mali Valhall GPU
	17.1 Features
	17.2 Mali Shader offline Compiler
	17.3 Mali OpenCL Offline Compiler
	17.4 Capture the GLES application with patrace
	17.5 Arm Performance Studio
	17.5.1 Tools included in Arm Performance Studio
	17.5.2 Streamline offline capture

	17.6 References and Useful links

	18 Application Programming Recommendations
	18.1 Understanding the system configuration and target application
	18.2 Optimizing off-chip data transfer such as accessing off-chip DDR memory/mobile DDR memory
	18.3 Avoiding W-clipping issue in the application program
	18.4 Avoiding GPU hanging and data corruption when using occlusion query
	18.5 Avoiding random cache or memory access
	18.6 Optimizing your use of system memory
	18.7 Targeting a fixed frame rate that is visibly smooth
	18.8 Minimizing GL state changes
	18.9 Batch primitives to minimize the number of draw calls
	18.10 Performing calculations per vertex instead of per fragment/pixel
	18.11 Enabling early-Z, hierarchical-Z, and back face culling
	18.12 Using branching carefully
	18.13 Using VBOs instead of static or stack data as vertex data
	18.14 Using dynamic VBO when the data is changing frame by frame
	18.15 Tessellating your data to make Hierarchical Z (HZ) work
	18.16 Using dynamic textures as a texture cache (texture atlas)
	18.17 Stiching small triangle strips together
	18.18 Specifying EGL configuration attributes precisely
	18.19 Using aligned texture/render buffers
	18.20 Disabling MSAA rendering unless high quality is needed
	18.21 Avoiding partial clears
	18.22 Avoiding mask operations
	18.23 Using MIPMAP textures
	18.24 Using compressed textures if constricted by RAM/ROM budget
	18.25 Drawing objects from near to far if possible
	18.26 Avoiding indexed triangle strips
	18.27 Limiting vertex attribute stride within 256 bytes
	18.28 Avoiding binding buffers to mixed index/vertex array
	18.29 Avoiding using CPU to update texture/buffer contexts during render
	18.30 Avoiding frequent context switching
	18.31 Optimizing resources within a shader
	18.32 Avoiding using glScissor Clear for small regions
	18.33 Using PRE to accelerate data transfer
	18.34 i.MX 8QuadMax dual-GPU performance

	19 Demo Framework
	20 Environment Variables Summary
	20.1 Environment variable for drivers and HAL
	20.2 Environment variable for compiler

	21 Note About the Source Code in the Document
	22 Revision History
	Legal information
	Contents

