How to protect your firmware against malicious attacks using the latest Kinetis development board

April 25, 2017

IoT and Security Solutions
Agenda

• IoT Phishing: “I have a bad feeling about this…”
• Applying a security model
• NXP Kinetis MCU solution
 – Kinetis K28F MCU
 – mbed TLS
 – KBOOT
• Overview of methods
• Development steps
• Key management options
• Resources and next steps
IoT: Phishing with Edge Nodes
Driving Internet of Things (IoT) Innovation

Society | Data centers | Vehicle

Cities | Transactions
Phishing with IoT Edge Node Lures – A new attack vector to prepare for.

• By now, people from all walks of life are aware of email phishing scams that are used to inject malware onto personal computing devices.
• But what about a phishing attack that uses an IoT edge node as a lure?
• How can this happen?

End node that has been tampered with to contain malicious firmware

User acceptance and provisioning of the device with secret data

Attacker access to network interfaces leading to additional breaches or dDoS
2

Applying a Security Model
Begin with a Security Model

Policies

• The rules in place that identify the data that should be protected
 • For example
 • The management of firmware, secret keys, user and application data
 • Passwords, personal information, network credentials

Threat landscape

• The definition of the attacks and attackers that the end device will face and protect against
 • Considers the access to the device, and cost of the attack
 • For example
 • Expert attackers who will use off the shelf tools to gain access and insert malware

Methods

• The means by which the policies for the device are enforced
 • Involves the application of security technology to achieve product goals
 • For example
 • Protecting secret keys with tamper response using the Kinetis MCU anti-tamper
A Security Model | Methods

Security Technology: Hardware View

Methods

- **Crypto Acceleration**
 - ‘mmCAU’, for low-end Kinetis
 - ‘LTC’, for high-end Kinetis
 - ‘CAAM’ for i.MX

- **Trusted Execution**
 - ARM TrustZone®
 - ‘Secure boot’
 - ‘RTIC’ (Runtime Integrity Checker)
 - Secure debug
 - Secure storage
 - Resource domain isolation (MPU, FAC)

- **Tamper Resistance**
 - Erases secrets at tamper detect
 - Active and passive tampers

Policies

- Only authenticated firmware should be executed

Threat Landscape

- Physical access to the device communication ports
Security Technology | Secure Boot System View

Authenticated Application code

Unchangeable Boot Code

Cryptography Stack
Code Confidentiality and/or Authentication

Bootloader
Boot interfaces, Command parser, Memory programming

SDK Low Level Drivers
Trusted configurations for chip firewalls and interfaces for protection of resources

Hardware providing physical & logical security
MCU features for trust, crypto and anti-tamper

Manufacturing
Development Tool chain, Key management, Code Signing tools

Deployment
Application tool chain, Host programmer

RTOS
Middleware
SDK

Trusted Execution
Crypto Acceleration
Tamper-resistance
NXP Kinetis MCU Solution
Kinetis K27/K28 USB MCUs

Industry's Largest Embedded SRAM Memory on ARM® Cortex®-M4-based MCU, Optimized for Portable Devices

Largest Embedded SRAM
- 1MB of embedded SRAM plus 2MB of Flash memory to enable longer battery life and richer graphics in portable display applications

Lower System Power
- 150 MHz Kinetis MCU enables advanced integration in battery-operated applications

Advanced Integration
- Reduces system board footprint required by wearables and other low-end graphic display systems

Complete Enablement
- Low-cost FRDM-K28F development platform, optional 5" LCD display board with capacitive touch from MikroElektronika, MCUXpresso software and tools
Kinetis K27F/K28F HW and SW Enablement Plan

<table>
<thead>
<tr>
<th>K28F</th>
<th>BASELINE SW ENABLEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>HW BOARD</td>
<td>IDE: • MCUXPresso IDE • IAR • KEIL</td>
</tr>
<tr>
<td></td>
<td>RTOS: • FreeRTOS Bare metal (no RTOS)</td>
</tr>
<tr>
<td>FRDM-K28F</td>
<td>Kinetics Expert: • Power Estimator tool • Pin Configuration tool • Clock Configuration tool • Peripheral configuration tool</td>
</tr>
<tr>
<td></td>
<td>MCUXPresso SDK 2.x</td>
</tr>
</tbody>
</table>

ADDS-ON

<table>
<thead>
<tr>
<th>OPTIONAL FEATURES</th>
<th>HW BOARDS</th>
<th>SW ENABLEMENT</th>
<th>BORAD CONNECTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLE</td>
<td>FRDM-KW41Z BLE stack running on KW41Z</td>
<td>Kinetics SDK 2.x + IAR + FreeRTOS</td>
<td>Arduino (UART)</td>
</tr>
<tr>
<td>WI-FI</td>
<td>Arrow GT202 Wi-Fi stack running on QCA4002</td>
<td>QCA4002 Wi-Fi drivers to be ported to Kinetics SDK 2.x</td>
<td>Arduino (UART)</td>
</tr>
<tr>
<td>THREAD</td>
<td>FRDM-KW24D512 or FRDM-KW41Z SW Stack running on KWx wireless SoC</td>
<td>Kinetics SDK 2.x (TBD) + FreeRTOS + IAR + NXP Thread SW SDK</td>
<td>Arduino (UART)</td>
</tr>
<tr>
<td>LCD DISPLAY</td>
<td>MikroElectronika 5’ LCD display + capacitive touch connected through FlexIO interface (8080 and/or 6800 modes)</td>
<td>MCUXPresso SDK 2.x + MicroEJ (3rd party) SW support + emWIN (3rd party) SW support</td>
<td>FlexIO</td>
</tr>
<tr>
<td>SENSOR</td>
<td>FRDM-STBC-AGM01 (Sensor Fusion) 9-axis inertial measurement solution: 3-axis Gyro, 3D Accelero + Magneto</td>
<td>Kinetics SDK 2.x (TBD) + FreeRTOS/Bare Metal + Sensing SDK 1.0</td>
<td>Arduino (I2C / SPI)</td>
</tr>
<tr>
<td>AUDIO</td>
<td>ARD-AUDIO-DA7212 2-channel audio codec w/ capless headphone driver and 3.5mm stereo AUX input jack socket</td>
<td>Kinetics SDK 2.x (TBD)</td>
<td>Arduino (I2S)</td>
</tr>
<tr>
<td>HOMEKIT & MFI</td>
<td>FRDM-TWRPI + TWRPI-I2C* MFi Adaptor boards</td>
<td>NXP HomeKit SDK 1.x + Kinetics SDK 1.3 + FreeRTOS + IDE (IAR or KDS)</td>
<td>Arduino (I2C)</td>
</tr>
</tbody>
</table>

FRDM-K28F

Low-cost evaluation platform for K27F/K28F family with on-board discrete power management, Accelerometer, SDRAM memory, QuadSPI Serial Flash, USB High-Speed connector and Full-Speed USB OpenSDA

Target resale price: $40

[Image of FRDM-K28F board]

IDE: • MCUXPresso IDE • IAR • KEIL

RTOS: • FreeRTOS Bare metal (no RTOS)

Kinetics Expert:
- Power Estimator tool
- Pin Configuration tool
- Clock Configuration tool
- Peripheral configuration tool

MCUXPresso SDK 2.x
Security Technology | System view : Hardware

Authenticated Application code

Unchangeable Boot Code

Cryptography Stack
- Code Confidentiality and/or Authentication

Bootloader
- Boot interfaces, Command parser, Memory programming

SDK Low Level Drivers
- Trusted configurations for chip firewalls and interfaces for protection of resources

Kinetis K28F
- Hardware Features: Flash Security, Flash Block Protection, HW acceleration for SHA256 and AES, TRNG

Manufacturing
Development Tool chain, Key management, Code Signing tools

Deployment
Application tool chain, Host programmer

RTOS
Middleware
SDK
Kinetis Low Power 32-bit MCs Based on ARM® Cortex®-M Cores

- **Kinetis K Series**: Performance and Integration
 - Cortex-M4-based MCUs
 - Broad scalability and compatibility
 - 50-180 MHz
 - 32 KB-2 MB Flash
 - Up to 1 MB SRAM
 - Floating-point unit, security, analog, and serial interfaces

- **Kinetis E Series**: 5 V / Robust
 - Cortex-M0+/M4 MCUs

- **Kinetis EA Series**: Automotive
 - Cortex-M0+ based MCUs

- **Kinetis MINI MCUs**: Miniature chip-scale packages
 - World’s smallest ARM-based MCUs

- **Kinetis L Series**: Ultra-Low Power
 - Cortex-M0+-based MCUs

- **Kinetis V Series**: Real-time control; Motor and Power Conversion
 - Cortex-M0+/M4/M7 cores

- **Kinetis M Series**: Metrology
 - Cortex-M0+ core

- **Kinetis W Series**: Wireless Connectivity
 - Cortex-M0+/M4 cores
Kinetis Security Technology | Essential Hardware Features

• Flash security and protection features are found on all Kinetis devices

• **Security features**
 - Kinetis offers several levels of flash security
 - Flash security is a system-level feature
 ▪ The flash is fully functional when secured (firmware updates are still possible if resident firmware is setup to program the flash)
 ▪ Security effects are really a system level concern. The security setting determines what the SoC will allow.
 - **Software IP is a large investment. Enabling security helps to protect that IP investment.**

• **Protection features**
 - Flash protection can be used to prevent erase or programming
 - Initial protection values are loaded from the flash configuration field at reset
Flash Block Protections to Protect Boot Code

Unchangeable Boot Code

Cryptography Stack
Code Confidentiality and/or Authentication

Bootloader
Boot interfaces, Command parser, Memory programming

SDK Low Level Drivers
Trusted configurations for chip firewalls and interfaces for protection of resources

0x0000_0000
Program Flash size / 32
FPROT3[PROT0]

Program Flash size / 32
FPROT3[PROT1]

Program Flash size / 32
FPROT3[PROT2]

Program Flash size / 32
FPROT0[PROT30]

Program Flash size / 32
FPROT0[PROT31]
Security Technology | System View: SDK & Toolchain

Authenticated Application code

Unchangeable Boot Code
- Cryptography Stack: Code Confidentiality and/or Authentication
- Bootloader: Boot interfaces, Command parser, Memory programming

MCUXpresso SDK

Kinetis K28F
Hardware Features: Flash Security, Flash Block Protection, HW acceleration for SHA256 and AES, TRNG

Manufacturing
MCUXpresso IDE, Key management, Code Signing tools

Deployment
Application tool chain, Host programmer

RTOS
Middleware
SDK
Tool Chain and Software

MCUXpresso Software and Tools for Kinetis and LPC microcontrollers

MCUXpresso IDE
Edit, compile, debug and optimize in an intuitive and powerful IDE

MCUXpresso SDK
Runtime software including peripheral drivers, middleware, RTOS, demos and more

MCUXpresso Config Tools
Online and desktop tool suite for system configuration and optimization

Feature-rich, unlimited code size, optimized for ease-of-use, based on industry standard Eclipse framework for NXP’s Kinetis and LPC MCUs

Application development with Eclipse and GCC-based IDE for advanced editing, compiling and debugging

Supports custom development boards, Freedom, Tower and LPCXpresso boards with debug probes from NXP, P&E and Segger

Free Edition: Full Featured, unlimited Code Size, no special activation needed, community based support
Pro Edition: Email IDE support, Advanced Trace Features

Available now!
Tool Chain and Software

MCUXpresso Software and Tools
for Kinetis and LPC microcontrollers

Architecture:
- CMSIS-CORE compatible
- Single driver for each peripheral
- Transactional APIs w/ optional DMA support for communication peripherals

Integrated RTOS:
- FreeRTOS v9
- RTOS-native driver wrappers

Integrated Stacks and Middleware
- USB Host, Device and OTG
- lwIP, FatFS
- Crypto acceleration plus wolfSSL & mbedTLS
- SD and eMMC card support

MCUXpresso IDE
Edit, compile, debug and optimize in an intuitive and powerful IDE

Available now!

MCUXpresso SDK
Runtime software including peripheral drivers, middleware, RTOS, demos and more

Available now!

MCUXpresso Config Tools
Online and desktop tool suite for system configuration and optimization

Available now!
Security Technology | System View: Cryptography Stack

Authenticated Application code

Unchangeable Boot Code

mbed TLS
Public Key/Private Key Generation, Signature Generation & Verification

Bootloader
Boot interfaces, Command parser, Memory programming

MCUXpresso SDK

Kinetis K28F
Hardware Features: Flash Security, Flash Block Protection, HW acceleration for SHA256 and AES, TRNG

Manufacturing
MCUXpresso IDE, Key management, Code Signing tools

Deployment
Application tool chain, Host programmer

SDK
RTOS
Middleware

Deployment
Application tool chain, Host programmer

Manufacturing
MCUXpresso IDE, Key management, Code Signing tools

RTOS
Middleware
SDK
Support For Use of HW Accelerators with mbed TLS
mbed TLS (formerly known as PolarSSL) makes it trivially easy for developers to include cryptographic and SSL/TLS capabilities in their (embedded) products, facilitating this functionality with a minimal coding footprint.

Easy to use
mbed TLS offers an SSL library with an intuitive API and readable source code, so you can actually understand what the code does. Also the mbed TLS modules are as loosely coupled as possible and written in the portable C language. This allows you to use the parts you need, without having to include the total library. Read more

Easy to get
mbed TLS is available as open source under the Apache 2.0 license, the GPL 2.0 license or under an mbed partnership. The Apache 2.0 license enables you to use mbed TLS in both open source and closed source projects. Read more

Support
- Knowledge Base
- Support Forum
- Direct e-mail
SSL/TLS communication
- Secured communication framework

TCP/IP communication
- Provides internet communication

Data encryption/decryption
- Symmetric cipher protocols: AES, ARCFOUR, Blowfish, Camellia, 128DES, XTEA.

Key exchange

X.509 certificate handling
- Certificate parsing, generation and verification

Hashing/HMAC generation
- One-way hashing functions: MD2, MD4, MD5 (128-bit), SHA-1, SHA-224/SHA-256, SHA-384/SHA-512 (160-bit)

Random number generation
- Random number generation using CTR-CRNG algorithm, Entropy pool and collector

Public key protocols:
- Diffie-Hellman-Merkle (D-HM), Elliptic Curve Diffie-Hellman-Merkle (EC-D-HM), ECCDSA, Elliptic Curves and RSA

Application

Generate public key pair
- Generate a public/private key pair

Parse a private key
- Parse a public/private key pair from file or buffer

Encrypt a message

Decrypt a message

Sign a message

Verify a signature

Exchange keys

This is actually the calculation of a master secret (key), it is a sequence of events known as an Elliptic Curve Diffie-Hellman-Merkle key exchange.
Elliptic Curve Cryptography (ECC)

mbed TLS has its own big number library for its ECC implementation and supports both Elliptic Curve Ephemeral Diffie Hellman (ECDHE) and ECDSA. The following standardized curves / ECP groups are supported:

- secp192r1 - 192-bits NIST curve
- secp224r1 - 224-bits NIST curve
- secp256r1 - 256-bits NIST curve
- secp384r1 - 384-bits NIST curve
- secp521r1 - 521-bits NIST curve
- secp192k1 - 192-bits Koblitz curve
- secp224k1 - 224-bits Koblitz curve
- secp256k1 - 256-bits Koblitz curve
- bp256r1 - 256-bits Brainpool curve
- bp384r1 - 384-bits Brainpool curve
- bp512r1 - 512-bits Brainpool curve
- m255 - 255-bits Curve25519

Scalable Security Level
Align to HW Capabilities & Security levels
mbed TLS file Structure Allows Lightweight Implementations

Unchangeable Boot Code

- mbed TLS
 - Public Key/Private Key Generation, Signature Generation & Verification
- Bootloader
 - Boot interfaces, Command parser, Memory programming

MCUXpresso SDK
Security Technology | System View: Bootloader and Tools

Authenticated Application code

Unchangeable Boot Code

KBOOT
Boot interfaces, Command parser, Memory programming

mbed TLS
Public Key/Private Key Generation, Signature Generation & Verification

MCUXpresso SDK

Kinetis K28F
Hardware Features: Flash Security, Flash Block Protection, HW acceleration for SHA256 and AES, TRNG

RTOS
Middleware
SDK

Manufacturing
MCUXpresso IDE, Key management, Code Signing tools (Kinetis hardware with KBOOT and host tools)

Deployment
Application tool chain, Host programmer

Deployment
Application tool chain, Host programmer
KBOOT: Kinetis Bootloader

HOST TOOLS: Kinetis Flash Tool, blhost, elftosb, Kinetis MCU Host
The Elftosb and blhost tool is command line driven and can be separately built to run on Windows® OS, Linux® OS, and Apple Mac® OS.
KBOOT Definitions and Use

- **BD file**: Short for boot descriptor file. This is an input command file to be used by elftosb for created SB files
- **SB file**: Short for secure binary file. This is the output of elftosb which is used to pass commands and data to a Kinetis MCU running KBOOT
Overview of Methods
Using KBOOT for Signature Generation

- **Factory KBOOT application**
 - This bootloader application is for use in a secure manufacturing environment. The main security functions in addition to bootloader functions are to generate a PUB/PRIV key pair and to generate the signature for application code using the **private key**.

- **Production KBOOT application**
 - This bootloader application is for use in a deployed device. The main security functions in addition to bootloader functions are to check the signature of application code using the **public key**, and only allow execution of the application code if the signature is authentic.

HOST TOOLS: Kinetis Flash Tool, blhost, elftosb, Kinetis MCU Host

Production KBOOT HW
Overview of the Method

• Typical Application Development

• Final production image

Your IoT Application code

Manufacturing

KBOOT Public key

mbed TLS (Cryptography)

Your IoT application code

Signature

Protected Unchangeable
Overview of the Method

• Typical Application Development

KBOOT : Secure Boot
1) Always runs after chip reset and checks defined interfaces (ie. USB) for host connection to get new firmware
 • Application code authentication is applied before allowing application to run
 • Protected by chip HW mechanisms, can be made immutable

• Final production image
Overview of the Method

• Typical Application Development

0x0000_0000

1) mbed TLS

 Used to hash the application code space then to perform an ECDSA Verify using the signature provided by the firmware

0x0020_0000

• Final production image

0x0000_0000

KBOOT Public key

0x0000_8000

mbed TLS (Cryptography)

0x0000_FFFF

Your IoT application code

0x0001_0000

Signature

0x0020_0000
Overview of the Method

- Typical Application Development
 - Application Code Changes
 1) Only use internal flash after KBOOT (0xFFFF)
 2) Add Boot Configuration area to hold information for the bootloader

- Final production image
 - KBOOT Public key
 - mbed TLS (Cryptography)
 - Your IoT application code
 - Signature
Using KBOOT for Signature Generation

Your Secure manufacturing facility

Host PC with KBOOT tools

Elftosb

Factory SB

App SREC

Factory BD

K28F HW

for KBOOT

Production SB

Host PC with KBOOT tools

Elftosb

Host PC with KBOOT tools

Elftosb

Production BD

Host PC with KBOOT tools

Elftosb

Host PC with KBOOT tools

Elftosb

USB FS

Production KBOOT HW

USB FS

Signature

bin

PubKey

bin

USB FS

Host PC with
KBOOT tools

blhost

Signature

bin

PubKey

bin

Factory SB

blhost

USB FS

Production SB

Production KBOOT HW
Using KBOOT for Signature Generation

1) Application SREC is combined with Factory BD to create the Factory Secure Binary (Factory.SB)
Using KBOOT for Signature Generation

2) Using HW with the KBOOT Factory programmed, the Factory.sb is downloaded and blhost commands are used to generate binaries for signature and public keys.
Using KBOOT for Signature Generation

Your Secure manufacturing facility

Host PC with KBOOT tools

Elftosb

App SREC

Factory BD

Factory SB

USB FS

Key

Signature
bin

Host PC with KBOOT tools

Elftosb

App SREC

PubKey bin

Signature bin

Production BD

Host PC with KBOOT tools

Elftosb

Production SB

Production KBOOT HW

USB FS

K28F HW for KBOOT
Factory Application

3) Application SREC is combined with signature binary to make the Production secure binary
4) Production secure binary is used to program final hardware. One production secure binary is programmed to all units containing the same version of application srecord.
For updated application code the Pub/Priv key pair is not erased - this way the new signature that is generated uses the same key pair.
5

Development Steps
Overview of Development Steps for K28F KBOOT

1. Port KBOOT for K28F
 - Porting guidelines are provided in the KBOOT reference Manual Chapter 10
 - K66F is the starting point
 - File renaming and copying over from SDK of K28F
 - Account for HW differences
 - LPUART versus standard UART
2. Add mbed TLS support to KBOOT for cryptography
 - Add relevant files
 - SHA-256, ECC, ECDSA
3. Defines are used to use one application which can be configured for factory mode or production mode

• Development Environments
 - KDS is used for KBOOT development
 - Other tool chains are available and on the roadmap
 - Could be ported to MCUXpesso
 - PC with KBOOT tools is used for factory signing and initial provisioning
Overview of Development Steps for K28F Application

1. Application development changes when starting from K28F SDK
 - Update Linker File
 - Code must be placed after KBOOT
 - New range from 0x3C0 to 0x400 for BCA (boot config area)

• Development Environments
 - MCUXpresso with SDK
5

Key Management Options
Cryptography Key Table

<table>
<thead>
<tr>
<th>Key Name or Description</th>
<th>Key Type</th>
<th>Key Location(s)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Key Enc. Key</td>
<td>Simple Xor with key</td>
<td>Factory.bd text file (calls 2 parameter as simple private key enc key)</td>
<td>Used in SEC Kboot Factory to output the private key after encryption. (To improvement to use AES CBC enc this key.)</td>
</tr>
<tr>
<td>Private Key for KBOOT</td>
<td>ECDSA-BP256</td>
<td>On-chip flash 0x0003_f000 only at factory mode</td>
<td>RAM of SEC Boot Factory, encrypted and stored externally</td>
</tr>
<tr>
<td>Public Key for KBOOT</td>
<td>ECDSA-BP256</td>
<td>Included in the product bootloader image at compiling. No fixed address.</td>
<td>Exported to binary by factory bootloader, stored in production boot code</td>
</tr>
<tr>
<td>Signature of application firmware</td>
<td>SHA-256</td>
<td>On-chip flash 0x001F_ff80, after on chip application image.</td>
<td></td>
</tr>
</tbody>
</table>

Private key must be protected, and a secure manufacturing environment is needed.
A700X_FAMILY: Secure authentication microcontroller

Overview

The A700x family is a tamper resistant secure Micro Controller Unit (MCU) family using a dedicated security hardened MX51CPU. NXP Semiconductors has a long track record in security MCUs. NXP ICs have been used in all types of security applications such as bank cards, health insurance cards, electronic passports, and pay-TV cards. They have also been used as embedded secure element in mobile phones. The A700x family features a significantly enhanced secure microcontroller architecture. Extended instructions for Java and C code, linear addressing and high speed at low power are among many other improvements added to the classic 80C51 core architecture.
A700X with KBOOT

Before jumping to application code, the signature is verified using credentials provided by the A700x.

The A700x family is delivered with pre-programmed, die-specific keys and certificates which are being generated and programmed in a certified (Common Criteria) secure NXP internal environment.

NXP Semiconductors offers a pre-personalizations service where customer-specific initialization data can be preprogrammed. This data can be die-individual card manager keys, symmetric DES-or AES keys, random data, X509 certificates, RSA signing keys or any other constant data like application code.
6

Resources and Next Steps
MCUXpresso Config Tools

MCUXpresso Config Tools provides a set of system configuration tools that help users of all levels with a Kinetis or LPC-based MCU solution. Let it be your guide from first evaluation to production development.

- **Config Settings**: Specify optional middleware and environment settings for your configuration.
- **SDK Builder**: Generate a downloadable SDK archive for use with desktop MCUXpresso Tools.
- **Project Cloner**: Download an existing standalone SDK example project.

Downloading SDK with mbed TLS

SDK Builder
Generate a downloadable SDK archive for use with desktop MCUxpresso Tools

Current Configuration
- TWR-K22F-F5DM
- FRDM-K22F

Search by Name
- FRDM-K22F

Select a Device, Board, or Kit
- FRDM-K22F

Specify Additional Configuration Settings

Configuration Settings
- Select All
- Deselect All
- Middleware
- CMSIS DSP Library
- FatFS
- NTAG I2C
- USB stack
- emWin
- mbedTLS

3 items selected

SDK download, generated projects include:
- FatFS
- USB stack
- mbedTLS
- emWin
- CMSIS DSP Library
- NTAG I2C
- USB stack
- FatFS
- emWin
Extract the zip file to create NXP_Kinetis_Bootloader_2_0_0 and SDK for K28F
SLN-POS-RDR – Secure Card Reader Solution

Overview

The SLN-POS-RDR Point of Sale (POS) Reader Solution enables you to quickly add a PCI® and EMVCo® compliant PIN entry device (PED), NFC reader, chip card reader and magnetic stripe reader (MSR) to any design to enable credit card payment. Many companies are creating products today that would benefit from adding payment capabilities to the design. However, getting the necessary PCI and EMVCo certifications are a significant engineering and development barrier. This solution is pre-certified for EMVCo and PCI PTS standards to give companies confidence that they will have a high likelihood of passing certification the first time without the added expense of failing and resubmitting. In addition, all documentation, design files and software are provided to shave many months off your design time for a faster time-to-market.

Due to the sensitive security functions of this solution, we will need to verify a current and relevant NDA with your company before we can grant access to documents, design files and to place an order. Please click on the "Submit Request" button below to complete a quick form to start that process.

Features

- Chip-and-PIN keypad based on Cirque® SecureSense™ technology
- EMVCo Level 1 CT/CL stacks by NXP®
- EMVCo Level 2 CT/CL stacks by Cardtek
- EMVCo and PCI x Certification
 - EMVCo Pre-certification on Level 1 CT/CL by FIME
 - PCI 4.1 Pre-certification on the K81 performed by Infogard
 - PCI 4.1 PIN Entry Device (PED) Certification by Infogard
- Kinetics® K81 Secure MCU
 - Advanced physical tamper security
 - Advanced Public-key hardware w/ support for RSA and ECC
 - XIP from external Q-SPI flash w/ decrypt on the fly
- PN5180 contactless 13.56 MHz NFC front end IC
 - Dynamic Power Control for small antennae design
 - Full compliance with all NFC and EMVCo standards
- TDA8035 contact front end IC
 - 5V, 3V, 1.8V smart card supply
 - Very low power consumption in Deep Shutdown mode
Resources

- **AN4507**: “Using the Kinetis Security and Flash Protection Features”
- **AN5112**: “Using the Kinetis Flash Execute-only Access Control Feature”
- **AN4307**: “Using the mmCAU in Kinetis”
 - **AN4307SW**: Example software for AN4307
- **AN4733**: “Using the DryIce Tamper Detection Unit on Kinetis Microcontrollers” (available under NDA only)
Summary

• In today’s connected world, security is important for protecting you and your customers.

• Firmware must be protected to maintain the security of end devices and the data they generate

• NXP’s microcontrollers contain HW features and software enablements that can be integrated to strengthen your end device

Download MCUXpresso SDK for K28F and KBOOT today to secure your firmware!
NXP UNIQUELY POSITIONED TO DELIVER **SECURE SMART CONNECTED SOLUTIONS**

Security Technology

<table>
<thead>
<tr>
<th>Security Technology</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Identification</td>
<td>Device Identification</td>
</tr>
<tr>
<td>Certification</td>
<td>Compliance</td>
</tr>
<tr>
<td>Cryptography Acceleration</td>
<td>Network Security</td>
</tr>
<tr>
<td>NFC</td>
<td>RFID</td>
</tr>
<tr>
<td>Secure Boot</td>
<td>Secure Keys</td>
</tr>
<tr>
<td>Secure Memory</td>
<td>Secure Update</td>
</tr>
<tr>
<td>Trusted Execution Environments</td>
<td>Unique Chip Identity</td>
</tr>
</tbody>
</table>

Security Expertise

- E-Passport
- Mobile Transactions
- Banking

Smart Connected

- **SMART HOME**
- **SMART INDUSTRY**
- **SMART INFRASTRUCTURE**
- **WEARABLES**
- **SMART HEALTHCARE**