

MPCxxx Instruction Set
This chapter lists the MPCxxx instruction set in alphabetical order by mnemonic. Note that
each entry includes the instruction formats and a quick reference ‘legend’ that provides
such information as the level(s) of the PowerPC architecture in which the instruction may
be found—user instruction set architecture (UISA), virtual environment architecture
(VEA), and operating environment architecture (OEA); and the privilege level of the
instruction—user- or supervisor-level (an instruction is assumed to be user-level unless
the legend specifies that it is supervisor-level); and the instruction formats. The format
diagrams show, horizontally, all valid combinations of instruction fields.

Note that the architecture specification refers to user-level and supervisor-level as
problem state and privileged state, respectively.

Instruction Formats

Instructions are four bytes long and word-aligned, so when instruction addresses are
presented to the processor (as in branch instructions) the two low-order bits are ignored.
Similarly, whenever the processor develops an instruction address, its two low-order bits
are zero. Bits 0–5 always specify the primary opcode. Many instructions also have an
extended opcode. The remaining bits of the instruction contain one or more fields for the
different instruction formats.

Some instruction fields are reserved or must contain a predefined value as shown in the
individual instruction layouts. If a reserved field does not have all bits cleared, or if a field
that must contain a particular value does not contain that value, the instruction form is
invalid.

Split-Field Notation
Some instruction fields occupy more than one contiguous sequence of bits or occupy a
contiguous sequence of bits used in permuted order. Such a field is called a split field.
Split fields that represent the concatenation of the sequences from left to right are shown
in lowercase letters. These split fields— spr, and tbr—are described in Table 1.

Table 1. Split-Field Notation and Conventions

Field Description

spr (11–20) This field is used to specify a special-purpose register for the mtspr and mfspr instructions.

tbr (11–20) This field is used to specify either the time base lower (TBL) or time base upper (TBU).
Motorola MPCxxx INSTRUCTION SET 1

Split fields that represent the concatenation of the sequences in some order, which need
not be left to right (as described for each affected instruction) are shown in uppercase
letters. These split fields—MB, ME, and SH—are described in Table 2.

Instruction Fields
Table 2 describes the instruction fields used in the various instruction formats.

Table 2. Instruction Syntax Conventions

Field Description

 AA (30) Absolute address bit.
0 The immediate field represents an address relative to the current instruction address (CIA).

The effective (logical) address of the branch is either the sum of the LI field sign-extended to
32 bits and the address of the branch instruction or the sum of the BD field sign-extended to 32
bits and the address of the branch instruction.

1 The immediate field represents an absolute address. The effective address (EA) of the branch
is the LI field sign-extended to 32 bits or the BD field sign-extended to 32 bits.

Note: The LI and BD fields are sign-extended to 32.

BD (16–29) Immediate field specifying a 14-bit signed two's complement branch displacement that is
concatenated on the right with 0b00 and sign-extended to 32 bits.

BI (11–15) This field is used to specify a bit in the CR to be used as the condition of a branch conditional
instruction.

BO (6–10) This field is used to specify options for the branch conditional instructions.

crbA (11–15) This field is used to specify a bit in the CR to be used as a source.

crbB (16–20) This field is used to specify a bit in the CR to be used as a source.

CRM (12–19) This field mask is used to identify the CR fields that are to be updated by the mtcrf instruction.

d (16–31) Immediate field specifying a 16-bit signed two's complement integer that is sign-extended to 32
bits.

frC (21–25) NOT USED BY MPCxxx.

frD (6–10) NOT USED BY MPCxxx.

frS (6–10) NOT USED BY MPCxxx.

IMM (16–19) NOT USED BY MPCxxx.

LI (6–29) Immediate field specifying a 24-bit signed two's complement integer that is concatenated on the
right with 0b00 and sign-extended to 32 bits.

LK (31) Link bit.
0 Does not update the link register (LR).
1 Updates the LR. If the instruction is a branch instruction, the address of the instruction

following the branch instruction is placed into the LR.

MB (21–25) and
ME (26–30)

These fields are used in rotate instructions to specify a 32-bit mask.

NB (16–20) This field is used to specify the number of bytes to move in an immediate string load or store.

OE (21) This field is used for extended arithmetic to enable setting OV and SO in the XER.

OPCD (0–5) Primary opcode field
2 MPCxxx INSTRUCTION SET Motorola

Motorola MPCxxx INSTRUCTION SET

3

Notation and Conventions

The operation of some instructions is described by a semiformal language (pseudocode).
See Table 3 for a list of pseudocode notation and conventions used throughout this
chapter.

r

A

 (11–15) This field is used to specify a GPR to be used as a source or destination.

r

B

 (16–20) This field is used to specify a GPR to be used as a source.

Rc (31)

Record bi

t.
0 Does not update the condition register (CR).
1 Updates the CR to reflect the result of the operation.

For integer instructions, CR bits 0

–

2 are

set

 to reflect the result as a signed quantity and CR bit
3 receives a copy of the summary overflow bit, XER[SO]. The result as an unsigned quantity or
a bit string can be deduced from the EQ bit.

(Note that exceptions are referred to as interrupts in the architecture specification.)

r

D

 (6–10) This field is used to specify a GPR to be used as a destination.

r

S

 (6–10) This field is used to specify a GPR to be used as a source.

SH (16–20) This field is used to specify a shift amount.

SIMM (16–31) This immediate field is used to specify a 16-bit signed integer.

TO (6–10) This field is used to specify the conditions on which to trap.

UIMM (16–31) This immediate field is used to specify a 16-bit unsigned integer.

XO (21–30,
22–30, 26–30)

Extended opcode field.

Table 3. Notation and Conventions

Notation/Convention Meaning

←

Assignment

←

iea

Assignment of an instruction effective address.

¬ NOT logical operator

∗

Multiplication

÷

Division (yielding quotient)

+ Two’s-complement addition

– Two’s-complement subtraction, unary minus

=,

≠

Equals and Not Equals relations

<,

≤

, >,

≥

Signed comparison relations

. (period) Update. When used as a character of an instruction mnemonic, a period (.) means that
the instruction updates the condition register field.

Table 2. Instruction Syntax Conventions (Continued)

Field Description

c Carry. When used as a character of an instruction mnemonic, a ‘c’ indicates a carry out
in XER[CA].

e Extended Precision.
When used as the last character of an instruction mnemonic, an ‘e’ indicates the use of
XER[CA] as an operand in the instruction and records a carry out in XER[CA].

o Overflow. When used as a character of an instruction mnemonic, an ‘o’ indicates the
record of an overflow in XER[OV] and CR0[SO] for integer instructions.

<U, >U Unsigned comparison relations

? Unordered comparison relation

&, | AND, OR logical operators

|| Used to describe the concatenation of two values (that is, 010 || 111 is the same as
010111)

⊕ , ≡ Exclusive-OR, Equivalence logical operators (for example, (a ≡ b) = (a ⊕ ¬ b))

0bnnnn A number expressed in binary format.

0xnnnn A number expressed in hexadecimal format.

(n)x The replication of x, n times (that is, x concatenated to itself n – 1 times).
(n)0 and (n)1 are special cases. A description of the special cases follows:

• (n)0 means a field of n bits with each bit equal to 0. Thus (5)0 is equivalent to
 0b00000.

• (n)1 means a field of n bits with each bit equal to 1. Thus (5)1 is equivalent to
0b11111.

(rA|0) The contents of rA if the rA field has the value 1–31, or the value 0 if the rA field is 0.

(rX) The contents of rX

x[n] n is a bit or field within x, where x is a register

xn x is raised to the nth power

ABS(x) Absolute value of x

CEIL(x) Least integer ≥ x

Characterization Reference to the setting of status bits in a standard way that is explained in the text.

CIA Current instruction address.
The 32-bit address of the instruction being described by a sequence of pseudocode.
Used by relative branches to set the next instruction address (NIA) and by branch
instructions with LK = 1 to set the link register. Does not correspond to any architected
register.

Clear Clear the leftmost or rightmost n bits of a register to 0. This operation is used for rotate
and shift instructions.

Clear left and shift left Clear the leftmost b bits of a register, then shift the register left by n bits. This operation
can be used to scale a known non-negative array index by the width of an element.
These operations are used for rotate and shift instructions.

Cleared Bits are set to 0.

Table 3. Notation and Conventions (Continued)

Notation/Convention Meaning
4 MPCxxx INSTRUCTION SET Motorola

Do Do loop.
• Indenting shows range.
• “To” and/or “by” clauses specify incrementing an iteration variable.
• “While” clauses give termination conditions.

Extract Select a field of n bits starting at bit position b in the source register, right or left justify
this field in the target register, and clear all other bits of the target register to zero. This
operation is used for rotate and shift instructions.

EXTS(x) Result of extending x on the left with sign bits

GPR(x) General-purpose register x

if...then...else... Conditional execution, indenting shows range, else is optional.

Insert Select a field of n bits in the source register, insert this field starting at bit position b of
the target register, and leave other bits of the target register unchanged. (No simplified
mnemonic is provided for insertion of a field when operating on double words; such an
insertion requires more than one instruction.) This operation is used for rotate and shift
instructions. (Note that simplified mnemonics are referred to as extended mnemonics in
the architecture specification.)

Leave Leave innermost do loop, or the do loop described in leave statement.

MASK(x, y) Mask having ones in positions x through y (wrapping if x > y) and zeros elsewhere.

MEM(x, y) Contents of y bytes of memory starting at address x.

NIA Next instruction address, which is the 32-bit address of the next instruction to be
executed (the branch destination) after a successful branch. In pseudocode, a
successful branch is indicated by assigning a value to NIA. For instructions which do not
branch, the next instruction address is CIA + 4. Does not correspond to any architected
register.

OEA PowerPC operating environment architecture

Rotate Rotate the contents of a register right or left n bits without masking. This operation is
used for rotate and shift instructions.

Set Bits are set to 1.

Shift Shift the contents of a register right or left n bits, clearing vacated bits (logical shift). This
operation is used for rotate and shift instructions.

SPR(x) Special-purpose register x

TRAP Invoke the system trap handler.

Undefined An undefined value. The value may vary from one implementation to another, and from
one execution to another on the same implementation.

UISA PowerPC user instruction set architecture

VEA PowerPC virtual environment architecture

Table 3. Notation and Conventions (Continued)

Notation/Convention Meaning
Motorola MPCxxx INSTRUCTION SET 5

Table 4 describes instruction field notation conventions used throughout this document.

Precedence rules for pseudocode operators are summarized in Table 5.

Operators higher in Table 5 are applied before those lower in the table. Operators at the
same level in the table associate from left to right, from right to left, or not at all, as shown.
For example, “–” (unary minus) associates from left to right, so a – b – c = (a – b) – c.
Parentheses are used to override the evaluation order implied by Table 5, or to increase
clarity; parenthesized expressions are evaluated before serving as operands.

Table 4. Instruction Field Conventions

The Architecture
Specification

Equivalent to:

BA, BB, BT crbA, crbB, crbD (respectively)

D d

DS ds

FXM CRM

RA, RB, RT, RS rA, rB, rD, rS (respectively)

SI SIMM

U IMM

UI UIMM

/, //, /// 0...0 (shaded)

Table 5. Precedence Rules

Operators Associativity

x[n], function evaluation Left to right

(n)x or replication,
x(n) or exponentiation

Right to left

unary –, ¬ Right to left

∗ , ÷ Left to right

+, – Left to right

|| Left to right

=, ≠, <, ≤, >, ≥, <U, >U, ? Left to right

&, ⊕ , ≡ Left to right

| Left to right

– (range) None

←, ←iea None
6 MPCxxx INSTRUCTION SET Motorola

MPCxxx Instruction Set
The remainder of this chapter lists and describes the instruction set for the MPCxxx. The
instructions are listed in alphabetical order by mnemonic. Figure 1 shows the format for
each instruction description page.

Instruction Description

Note that the execution unit that executes the instruction may not be the same for all
PowerPC processors.

addx addx
Add

add rD,rA,rB (OE = 0 Rc = 0)

add. rD,rA,rB (OE = 0 Rc = 1)

addo rD,rA,rB (OE = 1 Rc = 0)

addo. rD,rA,rB (OE = 1 Rc = 1)
]

rD ← (rA) + (rB)

The sum (rA) + (rB) is placed into rD.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO(if Rc = 1)

• XER:

Affected: SO, OV(if OE = 1)

B OE 266 Rc
0 5 6 10 11 15 16 20 21 22 30 31

31 D A

Instruction name

Instruction syntax

Instruction encoding

Pseudocode description of
instruction operation
Text description of
instruction operation
Registers altered by instruction

Quick reference legend
PowerPC Architecture Level SupervisorLevel 64-Bit Optional Form

UISA XO
Motorola MPCxxx INSTRUCTION SET 7

addx addx
Add

add rD,rA,rB (OE = 0 Rc = 0)
add. rD,rA,rB (OE = 0 Rc = 1)
addo rD,rA,rB (OE = 1 Rc = 0)
addo. rD,rA,rB (OE = 1 Rc = 1)

rD ← (rA) + (rB)

The sum (rA) + (rB) is placed into rD.

The add instruction is preferred for addition because it sets few status bits.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Note: CR0 field may not reflect the “true” (infinitely precise) result if overflow occurs
(see XER below).

• XER:

Affected: SO, OV (if OE = 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 266 Rc
8 MPCxxx INSTRUCTION SET Motorola

addcx addcx
Add Carrying

addc rD,rA,rB (OE = 0 Rc = 0)
addc. rD,rA,rB (OE = 0 Rc = 1)
addco rD,rA,rB (OE = 1 Rc = 0)
addco. rD,rA,rB (OE = 1 Rc = 1)

rD ¨ (rA) + (rB)

The sum (rA) + (rB) is placed into rD.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Note: CR0 field may not reflect the “true” (infinitely precise) result if overflow occurs
(see XER below).

• XER:

Affected: CA

Affected: SO, OV (if OE = 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 10 Rc
Motorola MPCxxx INSTRUCTION SET 9

addex addex
Add Extended

adde rD,rA,rB (OE = 0 Rc = 0)
adde. rD,rA,rB (OE = 0 Rc = 1)
addeo rD,rA,rB (OE = 1 Rc = 0)
addeo. rD,rA,rB (OE = 1 Rc = 1)

rD ¨ (rA) + (rB) + XER[CA]

The sum (rA) + (rB) + XER[CA] is placed into rD.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Note: CR0 field may not reflect the “true” (infinitely precise) result if overflow occurs
(see XER below).

• XER:

Affected: CA

Affected: SO, OV (if OE = 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 138 Rc
10 MPCxxx INSTRUCTION SET Motorola

addi addi
Add Immediate

addi rD,rA,SIMM

if rA = 0 then rD ¨ EXTS(SIMM)
else rD ¨ rA + EXTS(SIMM)

The sum (rA|0) + SIMM is placed into rD.

The addi instruction is preferred for addition because it sets few status bits. Note that addi
uses the value 0, not the contents of GPR0, if rA = 0.

Other registers altered:

• None

Simplified mnemonics:

li rD,value equivalent to addi rD,0,value
la rD,disp(rA) equivalent to addi rD,rA,disp
subi rD,rA,value equivalent to addi rD,rA,–value

PowerPC Architecture Level Supervisor Level Optional Form

UISA D

0 5 6 10 11 15 16 31

14 D A SIMM
Motorola MPCxxx INSTRUCTION SET 11

addic addic
Add Immediate Carrying

addic rD,rA,SIMM

rD ¨ (rA) + EXTS(SIMM)

The sum (rA) + SIMM is placed into rD.

Other registers altered:

• XER:

Affected: CA

Simplified mnemonics:

subic rD,rA,value equivalent to addic rD,rA,–value

PowerPC Architecture Level Supervisor Level Optional Form

UISA D

0 5 6 10 11 15 16 31

12 D A SIMM
12 MPCxxx INSTRUCTION SET Motorola

addic. addic.
Add Immediate Carrying and Record

addic. rD,rA,SIMM

rD ¨ (rA) + EXTS(SIMM)

The sum (rA) + SIMM is placed into rD.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO

Note: CR0 field may not reflect the “true” (infinitely precise) result if overflow occurs
(see XER below).

• XER:

Affected: CA

Simplified mnemonics:

subic.rD,rA,value equivalent to addic. rD,rA,–value

PowerPC Architecture Level Supervisor Level Optional Form

UISA D

0 5 6 10 11 15 16 31

13 D A SIMM
Motorola MPCxxx INSTRUCTION SET 13

addis addis
Add Immediate Shifted

addis rD,rA,SIMM

if rA = 0 then rD ¨ EXTS(SIMM || (16)0)
else rD ¨ (rA) + EXTS(SIMM || (16)0)

The sum (rA|0) + (SIMM || 0x0000) is placed into rD.

The addis instruction is preferred for addition because it sets few status bits. Note that
addis uses the value 0, not the contents of GPR0, if rA = 0.

Other registers altered:

• None

Simplified mnemonics:

lis rD,value equivalent to addis rD,0,value
subis rD,rA,value equivalent to addis rD,rA,–value

PowerPC Architecture Level Supervisor Level Optional Form

UISA D

0 5 6 10 11 15 16 31

15 D A SIMM
14 MPCxxx INSTRUCTION SET Motorola

addmex addmex
Add to Minus One Extended

addme rD,rA (OE = 0 Rc = 0)
addme. rD,rA (OE = 0 Rc = 1)
addmeo rD,rA (OE = 1 Rc = 0)
addmeo. rD,rA (OE = 1 Rc = 1)

rD ¨ (rA) + XER[CA] – 1

The sum (rA) + XER[CA] + 0xFFFF_FFFF_FFFF_FFFF is placed into rD.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Note: CR0 field may not reflect the “true” (infinitely precise) result if overflow occurs
(see XER below).

• XER:

Affected: CA

Affected: SO, OV (if OE = 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

Reserved

31 D A 0 0 0 0 0 OE 234 Rc
Motorola MPCxxx INSTRUCTION SET 15

addzex addzex
Add to Zero Extended

addze rD,rA (OE = 0 Rc = 0)
addze. rD,rA (OE = 0 Rc = 1)
addzeo rD,rA (OE = 1 Rc = 0)
addzeo. rD,rA (OE = 1 Rc = 1)

rD ¨ (rA) + XER[CA]

The sum (rA) + XER[CA] is placed into rD.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Note: CR0 field may not reflect the “true” (infinitely precise) result if overflow occurs
(see XER below).

• XER:

Affected: CA

Affected: SO, OV (if OE = 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

Reserved

31 D A 0 0 0 0 0 OE 202 Rc
16 MPCxxx INSTRUCTION SET Motorola

andx andx
AND

and rA,rS,rB (Rc = 0)
and. rA,rS,rB (Rc = 1)

rA ← (rS) & (rB)

The contents of rS are ANDed with the contents of rB and the result is placed into rA.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

31 S A B 28 Rc
Motorola MPCxxx INSTRUCTION SET 17

andcx andcx
AND with Complement

andc rA,rS,rB (Rc = 0)
andc. rA,rS,rB (Rc = 1)

rA ← (rS) + ¬ (rB)

The contents of rS are ANDed with the one’s complement of the contents of rB and the
result is placed into rA.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

31 S A B 60 Rc
18 MPCxxx INSTRUCTION SET Motorola

andi. andi.
AND Immediate

andi. rA,rS,UIMM

rA ← (rS) & ((16)0 || UIMM)

The contents of rS are ANDed with 0x0000 || UIMM and the result is placed into rA.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO

PowerPC Architecture Level Supervisor Level Optional Form

UISA D

0 5 6 10 11 15 16 31

28 S A UIMM
Motorola MPCxxx INSTRUCTION SET 19

andis. andis.
AND Immediate Shifted

andis. rA,rS,UIMM

rA ← (rS) + (UIMM || (16)0)

The contents of rS are ANDed with UIMM || 0x0000 and the result is placed into rA.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO

PowerPC Architecture Level Supervisor Level Optional Form

UISA D

0 5 6 10 11 15 16 31

29 S A UIMM
20 MPCxxx INSTRUCTION SET Motorola

bx bx
Branch

b target_addr (AA = 0 LK = 0)
ba target_addr (AA = 1 LK = 0)
bl target_addr (AA = 0 LK = 1)
bla target_addr (AA = 1 LK = 1)

if AA then NIA ←iea EXTS(LI || 0b00)
else NIA ←iea CIA + EXTS(LI || 0b00)
if LK then LR ←iea CIA + 4

target_addr specifies the branch target address.

If AA = 0, then the branch target address is the sum of LI || 0b00 sign-extended and the
address of this instruction. If AA = 1, then the branch target address is the value LI || 0b00
sign-extended. If LK = 1, then the effective address of the instruction following the branch
instruction is placed into the link register.

Other registers altered:

Affected: Link Register (LR) (if LK = 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA I

0 5 6 29 30 31

18 LI AA LK
Motorola MPCxxx INSTRUCTION SET 21

bcx bcx
Branch Conditional

bc BO,BI,target_addr (AA = 0 LK = 0)
bca BO,BI,target_addr (AA = 1 LK = 0)
bcl BO,BI,target_addr (AA = 0 LK = 1)
bcla BO,BI,target_addr (AA = 1 LK = 1)

m ← 32
if ¬ BO[2] then CTR ← CTR – 1
ctr_ok ← BO[2] | (BO[3])

cond_ok ← BO[0] | (CR[BI] ≡ BO[1])
if ctr_ok & cond_ok then
 if AA then NIA ←iea EXTS(BD || 0b00)
 else NIA ←iea CIA + EXTS(BD || 0b00)
 if LK then LR ←iea CIA + 4

The BI field specifies the bit in the condition register (CR) to be used as the condition of
the branch. The BO field is encoded as described in Table 6.

target_addr specifies the branch target address.

Table 6. BO Operand Encodings

BO Description

0000y Decrement the count register (CTR), then branch if the condition is FALSE.

0001y Decrement the CTR, then branch if the condition is FALSE.

001zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the condition is TRUE.

0101y Decrement the CTR, then branch if the condition is TRUE.

011zy Branch if the condition is TRUE.

1z00y Decrement the CTR, then branch if the decremented CTR ≠ 0.

1z01y Decrement the CTR, then branch if the decremented CTR = 0.

1z1zz Branch always.

In this table, z indicates a bit that is ignored.
Note that the z bits should be cleared, as they may be assigned a meaning in some future
version of the MPCxxx.

The y bit provides a hint about whether a conditional branch is likely to be taken.

0 5 6 10 11 15 16 29 30 31

16 BO BI BD AA LK
22 MPCxxx INSTRUCTION SET Motorola

If AA = 0, the branch target address is the sum of BD || 0b00 sign-extended and the
address of this instruction. If AA = 1, the branch target address is the value BD || 0b00
sign-extended. If LK = 1, the effective address of the instruction following the branch
instruction is placed into the link register.

Other registers altered:

Affected: Count Register (CTR) (if BO[2] = 0)

Affected: Link Register (LR) (if LK = 1)

Simplified mnemonics:

blt target equivalent to bc 12,0,target
bne cr2,target equivalent to bc 4,10,target
bdnz target equivalent to bc 16,0,target

PowerPC Architecture Level Supervisor Level Optional Form

UISA B
Motorola MPCxxx INSTRUCTION SET 23

bcctrx bcctrx
Branch Conditional to Count Register

bcctr BO,BI (LK = 0)
bcctrl BO,BI (LK = 1)

cond_ok ← BO[0] | (CR[BI] ≡ BO[1])
if cond_ok then
 NIA ←iea CTR || 0b00
 if LK then LR ←iea CIA + 4

The BI field specifies the bit in the condition register to be used as the condition of the
branch. The BO field is encoded as described in Table 7.

Table 7. BO Operand Encodings

The branch target address is CTR || 0b00.

If LK = 1, the effective address of the instruction following the branch instruction is placed
into the link register.

If the “decrement and test CTR” option is specified (BO[2] = 0), the instruction form is
invalid.

BO Description

0000y Decrement the count register (CTR), then branch if the condition is FALSE.

0001y Decrement the CTR, then branch if the condition is FALSE.

001zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the condition is TRUE.

0101y Decrement the CTR, then branch if the condition is TRUE.

011zy Branch if the condition is TRUE.

1z00y Decrement the CTR, then branch if the decremented CTR ≠ 0.

1z01y Decrement the CTR, then branch if the decremented CTR = 0.

1z1zz Branch always.

In this table, z indicates a bit that is ignored.
Note that the z bits should be cleared, as they may be assigned a meaning in some future
version of the MPCxxx.

The y bit provides a hint about whether a conditional branch is likely to be taken.

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 BO BI 0 0 0 0 0 528 LK
24 MPCxxx INSTRUCTION SET Motorola

Other registers altered:

Affected: Link Register (LR) (if LK = 1)

Simplified mnemonics:

bltctr equivalent to bcctr 12,0
bnectr cr2 equivalent to bcctr 4,10

PowerPC Architecture Level Supervisor Level Optional Form

UISA XL
Motorola MPCxxx INSTRUCTION SET 25

bclrx bclrx
Branch Conditional to Link Register

bclr BO,BI (LK = 0)
bclrl BO,BI (LK = 1)

m ← 32
if ¬ BO[2] then CTR ← CTR – 1
ctr_ok ← BO[2] | ((CTR ≠ 0) ⊕ BO[3])
cond_ok ← BO[0] | (CR[BI] ≡ BO[1])
if ctr_ok & cond_ok then
 NIA ←iea LR || 0b00
 if LK then LR ←iea CIA + 4

The BI field specifies the bit in the condition register to be used as the condition of the
branch. The BO field is encoded as described in Table 8.

Table 8. BO Operand Encodings

The branch target address is LR[0-29] || 0b00.

If LK = 1, then the effective address of the instruction following the branch instruction is
placed into the link register.

BO Description

0000y Decrement the CTR, then branch if the condition is FALSE.

0001y Decrement the CTR, then branch if the condition is FALSE.

001zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the condition is TRUE.

0101y Decrement the CTR, then branch if the condition is TRUE.

011zy Branch if the condition is TRUE.

1z00y Decrement the CTR, then branch if the decremented CTR ≠ 0.

1z01y Decrement the CTR, then branch if the decremented CTR = 0.

1z1zz Branch always.

In this table, z indicates a bit that is ignored.
Note that the z bits should be cleared, as they may be assigned a meaning in some future version of the
MPCxxx.

The y bit provides a hint about whether a conditional branch is likely to be taken.

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 BO BI 0 0 0 0 0 16 LK
26 MPCxxx INSTRUCTION SET Motorola

Other registers altered:

Affected: Count Register (CTR) (if BO[2] = 0)

Affected: Link Register (LR) (if LK = 1)

Simplified mnemonics:

bltlr equivalent to bclr 12,0
bnelr cr2 equivalent to bclr 4,10
bdnzlr equivalent to bclr 16,0

PowerPC Architecture Level Supervisor Level Optional Form

UISA XL
Motorola MPCxxx INSTRUCTION SET 27

cmp cmp
Compare

cmp crfD,L,rA,rB

a ← EXTS(rA)
b ← EXTS(rB)
ifa < b then c ← 0b100
else if a > b then c ← 0b010
else c ← 0b001

CR[4 ∗ crfD–4 ∗ crfD + 3] ← c || XER[SO]

The contents of rA are compared with the contents of rB treating the operands as signed
integers. The result of the comparison is placed into CR field crfD.

Other registers altered:

• Condition Register (CR field specified by operand crfD):

Affected: LT, GT, EQ, SO

Simplified mnemonics:

cmpd rA,rB equivalent to cmp 0,1,rA,rB
cmpw cr3,rA,rB equivalent to cmp 3,0,rA,rB

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

0 5 6 8 9 10 11 15 16 20 21 30 31

Reserved

B 0 0 0 0 0 0 0 0 0 0 031 crfD 0 L A
28 MPCxxx INSTRUCTION SET Motorola

cmpi cmpi
Compare Immediate

cmpi crfD,L,rA,SIMM

a ← (rA)
ifa < EXTS(SIMM) then c ← 0b100
else if a > EXTS(SIMM) then c ← 0b010
else c ← 0b001

CR[4 ∗ crfD–4 ∗ crfD + 3] ← c || XER[SO]

The contents of rA are compared with the sign-extended value of the SIMM field, treating
the operands as signed integers. The result of the comparison is placed into CR field crfD.

Other registers altered:

• Condition Register (CR field specified by operand crfD):

Affected: LT, GT, EQ, SO

Simplified mnemonics:

cmpdirA,value equivalent to cmpi 0,1,rA,value
cmpwi cr3,rA,value equivalent to cmpi 3,0,rA,value

PowerPC Architecture Level Supervisor Level Optional Form

UISA D

0 5 6 8 9 10 11 15 16 31

Reserved

SIMM11 crfD 0 L A
Motorola MPCxxx INSTRUCTION SET 29

cmpl cmpl
Compare Logical

cmpl crfD,L,rA,rB

a ← rA
b ← rB
ifa <U b then c ← 0b100
else if a >U b then c ← 0b010
else c ← 0b001

CR[4 ∗ crfD–4 ∗ crfD + 3] ← c || XER[SO]

The contents of rA are compared with the contents of rB, treating the operands as
unsigned integers. The result of the comparison is placed into CR field crfD.

Other registers altered:

• Condition Register (CR field specified by operand crfD):

Affected: LT, GT, EQ, SO

Simplified mnemonics:

cmpldrA,rB equivalent to cmpl 0,1,rA,rB
cmplw cr3,rA,rB equivalent to cmpl 3,0,rA,rB

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

0 5 6 8 9 10 11 15 16 20 21 31

Reserved

31 crfD 0 L A B 32 0
30 MPCxxx INSTRUCTION SET Motorola

cmpli cmpli
Compare Logical Immediate

cmpli crfD,L,rA,UIMM

a ← (rA)
ifa <U ((16)0 || UIMM) then c ← 0b100
else if a >U ((16)0 || UIMM) then c ← 0b010
else c ← 0b001

CR[4 ∗ crfD–4 ∗ crfD + 3] ← c || XER[SO]

The contents of rA are compared with 0x0000|| UIMM, treating the operands as unsigned
integers. The result of the comparison is placed into CR field crfD.

Other registers altered:

• Condition Register (CR field specified by operand crfD):

Affected: LT, GT, EQ, SO

Simplified mnemonics:

cmpldir A,value equivalent to cmpli 0,1,rA,value
cmplwi cr3,rA,value equivalent to cmpli 3,0,rA,value

PowerPC Architecture Level Supervisor Level Optional Form

UISA D

0 5 6 8 9 10 11 15 16 31

Reserved

UIMM10 crfD 0 L A
Motorola MPCxxx INSTRUCTION SET 31

cntlzwx cntlzwx
Count Leading Zeros Word

cntlzw rA,rS (Rc = 0)
cntlzw. rA,rS (Rc = 1)

n ← 0
do while n < 32
if rS[n] = 1 then leave
n ← n + 1
rA ← n

A count of the number of consecutive zero bits starting at bit 0 of rS is placed into rA. This
number ranges from 0 to 32, inclusive.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Note: If Rc = 1, then LT is cleared in the CR0 field.

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 S A 0 0 0 0 0 26 Rc
32 MPCxxx INSTRUCTION SET Motorola

crand crand
Condition Register AND

crand crbD,crbA,crbB

CR[crbD] ← CR[crbA] & CR[crbB]

The bit in the condition register specified by crbA is ANDed with the bit in the condition
register specified by crbB. The result is placed into the condition register bit specified by
crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operand crbD

PowerPC Architecture Level Supervisor Level Optional Form

UISA XL

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 crbD crbA crbB 257 0
Motorola MPCxxx INSTRUCTION SET 33

crandc crandc
Condition Register AND with Complement

crandc crbD,crbA,crbB

CR[crbD] ← CR[crbA] & ¬ CR[crbB]

The bit in the condition register specified by crbA is ANDed with the complement of the
bit in the condition register specified by crbB and the result is placed into the condition
register bit specified by crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operand crbD

PowerPC Architecture Level Supervisor Level Optional Form

UISA XL

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 crbD crbA crbB 129 0
34 MPCxxx INSTRUCTION SET Motorola

creqv creqv
Condition Register Equivalent

creqv crbD,crbA,crbB

CR[crbD] ← CR[crbA] ≡ CR[crbB]

The bit in the condition register specified by crbA is XORed with the bit in the condition
register specified by crbB and the complemented result is placed into the condition
register bit specified by crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operand crbD

Simplified mnemonics:

crset crbD equivalent to creqv crbD,crbD,crbD

PowerPC Architecture Level Supervisor Level Optional Form

UISA XL

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 crbD crbA crbB 289 0
Motorola MPCxxx INSTRUCTION SET 35

crnand crnand
Condition Register NAND

crnand crbD,crbA,crbB

CR[crbD] ← ¬ (CR[crbA] & CR[crbB])

The bit in the condition register specified by crbA is ANDed with the bit in the condition
register specified by crbB and the complemented result is placed into the condition
register bit specified by crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operand crbD

PowerPC Architecture Level Supervisor Level Optional Form

UISA XL

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 crbD crbA crbB 225 0
36 MPCxxx INSTRUCTION SET Motorola

crnor crnor
Condition Register NOR

crnor crbD,crbA,crbB

CR[crbD] ← ¬ (CR[crbA] | CR[crbB])

The bit in the condition register specified by crbA is ORed with the bit in the condition
register specified by crbB and the complemented result is placed into the condition
register bit specified by crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operand crbD

Simplified mnemonics:

crnot crbD,crbA equivalent to crnor crbD,crbA,crbA

PowerPC Architecture Level Supervisor Level Optional Form

UISA XL

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 crbD crbA crbB 33 0
Motorola MPCxxx INSTRUCTION SET 37

cror cror
Condition Register OR

cror crbD,crbA,crbB

CR[crbD] ← CR[crbA] | CR[crbB]

The bit in the condition register specified by crbA is ORed with the bit in the condition
register specified by crbB. The result is placed into the condition register bit specified by
crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operand crbD

Simplified mnemonics:

crmove crbD,crbA equivalent to cror crbD,crbA,crbA

PowerPC Architecture Level Supervisor Level Optional Form

UISA XL

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 crbD crbA crbB 449 0
38 MPCxxx INSTRUCTION SET Motorola

crorc crorc
Condition Register OR with Complement

crorc crbD,crbA,crbB

CR[crbD] ← CR[crbA] | ¬ CR[crbB]

The bit in the condition register specified by crbA is ORed with the complement of the
condition register bit specified by crbB and the result is placed into the condition register
bit specified by crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by operand crbD

PowerPC Architecture Level Supervisor Level Optional Form

UISA XL

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 crbD crbA crbB 417 0
Motorola MPCxxx INSTRUCTION SET 39

crxor crxor
Condition Register XOR

crxor crbD,crbA,crbB

CR[crbD] ← CR[crbA] ⊕ CR[crbB]

The bit in the condition register specified by crbA is XORed with the bit in the condition
register specified by crbB and the result is placed into the condition register specified by
crbD.

Other registers altered:

• Condition Register:

Affected: Bit specified by crbD

Simplified mnemonics:

crclr crbD equivalent to crxor crbD,crbD,crbD

PowerPC Architecture Level Supervisor Level Optional Form

UISA XL

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 crbD crbA crbB 193 0
40 MPCxxx INSTRUCTION SET Motorola

dcbf dcbf
Data Cache Block Flush

dcbf rA,rB

EA is the sum (rA|0) + (rB).

The dcbf instruction invalidates the block in the data cache addressed by EA, copying the
block to memory first, if there is any dirty data in it. If the processor is a multiprocessor
implementation and the block is marked coherency-required, the processor will, if
necessary, send an address-only broadcast to other processors. The broadcast of the
dcbf instruction causes another processor to copy the block to memory, if it has dirty data,
and then invalidate the block from the cache.

The action taken depends on the memory mode associated with the block containing the
byte addressed by EA and on the state of that block. The list below describes the action
taken for the various states of the memory coherency attribute (M bit).

• Coherency required

— Unmodified block—Invalidates copies of the block in the data caches of all
processors.

— Modified block—Copies the block to memory. Invalidates copies of the block in
the data caches of all processors.

— Absent block—If modified copies of the block are in the data caches of other
processors, causes them to be copied to memory and invalidated in those data
caches. If unmodified copies are in the data caches of other processors, causes
those copies to be invalidated in those data caches.

• Coherency not required

— Unmodified block—Invalidates the block in the processor’s data cache.
— Modified block—Copies the block to memory. Invalidates the block in the

processor’s data cache.
— Absent block (target block not in cache)—No action is taken.

The function of this instruction is independent of the write-through, write-back and
caching-inhibited/allowed modes of the block containing the byte addressed by EA.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 86 031 0 0 0 0 0 A
Motorola MPCxxx INSTRUCTION SET 41

This instruction may be treated as a load from the addressed byte with respect to address
translation and memory protection. It may also be treated as a load for referenced and
changed bit recording except that referenced and changed bit recording may not occur.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

VEA X
42 MPCxxx INSTRUCTION SET Motorola

dcbi dcbi
Data Cache Block Invalidate

dcbi rA,rB

EA is the sum (rA|0) + (rB).

The action taken is dependent on the memory mode associated with the block containing
the byte addressed by EA and on the state of that block. The list below describes the
action taken if the block containing the byte addressed by EA is or is not in the cache.

• Coherency required

— Unmodified block—Invalidates copies of the block in the data caches of all
processors.

— Modified block—Invalidates copies of the block in the data caches of all
processors. (Discards the modified contents.)

— Absent block—If copies of the block are in the data caches of any other
processor, causes the copies to be invalidated in those data caches. (Discards
any modified contents.)

• Coherency not required

— Unmodified block—Invalidates the block in the processor’s data cache.
— Modified block—Invalidates the block in the processor’s data cache. (Discards

the modified contents.)
— Absent block (target block not in cache)—No action is taken.

When data address translation is enabled, MSR[DR] = 1, and the virtual address has no
translation, a DSI exception occurs. The function of this instruction is independent of the
write-through and caching-inhibited/allowed modes of the block containing the byte
addressed by EA. This instruction operates as a store to the addressed byte with respect
to address translation and protection. The referenced and changed bits are modified
appropriately. This is a supervisor-level instruction.

Other registers altered:
• None

PowerPC Architecture Level Supervisor Level Optional Form

OEA √ X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 470 031 0 0 0 0 0 A
Motorola MPCxxx INSTRUCTION SET 43

dcbst dcbst
Data Cache Block Store

dcbst rA,rB

EA is the sum (rA|0) + (rB).

The dcbst instruction executes as follows:

• If the block containing the byte addressed by EA is in coherency-required mode,
and a block containing the byte addressed by EA is in the data cache of any
processor and has been modified, the writing of it to main memory is initiated.

• If the block containing the byte addressed by EA is in coherency-not-required
mode, and a block containing the byte addressed by EA is in the data cache of this
processor and has been modified, the writing of it to main memory is initiated.

The function of this instruction is independent of the write-through and caching-
inhibited/allowed modes of the block containing the byte addressed by EA. The processor
treats this instruction as a load from the addressed byte with respect to address
translation and memory protection. It may also be treated as a load for referenced and
changed bit recording except that referenced and changed bit recording may not occur.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

VEA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 54 031 0 0 0 0 0 A
44 MPCxxx INSTRUCTION SET Motorola

dcbt dcbt
Data Cache Block Touch

dcbt rA,rB

EA is the sum (rA|0) + (rB).

This instruction is a hint that performance will probably be improved if the block containing
the byte addressed by EA is fetched into the data cache, because the program will
probably soon load from the addressed byte. The hint is ignored if the block is caching-
inhibited. Executing dcbt does not cause the system alignment error handler to be
invoked.

This instruction may be treated as a load from the addressed byte with respect to address
translation, memory protection, and reference and change recording, except that no
exception occurs in the case of a translation fault or protection violation.

The program uses the dcbt instruction to request a cache block fetch before it is actually
needed by the program. The program can later execute load instructions to put data into
registers. However, the processor is not obliged to load the addressed block into the data
cache.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

VEA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 278 031 0 0 0 0 0 A
Motorola MPCxxx INSTRUCTION SET 45

dcbtst dcbtst
Data Cache Block Touch for Store

dcbtst rA,rB

EA is the sum (rA|0) + (rB).

This instruction is a hint that performance will be improved if the block containing the byte
addressed by EA is fetched into the data cache, because the program will probably soon
store into the addressed byte. The hint is ignored if the block is caching-inhibited.
Executing dcbtst does not cause the system alignment error handler to be invoked.

This instruction operates as a load from the addressed byte with respect to address
translation and protection, except that no exception occurs in the case of a translation fault
or protection violation. Also, if the referenced and changed bits are recorded, they are
recorded as if the access was a load.

The program uses dcbtst to request a cache block fetch to guarantee that a subsequent
store will be to a cached location. The program can later execute store instructions to put
data into memory. However, the processor is not obliged to load the addressed cache
block into the data cache.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

VEA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 246 031 0 0 0 0 0 A
46 MPCxxx INSTRUCTION SET Motorola

dcbz dcbz
Data Cache Block Set to Zero

dcbz rA,rB

EA is the sum (rA|0) + (rB).

The dcbz instruction executes as follows:

• If the cache block containing the byte addressed by EA is in the data cache, all
bytes are cleared.

• If the cache block containing the byte addressed by EA is not in the data cache and
the corresponding page is caching-allowed, the cache block is allocated in the data
cache (without fetching the block from main memory), and all bytes are cleared.

• If the page containing the byte addressed by EA is in caching-inhibited or write-
through mode, either all bytes of main memory that correspond to the addressed
cache block are cleared or the alignment exception handler is invoked. The
exception handler clears all bytes in main memory that corresponds to the
addressed cache block.

• If the cache block containing the byte addressed by EA is in coherency-required
mode, and the cache block exists in the data cache(s) of any other processor(s), it
is kept coherent in those caches.

This instruction is treated as a store to the addressed byte with respect to address
translation, memory protection, referenced and changed recording and the ordering
enforced by eieio or by the combination of caching-inhibited and guarded attributes for a
page.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

VEA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 1014 031 0 0 0 0 0 A
Motorola MPCxxx INSTRUCTION SET 47

divwx divwx
Divide Word

divw rD,rA,rB (OE = 0 Rc = 0)
divw. rD,rA,rB (OE = 0 Rc = 1)
divwo rD,rA,rB (OE = 1 Rc = 0)
divwo. rD,rA,rB (OE = 1 Rc = 1)

dividend ← (rA)
divisor ← (rB)
rD ← dividend ÷ divisor

The dividend is the contents of rA. The divisor is the contents of rB. The 32-bit quotient is
formed and placed in rD. The remainder is not supplied as a result.

Both the operands and the quotient are interpreted as signed integers. The quotient is the
unique signed integer that satisfies the equation—dividend = (quotient * divisor) + r where
0 ≤ r < |divisor| (if the dividend is non-negative), and –|divisor| < r ≤ 0 (if the dividend is
negative).

If an attempt is made to perform any of the divisions—0x8000_0000 ÷ –1or <anything> ÷
0—then the contents of rD are undefined, as are the contents of the LT, GT, and EQ bits
of the CR0 field (if Rc = 1). In this case, if OE = 1 then OV is set.

The 32-bit signed remainder of dividing the contents of rA by the contents of rB can be
computed as follows, except in the case that the contents of rA = –231 and the contents
of rB = –1.

divw rD,rA,rB # rD = quotient
mullw rD,rD,rB # rD = quotient ∗ divisor
subf rD,rD,rA # rD = remainder

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 491 Rc
48 MPCxxx INSTRUCTION SET Motorola

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

• XER:

Affected: SO, OV (if OE = 1)

Note: The setting of the affected bits in the XER is mode-independent, and reflects
overflow of the 32-bit result.

PowerPC Architecture Level Supervisor Level Optional Form

UISA XO
Motorola MPCxxx INSTRUCTION SET 49

divwux divwux
Divide Word Unsigned

divwu rD,rA,rB (OE = 0 Rc = 0)
divwu. rD,rA,rB (OE = 0 Rc = 1)
divwuo rD,rA,rB (OE = 1 Rc = 0)
divwuo. rD,rA,rB (OE = 1 Rc = 1)

dividend ← (rA)
divisor ← (rB)
rD ← dividend ÷ divisor

The dividend is the contents of rA. The divisor is the contents of rB. A 32-bit quotient is
formed. The 32-bit quotient is placed into rD. The remainder is not supplied as a result.

Both operands and the quotient are interpreted as unsigned integers, except that if Rc =
1 the first three bits of CR0 field are set by signed comparison of the result to zero. The
quotient is the unique unsigned integer that satisfies the equation—dividend = (quotient ∗
divisor) + r (where 0 ≤ r < divisor). If an attempt is made to perform the
division—<anything> ÷ 0—then the contents of rD are undefined as are the contents of
the LT, GT, and EQ bits of the CR0 field (if Rc = 1). In this case, if OE = 1 then OV is set.

The 32-bit unsigned remainder of dividing the contents of rA by the contents of rB can be
computed as follows:

divwu rD,rA,rB # rD = quotient
mullw rD,rD,rB # rD = quotient * divisor
subf rD,rD,rA # rD = remainder

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 459 Rc
50 MPCxxx INSTRUCTION SET Motorola

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

• XER:

Affected: SO, OV (if OE = 1)

Note: The setting of the affected bits in the XER is mode-independent, and reflects
overflow of the 32-bit result.

PowerPC Architecture Level Supervisor Level Optional Form

UISA XO
Motorola MPCxxx INSTRUCTION SET 51

eciwx eciwx
External Control In Word Indexed

eciwx rD,rA,rB

The eciwx instruction allows the system designer to map special devices in an alternative
way. The MMU translation of the EA is not used to select the special device, as it is used
in most instructions such as loads and stores. Rather, it is used as an address operand
that is passed to the device over the address bus. Four other pins (the burst and size pins
on the 60x bus) are used to select the device; these four pins output the 4-bit resource ID
(RID) field that is located in the EAR register. The eciwx instruction also loads a word from
the data bus that is output by the special device.

The eciwx instruction and the EAR register can be very efficient when mapping special
devices such as graphics devices that use addresses as pointers.

if rA = 0 then b ← 0
else b← (rA)
EA ← b + (rB)
paddr ← address translation of EA
send load word request for paddr to device identified by EAR[RID]
rD ← word from device

EA is the sum (rA|0) + (rB).

A load word request for the physical address (referred to as real address in the
architecture specification) corresponding to EA is sent to the device identified by
EAR[RID], bypassing the cache. The word returned by the device is placed in rD. EAR[E]
must be 1. If it is not, a DSI exception is generated.

EA must be a multiple of four. If it is not, one of the following occurs:

• A system alignment exception is generated.
• A DSI exception is generated (possible only if EAR[E] = 0).
• The results are boundedly undefined.

The eciwx instruction is supported for EAs that reference memory segments in which
SR[T] = 1 and for EAs mapped by the DBAT registers. If the EA references a direct-store
segment (SR[T] = 1), either a DSI exception occurs or the results are boundedly
undefined. However, note that the direct-store facility is being phased out of the
architecture and will not likely be supported in future devices. Thus, software should not
depend on its effects.

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 D A B 310 0
52 MPCxxx INSTRUCTION SET Motorola

If this instruction is executed when MSR[DR] = 0 (real addressing mode), the results are
boundedly undefined. This instruction is treated as a load from the addressed byte with
respect to address translation, memory protection, referenced and changed bit recording,
and the ordering performed by eieio. This instruction is optional in the PowerPC
architecture.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

VEA √ X
Motorola MPCxxx INSTRUCTION SET 53

ecowx ecowx
External Control Out Word Indexed

ecowx rS,rA,rB

The ecowx instruction and the EAR register can be very efficient when mapping special
devices such as graphics devices that use addresses as pointers.

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + (rB)
paddr ← address translation of EA
send store word request for paddr to device identified by EAR[RID]
send rS to device

EA is the sum (rA|0) + (rB). A store word request for the physical address corresponding
to EA and the contents of rS are sent to the device identified by EAR[RID], bypassing the
cache. EAR[E] must be 1, if it is not, a DSI exception is generated. EA must be a multiple
of four. If it is not, one of the following occurs:

• A system alignment exception is generated.
• A DSI exception is generated (possible only if EAR[E] = 0).
• The results are boundedly undefined.

The ecowx instruction is supported for effective addresses that reference memory
segments in which SR[T] = 0, and for EAs mapped by the DBAT registers. If the EA
references a direct-store segment (SR[T] = 1), either a DSI exception occurs or the results
are boundedly undefined. However, note that the direct-store facility is being phased out
of the architecture and will not likely be supported in future devices. Thus, software should
not depend on its effects.

If this instruction is executed when MSR[DR] = 0 (real addressing mode), the results are
boundedly undefined. This instruction is treated as a store from the addressed byte with
respect to address translation, memory protection, nd referenced and changed bit
recording, and the ordering performed by eieio. This instruction is optional in the PowerPC
architecture.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

VEA √ X

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 S A B 438 0
54 MPCxxx INSTRUCTION SET Motorola

eieio eieio
Enforce In-Order Execution of I/O

The eieio instruction provides an ordering function for the effects of load and store
instructions executed by a processor. These loads and stores are divided into two sets,
which are ordered separately. The memory accesses caused by a dcbz instruction are
ordered like a store. The two sets follow:

1. Loads and stores to memory that is both caching-inhibited and guarded, and stores
to memory that is write-through required.

The eieio instruction controls the order in which the accesses are performed in
main memory. It ensures that all applicable memory accesses caused by
instructions preceding the eieio instruction have completed with respect to main
memory before any applicable memory accesses caused by instructions following
the eieio instruction access main memory. It acts like a barrier that flows through
the memory queues and to main memory, preventing the reordering of memory
accesses across the barrier. No ordering is performed for dcbz if the instruction
causes the system alignment error handler to be invoked.

All accesses in this set are ordered as a single set—that is, there is not one order
for loads and stores to caching-inhibited and guarded memory and another order
for stores to write-through required memory.

2. Stores to memory that have all of the following attributes—caching-allowed, write-
through not required, and memory-coherency required.

The eieio instruction controls the order in which the accesses are performed with
respect to coherent memory. It ensures that all applicable stores caused by
instructions preceding the eieio instruction have completed with respect to
coherent memory before any applicable stores caused by instructions following the
eieio instruction complete with respect to coherent memory.

With the exception of dcbz, eieio does not affect the order of cache operations (whether
caused explicitly by execution of a cache management instruction, or implicitly by the
cache coherency mechanism). The eieio instruction does not affect the order of accesses
in one set with respect to accesses in the other set.

The eieio instruction may complete before memory accesses caused by instructions
preceding the eieio instruction have been performed with respect to main memory or
coherent memory as appropriate.

The eieio instruction is intended for use in managing shared data structures, in accessing
memory-mapped I/O, and in preventing load/store combining operations in main memory.
For the first use, the shared data structure and the lock that protects it must be altered
only by stores that are in the same set (1 or 2; see previous discussion). For the second
use, eieio can be thought of as placing a barrier into the stream of memory accesses

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0
Motorola MPCxxx INSTRUCTION SET 55

issued by a processor, such that any given memory access appears to be on the same
side of the barrier to both the processor and the I/O device.

Because the processor performs store operations in order to memory that is designated
as both caching-inhibited and guarded, the eieio instruction is needed for such memory
only when loads must be ordered with respect to stores or with respect to other loads.

Note that the eieio instruction does not connect hardware considerations to it such as
multiprocessor implementations that send an eieio address-only broadcast (useful in
some designs). For example, if a design has an external buffer that re-orders loads and
stores for better bus efficiency, the eieio broadcast signals to that buffer that previous
loads/stores (marked caching-inhibited, guarded, or write-through required) must
complete before any following loads/stores (marked caching-inhibited, guarded, or write-
through required).

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

VEA X
56 MPCxxx INSTRUCTION SET Motorola

eqvx eqvx
Equivalent

eqv rA,rS,rB (Rc = 0)
eqv. rA,rS,rB (Rc = 1)

rA ← (rS) ≡ (rB)

The contents of rS are XORed with the contents of rB and the complemented result is
placed into rA.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

0 5 6 10 11 15 16 21 22 30 31

31 S A B 284 Rc
Motorola MPCxxx INSTRUCTION SET 57

extsbx extsbx
Extend Sign Byte

extsb rA,rS (Rc = 0)
extsb. rA,rS (Rc = 1)

S ← rS[24]
rA[24-31] ← rS[24-31]
rA[0–23] ← (24)S

The contents of rS[24-31] are placed into rA[24-31]. Bit 24 of rS is placed into rA[0-23].

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 S A 0 0 0 0 0 954 Rc
58 MPCxxx INSTRUCTION SET Motorola

extshx extshx
Extend Sign Half Word

extsh rA,rS (Rc = 0)
extsh. rA,rS (Rc = 1)

S ← rS[16]
rA[16-31] ← rS[16-31]
rA[0-15] ← (16)S

The contents of rS[16-31] are placed into rA[16-31]. Bit 16 of rS is placed into rA[0–15].

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 S A 0 0 0 0 0 922 Rc
Motorola MPCxxx INSTRUCTION SET 59

icbi icbi
Instruction Cache Block Invalidate

icbi rA,rB

EA is the sum (rA|0) + (rB).

If the block containing the byte addressed by EA is in coherency-required mode, and a
block containing the byte addressed by EA is in the instruction cache of any processor,
the block is made invalid in all such instruction caches, so that subsequent references
cause the block to be refetched.

If the block containing the byte addressed by EA is in coherency-not-required mode, and
a block containing the byte addressed by EA is in the instruction cache of this processor,
the block is made invalid in that instruction cache, so that subsequent references cause
the block to be refetched. The function of this instruction is independent of the write-
through, write-back, and caching-inhibited/allowed modes of the block containing the byte
addressed by EA.

This instruction is treated as a load from the addressed byte with respect to address
translation and memory protection. It may also be treated as a load for referenced and
changed bit recording except that referenced and changed bit recording may not occur.
Implementations with a combined data and instruction cache treat the icbi instruction as
a no-op, except that they may invalidate the target block in the instruction caches of other
processors if the block is in coherency-required mode.

The icbi instruction invalidates the block at EA (rA|0 + rB). If the processor is a
multiprocessor implementation and the block is marked coherency-required, the
processor will send an address-only broadcast to other processors causing those
processors to invalidate the block from their instruction caches.

For faster processing, many implementations will not compare the entire EA (rA|0 + rB)
with the tag in the instruction cache. Instead, they will use the bits in the EA to locate the
set that the block is in, and invalidate all blocks in that set.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

VEA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 982 031 0 0 0 0 0 A
60 MPCxxx INSTRUCTION SET Motorola

isync isync
Instruction Synchronize

isync

The isync instruction provides an ordering function for the effects of all instructions
executed by a processor. Executing an isync instruction ensures that all instructions
preceding the the isync instruction have completed before the isync instruction
completes, except that memory accesses caused by those instructions need not have
been performed with respect to other processors and mechanisms. It also ensures that
no subsequent instructions are initiated by the processor until after the isync instruction
completes. Finally, it causes the processor to discard any prefetched instructions, with the
effect that subsequent instructions will be fetched and executed in the context established
by the instructions preceding the isync instruction. The isync instruction has no effect on
the other processors or on their caches. This instruction is context synchronizing.

Context synchronization is necessary after certain code sequences that perform complex
operations within the processor. These code sequences are usually operating system
tasks that involve memory management. For example, if an instruction “A” changes the
memory translation rules in the memory management unit (MMU), the isync instruction
should be executed so that the instructions following instruction “A” will be discarded from
the pipeline and refetched according to the new translation rules. This instruction is
context synchronizing.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

VEA XL

0 0 0 0 0 150 0

0 5 6 10 11 15 16 20 21 30 31

Reserved

19 0 0 0 0 0 0 0 0 0 0
Motorola MPCxxx INSTRUCTION SET 61

lbz lbz
Load Byte and Zero

lbz rD,d(rA)

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + EXTS(d)
rD ← (24)0 || MEM(EA, 1)

EA is the sum (rA|0) + d. The byte in memory addressed by EA is loaded into the low-order
eight bits of rD. The remaining bits in rD are cleared.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA D

0 5 6 10 11 15 16 31

d34 D A
62 MPCxxx INSTRUCTION SET Motorola

lbzu lbzu
Load Byte and Zero with Update

lbzu rD,d(rA)

EA ← (rA) + EXTS(d)
rD ← (24)0 || MEM(EA, 1)
rA ← EA

EA is the sum (rA) + d. The byte in memory addressed by EA is loaded into the low-order
eight bits of rD. The remaining bits in rD are cleared. EA is placed into rA. If rA = 0, or
rA = rD, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA D

0 5 6 10 11 15 16 31

d35 D A
Motorola MPCxxx INSTRUCTION SET 63

lbzux lbzux
Load Byte and Zero with Update Indexed

lbzux rD,rA,rB

EA ← (rA) + (rB)
rD ← (24)0 || MEM(EA, 1)
rA ← EA

EA is the sum (rA) + (rB). The byte in memory addressed by EA is loaded into the low-
order eight bits of rD. The remaining bits in rD are cleared. EA is placed into rA. If rA = 0
or rA = rD, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 119 031 D A
64 MPCxxx INSTRUCTION SET Motorola

lbzx lbzx
Load Byte and Zero Indexed

lbzx rD,rA,rB

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + (rB)
rD ← (24)0 || MEM(EA, 1)

EA is the sum (rA|0) + (rB). The byte in memory addressed by EA is loaded into the low-
order eight bits of rD. The remaining bits in rD are cleared.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 87 031 D A
Motorola MPCxxx INSTRUCTION SET 65

lha lha
Load Half Word Algebraic

lha rD,d(rA)

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + EXTS(d)
rD ← EXTS(MEM(EA, 2))

EA is the sum (rA|0) + d. The half word in memory addressed by EA is loaded into the low-
order 16 bits of rD. The remaining bits in rD are filled with a copy of the most-significant
bit of the loaded half word.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA D

0 5 6 10 11 15 16 31

d42 D A
66 MPCxxx INSTRUCTION SET Motorola

lhau lhau
Load Half Word Algebraic with Update

lhau rD,d(rA)

EA ← (rA) + EXTS(d)
rD ← EXTS(MEM(EA, 2))
rA ← EA

EA is the sum (rA) + d. The half word in memory addressed by EA is loaded into the low-
order 16 bits of rD. The remaining bits in rD are filled with a copy of the most-significant
bit of the loaded half word. EA is placed into rA. If rA = 0 or rA = rD, the instruction form
is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA D

0 5 6 10 11 15 16 31

d43 D A
Motorola MPCxxx INSTRUCTION SET 67

lhaux lhaux
Load Half Word Algebraic with Update Indexed

lhaux rD,rA,rB

EA ← (rA) + (rB)
rD ← EXTS(MEM(EA, 2))
rA ← EA

EA is the sum (rA) + (rB). The half word in memory addressed by EA is loaded into the
low-order 16 bits of rD. The remaining bits in rD are filled with a copy of the most-
significant bit of the loaded half word. EA is placed into rA. If rA = 0 or rA = rD, the
instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 375 031 D A
68 MPCxxx INSTRUCTION SET Motorola

lhax lhax
Load Half Word Algebraic Indexed

lhax rD,rA,rB

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + (rB)
rD ← EXTS(MEM(EA, 2))

EA is the sum (rA|0) + (rB). The half word in memory addressed by EA is loaded into the
low-order 16 bits of rD. The remaining bits in rD are filled with a copy of the most-
significant bit of the loaded half word.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 343 031 D A
Motorola MPCxxx INSTRUCTION SET 69

lhbrx lhbrx
Load Half Word Byte-Reverse Indexed

lhbrx rD,rA,rB

if rA = 0 then b ← 0
else b ← (rA)
EA ← b + (rB)
rD ← (16)0 || MEM(EA + 1, 1) || MEM(EA, 1)

EA is the sum (rA|0) + (rB). Bits 0–7 of the half word in memory addressed by EA are
loaded into the low-order eight bits of rD. Bits 8–15 of the half word in memory addressed
by EA are loaded into the subsequent low-order eight bits of rD. The remaining bits in rD
are cleared.

The PowerPC architecture cautions programmers that some implementations of the
architecture may run the lhbrx instructions with greater latency than other types of load
instructions.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 790 031 D A
70 MPCxxx INSTRUCTION SET Motorola

lhz lhz
Load Half Word and Zero

lhz rD,d(rA)

if rA = 0 then b ← 0

else b ← (rA)
EA ← b + EXTS(d)
rD ← (16)0 || MEM(EA, 2)

EA is the sum (rA|0) + d. The half word in memory addressed by EA is loaded into the low-
order 16 bits of rD. The remaining bits in rD are cleared.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA D

0 5 6 10 11 15 16 31

d40 D A
Motorola MPCxxx INSTRUCTION SET 71

lhzu lhzu
Load Half Word and Zero with Update

lhzu rD,d(rA)

EA ← rA + EXTS(d)

rD ← (16)0 || MEM(EA, 2)

rA ← EA

EA is the sum (rA) + d. The half word in memory addressed by EA is loaded into the low-
order 16 bits of rD. The remaining bits in rD are cleared. EA is placed into rA. If rA = 0 or
rA = rD, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA D

0 5 6 10 11 15 16 31

d41 D A
72 MPCxxx INSTRUCTION SET Motorola

lhzux lhzux
Load Half Word and Zero with Update Indexed

lhzux rD,rA,rB

EA ← (rA) + (rB)
rD ← (16)0 || MEM(EA, 2)
rA ← EA

EA is the sum (rA) + (rB). The half word in memory addressed by EA is loaded into the
low-order 16 bits of rD. The remaining bits in rD are cleared. EA is placed into rA. If rA =
0 or rA = rD, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 311 031 D A
Motorola MPCxxx INSTRUCTION SET 73

lhzx lhzx
Load Half Word and Zero Indexed

lhzx rD,rA,rB

if rA = 0 then b ← 0

elseb ← (rA)
EA ← b + (rB)
rD ← (16)0 || MEM(EA, 2)

EA is the sum (rA|0) + (rB). The half word in memory addressed by EA is loaded into the
low-order 16 bits of rD. The remaining bits in rD are cleared.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 279 031 D A
74 MPCxxx INSTRUCTION SET Motorola

lmw lmw
Load Multiple Word

lmw rD,d(rA)

if rA = 0 then b ← 0

elseb ← (rA)
EA ← b + EXTS(d)
r ← rD
do while r ≤ 31
GPR(r) ← MEM(EA, 4)

r ← r + 1
EA ← EA + 4

EA is the sum (rA|0) + d. n = (32 – rD). n consecutive words starting at EA are loaded into
GPRs rD through r31.

EA must be a multiple of four. If it is not, either the system alignment exception handler is
invoked or the results are boundedly undefined. If rA is in the range of registers specified
to be loaded, including the case in which rA = 0, the instruction form is invalid.

Note that, in some implementations, this instruction is likely to have a greater latency and
take longer to execute, perhaps much longer, than a sequence of individual load or store
instructions that produce the same results.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA D

0 5 6 10 11 15 16 31

d46 D A
Motorola MPCxxx INSTRUCTION SET 75

lswi lswi
Load String Word Immediate

lswi rD,rA,NB

if rA = 0 then EA ← 0

else EA ← (rA)

if NB = 0 then n ← 32

elsen ← NB

r ← rD – 1

i ← 32
do while n > 0
if i = 32 then

r ← r + 1 (mod 32)

GPR(r) ← 0

GPR(r)[i–i + 7] ← MEM(EA, 1)

i ← i + 8
if i = 32 then i ← 0
EA ← EA + 1
n ← n – 1

EA is (rA|0). Let n = NB if NB ≠ 0, n = 32 if NB = 0; n is the number of bytes to load. Let
nr = CEIL(n ÷ 4); nr is the number of registers to be loaded with data.

n consecutive bytes starting at EA are loaded into GPRs rD through rD + nr – 1. Bytes are
loaded left to right in each register. The sequence of registers wraps around to r0 if
required. If the 4 bytes of register rD + nr – 1 are only partially filled, the unfilled low-order
byte(s) of that register are cleared.

If rA is in the range of registers specified to be loaded, including the case in which rA = 0,
the instruction form is invalid. Under certain conditions (for example, segment boundary
crossing) the data alignment exception handler may be invoked.

0 5 6 10 11 15 16 20 21 30 31

Reserved

NB 597 031 D A
76 MPCxxx INSTRUCTION SET Motorola

Note that, in some implementations, this instruction is likely to have greater latency and
take longer to execute, perhaps much longer, than a sequence of individual load or store
instructions that produce the same results.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA X
Motorola MPCxxx INSTRUCTION SET 77

lswx lswx
Load String Word Indexed

lswx rD,rA,rB

if rA = 0 then b ← 0

else b ← (rA)

EA ← b + (rB)

n ← XER[25–31]

r ← rD – 1

i ← 32
rD ← undefined
 do while n > 0
if i = 32 then

r ← r + 1 (mod 32)

GPR(r) ← 0

GPR(r)[i–i + 7] ← MEM(EA, 1)

i ← i + 8
if i = 32 then i ← 0
EA ← EA + 1
n ← n – 1

EA is the sum (rA|0) + (rB). Let n = XER[25–31]; n is the number of bytes to load. Let
nr = CEIL(n ÷ 4); nr is the number of registers to receive data. If n > 0, n consecutive bytes
starting at EA are loaded into GPRs rD through rD + nr – 1.

Bytes are loaded left to right in each register. The sequence of registers wraps around
through r0 if required. If the four bytes of rD + nr – 1 are only partially filled, the unfilled
low-order byte(s) of that register are cleared. If n = 0, the contents of rD are undefined.

If rA or rB is in the range of registers specified to be loaded, including the case in which
rA = 0, either the system illegal instruction error handler is invoked or the results are
boundedly undefined. If rD = rA or rD = rB, the instruction form is invalid. If rD and rA both
specify GPR0, the form is invalid.

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 533 031 D A
78 MPCxxx INSTRUCTION SET Motorola

Under certain conditions (for example, segment boundary crossing) the data alignment
exception handler may be invoked. Note that, in some implementations, this instruction is
likely to have a greater latency and take longer to execute, perhaps much longer, than a
sequence of individual load or store instructions that produce the same results.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA X
Motorola MPCxxx INSTRUCTION SET 79

lwarx lwarx
Load Word and Reserve Indexed

lwarx rD,rA,rB

if rA = 0 then b ← 0

else b ← (rA)

EA ← b + (rB)

RESERVE ← 1

RESERVE_ADDR ← physical_addr(EA)

rD ← MEM(EA,4)

EA is the sum (rA|0) + (rB). The word in memory addressed by EA is loaded into rD.

This instruction creates a reservation for use by a store word conditional indexed
(stwcx.)instruction. The physical address computed from EA is associated with the
reservation, and replaces any address previously associated with the reservation. EA
must be a multiple of four. If it is not, either the system alignment exception handler is
invoked or the results are boundedly undefined.

When the RESERVE bit is set, the processor enables hardware snooping for the block of
memory addressed by the RESERVE address. If the processor detects that another
processor writes to the block of memory it has reserved, it clears the RESERVE bit. The
stwcx. instruction will only do a store if the RESERVE bit is set. The stwcx. instruction
sets the CR0[EQ] bit if the store was successful and clears it if it failed. The lwarx and
stwcx. combination can be used for atomic read-modify-write sequences. Note that the
atomic sequence is not guaranteed, but its failure can be detected if CR0[EQ] = 0 after the
stwcx. instruction.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 20 031 D A
80 MPCxxx INSTRUCTION SET Motorola

lwbrx lwbrx
Load Word Byte-Reverse Indexed

lwbrx rD,rA,rB

if rA = 0 then b ← 0
elseb ← (rA)

EA ← b + (rB)

rD ← MEM(EA + 3, 1) || MEM(EA + 2, 1) || MEM(EA + 1, 1) || MEM(EA, 1)

EA is the sum (rA|0) + rB. Bits 0–7 of the word in memory addressed by EA are loaded
into the low-order 8 bits of rD. Bits 8–15 of the word in memory addressed by EA are
loaded into the subsequent low-order 8 bits of rD. Bits 16–23 of the word in memory
addressed by EA are loaded into the subsequent low-order eight bits of rD. Bits 24–31 of
the word in memory addressed by EA are loaded into the subsequent low-order 8 bits of
rD. The MPCxxx may run the lwbrx instructions with greater latency than other types of
load instructions.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 534 031 D A
Motorola MPCxxx INSTRUCTION SET 81

lwz lwz
Load Word and Zero

lwz rD,d(rA)

if rA = 0 then b ← 0

elseb ← (rA)

EA ← b + EXTS(d)

rD ← MEM(EA, 4)

EA is the sum (rA|0) + d. The word in memory addressed by EA is loaded into rD.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA D

0 5 6 10 11 15 16 31

d32 D A
82 MPCxxx INSTRUCTION SET Motorola

lwzu lwzu
Load Word and Zero with Update

lwzu rD,d(rA)

EA ← rA + EXTS(d)

rD ← MEM(EA, 4)

rA ← EA

EA is the sum (rA) + d. The word in memory addressed by EA is loaded into rD. EA is
placed into rA. If rA = 0, or rA = rD, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA D

0 5 6 10 11 15 16 31

d33 D A
Motorola MPCxxx INSTRUCTION SET 83

lwzux lwzux
Load Word and Zero with Update Indexed

lwzux rD,rA,rB

EA ← (rA) + (rB)

rD ← MEM(EA, 4)

rA ← EA

EA is the sum (rA) + (rB). The word in memory addressed by EA is loaded into rD. EA is
placed into rA. If rA = 0, or rA = rD, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 55 031 D A
84 MPCxxx INSTRUCTION SET Motorola

lwzx lwzx
Load Word and Zero Indexed

lwzx rD,rA,rB

if rA = 0 then b ← 0

elseb ← (rA)

EA ← b + rB

rD ← MEM(EA, 4)

EA is the sum (rA|0) + (rB). The word in memory addressed by EA is loaded into rD.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

B 23 031 D A
Motorola MPCxxx INSTRUCTION SET 85

mcrf mcrf
Move Condition Register Field

mcrf crfD,crfS

CR[4 ∗ crfD–4 ∗ crfD + 3] ← CR[4 ∗ crfS–4 ∗ crfS + 3]

The contents of condition register field crfS are copied into condition register field crfD.
All other condition register fields remain unchanged.

Other registers altered:

• Condition Register (CR field specified by operand crfD):

Affected: LT, GT, EQ, SO

PowerPC Architecture Level Supervisor Level Optional Form

UISA XL

0 5 6 8 9 10 11 13 14 15 16 20 21 30 31

Reserved

19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
86 MPCxxx INSTRUCTION SET Motorola

mcrxr mcrxr
Move to Condition Register from XER

mcrxr crfD

CR[4 ∗ crfD–4 ∗ crfD + 3] ← XER[0–3]

XER[0–3] ← 0b0000

The contents of XER[0–3] are copied into the condition register field designated by crfD.
All other fields of the condition register remain unchanged. XER[0–3] is cleared.

Other registers altered:

• Condition Register (CR field specified by operand crfD):

Affected: LT, GT, EQ, SO

• XER[0–3]

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

0 5 6 8 9 10 11 15 16 20 21 30 31

Reserved

31 crfD 0 0 0 0 0 0 0 0 0 0 0 0 512 0
Motorola MPCxxx INSTRUCTION SET 87

mfcr mfcr
Move from Condition Register

mfcr rD

rD ← CR

The contents of the condition register (CR) are placed into rD.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

0 0 0 0 0 19 031 D 0 0 0 0 0
Motorola MPCxxx INSTRUCTION SET 89

mfmsr mfmsr
Move from Machine State Register

mfmsr rD

rD ← MSR

The contents of the MSR are placed into rD. This is a supervisor-level instruction.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

OEA √ X

0 5 6 10 11 15 16 20 21 30 31

Reserved

0 0 0 0 0 83 031 D 0 0 0 0 0
90 MPCxxx INSTRUCTION SET Motorola

mfspr mfspr
Move from Special-Purpose Register

mfspr rD,SPR

n ← spr[5–9] || spr[0–4]

rD ← SPR(n)

In the PowerPC UISA, the SPR field denotes a special-purpose register, encoded as
shown in Table 9. The contents of the designated special-purpose register are placed into
rD.

If the SPR field contains any value other than one of the values shown in Table 9 (and the
processor is in user mode), one of the following occurs:

• The system illegal instruction error handler is invoked.
• The system supervisor-level instruction error handler is invoked.
• The results are boundedly undefined.

Other registers altered:

• None

Table 9. PowerPC UISA SPR Encodings for mfspr

SPR**
Register Name

Decimal spr[5–9] spr[0–4]

1 00000 00001 XER

8 00000 01000 LR

9 00000 01001 CTR

** Note that the order of the two 5-bit halves of the SPR
number is reversed compared with the actual instruction
coding.

0 5 6 10 11 20 21 30 31

Reserved

spr* 339 031 D

*Note: This is a split field.
Motorola MPCxxx INSTRUCTION SET 91

Simplified mnemonics:

mfxer rD equivalent to mfspr rD,1
mflr rD equivalent to mfspr rD,8
mfctr rD equivalent to mfspr rD,9

In the PowerPC OEA, the SPR field denotes a special-purpose register, encoded as
shown in Table 10. The contents of the designated SPR are placed into rD. SPR[0] = 1 if
and only if reading the register is supervisor-level. Execution of this instruction specifying
a defined and supervisor-level register when MSR[PR] = 1 will result in a priviledged
instruction type program exception.

If MSR[PR] = 1, the only effect of executing an instruction with an SPR number that is not
shown in Table 10 and has SPR[0] = 1 is to cause a supervisor-level instruction type
program exception or an illegal instruction type program exception. For all other cases,
MSR[PR] = 0 or SPR[0] = 0. If the SPR field contains any value that is not shown in
Table 10, either an illegal instruction type program exception occurs or the results are
boundedly undefined.

Other registers altered:

• None

Table 10. PowerPC OEA SPR Encodings for mfspr

SPR
1

Register
Name

Access
Decimal spr[5–9] spr[0–4]

1 00000 00001 XER User

8 00000 01000 LR User

9 00000 01001 CTR User

18 00000 10010 DSISR Supervisor

19 00000 10011 DAR Supervisor

22 00000 10110 DEC Supervisor

26 00000 11010 SRR0 Supervisor

27 00000 11011 SRR1 Supervisor

80 00010 10000 EIE
2

Supervisor

81 00010 10001 EID
3

Supervisor

144 00100 10000 CMPA
4

Supervisor

145 00100 10001 CMPB
4

Supervisor

146 00100 10010 CMPC
4

Supervisor

147 00100 10011 CMPD
4

Supervisor

148 00100 10100 ICR
4

Supervisor

149 00100 10101 DER
4

Supervisor
92 MPCxxx INSTRUCTION SET Motorola

150 00100 10110 COUNTA
4

Supervisor

151 00100 10111 COUNTB
4

Supervisor

152 00100 11000 CMPE
4

Supervisor

153 00100 11001 CMPF
4

Supervisor

154 00100 11010 CMPG
4

Supervisor

155 00100 11011 CMPH
4

Supervisor

156 00100 11100 LCTRL1
4

Supervisor

157 00100 11101 LCTRL2
4

Supervisor

158 00100 11110 ICTRL
4

Supervisor

159 00100 11111 BAR
4

Supervisor

272 01000 10000 SPRG0 Supervisor

273 01000 10001 SPRG1 Supervisor

274 01000 10010 SPRG2 Supervisor

275 01000 10011 SPRG3 Supervisor

287 01000 11111 PVR Supervisor

560 10001 10000 IC_CST Supervisor

561 10001 10001 IC_ADR Supervisor

562 10001 10010 IC_DAT Supervisor

568 10001 11000 DC_CST Supervisor

569 10001 11001 DC_ADR Supervisor

570 10001 11010 DC_DAT Supervisor

630 10011 10110 DPDR
4

Supervisor

638 10011 11110 IMMR Supervisor

784 11000 10000 MI_CTR Supervisor

786 11000 10010 MI_AP Supervisor

787 11000 10011 MI_EPN Supervisor

789 11000 10101 MI_TWC Supervisor

790 11000 10110 MI_RPN Supervisor

792 11000 11000 MD_CTR Supervisor

793 11000 11001 M_CASID Supervisor

794 11000 11010 MD_AP Supervisor

Table 10. PowerPC OEA SPR Encodings for mfspr (Continued)

SPR
1

Register
Name

Access
Decimal spr[5–9] spr[0–4]
Motorola MPCxxx INSTRUCTION SET 93

795 11000 11011 MD_EPN Supervisor

796 11000 11100 M_TWB Supervisor

797 11000 11101 MD_TWC Supervisor

798 11000 11110 MD_RPN Supervisor

799 11000 11111 M_TW Supervisor

816 11001 10000 MI_DBCAM Supervisor

817 11001 10001 MI_DBRAM0 Supervisor

818 11001 10010 MI_DBRAM1 Supervisor

824 11001 11000 MD_DBCAM Supervisor

825 11001 11001 MI_DBRAM0 Supervisor

826 11001 11010 MI_DBRAM1 Supervisor

1Note that the order of the two 5-bit halves of the SPR number is reversed
compared with actual instruction coding.

2Sets EE Bit (Bit 16) in MSR.

3Clears EE Bit (Bit 16) in MSR.

4Development Support (Debug) Register.

For mtspr and mfspr instructions, the SPR number coded in assembly
language does not appear directly as a 10-bit binary number in the
instruction. The number coded is split into two 5-bit halves that are
reversed in the instruction, with the high-order five bits appearing in bits
16–20 of the instruction and the low-order five bits in bits 11–15.

PowerPC Architecture Level Supervisor Level Optional Form

UISA/OEA √* XFX

* Note that mfspr is supervisor-level only if SPR[0] = 1.

Table 10. PowerPC OEA SPR Encodings for mfspr (Continued)

SPR
1

Register
Name

Access
Decimal spr[5–9] spr[0–4]
94 MPCxxx INSTRUCTION SET Motorola

Motorola MPCxxx INSTRUCTION SET

95

mftb mftb

Move from Time Base

mftb r

D,TBR

n

←

tbr[5–9] || tbr[0–4]
if

n

= 268 then

r

D

←

 T BL

else if

n

= 269 then

r

D

←

 TBU

If the TBR field contains any value other than one of the values shown in Table 11, then
one of the following occurs:

• The system illegal instruction error handler is invoked.
• The system supervisor-level instruction error handler is invoked.
• The results are boundedly undefined.

It is important to note that some implementations may implement

mftb

 and

mfspr

identically, therefore, a TBR number must not match an SPR number.

Other registers altered:

• None

Table 11. TBR Encodings for mftb

TBR*
Register

Name
Access

Decimal tbr[5–9] tbr[0–4]

268 01000 01100 TB Read User

269 01000 01101 TBU Read User

*Note that the order of the two 5-bit halves of the TBR number is
reversed.

0 5 6 10 11 20 21 30 31

Reserved

31 D tbr* 371 0

*Note: This is a split field.

96

MPCxxx INSTRUCTION SET Motorola

Simplified mnemonics:

mftb r

D equivalent to

mftb r

D

,268
mftbu r

D equivalent to

mftb r

D

,269

PowerPC Architecture Level Supervisor Level Optional Form

VEA XFX

Motorola MPCxxx INSTRUCTION SET

97

mtcrf mtcrf

Move to Condition Register Fields

mtcrf

CRM

,r

S

mask

←

 (4)(CRM[0]) || (4)(CRM[1]) ||... (4)(CRM[7])

CR

←

 (

r

S & mask) | (CR & ¬ mask)

The contents of

r

S are placed into the condition register under control of the field mask
specified by CRM. The field mask identifies the 4-bit fields affected. Let i be an integer in
the range 0–7. If CRM(i) = 1, CR field i (CR bits 4

 ∗

 i through 4

 ∗

 i + 3) is set to the contents
of the corresponding field of

r

S.

Note that updating a subset of the eight fields of the condition register may have
substantially poorer performance on some implementations than updating all of the fields.

Other registers altered:

• CR fields selected by mask

Simplified mnemonics:

mtcr r

S equivalent to

mtcrf

0xFF

,r

S

PowerPC Architecture Level Supervisor Level Optional Form

UISA XFX

0 5 6 10 11 12 19 20 21 30 31

Reserved

CRM 0 144 031 S 0

98

MPCxxx INSTRUCTION SET Motorola

mtmsr mtmsr

 Move to Machine State Register

mtmsr r

S

MSR

←

(

r

S)

The contents of

r

S are placed into the MSR. This is a supervisor-level instruction. It is also
an execution synchronizing instruction except with respect to alterations to the POW and
LE bits.

In addition, alterations to the MSR[EE] and MSR[RI] bits are effective as soon as the
instruction completes. Thus if MSR[EE] = 0 and an external or decrementer exception is
pending, executing an

mtmsr

 instruction that sets MSR[EE] = 1 will cause the external or
decrementer exception to be taken before the next instruction is executed, if no higher
priority exception exists.

Other registers altered:

• MSR

PowerPC Architecture Level Supervisor Level Optional Form

OEA

√

X

0 5 6 10 11 15 16 20 21 30 31

Reserved

0 0 0 0 0 146 031 S 0 0 0 0 0

Motorola MPCxxx INSTRUCTION SET

99

mtspr mtspr

Move to Special-Purpose Register

mtspr

SPR

,rS

n

←

 spr[5–9] || spr[0–4]

SPR(

n

)

←

 r

S

In the PowerPC UISA, the SPR field denotes a special-purpose register, encoded as
shown in Table 12. The contents of

r

S are placed into the designated special-purpose
register.

I

f the SPR field contains any value other than one of the values shown in Table 12, and
the processor is operating in user mode, one of the following occurs:

• The system illegal instruction error handler is invoked.
• The system supervisor instruction error handler is invoked.
• The results are boundedly undefined.

Other registers altered:

• See Table 12.

Table 12. PowerPC UISA SPR Encodings for mtspr

 SPR**
Register Name

Decimal spr[5–9] spr[0–4]

1 00000 00001 XER

8 00000 01000 LR

9 00000 01001 CTR

** Note that the order of the two 5-bit halves of the SPR
number is reversed compared with actual instruction coding.

0 5 6 10 11 20 21 30 31

Reserved

spr* 467 031 S

*Note: This is a split field.

100

MPCxxx INSTRUCTION SET Motorola

Simplified mnemonics:

mtxer r

D equivalent to

mtspr 1,r

D

mtlr r

D equivalent to

mtspr 8,r

D

mtctr r

D equivalent to

mtspr 9,r

D

In the PowerPC OEA, the SPR field denotes a special-purpose register, encoded as
shown in Table 13. The contents of

r

S are placed into the designated special-purpose
register. For this instruction, SPRs TBL and TBU are treated as separate 32-bit registers;
setting one leaves the other unaltered.

The value of SPR[0] = 1 if and only if writing the register is a supervisor-level operation.
Execution of this instruction specifying a defined and supervisor-level register when
MSR[PR] = 1 results in a priviledged instruction type program exception.

If MSR[PR] = 1 then the only effect of executing an instruction with an SPR number that
is not shown in Table 13 and has SPR[0] = 1 is to cause a priviledged instruction type
program exception or an illegal instruction type program exception. For all other cases,
MSR[PR] = 0 or SPR[0] = 0, if the SPR field contains any value that is not shown in
Table 13, either an illegal instruction type program exception occurs or the results are
boundedly undefined.

Other registers altered:

•

See

Table 13

.

Table 13. PowerPC OEA SPR Encodings for mtspr

 SPR

1

Register
Name

Access
Decimal spr[5–9] spr[0–4]

1 00000 00001 XER User

8 00000 01000 LR User

9 00000 01001 CTR User

18 00000 10010 DSISR Supervisor

19 00000 10011 DAR Supervisor

22 00000 10110 DEC Supervisor

26 00000 11010 SRR0 Supervisor

27 00000 11011 SRR1 Supervisor

80 00010 10000 EIE

2

Supervisor

81 00010 10001 EID

3

Supervisor

144 00100 10000 CMPA

4

Supervisor

145 00100 10001 CMPB

4

Supervisor

146 00100 10010 CMPC

4

Supervisor

147 00100 10011 CMPD

4

Supervisor

Motorola MPCxxx INSTRUCTION SET

101

148 00100 10100 ICR

4

Supervisor

149 00100 10101 DER

4

Supervisor

150 00100 10110 COUNTA

4

Supervisor

151 00100 10111 COUNTB

4

Supervisor

152 00100 11000 CMPE

4

Supervisor

153 00100 11001 CMPF

4

Supervisor

154 00100 11010 CMPG

4

Supervisor

155 00100 11011 CMPH

4

Supervisor

156 00100 11100 LCTRL1

4

Supervisor

157 00100 11101 LCTRL2

4

Supervisor

158 00100 11110 ICTRL

4

Supervisor

159 00100 11111 BAR

4

Supervisor

272 01000 10000 SPRG0 Supervisor

273 01000 10001 SPRG1 Supervisor

274 01000 10010 SPRG2 Supervisor

275 01000 10011 SPRG3 Supervisor

284 01000 11100 TB Write Supervisor

285 01000 11101 TBU Write Supervisor

560 10001 10000 IC_CST Supervisor

561 10001 10001 IC_ADR Supervisor

562 10001 10010 IC_DAT Supervisor

568 10001 11000 DC_CST Supervisor

569 10001 11001 DC_ADR Supervisor

570 10001 11010 DC_DAT Supervisor

630 10011 10110 DPDR

4

Supervisor

638 10011 11110 IMMR Supervisor

784 11000 10000 MI_CTR Supervisor

786 11000 10010 MI_AP Supervisor

787 11000 10011 MI_EPN Supervisor

789 11000 10101 MI_TWC Supervisor

790 11000 10110 MI_RPN Supervisor

Table 13. PowerPC OEA SPR Encodings for mtspr (Continued)

 SPR

1

Register
Name

Access
Decimal spr[5–9] spr[0–4]

102 MPCxxx INSTRUCTION SET Motorola

792 11000 11000 MD_CTR Supervisor

793 11000 11001 M_CASID Supervisor

794 11000 11010 MD_AP Supervisor

795 11000 11011 MD_EPN Supervisor

796 11000 11100 M_TWB Supervisor

797 11000 11101 MD_TWC Supervisor

798 11000 11110 MD_RPN Supervisor

799 11000 11111 M_TW Supervisor

816 11001 10000 MI_DBCAM Supervisor

817 11001 10001 MI_DBRAM0 Supervisor

818 11001 10010 MI_DBRAM1 Supervisor

824 11001 11000 MD_DBCAM Supervisor

825 11001 11001 MI_DBRAM0 Supervisor

826 11001 11010 MI_DBRAM1 Supervisor

1Note that the order of the two 5-bit halves of the SPR number is reversed. For mtspr
and mfspr instructions, the SPR number coded in assembly language does not appear
directly as a 10-bit binary number in the instruction. The number coded is split into two
5-bit halves that are reversed in the instruction, with the high-order five bits appearing
in bits 16–20 of the instruction and the low-order five bits in bits 11–15. .

2Sets EE Bit (Bit 16) in MSR.

3Clears EE Bit (Bit 16) in MSR.

4Development Support (Debug) Register.

PowerPC Architecture Level Supervisor Level Optional Form

UISA/OEA √* XFX

* Note that mtspr is supervisor-level only if SPR[0] = 1.

Table 13. PowerPC OEA SPR Encodings for mtspr (Continued)

 SPR
1

Register
Name

Access
Decimal spr[5–9] spr[0–4]

Motorola MPCxxx INSTRUCTION SET 103

mulhw x mulhw x
Multiply High Word

mulhw r D,rA,rB (Rc = 0)
mulhw. r D,rA,rB (Rc = 1)

prod[0–63] ← r A ∗ r B
r D ← prod[0–31]

The 64 -bit product is formed from the contents of rA and rB. The high-order 32 bits of the
64-bit product of the operands are placed into rD. Both the operands and the product are
interpreted as signed integers. This instruction may execute faster on some
implementations if rB contains the operand having the smaller absolute value.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA XO

Reserved

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B 0 75 Rc

104 MPCxxx INSTRUCTION SET Motorola

mulhwu x mulhwu x
Multiply High Word Unsigned

mulhwu r D,rA,rB (Rc = 0)
mulhwu. r D,rA,rB (Rc = 1)

prod[0–63] ← r A ∗ r B
r D ← prod[0–31]

The 32-bit operands are the contents of rA and rB. The high-order 32 bits of the 64-bit
product of the operands are placed into rD. Both the operands and the product are
interpreted as unsigned integers, except that if Rc = 1 the first three bits of CR0 field are
set by signed comparison of the result to zero. This instruction may execute faster on
some implementations if rB contains the operand having the smaller absolute value.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO(if Rc = 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA XO

Reserved

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B 0 11 Rc

Motorola MPCxxx INSTRUCTION SET 105

mulli mulli
Multiply Low Immediate

mulli r D,rA,SIMM

prod[0–4 8] ← (r A) ∗ SIMM

r D ← prod[1 6-48]

The first operand is (rA). The 16-bit second operand is the value of the SIMM field. The
low-order 32-bits of the 48-bit product of the operands are placed into rD. Both the
operands and the product are interpreted as signed integers. The low-order 32 bits of the
product are calculated independently of whether the operands are treated as signed or
unsigned 32-bit integers. This instruction can be used with mulhd x or mulhw x to calculate
a full 64-bit product.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA D

0 5 6 10 11 15 16 31

SIMM07 D A

106 MPCxxx INSTRUCTION SET Motorola

mullw x mullw x
Multiply Low Word

mullw r D,rA,rB (OE = 0 Rc = 0)
mullw. r D,rA,rB (OE = 0 Rc = 1)
mullwo r D,rA,rB (OE = 1 Rc = 0)
mullwo. r D,rA,rB (OE = 1 Rc = 1)

r D ← r A ∗ r B

The 32-bit operands are the contents of rA and rB. The low-order 32 bits of the 64-bit
product (rA) * (rB) are placed into rD. The low-order 32 bits of the product are the correct
32-bit product for 32-bit implementations. The low-order 32-bits of the product are
independent of whether the operands are regarded as signed or unsigned 32-bit integers.
If OE = 1, then OV is set if the product cannot be represented in 32 bits. Both the operands
and the product are interpreted as signed integers.

Note that this instruction may execute faster on some implementations if rB contains the
operand having the smaller absolute value.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO(if Rc = 1)

Note: CR0 field may not reflect the “true” (infinitely precise) result if overflow occurs
(see XER below).

• XER:

Affected: SO, OV(if OE = 1)

Note: The setting of the affected bits in the XER is mode-independent, and reflects
overflow of the 32-bit result.

PowerPC Architecture Level Supervisor Level Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 235 Rc

Motorola MPCxxx INSTRUCTION SET 107

nand x nand x
NAND

nand r A,rS,rB (Rc = 0)
nand. r A,rS,rB (Rc = 1)

r A ← ¬ ((r S) & (r B))

The contents of rS are ANDed with the contents of rB and the complemented result is
placed into rA. nand with rS = rB can be used to obtain the one's complement.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO(if Rc = 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

31 S A B 476 Rc

108 MPCxxx INSTRUCTION SET Motorola

negx negx
Negate

neg r D,rA (OE = 0 Rc = 0)
neg. r D,rA (OE = 0 Rc = 1)
nego r D,rA (OE = 1 Rc = 0)
nego. rD,rA (OE = 1 Rc = 1)

r D ← ¬ (r A) + 1

The value 1 is added to the complement of the value in rA, and the resulting two’s
complement is placed into rD. If rA contains the most negative 32-bit number
(0x8000_0000), the result is the most negative number and, if OE = 1, OV is set.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO(if Rc = 1)

• XER:

Affected: SO OV(if OE = 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA XO

Reserved

0 5 6 10 11 15 16 20 21 22 30 31

31 D A 0 0 0 0 0 OE 104 Rc

Motorola MPCxxx INSTRUCTION SET 109

nor x nor x
 NOR

nor r A,rS,rB (Rc = 0)
nor. r A,rS,rB (Rc = 1)

r A ← ¬ ((r S) | (r B))

The contents of rS are ORed with the contents of rB and the complemented result is
placed into rA. nor with rS = rB can be used to obtain the one’s complement.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO(if Rc = 1)

Simplified mnemonics:

not r D,rS equivalent to nor r A,rS,rS

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

31 S A B 124 Rc

110 MPCxxx INSTRUCTION SET Motorola

orx orx
OR

or r A,rS,rB (Rc = 0)
or. r A,rS,rB (Rc = 1)

r A ← (r S) | (r B)

The contents of rS are ORed with the contents of rB and the result is placed into rA. The
simplified mnemonic mr (shown below) demonstrates the use of the or instruction to move
register contents.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO(if Rc = 1)

Simplified mnemonics:

mr r A,rS equivalent to or r A,rS,rS

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

31 S A B 444 Rc

Motorola MPCxxx INSTRUCTION SET 111

orc x orc x
OR with Complement

orc r A,rS,rB (Rc = 0)
orc. r A,rS,rB (Rc = 1)

r A ← (r S) | ¬ (r B)

The contents of rS are ORed with the complement of the contents of rB and the result is
placed into rA.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO(if Rc = 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

31 S A B 412 Rc

112 MPCxxx INSTRUCTION SET Motorola

ori ori
OR Immediate

ori r A,rS,UIMM

r A ← (r S) | ((1 6)0 || UIMM)

The contents of rS are ORed with 0x0000|| UIMM and the result is placed into rA. The
preferred no-op (an instruction that does nothing) is ori 0,0,0 .

Other registers altered:

• None

Simplified mnemonics:

nop equivalent to ori 0,0,0

PowerPC Architecture Level Supervisor Level Optional Form

UISA D

0 5 6 10 11 15 16 31

24 S A UIMM

Motorola MPCxxx INSTRUCTION SET 113

oris oris
OR Immediate Shifted

oris r A,rS,UIMM

r A ← (r S) | (UIMM || (16)0)

The contents of rS are ORed with UIMM || 0x0000 and the result is placed into rA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA D

0 5 6 10 11 15 16 31

25 S A UIMM

114 MPCxxx INSTRUCTION SET Motorola

rfi rfi
Return from Interrupt

MSR[16–23, 25–27, 30–31] ← SRR1[16–23, 25–27, 30–31]

NIA ←iea SRR0[0–29] || 0b00

Bits SRR1[0,5-9,16-31] are placed into the corresponding bits of the MSR. If the new MSR
value does not enable any pending exceptions, then the next instruction is fetched, under
control of the new MSR value, from the address SRR0[0–29] || 0b00. If the new MSR value
enables one or more pending exceptions, the exception associated with the highest
priority pending exception is generated; in this case the value placed into SRR0 by the
exception processing mechanism is the address of the instruction that would have been
executed next had the exception not occurred. Note that an implementation may define
addtional MSR bits, and in this case, may also cause them to be saved to SRR1 from MSR
on an exception and restored to MSR from SRR1 on an rfi . This is a supervisor-level,
context synchronizing instruction.

Other registers altered:

• MSR

PowerPC Architecture Level Supervisor Level Optional Form

OEA √ XL

0 0 0 0 0 50 0

Reserved

0 5 6 10 11 15 16 20 21 30 31

19 0 0 0 0 0 0 0 0 0 0

Motorola MPCxxx INSTRUCTION SET 115

rlwimi x rlwimi x
Rotate Left Word Immediate then Mask Insert

rlwimi r A,rS,SH,MB,ME (Rc = 0)
rlwimi. r A,rS,SH,MB,ME (Rc = 1)

n ← SH

r ← ROTL(r S, n)

m ← MASK(MB, ME)

r A ← (r & m) | (r A & ¬ m)

The contents of rS are rotated left the number of bits specified by operand SH. A mask is
generated having 1 bits from bit MB through bit ME and 0 bits elsewhere. The rotated data
is inserted into rA under control of the generated mask.

Note that rlwimi can be used to insert a bit field into the contents of rA using the methods
shown below:

• To insert an n-bit field, that is left-justified rS, into rA starting at bit position b, set
SH = 32 – b, MB = b, and
ME = (b + n) – 1.

• To insert an n-bit field, that is right-justified in rS, into rA starting at bit position b,
set SH = 32 – (b + n), MB = b, and ME = (b + n) – 1.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO(if Rc = 1)

Simplified mnemonics:

inslwi r A,rS,n,b equivalent to rlwimi r A,rS,32 – b,b,b + n – 1
insrwi r A,rS,n,b (n > 0) equivalent to rlwimi r A,rS,32 – (b + n),b,(b + n) – 1

PowerPC Architecture Level Supervisor Level Optional Form

UISA M

0 5 6 10 11 15 16 20 21 25 26 30 31

20 S A SH MB ME Rc

116 MPCxxx INSTRUCTION SET Motorola

rlwinm x rlwinm x
Rotate Left Word Immediate then AND with Mask

rlwinm r A,rS,SH,MB,ME (Rc = 0)
rlwinm. r A,rS,SH,MB,ME (Rc = 1)

n ← SH

r ← ROTL(r S, n)

m ← MASK(MB, ME)

r A ← r & m

The contents of rS are rotated left the number of bits specified by operand SH. A mask is
generated having 1 bits from bit MB through bit ME and 0 bits elsewhere. The rotated data
is ANDed with the generated mask and the result is placed into rA.

Note that rlwinm can be used to extract, rotate, shift, and clear bit fields using the
methods shown below:

• To extract an n-bit field, that starts at bit position b in rS, right-justified into rA
(clearing the remaining 32 – n bits of rA), set SH = b + n,
MB = 32 – n, and ME = 31.

• To extract an n-bit field, that starts at bit position b in rS, left-justified into rA
(clearing the remaining 32 – n bits of rA), set SH = b, MB = 0, and ME = n – 1.

• To rotate the contents of a register left (or right) by n bits, set SH = n (32 – n),
MB = 0, and ME = 31.

• To shift the contents of a register right by n bits, by setting SH = 32 – n, MB = n,
and ME = 31. It can be used to clear the high-order b bits of a register and then
shift the result left by n bits by setting SH = n, MB = b – n and ME = 31 – n.

• To clear the low-order n bits of a register, by setting SH = 0, MB = 0, and
ME = 31 – n.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO(if Rc = 1)

0 5 6 10 11 15 16 20 21 25 26 30 31

21 S A SH MB ME Rc

Motorola MPCxxx INSTRUCTION SET 117

Simplified mnemonics:

extlwi r A,rS,n,b (n > 0) equivalent to rlwinm r A,rS,b,0,n – 1
extrwi r A,rS,n,b (n > 0) equivalent to rlwinm r A,rS,b + n,32 – n,31
rotlwi r A,rS,n equivalent to rlwinm r A,rS,n,0,31
rotrwi r A,rS,n equivalent to rlwinm r A,rS,32 – n,0,31
slwi rA,rS,n (n < 32) equivalent to rlwinm r A,rS,n,0,31–n
srwi rA,rS,n (n < 32) equivalent to rlwinm r A,rS,32 – n,n,31
clrlwi r A,rS,n (n < 32) equivalent to rlwinm r A,rS,0,n,31
clrrwi r A,rS,n (n < 32) equivalent to rlwinm r A,rS,0,0,31 – n
clrlslwi r A,rS,b,n (n ≤ b < 32) equivalent to rlwinm r A,rS,n,b – n,31 – n

PowerPC Architecture Level Supervisor Level Optional Form

UISA M

118 MPCxxx INSTRUCTION SET Motorola

rlwnm x rlwnm x
Rotate Left Word then AND with Mask

rlwnm r A,rS,rB,MB,ME (Rc = 0)
rlwnm. r A,rS,rB,MB,ME (Rc = 1)

n ← r B[2 7-31]

r ← ROTL(r S, n)

m ← MASK(MB, ME)

r A ← r & m

The contents of rS are rotated left the number of bits specified by the low-order five bits
of rB. A mask is generated having 1 bits from bit MB through bit ME and 0 bits elsewhere.
The rotated data is ANDed with the generated mask and the result is placed into rA.

Note that rlwnm can be used to extract and rotate bit fields using the methods shown as
follows:

• To extract an n-bit field, that starts at variable bit position b in rS, right-justified into
rA (clearing the remaining 32 – n bits of rA), by setting the low-order five bits of rB
to b + n, MB = 32 – n, and ME = 31.

• To extract an n-bit field, that starts at variable bit position b in rS, left-justified into
rA (clearing the remaining 32 – n bits of rA), by setting the low-order five bits of rB
to b, MB = 0, and ME = n – 1.

• To rotate the contents of a register left (or right) by n bits, by setting the low-order
five bits of rB to n (32 – n), MB = 0, and ME = 31.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO(if Rc = 1)

Simplified mnemonics:

rotlw r A,rS,rB equivalent to rlwnmr A,rS,rB,0,31

PowerPC Architecture Level Supervisor Level Optional Form

UISA M

0 5 6 10 11 15 16 20 21 25 26 30 31

23 S A B MB ME Rc

Motorola MPCxxx INSTRUCTION SET 119

sc sc
System Call

The sc instruction calls the operating system to perform a service. When control is
returned to the program that executed the system call, the content of the registers
depends on the register conventions used by the program providing the system service.

The effective address of the instruction following the sc instruction is placed into SRR0.
Bits 0, 5-9, and 16-31 of the MSR are placed into the corresponding bits of SRR1, and bits
1-4 and 10-15 of SRR1 are set to undefined values. An sc exception is generated. The
exception alters the MSR. The exception causes the next instruction to be fetched from
offset 0xC00 from the base real address indicated by the new setting of MSR[IP].

Other registers altered:

• Dependent on the system service

• SRR0

• SRR1

• MSR

PowerPC Architecture Level Supervisor Level Optional Form

UISA/OEA SC

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Reserved

0 5 6 10 11 15 16 29 30 31

17 0 0 0 0 0 0 0 0 0 0

120 MPCxxx INSTRUCTION SET Motorola

slw x slw x
Shift Left Word

slw r A,rS,rB (Rc = 0)
slw. r A,rS,rB (Rc = 1)

n ← r B[2 7-31]
r A ← ROTL(r S, n)

If bit 26 of rB = 0, the contents of rS are shifted left the number of bits specified by
rB[27–31]. Bits shifted out of position 0 are lost. Zeros are supplied to the vacated
positions on the right. The 32-bit result is placed into rA. If bit 26 of rB = 1, 32 zeros
are placed into rA.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO(if Rc = 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

31 S A B 24 Rc

Motorola MPCxxx INSTRUCTION SET 121

sraw x sraw x
Shift Right Algebraic Word

sraw r A,rS,rB (Rc = 0)
sraw. r A,rS,rB (Rc = 1)

n ← r B[2 7-31]
rA ← ROTL(r S, n)

If rB[26] = 0,then the contents of rS are shifted right the number of bits specified by
rB[27–31]. Bits shifted out of position 31 are lost. The result is padded on the left with sign
bits before being placed into rA. If rB[26] = 1, then rA is filled with 32 sign bits (bit 0) from
rS. CR0 is set based on the value written into rA. XER[CA] is set if rS contains a negative
number and any 1 bits are shifted out of position 31; otherwise XER[CA] is cleared. A shift
amount of zero causes XER[CA] to be cleared.

Note that the sraw instruction, followed by addze , can by used to divide quickly by 2n. The
setting of the XER[CA] bit, by sraw , is independent of mode.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO(if Rc = 1)

• XER:

Affected: CA

0 5 6 10 11 15 16 20 21 30 31

31 S A B 792 Rc

122 MPCxxx INSTRUCTION SET Motorola

srawi x srawi x
Shift Right Algebraic Word Immediate

srawi r A,rS,SH (Rc = 0)
srawi. r A,rS,SH (Rc = 1)

n ← SH

r ← ROTL(r S, 32 – n)

The contents of rS are shifted right the number of bits specified by operand SH. Bits
shifted out of position 31 are lost. The shifted value is sign-extended before being placed
in rA. The 32-bit result is placed into rA. XER[CA] is set if rS contains a negative number
and any 1 bits are shifted out of position 31; otherwise XER[CA] is cleared. A shift amount
of zero causes XER[CA] to be cleared.

Note that the srawi instruction, followed by addze , can be used to divide quickly by 2n.
The setting of the CA bit, by srawi , is independent of mode.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

• XER:

Affected: CA

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

31 S A SH 824 Rc

Motorola MPCxxx INSTRUCTION SET 123

srw x srw x
Shift Right Word

srw r A,rS,rB (Rc = 0)
srw. r A,rS,rB (Rc = 1)

n ← r B[2 7-31]

r ← ROTL(r S, 32 – n)

The contents of rS are shifted right the number of bits specified by the low-order six bits
of rB. Bits shifted out of position 31 are lost. Zeros are supplied to the vacated positions
on the left. The result is placed into rA.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO(if Rc = 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

31 S A B 536 Rc

124 MPCxxx INSTRUCTION SET Motorola

stb stb
Store Byte

stb r S,d(rA)

if r A = 0 then b ← 0

elseb ← (r A)

EA ← b + EXTS(d)

MEM(EA, 1) ← r S[2 4-31]

EA is the sum (rA|0) + d. The contents of the low-order eight bits of rS are stored into the
byte in memory addressed by EA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA D

0 5 6 10 11 15 16 31

38 S A d

Motorola MPCxxx INSTRUCTION SET 125

stbu stbu
Store Byte with Update

stbu r S,d(rA)

EA ← (r A) + EXTS(d)

MEM(EA, 1) ← r S[2 4-31]

r A ← EA

EA is the sum (rA) + d. The contents of the low-order eight bits of rS are stored into the
byte in memory addressed by EA. EA is placed into rA. If rA = 0, the instruction form is
invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA D

0 5 6 10 11 15 16 31

39 S A d

126 MPCxxx INSTRUCTION SET Motorola

stbux stbux
Store Byte with Update Indexed

stbux r S,rA,rB

EA ← (r A) + (r B)

MEM(EA, 1) ← r S[2 4-31]

r A ← EA

EA is the sum (rA) + (rB). The contents of the low-order eight bits of rS are stored into the
byte in memory addressed by EA. EA is placed into rA. If rA = 0, the instruction form is
invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

Reserved

0 5 6 10 11 15 16 21 22 30 31

31 S A B 247 0

Motorola MPCxxx INSTRUCTION SET 127

stbx stbx
Store Byte Indexed

stbx r S,rA,rB

if r A = 0 then b ← 0
elseb ← (r A)

EA ← b + (r B)
MEM(EA, 1) ← r S[2 4-31]

EA is the sum (rA|0) + (rB). The contents of the low-order eight bits of rS are stored into
the byte in memory addressed by EA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

Reserved

0 5 6 10 11 15 16 21 22 30 31

31 S A B 215 0

128 MPCxxx INSTRUCTION SET Motorola

sth sth
Store Half Word

sth r S,d(rA)

if r A = 0 then b ← 0

elseb ← (r A)

EA ← b + EXTS(d)

MEM(EA, 2) ← r S[1 6-31]

EA is the sum (rA|0) + d. The contents of the low-order 16 bits of rS are stored into the
half word in memory addressed by EA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA D

0 5 6 10 11 15 16 31

44 S A d

Motorola MPCxxx INSTRUCTION SET 129

sthbrx sthbrx
Store Half Word Byte-Reverse Indexed

sthbrx r S,rA,rB

if r A = 0 then b ← 0

elseb ← (r A)

EA ← b + (r B)

MEM(EA, 2) ← r S[2 4-31] || r S[1 6-23]

EA is the sum (rA|0) + (rB). The contents of the low-order eight bits of rS are stored into
bits 0–7 of the half word in memory addressed by EA. The contents of the subsequent
low-order eight bits of rS are stored into bits 8–15 of the half word in memory addressed
by EA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 918 0

130 MPCxxx INSTRUCTION SET Motorola

sthu sthu
Store Half Word with Update

sthu r S,d(rA)

EA ← (r A) + EXTS(d)

MEM(EA, 2) ← r S[1 6-31]

r A ← EA

EA is the sum (rA) + d. The contents of the low-order 16 bits of rS are stored into the half
word in memory addressed by EA. EA is placed into rA. If rA = 0, the instruction form is
invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA D

0 5 6 10 11 15 16 31

45 S A d

Motorola MPCxxx INSTRUCTION SET 131

sthux sthux
Store Half Word with Update Indexed

sthux r S,rA,rB

EA ← (r A) + (r B)

MEM(EA, 2) ← r S[1 6-31]

r A ← EA

EA is the sum (rA) + (rB). The contents of the low-order 16 bits of rS are stored into the
half word in memory addressed by EA. EA is placed into rA. If rA = 0, the instruction form
is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 439 0

132 MPCxxx INSTRUCTION SET Motorola

sthx sthx
Store Half Word Indexed

sthx r S,rA,rB

if r A = 0 then b ← 0

elseb ← (r A)

EA ← b + (r B)

MEM(EA, 2) ← r S[1 6-31]

EA is the sum (rA|0) + (rB). The contents of the low-order 16 bits of rS are stored into the
half word in memory addressed by EA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 407 0

Motorola MPCxxx INSTRUCTION SET 133

stmw stmw
Store Multiple Word

stmw r S,d(rA)

if r A = 0 then b ← 0

elseb ← (r A)

EA ← b + EXTS(d)

r ← r S
do while r ≤ 31

MEM(EA, 4) ← GPR(r)

r ← r + 1

EA ← EA + 4

EA is the sum (rA|0) + d. n = (32 – rS). n consecutive words starting at EA are stored from
the GPRs rS through r31. For example, if rS = 30, 2 words are stored. EA must be a
multiple of four. If it is not, either the system alignment exception handler is invoked or the
results are boundedly undefined.

Note that this instruction is likely to have a greater latency and take longer to execute,
perhaps much longer, than a sequence of individual load or store instructions that produce
the same results.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA D

0 5 6 10 11 15 16 31

47 S A d

134 MPCxxx INSTRUCTION SET Motorola

stswi stswi
Store String Word Immediate

stswi r S,rA,NB

if r A = 0 then EA ← 0

elseEA ← (r A)

if NB = 0 then n ← 32

else n ← NB

r ← r S – 1

i ← 32
do while n > 0

if i = 32 then r ← r + 1 (mod 32)

MEM(EA, 1) ← GPR(r)[i–i + 7]

i ← i + 8

if i = 64 then i ← 32

EA ← EA + 1

n ← n – 1

EA is (rA|0). Let n = NB if NB ≠ 0, n = 32 if NB = 0; n is the number of bytes to store. Let
nr = CEIL(n ÷ 4); nr is the number of registers to supply data. n consecutive bytes starting
at EA are stored from GPRs rS through rS + nr – 1. Bytes are stored left to right from each
register. The sequence of registers wraps around through r0 if required. Under certain
conditions (for example, segment boundary crossing) the data alignment exception
handler may be invoked.

Note that, in some implementations, this instruction is likely to have a greater latency and
take longer to execute, perhaps much longer, than a sequence of individual load or store
instructions that produce the same results.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A NB 725 0

Motorola MPCxxx INSTRUCTION SET 135

stswx stswx
Store String Word Indexed

stswx rS,rA,rB

if r A = 0 then b ← 0

elseb ← (r A)

EA ← b + (r B)
n ← XER[25–31]

r ← r S – 1

i ← 32
do while n > 0

if i = 32 then r ← r + 1 (mod 32)

MEM(EA, 1) ← GPR(r)[i–i + 7]

i ← i + 8

if i = 64 then i ← 32

EA ← EA + 1

n ← n – 1

EA is the sum (rA|0) + (rB). Let n = XER[25–31]; n is the number of bytes to store. Let
nr = CEIL(n ÷ 4); nr is the number of registers to supply data. n consecutive bytes starting
at EA are stored from GPRs rS through rS + nr – 1. Bytes are stored left to right from each
register. The sequence of registers wraps around through r0 if required. If n = 0, no bytes
are stored. Under certain conditions (for example, segment boundary crossing) the data
alignment exception handler may be invoked.

Note that, in some implementations, this instruction is likely to have a greater latency and
take longer to execute, perhaps much longer, than a sequence of individual load or store
instructions that produce the same results.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 661 0

136 MPCxxx INSTRUCTION SET Motorola

stw stw
Store Word

stw r S,d(rA)

if r A = 0 then b ← 0

elseb ← (r A)

EA ← b + EXTS(d)

MEM(EA, 4) ← r S

EA is the sum (rA|0) + d. The contents of rS are stored into the word in memory addressed
by EA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA D

0 5 6 10 11 15 16 31

36 S A d

Motorola MPCxxx INSTRUCTION SET 137

stwbrx stwbrx
Store Word Byte-Reverse Indexed

stwbrx r S,rA,rB

if r A = 0 then b ← 0

elseb ← (r A)

EA ← b + (r B)

MEM(EA, 4) ← r S[2 4-31] || r S[1 6-23] || r S[8 -15] || r S[0 -7]

EA is the sum (rA|0) + (rB). The contents of the low-order eight bits of rS are stored into
bits 0–7 of the word in memory addressed by EA. The contents of the subsequent eight
low-order bits of rS are stored into bits 8–15 of the word in memory addressed by EA. The
contents of the subsequent eight low-order bits of rS are stored into bits 16–23 of the word
in memory addressed by EA. The contents of the subsequent eight low-order bits of rS
are stored into bits 24–31 of the word in memory addressed by EA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 662 0

138 MPCxxx INSTRUCTION SET Motorola

stwcx. stwcx.
Store Word Conditional Indexed

stwcx. r S,rA,rB

if r A = 0 then b ← 0

else b ← (r A)

EA ← b + (r B)
if RESERVE then

if RESERVE_ADDR = physical_addr(EA)

MEM(EA, 4) ← r S

CR0 ← 0b00 || 0b1 || XER[SO]
else
u ← undefined 1-bit value
if u then MEM(EA, 4) ← r S

CR0 ← 0b00 || u || XER[SO]
RESERVE ← 0

else

CR0 ← 0b00 || 0b0 || XER[SO]

EA is the sum (rA|0) + (rB). If the reserved bit is set, the stwcx. instruction stores rS to
effective address (rA + rB), clears the reserved bit, and sets CR0[EQ]. If the reserved bit
is not set, the stwcx. instruction does not do a store; it leaves the reserved bit cleared and
clears CR0[EQ]. Software must look at CR0[EQ] to see if the stwcx. was successful.

The reserved bit is set by the lwarx instruction. The reserved bit is cleared by any stwcx.
instruction to any address, and also by snooping logic if it detects that another processor
does any kind of store to the block indicated in the reservation buffer when reserved is set.

If a reservation exists, and the memory address specified by the stwcx. instruction is the
same as that specified by the load and reserve instruction that established the
reservation, the contents of rS are stored into the word in memory addressed by EA and
the reservation is cleared.

If a reservation exists, but the memory address specified by the stwcx. instruction is not
the same as that specified by the load and reserve instruction that established the
reservation, the reservation is cleared, and it is undefined whether the contents of rS are
stored into the word in memory addressed by EA.

If no reservation exists, the instruction completes without altering memory.

CR0 field is set to reflect whether the store operation was performed as follows.

CR0[LT GT EQ S0] = 0b00 || store_performed || XER[SO]

0 5 6 10 11 15 16 20 21 30 31

31 S A B 150 1

Motorola MPCxxx INSTRUCTION SET 139

EA must be a multiple of four. If it is not, either the system alignment exception handler is
invoked or the results are boundedly undefined.

The granularity with which reservations are managed is implementation-dependent.
Therefore, the memory to be accessed by the load and reserve and store conditional
instructions should be allocated by a system library program.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

140 MPCxxx INSTRUCTION SET Motorola

stwu stwu
Store Word with Update

stwu rS,d(rA)

EA ← (r A) + EXTS(d)

MEM(EA, 4) ← r S

r A ← EA

EA is the sum (rA) + d. The contents of rS are stored into the word in memory addressed
by EA. EA is placed into rA. If rA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA D

0 5 6 10 11 15 16 31

37 S A d

Motorola MPCxxx INSTRUCTION SET 141

stwux stwux
Store Word with Update Indexed

stwux r S,rA,rB

EA ← (r A) + (r B)

MEM(EA, 4) ← r S

r A ← EA

EA is the sum (rA) + (rB). The contents of rS are stored into the word in memory
addressed by EA. EA is placed into rA. If rA = 0, the instruction form is invalid.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 183 0

142 MPCxxx INSTRUCTION SET Motorola

stwx stwx
Store Word Indexed

stwx r S,rA,rB

if r A = 0 then b ← 0

elseb ← (r A)

EA ← b + (r B)

MEM(EA, 4) ← r S

EA is the sum (rA|0) + (rB). The contents of rS are is stored into the word in memory
addressed by EA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

Reserved

0 5 6 10 11 15 16 20 21 30 31

31 S A B 151 0

Motorola MPCxxx INSTRUCTION SET 143

subf x subf x
Subtract From

subf r D,rA,rB (OE = 0 Rc = 0)
subf. r D,rA,rB (OE = 0 Rc = 1)
subfo r D,rA,rB (OE = 1 Rc = 0)
subfo. r D,rA,rB (OE = 1 Rc = 1)

r D ← ¬ (r A) + (r B) + 1

The sum ¬ (rA) + (rB) + 1 is placed into rD. The subf instruction is preferred for subtraction
because it sets few status bits.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO(if Rc = 1)

• XER:

Affected: SO, OV(if OE = 1)

Simplified mnemonics:

sub r D,rA,rB equivalent to subf r D,rB,rA

PowerPC Architecture Level Supervisor Level Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 40 Rc

144 MPCxxx INSTRUCTION SET Motorola

subfc x subfc x
Subtract from Carrying

subfc r D,rA,rB (OE = 0 Rc = 0)
subfc. r D,rA,rB (OE = 0 Rc = 1)
subfco r D,rA,rB (OE = 1 Rc = 0)
subfco. r D,rA,rB (OE = 1 Rc = 1)

r D ← ¬ (r A) + (r B) + 1

The sum ¬ (rA) + (rB) + 1 is placed into rD.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO (if Rc = 1)

Note: CR0 field may not reflect the “true” (infinitely precise) result if overflow occurs
(see XER below).

• XER:

Affected: CA

Affected: SO, OV (if OE = 1)

Simplified mnemonics:

subc r D,rA,rB equivalent to subfc r D,rB,rA

PowerPC Architecture Level Supervisor Level Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 8 Rc

Motorola MPCxxx INSTRUCTION SET 145

subfe x subfe x
Subtract from Extended

subfe r D,rA,rB (OE = 0 Rc = 0)
subfe. r D,rA,rB (OE = 0 Rc = 1)
subfeo r D,rA,rB (OE = 1 Rc = 0)
subfeo. r D,rA,rB (OE = 1 Rc = 1)

r D ← ¬ (r A) + (r B) + XER[CA]

The sum ¬ (rA) + (rB) + XER[CA] is placed into rD.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO(if Rc = 1)

Note: CR0 field may not reflect the “true” (infinitely precise) result if overflow occurs
(see XER below).

• XER:

Affected: CA

Affected: SO, OV(if OE = 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

31 D A B OE 136 Rc

146 MPCxxx INSTRUCTION SET Motorola

subfic subfic
Subtract from Immediate Carrying

subfic r D,rA,SIMM

r D ← ¬ (r A) + EXTS(SIMM) + 1

The sum ¬ (rA) + EXTS(SIMM) + 1 is placed into rD.

Other registers altered:

• XER:

Affected: CA

PowerPC Architecture Level Supervisor Level Optional Form

UISA D

0 5 6 10 11 15 16 31

08 D A SIMM

Motorola MPCxxx INSTRUCTION SET 147

subfme x subfme x
Subtract from Minus One Extended

subfme r D,rA (OE = 0 Rc = 0)
subfme. r D,rA (OE = 0 Rc = 1)
subfmeo r D,rA (OE = 1 Rc = 0)
subfmeo. r D,rA (OE = 1 Rc = 1)

r D ← ¬ (r A) + XER[CA] – 1

The sum ¬ (rA) + XER[CA] + (32)1 is placed into rD.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO(if Rc = 1)

Note: CR0 field may not reflect the “true” (infinitely precise) result if overflow occurs
(see XER below).

• XER:

Affected: CA

Affected: SO, OV(if OE = 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

31 D A

Reserved

0 0 0 0 0 OE 232 Rc

148 MPCxxx INSTRUCTION SET Motorola

subfze x subfze x
Subtract from Zero Extended

subfze r D,rA (OE = 0 Rc = 0)
subfze. r D,rA (OE = 0 Rc = 1)
subfzeo r D,rA (OE = 1 Rc = 0)
subfzeo. r D,rA (OE = 1 Rc = 1)

r D ← ¬ (r A) + XER[CA]

The sum ¬ (rA) + XER[CA] is placed into rD.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO(if Rc = 1)

Note: CR0 field may not reflect the “true” (infinitely precise) result if overflow occurs
(see XER below).

• XER:

Affected: CA

Affected: SO, OV(if OE = 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA XO

0 5 6 10 11 15 16 20 21 22 30 31

31 D A

Reserved

0 0 0 0 0 OE 200 Rc

Motorola MPCxxx INSTRUCTION SET 149

sync sync
Synchronize

The sync instruction provides an ordering function for the effects of all instructions
executed by a given processor. Executing a sync instruction ensures that all instructions
preceding the sync instruction appear to have completed before the sync instruction
completes, and that no subsequent instructions are initiated by the processor until after
the sync instruction completes. When the sync instruction completes, all external
accesses caused by instructions preceding the sync instruction will have been performed
with respect to all other mechanisms that access memory.

Multiprocessor implementations also send a sync address-only broadcast that is useful
in some designs. For example, if a design has an external buffer that re-orders loads and
stores for better bus efficiency, the sync broadcast signals to that buffer that previous
loads/stores must be completed before any following loads/stores.

The sync instruction can be used to ensure that the results of all stores into a data
structure, caused by store instructions executed in a “critical section” of a program, are
seen by other processors before the data structure is seen as unlocked.

The functions performed by the sync instruction will normally take a significant amount of
time to complete, so indiscriminate use of this instruction may adversely affect
performance. In addition, the time required to execute sync may vary from one execution
to another. The eieio instruction may be more appropriate than sync for many cases.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

0 0 0 0 0 598 031 0 0 0 0 0 0 0 0 0 0

0 5 6 10 11 15 16 20 21 30 31

Reserved

150 MPCxxx INSTRUCTION SET Motorola

tlbia tlbia
Translation Lookaside Buffer Invalidate All

All TLB entries ← invalid

The entire translation lookaside buffer (TLB) is invalidated (that is, all entries are
removed). The TLB is invalidated regardless of the settings of MSR[IR] and MSR[DR]. The
invalidation is done without reference to the SLB or segment table. This instruction does
not cause the entries to be invalidated in other processors. This is a supervisor-level
instructon.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

OEA √ √ X

0 0 0 0 0 370 0

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 0 0 0 0 0 0 0 0 0 0

Motorola MPCxxx INSTRUCTION SET 151

tlbie tlbie
Translation Lookaside Buffer Invalidate Entry

tlbie r B

VPS ← r B[4 -19]
Identify TLB entries corresponding to VPS

Each such TLB entry ← invalid

EA is the contents of rB. If the translation lookaside buffer (TLB) contains an entry
corresponding to EA, that entry is made invalid (that is, removed from the TLB).

Multiprocessing implementations (for example, the 601, and 604) send a tlbie address-
only broadcast over the address bus to tell other processors to invalidate the same TLB
entry in their TLBs.

The TLB search is done regardless of the settings of MSR[IR] and MSR[DR]. The search
is done based on a portion of the logical page number within a segment. All entries
matching the search criteria are invalidated.

Block address translation for EA, if any, is ignored.

This is a supervisor-level instruction.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

OEA √ √ X

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 0 0 0 0 0 0 0 0 0 0 B 30k6 0

152 MPCxxx INSTRUCTION SET Motorola

tlbsync tlbsync
TLB Synchronize

If an implementation sends a broadcast for tlbie then it will also send a broadcast for
tlbsync . Executing a tlbsync instruction ensures that all tlbie instructions previously
executed by the processor executing the tlbsync instruction have completed on all other
processors. The operation performed by this instruction is treated as a caching-inhibited
and guarded data access with respect to the ordering done by eieio . This instruction is
supervisor-level.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

OEA √ √ X

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

Motorola MPCxxx INSTRUCTION SET 153

tw tw
Trap Word

tw TO,rA,rB

a ← EXTS(r A)

b ← EXTS(r B)
if (a < b) & TO[0] then TRAP
if (a > b) & TO[1] then TRAP
if (a = b) & TO[2] then TRAP
if (a <U b) & TO[3] then TRAP
if (a >U b) & TO[4] then TRAP

The contents of rA are compared with the contents of rB. If any bit in the TO field is set
and its corresponding condition is met by the result of the comparison, then the system
trap handler is invoked.

Other registers altered:

• None

Simplified mnemonics:

tweq r A,rB equivalent to tw 4,r A,rB
twlge r A,rB equivalent to tw 5,r A,rB
trap equivalent to tw 31,0,0

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

Reserved

31 TO A B 4 0

154 MPCxxx INSTRUCTION SET Motorola

twi twi
Trap Word Immediate

twi TO,rA,SIMM

a ← EXTS(r A)
if (a < EXTS(SIMM)) & TO[0] then TRAP
if (a > EXTS(SIMM)) & TO[1] then TRAP
if (a = EXTS(SIMM)) & TO[2] then TRAP
if (a <U EXTS(SIMM)) & TO[3] then TRAP
if (a >U EXTS(SIMM)) & TO[4] then TRAP

The contents of rA are compared with the sign-extended value of the SIMM field. If any bit
in the TO field is set and its corresponding condition is met by the result of the comparison,
then the system trap handler is invoked.

Other registers altered:

• None

Simplified mnemonics:

twgti r A,value equivalent to twi 8,r A,value
twllei r A,value equivalent to twi 6,r A,value

PowerPC Architecture Level Supervisor Level Optional Form

UISA D

0 5 6 10 11 15 16 31

03 TO A SIMM

Motorola MPCxxx INSTRUCTION SET 155

xor x xor x
XOR

xor r A,rS,rB (Rc = 0)
xor. r A,rS,rB (Rc = 1)

r A ← (r S) ⊕ (r B)

The contents of rS is XORed with the contents of rB and the result is placed into rA.

Other registers altered:

• Condition Register (CR0 field):

Affected: LT, GT, EQ, SO(if Rc = 1)

PowerPC Architecture Level Supervisor Level Optional Form

UISA X

0 5 6 10 11 15 16 20 21 30 31

31 S A B 316 Rc

156 MPCxxx INSTRUCTION SET Motorola

xori xori
XOR Immediate

xori r A,rS,UIMM

r A ← (r S) ⊕ ((1 6)0 || UIMM)

The contents of rS are XORed with 0x0000 || UIMM and the result is placed into rA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA D

0 5 6 10 11 15 16 31

26 S A UIMM

Motorola MPCxxx INSTRUCTION SET 157

xoris xoris
XOR Immediate Shifted

xoris r A,rS,UIMM

r A ← (r S) ⊕ (UIMM || (16)0)

The contents of rS are XORed with UIMM || 0x0000 and the result is placed into rA.

Other registers altered:

• None

PowerPC Architecture Level Supervisor Level Optional Form

UISA D

0 5 6 10 11 15 16 31

27 S A UIMM

Motorola MPCxxx INSTRUCTION SET

1

Appendix
MPCxxx Instruction Set Listings

This appendix lists the MPCxxx’s instruction set. Instructions are sorted by

mnemonic

,
opcode, function, and form. Also included in this appendix is a quick reference table that
contains general information, such as the architecture level, privilege level, and form.

Note

that split fields, which represent the concatenation of sequences from left to right,
are shown in lowercase.

Instructions Sorted by Mnemonic

Table 1 lists the instructions implemented in the MPCxxx in alphabetical order by
mnemonic.

Table 1. Complete Instruction List Sorted by Mnemonic

Name

0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

add

x

31 D A B OE 266 Rc

addc

x

31 D A B OE 10 Rc

adde

x

31 D A B OE 138 Rc

addi

14 D A SIMM

addic

12 D A SIMM

addic.

13 D A SIMM

addis

15 D A SIMM

addme

x

31 D A 0 0 0 0 0 OE 234 Rc

addze

x

31 D A 0 0 0 0 0 OE 202 Rc

and

x

31 S A B 28 Rc

andc

x

31 S A B 60 Rc

andi.

28 S A UIMM

andis.

29 S A UIMM

Reserved bits

Key:

2

MPCxxx INSTRUCTION SET Motorola

b

x

18 LI AA LK

bc

x

16 BO BI BD AA LK

bcctr

x

19 BO BI 0 0 0 0 0 528 LK

bclr

x

19 BO BI 0 0 0 0 0 16 LK

cmp

31 crfD 0 L A B 0 0

cmpi

11 crfD 0 L A SIMM

cmpl

31 crfD 0 L A B 32 0

cmpli

10 crfD 0 L A UIMM

cntlzw

x

31 S A 0 0 0 0 0 26 Rc

crand

19 crbD crbA crbB 257 0

crandc

19 crbD crbA crbB 129 0

creqv

19 crbD crbA crbB 289 0

crnand

19 crbD crbA crbB 225 0

crnor

19 crbD crbA crbB 33 0

cror

19 crbD crbA crbB 449 0

crorc

19 crbD crbA crbB 417 0

crxor

19 crbD crbA crbB 193 0

dcbf

31 0 0 0 0 0 A B 86 0

dcbi

1

31 0 0 0 0 0 A B 470 0

dcbst

31 0 0 0 0 0 A B 54 0

dcbt

31 0 0 0 0 0 A B 278 0

dcbtst

31 0 0 0 0 0 A B 246 0

dcbz

31 0 0 0 0 0 A B 1014 0

divw

x

31 D A B OE 491 Rc

divwu

x

31 D A B OE 459 Rc

eciwx

31 D A B 310 0

ecowx

31 S A B 438 0

eieio

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

eqv

x

31 S A B 284 Rc

extsb

x

31 S A 0 0 0 0 0 954 Rc

extsh

x

31 S A 0 0 0 0 0 922 Rc

icbi

31 0 0 0 0 0 A B 982 0

isync

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0

Name

0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Motorola MPCxxx INSTRUCTION SET

3

lbz

34 D A d

lbzu

35 D A d

lbzux

31 D A B 119 0

lbzx

31 D A B 87 0

lha

42 D A d

lhau

43 D A d

lhaux

31 D A B 375 0

lhax

31 D A B 343 0

lhbrx

31 D A B 790 0

lhz

40 D A d

lhzu

41 D A d

lhzux

31 D A B 311 0

lhzx

31 D A B 279 0

lmw

3

46 D A d

lswi

3

31 D A NB 597 0

lswx

3

31 D A B 533 0

lwarx

31 D A B 20 0

lwbrx

31 D A B 534 0

lwz

32 D A d

lwzu

33 D A d

lwzux

31 D A B 55 0

lwzx

31 D A B 23 0

mcrf

19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0

 mcrxr

31 crfD 0 0 0 0 0 0 0 0 0 0 0 0 512 0

mfcr

31 D 0 0 0 0 0 0 0 0 0 0 19 0

mfmsr

1

31 D 0 0 0 0 0 0 0 0 0 0 83 0

mfspr

2

31 D spr 339 0

mfsr

1

31 D 0

SR

0 0 0 0 0 595 0

mfsrin

1

31 D 0 0 0 0 0 B 659 0

mftb

31 D tbr 371 0

mtcrf

31 S 0

CRM

0 144 0

mtmsr

1

31 S 0 0 0 0 0 0 0 0 0 0 146 0

mtspr

2

31 S spr 467 0

Name

0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

4

MPCxxx INSTRUCTION SET Motorola

mtsr

1

31 S 0

SR

0 0 0 0 0 210 0

mtsrin

1

31 S 0 0 0 0 0 B 242 0

mulhw

x

31 D A B 0 75 Rc

mulhwu

x 31 D A B 0 11 Rc

mulli 7 D A SIMM

mullwx 31 D A B OE 235 Rc

nandx 31 S A B 476 Rc

negx 31 D A 0 0 0 0 0 OE 104 Rc

norx 31 S A B 124 Rc

orx 31 S A B 444 Rc

orcx 31 S A B 412 Rc

ori 24 S A UIMM

oris 25 S A UIMM

rfi 1 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0

rlwimix 20 S A SH MB ME Rc

rlwinmx 21 S A SH MB ME Rc

rlwnmx 23 S A B MB ME Rc

sc 17 0 1 0

slwx 31 S A B 24 Rc

srawx 31 S A B 792 Rc

srawix 31 S A SH 824 Rc

srwx 31 S A B 536 Rc

stb 38 S A d

stbu 39 S A d

stbux 31 S A B 247 0

stbx 31 S A B 215 0

sth 44 S A d

sthbrx 31 S A B 918 0

sthu 45 S A d

sthux 31 S A B 439 0

sthx 31 S A B 407 0

stmw 3 47 S A d

stswi 3 31 S A NB 725 0

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Motorola MPCxxx INSTRUCTION SET 5

stswx 3 31 S A B 661 0

stw 36 S A d

stwbrx 31 S A B 662 0

stwcx. 31 S A B 150 1

stwu 37 S A d

stwux 31 S A B 183 0

stwx 31 S A B 151 0

subfx 31 D A B OE 40 Rc

subfcx 31 D A B OE 8 Rc

subfex 31 D A B OE 136 Rc

subfic 08 D A SIMM

subfmex 31 D A 0 0 0 0 0 OE 232 Rc

subfzex 31 D A 0 0 0 0 0 OE 200 Rc

sync 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 598 0

tlbia 1,4 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0

tlbie 1,4 31 0 0 0 0 0 0 0 0 0 0 B 306 0

tlbsync1,4 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

tw 31 TO A B 4 0

twi 03 TO A SIMM

xorx 31 S A B 316 Rc

xori 26 S A UIMM

xoris 27 S A UIMM

1 Supervisor-level instruction
2 Supervisor- and user-level instruction
3 Load and store string or multiple instruction
4 PowerPC Optional instruction

Name 0 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Motorola MPCxxx INSTRUCTION SET

6

Instructions Sorted by Opcode

Table 2 lists the instructions defined for the MPCxxx in numeric order by opcode.

Table 2. Complete Instruction List Sorted by Opcode

Name

0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

twi

0 0 0 0 1 1 TO A SIMM

mulli

0 0 0 1 1 1 D A SIMM

subfic

0 0 1 0 0 0 D A SIMM

cmpli

0 0 1 0 1 0 crfD 0 L A UIMM

cmpi

0 0 1 0 1 1 crfD 0 L A SIMM

addic

0 0 1 1 0 0 D A SIMM

addic.

0 0 1 1 0 1 D A SIMM

addi

0 0 1 1 1 0 D A SIMM

addis

0 0 1 1 1 1 D A SIMM

bc

x

0 1 0 0 0 0 BO BI BD AA LK

sc

0 1 0 0 0 1 0 1 0

b

x

0 1 0 0 1 0 LI AA LK

mcrf

0 1 0 0 1 1 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

bclr

x

0 1 0 0 1 1 BO BI 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 LK

crnor

0 1 0 0 1 1 crbD crbA crbB 0 0 0 0 1 0 0 0 0 1 0

rfi

1

0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0

crandc

0 1 0 0 1 1 crbD crbA crbB 0 0 1 0 0 0 0 0 0 1 0

isync

0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0

crxor

0 1 0 0 1 1 crbD crbA crbB 0 0 1 1 0 0 0 0 0 1 0

crnand

0 1 0 0 1 1 crbD crbA crbB 0 0 1 1 1 0 0 0 0 1 0

crand

0 1 0 0 1 1 crbD crbA crbB 0 1 0 0 0 0 0 0 0 1 0

creqv

0 1 0 0 1 1 crbD crbA crbB 0 1 0 0 1 0 0 0 0 1 0

crorc

0 1 0 0 1 1 crbD crbA crbB 0 1 1 0 1 0 0 0 0 1 0

cror

0 1 0 0 1 1 crbD crbA crbB 0 1 1 1 0 0 0 0 0 1 0

bcctr

x

0 1 0 0 1 1 BO BI 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 LK

rlwimi

x

0 1 0 1 0 0 S A SH MB ME Rc

rlwinm

x

0 1 0 1 0 1 S A SH MB ME Rc

Reserved bits

Key:

7

MPCxxx INSTRUCTION SET Motorola

rlwnm

x

0 1 0 1 1 1 S A B MB ME Rc

ori

0 1 1 0 0 0 S A UIMM

oris

0 1 1 0 0 1 S A UIMM

xori

0 1 1 0 1 0 S A UIMM

xoris

0 1 1 0 1 1 S A UIMM

andi.

0 1 1 1 0 0 S A UIMM

andis.

0 1 1 1 0 1 S A UIMM

cmp

0 1 1 1 1 1 crfD 0 L A B 0 0 0 0 0 0 0 0 0 0 0

tw

0 1 1 1 1 1 TO A B 0 0 0 0 0 0 0 1 0 0 0

subfc

x

0 1 1 1 1 1 D A B OE 0 0 0 0 0 0 1 0 0 0 Rc

addc

x

0 1 1 1 1 1 D A B OE 0 0 0 0 0 0 1 0 1 0 Rc

mulhwu

x

0 1 1 1 1 1 D A B 0 0 0 0 0 0 0 1 0 1 1 Rc

mfcr

0 1 1 1 1 1 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0

lwarx

0 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 0 0 0

lwzx

0 1 1 1 1 1 D A B 0 0 0 0 0 1 0 1 1 1 0

slw

x

0 1 1 1 1 1 S A B 0 0 0 0 0 1 1 0 0 0 Rc

cntlzw

x

0 1 1 1 1 1 S A 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 Rc

and

x

0 1 1 1 1 1 S A B 0 0 0 0 0 1 1 1 0 0 Rc

cmpl

0 1 1 1 1 1 crfD 0 L A B 0 0 0 0 1 0 0 0 0 0 0

subf

x

0 1 1 1 1 1 D A B OE 0 0 0 0 1 0 1 0 0 0 Rc

dcbst

0 1 1 1 1 1 0 0 0 0 0 A B 0 0 0 0 1 1 0 1 1 0 0

lwzux

0 1 1 1 1 1 D A B 0 0 0 0 1 1 0 1 1 1 0

andc

x

0 1 1 1 1 1 S A B 0 0 0 0 1 1 1 1 0 0 Rc

mulhw

x

0 1 1 1 1 1 D A B 0 0 0 0 1 0 0 1 0 1 1 Rc

mfmsr

1

0 1 1 1 1 1 D 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0

dcbf

0 1 1 1 1 1 0 0 0 0 0 A B 0 0 0 1 0 1 0 1 1 0 0

lbzx

0 1 1 1 1 1 D A B 0 0 0 1 0 1 0 1 1 1 0

neg

x

0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 0 1 1 0 1 0 0 0 Rc

lbzux

0 1 1 1 1 1 D A B 0 0 0 1 1 1 0 1 1 1 0

nor

x

0 1 1 1 1 1 S A B 0 0 0 1 1 1 1 1 0 0 Rc

subfe

x

0 1 1 1 1 1 D A B OE 0 0 1 0 0 0 1 0 0 0 Rc

adde

x

0 1 1 1 1 1 D A B OE 0 0 1 0 0 0 1 0 1 0 Rc

mtcrf

0 1 1 1 1 1 S 0

CRM

0 0 0 1 0 0 1 0 0 0 0 0

Name

0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Motorola MPCxxx INSTRUCTION SET

8

mtmsr

1

0 1 1 1 1 1 S 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0

stwcx.

0 1 1 1 1 1 S A B 0 0 1 0 0 1 0 1 1 0 1

stwx

0 1 1 1 1 1 S A B 0 0 1 0 0 1 0 1 1 1 0

stwux

0 1 1 1 1 1 S A B 0 0 1 0 1 1 0 1 1 1 0

subfze

x

0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 1 1 0 0 1 0 0 0 Rc

addze

x

0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 1 1 0 0 1 0 1 0 Rc

mtsr

1

0 1 1 1 1 1 S 0

SR

0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0

stbx

0 1 1 1 1 1 S A B 0 0 1 1 0 1 0 1 1 1 0

subfme

x

0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 1 1 1 0 1 0 0 0 Rc

addme

x

0 1 1 1 1 1 D A 0 0 0 0 0 OE 0 0 1 1 1 0 1 0 1 0 Rc

mullw

x

0 1 1 1 1 1 D A B OE 0 0 1 1 1 0 1 0 1 1 Rc

mtsrin

1

0 1 1 1 1 1 S 0 0 0 0 0 B 0 0 1 1 1 1 0 0 1 0 0

dcbtst

0 1 1 1 1 1 0 0 0 0 0 A B 0 0 1 1 1 1 0 1 1 0 0

stbux

0 1 1 1 1 1 S A B 0 0 1 1 1 1 0 1 1 1 0

add

x

0 1 1 1 1 1 D A B OE 0 1 0 0 0 0 1 0 1 0 Rc

dcbt

0 1 1 1 1 1 0 0 0 0 0 A B 0 1 0 0 0 1 0 1 1 0 0

lhzx

0 1 1 1 1 1 D A B 0 1 0 0 0 1 0 1 1 1 0

eqv

x

0 1 1 1 1 1 S A B 0 1 0 0 0 1 1 1 0 0 Rc

tlbie

1,4

0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 B 0 1 0 0 1 1 0 0 1 0 0

eciwx

0 1 1 1 1 1 D A B 0 1 0 0 1 1 0 1 1 0 0

lhzux

0 1 1 1 1 1 D A B 0 1 0 0 1 1 0 1 1 1 0

xor

x

0 1 1 1 1 1 S A B 0 1 0 0 1 1 1 1 0 0 Rc

mfspr

2

0 1 1 1 1 1 D spr 0 1 0 1 0 1 0 0 1 1 0

lhax

0 1 1 1 1 1 D A B 0 1 0 1 0 1 0 1 1 1 0

tlbia

1,4

0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 0

mftb

0 1 1 1 1 1 D tbr 0 1 0 1 1 1 0 0 1 1 0

lhaux

0 1 1 1 1 1 D A B 0 1 0 1 1 1 0 1 1 1 0

sthx

0 1 1 1 1 1 S A B 0 1 1 0 0 1 0 1 1 1 0

orc

x

0 1 1 1 1 1 S A B 0 1 1 0 0 1 1 1 0 0 Rc

ecowx

0 1 1 1 1 1 S A B 0 1 1 0 1 1 0 1 1 0 0

sthux

0 1 1 1 1 1 S A B 0 1 1 0 1 1 0 1 1 1 0

or

x

0 1 1 1 1 1 S A B 0 1 1 0 1 1 1 1 0 0 Rc

divwu

x

0 1 1 1 1 1 D A B OE 0 1 1 1 0 0 1 0 1 1 Rc

Name

0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

9

MPCxxx INSTRUCTION SET Motorola

mtspr

2

0 1 1 1 1 1 S spr 0 1 1 1 0 1 0 0 1 1 0

dcbi

1

0 1 1 1 1 1 0 0 0 0 0 A B 0 1 1 1 0 1 0 1 1 0 0

nand

x

0 1 1 1 1 1 S A B 0 1 1 1 0 1 1 1 0 0 Rc

divw

x

0 1 1 1 1 1 D A B OE 0 1 1 1 1 0 1 0 1 1 Rc

 mcrxr

0 1 1 1 1 1 crfD 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

lswx

3

0 1 1 1 1 1 D A B 1 0 0 0 0 1 0 1 0 1 0

lwbrx

0 1 1 1 1 1 D A B 1 0 0 0 0 1 0 1 1 0 0

lfsx

0 1 1 1 1 1 D A B 1 0 0 0 0 1 0 1 1 1 0

srw

x

0 1 1 1 1 1 S A B 1 0 0 0 0 1 1 0 0 0 Rc

tlbsync

1,4

0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0

mfsr

1

0 1 1 1 1 1 D 0

SR

0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0

lswi

3

0 1 1 1 1 1 D A NB 1 0 0 1 0 1 0 1 0 1 0

sync

0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0

lfdx

0 1 1 1 1 1 D A B 1 0 0 1 0 1 0 1 1 1 0

lfdux

0 1 1 1 1 1 D A B 1 0 0 1 1 1 0 1 1 1 0

mfsrin

1

0 1 1 1 1 1 D 0 0 0 0 0 B 1 0 1 0 0 1 0 0 1 1 0

stswx

3

0 1 1 1 1 1 S A B 1 0 1 0 0 1 0 1 0 1 0

stwbrx

0 1 1 1 1 1 S A B 1 0 1 0 0 1 0 1 1 0 0

stswi 3 0 1 1 1 1 1 S A NB 1 0 1 1 0 1 0 1 0 1 0

lhbrx 0 1 1 1 1 1 D A B 1 1 0 0 0 1 0 1 1 0 0

srawx 0 1 1 1 1 1 S A B 1 1 0 0 0 1 1 0 0 0 Rc

srawix 0 1 1 1 1 1 S A SH 1 1 0 0 1 1 1 0 0 0 Rc

eieio 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 0

sthbrx 0 1 1 1 1 1 S A B 1 1 1 0 0 1 0 1 1 0 0

extshx 0 1 1 1 1 1 S A 0 0 0 0 0 1 1 1 0 0 1 1 0 1 0 Rc

extsbx 0 1 1 1 1 1 S A 0 0 0 0 0 1 1 1 0 1 1 1 0 1 0 Rc

icbi 0 1 1 1 1 1 0 0 0 0 0 A B 1 1 1 1 0 1 0 1 1 0 0

dcbz 0 1 1 1 1 1 0 0 0 0 0 A B 1 1 1 1 1 1 0 1 1 0 0

lwz 1 0 0 0 0 0 D A d

lwzu 1 0 0 0 0 1 D A d

lbz 1 0 0 0 1 0 D A d

lbzu 1 0 0 0 1 1 D A d

stw 1 0 0 1 0 0 S A d

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Motorola MPCxxx INSTRUCTION SET 10

stwu 1 0 0 1 0 1 S A d

stb 1 0 0 1 1 0 S A d

stbu 1 0 0 1 1 1 S A d

lhz 1 0 1 0 0 0 D A d

lhzu 1 0 1 0 0 1 D A d

lha 1 0 1 0 1 0 D A d

lhau 1 0 1 0 1 1 D A d

sth 1 0 1 1 0 0 S A d

sthu 1 0 1 1 0 1 S A d

lmw 3 1 0 1 1 1 0 D A d

stmw 3 1 0 1 1 1 1 S A d

1 Supervisor-level instruction
2 Supervisor- and user-level instruction
3 Load and store string or multiple instruction
4 PowerPC Optional instruction

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Motorola MPCxxx INSTRUCTION SET

11

Instructions Grouped by Functional Categories

Tables 3 through 30 list the PowerPC instructions grouped by function.

Table 3. Integer Arithmetic Instructions

Name

0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

add

x

31 D A B OE 266 Rc

addc

x

31 D A B OE 10 Rc

adde

x

31 D A B OE 138 Rc

addi

14 D A SIMM

addic

12 D A SIMM

addic.

13 D A SIMM

addis

15 D A SIMM

addme

x

31 D A 0 0 0 0 0 OE 234 Rc

addze

x

31 D A 0 0 0 0 0 OE 202 Rc

divw

x

31 D A B OE 491 Rc

divwu

x

31 D A B OE 459 Rc

mulhw

x

31 D A B 0 75 Rc

mulhwu

x

31 D A B 0 11 Rc

mulli

07 D A SIMM

mullw

x

31 D A B OE 235 Rc

neg

x

31 D A 0 0 0 0 0 OE 104 Rc

subf

x

31 D A B OE 40 Rc

subfc

x

31 D A B OE 8 Rc

subfic

x

08 D A SIMM

subfe

x

31 D A B OE 136 Rc

subfme

x

31 D A 0 0 0 0 0 OE 232 Rc

subfze

x

31 D A 0 0 0 0 0 OE 200 Rc

Reserved bits

Key:

12

MPCxxx INSTRUCTION SET Motorola

Table 4. Integer Compare Instructions

Table 5. Integer Logical Instructions

Table 6. Integer Rotate Instructions

Name

0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

cmp

31 crfD 0 L A B 0 0 0 0 0 0 0 0 0 0 0

cmpi

11 crfD 0 L A SIMM

cmpl

31 crfD 0 L A B 32 0

cmpli

10 crfD 0 L A UIMM

Name

0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

and

x

31 S A B 28 Rc

andc

x

31 S A B 60 Rc

andi.

28 S A UIMM

andis.

29 S A UIMM

cntlzw

x

31 S A 0 0 0 0 0 26 Rc

eqv

x

31 S A B 284 Rc

extsb

x

31 S A 0 0 0 0 0 954 Rc

extsh

x

31 S A 0 0 0 0 0 922 Rc

nand

x

31 S A B 476 Rc

nor

x

31 S A B 124 Rc

or

x

31 S A B 444 Rc

orc

x

31 S A B 412 Rc

ori

24 S A UIMM

oris

25 S A UIMM

xor

x

31 S A B 316 Rc

xori

26 S A UIMM

xoris

27 S A UIMM

Name

0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rlwimi

x

22 S A SH MB ME Rc

rlwinm

x

20 S A SH MB ME Rc

rlwnm

x

21 S A SH MB ME Rc

Motorola MPCxxx INSTRUCTION SET

13

Table 7. Integer Shift Instructions

Table 8. Integer Load Instructions

Name

0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

slw

x

31 S A B 24 Rc

sraw

x

31 S A B 792 Rc

srawi

x

31 S A SH 824 Rc

srw

x

31 S A B 536 Rc

Name

0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lbz

34 D A d

lbzu

35 D A d

lbzux

31 D A B 119 0

lbzx

31 D A B 87 0

lha

42 D A d

lhau

43 D A d

lhaux

31 D A B 375 0

lhax

31 D A B 343 0

lhz

40 D A d

lhzu

41 D A d

lhzux

31 D A B 311 0

lhzx

31 D A B 279 0

lwz

32 D A d

lwzu

33 D A d

lwzux

31 D A B 55 0

lwzx

31 D A B 23 0

14

MPCxxx INSTRUCTION SET Motorola

Table 9. Integer Store Instructions

Table 10. Integer Load and Store with Byte Reverse Instructions

Table 11. Integer Load and Store Multiple Instructions

Table 12. Integer Load and Store String Instructions

Name

0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

stb

38 S A d

stbu

39 S A d

stbux

31 S A B 247 0

stbx

31 S A B 215 0

sth

44 S A d

sthu

45 S A d

sthux

31 S A B 439 0

sthx

31 S A B 407 0

stw

36 S A d

stwu

37 S A d

stwux

31 S A B 183 0

stwx

31 S A B 151 0

Name

0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lhbrx

31 D A B 790 0

lwbrx

31 D A B 534 0

sthbrx

31 S A B 918 0

stwbrx

31 S A B 662 0

Name

0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lmw

3

46 D A d

stmw

3

47 S A d

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lswi 3 31 D A NB 597 0

lswx 3 31 D A B 533 0

stswi 3 31 S A NB 725 0

stswx 3 31 S A B 661 0

Motorola MPCxxx INSTRUCTION SET 15

Table 13. Memory Synchronization Instructions

Table 14. Branch Instructions

Table 15. Condition Register Logical Instructions

Table 16. System Linkage Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

eieio 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

isync 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0

lwarx 31 D A B 20 0

stwcx. 31 S A B 150 1

sync 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 598 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bx 18 LI AA LK

bcx 16 BO BI BD AA LK

bcctrx 19 BO BI 0 0 0 0 0 528 LK

bclrx 19 BO BI 0 0 0 0 0 16 LK

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

crand 19 crbD crbA crbB 257 0

crandc 19 crbD crbA crbB 129 0

creqv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0

crnor 19 crbD crbA crbB 33 0

cror 19 crbD crbA crbB 449 0

crorc 19 crbD crbA crbB 417 0

crxor 19 crbD crbA crbB 193 0

mcrf 19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rfi 1 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0

sc 17 0 1 0

16

MPCxxx INSTRUCTION SET Motorola

Table 17. Trap Instructions

Table 18. Processor Control Instructions

Table 19. Cache Management Instructions

Table 20. Lookaside Buffer Management Instructions

Name

0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

tw

31 TO A B 4 0

twi

03 TO A SIMM

Name

0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 mcrxr

31 crfS 0 0 0 0 0 0 0 0 0 0 0 0 512 0

mfcr

31 D 0 0 0 0 0 0 0 0 0 0 19 0

mfmsr

1

31 D 0 0 0 0 0 0 0 0 0 0 83 0

mfspr

2

31 D spr 339 0

mftb

31 D tpr 371 0

mtcrf

31 S 0

CRM

0 144 0

mtmsr

1

31 S 0 0 0 0 0 0 0 0 0 0 146 0

mtspr

2

31 D spr 467 0

Name

0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

dcbf

31 0 0 0 0 0 A B 86 0

dcbi

1

31 0 0 0 0 0 A B 470 0

dcbst

31 0 0 0 0 0 A B 54 0

dcbt

31 0 0 0 0 0 A B 278 0

dcbtst

31 0 0 0 0 0 A B 246 0

dcbz

31 0 0 0 0 0 A B 1014 0

icbi

31 0 0 0 0 0 A B 982 0

Name

0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

tlbia

1,4

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0

tlbie

1,4

31 0 0 0 0 0 0 0 0 0 0 B 306 0

tlbsync

1,4

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

Motorola MPCxxx INSTRUCTION SET

17

Table 21. External Control Instructions

Name

0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

eciwx

31 D A B 310 0

ecowx

31 S A B 438 0

1

 Supervisor-level instruction

2

 Supervisor- and user-level instruction

3

Load and store string or multiple instruction

Motorola MPCxxx INSTRUCTION SET

19

Instructions Sorted by Form

Tables 23 through 32 list the MPCxxx instructions grouped by form.

Table 23. I-Form

Table 24. B-Form

Table 25. SC-Form

Table 26. D-Form

OPCD LI AA LK

Specific Instruction

Name

0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

b

x

18 LI AA LK

OPCD BO BI BD AA LK

Specific Instruction

Name

0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bc

x

16 BO BI BD AA LK

OPCD 0 1 0

Specific Instruction

Name

0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

sc

17 0 1 0

OPCD D A d

OPCD D A SIMM

OPCD S A d

OPCD S A UIMM

OPCD crfD 0 L A SIMM

OPCD crfD 0 L A UIMM

OPCD TO A SIMM

Reserved bits

Key:

20

MPCxxx INSTRUCTION SET Motorola

Table 27 DS-Form

Specific Instructions

Name

0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addi

14 D A SIMM

addic

12 D A SIMM

addic.

13 D A SIMM

addis

15 D A SIMM

andi.

28 S A UIMM

andis.

29 S A UIMM

cmpi

11 crfD 0 L A SIMM

cmpli

10 crfD 0 L A UIMM

lbz

34 D A d

lbzu

35 D A d

lha

42 D A d

lhau

43 D A d

lhz

40 D A d

lhzu

41 D A d

lmw

3

46 D A d

lwz

32 D A d

lwzu

33 D A d

mulli

7 D A SIMM

ori

24 S A UIMM

oris

25 S A UIMM

stb

38 S A d

stbu

39 S A d

sth

44 S A d

sthu

45 S A d

stmw

3

47 S A d

stw

36 S A d

stwu

37 S A d

subfic

08 D A SIMM

twi

03 TO A SIMM

xori

26 S A UIMM

xoris

27 S A UIMM

Motorola MPCxxx INSTRUCTION SET

21

Table 28. X-Form

OPCD D A B XO 0

OPCD D A NB XO 0

OPCD D 0 0 0 0 0 B XO 0

OPCD D 0 0 0 0 0 0 0 0 0 0 XO 0

OPCD D 0

SR

0 0 0 0 0 XO 0

OPCD S A B XO Rc

OPCD S A B XO 1

OPCD S A B XO 0

OPCD S A NB XO 0

OPCD S A 0 0 0 0 0 XO Rc

OPCD S 0 0 0 0 0 B XO 0

OPCD S 0 0 0 0 0 0 0 0 0 0 XO 0

OPCD S 0

SR

0 0 0 0 0 XO 0

OPCD S A SH XO Rc

OPCD crfD 0 L A B XO 0

OPCD crfD 0 0 A B XO 0

OPCD crfD 0 0 crfS 0 0 0 0 0 0 0 XO 0

OPCD crfD 0 0 0 0 0 0 0 0 0 0 0 0 XO 0

OPCD crfD 0 0 0 0 0 0 0

IMM

0 XO Rc

OPCD TO A B XO 0

OPCD D 0 0 0 0 0 B XO Rc

OPCD D 0 0 0 0 0 0 0 0 0 0 XO Rc

OPCD crbD 0 0 0 0 0 0 0 0 0 0 XO Rc

OPCD 0 0 0 0 0 A B XO 0

OPCD 0 0 0 0 0 0 0 0 0 0 B XO 0

OPCD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 XO 0

Specific Instructions

and

x

31 S A B 28 Rc

andc

x

31 S A B 60 Rc

cmp

31 crfD 0 L A B 0 0

cmpl

31 crfD 0 L A B 32 0

cntlzw

x

31 S A 0 0 0 0 0 26 Rc

dcbf

31 0 0 0 0 0 A B 86 0

22

MPCxxx INSTRUCTION SET Motorola

dcbi

1

31 0 0 0 0 0 A B 470 0

dcbst

31 0 0 0 0 0 A B 54 0

dcbt

31 0 0 0 0 0 A B 278 0

dcbtst

31 0 0 0 0 0 A B 246 0

dcbz

31 0 0 0 0 0 A B 1014 0

eciwx

31 D A B 310 0

ecowx

31 S A B 438 0

eieio

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 854 0

eqv

x

31 S A B 284 Rc

extsb

x

31 S A 0 0 0 0 0 954 Rc

extsh

x

31 S A 0 0 0 0 0 922 Rc

icbi

31 0 0 0 0 0 A B 982 0

lbzux

31 D A B 119 0

lbzx

31 D A B 87 0

lhaux

31 D A B 375 0

lhax

31 D A B 343 0

lhbrx

31 D A B 790 0

lhzux

31 D A B 311 0

lhzx

31 D A B 279 0

lswi

3

31 D A NB 597 0

lswx

3

31 D A B 533 0

lwarx

31 D A B 20 0

lwbrx

31 D A B 534 0

lwzux

31 D A B 55 0

lwzx

31 D A B 23 0

 mcrxr

31 crfD 0 0 0 0 0 0 0 0 0 0 0 0 512 0

mfcr

31 D 0 0 0 0 0 0 0 0 0 0 19 0

mfmsr

1

31 D 0 0 0 0 0 0 0 0 0 0 83 0

mfsr

1

31 D 0

SR

0 0 0 0 0 595 0

mfsrin

1

31 D 0 0 0 0 0 B 659 0

mtmsr

1

31 S 0 0 0 0 0 0 0 0 0 0 146 0

mtsr

1

31 S 0

SR

0 0 0 0 0 210 0

mtsrin

1

31 S 0 0 0 0 0 B 242 0

nand

x

31 S A B 476 Rc

nor

x

31 S A B 124 Rc

Motorola MPCxxx INSTRUCTION SET

23

Table 29. XL-Form

or

x

31 S A B 444 Rc

orc

x

31 S A B 412 Rc

slw

x

31 S A B 24 Rc

sraw

x

31 S A B 792 Rc

srawi

x

31 S A SH 824 Rc

srw

x

31 S A B 536 Rc

stbux

31 S A B 247 0

stbx

31 S A B 215 0

sthbrx

31 S A B 918 0

sthux

31 S A B 439 0

sthx

31 S A B 407 0

stswi

3

31 S A NB 725 0

stswx

3

31 S A B 661 0

stwbrx

31 S A B 662 0

stwcx.

31 S A B 150 1

stwux

31 S A B 183 0

stwx

31 S A B 151 0

sync

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 598 0

tlbia

1,4

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 370 0

tlbie

1,4

31 0 0 0 0 0 0 0 0 0 0 B 306 0

tlbsync

1,4

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 566 0

tw

31 TO A B 4 0

xor

x

31 S A B 316 Rc

OPCD BO BI 0 0 0 0 0 XO LK

OPCD crbD crbA crbB XO 0

OPCD crfD 0 0 crfS 0 0 0 0 0 0 0 XO 0

OPCD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 XO 0

Specific Instructions

Name

0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

bcctr

x

19 BO BI 0 0 0 0 0 528 LK

bclr

x

19 BO BI 0 0 0 0 0 16 LK

crand

19 crbD crbA crbB 257 0

24

MPCxxx INSTRUCTION SET Motorola

crandc

19 crbD crbA crbB 129 0

creqv 19 crbD crbA crbB 289 0

crnand 19 crbD crbA crbB 225 0

crnor 19 crbD crbA crbB 33 0

cror 19 crbD crbA crbB 449 0

crorc 19 crbD crbA crbB 417 0

crxor 19 crbD crbA crbB 193 0

isync 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 150 0

mcrf 19 crfD 0 0 crfS 0 0 0 0 0 0 0 0 0

rfi 1 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0

Motorola MPCxxx INSTRUCTION SET 25

Table 30. XFX-Form

Table 31. XO-Form

OPCD D spr XO 0

OPCD D 0 CRM 0 XO 0

OPCD S spr XO 0

OPCD D tbr XO 0

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

mfspr 2 31 D spr 339 0

mftb 31 D tbr 371 0

mtcrf 31 S 0 CRM 0 144 0

mtspr 2 31 D spr 467 0

OPCD D A B OE XO Rc

OPCD D A B 0 XO Rc

OPCD D A 0 0 0 0 0 OE XO Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addx 31 D A B OE 266 Rc

addcx 31 D A B OE 10 Rc

addex 31 D A B OE 138 Rc

addmex 31 D A 0 0 0 0 0 OE 234 Rc

addzex 31 D A 0 0 0 0 0 OE 202 Rc

divwx 31 D A B OE 491 Rc

divwux 31 D A B OE 459 Rc

mulhwx 31 D A B 0 75 Rc

mulhwux 31 D A B 0 11 Rc

mullwx 31 D A B OE 235 Rc

negx 31 D A 0 0 0 0 0 OE 104 Rc

subfx 31 D A B OE 40 Rc

subfcx 31 D A B OE 8 Rc

subfex 31 D A B OE 136 Rc

subfmex 31 D A 0 0 0 0 0 OE 232 Rc

subfzex 31 D A 0 0 0 0 0 OE 200 Rc

26 MPCxxx INSTRUCTION SET Motorola

Table 32. M-Form

1 Supervisor-level instruction
2 Supervisor- and user-level instruction
3 Load and store string or multiple instruction
4 PowerPC Optional instruction

OPCD S A SH MB ME Rc

OPCD S A B MB ME Rc

Specific Instructions

Name 0 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

rlwimix 20 S A SH MB ME Rc

rlwinmx 21 S A SH MB ME Rc

rlwnmx 23 S A B MB ME Rc

Motorola MPCxxx INSTRUCTION SET

27

Instruction Set Legend

Table 33 provides general information on the MPCxxx instruction set (such as the
architectural level, privilege level, and form).

Table 33. MPCxxx Instruction Set Legend

UISA

VEA OEA Supervisor
Level

Optional Form

add

x

√

XO

addc

x

√

XO

adde

x

√

XO

addi

√

D

addic

√

D

addic.

√

D

addis

√

D

addme

x

√

XO

addze

x

√

XO

and

x

√

X

andc

x

√

X

andi.

√

D

andis.

√

D

b

x

√

I

bc

x

√

B

bcctr

x

√

XL

bclr

x

√

XL

cmp

√

X

cmpi

√

D

cmpl

√

X

cmpli

√

D

cntlzw

x

√

X

crand

√

XL

crandc

√

XL

creqv

√

XL

crnand

√

XL

crnor

√

XL

28

MPCxxx INSTRUCTION SET Motorola

UISA

VEA OEA Supervisor
Level

Optional Form

cror

√

XL

crorc

√

XL

crxor

√

XL

dcbf

√

X

dcbi

√ √

X

dcbst

√

X

dcbt

√

X

dcbtst

√

X

dcbz

√

X

divw

x

√

XO

divwu

x

√

XO

eciwx

√ √

X

ecowx

√ √

X

eieio

√

X

eqv

x

√

X

extsb

x

√

X

extsh

x

√

X

UISA

VEA OEA Supervisor
Level

Optional Form

icbi

√

X

isync

√

XL

lbz

√

D

lbzu

√

D

lbzux

√

X

lbzx

√

X

UISA

VEA OEA Supervisor
Level

Optional Form

lha

√

D

lhau

√

D

lhaux

√

X

lhax

√

X

lhbrx

√

X

lhz

√

D

lhzu

√

D

Motorola MPCxxx INSTRUCTION SET

29

lhzux

√

X

lhzx

√

X

lmw

2

√

D

lswi

2

√

X

lswx

2

√

X

lwarx

√

X

lwbrx

√

X

lwz

√

D

lwzu

√

D

lwzux

√

X

lwzx

√ X

mcrf √ XL

 mcrxr √ X

mfcr √ X

mfmsr √ √ X

mfspr 1 √ √ √ XFX

mfsr √ √ X

mfsr 3 √ √ √ X

mfsrin √ √ X

mfsrin 3 √ √ √ X

UISA VEA OEA Supervisor
Level

Optional Form

mftb √ XFX

mtcrf √ XFX

mtmsr √ √ X

mtmsr 3 √ √ √ X

mtspr 1 √ √ √ XFX

mtsr √ √ X

mtsr 3 √ √ √ X

mtsrin √ √ X

mtsrin 3 √ √ √ X

mulhwx √ XO

mulhwux √ XO

mulli √ D

mullwx √ XO

30 MPCxxx INSTRUCTION SET Motorola

nandx √ X

negx √ XO

norx √ X

orx √ X

orcx √ X

ori √ D

oris √ D

rfi √ √ XL

rfi 3 √ √ √ XL

rlwimix √ M

rlwinmx √ M

rlwnmx √ M

UISA VEA OEA Supervisor
Level

Optional Form

sc √ √ SC

slwx √ X

srawx √ X

srawix √ X

srwx √ X

stb √ D

stbu √ D

stbux √ X

stbx √ X

sth √ D

sthbrx √ X

sthu √ D

sthux √ X

sthx √ X

UISA VEA OEA Supervisor
Level

Optional Form

stmw 2 √ D

stswi 2 √ X

stswx 2 √ X

stw √ D

stwbrx √ X

stwcx. √ X

Motorola MPCxxx INSTRUCTION SET 31

stwu √ D

stwux √ X

stwx √ X

subfx √ XO

subfcx √ XO

subfex √ XO

subfic √ D

subfmex √ XO

subfzex √ XO

sync √ X

tlbia √ √ √ X

tlbie √ √ √ X

tlbsync √ √ X

tw √ X

twi √ D

xorx √ X

xori √ D

xoris √ D

1 Supervisor- and user-level instruction
2 Load and store string or multiple instruction
3 PowerPC Optional instruction

	About the MPCxxx Instruction Set
	Instructions Sorted by Mnemonic
	Instructions Sorted by Opcode
	Instructions Grouped by Functional Categories
	Instructions Sorted by Form
	Instruction Set Legend
	Instruction Description
	addx
	addcx
	addex
	addi
	addic
	addic.
	addis
	addmex
	addzex
	andx
	andcx
	andi.
	andis.
	bx
	bcx
	bcctrx
	bclrx
	cmp
	cmpi
	cmpl
	cmpli
	cntlzwx
	crand
	crandc
	creqv
	crnand
	crnor
	cror
	crorc
	crxor
	dcbf
	dcbi
	dcbst
	dcbt
	dcbtst
	dcbz
	divwx
	divwux
	eciwx
	ecowx
	eieio
	eqvx
	extsbx
	extshx
	icbi
	isync
	lbz
	lbzu
	lbzux
	lbzx
	lha
	lhau
	lhaux
	lhax
	lhbrx
	lhz
	lhzu
	lhzux
	lhzx
	lmw
	lswi
	lswx
	lwarx
	lwbrx
	lwz
	lwzu
	lwzux
	lwzx
	mcrf
	mcrxr
	mfcr
	mfmsr
	mfspr
	mftb
	mtcrf
	mtmsr
	mtspr
	mulhwx
	mulhwux
	mulli
	mullwx
	nandx
	negx
	norx
	orx
	orcx
	ori
	oris
	rfi
	rlwimi
	rlwinmx
	rlwnmx
	sc
	slwx
	srawx
	srawix
	srwx
	stb
	stbu
	stbux
	stbx
	sth
	sthbrx
	sthu
	sthux
	sthx
	stmw
	stswi
	stswx
	stw
	stwbrx
	stwcx.
	stwu
	stwux
	stwx
	subfx
	subfcx
	subfex
	subfic
	subfmex
	subfzex
	sync
	tlbia
	tlbie
	tlbsync
	tw
	twi
	xorx
	xori
	xoris

