BDIK Target Interface
Freescale Semiconductor, Inc.

Metrowerks, the Metrowerks logo, and CodeWarrior are registered trademarks of Metrowerks Corp. in the US and/or other countries. All other tradenames and trademarks are the property of their respective owners.

Copyright © Metrowerks Corporation. 2003. ALL RIGHTS RESERVED.

The reproduction and use of this document and related materials are governed by a license agreement media, it may be printed for non-commercial personal use only, in accordance with the license agreement related to the product associated with the documentation. Consult that license agreement before use or reproduction of any portion of this document. If you do not have a copy of the license agreement, contact your Metrowerks representative or call 800-377-5416 (if outside the US call +1-512-996-5300). Subject to the foregoing non-commercial personal use, no portion of this documentation may be reproduced or transmitted in any form or by any means, electronic or mechanical, without prior written permission from Metrowerks.

Metrowerks reserves the right to make changes to any product described or referred to in this document without further notice. Metrowerks makes no warranty, representation or guarantee regarding the merchantability or fitness of its products for any particular purpose, nor does Metrowerks assume any liability arising out of the application or use of any product described herein and specifically disclaims any and all liability. Metrowerks software is not authorized for and has not been designed, tested, manufactured, or intended for use in developing applications where the failure, malfunction, or any inaccuracy of the application carries a risk of death, serious bodily injury, or damage to tangible property, including, but not limited to, use in factory control systems, medical devices or facilities, nuclear facilities, aircraft navigation or communication, emergency systems, or other applications with a similar degree of potential hazard.

USE OF ALL SOFTWARE, DOCUMENTATION AND RELATED MATERIALS ARE SUBJECT TO THE METROWERKS END USER LICENSE AGREEMENT FOR SUCH PRODUCT.

How to Contact Metrowerks

<table>
<thead>
<tr>
<th>Corporate Headquarters</th>
<th>Metrowerks Corporation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7700 West Parmer Lane</td>
</tr>
<tr>
<td></td>
<td>Austin, TX 78729</td>
</tr>
<tr>
<td></td>
<td>U.S.A.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>World Wide Web</th>
<th>http://www.metrowerks.com</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sales</th>
<th>Voice: 800-377-5416</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fax: 512-996-4910</td>
</tr>
<tr>
<td></td>
<td>Email: sales@metrowerks.com</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technical Support</th>
<th>Voice: 800-377-5416</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Email: support@metrowerks.com</td>
</tr>
</tbody>
</table>

For More Information: www.freescale.com
Table of Contents

1 BDIK Target Interface 7
 Overview .. 7
 Highlights ... 8
 Requirements ... 8

2 BDIK Target Interface Demo 9
 Debugging with the BDIK Target Interface 9
 Starting with the BDIK Target Interface 9
 Debugging an Application in RAM 10

3 BDIK Target Interface Help 11
 Introduction ... 11
 Interfacing Your System and the Target 12
 BDI Interface Software Setup 12
 Running the ABATRON Configuration Tool 13
 Loading the BDIK Target Interface 15
 BDIK Target Interface Menu Entries 16
 Load... ... 16
 Reset .. 16
 Communication... or Connect... 17
 Setup... ... 17
 Configure BDI Box... 17
 Set Bank... .. 17
 Command Files .. 17
 Help ... 17
 BDIK Target Interface Dialogs 17
 Communication Device Specification Dialog 18
 Setup Dialog .. 19
 Status Bar Information for the BDIK Target Interface 20
 Status Messages 20
 Stepping and Breakpoint Messages 21

For More Information: www.freescale.com
Table of Contents

Terminal Emulation 22
Flash Programming 24
BDIK Target Interface Environment............ 25
 Default Target Setup 25
 BDICONF .. 27
 COMDEV .. 28
 COMPRESS 29
 SHOWPROT 29
 SKIPILLEGALBREAK 30
 VERIFY ... 31
BDIK Target Interface Commands 32
 BDI ... 32
 BANKREG 33
 PROTOCOL 34
 RESET .. 35
HC12 and HCS12 Banked Memory support 35
 Banked Memory Location Dialog 35
 Associated Commands 38
 BANKWINDOW 39
 Associated Environment Variables 41
 BANKWINDOWn 42
Target Interface Commands Files 43
 Startup Command File 44
 Reset Command File 44
 Preload Command File 45
 Postload Command File 45
 Vppon Command File 45
 Vppoff Command File 46
 Associated Commands 46
 CMDFILE 47
 Command Files Dialog 48
 Associated Environment Variables 49
 CMDFILEn 49

For More Information: www.freescale.com
BDIK Target Interface

Overview

This document includes information on the BDIK Target Interface and helps you understand how to use this target interface. This document is divided into following sections:

• The BDIK Target Interface Demo section provides answers to common questions and describes how to use the advanced features of the BDIK Target Interface.

• The Introduction section introduces the BDIK Target Interface.

• The Interfacing Your System and the Target section contains information about the connection between the BDI interface box and the debugger.

• The BDI Interface Software Setup section describes how to setup the BDI interface box using the ABATRON configuration tool. The discussion focuses on the firmware and the initialization list (startup init list).

• The BDIK Target Interface Menu Entries section provides a description of the BDIK Target Interface specific menu entries.

• The BDIK Target Interface Dialogs section provides a description of the BDIK Target Interface specific dialog boxes.

• The Status Bar Information for the BDIK Target Interface section describes the status bar messages for the BDIK Target Interface.

• The Terminal Emulation section describes how to emulate a text terminal between CPU12, CPU16 and CPU32 derivatives and the debugger.

• The Flash Programming section describes how to proceed to program on-chip non-volatile memory area.

• The BDIK Target Interface Environment section lists all the variables used by this target interface to store the configuration.

• The BDIK Target Interface Commands section lists all the debugger commands specific to this target interface.

• The Banked Memory Location Dialog section describes how to use the banked memory model manager with related CPU12 derivatives.

For More Information: www.freescale.com
• The Target Interface Commands Files section describes the BDIK Target Interface command files.

• The Index contains all keywords of the BDIK Target Interface.

Highlights

• The BDIK Target Interface currently supports the BDI - Background Debug Interfaces - designed by ABATRON AG, including the BDI-HS on CPU12, CPU16 and CPU32, BDI1000 on the CPU12, CPU16, CPU32, M-CORE and MPC5xx, and the BDI2000 on the CPU16, CPU32, M-CORE and MPC5xx.

• For CPU12 and HCS12 supports banked memory handling (e.g. M68HC812A4, M68HC912DG128, MC9S12DP256 ...). Refer to the Banked Memory Location Dialog section.

Requirements

• Ensure that your hardware target board incorporates a Background Debug Mode - BDM - port for CPU background interfacing with the BDI interface and the debugger. Please check the technical specifications provided by the ABATRON User Manuals and Motorola.

• One free serial communication port of your computer is required to communicate with the BDI interface. You may need to set it up even if you will be using an Ethernet communication instead of an RS-232 serial communication.
BDIK Target Interface

Demo

Debugging with the BDIK Target Interface

This section provides an overview of debugging with the BDIK Target Interface.

With this interface, you can download an executable program from the debugger environment to an external target system based on a Motorola MCU which will execute it. You will also have the feedback of the real target system behaviour to the debugger.

The debugger will fully supervise and monitor the MCU of the target system i.e. control the CPU execution. You can read and write in internal/external memory (even while the CPU is running), single-step/run/stop the CPU, set breakpoints and watchpoints (not all CPUs) in the code.

NOTE

Unconcerned Components As the code is executed by an external processor, memory statistics are not available with the BDIK Target Interface. Therefore, Profiling, Coverage analysing and I/O simulation are not available with the BDIK Target Interface.

Starting with the BDIK Target Interface

1. Link the BDI box to the hardware target with the BDM cable provided by ABATRON.

For More Information: www.freescale.com
2. Link the BDI box with a serial cable provided by ABATRON to your computer.

3. Make sure to connect the power supply correctly to the BDI interface and the hardware target, as specified by ABATRON.

4. Use the ABATRON configuration tool to setup the BDI box according to your hardware. Later, map this tool in the debugger itself and call the tool from the debugger. It is more secure to have the BDI interface correctly set according to your target system, as communication settings for the ABATRON configuration tool are similar for the debugger. The latest firmware and the initialization list (startup init list) matching your CPU and hardware must be loaded in the BDI. Refer to the ABATRON User Manual for your CPU derivative procedure. Refer to the BDI Interface Software Setup section for a quick overview of this procedure.

5. Once you have configured the BDI interface with the tool delivered by ABATRON, start the debugger from a demo project for your CPU derivative.

6. The debugger will get the CPU derivative type from the BDI interface and will sets itself automatically to this CPU family. All debugger windows are updated. BDI Ready (then HALTED, sometimes) is displayed in the status bar.

Debugging an Application in RAM

1. Select BDIK | Load... – The Load Executable File dialog is opened.

2. Select the file BDI_ _FIBORAM.ABS and click Open – The dialog is closed and the program is loaded.

3. Select Run | Start/Continue or click . – The application is started.

4. Select Run | Halt or click . – The execution of the program is stopped.
Introduction

Another advanced feature of the debugger for the embedded systems development world is the ability to load different target interfaces, which implements the interface with target systems. The BDIK Target Interface is introduced in this document.

This document describes the specific features of the BDIK Target Interface.

With this interface, you can download an executable program from the debugger environment to an external target system based on a Motorola MCU which will execute it. You also have the feedback of the real target system behaviour to the debugger.

The debugger supervises and monitors the MCU of the target system (i.e. control the CPU execution). You can read and write in internal/external memory (even while the CPU is running), single-step/run/stop the CPU, set breakpoints and watchpoints (not all CPUs) in the code.

NOTE Unconcerned Components As the code is executed by an external processor, memory statistics are not available with the BDIK Target Interface. Therefore, Profiling, Coverage analysing and I/O simulation will not work with the BDIK Target Interface.
Interfacing Your System and the Target

NOTE

BDI Structure, Configuration, Connection to the Host, Connection to the Target, Configuration, Working Modes are described in ABATRON User Manuals.

The BDI interface is connected to the host computer either by a serial communication link or by an Ethernet connection. Any available communication port of your host system can be used. The communication protocol between the BDI and your target system is fully handled by the BDI Target driver automatically loaded with the BDIK Target Component. However, you can adapt your target system to the BDI interface.

The BDI-to-target system communication uses a single wire serial connection. The target system has to be equipped with a BDM connector/port (see the BDI User Manual from ABATRON).

- Make sure that your hardware target board is/has been designed with a Background Debug Mode - BDM - port for CPU background interfacing with the BDI interface and the debugger. Please check the technical specifications provided by ABATRON User Manuals and MOTOROLA.
- One free serial communication port of your computer is required to communicate with the BDI interface. You may need to set it up even if later even if you use Ethernet communication instead of an RS-232 serial communication medium.

BDI Interface Software Setup

The BDIK Target component is delivered during installation and contains all required files, demo projects to use the BDIK debugger, and some BDI setup (init list) files. The drivers delivered with the BDI interface must be installed in order to make sure you use the latest drivers for the BDI interface. These files are delivered on a disk from ABATRON.

You must set up the target MCU through the BDI interface, according to your hardware configuration. Copy all files from the ABATRON disk to a new directory on your computer.

For More Information: www.freescale.com
ABATRON provides a .EXE configuration application and a set of configuration files for specific evaluation boards and processors. These files contain microprocessor/microcontroller initialization data, vectors, chip selects for internal/external ROMs/RAMs, running modes, etc. They contain information bound to the MCU and MCU version used, and information bound to the MCU environment on the board (RAM, ROM, PIA, ACIA, etc.). Each of these files is very specific.

Running the ABATRON Configuration Tool

The configuration program (e.g. B10C12.EXE for CPU12 processor with BDI1000, B20MCORE.EXE for the M-CORE with BDI2000, BDIHSHC1.EXE for CPU16/ CPU32 with BDI-HS, etc.) can also be run within the debugger on the condition that you browse for it choosing the menu entry BDIK | Configure BDI Box... or specify the tool path in the BDIK | Setup... dialog (Setup dialog). Otherwise, run the configuration tool directly from the File Manager or the Explorer.

Example with B10C12.EXE Configuration Tool

NOTE
Please refer first to ABATRON User Manual for further details about the BDI interface and BDI setup.

Firmware Loading

Select Setup | Firmware... to open the firmware dialog.

Set the communication port and the baud rate according to your installation and press the Connect button. If the connection is passed, the current BDI firmware/logic is displayed. If unknown is displayed for the Current firmware/logic, you must load new firmware by pressing the Update button.
If you plan to use a Ethernet communication between your computer and the BDI interface, set the IP address reserved for the BDI then press the Transmit button. Quit the dialog by pressing the Ok button.

Initialization List (Startup Init List) Loading

Select **File | Open...** to load a configuration file (e.g. HC912DA128.BDI).

Select **Setup | Init List...** to see and edit (if necessary) the content if this configuration file.

The Startup Init List/configuration file is displayed as shown below. You can edit, add, remove (etc.) “memory write” instructions in this dialog to configure your MCU and MCU environment.

Quit the previous dialog by clicking **OK** and save the settings if necessary.

Communication with the Debugger Setup

Select **Setup | Communication...** to open the Communication Setup dialog.

In this dialog, set the communication for your future use of the BDI with the debugger. Settings made here should be identical to communication settings made in the debugger within the **Communication Device Specification Dialog**. Press the **Test** button to check the setup then click **OK** to quit this dialog and save the settings if necessary.
BDI Working Mode and Setup/List Transmission

Select **Setup | Mode...** to open the dialog below and download the configuration to the target board by clicking **Transmit**, after setting the required parameters.

Loading the BDIK Target Interface

The target is set in the [Environment Variables] section of the project file, through the statement `Target=BDIK`.

The *BDIK* Target Interface automatically detects that the target is connected to your system. If nothing is detected, the **Communication Device Specification Dialog** pops up: the target is not connected or is connected to a different port.

If no target is set or if a different target is set, load the *BDIK* Target Interface as described below.

In the debugger, select **Component | Set Target...** in the main menu.

The Set Target dialog is displayed. Select *BDIK* in the list of proposed targets and click **OK**.

After a successful target loading, the **Target** menu item is replaced by *BDIK*.

You can change the communication parameter (baud rate and port) by selecting the menu entry **BDIK | Connect...**.

If communication with the BDI Interface could not be established, an error message is displayed followed by the **Communication Device Specification Dialog**.
In this dialog you can modify the device specification (e.g. Communication Port and baud rate). These settings are saved in the current project and will be used again in future sessions.

BDIK Target Interface Menu Entries

After loading the *BDIK* Target Interface, the *Target* menu item is replaced by *BDIK*.

The *Set Bank*... menu entry is available if the connected target processor is a CPU12/HC12 derivative.

If the connection to the target has failed, the entry *Communication*... of menu *BDIK* is replaced with *Connect*... .

The different entries of the *BDIK* menu are described below:

Load...

Select *BDIK* | *Load*... to load the application to debug, i.e. a .ABS file.

Reset

The menu entry *BDIK* | *Reset* executes the *Reset Command File* and resets the hardware target. The BDI interface automatically processes the initialization list (startup init list) stored in the interface.

Communication... or Connect...

Select entry *BDIK* | *Communication*... or *BDIK* | *Connect*... to display the *Communication Device Specification Dialog*. If the connection to the target has failed, the entry *Communication*... of menu *BDIK* is replaced with *Connect*... .

Setup...

Select *BDIK* | *Setup*... to open the *Setup Dialog* to set the link to the ABATRON configuration tool, to set the download mode, or to set the *Continue on illegal break (banked hardware breakpoint)* option (only available for HC12/CPU12 derivative).
Configure BDI Box...

Select BDIK | Configure BDI Box... to open the configuration tool delivered by ABATRON that you copied on your computer. If no application tool path is currently set in the Setup Dialog, a browser dialog, "Select BDI Box Configuration Tool", is automatically opened to create a link to the configuration tool application. The link is then saved in the Setup Dialog.

Set Bank...

This dialog is only available if the connected processor is a Motorola CPU12/HC12 derivative. Select the entry BDIK | Set Bank... to display the Banked Memory Location Dialog.

Command Files

Select the entry BDIK | Command Files to display the Target Interface Commands Files dialog.

Help

Select the entry BDIK | Help to open the BDIK Target Interface Help File.

BDIK Target Interface Dialogs

This section describes the dialogs which are specific to the BDIK Target Interface.

Those dialogs are:

- The Communication Device Specification Dialog.
- The Setup Dialog.
- The Banked Memory Location Dialog (available only if the connected derivative is a Motorola HC12 that supports banking).
- The Target Interface Commands Files dialog.
Communication Device Specification Dialog

The Communication Device Specification dialog pops up automatically if the BDIK Target Interface could not establish the communication with the BDI (box) interface. However, this dialog can be opened by selecting the menu entry BDIK | Communication... or BDIK | Connect... .

If the connection to the target has been successfully achieved (dialog opened using menu entry BDIK | Communication...), it is not possible to modify the Communication Device edit box. Only the Show Protocol check box can be modified.

If the connection to the BDI box has failed (dialog automatically opened or using menu entry BDIK | Connect...), it is possible to modify the Communication Device edit box.

The Communication Device edit box should contain the communication settings to connect to the BDI box. The syntax of the initialisation string is:

"COM\(n\) baudrate"

where \(n\) is the COM port number like 1, 2, 3, etc., and where baudrate is 9600, 19200, 38400, 57600, 115200, according to the setup done with the ABATRON configuration application, e.g. "COM1 57600".

For the communication via an Ethernet and bdiNet, use the following initialisation string:

"NETWORK ip_address port"

where ip_address is the IP address of the BDI box or bdiNet in the form xxx.xxx.xxx.xxx and port is the bdiNet port, usually "1" for BDI1000 and BDI2000, e.g. "NETWORK 151.120.25.101 1".

The Show Protocol check box allows you to switch on/off the displays of the messages sent between the debugger and the BDI interface. If the Show Protocol box is checked, all the commands and responses sent and received are reported in the Command Line window.
NOTE The Show Protocol is a useful debugging feature if there is a communication problem.

NOTE The settings performed in this dialog are stored for a later debugging session in the [BDIK] section of the project file.

Setup Dialog
This dialog is opened selecting the menu entry BDIK | Setup... .

The BDI Box Configuration Tool Path edit box is set up with the path and application name of the configuration tool from ABATRON. The application tool is automatically browsed when selecting the BDIK | Configure BDI Box... menu entry and browsing for the application. Otherwise, press the Browse... button to look for the tool. The edit box contains (for example):
"C:\tmp\B10c12.exe"

In the Download Mode and Data Transfer Verification, you can set different options to transfer data from the computer to the BDI box. By default, use the Verify only first... option. If necessary, you can set a different option to improve transfer speed or security. By default, data compression is enabled for asynchronous communication channels. With older computers, it is possible that download speed is faster without data compression.

The Continue on illegal break (banked hardware breakpoint) option check box is only available for the HC12/CPU12 derivative. You can check this check box to overcome the 2-byte address size on-chip break module, which does not handle the PPAGE (e.g. HC912DG128). Note that internally, the target is halted by the hardware breakpoint (in Flash memory), compared with the breakpoint that you set, then relaunched if not (bank) matching. This feature is available as an optional. Code execution breaks are not handled when this option is set and illegal code execution is not detected. Please use this option carefully.

For More Information: www.freescale.com
Status Bar Information for the BDIK Target Interface

When the BDIK Target Interface has been loaded, specific information is given in the debugger status bar. From left to right, the name of the target CPU and the debugger status (target status) are displayed.

Status Messages

Status messages are described in the following sections.

BDI ready V x.xx

The debugger is ready and waits until a new target or application is loaded. This message is generated once the debugger has been started and the connection to the hardware target has been established by the BDI. "V x.xx" is the current BDI firmware version.

No Link To Target

Connection to the target system has failed.

RUNNING

The application is currently executing in the debugger.

HALTED

Execution of the application has been stopped on user request. The menu entry Run | Halt or the Halt icon in the tool bar has been selected.
RESET

This message is generated when the debugger has been reset on user request. The menu entry BDIK | Reset or the Reset icon in the tool bar has been selected, or the command Reset has been used.

Stepping and Breakpoint Messages

Stepping and breakpoint messages are described in the following sections.

STEPPED

Execution of the application has been stopped after a single step on source level. The menu entry Run | Single Step or the Single Step icon in the tool bar has been selected.

STEPPED OVER

Execution of the application has been stopped after a step over a function call. The menu entry Run | Step Over or the Step Over icon in the tool bar has been selected.

STOPPED

Execution of the application has been stopped after a step out from function call. The menu entry Run | Step Out or the Step Out icon in the tool bar has been selected.

TRACED

Execution of the application has been stopped after an single step on assembler level. The menu entry Run | Assembly Step or the Assembly Step icon in the tool bar has been selected.

BREAKPOINT

Execution of the application has been stopped because a breakpoint has been reached.

WATCHPOINT

Execution of the application has been stopped because a watchpoint has been reached.
Termial Emulation

The BDIK Target Interface supports the emulation of a terminal. The BDI interface supports this emulation for CPU12, CPU16 and CPU32. This allows the target application to write into the debugger Terminal component. Also, characters typed on the host’s keyboard can be directed to the target application. In order to use the terminal emulation, the Terminal component has to be opened in the debugger:

Choose Component | Open | Terminal to open the Terminal component.

In order to simulate the terminal I/O, a work space of 4 bytes is needed. The address of this work space has to be configured with the setup program from ABATRON.

For more information, see the section “Terminal” in the User Manual from ABATRON and check the “termbgnd.c” source file for communication primitives on the installation disk for BDI from ABATRON.

Refer to the section Terminal Component in the debugger core manual.

Example for CPU12 Targets:

The following structure is located in unpaged data memory on the target:

0x00 RX - Flag (Byte)
0x01 RX - Char (Byte)
0x02-0x03 TX - String Pointer (Word)

The address of this structure is defined during BDI box setup. The TermData structure address (0x0800) must match with the software setup of the BDI, and exactly match the Terminal Address in the BDI Working Mode dialog of the ABATRON tool. Refer to the BDI Interface Software Setup section.

While the target is running, the BDI periodically checks if the TX - String Pointer is not zero. Received characters from the host are written to RX - Char, and the RX - Flag is set.

The following is a possible target implementation:

typedef struct {
 unsigned char rxFlag;
 unsigned char rxChar;
 char* txBuffer;
} TermDataT;

#define TermData (*((TermDataT*)(0x0800)))
static char txBuffer[2];

char GetChar(void)
{
 char rxChar;
 while (TermData.rxFlag == 0); /* wait for input */
 rxChar = TermData.rxChar;
 TermData.rxFlag = 0;
 return rxChar;
}
void PutChar(char ch)
{
 txBuffer[0] = ch;
 txBuffer[1] = 0;
 TermData.txBuffer = txBuffer;
 while (TermData.txBuffer != 0); /*wait for output buffer empty*/
}
void PutString(char *str)
{
 TermData.txBuffer = str;
 while (TermData.txBuffer != 0); /*wait for output buffer empty*/
}

Flash Programming

The BDI supports downloading and debugging code that runs in the internal Flash memory of the target CPU. Breakpoints are automatically mapped to the hardware breakpoint registers. To erase the internal flash and to enable writing to flash, Direct Commands to BDI are used. Direct commands to BDI can be executed from a .CMD command file like in the Preload Command File and the Postload Command File or the Command Line component with the BDI command.

This flash programming support is not available for all CPUs. Please check for availability in the User Manual for your CPU from ABATRON.

Use the following sequence to load code into the internal flash:

1. Flash.Erase
2. Flash.Load

For More Information: www.freescale.com
3. Download the code using the normal debugger BDI | Load... browser/menu entry or the debugger LOAD command. Every write to the flash range including WB, WW, WL commands uses the programming algorithm.

4. Flash.Idle

Examples of HC12/CPU12 Direct Commands

For the Direct Commands, the following default values are used:

HC912B32:

FLASH.ERASE [addr=8000] [size=8000] [sram=BDI-Workspace]
FLASH.LOAD [addr=8000] [size=8000] [sram=BDI-Workspace]

HC912D60:

FLASH.ERASE [addr=8000] [size=8000] [sram=BDI-Workspace]
FLASH.LOAD [addr=1000] [size=F000] [sram=BDI-Workspace]

HC912DA/G128:

FLASH.ERASE [addr=8000] [size=8000] [sram=BDI-Workspace]
FLASH.LOAD [addr=4000] [size=C000] [sram=BDI-Workspace]

Finally, set your Preload Command File and Postload Command File of your project directory with the BDI command as shown:

HC912B32:

Before downloading (in Preload Command File):

BDI flash.erase
BDI flash.load

After downloading (in Postload Command File):

BDI flash.idle

HC912D60:

Before downloading (in Preload Command File):

BDI flash.erase addr=8000 size=8000
BDI flash.erase addr=1000 size=7000
BDI flash.load

After download (in Postload Command File):
BDI flash.idle

HC912DA128 / HC912DG128:

Before downloading (in Preload Command File):
BDI flash.erase addr=08000 size=8000
BDI flash.erase addr=28000 size=8000
BDI flash.erase addr=48000 size=8000
BDI flash.erase addr=68000 size=8000
BDI flash.load

After downloading (in Postload Command File):
BDI flash.idle

BDIK Target Interface Environment

Default Target Setup

As any other target, the *BDIK* Target Interface can be loaded from the Target menu or can be set as a default target in the project file.

The target is set in the [Environment Variables] section from your project file as shown above. However, if the target is not defined, load the *BDIK* Target Interface interactively. Please refer to the Loading the BDIK Target Interface section.

Example of the [Environment Variables] section from your project file:

```
[Environment Variables]
...
Target=BDIK
...
```

NOTE

Please see the True-Time Simulator and Real-Time Debugger core manual for further information about the project file.
BDIK Target Interface Environment Variables

This section describes the environment variables which are used by the BDIK Target Interface.

The BDIK Target Interface specific environment variables are:

- **BDICONF**
- **COMDEV**
- **COMPRESS**
- **SHOWPROT**
- **SKIPILLEGALBREAK**
- **VERIFY**

These variables are stored in the [BDIK] section from the project file.

Example of the [BDIK] section from the project file:

```
[BDIK]
CMDFILE0=CMDFILE STARTUP ON "startup.cmd"
CMDFILE1=CMDFILE RESET ON "reset.cmd"
CMDFILE2=CMDFILE PRELOAD ON "preload.cmd"
CMDFILE3=CMDFILE POSTLOAD ON "postload.cmd"
COMDEV=COM1 57600
SHOWPROT=0
BDICONF=C:\tmp\B10c12.exe
SKIPILLEGALBREAK=0
VERIFY=1
COMPRESS=1
```

The remainder of this section describes each of the variables available for the BDIK Target Interface. The variables are listed in alphabetical order and are divided into several topics.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short Description</td>
<td>Provides a short description of the variable.</td>
</tr>
<tr>
<td>Syntax</td>
<td>Specifies the syntax of the variable in a EBNF format.</td>
</tr>
<tr>
<td>Default</td>
<td>Shows the default setting for the variable.</td>
</tr>
<tr>
<td>Description</td>
<td>Provides a detailed description of the variable and how to use it.</td>
</tr>
<tr>
<td>Example</td>
<td>Small example of how to use the variable.</td>
</tr>
</tbody>
</table>
BDICONF

Short Description
Defines the ABATRON configuration tool file and path

Syntax
BDICONF=ConfigurationToolFileNameandPath

where ConfigurationToolFileNameandPath is the ABATRON configuration tool file name and path.

Default
The default value does not exist. The string "Enter here the path to the ABATRON configuration tool." is displayed in the edit box.

Description
This variable defines the communication device between the computer and the BDI. It is set according to the BDI Box Configuration Tool Path edit box of the Setup Dialog. The BDI Box Configuration Tool Path edit box can be set up with the path and application name of the configuration tool from ABATRON. The application tool is automatically browsed when selecting the BDIK | Configure BDI Box... menu entry and browsing for the application. Otherwise, press the Browse... button to look for the tool.

Example
BDICONF=C:\tmp\B10c12.exe

COMDEV

Short Description
Defines the communication device between the computer and the BDI.

Syntax
COMDEV=COMn baudrate
where \(n \) is the COM port number like 1, 2, 3, etc. and where \(\text{baudrate} \) is 9600, 19200, 38400, 57600, 115200, according to the setup done in the ABATRON configuration application.

For the communication via an Ethernet:

\[
\text{COMDEV}=\text{NETWORK \ ip_address \ port}
\]

where \(\text{ip_address} \) is the IP address of the BDI box or bdiNet in the form xxx.xxx.xxx.xxx and \(\text{port} \) is the bdiNet port, usually "1" for BDI1000 and BDI2000.

Default
The default value is COM1 57600.

Description
This variable defines the communication device between the computer and the BDI. It is set according to the Communication Device edit box of the Communication Device Specification Dialog.

Example

\[
\text{COMDEV}=\text{COM1 \ 57600}
\]

COMPRESS

Short Description
Sets data transfer compression

Syntax

\[
\text{COMPRESS}=1|0
\]

Default
The default value is 1.

Description
This variable sets the BDI download mode with data compression. By default, data compression is enabled for asynchronous communication channels. With older
computers, it is possible that download speed is faster without data compression. It is set according to the Use Data Compression check box of the Setup Dialog.

Example

COMPRESS=1

SHOWPROT

Short Description
Set Show Protocol On/Off

Syntax

SHOWPROT=1 | 0

Default
The default value is 0.

Description
If the Show Protocol is used, all the commands and responses sent and received are reported in the Command Line component of the debugger.

If the variable is set to 1, Show Protocol is activated.

This variable is set according to the Show Protocol check box of the Communication Device Specification Dialog.

Example

SHOWPROT=1

NOTE
The Show Protocol is a useful debugging feature if there is a communication problem.
SKIPILLEGALBREAK

Short Description
Enables skipping illegal breakpoints

Syntax

\[
\text{SKIPILLEGALBREAK}=1 \mid 0
\]

Default
The default value is 0.

Description
This variable is set according to the Continue on illegal break (banked hardware breakpoint) option check box of the Setup Dialog.

The Continue on illegal break (banked hardware breakpoint) option check box is only available for the HC12/CPU12 derivative. You can check this check box to overcome the 2-byte address size on-chip break module which does not handle the PPAGE (e.g. HC912DG128). Note that internally, the target will be halted by the hardware breakpoint (in Flash memory), compared with the breakpoint that you set, then relaunched if not (bank) matching.

Example

\[
\text{SKIPILLEGALBREAK}=1
\]

VERIFY

Short Description
Sets data transfer verification

Syntax

\[
\text{VERIFY}=0 \mid 1 \mid 2 \mid 3
\]
with 0 for no verification at all (fastest mode), 1 for first byte verification only, 2 for all data read back verification, and 3 for only verification (no write).

Default
The default value is 1.

Description
This variable sets the BDI download mode with data verification. By default, use Verify only first... option. If necessary, you can set a different option to improve transfer speed or security. It is set according to the Data Transfer Verification radio buttons of the Setup Dialog.

Example
VERIFY=1

BDIK Target Interface Commands
This section describes the BDIK Target Interface specific commands that are used when the BDIK Target Interface is set.

The BDIK Target Interface specific commands are:

- BANKREG
- BDI
- PROTOCOL
- RESET

Those commands are entered in the Target Interface Commands Files or in the Command Line component of the debugger.

This section describes each of the commands available for the BDIK Target Interface. The commands are listed in alphabetical order. Each is divided into several topics.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short Description</td>
<td>Provides a short description of the command.</td>
</tr>
<tr>
<td>Syntax</td>
<td>Specifies the syntax of the command in a EBNF format.</td>
</tr>
<tr>
<td>Description</td>
<td>Provides a detailed description of the command and how to use it.</td>
</tr>
<tr>
<td>Example</td>
<td>Small example of how to use the command.</td>
</tr>
</tbody>
</table>

For More Information: www.freescale.com
BDI

Short Description
Executes any direct BDI command

Syntax

BDI \(<\text{ABATRON_direct_command}>\)

where \(\text{ABATRON_direct_command}\) has the following syntax:

\(<\text{Object}.<\text{Action}> [<\text{parName}=<\text{parameterValue}>]>...\)

Description

The BDI command executes any ABATRON direct command. ABATRON direct commands are described in the User Manual for your CPU from ABATRON. They are commonly used to download to non-volatile memory areas (please see also the Flash Programming section).

Example

BDI FLASH.ERASE addr=8000 size=8000 sram=0800

BANKREG

Short Description

Sets banked memory handling for HC12/CPU12 derivatives

Syntax

BANKREG [\(\text{PPAGE=<PPAGE_register_adrs}>\)]

[\(\text{DPAGE=<DPAGE_register_adrs}>\)]

[\(\text{EPAGE=<EPAGE_register_adrs}>\)]
Description

CAUTION This command is still available, but for compatibility only. However, it should not be used. The Banked Memory Location Dialog handles the banked memory handling when debugging on HC12/CPU12 derivatives.

The BANREG command lets you define if paging is used, like PPAGE (HC912DG128, HC812A4), DPAGE (HC812A4) or EPAGE (HC812A4). This command must be inserted in the Startup Command File of your project directory. As soon as the command is executed, the specified registers are displayed in the Register component window.

Example

for HC812A4:
BANKREG PPAGE=0x35 DPAGE=0x34 EPAGE=0x36

for HC912DG128:
BANKREG PPAGE=0xFF

PROTOCOL

Short Description
Switch on/off the Show Protocol functionality

Syntax

PROTOCOL ON|OFF

Description

If this command is used, all the messages sent to and received from the debugger are reported in the Command Line window of the debugger.

The Show Protocol facility can also be switched on/off using the corresponding check box in the Communication Device Specification Dialog.

The state of the Show Protocol is stored in the [BDIK] section of the project file using variable SHOWPROT.

For More Information: www.freescale.com
Example

PROTOCOL ON

NOTE The Show Protocol is a useful debugging feature if there is a communication problem.

RESET

Short Description

Reset of the target board

Syntax

RESET

Description

Use this command to reset the target from the Command Line component of the debugger. The Reset Command File is also executed and the BDI interface automatically processes the initialization list (startup init list) stored in the interface.

Example

RESET

HC12 and HCS12 Banked Memory support

You can define which banked memory format you want to use and its location in the memory of the Motorola HC12 or HCS12 derivative you are using. The PPAGE, DPAGE and the EPAGE formats are supported, if available on the target HC12 or HCS12 derivative.
Banked Memory Location Dialog

This Banked Memory Location dialog box is available only if the connected derivative is a Motorola HC12 (CPU12) or HCS12.

The Banked Memory Location dialog box can be opened by selecting the menu entry "TargetName" | Set Bank.... (In this section, Target Name is the name of the target, like SDI, Hitex, BDIK, ICD-12, Noral-BDM, etc.) Using some Target Interfaces, the Banked Memory Location dialog box automatically pops up when the Target Interface is used with a Motorola HC12 or HCS12 derivative that supports banking. In this case, it also pops up when the banked memory area locations are not defined in the project file of the current project directory.

In this dialog box you can define which banked memory you want to use and its location. The PPAGE, DPAGE and the EPAGE indexes are supported, if they are available on the currently connected HC12 or HCS12 derivative.

PPAGE Index Tab

The PPAGE index tab of the Banked Memory Location dialog box lets you set up the PPAGE banked memory area. Once you have enabled PPAGE memory banking by checking the Enable Banked Memory Area check box, you must set the start address and the end address of this memory range.

The PPAGE register address must be specified in hexadecimal (e.g. 0x35 for HC812A4, 0xFF for HC912DG128, 0x30 for MC9S12DP256B).

The number of pages must be specified in decimal (e.g. 0 to 256 for HC812A4, 8 for HC912DG128, 64 for the MC9S12DP256B).

NOTE For the Hitex Target Interface, the PPAGE index tab does not appear in this dialog box if the PPAGE register is not available on the currently connected Motorola HC12 derivative. For this Target Interface it is not needed to enter the PPAGE register address.
DPAGE Index Tab

The DPAGE index tab of this dialog box lets you set up the DPAGE banked memory area. Once you have enabled DPAGE memory banking by checking the Enable Banked Memory Area check box, you must set the start address and the end address of this memory range.

The number of pages must be specified in decimal (e.g. 0 to 256 for HC812A4).

The DPAGE register address must be specified in hexadecimal (e.g. 0x34 for HC812A4).

NOTE For the Hitex Target Interface, the DPAGE index tab does not appear in this dialog box if the DPAGE register is not available on the currently connected Motorola HC12 derivative. For this Target Interface it is not needed to enter the DPAGE register address.

EPAGE Index Tab

The EPAGE index tab of this dialog box lets you set up the EPAGE banked memory area. Once you have enabled EPAGE memory banking by checking the Enable Banked Memory Area check box, you must set the start address and the end address of this memory range.

For some Target Interfaces the number of pages must be specified in decimal (e.g. 0 to 256 for HC812A4).

For some other Target Interfaces, the EPAGE register address must be specified in hexadecimal (e.g. 0x36 for HC812A4).

NOTE For the Hitex Target Interface, the EPAGE index tab does not appear in this dialog box if the EPAGE register is not available on the
currently connected Motorola HC12 derivative. For this Target Interface it is not needed to enter the EPAGE register address.

Various Index Tab (not all Target Interfaces)

If you are using an HC12 derivative which supports banking and you don’t want to enable this mechanism, or if you want to use only one bank out of three, you can suppress the automatic display of the Banked Memory Location dialog by checking the Display dialog at connection if banked memory locations not defined check box.

NOTE The settings entered in this dialog box are stored for a later debugging session in the ["targetName"] section of the project file.

NOTE When using the HITEX Target Interface and the M68HC12DG128 DProbeHC12-DG, at least one page must be defined from 0x8000 to 0xBFFF. Otherwise, some display problems might be encountered in the Memory component of HI-WAVE.

Associated Commands

The following sections describe the Banked Memory Location Command Line commands which are used by the Target Interface. These variables are:
BANKWINDOW

Those commands can be entered in the Target Interface Commands Files or in the Command Line component of HI-WAVE.

The Banked Memory Location commands which are used by the Target Interface are described as shown in the following table.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short Description</td>
<td>Provides a short description of the command.</td>
</tr>
<tr>
<td>Syntax</td>
<td>Specifies the syntax of the command in a EBNF format.</td>
</tr>
<tr>
<td>Description</td>
<td>Provides a detailed description of the command and how to use it.</td>
</tr>
<tr>
<td>Example</td>
<td>Small example of how to use the command.</td>
</tr>
</tbody>
</table>

The following sections describe each command related to the Banked Memory Location available for the Target Interface. The variables are listed in alphabetical order.

BANKWINDOW

Short Description

Specify a banked memory area and its status (enable/disable).

Syntax

BANKWINDOW <bank> [OFF|ON] [<range> <reg> <numofpages>]

with

bank = (PPAGE | DPAGE | EPAGE)

or

BANKWINDOW VARIOUS [DLGATCONNECT|NODLGATCONNECT]

Description

The command BANKWINDOW allows to set up the debugger to work in banked memory model.

For More Information: www.freescale.com
Three different Banked Memory Area can be defined: DPAGE, EPAGE and PPAGE. Each banked memory area has an associated bank register, which is displayed in the Register component.

Using `BANWINDOW PPAGE ...` command will have the same effect than using the PPAGE index tab in the Banked Memory Location Dialog.

Using `BANWINDOW DPAGE ...` command will have the same effect than using the DPAGE index tab in the Banked Memory Location Dialog.

Using `BANWINDOW EPAGE ...` command will have the same effect than using the EPAGE index tab in the Banked Memory Location Dialog.

Using `BANWINDOW VARIOUS ...` command will have the same effect than using the Various index tab in the Banked Memory Location Dialog.

A banked memory area is defined by its start address, end address and the address of the Bank register.

The maximum number of pages parameter allows to see in the memory component only the available pages.

The status of the banking mechanism in the debugger is also monitored through this command: a command can be defined, but the debugger banking mechanism can be disabled.

Consider the command:

```
BANKWINDOW PPAGE ON 0x8000..0xBFFF 0x30 64
```

This command allows to use the banked memory model in the debugger using the `MC9S12DP256B`.

This commands means the PPAGE register located at address 0x30 must be used to build the PC address when the code is located in banked memory area, from 0x8000 to 0xBFFF. The 64 first page in the memory map are visible (page 0x3F is the last one).

The PPAGE register (located at address 0x30) will be displayed in the register component.

The bank settings are stored in the `"targetName"` section of the PROJECT file using variable `BANKWINDOWn`.

Example

The Banking status can be get typing `BANKWINDOW` without any parameters in the Command Line component.
in>bankwindow
PPAGE Settings:
Status: enabled
Reg. Adr: 0x30
Range: 0x8000 to 0xbfff
Number of Pages: 64

DPAGE Settings:
Status: disabled
Reg. Adr: 0x34
Range: 0x7000 to 0x7fff
Number of Pages: 0

EPAGE Settings:
Status: disabled
Reg. Adr: 0x36
Range: 0x400 to 0x7ff
Number of Pages: 0

The status of the PPAGE Banked Memory area can be changed:

in>BANKWINDOW PPAGE OFF
in>BANKWINDOW
PPAGE Settings:
Status: disabled
Reg. Adr: 0x30
Range: 0x8000 to 0xbfff
Number of Pages: 64

DPAGE Settings:
Status: disabled
Reg. Adr: 0x34
Range: 0x7000 to 0x7fff
Number of Pages: 0

EPAGE Settings:
Status: disabled
Reg. Adr: 0x36
Range: 0x400 to 0x7ff
Number of Pages: 0
Associated Environment Variables

The following sections describe the Banked Memory Location environment variables which are used by the Target Interface. These variables are:

BANKWINDOWn

These variables are stored in the ["targetName"] section from the project file.

Example of the [BDIK] target section from a project file:

```
[BDIK]
BANKWINDOW0=BANKWINDOW PPAGE ON 0x8000..0xBFFF 0x30 64
BANKWINDOW1=BANKWINDOW DPAGE OFF 0x7000..0x7FFF 0x34 256
BANKWINDOW2=BANKWINDOW EPAGE OFF 0x400..0x7FF 0x36 256
```

The Banked Memory Location environment variables which are used by the Target Interface are described as shown in the following table.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short Description</td>
<td>Provides a short description of the variable.</td>
</tr>
<tr>
<td>Syntax</td>
<td>Specifies the syntax of the variable in a EBNF format.</td>
</tr>
<tr>
<td>Default</td>
<td>Shows the default setting for the variable.</td>
</tr>
<tr>
<td>Description</td>
<td>Provides a detailed description of the variable and how to use it.</td>
</tr>
<tr>
<td>Example</td>
<td>Small example of how to use the variable.</td>
</tr>
</tbody>
</table>

The following sections describe each variable available for the Target Interface. The variables are listed in alphabetical order.

BANKWINDOWn

Short Description

Contains a BANKWINDOW Command Line command to be used to set up the Banked Memory support.
Syntax

BANKWINDOWn=<one BANKWINDOW Command Line command>

Default

All available banked memory area are disabled by default.

The default PPAGE memory banked area is 0x8000 to 0xBFFF, 8 pages allowed, with PPAGE register at address 0x35.

The default DPAGE memory banked area is 0x7000 to 0x7FFF, 256 pages allowed, with PPAGE register at address 0x34.

The default EPAGE memory banked area is 0x400 to 0x7FF, 256 pages allowed, with PPAGE register at address 0x36.

The default settings for the VARIOUS page is that the bank window dialog is displayed automatically when connecting when settings are not done (do only apply to the Hitex Target Interface).

Description

The BANKWINDOWn variable specifies a command file definition using BANKWINDOW Command Line command. Three or four of those entries should be present in the project file, depending on the Target Interface.

Those variables are used to store the Banked Memory Location definition (range, address, number of pages) and status (enable/disable) specified either with the BANKWINDOW Command Line command the Banked Memory Location Dialog.

Example

BANKWINDOW0=BANKWINDOW PPAGE OFF 0x8000..0xBFFF 0x30 64
BANKWINDOW1=BANKWINDOW DPAGE OFF 0x7000..0x7FFF 0x34 256
BANKWINDOW2=BANKWINDOW EPAGE OFF 0x400..0x7FF 0x36 256
BANKWINDOW3=BANKWINDOW VARIOUS DLGATCONNECT

Target Interface Commands Files

The Target Interface offers the possibility to play a specific command file on different events:

- at connection: Startup Command File,
- at reset: Reset Command File,
right before a file is loaded: **Preload Command File**.
right after a file has been loaded: **Postload Command File**.
right before a "Non Volatile Memory" is erased or right before a file is programmed in "Non Volatile Memory": **Vppon Command File**. This command file can be used for example to enable a programming voltage by software. This command file is not available for all target interfaces.
right after a "Non Volatile Memory" has been erased or right after a file has been programmed in "Non Volatile Memory": **Vppoff Command File**. This command file can be used for example to disable a programming voltage by software. This command file is not available for all target interfaces.

The command files full name and status (enable/disable) can be specified either with the **CMDFILE** Command Line command or using the **Target Interface Commands Files** dialog.

You can use any **HI-WAVE** command in those files and take advantage of the wide set of commands introduced in the **HI-WAVE manual** to setup the target hardware on one of those events.

Example of a command file content:

```
WB 0x0035 0x00
WB 0x0012 0x11
PROTOCOL OFF
```

- The **WB 0x0035 0x00** command sets memory location 0x35 to 0.
- The **WB 0x0012 0x11** command sets memory location 0x12 to 0x11.
- The command **PROTOCOL OFF** switch of the **Show Protocol**.

Startup Command File

The Startup command file is executed by **HI-WAVE** straight after the Target Interface has been loaded.

The Startup command file full name and status (enable/disable) can be specified either with the **CMDFILE STARTUP Command Line** command or using the **Startup** index of the **Target Interface Commands Files** dialog.

By default, the **STARTUP.CMD** file located in the current project directory is enabled as the current Startup command file.

For More Information: www.freescale.com
Reset Command File

The Reset command file is executed by HI-WAVE straight after the reset button, menu entry or Command Line command has been selected.

The Reset command file full name and status (enable/disable) can be specified either with the CMDFILE RESET Command Line command or using the Reset index of the Target Interface Commands Files dialog.

By default, the RESET.CMD file located in the current project directory is enabled as the current Reset command file.

Preload Command File

The Preload command file is executed by HI-WAVE right before an application is loaded to the target system through the Target Interface.

The Preload command file full name and status (enable/disable) can be specified either with the CMDFILE PRELOAD Command Line command or using the Preload index of the Command Files Dialog.

By default, the PRELOAD.CMD file located in the current project directory is enabled as the current Preload command file.

Postload Command File

The Postload command file is executed by HI-WAVE right after an application has been loaded to the target system through the Target Interface.

The Postload command file full name and status (enable/disable) can be specified either with the CMDFILE POSTLOAD Command Line command or using the Postload index of the Command Files Dialog.

By default, the POSTLOAD.CMD file located in the current project directory is enabled as the current Postload command file.

Vppon Command File

The Vppon command file is executed by HI-WAVE right before a "Non Volatile Memory" is erased or right before a file is programmed in "Non Volatile Memory" to the target system through the target interface Non Volatile Memory Control dialog (Flash... menu entry) or FLASH PROGRAM/ERASE commands from Flash Programming utilities.
The Vppon command file full name and status (enable/disable) can be specified either with the CMDFILE VPPON Command Line command or using the Vppon index of the Command Files Dialog.

By default, the VPPON.CMD file located in the current project directory is enabled as the current Vppon command file.

This command file can be used for example to enable a programming voltage by software.

NOTE This command file is not available for all target interfaces.

Vppoff Command File

The Vppoff command file is executed by HI-WAVE right after a "Non Volatile Memory" has been erased or right after a file has been programmed in "Non Volatile Memory" to the target system through the target interface Non Volatile Memory Control dialog (Flash... menu entry) or FLASH PROGRAM/ERASE commands from Flash Programming utilities.

The Vppoff command file full name and status (enable/disable) can be specified either with the CMDFILE VPPOFF Command Line command or using the Vppoff index of the Command Files Dialog.

By default, the VPPOFF.CMD file located in the current project directory is enabled as the current Vppoff command file.

This command file can be used for example to disable a programming voltage by software.

NOTE This command file is not available for all target interfaces.

Associated Commands

This section describes the Command Files command which can be used when the Target Interface is set.

The Target Interface specific commands is:

CMDFILE

Those commands can be entered in the Target Interface Commands Files or in the Command Line component of HI-WAVE.

For More Information: www.freescale.com
This section describes each command available for the Target Interface. The commands are listed in alphabetical order.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short Description</td>
<td>Provides a short description of the command.</td>
</tr>
<tr>
<td>Syntax</td>
<td>Specifies the syntax of the command in a EBNF format.</td>
</tr>
<tr>
<td>Description</td>
<td>Provides a detailed description of the command and how to use it.</td>
</tr>
<tr>
<td>Example</td>
<td>Small example of how to use the command.</td>
</tr>
</tbody>
</table>

CMDFILE

Short Description
Defines a command file path, name and status (enable/disable).

Syntax

```plaintext
CMDFILE <file kind> ON|OFF ["<file name and path>"]
and
file kind = STARTUP|RESET|PRELOAD|POSTLOAD|VPPON|VPPOFF
```

Description

The CMDFILE command is to be used set up a command file full name and status (disabled/enabled).

This command allows to perform the same settings than using the Command Files dialog through the Command Line component.

The settings of a command file are stored in the "targetName" section of the PROJECT file using variable CMDFILEn.

Example

The list of available command files (and their status) can be get typing CMDFILE without any parameters in the Command Line component.

```
in>CMDFILE
Hitex Target Interface Command Files:
```

For More Information: www.freescale.com
STARTUP ON startup.cmd
RESET ON reset.cmd
PRELOAD ON preload.cmd
POSTLOAD ON postload.cmd

The status of the Startup command file can be changed:

in>CMDFILE STARTUP OFF "my own startup.cmd"
in>CMDFILE

Hitex Target Interface Command Files:
STARTUP OFF my own startup.cmd
RESET ON reset.cmd
PRELOAD ON preload.cmd
POSTLOAD ON postload.cmd

Command Files Dialog

The Target Interface Command Files dialog can be opened selecting menu entry "TargetName" | Command Files. (In this section, TargetName is the name of the target, like SDI, Hitex, BDIK, ICD-12, Noral-BDM, etc.)

Each index of this dialog corresponds to an event on which a command file can be automatically run from HI-WAVE: Startup Command File, Reset Command File, Preload Command File, Postload Command File, Vppon Command File (not available for all targets), or Vploff Command File (not available for all targets).

The command file in the edit box is executed when the corresponding event occurred. Using the Browse button, you can set up the path and name of the command file.

The Enable Command File check box allows to enable/disable a command file on an event. By default, all command files are enabled:

- the default Startup command file is STARTUP.CMD,
- the default Reset command file is RESET.CMD,
- the default Preload command file is PRELOAD.CMD,
- the default Postload command file is POSTLOAD.CMD,
- the default Vppon command file is VPPON.CMD,
- the default Vploff command file is VPPOFF.CMD.

For More Information: www.freescale.com
NOTE The settings performed in this dialog are stored for a later debugging session in the ["targetName"] section of the PROJECT file using variables CMDFILE0, CMDFILE1, ... CMDFILEn.

Associated Environment Variables

This section describes the Command Files dialog environment variables which are used by the Target Interface.

CMDFILEn

These variables are stored in the ["targetName"] section from the project file.

Example of the [NORAL FLEX BDM] target section from the project file:

[NORAL FLEX BDM]
CMDFILE0=CMDFILE STARTUP ON "startup.cmd"
CMDFILE1=CMDFILE RESET ON "reset.cmd"
CMDFILE2=CMDFILE PRELOAD ON "preload.cmd"
CMDFILE3=CMDFILE POSTLOAD ON "postload.cmd"
CMDFILE4=CMDFILE VPPON ON "vppon.cmd"
CMDFILE5=CMDFILE VPPOFF ON "vppoff.cmd"

The following section describes each variable available for the Target Interface. The variables are listed in alphabetical order.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short Description</td>
<td>Provides a short description of the variable.</td>
</tr>
<tr>
<td>Syntax</td>
<td>Specifies the syntax of the variable in a EBNF format.</td>
</tr>
<tr>
<td>Default</td>
<td>Shows the default setting for the variable.</td>
</tr>
<tr>
<td>Description</td>
<td>Provides a detailed description of the variable and how to use it.</td>
</tr>
<tr>
<td>Example</td>
<td>Small example of how to use the variable.</td>
</tr>
</tbody>
</table>

For More Information: www.freescale.com
CMDFILEn

Short Description

Contains a CMDFILE Command Line command to be used to define a command file on a event.

Syntax

CMDFILEn=<command file specified using CMDFILE Command Line command>

Default

All command files are enabled by default.

The default Startup command file is STARTUP.CMD,

The default Reset command file is RESET.CMD,

The default Preload command file is PRELOAD.CMD,

The default Postload command file is POSTLOAD.CMD,

The default Vppon command file is VPPON.CMD.

The default Vppoff command file is VPPOFF.CMD.

Description

The CMDFILEn variable specifies a command file definition using CMDFILE Command Line command. As there are four HI-WAVE command files for the Target Interface, four of those entries should be present.

Those variables are used to store the command files status (enable/disable) and full name specified either with the CMDFILE Command Line command or using the Command Files Dialog.

Example

CMDFILE0=CMDFILE STARTUP ON "startup.cmd"
CMDFILE1=CMDFILE RESET ON "reset.cmd"
CMDFILE2=CMDFILE PRELOAD ON "preload.cmd"
CMDFILE3=CMDFILE POSTLOAD ON "postload.cmd"
CMDFILE4=CMDFILE VPPON OFF "vpon.cmd"
CMDFILE5=CMDFILE VPOFF OFF "vpooff.cmd"
Symbols
.ABS 16

A
ABATRON Configuration tool 13

B
Background Debug Mode 8
Banked hardware breakpoint 20
Banked Memory Location dialog 35
Banked Memory Location Target commands 38
Banking on CPU12 17
BANKREG 33
Banks 17
BANKWINDOW 39
BANKWINDOWn 42
BDI 32
 Abatron setup 13
 Configuration 13
 Interface 12
 Interface setup 12
BDI Firmware 13
BDI Initialization List 14
BDI Startup Init List 14
BDI Working Mode 15
BDI1000 8
BDI2000 8
BDICONF 27
BDI-HS 8
BDIK
 BDIK Flash Programming with BDI 24
 BDIK Target Interface Dialogs 17, 18, 19
 BDIK Terminal Emulation with BDI 22
Menu Entries 16
BDIK | Command Files 17
BDIK | Communication... 17, 18
BDIK | Connect 17, 18
BDIK | Help 17
BDIK | Load... 16, 17
BDIK | Reset 16
BDIK | Set Bank... 17
BDIK | Setup... 19

BDIK Flash Programming with BDI 24
BDIK Target Interface Dialogs 17, 18, 19
BDIK Terminal Emulation with BDI 22
BDM connector/port 12
BDM port 8
Box configuration 13
BREAKPOINT 22
Breakpoint
 BREAKPOINT 22
breakpoint 20, 31
Breakpoint banked hardware 20

C
CMDFILE 47
CMDFILEn 49
COMDEV 28
Command Files 17, 43
Commands 32, 38, 46
Communication 12, 17
Communication Device Specification dialog 18
COMn 18
COMPRESS 29
Compression 19, 29
Configuration file 14
Configuration Tool 13
Configure BDI Box 13
Configure Box... 17
Connect 17
Continue on illegal break 17, 20, 30, 31
Coverage 9, 11
CPU12 8, 22
CPU16 8, 22
CPU32 8, 22

D
Data compression 19, 29
Default target 25
Direct commands 24
Display Bank Memory Location dialog at connection 38
Download Mode and Data Transfer Verification 19
DPAGE 36

For More Information: www.freescale.com
DPAGE Banked Memory Area 36

E
Environment variables 25, 26
EPAGE 37
EPAGE Banked Memory Area 37
Erase 24
Ethernet 8, 12

F
Firmware 13
Flash programming 24, 45, 46
Flash.Erase 24
Flash.Idle 24
Flash.Load 24

H
HALTED 21
hardware breakpoint 20, 31
Help 17
Highlights 8
HiTOP Ready 20
How To
 Debugging an Application in RAM 10
 Starting with the BDIK Target Interface 9

I
I/O 9, 11, 22
Idle 24
Initialization List 14

L
List Transmission 15
Load 24
Load... 16
Loading an application 16
Loading the BDIK Target Interface 15

M
M-CORE 8
Memory banking 8
MPC5xx 8
N
NETWORK 19
No Link To Target 20
Non Volatile Memory 43, 45

O
Overview 7

P
Postload command file 45
PPAGE 36
PPAGE Banked Memory Area 36
Preload command file 45
Profiling 9, 11
PROTOCOL 34

R
RAMs 13
Requirements 8
RESET 21, 35
Reset 16
Reset command file 44
ROMs 13
RS-232 serial communication 8
RUNNING 21

S
Set Bank... 17
Setup dialog 19
Setup... 17
Show Protocol 19
SHOWPROT 29
Simulation 9, 11
SKIPILLEGALBREAK 30
Startup command file 44
Startup Init List 14
Status Bar Information for the BDIK Target Interface 20
Status Message 20
 BDI Ready 20
 HALTED 21
 No Link To Target 20
 Reset 21
 RUNNING 21
STEPPED 21
STEPPED OVER 21
Stepping and Breakpoints Messages 21
Stepping Message
 STEPPED 21
 STEPPED OVER 21
 STOPPED 21
 TRACED 22
STOPPED 21

T
Target Command Files 43
Target commands 32, 46
Target Interface Command Files dialog 48
Target Interface Dialogs 35
 Target Interface Command Files dialog 48
termbgn.d 22
Terminal 22
Terminal Address 23
Terminal area 22
Terminal Emulation 22
Terminal work space 22
TRACED 22

V
Variable 25
VERIFY 31
Vppoff command file 46
Vppon command file 45

W
WATCHPOINT 22
Watchpoint
 WATCHPOINT 22
Working Mode 15